
mdpi.com/journal/entropy

Special Issue Reprint

Information-Theoretic
Methods in Deep Learning
Theory and Applications

Edited by
Shuangming Yang, Shujian Yu, Luis Gonzalo Sánchez Giraldo
and Badong Chen

Information-Theoretic Methods
in Deep Learning: Theory
and Applications

Information-Theoretic Methods
in Deep Learning: Theory
and Applications

Guest Editors

Shuangming Yang
Shujian Yu
Luis Gonzalo Sánchez Giraldo
Badong Chen

Basel ‚ Beijing ‚ Wuhan ‚ Barcelona ‚ Belgrade ‚ Novi Sad ‚ Cluj ‚ Manchester

Guest Editors

Shuangming Yang

School of Electrical and

Information Engineering

Tianjin University

Tianjin

China

Shujian Yu

Department of Computer

Science

Vrije Universiteit

Amsterdam

Netherland

Luis Gonzalo Sánchez Giraldo

Department of Electrical and

Computer Engineering

University of Kentucky

Lexington

United States

Badong Chen

Institute of Artificial

Intelligence and Robotics

Xi’an Jiaotong University

Xi’an

China

Editorial Office

MDPI AG

Grosspeteranlage 5

4052 Basel, Switzerland

This is a reprint of the Special Issue, published open access by the journal Entropy (ISSN 1099-4300),

freely accessible at: www.mdpi.com/journal/entropy/special issues/IQDPF89J1Z.

For citation purposes, cite each article independently as indicated on the article page online and

using the guide below:

Lastname, A.A.; Lastname, B.B. Article Title. Journal Name Year, Volume Number, Page Range.

ISBN 978-3-7258-2982-8 (Hbk)

ISBN 978-3-7258-2981-1 (PDF)

https://doi.org/10.3390/books978-3-7258-2981-1

© 2025 by the authors. Articles in this book are Open Access and distributed under the Creative

Commons Attribution (CC BY) license. The book as a whole is distributed by MDPI under the terms

and conditions of the Creative Commons Attribution-NonCommercial-NoDerivs (CC BY-NC-ND)

license (https://creativecommons.org/licenses/by-nc-nd/4.0/).

www.mdpi.com/journal/entropy/special_issues/IQDPF89J1Z
https://doi.org/10.3390/books978-3-7258-2981-1

Contents

Ravid Shwartz Ziv and Yann LeCun
To Compress or Not to Compress—Self-Supervised Learning and Information Theory: A
Review
Reprinted from: Entropy 2024, 26, 252, https://doi.org/10.3390/e26030252 1

Justin Veiner, Fady Alajaji and Bahman Gharesifard
A Unifying Generator Loss Function for Generative Adversarial Networks
Reprinted from: Entropy 2024, 26, 290, https://doi.org/10.3390/e26040290 29

Denis Ullmann, Olga Taran and Slava Voloshynovskiy
Multivariate Time Series Information Bottleneck
Reprinted from: Entropy 2023, 25, 831, https://doi.org/10.3390/e25050831 54

Shachar Shayovitz, Koby Bibas and Meir Feder
Deep Individual Active Learning: Safeguarding against Out-of-Distribution Challenges in
Neural Networks
Reprinted from: Entropy 2024, 26, 129, https://doi.org/10.3390/e26020129 103

Kristoffer K. Wickstrøm, Sigurd Løkse, Michael C. Kampffmeyer, Shujian Yu, José C.
Prı́ncipe and Robert Jenssen
Analysis of Deep Convolutional Neural Networks Using Tensor Kernels and Matrix-Based
Entropy
Reprinted from: Entropy 2023, 25, 899, https://doi.org/10.3390/e25060899 120

Xueling Pan, Guohe Li and Yifeng Zheng
Ensemble Transductive Propagation Network for Semi-Supervised Few-Shot Learning
Reprinted from: Entropy 2024, 26, 135, https://doi.org/10.3390/e26020135 141

Sibo Gai, Shangke Lyu, Hongyin Zhang and Donglin Wang
Continual Reinforcement Learning for Quadruped Robot Locomotion
Reprinted from: Entropy 2024, 26, 93, https://doi.org/10.3390/e26010093 163

Chenguang Zhang, Tian Liu and Xuejiao Du
A Deep Neural Network Regularization Measure: The Class-Based Decorrelation Method
Reprinted from: Entropy 2023, 26, 7, https://doi.org/10.3390/e26010007 179

Jinfeng Zhou, Xiaoqin Zeng, Yang Zou and Haoran Zhu
Position-Wise Gated Res2Net-Based Convolutional Network with Selective Fusing for
Sentiment Analysis
Reprinted from: Entropy 2023, 25, 740, https://doi.org/10.3390/e25050740 194

Pascal A. Schirmer and Iosif Mporas
PyDTS: A Python Toolkit for Deep Learning Time Series Modelling
Reprinted from: Entropy 2024, 26, 311, https://doi.org/10.3390/e26040311 213

v

Citation: Shwartz Ziv, R.; LeCun, Y.

To Compress or Not to

Compress—Self-Supervised Learning

and Information Theory: A Review.

Entropy 2024, 26, 252. https://

doi.org/10.3390/e26030252

Academic Editors: Shuangming

Yang, Shujian Yu, Luis Gonzalo

Sánchez Giraldo, Badong Chen and

Sotiris Kotsiantis

Received: 6 December 2023

Revised: 12 February 2024

Accepted: 26 February 2024

Published: 12 March 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

entropy

Review

To Compress or Not to Compress—Self-Supervised Learning
and Information Theory: A Review
Ravid Shwartz Ziv 1,* and Yann LeCun 1,2

1 Center of Data Science, New York University, New York, NY 10011, USA
2 FAIR at Meta, Broadway, New York, NY 10003, USA
* Correspondence: ravid.shwartz.ziv@nyu.edu

Abstract: Deep neural networks excel in supervised learning tasks but are constrained by the need for
extensive labeled data. Self-supervised learning emerges as a promising alternative, allowing models
to learn without explicit labels. Information theory has shaped deep neural networks, particularly
the information bottleneck principle. This principle optimizes the trade-off between compression and
preserving relevant information, providing a foundation for efficient network design in supervised
contexts. However, its precise role and adaptation in self-supervised learning remain unclear. In
this work, we scrutinize various self-supervised learning approaches from an information-theoretic
perspective, introducing a unified framework that encapsulates the self-supervised information-
theoretic learning problem. This framework includes multiple encoders and decoders, suggesting
that all existing work on self-supervised learning can be seen as specific instances. We aim to unify
these approaches to understand their underlying principles better and address the main challenge:
many works present different frameworks with differing theories that may seem contradictory. By
weaving existing research into a cohesive narrative, we delve into contemporary self-supervised
methodologies, spotlight potential research areas, and highlight inherent challenges. Moreover, we
discuss how to estimate information-theoretic quantities and their associated empirical problems.
Overall, this paper provides a comprehensive review of the intersection of information theory, self-
supervised learning, and deep neural networks, aiming for a better understanding through our
proposed unified approach.

Keywords: self-supervised learning; information theory; representation learning; deep neural networks

1. Introduction

Deep neural networks (DNNs) have revolutionized fields such as computer vision,
natural language processing, and speech recognition due to their remarkable performance
in supervised learning tasks [1–3]. However, the success of DNNs is often limited by the
need for vast amounts of labeled data, which can be both time-consuming and expensive
to acquire. By using unlabeled data, supervised learning costs can be reduced, especially in
fields that require expensive annotations. As an example, biomedical task labels must be
provided by domain experts, who are costly to hire. Besides the hiring cost, labeling tasks
are often labor-intensive. For example, video data labels require the review of many frames.
Self-supervised learning (SSL) emerges as a promising direction, enabling models to learn
from data without explicit labels by leveraging the underlying structure and relationships
within the data.

Recent advances in SSL have been driven by joint embedding architectures, such as
Siamese Nets [4], DrLIM [5,6], and SimCLR [7]. These approaches define a loss function
that encourages representations of different versions of the same image to be similar
while pushing representations of distinct images apart. After optimizing the surrogate
objective, the pre-trained model can be employed as a feature extractor, with the learned
features serving as inputs for downstream supervised tasks, like image classification,

Entropy 2024, 26, 252. https://doi.org/10.3390/e26030252 https://www.mdpi.com/journal/entropy1

Entropy 2024, 26, 252

object detection, instance segmentation, or pose estimation [7–10]. Although SSL methods
have shown promising results in practice, the theoretical underpinnings behind their
effectiveness remain an open question [11,12].

Information theory has played a crucial role in understanding and optimizing deep neural
networks, from practical applications like the variational information bottleneck [13] to theoret-
ical investigations of generalization bounds induced by mutual information [14,15]. Building
upon these foundations, several researchers have attempted to enhance self-supervised
and semi-supervised learning algorithms using information-theoretic principles, such as
the Mutual Information Neural Estimator (MINE) [16] combined with the information
maximization (InfoMax) principle [17]. However, the plethora of objective functions, con-
tradicting assumptions, and various estimation techniques in the literature can make it
challenging to grasp the underlying principles and their implications.

In this paper, we aim to achieve two objectives. First, we propose a unified framework
that synthesizes existing research on self-supervised and semi-supervised learning from
an information-theoretic standpoint. This framework allows us to present and compare
current methods, analyze their assumptions and difficulties, and discuss the optimal
representation for neural networks in general and self-supervised networks in particular.
Second, we explore different methods and estimators for optimizing information-theoretic
quantities in deep neural networks and investigate how recent models optimize various
theoretical-information terms.

By reviewing the literature on various aspects of information-theoretic learning, we
provide a comprehensive understanding of the interplay between information theory,
self-supervised learning, and deep neural networks. We discuss the application of the
information bottleneck principle [18], connections between information theory and gener-
alization, and recent information-theoretic learning algorithms. Furthermore, we examine
how the information-theoretic perspective can offer insights into the design of better self-
supervised learning algorithms and the potential benefits of using information theory in
SSL across a wide range of applications.

In addition to the main structure of this paper, we dedicate a section to the challenges
and opportunities in extending the information-theoretic perspective to other learning
paradigms, such as energy-based models. We highlight the potential advantages of incor-
porating these extensions into self-supervised learning algorithms and discuss the technical
and conceptual challenges that must be addressed.

The structure of this paper is as follows. Section 2 introduces the key concepts in
supervised, semi-supervised, and self-supervised learning, information theory, and repre-
sentation learning. Section 3 presents a unified framework for multiview learning based on
information theory. We first discuss what an optimal representation is and why compression
is beneficial for learning. Next, we explore optimal representation in single-view super-
vised learning models and how they can be extended to unsupervised, semi-supervised,
and multiview contexts. The focus then shifts to self-supervised learning, where the opti-
mal representation remains an open question. Using the unified framework, we compare
recent self-supervised algorithms and discuss their differences. We analyze the assump-
tions behind these models, their effects on the learned representation, and their varying
perspectives on important information within the network.

Section 5 addresses several technical challenges, discussing both theoretical and
practical issues in estimating theoretical information terms. We present recent methods
for estimating these quantities, including variational bounds and estimators. As part of
Section 6, we examine a wide range of review papers that cover information theory and
self-supervised learning thoroughly. Section 7 concludes this paper by offering insights
into potential future research directions at the intersection of information theory, self-
supervised learning, and deep neural networks. Our aim is to stimulate further research
that leverages information theory to advance our understanding of self-supervised learning
and to develop more efficient and effective models for a broad range of applications.

2

Entropy 2024, 26, 252

2. Background and Fundamental Concepts
2.1. Multiview Representation Learning

Multiview learning, which utilizes complementary information from multiple features
or modalities, has gained increasing attention and achieved great practical success. The mul-
tiview learning paradigm divides the input variable into multiple views from which the
target variable should be predicted [19]. Using this paradigm, one can eliminate hypotheses
that contradict predictions from other views and provide a natural semi-supervised and self-
supervised learning setting. A multiview dataset consists of data captured from multiple
sources, modalities, and forms but with similar high-level semantics [20]. This mechanism
was initially used for natural-world data, combining image, text, audio, and video measure-
ments. For example, photos of objects are taken from various angles, and our supervised
task is to identify the objects. Another example is identifying a person by analyzing the
video stream as one view and the audio stream as the other.

Although these views often provide different and complementary information about
the same data, directly integrating them does not produce satisfactory results due to biases
between multiple views [20]. Thus, multiview representation learning involves identifying
the underlying data structure and integrating the different views into a common feature
space, resulting in a high performance. In recent decades, multiview learning has been
used for many machine learning tasks and influenced many algorithms, such as co-training
mechanisms [21], subspace learning methods [22], and multiple kernel learning (MKL) [23].
Li et al. [24] proposed two categories for multiview representation learning: (i) multiview
representation fusion, which combines different features from multiple views into a single
compact representation, and (ii) the alignment of multiview representation, which attempts
to capture the relationships among multiple different views through feature alignment.
In this case, a learned mapping function embeds the data of each view, and the representa-
tions are regularized to form a multiview-aligned space. In this research direction, an early
study is the canonical correlation analysis (CCA) [25] and its kernel extensions [23,26,27].
In addition to CCA, multiview representation learning has penetrated a variety of learning
methods, such as dimensionality reduction [28], clustering analysis [29], multiview sparse
coding [30–32], and multimodal topic learning [33]. However, despite their promising
results, these methods use handcrafted features and linear embedding functions, which
cannot capture the nonlinear properties of multiview data.

Deep learning provides a powerful way to learn complex, nonlinear, and hierarchical
representations of data. By incorporating multiple hierarchical layers, deep learning algo-
rithms can learn complex, subtle, and abstract representations of target data. The success
of deep learning in various application domains has led to a growing interest in deep mul-
tiview methods, which have shown promising results. Examples of these methods include
deep multiview canonical correlation analysis [34] as an extension of CCA, multiview
clustering via deep matrix factorization [35], and the deep multiview spectral network [36].
Moreover, deep architectures have been employed to generate effective representations in
methods such as multiview convolutional neural networks [37], multimodal deep Boltz-
mann machines [38], multimodal deep autoencoders [39,40], and multimodal recurrent
neural networks [41–43].

2.2. Self-Supervised Learning

Self-supervised learning (SSL) is a powerful technique that leverages unlabeled data
to learn useful representations. In contrast to supervised learning, which relies on labeled
data, SSL employs self-defined signals to establish a proxy objective between the input and
the signal. The model is initially trained using this proxy objective and subsequently fine-
tuned on the target task. Self-supervised signals, derived from the inherent co-occurrence
relationships in the data, serve as self-supervision. Various such signals have been used to
learn representations, including generative and joint embedding architectures [7,44–47].

3

Entropy 2024, 26, 252

Two main categories of SSL architectures exist: (1) generative architectures based on
reconstruction or prediction and (2) joint embedding architectures [48]. Both architecture
classes can be trained using either contrastive or non-contrastive methods.

We begin by discussing these two main types of architectures:

1. Generative architecture: Generative architectures employ an objective function
that measures the divergence between input data and predicted reconstructions,
such as squared error. The architecture reconstructs data from a latent variable or a
corrupted version, potentially with a latent variable’s assistance. Notable examples of
generative architectures include autoencoders, sparse coding, sparse autoencoders,
and variational autoencoders [49–51]. As the reconstruction task lacks a single correct
answer, most generative architectures utilize a latent variable, which, when varied,
generates multiple reconstructions. The latent variable’s information content requires
regularization to ensure the system reconstructs regions of high data density while
avoiding a collapse by reconstructing the entire space. PCA regularizes the latent
variable by limiting its dimensions, while sparse coding and sparse autoencoders
restrict the number of non-zero components. Variational autoencoders regularize
the latent variable by rendering it stochastic and maximizing the entropy of the
distribution relative to a prior. Vector quantized variational autoencoders (VQ-VAEs)
employ binary stochastic variables to achieve similar results [52].

2. Joint embedding architectures (JEAs): These architectures process multiple views of
an input signal through encoders, producing representations of the views. The system
is trained to ensure that these representations are both informative and mutually
predictable. Examples include Siamese networks, where two identical encoders share
weights [7,53–55], and methods permitting encoders to differ [56]. A primary chal-
lenge with JEA is preventing informational collapse, in which the representations
contain minimal information about the inputs, thereby facilitating their mutual pre-
diction. JEA’s advantage lies in the encoders’ ability to eliminate noisy, unpredictable,
or irrelevant information from the input within the representation space.

To train these architectures effectively, it is essential to ensure that the representations
of different signals are distinct. This can be achieved through either contrastive or non-
contrastive methods:

• Contrastive methods: Contrastive methods utilize data points from the training set
as positive samples and generate points outside the region of high data density as
contrastive samples. The energy (e.g., reconstruction error for generative architectures
or representation predictive error for JEA) should be low for positive samples and
higher for contrastive samples. Various loss functions involving the energies of pairs
or sets of samples can be minimized to achieve this objective.

• Non-contrastive methods: Non-contrastive methods prevent the energy landscape’s
collapse by limiting the volume of space that can take low energy, either through
architectural constraints or through a regularizer in the energy or training objective.
In latent-variable generative architectures, preventing collapse is achieved by limiting
or minimizing the information content of the latent variable. In JEA, collapse is
prevented by maximizing the information content of the representations.

We now present a few concrete examples of popular models that employ various com-
binations of generative architectures, joint embedding architectures, contrastive training,
and non-contrastive training:

The denoising autoencoder approach in generative architectures [57–59] uses a triplet
loss, which utilizes a positive sample, which is a vector from the training set that should
be reconstructed perfectly, and a contrastive sample consisting of data vectors, one from
the training set and the other being a corrupted version of it. In SSL, the combination of
JEA models with contrastive learning has proven highly effective. In contrastive learning,
the objective is to attract different augmented views of the same image (positive points)
while repelling dissimilar augmented views (negative points). Recent self-supervised visual

4

Entropy 2024, 26, 252

representation learning examples include MoCo [54] and SimCLR [7]. The InfoNCE loss is
a commonly used objective function in many contrastive learning methods:

Ex,x+ ,x−

[
− log

(
e f (x)T f (x+)

∑ k = 1Ke f (x)T f (xk)

)]
(1)

where x+ is a sample similar to x, xk are all the samples in the batch, and f is an encoder.
This loss, inspired by NCE [60], uses categorical cross-entropy loss to distinguish the pos-
itive sample amongst a set of unrelated noise samples in the batch. In this formulation,
the numerator represents the output of a positive pair, while the denominator sums the val-
ues of both positive and negative pairs. This straightforward loss function aims to increase
the value of positive pairs (driving the logarithmic term towards 1, thereby reducing the
loss towards 0) and separate the negative pairs further.

However, contrastive methods heavily depend on all other samples in the batch
and require a large batch size. Additionally, Jing et al. [61] have shown that contrastive
learning can lead to dimensional collapse, where the embedding vectors span a lower-
dimensional subspace instead of the entire embedding space. Although positive and
negative pairs should repel each other to prevent dimensional collapse, augmentation
along feature dimensions and implicit regularization cause the embedding vectors to fall
into a lower-dimensional subspace, resulting in low-rank solutions.

To address these problems, recent works have introduced JEA models with non-
contrastive methods. Unlike contrastive methods, these methods employ regularization to
prevent the collapse of the representation and do not explicitly rely on negative samples.
For example, several papers use stop gradients and extra predictors to avoid collapse [53,55],
while Caron et al. [62] employed an additional clustering step. VICReg [56] is another
non-contrastive method that regularizes the covariance matrix of representation. Consider
two embedding batches Z = [f (x1), . . . , f (xN)] and Z′ =

[
f (x′1), . . . , f (x′N)

]
, each of size

(N × K). Denote by C the (K× K) covariance matrix obtained from [Z, Z′]. The VICReg
triplet loss is defined by the following:

L=
1
K

K

∑
k=1

(
α max

(
0, γ−

√
Ck,k + ε

)
+β ∑

k′ 6=k

(
Ck,k′

)2
)

+ γ‖Z− Z′‖2
F/N. (2)

The variance loss (the diagonal terms) encourages high variance in the learned represen-
tations, thereby promoting the learning of a wide range of features. The covariance loss
(the off-diagonal terms), however, aims to minimize redundancy in the learned features by
reducing the overlap in information captured by different dimensions of the representation.

2.3. Semi-Supervised Learning

Semi-supervised learning employs both labeled and unlabeled data to enhance the
model performance [63]. Consistency regularization-based approaches [64–66] ensure that
predictions remain stable under perturbations in input data and model parameters. Certain
techniques, such as those proposed by Grandvalet and Bengio [67] and Miyato et al. [65],
involve training a model by incorporating a regularization term into a supervised cross-
entropy loss. In contrast, Xie et al. [68] utilizes suitably weighted unsupervised regulariza-
tion terms, while Zhai et al. [69] adopts a combination of self-supervised pretext loss terms.
Moreover, pseudo-labeling can generate synthetic labels based on network uncertainty to
further aid model training [70].

2.4. Representation Learning

Representation learning is an essential aspect of various computer vision, natural
language processing, and machine learning tasks, as it uncovers the underlying structures
in data [71]. Extracting relevant information for classification and prediction tasks from
the data improves the performance and reduces computational complexity [72]. However,

5

Entropy 2024, 26, 252

defining an effective representation remains a challenging task. In probabilistic models,
a useful representation often captures the posterior distribution of explanatory factors
beneath the observed input [2]. Bengio and LeCun [73] introduced the idea of learning
highly structured yet complex dependencies for AI tasks, which require transforming high-
dimensional input structures into low-dimensional output structures or learning low-level
representations. Consequently, identifying relevant input features is challenging because
most input entropy does not relate to the output. [74]. Ben-Shaul et al. [75] demonstrated
that self-supervised learning inherently promotes the clustering of samples based on
semantic labels. Intriguingly, this clustering is driven by the objective’s regularization term
and aligns with semantic classes across multiple hierarchical levels.

2.4.1. Minimal Sufficient Statistic

A possible definition of an effective representation is based on minimal sufficient statistics.

Definition 1. Given (X, Y) ∼ P(X, Y), let T := t(X), where t is a deterministic function. We
define T as a sufficient statistic of X for Y if Y− T − X forms a Markov chain.

A sufficient statistic is defined relative to the statistics of the data, or a probabilistic
function, and provides all the information in the data about that model or the parameters
of that model.

Intuitively, a sufficient statistic captures all the information about Y in X. Cover [76]
proved this property:

Theorem 1. Let T be a probabilistic function of X. Then, T is a sufficient statistic for Y if and only
if I(T(X); Y) = I(X; Y).

However, the sufficiency definition also encompasses trivial identity statistics that only
“copy” rather than “extract” essential information. To prevent statistics from inefficiently
utilizing observations, the concept of minimal sufficient statistics was introduced:

Definition 2. (Minimal sufficient statistic (MSS).) A sufficient statistic T is minimal if, for any
other sufficient statistic S, there exists a function f such that T = f (S) almost surely (a.s.).

In essence, MSSs are the simplest sufficient statistics, inducing the coarsest sufficient
partition on X. In MSSs, the values of X are grouped into as few partitions as possible
without sacrificing information. MSSs are statistics with the maximum information about
Y while retaining the least information about X as possible [77].

2.4.2. The Information Bottleneck

The majority of distributions lack exact minimal sufficient statistics, leading Tishby
et al. [18] to relax the optimization problem in two ways: (i) allowing the map to be
stochastic, defined as an encoder P(T|X), and (ii) permitting the capture of only a small
amount of I(X; Y). The information bottleneck (IB) was introduced as a principled method
to extract relevant information from observed signals related to a target. This framework
finds the optimal trade-off between the accuracy and complexity of a random variable y ∈ Y

with a joint distribution for a random variable x ∈ X. The IB has been employed in various
fields, such as neuroscience [78,79], slow feature analysis [80], speech recognition [81],
molecular relational learning [82], and deep learning [13,74].

Let X be an input random variable, Y a target variable, and P(X, Y) their joint distribu-
tion. A representation T is a stochastic function of X defined by a mapping P(T | X). This
mapping transforms X ∼ P(X) into a representation of T ∼ P(T) :=

∫
PT|X(· | x)dPX(x).

The triple Y−X− T forms a Markov chain in that order with respect to the joint probability
measure PX,Y,T = PX,YPT|X and the mutual information terms I(X; T) and I(Y; T).

Within the IB framework, our goal is to find a representation P(T | X) that extracts
as much information as possible about Y (high performance) while compressing X maxi-

6

Entropy 2024, 26, 252

mally (keeping I(X; T) small). This can also be interpreted as extracting only the relevant
information that X contains about Y.

The data processing inequality (DPI) implies that I(Y; T) ≤ I(X; Y), so the compressed
representation T cannot convey more information than the original signal. Consequently,
there is a trade-off between compressed representation and the preservation of relevant
information about Y. The construction of an efficient representation variable is charac-
terized by its encoder and decoder distributions, P(T | X) and P(Y | T), respectively.
The efficient representation of X involves minimizing the complexity of the representation
I(T; X) while maximizing I(T; Y). Formally, the IB optimization involves minimizing the
following objective function:

L = min
P(t|x);p(y|t)

I(X; T)− βI(Y; T) , (3)

where β is the trade-off parameter controlling the complexity of T and the amount of
relevant information it preserves. Intuitively, we pass the information that X contains about
Y through a “bottleneck” via the representation T. It has been shown that

I(T; Y) = I(X; Y)−Ex∼P(X),t∼P(T|x)[D[P(Y|x)||P(Y|t)]]. (4)

2.5. Representation Learning and the Information Bottleneck

Information theory traditionally assumes that underlying probabilities are known
and do not require learning. For instance, the optimality of the initial IB work [18] relied
on the assumption that the joint distribution of input and labels is known. However,
a significant challenge in machine learning algorithms is inferring an accurate predictor for
the unknown target variable from observed realizations. This discrepancy raises questions
about the practical optimality of the IB and its relevance in modern learning algorithms.
The following section delves into the relationship between the IB framework and learning,
inference, and generalization.

Let X ∈ X and a target variable Y ∈ Y be random variables with an unknown joint
distribution P(X, Y). For a given class of predictors f : X→ Ŷ and a loss function ` : Y→ Ŷ

measuring discrepancies between true values and model predictions, our objective is to
find the predictor f that minimizes the expected population risk:

LP(X,Y)(f , `) = EP(X,Y)[`(Y, f (X))]. (5)

Several issues arise with the expected population risk. Firstly, it remains unclear which
loss function is optimal. A popular choice is the logarithmic loss (or error’s entropy), which
has been numerically demonstrated to yield better results [83]. This loss has been employed
in various algorithms, including the InfoMax principle [17], tree-based algorithms [84],
deep neural networks [85], and Bayesian modeling [86]. Painsky and Wornell [87] provided
a rigorous justification for using the logarithmic loss and showed that it is an upper
bound to any choice of the loss function that is smooth, proper, and convex for binary
classification problems.

In most cases, the joint distribution P(X, Y) is unknown, and we have access to only n
samples from it, denoted by Dn := (xi, yi) | i = 1, . . . , n. Consequently, the population risk
cannot be computed directly. Instead, we typically choose the predictor that minimizes the
empirical population risk on a training dataset:

L̂P(X,Y)(f , `,Dn) =
1
n

n

∑
i=1

[`(yi, f (xi))]. (6)

The generalization gap, defined as the difference between empirical and population
risks, is given by

GenP(X,Y)(f , `,Dn) := LP(X,Y)(f , `)− L̂P(X,Y)(f , `,Dn). (7)

7

Entropy 2024, 26, 252

Interestingly, the relationship between the population risk and the empirical risk
can be bounded using the information bottleneck term. Shamir et al. [88] developed
several finite sample bounds for the generalization gap. According to their study, the IB
framework exhibited good generalizability even with small sample sizes. In particular, they
developed non-uniform bounds adaptive to the model’s complexity. They demonstrated
that for the discrete case, the error in estimating mutual information from finite samples
is bounded by O

(|X| log n√
n

)
, where |X| is the cardinality of X (the number of possible

values that the random variable X can take). The results support the intuition that simpler
models generalize better, and we would like to compress our model. Therefore, optimizing
Equation (3) presents a trade-off between two opposing forces. On the one hand, we want
to increase our prediction accuracy in our training data (high β).

On the other hand, we would like to decrease β to narrow the generalization gap.
Vera et al. [89] extended their work and showed that the generalization gap is bounded by
the square root of mutual information between training input and model representation
times log n

n . Furthermore, Russo and Zou [90] and Xu and Raginsky [14] demonstrated that
the square root of the mutual information between the training input and the parameters
inferred from the training algorithm provides a concise bound on the generalization gap.
However, these bounds critically depend on the Markov operator that maps the training
set to the network parameters, whose characterization is not trivial.

Achille and Soatto [91] explored how applying the IB objective to the network’s
parameters may reduce overfitting while maintaining invariant representations. Their
work showed that flat minima, which have better generalization properties, bound the
information with the weights, and the information in the weights bound the informa-
tion in the activations. Chelombiev et al. [92] found that the generalization precision
is positively correlated with the degree of compression of the last layer in the network.
Shwartz-Ziv et al. [93] showed that the generalization error depends exponentially on the
mutual information between the model and the input once it is smaller than log 2n—the
query sample complexity. Moreover, they demonstrated that M bits of compression of X
are equivalent to an exponential factor of 2M training examples. Piran et al. [94] extended
the original IB to the dual form, which offers several advantages in terms of compression.
As an example, when the data can be modeled in a parametric form, the dual IB preserves
this structure and obtains the representation based on the original parameters, resulting in
a more efficient compression.

These studies illustrate that the IB leads to a trade-off between prediction and com-
plexity, even for the empirical distribution. With the IB objective, we can design estimators
to find optimal solutions for different regimes with varying performances, complexity,
and generalization.

3. Information-Theoretic Objectives

Before delving into the details, this section aims to provide an overview of the
information-theoretic objectives in various learning scenarios, including supervised, un-
supervised, and self-supervised settings. We will also introduce a general framework
to understand better the process of learning optimal representations and explore recent
methods working towards this goal.

Developing a novel algorithm entails numerous aspects, such as architecture, initial-
ization parameters, learning algorithms, and pre-processing techniques. A crucial element,
however, is the objective function. As demonstrated in Section 2.4.2, the IB approach,
originally introduced by Tishby et al. [18], defines the optimal representation in supervised
scenarios, enabling us to identify which terms to compress during learning by explicitly
defining the relevant information I(T; Y) that we want to optimize. However, determining
the optimal representation and deriving information-based objective functions in self-
supervised settings are more challenging. In this section, we introduce a general framework
to understand the process of learning optimal representations and explore recent methods
striving to achieve this goal.

8

Entropy 2024, 26, 252

3.1. Setup and Methodology

Using a two-channel input allows us to model complex multiview learning prob-
lems. In many real-world situations, data can be observed from multiple perspectives or
modalities, making it essential to develop learning algorithms capable of handling such
multiview data.

Consider a two-channel input, X1 and X2, and a single-channel label Y for a down-
stream task, all possessing a joint distribution P(X1, X2, Y). We assume the availability
of n labeled examples S = (xi

1, xi
2, yi)

n
i=1 and t unlabeled examples U = (xi

1, xi
2)

n+t
i=n+1,

both independently and identically distributed. Our objective is to predict Y using a
loss function.

In our model, we use a learned encoder with a prior P(Z) to generate a conditional
representation (which may be deterministic or stochastic) Zi|Xi = Pθi (Zi|Xi), where i = 1, 2
represents the two views. Subsequently, we utilize various decoders to "decode" distinct
aspects of the representation.

For the supervised scenario, we have a joint embedding of the label classifiers from
both views, Ŷ1,2 = Qρ(Y|Z1, Z2), and two decoders predicting the labels of the downstream
task based on each individual view, Ŷi = Qρi (Y|Zi) for i = 1, 2.

For the unsupervised case, we have direct decoders for input reconstruction from the
representation, X̄i = Qψi (Xi|Zi) for i = 1, 2.

For self-supervised learning, we utilize two cross-decoders, Z̃1|Z2 = qη1(Z1|Z2) and
Z̃2|Z1 = qη2(Z2|Z1), attempting to predict one representation based on the other. Figure 1
illustrates this structure.

The information-theoretic perspective of self-supervised networks has led to confusion
regarding the information being optimized in recent work. In supervised and unsupervised
learning, only one "information path" exists when optimizing information-theoretic terms:
the input is encoded through the network, and then the representation is decoded and
compared to the targets. As a result, the representation and corresponding information
always stem from a single encoder and decoder.

Complexity

Unsupervised
Reconstruction

Supervised Prediction Self-Supervised
Predication

Supervised Prediction
Unsupervised

Reconstruction

Complexity

Figure 1. Multiview information bottleneck diagram for self-supervised, unsupervised, and super-
vised learning.

However, in the self-supervised multiview scenario, we can construct our representa-
tion using various encoders and decoders. For instance, we need to specify the associated
random variable to define the information involved in I(X1; Z1). This variable could either
be based on the encoder of X1 − Pθ1(Z1|X1) or based on the encoder of X2 − Pθ2(Z2|X2),
which is subsequently passed to the cross-decoder Qη1(Z1|Z2) and then to the direct de-
coder Qψ1(X1|Z1).

To fully understand the information terms, we aim to optimize and distinguish be-
tween various “information path”; we marked each information path differently. For ex-
ample, I,P(X1),P(Z1|X1),P(Z2|Z1)

(X1, Z2) is based on the path P(X1)→ P(Z1|X1)→ P(Z2|Z1).

9

Entropy 2024, 26, 252

In the following section, we will “translate” previous work into our present framework
and examine the loss function.

3.2. Optimization with Labels

After establishing our framework, we can now incorporate various learning algo-
rithms. We begin by examining classical single-view supervised information bottleneck
algorithms for deep networks that utilize labeled data during training and extend them
to the multiview scenario. Next, we broaden our perspective to include unsupervised
learning, where input reconstruction replaces labels, and semi-supervised learning, where
information-based regularization is applied to improve predictions.

3.2.1. Single-View Supervised Learning

In classical single-view supervised learning, the task of representation learning in-
volves finding a distribution p(z|x) that maps data observations x ∈ X to a representation
z ∈ Z, capturing only the relevant features of the input [95]. The goal is to predict a label
y ∈ Y using the learned representation. Achille and Soatto [91] defined the sufficiency of Z
for Y as the amount of label information retained after passing data through the encoder:

Definition 3. Sufficiency: A representation Z of X is sufficient for Y if and only if I(X; Y|Z) = 0.

Federici et al. [96] showed that Z is sufficient for Y if and only if the amount of
information regarding the task remains unchanged by the encoding procedure.

I(X; Y|Z) = 0⇔ I(X; Y) = I(Y; Z). (8)

A sufficient representation can predict Y as accurately as the original data X. In
Section 2.4, we saw a trade-off between prediction and generalization when there is a finite
amount of data. To reduce the generalization gap, we aim to compress X while retaining
as much predicate information on the labels as possible. Thus, we relax the sufficiency
definition and minimize the following objective:

L = I(X; Z)− βI(Z; Y). (9)

The mutual information I(Y; Z) determines how much label information is accessible
and reflects the model’s ability to predict performance on the target task. I(X; Z) represents
the information that Z carries about the input, which we aim to compress. However, I(X; Z)
contains both relevant and irrelevant information about Y. Therefore, using the chain rule
of information, Federici et al. [96] proposed splitting I(X, Z) into two terms:

I(X; Z) = I(X; Z|Y)︸ ︷︷ ︸
superfluous information

+ I(Z; Y)︸ ︷︷ ︸
predictive information

. (10)

The conditional information I(X, Z|Y) represents information in Z that is not predictive
of Y, i.e., superfluous information. The decomposition of input information enables us
to compress only irrelevant information while preserving the relevant information for
predicting Y. Several methods are available for evaluating and estimating these information-
theoretic terms in the supervised case (see Section 5 for details).

3.2.2. The Information Bottleneck Theory of Deep Learning

The IB hypothesis for deep learning proposes two distinct phases of training neural
networks [74]: the fitting and compression phases. The fitting phase involves extracting
information from the input and converting it into learned representations, characterized
by increased mutual information between inputs and hidden representations. Conversely,
the compression phase, which is much longer, concentrates on discarding unnecessary
information for target prediction, decreasing mutual information between learned represen-

10

Entropy 2024, 26, 252

tations and inputs. In contrast, the mutual information between representations and targets
increases. For more information, see Geiger [97]. Despite the elegance and plausibility of
the IB hypothesis, empirically investigating it remains challenging [98].

The study of representation compression in deep neural networks (DNNs) for su-
pervised learning has shown inconsistent results. For instance, Chelombiev et al. [92]
discovered a positive correlation between generalization accuracy and the compression
level of the network’s final layer. Shwartz-Ziv et al. [93] also examined the relationship
between generalization and compression, demonstrating that generalization error exponen-
tially depends on mutual information, I(X; Z). Furthermore, Achille et al. [99] established
that flat minima, known for their improved generalization properties, constrain the mutual
information. However, Saxe et al. [100] showed that compression was not necessary for
generalization in deep linear networks. Basirat et al. [101] revealed that the decrease in
mutual information is essentially equivalent to geometrical compression. Other studies
have found that the mutual information between training inputs and inferred parameters
provides a concise bound on the generalization gap [14,102]. Lastly, Achille and Soatto [91]
explored using an information bottleneck objective on network parameters to prevent
overfitting and promote invariant representations.

3.2.3. Multiview IB Learning

The IB principle offers a rigorous method for learning encoders and decoders in super-
vised single-view problems. However, it is not directly applicable to multiview learning
problems, as it assumes only one information source as the input. A common solution
is to concatenate multiple views, though this neglects the unique characteristics of each
view. To address this issue, Xu et al. [103] introduced the large-margin multiview IB (LMIB)
as an extension of the original IB problem. The LMIB employs a communication system
where multiple senders represent various views of examples. The system extracts spe-
cific components from different senders by compressing examples through a “bottleneck”,
and the linear projectors for each view are combined to create a shared representation.
The large-margin principle replaces the maximization of mutual information in prediction,
emphasizing the separation of samples from different classes. For the complexity, they
used the Rademacher complexity, which is defined as follows:

Definition 4. Rademacher complexity Given a sample S = {X1, . . . , Xn} ∈ Xn and a real-
valued function class F defined on a space X, the empirical Rademacher complexity of F is defined as

R̂n(F) = Eσ

[
sup
f∈F

∣∣∣∣∣
2
n

n

∑
j=1

σj f (Xj)

∣∣∣∣∣

∣∣∣∣∣X1, . . . , Xn

]
,

where σ = (σ1, . . . , σn) are i.i.d. Rademacher variables (taking values +1 or −1 with equal
probability).

In the LMIB framework, limiting the Rademacher complexity improves the solu-
tion’s accuracy and generalization error bounds. Moreover, the algorithm’s robustness is
enhanced when accurate views counterbalance noisy views.

However, the LMIB method has a significant limitation: it utilizes linear projections
for each view, which can restrict the combined representation when the relationship be-
tween different views is complex. To overcome this limitation, Wang et al. [104] proposed
using deep neural networks to replace linear projectors. Their model first extracts con-
cise latent representations from each view using deep networks and then learns the joint
representation of all views using neural networks. They minimize the objective:

L = αIP(X1),P(Z1|X1)(X1; Z1) + βIP(X2),P(Z2|X2)(X2; Z2)− IP(Z2|X2),P(Z2|X1)(Z1,2; Y). (11)

Here, α and β are trade-off parameters, Z1 and Z2 are the two neural networks’ represen-
tations, and Z1,2 is the joint embedding of Z1 and Z2. The first two terms decrease the

11

Entropy 2024, 26, 252

mutual information between a view’s latent representation and its original data representa-
tion, resulting in a simpler and more generalizable model. The final term forces the joint
representation to maximize the discrimination ability for the downstream task.

3.2.4. Semi-Supervised IB Learning: Leveraging Unlabeled Data

Obtaining labeled data can be challenging or expensive in many practical scenar-
ios, while many unlabeled samples may be readily available. Semi-supervised learning
addresses this issue by leveraging the vast amount of unlabeled data during training in
conjunction with a small set of labeled samples. Common strategies to achieve this involve
adding regularization terms or adopting mechanisms that promote better generalization.
Berthelot et al. [105] grouped regularization methods into three primary categories: entropy
minimization, consistency regularization, and generic regularization.

Voloshynovskiy et al. [106] introduced an information-theoretic framework for semi-
supervised learning based on the IB principle. In this context, the semi-supervised classifi-
cation problem involves encoding input X into the latent space Z while preserving only
class-relevant information. A supervised classifier can achieve this if there are sufficient
labeled data. However, when the number of labeled examples is limited, the standard label
classifier p(y|z) becomes unreliable and requires regularization.

To tackle this issue, the authors assumed a prior on the class label distribution p(y).
They introduced a term to minimize the DKL between the assumed marginal prior and
the empirical marginal prior, effectively regularizing the conditional label classifier with
the labels’ marginal distribution. This approach reduces the classifier’s sensitivity to the
scarcity of labeled examples. They proposed two variational IB semi-supervised extensions
for the priors:

Handcrafted priors: These priors are predefined for regularization and can be based
on domain knowledge or statistical properties of the data. Alternatively, they can be learned
using other networks. Handcrafted priors in this context are similar to priors used in the
variational information bottleneck (VIB) formalism [13,104].

Learnable priors: Voloshynovskiy et al. [106] also suggests using learnable priors
as an alternative to handcrafted regularization priors on the latent representation. This
method involves regularizing Z through another IB-based regularization with two com-
ponents: (i) latent space regularization and (ii) observation space regularization. In this
case, an additional hidden variable M is introduced after the representation to regulate the
information flow between Z and Y. An autoencoder q(m|z) is employed, and the optimiza-
tion process aims to compress the information flowing from Z to M while retaining only
label-relevant information. The IB objective is defined as follows:

L = DKL(q(m|z)||p(m|z))− βDKL(q(x|m)||p(x|m))− βyDKL(p(y|z)||p(y))
⇔ I(M; Z)− βI(M; X)− βy I(Y; Z).

(12)

Here, β and βy are hyperparameters that balance the trade-off between the relevance
of M to the labels and the compression of Z into M.

Furthermore, Voloshynovskiy et al. [106] demonstrated that various popular semi-
supervised methods can be considered special cases of the optimization problem de-
scribed above. Notably, the semi-supervised AAE [107], CatGAN [108], SeGMA [109], and
VAE [110] can all be viewed as specific instantiations of this framework.

3.2.5. Unsupervised IB Learning

In the unsupervised setting, data samples are not directly labeled by classes.
Voloshynovskiy et al. [106] defined the unsupervised IB as a "compressed" parameter-
ized mapping of X to Z, which preserves some information in Z about X through the
reverse decoder X̄ = Q(X|Z). Therefore, the Lagrangian of the unsupervised IB can be
defined as follows:

12

Entropy 2024, 26, 252

IP(X),P(Z|X)(X; Z)− βIP(Z),Q(X|Z)(Z; X̄), (13)

where I(X; Z) is the information determined by the encoder q(z|x) and I(Z; X̄) is the
information determined by the decoder q(x|z), i.e., the reconstruction error. In other words,
the unsupervised IB is a special case of the supervised IB, where labels are replaced with
the reconstruction performance of the training input. Alemi et al. [13] showed that the
variational autoencoder (VAE) [111] and β-VAE [112] are special cases of the unsupervised
variational IB. Voloshynovskiy et al. [106] extended their results and showed that many
models, including adversarial autoencoders [107], InfoVAEs [113], and VAE/GANs [114],
could be viewed as special cases of the unsupervised IB. The main difference between them
is the bounds on the different mutual information of the IB. Furthermore, the unsupervised
IB was used by Uğur et al. [115] to derive lower bounds for their unsupervised generative
clustering framework, while Roy et al. [116] used it to study vector-quantized autoencoders.

Voloshynovskiy et al. [106] pointed out that for the classification task in the supervised
IB, the latent space Z should have sufficient statistics for Y, whose entropy is much lower
than X. This results in a highly compressed representation where sequences close in the
input space might be close in the latent space, and the less significant features will be
compressed. In contrast, in the unsupervised setup, the IB suggests compressing the
input to the encoded representation so that each input sequence can be decoded uniquely.
In this case, the latent space’s entropy should correspond to the input space’s entropy,
and compression is much more difficult.

4. Self-Supervised Multiview Information Bottleneck Learning

How can we learn without labels and still achieve good predictive power? Is compres-
sion necessary to obtain an optimal representation? This section analyzes and discusses
how to achieve an optimal representation for self-supervised learning when labels are
not available during training. We review recent methods for self-supervised learning
and show how they can be integrated into a single framework. We compare their objec-
tive functions, implicit assumptions, and theoretical challenges. Finally, we consider the
information-theoretic properties of these representations, their optimality, and different
ways of learning them.

One approach to enhance deep learning methods is to apply the InfoMax principle
in a multiview setting [17,117]. As one of the earliest approaches, Linsker [17] proposed
maximizing the information transfer from input data to its latent representation, showing
its equivalence to maximizing the determinant of the output covariance under the Gaussian
distribution assumption. Becker and Hinton [118] introduced a representation learning
approach based on maximizing an approximation of the mutual information between
alternative latent vectors obtained from the same image. The most well-known application
is the Independent Component Analysis (ICA) InfoMax algorithm [119], designed to
separate independent sources from their linear combinations. The ICA-InfoMax algorithm
aims to maximize the mutual information between mixtures and source estimates while
imposing statistical independence among outputs. The Deep InfoMax approach [120]
extends this idea to unsupervised feature learning by maximizing the mutual information
between input and output while matching a prior distribution for the representations.
Recent work has applied this principle to a self-supervised multiview setting [46,120–122],
wherein these works maximize the mutual information between the views Z1 and Z2 using
the classifier q(z1|z2), which attempts to predict one representation from the other.

However, Tschannen et al. [123] demonstrated that the effectiveness of InfoMax mod-
els is more attributable to the inductive biases introduced by the architecture and estimators
than to the training objectives themselves, as the InfoMax objectives can be trivially maxi-
mized using invertible encoders. Moreover, a fundamental issue with the InfoMax principle
is that it retains irrelevant information about the labels, contradicting the core concept of the
IB principle, which advocates compressing the representation to enhance generalizability.

13

Entropy 2024, 26, 252

Going beyond the InfoMax principle requires us to tackle the crucial question: How
do we discern between relevant and irrelevant information? A foundational concept in ad-
dressing this challenge is partial information decomposition (PID), as outlined by Williams
and Beer [124] and further explored in Gutknecht et al. [125]. PID provides an elegant
framework for categorizing the information provided by a set of source variables about a
target variable into distinct types: unique, shared (redundant), and synergistic information.

PID enables us to leverage the complexity of information interactions. For example,
shared information refers to common information across multiple sources, valuable for
tasks that aggregate information from multiple sources or utilize redundancy in the data.
Unique information, conversely, is knowledge exclusive to a specific source, enhancing
the diversity of representations, and is particularly useful for tasks requiring specialized
knowledge. Synergistic information arises from the combination of sources, unveiling
insights unattainable when sources are considered individually.

For example, Sridharan and Kakade [126] proposed the multiview IB framework, which
uses the shared information as the way to compress. According to this framework, in the
multiview without labels setting, the IB principle of preserving relevant data while com-
pressing irrelevant data requires assumptions regarding the relationship between views
and labels. They presented the multiview assumption, which asserts that either view (ap-
proximately) would be sufficient for downstream tasks. By this assumption, they define
the relevant information as the shared information between the views. Therefore, augmen-
tations (such as changing the image style) should not affect the labels.

Additionally, the views will provide most of the information in the input regarding
downstream tasks. We improve generalization without affecting the performance by
compressing the information not shared between the two views. Their formulation is
as follows:

Assumption 1. The multiview assumption: There exists a εinfo (which is assumed to be small)
such that

I(Y; X2|X1) ≤ εinfo

I(Y; X1|X2) ≤ εinfo.

As a result, when the information sharing parameter, εinfo, is small, the information
shared between views includes task-relevant details. For instance, in self-supervised
contrastive learning for visual data [120], views represent various augmentations of the
same image. In this scenario, the multiview assumption is considered mild if the downstream
task remains unaffected by the augmentation [127]. Image augmentations can be perceived
as altering an image’s style without changing its content. Thus, Tsai et al. [128] contends that
the information required for downstream tasks should be preserved in the content rather
than the style. This assumption allows us to separate the information into relevant (shared
information) and irrelevant (not shared) components and to compress only the unimportant
details that do not contain information about downstream tasks. Based on this assumption,
we aim to maximize the relevant information I(X2; Z1) and minimize I(X1; Z1 | X2)—the
exclusive information that Z1 contains about X1, which cannot be predicted by observing
X2. This irrelevant information is unnecessary for the prediction task and can be discarded.
In the extreme case, where X1 and X2 share only label information, this approach recovers
the supervised IB method without labels. Conversely, if X1 and X2 are identical, this method
collapses into the InfoMax principle, as no information can be accurately discarded.

Federici et al. [96] used the relaxed Lagrangian objective to obtain the minimal suffi-
cient representation Z1 for X2 as follows:

L1 = IP(Z1|X1)(Z1; X1 | X2)− β1 IP(X2|Z2)P(Z2|Z1)P(Z1|X1)(X2; Z1), (14)

14

Entropy 2024, 26, 252

and the symmetric loss to obtain the minimal sufficient representation Z2 for X1:

L2 = IP(Z2|X2)(Z2; X2 | X1)− β2 IP(X1|1),Q(Z1|Z2),P(Z2|X2)) I(X1; Z2), (15)

where β1 and β2 are the Lagrangian multipliers introduced by the constraint optimiza-
tion. By defining Z1 and Z2 on the same domain and re-parameterizing the Lagrangian
multipliers, the average of the two loss functions can be upper-bounded as follows:

L = −IP(Z1|X1),Q(Z2|Z1),P(Z2|X2),Q(Z1|Z2)(Z1; Z2) + βDSKL[p(z1 | x1)||P(z2 | x2)], (16)

where DSKL represents the symmetrized KL divergence obtained by averaging the expected
values of DKL(p(z1 | x1)||p(z2 | x2)) and DKL(p(z2 | x2)||p(z1 | x1)). Note that when the
mapping from X1 to Z1 is deterministic, I(Z1; X1 | X2) minimization and H(Z1 | X2) mini-
mization are interchangeable and the algorithms of Federici et al. [96] and Tsai et al. [128]
minimize the same objective. Another implementation of the same idea is based on the
conditional entropy bottleneck (CEB) algorithm [129] and proposed by Lee et al. [130]. This
algorithm adds the residual information as a compression term to the InfoMax objective
using the reverse decoders q(z1 | x2) and q(z2 | x1).

In conclusion, all the algorithms mentioned above are based on the multiview assump-
tion. Utilizing this assumption, they can distinguish relevant information from irrelevant
information. As a result, all these algorithms aim to maximize the information (or the
predictive ability) of one representation with respect to the other view while compressing
the information between each representation and its corresponding view. The key dif-
ferences between these algorithms lie in the decomposition and implementation of these
information terms.

Dubois et al. [131] offers another theoretical analysis of the IB for self-supervised
learning. Their work addresses the question of the minimum bit rate required to store the
input but still achieve a high performance on a family of downstream tasks Y ∈ Y. It is a
rate-distortion problem, where the goal is to find a compressed representation that will give
us a good prediction for every task. We require that the distortion measure is bounded:

DT(X, Z) = sup
Y∈Y

H(Y | Z1)− H(Y | X1) ≤ δ.

Accessing the downstream task is necessary to find the solution during the learning
process. As a result, Dubois et al. [131] considered only tasks invariant to some equivalence
relation, which divides the input into disjoint equivalence classes. An example would be
an image with labels that remain unchanged after augmentation. This is similar to the
multiview assumption where εin f o → 0. By applying Shannon’s rate-distortion theory, they
concluded that the minimum achievable bit rate is the rate-distortion function with the
above invariance distortion. Thus, the optimal rate can be determined by minimizing the
following Lagrangian:

L = min
P(Z1|X1)

IP(Z1|X1)(X1; Z1) + βH(Z2 | X1). (17)

Using this objective, the maximization of information with labels is replaced by max-
imizing the prediction ability of one view from the original input, regularized by direct
information from the input. Similarly to the above results, we would like to find a rep-
resentation Z1 that compresses the input X1 so that Z1 has the maximum information
about X2.

4.1. Implicit Compression in Self-Supervised Learning Methods

While the optimal IB representation is based on the multiview assumption, most
self-supervised learning models only use the InfoMax principle and maximize the mutual
information I(Z1; Z2) without an explicit regularization term. However, recent studies
have shown that contrastive learning creates compressed representations that include

15

Entropy 2024, 26, 252

only relevant information [132,133]. The question is why is the learned representation
compressed? The maximization of I(Z1; Z2) could theoretically be sufficient to retain all the
information from both X1 and X2 by making the representations invertible. In this section,
we attempt to explain this phenomenon.

We begin with the InfoMax principle [17], which maximizes the mutual information
between the representations of random variables Z1 and Z2 of the two views. We can
lower-bound it using the following:

I(Z1; Z2) = H(Z)− H(Z1 | Z2) ≥ H(Z1) +E[log q(z1 | z2)]. (18)

The bound is tight when q(z1|z2) = p(z1|z2), in which case E[log q(z1 | z2)], or the
negative reconstruction error, equals the conditional entropy H(Z1|Z2).

In the supervised case, where Z is a learned stochastic representation of the input and
Y is the label, we aim to optimize

I(Y; Z) ≥ H(Y) +E[log q(Y | Z)]. (19)

Since Y is constant, optimizing the information I(Z; Y) requires only minimizing the
prediction term E[log q(Y|Z)] by making Z more informative about Y. This term is the
cross-entropy loss for classification or the square loss for regressions. Thus, we can minimize
the log loss without any other regularization on the representation.

In contrast, for the self-supervised case, we have a more straightforward option to
minimize H(Z1|Z2): making Z1 easier to predict by Z2, which can be achieved by reducing
its variance along specific dimensions. If we do not regularize H(Z1), it will decrease to
zero, and we will observe a collapse. This is why, in contrastive methods, the variance in the
representation (large entropy) is significant only in the directions with a high variance in the
data, which is enforced by data augmentation [61]. According to this analysis, the network
benefits from making the representations “simple” (easier to predict). Hence, even though
our representation does not have explicit information-theoretical constraints, the learning
process will compress the representation.

4.2. Beyond the Multiview Assumption

According to the multiview IB analysis presented in Section 4, the optimal way to
create a useful representation is to maximize the mutual information between the represen-
tations of different views while compressing irrelevant information in each representation.
In fact, as discussed in Section 4.1, we can achieve this optimal compressed representation
even without explicit regularization. However, this optimality is based on the multiview
assumption, which states that the relevant information for downstream tasks comes from
the information shared between views. Therefore, Tian et al. [133] concluded that when a
minimal sufficient representation has been obtained, the optimal views for self-supervised
learning are determined by downstream tasks.

However, the multiview assumption is highly constrained, as all relevant information
must be shared between all views. In cases where this assumption is incorrect, such as
with aggressive data augmentation or multiple downstream tasks or modalities, sharing
all the necessary information can be challenging. For example, if one view is a video
stream while the other is an audio stream, the shared information may be sufficient for
object recognition but not for tracking. Furthermore, relevant information for downstream
tasks may not be contained within the shared information between views, meaning that
removing non-shared information can negatively impact the performance.

Kahana and Hoshen [134] identified a series of tasks that violate the multiview as-
sumption. To accomplish these tasks, the learned representation must also be invariant to
unwanted attributes, such as bias removal and cross-domain retrieval. In such cases, only
some attributes have labels, and the objective is to learn an invariant representation for the
domain for which labels are provided while also being informative for all other attributes
without labels. For example, for face images, only the identity labels may be provided,

16

Entropy 2024, 26, 252

and the goal is to learn a representation that captures the unlabeled pose attribute but
contains no information about the identity attribute. The task can also be applied to fair
decisions, cross-domain matching, model anonymization, and image translation.

Wang et al. [132] formalized another case where the multiview assumption does not hold
when non-shared task-relevant information cannot be ignored. In such cases, the minimal
sufficient representation contains less task-relevant information than other sufficient repre-
sentations, resulting in an inferior performance. Furthermore, their analysis shows that in
such cases, the learned representation in contrastive learning is insufficient for downstream
tasks, which may overfit the shared information.

As a result of their analysis, Wang et al. [132] and Kahana and Hoshen [134] proposed
explicitly increasing mutual information between the representation and input to preserve
task-relevant information and prevent the compression of unshared information between
views. In this case, the two regularization terms of the two views are incorporated into the
original InfoMax objective, and the following objective is optimized:

L = min
P(Z1|X1),p(Z2|X2)

−IP(Z1|X1)(X1; Z1)− IP(Z2|X2)(X2; Z2)− βIP(Z1|X1),P(Z2|Z1)(Z1; Z2). (20)

Wang et al. [132] demonstrated the effectiveness of their method for SimCLR [7], BYOL [55],
and Barlow Twins [135] across classification, detection, and segmentation tasks.

4.3. To Compress or Not to Compress?

As seen in Equation (20), when the multiview assumption is violated, the objective
for obtaining an optimal representation is to maximize the mutual information between
each input and its representation. This contrasts with the situation in which the multiview
assumption holds, or the supervised case, where the objective is to minimize the mutual in-
formation between the representation and the input. In both supervised and unsupervised
cases, we have direct access to the relevant information, which we can use to separate and
compress irrelevant information. However, in the self-supervised case, we depend heavily
on the multiview assumption. If this assumption is violated due to unshared information
between views that is relevant for the downstream task, we cannot separate relevant and
irrelevant information. Furthermore, the learning algorithm’s nature requires that this
information be protected by explicitly maximizing it.

As datasets continue to expand in size and models are anticipated to serve as base
models for various downstream tasks, the multiview assumption becomes less pertinent.
Consequently, compressing irrelevant information when the multiview assumption does not
hold presents one of the most significant challenges in self-supervised learning. Identifying
new methods to separate relevant from irrelevant information based on alternative assump-
tions is a promising avenue for research. It is also essential to recognize that empirical
measurement of information-theoretic quantities and their estimators plays a crucial role in
developing and evaluating such methods.

5. Optimizing Information in Deep Neural Networks: Challenges and Approaches

Recent years have seen information-theoretic analyses employed to explain and op-
timize deep learning techniques [74]. Despite their elegance and plausibility, empirically
measuring and analyzing information in deep networks presents challenges. Two critical
problems are (1) information in deterministic networks and (2) estimating information in
high-dimensional spaces.

5.1. Information in Deterministic Networks

Information-theoretic methods have significantly impacted deep learning [13,15,74].
However, a key challenge is addressing the source of randomness in deterministic DNNs.

The mutual information between the input and representation is infinite, leading to
ill-posed optimization problems or piecewise constant outcomes [136,137]. To tackle this
issue, researchers have proposed various solutions. One common approach is to discretize

17

Entropy 2024, 26, 252

the input distribution and real-valued hidden representations by binning, which facili-
tates non-trivial measurements and prevents the mutual information from always taking
the maximum value of the log of the dataset size, thus avoiding ill-posed optimization
problems [74].

However, binning and discretization are essentially equivalent to geometrical compres-
sion and serve as clustering measures [137]. Moreover, this discretization depends on the
chosen bin size and does not track the mutual information across varying bin sizes [137,138].
To address these limitations, researchers have proposed alternative approaches, such as
interpreting binned information as a weight decay penalty [139], estimating mutual infor-
mation based on lower bounds assuming a continuous input distribution without making
assumptions about the network’s output distribution properties [140–142], injecting addi-
tive noise, and considering data augmentation as the source of noise [74,130,131,137].

5.2. Measuring Information in High-Dimensional Spaces

Estimating mutual information in high-dimensional spaces presents a significant
challenge when applying information-theoretic measures to real-world data. This problem
has been extensively studied [143,144], revealing the inefficiency of solutions for large
dimensions and the limited scalability of known approximations with respect to the sample
size and dimension. Despite these difficulties, various entropy and mutual information
estimation approaches have been developed, including classic methods like k-nearest
neighbors (KNNs) [145] and kernel density estimation techniques [146], as well as more
recent efficient methods.

Chelombiev et al. [92] developed adaptive mutual information estimators based on
entropy equal bins and the scaled noise kernel density estimator. Generative decoder
networks, such as PixelCNN++ [147], have been employed to estimate a lower bound on
mutual information [148–150]. Another strategy includes ensemble dependency graph
estimators (EDGEs), adaptive mutual information estimation methods by merging random-
ized locality-sensitive hashing (LSH), dependency graphs, and ensemble bias reduction
techniques [151]. The Mutual Information Neural Estimator (MINE) [152] maximizes KL
divergence using the dual representation of Donsker and Varadhan [153] and has been
employed for direct mutual information estimation [154]. Shwartz-Ziv and Alemi [155]
developed a controlled framework that utilized the neural tangent kernels [156], in order
to obtain tractable information measures.

Recent work by Poole et al. [157] introduced a framework for variational bounds
of mutual information (MI), addressing bias and variance in existing estimators. This
approach unifies recent developments and proposes a continuum of lower bounds that
flexibly trades off bias and variance. In contrast, McAllester and Stratos [158] highlighted
the statistical limitations inherent in all MI measuring methods. They suggest a difference-
of-entropies estimator as a feasible alternative for estimating large MI.

Improving mutual information estimation can be achieved using larger batch sizes,
although this may negatively impact the generalization performance and memory require-
ments. Alternatively, researchers have suggested employing surrogate measures for mutual
information, such as log-determinant mutual information (LDMI), based on second-order
statistics [159,160], which reflects linear dependence. Goldfeld and Greenewald [161] pro-
posed the Sliced Mutual Information (SMI), defined as an average of MI terms between
one-dimensional projections of high-dimensional variables. SMI inherits many properties
of its classic counterpart. It can be estimated with optimal parametric error rates in all
dimensions by combining an MI estimator between scalar variables with an MC integra-
tor [161]. The k-SMI, introduced by Goldfeld et al. [162], extends the SMI by projecting
to a k-dimensional subspace, which relaxes the smoothness assumptions, improves the
scalability, and enhances the performance.

In conclusion, estimating and optimizing information in deep neural networks present
significant challenges, particularly in deterministic networks and high-dimensional spaces.
Researchers have proposed various approaches to address these issues, including discretiza-

18

Entropy 2024, 26, 252

tion, alternative estimators, and surrogate measures. As the field continues to evolve, it is
expected that more advanced techniques will emerge to overcome these challenges and
facilitate the understanding and optimization of deep learning models.

6. Related Work

This work lies at the intersection of information theory and SSL, aiming to enhance
machine learning models through the principles of encoding, compression, and generalization.

6.1. Information Theory Reviews

Information theory has been crucial in machine learning’s evolution, starting with
Shannon [163], who introduced key concepts like entropy and mutual information. Further
reviews by Cover and Thomas [164] and Yeung [165] extended these ideas, incorporating
computational advances to address data transmission and decoding challenges. Recent
studies, such as those by Wilde [166] and Dimitrov et al. [167], have explored information
theory’s application in quantum computing and neuroscience.

Significant review works on the IB principle include Slonim [168], which thoroughly
reviewed the IB method and its extensions, including the multivariate IB. Recent research
by Goldfeld and Polyanskiy [169] and Shwartz-Ziv and Tishby [74] has applied IB theory to
deep learning, optimizing feature representations to balance informativeness and compres-
sion. This research underscores the theory’s importance in advancing machine learning
algorithms and deep learning, seeking to bridge theory and practice.

6.2. Self-Supervised Learning Reviews

SSL represents a significant shift, allowing for the use of unlabeled data to learn
valuable representations. Jaiswal et al. [170] covers SSL’s progress, especially in contrastive
learning’s application to computer vision, NLP, and beyond. It provides an overview of
various methods, showcasing how SSL improves learning representations for diverse tasks,
and evaluates the potential and limitations of current methods.

Liu et al. [48] and Gui et al. [171] give detailed analyses of SSL techniques across several
domains, including computer vision, NLP, and graph learning. They details how SSL,
using input data for supervision, overcomes supervised learning’s limitations, enhancing
representation learning without manual labeling. This survey classifies methods into
generative, contrastive, and generative–contrastive (adversarial) categories, providing
theoretical insights.

Patil and Gudivada [172] and Wang et al. [173] delve into SSL-enhanced language
models and their application to non-sequential tabular data, respectively. Meanwhile, Xie
et al. [174] highlights the parallels between graph neural networks and SSL algorithms,
and Hojjati et al. [175] discusses SSL’s impact on anomaly detection in fields such as
cybersecurity, finance, and healthcare. Moreover, Schiappa et al. [176] and Yu et al. [177]
reviewed SSL in videos and recommendation systems.

Our work compiles these insights, offering a comprehensive review that combines
the theoretical rigor of information theory with the practical advancements of SSL. Our
goal is to pave the way for future research that leverages this interdisciplinary approach to
uncover new efficiencies and applications in machine learning.

7. Future Research Directions

Despite the solid foundation established by existing self-supervised learning methods from
an information theory perspective, several potential research directions warrant exploration:

• Self-supervised learning with non-shared information. As discussed in Section 4,
the separation of relevant (preserved) and irrelevant (compressed) information relies
on the multiview assumption. This assumption, which states that only shared informa-
tion is essential for downstream tasks, is rather restrictive. For example, situations may
arise where each view contains distinct information relevant to a downstream task or
multiple tasks necessitate different features. Some methods have been proposed to

19

Entropy 2024, 26, 252

tackle this problem, but they mainly focus on maximizing the network’s information
without explicit constraints. Formalizing this scenario and exploring differentiating
between relevant and irrelevant data based on non-shared information represents an
intriguing research direction.

• Self-supervised learning for tabular data. At present, the internal compression of
self-supervised learning methods may compress relevant information due to improper
augmentation (Section 4.1). Consequently, we must heavily rely on generating the two
views, which must accurately represent information related to the downstream pro-
cess. Custom augmentation must be developed for each domain, taking into account
extensive prior knowledge on data augmentation. While some papers have attempted
to extend self-supervised learning to tabular data [178,179], further work is necessary
from both theoretical and practical standpoints to achieve a high performance with
self-supervised learning for tabular data [180]. The augmentation process is crucial for
the performance of current vision and text models. In the case of tabular data, employ-
ing information-theoretic loss functions that do not require information compression
may help harness the benefits of self-supervised learning.

• Integrating other learning methods into the information-theoretic framework. Prior
works have investigated various supervised, unsupervised, semi-supervised, and self-
supervised learning methods, demonstrating that they optimize information-theoretic
quantities. However, state-of-the-art methods employ additional changes and en-
gineering practices that may be related to information theory, such as the stop gra-
dient operation utilized by many self-supervised learning methods today [53,55].
The Expectation–Maximization (EM) algorithm [181] can be employed to explain this
operation when one path is the E-step and the other is the M-step. Additionally, Elidan
and Friedman [182] proposed an IB-inspired version of the EM algorithm, which could
help develop information-theoretic-based objectives using the stop gradient operation.

• Expanding the analysis to usable information. While information theory offers
a rigorous conceptual framework for describing information, it neglects essential
aspects of computation. Conditional entropy, for example, is directly related to the
predictability of a random variable in a betting game where agents are rewarded
for accurate guesses. However, the standard definition assumes that agents have no
computational bounds and can employ arbitrarily complex prediction schemes [76].
In the context of deep learning, predictive information H(Y|Z) measures the amount
of information that can be extracted from Z about Y given access to all decoders
p(y|z) in the world. Recently, Xu et al. [183] introduced predictive V-information as an
alternative formulation based on realistic computational constraints.

• Extending self-supervised learning’s information-based perspective to energy-based
model optimization. Until now, research combining self-supervised learning with
information theory has focused on probabilistic models with tractable likelihoods.
These models enable the specific optimization of model parameters concerning the
tractable log-likelihood [184–187] or a tractable lower bound of the likelihood [13,111].
Although models with tractable likelihoods offer certain benefits, their scope is limited
and necessitates a particular format. Energy-based models (EBMs) present a more
flexible, unified framework. Rather than specifying a normalized probability, EBMs
define inference as minimizing an unnormalized energy function and learning as
minimizing a loss function. The energy function does not require integration and
can be parameterized with any nonlinear regression function. Inference typically
involves finding a low-energy configuration or sampling from all possible configu-
rations such that the probability of selecting a specific configuration follows a Gibbs
distribution [188,189].
Investigating energy-based models for self-supervised learning from both theoretical
and practical perspectives can open up numerous promising research directions.
For instance, we could directly apply tools developed for energy-based models and
statistical machines to optimize the model, such as Maximum Likelihood Training with

20

Entropy 2024, 26, 252

MCMC [190], score matching [191], denoising score matching [192,193], and score-
based generation models [194].

• Expanding the multiview framework to accommodate more views and tasks. The
multiview self-supervised IB framework can be extended to cases involving more than
two views (X1, · · · , Xn) and multiple downstream tasks (Y1, · · · , YK). A simple exten-
sion of the multiview IB framework can be achieved by setting the objective function
to maximize the joint mutual information of all views’ representations I(Z1; · · · Zn)
and compressing the individual information for each view I(Xi; Zi), 1 ≤ i ≤ N.
However, to ensure the optimality of this objective, we must expand the multiview
assumption to include more than two views. In this scenario, we need to assume that
relevant information is shared among all different views and tasks, which might be
overly restrictive. As a result, defining and analyzing a more refined version of this
naive solution is essential. One potential approach involves utilizing the multi-feature
information bottleneck (MfIB) [195], which extends the original IB. The MfIB pro-
cesses multiple feature types simultaneously and analyzes data from various sources.
This framework establishes a joint distribution between the multivariate data and
the model. Rather than solely preserving the information of one feature variable
maximally, the MfIB concurrently maintains multiple feature variables’ information
while compressing them. The MfIB characterizes the relationships between different
sources and outputs by employing the multivariate information bottleneck [196] and
setting Bayesian networks.

8. Conclusions

In this study, we delved deeply into the concept of optimal representation in self-
supervised learning through the lens of information theory. We synthesized various
approaches, highlighting their foundational assumptions and constraints, and integrated
them into a unified framework. Additionally, we explored the key information-theoretic
terms that influence these optimal representations and the methods for estimating them.

While supervised and unsupervised learning offer more direct access to relevant in-
formation, self-supervised learning depends heavily on assumptions about the relationship
between data and downstream tasks. This reliance makes distinguishing between relevant
and irrelevant information considerably more challenging, necessitating further assumptions.

Despite these challenges, information theory stands out as a robust and versatile
framework for analysis and algorithmic development. This adaptable framework caters to
a range of learning paradigms and elucidates the inherent assumptions underpinning data
and model optimization.

With the rapid growth of datasets and the increasing expectations placed on models
to handle multiple downstream tasks, the traditional multiview assumption might become
less reliable. One significant challenge in self-supervised learning is the precise compression
of irrelevant information, especially when these assumptions are compromised.

Future research avenues might involve expanding the multiview framework to include
more views and tasks and deepening our understanding of information theory’s impact on
facets of deep learning, such as reinforcement learning and generative models.

In summary, information theory is a crucial tool in our quest to better understand
and optimize self-supervised learning models. By harnessing its principles, we can more
adeptly navigate the intricacies of deep neural network development, paving the way for
creating more effective models.

Funding: This research received no external funding.

Data Availability Statement: Data is contained within the article.

Conflicts of Interest: Author Yann LeCun was employed by the company Meta AI-FAIR. The
remaining authors declare that the research was conducted in the absence of any commercial or
financial relationships that could be construed as a potential conflict of interest.

21

Entropy 2024, 26, 252

References
1. Alam, M.; Samad, M.D.; Vidyaratne, L.; Glandon, A.; Iftekharuddin, K.M. Survey on deep neural networks in speech and vision

systems. Neurocomputing 2020, 417, 302–321. [CrossRef]
2. LeCun, Y.; Bengio, Y.; Hinton, G.E. Deep Learning. Nature 2015, 521, 436–444. [CrossRef]
3. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. arXiv 2015, arXiv:1512.03385.
4. Bromley, J.; Guyon, I.; LeCun, Y.; Säckinger, E.; Shah, R. Signature verification using a “siamese” time delay neural network. In

Advances in Neural Information Processing Systems; Curran Associates, Inc.: Red Hook, NY, USA, 1993; Volume 6.
5. Chopra, S.; Hadsell, R.; LeCun, Y. Learning a similarity metric discriminatively, with application to face verification. In

Proceedings of the 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’05), San Diego,
CA, USA, 20–25 June 2005; Volume 1, pp. 539–546.

6. Hadsell, R.; Chopra, S.; LeCun, Y. Dimensionality reduction by learning an invariant mapping. In Proceedings of the 2006 IEEE
Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06), New York, NY, USA, 17–22 June 2006;
Volume 2, pp. 1735–1742.

7. Chen, T.; Kornblith, S.; Norouzi, M.; Hinton, G. A simple framework for contrastive learning of visual representations. In
Proceedings of the International Conference on Machine Learning, PMLR, Virtual, 13–18 July 2020; pp. 1597–1607.

8. Caron, M.; Touvron, H.; Misra, I.; Jégou, H.; Mairal, J.; Bojanowski, P.; Joulin, A. Emerging properties in self-supervised vision
transformers. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Montreal, BC, Canada, 11–17
October 2021; pp. 9650–9660.

9. Misra, I.; van der Maaten, L. Self-supervised learning of pretext-invariant representations. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 13–19 June 2020; pp. 6707–6717.

10. Shwartz-Ziv, R.; Goldblum, M.; Souri, H.; Kapoor, S.; Zhu, C.; LeCun, Y.; Wilson, A.G. Pre-train your loss: Easy bayesian transfer
learning with informative priors. In Advances in Neural Information Processing Systems; Curran Associates, Inc.: Red Hook, NY,
USA, 2022; Volume 35, pp. 27706–27715.

11. Arora, S.; Khandeparkar, H.; Khodak, M.; Plevrakis, O.; Saunshi, N. A theoretical analysis of contrastive unsupervised
representation learning. arXiv 2019, arXiv:1902.09229.

12. Lee, J.D.; Lei, Q.; Saunshi, N.; Zhuo, J. Predicting what you already know helps: Provable self-supervised learning. In Advances in
Neural Information Processing Systems; Curran Associates, Inc.: Red Hook, NY, USA, 2021; Volume 3.

13. Alemi, A.A.; Fischer, I.; Dillon, J.V.; Murphy, K. Deep Variational Information Bottleneck. In Proceedings of the International
Conference on Learning Representations, Toulon, France, 24–26 April 2017.

14. Xu, A.; Raginsky, M. Information-theoretic analysis of generalization capability of learning algorithms. In Advances in Neural
Information Processing Systems; Curran Associates, Inc.: Red Hook, NY, USA, 2017; Volume 30.

15. Steinke, T.; Zakynthinou, L. Reasoning about generalization via conditional mutual information. In Proceedings of the Conference
on Learning Theory, PMLR, Graz, Austria, 9–12 July 2020; pp. 3437–3452.

16. Belghazi, M.I.; Baratin, A.; Rajeshwar, S.; Ozair, S.; Bengio, Y.; Courville, A.; Hjelm, D. Mutual Information Neural Estimation. In
Proceedings of the 35th International Conference on Machine Learning, Stockholm, Sweden, 10–15 July 2018; Dy, J., Krause, A.,
Eds.; Volume 80, pp. 531–540.

17. Linsker, R. Self-organization in a perceptual network. Computer 1988, 21, 105–117. [CrossRef]
18. Tishby, N.; Pereira, F.; Biale, W. The Information Bottleneck method. In Proceedings of the 37th Annual Allerton Conference on

Communication, Control, and Computing, Monticello, IL, USA, 22–24 September 1999; pp. 368–377.
19. Zhao, J.; Xie, X.; Xu, X.; Sun, S. Multi-view learning overview: Recent progress and new challenges. Inf. Fusion 2017, 38, 43–54.

[CrossRef]
20. Yan, X.; Hu, S.; Mao, Y.; Ye, Y.; Yu, H. Deep multi-view learning methods: A review. Neurocomputing 2021, 448, 106–129.

[CrossRef]
21. Kumar, A.; Daumé, H. A co-training approach for multi-view spectral clustering. In Proceedings of the 28th International

Conference on Machine Learning (ICML-11), Citeseer, Bellevue, DC, USA, 28 June–2 July 2011; pp. 393–400.
22. Xue, Z.; Du, J.; Du, D.; Lyu, S. Deep low-rank subspace ensemble for multi-view clustering. Inf. Sci. 2019, 482, 210–227. [CrossRef]
23. Bach, F.R.; Jordan, M.I. Kernel independent component analysis. J. Mach. Learn. Res. 2002, 3, 1–48.
24. Li, Y.; Yang, M.; Zhang, Z. A survey of multi-view representation learning. IEEE Trans. Knowl. Data Eng. 2018, 31, 1863–1883.

[CrossRef]
25. Hotelling, H. Relations Between Two Sets of Variates. Biometrika 1936, 28, 321–377. [CrossRef]
26. Hardoon, D.R.; Szedmak, S.; Shawe-Taylor, J. Canonical Correlation Analysis: An Overview with Application to Learning

Methods. Neural Comput. 2004, 16, 2639–2664. [CrossRef]
27. Sun, S. A survey of multi-view machine learning. Neural Comput. Appl. 2013, 23, 2031–2038. [CrossRef]
28. Sun, L.; Ceran, B.; Ye, J. A scalable two-stage approach for a class of dimensionality reduction techniques. In Proceedings of the

16th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Washington, DC, USA, 25–28 July 2010;
pp. 313–322.

29. Yan, X.; Ye, Y.; Lou, Z. Unsupervised video categorization based on multivariate information bottleneck method. Knowl.-Based
Syst. 2015, 84, 34–45. [CrossRef]

22

Entropy 2024, 26, 252

30. Jia, Y.; Salzmann, M.; Darrell, T. Factorized Latent Spaces with Structured Sparsity. In Advances in Neural Information Processing
Systems; Lafferty, J., Williams, C., Shawe-Taylor, J., Zemel, R., Culotta, A., Eds.; Curran Associates, Inc.: Red Hook, NY, USA, 2010;
Volume 23.

31. Cao, T.; Jojic, V.; Modla, S.; Powell, D.; Czymmek, K.; Niethammer, M. Robust Multimodal Dictionary Learning. In Medical Image
Computing and Computer-Assisted Intervention—MICCAI 2013: 16th International Conference, Nagoya, Japan, 22–26 September 2013;
Proceedings, Part III; Mori, K., Sakuma, I., Sato, Y., Barillot, C., Navab, N., Eds.; Springer: Berlin/Heidelberg, Germany, 2013;
pp. 259–266.

32. Liu, W.; Tao, D.; Cheng, J.; Tang, Y. Multiview Hessian discriminative sparse coding for image annotation. Comput. Vis. Image
Underst. 2014, 118, 50–60. [CrossRef]

33. Pu, S.; He, Y.; Li, Z.; Zheng, M. Multimodal Topic Learning for Video Recommendation. arXiv 2020, arXiv:2010.13373.
34. Andrew, G.; Arora, R.; Bilmes, J.; Livescu, K. Deep canonical correlation analysis. In Proceedings of the International Conference

on Machine Learning, PMLR, Atlanta, GA, USA, 17–19 June 2013; pp. 1247–1255.
35. Zhao, H.; Ding, Z.; Fu, Y. Multi-view clustering via deep matrix factorization. In Proceedings of the Thirty-First AAAI Conference

on Artificial Intelligence, San Francisco, CA, USA, 4–9 February 2017.
36. Huang, Z.; Zhou, J.T.; Peng, X.; Zhang, C.; Zhu, H.; Lv, J. Multi-view Spectral Clustering Network. In Proceedings of the IJCAI,

Macao, China, 10–16 August 2019; pp. 2563–2569.
37. Liu, S.; Xia, Y.; Shi, Z.; Yu, H.; Li, Z.; Lin, J. Deep learning in sheet metal bending with a novel theory-guided deep neural network.

IEEE/CAA J. Autom. Sin. 2021, 8, 565–581. [CrossRef]
38. Srivastava, N.; Salakhutdinov, R. Multimodal Learning with Deep Boltzmann Machines. J. Mach. Learn. Res. 2014, 15, 2949–2980.
39. Ngiam, J.; Khosla, A.; Kim, M.; Nam, J.; Lee, H.; Ng, A.Y. Multimodal Deep Learning. In Proceedings of the 28th International

Conference on International Conference on Machine Learning, ICML’11, Madison, WI, USA, 28 June–2 July 2011; pp. 689–696.
40. Wang, W.; Arora, R.; Livescu, K.; Bilmes, J. On Deep Multi-View Representation Learning. In Proceedings of the 32nd International

Conference on International Conference on Machine Learning, ICML’15, Lille, France, 7–9 July 2015; Volume 37, pp. 1083–1092.
41. Karpathy, A.; Fei-Fei, L. Deep visual-semantic alignments for generating image descriptions. In Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2015; pp. 3128–3137.
42. Mao, J.; Xu, W.; Yang, Y.; Wang, J.; Huang, Z.; Yuille, A. Deep captioning with multimodal recurrent neural networks (m-rnn).

arXiv 2014, arXiv:1412.6632.
43. Donahue, J.; Anne Hendricks, L.; Guadarrama, S.; Rohrbach, M.; Venugopalan, S.; Saenko, K.; Darrell, T. Long-term recurrent

convolutional networks for visual recognition and description. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, Boston, MA, USA, 7–12 June 2015; pp. 2625–2634.

44. Zhu, J.; Shwartz-Ziv, R.; Chen, Y.; LeCun, Y. Variance-Covariance Regularization Improves Representation Learning. arXiv 2023,
arXiv:2306.13292.

45. Chen, X.; Fan, H.; Girshick, R.; He, K. Improved baselines with momentum contrastive learning. arXiv 2020, arXiv:2003.04297.
46. Bachman, P.; Hjelm, R.D.; Buchwalter, W. Learning representations by maximizing mutual information across views. In Advances

in Neural Information Processing Systems; Curran Associates, Inc.: Red Hook, NY, USA, 2019; Volume 32.
47. Bar, A.; Wang, X.; Kantorov, V.; Reed, C.J.; Herzig, R.; Chechik, G.; Rohrbach, A.; Darrell, T.; Globerson, A. Detreg: Unsupervised

pretraining with region priors for object detection. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, New Orleans, LA, USA, 18–24 June 2022; pp. 14605–14615.

48. Liu, X.; Zhang, F.; Hou, Z.; Mian, L.; Wang, Z.; Zhang, J.; Tang, J. Self-supervised learning: Generative or contrastive. IEEE Trans.
Knowl. Data Eng. 2021, 35, 857–876. [CrossRef]

49. Kingma, D.P.; Welling, M. Auto-encoding variational bayes. arXiv 2014, arXiv:1312.6114.
50. Lee, H.; Battle, A.; Raina, R.; Ng, A. Efficient sparse coding algorithms. In Advances in Neural Information Processing Systems;

Schölkopf, B., Platt, J., Hoffman, T., Eds.; MIT Press: Cambridge, MA, USA, 2006; Volume 19.
51. Ng, A. Sparse autoencoder. CS294A Lect. Notes 2011, 72, 1–19.
52. Van Den Oord, A.; Vinyals, O.; Kavukcuoglu, K. Neural discrete representation learning. In Advances in Neural Information

Processing Systems; Curran Associates, Inc.: Red Hook, NY, USA, 2017; Volume 30.
53. Chen, X.; He, K. Exploring simple siamese representation learning. In Proceedings of the IEEE/CVF Conference on Computer

Vision and Pattern Recognition, Nashville, TN, USA, 20–25 June 2021; pp. 15750–15758.
54. He, K.; Fan, H.; Wu, Y.; Xie, S.; Girshick, R. Momentum contrast for unsupervised visual representation learning. In Proceedings

of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 13–19 June 2020; pp. 9729–9738.
55. Grill, J.B.; Strub, F.; Altché, F.; Tallec, C.; Richemond, P.; Buchatskaya, E.; Doersch, C.; Avila Pires, B.; Guo, Z.; Gheshlaghi Azar,

M.; et al. Bootstrap your own latent-a new approach to self-supervised learning. In Advances in Neural Information Processing
Systems; Curran Associates, Inc.: Red Hook, NY, USA, 2020; Volume 33, pp. 21271–21284.

56. Bardes, A.; Ponce, J.; LeCun, Y. Vicreg: Variance-invariance-covariance regularization for self-supervised learning. arXiv 2021,
arXiv:2105.04906.

57. Vincent, P.; Larochelle, H.; Bengio, Y.; Manzagol, P.A. Extracting and composing robust features with denoising autoencoders. In
Proceedings of the 25th International Conference on Machine Learning, Helsinki, Finland, 5–9 July 2008; pp. 1096–1103.

23

Entropy 2024, 26, 252

58. Devlin, J.; Chang, M.W.; Lee, K.; Toutanova, K. BERT: Pre-training of Deep Bidirectional Transformers for Language Understand-
ing. In Proceedings of the North American Chapter of the Association for Computational Linguistics, Minneapolis, MN, USA,
2–7 June 2019.

59. He, K.; Chen, X.; Xie, S.; Li, Y.; Dollár, P.; Girshick, R. Masked autoencoders are scalable vision learners. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, LA, USA, 18–24 June 2022; pp. 16000–16009.

60. Gutmann, M.; Hyvärinen, A. Noise-contrastive estimation: A new estimation principle for unnormalized statistical models. In
Proceedings of the Thirteenth International Conference on Artificial Intelligence and Statistics, Sardinia, Italy, 13–15 May 2010;
Teh, Y.W., Titterington, M., Eds.; Volume 9, pp. 297–304.

61. Jing, L.; Vincent, P.; LeCun, Y.; Tian, Y. Understanding dimensional collapse in contrastive self-supervised learning. arXiv 2021,
arXiv:2110.09348.

62. Caron, M.; Misra, I.; Mairal, J.; Goyal, P.; Bojanowski, P.; Joulin, A. Unsupervised learning of visual features by contrasting cluster
assignments. In Advances in Neural Information Processing Systems; Curran Associates, Inc.: Red Hook, NY, USA, 2020; Volume 33,
pp. 9912–9924.

63. Chapelle, O.; Scholkopf, B.; Zien, A. Semi-supervised learning (chapelle, o. et al., eds.; 2006)[book reviews]. IEEE Trans. Neural
Netw. 2009, 20, 542. [CrossRef]

64. Laine, S.; Aila, T. Temporal ensembling for semi-supervised learning. arXiv 2016, arXiv:1610.02242.
65. Miyato, T.; Maeda, S.i.; Koyama, M.; Ishii, S. Virtual adversarial training: A regularization method for supervised and semi-

supervised learning. IEEE Trans. Pattern Anal. Mach. Intell. 2018, 41, 1979–1993. [CrossRef]
66. Sohn, K.; Berthelot, D.; Carlini, N.; Zhang, Z.; Zhang, H.; Raffel, C.A.; Cubuk, E.D.; Kurakin, A.; Li, C.L. Fixmatch: Simplifying

semi-supervised learning with consistency and confidence. In Advances in Neural Information Processing Systems; Curran Associates,
Inc.: Red Hook, NY, USA, 2020; Volume 33, pp. 596–608.

67. Grandvalet, Y.; Bengio, Y. Entropy Regularization. 2006. Available online: https://www.researchgate.net/profile/Y-Bengio/
publication/237619703_9_Entropy_Regularization/links/0f3175320aaecbde17000000/9-Entropy-Regularization.pdf (accessed on
8 May 2023).

68. Xie, Q.; Dai, Z.; Hovy, E.; Luong, T.; Le, Q. Unsupervised data augmentation for consistency training. In Advances in Neural
Information Processing Systems; Curran Associates, Inc.: Red Hook, NY, USA, 2020; Volume 33, pp. 6256–6268.

69. Zhai, X.; Oliver, A.; Kolesnikov, A.; Beyer, L. S4l: Self-supervised semi-supervised learning. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, Seoul, Republic of Korea, 27 October–2 November 2019; pp. 1476–1485.

70. Lee, D.H. Pseudo-label: The simple and efficient semi-supervised learning method for deep neural networks. In Proceedings of
the Workshop on Challenges in Representation Learning, ICML, Daegu, Republic of Korea, 3–7 November 2013; Volume 3, p. 896.

71. Bengio, Y.; Courville, A.; Vincent, P. Representation learning: A review and new perspectives. IEEE Trans. Pattern Anal. Mach.
Intell. 2013, 35, 1798–1828. [CrossRef]

72. Goodfellow, I.; Bengio, Y.; Courville, A. Deep Learning; MIT Press: Cambridge, MA, USA, 2016.
73. Bengio, Y.; LeCun, Y. Scaling Learning Algorithms towards AI. In Large Scale Kernel Machines; Bottou, L., Chapelle, O., DeCoste,

D., Weston, J., Eds.; MIT Press: Cambridge, MA, USA, 2007.
74. Shwartz-Ziv, R.; Tishby, N. Opening the black box of deep neural networks via information. arXiv 2017, arXiv:1703.00810.
75. Ben-Shaul, I.; Shwartz-Ziv, R.; Galanti, T.; Dekel, S.; LeCun, Y. Reverse Engineering Self-Supervised Learning. In Advances in

Neural Information Processing Systems; Curran Associates, Inc.: Red Hook, NY, USA, 2023.
76. Cover, T.M. Elements of Information Theory; John Wiley & Sons: Hoboken, NJ, USA, 1999.
77. Koopman, B.O. On distributions admitting a sufficient statistic. Trans. Am. Math. Soc. 1936, 39, 399–409. [CrossRef]
78. Buesing, L.; Maass, W. A spiking neuron as information bottleneck. Neural Comput. 2010, 22, 1961–1992. [CrossRef]
79. Palmer, S.E.; Marre, O.; Berry, M.J.; Bialek, W. Predictive information in a sensory population. Proc. Natl. Acad. Sci. USA 2015,

112, 6908–6913. [CrossRef] [PubMed]
80. Turner, R.; Sahani, M. A maximum-likelihood interpretation for slow feature analysis. Neural Comput. 2007, 19, 1022–1038.

[CrossRef]
81. Hecht, R.M.; Noor, E.; Tishby, N. Speaker recognition by Gaussian information bottleneck. In Proceedings of the Tenth Annual

Conference of the International Speech Communication Association, Brighton, UK, 6–10 September 2009.
82. Lee, N.; Hyun, D.; Na, G.S.; Kim, S.; Lee, J.; Park, C. Conditional Graph Information Bottleneck for Molecular Relational Learning.

arXiv 2023, arXiv:2305.01520.
83. Erdogmus, D. Information Theoretic Learning: Renyi’s Entropy and Its Applications to Adaptive System Training; University of Florida:

Gainesville, FL, USA, 2002.
84. Quinlan, J.R. C4. 5: Programs for Machine Learning; Elsevier: Amsterdam, The Netherlands, 2014.
85. Zhang, Z.; Sabuncu, M. Generalized cross entropy loss for training deep neural networks with noisy labels. In Advances in Neural

Information Processing Systems; Curran Associates, Inc.: Red Hook, NY, USA, 2018; Volume 31.
86. Wenzel, F.; Roth, K.; Veeling, B.S.; Świkatkowski, J.; Tran, L.; Mandt, S.; Snoek, J.; Salimans, T.; Jenatton, R.; Nowozin, S. How

good is the bayes posterior in deep neural networks really? arXiv 2020, arXiv:2002.02405.
87. Painsky, A.; Wornell, G.W. On the Universality of the Logistic Loss Function. arXiv 2018, arXiv:1805.03804.
88. Shamir, O.; Sabato, S.; Tishby, N. Learning and generalization with the information bottleneck. Theor. Comput. Sci. 2010,

411, 2696–2711. [CrossRef]

24

Entropy 2024, 26, 252

89. Vera, M.; Piantanida, P.; Vega, L.R. The role of information complexity and randomization in representation learning. arXiv 2018,
arXiv:1802.05355.

90. Russo, D.; Zou, J. How much does your data exploration overfit? controlling bias via information usage. IEEE Trans. Inf. Theory
2019, 66, 302–323. [CrossRef]

91. Achille, A.; Soatto, S. Emergence of invariance and disentanglement in deep representations. J. Mach. Learn. Res. 2018,
19, 1947–1980.

92. Chelombiev, I.; Houghton, C.; O’Donnell, C. Adaptive estimators show information compression in deep neural networks. arXiv
2019, arXiv:1902.09037.

93. Shwartz-Ziv, R.; Painsky, A.; Tishby, N. Representation Compression and Generalization in Deep Neural Networks. 2018.
Available online: https://arxiv.org/pdf/2202.06749.pdf#page=56 (accessed on 12 December 2023).

94. Piran, Z.; Shwartz-Ziv, R.; Tishby, N. The dual information bottleneck. arXiv 2020, arXiv:2006.04641.
95. Shwartz-Ziv, R. Information flow in deep neural networks. arXiv 2022, arXiv:2202.06749.
96. Federici, M.; Dutta, A.; Forré, P.; Kushman, N.; Akata, Z. Learning robust representations via multi-view information bottleneck.

arXiv 2020, arXiv:2002.07017.
97. Geiger, B.C. On Information Plane Analyses of Neural Network Classifiers—A Review. IEEE Trans. Neural Netw. Learn. Syst.

2020, 33, 7039–7051. [CrossRef]
98. Amjad, R.A.; Geiger, B.C. How (Not) To Train Your Neural Network Using the Information Bottleneck Principle. arXiv 2018,

arXiv:1802.09766.
99. Achille, A.; Rovere, M.; Soatto, S. Critical learning periods in deep neural networks. arXiv 2019, arXiv:1711.08856.
100. Saxe, A.M.; Bansal, Y.; Dapello, J.; Advani, M.; Kolchinsky, A.; Tracey, B.D.; Cox, D.D. On the information bottleneck theory of

deep learning. J. Stat. Mech. Theory Exp. 2019, 2019, 124020. [CrossRef]
101. Basirat, M.; Geiger, B.C.; Roth, P.M. A Geometric Perspective on Information Plane Analysis. Entropy 2021, 23, 711. [CrossRef]

[PubMed]
102. Pensia, A.; Jog, V.; Loh, P.L. Generalization error bounds for noisy, iterative algorithms. In Proceedings of the 2018 IEEE

International Symposium on Information Theory (ISIT), Vail, CO, USA, 17–22 June 2018; pp. 546–550.
103. Xu, C.; Tao, D.; Xu, C. Large-Margin Multi-ViewInformation Bottleneck. IEEE Trans. Pattern Anal. Mach. Intell. 2014, 36, 1559–1572.

[CrossRef] [PubMed]
104. Wang, Q.; Boudreau, C.; Luo, Q.; Tan, P.N.; Zhou, J. Deep Multi-view Information Bottleneck. In Proceedings of the 2019 SIAM

International Conference on Data Mining (SDM), Calgary, AB, Canada, 2–4 May 2019; pp. 37–45. [CrossRef]
105. Berthelot, D.; Carlini, N.; Goodfellow, I.; Papernot, N.; Oliver, A.; Raffel, C.A. Mixmatch: A holistic approach to semi-supervised

learning. In Advances in Neural Information Processing Systems; Curran Associates, Inc.: Red Hook, NY, USA, 2019; Volume 32.
106. Voloshynovskiy, S.; Taran, O.; Kondah, M.; Holotyak, T.; Rezende, D. Variational Information Bottleneck for Semi-Supervised

Classification. Entropy 2020, 22, 943. [CrossRef] [PubMed]
107. Makhzani, A.; Shlens, J.; Jaitly, N.; Goodfellow, I.; Frey, B. Adversarial autoencoders. arXiv 2015, arXiv:1511.05644.
108. Springenberg, J.T. Unsupervised and Semi-supervised Learning with Categorical Generative Adversarial Networks. arXiv 2015,

arXiv:1511.06390.
109. Śmieja, M.; Wołczyk, M.; Tabor, J.; Geiger, B.C. SeGMA: Semi-Supervised Gaussian Mixture Autoencoder. IEEE Trans. Neural

Netw. Learn. Syst. 2019, 32, 3930–3941. [CrossRef]
110. Kingma, D.P.; Mohamed, S.; Jimenez Rezende, D.; Welling, M. Semi-supervised learning with deep generative models. In

Advances in Neural Information Processing Systems; Curran Associates, Inc.: Red Hook, NY, USA, 2014; Volume 27.
111. Kingma, D.P.; Welling, M. An introduction to variational autoencoders. Found. Trends® Mach. Learn. 2019, 12, 307–392. [CrossRef]
112. Higgins, I.; Matthey, L.; Pal, A.; Burgess, C.; Glorot, X.; Botvinick, M.; Mohamed, S.; Lerchner, A. beta-vae: Learning basic visual

concepts with a constrained variational framework. In Proceedings of the ICLR, Toulon, France, 24–26 April 2017.
113. Zhao, S.; Song, J.; Ermon, S. Infovae: Information maximizing variational autoencoders. arXiv 2019, arXiv:1706.02262.
114. Larsen, A.B.L.; Sønderby, S.K.; Larochelle, H.; Winther, O. Autoencoding beyond pixels using a learned similarity metric. In

Proceedings of the International Conference on Machine Learning, PMLR, New York, NY, USA, 20–22 June 2016; pp. 1558–1566.
115. Uğur, Y.; Arvanitakis, G.; Zaidi, A. Variational information bottleneck for unsupervised clustering: Deep gaussian mixture

embedding. Entropy 2020, 22, 213. [CrossRef]
116. Roy, A.; Vaswani, A.; Neelakantan, A.; Parmar, N. Theory and experiments on vector quantized autoencoders. arXiv 2018,

arXiv:1805.11063.
117. Wiskott, L.; Sejnowski, T.J. Slow Feature Analysis: Unsupervised Learning of Invariances. Neural Comput. 2002, 14, 715–770.

[CrossRef] [PubMed]
118. Becker, S.; Hinton, G.E. Self-organizing neural network that discovers surfaces in random-dot stereograms. Nature 1992,

355, 161–163. [CrossRef] [PubMed]
119. Bell, A.J.; Sejnowski, T.J. An information-maximization approach to blind separation and blind deconvolution. Neural Comput.

1995, 7, 1129–1159. [CrossRef] [PubMed]
120. Hjelm, R.D.; Fedorov, A.; Lavoie-Marchildon, S.; Grewal, K.; Bachman, P.; Trischler, A.; Bengio, Y. Learning deep representations

by mutual information estimation and maximization. arXiv 2019, arXiv:1808.06670.

25

Entropy 2024, 26, 252

121. Henaff, O. Data-efficient image recognition with contrastive predictive coding. In Proceedings of the International Conference on
Machine Learning, PMLR, Virtual, 13–18 July 2020; pp. 4182–4192.

122. Tian, Y.; Krishnan, D.; Isola, P. Contrastive multiview coding. In Proceedings of the European Conference on Computer Vision,
Glasgow, UK, 23–28 August 2020; pp. 776–794.

123. Tschannen, M.; Djolonga, J.; Rubenstein, P.K.; Gelly, S.; Lucic, M. On mutual information maximization for representation
learning. arXiv 2020, arXiv:1907.13625.

124. Williams, P.L.; Beer, R.D. Nonnegative decomposition of multivariate information. arXiv 2010, arXiv:1004.2515.
125. Gutknecht, A.J.; Wibral, M.; Makkeh, A. Bits and pieces: Understanding information decomposition from part-whole relationships

and formal logic. Proc. R. Soc. A 2021, 477, 20210110. [CrossRef]
126. Sridharan, K.; Kakade, S. An Information Theoretic Framework for Multi-View Learning. In Proceedings of the 21st Annual

Conference on Learning Theory—COLT 2008, Helsinki, Finland, 9–12 July 2008.
127. Geiping, J.; Goldblum, M.; Somepalli, G.; Shwartz-Ziv, R.; Goldstein, T.; Wilson, A.G. How Much Data Are Augmentations

Worth? An Investigation into Scaling Laws, Invariance, and Implicit Regularization. arXiv 2023, arXiv:2210.06441.
128. Tsai, Y.H.H.; Wu, Y.; Salakhutdinov, R.; Morency, L.P. Self-supervised learning from a multi-view perspective. ICLR 2021 2020.
129. Fischer, I. The conditional entropy bottleneck. Entropy 2020, 22, 999. [CrossRef]
130. Lee, K.H.; Arnab, A.; Guadarrama, S.; Canny, J.; Fischer, I. Compressive visual representations. In Advances in Neural Information

Processing Systems; Curran Associates, Inc.: Red Hook, NY, USA, 2021; Volume 34.
131. Dubois, Y.; Bloem-Reddy, B.; Ullrich, K.; Maddison, C.J. Lossy compression for lossless prediction. In Advances in Neural

Information Processing Systems; Curran Associates, Inc.: Red Hook, NY, USA, 2021; Volume 34.
132. Wang, H.; Guo, X.; Deng, Z.H.; Lu, Y. Rethinking Minimal Sufficient Representation in Contrastive Learning. In Proceedings of

the Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), New Orleans, LA, USA,
18–24 June 2022.

133. Tian, Y.; Sun, C.; Poole, B.; Krishnan, D.; Schmid, C.; Isola, P. What makes for good views for contrastive learning? In Advances in
Neural Information Processing Systems; Curran Associates, Inc.: Red Hook, NY, USA, 2020; Volume 33, pp. 6827–6839.

134. Kahana, J.; Hoshen, Y. A Contrastive Objective for Learning Disentangled Representations. In Computer Vision—ECCV 2022;
Springer: Cham, Switzerland, 2022.

135. Zbontar, J.; Jing, L.; Misra, I.; LeCun, Y.; Deny, S. Barlow twins: Self-supervised learning via redundancy reduction. In Proceedings
of the International Conference on Machine Learning, PMLR, Virtual, 18–24 July 2021; pp. 12310–12320.

136. Amjad, R.A.; Geiger, B.C. Learning representations for neural network-based classification using the information bottleneck
principle. IEEE Trans. Pattern Anal. Mach. Intell. 2019, 42, 2225–2239. [CrossRef] [PubMed]

137. Goldfeld, Z.; van den Berg, E.; Greenewald, K.; Melnyk, I.; Nguyen, N.; Kingsbury, B.; Polyanskiy, Y. Estimating Information
Flow in Neural Networks. arXiv 2018, arXiv:1810.05728.

138. Ross, B.C. Mutual Information between Discrete and Continuous Data Sets. PLoS ONE 2014, 9, e87357. [CrossRef]
139. Elad, A.; Haviv, D.; Blau, Y.; Michaeli, T. The Effectiveness of Layer-by-Layer Training Using the Information Bottleneck Principle.

2019. Available online: https://openreview.net/forum?id=r1Nb5i05tX (accessed on 12 February 2024).
140. Wang, T.; Isola, P. Understanding contrastive representation learning through alignment and uniformity on the hypersphere. In

Proceedings of the International Conference on Machine Learning, PMLR, Virtual, 13–18 July 2020; pp. 9929–9939.
141. Zimmermann, R.S.; Sharma, Y.; Schneider, S.; Bethge, M.; Brendel, W. Contrastive learning inverts the data generating process. In

Proceedings of the International Conference on Machine Learning, PMLR, Virtual, 18–24 July 2021; pp. 12979–12990.
142. Shwartz-Ziv, R.; Balestriero, R.; LeCun, Y. What Do We Maximize in Self-Supervised Learning? arXiv 2022, arXiv:2207.10081.
143. Paninski, L. Estimation of Entropy and Mutual Information. Neural Comput. 2003, 15, 1191–1253. [CrossRef]
144. Gao, S.; Ver Steeg, G.; Galstyan, A. Efficient estimation of mutual information for strongly dependent variables. In Proceedings of

the Artificial Intelligence and Statistics, San Diego, CA, USA, 9–12 May 2015; pp. 277–286.
145. Kozachenko, L.F.; Leonenko, N.N. Sample estimate of the entropy of a random vector. Probl. Peredachi Informatsii 1987, 23, 9–16.
146. Hang, H.; Steinwart, I.; Feng, Y.; Suykens, J.A. Kernel density estimation for dynamical systems. J. Mach. Learn. Res. 2018,

19, 1260–1308.
147. Van den Oord, A.; Kalchbrenner, N.; Espeholt, L.; Vinyals, O.; Graves, A. Conditional image generation with pixelcnn decoders.

In Advances in Neural Information Processing Systems; Curran Associates, Inc.: Red Hook, NY, USA, 2016; Volume 29.
148. Darlow, L.N.; Storkey, A. What Information Does a ResNet Compress? arXiv 2020, arXiv:2003.06254.
149. Nash, C.; Kushman, N.; Williams, C.K.I. Inverting Supervised Representations with Autoregressive Neural Density Models. In

Proceedings of the International Conference on Artificial Intelligence and Statistics, Playa Blanca, Lanzarote, 9–11 April 2018.
150. Shwartz-Ziv, R.; Balestriero, R.; Kawaguchi, K.; Rudner, T.G.; LeCun, Y. An Information-Theoretic Perspective on Variance-

Invariance-Covariance Regularization. In Advances in Neural Information Processing Systems; Curran Associates, Inc.: Red Hook,
NY, USA, 2023.

151. Noshad, M.; Zeng, Y.; Hero, A.O. Scalable Mutual Information Estimation Using Dependence Graphs. In Proceedings of the
ICASSP 2019–2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Brighton, UK, 12–17
May 2019; pp. 2962–2966. [CrossRef]

152. Belghazi, M.I.; Baratin, A.; Rajeshwar, S.; Ozair, S.; Bengio, Y.; Hjelm, R.D.; Courville, A.C. Mutual Information Neural Estimation.
In Proceedings of the ICML, Stockholm, Sweden, 10–15 July 2018.

26

Entropy 2024, 26, 252

153. Donsker, M.D.; Varadhan, S.S. Asymptotic evaluation of certain Markov process expectations for large time, I. Commun. Pure
Appl. Math. 1975, 28, 1–47. [CrossRef]

154. Elad, A.; Haviv, D.; Blau, Y.; Michaeli, T. Direct validation of the information bottleneck principle for deep nets. In Proceedings of
the IEEE International Conference on Computer Vision Workshops, Seoul, Republic of Korea, 27–28 October 2019.

155. Shwartz-Ziv, R.; Alemi, A.A. Information in infinite ensembles of infinitely-wide neural networks. In Proceedings of the
Symposium on Advances in Approximate Bayesian Inference, PMLR. 2020; pp. 1–17. Available online: http://proceedings.mlr.
press/v118/shwartz-ziv20a.html (accessed on 8 May 2023).

156. Jacot, A.; Gabriel, F.; Hongler, C. Neural tangent kernel: Convergence and generalization in neural networks. In Advances in
Neural Information Processing Systems; Curran Associates, Inc.: Red Hook, NY, USA, 2018; Volume 31.

157. Poole, B.; Ozair, S.; Van Den Oord, A.; Alemi, A.; Tucker, G. On variational bounds of mutual information. In Proceedings of the
International Conference on Machine Learning, PMLR, Long Beach, CA, USA, 9–15 June 2019; pp. 5171–5180.

158. McAllester, D.; Stratos, K. Formal limitations on the measurement of mutual information. In Proceedings of the International
Conference on Artificial Intelligence and Statistics, PMLR, Online, 26–28 August 2020, pp. 875–884.

159. Ozsoy, S.; Hamdan, S.; Arik, S.; Yuret, D.; Erdogan, A. Self-supervised learning with an information maximization criterion. In
Advances in Neural Information Processing Systems; Curran Associates, Inc.: Red Hook, NY, USA, 2022; Volume 35, pp. 35240–35253.

160. Erdogan, A.T. An information maximization based blind source separation approach for dependent and independent sources.
In Proceedings of the ICASSP 2022-2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP),
Virtual, 23–27 May 2022; pp. 4378–4382.

161. Goldfeld, Z.; Greenewald, K. Sliced mutual information: A scalable measure of statistical dependence. In Advances in Neural
Information Processing Systems; Curran Associates, Inc.: Red Hook, NY, USA, 2021; Volume 34, pp. 17567–17578.

162. Goldfeld, Z.; Greenewald, K.; Nuradha, T.; Reeves, G. k-sliced mutual information: A quantitative study of scalability with
dimension. In Advances in Neural Information Processing Systems; Curran Associates, Inc.: Red Hook, NY, USA, 2022.

163. Shannon, C.E. A mathematical theory of communication. Bell Syst. Tech. J. 1948, 27, 379–423. [CrossRef]
164. Cover, T.M.; Thomas, J.A. Elements of Information Theory (Wiley Series in Telecommunications and Signal Processing); Wiley-Interscience:

Hoboken, NJ, USA, 2006.
165. Yeung, R.W. Information Theory and Network Coding (Yeung, R.W.; 2008) [Book review]. IEEE Trans. Inf. Theory 2009, 55, 3409.

[CrossRef]
166. Wilde, M.M. Quantum Information Theory; Cambridge University Press: Cambridge, UK, 2013.
167. Dimitrov, A.G.; Lazar, A.A.; Victor, J.D. Information theory in neuroscience. J. Comput. Neurosci. 2011, 30, 1–5. [CrossRef]
168. Slonim, N. The Information Bottleneck: Theory and Applications. Ph.D. Thesis, Hebrew University of Jerusalem, Jerusalem,

Israel, 2002.
169. Goldfeld, Z.; Polyanskiy, Y. The Information Bottleneck Problem and its Applications in Machine Learning. IEEE J. Sel. Areas Inf.

Theory 2020, 1, 19–38. [CrossRef]
170. Jaiswal, A.; Babu, A.R.; Zadeh, M.Z.; Banerjee, D.; Makedon, F. A survey on contrastive self-supervised learning. Technologies

2020, 9, 2. [CrossRef]
171. Gui, J.; Chen, T.; Cao, Q.; Sun, Z.; Luo, H.; Tao, D. A survey of self-supervised learning from multiple perspectives: Algorithms,

theory, applications and future trends. arXiv 2023, arXiv:2301.05712.
172. Patil, R.; Gudivada, A. A Review of Current Trends, Techniques, and Challenges in Large Language Models (LLMs). Appli. Sci.

2024, 14, 20. [CrossRef]
173. Wang, W.Y.; Du, W.W.; Xu, D.; Wang, W.; Peng, W.C. A Survey on Self-Supervised Learning for Non-Sequential Tabular Data.

arXiv 2024, arXiv:2402.01204.
174. Xie, Y.; Xu, Z.; Zhang, J.; Wang, Z.; Ji, S. Self-supervised learning of graph neural networks: A unified review. IEEE Trans. Pattern

Anal. Mach. Intell. 2023, 45, 2412–2429. [CrossRef] [PubMed]
175. Hojjati, H.; Ho, T.K.K.; Armanfard, N. Self-supervised anomaly detection: A survey and outlook. arXiv 2023, arXiv:2205.05173.
176. Schiappa, M.C.; Rawat, Y.S.; Shah, M. Self-supervised learning for videos: A survey. ACM Comput. Surv. 2023, 55, 1–37.

[CrossRef]
177. Yu, J.; Yin, H.; Xia, X.; Chen, T.; Li, J.; Huang, Z. Self-supervised learning for recommender systems: A survey. IEEE Trans. Knowl.

Data Eng. 2023, 36, 335–355. [CrossRef]
178. Ucar, T.; Hajiramezanali, E.; Edwards, L. Subtab: Subsetting features of tabular data for self-supervised representation learning. In

Advances in Neural Information Processing Systems; Curran Associates, Inc.: Red Hook, NY, USA, 2021; Volume 34, pp. 18853–18865.
179. Arik, S.Ö.; Pfister, T. Tabnet: Attentive interpretable tabular learning. AAAI Conf. Artif. Intell. 2021, 35, 6679–6687. [CrossRef]
180. Shwartz-Ziv, R.; Armon, A. Tabular data: Deep learning is not all you need. Inf. Fusion 2022, 81, 84–90. [CrossRef]
181. Dempster, A.P.; Laird, N.M.; Rubin, D.B. Maximum likelihood from incomplete data via the EM algorithm. J. R. Stat. Soc. Ser. B

(Methodol.) 1977, 39, 1–22. [CrossRef]
182. Elidan, G.; Friedman, N. The information bottleneck EM algorithm. arXiv 2012, arXiv:1212.2460.
183. Xu, Y.; Zhao, S.; Song, J.; Stewart, R.; Ermon, S. A theory of usable information under computational constraints. arXiv 2020,

arXiv:2002.10689.
184. Graves, A. Generating sequences with recurrent neural networks. arXiv 2013, arXiv:1308.0850.

27

Entropy 2024, 26, 252

185. Germain, M.; Gregor, K.; Murray, I.; Larochelle, H. Made: Masked autoencoder for distribution estimation. In Proceedings of the
International Conference on Machine Learning, PMLR, Lille, France, 7–9 July 2015; pp. 881–889.

186. Dinh, L.; Sohl-Dickstein, J.; Bengio, S. Density estimation using real nvp. arXiv 2017, arXiv:1605.08803.
187. Rezende, D.; Mohamed, S. Variational inference with normalizing flows. In Proceedings of the International conference on

machine learning, PMLR, Lille, France, 7–9 July 2015; pp. 1530–1538.
188. Huembeli, P.; Arrazola, J.M.; Killoran, N.; Mohseni, M.; Wittek, P. The physics of energy-based models. Quantum Mach. Intell.

2022, 4, 1–13. [CrossRef]
189. Song, Y.; Kingma, D.P. How to train your energy-based models. arXiv 2021, arXiv:2101.03288.
190. Younes, L. On The Convergence Of Markovian Stochastic Algorithms With Rapidly Decreasing Ergodicity Rates. Stochastics

Stochastics Model. 1999, 65, 177–228. [CrossRef]
191. Hyvärinen, A. Some Extensions of Score Matching. 2006. Available online: https://www.sciencedirect.com/science/article/abs/

pii/S0167947306003264 (accessed on 12 February 2024).
192. Song, Y.; Sohl-Dickstein, J.; Kingma, D.P.; Kumar, A.; Ermon, S.; Poole, B. Score-based generative modeling through stochastic

differential equations. arXiv 2021, arXiv:2011.13456.
193. Vincent, P. A Connection Between Score Matching and Denoising Autoencoders. Neural Comput. 2011, 23, 1661–1674. [CrossRef]

[PubMed]
194. Song, Y.; Ermon, S. Generative Modeling by Estimating Gradients of the Data Distribution. In Advances in Neural Information

Processing Systems; Wallach, H., Larochelle, H., Beygelzimer, A., d’Alché-Buc, F., Fox, E., Garnett, R., Eds.; Curran Associates, Inc.:
Red Hook, NY, USA, 2019; Volume 32.

195. Lou, Z.; Ye, Y.; Yan, X. The multi-feature information bottleneck with application to unsupervised image categorization. In
Proceedings of the Twenty-Third International Joint Conference on Artificial Intelligence, Beijing, China, 3–9 August 2013.

196. Friedman, N.; Mosenzon, O.; Slonim, N.; Tishby, N. Multivariate information bottleneck. arXiv 2001, arXiv:1301.2270.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

28

Citation: Veiner, J.; Alajaji, F.;

Gharesifard, B. A Unifying Generator

Loss Function for Generative

Adversarial Networks. Entropy 2024,

26, 290. https://doi.org/10.3390/

e26040290

Academic Editor: Boris Ryabko

Received: 23 February 2024

Revised: 18 March 2024

Accepted: 22 March 2024

Published: 27 March 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

entropy

Article

A Unifying Generator Loss Function for Generative
Adversarial Networks
Justin Veiner 1, Fady Alajaji 1,* and Bahman Gharesifard 2

1 Department of Mathematics and Statistics, Queen’s University, Kingston, ON K7L 3N6, Canada;
justin.veiner@queensu.ca

2 Department of Electrical and Computer Engineering, University of California, Los Angeles, CA 90095, USA;
gharesifard@ucla.edu

* Correspondence: fa@queensu.ca

Abstract: A unifying α-parametrized generator loss function is introduced for a dual-objective
generative adversarial network (GAN) that uses a canonical (or classical) discriminator loss function
such as the one in the original GAN (VanillaGAN) system. The generator loss function is based
on a symmetric class probability estimation type function, Lα, and the resulting GAN system is
termed Lα-GAN. Under an optimal discriminator, it is shown that the generator’s optimization
problem consists of minimizing a Jensen- fα-divergence, a natural generalization of the Jensen-
Shannon divergence, where fα is a convex function expressed in terms of the loss function Lα.
It is also demonstrated that this Lα-GAN problem recovers as special cases a number of GAN
problems in the literature, including VanillaGAN, least squares GAN (LSGAN), least kth-order GAN
(LkGAN), and the recently introduced (αD, αG)-GAN with αD = 1. Finally, experimental results are
provided for three datasets—MNIST, CIFAR-10, and Stacked MNIST—to illustrate the performance
of various examples of the Lα-GAN system.

Keywords: generative adversarial networks; deep learning; parameterized loss functions; f -divergence;
Jensen- f -divergence

1. Introduction

Generative adversarial networks (GANs), first introduced by Goodfellow et al. in
2014 [1], have a variety of applications in media generation [2], image restoration [3], and
data privacy [4]. GANs aim to generate synthetic data that closely resemble the original
real data with (unknown) underlying distribution Px. The GAN is trained such that
the distribution of the generated data, Pg, approximates Px well. More specifically, low-
dimensional random noise is fed to a generator neural network G to produce synthetic data.
Real data and the generated data are then given to a discriminator neural network D that
scores the data between 0 and 1, with a score close to 1 meaning that the discriminator thinks
the data belong to the real dataset. The discriminator and generator play a minimax game,
where the aim is to minimize the generator’s loss and maximize the discriminator’s loss.

Since its initial introduction, several variants of GAN have been proposed. Deep
convolutional GAN (DCGAN) [5] utilizes the same loss functions as VanillaGAN (the
original GAN) while combining GANs with convolutional neural networks, which are
helpful when applying GANs to image data as they extract visual features from the data.
DCGANs are more stable than the baseline model but can suffer from mode collapse,
which occurs when the generator learns that a select number of images can easily fool the
discriminator, resulting in the generator only generating those images. Another notable
issue with VanillaGAN is the tendency for the generator network’s gradients to vanish.
In the early stages of training, the discriminator lacks confidence and assigns generated
data values close to zero. Therefore, the objective function tends to zero, resulting in small

Entropy 2024, 26, 290. https://doi.org/10.3390/e26040290 https://www.mdpi.com/journal/entropy29

Entropy 2024, 26, 290

gradients and a lack of learning. To mitigate this issue, a non-saturating generator loss
function was proposed in [1] so that gradients do not vanish early on in training.

In the original (VanillaGAN) problem setup, the objective function, expressed as a
negative sum of two Shannon cross-entropies, is to be minimized by the generator and
maximized by the discriminator. It is demonstrated that if the discriminator is fixed to
be optimal (i.e., as a maximizer of the objective function), the GAN’s minimax game
can be reduced to minimizing the Jensen-Shannon divergence (JSD) between the real
and generated data’s probability distributions [1]. An analogous result was proven in [6]
for RényiGANs, a dual-objective GAN using distinct discriminator and generator loss
functions. More specifically, under a canonical discriminator loss function (as in [1]) and a
generator loss function expressed in terms of two Rényi cross-entropies, it is shown that
the RényiGAN optimization problem reduces to minimizing the Jensen-Rényi divergence,
hence extending VanillaGAN’s results.

Nowozin et al. generalized VanillaGAN by formulating a class of loss functions
in [7] parametrized by a lower semicontinuous convex function f , devising f -GAN. More
specifically, the f -GAN problem consists of minimizing an f -divergence between the true
data distribution and the generator distribution via a minimax optimization of a Fenchel
conjugate representation of the f -divergence, where the VanillaGAN discriminator’s role
(as a binary classifier) is replaced by a variational function estimating the ratio of the true
data and generator distributions. The f -GAN loss function may be tedious to derive, as
it requires computation of the Fenchel conjugate of f . It can be shown that f -GAN can
interpolate between VanillaGAN and HellingerGAN, among others [7].

More recently, α-GAN was presented in [8], for which the aim is to derive a class
of loss functions parameterized by α > 0 and expressed in terms of a class probability
estimation (CPE) loss between a real label y ∈ {0, 1} and predicted label ŷ ∈ [0, 1] [8].
The ability to control α as a hyperparameter is beneficial to be able to apply one sys-
tem to multiple datasets, as two datasets may be optimal under different α values. This
work was further analyzed in [9] and expanded in [10] by introducing the dual-objective
(αD, αG)-GAN, which allowed for the generator and discriminator loss functions to have
distinct α parameters with the aim of improving training stability. When αD = αG, the
α-GAN optimization reduces to minimizing an Arimoto divergence, as originally derived
in [8]. Note that α-GAN can recover several f -GANs, such as HellingerGAN, Vanilla-
GAN, WassersteinGAN, and total variation GAN [8]. Furthermore, in their more recent
work [11] that unifies [8–10], the authors establish, under some conditions, a one-to-one
correspondence between CPE-loss-based GANs (such as α-GANs) and f -GANs that use
a symmetric f -divergence (see Theorems 4–5 and Corollary 1 in [11]). They also prove
various generalization and estimation error bounds for (αD, αG)-GANs and illustrate their
ability to mitigate training instability for synthetic Gaussian data as well as the Celeb-A
and LSUN Classroom image datasets. The various (αD, αG)-GAN equilibrium results do
not provide an analogous result to JSD and Jensen-Rényi divergence minimization for
the VanillaGAN [1] and RényiGAN [6] problems, respectively, as they do not involve
a Jensen-type divergence. More specifically given a divergence measure D(p‖q) between
distributions p and q (i.e., a positive-definite bivariate function: D(p‖q) ≥ 0 with equality
if and only if (iff) p = q almost everywhere (a.e.)), a Jensen-type divergence of D is given by

1
2
D
(

p‖ p + q
2
)
+

1
2
D
(
q‖ p + q

2
)
;

i.e., it is the arithmetic average of two D-divergences: one between p and the mixture
(p + q)/2 and the other between q and (p + q)/2.

The main objective of our work is to present a unifying approach that provides an
axiomatic framework to encompass several existing GAN generator loss functions so that
GAN optimization can be simplified in terms of a Jensen-type divergence. In particular, our
framework classifies the set of α-parameterized CPE-based loss functions Lα, generalizing
the α-loss function in [8–11]. We then propose Lα-GAN: a dual-objective GAN that uses

30

Entropy 2024, 26, 290

a function from this class for the generator and uses any canonical discriminator loss
function that admits the same optimizer as VanillaGAN [1]. We show that under some
regularity (convexity/concavity) conditions on Lα, the minimax game played with these
two loss functions is equivalent to the minimization of a Jensen- fα-divergence: a Jensen-type
divergence and another natural extension of the Jensen-Shannon divergence (in addition
to the Jensen-Rényi divergence [6]), where the generating function fα of the divergence
is directly computed from the CPE loss function Lα. This result recovers various prior
dual-objective GAN equilibrium results, thus unifying them under one parameterized
generator loss function. The newly obtained Jensen- fα-divergence, which is noted to belong
to the class of symmetric f -divergences with different generating functions (see Remark 1),
is a useful measure of dissimilarity between distributions as it requires a convex function
f with a restricted domain given by the interval [0, 2] (see Remark 2) in addition to its
symmetry and finiteness properties.

The rest of the paper is organized as follows. In Section 2, we review f -divergence
measures and introduce the Jensen- f -divergence as an extension of the Jensen-Shannon
divergence. In Section 3, we establish our main result regarding the optimization of our
unifying generator loss function (Theorem 1) and show that it can be applied to a large class
of known GANs (Lemmas 2–4). We conduct experiments in Section 4 by implementing
different manifestations of Lα-GAN on three datasets: MNIST, CIFAR-10, and Stacked
MNIST. Finally, we conclude the paper in Section 5.

2. Preliminaries

We begin by presenting key information measures used throughout the paper. Let
f : [0, ∞) → (−∞, ∞] be a convex continuous function that is strictly convex at 1 (i.e.,
f (λu1 + (1− λ)u2) < λ f (u1) + (1− λ) f (u2) for all u1, u2 ≥ 0, u1 6= u2, and λ ∈ (0, 1)
such that λu1 + (1− λ)u2 = 1) and satisfying

f (1) = 0.

Note that the convexity of f already implies its continuity on (0, ∞). Here, the continuity
of f at 0 is extended, setting f (0) = limu↓0 f (u), which may be infinite. Otherwise, f (u) is
assumed to be finite for u > 0.

Definition 1 ([12–14]). The f -divergence between two probability densities p and q with common
support R ⊆ Rd on the Lebesgue measurable space (R,B(R), µ) is denoted by D f (p‖q) and
given by

D f (p‖q) =
∫

R
q f
(

p
q

)
dµ, (1)

where we have used the shorthand
∫
R g dµ :=

∫
R g(x) dµ(x), where g is a measurable function;

we follow this convention from now on. Here, f is referred to as the generating function of D f (p‖q).
For simplicity, we consider throughout densities with common supports. A compre-

hensive definition of f -divergence for arbitrary distributions can be found in Section III
of [15]. We require that f is strictly convex around 1 and that it satisfies the normalization
condition f (1) = 0 to ensure positive-definiteness of the f -divergence, i.e., D f (p‖q) ≥ 0
with equality holding iff p = q (a.e.). We present examples of f -divergences under various
choices of their generating function f in Table 1. We will be invoking these divergence
measures in different parts of the paper.

31

Entropy 2024, 26, 290

Table 1. Examples of f -divergences.

f -Divergence Symbol Formula f (u)

Kullback–Leiber [16] KL
∫
R p log

(
p
q

)
dµ u log u

Jensen-Shannon [17] JSD 1
2 KL

(
p
∣∣∣∣ p+q

2

)
+ 1

2 KL
(

q
∣∣∣∣ p+q

2

)
1
2

(
u log u− (u + 1) log u+1

2

)

Pearson χ2 [18] χ2
∫
R

(q−p)2

p dµ
(√

x− 1√
x

)2

Pearson–Vajda (k > 1) [18] |χ|k
∫
R
|q−p|k

pk−1 dµ u1−k|1− u|k

Arimoto (α > 0, α 6= 1) [15,19,20] Aα
α

α−1

(∫
R(pα + qα)

1
α dµ− 2

1
α

)
α

α−1

(
(1 + u)

1
α − (1 + u)− 2

1
α + 2

)

Hellinger (α > 0, α 6= 1) [15,21,22] Hα
1

α−1
(∫
R pαq1−α dµ− 1

) uα−1
α−1

The Rényi divergence of order α (α > 0, α 6= 1) between densities p and q with
common supportR is used in [6] in the RényiGAN problem; it is given by [23,24]

Dα(p‖q) = 1
α− 1

log
(∫

R
pαq1−α dµ

)
. (2)

Note that the Rényi divergence is not an f -divergence; however, it can be expressed as a
transformation of the Hellinger divergence (which is itself an f -divergence):

Dα(p‖q) = 1
α− 1

log(1 + (α− 1)Hα(p‖q)). (3)

We now introduce a new measure, the Jensen- f -divergence, which is analogous to the
Jensen-Shannon and Jensen-Rényi divergences.

Definition 2. The Jensen- f -divergence between two probability distributions p and q with com-
mon support R ⊆ Rd on the Lebesgue measurable space (R,B(R), µ) is denoted by JD f (p‖q)
and given by

JD f (p‖q) = 1
2

D f

(
p
∣∣∣∣
∣∣∣∣

p + q
2

)
+

1
2

D f

(
q
∣∣∣∣
∣∣∣∣

p + q
2

)
, (4)

where D f (·‖·) is the f -divergence.

We next verify that the Jensen-Shannon divergence is a Jensen- f -divergence.

Lemma 1. Let p and q be two densities with common supportR ⊆ Rd, and consider the function
f : [0, ∞)→ (−∞, ∞] given by f (u) = u log u. Then we have that

JD f (p‖q) = JSD(p‖q). (5)

Proof. As f is convex (and continuous) on its domain with f (1) = 0, we have that

JSD(p‖q) = 1
2

KL
(

p
∣∣∣∣
∣∣∣∣

p + q
2

)
+

1
2

KL
(

q
∣∣∣∣
∣∣∣∣

p + q
2

)

=
1
2

∫

R
p log

(
2p

p + q

)
dµ +

1
2

∫

R
q log

(
2q

p + q

)
dµ

=
1
2

∫

R
p + q

2

(
2p

p + q
log
(

2p
p + q

))
dµ

+
1
2

∫

R
p + q

2

(
2q

p + q
log
(

2q
p + q

))
dµ

= JD f (p‖q).

32

Entropy 2024, 26, 290

Remark 1 (Jensen- f -divergence is a symmetric f -divergence). Note that JD f (p‖q) is itself a
symmetric f -divergence (with a modified generating function). Indeed, given the continuous convex
function f that is strictly convex around 1 with f (1) = 0, consider the functions

f1(u) :=
u + 1

2
f
(2u

u + 1

)
, u ≥ 0,

and
f2(u) :=

u + 1
2

f
(2

u + 1

)
, u ≥ 0,

which are both continuous convex, strictly convex around 1, and satisfy f1(1) = f2(1) = 0. Now,
direct calculations yield that

D f

(
p
∣∣∣∣
∣∣∣∣

p + q
2

)
= D f1(p‖q)

and

D f

(
q
∣∣∣∣
∣∣∣∣

p + q
2

)
= D f2(p‖q).

Thus,

JD f (p‖q) = 1
2

D f1(p‖q) + 1
2

D f2(p‖q) = D f̄ (p‖q),

where f̄ := 1
2 (f1 + f2), i.e.,

f̄ (u) =
u + 1

4

(
f
(2u

u + 1

)
+ f

(2
u + 1

))
, u ≥ 0, (6)

is also continuous convex, strictly convex around 1, and satisfies f̄ (1) = 0. Since by (4),

JD f (p‖q) = JD f (q‖p),

we conclude that the Jensen- f -divergence is a symmetric f̄ -divergence. An equivalent argument
is to note that f̄ = f̄ ?, where f̄ ?(u) := u f̄ (1

u), u ≥ 0 (with f̄ ?(0) = limt→∞ f̄ (t)/t), which is a
necessary and sufficient condition for the f̄ -divergence to be symmetric (see p. 4399 in [15]).

Remark 2 (Domain of f). Examining (4), we note that the Jensen- f -divergence between p and q
involves the f -divergences between either p or q and their mixture (p + q)/2. In other words, to
determine JD f (p‖q), we only need f

(2p
p+q
)

and f
(2q

p+q
)

when taking the expectations in (1). Thus,
it is sufficient to restrict the domain of the convex function f to the interval [0, 2].

3. Main Results

We now present our main theorem that unifies various generator loss functions under
a CPE-based loss function Lα for a dual-objective GAN, Lα-GAN, with a canonical discrim-
inator loss function that is optimized as in [1]. Under some regularity conditions on the loss
function Lα, we show that under the optimal discriminator, our generator loss becomes a
Jensen- f -divergence.

Let (X ,B(X), µ) be the measured space of n× n×m images (where m = 1 for black
and white images and m = 3 for RGB images), and let (Z ,B(Z), µ) be a measured space
such that Z ⊆ Rd. The discriminator neural network is given by D : X → [0, 1], and the
generator neural network is given by G : Z → X . The generator’s noise input is sampled
from a multivariate Gaussian distribution Pz : Z → [0, 1]. We denote the probability
distribution of the real data by Px : X → [0, 1] and the probability distribution of the
generated data by Pg : X → [0, 1]. We also set Px and Pg as the densities corresponding to
Px and Pg, respectively. We begin by introducing the Lα-GAN system.

33

Entropy 2024, 26, 290

Definition 3. Fix α ∈ A ⊆ R and let Lα : {0, 1} × [0, 1] → [0, ∞) be a loss function such
that ŷLα

(
1, ŷ

2
)

is a continuous function that is either convex or concave in ŷ ∈ [0, 2] with strict
convexity (respectively, strict concavity) around ŷ = 1 and such that Lα is symmetric in the sense
that

Lα(1, ŷ) = Lα(0, 1− ŷ), ŷ ∈ [0, 1]. (7)

Then the Lα-GAN system is defined by (VD, VLα ,G), where VD : X ×Z → R is the discriminator
loss function, and VLα ,G : X ×Z → R is the generator loss function, which is given by

VLα ,G(D, G) = EA∼Px [−Lα(1, D(A))] +EB∼Pg [−Lα(0, D(B))]. (8)

Moreover, the Lα-GAN problem is defined by

sup
D

VD(D, G) (9)

inf
G

VLα ,G(D, G). (10)

We now present our main result about the Lα-GAN optimization problem.

Theorem 1. For a fixed α ∈ A ⊆ R and Lα : {0, 1} × [0, 1]→ [0, ∞), let (VD, VLα ,G) be the loss
functions of Lα-GAN and consider joint optimization in (9)–(10). If VD is a canonical loss function
in the sense that it is maximized at D = D∗, where

D∗ =
Px

Px + Pg
, (11)

then (10) reduces to

inf
G

VLα ,G(D∗, G) = inf
G

2aJD fα
(Px‖Pg)− 2ab, (12)

where JD fα
(·‖·) is the Jensen- fα-divergence, and fα : [0, 2]→ R is a continuous convex function

that is strictly convex around 1 and is given by

fα(u) = −u
(1

a
Lα

(
1,

u
2

)
− b
)

, (13)

where a and b are real constants chosen so that fα(1) = 0 with a < 0 (respectively, a > 0) if
uLα

(
1, u

2
)

is convex (respectively, concave). Finally, (12) is minimized when Px = Pg (a.e.).

Proof. Under the assumption that VD is maximized at D∗ = Px
Px+Pg

, we have that

VLα ,G(D∗, G) = EA∼Px [−Lα(1, D∗(A))] +EB∼Pg [−Lα(0, D∗(B))]

= −
∫

X
PxLα(1, D∗) dµ−

∫

X
PgLα(0, D∗) dµ

= −
∫

X
PxLα

(
1,

Px

Px + Pg

)
dµ−

∫

X
PgLα

(
0,

Px

Px + Pg

)
dµ

= −2
∫

X

(
Px + Pg

2

)
Px

Px + Pg
Lα

(
1,

Px

Px + Pg

)
dµ

− 2
∫

X

(
Px + Pg

2

)
Pg

Px + Pg
Lα

(
0,

Px

Px + Pg

)
dµ

(a)
= −2

∫

X

(
Px + Pg

2

)
Px

Px + Pg
Lα

(
1,

Px

Px + Pg

)
dµ

− 2
∫

X

(
Px + Pg

2

)
Pg

Px + Pg
Lα

(
1,

Pg

Px + Pg

)
dµ

34

Entropy 2024, 26, 290

(b)
= −2

∫

X

(
Px + Pg

2

)
Px

Px + Pg

−a fα

(
2Px

Px+Pg

)

2Px
Px+Pg

+ ab

 dµ

− 2
∫

X

(
Px + Pg

2

)
Pg

Px + Pg

−a fα

(
2Pg

Px+Pg

)

2Pg
Px+Pg

+ ab

 dµ

= 2a
(

1
2

∫

X
Px + Pg

2
fα

(
2Px

Px + Pg

)
dµ

+
1
2

∫

X
Px + Pg

2
fα

(
2Pg

Px + Pg

)
dµ

)
− 2ab

= 2a JD fα
(Px‖Pg)− 2ab,

where:

• (a) holds since Lα(1, u) = Lα(0, 1− u) by (7), where u = Px
Px+Pg

.

• (b) holds by solving for Lα(1, u) in terms of fα(2u) in (13), where u = Px
Px+Pg

in the first

term and u =
Pg

Px+Pg
in the second term.

The constants a and b are chosen so that fα(1) = 0. Finally, the continuity and convexity
of fα (as well as its strict convexity around 1) directly follow from the corresponding
assumptions imposed on the loss function Lα in Definition 3 and on the condition imposed
on the sign of a in the theorem’s statement.

Remark 3. Note that not only D∗ given in (11) is an optimal discriminator of the (original)
VanillaGAN discriminator loss function, but it also optimizes the LSGAN/LkGAN discriminators
loss functions when their discriminators’ labels for fake and real data, γ and β, respectively satisfy
γ = 1 and β = 0 (see Section 3.3).

We next show that the Lα-GAN of Theorem 1 recovers as special cases a number of
well-known GAN generator loss functions and their equilibrium points (under an optimal
classical discriminator D∗).

3.1. VanillaGAN

VanillaGAN [1] uses the same loss function VVG for the both generator and discrimi-
nator, which is

VVG(D, G) = EA∼Px [− log D(A)] +EB∼Pg [− log(1− D(B))] (14)

and can be cast as a saddle point optimization problem:

inf
G

sup
D

VVG(D, G). (15)

It is shown in [1] that the optimal discriminator for (15) is given by D∗ = Px
Px+Pg

, as in (11).
When D = D∗, the optimization reduces to minimizing the Jensen-Shannon divergence:

inf
G

VVG(D∗, G) = inf
G

2JSD(Px‖Pg)− 2 log 2. (16)

We next show that (16) can be obtained from Theorem 1.

Lemma 2. Consider the optimization of VanillaGAN given in (15). Then we have that

VVG(D∗, G) = 2JSD(Px‖Pg)− 2 log 2 = VLα ,G(D∗, G),

where Lα(y, ŷ) = −y log(ŷ)− (1− y) log(1− ŷ) for all α ∈ A = R.

35

Entropy 2024, 26, 290

Proof. For any fixed α ∈ R, let the function Lα in (8) be as defined in the statement:

Lα(y, ŷ) = −y log(ŷ)− (1− y) log(1− ŷ).

Note that Lα is symmetric, since for ŷ ∈ [0, 1], we have that

Lα(1, ŷ) = − log(ŷ) = Lα(0, 1− ŷ).

Instead of showing the continuity and convexity/concavity conditions imposed on ŷLα

(
1, ŷ

2
)

in Definition 3, we implicitly verify them by directly deriving fα from Lα using (13) and
showing that it is continuous convex and strictly convex around 1. Setting a = 1 and
b = log 2, we have that

fα(u) = −u
(

1
a
Lα

(
1,

u
2

)
− b
)

= −u
(
− log

u
2
− log 2

)
= u log u.

Clearly, f is convex (actually strictly convex on (0, ∞) and hence strictly convex around
1) and continuous on its domain (where f (0) = limu→0 u log(u) = 0). It also satisfies
f (1) = 0. By Lemma 1, we know that under the generating function f (u) = u log(u), the
Jensen- f divergence reduces to the Jensen-Shannon divergence. Therefore, by Theorem 1,
we have that

VLα ,G(D∗, G) = 2aJD fα
(Px‖Pg)− 2ab

= 2JSD(Px‖Pg)− 2 log 2

= VVG(D∗, G),

which finishes the proof.

3.2. α-GAN

The notion of α-GANs is introduced in [8] as a way to unify several existing GANs
using a parameterized loss function. We describe α-GANs next.

Definition 4 ([8]). Let y ∈ {0, 1} be a binary label, ŷ ∈ [0, 1], and fix α > 0. The α-loss between
y and ŷ is the map `α : {0, 1} × [0, 1]→ [0, ∞) given by

`α(y, ŷ) =

α

α− 1

(
1− yŷ

α−1
α + (1− y)(1− ŷ)

α−1
α

)
, α ∈ (0, 1) ∪ (1, ∞)

−y log ŷ− (1− y) log(1− ŷ), α = 1.
(17)

Definition 5 ([8]). For α > 0, the α-GAN loss function is given by

Vα(D, G) = EA∼Px [−`α(1, D(A))] +EB∼Pg [−`α(0, D(B))]. (18)

Joint optimization of the α-GAN problem is given by

inf
G

sup
D

Vα(D, G). (19)

It is known that α-GAN recovers several well-known GANs by varying the α param-
eter: notably, VanillaGAN (α = 1) [1] and HellingerGAN (α = 1

2) [7]. Furthermore, as
α→ ∞, Vα recovers a translated version of the WassersteinGAN loss function [25]. We now
present the solution to the joint optimization problem presented in (19).

Proposition 1 ([8]). Let α > 0 and consider joint optimization of the α-GAN presented in (19).
The discriminator D∗ that maximizes the loss function is given by

36

Entropy 2024, 26, 290

D∗ =
Px

α

Px
α + Pg

α . (20)

Furthermore, when D = D∗ is fixed, the problem in (19) reduces to minimizing an Arimoto
divergence (as defined in Table 1) when α 6= 1:

inf
G

Vα(D∗, G) = inf
G
Aα(Px‖Pg) +

α

α− 1

(
2

1
α − 2

)
(21)

and a Jensen-Shannon divergence when α = 1:

inf
G

V1(D∗, G) = inf
G

JSD(Px‖Pg)− 2 log 2, (22)

where (21) and (22) achieve their minima iff Px = Pg (a.e.).

Recently, α-GAN was generalized in [10] to implement a dual-objective GAN, which
we describe next.

Definition 6 ([10]). For αD > 0 and αG > 0, the (αD, αG)-GAN’s optimization is given by

sup
D

VαD (D, G) (23)

inf
G

VαG (D, G) (24)

where VαD and VαG are defined in (18), with α replaced by αD and αG, respectively.

Proposition 2 ([10]). Consider the joint optimization in (23) and (24). Let parameters αD, αG > 0
satisfy

(
αD ≤ 1, αG >

αD
αD + 1

)
or
(

αD > 1,
αD
2

< αG ≤ αD

)
. (25)

The discriminator D∗ that maximizes VαD is given by

D∗ =
Px

αD

Px
αD + Pg

αD
. (26)

Furthermore, when D = D∗ is fixed, the minimization of VαG in (24) is equivalent to the following
f -divergence minimization:

inf
G

VαG (D∗, G) = inf
G

D fαD ,αG
(Px‖Pg) +

α

α− 1

(
2

1
α − 2

)
, (27)

where fαD ,αG : [0, ∞)→ R is given by

fαD ,αG (u) =
αG

αG − 1

uαD

(
1− 1

αG

)
+1

+ 1

(uαD + 1)1− 1
αG

. (28)

We now apply the (αD, αG)-GAN to our main result in Theorem 1 by showing that (12)
can recover (27) when αD = 1 (which corresponds to a VanillaGAN discriminator loss
function).

Lemma 3. Consider the (αD, αG)-GAN given in Definition 6. Let αD = 1 and αG = α > 1
2 . Then,

the solution to (24) presented in Proposition 2 is equivalent to minimizing a Jensen- fα-divergence:
specifically, if D∗ is the optimal discriminator given by (26), which is equivalent to (11) when
αD = 1, then Vα,G(D∗, G) in (27) satisfies

37

Entropy 2024, 26, 290

Vα,G(D∗, G) = 2
1
α JD fα

(Px‖Pg) +
α

α− 1
(2

1
α − 2) = VLα ,G(D∗, G), (29)

where Lα(y, ŷ) = `α(y, ŷ), and

fα(u) =
α

α− 1

(
u2− 1

α − u
)

, u ≥ 0. (30)

Proof. We show that Theorem 1 recovers Proposition 2 by setting Lα(y, ŷ) = `α(y, ŷ). Note
that `α is symmetric since

`α(1, ŷ) =
α

α− 1
(1− ŷ1− 1

α) = `α(0, 1− ŷ).

As in the proof of Lemma 2, instead of proving the conditions imposed on ŷLα

(
1, ŷ

2
)

in
Definition 3, we derive fα directly from Lα using (13) and show that it is continuous convex
and strictly convex around 1. From Lemma 2, we know that when α = 1, fα(u) = u log u
(which is strictly convex and continuous). For α ∈ (0, 1) ∪ (1, ∞), setting a = 2

1
α−1

and b = α
α−1

(
21− 1

α − 1
)

in (13), we have that

fα(u) = −u
(

1
a
Lα

(
1,

u
2

)
− b
)

= −u

(
21− 1

α
α

α− 1

(
1−

(u
2

)1− 1
α

)
− α

α− 1
(21− 1

α − 1)

)

=
α

α− 1
(−u)[21− 1

α − u1− 1
α − (21− 1

α − 1)]

=
α

α− 1
(u2− 1

α − u).

Clearly, fα(1) = 0. Furthermore for α 6= 1, we have that

f ′′α (u) =
(2α− 1)u

−1
α

α
, u ≥ 0,

which is positive for α > 1
2 , and fα is convex for α > 1

2 (as well as continuous on its domain
and strictly convex around 1). Thus, by Theorem 1, we have that

VLα ,G(D∗, G) = 2aJD fα
(Px‖Pg)− 2ab

= 2 · 2 1
α−1JD fα

(Px‖Pg)− 2
α

α− 1
2

1
α−1(21− 1

α − 1)

= 2
1
α JD fα

(Px‖Pg) +
α

α− 1
(2

1
α − 2).

We now show that the above Jensen- fα-divergence is equal to the f1,α-divergence originally
derived for the (1, α)-GAN problem of Proposition 2 (note from Proposition 2 that if αD = 1,
then αG = α > 1

2 , so the range of α concurs with the range required above for the convexity
of fα). For any two distributions p and q with common support X , we have that

D f1,α(p‖q) = α

α− 1

∫

X
q

(
p
q

)2− 1
α
+ 1

(
p
q + 1

)1− 1
α

dµ− α

α− 1
2

1
α

=
α

α− 1

∫

X
q

(
p
q

)2− 1
α
+ 1

(
p+q

q

)1− 1
α

dµ− α

α− 1
2

1
α

38

Entropy 2024, 26, 290

=
α

α− 1

∫

X

(
(p + q)

(
p

p + q

)2− 1
α

+ (p + q)
(

q
p + q

)2− 1
α

)
dµ

− α

α− 1
2

1
α

=
α

α− 1
2

22− 1
α

∫

X

(
p + q

2

(
2p

p + q

)2− 1
α

+
p + q

2

(
2q

p + q

)2− 1
α

)
dµ

− α

α− 1
2

1
α

=
α

α− 1
2

1
α−1

∫

X

(
p + q

2

((
2p

p + q

)2− 1
α

− 2p
p + q

)
+ p

)
dµ

+
α

α− 1
2

1
α−1

∫

X

(
p + q

2

((
2q

p + q

)2− 1
α

− 2q
p + q

)
+ q

)
dµ

− α

α− 1
2

1
α

=
α

α− 1
2

1
α

1
2

(∫

X
p + q

2

((
2p

p + q

)2− 1
α

− 2p
p + q

)
dµ + 1

)

+
α

α− 1
2

1
α

1
2

(∫

X
p + q

2

((
2q

p + q

)2− 1
α

− 2q
p + q

)
dµ + 1

)

− α

α− 1
2

1
α

= 2
1
α JD fα

(p‖q) + α

α− 1
2

1
α−1(2)− α

α− 1
2

1
α

= 2
1
α JD fα

(p‖q).

Therefore, VLα ,G(D∗, G) = Vα(D∗, G).

Note that this lemma generalizes Lemma 2; VanillaGAN is a special case of (1, α)-GAN
for α = 1.

3.3. Shifted LkGANs and LSGANs

Least squares GAN (LSGAN) was proposed in [26] to mitigate the vanishing gradient
problem with VanillaGAN and to stabilize training performance. LSGAN’s loss function
is derived from the squared error distortion measure, whereby we aim to minimize the
distortion between the data samples and a target value we want the discriminator to assign
the samples to. LSGAN was generalized with LkGAN in [6] by replacing the squared error
distortion measure with an absolute error distortion measure of order k ≥ 1, therefore
introducing an additional degree of freedom to the generator’s loss function. We first state
the general LkGAN problem. We then apply the result of Theorem 1 to the loss functions of
LSGAN and LkGAN.

Definition 7 ([6]). Let γ, β, c ∈ [0, 1], and let k ≥ 1. LkGAN’s loss functions, denoted by
VLSGAN,D and Vk,G, are given by

VLSGAN,D(D, G) = −1
2
EA∼Px [(D(A)− β)2]− 1

2
EB∼Pg [(D(B)− γ)2] (31)

Vk,G(D, G) = EA∼Px [|D(A)− c|k] +EB∼Pg [|D(B)− c|k]. (32)

The LkGAN problem is the joint optimization

sup
D

VLSGAN,D(D, G) (33)

39

Entropy 2024, 26, 290

inf
G

Vk,G(D, G). (34)

We next recall the solution to (33), which is a minimization of the Pearson–Vajda
divergence |χ|k(·‖·) of order k (as defined in Table 1).

Proposition 3 ([6]). Consider the joint optimization for LkGAN presented in (33). Then the
optimal discriminator D∗ that maximizes VLSGAN,D in (31) is given by

D∗ =
γPx + βPg

Px + Pg
. (35)

Furthermore, if D = D∗ and γ− β = 2(c− β), the minimization of Vk,G in (32) reduces to

inf
G

Vk,G(D, G) = inf
G
|c− β|k|χ|k(Px + Pg‖2Pg). (36)

Note that LSGAN [26] is a special case of LkGAN, as we recover LSGAN when
k = 2 [6].

By scrutinizing Proposition 3 and Theorem 1, we observe that the former cannot be
recovered from the latter. However, we can use Theorem 1 by slightly modifying the
LkGAN generator’s loss function. First, for the dual-objective GAN proposed in Theorem 1,
we need D∗ = Px

Px+Pg
. By (35), this is achieved for γ = 1 and β = 0. Then, we define the

intermediate loss function

Ṽk,G(D, G) = EA∼Px [|D(A)− c1|k] +EB∼Pg [|D(B)− c2|k]. (37)

Comparing the above loss function with (8), we note that setting c1 = 0 and c2 = 1 in (37)
satisfies the symmetry property of Lα. Finally, to ensure the generating function fα satisfies
fα(1) = 0, we shift each term in (37) by 1. Putting these changes together, we propose a
revised generator loss function denoted by V̂k,G and given by

V̂k,G(D, G) = EA∼Px [|D(A)|k − 1] +EB∼Pg [|1− D(B)|k − 1]. (38)

We call a system that uses (38) as a generator loss function a Shifted LkGAN (SLkGAN).
If k = 2, we have a shifted version of the LSGAN generator loss function, which we call
Shifted LSGAN (SLSGAN). Note that none of these modifications alter the gradients
of Vk,G in (32), since the first term is independent of G, the choice of c1 is irrelevant,
and translating a function by a constant does not change its gradients. However, from
Proposition 3, for γ = 0, β = 1, and c = 1, we do not have that γ− β = 2(c− β), and as a
result, this modified problem does not reduce to minimizing a Pearson–Vajda divergence.
Consequently, we can relax the condition on k in Definition 7 to just k > 0. We now show
how Theorem 1 can be applied to Lα-GAN using (38).

Lemma 4. Let k > 0. Let VD be a discriminator loss function, and let V̂k,G be the generator’s loss
function defined in (38). Consider the joint optimization

sup
D

VD(D, G) (39)

inf
G

V̂k,G(D, G) (40)

If VD is optimized at D∗ = Px
Px+Pg

(i.e., VD is canonical), then we have that

V̂k,G(D∗, G) =
1

2k−1 JD fk
(Px‖Pg) +

1
2k−1 −

1
2

,

where fk is given by

40

Entropy 2024, 26, 290

fk(u) = u(uk − 1), u ≥ 0.

Examples of VD(D, G) that satisfy the requirements of Lemma 4 include the LkGAN
discriminator loss function given by (31) with γ = 1 and β = 0 and the VanillaGAN
discriminator loss function given by (14).

Proof. Let k > 0. We can restate SLkGAN’s generator loss function in (38) in terms of VLα ,G
in (8): we have that VLα ,G(D∗, G) = V̂k,G(D∗, G), where α = k, and Lk : {0, 1} × [0, 1] →
[0, ∞) is given by

Lk(y, ŷ) = −(y(ŷk − 1) + (1− y)((1− ŷ)k − 1)). (41)

We have that Lk is symmetric, since

Lk(1, ŷ) = −(ŷk − 1) = Lk(0, 1− ŷ).

We derive fα from Lα via (13) and directly check that it is continuous convex and strictly
convex around 1. Setting a = 1

2k and b = 2k − 1 in (13), we have that

fk(u) = −u
(

1
a
Lk

(
1,

u
2

)
− b
)

= −u
(

2k
(

1−
(u

2

)k
)
− (2k − 1)

)

= −u(2k − uk − 2k + 1)

= u(uk − 1).

We clearly have that fk(1) = 0 and that fk is continuous. Furthermore, we have that
f ′′k (u) = k(k + 1)u, which is non-negative for u ≥ 0. Therefore, fk is convex (as well as
strictly convex around 1). As a result, by Theorem 1, we have that

V̂k,G(D∗, G) =
1

2k−1 JD fk
(Px‖Pg)−

1
2k−1 (2

k − 1)

=
1

2k−1 JD fk
(Px‖Pg) +

1
2k−1 −

1
2

.

We conclude this section by emphasizing that Theorem 1 serves as a unifying result
recovering the existing loss functions in the literature and, moreover, provides a way for
generalizing new ones. Our aim in the next section is to demonstrate the versatility of this
result in experimentation.

4. Experiments

We perform two experiments on three different image datasets that we describe below.

Experiment 1: In the first experiment, we compare (α, α)-GAN with (1, α)-GAN while
controlling the value of α. Recall that αD = 1 corresponds to the canonical VanillaGAN (or
DCGAN) discriminator. We aim to verify whether or not replacing an α-GAN discriminator
with a VanillaGAN discriminator stabilizes or improves the system’s performance depend-
ing on the value of α. Note that the result of Theorem 1 only applies to the (αD, αG)-GAN
for αD = 1. We herein confine the comparison of (1, α)-GAN with (α, α)-GAN only so that
both systems have the same tunable free parameter α. The results obtained in [10] for the
Stacked MNIST dataset show that (αD, αG)-GAN provides consistently robust performance
when αD = αG. Other experiments illustrating the performance of (αD, αG)-GAN with
αD 6= 1 are carried for the Celeb-A and LSUN Classroom image datasets in [11] and show
improved training stability for αD < 1 values.

41

Entropy 2024, 26, 290

Experiment 2: We train two variants of SLkGAN with the generator loss function as
described in (38) and parameterized by k > 0. We then utilize two different canonical dis-
criminator loss functions to align with Theorem 1. The first is the VanillaGAN discriminator
loss given by (14); we call the resulting dual-objective GAN Vanilla-SLkGAN. The second
is the LkGAN discriminator loss given by (31), where we set γ = 1 and β = 0 such that the
optimal discriminator is given by (11). We call this system Lk-SLkGAN. We compare the
two variants to analyze how the value of k and choice of discriminator loss impacts the
system’s performance.

4.1. Experimental Setup

We run both experiments on three image datasets: MNIST [27], CIFAR-10 [28], and
Stacked MNIST [29]. The MNIST dataset is a dataset of black and white handwritten
digits between 0 and 9 and with a size of 28× 28× 1. The CIFAR-10 dataset is an RGB
dataset of small images of common animals and modes of transportation with a size of
32× 32× 3. The Stacked MNIST dataset is an RGB dataset derived from the MNIST dataset
and constructed by taking three MNIST images, assigning each to one of the three color
channels, and stacking the images on top of each other. The resulting images are then
padded so that each one of them has a size of 32× 32× 3.

For Experiment 1, we use α values of 0.5, 5.0, 10.0, and 20.0. For each value of α, we
train (α, α)-GAN and (1, α)-GAN. We additionally train DCGAN, which corresponds to
(1, 1)-GAN. For Experiment 2, we use k values of 0.25, 1.0, 2.0, 7.5, and 15.0. Note that
when k = 2, we recover LSGAN. For the MNIST dataset, we run 10 trials with the random
seeds 123, 500, 1600, 199,621, 60,677, 20,435, 15,859, 33,764, 79,878, and 36,123 and train
each GAN for 250 epochs. For the RGB datasets (CIFAR-10 and Stacked MNIST), we run
five trials with the random seeds 123, 1600, 60,677, 15,859, and 79,878 and train each GAN
for 500 epochs. All experiments utilize an Adam optimizer for the stochastic gradient
descent algorithm with a learning rate of 2× 10−4 and parameters β1 = 0.5, β2 = 0.999,
and ε = 10−7 [30]. We also experiment with the addition of a gradient penalty (GP); we
add a penalty term to the discriminator’s loss function to encourage the discriminator’s
gradient to have a unit norm [31].

The MNIST experiments were run on one 6130 2.1 GHz 1xV100 GPU, 8 CPUs, and
16 GB of memory. The CIFAR-10 and Stacked MNIST experiments were run on one Epyc
7443 2.8 GHz GPU, 8 CPUs, and 16 GB of memory. For each experiment, we report the best
overall Fréchet inception distance (FID) score [32], the best average FID score amongst all
trials and its variance, and the average epoch the best FID score occurs and its variance.
The FID score for each epoch was computed over 10,000 images. For each metric, the
lowest numerical value corresponds to the model with the best metric (indicated in bold
in the tables). We also report how many trials we include in our summary statistics, as it
is possible for a trial to collapse and not train for the full number of epochs. The neural
network architectures used in our experiments are presented in Appendix A. The training
algorithms are presented in Appendix B.

4.2. Experimental Results

We report the FID metrics for Experiment 1 in Tables 2–4 and for Experiment 2 in
Tables 5–7. We report only on those experiments that produced meaningful results. Models
that utilize a simplified gradient penalty have the suffix “-GP”. For (αD, αG)-GANs, we
display the output of the best-performing systems in Figure 1 and plot the trajectories of the
FID scores throughout the training epochs in Figure 2. Similarly for SLKGANs, outputs of
the best-performing systems and FID scores vs. epochs trajectories are provided in Figures 3
and 4, respectively.

42

Entropy 2024, 26, 290

(a) (b)

(c)
Figure 1. Generated images for the best-performing (αD, αG)-GANs. (a) (αD, αG)-GAN for MNIST,
αD = 1.0, αG = 5.0, FID: 1.125. (b) (αD, αG)-GAN-GP for CIFAR-10, αD = 1.0, αG = 20.0, FID = 8.466.
(c) (αD, αG)-GAN-GP for Stacked MNIST, αD = 1.0, αG = 0.5, FID = 4.833.

Table 2. (αD, αG)-GAN results for MNIST.

(αD , αG)-GAN Best FID Score Average Best FID
Score

Best FID Score
Variance Average Epochs Epoch Variance

Number of
Successful Trials

(/10)

(1,0.5)-GAN 1.264 1.288 2.979× 10−4 227.25 420.25 4
(0.5,0.5)-GAN 1.209 1.265 0.001 234.5 156.7 6

(1,5)-GAN 1.125 1.17 8.195× 10−4 230.3 617.344 10

(1,10)-GAN 1.147 1.165 7.984× 10−4 225.6 253.156 10
(10,10)-GAN 36.506 39.361 16.312 1.5 0.5 2

(1,20)-GAN 1.135 1.174 0.001 237.5 274.278 10
(20,20)-GAN 33.23 33.23 0.0 1.0 0.0 1

DCGAN 1.154 1.208 0.001 231.3 357.122 10

Table 3. (αD, αG)-GAN results for CIFAR-10.

(αD , αG)-GAN Best FID Score Average Best FID
Score

Best FID Score
Variance Average Epochs Epoch Variance

Number of
Successful Trials

(/5)

(1,0.5)-GAN-GP 10.551 14.938 12.272 326.2 1808.7 5
(0.5,0.5)-GAN-GP 13.734 14.93 0.517 223.6 11,378.3 5

(1,5)-GAN-GP 10.772 11.635 0.381 132.0 1233.5 5
(5,5)-GAN-GP 20.79 21.72 0.771 84.8 1527.2 5

(1,10)-GAN-GP 9.465 10.187 0.199 182.6 1096.3 5
(10,10)-GAN-GP 19.99 21.095 0.434 131.8 13,374.7 5

(1,20)-GAN-GP 8.466 10.217 1.479 216.2 6479.7 5
(20,20)-GAN-GP 19.378 21.216 2.315 138.2 29,824.2 5

DCGAN-GP 25.731 28.378 3.398 158.0 2510.5 5

43

Entropy 2024, 26, 290

(a) (1, α)-GANs for MNIST. (b) (α, α)-GANs for MNIST.

(c) (1, α)-GAN-GPs, for CIFAR-10. (d) (α, α)-GAN-GPs for CIFAR-10.

(e) (1, α)-GAN-GPs for Stacked MNIST. (f) (α, α)-GAN-GPs for Stacked MNIST.

Figure 2. Average FID scores vs. epochs for various (αD, αG)-GANs.

Table 4. (αD, αG)-GAN results for Stacked MNIST.

(αD , αG)-GAN Best FID Score Average Best FID
Score

Best FID Score
Variance Average Epochs Epoch Variance

Number of
Successful Trials

(/5)

(1,0.5)-GAN-GP 4.833 4.997 0.054 311.5 23,112.5 2
(0.5,0.5)-GAN-GP 6.418 6.418 0.0 479.0 0.0 1

(1,5)-GAN-GP 7.98 7.988 1.357× 10−4 379.5 11,704.5 2
(5,5)-GAN-GP 12.236 12.836 0.301 91.5 387.0 4

(1,10)-GAN-GP 7.502 7.528 0.001 326.5 14,280.5 2
(10,10)-GAN-GP 14.22 14.573 0.249 95.0 450.0 2

(1,20)-GAN-GP 8.379 8.379 0.0 427.0 0.0 1
(20,20)-GAN-GP 16.584 16.584 0.0 94.0 0.0 1

DCGAN-GP 7.507 7.774 0.064 303.4 11,870.8 5

44

Entropy 2024, 26, 290

(a) (b)

(c)
Figure 3. Generated images for best-performing SLkGANs. (a) Vanilla-SLkGAN-0.25 for MNIST,
FID = 1.112. (b) Vanilla-SLkGAN-2.0 for CIFAR-10, FID = 4.58. (c) Vanilla-SLkGAN-15.0-GP for
Stacked MNIST, FID = 3.836.

Table 5. SLkGAN results for MNIST.

Variant-SLkGAN-k Best FID Score Average Best
FID Score

Best FID Score
Variance Average Epochs Epoch Variance

Number of
Successful
Trials (/10)

Lk-SLkGAN-0.25 1.15 1.174 6.298× 10−4 224.3 940.9 10
Vanilla-SLkGAN-0.25 1.112 1.162 0.001 237.0 124.0 10

Lk-SLkGAN-1.0 1.122 1.167 8.857× 10−4 233.0 124.0 10
Vanilla-SLkGAN-1.0 1.126 1.17 9.218× 10−4 226.2 1182.844 10

Lk-SLkGAN-2.0 1.148 1.198 5.248× 10−4 237.2 288.4 10
Vanilla-SLkGAN-2.0 1.124 1.184 8.933× 10−4 237.8 138.4 10

Lk-SLkGAN-7.5 1.455 1.498 4.422× 10−4 229.0 322.222 10
Vanilla-SLkGAN-7.5 1.439 1.511 0.001 212.2 1995.067 10

Lk-SLkGAN-15.0 1.733 1.872 0.005 198.8 1885.733 10
Vanilla-SLkGAN-15.0 1.773 1.876 0.005 171.6 3122.267 10

DCGAN 1.154 1.208 0.001 231.3 357.122 10

45

Entropy 2024, 26, 290

Table 6. SLkGAN results for CIFAR-10.

Variant-SLkGAN-k Best FID Score Average Best
FID Score

Best FID Score
Variance Average Epochs Epoch Variance

Number
of Success-

ful Trials (/5)

Lk-SLkGAN-1.0 4.727 118.242 10,914.643 60.8 1897.2 5
Vanilla-SLkGAN-1.0 4.821 5.159 0.092 88.0 506.5 5

Lk-SLkGAN-2.0 4.723 145.565 7492.26 73.2 3904.2 5
Vanilla-SLkGAN-2.0 4.58 5.1 0.261 105.4 740.8 5

Lk-SLkGAN-7.5 6.556 155.497 7116.521 254.6 18,605.3 5
Vanilla-SLkGAN-7.5 6.384 48.905 8698.195 72.2 1711.7 5

Lk-SLkGAN-15.0 8.576 145.774 5945.097 263.0 36,463.0 5
Vanilla-SLkGAN-15.0 7.431 50.868 8753.002 82.6 3106.8 5

DCGAN 4.753 5.194 0.117 88.6 462.8 5

Table 6. Cont.

Variant-SLkGAN-k Best FID Score Average Best
FID Score

Best FID Score
Variance

Average
Epochs Epoch Variance Number of Suc-

cessful Trials (/5)

Lk-SLkGAN-0.25-GP 17.366 18.974 2.627 87.8 1897.2 5
Vanilla-SLkGAN-0.25-GP 16.013 17.912 1.961 189.0 9487.5 5

Lk-SLkGAN-1.0-GP 10.771 12.567 1.083 77.8 239.2 5
Vanilla-SLkGAN-1.0-GP 8.569 9.588 0.749 197.6 2690.3 5

Lk-SLkGAN-2.0-GP 23.11 25.013 1.924 75.4 658.8 5
Vanilla-SLkGAN-2.0-GP 28.215 29.69 1.242 232.0 20,438.5 5

Lk-SLkGAN-7.5-GP 33.304 41.48 49.187 82.8 1081.2 5
Vanilla-SLkGAN-7.5-GP 33.085 34.799 1.597 290.8 12,714.7 5

Lk-SLkGAN-15.0-GP 9.157 12.504 3.839 310.4 6976.8 5
Vanilla-SLkGAN-15.0-GP 7.283 8.568 1.535 185.6 5978.3 5

DCGAN-GP 25.731 28.378 3.398 158.0 2510.5 5

46

Entropy 2024, 26, 290

(a) Lk-SLkGANs for MNIST. (b) Vanilla-SLkGANs for MNIST.

(c) Lk-SLkGAN-GPs for CIFAR-10. (d) Vanilla-SLkGAN-GPs for CIFAR-10.

(e) Lk-SLkGAN-GPs for Stacked MNIST. (f) Vanilla-SLkGAN-GPs, Stacked MNIST.

Figure 4. FID scores vs. epochs for various SLkGANs.

Table 7. SLkGAN results for Stacked MNIST.

Variant-SLkGAN-k Best FID Score Average Best
FID Score

Best FID Score
Variance

Average
Epochs Epoch Variance

Number of
Successful
Trials (/5)

Lk-SLkGAN-0.25-GP 10.541 11.824 0.678 113.6 356.3 5
Vanilla-SLkGAN-0.25-GP 5.197 5.197 0.0 496.0 0.0 1

Lk-SLkGAN-1.0-GP 11.545 12.046 0.291 89.0 238.5 5
Vanilla-SLkGAN-1.0-GP 7.475 7.626 0.045 177.0 3528.0 2

Lk-SLkGAN-2.0-GP 10.682 12.782 2.12 180.2 28,484.7 5
Vanilla-SLkGAN-2.0-GP 6.023 7.096 0.991 416.667 12,244.333 3

Lk-SLkGAN-7.5-GP 8.912 9.906 0.577 239.0 35,663.5 5
Vanilla-SLkGAN-7.5-GP 6.074 6.43 0.164 238.0 21,729.5 5

Lk-SLkGAN-15.0-GP 4.458 4.74 0.029 253.4 11,512.3 5
Vanilla-SLkGAN-15.0-GP 3.836 3.873 0.002 485.0 354.667 4

DCGAN-GP 7.507 7.774 0.064 303.4 11,870.8 5

47

Entropy 2024, 26, 290

4.3. Discussion
4.3.1. Experiment 1

From Table 2, we note that 37 of the 90 trials collapse before 250 epochs have passed
without a gradient penalty. The (5,5)-GAN collapses for all five trials, and hence, it is not
displayed in Table 2. This behavior is expected, as (α,α)-GAN is more sensitive to exploding
gradients when α does not tend to 0 or +∞ [8]. The addition of a gradient penalty could
mitigate the discriminator’s gradients diverging in the (5,5)-GAN by encouraging gradients
to have a unit norm. Using a VanillaGAN discriminator with an α-GAN generator (i.e.,
(1,α)-GAN) produces better quality images for all tested values of α compared to when
both networks utilize an α-GAN loss function. The (1,10)-GAN achieves excellent stability,
converging in all 10 trials, and also achieves the lowest average FID score. The (1,5)-GAN
achieves the lowest FID score overall, marginally outperforming DCGAN. Note that when
the average best FID score is very close to the best FID score, the resulting best FID score
variance is quite small (of the order of 10−3), indicating little statistical variability over the
trials.

Likewise, for the CIFAR-10 and Stacked MNIST datasets, (1,α)-GAN produces lower
FID scores than (α, α)-GAN (see Tables 3 and 4). However, both models are more stable
with the CIFAR-10 dataset. With the exception of DCGAN, no model converged to its best
FID score for all five trials with the Stacked MNIST dataset. Comparing the trials that
did converge, both (α, α)-GAN and (1, α)-GAN performed better on the Stacked MNIST
dataset than the CIFAR-10 dataset. For CIFAR-10, the (1,10)- and (1,20)-GANs produced
the best overall FID score and the best average FID score, respectively. On the other hand,
the (1,0.5)-GAN produced the best overall FID score and the best average FID score for the
Stacked MNIST dataset. We also observe a tradeoff between speed and performance for the
CIFAR-10 and Stacked MNIST datasets: the (1, α)-GANs arrive at their lowest FID scores
later than their respective (α, α)-GANs but achieve lower FID scores overall.

Comparing Figure 2c and Figure 2d, we observe that (α, α)-GAN-GP provides more
stability than (1, α)-GAN for lower values of α (i.e., α = 0.5), while (1, α)-GAN-GP exhibits
more stability for higher α values (α = 10 and α = 20). Figure 2e,f show that the two α-
GANs trained on the Stacked MNIST dataset exhibit unstable behavior earlier into training
when α = 0.5 or α = 20. However, both systems stabilize and converge to their lowest FID
scores as training progresses. The (0.5,0.5)-GAN-GP system in particular exhibits wildly
erratic behavior for the first 200 epochs then finishes training with a stable trajectory that
outperforms DCGAN-GP.

A future direction is to explore how the complexity of an image dataset influences the
best choice of α. For example, the Stacked MNIST dataset might be considered to be less
complex than CIFAR-10, as images in the Stacked MNIST dataset only contain four unique
colors (black, red, green, and blue), while the CIFAR-10 dataset utilizes significantly more
colors.

4.3.2. Experiment 2

We see from Table 5 that all Lk-LkGANs and Vanilla-SLkGANs have FID scores com-
parable to the DCGAN. When k = 15, Vanilla-SLkGAN and Lk-SLkGAN arrive at their
lowest FID scores slightly earlier than DCGAN and other SLkGANs.

The addition of a simplified gradient penalty is necessary for Lk-SLkGAN to achieve
overall good performance on the CIFAR-10 dataset (see Table 6). Interestingly, Vanilla-
SLkGAN achieves lower FID scores without a gradient penalty for lower k values (k = 1, 2)
and with a gradient penalty for higher k values (k = 7.5, 15). When k = 0.25, both SLkGANs
collapsed for all five trials without a gradient penalty.

Table 7 shows that Vanilla-SLkGANs achieve better FID scores than their respective
Lk-LkGAN counterparts. However, Lk-LkGANs are more stable, as no single trial collapsed,
while 10 of the 25 Vanilla-SLkGAN trials collapsed before 500 epochs had passed. While all
Vanilla-SLkGANs outperform the DCGAN with a gradient penalty, Lk-SLkGAN-GP only
outperforms DCGAN-GP when k = 15. Except for when k = 7.5, we observe that the Lk-

48

Entropy 2024, 26, 290

SLkGAN system takes fewer epochs to arrive at its lowest FID score. Comparing Figure 4e
and Figure 4f, we observe that Lk-SLkGANs exhibit more stable FID score trajectories than
their respective Vanilla-SLkGANs. This makes sense, as the LkGAN loss function aims to
increase the GAN’s stability compared to DCGAN [6].

5. Conclusions

We introduced a parameterized CPE-based generator loss function for a dual-objective
GAN termed Lα-GAN that, when used in tandem with a canonical discriminator loss
function that achieves its optimum in (11), minimizes a Jensen- fα-divergence. We showed
that this system can recover VanillaGAN, (1, α)-GAN, and LkGAN as special cases. We
conducted experiments with the three aforementioned Lα-GANs on three image datasets.
The experiments indicate that (1, α)-GAN exhibits better performance than (α, α)-GAN
with α > 1. They also show that the devised SLkGAN system achieves lower FID scores
with a VanillaGAN discriminator compared with an LkGAN discriminator.

Future work consists of unveiling more examples of existing GANs that fall under our
result as well as applying Lα-GAN to novel, judiciously designed CPE losses Lα and evalu-
ating the performance (in terms of both quality and diversity of generated samples) and the
computational efficiency of the resulting models. Another interesting and related direction
is to study Lα-GAN within the context of f -GANs, given that the Jensen- f -divergence
is itself an f -divergence (see Remark 1), by systematically analyzing different Jensen- f -
divergences and the role they play in improving GAN performance and stability. Other
worthwhile directions include incorporating the proposed Lα loss into state-of-the-art GAN
models, such as, among others, BigGAN [33], StyleGAN [34], and CycleGAN [35], for high-
resolution data generation and image-to-image translation applications and conducting a
meticulous analysis of the sensitivity of the models’ performance to different values of the
α parameter and providing guidelines on how best to tune α for different types of datasets.

Author Contributions: Conceptualization, investigation and manuscript preparation, all authors;
formal analysis, all authors; software development and simulation, J.V. All authors have read and
agreed to the published version of the manuscript.

Funding: This work was supported in part by the Natural Sciences and Engineering Research Council
(NSERC) of Canada.

Data Availability Statement: All codes used in our experiments can be found at this https://github.
com/justin-veiner/MASc, accessed on 20 February 2024.

Conflicts of Interest: The authors declare no conflicts of interest.

Appendix A. Neural Network Architectures

We outline the architectures used for the generator and discriminator. For the MNIST
dataset, we use the architectures of [6]. For the CIFAR-10 and Stacked MNIST datasets, we
base the architectures on [5]. We summarize some aliases for the architectures in Table A1.
For all models, we use a batch size of 100 and a noise size of 784 for the generator input.

Table A1. Summary of aliases used to describe neural network architectures.

Alias Definition

FC Fully Connected
UpConv2D Deconvolutional Layer

Conv2D Convolutional Layer
BN Batch Normalization

LeakyReLU Leaky Rectified Linear Unit

We omit the bias in the convolutional and deconvolutional layers to decrease the
number of parameters being trained, which in turn decreases computation times. We
initialize our kernels using a normal distribution with zero mean and variance 0.01. We
present the MNIST architectures in Tables A2 and A3 and the CIFAR-10 and Stacked MNIST
architectures in Tables A4 and A5.

49

Entropy 2024, 26, 290

Table A2. Discriminator architecture for the MNIST dataset.

Layer Output Size Kernel Stride BN Activation

Input 28× 28× 1 No
Conv2D 14× 14× 64 5× 5 2 No LeakyReLU (0.3)

Dropout (0.3) No
Conv2D 7× 7× 128 5× 5 2 No LeakyReLU (0.3)

Dropout(0.3) No
FC 1 No Sigmoid

Table A3. Generator architecture for the MNIST dataset.

Layer Output Size Kernel Stride BN Activation

Input 784
FC 7× 7× 256

UpConv2D 7× 7× 128 5× 5 1 Yes LeakyReLU (0.3)
UpConv2D 14× 14× 64 5× 5 2 Yes LeakyReLU (0.3)
UpConv2D 28× 28× 1 5× 5 2 No Tanh

Table A4. Discriminator architecture for the CIFAR-10 and Stacked MNIST datasets.

Layer Output Size Kernel Stride BN Activation

Input 32× 32× 3
Conv2D 16× 16× 128 3× 3 2 No LeakyReLU (0.2)
Conv2D 8× 8× 128 3× 3 2 No LeakyReLU (0.2)
Conv2D 4× 4× 256 3× 3 2 No LeakyReLU (0.2)

Dropout (0.4) No
FC 1 Sigmoid

Table A5. Generator architecture for the CIFAR-10 and Stacked MNIST datasets.

Layer Output Size Kernel Stride BN Activation

Input 784
FC 4× 4× 256

UpConv2D 8× 8× 128 4× 4 2 Yes LeakyReLU (0.2)
UpConv2D 16× 16× 128 4× 4 2 Yes LeakyReLU (0.2)
UpConv2D 32× 32× 128 4× 4 2 Yes LeakyReLU (0.2)

Conv2D 32× 32× 3 3× 3 1 No Tanh

Appendix B. Algorithms

We outline the algorithms used to train our models in Algorithms A1–A3.

50

Entropy 2024, 26, 290

Algorithm A1 Overview of (αD, αG)-GAN training

Require αD, αG, number of epochs ne, batch size B, learning rate η
Initialize generator G with parameters θG, discriminator D with parameters θD.
for i = 1 to ne do

Sample batch of real data x = {x1, . . . , xB} from dataset
Sample batch of Gaussian noise vectors z = {z1, . . . , zB} ∼ N (0, I)
Update the discriminator’s parameters using an Adam optimizer with learning rate

η by descending the gradient:

∇θD

(
− 1

B

B

∑
i=1

(−`α(1, D(xi))− `α(0, D(G(zi))))

)

or update the discriminator’s parameters with a simplified GP:

∇θD

(
− 1

B

B

∑
i=1

(−`α(1, D(xi))− `α(0, D(G(zi))))

+5

(
B

∑
i=1

∣∣∣∣
∣∣∣∣∇x log

(
D(x)

1− D(x)

)∣∣∣∣
∣∣∣∣
2

2

))

Update the generator’s parameters using an Adam optimizer with learning rate η
and descending the gradient:

∇θG

(
1
B

B

∑
i=1

`α(0, D(G(zi)))

)

end for

Algorithm A2 Overview of Lk-SLkGAN training

Require k, number of epochs ne, batch size B, learning rate η
Initialize generator G with parameters θG, discriminator D with parameters θD.
for i = 1 to ne do

Sample batch of real data x = {x1, . . . , xB} from dataset
Sample batch of Gaussian noise vectors z = {z1, . . . , zB} ∼ N (0, I)
Update the discriminator’s parameters using an Adam optimizer with learning rate

η by descending the gradient:

∇θD

(
1
B

B

∑
i=1

(
1
2
(D(xi)− 1)2 +

1
2
(D(G(zi))

2)

))

or update the discriminator’s parameters with a simplified GP:

∇θD

(
1
B

B

∑
i=1

(
1
2
(D(xi)− 1)2 +

1
2
(D(G(zi))

2)

)

+5

(
B

∑
i=1

∣∣∣∣
∣∣∣∣∇x log

(
D(x)

1− D(x)

)∣∣∣∣
∣∣∣∣
2

2

))

Update the generator’s parameters using an Adam optimizer with learning rate η
and descending the gradient:

∇θG

(
1
B

B

∑
i=1

1
2
(|1− D(G(zi))|k − 1)

)

end for

51

Entropy 2024, 26, 290

Algorithm A3 Overview of Vanilla-SLkGAN training

Require k, number of epochs ne, batch size B, learning rate η
Initialize generator G with parameters θG, discriminator D with parameters θD.
for i = 1 to ne do

Sample batch of real data x = {x1, . . . , xB} from dataset
Sample batch of noise vectors z = {z1, . . . , zB} ∼ N (0, I)
Update the discriminator’s parameters using an Adam optimizer with learning rate

η by descending the gradient:

∇θD

(
− 1

B

B

∑
i=1

(log(D(xi)) + log(1− D(G(zi))))

)

or update the discriminator’s parameters with a simplified (GP):

∇θD

(
− 1

B

B

∑
i=1

(log(D(xi)) + log(1− D(G(zi))))

+5

(
B

∑
i=1

∣∣∣∣
∣∣∣∣∇x log

(
D(x)

1− D(x)

)∣∣∣∣
∣∣∣∣
2

2

))

Update the generator’s parameters using an Adam optimizer with learning rate η
and descending the gradient:

∇θG

(
1
B

B

∑
i=1

1
2
(|1− D(G(zi))|k − 1)

)

end for

References
1. Goodfellow, I.; Pouget-Abadie, J.; Mirza, M.; Xu, B.; Warde-Farley, D.; Ozair, S.; Courville, A.; Bengio, Y. Generative adversarial

nets. In Proceedings of the Advances in Neural Information Processing Systems, Montreal, QC, Canada, 8–13 December 2014;
Ghahramani, Z., Welling, M., Cortes, C., Lawrence, N., Weinberger, K., Eds.; Curran Associates, Inc.: Red Hook, NY, USA, 2014;
Volume 27, pp. 2672–2680.

2. Kwon, Y.H.; Park, M.G. Predicting future frames using retrospective cycle GAN. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, 16–20 June 2019.

3. Pan, X.; Zhan, X.; Dai, B.; Lin, D.; Loy, C.C.; Luo, P. Exploiting deep generative prior for versatile image restoration and
manipulation. IEEE Trans. Pattern Anal. Mach. Intell. 2021, 44, 7474–7489. [CrossRef] [PubMed]

4. Jordon, J.; Yoon, J.; Van Der Schaar, M. PATE-GAN: Generating synthetic data with differential privacy guarantees. In Proceedings
of the International Conference on Learning Representations, Vancouver, BC, Canada, 30 April–3 May 2018.

5. Radford, A.; Metz, L.; Chintala, S. Unsupervised representation learning with deep convolutional generative adversarial networks.
In Proceedings of the 9th International Conference on Image and Graphics, Shanghai, China, 13–15 September 2017; pp. 97–108.

6. Bhatia, H.; Paul, W.; Alajaji, F.; Gharesifard, B.; Burlina, P. Least kth-order and Rényi generative adversarial networks. Neural
Comput. 2021, 33, 2473–2510. [CrossRef] [PubMed]

7. Nowozin, S.; Cseke, B.; Tomioka, R. f-GAN: Training generative neural samplers using variational divergence minimization. In
Advances in Neural Information Processing Systems; MIT Press: Cambridge, MA, USA, 2016; Volume 29.

8. Kurri, G.R.; Sypherd, T.; Sankar, L. Realizing GANs via a tunable loss function. In Proceedings of the IEEE Information Theory
Workshop (ITW), Virtual, 17–21 October 2021; pp. 1–6.

9. Kurri, G.R.; Welfert, M.; Sypherd, T.; Sankar, L. α-GAN: Convergence and estimation guarantees. In Proceedings of the IEEE
International Symposium on Information Theory (ISIT), Espoo, Finland, 26 June–1 July 2022; pp. 276–281.

10. Welfert, M.; Otstot, K.; Kurri, G.R.; Sankar, L. (αD, αG)-GANs: Addressing GAN training instabilities via dual objectives. In
Proceedings of the IEEE International Symposium on Information Theory (ISIT), Taipei, Taiwan, 25–30 June 2023.

11. Welfert, M.; Kurri, G.R.; Otstot, K.; Sankar, L. Addressing GAN training instabilities via tunable classification losses. arXiv 2023,
arXiv:2310.18291.

12. Csiszar, I. Eine Informationstheoretische Ungleichung und ihre Anwendung auf den Bewis der Ergodizitat on Markhoffschen
Ketten. Publ. Math. Inst. Hung. Acad. Sci. Ser. A 1963, 8, 85–108.

13. Csiszár, I. Information-type measures of difference of probability distributions and indirect observations. Stud. Sci. Math. Hung.
1967, 2, 299–318.

52

Entropy 2024, 26, 290

14. Ali, S.M.; Silvey, S.D. A general class of coefficients of divergence of one distribution from another. J. R. Stat. Soc. Ser. (Methodol.)
1966, 28, 131–142. [CrossRef]

15. Liese, F.; Vajda, I. On divergences and informations in statistics and information theory. IEEE Trans. Inf. Theory 2006, 52, 4394–4412.
[CrossRef]

16. Kullback, S.; Leibler, R.A. On information and sufficiency. Ann. Math. Stat. 1951, 22, 79–86. [CrossRef]
17. Nielsen, F. On a generalization of the Jensen–Shannon divergence and the Jensen–Shannon centroid. Entropy 2020, 22, 221.

[CrossRef] [PubMed]
18. Nielsen, F.; Nock, R. On the chi square and higher-order chi distances for approximating f-divergences. IEEE Signal Process. Lett.

2013, 21, 10–13. [CrossRef]
19. Arimoto, S. Information-theoretical considerations on estimation problems. Inf. Control. 1971, 19, 181–194. [CrossRef]
20. Österreicher, F. On a class of perimeter-type distances of probability distributions. Kybernetika 1996, 32, 389–393.
21. Hellinger, E. Neue Begründung der Theorie quadratischer Formen von unendlichvielen Veränderlichen. J. Reine Angew. Math.

1909, 1909, 210–271. [CrossRef]
22. Sason, I. On f-divergences: Integral representations, local behavior, and inequalities. Entropy 2018, 20, 383. [CrossRef] [PubMed]
23. Rényi, A. On measures of entropy and information. In Proceedings of the Fourth Berkeley Symposium on Mathematical Statistics and

Probability, Volume 1: Contributions to the Theory of Statistics; University of California Press: Berkeley, CA, USA, 1961; Volume 4,
pp. 547–562.

24. Van Erven, T.; Harremos, P. Rényi divergence and Kullback-Leibler divergence. IEEE Trans. Inf. Theory 2014, 60, 3797–3820.
[CrossRef]

25. Arjovsky, M.; Chintala, S.; Bottou, L. Wasserstein generative adversarial networks. In Proceedings of the International Conference
on Machine Learning, PMLR, Sydney, Australia, 6–11 August 2017; pp. 214–223.

26. Mao, X.; Li, Q.; Xie, H.; Lau, R.Y.; Wang, Z.; Paul Smolley, S. Least squares generative adversarial networks. In Proceedings of the
IEEE International Conference on Computer Vision (ICCV), Venice, Italy, 22–29 October 2017.

27. Deng, L. The MNIST database of handwritten digit images for machine learning research. IEEE Signal Process. Mag. 2012,
29, 141–142. [CrossRef]

28. Krizhevsky, A.; Hinton, G. Learning Multiple Layers of Features from Tiny Images 2009. Available online: https://www.cs.
toronto.edu/~kriz/learning-features-2009-TR.pdf (accessed on 22 February 2024).

29. Lin, Z.; Khetan, A.; Fanti, G.; Oh, S. PacGAN: The power of two samples in generative adversarial networks. In Advances in
Neural Information Processing Systems; MIT Press: Cambridge, MA, USA, 2018; Volume 31, pp. 1–10.

30. Kingma, D.; Ba, J. Adam: A method for stochastic optimization. In Proceedings of the International Conference on Learning
Representations, Banff, AB, Canada, 14–16 April 2014.

31. Gulrajani, I.; Ahmed, F.; Arjovsky, M.; Dumoulin, V.; Courville, A.C. Improved training of Wasserstein GANs. In Advances in
Neural Information Processing Systems; MIT Press: Cambridge, MA, USA, 2017; Volume 30, pp. 1–11.

32. Heusel, M.; Ramsauer, H.; Unterthiner, T.; Nessler, B.; Hochreiter, S. GANs trained by a two time-scale update rule converge
to a local Nash equilibrium. In Advances in Neural Information Processing Systems; MIT Press: Cambridge, MA, USA, 2017;
Volume 30, pp. 6626–6637.

33. Brock, A.; Donahue, J.; Simonyan, K. Large scale GAN training for high fidelity natural image synthesis. arXiv 2018,
arXiv:1809.11096 .

34. Karras, T.; Laine, S.; Aila, T. A style-based generator architecture for generative adversarial networks. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019; pp. 4401–4410.

35. Almahairi, A.; Rajeshwar, S.; Sordoni, A.; Bachman, P.; Courville, A. Augmented CycleGAN: Learning many-to-many mappings
from unpaired data. In Proceedings of the International Conference on Machine Learning, PMLR, Stockholm, Sweden, 10–15 July
2018; pp. 195–204.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

53

Citation: Ullmann, D.; Taran, O.;

Voloshynovskiy, S. Multivariate Time

Series Information Bottleneck.

Entropy 2023, 25, 831. https://

doi.org/10.3390/e25050831

Academic Editors: Shuangming

Yang, Shujian Yu, Luis Gonzalo

Sánchez Giraldo and Badong Chen

Received: 22 February 2023

Revised: 10 May 2023

Accepted: 17 May 2023

Published: 22 May 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

entropy

Article

Multivariate Time Series Information Bottleneck
Denis Ullmann , Olga Taran and Slava Voloshynovskiy *

Faculty of Science, University of Geneva, CUI, 1227 Carouge, Switzerland; denis.ullmann@unige.ch (D.U.)
* Correspondence: svolos@unige.ch

Abstract: Time series (TS) and multiple time series (MTS) predictions have historically paved the
way for distinct families of deep learning models. The temporal dimension, distinguished by
its evolutionary sequential aspect, is usually modeled by decomposition into the trio of “trend,
seasonality, noise”, by attempts to copy the functioning of human synapses, and more recently,
by transformer models with self-attention on the temporal dimension. These models may find
applications in finance and e-commerce, where any increase in performance of less than 1% has large
monetary repercussions, they also have potential applications in natural language processing (NLP),
medicine, and physics. To the best of our knowledge, the information bottleneck (IB) framework has
not received significant attention in the context of TS or MTS analyses. One can demonstrate that a
compression of the temporal dimension is key in the context of MTS. We propose a new approach
with partial convolution, where a time sequence is encoded into a two-dimensional representation
resembling images. Accordingly, we use the recent advances made in image extension to predict an
unseen part of an image from a given one. We show that our model compares well with traditional
TS models, has information–theoretical foundations, and can be easily extended to more dimensions
than only time and space. An evaluation of our multiple time series–information bottleneck (MTS-IB)
model proves its efficiency in electricity production, road traffic, and astronomical data representing
solar activity, as recorded by NASA’s interface region imaging spectrograph (IRIS) satellite.

Keywords: multiple time series; forecasting method; information bottleneck; entropy; KL-divergence;
mutual information; deep models; RNN; U-Net; partial convolutions

1. Introduction

The scope of this work lies at the intersection of several domains, offering contributions
to information theory (IT) applied to machine learning (ML), applied astrophysics, and
computer vision (CV). Recently, non-recurrent models, such as transformers [1], among
others [2,3], have been used to accurately predict forecasts for multivariate time series (MTS).
The training of these models is guided by a proposed information–theoretical approach.
This study supports the validity of some of these models with an IT approach describing
the IB in the context of time series (TS). A CV-based model using partial convolution [4]
with an MTS forecasting goal is presented and the link with the IB principle is proved. The
approach was tested on astrophysical production, electricity production, and road traffic
data. MTS, CV, and IT metrics show the empirical effectiveness of the proposed idea.

TS and MTS predictions are among the key applications of ML. They enable models
to forecast the future evolution of data over time, where the time flow is represented
as a single scalar for TS and a multi-dimensional vector for MTS. Meteorology, finance,
online purchases, epidemic spread, and space weather forecasting are all examples of areas
with great interest. Even a marginal improvement, as small as a tenth of a percent, can
have a significant monetary or scientific impact. TS and MTS predictions are domains
where models, such as recurrent neural networks (RNNs) [5] and long-short-term-memory
(LSTM) [6], were historically developed to comply with the specificities of the temporal
dimension. Although these models have similarities with classical CV models, they are part
of a separate group of models that aim to mimic human memory and attention mechanisms.

Entropy 2023, 25, 831. https://doi.org/10.3390/e25050831 https://www.mdpi.com/journal/entropy54

Entropy 2023, 25, 831

Historically, one-step-forward models were formalized before multi-step-forward
models. For the former, the model predicts one step of time after a known time series.
Before the rise of deep models, time series decompositions, regressions [7–10], moving
averages [11], exponential smoothing techniques [12], and ARIMA [13] models were de-
signed to forecast the most probable outcome of a time step following the given time
steps in a series. Later, deep models advocated for learning a larger number of regression
parameters through gradient descent [14]. RNNs face a vanishing gradient problem when
they consist of more than three layers. LSTMs, a family of RNNs, aim to mimic the memory
and synaptic functioning of human brains, as well as solve the vanishing gradient issue, at
the cost of a possible explosion of the gradients. Finally, the more recent gated recurrent
unit (GRU) [15] is an intermediate version of RNNs that works efficiently in more cases
compared to classical RNNs and LSTMs.

The most recent challenges of forecasting with deep models include (a) achieving
high-efficiency prediction in the context of MTS, where each time step consists of a multi-
dimensional vector, with multi-step-ahead forecasts, where the model predicts multiple
time steps ahead in one run, (b) interpretability, and (c) predicting the errors at each fore-
casted time step. The error prediction is often performed by integrating them as a joint
time series that the model has to predict in parallel to the targeted time series [2]. Another
option relies on stochastic predictions, where the possible forecast at each time is modeled
by probabilistic distributions whose parameters are predicted by the model [2]. Inter-
pretability is often obtained by explicit time representations or decompositions [16–18],
as well as hierarchically built models that are supposed to learn classical time series de-
compositions by trend and seasonality [3]. To our knowledge, the most significant recent
performance gains have been obtained by models that first construct a joint embedding
representation of the time and space dimensions, along with compression and decom-
pression techniques [2,3,17–20], which are afterward fed into a version of RNN, graph
neural networks (GNNs) [21] or self-attention network-like transformers [17], at very high
memory costs [18,20].

On the other hand, from the CV family of deep models, the objectives of image inpaint-
ing [4,22–24] is very similar to TS forecasting. Both attempt to recover some missing data
from the information provided by two correlated known dimensions: pixel coordinates for
CV and temporal–spatial for MTS. For TS and MTS, the observed temporal evolution of
some data provides information to the model to forecast how these data will evolve in the
future [25,26]. For image inpainting, the given parts of the image serve as prior information
that aids the model in reconstructing the missing parts [24].

Recent works on images denoising [27] and inpainting [4] have shown a high capabil-
ity to capture prior distributions of images and restore masked or noisy images with high
accuracy. They measure accuracy in various ways, including classical Manhattan or Frobe-
nius norms, more advanced styles [28], perceptual losses [29], and human assessments such
as the mean opinion score (MOS) [30]. All of these methods use the U-Net architecture [31],
with partial convolutions [4], which are particularly efficient for learning outputs that are
close to the inputs in terms of similar pixels.

U-Net is a deep convolutional network that was originally designed for image seg-
mentation [31]. It can be sketched by the following Markov chain:

X

Z

X̃
Id

pΘ(z|x) pΦ(x̃|z)

where Z is a latent representation, pΘ(z|x) is an encoding part modeled by reducing the
time dimension through successive strided convolution layers, and pΦ(x̃|x) is a decoding
part performed by an architecture symmetric to pΘ(z|x), such that the posterior X̃ has
the same shape as the prior X. U-Net also allows a direct flow of information with an

55

Entropy 2023, 25, 831

identity mapper Id between X and X̃, also referred to as the skipping layer. This direct flow
of information between the prior and the posterior allows for easy reconstruction of the
prior image while the information flow through the latent Z is responsible for the image
segmentation objective. Skipping layers are also present between symmetrical hidden
layers of the encoder and the decoder. Without the skipping layers, the U-Net is reduced to
an autoencoder (AE) structure [32] sketched by the Markov chain X→ Z→ X̃ acting as a
principal component analysis dimensional reduction of X in Z.

Considering the spectral time sequences as images, one can demonstrate that image
processing based on generative machine learning techniques can capture the temporal
patterns of the physics or logic behind the spatial data, enabling the prediction of short-term
evolution. Therefore, our objective is to predict time sequences efficiently with the support
of the IB principle rather than classical time sequence modelings, such as LSTM or RNN.
The problem with time sequence prediction is, in this way, very similar to image inpainting
or an extension problem [4,22,23].

Recently, IT approaches have formalized deep models through IB [33]. This shows that
deep models are guided to find the most informative yet compressed representations for
given tasks. Deep models must compress the input information into a format that ideally
contains only sufficient statistics to recover posterior targeted data. To our knowledge,
very few past works [34–37] have attempted to describe the IB principle in the TS and MTS
contexts, whereas an extensive body of literature exists that focuses on deriving the IB
principle in CV models [33,38–42].

Very few past works have used IT to design or explain the TS and MTS forecasting
models that they proposed. Some attempted to estimate the entropy of TS or MTS in order
to quantify their variability [34,35,37]. More interestingly, the IB principle was formulated
in the RNN context but without compression of the time dimension, such that only the
information present at each time step was compressed and decompressed [36]. Their
work claims that each time step can be formulated by its own IB principle and that a time
series with N time steps can be modeled by N IB steps. In our work, we claim that the
compression of time is key for efficient forecasting and most of the existing models are
realizations of a single IB principle with the compression of time and spatial dimensions.

From an information–theoretical point of view, Tishby [33] proposed the informa-
tion bottleneck principle (IB), which aims to compress the input X and filter out all task-
irrelevant information while preserving sufficient statistics in the bottleneck Z; this was
in order to decode the compressed representation into the task-specific representation, de-
noted as X̃ in this context. The goal of the model is to find the parameters of the compression
encoder Θ and the decoding Φ by solving the following optimization problem:

(Θ̂, Φ̂) = argmin
(Θ,Φ)

IΦ(Z;X̃)≥α

IΘ(X; Z), (1)

where IΘ(X; Z) represents Shannon’s mutual information between X and Z, which is
parameterized by the parameters Θ of the network fΘ(·) mapping X to Z, defined by:

IΘ(X; Z) = Ep(X,Z)

[
log2

p(X, Z)
p(X), p(Z)

]
, where z ∼ pΘ(z|x) for all x ∼ X. (2)

α represents the lower bound on the mutual information between the genuine X̃ and the
compressed Z. This lower bound ensures sufficient statistics of the genuine in the com-
pressed Z in order to allow the decoder to decode X̃. Equation (1) can also be refined with
a Lagrange multiplier β, such that the parameters of the compression and decompression
are solutions of:

(Θ̂, Φ̂) = argmin
(Θ,Φ)

IΘ(X; Z)− βIΦ(Z; X̃)︸ ︷︷ ︸
L(Θ,Φ)

. (3)

56

Entropy 2023, 25, 831

Past works [43–46] have studied the IB of AEs, often by empirically estimating the informa-
tion plane (IP), i.e., the temporal graph of the training relation between mutual information,
I(X; Z) and I(Z; X̃). For all studies, the estimation of mutual information is not exact and
requires the tuning of some hyperparameters. In [43,46], the authors studied the IP at
training times for different types of AEs. They show that sparse autoencoders (SAEs)
significantly compress the information of MNIST data in the bottleneck, unlike the other
AE, such as the variational autoencoder (VAE), for which the compression is not clear
for the data (even though the VAE provides high constraints on the distribution of the
bottleneck). More details about the variational decomposition of the IB and its variational
approximations are provided in [47]. In [44], the authors studied the IP of vanilla AE on
MNIST with different hyperparameters for mutual information estimation. Their work
shows the compression of information at each hidden layer, extending from the input to
the bottleneck layer. It also provides an interpretation of the link between the dimensions
of the bottleneck and the compression of information. It shows that when the bottleneck
dimensions are relatively small, compared to the entropy of the source, further compression
is forced due to the limitation imposed by the bottleneck dimension. When the bottleneck
dimensions are relatively large, there are no such limitations. Our broad interpretation of
this outcome is that the AE training follows Shannon’s separation theorem from the joint
source and channel coding theory [48] because of the large capacity of the channel formed
by the AE. In [45], the authors studied the rate-distortion performance of an AE where
the IB was used as the dimensionality reduction with a fixed number of noisy information
channels; they applied this AE strategy to efficiently store analog data on an array of phase-
change memory (PCM) devices. The IB of AEs showed efficient rate-distortion results in
this context; the authors provided theoretical insights by utilizing Shannon’s separation
theorem from the joint source and channel coding theory [48].

We propose a general formulation of the IB principle for MTS forecasting. We show
that the U-Net architecture with source masking and an approximation of the IB loss can
be regarded as a particular instance of the formulated IB principle for MTS. We provide
an extensive evaluation of the proposed model on some astrophysical data of interest,
and we compare the model to concurrent ones with MTS, CV, and astrophysical metrics.
Interestingly, without fine-tuning, and with an approximation of the IB loss, our models
based on the IB principle formulation can achieve top results on different datasets involving
astrophysics solar activity prediction, electricity production, and road traffic.

One important direction of this work is the application of the IB principle to astro-
physical data. The accurate prediction of solar activity, solar flares, in particular, is still an
open issue. Solar flares occur as a result of the reconfiguration of magnetic fields in the
corona. These energetic events accelerate highly energetic particles into space and toward
the solar surface, where they cause heat and emissions in a broad range of wavelengths.
Solar flares are major protagonists in space weather and can cause adverse effects, such as
disruptions in communications, power grid failures on Earth, and damage to satellites and
other critical infrastructures. Many attempts to predict flares exist [49–53], as well as works
on flare detection [54] and analyses [55–58].

2. Methods

Forecasting models take TS data as input, noted as X1:T = [X1 : XT], or MTS data,
noted X1:T = [X1 : XT], both of length T. For TS, each time step Xt, (t ∈ [1, . . . , T]) is scalar,
whereas for MTS, each time step Xt =

[
X1

t , . . . , XM
t
]
, (t ∈ [1, . . . , T]) is a vector of length

M. As a consequence, X1:T represents a two-dimensional tensor, with the first dimension
being temporal of length T, and the second typically referred to as the spatial dimension of
length M.

The goal of the forecasting models is to predict the time continuation of the input
data by forecasting one step ahead or multiple steps ahead; this is denoted as XT+1:T+F =
[XT+1, . . . , XT+F] for TS, and XT+1:T+F = [XT+1, . . . , XT+F] for MTS, where F refers to the
number of steps ahead to forecast.

57

Entropy 2023, 25, 831

In this paper, the input series X1:T or X1:T is referred to as the prior, the true forecast
XT+1:T+F (or XT+1:T+F) is referred to as genuine, and the forecast predicted by the model
X̃T+1:T+F or X̃T+1:T+F is referred to as posterior. D refers to the training dataset, which is
also denoted as {X1:T+F}D or {(X1:T+F, K)}D when the data are labeled; K denotes the
label, or it can be represented as K in the case of categorical vectors. Table A1 recalls most
of the notations used in the paper.

2.1. IB-Based Optimal Compression for Time Series Forecasts

The general IB principle proposes to compress the input into a latent representation
while ensuring the preservation of sufficient statistics, which are crucial for the downstream
task. In the context of TS forecasting, this implies that the effective compression of the
time dimension needs to be employed in order to achieve accurate forecasting. Using our
notations, and according to the IB formulation of Equation (3), the goal of a model is to find
the parameters of the compression encoder Θ and of decoding Φ by solving the following
optimization problem:

(Θ̂, Φ̂) = argmin
(Θ,Φ)

IΘ(X1:T ; Zib_tr)− βIΦ(Zib_tr; XT+1:T+F)︸ ︷︷ ︸
L(Θ,Φ)

, (4)

where the input X1:T represents the previous T time steps of values, and the output
XT+1:T+F represents the subsequent F time steps. As a consequence, the bottleneck vari-
able Zib_tr should then hold the necessary part of information of prior time steps 1:T for
the model to be able to forecast the time steps T + 1:T + F. The index ib_tr explicitly
reflects the nature of the MTS bottleneck task as an IB learning statistics of transitions
1:T → T + 1:T + F. Taking inspiration from works [39], Proof of Equation (5) in the
Appendix A shows that an upper bound L̃(Θ, Φ) on the loss L(Θ, Φ) of Equation (3) can
be reduced as follows:

L̃(Θ, Φ) = HpΘ
(Zib_tr)− HpΘ

(Zib_tr|X1:T) + βHpΘ,Φ(XT+1:T+F|Zib_tr), (5)

where pΘ(Zib_tr) = EpD [pΘ(Zib_tr|X1:T)], whereD represents the training data consisting of
pairs of priors and their corresponding known forecasts: D = {(x1:T , xT+1:T+F) ∼ X1:T+F}
and H(.) stands for Shannon’s entropy, such that the upper bound on L(Θ, Φ) is composed
by these three components:

L1(Θ) = HpΘ
(Zib_tr)

= −EpΘ(Zib_tr)
[log2 pΘ(Zib_tr)],

L2(Θ) = −HpΘ
(Zib_tr|X1:T)

= EpΘ(X1:T ,Zib_tr)
[log2 pΘ(Zib_tr|X1:T)],

L3(Θ, Φ) = HpΘ,Φ(XT+1:T+F|Zib_tr)

= −EpD(X1:T+F)

[
EpΘ(Zib_tr |X1:T)

[log2 pΦ(XT+1:T+F|Zib_tr)]
]
.

(6)

L3(Θ, Φ) is the average cross-entropy H(pΘ(Zib_tr|X1:T), pΦ(XT+1:T+F|Zib_tr)). Moreover,
if the decoding distribution pΦ(XT+1:T+F|Zib_tr) is assumed to follow the Laplacian distri-
bution, ref. [39] shows that the loss L3(Θ, Φ) can be reduced into the average Manhattan
distance, which is also referred to as the mean average error loss (MAE) between the
genuine and the model estimation:

LLap
3 (Θ, Φ) = EpD(X1:T+F)

[
EpΘ(Zib_tr |X1:T)

[
‖XT+1:T+F − gΦ(Zib_tr)‖1

]]
. (7)

Throughout the years, different forecasting models have been proposed; the MAE
of LLap

3 (Θ, Φ) has been used for training the initial models and for evaluating the per-
formances of the forecasting models. We show in Figure 1 how existing models design

58

Entropy 2023, 25, 831

a bottleneck Z that compresses the time dimension, similar to Zib_tr in Equation (4). The
following paragraphs briefly explain the time compression and a few differences between
the models selected in Figure 1.

LSTM [6], GRU [15], and DEEP-AR [2] operate with an RNN [5] over the time dimen-
sion, which is compressed in the hidden memory channel Z. The constituting cell operates
only on one time step and predicts another unique time step (T = 1 and F = 1). DEEP-AR
predicts the mean and standard deviations of the forecast value, enabling the model to
exhibit stochastic behavior and to learn the uncertainty on the forecast.

NBeats [3] directly operates on all prior times X1:T and uses a hierarchical RNN struc-
ture to capture trends, seasonality, and repetitions, resulting in a hidden representation
Z. From this time compression, the model can reproduce the prior TS and forecast mul-
tiple time steps ahead XT+1:T+F. The hierarchical structure allows for interpreting the
time series.

Transformers [19] encode the given TS with multiple self-attention layers in order
to capture repetitions and logic between time steps. Each time step is input into its own
self-attention layer. Once the time dimension is effectively compressed into Z, the model
decodes the compressed representation to generate one (or multiple) time step forecast(s)
XT+1:T+F, depending on the model.

𝑋𝑡 𝑋𝑡+1𝒁𝑡+1
LSTM
GRU

𝑋𝑡 𝑋𝑡+1𝒁𝑡+1DEEP-AR 𝜇𝑡, 𝜎𝑡

𝑿1:𝑇N-BEATS - 𝒁 𝑿𝑇+1:𝑇+𝐹

backcast

Transformers 𝑿𝑡 𝑿𝑇+1𝒁 𝑿𝑇+1:𝑇+𝐹or

𝑿𝑇

𝑿1

forecast

Self-attention
encoder

Self-attention
decoder

Information
Bottleneck

𝑿1:𝑇 𝑿𝑇+1:𝑇+𝐹𝒁

Figure 1. Comparison of Markov chains for a selection of deep TS predictors: the blue parts corre-
spond to the compressed representations of the time dimension. Some of these may accept additional
inputs (correlated context) but we did not include them in these diagrams because that would over-
load the global understanding, and the time dimension is compressed in the same way. A bold X is
used when the model accepts vectors as input.

2.2. Compression by Source Masking

According to Tishby’s original IB formulation, the downstream task was a classifica-
tion. The form of information minimization in the IB is not necessary via the dimension
reduction or the addition of noise, but it can be via any lossy operation, such as lossy com-
pression or masking. We propose to address the IB principle for MTS via source masking,
dimension reduction, and prediction of the masked parts. Using masks, Equation (4) can
be rewritten as:

L(Θ, Φ) = IΘ(X1:T+F �M1:T ; Zib_tr)− βIΦ(Zib_tr; X1:T+F �MT+1:T+F), (8)

where � is the element-wise product, also known as the Hadamard dot product, where
M1:T and MT+1:T+F are binary time masks that have ones at the indexed time positions,
1:T or T + 1:T + F, and zeros at the other time positions. Note that Equation (8) is very
close to the formulation of IB for AEs in Equation (1) but with additional masks. Without

59

Entropy 2023, 25, 831

masks, the bottleneck not only holds statistics for the transitions 1:T → T + 1:T + F, but
also contains all statistics for the reconstruction of the entire sequence 1:T + F. In that case,
the bottleneck is reduced to an AE bottleneck Zib_ae with dimension reduction purposes
only. In contrast, with masking, the bottleneck Zib_tr is designed to learn transition statistics
1:T → T + 1:T + F.

2.3. Compressing Multi-Dimensional Data by Extreme Spatiotemporal Dimension Reduction

Previous subsections have not specifically taken into account the multi-dimensional as-
pects of MTS. Instead of scalar values Xt for TS, each time step is a vector Xt = [X1

t , . . . , XM
t]

or tensor for MTS, usually referred to as the spatial dimension. Previous works [59] show
that models designed for TS usually fail to capture the dependencies between spatial and
temporal dimensions. This difficulty has been addressed in two ways: at each time step,
adding a model for the spatial interdependencies [60], or designing the spatiotemporal
interdependencies jointly [18]. The first proposition models the joint spatial distributions
p(X1

t , . . . , XM
t) for each t, either explicitly with GNN [21] or implicitly with the spatial

compression [1]. The second proposition models the spatiotemporal joint distribution
p(X1

1 , . . . , XM
1 , , X1

T , . . . , XM
T) with joint spatiotemporal attention [18], as well as an

encoder–decoder structure made of attention layers for each spatiotemporal scalar variable.
The latter performs better than the first one because the spatiotemporal dependencies
Xm′

t′ |Xm
t are explicitly designed, whereas the first type decomposes spatiotemporal depen-

dencies in two steps: spatial plus temporal Xm
t → Xm′

t → Xm′
t′ or temporal plus spatial

Xm
t → Xm

t′ → Xm′
t′ .

We propose to handle the spatiotemporal compression of the masked MTS data
X1:T+F �M1:T present in Equation (8) using successive two-dimensional (temporal and
spatial)-strided partial convolutions PConv [4]. When the stride is 2, each PConv layer
divides the 2 spatiotemporal dimensions by 2, such that, with an adequate number of
hidden PConv layers, the spatiotemporal dimensions of the bottleneck Zib_tr are reduced
to 1× 1, and the resulting mask Mib_tr is a 1× 1 unit matrix. This means that Zib_tr �
Mib_tr = Zib_tr and the posterior X1:T+F �MT+1:T+F = XT+1:T+F can be decoded from
Zib_tr without any masking considerations. Finally, our approach proposes to assimilate
the MTS forecasting problem as an image extension problem, where MTS, being two-
dimensional, can be visualized as pseudo-images and processed with classical CV layers
as convolutions.

Convolutions also present non-negligible advantages because they locally model
spatiotemporal dependencies present in these MTS pseudo-images. Moreover, because
of the spatiotemporal compression structure, each successive strided PConv hidden layer
creates a more global model of the spatiotemporal dependencies, such that, in the end, the
bottleneck, Zib_tr fully models the global spatiotemporal dependencies.

2.4. Performing the Forecast
2.4.1. Decoder

Section 2.3 shows that the IB for MTS forecasting is equivalent to a pseudo-image
extension problem, where the masked source can be compressed with successive PConv
layers. A very efficient image inpainting model that also uses masks and PConv layers
is proposed in [4]. Instead of simply decoding the masked posterior from the bottleneck,
it proposes to use a U-Net structure with partial convolution in order to output the full
image with the unmasked parts reconstructed and the masked parts predicted. We propose
designing the decoder in the same way, i.e., using skipping layers and a structure similar
to the encoder, consisting of PConv hidden layers, such that the global model is a U-Net
architecture with successive PConv layers that extends to the bottleneck, followed by
successive partial deconvolution layers PDConv [4]. The information flow of such a model
is sketched by the following Markov chain:

60

Entropy 2023, 25, 831

X1:T+F

Zib_tr

X1:TM

Id

pΘpΦ

For this configuration, and under a Laplacian assumption for the distribution
pΦ(XT+1:T+F|Zib_tr), the third term of the IB loss L3(Θ, Φ) in Equation (8) becomes equiv-
alent to:

LLap,UNet
3 (Θ, Φ) = EpD(X1:T+F)

[
EpΘ(Zib_tr |X1:T+F�M1:T)

[∥∥X1:T+F − X̃1:T+F
∥∥

1

]]
, (9)

where X̃1:T+F is the output of the U-Net. This equivalence and more details are given in
Proof of Equation (A13) and Remark A1 of the Appendix A.

2.4.2. Partial IB Loss with U-Net

In Section 2.1, we show that for MTS, the IB principle imposes the three losses defined
in Equation (6). Moreover, if one assumes a Laplacian distribution for pΦ(XT+1:T+F|Zib_tr),
Equation (9) shows that the cross-entropy H(pΘ, pΦ), which is the third part, L3, of the
upper bound on the IB loss, can be reduced to LLap,UNet

3 , an average Manhattan distance,
which is also referred to as MAE between the output X̃T+1:T+F and the genuine XT+1:T+F,
when one samples Zib_tr from the prior samples X1:T of the training data, assuming that
the Laplacian distribution of pΦ(XT+1:T+F|Zib_tr) is too restrictive for real MTS datasets,
and a simple MAE cannot provide the best forecasting performance.

Image extension and inpainting processing works [4,23,61] use the same design for
their models. They develop powerful image inpainting models, which involve recovering
masked or missing parts of images, not only in central regions but also on the borders.
These models use U-Net [31] with gated, partial, or dilated convolutions and complex
losses based on the Manhattan distance MAE, such as style loss by the Gram matrix
computation [62], perceptual loss by the VGG-16 hidden layer value computation [29],
and/or adversarial loss [63]. One of the most efficient of these works [4] decomposes
the loss into six partial losses, each of which is responsible for optimizing specific errors
between the global genuine X1:T+F and the output X̃1:T+F. The rest of this section will
provide interpretations of these losses in the context of MTS. The first partial loss, Lvalid, is
related to the valid or prior parts of the pseudo-images that can be easily reconstructed with
the skipping layers:

Lvalid =
1

Npi
‖M1:T � (X̃1:T+F − X1:T+F)‖1 =

1
Npi
‖X̃1:T − X1:T‖1, (10)

where Npi = M× (T + F) is the size of the MTS pseudo-image X1:T+F or the number of
pixels. As explained in Section 2.4.1 and Proof of Equation (A13) from the Appendix A,
this part of the loss is responsible for the equivalence between the partial IB loss L3 defined
in Equation (6) and LLap,UNet

3 , which is the Manhattan distance MAE between the U-Net
output X̃1:T+F and the genuine X1:T+F due to the presence of the skipping layers. It ensures
an easy reconstruction of the known parts, and forces the bottleneck Zib_tr to learn the
transition statistics 1:T → T + 1:T + F but not the reconstruction statistics 1:T → 1:T. As
a consequence, in some way, it also softly minimizes L1(Θ) = HpΘ

(Zib_tr), but without
forcing this loss to reach a local minimum. The second loss is noted Lhole for the masked
parts of the pseud-images that need to be forecasted:

Lhole =
1

Npi
‖(1−M1:T)� (X̃1:T+F − X1:T+F)‖1 =

1
Npi
‖X̃T+1:T+F − XT+1:T+F‖1. (11)

61

Entropy 2023, 25, 831

This loss is exactly the IB partial loss L3 = Lhole of Equation (6) if we assume
pΦ(XT+1:T+F|Zib_tr) to follow a Laplacian distribution. Under this assumption, this loss
forces the encoder to actually let Zib_tr represent the transition statistics between the prior
and the posterior; this loss also lets the decoder generate well the posterior from this bot-
tleneck representation. It is interesting to note the Lvalid + Lhole = LLap,UNet

3 = L3 under
the Laplacian assumption of pΦ(XT+1:T+F|Zib_tr) and for the U-Net flow of information.
The three next losses are also MAE, but instead of being directly computed on the genuine
X and prior X̃, they are computed on deep representations of these variables. These three
losses are referred to as perceptual and style losses:

Lperceptual = 2 ∑
p∈HVGG

‖Ψp(X̃T+1:T+F)−Ψp(XT+1:T+F)‖1

NΨp(X1:T+F)

+ ∑
p∈HVGG

‖Ψp(X̃1:T)−Ψp(X1:T)‖1

NΨp(X1:T+F)
,

Lstyleout = ∑
p∈HVGG

‖Γp(X̃1:T+F)− Γp(X1:T+F)‖1

NΨp(X1:T+F)
,

Lstylecomp = ∑
p∈HVGG

‖Γp([X1:T , X̃T+1:T+F])− Γp(X1:T+F)‖1

NΨp(X1:T+F)
,

(12)

where Ψp are selected hidden layers of a pre-trained VGG-16 [64] deep image model
classifier, where HVGG is the set of selected hidden layer indices, and Γp(X) are Gram
operators on the hidden layers of VGG [29], as defined by f latten[Ψp(X)] · f latten[Ψp(X)]T .

While the MAE of LLap,Unet
3 is equivalent to the IB partial loss L3 from Equation (6) with

the Laplacian assumption of pΦ(XT+1:T+F|Zib_tr), for these losses, MAE is applied to deep
hidden representations of X and X̃. In a similar manner to the normalizing flow [65], where
each hidden layer of a deep network modifies the distribution, hidden layers of the VGG
and Gram operators are deterministic mappers that modify the distribution of XT+1:T+F. As
a consequence, we assume that the MAEs of Lperceptual and Lstyle can provide equivalents
to the IB partial loss L3 from Equation (6) for other distributions pΦ(XT+1:T+F|Zib_tr) than
the simple Laplacian. Hidden layers of the VGG-16 model capture the statistics related
to the prediction of the humanly recognizable class to which an image may belong. The
losses using MAE on these hidden layers are assumed to measure human perceptual
features, and Gram operators are known to capture styles in an image [62]. Finally, a
combination of Lvalid, Lhole, Lperceptual , Lstyleout , and Lstylecomp provides an equivalent to the
IB partial loss L3 for a less restrictive assumption than the simple Laplacian distribution of
pΦ(XT+1:T+F|Zib_tr). The last loss is referred to as total variation:

Ltv = ‖XT − X̃T+1‖1. (13)

In image extension or inpainting problems, this loss forces the borders of the predicted
holes to be smooth, which is a valid assumption for large images with high definition.
In the context of MTS, this loss forces the first forecasted time step T + 1 to be similar to
the last known time step T. This smoothness assumption is also valid for the majority of
real-world observations, where most of the functions are continuous.

The U-Net structure does not impose specific distributions for p(Zib_tr) and
p(Zib_tr|X1:T), such that the partial IB losses L1 and L2 are intractable, but U-Net im-
poses an extreme spatiotemporal compression in the bottleneck Zib_tr. The source masking,
combined with U-Net’s skipping layers, allows for a limitation of L1, as the transition
statistics 1 : T → T + 1 : T + F rather than the reconstruction ones 1 : T → 1 : T are learned.
For these reasons, the loss used for the model in the experiments is the following partial
IB loss:

Ltotal = Lvalid + a1Lhole + a2Lperceptual + a3(Lstyleout + Lstylecomp) + a4Ltv, (14)

62

Entropy 2023, 25, 831

where a1, a2, a3, and a4 are empirically defined hyperparameters. In practice, we use a1 = 6,
a2 = 0.05, a3 = 120, and a4 = 0.1, and only the hidden layer activations Ψp with indices
p = 3, 6, and 10 of the VGG-16 [64] are used to compute Lstyleout , Lstylecomp , and Lperceptual ,
such that HVGG = {3, 6, 10}, such as in [4]. These parameters were fine-tuned in [4] for
image datasets, where pixels take values between 0 and 1. The pseudo-images created from
the IRIS, AL, and PB datasets also have pixels ranging from 0 to 1. Because of the good
results we achieved with these parameters, we assumed that it was enough to prove the
efficiency and adaptability of the described method on different types of MTS data, and we
did not attempt to further fine-tune these hyperparameters for each dataset evaluated.

2.4.3. IB Interpretation with the Partial Loss

The encoder has a mapping form that consists of two parts. The first encoding
corresponds to the masking, i.e., vector X1:T+F, only X1:T is retained as the input to the
second part. Thus, in principle, the masking part can be any stochastic map that masks
the parts to be predicted. This technique is similar to recent methods referred to as masked
image modeling (MIM) [66,67] and it is often used in the pretraining of image autoencoders
or transformers [66,68]. The second encoding part is a nonlinear embedding implemented
as a deterministic encoder, which is the compression part of the U-Net, along with its
connecting layers. This second compression is guided by successive masked convolutions
with strides of the order of 2 to obtain a bottleneck by the dimension reduction of shape
1× 1×K, i.e., where the spatial and temporal dimensions are reduced to 1. This compressed
representation is noted as Zib_tr and referred to as the bottleneck in the paper. The masking,
together with the deterministic nonlinear embedding, form a stochastic mapping, and can
be considered as the equivalent part of the stochastic encoder in the IB framework.

In the end, a nonlinear decompression implemented in a form of a deterministic
decoder predicts X1:T+F from this bottleneck representation Zib_tr and from the skipping
layers that map the prior X1:T information between the input and output. Theoretically, in
Section 2.3, we show that the bottleneck should only retain the necessary information of
the transition statistics 1 : T → T + 1 : T + F between the prior and the posterior, and not
the statistics of the reconstruction of the prior X1:T . This is because all of the information
from the prior X1:T is transmitted to the output via the skipping layers. This shortcut flow
of information is specific to the structure of U-Net, is performed without compression, and
preserves the spatiotemporal positions of the prior information. As such, theoretically, only
the statistics of the transitions 1 : T → T + 1 : T + F are retained in the bottleneck Zib_tr
and the following Markov chain holds:

X1:T → Zib_tr → XT+1:T+F. (15)

Moreover, to better understand the role of the bottleneck, we can consider these two thought
experiments:

• If we remove the skipping layers, the bottleneck should not only retain the statistics of
the transitions from the prior to the posterior but also the reconstruction statistics of
the prior.

• If we also remove the source masking of the posterior in X1:T+F, the model is reduced to
an autoencoder (AE) and the bottleneck is supposed to perform a dimension reduction
of the MTS. Because of the curse of dimensionality, this technique is commonly used
to further perform better classifications on the bottleneck representation than on the
raw high-dimensional MTS data.

In our case, instead of imposing a distribution of the latent space, such as for VAE,
we apply special masking jointly with a dimensionality reduction. This framework can be
considered as the lossy part of the information encoding.

63

Entropy 2023, 25, 831

2.5. Proposed Model

The model designed in Section 2.4 corresponds to a traditional U-Net complemented
with masks and partial convolutions [4,31]. Multidimensional successive PConv and
PDConv layers with a stride of 2 are used when the data are MTS (M > 1). The bottleneck
must have a 1× 1 spatiotemporal shape; because of stride 2, the input pseudo-images must
be zero-padded to become squares with a power of 2. As a consequence, if 2l × 2l is the
spatiotemporal shape of the pseudo-image, the designed U-Net must have l successive
PConv followed by l successive PDConv. Training is performed with 100 epochs and the
Adam optimization of gradient descent with a 2× 10−4 learning rate for the loss defined
in Equation (14). The model could be generalized to N-dimensional PConv and PDConv
layers when several dimensions are necessary to model each time step. For instance, in
videos, each time step is an image with horizontal and vertical spatial dependencies.

Example of architecture when 128 < max(M, T + F) ≤ 256: The maximum spa-
tiotemporal size is max(M, T + F), which can also be interpreted as the maximum width
or height of the pseudo-images. In this situation, input pseudo-images are zero-padded
to obtain a square shape 256× 256, and the investigated model is sketched in Figure 2;
it uses the classical image extension architecture, U-Net [31], which has a symmetrical
structure made of an encoder and a decoder, both with 8 layers. Implementation details
of the architecture are given in the Appendix B, Table A2. The encoded representation
Zib_tr has a size of 1× 1× 512. Each layer of the encoding part divides the width and
height with strides of a factor of 2, and increases the number of channels up to 512. The
decoder has a symmetrical structure, but the inputs of each layer are concatenations of
upsampled versions of the previous layer’s outputs with the output of the symmetrical
encoding layer. It is combined with partial convolutions (PCs) that were proposed in [4]
to handle the masked data. These convolutions are applied at each hidden step and are
designed to not take into account the missing data, such that XT+1:T+F from X1:T+F at the
input layer. At each step of the encoding, the proportion of the masked part is reduced.
Each PC is followed by a batch normalization and a ReLU activation, but for the last output
layer, the activation is a sigmoid. For the training, we used input images of size 240× 240,
which were center-padded by zeros to make an image of size 256× 256 for fitting the U-Net
input size. Because of the 2 strides at the encoding steps and the 1× 1 size of the latent
representation, a U-Net with 8 encoding layers requires input sizes of 28 = 256.

𝑃
𝐶
𝑜
𝑛
𝑣
1

𝑃
𝐶
𝑜
𝑛
𝑣
2

𝑃
𝐷
𝐶
𝑜
𝑛
𝑣
7

𝑃
𝐷
𝐶
𝑜
𝑛
𝑣
8

𝑃
𝐷
𝐶
𝑜
𝑛
𝑣
1

𝑃
𝐶
𝑜
𝑛
𝑣
8

prior

𝑿1:𝑇 prior

𝑿1:𝑇

forecast

𝑿T+1:𝑇+𝐹

≡

𝒁𝑖𝑏_𝑡𝑟

masked
𝟎T+1:𝑇+𝐹

skipping connection

skipping connection

adds zeros

adds zeros

bottleneck part

𝑿1:𝑇

… …

𝑿1:𝑇 + 𝑿1:𝑇
𝐼𝐵

≈ 𝑿1:𝑇

𝑿T+1:𝑇+𝐹
𝐼𝐵

+ 𝟎T+1:𝑇+𝐹
=

𝑿T+1:𝑇+𝐹

unknown

𝟎T+1:𝑇+𝐹

Figure 2. Schematic analogy between the IB principle and image extension: (Left) schematically
shows the time prediction under the IB principle, with compression and decoding, using PConv and
DPConv and skipping connections to form a variant of U-Net. (Right) is an equivalent representation
seen as the image extension, where the skipping layers connect X1:T from the input to the output,
and the bottleneck principle allows predicting XT+1:T+F from X1:T .

When the input of the maximum spatiotemporal size max(M, T + F) is smaller than
128, the model needs less than 8 PConv and PDConv layers for the encoder and decoder
parts of the U-Net. In general, the number of layers must be log2(max(M, T + F)) to ensure
a 1× 1 spatiotemporal size in the bottleneck Zib_tr.

64

Entropy 2023, 25, 831

In [4], they specify that because of the masks, batch normalization prevents train-
ing from converging. This is because the mean and standard deviation values of batch
normalization layers for each sample are biased by the masks. As a consequence, they
train the first half of epochs with trainable batch normalization layers, and they freeze
the batch normalization layers for the second half of epochs. This is done in TensorFlow
by setting the layer parameter trainable = False during training. In our case, all sample
masks have the same size and spatiotemporal positions. As a consequence, the mean
and standard variations of the samples are not very biased by those masks. Actually, the
experimentation showed that freezing the batch normalization for the last epochs did not
lead to improved performance.

2.6. IRIS Dataset

IRIS is NASA’s interface region imaging spectrograph satellite [69]. IRIS observes
regions of the atmosphere of the Sun with many different settings of possible observations
recorded in a specified cadence. A time sequence is encoded into a two-dimensional
representation in the form of images. We used the designed model to predict time sequence
data provided by the IRIS mission. The basis of the IRIS satellite data retrieval is shown
in Figure 3. Each observed event is composed of a maximum of four videos of a selected
region on the surface of the Sun, together with spectral videos, where a slit is positioned to
perform the diffraction [70].

In this work, only the spectral data from MgII h&k lines, between 2793.8401Å and
2806.02Å, were considered. This wavelength’s range is represented by a vector of size 240.
According to modern solar physics theories, spectral data are supposed to contain most
of the information on the physics of the Sun, and MgII h&k lines are considered some of
the best lines to recover information from the chromosphere [71]. The predictions of solar
spectral data are crucial for different reasons, including the solar flares forecasting and
solar activity in general.

IRIS data are publicly available (iris.lmsal.com/data.html) (accessed on 20 February
2023) but only part of the data is labeled [72]. Only three types of solar activities were
considered for this study: quiet Sun (QS), where nothing special appears, active region
(AR), where some activity is observed, such as solar prominence, filaments, jets, and flaring
profile (FL), when a flare appears during the observed event. Each event is assigned a
hierarchical label, such that an event is labeled FL even when it includes AR time steps.
The data are normalized at each time step by its maximum value, such that the maximum
value at each time step, or the intensity of the signal, is reduced to one. This allows for an
easier comparison of spectral profiles at each time step, and simplifies the process in terms
of the ML.

2.6.1. Problem Formulation

The IRIS restrictions of online observations: Figure 3 explains the IRIS observations
in the atmosphere of the Sun with images of given wavelengths and spectra of given
positions. Despite the very high precision of IRIS and its capacity to observe a very wide
range of astrophysical parameters in time and space, significant difficulties inherent to
online observations remain. Spectral observations are limited in time and space as they
only correspond to the position of the slit at a given time, which may vary, and the satellite
has to store the data before sending them to Earth-based stations [70]. IRIS observations
are, therefore, very sparse in all of the potential observable parameters and they may lack a
lot of data from other spatial positions. We may also be interested in further observations
after the termination of the acquisition/recording session limited by the IRIS storage
memory capacity.

65

Entropy 2023, 25, 831

𝑥

𝑦

𝑦

𝜆1 𝜆2

𝜆

𝑡

X1:T 𝜆

(𝑥, 𝑦)

?

XT+1:T+F 𝜆

SUN SPECTRA

SUN
IMAGE

𝜆
1

𝜆
2

𝜆

(𝑥, 𝑦, 𝑡)

Figure 3. Problem formulation: (x, y) represent the spatial coordinates, λ and t, respectively, represent
the spectral and time coordinates. NASA’s IRIS satellite integrates a mirror from which the Sun image
or videos are captured by a sensor paired with a wavelength filter chosen among 1330 Å, 1400 Å,
2796 Å, and 2832 Å. This mirror holds a vertical slit from which the diffraction occurs. The x position
of the slit can vary in time and is chosen before the observation. A sensor behind the mirror captures
the Sun spectra for each vertical position y of the Sun’s image, but only at the x position of the slit. We
only consider the MgIIh/k data, which are between λ1 = 2793.8401 Å and λ2 = 2806.02 Å, and we
consider all available time sequences.

Spectral time sequence forecasting represents a significant step forward in flare fore-
casting and assists in planning satellite observations. Figure 3 presents the solar–physical
interpretation of the spectral time sequence data, represented as images X1:M

1:T+F of physical
dimensions time× wavelength with 1 ≤ time t ≤ T + F, 1 ≤ wavelength λ ≤ M; the left
part X1:M

1:T (1 ≤ t ≤ T, 1 ≤ λ ≤ M) corresponds to the known prior sequence, and the right
part, X1:M

T+1:T+F (T + 1 ≤ t ≤ T + F, 1 ≤ λ ≤ M), masked, predicted, or genuine, is the
sequence that has to be predicted by the model.

Non-homogeneous cadences of the data time series modeling are usually performed
by RNNs [73] or LSTMs [6], as briefly summarized in Figure 1. These models are designed
for time series with fixed given cadences; Figure 4 shows the wide variety of our data
cadences, making the use of RNN or LSTM difficult. To represent the time sequences X1:T+F
of the data under a common cadence, one should represent them by a cadence equal to the
greatest common divisor of all of the cadences, which would obviously make those time
sequences X1:T+F highly sparse and penalize the learning of transitions between time steps.

co
un

t

0 20 40 60 80 100 1200

5

10

cadence (s)

Figure 4. Histogram of the cadences in seconds/time steps.

Clustering spectral data: The 53 clusters of MgIIh/k lines found in [55] allow inter-
preting the physics on the surface of the Sun. We can compare the original and predicted
time sequences through their clustered time sequences in order to prove the utility of our
forecasting model in solar–physics by conserving the types of activities.

Astrophysical features: In [72], the authors defined ten solar spectra features to
be used as dimensional reductions of spectral data for activity classification purposes.
We studied the conservation of these features in the forecasted sequences to show the
applicability to astrophysics.

2.6.2. Proposed Approach

As described in Section 2.6.1, a solar spectral time sequence is represented by an image
X1:T and the model has to predict the continuation, which is the time sequence equivalent to
the image XT+1:T+F. XT+1:T+F should be the right extension of the image X1:T , where each

66

Entropy 2023, 25, 831

column of the image represents a spectrum at a growing time step from the left to the right.
Because of the architecture of the image extension models, the input and output images
have the same dimensions. The targeted output image XT+1:T+F is the concatenation of
X1:T with XT+1:T+F on the right of it, whereas the input image Concat([X1:T , 0T+1:T:F]), has
a blank image 0mask of the same shape as XT+1:T+F on the right of X1:T .

For both recurrent and image extension models, the input has the same information,
organized differently, and the output of the image extension models differs by the left
concatenation of the input. Figure 2 shows the skipping layers in the image extension
models that help the transition of X1:T from the input to the output.

2.7. Other MTS Dataset

Two other datasets are used to provide a baseline evaluation between our IB-designed
models and concurrent ones.

• AL dataset: The solar power dataset for the year 2006 in Alabama is publicly available
(www.nrel.gov/grid/solar-power-data.html, accessed on 20 February 2023). It con-
tains solar power data for 137 solar photovoltaic power plants. Power was sampled
every 5 min in the year 2006. Preprocessing was conducted to only extract daily events
by ignoring nights when data were zero. At each 5-min interval, the data consisted of
vectors with 137 dimensions, and these vectors were normalized by their maximum
coordinates. For example, in the case of IRIS data, the maximum value at each time
was always set to 1.

• PB dataset: PeMS-BAY data [74] are publicly available (https://zenodo.org/record/51
46275#.Y5hF7nbMI2w, accessed on 20 February 2023) and were selected from 325 sen-
sors in the Bay Area of San Francisco by the California State Transportation Agency’s
Performance Measurement System [75]. The data represent 6 months of traffic speeds
ranging from January 1 to May 31 2017. At each 5-minute interval, the data consist
of vectors with 325 dimensions, and these vectors are normalized by their maximum
coordinates. For example, in the case of IRIS data, the maximum value at each time
was always set to 1.

2.8. Complementary Classifiers to Show Consistency with Applied Sciences

The experimental proof was conducted on IRIS-labeled data to show that the proposed
model is not simply capable of predicting possible images but also capable of predicting
the information logic behind them. It is common for MTS data (that are to be forecasted)
to be classified based on types of activity. There are multiple examples of MTS types of
activity, including displacement, boom, euphoria, profit-taking, and panic classifications. In
astrophysics, when dealing with solar observations, the types of activity can be categorized
as quiet, active, and flaring.

We implemented a classifier composed of eight strided convolutional layers, with
dense ending layers, which allowed it to output a vector of size corresponding to the
number of classes. This classifier was trained on labeled MTS data {(X1:T+F, K)}D , where
K stands for the categorical one-hot vector representing the class activity for the series X1:T .
Once trained, the classifier was used to classify the prior, the genuine, and the predicted
forecasts. The classification accuracy between the genuine and the predicted forecasts was
evaluated together with the true skill statistic (TSS), which is also known as the Hansen
and Kuiper skill score [76], and the Heidke skill score (HSS) [77], which is also known as
kappa [78]. These two scores were evaluated globally and for each class of prediction. For
one class, these scores are defined as follows:

TSS =
tP× tN − f P× f N

gP× gN
, and HSS = 2

tP× tN − f P× f N
gP× pN + gN × tP

, (16)

67

Entropy 2023, 25, 831

where t stands for true, f is false, g is genuine, p is predicted, P represents positives, and N
represents negatives. In a classification with more than two classes, [79] shows that these
scores can be defined by generalization, as follows:

TSS =
trace(CM− ICM)

trace(CM∗ − ICM∗)
, and HSS = 2

trace(CM− ICM)

trace(CM∗ − ICM)
, (17)

where trace(.) is the diagonal sum operator for a matrix of dimension m × m, which is
eventually larger than 2× 2. CM =

(
Countgi ,pj

)
i,j

is the confusion matrix holding the

joint counts of genuine classification cases gi (rows) versus forecast classification cases pj

(columns), and ICM =

(Countgi × Countpj

total count

)

i,j
is the confusion matrix expected when

the genuine and forecast classifications are independent events. CM∗ = diag(Countgi)
is the expected diagonal confusion matrix when the classifications are ideal (an ideal
classification is defined by Countgi ,pj = 0 for all i 6= j, such that the confusion matrix CM
is diagonal); ICM∗ is the corresponding expected confusion matrix when genuine and
forecast classifications are independent events.

2.9. Comparison with Other Models

To our knowledge, for almost all MTS datasets, current state-of-the-art (SOTA) datasets
are achieved by TS decomposition networks, such as NBeats [3] and SCINet [80], and by
pre-trained models designed as graph neural networks [60,81] or transformers [17]. We
compare our proposed IB-MTS model with three types of models:

• Multiple successive IBs, where each time step is an instance of the IB formulation. This
includes multidimensional RNN, LSTM, and GRU models [5,6,15].

• Composition of two successive IBs: A spatial IB is followed by a temporal IB. For
example, this would involve encoder–decoder models using successive RNN, LSTM,
or GRU recurrent models at each layer of compression and decoding [82,83].

• Unique joint spatiotemporal IB: The encoder jointly compresses spatial and temporal
dimensions of the prior into a bottleneck with an extreme spatiotemporal dimensional
reduction; this is our proposed IB-MTS formulation.

• MTS decomposition model, such as NBeats [3].

Names and details of the concurrent evaluated models are listed below:

• LSTM model: An LSTM cell [6] performs the one-step-ahead forecast and is trained
to predict Xt+1 from Xt. It incorporates one layer with M LSTM units. For instance,
for the 240× 240 spatiotemporal dimensions of IRIS data, the 180 first time steps are
the prior data, and the 60 last time steps are the posterior data to forecast. This model
is designed with 240 spatial LSTM/GRU units looped 180 times and all of the cell
outputs are returned by the model using TensorFlow option return_sequences = True.
This layer returns a 180× 240 output and only the last 60 time steps are kept. Moreover,
a source masking of the posterior is applied to the input and an identity skipping
layer is added to transmit the prior X1:T to the output at the same temporal positions
in X1:T+F, such that the LSTM layer only accounts for predicting the posterior part
XT+1:T+F. The number of units is directly determined by the shape of the input and
output data. Details of the architecture are given in the Appendix B, Table A3.

• GRU model: A GRU [15] cell is trained to predict Xt+F from Xt. The structure
and number of units are the same, similar to the LSTM models, but GRU cells are
used instead of LSTM ones. Details of the architecture are given in the Appendix B,
Table A3.

• ED-LSTM model: A version using LSTM cells with an encoder and a decoder was
implemented as described in Figure 5. Because of the encoder and decoder structures,
we name it ED-LSTM. This model conducts multiple step-ahead forecasts and can
forecast XT+1:T+F from X1:T . The model incorporates LSTM cells organized into four

68

Entropy 2023, 25, 831

layers: two layers of encoding into a bottleneck and two layers of decoding from
the bottleneck. The first encoding layer is composed of 100 spatial units looped 180
times on the prior IRIS data and all of the cell outputs are returned by the model
using TensorFlow option return_sequences = True, returning a 180× 100 spatiotem-
poral output accounting for a spatial compression. The second encoding layer is
composed of 100 spatial units looped 180 times and only the last cell outputs of the
recurrences are returned, returning a 100-dimensional bottleneck that accounts for a
spatial compression followed by a temporal compression. This bottleneck representa-
tion is repeated 60 times for IRIS data in order to model the decoding of 60 posterior
time steps to forecast. After this repetition, the data are 60× 100 and fed to the first
decoding layer with 100 spatial units looped 60 times and initialized with the states
obtained from the second encoding layer; indeed, the structure is symmetrical, such
that the first and second decoding layers are, respectively, the images of the second
and the first encoding layers. All cell outputs are returned by the model using Tensor-
Flow option return_sequences = True, such that a 60× 100 spatiotemporal output is
returned. The second layer of the decoder is designed with 100 spatial units looped
60 times and initialized with the states obtained from the first encoding layer, such
that a 60× 100 output is returned. In the end, a time-distributed dense layer is used
to map the 60× 100 output data into a 60× 180 MTS data format. For these models,
the input and output shapes are determined by the data and one can only change the
number of spatial cells n1 and n2 used, respectively, in the first and second layers of
the encoding part. n2 determines the dimension of the bottleneck and on the IRIS data,
180 > n1 ≥ n2 ≥ 1. Our experiments show that the results of these models do not
depend much on the values of n1 and n2, but significantly drop when n2 is very small,
close to 1. Details of the architecture are given in the Appendix B, Table A4.

• ED-GRU model: This model follows the same structure as the ED-LSTM but with
GRU cells instead of LSTM cells. The structure and number of units are the same as
with ED-LSTM models, but GRU cells are used instead of LSTM ones. Details of the
architecture are given in the Appendix B, Table A4.

• NBeats model: We use the code given in the original paper [3]. This model can forecast
XT+1:T+F from X1:T . The model is used in its generic architecture as described in [3],
with 2 blocks per stack, theta dimensions of (4, 4), shared weights in stacks, and
100 hidden layers units. For IRIS data, the prior is 180× 240, the forecast posterior
is 60× 240, and the backcast posterior is 180× 240, but we also use a skipping layer
to connect the input to the backcast posterior, such that the model is forced to learn
the transition between the prior and the forecast posterior. we attempted NBeats
with other settings and other numbers of stacks without the gain of performance, and
when the number of stacks became greater than 4, the model failed to initialize on
our machines.

LSTM
or GRU

cells

LSTM
or GRU

cells

LSTM
or GRU

cells

LSTM
or GRU

cells

Encoder Decoder

𝑿𝑡 𝑿𝑡+1

𝑪𝑡
1 𝑪𝑡

2 𝑪𝑡
3

𝒁𝑡+1
1

𝒁𝑡+1
2

𝒁𝑡+1
2 𝒁𝑡+1

3

𝒁𝑡+1
3𝒁𝑡+1

1 𝒁𝑡+1
4

Outputs of all cells are passed

Output of last cell is passed

Recurrent setup

Figure 5. Structure of the ED-LSTM and ED-GRU models used for comparison. Ci
t represents the

hidden state vectors for GRU cells, combined with cell state vectors for LSTM cells.

69

Entropy 2023, 25, 831

Table 1 provides the number of parameters for each model. The evident drawback
of our proposed IB-MTS is the high amount of parameters inherent to U-Net structures
with several levels of deepness. The number of parameters for the concurrent evaluated
models is determined by the shape of the input data or by hardware constraints for NBeats.
We believe that our model also integrates more parameters because it is based on a jointly
spatiotemporal compression whereas the others are based either on a temporal succession
of spatial IB or on a combination of a spatial followed by a temporal IB. In theory, the
number of parameters for our proposed model should be the square of the number of
parameters of the models based on the N successive spatial IB. In practice, it is less than the
square, and still able to model a joint distribution, which is not the case for the other ones.

Table 1. Parameters and trained steps of the evaluated models.

IB-MTS LSTM ED-LSTM GRU ED-GRU N-BEATS

Parameters 65,714,097 461,760 401,840 347,040 308,640 100,800
Trained step
(ms/sample)

91 83 98 87 98 424

Moreover, a remarkable thing is that our proposed IB-MTS model needs less time to
be trained than the others, except for simple RNNs. The differences in duration are even
more significant compared to NBeats. NBeats has a very small amount of parameters but
is very slow to train compared to the other models. From our experience, instantiating the
NBeats model can be quite slow, and in practice, it is impossible to instantiate with much
more layers and parameters than the vanilla one. For instance, 120 GB of RAM was not
enough when we attempted to set the NBeats model with millions of parameters.

3. Results

Considering that our work may be of interest to readers from various backgrounds,
be it MTS prediction, information theory, ML in general, or applied physics, several types
of evaluations performed on our model and concurrent ones are listed below; Figure 6
explains the last three listed evaluations.

𝑋1:𝑇𝑿1:𝑇

𝑿
𝑇
+
1
:𝑇
+
𝐹

 𝑿
𝑇
+
1
:𝑇
+
𝐹

𝑿1:𝑇

Classifier

Time
Predictor

Genuine data

Evaluation

Prior distribution
distribution

distribution

Centers distributions Evaluation
Joint Prior – Expected – Predicted

time

fe
at

u
re

feature

Expected

class

time

fe
at

u
re

feature

Predicted

class

Weak
label

𝐼 𝐶1; 𝐶2

𝐾𝐿 ȁ𝐶0 𝐶1 𝐾𝐿 ȁ𝐶0 𝐶2

𝐻 𝐶0 𝐻 𝐶1 𝐻 𝐶2

𝑝 𝐶1, 𝐶2

Entropies:

KL-divergences:

Entropies

Probability of center flip:

Mutual Information:

Classification Evaluation
Predicted VS Expected

𝑇𝑆𝑆 & 𝐻𝑆𝑆 𝑠𝑐𝑜𝑟𝑒𝑠

% of accuracy

for each class 𝑘𝑖 :

Physical Features Evaluation
Expected – Predicted

time

fe
at

u
re

time

fe
at

u
re

Relative Error

time

er
ro

r

𝐶0
𝐶1

𝐶2

𝐾1

𝐾2

𝑇𝑆𝑆 & 𝐻𝑆𝑆 𝑠𝑐𝑜𝑟𝑒𝑠global:

global:

Figure 6. Evaluations performed on the proposed time predictor: center assignments, activity
classification, and physical features. Classical MTS and CV evaluations were also performed without
appearing in this diagram for readability concerns.

70

Entropy 2023, 25, 831

• MTS metrics: MAE, MAPE, and RMSE evaluation. These metrics are defined at each
time step as the means of

∣∣Xt − X̂t
∣∣ for MAE,

∣∣Xt − X̂t
∣∣/|Xt| for MAPE, and the square

root of the mean of
(
Xt − X̂t

)2 for RMSE.
• CV metrics: PSNR and SSIM evaluation. The PSNRt is defined at each time step t as

−10 log10(MSEt), with MSEt being the mean of
(
Xt − X̂t

)2. The larger the PSNR, the
better the prediction. The SSIM is defined at each time step by [84]:

SSIMt =
(2µtµ̂t + (0.01L)2)(2σtσ̂t + (0.03L)2)(covt + (0.0212L)2)

(µ2
t + µ̂t

2 + (0.01L)2)(σ2
t + σ̂t

2 + (0.03L)2)(σtσ̂t + (0.0212L)2)
, (18)

where L is the dynamic range of the pixel values, usually L = 255; µt and σt are the
mean and standard deviations of all possible windows of length 7 in the time step
data Xt, which are similar for µ̂t and σ̂t for the predicted time step data X̂t. covt is the
covariance between all corresponding windows of length 7 on Xt and X̂t. The SSIM
has a maximum of 1 when Xt = X̂t and quantifies the visual structure present in the
one-dimensional graph [84].

• Astrophysical features evaluation: Twelve features defined in [72] are evaluated for
IRIS data. For these data, each time step corresponds to an observed spectral line in
a particular region of the Sun. The intensity, triplet intensity, line center, line width,
line asymmetry, total continuum, triplet emission, k/h ratio integrated, k/h ratio
max, k-height, peak ratio, and peak separation are the twelve measures on these
spectral lines. These features provide insight into the nature of physics occurring at
the observed region of the Sun. These metrics are evaluated at each time to show that
the IB principle and a powerful CV metric are sufficient to provide reliable predictions
in terms of physics.

• The IB evaluation is performed on centroid distributions in the prior X1:T , genuine
XT+1:T+F, and predicted forecasts X̂T+1:T+F. A k-means was performed in [55] for the
spectral lines Xt that are to be predicted over time. The corresponding centroids C
are used in this work to evaluate information theory measurements on the quantized
data. Entropies for the prior H(c0), genuine H(c1), and predicted H(c2) distributions
were averaged on the test data, and a comparison of the distributions between the
prediction and the genuine was evaluated by computing the mutual information
I(c1; c2).

• The classification accuracy between the genuine and the forecast classifications was
also evaluated. In the context of the IRIS data, three classes of solar activity are
considered: QS, AR, and FL. Classifications are compared between the genuine target
XT+1:T+F and predicted forecast X̂T+1:T+F, to assert whether the forecast activity
complies with the targeted activity. TSS [76] and HSS [77] are evaluated globally and
for each prediction class. These scores are defined in Section 2.8.

3.1. Evaluations of Predictions on IRIS Data

The model was trained on 240 × 240-sized images X1:240 representing MTS with
240 time steps and 240 features at each time step, and the last 25% X180:240 was masked at
the input and predicted at the output. Each feature corresponds to a specific wavelength.

The data contain events of various durations. They were firstly partitioned into
training, validation, and testing events; the model was tested on events that were not even
partially seen at training time. All of the events were selected among those that last more
than 240 time steps. Each event was divided into several 240× 240 sized images X1:240 and
paired with the corresponding 240× 240 masks.

The model was trained on 12,738 images of size 240× 240; 25% of the right part of
each image was used as the target for prediction. In the image, each spectrum (column)
was normalized, such that the maximum value was 1; this is compliant with [55], where
the 53 clusters were obtained after the normalization of the spectra. We directly applied the
trained model in order to predict the time sequence with the half-duration continuation of

71

Entropy 2023, 25, 831

the input; this is the direct prediction procedure. It was tested on 4490 direct images. To predict
a longer continuation of the input, we adopted a straightforward common procedure and
used a sliding 240× 240 prediction window; this is the iterated prediction procedure. It was
tested on 1962 iterated images. The evaluation was made by PSNR, SSIM, and the Hamming
distance between the original and predicted corresponding cluster sequences. For this last
metric, we adopted four different options. The cluster assignments are determined using a
k-nearest-neighbor search at each time step, where the accuracy is measured by comparing
if the data points have a common nearest centroid. NN1 refers to k = 1 and NN4 refers to
k = 4.

Figure 7 presents the forecast by the proposed IB-MTS model and its evaluations for
one flaring (FL) sample. The first row of results shows that the genuine and predicted
sequences look very similar, with a high PSNR of 35.65 dB. Although, some magnified
differences can be naturally observed.

The second row shows results for the prior, genuine, and predicted sequences, in
terms of the assignment at each time step to the NN centroid obtained from a k-mean
procedure described in [55]. Although the prior distribution differs from the genuine
sequence to be predicted, the model was able to generate a sequence that exhibited a
similar physical pattern to the genuine one. This shows that the model seems to be able to
predict astrophysical patterns even with a CV-based loss that does not specifically measure
astrophysical features.

The third row of results evaluates the usual MTS metrics for this specific FL sequence
prediction. The three metrics (MAE, MAPE, and RMSE) have small averages over the
forecasted times. Interestingly, the MTS errors are very small and below the averages for
the first ten predicted time steps. This could be attributed to the temporal proximity with
the prior information, as well as the combination of convolutions with the Ltv component
of the loss defined in Equation (13), which softens the transition between the prior and the
predicted data.

The last twelve plots show the time evolution of the astrophysical features extracted
from the genuine (in blue) and predicted (in green) sequences. They show that the genuine
features are predicted with more or less errors over time, but the predictions tend to follow
the patterns of the genuine sequences. As these features were not considered in the loss
used, this shows a non-negligible correlation between astrophysical features and CV metrics
that were used to train the model.

Longer Predictions

For longer predictions, a standard well-known method performs recursive forecasts
on data forecasted by the model. Under this setup, the prior MTS is a previously performed
forecast, and one can legitimately expect an accumulation of errors. This is historically
justified by the usage of one-step-forward models, such as the LSTM.

Figure 8 presents the short and long forecasts performed on a normalized IRIS quiet
Sun (QS) sample. We can visually see that our approach is able to predict direct predictions
as well as correct patters when we iterate the predictions on already predicted data.

3.2. MTS Metrics Evaluation

Table 2 presents the results of the evaluations of MAE, MAPE, and RMSE on IRIS, AR,
and PB data. These metrics are averaged over all of the spectral and spatial dimensions,
and all of the predicted time steps; for IRIS data, these metrics are also averaged over all
types of solar activities. The model was trained and evaluated on each individual dataset.
For all three metrics, our model outperforms the concurrent ones on the three datasets.

The descriptive temporal evolutions of these metrics are given in Figure 9 for the
prediction errors under the direct setup, and in Figure 10 for the prediction errors under the
iterated setup.

72

Entropy 2023, 25, 831

Masked Sequence
Label: FL

2806.02

la
m

bd
a

2793.84 0 60
time

2793.8401

2806.02

la
m

bd
a

Masked Sequence
Weak Label FL

0 5 10 15 20 25 30 35 40 45 50

10%

20%

30%

40%

50%

60%

70%

80%

90%

Center distribution PRIOR

0 10 20 30 40 50 60
time

0

10

20

30

40

time predictions
PSNR

0 10 20 30 40 50 60
time

0.0

0.2

0.4

0.6

0.8

1.0

time predictions
1-Center
1-RandomBaseground
best accuracy

0 10 20 30 40 50 60
time

0.0

0.2

0.4

0.6

0.8

1.0

time predictions
3-Center
3-RandomBaseground
best accuracy

0 10 20 30 40 50 60
time

0.0

0.2

0.4

0.6

0.8

1.0

time predictions
5-Center
5-RandomBaseground
best accuracy

0 60
time

2793.8401

2806.02

la
m

bd
a

Original Sequence
Class Pred:FL

AR FL PF QS

10%

20%

30%

40%

50%

60%

70%

80%

90%

Class Pred IN

0 5 10 15 20 25 30 35 40 45 50

10%

20%

30%

40%

50%

60%

70%

80%

90%

Center distribution IN

0 10 20 30 40 50 60
time

0

10

20

30

40 Avg 5% time slices predictions
PSNR

0 10 20 30 40 50 60
time

0.0

0.2

0.4

0.6

0.8

1.0

Avg 5% time slices predictions
1-Center
1-RandomBaseground
best accuracy

0 10 20 30 40 50 60
time

0.0

0.2

0.4

0.6

0.8

1.0

Avg 5% time slices predictions
3-Center
3-RandomBaseground
best accuracy

0 10 20 30 40 50 60
time

0.0

0.2

0.4

0.6

0.8

1.0

Avg 5% time slices predictions
5-Center
5-RandomBaseground
best accuracy

0 60
time

2793.8401

2806.02

la
m

bd
a

Predicted Sequence PSNR=35.65
Class Pred:FL

AR FL PF QS

10%

20%

30%

40%

50%

60%

70%

80%

90%

Class Pred OUT

0 5 10 15 20 25 30 35 40 45 50

10%

20%

30%

40%

50%

60%

70%

80%

90%

Center distribution OUT

0 10 20 30 40 50 60
time

0.0

0.2

0.4

0.6

0.8

1.0

time predictions
SSIM
best

0 10 20 30 40 50 60
time

0.0

0.2

0.4

0.6

0.8

1.0

time predictions
2-Center
2-RandomBaseground
best accuracy

0 10 20 30 40 50 60
time

0.0

0.2

0.4

0.6

0.8

1.0

time predictions
4-Center
4-RandomBaseground
best accuracy

0 10 20 30 40 50 60
time

0.0

0.2

0.4

0.6

0.8

1.0

time predictions
6-Center
6-RandomBaseground
best accuracy

0 60
time

2793.8401

2806.02

la
m

bd
a

5 x Difference

0 5 10 15 20 25 30 35 40 45 50

Center OUT

0
5

10
15
20
25
30
35
40
45
50

Ce
nt

er
 IN

Center distribution ERROR
H(in)=-0.00 H(out)=-0.00 I(in;out)=0.00

0 10 20 30 40 50 60
time

0.0

0.2

0.4

0.6

0.8

1.0

Avg 5% time slices predictions
SSIM
best

0 10 20 30 40 50 60
time

0.0

0.2

0.4

0.6

0.8

1.0

Avg 5% time slices predictions
2-Center
2-RandomBaseground
best accuracy

0 10 20 30 40 50 60
time

0.0

0.2

0.4

0.6

0.8

1.0

Avg 5% time slices predictions
4-Center
4-RandomBaseground
best accuracy

0 10 20 30 40 50 60
time

0.0

0.2

0.4

0.6

0.8

1.0

Avg 5% time slices predictions
6-Center
6-RandomBaseground
best accuracy

0.0

0.2

0.4

0.6

0.8

1.0

0 60
time

Predicted Output
Label: FL

2806.02

la
m

bd
a

2793.84

0 60
time

2793.8401

2806.02

la
m

bd
a

Masked Sequence
Weak Label FL

0 5 10 15 20 25 30 35 40 45 50

10%

20%

30%

40%

50%

60%

70%

80%

90%

Center distribution PRIOR

0 10 20 30 40 50 60
time

0

10

20

30

40

time predictions
PSNR

0 10 20 30 40 50 60
time

0.0

0.2

0.4

0.6

0.8

1.0

time predictions
1-Center
1-RandomBaseground
best accuracy

0 10 20 30 40 50 60
time

0.0

0.2

0.4

0.6

0.8

1.0

time predictions
3-Center
3-RandomBaseground
best accuracy

0 10 20 30 40 50 60
time

0.0

0.2

0.4

0.6

0.8

1.0

time predictions
5-Center
5-RandomBaseground
best accuracy

0 60
time

2793.8401

2806.02

la
m

bd
a

Original Sequence
Class Pred:FL

AR FL PF QS

10%

20%

30%

40%

50%

60%

70%

80%

90%

Class Pred IN

0 5 10 15 20 25 30 35 40 45 50

10%

20%

30%

40%

50%

60%

70%

80%

90%

Center distribution IN

0 10 20 30 40 50 60
time

0

10

20

30

40 Avg 5% time slices predictions
PSNR

0 10 20 30 40 50 60
time

0.0

0.2

0.4

0.6

0.8

1.0

Avg 5% time slices predictions
1-Center
1-RandomBaseground
best accuracy

0 10 20 30 40 50 60
time

0.0

0.2

0.4

0.6

0.8

1.0

Avg 5% time slices predictions
3-Center
3-RandomBaseground
best accuracy

0 10 20 30 40 50 60
time

0.0

0.2

0.4

0.6

0.8

1.0

Avg 5% time slices predictions
5-Center
5-RandomBaseground
best accuracy

0 60
time

2793.8401

2806.02

la
m

bd
a

Predicted Sequence PSNR=35.65
Class Pred:FL

AR FL PF QS

10%

20%

30%

40%

50%

60%

70%

80%

90%

Class Pred OUT

0 5 10 15 20 25 30 35 40 45 50

10%

20%

30%

40%

50%

60%

70%

80%

90%

Center distribution OUT

0 10 20 30 40 50 60
time

0.0

0.2

0.4

0.6

0.8

1.0

time predictions
SSIM
best

0 10 20 30 40 50 60
time

0.0

0.2

0.4

0.6

0.8

1.0

time predictions
2-Center
2-RandomBaseground
best accuracy

0 10 20 30 40 50 60
time

0.0

0.2

0.4

0.6

0.8

1.0

time predictions
4-Center
4-RandomBaseground
best accuracy

0 10 20 30 40 50 60
time

0.0

0.2

0.4

0.6

0.8

1.0

time predictions
6-Center
6-RandomBaseground
best accuracy

0 60
time

2793.8401

2806.02

la
m

bd
a

5 x Difference

0 5 10 15 20 25 30 35 40 45 50

Center OUT

0
5

10
15
20
25
30
35
40
45
50

Ce
nt

er
 IN

Center distribution ERROR
H(in)=-0.00 H(out)=-0.00 I(in;out)=0.00

0 10 20 30 40 50 60
time

0.0

0.2

0.4

0.6

0.8

1.0

Avg 5% time slices predictions
SSIM
best

0 10 20 30 40 50 60
time

0.0

0.2

0.4

0.6

0.8

1.0

Avg 5% time slices predictions
2-Center
2-RandomBaseground
best accuracy

0 10 20 30 40 50 60
time

0.0

0.2

0.4

0.6

0.8

1.0

Avg 5% time slices predictions
4-Center
4-RandomBaseground
best accuracy

0 10 20 30 40 50 60
time

0.0

0.2

0.4

0.6

0.8

1.0

Avg 5% time slices predictions
6-Center
6-RandomBaseground
best accuracy

0.0

0.2

0.4

0.6

0.8

1.0

0 60
time

Genuine Sequence
Label: FL

2806.02

la
m

bd
a

2793.84

0 60
time

2793.8401

2806.02

la
m

bd
a

Masked Sequence
Weak Label FL

0 5 10 15 20 25 30 35 40 45 50

10%

20%

30%

40%

50%

60%

70%

80%

90%

Center distribution PRIOR

0 10 20 30 40 50 60
time

0

10

20

30

40

time predictions
PSNR

0 10 20 30 40 50 60
time

0.0

0.2

0.4

0.6

0.8

1.0

time predictions
1-Center
1-RandomBaseground
best accuracy

0 10 20 30 40 50 60
time

0.0

0.2

0.4

0.6

0.8

1.0

time predictions
3-Center
3-RandomBaseground
best accuracy

0 10 20 30 40 50 60
time

0.0

0.2

0.4

0.6

0.8

1.0

time predictions
5-Center
5-RandomBaseground
best accuracy

0 60
time

2793.8401

2806.02

la
m

bd
a

Original Sequence
Class Pred:FL

AR FL PF QS

10%

20%

30%

40%

50%

60%

70%

80%

90%

Class Pred IN

0 5 10 15 20 25 30 35 40 45 50

10%

20%

30%

40%

50%

60%

70%

80%

90%

Center distribution IN

0 10 20 30 40 50 60
time

0

10

20

30

40 Avg 5% time slices predictions
PSNR

0 10 20 30 40 50 60
time

0.0

0.2

0.4

0.6

0.8

1.0

Avg 5% time slices predictions
1-Center
1-RandomBaseground
best accuracy

0 10 20 30 40 50 60
time

0.0

0.2

0.4

0.6

0.8

1.0

Avg 5% time slices predictions
3-Center
3-RandomBaseground
best accuracy

0 10 20 30 40 50 60
time

0.0

0.2

0.4

0.6

0.8

1.0

Avg 5% time slices predictions
5-Center
5-RandomBaseground
best accuracy

0 60
time

2793.8401

2806.02

la
m

bd
a

Predicted Sequence PSNR=35.65
Class Pred:FL

AR FL PF QS

10%

20%

30%

40%

50%

60%

70%

80%

90%

Class Pred OUT

0 5 10 15 20 25 30 35 40 45 50

10%

20%

30%

40%

50%

60%

70%

80%

90%

Center distribution OUT

0 10 20 30 40 50 60
time

0.0

0.2

0.4

0.6

0.8

1.0

time predictions
SSIM
best

0 10 20 30 40 50 60
time

0.0

0.2

0.4

0.6

0.8

1.0

time predictions
2-Center
2-RandomBaseground
best accuracy

0 10 20 30 40 50 60
time

0.0

0.2

0.4

0.6

0.8

1.0

time predictions
4-Center
4-RandomBaseground
best accuracy

0 10 20 30 40 50 60
time

0.0

0.2

0.4

0.6

0.8

1.0

time predictions
6-Center
6-RandomBaseground
best accuracy

0 60
time

2793.8401

2806.02

la
m

bd
a

5 x Difference

0 5 10 15 20 25 30 35 40 45 50

Center OUT

0
5

10
15
20
25
30
35
40
45
50

Ce
nt

er
 IN

Center distribution ERROR
H(in)=-0.00 H(out)=-0.00 I(in;out)=0.00

0 10 20 30 40 50 60
time

0.0

0.2

0.4

0.6

0.8

1.0

Avg 5% time slices predictions
SSIM
best

0 10 20 30 40 50 60
time

0.0

0.2

0.4

0.6

0.8

1.0

Avg 5% time slices predictions
2-Center
2-RandomBaseground
best accuracy

0 10 20 30 40 50 60
time

0.0

0.2

0.4

0.6

0.8

1.0

Avg 5% time slices predictions
4-Center
4-RandomBaseground
best accuracy

0 10 20 30 40 50 60
time

0.0

0.2

0.4

0.6

0.8

1.0

Avg 5% time slices predictions
6-Center
6-RandomBaseground
best accuracy

0.0

0.2

0.4

0.6

0.8

1.0

0 60
time

Errors ×5
Label: FL

2806.02

la
m

bd
a

2793.84

0 60
time

2793.8401

2806.02

la
m

bd
a

Masked Sequence
Weak Label FL

0 5 10 15 20 25 30 35 40 45 50

10%

20%

30%

40%

50%

60%

70%

80%

90%

Center distribution PRIOR

0 10 20 30 40 50 60
time

0

10

20

30

40

time predictions
PSNR

0 10 20 30 40 50 60
time

0.0

0.2

0.4

0.6

0.8

1.0

time predictions
1-Center
1-RandomBaseground
best accuracy

0 10 20 30 40 50 60
time

0.0

0.2

0.4

0.6

0.8

1.0

time predictions
3-Center
3-RandomBaseground
best accuracy

0 10 20 30 40 50 60
time

0.0

0.2

0.4

0.6

0.8

1.0

time predictions
5-Center
5-RandomBaseground
best accuracy

0 60
time

2793.8401

2806.02

la
m

bd
a

Original Sequence
Class Pred:FL

AR FL PF QS

10%

20%

30%

40%

50%

60%

70%

80%

90%

Class Pred IN

0 5 10 15 20 25 30 35 40 45 50

10%

20%

30%

40%

50%

60%

70%

80%

90%

Center distribution IN

0 10 20 30 40 50 60
time

0

10

20

30

40 Avg 5% time slices predictions
PSNR

0 10 20 30 40 50 60
time

0.0

0.2

0.4

0.6

0.8

1.0

Avg 5% time slices predictions
1-Center
1-RandomBaseground
best accuracy

0 10 20 30 40 50 60
time

0.0

0.2

0.4

0.6

0.8

1.0

Avg 5% time slices predictions
3-Center
3-RandomBaseground
best accuracy

0 10 20 30 40 50 60
time

0.0

0.2

0.4

0.6

0.8

1.0

Avg 5% time slices predictions
5-Center
5-RandomBaseground
best accuracy

0 60
time

2793.8401

2806.02

la
m

bd
a

Predicted Sequence PSNR=35.65
Class Pred:FL

AR FL PF QS

10%

20%

30%

40%

50%

60%

70%

80%

90%

Class Pred OUT

0 5 10 15 20 25 30 35 40 45 50

10%

20%

30%

40%

50%

60%

70%

80%

90%

Center distribution OUT

0 10 20 30 40 50 60
time

0.0

0.2

0.4

0.6

0.8

1.0

time predictions
SSIM
best

0 10 20 30 40 50 60
time

0.0

0.2

0.4

0.6

0.8

1.0

time predictions
2-Center
2-RandomBaseground
best accuracy

0 10 20 30 40 50 60
time

0.0

0.2

0.4

0.6

0.8

1.0

time predictions
4-Center
4-RandomBaseground
best accuracy

0 10 20 30 40 50 60
time

0.0

0.2

0.4

0.6

0.8

1.0

time predictions
6-Center
6-RandomBaseground
best accuracy

0 60
time

2793.8401

2806.02

la
m

bd
a

5 x Difference

0 5 10 15 20 25 30 35 40 45 50

Center OUT

0
5

10
15
20
25
30
35
40
45
50

Ce
nt

er
 IN

Center distribution ERROR
H(in)=-0.00 H(out)=-0.00 I(in;out)=0.00

0 10 20 30 40 50 60
time

0.0

0.2

0.4

0.6

0.8

1.0

Avg 5% time slices predictions
SSIM
best

0 10 20 30 40 50 60
time

0.0

0.2

0.4

0.6

0.8

1.0

Avg 5% time slices predictions
2-Center
2-RandomBaseground
best accuracy

0 10 20 30 40 50 60
time

0.0

0.2

0.4

0.6

0.8

1.0

Avg 5% time slices predictions
4-Center
4-RandomBaseground
best accuracy

0 10 20 30 40 50 60
time

0.0

0.2

0.4

0.6

0.8

1.0

Avg 5% time slices predictions
6-Center
6-RandomBaseground
best accuracy

0.0

0.2

0.4

0.6

0.8

1.0

0 60
time

0 5 10 15 20 25 30 35 40 45 50

10%

20%

30%

40%

50%

60%

70%

80%

90%

Center distribution PRIOR

Center ID
0 5 10 15 20 25 30 35 40 45 50

10%

20%

30%

40%

50%

60%

70%

80%

90%

Center distribution IN

Center ID
0 5 10 15 20 25 30 35 40 45 50

10%

20%

30%

40%

50%

60%

70%

80%

90%

Center distribution OUT

Center ID

1 11 21 31 41 51 60
time

0.00

0.00

0.01

0.02

0.01

Metric MAE - global result: 0.01

by time
global

1 11 21 31 41 51 60
time

1.22

1.95

3.42

5.63

4.89

Metric MAPE - global result: 3.50

by time
global

1 11 21 31 41 51 60
time

0.00

0.01

0.01

0.03

0.02

Metric RMSE - global result: 0.02

by time
global

time time time

1 11 21 31 41 51 60
time

0.9

1.0

1 11 21 31 41 51 60
time

4
5

1 11 21 31 41 51 60
time

0

1

1 11 21 31 41 51 60
time

0.86
0.93
1.00

1 11 21 31 41 51 60
time

0.08
0.10
0.12

1 11 21 31 41 51 60
time

-0.70

0.30

-0.20

1 11 21 31 41 51 60
time

1.07
1.12
1.17

1 11 21 31 41 51 60
time

0

1

1 11 21 31 41 51 60
time

48.5

1 11 21 31 41 51 60
time

3
4

5

1 11 21 31 41 51 60
time

1.02
1.07
1.12

1 11 21 31 41 51 60
time

0
8
17

Prediction

Original
triplet intensity

peak	separationkh	ratio	maxtotal	continiumline	center

line	asymmetry k/h	ratio	integrated peak	ratios

k	hightintensity linewidth triplet emission

time time time

1 11 21 31 41 51 60
time

0.9

1.0

1 11 21 31 41 51 60
time

4
5

1 11 21 31 41 51 60
time

0

1

1 11 21 31 41 51 60
time

0.86
0.93
1.00

1 11 21 31 41 51 60
time

0.08
0.10
0.12

1 11 21 31 41 51 60
time

-0.70

0.30

-0.20

1 11 21 31 41 51 60
time

1.07
1.12
1.17

1 11 21 31 41 51 60
time

0

1

1 11 21 31 41 51 60
time

48.5

1 11 21 31 41 51 60
time

3
4

5

1 11 21 31 41 51 60
time

1.02
1.07
1.12

1 11 21 31 41 51 60
time

0
8
17

Prediction

Original

intensity

triplet intensity

peak	separationkh	ratio	maxtotal	continiumline	center

line	asymmetry

linewidth tripilet	emission

k/h	ratio	integrated peak	ratios

1 11 21 31 41 51 60
time

0.9

1.0

1 11 21 31 41 51 60
time

4
5

1 11 21 31 41 51 60
time

0

1

1 11 21 31 41 51 60
time

0.86
0.93
1.00

1 11 21 31 41 51 60
time

0.08
0.10
0.12

1 11 21 31 41 51 60
time

-0.70

0.30

-0.20

1 11 21 31 41 51 60
time

1.07
1.12
1.17

1 11 21 31 41 51 60
time

0

1

1 11 21 31 41 51 60
time

48.5

1 11 21 31 41 51 60
time

3
4

5

1 11 21 31 41 51 60
time

1.02
1.07
1.12

1 11 21 31 41 51 60
time

0
8
17

Prediction

Original

intensity

peak	separationkh	ratio	maxtotal	continiumline	center

linewidth tripilet	emission

k/h	ratio	integrated peak	ratios

k	hight

k height triplet intensity line asymmetry

time time time
1 11 21 31 41 51 60

time

0.9

1.0

1 11 21 31 41 51 60
time

4
5

1 11 21 31 41 51 60
time

0

1

1 11 21 31 41 51 60
time

0.86
0.93
1.00

1 11 21 31 41 51 60
time

0.08
0.10
0.12

1 11 21 31 41 51 60
time

-0.70

0.30

-0.20

1 11 21 31 41 51 60
time

1.07
1.12
1.17

1 11 21 31 41 51 60
time

0

1

1 11 21 31 41 51 60
time

48.5

1 11 21 31 41 51 60
time

3
4

5

1 11 21 31 41 51 60
time

1.02
1.07
1.12

1 11 21 31 41 51 60
time

0
8
17

Prediction

intensity

triplet intensity

peak	separationkh	ratio	maxtotal	continiumline	center

line	asymmetry

linewidth tripilet	emission k	hight

1 11 21 31 41 51 60
time

0.9

1.0

1 11 21 31 41 51 60
time

4
5

1 11 21 31 41 51 60
time

0

1

1 11 21 31 41 51 60
time

0.86
0.93
1.00

1 11 21 31 41 51 60
time

0.08
0.10
0.12

1 11 21 31 41 51 60
time

-0.70

0.30

-0.20

1 11 21 31 41 51 60
time

1.07
1.12
1.17

1 11 21 31 41 51 60
time

0

1

1 11 21 31 41 51 60
time

48.5

1 11 21 31 41 51 60
time

3
4

5

1 11 21 31 41 51 60
time

1.02
1.07
1.12

1 11 21 31 41 51 60
time

0
8
17

Prediction

Original

intensity

triplet intensity line	asymmetry

linewidth tripilet	emission

k/h	ratio	integrated peak	ratios

k	hight

k/h ratio integrated peaks ratio line center

time time time

1 11 21 31 41 51 60
time

0.9

1.0

1 11 21 31 41 51 60
time

4
5

1 11 21 31 41 51 60
time

0

1

1 11 21 31 41 51 60
time

0.86
0.93
1.00

1 11 21 31 41 51 60
time

0.08
0.10
0.12

1 11 21 31 41 51 60
time

-0.70

0.30

-0.20

1 11 21 31 41 51 60
time

1.07
1.12
1.17

1 11 21 31 41 51 60
time

0

1

1 11 21 31 41 51 60
time

48.5

1 11 21 31 41 51 60
time

3
4

5

1 11 21 31 41 51 60
time

1.02
1.07
1.12

1 11 21 31 41 51 60
time

0
8
17

Original

intensity

triplet intensity line	asymmetry

linewidth tripilet	emission

k/h	ratio	integrated peak	ratios

k	hight

line	center total continuum k/h ratio max peak separation

time time time
Prediction Genuine

Figure 7. Evaluation of predictions for one flaring (FL) sample performed by the proposed IB-MTS
model. The first row contains, respectively, the masked input, the predicted output, the genuine
data, and the magnified pixel-wise error between the predicted and genuine. Second row: Spectral
center distribution for the prior, the predicted, and the genuine MTS. Third row: MTS evaluation on
the prediction. Last twelve plots: astrophysical features evaluations; the dotted blues represent the
genuine and the green lines represent the prediction.

73

Entropy 2023, 25, 831

DIRECT DIRECT ITERATED

Original

Predicted

Errors×5

Original

Predicted

Errors

SHORT LONG

Figure 8. Prediction results: The first column presents the results of the direct predictions (blue part)
and the second column presents the iterated predictions (violet part). A masked sample is given from
the original sequence (first row); the prediction (second row) and the magnified (×5) differences
(third row) are shown.

Table 2. MTS metric results.

Data Model IB-MTS LSTM ED-LSTM GRU ED-GRU NBeats

IRIS

direct
MAE 0.04 0.05 0.05 0.05 0.04 0.10

MAPE 2.76 13.13 4.71 26.84 3.16 4.75
RMSE 0.07 0.08 0.08 0.08 0.07 0.19

iterated
MAE 0.05 0.06 0.05 0.06 0.05 0.13

MAPE 2.94 12.35 3.53 26.32 3.22 6.47
RMSE 0.08 0.09 0.09 0.10 0.08 0.22

AL

direct
MAE 0.08 0.10 0.08 0.10 0.09 0.11

MAPE 3.71 5.27 4.58 5.50 5.20 6.56
RMSE 0.15 0.16 0.14 0.16 0.16 0.18

iterated
MAE 0.08 0.19 0.16 0.23 0.16 0.11

MAPE 4.00 11.37 9.10 12.94 9.28 6.23
RMSE 0.15 0.26 0.23 0.30 0.23 0.18

PB

direct
MAE 0.19 0.46 0.46 0.50 0.46 0.22

MAPE 4.47 10.15 10.03 10.76 10.14 5.19
RMSE 0.24 0.54 0.51 0.60 0.52 0.28

iterated
MAE 0.24 0.45 0.45 0.45 0.45 0.23

MAPE 4.23 10.00 9.98 10.01 9.98 5.51
RMSE 0.30 0.51 0.500 0.51 0.50 0.28

74

Entropy 2023, 25, 831

Global avg mts metrics by Label QS
Time and Global evaluated metrics

Global Count : 230400000

ib-mts lstm ed-lstm gru ed-gru nbeats

1 11 21 31 41 51 60time0.012

0.071

0.13
Metric mae - global result: 0.04 / 0.05 / 0.05 / 0.05 / 0.04 / 0.10

1 11 21 31 41 51 60time

21

43
Metric mape - global result: 2.76 / 13.13 / 4.71 / 26.84 / 3.16 / 4.75

1 11 21 31 41 51 60time0.023

0.12

0.23
Metric rmse - global result: 0.07 / 0.08 / 0.08 / 0.08 / 0.07 / 0.19

Remainder By Label FL
Time and Global evaluated metrics

Global Count : 51264000

ib-mts lstm ed-lstm gru ed-gru nbeats

1 11 21 31 41 51 60time0.0011

0.04

0.079
Metric mae - global result: 0.01 / 0.02 / 0.02 / 0.02 / 0.02 / 0.07

1 11 21 31 41 51 60time0.35

2.8

5.4
Metric mape - global result: 1.83 / 2.53 / 2.26 / 2.44 / 2.21 / 4.24

1 11 21 31 41 51 60time0.0001

0.11

0.22
Metric rmse - global result: 0.03 / 0.04 / 0.04 / 0.04 / 0.04 / 0.20

Remainder By Label PF
Time and Global evaluated metrics

Global Count : 20476800

ib-mts lstm ed-lstm gru ed-gru nbeats

1 11 21 31 41 51 60time0.0012

0.04

0.08
Metric mae - global result: 0.01 / 0.02 / 0.02 / 0.02 / 0.01 / 0.07

1 11 21 31 41 51 60time0.36

2.9

5.5
Metric mape - global result: 1.70 / 2.47 / 2.08 / 2.29 / 1.91 / 4.17

1 11 21 31 41 51 60time-4.4e-4

0.11

0.22
Metric rmse - global result: 0.03 / 0.03 / 0.03 / 0.03 / 0.03 / 0.20

Remainder By Label AR
Time and Global evaluated metrics

Global Count : 55814400

ib-mts lstm ed-lstm gru ed-gru nbeats

1 11 21 31 41 51 60time0.0054

0.067

0.13
Metric mae - global result: 0.03 / 0.04 / 0.04 / 0.04 / 0.03 / 0.10

1 11 21 31 41 51 60time0.81

3.6

6.5
Metric mape - global result: 2.52 / 3.07 / 2.69 / 2.62 / 2.68 / 4.87

1 11 21 31 41 51 60time0.01

0.12

0.23
Metric rmse - global result: 0.05 / 0.06 / 0.06 / 0.06 / 0.06 / 0.20

Remainder By Label QS
Time and Global evaluated metrics

Global Count : 102844800

ib-mts lstm ed-lstm gru ed-gru nbeats

1 11 21 31 41 51 60time0.025

0.092

0.16
Metric mae - global result: 0.07 / 0.08 / 0.07 / 0.08 / 0.07 / 0.13

1 11 21 31 41 51 60time-0.68

31

64
Metric mape - global result: 3.38 / 19.41 / 6.48 / 40.07 / 3.92 / 5.03

1 11 21 31 41 51 60time0.037

0.13

0.23
Metric rmse - global result: 0.10 / 0.11 / 0.10 / 0.10 / 0.10 / 0.19

By Label QS
Time and Global evaluated metrics

Global Count : 102844800

ib-mts lstm ed-lstm gru ed-gru nbeats

1 11 21 31 41 51 60time0.025

0.092

0.16
Metric mae - global result: 0.07 / 0.08 / 0.07 / 0.08 / 0.07 / 0.13

1 11 21 31 41 51 60time-0.68

31

64
Metric mape - global result: 3.38 / 19.41 / 6.48 / 40.07 / 3.92 / 5.03

1 11 21 31 41 51 60time0.037

0.13

0.23
Metric rmse - global result: 0.10 / 0.11 / 0.10 / 0.10 / 0.10 / 0.19

By Input Class QS
Time and Global evaluated metrics

Global Count : 99734400

ib-mts lstm ed-lstm gru ed-gru nbeats

1 11 21 31 41 51 60time0.025

0.097

0.17
Metric mae - global result: 0.07 / 0.08 / 0.08 / 0.08 / 0.07 / 0.13

1 11 21 31 41 51 60time-0.72

32

65
Metric mape - global result: 3.41 / 19.75 / 6.57 / 40.76 / 3.96 / 5.05

1 11 21 31 41 51 60time0.036

0.13

0.23
Metric rmse - global result: 0.10 / 0.11 / 0.11 / 0.11 / 0.10 / 0.19

By Input Class AR
Time and Global evaluated metrics

Global Count : 2419200

ib-mts lstm ed-lstm gru ed-gru nbeats

1 11 21 31 41 51 60time0.013

0.076

0.14
Metric mae - global result: 0.04 / 0.05 / 0.05 / 0.05 / 0.05 / 0.10

1 11 21 31 41 51 60time1.3

4.1

6.9
Metric mape - global result: 2.43 / 2.80 / 3.30 / 2.66 / 2.89 / 4.75

1 11 21 31 41 51 60time0.026

0.11

0.21
Metric rmse - global result: 0.07 / 0.07 / 0.07 / 0.08 / 0.06 / 0.17

By Input Class PF
Time and Global evaluated metrics

Global Count : 0

ib-mts lstm ed-lstm gru ed-gru nbeats

1 11 21 31 41 51 60time-0.5

0

0.5
Metric mae - global result: 0.00 / 0.00 / 0.00 / 0.00 / 0.00 / 0.00

1 11 21 31 41 51 60time-0.5

0

0.5
Metric mape - global result: 0.00 / 0.00 / 0.00 / 0.00 / 0.00 / 0.00

1 11 21 31 41 51 60time-0.5

0

0.5
Metric rmse - global result: 0.00 / 0.00 / 0.00 / 0.00 / 0.00 / 0.00

By Input Class FL
Time and Global evaluated metrics

Global Count : 691200

ib-mts lstm ed-lstm gru ed-gru nbeats

1 11 21 31 41 51 60time0.0087

0.046

0.084
Metric mae - global result: 0.04 / 0.04 / 0.04 / 0.04 / 0.04 / 0.07

1 11 21 31 41 51 60time0.6

3.2

5.9
Metric mape - global result: 1.56 / 1.34 / 1.61 / 1.20 / 1.46 / 4.04

1 11 21 31 41 51 60time0.0092

0.094

0.18
Metric rmse - global result: 0.05 / 0.06 / 0.06 / 0.06 / 0.06 / 0.16

By Output Class QS
Time and Global evaluated metrics

Global Count : 101145600

ib-mts lstm ed-lstm gru ed-gru nbeats

1 11 21 31 41 51 60time0.025

0.097

0.17
Metric mae - global result: 0.07 / 0.08 / 0.07 / 0.08 / 0.07 / 0.13

1 11 21 31 41 51 60time-0.69

31

64
Metric mape - global result: 3.37 / 19.55 / 6.52 / 40.35 / 3.92 / 5.02

1 11 21 31 41 51 60time0.037

0.13

0.23
Metric rmse - global result: 0.10 / 0.11 / 0.10 / 0.11 / 0.10 / 0.19

By Output Class AR
Time and Global evaluated metrics

Global Count : 1497600

ib-mts lstm ed-lstm gru ed-gru nbeats

1 11 21 31 41 51 60time0.0072

0.068

0.13
Metric mae - global result: 0.05 / 0.04 / 0.05 / 0.06 / 0.06 / 0.09

1 11 21 31 41 51 60time1.4

4.3

7.2
Metric mape - global result: 3.89 / 3.23 / 4.25 / 2.39 / 3.99 / 5.21

1 11 21 31 41 51 60time0.0099

0.11

0.21
Metric rmse - global result: 0.07 / 0.06 / 0.08 / 0.08 / 0.08 / 0.17

By Output Class PF
Time and Global evaluated metrics

Global Count : 0

ib-mts lstm ed-lstm gru ed-gru nbeats

1 11 21 31 41 51 60time-0.5

0

0.5
Metric mae - global result: 0.00 / 0.00 / 0.00 / 0.00 / 0.00 / 0.00

1 11 21 31 41 51 60time-0.5

0

0.5
Metric mape - global result: 0.00 / 0.00 / 0.00 / 0.00 / 0.00 / 0.00

1 11 21 31 41 51 60time-0.5

0

0.5
Metric rmse - global result: 0.00 / 0.00 / 0.00 / 0.00 / 0.00 / 0.00

By Output Class FL
Time and Global evaluated metrics

Global Count : 201600

ib-mts lstm ed-lstm gru ed-gru nbeats

1 11 21 31 41 51 60time0.0097

0.064

0.12
Metric mae - global result: 0.05 / 0.05 / 0.05 / 0.04 / 0.04 / 0.08

1 11 21 31 41 51 60time0.7

4

7.4
Metric mape - global result: 4.91 / 3.32 / 4.35 / 2.95 / 3.81 / 5.42

1 11 21 31 41 51 60time0.012

0.11

0.21
Metric rmse - global result: 0.08 / 0.07 / 0.07 / 0.06 / 0.07 / 0.17

By Input class QS Output class QS
Time and Global evaluated metrics

Global Count : 98697600

ib-mts lstm ed-lstm gru ed-gru nbeats

1 11 21 31 41 51 60time0.025

0.097

0.17
Metric mae - global result: 0.07 / 0.08 / 0.08 / 0.08 / 0.07 / 0.13

1 11 21 31 41 51 60time-0.73

32

65
Metric mape - global result: 3.39 / 19.81 / 6.59 / 40.95 / 3.96 / 5.03

1 11 21 31 41 51 60time0.037

0.13

0.24
Metric rmse - global result: 0.10 / 0.11 / 0.11 / 0.11 / 0.10 / 0.19

By Input class QS Output class AR
Time and Global evaluated metrics

Global Count : 864000

ib-mts lstm ed-lstm gru ed-gru nbeats

1 11 21 31 41 51 60time0.0071

0.083

0.16
Metric mae - global result: 0.05 / 0.04 / 0.06 / 0.07 / 0.06 / 0.10

1 11 21 31 41 51 60time1.4

4.7

8.1
Metric mape - global result: 4.71 / 3.69 / 4.45 / 2.55 / 4.34 / 5.77

1 11 21 31 41 51 60time0.011

0.12

0.23
Metric rmse - global result: 0.08 / 0.06 / 0.08 / 0.09 / 0.09 / 0.18

By Input class QS Output class PF
Time and Global evaluated metrics

Global Count : 0

ib-mts lstm ed-lstm gru ed-gru nbeats

1 11 21 31 41 51 60time-0.5

0

0.5
Metric mae - global result: 0.00 / 0.00 / 0.00 / 0.00 / 0.00 / 0.00

1 11 21 31 41 51 60time-0.5

0

0.5
Metric mape - global result: 0.00 / 0.00 / 0.00 / 0.00 / 0.00 / 0.00

1 11 21 31 41 51 60time-0.5

0

0.5
Metric rmse - global result: 0.00 / 0.00 / 0.00 / 0.00 / 0.00 / 0.00

By Input class QS Output class FL
Time and Global evaluated metrics

Global Count : 172800

ib-mts lstm ed-lstm gru ed-gru nbeats

1 11 21 31 41 51 60time0.0093

0.069

0.13
Metric mae - global result: 0.05 / 0.05 / 0.06 / 0.05 / 0.06 / 0.09

1 11 21 31 41 51 60time0.99

4.3

7.8
Metric mape - global result: 4.96 / 4.74 / 5.23 / 4.04 / 5.26 / 5.71

1 11 21 31 41 51 60time0.012

0.11

0.22
Metric rmse - global result: 0.08 / 0.07 / 0.08 / 0.07 / 0.09 / 0.18

By Input class AR Output class QS
Time and Global evaluated metrics

Global Count : 1900800

ib-mts lstm ed-lstm gru ed-gru nbeats

1 11 21 31 41 51 60time0.015

0.077

0.14
Metric mae - global result: 0.04 / 0.05 / 0.05 / 0.05 / 0.05 / 0.10

1 11 21 31 41 51 60time1.2

4

6.9
Metric mape - global result: 2.33 / 2.72 / 3.05 / 2.63 / 2.87 / 4.75

1 11 21 31 41 51 60time0.027

0.11

0.21
Metric rmse - global result: 0.07 / 0.08 / 0.07 / 0.08 / 0.06 / 0.17

By Input class AR Output class AR
Time and Global evaluated metrics

Global Count : 489600

ib-mts lstm ed-lstm gru ed-gru nbeats

1 11 21 31 41 51 60time0.0062

0.063

0.12
Metric mae - global result: 0.03 / 0.04 / 0.05 / 0.05 / 0.03 / 0.07

1 11 21 31 41 51 60time0.96

4

7.2
Metric mape - global result: 2.61 / 3.36 / 4.50 / 3.06 / 3.62 / 4.54

1 11 21 31 41 51 60time0.0072

0.1

0.2
Metric rmse - global result: 0.06 / 0.06 / 0.07 / 0.07 / 0.05 / 0.16

By Input class AR Output class PF
Time and Global evaluated metrics

Global Count : 0

ib-mts lstm ed-lstm gru ed-gru nbeats

1 11 21 31 41 51 60time-0.5

0

0.5
Metric mae - global result: 0.00 / 0.00 / 0.00 / 0.00 / 0.00 / 0.00

1 11 21 31 41 51 60time-0.5

0

0.5
Metric mape - global result: 0.00 / 0.00 / 0.00 / 0.00 / 0.00 / 0.00

1 11 21 31 41 51 60time-0.5

0

0.5
Metric rmse - global result: 0.00 / 0.00 / 0.00 / 0.00 / 0.00 / 0.00

By Input class AR Output class FL
Time and Global evaluated metrics

Global Count : 28800

ib-mts lstm ed-lstm gru ed-gru nbeats

1 11 21 31 41 51 60time-0.5

0

0.5
Metric mae - global result: 0.05 / 0.00 / 0.05 / 0.00 / 0.00 / 0.00

1 11 21 31 41 51 60time-0.5

3.3

7.1
Metric mape - global result: 4.62 / 0.00 / 5.02 / 0.00 / 0.00 / 0.00

1 11 21 31 41 51 60time-0.5

0

0.5
Metric rmse - global result: 0.07 / 0.00 / 0.07 / 0.00 / 0.00 / 0.00

By Input class PF Output class QS
Time and Global evaluated metrics

Global Count : 0

ib-mts lstm ed-lstm gru ed-gru nbeats

1 11 21 31 41 51 60time-0.5

0

0.5
Metric mae - global result: 0.00 / 0.00 / 0.00 / 0.00 / 0.00 / 0.00

1 11 21 31 41 51 60time-0.5

0

0.5
Metric mape - global result: 0.00 / 0.00 / 0.00 / 0.00 / 0.00 / 0.00

1 11 21 31 41 51 60time-0.5

0

0.5
Metric rmse - global result: 0.00 / 0.00 / 0.00 / 0.00 / 0.00 / 0.00

By Input class PF Output class AR
Time and Global evaluated metrics

Global Count : 0

ib-mts lstm ed-lstm gru ed-gru nbeats

1 11 21 31 41 51 60time-0.5

0

0.5
Metric mae - global result: 0.00 / 0.00 / 0.00 / 0.00 / 0.00 / 0.00

1 11 21 31 41 51 60time-0.5

0

0.5
Metric mape - global result: 0.00 / 0.00 / 0.00 / 0.00 / 0.00 / 0.00

1 11 21 31 41 51 60time-0.5

0

0.5
Metric rmse - global result: 0.00 / 0.00 / 0.00 / 0.00 / 0.00 / 0.00

By Input class PF Output class PF
Time and Global evaluated metrics

Global Count : 0

ib-mts lstm ed-lstm gru ed-gru nbeats

1 11 21 31 41 51 60time-0.5

0

0.5
Metric mae - global result: 0.00 / 0.00 / 0.00 / 0.00 / 0.00 / 0.00

1 11 21 31 41 51 60time-0.5

0

0.5
Metric mape - global result: 0.00 / 0.00 / 0.00 / 0.00 / 0.00 / 0.00

1 11 21 31 41 51 60time-0.5

0

0.5
Metric rmse - global result: 0.00 / 0.00 / 0.00 / 0.00 / 0.00 / 0.00

By Input class PF Output class FL
Time and Global evaluated metrics

Global Count : 0

ib-mts lstm ed-lstm gru ed-gru nbeats

1 11 21 31 41 51 60time-0.5

0

0.5
Metric mae - global result: 0.00 / 0.00 / 0.00 / 0.00 / 0.00 / 0.00

1 11 21 31 41 51 60time-0.5

0

0.5
Metric mape - global result: 0.00 / 0.00 / 0.00 / 0.00 / 0.00 / 0.00

1 11 21 31 41 51 60time-0.5

0

0.5
Metric rmse - global result: 0.00 / 0.00 / 0.00 / 0.00 / 0.00 / 0.00

By Input class FL Output class QS
Time and Global evaluated metrics

Global Count : 547200

ib-mts lstm ed-lstm gru ed-gru nbeats

1 11 21 31 41 51 60time0.0089

0.049

0.089
Metric mae - global result: 0.04 / 0.05 / 0.04 / 0.05 / 0.05 / 0.07

1 11 21 31 41 51 60time0.33

3

5.7
Metric mape - global result: 1.64 / 1.32 / 1.55 / 1.23 / 1.10 / 3.86

1 11 21 31 41 51 60time0.0095

0.094

0.18
Metric rmse - global result: 0.06 / 0.06 / 0.06 / 0.06 / 0.06 / 0.16

By Input class FL Output class AR
Time and Global evaluated metrics

Global Count : 144000

ib-mts lstm ed-lstm gru ed-gru nbeats

1 11 21 31 41 51 60time0.007

0.044

0.082
Metric mae - global result: 0.04 / 0.04 / 0.03 / 0.04 / 0.04 / 0.07

1 11 21 31 41 51 60time0.37

3.1

6
Metric mape - global result: 1.24 / 1.50 / 2.14 / 1.16 / 1.87 / 4.11

1 11 21 31 41 51 60time0.0082

0.094

0.18
Metric rmse - global result: 0.05 / 0.06 / 0.05 / 0.06 / 0.06 / 0.16

By Input class FL Output class PF
Time and Global evaluated metrics

Global Count : 0

ib-mts lstm ed-lstm gru ed-gru nbeats

1 11 21 31 41 51 60time-0.5

0

0.5
Metric mae - global result: 0.00 / 0.00 / 0.00 / 0.00 / 0.00 / 0.00

1 11 21 31 41 51 60time-0.5

0

0.5
Metric mape - global result: 0.00 / 0.00 / 0.00 / 0.00 / 0.00 / 0.00

1 11 21 31 41 51 60time-0.5

0

0.5
Metric rmse - global result: 0.00 / 0.00 / 0.00 / 0.00 / 0.00 / 0.00

By Input class FL Output class FL
Time and Global evaluated metrics

Global Count : 0

ib-mts lstm ed-lstm gru ed-gru nbeats

1 11 21 31 41 51 60time-3.8e-3

0.038

0.081
Metric mae - global result: 0.00 / 0.04 / 0.04 / 0.04 / 0.03 / 0.07

1 11 21 31 41 51 60time-0.3

3.2

6.8
Metric mape - global result: 0.00 / 1.29 / 1.61 / 1.00 / 2.22 / 4.30

1 11 21 31 41 51 60time-8.4e-3

0.085

0.18
Metric rmse - global result: 0.00 / 0.06 / 0.05 / 0.06 / 0.05 / 0.15

−0.33
Figure 9. MTS metrics evaluation averaged on the test set for the direct prediction setups on QS, AR,
and FL IRIS data.

For the direct setup of Figure 9, our proposed model performs better than all of
the concurrent ones in more than half of the time steps, and there is even a gap in the
performance for the first 30 time steps. The traditional LSTM and GRU have very bad
performances in the first 20 time steps compared to the other models. The three models
with IB formulations, which propose compressions of the time dimension similar to ED-
LSTM and ED-GRU, demonstrate similar performances with a performance gap in the
first 20 time steps compared to the proposed IB-MTS. However, ED-GRU manages to
recover this gap and even performs slightly better in the last 20 time steps in terms of
MAE and RMSE. NBeats does not perform well on the IRIS dataset; the results for MAE
and RMSE are among the worst, whereas the MAPE results are average. This means
that NBeats produces predictions with significant errors for high values, but it is highly
accurate for small values. One reason for this could be the small number of trainable
parameters for NBeats, compared with the complexity of the IRIS dataset. In simpler
datasets, such as AL and PB, NBeats can achieve the second-best results after IB-MTS and
the best results on iterated predictions on the PB dataset. One possible explanation for
the weak performances of NBeats on IRIS datasets could be the complexity and the strong
spatiotemporal dependencies of spectral data, where the spatiotemporal dependencies are
less clear on AL and PB data, with sensors being sorted by their latitudes, ignoring their
longitudes. For the MAPE metric, the proposed IB-MTS still performs better than the other
ones, even with the last time steps. One interesting fact is that even if the performances
are quite far in the first part of the time steps, the classical LSTM and GRU seem to have
fewer error variabilities than the ED-LSTM and ED-GRU for MAE and RMSE metrics. This
could be explained by the specific designs of NBeats for long-term predictions, suggesting
that other currently designed IB models may close the performance gap over the long
term while still providing comparable results. In contrast to these conclusions, concerning
the MAPE metric, the classical LSTM and GRU models have a lot of error variability and
perform worse than the IB-designed models. The variability could be due to larger errors
for small values because these types of errors have significant impacts on the MAPE metric.

Concerning the last 20 time steps, Figure A1 from Appendix C can provide some
explanation for the gain of performance in terms of the MAE and RMSE of the ED-GRU.
This figure provides details of evaluations on the three different types of data included
in the training and test data, i.e., QS, AR, and FL data, representing, respectively, 45.6%,
26.2%, and 28.2% of the (short) data. The figure shows that our proposed IB-MTS performs
better than all of the others in all of the time steps for QS data, and is the most represented
class in the trained and tested data. The other IB models still perform worse than IB-MTS

75

Entropy 2023, 25, 831

for the first 30 time steps but they perform better in terms of MAE and RMSE in AR and FL
data for the last 20 time steps.

Global avg mts metrics by Label QS
Time and Global evaluated metrics

Global Count : 165680640

ib-mts lstm ed-lstm gru ed-gru nbeats

1 121 241 361 481 601 707time0.01

0.12

0.23
Metric mae - global result: 0.05 / 0.06 / 0.05 / 0.06 / 0.05 / 0.13

1 121 241 361 481 601 707time-2.2

40

83
Metric mape - global result: 2.94 / 12.35 / 3.53 / 26.32 / 3.22 / 6.47

1 121 241 361 481 601 707time0.02

0.16

0.31
Metric rmse - global result: 0.08 / 0.09 / 0.09 / 0.10 / 0.08 / 0.22

Remainder By Label QS
Time and Global evaluated metrics

Global Count : 60827280

ib-mts lstm ed-lstm gru ed-gru nbeats

1 121 241 361 481 601 707time-0.068

0.13

0.34
Metric mae - global result: 0.08 / 0.08 / 0.08 / 0.09 / 0.08 / 0.18

1 121 241 361 481 601 707time-5.6

57

120
Metric mape - global result: 3.71 / 17.22 / 4.48 / 42.65 / 4.01 / 6.99

1 121 241 361 481 601 707time-0.081

0.16

0.41
Metric rmse - global result: 0.11 / 0.12 / 0.12 / 0.12 / 0.11 / 0.24

Remainder By Label AR
Time and Global evaluated metrics

Global Count : 36152880

ib-mts lstm ed-lstm gru ed-gru nbeats

1 121 241 361 481 601 707time-0.041

0.084

0.21
Metric mae - global result: 0.04 / 0.04 / 0.04 / 0.04 / 0.04 / 0.13

1 121 241 361 481 601 707time-2.2

4.4

11
Metric mape - global result: 2.72 / 3.19 / 3.01 / 2.92 / 2.90 / 6.88

1 121 241 361 481 601 707time-0.065

0.13

0.33
Metric rmse - global result: 0.06 / 0.07 / 0.07 / 0.07 / 0.06 / 0.23

Remainder By Label PF
Time and Global evaluated metrics

Global Count : 8515920

ib-mts lstm ed-lstm gru ed-gru nbeats

1 121 241 361 481 601 707time-0.022

0.044

0.11
Metric mae - global result: 0.01 / 0.02 / 0.02 / 0.02 / 0.02 / 0.08

1 121 241 361 481 601 707time-1.6

9.7

21
Metric mape - global result: 1.75 / 3.24 / 2.21 / 2.37 / 2.02 / 4.77

1 121 241 361 481 601 707time-0.052

0.1

0.26
Metric rmse - global result: 0.03 / 0.04 / 0.04 / 0.03 / 0.03 / 0.20

Remainder By Label FL
Time and Global evaluated metrics

Global Count : 60184560

ib-mts lstm ed-lstm gru ed-gru nbeats

1 121 241 361 481 601 707time0.0002

0.06

0.12
Metric mae - global result: 0.04 / 0.05 / 0.03 / 0.04 / 0.03 / 0.08

1 121 241 361 481 601 707time-2.3

30

64
Metric mape - global result: 2.23 / 10.61 / 2.81 / 7.89 / 2.59 / 5.84

1 121 241 361 481 601 707time8.7e-4

0.12

0.24
Metric rmse - global result: 0.07 / 0.08 / 0.06 / 0.09 / 0.06 / 0.21

By Label QS
Time and Global evaluated metrics

Global Count : 60827280

ib-mts lstm ed-lstm gru ed-gru nbeats

1 121 241 361 481 601 707time-0.068

0.13

0.34
Metric mae - global result: 0.08 / 0.08 / 0.08 / 0.09 / 0.08 / 0.18

1 121 241 361 481 601 707time-5.6

57

120
Metric mape - global result: 3.71 / 17.22 / 4.48 / 42.65 / 4.01 / 6.99

1 121 241 361 481 601 707time-0.081

0.16

0.41
Metric rmse - global result: 0.11 / 0.12 / 0.12 / 0.12 / 0.11 / 0.24

By Input Class QS
Time and Global evaluated metrics

Global Count : 59417040

ib-mts lstm ed-lstm gru ed-gru nbeats

1 121 241 361 481 601 707time-0.068

0.13

0.34
Metric mae - global result: 0.08 / 0.08 / 0.09 / 0.09 / 0.08 / 0.18

1 121 241 361 481 601 707time-5.6

57

120
Metric mape - global result: 3.73 / 17.41 / 4.52 / 43.14 / 4.03 / 7.03

1 121 241 361 481 601 707time-0.081

0.16

0.41
Metric rmse - global result: 0.11 / 0.12 / 0.12 / 0.13 / 0.12 / 0.25

By Input Class AR
Time and Global evaluated metrics

Global Count : 1220400

ib-mts lstm ed-lstm gru ed-gru nbeats

1 121 241 361 481 601 707time-0.042

0.084

0.21
Metric mae - global result: 0.04 / 0.04 / 0.04 / 0.04 / 0.04 / 0.11

1 121 241 361 481 601 707time-2.1

4.4

11
Metric mape - global result: 2.29 / 3.00 / 3.41 / 2.72 / 3.66 / 6.04

1 121 241 361 481 601 707time-0.056

0.11

0.28
Metric rmse - global result: 0.06 / 0.06 / 0.06 / 0.06 / 0.06 / 0.18

By Input Class PF
Time and Global evaluated metrics

Global Count : 0

ib-mts lstm ed-lstm gru ed-gru nbeats

1 121 241 361 481 601 707time-0.5

0

0.5
Metric mae - global result: 0.00 / 0.00 / 0.00 / 0.00 / 0.00 / 0.00

1 121 241 361 481 601 707time-0.5

0

0.5
Metric mape - global result: 0.00 / 0.00 / 0.00 / 0.00 / 0.00 / 0.00

1 121 241 361 481 601 707time-0.5

0

0.5
Metric rmse - global result: 0.00 / 0.00 / 0.00 / 0.00 / 0.00 / 0.00

By Input Class FL
Time and Global evaluated metrics

Global Count : 189840

ib-mts lstm ed-lstm gru ed-gru nbeats

1 121 241 361 481 601 707time-0.026

0.052

0.13
Metric mae - global result: 0.05 / 0.05 / 0.04 / 0.05 / 0.05 / 0.08

1 121 241 361 481 601 707time-1.8

3.5

8.9
Metric mape - global result: 1.16 / 1.32 / 1.48 / 1.19 / 1.51 / 4.99

1 121 241 361 481 601 707time-0.046

0.092

0.23
Metric rmse - global result: 0.07 / 0.07 / 0.06 / 0.07 / 0.07 / 0.16

By Output Class QS
Time and Global evaluated metrics

Global Count : 60095280

ib-mts lstm ed-lstm gru ed-gru nbeats

1 121 241 361 481 601 707time-0.071

0.14

0.36
Metric mae - global result: 0.08 / 0.08 / 0.08 / 0.09 / 0.08 / 0.19

1 121 241 361 481 601 707time-5.6

57

120
Metric mape - global result: 3.70 / 17.30 / 4.48 / 42.75 / 4.00 / 6.92

1 121 241 361 481 601 707time-0.083

0.16

0.42
Metric rmse - global result: 0.11 / 0.12 / 0.12 / 0.12 / 0.11 / 0.25

By Output Class AR
Time and Global evaluated metrics

Global Count : 704880

ib-mts lstm ed-lstm gru ed-gru nbeats

1 121 241 361 481 601 707time-0.097

0.19

0.49
Metric mae - global result: 0.05 / 0.04 / 0.06 / 0.05 / 0.05 / 0.12

1 121 241 361 481 601 707time-2.4

4.8

12
Metric mape - global result: 3.79 / 3.33 / 4.34 / 3.51 / 4.51 / 6.38

1 121 241 361 481 601 707time-0.11

0.21

0.53
Metric rmse - global result: 0.08 / 0.06 / 0.08 / 0.07 / 0.07 / 0.20

By Output Class PF
Time and Global evaluated metrics

Global Count : 0

ib-mts lstm ed-lstm gru ed-gru nbeats

1 121 241 361 481 601 707time-0.5

0

0.5
Metric mae - global result: 0.00 / 0.00 / 0.00 / 0.00 / 0.00 / 0.00

1 121 241 361 481 601 707time-0.5

0

0.5
Metric mape - global result: 0.00 / 0.00 / 0.00 / 0.00 / 0.00 / 0.00

1 121 241 361 481 601 707time-0.5

0

0.5
Metric rmse - global result: 0.00 / 0.00 / 0.00 / 0.00 / 0.00 / 0.00

By Output Class FL
Time and Global evaluated metrics

Global Count : 27120

ib-mts lstm ed-lstm gru ed-gru nbeats

1 121 241 361 481 601 707time-0.064

0.12

0.32
Metric mae - global result: 0.05 / 0.00 / 0.06 / 0.05 / 0.05 / 0.17

1 121 241 361 481 601 707time-2.4

4.8

12
Metric mape - global result: 4.62 / 0.00 / 4.78 / 4.39 / 3.82 / 7.59

1 121 241 361 481 601 707time-0.078

0.15

0.39
Metric rmse - global result: 0.08 / 0.00 / 0.08 / 0.07 / 0.07 / 0.23

By Input class QS Output class QS
Time and Global evaluated metrics

Global Count : 58902000

ib-mts lstm ed-lstm gru ed-gru nbeats

1 121 241 361 481 601 707time-0.071

0.14

0.36
Metric mae - global result: 0.08 / 0.09 / 0.09 / 0.09 / 0.08 / 0.19

1 121 241 361 481 601 707time-5.6

57

120
Metric mape - global result: 3.73 / 17.47 / 4.51 / 43.23 / 4.03 / 6.92

1 121 241 361 481 601 707time-0.083

0.16

0.42
Metric rmse - global result: 0.11 / 0.12 / 0.12 / 0.13 / 0.12 / 0.25

By Input class QS Output class AR
Time and Global evaluated metrics

Global Count : 487920

ib-mts lstm ed-lstm gru ed-gru nbeats

1 121 241 361 481 601 707time-0.097

0.19

0.49
Metric mae - global result: 0.05 / 0.04 / 0.06 / 0.05 / 0.05 / 0.14

1 121 241 361 481 601 707time-2.4

4.8

12
Metric mape - global result: 4.22 / 3.78 / 4.60 / 4.24 / 4.57 / 6.71

1 121 241 361 481 601 707time-0.11

0.21

0.53
Metric rmse - global result: 0.08 / 0.06 / 0.09 / 0.07 / 0.08 / 0.21

By Input class QS Output class PF
Time and Global evaluated metrics

Global Count : 0

ib-mts lstm ed-lstm gru ed-gru nbeats

1 121 241 361 481 601 707time-0.5

0

0.5
Metric mae - global result: 0.00 / 0.00 / 0.00 / 0.00 / 0.00 / 0.00

1 121 241 361 481 601 707time-0.5

0

0.5
Metric mape - global result: 0.00 / 0.00 / 0.00 / 0.00 / 0.00 / 0.00

1 121 241 361 481 601 707time-0.5

0

0.5
Metric rmse - global result: 0.00 / 0.00 / 0.00 / 0.00 / 0.00 / 0.00

By Input class QS Output class FL
Time and Global evaluated metrics

Global Count : 27120

ib-mts lstm ed-lstm gru ed-gru nbeats

1 121 241 361 481 601 707time-0.064

0.12

0.32
Metric mae - global result: 0.05 / 0.00 / 0.06 / 0.05 / 0.08 / 0.17

1 121 241 361 481 601 707time-2.4

4.8

12
Metric mape - global result: 4.62 / 0.00 / 5.39 / 4.39 / 5.66 / 7.62

1 121 241 361 481 601 707time-0.078

0.15

0.39
Metric rmse - global result: 0.08 / 0.00 / 0.09 / 0.07 / 0.10 / 0.23

By Input class AR Output class QS
Time and Global evaluated metrics

Global Count : 1003440

ib-mts lstm ed-lstm gru ed-gru nbeats

1 121 241 361 481 601 707time-0.049

0.095

0.24
Metric mae - global result: 0.04 / 0.04 / 0.04 / 0.04 / 0.04 / 0.11

1 121 241 361 481 601 707time-2.1

4.4

11
Metric mape - global result: 2.21 / 2.99 / 3.19 / 2.72 / 3.49 / 6.04

1 121 241 361 481 601 707time-0.06

0.12

0.3
Metric rmse - global result: 0.06 / 0.06 / 0.06 / 0.06 / 0.06 / 0.19

By Input class AR Output class AR
Time and Global evaluated metrics

Global Count : 216960

ib-mts lstm ed-lstm gru ed-gru nbeats

1 121 241 361 481 601 707time-0.038

0.076

0.19
Metric mae - global result: 0.04 / 0.04 / 0.05 / 0.00 / 0.04 / 0.10

1 121 241 361 481 601 707time-2

4

10
Metric mape - global result: 2.60 / 3.15 / 4.85 / 0.00 / 4.30 / 6.04

1 121 241 361 481 601 707time-0.054

0.1

0.27
Metric rmse - global result: 0.07 / 0.05 / 0.07 / 0.00 / 0.06 / 0.18

By Input class AR Output class PF
Time and Global evaluated metrics

Global Count : 0

ib-mts lstm ed-lstm gru ed-gru nbeats

1 121 241 361 481 601 707time-0.5

0

0.5
Metric mae - global result: 0.00 / 0.00 / 0.00 / 0.00 / 0.00 / 0.00

1 121 241 361 481 601 707time-0.5

0

0.5
Metric mape - global result: 0.00 / 0.00 / 0.00 / 0.00 / 0.00 / 0.00

1 121 241 361 481 601 707time-0.5

0

0.5
Metric rmse - global result: 0.00 / 0.00 / 0.00 / 0.00 / 0.00 / 0.00

By Input class AR Output class FL
Time and Global evaluated metrics

Global Count : 0

ib-mts lstm ed-lstm gru ed-gru nbeats

1 121 241 361 481 601 707time-0.5

0

0.5
Metric mae - global result: 0.00 / 0.00 / 0.06 / 0.00 / 0.00 / 0.00

1 121 241 361 481 601 707time-0.5

3.5

7.5
Metric mape - global result: 0.00 / 0.00 / 5.22 / 0.00 / 0.00 / 0.00

1 121 241 361 481 601 707time-0.5

0

0.5
Metric rmse - global result: 0.00 / 0.00 / 0.08 / 0.00 / 0.00 / 0.00

By Input class PF Output class QS
Time and Global evaluated metrics

Global Count : 0

ib-mts lstm ed-lstm gru ed-gru nbeats

1 121 241 361 481 601 707time-0.5

0

0.5
Metric mae - global result: 0.00 / 0.00 / 0.00 / 0.00 / 0.00 / 0.00

1 121 241 361 481 601 707time-0.5

0

0.5
Metric mape - global result: 0.00 / 0.00 / 0.00 / 0.00 / 0.00 / 0.00

1 121 241 361 481 601 707time-0.5

0

0.5
Metric rmse - global result: 0.00 / 0.00 / 0.00 / 0.00 / 0.00 / 0.00

By Input class PF Output class AR
Time and Global evaluated metrics

Global Count : 0

ib-mts lstm ed-lstm gru ed-gru nbeats

1 121 241 361 481 601 707time-0.5

0

0.5
Metric mae - global result: 0.00 / 0.00 / 0.00 / 0.00 / 0.00 / 0.00

1 121 241 361 481 601 707time-0.5

0

0.5
Metric mape - global result: 0.00 / 0.00 / 0.00 / 0.00 / 0.00 / 0.00

1 121 241 361 481 601 707time-0.5

0

0.5
Metric rmse - global result: 0.00 / 0.00 / 0.00 / 0.00 / 0.00 / 0.00

By Input class PF Output class PF
Time and Global evaluated metrics

Global Count : 0

ib-mts lstm ed-lstm gru ed-gru nbeats

1 121 241 361 481 601 707time-0.5

0

0.5
Metric mae - global result: 0.00 / 0.00 / 0.00 / 0.00 / 0.00 / 0.00

1 121 241 361 481 601 707time-0.5

0

0.5
Metric mape - global result: 0.00 / 0.00 / 0.00 / 0.00 / 0.00 / 0.00

1 121 241 361 481 601 707time-0.5

0

0.5
Metric rmse - global result: 0.00 / 0.00 / 0.00 / 0.00 / 0.00 / 0.00

By Input class PF Output class FL
Time and Global evaluated metrics

Global Count : 0

ib-mts lstm ed-lstm gru ed-gru nbeats

1 121 241 361 481 601 707time-0.5

0

0.5
Metric mae - global result: 0.00 / 0.00 / 0.00 / 0.00 / 0.00 / 0.00

1 121 241 361 481 601 707time-0.5

0

0.5
Metric mape - global result: 0.00 / 0.00 / 0.00 / 0.00 / 0.00 / 0.00

1 121 241 361 481 601 707time-0.5

0

0.5
Metric rmse - global result: 0.00 / 0.00 / 0.00 / 0.00 / 0.00 / 0.00

By Input class FL Output class QS
Time and Global evaluated metrics

Global Count : 189840

ib-mts lstm ed-lstm gru ed-gru nbeats

1 121 241 361 481 601 707time-0.5

0

0.5
Metric mae - global result: 0.05 / 0.05 / 0.05 / 0.05 / 0.05 / 0.00

1 121 241 361 481 601 707time-0.5

1.1

2.8
Metric mape - global result: 1.16 / 1.33 / 1.49 / 1.21 / 1.18 / 0.00

1 121 241 361 481 601 707time-0.5

0

0.5
Metric rmse - global result: 0.07 / 0.07 / 0.07 / 0.07 / 0.07 / 0.00

By Input class FL Output class AR
Time and Global evaluated metrics

Global Count : 0

ib-mts lstm ed-lstm gru ed-gru nbeats

1 121 241 361 481 601 707time-0.026

0.052

0.13
Metric mae - global result: 0.00 / 0.05 / 0.04 / 0.05 / 0.00 / 0.08

1 121 241 361 481 601 707time-1.8

3.5

8.9
Metric mape - global result: 0.00 / 1.23 / 1.53 / 1.03 / 0.00 / 4.92

1 121 241 361 481 601 707time-0.047

0.096

0.24
Metric rmse - global result: 0.00 / 0.07 / 0.06 / 0.07 / 0.00 / 0.17

By Input class FL Output class PF
Time and Global evaluated metrics

Global Count : 0

ib-mts lstm ed-lstm gru ed-gru nbeats

1 121 241 361 481 601 707time-0.5

0

0.5
Metric mae - global result: 0.00 / 0.00 / 0.00 / 0.00 / 0.00 / 0.00

1 121 241 361 481 601 707time-0.5

0

0.5
Metric mape - global result: 0.00 / 0.00 / 0.00 / 0.00 / 0.00 / 0.00

1 121 241 361 481 601 707time-0.5

0

0.5
Metric rmse - global result: 0.00 / 0.00 / 0.00 / 0.00 / 0.00 / 0.00

By Input class FL Output class FL
Time and Global evaluated metrics

Global Count : 0

ib-mts lstm ed-lstm gru ed-gru nbeats

1 121 241 361 481 601 707time-0.024

0.048

0.12
Metric mae - global result: 0.00 / 0.00 / 0.04 / 0.00 / 0.03 / 0.07

1 121 241 361 481 601 707time-1.9

3.7

9.4
Metric mape - global result: 0.00 / 0.00 / 1.39 / 0.00 / 2.42 / 5.27

1 121 241 361 481 601 707time-0.045

0.092

0.23
Metric rmse - global result: 0.00 / 0.00 / 0.05 / 0.00 / 0.05 / 0.16

Figure 10. MTS metrics evaluation averaged on the test set for the iterated prediction setups on QS,
AR, and FL IRIS data.

Figure 10 presents the evaluations of the MTS metrics in the iterated setup, where the
model predicts 60 time steps ahead on data that have already been predicted. For this
procedure, the proposed IB-MTS does not show a specific improvement in performance,
except for the MAPE metric and the first 20 time steps, where the first direct prediction is
performed. It is also important to note that the traditional LSTM and GRU models have
high accumulated errors over time and perform much worse than the others in the last
200 time steps. The specific drop in the curves at 241 time steps is directly related to the
variation in the length of the MTS within the testing set.

Figure 11 shows a histogram of the number of QS, AR, and FL data present in the test
data by the number of total time steps; the majority of FL data have predicted durations
greater than 700 time steps. On the contrary, the majority of QS and AR data have predicted
durations smaller than 300 time steps.

100 200 300 400 500 600 700predicted time-steps100101102counts

QSARFL

Figure 11. Histogram of the event durations from IRIS data.

Figure A2 from Appendix C presents a detailed comparison of the MTS evaluations
for each class of iterated data. These graphs firstly explain the specific shapes present in
Figure 10 by the fact that no QS data are present after 242 predicted time steps and no AR
data are present after 298 predicted time steps. The proposed IB-MTS still performs very
well on iterated QS data for all of the metrics, as well as for the MAPE metric on all types of
data. ED-LSTM and ED-GRU perform better than IB-MTS after 120 time steps for MAE
and RMSE metrics. One interpretation of this could be that the proposed IB-MTS is not
designed to handle predictions on predictions, and does not include a state channel, such
as in LSTM of GRU. Moreover, many variabilities are present for LSTM and GRU on the
MAPE metric, whereas the IB-MTS model remains consistently stable and outperforms the

76

Entropy 2023, 25, 831

other models in all scenarios. This could be attributed to the errors present for small values
because they impact a lot of the results of the MAPE. In fact, an error of 0.1 for a value of
0.2 has a MAPE of 100× 0.1/0.2 = 50, whereas the same error of 0.1 for a value of 0.8 has a
MAPE of 100× 0.1/0.8 = 12.5.

3.3. Computer Vision Metrics Evaluation

For the two procedures, direct and iterated, as described in Section 3.1, Table 3 pro-
vides the results of the evaluations in terms of PSNR and SSIM averaged on the test data.
The proposed IB-MTS performs better than the concurrent models on IRIS data for both
procedures. The gain of performance is very sensible for direct predictions. For iterated
predictions, the results are more grouped and the ED-GRU performs similar to IB-MTS. On
AL data, IB-MTS also outperforms concurrent models, except for the PSNR on direct data,
where ED-LSTM performs a bit better.

Table 3. Accuracy in terms of average PSNR and SSIM for direct and iterated predictions.

Dataset Metric IB-MTS LSTM ED-LSTM GRU ED-GRU NBeats

IRIS
direct PSNR 27.2 25.6 26.3 25.9 26.7 14.6

SSIM 0.897 0.869 0.887 0.864 0.891 0.673

iterated PSNR 23.8 23.0 23.4 22.8 23.8 13.4
SSIM 0.868 0.821 0.864 0.809 0.868 0.586

AL
direct PSNR 17.2 16.0 17.4 15.9 16.4 15.7

SSIM 0.518 0.400 0.488 0.377 0.401 0.346

iterated PSNR 16.7 11.8 13.0 10.6 13.1 15.2
SSIM 0.516 0.046 0.198 0.023 0.166 0.361

PB
direct PSNR 12.5 5.4 6.0 4.5 5.7 11.4

SSIM 0.361 0.013 0.000 0.004 0.000 0.470

iterated PSNR 10.5 5.9 6.0 5.9 6.0 11.0
SSIM 0.235 0.003 0.003 0.003 0.004 0.472

NBeats still fails on IRIS data for the CV metric evaluation but performs well on the
simpler datasets (AL and PB). NBeats can even achieve the highest SSIM on PB data. Yet
our proposed IB-MTS model is the most stable in terms of the results on various datasets
and it outperforms the concurrent ones on almost all metrics and datasets. NBeats also
performs the best for the iterated procedure on PB data. Our proposed IB-MTS model was
designed to predict multiple steps ahead in a direct fashion and does not generally extend
very well for the iterated procedure.

The first row of Figure 12 provides detailed time evolutions of these metrics on IRIS
direct data. They show a sensible gain of performance for the first 20 time steps, whereas
the classical LSTM and GRU models do not have specific time evolutions in terms of
performance and they perform worse than the others.

The second row of Figure 12 provides detailed time evolutions of the PSNR and SSIM
metrics on the IRIS iterated data. ED-LSTM and ED-GRU perform a bit better than IB-MTS
under the iterated setup for more than 300 time steps whereas the classical LSTM and GRU
models perform worse. The specific variation of the curve at 300 time steps is explained by
the diversity of the MTS durations evoked in Figure 11.

77

Entropy 2023, 25, 831

di
re

ct

0 10 20 30 40 50 60time
20
30
40

PSNR

temporal evaluation

0 10 20 30 40 50 60time
0.80.91.0

SSIM

temporal evaluation

0 10 20 30 40 50 60time00.20.40.60.81.0
1-NN A

ccuracy
temporal evaluation

0 10 20 30 40 50 60time00.20.40.60.81.0

2-NN A
ccuracy

temporal evaluation

0 10 20 30 40 50 60time00.20.40.60.81.0

3-NN A
ccuracy

temporal evaluation

0 10 20 30 40 50 60time00.20.40.60.81.0

4-NN A
ccuracy

temporal evaluation

0 10 20 30 40 50 60time00.20.40.60.81.0

5-NN A
ccuracy

temporal evaluation

0 10 20 30 40 50 60time00.20.40.60.81.0
6-NN A

ccuracy
temporal evaluation

ib-mtslstm ed-lstmgru ed-grunbeats ideal

ib-mtslstm ed-lstmgru ed-grunbeats RandIdeal

ib-mtslstm ed-lstmgru ed-grunbeats RandIdeal

ite
ra

te
d

0 100 200 300 400 500 600 720time
20
30
40

PSNR
temporal evaluation

0 100 200 300 400 500 600 720time0.50.60.70.80.91.0

SSIM

temporal evaluation

0 100 200 300 400 500 600 720time00.20.40.60.81.0

1-NN A
ccuracy

temporal evaluation

0 100 200 300 400 500 600 720time00.20.40.60.81.0

2-NN A
ccuracy

temporal evaluation

0 100 200 300 400 500 600 720time00.20.40.60.81.0

3-NN A
ccuracy

temporal evaluation

0 100 200 300 400 500 600 720time00.20.40.60.81.0
4-NN A

ccuracy
temporal evaluation

0 100 200 300 400 500 600 720time00.20.40.60.81.0

5-NN A
ccuracy

temporal evaluation

0 100 200 300 400 500 600 720time00.20.40.60.81.0

6-NN A
ccuracy

temporal evaluation

ib-mtslstm ed-lstmgru ed-grunbeats ideal

ib-mtslstm ed-lstmgru ed-grunbeats RandIdeal

ib-mtslstm ed-lstmgru ed-grunbeats RandIdeal

Figure 12. CV evaluation (over time) of the forecast for the direct and iterated predictions on
IRIS data.

3.3.1. Information Bottleneck Evaluation on IRIS Data

This subsection evaluates IT-related measures on IRIS prior X1:180, genuine X181:240,
and predicted X̃181:240 data, as explained in Figure 6. Entropies H(·), KL-divergences
KL(·||·), and mutual information I(·, ·) are estimated by using the centroids obtained by
a version of the k-means process performed in [55]. The dictionary of these 53 centroids
is publicly available (i4ds.github.io/IRISreader/html/centroid_data.html, accessed on
20 February 2023). Each prior sequence X1:180 contains 180 centroids, one for each time
step, with repetitions because the dictionary of centroids only has 53 centroids. In the
same manner, each genuine X181:240 and predicted X̃181:240 sequence contains 60 centroids,
with repetitions.

Figure 13 shows the average distributions for prior, genuine, and predicted data. As
expected, the average prior and genuine distributions of centroids are very similar and
correspond to averages of the observed data. The average distribution of the predicted
data remains close to that of the observed data, with only a few deviations in means and
standard deviations. In particularly, centroid numbers 42 and 49 are a bit over-represented
in the predictions whereas centroid numbers 20 and 44 are a bit under-represented. More
details are given in Appendix C with the joint probabilities p(c1, c2) of the centers present
in the genuine c1 and pred c2 forecasts. Figure A3 presents the direct setup of IRIS data and
Figure A4 presents the iterated setup. High probabilities on the diagonal c1 = c2 indicate a
high accuracy of the prediction in terms of centroids. These figures show that our proposed
IB-MTS ensures the high conservation of the physics behind the spectra, whereas NBeats
totally fails in this task.

Table 4 presents the average IT measurements estimated on the prior, genuine,
and predicted data. c0 stands for the centroids present in prior data, c1 and c2 are
the ones present in genuine and predicted data. Ideally, KL(c0||c2) = KL(c0||c1), and
H(c2) = H(c1) = I(c1, c2). The higher the I(c1; c2), the better. The results show that IB-MTS
predicts the best c2 centroids. This is confirmed by the highest value of mutual information
I(c1; c2) between the genuine and prediction data. Moreover, the KL-divergence KL(c0||c2)
between the prior and the prediction data is the closest to KL(c0||c1) between the prior and
the genuine data for IB-MTS on direct data. The interpretation of a high I(c1; c2) is that
the IB-MTS model is the best at predicting the information present in the prediction, even
without the need for a lot of extra information beyond what is given in the prior, because
KL(c0||c2) is the lowest and closest to KL(c0||c1). As a consequence, it seems that IB-MTS
is the model that best adheres to the IB principles. NBeats failed to predict the correct
centroids. The KL-divergence KL(c0||c2) between the prior and the prediction is the closest

78

Entropy 2023, 25, 831

to KL(c0||c1) but equal to 0; the mutual information I(c1; c2) between the genuine and the
prediction is 0, which means that, on average, it could not predict the information of the
target. One reason for this could be that the intensity information is very important for the
NBeats process on IRIS data. The fact that we removed this information from the dataset
by normalizing each time step by the maximum values may penalize NBeats on the IRIS
data, which is not the case with AL and PB data, where NBeats performs fine.

prior centroids genuine centroids pred centroids

Global avg timestats Count = 8000
CENTERS

0 5 10 15 20 25 30 35 40 45 50

10%

20%

30%

40%

prior centers

0 5 10 15 20 25 30 35 40 45 50

10%

20%

30%

40%

genuine centers

0 5 10 15 20 25 30 35 40 45 50

10%

20%

30%

40%

pred centers

0 5 10 15 20 25 30 35 40 45 50

out centers

0
5

10
15
20
25
30
35
40
45
50

in
 c

en
te

rs

centers flip

prior genuine prediction prediction
VS. genuine

1.0e-1

4.0e-1

8.0e-1

1.2e0
1.6e0
2.0e0

bi
ts

H(c0) H(c1) H(c2)

I(c1;c2)

H(c0) H(c0)

KL(c0||c1) KL(c0||c2)

CLASSES

AR FL PF QS

10%

20%

30%

40%

50%

genuine classif

AR FL PF QS

10%

20%

30%

40%

50%

output classif

AR FL PF QS
pred classif

AR
FL

PF
QS

ge
nu

in
e

cla
ss

if

0
9%

0
1%

0
0%

0
1%

0
2%

0
38%

0
0%

0
0%

0
0%

0
0%

0
0%

0
0%

0
1%

0
0%

0
0%

0
49%

classes flip

prediction
VS. genuine

1.0e-1

3.0e-1

6.0e-1

9.0e-1
1.2e0
1.5e0

bi
ts H(k1) H(k2)I(k1;k2)

0.000
0.025
0.050
0.075
0.100
0.125
0.150

0.0

0.1

0.2

0.3

0.4

Avg Label FL Count = 1780
CENTERS

0 5 10 15 20 25 30 35 40 45 50

10%

20%

30%

prior centers

0 5 10 15 20 25 30 35 40 45 50

10%

20%

30%

genuine centers

0 5 10 15 20 25 30 35 40 45 50

10%

20%

30%

pred centers

0 5 10 15 20 25 30 35 40 45 50

out centers

0
5

10
15
20
25
30
35
40
45
50

in
 c

en
te

rs

centers flip

prior genuine prediction prediction
VS. genuine

1.0e-1

3.0e-1

6.0e-1

9.0e-1
1.2e0
1.5e0

bi
ts

H(c0)
H(c1) H(c2)

I(c1;c2)=9e-2

H(c0) H(c0)

KL(c0||c1) KL(c0||c2)

CLASSES

AR FL PF QS

10%
20%
30%
40%
50%
60%
70%
80%
90%

genuine classif

AR FL PF QS

10%
20%
30%
40%
50%
60%
70%
80%
90%

output classif

AR FL PF QS
pred classif

AR
FL

PF
QS

ge
nu

in
e

cla
ss

if

0
1%

0
0%

0
0%

0
0%

0
1%

0
98%

0
0%

0
0%

0
0%

0
0%

0
0%

0
0%

0
0%

0
0%

0
0%

0
0%

classes flip

1.0e-1
1.2e-1
1.5e-1

bi
ts

H(k1)=1e-1

H(k2)

I(k1;k2)=5e-2

0.00

0.05

0.10

0.15

0.20

0.0

0.2

0.4

0.6

0.8

Avg Label PF Count = 711
CENTERS

0 5 10 15 20 25 30 35 40 45 50

10%

20%

30%

prior centers

0 5 10 15 20 25 30 35 40 45 50

10%

20%

30%

genuine centers

0 5 10 15 20 25 30 35 40 45 50

10%

20%

30%

pred centers

0 5 10 15 20 25 30 35 40 45 50

out centers

0
5

10
15
20
25
30
35
40
45
50

in
 c

en
te

rs

centers flip

prior genuine prediction prediction
VS. genuine

1.0e-1

3.0e-1

6.0e-1

9.0e-1
1.2e0
1.5e0

bi
ts

H(c0)
H(c1) H(c2)I(c1;c2)=7e-2

H(c0) H(c0)

KL(c0||c1) KL(c0||c2)

CLASSES

AR FL PF QS

10%
20%
30%
40%
50%
60%
70%
80%
90%

genuine classif

AR FL PF QS

10%
20%
30%
40%
50%
60%
70%
80%
90%

output classif

AR FL PF QS
pred classif

AR
FL

PF
QS

ge
nu

in
e

cla
ss

if

0
6%

0
0%

0
0%

0
0%

0
2%

0
92%

0
0%

0
0%

0
0%

0
0%

0
0%

0
0%

0
0%

0
0%

0
0%

0
0%

classes flip

prediction
VS. genuine

1.0e-1

1.6e-1

2.4e-1

3.2e-1

4.0e-1

bi
ts

H(k1)
H(k2)

I(k1;k2)

0.00

0.05

0.10

0.15

0.0

0.2

0.4

0.6

0.8

Avg Label AR Count = 1938
CENTERS

0 5 10 15 20 25 30 35 40 45 50

10%

20%

30%

prior centers

0 5 10 15 20 25 30 35 40 45 50

10%

20%

30%

genuine centers

0 5 10 15 20 25 30 35 40 45 50

10%

20%

30%

pred centers

0 5 10 15 20 25 30 35 40 45 50

out centers

0
5

10
15
20
25
30
35
40
45
50

in
 c

en
te

rs

centers flip

prior genuine prediction prediction
VS. genuine

1.0e-1

4.0e-1

8.0e-1

1.2e0
1.6e0
2.0e0

bi
ts

H(c0)
H(c1) H(c2)

I(c1;c2)

H(c0) H(c0)

KL(c0||c1) KL(c0||c2)

CLASSES

AR FL PF QS

10%

20%

30%

40%

genuine classif

AR FL PF QS

10%

20%

30%

40%

output classif

AR FL PF QS
pred classif

AR
FL

PF
QS

ge
nu

in
e

cla
ss

if

0
35%

0
2%

0
0%

0
4%

0
5%

0
31%

0
0%

0
0%

0
0%

0
0%

0
0%

0
0%

0
5%

0
0%

0
0%

0
18%

classes flip

prediction
VS. genuine

1.0e-1

4.0e-1

8.0e-1
1.2e0
1.6e0
2.0e0

bi
ts

H(k1) H(k2)
I(k1;k2)

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.0

0.1

0.2

0.3

Avg Label QS Count = 3571
CENTERS

0 5 10 15 20 25 30 35 40 45 50

10%

20%

30%

40%

50%

60%

70%

prior centers

0 5 10 15 20 25 30 35 40 45 50

10%

20%

30%

40%

50%

60%

70%

genuine centers

0 5 10 15 20 25 30 35 40 45 50

10%

20%

30%

40%

50%

60%

70%

pred centers

0 5 10 15 20 25 30 35 40 45 50

out centers

0
5

10
15
20
25
30
35
40
45
50

in
 c

en
te

rs

centers flip

prior genuine prediction prediction
VS. genuine

1.0e-1

4.0e-1

8.0e-1

1.2e0
1.6e0
2.0e0

bi
ts

H(c0) H(c1)
H(c2)

I(c1;c2)

H(c0) H(c0)

KL(c0||c1) KL(c0||c2)

CLASSES

AR FL PF QS

10%
20%
30%
40%
50%
60%
70%
80%
90%

genuine classif

AR FL PF QS

10%
20%
30%
40%
50%
60%
70%
80%
90%

output classif

AR FL PF QS
pred classif

AR
FL

PF
QS

ge
nu

in
e

cla
ss

if

0
0%

0
0%

0
0%

0
1%

0
0%

0
0%

0
0%

0
0%

0
0%

0
0%

0
0%

0
0%

0
0%

0
0%

0
0%

0
99%

classes flip

1.0e-1

bi
ts

H(k1)=5e-2

H(k2)=4e-3

I(k1;k2)=2e-3

0.0

0.1

0.2

0.3

0.0

0.2

0.4

0.6

0.8

Avg Label AR Count = 1938
CENTERS

0 5 10 15 20 25 30 35 40 45 50

10%

20%

30%

prior centers

0 5 10 15 20 25 30 35 40 45 50

10%

20%

30%

genuine centers

0 5 10 15 20 25 30 35 40 45 50

10%

20%

30%

pred centers

0 5 10 15 20 25 30 35 40 45 50

out centers

0
5

10
15
20
25
30
35
40
45
50

in
 c

en
te

rs

centers flip

prior genuine prediction prediction
VS. genuine

1.0e-1

4.0e-1

8.0e-1

1.2e0
1.6e0
2.0e0

bi
ts

H(c0)
H(c1) H(c2)

I(c1;c2)

H(c0) H(c0)

KL(c0||c1) KL(c0||c2)

CLASSES

AR FL PF QS

10%

20%

30%

40%

genuine classif

AR FL PF QS

10%

20%

30%

40%

output classif

AR FL PF QS
pred classif

AR
FL

PF
QS

ge
nu

in
e

cla
ss

if

0
35%

0
2%

0
0%

0
4%

0
5%

0
31%

0
0%

0
0%

0
0%

0
0%

0
0%

0
0%

0
5%

0
0%

0
0%

0
18%

classes flip

prediction
VS. genuine

1.0e-1

4.0e-1

8.0e-1
1.2e0
1.6e0
2.0e0

bi
ts

H(k1) H(k2)
I(k1;k2)

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.0

0.1

0.2

0.3

Avg Input Class QS Count = 458
CENTERS

0 5 10 15 20 25 30 35 40 45 50

10%

20%

30%

40%

50%

prior centers

0 5 10 15 20 25 30 35 40 45 50

10%

20%

30%

40%

50%

genuine centers

0 5 10 15 20 25 30 35 40 45 50

10%

20%

30%

40%

50%

pred centers

0 5 10 15 20 25 30 35 40 45 50

out centers

0
5

10
15
20
25
30
35
40
45
50

in
 c

en
te

rs

centers flip

prior genuine prediction prediction
VS. genuine

1.0e-1

4.0e-1

8.0e-1

1.2e0
1.6e0
2.0e0

bi
ts H(c0) H(c1) H(c2)

I(c1;c2)

H(c0) H(c0)

KL(c0||c1) KL(c0||c2)

CLASSES

AR FL PF QS

10%

20%

30%

40%

50%

60%

70%

output classif

0.00

0.05

0.10

0.15

Avg Input Class AR Count = 778
CENTERS

0 5 10 15 20 25 30 35 40 45 50

10%

20%

30%

prior centers

0 5 10 15 20 25 30 35 40 45 50

10%

20%

30%

genuine centers

0 5 10 15 20 25 30 35 40 45 50

10%

20%

30%

pred centers

0 5 10 15 20 25 30 35 40 45 50

out centers

0
5

10
15
20
25
30
35
40
45
50

in
 c

en
te

rs

centers flip

prior genuine prediction prediction
VS. genuine

1.0e-1

4.0e-1

8.0e-1

1.2e0
1.6e0
2.0e0

bi
ts

H(c0)
H(c1) H(c2)

I(c1;c2)

H(c0) H(c0)

KL(c0||c1) KL(c0||c2)

CLASSES

AR FL PF QS

10%
20%
30%
40%
50%
60%
70%
80%

output classif

0.00

0.02

0.04

0.06

0.08

0.10

Avg Input Class PF Count = 0
CENTERS

0 5 10 15 20 25 30 35 40 45 50

10%

prior centers

0 5 10 15 20 25 30 35 40 45 50

10%

genuine centers

0 5 10 15 20 25 30 35 40 45 50

10%

pred centers

0 5 10 15 20 25 30 35 40 45 50

out centers

0
5

10
15
20
25
30
35
40
45
50

in
 c

en
te

rs

centers flip

prior genuine prediction prediction
VS. genuine

1.0e-1

5.0e-1

bi
ts

H(c0)=0e0

H(c1)=0e0

H(c2)=0e0I(c1;c2)=0e0

H(c0)=0e0

H(c0)=0e0

KL(c0||c1)=0e0

KL(c0||c2)=0e0

CLASSES

AR FL PF QS

10%

output classif

0.10

0.05

0.00

0.05

0.10

Avg Input Class FL Count = 702
CENTERS

0 5 10 15 20 25 30 35 40 45 50

10%

20%

30%

40%

50%

prior centers

0 5 10 15 20 25 30 35 40 45 50

10%

20%

30%

40%

50%

genuine centers

0 5 10 15 20 25 30 35 40 45 50

10%

20%

30%

40%

50%

pred centers

0 5 10 15 20 25 30 35 40 45 50

out centers

0
5

10
15
20
25
30
35
40
45
50

in
 c

en
te

rs

centers flip

prior genuine prediction prediction
VS. genuine

1.0e-1

3.0e-1

6.0e-1

9.0e-1
1.2e0
1.5e0

bi
ts

H(c0)
H(c1) H(c2)

I(c1;c2)=1e-1

H(c0) H(c0)

KL(c0||c1) KL(c0||c2)

CLASSES

AR FL PF QS

10%
20%
30%
40%
50%
60%
70%
80%

output classif

0.00

0.05

0.10

0.15

0.20

Avg Output Class QS Count = 422
CENTERS

0 5 10 15 20 25 30 35 40 45 50

10%

20%

30%

40%

prior centers

0 5 10 15 20 25 30 35 40 45 50

10%

20%

30%

40%

genuine centers

0 5 10 15 20 25 30 35 40 45 50

10%

20%

30%

40%

pred centers

0 5 10 15 20 25 30 35 40 45 50

out centers

0
5

10
15
20
25
30
35
40
45
50

in
 c

en
te

rs

centers flip

prior genuine prediction prediction
VS. genuine

1.0e-1

4.0e-1

8.0e-1

1.2e0
1.6e0
2.0e0

bi
ts H(c0)

H(c1) H(c2)

I(c1;c2)

H(c0) H(c0)

KL(c0||c1) KL(c0||c2)

CLASSES

AR FL PF QS

10%
20%
30%
40%
50%
60%
70%
80%

genuine classif

0.00

0.05

0.10

0.15

Avg Output Class AR Count = 867
CENTERS

0 5 10 15 20 25 30 35 40 45 50

10%

20%

30%

prior centers

0 5 10 15 20 25 30 35 40 45 50

10%

20%

30%

genuine centers

0 5 10 15 20 25 30 35 40 45 50

10%

20%

30%

pred centers

0 5 10 15 20 25 30 35 40 45 50

out centers

0
5

10
15
20
25
30
35
40
45
50

in
 c

en
te

rs

centers flip

prior genuine prediction prediction
VS. genuine

1.0e-1

4.0e-1

8.0e-1

1.2e0
1.6e0
2.0e0

bi
ts

H(c0)
H(c1) H(c2)

I(c1;c2)

H(c0) H(c0)

KL(c0||c1) KL(c0||c2)

CLASSES

AR FL PF QS

10%

20%

30%

40%

50%

60%

70%

genuine classif

0.00

0.02

0.04

0.06

0.08

0.10

0.12

Avg Output Class PF Count = 0
CENTERS

0 5 10 15 20 25 30 35 40 45 50

10%

prior centers

0 5 10 15 20 25 30 35 40 45 50

10%

genuine centers

0 5 10 15 20 25 30 35 40 45 50

10%

pred centers

0 5 10 15 20 25 30 35 40 45 50

out centers

0
5

10
15
20
25
30
35
40
45
50

in
 c

en
te

rs

centers flip

prior genuine prediction prediction
VS. genuine

1.0e-1

5.0e-1

bi
ts

H(c0)=0e0

H(c1)=0e0

H(c2)=0e0I(c1;c2)=0e0

H(c0)=0e0

H(c0)=0e0

KL(c0||c1)=0e0

KL(c0||c2)=0e0

CLASSES

AR FL PF QS

10%

genuine classif

0.10

0.05

0.00

0.05

0.10

Avg Output Class FL Count = 649
CENTERS

0 5 10 15 20 25 30 35 40 45 50

10%

20%

30%

40%

50%

prior centers

0 5 10 15 20 25 30 35 40 45 50

10%

20%

30%

40%

50%

genuine centers

0 5 10 15 20 25 30 35 40 45 50

10%

20%

30%

40%

50%

pred centers

0 5 10 15 20 25 30 35 40 45 50

out centers

0
5

10
15
20
25
30
35
40
45
50

in
 c

en
te

rs

centers flip

prior genuine prediction prediction
VS. genuine

1.0e-1

3.0e-1

6.0e-1

9.0e-1
1.2e0
1.5e0

bi
ts

H(c0)
H(c1) H(c2)

I(c1;c2)

H(c0) H(c0)

KL(c0||c1) KL(c0||c2)

CLASSES

AR FL PF QS

10%
20%
30%
40%
50%
60%
70%
80%
90%

genuine classif

0.00

0.05

0.10

0.15

0.20

Avg Input class QS Output class QS Count = 352
CENTERS

0 5 10 15 20 25 30 35 40 45 50

10%

20%

30%

40%

50%

prior centers

0 5 10 15 20 25 30 35 40 45 50

10%

20%

30%

40%

50%

genuine centers

0 5 10 15 20 25 30 35 40 45 50

10%

20%

30%

40%

50%

pred centers

0 5 10 15 20 25 30 35 40 45 50

out centers

0
5

10
15
20
25
30
35
40
45
50

in
 c

en
te

rs

centers flip

prior genuine prediction prediction
VS. genuine

1.0e-1

5.0e-1

1.0e0

1.5e0
2.0e0
2.5e0

bi
ts

H(c0) H(c1) H(c2)

I(c1;c2)

H(c0) H(c0)

KL(c0||c1) KL(c0||c2)

CLASSES

0.00

0.05

0.10

0.15

Avg Input class QS Output class AR Count = 104
CENTERS

0 5 10 15 20 25 30 35 40 45 50

10%

20%

30%

40%

50%

prior centers

0 5 10 15 20 25 30 35 40 45 50

10%

20%

30%

40%

50%

genuine centers

0 5 10 15 20 25 30 35 40 45 50

10%

20%

30%

40%

50%

pred centers

0 5 10 15 20 25 30 35 40 45 50

out centers

0
5

10
15
20
25
30
35
40
45
50

in
 c

en
te

rs

centers flip

prior genuine prediction prediction
VS. genuine

1.0e-1

5.0e-1

1.0e0

1.5e0
2.0e0
2.5e0

bi
ts

H(c0) H(c1) H(c2)

I(c1;c2)

H(c0) H(c0)

KL(c0||c1) KL(c0||c2)

CLASSES

0.000

0.025

0.050

0.075

0.100

0.125

0.150

Avg Input class QS Output class PF Count = 0
CENTERS

0 5 10 15 20 25 30 35 40 45 50

10%

prior centers

0 5 10 15 20 25 30 35 40 45 50

10%

genuine centers

0 5 10 15 20 25 30 35 40 45 50

10%

pred centers

0 5 10 15 20 25 30 35 40 45 50

out centers

0
5

10
15
20
25
30
35
40
45
50

in
 c

en
te

rs

centers flip

prior genuine prediction prediction
VS. genuine

1.0e-1

5.0e-1

bi
ts

H(c0)=0e0

H(c1)=0e0

H(c2)=0e0I(c1;c2)=0e0

H(c0)=0e0

H(c0)=0e0

KL(c0||c1)=0e0

KL(c0||c2)=0e0

CLASSES

0.10

0.05

0.00

0.05

0.10

Avg Input class QS Output class FL Count = 2
CENTERS

0 5 10 15 20 25 30 35 40 45 50

10%

20%

30%

40%

50%

prior centers

0 5 10 15 20 25 30 35 40 45 50

10%

20%

30%

40%

50%

genuine centers

0 5 10 15 20 25 30 35 40 45 50

10%

20%

30%

40%

50%

pred centers

0 5 10 15 20 25 30 35 40 45 50

out centers

0
5

10
15
20
25
30
35
40
45
50

in
 c

en
te

rs

centers flip

prior genuine prediction prediction
VS. genuine

1.0e-1

4.0e-1

8.0e-1

1.2e0
1.6e0
2.0e0

bi
ts

H(c0) H(c1) H(c2)

I(c1;c2)

H(c0) H(c0)

KL(c0||c1) KL(c0||c2)

CLASSES

0.00

0.05

0.10

0.15

Avg Input class AR Output class QS Count = 70
CENTERS

0 5 10 15 20 25 30 35 40 45 50

10%

20%

30%

prior centers

0 5 10 15 20 25 30 35 40 45 50

10%

20%

30%

genuine centers

0 5 10 15 20 25 30 35 40 45 50

10%

20%

30%

pred centers

0 5 10 15 20 25 30 35 40 45 50

out centers

0
5

10
15
20
25
30
35
40
45
50

in
 c

en
te

rs

centers flip

prior genuine prediction prediction
VS. genuine

1.0e-1

4.0e-1

8.0e-1

1.2e0
1.6e0
2.0e0

bi
ts H(c0)

H(c1) H(c2)

I(c1;c2)

H(c0) H(c0)

KL(c0||c1) KL(c0||c2)

CLASSES

0.00

0.02

0.04

0.06

0.08

Avg Input class AR Output class AR Count = 669
CENTERS

0 5 10 15 20 25 30 35 40 45 50

10%

20%

30%

prior centers

0 5 10 15 20 25 30 35 40 45 50

10%

20%

30%

genuine centers

0 5 10 15 20 25 30 35 40 45 50

10%

20%

30%

pred centers

0 5 10 15 20 25 30 35 40 45 50

out centers

0
5

10
15
20
25
30
35
40
45
50

in
 c

en
te

rs

centers flip

prior genuine prediction prediction
VS. genuine

1.0e-1

4.0e-1

8.0e-1

1.2e0
1.6e0
2.0e0

bi
ts

H(c0)
H(c1) H(c2)

I(c1;c2)

H(c0) H(c0)

KL(c0||c1) KL(c0||c2)

CLASSES

0.00

0.02

0.04

0.06

0.08

0.10

Avg Input class AR Output class PF Count = 0
CENTERS

0 5 10 15 20 25 30 35 40 45 50

10%

prior centers

0 5 10 15 20 25 30 35 40 45 50

10%

genuine centers

0 5 10 15 20 25 30 35 40 45 50

10%

pred centers

0 5 10 15 20 25 30 35 40 45 50

out centers

0
5

10
15
20
25
30
35
40
45
50

in
 c

en
te

rs

centers flip

prior genuine prediction prediction
VS. genuine

1.0e-1

5.0e-1

bi
ts

H(c0)=0e0

H(c1)=0e0

H(c2)=0e0I(c1;c2)=0e0

H(c0)=0e0

H(c0)=0e0

KL(c0||c1)=0e0

KL(c0||c2)=0e0

CLASSES

0.10

0.05

0.00

0.05

0.10

Avg Input class AR Output class FL Count = 39
CENTERS

0 5 10 15 20 25 30 35 40 45 50

10%

20%

30%

40%

50%

60%

70%

prior centers

0 5 10 15 20 25 30 35 40 45 50

10%

20%

30%

40%

50%

60%

70%

genuine centers

0 5 10 15 20 25 30 35 40 45 50

10%

20%

30%

40%

50%

60%

70%

pred centers

0 5 10 15 20 25 30 35 40 45 50

out centers

0
5

10
15
20
25
30
35
40
45
50

in
 c

en
te

rs

centers flip

prior genuine prediction prediction
VS. genuine

1.0e-1

3.0e-1

6.0e-1

9.0e-1
1.2e0
1.5e0

bi
ts

H(c0) H(c1)
H(c2)

I(c1;c2)

H(c0) H(c0)

KL(c0||c1) KL(c0||c2)

CLASSES

0.0

0.1

0.2

0.3

Avg Input class PF Output class QS Count = 0
CENTERS

0 5 10 15 20 25 30 35 40 45 50

10%

prior centers

0 5 10 15 20 25 30 35 40 45 50

10%

genuine centers

0 5 10 15 20 25 30 35 40 45 50

10%

pred centers

0 5 10 15 20 25 30 35 40 45 50

out centers

0
5

10
15
20
25
30
35
40
45
50

in
 c

en
te

rs

centers flip

prior genuine prediction prediction
VS. genuine

1.0e-1

5.0e-1

bi
ts

H(c0)=0e0

H(c1)=0e0

H(c2)=0e0I(c1;c2)=0e0

H(c0)=0e0

H(c0)=0e0

KL(c0||c1)=0e0

KL(c0||c2)=0e0

CLASSES

0.10

0.05

0.00

0.05

0.10

Avg Input class PF Output class AR Count = 0
CENTERS

0 5 10 15 20 25 30 35 40 45 50

10%

prior centers

0 5 10 15 20 25 30 35 40 45 50

10%

genuine centers

0 5 10 15 20 25 30 35 40 45 50

10%

pred centers

0 5 10 15 20 25 30 35 40 45 50

out centers

0
5

10
15
20
25
30
35
40
45
50

in
 c

en
te

rs

centers flip

prior genuine prediction prediction
VS. genuine

1.0e-1

5.0e-1

bi
ts

H(c0)=0e0

H(c1)=0e0

H(c2)=0e0I(c1;c2)=0e0

H(c0)=0e0

H(c0)=0e0

KL(c0||c1)=0e0

KL(c0||c2)=0e0

CLASSES

0.10

0.05

0.00

0.05

0.10

Avg Input class PF Output class PF Count = 0
CENTERS

0 5 10 15 20 25 30 35 40 45 50

10%

prior centers

0 5 10 15 20 25 30 35 40 45 50

10%

genuine centers

0 5 10 15 20 25 30 35 40 45 50

10%

pred centers

0 5 10 15 20 25 30 35 40 45 50

out centers

0
5

10
15
20
25
30
35
40
45
50

in
 c

en
te

rs

centers flip

prior genuine prediction prediction
VS. genuine

1.0e-1

5.0e-1

bi
ts

H(c0)=0e0

H(c1)=0e0

H(c2)=0e0I(c1;c2)=0e0

H(c0)=0e0

H(c0)=0e0

KL(c0||c1)=0e0

KL(c0||c2)=0e0

CLASSES

0.10

0.05

0.00

0.05

0.10

Avg Input class PF Output class FL Count = 0
CENTERS

0 5 10 15 20 25 30 35 40 45 50

10%

prior centers

0 5 10 15 20 25 30 35 40 45 50

10%

genuine centers

0 5 10 15 20 25 30 35 40 45 50

10%

pred centers

0 5 10 15 20 25 30 35 40 45 50

out centers

0
5

10
15
20
25
30
35
40
45
50

in
 c

en
te

rs

centers flip

prior genuine prediction prediction
VS. genuine

1.0e-1

5.0e-1

bi
ts

H(c0)=0e0

H(c1)=0e0

H(c2)=0e0I(c1;c2)=0e0

H(c0)=0e0

H(c0)=0e0

KL(c0||c1)=0e0

KL(c0||c2)=0e0

CLASSES

0.10

0.05

0.00

0.05

0.10

Avg Input class FL Output class QS Count = 0
CENTERS

0 5 10 15 20 25 30 35 40 45 50

10%

prior centers

0 5 10 15 20 25 30 35 40 45 50

10%

genuine centers

0 5 10 15 20 25 30 35 40 45 50

10%

pred centers

0 5 10 15 20 25 30 35 40 45 50

out centers

0
5

10
15
20
25
30
35
40
45
50

in
 c

en
te

rs

centers flip

prior genuine prediction prediction
VS. genuine

1.0e-1

5.0e-1

bi
ts

H(c0)=0e0

H(c1)=0e0

H(c2)=0e0I(c1;c2)=0e0

H(c0)=0e0

H(c0)=0e0

KL(c0||c1)=0e0

KL(c0||c2)=0e0

CLASSES

0.10

0.05

0.00

0.05

0.10

Avg Input class FL Output class AR Count = 94
CENTERS

0 5 10 15 20 25 30 35 40 45 50

10%

20%

30%

40%

50%

60%

prior centers

0 5 10 15 20 25 30 35 40 45 50

10%

20%

30%

40%

50%

60%

genuine centers

0 5 10 15 20 25 30 35 40 45 50

10%

20%

30%

40%

50%

60%

pred centers

0 5 10 15 20 25 30 35 40 45 50

out centers

0
5

10
15
20
25
30
35
40
45
50

in
 c

en
te

rs

centers flip

prior genuine prediction prediction
VS. genuine

1.0e-1

3.0e-1

6.0e-1

9.0e-1
1.2e0
1.5e0

bi
ts

H(c0)
H(c1) H(c2)

I(c1;c2)=7e-2

H(c0) H(c0)

KL(c0||c1) KL(c0||c2)

CLASSES

0.00

0.05

0.10

0.15

0.20

0.25

Avg Input class FL Output class PF Count = 0
CENTERS

0 5 10 15 20 25 30 35 40 45 50

10%

prior centers

0 5 10 15 20 25 30 35 40 45 50

10%

genuine centers

0 5 10 15 20 25 30 35 40 45 50

10%

pred centers

0 5 10 15 20 25 30 35 40 45 50

out centers

0
5

10
15
20
25
30
35
40
45
50

in
 c

en
te

rs

centers flip

prior genuine prediction prediction
VS. genuine

1.0e-1

5.0e-1

bi
ts

H(c0)=0e0

H(c1)=0e0

H(c2)=0e0I(c1;c2)=0e0

H(c0)=0e0

H(c0)=0e0

KL(c0||c1)=0e0

KL(c0||c2)=0e0

CLASSES

0.10

0.05

0.00

0.05

0.10

Avg Input class FL Output class FL Count = 608
CENTERS

0 5 10 15 20 25 30 35 40 45 50

10%

20%

30%

40%

50%

prior centers

0 5 10 15 20 25 30 35 40 45 50

10%

20%

30%

40%

50%

genuine centers

0 5 10 15 20 25 30 35 40 45 50

10%

20%

30%

40%

50%

pred centers

0 5 10 15 20 25 30 35 40 45 50

out centers

0
5

10
15
20
25
30
35
40
45
50

in
 c

en
te

rs

centers flip

prior genuine prediction prediction
VS. genuine

1.0e-1

3.0e-1

6.0e-1

9.0e-1
1.2e0
1.5e0

bi
ts

H(c0)
H(c1) H(c2)

I(c1;c2)

H(c0) H(c0)

KL(c0||c1) KL(c0||c2)

CLASSES

0.00

0.05

0.10

0.15

0.20

Figure 13. Average distributions of centroids with their standard deviations as vertical gray error
bars. The first graph is for the average prior central data, the middle graph is for the average genuine
target, and the right graph is the average distribution of predictions performed with IB-MTS.

Table 4. Information comparison between the prior centroids c0, the genuine centroids c1, and the
predicted centroids c2 for the IRIS dataset. The results on H, KL, and I are averaged over all testing
samples. H(c0), KL(c0||c1), and H(c1), being statistics on the prior and the genuine, do not depend
on the method.

Dataset Metric IB-MTS LSTM ED-LSTM GRU ED-GRU NBeats

IRIS

di
re

ct

H(c0) 3.922 3.922 3.922 3.922 3.922 3.922
KL(c0||c1) 0.005 0.005 0.005 0.005 0.005 0.005
KL(c0||c2) 0.111 0.311 0.111 0.344 0.198 0.000

H(c1) 3.890 3.890 3.890 3.890 3.890 3.890
H(c2) 3.567 3.382 3.579 3.280 3.465 0.000

I(c1; c2) 1.753 1.607 1.613 1.597 1.681 0.000

ite
ra

te
d

H(c0) 3.968 3.968 3.968 3.968 3.968 3.968
KL(c0||c1) 0.003 0.003 0.003 0.003 0.003 0.003
KL(c0||c2) 0.288 0.575 0.308 0.416 0.486 0.000

H(c1) 3.957 3.957 3.957 3.957 3.957 3.957
H(c2) 3.487 3.325 3.385 3.301 3.229 0.000

I(c1; c2) 1.352 1.276 1.319 1.219 1.314 0.000

Concerning the iterated data, the highest values of mutual information I(c1; c2) are still
obtained by the IB models. IB-MTS can achieve the highest mutual information I(c1, c2)
with the lowest KL(c0||c1).

3.3.2. Astrophysical Evaluations

A public dictionary of 53 centroids obtained by a version of k-means was performed
on IRIS Mgh&k data [55]. Moreover, astrophysical features defined in [72] allow inter-
pretability of Mghk spectra. This part evaluates the correspondence between centroid
assignments for each genuine and predicted time step, and also evaluates the relative time
evolution of the error between the genuine and predicted time steps. A k-NN search was
performed between the genuine spectra at a given time step and the dictionary consisting of
53 centroids. The same search was performed for the same time step between the predicted
spectra and the dictionary, and two sets of k centroids were compared. The considered
time steps are successful k-NN assignments when they have at least one center in common.

79

Entropy 2023, 25, 831

For the two procedures (direct and iterated) described in Section 3.1, Table 5 provides the
results of the prediction in terms of k-NN metrics averaged on the test data. For comparison,
in the third column, we provide the accuracies of a theoretical worst model, which randomly
assigns the k-nearest-neighbors among the 53 found in [55]. The most pessimistic accuracy
for random classifications is obtained by the following combinatorial calculation:

Randomk-NN =
(53

k)− (53−k
k)

(53
k)

. (19)

For k = 2, the proposed IB-MTS model can already predict the sequence of clusters
with 82% of accuracy, and even 99% for k = 5, whereas a random assignment would
give corresponding accuracies of 7.5% and 40%. The NBeats model fails on IRIS data,
performing accuracies lower than the random assignments and not being able to predict
spectra with the same centroid assignment as the genuine. Figure 14 presents the time
evolution of the average k-NN accuracy for the direct procedure. There is a clear gain in
performance for IB-MTS in the first 20 time steps for 1-NN and 2-NN accuracies. When k is
greater than 4, the accounted performances are very similar for all time steps.

Figure 15 presents the time evolution of the average k-NN accuracy for the iterated
procedure. Similar to the other metrics, the IB-MTS model shows an average performance
for the iterated procedure, while the other IB models and NBeats perform better when
predictions are made iteratively on predicted data.

0 10 20 30 40 50 60time
20
30
40

PSNR

temporal evaluation

0 10 20 30 40 50 60time
0.80.91.0

SSIM

temporal evaluation

0 10 20 30 40 50 60time00.20.40.60.81.0

1-NN A
ccuracy

temporal evaluation

0 10 20 30 40 50 60time00.20.40.60.81.0
2-NN A

ccuracy
temporal evaluation

0 10 20 30 40 50 60time00.20.40.60.81.0

3-NN A
ccuracy

temporal evaluation

0 10 20 30 40 50 60time00.20.40.60.81.0

4-NN A
ccuracy

temporal evaluation

0 10 20 30 40 50 60time00.20.40.60.81.0

5-NN A
ccuracy

temporal evaluation

0 10 20 30 40 50 60time00.20.40.60.81.0

6-NN A
ccuracy

temporal evaluation

ib-mtslstm ed-lstmgru ed-grunbeats ideal

ib-mtslstm ed-lstmgru ed-grunbeats RandIdeal

ib-mtslstm ed-lstmgru ed-grunbeats RandIdeal
Figure 14. IRIS center assignment evaluation (over time) of the forecasts for direct predictions.

80

Entropy 2023, 25, 831 0 100 200 300 400 500 600 720time
20
30
40

PSNR

temporal evaluation

0 100 200 300 400 500 600 720time0.50.60.70.80.91.0

SSIM

temporal evaluation

0 100 200 300 400 500 600 720time00.20.40.60.81.0
1-NN A

ccuracy

temporal evaluation

0 100 200 300 400 500 600 720time00.20.40.60.81.0

2-NN A
ccuracy

temporal evaluation

0 100 200 300 400 500 600 720time00.20.40.60.81.0
3-NN A

ccuracy
temporal evaluation

0 100 200 300 400 500 600 720time00.20.40.60.81.0

4-NN A
ccuracy

temporal evaluation

0 100 200 300 400 500 600 720time00.20.40.60.81.0

5-NN A
ccuracy

temporal evaluation

0 100 200 300 400 500 600 720time00.20.40.60.81.0

6-NN A
ccuracy

temporal evaluation

ib-mtslstm ed-lstmgru ed-grunbeats ideal

ib-mtslstm ed-lstmgru ed-grunbeats RandIdeal

ib-mtslstm ed-lstmgru ed-grunbeats RandIdeal
Figure 15. IRIS center assignment evaluation (over time) of the forecasts for iterated predictions.

Table 5. Evaluation on IRIS data: Percentage accuracies in terms of k-NN for direct prediction of the
sizes of the training data and iterated prediction using a basic sliding window approach. The random
k-NN cluster assignment accuracy is given for comparison and corresponds to the worst that can be
expected for each k-NN assignment.

Metric Randk-NN IB-MTS LSTM ED-LSTM GRU ED-GRU NBeats

di
re

ct

1-NN 1.9 55.7 50.5 51.4 50.8 54.1 0.0
2-NN 7.5 81.9 79.5 77.8 79.4 80.5 3.8
3-NN 16.3 94.3 93.0 91.8 93.2 93.1 15.8
4-NN 27.6 97.7 97.3 96.3 97.4 97.0 19.0
5-NN 40.3 98.9 98.8 98.2 98.9 98.6 19.7
6-NN 53.2 99.6 99.5 99.1 99.5 99.4 21.1

ite
ra

te
d

1-NN 1.9 45.8 42.6 43.6 43.4 45.0 0.0
2-NN 7.5 73.8 72.1 70.1 72.0 72.4 3.9
3-NN 16.3 89.4 88.9 87.0 88.3 87.8 16.1
4-NN 27.6 95.1 95.2 93.7 94.5 94.4 19.4
5-NN 40.3 97.6 97.8 96.8 97.3 97.2 20.2
6-NN 53.2 98.9 99.0 98.5 98.6 98.7 21.8

Table 6 provides detailed data on 1-NN center assignment accuracy, as well as HSS
and TSS metrics, broken down by label and aggregated for all the data. Concerning the
direct procedure, IB-MTS performs the best on each label, as well as overall, and ED-GRU
obtains comparable results on AR data only. The results for the iterated procedure show
that IB-MTS performs less favorably compared to other IB models.

81

Entropy 2023, 25, 831

The time evolutions of the average relative errors for the astrophysical features are
given in Figure 16. Given that each feature of a spectrum is a scalar output of a deterministic
function fk(·), these relative errors are defined at each time step by:

re fk,t =
| fk(Xt)− fk(X̃t)|

fk(Xt)
, (20)

where X̃t is the time step t estimation of X by the model. IB-MTS is able to predict the
physical features relatively well, with a significant gain of performance in the first 20 time
steps in almost all time steps. This is an important result because features, such as the line
center, k/h ratios, k-height, and peak separation are related to the positions of specific
local maximums on the spectra, and the corresponding functions are not differentiable.
We provide experimental proof that IB-MTS is able to predict features that are not easy to
integrate in the loss of a deep model. NBeats have high errors in predicting intensities. This
is coherent with the comments formulated in Section 3.3.1. It seems that NBeats cannot
function without intensity information on IRIS data, which could be the reason for its
failure on these data.

Figure 17 shows the time estimations for the relative errors of features under the
iterated setup. IB-MTS has an average performance under this setup, other IB models
perform better, and classical LSTM and GRU performing worse.

Table 6. Evaluation of 1-NN centroid assignment accuracy for the direct and iterated predictions.

Model Metric IB-MTS LSTM ED-LSTM GRU ED-GRU N-BEATS

direct

Global
% Accuracy 55.7 50.5 51.4 50.8 54.1 0.0

TSS 0.49 0.43 0.45 0.43 0.47 0.00
HSS 0.50 0.44 0.45 0.44 0.48 0.00

QS
% Accuracy 52.5 47.6 47.7 48.6 49.0 0.0

TSS 0.26 0.18 0.21 0.19 0.22 0.00
HSS 0.28 0.20 0.22 0.20 0.22 0.00

AR
% Accuracy 49.5 44.8 45.7 46.0 49.9 0.0

TSS 0.43 0.37 0.39 0.39 0.43 0.00
HSS 0.43 0.37 0.39 0.39 0.43 0.00

FL
% Accuracy 63.7 57.3 60.3 56.3 63.5 0.0

TSS 0.58 0.51 0.53 0.49 0.57 0.00
HSS 0.58 0.51 0.53 0.49 0.57 0.00

iterated

Global
% Accuracy 40.4 36.4 41.8 37.4 40.0 0.0

TSS 0.33 0.29 0.35 0.30 0.32 0.00
HSS 0.34 0.29 0.35 0.30 0.32 0.00

QS
% Accuracy 46.3 43.4 42.7 44.7 43.9 0.0

TSS 0.15 0.10 0.12 0.10 0.12 0.00
HSS 0.17 0.11 0.13 0.12 0.14 0.00

AR
% Accuracy 37.2 38.2 34.8 39.0 41.3 0.0

TSS 0.30 0.30 0.26 0.31 0.33 0.00
HSS 0.30 0.30 0.26 0.31 0.33 0.00

FL
% Accuracy 33.0 24.8 42.6 26.3 31.8 0.0

TSS 0.24 0.18 0.33 0.18 0.22 0.00
HSS 0.24 0.17 0.33 0.17 0.22 0.00

82

Entropy 2023, 25, 831

1 11 21 31 41 51 60time
0.46
0.95 intensity

1 11 21 31 41 51 60time
2.2
6.8 triplet emission

1 11 21 31 41 51 60time0.046
0.32

0.6 triplet intensity

1 11 21 31 41 51 60time0.017
0.073

0.13 k/h ratio integrated

1 11 21 31 41 51 60time0.0029
0.0094

0.016 line center

1 11 21 31 41 51 60time0.043
0.1

0.16 kh ratio max

1 11 21 31 41 51 60time
1.4
2.9 line width

1 11 21 31 41 51 60time0.04
0.43
0.83 k hight

1 11 21 31 41 51 60time
0.15
0.68 line asymmetry

1 11 21 31 41 51 60time0.11
0.28
0.46 peak ratios

1 11 21 31 41 51 60time0.041
0.3

0.56 total_continium

1 11 21 31 41 51 60time0.055
0.77

1.5 peak separation

ib-mts lstm ed-lstm gru ed-gru nbeats

ib-mts lstm ed-lstm gru ed-gru nbeats

−0.029 −2.3

−0.097

−0.38

Figure 16. Evaluation of the relative prediction errors for physical features over time of the forecasts
for IRIS data and the direct setup. The lower the better.

83

Entropy 2023, 25, 831

1 121 241 361 481 601 707time
0.53

1.1 intensity

1 121 241 361 481 601 707time

3300 triplet emission

1 121 241 361 481 601 707time
1.7
3.6 triplet intensity

1 121 241 361 481 601 707time0.011
0.17
0.34 k/h ratio integrated

1 121 241 361 481 601 707time0.0013
0.013
0.025 line center

1 121 241 361 481 601 707time0.03
0.19
0.35 kh ratio max

1 121 241 361 481 601 707time
3

6.3 line width

1 121 241 361 481 601 707time0.03
0.56

1.1 k hight

1 121 241 361 481 601 707time

1.1 line asymmetry

1 121 241 361 481 601 707time
0.85

1.9 peak ratios

1 121 241 361 481 601 707time
2.7
5.7 total_continium

1 121 241 361 481 601 707time0.043
0.77

1.5 peak separation

ib-mts lstm ed-lstm gru ed-gru nbeats

ib-mts lstm ed-lstm gru ed-gru nbeats

−0.041
−1900
−7100

−0.099

−0.23

−0.05
−1.2 −0.2

−0.21
Figure 17. Evaluation of the relative prediction errors for physical features over time of the forecasts
for IRIS data and the iterated setup.

3.3.3. Solar Activity Classification

This section investigates the solar activity classifications of test data. Part of the IRIS
Mghk data were labeled by the type of activity, such as QS, AR, and FL. The labeling was
performed globally for each time sequence and not at each time step, such that if an event

84

Entropy 2023, 25, 831

presents a flaring FL episode between time steps t0 and t1, the sample X1:T+F will be labeled
as FL (1 < t0 < t1 < T + F).

A previously trained classifier was used to classify the genuine and predicted se-
quences, XT+1:T+F and X̃T+1:T+F. This classifier outputs a vector of size 3 with a categorical
assignment. The assigned class corresponds to the minimum of the cosine pseudo-distance
between the output of the classifier and the one-hot encoded version of the class. The
classification is considered successful when they match. For the iterated procedure, the
classification is estimated by the minimum cosine pseudo-distance with the average of the
categorical outputs obtained by the classifier at each iteration. Table 7 shows the results of
the classification in terms of percentage accuracy, HSS, and TSS metrics. For the short and
long procedures, there are no specific performance gains for IB-MTS compared to the con-
current models. All models show high activity classification performances, except NBeats;
previous results sections showed that the model failed to predict on the IRIS normalized
data. IB-MTS has slightly higher TSS and HSS scores than other models.

Table 7. Accuracy of solar activity classifications for the predicted versus genuine MTS with the direct
and iterated prediction setups.

Model Metric IB-MTS LSTM ED-LSTM GRU ED-GRU N-BEATS
(Count)

direct

Global
(8000)

% Acc 95 95 95 95 95 88
TSS 0.911 0.911 0.906 0.910 0.909 0.805
HSS 0.915 0.906 0.911 0.905 0.914 0.785

QS
(3680)

% Acc 97 96 96 96 96 94
TSS 0.938 0.911 0.916 0.910 0.918 0.876
HSS 0.936 0.911 0.915 0.910 0.917 0.874

AR
(536)

% Acc 96 96 97 96 97 91
TSS 0.613 0.401 0.327 0.400 0.311 0.000
HSS 0.640 0.371 0.366 0.362 0.349 0.000

FL
(3784)

% Acc 98 99 98 99 99 92
TSS 0.958 0.971 0.965 0.972 0.972 0.838
HSS 0.959 0.971 0.965 0.972 0.972 0.843

iterated

Global
(8000)

% Acc 94 94 93 94 95 86
TSS 0.979 0.899 0.870 0.896 0.895 0.768
HSS 0.889 0.891 0.869 0.889 0.901 0.738

QS
(3680)

% Acc 96 95 95 95 95 88
TSS 0.914 0.903 0.891 0.892 0.907 0.777
HSS 0.915 0.903 0.893 0.891 0.908 0.767

AR
(536)

% Acc 94 95 95 96 96 92
TSS 0.544 0.387 0.188 0.399 0.277 0.168
HSS 0.594 0.331 0.185 0.346 0.311 0.113

FL
(3784)

% Acc 98 98 97 98 98 91
TSS 0.948 0.955 0.930 0.960 0.957 0.932
HSS 0.949 0.957 0.930 0.962 0.957 0.920

4. Discussion
4.1. Conclusions

Our proposed model is not perfectly fine-tuned but it already shows very competitive
results. Moreover, the integration of the total loss of L1 and L2 from Equation (6) will allow
for better optimization of the full IB loss from Equation (4). The main goal of this paper
was to provide a new theoretical formulation of the IB in the context of MTS, i.e., to bring
theoretical and empirical proofs that are not only problems of multiple successive IBs, but
unique, joint spatiotemporal IBs. As a consequence, these results and comparisons are
convincing and support the presented IB formulation for MTS forecasting. Moreover, we

85

Entropy 2023, 25, 831

show that IB models, which utilize compression through encoding and decoding of the
time dimension, also perform better than classical recurrent models.

The gain of performance is also very significant for the first 20 time steps across
almost all evaluated metrics. This may be due to the combination of convolutions and the
transition term Ltv present in the loss in Equation (13), which smooths out the predictions
at the border for the first predicted time steps.

4.2. Spatial Sorting of MTS Data

Spatial dimensions in AL and PB are sorted by increasing latitudes, while the IRIS
spatial dimension is sorted by increasing the wavelength. Other possible orderings for AL
and PB datasets involve increasing longitudes or distances from a specific coordinate. The
spatial relationship of the time series in the AL dataset is closely associated with the spatial
correlation of the weather and sunshine levels. The spatial relation of the time series in the
PB dataset is linked to the connection with the road networks around San Francisco.

Other works [1,17,18,60] highlight the limitations of the models that only consider
spatial and temporal dependencies separately. Spatiotemporal dependencies are locally
modeled with convolutions on spatiotemporal pseudo-images. Moreover, the spatiotem-
poral dimensions are compressed by applying successive convolutions with a stride of
2 in the first half of the U-Net architecture. Because of this spatiotemporal compression
structure, each hidden layer of the encoding part of the U-Net creates a more global model
of the spatiotemporal dependencies, such that, in the end, the bottleneck models the global
spatiotemporal dependencies. We did not test the results of permuting the natural spatial
ordering of the datasets as it was not part of our research questions. However, we believe
that such permutation would likely penalize the training of all models except for the simple
LSTM and GRU models.

The bottleneck of our proposed model has 1× 1 spatiotemporal dimensions. This
extreme shrinking of spatiotemporal dimensions is crucial in our model. Firstly, it allows
one to always obtain unmasked data in the bottleneck and predict by decoding the posterior
that is masked at the source. Secondly, as explained above, it allows for the global modeling
of the spatiotemporal dependencies of MTS.

4.3. Non-Homogeneous Cadences of IRIS Data

The proposed model achieves an extreme reduction of the spatiotemporal dimensions
to 1× 1 and C channels. We believe that this extreme spatiotemporal reduction helps
to tackle the problem of the non-homogeneous cadences of the temporal dimension pre-
sented in Figure 4 because it is compressed into a unique spatiotemporal dimension in
the bottleneck.

The exact theoretical explanation as to why the model performs well with non-
homogeneous data still remains open and is the subject of investigation. Synthetic periodic
data with non-homogeneous frequencies may help test the robustness of all models. In
our paper, the convincing results on IRIS data show that our proposed model is robust to
non-homogeneous data. We did not extend the study of this question to other datasets as
we could not find any other MTS dataset with non-homogeneous cadences of observations.
Usually, physical observations are designed with a fixed cadence to keep the analysis simple.
As a consequence, we do not believe that the elaboration of synthetic non-homogeneous
data is a priority for this work and we just showed the good performance of the proposed
model on IRIS data.

In addition, the non-homogeneous cadences of observations in the IRIS data may
contribute to the poor forecasting performance of NBeats for this dataset. NBeats is
based on the decomposition of MTS data into interpretable MTS signals that compose the
observations, similar to the trend and seasonality decomposition. It is very challenging
and perhaps impossible to find the trend and seasonality of MTS observations with non-
homogeneous cadences. In AL and PB data, the cadences were the same for all of the data,

86

Entropy 2023, 25, 831

and NBeats performs much better; however, the best results are given by our proposed
model for these data.

4.4. Pros

Interestingly, while the model is trained on a CV loss that is not designed to measure
accuracies in activity classifications or astrophysical information, the model is still able to
predict the information with significant accuracy. This is in favor of interpretability and we
believe that this is a great plus.

Unlike most recent studies in MTS forecasting, where spatiotemporal embeddings
are designed prior to being fed to the models, our model jointly works straight on spa-
tiotemporal dimensions seen together as images. Because of the fully masked convolutional
structure, we believe that such simplicity is the advantage of our model, which can be
easily applied to data, and generalized to more dimensions, such as for videos where the
spatial information is composed of two joint dimensions.

4.5. Cons and Possible Extensions

Because of the activations used, the models were tested on normalized data, where
each time step had a maximum of one. While this is suitable for many applications where
only the spatial distribution of the data is important at each time step, such as the shape of
a spectral line, in some applications, it is also important to know the real maximum value
or intensity of the data at each time step. We believe that in this case, intensity forecasting is
a simpler issue than the one solved in our work; one can train a classical RNN model to
predict the intensities in parallel to the spatiotemporal MTS.

Our model has much more parameters to train than classical RNNs, but still less than
the most recent transformers. Without significant difficulties, we could train our model
on data with 240× 240 dimensions. Moreover, the performant CV loss used to train the
model comes at the expense of memory comes at the expense of to save the parameters of
the VGG-16 used in the loss.

We believe that the model could be further improved by integrating more interpretabil-
ity and prediction of the forecast errors. These features were not targeted in this step and
are not in the scope of this work.

4.6. Future Research Directions

Recent understandings and implementations of the IB principle could also further
improve the performance of our presented IB-MTS. For instance, [39] showed that the
general IB principle is equivalent to several adversarial and CV losses present at the output
and at the compressed bottleneck levels, where we only considered the particular case with
the CV loss at the output. In particular, introducing a loss at the bottleneck should help
the compression and enhance data representations at the bottleneck, leading to increased
interpretability. This approach would certainly bring new improvements, following the
ones achieved by this work, showing the importance of the IB formulation in the context
of MTS forecasting. Moreover, for a better estimation of the forecasting error, one could
attempt to amend the output of the network and predict the means and standard deviations
of Gaussian distributions for each predicted pixel instead of a singular value. This would
make the model stochastic and facilitate the confidence estimation in the forecasted outputs.

Author Contributions: Conceptualization, S.V. and D.U.; methodology, D.U.; software, D.U.; valida-
tion, S.V. and D.U.; formal analysis, D.U.; investigation, D.U.; resources, D.U.; data curation, D.U.;
writing—original draft preparation, S.V., D.U. and O.T.; writing—review and editing, S.V., D.U. and
O.T.; visualization, D.U.; supervision, S.V.; project administration, D.U.; funding acquisition, S.V. All
authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the Swiss National Science Foundation SNSF, NRP75 project
no. 407540_167158, SNSF Sinergia project no. 193826, and the University of Geneva.

Institutional Review Board Statement: Not applicable.

87

Entropy 2023, 25, 831

Data Availability Statement: Publicly available datasets were analyzed in this study. The code used
in this work and selected classified IRIS data can be found at github.com/DenisUllmann/IB-MTS,
accessed on 20 February 2023. [IRIS] Author: NASA; IRIS is a NASA small explorer mission developed
and operated by LMSA. LMission operations are conducted at the NASA Ames Research Center, and
significant contributions to downlink communications are funded by the ESA and the Norwegian
Space Centre. For more information, please visit iris.lmsal.com/search/, accessed on 20 February
2023. [AL] Author: The National Renewable Energy Laboratory, U.S. Department of Energy, Office of
Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy LLC; Solar
Power Data for the year 2006 in Alabama at www.nrel.gov/grid/solar-power-data.html, accessed
on 20 February 2023. [PB] Author: California State Transportation Agency (CalSTA) Performance
Measurement System (PeMS) and Yaguang Li; PeMS-BAY traffic data [74] at dx.doi.org/10.5281/
zenodo.5146275, accessed on 20 February 2023.

Acknowledgments: We would like to acknowledge Lucia Kleint, Brandon Panos, and Cedric
Huwyler for their assistance in providing access to IRIS satellite data, as well as for their valu-
able explanations and labeling of the data. Additionally, we utilized the Python library https:
//github.com/i4Ds/IRISreader, accessed on 20 February 2023 to work with the IRIS data and
accomplish the objectives of this work.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript; or
in the decision to publish the results.

Abbreviations
The following abbreviations are used in this manuscript:

AL solar power dataset for the year 2006 in Alabama
AR solar active region
ARIMA autoregressive integrated moving average model
CV computer vision
DNN deep neural network
FL solar flare
GNN graph neural network
GRU gated recurrent unit
HSS Heidke skill score
IB information bottleneck
IRIS NASA’s interface region imaging spectrograph satellite
IT information theory
LSTM long short-term memory model
MAE mean absolute error
MAPE mean absolute percentage error
ML machine learning
MOS mean opinion score
MSE mean square error
MTS multiple time series
NLP natural language processing
NN neural network
PB PeMS-BAY dataset
PC partial convolution
PSNR peak signal-to-noise ratio
QS quiet Sun
RAM random access memory
RGB red–green–blue
RMSE root mean square error
RNN recurrent neural network
SSIM structural similarity
TS time series
TSS true skill statistic

88

Entropy 2023, 25, 831

Appendix A. Theory

Table A1. Summary table of the notations.

Random Variables

X generic spatiotemporal data
X̃ estimation of X
T scalar duration of the prior sequence
F scalar duration of the posterior sequence
M spatial size of spatiotemporal data
Xt multidimensional data at time step t
Xm

t scalar value at time step t and spatial index m
X1:T = X1:M

1:T prior sequence
X̃1:T prior sequence estimation

XT+1:T+F = X1:M
T+1:T+F posterior genuine sequence

X̃T+1:T+F posterior genuine sequence estimation
X1:T+F = X1:M

1:T+F full sequence
X̃1:T+F full sequence estimation

Z bottleneck
1 : T → T + 1 : T + F transition from prior to posterior

Zib_tr IB bottleneck for transition 1 : T → T + 1 : T + F learning
Zib_ae IB bottleneck of AE

M generic mask for spatiotemporal data
M1:T prior mask

MT+1:T+F posterior mask
M1:T+F full mask

Mib_tr
mask at the IB bottleneck for transition

1 : T → T + 1 : T + F learning

1 & 1len & 1row×col
vectors and matrices of ones, eventually

with specified length len or row and col sizes.

0 & 0len & 0row×col
vectors and matrices of zeros, eventually

with specified length len or row and col sizes.
K & K scalar & categorical labels

c0, c1 & c2 prior, genuine, and predicted centroid assignments

Information Theory

pD data distribution
pΘ & pΦ (encoding/decoding) distribution with parameter (Θ/Φ)
EpD [·] mean by sampling from pD
EpΘ [·] mean by sampling from pΘ(Z|X)

H(·) & H(·, ·) generic entropy and cross-entropy
HpΘ

entropy parametrized by the encoder
HpΘ ,pΦ cross-entropy parametrized by the encoder and the decoder

KL(·||·) & I(·; ·) KL-divergence & mutual information
IΘ & IΦ Encoding and decoding mutual information

Layers & mappers

Id Identity mapper
Concat Concatenation of tensors

(−/B/P)Conv (-/Binary/Partial) Convolutional layer
(−/B/P)DConv (-/Binary/Partial) Deconvolutional layer

Losses & metrics

L generic loss
L̃ = L1 + L2 + L3 upper bound on the loss L

LLap
3 L3 with Laplacian assumption of pΦ(XT+1:T+F|Zib_tr)

LLap,UNet
3 LLap

3 for a U-Net architecture
re fk,t relative error for feature k at time step t

89

Entropy 2023, 25, 831

Proof of Equation (5). This proof is highly inspired by [39] but without variational approx-
imation considerations. Let us consider the loss defined in Equation (4) and let us simplify
the TS notations that are not relevant to this proof:

L(Θ, Φ) = IΘ(X1:T ; Zib_tr)− βIΦ(Zib_tr; XT+1:T+F) = IΘ(X; Z)− βIΦ(Z; Y). (A1)

The first term is mutual information that is parameterized by Θ, which represents the
parameters of the encoding part. This term can be decomposed:

IΘ(X; Z) = EpΘ(x,z)

[
log

pΘ(z|x)pD(x)
pΘ(z)pD(x)

]

= EpΘ(z)[log pΘ(z)]−EpΘ(x,z)[log pΘ(z|x)]
= HpΘ

(Z)− HpΘ
(Z|X).

(A2)

The second term of (A1) is the mutual information parametrized by Φ, which represents
the parameters of decoding, and can be decomposed:

IΦ(Z; Y) = EpΦ(z,y)

[
log

pD(y|z)pΦ(z)
pD(y)pΦ(z)

]

= EpD(y)[log pD(y)]−EpΦ(z,y)[log pD(y|z)]

= HpD (Y)−EpΦ(z,y)

[
log pD(y|z)

pΦ(y|z)
pΦ(y|z)

]

= HpD (Y)−EpD(x,y)

[
EpΘ(z|x)[log pΦ(y|z)]

]
+EpΦ(z,y)

[
log

pΦ(y|z)
pD(y|z)

]

= HpD (Y)− HpΘ,Φ(Y|Z) + KL(pΦ(y|z)||pD(y|z))
≥ HpD (Y)− HpΘ,Φ(Y|Z),

(A3)

because the Kullback–Leibler divergence KL(pΦ(y|z)||pD(y|z)) is positive.
As a consequence, by putting the results of Equations (A2) and (A3) in Equation (A1),

one can obtain the following upper bound on the loss:

L(Θ, Φ) ≤ HpΘ
(Z)− HpΘ

(Z|X) + βHpΘ,Φ(Y|Z)− βHpD (Y), (A4)

and HpD (Y) being fixed by the data, the upper bound on the loss can be reduced to:

L̃(Θ, Φ) = HpΘ
(Z)− HpΘ

(Z|X) + βHpΘ,Φ(Y|Z), (A5)

Remark A1 (Details on PConv and PDeconv for MTS). With T representing the time steps
of prior values and F representing the time steps of forecasted values, let us recall Equation (4):

L(Θ, Φ) = IΘ(X1:T ; Zib_tr)− βIΦ(Zib_tr; XT+1:T+F). (A6)

This corresponds to the general formulation of the IB principle with the MTS notation. The bottleneck
variable Zib_tr should then hold part of the information of prior time steps 1 : T and forecast time
steps T + 1 : T + F in order to learn the time transition. Equation (A6) can be rewritten using
temporal masks on the source X1:T+F = Concat[X1:T , XT+1:T+F]:

L(Θ, Φ) = IΘ([X1:T , XT+1:T+F]�M1:T ; Zib_tr �Mib_tr)︸ ︷︷ ︸
A

− β IΦ(Zib_tr �Mib_tr; [X1:T , XT+1:T+F]�MT+1:T+F)︸ ︷︷ ︸
B

,
(A7)

90

Entropy 2023, 25, 831

where � is the element-wise product, also known as the Hadamard dot product, with M1:T and
MT+1:T+Frepresenting binary time masks having ones at the indexed time positions, 1 : T or
T + 1 : T + F, and zeros at the other time positions. Binary masks M1:T and MT+1:T+F
lie in the same manifold, such as the MTS X1:T+F = Concat[X1:T , XT+F], and Mib_tr in the
same manifold, such as the compressed variable Zib_tr, such that M1:T , MT+1:T+F ∈ R(T+F)×M,
M1:T = Concat[1T×M, 0F×M], MT+1:T+F = Concat[0T×M, 1F×M]; Mib_tr is a binary mask for
the compressed manifold of Zib_tr and is filled only by ones: Zib_tr �Mib_tr = Zib_tr.

A straightforward approach to designing the compression, described in part A of Equation (A7)
for pseudo-images X1:T , consists of a convolution Conv and binary convolution BConv, both with
strides larger than 2 for spatiotemporal dimension reduction. Without a loss of generality for the
explanation of Conv and BConv layers, let us consider the example with one prior time step T = 1,
X1:T = X1, one posterior time step to forecast F = 1, XT+1:T+F = X2, and 2 spatial dimensions
M = 2, such that X1:2 ∈ R2×2; the bottleneck Zib_tr = Z1�2 learns the transition 1→ 2:

Z1�2 = ConvΘ([X1, X2]�M1) ∈ R1×1×C and M1�2 = BConv(M1) = [1], (A8)

where C is the number of channels for ConvΘ. Proof of Equation (A8) is given in Appendix A. The
combination of ConvΘ, BConv with corresponding masks M1 and M1:2 is usually referred to as
partial convolution PConvΘ [4], such that:

PConvΘ(X1:2, M1) = (Z1�2, M1�2). (A9)

In a symmetrical approach, still considering the example when T = 1, F = 1, M = 2, the
decoding described in part B of Equation (A7) can be designed by a deconvolution DConv and a
binary deconvolution BDConv, both with strides of 2, but in this case, the decoder performs as well
as a backcast of the prior X1 because the deconvolution of M1�2 returns M1:2 instead of M2 of B:

DConvΦ(Z1�2 �M1�2) =
[
X̃1, X̃2

]
∈ R2 and BDConv(M1�2) = M1:2 = 12×2, (A10)

and Proof of Equation (A10) is given in Appendix A. The combination of DConvΦ, BDConv with
corresponding masks M1�2 and M1:2 is usually referred to as partial deconvolution PDConvΦ,
such that:

PDConvΦ(Zib_tr, Mib_tr) = (X̃1:2, M1:2). (A11)

When T + F and M are larger than 2, pseudo-images X1:T and masks M1:T must be zero-
padded to a square pseudo-image, whose size is a power of 2, and successive PConv and PDConv
layers must be used to obtain a 1× 1× C bottleneck. For instance, when the padded input image is
254× 256, 8 successive PConv and 8 successive PDConv layers must be used, and the model is deep.
This forecast model design finally makes use of more traditional CV layers, such as convolutions,
compared to classical TS deep models, such as LSTMs; however, the model is directly justified by the
IB formulation of the time dimension compression.

A drawback of this design is that the binary deconvolution decoder outputs M1:T+F =
1(T+F)×M instead of MT+1:T+F = Concat[0T×M, 1F×M] from part B of the IB Equation (A7). As
a consequence, only with these PConv and PDConv layers would it have to perform a backcast and
output an estimation of the prior X̃1:T in addition to the estimated forecast X̃T+1:T+F, which means
that the bottleneck does not only learn the transition statistics 1 : T → T + 1 : T + F but also the
reconstruction of 1 : T. This is not the right formulation of the IB bottleneck for MTS forecasting.
As a consequence, a skipping connection between the masked input X1:T+F �M1:T and the output
is then added to the model in order to let all of the information about the prior X1:T pass without
any parameter learning, bypassing the bottleneck Zib_tr. Complemented by these skipping layers,
the bottleneck of the network only learns the statistics of the transition between the prior and the
forecast. The resulting output for the designed model is then given by:

UNetΦ,Θ(X1:T+F, M1:T) =
[
XIB

1:T , XIB
T+1:T+F

]
�M1:T+F + X1:T+F �M1:T

=
[
XIB

1:T + X1:T , XIB
T+1:T+F

]
,

(A12)

91

Entropy 2023, 25, 831

where UNetΦ,Θ is the network with the PConv, PDConv, and skipping layers. XIB
1:T is the

estimation of the prior X1:T performed through the bottleneck Zib_tr, whereas X1:T+F�M1:T = X1:T
is the prior input directly connected to the output by the skipping layer. The output of the network
is still not [X1:T , XT+1:T+F]�MT+1:T+F = [0, XT+1:T+F] = XT+1:T+F from part B of the IB loss
in Equation (A7), but we will now show the equivalence. With the described design of the prior
compression, bottleneck decoding, and prior connection to the output, the upper bound L3 loss
defined in Equation (7) then becomes equivalent to the following loss on the model estimation output
from Equation (A12):

LLap,UNet
3 (Θ, Φ) ≡ EpD(X1:T+F)

[
EpΘ(Zib_tr |X1:T)

[
‖X1:T+F −UNetΦ,Θ(X1:T+F, M1:T)‖1

]]
. (A13)

This equivalence and more details are given in Proof of Equation (A13) of this Appendix A.

Proof of Equation (A8).

Z1�2 = ConvΘ([X1, X2]�M1)

= ConvΘ([X1, X2]� [1M, 0M])

= ConvΘ([X1, 0M])

= σ(Θ1 × X1 + Θ2 × 0M) ∈ R,

(A14)

where σ is a nonlinear activation and Conv is a one-dimensional convolution with parameter
Θ = [Θ1, Θ2], and:

M1�2 = BConv(M1) = BConv([1, 0]) = [1], (A15)

where BConv is a one-dimensional binary convolution defined by:

BConv(M) = Binary(Conv[1,1](M)) and Binary(m) =

{
1, if m > 0
0, otherwise

(A16)

Proof of Equation (A10).

DConvΦ(Z1�2 �M1�2) = DConvΦ(Z1�2 � 1) = DConvΦ(Z1�2)

= σ([Φ1 × Z1�2, Φ2 × Z1�2]) =
[
X̃1, X̃2

]
∈ R2,

(A17)

where σ is a nonlinear activation and DConv is a one-dimensional deconvolution of stride 2
with parameter Φ = [Φ1, Φ2], and:

BDConv(M1�2) = BDConv([1]) = [1, 1], (A18)

where BConv is a one-dimensional binary convolution of stride 2, defined by:

BDConv(M) = Binary(DConv(M)). (A19)

Proof of Equation (A13). LLap
3 (Θ, Φ) is the third component of the upper bound on the

IB loss from Equation (6), where pΦ(XT+1:T+F|Zib_tr) is assumed to be Laplacian, and
LLap,UNet

3 (Θ, Φ) is the theoretical loss for our proposed model designed with U-Net and a
Laplacian assumption of pΦ(XT+1:T+F|Zib_tr):

LLap
3 (Θ, Φ) = EpD(X1:T+F)

[
EpΘ(Zib_tr |X1:T)

[
‖XT+1:T+F − gΦ(Zib_tr)‖1

]]

= EpD(X1:T+F)

[
EpΘ(Zib_tr |X1:T)

[∥∥∥XT+1:T+F − XIB
T+1:T+F

∥∥∥
1

]]
,

(A20)

92

Entropy 2023, 25, 831

LLap,UNet
3 (Θ, Φ) = EpD(X1:T+F)

[
EpΘ(Zib_tr |X1:T)

[
‖X1:T+F −UNetΘ,Φ(X1:T+F, M1:T)‖1

]]

= EpD(X1:T+F)

[
EpΘ(Zib_tr |X1:T)

[∥∥∥X1:T+F −
[
X1:T + XIB

1:T , XIB
T+1:T+F

]∥∥∥
1

]]
,

(A21)

where X1:T and XT+1:T+F are the prior and genuine forecasts given in the training dataset,
andXIB

1:T and XIB
T+1:T+F are the predicted prior and forecast after the compression and

decompression using the bottleneck Zib_tr. Starting with the norm in Equation (A21), we
can prove:

∥∥∥X1:T+F −
[
X1:T + XIB

1:T , XIB
T+1:T+F

]∥∥∥
1
=
∥∥∥
[
XIB

1:T , XT+1:T+F − XIB
T+1:T+F

]∥∥∥
1

=
∥∥∥XIB

1:T

∥∥∥
1
+
∥∥∥XT+1:T+F − XIB

T+1:T+F

∥∥∥
1
,

(A22)

and by the linearity of the expected value function:

LLap,UNet
3 (Θ, Φ) +EpD(X1:T+F)

[
EpΘ(Zib_tr |X1:T)

[∥∥∥XIB
1:T

∥∥∥
1

]]
= LLap

3 (Θ, Φ), (A23)

such that LLap
3 (Θ, Φ) ≤ LLap,UNet

3 (Θ, Φ), because the norm is positive. Moreover, the

minimum of EpD(X1:T+F)

[
EpΘ(Zib_tr |X1:T)

[∥∥XIB
1:T
∥∥

1

]]
is 0, obtained when XIB

1:T = 0 for all

X1:T ∼ pD(X1:T). The two losses, LLap,UNet
3 (Θ, Φ) and LLap

3 (Θ, Φ), share the same mini-
mum. In fact, minimizing LLap,UNet

3 (Θ, Φ) is equivalent to minimizing LLap
3 (Θ, Φ) while

forcing the model to not learn a backcast XIB
1:T ; instead, the bottleneck Zib_tr only learns the

sufficient statistics of transitioning from the prior X1:T to the forecast XT+1:T+F.

Appendix B. Models

Table A2. Model summary of IB-MTS for IRIS data. The encoding part has 7 successive repetitions
indexed by i ∈ [0 : 7] of PConv and BatchNormalization layers followed by ReLu activations, except
when i = 0, no BatchNormalization layer is included. The decoding part has 7 successive repetitions
indexed by i ∈ [0 : 7] of UpSampling, Concatenation, PConv, and BatchNormalization layers followed
by ReLu activations, except when i = 7, no BatchNormalization layer is included. EncPConv2D0 is
connected to [zero_pad2d1, zero_pad2d2]. DecUpImg0 is connected to [EncReLu7]. DecUpMsk0

is connected to [EncPConv2D7[1]]. DecConcatImg7 is connected to [zero_pad2d1[1], DecUpImg7].
DecConcatMsk7 is connected to [zero_pad2d2[1], DecUpMsk7].

Model: IB-MTS for IRIS Data

Layer Output Shape Kernel Param # Connected to(Type)

inputs_img [(240, 240, 1)] – 0 [](InputLayer)

inputs_mask [(240, 240, 1)] – 0 [](InputLayer)

zero_pad2d1 (256, 256, 1) – 0 [inputs_img](ZeroPad2D)

zero_pad2d2 (256, 256, 1) – 0 [inputs_mask](ZeroPad2D)

93

Entropy 2023, 25, 831

Table A2. Cont.

Model: IB-MTS for IRIS Data

Layer Output Shape Kernel Param # Connected to(Type)

i = 0 (128,128,64)
i = 1 (64, 64, 128)
i = 2 (32, 32, 256)
i = 3 (16, 16, 512)
i = 4 (8, 8, 512)
i = 5 (4, 4, 512)
i = 6 (2, 2, 512)
i = 7 (1, 1, 512)

7
5
5
3
3
3
3
3

18880
410240
1639168
2361856
4721152
4721152
4721152
4721152

EncPConv2Di [EncReLui−1,
(PConv2D) EncPConv2Di−1[1]]

EncBNi 6=0 [EncPConv2Di[0]]
(BatchNorm)

EncReLui [EncBNi](Activation)

DecUpImgi

i = 0 (2, 2, 512)
i = 1 (4, 4, 512)
i = 2 (16, 16, 512)
i = 3 (32, 32, 512)
i = 4 (64, 64, 256)
i = 5 (128, 128, 128)
i = 6 (256, 256, 64)
i = 7 (256, 256, 3)

3
3
3
3
3
3
3
3

9439744
9439744
9439744
9439744
3540224
885376
221504
3621

[DecLReLUi−1](UpSampling2D)

DecUpMski [DecPConv2Di−1[1]](UpSampling2D)

DecConcatImgi [EncReLu6−i,
(Concatenate) DecUpImgi]

DecConcatMski [EncPConv2D6−i[1],
(Concatenate) DecUpMski]

DecPConv2Di [DecConcatImgi,
(PConv2D) DecConcatMski]

DecBNi 6=7 [DecPConv2Di[0]]
(BatchNorm)

DecLReLUi [DecBNi](LeakyReLU)

outputs_img (256, 256, 1) 1 4 [DecLReLU7](Conv2D)

OutCrop (240, 240, 1) – 0 [outputs_img](Cropping2D)

Total params: 65,724,969

Table A3. Model summary of LSTM for the IRIS data. The ED-GRU model replaces the LSTM layer
with a GRU layer consisting of 240 units and has a total of 347,040 parameters.

Model: LSTM for IRIS Data

Layer Output Shape Units Param # Connected to(Type)

inputs_seq [(240, 240)] – 0 [](InputLayer)

slice0 (180, 240) – 0 [inputs_seq](SlicingOp)

lstm (180, 240) 240 461760 [slice0](LSTM)

slice1 (60, 240) – 0 [lstm](SlicingOp)

concat (240, 240) – 0 [slice0,
(TFOp) slice1]

Total params: 461,760

94

Entropy 2023, 25, 831

Table A4. Model summary for ED-LSTM for the IRIS data. The ED-GRU model replaces the LSTM
layers with GRU layers, each consisting of 100 units. The total number of parameters in the model
is 164,100.

Model: ED-LSTM for IRIS Data

Layer Output Shape Units Param # Connected to(Type)

inputs_seq [(240, 240)] – 0 [](InputLayer)

slice (180, 240) – 0 [inputs_seq](SlicingOp)

lstm0 [(180, 100), 100 136400 [slice](LSTM) (100)]

lstm1 [(100), 100 80400 [lstm0[0]](LSTM) (100)]

repeat_vector (60, 100) – 0 [lstm1[0]](RepeatVector)

lstm2 (60, 100) 100 80400 [repeat_vector,
(LSTM) lstm0[0][2]]

lstm3 (60, 100) 100 80400 [lstm2[0],
(LSTM) lstm1[1]]

time_distributed (60, 240) 240 24240 [lstm3](TimeDistributed)

concat (240, 240) – 0 [slice,
(TFOp) time_distributed]

Total params: 401,840

Appendix C. Results

IRIS QS Data

Global avg mts metrics by Label QS
Time and Global evaluated metrics

Global Count : 230400000

ib-mts lstm ed-lstm gru ed-gru nbeats

1 11 21 31 41 51 60time0.012

0.071

0.13
Metric mae - global result: 0.04 / 0.05 / 0.05 / 0.05 / 0.04 / 0.10

1 11 21 31 41 51 60time-0.33

21

43
Metric mape - global result: 2.76 / 13.13 / 4.71 / 26.84 / 3.16 / 4.75

1 11 21 31 41 51 60time0.023

0.12

0.23
Metric rmse - global result: 0.07 / 0.08 / 0.08 / 0.08 / 0.07 / 0.19

Remainder By Label FL
Time and Global evaluated metrics

Global Count : 51264000

ib-mts lstm ed-lstm gru ed-gru nbeats

1 11 21 31 41 51 60time0.0011

0.04

0.079
Metric mae - global result: 0.01 / 0.02 / 0.02 / 0.02 / 0.02 / 0.07

1 11 21 31 41 51 60time0.35

2.8

5.4
Metric mape - global result: 1.83 / 2.53 / 2.26 / 2.44 / 2.21 / 4.24

1 11 21 31 41 51 60time0.0001

0.11

0.22
Metric rmse - global result: 0.03 / 0.04 / 0.04 / 0.04 / 0.04 / 0.20

Remainder By Label PF
Time and Global evaluated metrics

Global Count : 20476800

ib-mts lstm ed-lstm gru ed-gru nbeats

1 11 21 31 41 51 60time0.0012

0.04

0.08
Metric mae - global result: 0.01 / 0.02 / 0.02 / 0.02 / 0.01 / 0.07

1 11 21 31 41 51 60time0.36

2.9

5.5
Metric mape - global result: 1.70 / 2.47 / 2.08 / 2.29 / 1.91 / 4.17

1 11 21 31 41 51 60time-4.4e-4

0.11

0.22
Metric rmse - global result: 0.03 / 0.03 / 0.03 / 0.03 / 0.03 / 0.20

Remainder By Label AR
Time and Global evaluated metrics

Global Count : 55814400

ib-mts lstm ed-lstm gru ed-gru nbeats

1 11 21 31 41 51 60time0.0054

0.067

0.13
Metric mae - global result: 0.03 / 0.04 / 0.04 / 0.04 / 0.03 / 0.10

1 11 21 31 41 51 60time0.81

3.6

6.5
Metric mape - global result: 2.52 / 3.07 / 2.69 / 2.62 / 2.68 / 4.87

1 11 21 31 41 51 60time0.01

0.12

0.23
Metric rmse - global result: 0.05 / 0.06 / 0.06 / 0.06 / 0.06 / 0.20

Remainder By Label QS
Time and Global evaluated metrics

Global Count : 102844800

ib-mts lstm ed-lstm gru ed-gru nbeats

1 11 21 31 41 51 60time0.025

0.092

0.16
Metric mae - global result: 0.07 / 0.08 / 0.07 / 0.08 / 0.07 / 0.13

1 11 21 31 41 51 60time

31

64
Metric mape - global result: 3.38 / 19.41 / 6.48 / 40.07 / 3.92 / 5.03

1 11 21 31 41 51 60time0.037

0.13

0.23
Metric rmse - global result: 0.10 / 0.11 / 0.10 / 0.10 / 0.10 / 0.19

By Label QS
Time and Global evaluated metrics

Global Count : 102844800

ib-mts lstm ed-lstm gru ed-gru nbeats

1 11 21 31 41 51 60time0.025

0.092

0.16
Metric mae - global result: 0.07 / 0.08 / 0.07 / 0.08 / 0.07 / 0.13

1 11 21 31 41 51 60time-0.68

31

64
Metric mape - global result: 3.38 / 19.41 / 6.48 / 40.07 / 3.92 / 5.03

1 11 21 31 41 51 60time0.037

0.13

0.23
Metric rmse - global result: 0.10 / 0.11 / 0.10 / 0.10 / 0.10 / 0.19

By Input Class QS
Time and Global evaluated metrics

Global Count : 99734400

ib-mts lstm ed-lstm gru ed-gru nbeats

1 11 21 31 41 51 60time0.025

0.097

0.17
Metric mae - global result: 0.07 / 0.08 / 0.08 / 0.08 / 0.07 / 0.13

1 11 21 31 41 51 60time-0.72

32

65
Metric mape - global result: 3.41 / 19.75 / 6.57 / 40.76 / 3.96 / 5.05

1 11 21 31 41 51 60time0.036

0.13

0.23
Metric rmse - global result: 0.10 / 0.11 / 0.11 / 0.11 / 0.10 / 0.19

By Input Class AR
Time and Global evaluated metrics

Global Count : 2419200

ib-mts lstm ed-lstm gru ed-gru nbeats

1 11 21 31 41 51 60time0.013

0.076

0.14
Metric mae - global result: 0.04 / 0.05 / 0.05 / 0.05 / 0.05 / 0.10

1 11 21 31 41 51 60time1.3

4.1

6.9
Metric mape - global result: 2.43 / 2.80 / 3.30 / 2.66 / 2.89 / 4.75

1 11 21 31 41 51 60time0.026

0.11

0.21
Metric rmse - global result: 0.07 / 0.07 / 0.07 / 0.08 / 0.06 / 0.17

By Input Class PF
Time and Global evaluated metrics

Global Count : 0

ib-mts lstm ed-lstm gru ed-gru nbeats

1 11 21 31 41 51 60time-0.5

0

0.5
Metric mae - global result: 0.00 / 0.00 / 0.00 / 0.00 / 0.00 / 0.00

1 11 21 31 41 51 60time-0.5

0

0.5
Metric mape - global result: 0.00 / 0.00 / 0.00 / 0.00 / 0.00 / 0.00

1 11 21 31 41 51 60time-0.5

0

0.5
Metric rmse - global result: 0.00 / 0.00 / 0.00 / 0.00 / 0.00 / 0.00

By Input Class FL
Time and Global evaluated metrics

Global Count : 691200

ib-mts lstm ed-lstm gru ed-gru nbeats

1 11 21 31 41 51 60time0.0087

0.046

0.084
Metric mae - global result: 0.04 / 0.04 / 0.04 / 0.04 / 0.04 / 0.07

1 11 21 31 41 51 60time0.6

3.2

5.9
Metric mape - global result: 1.56 / 1.34 / 1.61 / 1.20 / 1.46 / 4.04

1 11 21 31 41 51 60time0.0092

0.094

0.18
Metric rmse - global result: 0.05 / 0.06 / 0.06 / 0.06 / 0.06 / 0.16

By Output Class QS
Time and Global evaluated metrics

Global Count : 101145600

ib-mts lstm ed-lstm gru ed-gru nbeats

1 11 21 31 41 51 60time0.025

0.097

0.17
Metric mae - global result: 0.07 / 0.08 / 0.07 / 0.08 / 0.07 / 0.13

1 11 21 31 41 51 60time-0.69

31

64
Metric mape - global result: 3.37 / 19.55 / 6.52 / 40.35 / 3.92 / 5.02

1 11 21 31 41 51 60time0.037

0.13

0.23
Metric rmse - global result: 0.10 / 0.11 / 0.10 / 0.11 / 0.10 / 0.19

By Output Class AR
Time and Global evaluated metrics

Global Count : 1497600

ib-mts lstm ed-lstm gru ed-gru nbeats

1 11 21 31 41 51 60time0.0072

0.068

0.13
Metric mae - global result: 0.05 / 0.04 / 0.05 / 0.06 / 0.06 / 0.09

1 11 21 31 41 51 60time1.4

4.3

7.2
Metric mape - global result: 3.89 / 3.23 / 4.25 / 2.39 / 3.99 / 5.21

1 11 21 31 41 51 60time0.0099

0.11

0.21
Metric rmse - global result: 0.07 / 0.06 / 0.08 / 0.08 / 0.08 / 0.17

By Output Class PF
Time and Global evaluated metrics

Global Count : 0

ib-mts lstm ed-lstm gru ed-gru nbeats

1 11 21 31 41 51 60time-0.5

0

0.5
Metric mae - global result: 0.00 / 0.00 / 0.00 / 0.00 / 0.00 / 0.00

1 11 21 31 41 51 60time-0.5

0

0.5
Metric mape - global result: 0.00 / 0.00 / 0.00 / 0.00 / 0.00 / 0.00

1 11 21 31 41 51 60time-0.5

0

0.5
Metric rmse - global result: 0.00 / 0.00 / 0.00 / 0.00 / 0.00 / 0.00

By Output Class FL
Time and Global evaluated metrics

Global Count : 201600

ib-mts lstm ed-lstm gru ed-gru nbeats

1 11 21 31 41 51 60time0.0097

0.064

0.12
Metric mae - global result: 0.05 / 0.05 / 0.05 / 0.04 / 0.04 / 0.08

1 11 21 31 41 51 60time0.7

4

7.4
Metric mape - global result: 4.91 / 3.32 / 4.35 / 2.95 / 3.81 / 5.42

1 11 21 31 41 51 60time0.012

0.11

0.21
Metric rmse - global result: 0.08 / 0.07 / 0.07 / 0.06 / 0.07 / 0.17

By Input class QS Output class QS
Time and Global evaluated metrics

Global Count : 98697600

ib-mts lstm ed-lstm gru ed-gru nbeats

1 11 21 31 41 51 60time0.025

0.097

0.17
Metric mae - global result: 0.07 / 0.08 / 0.08 / 0.08 / 0.07 / 0.13

1 11 21 31 41 51 60time-0.73

32

65
Metric mape - global result: 3.39 / 19.81 / 6.59 / 40.95 / 3.96 / 5.03

1 11 21 31 41 51 60time0.037

0.13

0.24
Metric rmse - global result: 0.10 / 0.11 / 0.11 / 0.11 / 0.10 / 0.19

By Input class QS Output class AR
Time and Global evaluated metrics

Global Count : 864000

ib-mts lstm ed-lstm gru ed-gru nbeats

1 11 21 31 41 51 60time0.0071

0.083

0.16
Metric mae - global result: 0.05 / 0.04 / 0.06 / 0.07 / 0.06 / 0.10

1 11 21 31 41 51 60time1.4

4.7

8.1
Metric mape - global result: 4.71 / 3.69 / 4.45 / 2.55 / 4.34 / 5.77

1 11 21 31 41 51 60time0.011

0.12

0.23
Metric rmse - global result: 0.08 / 0.06 / 0.08 / 0.09 / 0.09 / 0.18

By Input class QS Output class PF
Time and Global evaluated metrics

Global Count : 0

ib-mts lstm ed-lstm gru ed-gru nbeats

1 11 21 31 41 51 60time-0.5

0

0.5
Metric mae - global result: 0.00 / 0.00 / 0.00 / 0.00 / 0.00 / 0.00

1 11 21 31 41 51 60time-0.5

0

0.5
Metric mape - global result: 0.00 / 0.00 / 0.00 / 0.00 / 0.00 / 0.00

1 11 21 31 41 51 60time-0.5

0

0.5
Metric rmse - global result: 0.00 / 0.00 / 0.00 / 0.00 / 0.00 / 0.00

By Input class QS Output class FL
Time and Global evaluated metrics

Global Count : 172800

ib-mts lstm ed-lstm gru ed-gru nbeats

1 11 21 31 41 51 60time0.0093

0.069

0.13
Metric mae - global result: 0.05 / 0.05 / 0.06 / 0.05 / 0.06 / 0.09

1 11 21 31 41 51 60time0.99

4.3

7.8
Metric mape - global result: 4.96 / 4.74 / 5.23 / 4.04 / 5.26 / 5.71

1 11 21 31 41 51 60time0.012

0.11

0.22
Metric rmse - global result: 0.08 / 0.07 / 0.08 / 0.07 / 0.09 / 0.18

By Input class AR Output class QS
Time and Global evaluated metrics

Global Count : 1900800

ib-mts lstm ed-lstm gru ed-gru nbeats

1 11 21 31 41 51 60time0.015

0.077

0.14
Metric mae - global result: 0.04 / 0.05 / 0.05 / 0.05 / 0.05 / 0.10

1 11 21 31 41 51 60time1.2

4

6.9
Metric mape - global result: 2.33 / 2.72 / 3.05 / 2.63 / 2.87 / 4.75

1 11 21 31 41 51 60time0.027

0.11

0.21
Metric rmse - global result: 0.07 / 0.08 / 0.07 / 0.08 / 0.06 / 0.17

By Input class AR Output class AR
Time and Global evaluated metrics

Global Count : 489600

ib-mts lstm ed-lstm gru ed-gru nbeats

1 11 21 31 41 51 60time0.0062

0.063

0.12
Metric mae - global result: 0.03 / 0.04 / 0.05 / 0.05 / 0.03 / 0.07

1 11 21 31 41 51 60time0.96

4

7.2
Metric mape - global result: 2.61 / 3.36 / 4.50 / 3.06 / 3.62 / 4.54

1 11 21 31 41 51 60time0.0072

0.1

0.2
Metric rmse - global result: 0.06 / 0.06 / 0.07 / 0.07 / 0.05 / 0.16

By Input class AR Output class PF
Time and Global evaluated metrics

Global Count : 0

ib-mts lstm ed-lstm gru ed-gru nbeats

1 11 21 31 41 51 60time-0.5

0

0.5
Metric mae - global result: 0.00 / 0.00 / 0.00 / 0.00 / 0.00 / 0.00

1 11 21 31 41 51 60time-0.5

0

0.5
Metric mape - global result: 0.00 / 0.00 / 0.00 / 0.00 / 0.00 / 0.00

1 11 21 31 41 51 60time-0.5

0

0.5
Metric rmse - global result: 0.00 / 0.00 / 0.00 / 0.00 / 0.00 / 0.00

By Input class AR Output class FL
Time and Global evaluated metrics

Global Count : 28800

ib-mts lstm ed-lstm gru ed-gru nbeats

1 11 21 31 41 51 60time-0.5

0

0.5
Metric mae - global result: 0.05 / 0.00 / 0.05 / 0.00 / 0.00 / 0.00

1 11 21 31 41 51 60time-0.5

3.3

7.1
Metric mape - global result: 4.62 / 0.00 / 5.02 / 0.00 / 0.00 / 0.00

1 11 21 31 41 51 60time-0.5

0

0.5
Metric rmse - global result: 0.07 / 0.00 / 0.07 / 0.00 / 0.00 / 0.00

By Input class PF Output class QS
Time and Global evaluated metrics

Global Count : 0

ib-mts lstm ed-lstm gru ed-gru nbeats

1 11 21 31 41 51 60time-0.5

0

0.5
Metric mae - global result: 0.00 / 0.00 / 0.00 / 0.00 / 0.00 / 0.00

1 11 21 31 41 51 60time-0.5

0

0.5
Metric mape - global result: 0.00 / 0.00 / 0.00 / 0.00 / 0.00 / 0.00

1 11 21 31 41 51 60time-0.5

0

0.5
Metric rmse - global result: 0.00 / 0.00 / 0.00 / 0.00 / 0.00 / 0.00

By Input class PF Output class AR
Time and Global evaluated metrics

Global Count : 0

ib-mts lstm ed-lstm gru ed-gru nbeats

1 11 21 31 41 51 60time-0.5

0

0.5
Metric mae - global result: 0.00 / 0.00 / 0.00 / 0.00 / 0.00 / 0.00

1 11 21 31 41 51 60time-0.5

0

0.5
Metric mape - global result: 0.00 / 0.00 / 0.00 / 0.00 / 0.00 / 0.00

1 11 21 31 41 51 60time-0.5

0

0.5
Metric rmse - global result: 0.00 / 0.00 / 0.00 / 0.00 / 0.00 / 0.00

By Input class PF Output class PF
Time and Global evaluated metrics

Global Count : 0

ib-mts lstm ed-lstm gru ed-gru nbeats

1 11 21 31 41 51 60time-0.5

0

0.5
Metric mae - global result: 0.00 / 0.00 / 0.00 / 0.00 / 0.00 / 0.00

1 11 21 31 41 51 60time-0.5

0

0.5
Metric mape - global result: 0.00 / 0.00 / 0.00 / 0.00 / 0.00 / 0.00

1 11 21 31 41 51 60time-0.5

0

0.5
Metric rmse - global result: 0.00 / 0.00 / 0.00 / 0.00 / 0.00 / 0.00

By Input class PF Output class FL
Time and Global evaluated metrics

Global Count : 0

ib-mts lstm ed-lstm gru ed-gru nbeats

1 11 21 31 41 51 60time-0.5

0

0.5
Metric mae - global result: 0.00 / 0.00 / 0.00 / 0.00 / 0.00 / 0.00

1 11 21 31 41 51 60time-0.5

0

0.5
Metric mape - global result: 0.00 / 0.00 / 0.00 / 0.00 / 0.00 / 0.00

1 11 21 31 41 51 60time-0.5

0

0.5
Metric rmse - global result: 0.00 / 0.00 / 0.00 / 0.00 / 0.00 / 0.00

By Input class FL Output class QS
Time and Global evaluated metrics

Global Count : 547200

ib-mts lstm ed-lstm gru ed-gru nbeats

1 11 21 31 41 51 60time0.0089

0.049

0.089
Metric mae - global result: 0.04 / 0.05 / 0.04 / 0.05 / 0.05 / 0.07

1 11 21 31 41 51 60time0.33

3

5.7
Metric mape - global result: 1.64 / 1.32 / 1.55 / 1.23 / 1.10 / 3.86

1 11 21 31 41 51 60time0.0095

0.094

0.18
Metric rmse - global result: 0.06 / 0.06 / 0.06 / 0.06 / 0.06 / 0.16

By Input class FL Output class AR
Time and Global evaluated metrics

Global Count : 144000

ib-mts lstm ed-lstm gru ed-gru nbeats

1 11 21 31 41 51 60time0.007

0.044

0.082
Metric mae - global result: 0.04 / 0.04 / 0.03 / 0.04 / 0.04 / 0.07

1 11 21 31 41 51 60time0.37

3.1

6
Metric mape - global result: 1.24 / 1.50 / 2.14 / 1.16 / 1.87 / 4.11

1 11 21 31 41 51 60time0.0082

0.094

0.18
Metric rmse - global result: 0.05 / 0.06 / 0.05 / 0.06 / 0.06 / 0.16

By Input class FL Output class PF
Time and Global evaluated metrics

Global Count : 0

ib-mts lstm ed-lstm gru ed-gru nbeats

1 11 21 31 41 51 60time-0.5

0

0.5
Metric mae - global result: 0.00 / 0.00 / 0.00 / 0.00 / 0.00 / 0.00

1 11 21 31 41 51 60time-0.5

0

0.5
Metric mape - global result: 0.00 / 0.00 / 0.00 / 0.00 / 0.00 / 0.00

1 11 21 31 41 51 60time-0.5

0

0.5
Metric rmse - global result: 0.00 / 0.00 / 0.00 / 0.00 / 0.00 / 0.00

By Input class FL Output class FL
Time and Global evaluated metrics

Global Count : 0

ib-mts lstm ed-lstm gru ed-gru nbeats

1 11 21 31 41 51 60time-3.8e-3

0.038

0.081
Metric mae - global result: 0.00 / 0.04 / 0.04 / 0.04 / 0.03 / 0.07

1 11 21 31 41 51 60time-0.3

3.2

6.8
Metric mape - global result: 0.00 / 1.29 / 1.61 / 1.00 / 2.22 / 4.30

1 11 21 31 41 51 60time-8.4e-3

0.085

0.18
Metric rmse - global result: 0.00 / 0.06 / 0.05 / 0.06 / 0.05 / 0.15

−0.68
Figure A1. Cont.

95

Entropy 2023, 25, 831

IRIS AR Data

Global avg mts metrics by Label QS
Time and Global evaluated metrics

Global Count : 230400000

ib-mts lstm ed-lstm gru ed-gru nbeats

1 11 21 31 41 51 60time0.012

0.071

0.13
Metric mae - global result: 0.04 / 0.05 / 0.05 / 0.05 / 0.04 / 0.10

1 11 21 31 41 51 60time-0.33

21

43
Metric mape - global result: 2.76 / 13.13 / 4.71 / 26.84 / 3.16 / 4.75

1 11 21 31 41 51 60time0.023

0.12

0.23
Metric rmse - global result: 0.07 / 0.08 / 0.08 / 0.08 / 0.07 / 0.19

Remainder By Label FL
Time and Global evaluated metrics

Global Count : 51264000

ib-mts lstm ed-lstm gru ed-gru nbeats

1 11 21 31 41 51 60time0.0011

0.04

0.079
Metric mae - global result: 0.01 / 0.02 / 0.02 / 0.02 / 0.02 / 0.07

1 11 21 31 41 51 60time0.35

2.8

5.4
Metric mape - global result: 1.83 / 2.53 / 2.26 / 2.44 / 2.21 / 4.24

1 11 21 31 41 51 60time0.0001

0.11

0.22
Metric rmse - global result: 0.03 / 0.04 / 0.04 / 0.04 / 0.04 / 0.20

Remainder By Label PF
Time and Global evaluated metrics

Global Count : 20476800

ib-mts lstm ed-lstm gru ed-gru nbeats

1 11 21 31 41 51 60time0.0012

0.04

0.08
Metric mae - global result: 0.01 / 0.02 / 0.02 / 0.02 / 0.01 / 0.07

1 11 21 31 41 51 60time0.36

2.9

5.5
Metric mape - global result: 1.70 / 2.47 / 2.08 / 2.29 / 1.91 / 4.17

1 11 21 31 41 51 60time-4.4e-4

0.11

0.22
Metric rmse - global result: 0.03 / 0.03 / 0.03 / 0.03 / 0.03 / 0.20

Remainder By Label AR
Time and Global evaluated metrics

Global Count : 55814400

ib-mts lstm ed-lstm gru ed-gru nbeats

1 11 21 31 41 51 60time0.0054

0.067

0.13
Metric mae - global result: 0.03 / 0.04 / 0.04 / 0.04 / 0.03 / 0.10

1 11 21 31 41 51 60time0.81

3.6

6.5
Metric mape - global result: 2.52 / 3.07 / 2.69 / 2.62 / 2.68 / 4.87

1 11 21 31 41 51 60time0.01

0.12

0.23
Metric rmse - global result: 0.05 / 0.06 / 0.06 / 0.06 / 0.06 / 0.20

Remainder By Label QS
Time and Global evaluated metrics

Global Count : 102844800

ib-mts lstm ed-lstm gru ed-gru nbeats

1 11 21 31 41 51 60time0.025

0.092

0.16
Metric mae - global result: 0.07 / 0.08 / 0.07 / 0.08 / 0.07 / 0.13

1 11 21 31 41 51 60time-0.68

31

64
Metric mape - global result: 3.38 / 19.41 / 6.48 / 40.07 / 3.92 / 5.03

1 11 21 31 41 51 60time0.037

0.13

0.23
Metric rmse - global result: 0.10 / 0.11 / 0.10 / 0.10 / 0.10 / 0.19

By Label QS
Time and Global evaluated metrics

Global Count : 102844800

ib-mts lstm ed-lstm gru ed-gru nbeats

1 11 21 31 41 51 60time0.025

0.092

0.16
Metric mae - global result: 0.07 / 0.08 / 0.07 / 0.08 / 0.07 / 0.13

1 11 21 31 41 51 60time-0.68

31

64
Metric mape - global result: 3.38 / 19.41 / 6.48 / 40.07 / 3.92 / 5.03

1 11 21 31 41 51 60time0.037

0.13

0.23
Metric rmse - global result: 0.10 / 0.11 / 0.10 / 0.10 / 0.10 / 0.19

By Input Class QS
Time and Global evaluated metrics

Global Count : 99734400

ib-mts lstm ed-lstm gru ed-gru nbeats

1 11 21 31 41 51 60time0.025

0.097

0.17
Metric mae - global result: 0.07 / 0.08 / 0.08 / 0.08 / 0.07 / 0.13

1 11 21 31 41 51 60time-0.72

32

65
Metric mape - global result: 3.41 / 19.75 / 6.57 / 40.76 / 3.96 / 5.05

1 11 21 31 41 51 60time0.036

0.13

0.23
Metric rmse - global result: 0.10 / 0.11 / 0.11 / 0.11 / 0.10 / 0.19

By Input Class AR
Time and Global evaluated metrics

Global Count : 2419200

ib-mts lstm ed-lstm gru ed-gru nbeats

1 11 21 31 41 51 60time0.013

0.076

0.14
Metric mae - global result: 0.04 / 0.05 / 0.05 / 0.05 / 0.05 / 0.10

1 11 21 31 41 51 60time1.3

4.1

6.9
Metric mape - global result: 2.43 / 2.80 / 3.30 / 2.66 / 2.89 / 4.75

1 11 21 31 41 51 60time0.026

0.11

0.21
Metric rmse - global result: 0.07 / 0.07 / 0.07 / 0.08 / 0.06 / 0.17

By Input Class PF
Time and Global evaluated metrics

Global Count : 0

ib-mts lstm ed-lstm gru ed-gru nbeats

1 11 21 31 41 51 60time-0.5

0

0.5
Metric mae - global result: 0.00 / 0.00 / 0.00 / 0.00 / 0.00 / 0.00

1 11 21 31 41 51 60time-0.5

0

0.5
Metric mape - global result: 0.00 / 0.00 / 0.00 / 0.00 / 0.00 / 0.00

1 11 21 31 41 51 60time-0.5

0

0.5
Metric rmse - global result: 0.00 / 0.00 / 0.00 / 0.00 / 0.00 / 0.00

By Input Class FL
Time and Global evaluated metrics

Global Count : 691200

ib-mts lstm ed-lstm gru ed-gru nbeats

1 11 21 31 41 51 60time0.0087

0.046

0.084
Metric mae - global result: 0.04 / 0.04 / 0.04 / 0.04 / 0.04 / 0.07

1 11 21 31 41 51 60time0.6

3.2

5.9
Metric mape - global result: 1.56 / 1.34 / 1.61 / 1.20 / 1.46 / 4.04

1 11 21 31 41 51 60time0.0092

0.094

0.18
Metric rmse - global result: 0.05 / 0.06 / 0.06 / 0.06 / 0.06 / 0.16

By Output Class QS
Time and Global evaluated metrics

Global Count : 101145600

ib-mts lstm ed-lstm gru ed-gru nbeats

1 11 21 31 41 51 60time0.025

0.097

0.17
Metric mae - global result: 0.07 / 0.08 / 0.07 / 0.08 / 0.07 / 0.13

1 11 21 31 41 51 60time-0.69

31

64
Metric mape - global result: 3.37 / 19.55 / 6.52 / 40.35 / 3.92 / 5.02

1 11 21 31 41 51 60time0.037

0.13

0.23
Metric rmse - global result: 0.10 / 0.11 / 0.10 / 0.11 / 0.10 / 0.19

By Output Class AR
Time and Global evaluated metrics

Global Count : 1497600

ib-mts lstm ed-lstm gru ed-gru nbeats

1 11 21 31 41 51 60time0.0072

0.068

0.13
Metric mae - global result: 0.05 / 0.04 / 0.05 / 0.06 / 0.06 / 0.09

1 11 21 31 41 51 60time1.4

4.3

7.2
Metric mape - global result: 3.89 / 3.23 / 4.25 / 2.39 / 3.99 / 5.21

1 11 21 31 41 51 60time0.0099

0.11

0.21
Metric rmse - global result: 0.07 / 0.06 / 0.08 / 0.08 / 0.08 / 0.17

By Output Class PF
Time and Global evaluated metrics

Global Count : 0

ib-mts lstm ed-lstm gru ed-gru nbeats

1 11 21 31 41 51 60time-0.5

0

0.5
Metric mae - global result: 0.00 / 0.00 / 0.00 / 0.00 / 0.00 / 0.00

1 11 21 31 41 51 60time-0.5

0

0.5
Metric mape - global result: 0.00 / 0.00 / 0.00 / 0.00 / 0.00 / 0.00

1 11 21 31 41 51 60time-0.5

0

0.5
Metric rmse - global result: 0.00 / 0.00 / 0.00 / 0.00 / 0.00 / 0.00

By Output Class FL
Time and Global evaluated metrics

Global Count : 201600

ib-mts lstm ed-lstm gru ed-gru nbeats

1 11 21 31 41 51 60time0.0097

0.064

0.12
Metric mae - global result: 0.05 / 0.05 / 0.05 / 0.04 / 0.04 / 0.08

1 11 21 31 41 51 60time0.7

4

7.4
Metric mape - global result: 4.91 / 3.32 / 4.35 / 2.95 / 3.81 / 5.42

1 11 21 31 41 51 60time0.012

0.11

0.21
Metric rmse - global result: 0.08 / 0.07 / 0.07 / 0.06 / 0.07 / 0.17

By Input class QS Output class QS
Time and Global evaluated metrics

Global Count : 98697600

ib-mts lstm ed-lstm gru ed-gru nbeats

1 11 21 31 41 51 60time0.025

0.097

0.17
Metric mae - global result: 0.07 / 0.08 / 0.08 / 0.08 / 0.07 / 0.13

1 11 21 31 41 51 60time-0.73

32

65
Metric mape - global result: 3.39 / 19.81 / 6.59 / 40.95 / 3.96 / 5.03

1 11 21 31 41 51 60time0.037

0.13

0.24
Metric rmse - global result: 0.10 / 0.11 / 0.11 / 0.11 / 0.10 / 0.19

By Input class QS Output class AR
Time and Global evaluated metrics

Global Count : 864000

ib-mts lstm ed-lstm gru ed-gru nbeats

1 11 21 31 41 51 60time0.0071

0.083

0.16
Metric mae - global result: 0.05 / 0.04 / 0.06 / 0.07 / 0.06 / 0.10

1 11 21 31 41 51 60time1.4

4.7

8.1
Metric mape - global result: 4.71 / 3.69 / 4.45 / 2.55 / 4.34 / 5.77

1 11 21 31 41 51 60time0.011

0.12

0.23
Metric rmse - global result: 0.08 / 0.06 / 0.08 / 0.09 / 0.09 / 0.18

By Input class QS Output class PF
Time and Global evaluated metrics

Global Count : 0

ib-mts lstm ed-lstm gru ed-gru nbeats

1 11 21 31 41 51 60time-0.5

0

0.5
Metric mae - global result: 0.00 / 0.00 / 0.00 / 0.00 / 0.00 / 0.00

1 11 21 31 41 51 60time-0.5

0

0.5
Metric mape - global result: 0.00 / 0.00 / 0.00 / 0.00 / 0.00 / 0.00

1 11 21 31 41 51 60time-0.5

0

0.5
Metric rmse - global result: 0.00 / 0.00 / 0.00 / 0.00 / 0.00 / 0.00

By Input class QS Output class FL
Time and Global evaluated metrics

Global Count : 172800

ib-mts lstm ed-lstm gru ed-gru nbeats

1 11 21 31 41 51 60time0.0093

0.069

0.13
Metric mae - global result: 0.05 / 0.05 / 0.06 / 0.05 / 0.06 / 0.09

1 11 21 31 41 51 60time0.99

4.3

7.8
Metric mape - global result: 4.96 / 4.74 / 5.23 / 4.04 / 5.26 / 5.71

1 11 21 31 41 51 60time0.012

0.11

0.22
Metric rmse - global result: 0.08 / 0.07 / 0.08 / 0.07 / 0.09 / 0.18

By Input class AR Output class QS
Time and Global evaluated metrics

Global Count : 1900800

ib-mts lstm ed-lstm gru ed-gru nbeats

1 11 21 31 41 51 60time0.015

0.077

0.14
Metric mae - global result: 0.04 / 0.05 / 0.05 / 0.05 / 0.05 / 0.10

1 11 21 31 41 51 60time1.2

4

6.9
Metric mape - global result: 2.33 / 2.72 / 3.05 / 2.63 / 2.87 / 4.75

1 11 21 31 41 51 60time0.027

0.11

0.21
Metric rmse - global result: 0.07 / 0.08 / 0.07 / 0.08 / 0.06 / 0.17

By Input class AR Output class AR
Time and Global evaluated metrics

Global Count : 489600

ib-mts lstm ed-lstm gru ed-gru nbeats

1 11 21 31 41 51 60time0.0062

0.063

0.12
Metric mae - global result: 0.03 / 0.04 / 0.05 / 0.05 / 0.03 / 0.07

1 11 21 31 41 51 60time0.96

4

7.2
Metric mape - global result: 2.61 / 3.36 / 4.50 / 3.06 / 3.62 / 4.54

1 11 21 31 41 51 60time0.0072

0.1

0.2
Metric rmse - global result: 0.06 / 0.06 / 0.07 / 0.07 / 0.05 / 0.16

By Input class AR Output class PF
Time and Global evaluated metrics

Global Count : 0

ib-mts lstm ed-lstm gru ed-gru nbeats

1 11 21 31 41 51 60time-0.5

0

0.5
Metric mae - global result: 0.00 / 0.00 / 0.00 / 0.00 / 0.00 / 0.00

1 11 21 31 41 51 60time-0.5

0

0.5
Metric mape - global result: 0.00 / 0.00 / 0.00 / 0.00 / 0.00 / 0.00

1 11 21 31 41 51 60time-0.5

0

0.5
Metric rmse - global result: 0.00 / 0.00 / 0.00 / 0.00 / 0.00 / 0.00

By Input class AR Output class FL
Time and Global evaluated metrics

Global Count : 28800

ib-mts lstm ed-lstm gru ed-gru nbeats

1 11 21 31 41 51 60time-0.5

0

0.5
Metric mae - global result: 0.05 / 0.00 / 0.05 / 0.00 / 0.00 / 0.00

1 11 21 31 41 51 60time-0.5

3.3

7.1
Metric mape - global result: 4.62 / 0.00 / 5.02 / 0.00 / 0.00 / 0.00

1 11 21 31 41 51 60time-0.5

0

0.5
Metric rmse - global result: 0.07 / 0.00 / 0.07 / 0.00 / 0.00 / 0.00

By Input class PF Output class QS
Time and Global evaluated metrics

Global Count : 0

ib-mts lstm ed-lstm gru ed-gru nbeats

1 11 21 31 41 51 60time-0.5

0

0.5
Metric mae - global result: 0.00 / 0.00 / 0.00 / 0.00 / 0.00 / 0.00

1 11 21 31 41 51 60time-0.5

0

0.5
Metric mape - global result: 0.00 / 0.00 / 0.00 / 0.00 / 0.00 / 0.00

1 11 21 31 41 51 60time-0.5

0

0.5
Metric rmse - global result: 0.00 / 0.00 / 0.00 / 0.00 / 0.00 / 0.00

By Input class PF Output class AR
Time and Global evaluated metrics

Global Count : 0

ib-mts lstm ed-lstm gru ed-gru nbeats

1 11 21 31 41 51 60time-0.5

0

0.5
Metric mae - global result: 0.00 / 0.00 / 0.00 / 0.00 / 0.00 / 0.00

1 11 21 31 41 51 60time-0.5

0

0.5
Metric mape - global result: 0.00 / 0.00 / 0.00 / 0.00 / 0.00 / 0.00

1 11 21 31 41 51 60time-0.5

0

0.5
Metric rmse - global result: 0.00 / 0.00 / 0.00 / 0.00 / 0.00 / 0.00

By Input class PF Output class PF
Time and Global evaluated metrics

Global Count : 0

ib-mts lstm ed-lstm gru ed-gru nbeats

1 11 21 31 41 51 60time-0.5

0

0.5
Metric mae - global result: 0.00 / 0.00 / 0.00 / 0.00 / 0.00 / 0.00

1 11 21 31 41 51 60time-0.5

0

0.5
Metric mape - global result: 0.00 / 0.00 / 0.00 / 0.00 / 0.00 / 0.00

1 11 21 31 41 51 60time-0.5

0

0.5
Metric rmse - global result: 0.00 / 0.00 / 0.00 / 0.00 / 0.00 / 0.00

By Input class PF Output class FL
Time and Global evaluated metrics

Global Count : 0

ib-mts lstm ed-lstm gru ed-gru nbeats

1 11 21 31 41 51 60time-0.5

0

0.5
Metric mae - global result: 0.00 / 0.00 / 0.00 / 0.00 / 0.00 / 0.00

1 11 21 31 41 51 60time-0.5

0

0.5
Metric mape - global result: 0.00 / 0.00 / 0.00 / 0.00 / 0.00 / 0.00

1 11 21 31 41 51 60time-0.5

0

0.5
Metric rmse - global result: 0.00 / 0.00 / 0.00 / 0.00 / 0.00 / 0.00

By Input class FL Output class QS
Time and Global evaluated metrics

Global Count : 547200

ib-mts lstm ed-lstm gru ed-gru nbeats

1 11 21 31 41 51 60time0.0089

0.049

0.089
Metric mae - global result: 0.04 / 0.05 / 0.04 / 0.05 / 0.05 / 0.07

1 11 21 31 41 51 60time0.33

3

5.7
Metric mape - global result: 1.64 / 1.32 / 1.55 / 1.23 / 1.10 / 3.86

1 11 21 31 41 51 60time0.0095

0.094

0.18
Metric rmse - global result: 0.06 / 0.06 / 0.06 / 0.06 / 0.06 / 0.16

By Input class FL Output class AR
Time and Global evaluated metrics

Global Count : 144000

ib-mts lstm ed-lstm gru ed-gru nbeats

1 11 21 31 41 51 60time0.007

0.044

0.082
Metric mae - global result: 0.04 / 0.04 / 0.03 / 0.04 / 0.04 / 0.07

1 11 21 31 41 51 60time0.37

3.1

6
Metric mape - global result: 1.24 / 1.50 / 2.14 / 1.16 / 1.87 / 4.11

1 11 21 31 41 51 60time0.0082

0.094

0.18
Metric rmse - global result: 0.05 / 0.06 / 0.05 / 0.06 / 0.06 / 0.16

By Input class FL Output class PF
Time and Global evaluated metrics

Global Count : 0

ib-mts lstm ed-lstm gru ed-gru nbeats

1 11 21 31 41 51 60time-0.5

0

0.5
Metric mae - global result: 0.00 / 0.00 / 0.00 / 0.00 / 0.00 / 0.00

1 11 21 31 41 51 60time-0.5

0

0.5
Metric mape - global result: 0.00 / 0.00 / 0.00 / 0.00 / 0.00 / 0.00

1 11 21 31 41 51 60time-0.5

0

0.5
Metric rmse - global result: 0.00 / 0.00 / 0.00 / 0.00 / 0.00 / 0.00

By Input class FL Output class FL
Time and Global evaluated metrics

Global Count : 0

ib-mts lstm ed-lstm gru ed-gru nbeats

1 11 21 31 41 51 60time-3.8e-3

0.038

0.081
Metric mae - global result: 0.00 / 0.04 / 0.04 / 0.04 / 0.03 / 0.07

1 11 21 31 41 51 60time-0.3

3.2

6.8
Metric mape - global result: 0.00 / 1.29 / 1.61 / 1.00 / 2.22 / 4.30

1 11 21 31 41 51 60time-8.4e-3

0.085

0.18
Metric rmse - global result: 0.00 / 0.06 / 0.05 / 0.06 / 0.05 / 0.15

IRIS FL Data

Global avg mts metrics by Label QS
Time and Global evaluated metrics

Global Count : 230400000

ib-mts lstm ed-lstm gru ed-gru nbeats

1 11 21 31 41 51 60time0.012

0.071

0.13
Metric mae - global result: 0.04 / 0.05 / 0.05 / 0.05 / 0.04 / 0.10

1 11 21 31 41 51 60time-0.33

21

43
Metric mape - global result: 2.76 / 13.13 / 4.71 / 26.84 / 3.16 / 4.75

1 11 21 31 41 51 60time0.023

0.12

0.23
Metric rmse - global result: 0.07 / 0.08 / 0.08 / 0.08 / 0.07 / 0.19

Remainder By Label FL
Time and Global evaluated metrics

Global Count : 51264000

ib-mts lstm ed-lstm gru ed-gru nbeats

1 11 21 31 41 51 60time0.0011

0.04

0.079
Metric mae - global result: 0.01 / 0.02 / 0.02 / 0.02 / 0.02 / 0.07

1 11 21 31 41 51 60time0.35

2.8

5.4
Metric mape - global result: 1.83 / 2.53 / 2.26 / 2.44 / 2.21 / 4.24

1 11 21 31 41 51 60time0.0001

0.11

0.22
Metric rmse - global result: 0.03 / 0.04 / 0.04 / 0.04 / 0.04 / 0.20

Remainder By Label PF
Time and Global evaluated metrics

Global Count : 20476800

ib-mts lstm ed-lstm gru ed-gru nbeats

1 11 21 31 41 51 60time0.0012

0.04

0.08
Metric mae - global result: 0.01 / 0.02 / 0.02 / 0.02 / 0.01 / 0.07

1 11 21 31 41 51 60time0.36

2.9

5.5
Metric mape - global result: 1.70 / 2.47 / 2.08 / 2.29 / 1.91 / 4.17

1 11 21 31 41 51 60time-4.4e-4

0.11

0.22
Metric rmse - global result: 0.03 / 0.03 / 0.03 / 0.03 / 0.03 / 0.20

Remainder By Label AR
Time and Global evaluated metrics

Global Count : 55814400

ib-mts lstm ed-lstm gru ed-gru nbeats

1 11 21 31 41 51 60time0.0054

0.067

0.13
Metric mae - global result: 0.03 / 0.04 / 0.04 / 0.04 / 0.03 / 0.10

1 11 21 31 41 51 60time0.81

3.6

6.5
Metric mape - global result: 2.52 / 3.07 / 2.69 / 2.62 / 2.68 / 4.87

1 11 21 31 41 51 60time0.01

0.12

0.23
Metric rmse - global result: 0.05 / 0.06 / 0.06 / 0.06 / 0.06 / 0.20

Remainder By Label QS
Time and Global evaluated metrics

Global Count : 102844800

ib-mts lstm ed-lstm gru ed-gru nbeats

1 11 21 31 41 51 60time0.025

0.092

0.16
Metric mae - global result: 0.07 / 0.08 / 0.07 / 0.08 / 0.07 / 0.13

1 11 21 31 41 51 60time-0.68

31

64
Metric mape - global result: 3.38 / 19.41 / 6.48 / 40.07 / 3.92 / 5.03

1 11 21 31 41 51 60time0.037

0.13

0.23
Metric rmse - global result: 0.10 / 0.11 / 0.10 / 0.10 / 0.10 / 0.19

By Label QS
Time and Global evaluated metrics

Global Count : 102844800

ib-mts lstm ed-lstm gru ed-gru nbeats

1 11 21 31 41 51 60time0.025

0.092

0.16
Metric mae - global result: 0.07 / 0.08 / 0.07 / 0.08 / 0.07 / 0.13

1 11 21 31 41 51 60time-0.68

31

64
Metric mape - global result: 3.38 / 19.41 / 6.48 / 40.07 / 3.92 / 5.03

1 11 21 31 41 51 60time0.037

0.13

0.23
Metric rmse - global result: 0.10 / 0.11 / 0.10 / 0.10 / 0.10 / 0.19

By Input Class QS
Time and Global evaluated metrics

Global Count : 99734400

ib-mts lstm ed-lstm gru ed-gru nbeats

1 11 21 31 41 51 60time0.025

0.097

0.17
Metric mae - global result: 0.07 / 0.08 / 0.08 / 0.08 / 0.07 / 0.13

1 11 21 31 41 51 60time-0.72

32

65
Metric mape - global result: 3.41 / 19.75 / 6.57 / 40.76 / 3.96 / 5.05

1 11 21 31 41 51 60time0.036

0.13

0.23
Metric rmse - global result: 0.10 / 0.11 / 0.11 / 0.11 / 0.10 / 0.19

By Input Class AR
Time and Global evaluated metrics

Global Count : 2419200

ib-mts lstm ed-lstm gru ed-gru nbeats

1 11 21 31 41 51 60time0.013

0.076

0.14
Metric mae - global result: 0.04 / 0.05 / 0.05 / 0.05 / 0.05 / 0.10

1 11 21 31 41 51 60time1.3

4.1

6.9
Metric mape - global result: 2.43 / 2.80 / 3.30 / 2.66 / 2.89 / 4.75

1 11 21 31 41 51 60time0.026

0.11

0.21
Metric rmse - global result: 0.07 / 0.07 / 0.07 / 0.08 / 0.06 / 0.17

By Input Class PF
Time and Global evaluated metrics

Global Count : 0

ib-mts lstm ed-lstm gru ed-gru nbeats

1 11 21 31 41 51 60time-0.5

0

0.5
Metric mae - global result: 0.00 / 0.00 / 0.00 / 0.00 / 0.00 / 0.00

1 11 21 31 41 51 60time-0.5

0

0.5
Metric mape - global result: 0.00 / 0.00 / 0.00 / 0.00 / 0.00 / 0.00

1 11 21 31 41 51 60time-0.5

0

0.5
Metric rmse - global result: 0.00 / 0.00 / 0.00 / 0.00 / 0.00 / 0.00

By Input Class FL
Time and Global evaluated metrics

Global Count : 691200

ib-mts lstm ed-lstm gru ed-gru nbeats

1 11 21 31 41 51 60time0.0087

0.046

0.084
Metric mae - global result: 0.04 / 0.04 / 0.04 / 0.04 / 0.04 / 0.07

1 11 21 31 41 51 60time0.6

3.2

5.9
Metric mape - global result: 1.56 / 1.34 / 1.61 / 1.20 / 1.46 / 4.04

1 11 21 31 41 51 60time0.0092

0.094

0.18
Metric rmse - global result: 0.05 / 0.06 / 0.06 / 0.06 / 0.06 / 0.16

By Output Class QS
Time and Global evaluated metrics

Global Count : 101145600

ib-mts lstm ed-lstm gru ed-gru nbeats

1 11 21 31 41 51 60time0.025

0.097

0.17
Metric mae - global result: 0.07 / 0.08 / 0.07 / 0.08 / 0.07 / 0.13

1 11 21 31 41 51 60time-0.69

31

64
Metric mape - global result: 3.37 / 19.55 / 6.52 / 40.35 / 3.92 / 5.02

1 11 21 31 41 51 60time0.037

0.13

0.23
Metric rmse - global result: 0.10 / 0.11 / 0.10 / 0.11 / 0.10 / 0.19

By Output Class AR
Time and Global evaluated metrics

Global Count : 1497600

ib-mts lstm ed-lstm gru ed-gru nbeats

1 11 21 31 41 51 60time0.0072

0.068

0.13
Metric mae - global result: 0.05 / 0.04 / 0.05 / 0.06 / 0.06 / 0.09

1 11 21 31 41 51 60time1.4

4.3

7.2
Metric mape - global result: 3.89 / 3.23 / 4.25 / 2.39 / 3.99 / 5.21

1 11 21 31 41 51 60time0.0099

0.11

0.21
Metric rmse - global result: 0.07 / 0.06 / 0.08 / 0.08 / 0.08 / 0.17

By Output Class PF
Time and Global evaluated metrics

Global Count : 0

ib-mts lstm ed-lstm gru ed-gru nbeats

1 11 21 31 41 51 60time-0.5

0

0.5
Metric mae - global result: 0.00 / 0.00 / 0.00 / 0.00 / 0.00 / 0.00

1 11 21 31 41 51 60time-0.5

0

0.5
Metric mape - global result: 0.00 / 0.00 / 0.00 / 0.00 / 0.00 / 0.00

1 11 21 31 41 51 60time-0.5

0

0.5
Metric rmse - global result: 0.00 / 0.00 / 0.00 / 0.00 / 0.00 / 0.00

By Output Class FL
Time and Global evaluated metrics

Global Count : 201600

ib-mts lstm ed-lstm gru ed-gru nbeats

1 11 21 31 41 51 60time0.0097

0.064

0.12
Metric mae - global result: 0.05 / 0.05 / 0.05 / 0.04 / 0.04 / 0.08

1 11 21 31 41 51 60time0.7

4

7.4
Metric mape - global result: 4.91 / 3.32 / 4.35 / 2.95 / 3.81 / 5.42

1 11 21 31 41 51 60time0.012

0.11

0.21
Metric rmse - global result: 0.08 / 0.07 / 0.07 / 0.06 / 0.07 / 0.17

By Input class QS Output class QS
Time and Global evaluated metrics

Global Count : 98697600

ib-mts lstm ed-lstm gru ed-gru nbeats

1 11 21 31 41 51 60time0.025

0.097

0.17
Metric mae - global result: 0.07 / 0.08 / 0.08 / 0.08 / 0.07 / 0.13

1 11 21 31 41 51 60time-0.73

32

65
Metric mape - global result: 3.39 / 19.81 / 6.59 / 40.95 / 3.96 / 5.03

1 11 21 31 41 51 60time0.037

0.13

0.24
Metric rmse - global result: 0.10 / 0.11 / 0.11 / 0.11 / 0.10 / 0.19

By Input class QS Output class AR
Time and Global evaluated metrics

Global Count : 864000

ib-mts lstm ed-lstm gru ed-gru nbeats

1 11 21 31 41 51 60time0.0071

0.083

0.16
Metric mae - global result: 0.05 / 0.04 / 0.06 / 0.07 / 0.06 / 0.10

1 11 21 31 41 51 60time1.4

4.7

8.1
Metric mape - global result: 4.71 / 3.69 / 4.45 / 2.55 / 4.34 / 5.77

1 11 21 31 41 51 60time0.011

0.12

0.23
Metric rmse - global result: 0.08 / 0.06 / 0.08 / 0.09 / 0.09 / 0.18

By Input class QS Output class PF
Time and Global evaluated metrics

Global Count : 0

ib-mts lstm ed-lstm gru ed-gru nbeats

1 11 21 31 41 51 60time-0.5

0

0.5
Metric mae - global result: 0.00 / 0.00 / 0.00 / 0.00 / 0.00 / 0.00

1 11 21 31 41 51 60time-0.5

0

0.5
Metric mape - global result: 0.00 / 0.00 / 0.00 / 0.00 / 0.00 / 0.00

1 11 21 31 41 51 60time-0.5

0

0.5
Metric rmse - global result: 0.00 / 0.00 / 0.00 / 0.00 / 0.00 / 0.00

By Input class QS Output class FL
Time and Global evaluated metrics

Global Count : 172800

ib-mts lstm ed-lstm gru ed-gru nbeats

1 11 21 31 41 51 60time0.0093

0.069

0.13
Metric mae - global result: 0.05 / 0.05 / 0.06 / 0.05 / 0.06 / 0.09

1 11 21 31 41 51 60time0.99

4.3

7.8
Metric mape - global result: 4.96 / 4.74 / 5.23 / 4.04 / 5.26 / 5.71

1 11 21 31 41 51 60time0.012

0.11

0.22
Metric rmse - global result: 0.08 / 0.07 / 0.08 / 0.07 / 0.09 / 0.18

By Input class AR Output class QS
Time and Global evaluated metrics

Global Count : 1900800

ib-mts lstm ed-lstm gru ed-gru nbeats

1 11 21 31 41 51 60time0.015

0.077

0.14
Metric mae - global result: 0.04 / 0.05 / 0.05 / 0.05 / 0.05 / 0.10

1 11 21 31 41 51 60time1.2

4

6.9
Metric mape - global result: 2.33 / 2.72 / 3.05 / 2.63 / 2.87 / 4.75

1 11 21 31 41 51 60time0.027

0.11

0.21
Metric rmse - global result: 0.07 / 0.08 / 0.07 / 0.08 / 0.06 / 0.17

By Input class AR Output class AR
Time and Global evaluated metrics

Global Count : 489600

ib-mts lstm ed-lstm gru ed-gru nbeats

1 11 21 31 41 51 60time0.0062

0.063

0.12
Metric mae - global result: 0.03 / 0.04 / 0.05 / 0.05 / 0.03 / 0.07

1 11 21 31 41 51 60time0.96

4

7.2
Metric mape - global result: 2.61 / 3.36 / 4.50 / 3.06 / 3.62 / 4.54

1 11 21 31 41 51 60time0.0072

0.1

0.2
Metric rmse - global result: 0.06 / 0.06 / 0.07 / 0.07 / 0.05 / 0.16

By Input class AR Output class PF
Time and Global evaluated metrics

Global Count : 0

ib-mts lstm ed-lstm gru ed-gru nbeats

1 11 21 31 41 51 60time-0.5

0

0.5
Metric mae - global result: 0.00 / 0.00 / 0.00 / 0.00 / 0.00 / 0.00

1 11 21 31 41 51 60time-0.5

0

0.5
Metric mape - global result: 0.00 / 0.00 / 0.00 / 0.00 / 0.00 / 0.00

1 11 21 31 41 51 60time-0.5

0

0.5
Metric rmse - global result: 0.00 / 0.00 / 0.00 / 0.00 / 0.00 / 0.00

By Input class AR Output class FL
Time and Global evaluated metrics

Global Count : 28800

ib-mts lstm ed-lstm gru ed-gru nbeats

1 11 21 31 41 51 60time-0.5

0

0.5
Metric mae - global result: 0.05 / 0.00 / 0.05 / 0.00 / 0.00 / 0.00

1 11 21 31 41 51 60time-0.5

3.3

7.1
Metric mape - global result: 4.62 / 0.00 / 5.02 / 0.00 / 0.00 / 0.00

1 11 21 31 41 51 60time-0.5

0

0.5
Metric rmse - global result: 0.07 / 0.00 / 0.07 / 0.00 / 0.00 / 0.00

By Input class PF Output class QS
Time and Global evaluated metrics

Global Count : 0

ib-mts lstm ed-lstm gru ed-gru nbeats

1 11 21 31 41 51 60time-0.5

0

0.5
Metric mae - global result: 0.00 / 0.00 / 0.00 / 0.00 / 0.00 / 0.00

1 11 21 31 41 51 60time-0.5

0

0.5
Metric mape - global result: 0.00 / 0.00 / 0.00 / 0.00 / 0.00 / 0.00

1 11 21 31 41 51 60time-0.5

0

0.5
Metric rmse - global result: 0.00 / 0.00 / 0.00 / 0.00 / 0.00 / 0.00

By Input class PF Output class AR
Time and Global evaluated metrics

Global Count : 0

ib-mts lstm ed-lstm gru ed-gru nbeats

1 11 21 31 41 51 60time-0.5

0

0.5
Metric mae - global result: 0.00 / 0.00 / 0.00 / 0.00 / 0.00 / 0.00

1 11 21 31 41 51 60time-0.5

0

0.5
Metric mape - global result: 0.00 / 0.00 / 0.00 / 0.00 / 0.00 / 0.00

1 11 21 31 41 51 60time-0.5

0

0.5
Metric rmse - global result: 0.00 / 0.00 / 0.00 / 0.00 / 0.00 / 0.00

By Input class PF Output class PF
Time and Global evaluated metrics

Global Count : 0

ib-mts lstm ed-lstm gru ed-gru nbeats

1 11 21 31 41 51 60time-0.5

0

0.5
Metric mae - global result: 0.00 / 0.00 / 0.00 / 0.00 / 0.00 / 0.00

1 11 21 31 41 51 60time-0.5

0

0.5
Metric mape - global result: 0.00 / 0.00 / 0.00 / 0.00 / 0.00 / 0.00

1 11 21 31 41 51 60time-0.5

0

0.5
Metric rmse - global result: 0.00 / 0.00 / 0.00 / 0.00 / 0.00 / 0.00

By Input class PF Output class FL
Time and Global evaluated metrics

Global Count : 0

ib-mts lstm ed-lstm gru ed-gru nbeats

1 11 21 31 41 51 60time-0.5

0

0.5
Metric mae - global result: 0.00 / 0.00 / 0.00 / 0.00 / 0.00 / 0.00

1 11 21 31 41 51 60time-0.5

0

0.5
Metric mape - global result: 0.00 / 0.00 / 0.00 / 0.00 / 0.00 / 0.00

1 11 21 31 41 51 60time-0.5

0

0.5
Metric rmse - global result: 0.00 / 0.00 / 0.00 / 0.00 / 0.00 / 0.00

By Input class FL Output class QS
Time and Global evaluated metrics

Global Count : 547200

ib-mts lstm ed-lstm gru ed-gru nbeats

1 11 21 31 41 51 60time0.0089

0.049

0.089
Metric mae - global result: 0.04 / 0.05 / 0.04 / 0.05 / 0.05 / 0.07

1 11 21 31 41 51 60time0.33

3

5.7
Metric mape - global result: 1.64 / 1.32 / 1.55 / 1.23 / 1.10 / 3.86

1 11 21 31 41 51 60time0.0095

0.094

0.18
Metric rmse - global result: 0.06 / 0.06 / 0.06 / 0.06 / 0.06 / 0.16

By Input class FL Output class AR
Time and Global evaluated metrics

Global Count : 144000

ib-mts lstm ed-lstm gru ed-gru nbeats

1 11 21 31 41 51 60time0.007

0.044

0.082
Metric mae - global result: 0.04 / 0.04 / 0.03 / 0.04 / 0.04 / 0.07

1 11 21 31 41 51 60time0.37

3.1

6
Metric mape - global result: 1.24 / 1.50 / 2.14 / 1.16 / 1.87 / 4.11

1 11 21 31 41 51 60time0.0082

0.094

0.18
Metric rmse - global result: 0.05 / 0.06 / 0.05 / 0.06 / 0.06 / 0.16

By Input class FL Output class PF
Time and Global evaluated metrics

Global Count : 0

ib-mts lstm ed-lstm gru ed-gru nbeats

1 11 21 31 41 51 60time-0.5

0

0.5
Metric mae - global result: 0.00 / 0.00 / 0.00 / 0.00 / 0.00 / 0.00

1 11 21 31 41 51 60time-0.5

0

0.5
Metric mape - global result: 0.00 / 0.00 / 0.00 / 0.00 / 0.00 / 0.00

1 11 21 31 41 51 60time-0.5

0

0.5
Metric rmse - global result: 0.00 / 0.00 / 0.00 / 0.00 / 0.00 / 0.00

By Input class FL Output class FL
Time and Global evaluated metrics

Global Count : 0

ib-mts lstm ed-lstm gru ed-gru nbeats

1 11 21 31 41 51 60time-3.8e-3

0.038

0.081
Metric mae - global result: 0.00 / 0.04 / 0.04 / 0.04 / 0.03 / 0.07

1 11 21 31 41 51 60time-0.3

3.2

6.8
Metric mape - global result: 0.00 / 1.29 / 1.61 / 1.00 / 2.22 / 4.30

1 11 21 31 41 51 60time-8.4e-3

0.085

0.18
Metric rmse - global result: 0.00 / 0.06 / 0.05 / 0.06 / 0.05 / 0.15

Figure A1. Detailed MTS metrics evaluation on the test set for the direct prediction setup. The
evaluations are given for each solar activity: the first row of results is for QS activity, the second row
is for AR, and the last row is for FL.

96

Entropy 2023, 25, 831

IRIS QS Data

Global avg mts metrics by Label QS
Time and Global evaluated metrics

Global Count : 165680640

ib-mts lstm ed-lstm gru ed-gru nbeats

1 121 241 361 481 601 707time0.01

0.12

0.23
Metric mae - global result: 0.05 / 0.06 / 0.05 / 0.06 / 0.05 / 0.13

1 121 241 361 481 601 707time-2.2

40

83
Metric mape - global result: 2.94 / 12.35 / 3.53 / 26.32 / 3.22 / 6.47

1 121 241 361 481 601 707time0.02

0.16

0.31
Metric rmse - global result: 0.08 / 0.09 / 0.09 / 0.10 / 0.08 / 0.22

Remainder By Label QS
Time and Global evaluated metrics

Global Count : 60827280

ib-mts lstm ed-lstm gru ed-gru nbeats

1 121 241 361 481 601 707time

0.13

0.34
Metric mae - global result: 0.08 / 0.08 / 0.08 / 0.09 / 0.08 / 0.18

1 121 241 361 481 601 707time

57

120
Metric mape - global result: 3.71 / 17.22 / 4.48 / 42.65 / 4.01 / 6.99

1 121 241 361 481 601 707time

0.16

0.41
Metric rmse - global result: 0.11 / 0.12 / 0.12 / 0.12 / 0.11 / 0.24

Remainder By Label AR
Time and Global evaluated metrics

Global Count : 36152880

ib-mts lstm ed-lstm gru ed-gru nbeats

1 121 241 361 481 601 707time-0.041

0.084

0.21
Metric mae - global result: 0.04 / 0.04 / 0.04 / 0.04 / 0.04 / 0.13

1 121 241 361 481 601 707time-2.2

4.4

11
Metric mape - global result: 2.72 / 3.19 / 3.01 / 2.92 / 2.90 / 6.88

1 121 241 361 481 601 707time-0.065

0.13

0.33
Metric rmse - global result: 0.06 / 0.07 / 0.07 / 0.07 / 0.06 / 0.23

Remainder By Label PF
Time and Global evaluated metrics

Global Count : 8515920

ib-mts lstm ed-lstm gru ed-gru nbeats

1 121 241 361 481 601 707time-0.022

0.044

0.11
Metric mae - global result: 0.01 / 0.02 / 0.02 / 0.02 / 0.02 / 0.08

1 121 241 361 481 601 707time-1.6

9.7

21
Metric mape - global result: 1.75 / 3.24 / 2.21 / 2.37 / 2.02 / 4.77

1 121 241 361 481 601 707time-0.052

0.1

0.26
Metric rmse - global result: 0.03 / 0.04 / 0.04 / 0.03 / 0.03 / 0.20

Remainder By Label FL
Time and Global evaluated metrics

Global Count : 60184560

ib-mts lstm ed-lstm gru ed-gru nbeats

1 121 241 361 481 601 707time0.0002

0.06

0.12
Metric mae - global result: 0.04 / 0.05 / 0.03 / 0.04 / 0.03 / 0.08

1 121 241 361 481 601 707time-2.3

30

64
Metric mape - global result: 2.23 / 10.61 / 2.81 / 7.89 / 2.59 / 5.84

1 121 241 361 481 601 707time8.7e-4

0.12

0.24
Metric rmse - global result: 0.07 / 0.08 / 0.06 / 0.09 / 0.06 / 0.21

By Label QS
Time and Global evaluated metrics

Global Count : 60827280

ib-mts lstm ed-lstm gru ed-gru nbeats

1 121 241 361 481 601 707time-0.068

0.13

0.34
Metric mae - global result: 0.08 / 0.08 / 0.08 / 0.09 / 0.08 / 0.18

1 121 241 361 481 601 707time-5.6

57

120
Metric mape - global result: 3.71 / 17.22 / 4.48 / 42.65 / 4.01 / 6.99

1 121 241 361 481 601 707time-0.081

0.16

0.41
Metric rmse - global result: 0.11 / 0.12 / 0.12 / 0.12 / 0.11 / 0.24

By Input Class QS
Time and Global evaluated metrics

Global Count : 59417040

ib-mts lstm ed-lstm gru ed-gru nbeats

1 121 241 361 481 601 707time-0.068

0.13

0.34
Metric mae - global result: 0.08 / 0.08 / 0.09 / 0.09 / 0.08 / 0.18

1 121 241 361 481 601 707time-5.6

57

120
Metric mape - global result: 3.73 / 17.41 / 4.52 / 43.14 / 4.03 / 7.03

1 121 241 361 481 601 707time-0.081

0.16

0.41
Metric rmse - global result: 0.11 / 0.12 / 0.12 / 0.13 / 0.12 / 0.25

By Input Class AR
Time and Global evaluated metrics

Global Count : 1220400

ib-mts lstm ed-lstm gru ed-gru nbeats

1 121 241 361 481 601 707time-0.042

0.084

0.21
Metric mae - global result: 0.04 / 0.04 / 0.04 / 0.04 / 0.04 / 0.11

1 121 241 361 481 601 707time-2.1

4.4

11
Metric mape - global result: 2.29 / 3.00 / 3.41 / 2.72 / 3.66 / 6.04

1 121 241 361 481 601 707time-0.056

0.11

0.28
Metric rmse - global result: 0.06 / 0.06 / 0.06 / 0.06 / 0.06 / 0.18

By Input Class PF
Time and Global evaluated metrics

Global Count : 0

ib-mts lstm ed-lstm gru ed-gru nbeats

1 121 241 361 481 601 707time-0.5

0

0.5
Metric mae - global result: 0.00 / 0.00 / 0.00 / 0.00 / 0.00 / 0.00

1 121 241 361 481 601 707time-0.5

0

0.5
Metric mape - global result: 0.00 / 0.00 / 0.00 / 0.00 / 0.00 / 0.00

1 121 241 361 481 601 707time-0.5

0

0.5
Metric rmse - global result: 0.00 / 0.00 / 0.00 / 0.00 / 0.00 / 0.00

By Input Class FL
Time and Global evaluated metrics

Global Count : 189840

ib-mts lstm ed-lstm gru ed-gru nbeats

1 121 241 361 481 601 707time-0.026

0.052

0.13
Metric mae - global result: 0.05 / 0.05 / 0.04 / 0.05 / 0.05 / 0.08

1 121 241 361 481 601 707time-1.8

3.5

8.9
Metric mape - global result: 1.16 / 1.32 / 1.48 / 1.19 / 1.51 / 4.99

1 121 241 361 481 601 707time-0.046

0.092

0.23
Metric rmse - global result: 0.07 / 0.07 / 0.06 / 0.07 / 0.07 / 0.16

By Output Class QS
Time and Global evaluated metrics

Global Count : 60095280

ib-mts lstm ed-lstm gru ed-gru nbeats

1 121 241 361 481 601 707time-0.071

0.14

0.36
Metric mae - global result: 0.08 / 0.08 / 0.08 / 0.09 / 0.08 / 0.19

1 121 241 361 481 601 707time-5.6

57

120
Metric mape - global result: 3.70 / 17.30 / 4.48 / 42.75 / 4.00 / 6.92

1 121 241 361 481 601 707time-0.083

0.16

0.42
Metric rmse - global result: 0.11 / 0.12 / 0.12 / 0.12 / 0.11 / 0.25

By Output Class AR
Time and Global evaluated metrics

Global Count : 704880

ib-mts lstm ed-lstm gru ed-gru nbeats

1 121 241 361 481 601 707time-0.097

0.19

0.49
Metric mae - global result: 0.05 / 0.04 / 0.06 / 0.05 / 0.05 / 0.12

1 121 241 361 481 601 707time-2.4

4.8

12
Metric mape - global result: 3.79 / 3.33 / 4.34 / 3.51 / 4.51 / 6.38

1 121 241 361 481 601 707time-0.11

0.21

0.53
Metric rmse - global result: 0.08 / 0.06 / 0.08 / 0.07 / 0.07 / 0.20

By Output Class PF
Time and Global evaluated metrics

Global Count : 0

ib-mts lstm ed-lstm gru ed-gru nbeats

1 121 241 361 481 601 707time-0.5

0

0.5
Metric mae - global result: 0.00 / 0.00 / 0.00 / 0.00 / 0.00 / 0.00

1 121 241 361 481 601 707time-0.5

0

0.5
Metric mape - global result: 0.00 / 0.00 / 0.00 / 0.00 / 0.00 / 0.00

1 121 241 361 481 601 707time-0.5

0

0.5
Metric rmse - global result: 0.00 / 0.00 / 0.00 / 0.00 / 0.00 / 0.00

By Output Class FL
Time and Global evaluated metrics

Global Count : 27120

ib-mts lstm ed-lstm gru ed-gru nbeats

1 121 241 361 481 601 707time-0.064

0.12

0.32
Metric mae - global result: 0.05 / 0.00 / 0.06 / 0.05 / 0.05 / 0.17

1 121 241 361 481 601 707time-2.4

4.8

12
Metric mape - global result: 4.62 / 0.00 / 4.78 / 4.39 / 3.82 / 7.59

1 121 241 361 481 601 707time-0.078

0.15

0.39
Metric rmse - global result: 0.08 / 0.00 / 0.08 / 0.07 / 0.07 / 0.23

By Input class QS Output class QS
Time and Global evaluated metrics

Global Count : 58902000

ib-mts lstm ed-lstm gru ed-gru nbeats

1 121 241 361 481 601 707time-0.071

0.14

0.36
Metric mae - global result: 0.08 / 0.09 / 0.09 / 0.09 / 0.08 / 0.19

1 121 241 361 481 601 707time-5.6

57

120
Metric mape - global result: 3.73 / 17.47 / 4.51 / 43.23 / 4.03 / 6.92

1 121 241 361 481 601 707time-0.083

0.16

0.42
Metric rmse - global result: 0.11 / 0.12 / 0.12 / 0.13 / 0.12 / 0.25

By Input class QS Output class AR
Time and Global evaluated metrics

Global Count : 487920

ib-mts lstm ed-lstm gru ed-gru nbeats

1 121 241 361 481 601 707time-0.097

0.19

0.49
Metric mae - global result: 0.05 / 0.04 / 0.06 / 0.05 / 0.05 / 0.14

1 121 241 361 481 601 707time-2.4

4.8

12
Metric mape - global result: 4.22 / 3.78 / 4.60 / 4.24 / 4.57 / 6.71

1 121 241 361 481 601 707time-0.11

0.21

0.53
Metric rmse - global result: 0.08 / 0.06 / 0.09 / 0.07 / 0.08 / 0.21

By Input class QS Output class PF
Time and Global evaluated metrics

Global Count : 0

ib-mts lstm ed-lstm gru ed-gru nbeats

1 121 241 361 481 601 707time-0.5

0

0.5
Metric mae - global result: 0.00 / 0.00 / 0.00 / 0.00 / 0.00 / 0.00

1 121 241 361 481 601 707time-0.5

0

0.5
Metric mape - global result: 0.00 / 0.00 / 0.00 / 0.00 / 0.00 / 0.00

1 121 241 361 481 601 707time-0.5

0

0.5
Metric rmse - global result: 0.00 / 0.00 / 0.00 / 0.00 / 0.00 / 0.00

By Input class QS Output class FL
Time and Global evaluated metrics

Global Count : 27120

ib-mts lstm ed-lstm gru ed-gru nbeats

1 121 241 361 481 601 707time-0.064

0.12

0.32
Metric mae - global result: 0.05 / 0.00 / 0.06 / 0.05 / 0.08 / 0.17

1 121 241 361 481 601 707time-2.4

4.8

12
Metric mape - global result: 4.62 / 0.00 / 5.39 / 4.39 / 5.66 / 7.62

1 121 241 361 481 601 707time-0.078

0.15

0.39
Metric rmse - global result: 0.08 / 0.00 / 0.09 / 0.07 / 0.10 / 0.23

By Input class AR Output class QS
Time and Global evaluated metrics

Global Count : 1003440

ib-mts lstm ed-lstm gru ed-gru nbeats

1 121 241 361 481 601 707time-0.049

0.095

0.24
Metric mae - global result: 0.04 / 0.04 / 0.04 / 0.04 / 0.04 / 0.11

1 121 241 361 481 601 707time-2.1

4.4

11
Metric mape - global result: 2.21 / 2.99 / 3.19 / 2.72 / 3.49 / 6.04

1 121 241 361 481 601 707time-0.06

0.12

0.3
Metric rmse - global result: 0.06 / 0.06 / 0.06 / 0.06 / 0.06 / 0.19

By Input class AR Output class AR
Time and Global evaluated metrics

Global Count : 216960

ib-mts lstm ed-lstm gru ed-gru nbeats

1 121 241 361 481 601 707time-0.038

0.076

0.19
Metric mae - global result: 0.04 / 0.04 / 0.05 / 0.00 / 0.04 / 0.10

1 121 241 361 481 601 707time-2

4

10
Metric mape - global result: 2.60 / 3.15 / 4.85 / 0.00 / 4.30 / 6.04

1 121 241 361 481 601 707time-0.054

0.1

0.27
Metric rmse - global result: 0.07 / 0.05 / 0.07 / 0.00 / 0.06 / 0.18

By Input class AR Output class PF
Time and Global evaluated metrics

Global Count : 0

ib-mts lstm ed-lstm gru ed-gru nbeats

1 121 241 361 481 601 707time-0.5

0

0.5
Metric mae - global result: 0.00 / 0.00 / 0.00 / 0.00 / 0.00 / 0.00

1 121 241 361 481 601 707time-0.5

0

0.5
Metric mape - global result: 0.00 / 0.00 / 0.00 / 0.00 / 0.00 / 0.00

1 121 241 361 481 601 707time-0.5

0

0.5
Metric rmse - global result: 0.00 / 0.00 / 0.00 / 0.00 / 0.00 / 0.00

By Input class AR Output class FL
Time and Global evaluated metrics

Global Count : 0

ib-mts lstm ed-lstm gru ed-gru nbeats

1 121 241 361 481 601 707time-0.5

0

0.5
Metric mae - global result: 0.00 / 0.00 / 0.06 / 0.00 / 0.00 / 0.00

1 121 241 361 481 601 707time-0.5

3.5

7.5
Metric mape - global result: 0.00 / 0.00 / 5.22 / 0.00 / 0.00 / 0.00

1 121 241 361 481 601 707time-0.5

0

0.5
Metric rmse - global result: 0.00 / 0.00 / 0.08 / 0.00 / 0.00 / 0.00

By Input class PF Output class QS
Time and Global evaluated metrics

Global Count : 0

ib-mts lstm ed-lstm gru ed-gru nbeats

1 121 241 361 481 601 707time-0.5

0

0.5
Metric mae - global result: 0.00 / 0.00 / 0.00 / 0.00 / 0.00 / 0.00

1 121 241 361 481 601 707time-0.5

0

0.5
Metric mape - global result: 0.00 / 0.00 / 0.00 / 0.00 / 0.00 / 0.00

1 121 241 361 481 601 707time-0.5

0

0.5
Metric rmse - global result: 0.00 / 0.00 / 0.00 / 0.00 / 0.00 / 0.00

By Input class PF Output class AR
Time and Global evaluated metrics

Global Count : 0

ib-mts lstm ed-lstm gru ed-gru nbeats

1 121 241 361 481 601 707time-0.5

0

0.5
Metric mae - global result: 0.00 / 0.00 / 0.00 / 0.00 / 0.00 / 0.00

1 121 241 361 481 601 707time-0.5

0

0.5
Metric mape - global result: 0.00 / 0.00 / 0.00 / 0.00 / 0.00 / 0.00

1 121 241 361 481 601 707time-0.5

0

0.5
Metric rmse - global result: 0.00 / 0.00 / 0.00 / 0.00 / 0.00 / 0.00

By Input class PF Output class PF
Time and Global evaluated metrics

Global Count : 0

ib-mts lstm ed-lstm gru ed-gru nbeats

1 121 241 361 481 601 707time-0.5

0

0.5
Metric mae - global result: 0.00 / 0.00 / 0.00 / 0.00 / 0.00 / 0.00

1 121 241 361 481 601 707time-0.5

0

0.5
Metric mape - global result: 0.00 / 0.00 / 0.00 / 0.00 / 0.00 / 0.00

1 121 241 361 481 601 707time-0.5

0

0.5
Metric rmse - global result: 0.00 / 0.00 / 0.00 / 0.00 / 0.00 / 0.00

By Input class PF Output class FL
Time and Global evaluated metrics

Global Count : 0

ib-mts lstm ed-lstm gru ed-gru nbeats

1 121 241 361 481 601 707time-0.5

0

0.5
Metric mae - global result: 0.00 / 0.00 / 0.00 / 0.00 / 0.00 / 0.00

1 121 241 361 481 601 707time-0.5

0

0.5
Metric mape - global result: 0.00 / 0.00 / 0.00 / 0.00 / 0.00 / 0.00

1 121 241 361 481 601 707time-0.5

0

0.5
Metric rmse - global result: 0.00 / 0.00 / 0.00 / 0.00 / 0.00 / 0.00

By Input class FL Output class QS
Time and Global evaluated metrics

Global Count : 189840

ib-mts lstm ed-lstm gru ed-gru nbeats

1 121 241 361 481 601 707time-0.5

0

0.5
Metric mae - global result: 0.05 / 0.05 / 0.05 / 0.05 / 0.05 / 0.00

1 121 241 361 481 601 707time-0.5

1.1

2.8
Metric mape - global result: 1.16 / 1.33 / 1.49 / 1.21 / 1.18 / 0.00

1 121 241 361 481 601 707time-0.5

0

0.5
Metric rmse - global result: 0.07 / 0.07 / 0.07 / 0.07 / 0.07 / 0.00

By Input class FL Output class AR
Time and Global evaluated metrics

Global Count : 0

ib-mts lstm ed-lstm gru ed-gru nbeats

1 121 241 361 481 601 707time-0.026

0.052

0.13
Metric mae - global result: 0.00 / 0.05 / 0.04 / 0.05 / 0.00 / 0.08

1 121 241 361 481 601 707time-1.8

3.5

8.9
Metric mape - global result: 0.00 / 1.23 / 1.53 / 1.03 / 0.00 / 4.92

1 121 241 361 481 601 707time-0.047

0.096

0.24
Metric rmse - global result: 0.00 / 0.07 / 0.06 / 0.07 / 0.00 / 0.17

By Input class FL Output class PF
Time and Global evaluated metrics

Global Count : 0

ib-mts lstm ed-lstm gru ed-gru nbeats

1 121 241 361 481 601 707time-0.5

0

0.5
Metric mae - global result: 0.00 / 0.00 / 0.00 / 0.00 / 0.00 / 0.00

1 121 241 361 481 601 707time-0.5

0

0.5
Metric mape - global result: 0.00 / 0.00 / 0.00 / 0.00 / 0.00 / 0.00

1 121 241 361 481 601 707time-0.5

0

0.5
Metric rmse - global result: 0.00 / 0.00 / 0.00 / 0.00 / 0.00 / 0.00

By Input class FL Output class FL
Time and Global evaluated metrics

Global Count : 0

ib-mts lstm ed-lstm gru ed-gru nbeats

1 121 241 361 481 601 707time-0.024

0.048

0.12
Metric mae - global result: 0.00 / 0.00 / 0.04 / 0.00 / 0.03 / 0.07

1 121 241 361 481 601 707time-1.9

3.7

9.4
Metric mape - global result: 0.00 / 0.00 / 1.39 / 0.00 / 2.42 / 5.27

1 121 241 361 481 601 707time-0.045

0.092

0.23
Metric rmse - global result: 0.00 / 0.00 / 0.05 / 0.00 / 0.05 / 0.16

−0.068 −5.6 −0.081
IRIS AR Data

Global avg mts metrics by Label QS
Time and Global evaluated metrics

Global Count : 165680640

ib-mts lstm ed-lstm gru ed-gru nbeats

1 121 241 361 481 601 707time0.01

0.12

0.23
Metric mae - global result: 0.05 / 0.06 / 0.05 / 0.06 / 0.05 / 0.13

1 121 241 361 481 601 707time-2.2

40

83
Metric mape - global result: 2.94 / 12.35 / 3.53 / 26.32 / 3.22 / 6.47

1 121 241 361 481 601 707time0.02

0.16

0.31
Metric rmse - global result: 0.08 / 0.09 / 0.09 / 0.10 / 0.08 / 0.22

Remainder By Label QS
Time and Global evaluated metrics

Global Count : 60827280

ib-mts lstm ed-lstm gru ed-gru nbeats

1 121 241 361 481 601 707time-0.068

0.13

0.34
Metric mae - global result: 0.08 / 0.08 / 0.08 / 0.09 / 0.08 / 0.18

1 121 241 361 481 601 707time-5.6

57

120
Metric mape - global result: 3.71 / 17.22 / 4.48 / 42.65 / 4.01 / 6.99

1 121 241 361 481 601 707time-0.081

0.16

0.41
Metric rmse - global result: 0.11 / 0.12 / 0.12 / 0.12 / 0.11 / 0.24

Remainder By Label AR
Time and Global evaluated metrics

Global Count : 36152880

ib-mts lstm ed-lstm gru ed-gru nbeats

1 121 241 361 481 601 707time

0.084

0.21
Metric mae - global result: 0.04 / 0.04 / 0.04 / 0.04 / 0.04 / 0.13

1 121 241 361 481 601 707time

4.4

11
Metric mape - global result: 2.72 / 3.19 / 3.01 / 2.92 / 2.90 / 6.88

1 121 241 361 481 601 707time

0.13

0.33
Metric rmse - global result: 0.06 / 0.07 / 0.07 / 0.07 / 0.06 / 0.23

Remainder By Label PF
Time and Global evaluated metrics

Global Count : 8515920

ib-mts lstm ed-lstm gru ed-gru nbeats

1 121 241 361 481 601 707time-0.022

0.044

0.11
Metric mae - global result: 0.01 / 0.02 / 0.02 / 0.02 / 0.02 / 0.08

1 121 241 361 481 601 707time-1.6

9.7

21
Metric mape - global result: 1.75 / 3.24 / 2.21 / 2.37 / 2.02 / 4.77

1 121 241 361 481 601 707time-0.052

0.1

0.26
Metric rmse - global result: 0.03 / 0.04 / 0.04 / 0.03 / 0.03 / 0.20

Remainder By Label FL
Time and Global evaluated metrics

Global Count : 60184560

ib-mts lstm ed-lstm gru ed-gru nbeats

1 121 241 361 481 601 707time0.0002

0.06

0.12
Metric mae - global result: 0.04 / 0.05 / 0.03 / 0.04 / 0.03 / 0.08

1 121 241 361 481 601 707time-2.3

30

64
Metric mape - global result: 2.23 / 10.61 / 2.81 / 7.89 / 2.59 / 5.84

1 121 241 361 481 601 707time8.7e-4

0.12

0.24
Metric rmse - global result: 0.07 / 0.08 / 0.06 / 0.09 / 0.06 / 0.21

By Label QS
Time and Global evaluated metrics

Global Count : 60827280

ib-mts lstm ed-lstm gru ed-gru nbeats

1 121 241 361 481 601 707time-0.068

0.13

0.34
Metric mae - global result: 0.08 / 0.08 / 0.08 / 0.09 / 0.08 / 0.18

1 121 241 361 481 601 707time-5.6

57

120
Metric mape - global result: 3.71 / 17.22 / 4.48 / 42.65 / 4.01 / 6.99

1 121 241 361 481 601 707time-0.081

0.16

0.41
Metric rmse - global result: 0.11 / 0.12 / 0.12 / 0.12 / 0.11 / 0.24

By Input Class QS
Time and Global evaluated metrics

Global Count : 59417040

ib-mts lstm ed-lstm gru ed-gru nbeats

1 121 241 361 481 601 707time-0.068

0.13

0.34
Metric mae - global result: 0.08 / 0.08 / 0.09 / 0.09 / 0.08 / 0.18

1 121 241 361 481 601 707time-5.6

57

120
Metric mape - global result: 3.73 / 17.41 / 4.52 / 43.14 / 4.03 / 7.03

1 121 241 361 481 601 707time-0.081

0.16

0.41
Metric rmse - global result: 0.11 / 0.12 / 0.12 / 0.13 / 0.12 / 0.25

By Input Class AR
Time and Global evaluated metrics

Global Count : 1220400

ib-mts lstm ed-lstm gru ed-gru nbeats

1 121 241 361 481 601 707time-0.042

0.084

0.21
Metric mae - global result: 0.04 / 0.04 / 0.04 / 0.04 / 0.04 / 0.11

1 121 241 361 481 601 707time-2.1

4.4

11
Metric mape - global result: 2.29 / 3.00 / 3.41 / 2.72 / 3.66 / 6.04

1 121 241 361 481 601 707time-0.056

0.11

0.28
Metric rmse - global result: 0.06 / 0.06 / 0.06 / 0.06 / 0.06 / 0.18

By Input Class PF
Time and Global evaluated metrics

Global Count : 0

ib-mts lstm ed-lstm gru ed-gru nbeats

1 121 241 361 481 601 707time-0.5

0

0.5
Metric mae - global result: 0.00 / 0.00 / 0.00 / 0.00 / 0.00 / 0.00

1 121 241 361 481 601 707time-0.5

0

0.5
Metric mape - global result: 0.00 / 0.00 / 0.00 / 0.00 / 0.00 / 0.00

1 121 241 361 481 601 707time-0.5

0

0.5
Metric rmse - global result: 0.00 / 0.00 / 0.00 / 0.00 / 0.00 / 0.00

By Input Class FL
Time and Global evaluated metrics

Global Count : 189840

ib-mts lstm ed-lstm gru ed-gru nbeats

1 121 241 361 481 601 707time-0.026

0.052

0.13
Metric mae - global result: 0.05 / 0.05 / 0.04 / 0.05 / 0.05 / 0.08

1 121 241 361 481 601 707time-1.8

3.5

8.9
Metric mape - global result: 1.16 / 1.32 / 1.48 / 1.19 / 1.51 / 4.99

1 121 241 361 481 601 707time-0.046

0.092

0.23
Metric rmse - global result: 0.07 / 0.07 / 0.06 / 0.07 / 0.07 / 0.16

By Output Class QS
Time and Global evaluated metrics

Global Count : 60095280

ib-mts lstm ed-lstm gru ed-gru nbeats

1 121 241 361 481 601 707time-0.071

0.14

0.36
Metric mae - global result: 0.08 / 0.08 / 0.08 / 0.09 / 0.08 / 0.19

1 121 241 361 481 601 707time-5.6

57

120
Metric mape - global result: 3.70 / 17.30 / 4.48 / 42.75 / 4.00 / 6.92

1 121 241 361 481 601 707time-0.083

0.16

0.42
Metric rmse - global result: 0.11 / 0.12 / 0.12 / 0.12 / 0.11 / 0.25

By Output Class AR
Time and Global evaluated metrics

Global Count : 704880

ib-mts lstm ed-lstm gru ed-gru nbeats

1 121 241 361 481 601 707time-0.097

0.19

0.49
Metric mae - global result: 0.05 / 0.04 / 0.06 / 0.05 / 0.05 / 0.12

1 121 241 361 481 601 707time-2.4

4.8

12
Metric mape - global result: 3.79 / 3.33 / 4.34 / 3.51 / 4.51 / 6.38

1 121 241 361 481 601 707time-0.11

0.21

0.53
Metric rmse - global result: 0.08 / 0.06 / 0.08 / 0.07 / 0.07 / 0.20

By Output Class PF
Time and Global evaluated metrics

Global Count : 0

ib-mts lstm ed-lstm gru ed-gru nbeats

1 121 241 361 481 601 707time-0.5

0

0.5
Metric mae - global result: 0.00 / 0.00 / 0.00 / 0.00 / 0.00 / 0.00

1 121 241 361 481 601 707time-0.5

0

0.5
Metric mape - global result: 0.00 / 0.00 / 0.00 / 0.00 / 0.00 / 0.00

1 121 241 361 481 601 707time-0.5

0

0.5
Metric rmse - global result: 0.00 / 0.00 / 0.00 / 0.00 / 0.00 / 0.00

By Output Class FL
Time and Global evaluated metrics

Global Count : 27120

ib-mts lstm ed-lstm gru ed-gru nbeats

1 121 241 361 481 601 707time-0.064

0.12

0.32
Metric mae - global result: 0.05 / 0.00 / 0.06 / 0.05 / 0.05 / 0.17

1 121 241 361 481 601 707time-2.4

4.8

12
Metric mape - global result: 4.62 / 0.00 / 4.78 / 4.39 / 3.82 / 7.59

1 121 241 361 481 601 707time-0.078

0.15

0.39
Metric rmse - global result: 0.08 / 0.00 / 0.08 / 0.07 / 0.07 / 0.23

By Input class QS Output class QS
Time and Global evaluated metrics

Global Count : 58902000

ib-mts lstm ed-lstm gru ed-gru nbeats

1 121 241 361 481 601 707time-0.071

0.14

0.36
Metric mae - global result: 0.08 / 0.09 / 0.09 / 0.09 / 0.08 / 0.19

1 121 241 361 481 601 707time-5.6

57

120
Metric mape - global result: 3.73 / 17.47 / 4.51 / 43.23 / 4.03 / 6.92

1 121 241 361 481 601 707time-0.083

0.16

0.42
Metric rmse - global result: 0.11 / 0.12 / 0.12 / 0.13 / 0.12 / 0.25

By Input class QS Output class AR
Time and Global evaluated metrics

Global Count : 487920

ib-mts lstm ed-lstm gru ed-gru nbeats

1 121 241 361 481 601 707time-0.097

0.19

0.49
Metric mae - global result: 0.05 / 0.04 / 0.06 / 0.05 / 0.05 / 0.14

1 121 241 361 481 601 707time-2.4

4.8

12
Metric mape - global result: 4.22 / 3.78 / 4.60 / 4.24 / 4.57 / 6.71

1 121 241 361 481 601 707time-0.11

0.21

0.53
Metric rmse - global result: 0.08 / 0.06 / 0.09 / 0.07 / 0.08 / 0.21

By Input class QS Output class PF
Time and Global evaluated metrics

Global Count : 0

ib-mts lstm ed-lstm gru ed-gru nbeats

1 121 241 361 481 601 707time-0.5

0

0.5
Metric mae - global result: 0.00 / 0.00 / 0.00 / 0.00 / 0.00 / 0.00

1 121 241 361 481 601 707time-0.5

0

0.5
Metric mape - global result: 0.00 / 0.00 / 0.00 / 0.00 / 0.00 / 0.00

1 121 241 361 481 601 707time-0.5

0

0.5
Metric rmse - global result: 0.00 / 0.00 / 0.00 / 0.00 / 0.00 / 0.00

By Input class QS Output class FL
Time and Global evaluated metrics

Global Count : 27120

ib-mts lstm ed-lstm gru ed-gru nbeats

1 121 241 361 481 601 707time-0.064

0.12

0.32
Metric mae - global result: 0.05 / 0.00 / 0.06 / 0.05 / 0.08 / 0.17

1 121 241 361 481 601 707time-2.4

4.8

12
Metric mape - global result: 4.62 / 0.00 / 5.39 / 4.39 / 5.66 / 7.62

1 121 241 361 481 601 707time-0.078

0.15

0.39
Metric rmse - global result: 0.08 / 0.00 / 0.09 / 0.07 / 0.10 / 0.23

By Input class AR Output class QS
Time and Global evaluated metrics

Global Count : 1003440

ib-mts lstm ed-lstm gru ed-gru nbeats

1 121 241 361 481 601 707time-0.049

0.095

0.24
Metric mae - global result: 0.04 / 0.04 / 0.04 / 0.04 / 0.04 / 0.11

1 121 241 361 481 601 707time-2.1

4.4

11
Metric mape - global result: 2.21 / 2.99 / 3.19 / 2.72 / 3.49 / 6.04

1 121 241 361 481 601 707time-0.06

0.12

0.3
Metric rmse - global result: 0.06 / 0.06 / 0.06 / 0.06 / 0.06 / 0.19

By Input class AR Output class AR
Time and Global evaluated metrics

Global Count : 216960

ib-mts lstm ed-lstm gru ed-gru nbeats

1 121 241 361 481 601 707time-0.038

0.076

0.19
Metric mae - global result: 0.04 / 0.04 / 0.05 / 0.00 / 0.04 / 0.10

1 121 241 361 481 601 707time-2

4

10
Metric mape - global result: 2.60 / 3.15 / 4.85 / 0.00 / 4.30 / 6.04

1 121 241 361 481 601 707time-0.054

0.1

0.27
Metric rmse - global result: 0.07 / 0.05 / 0.07 / 0.00 / 0.06 / 0.18

By Input class AR Output class PF
Time and Global evaluated metrics

Global Count : 0

ib-mts lstm ed-lstm gru ed-gru nbeats

1 121 241 361 481 601 707time-0.5

0

0.5
Metric mae - global result: 0.00 / 0.00 / 0.00 / 0.00 / 0.00 / 0.00

1 121 241 361 481 601 707time-0.5

0

0.5
Metric mape - global result: 0.00 / 0.00 / 0.00 / 0.00 / 0.00 / 0.00

1 121 241 361 481 601 707time-0.5

0

0.5
Metric rmse - global result: 0.00 / 0.00 / 0.00 / 0.00 / 0.00 / 0.00

By Input class AR Output class FL
Time and Global evaluated metrics

Global Count : 0

ib-mts lstm ed-lstm gru ed-gru nbeats

1 121 241 361 481 601 707time-0.5

0

0.5
Metric mae - global result: 0.00 / 0.00 / 0.06 / 0.00 / 0.00 / 0.00

1 121 241 361 481 601 707time-0.5

3.5

7.5
Metric mape - global result: 0.00 / 0.00 / 5.22 / 0.00 / 0.00 / 0.00

1 121 241 361 481 601 707time-0.5

0

0.5
Metric rmse - global result: 0.00 / 0.00 / 0.08 / 0.00 / 0.00 / 0.00

By Input class PF Output class QS
Time and Global evaluated metrics

Global Count : 0

ib-mts lstm ed-lstm gru ed-gru nbeats

1 121 241 361 481 601 707time-0.5

0

0.5
Metric mae - global result: 0.00 / 0.00 / 0.00 / 0.00 / 0.00 / 0.00

1 121 241 361 481 601 707time-0.5

0

0.5
Metric mape - global result: 0.00 / 0.00 / 0.00 / 0.00 / 0.00 / 0.00

1 121 241 361 481 601 707time-0.5

0

0.5
Metric rmse - global result: 0.00 / 0.00 / 0.00 / 0.00 / 0.00 / 0.00

By Input class PF Output class AR
Time and Global evaluated metrics

Global Count : 0

ib-mts lstm ed-lstm gru ed-gru nbeats

1 121 241 361 481 601 707time-0.5

0

0.5
Metric mae - global result: 0.00 / 0.00 / 0.00 / 0.00 / 0.00 / 0.00

1 121 241 361 481 601 707time-0.5

0

0.5
Metric mape - global result: 0.00 / 0.00 / 0.00 / 0.00 / 0.00 / 0.00

1 121 241 361 481 601 707time-0.5

0

0.5
Metric rmse - global result: 0.00 / 0.00 / 0.00 / 0.00 / 0.00 / 0.00

By Input class PF Output class PF
Time and Global evaluated metrics

Global Count : 0

ib-mts lstm ed-lstm gru ed-gru nbeats

1 121 241 361 481 601 707time-0.5

0

0.5
Metric mae - global result: 0.00 / 0.00 / 0.00 / 0.00 / 0.00 / 0.00

1 121 241 361 481 601 707time-0.5

0

0.5
Metric mape - global result: 0.00 / 0.00 / 0.00 / 0.00 / 0.00 / 0.00

1 121 241 361 481 601 707time-0.5

0

0.5
Metric rmse - global result: 0.00 / 0.00 / 0.00 / 0.00 / 0.00 / 0.00

By Input class PF Output class FL
Time and Global evaluated metrics

Global Count : 0

ib-mts lstm ed-lstm gru ed-gru nbeats

1 121 241 361 481 601 707time-0.5

0

0.5
Metric mae - global result: 0.00 / 0.00 / 0.00 / 0.00 / 0.00 / 0.00

1 121 241 361 481 601 707time-0.5

0

0.5
Metric mape - global result: 0.00 / 0.00 / 0.00 / 0.00 / 0.00 / 0.00

1 121 241 361 481 601 707time-0.5

0

0.5
Metric rmse - global result: 0.00 / 0.00 / 0.00 / 0.00 / 0.00 / 0.00

By Input class FL Output class QS
Time and Global evaluated metrics

Global Count : 189840

ib-mts lstm ed-lstm gru ed-gru nbeats

1 121 241 361 481 601 707time-0.5

0

0.5
Metric mae - global result: 0.05 / 0.05 / 0.05 / 0.05 / 0.05 / 0.00

1 121 241 361 481 601 707time-0.5

1.1

2.8
Metric mape - global result: 1.16 / 1.33 / 1.49 / 1.21 / 1.18 / 0.00

1 121 241 361 481 601 707time-0.5

0

0.5
Metric rmse - global result: 0.07 / 0.07 / 0.07 / 0.07 / 0.07 / 0.00

By Input class FL Output class AR
Time and Global evaluated metrics

Global Count : 0

ib-mts lstm ed-lstm gru ed-gru nbeats

1 121 241 361 481 601 707time-0.026

0.052

0.13
Metric mae - global result: 0.00 / 0.05 / 0.04 / 0.05 / 0.00 / 0.08

1 121 241 361 481 601 707time-1.8

3.5

8.9
Metric mape - global result: 0.00 / 1.23 / 1.53 / 1.03 / 0.00 / 4.92

1 121 241 361 481 601 707time-0.047

0.096

0.24
Metric rmse - global result: 0.00 / 0.07 / 0.06 / 0.07 / 0.00 / 0.17

By Input class FL Output class PF
Time and Global evaluated metrics

Global Count : 0

ib-mts lstm ed-lstm gru ed-gru nbeats

1 121 241 361 481 601 707time-0.5

0

0.5
Metric mae - global result: 0.00 / 0.00 / 0.00 / 0.00 / 0.00 / 0.00

1 121 241 361 481 601 707time-0.5

0

0.5
Metric mape - global result: 0.00 / 0.00 / 0.00 / 0.00 / 0.00 / 0.00

1 121 241 361 481 601 707time-0.5

0

0.5
Metric rmse - global result: 0.00 / 0.00 / 0.00 / 0.00 / 0.00 / 0.00

By Input class FL Output class FL
Time and Global evaluated metrics

Global Count : 0

ib-mts lstm ed-lstm gru ed-gru nbeats

1 121 241 361 481 601 707time-0.024

0.048

0.12
Metric mae - global result: 0.00 / 0.00 / 0.04 / 0.00 / 0.03 / 0.07

1 121 241 361 481 601 707time-1.9

3.7

9.4
Metric mape - global result: 0.00 / 0.00 / 1.39 / 0.00 / 2.42 / 5.27

1 121 241 361 481 601 707time-0.045

0.092

0.23
Metric rmse - global result: 0.00 / 0.00 / 0.05 / 0.00 / 0.05 / 0.16

−0.041 −2.2 −0.065
IRIS FL Data

Global avg mts metrics by Label QS
Time and Global evaluated metrics

Global Count : 165680640

ib-mts lstm ed-lstm gru ed-gru nbeats

1 121 241 361 481 601 707time0.01

0.12

0.23
Metric mae - global result: 0.05 / 0.06 / 0.05 / 0.06 / 0.05 / 0.13

1 121 241 361 481 601 707time-2.2

40

83
Metric mape - global result: 2.94 / 12.35 / 3.53 / 26.32 / 3.22 / 6.47

1 121 241 361 481 601 707time0.02

0.16

0.31
Metric rmse - global result: 0.08 / 0.09 / 0.09 / 0.10 / 0.08 / 0.22

Remainder By Label QS
Time and Global evaluated metrics

Global Count : 60827280

ib-mts lstm ed-lstm gru ed-gru nbeats

1 121 241 361 481 601 707time-0.068

0.13

0.34
Metric mae - global result: 0.08 / 0.08 / 0.08 / 0.09 / 0.08 / 0.18

1 121 241 361 481 601 707time-5.6

57

120
Metric mape - global result: 3.71 / 17.22 / 4.48 / 42.65 / 4.01 / 6.99

1 121 241 361 481 601 707time-0.081

0.16

0.41
Metric rmse - global result: 0.11 / 0.12 / 0.12 / 0.12 / 0.11 / 0.24

Remainder By Label AR
Time and Global evaluated metrics

Global Count : 36152880

ib-mts lstm ed-lstm gru ed-gru nbeats

1 121 241 361 481 601 707time-0.041

0.084

0.21
Metric mae - global result: 0.04 / 0.04 / 0.04 / 0.04 / 0.04 / 0.13

1 121 241 361 481 601 707time-2.2

4.4

11
Metric mape - global result: 2.72 / 3.19 / 3.01 / 2.92 / 2.90 / 6.88

1 121 241 361 481 601 707time-0.065

0.13

0.33
Metric rmse - global result: 0.06 / 0.07 / 0.07 / 0.07 / 0.06 / 0.23

Remainder By Label PF
Time and Global evaluated metrics

Global Count : 8515920

ib-mts lstm ed-lstm gru ed-gru nbeats

1 121 241 361 481 601 707time-0.022

0.044

0.11
Metric mae - global result: 0.01 / 0.02 / 0.02 / 0.02 / 0.02 / 0.08

1 121 241 361 481 601 707time-1.6

9.7

21
Metric mape - global result: 1.75 / 3.24 / 2.21 / 2.37 / 2.02 / 4.77

1 121 241 361 481 601 707time-0.052

0.1

0.26
Metric rmse - global result: 0.03 / 0.04 / 0.04 / 0.03 / 0.03 / 0.20

Remainder By Label FL
Time and Global evaluated metrics

Global Count : 60184560

ib-mts lstm ed-lstm gru ed-gru nbeats

1 121 241 361 481 601 707time0.0002

0.06

0.12
Metric mae - global result: 0.04 / 0.05 / 0.03 / 0.04 / 0.03 / 0.08

1 121 241 361 481 601 707time

30

64
Metric mape - global result: 2.23 / 10.61 / 2.81 / 7.89 / 2.59 / 5.84

1 121 241 361 481 601 707time8.7e-4

0.12

0.24
Metric rmse - global result: 0.07 / 0.08 / 0.06 / 0.09 / 0.06 / 0.21

By Label QS
Time and Global evaluated metrics

Global Count : 60827280

ib-mts lstm ed-lstm gru ed-gru nbeats

1 121 241 361 481 601 707time-0.068

0.13

0.34
Metric mae - global result: 0.08 / 0.08 / 0.08 / 0.09 / 0.08 / 0.18

1 121 241 361 481 601 707time-5.6

57

120
Metric mape - global result: 3.71 / 17.22 / 4.48 / 42.65 / 4.01 / 6.99

1 121 241 361 481 601 707time-0.081

0.16

0.41
Metric rmse - global result: 0.11 / 0.12 / 0.12 / 0.12 / 0.11 / 0.24

By Input Class QS
Time and Global evaluated metrics

Global Count : 59417040

ib-mts lstm ed-lstm gru ed-gru nbeats

1 121 241 361 481 601 707time-0.068

0.13

0.34
Metric mae - global result: 0.08 / 0.08 / 0.09 / 0.09 / 0.08 / 0.18

1 121 241 361 481 601 707time-5.6

57

120
Metric mape - global result: 3.73 / 17.41 / 4.52 / 43.14 / 4.03 / 7.03

1 121 241 361 481 601 707time-0.081

0.16

0.41
Metric rmse - global result: 0.11 / 0.12 / 0.12 / 0.13 / 0.12 / 0.25

By Input Class AR
Time and Global evaluated metrics

Global Count : 1220400

ib-mts lstm ed-lstm gru ed-gru nbeats

1 121 241 361 481 601 707time-0.042

0.084

0.21
Metric mae - global result: 0.04 / 0.04 / 0.04 / 0.04 / 0.04 / 0.11

1 121 241 361 481 601 707time-2.1

4.4

11
Metric mape - global result: 2.29 / 3.00 / 3.41 / 2.72 / 3.66 / 6.04

1 121 241 361 481 601 707time-0.056

0.11

0.28
Metric rmse - global result: 0.06 / 0.06 / 0.06 / 0.06 / 0.06 / 0.18

By Input Class PF
Time and Global evaluated metrics

Global Count : 0

ib-mts lstm ed-lstm gru ed-gru nbeats

1 121 241 361 481 601 707time-0.5

0

0.5
Metric mae - global result: 0.00 / 0.00 / 0.00 / 0.00 / 0.00 / 0.00

1 121 241 361 481 601 707time-0.5

0

0.5
Metric mape - global result: 0.00 / 0.00 / 0.00 / 0.00 / 0.00 / 0.00

1 121 241 361 481 601 707time-0.5

0

0.5
Metric rmse - global result: 0.00 / 0.00 / 0.00 / 0.00 / 0.00 / 0.00

By Input Class FL
Time and Global evaluated metrics

Global Count : 189840

ib-mts lstm ed-lstm gru ed-gru nbeats

1 121 241 361 481 601 707time-0.026

0.052

0.13
Metric mae - global result: 0.05 / 0.05 / 0.04 / 0.05 / 0.05 / 0.08

1 121 241 361 481 601 707time-1.8

3.5

8.9
Metric mape - global result: 1.16 / 1.32 / 1.48 / 1.19 / 1.51 / 4.99

1 121 241 361 481 601 707time-0.046

0.092

0.23
Metric rmse - global result: 0.07 / 0.07 / 0.06 / 0.07 / 0.07 / 0.16

By Output Class QS
Time and Global evaluated metrics

Global Count : 60095280

ib-mts lstm ed-lstm gru ed-gru nbeats

1 121 241 361 481 601 707time-0.071

0.14

0.36
Metric mae - global result: 0.08 / 0.08 / 0.08 / 0.09 / 0.08 / 0.19

1 121 241 361 481 601 707time-5.6

57

120
Metric mape - global result: 3.70 / 17.30 / 4.48 / 42.75 / 4.00 / 6.92

1 121 241 361 481 601 707time-0.083

0.16

0.42
Metric rmse - global result: 0.11 / 0.12 / 0.12 / 0.12 / 0.11 / 0.25

By Output Class AR
Time and Global evaluated metrics

Global Count : 704880

ib-mts lstm ed-lstm gru ed-gru nbeats

1 121 241 361 481 601 707time-0.097

0.19

0.49
Metric mae - global result: 0.05 / 0.04 / 0.06 / 0.05 / 0.05 / 0.12

1 121 241 361 481 601 707time-2.4

4.8

12
Metric mape - global result: 3.79 / 3.33 / 4.34 / 3.51 / 4.51 / 6.38

1 121 241 361 481 601 707time-0.11

0.21

0.53
Metric rmse - global result: 0.08 / 0.06 / 0.08 / 0.07 / 0.07 / 0.20

By Output Class PF
Time and Global evaluated metrics

Global Count : 0

ib-mts lstm ed-lstm gru ed-gru nbeats

1 121 241 361 481 601 707time-0.5

0

0.5
Metric mae - global result: 0.00 / 0.00 / 0.00 / 0.00 / 0.00 / 0.00

1 121 241 361 481 601 707time-0.5

0

0.5
Metric mape - global result: 0.00 / 0.00 / 0.00 / 0.00 / 0.00 / 0.00

1 121 241 361 481 601 707time-0.5

0

0.5
Metric rmse - global result: 0.00 / 0.00 / 0.00 / 0.00 / 0.00 / 0.00

By Output Class FL
Time and Global evaluated metrics

Global Count : 27120

ib-mts lstm ed-lstm gru ed-gru nbeats

1 121 241 361 481 601 707time-0.064

0.12

0.32
Metric mae - global result: 0.05 / 0.00 / 0.06 / 0.05 / 0.05 / 0.17

1 121 241 361 481 601 707time-2.4

4.8

12
Metric mape - global result: 4.62 / 0.00 / 4.78 / 4.39 / 3.82 / 7.59

1 121 241 361 481 601 707time-0.078

0.15

0.39
Metric rmse - global result: 0.08 / 0.00 / 0.08 / 0.07 / 0.07 / 0.23

By Input class QS Output class QS
Time and Global evaluated metrics

Global Count : 58902000

ib-mts lstm ed-lstm gru ed-gru nbeats

1 121 241 361 481 601 707time-0.071

0.14

0.36
Metric mae - global result: 0.08 / 0.09 / 0.09 / 0.09 / 0.08 / 0.19

1 121 241 361 481 601 707time-5.6

57

120
Metric mape - global result: 3.73 / 17.47 / 4.51 / 43.23 / 4.03 / 6.92

1 121 241 361 481 601 707time-0.083

0.16

0.42
Metric rmse - global result: 0.11 / 0.12 / 0.12 / 0.13 / 0.12 / 0.25

By Input class QS Output class AR
Time and Global evaluated metrics

Global Count : 487920

ib-mts lstm ed-lstm gru ed-gru nbeats

1 121 241 361 481 601 707time-0.097

0.19

0.49
Metric mae - global result: 0.05 / 0.04 / 0.06 / 0.05 / 0.05 / 0.14

1 121 241 361 481 601 707time-2.4

4.8

12
Metric mape - global result: 4.22 / 3.78 / 4.60 / 4.24 / 4.57 / 6.71

1 121 241 361 481 601 707time-0.11

0.21

0.53
Metric rmse - global result: 0.08 / 0.06 / 0.09 / 0.07 / 0.08 / 0.21

By Input class QS Output class PF
Time and Global evaluated metrics

Global Count : 0

ib-mts lstm ed-lstm gru ed-gru nbeats

1 121 241 361 481 601 707time-0.5

0

0.5
Metric mae - global result: 0.00 / 0.00 / 0.00 / 0.00 / 0.00 / 0.00

1 121 241 361 481 601 707time-0.5

0

0.5
Metric mape - global result: 0.00 / 0.00 / 0.00 / 0.00 / 0.00 / 0.00

1 121 241 361 481 601 707time-0.5

0

0.5
Metric rmse - global result: 0.00 / 0.00 / 0.00 / 0.00 / 0.00 / 0.00

By Input class QS Output class FL
Time and Global evaluated metrics

Global Count : 27120

ib-mts lstm ed-lstm gru ed-gru nbeats

1 121 241 361 481 601 707time-0.064

0.12

0.32
Metric mae - global result: 0.05 / 0.00 / 0.06 / 0.05 / 0.08 / 0.17

1 121 241 361 481 601 707time-2.4

4.8

12
Metric mape - global result: 4.62 / 0.00 / 5.39 / 4.39 / 5.66 / 7.62

1 121 241 361 481 601 707time-0.078

0.15

0.39
Metric rmse - global result: 0.08 / 0.00 / 0.09 / 0.07 / 0.10 / 0.23

By Input class AR Output class QS
Time and Global evaluated metrics

Global Count : 1003440

ib-mts lstm ed-lstm gru ed-gru nbeats

1 121 241 361 481 601 707time-0.049

0.095

0.24
Metric mae - global result: 0.04 / 0.04 / 0.04 / 0.04 / 0.04 / 0.11

1 121 241 361 481 601 707time-2.1

4.4

11
Metric mape - global result: 2.21 / 2.99 / 3.19 / 2.72 / 3.49 / 6.04

1 121 241 361 481 601 707time-0.06

0.12

0.3
Metric rmse - global result: 0.06 / 0.06 / 0.06 / 0.06 / 0.06 / 0.19

By Input class AR Output class AR
Time and Global evaluated metrics

Global Count : 216960

ib-mts lstm ed-lstm gru ed-gru nbeats

1 121 241 361 481 601 707time-0.038

0.076

0.19
Metric mae - global result: 0.04 / 0.04 / 0.05 / 0.00 / 0.04 / 0.10

1 121 241 361 481 601 707time-2

4

10
Metric mape - global result: 2.60 / 3.15 / 4.85 / 0.00 / 4.30 / 6.04

1 121 241 361 481 601 707time-0.054

0.1

0.27
Metric rmse - global result: 0.07 / 0.05 / 0.07 / 0.00 / 0.06 / 0.18

By Input class AR Output class PF
Time and Global evaluated metrics

Global Count : 0

ib-mts lstm ed-lstm gru ed-gru nbeats

1 121 241 361 481 601 707time-0.5

0

0.5
Metric mae - global result: 0.00 / 0.00 / 0.00 / 0.00 / 0.00 / 0.00

1 121 241 361 481 601 707time-0.5

0

0.5
Metric mape - global result: 0.00 / 0.00 / 0.00 / 0.00 / 0.00 / 0.00

1 121 241 361 481 601 707time-0.5

0

0.5
Metric rmse - global result: 0.00 / 0.00 / 0.00 / 0.00 / 0.00 / 0.00

By Input class AR Output class FL
Time and Global evaluated metrics

Global Count : 0

ib-mts lstm ed-lstm gru ed-gru nbeats

1 121 241 361 481 601 707time-0.5

0

0.5
Metric mae - global result: 0.00 / 0.00 / 0.06 / 0.00 / 0.00 / 0.00

1 121 241 361 481 601 707time-0.5

3.5

7.5
Metric mape - global result: 0.00 / 0.00 / 5.22 / 0.00 / 0.00 / 0.00

1 121 241 361 481 601 707time-0.5

0

0.5
Metric rmse - global result: 0.00 / 0.00 / 0.08 / 0.00 / 0.00 / 0.00

By Input class PF Output class QS
Time and Global evaluated metrics

Global Count : 0

ib-mts lstm ed-lstm gru ed-gru nbeats

1 121 241 361 481 601 707time-0.5

0

0.5
Metric mae - global result: 0.00 / 0.00 / 0.00 / 0.00 / 0.00 / 0.00

1 121 241 361 481 601 707time-0.5

0

0.5
Metric mape - global result: 0.00 / 0.00 / 0.00 / 0.00 / 0.00 / 0.00

1 121 241 361 481 601 707time-0.5

0

0.5
Metric rmse - global result: 0.00 / 0.00 / 0.00 / 0.00 / 0.00 / 0.00

By Input class PF Output class AR
Time and Global evaluated metrics

Global Count : 0

ib-mts lstm ed-lstm gru ed-gru nbeats

1 121 241 361 481 601 707time-0.5

0

0.5
Metric mae - global result: 0.00 / 0.00 / 0.00 / 0.00 / 0.00 / 0.00

1 121 241 361 481 601 707time-0.5

0

0.5
Metric mape - global result: 0.00 / 0.00 / 0.00 / 0.00 / 0.00 / 0.00

1 121 241 361 481 601 707time-0.5

0

0.5
Metric rmse - global result: 0.00 / 0.00 / 0.00 / 0.00 / 0.00 / 0.00

By Input class PF Output class PF
Time and Global evaluated metrics

Global Count : 0

ib-mts lstm ed-lstm gru ed-gru nbeats

1 121 241 361 481 601 707time-0.5

0

0.5
Metric mae - global result: 0.00 / 0.00 / 0.00 / 0.00 / 0.00 / 0.00

1 121 241 361 481 601 707time-0.5

0

0.5
Metric mape - global result: 0.00 / 0.00 / 0.00 / 0.00 / 0.00 / 0.00

1 121 241 361 481 601 707time-0.5

0

0.5
Metric rmse - global result: 0.00 / 0.00 / 0.00 / 0.00 / 0.00 / 0.00

By Input class PF Output class FL
Time and Global evaluated metrics

Global Count : 0

ib-mts lstm ed-lstm gru ed-gru nbeats

1 121 241 361 481 601 707time-0.5

0

0.5
Metric mae - global result: 0.00 / 0.00 / 0.00 / 0.00 / 0.00 / 0.00

1 121 241 361 481 601 707time-0.5

0

0.5
Metric mape - global result: 0.00 / 0.00 / 0.00 / 0.00 / 0.00 / 0.00

1 121 241 361 481 601 707time-0.5

0

0.5
Metric rmse - global result: 0.00 / 0.00 / 0.00 / 0.00 / 0.00 / 0.00

By Input class FL Output class QS
Time and Global evaluated metrics

Global Count : 189840

ib-mts lstm ed-lstm gru ed-gru nbeats

1 121 241 361 481 601 707time-0.5

0

0.5
Metric mae - global result: 0.05 / 0.05 / 0.05 / 0.05 / 0.05 / 0.00

1 121 241 361 481 601 707time-0.5

1.1

2.8
Metric mape - global result: 1.16 / 1.33 / 1.49 / 1.21 / 1.18 / 0.00

1 121 241 361 481 601 707time-0.5

0

0.5
Metric rmse - global result: 0.07 / 0.07 / 0.07 / 0.07 / 0.07 / 0.00

By Input class FL Output class AR
Time and Global evaluated metrics

Global Count : 0

ib-mts lstm ed-lstm gru ed-gru nbeats

1 121 241 361 481 601 707time-0.026

0.052

0.13
Metric mae - global result: 0.00 / 0.05 / 0.04 / 0.05 / 0.00 / 0.08

1 121 241 361 481 601 707time-1.8

3.5

8.9
Metric mape - global result: 0.00 / 1.23 / 1.53 / 1.03 / 0.00 / 4.92

1 121 241 361 481 601 707time-0.047

0.096

0.24
Metric rmse - global result: 0.00 / 0.07 / 0.06 / 0.07 / 0.00 / 0.17

By Input class FL Output class PF
Time and Global evaluated metrics

Global Count : 0

ib-mts lstm ed-lstm gru ed-gru nbeats

1 121 241 361 481 601 707time-0.5

0

0.5
Metric mae - global result: 0.00 / 0.00 / 0.00 / 0.00 / 0.00 / 0.00

1 121 241 361 481 601 707time-0.5

0

0.5
Metric mape - global result: 0.00 / 0.00 / 0.00 / 0.00 / 0.00 / 0.00

1 121 241 361 481 601 707time-0.5

0

0.5
Metric rmse - global result: 0.00 / 0.00 / 0.00 / 0.00 / 0.00 / 0.00

By Input class FL Output class FL
Time and Global evaluated metrics

Global Count : 0

ib-mts lstm ed-lstm gru ed-gru nbeats

1 121 241 361 481 601 707time-0.024

0.048

0.12
Metric mae - global result: 0.00 / 0.00 / 0.04 / 0.00 / 0.03 / 0.07

1 121 241 361 481 601 707time-1.9

3.7

9.4
Metric mape - global result: 0.00 / 0.00 / 1.39 / 0.00 / 2.42 / 5.27

1 121 241 361 481 601 707time-0.045

0.092

0.23
Metric rmse - global result: 0.00 / 0.00 / 0.05 / 0.00 / 0.05 / 0.16

−2.3
Figure A2. Detailed MTS metrics evaluation on the test set for the iterated prediction setup. The
evaluations are given for each solar activity: the first row of results is for QS activity, the second row
is for AR, and the last row is for FL.

97

Entropy 2023, 25, 831

IB-MTS

0 5 10 15 20 25 30 35 40 45 50predicted

05101520253035404550

genuin
e

global - Acc: 0.56

0 5 10 15 20 25 30 35 40 45 50predicted

05101520253035404550

genuin
e

QS - Acc: 0.52

0 5 10 15 20 25 30 35 40 45 50predicted

05101520253035404550

genuin
e

AR - Acc: 0.49

0 5 10 15 20 25 30 35 40 45 50predicted

05101520253035404550

genuin
e

FL - Acc: 0.64

LSTM
0 5 10 15 20 25 30 35 40 45 50predicted

05101520253035404550
genuin

e
global - Acc: 0.50

0 5 10 15 20 25 30 35 40 45 50predicted

05101520253035404550

genuin
e

QS - Acc: 0.48

0 5 10 15 20 25 30 35 40 45 50predicted

05101520253035404550

genuin
e

AR - Acc: 0.45

0 5 10 15 20 25 30 35 40 45 50predicted

05101520253035404550

genuin
e

FL - Acc: 0.57

ED-LSTM

0 5 10 15 20 25 30 35 40 45 50predicted

05101520253035404550

genuin
e

global - Acc: 0.51
0 5 10 15 20 25 30 35 40 45 50predicted

05101520253035404550
genuin

e
QS - Acc: 0.48

0 5 10 15 20 25 30 35 40 45 50predicted

05101520253035404550

genuin
e

AR - Acc: 0.46

0 5 10 15 20 25 30 35 40 45 50predicted

05101520253035404550

genuin
e

FL - Acc: 0.60

GRU

0 5 10 15 20 25 30 35 40 45 50predicted

05101520253035404550

genuin
e

global - Acc: 0.51
0 5 10 15 20 25 30 35 40 45 50predicted

05101520253035404550

genuin
e

QS - Acc: 0.49

0 5 10 15 20 25 30 35 40 45 50predicted

05101520253035404550
genuin

e

AR - Acc: 0.46

0 5 10 15 20 25 30 35 40 45 50predicted

05101520253035404550

genuin
e

FL - Acc: 0.56

ED-GRU

0 5 10 15 20 25 30 35 40 45 50predicted

05101520253035404550

genuin
e

global - Acc: 0.54

0 5 10 15 20 25 30 35 40 45 50predicted

05101520253035404550

genuin
e

QS - Acc: 0.49
0 5 10 15 20 25 30 35 40 45 50predicted

05101520253035404550

genuin
e

AR - Acc: 0.50

0 5 10 15 20 25 30 35 40 45 50predicted

05101520253035404550
genuin

e

FL - Acc: 0.63

NBeats

0 5 10 15 20 25 30 35 40 45 50predicted

05101520253035404550

genuin
e

global - Acc: 0.00

0 5 10 15 20 25 30 35 40 45 50predicted

05101520253035404550

genuin
e

QS - Acc: 0.00

0 5 10 15 20 25 30 35 40 45 50predicted

05101520253035404550

genuin
e

AR - Acc: 0.00
0 5 10 15 20 25 30 35 40 45 50predicted

05101520253035404550

genuin
e

FL - Acc: 0.00

0.000.050.100.150.20

0.000.050.100.150.20

0.000.050.100.150.20

0.00.10.20.30.4

0.000.050.100.150.20

0.00.10.20.30.4

0.000.050.100.150.20

0.000.050.100.150.20

0.000.050.100.150.20

0.000.050.100.150.20

0.000.050.100.150.20

0.00.10.20.30.4

0.000.050.100.150.20

0.00.10.20.30.4

0.000.050.100.150.20

0.000.050.100.150.20

0.000.050.100.150.20

0.00.10.20.30.4

0.000.050.100.150.20

0.000.050.100.150.20

0.000.050.100.150.20

0.00.10.20.30.4

0.000.050.100.150.20

0.000.050.100.150.20

Figure A3. Confusion matrices for the prediction of centroids on IRIS data, for the direct procedure.
We used the 53 centroids from [55]. Each row of results corresponds to a model. Columns are
organized by data labels: global aggregate results for QS, AR, and FL data; other columns present
the result for of each label, taken separately. Each confusion matrix gives results in terms of join
probability distribution values between the genuine and the predicted. Probability values are
displayed with color maps, where violet is the lowest probability and yellow is the highest.

98

Entropy 2023, 25, 831

IB-MTS

0 5 10 15 20 25 30 35 40 45 50predicted

05101520253035404550

genuin
e

global - Acc: 0.40

0 5 10 15 20 25 30 35 40 45 50predicted

05101520253035404550

genuin
e

QS - Acc: 0.46

0 5 10 15 20 25 30 35 40 45 50predicted

05101520253035404550

genuin
e

AR - Acc: 0.37

0 5 10 15 20 25 30 35 40 45 50predicted

05101520253035404550

genuin
e

FL - Acc: 0.33

LSTM
0 5 10 15 20 25 30 35 40 45 50predicted

05101520253035404550
genuin

e
global - Acc: 0.36

0 5 10 15 20 25 30 35 40 45 50predicted

05101520253035404550

genuin
e

QS - Acc: 0.43

0 5 10 15 20 25 30 35 40 45 50predicted

05101520253035404550

genuin
e

AR - Acc: 0.38

0 5 10 15 20 25 30 35 40 45 50predicted

05101520253035404550

genuin
e

FL - Acc: 0.25

ED-LSTM

0 5 10 15 20 25 30 35 40 45 50predicted

05101520253035404550

genuin
e

global - Acc: 0.42
0 5 10 15 20 25 30 35 40 45 50predicted

05101520253035404550
genuin

e
QS - Acc: 0.43

0 5 10 15 20 25 30 35 40 45 50predicted

05101520253035404550

genuin
e

AR - Acc: 0.35

0 5 10 15 20 25 30 35 40 45 50predicted

05101520253035404550

genuin
e

FL - Acc: 0.43

GRU

0 5 10 15 20 25 30 35 40 45 50predicted

05101520253035404550

genuin
e

global - Acc: 0.37
0 5 10 15 20 25 30 35 40 45 50predicted

05101520253035404550

genuin
e

QS - Acc: 0.45

0 5 10 15 20 25 30 35 40 45 50predicted

05101520253035404550
genuin

e

AR - Acc: 0.39

0 5 10 15 20 25 30 35 40 45 50predicted

05101520253035404550

genuin
e

FL - Acc: 0.26

ED-GRU

0 5 10 15 20 25 30 35 40 45 50predicted

05101520253035404550

genuin
e

global - Acc: 0.40

0 5 10 15 20 25 30 35 40 45 50predicted

05101520253035404550

genuin
e

QS - Acc: 0.44
0 5 10 15 20 25 30 35 40 45 50predicted

05101520253035404550

genuin
e

AR - Acc: 0.41

0 5 10 15 20 25 30 35 40 45 50predicted

05101520253035404550
genuin

e

FL - Acc: 0.32

NBeats

0 5 10 15 20 25 30 35 40 45 50predicted

05101520253035404550

genuin
e

global - Acc: 0.00

0 5 10 15 20 25 30 35 40 45 50predicted

05101520253035404550

genuin
e

QS - Acc: 0.00

0 5 10 15 20 25 30 35 40 45 50predicted

05101520253035404550

genuin
e

AR - Acc: 0.00
0 5 10 15 20 25 30 35 40 45 50predicted

05101520253035404550

genuin
e

FL - Acc: 0.00

0.00
0.05
0.10
0.15

0.00.10.20.30.4

0.000.050.100.150.20

0.000.050.100.150.20

0.00
0.05
0.10
0.15

0.00.10.20.30.4

0.000.050.100.150.20

0.000.050.100.150.20

0.00
0.05
0.10
0.15

0.00.10.20.30.4

0.000.050.100.150.20

0.000.050.100.150.20

0.00
0.05
0.10
0.15

0.00.10.20.30.4

0.000.050.100.150.20

0.000.050.100.150.20

0.00
0.05
0.10
0.15

0.00.10.20.30.4

0.000.050.100.150.20

0.000.050.100.150.20

0.00
0.05
0.10
0.15

0.00.10.20.30.4

0.000.050.100.150.20

0.000.050.100.150.20

Figure A4. Confusion matrices for the prediction of centroids on IRIS data, for the iterated procedure.
We used the 53 centroids from [55]. Each row of results corresponds to a model. Columns are
organized by data labels: global aggregate results for QS, AR, and FL data; other columns present
the results for of each label, taken separately. Each confusion matrix provides results in terms of
join probability distribution values, between the genuine and the predicted. Probability values are
displayed with color maps, where violet is the lowest probability and yellow is the highest.

References
1. Gangopadhyay, T.; Tan, S.Y.; Jiang, Z.; Meng, R.; Sarkar, S. Spatiotemporal Attention for Multivariate Time Series Prediction and

Interpretation. arXiv 2020, arXiv:2008.04882.
2. Flunkert, V.; Salinas, D.; Gasthaus, J. DeepAR: Probabilistic Forecasting with Autoregressive Recurrent Networks. arXiv 2017,

arXiv:1704.04110.
3. Oreshkin, B.N.; Carpov, D.; Chapados, N.; Bengio, Y. N-BEATS: Neural basis expansion analysis for interpretable time series

forecasting. arXiv 2019, arXiv:1905.10437.
4. Liu, G.; Reda, F.A.; Shih, K.J.; Wang, T.; Tao, A.; Catanzaro, B. Image Inpainting for Irregular Holes Using Partial Convolutions.

arXiv 2018, arXiv:1804.07723.

99

Entropy 2023, 25, 831

5. Rumelhart, D.E.; McClelland, J.L. Learning Internal Representations by Error Propagation. In Parallel Distributed Processing:
Explorations in the Microstructure of Cognition: Foundations; The MIT Press: Cambridge, MA, USA, 1987; Volume 1, pp. 318–362.

6. Hochreiter, S.; Schmidhuber, J. Long Short-Term Memory. Neural Comput. 1997, 9, 1735–1780. [CrossRef]
7. Dobson, A. The Oxford Dictionary of Statistical Terms; Oxford University Press: Oxford, UK, 2003; p. 506.
8. Kendall, M. Time Series; Charles Griffin and Co Ltd.: London, UK; High Wycombe, UK, 1976.
9. West, M. Time Series Decomposition. Biometrika 1997, 84, 489–494. [CrossRef]
10. Sheather, S. A Modern Approach to Regression with R; Springer: New York, NY, USA, 2009. [CrossRef]
11. Molugaram, K.; Rao, G.S. Chapter 12—Analysis of Time Series. In Statistical Techniques for Transportation Engineering; Molugaram,

K., Rao, G.S., Eds.; Butterworth-Heinemann: Oxford, UK, 2017; pp. 463–489. [CrossRef]
12. Gardner, E.S. Exponential smoothing: The state of the art. J. Forecast. 1985, 4, 1–28. [CrossRef]
13. Box, G.; Jenkins, G.M. Time Series Analysis: Forecasting and Control; Holden-Day: Cleveland, Australia, 1976.
14. Curry, H.B. The method of steepest descent for nonlinear minimization problems. Quart. Appl. Math. 1944, 2, 258–261. [CrossRef]
15. Cho, K.; van Merrienboer, B.; Bahdanau, D.; Bengio, Y. On the Properties of Neural Machine Translation: Encoder-Decoder

Approaches. arXiv 2014, arXiv:1409.1259.
16. Kazemi, S.M.; Goel, R.; Eghbali, S.; Ramanan, J.; Sahota, J.; Thakur, S.; Wu, S.; Smyth, C.; Poupart, P.; Brubaker, M. Time2Vec:

Learning a Vector Representation of Time. arXiv 2019, arXiv:1907.05321.
17. Lim, B.; Arik, S.O.; Loeff, N.; Pfister, T. Temporal Fusion Transformers for Interpretable Multi-horizon Time Series Forecasting.

arXiv 2019, arXiv:1912.09363.
18. Grigsby, J.; Wang, Z.; Qi, Y. Long-Range Transformers for Dynamic Spatiotemporal Forecasting. arXiv 2021, arXiv:2109.12218.
19. Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, L.; Polosukhin, I. Attention Is All You Need.

arXiv 2021, arXiv:1706.03762.
20. Zhou, H.; Zhang, S.; Peng, J.; Zhang, S.; Li, J.; Xiong, H.; Zhang, W. Informer: Beyond Efficient Transformer for Long Sequence

Time-Series Forecasting. arXiv 2020, arXiv:2012.07436.
21. Scarselli, F.; Gori, M.; Tsoi, A.C.; Hagenbuchner, M.; Monfardini, G. The Graph Neural Network Model. IEEE Trans. Neural Netw.

2009, 20, 61–80. [CrossRef] [PubMed]
22. Bertalmio, M.; Sapiro, G.; Caselles, V.; Ballester, C. Image Inpainting. In Proceedings of the 27th Annual Conference on Computer

Graphics and Interactive Techniques, New Orleans, LA, USA, 23–28 July 2000; ACM Press/Addison-Wesley Publishing Co.:
Boston, MA, USA, 2000; SIGGRAPH ’00; pp. 417–424. [CrossRef]

23. Teterwak, P.; Sarna, A.; Krishnan, D.; Maschinot, A.; Belanger, D.; Liu, C.; Freeman, W.T. Boundless: Generative Adversarial
Networks for Image Extension. arXiv 2019, arXiv:1908.07007 2019.

24. Ulyanov, D.; Vedaldi, A.; Lempitsky, V. Deep Image Prior. Int. J. Comput. Vis. 2020, 128, 1867–1888. [CrossRef]
25. Dama, F.; Sinoquet, C. Time Series Analysis and Modeling to Forecast: A Survey. arXiv 2021, arXiv:2104.00164.
26. Tessoni, V.; Amoretti, M. Advanced statistical and machine learning methods for multi-step multivariate time series forecasting

in predictive maintenance. Procedia Comput. Sci. 2022, 200, 748–757. [CrossRef]
27. Lehtinen, J.; Munkberg, J.; Hasselgren, J.; Laine, S.; Karras, T.; Aittala, M.; Aila, T. Noise2Noise: Learning Image Restoration

without Clean Data. arXiv 2018, arXiv:1803.04189.
28. Gatys, L.A.; Ecker, A.S.; Bethge, M. Image Style Transfer Using Convolutional Neural Networks. In Proceedings of the 2016 IEEE

Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 2414–2423.
29. Johnson, J.; Alahi, A.; Fei-Fei, L. Perceptual Losses for Real-Time Style Transfer and Super-Resolution. arXiv 2016,

arXiv:1603.08155.
30. Ledig, C.; Theis, L.; Huszar, F.; Caballero, J.; Cunningham, A.; Acosta, A.; Aitken, A.; Tejani, A.; Totz, J.; Wang, Z.; et al.

Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network. arXiv 2016, arXiv:1609.04802.
31. Ronneberger, O.; Fischer, P.; Brox, T. U-Net: Convolutional Networks for Biomedical Image Segmentation. arXiv 2015,

arXiv:1505.04597.
32. Kramer, M.A. Nonlinear principal component analysis using autoassociative neural networks. AIChE J. 1991, 37, 233–243.

[CrossRef]
33. Tishby, N.; Zaslavsky, N. Deep Learning and the Information Bottleneck Principle. arXiv 2015, arXiv:1503.02406.
34. Costa, J.; Costa, A.; Kenda, K.; Costa, J.P. Entropy for Time Series Forecasting. In Proceedings of the Slovenian KDD Conference,

Ljubljana, Slovenia, 4 October 2021. Available online: https://ailab.ijs.si/dunja/SiKDD2021/Papers/Costaetal_2.pdf (accessed
on 20 February 2023).

35. Zapart, C.A. Forecasting with Entropy. In Proceedings of the Econophysics Colloquium, Taipei, Taiwan, 4–6 November 2010.
Available online: https://www.phys.sinica.edu.tw/~socioecono/econophysics2010/pdfs/ZapartPaper.pdf (accessed on 20
February 2023).

36. Xu, D.; Fekri, F. Time Series Prediction Via Recurrent Neural Networks with the Information Bottleneck Principle. In Proceedings
of the 2018 IEEE 19th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC), Kalamata,
Greece, 25–28 June 2018; pp. 1–5. [CrossRef]

37. Ponce-Flores, M.; Frausto-Solís, J.; Santamaría-Bonfil, G.; Pérez-Ortega, J.; González-Barbosa, J.J. Time Series Complexities and
Their Relationship to Forecasting Performance. Entropy 2020, 22, 89. [CrossRef] [PubMed]

100

Entropy 2023, 25, 831

38. Zaidi, A.; Estella-Aguerri, I.; Shamai (Shitz), S. On the Information Bottleneck Problems: Models, Connections, Applications and
Information Theoretic Views. Entropy 2020, 22, 151. [CrossRef] [PubMed]

39. Voloshynovskiy, S.; Kondah, M.; Rezaeifar, S.; Taran, O.; Holotyak, T.; Rezende, D.J. Information bottleneck through variational
glasses. arXiv 2019, arXiv:1912.00830.

40. Alemi, A.A.; Fischer, I.; Dillon, J.V.; Murphy, K. Deep Variational Information Bottleneck. arXiv 2016, arXiv:1612.00410.
41. Ullmann, D.; Rezaeifar, S.; Taran, O.; Holotyak, T.; Panos, B.; Voloshynovskiy, S. Information Bottleneck Classification in Extremely

Distributed Systems. Entropy 2020, 22, 237. [CrossRef]
42. Geiger, B.C.; Kubin, G. Information Bottleneck: Theory and Applications in Deep Learning. Entropy 2020, 22, 1408. [CrossRef]

[PubMed]
43. Lee, S.; Jo, J. Information Flows of Diverse Autoencoders. Entropy 2021, 23, 862. [CrossRef]
44. Tapia, N.I.; Estévez, P.A. On the Information Plane of Autoencoders. In Proceedings of the 2020 International Joint Conference on

Neural Networks (IJCNN), Glasgow, UK, 19–24 July 2020; pp. 1–8. [CrossRef]
45. Zarcone, R.; Paiton, D.; Anderson, A.; Engel, J.; Wong, H.P.; Olshausen, B. Joint Source-Channel Coding with Neural Networks

for Analog Data Compression and Storage. In Proceedings of the 2018 Data Compression Conference, Snowbird, UT, USA, 27–30
March 2018; pp. 147–156. [CrossRef]

46. Boquet, G.; Macias, E.; Morell, A.; Serrano, J.; Vicario, J.L. Theoretical Tuning of the Autoencoder Bottleneck Layer Dimension:
A Mutual Information-based Algorithm. In Proceedings of the 2020 28th European Signal Processing Conference (EUSIPCO),
Amsterdam, The Netherlands, 18–21 January 2021; pp. 1512–1516. [CrossRef]

47. Voloshynovskiy, S.; Taran, O.; Kondah, M.; Holotyak, T.; Rezende, D. Variational Information Bottleneck for Semi-Supervised
Classification. Entropy 2020, 22, 943. [CrossRef]

48. Shannon, C.E. A mathematical theory of communication. Bell Syst. Tech. J. 1948, 27, 379–423. [CrossRef]
49. Barnes, G.; Leka, K.D.; Schrijver, C.J.; Colak, T.; Qahwaji, R.; Ashamari, O.W.; Yuan, Y.; Zhang, J.; McAteer, R.T.J.; Bloomfield, D.S.;

et al. A comparison of flare forecasting methods. Astrophys. J. 2016, 829, 89. [CrossRef]
50. Guennou, C.; Pariat, E.; Leake, J.E.; Vilmer, N. Testing predictors of eruptivity using parametric flux emergence simulations. J.

Space Weather Space Clim. 2017, 7, A17. [CrossRef]
51. Benvenuto, F.; Piana, M.; Campi, C.; Massone, A.M. A Hybrid Supervised/Unsupervised Machine Learning Approach to Solar

Flare Prediction. Astrophys. J. 2018, 853, 90. [CrossRef]
52. Florios, K.; Kontogiannis, I.; Park, S.H.; Guerra, J.A.; Benvenuto, F.; Bloomfield, D.S.; Georgoulis, M.K. Forecasting Solar Flares

Using Magnetogram-based Predictors and Machine Learning. Sol. Phys. 2018, 293, 28. [CrossRef]
53. Kontogiannis, I.; Georgoulis, M.K.; Park, S.H.; Guerra, J.A. Testing and Improving a Set of Morphological Predictors of Flaring

Activity. Sol. Phys. 2018, 293, 96. [CrossRef]
54. Ullmann, D.; Voloshynovskiy, S.; Kleint, L.; Krucker, S.; Melchior, M.; Huwyler, C.; Panos, B. DCT-Tensor-Net for Solar Flares

Detection on IRIS Data. In Proceedings of the 2018 7th European Workshop on Visual Information Processing (EUVIP), Tampere,
Finland, 26–28 November 2018; pp. 1–6. [CrossRef]

55. Panos, B.; Kleint, L.; Huwyler, C.; Krucker, S.; Melchior, M.; Ullmann, D.; Voloshynovskiy, S. Identifying Typical Mg ii Flare
Spectra Using Machine Learning. Astrophys. J. 2018, 861, 62. [CrossRef]

56. Murray, S.A.; Bingham, S.; Sharpe, M.; Jackson, D.R. Flare forecasting at the Met Office Space Weather Operations Centre. Space
Weather 2017, 15, 577–588.

57. Sharpe, M.A.; Murray, S.A. Verification of Space Weather Forecasts Issued by the Met Office Space Weather Operations Centre.
Space Weather 2017, 15, 1383–1395.

58. Chen, Y.; Manchester, W.B.; Hero, A.O.; Toth, G.; DuFumier, B.; Zhou, T.; Wang, X.; Zhu, H.; Sun, Z.; Gombosi, T.I. Identifying
Solar Flare Precursors Using Time Series of SDO/HMI Images and SHARP Parameters. arXiv 2019, arXiv:1904.00125.

59. Li, Y.; Yu, R.; Shahabi, C.; Liu, Y. Graph Convolutional Recurrent Neural Network: Data-Driven Traffic Forecasting. arXiv 2017,
arXiv:1707.01926.

60. Yu, B.; Yin, H.; Zhu, Z. Spatio-temporal Graph Convolutional Neural Network: A Deep Learning Framework for Traffic
Forecasting. arXiv 2017, arXiv:1709.04875.

61. Yu, J.; Lin, Z.; Yang, J.; Shen, X.; Lu, X.; Huang, T.S. Free-Form Image Inpainting with Gated Convolution. arXiv 2018,
arXiv:1806.03589.

62. Gatys, L.A.; Ecker, A.S.; Bethge, M. A Neural Algorithm of Artistic Style. arXiv 2015, arXiv:1508.06576.
63. Wang, C.; Xu, C.; Wang, C.; Tao, D. Perceptual Adversarial Networks for Image-to-Image Transformation. IEEE Trans. Image

Process. 2018, 27, 4066–4079. [CrossRef] [PubMed]
64. Simonyan, K.; Zisserman, A. Very Deep Convolutional Networks for Large-Scale Image Recognition. arXiv 2014, arXiv:1409.1556.
65. Kobyzev, I.; Prince, S.J.; Brubaker, M.A. Normalizing Flows: An Introduction and Review of Current Methods. IEEE Trans.

Pattern Anal. Mach. Intell. 2021, 43, 3964–3979. [CrossRef] [PubMed]
66. Bao, H.; Dong, L.; Piao, S.; Wei, F. BEiT: BERT Pre-Training of Image Transformers. arXiv 2022, arXiv:2106.08254.
67. Xie, Z.; Zhang, Z.; Cao, Y.; Lin, Y.; Bao, J.; Yao, Z.; Dai, Q.; Hu, H. SimMIM: A Simple Framework for Masked Image Modeling.

arXiv 2022, arXiv:111.09886.
68. He, K.; Chen, X.; Xie, S.; Li, Y.; Dollár, P.; Girshick, R. Masked Autoencoders Are Scalable Vision Learners. arXiv 2021,

arXiv:2111.06377.

101

Entropy 2023, 25, 831

69. Pontieu, B.D.; Lemen, J. IRIS Technical Note 1: IRIS Operations; Version 17; LMSAL, NASA: Washington, DC, USA, 2013.
70. LMSAL. A User’s Guide to IRIS Data Retrieval, Reduction & Analysis; Release 1.0; LMSAL, NASA: Washington, DC, USA, 2019.
71. Gošic, M.; Dalda, A.S.; Chintzoglou, G. Optically Thick Diagnostics; Release 1.0 ed.; LMSAL, NASA: Washington, DC, USA, 2018.
72. Panos, B.; Kleint, L. Real-time Flare Prediction Based on Distinctions between Flaring and Non-flaring Active Region Spectra.

Astrophys. J. 2020, 891, 17. [CrossRef]
73. Gherrity, M. A learning algorithm for analog, fully recurrent neural networks. In Proceedings of the International 1989 Joint

Conference on Neural Networks, Washington, DC, USA, 16–18 October 1989; Volume 1, pp. 643–644.
74. Li, Y.; Yu, R.; Shahabi, C.; Liu, Y. Diffusion Convolutional Recurrent Neural Network: Data-Driven Traffic Forecasting. In Pro-

ceedings of the International Conference on Learning Representations (ICLR ’18), Vancouver, BC, Canada, 30 April–3 May 2018.
75. California, S.o. Performance Measurement System (PeMS) Data Source. Available online: https://pems.dot.ca.gov/ (accessed on

20 February 2023).
76. Hanssen, A.; Kuipers, W. On the relationship between the frequency of rain and various meteorological parameters. Meded. En

Verh. 1965, 81, 3–15. Available online: https://cdn.knmi.nl/knmi/pdf/bibliotheek/knmipubmetnummer/knmipub102-81.pdf
(accessed on 20 February 2023).

77. Heidke, P. Berechnung des Erfolges und der Gute der Windstarkevorhersagen im Sturmwarnungsdienst (Measures of success
and goodness of wind force forecasts by the gale-warning service). Geogr. Ann. 1926, 8, 301–349.

78. Cohen, J. A coefficient of agreement for nominal scales. Educ. Psychol. Meas. 1960, 20, 213–220. [CrossRef]
79. Allouche, O.; Tsoar, A.; Kadmon, R. Assessing the accuracy of species distribution models: Prevalence, kappa and the true skill

statistic (TSS). J. Appl. Ecol. 2006, 43, 1223–1232. .: 10.1111/j.1365-2664.2006.01214.x. [CrossRef]
80. Liu, M.; Zeng, A.; Chen, M.; Xu, Z.; Lai, Q.; Ma, L.; Xu, Q. SCINet: Time Series Modeling and Forecasting with Sample

Convolution and Interaction. arXiv 2022, arXiv:2106.09305.
81. Shao, Z.; Zhang, Z.; Wang, F.; Xu, Y. Pre-Training Enhanced Spatial-Temporal Graph Neural Network for Multivariate Time Series

Forecasting. In Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, Washington, DC,
USA, 14–18 August 2022; Association for Computing Machinery: New York, NY, USA, 2022; KDD ’22; pp. 1567–1577. [CrossRef]

82. Cho, K.; van Merrienboer, B.; Gulcehre, C.; Bahdanau, D.; Bougares, F.; Schwenk, H.; Bengio, Y. Learning Phrase Representations
using RNN Encoder-Decoder for Statistical Machine Translation. arXiv 2014, arXiv:1406.1078.

83. Sutskever, I.; Vinyals, O.; Le, Q.V. Sequence to Sequence Learning with Neural Networks. arXiv 2014, arXiv:1409.3215.
84. Wang, Z.; Bovik, A.; Sheikh, H.; Simoncelli, E. Image quality assessment: From error visibility to structural similarity. IEEE Trans.

Image Process. 2004, 13, 600–612. [CrossRef] [PubMed]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

102

Citation: Shayovitz, S.; Bibas, K.;

Feder, M. Deep Individual Active

Learning: Safeguarding against

Out-of-Distribution Challenges in

Neural Networks. Entropy 2024, 26,

129. https://doi.org/10.3390/

e26020129

Academic Editors: Badong Chen,

Luis Gonzalo Sánchez Giraldo,

Shuangming Yang and Shujian Yu

Received: 27 December 2023

Revised: 28 January 2024

Accepted: 30 January 2024

Published: 31 January 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

entropy

Article

Deep Individual Active Learning: Safeguarding against
Out-of-Distribution Challenges in Neural Networks
Shachar Shayovitz *,† , Koby Bibas † and Meir Feder

School of Electrical Engineering, Tel Aviv University, Tel Aviv 6997801, Israel; kobybibas@gmail.com (K.B.);
meir@tauex.tau.ac.il (M.F.)
* Correspondence: shachar.shay@gmail.com
† These authors contributed equally to this work.

Abstract: Active learning (AL) is a paradigm focused on purposefully selecting training data to
enhance a model’s performance by minimizing the need for annotated samples. Typically, strategies
assume that the training pool shares the same distribution as the test set, which is not always
valid in privacy-sensitive applications where annotating user data is challenging. In this study, we
operate within an individual setting and leverage an active learning criterion which selects data
points for labeling based on minimizing the min-max regret on a small unlabeled test set sample.
Our key contribution lies in the development of an efficient algorithm, addressing the challenging
computational complexity associated with approximating this criterion for neural networks. Notably,
our results show that, especially in the presence of out-of-distribution data, the proposed algorithm
substantially reduces the required training set size by up to 15.4%, 11%, and 35.1% for CIFAR10,
EMNIST, and MNIST datasets, respectively.

Keywords: active learning; universal prediction; deep active learning; individual sequences;
normalized maximum likelihood; out-of-distribution

1. Introduction

In supervised learning, a training set is provided to a learner, which can then be
used to choose parameters for a model that minimize the error on this set. The process
of creating this training set requires annotation, where an expert labels the data points.
This is a time-consuming and costly process and results in only a small subset of the data
being labeled, which may not represent the true underlying model [1]. Active learning,
where the training data are actively and purposely chosen, allows the learner to interact
with a labeling expert by sequentially selecting samples for the expert to label based on
previously observed data, thereby reducing the number of examples needed to achieve a
given accuracy level [2].

Recent research has focused on obtaining a diverse set of samples for training deep
learning models with reduced sampling bias. The strategies in [3–6] aim to quantify the
uncertainties of samples from the unlabeled pool and utilize them to select a sample for
annotation. A widely used criterion for active learning is Bayesian Active Learning by
Disagreement (BALD), which was originally proposed by Houlsby et al. [3]. This method
finds the unlabeled sample x̂i that maximizes the mutual information between the model
parameters θ and the candidate label random variable Yi given the candidate xi and training
set zn−1 = {(xi, yi)}n−1

i=1 :

x̂i = argmax
xi

I(θ; Yi|xi, zn−1) (1)

where I(X; Y|z) denotes the mutual information between the random variables X and Y
conditioned on a realization z. The idea in BALD’s core is to minimize the uncertainty

Entropy 2024, 26, 129. https://doi.org/10.3390/e26020129 https://www.mdpi.com/journal/entropy103

Entropy 2024, 26, 129

about model parameters using Shannon’s entropy. This criterion also appears as an upper
bound on information-based complexity of stochastic optimization [7] and also for experi-
mental design [8,9]. There is an issue of postulating a reasonable prior for this Bayesian
approach. Empirically, this approach was investigated by Gal et al. [4], where a heuris-
tic Bayesian method for deep learning was proposed, leading to several heuristic active
learning acquisition functions that were explored within this framework.

However, BALD has a fundamental disadvantage if the test distribution differs from
the training set distribution, since what is maximally informative for model estimation
may not be maximally informative for test time prediction. In a previous work, Shayovitz
and Feder [6] derived a criterion named Universal Active Learning (UAL) that takes into
account the unlabeled test set when optimizing the training set:

x̂i = argmin
xi

I(θ; Y|X, xi, Yi, zn−1) (2)

where X and Y are the test feature and label random variables. UAL is derived from a
capacity–redundancy theorem [10] and implicitly optimizes an exploration–exploitation
trade-off in feature selection. In addition, in the derivation of [10], the prior on θ is expressed
as the capacity-maximizing distribution for I(θ; Y|X, xi, Yi, zn−1). It should be noted that
Smith et al. [11] have recently proposed a criterion denoted Expected Predictive Information
Gain (EPIG) which also takes into account the unlabelled test set and focuses on prediction
and not model estimation (In Appendix A, it is proven that EPIG is equivalent to UAL, but
unlike EPIG, which does not optimize the model prior, UAL provides an expression for the
optimal model prior.):

x̂i = argmax
xi

I(Y; Yi|X, xi, zn−1) (3)

However, the above-mentioned AL schemes assume that both training and test data
follow a conditional distribution which belongs to a given parametric hypothesis class,
{p(y|x, θ)}. This assumption cannot be verified on real-world data, particularly in privacy-
sensitive applications where real user data cannot be annotated [12] and the unlabeled pool
may contain irrelevant information. In such cases, choosing samples from the unlabeled
pool may not necessarily improve model performance on the test set. As an alternative to
making distributional assumptions, we build upon the individual setting [13]. This setting
does not assume any probabilistic connection between the training and test data. Moreover,
the relationship between labels and data can even be determined by an adversary. The
generalization error in this setting is known as the regret [14], which is defined as the log-
loss difference between a learner and a genie: a learner that knows the specific test label but
is constrained to use an explanation from a set of hypotheses. The predictive Normalized
Maximum Likelihood (pNML) learner [14] was proposed as the min-max solution of the
regret, where the minimum is over the learner choice and the maximum is for any possible
test label value. The pNML was previously developed for linear regression [15] and was
evaluated empirically for DNN [16].

The setting considered in this work, i.e., active learning with no distributional as-
sumption, is related to the active online learning literature [17,18], which deals primarily
with task-agnostic learning that does not assume a connection between the training and
test tasks. The research in Yoo and Kweon [17] proposed an active learning method that
works efficiently with deep networks. A small parametric module, named “loss prediction
module”, is attached to a target network, and learns it to predict target losses of unlabeled
inputs. Then, this module can suggest data for which the target model is likely to produce
a wrong prediction. This method is task-agnostic, as networks are learned from a single
loss regardless of target tasks. The research in Sinha et al. [18] suggested a pool-based
semi-supervised active learning algorithm that implicitly learns a sampling mechanism in
an adversarial manner. Unlike conventional active learning algorithms, this approach is
task-agnostic, i.e., it does not depend on the performance of the task for which we are trying
to acquire labeled data. This method learns a latent space using a variational autoencoder

104

Entropy 2024, 26, 129

(VAE) and an adversarial network trained to discriminate between unlabeled and labeled
data. The minimax game between the VAE and the adversarial network is played such
that while the VAE tries to trick the adversarial network into predicting that all data points
are from the labeled pool, the adversarial network learns how to discriminate between
dissimilarities in the latent space.

Moreover, as an additional incentive for the individual setting, in scenarios involving
Out-Of-Distribution (OOD) data, the application of uncertainty-based Active Learning (AL)
without meticulous consideration may increase the likelihood of selecting OOD samples
for labeling, surpassing the selection of in-distribution (IND) data. OOD data typically
demonstrate high uncertainty, leading the AL algorithm to preferentially choose such
samples for labeling, thereby inefficiently utilizing the labeling budget. Consequently, there
is an urgent need for active learning methods resilient to such scenarios.

While empirical evidence has demonstrated the real-life impact of the OOD problem
on AL [19], there is a scarcity of research addressing this crucial issue. The research
in Kothawade et al. [20] approached OOD as a sub-task, and its sub-modular mutual
information-based sampling scheme is marked by both time and memory consumption.
In contrast, Du et al. [21] mandated the pre-training of additional self-supervised models
like SimCLR [22], introducing hyperparameters to balance semantic and distinctive scores.
The values of these hyperparameters exert a significant influence on the final performance,
thereby limiting the broader applicability of the proposed approach.

In addition to the challenges highlighted in the aforementioned context, another
promising avenue of research explores counterfactual training [23] to enhance OOD gen-
eralization. This approach involves learning model parameters by comparing pairs of
factual samples and counterfactual samples, illustrating how changes in features lead to
changes in labels. Notably, modifications to causal features and labels disrupt spurious
correlations, as non-causal features are present in both factual and counterfactual samples
with distinct classes [24]. Through counterfactual training, the model avoids relying on
spurious correlations for predictions, enhancing its ability for OOD generalization [24,25].
This approach effectively breaks the link between non-causal features and labels, con-
tributing to an improved OOD generalization capability. Nevertheless, counterfactual
learning may be considered less feasible, as generating meaningful counterfactual samples
requires sufficient and representative data, which may be challenging to obtain in some
cases, especially if the dataset is limited or biased.

The research in Shayovitz and Feder [26] proposed an active learning criterion for the
individual setting that takes into account a trained model, the unlabeled pool, and a small
set of unlabeled test features. This criterion, denoted IAL (Individual Active Learning), is
designed to select a sample to be labeled in such a way that, when added to the training set
with its worst-case label, it attains the minimal pNML regret for the test set. The algorithm
proposed by Shayovitz and Feder [26] for Gaussian Process Classification is based on an
Expectation Propagation approximation of the model posterior. This approximation is
both computationally expensive for large-scale deep neural networks (DNNs) and does
not provide good enough performance in empirical tests. The computational complexity
associated with the re-training for each candidate sample is extremely demanding.

Main Contributions

Our contributions can be succinctly outlined as follows:

• In this investigation, we address AL in the presence of OOD challenges by utilizing
a small unlabeled sample from the test distribution. We focus on the individual
data setting and leverage an existing active learning criterion [26]. However, the
computation of this criterion is deemed impractical for DNNs.

• Our primary contribution lies in the development of an efficient algorithm aimed at
mitigating the challenging computational complexity associated with approximating
the mentioned criterion for neural networks. Termed DIAL (Deep Individual Ac-

105

Entropy 2024, 26, 129

tive Learning), this algorithm facilitates faster and more practical implementation of
Individual Active Learning (IAL) for DNNs.

• We demonstrate that, in the presence of OOD samples, our algorithm requires only
66.2%, 91.9%, and 77.2% of labeled samples compared to recent leading methods
for CIFAR10 [27], EMNIST [28], and MNIST [29] datasets, respectively, for the same
accuracy level. When considering only IND samples, our approach necessitates 64.9%,
99.0%, and 64.9% labeled samples on the aforementioned datasets.

• In OOD scenarios, DIAL does not rely on the annotator to provide semantic informa-
tion or counterfactual examples. The criterion is universally applicable across various
datasets and can be implemented immediately.

This paper is organized as follows. In Section 2, the individual learning setting is
introduced and the pNML is reviewed. In Section 3, IAL is presented and motivated by
the minimax regret problem discussed in the previous section. In Section 4, IAL is applied
to the DNN hypothesis class and a novel low-complexity algorithm denoted as DIAL is
presented. In Section 5, the performance of DIAL is analyzed in comparison with state-of-
the-art deep active learning algorithms. Throughout this paper, a sequence of samples will
be denoted xn = (x1, x2, . . . , xn). The variables x ∈ X and y ∈ Y will represent the features
and labels, respectively, with X and Y being the sets containing the features’ and labels’
alphabets, respectively.

2. The Individual Data Setting

In the supervised learning framework, a training set consisting of n pairs of examples
is provided to the learner:

zn = {(xi, yi)}n
i=1 (4)

where xi is the i-th data point and yi is its corresponding label. The goal of a learner is to
predict an unknown test label y given its test data, x, by assigning a probability distribution
q(·|x, zn) for each training set zn.

In the commonly used stochastic setting as defined in [13], the data follow a distri-
bution assumed to be part of some parametric family of hypotheses. A more general
framework, named individual setting [13], does not assume that there exists some proba-
bilistic relation between a feature x and a label y, and so the sequence zn = {xn, yn} is an
individual sequence where the relation can even be set by an adversary. Since there is no
distribution over the data, finding the optimal learner, q(·|x, zn), is an ill-posed problem. In
order to mitigate this problem, an alternative objective is proposed: find a learner q(·|x, zn)
which performs as well as a reference learner on the test set.

Denote Θ as a general index set. Let PΘ be a set of conditional probability distributions:

PΘ = {p(y|x, θ)|θ ∈ Θ} (5)

It is assumed that the reference learner knows the test label value y but is restricted to using
a model from the given hypothesis set PΘ. This reference learner then chooses a model,
θ̂(x, y, zn), that attains the minimum loss over the training set and the test sample:

θ̂ = arg max
θ∈Θ

[p(y|x, θ)w(θ)Πn
i=1 p(yi|xi, θ)] (6)

where performance is evaluated using the log-loss function, i.e., − log(q(·|x, zn)).
Note that, in this work, we extended the individual setting of [30] and allowed the

usage of some prior w(θ) over the parameter space, which may be useful for regularization
purposes. The learning problem is defined as the log-loss difference between a learner q
and the reference learner (genie):

Rn(q, y; x) = log
p
(
y|x, θ̂

)

q(y|x, zn)
. (7)

106

Entropy 2024, 26, 129

An important result for this setting is provided in Fogel and Feder [14] and provides a
closed-form expression for the minimax regret along with the optimal learner, qpNML:

Theorem 1 (Fogel and Feder [14]). The universal learner, denoted as the pNML, minimizes the
worst case regret:

Rn(x) = min
q

max
y∈Y

log

(
p
(
y|x, θ̂

)

q(y|x, zn)

)

The pNML probability assignment and regret are:

qpNML(y|x, zn) =
p
(
y|x, θ̂

)

∑y p
(
y|x, θ̂

)

Rn(x) = log ∑
y∈Y

p
(
y|x, θ̂

)

Since the main contribution of this work relies on this theorem, we provide a short
proof here:

Proof. We note that the regret, Rn(x), is equal for all choices of y. Now, if we consider
a different probability assignment, then it would assign a smaller probability for at least
one of the possible outcomes. In this case, choosing one of those outcomes will lead to a
higher regret and then the maximal regret will be higher, leading to a contradiction.

The pNML regret is associated with the stochastic complexity of a hypothesis class, as
discussed by Rosas et al. [31] and Zhou and Levine [16]. It is clear that for pNML, a model
that fits almost every data pattern would be much more complex than a model that provides
a relatively good fit to a small set of data. Thus, high pNML regret indicates that the model
class may be too expressive and overfit. The pNML learner is the min-max solution for
supervised batch learning in the individual setting [14]. For sequential prediction it is
termed the conditional normalized maximum likelihood [32,33].

Several methods deal with obtaining the pNML learner for different hypothesis sets.
The research in Bibas et al. [15] and Bibas and Feder [34] showed the pNML solution
for linear regression. The research in Rosas et al. [35] proposed an NML-based decision
strategy for supervised classification problems and showed that it attains heuristic PAC
learning. The research in Fu and Levine [36] used the pNML for model optimization based
on learning a density function by discretizing the space and fitting a distinct model for
each value. For the DNN hypothesis set, Bibas et al. [37] estimated the pNML distribution
with DNN by fine-tuning the last layers of the network for every test input and label
combination. This approach is computationally expensive since training is needed for every
test input. The research in Zhou and Levine [16] suggested a way to accelerate the pNML
computation in DNN by using approximate Bayesian inference techniques to produce a
tractable approximation to the pNML.

3. Active Learning for Individual Data

In active learning, the learner sequentially selects data instances xi based on some
criterion and produces n training examples: zn. The objective is to select a subset of the
unlabelled pool and derive a probabilistic learner q(y|x, zn) that attains the minimal predic-
tion error (on the test set) among all training sets of the same size. Most selection criteria
are based on uncertainty quantification of data instances to quantify their informativeness.
However, in the individual setting, there is no natural uncertainty measure, since there is
no distribution governing the data.

As proposed in [26], the min-max regret Rn as defined in Theorem 1 is used as an
active learning criterion, which essentially quantifies the prediction performance of the
training set zn for a given unlabeled test feature x. A “good” zn minimizes the min-max

107

Entropy 2024, 26, 129

regret for any test feature and thus provides good test set performance. Since Rn is a
point-wise quantity, the average over all test data is taken:

Cn = min
xn

max
yn ∑

x
log

(
∑
y

p
(
y|x, θ̂

)
)

(8)

where θ̂ = θ̂(x, y, zn) is the Maximum Likelihood estimator, as defined in (6).
The idea is to find a set of training points, xn, that minimizes the averaged log normal-

ization factor (across unlabeled test points) for the worst possible labels yn. This criterion
looks for the worst-case scenario since there is no assumption on the data distribution.
Since (8) selects a batch of points xn, it is computationally prohibitive to solve for a general
hypothesis class. In order to reduce complexity, a greedy approach denoted Individual
Active Learning (IAL) is proposed in [26] which performs well empirically:

Cn|n−1 = min
xn

max
yn

∑
x

log

(
∑
y

p
(
y|x, θ̂

)
)

(9)

Note that when computing (9), the previously labeled training set, zn−1, is assumed to be
available for the learner and θ̂ = θ̂

(
x, y, xn, yn, zn−1). The objective in (9) is to find a single

point xn from the unlabelled pool as opposed to the objective in (8) that tries to find an
optimal batch xn.

4. Deep Individual Active Learning

The DNN (deep neural network) hypothesis class poses a challenging problem for
information-theoretic active learning since its parameter space is of very high dimension
and the weights’ posterior distribution (assuming a Bayesian setting) is analytically in-
tractable. Moreover, direct application of deep active learning schemes is unfeasible for
real-world large-scale data, since it requires training the entire model for each possible
training point. To make matters worse, for IAL, the network also needs to be trained for
every test point and every possible corresponding label.

In this section, we derive an approximation of IAL for DNNs which is based on
variational inference algorithms [4,38,39]. We define the hypothesis class in this case
as follows:

p(y|x, θ) = so f tmax(fθ(x)) (10)

where θ represents all the weights and biases of the network and fθ(x) is the model output
before the last softmax layer. Note that x, y, and p(θ) reresent the test feature, test label,
and prior on the weights, respectively.

The MAP estimation for θ is:

θ̂ = arg max
θ

p(yn, y|xn, x, θ)p(θ), (11)

where the prior p(θ) acts as a regularizer over the latent vector θ. It is common practice
to use some regularization mechanism to control the training error for DNNs. In order to
embed the regularization mechanism into the MAP, we introduced this prior p(θ).

Given a training set xn, yn and test couple x, y, the maximization in (11) is performed
by training the DNN with all the data and converging to a steady-state maximum. Note
that xn−1, yn−1 are assumed to be known, while xn, yn, x and y are not known, and all the
different possibilities need to be considered, resulting in multiple training sessions of the
network. In order to avoid re-training the entire network for all possible values of x, y, xn,
and yn, we utilize the independence between soft-max scores in the MAP estimation. Using
Bayes, we observe that (11) can be re-written as:

θ̂ = arg max
θ

p(y|x, θ)p(yn|xn, θ)p
(

θ|yn−1, xn−1
)

(12)

108

Entropy 2024, 26, 129

where p
(
θ|yn−1, xn−1) is the posterior of θ given the available data zn−1 = (xn−1, yn−1).

The posterior p
(
θ|zn−1) is not dependent on the test data (x, y) and the evaluated

labeling candidate (xn, yn), and thus can be computed once per selection iteration and then
used throughout the IAL selection process. This is a very important point which needs to
be highlighted; there is no need to re-train the network for every (x, y) and (xn, yn). We
only need to train the network using xn−1, yn−1 and then, during the IAL selection process,
run forward passes on different θ with high p

(
θ|zn−1) values, to compute p(y|x, θ) and

p(yn|xn, θ). This fact represents a significant computational complexity reduction since
the number of possible points xn can be significant and we wish to avoid re-training the
network for each point.

In order to acquire the weight posterior for a DNN, some advanced techniques are
required [40–42]; these involve multiple training passes over the network. For a DNN,
the posterior, p

(
θ|yn−1, xn−1), is multi-modal and intractable to compute directly. There-

fore, we propose approximating it by some simpler distribution, which will allow easier
computation of the maximum likelihood θ̂.

4.1. Variational Inference

Variational inference is a technique used in probabilistic modeling to approximate
complex probability distributions that are difficult or impossible to calculate exactly [42–44].
Variational inference has been used in a wide range of applications, including in Bayesian
neural networks, latent Dirichlet allocation, and Gaussian processes. The goal of vari-
ational inference is to find an approximation, q∗(θ) from a parametric family Q, to the
true distribution, p(θ|zn−1), that is as close as possible to the true distribution, but is also
computationally tractable. This goal is formulated as minimizing the Kullback–Leibler (KL)
divergence between the two distributions (also called information projection):

q∗(θ) = argmin
q∈Q

DKL

(
q(θ)||p(θ|zn−1)

)

There are different algorithms for implementing variational inference; most involve
optimizing a lower bound on the log-likelihood of the data under the true distribution
(called evidence). The lower bound is defined as the difference between the true distri-
bution’s data log-likelihood and the Kullback–Leibler (KL) divergence between the true
distribution and the approximation. The KL divergence measures the distance between
the two distributions, and so optimizing the lower bound is equivalent to minimizing the
distance between the true distribution and the approximation.

One common algorithm for implementing variational inference is called mean field
variational inference [45]. In this approach, the approximation to the true distribution is
factorized into simpler distributions that are easier to work with, such as Gaussians or
Bernoullis. The parameters of these simpler distributions are then optimized to minimize
the KL divergence between the true distribution and the approximation. Another algorithm
for variational inference is called stochastic variational inference [46]. In this approach,
the optimization is performed using stochastic gradient descent, with a random subset of
the data used in each iteration. This allows the algorithm to scale to large datasets and
complex models.

4.2. Deep Individual Active Learning (DIAL)

In this work, we opted to use the method in Gal and Ghahramani [41], denoted as
MC dropout (Monte Carlo dropout), due to its computational simplicity and favorable
performance. MC dropout represents a sophisticated extension of the conventional dropout
regularization technique within the domain of machine learning, and it is particularly
associated with improving the robustness and uncertainty quantification of neural networks.
This concept finds its roots in the broader effort to address the challenge of overfitting, a
common concern in training deep learning models where the network becomes excessively
attuned to the training data, hindering its generalization to new, unseen data.

109

Entropy 2024, 26, 129

Traditional dropout involves randomly deactivating, or “dropping out”, a fraction of
the neurons during the training phase. This stochastic process introduces a level of noise,
preventing the neural network from relying too heavily on specific features, thus enhancing
its ability to generalize to diverse datasets. However, dropout is typically applied solely
during the training phase, and the model’s predictions during the inference phase are based
on a single deterministic forward pass through the network.

Monte Carlo dropout introduces a novel approach to the inference phase by extending
the dropout mechanism beyond training. In this context, during inference, the model
performs multiple forward passes with different dropout masks applied each time. This
process generates a set of predictions, and the final output is obtained by averaging or
aggregating these predictions. The rationale behind this technique lies in its ability to
capture and quantify uncertainty associated with the model’s predictions.

By leveraging Monte Carlo dropout during inference, practitioners can gain valuable
insights into the uncertainty inherent in the model’s predictions. This uncertainty is crucial
in real-world applications where understanding the model’s confidence level is essential.
For instance, in autonomous vehicles, medical diagnostics, or financial predictions, know-
ing the uncertainty associated with a model’s output can inform decision making and
improve overall system reliability.

In Gal and Ghahramani [41], the authors argued that performing dropout during train-
ing on DNNs, with dropout applied before every weight layer, is mathematically equivalent
to minimizing the KL divergence between the weight posterior of the full network and a
parametric distribution which is controlled by a set of Bernoulli random variables defined
by the dropout probability. Therefore, p

(
θ|yn−1, xn−1) can be approximated in KL-sense by

a distribution which is controlled by the dropout parameter. We can use this idea in order
to approximate (12) and find an approximated weight distribution, q(θ). Therefore, we can
re-write (12) using the variational approximation q(θ):

θ̂ ≈ arg max
θ

p(y|x, θ)p(yn|xn, θ)q(θ) (13)

However, q(θ) as described in Gal and Ghahramani [41] is still complex to analytically
compute. In fact, in Gal and Ghahramani [41], the authors do not explicitly sample from
this distribution but compute integral quantities on this distribution (such as expectation
and variance) using averaging of multiple independent realizations and the Law of Large
Numbers (LLN). Since we focus on point-wise samples from q(θ), we cannot use the same
approach as in Gal and Ghahramani [41].

In this work, we propose to sample M weights from q(θ) and find θ̂ among all the
different samples. Since the weights are embedded in a high-dimensional space, the
probability of the sampled weights can be assumed to be relatively uniform. Therefore, we
propose approximating (13) as:

θ̂ ≈ arg max
{θm}M

m=1

p(y|x, θm)p(yn|xn, θm) (14)

As observed by Gal and Ghahramani [41], (14) can be computed by running multiple
forward passes on the network trained using dropout with zn−1 during inference with
x and xn. The resulting algorithm, denoted Deep Individual Active Learning (DIAL), is
shown in Algorithm 1 and follows these steps:

1. Train a model on the labeled training set zn−1 with dropout.
2. For each pair of x and xn, run M forward passes with different dropout masks and

compute the product of the softmax outputs.
3. Find the weight that maximizes DNN prediction of the test input and the unlabeled

candidate input as in (12).
4. Accumulate the pNML regret of the test point given these estimations.
5. Find the unlabeled candidate for which the worst-case averaged regret of the test set

is minimal, as in (9).

110

Entropy 2024, 26, 129

For step 2, since the variational posterior associated with MC dropout is difficult to evaluate,
we assume that it is uniform for all the sampled weights.

We emphasize the significant complexity reduction provided by our approximation; a
naïve implementation of pNML computation would require training the network over all
possible training points xn and test points x with all possibilities of their respective labels
yn, y. This would render our criterion unfeasible for real-world applications. Our proposed
approach, DIAL, only requires performing training with dropout on zn−1 only once per
selection iteration and then performing forward passes (considerably faster than training
passes) to obtain multiple samples of the weights.

Algorithm 1: DIAL: Deep Individual Active Learning

Input Training set zn−1, unlabeled pool and test samples {xi}N
i=1 and {xk}K

k=1.
Output Next data point for labeling x̂i

Run MC-Dropout using zn−1 to get {θm}M
m=1

S = zeros(N, |Y|)
for i← 1 to N do

for yi ∈ Y do
for k← 1 to K do

Γ = 0
for yk ∈ Y do

θ̂ = argmaxθm
p(yk|xk, θm)p(yi|xi, θm)

Γ = Γ + p
(
yk|xk, θ̂

)

end for
S(i, yi) = S(i, yi) + log Γ

end for
end for

end for
x̂i = argminxi

maxyi S

5. Experiments

In this section, we analyze the performance of DIAL and compare its performance
to state-of-the-art active learning criteria. We tested the proposed DIAL strategy in
two scenarios:

• The initial training, unlabeled pool, and test data come from the same distribution
(IND scenario).

• There are OOD samples present in the unlabeled pool (OOD scenario).

The reason for using the individual setting and DIAL as its associated strategy in the
presence of OOD samples is that it does not make any assumptions about the data genera-
tion process, making the results applicable to a wide range of scenarios, including PAC [47],
stochastic [13], adversarial settings, as well as samples from unknown distributions.

We considered the following datasets for training and evaluation of the different active
learning methods:

• The MNIST dataset [29] consists of 28 × 28 grayscale images of handwritten digits,
with 60 K images for training and 10 K images for testing.

• The EMNIST dataset [28] is a variant of the MNIST dataset that includes a larger
variety of images (upper and lower case letters, digits, and symbols). It consists of
240 K images with 47 different labels.

• The CIFAR10 dataset [27] consists of 60 K 32 × 32 color images in 10 classes. The
classes include objects such as airplanes, cars, birds, and ships.

• Fashion MNIST [48] is a dataset of images of clothing and accessories, consisting of
70 K images. Each image is 28 × 28 grayscale pixels.

111

Entropy 2024, 26, 129

• The SVHN dataset [49] contains 600 K real-world images with digits and numbers in
natural scene images collected from Google Street View.

We built upon Huang [50] and Smith et al. [11] open-source implementations of the
following methods:

The Random sampling algorithm is the most basic approach in learning. It selects
samples to label randomly, without considering any other criteria. This method can be
useful when the data are relatively homogeneous and easy to classify, but it can be less
efficient when the data are more complex or when there is a high degree of uncertainty.

The Bayesian Active Learning by Disagreement (BALD) method [4] utilizes an ac-
quisition function that calculates the mutual information between the model’s predictions
and the model’s parameters. This function measures how closely the predictions for a
specific data point are linked to the model’s parameters, indicating that determining the
true label of samples with high mutual information would also provide insight into the
true model parameters.

The Core-set algorithm [5] aims to find a small subset from a large labeled dataset
such that a model learned from this subset will perform well on the entire dataset. The
associated active learning algorithm chooses a subset that minimizes this bound, which is
equivalent to the k-center problem.

The Expected Predictive Information Gain (EPIG) method [11] was motivated by
BALD’s weakness in prediction-oriented settings. This acquisition function directly targets
a reduction in predictive uncertainty on inputs of interest by utilizing the unlabelled
test set. It is shown in Appendix A that this approach is similar to UAL [6], where the
main difference is that UAL assumes the stochastic setting, where the data follow some
parametric distribution.

5.1. Experimental Setup

The first setting we consider consists of an initial training set, an unlabeled pool (from
which the training examples are selected), and an unlabeled test set, all drawn from the
same distribution. The experiment includes the following four steps:

1. A model is trained on the small labeled dataset (initial training set).
2. One of the active learning strategies is utilized to select a small number of the most

informative examples from the unlabeled pool.
3. The labels of the selected samples are queried and added to the labeled dataset.
4. The model is retrained using the new training set.

Steps 2–4 are repeated multiple times, with the model becoming more accurate with
each iteration, as it is trained on a larger labeled dataset.

In addition to the standard setting, we evaluate the performance in the presence
of OOD samples. In this scenario, the initial training and test sets are drawn from the
same distribution, but the unlabeled pool contains a mix of OOD samples. When an OOD
unlabeled sample is selected for annotation, it is not used in training of the next iteration of
the model. Across all x-axis values in the subsequent test accuracy figures, the presented
metric is the count of Oracle calls, reflecting the instances when a selection strategy chose a
sample, whether it be IND or OOD. It is crucial to differentiate this metric from the training
set size, as the selection of an OOD sample leads to an increase in the number of Oracle
calls, while the training set size remains unaffected. An effective strategy would recognize
that OOD samples do not improve performance on the test set and avoid selecting them.

A visual representation of the scenario with OOD samples is illustrated in Figure 1a–c.
These figures show the unlabeled pool, which contains a mixture of both IND and OOD
samples. Figure 1d–f show the test set, which contains only IND samples. We argue that
this is a representative setting for active learning in real life. In the real world, unlabelled
pools are collected from many data sources and will most certainly contain OOD data. The
process of pruning the unlabelled pool is a costly process and involves human inspection
and labeling, which needs to be minimized. This is exactly the goal of active learning and
finding a criterion which implicitly filters OOD data is of significant interest.

112

Entropy 2024, 26, 129

(a) MNIST and OOD images (b) EMNIST and OOD images (c) CIFAR10 and OOD images

(d) MNIST test images (e) EMNIST test images (f) CIFAR10 test images

Figure 1. Datasets that contain a mix of images with OOD samples. (Top) Unlabeled pool contains
OOD samples (Bottom). Test set includes only valid data.

5.2. MNIST Experimental Results

Following Gal et al. [4], we considered a model consisting of two blocks of convolution,
dropout, max-pooling, and ReLu, with 32 and 64 5 × 5 convolution filters. These blocks
are followed by two fully connected layers that include dropout between them. The layers
have 128 and 10 hidden units, respectively. The dropout probability was set to 0.5 in all
three locations. In each active learning round, a single sample was selected. We executed
all active learning methods six times with different random seeds. For BALD, EPIG, and
DIAL, we used 100 dropout iterations and employed the criterion on 512 random samples
from the unlabeled pool. MNIST results are shown in Figure 2a. The largest efficiency is at
a number of Oracle calls of 71, where DIAL attains an accuracy rate of 0.9, while EPIG and
BALD achieve an accuracy rate of 0.86.

50 100 150 200 250 300
Number of oracle calls

0.65

0.70

0.75

0.80

0.85

0.90

0.95

Te
st

 a
cc

ur
ac

y
ra

te

Random
Bald
Core-set
EPIG (UAL)
DIAL

(a) MNIST

50 100 150 200 250 300
Number of oracle calls

0.60

0.70

0.80

0.90

Te
st

 a
cc

ur
ac

y
ra

te

Random
Bald
Core-set
EPIG (UAL)
DIAL

(b) MNIST with OOD
Figure 2. Accuracy as function of number of Oracle calls on MNIST dataset. DIAL outperforms the
baselines for the two setups.

To simulate the presence of OOD samples, we added the Fashion MNIST to the
unlabeled pool such that the ratio of Fashion MNIST to MNIST was 1:1. In this setting,
DIAL outperforms all other baselines, as shown in Figure 2b. DIAL is the top-performing
method and has better accuracy than EPIG, BALD, Core-set, and Random. The largest
efficiency is an accuracy rate of 0.95, where DIAL uses 240 Oracle calls, while BALD needs
307 (−35.1%). EPIG never reaches this accuracy level. The number of Oracle calls for
additional accuracy rates is shown in Table 1.

113

Entropy 2024, 26, 129

Table 1. MNIST with OOD number of Oracle calls at x% accuracy.

Methods 85% Acc. 75% Acc. 65% Acc.

Random 145 73 36
Core-set 117 61 33
BALD 83 51 32
EPIG 84 56 35
DIAL 73 (−12.1%) 48 (−5.9%) 30 (−6.2%)

5.3. EMNIST Experimental Results

We followed the same setting as the MNIST experiment with a slightly larger model
than MNIST consisting of three blocks of convolution, dropout, max-pooling, and ReLu.
The experimental results, shown in Figure 3a, indicate that DIAL is the top-performing
method. For an accuracy rate of 0.56, it requires 8.3% less Oracle calls when compared to
the second best method.

In the presence of OOD samples, the DIAL method outperforms all other baselines,
as shown in Figure 3b and Table 2. For 300 Oracle calls, DIAL achieves a test set accu-
racy rate of 0.52, while BALD, EPIG, Core-set, and Random attain 0.51, 0.5, 0.42, and
0.40, respectively. For an accuracy rate of 0.53, DIAL needs 308 Oracle calls, while BALD
and EPIG require 346 and 342, respectively (−11%). Moreover, Core-set and Random do
not achieve this accuracy.

100 150 200 250 300
Number of oracle calls

0.25

0.30

0.35

0.40

0.45

0.50

0.55

Te
st

 a
cc

ur
ac

y
ra

te

Random
Bald
Core-set
EPIG (UAL)
DIAL

(a) EMNIST

50 100 150 200 250 300
Number of oracle calls

0.25

0.30

0.35

0.40

0.45

0.50

0.55
Te

st
 a

cc
ur

ac
y

ra
te

Random
Bald
Core-set
EPIG (UAL)
DIAL

(b) EMNIST with OOD
Figure 3. Active learning performance on the EMNIST dataset. DIAL is more efficient than tested
baselines in the number of Oracle calls.

Table 2. EMNIST with OOD number of Oracle calls at x% accuracy.

Methods 40% Acc. 30% Acc. 25% Acc.

Random 281 140 80
Core-set 221 96 62
BALD 154 85 59
EPIG 157 84 59
DIAL 138 (−10.4%) 84 (−1.2%) 59 (0%)

5.4. Cifar10 Experimental Results

For the CIFAR10 dataset, we utilized ResNet-18 [51] with an acquisition size of
16 samples. We used 1K initial training set size and measured the performance of the
active learning strategies up to a training set size of 3K. The CIFAR10 results are shown in
Figure 4a. Overall, DIAL and Random perform the same and have a better test set accuracy
than the other baselines for Oracle calls greater than 2100.

114

Entropy 2024, 26, 129

2000 3000 4000 5000
Number of oracle calls

0.58

0.60

0.62

0.64

0.66

0.68

0.70

Te
st

 a
cc

ur
ac

y
ra

te

Random
Bald
Core-set
EPIG (UAL)
DIAL

(a) CIFAR10

1000 2000 3000 4000 5000
Number of oracle calls

0.55

0.58

0.60

0.62

0.65

0.68

0.70

Te
st

 a
cc

ur
ac

y
ra

te

Random
Bald
Core-set
EPIG (UAL)
DIAL

(b) CIFAR10 with OOD
Figure 4. The left figure illustrates the performance of CIFAR10 using only IND samples. The DIAL
method performs similarly to the Random method. The figure on the right shows the performance of
a combination of OOD samples, where DIAL outperforms all other methods.

When the presence of OOD samples in the unlabeled pool is considered, as shown in
Figure 4b, DIAL outperforms the other methods. Table 3 shows the number of Oracle calls
required for different accuracy levels. For the same accuracy rate of 0.65, DIAL needs up
to 15.4% less Oracle calls than the second best method. This can be explained by Figure 5,
which shows the ratio of OOD samples to the number of Oracle calls. The figure suggests
that DIAL outperforms other criteria by selecting fewer OOD samples, contributing to its
commendable performance. It is noteworthy that in all OOD scenarios, DIAL demonstrated
superior ability to identify in-distribution samples without explicit knowledge of the
distribution and solely utilizing unlabeled test features. This underscores the universality
of DIAL, showcasing its adaptability to various distribution shifts. Additionally, the second-
best performer, EPIG, also considers the unlabeled test set and performs better than other
baseline methods but falls short of DIAL. Notably, BALD and Core-set exhibit similar
behavior, possibly attributed to their emphasis on model estimation rather than leveraging
the test set for predictive focus.

1000 2000 3000 4000 5000
Number of oracle calls

0.10

0.20

0.30

0.40

0.50

0.60

O
O

D
 to

 tr
ai

ni
ng

 r
at

io

Random
Bald
Core-set

EPIG (UAL)
DIAL

Figure 5. The amount of chosen OOD samples for CIFAR10 with the presence of OOD samples.

Table 3. CIFAR10: the presence of OOD samples: Number of Oracle calls at specific accuracy rate values.

Methods 66% Acc. 62% Acc. 58% Acc.

Random 3956 1828 1220
Core-set 4468 1844 1412
BALD 4020 1636 1202
EPIG 3636 1700 1108
DIAL 3076 (−15.4%) 1556 (−4.9%) 1060 (−4.3%)

115

Entropy 2024, 26, 129

6. Limitations

The proposed DIAL algorithm is a min-max strategy for the individual settings.
However, DIAL may not be the most beneficial approach in scenarios where the unlabeled
pool is very similar to the test set, where different selection strategies may perform similarly
and with smaller complexity. This limitation of DIAL is supported by the experimental
results of Section 5.4, where the DIAL algorithm performed similarly to random selection
for the CIFAR10 dataset (but better than all the other baselines).

Another limitation of DIAL is that it has a higher overhead computation compared to
other active learning methods such as BALD. This is because DIAL involves computing the
regret on the test set, which requires additional computations and could become significant
when the unlabeled pool or the test set are very large.

7. Conclusions

In this study, we propose a min-max active learning criterion for the individual setting,
which does not rely on any distributional assumptions. We have also developed an efficient
method for computing this criterion for DNNs. Our experimental results demonstrate
that the proposed strategy, referred to as DIAL, is particularly effective in the presence of
OOD samples in the unlabeled pool. Specifically, our results show that DIAL requires 12%,
10.4%, and 15.4% fewer Oracle calls than the next best method to achieve a certain level of
accuracy on the MNIST, EMNIST, and CIFAR10 datasets, respectively.

As future work, we plan to investigate batch acquisition criteria that take into account
batch selection. This will allow us to consider the relationship between the selected samples
and the overall composition of the batch, which may lead to even further improvements
in performance.

Author Contributions: K.B., coding, visualization, writing—review and editing; S.S., conceptualiza-
tion, formal analysis, writing—review and editing; M.F., writing—review and editing. All authors
have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The paper itself contains all the information required to assess the
conclusions. Additional data related to this paper may be requested from the corresponding author.

Conflicts of Interest: The authors declare no conflicts of interest.

Appendix A. Equivalence between EPIG and UAL

In this section, we will prove that the criterion proposed by Smith et al. [11] is equiva-
lent to the criterion in Shayovitz and Feder [6].

Proof. Assuming some prior π(θ), the UAL criterion is:

x̂n = argmin
xn

I(θ; Y|X, xn, Yn, zn−1)

where X and Y are the test feature and label random variables.
The EPIG criterion [11] is:

x̂n = argmax
xn

I(Y; Yn|X, xn, zn−1)

116

Entropy 2024, 26, 129

In order to show the equivalence between the two acquisition functions (UAL and
EPIG), we can write the following mutual information equality using the mutual informa-
tion chain rule:

I(Y; Yn, θ|X, xn, zn−1) = I(Y; Yn|X, xn, zn−1) + I(Y; θ|X, Yn, xn, zn−1)

The same mutual information I(Y; Yn, θ|X, xn, zn−1) can also be expressed by the chain
rule using a different conditioning:

I(Y; Yn, θ|X, xn, zn−1) = I(Y; θ|X, xn, zn−1) + I(Y; Yn|X, xn, θ, zn−1)

Therefore,

I(Y; Yn|X, xn, zn−1) + I(Y; θ|X, Yn, xn, zn−1) = I(Y; θ|X, xn, zn−1) + I(Y; Yi|X, xn, θ, zn−1) (A1)

Given θ, the test and train are independent; therefore, I(Y; Yn|X, xn, θ, zn−1) = 0 and
(A1) becomes:

I(Y; θ|X, Yn, xn, zn−1) = I(Y; θ|X, xn, zn−1) + I(Y; Yn|X, xn, θ, zn−1) (A2)

It is assumed that θ is independent of xn (p(θ|xn) = p(θ) and that p(zn−1|xn) = p(zn−1).
These assumptions, coupled with Bayes, lead to the following conditional independence:
p(θ|xn, zn−1) = p(θ|zn−1). We can now remove the conditioning on xn and obtain I(Y; θ|X, xn, zn−1)

= I(Y; θ|X, zn−1). We note that I(Y; θ|X, zn−1) is not dependent on xn and is a fixed quantity.
Therefore, we can re-write (A3):

I(Y; θ|X, zn−1) = I(Y; θ|X, Yn, xn, zn−1)− I(Y; Yn|X, xn, θ, zn−1) (A3)

It is now clear that if we find xn which minimizes I(θ; Y|X, xn, Yn, zn−1) (UAL),
it will simultaneously maximize I(Y; Yn|X, xn, zn−1) (EPIG), since their difference is
a constant.

References
1. Ren, P.; Xiao, Y.; Chang, X.; Huang, P.Y.; Li, Z.; Gupta, B.B.; Chen, X.; Wang, X. A survey of deep active learning. ACM Comput.

Surv. (CSUR) 2021, 54, 1–40. [CrossRef]
2. Wang, K.; Zhang, D.; Li, Y.; Zhang, R.; Lin, L. Cost-effective active learning for deep image classification. IEEE Trans. Circuits Syst.

Video Technol. 2016, 27, 2591–2600. [CrossRef]
3. Houlsby, N.; Huszár, F.; Ghahramani, Z.; Lengyel, M. Bayesian active learning for classification and preference learning. arXiv

2011, arXiv:1112.5745.
4. Gal, Y.; Islam, R.; Ghahramani, Z. Deep bayesian active learning with image data. In Proceedings of the International Conference

on Machine Learning, Sydney, Australia, 6–11 August 2017.
5. Sener, O.; Savarese, S. Active Learning for Convolutional Neural Networks: A Core-Set Approach. In Proceedings of the

International Conferenc on Learning Representations, Vancouver, BC, Canada, 30 April–3 May 2018.
6. Shayovitz, S.; Feder, M. Universal Active Learning via Conditional Mutual Information Minimization. IEEE J. Sel. Areas Inf.

Theory 2021, 2, 720–734. [CrossRef]
7. Raginsky, M.; Rakhlin, A. Information-based complexity, feedback and dynamics in convex programming. IEEE Trans. Inf. Theory

2011, 57, 7036–7056. [CrossRef]
8. MacKay, D.J. Information-based objective functions for active data selection. Neural Comput. 1992, 4, 590–604. [CrossRef]
9. Fedorov, V.V. Theory of Optimal Experiments; Elsevier: Amsterdam, The Netherlands, 2013.
10. Shayovitz, S.; Feder, M. Minimax Active Learning Via Minimal Model Capacity. In Proceedings of the 29th IEEE International

Workshop on Machine Learning for Signal Processing, MLSP 2019, Pittsburgh, PA, USA, 13–16 October 2019.
11. Smith, F.B.; Kirsch, A.; Farquhar, S.; Gal, Y.; Foster, A.; Rainforth, T. Prediction-Oriented Bayesian Active Learning. In Proceedings

of the International Conference on Artificial Intelligence and Statistics, Valencia, Spain, 25–27 April 2023.
12. Alabduljabbar, A.; Abusnaina, A.; Meteriz-Yildiran, Ü.; Mohaisen, D. TLDR: Deep Learning-Based Automated Privacy Policy

Annotation with Key Policy Highlights. In Proceedings of the 20th Workshop on Workshop on Privacy in the Electronic Society,
Seoul, Republic of Korea, 15 November 2021.

13. Merhav, N.; Feder, M. Universal prediction. IEEE Trans. Inf. Theory 1998, 44, 2124–2147. [CrossRef]

117

Entropy 2024, 26, 129

14. Fogel, Y.; Feder, M. Universal batch learning with log-loss. In Proceedings of the International Symposium on Information
Theory, Vail, CO, USA, 17–22 June 2018; IEEE: Piscataway, NJ, USA, 2018.

15. Bibas, K.; Fogel, Y.; Feder, M. A New Look at an Old Problem: A Universal Learning Approach to Linear Regression. In
Proceedings of the 2019 IEEE International Symposium on Information Theory (ISIT), Paris, France, 7–12 July 2019.

16. Zhou, A.; Levine, S. Amortized Conditional Normalized Maximum Likelihood: Reliable Out of Distribution Uncertainty
Estimation. In Proceedings of the International Conference on Machine Learning, Virtual, 18–24 July 2021.

17. Yoo, D.; Kweon, I.S. Learning loss for active learning. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019.

18. Sinha, S.; Ebrahimi, S.; Darrell, T. Variational adversarial active learning. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, Seoul, Republic of Korea, 27 October–2 November 2019.

19. Karamcheti, S.; Krishna, R.; Fei-Fei, L.; Manning, C.D. Mind your outliers! investigating the negative impact of outliers on active
learning for visual question answering. arXiv 2021, arXiv:2107.02331.

20. Kothawade, S.; Beck, N.; Killamsetty, K.; Iyer, R. Similar: Submodular information measures based active learning in realistic
scenarios. Adv. Neural Inf. Process. Syst. 2021, 34, 18685–18697.

21. Du, P.; Zhao, S.; Chen, H.; Chai, S.; Chen, H.; Li, C. Contrastive coding for active learning under class distribution mismatch.
In Proceedings of the IEEE/CVF International Conference on Computer Vision, Montreal, BC, Canada, 11–17 October 2021;
pp. 8927–8936.

22. Chen, T.; Kornblith, S.; Norouzi, M.; Hinton, G. A simple framework for contrastive learning of visual representations. In
Proceedings of the International Conference on Machine Learning, Virtual, 26–28 August 2020; pp. 1597–1607.

23. Teney, D.; Abbasnedjad, E.; van den Hengel, A. Learning what makes a difference from counterfactual examples and gradient
supervision. In Proceedings of the Computer Vision—ECCV 2020: 16th European Conference, Glasgow, UK, 23–28 August 2020;
Proceedings, Part X 16. Springer: Berlin/Heidelberg, Germany, 2020; pp. 580–599.

24. Kaushik, D.; Hovy, E.; Lipton, Z.C. Learning the difference that makes a difference with counterfactually-augmented data. arXiv
2019, arXiv:1909.12434.

25. Nie, Y.; Williams, A.; Dinan, E.; Bansal, M.; Weston, J.; Kiela, D. Adversarial NLI: A new benchmark for natural language
understanding. arXiv 2019, arXiv:1910.14599.

26. Shayovitz, S.; Feder, M. Active Learning for Individual Data via Minimal Stochastic Complexity. In Proceedings of the 2022 58th
Annual Allerton Conference on Communication, Control, and Computing (Allerton), Monticello, NY, USA, 27–30 September
2022; IEEE: Piscataway, NJ, USA, 2022; pp. 1–5.

27. Krizhevsky, A.; Nair, V.; Hinton, G. The CIFAR-10 Dataset. 2014. Available online: http://www.cs.toronto.edu/kriz/cifar.html
(accessed on 29 January 2024).

28. Cohen, G.; Afshar, S.; Tapson, J.; Van Schaik, A. EMNIST: Extending MNIST to handwritten letters. In Proceedings of the 2017
International Joint Conference on Neural Networks (IJCNN), Anchorage, AK, USA, 14–19 May 2017; IEEE: Piscataway, NJ, USA, 2017.

29. Deng, L. The mnist database of handwritten digit images for machine learning research [best of the web]. IEEE Signal Process.
Mag. 2012, 29, 141–142. [CrossRef]

30. Bibas, K.; Feder, M. Distribution Free Uncertainty for the Minimum Norm Solution of Over-parameterized Linear Regression.
arXiv 2021, arXiv:2102.07181.

31. Rosas, F.E.; Mediano, P.A.; Gastpar, M. Learning, compression, and leakage: Minimising classification error via meta-universal
compression principles. In Proceedings of the 2020 IEEE Information Theory Workshop (ITW), Virtual, 11–15 April 2020; IEEE:
Piscataway, NJ, USA, 2021.

32. Rissanen, J.; Roos, T. Conditional NML universal models. In Proceedings of the 2007 Information Theory and Applications
Workshop, San Diego, CA, USA, 18–23 February 2007; IEEE: Piscataway, NJ, USA, 2007.

33. Roos, T.; Rissanen, J. On sequentially normalized maximum likelihood models. Compare 2008, 27, 256.
34. Bibas, K.; Feder, M. The Predictive Normalized Maximum Likelihood for Over-parameterized Linear Regression with Norm

Constraint: Regret and Double Descent. arXiv 2021, arXiv:2102.07181.
35. Rosas, F.E.; Mediano, P.A.; Gastpar, M. Learning, compression, and leakage: Minimizing classification error via meta-universal

compression principles. arXiv 2020, arXiv:2010.07382.
36. Fu, J.; Levine, S. Offline Model-Based Optimization via Normalized Maximum Likelihood Estimation. In Proceedings of the

International Conference on Learning Representations, Virtual, 3–7 May 2021.
37. Bibas, K.; Fogel, Y.; Feder, M. Deep pnml: Predictive normalized maximum likelihood for deep neural networks. arXiv 2019,

arXiv:1904.12286.
38. Karzand, M.; Nowak, R.D. Maximin active learning in overparameterized model classes. IEEE J. Sel. Areas Inf. Theory 2020,

1, 167–177. [CrossRef]
39. Kirsch, A.; van Amersfoort, J.; Gal, Y. BatchBALD: Efficient and Diverse Batch Acquisition for Deep Bayesian Active Learning.

In Proceedings of the Advances in Neural Information Processing Systems 32 (NeurIPS 2019), Vancouver, BC, Canada, 8–14
December 2019.

40. Maddox, W.J.; Izmailov, P.; Garipov, T.; Vetrov, D.P.; Wilson, A.G. A simple baseline for bayesian uncertainty in deep learning.
Adv. Neural Inf. Process. Syst. 2019, 32.

118

Entropy 2024, 26, 129

41. Gal, Y.; Ghahramani, Z. Dropout as a bayesian approximation: Representing model uncertainty in deep learning. In Proceedings
of the International Conference Machine Learning, New York, NY, USA, 19–24 June 2016.

42. Daxberger, E.; Kristiadi, A.; Immer, A.; Eschenhagen, R.; Bauer, M.; Hennig, P. Laplace redux-effortless bayesian deep learning.
Adv. Neural Inf. Process. Syst. 2021, 34, 20089–20103.

43. Wilson, A.G.; Hu, Z.; Salakhutdinov, R.R.; Xing, E.P. Stochastic variational deep kernel learning. Adv. Neural Inf. Process. Syst.
2016, 29.

44. Zhang, C.; Bütepage, J.; Kjellström, H.; Mandt, S. Advances in variational inference. IEEE Trans. Pattern Anal. Mach. Intell. 2018,
41, 2008–2026. [CrossRef] [PubMed]

45. Blei, D.M.; Kucukelbir, A.; McAuliffe, J.D. Variational inference: A review for statisticians. J. Am. Stat. Assoc. 2017, 112, 859–877.
[CrossRef]

46. Hoffman, M.D.; Blei, D.M.; Wang, C.; Paisley, J. Stochastic variational inference. J. Mach. Learn. Res. 2013, 14, 1303–1347.
47. Simon, H.U. An almost optimal PAC algorithm. In Proceedings of the Conference on Learning Theory, Paris, France, 3–6

July 2015.
48. Xiao, H.; Rasul, K.; Vollgraf, R. Fashion-mnist: A novel image dataset for benchmarking machine learning algorithms. arXiv

2017, arXiv:1708.07747.
49. Sermanet, P.; Chintala, S.; LeCun, Y. Convolutional neural networks applied to house numbers digit classification. In Proceedings

of the 21st International Conference on Pattern Recognition (ICPR2012), Tsukuba, Japan, 11–15 November 2012; IEEE: Piscataway,
NJ, USA, 2012.

50. Huang, K.H. DeepAL: Deep Active Learning in Python. arXiv 2021, arXiv:2111.15258.
51. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

119

Citation: Wickstrøm, K.K.; Løkse, S.;

Kampffmeyer, M.C.; Yu, S.; Príncipe,

J.C.; Jenssen, R. Analysis of Deep

Convolutional Neural Networks

Using Tensor Kernels and

Matrix-Based Entropy. Entropy 2023,

25, 899. https://doi.org/10.3390/

e25060899

Academic Editor: Jerry D. Gibson

Received: 25 April 2023

Revised: 31 May 2023

Accepted: 2 June 2023

Published: 3 June 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

entropy

Article

Analysis of Deep Convolutional Neural Networks Using Tensor
Kernels and Matrix-Based Entropy
Kristoffer K. Wickstrøm 1,* , Sigurd Løkse 1 , Michael C. Kampffmeyer 1,2 , Shujian Yu 1,3,4 ,
José C. Príncipe 3 and Robert Jenssen 1,2,5

1 Machine Learning Group, Department of Physics and Technology, UiT The Arctic University of Norway,
NO-9037 Tromsø, Norway; sigurd.lokse@uit.no (S.L.); michael.c.kampffmeyer@uit.no (M.C.K.);
s.yu3@vu.nl (S.Y.); robert.jenssen@uit.no (R.J.)

2 Norwegian Computing Center, Department of Statistical Analysis and Machine Learning, 114 Blindern,
NO-0314 Oslo, Norway

3 Computational NeuroEngineering Laboratory, Department of Electrical and Computer Engineering,
University of Florida, Gainesville, FL 32611, USA; principe@cnel.ufl.edu

4 Department of Computer Science, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
5 Department of Computer Science, University of Copenhagen, Universitetsparken 1,

2100 Copenhagen, Denmark
* Correspondence: kristoffer.k.wickstrom@uit.no

Abstract: Analyzing deep neural networks (DNNs) via information plane (IP) theory has gained
tremendous attention recently to gain insight into, among others, DNNs’ generalization ability.
However, it is by no means obvious how to estimate the mutual information (MI) between each
hidden layer and the input/desired output to construct the IP. For instance, hidden layers with many
neurons require MI estimators with robustness toward the high dimensionality associated with such
layers. MI estimators should also be able to handle convolutional layers while at the same time
being computationally tractable to scale to large networks. Existing IP methods have not been able to
study truly deep convolutional neural networks (CNNs). We propose an IP analysis using the new
matrix-based Rényi’s entropy coupled with tensor kernels, leveraging the power of kernel methods
to represent properties of the probability distribution independently of the dimensionality of the data.
Our results shed new light on previous studies concerning small-scale DNNs using a completely new
approach. We provide a comprehensive IP analysis of large-scale CNNs, investigating the different
training phases and providing new insights into the training dynamics of large-scale neural networks.

Keywords: information theory; deep learning; information plane; kernels methods

1. Introduction

Although deep neural networks (DNNs) are at the core of most state-of-the art sys-
tems in computer vision, the theoretical understanding of such networks is still not at a
satisfactory level [1]. In order to provide insight into the inner workings of DNNs, the
prospect of utilizing the mutual information (MI), a measure of dependency between two
random variables, has recently garnered a significant amount of attention [1–8]. Given
the input variable X and the desired output Y for a supervised learning task, a DNN is
viewed as a transformation of X into a representation that is favorable for obtaining a good
prediction of Y. By treating the output of each hidden layer as a random variable T, one
can model the MI I(X; T) between X and T. Likewise, the MI I(T; Y) between T and Y can
be modeled. The quantities I(X; T) and I(T; Y) span what is referred to as the information
plane (IP). Several works have unveiled interesting properties of the training dynamics
through IP analysis of DNNs [4,7,9–11]. Figure 1, produced using our proposed measure,
illustrates one such insight that is similar to the observations of [1], where training can be
separated into two distinct phases: the fitting phase and the compression phase.

Entropy 2023, 25, 899. https://doi.org/10.3390/e25060899 https://www.mdpi.com/journal/entropy120

Entropy 2023, 25, 899

Figure 1. IP obtained using our proposed measure for a small DNN averaged over 5 training runs.
The solid black line illustrates the fitting phase while the dotted black line illustrates the compression
phase. The iterations at which early stopping would be performed assuming a given patience
parameter are highlighted. Patience denotes the number of iterations that need to pass without
progress on a validation set before training is stopped to avoid overfitting. For low patience values,
training will stop before the compression phase. For the benefit of the reader, a magnified version of
the first four layers is also displayed.

The claim of a fitting and compression phase has been highly debated as subsequent
research has linked the compression phase to the saturation of neurons [5] or clustering of
the hidden representations [9]. Recent studies [1,5,7,9] have been focused on small-scale
networks or non-convolutional networks, as the current MI estimators cannot tackle the
tensor representations produced by convolutional layers or do not scale well to convolu-
tional layers with many filters [6]. This severely limits the scope of IP analysis, as most
real-world applications rely on large-scale CNNs. In this work, we continue the IP line
of research through a new matrix-based entropy functional [6,7,12]. We provide insights
on this functional by linking the functional to well-understood measures from the kernel
literature and propose a new kernel tensor-based approach to the matrix-based entropy
functional. Furthermore, we give a new formulation of the matrix-based entropy that is
closely connected to measures from quantum information theory. Using the proposed
estimator, we provide an analysis of large-scale DNNs and give a new information theo-
retic understanding of the training procedure of DNNs. Using the proposed measure, we
investigate the claim of [3] that the entropy H(X) ≈ I(T; X) and H(Y) ≈ I(T; Y) in high
dimensions (in which case MI-based analysis would be meaningless). The contributions of
this work can be summarized as:

• We propose a kernel tensor-based approach to the matrix-based entropy functional that
is designed for measuring MI in large-scale convolutional neural networks (CNNs).

• We provide new insights on the matrix-based entropy functional by showing its con-
nection to well-known quantities in the kernel literature such as the kernel mean
embedding and maximum mean discrepancy. Furthermore, we show that the matrix-
based entropy functional is closely linked with the von Neuman entropy from quan-
tum information theory.

• Our results indicate that the compression phase is apparent mostly for the training
data and less so for the test data, particularly for more challenging datasets. When
using a technique such as early stopping to avoid overfitting, training tends to stop
before the compression phase occurs (see Figure 1).

121

Entropy 2023, 25, 899

2. Related Work

Analyzing DNNs in the IP was first proposed by [13] and later demonstrated by [1].
Among other results, the authors studied the evolution of the IP during the training process
of DNNs and noted that the process was composed of two different phases. First, there is
an initial fitting phase where I(T; Y) increases, which is followed by a phase of compression
where I(X; T) decreases. These results were later questioned by [5], who argued that the
compression phase is not a general property of the DNN training process but rather an
effect of different activation functions. However, a recent study by [4] seems to support
the claim of a compression phase regardless of the activation function. The authors argue
that the base estimator of MI utilized by [5] might not be accurate enough and demonstrate
that a compression phase does occur, but the amount of compression can vary between
different activation functions. Another recent study by [10] also reported a compression
phase but highlighted the importance of adaptive MI estimators. They also showed that
when L2 regularization was included in the training, compression was observed regardless
of the activation function. In addition, some recent studies have discussed the limitations
of the IP framework for analysis and optimization for particular types of DNN [14,15].
Furthermore, ref. [16] investigated similarities between hidden layers and between hidden
layers of different networks, but they did so only for the representation obtained after the
networks were fully trained. The dynamics of large-scale DNNs was investigated [17]
using MINE [18]. A number of information plane-related studies have also been discussed
in [19].

On a different note, Ref. [3] proposed an evaluation framework for DNNs based on
the IP and demonstrated that MI can be used to infer the capability of DNNs to recognize
objects for an image classification task. Furthermore, the authors argue that when the
number of neurons in a hidden layer grows large, I(T; X) and I(Y; T) barely change
and are, using [3] terminology, approximately deterministic, i.e., I(T; X) ≈ H(X) and
I(T; Y) ≈ H(Y). Therefore, they only model the MI between X and the last hidden layer—
that is, the output of the network—and the last hidden layer and Y.

Ref. [7] investigated a matrix-based measure of MI for analyzing different data pro-
cessing inequalities in feed-forward stacked autoencoders (SAEs), concluding that the
compression phase in the IP of SAEs is determined by the values of the SAE bottleneck
layer size and the intrinsic dimensionality of the given data. In follow-up work, a simplistic
analysis of small convolutional neural networks (CNNs) was provided in [6]; however, it
was based on a multivariate extension [20] of matrix-based Renyi entropy that does not
scale well numerically or computationally in the number of feature maps. The interested
reader can find additional information on the multivariate extension by [20] in Appendix A.

Recently, the information plane of quantized neural networks was modeled [8], which
allowed for an exact analysis of its dynamics. In addition, log-determinant entropy has
been used for information plane analysis [11]. Lastly, information plane analysis has also
been used to improve the understanding of graph convolutional neural networks [21].

In this paper, we continue the recent trend of leveraging the new matrix-based mea-
sures of entropy. We contribute both new insight to the definition of these measures (see
Section 3.2.1), and importantly, we extend matrix-based measures of entropy to exploit
tensor kernels to enable the first IP analysis of large-scale CNNs by treating feature maps
as tensors (Section 3.3).

3. Materials and Methods
3.1. Preliminaries on Matrix-Based Information Measures

For the benefit of the reader, we review in this section first the theory underlying
the recent matrix-based measures of entropy and mutual information. Thereafter, we
contribute a new special case interpretation of the definition of matrix-based Renyi entropy
(Section 3.2.1) and give new insights on the link to other measures in the kernel literature
before presenting our new tensor-based approach.

122

Entropy 2023, 25, 899

3.1.1. Matrix-Based Entropy and Mutual Information

The matrix-based measure of entropy, originally proposed by [12], is built on kernel
matrices obtained from raw data, involving no explicit density estimation or binning
procedure:

Definition 1 ([12]). Let xi ∈ X , i = 1, 2, . . . , N denote data points and let κ : X × X 7→ R
be an infinitely divisible positive definite kernel [22]. Given the kernel matrix K ∈ RN×N with

elements (K)ij = κ(xi, xj) and the matrix A, (A)ij =
1
N

(K)ij√
(K)ii(K)jj

, the matrix-based Rényi’s

α-order entropy is given by

Sα(A) =
1

1− α
log2

(
tr(Aα)

)

=
1

1− α
log2

[
N

∑
i=1

λi(A)α

]
.

(1)

Here, λi(A) denotes the ith eigenvalue of the matrix A. Equation (1) is a measure of
an entropy-like quantity that satisfies Renyi’s axiomatic characterization of entropy [23],
which is referred to as matrix-based Renyi entropy. In addition to the matrix-based entropy,
ref. [12] also defined the matrix-based joint entropy between x ∈ X and y ∈ Y as

Sα(AX , AY) = Sα

(
AX ◦AY

tr(AX ◦AY)

)
, (2)

where xi and yi are two different representations of the same object and ◦ denotes the
Hadamard product. Finally, the MI is, similar to Shannon’s formulation, defined as

Iα(AX ; AY) = Sα(AX) + Sα(AY)− Sα(AX , AY). (3)

The properties of these quantities were analyzed in detail in [12], but we want to
highlight some important properties and provide links with other measures in the kernel
literature.

Information theoretic measures are developed in such a way that they satisfy certain
axioms. The measures presented above satisfy the axioms put forth by [23] and are closely
connected with quantum information theory [24]. In quantum statistical mechanics, the
Von Neumann’s entropy [24] is defined as

S(ρ) = − tr(ρ log ρ), (4)

where ρ is a density matrix that described a quantum mechanical system. If ρ is written in
terms of its eigenvalues, λi(ρ), then Equation (4) can also be formulated as

S(ρ) = −
N

∑
i=1

λi(ρ) log[λi(ρ)]. (5)

In addition, the quantum extensions of Renyi’s entropy [25] that is defined as

Sα(ρ) =
1

1− α
log[tr(ρα)], (6)

bears a close resemblance to the matrix-based definition of entropy in Equation (1). While
some properties of Equations (4) and (6) can also be extended to Equation (1), it is important
to note that the two approaches are very different since the matrix-based framework is built
around kernel matrices obtained directly from raw data.

123

Entropy 2023, 25, 899

3.1.2. Bound on Matrix-Based Entropy Measure

Not all measures of entropy have the same properties. Many of the estimators used
and developed for Shannon suffer from the curse of dimensionality [26]. In contrast,
Renyi’s entropy measures have the same functional form of the statistical quantity in a
reproducing kernel Hilbert space (RKHS), thus capturing properties of the data population.
Essentially, we are projecting marginal distribution to an RKHS in order to measure entropy
and MI. This is similar to the approach of maximum mean discrepancy and the kernel
mean embedding [27,28]. The connection with the data population can be shown via the
theory of covariance operators. The covariance operator G : H → H is defined through the
bilinear form

G(f , g) = 〈 f , Gg〉 =
∫

X
〈 f , ψ(x)〉〈ψ(x), g〉dPX (x)

= EX { f (X), g(Y)}
(7)

where PX is a probability measure and f , g ∈ H. Based on the empirical distribution
PN = 1

N ∑N
i=1 δxi (x), the empirical version Ĝ of G obtained from a sample xi of size N is

given by:
〈

f , ĜNg
〉
= Ĝ(f , g) =

∫

X
〈 f , ψ(x)〉〈ψ(x), g〉dPX (x)

=
1
N

N

∑
i=1
〈 f , ψ(xi)〉〈ψ(xi), g〉

(8)

By analyzing the spectrum of Ĝ and G, Ref. [12] showed that the difference between
tr(G) and tr(Ĝ) can be bounded, as stated in the following proposition:

Proposition 2. Let PN = 1
N ∑N

i=1 δxi (x) be the empirical distribution. Then, as a consequence of

Proposition 6.1 in [12], tr
[
Ĝα

N
]
= tr

[(
1
N K
)α]

. The difference between tr(G) and tr(Ĝ) can be
bounded under the conditions of Theorem 6.2 in [12] and for α > 1, with probability 1-δ

∣∣tr(Gα)− tr
(
Ĝα

N
)∣∣ ≤ αC

√
2 log 2

δ

N
(9)

where C is a compact self-adjoint operator.

3.2. Analysis of Matrix-Based Information Measures

In this section, we present new theoretical insights into the Matrix-Based Information
Measures.

3.2.1. A New Special-Case Interpretation of the Matrix-Based Renyi Entropy Definition

In previous works, the α in Equation (1) has been ad hoc set to a value of 1.01 in
order to approximate Shannon’s entropy [6,7]. For α = 1, both the denominator and the
numerator become zero, so Equation (1) cannot be used directly in this case. However,
as a contribution to the matrix-based Renyi entropy theory, we show here that for the
case α→ 1, Equation (1) can be expressed similarly to the matrix-based Von Neumann’s
entropy [24], resembling Shannon’s definition over probability states and expressed as

lim
α→1

Sα(A) = −
N

∑
i=1

λi(A) log2[λi(A)]. (10)

Equation (1) can be proved using L’Hôpital’s rule as follows:

Proof.

lim
α→1

Sα(A) = lim
α→1

1
1− α

log2

(
n

∑
i=1

λα
i

)
→ 0

0
, (11)

124

Entropy 2023, 25, 899

since ∑N
i=1 λi = tr(A) = 1. L’Hôpital’s rule yields

lim
α→1

Sα(A) = lim
α→1

∂
∂α log2[∑

n
i=1 λi(A)α]

∂
∂α (1− α)

= − 1
ln 2

lim
α→1

∑n
i=1 λi(A)α ln[λi(A)]

|∑n
i=1 λi(A)α|

= −
n

∑
i=1

λi(A) log2[λi(A)].

(12)

3.2.2. Link to Measures in Kernel Literature and Validation on High-Dimensional
Synthetic Data

An interesting aspect of the matrix-based measure of entropy is the special case
connection with the theory of maximum mean discrepancy and Hilbert–Schmidt norms via
covariance operators [29]. Let G be the covariance operator (see [28] for details), then, for
the particular case of α = 2, the empirical trace of the covariance operator, tr(G2), is given
by tr(A2). Furthermore,

tr(G2) =

〈∫

X
κ(·, x)dPX (x),

∫

X
κ(·, y)dPX (y),

〉

= ||µX ||2K,
(13)

where µX =
∫
X κ(·, x)dPX (x) is the kernel mean map [30], i.e., an embedding of the proba-

bility measure PX (x) in a reproducing kernel Hilbert space (RKHS). Thus, the matrix A
can be related to an empirical covariance operator on embeddings of probability distribu-
tions in an RKHS. Moreover, ref. [12] showed that under certain conditions, Equation (1)
converges to the trace of the underlying covariance operator, as shown in Proposition 2 in
Section 3.1.2. Notice that the dimensionality of the data does not appear in Proposition 2.
This means that Sα(A) captures properties of the distribution with a certain robustness
with respect to high-dimensional data. This is a beneficial property compared to KNN and
KDE-based information measures used in previous works [5,10], which have difficulties
handling high-dimensional data [26]. Some measures of entropy developed for measuring
the Shannon entropy suffer from the curse of dimensionality [26]. In addition, there is no
need for any binning procedure utilized in previous works [1], which are known to struggle
with the ReLU activation function commonly used in DNNs [5]. While Equation (13) is not
explicitly used in the remainder of our manuscript, we believe that these insights provides
a deeper understanding of the inner workings of the matrix-based entropy measure.

To examine the behavior of the matrix-based measures described in Section 3.1, we
have conducted a simple experiment on measuring entropy and mutual information in high-
dimensional data following a normal distribution with known mean and covariance matrix.
In the particular case of the normal distribution, the entropy and mutual information can
be calculated analytically. The entropy can be calculated as:

H(N0) =
1
2

log
(
(2πe)d det(Σ0)

)
, (14)

where N0 denotes a normal distribution with mean vector µ0 covariance matrix Σ0, and
dimensionality d. For mutual information, we use the experimental setup considered
in [31]. Let Z have a d + 1 dimensional Gaussian distribution with covariance matrix Σz.
Next, let X = (Z1, . . . , Zd) and Y = Zd+1. Then, their mutual information satisfies:

I(X, Y) = I(Z1, . . . , Zd+1)− I(Z1, . . . , Zd) (15)

= −1
2

log
(

det(Σz)

det(Σx)

)
, (16)

125

Entropy 2023, 25, 899

where Σx is the covariance matrix of X. We consider five cases of (d + 1)-dimensional Gaus-
sian distributions with mean zero, unit variance, and an increasing amount of dependence.
The unit variance covariance matrices for the five cases are given as follows:

ΣA(i, j) = 0.1, for i 6= j,
ΣB(i, j) = 0.25, for i 6= j,
ΣC(i, j) = 0.5, for i 6= j,
ΣD(i, j) = 0.75, for i 6= j,
ΣE(i, j) = 0.9, for i 6= j.

The left plot in Figure 2 displays the entropy of a 100-dimensional normal distribution with
zero mean and isotropic covariance matrix, which is calculated using Equation (14). The
right plot in Figure 2 displays the estimated entropy using Equation (1) on 500 randomly
drawn samples from N0, which are computed on all 500 samples and in batches of 100.
The results show how the estimated entropy follows the same trend as the analytically
computed entropy. We quantitativly evaluate the correlation between the analytic quantity
and the estimated quantity by calculating Pearson’s correlation coefficient and find that
that both the full data and batch-wise estimation are highly correlated with the analytic
calculation (correlation ≈ 0.99, p-value ≤ 0.01). For mutual information, we generate
500 samples from a 100 + 1 dimensional Gaussian distribution and compare the exact
and estimated mutual information, which are both based on all 500 samples and in the
batch-wise setting. The left plot of Figure 3 shows the mutual information between X
and Y calculated using Equation (16) for the five cases described above. The right part of
Figure 3 shows the estimated mutual information using Equation (3), which is computed
on all 500 samples and in batches of 100. Again, the result shows how the estimated
values follow the same trend as the exact mutual information values. Similarly as with the
entropy, we quantitativly evaluate the correlation between the analytic quantity and the
estimated quantity by calculating Pearson’s correlation coefficient and find that that both
the full data and batch-wise estimation are highly correlated with the analytic calculation
(correlation ≈ 0.99, p-value ≤ 0.01). Note that the exact value of both the entropy and
mutual information is different between the exact and estimated quantities. This is expected,
as the matrix-based entropy estimators measure information theoretic quantities in RKHS
without the need for explicit PDF but with similar properties as common information
theoretic measures. The kernel width was selected by taking the median distance between
all samples.

1 2 5 7 10
sigma

0

50

100

150

200

250

en
tro

py

Analytic entropy

1 2 5 7 10
sigma

0

1

2

3

4

5

6

en
tro

py

Estimated entropy
Batch estimated entropy

Figure 2. The leftmost plot shows the entropy calculated using Equation (14) of a 100-dimensional
normal distribution with zero mean and an isotropic covariance matrix for different variances.
The variances are given along the x-axis. The rightmost plot shows the entropy estimated using
Equation (1) for the same distribution. The plots illustrated that the analytically computed entropy
and the estimated quantity follow the same trend.

126

Entropy 2023, 25, 899

1 2 5 7 10
sigma

0

20

40

60

80

100

120

m
ut

ua
l i

nf
or

m
at

io
n

Analytic mutual information

1 2 5 7 10
sigma

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

m
ut

ua
l i

nf
or

m
at

io
n

Estimated mutual information
Batch estimated mutual information

Figure 3. The leftmost plot shows the mutual information calculated using Equation (16) between
a standard 100-dimensional normal distribution and a normal distribution with a mean vector of
all ones and an isotropic covariance matrix with different variances. The variances are given along
the x-axis. The rightmost plot shows the mutual information estimated using Equation (3) for the
same distributions. The plots illustrated that the analytically computed mutual information and the
estimated quantity follow the same trend.

3.3. Novel Tensor-Based Matrix-Based Renyi Information Measures

To invoke information theoretic quantities of features produced by convolutional
layers and to address the limitations discussed above, we introduce in this section our
novel tensor-based approach for measuring entropy and MI in DNNs. This enables for the
first time an IP analysis of large-scale CNNs.

3.4. Tensor Kernels for Measuring Mutual Information

The output of a convolutional layer is represented as a tensor Xi ∈ RC ⊗RH ⊗RW

for a data point i. As discussed above, the matrix-based Rényi’s α-entropy cannot include
tensor data without modifications. To handle the tensor-based nature of convolutional
layers, we propose to utilize tensor kernels [32] to produce a kernel matrix for the output
of a convolutional layer. A tensor formulation of the radial basis function (RBF) kernel can
be stated as

κten(Xi,Xj) = e−
1

σ2 ‖Xi−Xj‖2
F , (17)

where ‖ · ‖F denotes the Hilbert–Frobenius norm [32] and σ is the kernel width parameter.
In practice, the tensor kernel in Equation (17) can be computed by reshaping the tensor into
a vectorized representation while replacing the Hilbert–Frobenius norm with a Euclidean
norm. We compute the MI in Equation (3) by replacing the matrix A with

(Aten)ij =
1
N

(Kten)ij√
(Kten)ii(Kten)jj

=
1
N

κten(Xi,Xj).

(18)

While Equation (17) provides the simplest and most intuitive approach for using
kernels with tensor data, it does have its limitations. Namely, a tensor kernel that simply
vectorizes the tensor ignores the inter-component structures within and between the re-
spective tensor [32]. For simple tensor data, such structures might not be present and a
tensor kernel as described above can suffice; however, other tensor kernels do exist, such as
for instance the matricization-based tensor kernels [32]. In this work, we have chosen the
tensor kernel defined in Equation (17) for its simplicity and computational benefits, which
come from the fact that the entropy and joint entropy are computed batch-wise by finding
the eigenvalues of a kernel matrix, or the eigenvalues of the Hadamard product of two
kernel matrices, and utilizing Equation (1). Nevertheless, exploring structure-preserving
kernels can be an interesting research path in future works. In Appendix C, we have

127

Entropy 2023, 25, 899

included a simple example toward this direction, where the tensor kernel described in this
paper is compared to a matricization-based tensor kernel.

3.4.1. Choosing the Kernel Width

With methods involving RBF kernels, the choice of the kernel width parameter, σ,
is always critical. For supervised learning, one might choose this parameter by cross-
validation based on validation accuracy, while in unsupervised problems, one might use a
rule of thumb [33–35]. However, in the case of measuring MI in DNNs, the data are often
high dimensional, in which case unsupervised rules of thumb often fail [34].

In this work, we choose σ based on an optimality criterion. Intuitively, one can make
the following observation: a good kernel matrix should reveal the class structures present
in the data. This can be accomplished by maximizing the so-called kernel alignment loss [36]
between the kernel matrix of a given layer, Kσ, and the label kernel matrix, Ky. The kernel
alignment loss is defined as

A(Ka, Kb) =
〈Ka, Kb〉F
‖Ka‖F‖Kb‖F

, (19)

where ‖ · ‖F and 〈·, ·〉F denote the Frobenius norm and inner product, respectively. Thus,
we choose our optimal σ as

σ∗ = arg maxσ A(Kσ, Ky).

To stabilize the σ values across mini batches, we employ an exponential moving average,
such that in layer ` at iteration t, we have

σ`,t = βσ`,t−1 + (1− β)σ∗`,t,

where β ∈ [0, 1] and σ`,1 = σ∗`,1.

4. Results

We evaluate our approach by comparing it to previous results obtained on small
networks by considering the MNIST dataset and a Multilayer Perceptron (MLP) architecture
that was inspired by [5]. We further compare to a small CNN architecture similar to that
of [4] before considering large networks, namely VGG16, and a more challenging dataset,
namely CIFAR-10. Note that unless stated otherwise, we use CNN to denote the small
CNN architecture. Details about the MLP and the CNN utilized in these experiments
can be found in Appendix D. All MI measures were computed using Equations (2), (3)
and (10) and the tensor approach described in Section 4, which amounts to setting α = 1.
Furthermore, the MI estimates showed in all plots are averages across multiple training runs.
Code is available online (https://github.com/Wickstrom/InformationTheoryExperiment,
accessed on 1 June 2023).

Since the MI is computed at the mini-batch level, a certain degree of noise is present.
To smooth the MI measures, we employ a moving average approach where each sample
is averaged over k mini-batches. For the MLP and CNN experiments, we use k = 10, and
for the VGG16, we use k = 50. We use a batch size of 100 samples and determine the
kernel width using the kernel alignment loss defined in Equation (19). For each hidden
layer, we chose the kernel width that maximizes the kernel alignment loss in the range
0.1 and 10 times the mean distance between the samples in one mini-batch. Initially, we
sample 75 equally spaced values for the kernel width in the given range for the MLP and
CNN and 300 values for the VGG16 network. During training, we dynamically reduce
the number of samples to 50 and 100, respectively, to reduce computational complexity,
which is motivated by the fact that the kernel width remains relatively stable during the
latter part of training (illustrated in Section 5). We chose the ranges 0.1 and 10 times the
mean distance between the samples in one mini-batch to avoid the kernel width becoming

128

Entropy 2023, 25, 899

too small and to ensure that we cover a wide enough range of possible values. For the
input kernel width, we empirically evaluated values in the range 2–16 and found consistent
results for values in the range 4–12. All our experiments were conducted with an input
kernel width of 8. For the label kernel matrix, we want a kernel width that is as small as
possible to approach an ideal kernel matrix while at the same time large enough to avoid
numerical instabilities. For all our experiments, we use a value of 0.1 for the kernel width
of the label kernel matrix.

Comparison to previous approaches First, we study the IP of the MLP similar to the
one examined in previous works on DNN analysis using information theory [4,5]. We
utilize stochastic gradient descent, a cross-entropy loss function, and repeat the experiment
5 times. Figure 1 displays the IP of the MLP with a ReLU activation function in each hidden
layer. MI was measured using the training data of the MNIST dataset. A similar experiment
was performed with the tanh activation function, obtaining similar results. The interested
reader can find these results in Appendix E.

From Figure 1, one can clearly observe a fitting phase, where both I(T; X) and I(Y; T)
increase rapidly, followed by a compression phase where I(T; X) decrease and I(Y; T)
remains unchanged. In addition, note that I(Y; T) for the output layer (layer 5 in Figure 1)
stabilizes at an approximate value of log2(10). The following analysis shows that this is to
be expected. When the network achieves approximately 100% accuracy, I(Y; Ŷ) ≈ S(Y),
where Ŷ denotes the output of the network, since Y and Ŷ will be approximately identical
and the MI between a variable and itself is just the entropy of the variable. The entropy
of Y is measured using Equation (10), which requires the computation of the eigenvalues
of the label kernel matrix 1

N Ky. For the ideal case, where (Ky)ij = 1 if yi = yj and zero
otherwise, Ky is a rank K matrix, where K is the number of classes in the data. Thus, 1

N Ky

has K non-zero eigenvalues which are given by λk(
1
N Ky) =

1
N λk(Ky) =

Nck
N , where Nck is

the number of datapoints in class k, k = 1, 2, . . . , K. Furthermore, if the dataset is balanced,
we have Nc1 = Nc2 = . . . = NcK ≡ Nc. Then, λk

(
1
N Ky

)
= Nc

N = 1
K , which gives us the

entropy measure

S
(

1
N

Ky

)
= −

K

∑
k=1

λk

(
1
N

Ky

)
log2

[
λk

(
1
N

Ky

)]

= −
K

∑
k=1

1
K

log2

[
1
K

]

= log2[K].

(20)

Next, we examine the IP of a CNN, similar to that studied by [4], with a similar
experimental setup as for the MLP experiment. Figure 4 displays the IP of the CNN with
a ReLU activation function in all hidden layers. A similar experiment was conducted
using the tanh activation function and can be found in Appendix F. While the output layer
behaves similarly to that of the MLP, the preceding layers show much less movement. In
particular, no fitting phase is observed, which we hypothesize is a result of the convolutional
layers being able to extract the necessary information in very few iterations. Note that the
output layer is again settling at the expected value of log2(10), similar to the MLP, as it also
achieves close to 100% accuracy.

Increasing DNN size We analyze the IP of the VGG16 network on the CIFAR-10
dataset with the same experimental setup as in the previous experiments. To our knowledge,
this is the first time that the full IP has been modeled for such a large-scale network.
Figures 5 and 6 show the IP when measuring the MI for the training dataset and the test
dataset, respectively. For the training dataset, we can clearly observe the same trend as for
the smaller networks, where layers experience a fitting phase during the early stages of
training and a compression phase in the later stage. Note that the compression phase is
less prominent for the testing dataset. Note also the difference between the final values of
I(Y; T) for the output layer measured using the training and test data, which is a result

129

Entropy 2023, 25, 899

of the different accuracy achieved on the training data (≈100%) and test data (≈90%).
Ref. [3] claims that I(T; X) ≈ H(X) and I(Y; T) ≈ H(Y) for high-dimensional data, and
they highlight particular difficulties with measuring the MI between convolutional layers
and the input/output. However, this statement is dependent on their particular measure
for the MI, and the results presented in Figure 5 and 6 demonstrate that neither I(T; X)
nor I(Y; T) is deterministic for our proposed measure. Furthermore, other measures of
MI have also demonstrated that both I(T; X) ≈ H(X) and I(Y; T) ≈ H(Y) evolve during
training [4,18].

Another type of widely used DNNs is residual networks [37]. While these networks
typically have less parameters than the VGG16, they usually have more layers. This increase
in the number of layers is enabled by skip-connections that allow data to flow through the
network without loss of information. This complicates the information theoretic analysis,
as the dynamics between the layers change and information do not need to decrease in
between the layers. While our proposed estimator is computationally capable of handling
residual networks, an extensive analysis would be required to understand the added
complexity that is introduced by the lossless flow of information in these networks. We
consider such an analysis as outside the scope of this paper but an interesting avenue of
future research.

Figure 4. IP of a CNN consisting of three convolutional layers with 4, 8 and 12 filters and one fully
connected layer with 256 neurons and a ReLU activation function in each hidden layer. MI was
measured using the training data of the MNIST dataset and averaged over 5 runs.

Figure 5. IP of the VGG16 on the CIFAR-10 dataset. MI was measured using the training data and
averaged over 2 runs. Color saturation increases as training progresses. Both the fitting phase and
the compression phase is clearly visible for several layers.

130

Entropy 2023, 25, 899

Figure 6. IP of the VGG16 on the CIFAR-10 dataset. MI was measured using the test data and
averaged over 2 runs. Color saturation increases as training progresses. The fitting phase is clearly
visible, while the compression phase can only be seen in the output layer.

Effect of early stopping We also investigate the effect of using early stopping on the
IP described above. Early stopping is a regularization technique where the validation
accuracy is monitored and training is stopped if the validation accuracy does not increase
for a set number of iterations, which is often referred to as the patience hyperparameter.
Figure 1 displays the results of monitoring where the training would stop if the early
stopping procedure was applied for different values of patience. For a patience of five
iterations, the network training would stop before the compression phase takes place for
several of the layers. For larger patience values, the effects of the compression phase can
be observed before training is stopped. Early stopping is a procedure intended to prevent
the network from overfitting, which may imply that the compression phase observed in
the IP of DNNs can be related to overfitting. However, recent research on the so-called
double descent phenomenon has shown that longer training might be necessary for good
performance for overparameterized DNNs [38,39]. In such settings, early stopping might
not be as applicable. We describe the double descent phenomenon and investigate its
possible connection with the IP in Appendix H.

Data processing inequality The data processing inequality (DPI) is a concept in infor-
mation theory which states that the amount of information cannot increase in a chain of
transformations. A good information theoretic estimator should tend to uphold the DPI.
DNN consists of a chain of mappings from the input through the hidden layers and to
the output. One can interpret a DNN as a Markov chain [1,7] that defines an information
path [1], which should satisfy the DPI [40]:

I(X; T1) ≥ I(X; T2) ≥ . . . ≥ I(X; TL), (21)

where L is the number of layers in the network. An indication of a good MI measure is
that it tends to uphold the DPI. Figure 7 illustrates the mean difference in MI between
two subsequent layers in the MLP and VGG16 networks. Positive numbers indicate that
MI decreases, thus indicating compliance with the DPI. We observe that our measure
complies with the DPI for all layers in the MLP and all except one in the VGG16 network.
Furthermore, we also model the DPI for a simple MLP using the EDGE MI estimator, which
has shown encouraging results on several MI estimation tasks [4]. The DPI for the EDGE
estimator is shown in Figure A4 of Appendix G, which shows that the EDGE estimator
also upholds the DPI. This agrees with our results with regard to the information flow in
neural networks. However, a limitation of the EDGE estimator is that it is not differentiable,
which can be beneficial if MI estimates are to be included in the training [41].

131

Entropy 2023, 25, 899

Figure 7. Mean difference in MI of subsequent layers ` and ` + 1. Positive numbers indicate
compliance with the DPI. MI was measured on the MNIST training set for the MLP and on the
CIFAR-10 training set for the VGG16.

5. Kernel Width Sigma

We further evaluate our dynamic approach of finding the kernel width σ. Figure 8
shows the variation of σ in each layer for the MLP, the small CNN and the VGG16 net-
work. We observe that the optimal kernel width for each layer (based on the criterion in
Section 3.4.1) stabilizes reasonably quickly and remains relatively constant during training.
This illustrates that decreasing the sampling range is a useful approach to decreasing
computational complexity.

Figure 8. Evolution of kernel width as a function of iteration for the three networks that we considered
in this work. From left to right, plots shows the kernel width for the MLP, CNN, and VGG16. The plots
demonstrate how the optimal kernel width quickly stabilizes and stays relatively stable throughout
the training.

6. Discussion and Conclusions

In this work, we propose a novel framework for analyzing DNNs from an information
theoretic perspective using a tensor-based measure of the matrix-based approach of [12].
Our experiments illustrate that the proposed approach scales to large DNNs, which allows
us to provide insights into the training dynamics. We observe that the compression phase in
neural network training tends to be more prominent when MI is measured on the training
set and that commonly used early-stopping criteria tend to stop training before or at the
onset of the compression phase. This could imply that the compression phase is linked to
overfitting. However, recent research on the double descent phenomenon has shown that
a longer training time might be beneficial for generalization [38,39]. In Appendix H, we
perform a preliminary study that examines a potential connection between the compression
phase and the recent epoch-wise double descent phenomenon. Furthermore, we showed
that for our tensor-based approach, the claim that H(X) ≈ I(T; X) and H(Y) ≈ I(T; Y)
does not hold. We believe that our proposed approach can provide new insight and
facilitate a more theoretical understanding of DNNs.

132

Entropy 2023, 25, 899

Author Contributions: Conceptualization, K.K.W., S.L., M.C.K., S.Y., J.C.P. and R.J.; Formal analysis,
K.K.W.; Funding acquisition, R.J.; Investigation, K.K.W., S.L., M.C.K., S.Y., J.C.P. and R.J.; Method-
ology, K.K.W., S.L., M.C.K., S.Y., J.C.P. and R.J.; Software, K.K.W.; Supervision, M.C.K., J.C.P. and
R.J.; Visualization, K.K.W.; Writing—original draft, K.K.W.; Writing—review and editing, K.K.W.,
S.L., M.C.K., S.Y., J.C.P. and R.J. All authors have read and agreed to the published version of
the manuscript.

Funding: This work was supported by The Research Council of Norway (RCN) through its Centre
for Research-based Innovation funding scheme (grant number 309439) and Consortium Partners;
RCN FRIPRO (grant number 315029); RCN IKTPLUSS (grant number 303514) and the UiT Thematic
Initiative.

Data Availability Statement: We used the publicly available MNIST (http://yann.lecun.com/exdb/
mnist/, accessed on accessed on 1 January 2023) and CIFAR 10 (https://www.cs.toronto.edu/~kriz/
cifar.html, accessed on 1 January 2023) datasets in our analysis.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A. Preliminaries on Multivariate Matrix-Based Renyi’s
Alpha-Entropy Functionals

The matrix-based Rényi’s α-order entropy functional is not suitable for estimating the
amount of information of the features produced by a convolutional layer in a DNN as the
output consists of C feature maps, each represented by their own matrix, that characterize
different properties of the same sample. Ref. [20] proposed a multivariate extension of
the matrix-based Rényi’s α-order entropy, which computes the joint entropy among C
variables as

Sα(A1, . . . , AC) = Sα

(A1 ◦ . . . ◦AC
tr(A1 ◦ . . . ◦AC)

)
, (A1)

where

(A1)ij = κ1(x
(1)
i , x(1)j), ..., (AC)ij = κC(x

(C)
i , x(C)j). (A2)

Ref. [6] also demonstrated how Equation (A1) could be utilized for analyzing the
synergy and redundancy of convolutional layers in DNN, but they noted that this formu-
lation can encounter difficulties when the number of feature maps increases, such as in
more complex CNNs. Difficulties arise due to the Hadamard products in Equation (A1),
given that each element of Ac, c ∈ {1, 2, . . . , C} takes on a value between 0 and 1

N , and the
product of C such elements thus tends toward 0 as C grows.

133

Entropy 2023, 25, 899

Figure A1. Different approaches for calculating kernels based on tensor data. The first row shows
results when using the multivariate approach of [20], the second row depicts the tensor kernel
approach used in this paper, and the third row displays the kernel obtained using matricization-based
tensor kernels [32] that preserve the structure between channels. Bright colors indicate high values,
while dark values indicate low values in all the kernel matrices.

Appendix B. Tensor-Based Approach Contains Multivariate Approach as Special Case

Let xi(`) ∈ RHWC denote the vector representation of data point i in layer ` and let
x(c)i (`) ∈ RHW denote its representation produced by filter c. In the following, we omit the
layer index for ease of notation but assume it is fixed. Consider the case when κc(·, ·) is an

RBF kernel with kernel width parameter σc. That is, κc(x
(c)
i , x(c)j) = e

− 1
σ2

c
‖x(c)i −x(c)j ‖2

. In this

case, Ac =
1
N Kc and

A1 ◦ . . . ◦AC
tr(A1 ◦ . . . ◦AC)

=
1
N K1 ◦ . . . ◦ 1

N KC

tr(1
N K1 ◦ . . . ◦ 1

N KC)

=
1
N

K1 ◦ . . . ◦KC,

(A3)

since tr(K1 ◦ . . . ◦KC) = N. Thus, element (i, j) is given by

(
A1 ◦ . . . ◦AC

tr(A1 ◦ . . . ◦AC)

)

ij
=

1
N

C

∏
c=1

(Kc)ij

=
1
N

e
−∑C

c=1
1

σ2
c
‖x(c)i −x(c)j ‖2

.

(A4)

If we let σ = σ1 = σ2 = . . . = σC, this expression is reduced to

1
N

e−
1

σ2 ∑C
c=1 ‖x

(c)
i −x(c)j ‖2

=
1
N

e−
1

σ2 ‖xi−xj‖2

=
1
N

κten(Xi,Xj).
(A5)

Accordingly, Sα(Aten) = Sα(A1, . . . , AC), implying that the tensor method is equivalent
to the multivariate matrix-based joint entropy when the width parameter is equal within
a given layer, assuming an RBF kernel is used. However, the tensor-based approach

134

Entropy 2023, 25, 899

eliminates the effect of numerical instabilities one encounters in layers with many filters,
thereby enabling the training of complex neural networks.

Figure A2. IP of an MLP consisting of four fully connected layers with 1024, 20, 20, and 20 neurons
and a tanh activation function in each hidden layer. MI was measured using the training data of the
MNIST dataset and averaged over 5 runs.

Figure A3. IP of a CNN consisting of three convolutional layers with 4, 8 and 12 filters and one
fully connected layer with 256 neurons and a tanh activation function in each hidden layer. MI was
measured using the training data of the MNIST dataset and averaged over 5 runs.

Appendix C. Structure Preserving Tensor Kernels and Numerical Instability of
Multivariate Approach

As explained in Appendix A, the multivariate approach of [20] Equation (A1) struggles
when the number of channels in an image tensor becomes large as a result of the Hadamard
products in Equation (A1). To illustrate this instability, we have conducted a simple
example. A subset of 50 samples is extracted from the MNIST dataset. Then, each image
is duplicated (plus some noise) C times along the channel dimension of the same image,
i.e., going from a grayscale image of size (1, 1, 28, 28) to a new image of size (1, C, 28, 28).
Since the same image is added along the channel dimension, the kernel matrix should
not change dramatically. Figure A1 displays the results of the experiment just described.
The first row of Figure A1 shows the kernel matrices based on the multivariate approach
proposed by [20]. When the tensor data only have one channel (first column), the kernel
obtained is identical to the results obtained using the tensor kernel described in this paper.
However, as the number of channels increases, the off-diagonal quickly vanishes and the
kernel matrix tends toward a diagonal matrix. This is a result of vanishing Hadamard
products, as described in Appendix A. Theoretically, the multivariate approach should
yield the same kernel as with the tensor kernel approach, as explained in Section 3.3, but

135

Entropy 2023, 25, 899

the off-diagonal elements decrease so quickly that they fall outside numerical precision.
The second row of Figure A1 depicts the kernel matrices obtained using the tensor kernel
approach described in Section 3.3. The kernel matrices in this row are almost unchanged
as the number of channels increases, which is to be expected. Since the same image is
added along the channel dimension, the similarity between the samples should not change
drastically, which is what this row demonstrates. The third row of Figure A1 displays the
kernel matrices obtained using so-called matricization-based tensor kernels [32], which
are tensor kernels that preserve structure between the channels of the tensor. In this case,
this approach produces similar results to the tensor kernel used in this paper, which is to
be expected. Since the same image is added along the channel dimension, there is little
information to extract between the channels. We hypothesize that for small images with
centered objects, such as with MNIST and CIFAR10, the structured tensor kernel does not
capture much more information than the tensor kernel described in Section 3.3. However,
for more complex tensor data, exploring the potential of such structure-preserving tensor
kernels is an interesting avenue for future studies.

Appendix D. Detailed Description of Networks from Section 4

We provide a detailed description of the architectures utilized in Section 4 of the main
paper. Weights were initialized according to [42] when the ReLU activation function was
applied and initialized according to [43] for the experiments conducted using the tanh
activation function. Biases were initialized as zeros for all networks. A learning rate of 0.09
was used for the gradient descent algorithm. All networks were implemented using the
deep learning framework Pytorch [44].

Appendix D.1. Multilayer Perceptron Used in Section 4

The MLP architecture used in our experiments is inspired by the architecture utilized
in previous studies on the IP of DNN [4,5] but with batch normalization [45] included after
the activation function of each hidden layer and an extra hidden layer. Specifically, the
MLP in Section 5 includes (from input to output) the following components:

1. Fully connected layer with 784 inputs and 1024 outputs.
2. Activation function.
3. Batch normalization layer.
4. Fully connected layer with 1024 inputs and 20 outputs.
5. Activation function.
6. Batch normalization layer.
7. Fully connected layer with 20 inputs and 20 outputs.
8. Activation function.
9. Batch normalization layer.
10. Fully connected layer with 20 inputs and 20 outputs.
11. Activation function.
12. Batch normalization layer.
13. Fully connected layer with 784 inputs and 10 outputs.
14. Softmax activation function.

Appendix D.2. Convolutional Neural Network Used in Section 4

The CNN architecture in our experiments is a similar architecture to the one used
by [4]. Specifically, the CNN in Section 5 includes (from input to output) the following
components:

1. Convolutional layer with 1 input channel and 4 filters, filter size 3× 3, stride of 1 and
no padding.

2. Activation function.
3. Batch normalization layer.

136

Entropy 2023, 25, 899

4. Convolutional layer with 4 input channels and 8 filters, filter size 3× 3, stride of 1 and
no padding.

5. Activation function.
6. Batch normalization layer.
7. Max pooling layer with filter size 2× 2, stride of 2 and no padding.
8. Convolutional layer with 8 input channels and 16 filters, filter size 3× 3, stride of 1

and no padding.
9. Activation function.
10. Batch normalization layer.
11. Max pooling layer with filter size 2× 2, stride of 2 and no padding.
12. Fully connected layer with 400 inputs and 256 outputs.
13. Activation function.
14. Batch normalization layer.
15. Fully connected layer with 256 inputs and 10 outputs.
16. Softmax activation function.

Appendix E. IP of MLP with Tanh Activation Function from Section 4

Figure A2 displays the IP of the MLP described above with a tanh activation function
applied in each hidden layer. Similarly to the ReLU experiment in the main paper, a fitting
phase is observed, where both I(T; X) and I(Y; T) increase rapidly, which is followed
by a compression phase where I(T; X) decreases and I(Y; T) remains unchanged. In
addition, note that similar to the ReLU experiment, I(Y; T) stabilizes close to the theoretical
maximum value of log2(10).

Appendix F. IP of CNN with Tanh Activation Function from Section 4

Figure A3 displays the IP of the CNN described above with a tanh activation function
applied in each hidden layer. Just as for the CNN experiment with the ReLU activation
function in the main paper, no fitting phase is observed for the majority of the layers, which
might indicate that the convolutional layers can extract the essential information after only
a few iterations.

Appendix G. Data Processing Inequality with EDGE MI Estimator

Figure A4 displays the DPI of a simple MLP using the EDGE estimator as described
by [4]. Results indicate that the EDGE estimator upholds the DPI. This agrees with our
results with regard to the information flow in neural networks.

Figure A4. Mean difference in MI of subsequent layers ` and ` + 1. Positive numbers indicate
compliance with the DPI. MI was measured on the MNIST training using the EDGE MI estimator on
a simple MLP [4].

137

Entropy 2023, 25, 899

Appendix H. Connection with Epoch-Wise Double Descent

One of the fundamental questions of deep learning is how heavily overparameterized
models generalize well to unseen data. Recent studies have empirically demonstrated that
having many more parameters than training points can be beneficial for generalization,
which have been analyzed from the perspective of the double descent phenomenon [38,39].
The double descent phenomenon was proposed to qualitatively describe the behavior
of complex models when the number of parameters is much larger than the number
of samples, which is the heavily overparametrized regime that DNNs often operate in.
Moreover, ref. [39] showed that overparametrized models can also exhibit epoch-wise
double descent. Epoch-wise double descent refers to a phenomenon where the test error
initially decreases and then increases before finally decreasing again and stabilizing. Such
a behavior bears resemblance to the information flow discussed in this paper, where the
information initially increases before decreasing.

To investigate the potential connection between our information theoretic analysis
of DNNs and the epoch-wise double descent phenomenon, we train a heavily over-
parametrized neural network on a subset of the MNIST dataset (10,000 samples) inspired
by [38]. The overparametrized network consists of one hidden layer and the output layer,
where the hidden layer contains 50,000 neurons with a ReLU activation function. The
training and analysis of this network is carried out in a similar manner as all the other
reported experiments. Figure A5 displays training and test loss together with the MI
between the input and each layer of the network. First, notice that the epoch-wise double
descent phenomenon is clearly visible, as the test loss initially decreases, which is followed
by an increase, and toward the end, there is another period of decrease. Simultaneously,
the start of compression in MI(X, Ŷ) seems to coincide with the increase of the test loss,
and it ends when the test loss stabilizes after going down again. These results suggests
that there might be a link with the compression phase of DNNs and the epoch-wise double
descent phenomenon, and that information theory can be used to gain new insights into
the generalization capabilities of DNNs.

Figure A5. Training and test loss of neural network with one hidden layer with 50,000 neurons
on a subset of the MNIST dataset. The figure also shows the MI between the input/labels and the
hidden/output layer. The epoch-wise double descent phenomenon is visible in the test loss, and it
seems to coincide with the start of the compression of MI between the input and output layer. Notice
the different labels on the left and right y-axis. Curves represent the average over 3 training runs.

138

Entropy 2023, 25, 899

References
1. Shwartz-Ziv, R.; Tishby, N. Opening the Black Box of Deep Neural Networks via Information. arXiv 2017, arXiv:1703.00810.

[CrossRef]
2. Geiger, B.C. On Information Plane Analyses of Neural Network Classifiers—A Review. IEEE Trans. Neural Netw. Learn. Syst.

2021, 33, 7039–7051. [CrossRef]
3. Cheng, H.; Lian, D.; Gao, S.; Geng, Y. Evaluating Capability of Deep Neural Networks for Image Classification via Information

Plane. In Proceedings of the European Conference on Computer Vision, Munich, Germany, 8–14 September 2018; pp. 168–182.
4. Noshad, M.; Zeng, Y.; Hero, A.O. Scalable Mutual Information Estimation Using Dependence Graphs. In Proceedings of the IEEE

International Conference on Acoustics, Speech and Signal Processing, Brighton, UK, 12–17 May 2019; pp. 2962–2966.
5. Saxe, A.M.; Bansal, Y.; Dapello, J.; Advani, M.; Kolchinsky, A.; Tracey, B.D.; Cox, D.D. On the information bottleneck theory of

deep learning. J. Stat. Mech. Theory Exp. 2019, 2019, 124020. [CrossRef]
6. Yu, S.; Wickstrøm, K.; Jenssen, R.; Príncipe, J.C. Understanding Convolutional Neural Network Training with Information Theory.

IEEE Trans. Neural Netw. Learn. Syst. 2020, 32, 435–442. [CrossRef]
7. Yu, S.; Principe, J.C. Understanding autoencoders with information theoretic concepts. Neural Netw. 2019, 117, 104–123. [CrossRef]

[PubMed]
8. Lorenzen, S.S.; Igel, C.; Nielsen, M. Information Bottleneck: Exact Analysis of (Quantized) Neural Networks. In Proceedings of

the International Conference on Learning Representations, Virtual, 25–29 April 2022.
9. Goldfeld, Z.; Van Den Berg, E.; Greenewald, K.; Melnyk, I.; Nguyen, N.; Kingsbury, B.; Polyanskiy, Y. Estimating Information

Flow in Deep Neural Networks. In Proceedings of the International Conference on Machine Learning, Long Beach, CA, USA,
9–15 June 2019; pp. 2299–2308.

10. Chelombiev, I.; Houghton, C.; O’Donnell, C. Adaptive Estimators Show Information Compression in Deep Neural Networks.
arXiv 2019, arXiv:1902.09037. [CrossRef]

11. Zhouyin, Z.; Liu, D. Understanding Neural Networks with Logarithm Determinant Entropy Estimator. arXiv 2021,
arXiv:2105.03705. [CrossRef]

12. Sanchez Giraldo, L.G.; Rao, M.; Principe, J.C. Measures of Entropy From Data Using Infinitely Divisible Kernels. IEEE Trans. Inf.
Theory 2015, 61, 535–548. [CrossRef]

13. Tishby, N.; Zaslavsky, N. Deep learning and the information bottleneck principle. In Proceedings of the 2015 IEEE Information
Theory Workshop (ITW), Jerusalem, Israel, 26 April–1 May 2015.

14. Kolchinsky, A.; Tracey, B.D.; Kuyk, S.V. Caveats for information bottleneck in deterministic scenarios. arXiv 2019, arXiv:1808.07593.
[CrossRef]

15. Amjad, R.A.; Geiger, B.C. Learning Representations for Neural Network-Based Classification Using the Information Bottleneck
Principle. IEEE Trans. Pattern Anal. Mach. Intell. 2019, 42, 2225–2239. [CrossRef]

16. Kornblith, S.; Norouzi, M.; Lee, H.; Hinton, G. Similarity of Neural Network Representations Revisited. In Proceedings of the
International Conference on Machine Learning, Long Beach, CA, USA, 10–15 June 2019; pp. 3519–3529.

17. Jónsson, H.; Cherubini, G.; Eleftheriou, E. Convergence Behavior of DNNs with Mutual-Information-Based Regularization.
Entropy 2020, 22, 727. [CrossRef] [PubMed]

18. Belghazi, M.I.; Baratin, A.; Rajeshwar, S.; Ozair, S.; Bengio, Y.; Courville, A.; Hjelm, D. Mutual Information Neural Estimation. In
Proceedings of the 35th International Conference on Machine Learning, Stockholm, Sweden, 10–15 July 2018; Dy, J., Krause, A.,
Eds.; Volume 80, pp. 531–540.

19. Geiger, B.C.; Kubin, G. Information Bottleneck: Theory and Applications in Deep Learning. Entropy 2020, 22, 1408. [CrossRef]
[PubMed]

20. Yu, S.; Sanchez Giraldo, L.G.; Jenssen, R.; Principe, J.C. Multivariate Extension of Matrix-based Renyi’s α-order Entropy Functional.
IEEE Trans. Pattern Anal. Mach. Intell. 2019, 42, 2960–2966. [CrossRef]

21. Landsverk, M.C.; Riemer-Sørensen, S. Mutual information estimation for graph convolutional neural networks. In Proceedings
of the 3rd Northern Lights Deep Learning Workshop, Tromso, Norway, 10–11 January 2022; Volume 3.

22. Bhatia, R. Infinitely Divisible Matrices. Am. Math. Mon. 2006, 113, 221–235. [CrossRef]
23. Renyi, A. On Measures of Entropy and Information. In Proceedings of the Fourth Berkeley Symposium on Mathematical Statistics and

Probability, Volume 1: Contributions to the Theory of Statistics; University of California Press: Berkeley, CA, USA, 1961; pp. 547–561.
24. Nielsen, M.A.; Chuang, I.L. Quantum Computation and Quantum Information, 10th ed.; Cambridge University Press: Cambridge,

UK, 2011.
25. Mosonyi, M.; Hiai, F. On the Quantum Rényi Relative Entropies and Related Capacity Formulas. IEEE Trans. Inf. Theory 2011, 57,

2474–2487. [CrossRef]
26. Kwak, N.; Choi, C.H. Input feature selection by mutual information based on Parzen window. IEEE Trans. Pattern Anal. Mach.

Intell. 2002, 24, 1667–1671. [CrossRef]
27. Gretton, A.; Borgwardt, K.M.; Rasch, M.J.; Schölkopf, B.; Smola, A. A Kernel Two-sample Test. J. Mach. Learn. Res. 2012, 13,

723–773.
28. Muandet, K.; Fukumizu, K.; Sriperumbudur, B.; Schölkopf, B. Kernel Mean Embedding of Distributions: A Review and Beyond.

In Foundations and Trends® in Machine Learning; Now Foundations and Trends: Boston, FL, USA, 2017; pp. 1–141.

139

Entropy 2023, 25, 899

29. Fukumizu, K.; Gretton, A.; Sun, X.; Schölkopf, B. Kernel Measures of Conditional Dependence. In Proceedings of the Advances
in Neural Information Processing Systems, Vancouver, BC, Canada, 3–6 December 2008; pp. 489–496.

30. Smola, A.; Gretton, A.; Song, L.; Schölkopf, B. A Hilbert Space Embedding for Distributions. In Proceedings of the Algorithmic
Learning Theory, Sendai, Japan, 1–4 October 2007; Hutter, M., Servedio, R.A., Takimoto, E., Eds.; pp. 13–31.

31. Evans, D. A Computationally Efficient Estimator for Mutual Information. Proc. Math. Phys. Eng. Sci. 2008, 464, 1203–1215.
[CrossRef]

32. Signoretto, M.; De Lathauwer, L.; Suykens, J.A. A kernel-based framework to tensorial data analysis. Neural Netw. 2011, 34,
861–874. [CrossRef]

33. Shi, J.; Malik, J. Normalized Cuts and Image Segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 2000, 22, 888–905.
34. Shi, T.; Belkin, M.; Yu, B. Data spectroscopy: Eigenspaces of convolution operators and clustering. Ann. Stat. 2009, 37, 3960–3984.

[CrossRef]
35. Silverman, B.W. Density Estimation for Statistics and Data Analysis; CRC Press: Boca Raton, FL, USA, 1986; Volume 26.
36. Cristianini, N.; Shawe-Taylor, J.; Elisseeff, A.; Kandola, J.S. On kernel-target alignment. In Proceedings of the Advances in Neural

Information Processing Systems, Vancouver, BC, Canada, 3–6 December 2002; pp. 367–373.
37. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778.
38. Belkin, M.; Hsu, D.; Ma, S.; Mandal, S. Reconciling modern machine-learning practice and the classical bias–variance trade-off.

Proc. Natl. Acad. Sci. USA 2019, 116, 15849–15854. [CrossRef] [PubMed]
39. Nakkiran, P.; Kaplun, G.; Bansal, Y.; Yang, T.; Barak, B.; Sutskever, I. Deep Double Descent: Where Bigger Models and More Data

Hurt. arXiv 2020, arXiv:1912.02292. [CrossRef]
40. Cover, T.M.; Thomas, J.A. Elements of Information Theory; Wiley Series in Telecommunications and Signal Processing; Wiley-

Interscience: New York, NY, USA, 2006.
41. Yu, X.; Yu, S.; Príncipe, J.C. Deep Deterministic Information Bottleneck with Matrix-Based Entropy Functional. In Proceedings

of the IEEE International Conference on Acoustics, Speech and Signal Processing, Toronto, ON, Canada, 6–11 June 2021;
pp. 3160–3164.

42. He, K.; Zhang, X.; Ren, S.; Sun, J. Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification.
In Proceedings of the 2015 IEEE International Conference on Computer Vision (ICCV), Santiago, Chile, 7–13 December 2015;
pp. 1026–1034.

43. Glorot, X.; Bengio, Y. Understanding the difficulty of training deep feedforward neural networks. In Proceedings of the
International Conference on Artificial Intelligence and Statistics, Sardinia, Italy, 13–15 May 2010; pp. 249–256.

44. Paszke, A.; Gross, S.; Chintala, S.; Chanan, G.; Yang, E.; DeVito, Z.; Lin, Z.; Desmaison, A.; Antiga, L.; Lerer, A. Automatic
Differentiation in PyTorch. 2017. Available online: https://pytorch.org (accessed on 1 January 2023).

45. Ioffe, S.; Szegedy, C. Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. In
Proceedings of the International Conference on Machine Learning, Lille, France, 6–11 July 2015; pp. 448–456.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

140

Citation: Pan, X.; Li, G.; Zheng, Y.

Ensemble Transductive Propagation

Network for Semi-Supervised

Few-Shot Learning. Entropy 2024, 26,

135. https://doi.org/10.3390/

e26020135

Academic Editors: Shuangming

Yang, Badong Chen, Shujian Yu and

Luis Gonzalo Sánchez Giraldo

Received: 31 December 2023

Revised: 27 January 2024

Accepted: 30 January 2024

Published: 31 January 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

entropy

Article

Ensemble Transductive Propagation Network for
Semi-Supervised Few-Shot Learning
Xueling Pan 1,2, Guohe Li 1,2,* and Yifeng Zheng 3,4

1 Beijing Key Lab of Petroleum Data Mining, Department of Geophysics, China University of Petroleum,
Beijing 102249, China; 2020310415@student.cup.edu.cn

2 College of Information Science and Engineering, China University of Petroleum, Beijing 102249, China
3 School of Computer Science, Minnan Normal University, Zhangzhou 363000, China;

zhengyifengja@gmail.com
4 Key Laboratory of Data Science and Intelligence Application, Fujian Province University,

Zhangzhou 363000, China
* Correspondence: lgh202310@163.com

Abstract: Few-shot learning aims to solve the difficulty in obtaining training samples, leading to high
variance, high bias, and over-fitting. Recently, graph-based transductive few-shot learning approaches
supplement the deficiency of label information via unlabeled data to make a joint prediction, which
has become a new research hotspot. Therefore, in this paper, we propose a novel ensemble semi-
supervised few-shot learning strategy via transductive network and Dempster–Shafer (D-S) evidence
fusion, named ensemble transductive propagation networks (ETPN). First, we present homogeneity
and heterogeneity ensemble transductive propagation networks to better use the unlabeled data,
which introduce a preset weight coefficient and provide the process of iterative inferences during
transductive propagation learning. Then, we combine the information entropy to improve the D-S
evidence fusion method, which improves the stability of multi-model results fusion from the pre-
processing of the evidence source. Third, we combine the L2 norm to improve an ensemble pruning
approach to select individual learners with higher accuracy to participate in the integration of the
few-shot model results. Moreover, interference sets are introduced to semi-supervised training to
improve the anti-disturbance ability of the mode. Eventually, experiments indicate that the proposed
approaches outperform the state-of-the-art few-shot model. The best accuracy of ETPN increases by
0.3% and 0.28% in the 5-way 5-shot, and by 3.43% and 7.6% in the 5-way 1-shot on miniImagNet and
tieredImageNet, respectively.

Keywords: few-shot learning; meta learning; graph semi-supervision; label propagation; Gaussian
kernel function; D-S evidence theory

1. Introduction

Deep learning is widely used in many practical applications, such as speech recogni-
tion [1], computer vision [2], and semantic segmentation [3]. It is data-driven and relies
on a large amount of labeled data to train a model. However, in some scenarios, labeled
data are costly to obtain. Therefore, how to utilize the limited labeled data to construct a
reliable model is very important. Nowadays, inspired by human learning and utilizing
prior knowledge to learn new concepts via only a handful of examples, few-shot learning
(FSL) has attracted much more attention.

Few-shot learning has been divided into three categories, including augmentation,
metric learning, and meta-learning. FSL usually adopts an episodic training mode. Each
episodic training includes a support and a query set. The support set is constructed by
randomly selecting K categories and N samples in each selected category from training
data, namely the K-way N-shot. The query set is also randomly sampled from the K
categories, but it has no intersection with the support set.

Entropy 2024, 26, 135. https://doi.org/10.3390/e26020135 https://www.mdpi.com/journal/entropy141

Entropy 2024, 26, 135

For augmentation approaches, they aim to increase the number of training samples or
features to enhance data diversity. However, some basic augmentation operations need
to be improved in the process of model training, such as rotating, flipping, cropping,
translating, and adding noise into images [4,5]. With the development of deep learning,
more sophisticated algorithms customized for FSL were proposed. Dual TriNet mapped
the multi-level image feature into a semantic space to enhance the semantic vectors using
the semantic Gaussian or neighborhood approaches [6]. ABS-Net established a repository
of attribute features by conducting attribute learning on the auxiliary dataset to synthesize
pseudo feature representations automatically [7].

Metric learning is designed to learn a pairwise similarity metric by exploiting the
similarity information between samples. It means a similar sample pair has a high simi-
larity score and vice versa. Matching Nets performed full context embeddings by adding
external memories to extract features. It measures the similarity between samples via the
cosine distance [8]. Proto Net constructed a metric space by computing distances between
the prototype representations and test examples [9]. AM3 incorporated extra semantic
representations into Proto Net [10]. TSCE utilized the mutual information maximization
and ranking-based embedding alignment mechanism to implement knowledge transfer
across domains, which maintains the consistency between the semantic and shared spaces,
respectively [11]. Moreover, TSVR made the source and target domains have the same
label space to quantify domain discrepancy by predicting the similarity/dissimilarity la-
bels for semantic-visual fusions [12]. K-tuplet Nets changed the NCA loss of Proto Net
into a K-tuplet metric loss [13]. The drawback of the above algorithms is that they can-
not learn enough transferable knowledge in a small number of samples to enhance the
model’s performance.

Meta-learning approaches aim to utilize the transferring experience of the meta-learner
to optimize a base learner. It is divided into three categories: Learn-to-Measure [14–16],
Learn-to-Finetune [17,18], and Learn-to-Parameterize [19–21]. MAML learned a suitable
initialization parameter via a multi-task training strategy to guarantee its generalization [22].
TAML utilized an entropy-maximization reduction to address the over-fitting problem [23].
DAE employed a graph neural network based on a denoising auto-encoder to generate
model parameters [19]. However, the above solutions should further consider the related
information between the support set and the query set. Even more importantly, learning
a base learner for few-shot tasks is easy to overfit, which results in high-variance or low-
confidence predictions by lacking training data [24].

Nowadays, some researchers focus on measuring the relations between the support
and the query instances via transductive graph theory. The transductive graph-based
approaches [25–27] can effectively obtain the labels of the query set based on a few labeled
samples. The main idea is that, regarding the samples of the support set and the query
set as graph nodes, the nearest neighbor relationship between the support set and the
query set is utilized for joint prediction to supplement the lack of label information. TPN
employed the Gaussian kernel function to calculate the similarity as the weight to build
a k-nearest neighbor graph (KNN-Graph), which uses the label propagation algorithm
to transductively propagate labels between the support and query examples [25]. The
drawback is that it may divide all graph vertices into a vast community or trap them in a
local maximum to affect the stability and robustness of a model.

To address the above problems, we propose an Ensemble Transductive Propagation
Network (ETPN). Firstly, two types of ensemble strategies are proposed, based on homoge-
neous and heterogeneous algorithms. These are referred to as Ho-ETPN (Homogeneous
Ensemble Transductive Propagation Network) and He-ETPN (Heterogeneous Ensemble
Transductive Propagation Network), respectively. Transductive inference, based on a graph,
is used to extract valuable information shared between support-query pairs for label predic-
tion. This approach circumvents the intermediate problem of defining a prediction function
on an entire space in inductive learning. Secondly, a novel fusion strategy is proposed,
based on an improved D-S evidence theory, to enhance the robustness of our proposal. The

142

Entropy 2024, 26, 135

improved D-S evidence fusion approach first uses the Bhattacharyya distance to construct
a conflict matrix between the mass function, and then uses this conflict matrix to obtain
the support matrix. It then combines information entropy to recalculate the mass weight,
realizing the pre-processing of the evidence source. This enhances the robustness and
stability of few-shot classification. Thirdly, we propose an improved ensemble pruning
approach to select individual learners with higher accuracy to participate in the integration
of the few-shot model results. It employs the L2 norm to make the model more stable to
small changes in the input and improve the model’s robustness.

In summary, the key contributions of our approaches are summarized as follows:

1. Ensemble framework: Based on the individual graph learner framework, we pro-
pose two ensemble strategies including the homogeneous and heterogeneous mod-
els, named Ho-ETPN and He-ETPN, respectively. Moreover, during transductive
propagation learning, we add the preset weight coefficient and give the process of
iterative inferences.

2. Ensemble pruning: Proposing an improved ensemble pruning method to conduct the
selective results fusion by screening the individual learner with higher accuracy.

3. Combination strategy: An improved D-S evidence aggregation method is proposed
for comprehensive evaluation. To the best of our knowledge, it is the first work that
explicitly considers the D-S evidence theory in few-shot learning.

4. Effectiveness: Extension experiences about supervised and semi-supervised conducted
on miniImageNet and tieredImageNet datasets show that our solution yields compet-
itive results on a few-shot classification. More challenging is that distracted classes
are introduced during the process of the semi-supervised experiment.

2. Related Work

(1) Transductive Graph Few-shot Learning
Recently, few-shot learning has become one of the hot spots. Transductive inference

employs the valuable information between support and query sets to achieve predic-
tions [25]. In a data-scarce scenario, it has been proven to improve the performance of
few-shot learning over inductive solutions [28–30]. TPRN treated the sample relation of
each support–query pair as a graph node, then resorted to the known relations between
support samples to estimate the relational adjacency among the different support–query
pairs [31]. DSN proposed an extension of existing dynamic classifiers by using subspaces
and introduced a discriminative formulation to encourage maximum discrimination be-
tween subspaces during training, which avoids over-performing and boosts robustness
against perturbations [32]. Huang et al. proposed PTN to revise the Poisson model tailored
for few-shot problems by incorporating the query feature calibration and the Poisson MBO
(Merriman–Bence–Osher) model to tackle the cross-class bias problems due to the data
distribution drift between the support and query data [26]. EGNN exploited the edge
labels rather than the node labels on the graph to exploit both intra-cluster similarity and
inter-cluster dissimilarity to evolute an explicit clustering [33]. Unlike the above methods,
in this paper, we adopt the transductive graph approach to construct the ETPN model.
It leverages the related prior knowledge between support and query sets during the test
phase and a novel fusion strategy to address the issue of high variance and over-fitting.

(2) Semi-supervised Few-shot Learning
Moreover, it is difficult to annotate samples in many fields, such as medicine, military,

finance, etc. Thus, semi-supervised few-shot learning (SSFSL) approaches are proposed
to leverage the extra unlabeled data to enhance the performance of few-shot learning.
LTTL proposed a self-training model, which utilizes cherry-picking to search for valuable
samples from pseudo-labeled data via a soft-weighting network [34]. PRWN proposed
prototypical random walk networks to promote prototypical magnetization of the learning
representation [35]. BR-ProtoNet exploited unlabeled data and constructed complementary
constraints to learn a generalizable metric [36]. In this paper, we adopt transductive

143

Entropy 2024, 26, 135

inference to utilize unlabeled data and distractor classes irrelevant to the classification task
to boost robustness against perturbations.

(3) Ensemble Few-Shot Learning
Ensemble learning is widely used in classifications to enhance the generalization

ability and robustness of models. Therefore, many researchers have applied the ensemble
framework to few-shot learning. The main idea is to adopt a combination approach to
reduce the over-fitting problem and enhance the stability of the model. DIVERSITY investi-
gated an ensemble approach for training multiple convolutional neural networks (CNNs).
Each network predicts class probabilities, which are then integrated by a mean centroid
classifier constructed for each network. Moreover, it introduced penalty terms allowing the
networks to cooperate during training to guarantee the diversity of predictions [37]. EBDM
divided the feature extraction network into shared and exclusive components. The shared
component aims to share and reduce parameters in the lower layers, while the exclusive
component is designed to be unique to each learner in the higher layers [38]. HGNN
proposed a novel hybrid GNN of a prototype and instance to address overlapping classes
and outlying samples, respectively [39]. E3BM introduced a Bayes model for each epoch,
which leverages innovative hyperprior learners to learn task-specific hyperparameters
and enhances model robustness [40]. However, the existing integration strategies mainly
adopt a max-voting strategy without considering information uncertainty. Different from
the above methods, we propose an improved D-S method to solve the above problem by
preprocessing the data source; moreover, we improved the ensemble pruning method to
perform a selective ensemble with better accuracy.

The contribution of our algorithm is summarized in Table 1, including transduction
inference (trans_inference), semi-supervised few-shot learning (SSFSL), ensemble, ensemble
pruning, and information uncertainty (infor_uncertainty).

Table 1. The key contributions. Where ”w/D” means with distractors.

Model trans_in f erence SSFSL Ensemble Ensemble Pruning in f or_uncertainty

TPRN [31] X × × × ×
DSN [32] X X (w/D) × × ×
PTN [26] X X (w/D) × × ×

EGNN [33] X X × × ×
LTTL [34] × X × × ×

PRWN [35] × X (w/D) × × ×
BR− ProtoNet [36] × X (w/D) × × ×
DIVERSITY [37] × × X × ×

EBDM [38] × × X × ×
HGNN [39] X × X × ×
E3BM [40] × × X × ×

IG− semiTPN [41] X X (w/D) × × ×
He− ETPN (our) X X (w/D) X X X
Ho− ETPN (our) X X (w/D) X X X

3. Problem Definition

Given a label set C =
{

cj|j = 1, 2, . . . , N
}

, cj represents the label (i.e., a discrete value).
S = {si|i = 1, 2, . . . , n} denotes a sample set, si = (xi, yi) represents a sample, xi is the
attribute values set, ‖xi‖ denotes number of dimensions, namely, xi = (x1

i , x2
i , . . . , x‖xi‖). If

yi ∈ C, si represents labeled samples, otherwise si = (xi, _) represents unlabeled samples.
Sample sets are divided into supervised represented Ssup and unsupervised sample sets
represented by Suns, thus, S = Ssup ∪ Suns, where Ssup = {(xi, yi)|(xi, yi) ∈ S, yi ∈ C},
Suns = {(xi, _)|(xi, _) ∈ S}.

For Ssup, let X −→ C denote the process of predicting the labels by the classifier F for
training samples, where X = {xi|(xi, yi) ∈ Ssup}, namely ∀(xi, yi) ∈ Ssup, ỹi = F(xi). The

144

Entropy 2024, 26, 135

accuracy rate of a classifier F is defined as Acc(Ssup, F) = |{(xi ,yi)|(xi ,yi)∈Ssup ,ỹi=F(xi),ỹi=yi}|
|Ssup | .

Supervised machine learning is the process of obtaining a classifier F from Ssup.
For F and Suns, obtaining Suns→sup from Suns is the process of adding annotations,

which can be defined as Suns→sup = {(xi, ỹi)|(xi, _) ∈ Suns, ỹi = F(xi)}. For S = Ssup ∪
Suns and X −→ C, where X = {xi|(xi, yi) ∈ Ssupor(xi, ỹi) ∈ Suns→sup}, semi-supervised
machine learning is the process of obtaining F from S.

For S = ST ∪ SV , where ST is the train set, SV is validation set. F is learned from ST .
The validation is the process of calculating Acc(SV , F).

Few-shot learning constructing models generally adopt episodic training mode. Ac-
cording to the above notations, the episodic training (K-way, N-shot) is defined as follows:
let the label set of the support set denote CK ⊆ C, |CK| = K, ∀CK, ∃y ∈ CK, SN ⊆ S,
|SN | = N, s ∈ SN , s = (x, y); the support set is defined as TK·N = {SN

i |i = 1, 2, . . . , K},
∃y ∈ CK and the query set is defined as QM ⊆ S, |QM| = M, q ∈ QM, ∀SN

i ∈ TK·N , q /∈ SN
i .

For Suns→sup = {(xi, ỹi)|(xi, _) ∈ Suns, ỹi = F(xi)}, the interference sets consist of the
distractor classes irrelevant to the target tasks [42,43]. It is added in the support and query
sets to boost model robustness.

4. Methodology

In this paper, we propose the ensemble transductive propagation network (ETPN). The
whole framework of the ensemble model is shown in Figure 1. For ETPN, we propose Ho-
ETPN and He-ETPN models according to different ensemble approaches. Additionally, we
incorporate a preset weight coefficient and compute iterative inferences during transductive
propagation learning. Moreover, an improved D-S evidence fusion strategy is proposed
for comprehensive evaluation. Meanwhile, we improve the ensemble pruning method to
screen individual learners of higher accuracy to conduct fusing.

Figure 1. The overall framework diagram of the model.

There are several important parts in our ETPN model (as shown in Figure 2), including
the framework of Ho-ETPN and He-ETPN, constructing KNN-Graphs using the improved
Gaussian kernel [41], transductive propagation learning, and evidence fusion strategy.
Next, we introduce the single model framework of IG-semiTPN simply, then introduce
other parts of our ensemble model in detail.

145

Entropy 2024, 26, 135

Figure 2. The overall flow chart of the ensemble model.

4.1. IG-semiTPN Model

We propose our ensemble semi-supervised graph network based on the individual
learner framework of IG-semiTPN [41] to utilize the information shared between support
and query datasets. The framework of IG-semiTPN is shown in Figure 3.

Firstly, it employs fϕ(·) to extract features of the input xi and xj (ϕ indicates a parame-
ter of the network). Then, the graph construction module gφ (as shown in
Figure 4) is utilized to learn σi for every instance. Next, an improved Gaussian ker-
nel wij(fϕ(xi), fϕ(xj), σi, σj) is proposed to calculate the edge weight for constructing the
k-nearest neighbor graph. Finally, the label propagation method is adopted to achieve
transductive propagation learning.

Figure 3. The framework of the IG-semiTPN model.

146

Entropy 2024, 26, 135

Figure 4. gφ construction of model.

4.2. ETPN Model

Ensemble learning aims to enhance the generalization ability and stability of individ-
ual learners. The homogeneous framework employs a single base learning algorithm, i.e.,
learners of the same type but with multiple different sample inputs, leading to homoge-
neous ensembles (shown in Figure 5). The heterogeneous model utilizes multiple learning
algorithms, i.e., learners of different types, leading to heterogeneous ensembles (shown in
Figure 6).

Figure 5. The process of homogeneous ensembles.

Figure 6. The process of heterogeneous ensembles.

4.2.1. The Ho-ETPN Model

In this section, we propose a homogeneous ensemble few-shot learning model (Ho-
ETPN, shown in Figure 7). The Ho-ETPN model generates multiple results (evidence) by
randomly selecting different support sets (i.e., supportn

i , being the same categories but
different samples) in every episodic training. In contrast, the query set is selected only
once in each episodic training. It generates multiple results by the same individual learner
introduced in the last sector then integrates them via the the evidence fusion strategy
proposed in this paper to accomplish predictions.

147

Entropy 2024, 26, 135

Figure 7. The framework of the Ho-ETPN model.

4.2.2. The He-ETPN Model

In this section, we propose a heterogeneous ensemble few-shot learning model (He-
ETPN). The He-ETPN model generates multiple results (evidence) via multiple learners in
every episodic training, and then integrates them via the evidence fusion strategy proposed
in this paper to accomplish predictions. The model framework of base learners has been
introduced in the last section. The He-ETPN model (shown in Figure 8) generates multiple
results by constructing diverse KNN-graphs using different models that are the different
initializations of fϕ(·) and gφ, with different value settings of γ and m in an improved
Gaussian kernel.

Figure 8. The framework of the He-ETPN model.

4.2.3. Construct KNN-Graphs

For dataset S = Ssup ∪ Suns, during the construction of KNN-graphs, let s ∈ S represent
the graph vertex to build the undirected graphs of labeled and unlabeled samples. We
use the edge weights to measure the similarity between samples, the greater the weight
of the edge, the greater the similarity between the two samples. Due to the improved
Gaussian kernel [41] the nuclear truncation effect is alleviated by adding displacement
parameters and corrections and learning a σ parameter suitable for each sample in the
process of constructing the graph. Therefore, we utilize the improved Gaussian kernel to

148

Entropy 2024, 26, 135

calculate the edge weight to construct more accurate KNN graphs for the transductive
propagation ensemble network. The improved Gaussian kernel is defined as follows:

wij = exp(
1

md(fϕ(xi)
σi

,
fϕ(xj)

σj
, m) + γ2

+ λ), i, j = 1, . . . , n, (1)

where fϕ(·) refers to the feature map, ϕ indicates a parameter of the network , σ is the
variable bandwidth (length scale parameter) of the kernel function learned by gφ, γ is the
displacement parameters, λ is the fine-tuning variable. d(·) is the Euclidean distance.

4.3. Transductive Propagation Learning

Transductive propagation learning aims to predict unlabeled data from locally labeled
training samples. It takes the support and query set as graph nodes, then makes joint
predictions using the nearest neighbor relationship between the support and query sets
(as shown in Figure 9), which can supplement the deficiency of label information through
unlabeled data. Due to its low complexity and good classification effect, the label propa-
gation algorithm is adopted to perform the transfer of label information between graph
nodes. The process of predictions for the query set QM using label propagation is defined
as follows:

Figure 9. Transductive propagation algorithm based on K-nearest neighbor graph.

(1) Suppose F = [Yl , Yu] is an annotation matrix with (K · N + M)× K− dimension.
Yl denotes the support set sample label matrix, and Yu denotes the query set sample matrix
Let Y is the initial annotation matrix Y ∈ F , Yic represents the membership degree to the

149

Entropy 2024, 26, 135

c− th column category of i− th node Yi. If Yic = 1, which is mean the node Yi belonging
to the category c, else Yic = 0, that is,

Yic =

{
1, Yi = c

0, otherwise
(2)

(2) Given the initial label matrix Yl , the query set labels are iteratively predicted
according to the KNN-graphs. Let α ∈ (0, 1) denote the pre-set weight coefficient to control
the amount of propagated information. The transductive propagation learning iteratively
inferences as follows:

lim
x→∞

Tt =

(
I 0

α · Tul α · Tuu

)
×
(

I 0
α · Tul α · Tuu

)
×
(

I 0
α · Tul α · Tuu

)
× . . .

=

I · I + 0 + 0 + . . . 0 + 0 + 0 + . . .

(α · Tul) + (α · Tul) · (α · Tuu) + (α · Tul) · (α · Tuu)2 + . . . (α · Tuu) · (α · Tuu) · (α · Tuu) . . .

=

I · I + 0 + 0 + . . . 0 + 0 + 0 + . . .

(I + (α · Tuu) + (α · Tuu)2 + . . .) · (α · Tul) (α · Tuu) · (α · Tuu) · (α · Tuu) . . .

=

I 0

(
∞
∑

t=0
(α · Tuu)

t) · (α · Tul) (α · Tuu)
∞

=

I 0

(I − αTuu)
−1 · (α · Tul) 0

(3)

Ft+1 = lim
x→∞

Ft = lim
t→∞

Tt
(
(1− α)Yl

0

)
=

(
I 0

(I − αTuu)
−1 · (α · Tul) 0

)(
(1− α)Yl

0

)
, (4)

where T = D−1/2WD−1/2, T represents the normalized Laplace matrix. Tll denotes
the identity matrix; Tlu denotes the zero matrix; Tul ⊂ T; Tuu ⊂ T. W = [wij], W ∈
R(K·N+M)×(K·N+M) for all instances in S = Ssup ∪ Suns.

We keep the k−max values in each row of W calculating by Equation (1) to construct
KNN-graphs. Then, the normalized graph Laplacian is applied [44] on W; D is the diagonal
matrix, D = diag([dii = ∑K·N+M

j=1 wij]). While α is bigger, the results tend to favor label
propagation items Tuu and Tul , else, results prefer the original annotated items Yl . The final
prediction results F∗(F∗ = [fiη]) are obtained through multiple iterations, as is shown in
Equation (5).

F∗ = lim
x→∞

Ft = (I − αTuu)
−1(α · Tul) · (1− α)Yl . (5)

4.4. Ensemble Pruning

The error-ambiguity decomposition [45] can show that the success of ensemble learn-
ing depends on a good trade off between the individual performance and diversity, which
is defined as follows:

err(H) = err(h)−
√

ambi(h), (6)

150

Entropy 2024, 26, 135

where err(h) = ∑N
i=1 vi · err(hi) denotes the average error of the individual learners, and

err(h) = ∑N
i=1 vi · ambi(hi) denotes the weighted average of ambiguities. h denotes the

individual learner.
The err(h) depends on the generalization ability of individual learners; the ambi(h)

depends on the ensemble diversity. Since the ambi(h) is always positive, obviously, the error
of the ensemble will never be larger than the average error of the individual learners. More
importantly, Equation (6) shows that the more accurate and the more diverse the individual
learners, the better the ensemble. Based on this, we propose an improved ensemble pruning
approach to select more accurate learners to participate in the integration.

Ensemble pruning is to associate an individual learner with a weight that could
characterize the goodness of including the individual learner in the final ensemble. RSE is
a regularized selective ensemble algorithm; it adopted the L1 norm for feature selection to
obtain sparse weights [46]. However, the sample space of few-shot learning is more sparse.
To enhance data utilization and ensure that samples far away from decision boundaries
still contribute to model training, we employ the L2 norm to obtain weights as small as
possible but not zero. In addition, this makes the model more stable to small changes of
the input and improves the robustness of the model. Moreover, to be suitable for few-shot
learning, we redefine the improved ensemble pruning algorithm.

Given n individual learners for He-ETPN or Ho-ETPN, let v = [v1, . . . , vn] denote the
n-dimensional weight vector of n individual learners, where small elements in the weight
vector suggest that the corresponding individual learner from He-ETPN or Ho-ETPN
should be excluded during the process of fusion.

Θ(v) = λΛ(v) + Ω(v), (7)

where Λ(v) is the empirical loss, Ω(v) is the graph Laplacian regularization term to
measure the misclassification, and λ is a regularization parameter which trades off the
minimization of Λ(v) and Ω(v).

By introducing slack variables η and minimizing the regularized risk function to
determine the weight vector, Equation (7) is redefined as follows:

min
v

vP>TPv> + λ(η2
1 + . . . + η2

m)

s.t. yi piv
> + η2

i ≥ 1, (∀i = 1, . . . , m)

v1 + . . . + vm = 1, v ≥ 0,

(8)

where P denotes the prediction matrix of all individual learners on all support set in-
stances, pi = (max(F∗1), . . . , max(F∗n)) denotes the predictions of the individual learner
on xi, and T represents the normalized Laplace matrix. yi denotes the sample label of xi.
η = (η1, . . . , ηm)> denotes the slack variables.

vi =

{
1, top− n

0, otherwise
(9)

F∗i = vi · F∗i , i = 1, . . . , n, (10)

where top− n is to select the top n best individual learners for the pruned ensemble. F∗i
denotes a piece of evidence, if the vi = 0 denotes that the F∗i does not participate in the
fusion of the results.

The complexity of the pruning approach is O(n3). Equation (8) is a standard QP
problem that can be efficiently solved by existing optimization packages. It is more suitable
for small-scale datasets, especially few-shot learning.

151

Entropy 2024, 26, 135

4.5. Evidence Fusion Strategy

In this paper, we propose an improved D-S evidence fusion method to assemble
the multiple pieces of evidence generated by the ensemble solutions of the Ho-ETPN
and He-ETPN. Compared with the averaging and voting methods, the improved D-S
evidence fusion method can enhance the stability of ensemble results and alleviate the
problem of the “Zadeh paradox” to a certain extent. The D-S evidence theory was first
proposed by Dempster [47,48]. Combining multiple information sources is an effective
method of uncertainty reasoning. The research indicates that the synthetic consequence
of conventional combination rules of Dempster is frequently contrary to the reality in the
practical applications [49,50]. Two major approaches are proposed to improve the accuracy
of synthetic results—one is to amend the composition rules; the second is to change the
original evidence resources. In this paper, we focus on the latter. Next, we concretely
introduce the process of the improved D-S evidence fusion method.

(1) Conflict Matrix
The Bhattacharyya distance [51] is utilized to construct the conflict matrix between

evidence. According to the intension of Bhattacharyya distance, the formula is redefined
as follows:

Definition 1 (Bhattacharyya Distance). For probability distributions F∗i and F∗j over the same
domain, the Bhattacharyya distance is defined as:

DisBC(F∗i , F∗j) =
K

∑
η=1

√
F∗i (fiη)F∗j (f jη)) (11)

f cij = −ln(DisBC(F∗i , F∗j)), (12)

where DisBC(F∗i , F∗j) is the Bhattacharyya coefficient for discrete probability distributions. Let
n = K · N + M denote the number of pieces of evidence. Each piece of normalized evidence is
denoted by F∗i = (fi1, fi2, . . . , fiK). F∗i and F∗j (1 ≤ i, j ≤ n) represent two pieces of evidence.
The K denotes the number of classes in each support set, ki ∈ K. Then, the normalization conflict
matrix is defined as:

Matrixcon f lict =

0 f c12 · · · f c1j · · · f c1n
f c21 0 · · · f c2j · · · f c2n

...
...

...
...

...
...

f cj1 f cj2 · · · 0 · · · f cjn
...

...
...

...
...

...
f cn1 f cn2 · · · f cnj · · · 0

. (13)

(2) Support Degree
Evidence support degree indicates the support degree of evidence that is supported

by other evidence. The higher the similarity with other evidence, the higher the support
degree it is, and vice versa. According to Matrixcon f lit the following formula is utilized to
calculate the similarity degree between F∗i and F∗j .

sdij = 1− f cij, i, j = 1, 2, . . . , n. (14)

152

Entropy 2024, 26, 135

As a result, we can obtain the following similarity matrix of all evidence:

Matrixsimilarity =

1 sd12 · · · sd1j · · · sd1n
sd21 1 · · · sd2j · · · sd2n

...
...

...
...

...
...

sdj1 sdj2 · · · 1 · · · sdjn
...

...
...

...
...

...
sdn1 sdn2 · · · sdnj · · · 1

. (15)

And then, the support degree of each evident is calculated as:

Sup(F∗i) =
n

∑
j=1,j 6=i

sdij. (16)

(3) Evident Weight
Credibility degree indicates the credibility of an evidence. It can be calculated by

following formula.

CR(F∗i) =
Sup(F∗i)

∑n
j=1 Sup(F∗j)

. (17)

Information entropy can be utilized to measure the informative quantity of evidence
in the information fusion process. Integrated with D-S evidence theory, given a piece of
evidence F∗i = (fi1 f ,i2 , . . . , fiK), and ∑K

η=1 fiη = 1. The information quantity of the ith
piece of evidence is defined as:

In f oe(F∗i) = −
K

∑
η=1

fiη log fiη . (18)

For information entropy, the larger the uncertainty, the smaller its weight. On the other
hand, the smaller the information entropy, the larger its weight. The method mentioned
above can be used to reduce the weight ratio of the evidence with higher indeterminacy in
the fusion process. Therefore, the weight of each evidence is defined as:

weight(F∗i) =
CR(F∗i)

Normalization(In f oe(F∗i))
, 1 ≤ i ≤ n (19)

F∗i = weight(F∗i)× F∗i . (20)

(4) Evidence Combination Rule
Suppose that the feature subsets generated in the previous chapter are independent.

The D-S evidence theory improved in this paper allows the fusion of information coming
from different feature subsets. Therefore, the evidence combination rule is utilized to
combine different weighted feature subsets in a manner that is both accurate and robustness.

For F∗i (i = 1, 2, . . . , n), ∀k ∈ K, the combination rule is redefined as:

F∗f usion = (F∗1] F∗2] · · ·] F∗n)(k) =
1
Q

n

∏
i=1

F∗i (k), (21)

where Q means the conflict between different pieces of evidence, is given by:

Q =
K

∑
i=1

n

∏
j=1

F∗j (ki). (22)

153

Entropy 2024, 26, 135

4.6. Loss Generation

In this paper, we adopt cross-entropy loss to calculate the similarity between predictive
values and true values.

(1) We adopt the softmax function to transform the F∗f usion of the ETPN model to
probability, which is defined as follows:

P(ỹi = j|xi) =
exp(fiη)

∑N
j=1 exp(fiη)

, (23)

where ỹi is the final prediction value of i− th samples in query. fiη is the component of
the prediction values in label propagation.

(2) We calculate the loss by the cross entropy loss:

J(ϕ, φ) =
T

∑
i=1

N

∑
j=1
−I(yi = j)log(P(ỹi = j|xi)), (24)

where yi is the true value of the instance. I(b) is the indicator function. If b is right, and
I(b) = 1, else I(b) = 0.

5. Experiments

In this section, to validate the performance of models, we contrast our proposal against
state-of-the-art techniques on miniImageNet and tieredImageNet datasets. In addition, we
set a supervised experiment including the ensemble model Ho-ETPN and He-ETPN, and a
semi-supervised experiment including the setting of distractor classes. These approaches
are particularly divided into optimization-based (MAML [22]), ensemble-based (EBDM-
Euc [38], HGNN [39], E3BM+MAML [40]), graph-based (TPN [25], EPNet [27], TPRN [31],
DSN [32], EGNN [33], PRWN [35], GNN [52], BGNN∗ [53], DPGN∗ [54]), and metric-
based (MatchingNet [8], Proto Net [9], TADAM [13], BR-ProtoNet [36], SSFormers [55],
CGRN [56], HMRN [57]) approaches. Moreover, we conduct 5-way 1-shot and 5-shot
experiments, which are standard few-shot learning settings.

5.1. Datasets

miniImageNet [8]. A subset of the ImageNet datasets [58] consists of 60,000 images.
Each image is of size 84 × 84, and classes with 600 samples per class are divided into 64,
16, and 20 for meta-training, meta-validation, and meta-testing, respectively. We use the
miniImageNet for semi-supervised classification with 40% of labeled data.

tieredImageNet [41]. A more challenging subset derived from ImageNet datasets, its
class subsets are chosen from supersets of the wordnet hierarchy. The top hierarchy has
34 super-classes, which are split into 20 different categories (351 classes) for training, six
different categories (97 classes) for validation, and eight different categories (160 classes)
for testing. We follow the implementation of 4-convolutional layer (Conv− 4) backbones
and the image size of 84 × 84 as on miniImageNet. Moreover, the tieredImageNet is used
for semi-supervised classification with 10% of labeled data.

5.2. Implementation Details

Following the Matching Networks [8], we also adopt the episodic training procedure.
Moreover, we used a common feature extractor, which is a Conv − 4 as implemented
in [8] during the entire comparision experiments for standard few-shot classification. It
makes up four convolutional blocks where each block begins with a 2D convolutional
layer with a 3 × 3 kernel and a filter size of 64. Each convolutional layer is followed by
a batch-normalization layer [43], a ReLU nonlinearity, and a 2 × 2 max-pooling layer.
Moreover, gφ utilized to learn σi for every instances, consists of two convolutional blocks
(64 and 1 filters) and two fully-connected layers (8 and 1 neurons) similar to TPN [25]. The
convolutional blocks are made up of four convolutional blocks and each block begins with

154

Entropy 2024, 26, 135

a 2D convolutional layer with a 3× 3 kernel and filter size of 64. Each convolutional layer is
followed by a batch-normalization layer [43], a ReLU nonlinearity and a 2 × 2 max-pooling
layer. In the experiments, we follow a general practice to evaluate the model with N-way
K-shot and 15 query images; the value of λ is set to 0.75. And we use Adam optimizer [59]
with an initial learning rate of 0.001, we use the validation set to select the training episodes
with the best accuracy, and run the training process until the validation loss reaches
a plateau.

In addition, we utilize the improved Gaussian kernel proposed in the single model
framework IG-semiTPN to construct the KNN graphs. IG-semiTPN experiments showed
the superior effects of the improved Gaussian kernel function. It also indicated that
the optimal models have relations with the value of γ [60,61]. Therefore, ETPN utilizes
the parameter settings of the improved Gaussian kernel of the IG-semiTPN to perform
supervised and semi-supervised experiments. Specifically, Ho-ETPN adopts the Minkowski
distance with γ being 3 and m being 3 or the Minkowski distance with m being 2 and λ
is 0.75. In addition, there are three learners in our He-ETPN ensemble models; learner
1 adopts a Minkowski distance with γ being 3 and m being 3; learner 2 adopts a Minkowski
distance with γ being 0.2 and m being 2; learner 3 adopts a Minkowski distance with m
being 2, and λ is 0.75.

5.3. Supervised Experiment
ETPN Experiment

In our experiments, we compare ensemble model ETPN with other classic and
advanced algorithms in four categories, including graph-based (TPN [25], EPNet [27],
TPRN [31], DSN [32], EGNN [33], PRWN [35], GNN [52], BGNN∗ [53], DPGN∗ [54]),
metric-based (MatchingNet [8], Proto Net [9], TADAM [13], BR-ProtoNet [36], SSForm-
ers [55], CGRN [56], HMRN [57]), optimization-based (MAML [22]) and ensemble-based
(EBDM-Euc [38], HGNN [39], E3BM+MAML [40]) approaches. The performance of the
proposed ETPN and state-of-the-art models in the 5-way 5-shot/1-shot accuracy on the
miniImageNet and tieredImageNet datasets are summarized in Tables 2 and 3, and “*” in
the table indicates results re-implemented in HGNN [39] for a fair comparison. Our pro-
posed ETPN outperforms few-shot models by large margins, indicating that the proposed
ensemble model effectively assists few-shot recognition. Specifically, we can obtain the
following observations:

(1) Comparison with the latest model. Ho-ETPN is 8.32% higher than SSFormers
in 5-shot on miniImageNet and 5.58% higher than HMRN in 5-shot on tieredImageNet;
Ho-ETPN is 7.86% higher than SSFormers in 1-shot on miniImageNet and 9.59% higher
than HMRN in 1-shot on tieredImageNet. It confirms that our model has a good ability for
classification discrimination, which benefits from our ensemble model and D-S evidence
fusion strategy based on improved ensemble pruning.

(2) Comparison with the state-of-the-art. Under the 5-way-5-shot setting, the ETPN
classification accuracies are 78.87% vs. 78.57% for the transductive learning model TPRN,
80.28% vs. 80.0% ensemble model BR-ProtoNet on miniImageNet and tieredImageNet,
respectively. It is 0.3% higher than the transductive learning model TPRN in 5-shot on
miniImageNet and 0.28% higher than the ensemble model BR-ProtoNet in 5-shot on tiered-
ImageNet. Under the 5-way-1-shot setting, the ETPN classification accuracies are 63.06%
vs. 57.84% for the transductive learning model TPRN, 67.57% vs. 62.7% for the ensemble
model BR-ProtoNet on miniImageNet and tieredImageNet, respectively. It is 5.22% higher
than the transductive model TPRN in 1-shot on miniImageNet and 4.87% higher than the
ensemble model BR-ProtoNet in 1-shot on tieredImageNet. ETPN outperforms state-of-
the-art few-shot models by large margins, especially under the 5-way-1-shot setting. This
indicates that our ensemble model and improved evidence fusion strategy are effective,
particularly for scenarios with a small sample size, which can increase the performance by
enhancing the stability of the model.

155

Entropy 2024, 26, 135

Table 2. Few-shot classification accuracies on the miniImageNet dataset are cited.

Methods m γ λ 5way5shot 5way1shot

MatchingNet [8] 55.31% 43.56%
Proto Net [9] 68.20% 49.42%
TADAM [13] 76.7% 58.5%

BR-ProtoNet [36] 74.5% 58.4%
Relation Network [62] 65.32% 50.44%

MAML [22] 63.11% 48.70%
PRWN [35] 67.82% 50.89%

TPN [25] 67.79% 53.42%
EPNet [27] 72.95% 59.32%
TPRN [31] 78.57% 57.84%
DSN [32] 68.99 % 51.78%

EGNN [33] 66.85% 59.63%
GNN [52] 66.41% 50.33%

BGNN∗ [53] 67.35 52.35%
DPGN∗ [54] 65.34 53.22%

EBDM-Euc (2heads) [38] 68.30% 49.96%
EBDM-Euc (3heads) [38] 69.14% 50.49%
EBDM-Euc (5heads) [38] 69.64% 52.53%
EBDM-DD (2heads) [38] 67.99% 51.42%
EBDM-DD (3heads) [38] 68.74% 52.56%
EBDM-DD (5heads) [38] 70.17% 53.08%

HGNN [39] 72.48% 55.63%
E3BM + MAML [40] 65.1% 53.2%

SSFormers [55] 70.55% 55.2%
CGRN [56] 64.13% 50.85%

He-ETPN (our) 0.75 72.94% 59.87%
Ho-ETPN (our) 3 3 0.75 77.13% 63.06%
Ho-ETPN (our) 2 0.75 78.87% 62.33%

Table 3. Few-shot classification accuracies on the tieredImageNet dataset are cited.

Methods m γ λ 5way5shot 5way1shot

Proto Net [9] 72.69% 53.31%
MAML [22] 70.30% 51.67%
PRWN [35] 70.52% 54.87%

BR-ProtoNet [36] 80.0% 62.7%
Relation Network [62] 71.32% 54.48%

TPN [25] 71.2% 56.17%
EGNN [33] 70.96%
TPRN [31] 79.66% 59.26%

HGNN [39] 72.82% 56.05%
BGNN∗ [53] 65.27% 49.41%
DPGN∗ [54] 69.86% 53.99%
EPNet [27] 73.91% 59.97%

EBDM-Euc (3 heads) [38] 72.24% 51.22%
EBDM-Euc (1-st head) [38] 71.07% 50.04%
EBDM-Euc (2-nd head) [38] 71.28% 50.29%
EBDM-Euc (3-rd head) [38] 70.84% 50.52%

E3BM + MAML [40] 70.2% 52.1%
SSFormers [55] 73.72% 55.54%

CGRN [56] 71.34% 55.07%
HMRN [57] 74.70% 57.98%

He-ETPN (our) 0.75 74.08% 62.75%
Ho-ETPN (our) 3 3 0.75 80.28% 66.24%
Ho-ETPN (our) 2 0.75 80.18% 67.57%

156

Entropy 2024, 26, 135

(3) Compare with individual learner IG-semiTPN. In this section, we compare our
ensemble model ETPN with our single supervised model IG-semiTPN [41]; this is to show
that the homogeneous strategy, heterogeneous strategy, and improved D-S evidence fusion
strategy based on improved ensemble pruning facilitate the model performance. For
the fairness of the experiment, we ensure other settings are the same, only changing the
ensemble strategy and the parameter settings in the improved Gaussian kernel to perform
the ablation experiment. The comparison results are shown in Figures 10 and 11. Under the
5-way 5-shot setting, the classification accuracies of Ho-ETPN and IG-semiTPN are 78.87%
vs. 69.31% on miniImageNet, and 80.28% vs. 73.21% on tieredImageNet, respectively.
Ho-ETPN is 9.56% and 7.07% higher than IG-semiTPN in 5-shot on miniImageNet and
tieredImageNet, respectively. Under the 5-way 1-shot setting, the classification accuracies of
Ho-ETPN and IG-semiTPN are 63.06% vs. 54.03% on miniImageNet, and 67.57% vs. 57.35%
on tieredImageNet, respectively. Ho-ETPN is 9.03% and 10.22% higher than IG-semiTPN
in 1-shot on miniImageNet and tieredImageNet, respectively. In addition, under the
5-way 5-shot setting, the classification accuracies of He-ETPN and IG-semiTPN are 72.94%
vs. 69.31% on miniImageNet, and 74.08% vs. 73.21% on tieredImageNet, respectively.
He-ETPN is 3.63% and 0.87% higher than IG-semiTPN in 5-shot on miniImageNet and
tieredImageNet, respectively. Under the 5-way 1-shot setting, the classification accuracies
of He-ETPN and IG-semiTPN are 59.87% vs. 54.03% on miniImageNet, and 62.75% vs.
57.35% on tieredImageNet, respectively. He-ETPN is 5.84% and 5.4% higher than IG-
semiTPN in 1-shot on miniImageNet and tieredImageNet, respectively. The results indicate
the effectiveness of the proposed ensemble solutions, which achieve a state-of-the-art
performance compared to the single model IG-semiTPN, especially in 1-shot. Moreover,
the Ho-ETPN is superior to the He-ETPN, which is related to the problem of multiple
learner selection. In our paper, we only select different parameter settings of fϕ, gφ and an
improved Gaussian kernel.

Figure 10. Comparison of the IG-semiTPN and ETPN (He-ETPN and Ho-ETPN) on miniImageNet.

Figure 11. Comparison of the IG-semiTPN and ETPN (He-ETPN and Ho-ETPN) on tieredImageNet.

5.4. Semi-Supervised Experiment

Since labeled data are scarce and their collection is expensive, in this section, we
leverage the extra unlabeled data to improve the performance of few-shot classifiers. Our
model was trained on miniImageNet and tieredImageNet with 40% and 10% of labeled data,
respectively. What is more, another key challenge is that the distractor classes, being an
unlabeled set that is irrelevant to the classification task, are introduced to boost robustness

157

Entropy 2024, 26, 135

against perturbations. We follow the settings in papers [41,63]. Our models outperforms
inference (TADAM-semi [13], BR-ProtoNet [36] and PN+Semi [41]) and transduction (TPN-
semi [25], Semi-EPNet [27], Semi DSN [32], Semi-EGNN [33]and PRWN-semi [35]) semi-
supervised few-shot models by large margins.

(1) Comparison with the state-of-the-art. In order to ensure the effectiveness of the
semi-supervised experiment, every category in the datasets was divided into labeled
datasets and unlabeled datasets without intersection [39]. In this paper, we utilize the
label propagation algorithm to perform the annotation for unlabeled data, which is dif-
ferent from traditional inductive reasoning semi-supervised approaches. As is shown in
Tables 4 and 5 , it can be observed that the classification results of all semi-supervised
few-shot models are degraded due to the distractor classes. However, even with the
distractor class represented as w/D in the table, the ensemble semi-supervised model
semi-HoTPN achieves the highest performance among the compared methods, especially
in the scenario of 1-shot, which indicates the robustness of the proposed semi-HoTPN in
dealing with distracted unlabeled data. In addition, this indicates that the proposed D-S
evidence fusion strategy based on improved ensemble pruning, transductive propagation
learning and homogeneous ensemble semi-supervised model semi-HoTPN effectively
assists few-shot recognition.

Table 4. Semi-supervised comparison on the miniImageNet dataset.

Models m γ λ 5way5shot 5way1shot 5way5shot (w/D) 5way1shot (w/D)

PN + Semi [41] 63.77% 49.98% 62.62% 47.42%
Soft k-Means [41] 64.59% 50.09% 63.55% 48.70%

Soft k-Means + Cluster [41] 63.08% 49.03% 61.27% 48.86%
Masked Soft k-Means [41] 64.39% 50.41% 62.96% 49.04%

TADAM-semi [13] 68.92% 54.81%
BR-ProtoNet [36] 73.1% 57.4% 72.4% 55.9%
Semi-EPNet [27] 67.08%
Semi DSN [32] 67.12% 51.01%

Semi-EGNN [33] 64.32%
PRWN-semi [35] 69.65% 56.65% 67.45% 53.61%

TPN-semi [25] 64.95% 50.43% 64.95% 50.43%
semi-HoETPN (our) 3 3 0.75 73.87% 60.57% 72.64% 59.34%
semi-HoETPN (our) 2 0.75 73.74% 61.31% 73.24% 59.28%

Table 5. Semi-supervised comparison on the tieredImageNet dataset.

Models m γ λ 5way5shot 5way1shot 5way5shot (w/D) 5way1shot (w/D)

PN + Semi [41] 69.37% 50.74% 67.46% 48.67%
Soft k-Means [41] 70.25% 51.52% 68.32% 49.88%

Soft k-Means + Cluster [41] 69.42% 51.85% 67.56% 51.36%
Masked Soft k-Means [41] 69.88% 52.39% 69.08% 51.38%

BR-ProtoNet [36] 79.1% 61.8% 77.4% 60.1%
TPN-semi [25] 71.01% 55.74% 69.93% 53.45%
Semi DSN [32] 70.15% 53.89%

PRWN+Semi [35] 71.06% 59.17% 69.58% 56.59%
semi-HoETPN (our) 3 3 0.75 77.87% 63.87% 77.17% 63.16%
semi-HoETPN (our) 2 0.75 78.94% 65.21% 78.45% 64.80%

(2) Compare with individual learner IG-semiTPN. In this section, we show that the
semi-supervised homogeneous ensemble model and improved D-S evidence fusion strat-
egy based on improved ensemble pruning facilitate the model performance. For the fairness
of the experiment, we compare semi-HoETPN with IG-semiTPN and other settings are the
same. The comparison results are shown in Figures 12 and 13. We compare ensemble semi-
supervised model semi-HoETPN with single semi-supervised model IG-semiTPN; under
the 5-way-5-shot setting, the classification accuracies of semi-HoTPN and IG-semiTPN are

158

Entropy 2024, 26, 135

73.87% vs. 67.24% on miniImageNet, and 78.94% vs. 72.32% on tieredImageNet, respec-
tively. Under the 5-way-1-shot setting, the classification accuracies of semi-HoTPN and
IG-semiTPN are 61.31% and 53.48% on miniImageNet, and 65.21% and 57.28% on tieredIm-
ageNet, respectively. With the distractor class experiments, under the 5-way-5-shot setting,
the classification accuracies of semi-HoTPN and IG-semiTPN are 73.24% vs. 66.8% on
miniImageNet, and 78.45% vs. 70.08% on tieredImageNet, respectively; under the 5-way-1-
shot setting, the classification accuracies of semi-HoTPN and IG-semiTPN are 59.34% vs.
53.13% on miniImageNet, and 64.80% vs. 56.09% on tieredImageNet, respectively. The
results demonstrate the superior capacity of the proposed ensemble strategy in using the
extra unlabeled information for boosting few-shot methods. Moreover, the addition of the
distractor class enhances the robustness of the model.

Figure 12. Comparison of the IG-semiTPN and semi-HoETPN on miniImageNet.

Figure 13. Comparison of the IG-semiTPN and semi-HoETPN on tieredImageNet.

6. Conclusions and Future Work

Few-shot learning aims to construct a classification model using limited samples.
In this paper, we propose a novel ensemble semi-supervised few-shot learning with a

159

Entropy 2024, 26, 135

transductive propagation network and evidence fusion. During the process of transductive
propagation learning, we introduce the preset weight coefficient and calculate the process
of iterative inferences to present homogeneous and heterogeneous models to improve the
stability of the model. Then, we propose the improved D-S evidence ensemble strategy
to enhance the stability of the final results. It combines the information entropy to realize
the pre-processing of the evidence source. Then, an improved ensemble pruning method
adopting the L2 norm is proposed to maintain a better performance of individual learners
to enhance the accuracy of model fusion. Furthermore, an interference set is introduced
to improve the robustness of the semi-supervised model. Experiments on miniImagnet
and tieredImageNet indicate that the proposed approaches outperform the state-of-the-art
few-shot model. However, our proposal directly utilizes a label propagation approach to
transfer information between nodes in the graph-constructing phase. Therefore, in our
future work, we will consider adopting the reality-semantic and cross-modal information
to improve the accuracy of the transduction inference graph in few-shot learning.

Author Contributions: Writing—original draft preparation, Conceptualization, Methodology, Soft-
ware,validation, investigation, X.P.; writing—review and editing, supervision, funding acquisition,
G.L.; writing—review and editing, Conceptualization, Formal analysis, funding acquisition, Y.Z. All
authors have read and agreed to the published version of the manuscript.

Funding: This work is partly supported by the Nature Science Foundation of China under Grant (Nos.
60473125), Science Foundation of China University of Petroleum-Beijing At Karamay under Grant (Nos.
RCYJ2016B-03-001), Kalamay Science & Technology Research Project (Nos. 2020CGZH0009), Natural
Science Foundation of Fujian Province, China under Grant (Nos. 2021J011004 and 2021J011002), the
Ministry of Education Industry-University-Research Innovation Program (Grant No. 2021LDA09003).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The miniImageNet dataset and tieredImageNet dataset can be found
at: https://github.com/renmengye/few-shot-ssl-public (accessed on 29 January 2023).

Acknowledgments: We are greatly indebted to colleagues at Data and Knowledge Engineering
Center, School of Information Technology and Electrical Engineering, the University of Queensland,
Australia. We thank Xiaofang Zhou, Xue Li, Shuo Shang and Kai Zheng for their special suggestions
and many interesting discussions.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Aouani, H.; Ayed, Y.B. Speech Emotion Recognition with deep learning. Procedia Comput. Sci. 2020, 176, 251–260. [CrossRef]
2. LeCun, Y.; Yoshua, B.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [CrossRef] [PubMed]
3. Wang, C.; Wang, C.; Li, W.; Wang, H. A brief survey on RGB-D semantic segmentation using deep learning. Displays 2021,

70, 102080. [CrossRef]
4. Chatfield, K.; Simonyan, K.; Vedaldi, A.; Zisserman, A. Return of the devil in the details: Delving deep into convolutional nets. In

Proceedings of the British Machine Vision Conference 2014, Nottingham, UK, 1–5 September 2014.
5. Zeiler, M.D.; Fergus, R. Visualizing and understanding convolutional networks. In Proceedings of the 13th European Conference,

Zurich, Switzerland, 6–12 September 2014; Springer: Cham, Switzerland, 2014; pp. 818–833.
6. Chen, Z.; Fu, Y.; Zhang, Y.; Jiang, Y.G.; Xue, X.; Sigal, L. Semantic feature augmentation in few-shot learning. In Proceedings of

the 5th European Conference on Computer Vision, Munich, Germany, 8–14 September 2018.
7. Lu, J.; Li, J.; Yan, Z.; Mei, F.; Zhang, C. Attribute-based synthetic network (abs-net): Learning more from pseudo feature

representations. Pattern Recognit. 2018, 80, 129–142. [CrossRef]
8. Vinyals, O.; Blundell, C.; Lillicrap, T.; Wierstra, D. Matching networks for one shot learning. Adv. Neural Inf. Process. Syst. 2016,

29, 3630–3638.
9. Snell, J.; Swersky, K.; Zemel, R. Prototypical networks for fewshot learning. Adv. Neural Inf. Process. Syst. 2017, 30, 4077–4087.
10. Xing, C.; Rostamzadeh, N.; Oreshkin, B.; Pinheiro, P.O. Adaptive cross-modal few-shot learning. Adv. Neural Inf. Process. Syst.

2019, 32, 4848–4858.
11. Lv, F.; Zhang, J.; Yang, G.; Feng, L.; Yu, Y.; Duan, L. Learning cross-domain semantic-visual relationships for transductive

zero-shot learning. Pattern Recognit. 2023, 141, 109591. [CrossRef]

160

Entropy 2024, 26, 135

12. Zhang, J.; Yang, G.; Hu, P.; Lin, G.; Lv, F. Semantic Consistent Embedding for Domain Adaptive Zero-Shot Learning, IEEE Trans.
Image Process. 2023, 32, 4024–4035. [CrossRef]

13. Oreshkin, B.; López, P.R.; Lacoste, A. Tadam: Task dependent adaptive metric for improved few-shot learning. Adv. Neural Inf.
Process. Syst. 2018, 31, 721–731.

14. Tang, K.D.; Tappen, M.F.; Sukthankar, R.; Lampert, C.H. Optimizing one-shot recognition with micro-set learning. In Proceed-
ings of the 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, San Francisco, CA, USA,
13–18 June 2018; pp. 3027–3034.

15. Zheng, Y.; Wang, R.; Yang, J.; Xue, L.; Hu, M. Principal characteristic networks for few-shot learning. J. Vis. Commun. Image
Represent. 2019, 59, 563–573. [CrossRef]

16. Wang, D.; Zhang, M.; Xu, Y.; Lu, W.; Yang, J.; Zhang, T. Metric-based meta-learning model for few-shot fault diagnosis under
multiple limited data conditions, Mech. Syst. Signal Process. 2021, 155, 107510. [CrossRef]

17. Rusu, A.A.; Rao, D.; Sygnowski, J.; Vinyals, O.; Pascanu, R.; Osindero, S.; Hadsell, R. Meta-learning with latent embedding optimization.
In Proceedings of the 7th International Conference on Learning Representations, New Orleans, LA, USA, 6–9 May 2019.

18. Jiang, X.; Havaei, M.; Varno, F.; Chartr, G.; Chapados, N.; Matwin, S. Learning to learn with conditional class dependencies. In
Proceedings of the 7th International Conference on Learning Representations, New Orleans, LA, USA, 6–9 May 2019.

19. Gidaris, S.; Komodakis, N. Generating classification weights with gnn denoising autoencoders for few-shot learning. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA,
16–20 June 2019; pp. 21–30.

20. Gordon, J.; Bronskill, J.; Bauer, M.; Nowozin, S.; Turner, R.E. Meta-learning probabilistic inference for prediction. In Proceedings
of the 7th International Conference on Learning Representations, New Orleans, LA, USA, 6–9 May 2019.

21. Bertinetto, L.; Henriques, J.F.; Torr, P.H.; Vedaldi, A. Meta learning with differentiable closed-form solvers. In Proceedings of the
7th International Conference on Learning Representations, New Orleans, LA, USA, 6–9 May 2019.

22. Finn, C.; Abbeel, P.; Levine, S. Model-agnostic meta-learning for fast adaptation of deep networks. In Proceedings of the
International Conference on Machine Learning, Sydney, Australia, 6–11 August 2017; pp. 1126–1135.

23. Jamal, M.A.; Qi, G.J. Task agnostic meta-learning for few shot learning. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), Long, Beach, CA, USA, 16–20 June 2019; pp. 11719–11727.

24. Antoniou, A.; Edwards, H.; Storkey, A. How to train your maml. In Proceedings of the 7th International Conference on Learning
Representations, New Orleans, LA, USA, 6–9 May 2019.

25. Liu, Y.; Lee, J.; Park, M.; Kim, S.; Yang, E.; Hwang, S.J.; Yang, Y. Learning to propagate labels: Transductive propagation network
for few-shot learning. In Proceedings of the 7th International Conference on Learning Representations, New Orleans, LA, USA,
6–9 May 2019.

26. Huang, H.; Zhang, J.; Zhang, J.; Wu, Q.; Xu, C. PTN: A Poisson Transfer Network for Semi-supervised Few-shot Learning. In
Proceedings of the AAAI Conference on Artificial Intelligence, Virtual, 2–9 February 2021; pp. 1602–1609.

27. Rodríguez, P.; Laradji, I.H.; Drouin, A.; Lacoste, A. Embedding Propagation: Smoother Manifold for Few-Shot Classification. In
Proceedings of the 16th European Conference, Glasgow, UK, 23–28 August 2020; pp. 121–138.

28. Iscen, A.; Tolias, G.; Avrithis, Y.; Chum, O. Label propagation for deep semisupervised learning. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, 16–20 June 2019; pp. 5070–5079.

29. Liu, B.; Wu, Z.; Hu, H.; Lin, S. Deep Metric Transfer for Label Propagation with Limited Annotated Data. In Proceedings of
the IEEE/CVF International Conference on Computer Vision (ICCV), Seoul, Republic of Korea, 27October–2 November 2019;
pp. 1317–1326.

30. Zhang, R.; Yang, S.; Zhang, Q.; Xu, L.; He, Y.; Zhang, F. Graph-based few-shot learning with transformed feature propagation and
optimal class allocation. Neurocomputing 2022, 470, 247–256. [CrossRef]

31. Ma, Y.; Bai, S.; An S.; Liu, W.; Liu, A.; Zhen, X.; Liu, X. Transductive Relation-Propagation Network for Few-shot Learning.
In Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence (IJCAI-20), Yokohama, Japan,
7–15 January 2021; pp. 804–810.

32. Simon, C.; Koniusz, P.; Nock, R.; Harandi, M. Adaptive Subspaces for Few-Shot Learning. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR) Seattle, WA, USA, 13–19 June 2020; pp. 4135–4144.

33. Kim, J.; Kim, T.; Kim, S.; Yoo, C.D. Edge-Labeling Graph Neural Network for Few-Shot Learning. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, 16–20 June 2019; pp. 11–20.

34. Li, X.; Huang, J.; Liu, Y.; Zhou, Q.; Zheng, S.; Schiele, B.; Sun, Q. Learning to teach and learn for semi-supervised few-shot image
classification. Comput. Vis. Image Underst. 2021, 212, 103270. [CrossRef]

35. Ayyad, A.; Li, Y.; Muaz, R.; Albarqouni, S.; Elhoseiny, M. Semi-Supervised Few-Shot Learning with Prototypical Random Walks; arXiv
2019, arXiv:1903.02164 .

36. Huang, S.; Zeng, X.; Wu, S.; Yu, Z.; Azzam, M.; Wong, H.S. Behavior regularized prototypical networks for semi-supervised
few-shot image classification. Pattern Recognit. 2021, 112, 107765. [CrossRef]

37. Dvornik, N.; Mairal, J.; Schmid, C. Diversity With Cooperation: Ensemble Methods for Few-Shot Classification. In Proceedings of
the IEEE/CVF International Conference on Computer Vision (ICCV), Seoul, Republic of Korea, 27 October–2 November 2019;
pp. 3722–3730.

161

Entropy 2024, 26, 135

38. Zhou, M.; Li, Y.; Lu, H. Ensemble-Based Deep Metric Learning for Few-Shot Learning. In Proceedings of the 29th International
Conference on Artificial Neural Networks, Bratislava, Slovakia, 15–18 September 2020; pp. 406–418.

39. Yu, T.; He, S.; Song, Y.Z.; Xiang, T. Hybrid Graph Neural Networks for Few-Shot Learning. In Proceedings of the AAAI—Thirty-
Eighth Conference on Artificial Intelligence, Vancouver, BC, USA, 20–27 February 2022; pp. 3179–3187.

40. Liu, Y.; Schiele, B.; Sun, Q. An Ensemble of Epoch-Wise Empirical Bayes for Few-Shot Learning. In Proceedings of the 16th
European Conference, Glasgow, UK, 23–28 August 2020; Volume 16, pp. 404–421.

41. Pan, X.; Li, G.; Yu, Q.; Guo, K.; Li, Z. Novel Graph Semi-Supervised Transduction Approach with lmproved Gauss Kernel for
Few-Shot Learning. Comput. Eng. Appl. 2023, 59, 328–333.

42. Ren, M.; Triantafillou, E.; Ravi, S.; Snell, J.; Swersky, K.; Tenenbaum, J.B.; Larochelle, H.; Zemel, R.S. Meta-learning for semi-
supervised few-shot classification. In Proceedings of the 6th International Conference on Learning Representations, Vancouver,
BC, Canada, 30 April–3 May 2018.

43. Yu, Z.; Chen, L.; Cheng, Z.; Luo, J. TransMatch: A Transfer-Learning Scheme for Semi-Supervised Few-Shot Learning. In
Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA,
13–19 June 2020; pp. 12856–12864.

44. Greenleaf, G.; Mowbray, A.; King, G.; Cant, S.; Chung, P. More than wyshful Thinking: AustLII’s Legal Inferencing via the World
Wide Web. In Proceedings of the ICAIL97: International Conference on Artificial Intelligence and Law, Melbourne, Australia,
30 June–3 July 1997; pp. 47–55.

45. Krogh, A.; Vedelsby, J. Neural Network Ensembles, Cross Validation, and Active Learning. In Proceedings of the International
Conference on Neural Information Processing Systems, Denver, CO, USA, 27 November–2 December 1995.

46. Li, N.; Zhou, Z.H. Selective Ensemble under Regularization Framework; Springer: Berlin/Heidelberg, Germany, 2009.
47. Dempster, A.P. Upper and lower probabilities induced by a multivalued mapping. Ann. Math. Statist. 1967, 38, 325–339.

[CrossRef]
48. Shafer, G. A Mathematical Theory of Evidence; Princeton University Press: Princeton, NJ, USA, 1976.
49. Xiao, J.; Tong, M.; Zhu, C.; Fan, Q. Improved combination rule of evidence based on pignistic probability distance. J. Shanghai

Jiaotong Univ. 2012, 46, 636–641+645.
50. Deng, Y.; Shi, W.; Zhu, Z. Efficient combination approach of conflict evidence, in Chinese. J. Infr. Millim. Waves 2004, 23, 27–32.
51. Choi, E.; Lee, C. Feature extraction based on the Bhattacharyya distance. Pattern Recognit. 2003, 36, 1703–1709. [CrossRef]
52. Satorras, V.G.; Estrach, J.B. Few-Shot Learning with Graph Neural Networks. In Proceedings of the 6th International Conference

on Learning Representations, Vancouver, BC, Canada, 30 April–3 May 2018.
53. Luo, ; Y.; Huang, Z.; Zhang, Z.; Wang, Z.; Baktashmotlagh, M.; Yang, Y. Learning from the Past: Continual Meta-Learning via

Bayesian Graph Modeling. In Proceedings of the AAAI—Thirty-Fourth AAAI Conference on Artificial Intelligence, New York,
NY, USA, 7–12 February 2020.

54. Yang, L.; Liangliang, L.; Zilun, Z.; Xinyu, Z.; Erjin, Z.; Yu, L. DPGN: Distribution Propagation Graph Network for Few-Shot
Learning. In Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, WA,
USA, 13–19 June 2020; pp. 13387–13396.

55. Chen, H.; Li, H.; Li, Y.; Chen, C. Sparse spatial transformers for few-shot learning. Sci. China Inf. Sci. 2023, 66, 210102. [CrossRef]
56. Jia, X.; Su, Y.; Zhao, H. Few-shot learning via relation network based on coarse-grained granulation. Appl. Intell. 2023, 53,

996–1008. [CrossRef]
57. Su, Y.; Zhao, H.; Lin, Y. Few-shot learning based on hierarchical classification via multi-granularity relation networks. Int. J.

Approx. Reason. 2022, 142, 417–429. [CrossRef]
58. Russakovsky, O.; Deng, J.; Su, H.; Krause, J.; Satheesh, S.; Ma, S.; Huang, Z.; Karpathy, A.; Khosla, A.; Bernstein, M.; et al.

Imagenet large scale visual recognition challenge. Int. J. Comput. Vis. 2015, 115, 211–252. [CrossRef]
59. Kingma, D.P.; Jimmy, B. Adam: A Method for Stochastic Optimization. In Proceedings of the 3rd International Conference on

Learning Representations, San Diego, CA, USA, 7–9 May 2015.
60. Chang, C.C.; Li, C.J. LIBSVM: A library for support vector machines. ACM Trans. Intell. Syst. Technol. 2011, 2, 1–39. [CrossRef]
61. Hsu, C.; Chang, C.; Lin, C. A practical guide to support vector classification, BJU Int. 2008, 101, 1396–1400.
62. Sung, F.; Yang, Y.; Zhang, L.; Xiang, T.; Torr, P.H.; Hospedales, T.M. Learning to compare: Relation network for few-shot

learning. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Salt Lake City, UT, USA,
18–22 June 2018.

63. Qiao, S.; Liu, C.; Shen, W.; Yuille, A.L. Few-Shot Image Recognition by Predicting Parameters from Activations. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Salt Lake City, UT, USA, 18–22 June 2018;
pp. 7229–7238.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

162

Citation: Gai, S.; Lyu, S.; Zhang, H.;

Wang, D. Continual Reinforcement

Learning for Quadruped Robot

Locomotion. Entropy 2024, 26, 93.

https://doi.org/10.3390/e26010093

Academic Editor: Adam Lipowski

Received: 1 December 2023

Revised: 12 January 2024

Accepted: 15 January 2024

Published: 22 January 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

entropy

Article

Continual Reinforcement Learning for Quadruped
Robot Locomotion
Sibo Gai 1,2 , Shangke Lyu 2, Hongyin Zhang 2 and Donglin Wang 2,*

1 School of Computer Science, Fudan University, Shanghai 200433, China; 17114010010@fudan.edu.cn or
gaisibo@westlake.edu.cn

2 School of Engineer, Westlake Univercity, Hangzhou 310030, China; lyushangke@westlake.edu.cn (S.L.);
zhanghongyin@westlake.edu.cn (H.Z.)

* Correspondence: wangdonglin@westlake.edu.cn

Abstract: The ability to learn continuously is crucial for a robot to achieve a high level of intelligence
and autonomy. In this paper, we consider continual reinforcement learning (RL) for quadruped
robots, which includes the ability to continuously learn sub-sequential tasks (plasticity) and maintain
performance on previous tasks (stability). The policy obtained by the proposed method enables
robots to learn multiple tasks sequentially, while overcoming both catastrophic forgetting and loss of
plasticity. At the same time, it achieves the above goals with as little modification to the original RL
learning process as possible. The proposed method uses the Piggyback algorithm to select protected
parameters for each task, and reinitializes the unused parameters to increase plasticity. Meanwhile,
we encourage the policy network exploring by encouraging the entropy of the soft network of the
policy network. Our experiments show that traditional continual learning algorithms cannot perform
well on robot locomotion problems, and our algorithm is more stable and less disruptive to the RL
training progress. Several robot locomotion experiments validate the effectiveness of our method.

Keywords: continual learning; quadruped robot locomotion; reinforcement learning; plasticity;
entropy

1. Introduction

In recent years, deep reinforcement learning (RL) has shown remarkable success in var-
ious decision-making tasks [1–4], especially in the field of robot manipulation. The success
of these tasks can be attributed to a nearly stable manipulation environment (for inference),
a high-quality simulation platform, and also multi-task behavioral data at this stage. Natu-
rally, prior works thus conduct a multi-task RL formulation [5,6], exploiting the potential
behavioral correlations between tasks to further boost the performance. However, the same
level of success progress has not been achieved in the context of complex locomotion tasks
for quadruped robots. The primary reasons behind this challenge are the lack of a stable
inference environment (diverse quadruped locomotion terrains), an accurate simulator,
and a publicly verifiable dataset for quadruped robots to date. Further, this makes it diffi-
cult to model the quadruped locomotion as a traditional multi-task objective. Therefore,
a question naturally arises: is there any other way, besides the multi-task paradigm, for
training reliable quadruped robots?

We note that even without the presence of an accurate simulator, as well as the pre-
collected multi-task offline data, it is feasible to learn a base quadruped policy in a single,
static environment. Therefore, we can use base policy (or other behavior policies) to collect
new offline data by visiting new tasks (e.g., terrains and commands) and then further boost
the policy. In this way, we can continuously learn in multiple environments, and each new
policy is trained to be adaptable to the corresponding environment. As depicted above, we
thus propose a continual learning approach for quadruped locomotion tasks, shifting the
demanding training requirements of a multi-task formulation (see Figure 1).

Entropy 2024, 26, 93. https://doi.org/10.3390/e26010093 https://www.mdpi.com/journal/entropy163

Entropy 2024, 26, 93

Train

Eval

(a)

Eval

Train

(b)
Figure 1. (a) Multi-task RL formulation: the agent learns from a set of pre-defined environments.
(b) Continual RL formulation: the agent learns from sequential environments.

The decision to model quadruped robot locomotion as a continual learning problem
is driven by several key factors. Firstly, continual learning offers the advantage of adapt-
ability and flexibility, enabling the quadruped robot to continually learn and improve
its locomotion skills with new experiences. This is particularly crucial in dynamic and
real-world scenarios where the quadruped environment and task requirements may change
over time. Also, robot locomotion for complex tasks in large spaces is, itself, a combination
of numerous tasks. New tasks will naturally emerge as the exploration capabilities of the
quadruped robot improve. Secondly, continual learning allows for the accumulation of
knowledge, enabling the quadruped robot to build upon its previous experiences and avoid
catastrophic forgetting. This is especially important for long-term deployment and robust
quadruped locomotion performance.

However, modeling quadruped robot locomotion as a continual learning problem
poses several challenges that need to be addressed.

Firstly, the issue of catastrophic forgetting arises, where the robot may lose previously
acquired locomotion skills when learning new tasks. Secondly, the loss of plasticity problem
becomes obvious, the plasticity of the RL network will be soon saturated after learning
several tasks. Additionally, the trade-off between the exploitation of existing knowledge
and the exploration of new locomotion strategies needs to be carefully managed to ensure
continual improvement.

To overcome these challenges, our approach incorporates a dynamic-architecture
strategy. Dynamic-architecture-based algorithms allow the robot to select and learn the
most critical parameters for each task, and save and lock the learned parameters for each
task. On the one hand, saving and locking these parameters ensures that the robot does not
forget learned skills. On the other hand, the robot can also select and leverage parameters
learned in the past, allowing the robot to build on previous experience. We also indicate
that re-initialization the parameters and appending the entropy of the output of the policy
network can help the robot maintain its plasticity.

The main contributions of this paper are as follows:

• We introduce the concept of continual reinforcement learning for quadruped robot
locomotion, addressing the limitations imposed by the lacking requirements of multi-
task formulation.

• We propose a dynamic-architecture-based framework that enables continual learning,
relieves the catastrophic forgetting in quadruped robot and improves complex loco-
motion capabilities. Then, we introduce the re-initialization and the entropy to help
the robot maintain its plasticity.

• We present experimental results demonstrating the effectiveness of our approach in
achieving robust and adaptive locomotion performance in dynamic environments.

164

Entropy 2024, 26, 93

In the following sections, we will discuss the challenges associated with modeling
quadruped robot locomotion as a continual learning problem and present our approach
to address these challenges. We will then present experimental results and discuss the
implications of our findings.

2. Materials and Methods
2.1. Preliminary

In this work, we model the interaction between the quadruped robot and the envi-
ronment as a partially observable Markov decision process (POMDP), denoted by the
tupleM = {S , Ω,A, T ,O, r, γ, p0, ρ0}, where S is the full state space, Ω is the observation
space, A is the action space, T : S × A × S → R is the transition dynamics function,
O : S ×A → Ω is the observation probability, r : S ×A → R is the reward function, γ
is the discount factor, p0 is the distribution of initial states, and ρ0 is the distribution of
initial observation.

The goal in a reinforcement learning (RL) decision-making task is to learn a policy
πθ(a|o) that maximizes the expected sum of discounted rewards Eπθ(τ)

[
∑T−1

t=0 γtr(st, at)
]
,

where τ := {s0, o0, a0, · · · , sK−1, oK1 , aK−1} denotes the trajectory and the generated trajec-
tory distribution πθ(τ) = A0 ∏K−1

t=1 πθ(at|ot)O(ot|st, at−1)T (st|st−1, at−1), where K is the
upper limit of the number of running steps and A0 = p0(s0)O(s0)πθ(a0|o0).

We would like to emphasize that our method can also be used in the Markov decision
process (MDP) environment. We model the environment into a POMDP because the
robot locomotion task usually model the environment into a POMDP. The propose of
our continual RL method is to not affect the origin method much and keep the plug-and-
play capability.

2.2. Continual Quadruped Robot Locomotion

Compared to other robot control tasks, quadruped robots have greater flexibility in
exploring a complex real world. In the exploration process, quadruped robots will naturally
encounter more environments and tasks. However, compared to the complex real world,
the environments and tasks that a robot can explore in a given time are limited. Also, due
to limited onboard resources, robots cannot store all the experiences they have explored.
Therefore, we define the learning process of quadruped robot locomotion as a continual
learning process, where the current task refers to the locomotion task within the region
that a robot can freely explore when the environment, task, and physical structure of the
robot remain unchanged. As soon as the environment, task, or robot dynamics change,
or the physical structure that the robot can freely explore changes, the robot is faced with a
new task.

We define a robot locomotion RL task as a continual RL process in which the robot has
to learn a sequence of tasks {Tn}, n ∈ {1, · · · , N}, where N is the length of the sequence.
Considering that tasks faced by robots can be repetitive, we consider each task to be
sampled from a task set T = {T1, · · · , TÑ}, where Ñ is the set of all tasks, Ñ < N. In the
remainder of this paper, we will use Tn to denote the task the robot is learning, T ′ to denote
the set of all learned tasks, and T′n ∈ T ′ to denote a previous task. For convenience, we will
omit the subscript of the task index ∗n if we do not specify a particular task.

In the next section, we introduce the Piggyback network [7] to relieve the catastrophic
forgetting problem for the Q network, the policy network, and the CENet (all three networks
adopt the same anti-forgetting method).

2.3. Catastrophic Forgetting and Piggyback

Our architecture of each network is shown in Figure 2, which is based on the Piggy-
back algorithm.

165

Entropy 2024, 26, 93

elementwise
masking

non-chosen element

chosen element

private element

Unusable element

locked element

re-init element

Figure 2. For each task, we only select the most important subset of parameters to compose a sub-
network for training and utilization. Among them, only the parameters never selected by other
tasks before (chosen elements) will be updated in order not to affect learned task performance,
while parameters previously selected by other tasks are used without updating (locked elements).
After learning each task, some parameters will be selected (private elements) for later fine-tuning on
this task. Private parameters of previous tasks (unusable elements) avoid being chosen by subsequent
tasks for both training and utilization thus preventing influencing the performance of other tasks.
After all, those parameters that never chosen by any task will be re-initialization after training a task.

First, when learning the first task T1, for the policy network π, the critic network Q,
and the CENet, the algorithm proposes to select and fine-tune a part of the parameters
W1 to consist a sub-network from the intact parameter W. For simplicity, we will use
W = [w]ij and W1 = [w1]ij if the network is not specified. In the following, we will refer to
the three as the base network and the dense network, respectively. To do this, our approach
learns both the parameters of the base network W and the parameters of the binary mask
m1, and masks the base network with the binary mask W1 = W ·m1, where ‘·’ means
the element-wise multiplication. Since the binary mask cannot be learned with backward
propagation, Piggyback introduces a soft network mr

1 = [mr]1,ij. Each time, the algorithm
selects a binary mask from the soft network by a threshold and copies the gradient of the
binary mask to the soft network, as shown below:

m1,ij =

{
1, if ij ∈ topk mr

0, otherwise
, δmr

1,ij = δm1,ij. (1)

Then, for the following continual learning tasks, suppose we have learned task n− 1;
next, we will learn task n. In the experiment, to control the capacity of the network, we
choose the threshold k by a ratio of the size of the network, i.e., k = c‖W‖, c ∈ [0, 1].

However, the traditional Piggyback algorithm performs poorly when controlling
quadruped robots. Despite high payoffs during training, test performance is poor. Even
when the size of the base network is increased by a factor of 1

c , the performance of the
piggyback network still fails to match that of regular dense networks. We believe that one
reason for this is the choice of metrics. Freely chosen parameters have validity problems.
That is, if none of a neuron’s output parameters are selected, its input parameters cannot be
learned. Similarly, if too many of a neuron’s output parameters are selected, the importance
of its input parameters will also increase. Therefore, we use an element-based ratio to
select parameters, i.e., we ensure the same ratio of activated parameters for each neuron.
This allows our network to achieve performance commensurate with its capacity. When
the size of the basic network is increased, each parameter of the network can still operate

166

Entropy 2024, 26, 93

normally, thus improving the learning ability of our network. So, the element-based ratio
mask should be optimized:

m1,ij =

{
1, if ij ∈ topk mr

i

0, otherwise
, δmr

1,ij = δm1,ij. (2)

Selecting and learning a new part of W from scratch will be a naive way to learn
subsequent tasks like Piggybacking. However, unlike the traditional continual learning
hypothesis, tasks in quadruped robot control are much more general. Instead of learning
completely new parameters, we perform further training on the originally learned network.
Thus, we add some vacant parameters to the original parameters of task n − 1 as the
network of the new task n.

Following the idea of soft network from the WSN method [8], we further allow the
binary masks m for different tasks to overlap, but only one parameter that is never selected
by any task (vacant parameters) will be updated and one parameter that is selected by the
previous task will not be updated, called the occupied parameters:

δmr
n,ij =

{
δmn,ij, if m′n,ij = 0

0, otherwise
, (3)

where m′n,ij = ∏n′∈{1,··· ,n−1} mn′ ,ij = 0 is a parameter is vacant (=0) or occupied (=1). W, m
and mr are learned together. However, in the vanilla WSN method [8], the soft network
is updated by a Straight-through Estimator [9], which needs to update the soft network
while ignoring the mask. However, exploration and learning without the mask will be
dangerous and inefficient for the robot. Therefore, unlike WSN, optimizing the soft network
by Piggyback will suffer from low plasticity because the soft network cannot distinguish
between free and occupied parameters. Once the selected parameters consist mainly of
occupied parameters, the algorithm will stop learning. Therefore, for each new task n, we
force at least λ vacant parameters to be introduced along with 1− λ occupied parameters to
learn the new task n. Both vacant and filled parameters are selected by the soft network, i.e.,

mn,ij =

1, if mr
n,ij ≥ rvacant and m∗

1, if mr
n,ij ≥ roccupied and m∗

0, otherwise

, δmr
1,ij = δm1,ij. (4)

In this way, we can control the network parameters consumed by each task, avoiding
the failure of some tasks during the learning process. In our experience, we choose the λ by
proportion, which allows us to better control the learning capacity of the network.

After learning a task, only the binary mask will be saved.

2.4. Loss of Plasticity and Re-Initialization

Simply applying dynamic structure algorithms directly to the robot RL performs
poorly, as shown in our experiments. The additional attached loss function and the loss of
plasticity problem introduced by the dynamic structure make it difficult to learn tasks other
than the initial task. We believe that this problem could possibly be solved by carefully
tuning the hyperparameters and designing the network architecture and learning processes.
However, such an approach would require re-tuning the hyperparameters from scratch
each time we face a new task. It is well-known that tuning hyperparameters for quadruped
robot control problems is an extremely complex and tedious process [10]. This would cause
our method to lose its plug-and-play capability.

In order to compensate for the loss of plasticity, we propose to reinitialize the base
and soft networks after learning each task. Besides leaving the occupied parameters of the
base network unchanged, other parameters are reset to random initialization states (our
experiments show that re-initializing the soft network for vacant parameters or the entire

167

Entropy 2024, 26, 93

soft network leads to similar results). Note that for vacant parameters, although they are
not selected in the end, they may still have been updated during optimization. Meanwhile,
random initialization of the soft network also avoids problems where soft network values
become too large or too small during the previous task, preventing learning in the new task.
Also, since we are optimizing the soft network using the Piggyback algorithm and using
the gradient of m instead of mr, the size of mr does not affect the gradient scale. Thus, the
convergence speed of the soft mesh is influenced by the scale of mr.

Another factor affecting plasticity is the exploration ability of the robot, which is
correlated with the entropy of robot actions. Robots that output actions with higher entropy
can retain higher levels of exploration in following environments. With the learned skills
and knowledge, the robot will tend to choose the actions that is stable and secure in order
to avoid degradation in performance. However, the stable skills that learned by past tasks
cannot obtain the optimal performance in the new task without exploration with more
flexible and random actions, so that to keep the entropy when selecting the occupied
parameters is important. Therefore, we have introduced a reward function in our robot
learning to encourage the robot to maintain the soft network with high entropy. Therefore,
avoiding adding the entropy into the loss function of the base network, we take it as a term
of the loss function of the soft network; that is:

mr
n,ij = Normal

(
mr,base

n,ij , σ2
)

, δmr
n,ij =

{
δmn,ij + δH, if m′n,ij = 0

0, otherwise
, (5)

where H = 1
2 ln
(
2πeσ2) is the entropy, mr,base

n,ij is the mean of the distribution of the soft
network, and σ is the variance of the output of the soft network. After learning several
steps (100 in our experiment), we reduce the entropy on the soft network and let the base
network enhance the final rewards.

Forward transferability and maintaining plasticity are a trade-off in continual learning.
Our algorithm reconciles this dilemma well by reinitializing vacant parameters while still
allowing access to occupied parameters.

2.5. Sim to Real in Continual Learning

Another aspect of the real-world robot control problem is the sim-to-real shift. Al-
though they have learned in simulation environments, quadruped robots still need to be
fine-tuned in real environments in order to be deployed there. However, due to conditional
constraints, it is ideal but often infeasible to immediately fine-tune in the real environment
after learning a task in simulation. Thus, fine-tuning a task in the real environment can still
lead to catastrophic forgetting of other tasks. Therefore, we propose a method to isolate
some parameters as private parameters for each task, which are not accessible by other
tasks, to prevent the network from forgetting even after fine-tuning. Only these parameters
are optimized during the real fine-tuning. In addition, our method allows for multiple
learning of the same task to adapt to small variations in the environment or task. Due
to the complexity of control tasks, robots often find it difficult to fully explore the state
space once. Repeated learning of the same task is important in reinforcement learning [11].
In practice, we directly use the soft network to select parameters. The soft mesh cannot
accurately reflect the importance of the parameters, but has a lower computational cost.

2.6. Compare to the Past Works

Our work is mainly based on the two algorithms, Piggyback [7] and Winning Soft-
network [8]. We would like to emphasize the difference between our method and these two
methods here. Comparing with Piggyback, our method can leverage experience from past
tasks. This not only improves learning capability for subsequent tasks, but also saves space
usage for the subsequent tasks. Also, to address the issue of loss of plasticity in Piggyback,
we employed re-initialization and maintaining the entropy of soft-network to increase
the plasticity, ensuring that our algorithm can extensively explore all parameters. Then,

168

Entropy 2024, 26, 93

comparing with the WSN, our method uses the Piggyback soft-network updating, which
not only can be easily used in RL setting, but also saves the computation time. Finally,
we introduce a simple way to efficiently choose and keep some private parameters for
sim-to-real transfer.

3. Results
3.1. Compared Methods

To evaluate the performance of our method, we compare it with six widely used
continual learning methods:

• Experience Replay (ER) [12]: a basic rehearsal-based continual method that adds a
behavior cloning term to the loss function of the policy network.

• Averaged gradient episodic memory (AGEM) [13]: a method based on gradient
episodic memory that uses only a batch of gradients to limit the policy update.

• Elastic weight consolidation (EWC) [14]: constraining changes to critical parameters
by the Fisher information matrix.

• Riemannian Walk (R-Walk) [15]: a method adds a parameter importance score on the
Riemannian manifold based on EWC.

• Synaptic Intelligence (SI) [16]: a method that constrain the changes after each opti-
mization step.

• Packnet [17]: a method to sequentially “pack” multiple tasks into a single network by
performing iterative pruning and network re-training.

We evaluate these methods using the same network architecture as our method, but a
multi-head network. For the two rehearsal-based methods compared (ER and AGEM),
we used a replay buffer with a capacity of a trajectory of the data collected for each task,
which is a large proportion for general applications [18]. For each task, we select 20% of the
parameters and keep 2% of the parameters for online tuning.

3.2. Implementation Details

Each task in the sequence is a robot locomotion task, which we model as an RL task. Ac-
cording to [19], we define a Q-function Q(st, at), a policy π(at|ot, zt, vt) and a context-aided
estimator network (CENet) C

(
õt, vt|oH

t
)
. Q-learning methods train a Q-function by iter-

atively applying the Bellman operator B∗Q(st, at) = r(st, at) + γEst+1∼P(st |st ,st)

(
maxat+1

Q(st+1, at+1)). By introducing the privileged observation st only into the Q-network,
the agent (policy) also can makes decisions without privileged observation when evalu-
ating in the real world. The implementation also follows the definition of the privileged
observation st in [19]. The CENet from [19] is used to jointly learn to estimate and infer a
latent representation of the environment. The architecture of the CENet consists of a single
encoder and a multi-head decoder to encode oH

t into vt and õt.
Our basic actor-critical RL method is from [19]. For details on the specific state space

S , action space A, and reward function r, we follow [19]. We also list the elements of the
reward function in Table 1, where ·target indicates the desired values. x, y, and z are defined
on the body frame of the robot, with x and z pointing forward and upward, respectively.
g, vz, ω, h, p, and v f are the gravity vector projected onto the robot’s body frame, linear
velocities in the z-plane, yaw rate, body height above ground, foot height, and foot lateral
velocity, respectively.

We mainly follow the setting of the RL network in [19]. Both the actor and the critic
are multi-layer perceptron (MLP) with three hidden layers of 512, 256, and 128 neurons,
respectively, each with ReLU non-linearity. The CENet is also a multi-layer perceptron
with two hidden layers of 256 neurons for the encoder and decoder. We also use Adam [20]
with a learning rate of 0.001 to update both the basic network and the soft network of actor,
critic, and CENet. According to [21], we increase the epsilon of Adam to 1× 10−5. We
update each task by 500 epochs. Unlike the vanilla Piggyback algorithm, we initialize the
soft network with a random Gaussian noise, which works better than a fixed value for all
tasks except the first.

169

Entropy 2024, 26, 93

Table 1. Reward structure.

Term Equation Weight

linear velocity tracking exp{−|vxy − vcmd
xy |2/0.25} 1.0

angular velocity tracking exp{−|ωz −ωcmd
z |2/0.25} 0.5

z velocity v2
z −2.0

roll-pitch velocity |ωxy|2 −0.05
orientation |g|2 −5.0

joint limit violation ∑12
j=1 φ(qbj, qbj,lower, qbj,upper) −10.0

joint torques |τ|2 −2× 10−4

joint accelerations |q̈b|2 −2.5× 10−7

body height (h− htarget)
2 −30.0

feet clearance (p− ptarget)
2 ∗ v f 1.0

thigh/calf collision 1collision −1.0
action smoothing |at−1 − at|2 −0.01

For each task, we keep 20% private parameters and keep 2% parameters for sim-to-
real learning. In the 20% private parameters, we choose 25% vacant parameters and 75%
occupied parameters so that the λ is 25%. For each task, we train it 500 epochs and turn to
the next task.

3.3. Experimental Environments

We will discuss the three sets of tasks we are evaluating (see Figure 3).

Crash

(a)

Inverse

(b)

Noise

(c)
Figure 3. (a) In the Leg Crash task, we set the output of each leg into zero, respectively. (b) In the Leg
Inversion task, we inverse the output of each leg, respectively. (c) In the Leg Noise task, we add a
random noise into the output of each leg, respectively.

• Leg Crash: we set the output of different legs of the robot to zero for each task to
simulate the situation where the leg crashes and cannot move.

• Leg Inversion: for each task, we invert the outputs of the neural network for one leg
of the robot.

• Leg Noise: we add random Gaussian noise to the output of the robot. From the first
task to the fourth task, we add the noise to the left front leg, the right front leg, the left
rear leg, and the right rear leg.

In order to make our experiments as long as possible and increase the number of tasks,
we randomly mix the three cases to obtain the final experimental tasks.

4. Discussion
4.1. Episode Reward

We report part of the result in Figure 4. From the figure, we can see that a traditional
continual learning architecture cannot solve the complex problem of the locomotion of a
quadruped robot. Among them, regularization-based algorithms (EWC, SI, and R-Walk)
have difficulty maintaining acquired performance. After several tasks, the performance
of learned tasks decreases notably. In comparison, rehearsal-based algorithms (ER and
AGEM) perform better, but robot performance still declines after multiple tasks. This may

170

Entropy 2024, 26, 93

be because robot locomotion poses higher requirements on network parameter stability.
Even small changes in network parameters can lead to a damaged locomotion ability. The
pruning-based dynamic-architecture-method (Packnet) performs the worst because the
additional L1 loss will affect the learning of the robot.

Figure 4. Each figure shows the performance of one task during the entire learning phase: the first
row is for tasks 1–2, the second row is for tasks 3–4, and so on. Throughout the learning process, we
train each task 500 epochs and switch to the next task. The first 500 epochs of each task show the
reward during training, while subsequent data are results of testing the performance on that task
each 500 epochs. Higher results are better. We can see that our algorithm maintains the performance
achieved during training on all tasks, while all baselines exhibit decreased performance during
later testing.

171

Entropy 2024, 26, 93

Finally, we report the performance of the Piggyback methods with different hyper-
parameters and random seeds in Figure 5. It can be seen that Piggyback perform well
in first few tasks, but the learning ability will reduce after learning several tasks. This is
because the Piggyback method cannot leverage the occupied parameters as well as ours.

Figure 5. Training rewards of the Piggyback method during the whole training process. A value of
0.25 means each task uses 25% vacant parameters and 75% occupied parameters; free means select
using vacant parameters and the occupied parameters freely like WSN; vacant means only use the
vacant parameters for new tasks. The task changes every 500 epochs. Higher is better.

In comparison, our method not only has significant advantages in mitigating catas-
trophic forgetting, but also maintains better plasticity as the number of learned tasks
increases than baselines. Although each task requires a long exploration and training
process, our method can still maintain the original locomotion ability. Even though we
use only 20% of the parameters for a task, the learning ability is sufficient to learn such
complex RL tasks as controlling quadruped robots without enlarging the neural network.
Furthermore, even though our method has slightly lower performance for the first task
in some cases compared to the incomplete version, the higher plasticity will be reflected
in the performance of subsequent tasks. The learning capabilities of AGEM and R-Walk
significantly decrease after learning several tasks, showing an inability to learn new tasks
to adequate levels during training. In contrast, EWC, ER, and SI ensure higher learning
ability on new tasks, and Piggyback suffers almost no loss of plasticity problem.

4.2. Commands Tracking

The other two important arguments for robot locomotion are the line velocity and the
angle velocity. These two arguments are commonly used to measure the correct locomotion
of the quadruped robots [19]. We compare the difference between the output velocity and
input command with three random commands. Each command is the expected line speed
sampled from [−1.0, 1.0] m/s and the angle speed sampled from

[
−π

2 , π
2
]

rad/s. We give
the tracking performance of the line velocity in Figure 6 and the angle velocity in Figure 7.

172

Entropy 2024, 26, 93

Figure 6. Each figure shows the performance of tracking the line velocity of one task during the entire
learning phase: the first row is for tasks 1–2, the second row is for tasks 3–4, and so on. Throughout
the learning process, we switch the robot to another task every 500 epochs. The first 500 epochs of
each task show the performance of tracking the line velocity during training, while subsequent data
are the results of testing the performance on that task for each 500 epochs. Higher results are better.
We can see that the performance of our method only drops just after training (because of the shift
between training and testing), and can keep a steady performance in the remaining learning process.

173

Entropy 2024, 26, 93

Figure 7. Each figure shows the performance of tracking the angle velocity of one task during
the entire learning phase: the first row is for tasks 1–2, the second row is for tasks 3–4, and so on.
Throughout the learning process, we switch the robot to another task every 500 epochs. The first
500 epochs of each task show the performance of tracking the line velocity during training, while
subsequent data are the results of testing the performance on that task for each 500 epochs. Higher
results are better. We can see that the performance of our method only drops just after training
(because of the shift between training and testing), and can keep a steady performance in the
remaining learning process.

174

Entropy 2024, 26, 93

We can see that after learning the follow-up task, the ability to follow the moving
commands decreases. In particular, the robot tends to reduce speed to ensure safety.

4.3. Effect of Re-Initialization and Entropy

In Figures 8–10, we show the reward during training on each task under three different
re-initialization schemes. We can see that re-initialization enhances the plasticity for the
following tasks. For most tasks, whether the base network is reinitialized also does not have
an obvious impact, but for some tasks, not re-initializing parameters can lead to slower
training. Also, optimizing the entropy for soft network also hastens the learning process of
the following tasks.

Figure 8. Training rewards during the whole training process. None means not to reinitialize; Reinit
means to reinitialize unused parameters of the base network and the soft network; Reinit & Entropy
means to reinitialize the unused parameters of the base networks and the soft network, and raise the
entropy of the action when learning the soft network. The task changes every 500 epochs. Higher
is better.

Figure 9. Training performance of tracking line velocity during the whole training process. None
means not to reinitialize; Reinit means to reinitialize unused parameters of the base network and the
soft network; Reinit & Entropy means to reinitialize the unused parameters of the base networks
and the soft network, and raise the entropy of the action when learning the soft network. The task
changes every 500 epochs. Higher is better.

175

Entropy 2024, 26, 93

Figure 10. Training performance of tracking angle velocity during the whole training process. None
means not to reinitialize; Reinit means to reinitialize unused parameters of the base network and the
soft network; Reinit & Entropy means to reinitialize the unused parameters of the base networks
and the soft network, and raise the entropy of the action when learning the soft network. The task
changes every 500 epochs. Higher is better.

4.4. Forward Transfer

An important capability of our architecture is forward transfer. We evaluate the
forward transfer ability by a newly designed environment consisting of all the interference
of tasks. We mix a new task by two learned task, i.e., a robot have both a inverse right back
leg and a noise right forward leg. Then, we learn this new task with a soft network that the
chosen parameters by the task “inverse right back leg” and the task “noise right forward
leg” has a higher initialization than other occupied parameters. We called this way “related
task”. As a contrast, we propose two other learning ways: “random select”, which initialize
the soft network by other two random tasks, and “learn from scratch”, which does not
change the initialize way. The result is shown in Figure 11. This result reflects the forward
transferability of our methods. We can see that the “related task” learns faster than “learn
from scratch” because it has a better foundation. Then, “random task” learn the slowest
and cannot match the performance because the extraneous parameters interfere with the
learning process.

Figure 11. The learning process of the mixed environment. We can see that learning a new task
that combination of two learned tasks from a combination of the soft network can speed up the
training process.

176

Entropy 2024, 26, 93

5. Conclusions

In this paper, we propose an algorithm that performs continual learning on a quadruped
robot control using a dynamic architecture approach. We point out that complex quadruped
control environments make traditional continual learning algorithms difficult to adapt,
while dynamic-architecture-based continual learning algorithms can achieve greater ad-
vantages with their excellent stability. We also propose to maintain the plasticity of the
policies by resetting the parameters to avoid plasticity loss, which has a significant impact
on the final performance. Finally, our experiments validate that our algorithm can enable
positive transfer for skill composition, demonstrating the unique advantages of continual
learning algorithms.

Author Contributions: Conceptualization, S.G. and S.L.; methodology, S.G.; software, S.G. and
H.Z.; validation, H.Z. and S.L.; formal analysis, S.G.; investigation, D.W.; resources, D.W.; data
curation, H.Z.; writing—original draft preparation, S.G.; writing—review and editing, S.G. and S.L.;
visualization, S.G.; supervision, D.W.; project administration, D.W.; funding acquisition, D.W. All
authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by the National Science and Technology Innovation 2030-Major
Project (Grant No. 2022ZD0208800), and NSFC General Program (Grant No. 62176215).

Data Availability Statement: No new data were created or analyzed in this study. Data sharing is
not applicable to this article.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Zitkovich, B.; Yu, T.; Xu, S.; Xu, P.; Xiao, T.; Xia, F.; Wu, J.; Wohlhart, P.; Welker, S.; Wahid, A.; et al. Rt-2: Vision-language-action

models transfer web knowledge to robotic control. In Proceedings of the 7th Annual Conference on Robot Learning, Atlanta, GA,
USA, 6–9 November 2023.

2. Brohan, A.; Brown, N.; Carbajal, J.; Chebotar, Y.; Dabis, J.; Finn, C.; Gopalakrishnan, K.; Hausman, K.; Herzog, A.; Hsu, J.; et al.
Rt-1: Robotics transformer for real-world control at scale. arXiv 2022, arXiv:2212.06817.

3. Kang, Y.; Shi, D.; Liu, J.; He, L.; Wang, D. Beyond reward: Offline preference-guided policy optimization. arXiv 2023,
arXiv:2305.16217.

4. Liu, J.; Zhang, H.; Zhuang, Z.; Kang, Y.; Wang, D.; Wang, B. Design from Policies: Conservative Test-Time Adaptation for Offline
Policy Optimization. arXiv 2023, arXiv:2306.14479.

5. Reed, S.; Zolna, K.; Parisotto, E.; Colmenarejo, S.G.; Novikov, A.; Barth-Maron, G.; Gimenez, M.; Sulsky, Y.; Kay, J.; Springenberg,
J.T.; et al. A generalist agent. arXiv 2022, arXiv:2205.06175.

6. Yang, R.; Xu, H.; Wu, Y.; Wang, X. Multi-task reinforcement learning with soft modularization. Adv. Neural Inf. Process. Syst. 2020,
33, 4767–4777.

7. Mallya, A.; Davis, D.; Lazebnik, S. Piggyback: Adapting a Single Network to Multiple Tasks by Learning to Mask Weights. In
Computer Vision—ECCV 2018, Proceedings of the 15th European Conference, Munich, Germany, 8–14 September 2018; Proceedings, Part
IV; Lecture Notes in Computer Science; Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y., Eds.; Springer: Cham, Switzerland,
2018; Volume 11208, pp. 72–88. [CrossRef]

8. Kang, H.; Yoon, J.; Madjid, S.R.; Hwang, S.J.; Yoo, C.D. Forget-free Continual Learning with Soft-Winning SubNetworks. arXiv
2023, arXiv:2303.14962.

9. Ramanujan, V.; Wortsman, M.; Kembhavi, A.; Farhadi, A.; Rastegari, M. What’s hidden in a randomly weighted neural network?
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 13–19 June 2020;
pp. 11893–11902.

10. Zhang, H.; Yang, S.; Wang, D. A Real-World Quadrupedal Locomotion Benchmark for Offline Reinforcement Learning. arXiv
2023, arXiv:2309.16718.

11. Van de Ven, G.M.; Tolias, A.S. Three scenarios for continual learning. arXiv 2019, arXiv:1904.07734.
12. Rolnick, D.; Ahuja, A.; Schwarz, J.; Lillicrap, T.P.; Wayne, G. Experience Replay for Continual Learning. In Proceedings of the

Advances in Neural Information Processing Systems 32: Annual Conference on Neural Information Processing Systems 2019,
NeurIPS 2019, Vancouver, BC, Canada, 8–14 December 2019; pp. 348–358.

13. Chaudhry, A.; Ranzato, M.; Rohrbach, M.; Elhoseiny, M. Efficient Lifelong Learning with A-GEM. In Proceedings of the ICLR,
New Orleans, LA, USA, 6–9 May 2019.

14. Kirkpatrick, J.; Pascanu, R.; Rabinowitz, N.; Veness, J.; Desjardins, G.; Rusu, A.A.; Milan, K.; Quan, J.; Ramalho, T.; Grabska-
Barwinska, A.; et al. Overcoming catastrophic forgetting in neural networks. Proc. Natl. Acad. Sci. USA 2017, 114, 3521–3526.
[CrossRef] [PubMed]

177

Entropy 2024, 26, 93

15. Chaudhry, A.; Dokania, P.K.; Ajanthan, T.; Torr, P.H. Riemannian Walk for Incremental Learning: Understanding Forgetting
and Intransigence. In Proceedings of the European Conference on Computer Vision, Munich, Germany, 8–14 September 2018;
pp. 556–572.

16. Zenke, F.; Poole, B.; Ganguli, S. Continual Learning Through Synaptic Intelligence. In Proceedings of the International Conference
on Machine Learning. PMLR, Sydney, Australia, 6–11 August 2017; pp. 3987–3995.

17. Mallya, A.; Lazebnik, S. Packnet: Adding multiple tasks to a single network by iterative pruning. In Proceedings of the IEEE
conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 7765–7773.

18. Gai, S.; Wang, D.; He, L. Offline Experience Replay for Continual Offline Reinforcement Learning. In Proceedings of the 26th
European Conference on Artificial Intelligence, Kraków, Poland, Wed, 18 October 2023; pp. 772–779.

19. Nahrendra, I.M.A.; Yu, B.; Myung, H. DreamWaQ: Learning Robust Quadrupedal Locomotion with Implicit Terrain Imagination
via Deep Reinforcement Learning. In Proceedings of the IEEE International Conference on Robotics and Automation, ICRA 2023,
London, UK, 29 May–2 June 2023; IEEE: Piscataway, NJ, USA, 2023; pp. 5078–5084. [CrossRef]

20. Kingma, D.P.; Ba, J. Adam: A Method for Stochastic Optimization. In Proceedings of the 3rd International Conference on
Learning Representations, ICLR 2015, San Diego, CA, USA, 7–9 May 2015.

21. Lyle, C.; Zheng, Z.; Nikishin, E.; Pires, B.Á.; Pascanu, R.; Dabney, W. Understanding Plasticity in Neural Networks. In
Proceedings of the International Conference on Machine Learning, ICML 2023, Honolulu, HI, USA, 23–29 July 2023; Volume 202,
pp. 23190–23211.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

178

Citation: Zhang, C.; Liu, T.; Du, X. A

Deep Neural Network Regularization

Measure: The Class-Based

Decorrelation Method. Entropy 2024,

26, 7. https://doi.org/10.3390/

e26010007

Academic Editors: Badong Chen,

Luis Gonzalo Sánchez Giraldo,

Shuangming Yang and Shujian Yu

Received: 7 November 2023

Revised: 10 December 2023

Accepted: 13 December 2023

Published: 20 December 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

entropy

Article

A Deep Neural Network Regularization Measure: The
Class-Based Decorrelation Method
Chenguang Zhang 1,*, Tian Liu 2 and Xuejiao Du 1

1 School of Mathematics and Statistics, Hainan University, Haikou 570100, China; xuejiao_du@hainanu.edu.cn
2 School of Information and Communication Engineering, Hainan University, Haikou 570100, China;

liutian@hainanu.edu.cn
* Correspondence: chenguang_zhang@hainanu.edu.cn

Abstract: In response to the challenge of overfitting, which may lead to a decline in network gener-
alization performance, this paper proposes a new regularization technique, called the class-based
decorrelation method (CDM). Specifically, this method views the neurons in a specific hidden layer as
base learners, and aims to boost network generalization as well as model accuracy by minimizing the
correlation among individual base learners while simultaneously maximizing their class-conditional
correlation. Intuitively, CDM not only promotes diversity among the hidden neurons, but also en-
hances their cohesiveness among them when processing samples from the same class. Comparative
experiments conducted on various datasets using deep models demonstrate that CDM effectively
reduces overfitting and improves classification performance.

Keywords: deep neural network; generalization ability; regularization method

1. Introduction

Deep neural networks (DNNs) have demonstrated the highest accuracy in many artifi-
cial intelligence (AI) tasks, including computer vision, speech recognition, and robotics, due
to their deep learning architecture and parallel learning mechanism, which guarantees its
powerful expressive capacity to learn complex things [1]. However, overparameterization
may also bring the risk of overfitting. How to maintain or even improve the learning ad-
vantages brought by deep architecture while avoiding overfitting is a continuous research
topic in the field of deep learning.

In recent years, some studies have shown that DNNs may have a self-regularization
effect [2], and the classical generalization theory [3,4] may not be applicable to deep
learning. They suggested that the mechanism and effect of the regularization meth-
ods such as L2 regularization [5,6], Weight Decay [7], Dropout [8], etc., which enhance
the generalization ability by limiting the model complexity, need to be further explored
and clarified.

On the other hand, certain studies also argue that traditional mean deviation the-
ory remains effective, but requires a revision for the concept of model complexity, which
should contain not only the parameter numbers but also the data, optimization meth-
ods, and model structure [9,10]. Some corresponding explicit regularization methods
are explored and testified to have positive effect on reducing the generalization gap
(performance gap between the test dataset and the train dataset) [11–13]. For example,
Achille et al. [14] proposed that the mutual information between labels and model pa-
rameters can be used as a regularization term to predict sharp phase transitions between
underfitting and overfitting of random labels.

Recently, in contrast to treating the whole deep learning network as a single black box,
several studies begin to explore its parallel mechanism. By viewing the network output
as a collection of fundamental mappings or combinations of individual learners [12,15,16],
these studies analyze the influence of their correlations on the generalization capabilities of

Entropy 2024, 26, 7. https://doi.org/10.3390/e26010007 https://www.mdpi.com/journal/entropy179

Entropy 2024, 26, 7

deep learning models, introducing novel concepts for devising regularization techniques
to enhance generalization. This concept of correlation is referred to as the disentanglement
measure in representation learning and the diversity measure in ensemble learning. Several
well-established disentanglement measures [17,18] as well as diversity measures [19,20]
have been introduced, and their validity has been verified theoretically and experimentally.

Inspired by ensemble learning and representation learning, this paper proposes a
novel approach based on class labels for decorrelating neurons within a hidden layer of
deep neural networks, called the class-based decorrelation method (CDM). This method
takes into account both the unsupervised decorrelation between hidden neurons and the
supervised requirement for collaboration of neurons in the same class. The unsupervised
decorrelation term has been explored in a large amount of the literature. For example,
Cogswell et al. [11] and Gu et al. [12] consider hidden layer neurons, or their groupings, as
basic mappings to improve the generalization of deep networks by limiting the correlation
between mappings. In the field of representation learning, methods such as variational
autoencoders (VAE) [21] and β-VAE [22] have demonstrated the beneficial impact of dis-
entanglement on downstream tasks, including improving interpretability, controllability,
and robustness.

Furthermore, the research conducted by Zhou et al. [23] in the field of ensemble
learning has shown that in addition to the aforementioned unsupervised term, a super-
vised term formalized as mutual information that reflects clustering characteristics is also
helpful in improving prediction accuracy on future data. A similar conclusion was drawn
by Zhang et al. [24], who decomposed the upper bound of the generalization error from
information perspective. However, considering the complexity of estimating mutual in-
formation and that covariance is straightforward proxy for mutual information, CDM
provides a regularization method with the above supervised and unsupervised terms
estimated by covariance. Intuitively, CDM encourages the diversity among hidden neurons
to diminish data redundancy while simultaneously strengthening neuron collaboration
when dealing with samples from the same class, which helps to preserve useful informa-
tion for classification, ensuring significantly higher classification accuracy and improved
generalization performance.

We conducted comparative experiments on different depths of network structures. A
large number of experiments have shown that compared to other regularization methods,
CDM can effectively reduce overfitting and generalization errors while improving model
accuracy. Due to the simplicity of CDM, it can be easily applied to any layer of a neural
network. In addition, the experiment also verified that the class label-related terms in the
supervised setting are a key factor in improving the generalization ability of DNNs.

2. Related Work

Understanding the generalization mechanism of deep learning and how it differs from
classic methods is a crucial step to improve the generality of deep models. Recently, some
studies have sought to provide more compact new generalization upper bounds by taking
the special situations of the current training dataset, model frameworks, training methods,
etc., into account. Here are some notable examples. Bartlett and Maiorov [25], Bartlett
and Harvey [26], and Yang et al. [27] proposed upper bounds of DNNs based on the VC-
dimension. Dziugaite and Roy [28] and Neyshabur et al. [29,30] used PAC-Bayesian analy-
sis to derive bounds related to deep polynomials. Neyshabur et al. [31] proved the depth
exponential dependence bound of ReLU networks by using Rademacher complexity, and
Bartlett et al. [32] proposed a norm-based generalization bound of neural networks. Based
on a ReLU kernel function, Arora et al. [33] proposed a generalization error bound for
two-layer ReLU networks with fixed second-layer weights. Daniely and Granot [34] ob-
tained improved bounds for constant-depth fully connected networks. They also introduce
some empirical-based measures, such as the Fisher–Rao norm proposed by Liang et al. [35]
and the study of generalization gaps with various dependencies, including distance from
initialization, conducted by Jiang et al. [36].

180

Entropy 2024, 26, 7

The parallel mechanism of neural networks naturally lends itself to mutual inspiration
from ensemble learning. Moreover, the divergence measure among individual learners in
ensemble learning usually corresponds to the degree of disentanglement in representation
learning. For example, the variational autoencoder (VAE) [21] applies a constraint on the
learned representations of a neural network based on the Kullback–Leibler (KL) divergence
between the variational posterior distribution and the true posterior distribution, thereby
endowing the method with the potential for disentanglement capability. Furthermore,
methods like β-VAE [22], DIP-VAE [37], and β-TCVAE [38] enhance the disentanglement
ability and improve model generalization by incorporating implicit or explicit inductive
biases into the original VAE loss function. Although the above method successfully imple-
ments the attribute “encouraged” by the corresponding loss, some researchers argue that
identifying a well-disentangled model is virtually impossible without inductive biases in
the absence of supervised settings.

Another important paradigm for improving the generalization performance of neural
networks is regularization. Traditional regularization methods focus on constraining the
complexity of the model, such as Weight Decay [7], Dropout [8] and DropConnect [39].
Although these methods have made improvements in terms of generalization, the random
reduction in parameters may affect the expressive power of the model. In response, some
research focuses on improving the generalization of neural networks while preserving their
expressive power. For example, Bengio and Bergstra [40] proposed a pretraining algorithm
for learning decorrelation features. Bao et al. [41] discussed decorrelation activation using
incoherent training. Combining ensemble learning, Gu et al. [12] and Yao et al. [13]
proposed corresponding decorrelation regularization methods by treating the network
output as a combination of learners. Ayinde et al. [20] proposed an effective method for
regularizing deep neural networks by leveraging the correlation between features. How-
ever, these regularization methods only emphasize the impact of unsupervised decoupling
in hidden neurons, while neglecting the positive effect of supervised term that captures
clustering characteristics on DNNs. Addressing this, Zhang et al. [24] obtained a regular-
ization method containing both supervised and unsupervised items from the perspective
of mutual information, and emphasized the importance of label-based inductive bias under
the supervision setting to improve the network generalization ability. While this method is
theoretically feasible, it may be less accessible due to the difficulty in estimating mutual
information. Our work aims to overcome these limitations and proposes a simpler and
more generalizable solution.

3. Class-Based Decorrelation Method

This section provides a detailed introduction to the class-based decorrelation method
(CDM), which is a regularization method aimed at promoting the diversity of hidden
neurons while enhancing collaboration among neurons when processing samples from the
same class.

3.1. Theoretical Motivation

CDM is grounded in the newly introduced label-based diversity measure, which amal-
gamates the unsupervised diversity measure with supervised class-conditional diversity
measure among hidden neurons, shedding light on the improvement of generality without
compromising classification accuracy. Let S = {(X, Y) | (X, Y) ∈ X × Y} be the given
dataset, and let hi(X) represent the activation of the sample in the i-th hidden neuron; the
label-based diversity (LDiversity) among hidden neurons can be expressed as:

DLB(S) = I(h1(X); . . . ; hm(X))− I(h1(X); . . . ; hm(X) | Y), (1)

where the initial mutual information term in the right-hand side serves the purpose of
extracting independent features, aligning with the typical notion of an unsupervised
diversity measure. Conversely, the second class-conditional term is intricately linked

181

Entropy 2024, 26, 7

with labels, reflecting the underlying inductive bias inherent in the new representations
of samples.

The work of Zhou et al. [23] shows that if only 0–1 loss is permitted, given
ĥ = (h1, h2, . . . , hm) as a set of base classifiers hi for the labeled sample (X, Y), and C(·)
as any given combination function that minimizes the probability P(C(ĥ(X)) 6= Y), the
probability is bounded as follows:

P(C(ĥ(X)) 6= Y) ≤ H(Y)−∑m
i=1 I

(
hi(X); Y

)
+ DLB(S)

2
, (2)

which indicates that there is an inverse relationship between the test error and LDiversity.
Zhang et al. [24] obtained a similar result. Further, their work is directly founded on

the decomposition of the generalization error bound and reveals that reducing the value of
LDiversity can enhance the generality.

Given the intricacies in estimating mutual information and the direct correlation
between covariance and mutual information where mutual information is a monotone
transformation of covariance, we opt to use covariance as a proxy in Equation (1), thereby
deriving the following expression:

D′LB(S) = ∑
i,j

ES[(hi(X)−ES[hi(X)])(hj(X)−ES[hj(X)])]

−∑
i,j

ESY [(hi(X)−ESY [hi(X)])(hj(X)−ESY [hj(X)]) | Y].
(3)

Clearly, the covariance-based redefinition of LDiversity still retains the core idea of
Equation (1), with the goal of encouraging diversity among hidden neurons while fostering
stronger collaboration among neurons within the same class. Furthermore, covariance
exhibits a straightforward and easily estimable characteristic, making CDM a more versatile
and readily implementable approach.

3.2. CDM Application in the Fully Connected Layer

As illustrated in Figure 1, when applying CDM to a specific fully connected layer of
a neural network, each hidden neuron within this layer is treated as a base learner. By
exemplifying the calculation on a batch of samples, we demonstrate the specific process of
applying CDM to any fully connected layer.

Figure 1. Architecture of a fully connected neural network based on CDM. Each neuron of the
specified hidden layer is treated as a base learner.

Let n be the number of neurons in the target hidden layer. Consider a batch of N
samples categorized into K classes, where each class contains nk samples (with k = 1, . . . , K)
and N = ∑K

k=1 nk. Let hn
i represent the activation originating from the n-th sample in the

input to the i-th hidden neuron in the target layer. To represent the correlation between the

182

Entropy 2024, 26, 7

i-th and j-th base learners across the entirety of the mixed distribution, we introduce the
notation LnCormix

ij , which is formally expressed as follows:

LnCormix
ij =

1
N

N

∑
n=1

(hn
i − µi)

(
hn

j − µj

)
, (4)

µi =
1
N

N

∑
n=1

hn
i , (5)

where µi denotes the activation mean of the i-th base learner across N samples. As co-
variance quantifies the correlation between variables, lower covariance usually implies
reduced correlation. Consequently, we need to minimize this item, aiming to maintain a
minimal level of correlation among the base learners, thus fostering greater diversity in
sample representations.

The class-conditional correlation between the i-th and j-th base learners denoted as
LnCorclass

ij is expressed as follows:

LnCorclass
ij =

K

∑
k=1

nk
N

LnCorclass
(k,ij), (6)

LnCorclass
(k,ij) =

1
nk

nk

∑
n=1

(
hn
(k,i) − µk

i

)(
hn
(k,j) − µk

j

)
, (7)

µk
i =

1
nk

nk

∑
n=1

hn
(k,i), (k = 1, . . . , K), (8)

where LnCorclass
(k,ij) represents the covariance between the i-th and j-th base learners within

the k-th class; hn
(k,i) represents the activation value from n-th sample in the k class to the

i-th hidden neuron, and µk
i signifies the mean activation value of the i-th hidden neuron

over the samples within this class. Formula (4) pertains to the class labels and describes
local clustering features captured by hidden neurons. Enhancing the class-conditional term,
especially by maximizing its value, is anticipated to promote cohesiveness of base learners
when the input samples originate from the same class.

By utilizing LnCormix
ij and LnCorclass

(k,ij) as the entries in the i-th row and j-th column of

matrices, we can construct the covariance matrix LnCormix and the class-conditional covari-
ance matrix LnCorclass, respectively. Let Smix

L and Sclass
L denote the final total correlation

over the mixed distribution and total class-conditional correlation, respectively. From these,
we derive the ultimate penalty regularization term, denoted as LnCorLoss:

LnCorLoss = ln(Smix
L)− ln(Sclass

L), (9)

Smix
L =

1
2
(‖LnCormix‖2

F − ‖diag(LnCormix)‖2
2), (10)

Sclass
L =

1
2
(‖LnCorclass‖2

F − ‖diag(LnCorclass)‖2
2), (11)

where ‖ · ‖F is the Frobenius norm, the diag(·) operator returns the main diagonal elements
of the matrix as vectors, and ln(·) represents logarithmic operation. It is worth noting that
the diagonal elements of the two matrices have been excluded from their respective correla-
tion measures since these elements indicate self-correlation. Minimizing the regularization
term LnCorLoss is expected to encourage nonredundant representations of samples.

Finally, the total loss of the neural network applying CDM at the fully connected layer
can be expressed as:

TLoss = ELoss + λLnCorLoss, (12)

183

Entropy 2024, 26, 7

where ELoss is the cross-entropy loss, and λ ≥ 0 is the hyperparameter.
Specially, to illustrate the training process on the l-th layer, we assume that W l repre-

sents the weight matrix from the (l − 1)-th to the l-th layer, and Hl denotes the activations
of the l-th layer. Now, let us examine the gradient of the total loss for a specific sample:

∂TLoss

∂W l
i

=
∂TLoss

∂hi
· ∂hi

∂W l
i

, (13)

∂LnCorLoss
∂hi

=
1
N ∑

i 6=j
LnCori,j ·

(
hj − µj

)
+ ∑

k

nk
N ∑

i 6=j
LnCori,j ·

(
hk

j − µk
j

)
, (14)

∂hi

∂W l
i
= Hl−1, (15)

where we have not shown the gradient of the cross-entropy part since it is common.
From Equations (13)–(15), it has been demonstrated that the gradient can be conveniently
computed through covariance-based backpropagation. Then, the obtained gradient is
subsequently utilized for updating the weights.

3.3. CDM Application in Convolutional Layer

The application of CDM in convolutional layers differs from its use in fully connected
layers in that each neuron is no longer treated as an individual base learner; instead, the
convolutional feature map is considered as the base learner. Two primary reasons underlie
this approach: (1) Decorrelating all the hidden neurons within a convolutional layer incurs
a significant computational cost. (2) Distinct neurons may share the same convolutional
feature map, rendering decorrelation efforts on these neurons essentially futile. In fact,
it is the feature map that fundamentally reflects the mapping relationship from samples
to their representations. In a similar vein, we illustrate how CDM can be applied to any
convolutional layer and trained on a batch of samples with size N.

Given the convolutional layer to be processed, let M, H ·W be the number of convolu-
tional feature maps and the output spatial dimensions. We use CoCormix

ij to represent the
correlation between the i-th and j-th base learners over the mixed distribution, which is
expressed as follows:

CoCormix
ij =

1
N

N

∑
n=1

(gn
i − µi)

(
gn

j − µj

)
, (16)

µi =
1
N

N

∑
n=1

gn
i , (17)

gn
i =

1
HW

H

∑
h=1

W

∑
w=1

v(h,w)
i , (18)

where v(h,w)
i represents the value whose coordinate position is (h, w) in the output of the i-th

convolutional feature map; gn
i is regarded as the activation originated from the n-th sample

in the input batch of the i-th base learner, and µi represents the mean of the activations
across the samples. Correspondingly, the conditional correlation between the i-th and j-th
base learner, denoted as CoCorclass

ij , is defined as follows:

CoCorclass
ij =

K

∑
k=1

nk
N

CoCorclass
(k,ij), (19)

CoCorclass
(k,ij) =

1
nk

nk

∑
n=1

(
gn
(k,i) − µk

i

)(
gn
(k,j) − µk

j

)
, (20)

184

Entropy 2024, 26, 7

µk
i =

1
nk

nk

∑
n=1

hn
(k,i), (k = 1, . . . , K), (21)

gn
(k,i) =

1
HW

H

∑
h=1

W

∑
w=1

v(h,w)
(k,i) , (22)

where CoCorclass
(k,ij) represents the covariance between the i-th and j-th feature maps within

the class k; gn
(k,i) denotes the activation value of the n-th sample in k-th class by the i-th

hidden neuron, and µk
i signifies the mean activation value across different samples. Similar

to the fully connected layer, we construct the covariance matrix CoCormix and the class
conditional covariance matrix CoCorclass by using CoCorij and CoCorclass

(k,ij) as entries. The
regularization term CoCorLoss for the convolutional layer is then defined as follows:

CoCorLoss = ln(Smix
C)− ln(Sclass

C), (23)

Smix
C =

1
2
(‖LnCormix‖2

F − ‖diag(LnCormix)‖2
2), (24)

Sclass
C =

1
2
(‖LnCorclass‖2

F − ‖diag(LnCorclass)‖2
2). (25)

where Smix
C and Sclass

C are the total correlation over the entire mixed distribution and the
total class-conditional correlation.

Adding CoCorLoss to the cross-entropy loss, we define the final loss for neural networks
with convolutional layer as follows:

TLoss = ELoss + γCoCorLoss, (26)

where γ ≥ 0 is the hyperparameter.

4. Experimental Section

In this section, to validate the efficacy of CDM in deep neural networks, we performed
experiments on diverse datasets using different neural networks of varying depths. The
control group encompassed several methods: nonregularization (None); Dropout [8] with
a random probability of 0.5; the decorrelation regularization method (DeCov) [11] with a
hyperparameter set to 0.1; and the ensemble-based decorrelation method (EDM) [12] with a
balance parameter of 0.1. Notably, since DeCov, EDM, and CDM all fall under decorrelation
techniques, for fairness, they were applied to the same hidden layer. For Dropout, it is
commonly utilized for fully connected layers.

Additionally, we also tested the effectiveness of CDM when applied to the state-of-
the-art methods, including Inception [42] and MobileNet [43], focusing on the challenge of
relatively limited training samples encountered commonly in real-world applications.

4.1. Datasets

The study presented in this paper makes use of two publicly available datasets:
MNIST [44], CIFAR-10 [45] and mini-ImageNet [46]. A brief overview of these datasets is
presented below.

• MNIST: The MNIST dataset is a collection of handwritten digit images, totaling
70,000 grayscale images across 10 different classes. Each image is 28 pixels in height
and 28 pixels in width. The training set comprises 60,000 images, while the test set
contains 10,000 images.

• CIFAR-10: The CIFAR-10 dataset comprises 10 classes, with each class containing
6000 color images sized at 32 × 32 pixels and composed of RGB three-channel data.
The training set encompasses 50,000 images, while the test set includes 10,000 images.

185

Entropy 2024, 26, 7

• Mini-ImageNet: The mini-ImageNet dataset consists of 50,000 training images and
10,000 testing images, evenly distributed across 100 classes. The images have a size of
84 × 84 × 3.

Moreover, to effectively highlight the generalization capabilities of each method, we
introduced noise to the test images. The noise adheres to a standard Gaussian distribu-
tion. For MNIST and CIFAR-10 as well as mini-ImageNet, we multiplied the noise by
weights of 0.2 and 0.05, respectively, when adding it to the original pixel values. It is impor-
tant to note that prior to introducing the noise, we standardized pixel values within the
range [−1, 1] (refer to Figure 2).

(a) MNIST (b) CIFAR10

(c) Mini-ImageNet

Figure 2. Some examples of introducing Gaussian noise to (a) MNIST, (b) CIFAR-10 and (c) Mini-
ImageNet datasets to generate noisy images (top row) from original images (bottom row).

4.2. Network Frameworks

The study employs fully connected neural networks (FCNNs) and residual neural
networks (ResNets) with two distinct depths. In this context, “depth” refers to the number
of layers that undergo parameter updates during training, encompassing convolutional
layers, fully connected layers, and so forth. Additionally, aiming at the challenge of
relatively limited training samples, the learning architectures from approaches such as
Inception and MobileNet are included for comparative analysis.

The architecture of FCNNs is composed of layers in the order of D(512)-D(256)-D∗

(100)-D(256)-D(128)-D(64), where D(N) signifies a dense layer with N neurons. The intro-
duced regularizer is specifically applied to the D∗ layer. Furthermore, for residual neural
networks, we make use of ResNet18 [47] and ResNet50 [48]. Specific details regarding
the parameters can be found in Table 1. Besides ResNet18 and ResNet50, the learning
methods of Inception and MobileNet are also utilized. All the models are pretrained on the
ImageNet dataset [49]. Throughout the training phase, transfer learning and fine-tuning
methodologies are employed, allowing for active adjustment of the model’s layer param-
eters without freezing. This approach ensures continuous updates to the parameters to
enhance the network’s performance. Notably, the regularizer is implemented either on the
topmost fully connected layer (excluding the output layer) or on the convolutional layer, as
applicable. The entire experiment is carried out using PyTorch [50].

186

Entropy 2024, 26, 7

Table 1. Structure diagram of residual neural networks at different depths.

Layer 18-Layer (ResNet18) 50-Layer (ResNet50)

Conv 1
7 × 7, 64, stride2

3 × 3, maxpool, stride2

Conv 2
[

3× 3, 64
3× 3, 64

]
× 2

1× 1, 64
3× 3, 64

1× 1, 256

× 3

Conv3
[

3× 3, 128
3× 3, 128

]
× 2

1× 1, 128
3× 3, 128
1× 1, 512

× 4

Conv4
[

3× 3, 256
3× 3, 256

]
× 2

1× 1, 256
3× 3, 256

1× 1, 1024

× 6

Conv5
[

3× 3, 512
3× 3, 512

]
× 2

1× 1, 512
3× 3, 512

1× 1, 2048

× 3

Last average pool/D(1000), D(10)/D(100), softmax
The structure of residual neural network with different depths (18, 50) is given in the table. The number of neurons
in the output layer is aligned with the quantity of categories present in the datasets.

4.3. Effect on the Covariance Gap

We initially conducted an investigation to determine whether the CDM can boost the
diversity among hidden neurons while simultaneously strengthening neuron collaboration
when the samples are from the same classes. We varied the weight λ of the regularization
term in Equations (12) and (26) from 0 to 0.4 in increments of 0.1. The average results of
experiments conducted on the MNIST and CIFAR-10 datasets are illustrated in Figure 3,
where FCNNs and ResNet50 with the regularizer applied on their topmost convolutional
layers were employed for the above datasets, respectively.

Significantly, the covariance gap, denoting the variance between the covariance and
the class-conditional covariance, displays a decreasing pattern as the number of iterations
rises when λ > 0. This trend indicates that CDM actively aids in decreasing regularizer
values, aligning with its intended design. Notably, with λ = 0, the regularizer value
remains static, consistently near zero but higher compared to other instances. More-
over, an increase in λ value correlates with a reduction in the regularizer over the same
training period.

4.4. Hyperparameter

To assess the impact of hyperparameters on experimental outcomes, we conducted
multiple experiments using exclusively FCNNs for the MNIST dataset and ResNet50
for the CIFAR-10 dataset. Specifically, for the CIFAR-10 dataset, the regularizer was
implemented on the topmost convolutional layer of ResNet50. The test results on the
original test set, which is devoid of artificial noise, are illustrated in Figure 4. Upon
observing the trends portrayed in Figure 4, it becomes apparent that a gradual increment
in the regularization term weight within a narrow range leads to improved classification
accuracy and a slight reduction in generalization error. However, if the weight is larger,
the classification performance may, conversely, begin to slightly decrease. Nonetheless,
the experimental findings suggest that the influence of hyperparameters on performance
remains relatively stable, providing a broad spectrum of choices. Given that CDM exhibits a
relatively minor covariance gap and performs quite well at λ = 0.3, subsequent experiments
will maintain a fixed λ at 0.3.

187

Entropy 2024, 26, 7

0 500 1000 1500 2000 2500 3000 3500 4000

Epochs(= 0.0)

-0.10

-0.05

0.00

0.05

0.10

0.15

0.20

0.25

0.30

C
o
v
a
r
i
a
n
c
e

Cov C-Cov Cov-gap

0 500 1000 1500 2000 2500 3000 3500 4000

Epochs(= 0.1)

-0.1

0.0

0.1

0.2

0.3

C
o
v
a
r
i
a
n
c
e

Cov C-Cov Cov-gap

0 500 1000 1500 2000 2500 3000 3500 4000

Epochs(= 0.2)

-0.1

0.0

0.1

0.2

0.3

C
o
v
a
r
i
a
n
c
e

Cov C-Cov Cov-gap

0 500 1000 1500 2000 2500 3000 3500 4000

Epochs(= 0.3)

-0.2

-0.1

0.0

0.1

0.2

0.3

0.4

C
o
v
a
r
i
a
n
c
e

Cov C-Cov Cov-gap

0 500 1000 1500 2000 2500 3000 3500 4000

Epochs(= 0.4)

-0.2

-0.1

0.0

0.1

0.2

0.3

0.4

C
o
v
a
r
i
a
n
c
e

Cov C-Cov Cov-gap

(a) MNIST

0 500 1000 1500 2000 2500 3000 3500 4000

Epochs(= 0.0)

0.0

0.1

0.2

0.3

C
o
v
a
r
i
a
n
c
e

Cov C-Cov Cov-gap

0 500 1000 1500 2000 2500 3000 3500 4000

Epochs(= 0.1)

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

C
o
v
a
r
i
a
n
c
e

Cov C-Cov Cov-gap

0 500 1000 1500 2000 2500 3000 3500 4000

Epochs(= 0.2)

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

C
o
v
a
r
i
a
n
c
e

Cov C-Cov Cov-gap

0 500 1000 1500 2000 2500 3000 3500 4000

Epochs(= 0.3)

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

C
o
v
a
r
i
a
n
c
e

Cov C-Cov Cov-gap

0 500 1000 1500 2000 2500 3000 3500 4000

Epochs(= 0.4)

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

C
o
v
a
r
i
a
n
c
e

Cov C-Cov Cov-gap

(b) CIFAR-10

Figure 3. Given the values of λ in the range [0, 0.4], the changes in covariance (Cov), class-conditional
covariance (C-Cov), and the covariance gap (Cov-gap) with increasing training iterations on
(a) MNIST and (b) CIFAR-10 datasets.

188

Entropy 2024, 26, 7

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
0.960

0.965

0.970

0.975

0.980

A
c
c
u
r
a
c
y

Training Accuracy

Test Accuracy

(a) MNIST

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40

0.90

0.92

0.94

0.96

0.98

A
c
c
u
r
a
c
y

Training Accuracy

Test Accuracy

(b) CIFAR-10

Figure 4. The changes in classification accuracy by varying the value of λ on (a) MNIST and
(b) CIFAR-10 datasets.

4.5. Experiment on Fully Connected Layer

The purpose of this experiment is to evaluate the effect of CDM in contrast to other
regularization techniques when applied to the fully connected layer. Throughout all method
experiments, the Adam algorithm was utilized for training, the initial learning rate was set
at 0.001, and a consistent batch size of 128 was maintained. Comparative experiments were
conducted on both the MNIST and CIFAR-10 datasets using images with added noise. The
final results of the experiment were averaged with the accuracy of five experiments and are
recorded in Table 2.

The experimental results, as presented in Table 2, demonstrate that CDM achieves
significant test accuracy and the smallest train–test accuracy gap on both the MNIST
and CIFAR-10 datasets. Specifically, in the case of MNIST, CDM yielded an impressive
1.8 improvement in test accuracy and simultaneously reduced the train–test accuracy gap
by 0.8 when contrasted to suboptimal methods. Similarly, for CIFAR-10, CDM exhibits a
remarkable 2.6 increase in test accuracy, accompanied by a substantial reduction of 1.9 in
the train–test accuracy gap. It is noteworthy that CDM’s impact on network generalization
becomes progressively more pronounced as the dataset’s complexity increases.

Furthermore, it is pertinent to mention that both DeCov and CDM share the same
unsupervised disentanglement term. However, DeCov as well as EDM do not consistently
enhance performance. For example, on the MNIST dataset, their test accuracy is marginally
lower compared to methods with no regularization. This could be due to the dataset’s
simplicity, where mandating independence among hidden neurons disrupts their intrinsic
relationships. Therefore, attributing the superior performance of CDM to the role of
the supervised term is a reasonable and well-supported conclusion, indicating that this
supervision term can help extract beneficial clustering information for classification.

Table 2. Compar tive experiment of different datasets on the full connection layer.

Method
MNIST CIFAR-10

Train Test Train–Test Train Test Train–Test

None 97.52 ±0.14 92.10 ± 0.67 5.42 95.58 ± 0.33 71.33 ± 1.48 24.25
Dropout 97.58 ± 0.06 91.41 ± 0.58 6.17 96.99 ± 0.35 75.20 ± 0.40 21.78
DeCov 97.78 ± 0.10 91.35 ± 1.11 6.42 95.81 ± 0.16 74.35 21.42
EDM 98.18 ± 0.05 91.95 ± 0.07 6.23 96.26 ± 0.27 75.23 ± 1.01 21.03
CDM 98.24 ± 0.12 93.99 ± 0.16 4.25 96.95 ± 0.23 77.83 ± 0.30 19.12

The average accuracy of five repeated tests was used as the final result. Best scores are shown in bold.

4.6. Experiments on Convolutional Layer

We applied CDM, DeCov, and EDM to the final convolutional layer of the network,
comparing CDM with other regularization methods in terms of network performance.
The training setups, such as learning rate and batch size, remained consistent with those

189

Entropy 2024, 26, 7

used for fully connected layers. We explored different depths of residual neural networks
on the CIFAR-10 dataset with added artificial noise. The results, specifically the average
classification accuracy derived from five experiments, are documented in Table 3.

As shown in Table 3, CDM consistently achieved the highest test accuracy and the
smallest train–test accuracy gap in all comparative experiments, affirming its effective im-
pact on enhancing network generalization, particularly for complex datasets. Moreover, it is
worth noting that the overall performance of all regularization methods based on ResNet18
appears more similar compared to those using ResNet50, which could be attributed to
the ResNet18 model’s simplicity and reduced susceptibility to overfitting, leading to a
relatively constrained impact of regularization. Moreover, at times, the performance of
Decov and EDM falls even below that of the Dropout method, especially when confronted
with more intricate network structures. Given that the regularization terms in Decov and
EDM exclusively encompass unsupervised elements, the superior performance of CDM
can be credited to its incorporation of a supervised term, thereby preventing the disruption
of valuable classification information.

Table 3. Comparative experiment of different methods on CIFAR-10 dataset with regularizers applied
on the topmost convolutional layer of ResNet18 and ResNet50.

Method
ResNet18 ResNet50

Train Test Train–Test Train Test Train–Test

None 97.12 ± 0.04 76.94 ± 0.07 20.17 97.10 ± 0.04 78.7 ± 0.09 18.40
Dropout 97.22 ± 0.02 80.05 ± 0.19 17.16 97.62 ± 0.02 81.65 ± 0.08 15.96
DeCov 97.34 ± 0.09 80.19 ± 0.12 17.15 96.81 ±0.06 79.98 ± 0.10 16.82
EDM 97.17 ± 0.07 79.99 ± 0.11 17.18 96.94 ± 0.05 80.12 ± 0.10 16.81
CDM 97.32 ± 0.04 81.14 ± 0.09 16.17 97.09 ± 0.06 82.23 ± 0.08 14.85

The average accuracy of five repeated tests was used as the final result. Best scores are shown in bold.

4.7. Experiments with a Comparatively Small Training Dataset

In practical applications, the relative scarcity of training samples is a commonly
encountered issue, especially in the case of deep network structures, which can lead to
problems related to overfitting. Specifically, the classification task on the mini-ImageNet
dataset exemplifies such a challenge, as each class among the 100 classes comprises only
500 image samples for training. This characteristic renders learning methods applied to
this dataset particularly susceptible to overfitting.

To further assess the effectiveness of CDM in addressing this challenge, we applied it
to pretrained Inception and MobileNet models, both of which have demonstrated state-of-
the-art (SOTA) results on the ImageNet dataset. A comprehensive comparative analysis of
experimental results was conducted both before and after the addition of CDM on mini-
ImageNet. Additionally, noise was introduced into the test images. As depicted in Table 4,
it is evident that all methods exhibit a certain degree of overfitting. However, the methods
incorporating CDM result in improved classification accuracy for all methods compared
to the original approach, with increases of 1.7 and 4.72 points, respectively. Concurrently,
the integration of CDM reduces generalization errors by 3.53 and 2.31 points, respectively.
The comparison with the SOTA methods strongly demonstrates the effectiveness of CDM
regularization.

Table 4. Applying CDM to the topmost layer of Inception and MobileNet methods: a performance
comparison before and after CDM implementation.

Method
Inception MobileNet

Train Test Train–Test Train Test Train–Test

Before 93.02 ± 0.05 65.75 ± 0.08 27.27 90.60 ± 0.05 61.64 ± 0.06 28.96
After 91.19 ± 0.09 67.45 ± 0.11 23.74 93.01 ± 0.03 66.36 ± 0.06 26.65

The average accuracy of five repeated tests was used as the final result. Best scores are shown in bold.

190

Entropy 2024, 26, 7

5. Conclusions

Overfitting is one of the key factors that can affect the performance of DNNs. This
paper proposes a new regularization technique called CDM to address the overfitting
problem in DNNs. Experimental results demonstrate that CDM consistently enhances
network generalization while maintaining or improving network expressiveness, thus
preventing overfitting. Furthermore, CDM is easily applicable and can be added to any
layer of existing networks.

While our method performs well, there are also some limitations. For example, the
combination effect of CDM with other regularization methods is still worth investigating.

Author Contributions: T.L., validation, visualization, writing—original draft, writing—review and
editing; C.Z., conceptualization, formal analysis, writing—review and editing; X.D., writing—review
and editing. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the National Natural Science Foundation of China (Project Number
62166016) and the Hainan Provincial Natural Science Foundation of China (Project Number 119MS004).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The paper itself contains all the information required to assess the
conclusions. Additional data related to this paper may be requested from the corresponding author.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [CrossRef] [PubMed]
2. Martin, C.H.; Mahoney, M.W. Implicit self-regularization in deep neural networks: Evidence from random matrix theory and

implications for learning. J. Mach. Learn. Res. 2021, 22, 7479–7551.
3. Bartlett, P. The sample complexity of pattern classification with neural networks: The size of the weights is more important than

the size of the network. IEEE Trans. Inf. Theory 1998, 44, 525–536. [CrossRef]
4. Bartlett, P.L.; Mendelson, S. Rademacher and Gaussian complexities: Risk bounds and structural results. J. Mach. Learn. Res.

2002, 3, 463–482.
5. Hoerl, A.E.; Kennard, R.W. Ridge Regression: Biased Estimation for Nonorthogonal Problems. Technometrics 1970, 12, 55–67.

[CrossRef]
6. Willoughby, R.A. Solutions of Ill-Posed Problems (A. N. Tikhonov and V. Y. Arsenin). SIAM Rev. 1979, 21, 266–267. [CrossRef]
7. Krogh, A.; Hertz, J. A simple weight decay can improve generalization. Adv. Neural Inf. Process. Syst. 1991, 4.
8. Srivastava, N.; Hinton, G.; Krizhevsky, A.; Sutskever, I.; Salakhutdinov, R. Dropout: A simple way to prevent neural networks

from overfitting. J. Mach. Learn. Res. 2014, 15, 1929–1958.
9. Neal, B.; Mittal, S.; Baratin, A.; Tantia, V.; Scicluna, M.; Lacoste-Julien, S.; Mitliagkas, I. A Modern Take on the Bias-Variance

Tradeoff in Neural Networks. In Proceedings of the ICML 2019 Workshop on Identifying and Understanding Deep Learning
Phenomena, Long Beach, CA, USA, 15 August 2019.

10. Belkin, M.; Hsu, D.; Ma, S.; Mandal, S. Reconciling modern machine-learning practice and the classical bias–variance trade-off.
Proc. Natl. Acad. Sci. USA 2019, 116, 15849–15854. [CrossRef]

11. Cogswell, M.; Ahmed, F.; Girshick, R.; Zitnick, L.; Batra, D. Reducing overfitting in deep networks by decorrelating representations.
arXiv 2015, arXiv:1511.06068.

12. Gu, S.; Hou, Y.; Zhang, L.; Zhang, Y. Regularizing Deep Neural Networks with an Ensemble-based Decorrelation Method. In
Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18), Stockholm, Sweden,
13–19 July 2018; pp. 2177–2183.

13. Yao, S.; Hou, Y.; Ge, L.; Hu, Z. Regularizing Deep Neural Networks by Ensemble-based Low-Level Sample-Variances Method.
In Proceedings of the 28th ACM International Conference on Information and Knowledge Management, Beijing, China,
3–7 November 2019; pp. 1111–1120.

14. Achille, A.; Soatto, S. Emergence of invariance and disentanglement in deep representations. J. Mach. Learn. Res. 2018,
19, 1947–1980.

15. Liu, Y.; Yao, X. Ensemble learning via negative correlation. Neural Netw. 1999, 12, 1399–1404. [CrossRef] [PubMed]
16. Alhamdoosh, M.; Wang, D. Fast decorrelated neural network ensembles with random weights. Inf. Sci. 2014, 264, 104–117.

[CrossRef]
17. Wang, X.; Chen, H.; Tang, S.; Wu, Z.; Zhu, W. Disentangled representation learning. arXiv 2022, arXiv:2211.11695.

191

Entropy 2024, 26, 7

18. Carbonneau, M.A.; Zaidi, J.; Boilard, J.; Gagnon, G. Measuring disentanglement: A review of metrics. arXiv 2020,
arXiv:2012.09276.

19. Bian, Y.; Chen, H. When does diversity help generalization in classification ensembles? IEEE Trans. Cybern. 2021, 52, 9059–9075.
[CrossRef]

20. Ayinde, B.O.; Inanc, T.; Zurada, J.M. Regularizing deep neural networks by enhancing diversity in feature extraction. IEEE Trans.
Neural Netw. Learn. Syst. 2019, 30, 2650–2661. [CrossRef]

21. Kingma, D.P.; Welling, M. Auto-encoding variational bayes. arXiv 2013, arXiv:1312.6114.
22. Higgins, I.; Matthey, L.; Pal, A.; Burgess, C.; Glorot, X.; Botvinick, M.; Mohamed, S.; Lerchner, A. beta-vae: Learning basic visual

concepts with a constrained variational framework. In Proceedings of the International Conference on Learning Representations,
San Juan, Puerto Rico, 2–4 May 2016.

23. Zhou, Z.H. Ensemble Methods: Foundations and Algorithms; CRC Press: Boca Raton, FL, USA, 2012.
24. Zhang, C.; Hou, Y.; Song, D.; Ge, L.; Yao, Y. Redundancy of Hidden Layers in Deep Learning: An Information Perspective. arXiv

2020, arXiv:2009.09161.
25. Bartlett, P.; Maiorov, V.; Meir, R. Almost linear VC dimension bounds for piecewise polynomial networks. Adv. Neural Inf. Process.

Syst. 1998, 11. [CrossRef]
26. Bartlett, P.L.; Harvey, N.; Liaw, C.; Mehrabian, A. Nearly-tight VC-dimension and pseudodimension bounds for piecewise linear

neural networks. J. Mach. Learn. Res. 2019, 20, 2285–2301.
27. Yang, Y.; Yang, H.; Xiang, Y. Nearly Optimal VC-Dimension and Pseudo-Dimension Bounds for Deep Neural Network Derivatives.

arXiv 2023, arXiv:2305.08466.
28. Dziugaite, G.K.; Roy, D.M. Computing nonvacuous generalization bounds for deep (stochastic) neural networks with many more

parameters than training data. arXiv 2017, arXiv:1703.11008.
29. Neyshabur, B.; Bhojanapalli, S.; McAllester, D.; Srebro, N. Exploring generalization in deep learning. Adv. Neural Inf. Process.

Syst. 2017, 30.
30. Neyshabur, B.; Bhojanapalli, S.; Srebro, N. A pac-bayesian approach to spectrally-normalized margin bounds for neural networks.

arXiv 2017, arXiv:1707.09564.
31. Neyshabur, B.; Tomioka, R.; Srebro, N. Norm-based capacity control in neural networks. In Proceedings of the Conference on

Learning Theory, PMLR, Paris, France, 3–6 July 2015; pp. 1376–1401.
32. Bartlett, P.L.; Foster, D.J.; Telgarsky, M.J. Spectrally-normalized margin bounds for neural networks. Adv. Neural Inf. Process. Syst.

2017, 30.
33. Arora, S.; Du, S.S.; Hu, W.; Li, Z.; Salakhutdinov, R.R.; Wang, R. On exact computation with an infinitely wide neural net. Adv.

Neural Inf. Process. Syst. 2019, 32.
34. Daniely, A.; Granot, E. Generalization bounds for neural networks via approximate description length. Adv. Neural Inf. Process.

Syst. 2019, 32.
35. Liang, T.; Poggio, T.; Rakhlin, A.; Stokes, J. Fisher-rao metric, geometry, and complexity of neural networks. In Proceedings

of the The 22nd International Conference on Artificial Intelligence and Statistics, PMLR, Okinawa, Japan, 16–18 April 2019;
pp. 888–896.

36. Jiang, Y.; Neyshabur, B.; Mobahi, H.; Krishnan, D.; Bengio, S. Fantastic generalization measures and where to find them. arXiv
2019, arXiv:1912.02178.

37. Kumar, A.; Sattigeri, P.; Balakrishnan, A. Variational inference of disentangled latent concepts from unlabeled observations. arXiv
2017, arXiv:1711.00848.

38. Chen, R.T.; Li, X.; Grosse, R.B.; Duvenaud, D.K. Isolating sources of disentanglement in variational autoencoders. Adv. Neural Inf.
Process. Syst. 2018, 31.

39. Wan, L.; Zeiler, M.; Zhang, S.; Le Cun, Y.; Fergus, R. Regularization of neural networks using dropconnect. In Proceedings of the
International Conference on Machine Learning, PMLR, Atlanta, GA, USA, 17–19 June 2013; pp. 1058–1066.

40. Bengio, Y.; Bergstra, J. Slow, decorrelated features for pretraining complex cell-like networks. Adv. Neural Inf. Process. Syst. 2009,
22.

41. Bao, Y.; Jiang, H.; Dai, L.; Liu, C. Incoherent training of deep neural networks to de-correlate bottleneck features for speech
recognition. In Proceedings of the 2013 IEEE International Conference on Acoustics, Speech and Signal Processing, Vancouver,
BC, Canada, 26–31 May 2013; IEEE: Piscataway Township, NJ, USA; pp. 6980–6984.

42. Szegedy, C.; Vanhoucke, V.; Ioffe, S.; Shlens, J.; Wojna, Z. Rethinking the inception architecture for computer vision. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 2818–2826.

43. Howard, A.G.; Zhu, M.; Chen, B.; Kalenichenko, D.; Wang, W.; Weyand, T.; Andreetto, M.; Adam, H. Mobilenets: Efficient
convolutional neural networks for mobile vision applications. arXiv 2017, arXiv:1704.04861.

44. Lecun, Y.; Bottou, L.; Bengio, Y.; Haffner, P. Gradient-based learning applied to document recognition. Proc. IEEE 1998,
86, 2278–2324. [CrossRef]

45. Krizhevsky, A.; Hinton, G. Learning multiple layers of features from tiny images. In Handbook of Systemic Autoimmune Diseases;
Univeristy of Toronto: Toronto, ON, Canada, 2009; Volume 1 .

46. Ravi, S.; Larochelle, H. Optimization as a model for few-shot learning. In Proceedings of the International Conference on
Learning Representations, San Juan, Puerto Rico, 2–4 May 2016.

192

Entropy 2024, 26, 7

47. Zhang, Y.; Wang, C.; Deng, W. Relative uncertainty learning for facial expression recognition. Adv. Neural Inf. Process. Syst. 2021,
34, 17616–17627.

48. Zhang, Y.; Wang, C.; Ling, X.; Deng, W. Learn From All: Erasing Attention Consistency for Noisy Label Facial Expression
Recognition. arXiv 2022, arXiv:cs.CV/2207.10299.

49. Krizhevsky, A.; Sutskever, I.; Hinton, G.E. ImageNet classification with deep convolutional neural networks. Commun. ACM
2017, 60, 84–90. [CrossRef]

50. Paszke, A.; Gross, S.; Massa, F.; Lerer, A.; Bradbury, J.; Chanan, G.; Killeen, T.; Lin, Z.; Gimelshein, N.; Antiga, L.; et al. Pytorch:
An imperative style, high-performance deep learning library. Adv. Neural Inf. Process. Syst. 2019, 32.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

193

Citation: Zhou, J.; Zeng, X.; Zou, Y.;

Zhu, H. Position-Wise Gated

Res2Net-Based Convolutional

Network with Selective Fusing for

Sentiment Analysis. Entropy 2023, 25,

740. https://doi.org/10.3390/

e25050740

Academic Editors: Badong Chen,

Luis Gonzalo Sánchez Giraldo,

Shuangming Yang and Shujian Yu

Received: 25 February 2023

Revised: 23 April 2023

Accepted: 28 April 2023

Published: 30 April 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

entropy

Article

Position-Wise Gated Res2Net-Based Convolutional Network
with Selective Fusing for Sentiment Analysis
Jinfeng Zhou , Xiaoqin Zeng *, Yang Zou and Haoran Zhu

College of Computer and Information, Hohai University, Nanjing 210098, China; zhoujinfeng@hhu.edu.cn (J.Z.)
* Correspondence: xzeng@hhu.edu.cn

Abstract: Sentiment analysis (SA) is an important task in natural language processing in which
convolutional neural networks (CNNs) have been successfully applied. However, most existing
CNNs can only extract predefined, fixed-scale sentiment features and cannot synthesize flexible,
multi-scale sentiment features. Moreover, these models’ convolutional and pooling layers gradually
lose local detailed information. In this study, a new CNN model based on residual network technology
and attention mechanisms is proposed. This model exploits more abundant multi-scale sentiment
features and addresses the loss of locally detailed information to enhance the accuracy of sentiment
classification. It is primarily composed of a position-wise gated Res2Net (PG-Res2Net) module
and a selective fusing module. The PG-Res2Net module can adaptively learn multi-scale sentiment
features over a large range using multi-way convolution, residual-like connections, and position-wise
gates. The selective fusing module is developed to fully reuse and selectively fuse these features for
prediction. The proposed model was evaluated using five baseline datasets. The experimental results
demonstrate that the proposed model surpassed the other models in performance. In the best case,
the model outperforms the other models by up to 1.2%. Ablation studies and visualizations further
revealed the model’s ability to extract and fuse multi-scale sentiment features.

Keywords: sentiment analysis; deep neural networks; convolutional neural network; ResNet; Res2Net

1. Introduction

Sentiment analysis (SA) is one of the most fundamental tasks in the field of natural
language processing (NLP). With the support of massive subjective-opinion data and the
development of artificial neural networks (ANNs), various neural networks, including
recurrent neural networks (RNNs), memory networks, and convolutional neural networks
(CNNs), have been widely applied in this field. In particular, following the remarkable
success of CNNs across numerous fields, including computer vision, speech recognition,
and signal processing, they have also been successfully applied to NLP tasks [1–4].

One of the significant advantages of CNNs in SA is that they naturally learn coarse-to-
fine multi-scale sentiment features using a stack of convolutional layers. Similarly, the text
structure is hierarchical, and sentiment occurs in natural language in a multi-scale form.
Most CNN-based models employ convolution filters with fixed window sizes to extract
fixed-scale sentiment features [5–7]. However, the formation of a scale of sentiment features
requires the flexible synthesis of various small-scale sentiment features. For example,
the sentiment feature synthesis of “nice to talk to without being patronizing” (as shown in
Figure 1a) preferably requires the sentiment features of “nice” (1-scale) and “without being
patronizing” (3-scale). If the input feature scale is 1, the positive sentiment feature of “nice”
and the negative sentiment feature of “patronizing” will be used as part of the input, which
may introduce noise to the new sentiment feature. If the input feature scale is 3, the
sentiment features of “He’s nice to” and “nice to talk” will be used as part of the input, which
may add a large amount of unnecessary information to “nice” and weaken the response of

Entropy 2023, 25, 740. https://doi.org/10.3390/e25050740 https://www.mdpi.com/journal/entropy194

Entropy 2023, 25, 740

the new sentiment feature to “nice”. Therefore, the interactions and fusion of multi-scale
sentiment features are very important for learning large-scale sentiment features.

Entropy 2023, 25, 740 2 of 22

scale is 3, the sentiment features of “He’s nice to” and “nice to talk” will be used as part of

the input, which may add a large amount of unnecessary information to “nice” and

weaken the response of the new sentiment feature to “nice”. Therefore, the interactions

and fusion of multi-scale sentiment features are very important for learning large-scale

sentiment features.

Figure 1. Impacts of multi-scale words and phrases on analyzing the sentiment of a text. (a) Limita-

tions of the use of fixed scales to extract sentiment features. (b) Importance of jointly determining

text sentiment by local sentiment words and phrases of different positions and scales.

Furthermore, the sentiment of a text is jointly determined by local sentiment words

or phrases of different positions and scales; conjunctions also play an important role. Most

traditional CNNs obtain a global text sentiment representation by stacking convolutional

and pooling layers [8–10]. This requires the resolution of two problems: fully using differ-

ent scales of sentiment features to generate the text sentiment representation and reducing

the loss of local detailed information in the convolution and pooling processes. Taking the

sentence—“Sillier, cuter, and shorter than the first (as best I remember), but still a very good time

at the cinema.”—as an example (as shown in Figure 1b), it has a positive global sentiment

polarity and contains conjunctions, words, and phrases of different sentiment polarities.

The source of its text sentiment should preferably include these features of 1-scale and 2-

scale that highlight the sentiment of “sillier”, “cuter”, “best”, and “very good”, as well as the

features that emphasize the semantics of “but”. For CNNs, if a text sentiment representa-

tion depends solely on the downstream layers, some information contained in small-scale

sentiment features may be lost. Therefore, it is helpful for a task-friendly text sentiment

representation to selectively reuse all scales of sentiment features.

Currently, there are two approaches to alleviate the above limitations: convolution

filters with various window sizes in a layer and densely connected layers [6,11,12]. The

first approach utilizes filters with different window sizes to extract multi-scale sentiment

features. However, it is difficult to find the optimized combination of different window

sizes. The interactions of sentiment features from different window sizes have also not

been fully exploited, resulting in an insufficient ability to learn multi-scale sentiment fea-

tures. A large-scale sentiment feature can be elegantly constructed through interactions

between various small-scale features without relearning redundant features. The second

approach can form a large-scale sentiment feature using various small-scale sentiment

features and gracefully reuse all scales of sentiment features using dense connections

[13,14]. However, this approach requires the stacking of multiple layers or blocks to obtain

multi-scale sentiment features over a large range, resulting in a sharp increase in memory

because of the dense connections. Recently, [15] proposed Res2Net in computer vision.

Residual-like connections may provide interactions among various small-scale sentiment

features to help synthesize large-scale sentiment features. However, these connections are

implemented by direct addition, which cannot optimally select the appropriate sentiment

features.

In this study, a new CNN-based model is proposed to adaptively learn more scales

of sentiment features and fuse them selectively into a task-friendly text sentiment repre-

sentation. Specifically, it comprises two important modules: a position-wise gated

Figure 1. Impacts of multi-scale words and phrases on analyzing the sentiment of a text. (a) Limita-
tions of the use of fixed scales to extract sentiment features. (b) Importance of jointly determining
text sentiment by local sentiment words and phrases of different positions and scales.

Furthermore, the sentiment of a text is jointly determined by local sentiment words or
phrases of different positions and scales; conjunctions also play an important role. Most
traditional CNNs obtain a global text sentiment representation by stacking convolutional
and pooling layers [8–10]. This requires the resolution of two problems: fully using different
scales of sentiment features to generate the text sentiment representation and reducing
the loss of local detailed information in the convolution and pooling processes. Taking
the sentence—“Sillier, cuter, and shorter than the first (as best I remember), but still a very
good time at the cinema.”—as an example (as shown in Figure 1b), it has a positive global
sentiment polarity and contains conjunctions, words, and phrases of different sentiment
polarities. The source of its text sentiment should preferably include these features of
1-scale and 2-scale that highlight the sentiment of “sillier”, “cuter”, “best”, and “very good”,
as well as the features that emphasize the semantics of “but”. For CNNs, if a text sentiment
representation depends solely on the downstream layers, some information contained in
small-scale sentiment features may be lost. Therefore, it is helpful for a task-friendly text
sentiment representation to selectively reuse all scales of sentiment features.

Currently, there are two approaches to alleviate the above limitations: convolution
filters with various window sizes in a layer and densely connected layers [6,11,12]. The
first approach utilizes filters with different window sizes to extract multi-scale sentiment
features. However, it is difficult to find the optimized combination of different window
sizes. The interactions of sentiment features from different window sizes have also not been
fully exploited, resulting in an insufficient ability to learn multi-scale sentiment features. A
large-scale sentiment feature can be elegantly constructed through interactions between
various small-scale features without relearning redundant features. The second approach
can form a large-scale sentiment feature using various small-scale sentiment features and
gracefully reuse all scales of sentiment features using dense connections [13,14]. However,
this approach requires the stacking of multiple layers or blocks to obtain multi-scale
sentiment features over a large range, resulting in a sharp increase in memory because of
the dense connections. Recently, [15] proposed Res2Net in computer vision. Residual-like
connections may provide interactions among various small-scale sentiment features to help
synthesize large-scale sentiment features. However, these connections are implemented by
direct addition, which cannot optimally select the appropriate sentiment features.

In this study, a new CNN-based model is proposed to adaptively learn more scales of
sentiment features and fuse them selectively into a task-friendly text sentiment representa-
tion. Specifically, it comprises two important modules: a position-wise gated Res2Net (PG-
Res2Net) module and a selective fusing module. First, each text is fed into the PG-Res2Net
module to obtain different scales of sentiment features over a large range. Each block
in the module uses multi-way convolution, residual-like connections, and position-wise
gates to implicitly learn multi-scale sentiment features within a certain range. Multi-way
convolution enables the module to stack a few residual blocks to obtain multi-scale sen-

195

Entropy 2023, 25, 740

timent features over a wide range. Residual-like connections also provide a bridge for
the interactions between multi-scale sentiment features. Position-wise gates optimize the
interactions. Furthermore, the selective fusing module integrates these sentiment features
to generate a task-friendly text sentiment representation. Specifically, its dense-like connec-
tions reuse these features, and its selection operation selects the appropriate information
from these features to generate a text sentiment representation. Finally, the text sentiment
representation is fed into a classifier for prediction. These two modules enable the model to
achieve competitive results on multiple SA datasets, particularly document-level datasets.

The major contributions of this work are as follows:

(1) This paper proposed a PG-Res2Net module to learn different scales of sentiment
features over a large range. In contrast to convolution filters with fixed window sizes
or dense connections for learning sentiment features, a single residual block in the
module can learn multi-scale sentiment features within a certain range. Essentially,
the module achieves the first selection of multi-scale features based on local statistics.

(2) Moreover, a selective fusing module is proposed to fully reuse and selectively fuse
all scales of sentiment features. This is the second selection of multi-scale sentiment
features based on global statistics. The module also effectively alleviates the loss of
local detailed information caused by the convolution operation.

(3) The model is extensively evaluated on five datasets. The experimental results demon-
strated the competitive performance of the model on these datasets. In the best case,
the model outperforms the other models by up to 1.2%. In addition, visualizations
and ablation studies demonstrated the effectiveness of the model.

The rest of this paper is organized as follows. Section 2 presents a brief survey of
related work. A detailed description of the proposed model and the knowledge relevant
to the model are presented in Section 3. Section 4 presents experimental results, ablation
studies, and visual analysis. Finally, Section 5 is the conclusion that summarizes the work
of this paper.

2. Related Work

SA is typically represented as a tuple (target, sentiment, opinion holder, and time). The
element target is represented as a tuple (category, entity, and aspect), and the element
sentiment is represented as a tuple (type, intensity, and opinion terms). Currently, most SA
methods focus on these tuples or part of their elements. For example, structured sentiment
analysis attempts to predict structured sentiment graphs by discovering all opinions and
focusing on the whole entire tuple of SA [16]. As another example, emotion cause analysis
is the detection of potential causes for certain emotional expressions in a text [17]. This is a
study of the tuple sentiment. In addition, many interactive correlations between different
elements can be shared by incorporating subtasks for handling combinations of different
elements. As examples, Fei [18] and Yan et al. [19] proposed unified frameworks for
aspect-based SA tasks. Our study focuses on the elements intensity and opinion terms within
the tuple sentiment using sentiment modeling. This section presents some multi-scale
sentiment modeling methods, including CNNs, residual networks (ResNets), and attention
mechanisms relevant to this study.

2.1. CNNs and ResNets in SA Tasks

CNNs are suitable for extracting text sentiment because they naturally correspond
to the multi-scale form of sentiment occurrence and the hierarchical structure of texts.
Generally, a filter with a fixed window size learns fixed-scale sentiment features. Kim [11]
first used multiple filters with different window sizes in a single convolutional layer to learn
the sentiment features at several fixed scales. Subsequently, CNNs developed more varieties
in SA. The effectiveness of the convolutional filters is an important factor in ensuring the
quality of the extracted features. To enhance the ability to extract important semantic
features, Yao and Cai [20] used the naïve Bayes algorithm to initialize convolutional filters
to identify the positions of important semantic information before training. The concept of

196

Entropy 2023, 25, 740

multi-scale was also developed. A new feature extraction method was proposed by Soni
et al. [21]. The method constructed a text as a three-dimensional paragraph matrix and
explicitly applied two-dimensional convolution operation to the matrix to obtain intra-
sentence and inter-sentence multi-scale features. Dependency trees model the syntactic
relationship between words and are used to improve the performance of models for SA.
Graph convolutional networks (GCNs), which are an adaptation of the CNNs for handling
unstructured data, can facilitate the handling of dependency trees. Zhang et al. [22] built
a universal-syntax GCN over the syntactic dependencies with labels to achieve the goal
of navigating richer syntax information for the best aspect-based SA robustness. With the
development of deep learning, several strategies and approaches have been proposed for
improving the ability of CNNs to extract sentiment features [23]. Of these, residual learning
is an important approach and has been applied to SA tasks to improve the ability of CNNs
to extract sentiment features. Conneau et al. [24] proposed VD-CNN, which is a pure
ResNet that uses up to 29 layers to extract more and larger-scale sentiment features with
minimal computational cost. Without relying solely on stacking convolutional layers, a
CNN with dense connections was proposed by Wang et al. [6] to reuse existing multi-scale
sentiment features and flexibly generate larger-scale features. Yan et al. [12] used a feature
extraction block based on a convolution operation and a feature extraction block with dense
connections as its feature extraction module, and their parallelism saved training time and
reduced training iterations.

However, the aforementioned models must predefine and optimize the window sizes
of convolutional filters, lack the interaction between sentiment features, or rely on deeper
networks to synthesize more and larger-scale sentiment features. In addition, most of these
models gradually lose more local information owing to convolution or pooling operations.

2.2. Attention Mechanisms in SA Tasks

Attention mechanisms are to simulate human attention and make models focus on task-
related information to reduce computational complexity and improve performance [25].
Many models have attached different attention mechanisms to solve a wide range of SA
tasks. An important role of attention mechanisms is to discover keywords and phrases
that strongly contribute to sentiment classification. Lee et al. [26] implemented a word
attention mechanism based on weakly supervised learning to identify keywords. Attention
mechanisms can also capture behaviors related to the syntactic and semantic structures of a
text [27]. Vaswani et al. [28] completely abandoned RNN and CNN structures and used
only a multi-head self-attention mechanism to learn global dependencies for generating a
text representation that is more relevant to semantics. Ambartsoumian and Popowich [29]
explored two methods for combining multi-head self-attention based on the analysis of the
characteristics of self-attention mechanisms and achieved competitive accuracy in multiple
SA tasks. Attention mechanisms have also been widely used to enhance the aspect–opinion
binding, which essentially solves aspect-based SA tasks. In order to pay more attention to
the opinion expressions of aspects, Tan et al. [30] constructed a multi-graph fusion network
based on GCNs and multiple attention mechanisms to exploit the syntax dependency
relation label information and the affective semantic information of words. In addition,
gating mechanisms, which control the flow of information through gating units according
to the needs of a specific task, are an implementation form of attention mechanisms. Xue
and Li [9] applied Tanh-ReLU gating units to the multi-scale sentiment features extracted by
the top layer of a CNN to accurately select aspect- or target-related sentiment information.
Liu et al. [31] used a convolutional layer and a gating mechanism before a pooling layer
for generating attention weights, which helped the pooling layer to find genuinely critical
features. Ren et al. [2] developed a gating mechanism similar to long short-term memory
(LSTM) networks to control the flow of information between convolutional layers and
improve the ability to extract features. Choi et al. [32] used gate mechanisms for the
automatic calculation of the importance degrees of sentences in documents.

197

Entropy 2023, 25, 740

3. Material and Methods
3.1. Task Modeling

The sentiment classification of texts can be formulated as follows: given an input text
S = {Wrd1, Wrd2 . . . WrdL} comprising L words, where each element denotes a word of a
sentence, our task is to construct a sentiment classifier that predicts the whole sentiment
polarity y∈O of S, where O = {O1, O2, · · ·OC} denotes the sentiment categories of the
current task.

3.2. Overview

This section presents the novel and effective model, which is fundamentally designed
to obtain text sentiment representations from multi-scale sentiment features at a wide range.
The creditable multi-scale sentiment features achieved through the interactive fusion of
existing features provide the actual meaning of every token in optimized contexts. Then,
high-quality text sentiment representations generated through selectively fusing all scales of
sentiment features better retain sentiment information for improved sentiment prediction.

As illustrated in Figure 2, the framework of the model is divided into four processing
parts. First, an embedding layer and a convolution block are used to map the text into a text
matrix. The text matrix is then fed into a position-wise gated Res2Net (PG-Res2Net) module
to obtain different levels of sentiment representations, each of which comprises a certain
range of multi-scale sentiment features. Subsequently, the text matrix and these sentiment
representations are sent to a selective fusing module through dense-like connections. The
selective fusing mechanism of the module is applied to selectively fuse all sentiment features
in these representations into a text sentiment representation. Finally, the representation is
sent into a classifier for prediction.

Entropy 2023, 25, 740 5 of 22

sentiment features extracted by the top layer of a CNN to accurately select aspect- or tar-

get-related sentiment information. Liu et al. [31] used a convolutional layer and a gating

mechanism before a pooling layer for generating attention weights, which helped the

pooling layer to find genuinely critical features. Ren et al. [2] developed a gating mecha-

nism similar to long short-term memory (LSTM) networks to control the flow of infor-

mation between convolutional layers and improve the ability to extract features. Choi et

al. [32] used gate mechanisms for the automatic calculation of the importance degrees of

sentences in documents.

3. Material and Methods

3.1. Task Modeling

The sentiment classification of texts can be formulated as follows: given an input text

S = {Wrd1, Wrd2 … WrdL} comprising L words, where each element denotes a word of a

sentence, our task is to construct a sentiment classifier that predicts the whole sentiment

polarity y∈O of S, where 𝑶 ൌ ሼ𝑂ଵ,𝑂ଶ,⋯𝑂େሽ denotes the sentiment categories of the cur-

rent task.

3.2. Overview

This section presents the novel and effective model, which is fundamentally designed

to obtain text sentiment representations from multi-scale sentiment features at a wide

range. The creditable multi-scale sentiment features achieved through the interactive fu-

sion of existing features provide the actual meaning of every token in optimized contexts.

Then, high-quality text sentiment representations generated through selectively fusing all

scales of sentiment features better retain sentiment information for improved sentiment

prediction.

As illustrated in Figure 2, the framework of the model is divided into four processing

parts. First, an embedding layer and a convolution block are used to map the text into a

text matrix. The text matrix is then fed into a position-wise gated Res2Net (PG-Res2Net)

module to obtain different levels of sentiment representations, each of which comprises a

certain range of multi-scale sentiment features. Subsequently, the text matrix and these

sentiment representations are sent to a selective fusing module through dense-like con-

nections. The selective fusing mechanism of the module is applied to selectively fuse all

sentiment features in these representations into a text sentiment representation. Finally,

the representation is sent into a classifier for prediction.

Figure 2. Overview framework of the proposed model.

Figure 2. Overview framework of the proposed model.

3.3. Text Representation

Given a text {Wrd1, Wrd2 . . . WrdL} of length L, each word is first transformed into a
word vector. Let xi ∈ Rd0 denote the d0-dimensional pre-trained word vector of Wrdi, and
the text is represented as an embedding matrix X by an embedding layer:

X =
[
x1, · · · , xi, · · · xL

]
d0×L, (1)

Using pre-trained word vectors can improve the performance in the absence of a large
supervised training set [33].

To facilitate the operation of the residual blocks in the subsequent PG-Res2Net module,
a convolution block projects the feature dimension of X from d0 to d and outputs a text
matrix X0 ∈ Rd×L, which is formulated as follows:

X0 = ReLU
(

BN
(

conv
(

X, W0
)))

(2)

198

Entropy 2023, 25, 740

where conv(•) is a 1D convolution operation, BN(•) is batch normalization [34], and ReLU
is a rectified linear unit [35]. W0 ∈ Rd×d0×1 is the learnable weight.

3.4. PG-Res2Net Module

Conventional CNN-based models lack the interaction between multi-scale senti-
ment features, and the scale range of the sentiment features relies solely on the network
depth of these models. Following Res2Net and its variants in computer vision and other
fields [15,36], a PG-Res2Net module was proposed for SA tasks. It has a strong ability to
effectively and efficiently learn more and larger-scale sentiment features. For comparison,
the structures of the residual blocks in the Res2Net and PG-Res2Net modules are illustrated
in Figure 3a,b, respectively. Notably, the number of convolution ways S is set to 4, 1 × 1
denotes a 2D convolution with window size 1 × 1, and “1” denotes a 1D convolution with
window size 1. “FC” is the abbreviation for “Fully-Connected Layer”. As shown in the two
images, the most prominent difference between the two modules is that the residual-like
connection between the two convolution ways in the Res2Net module is direct addition,
whereas the residual-like connection in the PG-Res2Net module has a gate before addition.
Different positions in the same text have different optimal scales to form new scale features.
We expect that the gating mechanism gives priority to features at these optimal scales and
suppresses less relevant features and then enhances the quality of new scale features.

Entropy 2023, 25, 740 7 of 22

Figure 3. Structures of residual blocks in the two modules: (a) Res2Net and (b) PG-Res2Net.

As shown in the upper part of Figure 3b, for residual block i, its input Xi−1 is first

compressed by a convolution sub-block to reduce the computational cost and avoid over-

fitting. The calculation of the sub-block is as follows:

𝑿𝒓𝒆𝒅
𝒊 ൌ 𝑅𝑒𝐿𝑈 ൬𝐵𝑁 ቀ𝑐𝑜𝑛𝑣൫𝑿𝒊ି𝟏,𝑾𝒓𝒆𝒅

𝒊 ൯ቁ൰, (3)

where 𝑿𝒓𝒆𝒅
𝒊 ∈ ℝሺௗ ⁄ ሻൈ denotes the output of the sub-block, r is the dimension reduction

ratio, and 𝑾𝒓𝒆𝒅
𝒊 is the learnable weight. Notably, 𝑖 ∈ ሾ1,𝐷ሿ, where D is the number of re-

sidual blocks in the PG-Res2Net module.

Subsequently, 𝑿𝒓𝒆𝒅
𝒊 is fed into S convolution ways, respectively. As shown in Figure

3a,b, unlike the original Res2Net in computer vision tasks, 𝑿𝒓𝒆𝒅
𝒊 is not grouped because

text semantics requires a complete feature space. The output 𝒀𝒋
𝒊 ∈ ℝሺௗ ⁄ ሻൈ of way j is de-

rived as follows:

𝒀𝒋
𝒊 ൌ

⎩
⎪
⎨

⎪
⎧

𝑿𝒓𝒆𝒅
𝒊 , 𝑗 ൌ 0

𝑅𝑒𝐿𝑈 ൬𝐵𝑁 ቀ𝑐𝑜𝑛𝑣൫𝑿𝒓𝒆𝒅
𝒊 ,𝑾𝒋

𝒊൯ቁ൰ , 𝑗 ൌ 1

𝑅𝑒𝐿𝑈 ൬𝐵𝑁 ቀ𝑐𝑜𝑛𝑣൫𝑿𝒓𝒆𝒅
𝒊 𝒁𝒋ି𝟏

𝒊 ,𝑾𝒋
𝒊൯ቁ൰ , 1 ൏ 𝑗 𝑆

 (4)

Figure 3. Structures of residual blocks in the two modules: (a) Res2Net and (b) PG-Res2Net.

199

Entropy 2023, 25, 740

As shown in the upper part of Figure 3b, for residual block i, its input Xi−1 is first com-
pressed by a convolution sub-block to reduce the computational cost and avoid overfitting.
The calculation of the sub-block is as follows:

Xi
red = ReLU

(
BN
(

conv
(

Xi−1, Wi
red

)))
, (3)

where Xi
red ∈ R(d/r)×L denotes the output of the sub-block, r is the dimension reduction

ratio, and Wi
red is the learnable weight. Notably, i ∈ [1, D], where D is the number of

residual blocks in the PG-Res2Net module.
Subsequently, Xi

red is fed into S convolution ways, respectively. As shown in Figure 3a,b,
unlike the original Res2Net in computer vision tasks, Xi

red is not grouped because text
semantics requires a complete feature space. The output Yi

j ∈ R(d/r)×L of way j is derived
as follows:

Yi
j =

Xi
red, j = 0

ReLU
(

BN
(

conv(Xi
red, Wi

j)
))

, j = 1

ReLU
(

BN
(

conv(Xi
red + Zi

j−1, Wi
j)
))

, 1 < j ≤ S

(4)

Zi
j = Yi

j ⊗ ai
j, (5)

where Zi
j ∈ R(d/r)×L is the amount of Yi

j flowing into way j + 1 through the position-

wise gate ai
j, and ⊗ denotes position-wise multiplication. Wi

j ∈ R(d/r)×(d/r)×3 is the
learnable weight. To improve the flexibility of the residual block in synthesizing a large-
scale feature from various small-scale features, Zi

j is implemented using a position-wise
gate. Its operation is illustrated in the lower part of Figure 3b. The gate considers the
statistics of both Xi

red and Yi
j−1 as references and prioritizes each position of Yi

j−1. These
priorities can highlight the sentiment information relevant to the feature extraction of way j
and suppress less relevant information. Particularly, the information from Xi

red and Yi
j−1 is

aggregated to generate four independent feature descriptors: Fi
Y,j−1,avg, Fi

Y,j−1,max, Fi
X,avg,

and Fi
X,max. The calculation process is as follows:

Fi
Y,j−1,avg = ReLU

(
Wi

Y,avg,j−1, AvgPool
(

Yi
j−1

)
+ bi

Y,avg,j−1

)
(6)

Fi
Y,j−1,max = ReLU

(
Wi

Y,max,j−1MaxPool
(

Yi
j−1

)
+ bi

Y,max,j−1

)
(7)

where AvgPool and MaxPool are the average-pooling and max-pooling operations in the
feature dimension, respectively. Wi

Y,avg,j−1 ∈ R(L/γ)×L, Wi
Y,max,j−1 ∈ R(L/γ)×L, bi

Y,avg,j−1 ∈
RL/γ, and bi

Y,max,j−1 ∈ RL/γ are the learnable weights. γ is the reduction ratio for com-
pressing the dimensions of these descriptors and for avoiding overfitting. Fi

X,avg and Fi
X,max

are derived in a manner similar to Fi
Y,j−1,avg and Fi

Y,j−1,max. Notably, all of these are pro-
cessed separately because their functionalities are not symmetric. All descriptors are then
concatenated to produce ai

j ∈ RL as follows:

ai
j = Sigmoid

(
Wi

gate,j

[
Fi

Y,j−1,avg, Fi
Y,j−1,max, Fi

X,avg, Fi
X,max

]
+ bi

gate,j

)
(8)

where Wi
gate,j ∈ RL×(4∗L/γ) and bi

gate,j ∈ RL are the learnable weights. Sigmoid is an
activation function.

Finally, to better fuse the multi-scale sentiment features extracted by S convolution
ways into the sentiment representation Xi of residual block i and to ensure that the input
and output dimensions of the block are the same, these features are concatenated and fed
into a convolution sub-block. Xi is calculated as follows:

200

Entropy 2023, 25, 740

Xi = ReLU
(

BN
(

conv
([

Yi
1, Yi

2, · · · Yi
S

]
, Wi

fuse

))
+ Xi−1

)
(9)

where Wi
fuse ∈ Rd×(d∗S/r)×1 is the learnable weight.

There is a remarkable advantage of the PG-Res2Net module: Residual-like connections
and position gates provide better interactions between existing multi-scale sentiment
features to enhance the quality of new scale features. In fact, the first selection of multi-scale
sentiment features is completed based on the guidance of local statistics. A new scale
sentiment feature essentially stores the appropriate information contained in the different
scales of the sentiment features.

3.5. Selective Fusing Module

A residual block in the PG-Res2Net module generates a level of sentiment repre-
sentation containing multi-scale sentiment features within a limited range, and stacking
multiple residual blocks enables the production of different levels of sentiment repre-
sentations containing more multi-scale sentiment features over a large range. However,
only the sequential connections between these blocks may not flexibly and accurately
handle language composition. Drawing on the ideas of dense connections and selec-
tive kernel convolution [37,38], a selective fusing module was proposed. Its dense-like
connections reuse all existing sentiment representations, and its selection operation
adaptively adjusts the contribution of these sentiment representations to produce a text
sentiment representation.

As shown in Figure 4a, the module first takes as input all levels of sentiment repre-
sentations from the first convolution block and all residual blocks to generate a descriptor
zf ∈ Rd. The descriptor provides global information as a guide for selection. Its calculation
is formulated as follows:

zf = ReLU

(
BN

(
Wf

1 AvgPool

(
D

∑
l=0

Xl

)
+ bf

1

))
(10)

where Wf
1 ∈ Rd×d and bf

1 ∈ Rd are the learnable weights. The module then uses soft
selection, which is guided by zf, to select different sentiment information into a text rep-
resentation Xg ∈ Rd. This process is shown in Figure 4b. Particularly, Af ∈ R(D+1)×d is a
selective matrix, and any vector af

i ∈ Rd in the matrix represents the selective weights of Xi

in the feature dimension. The selective matrix is formulated as follows:

Af =
[
af

0, af
1, · · · , af

d

]
(D+1)×d

(11)

af
i = So f tmax

(
Wf

2,iz
f
)
=

exp
(

Wf
2,iz

f + b f
2,i

)

∑D
j=0 exp

(
Wf

2,jz
f + bf

2,j

) (12)

where Softmax is a normalized exponential function and exp(•) is an exponential function
based on the natural constant e. W f

2,i ∈ Rd×d and bf
1,i ∈ Rd are the learnable weights.

Finally, Xg is defined as follows:

Xg = AvgPool
(

Sum
([

X0, X1, · · ·XD
]
⊗Af

))
(13)

where ⊗ is a level-wise product, and Sum is a sum function on the level dimension.
Each sentiment representation contains a certain range of selected multi-scale senti-

ment features. Essentially, the selective fusing module performs the second selection for all
multi-scale sentiment features based on global statistics.

201

Entropy 2023, 25, 740

Entropy 2023, 25, 740 9 of 22

As shown in Figure 4a, the module first takes as input all levels of sentiment repre-

sentations from the first convolution block and all residual blocks to generate a descriptor

𝒛𝒇 ∈ ℝௗ. The descriptor provides global information as a guide for selection. Its calculation

is formulated as follows:

𝒛𝒇 ൌ 𝑅𝑒𝐿𝑈ቌ𝐵𝑁൭𝑾𝟏
𝒇𝐴𝑣𝑔𝑃𝑜𝑜𝑙 ൭𝑿𝒍

ୀ

൱ 𝒃𝟏
𝒇൱ቍ (10)

where 𝑾𝟏
𝒇 ∈ ℝௗൈௗ and 𝒃𝟏

𝒇 ∈ ℝௗ are the learnable weights. The module then uses soft se-

lection, which is guided by zf, to select different sentiment information into a text repre-

sentation 𝑿𝒈 ∈ ℝௗ. This process is shown in Figure 4b. Particularly, 𝑨𝒇 ∈ ℝሺାଵሻൈௗ is a

selective matrix, and any vector 𝒂𝒊
𝒇 ∈ ℝௗ in the matrix represents the selective weights of

Xi in the feature dimension. The selective matrix is formulated as follows:

𝑨𝒇 ൌ ൣ𝒂𝟎
𝒇 ,𝒂𝟏

𝒇 ,⋯ ,𝒂𝒅
𝒇൧
ሺାଵሻൈௗ

 (11)

𝒂𝒊
𝒇 ൌ 𝑆𝑜𝑓𝑡𝑚𝑎𝑥൫𝑾𝟐,𝒊

𝒇 𝒛𝒇൯ ൌ
𝑒𝑥𝑝൫𝑾𝟐,𝒊

𝒇 𝒛𝒇 𝒃𝟐,𝒊
𝒇 ൯

∑ 𝑒𝑥𝑝 ቀ𝑾𝟐,𝒋
𝒇 𝒛𝒇 𝒃𝟐,𝒋

𝒇 ቁ
ୀ

 (12)

where Softmax is a normalized exponential function and exp(•) is an exponential function

based on the natural constant e. 𝑾𝟐,𝒊
𝒇 ∈ ℝௗൈௗ and 𝒃𝟏,𝒊

𝒇 ∈ ℝௗ are the learnable weights. Fi-

nally, Xg is defined as follows:

𝑿𝒈 ൌ 𝐴𝑣𝑔𝑃𝑜𝑜𝑙 ቀ𝑆𝑢𝑚൫ሾ𝑿𝟎,𝑿𝟏,⋯𝑿𝑫ሿ𝑨𝒇൯ቁ (13)

where is a level-wise product, and Sum is a sum function on the level dimension.

Figure 4. Structure of the selective fusing module. It includes two key operations: (a) generating a

guidance descriptor and (b) fusing all sentiment representations based on the descriptor.

Each sentiment representation contains a certain range of selected multi-scale senti-

ment features. Essentially, the selective fusing module performs the second selection for

all multi-scale sentiment features based on global statistics.

Figure 4. Structure of the selective fusing module. It includes two key operations: (a) generating a
guidance descriptor and (b) fusing all sentiment representations based on the descriptor.

3.6. Objective Function

The classifier in our model was implemented using one fully-connected layer and
used Xg as its input. It outputs the prediction y ∈ Rc as follows:

y = So f tmax(WcXg + bc) (14)

where Wc ∈ RC×d and bc ∈ RC are the learnable weights. C is the number of sentiment
categories in a dataset. The cross-entropy function ε is used as the training objective and
minimized as follows:

ε = −
C

∑
i=1

ˆ
yi ∗ log(yi) (15)

where
ˆ
y ∈ RC denotes the referenced distribution.

In this model, the supervision signals are more directly propagated back to the up-
stream blocks through dense-like connections. Such connections force upstream blocks
to learn task-friendly sentiment features, also known as “deep supervision” [37]. Given a
sample, the gradient ∂ε

∂Xi is decomposed into D – i + 1 additive terms as follows:

∂ε

∂Xi =
∂ε

∂y
∂y

∂Xg
∂Xg

∂Xi +
∂ε

∂y
∂y

∂Xg
∂Xg

∂Xi+1
∂Xi+1

∂Xi + · · ·+ ∂ε

∂y
∂y

∂Xg
∂Xg

∂XD
∂XD

∂Xi (16)

=
∂ε

∂y
∂y

∂Xg

(
D

∑
m=i

∂Xg

∂Xm

m−1

∏
n=i

∂Xn+1

∂Xn

)
(17)

where i ∈ [0, D]. The first term of Equation (16) indicates that the supervision information
is directly propagated back to any upstream block i through only a few blocks or layers.
Therefore, the block is forced to learn directly under the supervision signals. These additive
terms also intuitively show that the training behavior is similar to the simultaneous training
of a series of neural networks, the structures of which range from shallow to deep. In this
manner, the learning of sentiment features is carried out under multiple supervision signals
from multiple neural networks. These features better consider both feature synthesis and
direct task purpose, which are reflected in the two terms inside and outside the brackets in
Equation (17).

202

Entropy 2023, 25, 740

4. Results and Discussion

This section first describes the five public datasets used in our experiments, as well as
the experimental setup and models for comparison. Next, the experimental results of the
proposed model and other models on these datasets are presented. Finally, the effectiveness
of the model is demonstrated through ablation studies and visualization.

4.1. Datasets

To verify the performance of the model in short-text-level and document-level SA
tasks, the experiments were conducted on five datasets. The binary-category short-text-
level datasets included MR [39] and SST-2 [40], and the multi-category document-level
datasets consisted of Yelp.F [7], Sports & Outdoors (S&O), and Toys & Games (T&G) from
SNAP [41].

• MR: The dataset was built by searching for movie reviews from review websites. In
this dataset, 10,662 samples are separated into two categories.

• SST-2: The dataset is a binary version of the Stanford Sentiment Treebank dataset,
which is an extension of MR. It comprises 9163 samples, which are separated into
two categories.

• Yelp.F: The Yelp review dataset was obtained from the 2015 Yelp Dataset Challenge.
It has five-star polarity labels. Each star label contains 130,000 training samples and
10,000 testing samples.

• S&O and T&G: These two datasets contain product reviews and metadata from SNAP,
including 142.8 million reviews from Amazon. In this study, only reviews of Sports &
Outdoor and Toy & Game products were used.

The complete details and statistics of these datasets are listed in Table 1. Note that
S&O and T&G have no standard training/test split, and their split refers to [42].

Table 1. Data statistics. Training, training set size; Testing, test set size; Classes, number of classes;
Avg-Len, average text length; Max-Len, maximum text length.

Dataset MR SST-2 Yelp.F S&O T&G

Training 7.1 K 6.9 K 650 K 294.0 K 165.4 K
Testing 3.6 K 1.8 K 50 K 1 K 1 K
Classes 2 2 5 5 5

Avg-Len 21 19 155 99 114
Max-Len 62 56 1214 6467 6224

4.2. Models for Comparison

To evaluate the performance of the model, it was compared with baseline and state-of-
the-art models. The baseline methods are as follows:

• Bi-LSTM [43] directly inputs the entire document as a single sequence into a bi-
directional LSTM network for SA.

• HAN [44] uses hierarchical attention networks to classify documents.
• Classical CNN [11] uses multiple filters with different window sizes in a single convo-

lutional layer to learn the sentiment features.
• VDCNN [24] uses only small convolution and pooling operations at the character level

with a depth of 29 convolutional layers.
• Word-DenseNet [45] is an adaptation of DenseNet for text classification.

The state-of-the-art models are as follows:

• HUSN [46] utilizes user review habits to enhance an LSTM-based hierarchical neural
network for SA.

• CAHAN [47] is a modification of HAN that can make context-aware attentional decisions.
• AGCNN [31] introduces an attention-gated layer before the pooling layer to help the

CNN focus on critical abstract features.

203

Entropy 2023, 25, 740

• TextConvoNet [21] applies multidimensional convolution to extract inter-token and
inter-sentence N-gram features.

• DenseNet with multi-scale feature attention [6] is an improved version of DenseNet and
is equipped with multi-scale feature attention.

• SAHSSC [48] is a self-attentive hierarchical model for text summarization and senti-
ment classification.

• Sentiment-Aware Transformer [49] is a new type of transformer model designed to
predict both word and sentence sentiment.

4.3. Experimental Setup

The experimental setup of the proposed model involved three parts:

(1) Input. Data preprocessing was performed because the datasets were obtained from
web reviews and had complex and arbitrary characteristics. Anomalous symbols
were eliminated, and upper-case letters were converted to lower-case letters. A word
embedding corpus pre-trained by GloVe was used [50]. Words in a target dataset that
were not in the corpus were initialized using a random vector with element values
between −0.01 and 0.01. Because the input of the model requires a constant length L,
all samples whose length was not L were padded with zero vectors or truncated. In
the experiments, L was set to 50 for MR and SST-2 and 500 for the other datasets.

(2) Architecture configuration. The feature dimension d of the output of the first convo-
lutional block was set to 128. For the PG-Res2Net module, the reduction ratio γwas
set to 2, and the number S of convolution ways of a residual block was set to 4. The
number D of residual blocks was set to 2 for MR and SST-2, 4 for S&O and T&G, and
7 for Yelp.F. S and D were determined by the experimental results.

(3) Training setting. The objective function was minimized by stochastic gradient descent
(SGD) with a batch size of 256, a learning rate of 0.01, and a momentum of 0.99. For
all datasets except SST-2, the learning rate dropped to 0.1 times every 5 epochs. For
SST-2, the period was 10 epochs. L2 regularization was also added to the objective
function, and its coefficient was set to 0.0001. Random dropout [51] with a drop rate
of 0.5 was applied to the input of the classifier. The training processes lasted for at
most 20 epochs on all datasets, and all experiments were conducted using PyTorch
v1.9 (Linux Foundation, San Francisco, CA, USA).

In the experiments, the above datasets were not processed by any pre-trained trans-
former model, such as BERT [52]. There are two reasons. First, the above datasets contain
numerous long texts. The memory usage and computational complexity caused by the self-
attention mechanism in pre-training models grow quadratically with the text length [53].
This can lead to excessive costs when processing long texts. Second, the proposed model
aims to improve the ability to extract credible features, while pre-training models are usu-
ally used to initialize the feature vector for each word in the SA tasks. Therefore, whether
or not pre-training models are used does not affect the demonstration for the innovation
of the proposed model. In essence, the modules in the proposed model can be easily
incorporated into several existing CNN-based models to improve their ability to extract
multi-scale features.

4.4. Experimental Results

The results of the proposed model and the other models for the five datasets are
listed in Table 2. The proposed model achieved superior or comparable results to all
other models. For the Yelp.F, S&O, and T&G datasets, the proposed model achieved the
best accuracy, which was at least 0.5%, 1.2%, and 0.7% higher than those of the other
models, respectively. Most of the samples in the three datasets are at the document level
and have more complex sentiment semantic dependencies than short texts. Compared
with those RNNs, the proposed model exhibited the ability to explicitly capture more
and larger-scale sentiment features. Compared with those shallow CNNs, the proposed
model could flexibly synthesize sentiment features on various scales and alleviate the

204

Entropy 2023, 25, 740

problem of sentiment information utilization. Compared with other ResNets, the proposed
model improved the interactions between multi-scale features and exhibited the capability
to fuse different scales of sentiment features. For those transformer-based models, their
self-attention may miss local meaningful semantic relationships over long sequences, and
the proposed model is better able to extract and preserve these relationships. For MR and
SST-2, the accuracy of the proposed model was comparable to that of the other models. We
propose two reasons for the weakening of the advantages of the proposed model. First,
most of the samples in the two datasets are short texts, which are less dependent on the
ability to extract multi-scale features than document-level texts. Second, the small sample
sizes of the two datasets limit the training of the proposed model.

Table 2. Test accuracy (%) of the proposed model and other models on the five datasets. The results
marked with * are obtained by our re-implementation.

Model MR SST-2 Yelp.F S&O T&G

RNN

Bi-LSTM [43] 79. 7 83. 2 54.8 71.9 70.7
HAN [44] 77.1 - - 72.3 69.1
CAHAN [47] - 79.8 - 73.0 70.8
HUSN [46] 81.5 * 82.2 - - -

CNN
Classical CNN [11] 81.5 87.2 65.5 72.0 70.5
AGCNN [31] 81.9 87.4 62.4 - -
TextConvoNet [21] - - 63.1 71.3 * 73.2 *

ResNet
VDCNN (29 layers) [24] 72.8 78.2 64.7 72.3 * 74.8 *
Word-DenseNet [45] 79.6 * 82.2 * 64.5 67.6 * 72.6 *
DenseNet with Multi-scale
Feature Attention [6] 81.5 84.3 * 66.0 71.6 * 74.2 *

Transformer
SAHSSC [48] - - - 73.6 72.5
Sentiment-Aware
Transformer [49] 79.5 84.3 - - -

This work CNN with PG-Res2Net and
Selective fusing

82.3
(D = 2)

85.5
(D = 2)

66.5
(D = 7)

74.8
(D = 4)

75.5
(D = 4)

4.5. Study of PG-Res2Net
4.5.1. Tuning of Hyperparameters

The position-wise gating mechanism in the PG-Res2Net module is critical to deter-
mining the performance of the proposed model. To verify the effectiveness of the gating
mechanism, we conducted a comparison of the proposed model with Res2Net and the
proposed model with PG-Res2Net. The comparison results are given in Table 3. The
highest accuracy on each dataset was achieved by the proposed model with PG-Res2Net.
Except S = 3 on Yelp.F and S = 3 on T&G, the accuracy with PG-Res2Net was higher than
that with Res2Net under the same S. It means that the gating mechanism can select the
optimized scales of features that are more effective to improve the performance of the
proposed model.

Table 3. Test accuracy (%) of the proposed model with Res2Net and PG-Res2Net on the five datasets.

S MR
(D = 2)

SST-2
(D = 2)

Yelp.F
(D = 7)

S&O
(D = 4)

T&G
(D = 4)

with ResNet

3 81.0 84.4 66.1 73.3 75.0
4 82.0 84.6 65.9 73.6 74.7
5 81.2 83.9 66.1 72.3 74.4
6 81.2 84.1 66.2 72.6 74.6

with PG-Res2Net

3 81.5 84.6 65.6 73.8 74.2
4 82.3 85.5 66.5 74.8 75.5
5 81.7 84.0 66.3 72.8 75.2
6 82.1 84.2 66.3 73.0 74.8

205

Entropy 2023, 25, 740

Table 3 also shows how the performance is influenced by the number S of convolution
ways of a residual block. S is varied among {3, 4, 5, 6}. For different datasets, the value
of S for which the model with Res2Net accomplished the best accuracy was not fixed for
different datasets, and the value of S for which the model with PG-Res2Net achieved the
best accuracy was fixed at 4. Without the help of the gating mechanism, the selection of
feature scales is more dependent on the variation of S. A smaller value of S limits the range
of feature scales. While a larger value of S allows learning with a wider range of features, it
also introduces more noise. Thus, the gating mechanism reduces the dependence of the
proposed model on S.

4.5.2. Visualization of Multi-Scale Sentiment Features

In this subsection, we demonstrate the effectiveness of the residual blocks of the PG-
Res2Net module in the proposed model. Considering residual block 1 trained by MR as an
example, Figure 5 shows the heatmaps of its multi-scale sentiment features and sentiment
representations generated by the two texts. For each image, the first four rows correspond
to the sentiment features extracted by the four convolution ways of the block, respectively.
The upper part of each row shows the heatmap of a sentiment feature, and the lower part
shows the phrases corresponding to the positions of the feature. The last row shows the
heatmap of a sentiment representation. These sentiment features and representations were
first transformed into intensity vectors and then visualized.

Entropy 2023, 25, 740 15 of 22

Figure 5. Heatmaps of multi-scale sentiment features and representations of residual block 1 in the

PG-Res2Net. (a,b) show two texts with positive and negative sentiment polarities, respectively.

For the text shown in Figure 5b, the sentiment intensity of each word (1-scale), which

was captured by Way 1, was not very strong. Although Ways 2, 3, and 4 gradually cap-

tured more phrases with a certain sentiment intensity, such as “the script is too mainstream”

(5-scale) and “the psychology too textbook to intrigue” (7-scale), their sentiment intensity is

still weak. This phenomenon is not conducive to judging text sentiment polarity. How-

ever, the overall sentiment intensity of its sentiment representation is significantly en-

hanced and can determine the sentiment polarity of the text. This illustrates that a residual

block in the PG-Res2Net module can effectively select multi-scale sentiment features to

generate task-friendly sentiment representations. As mentioned in Section 3.4, the senti-

ment representation of a block selectively contains the multi-scale features extracted by

the block.

4.6. Effectiveness of Selective Fusing Module

To investigate the effect of the selective fusing module in the proposed model, abla-

tion experiments were conducted on MR and Yelp.F, which represent 2-category short-

text-level and 5-category document-level datasets, respectively. The four structures were

constructed as follows, and the results are listed in Table 4.

Figure 5. Heatmaps of multi-scale sentiment features and representations of residual block 1 in the
PG-Res2Net. (a,b) show two texts with positive and negative sentiment polarities, respectively.

206

Entropy 2023, 25, 740

For the text shown in Figure 5a, Way 1 in the block captured “enjoyable” (1-scale), which
has a strong positive sentiment intensity and is an important influence on the sentiment
polarity of the text. Ways 2, 3, and 4 also captured the phrases of 3-scale, 5-scale, and 7-scale
with strong sentiment intensity. All of these ways contain “enjoyable”. When the phrases
including “enjoyable” contain the conjunction word “but” or the negative word “not”, their
sentiment intensity is evidently weakened, such as “enjoyable basic minimum. but” (5-scale)
and “enjoyable basic minimum. but not a” (7-scale). This indicates that a single residual block
in the PG-Res2Net module can accurately extract sentiment features at different scales
using multiple convolution ways, residual-like connections, and gates between ways.

For the text shown in Figure 5b, the sentiment intensity of each word (1-scale), which
was captured by Way 1, was not very strong. Although Ways 2, 3, and 4 gradually captured
more phrases with a certain sentiment intensity, such as “the script is too mainstream”
(5-scale) and “the psychology too textbook to intrigue” (7-scale), their sentiment intensity is
still weak. This phenomenon is not conducive to judging text sentiment polarity. However,
the overall sentiment intensity of its sentiment representation is significantly enhanced
and can determine the sentiment polarity of the text. This illustrates that a residual
block in the PG-Res2Net module can effectively select multi-scale sentiment features
to generate task-friendly sentiment representations. As mentioned in Section 3.4, the
sentiment representation of a block selectively contains the multi-scale features extracted
by the block.

4.6. Effectiveness of Selective Fusing Module

To investigate the effect of the selective fusing module in the proposed model, ablation
experiments were conducted on MR and Yelp.F, which represent 2-category short-text-level
and 5-category document-level datasets, respectively. The four structures were constructed
as follows, and the results are listed in Table 4.

• 3-Blocks-W-SF: The structure has a PG-Res2Net module containing 3 residual blocks
and a selective fusing module for MR.

• 3-Blocks-WO-SF: The structure is similar to 3-Blocks-W-SF except that an average
method replaces the selective fusing module.

• 7-Blocks-W-SF: The structure has a PG-Res2Net module containing 7 residual blocks
and a selective fusing module for Yelp.F.

• 7-Blocks-WO-SF: The structure is similar to 7-Blocks-W-SF except that an average
method replaces the selective fusing module.

Table 4. Ablation study on the selective fusing module of the proposed model. Test accuracy (%) is
used as an evaluation metric.

3-Blocks-W-SF 3-Blocks-WO-SF 7-Blocks-W-SF 7-Blocks-WO-SF

MR 81.7 81.4 - -
Yelp.F - - 66.5 64.3

As shown in Table 4, for both MR and Yelp.F, the removal of the selective fusing
module led to a decline in accuracy, particularly for Yelp.F. We further used t-SNE to
visualize the text sentiment representations of the four structures, which were the outputs
of the selective fusing modules or the alternative average methods. The corresponding
results are shown in Figure 6, where every point represents a sample, and different colors
represent different classes. For MR, Figure 6a shows that the text sentiment representations
of 3-Blocks-W-SF and 3-Blocks-WO-SF form different clusters. However, the boundary
between the different clusters of 3-Blocks-W-SF is more evident than that of 3-Blocks-WO-
SF. For Yelp.F, Figure 6b shows that the text sentiment representations of 7-Blocks-W-SF
and 7-Blocks-WO-SF do not form different clusters well. We suggest that this phenomenon
might be caused by the difficulty of multi-category document-level datasets and the similar
sentiment representation projections of texts adjacent to the sentiment polarity. The clusters
of Classes 2, 3, and 4 of 7-Blocks-WO-SF almost overlapped. However, the clusters of

207

Entropy 2023, 25, 740

7-Blocks-W-SF can be distinguished and distributed in space in the order of sentiment
polarity. Overall, the selective fusing module can optimally select sentiment features from
different levels of sentiment representations to generate a task-friendly text sentiment
representation.

Entropy 2023, 25, 740 17 of 22

Figure 6. Two-dimensional t-SNE visualization of text sentiment representations. (a) Text sentiment

representations produced by 3-Blocks-W-SF and 3-Blocks-WO-SF on MR. (b) Text sentiment repre-

sentations produced by 7-Blocks-W-SF and 7-Blocks-WO-SF on Yelp.F.

4.7. Analysis of Model Scalability

The proposed model can better handle target datasets with different text length dis-

tributions and sample sizes by scaling the number D of its residual blocks. In this subsec-

tion, we assess how the scaling of the model influences its performance. The model had

two forms in this experiment. When processing 2-category short-text-level datasets, C = 2

and L = 50, and when processing 5-category document-level datasets, C = 5 and L = 500.

Figure 7a shows the accuracy of the model for the five datasets for different D values. For

Yelp.F, S&O, and T&G, the accuracy continuously improved with an increase in D until D

= 7, 4, and 4, respectively. This is because the three datasets are document-level and de-

pendent on multi-scale sentiment features in a larger range, whose extraction requires

more residual blocks. For the short-text-level datasets MR and SST-2, the accuracy reached

the maximum when D = 2 and 3, respectively. We suggest that the sentiment classification

of short texts depends more on small-scale sentiment features, which may be obtained

using only a few residual blocks. Moreover, a single residual block in the PG-Res2Net

module can learn a certain range of sentiment features.

Figure 6. Two-dimensional t-SNE visualization of text sentiment representations. (a) Text senti-
ment representations produced by 3-Blocks-W-SF and 3-Blocks-WO-SF on MR. (b) Text sentiment
representations produced by 7-Blocks-W-SF and 7-Blocks-WO-SF on Yelp.F.

4.7. Analysis of Model Scalability

The proposed model can better handle target datasets with different text length distri-
butions and sample sizes by scaling the number D of its residual blocks. In this subsection,
we assess how the scaling of the model influences its performance. The model had two
forms in this experiment. When processing 2-category short-text-level datasets, C = 2
and L = 50, and when processing 5-category document-level datasets, C = 5 and L = 500.
Figure 7a shows the accuracy of the model for the five datasets for different D values. For
Yelp.F, S&O, and T&G, the accuracy continuously improved with an increase in D until
D = 7, 4, and 4, respectively. This is because the three datasets are document-level and
dependent on multi-scale sentiment features in a larger range, whose extraction requires
more residual blocks. For the short-text-level datasets MR and SST-2, the accuracy reached
the maximum when D = 2 and 3, respectively. We suggest that the sentiment classification
of short texts depends more on small-scale sentiment features, which may be obtained
using only a few residual blocks. Moreover, a single residual block in the PG-Res2Net
module can learn a certain range of sentiment features.

Figure 7a also shows that, for all datasets except Yelp.F, the accuracy begins to decrease
and fluctuate when D exceeds a certain value. This may be caused by overfitting, which
is triggered by the relatively small sample size of a training set and the more learnable
weights of a model. As shown in Figure 7b, although the number of the learnable weights
of the model (C = 5 and L = 50) did not increase significantly with an increase in D, the
training sample size of MR and SST-2 were small enough to easily cause overfitting. For
S&O and T&G, the training sample size satisfied the increase in the number of the learnable
weights (C = 5 and L = 500) when D was not too large. For Yelp.F, the accuracy always

208

Entropy 2023, 25, 740

increased when D increased from 2 to 7 because the dataset had sufficient training samples
to train more learnable weights. Overall, increasing D within a certain range may improve
the accuracy of the model for document-level datasets.

Entropy 2023, 25, 740 18 of 22

Figure 7. Impact with a different number of residual blocks. (a) Test accuracy with a different num-

ber of residual blocks. (b) Relationship between the number of residual blocks and the number of

learnable weights.

Figure 7a also shows that, for all datasets except Yelp.F, the accuracy begins to de-

crease and fluctuate when D exceeds a certain value. This may be caused by overfitting,

which is triggered by the relatively small sample size of a training set and the more learn-

able weights of a model. As shown in Figure 7b, although the number of the learnable

weights of the model (C = 5 and L = 50) did not increase significantly with an increase in

D, the training sample size of MR and SST-2 were small enough to easily cause overfitting.

For S&O and T&G, the training sample size satisfied the increase in the number of the

learnable weights (C = 5 and L = 500) when D was not too large. For Yelp.F, the accuracy

always increased when D increased from 2 to 7 because the dataset had sufficient training

samples to train more learnable weights. Overall, increasing D within a certain range may

improve the accuracy of the model for document-level datasets.

4.8. Error Analysis

An error analysis of the proposed model was conducted, and it was found that most

of the errors could be summarized as follows. The first factor is a lack of background

knowledge. An example is “ethan hawke has always fancied himself the bastard child of the

beatnik generation and it’s all over his chelsea walls.”, whose representation of residual block

1 is shown in Figure 8a. As observed in the representation, the most emphasized phrase

is “ethan hawke has always fancied himself the”. However, it does not have a strong sentiment.

“beatnik” and “chelsea walls”, which are decisive for the sentiment judgment of the text,

require relevant background knowledge to be understood. The second factor is the mutual

interference between different sentiment tendencies in a text with less prominent senti-

ment, such as “an otherwise intense, twist‐and‐turn thriller that certainly shouldn’t hurt talented

young gaghan’s resume.”. From Figure 8b, while the phrase “an otherwise intense, twist‐and‐

turn thriller” with negative sentiment is emphasized, the phrase “shouldn’t hurt talented

young gaghan’s” with positive sentiment is also emphasized. These two phrases with dif-

ferent sentiment tendencies make it difficult to judge the less prominent sentiment of the

whole text.

Figure 7. Impact with a different number of residual blocks. (a) Test accuracy with a different
number of residual blocks. (b) Relationship between the number of residual blocks and the number
of learnable weights.

4.8. Error Analysis

An error analysis of the proposed model was conducted, and it was found that most
of the errors could be summarized as follows. The first factor is a lack of background
knowledge. An example is “ethan hawke has always fancied himself the bastard child of the
beatnik generation and it’s all over his chelsea walls.”, whose representation of residual block
1 is shown in Figure 8a. As observed in the representation, the most emphasized phrase is
“ethan hawke has always fancied himself the”. However, it does not have a strong sentiment.
“beatnik” and “chelsea walls”, which are decisive for the sentiment judgment of the text,
require relevant background knowledge to be understood. The second factor is the
mutual interference between different sentiment tendencies in a text with less prominent
sentiment, such as “an otherwise intense, twist-and-turn thriller that certainly shouldn’t hurt
talented young gaghan’s resume.”. From Figure 8b, while the phrase “an otherwise intense,
twist-and-turn thriller” with negative sentiment is emphasized, the phrase “shouldn’t
hurt talented young gaghan’s” with positive sentiment is also emphasized. These two
phrases with different sentiment tendencies make it difficult to judge the less prominent
sentiment of the whole text.

Entropy 2023, 25, 740 19 of 22

Figure 8. Heatmaps of representations of residual block 1 in the PG-Res2Net module. (a,b) are the

representative texts of two factors that cause incorrect predictions.

5. Conclusions

In this study, a novel CNN model is proposed for sentiment analysis of short texts

and documents, in which a PG-Res2Net module and a selective fusing module are de-

fined. This model is intuitively designed to earn credible text sentiment representations

through the interaction and fusion of various scale features for predicting the right senti-

ment of a text, where multi-scale sentiment features are achieved by developing the opti-

mized interaction among various small-scale sentiment features. Furthermore, text senti-

ment representations are produced by selectively fusing multi-scale features over a large

range. Compared with other CNN-based models, the proposed model can obtain more

abundant multi-scale sentiment features and alleviate the loss of local detailed infor-

mation caused by a convolution operation. The model achieved comparable or better per-

formance on the five benchmark datasets compared with the other models. The compari-

son results, ablation studies, and visualizations also demonstrated the proposed model’s

ability to optimize the interaction among multi-scale features and selectively fuse multi-

scale features.

Although this model achieves marginal improvement over other models, several re-

search areas warrant further investigation. First, sentiment datasets often show category

imbalances, and we attempt to handle the imbalances using the reuse of multi-scale sen-

timent features across samples. Second, there is interference between the features with

different sentiment tendencies in a text with less prominent sentiment, and we try to use

computational intelligence algorithms, such as monarch butterfly optimization and differ-

ential evolution, to further optimize and improve the feature selection operator. Third,

there is other information associated with texts, such as user and product information

[54,55], and we are exploring further how this information can be used.

Author Contributions: Conceptualization, X.Z. and J.Z.; methodology, J.Z.; software, J.Z.; valida-

tion, X.Z., Y.Z. and J.Z.; formal analysis, J.Z. and H.Z.; investigation, J.Z. and Y.Z.; resources, H.Z.;

data curation, Y.Z.; writing—original draft preparation, J.Z. and X.Z.; writing—review and editing,

J.Z.; visualization, Y.Z.; supervision, X.Z. All authors have read and agreed to the published version

of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

Figure 8. Heatmaps of representations of residual block 1 in the PG-Res2Net module. (a,b) are the
representative texts of two factors that cause incorrect predictions.

209

Entropy 2023, 25, 740

5. Conclusions

In this study, a novel CNN model is proposed for sentiment analysis of short texts
and documents, in which a PG-Res2Net module and a selective fusing module are defined.
This model is intuitively designed to earn credible text sentiment representations through
the interaction and fusion of various scale features for predicting the right sentiment of
a text, where multi-scale sentiment features are achieved by developing the optimized
interaction among various small-scale sentiment features. Furthermore, text sentiment
representations are produced by selectively fusing multi-scale features over a large range.
Compared with other CNN-based models, the proposed model can obtain more abundant
multi-scale sentiment features and alleviate the loss of local detailed information caused by
a convolution operation. The model achieved comparable or better performance on the five
benchmark datasets compared with the other models. The comparison results, ablation
studies, and visualizations also demonstrated the proposed model’s ability to optimize the
interaction among multi-scale features and selectively fuse multi-scale features.

Although this model achieves marginal improvement over other models, several
research areas warrant further investigation. First, sentiment datasets often show category
imbalances, and we attempt to handle the imbalances using the reuse of multi-scale sen-
timent features across samples. Second, there is interference between the features with
different sentiment tendencies in a text with less prominent sentiment, and we try to use
computational intelligence algorithms, such as monarch butterfly optimization and differ-
ential evolution, to further optimize and improve the feature selection operator. Third, there
is other information associated with texts, such as user and product information [54,55],
and we are exploring further how this information can be used.

Author Contributions: Conceptualization, X.Z. and J.Z.; methodology, J.Z.; software, J.Z.; validation,
X.Z., Y.Z. and J.Z.; formal analysis, J.Z. and H.Z.; investigation, J.Z. and Y.Z.; resources, H.Z.; data
curation, Y.Z.; writing—original draft preparation, J.Z. and X.Z.; writing—review and editing, J.Z.;
visualization, Y.Z.; supervision, X.Z. All authors have read and agreed to the published version of
the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Park, J.H.; Choi, B.J.; Lee, S.K. Examining the impact of adaptive convolution on natural language understanding. Expert Syst.

Appl. 2022, 189, 49–69. [CrossRef]
2. Ren, J.; Wu, W.; Liu, G.; Chen, Z.; Wang, R. Bidirectional gated temporal convolution with attention for text classification.

Neurocomputing 2021, 455, 265–273. [CrossRef]
3. Tan, C.; Ren, Y.; Wang, C. An adaptive convolution with label embedding for text classification. Appl. Intell. 2022, 33, 804–812.

[CrossRef]
4. Zou, H.; Xiang, K. Sentiment classification method based on blending of emoticons and short texts. Entropy 2022, 24, 398.

[CrossRef]
5. Liu, Y.; Wang, L.; Shi, T.; Li, J. Detection of spam reviews through a hierarchical attention architecture with N-gram CNN and

Bi-LSTM. Inf. Syst. 2022, 103, 101865. [CrossRef]
6. Wang, S.; Huang, M.; Deng, Z. Densely connected CNN with multi-scale feature attention for text classification. In Proceedings of

the 28th International Joint Conference on Artificial Intelligence (IJCAI), Stockholm, Sweden, 13–19 July 2018; pp. 4468–4474.
7. Xiang, Z.; Zhao, J.; LeCun, Y. Character-level convolutional networks for text classification. In Proceedings of the 28th Advances

in Neural Information Processing Systems (NIPS), Montreal, QC, Canada, 7–12 December 2015; pp. 649–657.
8. Dashtipour, K.; Gogate, M.; Adeel, A.; Larijani, H.; Hussain, A. Sentiment analysis of persian movie reviews using deep learning.

Entropy 2021, 23, 596. [CrossRef]
9. Xue, W.; Li, T. Aspect based sentiment analysis with gated convolutional networks. In Proceedings of the 56th Annual Meeting of

the Association for Computational Linguistics (ACL), Melbourne, VIC, Australia, 15–20 July 2018; pp. 2514–2523.

210

Entropy 2023, 25, 740

10. Liu, F.; Zheng, J.; Zheng, L.; Chen, C. Combining attention-based bidirectional gated recurrent neural network and two-dimensional
convolutional neural network for document-level sentiment classification. Neurocomputing 2020, 371, 39–50. [CrossRef]

11. Kim, Y. Convolutional neural networks for sentence classification. In Proceedings of the Conference on Empirical Methods in
Natural Language Processing (EMNLP), Doha, Qatar, 25–29 October 2014; pp. 1746–1751.

12. Yan, L.; Han, J.; Yue, Y.; Zhang, L.; Qian, Y. Sentiment analysis of short texts based on parallel densenet. Comput. Mater. Contin.
2021, 69, 51–65. [CrossRef]

13. Ma, Q.; Yan, J.; Lin, Z.; Yu, L.; Chen, Z. Deformable self-attention for text classification. IEEE/ACM Trans. Audio Speech Lang.
Process. 2021, 29, 1570–1581. [CrossRef]

14. Xu, Y.; Yu, Z.; Cao, W.; Chen, C.L.P. Adaptive dense ensemble model for text classification. IEEE Trans. Cybern. 2022, 52, 7513–7526.
[CrossRef]

15. Gao, S.H.; Cheng, M.M.; Zhao, K.; Zhang, X.Y.; Yang, M.H.; Torr, P. Res2net: A new multi-scale backbone architecture. IEEE Trans.
Pattern Anal. Mach. Intell. 2021, 43, 652–662. [CrossRef]

16. Shi, W.; Li, F.; Li, J.; Fei, H.; Ji, D. Effective token graph modeling using a novel labeling strategy for structured sentiment analysis.
In Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (ACL), Dublin, Ireland, 22–27 May
2022; pp. 4232–4241.

17. Chen, S.; Shi, X.; Li, J.; Wu, S.; Fei, H.; Li, F.; Ji, D. Joint alignment of multi-task feature and label spaces for emotion cause pair
extraction. In Proceedings of the 27th International Conference on Computational Linguistics (COLING), Gyeongju, Republic of
Korea, 12–17 October 2022; pp. 6955–6965.

18. Fei, H.; Li, F.; Li, C.; Wu, S.; Li, J.; Ji, D. Inheriting the wisdom of predecessors: A multiplex cascade framework for unified
aspect-based sentiment analysis. In Proceedings of the 31st International Joint Conference on Artificial Intelligence (IJCAI),
Vienna, Austria, 23–29 July 2022; pp. 4121–4128.

19. Yan, H.; Dai, J.; Ji, T.; Qiu, X.; Zhang, Z. A unified generative framework for aspect-based sentiment analysis. In Proceedings of
the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural
Language Processing (ACL-IJCNLP), Bangkok, Thailand, 1–6 August 2021; pp. 2416–2429.

20. Yao, C.; Cai, M. A novel optimized convolutional neural network based on attention pooling for text classification. J. Phys. Conf.
Ser. 2021, 1971, 012079. [CrossRef]

21. Soni, S.; Chouhan, S.S.; Rathore, S.S. TextConvoNet: A convolutional neural network based architecture for text classification.
Appl. Intell. 2022, 33, 1–12. [CrossRef]

22. Fei, H.; Chua, T.-S.; Li, C.; Ji, D.; Zhang, M.; Ren, Y. On the robustness of aspect-based sentiment analysis: Rethinking model, data,
and training. ACM Trans. Inf. Syst. 2023, 41, 1–32. [CrossRef]

23. Chen, Y.; Dai, X.; Liu, M.; Chen, D.; Yuan, L.; Liu, Z. Dynamic convolution: Attention over convolution kernels. In Proceedings of
the 14th IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA, 14–19 June
2020; pp. 11027–11036.

24. Conneau, A.; Schwenk, H.; Cun, Y.L.; Barrault, L. Very deep convolutional networks for text classification. In Proceedings of the
15th Conference of the European Chapter of the Association for Computational Linguistics (EACL), Valencia, Spain, 3–7 April
2017; pp. 1107–1116.

25. Brauwers, G.; Frasincar, F. A general survey on attention mechanisms in deep learning. IEEE Trans. Knowl. Data Eng. 2021, 1,
3279–3298. [CrossRef]

26. Lee, G.; Jeong, J.; Seo, S.; Kim, C.Y.; Kang, P. Sentiment classification with word localization based on weakly supervised learning
with a convolutional neural network. Knowledge-Based Syst. 2018, 152, 70–82. [CrossRef]

27. Liu, P.; Chang, S.; Huang, X.; Tang, J.; Cheung, J.C.K. Contextualized non-local neural networks for sequence learning. In
Proceedings of the 33rd Innovative Applications of Artificial Intelligence Conference (AAAI), Honolulu, HI, USA, 27 January–
1 February 2019; pp. 6762–6769.

28. Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, Ł.; Polosukhin, I. Attention is all you need. In
Proceedings of the 31st Advances in Neural Information Processing Systems (NIPS), Long Beach, CA, USA, 4–9 December 2017;
pp. 5999–6009.

29. Ambartsoumian, A.; Popowich, F. Self-attention: A better building block for sentiment analysis neural network classifiers. In
Proceedings of the 9th Workshop on Computational Approaches to Subjectivity, Sentiment and Social Media Analysis (WASSA),
Brussels, Belgium, 31 October 2018; pp. 130–139.

30. Tang, S.; Chai, H.; Yao, Z.; Ding, Y.; Gao, C.; Fang, B.; Liao, Q. Affective knowledge enhanced multiple-graph fusion networks for
aspect-based sentiment analysis. In Proceedings of the 7th Conference on Empirical Methods in Natural Language Processing
(EMNLP), Abu Dhabi, United Arab Emirates, 7–11 December 2022; pp. 5352–5362.

31. Liu, Y.; Ji, L.; Huang, R.; Ming, T.; Gao, C.; Zhang, J. An attention-gated convolutional neural network for sentence classification.
Intell. Data Anal. 2019, 23, 1091–1107. [CrossRef]

32. Choi, G.; Oh, S.; Kim, H. Improving document-level sentiment classification using importance of sentences. Entropy 2020, 22, 1336.
[CrossRef]

33. Xianlun, T.; Yingjie, C.; Jin, X.; Xinxian, Y. Deep global-attention based convolutional network with dense connections for text
classification. J. China Univ. Posts Telecommun. 2020, 27, 46–55. [CrossRef]

211

Entropy 2023, 25, 740

34. Ioffe, S.; Szegedy, C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In Proceedings
of the 32nd International Conference on Machine Learning (ICML), Lille, France, 7–9 July 2015; pp. 448–456.

35. Hinton, G.E. Rectified linear units improve restricted boltzmann machines. J. Appl. Biomech. 2017, 33, 384–387.
36. Li, X.; Wu, X.; Lu, H.; Liu, X.; Meng, H. Channel-wise gated res2net: Towards robust detection of synthetic speech attacks. In

Proceedings of the Annual Conference of the International Speech Communication Association (INTERSPEECH), Brno, Czech
Republic, 30 August–3 September 2021; pp. 4314–4318.

37. Huang, G.; Liu, Z.; Van Der Maaten, L.; Weinberger, K.Q. Densely connected convolutional networks. In Proceedings of the
IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017;
pp. 2261–2269.

38. Li, X.; Wang, W.; Hu, X.; Yang, J. Selective kernel networks. In Proceedings of the IEEE Computer Society Conference on Computer
Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, 15–20 June 2019; pp. 510–519.

39. Socher, R.; Perelygin, A.; Wu, J.Y.; Chuang, J.; Manning, C.D.; Ng, A.Y.; Potts, C. Recursive deep models for semantic composi-
tionality over a sentiment treebank. In Proceedings of the Conference on Empirical Methods in Natural Language Processing
(EMNLP), Seattle, WA, USA, 18–21 October 2013; pp. 1631–1642.

40. Pang, B.; Lee, L. Seeing stars: Exploiting class relationships for sentiment categorization with respect to rating scales. In
Proceedings of the 43rd Annual Meeting of the Association for Computational Linguistics (ACL), Ann Arbor, MI, USA, 25–30
June 2005; pp. 115–124.

41. He, R.; McAuley, J. Ups and downs: Modeling the visual evolution of fashion trends with one-class collaborative filtering. In
Proceedings of the 25th International World Wide Web Conference (WWW), Montreal, QC, Canada, 11–15 May 2016; pp. 507–517.

42. Wei, L.; Hu, D.; Zhou, W.; Tang, X.; Zhang, X.; Wang, X.; Han, J.; Hu, S. Hierarchical interaction networks with rethink-
ing mechanism for document-level sentiment analysis. In Proceedings of the European Conference on Machine Learning
and Principles and Practice of Knowledge Discovery in Databases (ECML PKDD), Ghent, Belgium, 14–18 September 2020;
pp. 633–649.

43. Zhao, J.; Zhan, Z.; Yang, Q.; Zhang, Y.; Hu, C.; Li, Z.; Zhang, L.; He, Z. Adaptive learning of local semantic and global
structure representations for text classification. In Proceedings of the 27th International Conference on Computational Linguistics
(COLING), Santa Fe, NM, USA, 20–26 August 2018; pp. 2033–2043.

44. Yang, Z.; Yang, D.; Dyer, C.; He, X.; Hovy, E. Hierarchical attention networks for document classification. In Proceedings of the
Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies
(NAACL), San Diego, CA, USA, 12–17 June 2016; pp. 1480–1489.

45. Le, H.T.; Cerisara, C.; Denis, A. Do convolutional networks need to be deep for text classification? arXiv 2017, arXiv:1707.04108.
46. Chen, J.; Yu, J.; Zhao, S.; Zhang, Y. User’s review habits enhanced hierarchical neural network for document-level sentiment

classification. Neural Process. Lett. 2021, 53, 2095–2111. [CrossRef]
47. Remy, J.-B.; Tixier, A.J.-P.; Vazirgiannis, M. Bidirectional context-aware hierarchical attention network for document understanding.

arXiv 2019, arXiv:1908.06006.
48. Wang, H.; Ren, J. A self-attentive hierarchical model for jointly improving text summarization and sentiment classification. In

Proceedings of the 10th Asian Conference on Machine Learning (ACML), Beijing, China, 14–16 November 2018; pp. 630–645.
49. Huang, H.; Jin, Y.; Rao, R. Sentiment-aware transformer using joint training. In Proceedings of the 32nd International Conference

on Tools with Artificial Intelligence (ICTAI), Baltimore, MD, USA, 9–11 November 2020; pp. 1154–1160.
50. Pennington, J.; Socher, R.; Manning, C.D. GloVe: Global vectors for word representation. In Proceedings of the Conference on

Empirical Methods in Natural Language Processing (EMNLP), Doha, Qatar, 25–29 October 2014; pp. 1532–1543.
51. Hinton, G.; Krizhevsky, A.; Sutskever, I.; Salakhutdinov, R.; Srivastava, N. Dropout: A simple way to prevent neural networks

from overfitting. J. Mach. Learn. Res. 2014, 15, 1929–1958.
52. Devlin, J.; Chang, M.W.; Lee, K.; Toutanova, K. BERT: Pre-training of deep bidirectional transformers for language understanding.

In Proceedings of the Conference of the North American Chapter of the Association for Computational Linguistics (NAACL),
Minneapolis, MN, USA, 2–7 June 2019; pp. 4171–4186.

53. Ding, S.; Shang, J.; Wang, S.; Sun, Y.; Tian, H.; Wu, H.; Wang, H. Ernie-Doc: A retrospective long-document modeling transformer.
In Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and 11th International Joint
Conference on Natural Language Processing (ACL-IJCNLP), Bangkok, Thailand, 1–6 August 2021; pp. 2914–2927.

54. Wu, Z.; Dai, X.Y.; Yin, C.; Huang, S.; Chen, J. Improving review representations with user attention and product attention for
sentiment classification. In Proceedings of the 32nd Innovative Applications of Artificial Intelligence Conference on Artificial
Intelligence (AAAI), New Orleans, LA, USA, 2–7 February 2018; pp. 5989–5996.

55. Fei, H.; Ren, Y.; Wu, S.; Li, B.; Ji, D. Latent target-opinion as prior for document-level sentiment classification: A variational
approach from fine-grained perspective. In Proceedings of the 30th World Wide Web Conference (WWW), Ljubljana, Slovenia,
12–23 April 2021; pp. 553–564.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

212

Citation: Schirmer, P.A.; Mporas, I.

PyDTS: A Python Toolkit for Deep

Learning Time Series Modelling.

Entropy 2024, 26, 311. https://

doi.org/10.3390/e26040311

Academic Editors: Shuangming

Yang, Shujian Yu, Luis Gonzalo

Sánchez Giraldo, Badong Chen and

Boris Ryabko

Received: 27 February 2024

Revised: 20 March 2024

Accepted: 29 March 2024

Published: 31 March 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

entropy

Article

PyDTS: A Python Toolkit for Deep Learning Time Series
Modelling
Pascal A. Schirmer *,† and Iosif Mporas †

School of Physics, Engineering, and Computer Science, University of Hertfordshire, Hatfield AL10 9AB, UK;
i.mporas@herts.ac.uk
* Correspondence: p.schirmer@herts.ac.uk
† These authors contributed equally to this work.

Abstract: In this article, the topic of time series modelling is discussed. It highlights the criticality of
analysing and forecasting time series data across various sectors, identifying five primary application
areas: denoising, forecasting, nonlinear transient modelling, anomaly detection, and degradation
modelling. It further outlines the mathematical frameworks employed in a time series modelling task,
categorizing them into statistical, linear algebra, and machine- or deep-learning-based approaches,
with each category serving distinct dimensions and complexities of time series problems. Additionally,
the article reviews the extensive literature on time series modelling, covering statistical processes,
state space representations, and machine and deep learning applications in various fields. The unique
contribution of this work lies in its presentation of a Python-based toolkit for time series modelling
(PyDTS) that integrates popular methodologies and offers practical examples and benchmarking
across diverse datasets.

Keywords: time series modelling; forecasting; nonlinear modelling; denoising; anomaly detection;
degradation modelling; deep learning; machine learning

1. Introduction

Time series modelling has gained significant interest in the last decades due to the rise
of machine learning and big data. It stands out as a crucial domain with diverse applications,
ranging from financial forecasting to climate modelling [1,2]. The ability to analyse and
forecast time series data has become increasingly important for timely informed decision
making in various fields. Five different areas of applications can mainly be identified:
first, denoising (or source separation), where the signal ground truth is isolated from a
noisy observation, e.g., speech denoising [3] or separation of energy signals [4]; second,
forecasting, where future signal values are predicted based on the signal’s history, e.g., grid
load or weather forecasting [5]; third, nonlinear transient modelling, where nonlinear and
possibly underdetermined problems are solved for time series inputs, e.g., transient thermal,
structural, or fluid modelling [6]; fourth, anomaly detection, where outliers are identified
in a large population of time series data, e.g., faulty samples in production sequences or
failures under thermal/mechanical stress [7]; and fifth, degradation modelling, where a
variable changes slowly over time, e.g., ageing of electric components and structures or
expiration of food [8,9].

To model the above phenomena in time series signals, several mathematical ap-
proaches have been proposed in the literature. These approaches can be fundamentally split
into three categories, namely, statistical, linear algebra, and machine- or deep-learning (ML,
DL)-based ones. The dimensionality of the problem, i.e., the input and output dimension,
as well as the problem evaluation over time, i.e., if the data have a constant mean value,
highly determines which of the above techniques can be used to model the time series
problem. For example, statistical models like autoregression or moving average processes

Entropy 2024, 26, 311. https://doi.org/10.3390/e26040311 https://www.mdpi.com/journal/entropy213

Entropy 2024, 26, 311

are restricted to one-dimensional time series and have been applied to linear statistical
problems and short-term ahead prediction [10]. Conversely, in the case of two or more
variables, linear algebra models like state-space (SS) systems can be used to capture the
input and output relation of multidimensional time series [11]. Most recently, machine
and deep learning models have been used to capture complex multidimensional and pos-
sibly nonlinear relations between input and output samples of time series data [12], like
long short-term memory (LSTM) [13], one-dimensional convolutional neural networks
(CNNs) [14], or transformer models [15].

The topic of time series modelling has also been studied extensively in the literature.
Modelling of statistical processes has been discussed in [16], with specific applications like
wind speed modelling [17] or electricity or emission forecasting [18,19]. Similarly, state-
space representations have been reviewed in [20]. In detail, state-space models have been
proposed for thermal modelling in buildings [21] or battery electric vehicles [22], as well as
in methodologies for solar irradiance forecasting in combination with exponential smooth-
ing [23]. Moreover, numerous articles on machine and deep learning have been published
covering the topics of feature extraction [24] and modelling approaches [25,26]. In specific,
machine and deep learning approaches have been used for forecasting in applications
like renewable energies [27], grid loads [28], and weather events [29]. Furthermore, deep
learning models have been used for denoising in medical applications [30] and in renew-
able energy generation [31]. Similarly, nonlinear applications have been studied including
structural dynamic problems [32], time delay approximations in optical systems [33], or
transient thermal modelling [34]. Deep learning approaches have also been used in anomaly
detection [35] and degradation modelling [36]. Most recently, also combinations of these
approaches, e.g., deep state space models [37], or informed neural networks have been
proposed [38]. Moreover, federated learning applications sharing one common model and
approaches implemented on microprocessor hardware have been investigated [39].

Several different toolkits for time series modelling have been proposed previously,
including Nixtla [40], AutoTS, Darts [41], and Sktime [42]. Each of these toolkits has a
different purpose and different functionalities. While Nixtla and AutoTS only implement
time series forecasting, Darts additionally implements anomaly detection, while Sktime
implements forecasting, classification, regression, and data transformations. Likewise,
PyDTS offers forecasting, classification, and regression functionalities, but additionally
focuses on specific applications like denoising, nonlinear modelling, or degradation. The
aim is to reduce the threshold of using deep-learning-based modelling as far as possible by
offering a one-click functionality without needing to copy code, download, and preprocess
data or plot results. The contributions of this article are as follows: First, the topic of time
series modelling is reviewed. Second, a Python-based toolkit for time series modelling
(PyDTS) with deep learning is presented, which incorporates the most used approaches and
provides time series modelling examples for a wide range of datasets and benchmarking
results. The results of these examples can be reproduced by calling one single function.
Third, the article explains the effect of the free parameters, and the user can try these changes
by simply changing one parameter without the need for changing the code while observing
the changes based on a standard set of accuracy metrics and plots. Fourth, all results are
evaluated on real-world datasets without the use of any synthetic or exemplary datasets.
The toolkit is available on GitHub (https://github.com/pascme05/PyDTS, accessed on 27
February 2024).

The remainder of the article is structured as follows: In Section 2, a generalized archi-
tecture for time series modelling is described, also introducing the different applications
of time series modelling. In Section 3, different modelling approaches are presented. An
experimental setup and results for different datasets and applications are presented in
Section 4. Finally, discussion and conclusions are provided in Sections 5 and 6, respectively.

214

Entropy 2024, 26, 311

2. Time Series Modelling Architecture

As outlined in Section 2, time series modelling has several applications. In this section,
a generalized modelling architecture is introduced, while specific approaches including
their mathematical formulation are presented in Sections 2.1–2.5. Let us consider an input
time series signal x ∈ RT×M with T time samples of M input values each and a multivariate
output signal y ∈ RT×N with the same number of time samples and N output values; we
can formulate the input–output relation as follows (1):

y(t) = fΘ(x(t)), (1)

where fΘ(·) is an arbitrary nonlinear function parametrized by a set of free parameters Θ.
The goal of a time series modelling architecture is to model the input and output relation as in (2):

ŷ(t) = g(x(t))
s.t. min‖y− ŷ‖2

(2)

where g(·) is an arbitrary regression or classification function aiming to approximate fΘ(·)
and its free parameters, and ŷ ∈ RT×N is the predicted output. The generalized architecture
is illustrated in Figure 1:

Pre-
processing

Window
Framing

Feature
Extraction

Model
Prediction

Post-
Processing

𝜏 − 1 𝜏 + 1𝜏

Figure 1. Generalized time series architecture.

As illustrated in Figure 1, the general architecture consists of five steps: first, pre-
processing, e.g., resampling or filtering, of the raw feature input vector, x resulting into
x′; second, window framing x′ into time frames xτ ∈ RW×M with a window length W;
third, feature extraction based on the time frame signals converting xτ to a feature input
vector Xτ ∈ RW×F with F input features; and finally, predicting and optionally postpro-
cessing the model output ŷ. In specific, when predicting time series signals, the input
and output relation can be modelled using three different approaches, which can be dis-
tinguished by their input and output dimensionality in the temporal domain. The three
approaches are sequence-to-point modelling, sequence-to-subsequence modelling, and
sequence-to-sequence modelling [43] and are conceptually illustrated in Figure 2.

(a) (b) (c)

Figure 2. Relation between input and output dimensionality for frame-based time series modelling:
(a) sequence-to-point, (b) sequence-to-subsequence, and (c) sequence-to-sequence.

The PyDTS toolkit replicates the above structure, providing modules for preprocessing,
framing, feature extraction, modelling approach, and postprocessing. The different modules
offered by PyDTS and the flow diagram for the different operations are illustrated in
Figures 3 and 4.

In the following, the mathematical formulation of time series modelling with applica-
tion in denoising, forecasting, nonlinear modelling, anomaly detection, and degradation
modelling are provided.

215

Entropy 2024, 26, 311

M
u

lti-D
im

e
n

sio
n

a
l T

im
e
 S

e
rie

s In
p

u
t

P
re

d
icte

d
 T

im
e
 S

e
rie

s O
u

tp
u

t

Data Loading
& Splitter

Pre-processing

Features
Classification & Regression Optimisation

Sequencing

OutputPost-processing

VisualisationPerformance Values

Normalisation

Sampling & Filtering Output Preparation Data Saving

crossvalidation

train-test split

multi file loading

validation

min-max

time domain

sklearn

KNN

LSTM CNN DNN

RF SVM 1D grid search

2D grid search

automated parameter tuning

exhautive optimisation

tensorflow

tftest

n4sid

feature ranking

average error
runtime memory

sampling

building dictionaries

averaging

correlation

average results

temporal results

statistics

time series
average values

heat mapstime dependent errors

frequency domain

statistical features

1D and 2D features

raw data

sequence to point

sequence to sequence

sequence to subsequence

whole data

rolling input features

zero-one

mean-variance

resampling
mean/median filter

data balancing

data limiting
data batching

forward-backward filling

error correction

file formats (.mat, .csv, .xlsx)

Figure 3. Overview of implemented modules and functionalities in the PyDTS toolkit. Inputs and
preprocessing are indicated in red, features and data sequencing in yellow, modelling in green,
postprocessing in blue, and visual elements and outputs in purple.

Data Model Setup

Tr
ai

n
in

g
 D

at
a

B
at

ch
es

Te
st

in
g

Pre-Processing Features Model TrainingFraming

Prediction Post-processing

Pre-Processing FeaturesFraming

Pre-Processing FeaturesFraming

Figure 4. Internal data pipeline of PyDTS including training and testing modules and external data,
model, and setup databases.

2.1. Denoising

One of the most common time series prediction tasks is denoising, where the ground-
truth data are retrieved based on a distorted observation. Without loss of generality, the
problem can be formulated as in (3):

y(t) = x(t) + ε(t), (3)

where y(t) is the output signal, x(t) is the input signal, and ε(t) is the noise. Here, we
use as an example of denoising the energy disaggregation task, where appliance energy
signatures (clean signal) are extracted from the aggregated data (noisy signal) [44]. Since
multiple signals are extracted from a single observation, it is a single-channel blind source

216

Entropy 2024, 26, 311

separation problem, i.e., a problem with very high signal-to-noise ratio. The problem can
be mathematically formulated as in (4):

y(t) = f (xm(t), ε(t)) =
M

∑
m=1

xm(t) + ε(t), (4)

where y(t) is the aggregated signal, xm(t) is the m-th appliance signal, and ε(t) is additive
noise from unknown devices, from electromagnetic interference on the transmission lines
and from line coupling. The goal is to denoise the signal y(t) by isolating the signature
x̂m(t) of each appliance.

2.2. Forecasting

Load forecasting is a task where future values, e.g., weather, energy consumption, or
power draw, are predicted based on previous values of the same time series signal [45]. The
aim is to model temporal information based on previous samples and accurately predict
future values. Assuming linearity, the problem can be mathematically formulated as in (5):

y(t) = αy(t− 1) + βx(t) + ε(t), (5)

where y(t) is the signal of interest, x(t) are signals with additional information and α, β
are constant in the linear case, and ε(t) is stochastic noise. In this article, energy consump-
tion prediction has been used as an example; i.e., future energy consumption values are
predicted based on the consumption of previous days and additional information, e.g.,
weather or socioeconomic information [46].

2.3. Nonlinear Modelling

Nonlinear modelling is a task where the relation between input and output values
is nonlinear. As an example application of nonlinear modelling, thermal modelling of
power electronics and electric machinery is considered [47]. In this application, the funda-
mental heat conduction equation itself is linear, but nonlinearities are introduced through
thermal coupling or losses, which are themselves a nonlinear function of temperature.
Fundamentally, the temperature on a component can be modelled as in (6) and (7):

q̇(t) = R(ϑ) · I2
rms, (6)

where q̇(t) is a time-dependent heat source that is generated by a current Irms flowing
through a nonlinear temperature-dependent resistance R(ϑ). The temperature is then
calculated using (7):

ρcp
∂T
∂t
−∇ · (k∇T) = q̇(t)ϕ(~r), (7)

where ρ is the mass density, cp the specific heat capacity, and k the thermal conductivity.
Furthermore, ϕ(~r) is a spatial function projecting the heat source q̇(t) on the respective vol-
ume.

2.4. Anomaly Detection

Anomaly detection describes the task of finding outliers within the data. Often, these
data are highly unbalanced; i.e., there are much more positive than negative values or vice
versa. The aim is to efficiently detect a small number of outliers within large amounts of
time series data. The problem can be mathematically formulated as follows (8):

ŷ(t) = ϕ(fΘ(x(t))), (8)

where ŷ(t) ∈ 0, 1 is the anomaly detection status of the signal; i.e., if a sample at time t
is normal or anomalous, x(t) are the input signals that provide indication for the status
signal, f (·) is a function calculating the probability for a sample to be anomalous, and ϕ(·)

217

Entropy 2024, 26, 311

is a threshold to convert the prediction into a binary variable. In this article, we used as an
example model motor faults based on vibration data.

2.5. Degradation Modelling

Degradation modelling is a task where a relation between input parameters, time,
and slow-varying output parameters exists. The aim is to describe the slow-varying
degradation based on the initial state and the loads applied over time. The problem can be
mathematically formulated as in (9):

y(t) = y0 + βx(t) + ε(t), (9)

where y(t) is the degradation signal; x(t) are load signals stressing the component, e.g.,
temperature or mechanical stress; and ε(t) is stochastic noise. It must be noted that this
problem depends on the initial state of y0. In this article, the example case is to predict
degradation data of lithium-ion batteries, i.e., the change of cell capacitance over time,
using temperature, current, and voltage as input features.

3. Modelling Approaches

To implement the classification or regression function f (·) from (1), three approaches
exist, namely, statistical, linear algebra, and machine or deep learning (ML, DL). In the
following subsections, each of these three approaches is briefly explained.

3.1. Statistical Modelling

Assuming that the output function y(t) is a one-dimensional time series and only
depends on previous values y(t − 1) and stochastic white noise ε(t), then the relation
between input and output can be expressed using statistical models based on autoregression
and averaging (ARMA) [48], as described in (10):

y(t) = c +
p

∑
i=1

φiy(t− 1) +
q

∑
j=1

θjε(t− j) + ε(t), (10)

where c is a constant, φi is a weighting factor for the autoregression term, and θj is a
weighting factor for the moving average.

3.2. Linear Algebra Modelling

If there are two processes, with one process being latent, thus describing a hidden time-
varying structure, state-space representations have been used for the system identification
of first-order systems with M inputs and N outputs [49]. The mathematical formulation for
continuous parameter time-invariant coefficients is shown in (11):

ṡ(t) = As(t) + Bx(t) (11a)

y(t) = Cs(t) + Dx(t) (11b)

where s(t) ∈ RL and ṡ(t) ∈ RL are the internal system states and the derivatives with L
being the number of states, A ∈ RL×L is the system matrix, B ∈ RL×M is the input matrix,
C ∈ RN×L is the output matrix, and D ∈ RN×M is the feed-forward matrix. This model
belongs to the category of white box modelling [50], where the states and the evolution
of the states can be physically interpreted and, most importantly, also observed (12) and
controlled (13) if the following restrictions are satisfied [49]:

rank
[

B, AB, A2B, . . . , An−1B
]
= L, (12)

218

Entropy 2024, 26, 311

rank

C
CA

...
CAn−1

 = L, (13)

3.3. Machine and Deep Learning

While the above techniques have limitations regarding the dimensionality of the input
and output channels or the nonlinearity of the relation between input and output features,
machine and deep learning models offer the highest flexibility in modelling an arbitrary
function. In detail, the output of an artificial neural network with one hidden layer is
shown in (14):

ŷn(t) = ϕ2

(
J

∑
j=1

w(2)
nj ϕ1

(
M

∑
m=1

w(1)
jm xm(t)

))
, (14)

where ϕ1,2(·) and w1,2 are the activation functions and the weights of the respective layer,
and J is the number of nodes in the hidden layer. The weights can then be determined
iteratively using backpropagation and a loss function, as shown in (15):

E =
1

2n ∑
x
‖y− ŷ‖2

2, (15)

3.4. Comparison

Each of the above modelling approaches has its advantages and disadvantages. A
comparison list of relevant properties is shown in Table 1. Whenever, the respective
property can be deducted directly from the model equation in Sections 3.1–3.3, e.g., the
dimensionality of the input/output or the interpretability of the internal state. Table 1 lists
the respective equation; otherwise, relevant literature is provided.

Table 1. Comparison of relevant properties between different modelling approaches: (+): compara-
tively better, (o): neutral, and (-): comparatively worse.

Properties Ref. and Eq. Linear Algebra Statistical
Modelling

Machine
Learning

Runtime [51] o + -
Memory [51] o + -

Interpretability (12)–(14) + o -
Dimensionality (10), (11), (14) o - +
Transferability [52] o - +

Nonlinear (10), (11), (14) o - +
Hyperparameters (10), (11), (14) o + -

Training data [53] + o -

As can be seen in Table 1, machine and deep learning approaches suffer especially
from larger computational complexity, memory requirements, and a lack of physical in-
terpretation of the model parameters [50,51]. Statistical models present advantages, but at
the same time, they are limited in 1D-only input and output dimensionality [48], as can
be also seen from (10). This restriction makes statistical modelling approaches not feasible
for most of the presented tasks in Section 2. In terms of transferability, deep learning ap-
proaches have very good transferability properties working as automated feature extraction
engines [52]; however, they require extensive amounts of training data and have many
hyperparameters to optimize [50,53]. Finally, as explained in Section 3.3, machine and deep
learning models enable nonlinear modelling due to the nonlinear activation functions in
(14). Because of the limitation of statistical and linear algebra models with respect to the

219

Entropy 2024, 26, 311

input and output dimension in the following sections, the focus will be on machine and
deep learning approaches.

4. Experimental Setup

The time series modelling architecture described in Section 2 was evaluated using the
datasets, models, and experimental protocols presented below.

4.1. Datasets

The proposed time series prediction methods have been evaluated using publicly
available datasets consisting of real-world data; i.e., no synthetic data have been used. In
the following, each of the datasets is briefly explained. For disaggregation energy data
(denoising), the AMPds2 dataset has been used, which includes 20 electrical appliances
and the aggregated energy consumption of a Canadian household measured between 2012
and 2014 [54]. For energy consumption forecasting, the energy consumption of Tetouan,
a city in the north of Morocco, has been used [55]. For nonlinear modelling, the motor
temperature dataset in [47] has been used, which includes 185 h of measured temperatures
of a state-of-the-art permanent magnet synchronous machine from a Tesla Model 3. To
predict anomalies, motor vibration data have been used, which were previously classified
into faulty and faultless motors [56]. To model degradation, the dataset from [57] was
used, which includes lithium-ion battery cells measured over several cycles of charging
and discharging under different conditions. The datasets, including their most important
properties, are summarized in Table 2.

Table 2. Short description of the datasets. The feature column includes the following abbreviations:
active power (P), reactive power (Q), apparent power (S), current (I), voltage (V), temperature (T),
relative humidity (RH), solar irradiance (IRR), wind speed (Ws), rotational speed (n), torque (M),
and acceleration (A). Similarly, the outputs include the appliance current (Iapp), the per-phase power
(PLx), the stator winding and rotor magnet temperatures (ϑ), the motor state, and the remaining
battery charge (Qbat).

Name Ref. Scenario Length Sampling Features Output Max Mean Std

AMPds2 [54] Denoise 2 y 60 s P, Q, S, I Iapp 105 0.8 10.9
Energy [55] Forecast 1 y 10 min P, T, RH, Ws Irr PL1,L2,L3 52.2 23.7 12.2

Motor Temp. [47] Nonlinear 185 h 0.5 s V, I, T, M, n ϑ 141.4 57.5 22.7
Ford Motor [56] Anomaly 1.4 h 2 ms Ax,y,z s 1.0 0.49 0.50

Battery Health [57] Degradation 57 days 2.5 s V, I, T Qbat 1.92 1.54 0.17

As can be seen in Table 2, the datasets cover a wide range of sampling frequencies, total
number of samples, and input features, allowing for testing the PyDTS toolkit on different
data inputs. Additionally, for the input features, the output that will be predicted is shown,
as well as the max, mean, and standard deviation of the output. These values are included
to provide a standard to the performance of the regression or classification models. For
example, if the standard deviation of a dataset is close to zero, there are very few changes
in the output signal; thus, a naive predictor would be sufficient to predict the outputs.
Similarly, if the maximum predicted error of a model is equal to the maximum value of the
output signal, while the average is close to zero, that indicates that the model is predicting
well on average, but there are instances in which it fails to make an accurate prediction.

4.2. Preprocessing

During preprocessing, the input data have been normalized using mean–std normal-
ization for input features (16):

x′ =
x− µtrain

σtrain
, (16)

220

Entropy 2024, 26, 311

where x′ is the input feature scaled by the mean (µtrain) and standard deviation (σtrain) of the
training data. Similarly, min–max normalization has been used for the output features (17):

y′ =
y−min(ytrain)

max(ytrain)−min(ytrain)
, (17)

where y′ is the output feature scaled by the minimum and maximum values of the training
data. Furthermore, the optimal number of samples for the input window has been deter-
mined by grid search for each of the datasets tabulated in Table 1 with the exception of the
anomaly detection as it is predefined in that dataset. The results are shown in Figure 5.

10 15 20 25 30 35 40 45 50 55 60 65 70
0.1

0.11

0.11

0.12

0.12

0.13

time (min)

M
A
E
(A
)

Optimal Window Length Denoising

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70
2.6

2.7

2.8

2.9

3

3.1

3.2

3.3

3.4

time (hrs)

M
A
E
(k
W
)

Optimal Window Length Forecasting

0 10 20 30 40 50 60 70 80 90

2 · 10−2

4 · 10−2

6 · 10−2

8 · 10−2

0.1

0.12

time (hrs)

M
A
E
(A
h
)

Optimal Window Length Degradation Modeling

5 10 15 20 25 30 35 40
1.6

1.8

2

2.2

2.4

2.6

2.8

3

3.2

3.4

3.6

time (min)

M
A
E
(K

)

Optimal Window Length Non-Linear Modeling

Figure 5. Grid search for the optimal number of input samples depending on the time series problem.

As can be seen in Figure 5, the optimal number of input samples strongly varies with
the problem under investigation. In detail, when denoising electrical appliances signatures,
the optimal input length is around 30 min, which is a typical operational duration for
electrical appliances [58]. For the forecasting of electrical power consumption, the optimal
input length was found to be around 24 h, which is typical due to working and living
habits. It can also be observed that at around 12 h, 36 h, and 48 h, there are significant
improvements. For modelling degradation data, no upper limit could be found since
the degradation is a slow-varying property and it would be best to feed the complete
degradation cycle at once, which is not possible due to the number of samples. The optimal
input length for modelling the thermal behaviour of the electrical machine was found to
be 20 min, which is in the order of the thermal time constant of the machine, and it is in
line with [59]. Unless otherwise stated, the modelling approaches are based on sequence-
to-point modelling using the optimized length of input samples from Figure 5, with one
sample overlap between consecutive frames.

4.3. Model Structure and Parametrization

To implement the regression function f (·) for the approaches discussed in Section 2,
different ML and DL approaches have been used. For ML approaches especially, random
forest (RF) and K-nearest neighbours (KNN) have been evaluated, while for anomaly
detection, also support vector machine (SVM) has been tested. The free parameters have
been found using exhaustive automated parameter optimization on a bootstrap training
dataset. The results are presented in Table 3.

221

Entropy 2024, 26, 311

Table 3. Optimized model parameters for ML approaches including KNN, RF, and SVM.

Model Parameter Optimal Range Step

KNN Neighbors 140 10–200 5

RF
Max. Depth 10 5-25 5

Split 4 2–10 2
#-Trees 128 2–256 2n

SVM
Kernel rbf linear, rbf, poly -

C 100 1–200 20
Gamma 0.1 0.001–1 10n

Similarly, for DL models, DNN, LSTM, and CNN architectures have been evaluated.
The architectures are illustrated in Figure 6.

C
on

v1
D

(3
0
,1

0
)

C
on

v1
D

(3
0
,8

)

Fe
at

u
re

 I
n
p
u
t

V
ec

to
r

C
on

v1
D

(4
0
,6

)

C
on

v1
D

(5
0
,5

)

C
on

v1
D

(5
0
,5

)

Fl
at

te
n

M
ax

Po
ol

(5
,5

)

LS
T
M

(1
2
8
)

LS
T
M

(1
2
8
)

Fl
at

te
n

Fl
at

te
n

D
N

N
(2

5
6
,r

el
u
)

D
N

N
(2

5
6
,r

el
u
)

D
N

N
(2

5
6
,r

el
u
)

D
N

N
(2

5
6
,r

el
u
)

D
N

N
(2

5
6
,r

el
u
)

D
N

N
(N

,l
in

ea
r)

D
N

N
(2

5
6
,r

el
u
)

D
N

N
(2

5
6
,r

el
u
)

D
N

N
(2

5
6
,r

el
u
)

D
N

N
(2

5
6
,r

el
u
)

CNN-Model

LSTM-Model

DNN-Model

Figure 6. DL layer architectures for DNNs, LSTM, and CNN models. For CNNs, the notation of the
convolutional layer is Conv1D(x,y) with x being the number of filters and y being the kernel size.
For pooling layers MaxPool(x,y), x is the size and y the stride, while for LSTM and DNN layers, x
denotes the number of neurons.

Unless otherwise stated, the above architectures have been used when being referred
to CNN, LSTM, and DNN. For specific applications, the free parameters, i.e., the number
of hidden layers, neurons, the kernel sizes, and the filters, have been optimized using the
hyperband tuner from Keras. Additionally, the hyperparameters and solver parameters
tabulated in Table 4 have been used.

Table 4. Hyper- and solver parameters for deep learning models including DNN, CNN, and LSTM.

Hyperparameters Solver Parameters

Batch 1000 optimizer adam
Epochs 50–200 loss mae
Patience 15 Learning rate 1× 10−3

Validation steps 50 Beta1 0.9
Shuffle False Beta2 0.999

5. Experimental Results

In this section, the experimental results are presented when using the data, the
parametrizations, and models from Section 4. The results are evaluated in terms mean

222

Entropy 2024, 26, 311

absolute error (MAE), root mean square error (RMSE), mean square error (MSE), and the
normalized mean square error (NMSE):

MAE =
1
T

T

∑
t=1
|y(t)− ŷ(t)|, (18)

RMSE =
√

MSE =

√√√√ 1
T

T

∑
t=1

(y(t)− ŷ(t))2, (19)

NMSE = 1− ∑T
t=1|y(t)− ŷ(t)|
2 ·∑T

t=1|y(t)|
, (20)

where y(t) is the true signal, ŷ(t) is the predicted value, and T is the total number of
samples. Since not all modelling approaches are applicable for each of the scenarios, due to
their limitations with respect to the input and output dimensionality, the following results
are presented for machine and deep learning approaches. Each of these approaches can
be reproduced with the PyDTS toolkit using the predefined configuration stored under
the setup directory (https://github.com/pascme05/PyDTS/tree/main/setup/journal,
accessed on 26 February 2024). Unless otherwise stated, the results were calculated using
fivefold cross-validation using 10% of the training data for validation.

5.1. Denoising

For the denoising task, the energy of a Canadian household [54] has been disaggre-
gated; i.e., the appliance-specific energy consumption has been extracted based on the
observation of the total energy consumption of the household. Specifically, we focused on
five different appliances: the dishwasher (DWE), the fridge (FRE), the heat pump (HPE),
the wall oven (WOE), and the cloth dryer (CDE). For input features, active power (P),
reactive power (Q), apparent power (S), and current (I) were used, while the output feature
was the current for each device. The average results for all the five appliances and different
machine and deep learning models are tabulated in Table 5.

Table 5. Average results (A) for the energy disaggregation task for fivefold cross-validation using
different models and accuracy metrics. The best performances are indicated with bold notation.

Model NMSE RMSE MSE MAE MAX

CNN 92.48 0.64 0.41 0.08 29.01
LSTM 94.51 0.60 0.36 0.08 30.54
DNN 94.39 0.66 0.44 0.08 31.85

RF 81.39 0.63 0.40 0.10 28.60
KNN 74.11 1.15 1.32 0.21 31.09

As can be seen in Table 5, LSTM outperforms all other regression models for all
accuracy metrics except for the maximum error. In this scenario, only 1D time series inputs
were used to disaggregate the signals, and LSTM has shown outperforming results in
application with 1D time series, including temporal information, i.e., where future samples
depend on previous samples. Furthermore, the results for the best-performing model
(LSTM) have been evaluated at the device level and are presented in Table 6.

As can be seen in Table 6, all appliances show low disaggregation errors, except the
dishwasher, which shows poor performance that could be attributed to its lower activity,
which is in line with other approaches reported on the same dataset [58]. Moreover, the
results have been compared with the state-of-the-art approaches in the literature. The
results are presented in Table 7.

223

Entropy 2024, 26, 311

Table 6. Per-device results (A) for the energy disaggregation task for fivefold cross-validation using
LSTM as regression model and different accuracy metrics.

Device NMSE RMSE MSE MAE MAX

DWE 49.79 0.87 0.76 0.12 6.76
FRE 95.15 0.24 0.06 0.13 3.41
HPE 97.55 0.63 0.40 0.07 7.21
WOE 91.50 0.63 0.40 0.03 30.61
CDE 97.66 0.62 0.38 0.02 40.73

Avg 94.51 0.60 0.36 0.08 30.54

Table 7. Comparison with the literature for the energy disaggregation task.

Ref. Year Model NMSE RMSE MAE

[60] 2016 HMM 94.1% - -
[61] 2019 CNN 93.9% - -
[62] 2020 CNN 94.7% - -
[58] 2021 CNN 95.8% - -
[43] 2022 CNN 94.7% 0.48 0.06

This Work 2023 LSTM 94.5% 0.60 0.08

As can be seen in Table 7, the PyDTS toolkit reports results similar to the ones from pre-
viously reported approaches on the same dataset and is only outperformed by specifically
optimized approaches for the energy disaggregation task. Moreover, a set of numerical
predictions and ground-truth data is illustrated in Figure 7 for the best-performing LSTM
model from PyDTS. In detail, a 12 h period with high appliance activity on 9 January 2013
at 12:00 p.m. was selected, where FRE, HPE, and CDE are active at the same time.

As can be seen in Figure 7, the LSTM model is able to extract all three appliance
signatures from the aggregated data with high accuracy. There are only minor errors
during the active periods where the current ripple is not precisely predicted.

0 1 2 3 4 5 6 7 8 9 10 11 12
0

2

4

6

time (hrs)

I F
R
E
(A

)

Ground-truth and Predicted Current Consumption Fridge (FRE)

Grt

Prd

0 1 2 3 4 5 6 7 8 9 10 11 12
0

10

20

30

time (hrs)

I H
P
E
(A

)

Ground-truth and Predicted Current Consumption Heatpump (HPE)

Grt

Prd

0 1 2 3 4 5 6 7 8 9 10 11 12
0

20

40

60

time (hrs)

I C
D
E
(A

)

Ground-truth and Predicted Current Consumption Dryer (CDE)

Grt

Prd

Figure 7. Predicted appliance current draw for 12 h for three different (FRE, HPE, and CDE) appli-
ances from the AMPds2 dataset on 9 January 2013 at 12:00 p.m.

224

Entropy 2024, 26, 311

5.2. Forecasting

For the forecasting task, the energy consumption of a city in Morocco [55] has been
used. As input features, the previous power consumption values of the three-phase grid
have been chosen. Additionally, these values have been extended by environmental
features, namely, the ambient temperature, the wind speed, the relative humidity, and the
solar irradiance. The output feature, which is predicted, is the power consumption on
phase-leg L1. The results for an ahead forecast of 24 h are presented for different regression
models in Table 8 using Seq2Point and in Table 9 using Seq2Seq approaches.

Table 8. Forecasting errors (kW) using Seq2Point for a 24 h ahead prediction window with different
models and accuracy metrics using fivefold cross-validation. The best performances are indicated
with bold notation.

Model NMSE RMSE MSE MAE MAX

CNN 95.72 3.62 13.10 2.77 18.49
LSTM 95.55 3.85 14.82 2.88 18.19
DNN 95.61 3.74 13.99 2.85 17.90

RF 97.50 2.42 5.87 1.60 17.88
KNN 93.98 4.96 24.60 3.88 18.63

Table 9. Forecasting errors (kW) using Seq2Seq for a 24 h ahead prediction window with different
models and accuracy metrics using fivefold cross-validation. The best performances are indicated
with bold notation.

Model NMSE RMSE MSE MAE MAX

CNN 95.88 3.54 12.53 2.67 18.61
LSTM 95.99 3.01 9.06 2.36 12.12
DNN 95.66 3.71 13.76 2.81 17.26

As can be seen in Tables 8 and 9, Seq2Seq approaches outperform Seq2Point ap-
proaches for all deep learning approaches with LSTM being able to capture the temporal
relation reporting an average error equal to 2.36 kW. However, when considering Seq2Point
approaches, RF shows improved performance reporting an average error of 1.60 kW
but showing a significantly higher maximum error of 17.88 kW compared with the best-
performing LSTM approach, which has a maximum error of 12.12 kW. The best performance
is illustrated for 1 week in Figure 8.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7

20

30

40

time (days)

P
1
(k
W
)

Ground-truth and Forecasted Load Phase L1

grt

prd

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7

−4
−2
0

2

4

time (days)

E
rr
or

(k
W
)

Error Load Forecasting Phase L1

Figure 8. Forecasted power consumption and error for phase L1 for 1 week using RF as regres-
sion model.

225

Entropy 2024, 26, 311

As can be seen in Figure 8, the predicted power consumption is close to the actual
value with errors between 1 and 5 kW. Interestingly, the errors at the beginning and ending
of the week are higher than at the middle of the week, which is probably due to a higher
fluctuation of power demand at these times.

5.3. Nonlinear Modelling

For the nonlinear modelling task, the temperature prediction of a permanent magnet
synchronous machine [47] has been considered. In detail, four different temperature hot
spots have been evaluated, namely, the stator winding, the stator tooth, the stator yoke, and
the magnet temperature inside the rotor. As input features, the ambient and the coolant
temperature, the stator current and voltages, and the mechanical torque as well as the
rotational speed have been used. The output is the maximum stator winding (ϑsw) and the
rotor magnet (ϑpm) temperature. The results in terms of MAE, RMSE, and MAX error are
tabulated in Table 10 for stator and rotor temperatures, respectively.

Table 10. Temperature prediction results for 5-fold cross validation using different regression models
and performance metrics. Due to memory restrictions the LSTM input was reduced to 500 samples.
The best performances are indicated with bold notation.

Model
NMSE RMSE MSE MAE MAX

ϑsw ϑpm ϑsw ϑpm ϑsw ϑpm ϑsw ϑpm ϑsw ϑpm

CNN 97.67 95.19 4.54 7.59 20.61 57.61 3.06 5.53 76.43 54.18
LSTM 96.71 93.23 6.39 10.6 40.83 112.4 4.28 7.85 77.15 60.05
DNN 97.37 95.21 5.32 7.81 28.30 61.00 3.43 5.59 76.52 59.20

RF 96.04 94.66 7.63 8.30 58.22 68.89 5.26 4.43 73.73 47.87
KNN 86.40 89.85 22.79 14.98 519.4 224.4 17.39 11.45 82.24 57.96

As can be seen in Table 10, the rotor temperature shows worse performances across all
models in terms of accuracy as its losses and thus temperatures are much more difficult
to model based on the available inputs. Furthermore, deep learning models outperform
machine learning models due to their ability to better capture the nonlinear relationship
between the input feature vector and the temperature rise of the electric machine. To further
compare the results, the experiments from [59] have been repeated using the same split for
training, testing, and validation data. The results for the best-performing CNN model are
tabulated in Table 11.

Table 11. Results for MSE (K²) and MAX (K) errors for different testing IDs, their respective time (hr),
and temperature hot spots using a CNN regression model per hot spot.

ID Time
Stator Winding Stator Tooth Stator Yoke Magnet

MSE MAX MSE MAX MSE MAX MSE MAX

60 1.7 2.41 5.03 1.68 4.28 1.16 3.14 22.62 9.90
62 3.3 2.75 6.23 1.25 3.78 1.22 3.96 17.49 9.74
74 3.0 3.33 6.18 2.42 5.43 1.80 5.00 14.47 10.81

Avg 8.0 2.90 6.23 1.78 5.43 1.42 5.00 17.45 10.81

As can be seen in Table 11, the difficulty in estimating the temperatures in the dif-
ferent test IDs varies significantly, with the lowest errors being found in test ID 62 and
the highest in test ID 72. On average, the results are better for the stator temperatures,
which is in line with the input features being mostly stator quantities. In Figure 9, the
temperature predictions for stator winding and magnet temperature are illustrated for all
three testing IDs.

226

Entropy 2024, 26, 311

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
20

40

60

80

100

120

140

time (hrs)

ϑ
s
w
(◦
C
)

Stator Winding Temperature ID60

Grt

Pred

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

55

60

65

70

75

80

85

90

95

time (hrs)

ϑ
p
m

(◦
C
)

Rotor Magnet Temperature ID60

Grt

Pred

0 0.5 1 1.5 2 2.5 3 3.5
20

30

40

50

60

70

80

90

100

110

time (hrs)

ϑ
s
w
(◦
C
)

Stator Winding Temperature ID62

Grt

Pred

0 0.5 1 1.5 2 2.5 3 3.5
30

35

40

45

50

55

60

65

70

75

80

time (hrs)

ϑ
p
m

(◦
C
)

Rotor Magnet Temperature ID62

Grt

Pred

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8
40

50

60

70

80

90

100

110

120

130

time (hrs)

ϑ
s
w
(◦
C
)

Stator Winding Temperature ID74

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3
55

60

65

70

75

80

85

90

95

time (hrs)

ϑ
p
m

(◦
C
)

Rotor Magnet Temperature ID74

Grt

Pred

Figure 9. Predicted temperature for stator winding and rotor magnet for IDs 60, 62, and 72.

As can be seen in Figure 9, stator temperatures are much better predicted than rotor
temperatures. Especially during heat-up and cool-down phases, the rotor temperature is
not correctly predicted. This is probably due to the change in the heat transfer coefficient
and the fact that the rotor is thermally isolated through the air gap; thus, the heat path is
not based on heat conduction as in the stator, but a combination of heat convection and
conduction. To compare the results with the previously published literature, a comparison
of average errors was made in Table 12.

As can be seen in Table 12, the results obtained from the baseline CNN model imple-
mented in PyDTS are comparable to the results obtained from other machine or deep learn-
ing architectures. Only physical informed approaches like thermal neural networks [59]
perform significantly better.

Table 12. Comparison for temperature prediction using different models and number of input features.

Ref. Year Model MSE MAX Features

[63] 2021 MLP 5.58 14.29 81
[63] 2021 OLS 4.47 9.85 81
[47] 2020 CNN 4.43 15.54 81
[59] 2023 TNN 2.87 6.02 5

This Work 2023 CNN 5.89 10.81 13

5.4. Anomaly Detection

For the anomaly detection task, the vibration data of combustion engines, in normal
and faulty states, have been used. As an input feature, the acceleration signal has been
used, while the output is a binary variable indicating the healthy or faulty state of the
motor [56]. Since, in this dataset, the training and test scenarios are presplit, the results will
not be presented for fivefold cross-validation as in the previous experiments but using the
predefined splitting of the data. In detail, the results were calculated three times, using raw
input samples of the acceleration data, using statistical features of the acceleration data
(mean, min, max, std, range, etc.) [44], and using frequency domain features (e.g., magni-
tudes of the Fourier transform signal or wavelets) [64,65]. The results in terms of accuracy
(ACC) and F1-score (F1) are tabulated in Table 13 for different classification models.

227

Entropy 2024, 26, 311

Table 13. Classification results in terms of ACC and F1 for anomaly detection using different
classification models. The best performances are indicated with bold notation.

Model
Raw Statistical Frequency

ACC F1 ACC F1 ACC F1

CNN 92.35 92.34 56.52 55.87 94.85 94.85
LSTM 51.06 50.52 55.30 54.90 51.59 35.12
DNN 80.15 80.15 56.52 56.13 94.77 94.77

RF 72.80 72.77 59.09 59.10 92.42 92.42
KNN 72.80 72.76 58.11 58.12 88.94 88.90
SVM 51.59 35.12 58.41 58.01 94.47 94.47

As can be seen in Table 13, DL approaches clearly outperform ML-based approaches
when using raw data operating as automated feature extraction engines. ML techniques
show good results on frequency domain features as the relevant information is extracted
when computing the Fourier coefficients. When using statistical features, none of the
classification models can perform well, as the averaging effect in the time domain eliminates
the vibration signatures discriminating healthy and faulty samples. To give more insights
into the prediction accuracy, the confusion matrix of the best-performing CNN model is
illustrated in Figure 10 for all three different feature setups.

1 2
Predicted Class

1

2

Tr
u
e

C
la

ss

38

57624

601

(a)

1 2
Predicted Class

1

2

Tr
u
e

C
la

ss

306

205

375

434

(b)

1 2
Predicted Class

1

2

Tr
u
e

C
la

ss

25

43638

614

(c)

Figure 10. Confusion matrices for (a) raw, (b) statistical, and (c) frequency domain features for the
CNN model.

5.5. Degradation Modelling

For the degradation modelling task, the ageing data of lithium-ion battery cells [57]
have been used during charging and discharging. As input features, the cell current and
voltage as well as the cell temperature have been used. The output is the degradation curve
of the maximum remaining cell capacity for each charging and discharging cycle. The
results for different regression models and accuracy metrics are tabulated in Table 14 for
Seq2Point learning and in Table 15 for Seq2Seq learning. It must be noted that machine
learning approaches are not able to perform Seq2Seq learning due to their restriction of the
input dimensionality.

Table 14. Degradation errors for different regression models and performance metrics using
Seq2Point learning. The best performances are indicated with bold notation.

Model NMSE RMSE MSE MAE MAX

CNN 98.00 0.08 0.01 0.06 0.36
LSTM 97.85 0.08 0.01 0.07 0.39
DNN 98.64 0.06 0.01 0.04 0.49

RF 95.15 0.16 0.03 0.15 0.38
KNN 97.43 0.10 0.01 0.08 0.35

228

Entropy 2024, 26, 311

Table 15. Degradation errors for different regression models and performance metrics using Seq2Seq
learning. The best performances are indicated with bold notation.

Model NMSE RMSE MSE MAE MAX

CNN 98.26 0.07 0.01 0.05 0.34
LSTM 97.74 0.09 0.01 0.07 0.41
DNN 97.85 0.09 0.01 0.07 0.41

As can be seen in Tables 14 and 15, deep learning approaches are significantly out-
performing machine learning approaches due to their ability to model longer temporal
characteristics. In detail, DNNs outperform all other models for all performance metrics
except for the maximum error. The predicted degradation curve is illustrated in Figure 11.

0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340 360 380 400
1.2

1.4

1.6

1.8

2

time (hrs)

C
h
a
rg
e
(A

h
)

Degradation of Cell Capacitance

Grt

Pred

0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340 360 380 400
−0.1

−5 · 10−2

0

5 · 10−2

0.1

time (hrs)

C
h
ar
ge

(A
h
)

Estimation Error

Figure 11. Ground-truth and predicted remaining cell charge and prediction error using the best-
performing DNN model (for visibility, the predicted output has been filtered with a median filter of a
length of 100 samples).

As shown in Figure 11, the predicted output closely follows the measured degradation
curve and is also capturing the frequent relaxation of the cell material, e.g., after 50 h. The
maximum error is approximately 0.075 Ah being 12.3% of the remaining cell capacitance.
On average, the model is underestimating the remaining capacity with around 0.01 Ah
being 1.7% of the average cell capacitance.

6. Discussion

In this section, discussion on transferability is provided in Section 6.1, execution time
and model size in Section 6.2, and model optimization and model order reduction in
Section 6.3.

6.1. Transfer Learning

In transfer learning, the aim is to predict the output of new data based on a model that
was pretrained on other data for a usually similar application. Two different approaches are
investigated, namely, the intratransferability and the intertransferability. During intratrans-
ferability, the new data come from the same data domain, e.g., a different phase of the same
electrical grid, while in intertransferability, the data only come from the same application
domain, e.g., the same type of electrical appliance in a different consumer household. Both
types of transferability will be considered in this subsection. The intratransferability setup
is based on the electrical load forecasting of Section 5.2, predicting the load of phase 2 using
a model trained on phase 1. The intertransferability setup is based on the disaggregation
setup of Section 5.1 and [52], extracting the load signatures of a fridge, microwave, and
dishwasher in a different household using the REDD dataset [66] (houses 1 and 2). The
results for the intratransferability setup are tabulated in Table 16.

229

Entropy 2024, 26, 311

Table 16. Intratransferability scenario based on load forecasting between phases 1 (L1) and 2 (L2).
The best performances are indicated with bold notation.

Model
L2 (Train L2) L2 (Train L1) Loss (%)

NMSE RMSE MAE NMSE RMSE MAE NMSE RMSE MAE

CNN 92.02 4.22 3.36 87.61 6.34 5.19 4.79 50.24 54.46
LSTM 93.21 3.58 2.81 92.88 3.70 2.94 0.35 3.35 4.63
DNN 92.81 3.86 3.03 87.44 6.40 5.25 5.79 65.80 73.27

RF 96.02 2.35 1.71 93.28 3.44 2.78 2.85 46.38 62.57
KNN 91.66 4.37 3.49 89.07 5.58 4.56 2.83 27.69 30.66

As can be seen in Table 16, the performance when predicting phase 2 based on a
model of phase 1 leads to a decrease in all evaluated accuracy metrics and all regression
models with a loss between 0.35% and 73.27%. However, due to the data coming from the
same domain, the average accuracy is still relatively high between 87.44% and 93.28%. In
detail, LSTM shows better performance capturing the temporal information of phase 1 and
transferring it to phase 2, showing significantly lowest loss in accuracy by only 0.35–4.63%.
The results for the intertransferability setup are tabulated in Table 17.

Table 17. Intertransferability scenario based on energy disaggregation between different consumer
households (REDD-1,2). The best performances are indicated with bold notation.

Model
REDD2 (Train REDD2) REDD2 (Train REDD1) Loss (%)

NMSE RMSE MAE NMSE RMSE MAE NMSE RMSE MAE

CNN 92.60 39.44 5.45 76.12 70.83 16.57 16.48 79.59 204.0
LSTM 86.65 84.36 9.83 71.26 94.88 19.95 15.39 12.47 102.9
DNN 85.02 76.83 11.03 55.19 106.4 31.10 29.83 38.49 181.9

RF 89.19 41.38 7.96 75.88 67.77 16.74 13.31 63.77 110.3
KNN 92.48 31.32 5.54 70.09 79.57 20.76 22.39 154.1 274.7

As can be seen in Table 17, the loss in performance is substantially increased compared
with the intratransferability setup by 13.31–204.00%. This is due to the much more complex
task of modelling similar devices in a completely different environment. Overall, CNN is
achieving the best absolute performance for both the baseline and the transferability scenario.

6.2. Execution Time and Model Size

Model size and execution time determine the real-time capability and the utilization on
hardware applications. Different models and application scenarios have been benchmarked
on a personal computer using an AMD Ryzen 3700, an Nvidia RTX3070, and 32 GB of 3600
MHz DDR4 RAM. The model sizes after training are tabulated in Table 18.

Table 18. Model size of the trained model including all parameters for different scenarios.

Model
Denoise Forecast Nonlinear Anomaly Degradation

30 × 4 144 × 8 1000 × 13 500 × 1 140 × 3

CNN 2.91 MB 6.37 MB 32.0 MB 9.49 MB 6.20 MB
LSTM 4.29 MB 4.30 MB 4.34 MB 4.26 MB 4.27 MB
DNN 1.92 MB 5.00 MB 40.6 MB 2.30 MB 2.81 MB

RF 37.7 MB 12.1 MB 58.4 MB 2.80 MB 9.16 MB
KNN 3.94 GB 0.33 GB 26.9 GB 7.05 MB 162.4 MB

From Table 18, it is observed that while the model size of CNN, LSTM, and DNN
only depends on the size of the feature input vector, KNN stores all training samples to
compute neighbouring distances and RF creates more trees, thus having significantly higher

230

Entropy 2024, 26, 311

memory requirements for large datasets. Additionally, while the DNN and CNN models
are sensitive to the window length of the input feature vector, the LSTM model has barely
increased in model size due to its long short-term memory cells. The training and inference
times are reported in Table 19.

Table 19. Training (T) and inference time (I) per sample (µs) for different models and scenarios.

Model
Denoise Forecast Non-Linear Anomaly Degradation

T I T I T I T I T I

CNN 530 59 2570 120 2610 190 8650 478 1540 109
LSTM 540 87 6790 255 10,300 556 6540 893 2410 232
DNN 310 22 1500 33 3070 95 3760 76 1510 31

RF 9 × 103 15 5710 5.5 20 × 103 24 90 20 2170 3.1
KNN 0 6 × 103 0 967 0 42 × 103 0 97 0 854

As can be seen in Table 19, the training time per sample of deep learning approaches
depends mainly on the convergence of the model. Conversely, the training time per
sample for RF depends on the complexity and the number of different states that are
extracted, while it is close to zero for KNN, which does not have any trainable parameters.
Considering inference time, deep learning approaches are mostly dependent on the model
size and the size of the input feature vector. Conversely, RF has very low inference time
as it only performs comparison at the branches of the different decision trees, while KNN
has large inference times because it compares every sample in the testing data with the
training data.

6.3. Optimal Models and Model Order Reduction

To further improve the performance of a deep learning model in terms of model size
and/or performance, the input feature vector and the model parameters can be optimized.
To optimize the input feature vector, the importance of the input with respect to the output
can be evaluated. Possible ranking algorithms include principal component analysis (PCA),
correlation coefficients, or the ReliefF algorithm [67]. The feature ranking for the nonlinear
modelling task is illustrated in Figure 12.

Tc Us Ta Uq Is Wm Ud Id Ss Tm Iq Iw Sw
0

0.1

0.2

0.3

0.4

0.5

N
o
r
m
a
li
z
e
d
F
e
a
t
u
r
e
S
c
o
r
e

Feature Ranking for the Non-Linear Modeling Task

Figure 12. Feature ranking for the nonlinear modelling task for 13 features: coolant/ambient tem-
perature (Tc, Ta), stator voltages (Us, Ud, Uq), stator currents (Is, Id, Iq), torque (Tm), rotational speed
(ωm), apparent power (Ss), and products or current/power and rotational speed (Iω , Sω).

As can be seen in Figure 12, the stator and rotor temperature are dominated by
the cooling temperature (heat conduction to the coolant), the ambient temperature (heat
convection to the ambient), the stator voltage and stator current (ohmic and iron losses),
and the rotational speed (coupling or stator and rotor temperature through airflow inside
the machine). Furthermore, a Keras hyperparameter tuner can be used to optimize the
parameters of the CNN model to account for the changed input feature dimensionality.
The results of the reduced-order model using 6 input features instead of 13 are tabulated in
Table 20.

231

Entropy 2024, 26, 311

Table 20. Temperature prediction results for stator winding and magnet temperature in terms of
MSE (K²) for different testing IDs and models. Baseline scenarios are denoted with ‘Base’, while
reduced-order configurations are denoted with ’MOR’.

ID Time (h)
Stator Winding Rotor Magnet

Base MOR Base MOR

60 1.7 2.41 1.34 22.62 16.68
62 3.3 2.75 1.79 17.49 31.11
74 3.0 3.33 2.37 14.47 15.39

Avg 8.0 2.90 1.91 17.45 22.15

As can be seen in Table 20, a reduced-order model reports even better performances
for stator quantities, showing improvement by 34.1%. Conversely, the rotor performance
decreased by 26.9%, which is probably due to the missing torque values and the complex
power as these quantities are directly related to the rotor shaft.

7. Conclusions

A machine and deep learning Python toolkit for modelling time series data has been
introduced. Five different scenarios, namely, denoising, forecasting, nonlinear modelling,
anomaly detection, and degradation modelling, have been evaluated using real-word
datasets and different machine and deep learning models. It was shown that the PyDTS
toolkit and the models implemented in the toolkit can achieve performance close to the state
of the art of the respective approach. Additionally, to benchmark the different approaches,
the topics of transfer learning, hardware requirements, and model optimization have been
discussed. The authors hope that the paper, accompanied by the PyDTS toolkit, will
help new researchers entering the area of time series modelling and hopefully will create
new ideas.

Author Contributions: Conceptualization, P.A.S.; methodology, P.A.S.; software, P.A.S.; writing—
original draft preparation, P.A.S. and I.M.; writing—review and editing, I.M. All authors have read
and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Data Availability Statement: The data on code are publicly available on GitHub at https://github.
com/pascme05/PyDTS (accessed on 26 February 2024).

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Barra, S.; Carta, S.M.; Corriga, A.; Podda, A.S.; Recupero, D.R. Deep learning and time series-to-image encoding for financial

forecasting. IEEE/CAA J. Autom. Sin. 2020, 7, 683–692. [CrossRef]
2. Mudelsee, M. Climate Time Series Analysis; Atmospheric and Oceanographic Sciences Library; Springer: Cham, Switzerland,

2010; Volume 397.
3. Mporas, I.; Ganchev, T.; Kocsis, O.; Fakotakis, N. Context-adaptive pre-processing scheme for robust speech recognition in

fast-varying noise environment. Signal Process. 2011, 91, 2101–2111. [CrossRef]
4. Rasul, K.; Seward, C.; Schuster, I.; Vollgraf, R. Autoregressive denoising diffusion models for multivariate probabilistic time series

forecasting. In Proceedings of the International Conference on Machine Learning, PMLR, Virtual, 18–24 July 2021; pp. 8857–8868.
5. Almalaq, A.; Edwards, G. A review of deep learning methods applied on load forecasting. In Proceedings of the 2017 16th IEEE

International Conference on Machine Learning and Applications (ICMLA), Cancun, Mexico, 18–21 December 2017; pp. 511–516.
6. Osorio, J.D.; Wang, Z.; Karniadakis, G.; Cai, S.; Chryssostomidis, C.; Panwar, M.; Hovsapian, R. Forecasting solar-thermal systems

performance under transient operation using a data-driven machine learning approach based on the deep operator network
architecture. Energy Convers. Manag. 2022, 252, 115063. [CrossRef]

7. Hsieh, R.J.; Chou, J.; Ho, C.H. Unsupervised online anomaly detection on multivariate sensing time series data for smart
manufacturing. In Proceedings of the 2019 IEEE 12th Conference on Service-Oriented Computing and Applications (SOCA),
Kaohsiung, Taiwan, 18–21 November 2019; pp. 90–97.

232

Entropy 2024, 26, 311

8. Vichard, L.; Harel, F.; Ravey, A.; Venet, P.; Hissel, D. Degradation prediction of PEM fuel cell based on artificial intelligence. Int. J.
Hydrogen Energy 2020, 45, 14953–14963. [CrossRef]

9. Fengou, L.C.; Mporas, I.; Spyrelli, E.; Lianou, A.; Nychas, G.J. Estimation of the microbiological quality of meat using rapid and
non-invasive spectroscopic sensors. IEEE Access 2020, 8, 106614–106628. [CrossRef]

10. Contreras, J. ARIMA models to predict next-day electricity process. IEEE Trans. Power Syst. 2004, 19, 366–374.
11. Chen, K.; Yu, J. Short-term wind speed prediction using an unscented Kalman filter based state-space support vector regression

approach. Appl. Energy 2014, 113, 690–705. [CrossRef]
12. Lim, B.; Zohren, S. Time-series forecasting with deep learning: A survey. Philos. Trans. R. Soc. A 2021, 379, 20200209. [CrossRef]
13. Siami-Namini, S.; Tavakoli, N.; Namin, A.S. The performance of LSTM and BiLSTM in forecasting time series. In Proceedings of

the 2019 IEEE International Conference on Big Data (Big Data), Los Angeles, CA, USA, 9–12 December 2019; pp. 3285–3292.
14. Koprinska, I.; Wu, D.; Wang, Z. Convolutional neural networks for energy time series forecasting. In Proceedings of the 2018

International Joint Conference on Neural Networks (IJCNN), Rio de Janeiro, Brazil, 8–13 July 2018; pp. 1–8.
15. Chen, Y.; Ren, K.; Wang, Y.; Fang, Y.; Sun, W.; Li, D. ContiFormer: Continuous-time transformer for irregular time series modeling.

Adv. Neural Inf. Process. Syst. 2024, 36.
16. Alwan, L.C.; Roberts, H.V. Time-series modeling for statistical process control. J. Bus. Econ. Stat. 1988, 6, 87–95. [CrossRef]
17. Lojowska, A.; Kurowicka, D.; Papaefthymiou, G.; van der Sluis, L. Advantages of ARMA-GARCH wind speed time series

modeling. In Proceedings of the 2010 IEEE 11th International Conference on Probabilistic Methods Applied to Power Systems,
Singapore, 14–17 June 2010; pp. 83–88.

18. Chujai, P.; Kerdprasop, N.; Kerdprasop, K. Time series analysis of household electric consumption with ARIMA and ARMA
models. In Proceedings of the International Multiconference of Engineers and Computer Scientists, IAENG, Hong Kong, China,
13–15 March 2013; Volume 1, pp. 295–300.

19. Mahla, S.K.; Parmar, K.S.; Singh, J.; Dhir, A.; Sandhu, S.S.; Chauhan, B.S. Trend and time series analysis by ARIMA model to
predict the emissions and performance characteristics of biogas fueled compression ignition engine. Energy Sources Part A Recover.
Util. Environ. Eff. 2023, 45, 4293–4304. [CrossRef]

20. Durbin, J.; Koopman, S.J. Time Series Analysis by State Space Methods; OUP: Oxford, UK, 2012; Volume 38.
21. Yang, S.; Wan, M.P.; Ng, B.F.; Zhang, T.; Babu, S.; Zhang, Z.; Chen, W.; Dubey, S. A state-space thermal model incorporating

humidity and thermal comfort for model predictive control in buildings. Energy Build. 2018, 170, 25–39. [CrossRef]
22. Hu, X.; Lin, S.; Stanton, S.; Lian, W. A State Space Thermal Model for HEV/EV Battery Modeling; Technical Report, SAE Technical

Paper; SAE: Warrendale, PA, USA, 2011.
23. Dong, Z.; Yang, D.; Reindl, T.; Walsh, W.M. Short-term solar irradiance forecasting using exponential smoothing state space

model. Energy 2013, 55, 1104–1113. [CrossRef]
24. Längkvist, M.; Karlsson, L.; Loutfi, A. A review of unsupervised feature learning and deep learning for time-series modeling.

Pattern Recognit. Lett. 2014, 42, 11–24. [CrossRef]
25. Gamboa, J.C.B. Deep learning for time-series analysis. arXiv 2017, arXiv:1701.01887.
26. Han, Z.; Zhao, J.; Leung, H.; Ma, K.F.; Wang, W. A review of deep learning models for time series prediction. IEEE Sens. J. 2019,

21, 7833–7848. [CrossRef]
27. Wang, H.; Lei, Z.; Zhang, X.; Zhou, B.; Peng, J. A review of deep learning for renewable energy forecasting. Energy Convers.

Manag. 2019, 198, 111799. [CrossRef]
28. Hafeez, G.; Alimgeer, K.S.; Khan, I. Electric load forecasting based on deep learning and optimized by heuristic algorithm in

smart grid. Appl. Energy 2020, 269, 114915. [CrossRef]
29. Hewage, P.; Trovati, M.; Pereira, E.; Behera, A. Deep learning-based effective fine-grained weather forecasting model. Pattern

Anal. Appl. 2021, 24, 343–366. [CrossRef]
30. Antczak, K. Deep recurrent neural networks for ECG signal denoising. arXiv 2018, arXiv:1807.11551.
31. Peng, Z.; Peng, S.; Fu, L.; Lu, B.; Tang, J.; Wang, K.; Li, W. A novel deep learning ensemble model with data denoising for

short-term wind speed forecasting. Energy Convers. Manag. 2020, 207, 112524. [CrossRef]
32. Peng, H.; Yan, J.; Yu, Y.; Luo, Y. Time series estimation based on deep learning for structural dynamic nonlinear prediction.

Structures 2021, 29, 1016–1031. [CrossRef]
33. Gao, X.; Zhu, W.; Yang, Q.; Zeng, D.; Deng, L.; Chen, Q.; Cheng, M. Time delay estimation from the time series for optical chaos

systems using deep learning. Opt. Express 2021, 29, 7904–7915. [CrossRef]
34. Padrós, M.S.; Schirmer, P.A.; Mporas, I. Estimation of Cooling Circuits’ Temperature in Battery Electric Vehicles Using Karhunen

Loeve Expansion and LSTM. In Proceedings of the 2022 30th European Signal Processing Conference (EUSIPCO), Belgrade,
Serbia, 29 August–2 September 2022; pp. 1546–1550.

35. Munir, M.; Siddiqui, S.A.; Dengel, A.; Ahmed, S. DeepAnT: A deep learning approach for unsupervised anomaly detection in
time series. IEEE Access 2018, 7, 1991–2005. [CrossRef]

36. Zhang, W.; Li, X.; Li, X. Deep learning-based prognostic approach for lithium-ion batteries with adaptive time-series prediction
and on-line validation. Measurement 2020, 164, 108052. [CrossRef]

37. Gedon, D.; Wahlström, N.; Schön, T.B.; Ljung, L. Deep state space models for nonlinear system identification. IFAC-PapersOnLine
2021, 54, 481–486. [CrossRef]

233

Entropy 2024, 26, 311

38. Bicer, E.A.; Schirmer, P.A.; Schreivogel, P.; Schrag, G. Electric Vehicle Thermal Management System Modeling with Informed
Neural Networks. In Proceedings of the 2023 25th European Conference on Power Electronics and Applications (EPE’23 ECCE
Europe), Aalborg, Denmark, 4–8 September 2023; pp. 1–8.

39. Schwermer, R.; Bicer, E.A.; Schirmer, P.; Mayer, R.; Jacobsen, H.A. Federated Computing in Electric Vehicles to Predict Coolant
Temperature. In Proceedings of the 24th International Middleware Conference: Industrial Track, Bologna, Italy, 11–15 December
2023; pp. 8–14.

40. Garza, F.; Canseco, M.M.; Challú, C.; Olivares, K.G. StatsForecast: Lightning Fast Forecasting with Statistical and Econometric Models;
PyCon: Salt Lake City, UT, USA, 2022.

41. Herzen, J.; LÃ¤ssig, F.; Piazzetta, S.G.; Neuer, T.; Tafti, L.; Raille, G.; Pottelbergh, T.V.; Pasieka, M.; Skrodzki, A.; Huguenin, N.;
et al. Darts: User-Friendly Modern Machine Learning for Time Series. J. Mach. Learn. Res. 2022, 23, 1–6.

42. Löning, M.; Bagnall, A.; Ganesh, S.; Kazakov, V.; Lines, J.; Király, F.J. sktime: A unified interface for machine learning with time
series. arXiv 2019, arXiv:1909.07872.

43. Schirmer, P.A.; Mporas, I. Non-Intrusive Load Monitoring: A Review. IEEE Trans. Smart Grid 2023, 14, 769–784. [CrossRef]
44. Schirmer, P.A.; Mporas, I. Statistical and Electrical Features Evaluation for Electrical Appliances Energy Disaggregation.

Sustainability 2019, 11, 3222. [CrossRef]
45. Schirmer, P.A.; Mporas, I.; Paraskevas, M. Evaluation of Regression Algorithms and Features on the Energy Disaggregation Task.

In Proceedings of the 2019 10th International Conference on Information, Intelligence, Systems and Applications (IISA), Patras,
Greece, 15–17 July 2019; pp. 1–4. [CrossRef]

46. Schirmer, P.A.; Geiger, C.; Mporas, I. Residential Energy Consumption Prediction Using Inter-Household Energy Data and
Socioeconomic Information. In Proceedings of the 2020 28th European Signal Processing Conference (EUSIPCO), Patras, Greece,
18–21 January 2020.

47. Kirchgässner, W.; Wallscheid, O.; Böcker, J. Estimating electric motor temperatures with deep residual machine learning. IEEE
Trans. Power Electron. 2020, 36, 7480–7488. [CrossRef]

48. Shumway, R.H.; Stoffer, D.S. Time Series Analysis and Its Applications; Springer: Cham, Switzerland, 2000.
49. Chen, C.T. Linear System Theory and Design, 3rd ed.; Oxford University Press, Inc.: Cary, NC, USA, 1998.
50. Loyola-González, O. Black-Box vs. White-Box: Understanding Their Advantages and Weaknesses From a Practical Point of View.

IEEE Access 2019, 7, 154096–154113. [CrossRef]
51. Zheng, H.S.; Liu, Y.Y.; Hsu, C.F.; Yeh, T.T. StreamNet: Memory-Efficient Streaming Tiny Deep Learning Inference on the

Microcontroller. In Proceedings of the Thirty-Seventh Conference on Neural Information Processing Systems, 2023. Available
online: https://nips.cc/media/neurips-2023/Slides/72782_KsNdwFo.pdf (accessed on 26 February 2024).

52. Schirmer, P.A.; Mporas, I. Device and Time Invariant Features for Transferable Non-Intrusive Load Monitoring. IEEE Open Access
J. Power Energy 2022, 9, 121–130. [CrossRef]

53. Chen, X.W.; Lin, X. Big Data Deep Learning: Challenges and Perspectives. IEEE Access 2014, 2, 514–525. [CrossRef]
54. Makonin, S.; Ellert, B.; Bajić, I.V.; Popowich, F. Electricity, water, and natural gas consumption of a residential house in Canada

from 2012 to 2014. Sci. Data 2016, 3, 1–12. [CrossRef] [PubMed]
55. Soriano, F. Electric Power Consumption Dataset. 2023. Available online: https://www.kaggle.com/datasets/fedesoriano/

electric-power-consumption (accessed on 26 February 2024).
56. Wichard, J.D. Classification of Ford Motor Data. Comput. Sci. 2008 . Available online: http://www.j-wichard.de/publications/

FordPaper.pdf (accessed on 26 February 2024).
57. Bills, A.; Sripad, S.; Fredericks, L.; Guttenberg, M.; Charles, D.; Frank, E.; Viswanathan, V. A battery dataset for electric vertical

takeoff and landing aircraft. Sci. Data 2023, 10, 344. [CrossRef] [PubMed]
58. Schirmer, P.A.; Mporas, I. Low-Frequency Energy Disaggregation based on Active and Reactive Power Signatures. In Proceedings

of the 2021 29th European Signal Processing Conference (EUSIPCO), Dublin, Ireland, 23–27 August 2021; pp. 1426–1430.
[CrossRef]

59. Kirchgässner, W.; Wallscheid, O.; Böcker, J. Thermal neural networks: Lumped-parameter thermal modeling with state-space
machine learning. Eng. Appl. Artif. Intell. 2023, 117, 105537. [CrossRef]

60. Makonin, S.; Popowich, F.; Bajic, I.V.; Gill, B.; Bartram, L. Exploiting HMM Sparsity to Perform Online Real-Time Nonintrusive
Load Monitoring. IEEE Trans. Smart Grid 2016, 7, 2575–2585. [CrossRef]

61. Harell, A.; Makonin, S.; Bajic, I.V. Wavenilm: A Causal Neural Network for Power Disaggregation from the Complex Power
Signal. In Proceedings of the ICASSP 2019—2019 IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP), Brighton, UK, 12–17 May 2019; pp. 8335–8339. [CrossRef]

62. Schirmer, P.A.; Mporas, I. Energy Disaggregation Using Fractional Calculus. In Proceedings of the ICASSP 2020—2020 IEEE
International Conference on Acoustics, Speech and Signal Processing (ICASSP), Barcelona, Spain, 4–8 May 2020; pp. 3257–3261.
[CrossRef]

63. Kirchgässner, W.; Wallscheid, O.; Böcker, J. Data-driven permanent magnet temperature estimation in synchronous motors with
supervised machine learning: A benchmark. IEEE Trans. Energy Convers. 2021, 36, 2059–2067. [CrossRef]

64. Schirmer, P.A.; Mporas, I. Energy Disaggregation from Low Sampling Frequency Measurements Using Multi-Layer Zero Crossing
Rate. In Proceedings of the ICASSP 2020—2020 IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP), Barcelona, Spain, 4–8 May 2020; pp. 3777–3781. [CrossRef]

234

Entropy 2024, 26, 311

65. Schirmer, P.A.; Mporas, I. A Wavelet Scattering Approach for Load Identification with Limited Amount of Training Data. In
Proceedings of the ICASSP 2023—2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP),
Rhodes Island, Greece, 4–10 June 2023; pp. 1–5. [CrossRef]

66. Kolter, J.Z.; Johnson, M.J. REDD: A public data set for energy disaggregation research. In Workshop on Data Mining Applications in
Sustainability (SIGKDD); Citeseer: San Diego, CA, USA, 2011; Volume 25, pp. 59–62.

67. Robnik-Šikonja, M.; Kononenko, I. Theoretical and empirical analysis of ReliefF and RReliefF. Mach. Learn. 2003, 53, 23–69.
[CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

235

MDPI AG
Grosspeteranlage 5

4052 Basel
Switzerland

Tel.: +41 61 683 77 34

Entropy Editorial Office
E-mail: entropy@mdpi.com

www.mdpi.com/journal/entropy

Disclaimer/Publisher’s Note: The title and front matter of this reprint are at the discretion of the

Guest Editors. The publisher is not responsible for their content or any associated concerns. The

statements, opinions and data contained in all individual articles are solely those of the individual

Editors and contributors and not of MDPI. MDPI disclaims responsibility for any injury to people or

property resulting from any ideas, methods, instructions or products referred to in the content.

Academic Open
Access Publishing

mdpi.com ISBN 978-3-7258-2981-1

