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Editorial

Recent Developments in Photofunctional Nanomaterials
and Nanostructures for Emitting, Manipulating,
and Harvesting Light
Zhixing Gan

Center for Future Optoelectronic Functional Materials, School of Computer and Electronic Information/School of
Artificial Intelligence, Nanjing Normal University, Nanjing 210023, China; zxgan@njnu.edu.cn

1. Introduction

Photofunctional nanomaterials and nanostructures that can emit, manipulate, convert,
and utilize photons in diverse forms have profound meanings, from fundamental under-
standings to applications. Thus, photofunctional nanomaterials and nanostructures have
stimulated trans-disciplinary interests in the fields of physics, chemistry, material science,
biology, photons, and engineering while also stimulating scientific breakthroughs in the
fields of photovoltaics, photolithography, photoelectronics, photocatalysis, photobiology
and phototherapy, photosynthesis, and optical sensing. Recently, photofunctional materials
have been developed for storing and processing optical information [1–3]. Neuromorphic
optoelectronic devices integrating sensing, storage, and computing abilities have been
demonstrated [4–6]. Photofunctional nanomaterials and nanostructures, with their unique
appeal, are attracting a growing number of researchers to advance the development of
this field.

2. An Overview of Published Articles

This Special Issue brings together eleven articles, including one review article and
ten research articles. Four of these articles focus on development of photofunctional
metastructures, such as metamirrors, nanotube photonic crystasl, topological photonic
devices, and metasurface filters.

Li et al. designed the chiral metamirrors with circular dichroisms of about 0.4 in visible
reflection [7]. The chiral metamirrors show high reflectance for right-handed circular polar-
ization with preserved handedness and strongly absorbed left-handed circular polarization
on chiroptical resonant wavelengths.

Meng et al. developed a novel bi-layer structure consisting of a top nanotube layer
and a bottom nanotube photonic crystal layer in which the photonic bandgap of bottom
TiO2 nanotube photonic crystals can be precisely adjusted by modulating the anodization
parameters [8]. The overlapping between the photonic bandgap of photonic crystals with
the electronic bandgap of TiO2 leads to the boosted ultraviolet light absorption of the top
TiO2 layer and enhanced photon-to-current conversion efficiency. This research offers an
effective strategy for improving the performance of photoelectrochemical water splitting
through intensifying light–matter interactions.

Su et al. computationally proposed a photonic device for the 1550 nm communication
band in which topologically protected electromagnetic modes of a high quality can be
selectively triggered and modulated on demand [9]. The topological photonic devices
can realize Fano lines on the spectrum and show high-quality localized modes by tuning
the coupling strength between the zero-dimensional valley corner states and the one-
dimensional valley edge states, providing a promising approach for multi-dimensional
optical field manipulation in integrated nanophotonic devices.
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Wang et al. proposed a compact snapshot compressive spectral-imaging (SCSI) sys-
tem that leverges the spectral modulations of metasurfaces with dual-channel switchable
metasurface filters and employs a deep-learning-based reconstruction algorithm [10]. The
proposed SCSI system integrates dual-channel switchable metasurface filters using twisted
nematic liquid crystals and anisotropic titanium dioxide nanostructures. The proposed
hyperspectral-imaging technology demonstrates superior reconstruction quality and speed
compared to those of the traditional compressive hyperspectral image recovery meth-
ods. This device is expected to be applied in various areas, such as object detection, face
recognition, food safety, biomedical imaging, agriculture surveillance, etc.

The other six research articles focused on the development of photofunctional nano-
materials, with three articles concentrating on light-emitting materials and the final three
articles examining light-harvesting materials.

Tselekidou et al. investigated the optical and photophysical characteristics of blue-
emitting polymers to promote the understanding of the fundamental mechanisms of color
purity and its stability during the operation of Organic Light-Emitting Diode (OLED)
devices [11].

Zhang et al. hypothesized that the blue emission of carbon dots (CDs) could be
ascribed to the surface states induced by the C–O and C=O groups, while the green
luminescence may originate from the deep energy levels associated with the O–C=O groups
according to microstructure characterizations, optical measurements, and ultrafiltration
experiments [12].

Tardío et al. synthesized and crystallized a set of novel Donor–Acceptor–Donor
(D-A-D) benzoselenadiazole derivatives in nanocrystals [13]. The correlation between
their chemical structures and the waveguided luminescent properties were explored. The
findings revealed that all crystals exhibited luminescence and active optical waveguiding,
demonstrating their ability to adjust their luminescence within a broad spectral range of
550–700 nm through suitable chemical functionalization.

Goponenko et al. proposed a novel hydrophobic coating based on a polydimethyl-
siloxane layer with embedded red-emitting Y2O3:Eu3+ particles as UV radiation screening
and conversion layers for solar cells, resulting in a notable increase in power conversion effi-
ciency by ~9.23% [14]. The developed coating can endure tough environmental conditions,
making it potentially useful as a UV-protective, water-repellent, and efficiency-enhancing
coating for solar cells.

Slimani et al. studied the intense-pulsed-light-induced crystallization of SnO2 thin-
films using only 500 µs of exposure time [15]. They demonstrated that light-induced
crystallization yields improved topography and excellent electrical properties through
enhanced charge transfer, improved interfacial morphology, and better ohmic contact com-
pared to thermally annealed SnO2 films, showing great potential for improved perovskite
solar cell manufacturability.

Chaperman synthesized self-doped CuS nanoparticles via a microwave-assisted polyol
process to act as co-catalysts to TiO2 nanofiber-based photoanodes for visible light-assisted
water electrolysis [16]. These low-cost and easy-to-achieve composite materials allow for
an improved overall efficiency of water oxidation (and consequently hydrogen generation
at the Pt counter electrode) in passive electrolytes, even with a 0 V bias.

Furthermore, in the mini-review, Guo et al. summarized recent research progress
on the Rashba effect of two-dimensional (2D) organic–inorganic hybrid perovskites [17].
The origin and magnitude of Rashba spin splitting, the layer-dependent Rashba band
splitting of 2D perovskites, and the Rashba effect of different 2D perovskites are discussed.
Moreover, related applications in regard to photodetectors and photovoltaics are reviewed.
Future research to modulate the Rashba strength is expected to promote the optoelectronic
and spintronic applications of 2D perovskites.
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3. Conclusions

In summary, this Special Issue mainly reports recent research progress regarding
photofunctional nanomaterials and nanostructures that emit, manipulate, and harvest light.
These contributions are expected to promote the development of integrated nanophotonic
chips, hyperspectral imaging, photoelectrochemical water splitting, solar cells, and OLEDs.
We hope that this Special Issue will help readers to gain more insight into this area and also
provide helpful guidance for the future development of photofunctional nanomaterials
and nanostructures.
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Abstract: The properties of circularly polarized light has recently been used to selectively reflect chiral
metasurfaces. Here we report the more complete basic functionalities of reflectors and absorbers
that display various optical phenomena under circularly polarized light at normal incidence as
before. For the chiral metamirrors we designed, the circular dichroism in about 0.4 reflection is
experimentally observed in visible wavelengths. The experimental results also show high reflectance
for right-handed circular polarization with preserved handedness and strongly absorbed left-handed
circular polarization at chiroptical resonant wavelengths. By combining a nanobrick and wire grating
for our design, we find and offer a new structure to demonstrate the superposition concept of the
phase in the same plane that is helpful in effectively designing chiral metamirrors, and could advance
development of their ultracompact optical components.

Keywords: metamirrors; circular dichroism; chirality; visible wavelengths

1. Introduction

The term chirality is identified as the property of an object that lacks any mirror symmetry
plane [1–7] and is a fundamental characteristic of natural molecules and artificial metamaterials
which have different optical properties for right-handed circular polarization (RCP) or left-
handed circular polarization (LCP). A famous example in nature, the Chrysina gloriosa, a
jeweled scarab beetle, can selectively reflect left-handed circularly polarized light in reflection,
because of the particular textures of its exoskeleton [8]. Moreover, this chiroptical response is
utilized by Chrysina gloriosa to perceive and communicate with its companions [9]. However,
the signal of chiroptical response is universally weaker in natural as compared to artificial
metamaterial. Therefore, in recent years the chiral metasurface [10–13] has been widely studied
to achieve a strong chiroptical response in applications such as circular polarizers [14–18],
hot-electron collection devices [19–23], optical encryption [24,25], and biosensors for analyzing
circular dichroism spectroscopy [26–30].

In this paper, we demonstrate all basic functionalities for a series of reflectors and
absorbers consisting of a metasurface on the top of a conventional mirror under circularly
polarized light at normal incidence (as shown in Figure 1) that is more complete than
before [31,32]. A conventional isotropic mirror can reverse the handedness of circularly

Nanomaterials 2024, 14, 1705. https://doi.org/10.3390/nano14211705 https://www.mdpi.com/journal/nanomaterials5
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polarized when light is reflected off its surface, because it can reverse the propagation
direction of the reflected electromagnetic wave of the electric field (seen in Figure 1a), as has
previously been discussed in detail [33,34]. The necessary condition for selective reflection
without preserving handedness for both LCP absorbers and RCP absorbers under circular
polarized light is only to break mirror symmetry to the perpendicular light propagation
direction of the pattern plane, illustrated in Figure 1b,c. In addition, Figure 1b,c are opposite
phenomena and mirror images of each other. Figure 1d shows an anisotropy mirror
designed as a half-wave plate with a phase difference of π [35–38] and having the property
of preserving handedness without handedness variation. The LCP and RCP mirrors
are designed to not only selectively reflect one circular polarized light while preserving
handedness, but also totally absorb the other, as shown in Figure 1e,f [30]. In addition, a
linear polarization perfect absorber composed of a metasurface and a thick backplane of
a general mirror separated by a thin lossy dielectric spacer, has been reported [39,40]. It
is important to note that an isotropic linear polarization absorber can absorb both linear
polarizations [41–43], and is the circular polarization perfect absorber to absorb both RCP
and LCP light, as shown Figure 1g. The mirrors shown in Figure 1 allow for control of the
polarization and intensity of the reflected light, which is essential when designing various
devices. This study aims to develop a metamirror with the maximum value of circular
dichroism. The metamirror analysis revealed that circular dichroism can only be obtained
by using LCP or RCP mirrors (see Figure 1e,f). For this reason, in this work we present
a simple approach that utilizes the superposition concept of the phase to design chiral
metamirrors from a single structure layer, by combining the nanobrick and the wire grating
in the same plane. Furthermore, this single patterned layer can make a good contribution
to lowering the complexity of the fabricated device and its cost. The analysis of both
simulation and experiments with reflectance coefficients spectra demonstrates the chiral
metamirrors we have designed can selectively reflect the RCP light while preserving the
handedness and absorbing the LCP light. In addition, the simulated results display good
agreement with the experimental results showing reflectance spectra and spectral shape.
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of one handedness and preserve handedness without handedness variation, while absorbing the 
other handedness. (g) An isotropic mirror absorbs both LCP and RCP light and does not reflect light 
as a perfect absorber.

Figure 1. Schematic of all reflectors under circularly polarized light at normal incidence. (a) A
general mirror reverses the handedness of circular polarized light in reflection. (b) An LCP absorber
and (c) an RCP absorber can reflect circularly polarized light of one handedness with handedness
variation, while absorbing the other handedness, as shown as the black circle. (d) An anisotropy
mirror is designed as a half-wave plate with a phase difference of π, to preserve handedness without
handedness variation. (e) An LCP mirror and (f) an RCP mirror can reflect circular polarized light of
one handedness and preserve handedness without handedness variation, while absorbing the other
handedness. (g) An isotropic mirror absorbs both LCP and RCP light and does not reflect light as a
perfect absorber.
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2. Materials and Methods

In order to design the circular dichroism metamirrors, conditions including breaking
mirror symmetry and the n-fold (n > 2) rotational symmetry [8] must be satisfied. Therefore,
we combined the nanobrick and the wire grating in the same plane. Figure 2 shows a
three-dimensional illustration of the gold nanobrick–wire grating complex structure. The
schematic configuration is designed as a 60 nm gold structure on top of a 130 nm silicon
dioxide spacer, underneath which is a layer of thick gold reflector and a glass substrate.
Due to the optically thick gold reflector in this design, transmission can be neglected; the
chiroptical response can be tremendously enhanced by providing a resonant cavity. The
width of both the nanobrick and the wire grating was g = l = 70 nm, and the length of the
nanobrick was w = 190 nm. The unit cell was replicated in a two-dimensional square lattice
along the x and y axes with period Px = Py = P = 250 nm. The nanobrick was rotated by
45 degrees with respect to the z-axis to break the mirror symmetry and the n-fold (n > 2)
rotational symmetry. It is worth noting that we demonstrate that the gold nanobrick-wire
grating complex structure of the chiral metamirrors planar photonic structures with a single
patterned layer not only produces a chiral optical response, but also lowers the complexity
of a fabricated device and the cost.
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Figure 2. Schematic configuration of the chiral metamirrors consisting of the nanobrick and the wire
grating in the same plane for breaking mirror symmetry and the n-fold (n > 2) rotational symmetry. A
unit cell of the metasurface consists of a gold structure which is separated from a thick gold reflector
by a thin SiO2 spacer. Geometrical parameters: P = 250 nm, g = l = 70 nm, w = 190 nm, ts = 130 nm,
tAu = 200 nm.

3. Results
3.1. Simulated Results

Simulated results of the reflectance spectra under RCP and LCP incident light based on
the three-dimensional Finite-Difference Time-Domain method are illustrated in Figure 3a,b.
To better describe the observed chiroptical response, the corresponding circular dichroism
is illustrated in Figure 3a. The circular dichroism spectrum was characterized by different
absorption between RCP and LCP light (CD = ALCP – ARCP). The total reflectance spectra
indicated clearly different reflection under RCP and LCP incident light, and the circular
dichroism was ~0.48 at a wavelength of 640 nm. In contrast to the phenomenon of the RCP
light, which was reflected, the LCP was absorbed by our chiral metamirrors. Moreover, the
corresponding reflecting behavior of the reflectance coefficients of the co-polarization and
cross-polarization components of the chiral metamirrors under RCP and LCP incident light
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is depicted in Figure 3b. The reflectance coefficient |rRR|2 (|rLR|2) is defined as the RCP
(LCP) light reflected off the surface of the chiral metamirrors under RCP incident light, while
|rRL|2 (|rLR|2) indicates the cross polarization of circularly polarized light. As expected,
|rRL|2 and |rLR|2 were exactly the same because of the symmetry of the unit cell [44].
In addition, Figure 3b demonstrates our chiral metamirrors not only selectively reflected
the RCP light, but also preserved the handedness at the chiroptical resonance wavelength
of 640 nm, while all LCP components were completely absorbed. In order to preserve
handedness, there is a need to design the anisotropy structure with a phase difference of π
as a half-wave plate. For our designed dichroism metamirrors, the superposition concept
of the phase is illustrated in Figure 3c. First, we modified two different lengths of brick to
create two kinds of phase difference. Then, we combined these two structures to superpose
the phase to create the phase difference of π, to preserve the handedness that is one of the
necessary conditions for designing chiral metamirrors. Consequently, we have successfully
demonstrated this simple way to design chiral metamirrors which produce the chiroptical
response while preserving handedness by combining the nanobrick and the wire grating in
the same plane. The chiral selective reflectance spectra demonstrated the distinct resonance
modes under the RCP and LCP incident light. To better describe the fundamental physical
mechanism of the chiral resonance at a wavelength of 640 nm while the value of circular
dichroism is maximal, the cuts in the electric field distribution through the middle of the
gold metasurface were as shown in Figure 3d,e. In the near field distribution, the electric
field localizes to a different position, which means the resonance mode is different, resulting
in different reflectance spectra. Furthermore, it is evident that the stronger field restriction
on both sides of long axis of the nanobrick corresponded to the lower reflectance under
LCP light.
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Figure 3. Simulated results of the chiral metamirrors. (a) Total reflectance spectra and (b) reflectance
coefficients of the co-polarization and cross-polarization components of the chiral metamirrors under
RCP and LCP incident light. (c) Phase difference of reflected light for the three types of structure
under circularly polarized light. Electric field distributions for the chiral metamirrors at the maximum
chiroptical response wavelength of 640 nm under (d) LCP and (e) RCP incident light.

In principle, the circular polarizations can be decomposed into two linear polarizations
with orthogonal direction in a 90◦ phase shift. The anisotropy of our designed structure can
produce the phase difference and the transformation of the linear polarization state into its
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orthogonal one. This phase difference will lead to destructive interference and constructive
interference for linear polarizations under LCP and RCP light, respectively. The ideal
conditions of the phase and the amplitude for maximizing circular dichroism (maximiz-
ing LCP absorption, minimizing RCP absorption) in the planar chiral metamaterial are
as follows [19]:

φxx + 90◦ = φxy = φyx = φyy + 270◦ (1)

|rxx| = |ryy| = |rxy| = |ryx| (2)

As mentioned above, our chiral metamirrors have also satisfied these two conditions
in achieving the maximizing circular dichroism at the resonant wavelength of 640 nm as
shown in Figure 4. As shown in Equation (2) and Figure 4b, the same amplitude will not
only cancel out the same linear polarizations of the reflected light for destructive interfer-
ence, but also enhance the intensity of the other polarization for constructive interference.
A more detailed description of the process for achieving the required phase difference and
producing a half-wave plate metasurface has been presented in our previous work [38].
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3.2. Experimental Results

To experimentally realize the chiral metamirrors, we demonstrate a series of experi-
ments in the visible wavelengths. E-beam lithography was used to fabricate the metasurface.
First, the 200 nm gold film and 130 nm amorphous SiO2 were deposited via sputter on
the glass substrate. The PMMA A4 photoresist with a thickness equal to 200 nm was spin
coated on the substrate at 1500 rpm for 15 s and 8000 rpm for 30 s, respectively. Then, it
was prebaked at 180◦C for 90 s. The lower spin speed was for flatness, and higher spin
speed for controlling thickness. The E-beam lithography system (ELS−7500EX, ELIONIX,
Wellesley, MA, USA) was used to define the pattern, and the photoresist was developed
using developers (MIBK:IPA = 1: 3) for 30 s. Then, 60 nm gold film was deposited us-
ing the electron gun evaporation system (VT1-10CE, ULVAC, Munich, Germany) with a
0.5 Å/s deposition rate in 5 × 10−6 Torr. The sample was immersed in acetone liquid to lift
off residual photoresist and unnecessary gold film. During the gold deposition process, we
encountered an issue with its adhesion to the SiO2 surface. To address this, we deposited
a thin 5 nm titanium film on the SiO2 prior to applying the gold. The scanning electron
microscope image of the fabricated structure is shown in Figure 5a. Figure 5c shows the
measured total reflectance spectra at wavelengths between 400 nm and 900 nm under RCP
and LCP incident light. A comparison of the experimental spectra with the theoretical
ones (see Figure 3a) reveals that the Q-factor of the resonance in the actual experiment is
significantly lower than in the simulation. This significant decrease in Q-factor is due to the
inclusion of a thin titanium layer, which was necessary to enhance the adhesion between
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gold and SiO2. The simulated reflection spectra for the structure with a thin titanium film
under RCP and LCP incident light are shown in Figure 5b. As expected, a clearly chiral
selective reflection appears, as shown in Figure 5b,c. The minimum reflectance for LCP
waves reached ~5% at the chiroptical resonant wavelength in the measurement. However,
by comparing the simulated and experimental results we can observe the reflectance spectra
under circular polarized light underwent a blue shift because of the wider width of the wire
grating of ~15 nm in the experiment. Nevertheless, the experimental results match well
with the simulated results. Figure 5e,f plot the reflectance coefficients of the co-polarization
and cross-polarization components of the chiral metamirrors under RCP and LCP incident
light, fully providing information on the chiroptical response. We observed the RCP light
can be reflected with preserved handedness on our chiral metamirrors at the resonant
wavelength of 670 nm, and the LCP components were absorbed almost simultaneously,
as shown in Figure 5f. Nonetheless, the reflectance coefficients spectra also underwent a
slight blue shift because of the inaccuracy from the sample fabrication, as mentioned above,
and show a slight imprecision due to the optical components at longer than 800 nm.
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Figure 5. Experimentally measured results of optical reflectance spectra of the chiral metamirrors
with a thin adhesion layer of titanium. (a) Scanning electron microscopy image of the fabricated
sample of the chiral metamirrors. The scale bar is 500 nm. (b) Simulated and (c) experimental
results of the total reflectance spectra under LCP (black) and RCP (red) incident light. (d) Optical
microscopy images of the metamirrors show good uniformity in e-beam lithography. The scale bar is
100 µm. (e) Simulated and (f) experimental results of reflectance coefficients of the co-polarization
and cross-polarization components of the chiral metamirrors under RCP and LCP incident light.

4. Discussion

In summary, we have presented more complete basic functionalities of reflectors and
absorbers than previously demonstrated, and an approach to the superposition concept of
the phase in the same plane that is helpful in designing chiral metamirrors. We have also
demonstrated the design of our metamirrors offers significant magnitudes of chiroptical
response in both simulated and experimental results in the visible wavelengths. The
theoretical reflectance is nearly absorbed at the chiroptical resonant wavelength under LCP
incident light, while a reflectance of ~5% is experimentally proven. We believe that the high
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resolution for chiral selection in reflection is an attractive feature for many applications in
optical components such as circular polarizers and absorbed filters. In addition, applying
the characteristic of preserving handedness to circular polarizers could avoid transforming
one polarization state into the other. This transformation can complicate an optical system
and influence the measurement of samples in ways we do not expect. It is important to
note that our designed single-patterned layer is a useful contribution to decreasing the
complexity of fabrication requirements such as the high cost of a multilayered patterned
layer [8] and the accurate alignment, and can also achieve a highly efficient chiroptical
response. Finally, the proposed structure, consisting of nanowires coupled with nanobricks,
can be used in the design of beam steering devices [45,46]. As in previous studies, the
nanowires do not connect, allowing them to be used as electrical contacts and, consequently,
to change the diffraction grating period. The advantage of this proposed chiral metamirror
in contrast to conventional nanostrips is that it allows for the creation of a diffraction
grating. The proposed metamirror allows control of the diffraction angles, as well as the
intensity of diffraction orders and the polarization.
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Abstract: Exploiting the Bragg mirror effect of photonic crystal photoelectrode is desperately desired
for photoelectrochemical water splitting. Herein, a novel TiO2 nanotube photonic crystal bi-layer
structure consisting of a top nanotube layer and a bottom nanotube photonic crystal layer is presented.
In this architecture, the photonic bandgap of bottom TiO2 nanotube photonic crystals can be precisely
adjusted by modulating the anodization parameters. When the photonic bandgap of bottom TiO2

nanotube photonic crystals overlaps with the electronic bandgap of TiO2, the bottom TiO2 nanotube
photonic crystal layer will act as a Bragg mirror, leading to the boosted ultraviolet light absorption of
the top TiO2 nanotube layer. Benefiting from the promoted UV light absorption, the TiO2 NT-115-
NTPC yields a photocurrent density of 1.4 mA/cm2 at 0.22 V vs. Ag/AgCl with a Faradic efficiency
of 100%, nearly two times higher than that of conventional TiO2 nanotube arrays. Furthermore,
incident photon-to-current conversion efficiency is also promoted within ultraviolet light region. This
research offers an effective strategy for improving the performance of photoelectrochemical water
splitting through intensifying the light–matter interaction.

Keywords: TiO2 nanotube; photonic crystals; Bragg mirror effect; photoelectrochemical water splitting

1. Introduction

Photoelectrochemical (PEC) water splitting has been regarded as a desirable avenue to
exploit the abundant and sustainable solar energy by directly transforming the incident light
into hydrogen fuel [1–7]. Among various PEC materials that can work as photoelectrodes,
TiO2 nanotube array (TiO2 NTA), vertically grown on a conductive Ti foil by electrochemical
anodization, distinguishes itself owing to its multifold unique merits including large
internal and external surface areas, unidirectional electrical channel, and outstanding
adhesion with Ti foil [8–10]. Unfortunately, the pristine TiO2 NTA has a wide bandgap
of 3.2 eV, which means that it still suffers from limited photoconversion efficiency even
in the ultraviolet (UV) region [11–13]. Until now, element doping and narrow bandgap
semiconductor coupling have been the two major strategies for extending the visible light
absorption of TiO2 [14–17]. However, these strategies bear many adverse effects, such as
limited visible light response, increased carrier recombination centers, decreased incident
photon-to-electron conversion efficiency (IPCE) in the UV region and the redox ability of
the photogenerated charges [18–21]. Accordingly, gaining the utmost out of the UV light
may be another promising approach to promote the PEC performance of TiO2 NTA.
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Recently, introducing a photonic crystal nanostructure into photocatalysts furnishes
a new emerging route of strengthening light–matter interaction to improve light ab-
sorption [22–24]. The photonic crystal photocatalysts possess a periodic dielectric struc-
ture, which endows them with a photonic bandgap (PBG) for a certain frequency of
photons [25–27]. To be specific, the group velocity of the photons with the frequency near
the PBG edges can be significantly slowed, referred as the slow photon effect [28–31]. In
addition, the photons with the frequency range of PBG are totally reflected and cannot
propagate in the photonic crystal structure due to Bragg reflection (called the Bragg mirror
effect) [32–34]. Obviously, the slow photon effect and Bragg mirror effect hold immense
promise for intensifying light–material interaction, resulting in an amplified light absorp-
tion and photoelectrochemical reaction. Yet, to date, the existing investigations have mainly
focused on the utilization of the slow photon effect in a single layer of three-dimensional
(3D) TiO2 inverse opal structures [13,28,35–37], which cannot use the reflected light at the
PBG of TiO2 to promote PEC performance in the UV region.

Apart from the 3D TiO2 inverse opal structures, novel TiO2 nanotube photonic crystals
(TiO2 NTPCs) with periodicities along the axial direction of nanotube have been successfully
fabricated by a simple periodic current pulse anodization process [32,38,39]. Furthermore,
the PBGs of TiO2 NTPCs can be continuously adjusted through controlling the fabrication
parameters [32,38,39]. Undoubtedly, after constructing the TiO2 NTPC bi-layer structure
consisting of a top nanotube (NT), which functions as an absorbing layer, and the bottom
NTPC with PBG overlapping with an electronic bandgap of TiO2 that acts as Bragg mirror
layer, the interaction of top TiO2 NT layer with reflected UV light should be greatly boosted,
which could enhance its PEC performance in the UV region. Nevertheless, there is as yet
no investigation available on the TiO2 NTPC bi-layer structure focusing on the correlation
between the Bragg mirror effect and PEC performance. This also implies that the underlying
physical mechanism also remains unclear.

Herein, the novel TiO2 NTPC bi-layer structure consisting of a top NT layer and a
bottom NTPC layer was designed and fabricated for PEC water splitting. As expected, the
TiO2 NTPC bi-layer structure, with the PBG of bottom NTPC overlapping with an electronic
bandgap of TiO2, yielded a photocurrent density of 1.4 mA/cm2 at 0.22 V vs. Ag/AgCl
with Faradic efficiency of 100%, nearly two times higher than that of conventional TiO2
NTA. Furthermore, IPCE was also promoted within the UV light region. Such remarkable
enhancement of PEC water splitting activity was primarily derived from the fact that
the bottom NTPC layer can function as a Bragg mirror that can promote the interaction
of top TiO2 NT layer with the reflected UV light, thus leading to the boosted UV light
absorption of the top TiO2 NT layer. This work offers an effective strategy for improving
the performance of PEC water splitting through intensifying light–matter interaction.

2. Materials and Methods
2.1. Materials

Ammonium fluoride (NH4F), Ethylene glycol and Sodium hydroxide (NaOH) were
obtained from Sinopharm Chemical Reagent Co., Ltd., Shanghai, China. Ti foils (0.25 mm
thick, 99.8% purity) were purchased from Anping Anheng Wire Mesh Co., Ltd., Hengshui,
China. All the chemicals were utilized as received without any further purification.

2.2. Fabrication of the TiO2 NTPC Bi-Layer Structure

The TiO2 NTPC bi-layer structure consisting of a top nanotube (NT) layer and a bottom
NTPC layer was prepared by successive two-step anodization. Specifically, the Ti foils with
sizes of 1.5 cm × 1 cm were firstly pre-treated by anodization at 60 V for 1 h, using glycol
aqueous solution containing 0.5 wt% NH4F and 2 vol% DI H2O. Then, the as-grown TiO2
NT was ultrasonically removed in deionized (DI) H2O. After that, the pre-treated Ti foils
were subjected to a successive two-step anodization process composed of a constant current
anodization part and subsequently a periodic current pulse anodization part. During the
first step, the constant current was maintained at 7 mA/cm2 for 10 min to form the top TiO2
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NT layer. During the second step, the periodic current pulse anodization with high current
(HC, JHC = 7 mA/cm2) and low current (LC, JHC = 0 mA/cm2) was employed to fabricate
the bottom TiO2 NTPC layer. The time duration of the HC pulse was controlled from 120
to 180 s, while the time duration of the LC pulse was fixed at 180 s to tailor the lattice
constant of NTPC. Finally, the bi-layer structures were annealed at 450 ◦C in air for 2 h to
obtain anatase TiO2. In addition, the single layer TiO2 NTPC with the same thickness as
the bottom NTPC layer of the bi-layer was also prepared by constant current anodization.

2.3. Characterization

The morphologies, microstructures and crystal structures of the as-prepared samples
were inspected by field-emission scanning electron microscopy (FE-SEM, S4800, Hitachi
Ltd., Tokyo, Japan), field-emission transmission electron microscopy (FE-TEM, JEM-2100,
JEOL Ltd., Tokyo, Japan), and X-ray powder diffractometry (XRD, Xpert, Philips, Ams-
terdam, The Netherlands). The diffuse reflectance spectra were recorded by a VARIAN
Cary5000 spectrophotometer (Varian, CA, USA). The X-ray photoelectron spectroscopy
(XPS) data were collected by a PHI 5000 Versaprobe (Ulvac-Phi, Kanagawa, Japan).

2.4. Photoelectrochemical Measurements

Photoelectrochemical measurements were performed in a three-electrode system
connected to a CHI 660E electrochemical workstation (CH Instrument, Chenhua Ltd.,
Shanghai, China) utilizing the as-prepared samples with an exposed area of 1 cm2 as
the working electrode, the Pt mesh as the counter electrode, and the Ag/AgCl (3 mol/L
KCl-filled) as the reference electrode. The 1 M NaOH (pH = 13.6) solution was electrolyte,
which was purged with N2 (99.999%) flow for 1 h to remove dissolved oxygen. The
illumination source was a 500 W Xe lamp (Solar 500, NBet Group Corp. Beijing, China)
with a calibrated intensity of 100 mW/cm2, and a water filter was placed between the
lamp and the electrochemical cell to eliminate the infrared heating of the electrolyte. The
incident photon-to-current conversion efficiency (IPCE) measurements were conducted at
an applied potential of 0.22 V vs. Ag/AgCl by means of a monochromatic system. During
the PEC stability measurement, the photoelectrodes were biased at 0.22 V vs. Ag/AgCl.
The amount of evolved oxygen was quantified by an Ocean Optics oxygen sensor system
equipped with a FOXY probe (NeoFox Phase Measurement System), which was measured
together with PEC stability.

3. Results and Discussion
3.1. Morphological Characterization of the TiO2 NTPC

Figure 1a,b are a schematic illustration of the current–time curve of anodization and
TiO2 nanotube photonic crystal (NTPC) bi-layer structure consisting of a top NT and a
bottom NTPC. In brief, the single constant current anodization was first utilized to form the
top smooth-walled TiO2 NT layer on the Ti foil. The as-grown sample was then subjected
to periodic current pule anodization with high current and low current to form a TiO2
NTPC layer with periodicities along the axial direction beneath the TiO2 NT layer. The
most crucial step in this work was to accurately modulate the lattice constant of the TiO2
NTPC for obtaining the desired featured. This could be realized by adjusting the duration
of high current pulse anodization, since the lattice constant of the NTPC layer was almost
linearly increased with it.

Figure 1c–e display the FE-SEM images of single-layer TiO2 NTPC fabricated by the
periodic current pulse anodization with different durations of the HC pulse of 7 mA/cm−2.
Obviously, a TiO2 NTPC presents a bamboo-shaped periodic structure in the axial direction
of the NT. Such a periodic structure with alternating protrusive bamboo node layers and
smooth-walled tube layers can result in a periodical refractive index change in the longitudi-
nal direction, indicating that it can exhibit a structural modulated photonic bandgap (PBG).
The length of the node and smooth-walled layer is the lattice constant of TiO2 NTPC, which
increases from 115 nm to 180 nm for HC pulse durations of 120 s and 180 s, respectively. The
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corresponding samples are denoted as 115-NTPC and 180-NTPC, respectively. Additionally,
these TiO2 NTPC have well-ordered and hexagonally arranged tubular structures with an
average diameter of about 100 nm and a wall thickness of about 10 nm. More importantly,
this allows the PBG of TiO2 NTPC to be adjusted at will to match the electronic bandgap of
anatase TiO2.
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(f–h) FE-SEM images of the TiO2 115-NTPC.

3.2. Optical Obsorption Properties of the TiO2 NTPC Structure

The reflectance spectra of TiO2 NTPCs with different lattice constants in air, ethanol
and electrolytes are measured under normal incidence and are presented in Figure 2a. As
the lattice constant increases from 115 nm to 180 nm, the refection peak of the TiO2 NTPC
shifts to longer wavelengths. The positions of PBG of 115-NTPC with 15 periods and 180-
NTPC with 15 periods are located at around 378 and 462 nm, respectively. The reflectance
spectra of TiO2 NTPC are strongly influenced by the refractive index contrast [40,41]. When
the TiO2 NTPC was put in ethanol, a remarkable red-shift of the reflection peaks could be
observed, compared with that sample in air. The result is further reflected from the colors
of the TiO2 NTPCs (Figures 2b,c and S1). Specifically, after being infiltrated with ethanol,
its color changes from purple to green. It should be noted that no color change in TiO2
115-NTPC can be found, since its PBG is in the ultraviolet region (below 400 nm). When
the refractive index contrast is further reduced by infiltration with liquid electrolyte (1 M
NaOH), the reflection peaks of TiO2 NTPC shift to an even longer wavelength. Taking
TiO2 115-NTPC as an example, when the sample is immersed in electrolyte, the position of
PBG shifts from 378 nm (air) to 384 (1 M NaOH) nm, which is very close to the electronic
bandgap of TiO2.

17



Nanomaterials 2024, 14, 1695

Nanomaterials 2024, 14, x FOR PEER REVIEW 5 of 11 
 

 

TiO2 115-NTPC can be found, since its PBG is in the ultraviolet region (below 400 nm). 
When the refractive index contrast is further reduced by infiltration with liquid electrolyte 
(1 M NaOH), the reflection peaks of TiO2 NTPC shift to an even longer wavelength. Taking 
TiO2 115-NTPC as an example, when the sample is immersed in electrolyte, the position 
of PBG shifts from 378 nm (air) to 384 (1 M NaOH) nm, which is very close to the electronic 
bandgap of TiO2. 

 
Figure 2. (a) The reflectance spectra of the TiO2 180-NTPC and TiO2 115-NTPC samples in air and 
infiltrated with ethanol and electrolytes, respectively. (b,c) Photographs of the TiO2 180-NTPC sam-
ples in air and infiltrated with ethanol, respectively. 

3.3. Microstructure, Crystalline Phase, and Chemical Composition Analysis of the TiO2 NTPC 
The microstructure, crystalline phase, and chemical composition of the TiO2 NTPCs 

are also analyzed by FE-TEM, XRD, and XPS. The low-magnification FE-TEM images fur-
ther confirm that the TiO2 NTPC samples show a hexagonally arranged and bamboo-
shaped periodic structure in the axial direction, which is consistent with FE-SEM results 
(Figures 3a,b and S2). The HR-TEM image reveals that the well-resolved lattice spacing of 
0.35 nm matches the d-spacing of the (101) plane of the anatase TiO2, which is further 
proved by the corresponding Fast-Fourier Transform diffraction pattern (inset of Figure 
3b) [42,43]. Figure 3c presents the XRD pattern of the TiO2 NTPC, suggesting that all the 
diffraction peaks can be indexed to the anatase TiO2 (JCPDS 21-1276) except those from 
the Ti substrate [44–46]. The XPS spectra also demonstrate that the TiO2 NTPC samples 
are pure anatase with some oxygen deficiencies (Figure S3) [47]. 

 
Figure 3. (a) A low-magnification FE-TEM image of the TiO2 115 NTPC. (b) A HR-TEM image of the 
area highlighted by the white dashed hexagon in (a). Inset: Fast-Fourier Transform diffraction pat-
terns of the areas bounded by the white dashed box in (b). (c) Corresponding XRD pattern. (d) 

Figure 2. (a) The reflectance spectra of the TiO2 180-NTPC and TiO2 115-NTPC samples in air and
infiltrated with ethanol and electrolytes, respectively. (b,c) Photographs of the TiO2 180-NTPC
samples in air and infiltrated with ethanol, respectively.

3.3. Microstructure, Crystalline Phase, and Chemical Composition Analysis of the TiO2 NTPC

The microstructure, crystalline phase, and chemical composition of the TiO2 NTPCs are
also analyzed by FE-TEM, XRD, and XPS. The low-magnification FE-TEM images further
confirm that the TiO2 NTPC samples show a hexagonally arranged and bamboo-shaped
periodic structure in the axial direction, which is consistent with FE-SEM results (Figures
3a,b and S2). The HR-TEM image reveals that the well-resolved lattice spacing of 0.35 nm
matches the d-spacing of the (101) plane of the anatase TiO2, which is further proved by
the corresponding Fast-Fourier Transform diffraction pattern (inset of Figure 3b) [42,43].
Figure 3c presents the XRD pattern of the TiO2 NTPC, suggesting that all the diffraction
peaks can be indexed to the anatase TiO2 (JCPDS 21-1276) except those from the Ti sub-
strate [44–46]. The XPS spectra also demonstrate that the TiO2 NTPC samples are pure
anatase with some oxygen deficiencies (Figure S3) [47].
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Figure 3. (a) A low-magnification FE-TEM image of the TiO2 115 NTPC. (b) A HR-TEM image of
the area highlighted by the white dashed hexagon in (a). Inset: Fast-Fourier Transform diffraction
patterns of the areas bounded by the white dashed box in (b). (c) Corresponding XRD pattern.
(d) Reflectance spectra of the TiO2 NT-115-NTPC, TiO2 NT-180-NTPC, TiO2 115-NTPC-NT, and TiO2

NT infiltrated with electrolytes, respectively.

3.4. Morphological Characterizaiton and Optical Obsorption Properties of the TiO2 NTPC
Bi-Layer Structure

To confirm that the PBG reflection effect can lead to a significant enhancement in
light absorption, we further fabricated the TiO2 NTPC bi-layer structure by successive
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two-step anodization. Figure S4 depicts the cross-sectional FE-SEM image of the TiO2
115-NTPC bi-layer structure (referred as TiO2 NT-115-NTPC). The TiO2 NT-115-NTPCs
with 15 periods can be clearly seen to seamlessly grow beneath the smooth-walled NT
layer with a thickness of approximately 500 nm, ensuring excellent connection between
the two layers and easy electrolyte infiltration. For comparison, we also fabricated a TiO2
180-NTPC bi-layer structure (referred as TiO2 NT-180-NTPC), another TiO2 115-NTPC
bi-layer structure consisting of top NTPC layer and bottom NTs (TiO2 115-NTPC-NT),
and a TiO2 NT without a photonic crystal layer. To gain more realistic insights into the
optical properties of TiO2 NT-115-NTPC, TiO2 NT-180-NTPC, TiO2 115-NTPC-NT, and
TiO2 NT, the reflectance spectra of the four samples in electrolytes were examined. As
shown in Figure 3d, the TiO2 NT-115-NTPC exhibits the strongest UV light harvesting
capacity among the aforementioned four samples. This could be mainly attributed to the
Bragg mirror effect of the bottom TiO2 115-NTPC with the PBG (3.2 eV) coinciding with
the electronic bandgap of anatase TiO2 (3.2 eV) that can reflect the UV light back to the
absorbing NT layer, thus leading to the boosted UV light absorption of the top TiO2 NT
layer. Enhanced light absorption has been found in the TiO2 NTPC bi-layer structure-based
dye-sensitized solar cells [48].

3.5. PEC Water Splitting Activity of the TiO2 NTPC Structure

To determine the promoted PEC performance of TiO2 NT-115-NTPC, a set of PEC
measurements were carried out in a three-electrode configuration using the as-prepared
samples, Pt mesh, and Ag/AgCl (3 mol L−1 KCl-filled) as the working, counter, and
reference electrodes, respectively. The electrolytes for the PEC water splitting reaction
were an aqueous solution of 1M NaOH (pH = 13.6). Figure 4a displays the linear-sweep
voltammogram (LSV) sweeps for TiO2 NT-115-NTPC, TiO2 NT-180-NTPC, TiO2 115-NTPC,
and TiO2 NT under light irradiation and dark conditions. All the samples produced almost
negligible dark current in comparison with their photocurrent, suggesting no occurrence
of electrocatalytic water splitting. Under irradiation, the photocurrent density of TiO2
NT-115-NTPC sharply increased and largely surpassed those of TiO2 NT-180-NTPC, TiO2
115-NTPC, and TiO2 NT, which signifies that the TiO2 NT-115-NTPC had the highest PEC
performance among the four samples. To elucidate this phenomenon more distinctly, their
transient photocurrent responses were also measured under illumination with several 10 s
light on/off cycles at 0.22 V vs. Ag/AgCl [1.23 V vs. RHE (reversible hydrogen electrode)],
and the results are presented in Figure 4b.

At 0.22 V vs. Ag/AgCl, the TiO2 NT-115-NTPC delivered a maximal photocurrent
density of 1.4 mA/cm2, and it was about 2.05, 2.15 and 3.5 times those of TiO2 NT TiO2
NT-180-NTPC and TiO2 115-NTPC, respectively. The low photocurrent of the TiO2 NT-180-
NTPC can be ascribed to the fact that its PBG position of the bottom TiO2 180-NTPC was
outside of the electronic bandgap of anatase TiO2 (3.2 eV), meaning that it could not reflect
the UV light back to the top NT layer. That is to say, the bottom TiO2 180-NTPC had no
impact on the PEC performance of TiO2 NT-180-NTPC. Compared with TiO2 NT, the low
photocurrent of the TiO2 115-NTPC was mainly due to the single NTPC layer with a PGB
position of 384 nm, which resulted in the decrease in UV light absorption.

To visualize the photocurrent enhancement owing to the promoted UV light ab-
sorption, incident photon-to-current conversion efficiency (IPCE) measurements were
conducted on TiO2 NT-115-NTPC and TiO2 NT at 0.22 V vs. Ag/AgCl. The IPCE could be
calculated as a percentage according to the following equation [49]:

IPCE =
1240I
λJlight

(1)

where I is the measured photocurrent density at a specific wavelength, λ is the wavelength
of the incident light, and Jlight is the light intensity of a specific wavelength. As shown
in Figure 4c, the TiO2 NT-115-NTPC has greatly boosted IPCE values only in the UV
region and reaches its highest value of 96% at 380 nm compared with TiO2 NT. The result
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provides a clue suggesting that the bottom TiO2 115-NTPC makes a great contribution to
PEC performance in the UV light region.
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PEC stability and Faradic efficiency are two important parameters for the practical
application of photoelectrode. Figure 4d presents the photocurrent–time curves of TiO2 NT-
115-NTPC and TiO2 NT measured at 0.22 V vs. Ag/AgCl and continuous light illumination.
The photocurrent densities of both samples are very stable, and there is no indication of
deterioration during the entirely measured 3 h. To clarify whether the observed photocur-
rent originates from the oxygen evolution reaction, the fluorescence sensor is employed
to determine the amount of oxygen evolved from the TiO2 NT-115-NTPC. The amount of
evolved oxygen increases linearly with the illumination time with unity Faradic efficiency.
In addition, the surface morphology and crystal phase of the TiO2 NT-115-NTPC remain
intact after PEC water splitting for 3 h (Figure S5), illustrating that the TiO2 NT-115-NTPC
possess prominent stability in the oxygen evolution reaction.

3.6. PEC Water Splitting Activity Mechanism

Based on the above experimental results, the promoted PEC performance of TiO2 NT-
115-NTPC can be mainly attributed to the significant enhancement of UV light absorption
induced by the its bi-layer structure consisting of a top NT layer and a bottom NTPC
layer (Figure 5a). As shown in Figure S6, the PBG (3.2 eV) of the bottom TiO2 115-NTPC
overlaps with the electronic bandgap of anatase TiO2 (3.2 eV). When the UV light strikes
the TiO2 NT-115-NTPC, a portion of UV light is absorbed by the top TiO2 NT, producing
the photoexcited electrons and holes, whereas another portion of UV light penetrates
the top TiO2 NT layer and is reflected by the bottom the 115-NTPC layer serving as the
Bragg mirror. In such cases, the reflected light can be absorbed again by the top TiO2 NT,
hence promoting UV light absorption by the top TiO2 NT. Additionally, optical interference
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occurs when UV light is being transmitted and reflected, which leads to strong UV photon
resonance modes in the top NT absorbing layer, thus also boosting UV light absorption
by the top TiO2 NT (Figure 5b,c). Similar phenomena have been confirmed for other opal
photonic crystal photocatalysis [50–52]. Accordingly, more photoexcited electrons and
holes are generated, and remarkable promotion of PEC performance is achieved for the
TiO2 NT-115-NTPC.
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4. Conclusions

In summary, we designed and fabricated a novel TiO2 NTPC bi-layer structure pho-
toanode consisting of a top NT layer and a bottom NTPC layer. In this architecture, when
the PBG of bottom NTPC overlapped the with electronic bandgap of TiO2, the bottom TiO2
NTPC produced the Bragg mirror effect, leading to boosted UV light harvesting of top TiO2
NT layer. Benefiting from promoted UV light absorption, the TiO2 NT-115-NTPC yielded
a photocurrent density of 1.4 mA/cm2 at 0.22 V vs. Ag/AgCl with a Faradic efficiency
of 100%, nearly two times higher than that of conventional TiO2 NT. Furthermore, IPCE
was also promoted within UV light region. This work provides an effective strategy for
improving PEC water splitting through intensifying light–matter interaction.

Supplementary Materials: The following supporting information can be downloaded at https:
//www.mdpi.com/article/10.3390/nano14211695/s1, Figure S1: Photographs of the TiO2 115-NTPC
in air and infiltrated with ethanol, respectively. Figure S2: (a) A low-magnification FE-TEM image of
the TiO2 180-NTPC. (b) An HR-TEM image of the area highlighted by the white dashed box in (a).
(c) Fast-Fourier Transform diffraction patterns of the areas bounded by the white dashed box in (b).
(d) Projected atomic models in [101] directions. Figure S3: (a) The XPS survey spectra of the TiO2
NT-115-NTPC. (b) The corresponding normalized Ti 2p XPS spectra and normal O 1s XPS spectra.
Figure S4: FE-SEM images of the TiO2 NT-115-NTPC. Figure S5: (a) A FE-SEM image of the TiO2
NT-115-NTPC after undergoing the PEC water splitting reaction for 180 min. (b,c) The corresponding
FE-TEM image.
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Abstract: The combination of higher-order topological insulators and valley photonic crystals has
recently aroused extensive attentions due to the great potential in flexible and efficient optical field
manipulations. Here, we computationally propose a photonic device for the 1550 nm communication
band, in which the topologically protected electromagnetic modes with high quality can be selectively
triggered and modulated on demand. Through introducing two valley photonic crystal units without
any structural alteration, we successfully achieve multi-dimensional coupled topological states thanks
to the diverse electromagnetic characteristics of two valley edge states. According to the simulations,
the constructed topological photonic devices can realize Fano lines on the spectrum and show
high-quality localized modes by tuning the coupling strength between the zero-dimensional valley
corner states and the one-dimensional valley edge states. Furthermore, we extend the valley-locked
properties of edge states to higher-order valley topological insulators, where the selected corner
states can be directionally excited by chiral source. More interestingly, we find that the modulation
of multi-dimensional coupled photonic topological states with pseudospin dependence become
more efficient compared with those uncoupled modes. This work presents a valuable approach for
multi-dimensional optical field manipulation, which may support potential applications in on-chip
integrated nanophotonic devices.

Keywords: optical microcavity; multi-dimensional coupled topological states; higher-order photonic
topological insulators; valley photonic crystals; pseudospin dependence

1. Introduction

The discovery of Chern insulators and a series of proposed topological effects in con-
densed matter physics has driven the development of topological photonics [1–3], which
brings new avenues for transmitting and localizing light [4,5]. Photonic crystals are analogs
of conventional crystals that replace the atomic lattice with a periodic medium, providing
an excellent platform for topological physics due to the controllability band structure [6].
In practice, defects and impurities are inevitably introduced in the sample preparation,
leading to energy loss and signal distortion. In the face of the above difficulties, the topo-
logically protected photonic states are proposed and demonstrated to be of benefit for the
dissipationless transport dynamics of light [7–10]. More recently, photonic higher-order
topological insulators (HOTIs) with bulk-edge-corner correspondences have been exten-
sively studied for their ability to control light in multi-dimensions, in which the topological
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index can be characteristic by the vectored Zak phase and Wannier center [11–16]. In
addition, by introducing coupling effects between a series of topological states, the quality
of a nanocavity can be further improved, which also brings extra freedom to manipulate
light [17–20]. However, the photonic topological edge states and lower-dimensional corner
states in HOTIs tend to be discrete in spectrum. To realize multi-dimensional coupling, the
structure needs to introduce unit distortion or more complex artificial design, which would
narrow the bandgap of bulk and limit the development of related applications.

Valley photonic crystals (VPCs) with non-zero Berry curvature in momentum space [21–23]
provide a new method to realize higher-order topological phases, which has already been
successfully demonstrated in many lattice structures such as kagome lattices [24], triangular
lattices [25], honeycomb lattices [26], and square lattices [27]. Among them, the supported
valley corner states (VCSs) are robust and valley-locked-dependent [28–30]. Based on
this feature, several interesting optical devices have been designed, such as topological
all-optical switches [31] and topological rainbows [32]. By combining HOTIs and valley
freedom, the structure can both support diverse types of topological states, which may
support potential applications in topological lasers, topological optical switches, and on-
chip integrated optical circuits.

In this work, we computationally propose an on-chip photonic device for the 1550 nm
communication band, in which the multi-dimensional coupled topological states are
achieved with two types of VPCs unit. By optimizing the coupling strength between
the zero-dimensional VCSs and the one-dimensional valley edge states (VESs), the trans-
mission spectrum presents a typical Fano line, showing as a high-quality localized mode.
Furthermore, we extend the valley Hall effect of light to a high-order version, and success-
fully visualize the directed excitations of coupled VCSs with different chiral sources. The
simulated results provide a versatile way to manipulate light based on VCSs and VESs,
which can also extend to other electromagnetic wave ranges by adjusting the structure
size. By the way, the valuable approach for multi-dimensional optical field manipulation
can extend to other material systems, such as GaAs or InP, as long as we replace the
corresponding refractive index parameters and fine-tune the structure parameters.

2. Results and Discussion

The designed VPC sample is a silicon on insulator (SOI) with a 220 nm thick silicon
layer and specific periodic holes. As shown in Figure 1a, the valley photonic structure
is arranged in a honeycomb lattice with a = 470 nm period, and there are two rounded
equilateral triangular air holes with side lengths of l1 and l2 in a single cell, where δ = l1− l2
and l1 + l2 = a. For triangular holes, VPC has a larger band gap compared to the circular
holes. And the effective refractive index of silicon is defined as 2.83. In all numerical
calculations, we use the commercial software COMSOL Multiphysics 5.4 based on the finite
element method. The periodic boundary conditions and scattering boundary conditions
are used for corresponding interfaces. And the mesh is set up as the build-in physical
field segmentations. The calculated band structures of VPCs under transverse electric
(TE) polarization are as shown in Figure 1. When δ = 0, the VPC has C6v symmetry and
the corresponding band structure presents an obvious degenerate Dirac point at the K(K′)
valley. When δ 6= 0, the VPC changes to C3 symmetry and the Dirac cone can be gapped
out, leading to two valley states with opposite circularly polarized chirality at the two
unequal K(K′) valleys. For l1 > l2, the K valley state in the first band is a right-handed
circularly polarized (RCP) mode and the K valley state in the second band is a left-handed
circularly polarized (LCP) mode. For l1 < l2, the two chiral polarizations of the K valley
state are inverted, indicating the topological phase transition. Here, we designed two VPC
units with δ = 0.6a (VPC1) and δ = −0.6a (VPC2), which have the same band structure but
different topological phases. Furthermore, we numerically calculated the Berry curvature
of the first band:

Ωn(k) = ∇k × An(k) =
∂Ay(k)

∂kx
− ∂Ax(k)

∂ky
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where An(k) = i〈un,k|∇k|un,k〉 is the Berry connection and |un,k〉 is the Bloch periodic
function. Although the VPCs do not break the time-reversal symmetry, the Chern number
of the band is zero and the valley Chern number at the K(K′) valley is nonzero due to the
breaking of the space-reversal symmetry. As shown in Figure 1d, the Berry curvature of
VPC1 near the K(K′) valley is greater (less) than zero, while the Berry curvature of VPC2
near the K(K′) valley is less (greater) than zero. For the same band, the VPC1 and VPC2
satisfy Ω(k) = −Ω(−k). The integral of the Berry curvature is calculated as shown below:

CK/K′ =
1

2π

∫
HBZK/K′Ωn(k)d2 k
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Next, we demonstrate two topological VESs based on the 𝑉𝑃𝐶ଵ and 𝑉𝑃𝐶ଶ. For type 
I splicing interface, as shown in the left of Figure 2c, the larger triangular holes at the 

Figure 1. Topological phase transition and band structure. (a) Schematic of the VPC; the red dashed
lines are the initial unit cell of the VPC. (b) A phase diagram showing the variation of the band gap as
a function of δ. The inset shows the field distribution and Poynting vectors at selected points, shown
with green and blue points; the rose and blue area corresponds to two opposite topological phases.
(c) The band structures for VPCs. (d) Distribution of Berry curvature around K valley and K′ valley
for VPC1 and VPC2.

The valley Chern number of our system is half-integer, CK = −CK′ = 1/2 for VPC1
and CK = −CK′ = −1/2 for VPC2, indicating two opposite topological phases.

Next, we demonstrate two topological VESs based on the VPC1 and VPC2. For type I
splicing interface, as shown in the left of Figure 2c, the larger triangular holes at the splicing
interface are edge to edge. Meanwhile, for type II splicing interface, as shown in the right
of Figure 2c, the larger triangular holes at the splicing interface are cusp to cusp. The
projected band structures of two types of splicing structure are as shown in Figure 2; there
is a bandgap between the type II VES (dashed line) and upper bulk states, which provides
a possible coupling effect between VCS (orange dashed line) and another type I VES (solid
line). In this case, the structure does not need to introduce any unit distortion or more
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complex artificial design. In addition, the valley-dependent VESs have opposite group
velocities and vortices near the K valley and K′ valley, which originates from the valley
pseudospin-momentum locking. In order to visualize this physical feature, we calculated
the two edge states at the K valley (labeled with different colored diamond symbols in
Figure 2a) with the Poynting vectors and Hz phases as in Figure 2c. For the upper and lower
interfaces of the splicing interface, the energy flow direction and phase vortex direction
at K valley are opposite. And the dependencies for two types of VESs are also opposite,
indicating the valley-momentum locking properties. Due to the time-reversal symmetry,
the K′ valley of the same structure has similar dependencies, as shown in Figure S1.
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Figure 2. Topological projection band diagrams of VESs and valley-momentum locking phenomenon.
(a) Band structure for the type I and type II interfaces; the solid and dashed line are the eigenmode
of type I and II VES, respectively. And the grey area is bulk modes. (b) Normalized energy flow at
the left or right ports when an RCP source is at positions 1, 2, and 3. (c) Valley-momentum locking
properties of two types of VESs at K valley, which is selected from (a). (d) Positional dependence of
the normalized Stokes S3/S0 parameter and the field distributions with the RCP source at positions 1,
2, and 3.

Based on the feature, we can achieve a directional transmission of light by using differ-
ent circular polarizations of light. Here, we define the Stocks parameter to quantitatively
analyze the unidirectional transmission ability of VESs as shown below [33,34]:

D =
PR − PL
PR + PL

=
S3

S0
=

2Im
(

E∗x Ey

)

|Ex|2 +
∣∣Ey
∣∣2

Taking the type I VES as an example, S0 = |Ex|2 +
∣∣Ey
∣∣2 and S3 = 2Im

(
E*

xEy

)
indicates

the circular polarization point of the local polarization as the RCP (LCP), respectively. PR
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(PL) represent the energy of light transmitting to the right (left) and D = ±1 represents
that, ideally, light is transmitted completely to the right or left.

As shown in Figure 2b,d, we place an RCP source in three typical areas near the
splicing interface; position 1 and 3 are the upper zone with D = 1 and the bottom zone
with D = −1, respectively. Position 2 is the center of the interface with D = 0, which means
that the unidirectional transmission of energy becomes worse. In simulation, we detected
the energy of light at left or right ports to verify the directional transmission capability and
the simulated field distributions agree well with the theoretical predictions. When an RCP
source is placed at position 1, the energy of electromagnetic waves from frequency 164 to
198 THz will transmit to the right, where the light leaves through the right output port.
And the energy will transmit to the left when the RCP source is placed at position 3 or is
replaced by LCP source. When the RCP source is put to position 2, the transmission of light
to both sides is almost equal.

The valley-momentum locking mentioned above can be understood from the quan-
tized valley Chern number of the VESs. For the type I VES, the valley Chern number can
be defined as CIK = CVPC2K −CVPC1K = −0.5− 0.5 = −1,CIK′ = CVPC2K′ −CVPC1K′ = 1.
Similarly, the valley Chern number of the type II edge state can be defined as CIIK =
CVPC1K − CVPC2K = 0.5− (−0.5) = 1, CIIK′ = CVPC1K′ − CVPC2K′ = −1. Valley Chren
numbers with the same sign have consistent valley dependence properties and vice versa.
More importantly, the quantizable valley-momentum locking properties of VESs and the
naturalness of coupling with VCSs are the keys to the next realization of nanocavities with
high responsiveness and high performance.

By combining the HOTI and valley degrees of freedom, the splicing corners of two
VPCs with different valley Chern numbers can excite the VCS modes due to the valley–
valley interactions of the VESs. Here, we construct a trapezoidal splicing structure, where
the VPC1 unit is surrounded by VPC2 unit. As shown in Figure 3a–c, although there are
four splicing corners here, only two VCS can be support in the eigenmodes simulations.
And the 60-degree splicing corner appears obvious, while 120-degree angle disappears.
The selective activation of VCS is related to the sign flip of the valley Chern number at
the splicing corners and more details can be found in our previous work [31]. Due to the
collective coupling effects of two VCSs, the equivalent corners of the structure appear to be
two asymmetric VCSs, leading to spectrum division. The bonding coupled VCS with lower
frequency presents two synchronous nanocavities, named as ϕ+

C = ϕ1 + ϕ′1. Meanwhile,
for the anti-bonding coupled VCS with higher frequency, the adjacent nanocavities present
a π phase difference, named as ϕ−C = ϕ1 − ϕ′1. The physics behind this can be referred to
the electrodynamics theory; when two electric dipoles in the same direction end to end
are close to each other, the two dipoles attract each other to form a bond and the energy of
the coupled system decreases, corresponding to the bonding coupled modes with lower
eigenfrequency. Similarly, when two dipoles in the opposite direction end to end are close
to each other, the two dipoles are mutually exclusive to form an anti-bond. Furthermore, we
have extended the valley Hall effect of light to a high-order version, as shown in Figure 3d–f.
When an RCP source is placed on the center of the splicing interface, the intensity at point
B is slightly stronger than point A. The directional excitation of the nanocavity will be
reversed once the LCP source is placed on the same position. This interesting phenomenon
is related to the valley-momentum locking and pseudospin polarization of the two coupled
VCSs. It is worth noting that, although there are two eigenvalues of the VCS in our system,
only one resonant peak is observed, which might be attributed to the small difference
between the two eigenfrequencies. Next, we have calculated the quality factor Q of the
nanocavity, which can be expressed as Q = ω0τ

2 = ω0
∆ω in terms of the resonance frequency

(ω0) and the decay time of the electromagnetic energy in the cavity (τ) or the resonance
linewidth (∆ω) and the normalized field-strength spectrum, which shows that the quality
factor of the nanocavities are around 375. On the other hand, the energy conversion from
source to the VCSs is also weak.
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Figure 3. Pseudospin dependence of VCSs. (a) Eigenvalues of the bulk, edge, and corner states.
(b,c) Field distribution of the coupled VCSs; arrows represent the direction of current. (d) Field
distributions with different chiral sources at resonance frequencies, red (blue) stars are right-handed
(left-handed) sources, respectively. (e,f) Field intensity at points A and B with an RCP or LCP source
at the center position.

To further enhance the quality factor and response of VCSs, we have designed a
waveguide-nanocavity coupled structure based on the VPC1 and VPC2, as shown in
the inset of Figure 4a, where the zero-dimensional corner state and one-dimensional
edge state can be naturally coupled. Here, the VES with an odd or even symmetric
field distribution are defined as ϕ+

E or ϕ−E . Since the two wave functions with different

symmetries are orthogonal to each other,
〈

ϕ
+(−)
C

∣∣∣ϕ−(+)
E

〉
= 0, there are only four multi-

dimensional coupled modes in our system, as shown in Figure 4. For Mode1 = ϕ+
C + ϕ+

E ,
the eigenfrequency is obviously lowest, corresponding to the bonding coupling between
VES and VCS. And the eigenfrequency of Mode4 = ϕ−C − ϕ−E is highest, corresponding to
the anti-bonding coupling between VES and VCS. As for the multi-dimensional coupled
topological states with frequencies in between, the modes are defined as Mode2 = ϕ−C + ϕ−E
and Mode3 = −ϕ+

C + ϕ+
E . These multi-dimensional coupled topological states can be

distinguished from the field distributions, where the energy of Mode1 and Mode4 are
mainly concentrated in the VESs, shown as bright modes, while the energy of Mode2
and Mode3 are mainly concentrated in the VCSs, shown as dark modes. By introducing
coupling effects between the VCS and VES, the quality of nanocavities can be further
improved, which also brings extra freedom to manipulate light on chip.
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As shown in Figure 5, the quality factor and directional transmission capability of
coupled VCSs have been significantly improved. When an RCP source is placed at position
1, the field intensity at the right corner is much stronger than the left corner in a wide wave
range. If an LCP source is used, only the left and right corners are switched due to the
time-reversal symmetry. When we only change the spatial position of the RCP source on
the splice interfaces, the other structures are unchanged. And the results show that the field
intensities of the right and left corner states are almost the same no matter which chiral
source is placed at position 2. When RCP source is placed at position 3, the intensity of the
left corner is much stronger than the right corners in a wide wave range. In the meantime,
the intensity at corresponding corners is increased by 2–3 orders of magnitude compared to
uncoupled VCS, as visualized in Figures 3 and 5. The reason for this high responsiveness
and higher-order topological valley-locked characteristic is because the energy of the VCS
at this point is directly affected by the selective coupling of the topological waveguide, and
the responsiveness of the chiral source to the selective excitation of the VCS is equivalent to
perturbation, i.e., the unidirectional transmission capability of the VES determines the field
strength ratio at the two splice corners on both sides.

It is worth noting that, when the frequency of the excitation source is near the resonance
frequency of the nanocavity, the field strengths on both sides of the splice corners are almost
the same, which is due to the fact that the introduction of the nanocavity inevitably disrupts
the overall symmetry of the lattice, and the unidirectional transmission ability of the
VES is limited at the resonance frequency of the VCS, as shown in Figure 5e,g, where
the topological waveguide still maintains a good unidirectional transmission capability,
while the magnitude of the energy flow density on both sides is almost the same near the
resonance frequency. In order to further characterize the excellent performance of the valley
nanocavities, we calculate their quality factors, and the results show that both sides of the
nanocavities have very high-quality factors in all three cases up to about 20,000, which is
nearly 50 times higher than that of the previous uncoupled system.
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For the well-designed topologically protected nanophotonic devices with high respon-
siveness and high performance, the system also shows a tunable asymmetric spectral line
in the transmission spectrum. And the physical mechanism behind it is the Fano resonance
phenomenon arising from coherent interference between the discrete coupled VCS and the
continuous VES near the resonance frequency, which requires that the resonance frequency
of the discrete state is in the frequency range of the continuous state. Unlike other schemes,
our structure naturally satisfies this condition without changing any parameters. As shown
in Figure 5e–g, when we place the RCP source in positions 1 or 3, the transmission spectra
at the left port present a typical Fano line shape, while the transmission spectra at the
right port shows an electromagnetically induced transparency-like (EIT-like) line shape.
If the source is placed at position 2, the transmission spectra of the ports on both sides
are EIT-like line shapes. By considering the field distribution at different wavelengths,
we can intuitively understand the above spectral response as shown in Figure S2. This
reveals that the Fano and EIT-like resonance phenomenon originates from the coherent
interference between the edge–corner coupling states with different line widths, where
the modes on the wide transmission spectral lines are all Mode1 or Mode4 with energy
concentrated in the topological waveguide, corresponding to the bright modes, and the
modes on the narrow spectral lines are all Mode2 or Mode3 with energy concentrated in the
valley nanocavity, corresponding to the dark modes. The Fano resonance is formed by the
destructive and constructive interference of the two modes. On the other hand, since the
system maintains the time-reversal symmetry, when we place the LCP source at different
positions of the splicing line, the result is only that the spectral lines are swapped, while
the other laws remain the same, as shown in Figure S3. In addition to the advantage of
tunability, our system is also extremely robust. As shown in Figure S4, where we destroy
the geometry near the nanocavity by replacing it from the original small nanopore to a large
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one, the calculation results show that only the resonance frequency of the cavity is slightly
blue shifted, while the cavity’s localization, quality factor, and higher-order valley-locking
properties are basically unaffected, and the Fano resonance spectral lines are also relatively
well protected. In conclusion, this system and modulation we have established not only
greatly improves the quality factor of the valley nanocavity and the responsiveness of the
higher-order valley-locking properties but also achieves topologically protected tunable
Fano and EIT-like resonance spectra in the same structure.

Finally, we also demonstrate the modulation of the system by changing the coupling
distance between the cavity and the waveguide. Figure 6a,c shows the evolution of the
quality factors of the left and right cavities with the coupling distance when the right-
handed chiral source is in the splicing line at positions 1 and 2, and Figure 6b,d show the
transmission spectra corresponding to the left and right ends. The relevant data when the
RCP source is at position 3 are shown in Figure S5. These results show that, as the coupling
strength decreases, the quality factor of the cavities increases roughly linearly, up to about
60,000. From the transmission spectra, we can derive that the resonance frequencies of the
dark modes are gradually blue-shifted, and the peaks of the Fano spectral line and the
EIT-like spectral line are also reduced substantially; however, their shapes are basically
maintained in the same way. In addition to the coupling distance of four cell sizes, the
transmission spectra of the RCP source are all classical Fano lines when placed at positions
1 and 3 and the transmission spectra are all EIT-like lines when placed at position 2, which
provides a new method and path for the modulation of the topological Fano transmission
spectral lines.
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3. Conclusions

In summary, we computationally propose a topologically protected high-quality opti-
cal nanocavity, which can be selectively triggered and modulated on demand. Based on
the mismatch in the spectrum of two valley edge states, we successfully demonstrate the
coupling effect between the zero-dimensional valley corner states and the one-dimensional
valley edge states without any structural alteration. By optimizing the coupling strength
between the valley corner states and edge states, we observe an extremely high-quality
localized mode. Furthermore, we have extended the valley Hall effect of light to a higher-
order version, where the selected photonic topological corner states can be directionally
excited with different polarizations of light and the coupled VCS with pseudospin depen-
dence become more efficient. This work visualizes an efficient and flexible electromagnetic
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mode with pseudospin dependence, which is valuable for the development of on-chip
integrated topological photonic devices.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/nano14100885/s1, Figure S1: Valley-momentum locking at the
K’ valley. Figure S2: Field distribution of different hybrid modes. Figure S3: Excitation of coupled
topological states with LCP source. Figure S4: Robustness of coupled topological states. Figure S5:
Effect of coupling strength on coupled topological states when RCP source is at position 3.
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Abstract: Spectral imaging technology, which aims to capture images across multiple spectral chan-
nels and create a spectral data cube, has been widely utilized in various fields. However, conventional
spectral imaging systems face challenges, such as slow acquisition speed and large size. The rapid
development of optical metasurfaces, capable of manipulating light fields versatilely and minia-
turizing optical components into ultrathin planar devices, offers a promising solution for compact
hyperspectral imaging (HSI). This study proposes a compact snapshot compressive spectral imaging
(SCSI) system by leveraging the spectral modulations of metasurfaces with dual-channel switchable
metasurface filters and employing a deep-learning-based reconstruction algorithm. To achieve com-
pactness, the proposed system integrates dual-channel switchable metasurface filters using twisted
nematic liquid crystals (TNLCs) and anisotropic titanium dioxide (TiO2) nanostructures. These thin
metasurface filters are closely attached to the image sensor, resulting in a compact system. The
TNLCs possess a broadband linear polarization conversion ability, enabling the rapid switching
of the incidence polarization state between x-polarization and y-polarization by applying different
voltages. This polarization conversion facilitates the generation of two groups of transmittance
spectra for wavelength-encoding, providing richer information for spectral data cube reconstruction
compared to that of other snapshot compressive spectral imaging techniques. In addition, instead
of employing classic iterative compressive sensing (CS) algorithms, an end-to-end residual neural
network (ResNet) is utilized to reconstruct the spectral data cube. This neural network leverages the
2-frame snapshot measurements of orthogonal polarization channels. The proposed hyperspectral
imaging technology demonstrates superior reconstruction quality and speed compared to those of
the traditional compressive hyperspectral image recovery methods. As a result, it is expected that this
technology will have substantial implications in various domains, including but not limited to object
detection, face recognition, food safety, biomedical imaging, agriculture surveillance, and so on.

Keywords: optical metasurface; hyperspectral imaging; deep learning

1. Introduction

Spectral imaging technology aims to capture images with multiple spectral channels,
forming a spectral data cube essential for the identification, analysis, and classification
of objects predicated on their distinctive spectral attributes. Hyperspectral imaging (HSI)
technology has found extensive applications in remote sensing [1], medical diagnostics [2],
object detection and recognition [3], agriculture surveillance [4], and other fields. How-
ever, the conventional spectral imaging methods, such as spatial scanning and spectral
scanning, suffer from limitations, such as large volume and slow acquisition speed. To
address these challenges, researchers have explored snapshot spectral imaging (SSI) [5–7]
and compressive spectral imaging (CSI) [8–11] technologies. On the one hand, SSI systems
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have significantly improved the spectral image acquisition process. However, the early
SSI methods faced limitations in obtaining a large number of spectral channels and relied
on bulky optical systems for light splitting. On the other hand, CSI methods leverage
compressive sensing (CS) theory [12,13] and encoding devices to block or filter the input
light field, enabling the reconstruction of hyperspectral images with much fewer measure-
ments than the number that Nyquist sampling requires. Further, snapshot compressive
imaging (SCI) [6], a technique that captures high-dimensional (HD, ≥3D) data using a
two-dimensional (2D) detector in very few shots, has been employed in spectral imaging,
known as snapshot compressive spectral imaging (SCSI). SCSI was initially introduced as a
dual-disperser coded aperture snapshot spectral imaging (DD-CASSI) [14] system, integrat-
ing compressive sensing into hyperspectral imaging. Numerous adapted hyperspectral
imaging systems based on CASSI have emerged, including single-disperser CASSI (SD-
CASSI) [15], multi-frame CASSI [16], dual-camera CSI [17], color-coded aperture CSI [18],
and spatial–spectral encoded CSI [19]. However, the bulkiness and complexity of CASSI
systems result in non-linear dispersion that necessitates calibration, leading to the degrada-
tion of spatial information and suboptimal recovery outcomes. Additionally, the energy
loss of light and intricate optical components within the large system volume make CASSI
frameworks impractical for portable applications. To overcome these limitations, phase-
coded spectral imaging [20] has been developed to improve light throughput and reduce
system volume, while wavelength-coded methods [20] have been pursued to achieve ac-
curate and fast RGB-to-spectra recovery. Wavelength-coded approaches utilize RGB or
broadband optical filters that can be extended to multiple designed broadband filters for
precise wavelength encoding. In terms of spectral data cube decoding, CSI reconstruction
algorithms can be categorized into model-based methods and learning-based methods [21].
The traditional iterative reconstruction approaches utilize designed measurements of the
encoding process and prior knowledge. Thereinto, CS optimization algorithms, such as
the two-step iterative shrinkage/thresholding (TwIST) algorithm [22], and prior condi-
tions, like total variation (TV) regularization [23], have been introduced. Additionally,
methods like basis function fitting [24] and dictionary learning [25] have been developed.
However, these classic iterative algorithms often require long computation times and prior
knowledge, resulting in limited reconstruction quality and applicability in mobile systems
with speed requirements. With the fast development of planar optical elements as well as
deep-learning algorithms, the compactness, reconstruction speediness, and quality of SCSI
systems could be further improved.

For one thing, metasurfaces have gained considerable attention in recent years due
to their ability to manipulate the incident wavefront versatilely with subwavelength res-
olution, offering control over amplitude [26–29], phase [30], polarization [31–35], and
spectrum [36,37]. In addition, they can effectively miniaturize optical elements into com-
pact, planar, and ultrathin devices. Thus, metasurfaces are suitable to be applied in spectral
imaging systems [38,39] by functioning as broadband filters with diversified transmission
spectra and working as compact and cost-efficient wavelength-coded apertures [40,41]. Fur-
thermore, tunable and multifunctional metasurfaces provide greater design freedoms [42–46]
with liquid crystals (LCs) being widely used for implementing tunable metasurfaces due
to their unique birefringence properties and mature control mechanisms [45–52]. These
characteristics possess significant potential in the implementation of compact, efficient, and
precise SCSI systems.

In addition, deep-learning algorithms have emerged as an alternative for learning
spatial–spectral priors and spectral reconstruction. They offer faster and more accurate
reconstruction compared to iterative approaches, thanks to the strong fitting ability of
deep-learning models that alleviates the high computation costs. Consequently, vari-
ous deep neural network architectures, such as autoencoders [53], convolutional neural
networks [54–58], generative adversarial networks [59], transformers [60], and others, have
been utilized for spectral reconstruction. Additionally, the entire reconstruction process
can be substituted with a neural network, and end-to-end (E2E) reconstruction allows
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for the sending of measurements into a deep neural network that directly outputs the
reconstruction results. Specifically, residual neural networks (ResNet) [61,62], composed
of convolutional layers with skip connections, have achieved outstanding performance
in computer vision tasks, such as image classification and object detection, making them
suitable for spectral reconstruction purposes.

This study proposes a novel snapshot compressive hyperspectral imaging system
called MD-SCSI, which is based on dual-channel switchable metasurface filters and a
deep-learning-empowered compressive reconstruction algorithm. MD-SCSI incorporates
two key innovations: an SCSI hardware encoder that utilizes dual-channel switchable
metasurface filters and a deep compressive reconstruction algorithm that employs E2E
convolutional neural networks based on the ResNet architecture. On the one hand, the
dual-channel switchable metasurface filters are constructed by integrating twisted nematic
liquid crystals (TNLCs) with all-dielectric metasurfaces composed of anisotropic titanium
dioxide (TiO2) meta-atoms. These thin metasurface filters are tightly integrated onto the
image sensor, resulting in a compact system design. The TNLCs possess a broad linear
polarization conversion capability [52], allowing for the rapid switching of the incidence
polarization state between x-polarization and y-polarization by applying different voltages.
This capability allows for the metasurface filters to operate as broadband optical filter
arrays that are sensitive to polarization, thereby offering two distinct sets of transmittance
spectra for wavelength encoding. Consequently, they facilitate the generation of 2-frame
snapshots that capture spectral information, which in turn benefits the reconstruction
of spectral data cubes. On the other hand, an E2E ResNet, instead of the traditional
iterative CS algorithms, is employed to achieve hyperspectral imaging reconstruction. The
ResNet is trained on a synthetic dataset using the 2-frame snapshot measurements obtained
from the orthogonal polarization channels of MD-SCSI. By conducting a comparative
analysis of the HSI reconstruction outcomes achieved using MD-SCSI against alternative
methods, including a classical DD-CASSI method using random coded apertures and
iterative CS algorithms with dictionary-learning based recovery (CASSI-DBR), method
replacing the algorithm of MD-SCSI with iterative CS algorithms with dictionary-learning-
based recovery (Meta-DBR), DD-CASSI using deep neural networks for recovery (CASSI-
Net), and reconstruction with either the x-linear or y-linear polarization output channel
of MD-SCSI (x-pol or y-pol). The precision and speediness of MD-SCSI have shown that
MD-SCSI is superior to other methods, according to the improved reconstruction quality as
well as speed. Generally, this research presents several contributions outlined as follows:

1. MD-SCSI realizes transmission spectra control by use of metasurfaces, employing two
multiplexing input channels that work for orthogonally linear polarized light that
can be rapidly switched using TNLCs. Additionally, the arrangement of meta-atoms
within the metasurface units is optimized for minimization of coherence.

2. MD-SCSI achieves a compact SCSI framework rather than using additional elements
or strategies of spatial-multiplexing, ensuring high-quality reconstruction while main-
taining spatial resolution.

3. MD-SCSI enables fast and accurate HSI reconstruction by leveraging an end-to-end
ResNet that is specially optimized for the dual-channel switchable metasurface filters,
characterized by simplicity, high performance, rapid convergence, and exceptional
generalization.

2. Materials and Methods

The proposed MD-SCSI system, as illustrated in Figure 1, consists of a vertically
stacked image sensor, a layer of dual-channel switchable metasurface filters, and a layer of
TNLCs. The metasurface layer is positioned between the sensor and the LC layer, and it com-
prises periodic micro-spectrometers. Each micro-spectrometer consists of 8 × 8 metasurface
units with each unit measuring 3.45 µm × 3.45 µm, corresponding to a single complemen-
tary metal oxide semiconductor (CMOS) image sensor pixel. These metasurface units form
a periodic array of 10 × 10 subwavelength anisotropic meta-atoms, which function as
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dual-channel switchable metasurface filters, exhibiting distinct transmission spectra for
orthogonal polarization channels. The image sensor is integrated on top of the metasurface
layer and accompanied by a micro lens array layer, while a thin TNLC cell is integrated
beneath the metasurface layer to generate broadband linearly polarized incidences with
orthogonal polarization states.
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the visible spectrum avoids Ohmic loss. In addition, the proposed metasurface filters 
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mass production [65]. The underlying layer comprises a thin TNLC cell filled with the 
commonly used LC material 4-cyano-4′-pentylbiphenyl (5CB) [49,66], which includes two 
orthogonally oriented alignment layers to pre-align the LC molecules. The LC cell was 
sandwiched between two 10 nm-thick indium tin oxide (ITO) [67] layers. The proposed 
metasurface, integrated with TNLCs in the visible region, is demonstrated in Figure 3. By 
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Figure 1. Schematic of the proposed MD-SCSI, consisting of a vertically stacked image sensor,
a layer of dual-channel switchable metasurface filters with periodic micro-spectrometers, and a
layer of TNLCs for tunable polarization conversion, enabling polarization channel selection of
metasurface-filter arrays.

2.1. Metasurface Design

The device primarily consists of vertically stacked metasurface and TNLC layers. The
upper metasurface layer is fabricated using high-ratio birefringent TiO2 meta-atoms [63]
with varying cross-sectional shapes on top of a quartz (silicon dioxide, SiO2) substrate [64]
(Figure 2). TiO2 naturally has an exceptionally low extinction coefficient (k), a large re-
fractive index (n), and high transmittance in the visible range, making the energy of the
light strongly confined within each meta-atom, and its negligible extinction coefficient
across the visible spectrum avoids Ohmic loss. In addition, the proposed metasurface
filters achieve dual-channel wavelength-coding by the anisotropic meta-atoms, which per-
forms very diversified transmission spectra for x-pol or y-pol incidences with great design
flexibility of its shape, size, arrangements, and so on. Further, this metasurface-based archi-
tecture implements an ultrathin and compact system with the potential of cost-effective
mass production [65]. The underlying layer comprises a thin TNLC cell filled with the
commonly used LC material 4-cyano-4′-pentylbiphenyl (5CB) [49,66], which includes two
orthogonally oriented alignment layers to pre-align the LC molecules. The LC cell was
sandwiched between two 10 nm-thick indium tin oxide (ITO) [67] layers. The proposed
metasurface, integrated with TNLCs in the visible region, is demonstrated in Figure 3. By
applying different voltages to the TNLC cell, the orientation of the LC molecules can be
adjusted, enabling the conversion of linearly polarized light. In the absence of an electric
field, vertically incident linearly polarized light with a polarization direction parallel to
the first alignment layer undergoes a 90◦ deflection along the twisting direction of the LC
molecules while passing through the TNLC cell. However, when a voltage that exceeds
the threshold voltage is applied to the TNLC, the long axes of the LC molecules begin to
incline in the direction of the electric field [48,52]. With the exception of the molecules near
the alignment layers, the long axes of the remaining molecules tend to rearrange parallel to
the electric field [48], leading to the suppression of LC molecule polarization conversion.
Importantly, this optical rotation of the LC molecules is wavelength-independent, enabling
the TNLC cell to operate over a broadband range.
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Figure 3. The detailed working principle of the proposed MD-SCSI. (a) The (helical) LC distribution
in the ‘Switch-Off’ state under a meta-atom. (b) The situation in the ‘Switch-On’ state (no helical
distribution) under a meta-atom. The polarization states of incident and output lights are indicated
as red and blue arrows for x-polarization and y-polarization, respectively. (c–e) Diagram of trans-
mittance response for different structural parameters of the meta-atoms under incidences of 450 nm,
550 nm, and 650 nm, respectively, when the LC distribution is in the ‘Switch-Off’ state and the
x-polarized incidence is converted into y-polarization before hitting the meta-atom. (f–h) Diagram
of transmittance response for different structural parameters of the meta-atoms under incidences of
450 nm, 550 nm, and 650 nm, respectively, when the LC distribution is in the ‘Switch-On’ state and
the x-polarized incidence is maintained before hitting the meta-atom.

The anisotropy characteristics and other optical behaviors in these meta-atoms can
be described with the Jones matrix, denoted as Jmeta = [tL, 0; 0, tS], where tL is the longer
optical axis and tS is the shorter optical axis. Thus, the complex transmittance Eout from the
meta-atom under an arbitrary incidence Ein can be represented by

Eout = JmetaEin. (1)

For x-polarized incidence with Ein = [Exin; Eyin] = [1; 0], Eout should be

[
Exout

Eyout

]
=

[
tL 0

0 tS

][
1

0

]
=

[
tL

0

]
, (2)
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and for y-polarized incidence with Ein = [Exin; Eyin] = [0; 1], Eout should be

[
Exout

Eyout

]
=

[
tL 0

0 tS

][
0

1

]
=

[
0

tS

]
. (3)

The transmittance spectra of the proposed dual-channel meta-atoms were simulated
using the finite difference time-domain (FDTD) method, specifically employing Lumerical
FDTD Solutions. The meta-atoms had a period of 345 nm and a height of 600 nm. To
account for fabrication constraints and period sizes, the meta-atoms were subjected to
minimum and maximum size constraints of 50 nm and 300 nm, respectively. In order to
facilitate the interpretation of the LC molecule behavior, the reorientation process of the LC
was simulated accordingly. The equilibrium distribution of the LC director was calculated,
and the resulting dielectric tensor field was incorporated into the FDTD simulations to
determine the optical response. The computational domain was bounded above and below
by a perfectly matched layer (PML) boundary condition with periodic conditions along the
x and y directions.

A total of more than 2500 distinct meta-atoms were generated, out of which 64 types
were carefully selected for spectral encoding purposes. These 64 structures were arranged
in an 8 × 8 configuration, resembling a micro-spectrometer, and were subsequently repli-
cated periodically to form a larger metasurface layer with a 256 × 256 array. When it
comes to designing binary-coded apertures using only 0 and 1, an effective design rule that
minimizes coherence involves the following considerations [68]: (1) maximizing the separa-
tion between one-valued entries within the same row of the coded aperture, (2) reducing
the occurrence of vertical clusters in the vertical direction of the coded aperture, and
(3) employing a complementary set of codes to minimize correlations, given that each
measurement snapshot employs a distinct coded aperture. However, due to the meta-
atoms’ ability to provide continuous transmittance control across the entire bandwidth,
a slightly different yet similar strategy is adopted by employing a genetic algorithm. In
both the horizontal and vertical directions, it is crucial to ensure a significant difference in
transmittance between each pixel and its neighboring pixels. Furthermore, there should
be substantial variation in transmittance for the meta-atoms within the same pixel when
subjected to 2-frame snapshots of orthogonally polarized incidences. These requirements
are essential to achieve the desired performance and characteristics of the metasurface.

2.2. Dual-Channel Compressive Hyperspectral Imaging with MD-SCSI

The spectral data cube of the incidence can be represented by f (x, y, λ), where (x, y) is
the position on the metasurface plane and λ is the wavelength. Since every metasurface
unit consists of 10 × 10 identical meta-atoms, its transmission spectra are the same as
those of a single corresponding meta-atom. The transmission spectra tuning function can
be denoted as Tix(x, y, λ) and Tiy(x, y, λ) for x-polarization and y-polarization channels,
respectively. Here, i = 1, 2, 3 . . . 64 represents the area number of the metasurface unit within
the micro-spectrometer, as illustrated in Figure 4. Consequently, the pre-captured tuned
data cube can be represented as f (x, y, λ)Tix(x, y, λ) and f (x, y, λ)Tiy(x, y, λ). Furthermore,
considering Ω(λ) as the spectral response function of the image sensor pixel, the finally
detected measurement for pixel (m, n) can be expressed as follows:





gmnx =
∫ n∆
(n−1)∆

∫ m∆
(m−1)∆

∫
λ Ω(λ) f (x, y, λ)Tix(x, y, λ)dλdxdy

gmny =
∫ n∆
(n−1)∆

∫ m∆
(m−1)∆

∫
λ Ω(λ) f (x, y, λ)Tiy(x, y, λ)dλdxdy

, (4)

where ∆ = 3.45 µm is the period of one metasurface unit or one pixel of the image sensor,
and (m, n) is the location of a particular pixel and corresponds to the metasurface unit
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number i from 64 types. If λ is a discrete parameter indicated by s, then the measurement
of the pixel (m, n) would be





gmnx =
N
∑

s=1
Ωs fmnsTi

sx

gmny =
N
∑

s=1
Ωs fmnsTi

sy

, (5)

where N is the quantity of the spectral bands, and Ωs is the spectral response of the sensor
for the sth spectral band. Supposing that the detected image has P rows and Q columns,
add the total gmn and fmns to the detected 2D image G (G ∈ R2P×Q) and the total 3D
hyperspectral data cube F (F ∈ RP×Q×S), respectively, and denote g (g ∈ R2PQ×1) and f
(f ∈ RPQS×1) as the vectorization of G and F, respectively. Then the total detected signal
can be expressed as

g = Hf, (6)

where H = [Hx; Hy] (H ∈ R2PQ × PQS) is the observation matrix of MD-SCSI with dual
polarization channels, as the number 2 in the superscripts of G and H denotes both channels.
The total detected signal g can be represented by g = [gx; gy], where gx = Hxf and gy = Hyf.Nanomaterials 2023, 13, 2854 8 of 20 
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Figure 4. (a) View of the micro-spectrometer. Each micro-spectrometer consists of 8 × 8 metasurface
units, and each metasurface unit is composed of 10 × 10 TiO2 meta-atoms. (b)Transmittance spectra
of x-channel (red-line) and y-channel (blue-line) for the selected 8 × 8 metasurface units that make up
the micro-spectrometer. The subfigures are arranged according to the relative location distributions
of the 64 types of metasurface units along the x–y plane.
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2.3. Design of ResNet for Data Cube Reconstruction

For data cube reconstruction, an end-to-end residual neural network (ResNet) is
utilized. As a proof of principle, a subset of 29 wavelengths, ranging from 420 to 700 nm
with a step size of 10 nm, is selected. The network architecture, depicted in Figure 5, initiates
by applying a convolutional layer to transform the input measurements, which have a
size of 256 × 256 × 1, into feature maps with dimensions 256 × 256 × K. Subsequently, N
residual blocks are incorporated into the network. Finally, another convolutional layer is
employed to convert the 256× 256× K feature maps into output channels with dimensions
256 × 256 × 29, corresponding to the selected wavelengths. Each residual block, as
illustrated in the subfigure of Figure 5, comprises two convolutional layers and is enhanced
with a rectified linear unit (ReLU) activation function. This composition enhances its ability
to learn and capture the complex relationships within the data.

Nanomaterials 2023, 13, 2854 9 of 20 
 

 

 
Figure 5. The framework of the utilized E2E ResNet for data cube reconstruction. 

In this study, the CAVE dataset, comprising a collection of 32 hyperspectral images 
with dimensions of 512 × 512 × 32, is utilized for training purposes. Specifically, the pa-
rameters K and N are set to 72 and 20, respectively, to optimize the performance of the 
network. To enhance the training process, data augmentation techniques and spectral in-
terpolation methods are employed, generating an extended dataset consisting of 272 hy-
perspectral images with dimensions of 1024 × 1024 × 29. For the purpose of testing, a set 
of 15 scenes obtained from KAIST is selected, each with dimensions of 256 × 256 × 29. 
These scenes provide a diverse range of real-world scenarios for evaluating the proposed 
approach. The computational resources employed in this study include an NVIDIA GTX 
4090 GPU and an AMD 7950X CPU. These resources contribute to the efficient execution 
of the training and testing processes, enabling timely and accurate analysis of the hyper-
spectral data. 

The formulated loss function encompasses three distinct components. The first com-
ponent corresponds to the mean squared error (MSE) loss, quantifying the average 
squared discrepancy between the predicted values and the ground truth values: 

2

mse 2
.L = −predF F   (7) 

The second component incorporates the structural similarity (SSIM) loss function, 
which assesses the structural similarity between the predicted values and the ground truth 
values by comparing the local patterns, luminance, and contrast of the predicted values 
with the true values. This loss function facilitates the evaluation of the perceptual quality 
of the reconstructed data: 

SSIM ( , ).L S S IM= p redF F   
(8) 

Lastly, the third component aims to minimize the spectral angle mapping (SAM). The 
SAM metric determines the similarity between the reconstructed spectra and the true 
spectra, focusing on the angular difference between them. The goal is to minimize this 
discrepancy, enhancing the spectral fidelity of the reconstructed data: 

29

256 256
1 1

1

, , , ,

2 2
, , , ,

/ 2 1/ 229 291 1

1 1

SAM cos .
i j k i j k

i j k i j k

k

i j

k k

− =

= =

= =

 
  =  
             


pred

pred

F F

F F

  (9) 

Since there is no need to calculate cos−1 while training, to save time, the loss function 
of SAM is set as: 

Figure 5. The framework of the utilized E2E ResNet for data cube reconstruction.

In this study, the CAVE dataset, comprising a collection of 32 hyperspectral images
with dimensions of 512× 512× 32, is utilized for training purposes. Specifically, the param-
eters K and N are set to 72 and 20, respectively, to optimize the performance of the network.
To enhance the training process, data augmentation techniques and spectral interpolation
methods are employed, generating an extended dataset consisting of 272 hyperspectral
images with dimensions of 1024 × 1024 × 29. For the purpose of testing, a set of 15 scenes
obtained from KAIST is selected, each with dimensions of 256 × 256 × 29. These scenes
provide a diverse range of real-world scenarios for evaluating the proposed approach. The
computational resources employed in this study include an NVIDIA GTX 4090 GPU and
an AMD 7950X CPU. These resources contribute to the efficient execution of the training
and testing processes, enabling timely and accurate analysis of the hyperspectral data.

The formulated loss function encompasses three distinct components. The first com-
ponent corresponds to the mean squared error (MSE) loss, quantifying the average squared
discrepancy between the predicted values and the ground truth values:

Lmse =
∥∥Fpred − F

∥∥2
2. (7)

The second component incorporates the structural similarity (SSIM) loss function,
which assesses the structural similarity between the predicted values and the ground truth
values by comparing the local patterns, luminance, and contrast of the predicted values
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with the true values. This loss function facilitates the evaluation of the perceptual quality
of the reconstructed data:

LSSIM = SSIM(Fpred, F). (8)

Lastly, the third component aims to minimize the spectral angle mapping (SAM).
The SAM metric determines the similarity between the reconstructed spectra and the true
spectra, focusing on the angular difference between them. The goal is to minimize this
discrepancy, enhancing the spectral fidelity of the reconstructed data:

SAM =
256

∑
i=1

256

∑
j=1

cos−1




29
∑

k=1
Fpredi,j,kFi,j,k

(
29
∑

k=1
Fpredi,j,k

2
)1/2( 29

∑
k=1

Fi,j,k
2
)1/2


. (9)

Since there is no need to calculate cos−1 while training, to save time, the loss function
of SAM is set as:

LSAM =
256

∑
i=1

256

∑
j=1




29
∑

k=1
Fpredi,j,kFi,j,k

(
29
∑

k=1
Fpredi,j,k

2
)1/2( 29

∑
k=1

Fi,j,k
2
)1/2

+ ε


, (10)

where ε = 1 × 10−9 represents a very small value to prevent division by zero. The overall
loss function is the weighted sum of these three components:

L = Lmse + α1LSSIM − α2LSAM, (11)

where α1 = 0.05 and α2 = 0.01 are parameters to balance these three terms for this work.

3. Results

To assess the efficacy of the proposed method, a comprehensive evaluation is con-
ducted utilizing three quantitative metrics to gauge the quality of the reconstructed hyper-
spectral images. These metrics encompass the SAM, peak signal-to-noise ratio (PSNR), and
SSIM. The SAM metric serves as an indicator of spectral accuracy, ranging from 0 to 1. A
smaller SAM value signifies a more precise representation of the spectrum. PSNR assesses
the overall reconstruction quality, and higher PSNR values indicate superior reconstruction
outcomes. SSIM measures the structural similarity between the restored images and the
original ones with values ranging from 0 to 1. Larger SSIM values represent minimal dis-
tortion in the reconstructed images, implying a higher degree of similarity to the originals.
To facilitate a fair and straightforward comparison, the selected test images are scaled from
0 to 1. This normalization simplifies the comparative analysis among the different methods.
In the subsequent analysis, the proposed MD-SCSI method is benchmarked against various
existing methods for CSI. These methods include CASSI-DBR, CASSI-Net, Meta-DBR, as
well as x-pol or y-pol as introduced previously. By comparing the performance of the
MD-SCSI method against these alternative approaches, a comprehensive evaluation of its
effectiveness is conducted, illustrating its advantages and potential in terms of the quality
and speed of spectral reconstructions.

Table 1 showcases the reconstruction outcomes achieved through the application of
diverse methodologies to a set of 15 images from the KAIST dataset. The findings firmly
substantiate the exceptional reconstruction quality of the proposed MD-SCSI in comparison
to the other methods. Across all 15 test images (Figure 6), the MD-SCSI method exhibits
notable superiority in terms of SAM reduction, as well as significant enhancements in
both PSNR and SSIM measures. These results underscore the remarkable efficacy of the
proposed method, affirming its potential to outperform existing techniques in the domain
of HSI reconstruction.
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Table 1. SAM, PSNR, and SSIM comparison of different methods for 15 images in the KAIST dataset.

Image Number Quality Metrics CASSI-DBR CASSI-Net Meta-TwIST x-pol y-pol MD-SCSI

Image 1
SAM 0.0860 0.1287 0.1095 0.0972 0.0989 0.0570
PSNR 30.80 27.97 29.15 30.81 30.44 35.59
SSIM 0.8867 0.8969 0.8713 0.9370 0.9357 0.9643

Image 2
SAM 0.0904 0.1364 0.1692 0.1220 0.1098 0.0714
PSNR 35.03 31.65 32.92 35.51 35.61 39.93
SSIM 0.9472 0.9393 0.9279 0.9739 0.9741 0.9891

Image 3
SAM 0.1332 0.1675 0.2689 0.1754 0.1604 0.1106
PSNR 35.48 36.38 33.77 38.35 38.10 41.84
SSIM 0.9533 0.9747 0.9275 0.9785 0.9808 0.9914

Image 4
SAM 0.1974 0.1314 0.2377 0.1139 0.1225 0.0751
PSNR 30.28 31.57 28.94 33.01 31.96 38.35
SSIM 0.8795 0.9415 0.8541 0.9533 0.9470 0.9830

Image 5
SAM 0.1036 0.1385 0.1324 0.1238 0.1266 0.0765
PSNR 36.80 34.99 35.63 36.60 37.12 40.95
SSIM 0.9557 0.9546 0.9508 0.9669 0.9672 0.9845

Image 6
SAM 0.0993 0.1105 0.1636 0.1078 0.1033 0.0686
PSNR 35.17 34.44 33.65 36.20 35.55 40.64
SSIM 0.9626 0.9728 0.9499 0.9820 0.9820 0.9916

Image 7
SAM 0.1001 0.1208 0.1595 0.1123 0.1065 0.0692
PSNR 30.48 29.84 29.33 32.43 32.40 36.89
SSIM 0.9166 0.9340 0.9005 0.9524 0.9527 0.9738

Image 8
SAM 0.1194 0.1378 0.1970 0.1476 0.1494 0.0752
PSNR 35.14 32.21 32.73 32.58 32.58 39.21
SSIM 0.9368 0.9470 0.9136 0.9570 0.9561 0.9856

Image 9
SAM 0.0799 0.0913 0.0946 0.0642 0.0700 0.0449
PSNR 36.70 33.76 35.68 37.49 36.41 39.78
SSIM 0.9388 0.9455 0.9402 0.9705 0.9661 0.9781

Image 10
SAM 0.0813 0.1081 0.1518 0.1016 0.0870 0.0580
PSNR 42.37 40.26 39.45 41.41 42.09 47.90
SSIM 0.9820 0.9827 0.9701 0.9894 0.9906 0.9959

Image 11
SAM 0.0967 0.1427 0.2434 0.1310 0.1248 0.0893
PSNR 39.2121 37.70 37.12 40.57 40.76 43.70
SSIM 0.9656 0.9743 0.9335 0.9841 0.9870 0.9929

Image 12
SAM 0.2171 0.1864 0.2920 0.1639 0.1557 0.1037
PSNR 35.4471 36.3229 33.4164 39.5796 39.9063 44.5338
SSIM 0.9060 0.9633 0.8706 0.9790 0.9800 0.9917

Image 13
SAM 0.1030 0.1208 0.1945 0.1202 0.1128 0.0785
PSNR 38.1660 38.4325 35.0692 40.8228 40.5658 44.1873
SSIM 0.9565 0.9777 0.9321 0.9855 0.9863 0.9926

Image 14
SAM 0.1071 0.1440 0.2363 0.1419 0.1304 0.0878
PSNR 33.6037 33.3215 32.2650 36.1854 35.8398 40.6773
SSIM 0.9641 0.9751 0.9454 0.9817 0.9832 0.9921

Image 15
SAM 0.0897 0.1172 0.1928 0.1253 0.1124 0.0798
PSNR 38.8602 39.2061 37.3496 41.3150 41.3412 44.2754
SSIM 0.9751 0.9821 0.9608 0.9861 0.9874 0.9937

Average
SAM 0.1136 0.1321 0.1896 0.1232 0.1180 0.0764
PSNR 35.5685 34.5362 33.7651 36.8566 36.7112 41.2303
SSIM 0.9418 0.9574 0.9232 0.9718 0.9718 0.9867
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test images, and the reconstructed results produced with MD-SCSI (a7, b7, and c7) keep 
spatial details well with fine color fidelity, thereby demonstrating their superior recon-
struction quality and precision. Conversely, it can be observed that CASSI-DBR exhibits 
significant noise, leading to noticeable blur, color distortion, and colored speckle noise as 
could be viewed in the zoomed-in versions. CASSI-Net and Meta-DBR achieve clearer 
reconstructed results; however, they still suffer from substantial color distortion or col-
ored speckle noise overall. x-pol and y-pol produce satisfactory results with significantly 
improved clarity and colors that are closer to the ground truth. Nonetheless, some color 
distortion still persists, particularly in colors such as yellow and red. Finally, MD-SCSI 
yields the visually best results, characterized by clear outputs and colors that closely re-
semble the original images. 

Figure 6. 15 testing images from the KAIST dataset for simulation.

Moreover, an analysis of the comprehensive visual comparison results along with
detailed information would provide further substantiation of the effectiveness of the
proposed method. These illustrative demonstrations prove the improved performance
and advantages offered by the proposed MD-SCSI when compared to alternative methods.
By combining quantitative metrics with visual analysis, a compelling demonstration can
be achieved, consistently showcasing the superior reconstruction quality achieved by
the proposed method in comparison to other methods. This comprehensive evaluation,
including both objective metrics and qualitative visual assessment, reinforces the efficacy
of the proposed method and establishes its superiority in HSI reconstruction.

Figure 7 presents the reconstruction results of the different methods on three selected
test images, and the reconstructed results produced with MD-SCSI (a7, b7, and c7) keep spa-
tial details well with fine color fidelity, thereby demonstrating their superior reconstruction
quality and precision. Conversely, it can be observed that CASSI-DBR exhibits significant
noise, leading to noticeable blur, color distortion, and colored speckle noise as could be
viewed in the zoomed-in versions. CASSI-Net and Meta-DBR achieve clearer reconstructed
results; however, they still suffer from substantial color distortion or colored speckle noise
overall. x-pol and y-pol produce satisfactory results with significantly improved clarity and
colors that are closer to the ground truth. Nonetheless, some color distortion still persists,
particularly in colors such as yellow and red. Finally, MD-SCSI yields the visually best
results, characterized by clear outputs and colors that closely resemble the original images.
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KAIST dataset. 

In order to facilitate a more intuitive comparison in the spectral domain, Figure 8 
illustrates the recovered spectra from two randomly chosen spatial positions in test im-
ages 4 and 5. It can be observed from Figure 8 that the spectral signatures reconstructed 
with MD-SCSI (orange lines) exhibit the best similarity to the ground truth spectra (yellow 
lines), and the average mean square errors (MSE) of the reconstructed spectra shown in 
Table 2 demonstrate that MD-SCSI is the most accurate statistically, further proving that 
MD-SCSI outperforms the other methods. 

Figure 7. Visual comparison of reconstruction results using different methods with the 3D spectral
data being synthesized into RGB images for intuitive display. (a1–a7) Ground truth compared with
the results of CASSI-DBR, CASSI-Net, Meta-DBR, x-pol, y-pol, and MD-SCSI for image 1 in the KAIST
dataset. (b1–b7) Ground truth compared with the results of CASSI-DBR, CASSI-Net, Meta-DBR,
x-pol, y-pol, and MD-SCSI for image 2 in the KAIST dataset. (c1–c7) Ground truth compared with
the results of CASSI-DBR, CASSI-Net, Meta-DBR, x-pol, y-pol, and MD-SCSI for image 3 in the
KAIST dataset.

In order to facilitate a more intuitive comparison in the spectral domain, Figure 8
illustrates the recovered spectra from two randomly chosen spatial positions in test images 4
and 5. It can be observed from Figure 8 that the spectral signatures reconstructed with
MD-SCSI (orange lines) exhibit the best similarity to the ground truth spectra (yellow lines),
and the average mean square errors (MSE) of the reconstructed spectra shown in Table 2
demonstrate that MD-SCSI is the most accurate statistically, further proving that MD-SCSI
outperforms the other methods.

Table 2. Average mean square error of the spectra for the selected points depicted in Figure 8.

Image CASSI-DBR CASSI-Net Meta-DBR x-pol y-pol MD-SCSI

Image 4 1.771 × 10−4 1.800 × 10−4 3.565 × 10−4 1.565 × 10−4 2.425 × 10−4 9.184 × 10−5

Image 5 9.310 × 10−5 1.109 × 10−4 1.645 × 10−4 1.671 × 10−4 1.456 × 10−4 3.119 × 10−5

Figure 9 displays the reconstruction results of two test images, image 6 and image 7, in
three specific spectral channels of 450 nm, 550 nm, and 650 nm. It can be observed that the
reconstruction results of CASSI-DBR, CASSI-Net, and Meta-DBR introduce obvious noise,
resulting in relatively blurred details, shape deformations, and erroneous details in the
650 nm channel. The reconstruction results of x-pol and y-pol are closer to the ground truth;
however, there are still incorrect details in the 650 nm band. Finally, MD-SCSI provides the
most faithful representation of the ground truth, as it closely resembles the original images,
exhibits fewer undesirable visual artifacts, and provides visually better reconstructions
than the other methods without clear noises or erroneous details in the 650 nm band. This
validates the superiority of MD-SCSI in this work.
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corresponding ground truth. 

Furthermore, Figure 10 showcases a comparison between the entire reconstructed 
hyperspectral image generated with MD-SCSI and the original image 8, and it clearly 
demonstrates that MD-SCSI generates reconstructed results that are visually pleasing and 
very close to the ground truths in terms of spatial structure, color fidelity, and edge details 
without noticeable noises or distortions. 

Figure 9. Visual comparison of image 6 for (a1–a7) 450 nm, (b1–b7) 550 nm, and (c1–c7) 650 nm with
various methods compared to the corresponding ground truth, and visual comparison of image 7
for (d1–d7) 450 nm, (e1–e7) 550 nm, and (f1–f7) 650 nm with various methods compared to the
corresponding ground truth.
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Furthermore, Figure 10 showcases a comparison between the entire reconstructed
hyperspectral image generated with MD-SCSI and the original image 8, and it clearly
demonstrates that MD-SCSI generates reconstructed results that are visually pleasing and
very close to the ground truths in terms of spatial structure, color fidelity, and edge details
without noticeable noises or distortions.
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Figure 10. The ground truth of full-band spectra of image 8 with its reconstructed results of full-band
spectra with the proposed MD-SCSI method.

Additionally, the average running time of MD-SCSI with the other contrasting methods
on the 15 test images is listed in Table 3. Generally, the reconstructions of 15 test images
are repeated 10 times for all six methods, including the proposed method, MD-SCSI,
as well as the other contrasting methods. Thus, the running time for each method is
the average of its corresponding 150 reconstruction times, respectively. Specifically, the
PyTorch profiler tool is utilized for the evaluation of deep-learning-based methods (MD-
SCSI, x-pol, y-pol, and CASSI-Net), and the timing function of MATLAB is adopted for
the evaluation of the dictionary learning-based methods (CASSI-DBR and Meta-DBR).
It could be noted that the methods based on neural networks require significantly less
processing time, approximately in the order of 1 × 10−3, compared to the methods using
iterative CS algorithms and dictionary learning, and the proposed E2E ResNet algorithm,
which is optimized for MD-SCSI, performs the fastest reconstruction speed when similarly
applied to x-pol, y-pol, and MD-SCSI. The deep-learning-based methods excel in rapid
reconstruction, and this is because of the relatively straightforward matrix operations from
parallel processing on GPUs as well as the inherent simplicity of the reconstruction process.
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Table 3. Average running time on the test dataset for different methods.

Method CASSI-DBR CASSI-Net Meta-DBR x-pol y-pol MD-SCSI

Running Time 138.1021 s 118.3007 ms 135.5728 s 115.3872 ms 116.9829 ms 115.9519 ms

4. Conclusions

In conclusion, this paper proposes MD-SCSI, a compact snapshot hyperspectral com-
pressive imaging system that leverages dual-channel switchable metasurface filters in
conjunction with a deep-learning-empowered reconstruction algorithm based on compres-
sive sensing theory. MD-SCSI presents a compact framework for snapshot hyperspectral
imaging, eliminating the need for dispersion elements or additional cameras. This pioneer-
ing approach capitalizes on the unique advantages offered by dual-channel metasurfaces
as SCSI hardware encoders while employing an end-to-end residual neural network for
HSI reconstruction, thus demonstrating superiority in both system compactness and re-
construction performance. In detail, the dual-channel switchable metasurface filters are
arranged according to minimization of coherence and integrated by TNLCs with broadband
linear polarization conversion abilities. These metasurfaces enable rapid conversion be-
tween different voltages, generating 2-frame snapshots of spectral information with distinct
transmittance spectra for each independent input channel, facilitating the reconstruction of
spectral data cubes. Furthermore, the specially optimized end-to-end ResNet, tailored to the
characteristics of the dual-channel metasurface filters, enables efficient HSI reconstruction
by processing the 2-frame snapshot measurements acquired from orthogonal polarization
channels of MD-SCSI. This reconstruction process achieves exceptional quality in terms of
structural fidelity, color fidelity, spatial resolution, and speed. The comparison of the HSI
reconstruction results obtained with MD-SCSI with the other approaches demonstrates the
effectiveness, accuracy, as well as speediness of MD-SCSI, which greatly outperforms the
other HSI reconstruction methods. Consequently, MD-SCSI exhibits tremendous potential
for compact, accurate, and rapid SCSI and could be applied across various domains, includ-
ing but not limited to food safety, biomedical imaging, precision agriculture, and object
detection, among others.
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Abstract: Polymers containing π-conjugated segments are a diverse group of large molecules with
semiconducting and emissive properties, with strong potential for use as active layers in Organic
Light-Emitting Diodes (OLEDs). Stable blue-emitting materials, which are utilized as emissive layers
in solution-processed OLED devices, are essential for their commercialization. Achieving balanced
charge injection is challenging due to the wide bandgap between the HOMO and LUMO energy
levels. This study examines the optical and photophysical characteristics of blue-emitting polymers
to contribute to the understanding of the fundamental mechanisms of color purity and its stability
during the operation of OLED devices. The investigated materials are a novel synthesized lab scale
polymer, namely poly[(2,7-di(p-acetoxystyryl)-9-(2-ethylhexyl)-9H-carbazole-4,4′-diphenylsulfone)-
co-poly(2,6-diphenylpyrydine-4,4′-diphenylsulfone] (CzCop), as well as three commercially supplied
materials, namely Poly(9,9-di-n-octylfluorenyl-2,7-diyl) (PFO), poly[9,9-bis(2′-ethylhexyl) fluorene-
2,7-diyl] (PBEHF), and poly (9,9-n-dihexyl-2,7-fluorene-alt-9-phenyl-3,6-carbazole) (F6PC). The mate-
rials were compared to evaluate their properties using Spectroscopic Ellipsometry, Photolumines-
cence, and Atomic Force Microscopy (AFM). Additionally, the electrical characteristics of the OLED
devices were investigated, as well as the stability of the electroluminescence emission spectrum dur-
ing the device’s operation. Finally, the determined optical properties, combined with their photo- and
electro-emission characteristics, provided significant insights into the color stability and selectivity of
each material.

Keywords: blue-light emitting OLEDs; polyfluorene; polycarbazole; spectroscopic ellipsometry;
color selectivity

1. Introduction

To date, electrically semiconducting polymers have proved to be irreplaceable ma-
terials in the development of various electronic and optical devices, such as Organic
Light-Emitting Diodes (OLEDs), Organic Field Effect Transistors (OFETs), Organic Photo-
voltaics (OPVs) etc. Among the main advantages are their solubility in common solvents,
mechanical flexibility, non-expensive fabrication, and processing, with conductivity lev-
els comparable to those of inorganic semiconductors or even metals [1–6]. Therefore,
understanding their basic properties is essential for the design of novel semiconducting
polymers, which are used as emissive layers and applied in solution-processed OLED
devices. Wet-based deposition techniques are the most attractive methods for achieving
flexible large-area full-color displays at a low cost due to their compatibility with roll-to-roll
fabrication [7–10]. In particular, the emergence of flexible and wearable electronic devices
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as a part of the Internet of Things could be an important driving force to a new commercial-
ization area of these materials, semiconducting polymers capable of responding adequately
to these devices’ requirements [11].

Notably, there is a significant need for research on improved conjugated polymers
towards the three primary colors. It is well known that OLED devices require red, green,
and blue emissions with high stability, efficiency, and color purity. It is important to men-
tion that red and green light-emitting materials have been exhibiting excellent luminous
efficiency and spectral stability [3,12–16]. On the other hand, developing blue light-emitting
materials presents a significant challenge, leading to increased research interest in pro-
ducing stable and high-quality blue light [17,18]. The intrinsic wide band gaps of blue
emissive materials result in a high charge injection barrier and unbalanced injection and
transportation of charges [15].

Specifically, the conjugated polymers containing the Poly-fluorene (PF) and Poly-
carbazole (PCz) motifs are promising candidates for such blue-light emitting materials.
These materials have garnered increased attention owing to their good electro- and pho-
toactive properties, as well as their high hole transporting mobility and strong absorption
in the UV spectral region [11]. These materials also provide good thin film morphology
and, for this reason, are promising candidates for application as an emissive layer in OLED
devices [8,14,16]. In addition, they can be utilized as host materials for internal color con-
version in blends with other conjugated polymers and with phosphorescent dyes providing
easy color tuning [14,19–22].

However, fluorene-based derivatives may suffer from poor color purity and stability.
Under prolonged device operation or annealing of the materials in air, PF-type materials
often appear to degrade, resulting in long-range emission at photon ranges of 2.2–2.3 eV.
There are two possible mechanisms that have been proposed and intensively debated to
explain the origin of the undesirable emission band centered at 540–550 nm: (i) excimer
emission due to interchain aggregation, or (ii) fluorenone formation in 9-position due to
oxidation. For the first possible mechanism, initially, reordering of the polymer chains and
subsequent aggregation, as well as excimer formation, was assigned as the source of the
green emission. Instead of that, the second possible phenomenon was associated with on-
chain defects incorporated during synthesis. Their oxidation leads to the presence of ketone
defects, yielding the so-called fluorenone moieties incorporated into the polymer backbone.
Currently, it is widely agreed that ketone defects are responsible for green emissions. As
a result, the color of the emission shifts from the desired blue to the blue-green region
(or even yellow). In order to improve the performance of PF-based OLED devices, it is
important to identify the origin of the red-shift emission and to understand the mechanism
of color degradation [6,23–29].

To realize improved performance, it is essential to synthesize new blue-light emitting
materials with high color stability and selectivity for blue OLEDs. Significant efforts have
been made to design versatile blue fluorescent materials aiming at further improving device
efficiency, chromaticity, and lifetime. To this end, the combination of the synthesis of novel
blue-emitting polymers and simple wet-fabricated OLEDs remains an open issue in the
research field of OLEDs.

In this work, we present the comparative study of the optical and photophysical prop-
erties of a new synthesized lab-scale polyethersulfone, namely poly[(2,7-di (p-acetoxystyryl)-
9-(2-ethylhexyl)-9H-carbazole-4,4′-diphenylsulfone)-co-poly(2,6-diphenylpyrydine- 4,4′-
diphenylsulfone] (CzCop), with three commercially supplied blue-emitting polymers, the
poly(9,9-di-n-octylfluorenyl-2,7-diyl) (PFO), the poly[9,9-bis(2′-ethylhexyl) fluorene-2,7-
diyl] (PBEHF), and the poly (9,9 n-dihexyl-2,7-fluorene-alt-9-phenyl-3,6 carbazole) (F6PC).
These emissive polymers consist mainly of fluorene and carbazole units. Their derivatives
are based on alternating the fluorene and carbazole units or modifying the main chain
with side groups in order to achieve better solubility in common solvents and film-forming
ability. The commercially available fully conjugated blue-emitting polymers are directly
compared with CzCop, which, apart from the carbazole moiety, also differentiates itself
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in that it incorporates a polyether motif in the main chain, disrupting the conjugation of
the emitting moieties with oxygen heteroatoms. Specifically, aromatic polyethersulfones
have been investigated as potential polymeric materials to be used in the emissive layer of
OLEDs, incorporating fluorescent or even phosphorescent moieties, displaying attractive
properties in terms of their facile synthesis, easier purification, film-forming ability, and
ease of processability [30,31]. These materials could be applied in solution-processed OLED
devices as emissive layers. The fabricated OLEDs have been subsequently studied and
characterized in terms of their electroluminescence properties. This work aims to fully
define and compare the innovative lab scale polymer with the commercially available ones,
focusing on the selective stable blue emission. Determining the materials’ optical properties
in combination with the devices’ photo- and electro-emission characteristics provides us
with the necessary information to investigate and discuss the possibilities for applying
these polymers to the proposed blue OLED devices, and the first encouraging results
are obtained.

2. Materials and Methods
2.1. Materials

Copolymer CzCop were synthesized according to previously published procedures
described elsewhere [27]. Poly(9,9-di-n-octylfluorenyl-2,7-diyl), PFO (Mw = 114,050) was
supplied by Ossila (Sheffield, UK), whereas poly[9,9-bis(2′-ethylhexyl) fluorene-2,7-diyl],
PBEHF (Mw = 79,000) and poly (9,9 n-dihexyl-2,7-fluorene-alt-9-phenyl-3,6 carbazole) F6PC
(Mw = 9195) were supplied by Sigma Aldrich Chemie GmbH (Taufkirchen, Germany).

2.2. Ink Formulation

For the Hole Transport Layer (HTL), a solution of poly-3,4-ethylene dioxythiophene:
poly-styrene sulfonate (PEDOT:PSS, Clevios Heraus Germany, Leverkusen, Germany)
AI 4083 mixed with ethanol in the ratio of 2:1 was prepared. The PFO, PBEHF, and F6PC
polymers were dissolved in chloroform with a resulting concentration of 1% wt. The
synthesized copolymer CzCop (Mw = 69,000) was dissolved in N,N-Dimethylformamide
(DMF) with a consequent concentration of 1% wt. The chemical structures for all studied
polymers are depicted in Scheme 1.
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Scheme 1. Chemical structure of emitting polymer: (a) CzCop, (b) PFO, (c) PBEHF, and (d) F6PC.

2.3. OLED Fabrication

The fabricated OLED devices are structured as shown in Scheme 2. Firstly, pre-
patterned Indium-Tin Oxide-coated (ITO) glass substrates (received by Ossila, Sheffield,
UK) were extensively cleaned by sonication in DI, acetone, and ethanol for 10 min, followed
by drying under nitrogen. The substrates were also treated with oxygen plasma at 40 W
for 3 min. Then, the PEDOT:PSS layer, which was used as the HTL, was deposited by the
spin coating method onto the glass/ITO substrate, followed by annealing at 120 ◦C for
5 min. The emitting layers (EML) were spun at the same speed, 2000 rpm/s for 60 s, onto the
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PEDOT:PSS layer. Finally, a bilayer of Ca with a thickness of 6 nm and Ag with a thickness
of 125 nm, which was used as an electron transport layer and cathode, respectively, was
deposited using the appropriate shadow masks by Vacuum Thermal Evaporation (VTE).

Nanomaterials 2024, 14, x FOR PEER REVIEW 4 of 19 
 

 

were extensively cleaned by sonication in DI, acetone, and ethanol for 10 min, followed 
by drying under nitrogen. The substrates were also treated with oxygen plasma at 40 W 
for 3 min. Then, the PEDOT:PSS layer, which was used as the HTL, was deposited by the 
spin coating method onto the glass/ITO substrate, followed by annealing at 120 °C for 5 
min. The emitting layers (EML) were spun at the same speed, 2000 rpm/s for 60 s, onto the 
PEDOT:PSS layer. Finally, a bilayer of Ca with a thickness of 6 nm and Ag with a thickness 
of 125 nm, which was used as an electron transport layer and cathode, respectively, was 
deposited using the appropriate shadow masks by Vacuum Thermal Evaporation (VTE). 

 
Scheme 2. The architecture of the fabricated devices. 

2.4. Thin Film and Device Characterization 
Spectroscopic Ellipsometry (SE) is a powerful and robust, non-destructive, and sur-

face-sensitive optical technique for the determination of the optical properties as well as 
the thickness of the light-emitting polymers. Through the SE technique, we can measure 
the pseudodielectric function of the studied thin films. Moreover, by employing suitable 
modeling and fitting procedures, we can obtain valuable information regarding the die-
lectric function ε(ω), the precise thickness of the nanometer-scale thin films, the absorption 
coefficient, and optical constants such as the fundamental band gap and absorption ener-
gies (optical gaps). The SE measurements were conducted using a phase-modulated ellip-
someter (UVISEL JobinYvon, Horiba Europe Research Center, Palaiseau, France) from the 
near IR to far UV spectral region 1.5–6.5 eV with a step of 20 meV at 70° angle of incidence. 
The SE experimental data were fitted to model-generated data using the Levenberg–Mar-
quardt algorithm, which took into consideration all the fitting parameters of the applied 
model. 

〈𝜀𝜀(𝜔𝜔)〉 = ⟨𝜀𝜀1(𝜔𝜔)⟩ + 𝑖𝑖⟨𝜀𝜀2(𝜔𝜔)⟩ (1) 

The surface morphology of the emitting thin films was investigated by Atomic Force 
Microscopy (AFM) (NTEGRA, NT-MDT, Moscow, Russia) in ambient conditions, using 
the tapping scanning mode and silicon-based cantilevers with a high-accuracy conical tip 
and nominal tip roundness < 10 nm. 

Finally, the Photoluminescence (PL) and Electroluminescence (EL) characteristics of 
the active layers and of the final OLED devices, respectively, were measured using the 
Hamamatsu Absolute PL Quantum Yield measurement system (C9920-02, Jokocho, Hi-
gashi-ku, Hamamatsu City, 431-3196, Japan) and the external quantum efficiency system 
(C9920-12, Jokocho, Higashi-ku, Hamamatsu City, 431-3196, Japan), which measures 
brightness and light distribution of the devices. The current density-voltage and the lumi-
nance-voltage characteristics of the devices were measured using the Electroluminescence 
technique. 
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2.4. Thin Film and Device Characterization

Spectroscopic Ellipsometry (SE) is a powerful and robust, non-destructive, and surface-
sensitive optical technique for the determination of the optical properties as well as the
thickness of the light-emitting polymers. Through the SE technique, we can measure the
pseudodielectric function of the studied thin films. Moreover, by employing suitable mod-
eling and fitting procedures, we can obtain valuable information regarding the dielectric
function ε(ω), the precise thickness of the nanometer-scale thin films, the absorption coef-
ficient, and optical constants such as the fundamental band gap and absorption energies
(optical gaps). The SE measurements were conducted using a phase-modulated ellipsome-
ter (UVISEL JobinYvon, Horiba Europe Research Center, Palaiseau, France) from the near
IR to far UV spectral region 1.5–6.5 eV with a step of 20 meV at 70◦ angle of incidence. The
SE experimental data were fitted to model-generated data using the Levenberg–Marquardt
algorithm, which took into consideration all the fitting parameters of the applied model.

〈ε(ω)〉 = 〈ε1 (ω)〉 + i〈ε2 (ω)〉 (1)

The surface morphology of the emitting thin films was investigated by Atomic Force
Microscopy (AFM) (NTEGRA, NT-MDT, Moscow, Russia) in ambient conditions, using the
tapping scanning mode and silicon-based cantilevers with a high-accuracy conical tip and
nominal tip roundness < 10 nm.

Finally, the Photoluminescence (PL) and Electroluminescence (EL) characteristics of
the active layers and of the final OLED devices, respectively, were measured using the
Hamamatsu Absolute PL Quantum Yield measurement system (C9920-02, Jokocho, Higashi-
ku, Hamamatsu City, 431-3196, Japan) and the external quantum efficiency system (C9920-
12, Jokocho, Higashi-ku, Hamamatsu City, 431-3196, Japan), which measures brightness and
light distribution of the devices. The current density-voltage and the luminance-voltage
characteristics of the devices were measured using the Electroluminescence technique.

3. Results
3.1. Spectroscopic Ellipsometry

The optical and electronic properties of the blue-light emitting polymers were de-
termined by modeling and analyzing the measured complex pseudo-dielectric function,
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〈ε(E)〉, via SE in the visible to far ultraviolet (Vis-fUV) spectral region. To obtain quanti-
tative information from the measured 〈ε(E)〉 spectra, this has been analyzed by the use
of a 5-phase theoretical model consisting of the layer sequence air/blue-light emitting
polymer/PEDOT:PSS/ITO/Glass. We sequentially measured each layer and used the
appropriate theoretical optical model to calculate the optical constants and thickness of
each layer.

Figure 1a,b show the experimentally measured real part 〈ε1 ( E)〉 and the imaginary
part 〈ε2 ( E)〉 (symbols) spectra of the pseudo-dielectric function 〈ε(E)〉, as a function of
the photon energy in the range of 1.5–6.5 eV, as well as the corresponding fitted ones
(dash lines). Specifically, for the determination of the dielectric response of the emitting
polymers PFO, PBEHF, F6PC, and CzCop, we have used the modified Tauc–Lorentz (TL)
dispersion oscillator model, which has been successfully applied in amorphous organic
semiconductors [32–35]. The TL model is a powerful tool that can accurately describe
interband absorptions above the energy bandgap and is presented in detail in previous
works [32,36]. The imaginary part of the dielectric function, which is directly related to
electronic absorption, is given by the expressions:

ε2(E) = ∑i

AiE0iΓi

(
E− ETL

g

)2

(
E2 − E2

0i
)2

+ Γ2
i E2
· 1
E

, E > ETL
g (2)

ε2(E) = 0, E ≤ ETL
g (3)

where ETL
g is the energy band gap, E0i the resonance energy, Γi the broadening, and Ai the

strength of the ith oscillator.
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Figure 1. The experimental (symbols) (a) real 〈ε1 ( E)〉 and (b) imaginary 〈ε2 ( E)〉 spectra of the
pseudodielectric function and the corresponding fitted ones (lines) of the studied films, grown on
Glass/ITO/PEDOT:PSS.

Figure 2a,b show the calculated real 〈ε1 ( E)〉 and imaginary 〈ε2 ( E)〉 parts of the
dielectric function of the studied polymers derived from the best-fit analysis. Specifically,
we used three (i = 3) TL oscillators for the commercially available polymers PFO and
PBEHF, four (i = 4) and five (i = 5) TL oscillators for the F6PC and the synthesized CzCop,
respectively, to accurately parameterize all the electronic transitions. The ε(E) is determined
based on the best-fit parameters from the analysis of the measured 〈ε ( E)〉 . This analysis
provides insights into the thickness of the thin film, the energy of characteristic electronic
transitions, and the energy band gap of the materials under investigation. The respective
calculated values of these parameters are presented in Table 1.
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Table 1. The calculated best-fit results were derived by the analysis of the measured <
∼
ε (E) > spectra of

the films.

Thickness
(nm)

Optical Band
Gap (eV) Electronic Transition Energy (eV)

ETL
g ETauc

g E01 E02 E03 E04 E05

PFO 47.0 ± 1 2.87 3.06 3.12 5.54 5.78
PBEHF 42.0 ± 1 2.95 3.11 3.16 4.73 5.66
F6PC 46.0 ± 1 2.99 3.28 3.36 3.50 4.47 5.69

CzCop 27.0 ± 1 2.67 2.97 3.08 4.02 4.53 5.29 6.18

The dielectric response of blue-emitting materials is examined in relation to their
electronic transition energies. For all studied polymers, the first electronic transition energy
is calculated to be approximately E01 ≈ 3 eV. However, the differences are evident and
more pronounced at the higher energies range, above 3.5 eV. The PFO and PBEHF exhibit
similarities in E04 and E05 energy values, which are significantly weaker in comparison
to the E01. The F6PC shows similar strength, but the E02 and E03 are calculated in lower
energies. Finally, in the case of CzCop, it is a reduction in the strength of E01 compared to
the following higher energies.

In the case of nanostructured amorphous polymeric films, the band gap ETL
g , which

is calculated using the TL dispersion equation and includes the apparent absorption re-
sulting from disordering and localized defect states [32–36]. To accurately determine the
fundamental band gap, which determines the color emission and is associated with the
energy difference between the highest occupied molecular orbital (HOMO) and the lowest
unoccupied molecular orbital (LUMO), we utilized the Tauc-plot method [35]. This method
involves extrapolating the calculating [E × ε2]1/2 to the zero ordinate to obtain a relatively
wide band gap. The results of the ETauc

g are presented in Table 1 for comparison.
One can see that the PFO and PBEHF exhibit similar values for the first electronic ab-

sorption, which could be ascribed to the fluorene unit, whereas the F6PC presents different
values of electronic absorption despite containing the fluorene unit in the polymer chain. In
addition, the calculated values of the optical band gap ETauc

g for commercial polymers, PFO,
PBEHF, and F6PC also present differences. Among the commercial polymers consisting
of the main unit fluorene, the F6PC exhibits the higher value of the ETauc

g , which is equal
to 3.28 eV. We can distinguish that the presence of the carbazole moiety affects the value
of the band gap ETauc

g of F6PC, as it presents a higher value. This can be explained by
the shortening of the conjugation length as the carbazole unit inserts into the conjugated
backbone of PF, leading to an increase in the energy gap [9,37]. On the other hand, the
two values of the band gap of CzCop present lower energies compared to the other ones
and more electronic absorptions are observed with significantly broader characteristics.
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Specifically, the calculated ETauc
g has the lowest value compared to the other three com-

mercially supplied polymers and is calculated equal to 2.67 eV. This may be related to
disorder-induced nanostructure and the formation of localized defect states in this film [33].

3.2. Absorption Coefficient and Photoluminescence

The Absorption Coefficient and PL spectra of thin films of PFO, PBEHF, F6PC, and
CzCop are presented in Figure 3a, b, c, and d, respectively. The absorption coefficient
spectrum of each emitting polymer is derived using the calculated bulk ε(ω). The spectra
of the studied polymers show absorptions from 420 to 200 nm. In the case of the absorption
coefficient spectrum of PFO, the dominant peak is located at 370 nm, which is attributed
to the π-π* transition of the conjugated PF backbone [6,23]. The absorption coefficient
spectrum of PBEHF shows a dominant maximum peak at around 360 nm, which is ascribed
to π-π* transition [26,29]. The other PFO derivative containing the carbazole moiety,
namely F6PC, exhibits a slightly blue-shifted absorption peak at 335 nm in comparison
to PBEHF and PFO. This blue shift of the absorption peak can be attributed to a π-π*
transition related to the presence of the carbazole unit. Sergent et al. presented the study of
photophysical properties of blue-emitting fluorene-co-carbazole-based polymers, and they
observed the blue shift of the absorption when the carbazole unit was incorporated along
with fluorene [8]. They also proposed that this phenomenon is due to the interruption
of the conjugation by the presence of 3,6 carbazole units within the conjugated main
chain [8,37,38]. In the case of the novel copolymer CzCop, it is clear that the absorption
spectrum shows a broad structureless band from 425 to 300 nm, centered at 380 nm,
indicating that it exists in the disordered (amorphous) phase.
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Figure 3. The absorption coefficient and PL emission spectra of (a) PFO, (b) PBEHF, (c) F6PC, and (d) CzCop.

Moreover, the emitting thin films were also examined by PL in order to define the lumi-
nescence behavior of the active materials. The PL spectra were recorded upon excitation at
370 nm. The right axes of Figure 3a, b, c, and d depict the PL spectra of PFO, PBEHF, F6PC, and
CzCop, respectively. For a better evaluation of the PL emission spectra of the emitting films, a
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deconvolution fitting analysis of the experimental spectra was realized using a Gauss oscillator
for the analysis procedure. The deconvolution analysis revealed that the PFO PL spectrum
exhibits a vibronic structure with peaks at ~424 nm (0–0), ~441 nm (0–1), and ~470 nm (0–2); a
fourth phonon side band (0–3) can also be seen at ~522 nm [6,39]. The PL spectrum of PBEHF is
dominated by four distinct peaks, and notably, the PBEHF spectrum is typical of polyfluorenes,
similar to the PL spectra of PFO. In particular, it shows a structured band with two sharp
peaks at ~421 and ~440 nm, one at ~461 nm, and a minor shoulder at ~507 nm. Therefore, as
mentioned above, the first three peaks correspond to an average vibronic progression of the
0–0, 0–1, and 0–2 intrachain singlet transitions, respectively [8,26,29,40,41]. On the other hand,
it is remarkable to observe that the shape of the F6PC PL spectrum is different compared to
the PFO and PBEHF. For the F6PC, the featureless PL emission was deconvoluted by three
peaks located at ~417, ~443, and ~488 nm. The deconvolution analysis reveals a slight blue shift,
especially from 421 or 424 to 417 nm. This fact makes us speculate that the carbazole unit affects
the emission spectra of F6PC, as the emission is mostly governed by a radiative decay from the
electronic states of the conjugated polymer comprising the carbazole unit [8,37,38]. This is due
to the interruption of the delocalization of the π-electrons along the polymer backbone by the
3,6-carbazole linkages. Thus, as mentioned above, the presence of the carbazole unit indicates
that the conjugation length is reduced, leading to an increased energy gap and resulting in a
blue shift in PL emission. In addition, the PL emission of the CzCop presents a similar band
shape compared to the F6PC PL spectra, as both F6PC and CzCop contain a carbazole unit in
the main backbone. The spectrum of CzCop is shifted to longer wavelengths compared to the
F6PC spectrum, as it is also indicated by the deconvolution analysis. This fact is assigned to
conjugation disruption because of the ether linkages and structural disorders. The polyether
backbone induces non-planar conformations that lead to more electronic transitions. Also, the
electron-withdrawing/donating nature of the sulfone group and the Cz and Py groups could
lead to more Charge Transfer states.

At the same time, the PL measurements are used to calculate the coordinates in
the Commission Internationale de L’ Eclairage (CIE) chromaticity diagram, as they are
demonstrated in Figure 4. One can observe that the chromaticity coordinates are generally
located in the spectral region of the blue region. More specifically, commercially available
photoactive materials have coordinates situated in a region characterized by blue emission
color [17]. For the PFO, PBEHF, and F6PC, the values of the corresponding coordinates
are (0.17, 0.13), (0.17, 0.12), and (0.17, 0.13), respectively. On the other hand, concerning
the synthesized polymer CzCop, its CIE Coordinates deviate from the deep blue region,
and the emission can be characterized as sky-blue [17]. More specifically, the values of the
CzCop chromatic coordinates are (0.19, 0.25).
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3.3. Atomic Force Microscopy

Understanding interfaces is crucial for the further development and optimization of
OLED devices as they encompass several thin film layers. In particular, the film morphology
of the emissive layers is an important parameter that could be taken into account when
introducing interfacial layers via wet techniques in optoelectronic devices. For this reason,
we extensively studied the surface topography of the emissive thin films using AFM.
Figure 5a, b, c, and d illustrate the AFM-measured surface topography (height) images of
spin-coated thin films PFO, PBEHF, F6PC, and CzCop, respectively. The results derived
from the AFM image analysis are presented in Table 2. It can be observed that the surface
morphology of every sample was uniform and sufficiently covered the substrate. The
image analysis revealed that almost smooth and continuous films were formed with low
Root Mean Square (RMS) roughness values. More specifically, from the height distribution
plots shown in Figure 6, it can be seen that most of the features detected are between 2 and
7 nm in height. However, it is noteworthy that the synthesized emitting polymer CzCop
thin film exhibits the lowest RMS value compared to the other commercial polymers. The
importance of this topic is related to the fact that the interfacial area between the thin films
sets the condition for the injection of charges in a device, which has a profound influence
on the device’s operational characteristics, for example, the current-voltage characteristic.
Generally, it has been established that smoother surfaces reduce the loss of the injection and
transportation of charges at the interface, which is beneficial in OLED devices consisting of
different layers [13,42]. Thus, the roughness of the emissive layer plays a significant role
in the performance of the device and improves the charge injection in the optoelectronic
devices, resulting in reduced turn-on voltages.
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Table 2. AFM results for the spin-coated thin films.

Root Mean Square,
Sq (nm)

Average Roughness,
Sa (nm)

Peak to Peak, Sy
(nm)

PFO 1.01 0.74 13.72
F6PC 0.86 0.67 8.67

PBEHF 0.32 0.25 4.94
CzCop 0.25 0.20 1.54
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3.4. Electroluminescence

Electroluminescence preliminary investigations on the studied emissive materials
were also carried out in order to evaluate their potentiality for the OLED technology.
The EL spectra were recorded in the wavelength range from 380 to 900 nm by applying
an external bias voltage from 3 to 14 V with 1 V step. In the case of CzCop, the maxi-
mum applied voltage was limited to 9 V due to the thinner active layer. Figure 7 shows
the respective experimental EL spectra of the studied devices, which were recorded at
14 V for the commercial materials and at 8 V for the lab-scale synthesized polymer. The
corresponding theoretical curves were obtained after the fitting deconvolution procedure
using 4 Gauss oscillators for the PFO and F6PC, 5 Gauss oscillators for the PBEHF, and
3 Gauss oscillators for the CzCop. Table 3 summarizes the PL and EL emission spectra
analysis, including the wavelengths of the λmax peaks and the broadening FWHM.

Table 3. Results of the deconvolution analysis of the PL and EL emission spectra.

Spectrum
PEAK 1 PEAK 2 PEAK 3 PEAK 4 PEAK 5

λmax

(nm)
FWHM
(nm)

λmax

(nm)
FWHM
(nm)

λmax

(nm)
FWHM
(nm)

λmax

(nm)
FWHM
(nm)

λmax

(nm)
FWHM
(nm)

PFO
PL 424 12 441 28 470 47 522 96 - -
EL 429 13 454 18 484 20 503 88 - -

PBEHF
PL 421 13 440 19 461 46 507 95 - -
EL 418 14 440 23 472 21 492 67 542 107

F6PC
PL 417 24 443 47 488 95 - - - -
EL 412 32 447 53 488 76 619 20 - -

CzCop PL 453 35 488 58 551 113 - - - -
EL 434 17 458 39 505 88 - - - -
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The comparative study between the Electroluminescence and Photoluminescence
spectra is shown in Figure 8 to better comprehend the emission characteristics. For the
commercial light-emitting polymers PFO, PBEHF, and F6PC, it is obvious that the emission
bands obtained from these studied devices are slightly broadened compared to their
corresponding PL spectra. One can see that the maximum EL emission peaks of these
commercial polymers are also moved to the longer wavelength region compared to their
PL spectra. Specifically, from the EL spectrum of PFO can be observed a low-energy
emission peak, which is located at approximately ~500 nm. The EL emission of PBEHF
exhibits the dominant peak located at ~500 nm. As previously mentioned, the origin of
the green-color emission in PF-type materials has been extensively debated in recent years.
There are two possible explanations for this phenomenon. The first one is that the formation
of a low-energy emission band at 2.2–2.3 eV occurred due to the formation of fluorenone
defect sites (keto-defect) during the device operation, specifically in atmospheric conditions.
In fact, it was shown that keto-defects form easily with the oxidation of monoalkylated
fluorene monomer units during the device operation [23–26,43]. List et al. [24] presented
in their study that the keto defects act as low-energy trapping sites for singlet excitons,
being populated by an excitation energy transfer from the PF main chain. In particular,
they found a much stronger contribution from the defect-related emission in EL than in
PL spectra, which was attributed to two parallel processes: trapping of charges at the
keto site and their subsequent emissive recombination in addition to energy transfer of
singlet excitons from the PF main chain to keto defect sites. The other possible explanation
is based on the aggregations and/or excimer formation in these materials, originating
from the interchain attraction in the π-conjugated systems [44]. Since such interactions are
short-range forces, the distance between the polymer chains is one of the governing factors
for this phenomenon. As they become smaller, the polymer chains have a higher chance of
entanglement with each other to form aggregates.
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In the case of F6PC EL spectra, we can observe a dominant peak approximately at
455 nm and a shoulder at 650 nm. The latter probably originated from an electric-field-induced
electromer emission. Deksnys et al. [45] observed EL emission in the long-wavelength region due
to the electromer emission. In their study, they presented the synthesis, spectroscopic, thermal
and electrochemical characterization of the ambipolar fluorophore 3,6-di(4,4′-dimethoxydipheny
laminyl)-9-(1-naphthyl) carbazole (DPNC) which demonstrated a voltage-dependent green–blue
electrofluorescence. It is well known that the electromer emission takes place mainly from the
direct irradiative recombination of holes and electrons residing at two neighbouring molecules
or from two molecules within some appropriate close distance.

Finally, deconvolution analysis verified that the novel emitting polymer CzCop has
similar emission spectra for both EL and PL. However, we can observe the blue shift in
EL spectra compared to PL because PL and EL mechanisms are different. It is well known
that the PL emission is associated with the direct photoexcitation of the emissive thin film
and the recombination from the excited states, whereas the EL depends on the carrier
injection mechanisms, the transportation, and the recombination of charges across the
device structure [32,36]. So, when comparing the PL and EL emission spectra of each
emitting polymer, it is obvious that the novel lab-scale polymer CzCop exhibits the highest
stability and color selectivity in its emission either as a photoactive thin film or as the active
layer of an OLED device.

The CIE coordinates, derived from PL and EL measurements for the studied OLEDs,
are illustrated in Figure 9. Generally, the CIE coordinates visualize the entire range of colors
that can be obtained by mixing the three primary colors (red (R), green (G), and blue (B)) by
varying the wavelength and emission intensity. According to the CIE diagram, it is obvious
that the PL emission of commercial materials is approaching the blue region. On the other
hand, in the case of lab-scale material, the PL CIE coordinates are located in the sky-blue
region. Clearly, the PL CIE coordinates are different from the EL ones. Notably, the red
shift of the EL emission spectra of the commercial materials is confirmed with the shift of
CIE coordinates to the sky-blue region. As it is referred to above, the EL emission spectra
exhibit different emission behavior compared to the PL. Specifically, the blue emission of
the polymers turns into blue-green emission, as verified through the CIE diagram, except
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for the lab-scale material. The light of the CzCop device well approaches the blue region,
making it a promising candidate as an efficient blue light-emitting material.
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Figure 9. CIE diagram of PL and EL emission of the studied emitting films.

EL emission under different applied voltages was recorded to assess the crucial sta-
bility factor during OLED device operation. Figure 10a–d show the results obtained from
the PFO, PBEHF, F6PC, and CzCop devices accordingly. Firstly, comparing the EL spectra
of PFO for different applied voltages (1–14 V), an EL peak appeared at approximately
~500 nm, which increases with the applied voltage. Note that the additional featureless
green emission may originate from the fluorenone moieties. This can be explained by the
fact that the blue light originates from the bimolecular recombination of free electrons and
holes, whereas the green light is generated by electrons that are trapped at fluorenone sites
and subsequently recombine with a hole. So, the EL spectra of PFO are affected by the
defects during the device operation.
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In addition, it can be seen that increases in the applied voltage (1–14 V) also induced
changes to the EL spectral shape of PBEHF. At higher operation voltages, we can observe
EL spectra with multiple peaks that span from the blue to the red region. The ratio of
the intensity at 425 nm to 476 nm increased when the voltage increased from 7 to 12 V.
When the applied voltage exceeded 12 V, another dominant peak at 507 nm emerged. As
mentioned above, the presence of a peak at 507 nm is related to the defects of fluorene.
More specifically, it is noteworthy that the green peak presents lower intensity relative to
the blue peak, from 7 to 12 V. We can also assume that the blue light originates from the
bimolecular recombination of free electrons and holes, whereas the green light is generated
by charges that are trapped at the fluorenone defects and subsequently recombine. As a
result, the blue emission will strongly increase with voltage, whereas the recombination
from the trapping sites is limited by the number of traps [23]. However, when the applied
voltage is increased, the intensity of a peak at 507 nm is increased as well. This can be
explained by the fact that more charges are trapped at the fluorenone units due to the
electrooxidation during the device operation.

For the case of the F6PC device (Figure 10c) and the respective EL spectra obtained
under different applied voltages (1–14 V), it is obvious that when the applied voltage is
increased from 7 to 10 V, the intensity of a dominant peak, centered at ~450 nm, is increased
as well. When the voltage is increased above 10 V, the intensity of the shoulder emission
peak located at 650 nm is also increased. This fact indicates that the electromer emission
band demonstrates a clear dependence on the applied voltage. As the electromer-type
excited states can only be formed under electrical excitation, their emission is visible only
in the EL spectra.

Finally, the evolution of EL emission spectra of CzCop with various bias voltages
(1–9 V) was also investigated (Figure 10d). It was derived that the EL spectra were nearly
unchanged by increasing the driving voltages, indicating the high stability of CzCop in the
EL process either as a luminophor or as the host material. This demonstrates that the newly
synthesized material forms uniform coatings without defects that could create traps and,
by extension, instability in the emission characteristics of the OLED devices to which they
are applied. Thus, CzCop exhibits superior EL stability and emission in the blue region,
according to the CIE diagram, compared to the other commercially available materials.

The EL spectra of PFO, PBEHF, F6PC, and CzCop OLEDs are converted to the CIE
coordinate and overlaid onto the approximate color regions on a CIE 1931 (x, y) chromaticity
diagram. The evolution of EL chromaticity coordinates as a function of the applied voltage
is illustrated in Figure 11a–d for each polymer. According to the CIE diagram, the emissions
from PFO and PBEHF OLEDs were at the edge of the blue-violet region at 8 V, but as
the voltage increased, both were emitted to the greenish-blue region. This behavior can
be explained as the resultant emission shifted when the intensity of the approximately
~490 nm peak increased. Quite interestingly, the EL chromaticity coordinates of PBEHF
present a higher shift compared to the PFO, and this fact can be attributed to the peak
emission at ~490 nm, which is the dominant peak at the EL emission, as shown in Figure 11b.
For the device based on F6PC, the emissions in the blue area shift towards the center region
with increasing voltage, largely due to the appearance of the red emission at 600 nm.
Notably, as the applied voltage increases, the novel material CzCop exhibits superior
emission stability, independent of the driving voltage. Therefore, the lab-scale polymer
CzCop demonstrates excellent stability and color selectivity during the device operation,
making it a promising candidate as an efficient blue light-emitting material.
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3.5. Electrical Characteristics

In terms of electrical characteristics, Figure 12a and b show the current–voltage and
luminance–voltage characteristics of the fabricated devices on a logarithmic scale, respec-
tively. The electrical characteristics and chromaticity coordinates, which were derived from
the EL spectra, are summarized in Table 4. One can see that the novel polymer CzCop
exhibits a lower turn-on voltage and lower potential operating voltage compared to the
other commercially supplied polymers. It is also important to observe that the novel lab-
scale material approaches the electrical characteristics of the commercially supplied ones.
The measured luminance at 8 V for the PFO, PBEHF, F6PC, and CzCop is 413, 62, 3, and
28 cd/m2, respectively. The maximum luminance measured for the commercial polymers
at higher bias voltages exhibits higher values, but this can be ascribed to the fact that their
thicknesses are higher compared to the lab-scale polymer CzCop.
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Table 4. The electrical–operational characteristics and EL CIE coordinates of fabricated OLED devices.

Current Density
Turn-On Voltage (V)

Luminance Turn-On
Voltage (V)

Luminance
at 8 V

(cd/m2)

Luminance
(cd/m2) CIEx CIEy

PFO 2.7 4.0 413 759 0.18 0.20
PBEHF 2.8 5.6 62 729 0.19 0.32
F6PC 4.2 6.6 3 57 0.21 0.23

CzCop 2.0 3.4 28 28 0.16 0.16

Nevertheless, a more extensive and in-depth optimization of the device architecture
is essential to enhance overall efficiency. Since it is a novel material, additional device
architecture optimization is required in terms of the precise selection and alignment of the
Hole Transport Layer-Hole Injection Layer and Electron Injection Layer-Electron Transport
Layer [46]. The identification of the most suitable functional materials for each layer in
the OLED architecture, along with the smooth surface of the CzCop film that enhances
interfacial properties, is expected to result in the production of more efficient devices.
Overall, this comparison demonstrates that the commercial materials exhibited undesired
blue-green emissions, while the CzCop synthetic polymer nicely supports color stability
and selectivity in the pure blue region during device operation, thus paving the way
for use in the emerging field of OLEDs. Thus, the CzCop offers promising potential for
applications, including displays and medical devices. For the latter, “blue light therapy”
has a range of beneficial effects [47].

4. Conclusions

In this study, we investigated the optical properties of four different blue light-emitting
polymeric materials. Three of these materials (PFO, PBEHF, and F6PC) were commercially
available, while the fourth one (CzCop) was a novel polymer synthesized in the laboratory.
These materials have been applied as emissive layers in the wet fabrication of OLED devices
using the spin coating process. In terms of the optical characterization, a thorough compar-
ison between these materials concerning their thickness, dielectric function, fundamental
energy gap, and absorption coefficient was obtained using Spectroscopic Ellipsometry.
In addition, quantitative analysis of the PL and EL emission peaks and widths was per-
formed for all the studied materials to evaluate their color stability and selectivity. It was
realized that the lab-scale polymer CzCop exhibits superior color stability and selectivity
during the device operation. On the other hand, the commercially available PFO, PBEHF,
and F6PC show variations in their maximum peak emission wavelength and red shift in
their EL spectra. Thus, CzCop is a promising candidate as a blue light-emitting material
compared to other commercial polymers. It has great potential for achieving a stable blue
color in various high-emergence applications. However, further investigation is required
to enhance the functionalization of the fabricated WOLED devices in order to achieve
greater efficiency.
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Abstract: A set of novel Donor-Acceptor-Donor (D-A-D) benzoselenadiazole derivatives has been
synthesized and crystallized in nanocrystals in order to explore the correlation between their chemical
structure and the waveguided luminescent properties. The findings reveal that all crystals exhibit
luminescence and active optical waveguiding, demonstrating the ability to adjust their luminescence
within a broad spectral range of 550–700 nm depending on the donor group attached to the benzose-
lenadiazole core. Notably, a clear relationship exists between the HOMO-LUMO energy gaps of each
compound and the color emission of the corresponding optical waveguides. These outcomes affirm
the feasibility of modifying the color emission of organic waveguides through suitable chemical
functionalization. Importantly, this study marks the first utilization of benzoseleniadiazole deriva-
tives for such purposes, underscoring the originality of this research. In addition, the obtention of
nanocrystals is a key tool for the implementation of miniaturized photonic devices.

Keywords: benzoselenadiazoles; nanofibers; D-A-D systems; luminescence; waveguide

1. Introduction

In the past decade, rapid advancements in the field of photonic devices have brought
about an unprecedented transformation in optics, catalyzing breakthroughs spanning from
communications to medicine [1–4]. In this dynamic landscape, optical waveguides have
emerged as foundational building blocks, playing an irreplaceable role in manipulating and
transmitting light at nanoscale dimensions. Their ability to guide light through microscopic
structures has spearheaded a revolution in the miniaturization and efficiency of photonic
systems [5–8].

Against the backdrop of this revolution, a pressing demand arises: the need for even
smaller and more efficient photonic devices. Miniaturization has become a crucial pillar
for developing more advanced technologies; in this context, nanoscale optical waveguides
emerge as prominent players [9]. The capability of these structures to direct and modulate
light at sub-microscopic levels proves crucial for adapting photonic devices to the emerging
demands of the modern era. In addition, one of the main problems with organic crystals
for implementation in photonic devices such as optical waveguides is their stiffness. In this
sense, the search for flexible organic crystals has been a tremendously expanding line of
research in recent years [10–12]. Obtaining nanostructures also contributes to the possibility
of increasing their flexibility to be implemented in photonic devices, since longer structures
are more difficult to deform and recover their original shape without breaking.
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However, miniaturization alone is not sufficient. The precise modulation of emission
color in these optical waveguides stands out as an imperative, radically transforming
the functionality of these devices. From quantum communication to exploration in bio-
photonics, the significance of accurately tuning emission color lies not only in miniatur-
ization, but also in the ability to customize and optimize these structures at nanoscale
levels [13].

In the last decade, the benzoselenodiazole core has emerged as a chemically intrigu-
ing entity, particularly in photophysical and electronic applications. It has exhibited
notable electrochemical properties, propelling its application in electronic or photovoltaic
devices [14–16]. This heterocyclic system, which amalgamates a benzene ring with a se-
lenodiazole ring, has proven exceptionally promising in the design and development of
compounds with unique optical and electronic properties. Additionally, this core possesses
an acceptor character, easily modulating with the introduction of donor groups at positions
4 and 7, thereby forming donor-acceptor-donor (D-A-D) systems capable of modulating
HOMO (Highest Occupied Molecular Orbital) and LUMO (Lowest Unoccupied Molecular
Orbital) facilitating the generation of intramolecular charge transfer (ICT) states, resulting
in significant bathochromic emission shifts and achieving red-shifting properties [17–21].

The strategic presence of selenium in the structure of benzoselenodiazole imparts
distinctive photophysical characteristics to these compounds, making them ideal candidates
for applications in optoelectronic devices. Their ability to absorb and emit light within
specific ranges of the electromagnetic spectrum has spurred intensive research in the design
of photosensitive materials and efficient light-emitting compounds [22,23]. However, its
application in emissive optical waveguides is still unexplored, and to the best of our
knowledge, there are no examples in the literature about this application, and this fact
directed us to explore the employment of this moiety in this application.

Drawing from these characteristics and our prior exploration of benzoazole-based
optical waveguides [24], different benzoselenadiazole derivatives were synthesized (1) with
the introduction of four diverse donor groups in the peripheral positions 4 and 7, connected
by a π-bridge through an alkynyl group, aiming to fine-tune the emission properties and
build D-π-A-π-D architectures (Figure 1). Nanocrystalline forms of these compounds
were cultivated via straightforward solution-based techniques for the investigation of their
luminescent and light-conducting attributes in optical waveguides.
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2. Materials and Methods
2.1. General Techniques

All the chemicals utilized in the experiments for the synthesis of derivatives 1 were
procured commercially, except styrene, which underwent prior distillation. Reactions in-
volving air-sensitive materials were conducted under an atmosphere of argon. Microwave
irradiations were executed using a Discover® (CEM, Matthews, NC, USA). focused mi-
crowave reactor. Silica gel, (Merck, Kieselgel 60, 230–240 mesh, Merck, Darmstadt, Ger-
many), was employed for flash chromatography. Analytical thin layer chromatography
(TLC) was carried out on aluminum-coated Merck Kieselgel 60 F254 plates (Merck, Darm-
stadt, Germany).

1H-NMR and 13C-NMR spectra collection were recorded using a Bruker Advance Neo
NMR spectrometer that operates at 500.16 MHz for 1H and 125.75 MHz for 13C. All spectra
were acquired at 298 K, employing partially deuterated solvents as internal references.
Coupling constants (J) are expressed in hertz (Hz), and chemical shifts (δ) are reported
in parts per million (ppm). Multiplicities are described in the following way: s = singlet,
d = doublet, t = triplet, m = multiplet.

For elemental analysis experiments (EA) C, H, N and S micro-sample elemental
analyzer LECO (model CNHS-932, St. Joseph, MI, USA) was used, employing 2 mg of
sample for each experiment.

Mass spectra were obtained on a Bruker Autoflex II TOF/TOF (Bruker, Billerica, MA,
USA) spectrometer using dithranol as the matrix for all the experiments.

UV–visible and fluorescence spectra studies in solution were carried out using a Jasco
V-750 spectrophotometer (JASCO-Spain, Madrid, Spain) and Jasco FP-8300 spectrofluorime-
ter (JASCO-Spain, Madrid, Spain), respectively. The absorption and emission spectra were
taken using dichloromethane as a solvent and at a concentration of 10−5 M at room temper-
ature using standard quartz cells of 1 cm width and high spectroscopic grade solvents with
very high purity.

Fluorescence images of the nanocrystals formed from derivatives 1 were captured using
a Leica TCE SP2 (Wetzlar, Germany) confocal microscope equipped with a versatile mercury
lamp capable of exciting fluorescence at various wavelengths. To achieve precise excitation
and absorption, a set of filters was employed. These filters were designed to specifically
target wavelengths within the blue spectrum (λexc = 320–380 nm, λem = 410–510 nm), green
spectrum (λexc = 450–490 nm, λem = 515–565 nm) or red spectrum (λexc = 475–495 nm,
λem = 520–570 nm).

2.2. Experimental Section

General procedure: A mixture of 4,7-dibromobenzo[c][1,2,5]selenadiazole (2) (0.100 g,
0.29 mmol), the corresponding acetylene derivative (3) (0.6 mmol), DBU (0.088 g, 0.58 mmol),
CuI (0.003 g, 0.015 mmol) and Pd- EncatTM TPP30 (0.026 g, 0.01 mmol) was charged to
a dried microwave vessel under an argon atmosphere. After that, 1 mL of CH3CN was
added to the vessel, which was then closed and irradiated at 150 ◦C for 20 min in all the
cases. The crudes’ reactions were purified by column chromatography using hexane/ethyl
acetate as eluent to achieve analytically pure products 1. It can be pointed out that for
all the reactions, microwave irradiation was used as an energy source and Pd-EncatTM
TPP30 was recovered after its use by filtration, and was used again for following reactions
to reduce the environmental impact of the process.

-4,7-bis(phenylethynyl)benzo[c][1,2,5]selenadiazole (1a): From ethynylbenzene (3a)
(0.061 g, 0.6 mmol), derivative 1a (0.095 g, 86%) was obtained as a yellow solid by column
chromatography using hexane/ethyl acetate as eluent (9:1). 1H-NMR (CDCl3, 300 MHz), d:
7.54 (s, 2H, Hbenzoselenazole), 7.52–7.51 (m, 4H, Hphenyl), 7.22–7.20 (m, 6H, Hphenyl), 13C-NMR
(CDCl3, 75 MHz), d: 155.5, 131.4, 129.6, 128.7, 128.5, 123.3, 110.0, 91.9, 75.6. MS (EI): m/z:
383.9 [M+]. EA; Calculated for C22H12N2Se; C: 68.94; H: 3.16; N: 7.31, found C: 68.97; H:
3.13; N: 7.28.
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-4,7-bis((3,4,5-trimethoxyphenyl)ethynyl)benzo[c][1,2,5]selenadiazole (1b): From 5-
ethynyl-1,2,3-trimethoxybenzene (3b) (0.115 g, 0.6 mmol), derivative 1b (0.148 g, 91%) was
obtained as a dark yellow solid by column chromatography using hexane/ethyl acetate
(9:1) as eluent. 1H-NMR (CDCl3, 300 MHz), δ: 7.51 (s, 2H, Hbenzoselenazole), 6.86 (s, 4H,
Hphenyl), 3.82 (s, 18H, -OCH3), 13C-NMR (CDCl3, 75 MHz), d: 155.5, 154.8, 139.0, 129.6,
118.3, 110.0, 106.4, 95.0, 74.2, 60.7, 56.8. MS (EI): m/z: 565.41 [M+]. EA; Calculated for
C28H24N2O6Se; C: 59.68; H: 4.29; N: 4.97, found C: 59.70; H: 4.32; N: 5.00.

-4,7-bis(diylbis(ethyne-2,1-diyl))bis(N,N-diphenylaniline)benzo[c][1,2,5]selenadiazole
(1c) From 4-ethynyl-N,N-diphenylaniline (3c) (0.161 g, 0.6 mmol), derivative 1c (0.162 g,
78%) was obtained as an orange solid by column chromatography using hexane/ethyl
acetate (9:1) as eluent. 1H-NMR (CDCl3, 300 MHz), δ: 7.58 (s, 2H, Hbenzoselenazole), 7.49–7.47
(d, 4H, Hphenyl), 7.26–7.23 (t, 8H, Hphenyl), 7.09–7.07 (m, 12H, Hphenyl), 6.98–6.94 (m, 4H,
Hphenyl). 13C-NMR (CDCl3, 75 MHz), d: 155.5, 145.6, 145.4, 131.4, 129.8, 129.6, 128.3, 126.3,
124.9, 119.7, 110.0, 91.9, 75.6. MS (EI): m/z: 719.1 [M+]. EA; Calculated for C46H30N4Se; C:
76.98, H: 4.21; N: 7.81, found C: 76.99, H: 4.22; N: 7.80.

-4,7-bis((4-(10H-phenoxazin-10-yl)phenyl)ethynyl)benzo[c][1,2,5]selenadiazole (1d).
From 10-(4-ethynylphenyl)-10H-phenoxazine (3d) (0.170 g, 0.6 mmol), derivative 1d (0.140 g,
65%) was obtained as a red solid by column chromatography using hexane/ethyl acetate
(95:5) as eluent. 1H-NMR (CDCl3, 300 MHz), δ: 7.52–7.51 (d, 4H, Hphenyl), 7.44 (s, 2H,
Hbenzoselenazole), 7.32–7.30 (m, 4H, Hphenyl), 7.24–7.18 (m, 12H, Hphenyl), 7.16–7.15 (d, 4H,
Hphenyl). 13C-NMR (CDCl3, 75 MHz), δ: 155.5, 145.7, 144.9, 132.9, 131.5, 130.3, 129.6, 125.5,
125.2, 120.8, 119.4, 117.4, 110.0, 91.9, 75.6. MS (EI): m/z: 746.1 [M+]. EA; Calculated for
C46H26N4O2Se; C: 74.09, H: 3.51; N: 7.51, O: 4.29, found C: 74.13, H: 3.49; N: 7.52, O: 4.29.

3. Results and Discussion
3.1. Synthesis

The synthesis of D-A-D benzoselenadiazole derivatives 1 was performed through a
Sonogashira C-C cross-coupling reaction between derivatives 2 and 3 (Scheme 1), optimized
previously by our research group for other azoles and benzoazoles [25,26]. All the reactions
were carried out using microwave irradiation, with the reusable catalyst Pd-Encat TPP30 to
increase the sustainability of the synthetic procedure, achieving the desired compounds 1 in
30 min in very good yields (65–91%), that gave adequate analytical NMR spectroscopic data
(NMR spectra collection is recorded in Supporting Information section). We would like to
point out that derivative 1a had been previously synthesized by Li and co-workers under
conventional conditions [27], improving the yield with this procedure using microwave
irradiation as an energy source and considerably reducing the reaction time.
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3.2. Theoretical Calculations

Before later optical characterization, the minimum-energy optimized structures were
calculated at the B3LYP/6-31G (d,p) theoretical level [28,29] and are detailed in Table 1.
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Across all compounds, the HOMO molecular orbital is situated along the horizontal axis
of the molecule, mainly affected by the donor group, while the LUMO orbital predom-
inantly occupies the vertical axis, which mainly corresponds to the benzoselenadiazole
core, existing as a shared overlap region, thus facilitating intramolecular charge transfer
(ICT) [30].

Table 1. Energies and topologies of the HOMO and LUMO frontier molecular orbitals, and HOMO-
LUMO gaps of benzoselenadiazoles 1 obtained using DFT calculations at the B3LYP/6-31G (d,p)
theory level.

Compound HOMO
(eV)

LUMO
(eV)

HOMO LUMO
Gap
(eV)

1a

−5.66
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+K characters increases the donor character and decreases the HOMO-LUMO gap with 
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The variation in donor peripheral groups (1a–d) correlates with the electron-donating
tendency of the substituent, as indicated by the HOMO-LUMO gap. The most dramatical
changes can be detected in HOMO values due to the changes in the donor group that
implies changes in the HOMO-LUMO gaps, while LUMO values are not significantly
affected because the major contribution is because the benzoselenadiazole moiety that
keeps constant in all the derivatives. Specifically, compound 1a, featuring peripheral phenyl
groups (weaker donor groups), exhibits a higher HOMO-LUMO gap value compared to
compounds 1b–d. The introduction of methoxy groups in the periphery in 1b with +I and
+K characters increases the donor character and decreases the HOMO-LUMO gap with
respect to 1a (2.44 vs. 2.60 eV). Consequently, 1c, with enhanced donor character due to its
triphenylamine group, demonstrates a lower HOMO-LUMO gap value relative to 1a and 1b
(2.20 vs. 2.60 and 2.44 eV). Finally, 1d, with the strongest donor group, phenylphenoxazine,
showed the lowest HOMO-LUMO gap (2.05 eV), and this fact will directly impact their
photophysical properties.

3.3. Photophysical Studies

The UV-vis and fluorescence spectra of the different derivatives 1 were carried out
in 10−5 M CH2Cl2 solutions. They are recorded in Figure 2 and photophysical data are
summarized in Table 2.
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Figure 2. Absorption (a) and emission (b) spectra of derivatives 1 in 10−5 M CH2Cl2 solutions.

Table 2. Photophysical data of derivatives 1.

Compound λabs [a]
(nm)

λem [b]
(nm)

λemsol [c]
(nm)

λonset [d]
(nm) Φdis [e] Φsol [f]

HOMO-
LUMO Gap

[g] (eV)

HOMO-
LUMO Gap

[h] (eV)

1a 329, 434 546 550 488 0.20 0.13 2.60 2.54

1b 330, 448 574 595 514 0.54 0.43 2.44 2.41

1c 300, 470 625 640 552 0.69 0.41 2.20 2.25

1d 315, 491 664 698 585 0.60 0.35 2.05 2.11

[a] Absorption maxima of derivatives 1 in solution; [b] Emission maxima of derivatives 1 in solution; [c] Emission
maxima of nanocrystals of derivatives 1; [d] Onset wavelength calculated from the absorption spectra of the
lowest energy band; [e] PL quantum yield in solution of derivatives 1. [f] PL quantum yield measured in the solid
state; [g] Theoretical HOMO-LUMO gap of compounds 1 computed at B3LYP/6-31G(d,p) level. [h] Experimental
HOMO-LUMO gap of compound 1 calculated from the onset of the lowest energy absorption band using the
1240/λonset formula.

It can be pointed out that the data recorded in Table 2 for 1a agree with the data
previously described by Li and co-workers for this compound [27]. The compounds
1a–d exhibit absorption spectra characterized by a broad band with peaks ranging from
around 300 to 330 nm, attributed to a π-π* transition, and a second band centered at longer
wavelengths (around 430–490 nm), attributed to an ICT state. When the photoluminescence
(PL) spectra are calculated following photoexcitation at the peaks of the longest-wavelength
absorption band, the maxima shifts from 546 nm to 664 nm. This gradual red-shift of
the PL spectra corresponds to the push–pull nature of the dyes, moving towards longer
wavelengths as the donor-acceptor character strengthens. Consequently, 1d displays
the longest emission wavelength among all D-A-D derivatives due to the pronounced
electron-donating properties of the phenylphenoxazine moiety. Similarly, 1c also exhibits
bathochromic shifts compared to 1a and 1b, attributed to the enhanced donor character of
the triphenylamine derivative in comparison to phenyl or trimethoxyphenyl groups.

Consequently, the photoluminescence (PL) spectra of the derivatives 1 undergo spec-
tral changes in alignment with the calculated HOMO-LUMO gap energies. The experimen-
tal optical HOMO-LUMO gaps were determined based on the onset of the lowest energy
band absorption and demonstrated satisfactory agreement with theoretical predictions
(Table 2). Additionally, it is noteworthy that a similar observation can be made regarding
the spectral evolution of the lowest π-π* absorption transition..

Finally, the fluorescence quantum yields of these derivatives in solution were de-
termined in CHCl3 using quinine sulfate in 0.1 M H2SO4 (Φ = 0.54) and fluorescein in
0.1 M NaOH (Φ = 0.79) for 1a–c, and cresyl violet in ethanol (Φ = 0.56) for 1d as standards,
revealing moderate values (Table 2). The values of the quantum yield in the solid state
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(Table 2) are moderate and slightly decreased for all the derivatives in comparison with
values in the solution state to values between 0.13 and 0.43.

3.4. Self-Assembling Studies

The creation of supramolecular assemblies using derivatives 1 was achieved through
the slow diffusion method. In this procedure, a container holding a diluted solution (1 mg)
of derivatives 1 in 1 mL of either chloroform or tetrahydrofuran, recognized as effective
solvents, was carefully placed into another container containing a non-soluble poor solvent
such as hexane, acetonitrile, ethanol or methanol. The second container was securely
sealed and left undisturbed at room temperature. After a few days, the emergence of
supramolecular aggregates becomes observable.

SEM images of the resultant nanofibers were acquired, with a focus on selecting the
most promising ones in the form of fibers. Examples showcasing the optimal morphologies
are presented in Figure 3, while additional SEM images can be found in the Supporting
Information (Figure S1).
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Figure 3. SEM images for the nanocrystals of (a) 1a (THF/MeOH); (b) 1b (CHCl3/EtOH); (c) 1c
(CHCl3/MeOH); (d) 1d (THF/EtOH).

As we can observe in Figure 3, all nanocrystals exhibit a well-defined fibrillar shape,
making them ideal candidates for investigating their optical waveguide properties. It can
be pointed out that the best fibrillar morphologies were obtained using MeOH or EtOH as
poor solvents.

3.5. Optical Waveguiding Behaviour

After identifying the most promising crystalline microfibers with suitable morpholo-
gies, confocal fluorescence microscopy images (Figure 4) of these nanocrystals were taken
and recorded to assess their optical waveguiding characteristics.
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Figure 4. Confocal microscopy images and photoluminescence spectra for the nanocrystals of 1a (a),
1b (b), 1c (c) and 1d (d).

The outcomes revealed that all nanocrystals of compounds 1a–d exhibited lumines-
cence. Upon irradiation with a 365 nm laser at the fiber body, it was notable that the
emitted light propagated to the crystal’s tip, while the body itself brightened with emis-
sion. This phenomenon indicated strong luminescence with a distinct contrast between
the bright tip/edges and the darker bulk, confirming efficient photon transport along
the nanocrystals. Additionally, each nanocrystal was emitted at varying wavelengths, all
distinct from the excitation wavelength, thus affirming their active optical waveguiding
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behavior (Figure 4). In addition, we can observe that in function on the molecular structure
and the substitution in the benzoselenadiazole moiety, nanocrystals emitted a broad range
of wavelengths, spanning from 550–700 nm. Notably, in the solid state, a significant redshift
in PL is observed compared to the solution phase (Table 2 and Figure 2b vs. Figure 4). It is
important to highlight that structural modifications of these derivatives exert an identical
influence in both solution and solid states, resulting in consistent bathochromic shifts as the
donor-acceptor (D-A) character of the derivative intensifies. Comparison of the emission
wavelengths with theoretically calculated HOMO-LUMO gap values at the B3LYP/6-31G
(d,p) theory level revealed a clear correlation, demonstrating the influence of different func-
tional groups on the optical waveguide emission color. Fluorescence microscopy images
revealed a progressive red-shift in the emission from green to red as theoretically calcu-
lated HOMO-LUMO gap energies decreased, indicating that TD-DFT could be utilized for
on-demand emission tuning of the optical waveguides, and confirmed by the experimental
HOMO-LUMO gaps obtained through the onset in absorption spectra. Like this, beginning
with the highest HOMO-LUMO gap (2.60 eV), compound 1a exhibited green emission
(550 nm), compound 1b, with the introduction of the trimethoxy groups, induces a lower
HOMO-LUMO gap (2.44 eV), emitting in yellow (595 nm). The introduction of a stronger
donor group like triphenylamine decreases the HOMO-LUMO gap (2.20 eV), achieving an
orange color emission in the nanocrystals (640 nm). Finally, 1d, with the strongest donor
group (phenylphenoxazine), shows the lowest HOMO-LUMO gap (2.05 eV), with strong
emission in red in the nanocrystals (698 nm). (Figure 5).
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Figure 5. Theoretical HOMO-LUMO gap of derivatives 1a–d/emission color relationship of the
optical waveguides obtained from the nanocrystals of benzoselenadiazoles 1.

While numerous studies have explored this subject, as far as we know, there is currently
no literature correlating the variation of emission color of a waveguide for benzoseleniadia-
zole derivatives, highlighting the novelty of this work.

Moreover, it is noteworthy that derivatives 1a–d exhibit a tendency to form cross-
linked and bunch-shaped nanocrystals as SEM images reveal. Irradiation of a single point
on one fiber facilitated the light propagation in different directions; for example, in 1a
(Figure 6). This curious behavior, as described in recent literature [31–33], enhances the
practical utility of these materials in real-world devices. It enables light to travel through
different channels, facilitating parallel connectivity and interconnection between nanowires
and various devices and facilitating the implementation in real miniaturized devices, which
are very in demand these days in current society. For all these reasons, these results may be
very useful in the coming years for the development of miniaturized photonic chips.
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Figure 6. Confocal fluorescence microscopy images for interconnected fibers of 1a showing the light
transmission for different points in different directions.

4. Conclusions

This study examines the impact of various peripheral donor groups incorporated into
the benzoselenadiazole core, resulting in the design of diverse D-A-D derivatives. The
investigation focuses on their performance as waveguides and their effect on emission color.

Nanocrystals formed via the self-assembly of the benzoselenadiazoles 1a–d using the
slow diffusion technique were examined through SEM images. The findings illustrate a
significant inclination towards nanofiber formation, making them suitable for studies on
optical waveguiding.

Each of the crystals of compounds 1a–d exhibited efficient optical waveguiding be-
havior, accompanied by tunable color emissions ranging from green to red, contingent
upon the nature of the peripheral donor groups. Notably, a clear correlation between the
HOMO-LUMO gap and the emitted color of the optical waveguide exists. A reduced
HOMO-LUMO gap resulted in a shift towards longer wavelengths in the emission spec-
trum. Compound 1d shows the lowest HOMO-LUMO gap, and as a consequence, the most
red-shifted emission.

This successful discovery could serve as a valuable approach for adjusting the emission
color of optical waveguides, offering a systematic method for designing organic compounds
and exploring their potential utilization as organic waveguides. Finally, the nanoscopic
nature of these nanofibers and the properties described in this work constitute a promising
study for the implementation of these nanofibers in real photonic devices, which are in
high demand in current society.
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Abstract: The investigation of the fluorescence mechanism of carbon dots (CDs) has attracted signifi-
cant attention, particularly the role of the oxygen-containing groups. Dual-CDs exhibiting blue and
green emissions are synthesized from glucose via a simple ultrasonic treatment, and the oxidation
degree of the CDs is softly modified through a slow natural oxidation approach, which is in stark
contrast to that aggressively altering CDs’ surface configurations through chemical oxidation meth-
ods. It is interesting to find that the intensity of the blue fluorescence gradually increases, eventually
becoming the dominant emission after prolonging the oxidation periods, with the quantum yield (QY)
of the CDs being enhanced from ~0.61% to ~4.26%. Combining the microstructure characterizations,
optical measurements, and ultrafiltration experiments, we hypothesize that the blue emission could
be ascribed to the surface states induced by the C–O and C=O groups, while the green luminescence
may originate from the deep energy levels associated with the O–C=O groups. The distinct emission
states and energy distributions could result in the blue and the green luminescence exhibiting distinct
excitation and emission behaviors. Our findings could provide new insights into the fluorescence
mechanism of CDs.

Keywords: carbon dots; dual-fluorescent; natural oxidation; oxygen-containing groups; fluores-
cence mechanism

1. Introduction

As a new type of fluorescent nanomaterials, carbon dots (CDs) have garnered increas-
ing attention over the past two decades due to their numerous advantages, including their
multi-color emission, excellent biocompatibility, high quantum yield (QY) and wide lumi-
nescence range. These properties enable their extensive applications in various potential
fields such as bioimaging [1], sensors [2,3], light-emitting diodes (LEDs) [4,5], luminescent
solar concentrators [6,7] and lasers [8,9]. Although the photoluminescence (PL) properties
of CD materials have been extensively explored, a unified fluorescence mechanism remains
elusive. This is due to the multiple emission centers and diverse electronic structures in-
duced by the different particle sizes, conjugation lengths, surfaces, passivation, etc. [10,11].
Notably, the role of oxygen-containing groups bonded to the CD surface in fluorescence
emission is a significant factor, as the oxygen atoms are readily incorporated into the CD
structure during the preparation process [10,11].

The effects of oxygen-containing groups on the luminescence efficiency and wave-
length of CDs have been intensively explored [12–19]. Several studies have found that the
QY of CDs can be substantially enhanced by removing oxygen-related groups through
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violent reduction reaction treatments [12–14]. However, contrary findings have also been
reported by other researchers [15–17]. Additionally, the emission wavelength of CDs tends
to redshift with an increase in oxygen-containing groups, as the optical bandgap of CDs
narrows after incorporating these species [18,19]. During the oxidation or reduction process,
the reagents used not only alter the carbon cores but also significantly modify the surface
configurations of CDs, further complicating the luminescence mechanism.

Therefore, it is essential to comprehensively understand the effect of oxygen-related
surface states on the luminescence mechanisms of CDs with multiple emissions, which is
crucial for tailoring their surface chemistry. In this work, dual-fluorescent (blue and green)
CDs are synthesized using a one-step ultrasonication method. The surface configurations
of the CDs are gently modified through aerial oxidation, resulting in an enhancement
of the QY from about 0.61% to 4.26% as the oxidation degree increases. Interestingly,
the intensity of both blue and green emissions shows similar variation trends with the
amounts of their respective oxygenous groups during the oxidation process. Based on
microstructure characterizations, optical measurements, and ultrafiltration experiments, we
hypothesize that the blue emission, which exhibits excitation-independent characteristics,
can be attributed to C–O and C=O groups, while the green luminescence possessing the
excitation-dependent feature is likely associated with O–C=O groups. Furthermore, the
emission states induced by different oxygenous groups have distinct distribution and
energy levels within the bandgap of small carbonaceous materials or CDs, leading to the
blue and the green luminescence exhibiting different excitation-emission properties. The
enhanced luminescence efficiency can be explained by two factors: the reduction in the
number of oxygen-centered radicals, as evidenced by the electron paramagnetic resonance
(EPR) spectra, and the increase in the density of oxygen-related emission states.

2. Materials and Methods
2.1. The Synthesis of Dual-Fluorescent CDs

All the regents used in this experiment were purchased from Sigma Aldrich (Shanghai,
China), including glucose, NaOH (97%), ethanol, HCl (37%), and MgSO4 (97%). The
CDs were synthesized through the following steps: (1) Mix the aqueous glucose solution
(1 mol/L, 10 mL) with the NaOH solution (1.5 mol/L, 10 mL), then treat the mixture using
the ultrasonication method for 4 h. The ultrasonic power and frequency were set at 400 W
and 50 Hz, respectively. (2) After the ultrasonic treatment, add HCl to adjust the pH of the
mixture to 7. (3) Gradually add 100 mL of ethanol using a piston burette while stirring.
Subsequently, add about 17 g of MgSO4 (wt%) to the mixture. The stirring speed and time
were set at 2000 r/min and 20 min, respectively. (4) Finally, obtain the CDs in ethanol/water
by removing the precipitate [20].

After synthesizing the CDs, we transferred 60 mL of the CD solution into a 125 mL
wide-mouth bottle and placed it in a low-temperature chamber. The sample was oxidized by
the air in the bottle, and we termed this process as natural oxidation. It is important to note
that the bottle was covered with a cap but not sealed. The same initial sample was subjected
to different oxidation times and labeled as SA1 (as-synthesis), SA2 (1–2 months) and SA3
(3–6 months). The color of the CD solution clearly changed from dark brown to the light
brown during the oxidation process, as displayed in Figure 1. It is essential to clarify that
these three samples are not prepared in separate batches (except the samples used for the
measurements of nuclear magnetic resonance); rather, the same initial sample underwent
different oxidation periods, which were utilized for the microstructure characterizations
and optical measurements. It is worth noting that even for the CDs from different batches,
their luminescent characteristics will undergo the aforementioned three stages during the
long period of oxidation, and the changing process is also repeatable.
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Figure 1. Photographs of (a) SA1, (b) SA2, and (c) SA3 under the irradiation of daylight.

2.2. Characterization and Optical Experiments

Transmission electron microscopy (TEM) images were obtained by utilizing a FEI
Tecnai G2 F30 TEM (Thermo Fisher Scientific, Waltham, MA, USA) operating at a voltage
of 300 kV. Fourier-transform infrared (FTIR) spectra were measured using a TENSOR II
FTIR Spectrometer (Bruker, Ettlingen, Germany) with a spectral resolution of 4 cm−1 in the
range of 4000 to 400 cm−1. X-ray photoelectron spectroscopy (XPS) analysis was performed
on an Escalab 250Xi (Thermo Electron, Waltham, MA, USA) using Al Kα (1486.6 eV)
monochromatic radiation via the excitation source. Raman spectra ranging from 1000 to
1500 cm−1 were recorded via a LabRAM HR Evolution micro Raman system (HORIBA
Scientific, Vénissieux, France) with a spectral resolution of 2 cm−1, utilizing a diode-
pumped solid-state laser with the 532 nm line as the excitation source. X-band electron
paramagnetic resonance (EPR) spectra were acquired via a Bruker EMX-plus spectrometer
(Bruker, Germany) operating at 9.4 GHz under the center field of 3250 G. The 1H and 13C
nuclear magnetic resonance (NMR) spectra were collected using a Bruker AM X400 (Bruker,
Germany) spectrometer operating at a frequency of 400 and 100 MHz, respectively.

The UV-vis absorbance spectra ranging from 220 to 600 nm were obtained using a
Shimazu UV-3600 spectrophotometer (Shimadzu, Kyoto, Japan). The steady photolumi-
nescence (PL) spectra were measured using an F-7000 (Hitachi, Tokyo, Japan) fluorescence
spectrometer with a 450 W Xenon lamp as the excitation source. Both the excitation and
emission slits were set to 2.5 nm, and the photomultiplier tube (PMT) was utilized to
detect the emission light. Time-resolved photoluminescence (TRPL) spectra were recorded
with an FLS980 fluorescence spectrophotometer (Edinburgh, UK). The equipped excitation
lasers were an EP-LED-360 picosecond (ps) pulse LED (λexc = 360 nm and pulse duration
~950 ps) and an EPL-450 ps pulse diode laser (λexc = 405 nm and pulse duration ~75 ps),
respectively. The absolute fluorescence QY was measured using an FLS980 fluorescence
spectrophotometer with an integrating sphere.

3. Results
3.1. Characterizations of the CDs

Figure 2 shows the TEM images of SA1, SA2, and SA3 with different oxidation degrees.
The high-resolution TEM (HR-TEM) images of the CDs display the well-resolved lattice
fringes, and the corresponding interplane spacing for the three samples is about 0.21 nm
(upper left insets), which is close to the value of the (100) plane of graphitic carbon [7,8].
The particle size distributions of the three samples range from 2 to 6 nm, and the CDs
exhibit a quasi-spherical shape with an average dimeter of ~3 nm. The CDs retain good
solubility in water even after a long period of oxidation, as displayed in the Supplementary
Materials (Figure S1). However, due to the relatively wide size distribution of the dots, it is
challenging to discern the variations in their size and shape during the long oxidation time.
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The chemical bonding and surface configurations of the CDs can be derived from FTIR
and Raman spectra measurements, as shown in Figure 3. In the FTIR spectra (Figure 3a),
three main absorption peaks at approximately 1045, 1394, and 1579 cm−1 are observed,
corresponding to the C–O–C [21], C–O [22], and C=C functional groups [21], respectively.
In addition, a broad absorption band centered around 3286 cm−1 indicates the presence of
the stretching vibrations of C–OH bonding [23]. Several small peaks at around 1243, 1448,
1700, and 2942 cm−1 arise from the vibrational absorption of C–O [18], C–H(CH2) [24],
C=O/COOH [25,26], and C–H (CH3) [24] groups, respectively. The presence of the numer-
ous hydrophilic groups endows the CDs with good solubility in water.
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To get the FTIR signal, the liquid CDs were freeze-dried into powders. After a long
period of oxidation, the C=O (1700 cm−1) signal for SA3 becomes slightly more pronounced
due to the weakened absorption of the C=C bonds. However, its absorption intensity
has not changed significantly. Additionally, the absorption intensities of C–O–C and C–O
decrease from the SA1 to the SA3 sample, which may arise from the different concentrations
of CDs used when measured, which will be further discussed in the UV-absorption section.
Additionally, a new absorption peak at approximately 2347 cm−1, associated with CO2,
appears in the SA2 and SA3 samples. This may result from CO2 adsorption or the high
oxidation degree on the surface of the CDs [27].

Figure 3b shows the Raman spectra of SA1, SA2, and SA3. Two peaks are observed
around 1373 cm−1 (D-band) and 1578 cm−1 (G-band). The G-band is associated with the
graphitic sp2 carbons, whereas the D-band is related to the sp3 disorder carbons [15,27].
Notably, the intensity ratio ID/IG increases from 0.86 to 1.02 with longer oxidation time,
indicating that more oxygen atoms incorporate into the CD structures and form oxygen-
containing groups [15,27].
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To elucidate the evolution of the elemental composition and chemical groups of CDs
during different oxidation stages, XPS measurements were carried out. Figure 4 displays
the C 1s and O 1s XPS spectra of the SA1, SA2, and SA3 samples, from which the percentage
of C and O atoms could be calculated. The fractions of O (C) content in SA1, SA2, and SA3
are 30.95% (69.05%), 39.88% (60.12%), and 42.40% (57.60%), respectively. This demonstrates
that the as-synthesized CDs (SA1) already contain a considerable number of oxygen atoms,
and the oxygen content in the CDs increases gradually when the natural oxidation time is
prolonged, indicating that many more O atoms participated in the formation of chemical
groups at the surface of the CDs.
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The high-resolution C 1s XPS spectra of the three samples can be deconvoluted into
four Gaussian components: C=C/C–C (graphitic carbon) at ~284.8 eV [28], C–O at ~286.2 eV
(epoxy) [15], C=O at ~287.6 eV(carbonyl) [29], and O–C=O at ~288.5 eV (carboxyl) [30,31].
The percentages of graphitic carbon and oxygenated carbon are listed in Table 1. As the
oxidation time increases, there is a gradual decline in the proportion of graphitic carbon
from 48.9% to 30.4%, while the content of oxygenated carbon (C–O, C=O and O–C=O)
increases. The progressively increasing presence of the C=O groups is consistent with the
FTIR analysis. However, no obvious change is observed in the O–C=O groups between
the SA2 and SA3 samples. The high-resolution O 1s XPS spectra of the SA1 and SA2
samples consist of two fitting peaks at around 532.7 eV and 531.4 eV (Figure S2), which are
attributed to the C=O and C–OH/C–O–C groups [31], respectively. Their ratios are listed in
Table S1. Moreover, for the SA3 sample, in addition to the C=O and C–OH/C–O–C groups,
a new band centered at 536 eV appears, which could be attributed to the absorption of H2O
or O2 [32,33].

Table 1. The XPS data analyses of the C 1s spectra.

C–C/C=C C–O C=O O–C=O

SA1 48.9% 33.2% 4.8% 13.1%
SA2 37.2% 39.2% 7.3% 16.3%
SA3 30.4% 44.2% 9.3% 16.1%

The 1H and 13C NMR spectra of CDs in DMSO further confirm the presence of
abundant by-products during the synthetic process, as shown in Figure S3. In the 1H NMR
spectra (Figure S3a), two main regions can be observed: one in the range of 1–2.5 ppm,
corresponding to the sp3 C–H protons, and the other between 3 and 6 ppm, originating
from the protons attached to the hydroxyl, ether, and carbonyl groups [34]. In addition,
the peak at 8.44 ppm could be attributed to the formate [35]. In the 13C NMR spectra
(Figure S3b), four main regions are identified: peaks between 20 and 80 ppm originating
from aliphatic (sp3) carbon atoms [34], signals from 80 to 85 ppm attributed to the carbons
linked with ether groups [34], peaks in the range of 90–102 ppm arising from the anomeric
carbons of α-pyranoses [36], and signals between 165 and 180 ppm ascribed to the carboxyl
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and carbonyl groups [34,37]. Additionally, the peak near 105 ppm is due to the anomeric
carbons in β-pyranoses [36].

The analysis of the 1H and 13C NMR spectra reveals that in addition to the presence
of hydroxyl, ether, and carbonyl groups, by-products such as formate and pyranoses are
also detected. This suggests that the synthesized CD solution contains numerous organic
compounds. A multitude of by-products are generated during the synthesis process of CDs,
which causes their NMR signals to cluster together, as depicted in Figure S3. For the NMR
measurements, the samples were dealt with spin-drying to substantially reduce the effects
of water on the results. In addition, the concentration of small carbonaceous materials
gradually decreases during the oxidation process. Consequently, even if the microstructure
of the sample changes during the oxidation process, distinguishing these changes remains
challenging due to the inability to control the concentration of CDs and small carbonaceous
materials when measured.

3.2. Steady Optical Properties

Figure 5 displays the UV-Vis absorbance spectra of the three samples, the main absorp-
tion peak at 265 nm can be attributed to the π–π* transitions of C=C, while the shoulder
band centered at approximately 354 nm stems from the n–π* transitions of C=O [20,31,38].
It is evident that the overall absorbance intensity significantly decreases with the increasing
oxidation time.
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According to the Raman and XPS analyses, as the oxidation degree of the CDs increases,
the content of the graphitic carbon decreases, accompanied by an increase in the fraction
of oxygenated carbon. Although this could explain the weakening of π–π* transitions
in the graphitic carbon (C=C), it is difficult to interpret the reduced absorption intensity
associated with the C=O groups, which seemingly contradicts the increment of the carbonyl
and carboxyl groups. During the synthesis of the CDs, we consider that a significant amount
of small carbonaceous materials (<1 nm) were generated when the glucose underwent
condensation, dehydration, polymerization, or carbonization processes [10,11]. Parts of
these small carbonaceous materials (including aromatic rings, small carbon clusters, and
CDs with smaller dot size), with oxygen-containing groups might be transformed into a
CO2 structure after long-time oxidation. This transformation could lead to a decrease in
CD concentration, which may be the main reason for the decrease in the overall absorption
intensity as well as the reduction in the amount of the C–O–C and C–O contents observed
in the FTIR measurements. In addition, the increasing transparency of the CD solution can
further support this hypothesis.

It is well established that the PL properties of the CDs can be significantly modified
by changing the oxidation degree of the CDs’ surface structure, leading to variation in
the electronic structure or emission states. Figure 6 illustrates the PL spectra of SA1,
SA2, and SA3 under different excitation wavelengths, it is interesting to observe that
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the evolution of the PL spectra of CDs during the oxidation process can be evidently
divided into three stages. For the as-synthesized sample (SA1), the PL intensity of the green
emission (~505 nm) is stronger than that of the blue luminescence (~435 nm), as depicted in
Figures 6a and S4a. In this excitation region, the peaks of the two emission bands change
very little, while their intensity gradually increases. The optimal excitation wavelengths for
the two emission peaks are about 392 and 422 nm, respectively, which could be acquired in
the PL excitation (PLE) spectra as depicted in Figure S5a.
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Compared with the SA1 sample, the intensity of the blue emission band in the SA2
is stronger than that of the green luminescence under 360 nm excitation, as illustrated in
Figure 6b. The PL intensity of both two emission bands increases within the excitation range
between 360 and 390 nm, but the intensity of the green luminescence becomes comparable
to that of the blue emission when excited by 390 nm. An obvious red-shift in the green
luminescence is observed when the excitation wavelength is further increased.

The SA3 sample exhibits clear excitation-dependent behavior, the PL peak red-shifts
with the increasing excitation wavelength. Notably, the blue emission dominates within
the excitation range of 360–390 nm, reaching a maximum PL intensity under ~365 nm
excitation. In addition, both blue and green emissions in SA3 exhibit nearly identical
optimal excitation wavelengths (~365 nm), as depicted in Figure S5c. Conversely, the
optimal excitation wavelengths for the blue and the green luminescence between the SA1
and SA2 samples differ significantly, as shown Figure S5.

More importantly, the PL intensity of the CDs remarkably enhances in the blue region
after a long oxidation period, as displayed in Figure 7. However, after being increase
several times initially, the intensity of the green emission remains relatively stable, even
when the oxidation time is prolonged further. This demonstration underscores the distinct
dominant emission states among the three samples due to their varied excitation and
emission properties.
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There are lots investigations about the PL mechanisms of dual-fluorescent CDs; several
excitation and recombination models have been proposed to explain the luminescence
processes, including the size effect (usually referred to as the sp2 nanodomain), surface
states, molecule states, the synergistic effect, etc. [10,11,39–42]. A large number of results
demonstrate that the emission states induced by the oxygen-containing groups play a
significant role in the optical properties of CDs [12–19,39–42]. However, these oxygenous
functional groups have diverse structural compositions, including the hydroxyl (–OH),
carbonyl (C=O), carboxyl (–COOH), and epoxy (C–O–C) groups. Due to the complex
surface configurations, the origins of luminescence in CDs remain controversial, particularly
for the blue and green emissions.

Wen et al. found that the fluorescence of CDs consisted of two distinct emission
bands. One was associated with the intrinsic band located in the blue region, which was
ascribed to the sp2 sub domains. The other originated from the surface states introduced
by abundant oxygen-containing functional groups, emitting longer-wavelength lights [43].
Wang’s group suggested that the hydroxyl group decorated at the surface of graphene
quantum dots (GQDs) played an important role in the blue fluorescence (430 nm), while
the synergy effect of the hydroxyl group and the adjacent carbonyl group might cause the
green emission (530 nm) [44]. Li and co-workers proposed that the blue emission centered
at 440 nm was related to the -OH-related surface hybridized states, whereas the green or
yellow-green was associated with the C–O–C (epoxy) groups [15].

In addition, numerous groups have hypothesized that oxygen-containing functional
groups, acting as the non-radiative recombination centers, would suppress the intrinsic
state emission associated with the sp2 sub domains, leading to the low QY [12–14]. In
contrast, several studies have suggested that the QY of CDs could be enhanced after an
oxidation reaction [15–17,45]. For instance, Li’s group reported that the PLQY of GQDs
could be enhanced through oxidation treatment using H2O2 and UV light irradiation,
with the emission color shifting from green to yellow-green, attributed to an increase in
C–O–C (epoxy) groups [15]. Han et al. reported that the fluorescence QY of GQDs was
increased through a post-oxidation method employing H2O2, resulting in a red-shift of
the PL peak from 450 nm to 510 nm, ascribed to the increase in carbonyl and carboxyl
groups [16]. Dong and co-workers found that the PL intensity of graphene oxide quantum
dots (GOQDs) significantly decreased as the reduction degree increased, due to the decrease
of the oxygen-containing groups, particularly the -COOH and -OH groups [45].

In our case, the broad PL band excited by the 375 nm could also be decomposed
into a blue emission component and a green luminescence band, as depicted in Figure S4.
Additionally, the QY of CDs increases from ~0.61% to ~4.26% after a long period of oxi-
dation. The intensity of the blue emission is over one hundred times stronger than that of
the as-synthesis sample, with the green luminescence also showing several-fold increases.
According to the density functional theory (DFT) calculations conducted by Eda’s group,
the sp2 cluster consisting of about five fused aromatic rings is responsible for emitting the
blue light [46]. Sk et al. suggested that the emission wavelength could be tuned from ~400
to 572 nm by varying the dimeter of GQDs from 0.92 to 1.39 nm [47]. However, the TEM
images reveal that after long-time oxidation, the particle sizes of the CDs still show a broad
distribution ranging from 2 to 6 nm, with an average diameter of about 3 nm (>100 aromatic
rings). Within these size ranges, the PL of CDs is predominantly in the red region. We
speculate that the blue and green luminescence may originate from the CDs with smaller
dot sizes or small carbonaceous materials.

To testify this hypothesis, we use the ultrafiltration treatment with a Millipore (3 kDa,
cutoff) to filter the particles larger than 2 nm. The SA2 sample that underwent relatively
short and long oxidation times were utilized, and their PL spectra after ultrafiltration
treatment are displayed in Figure 8. Interestingly, the PL spectra of filtered SA2 samples
at both oxidation stages exhibit similar excitation-dependent behaviors to those observed
in the SA3 sample. Within the excitation range of 310–375 nm, there is a broad emission
band spanning from 400 to 600 nm. Gaussian fitting allowed for the segmentation of this
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spectrum into two emission bands: a blue band centered at approximately 435 nm and a
green band peaking around 490 nm, as depicted in Figure S4. The peak of the blue band
remains almost unchanged under excitation wavelengths from 310 to 375 nm. Upon further
increasing the excitation wavelength, the green luminescence peak gradually shifts towards
longer wavelengths (red-shift). We also compare the PL spectra of the residual samples by
the Millipore filter with those of the original solution (Figure S6), and find that the spectral
features of the residue do not significantly differ from those of the original solution. Based
on these ultrafiltration results, we consider that the blue emission primarily originates from
small carbonaceous materials.
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Figure 8. The PL spectra of the SA2 experienced relatively (a) short and (b) long oxidation times after
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Moreover, the change in the surface configurations and particle sizes of the CDs
tailored through different oxidation methods (chemical or natural) may impart distinct
optical properties to the CDs [14–17]. Xu’s group used an HNO3 reflexing method to
oxidize the CDs and noted that the oxidation not only increased the oxygen content but also
led to the formation of an oxygen-containing loose shell on the surface of the CDs [14]. Li
et al. observed an increase in the amount of C-O-C bonds after they oxidized the graphene
quantum dots (GQDs) with the hydrogen peroxide (H2O2) and UV light; notably, a high
concentration of H2O2 could accelerate the oxidation process, potentially damaging or
breaking down the conjugated structure of GQDs [15]. Additionally, Han and co-workers
synthesized oxidized GQDs using a post-oxidation treatment with H2O2, which led to
an increase in C=O and COOH groups while the proportion of C–O groups (epoxy and
hydroxyl) decreased [16]. Srivastava’s group altered the oxygen degree of the CDs via
aerial oxidation, resulting in an increased density of hydroxyl groups on the CD surface
and the transformation of C=N-H bonds into C=N bonds, with no significant changes to
morphology [17].

In our study, we observed a gradual decline in the ratio of C–C/C=C, accompanied by
an increase in the proportion of C–O and C=O groups, with the fraction of O–C=O groups
reaching its maximum after an initial increase. We hypothesize that as the oxidation degree
increases, the content of C–C/C=C components gradually diminishes, potentially leading
to a slight reduction in the size of the small carbonaceous materials (<1 nm).

3.3. Time-Resolved PL (TRPL) Optical Properties

To further explore the luminescence process, measurements of the time-resolved PL
(TRPL) spectra of CDs are carried out. Figure 9 displays the PL decay curves of three
samples under ps LED light (λexc = 360 nm and pulse duration ~950 ps) excitation, the
monitoring emission wavelengths are 430 and 510 nm, respectively. The PL decay curves
could be well fitted by a bi-exponential function, typically used to evaluate the lifetime of
CDs [48].

I(t) = A1 exp(−t/τ1) + A2 exp(−t/τ2) (1)
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where A1 and A2 represent the amplitude of two decay components, respectively. The τ1
and τ2 are the lifetimes of two decay components, respectively. The average decay lifetime
τ can be calculated by the followed equation [48]:

τ =
A1τ2

1 + A2τ2
2

A1τ1 + A2τ2
(2)
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Figure 9. For time-resolved PL spectra of SA1, SA2, and SA3 with 360 nm as the excitation wavelength,
the detected emission wavelengths are (a) 430 and (b) 510 nm, respectively.

The fitted and calculated values from Equations (1) and (2) are listed in Table 2.
Analysis of the PL decay curves and data in Table 2 reveals a slight increase in the lifetime
of CDs after a longer period of oxidation, with a decrease in the proportion of the shorter
lifetime and an increase in the longer decay process. The PL dynamics of sample SA1
could not be detected due to the weak blue emission signal under the excitation of the ps
LED pump source. For a comprehensive comparison of the recombination dynamics of
the blue emission, the TRPL spectra of the three samples excited by a ps pulse diode laser
(λexc = 405 nm and pulse duration ~75 ps) are also measured, as depicted in Figure S7. The
detected emission wavelengths are 470 and 530 nm, respectively. The characteristics of
the average lifetime and the proportions of the two decay processes are similar to those
excited at 360 nm, except for the average lifetime of SA3 detected at 530 nm, which shows a
difference (see Table S2).

Table 2. The fitting parameters and average lifetimes of the three samples under the excitation
λexc = 360 nm.

Emission 430 nm 510 nm

Sample SA1 SA2 SA3 SA1 SA2 SA3

τ1 (ns) - 1.41 1.23 1.50 1.54 1.21
A1 (%) - 61.47 51.33 79.81 75.99 58.96
τ2 (ns) - 3.73 3.64 5.04 5.00 4.34
A2 (%) - 38.53 48.67 20.19 24.01 41.04

τ - 2.90 3.01 3.12 3.29 3.44

Although several groups have also identified two distinct lifetimes in CDs, the origins
of these decay processes are still a subject of debate [49–51]. Liu et al. attributed the
fast component (~1.32 ns) to the recombination process involving the intrinsic states, and
ascribed the slow lifetime (~7.89 ns) to the emissions from defect states [49]. However,
Zhao and co-workers proposed that the faster component (1.29–1.73 ns) was associated
with the radiative recombination of the eigenstates, while the slower lifetimes (2.51–7.16 ns)
arising from the non-radiative process were related to the surface defects [50]. In addition,
Byun’s group suggested that the two lifetimes originated from the nonradiative recombina-
tion (1.17–3.15 ns) and radiative recombination processes (5.7–8.52 ns) of oxygen-induced
defects, respectively [51].

94



Nanomaterials 2024, 14, 970

3.4. Surface Defects and Luminescence Mechanisms of CDs

In order to deeply investigate the relationship between the microstructure and PL
properties of CDs at different oxidation stages, the EPR spectra of the three samples are
measured. The trend in the concentration of the unpaired electrons or free radicals is
illustrated in Figure 10. For each measurement, about 5 mg of freeze-dried powders are
used. It is evident that the intensity of the EPR signal decreases gradually from SA1 to
SA3, indicating a reduction in the concentration of unpaired electrons or free radicals
with an increasing oxidation time. The g-value, determined from the EPR spectrum,
is approximately 2.005, typically associated with the oxygen-centered radicals [52,53].
Additionally, the EPR spectral linewidth is about 1 mT, suggesting that the free radicals
predominantly arise from oxygen-containing groups connected to the sp3 hybridization of
carbon [54].
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4. Discussion

To uncover the impact of oxygen on the luminescence mechanisms of CDs, several
key issues need clarification. Firstly, after a long period of oxidation, the blue emission
components of CDs become dominant under high-energy photon irradiation. Secondly,
the blue emission displays an excitation-independent characteristic, whereas the green
luminescence exhibits excitation-dependent behavior. Thirdly, the CD solution (SA2)
obtained through ultrafiltration treatment shows PL characteristics similar to those of the
sample with a higher oxidation degree.

First of all, according to the UV-vis absorbance and PLE spectra of CDs, the absorption
peaks centered at 265 and 354 nm scarcely change. However, the optimal excitation
wavelengths for the blue and green emissions undergo a blue shift after a long period of
oxidation, eventually converging around 365 nm. This wavelength, where the maximum
luminescence intensity is achieved, overlaps with the n–π* transitions of C=O. The close
proximity of the optimal excitation wavelengths to the absorption peak may be a crucial
factor in enhancing the PL intensity of the CDs. Additionally, both the blue and the
green luminescence have two decay processes: fast and slow components. Notably, the PL
dynamics of the detected blue and green fluorescence show minimal differences, suggesting
that the luminescence centers possess similar recombination processes (lifetimes). Despite
this, the QY of CDs with higher oxygen contents remains low compared to those with high-
quality surface passivation. This observation leads to the hypothesis that the fast component
is likely due to non-radiative recombination behaviors, while the slow component may
result from the radiative recombination processes of photon-generated carriers.

Moreover, the blue emission was thought to arise from the small carbonaceous materi-
als, as indicated by discussions of the PL properties of CDs after ultrafiltration treatment.
The XPS results reveal that the proportions of C–O and C=O groups gradually increase
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when the oxidation time is prolonged, while the ratio of the O–C=O group reaches its
maximum after an initial rise. It is noteworthy that the PL intensity of the blue emission
exhibits a similar variation trend to the amounts of the C–O and C=O groups. Furthermore,
the changing trend in the intensity of the green emission accords well with the variation in
the O–C=O contents. Therefore, combining these analytical findings, we propose that the
blue emission is associated with the C–O and C=O groups decorating the edges of small
carbonaceous materials. Since the green luminescence has similar PL dynamics to the blue
fluorescence, it is likely attributed to the O–C=O groups.

Righetto et al. synthesized three types of CDs (pCDs, oCDs, and mCDs) through
solvothermal pyrolysis using ortho-, meta-, and para-phenylenediamine, respectively. The
resulting CD solutions were carefully purified and subsequently characterized using flu-
orescence correlation spectroscopy and time-resolved electron paramagnetic resonance
techniques. The findings revealed that the emission properties were predominantly domi-
nated by free fluorescent molecular by-products [55]. By analyzing the 1H and 13C NMR
spectra of CDs in DMSO, we find that the synthesized CD solution contains various organic
compounds. These molecular products could impact the optical properties of CDs.

Secondly, the blue emission displays excitation-independent behavior, whereas the
green luminescence is excitation-dependent. This suggests significant differences in the
emission states and energy distributions within the bandgap of the carbon dots (CDs),
induced by their respective oxygen-containing groups. Sun’s group also observed similar
phenomena and noted that CDs with different oxygen contents exhibit distinct excitation-
dependent behaviors [56]. These observations were attributed to the competition between
various transition processes arising from various oxygenous groups. It is speculated that
the carboxyl as well as carbonyl functional groups are related to the green waveband,
while the blue emission is possibly associated with the surface functional groups in the
planes or at the edges of the CDs, such as the hydroxyl groups. In our case, the blue
emission dominates the fluorescence when the carbonaceous materials have a smaller
particle size or a higher oxidation degree, indicating that the small carbonaceous materials
are more prone to oxidation due to their larger surface-to-volume ratio during the natural
oxidation process. A substantial portion of carbon is transformed into the C–O and C=O
groups, increasing the density of relevant emission states and significantly enhancing the
blue emission intensity. The increase in the proportion of oxygen-related states at high
energy levels may cause the blue shift in the optimal excitation wavelengths. Furthermore,
the relatively uniform distribution of the C–O and C=O groups on the surface of small
carbonaceous materials may contribute to the excitation-independent characteristics of
the blue emission. Conversely, the intensity of the green emission is generally stronger in
CDs with larger particle sizes or lower oxidation degrees. The non-uniform coverage of
O–C=O groups might result in a wide distribution of the related energy levels, leading to
excitation-dependent behavior.

Additionally, both concentration and aggregation are important factors affecting the
optical properties of CDs. To illustrate this, the CD solutions are diluted 1-, 2-, 3-, 4-,
and 5-fold with water, and the corresponding PL spectra are depicted in Figure S8. The
sample exhibits a PL peak centered at approximately 440 nm under 360 nm of excitation,
which is almost unchanged regardless of the dilution fold. The PL intensity reaches its
maximum when the solution is diluted 3-fold, then decreases as the dilution fold increases
further. Since the blue emission primarily stems from the oxygen-containing functional
groups (C–O and C=O) on the surface of the small carbonaceous materials, the significant
increase in PL intensity upon dilution highlights the presence of the aggregation within
these materials. A broad PL band peaked at around 500 nm is obtained when the sample is
excited at 420 nm. The PL peak experiences a slight blue-shift when the dilution fold is two,
but remains almost unchanged with further dilution. The PL intensity decreases gradually
as the dilution fold increases, yet this decrease is not directly proportional to the dilution
fold. We attribute the green luminescence primarily to the oxygenous groups (O–C=O)
decorated at the surface of the CDs with larger particle sizes or lower oxidation degrees.
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Unlike the small carbonaceous materials, the aggregation phenomenon is less pronounced
in CDs with larger particle sizes. Furthermore, the concentration of small carbonaceous
materials decreases with the increase in the oxidation degree, which also contributes to a
rise in PL intensity.

Finally, particle size plays a crucial role in influencing the PL properties of CDs.
With the increasing oxidation degree, the surface of the CDs undergoes further oxidation,
accompanying a reduction in CD size. This change can alter the coupling degree between
the π-electron system and the oxygen-related surface states, leading to the blue shift in the
PL peak. As illustrated in Figure 6, no blue shift is observed in the blue emission, likely due
to the relatively broad size distribution of the CDs. It remains challenging to identify the
effects of particle size variation on the PL peak shift. We implemented a straightforward
ultrafiltration treatment using a Millipore (3 kDa, cutoff) to filter the particles larger than
2 nm. The PL spectra after ultrafiltration treatment are shown in Figure 8. When excited
at 360 nm, the blue emission dominated the PL spectra, the spectral characteristics of the
filtered sample differ markedly from those of the unfiltered sample. Nevertheless, the PL
peak of the blue band remains nearly unchanged, indicating that even small carbonaceous
materials possess a certain degree of particle size distribution.

For the residual samples in the ultrafiltration tube, their spectral characteristics re-
mained identical to those of the original CD solution. One possible explanation for this is
that the small carbonaceous materials are not entirely filtered out, with some still physically
adhering to the surfaces of the CDs with larger dot sizes [39]. Another possibility is that
the sp3−- and sp2−-hybridized carbons on the CD surface, decorated with the oxygen
functional groups, may also emit blue and green light when excited.

Moreover, there still exists competition among different emission states and non-
radiative traps, as illustrated in the schematic model of the excitation and recombination
process in Figure 11. Initially, the photo-excited electrons are generated by transitioning
from the n-state orbitals (HUMO) to the π* orbitals (LUMO) of C=O by absorbing the
high-energy photons. These electrons quickly relax into oxygen-related emission states or
get trapped by the non-radiative defects. The green and the blue luminescence stems from
the radiative recombination of the electron-hole pairs at corresponding oxygen-related
energy levels. The EPR spectra confirm that the concentration of oxygen-centered radicals
would decrease after a long period of oxidation, potentially reducing the non-radiative
traps and enhancing the QY of CDs. However, only a slight increase in the average lifetime
is observed in samples with higher oxygen contents. We speculate that the increase in
oxygenous groups may enhance the density of oxygen-related emission states and improve
the relaxation rate between energy levels. This could counterbalance the effect of reduced
non-radiative traps on the recombination process, resulting in only a small change in the
lifetime of the CDs.
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5. Conclusions

The dual-fluorescent (blue and green emission) CDs are prepared using a simple
ultrasound method. The surface configuration of the CDs could be softly altered through
natural oxidation. The QY of the CDs increases significantly from approximately 0.61%
to 4.26% after a long period of oxidation. Based on microstructural characterizations,
optical measurements, and ultrafiltration experiments, we consider that the C–O and
C=O groups are prone to form at the surface of small carbonaceous materials during the
natural oxidation process, leading to the enhancement of the blue emission. Conversely,
the green emission, associated with O–C=O groups, is stronger in CDs with larger particle
sizes or lower oxidation degrees. The emission states induced by their corresponding
oxygenous groups display distinct distribution and energy levels within the bandgap of
small carbonaceous materials or CDs, leading to excitation-independent blue emission and
excitation-dependent green luminescence. Furthermore, the increase in emission states
caused by corresponding oxygen-containing groups as well as the reduction of the amount
of oxygen-centered radicals contribute to the enhanced QYs of the CDs. This work provides
an in-depth understanding of the role of oxygen in the optical properties of CDs.
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//www.mdpi.com/article/10.3390/nano14110970/s1, Figure S1: TEM images of (a) SA1, (b) SA2,
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SA3; Figure S3: (a) 1H NMR and (b) 13C NMR spectra of SA1 (black line), SA2 (red line), and SA3
(blue line); Figure S4: The Gaussian fitting results of PL spectra excited by 375 nm for (a) SA1, (b) SA2,
and (c) SA3; Figure S5: PLE spectra of (a) SA1, (b) SA2, and (c) SA3. The emission wavelengths are
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for SA2 experienced relatively (a) short and (b) long oxidation times; The PL spectra of the SA2
experienced (c) short and (d) relative long oxidation times before ultrafiltration treatment; Figure S7:
Time-resolved PL spectra of SA1, SA2, and SA3 with the 405 nm as the excitation wavelength, the
emission wavelengths are (a) 470 and (b) 530 nm, respectively; Figure S8: The PL spectra of SA2 at
various dilution levels (1, 2, 3, 4 and 5-fold) under (a) 360 nm and (b) 420 nm of excitation; (c) The PL
intensity of SA2 under 360 nm (black square) and 420 nm (red circle) of excitation as a function of the
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Abstract: Solar cells have been developed as a highly efficient source of alternative energy, collecting
photons from sunlight and turning them into electricity. On the other hand, ultraviolet (UV) radiation
has a substantial impact on solar cells by damaging their active layers and, as a result, lowering their
efficiency. Potential solutions include the blocking of UV light (which can reduce the power output of
solar cells) or converting UV photons into visible light using down-conversion optical materials. In
this work, we propose a novel hydrophobic coating based on a polydimethylsiloxane (PDMS) layer
with embedded red emitting Y2O3:Eu3+ (quantum yield = 78.3%) particles for UV radiation screening
and conversion purposes. The favorable features of the PDMS-Y2O3:Eu3+ coating were examined
using commercially available polycrystalline silicon solar cells, resulting in a notable increase in
the power conversion efficiency (PCE) by ~9.23%. The chemical and UV stability of the developed
coatings were assessed by exposing them to various chemical conditions and UV irradiation. It was
found that the developed coating can endure tough environmental conditions, making it potentially
useful as a UV-protective, water-repellent, and efficiency-enhancing coating for solar cells.

Keywords: PDMS; Y2O3:Eu3+; UV protection; hydrophobic coating; solar cells

1. Introduction

Solar cells are playing an important role in global efforts to minimize reliance on
conventional energy sources. These technologies not only help to reduce greenhouse gas
emissions, but they also provide the potential to boost energy availability in rural or hard-
to-reach regions. Despite well-established manufacturing technology, solar panels still
face significant challenges that limit their efficiency, stability, and durability. In particular,
spectral mismatches between solar cells’ absorbance and solar radiation cause thermal-
ization effects and loss of high energy (UV) and low energy (IR) photons [1,2]. Typically,
the maximum conversion efficiency for crystalline silicon solar cells under the AM 1.5
solar spectrum is limited to around 29% [3]. Hence, anti-reflective coatings with various
geometry and structure are commonly employed to surpass the Shockley–Queisser limit
for single-junction devices [4,5]. On the other hand, another important factor to consider
is the exposure of solar cells to UV radiation. Typically, UV radiation is not efficiently
absorbed by silicon solar cells and contributes to thermalization and structural degradation
processes, resulting in a quick decline in the performance of solar panels over time [6–8].

Thin film coatings composed of large-bandgap materials like TiO2 and ZnO are com-
monly suggested to filter UV radiation [9,10]; however, this will result in the cutting-off of
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UV photons from solar light. To address this issue, down-conversion (DC) optical materials
capable of converting UV photons into several visible or infrared photons (quantum cutting
effects) can be used [11–15]. Theoretical calculations revealed that a DC layer applied on
the front surface of solar cells with Eg = 1.1 eV can boost efficiency by up to 38.6% as
compared to 30.9% for cells without a coating [16]. However, under real-world conditions,
the efficiency enhancements hardly surpass ~2–3%, which can be attributed to various light
photon losses. For example, red-emitting Sr4Al14O25:Mn4+,Mg phosphor introduced in the
polymethylmethacrylate (PMMA) layer increased the power conversion efficiency (PCE) of
perovskite solar cells by ~1.4% [17]. Spin-coated CdSe/CdS quantum dots on the top of c-Si
solar cells improved the PCE from 12% to 13.5% [18]. The PCE of commercial c-Si solar cells
can also be improved by the liquid-phase deposition of cerium and ytterbium codoped
CsPbCl1.5Br1.5 perovskite DC material [19]. Typically, the average PCE of c-Si solar cells
was raised from 18.1% to 21.5%. On the other hand, polyvinyl alcohol PVA-based film
containing europium-based ternary complexes shows only a slight PCE improvement by
~0.6% [20]. One can easily observe that in either case, the PCE of the solar cells improves,
making this approach practically feasible.

The use of phosphor materials as DC coatings for solar cells can be advantageous due
to their excellent chemical stability, quantum yields, and quantum-cutting properties. On
the other hand, phosphor materials are vulnerable to humidity, which usually quenches
luminescence. Hence, the use of hydrophobic coatings like polydimethylsiloxane (PDMS)
has several advantages, including optical transparency, water rejection to prevent the
luminescence quenching of phosphor materials, and self-cleaning features [21]. To the best
of our knowledge, the use of hydrophobic PDMS with embedded luminescent phosphor
particles with high quantum yield to improve the PCE of Si solar cells has not yet been
reported. Hence, in this study, we incorporated red-emitting Y2O3:Eu3+ particles into the
PDMS matrix to produce a hydrophobic and luminescent coating for solar cells. We found
that the developed coating is multifunctional; for example, it can protect the Si solar cells
from harmful UV radiation, it has passive radiative cooling, it has self-cleaning properties,
and it can also improve the PCE of devices. The hydrophobic properties and structural
stability of the produced coating were evaluated by testing it in various types of chemical
conditions and under UV irradiation.

2. Materials and Methods

2.1. Synthesis of Y2O3:Eu3+ Particles

High-purity reagents were purchased from Merck Group (St. Louis, MO, USA) and
utilized without any purification. The luminescent Y2O3:Eu3+ particles were produced
using the urea homogeneous precipitation protocol [22,23]. In brief, 0.5 g of urea, 371.5 mg
of yttrium nitrate hexahydrate, and 12.8 mg of europium nitrate pentahydrate were com-
pletely dissolved in 40 mL of deionized water. The resulting mixture was heated in the
oven at 90 ◦C for 2 h. The obtained white precipitates were collected, dried, and calcined in
air at 600 ◦C for 1 h.

2.2. PDMS-Y2O3:Eu3+ Coating Deposition

For deposition of the coating with the optimal parameters, 3 mg of the as-prepared
Y2O3:Eu3+ powder was dissolved in 25 µL of hydrophobic agent (1H,1H,2H,2H-perfluorooc-
tyltriethoxysilane) and sonicated for 5 min to form a homogenous dispersed mixture. After
the addition of 200 µL of cured PDMS (Sylgard 184 kit, Dow Inc., Midland, MI, USA), the
solution was thoroughly mixed, and an additional 25 µL of hydrophobic agent was added.
The resulting solution was repeatedly sonicated for ~5–7 min. Finally, the obtained solution
was spin-coated on glass slides and Si solar cells at 3000 rpm for 20 s. The coated samples
were dried for 24 h at 80–100 ◦C.
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2.3. Characterization

Morphological and elemental examinations were performed using a scanning electron
microscope (SEM, Carl Zeiss Auriga Crossbeam 540, Oberkochen, Germany) equipped with
energy-dispersive X-ray spectroscopy (EDX, Aztec Oxford Instruments, Abingdon, UK).
The photoluminescence analysis, quantum yield, reflectance and absorbance measurements
were carried out with a Quantaurus absolute quantum yield spectrometer (C9920-02, Hama-
matsu Photonics K.K., Hamamatsu, Japan) equipped with an integrating sphere. X-ray
diffraction (XRD) measurements were performed using a SmartLab X-ray Diffractometer
(Rigaku Corp., Tokyo, Japan) with a Cu Kα radiation source. Transmittance measurements
were performed using the Genesys 50 UV–Visible spectrophotometer (Thermo Fisher Sci-
entific Inc., Waltham, MA, USA). The hydrophobic properties of the films were tested by
contact angle goniometer (Ossila Ltd., Sheffield, UK). The current–voltage (J-V) measure-
ments were performed using a semiconductor parameter analyzer (Agilent B1500A, Agilent
Technologies Inc., Santa Clara, CA, USA). The samples were illuminated using AAA class
Oriel Sol3A solar simulator (Newport-Spectra Physics GmbH, Darmstadt, Germany). An
AM 1.5 G filter and Si reference cell were applied to adjust the light intensity.

3. Results and Discussion

The deposition process was optimized through testing of several concentrations of
Y2O3:Eu3+ particles in PDMS and also by varying the thickness of the coatings. However,
the experimental data discussion is confined to the optimal coating conditions only. Figure 1
displays the overall scheme and processes that take place when light photons with different
energies hit the surface of bare glass or glass with a coating. Some photons will be reflected,
while others will pass through and generate electron–hole pairs in the active layer of the
solar cell. Down-conversion optical materials have absorption in the UV-blue range and
are commonly deposited on top of solar cells, which in turn simplifies the coating process.
In this study, the PDMS acts as a hydrophobic matrix that houses the downconversion
particles, while these particles convert UV-blue photons into visible light photons. In this
study, Y2O3:Eu3+ particles were selected as a down-conversion optical material because of
the synthesis simplicity, large Stokes shift, and high quantum yield [22].
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The morphological examination of the Y2O3:Eu3+ particles was conducted using
TEM and SEM. Figure 2A shows that the produced particles have a spherical shape and
range in size from ~350 to 500 nm. Figure S1 (Supporting Information) confirms the even
distribution of the key elements in the sample, with yttrium (Y), oxygen (O), and europium
(Eu) effectively detected. Figure 2B shows a cross-sectional image of the hydrophobic and
luminescent coating taken for the optimal sample. Cross-sectional SEM analysis revealed
that the coating thickness was ~5.4 µm for the optimal samples. Furthermore, the successful
incorporation of Y2O3:Eu3+ particles into a PDMS matrix was also validated, with some
Y2O3:Eu3+ particles visible at the border of the coating. The XRD analysis of the prepared
Y2O3:Eu3+ particles (Figure S2, Supporting Information) revealed distinct diffraction peaks
at 2θ angles of 20.7, 29.2, 33.8, 35.9, 39.9, 43.5, 48.6, and 57.6, corresponding to the diffraction
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of the (211), (222), (400), (411), (332), (413), (440), and (622) crystal planes, respectively. The
observed XRD pattern suggested that the Y2O3:Eu3+ particles adopted a body-centered
cubic (bcc) phase of Y2O3 [24].
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Figure 2. (A) TEM and SEM (inset) images of Y2O3:Eu3+ particles. (B) Cross-sectional SEM image of
PDMS-Y2O3:Eu3+ coating.

Figure 3A shows the “Commission Internationale de l’éclairage” CIE chromaticity
diagram and excitation/emission spectra of Y2O3:Eu3+ particles. The emission pattern of
Y2O3:Eu3+ particles is represented by 5D0→7F0, 5D0→7F1, 5D0→7F2, 5D0→7F3 transitions
in the yellow–red region, with the 5D0→7F2 electric dipole transition at 612 nm being
the most pronounced and dominant. The corresponding transitions are schematically
shown in Figure S3 (Supporting Information). The excitation curve (λem = 612 nm) shows
a broad band in the UV region, which is associated with a charge transfer band from the
2p orbital of O2− to the 4f orbital of Eu3+ [22,24]. The measured absolute quantum yield
QY of Y2O3:Eu3+ particles was found to be ~78.3%, which is considered to be exceptionally
high compared to other organic/inorganic optical materials [25,26]. The CIE diagram also
confirmed the successful light conversion from UV to red, with the following emission
chromaticity coordinates (x = 0.591; y = 0.330). It should be outlined that the majority of
solar cells, including silicon, perovskite, and dye-sensitized have notable light absorption in
the visible–near IR regions. Hence, UV to red down-conversion of Y2O3:Eu3+ particles with
high QY can be used to shield solar cells from destructive UV radiation and at the same
time improve the efficiency of solar cells by supplying additional photons. In the next step,
we tested the light transmittance of the PDMS-Y2O3:Eu3+ coating with optimal thickness to
that of the bare glass slide. Figure 3B shows a small reduction in light transmittance when
compared to the reference glass slide. In particular, the light transmittance was reduced
by 12.7% (at 320 nm), 11.5% (at 500 nm), and 8.5% (at 800 nm) after deposition of the
PDMS-Y2O3:Eu3+ coating. Figure 3B inset shows that the PDMS- PDMS-Y2O3:Eu3+ coating
with average light transmittance of ~80% or more was visually transparent in white light
but glowed red when exposed to UV light.

Figure 4 depicts the absorbance and reflectance studies of the PDMS-Y2O3:Eu3+ coating
measured in an integrating sphere. One can notice that absorbance of the PDMS-Y2O3:Eu3+

coating was observed in the UV range (~260–400 nm) with a maximum close to 304 nm.
Hence, we can speculate that the PDMS-Y2O3:Eu3+ coating indeed only absorbed UV
photons and converted them further into visible light photons. A similar trend was also
observed with the reflectance study; a minimal reflection was observed in the region of
~260–400 nm, which corroborated well the absorbance results.
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good resistance of the coating to UV irradiation. It should be outlined that the UV flux 
reaching the Earth’s surface is lower than that of a UV lamp; hence, the developed PDMS-
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Figure 4. Absorbance and reflectance measurements of PDMS-Y2O3:Eu3+ coating on glass slide.

The hydrophobicity of the formed PDMS-Y2O3:Eu3+ coatings was assessed by mea-
suring the contact angles using a goniometer. The optimized samples displayed contact
angles ranging from 119 to 121◦, indicating their hydrophobic properties. Furthermore, the
structural stability of the coating was further assessed by a series of additional experiments.
For example, the UV stability was estimated by placing the coated glass slides under an
ultraviolet lamp (λ = 365 nm, 8 W) at a distance of 2 cm for 24 h, with a measuring of the
contact angle every 3 h. Moreover, the chemical stability of the coating was determined by
immersing the coatings in different chemical environments, i.e., pH 3, pH 5, pH 7 (distilled
water), and NaCl (1M) solutions for 24 h. Figure 5A shows that after being exposed to UV
light, the measured contact angles ranged between 118 and 120◦, indicating good resistance
of the coating to UV irradiation. It should be outlined that the UV flux reaching the Earth’s
surface is lower than that of a UV lamp; hence, the developed PDMS-Y2O3:Eu3+ coatings
have the potential to endure long-term sun irradiation. Figure 5B indicates that the contact
angles of the coatings also did not vary substantially after being placed in various chemical
media simulating acidic conditions. Hence, it can be concluded that the PDMS-Y2O3:Eu3+

coating may retain hydrophobic properties for an extended period, which is potentially
useful for self-cleaning purposes.
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Figure 5. Effect of (A) UV irradiation time and (B) impact of various media on the hydrophobicity of
PDMS-Y2O3:Eu3+ coatings.

As a proof-of-concept, the photovoltaic (PV) parameters of polycrystalline Si cells
(active area = 1 × 1 cm) were tested before and after the deposition of PDMS-Y2O3:Eu3+

with the optimized thickness. Figure 6A,B illustrate the corresponding J-V curves and
external quantum efficiency (EQE) of the Si cells (n = 3) before and after the deposition of
the coating, respectively. Figure 7 shows that all key PV parameters were improved; i.e., one
can achieve PCE improvement in the Si cells following PDMS-Y2O3:Eu3+ deposition. On
average, the PCE enhancement was found to be ~9.23%. It should be also emphasized that
the EQE pattern of the coated sample followed the proposed idea, i.e., to absorb photons
in the UV-blue region and convert them to visible photons in the red region. Generally,
all key PV changes can be associated with the management of the optical characteristics,
and a similar trend was observed in the literature [27,28]. Typically, one can observe
that the Voc, Jsc, and FF values were improved to ~3.57%, 1.38%, and 10.1% respectively.
Among them, the Jsc enhancement was associated with increased light-generated current,
while the Voc improvement was typically associated with improved concentration or lower
recombination rates of charge carriers [29,30]. The FF is frequently linked to parasitic
resistive losses [31], and the FF can gradually increase with the growth in the irradiance
(in this case, irradiance is increasing in the red and near IR regions), which reaches a
maximum point and then decreases [32]. Furthermore, the FF lowers, as the temperature
rises [32]; so, the PDMS-Y2O3:Eu3+ coating also reduces the heating of Si cells similar to a
PDMS-SiO2-based radiative cooling film [33]. For example, under solar illumination, an
uncoated Si cell reached approximately 54.9 ◦C in 5 min, whereas a coated cell reached
approximately 52.7 ◦C, as shown in Figure S4 (Supporting Information). Hence, we can
speculate that the overall PCE enhancement is associated with the synergetic combination
of light conversion by PDMS-Y2O3:Eu3+, improved generation of charge carriers in Si cells,
and passive cooling of the PDMS-Y2O3:Eu3+ coating.
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Figure 7. Key PV parameters for Si cells before and after the deposition of luminescent PDMS-
Y2O3:Eu3+ coatings.

The self-cleaning property of the prepared PDMS-Y2O3:Eu3+ coating was further
shown on a glass slide (not visible on the Si cells due to the dark surface). Figure 8 shows
the digital images of the coated glass slide with soil spots on the surface. Because the
adhesion between the surface and dust is weaker than that between the water droplet and
dust, the water droplet will clean the surface coating as it rolls down.
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Finally, the UV protection capabilities of the coatings with optimized thicknesses were
investigated under the constant UV lamp illumination (λ = 365 nm, 8 W, t = 1 h) of the
bare and coated Si cells (n = 3 per batch). We found that, on average, the coated Si cells
had a lower PCE drop (~0.8%) as compared to those of the bare Si cells (~1.8%). Hence,
it can be concluded that PDMS-Y2O3:Eu3+ can be potentially employed as a hydrophobic
UV-blocking and light-converting coating for the potential power enhancement of Si cells.
Si solar cell fabrication is a mature process, with a reported efficiency degradation by
several % within a year [34]. As a result, the short-term testing of non-coated and coated Si
cells at 80 ◦C yielded no appreciable decrease in the PCE. Therefore, field trials, such as film
deposition using spray coating on large-sized panels, as well as long-term durability testing
under temperature, humidity, and light fluctuations will be explored in future studies.

4. Conclusions

In summary, we successfully prepared a hydrophobic and luminescent PDMS-Y2O3:Eu3+

coating for potential applications in photovoltaic solar cells. The prepared coating contains
Y2O3:Eu3+ particles, dispersed in a hydrophobic PDMS matrix, which convert UV photons
to visible (red) photons with a QY of ~78.3%. As a result, down-converted red photons
can be partially reabsorbed by Si cells, resulting in a PCE improvement of ~9.23%. The
preliminary data on the UV stability, chemical stability, and UV protection suggested that
the PDMS-Y2O3:Eu3+ coating is durable and can be employed on UV-sensitive solar cells
for UV protection and power enhancement purposes.
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Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/nano14080674/s1, Figure S1: EDS elemental mapping of Y2O3:Eu3+

particles; Figure S2: XRD pattern of Y2O3:Eu3+ particles; Figure S3: Schematic transitions within the
Eu3+ ion. Figure S4: Heating of Si cells within 5 min under simulated solar light illumination.
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Abstract: Wide-bandgap tin oxide (SnO2) thin-films are frequently used as an electron-transporting
layers in perovskite solar cells due to their superior thermal and environmental stabilities. However,
its crystallization by conventional thermal methods typically requires high temperatures and long
periods of time. These post-processing conditions severely limit the choice of substrates and reduce
the large-scale manufacturing capabilities. This work describes the intense-pulsed-light-induced
crystallization of SnO2 thin-films using only 500 µs of exposure time. The thin-films’ properties are
investigated using both impedance spectroscopy and photoconductivity characteristic measurements.
A Nyquist plot analysis establishes that the process parameters have a significant impact on the
electronic and ionic behaviors of the SnO2 films. Most importantly, we demonstrate that light-induced
crystallization yields improved topography and excellent electrical properties through enhanced
charge transfer, improved interfacial morphology, and better ohmic contact compared to thermally
annealed (TA) SnO2 films.

Keywords: impedance spectroscopy; photonic curing; SnO2; dark injection current transient;
photo-Celiv

1. Introduction

Electron-transporting layers (ETLs) are critical components in most optoelectronic
device architectures, including perovskite solar cells (PSCs). These PSC devices rely on
organic–inorganic perovskite materials to efficiently absorb light and generate charge
carriers [1–3]. ETL layers are essential for promoting efficient electron transport, block
holes, align energy levels, and ultimately enhance the efficiency and stability of perovskite
solar cells. Choosing appropriate ETL materials is essential for the performance of PSCs.
Typical ETL materials require processing between 150 and 500 ◦C, resulting in higher
processing times and energy costs. Most importantly, this prevents their integration on
most low-cost substrates that require processing temperatures below 150 ◦C [4,5]. In this
context, intense pulsed light annealing, also sometimes referred to as photonic curing
(PC) [6], is an emerging technique that is ideally suited for large-scale manufacturing as is
relies on short, high-intensity light pulses to anneal materials selectively and rapidly [7,8].
In this process, the optical energy absorbed by the active material can sustain carefully
controlled light-induced annealing with minimal substrate damage. As a result, even
metals with relatively high melting points can be successfully sintered on low-cost plastic-
or paper-based substrates [9–11]. As such, this technique is also especially well-suited for
roll-to-roll (R2R) manufacturing [12]. SnO2 metal-oxide thin-films were first utilized as
ETLs for perovskite-based solar cells nearly a decade ago [13,14]. They have since emerged
as the preferred material for PSCs over TiO2 and ZnO due to their large band gaps, higher
charge mobilities, and better stabilities under ambient conditions [15–17]. A few years
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later, SnO2 films were photonically annealed in just 20 ms, enabling the fabrication of
PSCs with reduced hysteresis and a 15% power conversion efficiency [9]. However, these
previous studies did not address the effect of photonic curing on the electronic properties
of SnO2 films. To investigate this, we used impedance spectroscopy (IS), which is a rapid
technique for evaluating these properties. IS is a powerful tool to shed light on the kinetic
processes taking place within electrochemical systems [18,19]. During measurement, a small
alternating current (AC) signal is coupled with a direct current (DC) voltage and is applied
to the device. The phase difference between the DC voltage and AC current is measured
over a wide frequency range to identify the various physical effects in the device. As a
result, IS measurements can assess the physical and chemical processes of various types
of devices, including optoelectronic devices, fuel cells, and solid-state batteries [20]. IS is
a non-destructive [14,21,22] tool that can be effectively used to optimize the stability and
performance of these devices by characterizing their charge transport properties [18,23].
Typically, the IS measurements exhibit two arcs corresponding to low-frequency (LF) and
high-frequency (HF) responses, respectively [24,25]. The series resistance (Rs), charge-
transfer resistance (RCT), and parallel capacitance can be determined from the HF and
LF responses.

This work explores the impact of the photonic curing parameters on thin-film SnO2
properties using IS and photocurrent characteristic analysis to unveil and control the ionic
and electronic kinetics within the treated SnO2 layer. As we demonstrate, this improved
understanding and control leads to enhanced electronic properties with great potential for
improved perovskite solar cell manufacturability.

2. Experimental Section

Commercial patterned fluorine-doped tin Oxide (FTO) substrates (Shenzhen Huayu
Union Technology, Shenzhen, China, resistance: 7 Ohm/sq) doped with fluorine are cleaned
using a sequential process of 10 min each in an ultrasonic bath with DI water, acetone,
and isopropyl alcohol (IPA). After drying with a nitrogen spray gun, residual organic
contaminants are removed by performing a 15 min O2 plasma treatment (Plasma Etch,
Carson City, NV, USA, PE-100LF). To prepare the SnO2 solution, a colloidal precursor
of SnO2 obtained from Alfa Aesar (15% in H2O colloidal dispersion CN: 044592.A3) is
diluted with DI water to a concentration of 3% by volume. The SnO2 solution is spin-
coated onto the clean FTO substrate in one step in air 3000 rpm for 30 s. The edges of
the FTO electrodes are then cleaned with a dry cotton swab to enable electrical and IS
measurements (Figure 1). For TA, SnO2 films are annealed using a hot plate at 150 ◦C for
30 min under ambient air. For photonic curing, each sample is treated using a Novacentrix
PulseForge system (500 V/3 A) power supply with 3 capacitors providing radiant energy
greater than 20 J.cm−2 using a lamp system (7.6 cm × 60.8 cm) with an illumination
area of 300 mm × 75 mm. The light source ensures uniform curing over a large area and
delivers short (20 µs to 100 ms) but intense light pulses from a broadband xenon flash lamp
(200–1500 nm). A Paois (Fluxim AG, SN:20121 Winterthur, Switzerland) tool is used for all
electrical and IS measurements. SEM (SU8230 Hitachi) and AFM (Bruker, MultiMode8,
Billerica, MA, USA ) are used for topography inspection. For impedance spectroscopy,
the FTO edges that are used as electrodes are connected to the Paois to measure the
impedance over a range of frequencies (10 Hz to 10 MHz) in the dark at 0.07 V perturbation
at room temperature. Impedance data can be analyzed using Nyquist and Bode plots to
interpret electrochemical properties such as the charge transfer resistance, capacitance,
and dielectric properties. The temperature is simulated using NovaCentrix SimPulse
software, this simulation package is standard on the PulseForge Version 3, Austin, TX, USA.
The configuration is modeled as follows (from bottom to top): aluminum chuck, 6 mm;
glass, 2.2 mm; and FTO, 600 nm. The thicknesses of the glass and FTO layers are taken from
the manufacturers. X-ray diffraction (XRD) is done using a Bruker D8 Advance (Billerica,
MA, USA), and optical absorbance is done using a UV–Vis–NIR spectrophotometer from
Perkin Elmer (Waltham, MA, USA).
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Figure 1. Illustration of the SnO2 sample fabrication process.

3. Results and Discussion

After deposition of colloidal SnO2 films using the protocol, samples are post-processed
using varying pulse durations and energy densities using the methodology described in
the Experimental Section. To investigate the impact of PC on the electrical properties of
SnO2 films, we conduct flash annealing for pulse durations of 500, 1500, 2500, and 3500 µs,
followed by photocurrent measurements. This allows us to optimize our photonic annealing
parameters and define the high photoconductivity range for SnO2 films. Photocurrent
analysis is used to map the different zones’ photoconductivity. Pulses ranging from
500 to 3500 µs are utilized to complete the photo-responsivity characterization. Figure 2a
shows the I-V responses in the dark and under illumination for two samples photonically
treated using a pulse duration of 2500 µs and, respectively, 2 J.cm−2 and 4 J.cm−2. A low
photo-responsivity indicates that the illumination and dark curves approach the overlap
limit, while a high photo-responsivity indicates a clear offset (more than 0.5 order of
magnitude) between the I–V characteristics in the dark and under illumination. Based on
such measurements, Figure 2b displays a photo-responsivity map for samples photonically
treated using different pulse durations vs. energy densities. To shed light on these results,
IS and SEM characterizations are conducted. SnO2 is highly transparent, which makes
photonic curing difficult [26]. To mitigate this problem, we use substrates with FTO patterns
that act as a structural support and a stable base for the growth of SnO2 nanoparticles.
This helps promote the transmission of the heat generated when light is absorbed by the
nanoparticles [27], which can increase the local temperature around the nanoparticles
and promote the recrystallization process. FTO substrates exhibit rougher surfaces than
glass [28], promoting superior adhesion and growth of SnO2 nanoparticles [29]. Their
conductivity enhances the electrical properties of the resulting SnO2 films. The FTO
substrate’s roughness directly influences both the diameter and alignment of the SnO2
nanoparticles [30]. Areas with FTO patterns acting as a blanket allow for changes in
nanoparticle recrystallization depending on the energy density used.

Figure 2c displays SEM images of the bare FTO substrate, and Figure 2d–f show SnO2
films deposited on FTO and photonically treated using energy densities of 0.15, 2.06, and
2.46 J.cm−2, respectively. As the energy density is increased from 0.15 to 2.06 to 2.46 J.cm−2

while using 1500 µs pulse durations, the SnO2-covered films appear increasingly granular,
while the distinct grain boundaries that were clearly observed in the FTO/glass film are
less apparent. The recrystallization of the SnO2 film follows the substrate topography
well, revealing the underlying FTO grain profile. This process indicates that higher energy
densities lead to improved film–substrate adhesion and more pronounced exposure of
the underlying grain structure. The photonic curing of SnO2 wet films enables water
evaporation and subsequent crystallization of SnO2 nanoparticles [31]. The degree of
crystallization greatly affects the photoconductivity of SnO2 films and their ability to carry
charge carriers [32,33]. A film’s properties largely depend on two independent parameters:
the energy density and the pulse duration of the pulsed light.

To obtain quantitative information and to better understand the surface morphology
and roughness, we also conduct AFM analyses on samples subjected to different types
of annealing treatments. Figure 2g shows the surface roughness of the film samples for a
scan area of 5 × 5 µm2. It highlights the improvement in surface topography after optimal
photonic treatment with SnO2, with a root-mean-square roughness of 14.01 nm, compared
to 45.57 nm for the thermally annealed sample. Roughness is defined as the microscopic
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and macroscopic variations on a material’s surface [34]. It measures the irregularities
present on the surface. These variations can have a significant impact on the physical
and chemical properties of materials, such as the recombination rates in ETL films for
solar cells. Low-roughness films can reduce the recombination rate and thus improve
performance [35]. The morphological effect of PC processing can be beneficial in terms
of device performance. This significant improvement underscores another important
advantage of photonic treatment for enhancing the quality of SnO2 as an electron transport
layer (ETL) in perovskite solar cells.

PC

TA

a                                     b

c                                     d

e                                     f

  g

0.15 J.cm-2

2.06 J.cm-2 2.46 J.cm-2

Figure 2. (a) I−V responses in the dark and under illumination for two samples photonically
treated using a pulse duration of 2500 µs and, respectively, 2 and 4 J.cm−2. (b) Photo-response map
for samples photonically treated using different pulse durations vs. energy densities based on the
criterion in Figure 2a. (c) SEM images of FTO/glass. (d–f) SEM images of PC of SnO2 samples on
FTO/glass. (g) Atomic force microscopy (AFM) images in 2D and 3D of thermally and photonically
annealed samples.

114



Nanomaterials 2024, 14, 1508

This section focuses on the variation of IS results for SnO2 films treated with different
energy densities and pulse durations of 500, 1500, 2500, and 3500 µs. For these measure-
ments, the SnO2 film is deposited onto FTO glass, and its electrochemical behavior can be
represented by an equivalent circuit that produces a semicircle on the Nyquist diagram.
Figure 3a–d displays IS results for SnO2 samples treated using these different pulse du-
rations and energy densities. When the pulse duration is fixed and the energy density is
increased, the semicircle decreases until it reaches its minimum, and then the arc widens.
The frequency response exhibits two distinct behaviors. At high frequencies (HF), it is
dominated by the resistance attributed to electronic transport (RCT). At low frequencies
(LF), it is dominated by the recombination resistance (Rrec) related to ionic diffusion and
charge accumulation at the contacts [36,37]. In Figure 3, it corresponds to the second
semicircle inclined at 45° to the real axis in the Nyquist graph [38]. The semi-circle in the
high-frequency region is generally related to the counter-electrode and its interface [39]. A
smaller half-circle suggests a lower RCT and better photoconductivity of the device. These
Nyquist plots suggest that our devices’ equivalent circuits can be accurately modeled by a
resistor–capacitor (RC) pair in the dark AC regime [40]. As such, the interface contribution
can be derived from the equivalent circuit’s parameters [41]. The series resistance (Rs) can
be obtained by measuring the shift of the semi-circle from the origin along the horizontal
axis [42]. However, the time constant related to the physical phenomena dominating at
both the low and high frequencies is described by τHF .ωHF = 1 and τLF .ωLF = 1, with
ωHF,LF = 2π · fmax,HF,LF [40]. The time constants can be deduced from the IS results by
identifying the peak of the semicircle, which corresponds to the maximum frequency, or by
calculating τ = Req.Ceq, as shown in Table 1.
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Figure 3. Imaginary versus real components of impedance for photonically annealed films with pulse
durations of 500, 1500, 2500, and 3500 µs, respectively.
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Table 1. IS parameters extracted from the Nyquist plots for thermally annealed and photonically
treated samples at 0 V in dark conditions with 0.07 V perturbations. Photonic treatment is performed
using a 3500 µs pulse duration at 3.55 J.cm−2 energy density.

Device Rs (kΩ) RCT (MΩ) Ceq (pF) τHF (µs)

Thermally annealed 1.96 0.99 0.88 0.87
Photonically treated 3.06 0.49 0.78 0.38

Figure 4a compares the Cole–Cole plots for films that are photonically treated using
500, 1500, 2500, and 3500 µs pulses with respective energy densities of 0.52, 2.45, 3.44,
and 3.55 J.cm−2 with a typical film sample crystallized using standard thermal anneal-
ing.Clearly, the physical and chemical properties of the resulting SnO2 films appear greatly
affected by the pulse duration and energy density. When the pulse duration is 3500 µs
and the energy density is 3.55 J.cm−2, the high-frequency arc is smallest, suggesting that
the film is less resistive and facilitating charge transfer. In comparison, the thermally
annealed sample exhibits a larger semicircle than all of the photonically treated samples.
This suggests increased imaginary impedance associated with a decrease in charge transfer.
Figure 4b–d compare the imaginary impedance, capacitance, and conductance versus the
frequency for the best thermally annealed and the best photonically treated films for the
conditions 3.55 J.cm−2 and 3500 µs. In Figure 4b, the high-frequency (HF) peaks appear
between 105–106 Hz for both samples. The response time can be obtained by taking the
inverse of the peak frequency from the imaginary impedance graph. Table 1 presents the IS
parameters extracted from the spectra. There, the RCT value for the thermally annealed
sample is roughly twice the value achieved using optimal photonic curing conditions. This
suggests that the SnO2/FTO interface provides a low RCT under the effect of photonic
annealing, which facilitates charge carrier transport. The resulting time constant is 0.8 µs for
the thermally annealed film, compared to 0.38 µs for the optimal photonic curing conditions.
This suggest that photonically induced crystallization promotes a faster response time,
resulting in low recombination and more dominant ionic diffusion behavior [43,44]. At low
frequencies, the thermally annealed device does not exhibit any measurable peak, which is
consistent with the presence of the single semicircle in Figure 4b. In contrast, the impedance
plot of the photonically treated device is curved at low frequencies, explaining the start of
the second semicircle in this region. Frequency, time constant, and conductivity values are
good indicators of process kinetics [45,46]. Indeed, the dark IS can be directly related to the
carrier density, mobility, and conductivity [38]. The temperature simulation results using
the photonic annealing parameters shown in Figure 4e reveal a relationship between the
energy density, pulse duration, and resulting temperature of the SnO2 film. As the energy
density increases from 0.52 to 3.55 J.cm−2, the temperature increases from 122 to 364 ◦C
then decreases to 329 ◦C for the film treated with an energy density of 3.55 J.cm−2 and a
pulse duration of 3500 µs. These parameters are crucial to determine the energy transferred
to the SnO2 film, but they show a non-linear trend with temperature. Figure 4f shows
X-ray diffraction (XRD) measurements of the thermally and photonically annealed SnO2
films. The prominent peaks are determined to correspond to (110), (101), (200), (211), (220),
and (002), confirming the tetragonal crystal structure of SnO2 for both the TA and PC
films [47–49].

Figure 4c,d show capacitance and conductivity evolutions as a function of the opera-
tion frequency. Figure 4c illustrates two distinct capacitance behaviors, each corresponding
to a specific polarization process. This distinction makes it possible to identify specific
capacitive processes directly from the plot [50,51]. The high-frequency capacitance CHF
(above 100 kHz) exhibits a plateau in the order of 1 pF for both thermally and photonically
treated devices and is rather similar for both annealing processes. This region represents
the geometric capacitance and is due to the intrinsic dielectric polarization of the SnO2
layer [50]. However, photonic treatment achieves higher capacitance values at low frequen-
cies (below 1 KHz) compared to the thermally annealed device. This is primarily due to
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the accumulation of charges or ions [52,53] resulting from the polarization of the interfaces
between the SnO2 layer and the electrodes. At low frequencies, the increase in capacitance
is dominated by ionic movement in the dark and electronic movement in the light [54,55].
In circuits that exhibit capacitive behavior, the capacitor offers less resistance to the flow of
alternating current as the frequency increases. Accordingly, Figure 4d shows increases in
conductance for both devices in the high-frequency region. This behavior is consistent with
that of semiconductors, where capacitance and conductance vary inversely [56–58].
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Figure 4. (a) Cole–Cole plot for films thermally and photonically treated using 500, 1500, 2500,
and 3500 µs with energy densities of 0.52, 2.45, 3.44, and 3.55 J.cm−2, respectively. (b–d) Comparison
of imaginary impedance, capacitance, and conductance vs. frequency for typical thermally annealed
and photonically treated samples. (e) SimPulse simulations of temperature profiles of photonically
annealed SnO2 film Cole–Cole plots for films photonically treated using 500, 1500, 2500, and 3500 µs
with energy densities of 0.52, 2.45, 3.44, and 3.55 J.cm−2, respectively. (f) XRD spectra of thermally
and photonically annealed SnO2 films at 3.55 J.cm−2 and 3500 µs.
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The optical properties of the prepared samples are characterized by UV–Vis absorp-
tion spectra. As shown in Figure 5a, the transmittance of PC-treated films is higher than
that of TA-treated films, which is desirable for solar cell applications. SnO2 is a direct
bandgap (BG) semiconductor; its BG can be calculated using a Tauc plot [59], as shown in
Figure 5b. The calculated BGs are 3.45 eV and 3.43 eV for the TA- and PC-treated films,
respectively, which explains why the TA film is slightly more transparent than the PC film.
Measurements in Figure 5c,d compare the dark injection transients for the photocurrent rise
and decay for the thermally and photonically treated (3.55 J.cm−2, 3500 µs) samples. This
time-of-flight technique is useful for determining majority carrier mobility and trapping,
especially in thin-films [60]. Figure 5c illustrates that the current for the photonically treated
film rises to 2.7 mA, compared to 2.3 mA for the thermally annealed film. The current also
increases more rapidly in the photonically treated sample, reflecting the interrelationship
between charge carrier generation and recombination. Therefore, the rapid increase in
current for the PC sample can be attributed to the fast accumulation of photogenerated
carriers [61]. Figure 5d compares the decay of the transient current. After reaching its
maximum, the current decay depends on the charge capture coefficient [62]. The decay
graph illustrates the speed of charge recombination after being excited by a 1.2 V pulse
voltage. A shorter carrier lifetime suggests faster recombination and a high carrier capture
rate, which implies more rapid current decay for the thermally annealed sample. In con-
trast, photonic curing yields a lower recombination rate, resulting in slower decay and
longer current holding times. The photogeneration and recombination processes have a
significant impact on the density and mobility of charge carriers. Figure 5e compares the
charge mobility using the photo-CELIV technique using the following expression [63–65]:

µ =
2d2

3A.t2
max(1 + 0.36 ∆

Jmax
)

(1)

where d is the SnO2 film thickness, A is the slope of the extraction voltage ramp, tmax
is the time related to the current peak, and ∆ is the difference between the maximum
current and the displacement current plateau. Photo-CELIV is a technique used to extract
the charge mobility by illuminating the device. The measurement displays the current
overshoot and the time at which the current reaches its maximum, which is an essential
parameter for quantifying mobility. However, it should be noted that Photo-CELIV only
measures fast carriers and cannot distinguish between the mobility of electrons and holes.
The Photo-CELIV measurements for the film after optimized photonic treatment yield
4.56× 10−2 V cm2 s−1, compared with 3.66× 10−2 V cm2 s−1 for the thermally annealed film.
This measurement does not precisely reflect the mobility of the SnO2 material. However,
it serves as a characterization for comparing the fastest or maximum carrier mobility
values. This higher maximum mobility compared to thermal annealing is consistent with
previous results.
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Figure 5. (a,b) Transmittance spectra and Tauc plots of thermally and photonically annealed SnO2

samples. (c,d) Dark injection transients for the photocurrent rise and decay for the thermally and
photonically treated samples. (e) Charge mobility using the photo-CELIV technique for the thermally
and photonically treated samples.

4. Conclusions

In summary, we propose an optimized photonic annealing approach to improve
the electrical properties of SnO2 thin-films compared to standard annealing. SnO2 thin-
films play an essential role in emerging device architectures, especially as the electron-
transporting layer (ETL) for perovskite-based solar cells. We use impedance spectroscopy
to analyze the electrical behavior of SnO2 films in the dark. The results indicate that the
impedance spectroscopy response depends significantly on both the energy density and the
pulse duration and shed light on the resulting ionic and electronic transfer. Additionally,
we demonstrate that photonic treatment yields SnO2 layers with enhanced electrical per-
formance and a significantly reduced manufacturing time compared to standard thermal
annealing. This would be a great advantage for large-scale manufacturing of better and
cheaper perovskite-based solar cells.
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Abstract: Self-doped CuS nanoparticles (NPs) were successfully synthesized via microwave-assisted
polyol process to act as co-catalysts to TiO2 nanofiber (NF)-based photoanodes to achieve higher
photocurrents on visible light-assisted water electrolysis. The strategy adopted to perform the copper
cation sulfidation in polyol allowed us to overcome the challenges associated with the copper cation
reactivity and particle size control. The impregnation of the CuS NPs on TiO2 NFs synthesized via
hydrothermal corrosion of a metallic Ti support resulted in composites with increased visible and
near-infrared light absorption compared to the pristine support. This allows an improved overall
efficiency of water oxidation (and consequently hydrogen generation at the Pt counter electrode) in
passive electrolyte (pH = 7) even at 0 V bias. These low-cost and easy-to-achieve composite materials
represent a promising alternative to those involving highly toxic co-catalysts.

Keywords: plasmonic semiconductive nanoparticles; polyol process; titania photoanodes; water splitting

1. Introduction

The quest for sustainable and efficient energy solutions has led to significant interest
in the development of advanced materials for water splitting applications. Among these,
semiconductive nanostructures play a crucial role in the photoelectrochemical (PEC) water
decomposition reactions, which harnesses solar energy to produce hydrogen fuel. TiO2 is
among the most prolific materials for light-assisted water electrolysis thanks to its excellent
chemical stability and strong photooxidative capabilities, with a band structure triggering
water redox potentials [1–3]. Nevertheless, TiO2 presents significant challenges due to
its wide bandgap (approximately 3.2 eV for anatase), which limits its light absorption to
the UV region, a small fraction of the solar spectrum. Moreover, TiO2 suffers from the
rapid recombination of photogenerated electron-hole pairs, which severely impacts its
photocatalytic efficiency, limiting electron transfer from the TiO2 conduction band (CB) to
the external circuit and then to the cathode materials to be scavenged for proton reduction
and hydrogen generation.

A wide variety of strategies was developed to overcome these limitations, the elabora-
tion of titania-based semiconductive hetero-nanostructures being the object of particularly
intensive research [4,5]. In such studies, TiO2-based structures are combined to one (or
more) sensitizer, a semiconductor with fine-tuned properties that allow to compensate for
the TiO2 shortcomings and improve the overall efficiency of the resulting system. The cho-
sen semiconductor must possess appropriate electronic band structures with small bandgap
energy and a high absorption coefficient in order to harvest sufficient solar photons. In
addition, the energetic levels of its band structure need to straddle the redox potential of
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the desired water redox reactions, satisfying both the thermodynamics and kinetics require-
ments for conducting efficient photocatalytic reactions. Furthermore, chemical robustness
and photostability are also essential for the selected semiconductors to be considered for
such applications to allow for long-term, stable activity in photocatalytic processes [4].
Finally, such materials must be of low toxicity to avoid any deleterious effects on human
operators as well as any environmental contamination.

The photocatalytic efficiency of the resulting semiconductive hetero-nanostructures is
highly dependent on both the intrinsic photon absorption capability and charge transfer
dynamics of the two (or more) photoanode components. Light absorption and charge
transfer capabilities are mostly inherent to the band gap of the selected materials and their
doping, including self-doping. The narrower the band gap, the higher the photogenerated
charge density. As the doping rate increases, the conductivity increases. So, in a standard
photoelecrochemical (PEC) cell, in ideal conditions, upon illumination, the photogenerated
hole carriers are transported from the bulk of the semiconductor to its electrolyte interface,
where they may participate in a water oxidation reaction. Conversely, the photogenerated
electron carriers are transported from the bulk of the semiconductor to its titanium interface
to be collected through the external circuit by the cathode counterpart to be finally involved
in proton reduction into hydrogen.

According to the generalized Marcus theory [6–8], the driving force of electron transfer
from a donor to an acceptor (in this case, the CB of the semiconductor to the CB of titania)
is determined by the difference in their energetic levels. The logarithm of the rate of charge
transfer is defined by a quadratic function with respect to the term of charge transfer
driving force [4]. By enlarging the energetic difference between these energies, interfacial
charge transfer can be boosted.

By aggregating all these requirements, it becomes evident why metal chalcogenides are
particularly well-suited for forming semiconductive hetero-nanostructures with TiO2 [9],
especially when the metal chalcogenide nanostructures consist of nanometal sulfides. Most
nanocrystalline metal sulfide compounds exhibit remarkable visible light responsiveness,
possess a sufficient number of active sites, and have appropriate reduction and/or oxidation
potentials to function as effective photocatalysts [10]. Additionally, their quantum size
effects allow for tunable properties such as rapid charge transfer and extended excited-state
lifetimes [11].

Among the various combinations with TiO2, cadmium sulfide (CdS) nanocrystals have
been the most extensively studied [12–18], despite concerns about their acute toxicity [19–21].
Our group, along with several others worldwide, has already prepared CdS-TiO2 compos-
ites. We demonstrated that replacing pristine TiO2 with CdS-TiO2 as the photoanode in a
standard photoelectrochemical (PEC) cell significantly enhances photocurrent generation,
even at 0 V bias [12,22].

In practice, by using a controlled hydrothermal corrosion process followed by air
calcination at 400 ◦C of metallic titanium sheets [1], we successfully produced TiO2/Ti
substrates. The resulting titania consisted of interconnected nanofibers (NFs), each about
tens of nanometers in diameter and several hundreds of nanometers in length, uniformly
covering the metal surface. These nanofibers crystallized in the anatase phase, exhibiting
strong UV-range absorption. Using metallic Ti plates as both the support and the precursor
for TiO2 NFs allowed us to streamline the production process while ensuring optimal
contact between the photoactive and conductive elements of the photoanode, minimizing
current losses [1,23–25].

By selecting a heating temperature below 500 ◦C, we were able to promote the forma-
tion of the anatase phase, which is more suitable for our intended application compared to
other titania allotropes [26,27]. Additionally, preformed CdS nanoparticles (NPs), approxi-
mately 2–3 nm in size, were deposited onto and between the TiO2 NFs through a simple
ethanol-based impregnation method. This process resulted in a valuable CdS-TiO2/Ti
composite architecture for the targeted application [12,22]. Impregnation is considered
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as the simplest and most sustainable approach for constructing semiconductive hetero-
nanostructures [28–30].

Despite these promising photoelectrochemical (PEC) results, replacing CdS NPs with
less toxic yet equally effective metal sulfide NPs nanoparticles remained a key objective of
our work. Our goal was to reduce risks to workers, consumers, and the environment during
production and handling, ensuring that neither safety nor innovation is compromised, with
sustainability playing a central role in our approach.

In this context, we chose to test CuS-TiO2/Ti using a similar simple, low-cost material
processing method. Copper sulfide compounds, such as Cu2S and Cu7S4, are well known
for their unique optical and electrical properties. Specifically, CuS has a narrow band
gap with an energy range between 2.0 and 2.2 eV [31,32]. It can exhibit either p-type
(predominantly) or n-type conductivity depending on the nature of its self-doping, making
it highly promising for heterojunction design. CuS is often non-stoichiometric, meaning
that variations in the oxidation state of its components can result in either excess electrons in
its CB or holes in its otherwise filled valence band (VB). This property allows nanosized CuS
to be classified as a plasmonic semiconductor due to its self-doping characteristics [33,34].

Plasmonic semiconductors, including CuS, possess extraordinary optoelectronic prop-
erties, particularly related to localized surface plasmon resonances (LSPRs) in the near-
infrared (NIR) spectral region [35,36]. These characteristics make CuS an excellent candidate
for photoelectrochemical (PEC) applications, such as light-assisted water splitting, either as
a standalone material [37] or when coupled with titania [38].

Such self-doped particles with controlled morphology were previously prepared
through wet synthesis routes with variable degrees of success (see, for instance [39–43]).
Achieving the desired non-stoichiometry without contamination from foreign phases
required several strategies. Typically, the redox properties of the reaction medium were
carefully adjusted to attain the appropriate mixed valence states of copper and/or sulfur
while avoiding the formation of impurities such as CuO or metallic Cu. Post-synthesis
treatments, such as ion exchange or exposure to a redox atmosphere, were also employed
to modify the oxidation states of the copper and sulfur elements [38,40–45].

Given that one of the primary goals of this study was the straightforward and re-
producible production of uniformly sized, well-crystallized, and self-doped CuS NPs, we
opted for microwave (MW)-assisted polyol synthesis. By varying the MW heating power
and time and using either thioacetamide (TAA) or thiourea (ThU) as sulfur sources, we
successfully optimized the synthesis to obtain the desired nanostructures. In this method,
Cu2+ and S2− precursors were dissolved in a polyol solvent, and rapid heating was applied
to the reaction medium. This facilitated nucleophilic substitution and condensation reac-
tions while preventing complete reduction, thereby avoiding the contamination of Cu0 [46],
and allowing partial reduction of Cu2+ to Cu+ for the desired covellite CuS self-doping.

Additionally, the adsorption of polyol molecules on the surface of the primary particles
inhibited their growth and aggregation, enabling effective size control [47]. Finally, using a
simple ethanol-based impregnation process, the CuS NPs were deposited onto and between
the TiO2 nanofibers (NFs), resulting in the desired CuS-TiO2/Ti architectures.

Structural, optical, and electrochemical characterizations of the resulting CuS-TiO2/Ti
composite confirmed the effectiveness of this material and processing approach. These re-
sults contribute to the advancement of photoelectrochemical (PEC) technology, highlighting
its potential for sustainable hydrogen production.

2. Experiments
2.1. Material Synthesis

TiO2/Ti sheets were prepared by hydrothermal corrosion of commercial Ti plates. In
brief, 0.8× 2 cm Ti metallic plates (Goodfellow, >97%, 1 mm of thickness) were mechanically
polished (intermediate polishing) with sandpaper of different granulometries to ensure
the removal of the pre-existing oxide layers and eventual contaminants. The samples were
washed in ultrasound in water, ethanol, and acetone (10 min each) and air-dried before
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being submitted to chemical polishing. In practice, the plates were immersed in an oxalic
acid aqueous solution (5% w/w, equivalent to 0.6 mol·L−1) and heated at 100 ◦C for 2 h.
They were then washed in water and air dried before their controlled hydrothermal surface
oxidation according to already optimized operating conditions [1]: The plates were placed
in a Teflon®-lined 120 mL autoclave in an equivolumetric mixture (10 mL total) of H2O2
(30%) and NaOH (10 mol·L−1). The closed autoclave was placed in an oven at 80 ◦C for
24 h. The plates were rinsed with deionized water, protonated HCL solution (0.1 mol·L−1),
and again with deionized water and dried at 80 ◦C. Finally, a calcination in air took place
at a 45 min heating ramp, with a target temperature of 400 ◦C kept constant for 60 min.
Scanning electron microscopy (SEM) confirmed the 1D porous network titania morphology
covering the entire titanium sheet (between 0.5 and 1.0 µm in thickness), with ropes of an
average diameter of 20–50 nm, interweaving between each other, leading to a highly porous
hierarchical structure (Figure S1). Transmission electron microscopy (TEM) evidences the
veil-type structure on individual titania NFs, each veil being folded on itself, resulting in
a fiber structure with a large specific area (Figure S2) and then a large interaction surface,
which is an advantage for the desired catalytic application.

CuS particle synthesis was performed by the MW-assisted polyol process under differ-
ent conditions. In the presence of sulfide nucleophilic agents, microwave heating allows
shortening the reaction, promoting sulfidation instead of total reduction [46]. Two sulfide
sources were used (ThU and TAA), and two different operating conditions were explored:
low heating power, typically 200 W, for relatively long reaction times (25 to 30 min), and
high heating power, namely 1200 W, for very short reaction times (1 to 3 min). In practice,
6.15 × 10−2 mol·L−1 of copper (II) acetate were dispersed in 80 mL of ethyleneglycol (EG)
with either TAA or ThU (TAA or ThU/copper molar ratio being equal to 1.2). The mixture
was vigorously agitated and submitted to intense ultrasound for at least 30 min. The mix-
ture was then transferred to a microwave-adapted reactor and heated in a multiwave Anton
Paar microwave oven under constant radiation power. The resulting particles were recov-
ered by centrifugation and washed with ethanol at least three times. They were finally dried
at 60 ◦C overnight in air. The list of the prepared samples is summarized in the supporting
information section (Table S1), in which each sample is referenced by adding to CuS the
type of sulfur source, microwave power, and heating time. For instance, CuS-ThU-1200-1
corresponds to particles prepared with ThU for a heating time of 1 min under a heating
power of 1200 W. All the produced particles are from the covellite structure, as confirmed
by Rietveld refinements on all the recorded X-ray diffraction (XRD) patterns (Figure S3 and
Table S2). The smallest CuS particles were selected for the final photoanode preparation
step to take advantage of their large specific surface area. According to TEM micrographs
of ethanolic suspensions containing the variously prepared particles (Figure S4), using a
low microwave power of 200 W with a long reaction time (25 min) resulted in larger particle
sizes (up to ~40 nm). In contrast, a higher power of 1200 W with a shorter reaction time
(1 min) significantly reduced the particle size (down to ~7 nm). Additionally, for a given
reaction time, particles synthesized with the thiourea (ThU) precursor were consistently
smaller than those produced with thioacetamide (TAA), due to the faster decomposition of
ThU in the reaction medium [47]. As a result, the CuS-ThU-1200-1 particles, with a typical
size of 7–8 nm, were chosen for the fabrication of the CuS-TiO2/Ti photoanode.

The previously prepared TiO2/Ti substrates were fully immersed in a dilute CuS
impregnation solution (3 mg of CuS in 4 mL of ethanol), sonicated for 10 min, and then left
to rest overnight. This low concentration was deliberately chosen to allow for a performance
comparison between our engineered CuS-TiO2/Ti photoanode and a similarly prepared
photoanode in which the less toxic CuS co-catalysts were replaced with the more toxic CdS
ones [12,22]. After impregnation, the plates were rinsed with ethanol, dried at 80 ◦C for 1 h,
and stored under standard conditions without requiring any special handling.

126



Nanomaterials 2024, 14, 1581

2.2. Material Characterization

The structure of all the prepared samples was examined by XRD using two diffrac-
tometers (Panalytical, Almelo, Netherlands), an Empyrean equipped with a Cu Kα X-ray
source (1.5418 Å) operating in the w-2θ (w = 1◦) geometry for the plates and an X’pert
Pro equipped with a Co Kα X-ray source (1.7889 Å) operating in the θ-θ geometry for the
powders. The collected patterns were analyzed thanks to Highscore+ software version
5.2.0 (PANAYTICAL©, Almelo, The Netherlands).

The chemical composition was investigated by X-ray photoelectron spectroscopy
(XPS) on an Escalab250 instrument (Thermo-VG, East Grinstead, UK) equipped with an
Al-KαX-ray source (1486.6 eV). The pass energy was maintained at 200 eV for the survey
scan (step size = 1 eV) and at 80 eV for the high-resolution spectra (step size = 0.1 eV). The
spectra were calibrated against the (C-C/C-H) C 1s component set at 285 eV, and their
analysis was achieved thanks to Avantage software, version 5.9902 (Thermo Scientific™,
Boston, MA, USA).

The exact morphology of CuS NPs and TiO2 NFs was checked by TEM using a JEM
2100 Plus microscope (JEOL, Tokyo, Japan) operating at 200 kV. Additionally, SEM was
carried out on the as-produced pristine TiO2/Ti and composite CuS-TiO2/Ti photoanodes,
using a Gemini SEM 360 microscope (ZEISS, Jena, Germany) operating at 5 kV to check
their general morphology. The microscope is also equipped with an Oxford Instrument
(Abingdon, UK) energy-dispersive X-ray spectroscopy (EDX) detector (Ultim Max 170 mm2

detector), allowing chemical analysis, including chemical mapping. All The recorded
micrographs were analyzed by ImageJ software version 1.54 j (open source).

2.3. Photoelectrochemical Assays

Each prepared photoanode, TiO2/Ti or CuS-TiO2/Ti, was employed as a working
electrode (WE) in a home-made quartz single-compartment PEC cell (Figure 1), using
an Ag/AgCl reference electrode (RE), a Pt wire counter electrode (CE), and a Na2SO4
aqueous electrolyte ([SO4] = 0.5 M, pH = 7). In practice, the I-V curves, thanks to a
AUTOLAB PGSTAT12 scanning potentiostat (Metrohm Instrument, Herisau, Switzerland),
were collected. Prior to all experiments, the electrolyte was purged by Argon from dissolved
dioxygen. To simulate a solar light exposition, a 150 W Xenon lamp (ORIEL instruments,
Bozeman, MO, USA) was used, fixing the area of WE illumination to 0.7 × 1.0 cm2.
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Figure 1. Home-made single-compartment quartz PEC cell, working in a classic 3-electrode configu-
ration, using Ag/AgCl RE and Pt CE.

Prior to PEC measurements, the UV-visible diffuse reflectance spectra of the produced
composites were recorded on a Lambda 1050 spectrophotometer (PerkinElmer, Shelton, CT,
USA) equipped with a PTFE-coated integration sphere.

3. Results and Discussion
3.1. Photoanode Engineering

The elaboration of the CuS-TiO2/Ti substrates consisted of three main steps involving
Ti plate-controlled corrosion to produce a well-adherent thick, porous anatase coating
on a conductive substrate, polyol CuS particle synthesis optimization to obtain ultra-
fine co-catalysts (less than 10 nm in size), and an easy-to-achieve impregnation route,
tacking advantage from the abundance of pores and the high surface-to-volume ratio of
pristine TiO2/Ti.

The efficiency of the photoanode material processing was first checked by XRD analysis
(Figure 2). The recorded pattern of CuS-TiO2/Ti matched very well with that of pure TiO2
and Ti phases. Indeed, all the diffraction peaks were fully indexed in the tetragonal anatase
structure (ICDD No. 00-021-1272) and the hexagonal titanium one (ICDD No. 00-044-
1294) without clear evidence of CuS signature due to its low content and/or its ultrasmall
crystal size.
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Figure 2. XRD patterns of as-prepared CuS-TiO2/Ti, TiO2/Ti, and CuS. The peak positions of TiO2

(anatase), Ti (α), and CuS (covellite) references are given for information.

To confirm the presence of CuS particles, the engineered photoanode was observed
by SEM, and the recorded SEM micrographs were compared to those collected on pristine
TiO2/Ti. A simple contrast lecture of the two types of images evidenced some differences
on some titania fiber nodes (Figure 3). Focusing on such a zone, EDS chemical mapping
confirmed the simultaneous presence of copper and sulfur elements at this area at almost
the same concentration (Figure 4).
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Figure 4. SEM-EDX analysis of the CuS-TiO2/Ti sample: (a) Z-contrasting top view SEM micrograph
highlighting a TiO2 fiber noddle on which an assembly of CuS particles is aggregated, (b) EDS
chemical mapping confirming the copper and sulfur element co-concentration in the selected area, in
agreement with the presence of CuS particles.

A semi-quantitative EDS analysis of CuS-TiO2/Ti confirmed the presence of copper
and sulfur elements at very low but non-zero contents compared to titanium and oxygen
elements (Figure S5), leading to a whole Cu/Ti content of about 0.5 at.-%. Such an atomic
ratio aligns well with the low concentration of the CuS impregnation solution used in the
photoanode preparation. This ratio is also comparable to the Cd/Ti atomic ratio in our
previously studied CdS-TiO2/Ti photoanode, making a performance comparison between
the two systems in terms of PEC efficiency both relevant and meaningful.

Additionally, a comparison of the Cu/Ti atomic ratio from EDS with that inferred
from XPS analysis confirmed that a significant portion of the impregnated CuS particles
reside on the outer surface of the TiO2 fibers (15.4 at.% vs. 0.5 at.%), which is advantageous
for our intended application. The survey XPS spectrum of CuS-TiO2/Ti, compared to those
of pristine TiO2/Ti and CuS (Figure 5a), confirms the presence of all expected elements—Ti
and O for the TiO2 phase, and Cu and S for the CuS phase. While there were no notable
differences in the respective bonding energies between samples, a significant variation in
the Cu2p and S2p peak intensities was observed. Specifically, the surface Cu concentration
on CuS-TiO2/Ti was 2.9 at.%, compared to 23.2 at.% on the surface of pristine CuS.
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A focus on the high-resolution Cu 2p signal recorded on CuS-TiO2/Ti (Figure 5b)
compared to that of pristine CuS (Figure S6) confirms that copper is at the particle surface
divalent with Cu 2p1/2 and Cu 2p3/2 binding energies of 952.5 and 932.4 eV, respectively,
close to the values reported in the literature for CuS [48,49] and Cu2S [50,51] phases. CuS
also exhibits a small shake-up or multiplet splitting structure, while Cu2S does not [48–52].
This feature agrees with the formation of CuS without excluding the presence of Cu+

species. Additionally, the Cu LMM peaks (Figure S7) recorded on all the prepared CuS
particles, including those used for the preparation of CuS-TiO2/Ti, exhibit a peak shape
completely different from that usually observed on Cu0 species [52], confirming the absence
of copper metal. Moreover, the slight non-stoichiometry measured by XPS on the CuS
particles before and after their attachment by impregnation to the pristine TiO2/Ti (Table 1)
agrees fairly with self-doping, which may result from a partial substitution of Cu2+ cations
by monovalent Cu+ ones within the covellite lattice.

Table 1. Recapitulative table of binding energies and atomic compositions for CuS-TiO2/Ti photoan-
odes and their pristine TiO2/Ti and CuS counterparts.

Binding Energy (eV) Content (at.- %)
TiO2/Ti CuS-TiO2/Ti CuS TiO2/Ti CuS-TiO2/Ti CuS

C 1s
(C-C/C-H) 284.8 284.8 284.8 17.6 19.0 13.4

C 1s (C-O) 286.4 286.5 286.5 3.9 4.9 5.9
C 1s (C=O) 288.8 288.5 289.1 2.0 2.0 2.0
Cu LMM - 565.3 568.9 - - -
Cu 2p - 933.6 932.2 - 2.9 23.2
N 1s 400.1 399.7 399.8 0.4 0.6 4.2
O 1s 529.8 530.0 532.2 53.7 49.5 23.7
S2− 2p - 162.2 162.5 - 1.7 21.6
SO4

2− 2p - 168.5 168.9 - 0.4 5.8
Ti 2p 458.5 458.6 - 22.4 19.0 -

Assuming that all these features are representative of the whole volume of all CuS
particles (the 7–8 nm average size of CuS particles is smaller than the 10–12 nm XPS analysis
depth), one may conclude in favor of their self-doping, giving then of the properties of
plasmonic semiconductors.

Also, the S2p high-resolution XPS spectra of both CuS (Figure S6) and CuS-TiO2/Ti
(Figure 5b) are quite similar. Their total intensities are of course different, but both exhibit
a doublet at 163.5 (2p1/2) and 162.3 eV (2p3/2) characteristics of sulfide S2− species in
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CuS [48,49] or Cu2S [50,51] phases. Interestingly, both exhibit a supplementary contribution:
a broad and small in intensity peak at 168.6 eV usually attributed to sulfate SO4

2− anions,
suggesting a weak surface oxidation with the production of a thin CuSO4 passivation layer.
In other words, the composition of the analyzed copper sulfide particles is consistent with a
CuS@CuSO4 core-shell nanostructure. Comparing the intensity of the S2− 2p3/2 and SO4

2−

2p3/2 XPS peaks allows us to estimate that, approximatively, the fourth of the involved
sulfur atoms are in the form of sulfate, in agreement with a very thin protective copper
sulfate layer.

If the former XPS analysis confirmed the presence of CuS particles on the surface of
the CuS-TiO2/Ti sample, it also suggested that the chosen impregnation route did not affect
the chemical state of titanium cations on the surface of the titania coating. Indeed, there are
no significant differences between the Ti 2p XPS profiles of TiO2/Ti and CuS-TiO2/Ti, as
well as between their O 1s XPS profiles (Figure S6), agreeing very well with the TiO2 oxide
nature of the outer layer of the titanium plates [1,5,53].

Finally, the optical absorption spectrum of the engineered CuS-TiO2/Ti photoanode
was measured in diffuse reflectance and compared to that of pristine TiO2/Ti, recorded
in diffuse reflectance as well, and that of pristine CuS, recorded in a transmission scheme
(Figure 6). Regarding the semiconducting nature of TiO2/Ti, the typical anatase band-to-
band signature at around 300 nm was identified, with a band-gap value inferred from Tauc
plots of about 3.2 eV in pristine TiO2/Ti and 2.6 eV in CuS-TiO2/Ti. The last small value
is not at all the consequence of a gap decrease but is the consequence of a more complex
composite band diagram. Indeed, the CuS-TiO2/Ti spectrum is the combination of those of
pristine TiO2/Ti and CuS, with absorption capabilities ranging from UV to NIR spectral
ranges, due to the photo-excitation of both titania and copper sulfite semiconductors. The
anatase and the covellite band-to-band absorptions (around 300 [1,5] and 400 nm [30],
respectively) superposed to the self-doped CuS LSPR absorption (around 1200 nm [31,32])
explain together the optical properties of our engineered photoanode. Clearly, the amount
of CuS particles deposited on TiO2/Ti by impregnation, even small, appeared large enough
to induce a widened light absorption, which is fruitful for improved PEC responses.
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Figure 6. UV-Vis-NIR absorption spectra of (a) CuS-TiO2/Ti and TiO2/Ti recorded in total reflectance
mode compared to (b) that of pristine CuS recorded in transmission. (c,d) The Tauc plots inferred
from the previous data are given for band-gap determination. The lamp change from UV to visible
range during spectra acquisition proceeded at 320 nm.
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3.2. Photoanode PEC Properties

Hydrogen photo-generation activity of the as-synthetized CuS-TiO2/Ti photoanode
and its TiO2/Ti parent was carried out under a Xenon lamp irradiation using a passive and
neutral electrolyte. Interestingly, operating in a passive electrolyte, an intermittent illumi-
nation of CuS-TiO2/Ti provides a higher photocurrent than pristine TiO2/Ti, whatever the
applied bias (Figure 7). The chronoamperometry under intermittent lighting (black arrows
indicating the beginning of dark periods and the orange arrows indicating the beginning
of illuminated periods) shows that the sensible increase in the photogenerated current is
stable at 1.23 V (vs. Ag/AgCl), and while there is a decrease in the photocurrent during the
first minute of illuminated periods, the original values are restored after a dark period.
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Figure 7. (a) Linear sweep voltammetry (10 mV.s−1) and (b) chronoamperometry of TiO2/Ti (black
line) are CuS-TiO2/Ti (blue-green line) in a passive Na2SO4 (0.5 M) electrolyte.

By comparing the behavior of the bare and impregnated photoanodes under 0 V and
1.23 V bias, we can infer that the improved photocurrent is due to a higher amount of
photogenerated charge carriers, favored by the increase of absorbed photons, promoted by
CuS NPs. CuS-TiO2/Ti absorbs more light, in a wider spectral range, than pristine TiO2/Ti,
creating a sufficient number of electron−hole pairs. The electrons can then be transferred
from CuS CB to that of TiO2 as summarized hereafter:

CuS + hv→ CuS(e− + h+) (1)

e−(CBCuS) + TiO2 → TiO2(e−) (2)

h+(VBTiO2 ) + H2O→ 2H+ +
1
2

O2 (3)

h+(VBTiO2 ) + CuS→ CuS(h+) (4)

h+(VBCuS) + H2O→ 2H+ +
1
2

O2 (5)

The collected electrons in TiO2 CB were then transferred through the external circuit
to the Pt cathode to achieve the reduction of aqueous protons into hydrogen gas (Figure 8).
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Figure 8. General scheme of the energy band diagram of bulk TiO2 anatase and CuS covellite
versus the normal hydrogen electrode (NHE), highlighting the reaction of their VB holes with water
molecules to produce O2 and the collection of their CB electrons for their transfer to the external
circuit in a standard PEC cell. To build this diagram, band gap energies and band positions versus
NHE of anatase TiO2 and covellite CuS were inferred from [54,55], respectively.

These findings align with results from a few research groups studying CuS-TiO2 sys-
tems, which remain relatively underexplored in the literature on photocatalytic hydrogen
generation compared to metal chalcogenide-based titania nanocomposites, such as the CdS-
TiO2 system. This is despite the well-documented acute toxicity of (see, for instance, [19–21]
and the references therein).

To the best of our knowledge, notable results have been reported by Chandra et al. [56],
who prepared their composites by a hydrothermal and a solution-based process. Operating
by photocatalysis (PC) in a sacrificial Na2S (0.25 M)-Na2SO3 (0.25 M) electrolyte, they
succeeded in producing 1262 µmol of H2 per hour and per gram of catalyst, more than 10
and 9 times higher than that by pristine TiO2 and pristine CuS powders under Xe lamp
irradiation, respectively. There are also results reported by Jia et al. [57], who decorated
TiO2 nanowire arrays grown on conductive substrate by CuS nanoclusters by successive
ionic layer adsorption and reaction (SILAR method). Operating by photo-electrocatalysis
(PEC) in a passive Na2SO4 (1.00 M) electrolyte, they demonstrated an increased light
absorption and an efficient charge separation leading to an improved photocurrent. They
succeeded in obtaining within the same setup a photocurrent density 5 times higher than
that of pristine TiO2 at a bias of 0.35 V. One may also cite the results of Liu et al. [58],
who successfully constructed a CuS/TiO2 heterojunction using metal-organic framework
(MOF)-derived TiO2 as a substrate. They pointed out that CuS/TiO2 exhibited excellent
bifunctional PC activity without noble metal cocatalysts. They typically evidenced H2
production and benzylamine oxidation in a coupled experiment, with a H2 evolution
activity of the CuS/TiO2 17.1 and 29.5 times higher than that of TiO2 and CuS, respectively.
Wang et al. [59] also investigated CuS/TiO2 photocatalysts, prepared via a high-temperature
hydrothermal method, and evaluated their photocatalytic activity. They demonstrated
that loading TiO2 with 1 wt.-% CuS significantly enhanced its photocatalytic performance
for water decomposition to hydrogen in a methanol aqueous solution under Xe lamp
irradiation. The CuS/TiO2 photocatalysts produced approximately 570 µmol of H2 per
hour, which is 32 times higher than that produced by pristine TiO2.
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Clearly, in all these studies and in others (Table S3), widened light absorption and an
efficient charge separation were systematically reported. All converged, placing CuS as
one of the most interesting metal chalcogenide titania co-catalysts for water splitting.

To support these scientific advances, we compared the performance of the CuS-TiO2/Ti
photoanode with that of a similarly prepared CdS-TiO2/Ti photoanode [12,22]. The main
difference between the two is the size of the particles, with CdS having a particle size of
3 nm. Both photoanodes were tested using the same photoelectrochemical (PEC) setup.
Interestingly, the photocurrent measured for the CuS-TiO2/Ti photoanode was consistently
higher than that for the CdS-TiO2/Ti photoanode. This is attributed to the broader light
absorption range of CuS (Figure 9), indicating that CuS is a more effective co-catalyst
compared to CdS.
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Figure 9. Linear sweep voltammetry (10 mV.s−1) of CuS-TiO2/Ti (blue-green line), CdS-TiO2/Ti
(green line), and TiO2/Ti (black line) in a passive Na2SO4 (0.5 M) electrolyte, focusing on the 0 to
1.5 V bias range.

4. Conclusions

In conclusion, the integration of CuS nanoparticles (NPs) with TiO2 nanofibers (NFs)
has proven to be a promising approach for achieving efficient photoelectrochemical (PEC)
responses in water splitting and hydrogen generation, in good alignment with the relevant
literature. The synergistic properties of these nanomaterials enable excellent light absorp-
tion, effective charge separation, and efficient electron transport, leading to significant
improvements in PEC performance.

By optimizing the microwave-assisted polyol process conditions, self-doped covellite
CuS particles with sizes of 7–8 nm, which absorb in the visible and near-infrared (NIR)
spectral ranges, were successfully produced without foreign contaminants. These particles
were effectively integrated with TiO2 NFs supported on a titanium substrate, which was
prepared through controlled metal plate corrosion (hydrothermal treatment followed by
calcination). The simple ethanol-based impregnation method proved sufficient for creating
the CuS-TiO2/Ti semiconductive hetero-nanostructures.

A CuS concentration as low as 0.5 at.-% in the composite was sufficient to achieve
photocurrents of 0.030 and 0.122 mA/cm2 at 0 V and 1.23 V, respectively. In comparison,
the photocurrents measured for pristine TiO2/Ti under the same PEC conditions were
0.020 and 0.051 mA/cm2. Notably, the photocurrent with the CuS co-catalyst was com-
parable to that obtained with toxic CdS at 0 V and significantly higher at 1.23 V (0.122 vs.
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0.082 mA/cm2). These results highlight that the selected materials and the employed syn-
thetic approaches offer a novel and effective pathway for developing sustainable hydrogen
production systems.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/nano14191581/s1, Figure S1: SEM (a) top view and (b) cross view of
the as-prepared TiO2/Ti sheet confirming the 1D morphology of the formed titania, covering all the
Ti substrate surface; Figure S2: TEM micrographs recorded on an (a) assembly and an (b) individual
representative TiO2 NF separated by sonication from the as-produced TiO2/Ti sheets in an ethanolic
solution. Titania fibers appear as veils folded on themselves; Figure S3: (a) XRD patterns of CuS
particles prepared using TAA (up) and ThU (bottom) reagents while applying a microwave heating
power of 200 and 1200 W for a total reaction time of 25 and 3 min, respectively. (b) Results of Rietveld
refinements (using MAUD software) performed on the XRD pattern of CuS-ThU-1200-1 particles
to illustrate the quality of the fits: the experimental pattern (black scatter) and the calculated one
(green line) are perfectly superposed with a residue curve, defined as the difference between the
experimental and calculated diffractograms, close to zero (blue line). The inferred crystallite shape is
also given for information [60]; Figure S4: SEM images recorded on (a) CuS-TAA-200-25 and (b) CuS-
ThU-200-25 particles. TEM images of (c) CuS-TAA61200-3 and (d) CuS-1200-ThU-1200-3 particles.
(e) TEM micrograph of CuS-ThU-1200-1 particles and (f) HRTEM image of some representative
CuS-ThU-1200-1 particles; Figure S5: SEM-EDS analysis of CuS-TiO2/Ti, focusing on TiO2 fiber
nodes, where CuS particles seem to accumulate, leading to an average Cu/Ti atomic ratio of 0.5
at.-%; Figure S6. Ti 2p and O 1s high-resolution XPS spectra recorded on pristine TiO2/Ti (black)
and Cu2P and S 2p high-resolution XPS spectra recorded on pristine CuS (blue-green line); Figure
S6: Ti 2p and O 1s high-resolution XPS spectra recorded on pristine TiO2/Ti (black) and Cu2P and
S 2p high-resolution XPS spectra recorded on pristine CuS (blue-green line); Figure S7: S 2p, Cu
2p, and Cu LMM high-resolution XPS spectra recorded on CuS NPs produced using ThU or TAA
sulfur source for a microwave heating power of 1200 W along 1 min of reaction time; Table S1: List
of prepared CuS samples and their main synthesis, MW-assisted polyol synthesis; Table S2: Main
Rietveld refined structural parameters and their related reliability fit factors. The overall fit quality
is described by a weighted profile (Rwp), expected profile (Rexp), and Bragg R-value (RB) close to
1; Table S3: Comparison of the PEC performances of our engineered photoanode with those of
CuS-TiO2-based literature [38,56,57,61–67].
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Abstract: The Rashba effect appears in the semiconductors with an inversion–asymmetric structure
and strong spin-orbit coupling, which splits the spin-degenerated band into two sub-bands with
opposite spin states. The Rashba effect can not only be used to regulate carrier relaxations, thereby
improving the performance of photoelectric devices, but also used to expand the applications of
semiconductors in spintronics. In this mini-review, recent research progress on the Rashba effect
of two-dimensional (2D) organic–inorganic hybrid perovskites is summarized. The origin and
magnitude of Rashba spin splitting, layer-dependent Rashba band splitting of 2D perovskites, the
Rashba effect in 2D perovskite quantum dots, a 2D/3D perovskite composite, and 2D-perovskites-
based van der Waals heterostructures are discussed. Moreover, applications of the 2D Rashba effect
in circularly polarized light detection are reviewed. Finally, future research to modulate the Rashba
strength in 2D perovskites is prospected, which is conceived to promote the optoelectronic and
spintronic applications of 2D perovskites.

Keywords: Rashba effect; photoluminescence; 2D perovskites; optoelectronics and spintronics

1. Introduction

Organic–inorganic hybrid lead halide perovskites (OILHPs) have attracted significant
interest in the past years due to their outstanding performance as solar absorbers in
photovoltaics [1–5]. The long carrier lifetime of photogenerated carriers is a crucial factor for
excellent optoelectronic performance [6]. An extraordinarily long carrier lifetime (τ ≥ 1 µs)
and a substantial carrier diffusion length (LD ≥ 5 µm) have been measured in polycrystalline
perovskite thin films with moderate mobility (µ ≈ 1–100 cm2 V−1 s−1), which is drastically
lower than that of other conventional semiconductors, such as GaAs (µ ≈ 500 cm2 V−1 s−1).
However, the physical mechanism behind the long carrier lifetime is still elusive [7–11].
The mainstream investigation attributes it to the low trap density [12,13], which may lead
to a significant suppression in nonradiative recombination, thus greatly prolonging the
carrier’s lifetime. However, further research has found that, in perovskites with relatively
high defect density, the carrier lifetime does not significantly decrease [14]. Therefore,
the correlation between carrier lifetime and defect density in perovskite is not definite.
Currently, other models, such as high defect tolerance [15–17], photon recycling [18,19],
weak electron–phonon coupling [20–23], the presence of ferroelectric domains [24,25], the
formation of polarons, and the screening of band-edge charges [26], have been proposed
to rationalize the long carrier lifetime of perovskites. However, after years of laborious
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exploration, there are still some inherent limitations and inconsistencies in the above-
mentioned models.

Among them, the Rashba effect is also considered to be one of the most essential
reasons for the long carrier lifetime [27–29]. The Rashba effect was proposed in the 1950s,
which reveals spin splitting in noncentrosymmetric semiconductors [30,31]. For ordinary
semiconductors, the dispersion of the conduction band minimum (CBM) electrons and
valence band maximum (CBM) holes can be described as a spin-degenerate parabolic
energy band,

E(k) = }2k2/2m∗ (1)

where k is the electron wavevector, h̄ is the reduced Planck constant, and m* is the effective
mass of electrons (or holes). However, if the semiconductor lacks inversion symmetry, and
meanwhile there is strong spin-orbit coupling, an effective magnetic field Ω(k) appears
(Figure 1a), which lifts the degeneracy of the carrier spin states within each band [32]. Thus,
when the Rashba effect occurs, the spin-degenerate band splits into two spin-polarized
sub-bands deviating from the symmetric center of the Brillouin zone (Figure 1b,c).

E±(k) = }2k2/2m∗ ± αR|k| (2)

αR is the Rashba splitting constant.

αR =
2ER
kR

(3)

Figure 1c shows that the Rashba effect has two important characteristics, namely,
energy band splitting and in-plane spin splitting. ER and kR are the energy difference and
momentum offset between the vertex of the energy curve and the k origin at the high-
symmetry point, respectively. The strength of the Rashba effect is usually characterized by
the Rashba constant αR.

Due to the different orbital compositions of the conduction band and valence band,
the splitting degrees of the CBM and VBM are not equal. Therefore, the splitting will
make the carrier recombination in perovskite exhibit features similar to indirect bandgap,
thereby reducing the carrier recombination rate. In addition, because the conduction band
and valence band have opposite spin helicity, carrier recombination is spin forbidden,
which further reduces the electron-hole recombination rate. Optical selection rules for
interband transitions at the band gap are plotted in Figure 1d. The Rashba effect not only
provides a possible explanation for the long carrier lifetime in perovskites but also enables
effective control and manipulation of the polarized spins in spintronic devices. Apart
from the research on conventional optoelectronics areas, such as solar cells, LEDs, and
photodetectors [33–36], one of the exciting research directions on lead halide perovskites
would be spintronics-related technology.
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Figure 1. (a) Effective magnetic field Ω(k) induced by the Rashba effect showing the variation of the
direction at a fixed value of |k|. (b) Energies of the spin eigenstates as a function of the in-plane wave
vector. (c) The electron dispersion relation shows a doubly degenerate parabolic band at k = 0 subject
to Rashba spin splitting, fostering two parabolic bands with opposite spins (arrows). (d) Optical
selection rules for interband transitions at the band gap.
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The Rashba effect is considered one of the most essential reasons for the long carrier
lifetime of OILHPs. Moreover, the photoelectronic properties of OILHPs that can be
regulated by the magnitude of the Rashba effect. Thus, the Rashba effect in 2D OILHPs has
attracted increasing research interest. In this mini-review, the recent research progress on
the Rashba effect in 2D perovskites is summarized. Several important aspects of the Rashba
effect in 2D perovskites, including the origin and magnitude, layer dependence in 2D
perovskite, the Rashba effect in 2D perovskite quantum dots, 2D/3D composite, and van
der Waals heterostructures, are included. In addition, circularly polarized light-detection
applications based on the Rashba effect are discussed. Due to the limitation of scope,
this review does not include all achievements related to this topic, and only a selection
of representative examples is discussed. We hope this mini-review can further stimulate
research enthusiasm on this important topic so that more insights into the fundamental
understanding can be gained and more optoelectronic and spintronic applications can
be developed.

2. Rashba Effect in Three-Dimensional (3D) Perovskites

It is generally believed that the crystal structure of three-dimensional OILHP (such as
MAPbI3, MA = methylamine) at room temperature is a tetragonal system (or cubic system
or orthogonal system, depending on the material composition) with centrosymmetry. How-
ever, it has been found that the perovskite lattice does not have strict centrosymmetry [29].
The lead halide octahedron [MX6]4− in the perovskite lattice is slightly distorted [37], and
the organic cation A+ also has a certain orientation in a rapidly rotating state [38,39]. These
properties may disrupt the centrosymmetry of the perovskite lattice. In addition, there is
strong spin-orbit coupling due to the presence of heavy elements, such as lead, tin, and
iodine. The Rashba effect in perovskites is expected to be strong. Based on the above
reasons, many theoretical studies predict a strong Rashba effect in perovskites [37,40]. For
example, the spin-orbit coupling in MAPbI3 causes a displacement of the conduction band
energy level of more than 1 eV [41]. In addition, a few experimental studies also strongly
support the occurrence of the Rashba effect in the compound [42,43]. A significant effort
regarding the experimental observation of Rashba spin-splitting has been demonstrated by
Giovanni and co-workers through spin-dependent circularly polarized pump-probe experi-
ments [42]. Neisner et al. directly observed the split in the valence band by angle-resolved
photoemission spectroscopy measurements [43].

3. Rashba Effect in Two-Dimensional Perovskites

Two-dimensional OILHPs are commonly known as the Ruddlesden–Popper (RP)
phase [44–51] and the Dion–Jacobson (DJ) phase [52]. Taking RP-phase 2D perovskite
as an example, its general chemical structure is (RNH3)2An−1MnX3n−1 (n = 1, 2, 3, 4. . .),
where RNH3 is usually an organic group of aliphatic or aromatic alkylammonium, such as
2-phenylethylammonium (PEA) and n-butylammonium (n-BA), A is a monovalent organic
cation, such as CH3NH3

+ (abbreviated as MA+) and HC(NH2)2
+ (abbreviated as FA+),

and M is a divalent metal cation, mainly referring to lead Pb, X is a halide anion. The
large organic cations (RNH3

+) separate the layers of the inorganic Pb-I network. And n
represents the number of inorganic [MX6]4− octahedral structures in each period. The 2D
OILHPs have attracted increasing research interest due to their special multi-quantum-well
structures and excellent structural stability under ambient conditions [53,54].

Bychkov and Rashba proposed that the Rashba effect also appears in two-dimensional
(2D) electron gas systems [55]. Thus, the Rashba effect has been extensively investigated in
various 2D material systems, including III−V semiconductor heterostructures and topo-
logical insulators Bi2Se3 over the past few decades [56–58]. Nevertheless, Rashba splitting
energy in these 2D structures is typically smaller than 10 meV, limiting the performance
of spintronic devices based on these 2D materials [56–58]. The Rashba effect in 2D per-
ovskites has also attracted extensive research attention. Density functional theory (DFT)
calculation is an important tool for defining and demonstrating the existence of Rashba
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splitting, as well as quantifying the structural symmetry, rotation, and distortion. For
example, Zhai et al. showed the existence of Rashba splitting in the plane perpendicular to
the 2D layer of (C6H5C2H4NH3)2PbI4 based on the DFT calculations using local density
approximation (LDA) in the form of ultrasoft pseudopotentials [59]. In more detail, the
first-principles DFT calculations show that the breaking of inversion symmetry is caused
by the displacement of the Pb atom from the octahedra center, which leads to the Rashba
splitting. At temperatures below 110 K, the absorption spectrum in the photon energy
range of 2.45 to 2.65 eV shows two step-like absorption edges, which are assigned as the 1s
and 2s exciton energy at 2.38 and 2.53 eV, respectively (Figure 2a). Considering the band
edge of (C6H5C2H4NH3)2PbI4 at 2.57 eV (Figure 2b), 1s and 2s exciton binding energies
are about 190 ± 4 meV and 45 ± 8 meV, respectively. The energy differences between
δEac and δEbc scales with V2/3 indicate a Frank–Keldysh-type oscillatory feature at the
continuum band edge (Figure 2c). From the electroabsorption spectrum and photoinduced
absorption spectra of excitons and free carriers, they obtained a giant Rashba splitting in
2D (C6H5C2H4NH3)2PbI4 thin film, with energy splitting of (40 ± 5) meV and a Rashba
constant of (1.6 ± 0.1) eV·Å (Figure 2d) [59].
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Figure 2. (a) Absorption spectra of (C6H5C2H4NH3)2PbI4 film at various temperatures, which
contains 1s and 2s exciton (labeled as E1s and E2s, respectively) and an interband (IB) transition.
(b) Electroabsorption spectra of (C6H5C2H4NH3)2PbI4 thin film measured at 45 K at various applied
to electric fields. (c) Energy differences δEac and δEbc plotted versus V2/3. (d) Energy levels of the
excitons and interband transition (IB) with respect to the ground state (GS) [59]. Reproduced with
permission under Creative Common CC-BY 4.0 license.

In addition, Todd et al. investigated carrier dynamics in 2D (BA)2MAPb2I7 thin film
by time-resolved circular dichroism techniques [60]. They revealed the presence of a
Rashba spin splitting via the dominance of processional spin relaxation induced by the
Rashba effective magnetic field. The Rashba spin-splitting magnitude was extracted from
simulations of the measured spin dynamics incorporating longitudinal optical-phonon
and electron–electron scattering, yielding a value of 10 meV at an electron energy of
50 meV above the band gap, which is twenty times larger than that in GaAs quantum wells.
Moreover, a Rashba splitting of 85 meV with a Rashba coefficient αR of 2.6 eV Å was ob-
served in an emergent 2D DJ phase (AMP)PbI4 (AMP = 4-(aminomethyl)piperidinium) [61].
Jana et al. introduced a structural chirality transfer across the organic–inorganic interface
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in 2D perovskites using appropriate chiral organic cations [62]. The chiral spacer cations
and their asymmetric hydrogen-bonding interactions with lead bromide-based layers
cause symmetry-breaking helical distortions in the inorganic layers. The first-principles
calculation predicts a substantial bulk of the Rashba–Dresselhaus spin-splitting in the
inorganic-derived conduction band with opposite spin textures between R- and S-hybrids
due to the broken inversion symmetry and strong spin-orbit coupling. The chirality transfer
from one structural unit to another represents a promising approach to breaking symmetry
that modulates the Rashba effect for spintronics and related applications. These findings
indicated that 2D hybrid perovskites have great potential for applications in spintronics.

3.1. Origin and Magnitude of Rashba Spin Splitting in 2D RP Perovskites

Rashba spin splitting has been observed in multiple 2D OILHPs, yet with a significant
variance in the magnitude of spin splitting [58–61]. However, the origin of the giant Rashba
splitting remains elusive. The crucial role of the orientation of the organic cation in the
2D RP perovskite was explored by Kagdada et al. Their DFT calculation results revealed
that the MA cation rotation imposes structural distortion in the inorganic PbI6 layer, which
then varies the structure and value of the electronic bandgap, charge density, and optical
absorption. The strong spin–orbit coupling leads to a wide range of Rashba splitting
parameters from 0.04 to 0.278 eV Å. The simulated optical absorption spectra showed that
absorption edges for the different orientations of the MA molecule are not the same [63].

In addition, Zhou et al. obtained (AMP)PbI4 DJ phase crystals by an economical
aqueous method. They clarified the origin of the giant Rashba effect by temperature-
and polarization-dependent photoluminescence (PL) results [64]. The strong temperature-
dependent PL helicity indicates the thermally assisted structural distortion as the main
origin of the Rashba effect, suggesting that valley polarization still preserves at high
temperatures. The Rashba effect was further confirmed by the circular photogalvanic effect
near the indirect bandgap (Figure 3).
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Figure 3. (a) Schematic illustration of the experimental setup for measurement of photogalvanic
current. The ϕ indicates the angle between the fast axis of the quarter-wave plate (QWP) and
the incident light polarization. The θ indicates the incident angle of excitation light. (b) Room
temperature photogalvanic current of (AMP)PbI4 versus QWP rotation angle ϕ, measured at θ = 60◦

and excited via a 556 nm continuous laser [64]. Reproduced with permission. Copyright 2021,
American Chemical Society.

In addition, organic–inorganic hybrid halide perovskites are susceptible to dynamic
instabilities known as octahedral tilt, which involves a rigid rotation of the inorganic
octahedral cages and can occur along any of the three Cartesian directions in the crystal
with either in-phase or out-of-phase ordering [65]. While the phase transitions related
to octahedral tilt have been thoroughly examined in 3D hybrid halide perovskites, their
influence on hybrid 2D perovskites remains not fully comprehended. To gain insight
into this puzzle, Shao et al. utilized scanning tunneling microscopy to directly visualize
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the surface octahedral tilt in freshly exfoliated 2D RP perovskites across the homologous
series [66]. The steric hindrance imposed by long organic cations is unlocked by exfoliation.
The experimentally determined octahedral tilts from 2D RP-phase perovskites of n = 1
to n = 4 align closely with the out-of-plane surface octahedral tilts predicted by DFT
calculations. The out-of-plane octahedral tilt of the exfoliated surface is correlated to the
redshifted emission peak alongside the primary exciton in the PL spectra. Therefore, the
Rashba spin splitting is attributed to the octahedral tilt [66].

3.2. Layer-Dependent Rashba Band Splitting in 2D Perovskites

It is very significant to reveal the impacts of surface termination and the number of
inorganic layers on the amplitude of Rashba band splitting so as to enhance the under-
standing of the origin and extent of Rashba spin splitting in 2D RP-phase perovskites.
Thus, research efforts were devoted to the layer-dependent Rashba band splitting in 2D
perovskites. Singh et al. investigated Rashba spin splitting in 2D RP (BA)2(MA)n−1PbnI3n+1
with both centrosymmetric (n = 1) and noncentrosymmetric (n = 2 and 3) structures, using
first-principle calculations, polarization, and temperature-dependent PL spectroscopy [67].
They revealed the n-dependent Rashba spin splitting in 2D RP perovskites. When n = 1,
a single metal halide octahedral layer is sandwiched between long BA+ organic cations,
Rashba spin splitting is the largest. As n increases, the Rashba spin splitting decreases. The
large Rashba effect observed in the 2D RP perovskite of an n = 1 structure is attributed to
the local distortion of the PbI6 octahedron at the surface [67].

By using a combination of DFT calculations and time-resolved PL spectroscopy,
Yin et al. compared the Rashba band splitting of the prototype 3D MAPbI3 and the 2D RP
perovskites [68]. They demonstrated that significant structural distortions associated with
different surface terminations are responsible for the observed Rashba effect in 2D OILHPs.
Interestingly, their calculation results indicated that the intrinsic Rashba splitting occurs in
the perovskite crystals with an even number of inorganic layers (n = 2), in consistency with
their longer PL lifetimes and ground-state bleaching recovery lifetimes. Whereas, when the
number of inorganic layers is odd (n = 1 and n = 3), the Rashba effect of 2D RP perovskites
absences (Figure 4). These findings elucidate the significant impact of the number of inor-
ganic layers on the electronic properties of 2D perovskites, suggesting the controlling of
the n value in 2D RP perovskites to design Rahsba effects for spintronic applications.
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Copyright 2018, American Chemical Society.

In addition, Liu investigated the thickness-dependent structural distortion along with
the Rashba splitting energy by using the DFT calculation [69]. Three types of OILHPs
were compared to explore the effect of halogens and organic ligands. As the thickness
increases, the structural distortion degree decreases. The Rashba splitting magnitude
follows the same tendency. The 2D MAPbI3 is less sensitive to thickness change compared
to the 2D MAPbBr3 or the 2D MAPbCl3. Furthermore, ligands and their orientations
have dramatically different impacts on the Rashba splitting. The PEA ligands enhance the
Rashba splitting magnitude, while the BA ligands have the converse effect. The partial
charge-density analysis shows that the band edges are contributed to by a charge density
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at a specific layer in the structure. Thus, they concluded that the Rashba effect is layer
dependent in 2D HOIPs [69].

3.3. Rashba Effect in 2D Perovskite Quantum Dots

Because of the quantum confinement effect, the quantum dot usually shows fast
radiative recombination, large exciton binding energies [70], and giant oscillator transition
strengths [71]. Most theoretical descriptions of the Rashba effect on exciton fine structures
were conducted in the weak-confinement regime, in which the exciton Bohr radius, rB,
is much smaller than the typical size of the nanocrystals. The Rashba effect was treated
perturbatively, which is a valid approach, assuming αk� }2k2

2m∗ , where αe and αh are the
Rashba coefficients in the conduction and valence bands, respectively, k is the typical
quasi-momentum of exciton center-of-mass (COM) motion, and m∗ is the effective mass
of the COM motion. The momentum is k ∼ 1/R for an exciton confined in an NC with
size R, so the perturbative approach is valid when α� }2/2m∗R. This condition is clearly
not satisfied in a large NC (R � }2/2m∗α) or in NCs with enormously large Rashba
coefficients. Thus, the Rashba effect in 2D perovskite quantum dots is elusive. To explore
this question, Swift et al. constructed an effective mass model of excitons in 2D perovskite
quantum dots, which covers the full range of NC sizes and Rashba strengths [72]. The fine
structure and oscillator transition strengths of Rashba excitons confined in a 2D cylindrical
quantum dot are quite unusual. One notable aspect of the energy-level structure is the
proliferation of dark exciton states. These dark states in large quantum dots are also likely
to be thermally populated even at quite low temperatures, reducing the radiative decay
rate and, consequently, the PL quantum yield of these structures.

3.4. Rashba Effect in 2D/3D Composite Perovskite Films

Compared with common 2D perovskite, the 2D/3D composite perovskite may have a
variety of gains, such as significant interface asymmetry and an effective energy-transfer
process. On the one hand, the interface asymmetry can enhance the band splitting. On
the other hand, energy transfer can be used to improve the photoresponse. These two
effects make 2D/3D composite perovskite promising for opto-spintronic applications. The
recent development of chiral 2D/three-dimensional (3D) composite perovskites offers a
new opportunity to engineer the Rashba effect. Li et al. synthesized one pair of chiral
2D/3D composite perovskite [73]. The optical properties were studied by polarization-
dependent femtosecond transient absorption (fs-TA) spectroscopy, which revealed that the
chiral properties of organic cations were successfully transferred to the achiral part. The
Rashba effect is significantly enhanced in the 2D/3D composite structures. The spintronic
relaxation along with the Rashba effect in the 2D/3D composite structures will inspire the
further development of the next generation of opto-spintronic devices.

3.5. Rashba Effect of Van Der Waals Heterostructures Based on 2D Perovskites

The van der Waals heterostructures based on different 2D materials enable innovative
device engineering. A variety of van der Waals heterostructures have been developed based
on 2D perovskites for optoelectronic applications. Thus, it is very significant to investigate
the Rashba effect in van der Waals heterostructures. Singh et al. integrate an RP-phase
2D perovskites monolayer with another important family of 2D excitonic semiconductors,
i.e., transition-metal dichalcogenides (TMDs) [67]. A combined effect of Rashba spin
splitting in 2D RP perovskites and the strong spin–valley physics of monolayer TMDs
can give rise to effective spin–valley polarization in the heterostructures using circularly
polarized light (CPL) excitation. Thus, the 2D RP perovskite/TMD heterostructure provides
an attractive material combination for investigating valleytronic phenomena, as it reduces
fabrication complexity and sample-to-sample variance. Different 2D RP perovskites (n = 1
and 2) and monolayer WSe2s were coupled to form 2D vdW heterostructures. Robust
interlayer excitons (IXs) in staggered type-II band-aligned heterostructures were observed
(Figure 5). These IXs are strongly valley-polarized with exciton lifetimes longer than
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the intralayer excitons in the constituent monolayer TMDs, suggesting the spin–valley-
dependent optical selection rules to the IXs. This research broadens the scope for exploring
spin–valley physics in heterogeneous stacks of 2D semiconductors. They also investigated
a 2DRP-(n = 1)/MoS2 heterostructure with a broken type-III band alignment. In contrast,
there is no interlayer charge transfer, thus the 2DRP/MoS2 heterostructure does not show
any IX emission.
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3.6. Applications of 2D Rashba Effect in Circularly Polarized Light Detection

CPL is a special light beam, which consists of two spiral modes called chirality or hand-
edness. Based on the rotation of the field vector, the CPL can either rotate counterclockwise
(left handed, σ+) or clockwise (right handed, σ−) when observed from the direction opposite
to the wave’s propagation. Direct detection of CPL is a challenging task due to limited mate-
rials and ambiguous structure–property relationships that lead to low distinguishability of
the light helicities. On the one hand, the circular photogalvanic effect is considered the most
important experiment that confirms the presence of the Rashba effect in semiconductors.
The circular photogalvanic effect has been demonstrated in a variety of materials with
the Rashba effect, such as GaAs/AlGaAs multi-quantum wells, the polar semiconductor
BiTeI, 2D transition-metal dichalcogenides, and topological insulators [74–77]. On the other
hand, the Rashba effect in 2D perovskites provides new opportunities for dealing with the
challenge of CPL detection.

Chiral 2D perovskites have been recently explored as the responsive component for the
direct detection of CPL [78–84]. For example, Wang et al. inserted chiral organic ligands into
the organic layers of 2D perovskites to obtain chiral (R-MBA)2PbI4 and (S-MBA)2PbI4. The
in-plane photocurrent response generated by the CPL excitation of planar photoconductive
devices shows a typical response of the chirality-induced circular photogalvanic effect that
originates from the Rashba splitting in the electronic bands of these compounds, demon-
strating the potential applications of chiral 2D perovskites in optoelectronic devices that are
sensitive to the light helicity [85]. Similarly, Fan et al. report direct CPL detection by using
a pair of 2D chiral perovskite ferroelectrics, (R/S-3AMP)PbBr4 (3AMP = 3-(aminomethyl)-
piperidine divalent cation) [86]. These 2D perovskites undergo a phase transition at 420 K
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that is a combination of order–disorder and displacive ferroelectric transition. DFT calcula-
tions and circularly polarized light-excited PL measurements have confirmed the presence
of the Rashba effect in these 2D chiral perovskites (Figure 6a–d). This effect results in spin
selectivity, which can modulate the behavior of photogenerated charge carriers during
transitions, recombination, and transfers. Single-crystal-based devices have been shown to
directly detect CPL at 430 nm, with an on–off ratio of current higher than 1.7 × 103 and
anisotropy factors of responsivity larger than 0.20 (Figure 6e). The enhanced CPL detection
is attributed to the Rashba effect, which has a large Rashba coefficient of 0.93 eV·Å.
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4. Conclusions and Outlook

In summary, this mini-review focuses on the Rashba effect in 2D perovskites. Recent
research progress on the origin and extent of Rashba spin splitting, layer-dependent Rashba
band splitting of 2D perovskites, the Rashba effect on 2D perovskite quantum dots, the
Rashba effect in 2D/3D composite perovskite, and the Rashba effect in van der Waals
heterostructures based on 2D perovskites are reviewed. In addition, applications of the 2D
Rashba effect in circularly polarized light detection are included in this review.

Despite considerable reports on Rashba effects in 2D perovskites, the origin of Rashba
spin splitting in 2D perovskites is still under debate. Future research efforts to investigate
the impacts of the surface termination, the number of inorganic layers, the structure
of organic spacers, the planar sizes, and the distortion of inorganic octahedrons on the
magnitude of Rashba band splitting will not only gain more insight into the origin of
Rashba effect in 2D perovskites but also inspire approaches to modulate the Rashba spin
splitting. In addition, the relationship between charge-carrier dynamics and the Rashba
effect in 2D perovskites is still to be established, so that the photoelectronic properties and
photophysics of 2D perovskites can be effectively controlled by modulating the Rashba
magnitude. Apart from the research on conventional optoelectronics areas, such as solar
cells, LEDs, and photodetectors, one of the exciting research interests on 2D perovskites
will be focused on spintronics-related technology. However, the current related research is
still insufficient. In other words, there is plenty of room to design new spintronic devices
based on 2D perovskites.
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