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Preface

In recent years, new information technologies and their applications, such as big data,

blockchain, and artificial intelligence, have developed very rapidly. At the same time, the application

of these new information technologies faces severe challenges in data security, communication

security, and privacy protection, such as network attacks, data destruction, the disclosure of

private information, etc., which seriously affect the promotion and application of new information

technologies. To ensure the security of new information technologies in scenarios such as smart life,

smart cities, smart networks, etc., and promote and enhance the development of network security, this

Special Issue, named “AI-Driven Network Security and Privacy”, is organized. In this Special Issue,

new-generation network attacks and defense technology, new secure cryptographic algorithms, data

security and privacy protection technology, network and communication security protocol, security

analysis, and the evaluation of new application scenarios are discussed. It provides a platform

to discuss, exchange insights, and share experiences among researchers, industry specialists, and

application developers.

Yu-an Tan, Qikun Zhang, Yuanzhang Li, and Xiao Yu

Guest Editors
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1. Introduction

While creating unprecedented opportunities, artificial intelligence is also accompanied
by unprecedented risks. Although artificial intelligence has many advantages in network
security, it also faces some challenges in the fields of data security, communication security,
and privacy protection, including in terms of network attacks, data destruction, and
disclosure of private information, which seriously affect the promotion and application of
new information technologies. Ensuring that they are implemented securely in scenarios
such as smart life, smart cities, and smart networks, as well as promoting and enhancing the
development of network security are the goals of this Special Issue of Electronics, entitled
“AI-Driven Network Security and Privacy”.

2. The Present Issue

This Special Issue focuses on new-generation network attack and defense technology,
new secure cryptographic algorithms, data security and privacy protection technology,
network and communication security protocols, and security analysis, while also evaluating
their new application scenarios. In our call for papers, we sought to provide a platform for
researchers, industry specialists, and application developers to discuss the most pressing
issues in the field, exchange insights, and share experiences. We collected a large number
of research results, and through strict and careful selection, 23 papers were selected for
publication. We have excerpted and collated the main findings of these articles, which are
described below.

Wenjie Guo et al. introduce the opcode slice-based Malware Detection Framework
Using Active and Ensemble Learning (MalOSDF) framework, designed to address the need
for efficient and rapid feature extraction from malware samples and develop a resilient
malware detection engine capable of identifying unknown malware types (contribution 1).
Specifically, their work presents an opcode slice-based feature engineering method and
a Semi-supervised Ensemble Active Learning (SSEAL) malware detection algorithm. The
opcode slice-based feature engineering method conducts semantic aggregation, effectively
reducing feature dimensionality. Simultaneously, malicious samples are embedded with
semantic information to resolve the issue of sparse features and dimensionality explosion
associated with the one-hot encoding of all opcodes. The MalOSDF malware detection
method employs the principles of semi-supervised learning and utilizes active learning and
ensemble learning techniques. This approach enhances the quality of knowledge extraction
and learning for model training while addressing the limitations of classical machine
learning models in detecting unknown categories of malware and their vulnerability to
noisy data.

Electronics 2024, 13, 2311. https://doi.org/10.3390/electronics13122311 https://www.mdpi.com/journal/electronics1
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Zengyu Cai et al. propose an intrusion detection method for industrial control systems
based on a one-dimensional convolutional Wasserstein generative adversarial network (1D
CWGAN) (contribution 2). The 1D CWGAN is a network attack sample generation method
that combines a 1D convolution neural network (CNN) and a Wasserstein generative
adversarial network (WGAN). Firstly, the problem of low industrial control system (ICS)
intrusion detection accuracy caused by a few types of attack samples is analyzed. This
method balances the number of various attack samples in the dataset in terms of data
enhancement to improve detection accuracy. According to the temporal characteristics
of network traffic, the algorithm uses 1D convolution and 1D transposed convolution to
construct the modeling framework of network traffic data of two competing networks and
uses gradient penalty instead of weight cutting in the WGAN to generate virtual samples
similar to real samples.

Jian Lyu et al. present a streamlined and efficient framework of malware family
classification (MalSEF) (contribution 3) which leverages sampling and parallel processing
to efficiently and effectively classify a vast number of metamorphic malware variants.
The proposed parallel processing strategy is employed to reduce processing times and
ameliorate processing efficiency for feature extraction and feature matrix generation from
the entire dataset. By constructing the above lightweight feature set and applying the
parallel processing strategy, the time overhead required for classifying large amounts of
malware can be efficiently reduced. Finally, the strategy evaluates MalSEF on the Microsoft
Kaggle malware dataset and achieves a promising classification accuracy. In addition, the
processing time overhead can apparently be reduced compared with the serial processing
mode. To this end, the strategy first attenuates the complexity of feature engineering by
extracting a small portion of representative samples from the entire dataset and establishing
a simple feature vector based on opcode sequences; then, it generates the feature matrix and
conducts the classification task in parallel with collaboration utilizing multiple cores and
a proactive recommendation scheme. At last, its practicality is strengthened to cope with
the large volume of diversified malware variants based on common computing platforms.

Yuanping Nie et al. combined the analysis of artificial features and advanced neural
network features to detect Domain Generation Algorithm (DGA) domain names (contribu-
tion 4). A total of 34 artificial features related to string structure, language characteristics,
and distribution statistics were extracted. Deep neural networks were used to actively mine
high-level features of domain name characters. Then, the DGA domain name was detected
by combining traditional machine learning methods and deep learning methods. In terms
of the multi-model decision-making mechanism, a method based on statistical learning was
proposed to provide a fair comparison standard for heterogeneous models and produce
decision results with a certain level of confidence through voting. When the prediction
labels of all models lacked sufficient confidence, confidence and credibility were considered
to comprehensively evaluate the prediction quality of the model, and the prediction result
with the highest quality was selected as the final decision result.

Gangqiang Duan et al. propose a verifiable dynamic encryption scheme (v-PADSSE)
based on the public key cryptosystem (contribution 6). In order to achieve efficient and
correct data updating, the scheme designs verification information (VI) for each keyword
and constructs a verification list (VL) to store it. When dynamic update operations are
performed on the cloud data, it is easy to quickly update the security index through
obtaining the latest verification information in the VL. The paper explores the use of the
public key cryptosystem in a dynamic searchable symmetric encryption (DSSE) scheme
to verify the correctness and integrity of the result returned by the cloud server and to
manage the encryption key effectively and securely.

Jiazheng Sun et al. present the design, implementation, and evaluation of Canary,
a platform that aims to answer this question (contribution 6). Canary uses a common scor-
ing framework that includes four dimensions with twenty-six (sub) metrics for evaluation.
First, Canary generates and selects valid adversarial examples and collects metrics data
through a series of tests. Then, it uses a two-way evaluation strategy to guide the data
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organization and finally integrates all the data to give scores for model robustness and
attack effectiveness. The paper is the first to use Item Response Theory (IRT) in this process
to ensure that all the metrics can be fairly calculated into a score that can visually measure
the platform’s capability. In order to fully demonstrate the effectiveness of Canary, the
authors conduct large-scale testing of 15 representative models trained on the ImageNet
dataset using 12 white-box attacks and 12 black-box attacks and come up with a series of
interesting in-depth findings, further illustrating the capabilities and strengths of Canary
as a benchmarking platform. The paper provides an open-source framework for model ro-
bustness evaluation, allowing researchers to perform comprehensive and rapid evaluations
of models or attack/defense algorithms, thus inspiring further improvements and greatly
benefiting future work.

The subsequent contribution to this Special Issue focuses on privacy protection based
on traffic obfuscation technology (contribution 7), which is used to obscure the true traffic
of smart home devices to prevent malicious traffic listeners from analyzing user privacy
information based on traffic characteristics. The paper proposes an enhanced smart home
traffic obfuscation method called SHTObfuscator (smart home traffic obfuscator) based on
the virtual user technology concept and introduces a virtual user behavior construction
method based on logical integrity. By injecting the traffic fingerprints of different device
activities into the real traffic environment of smart homes as obfuscating traffic, attackers
cannot distinguish between the working status of real devices and the user behavior privacy
strategies introduced by the system, effectively reducing the effect of traffic classification
attack models. The protection level can be manually or automatically adjusted, achieving
a balance between privacy protection and bandwidth overhead.

A novel approach for extracting Advanced Persistent Threat (APT) attack events from
web texts is proposed in paper (contribution 8). First, an APT event schema is proposed
based on analyzing APT attack stages. Event schemas differ from field to field. For
APT events, the correct schema must be defined in order to extract effective information.
Secondly, an APT event dataset in Chinese is constructed to train models. Among the
many existing event datasets, there is no APT event dataset. Therefore, it is necessary
to construct a corresponding dataset to train extraction models. Finally, an APT event
extraction method based on the BERT-BiGRU-CRF model is proposed. This offers numerous
advantages which are helpful for solving the issues of insufficient attack sample data and
low detection accuracy.

Yuzhao Liu et al. propose a dual-backbone network detection method (DB-YOLOv5)
for an object detection model that is suitable for unmanned aerial vehicles (UAVs), aiming
at the problem of excessively small targets UAV (contribution 9). The model adopts
a composite backbone network which connects multiple identical backbone networks in
a composite manner and fuses their high-level and low-level features, thus expanding the
network’s receptive field of. A bidirectional feature pyramid network structure is also
introduced in the feature extraction stage and can fuse multi-scale features conveniently,
quickly, and effectively to improve the detection accuracy of small-scale targets. The spatial
pyramid attention mechanism is used in the output stage and can maintain the feature
representation and spatial location information of the target, further strengthening the
model’s ability to identify and locate small targets. Finally, EIoU_loss is used to further
optimize the bounding box of the small-scale target to improve the bounding box problem
in small target detection.

A depth feature extraction method for high dimensional network traffic is proposed
in paper (contribution 10). The method can extract local features without losing time
features and add residual connections, which not only alleviates the problem of gradient
disappearance but also improves the convergence speed of the network. It is combined
with a parallel algorithm for simplified recurrent unit (SRU) abnormal traffic detection.
Compared with the traditional long short-term memory (LSTM) model, the SRU model has
the advantages of high computational efficiency, fast training, strong sequence modeling
ability, low memory utilization rate, and the ability to train the accuracy of the model faster.
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At the same time, the training time required for this method is also greatly shortened, and
it can perform efficient intrusion detection on the industrial Internet.

Jingyu Liu et al. propose a dynamic adjustment technology for hot and cold data
to achieve high scalability in large key–value (KV) stores (contribution 11). Specifically,
they perform timely adjustments to data classification and change the store management
method according to the heat of real-time data changes. They introduce a hybrid index
method to improve I/O performance and reduce memory overhead. They also implement
fine-grained partial KV separation, distinguishing between small and large KV pairs in
cold data management to reduce the I/O overhead caused by frequent value movement
due to the compression operation of large KV pairs in the log-structured merge-tree. In
order to improve reading, writing, and scanning performance, they also propose a dynamic
value grouping method to effectively manage large KV pairs.

Lujuan Deng et al. propose a BERT-ETextCNN-ELSTM (bidirectional encoder rep-
resentations from transformers–enhanced convolution neural network–enhanced long
short-term memory) model for sentiment analysis (contribution 12). The model takes
text after word embedding and BERT encoder processing and feeds it to an optimized
convolutional neural network (CNN) layer for convolution operations in order to extract
local features of the text. Features from the CNN layer are then fed into the LSTM layer for
time-series modeling to capture long-term dependencies in the text. It uses pretrained mod-
els and optimized hybrid (combinatorial, fusion) neural networks for sentiment analysis to
effectively address the problem of ignoring contextual semantics in traditional sentiment
analysis methods and to better extract semantic information from the corresponding words
to achieve an effective sentiment classification of text.

Yi Sun et al. employ a number of models to extract forgery features from various
deepfake datasets and utilize the K-means clustering method to identify datasets with
similar feature values (contribution 13). They analyze feature values using the Calinski–
Harabasz Index method. Their findings reveal that datasets with the same or similar labels
in different deepfake datasets exhibit different forgery features. To solve this problem, the
authors propose the KCE system, which combines multiple deepfake datasets according to
feature similarity, and point out that the forgery category labels in the deepfake dataset lack
objectivity. The KCE system is a deepfake dataset similarity evaluation index system that
provides a measure of the similarity between different datasets. Its implementation lays
the foundation for subsequent researchers, allowing them to use these datasets comprehen-
sively. The authors’ experiments confirm that when the forgery method of the deepfake
dataset is unknown, the model can achieve better generalization performance by training
on datasets that are merged based on closer feature distances.

Shaohan Wu et al. propose a black-box evasion attack method based on the confidence
score of benign samples (contribution 14). The method extracts sequence fragments called
benign payload from benign samples based on detection results and uses an RNN gener-
ative model to learn the benign features embedded in these sequences. Then, it uses the
end of the original malicious sample as input to generate an adversarial perturbation that
reduces the malicious probability of the sample and appends it to the end of the sample to
generate an adversarial sample. According to different adversarial scenarios, the authors
propose two different generation strategies, which are the one-time generation method and
the iterative generation method.

Xiaojin Fan et al. propose a few-shot, multi-pose face recognition method based on hy-
pergraph de-deflection and multi-task collaborative optimization (HDMCO) (contribution 15).
In HDMCO, the hypergraph is embedded in a non-negative image decomposition to obtain
images without pose deflection. Furthermore, a feature-encoding method is proposed by con-
sidering the importance of samples and combining support vector data description, triangle
coding, etc. This feature-encoding method is used to extract features from pose-free images.
Finally, multi-tasks such as feature extraction and feature recognition are jointly optimized to
obtain a solution closer to the optimal global solution.
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Lu Liu et al. take adversarial examples from remote sensing image recognition as
their research object and systematically study vanishing attacks against a remote sensing
image object detection model (contribution 16). To solve the problem of difficult attack
implementation on remote sensing image object detection, they propose an adversarial
attack adaptation method based on interpolation scaling and patch perturbation stacking.
Their method is an adaptation of classical attack algorithms. A hot restart perturbation
update strategy is proposed, and the joint attack of the first and second stages of the two-
stage remote sensing object detection model is achieved through the design of the attack
loss function. To solve the problem of the excessively high modification cost of global
pixel attack, a local pixel attack algorithm based on sensitive pixel location is proposed. By
searching for the location of sensitive pixels and constructing a mask of the attack area,
a good local pixel attack effect is achieved.

To address the problem of inaccurate target tracking results in aerial unmanned aerial
vehicle (UAV) videos due to complex backgrounds, a high density of small-scale targets,
and mutual occlusion between targets, Li Tan et al. propose a strong interference motion
target tracking method based on the target consistency algorithm for UAVs (contribution
17). An interframe fusion method is introduced in the model to correct its tracking trajectory
of the target by fusing the current frame with previous frames. The method successfully
updates the model’s tracking trajectory by combining the tracking results from the previous
frames and learning them again. The model introduces a trajectory confidence mechanism
which defines the tracked trajectory’s confidence level according to its duration and then
corrects and updates the trajectory in multiple directions to ensure the accuracy of the
tracking results. It also optimizes the objective function using the alternating direction
method of multipliers (ADMM) algorithm and solves the function by iteration to obtain
the optimal tracking trajectory.

Zixiao Kong et al. propose a MalDBA (detection for query-based malware black-
box adversarial attacks) method for experiments on the VirusShare dataset (contribution
18). MalDBA defends against query-based malware black-box attacks, helping analysts
effectively detect the existence of adversarial attacks. It also can be run on ordinary personal
workstations and does not require high-performance hardware resources, so it meets the
needs of ordinary researchers who deal with a large number of malicious codes. A stateful
detection method for black-box adversarial attacks is proposed. Most of the previous
detection methods for adversarial examples (AEs) are stateless, and the method introduced
by the authors can precisely carry out a supplementary defense. Existing stateful detection
methods for malware black-box attacks are based on the feature space level, while the new
method is based on the complete malicious file.

In (contribution 19) a naming-based access control model is proposed. The model
is based on identity-based encryption with wildcard key derivation (WKD-IBE), which
ensures data confidentiality and integrity as well as fine-grained access control for many-to-
many communications in named data networks (NDNs). To effectively and securely share
resources, the paper introduce a decentralized authorization mechanism which allows
data subjects to manage the data and access policies. Furthermore, this mechanism grants
permissions in a transparent and auditable manner.

Qikun Zhang et al. propose a Nadam iterative fast gradient method (NAI-FGM),
which combines an improved Nadam optimizer with gradient-based iterative attacks
(contribution 20). Specifically, they introduce the look-ahead momentum vector and the
adaptive learning rate component based on the Momentum Iterative Fast Gradient Sign
Method (MI-FGSM). The look-ahead momentum vector is dedicated to making the loss
function converge faster and get rid of the poor local maximum. Additionally, the adaptive
learning rate component is used to help the adversarial example to converge to a better
extreme point by obtaining adaptive update directions according to the current parameters.
Furthermore, they also carry out different input transformations to further enhance the
attack performance before using NAI-FGM for attack. Finally, they consider attacking the

5



Electronics 2024, 13, 2311

ensemble model. Extensive experiments show that the NAI-FGM has stronger transferabil-
ity and black-box attack capability than advanced momentum-based iterative attacks.

Jing Li et al. propose a coverless audio-steganography model to conceal secret audio
(contribution 21). In this method, the stego-audio is directly synthesized by their model,
which is based on the WaveGAN framework. An extractor reconstructs the secret audio
and contains resolution blocks to learn the different resolution features. The method
does not perform any modification to an existing or generated cover. It is the first directly
generated stego-audio concealment method. The authors prove that it is difficult for current
steganalysis methods to detect the existence of the secret stego-audio generated by their
method because there is no cover audio. The Mean Opinion Score (MOS) metric indicates
that the generated stego-audio has high audio quality. Spectrum diagrams in different
forms are used to show that the extractor can reconstruct the secret audio successfully on
hearing it, which guarantees complete semantic transmission.

Shengang Hao et al. propose and implement an optimized monocular image depth
estimation algorithm based on conditional generative adversarial networks (contribution
22). The goal is to overcome the limitations of insufficient data diversity training and overly
blurred depth estimation contours in current monocular image depth estimation algorithms
based on generative adversarial networks. The proposed algorithm employs an enhanced
conditional generative adversarial network model with a generator that adopts a network
structure similar to UNet and a novel feature upsampling module. The discriminator
uses a multi-layer patchGAN conditional discriminator and incorporates the original
depth map as input to effectively utilize prior knowledge. The loss function combines
the least squares loss function. Compared to traditional depth estimation algorithms, the
proposed optimization algorithm can effectively restore image contour information and
enhance the visualization capability of depth prediction maps. The experimental results
demonstrate that the method can expedite the convergence of the model on NYU-V2 and
Make3D datasets and generate predicted depth maps that contain more details and clearer
object contours.

Jonghoo Han et al. propose a novel intrusion detection system (NIDS) that requires
low memory storage space and exhibits high detection performance without detection
delay (contribution 22). The proposed method directly inputs the received packet data to
the classifier without collecting them and stores the output through them. When the next
session packet is received, the previously stored output and received new packet are input
back to the classifier. Therefore, partial classification is performed every time a packet is
received. Further, whenever a new session packet is received, several state values for the
session are updated, and a feature set of the machine learning (ML) model is finally created
using these values. In addition, instead of using all packets for each session, intrusion
detection is performed before session termination because only some packets are used at
the beginning of the session, as in the conventional method. The proposed method does not
need to store packets for the current session and uses only some packets, as in conventional
methods, but achieves very high detection performance.

3. Future Directions

The future of AI-driven network security and privacy is expected to follow several
key directions, as outlined by the collection of research articles in this Special Issue. These
directions are as follows:

• Secure data sharing: through consensus calculation, the secure exchange of multi-party
keys can be completed, leading to the secure sharing of multi-party-encrypted data;

• Privacy protection: through machine learning and model training, the purposes of
data classification and identification can be achieved without providing local datasets
for training, so as to protect local privacy data from being leaked;

• Threat detection and prevention: by learning and analyzing massive amounts of data,
AI can quickly identify potential attacks and provide early warning;
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• Intrusion detection and prevention: through deep learning and analysis of network
traffic, AI can detect unusual network behavior and react quickly;

• Identification and protection of malicious code: through learning and analyzing
malicious code samples, artificial intelligence can automatically extract features and
build corresponding models, so as to achieve the accurate identification and effective
protection of malicious code;

• Automated attack defense: artificial intelligence can automatically detect and identify
abnormal patterns in network traffic to determine whether there is a potential attack
behavior in real time;

• Threat intelligence: AI can also be used to gather and analyze cyber threat intelligence.
Through large amounts of network traffic data, AI is able to identify the behavior
patterns of attackers, which can help predict future attack trends and strategies;

• Automated response and repair: when an attack is detected, AI can quickly isolate
the affected system and prevent further spread of the attack. At the same time, AI can
also automatically find and repair security vulnerabilities in the system, improving its
overall security.
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Abstract: The evolution of malware poses significant challenges to the security of cyberspace. Ma-
chine learning-based approaches have demonstrated significant potential in the field of malware
detection. However, such methods are partially limited, such as having tremendous feature space,
data inequality, and high cost of labeling. In response to these aforementioned bottlenecks, this paper
presents an Opcode Slice-Based Malware Detection Framework Using Active and Ensemble Learning
(MalOSDF). Inspired by traditional code slicing technology, this paper proposes a feature engineering
method based on opcode slice for malware detection to better capture malware characteristics. To
address the challenges of high expert costs and unbalanced sample distribution, this paper proposes
the SSEAL (Semi-supervised Ensemble Active Learning) algorithm. Specifically, the semi-supervised
learning module reduces data labeling costs, the active learning module enables knowledge mining
from informative samples, and the ensemble learning module ensures model reliability. Furthermore,
five experiments are conducted using the Kaggle dataset and DataWhale to validate the proposed
framework. The experimental results demonstrate that our method effectively represents malware
features. Additionally, SSEAL achieves its intended goal by training the model with only 13.4% of
available data.

Keywords: malware classification; opcode slice; active learning; ensemble learning

1. Introduction

In an era of unprecedented expansion in the digital landscape’s gray areas, the pro-
liferation of numerous threats has reached an alarming scale. According to Kaspersky,
there has been a 20% increase in detected malware attack attempts, surpassing 74.2 million
incidents in 2022 compared to 61.7 million in the previous year. By 2025, it is projected that
the total volume of human-generated data will reach a staggering 175 ZB [1]. This surge in
data and evolving digital threats underscores the growing significance of network security.
The relentless pace of malware evolution, characterized by the continuous emergence of
new versions and families, poses a formidable challenge for cybersecurity professionals.

Malware not only adapts to its environment but also enhances its anti-detection
capabilities through advanced techniques such as obfuscation, encryption, and shell usage,
thereby posing significant challenges for cybersecurity. Traditional methods, including
classic virus signature databases and heuristic scanning, have encountered limitations due
to their inability to effectively combat malware while exhibiting high false-positive rates.
As a result, these methods have struggled to cope with the current state of network security.
The evolving threat landscape has prompted the emergence of machine learning as a critical
tool in malware detection [2]. Machine learning techniques have proven their ability to
analyze known malware samples, extract discriminative features, and accurately classify
these samples [3,4].

Electronics 2024, 13, 359. https://doi.org/10.3390/electronics13020359 https://www.mdpi.com/journal/electronics9



Electronics 2024, 13, 359

The essence of effective malware detection lies in feature engineering [5]. Feature engi-
neering aims to extract the intrinsic attributes that are most likely to be used to distinguish
malicious software from benign software in PE files, and then generate corresponding
digital features for representation. Feature engineering generally includes the analysis, def-
inition, extraction and other steps of features. With accurate feature selection, the detection
engine can capture the deep and unique features of malicious software, providing strong
support for subsequent malicious code detection. Features typically encompass both
static and dynamic attributes. In the real physical world, initiating the dynamic analysis
of unknown software can be challenging, rendering static analysis the most immediate
and expeditious method for initial assessment. Moreover, from an efficiency perspective,
static features remain the industry’s preferred choice for detection [6]. While existing static
structures such as Data Flow Graphs (DGs) [7], Control Flow Graphs (CFGs) [8], and Func-
tion Call Graphs (CGs) [9] can encompass a substantial amount of semantic information,
they suffer from significant space consumption. Furthermore, even minor alterations in
the source code can result in substantial variations in the extracted graph features [10].
Therefore, the extraction of features from opcodes remains the most common and efficient
approach [11].

Machine learning-based methods not only require a large amount of computing re-
sources to train models but also have high data requirements [12]. The distribution of
benign and malware samples in the real world exhibits significant imbalances. Simultane-
ously, the rapid evolution of potential and unknown samples occurs at an extraordinary
pace. Despite the existence of platforms such as VirusShare, which provides an extensive
repository of malware samples, machine learning-based models for malware code detection
may still result in false negatives when they fail to adequately learn the characteristics
of malware samples. On the classic Win32 Platform, disassembling malware generates
more than 800 different instructions, where there is significant semantic duplication and
redundancy among them. Therefore, generating features solely based on all assembly
instructions is not the most efficient method. Features corresponding to invalid instructions
and redundant instructions can reduce detection efficiency and even lead to overfitting
problems. Some existing methods [13] have performed feature selection during feature
engineering to reduce dimensionality. However, this practice may result in the loss of some
semantic information that could affect the accuracy of the detection results.

Additionally, current malware detection engines [14] demonstrate effective perfor-
mance in detecting known sample types. However, they face challenges when dealing with
emerging families and unknown types of malware. Moreover, the high cost associated
with human judgment needs to be considered. Therefore, the current research focus lies
in designing a detection model that can accurately operate with minimal known labeled
samples. This model should possess the capability to withstand label scarcity and the
unequal distribution of types. This challenge limits the effectiveness of existing methods,
necessitating the exploration of solutions to overcome this bottleneck.

Why is the opcode slice defined by this work? Firstly, the concept of slicing, referred
to as program slicing, was initially proposed by Mark D. Weiser in the 1980s for debugging
and modifying source code [15]. With technological advancements, the scope of slicing
has gradually expanded from static to dynamic analysis and from forward to backward
traversal [16], encompassing a single process to multiple processes and non-distributed
to distributed programs. Application scenarios also include software debugging, testing,
maintenance, reconstruction, and security purposes [17]. Additionally, classic objects for
slicing include data streams, information flows, and dependency graphs [18], which involve
handling control flows, composite data types, and pointers. The ability to identify the
behavioral points of malware, such as data transfers, process comparisons, flow control,
program control, loop control, and other operations, offers malware analysts a clearer
understanding of the intent behind the malware. On the other hand, detection engines
primarily focus on feature engineering that can extract and quantify the critical behavioral
points of each malware.
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Despite extensive research on malware detection techniques based on semantic infor-
mation, researchers continue to face several challenging issues:

• Existing deep learning methods based on opcodes demand embedding all instructions,
which can be time consuming. Moreover, the extensive variety of opcodes, some of
which lack meaningful semantic information, can protract model construction.

• Malware evolves at a rapid pace, making it challenging to obtain accurate labels for
the latest, real-world malware samples. The central research concern revolves around
employing a minimal set of labeled samples for effective detection—a pivotal issue for
practical engineering applications.

• Current detection engines unavoidably grapple with false positives and false negatives
when confronted with previously unknown types of malware. These challenges
are intrinsically linked to human expert analysis and judgment. Consequently, it is
imperative to consider the associated costs of manual detection.

This paper introduces the MalOSDF framework designed to address the need for effi-
cient and rapid feature extraction from malware samples and develop a resilient malware
detection engine capable of identifying unknown malware types. Specifically, this work
presents an opcode slice-based feature engineering method and Semi-supervised Ensemble
Active Learning (SSEAL) malware detection algorithm. The opcode slice-based feature
engineering method conducts semantic aggregation, effectively reducing feature dimen-
sionality. Simultaneously, malicious samples are embedded with semantic information
to resolve the issue of sparse features and dimensionality explosion associated with the
one-hot encoding of all opcodes [19]. The MalOSDF malware detection method employs the
principles of semi-supervised learning, and utilizes active learning and ensemble learning
techniques. This approach enhances the quality of knowledge extraction and learning for
model training while addressing the limitations of classical machine learning models in
detecting unknown categories of malware and their vulnerability to noisy data.

The contributions of this article include the following points:

• In this paper, the opcode slice-based feature engineering method is proposed to reduce
dimensions efficiently.

• This work presents the SSEAL approach, which effectively addresses the limitations
of having extensive dataset requirements and encourages a more comprehensive
exploration of sample knowledge.

• This paper uses the Kaggle dataset for experiments and evaluates the effectiveness of
the proposed framework.

The rest of the paper is organized as follows. Section 2 surveys the related work in
the field of malware detection. Section 3 describes the framework of MalOSDF. Section 4
evaluates its performance and compares it with similar studies. Section 5 discusses this
work. Section 6 concludes our findings in the paper.

2. Related Work

Malware detection can be considered a classic feature engineering process, which
includes feature definition, feature extraction, and feature detection [20]. Malware detec-
tion methods can be categorized into syntax-based and semantic-based approaches. The
semantic-based approach provides stable support for interpretability.

MalInsight [21] is proposed by profiling malware from three aspects, which are the
basic structure, low-level behavior, and high-level behavior. And the importance of the
three aspects is evaluated and sorted, quantitatively demonstrating that these aspects have
the same effects with the optimal feature set. Han et al. proposed MalDAE [22], which
correlates and fuses dynamic and static API sequences into one hybrid sequence based
on semantics mapping and constructs the hybrid feature vector space. MalDAE gives an
understandable explanation for common types of malware and provides predictive support
for understanding and resisting malware. Inspired by this method, this work believes that
we can focus on selecting opcode with strong maliciousness for slicing.
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Huang et al. [23] proposed EAODroid, an approach based on the enhanced API order
for Android malware detection, which learns the similarity of system APIs from a large
number of API sequences and groups similar APIs into clusters. The extracted API clusters
are further used to enhance the original API calls executed by an app to characterize the
behaviors and perform classification. The method of clustering similar APIs provides us
with inspiration, that is, we can define corresponding slices for similar opcode.

The issue of feature redundancy is addressed by Kong et al. [24] through the utilization
of mutual information-based feature selection techniques. This approach effectively reduces
over 900 features to 64 dimensions while incorporating sample row and size characteristics,
thereby achieving efficient feature detection. However, extensive feature selection based
on mutual information consumes a substantial amount of time. Our intuition is to directly
extract features from a semantic perspective, which can offer a more rapid and potentially
even more interpretable alternative. Therefore, this paper endeavors to define feature slices
from a semantic standpoint as the basis for subsequent feature engineering.

In the feature detection phase, machine learning has been widely adopted by numerous
scholars as the primary technical approach due to its powerful data mining capabilities [25].
The field of machine learning encompasses various subfields, including supervised learn-
ing, unsupervised learning, semi-supervised learning, and reinforcement learning. Both
supervised and unsupervised learning require labeled data for model training.

The conventional approach in existing semi-supervised machine learning methods
typically involves assigning pseudo-labels to unlabeled data that closely resemble the
distribution of existing labeled data. However, this practice may lead to potential model
detection failures when confronted with unknown samples. The acquisition of malicious
samples varies across different scenarios, resulting in imbalances within the sample distri-
bution. Addressing this challenge is crucial during the model training process, prompting
researchers to contemplate effective strategies for training models using an unbalanced
and limited amount of malware samples.

Renato et al. [26] proposed an iterative data preprocessing method capable of in-
creasing the separation between clusters. Unlike other methods, it iteratively favors more
meaningful features. Wang et al. proposed SIMPLE [27], a few-shot malware classification
approach that utilizes a multi-prototype modeling technique to generate multiple proto-
types for each malware family, thereby enhancing its generalization capacity based on
observations derived from dynamic analysis of API call sequences. Gao et al. proposed
MaliCage, a packed malware family classification framework based on DNN and GAN.
MaliCage consists of three core modules: a packer detector, a malware classifier, and a
packer generative adversarial network (GAN). This method effectively overcomes the
bottleneck caused by an insufficient sample size.

Numerous scholars have conducted research in the realm of the cost-effective acqui-
sition of labeled data, employing technical and mathematical methods. This domain is
referred to as active learning, which involves human intervention in the labeling process
during the training of detection models. Annotated samples contain knowledge that is
more amenable to exploration, thereby enhancing the model’s capabilities.

The paper argues that samples which can be easily misclassified by existing detection
engines actually contain more information that is helpful for improving the accuracy of
the detector. In other words, these challenging-to-categorize samples may possess crucial
features. If these features can be correctly identified and utilized, they have the potential
to enhance the performance of the detector. The work presented in [28] focuses on the
anomaly detection domain and introduces an active learning-based approach. The crucial
aspect of this study lies in the fact that data points located at the classification boundaries of
detection engines are likely to possess a wealth of untapped information, particularly when
making determinations about unknown samples. In machine learning models that require
extensive training data, accurately labeling these data points holds paramount importance
for enhancing the model’s detection performance. Consequently, active learning becomes
exceptionally vital in such scenarios.
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3. Methdology

To tackle the above challenges, this section provides an overview of the MalOSDF
framework. Specifically, this paper presents a comprehensive assembly slicing approach
to characterize malicious behavior and proposes a feature engineering method for the
efficient embedding and optimal utilization of semantic information. Additionally, this
section outlines the SSEAL detection algorithm that considers the real-world expert costs
associated with addressing threats posed by rapidly malware evolving.

3.1. MalOSDF Overall Architecture

This work introduces a malware detection framework based on opcode slice as de-
picted in Figure 1. It consists of two main components: the feature engineering method
and the SSEAL algorithm. In this section, we provide a brief description for each step
as follows:

1. Disassembly: Decompiling binary code.
2. Feature Definition: Based on the semantic analysis of assembly instructions, we

customarily define malware opcode slice. Assembly program slicing refers to the
statements or expressions in assembly programs that affect specified variables within
the sample, leading to the creation of a mapping dictionary.

3. Feature Engineering: Data preprocessing is performed on the samples, and based on
predefined opcode slice types, opcode slice sequences are extracted from the assembly
programs of malware.

4. Generating Feature Matrices: The statistical features are calculated for each malware
sample based on the opcode slice sequences. Specifically, this method counts the
occurrences of each slice and N-gram statistically, thereby generating the feature
matrix of the set of malware samples.

5. Malware Detection: Using the proposed SSEAL algorithm, a classifier is trained based
on the feature vectors of malware samples.

Figure 1. MalOSDF overall architecture.

The classifier utilized for malware detection consists of two key modules, which will be
introduced in Section 3.3 in detail. For the Ensemble Learning Module, ensemble classifiers
are generated through a hard voting mechanism, including Random Forest (RF), Extra
Trees (ET), and Gradient Boosting Trees (GBT). And the Semi-Supervised Active Learning
Sample Sampling Module handles the semi-supervised active learning process.

This paper addresses the challenge of managing a large number of features in tradi-
tional machine learning-based malware detection. This work proposes a method based
on opcode slice construction for generating static features of malware. This approach not
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only conserves significant computational resources but also reduces the time required for
malware detection, thereby providing a robust foundation for efficient detection.

Furthermore, this framework introduces a Semi-supervised Ensemble Active Learning
algorithm that not only enhances the efficiency of training multi-class models but also
reduces the training time, mitigates the impact of noisy data, tackles the issue of imbalanced
sample distribution, and equips the system with the capability to identify unknown family
samples of malware.

3.2. Feature Engineering

From the above analysis, this section proposes an opcode slice-based feature engineer-
ing method. Specifically, we give the definition of opcode slices and describe the method of
features embedding.

3.2.1. Opcode Slice Definition

After disassembling the malware binary file, the assembly instruction is obtained. An
assembly instruction generally consists of two parts: the operation code and the operation
number. Building upon classical instructions that encompass data transfer, arithmetic
operations, logical operations, string operations, program control, input–output opera-
tions, processor control, privilege instructions, and system function call instructions, this
invention leverages the distinctive semantics of opcode in malware assembly instruc-
tions. Furthermore, we explore the inclusion of additional semantic information from the
operands associated with opcodes, such as pointers, variable values, function addresses,
and memory details, to enhance the feature engineering process.

Specifically, after extracting all the opcodes and operands, we first normalize and
standardize the operands according to the method [29] shown in Table 1. (1) Immediate
numbers are divided into function call, jump address, reference, and default classes based
on their purpose. Calling functions are further classified as standard library function
calls, recursive calls, internal calls (within the same file), and external calls (in different
files). Jump addresses represent jumps between basic blocks within a function. References
distinguish between string references, static variable references (in the program’s global
data area or static data area), and data references (in the program’s data segment or
stack). Other immediate numbers are not differentiated. (2) Registers are classified into
the following categories: The flag registers, such as control registers, debugging registers,
floating-point registers and segment registers, are classified into one class. In the special
purpose register, the stack pointer register, base register and instruction pointer register are
grouped into one class. Except for the aforementioned registers, all others are classified
as general-purpose registers and further differentiated based on the number of bytes they
can hold (such as 1 byte, 2 bytes, 4 bytes, 8 bytes, etc). (3) Pointers are divided into direct
addressing and indirect addressing based on their addressing method. Direct addressing is
further categorized into pointers less than 8 bytes in size and pointers greater than 8 bytes in
size. Indirect addressing is divided into string pointers and other pointers according to their
pointing object class. The second step is to sort the importance of operation instructions
based on TF-IDF (term frequency–inverse document frequency) statistical analysis. Then,
semantic analysis is performed on opcodes with a TF-IDF value greater than 1 to obtain
the opcode slices. Our work customizes the corresponding opcode slices for frequently
occurring opcodes within malware by categorizing 157 commonly appearing assembly
instructions into 35 distinct opcode slices as shown in the Table 2.
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Table 1. Normalization rules for instruction operands: immediate, register and pointer [29].

Operand Categories Normalized Form

function call libc[funcname], self, innerfunc, externfunc
jump address jmpdst
reference dispstr, dispbss, dispdataImmediate

default immval

size reg[1|2|4|8]
stack/base/instruction [s|b|i]p[1|2|4|8]Register
special purpose reg[cr|dr|st], reg[c|d|e|f|s]s

direct memptrPointer indirect [base + index×scale + dispstr]

Table 2. Opcode slice definition.

Slice Label Opcode Contained Slice Label Opcode Contained

Data_Transfer mov, movsx, movzx Arithmetic_Div div, idiv

Data_Swap xchg, xlat, bswap Logical_Operation and, or, not, xor

Stack_Operation push, pop, pusha, pushad,
popa, popad Test test

Address_Transmission lea, lds, lss, les, lfs, lgs Bit_Test bt, bts, btr, btc

Flag_Transfer_Ah lahf, sahf Bit_Scan bsf, bsr

Flag_Transfer_Stack pushf, pushfd, popf, popfd Shift_Operation shl, shr, sal, sar, rol, ror, rcl, rcr,
shld, shrd

Type_Conversions cbw, cwd, cwde, cdq, bswap Unconditional_Tran jmp

String_Operation movs, movsb, movsw, movsd Conditional_Tran

jz, jnz, je, jne, js, jns, jo, jno, jp,
jpe, jnp, jpo, jc, jnc, jb, jnb, jae,
jnae, jl, jnge, jnl, jge, jle, jng,
jnle, jg, ja, jnbe, jna, jbe

String_Storage stos, stosb, stosw, stosd Conditional_Transfer jcxz, jecxz

String_Reads lods, lodsb, lodsw, lodsd Loop_Control loop, loopz, loope, loopnz,
loopne

String_Comparison cmps, cmpsb, cmpsw, cmpsd Call call

String_Scan scas, scasb, scasw, scasd Return ret

Arithmetic_Add add, adc, inc Interrupt int, iret

Arithmetic_Sub sub, sbb, dec Repeat rep, repe, repz, repne, repnz,
irp, irpc

Arithmetic_Neg neg Basic_Input_Output in, out

Compare cmp String_Input_Output ins, ins, insb, insw, insd, outs,
outsb, outsb, outsw, outsd

Arithmetic_Mul mul, imul Flag clc, cmc, stc, cld, stc, cli, sti

Processor nop, hlt, wait Privilege sgdt, lsi, invd

3.2.2. The Process of Feature Engineering

Regarding the section on assembly program feature representation, after obtaining
the opcode slices, our method computes their statistical features. This involves calculating
the N-gram statistical features based on the opcode slices for each malware sample. These
features serve as the feature vectors for the assembly program training samples. The specific
workflow is shown in Figure 2:
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1. Malware samples’ disassembled opcodes are sequentially read, and opcode slices are
extracted based on predefined opcode slice definitions, ignoring undefined opcodes.

2. The occurrences of opcode slice N-grams are counted and sorted for N = 1, 2, 3.
3. The top-k opcode slices N-grams are selected as features.
4. The N-gram statistical features are computed for each assembly sample, forming

individual sample feature vectors.
5. A feature matrix is constructed for the code sample dataset.

Figure 2. The process of feature engineering.

For example, we can use s1 ∼ sm to mark assembler training samples.
Define the top-k opcode slice n-gram as follows: Si, i ∈ (1 n). Given the assembler

sample sp of a malware, count the number of Si occurrences as Np,i. Then, the feature vector
of sample sp is defined as Equation (1), where labelp is the label of the assembler sample
malwarep:

~Fpj = { Np,1 . . . Np,i . . . Np,n labelp } (1)

Defining the feature matrix as a collection of feature vectors, then the feature matrix
for p assembly program samples is shown as Equation (2):

FM =





N1,1 . . . N1,i . . . N1,n label1

Np,1 . . . Np,i . . . Np,n labelp

Nm,1 . . . Nm,i . . . Nm,n labelm





(2)

The various dimensions (columns) of N in the figure above represent the frequency of
corresponding slice types. Subsequently, we can use the feature matrix FM derived from
the assembly program samples to train the subsequent detection engine.

3.3. Semi-supervised Ensemble Active Learning

One of the challenges that semi-supervised learning algorithms need to address is the
introduction of a significant amount of noisy samples during the training process, which
can hinder the model from learning the correct information. SSEAL alleviates the issue
of noisy samples by employing a collaborative training algorithm for multiple classifiers,
which is an ensemble learning approach.

Active learning methods enable a more efficient identification of samples that contain
valuable information within the dataset. Expert queries also equip the model with the
capability to detect unknown samples. It is important to note that, for the purpose of
analysis, we assume that all labels provided by experts are reliable.

This algorithm includes the following modules in sequence.

1. Ensemble Learning Module
The integrated learning module includes multiple base learners. In this method, three
base learners are designed, namely RF, Extra Trees, and GBT. Each sample is inputted
to different base learners to obtain the probabilities of the test samples belonging to
different categories. Simultaneously, the detection results of each base learner are
outputted, and the final results of the test samples are obtained by hard voting from
the three base learners.
Let us delve deeper into the three base learners involved. Each of these base learners
possesses unique characteristics and operating mechanisms, collectively forming the
framework of our integrated learning module (Figure 3).
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Figure 3. The process of feature engineering.

Random Forest (RF): Random Forest is an ensemble learning method that operates
by constructing a multitude of decision trees at training time and outputting the
class that is the mode of the classes (classification) or mean prediction (regression)
of the individual trees. It enhances the performance of a single decision tree by
introducing randomness in the feature selection and bootstrap sampling, thereby
improving robustness and generalization.
Extra Trees (ET): Extra Trees, or Extremely Randomized Trees, is another ensemble
learning method that builds multiple decision trees and combines their predictions.
Similar to Random Forest, it introduces randomness in the feature selection process,
but Extra Trees takes it a step further by using random thresholds for each feature
rather than searching for the best split points. This additional randomness can lead to
increased diversity among the trees and potentially better generalization.
Gradient Boosting Trees (GBT): Gradient Boosting is an ensemble technique where
weak learners (typically shallow decision trees) are combined to create a strong
learner. GBT builds trees sequentially, with each tree correcting the errors made by the
previous ones. It minimizes a loss function by adding weak learners, which allows
it to capture complex relationships in the data and achieve high predictive accuracy.
Gradient Boosting Trees are particularly effective in handling diverse and non-linear
patterns in the data.

2. Semi-supervised active learning module

The integrated learning module calculates the detection confidence value for each
sample by determining the probability that it belongs to different categories as output by
the three classifiers. Samples with high and low confidence levels are marked according
to preset screening criteria, which will be described in detail below. The active learning
component transfers low-confidence samples to an expert marker, who inputs labeled codes
into the tagged dataset. In the semi-supervised learning part, firstly, count the maximum
value Num_max of different types of samples in the labeled sample set. Then obtain the
corresponding pseudo tags for these high-confidence samples and calculate the difference
Num_aug between this category and Num_max. Finally, select the high-confidence samples
with the maximum Num_aug from this category to add them to the labeled dataset.

Uncertainty sampling involves the extraction of samples that are challenging for
the model to distinguish, which are then provided for expert annotation. These hard-to-
distinguish samples contain valuable knowledge that can significantly enhance algorithmic
detection. The key here is quantifying the model’s difficulty in differentiation. Classic ap-
proaches include least confident, margin sampling, and entropy methods. Margin sampling
selects samples that are almost equally likely to be classified into two categories, meaning
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the difference in the model’s probabilities for these data points is minimal. Specifically,
margin sampling chooses samples with the smallest difference between the highest and
second-highest predicted probabilities. In the context of multi-class malware detection in
this paper, margin sampling is found to be more effective for model training.

The newly added dataset with tags needs to be removed from the original test set,
which is the unlabeled set. Then, it should be re-entered into Module 1 to update the model
until reaching the specified number of iterations or when the overall tag ratio reaches
the threshold. At that point, the loop stops, and we obtain the final training model and
classification results.

The overall algorithm is shown in Algorithm 1.

Algorithm 1: Semi-supervised Ensemble Active Learning (SSEAL).

Input: unlabeled data Du, labeled data D, classifiers RF,Extra Trees and GBT,
confidence threshold θ.

Output: trained models RF,Extra Trees,GBT.

1 // Ensemble learning
2 foreach xi in Du do
3 probr f ← RF(xi)

4 probet ← ExtraTrees(xi)
5 probgbt ← GBT(xi)

6 end
7 pseudo label pli ← vote(probr f , probet, probgbt)

8 // Semi-supervised active sampling
9 foreach xi in Du do

10 con fr f ← RF(xi)
11 con fet← ExtraTrees(xi)
12 con fgbt← GBT(xi)
13 if conf<θ then
14 // Active learning
15 get expert label eli
16 add <xi, eli> to data Temp
17 add data Temp to labeled data D
18 remove data Temp from unlabeled data Du

19 else
20 // Semi-supervised Learning
21 nummax ← max(num(class1)

, num(class2)
, . . . , num(classn))

22 if num(pli) < nummax then
23 add <xi, pli> to data Temp
24 add data Temp to labeled data D
25 remove data Temp from unlabeled data Du

26 else

27 end
28 end
29 end

In particular, each base learner outputs the probability of classification results for each
sample. Then, the edge sampling margin sampling is carried out to calculate the probability
difference between the largest and second categories. It is called reliability, shown in the
following formula:

Con fx = margin(x) = Py1 − Py2 (3)
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The classifier has a low confidence in the sample, which indicates that the sample
contains more mining knowledge and is more useful for model training. Then, we select M
samples with a mining value in turn as shown in the following formula:

x∗M = argminx(Pθ(ŷ1 | x)− Pθ(ŷ2 | x)) (4)

The algorithm utilizes the pool-based active learning method. Pool-based active
learning allows for labeling by experts, enabling the algorithm framework to identify
unknown samples. Specifically, the tested sample queues are sorted from high to low to
obtain a confidence queue. Experts are then contacted to manually label samples with
low confidence levels. Samples with higher reliability can be used to enrich and balance
datasets. The classification results of all classifiers are unified, that is, the confidence level
is high, and pseudo tags are directly added. After the newly obtained pseudo-label sample
is selected, it is initially qualified to be added to the training set. However, the sample
selection strategy also needs to consider the sample equilibrium situation. This algorithm
sets that if the malware sample type already occupies the largest distribution, it will not be
added to the training set.

The above measures make the training dataset of the model balanced and enable the
model to obtain the ability to resist noise data.

4. Experiment and Analysis

In this section, we provide details about the experiments conducted to evaluate the
proposed method for disassembling binary code and its application in malware detection.
We start by introducing the dataset used in the experiments and then proceed to discuss
the experimental setup.

4.1. Dataset

To disassemble binary code, this work employs IDA Pro 6.4 for the disassembly of
binary source files. This paper uses Microsoft’s Kaggle dataset [30] and Intel’s DataWhale
dataset for experiments. The distribution of various types in the dataset is shown in the
following Table 3.

Table 3. Distribution of samples in experimental dataset Kaggle.

Family Kaggle DataWhale
1 (Ramnit) 1541 385

2 (Lollipop) 2478 598
3 (Kelihos_ver3) 2942 784

4 (Vundo) 475 6641
5 (Simda) 42 5676
6 (Tracur) 751 7563

7 (Kelihos_ver1) 398 7560
8 (Obfuscator.ACY) 1228 11,368

9 (Gatak) 1013 9425
Total 10,868 50,000

4.2. Experiment Setup
4.2.1. Experimental Environment

The runtime environment of the experiment is (1) Intel(R) Core(TM) i7-10870H CPU @
2.20 GHz, 16 GB memory, (2) Ubuntu 18.04 (64 bit).

4.2.2. Experimental Design

In order to verify the effectiveness of the proposed method, we designed experiments
to verify the effectiveness of the proposed feature engineering and SSEAL. Specifically,
the following five types of experiments are designed in this paper. Reducing the cost of
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data labeling is one of the core focuses of our research. Therefore, out of a total of over
10,000 samples, we select only 100 labeled samples as initial data. The model obtains
50 semi-supervised learning samples and 50 active learning samples, respectively, in each
iteration as supplements to the training set.

(1) To demonstrate that feature engineering can effectively reflect the characteristics of
different malicious code families, we compare the performance of traditional machine
learning methods using features of varying dimensions.

(2) To verify that SSEAL is more robust than a single classifier, we compare SSEAL with a
single classifier. This work observes an accuracy trend of SSEAL and single classifiers
as the number of iterations increases. The single classifiers includes Random Forest,
GBT and Extra Trees. There is no difference in the sampling strategy between SSEAL
and base classifiers except that the base classifier only uses its own queue to filter
low-confidence samples and high-confidence samples.

(3) To verify the effect of SSEAL under different dimensional features, we compare SSEAL
algorithms in different N-gram dimensions.

(4) To verify the ability of SSEAL to detect unknown malicious samples, this paper
observes its performance on unknown malware that was not included in the initial
labeled dataset.

(5) To verify the ability of SSEAL to detect unbalanced malware datasets, this study
compared the performance of SSEAL with different numbers of labeled samples for
the initial training. We set 50, 100, and 200 samples in the initial labeled sample set,
and each experiment performed 20 iterations with 50 samples queried in each iteration
to evaluate the performance of SSEAL by observing the accuracy of the model in
each iteration.

4.3. Results and Analysis
4.3.1. Comparison of Machine Learning Methods Across Varying Feature Dimensions

In order to evaluate the feature engineering method proposed in this paper, this paper
adopts classifiers such as Random Forest, decision tree, nearest neighbor classification and
extreme gradient lifting tree to carry out the experiments. The results of the classification
detection based on traditional classifiers are shown in Table 4.

Table 4. Detection results of traditional classifiers.

Random
Forest

Decision
Tree KNN XGBoost

Accuracy 97.93% 96.23% 96.04% 97.38%
precision 97.38% 94.32% 95.93% 95.19%
Recall 93.12% 91.52% 91.39% 91.43%

Kaggle

F1 score 97.59% 92.52% 92.96% 92.69%
Accuracy 98.11% 97.28% 96.19% 97.13%
precision 97.70% 94.81% 93.06% 92.74%
Recall 94.34% 94.06% 90.58% 91.55%

DataWhale

F1 score 95.36% 94.02% 91.39% 92.38%

As shown in Table 4, the accuracy of using the Random Forest classification algorithm
is relatively higher, and the experimental results show that 97.93% accuracy can be obtained
based on 37-dimensional feature vectors.

Further, in order to prove whether this feature engineering method has space for
further optimization, this paper further selects top-k (k = 37, 21, 15) dimension slice features
for classification according to the occurrence frequency of these features. The experimental
results are shown in Table 5.
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Table 5. Classification results of different dimension of opcode slice features.

Feature Dimension Metric Random Forest Decision Tree KNN XGBoost

N = 37
Accuracy 97.93% 96.23% 96.04% 97.38%
Precision 97.38% 94.32% 95.93% 95.19%

Recall 93.12% 91.52% 91.39% 91.43%
F1 Score 94.59% 92.52% 92.96% 92.69%

N = 21
Accuracy 97.79% 96.55% 96.04% 97.33%
Precision 97.22% 95.77% 95.93% 96.62%

Recall 93.07% 91.84% 91.39% 91.27%
F1 Score 94.47% 93.10% 92.96% 92.89%

N = 15
Accuracy 97.47% 95.63% 96.14% 97.06%
Precision 97.03% 92.42% 96.03% 96.40%

Recall 92.81% 91.02% 91.47% 92.49%
F1 Score 94.25% 91.47% 93.04% 93.77%

The experimental results demonstrate that the Random Forest algorithm still achieves
higher detection rates, and the impact is not significantly reduced when reducing the slice
dimension. The accuracy rate reaches 97.79% when selecting 21-dimensional slice features
and 97.47% when selecting 15-dimensional slice features.

This experiment proves that by only selecting key opcode slice features with richer
semantics, the desired classification effect can be achieved.

It can be observed that the feature engineering designed in this paper yields superior
results compared to other methods, as it saves time for feature preprocessing and training
while also reducing the space complexity.

4.3.2. Comparison between SSEAL and Single Classifiers

In this experiment, SSEAL is compared with single classifiers with the BSS strategy
to show the impact of ensemble classifiers. Figure 4 shows that the accuracy of SSEAL is
higher than other single classifiers. When the iteration rounds 20 times, the accuracy of the
approaches gradually becomes stable, and the accuracy of SSEAL is slightly higher than the
other approaches; when the iteration round is less than 20, SSEAL has better performance
than the other approaches in most iterations.

(a) (b)

Figure 4. Comparison between SSEAL and single classifier. (a) Kaggle, (b) DataWhale.

Our advantage is that we use a small part of the data. The total sample size is 10,212,
but our initial data size is 100, and after 20 iterations, we use a total of 1098 samples, which
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accounts for 1098/8169 = 13.4% of the unlabeled data, and our work still achieves over
99 percent accuracy.

4.3.3. Comparison of SSEAL Algorithms in Different Feature Dimensions

In this experiment, we compared the effect of SSEAL algorithm using different feature
dimensions. Figure 5 shows the running results of the 956-dimensional feature (left) and
the 4250-dimensional feature (right), which take 7 min 25 s and 13 min 54 s, respectively.
Although the final accuracy of using the 956-dimensional characteristic matrix is slightly
lower than the result of the 4250-dimensional one, it still reaches 98.9%. On the basis of
maintaining high accuracy, the model with low feature dimension converges faster and
takes less training time, showing excellent performance.

(a) (b)

Figure 5. Comparison of SSEAL algorithms in different feature dimensions. (a) 956-dimension,
(b) 4250-dimension.

4.3.4. Evaluation of SSEAL to Detect Unknown Malware

In this experiment, the ability of SSEAL to detect unknown malware is evaluated.
As shown in Figure 6, SSEAL can achieve a good detection effect on the samples with a
relatively large proportion. The detected F1-score gradually converges to 1. For malware of
the fourth and sixth categories, which have very few samples, SSEAL can quickly filter out
these rare attack samples. The detection rate of the fifth category samples is completely
undetected in the beginning, but it can be found in the sixth round. As the iterations
increase, the detection ability of SSEAL for this malware improves rapidly.

(a) (b)

Figure 6. F1 scores of nine families. (a) Kaggle, (b) DataWhale.
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Figure 7 shows the distribution of different types of samples input to the model in
each round after using the sample selection equalizer. It can be seen that the nine types
of samples basically meet the equilibrium conditions and can provide a good training
environment for the sample to resist noise data.

(a) (b)

Figure 7. Sample distribution of different categories. (a) Kaggle, (b) DataWhale.

4.3.5. Evaluation of SSEAL with Different Samples in Pre-Training

This experiment evaluates the influence of the pre-training dataset to SSEAL. This
work pre-trains SSEAL with 20, 50, and 100 labeled samples, and records the accuracy
of SSEAL in each iteration. As shown in Figure 8, the influence of the pre-training data
to SSEAL is obvious. When there are fewer pre-training samples, the initial accuracy of
SSEAL is lower.

Figure 8. Accuracy of different pre-training sample sizes.

When the pre-training samples are 20, the initial accuracy of SSEAL is only below 70%,
but when the pre-training samples are 100, the accuracy can reach 86%. As the number
of iterations increases, the detection capability of SSEAL is rapidly improved, and the
advantage of using more labeled samples in the pre-training is no longer reflected. After
14 iterations, the 20-sample pre-trained model catches up with the 100-sample pretrained
model in terms of performance.
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4.3.6. Comparison with Similar Studies

In this section, we compared our method with other studies using the same dataset or
similar algorithms, from the aspects of accuracy, features, time consumption and occupied
space. The comparison results are shown in Table 6, where “-” means unstated.

Table 6. Comparison with similar studies.

This
Work

All
Opcode Ahmadi et al. [31] Kong et al. [24] Raff

et al. [32]
Le

et al. [33]

Dataset “Kaggle” from Microsoft Malware Classification Challenge

Selected Feature Opcode
Slice Opcode

Hex dump-based
features + Features

extracted from
disassembled files

Mutual
information

method based
Top-18

opcodes

Entire
malware as
embedded

input

Entire
malware as
embedded

input

Dimension of feature 35 737 1804 18 - 10,000

Classification accuracy (%) 97.93 98.80 99.77 98.60 97.80 98.20

Time consumption of
feature engineering (s) 3059.41 5889.16 183,477 5907.27 - -

Time consumption of
model training (s) - - - - 32,087.4 6372

Time consumption of
model classification (s) 2.38 24.92 15 7.76 804.65 214.32

Occupied space (KB) 1223 15,120 - 1043 - -

In addition, [34] utilized ensemble learning and achieved high accuracy. However, this
work extracted information from different sections of PE and converted it into images, and
then used multiple CNN models as base classifiers, resulting in a longer training time than
ours. In contrast to [35], this work builds four static feature comprehensive description
PE files, including API and dll, which will consume more feature processing time. The
proposed feature engineering method based on opcode slice in this paper achieves the
optimal compromise between efficiency and classification accuracy. The length of the
feature vector constructed by our method is 35, and the classification accuracy is 97.93%.
On the one hand, although the classification accuracy is slightly lower than that of similar
studies [24,33], it can meet the detection requirements. On the other hand, the feature
processing time in this paper is the shortest [32,36], which means that this method can
provide promising classification results under the condition of reducing the complexity of
feature engineering.

Above all, the method proposed in this paper has a main advantage: our work can
effectively reduce the time and space occupation of model training and classification while
retaining high accuracy.

5. Discussion

As we reflect on the findings and implications of our proposed method, it is essential
to recognize both its strengths and limitations. In this discussion, we address some of
the key considerations related to the limitations, scalability, and ethical implications of
our approach.

5.1. Limitations of Our Work

Not limited to the same malware family, functional similarities of opcode slice may also
exist between benign samples and malicious samples, which will lead to the detection of
false negatives. In addition, there are some cases where the training data are unbalanced due
to the small sample size. For example, the Simda family in the Kaggle dataset is sensitive
to the detection results due to its relatively small data, which leads to false positives.
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Another limitation of our study is that the high-information samples are manually la-
beled, which is assumed to always be correct. However, experts may mislabel some samples
in practical applications so that mislabeled high-information samples may be added into
the labeled training set. In this context, a more sophisticated study should be conducted on
how to avoid the impact of manually mislabeled samples on the detection model.

5.2. Scalability of Our Work

We think this method has good scalability in practical application. When implement-
ing the framework in the real world, our opcode slicing method only needs to make a
simple substitution based on semantic analysis, which can support the subsequent feature
engineering. As for adaptability to evolving malware techniques, some malware will
pack itself to escape the disassembly tool, which will destroy the foundation of the slicing
operation, thus affecting the final detection result. Therefore, we need to detect whether
the malware is packed first.

5.3. Ethical Implications and Considerations

Due to concerns related to data leakage, enterprises or individuals may be hesitant
to provide raw samples, making it challenging for many research methods to be widely
applied. The privacy protection issues associated with original or feature data of malicious
code need to be addressed [37]. In response to this situation, the introduction of federated
learning techniques [38] can be considered. This approach facilitates the training process
without the need for users to transmit their training data models directly. As a result, the
entire training procedure can be conducted without compromising the privacy of user data.

6. Conclusions and Future Work

Our work proposes an Opcode Slice-Based Malware Detection Framework Using
Active and Ensemble Learning in order to address the rapid evolution of malicious code,
the high cost of manual annotation, and the unbalanced distribution of different families.
Specifically, it introduces a feature engineering method based on opcode slice and a SSEAL
detection algorithm for malware classification. The experiments conducted in this paper
are based on the Kaggle dataset and DataWhale. The feature engineering method utilizing
opcode slice is proven effective in extracting behavioral characteristics from malware
samples, laying the foundation for efficient classification. SSEAL has demonstrated its
ability to reduce data labeling costs, extract more knowledge from samples, and exhibit
higher reliability compared to single classifiers.

After conducting research in this paper, we have the intuition that further work
can be conducted as follows: we will try to put forward a solution for the problem of
insufficient datasets caused by sample imbalance. In addition, we will combine more
semantic information, such as API, to improve the robustness of our system.
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Abstract: The imbalance between normal and attack samples in the industrial control systems (ICSs)
network environment leads to the low recognition rate of the intrusion detection model for a few
abnormal samples when classifying. Since traditional machine learning methods can no longer
meet the needs of increasingly complex networks, many researchers use deep learning to replace
traditional machine learning methods. However, when a large amount of unbalanced data is used for
training, the detection performance of deep learning decreases significantly. This paper proposes an
intrusion detection method for industrial control systems based on a 1D CWGAN. The 1D CWGAN
is a network attack sample generation method that combines 1D CNN and WGAN. Firstly, the
problem of low ICS intrusion detection accuracy caused by a few types of attack samples is analyzed.
This method balances the number of various attack samples in the data set from the aspect of data
enhancement to improve detection accuracy. According to the temporal characteristics of network
traffic, the algorithm uses 1D convolution and 1D transposed convolution to construct the modeling
framework of network traffic data of two competing networks and uses gradient penalty instead
of weight cutting in the Wasserstein Generative Adversarial Network (WGAN) to generate virtual
samples similar to real samples. After a large number of data sets are used for verification, the
experimental results show that the method improves the classification performance of the CNN and
BiSRU. For the CNN, after data balancing, the accuracy rate is increased by 0.75%, and the accuracy,
recall rate and F1 are improved. Compared with the BiSRU without data processing, the accuracy of
the s1D CWGAN-BiSRU is increased by 1.34%, and the accuracy, recall and F1 are increased by 7.2%,
3.46% and 5.29%.

Keywords: intrusion detection; industrial control systems; Wasserstein generative adversarial
network

1. Introduction

The traditional industrial control system (ICS) is in a physical environment com-
pletely isolated from the external network, and its operating system requires a dedicated
communication protocol [1]. Most existing ICSs, such as building energy management
systems (EMSs), had only physical threats in the past. With the continuous integration
of information technology (IT) and ICSs, the integration process of industrialization and
informatization is accelerating, and potential ICS network security problems are gradually
exposed. ICSs are now usually connected to a communication network, so they can be
accessed remotely. The inherent connectivity in these services makes such systems face
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network security risks. And this expands the attack surface, including the possibility of
complex cyber attacks, which may adversely affect ICS operations, resulting in service
outages, equipment damage, security issues and related financial impacts.

Intrusion detection can take the initiative to monitor network traffic and host equip-
ment and find and prevent network attacks. In the ICS network environment, the imbalance
between normal samples and attack samples leads to a low recognition rate of intrusion
detection models for a small number of abnormal samples in the classification. The indus-
trial control intrusion detection model pays special attention to the detection success rate
of abnormal samples. With the development of artificial intelligence technology, machine
learning is more and more widely used in ICS intrusion detection. Although the traditional
machine learning method is simple and the training time is short, the detection accuracy
is relatively low. In addition, complex data preprocessing and artificial feature extraction
are required before processing these industrial control data, which requires rich experience
and a lot of practice. The deep learning method can avoid complex data preprocessing and
identify attack-type data with high precision [2–5].

Researchers [6] have demonstrated that deep learning algorithms are more accurate
than traditional machine learning algorithms. However, when a large amount of unbal-
anced data is used for training, the detection performance of deep learning decreases
significantly. The imbalance of traffic data of ICSs is the main factor, and generative ad-
versarial networks (GANs) have become a research hotspot for enhancing a few types
of data. However, GANs have the problems of unstable training, disappearing gradient
and mode collapse. In view of the shortcomings of GANs, WGANs make the training
of the model more stable and reduce the occurrence of mode collapse by introducing the
Wasserstein distance. At the same time, WGANs can generate more samples by optimizing
the Wasserstein distance. In general, WGANs are improved on the basis of GANs, which
improve the stability of training and the diversity of generated samples and alleviate the
problem of gradient disappearance.

Aiming at the imbalance of ICS traffic data, this paper proposes a network attack
sample generation method, 1D CWGAN, which integrates 1D CNN and WGAN. The
algorithm uses 1D convolution and 1D transposed convolution to construct two competitive
network traffic data modeling frameworks and uses gradient penalty instead of weight
pruning in the WGAN to improve the stability of model training. Finally, a convolutional
neural network (CNN) and bidirectional simple recurrent unit (BiSRU) are used to verify
the 1D CWGAN model on the enhanced data set.

2. Related Work

In this section, we introduce related work, including intrusion detection methods
based on machine learning and deep learning ICSs.

2.1. Intrusion Detection Method Based on Machine Learning

There are many classical machine learning methods, including support vector machine
(SVM) [7], decision tree [8] and naive Bayes [9]. Anton et al. [10] used SVM to detect
seven different classes of attacks in the gas pipeline of the standard industrial data set.
Although a high accuracy rate was achieved, the precision rate was low. Al-Asiri et al. [11]
used the gas pipeline of the standard industrial data set to verify the effectiveness of the
decision tree classifier for various features in the SCADA system using an IDS with a single
network metric and physical metric. Khan et al. [12] used the original features from the gas
pipeline data set to formulate a new set of features for attack detection using naive Bayes
in supervised learning mode. Tian et al. [13] proposed a method that combines machine
learning optimized by a swarm intelligence algorithm and deep learning. They used a
stack autoencoder to reduce the dimension of data feature and then combined SVM and
an artificial bee colony algorithm to perform an intrusion detection experiment. Although
machine-learning-based methods have achieved good results in recent years, they can
only perform shallow learning and cannot accurately identify network attacks in ICSs [14].
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For example, SVM instead leads to a decrease in accuracy when the number of samples
increases, naive Bayes methods do not handle data with correlated attributes well and
decision tree has poor generalization capabilities [15,16].

2.2. Intrusion Detection Method Based on Deep Learning

With the increasing computing power of computers, deep learning methods are rapidly
emerging in various fields, especially in image detection and speech recognition [17]. At
the same time, this has led many scholars in the direction of industrial Internet security
to apply deep learning to intrusion detection of ICSs. Yang et al. [18] proposed a CNN
for intrusion detection systems (IDSs). Liu et al. [19] proposed a hybrid method of deep
learning and population intelligence optimization algorithms. They used a CNN for feature
extraction and anomaly recognition; then, the features extracted by the CNN model were
invoked as input to the algorithm to construct a normal state process transfer model. RNNs
are widely used as temporal deep learning models for intrusion detection of ICSs. The IDSs
provide an effective method of abnormal traffic detection. Yin Let al. [20] proposed an IDS
based on the RNN-IDS algorithm. The method was validated using the NSL_KDD data set,
and the results showed that it outperformed traditional machine learning methods. LSTM
is a variant of SimpleRNN, and it alleviates the problem of gradient vanishing and gradient
explosion of SimpleRNN to a certain extent. Roy et al. [21] proposed an Internet of Things
(IoT) intrusion detection method based on a bidirectional long short-term memory recurrent
neural network (BLSTM RNN) to improve the problem of insufficient SimpleRNN temporal
storage capacity. Sokolov et al. [22] used GRU for experiments on intrusion detection in the
gas pipeline data set and investigated the applicability of the method in various aspects
of intrusion detection of ICSs. In 2018, Lei et al. proposed an SRU model [23]. The model
used a simpler structure to solve the sequence dependence problem in previous LSTM
and GRU models, further alleviating the problem of RNN gradient vanishing and gradient
explosion and enabling parallel computation. SRU has been successfully applied in the
field of classification and conversational systems.

Researchers have proved that deep learning algorithms are more accurate than tra-
ditional machine learning algorithms. However, when training with a large amount of
imbalanced data, the detection performance of deep learning decreases significantly. The
imbalance of ICS traffic data is the main factor, and GANs have become a research hotspot
for enhancing several types of data. However, GANs have problems such as unstable
training, gradient disappearance and model collapse. This paper proposes an ICS traf-
fic data detection model based on a CNN and BiSRU. The CNN can effectively extract
the spatial features of traffic data, and the BiSRU can effectively learn the forward and
backward time series features of ICSs. At the same time, one-dimensional convolution
and one-dimensional transposed convolution are used to establish discriminator D and
generator G, which is conducive to the establishment of the network model and the better
simulation of data distribution of the ICS network traffic. The WGAN with gradient penalty
(GP) can effectively solve the problem of model collapse during training. This study has
conducted sufficient experiments on multiple data sets to verify our proposed method.

3. ICS Intrusion Detection Method Based on 1D CWGAN

In this paper, 1D convolution and 1D transposed convolution are used to build dis-
criminator D and generator G, which is conducive to the network model to better simulate
the data distribution of the ICS network traffic. The WGAN with gradient penalty (GP) can
effectively solve the problem of model collapse during training. The detection models of
the ICS traffic data based on a CNN and BiSRU are proposed, respectively.

3.1. Overview of GAN

A GAN is a powerful neural network for unsupervised learning, first developed
and introduced in 2014. A GAN is a system composed of two competing neural network
models that compete with each other and can analyze, capture and replicate changes
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in the data set [24]. In a GAN, there is a generator and a discriminator. The generator
generates false data samples and tries to deceive the discriminator. On the other hand, the
discriminator attempts to distinguish between true and false samples. Both the generator
and the discriminator are neural networks. The generator network needs to continuously
optimize the data generated by itself so that the discriminator network cannot judge. The
discriminator network also needs to optimize itself to make its judgment more accurate.
The relationship between the two forms a confrontation, so it is called a confrontation
network. They compete with each other in the training phase and repeat these steps. In
this process, the generator and discriminator become better and better in their respective
work after each game.

3.1.1. Generator

The generator G is responsible for learning the real distribution of the sample. The
function of the generator is similar to that of the autoencoder. The random vector z
is sampled from the prior distribution, and the generated sample G (z) is obtained by
generating the network parameterized distribution. From the input and output level, the
function of the generator is to convert the hidden vector z into the sample vector x through
the neural network.

3.1.2. Discriminator

The discriminator is similar to the ordinary binary classification network. It accepts
the data set of the input sample x, including the samples sampled from the real data
distribution, and also includes the false samples sampled from the generated network,
which together form the discriminator training data set [25]. The discriminator output is
the probability P belonging to the real sample, the labels of all real samples are labeled as
true, and the samples generated by all generators are labeled as false.

3.1.3. Network Training

The training process is a process of the generator and discriminator game. The genera-
tor generates false data and then inputs both the generated false data and the true data into
the discriminator, which determines what is true and what is false. The discriminator must
have a large error for the first time, and then the discriminator is optimized according to the
error. As the discriminator level increases, it is difficult to deceive the discriminator again
with the data generated by the generator, so the optimization of the generator continues.
As the generator level increases, in turn, it continues to train the discriminator, so that the
cycle is repeated until Nash equilibrium is reached.

The training of the GAN first trains D and then trains G in the first round. It is not
necessary to wait for all of the D training to start training G, because the training of D also
requires the output value of G in the previous round as the input. In the first stage, only
discriminant model D is involved. The sample in the training set is used as the input of
D, and a certain value between 0 and 1 is output. The larger the value, the greater the
possibility that the sample is real data. In this process, we hope that D can make the output
value close to 1 as much as possible. In the second stage, both the discriminant model D
and the generation model G are involved. First, the noise z is input into G, G learns the
probability distribution from the real data set and generates false samples, and then inputs
the false samples into the discriminant model D. This time, D will enter the value 0 as much
as possible. Therefore, in this process, the discriminant model D is equivalent to a binary
classifier, and the data are either classified as 1 or 0. The result of the last two model games
is that G can generate false data G (z). However, it is difficult for D to determine whether
the data generated by G are true, that is, D (G (z)) = 0.5.

3.2. Data Enhancement Method Based on 1D CWGAN

In order to solve the problem of unbalanced data set samples caused by the small
number of attack samples, this chapter proposes a 1D CWGAN algorithm to generate
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virtual samples to balance the number of samples in various data sets. Aiming at the
temporal characteristics of network traffic, the algorithm uses 1D convolution and 1D
transposed convolution to construct two network traffic data modeling frameworks of
competitive networks and uses the gradient penalty in the WGAN instead of weight
clipping to improve the stability of model training. Finally, a CNN and BiSRU are used to
verify the 1D CWGAN model of the enhanced data set. The ICS intrusion detection data
enhancement model based on 1D CWGAN is shown in Figure 1.
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3.3. Description of Intrusion Detection Algorithm Based on 1D CWGAN

Using the generative adversarial network to learn the data distribution of the ICS
network traffic data, a virtual sample similar to the real sample is generated. The con-
frontation process needs to train the generator G and the discriminator D at the same time.
For serial data like the network traffic of ICSs, this paper uses 1D convolution and 1D
transposed convolution to construct a modeling framework for network traffic data for
two competing networks. The generator model generates synthetic data examples with
similar distribution to the real sample data by random Gaussian noise; the discriminator
model is used to distinguish whether the generated synthetic data are real or not. In the
process of the game between the two models, the generator model generates samples to
deceive the discriminator model as much as possible, and the discriminator model avoids
this deception as much as possible. Finally, generator G and discriminator D will be in
Nash equilibrium. The objective function is written in the form of a minimum–maximum
game:

min
D

max
G

V(D, G)= Ex∼pr
[logD(x)] + Ez∼pg

[log(1−D(G(z)))] (1)

where x is the real data, pr is the probability distribution of the real data, z is the input noise
of the generator, pg is the distribution of the generated data G(z) and D(x) is the output
of the discriminator network. The objective function in (1) is essentially to minimize the
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Jensen–Shannon (JS) dispersion between the real data distribution and the virtual data
distribution under the premise that the discriminator D is optimal.

Arjovsky et al. [26] theoretically analyzed that the JS dispersion is not suitable for
measuring the distance between disjoint parts of the distribution and used the Wasserstein
distance to measure the distance between the generated distribution and the real data
distribution, providing meaningful gradient information to solve the problem of instability
of GAN training data and model collapse. Although the training stability of the WGAN is
further enhanced than that of the original GAN, the WGAN uses Lipschitz weight pruning
to limit the parameters of the discriminator model to a certain range during training, which
makes the network parameters tend to be unreasonable extreme values and weakens the
fitting ability of the neural network. When the pruning range approaches the limit, it also
re-causes the phenomenon of gradient explosion. Therefore, this paper introduces the
gradient penalty (GP) term, which improves the Lipschitz continuity constraint and uses
the gradient penalty instead of weight clipping in the WGAN to improve the stability of
model training. The loss function of the 1D CGAN with the introduction of the GP term is
shown in Equation (2):

L= EG(z)∼pg
[D(G(z))]− Ex∼pr

[D(x)] +ϕEx̂∼px̂

[
(‖∇x̂D(x̂)‖2 − 1)2

]
(2)

where ϕ is the gradient penalty coefficient and px̂ is the random sample between the real
data x and the random noise z. ∇x̂D(x̂) represents the gradient of discriminator D. The
first two terms of the loss function are the original discriminator D loss, and the latter is the
introduced GP.

The specific steps of the algorithm are as follows:
Step 1: Separate different types of attack data and generate corresponding virtual

samples through the following steps.
Step 2: Generate the random sample set. The random noise z is used as the input layer

of the generation network, denoted as {z1, z2, · · · , zn}, where zn is a random number.
The generator network generates close to real dummy samples by capturing the probability
distribution of the network traffic data of ICSs during the training process. The simulation
of the generated attack samples is very low at this time.

Step 3: Train discriminator D. Fix the generator G, network traffic data of the ICSs and
the set of fake attack samples generated from the G as the input of the D.−EG(z)∼Pg D(G(z))
and Equation (2) are used to establish the loss functions of the G and D, respectively, as the
reference standard for the adversarial training of the G and D. The objective function value
of the D is denoted as L.

Step 4: Train generator G. The further training of generator G is to be trained through
the G–D concatenation. After step 2, the D has a certain discriminative ability. The purpose
of training G is to generate a false sample that D cannot discriminate between true and
false. The set of false attack samples generated after step 1 with a similar distribution of
network traffic data of ICSs is used as the input layer of D.

Step 5: Alternate training. If the objective function value or the specified number of
cycles does not reach the threshold, step 2 and step 3 are cycled to alternate training for D
and G. The gradient update using an Adam optimizer optimizes the D loss value L.

Step 6: Generate data. The final output generates data for the generator G model,
solves the data set imbalance problem and reconstructs the data set.

A CNN and BiSRU were used to validate the 1D CWGAN model against the data set
after enhancement. Our CNN network stacks two convolutional layers before the pooling
layer. By stacking the convolutional layers, the activation function relu is sandwiched
between the convolutional layers. The stacking of nonlinear functions increases the non-
linear expressiveness of the activation function, which enables it to learn well the spatial
feature information of the ICSs’ complex high-dimensional network traffic data. Due to the
efficiency of the SRU, it is used to replace LSTM and GRU, but it can only extract sequence
features in a single direction and does not fully consider the influence before and after
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features of network traffic of ICSs. In this paper, we use the BiSRU for feature extraction
of long-distance dependence information of network traffic in both positive and negative
directions, and finally, through the intrusion detection, the results are finally output by
softmax.

4. Experiment
4.1. Data Set

In this paper, a large number of data sets are used to verify the proposed data aug-
mentation method. They are the gas pipeline industrial data set proposed by Mississippi
State University in 2014 and the TON_IoT (UNSW-IoT20) data set collected from a real
large-scale network of the University of New South Wales and the Australian Defence
College in 2020. It includes network data sets, Linux data sets and Windows data sets.

In 2014, Mississippi State University provided the gas pipeline standard industrial
data set. In recent years, it has been widely used in simulation experiments of ICS intrusion
detection. The system was collected from a set of natural gas pipeline systems based on
Modbus tcp, and its structure is similar to the data acquisition and monitoring control
system in the real production environment. The gas pipeline data set contains normal data
and seven types of attack data. See Table 1 for details.

Table 1. Description of data sets.

Attack Type Describe Number

Normal Normal (0) 61,156
Naïve malicious response injection NMRI (1) 2763

Complex malicious response injection CMRI (2) 15,466
Malicious state command injection MSCI (3) 782

Malicious parameter command injection MPCI (4) 7637
Malicious function code injection MFCI (5) 573

Denial of service DOS (6) 1837
Reconnaissance Recon (7) 6805

TON_IoT includes Linux operating system data, Windows operating system logs and
IoT network traffic. TON_IoT is represented in CSV format.

TON_IoT network data set: The network TON_IoT data set contains 44 attributes, and
each data point has a label classified as normal or attack. Table 2 shows the statistical data
of network data samples in the TON_IoT data set.

Table 2. Statistical records of TON_IoT network data sets.

Attack Type Normal DoS Ransomware Password Scanning

Number 300,000 20,000 20,000 20,000 20,000

Attack type Injection DDoS backdoor XSS mitm

Number 20,000 20,000 20,000 20,000 1043

TON_IoT Linux data set: The Linux data set is divided into three categories: disk,
memory and process. The first CSV file contains the properties of normal behavior and
attack disk usage. The second CSV file is related to memory activity and contains 11 at-
tributes, a tag column marked as normal or attacked and an attack type column containing
attack types. The last file belongs to the process in the Linux operating system. Table 3
shows the statistics recorded on the TON_IoT Linux process data set.
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Table 3. Statistical records of TON_IoT Linux process data sets.

Attack Type Normal DoS Password Scanning

Number 100,000 10,000 10,000 10,000

Attack type Injection DDoS XSS mitm

Number 10,000 10,000 10,000 112

4.2. Data Preprocessing

The data preprocessing stage mainly includes low variance filtering, normalization and
single-hot coding. In the preprocessing stage, the above method is used to remove irrelevant
data, which provides more effective data for the detection of subsequent algorithms.

4.2.1. Gas Pipeline Industrial Data Set

The data set is complex and variable, with many eigenvalues, but not every eigenvalue
is well distinguished, that is, it has a very low variance. Such eigenvalues have no analytical
value, so we chose to remove them directly. For example, if a feature in a column accounts
for 95% of the instance value of all input samples, it can be considered not very useful.
If 100% is 1, then this feature is meaningless. Nine feature columns with the smallest
variance were selected, and finally a data set with 17-dimensional effective eigenvalues
was obtained.

The classifier cannot directly process the unordered discrete features of the gas pipeline
data set. Using one-hot coding, a mapping table was established for discrete feature data
to make it ordered and continuous. The data set has eight classification results, as shown
in Equation (3), including Normal (0), NMRI (1), CMRI (2), MSCI (3), MPCI (4), MFCI (5),
DOS (6) and Recon (7). They can be encoded as (1, 0, 0, 0, 0, 0, 0, 0), (0, 1, 0, 0, 0, 0, 0, 0), (0,
0, 1, 0, 0, 0, 0, 0), (0, 0, 0, 1, 0, 0, 0, 0), (0, 0, 0, 0, 1, 0, 0, 0), (0, 0, 0, 0, 0, 1, 0, 0), (01, 0, 0, 0, 0, 0,
1, 0) and (0, 0, 0, 0, 0, 0, 0, 1).

One− hot encoding =





(1, 0, 0, 0, 0, 0, 0, 0), i f the result is Normal(0).
(0, 1, 0, 0, 0, 0, 0, 0), i f the result is NMRI(1).
(0, 0, 1, 0, 0, 0, 0, 0), i f the result is CMRI(2).
(0, 0, 0, 1, 0, 0, 0, 0), i f the result is MSCI(3).
(0, 0, 0, 0, 1, 0, 0, 0), i f the result is MPCI(4).
(0, 0, 0, 0, 0, 1, 0, 0), i f the result is MFCI(5).
(0, 0, 0, 0, 0, 0, 1, 0), i f the result is DOS(6).
(0, 0, 0, 0, 0, 0, 0, 1), i f the result is Recon(7).

(3)

4.2.2. TON_IoT (UNSW-IoT20) Data Set

In the ToN_IoT data set, missing values must be filled and attributes that lead to
overfitting must be deleted.

1. Missing value filling. Missing values are common in ToN_IoT, and these missing
values must be handled appropriately. In the proposed model, the imputation of
missing values is replaced by the most frequent value in each feature containing
missing data.

2. Delete the attributes that cause overfitting. Multiple attributes such as timestamp,
IP address, source port and target port in the data set are deleted because they may
cause overfitting.

4.3. Evaluation Indicators of Intrusion Detection

Intrusion detection has different indicators to evaluate the results obtained. Among
these metrics, the most commonly used are accuracy, precision, recall and F1. A common
way to present these concepts is the cross-list between the class predicted by the model
and the actual class. This table is called the confusion matrix. The confusion matrix is
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a 2D matrix used to visualize the prediction of the classification model of the test label
data set. Table 4 shows the confusion matrix. True negative (TN) indicates the number of
benign samples correctly classified as benign, true positive (TP) indicates the number of
malicious samples misclassified as malicious, false negative (FN) indicates the number of
benign samples misclassified as malicious and false positive (FP) indicates the number of
malicious samples misclassified as benign.

Accuracy =
TN + TP

TP + FP + TN + TP
(4)

Table 4. Confusion matrix.

Predictive Value = 1 Predictive Value = 0

True value = 1 TP FN
True value = 0 FP TN

The precision, also known as the precision rate, aims to predict how many of the
positive results are correct, that is, how many are true positive, as shown in Formula (5).

Precision =
TP

TP + FP
(5)

Recall, also known as the recall rate, aims to find out how many of the samples that
are actually positive are predicted to be positive, that is, how many predictions are correct
for all the actual categories that are positive, as shown in Formula (6).

Recall =
TP

FN + TP
(6)

Precision and the recall index sometimes appear to be contradictory, so they need to
be evaluated. The most common method for this is F1. F1 is an evaluation index that can
reflect both the accuracy and recall rate, as shown in Formula (7). F1 combines the results
of precision and recall rate. When F1 is higher, it can show that the test method is more
effective.

F1 =
2TP

2TP + FP + FN
(7)

4.4. Analysis of Experimental Results

In this paper, all experiments were implemented in Python 3.6 and Keras 2.10.0. The
experiments were performed on a machine with Intel Core i7-9700H CPU, NVIDIA GeForce
GTX745 GPU.

4.4.1. Verify the Gas Pipeline Data Set

This section first verifies the gas pipeline data set released by Mississippi State Univer-
sity in 2014, and the detailed information of the gas pipeline data set is described in the
previous section. Firstly, the virtual samples of two minority classes MSCI and MFCI in the
gas pipeline data set are generated, so that the amount of data of different classes in the
training set is balanced. The specific number of generated samples is shown in Table 5. In
order to evaluate the performance of the 1D CWGAN, experiments were carried out using
10,000 samples from the gas pipeline data set sample, of which 1250 samples were of all
types. The ratio of training set to test set is 8:2.
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Table 5. The number of samples generated by the training set.

Attack Types Normal NMRI CMRI MSCI MPCI MFCI DOS Recon

Number of original samples 61,156 2763 15,466 782 7637 573 1837 6805

Number of samples generated 0 0 0 468 0 677 0 0

Total 61,156 2763 15,466 1250 7637 1250 1837 6805

In order to verify the superiority of the data enhancement method based on the 1D
CWGAN in the gas pipeline data set, a CNN and BiSRU were selected as the experimental
baseline methods. Previous studies used the traditional data replicator GAN method to deal
with unbalanced data, and this study used the 1D CWGAN method to generate minority
samples. In order to further illustrate the superiority of the performance of the model
in this paper, the original training set, the GAN enhanced data set and the 1D CWGAN
enhanced data set were sent to the CNN classifier and the BiSRU classifier for testing.

It can be seen from the analysis of the data in Table 6 that although the CNN and
BiSRU have achieved high accuracy on the gas pipeline data set, the F1 score is low, and
the F1 score is improved after using the GAN algorithm to generate a small number of
samples. It shows that the CNN and BiSRU methods cannot handle class-imbalanced
data well alone. The 1D CWGAN unbalanced sample generation method proposed in this
study significantly improves the classification performance of the CNN and BiSRU. For
the CNN, after data balancing, the accuracy rate is increased by 0.75%, and the accuracy,
recall rate and F1 are improved. Compared with the BiSRU without data processing, the
accuracy of the 1D CWGAN-BiSRU is increased by 1.34%, and the accuracy, recall and F1
are increased by 7.2%, 3.46% and 5.29%, respectively. In contrast, the data augmentation
method proposed in this paper obtains the highest F1 score on each classifier, showing
better performance than the GAN.

Table 6. Performance of different algorithms.

Method Accuracy (%) Precision (%) Recall (%) F1(%)

CNN [27] 97.58 90.42 89.97 90.30
BiSRU [14] 97.66 90.78 90.44 90.61
GAN-CNN 97.85 91.14 92.67 91.90

GAN-BiSRU 98.01 93.34 93.08 93.21
1D CWGAN-CNN 98.33 93.34 93.08 93.19

1D CWGAN-BiSRU 99.00 97.90 93.90 95.90

The experiment compares the classification performance of the model directly us-
ing CNN classification without data enhancement with the GAN-CNN model based on
GAN data enhancement and the 1D CWGAN-CNN model based on 1D CWGAN data
enhancement. It can be seen that the 1D CWGAN-CNN model has better performance
than the single CNN model and the GAN-CNN model after data enhancement. As shown
in Figure 2, accuracy is the ratio of well-classified data to total data, so the accuracy of all
categories is significantly improved. In particular, after the data augmentation of MSCI
and MFCI minority classes, the performance of a few attack classes is the same as that of
normal classes. As shown in Figure 3, the same verification with the BiSRU model also
shows that the data augmentation method proposed in this study understands more about
the characteristics of a few attacks.

37



Electronics 2023, 12, 4653Electronics 2023, 12, x FOR PEER REVIEW 11 of 17 
 

 

 
Figure 2. Comparison of attack sample recognition accuracy based on CNN model. 

 
Figure 3. Comparison of attack sample recognition accuracy based on BiSRU model. 

4.4.2. Verify the TON_IoT Network Data Set 
This section next verifies the TON_IoT (UNSW-IoT20) network data set jointly pub-

lished by the University of New South Wales and the Australian Defence College. The 
details of the network data set are described in the previous section. First, a small number 
of mitm samples in the network data set are generated to balance the amount of data in 
different categories in the training set. The specific number of generated samples is shown 
in Table 7. In order to evaluate the performance of the 1D CWGAN, the experiment used 
20,000 samples in the TON_IoT data set, of which 2000 samples were of all types. The ratio 
of training set to test set is 8:2. 

Table 7. The number of samples generated by the training set. 

Attack Types Normal Scanning Injection DDoS Mitm 
Number of original samples 300,000 20,000 20,000 20,000 1043 

Number of samples generated 0 0 0 0 957 
Total 300,000 20,000 20,000 20,000 20,000 

Attack Types Ransomware DOS XSS Password Backdoor 

NMRI CMRI MSCI MPCI MFCI DOS Recon
0.0

0.2

0.4

0.6

0.8

1.0

  A
cc

ur
ac

y

Attack sample type

 CNN  GAN-CNN  1D CWGAN-CNN

NMRI CMRI MSCI MPCI MFCI DOS Recon
0.0

0.2

0.4

0.6

0.8

1.0

A
cc

ur
ac

y

Attack sample type 

 BiSRU  GAN-BiSRU  1D CWGAN- BiSRU

Figure 2. Comparison of attack sample recognition accuracy based on CNN model.

Electronics 2023, 12, x FOR PEER REVIEW 11 of 17 
 

 

 
Figure 2. Comparison of attack sample recognition accuracy based on CNN model. 

 
Figure 3. Comparison of attack sample recognition accuracy based on BiSRU model. 

4.4.2. Verify the TON_IoT Network Data Set 
This section next verifies the TON_IoT (UNSW-IoT20) network data set jointly pub-

lished by the University of New South Wales and the Australian Defence College. The 
details of the network data set are described in the previous section. First, a small number 
of mitm samples in the network data set are generated to balance the amount of data in 
different categories in the training set. The specific number of generated samples is shown 
in Table 7. In order to evaluate the performance of the 1D CWGAN, the experiment used 
20,000 samples in the TON_IoT data set, of which 2000 samples were of all types. The ratio 
of training set to test set is 8:2. 

Table 7. The number of samples generated by the training set. 

Attack Types Normal Scanning Injection DDoS Mitm 
Number of original samples 300,000 20,000 20,000 20,000 1043 

Number of samples generated 0 0 0 0 957 
Total 300,000 20,000 20,000 20,000 20,000 

Attack Types Ransomware DOS XSS Password Backdoor 

NMRI CMRI MSCI MPCI MFCI DOS Recon
0.0

0.2

0.4

0.6

0.8

1.0

  A
cc

ur
ac

y

Attack sample type

 CNN  GAN-CNN  1D CWGAN-CNN

NMRI CMRI MSCI MPCI MFCI DOS Recon
0.0

0.2

0.4

0.6

0.8

1.0

A
cc

ur
ac

y

Attack sample type 

 BiSRU  GAN-BiSRU  1D CWGAN- BiSRU

Figure 3. Comparison of attack sample recognition accuracy based on BiSRU model.

4.4.2. Verify the TON_IoT Network Data Set

This section next verifies the TON_IoT (UNSW-IoT20) network data set jointly pub-
lished by the University of New South Wales and the Australian Defence College. The
details of the network data set are described in the previous section. First, a small number
of mitm samples in the network data set are generated to balance the amount of data in
different categories in the training set. The specific number of generated samples is shown
in Table 7. In order to evaluate the performance of the 1D CWGAN, the experiment used
20,000 samples in the TON_IoT data set, of which 2000 samples were of all types. The ratio
of training set to test set is 8:2.
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Table 7. The number of samples generated by the training set.

Attack Types Normal Scanning Injection DDoS Mitm

Number of original samples 300,000 20,000 20,000 20,000 1043

Number of samples generated 0 0 0 0 957

Total 300,000 20,000 20,000 20,000 20,000

Attack Types Ransomware DOS XSS Password Backdoor

Number of original samples 20,000 20,000 20,000 20,000 20,000

Number of samples generated 0 0 677 0 0

Total 20,000 20,000 20,000 20,000 20,000

In order to verify the superiority of the data enhancement method based on the 1D
CWGAN in the TON_IoT (UNSW-IoT20) network data set, a CNN and BiSRU were selected
as the experimental baseline methods. Previous studies used the traditional data replicator
GAN method to generate minority samples, and this study used the 1D CWGAN method to
generate minority samples. In order to further illustrate the superiority of the performance
of the model in this paper, the original training set, the GAN enhanced data set and the
1D CWGAN enhanced data set were sent to the CNN classifier and the BiSRU classifier
for testing.

The analysis of the data in Table 8 shows that although the CNN and BiSRU have
achieved high accuracy on the TON_IoT network data set, the F1 score is low, and the F1
score is improved after using the GAN algorithm to generate a small number of samples.
It shows that the CNN and BiSRU methods cannot handle class-imbalanced data well
alone. The 1D CWGAN unbalanced sample generation method proposed in this study
significantly improves the classification performance of the CNN and BiSRU. For the CNN,
after data balancing, the accuracy rate is increased by 4.63%, and the accuracy, recall rate
and F1 are improved. Compared with the BiSRU without data processing, the accuracy of
the 1D CWGAN-BiSRU is increased by 5.28%. In contrast, the data augmentation method
proposed in this paper obtains the highest F1 score on each classifier, showing better
performance than the GAN.

Table 8. Performance of different algorithms.

Method Accuracy (%) Precision (%) Recall (%) F1 (%)

CNN [27] 92.76 84.42 84.66 84.54
BiSRU [14] 92.84 84.78 84.54 84.66
GAN-CNN 94.89 87.14 87.74 87.44

GAN-BiSRU 95.76 88.34 88.21 88.27
1D CWGAN-CNN 97.39 90.34 90.45 90.39

1D CWGAN-BiSRU 98.12 92.90 91.54 92.21

The experiment also compares the classification performance of the model that directly
uses CNN classification without data enhancement with the GAN-CNN model based on
GAN data enhancement and the 1D CWGAN-CNN model based on 1D CWGAN data
enhancement. It can be seen that the performance of the 1D CWGAN-CNN model is better
than that of the single CNN model and the GAN-CNN model after data enhancement. As
shown in Figure 4, accuracy is the ratio of well-classified data to total data, so the accuracy
of all categories is significantly improved. In particular, after data augmentation of the
mitm minority class, the performance of the minority attack class is the same as that of the
normal class. As shown in Figure 5, the same verification with the BiSRU model also shows
that the data augmentation method proposed in this study understands more about the
characteristics of a few attacks.
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4.4.3. Verify the TON_IoT Linux Process Data Set

This section next verifies the TON_IoT (UNSW-IoT20) Linux process data set jointly
released by the University of New South Wales and the Australian National Defense College.
Firstly, a small number of mitm samples in the Linux process data set are generated, so
that the amount of data in different categories in the training set is balanced. The specific
number of generated samples is shown in Table 9. In order to evaluate the performance
of 1D CWGAN, experiments were performed using 10,000 samples from the TON_IoT
(UNSW-IoT20) Linux process data set sample, of which all kinds of samples were 1250. The
ratio of training set to test set is 8:2.

Table 9. The number of samples generated by the training set.

Attack Types Normal Scanning Injection DDoS

Number of original samples 60,112 10,000 10,000 10,000

Attack Types Mitm DOS XSS Password

Number of original samples 112 10,000 10,000 10,000
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In order to verify the superiority of the data enhancement method based on 1D
CWGAN in the TON_IoT (UNSW-IoT20) Linux process data set. CNN and BiSRU were
also selected as the experimental baseline methods. Previous studies used the traditional
data replicator GAN method to generate minority samples, and this study used the 1D
CWGAN method to generate minority samples. In order to further illustrate the superiority
of the performance of the model in this paper, the original training set, the GAN enhanced
data set and the 1D CWGAN enhanced data set are sent to the CNN classifier and the
BiSRU classifier for testing.

It can be seen from the analysis of the data in Table 10 that although CNN and BiSRU
have achieved high accuracy on the Linux process data set, the F1 score is low, and the
F1 score is improved after using the GAN algorithm to generate a few samples. It shows
that the CNN and BiSRU methods cannot handle class-imbalanced data well alone. The
1D CWGAN unbalanced sample generation method proposed in this study significantly
improves the classification performance of CNN and BiSRU. For CNN, after data balancing,
the accuracy rate is increased by 4.66%, and the accuracy, recall rate and F1 are improved.
Compared with BiSRU without data processing, the accuracy of 1D CWGAN-BiSRU is
improved by 4.33%. In contrast, the data augmentation method proposed in this paper
obtains the highest F1 score on each classifier, showing better performance than GAN.

Table 10. Performance of different algorithms.

Method Accuracy (%) Precision (%) Recall (%) F1 (%)

CNN [27] 92.54 84.22 83.14 83.68
BiSRU [14] 92.87 84.54 84.18 84.98
GAN-CNN 94.65 87.87 87.54 87.70

GAN-BiSRU 95.54 88.01 88.21 88.11
1D CWGAN-CNN 97.78 90.54 90.41 90.47

1D CWGAN-BiSRU 97.20 92.45 91.76 92.10

The experiment also compares the classification performance of the model that directly
uses CNN classification without data enhancement with the GAN-CNN model based on
GAN data enhancement and the 1D CWGAN-CNN model based on 1D CWGAN data
enhancement. It can be seen that the 1D CWGAN-CNN model has better performance
than the single CNN model and the GAN-CNN model after data enhancement. As shown
in Figure 6, accuracy is the ratio of well-classified data to total data, so the accuracy of all
categories is significantly improved. In particular, after data augmentation of the mitm
minority class, the performance of the minority attack class is the same as that of the
normal class. As shown in Figure 7, the same verification with the BiSRU model also shows
that the data augmentation method proposed in this study understands more about the
characteristics of a few attacks.
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Figure 7. Comparison of attack sample recognition accuracy based on BiSRU model.

5. Conclusions

Aiming at the existing problems in the research topic of industrial control network
intrusion detection, this paper proposes a network traffic data enhancement model based
on a 1D CWGAN, which solves the problem of unbalanced traffic data categories in the
field of ICS network intrusion detection. A generator and discriminator based on the 1D
CWGAN model are constructed by using a 1D CNN and a 1D transposed CNN, and a
WGAN neural network with a GP term is used to expand network traffic data samples.
The verification experiment was carried out on a large number of industrial data sets.
The experimental results show that the ICS intrusion detection model based on the 1D
CWGAN has achieved good results. Although this method has potential applications
in industrial control system intrusion detection, it also has some shortcomings. First,
like any other generation model, this method can introduce noise into the data set, so
additional processing will be needed to mitigate the effects of noise in future work. In
addition, in order to find the best hyperparameter configuration, it is often necessary to

42



Electronics 2023, 12, 4653

conduct multiple trials and adjustments, which also increases the training time. In future
research, we will carry out more in-depth theoretical research to optimize the algorithm and
hardware, speed up its training and convergence process, and improve the computational
efficiency of the model to meet the real-time requirements of industrial control systems.
In addition, interpretive artificial intelligence techniques, such as interpretable machine
learning models or visualization tools, can be introduced to improve the interpretability
of methods.
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Abstract: Nowadays, malware remains a significant threat to the current cyberspace. More seriously,
malware authors frequently use metamorphic techniques to create numerous variants, which throws
malware researchers a heavy burden. Being able to classify these metamorphic malware samples
into their corresponding families could accelerate the malware analysis task efficiently. Based on our
comprehensive analysis, these variants are usually implemented by making changes to their assembly
instruction sequences to a certain extent. Motivated by this finding, we present a streamlined and
efficient framework of malware family classification named MalSEF, which leverages sampling and
parallel processing to efficiently and effectively classify the vast number of metamorphic malware
variants. At first, it attenuates the complexity of feature engineering by extracting a small portion
of representative samples from the entire dataset and establishing a simple feature vector based on
the Opcode sequences; then, it generates the feature matrix and conducts the classification task in
parallel with collaboration utilizing multiple cores and a proactive recommendation scheme. At last,
its practicality is strengthened to cope with the large volume of diversified malware variants based on
common computing platforms. Our comprehensive experiments conducted on the Kaggle malware
dataset demonstrate that MalSEF achieves a classification accuracy of up to 98.53% and reduces time
overhead by 37.60% compared to the serial processing procedure.

Keywords: malware classification; malware family; parallel processing; microsoft kaggle mal-
ware dataset

1. Introduction

In the digital age, networks became a prime target for many attackers. Malware is a
prevailing weapon for attackers to launch network attacks and became a major challenge to
cyberspace worldwide. In spite of the fact that anti-malware researchers put considerable
efforts into the analysis task, it is still not ideal to curb malware attacks. Especially with
high returns earned by malware, a consistent surge was found in malware attacks and
obfuscated variants [1]. These variants are usually produced by modifying their binary
codes or assembly instructions based on obfuscation techniques. Through the obfusca-
tion process, the malware samples can change their structural characteristics and evade
detection while preserving malicious functions [2]. The AV-TEST Institute reported that
more than 350,000 fresh malware samples are discovered every day [3]. The proliferation
of malware variants created a significant challenge for anti-malware analysis. To tackle
the malware challenges, a significant amount of previous work was devoted to malware
detection [4]. However, it is still a challenging issue to tackle with the obfuscated malware
variants detection.

Motivated by the above-mentioned challenge, this paper focuses on the issues of
malware variants classification aiming at accurately and effectively classifying the sheer
number of variants into their families. Because it is a time-consuming workload to cope
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with the large quantities of malware samples, the first issue we need to consider is to
simplify the feature engineering phrase.

To extract features from malware, two traditional methods are often used: static
analysis and dynamic analysis [5]. Behavioral information of malware is derived from a
malware sample without actual execution in static analysis. On the contrary, a malware
program needs to be run actually in dynamic analysis mode. Compared with dynamic
analysis, static analysis can achieve high accuracy and efficiency due to being free from the
overhead of execution cost [6]. Among the features extracted from static analysis, Opcode
sequences garnered significant interest from malware researchers and are widely used in
anti-malware analysis, which is because assembly instructions can reveal program behavior
characteristics [7,8]. In order to accelerate the classification of a huge amount of malware,
we decided to conduct static analysis and extract features from the assembly instructions.
In addition to simplifying feature engineering, another strategy that we take into account is
to employ parallel processing techniques to accelerate the classification of these massive
malware variants by utilizing our ordinary computing platforms.

To this end, a light and parallel classification framework named MalSEF (a streamlined
and efficient framework for detecting metamorphic malware families) is proposed in this
paper. MalSEF mainly consists of four modules: sampling, feature extraction, feature
matrix generation in parallel, and classification in parallel. MalSEF is implemented as
follows. Firstly, select a small proportion of samples and construct a subset from the entire
dataset according to a validated sampling criterion. Secondly, extract the Opcode sequence
from the sampled subset to represent the entire dataset. Then, because the metamorphic
technique is usually applied at the assembly instruction layer of malware, we analyze
the behavioral characteristics based on the Opcode sequence, select the ranked Top-N
Opcodes in frequency, and build a simple feature vector taking the frequency of Opcode as
the eigenvalue to construct feature matrix in parallel for the initial dataset, based on the
simple feature vector. The proposed parallel processing strategy is employed to reduce
processing time and ameliorate processing efficiency for feature extraction and feature
matrix generation from the entire dataset. By constructing the above lightweight feature set
and applying the parallel processing strategy, the time overhead required for classifying
large amounts of malware can be efficiently reduced. Finally, we evaluate MalSEF on
the Microsoft Kaggle malware dataset and achieve promising classification accuracy. In
addition, the processing time overhead can be reduced apparently compared with the serial
processing mode. In conclusion, the following contributions are made in this paper:

(1) We suggest to extract a small proportion of samples from the entire dataset according
to the selection criteria and construct a simple and efficient feature vector from the
assembly (ASM) files that can reflect the original dataset. The final evaluations prove
that the lightweight eigenvector can not only attenuate the complexity of feature
engineering, but also satisfy classification requirements.

(2) We propose a parallel processing approach with commonly available hardware re-
sources that utilizes collaboration of multi-core and active recommendation. The
parallel strategy can run on the popular personal computer without high-performance
hardware resources, and open the door for analysts to leverage general computers to
tackle tough tasks due to the large volume of malware.

(3) We conduct systematic assessments using the Microsoft Kaggle malware dataset. The
classification accuracy can reach up to 98.53%. The parallel processing technique
results in a 37.60% reduction in the processing time compared with the conventional
serial process mode. MalSEF can deliver a similar performance to the first winner of
the challenge competition with the feature space effectively simplified, outperforming
the existing algorithms in terms of simplicity and efficiency.

The remainder of the paper is organized as follows: Section 2 provides background
information and summarizes related research; Section 3 describes the inspiration and
framework of MalSEF; Section 4 presents the detailed implementation of MalSEF; Section 5
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details the experiments and evaluations conducted on MalSEF; and the paper is concluded
in Section 6.

2. Overview of Related Studies

A brief introduction of the necessary background knowledge and an overview of
related research are provided in this section.

2.1. Background
2.1.1. Metamorphic Techniques

The purpose of metamorphism is to change its structure of the malware and generate
new features at time of propagation, so as to avoid traditional feature-based detection [9].
Metamorphic techniques are quite widely used; some obfuscating method adopted in
adversarial attacks [10] and backdoor attacks [11] can also be seen as metamorphism
in a broader view, where metamorphism is usually implemented through resize and
imperceptible perturbations [12]. As for malware, the metamorphic technique is usually
applied in the assembly instruction layer, i.e., Opcode. The popular metamorphic methods
include instruction reordering, dead/trash instruction insertion, and substitution [13]. The
metamorphic technique is mainly applied at the assembly instruction level, which lies
in the scope of this study (since the Kaggle dataset includes both assembly and binary
formats of malware [14]). Below, we provide a brief overview of the common ways in
which malware can be deformed.

(1) Instruction reordering

Instruction reordering involves division of code into segments, permutation of these
segments, and inserting branch instructions as necessary to maintain the initial functionality.
This code manipulation is extremely effective in modifying the initial signature and may
also be effective against structure inspection techniques, such as detecting the change in
entropy [15].

Instruction reordering can be realized in two ways. One way to accomplish instruction
reordering is to randomize the sequence of instructions and remain the original control
flow by inserting unconditional branches or jumps. As shown in Figure 1, the malware
variant ‘BKXtxeYlLsprabEWIQhn’ in the Kaggle dataset employs this method to generate
new variants. The other way is to swap independent instructions. Similar to compiling
instructions, different compilers will generate different compilation instructions. The
difference is that the goal of swapping instructions is to randomize the instruction stream.

Figure 1. Example of metamorphism through instruction reordering.

47



Electronics 2023, 12, 4427

This kind of metamorphism may interfere with the manual analysis process. However,
many automatic analysis approaches that rely on intermediate representations, such as
control flow diagrams or program dependency diagrams [16], can effectively overcome it
because they are less sensitive to the unwanted changes in the control flow.

(2) Trash code or dead code insertion

Trash instructions are “not do anything” instructions that are executed without any
impact on program functionality. Trash/dead instruction insertion adds code to a program
without changing the program’s original behavior. The simplest example is to insert a
series of ‘nop’ instructions into a program. As shown in Figure 2, the malware variant
‘i5u2KDJ9t0OyAdokafj7’ in the Kaggle dataset employs this method to obfuscate and
generate new variants.

Figure 2. Example of metamorphism through dead code insertion.

Trash/dead instruction inserts are frequently used by malicious personnel to influence
the detection based on features, and as for bypassing statistical detection, these metamor-
phic techniques are particularly effective.

(3) Instruction substitution

Instruction substitution means equivalent instruction replacement, which uses an
equivalent instruction sequence dictionary to replace one instruction sequence with another.

The example of instruction substitution is illustrated in Figure 3. Because this mod-
ification relies on equivalent instruction knowledge, it makes the most serious obstacle
to automatic analysis. The Intel Architecture 32-bit instruction set is abundant enough to
perform the same operation in numerous ways. In addition, the IA-32 instruction set has
some structural inconsistencies, such as a memory-based stack, which may be accessed by
specialized instructions as a memory address. Operations of standard memory can also be
accessed as a memory address, which makes the assembly language of IA-32 provide rich
means for instruction replacement.

This kind of metamorphism is an effective way to evade feature-based detection and
statistics-based detection. To tackle this form of obfuscation, an equivalent instruction
sequence dictionary, which needs to be similar to the one used in generating the equivalent
instruction, must be maintained for the analysis tool. This is not a fundamental way to
tackle the instruction replacement problem, nevertheless, it is usually enough to handle
usual situations.
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Figure 3. Example of metamorphism through instruction substitution.

2.1.2. Methods for Malware Analysis

In the field of malware analysis, two fundamental tasks are malware detection and
malware classification [17]. To find malicious samples from unknown programs is the
target of malware detection, while to separate malware into corresponding families is the
target of malware classification. Features of programs extracted in the detection stage can
still be used in the classification process. Based on the different ways of program feature
extracting, methods of malware detection and classification are put into two categories:
static and dynamic.

Static analysis does not run the program actually. To understand the malicious nature
of a program, researchers usually gather information from its PE header, PE body, and
binary code. Alternatively, they can disassemble the binary code and extract Opcodes or
other pertinent details from the assembly program to characterize it [18]. The static analysis
technique is more efficient but must contend with packaging and obfuscation disturbances.

Dynamic analysis is an approach based on behavior that needs to run the program
to capture its run time behavior characteristics. The main behavior characteristics of the
dynamic analysis method include program API sequence and behavior interaction with OS
during run time. In order to avoid damage to the terminal system caused by malware, a
virtual environment is usually used while dynamic analysis is performed [19,20].

Additionally, combining static and dynamic analysis, there are also researchers that
conducted hybrid analysis. During the hybrid analysis, static and dynamic features are de-
rived separately, and then fused together to overcome the defects of static or dynamic anal-
ysis alone, so as to achieve a more comprehensive and accurate analysis of malware [21,22].

2.1.3. Parallel Processing Techniques

Parallel processing is a technique that allows for the execution of multiple tasks
simultaneously by dividing a serial work process into multiple processes or threads [23–25].
Some common parallel processing methods are as follows:

(1) Task parallel: during a complete working process, if there are some independent mod-
ules executing in parallel, this parallel processing method is called task parallelism.
As shown in Figure 4, in this data flow diagram, when module A and B execute in
parallel, it is called task parallel.

(2) Pipeline parallel: when a series of connected modules (forming a complete working
process) process independent data elements in parallel (these data elements are usually
a time series or an independent subset of a certain dataset), this parallel processing
method is called pipeline parallelism. As shown in Figure 4, when modules A, C, and
D execute in parallel, it is called pipeline parallel.

(3) Data parallel: when a dataset can be divided into a number of subsets and these
subsets can be processed simultaneously, this kind of parallel processing method is
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called data parallelism. As shown in Figure 4, if module B reads data in parallel, it is
called data parallel.

Figure 4. A data flow diagram.

2.2. Related Studies

Since the target of this research is malware family classification based on parallel
processing technology, this section makes a brief summary of the relevant research work
on malware family classification and malware analysis using parallel technologies.

In the process of malware classification, researchers usually extract different features
to represent samples, and then select an automatic classifier to realize classification. For
example, Bailey Michael et al. [26] proposed to describe malware behavior characteristics
according to system state changes (such as file reading and writing, process creation, etc.).
On this basis, malware is automatically classified into groups with similar behavior types
in automatic mode, so as to handle the phenomenon of the sharp increase in malware
scale and behavior difference. In addition, some researchers also proposed methods to
analyze the binary code of malicious programs. Nataraj Lakshmanan et al. [27] applied the
binary texture analysis method to analyze the malicious code and made a comprehensive
comparison. The authors found that the binary texture analysis method not only achieves
relatively high classification accuracy, but also surpasses the dynamic analysis by nearly
4000 times in speed. Furthermore, some of the current strategies can even be resisted by
texture-based analysis.

In view of the sharp increase in the scale of malware variants, Ahmadi Mansour
et al. [28] designed a novel classification strategy for malware family, utilizing the dataset
of the Microsoft malware challenge as the research object. An innovative approach for
feature set extraction and selection was devised to effectively characterize malware samples.
According to the different characteristics of malicious code, the features were classified and
weighted. This method can effectively address the challenge brought by the increasing
variants of malware. To cope with the challenge of the increasing number of malware
from an extensible perspective, Hu Xin et al. [29] proposed a machine learning frame-
work that utilizes diverse content features (such as string, instruction sequence, section
information, and other characteristics) and gathers intelligence information from external
resources (such as anti-virus output). Several optimization methods were designed to
further improve the performance of the classifier. Finally, an experiment was conducted on
the Kaggle dataset of the Microsoft malware challenge to evaluate the performance of the
propounded approach in processing malware datasets with a large scale. Considering that
most malicious programs are variants created from existing malware, Lee Taejin et al. [30]
presented a method for malware detection and classification in light of the local clustering
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coefficient. In this way, the classification reliability can be enhanced, the automatic selection
and management of the malware family can be realized, and the large-scale malware can
be classified efficiently.

Aiming at overcoming the limitations of current malware classification that requires
domain knowledge, Raff Edward et al. [31] used a new representation named the SHWeL
feature vector through expanding the concept of Lempel-Ziv Jaccard distance. The SHWeL
vector improves the accuracy of LZJD, and its performance is better than the byte n-grams
feature representation method, which can build an effective eigenvector input for classifier
training and reasoning. In addition, Quan Le et al. [32] also presented a method of malware
classification that does not require domain knowledge. This method converts a binary
file into a one-dimensional representation and then constructs a deep learning network
for automatic classification. The advantage of this method is that researchers do not need
to extract features from malware, but only use the universal image scaling algorithm to
convert a malware into a one-dimensional form of fixed size.

With the increase in the scale of malware, the analysis workload becomes more and
more onerous. To ameliorate the efficiency of malware analysis, some researchers began to
apply parallel and distributed processing technologies.

Junji NAKAZATO et al. [33] designed a new malware classification method to tackle
the problems that existing methods are inadequate for achieving efficient and accurate
classification. The authors initially conducted a dynamic analysis to automatically extract
execution traces of malware, then employed their behavioral characteristics to classify
them into distinct categories. In the process of obtaining behavior characteristics, the
author adopted a parallel processing method to extract the API information of malware.
Sheen Shina et al. [34] derived features of different categories from the executable file
and applied them to the integrated classifier. The integration approach combined several
separate pattern classifiers for better results. The problem was how to select classifiers of a
minimum number and acquire the best results. This paper designed a compact integration
technique using the harmony search method, which was derived from the music harmony-
inspired algorithm. For malware detection, the simplified integrated classifier was used.
For selecting the optimal subset of classifiers, multiple variegated classifiers were integrated
into harmony and parallel search. Wang Xin et al. [35] used parallel machine learning
and information fusion technology to achieve more effective detection. The author first
extracted eight types of static features from the program and constructed two sets of
features through feature selection; subsequently, a parallel machine learning model was
employed to expedite the classification process. Finally, information fusion was achieved
through probability analysis and Dempster–Shafer theory to complete the final detection.

Based on the above-introduced literature, the researchers made multi-aspect attempts
at coping with the sharp increase in the scale of malware variants; nonetheless, there still
exist apparent deficiencies as follows (as illustrated in Table 1):

(1) The feature vectors constructed by these methods can usually effectively represent
the features of malware. However, when applying to analyze massive malware, the
feature space will become too large and bring a heavy burden to analysts. For exam-
ple, the feature vector proposed by [28] can achieve perfect classification accuracy;
however, its feature vector is too large to be realized under the condition of ordinary
computing resources.

(2) The parallel processing method above is usually applied to multiple classifiers for
parallel detection. In essence, it is still a serial processing mode, and the parallel
analysis target of massive samples is not achieved. When faced with a large scale of
malware, it will inevitably affect the analysis efficiency.
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3. Overview of MalSEF
3.1. Motivation

The malware detection process typically consists of two main stages: feature extraction
and detection/classification, which constitute a serial process [6]. Malware detection and
malware classification are two distinct tasks. The former aims to determine whether an
unknown sample is malicious, while the latter involves grouping detected malware into its
most appropriate family. In the current cyberspace environment, we are witnessing a surge
in malware families, coupled with a high number of variants within each family, posing a
significant challenge to the anti-malware community [2].

Actually, the scale of malware volume is increasing mainly due to the widespread
application of metamorphic technologies. The metamorphic malware will modify its code
structurally while maintaining its functionality at time of propagation. How to cope with
the large volume of metamorphic malware variants and group them into appropriate
families became a crucial task for the security community. During the grouping process,
the following challenges need to be addressed:

(1) The complexity of feature engineering may increase sharply due to the large scale of
malware variants. The complexity is mainly derived from two aspects: (1) The feature
set of the cutting-edge analysis methods is usually fairly complicated, because we
often utilize APIs or Opcodes, or their combination (n-grams) as the feature vector
to profile the malware. The number of API and Opcode on the Win32 platform is
relatively large. (2) The increasing volume of malware variants will further aggravate
the complexity, especially in the current massive malware environment.

(2) The efficiency of coping with the sheer number of malware samples cannot be guaran-
teed. The existing detection methods mainly include the training stage and detection
stage. These two stages are separately implemented and the detection process is
essentially a serial processing one. We may inevitably fail to tackle the challenge
facing the environment of large-scale malware.

Driven by the above issues, we put forward the following ideas in this paper:

(1) How to establish a simple feature set for the large number of malware variants so
as to alleviate the computation cost and deliver satisfactory classification perfor-
mance simultaneously?

(2) How to efficiently handle numerous malware variants and classify them into their
homologous families to ensure the efficiency of the classification process?

(3) How to implement the complicated task for analyzing a huge amount of malware on
a simple personal computer, so as to enable ordinary researchers to accomplish the
seemingly impossible task due to the conventional paradigm?

The answers to these questions were already provided in previous studies. Motivated
by the above inspiration, we aim to propose a lightweight approach for ordinary researchers
to perform heavy analysis tasks using common computing platforms.

3.2. Parallel Processing Model of Massive Malware Classification

Based on the principle of parallel processing technology, the procedures in malware
detection that can be optimized by parallel processing include:

(1) In the training stage, the process of extracting features from the training set include
“assembly commands of samples→ extracting Opcode lists→ counting the occur-
rences of every Opcode→ generating feature vectors→ generating feature matrices”,
which can be implemented in parallel mode.

(2) In the detection stage, the process performing on unknown samples include “assembly
commands of samples→ generating feature vectors→ classification”, which can be
implemented in parallel mode.

By considering the above malware analysis process, we employ parallel processing
techniques to compress the needed analysis time and boost the malware classification
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efficiency. According to the above discussion, the malware classification process in parallel
is designed as displayed in Figure 5.

Figure 5. Parallel classification model of massive malware.

3.3. Overall Framework of MalSEF

MalSEF mainly includes four modules, namely, sampling of massive samples, feature
extraction, feature vector generation, and classification, as shown in Figure 6.

Figure 6. The framework of MalSEF.
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(1) Sampling of massive samples

The task of this module is to construct sampled subsets that consist of a small part
of samples randomly selected from each family of the massive samples collected, which
will be used as the data source for feature extraction. The purpose of this module is to
select features from subsets of samples to represent the original dataset rather than extract
features directly from massive samples, so as to attenuate the complexity of the extraction
of features. The subset size is determined on the criteria of selecting a smaller quantity
of samples from the entire dataset and obtaining the same results that reflect the original
dataset as previously as needed [36].

(2) Feature extraction

Because the malware program is often in the form of binary code, we have to firstly
convert the binary malware programs into assembly programs. The most frequently used
disassembling tool is IDA Pro. In our study, because the experiment dataset of this paper
is released by Microsoft in Kaggle, which is in the form of the assembly instructions after
disassembling, accordingly, features can be extracted statically from the assembly programs
of malware samples. This module first counts the occurrences of every Opcode in the
sample subsets and then ranks Opcodes according to their occurrence frequencies. Finally,
the Top-N ranked Opcodes are selected as the feature vector (Top-N is set by researchers
flexibly) and the number of occurrences of each Opcode is taken as its feature value.

(3) Feature matrix generation

After generating feature vectors in the previous module, the task of this module is
to generate the feature matrix for the samples. According to the experimental method of
cross-validation, we need to generate feature matrices for the samples in the training set
and testing set, respectively. Among them, the training set is a labeled dataset, and the
test set is an unlabeled dataset. Since the number of samples in the testing set is much
larger than that in the training set, it requires more time to construct feature matrices for
the testing set. To this end, we adopted a parallel processing approach to generate feature
matrices for the testing set.

(4) Classification of massive malware samples

Having gotten the feature matrix as illustrated above, we can verify the result of
MalSEF by cross-validation.

4. Detailed Implementations of MalSEF

This section describes the implementation of MalSEF in detail.

4.1. Sampling from the Massive Samples Set and Feature Extraction
4.1.1. Sampling from the Massive Sample Set

The aim of this module is to select a certain number of samples from each family to
form a subset for each family. The size of each subset is determined by a sample size deter-
mination criterion. The required sample size is decided based on the following formula.

n0 =
z2 × p× q

d2 (1)

where: n0 is expected sample size; z is standard normal deviation of expected confidence
level; p is the assumed proportion of the target population with an estimated particular
characteristic; q = 1− p; and d is the degree of accuracy expected in estimated proportion.
This is a theoretical formula that is used to determine the number of selected samples
n0 under a certain expected confidence level and certain marginal error, allowing n0
to represent the overall samples in a statistical sense. It is based on the assumption
that the samples follow a normal distribution, noting that the expected confidence level
is determined by z (e.g., z = 1.96 for 95% confidence level), and the marginal error is
determined by d (e.g., d = 0.01 for a margin of error of 1%). As for p, when z and d are given
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and the estimator p is not known, p = 0.5 can be used to yield the largest sample size, which
is the p value we used in this research.

The formal description of the sampling process is as follows:

Set(S




F1
(

f11, f12, · · · , f1N1

)
...

Fm( f11, f12, · · · , f1Nm)


) : Sampling :→ Subset(S′




F1

(
f11, f12, · · · , f1N1

′
)

...
Fm

(
f11, f12, · · · , f1Nm

′
)


) (2)

where N1
′ ≤ N1, · · · , Nm

′ ≤ Nm, and S′ ⊆ S.
Description of the algorithm implementation of the sampling process is illustrated as

Algorithm 1.

Algorithm 1: Sample a subset from the original dataset

//S represents the original dataset.

//
︷︸︸︷

z represents the set of standard normal deviations for desired confidence level of original
dataset.

//
︷︸︸︷

p represents the set of assumed proportions in the target population of original dataset.

//
︷︸︸︷

d represents the set of degrees of accuracy desired in the estimated proportion of the
original dataset.

Input: the original malware dataset S,
︷︸︸︷

z ,
︷︸︸︷

p ,
︷︸︸︷

d
Output: the sampled malware subset S’
1: trainLabels = readDataset() //read the original dataset
2: labels = getLabels(S) //read the labels of the original dataset
3: for i = 1 to labels do
4: mids = trainLabels[trainLabels.Class == i] //get the samples of Class == i
5: mids = mids.reset_index() //reset the index of the samples of Class == i

6: ni =

︷︸︸︷
z i

2

×
︷︸︸︷

p i×
(

1−
︷︸︸︷

p i

)

︷︸︸︷
d i

2 //calculate size of the subset for the ith original dataset

7: for j=1 to ni do
8: rchoice = randit(0, ni) //select digits from 1 to 100 randomly
9: rids = mids [1, rchoice] //build the subset for the Class = i
10: end for
11: S’.append(rids) //append the subset of Class == i to S’
12: end for
13: return S’

4.1.2. Feature Extraction and Feature Vectors Construction

Opcode is a mnemonic of machine code, which is usually represented by assembly
command [2]. Because this paper is based on a dataset released by Microsoft in Kaggle,
which contains the assembly program of malware, we build the features of samples by
extracting Opcodes from the assembly program. The procedure of extracting features using
the sampled subset is as follows:

(1) Analyze samples in the subset one by one and extract Opcodes from each sample;
(2) Count the occurrences of each Opcode in the subset;
(3) Sort Opcodes based on their occurrences;
(4) Select Top-N Opcodes as the feature vector (the value of Top-N is set by the researchers

flexibly).
(5) Construct the feature matrix by counting the occurrence numbers of each opcode in

each set as the feature value for the feature element.

The description of the implementation process of feature extraction and feature vectors
construction is illustrated as Algorithm 2.
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Algorithm 2: Feature matrix construction

Input: assembly programs of the malware samples P =
{

p1, p2, p3, · · · , pn
}

Output: the feature matrix FM
1: for i=1 to Len(P) do
2: //Append the opcodes of the analyzed program to the Opcode list
3: OpList ← Opcodes o f pi
4: //Build the opcode sequence of all the programs

5: OpSeq
[→

P
]
← OpListofpi

6: //Count the occurrence times of each Opcode

7: OccSeq
[→

P
]
← OpSeq

[→
P
]

8: end for
9: //Sort the Opcode sequence based on occurrences

10: Sorted_OpSeq
[→

P
]
← OpSeq

[→
P
](

Key : OccSeq
[→

P
])

11: //Select the ranked Top-N Opcodes as the feature vector and their occurrences as the
feature values

12: FM← Ranked
[

Sorted_OpSeq
[→

P
]]

13: return FM

4.2. Feature Extraction with Multi-Core Collaboration and Active Recommendation in Parallel

Parallel processing in the procedures of massive malware detection has the follow-
ing characteristics:

(1) Within the two procedures of parallel processing described in Section 3.2, the relation-
ship between tasks in each procedure is loosely coupled.

(2) In the two procedures of parallel processing described in Section 3.2, we should
adopt the iteration method to tackle the distributed parallel tasks load in the practi-
cal processing.

(3) In the procedure of parallel processing, different tasks will inevitably lead to different
running speeds because of the different performance of the running environment and
different computational load. Thus, tasks should be adaptively distributed according
to the practical performance of each running node.

Based on the characteristics of the above procedures of parallel processing, we consider
using the idea of multi-core to build multiple task nodes to extract code features in parallel.
According to the practical implementation of each task, we can actively assign processing
tasks to better performance nodes or faster nodes, so as to achieve parallel feature extraction
of massive malware.

To this end, we design a parallel processing method with collaboration among multi-
cores and active recommendation. Figure 7 illustrates the procedure, and the comprehen-
sive implementation process is as listed below:

(1) Construct the analysis sample queue based on the malware sample sets. The queue is
illustrated as follows:

Queuesample = {sample1, sample2, · · · , samplen}. (3)

(2) Construct a multi-core resource pool based on the computing resource nodes, each of
which serves as a processing core. The core pool is illustrated as follows:

Queuecore = {core1, core2, · · · , corem}. (4)
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Figure 7. Feature extraction with multi-core collaboration and active recommendation in parallel.

(3) Query the current available resources in the resource pool and establish a queue of
current available resources. The available resource queue is depicted as below:

Queuecore′ = {core1, core2, · · · , corem′}
(
1 ≤ m′ ≤ m

)
. (5)

(4) According to the currently available resource queue, the master node (the node that
stores the sample sets) fetches m′ samples from the sample sets and allocates them to
the resource queue for processing.

(5) In the procedure of task parallel processing, each node monitors its own running state
in real time, maintains and updates its own state vector in real time, and communicates
the state vector information with each other. Based on the real-time interactive state
vector information among the cores, the state vectors are combined to form a global
state matrix within the cores.

The state vector describes the progress of current task processing, computational
resource consumption, storage resource consumption, bandwidth resource consumption,
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and the number of tasks that were assigned in a node. The state vector is illustrated
as follows:

→
Statuscorei = {ComputeCapi, StorageCapi, BandCapi, Numi, Percenti}. (6)

The elements in the state vector are defined as follows:

(1) ComputeCapi : computational resource consumption of node i;
(2) StorageCapi: storage resource consumption of node i;
(3) BandCapi: bandwidth resource consumption of node i;
(4) Numi: the number of tasks assigned to node i;
(5) Percenti: the progress of current task processing of node i.

In order to ensure a reasonable allocation of the subsequent tasks when combining
the state vectors of each node to construct the state matrix, it is essential to rank the nodes
based on their real-time status. Nodes with a lighter load are positioned higher, while those
with a heavier load are placed lower.

To this end, after receiving the state vectors from other nodes, each node compares the
values of each element in the state vector according to the importance order of “Percent >
ComputeCap > Num > StorageCap > BandCap”, and forms the final state matrix, which
is described as follows:

[Status] =




→
Statuscore1

· · ·
→

Statuscorem′


 =




ComputeCap1 StorageCap1 BandCap1 Num1 Percent1
· · · · · · · · · · · · · · ·

ComputeCapm′ StorageCapm′ BandCapm′ Numm′ Percentm′


. (7)

(6) The master node will continuously monitor the state matrix and sort the samples to
be analyzed. Once a node finishes its task, it notifies the master node, which then
assigns new samples to that node, allowing it to start a new processing task. By this
way, our method realizes the real-time and active pushing of processing tasks.

(7) Run continuously until the samples are processed entirely according to the above
scheme.

5. Evaluation
5.1. Experimental Configuration

Hardware: Lenovo ThinkStation, Intel® CoRE™ i7-6700U CPU@3.40GHz×8, 8 GB
memory (Made by Lenovo in China).

Operating system: 64 bit Ubuntu 14.04.

5.1.1. Dataset

In the evaluation phase, we use the training dataset released by Microsoft in Kaggle,
which includes 10,868 malicious samples. We carry out cross-validation on the training
dataset directly because we could not obtain the labels of the testing samples. Each malware
sample has a 20-character hash value as its ID. The dataset comprises nine distinct malware
families, namely Ramnit (R), Lollipop (L), Kelihos ver3 (K3), Vundo (V), Simda (S), Tracur
(T), Kelihos_ver1 (K1), Obfuscator.ACY (O), and Gatak (G). Each sample family is assigned
a class label from 1 to 9. The training dataset is shown in Table 2, which illustrates the
distribution of each malware family.

5.1.2. Classifier

During the malware classification stage, we use data mining techniques to automate
the task. To evaluate the effectiveness of MalSEF, we apply four different classifiers for
identifying malware, including decision tree (DT), random forest (RF), K-nearest neighbor
(KNN), and extreme gradient boosting (XGB), which are commonly used in the fields of
data mining, information security, and intrusion detection [37].
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Table 2. Experimental dataset.

Family ID Family Name #

1 Ramnit (R) 1541

2 Lollipop (L) 2478

3 Kelihos ver3 (K3) 2942

4 Vundo (V) 475

5 Simda (S) 42

6 Tracur (T) 751

7 Kelihos_ver1 (K1) 398

8 Obfuscator.ACY (O) 1228

9 Gatak (G) 1013

Total 10,868

5.2. Experimental Results and Discussion

We evaluate MalSEF comprehensively through detailed experiments in this section.
Firstly, we build Opcode lists from the original samples set and the sampled subset sepa-
rately and evaluate the classification effect of the total sample set using different Top-N
Opcode lists, which are selected to construct feature vectors. Secondly, we apply the parallel
processing technology in the procedure of classification based on the origin sample set
and sampled subset separately, and verify the effect of parallel classification. Finally, we
compare MalSEF with similar studies comprehensively.

5.2.1. Classification Using Features Derived from the Original Set and the Sampled Subset

This section indirectly evaluates the effect of using a sampled subset to characterize
the original dataset. Features are extracted from the original set and the sampled subset,
respectively, and then we classify the Train dataset to evaluate its classification effect.

Composition of the Sampled Dataset—Subtrain

In the experimental stage, we first select a small part of samples from the whole
experimental dataset to form the subset, which is used to construct feature vectors. Because
the experimental dataset we applied in this research is the Train dataset from Microsoft in
Kaggle, we named this subset as Subtrain. Subtrain consists of 803 samples with specific
information as shown in Table 3.

Table 3. Subtrain: the sampled dataset from the Train dataset.

Family ID Family Name #

1 Ramnit (R) 95

2 Lollipop (L) 100

3 Kelihos ver3 (K3) 97

4 Vundo (V) 96

5 Simda (S) 39

6 Tracur (T) 92

7 Kelihos_ver1 (K1) 91

8 Obfuscator.ACY (O) 97

9 Gatak (G) 96

Total 803
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Evaluation of the Classification Results Using Features Extracted from the Entire
Train Dataset

By analyzing the dataset released by Microsoft in Kaggle, we find that there are 735
Opcodes in the Train dataset. To verify the impact of the 735 Opcodes on classification
results, we rank them according to their occurrences and select Top-N Opcodes as the
feature vector to verify the final classification effect.

We first select various Top-N Opcodes to generate feature vectors, followed by con-
ducting 10-fold cross-validation experiments using random forest (RF), decision trees (DT),
support vector machine (SVM), and extreme gradient boosting (XGBST) classifiers. We
utilize the open-source Python library Scikit learn (version 1.0.2) and opt for the default
values when it comes to setting the hyper parameters for various classification methods
which makes it easier to ensure the generalization ability of MalSEF without intentional
optimization. The classification outcomes are presented in Table 4.

Table 4. Evaluation of the classification results according to various Top-N Opcodes extracted from
the Train dataset.

RF DT SVM XGBST Number of Feature Opcodes

Accuracy 98.34% 97.06% 97.38% 98.16%

N = 735
Precision 97.93% 92.13% 97.17% 96.29%

Recall 97.83% 94.92% 93.63% 97.57%

F1 Score 97.77% 93.17% 95.02% 96.80%

Accuracy 98.20% 97.52% 97.65% 98.21%

N = 400
Precision 97.62% 94.20% 90.58% 93.90%

Recall 91.00% 90.31% 90.31% 89.69%

F1 Score 92.67% 91.49% 90.35% 90.69%

Accuracy 98.57% 97.52% 97.19% 98.39%

N = 300
Precision 98.26% 91.11% 89.18% 97.98%

Recall 93.65% 90.20% 92.39% 95.69%

F1 Score 95.34% 90.56% 90.29% 96.65%

Accuracy 98.44% 97.15% 96.55% 98.30%

N = 200
Precision 97.97% 96.48% 87.77% 97.81%

Recall 93.30% 90.82% 88.87% 93.16%

F1 Score 94.85% 92.36% 88.08% 94.72%

As can be seen from Table 4, results of classification are similar using different Top-N
Opcodes. The classification effect of the RF classifier with different Top-N opcodes is as
shown in Figure 8, where Train_N stands for Top-N Opcodes extracted from the Train
dataset and the fold line at the top portrays the variation in accuracy when the selected
number of opcodes is changed.

The results of this experiment demonstrate that selecting all Opcodes as feature vectors
is not necessary to represent the characteristics of samples. Because there exists redundancy
in the extracted Opcode lists, only a part of key Opcodes is needed to achieve the desired
classification effect.
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Figure 8. Comparison of the classification results of RF classifier with different Top-N Opcodes based
on Train/Subtrain dataset.

Evaluation of the Classification Results Using Features Extracted from the Sampled
Subtrain Dataset

In order to verify whether the sampled set Subtrain can comprehensively and effec-
tively represent the features of the Train set, in this section, we use the sampled Subtrain
set as a data source to count the occurrences of all Opcodes and sort them. Subsequently,
various Top-N opcodes are chosen as the feature vector to create feature matrices for the
original Train set. Finally, we carry out cross-validation experiments on the Train set to
verify the validity of using the sampled subset to classify the original set.

There are 394 different Opcodes extracted from the Subtrain set, and we chose differ-
ent Top-N Opcodes to classify the Train set separately. Outcomes of the experiment are
presented in Table 5.

Table 5. Evaluation of the classification results according to various Top-N Opcodes extracted from
the Subtrain dataset.

RF DT SVM XGBST Number of Feature Opcodes

Accuracy 98.21% 97.24% 96.87% 98.39%

N = 350
Precision 97.69% 96.75% 91.61% 96.20%

Recall 93.47% 89.73% 92.11% 93.67%

F1 Score 95.01% 91.54% 91.71% 94.67%

Accuracy 98.53% 97.38% 96.83% 97.98%

N = 300
Precision 98.18% 93.76% 92.16% 97.74%

Recall 94.99% 90.53% 90.32% 91.43%

F1 Score 96.25% 91.57% 90.98% 93.24%

Accuracy 98.44% 97.29% 96.83% 98.34%

N = 250
Precision 98.27% 94.04% 93.44% 98.17%

Recall 94.23% 91.09% 94.46% 95.87%

F1 Score 95.81% 92.22% 93.81% 96.87%

Accuracy 98.34% 97.06% 96.92% 98.11%

N = 200
Precision 97.76% 93.99% 94.11% 97.48%

Recall 95.60% 94.09% 93.08% 94.10%

F1 Score 96.45% 93.86% 93.36% 95.35%
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We compare the classification effects of RF classifier with different Top-N Opcodes,
and the outcome is as follows, illustrated in Figure 8, where Subtrain_N stands for Top-N
Opcodes extracted from the subTrain dataset and the fold line at the top portrays the
variation in accuracy when the selected number of opcodes is changed. We can see that
when 350, 300, 250, and 200 Opcodes are selected as the feature vector, the classification
accuracy all exceed 98%, and the highest reaches up to 98.53%. We can draw the conclusion
from this part of the experiments that the classification effect can meet our requirements
when we use the Subtrain dataset to characterize the original Train dataset.

5.2.2. Experimental Results of Parallel Processing

This section is divided into stages of feature extraction, classifier training, and practical
detection. We carry out cross-validation according to serial processing and parallel process-
ing separately, and compare the experimental results of the two different processing modes.

Experimental Results of Parallel Processing of Train Dataset with Top-N Opcodes
Extracted from Subtrain

Because the Subtrain is small, it takes only 3.86 s to extract the Opcode lists from the
Subtrain subset. Then Top-N Opcodes are selected as the feature vectors to generate the
feature matrix for the Train dataset, which is a time-consuming process. We use the parallel
processing mode designed in Section 4.2 to realize the feature generation process. The effect
of parallel processing with different parameters is shown in Table 6, where the first row,
designated with a yellow background, is serial processing, and the most efficient parameter
settings for parallel processing are indicated in red. We compare the experimental result of
parallel processing visually and compare the optimal time performance of each parallel
setting with different Top-N, as shown in Figure 9.

Table 6. Experimental result of the parallel generation of feature vectors with Top-N Opcodes
extracted from Subtrain.

Num_of_Processes Num_of_Files_
Per_Operation

Num_of_Files_
Per_Process

Time_Cost (s)
N = 350

Time_Cost (s)
N = 300

Time_Cost (s)
N = 250

Time_Cost (s)
N = 200

1 1 1 3144.43 3123.36 3094.76 2991.99
4 8 8/4 = 2 2015.38 2017.66 2011.31 2005.77

4 12 12/4 = 3 2001.01 2055.59 2009.72 1997.88

4 16 16/4 = 4 2006.25 2004.85 2005.57 2002.26

4 20 20/4 = 5 2015.54 2021.01 2013.73 2015.71

6 12 12/6 = 2 1903.09 1905.85 1899.42 1899.04

6 18 18/6 = 3 1910.87 1909.65 1906.55 1908.51

6 24 24/6 = 4 1901.23 1903.48 1899.35 1898.98

6 30 30/6 = 5 1916.27 1907.38 1912.05 1904.48

6 36 36/6 = 6 2054.21 1900.02 1908.02 1900.46

8 16 16/8 = 2 2134.08 1802.31 1804.88 1794.36

8 24 24/8 = 3 2234.32 1814.57 1811.59 1806.29

8 32 32/8 = 4 2163.13 1800.85 1805.47 1800.34

8 40 40/8 = 5 2141.56 1814.20 1810.56 1806.71

16 32 32/16 = 2 2441.05 1784.22 1786.66 1786.38

16 48 48/16 = 3 2452.15 1804.17 1785.43 1789.29

16 64 64/16 = 4 2234.93 1804.81 1780.26 1854.18

32 64 64/32 = 2 3798.22 3366.90 3362.39 3378.62

32 96 96/32 = 3 3716.72 3454.91 3457.42 3446.34
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Figure 9. Comparison of time consumption based on different parallel modes.

The experimental outcomes allow us to draw the following conclusions:

(1) The smaller the Top-N that is selected, the less the processing time is, because the shorter
feature vector will result in less processing workload and less time consumption.

(2) The time of parallel processing is the shortest when generating 16 processes and
processing 32 samples each time, i.e., 2 samples are allocated to each process for
analysis. This is because the personal PC workstation used in our experiment has
eight cores. According to this setting, we can make the best use of computing resources
and obtain the best results.

Experimental Results of Parallel Processing of Train dataset with Top-N Opcodes Extracted
from Train

The workload will increase significantly if we extract Opcode lists directly from the
Train dataset as a feature vector and then generate a feature matrix for the Train dataset.
In this section, we extract feature vectors directly from the Train dataset and then carry
out cross-validation. In the process of cross-validation, we extract Opcode lists from Train
and construct a feature vector space for Train based on the extracted Opcode lists. Because
of the large number of samples in Train dataset, these two steps are time-consuming.
Therefore, we use parallel processing technology to implement these two processes, and
the experimental result of parallel processing are shown in Tables 7 and 8, respectively.

Firstly, we utilized various parallel processing configurations to compile Opcode lists
from the Train dataset. The findings are presented in Table 7, with the most effective
parameter settings for parallel processing depicted in red, and another competitive set-
ting depicted with a green background. A visual representation of the time-consuming
comparison is illustrated in Figure 10.
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Table 7. Experimental result of parallel extraction of Opcode lists from the Train dataset.

Num_of_Processes Num_of_Files_
Per_Operation

Num_of_Files_
Per_Process Time_Cost (s)

1 1 1 2714.30
4 8 8/4 = 2 2024.43

4 12 8/2 = 4 2006.35

4 16 10/2 = 5 1988.46

6 18 18/6 = 3 1906.77

6 24 24/6 = 4 1891.73

6 30 30/6 = 5 1890.48

6 36 36/6 = 6 1881.11

8 24 24/8 = 3 1798.20

8 32 32/8 = 4 1795.16
8 40 40/8 = 5 1798.95

16 32 32/16 = 2 1786.84

16 48 48/16 = 3 1784.62

16 64 64/16 = 4 1785.14

32 64 64/32 = 2 3377.65

Table 8. Experimental results of generating Opcode feature vectors based on parallel processing of
the Train dataset.

Num_of_
Processes

Num_of_Files_
Per_Operation

Num_of_Files_
Per_Process

Time_Cost (s)
N = 735

Time_Cost (s)
N = 400

Time_Cost (s)
N = 300

Time_Cost (s)
N = 200

1 1 1 3629.03 3421.50 3094.94 2992.25
4 8 8/4 = 2 2095.58 2023.76 2018.67 2010.66

4 12 12/4 = 3 2074.93 2015.57 2000.30 2010.03

4 16 16/4 = 4 2066.56 2022.45 2016.49 2009.50

4 20 20/4 = 5 2037.21 2020.76 2038.26 2017.21

6 12 12/6 = 2 1923.39 1900.61 1903.36 1894.10

6 18 18/6 = 3 1965.54 1915.90 1911.74 1896.31

6 24 24/6 = 4 1970.55 1903.14 1899.78 1893.46

6 30 30/6 = 5 2063.14 1916.33 1910.19 1896.37

6 36 36/6 = 6 1926.12 1911.70 1898.43 1900.29

8 16 16/8 = 2 1822.72 2101.03 1800.09 1787.23

8 24 24/8 = 3 1964.03 2121.85 1809.51 1804.67

8 32 32/8 = 4 1995.37 2104.43 1792.06 1793.99

8 40 40/8 = 5 1971.58 2078.92 1811.06 1802.45

16 32 32/16 = 2 2843.86 2268.49 1782.34 1777.53

16 48 48/16 = 3 2500.37 2247.56 1775.79 1776.38

16 64 64/16 = 4 2418.35 2258.10 1771.14 1774.33

32 64 64/32 = 2 3805.67 3746.52 3360.62 3410.64

32 96 96/32 = 3 3812.21 3854.86 3461.20 3479.62
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Figure 10. Time consumption of extracting Opcode lists from the Train dataset base on parallel
processing.

On the basis of extracting Opcode lists from the Train dataset, the experimental results
of generating feature vectors of the Train dataset based on parallel processing are shown in
Table 8, with the most effective parameter settings depicted in red for each different N. The
visual display of comparison of time consumption is shown in Figure 11.

Figure 11. Time consumption of generating feature vectors based on the Train dataset.

Comparative Analysis of Overhead between Parallel Process and Serial Process

From the above experimental results of serial processing and parallel processing, we
can draw the following conclusions:

(1) Parallel processing can effectively ameliorate processing efficiency
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The serial processing procedures based on Train and Subtrain datasets include “ex-
tracting the feature vector from dataset→ generating feature matrix for the training dataset
→ training classifier→ practical classification”. The two stages of “extracting the feature
vector from dataset” and “generating feature matrix for the training dataset” are time-
consuming in analyzing a massive sample set, and the application of parallel processing
technology can effectively reduce the processing time.

As mentioned above, the time required to complete feature extraction and feature
vector generation (Top-N = 200) based on the Subtrain subset with serial processing is
3.86 + 2991.99 = 2995.85 (s). In contrast, the optimal time consumption to complete the
above process with parallel processing is 3.86 + 1786.38 = 1790.24 (s), which takes only
59.76% of the original one.

If feature extraction is based on the Train dataset, the time required to complete feature
extraction and feature vector generation (Top-N = 200) is 2714.30 + 2992.25 = 5706.55 (s)
with serial processing. By contrast, the optimal time consumption to complete the above
process is 1784.62 + 1776.38 = 3561 (s) with parallel processing, which takes 62.4% of the
original one. The parallel processing achieved promising results.

(2) Choosing the best parallel processing setting based on computing resource condition

Computing the resource platform has a fundamental impact on the parallel processing
settings. As shown in the table, because our personal workstation platform has eight cores
and the workload of analyzing a single malware sample is not large, the parallel processing
effect is usually the best when generating 16 processes. That is to say, two processes are
allocated to each core for the process, which can maximize the advantage of hardware
resources. In addition, considering the allocation of computing resources on eight cores,
we should not allocate too many samples to each process in parallel processing. We should
ensure that each process is not overloaded to maximize the performance of each process.

5.2.3. Comparison with Similar Studies

To assess the performance of MalSEF, we compare it with related studies in terms
of classification accuracy and time efficiency in this section. Since we utilize the dataset
released by Microsoft in Kaggle, we select similar studies utilizing the same dataset for
comparison. The four baseline models in Table 9 are classic methods that utilize the Kaggle
dataset and hold significant influence, making them ideal candidates for comparison with
MalSEF. The outcomes of the comparison are presented in Table 9.

In comparison to similar studies, MalSEF offers the following benefits:

(1) MalSEF strikes an optimal balance between the feature space and classification accu-
racy while sampling the feature vectors. When only 300 features are needed, MalSEF
can achieve an accuracy of 98.53%. In contrast, the Ahmadi Mansour method [28]
employed 1804 features, and the Hu Xin et al. method [29] required 2000 features,
both more than six times the number of features in MalSEF. Their accuracy was
only marginally higher than MalSEF by no more than 1.30%. Meanwhile, the time
cost of MalSEF is significantly lower than other comparable methods. Although the
classification accuracy of MalSEF may be slightly lower than the above-mentioned
research, it still meets the requirements. Furthermore, when compared to other similar
studies, MalSEF’s feature vector is the most succinct and readily available, achieving
promising classification results while minimizing the complexity of feature extraction.
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Table 9. Comparison with analogous approaches.

MalSEF Ahmadi Mansour
[28]

Hu Xin et al.
[29]

Raff Edward et al.
[31]

Quan Le et al.
[32]

Dataset The Microsoft Malware Classification Challenge dataset in Kaggle

# Features 300 1804 2000 -- 10,000

Feature Set Top-N opcode list

features extracted
from hex dumps +
features extracted
decompiled files

multifaceted
content features +
threat intelligence

Not clearly stated
One dimensional
representation of

the malware sample

Classification
Accuracy 98.53% 99.77% 99.80% 97.80% 98.20%

Time cost (s) 1790.24 5656.00 2867.00 32,087.40
6372.00 (Train time
for deep learning

network)

Required
hardware platform

Lenovo
ThinkStation,
Intel® Core™
i7-6700U CPU
@3.40GHz × 8,
8 GB memory

A laptop with a
quad-core

processor (2 GHz),
and 8 GB RAM

Not clearly stated

A workstation
with an Intel Xeon

E5-2650 CPU at
2.30 GHz, 128 GB
of RAM, and 4 TB

of SSD storage

A workstation
with a 6 core
i7-6850K Intel

processor

# Features means the number of Features.

(2) MalSEF really realized the parallel analysis of massive malware, which can effectively
reduce the analysis time. Compared with the serial processing, the time efficiency
is improved by 37.60%. Compared with similar research, the handing time required
by MalSEF is the shortest. There may be concerns over whether the baselines could
achieve better time efficiency if they use a smaller feature set. The aforementioned
comparison of models is conducted under the terms of their respective required
feature size. When only 300 features are used, MalSEF can achieve ideal detection
results. However, if the size of the features in the baseline modes decreases, it is
not confirmed whether their accuracy can remain. This raises a promising question
for future research. It can also be observed that the time reduction is not especially
significant when the feature size is decreased. This is because the dataset is not
particularly large, and as the size of the dataset increases, the time efficiency of
MalSEF will become more apparent.

(3) The performance of the hardware platform required by MalSEF is moderate, so
ordinary researchers can earn the opportunity. As a consequence, it can be generalized
in the field of popular network security and has good applicability.

(4) As for the similarities among variants of malware, MalSEF provides and verifies
semantic explanations by extracting and mining Opcode information from malware
samples, which compensates for the lack of semantic explanations in deep learning-
based malware classification.

6. Conclusions

Considering the widespread use of metamorphic techniques by malware to evade
detection, we conducted a comparative analysis of the similarities between malware vari-
ants. We found that variants are reproduced in the form of filling old wine in a new bottle
actually, and there are manifest similarities between variants. To enhance the efficiency
of malware analysis, accurately classifying these variants into their families is of theoret-
ical and practical value. To achieve this goal, we proposed a new malware classification
framework called MalSEF. MalSEF adopts a lightweight feature engineering framework by
extracting a small part of the samples from the larger dataset to construct a sampled subset.
Based on the sampled subset, it generates feature vectors to represent the original samples
dataset, and then generates lightweight feature matrices, thereby reducing the workload of
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generating feature matrices from a large number of samples. Based on the above theory,
our method uses multi-core parallel processing to analyze malware, thus making full use of
the computing resources of the modern personal PC. Compared with the traditional serial
processing, the time consumption is decreased and the analysis efficiency is promoted sig-
nificantly. The key advantage of this paper is that MalSEF provides a practical and effective
approach for analyzing and processing vast amounts of malware on personal computers.
Going forward, we aim to explore the following areas: (1) Since cloud computing platforms
are extensively utilized in the realm of network security, we can leverage these resources
to conduct extensive parallel processing [38]; (2) utilizing Opcode to depict malware’s
features is a practical approach. By doing so, we can conduct a multi-dimensional malware
analysis and utilize various features for a more comprehensive portrayal of malware [39].
(3) With the increasing frequency of APT attacks and the large-scale malware outbreaks in
APT, how to apply parallel processing technology to detect APT attacks and take timely
response measures is also a valuable research direction in the future [40,41].
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Abstract: This paper proposes a novel domain-generation-algorithm detection framework based
on statistical learning that integrates the detection capabilities of multiple heterogeneous models.
The framework includes both traditional machine learning methods based on artificial features and
deep learning methods, comprehensively analyzing 34 artificial features and advanced features
extracted from deep neural networks. Additionally, the framework evaluates the predictions of the
base models based on the fit of the samples to each type of sample set and a predefined significance
level. The predictions of the base models are statistically analyzed, and the final decision is made
using strategies such as voting, confidence, and credibility. Experimental results demonstrate that the
DGA detection framework based on statistical learning achieves a higher detection rate compared to
the underlying base models, with accuracy, precision, recall, and F1 scores reaching 0.979, 0.977, 0.981,
and 0.979, respectively. The framework also exhibits a stronger adaptability to unknown domains
and a certain level of robustness against concept drift attacks.

Keywords: domain generation algorithms; machine learning; deep learning; statistical learning;
heterogeneous models

1. Introduction

With the rapid development of the Internet, the scale of hosts has increased signif-
icantly. The Domain Name System (DNS), as a fundamental element of the Internet,
becomes more vital to Internet applications. The security of DNS has been a hot topic in
the security research area. Obviously, malicious domain names are essential to many attack
chains. Malicious domain names frequently appear in various cyberattacks, especially in
botnets [1–6]. A botnet is a network of compromised computers, known as bots or zombies,
that could be instructed by a controller on the Internet, a so-called bot master. Currently,
botnets have become one of the most significant threats to the Internet. The bot masters
employ botnets to send spam emails, host phishing web pages, execute DDoS attacks, mine
cryptocurrency, and so on. The command and control (C&C) communication channel is
vital to the botnet organization. In order to evade detection and blocking, many botnets
use DNS to maintain C&C communication channels. Previous botnets used dynamic DNS
and fast-flux DNS to communicate with C&C servers, but domain name blacklists can
cut off these techniques effectively. To avoid blacklist detection and enhance self-survival
ability, most botnets today, such as Conficker, Kraken, and Torpig, used domain generation
algorithms (DGAs) [7–10] to create a candidate list of C&C server domains [11,12].

A DGA is a technique used by malware to generate a large number of randomly
generated and variable malicious domain names. The working principle of a DGA involves
generating a multitude of domains using a random seed and algorithm, allowing the
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malware to communicate with its command and control (C&C) servers without being
easily detected or blocked by network security systems. This technology finds widespread
application in modern malware and network attacks. The applications of DGAs include
the persistence and covert dissemination of malware. Malware developers leverage DGA-
generated random domain names to propagate malware by enticing users to click on
malicious links, ads, or phishing emails, thereby infecting their systems. Some malicious
software also employs DGA-generated domain names as the addresses for their control
servers, enabling the theft of sensitive data or maintaining a dormant state. Additionally,
DGAs are used for covert communication purposes [2,13,14], allowing malware to transmit
data through generated domain names and evade traditional network monitoring and
defense mechanisms.

A DGA uses random seeds to generate a large number of different domain names,
but bot masters usually only register one or some domains in the candidate list and use
registered domains to distribute their command. It would be increasingly difficult to
block malicious domain names generated by DGAs only using blacklists and reverse
engineering [15–18]. Fortunately, many researchers have applied learning techniques to
detect malicious domains. Davuth et al. [19] used two-gram features to build an SVM
model for malicious domain name classification. Vinayakumar et al. [20] employed a deep
learning model based on DNS logs text to capture malicious domain names in scale traffic.
Mowbray et al. [21] used a special string length distribution in a domain name lookup
service to detect malicious domain names. Woodbridge et al. [22] introduced an LSTM
network to detect DGA-generated domains without feature extracting. Schüppen et al. [23]
trained classifiers on random forests and support vector machines utilizing structural
features, linguistic features, and statistical features extracted from domain name sequences.
The commonly used methods for DGA domain name detection are based on artificial
features or deep learning methods, but most of the previous researchers have proposed
methods to detect DGA domain names using a single framework, which leads to a single
perspective of analyzing DGA domain names.

In order to solve the problem of a single analysis perspective of the DGA domain
name classification algorithm, this paper proposes a multimodel collaborative domain
name classification (malicious or benign) framework by integrating multiple underlying
predictive models. The research motivation of this paper is as follows:

• Improve detection accuracy: A single detection model may not be able to cover all
malicious behaviors and variants comprehensively. Therefore, utilizing multiple
models for collaborative detection can enhance the accuracy of detection. Each model
can emphasize different features or algorithms, thereby increasing the detection rate
of malicious software and reducing false positives.

• Counteract the evolution of malicious software: Malicious software evolves rapidly,
with new variants constantly emerging. By employing multiple detection models,
the sensitivity to different variants of malicious software can be increased, enabling a
timely detection and response to new threats.

• Compensate for the limitations of a single model: Each detection model has its own
limitations. Some models may perform well in specific types of malicious behaviors
while being less accurate in others. A collaborative detection with multiple models can
compensate for these limitations by integrating and analyzing the results of multiple
models, thereby improving overall detection performance.

• Enhance robustness and stability: A single model can be susceptible to false positives
or false negatives, thereby impacting the robustness and stability of the entire system.
Collaborative detection with multiple models can mitigate this issue by integrating
and analyzing the detection results from multiple models, reducing the probability of
false positives and false negatives and improving the system’s robustness and stability.

For the above questions, the innovations of this paper are described below.
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• This paper analyzes DGA domain names from multiple perspectives in terms of both
artificial features and neural network advanced features. In this paper, 34 artificial
features are extracted from three aspects, namely, string structure, language charac-
teristics, and distribution statistics, and deep neural networks are used to actively
mine the advanced features of domain name characters to detect DGA domain names
through traditional machine learning methods and deep learning methods.

• A multimodel decision-making framework based on statistical learning is proposed.
This statistical learning-based approach provides the same comparison criteria for
heterogeneous models, determines the prediction labels based on the performance of
the samples in each type of sample set as well as a predetermined level of significance,
and produces decision results with a certain level of confidence through voting, If
the prediction labels of all models do not have sufficient confidence, the combined
confidence and credibility metric comprehensively evaluates the prediction quality of
the models and selects the highest quality prediction as the final decision result.

• In this paper, we design and implement a DGA detection algorithm based on statistical
learning. The detection algorithm takes domain name strings as the research object,
uses four heterogeneous methods, XGBoost, B-RF, LSTM, and CNN, to detect DGA
domain names, evaluates the prediction quality of these heterogeneous methods
based on statistical learning, and generates the DGA detection results. The detection
algorithm analyzes DGA domain names from multiple perspectives from the artificial
features and high-level features unearthed by the neural network, improves the
detection effect, and can effectively identify the elimination of invalid prediction
results in the decision-making process, maximize the stability of the algorithm, and is
a real-time, lightweight detection method.

The paper is organized as follows. In Section 2, we provide static feature extraction
methods and dynamic feature extraction methods. In Section 3, we introduce the theoretical
foundations of feature extraction. Section 4 provides a multimodel detection framework.
Section 5 provides the description of the dataset, evaluation criteria, and comparative
experiment results. Finally, the conclusion and future work are found in Section 6.

2. Related Work

In the work related to DGA domain characterization, researchers usually analyze the
characteristics of DGA domains from different perspectives in order to propose effective
detection methods. These methods can be categorized into static characterization methods,
dynamic characterization methods, deep learning methods, and heterogeneous information
network-based methods.

Static feature analysis methods refer to the parameters and rules used in domain
name generation algorithms, such as seed value, domain length, character set, and so on.
Researchers analyze these parameters and rules to identify DGA domain names and build
corresponding classifiers or models. For example, some researchers have used machine
learning methods such as support vector machines (SVM), random forests, and neural
networks to identify DGA domain names. They rely on static features, such as character
frequency, character position, and character type, to build classifiers and evaluate the
accuracy and robustness of the classifiers through the performance of training and test
sets. Among them, Yu et al. [24] proposed a character n-gram and sequence pattern-based
approach that combined static features and sequence patterns to improve the recognition
rate of DGA domain names. Yadav and Reddy et al. [25] used entropy-based features
to detect algorithmically generated domain names, where the entropy was a measure of
uncertainty of the characters in a domain name, with a higher value indicating that the
domain name was more difficult to speculate about. This was a static feature based on the
length of the domain name and the distribution of characters. Schüppen et al. [23] proposed
a novel feature-based system for classifying nonexistent domain names, FANCI, which
detected malware infections based on DGA by monitoring DNS traffic for nonexistent
domain name (NXDomain) responses and used machine learning to extract twenty-one
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features from domain names for classification, including twelve structural features, seven
linguistic features, and two statistical features, but the FANCI system did not support
multiple classification tasks. Zhao et al. [26] proposed a DOLPHIN system that could
detect DGA-based botnets by extracting effective phonetic features. DOLPHIN was the first
method to introduce a phonetic method to detect AGD by classifying variable-length vowels
and consonants. In addition, they proposed a new automaton matching method based on
the AC algorithm to handle variable-length vowels and consonants, thus extracting features
from domain names more accurately. However, the static feature detection methods have
a limited effectiveness when dealing with new malicious domain names. The creators of
malicious domain names can circumvent static signature detection methods by constantly
changing the domain name structure and using new signatures.

Dynamic characterization methods refer to the behaviors and patterns of DGA domain
names in actual use, such as temporal correlation, domain traffic distribution, and DNS
query patterns. Researchers analyze these features to identify DGA domain names and
propose corresponding detection methods. For example, some researchers [11,27] use
temporal correlation features, such as the relationship between domain name generation
time and DNS query time, to identify DGA domain names. Some other researchers use
domain traffic distribution features, such as domain query frequency and query source, to
identify DGA domains. For example, Kolias et al. [28] use DNS traffic analysis techniques
to detect DGA-based botnets, where dynamic features include the query frequency, query
source, and temporal correlation of DGA-generated domains. However, dynamic feature
detection usually requires real-time monitoring and analysis of the dynamic behavior of
domain names, which may result in a certain time delay. During this delay, the malicious
domain may have caused harm to users or spread malicious content. In addition, dynamic
feature detection usually requires the collection and analysis of users’ network behavior
data, which may involve personal privacy issues. Ensuring appropriate protection and
privacy of user data is crucial.

In recent years, deep learning methods have also made significant progress in mali-
cious domain name detection. In 2020, Zhao et al. [29] proposed a malicious domain name
identification method integrated with effective DNS response features, which identified
malicious domain names by using linguistic features and statistical features. Linguistic
features were generated by a bidirectional long short-term memory (BiLSTM) neural net-
work to generate vector representations from a sequence of domain name characters, and
statistical features were composed of six manually designed statistics that made up a data
structure representing a domain name. In addition, Zhao et al. [30] used models such as
convolutional neural networks (CNNs) and long short-term memory networks (LSTMs) in
order to rely on static features such as character frequencies and character positions to rec-
ognize DGA domain names. This study showed that the method had a high accuracy and
robustness. At present, attack methods targeting deep neural networks are also beginning
to appear [31,32]. In addition, in the process of detecting malicious domains using deep
learning models, the number of legitimate domains far exceeds the number of malicious
domains, leading to data imbalance issues. This may negatively impact the performance of
the training model, making it more likely to misclassify malicious domains as legitimate.

In addition, some researchers have proposed heterogeneous information network-
based approaches to improve the detection of malicious domains. These methods construct
a heterogeneous information network model to simulate DNS scenarios by analyzing the
characteristics of domains and the complex relationships between domains, clients, and
IP addresses. For example, Sun et al. [33] proposed a malicious domain name detection
method based on a heterogeneous graph convolutional network approach, which employed
a metapath-based attention mechanism that could simultaneously process node features
and graph structures in a heterogeneous information network. Detecting malicious domain
names based on heterogeneous graph information networks has some difficulties in data
acquisition and integration, and constructing heterogeneous graph information networks
requires the collection and integration of many types of data, including domain names,
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IP addresses, WHOIS information, and so on. Acquiring and integrating these data may
require a lot of time and resources, and the issue of credibility and consistency of data
sources needs to be addressed. In addition, building heterogeneous graphs requires
considering the connectivity of different types of nodes and edges, as well as the attributes
of nodes and edges. Determining the representation of nodes and edges with appropriate
feature engineering is a challenging task. The number and weight of different types of
nodes and edges may also have an impact on the performance of the model.

3. Feature Engineering

The object of this paper was the domain name string itself, so the feature extraction
work focused on the domain name string and did not consider other information in the
DNS data. Since most of the DGA generation algorithms operate on second-level domain
names, in this paper, only second-level domain names (SLDs) and top-level domain names
(TLDs) were considered [34–37]. In the following, domain name specifically refers to a
string consisting of second-level domain names and top-level domain names. When the
original domain name contained other labels, they were ignored and deleted, such as
“bbs.at.worl.com”, and only “worl.com” was selected as the domain name in this paper.

Inspired by papers [11,12,23], so far, we have collected 34 human-engineered string
features; these features can be divided into three categories: structural features, linguistic
features, and statistical features. The introduction of each feature and the details of the
calculation process are given below:

1. Structural features: This paper extracted six structural features, which represent the
characteristics of the domain name in the string structure. The specific information
is shown in Table 1. We used d1 and d2 as examples to illustrate the specific values
of these features, where d1 = baidu.com is a well-known normal domain name, and
d2 = 159vthg1nqmpuyh6.viajes is a malicious domain name. For a better understand-
ing, the fourth feature in Table 1 is introduced in detail below.
(#4) tld_dga: It indicates whether the top-level domain name is frequently related to
malicious activities. It is a Boolean value (‘0’ indicates that the top-level domain name is
not related to malicious activities, “1” indicates related, and “0” indicates unrelated).

2. Linguistic features: This paper extracted a total of 15 linguistic features. This type
of feature mainly focuses on the differences in language patterns between normal
domain names and DGA domain names. It has a great effect on machine learning
classifiers. Table 2 lists these features’ information, and specific values for d1 and d2,
where d1 = baidu.com, d2 = geb3jnerc f n28qeq.org. Below is a detailed introduction
to features #7, #11, #12, #14, #15, #16, and #18 in Table 2.

• (#7) uni_domain: It indicates the number of unique characters in the secondary
domain name, which is the number of characters that only appear once.

• (#11) sym_sld: It refers to the ratio of the frequency of the three special symbols
“.”, “-”, and “_” in a secondary domain name to the total length of the secondary
domain name.

• (#12) hex_sld: It refers to the ratio of the number of hexadecimal characters (0–9
and a–f) to the total length of the secondary domain name in the secondary
domain name.

• (#14) vow_sld: It refers to the ratio of vowel characters (“a”, “e”, “i”, “o”, “u”) to
the total length of the secondary domain name in the secondary domain name.

• (#15) con_sld: It refers to the ratio of consonant characters (“b”, “c”, “d”, “f”, etc.)
to the total length of a secondary domain name.

• (#16) repeat_letter_sld: It refers to the ratio of the number of characters with a
frequency greater than 1 in a secondary domain name to the total length of the
secondary domain name.

• (#18) cons_con_ratio_sld: It refers to the ratio of the total length of subsequences
composed of continuous consonants in a secondary domain name to the total
length of the secondary domain name.
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• (#20) gib_value_sld: Using the Gibberish method to detect the readability of sec-
ondary domain name strings, this feature is a Boolean value, where “1” indicates
the string is readable, and “0” indicates the string is unreadable and difficult
to pronounce.

• (#21) hmm_log_prob_sld: This feature uses a hidden Markov model (HMM) to
measure the readability of secondary domain names, thus distinguishing be-
tween normal and malicious domains. Due to the fact that normal domain names
generally use combinations of common words or abbreviations of certain words
to form domain names, this method selects common English words or abbrevia-
tions to construct an HMM model. In general, the HMM coefficient of normal
domain names will be higher, greater than −100, while the HMM coefficient of
DGA domain names is lower, less than −100, due to being randomly generated.

Table 1. Domain name structure characteristics table.

# Feature Note d1 d2

1 domain_len Length of SLD.TLD 9 23
2 sld_len Length of secondary domain name 5 16
3 tld_len Length of top domain name 3 6
4 tld_dga Whether some malicious top-level domain names are included 0 1
5 tokens_sld Number of tokens divided by “-” 0 0
6 flag_dig_tld Does it start with a number? 0 1

Table 2. Domain name linguistic feature table.

# Feature Note d1 d2

7 uni_domain Number of unique characters in the domain name 8 13

8 uni_sld Number of unique characters in the secondary
domain name 5 12

9 uni_tld Total number 3 3
10 digits_sld Total number 0 3
11 sym_sld Proportion of special characters 0.0 0.0
12 hex_sld Ratio of hexadecimal characters 0.6 0.56
13 dig_sld Number proportion 0.0 0.19
14 vow_sld Proportion of vowel letters 0.6 0.19
15 con_sld Proportion of consonant characters 0.4 0.63
16 repeat_letter_sld Proportion of duplicate characters 0.0 0.19
17 rep_char_ratio_sld Ratio of repeated characters to unique characters 0.0 0.25
18 cons_con_ratio_sld Proportion of continuous consonants 0.0 0.38
19 cons_dig_ratio_sld Proportion of consecutive numbers 0.0 0.13
20 gib_value_sld Gib written detection 1 0
21 hmm_log_prob_sld HMM written detection 0.0 −999

3. Statistical features: This paper extracted 13 statistical features that distinguish normal
domain names from DGA domain names from the perspective of character distribu-
tion. The basic information of these features is summarized in Table 3, and we take
d1 = baidu.com and d2 = geb3jnerc f n28qeq.org as examples to illustrate the specific
selection of these features’ values. We provide a detailed introduction to features #22,
#23, #25, #28, #31, #33, and #34 in Table 3.

• (#22) entropy_sld: It represents the Shannon entropy value of the secondary
domain name, which can measure the randomness of the secondary domain
name. Generally, the randomness of a normal domain name is low, with the
Shannon entropy being low. However, the randomness of the DGA domain
name generated by the algorithm is high, and the corresponding entropy value
is also high.

• (#23) gram2_med_sld: It refers to the median frequency of the occurrence of
binary (2-gram) character groups in the secondary domain name string. In
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natural language, the distribution of n-gram character groups is uneven, so this
feature can distinguish between normal domain names and DGA domain names
from the perspective of the frequency of n-gram character groups.

• (#25) gram2_cmed_sld: This feature is also the median frequency of the occur-
rence of binary (2-gram) character groups. The difference from feature #23 is that
before calculating the feature, it is necessary to copy the secondary domain name
to construct a new string. Assuming “baidu” is the secondary domain name, we
use “baidubaidu” to calculate the feature. Repetitive operations can increase the
length of a string, which is beneficial for the calculation of n-grams, especially
for shorter domain names. In addition, repetitive operations can also amplify the
characteristics of the string and facilitate classification. Assuming the secondary
domain name is “aaaa”, repeating it to form “aaaaaaaa” will make the character
string look even more abnormal.

• (#28) avg_gram2_rank_sld: This feature represents the average frequency of all
2-gram character groups in the secondary domain name.

• (#31) std_gram2_rank_sld: This feature represents the standard deviation of the
frequency of all 2-gram character groups in the secondary domain name and can
measure the degree of dispersion of these character groups.

• (#33) gni: It refers to the Gini value of characters in a secondary domain name,
calculated as shown in formula 1. In the formula, n represents the number of
unique characters in the secondary domain name (#8), and pi represents the
frequency of unique characters ci appearing in the secondary domain name.

gni = 1−
n

∑
i=1

p2
i , (1)

• (#34) cer: It represents the classification of character errors in a secondary domain
name, calculated as shown in Formula (2). pi represents the frequency of the
unique character ci appearing in the secondary domain name.

cer = 1− max
i=1···n

pi . (2)

Table 3. Statistical characteristic table.

# Feature Note d1 d2

22 entropy_sld Shannon entropy 2.32 3.45
23 gram2_med_sld 2-Gram median of metacharacter frequency 4.38 3.32
24 gram3_med_sld 3-Gram median of metacharacter frequency 3.17 1.56
25 gram2_cmed_sld 2-Gram median of metacharacter frequency 4.23 3.32
26 gram3_cmed_sld 3-Gram median of metacharacter frequency 3.17 1.49
27 avg_gram1_rank_sld 1-Gram average value of metacharacter frequency sorting 8.2 15.56
28 avg_gram2_rank_sld 2-Gram average value of metacharacter frequency sorting 130.17 588.88
29 avg_gram3_rank_sld 3-Gram average value of metacharacter frequency sorting 1783.4 7640.06
30 std_gram1_rank_sld 1-Gram standard deviation of metacharacter frequency sorting 5.19 11.55
31 std_gram2_rank_sld 2-Gram standard deviation of metacharacter frequency sorting 71.10 440.15
32 std_gram3_rank_sld 3-Gram standard deviation of metacharacter frequency sorting 1062.69 8081.53
33 gni Gini value 0.8 0.90
34 cer character classification error 0.8 0.81

4. Multimodel Detection
4.1. XGBoost Model Training

This paper used the XGBClassifier in the xgboost library to construct an XGBoost de-
tection model and trained the XGBoost detection model offline using known DGA domain
names and normal domain names. The XGBoost model contains numerous parameters. To
achieve better detection results, this paper used loss as the judgment criterion and adjusted
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the six parameters nes, depth, child, ga, colsample, and lr using GridSearchCV and a 5-fold
cross-validation, as shown in Table 4.

In Table 4, “nes” represents the possible values of the parameter “n_estimators”,
which refers to the number of base weak learners (base estimators) in the gradient boost-
ing tree model. It represents the number of trees to be built during gradient boosting.
“depth” represents the possible values of the parameter “max_depth”, which refers to the
maximum depth of each tree in the decision tree model. “child” represents the possible
values of the parameter “min_child_weight”, which refers to the lower limit of the min-
imum sample weight sum of each leaf node. “ga” represents the possible values of the
parameter “gamma”, which refers to the minimum loss function reduction required when
performing tree splitting. “colsample” represents the possible values of the parameter
“colsample_bytree”, which refers to the proportion of features that each tree samples when
building. It is used to control the proportion of features used by each tree to increase
the diversity of the model. “lr” represents the possible values of the parameter “learn-
ing_rate”, which refers to the contribution reduction factor of each tree, which controls the
contribution of each tree to the final model.

Table 4. XGBoost parameter tuning process.

xgb = XGBClassifier(silent=True,objective=‘binary:logistic’)
nes = [50, 100]
depth = [3, 5, 10]
child = [2, 4, 6]
ga = [2, 0.3, 0.5]
colsample = [0.6, 0.8, 1]
lr = [0.2, 0.1, 0.01]
gird_par = dict(n_estimators = nes, max_depth = depth, min_child_weight = child, gamma = ga,
colsample_bytree = colsample, learning_rate=lr)
clf = GridSearchCV(xgb, gird parameters, cv=5, n_jobs=-1, scoring=’neg_log_loss’)
clf.fit(x_train, y_train)
cv_result = pd.DataFrame.from_dict(clf.cv_results_)
best_param = clf.best_params

To determine the optimal parameter combination, we conducted a total of 324 ex-
periments and employed the GridSearchCV algorithm, which performs a comprehensive
search over the specified parameter grid using cross-validation. This algorithm trains the
XGBoost classifier on the training data and evaluates its performance using the specified
scoring metric. The parameter combination that achieved the highest performance score
was selected as the optimal parameter set. After multiple experiments, we determined
the optimal parameter combination for the XGBoost detection model, as shown in Table 5.
XGBoost iterated 100 times and generated 100 decision trees during the training process.
The maximum depth of each decision tree in the model was 10, the weighted sum of the
minimum sample was 2, the minimum loss function value remained the default value of 0
when the decision tree node was split, and the loss value of the detection model was the
lowest when the learning rate was set to 0.2.

Table 5. XGBoost optimal parameter table (loss = 0.0639).

Parameter Value Parameter Value

n_ estimators 100 gamma 0
max_depth 10 colsample_bytree 0.6

min_child_weight 2 learning_rate 0.2

4.2. B-RF Model Training

B-RF (binary random forest) refers to the random forest used for binary tasks. This
article used Sklearn’s RandomForestClassifier to construct a B-RF detection model and
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trained the model offline using known DGA domain names and normal domain names.
Similar to the XGBoost tuning process, B-RF also uses loss as the judgment criterion
and searches for the optimal parameter combination through GridSearchCV and cross-
validation, as shown in Table 6.

In Table 6, “brf” is an instantiation object of a RandomForestClassifier. “crit” represents
the possible values of the parameter “criterion”, which is an indicator or criterion used to
measure the purity of a node. “feature” represents the possible values of the parameter
“max_features”, which is used to control the maximum number of features considered for
each node when splitting.

Table 6. B-RF parameter tuning process.

brf = RandomForestClassifier(random_state=23, n_jobs=-1)
nest = [50, 100]
crit =[‘gini’, ‘entropy’]
feature = [15, 20, 30]
gird _par = dict(n_estimators=nest, criterion=crit, max_feature=feature)
clf = GridSearchCV(brf, gird parameters,cv=5, n _jobs=-1, scoring=‘neg_log_loss’)
clf.fit(x _train, y_train)
cv_result = pd.DataFrame.from_dict(clf.cv_results_)
best_param = clf.best_params

After multiple experiments, we obtained the optimal parameter combination as shown
in Table 7. The final B-RF classifier in this paper contained 100 trees, which means that
the weak classifier needed to iterate 100 times. Each classifier used a maximum of 15 fea-
ture subsets for training, and entropy was used as the judgment criterion for attribute
segmentation.

Table 7. B-RF optimal parameter table (loss = 0.07382).

Parameter Value

n_ estimators 100
max_feature 15

criterion entropy

4.3. LSTM Model Training

The structure of the LSTM model used in this paper is shown in Figure 1, which
includes an embedding layer, an LSTM layer, a dense layer, and an activation layer.

Embedding

LSTM

Dense

Activation

Output

Input

Figure 1. LSTM model architecture.
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The embedding layer in Figure 1 maps the input sequence to a multidimensional
feature space, forming an input matrix. The rows in the matrix represent the characters in
the input sequence, and the list shows the dimensions of the feature space. The LSTM layer
can implicitly extract advanced features from the sequence. The dense layer and activation
layer complete the classification based on the extracted feature information and use the
sigmoid function to compress the results to the range [0–1]. Finally, a prediction probability
is output, representing the probability that the domain name belongs to a certain category.
In this article, if the output probability is greater than or equal to 0.5, it indicates that the
domain name is a DGA domain name, and vice versa, that it is a normal domain name.

This paper implemented an LSTM detection model based on the Keras framework,
as shown in Table 8. In order to pursue better detection results, this paper used loss as a
comparative indicator and a cross-validation to adjust the parameters in the LSTM layer.
Table 9 is the optimal parameter table for the LSTM detection model, with a maximum
length of 60 for the input string. The input string was converted into an index value vector
and input into the embedding layer. In the embedding layer, each character was mapped to
a 128-dimensional embedding vector. In the selection section of the optimizer, experiments
have shown that the Adam optimizer [38] can achieve a better loss convergence compared
to RMSProp [22].

Table 8. LSTM detect model code snippets.

model = Sequential()
model.add(Embedding(max_features,128, input_length=max_len))
mode1.add(LSTM(128))
model.add(Dropout(0.5))
mode1.add(Dense(1))
model.add(Activation(‘sigmoid’))
model.compile(loss=‘binary_crossentropy’, optimizer=‘adam’)

Table 9. LSTM optimal parameter table (loss = 0.0529).

Parameter Value Parameter Value

bacth_ size 128 epoch 10
max_feature 40 dropout 0.5

max_len 60 learning_rate 0.001
optimizer adam

4.4. CNN Model Training

This paper used the open-source CNN detection model from reference [39] for DGA
domain name detection, and the model structure is shown in Figure 2. The model code is
shown in Table 10. The model uses the embedding layer to transform the input sequence
into a distributed representation containing rich semantic information. The model adopts
a parallel structure of multiple convolution layers, and the pooling operation is aimed at
the entire domain name sequence, which makes the model only focus on whether there
are patterns in the domain name but does not save its specific location information, so the
model is robust to the insertion and deletion of characters, and subsequences that appear
anywhere in the domain name sequence can be detected.
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Figure 2. CNN model.

Table 10. CNN model code snippets.

def getconvmodel(self, kernel_size, filters):
model = Sequential()
model.add(Conv1D(filters=filters, input_shape=(128,128), kernel_size=kernel_size,
padding=‘same’, activation=‘relu’, strides=1))
model.add(Lambda(lambda x: k.sum(x, axis=1), output_shape=(filters,)))
model.add(Dropout(0.5))
return model

main_input = Input(shape=(self.max_len,), dtype=‘int32’)
embedding = Embedding(input_dim=self.max_features, output_dim=128,
input_length=self.max_len)(main_input)
conv1 = self.getconvmodel(2,256)(embedding)
conv2 = self.getconvmodel(3,256)(embedding)
conv3 = self.getconvmodel(4,256)(embedding)
conv4 = self.getconvmodel(5,256)(embedding)
merged = Concatenate()([conv1, conv2, conv3, conv4])
middle = Dense(1024, activation=‘relu’)(merged)
middle = Dropout(0.5)(middle)
middle= Dense( 1024, activation=‘relu’)(middle)
middle = Dropout(0.5)(middle)
output = Dense(1, activation=‘sigmoid’)(middle)
model = Model(inputs=main_input, outputs=output)
model.compile(loss=‘binary_crossentropy’, optimizer=’adam’)
return model

Table 11 shows the optimal parameter information of the CNN detection model,
with loss as the comparison indicator and parameter adjustment using cross-validation.
The input sequence was transformed into a 128-dimensional embedding vector in the
embedding layer, and then a one-dimensional convolutional layer was used to extract local
features of character sequences at different levels. All layers in the model except the input
layer used Relu (rectified linear unit) as the activation function, the Adam optimizer was
selected, and the parameter of the dropout was set to 0.5 [40], which destroyed the complex
collaborative adaptation in the network and prevented overfitting.
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Table 11. CNN optimal parameter table (loss = 0.107).

Parameter Value Parameter Value

bacth_ size 128 epoch 10
max_feature 40 dropout 0.5

max_len 60 learning_rate 0.001
optimizer adam

4.5. DGA Domain Name Detection Based on Statistical Learning

The main work of this section is to evaluate the prediction quality of the basic detection
model based on the various basic detection models obtained in the previous text, using
the conformal evaluator and significance evaluation. Based on the evaluation results,
corresponding strategies are adopted to obtain the final label. Figure 3 is a multimodel
decision flowchart based on statistical learning.

XGBoost B-RF LSTM CNN

Same Label？

Calculate P-value

Derive individual model labels based on saliency

0/1/sus 0/1/sus 0/1/sus 0/1/sus

Label is sus？

Based on max (cre* con)
Select Label

YN

vote

Y

Label

N

Figure 3. Multimodel decision flowchart based on statistical learning.

As shown in Figure 3, the decision-making mechanism can be divided into two parts:
(1) determining the predictive labels of the basic model based on p-values and significance
levels and (2) determining the final labels based on statistical analysis. Next, we elaborate
on the implementation details of these two parts (In the figure, * represents product.).

4.5.1. Determining Basic Model Prediction Labels

When inputting a new test sample, the detection model first analyzes the sample using
four basic models: XGBoost, B-RF, LSTM, and CNN. Each basic model outputs a probability
score that represents the probability that the sample belongs to a certain class. Based on
these probability scores, pl , l ∈ L, and L representing all class labels of the sample in each
class can be calculated. The following text provides a detailed explanation of the process of
calculating the p-value.

For a binary classification task, L = (0, 1), assuming M is the DGA domain name
sample set with sample labels of 1, and G is the normal domain name sample set with
sample labels of 0. Using M and G to train the basic model A, after training, model A
outputs a probability score for each DGA sample in M, forming a DGA sample score set
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ScoreM = {α1, α2 . . . αn}. Similarly, we generate a normal sample score set for the normal
samples in ScoreG = {β1, β2 . . . βn}. At this point, we input the sample point z∗ to be tested,
and model A outputs its probability score s∗. Then, the p0 and p1 values of the sample
point z∗ in model A are shown in Formulas (3) and (4).

p0 = |{i = 1, 2 . . . , n|βi ≥ s∗}|
|n| , (3)

p1 = |{i = 1, 2 . . . , n|αi ≤ s∗}|
|n| . (4)

The range of probability scores is [0–1], and the larger the probability score, the more
similar the sample is to the DGA sample. Therefore, the probability score of most samples
in the normal domain name sample set G is closer to 0, and the smaller the value, the more
normal the sample is. p0 is equal to the proportion of samples in G with scores higher
than s∗. This means that the larger the p0, the more samples in G have scores higher than
z∗, indicating that the fitting degree between z∗ and G is better than most samples, and
z∗ and G have a higher similarity degree; for the malicious sample set, most samples have
scores closer to 1, and the higher the probability score, the more malicious the samples are.
Therefore, p1 is equal to the proportion of samples in M with scores lower than s∗. The
larger the p1, the more similar z∗ is to M.

After obtaining the p-value, we use significance ε (maximum error probability) to
divide the prediction labels of the basic model into acceptable and unacceptable. If
max(p0, p1) = p0 and p0 ≥ ε, then it means that the basic model A has a probability
of at least 1− ε. The confidence level assumes that the sample label is 0, which is acceptable,
LabelA = 0. If max(p0, p1) ≤ ε, the prediction quality of the basic model A for this sample
is very low, exceeding the acceptable tolerance range. Therefore, the prediction result is
rejected and marked as “suspicious”, LabelA = suspicious. The specific process is shown
in Algorithm 1.

Algorithm 1: Determine a single model label based on p-value and confidence
level ε

Input: confidence level ε
p0, p1 of the sample
Output: LabelModel
1: if p0 > p1 and p0 > ε
2: LabelModel = 0
3: else if p1 > p0 and p1 > ε
4: LabelModel = 1
5: else if max(p0, p1) < ε
6: rejecting predicted outcomes
7: LabelModel = suspicious

Unlike determining prediction labels based on probability and static thresholds, this
method determines classification labels based on the overall fit between the sample and the
sample set and introduces a significance level in the detection results of the basic model,
further subdividing the detection results, so that the output results of the basic model have
a certain level of confidence and improve the reliability of the results.

4.5.2. Multimodel Collaborative Prediction Based on Statistical Learning

After obtaining the label results of the basic model through the above steps, a set of
basic model labels can be obtained. Next, a statistical analysis is conducted on this label set,
and the final result is determined according to the following strategies.
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1. If the label results of all models are 1 or 0, it indicates that the decision results of
all basic models are consistent and have a certain level of confidence in this result.
Therefore, the label is directly output as the final result.

2. If the label results of all models are “suspicious”, it indicates that the prediction
quality of all models is lower than ε. In this case, it is necessary to calculate the
confidence and credibility values of each model for the sample based on the p-value
and comprehensively evaluate the prediction quality of the basic model from two
perspectives. When the confidence and credibility are both large, it indicates that the
sample points are similar to the predicted category and have significant differences
from other categories, indicating that the basic model has a higher classification
quality for z∗. Therefore, this article used the product (cre * con) method to select the
model with the highest quality from these basic models and uses the prediction label
of this model as the final result.

3. If the label results of all models are inconsistent, a vote is taken to determine the label
(“suspicious” results are not included). If there is an equal number of votes, the final
label is selected based on the combination of confidence and credibility.

In summary, in the multimodel collaborative decision-making section based on statisti-
cal learning, labels are determined based on the fitting degree between the samples and each
type of sample set by calculating the p-value in the conditional evaluator, and a manually
preset significance level ε is used to perform a secondary screening and partitioning on the
prediction results of the basic model (0, 1, suspicious) and narrow the scope of suspicious
results by statistically analyzing the set of basic model labels. When all models are unable
to make predictions with a certain level of confidence, we evaluate the model results from
the perspectives of confidence and credibility and make decisions. On the contrary, voting
is used to obtain the final result. This decision-making method based on statistical learning
provides the same comparison standard for heterogeneous methods, has wide applicability
and good application prospects, and introduces significance and confidence levels in the
decision-making process, making the prediction results more reliable.

5. Experimental Process and Results Analysis

This section is an experiment and validation of the DGA detection algorithm based on
multiple models. This section first briefly introduces the experimental environment, exper-
imental data, data preprocessing process, and evaluation indicators and then trains and
tests the detection performance of the model using known sample data. The experimental
environment used in this paper is shown in Table 12.

Table 12. Experimental environment table.

CPU 4 cores

Memory 8G

Operating system Ubuntu 16.04 64 bit

Python version 3.6

Python library version tensorflow2.2.0, keras2.4.3

5.1. Experimental Data and Data Preprocessing
5.1.1. Dataset

The dataset used in this experiment included DGA domain name data obtained by
crawlers and Tranco_K26W-1m, as shown in Table 13.
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Table 13. Experimental data table.

Dataset Data Size

C_DGA 15,713,816
Tranco_K26W-1m 1,000,000

C_DGA: C_DGA is the latest published DGA domain name data obtained from
multiple intelligence sources such as 360 and Bambenek using a crawler in this experiment.
The C_DGA dataset includes DGA domain names published by various intelligence sources
from 31 October 2019 to 17 May 2023. As of now, a total of 6,442,220 DGA domain names
have been obtained. These domain names come from different DGA families. Taking
894,247 domain names obtained from 31 October 2019 as an example, they belong to 54 DGA
families. Figure 4 shows the number of domain names in some of the DGA families.

Figure 4. Number of domain names in partial DGA families (31 October 2019).

Tranco_K26W-1m dataset: Although Alexa is the most commonly used whitelist,
the literature [41] demonstrates that Alexa is highly susceptible to manipulation and
contamination, which may have an impact on experimental results. Therefore, this paper
selected the Tranco_K26W-1m dataset as the normal sample dataset, which was proposed
by Le Pochat [41] to be formed by aggregating three commonly used whitelists, Alexa, Cisco
Umbrella, and Majestic. These whitelists generate website rankings based on website traffic
and popularity and then use the top-ranked domain names as whitelist data. However, the
three are generated by different companies, so there are very few data that truly overlap.
Therefore, the Tranco_K26W-1m label generated by the aggregation operation is more
accurate and has a higher credibility.

5.1.2. Data Preprocessing

For all domain name data, we followed the following rules for data cleaning:

1. Convert alphabetical characters in domain names to lowercase.
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2. Remove all domain names starting with “xn–”. Because a domain name starting
with ‘xn–’ is an Internationalized Domain Name (IDN), the DGA algorithm will not
generate an IDN domain name.

3. Using “.” as a separator, remove domain names with more than four segments.
4. Remove domain names from www.com and www.com.cn.
5. Remove duplicate data.

Because most of the domain names generated by the DGA algorithm only generate
intermediate domain name strings, and a complete domain name is formed after adding
a top-level domain name, this experiment focused more on the secondary domain name
and top-level domain name. If the domain name sample also contained subdomains
such as a third-level domain name, this part of the character string was ignored, such as
www.google.com,where only google.com was retained.

The DGA domain name samples and benign domain name samples used in this
experiment are shown in Table 14:

Table 14. Test sample information table.

DGA Domain Name Sample Benign Sample

q4z1an1ca8icv1cl501sukun.biz google.com
geb3jnercfn28qeq.org facebook.com

1ihowds1u8fcu8kzuy549uytaj.com windowsupdate.com
hpgkofoukqshvmt.info yahoo.com

5.1.3. Evaluation Criteria

In the experiment, DGA domain names were defined as positive samples and nor-
mal domain names were defined as negative samples. The classification results of this
experiment included the following four types, as shown in Table 15 in the confusion matrix.

1. TP (true positive): it refers to the cases where the model correctly identifies a domain
name as malicious, and it is indeed malicious.

2. TN (true negative): it refers to the cases where the model correctly identifies a domain
name as benign, and it is indeed benign.

3. FP (false positive): it refers to the cases where the model incorrectly identifies a
domain name as malicious, whereas it is actually benign.

4. FN (false negative): it refers to the cases where the model incorrectly identifies a
domain name as benign, whereas it is actually malicious.

Table 15. Confusion matrix table.

Positive Negative

True TP (true positive) TN (true negative)
False FP (false positive) FN (false negative)

This experiment was a dichotomous task with supervised learning. Therefore, accu-
racy, precision, recall, and F1 score were selected as evaluation criteria. Assuming that
TP, TN, FP, and FN, respectively, represent the number of corresponding situations, the
evaluation criteria are defined as follows:

1. Accuracy (ACC): represents the ratio of the number of correctly classified samples to
the total number of samples.

ACC =
(TP + TN)

(TP + TN + FP + FN)
, (5)
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2. Precision: represents the ratio of the true number of positive samples to the number
of positive samples in the classification results.

Precision =
TP

(TP + FP)
, (6)

3. Recall: represents the proportion of correctly classified positive samples to all positive
samples, Recall = TPR.

Recall =
TP

(TP + FN)
, (7)

4. F1: Represents the harmonic mean of the accuracy rate and the recovery rate. When
the F1 value is high, it means that both the accuracy rate and the recovery rate are high.

F1 =
(2 ∗ Precision ∗ Recall)
(Precision + Recall)

. (8)

For classification tasks, the higher the accuracy, precision, recall, and F1 values, the
better the classification effect.

5.2. Experimental Results and Analysis

Experiment on C_DGA random sampling, compared to Tranco_K26W-1m, was merged
as experimental data, and the training and testing sets were divided into a fivefold cross-
validation ratio of 8:2. The specific information is shown in Table 16.

Table 16. Training data and testing data size.

Dataset Data Size

Training set 1,419,148
Testing set 354,788

Total 1,773,936

Using training data to train a statistical learning-based DGA detection model, the
detection performance of the model was tested using test data and the four evaluation
indicators mentioned above. The model was compared with multiple basic models, and the
maximum fault tolerance rate was set to 0.01 in the experiment. The experimental results
are shown in Table 17. The boldface represents the highest value detected.

Table 17. Table of experimental results for each model.

Model Name ACC Precision Recall F1

1 B-RF 0.97551 0.96976 0.98063 0.97516
2 XGBoost 0.97554 0.96982 0.98062 0.97518
3 LSTM 0.97480 0.97066 0.979193 0.97490
4 CNN 0.96944 0.95212 0.98859 0.97001
5 B-RF + XGBoost 0.97498 0.97500 0.97496 0.97498
6 LSTM + CNN 0.97554 0.97613 0.97404 0.97833
7 B-RF + XGBoost + LSTM 0.97771 0.97498 0.98059 0.97778
8 B-RF + XGBoost + CNN 0.97768 0.97472 0.98081 0.97775
9 B-RF + LSTM + CNN 0.97791 0.97562 0.98032 0.97796

10 XGBoost + LSTM + CNN 0.97554 0.97661 0.97851 0.97756
11 XGBoost + B-RF + LSTM + CNN 0.97908 0.97712 0.98113 0.97912

The first four rows in Table 17 represent the accuracy of traditional basic models B-RF
and XGBoost, which was 0.97551 and 0754, respectively, slightly better than the detection
accuracy of deep learning models LSTM and CNN, which was 0.97480 and 0.96944. The
F1 values of traditional basic models B-RF and XGBoost were 0.97516 and 0.97518, which
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were also better than the F1 values of deep learning models of 0.97490 and 0.97001. This
may be due to the more comprehensive and high-quality features selected in this paper,
which better fit the dataset used in this paper and improved the detection performance
of the traditional machine learning model. At the same time, due to the shorter length
of the domain name, it belonged to a short text. Therefore, the hidden features that deep
learning models can mine were limited, resulting in slightly lower performance than B-RF
and XGBoost.

The 5th to 11th rows in Table 17 show the detection results of various combination
models based on statistical learning decisions, such as LSTM + CNN representing the
detection model based on statistical learning combined with LSTM and CNN. Comparing
lines 3, 4, and 6, it can be found that the LSTM + CNN model outperformed the basic models
LSTM and CNN in terms of accuracy, precision, and F1 value, indicating that the former
had a higher comprehensive detection ability. For rows 1, 2, and 5, the B-RF + XGBoost
model did not improve on the original foundation. This is because both B-RF and XGBoost
are ensemble learning methods, and in this article, they were analyzed and trained on
the same feature set. The two were relatively similar. When using significance level to
subdivide the detection results in decision-making, the addition of the subclass class caused
more noise in the B-RF + XGBoost method, which affected the detection performance of the
B-RF + XGBoost model.

In addition, according to rows 5, 6, 7, 8, 9, 10, and 11 in observation Table 17, these
combined models were superior to the basic model in accuracy, precision, and F1 value,
which indicated that the decision-making mechanism based on statistical learning could
effectively improve the detection effect on the basis of a single model. The detection
performance of B-RF + XGBoost + LSTM and B-RF + XGBoost + CNN in the table was better
than that of B-RF + XGBoost, while the detection performance of B-RF + LSTM + CNN and
XGBoost + LSTM + CNN was better than that of LSTM + CNN. This indicates that the
more types of basic models included in the detection model, the better the detection
performance. When both machine learning methods based on artificial features and deep
learning methods were included, the detection performance was better than only including
one type of method.

The 11th row in Table 17 is the DGA detection model proposed in this article, which
includes two machine learning methods based on artificial features and two deep learning
methods, achieving a balanced state. By comparing with other models, it can be concluded
that the detection model proposed in this paper outperformed the basic model in terms
of accuracy, precision, and F1 value and was also superior to other combination models.
In terms of recall index, it was only lower than the CNN model, indicating that the DGA
detection model based on statistical learning had a stronger detection ability compared to
these models.

DGA domain names belonged to different DGA families, so we used 360netlab’s DGA
family domain name information to test the detection performance of the model for each
family. During the experiment, one domain name of the DGA family was detected each
time. As the test samples only contained positive samples, only accuracy was selected
as the evaluation criterion. The experimental results are shown in Table 18, and the last
column in the table represents the detection performance of the proposed model. From the
table, it can be seen that the detection performance of the model on these DGA families
was better than that of the basic model.

With the passage of time, DGAs are constantly evolving, and new DGA domain names
appear every day, leading to the aging of DGA detection methods and a decrease in detection
performance. Therefore, this paper used outdated data to train the detection model and
tested the model’s detection performance over time on new data in the coming year.

In the experiment, data from the C_DGA dataset from 31 October 2019 to
28 December 2019 were extracted as DGA domain name samples for the training set,
and Tranco_K26W-1m was used as the normal domain name sample for the training
set. The experimental results are shown in Figures 5–8. The blue curve represents the
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B-RF detection model, the orange curve represents XGBoost, the green curve represents
the LSTM detection model, the red curve represents the CNN detection model, and
the purple curve represents the DGA detection model based on statistical learning in
this paper.

Table 18. The detection accuracy of each model for each DGA family.

DGA Family Number B-RF XGBoost LSTM CNN Ours

bamital 104 0.98076 0.94230 1.00000 1.00000 1.00000
conficker 497 0.73440 0.74849 0.75653 0.72434 0.77464

cryptolocker 1000 0.98700 0.98700 0.99100 0.98600 0.99400
dyre 1000 1.00000 1.00000 1.00000 0.99700 1.00000

emotet 446,590 0.99153 0.99074 0.99527 0.99521 0.99543
feodo 263 1.00000 0.99661 1.00000 1.00000 1.00000

fobber-v1 299 1.00000 1.00000 1.00000 1.00000 1.00000
gameover 12,000 1.00000 1.00000 0.99983 0.99981 1.00000

necurs 8188 0.94589 0.94687 0.95994 0.95346 0.96433
nymaim 478 0.82383 0.82642 0.82642 0.78497 0.86139
padcrypt 168 0.97619 0.97619 0.97023 0.96428 0.98809

pykspa-v1 44,702 0.89168 0.89224 0.96470 0.96085 0.96492
pykspa-v2-fake 800 0.86875 0.88250 0.84750 0.84000 0.89375
pykspa-v2-real 198 0.69697 0.83333 0.86868 0.84848 0.87878

ranbyus 10,920 0.99340 0.99322 0.99505 0.99587 0.99688
rovnix 179,991 0.98386 0.88268 0.99660 0.99745 0.99860
virut 9740 0.74589 0.76324 0.75657 0.71899 0.78839

Figure 5. Accuracy versus time.

Figure 6. Precision versus time.
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Figure 7. Recall versus time.

Figure 8. F1 versus time.

The accuracy of the four base models, as well as the detection model proposed in this
paper at four time nodes are shown in Figure 5, from which it can be seen that the accuracy
of the DGA detection model based on statistical learning is higher than that of the four base
models, indicating that more samples were correctly categorized in the detection results of
this model. Statistically based models show the highest accuracy among all models. This
may be because the multimodel collaborative model combines the advantages of different
models and improves the overall detection performance through ensemble learning. This
result demonstrates the effectiveness and advantages of a model ensemble.

Figure 6 shows the variation of the precision rate of the base model and the statistical
learning-based DGA detection model over four time nodes, from which it can be seen
that the precision rate of the model detection decreases over time, which is caused by the
degradation of the model. It can also be seen that the precision rate of CNN is significantly
higher than that of other single-model detection but lower than that of statistically based
multimodel detection. Thus, statistically based multimodel detection methods have a
clear advantage.

Figure 7 demonstrates the variation of the recall of the base model and the statistical
learning-based DGA detection model over the four time nodes. In terms of the single-
model detection methods, the CNN model has a higher detection recall than the other
three single-model detection methods. Due to the advantages of the CNN model in image
processing and feature extraction, it can better capture and identify the characteristics
of DGA attacks. These features include pattern recognition, frequency analysis, or other
statistical features relevant to DGA attacks. However, it can be seen from the figure that the
statistical learning-based DGA detection model has a higher recall than the CNN detection
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model at all time nodes. In summary, it can be seen that the statistical-based multimodel
detection method has a higher recall than the other single-model detection methods.

Figure 8 demonstrates the variation of the F1 values of the base model and the statisti-
cal learning-based DGA detection model over the four time nodes, which is a combined
assessment of precision and recall and responds to the comprehensive detection capability
of the model. From the figure, it can be seen that the F1 value of the statistical learning-
based DGA detection model is higher than the base model at all time nodes. Statistical
learning-based DGA detection model may be better able to identify patterns, variants,
and characteristics of DGA attacks, thereby improving the overall performance of the
model. This indicates that the detection effect of the model is overall better than that of the
base model.

In summary, when the detection model was trained with the outdated data and we
tested the detection effect on the DGA domain name data for the next four years, the
statistical learning-based DGA detection model outperformed the four base models in
terms of accuracy, recall, and F1 value, which indicates that the detection model proposed
in this paper possesses stronger comprehensive detection capability. When there were new
DGA domain names that the model had not seen in the test data, the oscillation of the
model on the four metrics was slightly lower than that of the other base models, which
indicates that the detection model can effectively identify the internal aging models when
making decisions based on statistical learning and eliminate the detection results of the less
effective models according to various decision mechanisms, so that the overall detection
effect of the whole model remains stable and has a certain degree of robustness.

5.3. Summary

This section validated the statistical learning-based DGA domain name detection
algorithm proposed in the previous section through experiments. This section first utilized
the C_DGA and Tranco_K26W-1m data to train and generate a statistical learning-based
DGA detection model. Subsequently, the model’s classification ability was tested on the
test set. The experimental results showed that the model outperformed the base model
in three indexes of accuracy, precision, and F1 value, reaching values of 0.97908, 0.97712,
and 0.97912, respectively, and the recall rate was also only lower than that of the CNN
model, reaching 0.98113, indicating that the model had a stronger comprehensive detection
ability than the other models. By comparing the base model and other combined models,
we learned that the multimodel collaborative decision-making based on statistical learning
proposed in this paper could effectively improve the detection effect on the basis of a
single model, and the detection effect was better when the model contained both the base
model based on artificial features and the base model based on deep learning. Next, this
section tested the detection effect of this detection model for each DGA family using the
DGA domain family data from 360netlab, and the experiments showed that the detection
accuracy of our model on multiple DGA families was higher than that of the base model.
Finally, we used the old data in C_DGA to generate detection models and test the detection
effectiveness of these models over time, and the experimental results showed that in the
time range from 2020 to 2023, the accuracy, recall, and F1 values of the statistical learning-
based DGA detection model were higher than those of the base model, the comprehensive
detection ability was stronger, and for unknown families of domain names, the detection
model had less oscillation than the base model and had a certain robustness.

6. Conclusions and Future Work
6.1. Conclusions

This paper combined the analysis of artificial features and advanced neural network
features to detect DGA domain names. First, 34 artificial features were extracted from the
perspectives of string structure, language characteristics, and distribution statistics.

Secondly, deep neural networks were used to actively mine high-level features of
domain name characters. Then, the DGA domain name was detected by combining tradi-
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tional machine learning methods and deep learning methods. In terms of the multimodel
decision-making mechanism, a method based on statistical learning was proposed to pro-
vide a fair comparison standard for heterogeneous models and produce decision results
with a certain level of confidence through voting. When the prediction labels of all models
lacked sufficient confidence, confidence and credibility were considered to comprehensively
evaluate the prediction quality of the model, and the prediction result with the highest
quality was selected as the final decision result.

Finally, a DGA detection algorithm based on statistical learning was designed and
implemented using four heterogeneous methods, XGBoost, B-RF, LSTM, and CNN, to detect
DGA domain names and evaluate the prediction quality of these methods through statistical
learning to generate DGA detection results. This algorithm analyzed DGA domain names
from multiple angles. The experimental results of this model performed well, with accuracy,
precision, recall, and F1 scores reaching 0.979, 0.977, 0.981, and 0.979. Our research was
compared with previous studies and discussed with related studies. We found that our
method outperformed the performance of a previously proposed single model, improved
the detection effect based on a single method, and was able to effectively identify invalid
prediction results, ensuring the stability of the algorithm. Overall, this algorithm is a
real-time, lightweight DGA detection method with high accuracy and reliability.

6.2. Future Work

In this paper, a statistical learning-based DGA detection method was proposed, but
due to the limited research time, there are still some problems that need further research
and improvement:

1. The detection method proposed in this paper contains four heterogeneous methods,
XGBoost, B-RF, LSTM, and CNN, and provides a unified comparison standard for
these heterogeneous models using statistical learning, which has strong scalability
and provides a new way of thinking for multimodel detection of DGA domain
names, so more and better detection methods can be considered for integration
into this algorithm in future research to further improve the detection capability of
the algorithm.

2. In this paper, we studied the binary classification problem in DGA detection, and
in future research, we can try to apply this detection algorithm to the DGA family
multiclassification problem. By extending the algorithm to classify different DGA
families, a more comprehensive understanding of the diverse nature of DGA domains
can be achieved.

3. Incorporating explainability: In future research, it would be valuable to enhance the
interpretability and explainability of the detection algorithm. By providing insights
into the decision-making process of the model and the importance of different features,
users can gain a better understanding of how the algorithm detects DGA domains.

4. Real-time detection: This study mainly focuses on offline detection of DGA domains.
In future research, it would be beneficial to explore real-time detection methods that
can effectively identify DGA domains in a timely manner. This would enable the
algorithm to be deployed in dynamic environments, such as network security systems,
where quick detection and response are crucial.

5. Robustness to adversarial attacks: Investigating the robustness of the detection algo-
rithm against adversarial attacks would be an important direction for future research.
Adversarial attacks aim to deceive the algorithm by introducing subtle modifications
to the input data. Developing techniques to enhance the algorithm’s resilience to such
attacks would be valuable in practical applications.
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Abstract: With the rapid development of Internet of Things technology and cloud computing tech-
nology, all industries need to outsource massive data to third-party clouds for storage in order to
reduce storage and computing costs. Verifiable and dynamic searchable symmetric encryption is
a very important cloud security technology, which supports the dynamic update of private data
and allows users to perform search operations on the cloud server and verify the legitimacy of the
returned results. Therefore, how to realize the dynamic search of encrypted cloud data and the
effective verification of the results returned by the cloud server is a key problem to be solved. To
solve this problem, we propose a verifiable dynamic encryption scheme (v-PADSSE) based on the
public key cryptosystem. In order to achieve efficient and correct data updating, the scheme designs
verification information (VI) for each keyword and constructs a verification list (VL) to store it. When
dynamic update operations are performed on the cloud data, it is easy to quickly update the security
index through obtaining the latest verification information in the VL. The safety and performance
evaluation of the v-PADSSE scheme proved that the scheme is safe and effective.

Keywords: Internet of Things; cloud computing; verifiable; searchable; symmetric encryption;
public key cryptosystem

1. Introduction

With the development of IoT technology, in order to achieve industrial informatization,
more and more IoT devices are being connected, and the amount of data is becoming larger
and larger. In order to save on storage and computing costs, enterprises choose to outsource
massive amounts of data to cloud servers. However, while enjoying the convenience
brought by the cloud, the security of the data has become crucial. To protect data privacy,
sensitive private data need to be encrypted before being outsourced to the IoT cloud [1].
Song et al. [2] proposed searchable symmetric encryption (SSE). SSE is an encryption
scheme that allows users to store encrypted data on a third-party cloud server and search
the encrypted cloud data through the trapdoor generated by the keywords. However, most
SSE schemes only consider keyword search operations on statically encrypted cloud data,
which is inconsistent with the real-time and dynamic update requirements for enterprise
data. Moreover, some studies have shown that conventional SSE schemes are vulnerable
to leakage abuse attacks [3], file injection attacks [4], and technical attacks [5]. In order to
realize the dynamic update (add, delete, or modify) operations of encrypted data stored
on cloud servers, some SSE schemes supporting the dynamic update operations of private
data have been proposed [6–9]. Kamara et al. [6] proposed an SSE scheme that supports
dynamic data updating. The scheme realizes a sublinear search via extending an inverted
index and uses a search array and delete array combined with other storage space to realize
the dynamic update of the data. Subsequently, they proposed another method based on
the keyword red–black tree index structure [7] to support parallel keyword search and
parallel data insertion and deletion. Guo et al. [8] proposed a dynamic SSE scheme based
on an inverted index. The scheme records the keyword position by the inverted index and
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realizes the data dynamics through updating the index. Xia et al. [9] proposed a dynamic
keyword search scheme for encrypted cloud data based on the tree index structure that
supports multi-keyword sorting.

The above DSSE schemes do not consider the correctness and integrity verification
of the returned matching result of the cloud server. In practice, the cloud server may
return un-updated or incorrect matching results to the user in order to save computing
resources. Therefore, users need to verify the results returned by the cloud server to
ensure the correctness and integrity of the returned results. Some schemes [10–12] use the
timestamp function of the RSA accumulator to verify the search results, which generates
accumulator bits for all files and indexes, which can be saved by the data owner. If the
cloud server returns an un-updated result, the user can check it with the latest accumulator.
The RSA accumulator [13] can synthesize a large number of data into a fixed-size value to
achieve member authentication, which can effectively reduce communication overhead.
The RSA accumulator is applied to the compressed prefix tree structure to realize both
efficient retrieval and result verification. However, the RSA accumulator is based on
asymmetric cryptosystems, and the computational costs and verification costs are high.
Some research teams have proposed verifiable schemes based on message authentication
code (MAC) [14–16], but in DSSE application scenarios, MAC cannot verify whether the
results returned by the cloud server are the latest, that is, it cannot resist replay attacks [17].
Ge et al. [18] proposed a verifiable DSSE scheme based on cumulative authentication tags
(AATs), which generates authentication tags for keywords and verifies the returned results
through recording the number of global updates and the number of updates of a single
file containing those keywords. Each update operation consumes only one label, which is
highly efficient. However, the pseudo-random permutation and pseudo-random function
are used in this scheme to replace and encrypt the keywords and global update times,
which leads to key management problems. Relational authentication tags (RALs) [19] are
used to verify the relationship of query keywords in documents, and audit certificates
can be generated without exposing sensitive information. However, the program requires
third-party auditors to be involved in the search process. Therefore, how to effectively
verify the correctness and integrity of the returned results is an urgent problem to be solved.

According to the research on the above schemes, the verification of search results
in most schemes is not comprehensive and also involves key management problems.
Therefore, how to effectively verify the correctness and integrity of search results as well
as the security management of encryption keys are the problems we should focus on and
solve.

In this paper, we explore how to use the public key cryptosystem in the DSSE scheme
to verify the correctness and integrity of the result returned by the cloud server and to
manage the encryption key effectively and securely.

The contributions of this paper can be summarized as follows:
(1) In order to efficiently realize the index update and index lookup, we constructed

a bitmap index to store the relationship between the keywords and encrypted files. A
verification list (VL) was used to store the latest verification information of files containing
keywords so that we can quickly obtain the latest verification information from the VL to
perform the secure index update.

(2) In order to support the effective verification of dynamic data, we designed public-
key-based cumulative verification information (VI), which is stored in the bitmap index.
When the encrypted cloud data are dynamically updated, the verification information can
be easily updated. In addition, the verification information contains the corresponding
keywords’ information, which makes the verification information of various keywords
different. Moreover, replay attacks can be resisted by the VI, that is, through verifying
whether the returned result is up to date.

(3) In order to achieve forward security, the scheme places the node information in the
bitmap index to avoid statistical attacks. When we need to search or update private data,
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the cloud server will return or change the whole column’s data so that malicious cloud
software cannot obtain the relationship of the keywords and index.

(4) Based on the above description, we design a verifiable DSSE scheme based on the
public key cryptosystem. The security, verification efficiency, and updating efficiency of the
scheme are analyzed and explored. The results show that the scheme is safe and effective.

Organization: The rest of the paper is organized as follows. We summarize the related
work in Section 2. In Section 3, the formulas and algorithms involved in the scheme are
defined, including model construction, design objectives, etc. In Section 4, we describe the
construction of the scheme and the execution of the algorithm. The security analysis of the
v-PADSSE scheme is given in Section 5. In Section 6, the implementation efficiency and
updating efficiency of the program are analyzed and evaluated.

2. Related Work

With the development and application of the Internet of Things and cloud computing
technology, many industries have chosen to outsource data to third-party clouds for storage.
While cloud storage brings convenience to enterprises, it also brings new security challenges.
Users cannot directly control the data stored in the cloud, so it is impossible to determine
whether the data stored are complete and correct. To solve the problem of data verification,
the research community has proposed some cloud storage verification schemes [20–22]
to audit and verify data in the cloud. In addition, before uploading private data to the
cloud for storage, users need to encrypt it to prevent it from being accessed directly by
cloud providers. However, in this case, how users perform search operations on encrypted
cloud data is also an important problem to be solved. To solve the above problems, the
research community proposes searchable symmetric encryption (SSE), which allows users
to perform search operations directly on the ciphertext. Compared with the searchable
encryption scheme of the public key encryption system [23,24], the efficiency of the SSE
scheme has received more attention from the industry.

Dynamic SSE. Searchable encryption can be divided into two categories: symmetric
key encryption [25] and public key encryption [26]. Song et al. [2] first proposed a searchable
encryption scheme that encrypts each keyword through constructing a special two-layer
encryption structure. Some static SSE schemes, such as semantic search schemes [27] and
ranked keyword search schemes [28,29], are also proposed. However, in practice, industrial
data are dynamically updated in real time, and the static SSE scheme does not support
the dynamic update of encrypted cloud data, so it cannot meet the requirements of cloud
storage data encryption at this stage. In order to support the dynamic update of encrypted
data, Kamara et al. [6] proposed a dynamic SSE scheme through constructing an extended
inverted index to achieve sublinear search efficiency and CKA-2 security. Scheme [30]
proposed a dynamic SSE scheme which allows data owners to store privacy files in a way
that the cloud server does not know the number of files through constructing a blind
storage system on the cloud server. Guo et al. [9] proposed a DSSE scheme based on the
inverted index, which allows data users to search multiple phrases in a query request, and
the scheme supports the ordering of search results. In recent years, a number of cloud-
assisted schemes have been proposed for searchable encryption [31]. Scheme [32] utilized
the searchable encryption technologies of keyword range search and multi-keyword search.
Since the cloud is untrustworthy, scheme [32] used Bloom filters and message verification
codes to classify health information, filter out fake data, and check data integrity. In order
to verify whether the cloud faithfully performs the search operation, a multi-user verifiable
searchable symmetric encryption is proposed in scheme [25]. Authorized users can search
the data, verify the authenticity of the search results, and improve the accuracy of the
search results. Since the access rights of authorized users are always valid, it is not secure.
In order to automatically revoke a user’s access, the time key was introduced in [33]. At
the beginning of encryption, the key is encapsulated in ciphertext, which means that all
users, including the data owner, are bound by the time period. Later, Yang et al. [34]
proposed a conjunctional keyword search with the function of specifying testers and
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enabling timed proxy re-encryption. It utilizes a time server to generate time tokens for
users. In addition, it implements time-controlled access revocation to prevent authorized
users from accessing future EHRs. Scheme [35] proposed timed-release computational
secret sharing and threshold encryption which used a time-release function instead of
a time server to reduce overhead. Scheme [36] proposed 0-encoding and 1-encoding to
generate the time key. However, the retrieval efficiency of this work is low. In order to
improve search efficiency, scheme [37] with hidden data structures was proposed in the
literature. The user expected to find more ciphertexts in one step. However, scheme [37]
reduced the number of computation-intensive operations without searching for at least
two matching ciphertexts in just one step. This work cannot meet the need for a quick
search and prevent authorized users from accessing future data. While all of the above
work enables cloud-based search, there is still a challenge: the cloud is not a fully trusted
entity and can collude with other entities to gain access to users’ private information.

Verifiable SSE. In practice, cloud servers are semi-trusted entities [38] that may return
incorrect or un-updated results to the data user in order to save on computing overhead.
Miao et al. [39] constructed the verifiable SE framework (VSEF), which can withstand inter-
nal KGA and achieve verifiable searchability. Wu et al. [40] proposed a new authentication
data structure based on homomorphic encryption and showed how to apply it to verify the
correctness and integrity of search results. However, the verification proof in their scheme
is generated by the cloud server, which can forge the proof to pass the verification when the
cloud server is seen as an adversary. To avoid this, Chai et al. [41] first proposed a verifiable
keyword search scheme for encrypting cloud data, using hash functions to generate proof
of document identity. Jiang et al. [14] proposed a verifiable multi-keyword ranked search
scheme based on encrypted cloud data, which realized an efficient keyword search through
constructing the special data structure QSet. Yang et al. [42] designed a forward-privacy
VDSSE scheme with Bloom filters and message authentication codes to allow verification
and support dynamic updates of outsourced data. Zhang et al. [43] proposed a verifiable
data structure based on a multi-set hash function, which guarantees forward security and
realizes effective verifiable data updates. Gao et al. [19] used relational authentication
tags (RALs) to verify the relationship of the query keywords in the document, which can
generate audit certificates without exposing sensitive information. However, the program
requires third-party auditors to be involved in the search process. Merkle hash trees [44] are
used to validate data elements in large databases. Through adding data elements to the leaf
node of the tree, the tree structure is constructed layer by layer from the leaf node to the root
node, and finally the unique root node is obtained. A change to any element in the data set
will make the root node change. A Merkle Patricia tree is proposed in GSSE [45] to reduce
the storage overhead of index structures in schemes based on Merkle hash trees. It reduces
storage space through reducing the depth of the tree. However, in the above two scenarios,
the proof provided by the cloud server to the DU is larger in scale, which brings more
communication overhead. Chen et al. [46] extend the Merkle hash tree [47] to a searchable
index tree to achieve efficient result verification, where search time grows sublinearly with
the size of the data set, and verification is more efficient than the accumulator structure.
In addition, verifiable DSSE has been implemented by schemes [45,48], but they either
support a single keyword match search or use two rounds of communication in a single-
user setup to achieve result verification. The RSA accumulator [13] can aggregate a large
amount of data into a fixed value to achieve member verification, which can effectively
reduce communication overhead. The RSA accumulator is applied to the compressed
prefix tree structure to realize the combination of efficient retrieval and result verification.
Schemes [10,12,13] all use an RSA accumulator to realize result verification for dynamic
data. Most of the above VDSSE schemes are based on asymmetric key cryptography, and
the results returned by the cloud server are verified using the public key signature.

Forward secure SSE. Forward privacy protection requires that update operations
(insert or delete) performed by the data owner cannot be associated with previously
performed search operations. Because the secret key is used for the deterministic encryption
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of private data in the DSSE scheme, it is easy for untrusted servers to obtain repeated queries
and other information, which leads to information leakage (such as the number of keyword
queries, etc.). If ORAM is introduced into the scheme, such problems will be avoided,
but the communication cost and calculation cost are high, which causes the calculation
and execution efficiency of DSSE to be exchanged through allowing some information to
be leaked in actual use. However, such leaks are often attacked in different ways [49,50].
Bost et al. [51] proposed to use a one-way trapdoor replacement to eliminate the correlation
between the latest trapdoor and the previous trapdoor, that is, the latest trapdoor can search
all encrypted documents, but the previous trapdoor cannot match the latest encrypted
document. Cao et al. [52] used the KNN method to construct the security index and
trapdoor. This method is used to encode indexes and trapdoors so that even if the keyword
is the same, the encoding is different. In this way, the cloud server can avoid obtaining the
number of keyword queries and the association between keywords and encrypted data
based on data user query operations, thereby protecting forward privacy. Li et al. [53]
used partitioning and pointer hiding technology to partition the secure index and extracted
sub-keywords according to the original keywords as the keywords of partition search,
then encrypted and hid the index block, which only needed to save the index table header
identification and encryption key locally. Since the search token information is calculated
using subkeywords, it is difficult for subsequent query keywords to be directly associated
with the newly added encrypted document.

3. Security Model and Related Definitions
3.1. Security Model

In the design scheme, there are four entities that need to be involved, namely: the
data owner (DO), the data user (DU), the cloud server (CS), and the key distribution center
(KGC). The system security architecture is shown in Figure 1.

• Data owner: This entity encrypts private files and secure indexes with a symmetric
key and encrypts verification information with the data user’s public key. After the
encryption is finished, the ciphertext and index are uploaded to the cloud server.
When the data owner wants to update the privacy data, the update token needs to be
generated locally and then sent to the cloud server for data updating. Upon receiving
the VI request from the data user, the data owner returns the number of files N and
the total number of file updates V that contain the keyword w.

Figure 1. System security architecture.

• Data user: The entity shares the encrypted private key with the data owner. When
he wants to perform a search operation containing keywords, he needs to generate a
trapdoor locally, then send the trapdoor to the cloud server for searching, and apply
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to the data owner for the latest verification information of the keyword. The w of VI
indicates the keyword for which the user wants to perform the search operation. Upon
receiving the returned results from the cloud server, the correctness and integrity of
the results are verified according to the verification information.

• Cloud server: This entity stores the ciphertext and security index information up-
loaded by the data owner. When it receives a search request, it performs the search
operation on the security index and returns the corresponding matching results and
verification information. When it receives an update request, it performs an update
operation on the security index and the corresponding ciphertext.

• Key Distribution Center (KGC): This entity is primarily used to generate keys. Upon
receiving a key request from the data user, the entity returns a key pair (PK, SK) to
the corresponding user.

In the system model, both the data owner and data user must be trusted entities.
The data owner honestly encrypts the private files and builds the secure index. The data
user honestly generates trapdoors for the desired keywords and sends them to the cloud
server. The cloud server is an untrusted entity that allows search operations to record the
correspondence between search keywords and encrypted files, and it may return incorrect
or un-updated results to the data user in order to save computing overhead. The key
distribution center is a trusted entity that honestly generates the key pair requested by the
data user and sends it to the requesting user.

3.2. Design Goals

Based on the above model architecture, to achieve a verifiable DSSE scheme, we design
a scheme which needs to meet the following objectives:

• Support keyword search over the encrypted cloud data: The scheme needs to match
all ciphertexts containing the corresponding keywords according to the search token
and demonstrate high query efficiency.

• Support efficient dynamic data updates: The scheme needs to support the dynamic
update of encrypted data and secure indexes, such as dynamic addition, dynamic
deletion, and dynamic modification.

• Support search result verification: The scheme needs to support data users in efficiently
verifying the correctness and integrity of the matching results returned by the cloud
server, and the verification does not involve any complex operations.

• Privacy protection.: Due to the scheme being based on the public key cryptosystem,
the public key cannot be used to encrypt private information directly. The private
information is encrypted using the symmetric key, and the asymmetric key is used
to encrypt the verification information. In addition, the scheme should hide the
encrypted file containing information about keyword quantity and keyword search
frequency.

• Replay attack resistance: To save on computing or storage overhead, the cloud server
directly returns the un-updated results to the data user. The scheme should enable
data users to verify the returned results to determine whether the returned results
are up to date.

3.3. Algorithm Definition

The related algorithms in the v-PADSSE scheme we designed are KeyGen, PSKeyGen,
IndexBuild, Building VL, GenToken, Search, Verify, Decrypt, UpdateToken, and Update.
These algorithms are defined as follows:

• K ← KeyGen(1λ1). The data owner outputs the key (K) through using the secure
random parameter λ1 as the input.

• (PK, SK)← PSKeyGen(λ2). The KGC outputs the key pair (PK,SK), using the secure
random parameter λ2 as input.
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• (I, C) ← IndexBuild(K, PK, F, W, N, V, vi, f lag). When building a secure index, en-
crypt the file F and the keywords W with K. Use the public key (PK) to encrypt the
number of files (N) and the total number of updates (V) containing the keywords,
the number of updates (vi) per file, and the flag bit of whether the file contains the
keyword ( f lag), where the random number generator function rand() is used to gen-
erate random numbers (randA for odd numbers, randB for even numbers). If the file
contains the keyword, the f lag is odd. If not, the f lag is an even number. Calculate
the file F using the SHA-3 hash algorithm (later replaced with the symbol “H”), and
finally, output security index I and ciphertext C.

• Tw ← GenToken(K, w). The data user executes the trapdoor generation algorithm.
Take key K and keyword w as inputs, and output trapdoor Tw.

• (VI, C(w))← Search(Tw, I, C). The output is the verification information VI, match-
ing ciphertext set C(w). The VI contains the update times of the file (vi) matching the
trapdoor, the flag of whether the ciphertext contains the keyword, and the result H(F)
after hashing the plaintext file using Tw, I and C as input.

• (Y, N) ← Veri f y(VI, SK, Tw, C(w)). Output the result of verifying (Y or N) through
using VI, PK(N, V), SK, Tw, and C(w) as inputs.

• F(w)← Decrypt(K, C(w)). Take K and C(w) as inputs, and output plaintext file F.
• τ ← UpdateToken(K, PK, F, {w, f lag}, vi). Update token information includes the

update operation type, the newly updated file F, the document identifier Fid, the
number of updates per file vi, H(F) (the hash result of F), the set of keywords w
contained in the file, and f lag. When the add operation is performed, the VL is
matched according to the keyword set contained in file F, V = V + 1 and N = N + 1
are calculated in the matched node, and the document ID (Fid) and update number
vi = 1 of file F are added to the node. At this point, the update token contains
the addition of Fid, vi, the keyword set wi contained in the file F, and H(F). If F
contains the keyword, f lag = randA; otherwise, randB. When the delete operation is
performed, the verification list VL is matched according to the keyword set contained
in F; then, N = N − 1 and V = V − vi are calculated in the matched nodes, and Fid
and its update times vi in the nodes are deleted, so that vi = 0 and f lag = randB.
When the modify operation is performed, the verification list VL is matched according
to the keyword set contained in F. In the matching node, perform V = V + 1 and
vi = vi + 1; N and f lag remain unchanged, and the new file is hashed to H(F). After
the above verification information is modified, the public key is used to encrypt this
information except for H(F).

• (I′, C′)← Update(τ). The cloud server executes the update algorithm. Match accord-
ing to Fid contained in τ, and replace the nodes’ value in the column. According to
the update token τ, The cloud server generates a new index item I′ and ciphertext C′.

3.4. Security Definition

• Updated Reliability: A verifiable DSSE scheme first needs to ensure that the cloud
server performs reliable update operations, that is, replay attack resistance. Since the
cloud server is not trusted after it receives an update request from the data owner, it
may not perform the corresponding update operation according to the update token
content, that is, it will not update the security index and ciphertext collection. After
receiving a search request from the data user, the un-updated data are returned to the
data user, and the data user should verify that the returned results are up to date. If
the opponent obtains the latest authentication information VI′ and valid ciphertext
C(w)′, and the forged information can pass the verification algorithm, the opponent
wins.

• Verifiability: If the probability of the opponent successfully forging search results is
negligible, the v-PADSSE scheme is considered verifiable. Due to the unreliability of
the cloud server, it may return incorrect or incomplete results to the data user. Data
users should be able to detect the improper behavior of the cloud server using verifi-
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cation algorithms to ensure the correctness and integrity of the returned results. If the
opponent obtained the latest verification information VI′ and the valid ciphertext set
C(w)′ and can forge the authentication information to pass the verification algorithm,
the opponent wins.

4. v-PADSSE Scheme Construction and Algorithm Description

We have summarized some common symbols used in the design of the v-PADSSE
scheme, as shown in Table 1.

Table 1. Common symbols and descriptions

Symbol Description

N the number of files containing keywords
n the number of keywords
F plaintext file set
W keywords set
wi the i-th keyword in the keywords set
V the total number of updates to the file containing keyword w
vi the number of updates to per file containing the keyword wi
I secure index
C ciphertext set
Tw the search trapdoor of keyword w

C(w) ciphertext set containing keyword w
VI verification information set

F(w) plaintext file set containing keyword w
τ update token

VL verify list
I’ updated security index
C’ updated ciphertext set

docId document identification
H SHA-3 hash algorithm

flag indicates whether the file contains the keyword
rand() random number generation function
randA odd numbers generated by rand()
randB even numbers generated by rand()

4.1. Overview of the v-PADSSE Scheme

In order to solve the problem of correctness and integrity verification of the results
returned by the cloud server, this paper designs a DSSE scheme based on public key
verification (v-PADSSE). In this scheme, verification information is added to the security
index and encrypted using the public key of the data user, so that the user can verify the
returned results. Below, the construction of the v-PADSSE scheme is described in detail.

When constructing VI, the v-PADSSE scheme needs to include vi, f lag, and H(F).
The VI needs to be encrypted with the user’s public key. Assume that the encryption
function is PK(VI). To prevent the cloud server from collecting statistics on the correlation
between keywords and updated files, all index nodes in the column of the document
representation of the updated file must be updated so that the update operation can
hide the correlation between the ciphertext and the keywords. Therefore, the verification
information VI = PK(vi) + PK( f lag) + H(F). In addition, the data owner creates a
verification list (VL) locally, which stores the latest verification information of each keyword,
including the number of files containing keyword N, the total number of updates of files
containing keyword V, the document identification of files containing keyword id, and its
single set of file update times vi so that the latest update token can be generated directly
when the update operation is performed. For different update operations (such as modify,
add, and delete), VI needs to be performed in different operations. VI is calculated as
follows:
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• Add new file F′.

When the data owner obtains the latest VI and performs the add operation, the
number of updates of a single file is initialized to vi = 1. If the newly added file F′ contains
the keyword w in the VL, the corresponding node in the VL needs to execute N = N + 1,
V = V + 1, then add the document id of the new file F and the number of updates vi to the
node. If it does not, a new node needs to be added to the VL, where N = 1, V = 1, vi = 1,
and VI = PK(vi) + PK( f lag = randA) + H(F′).

• Modify file F to F′.

When file F needs to be updated to a new file F′ (both F and F′ contain the keyword
w), the data owner updates VL with the latest verification information for the keyword w
in the corresponding node and executes V = V + 1 and vi = vi + 1. VI′ = VI − pk(vi) +
PK(vi + 1)− H(F) + H(F′).

• Delete file F.

File F contains keyword w, and the data owner updates N = N − 1, V = V − vi, and
vi = 0 in the VL in the node where keyword w resides. In this case, the latest verifica-
tion information VI′ = VI − PK(N) + PK(N − 1)− PK(vi) + PK(vi = 0)− PK( f lag =
randA) + PK( f lag = randB). Additionally, the document id and vi of file F are removed
from the VL.

After the data owner performs different update operations, the corresponding update
token τ is generated and sent to the cloud server, which updates the security index and
ciphertext according to the update token information.

4.2. Secure Index Structure

In v-PADSSE, the data owner constructs the security index through using the bitmap
index and constructs VL locally. The data owner generates the symmetric encryption key
through executing the algorithm KeyGen, and the data user’s key pair (PK, SK) is generated
via KGC executing the PSKeyGen algorithm.

First, the data user publicly releases the public key, and the data owner, after obtaining
the user’s public key, uses the symmetric private key K to encrypt the privacy files and
keywords and uses PK to encrypt the verification information corresponding to the key-
words. When the security index is firstly constructed, the data owner needs to initialize
VI through initializing N to the number of files containing the keyword w, V = ∑n

i=1 vi,
vi = 1 (1 ≤ i ≤ N). When the security index is constructed, the column header contains the
keyword wi, and the row header contains the document ID docId. Middle node information
includes vi (the number of updates to the file containing the keyword wi), f lag (indicating
whether the document contains the keyword), and H(F) (the result of the hash operation
of the plaintext file). The security index structure is shown in Figure 2.

Figure 2. Security index structure.

The number of rows in the secure index is determined by the number of keywords,
and each row is associated with a keyword. The number of column nodes is determined by
the number of privacy files. When the data owner needs to perform an update operation,
PK(vi), PK( f lag), and H(F) in all nodes in the whole column are modified according to
the updated document identifier.
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The data owner needs to obtain the latest verification information of the corresponding
keyword when generating the update token. Therefore, VL is designed in the scheme and
is owned by the data owner. The latest VI of keywords contained in each privacy file must
be recorded in VL. When updating, the data owner modifies the VI in VL to ensure that
the VL and VI in the security index are updated simultaneously. The structure of the VL
is shown in Figure 3, where N indicates the number of files containing the keyword, V
indicates the total number of updates to files containing the keyword, and {id, vi} indicates
the set composed of the document identification of the file containing the keyword and the
number of updates to the file.

Figure 3. Structure of VL.

4.3. Algorithm Description

In this section, we give the execution steps of the core algorithm of the v-PADSSE
scheme and explain the related functions in detail.

In v-PADSSE, the core algorithms involved are IndexBuild (Algorithm 1), Building VL
(Algorithm 2), GenToken, Search (Algorithm 3), Verify (Algorithm 4), UpdateToken (Algorithm 5),
and Update (Algorithm 6). The IndexBuild Algorithm 1 is used by the data owners to
construct the secure index with bitmaps. Among them, the header node stores keyword
and document identification, and the middle node stores keyword-related verification
information. After constructing the secure index, data users upload the secure index and
encrypted files to the cloud server. Data users use the GenToken algorithm to generate a
trapdoor and send it to the cloud server. The cloud server executes the Search Algorithm 3,
performs the matching query on the security index according to the trapdoor, and returns
the matching results and verification information to the data user. After receiving the
results, the user executes the Verify Algorithm 4 to verify the correctness and integrity of
the results. If not verified, refuse. To update the privacy file, the data owner obtains the
verification information related to the keyword contained in the file from VL, runs the
UpdateToken Algorithm 5 to generate the corresponding update token, and sends it to the
cloud server. The cloud server executes the Update Algorithm 6 based on the updated token
information to update the security index and related ciphertext. Below, we will give a
detailed explanation of the above core algorithm execution process.

• Initialization parameters:

(1) Obtain the keyword set {w} contained in the plaintext file and save it in the
keyword set W = {w1, w2, . . . , wn}, where n is the number of keywords.

(2) Obtain the number of files containing keyword w, N = F(w).num, the total num-
ber of updates to files containing keyword w, V = N, the set {id, vi = 1} consist-
ing of the document ID and the number of updates per file, and whether the file con-
tains the f lag of the keyword. (PK(v[N]), PK( f lag)) ← EncryptPK(v[N], f lag)
through using the public key.

(3) Encrypt keyword w and plaintext file F using the symmetric key algorithm,
compute (Kw, C)← EncryptK(w, F), and hash file F to obtain H(F).

• Building secure index:

For each privacy file, document identification docId and keyword set {wi} ∈ W(1 ≤
i ≤ n) are used to construct the bitmap index. The functions and parameters required
to construct the security index are described as follows:

(1) Create the header node BuildHeadNode(Kw, docId), where Kw is the keyword set
after symmetric key K encryption, and docId is the private file identification set.
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(2) Create an intermediate node BuildMiddleNode(Kw, docId, PK(vi), PK( f lag),
H(F)); Kw and docId indicate where verification information is stored in the
bitmap index, PK(vi) is the number of file updates containing the keyword w,
and PK( f lag) indicates whether the privacy file corresponding to docId contains
keyword w. If yes, f lag = randA; if no, f lag = randB. H(F) is the result of
hashing the privacy file F.

The algorithm process is as follows:

Algorithm 1 (I, C)← IndexBuild(K, PK, F, W, N, V, vi, f lag)

1: DO:
2: N=F.num();V=F.num();v[N]={1, 1, . . . , 1};
3: (Kw, C)← EncryptK(w, F);
4: PK(vi), PK( f lag)← EncryptPK(vi, f lag);
5: H(F)← Hash(F);
6: // Assuming a total of n keywords and n privacy files, the following procedure is

executed n ∗ n times.
7: for i = 0; i < n; i++ do
8: for j = 0; j < n; j++ do
9: BuildHeadNode(Kw, docId);

10: BuildMiddleNode(Kw, docId, PK(vi), PK( f lag), H(F));
11: end for
12: end for
13: //The above process of creating head nodes and middle nodes together forms

the bitmap index, and assigns the f lag bit according to whether the keyword is
contained in the privacy file, and generates the security index I.

14: //The data owner sends the generated security index I and ciphertext C to the
cloud server.

15: Send to CS(I,C);

• Building verification list: VL

The verification list is constructed and stored locally by the data owner. The VL is a
single linked list, and the linked list node needs to contain the verification information
of each keyword. The creation process is as follows.
The VL header node does not store any information, only the address of the first
keyword.
BuildHeadNode(∗ f irstKeyWord):∗ f irstKeyWord indicates the address of the first key-
word.
BuildListNode(wi, Ni, Vi, {id, vi}, ∗nextKeyWord). The middle node of the linked list
stores the keyword wi, the number of files Ni containing wi, and the total number of
updates to files Vi containing wi. A set of the document identification of the privacy
file containing wi and the number of updates vi to the file, and a pointer to the next
keyword address ∗nextKeyWord are also included.

Algorithm 2 Building VL

1: //Because there are n keywords, the creation of the intermediate index node
needs to be executed n times.

2: for i = 0; i < n; i++ do
3: BuildListNode(wi, Ni, Vi, {id, vi}, ∗nextKeyWord);
4: end for
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The Search algorithm process is as follows:

Algorithm 3 (veri f yIn f o, C(w))← Search(Tw, I, C)

1: DO:
2: //Data users execute trapdoor generation algorithm GenToken, use symmetric key K to

encrypt keyword information, generate trapdoor Tw, and send it to the cloud server.
It is also sent to the data owner through the channel to obtain the latest verification
information of the keyword.

3: Tw ← GenToken(K, w);
4: Send (Tw) to CS and DO;
5: CS:
6: if IndexSearch(Tw) = null then
7: Then return null;
8: else
9: //Obtain keyword verification information.

10: verifyInfo = GetVerifyInfo(PK(vi),PK(flag),H(F));
11: C(w) = search(docId);
12: end if
13: //Return the search results and VI to the data user.
14: Return (verifyInfo,C(w));

The Verity algorithm process is as follows:

Algorithm 4 (Y, N)← Veri f y(veri f yIn f o, SK, Tw, C(w))

1: DU:
2: //The user uses the private key SK to decrypt the verification information.
3: (vi, f lag)← DecSK(PK(vi), PK( f lag));
4: //Decrypt the latest verification information returned by the data owner.
5: getNewVeri f yIn f o(Tw, PK(Nw), PK(Vw));
6: DecSK(PK(Nw), PK(Vw));
7: //Check whether the keyword is contained in the privacy file according to the f lag. If

yes, proceed with the execution. If not, the privacy file will not be decrypted.
8: if flag% 2=0 then
9: Delete;

10: //The verification information returned by the data owner compares with that
returned by the cloud server. If the verification information is correct, the ciphertext
is accepted and decrypted. If not, the ciphertext is rejected.

11: else
12: if Nw = C(w). num and Vw = ∑ vi and H(Decrypt(K,C(w)))=H(F) then
13: Return Y;
14: else
15: return N;
16: end if
17: end if

The UpdateToken algorithm process is as follows:

Algorithm 5 τ ← UpdateToken(K, PK, F, {w, f lag}, vi)

1: DO:
2: Add:
3: //The data owner needs to add the privacy file F, he firstly obtains the keyword set
{w} and document identification docIdF in F and then encrypts F and keyword {w}
with K, vi is the number of updates corresponding to the privacy file.

4: ({Kw}, C)← EncryptK({w}, F);
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5: //The VL is matched according to the keywords contained in F. If {wi} contained in F
already exists, add (docIdF, 1) to the {id, vi} in the matched node, and do N = N + 1,
V = V + 1 in this node. If not, add a new node (w, N = 1, V = 1, {docIdF, 1}) to VL.

6: //Assume there are k keywords in file F, it needs to be executed k times.
7: for i = 0; i < k; i++ do
8: if search(wi) is true then
9: N = N + 1;V = V + 1;

10: Add(docIdF,1);
11: else
12: BuildListNode(wi, Ni = 1, Vi = 1, {docIdF, 1}, ∗nextKeyWord);
13: end if
14: end for
15: //The updated verification information is encrypted using public key PK, and gener-

ates the added token τadd. If w is contained by the file F, the value of f lag is randA in
node (w, docIdF), If not, the f lag’s value is randB.

16: PK(vi), PK( f lag)← EncryptPK(vi, f lag);
17: H(F)← Hash(F);
18: τadd = (”add”, {PK(vi), PK( f lag), H(F), Kw, docIdF}, C);
19: Send(τ)toCS;
20: Delete:
21: //If the data owner needs to delete file F, he obtains the set of keyword {wi}(1 ≤ i ≤ k)

in file F and uses K to encrypt the keywords and the deleted file F. The document
identification of the file F is docIdF.

22: ({Kw}, C)← EncryptK({w}, F);
23: //Search for {wi} in VL, and update N, V and the set {id, vi} in the corresponding

node according to the keyword wi. This procedure takes k times.
24: for i = 0; i < k; i++ do
25: if search(w) is true then
26: N=N-1;V=V-v[docIdF];
27: //Removes {docIdF, v} from the document identification {id, vi} set in matched

node;
28: Delete {docIdF, v};
29: else
30: Return error;
31: end if
32: end for
33: //The updated verification information is encrypted using the public key, and the

deleted token τdel is generated and sent to the cloud server.
34: PK(vi), PK( f lag)← EncryptPK(vi = 0, f lag = randB);
35: H(F)← Hash(F);
36: τdel = (”delete”, {PK(vi), PK( f lag), H(F), Kw, docIdF}, C);
37: Send(τ) to CS;
38: Modify:
39: //If the data owner needs to modify the privacy file, he uses K to encrypt the modified

file F and keywords contained in F.
40: ({Kw}, C)← EncryptK({w}, F);
41: //Update VI in VL according to the keywords contained in file F. After updating, the

verification information is encrypted using the public key, and the modified token τmod
is generated and sent to the cloud server.

42: //Since the modified file F contains k keywords {wi}(1 ≤ i ≤ k), the following
procedure needs to be performed k times.
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43: for i = 0; i < k; i++ do
44: if search(w) is true then
45: V=V+1;v[docIdF]=v[docIdF]+1;
46: end if
47: end for
48: PK(v[docIdF])← EncryptPK(v[docIdF]);
49: H(F)← Hash(F);
50: //During the modification, the f lag remains unchanged.
51: τmod = (”modi f y”, {PK(v[docIdF]), PK( f lag), H(F), Kw, docIdF}, C);
52: Send(τ) to CS;

Algorithm 6 (I′, C′)← Update(τ)

1: CS:
2: //After receiving the updated token from the data owner, the cloud server performs

operations on the security index I and ciphertext C according to the token.
3: if τ.operate = “add” then
4: //Add a new column docIdF to the bitmap index, or add a new row if the keyword

contained in F does not exist in the bitmap index.
5: BuildHeadNode(docIdF);
6: //Assume there are n keywords in the bitmap index, that is, n rows, which need to

be executed n times.
7: for i = 0; i < n; i++ do
8: BuildMiddleNode(Kw, docIdF, PK(vi), PK( f lag), H(F));
9: end for

10: if Kwi does not exist in the bitmap index then
11: BuildHeadNode(Kwi);
12: //Assume there are n document identifications in bitmap, the following procedure

needs to be performed n times.
13: for i = 0; i < n; i++ do
14: BuildMiddleNode(Kw, id, PK(vi), PK( f lag), H(F));
15: end for
16: end if
17: addFile(C’);
18: else if τ.operate = “delete” then
19: //Delete All nodes in the bitmap index if the value of column head node is deleteId.
20: deleteColumn(deleteId);
21: deleteFile(C’);
22: else if τ.operate = “modify” then
23: //Assume there are n keywords in the bitmap index, all nodes need to be changed if

the value of column head node is modi f yId.
24: for i = 0; i < n; i++ do
25: ChangeNode(Kwi, modi f yId, PK(vi), PK( f lag), H(F));
26: end for
27: changeFile(C,C’);
28: end if

In conclusion, when the cloud server performs the update operation, the updated
column needs to be modified. At this time, the existence of the f lag and the correct
update of the f lag will not affect the verification result, even if the keyword w which is not
contained in F changes. Moreover, since the update operation involves the change of an
entire column in the secure index, it is also a good way to hide the correlation between the
keywords and the updated file.
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4.4. Comparison

In this section, we compare our scheme with Σoφoς [51], Ge’s scheme [18], Gao’s
scheme [19], and Zhang’s scheme [43]. All of those schemes can ensure the verifiability
of search results. Assume there are n files and m keywords in total. For simplification,
we assume that each search returns n files. We neglect the communication costs and only
compare the computation overhead in different phases of these schemes. Table 2 shows the
results of the comparison.

Table 2. Performance comparison.

Schemes FS Update Search Verify

Σoφoς [51] X O(mn) O(m)

Zhang’s scheme [43] X O(mn) O(m) O(n)

Gao’s scheme [19] X O(mn) O(m) O(n)

Ge’s scheme [18] X O(n) O(m) O(n)

our scheme X O(n) O(m) O(n)

As can be seen from Table 2, the efficiency of our scheme is close to Zhang’s scheme [43],
Gao’s scheme [19], and Ge’s scheme [18] in terms of search and verify operations. However,
in the update process, our scheme and Ge’s scheme [18] are better than others; the time
complexity of the two schemes is O(n).

5. Security Analysis

In this section, we will analyze the security of the v-PADSSE scheme in two aspects:
update reliability and verifiability.

5.1. Update Reliability Analysis

Due to the cloud server being unreliable in v-PADSSE, it may not update the security
index and ciphertext after receiving the update request from the data owner in order to save
computing or storage resources. We are going to prove that the Verify algorithm outputs
“N” when the cloud server returns un-updated results.

Assume that the result returned by the cloud server is (VI′, C′(w)), and the correct
result and verification information is (VI, C(w)). The number of files containing the
keyword w is N′, and the total number of updates to files containing the keyword w is V′.
In addition, the scheme proposes that when the data user performs a query, it will apply
to the data owner for the latest verification information PK(N), PK(V) for the keyword.
At this time, we will consider the following three scenarios to prove the reliability of the
v-PADSSE.

(1) VI = VI’, C(w) 6= C’(w)
If the cloud server updates only the security index but not the ciphertext, the returned

result is (VI, C′(w)).
VI = {PK(vi), PK( f lag), H(F)};
PK(V) = PK(∑ v[1, . . . , N]);
But the return verification information contains H(F). At this time, we decrypt the

return ciphertext C′(w) to get F′. If you want to pass the verification, then H(F) = H(F′);
that is, F = F′. If the plaintext is the same, the result C(w) = C′(w) after encryption with
the same key, which is inconsistent with the assumption that C(w) 6= C′(w). The above
calculation shows that if only the security index is updated without the ciphertext, the
Verify Algorithm 4 cannot output ‘Y’ when the data user performs verification.

(2) VI 6= VI’, C(w) = C’(w)
In this case, the cloud server only updates the ciphertext but not the verification

information in the security index.
VI = {PK(vi), PK( f lag), H(F)};
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VI′ =
{

PK(v′i), PK( f lag′), H(F′)
}

;
If we want the Verify Algorithm 4 to output ‘Y’, that means
{PK(vi), PK( f lag), H(F)} =

{
PK(v′i), PK( f lag′), H(F′)

}
.

Since the verification information in the security index is not updated, if PK(vi) 6= PK(v′i)
and the rest are equal, the total update times V = ∑ v[1, . . . , N′] will output ‘N’ when
verifying the returned results. If PK( f lag) 6= PK( f lag′) and the rest are the same, the
number of returned results is not equal to N, and the Verify Algorithm 4 will output ‘N’. If
the number of f lag = randA is the same as the number of f lag′ = randA in the returned
VI, it is also necessary to ensure that the vi corresponding to the two are the same, which
indicates that the attacker needs to obtain the verification information from the data owner,
but VL is private to the data owner, and the probability of information leakage can be
almost ignored. If H(F) 6= H(F′) and the rest are the same, in this case F 6= F′, the Verify
Algorithm 4 will output ‘N’.

(3) VI 6= VI’, C(w) 6= C’(w)
Assume that the cloud server does not update the security index and ciphertext

after receiving the update token from the data owner. If the data user performs a Search
operation (Algorithm 3), the cloud server returns the un-updated results to the user. In
the system model architecture (Figure 1), before performing the Search operation, the data
user needs to send the latest VI request for the searched keyword to the data owner. The
data owner searches VL and returns the latest VI of the keyword to the data user. After
receiving the VI, the data user uses the Verify Algorithm 4 to compare the un-updated VI
with the latest. If any inconsistency is found, the Verify Algorithm 4 directly outputs ‘N’.

The above shows that if the cloud server does not update the security index and
ciphertext to save computing or storage resources, our scheme can verify the verification
information and return results through the verification algorithm to find the un-updated
situation in time. Therefore, the v-PADSSE scheme proposed by us meets the updated
reliability.

5.2. Verifiability Analysis

In this section, we assume that the attacker can forge (C′(w), VI′) so that the returned
results pass the Verify Algorithm 4. Assuming that the correct results and verification infor-
mation are (C(w), VI), we will compare the forged information with the real information
to prove that the probability of the attacker passing the Verify Algorithm 4 through forging
verification information is negligible.

We will consider the following three scenarios to demonstrate the verifiability of the
v-PADSSE.

(1) VI = VI’, C(w) 6= C’(w)
Attackers forge VI′ = PK( f lag) + PK(VI) + H(F′), while proper verification infor-

mation VI = PK( f lag) + PK(VI) + H(F). This makes:
PK( f lag′) + PK(v′i) + H(F′) = PK( f lag) + PK(vi) + H(F);
In this case, because N, V, f lag, and vi are encrypted using the user’s public key, the

cost of forgery is relatively small. At this point, we can consider:
H(F′) = H(F);
According to the properties of the hash function, F′ = F is certain. In this case,

C′(w) = C(w), which is not consistent with the assumption. Therefore, the probability of
an attacker passing the Verify Algorithm 4 in this way is almost negligible.

(2) VI 6= VI’, C(w) = C’(w)
The attacker forges the ciphertext C′(w) to be consistent with the correct ciphertext.

According to the design of the v-PADSSE, the verification information contains H(F). At
this point, we can consider:

PK(v′i) + PK( f lag′) 6= PK(vi) + PK( f lag);
According to the above situation, PK(V) = PK(∑ vi) = PK(∑ v′i); when PK( f lag′) 6=

PK( f lag), if the number of f lag = randA is not equal to the number of f lag′ = randA, the
known probability of information leakage of VL can be ignored. In this case, the probability
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of the number of returned results being N is negligible, and the Verify Algorithm 4 will
output ‘N’. Therefore, the probability of the above situation passing the Verify Algorithm 4
can also be ignored.

(3) VI 6= VI’, C(w) 6= C’(w)
In this case, the data user will spend a communication after sending the trapdoor to

the data owner to request the latest verification information N, V of the keyword. Therefore,
under this assumption, as long as any of the verification information is different, or the
encrypted files returned are different, H(F) is inconsistent, which will make the Verify
Algorithm 4 output ‘N’. Therefore, the probability of the attacker passing the verification
can be ignored under this condition.

The above three scenarios show that if a malicious attacker forges ciphertext or verifi-
cation information, our scheme can also determine which information is forged and give
feedback. Therefore, our scheme satisfies verifiability.

6. Performance and Experiments

In this section, we will analyze the performance of the proposed v-PADSSE scheme.
The basic logic of the experiment was written in C++, and the running environment was
Windows 10 equipped with a 2.40 GHz 12th Gen Intel(R) Core(TM) i7 CPU and 4.0 GB
RAM.

Index construction efficiency. We evaluated the bitmap index proposed in the scheme
and the verification list construction efficiency. Figure 4 shows the time spent to build the
security index and verification list when the number of keywords is set to 10,000 and the
number of privacy files changes from 1000 to 10,000. In the scheme, the security index
adopts the form of a bitmap index, the number of rows is the number of keywords, and
the number of columns is the number of document identifiers of privacy files. When the
number of rows in the bitmap index is fixed and the number of private files increases, the
number of columns in the bitmap also needs to increase, and the time cost of building a
secure index also increases. Figure 5 shows the time spent to construct the security index
and verification list when the number of privacy files is 10,000 and the number of keywords
contained in the privacy files changes from 1000 to 10,000. When the number of secure index
columns is fixed, the increase in the number of keywords leads to an increase in the number
of rows in the bitmap index, and the time cost of building the secure index Algorithm 1 also
increases. During secure index construction, the number of nodes is related to the number
of keywords and privacy files. Therefore, when the number of privacy files or keywords
increases, the number of columns or rows of the bitmap index will also increase, and the
time cost of building a security index will also increase. Since the number of nodes in VL is
only related to the number of keywords contained in the privacy file, when the number of
keywords increases, the number of nodes in VL increases, and the time cost of building
VL (Algorithm 2) increases at the same time.

Update token generation efficiency. Figure 6 shows the time cost of generating update
tokens (Algorithm 5) (modify token, delete token, and add token) in the scheme. Since the
generation of the update token involves the document identification and the number of
keywords contained in the privacy file after the document identification of the modified file
is determined, the latest update times of the file need to be obtained from VL. Therefore,
the generation efficiency of update tokens is linearly related to the number of nodes in VL,
and the higher the number, the longer the token generation time. However, since the added
token may involve increasing the number of VL nodes, the generation time will be slightly
longer.

112



Electronics 2023, 12, 3965

Figure 4. Security index and VL construction time cost.

Figure 5. Security index and VL construction time cost.

Figure 6. The update token generation time cost.
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Search efficiency analysis. The VL obtains the latest verification information and
generates an update token. After receiving the update token, the cloud server searches for
it in the security index. Figure 7 shows the time cost of performing a search operation in
the security index when the number of keywords is 10,000 and the number of private files
changes from 1000 to 10,000. It can be seen that when the number of rows in the security
index is fixed, that is, the number of keywords is fixed, the time cost of searching the index
increases linearly with the increase in the number of columns, that is, the number of privacy
files. Figure 8 shows the time cost of searching (Algorithm 3) the VL and the secure index
when the number of privacy files is 10,000 and the number of keywords changes from 1000
to 10,000. Since the number of nodes in VL is equal to the number of keywords, the search
time also increases linearly when the number of keywords increases. When the number of
columns in the security index is fixed and the number of rows in the bitmap index increases
as the number of keywords increases, the search time cost increases.

Figure 7. Search secure index time cost.

Figure 8. Search secure index and VL time cost.

In this section, we compare this scheme with what is generally regarded as the most
typical verifiable SSE scheme [54] in terms of verification efficiency and update efficiency.

Verify efficiency analysis. We made a comparative analysis of the verification
(Algorithm 4) time cost of our scheme and scheme [54]. As can be seen from Figure 9,
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the verification time cost of our scheme is lower than scheme [54]. Scheme [54] used a
bilinear mapping accumulator to verify search results, which is based on asymmetric key
encryption. Our scheme is based on a VL; the number of file updates is stored in the VL,
which is more efficient than the accumulator. As shown in Figure 9, when the number of
privacy files containing search keywords is 200, the verification time cost of scheme [54] is
roughly 5 ms, and the verification time cost of our scheme is 0.3725 ms. When the number
of search keywords is 2000, the verification time cost of scheme [54] is about 48 ms, and the
verification time cost of our scheme is about 9.2437 ms. As can be seen from Figure 10, the
number of CPU clock cycles of our scheme is lower than that of scheme [54]. Therefore, the
verification efficiency of our scheme is higher than that of scheme [54].

Figure 9. Verification efficiency comparison.

Figure 10. CPU clock cycles of per data comparison.

Update efficiency analysis. After receiving the update token, the cloud server needs to
perform the corresponding Update operation (Algorithm 6) on the security index. As can
be seen from Figures 11–13, the number of columns or rows in the security index needs to
be increased due to the add and modify operation, and the time cost is slightly larger than
the delete operation. The cloud server deletes the corresponding column in the security
index when it performs the delete operation, and the time cost is lower. As can be seen
from Figures 11–13, the update efficiency of our scheme is better than scheme [54].
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Figure 11. The comparison of add operation time cost.

Figure 12. The comparison of modify operation time cost.

Figure 13. The comparison of delete operation time cost.
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7. Discussion

In this section, we analyze the advantages and disadvantages of schemes [18,19,43,51],
as shown in Table 3. Σoφoς [51], Zhang’s scheme [43], and Gao’s scheme [19] realize the
dynamic update and searchability of data through constructing an inverted index. If the
update file contains many keywords, the update efficiency is relatively low. None of the
above four schemes involve key management securely. Σoφoς [51] uses a one-way trap
gate to realize forward security, but the calculation cost is high. Zhang’s scheme [43]
is improved on the basis of Σoφoς [51], using random states to achieve forward safety
and improve efficiency. However, the correctness of the returned results is not verified;
that is, the update reliability proposed in this scheme is not satisfied. Gao’s scheme [19]
requires third-party TPA to verify the integrity of search results, which requires TPA
to honestly implement the verification algorithm, which requires a trap gate, data block
number, RAL, and authenticator to perform related calculations, which is relatively complex.
Both Ge’s scheme [18] and our scheme used a bitmap to construct the security index,
which has high updating efficiency. However, the accumulated authentication tags (AATs)
in Ge’s scheme [18] contain ciphertext data blocks, which consume additional storage
resources. In our scheme, the verification process does not involve complex operations,
and the verification information is simple, which makes the verification efficiency high,
but the scheme also needs to consume communication resources once more. In conclusion,
compared with the above schemes, our scheme is relatively efficient in the process of
searching, updating, and verifying.

Table 3. Advantages and disadvantages.

Schemes Advantages Disadvantages

Σoφoς [51] Effectively implement forward security. The calculation of trapdoor replacement is costly.

Zhang’s scheme [43]
The multi-level hash function is used to replace the

one-way permutation function, and the update
efficiency is improved significantly.

The correctness of the returned result is not verified.

Gao’s scheme [19]
The verification process effectively hides the

relation between the keywords and the encrypted
files to avoid statistical attacks.

The verification process is complex, and TPA must
perform the verification process honestly.

Ge’s scheme [18] The verification of the returned results consumes
only one AAT resource, which has high efficiency.

AAT contains ciphertext data blocks, which
consume additional storage resources.

our scheme
The verification procedure is simple and does not

involve complex operations, which has high
efficiency.

The verification process consumes an additional
communication resource.

8. Conclusions

In this paper, we first studied the research status of the DSSE scheme and analyzed the
advantages and disadvantages of different schemes. Since most schemes do not involve key
management, we proposed a verifiable DSSE scheme based on the public key cryptosystem
which can realize secure key management. In Section 3, we defined the security model,
design goals, core algorithm, and security analysis of the V-PDSSE scheme. In Section 4,
we described the bitmap index and verification list construction of the scheme in detail
and explained the core algorithm steps of the scheme. Finally, we compared the time
complexity with schemes [18,19,43,51] to prove that the implementation efficiency of our
scheme is high. In Section 5, a security analysis was carried out on the reliability and
verifiability of our scheme to prove that our scheme meets the security requirements. In
Section 6, we tested the efficiency of the core algorithms and compared the efficiency of
scheme [54] in security index construction, verification list construction, searching, search
result verification, and updating. The results show that our scheme has high efficiency
and strong feasibility. In Section 7, we analyzed the advantages and disadvantages of
schemes [18,19,43,51].
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Compared with previous schemes, the functional design of this scheme is more com-
prehensive. The verification process does not involve complex operations, the verification
information structure is simple, and the execution efficiency is high. Our scheme can solve
the problems of dynamic searchability, forward security, integrity, and correct verification
of search results and key management well. In future work, given the rapid development
of quantum computers and verifiable DSSE schemes, how to deal with quantum attacks
effectively will become a key direction of our research.
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Abstract: The vulnerability of deep-learning-based image classification models to erroneous con-
clusions in the presence of small perturbations crafted by attackers has prompted attention to the
question of the models’ robustness level. However, the question of how to comprehensively and
fairly measure the adversarial robustness of models with different structures and defenses as well as
the performance of different attack methods has never been accurately answered. In this work, we
present the design, implementation, and evaluation of Canary, a platform that aims to answer this
question. Canary uses a common scoring framework that includes 4 dimensions with 26 (sub)metrics
for evaluation. First, Canary generates and selects valid adversarial examples and collects metrics
data through a series of tests. Then it uses a two-way evaluation strategy to guide the data organiza-
tion and finally integrates all the data to give the scores for model robustness and attack effectiveness.
In this process, we use Item Response Theory (IRT) for the first time to ensure that all the metrics can
be fairly calculated into a score that can visually measure the capability. In order to fully demonstrate
the effectiveness of Canary, we conducted large-scale testing of 15 representative models trained
on the ImageNet dataset using 12 white-box attacks and 12 black-box attacks and came up with
a series of in-depth and interesting findings. This further illustrates the capabilities and strengths
of Canary as a benchmarking platform. Our paper provides an open-source framework for model
robustness evaluation, allowing researchers to perform comprehensive and rapid evaluations of
models or attack/defense algorithms, thus inspiring further improvements and greatly benefiting
future work.

Keywords: AI security; adversarial robustness evaluation; adversarial attack; deep model

1. Introduction

Nowadays, deep learning is widely used in image classification tasks and plays an
irreplaceable role in security-sensitive areas such as autonomous driving [1], medical
diagnosis [2–4], software security [5], and military reconnaissance [6]. However, small
perturbations crafted by attackers can disturb image classification models to produce
erroneous inference results [7]. It has been pointed out that there is an “arms race” between
attack [8–10] and defense [11–13]. With a large number of means of attacks and defenses
being proposed, how to fully and fairly measure the adversarial robustness of models
with different structures and defense methods as well as the performance, strengths, and
weaknesses of different attack methods has always been a challenge for researchers.

In order to comprehensively evaluate the security of deep learning models, some re-
search [14–22] has proposed evaluation metrics, method libraries, and evaluation platforms.
Works such as CleverHans [14] and FoolBox [15] integrated the most common attack and
defense methods, but the neglect of code quality made some of them incorrectly developed
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or even unworkable. DeepSec [18] first proposed a series of evaluation metrics for both
attack and defense methods but needed to exhaustively validate the effectiveness of these
metrics and set a baseline and rank these methods based on the metrics. RealSafe [20]
abandoned these metrics and instead used two complementary robustness curves as the
primary evaluation metrics, focusing on the misclassification rate of attacks under dif-
ferent perturbation budgets. In fact, the evaluation strategy of RealSafe did not always
work for attacks that limit the reduction of the misclassification rate while optimizing
perturbations (e.g., Boundary Attack) or for attacks that are difficult to precisely limit the
scale of perturbations (e.g., CW [23]). AISafety [22] attempted to extend the work of both.
However, it neglected the universality of the evaluation metrics, and its interpretability
and neuron traversal evaluation were difficult to widely adapt to models with different
structures. Furthermore, almost all work evaluated only a few models (e.g., RealSafe
only evaluated ResNet [24] and Inception, while DeepSec only evaluated ResNet, and
AISafety only evaluated VGG [25] and WRN [26]), which left us with a lack of knowledge
on the performance of attack and defense methods on models with different structures.
The evaluation frameworks proposed by these works also lacked sufficient flexibility and
universality in the face of new methods, thus limiting their further role.

We note that evaluation metrics are still dominated by the misclassification rate and
norm metrics, even in the latest work on adversarial methods. Researchers drew different
conclusions based on different models and different parameters and claimed that their
findings were in a sense the best (we have already revealed that attack methods can perform
very differently on different models, see Section 5.5 for further discussion). Clearly, the
results of such evaluations may be biased, and incomplete evaluations could not provide
them with convincing conclusions.

In this work, hoping to facilitate future research, we develop a comprehensive, generic
scoring framework of 26 (sub)metrics to evaluate the adversarial robustness of models.
First, we define a valid example selection strategy that avoids iterative testing of different
perturbations, allows for faster conclusions than RealSafe, and can be adapted to a wider
range of attack methods. Second, we propose a two-way evaluation strategy of “Attack
Effectiveness–Model Robustness”, which allows us to fully understand the performance of
existing attacks on different models and the robustness of existing models in the face of
different attacks. We finally propose a novel integrated capability measure based on Item
Response Theory (IRT [27]) for the first time, which can adequately measure the difficulty
and differentiation of metrics based on Markov Chain Monte Carlo (MCMC [28]), and can
give an “Attack Effectiveness–Model Robustness” capability score for attacks and models.

We integrate a large number of classical and SOTA attacks for bi-directional evalu-
ation, including 12 white-box attacks and 12 black-box attacks. These attacks cover the
widest range of attack paths, attack means, and distance measures, including (1) gradient-
based attacks, transfer-based attacks, score-based attacks, and decision-based attacks;
(2) frequency-domain- and time-domain-based attacks; and (3) attacks based on L0, L2, L∞.
To fully demonstrate the differences in robustness between models with different structures,
we selected the 15 most representative models ranging from AlexNet [29] to ConvNeXt [30]
in the evaluation. We conducted large-scale experiments with these models and meth-
ods on the ImageNet [31] dataset. Using quantitative results, we show the differences
in misclassification and imperceptibility capabilities between different attack methods
and further analyze the competition between them; we also show the differences in the
robustness of the different structural models and, furthermore, which attack methods work
better or worse against which models. We also provide a more intuitive capability score to
help researchers understand the robustness of different models and the differences in the
effectiveness of different attack methods more clearly.

We developed a new adversarial robustness evaluation platform, Canary, on which
we have based all our evaluation experiments. The structure is shown in Figure 1. We hope
to open-source the platform, share all our evaluation data, and continue to integrate more
attack and defense methods. We hope that more researchers will evaluate their work in
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the platform in order to provide a reliable benchmark, which we believe can help fellow
researchers to better understand adversarial attacks and further improve the robustness of
their models.
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Figure 1. With 26 evaluation metrics, our comprehensive evaluation framework, Canary, is tested
on 15 models against 12 white-box attacks and 12 black-box attacks. We measure the performance
of the adversarial examples generated by the attack methods in terms of bias of label, confidence,
activation mapping, and imperceptibility of perturbation and evaluate the robustness of the models
in an adversarial setting.

Our contributions can be summarized as follows:

• We propose novel evaluation methods for model robustness, attack/defense effectiveness,
and attack transferability and develop a scoring framework including 26 (sub)metrics.
We first use IRT to calculate these metrics into scores that reflect their real capabilities,
making it possible for us to compare and rank model robustness and the effectiveness
of the attack method.

• We design and open-source an advanced evaluation platform called Canary, including
17K lines of code. The platform contains at least 30 attacks, including 15 white-
box attacks and 15 black-box attacks. To our knowledge, this is one of the best
platforms that can allow users to freely integrate any CNN model or any attack or
defense method.

• Based on Canary and the scoring framework, we conducted the largest-scale cross-
evaluation experiment of “model-attack” to date and obtained a series of interesting
and insightful findings. In particular, we revealed the significantly different perfor-
mances of different models under the same attack and the substantial differences of
different attack methods in attacking the same model. These findings may promote
the development of the adversarial learning field.

• We have collated the test results into a database and open-sourced it with a view to
providing a valid baseline for other researchers, which will be the second baseline for
model robustness since RobustBench.

123



Electronics 2023, 12, 3665

Notations

For ease of understanding, we summarize the basic notations used in this paper
in Table 1, and any notation mentioned in the table will not be subject to additional
explanation.

Table 1. Base notations used in this paper.

Notations Description

x = {x1, · · · , xn} x is the set of n original images, where xi denotes the ith
image in the set.

y = {y1, · · · , yn}
y is the set of n original images corresponding to

ground-truth labels, where yi denotes the label of the ith
image in the set x, and yi ∈ {1, · · · , k}.

F : xi → y∗i , y∗i ∈ {1, · · · , k} F is a deep-learning-based image k-class classifier that
has F(xi) = yi when classified correctly.

P : xi → {P(1), · · · , P(k)} P is the Softmax layer of F, F(xi) = arg max
j

P(xi)j.

P(xi)j

P(xi)j denotes the probability that xi is inferred to be j
by F, also known as the confidence level, where

j ∈ {1, · · · , k}.

xa xa is the adversarial example, where x is generated by
the attack method.

yadv For targeted attacks only, yadv is the label of the
specified target.

2. Related Works

In this section, we will provide a brief overview of existing works on adversarial
attacks and defenses and those on adversarial robustness evaluation.

2.1. Methods of Adversarial Attack and Defense

Formally, an adversarial example can be defined as follows: Given an original image
x (where x ∈ Rw×h×c, w and h are the dimensions of the image and c is the number of its
channels) and F is a classification model trained from a set of clean images, then F(x) is
the inference of the original image x. If the perturbation δ(x) required to make x cross the
decision boundary of F can be found such that xa = x + δ(x) and F(x) 6= F(xa), then the
image xa can be an adversarial example of F. Carlini and Wagner argue that the optimal
adversarial example generation algorithm needs to ensure the following two conditions:
(1) δ(x) is as small as possible (usually δ(x) uses lP-norm, p ∈ {1, 2, ∞} to measure), while
being as imperceptible to the human eye as possible; and (2) xa should be as effective as
possible to make the F classification produce errors [23]. For target attacks, the confidence
level in the errors should also be sufficiently high.

Considering the attacker’s knowledge of the target model, it can be classified as either
(1) a white-box attack or (2) a black-box attack. For white-box attacks, the attacker has full
access to the model, can obtain the model structure, and can often obtain a high misclassifi-
cation rate at a small perturbation cost, which is often used to evaluate the effectiveness
of defense methods or the robustness of the model under adverse conditions. The most
common white-box attacks are generally based on gradients to optimize perturbations and
generate adversarial examples. For black-box attacks, the attacker only has access to the in-
put and output information of the model but not its structure, and the main implementation
methods are transfer-based and query-based attacks.
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Query-based attacks rely on the model inference scores, increasing the misclassification
rate at the cost of high accesses. Depending on the amount of information obtained, they
can be further divided into decision-based attacks, which can only obtain hard-label, and
score-based attacks, which can obtain a continuous inference score (i.e., the confidence
level for each classification, soft-label). We have summarized many important adversarial
attack algorithms based on the above definitions and descriptions. For more details see
Appendix A: Details of the main adversarial attack algorithms in our evaluations.

The defense methods can be broadly classified into three categories: adversarial
training, image processing, and adversarial example detection. For adversarial training,
we consider the defended model FD to have a similar structure to the original model FO
but with differences in the weight hyperparameters; for image processing, we consider
FD(x) = FO(ϕ(x)), where ϕ is the image processing method; and for adversarial example
detection, there is generally no modification to the model itself.

In this paper, we evaluate the following attack methods, shown in Table 2.

Table 2. Main adversarial attack algorithms in computer vision in our experiment.

Algorithm Perturbation
Measurement Attacker’s Knowledge Attack Approach

FGSM [32] L∞ white-box gradient
JSMA [33] L0 white-box gradient

DeepFool [34] L0, L2, L∞ white-box gradient
I-FGSM (BIM) [35] L∞ white-box gradient
C&W Attack [23] L0, L2, L∞ white-box gradient

Projected Gradient Descent (PGD) [36] L1, L∞ white-box gradient
MI-FGSM (MIM) [37] L∞ transferable black-box transfer, gradient
SI-FGSM (SIM) [38] L∞ transferable black-box transfer, gradient

NI-FGSM (NIM) [38] L∞ transferable black-box transfer, gradient
VMI-FGSM (VMIM) [39] L∞ transferable black-box transfer, gradient

Elastic-Net Attack (EAD) [40] L1 white-box gradient
SSAH [41] - white-box gradient

One-pixel Attack (OPA) [42] L0 black-box query, score Soft Label
Local Search Attack (LSA) [43] L0 black-box query, score Soft-Label

Boundary Attack (BA) [44] L2 black-box query, decision Hard-Label
Spatial Attack (SA) [45] - black-box query Hard-Label

Hop Skip Jump Attack (HSJA) [46] L2, L∞ black-box query, decision Hard-Label
Gen Attack (GA) [47] L2, L∞ black-box query, score Soft-Label

SPSA [48] L∞ black-box query, score Soft-Label
Zeroth-Order Optimization (ZOO) [49] L2 black-box query, score Soft-Label

AdvGan [50] L2 black-box query, score Soft-Label
TREMBA [51] - black-box query, score Soft-Label

2.2. The Robustness Evaluation of DL Model

Many different evaluation frameworks have been proposed to evaluate DL-model se-
curity comprehensively. These efforts can be broadly classified into three categories, namely
the attack/defense toolsets represented by CleverHans [14], FoolBox [15], and ART [16];
the benchmarking methods/platforms represented by RealSafe [20] (upgraded version is
Ares) and DEEPSEC [18]; and the evaluation database represented by RobustBench [21].

CleverHans is the first proposed library of DL-model attack and defense methods.
Similarly, FoolBox and ART provide additional attack and defense methods and support
running on various DL learning frameworks. Unfortunately, CleverHans has suspended
updating maintenance and support since 2021 and has significantly fewer methods than the
other method libraries. Attack method libraries such as FoolBox rely on community contri-
butions and lack the necessary checks in late version iterations, leaving the correctness of
the code open to question and controversy. These studies mainly focused on building open-
source libraries for adversarial attacks and defenses and did not provide a comprehensive
strategy for evaluating the security of DL models.
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DEEPSEC provides a unified platform for adversarial robustness analysis of DL
models, containing 16 attack methods and 10 attack-effectiveness metrics, 13 defense
methods, and 5 defense-effectiveness metrics. Similarly, RealSafe and AISafety [22] add
additional evaluation metrics to those described in DEEPSEC and update the attack and
defense methods. However, while AISafety provides a variety of interpretable, neuronal
coverage-related evaluation metrics, it relies heavily on specific attack methods and models
and is difficult to apply to other models. Similarly, DEEPSEC provides a variety of attack
and defense methods, but adding new attack/defense methods and models is relatively
difficult, which makes it difficult to adapt to the latest attack/defense methods. To our
knowledge, all such platforms do not analyze the evaluation metrics for level of difficulty
and differentiation, nor do they provide a widely recognized ranking of the final evaluation
results. While these studies provide evaluation methods and implementations, they still
need to improve in terms of universality, ease of use, and interpretation of results.

RobustBench provides a widely recognized benchmark for evaluating the robustness of
DL models. RobustBench uses the AutoAttack [52] attack method to evaluate and rank the
security of multiple DL models trained on CIFAR-10. However, whether RobustBench can
be used as a robustness evaluation metric that can be generalized to practical applications
is still questioned by researchers. The RobustBench evaluation of model robustness is only
tested by a single attack method, AutoAttack, which severely weakens the credibility and
applicability of the evaluation results. Lorenz et al. proposed that detecting adversarial
perturbations generated by the AutoAttack method itself is relatively easy, and other
attack methods are better at concealment under the same misclassification rate. Also, the
resolution of the CIFAR-10 dataset is too low, making it unable to be well generalized to
higher-resolution images [53].

In terms of universality, the test metrics proposed by many test platforms impose
harsh requirements on the structure of the models to be tested, making it difficult to be
widely used; moreover, many attack libraries contain attack or defense algorithms that are
limited by various conditions, making them difficult to adapt to all deep learning models;
furthermore, due to the possible inability to find pre-defined execution logic, existing
test platforms and some method libraries also have serious difficulties in integrating new
models or attack and defense methods.

In terms of validity, many test platforms chose adversarial evaluation metrics that later
proved ineffective or outdated. For example, the Neuron Coverage series of metrics were
first used in DeepGauge [54] and integrated into frameworks such as AISafety. However,
experiments by Yan et al. on these frameworks demonstrated the very limited correlation
between these metrics and the security and robustness of neural networks [55].

In terms of completeness, there is a lack of correlation between different test platforms
and method libraries, which makes them cover only a small number of attack and defense
methods as well as a lack of different cross-tests and comparative tests. To our knowledge,
apart from a few database platforms, such as RobustBench, other platforms do not yet
provide benchmark evaluation databases and lack the necessary baselines for measurement.
Furthermore, due to the lack of corresponding strategies, the evaluation results are also
mostly a simple list of metrics and do not lead to conclusions worthy of attention.

In this paper, we replicate and evaluate the following models: AlexNet [29], VGG [25],
GoogLeNet [56], InceptionV3 [57], ResNet [24], DenseNet [58], SqueezeNet [59], Mo-
bileNetV3 [60], ShuffleNetV2 [61], MNASNet [62], EfficientNetV2 [63], VisionTransformer
(ViT) [64], RegNet [65], SwinTransformer (SwinT) [66], and ConvNeXt [30]. All of the above
15 models have a wide range of applications.
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3. Measurement Metrics and Evaluation Methods

In order to effectively measure model security and the effectiveness of the attack and
defense algorithms known to date, we have developed a universal, valid, and interpretable
framework for evaluating the robustness of models and the effectiveness of attack and
defense algorithms, which contains a total of 26 evaluation metrics (with sub-metrics)
that can be widely used. A Python framework that has implemented all the evaluation
metrics is also provided for researchers to use in their studies (see Section 4). In this
section, we introduce our evaluation metrics framework and evaluation methodology while
describing how these metrics can be used in combination to measure model robustness and
attack/defense capabilities.

3.1. Measurement Metrics

The metrics framework we have designed for evaluation can be broadly divided
into four parts: Model Capability Oriented, Adversarial Effect Oriented, Adversarial
Cost Oriented, and Defense Effect Oriented. In this section, we will provide a detailed
explanation of the rationale for selecting the metrics and their definitions and expressions.

3.1.1. Model Capability Measurement Metrics

We know that adversarial reinforcement learning generally improves the generaliza-
tion of models to make them more robust against adversarial examples, but the inferential
capability of the models may be negatively affected by this. It is, therefore, necessary to
consider the models’ performance when ranking their overall ability and to give higher
scores to models that perform better and are safer. In addition to this, the models them-
selves need to be taken into account when trying to compare attack or defense methods
tested on different models. We consider the following measurement metrics:

Clean Example Accuracy (Clear Accuracy, CA): The accuracy of the model for the
classification of the clean dataset. CA can be expressed as:

CA =
1
n

Σn
i=1count(F(xi) = yi) (1)

Clean Example F1 score (Clear F1, CF): The F1 score of the model for classification of the clean
dataset. Let TPi = Σn

k=1count(F(xi) = yk, yi = yk); FPi = Σn
k=1count(F(xi) = yk, yi 6= yk);

FNi = Σn
k=1count(F(xi) 6= yk, yi = yk), and the recall can be expressed as Recalli =

TPi
TPi+FNi

,

the precision can be expressed as Precisioni =
TPi

TPi+FPi
, and CF can be expressed as:

CF =
1
n∑n

i=1
2× Precisioni × Recalli

Precisioni + Recalli
(2)

Clear Confidence (CC): The average confidence that the model classifies the clean
dataset. CC can be expressed as:

CC =
1
n

Σn
i=1P(xi)yi

(3)

3.1.2. Attack Effectiveness Measurement Metrics

The attack effectiveness measurement metrics directly reflect the threat capability of
the attack method. By comparing the confidence bias before and after the attack, it indicates
the effective interference caused by the adversarial attack, while a higher misleading ability
and transferability rate mean that this attack method brings more security pressure to the
model.

We define P(x) as the Softmax output of f (x), the confidence matrix, and F(x) as the
Hardmax output of f (x), the label. To be fair, all metrics in this subsection are considered
only for examples xi that satisfy F(xi) = yi, and others will be discarded.

We define the following metrics in detail to evaluate the effectiveness of the attack:
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Misclassification Ratio (MR) for adversarial examples: The proportion of images
that are misclassified as any other class after the attack than before the attack. For targeted
attacks, we additionally consider Targeted Attack Success (TAS) to help measure the
effectiveness of targeted attacks. To avoid interference, the image label of a targeted attack
must not be the same as the attack target. MR can be expressed as:

MR =
1
n

Σn
i=1count(F(xa

i ) 6= yi) (4)

TAS can be expressed as:

TAS =
1
n

Σn
i=1count

(
F(xa

i ) 6= yadv
i

∣∣∣yadv
i 6= yi

)
(5)

Adversarial Example Confidence Change (ACC): The confidence change in the model
inference before and after the attack, which measures the degree of misclassification of the
attack on the model identification results. Compared to MR, ACC is able to reveal further
and measure the efforts made by the attack method to achieve the purpose of the attack.
ACC consists of two sub-metrics, Average Increase in Adversarial-class Confidence (AIAC)
and Average Reduction in True-class Confidence (ARTC), which reveals the extent to which
the attack tricks the classifier into classifying the attacked image as an adversarial category
or makes a misclassification from the true category. AIAC and ARTC can be expressed as:

AIAC =
1
n

Σn
i=1

[
P(xi)F(xa

i )
− P(xa

i )F(xa
i )

]
(6)

ARTC =
1
n

Σn
i=1

[
P(xi)yi

− P(xa
i )yi

]
(7)

Clearly, for any adversarial example, if both IAC and RTC are negative, the attack must
fail; however, for examples where the attack fails, IAC or RTC is not necessarily negative.

Average Class Activation Mapping Change (ACAMC): The cosine similarity of the
model’s activation mapping before and after the attack. The Grad-CAM proposed by
Selvaraju et al. is able to analyze the area of interest of the model for a category [67], and
based on this theory, we can analyze whether the attack makes the model focus on the
wrong features or information. Specifically, the category c area of interest of the model, for
example, x can be expressed as Lc

x = ReLU
(

∑k ac
k Ak

)
, where: Ak is the data of channel k

in A. A is generally the feature layer of the last convolutional layer output; ac
k is the weight,

which can be expressed as 1
Z ∑i ∑j

∂Pc
∂Ak

ij
, where Pc is the inference score of category c; Ak

ij

is the data at ij in channel k in A; and Z is the area of A. In this paper, we focus on the
following two offsets: the offset ACAMCA of the area corresponding to the model inference
class before and after the attack, which can be expressed as:

ACAMCA =
1
n

Σn
i=1S

(
LF(xi)

xi , L
F(xa

i )

xa
i

)
(8)

and the offset ACAMCT of the area corresponding to the original label class before and
after the attack, which can be expressed as:

ACAMCT =
1
n

Σn
i=1S

(
Lyi

xi , Lyi
xa

i

)
(9)

S(a, b) is the cosine similarity of a to b.
Observable Transfer Rate (OTR): The proportion of adversarial examples generated

by an attack against a particular target model that is misclassified by other models. Since it
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is impossible to exhaust all models, the scale is derived only from the observable standard
model under test. The OTR can be expressed as:

OTR =
1

n(m− 1)
Σm−1

δ=1,δ 6=δ̂
Σn

i=1count
(

Fδ(xa
i ) 6= yi

∣∣A
(

Fδ̂, xi
)
→ xa

i , Fδ̂(xa
i ) 6= yi

)
(10)

where m is the number of models under test, Fδ̂, F
δ
∈ {F1, . . . , Fm}, and A(F, x)→ xa is the

adversarial example xa generated from the original image x via attack algorithm A based
on model F. OTR counts the global proportion of adversarial examples generated by attack
algorithm A based on a specific model Fδ̂ that remains adversarial after transfer to other
models Fδ.

To simplify the computation, here, OTR uses the adversarial examples generated by
the attack on one model and observes the transfer misclassification rate of these examples
on other models. We also provide a full version of the OTR calculation, and other compre-
hensive test methods for adversarial example transferability testing, see Section 3.2.4.

3.1.3. Cost of Attack Measurement Metrics

The cost of an adversarial attack can be divided into two aspects: computational cost
and perturbation-awareness cost, which can effectively reflect the strengths and weaknesses
of different attack algorithms in achieving the same attack target.

(1) Computational cost

The computational cost metrics of an adversarial example directly reflect the time
and computational equipment cost to perform the attack. Faster attacks with fewer model
queries mean a greater threat. We consider the following measurement metrics:

Calculation Time Cost (CTC): The time an attack method takes to compute the output
of an adversarial example. Since this metric is affected by the model, data processing batch,
computing device, etc., we only count the time spent on attacks running a single time on
the same device, the same model, or the same group of models, and assign them five levels
of ranking after sorting to ensure that the conclusions are universal.

Query Number Cost (QNC): The average model query cost of an attack method
calculating and generating an adversarial example. In this part, we record all queries of the
model during the attack, including the Forward and Backward operations of the model,
and use QNCF and QNCB to distinguish. The black-box attack QNCB must be 0, otherwise,
the attack will be considered a white-box attack.

(2) Perturbation-awareness cost

The perturbation-awareness cost metrics of an adversarial example directly reflect
the quality of the adversarial example. Subject to the attack’s success, a smaller awareness
cost means better attack concealment, which means that these examples are less likely
to be detected and defended against in the test. The robustness of a model is evaluated
based on the adversarial examples generated by the attack method from a clean dataset.
Therefore, the measurement of the perceived perturbation of the adversarial examples can
help us understand both the imperceptibility of the adversarial method and the security
of the model. We introduce the following state-of-the-art metrics to measure the level of
perturbation awareness of the adversarial example dataset by evaluating the magnitude of
the difference before and after the image attack:

Average Norm Distortion (AND): The norm distance of the images before and after
the attack. With full consideration of the graphical implications of the norm paradigm, AND
consists of three sub-metrics: Average Maximum Distortion (AMD), Average Euclidean
Distortion (AED), and Average Pixel Change Ratio (APCR). AMD is the maximum deviation
of the pixel modified by the adversarial example compared with the original image, which
is often used as a perturbation constraint for the attack method and can be expressed as:

AMD =
1
n∑n

i=1‖x
a
i − xi‖∞ (11)
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AED is the Euclidean distance between the original image and the adversarial example,
which can be expressed as:

AED =
1
n∑n

i=1‖x
a
i − xi‖2/

√
‖xi‖0 (12)

APCR is the number of pixels modified by the adversarial example compared with
the original image, which can be expressed as:

APCR =
1
n∑n

i=1‖x
a
i − xi‖0/‖xi‖0 (13)

The lower values of AMD, AED, and APCR indicate that the adversarial attack pro-
duces fewer changes to the image.

Average Euclidean Distortion in Frequency Domain (AED-FD): The average Eu-
clidean distance between the high and low-frequency components of the image before and
after the attack after differentiating in the frequency domain. From a frequency domain
perspective, Luo et al. showed that the high-frequency components representing noise
and texture are more imperceptible than the low-frequency components containing the
basic object structure, so the additional consideration of AED-FD is not only an effective
measure of how attacks from the frequency domain alter the image but also reveals the
location of traditional attacks in the frequency domain, thus providing a better explana-
tion and estimate of the imperceptibility of these attacks. Based on the discrete wavelet
transform (DWT [68]), AED-FDL is defined as the AED of the reconstructed image for the
low-frequency component, which can be expressed as:

FDL =
1
n∑n

i=1‖φll(xa
i )− φll(xi)‖2 (14)

AED-FDH is defined as the AED of the reconstructed image for the high-frequency
component, which can be expressed as:

FDH =
1
n∑n

i=1‖φlh+hl+hh(xa
i )− φlh+hl+hh(xi)‖2 (15)

where φlh+hl+hh(x) = LT(LxHT)H + HT(HxLT)L+ HT(HxHT)L and φll(x) = LT(LxLT)L,
with L and H being the low-pass and high-pass filters of the orthogonal wavelet, re-
spectively. Smaller AED-FDL means that the perturbation is less likely to be perceived
by humans.

Average Metrics Similarity (AMS): The extent to which features such as color, struc-
ture, texture, etc., are shifted before and after the attack. Attacks on different structures
of the image have different effects on image distortion, e.g., key disturbed pixels will
be particularly visible in flat areas, which cannot be adequately measured by AND. An
Image Quality Assessment (IQA) of the image before and after the attack can measure the
degradation of the original image from a perspective more in line with human visual aware-
ness. In IQA-related studies, metrics such as Structural Similarity (SSIM [69]) and Peak
Signal to Noise Ratio (PSNR [70]) can measure image similarity based on low-dimensional
features such as image structure information and pixel statistics; while Zhang et al. pointed
out that human judgments of image similarity rely on higher-order image structure and
context. To comprehensively measure the feature similarity of the adversarial examples,
AMS consists of two sub-metrics, Average Deep Metrics Similarity (ADMS) and Average
Low-level Metrics Similarity (ALMS).

We define ALMS as the Multiple Scales Gradient Magnitude Similarity Deviation (MS-
GMSD [71]) of all successfully attacked adversarial examples. Xue et al. considered image
gradient information as an important low-level feature, and their proposed GMSD [72]
used only image gradient as a feature and used the standard deviation instead of the
mean value of SSIM. Based on this, Zhang et al. introduced a masking degree term in

130



Electronics 2023, 12, 3665

the similarity index and introduced multi-scale to better evaluate luminance distortion,
showing optimal performance in similarity measurement based on low-level features.
ALMS can be expressed as:

ALMS =
1
n

n

∑
i=1

G(xa
i , xi) (16)

where G(x, y) =
√

∑n
i=1 ωjσj(x, y)2, σj(x, y) is the GMSD score on the jth scale, and ωj is

the weight of different scales. The lower value of ALMS indicates that the adversarial attack
is less likely to be perceived by humans, and on the contrary, the higher the value is, the
less imperceptible the attack is.

We define ADMS as the Deep Image Structure and Texture Similarity (DISTS [73]) of
all successfully attacked adversarial examples. Ding et al. found that the full-reference IQA
models represented by SSIM, GMSD, and LPIPS [74] are too sensitive to the point-to-point
deviation between identical texture images [75]. However, for a human observer, two
examples of the same texture are almost identical even if there are significant differences
in the pixel arrangement of the features, and their proposed DISTS can measure image
similarity more accurately than the above methods. Like LPIPS, DISTS also extracts image
features based on the VGG model, calculates the similarity between texture and structure
of the feature mapping, and balances it with a set of learnable weights, thus effectively
combining sensitivity to structural distortion and tolerance to texture resampling. ADMS
can be expressed as:

ADMS =
1
n

n

∑
i=1

D(xa
i , xi) (17)

where D(x, y) = 1−∑m
i=0 ∑ni

j=1

(
aijl
(
∼
x
(i)
j ,
∼
y
(i)
j

)
+ βijs

(
∼
x
(i)
j ,
∼
y
(i)
j

))
, l
(
∼
x
(i)
j ,
∼
y
(i)
j

)
is the tex-

ture similarity measurement, which can be expressed as
2µ

(i)
∼
x j

µ
(i)
∼
y j
+c1

(
µ
(i)
∼
x j

)2

+

(
µ
(i)
∼
y j
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. s
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j ,
∼
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)

is the structural similarity measurement, which can be expressed as
2σ

(i)
∼
x j
∼
y j
+c2

(
σ
(i)
∼
x j

)2

+

(
σ
(i)
∼
y j

)2

+c2

.

{
aij, βij

}
are learnable weights and satisfy ∑m

i=0 ∑ni
j=1

(
aij + βij

)
= 1. A lower value of

ADMS means that the adversarial attack is less likely to be perceived by humans, and on
the contrary, the higher the value is, the less imperceptible the attack is.

3.1.4. Effectiveness of Defense Measurement Metrics

Defense effectiveness measurement metrics directly reflect the resistance of the defense
method and its negative impact on the model. A good defense solution ensures security
without unduly sacrificing model capabilities. We measure the effectiveness of defense by
comparing the model capability measurement metrics and the adversarial attack effective-
ness metrics before and after defense to reflect the security enhancement and performance
loss of the model before and after the implementation of the defense. We use XF to denote
the value of a given metric X on model F.

In general, for the measurement of adversarial training, we regenerate adversarial
examples based on FD, which is denoted as xaD

i to distinguish it from the adversarial
example xa

i generated based on FO; for the measurement of adversarial example detection
for image processing defenses, we do not regenerate adversarial examples.

We define the following metrics in detail to evaluate the effectiveness of both types of
defenses for adversarial training and image processing:
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Model Capability Variance (MCV): The loss of inference capability of a model before
and after the defense. Considering model capability measurement metrics, MCV consists of
three sub-metrics, Accuracy Variance (AV), F1-Score Variance (FV), and Mean Confidence
Variance (CV), which can be generically expressed as XDe f − XOri(X ∈ {CA,CF,CC}).

Rectify/Sacrifice Ratio (RR/SR): The change of the model’s inference capability before
and after defense. To further evaluate how defense affects the model’s inference result, we
define RR as the proportion of test data classified incorrectly before defense but correctly
after defense, and SR as the proportion of test data classified correctly before defense but
incorrectly after defense [18]. RR can be expressed as:

RR =
1
n

Σn
i=1count(FO(xi) 6= yi, FD(xi) = yi) (18)

and SR can be expressed as:

SR =
1
n

Σn
i=1count(FO(xi) = yi, FD(xi) 6= yi) (19)

Attack Capability Variance (ACV): The difference in misclassification rate and per-
turbation perception of an attack on the model before and after defense. Considering the
attack effectiveness measurement metrics, ACV consists of three sub-metrics, MR Variance
(MRV), AND Variance (ANDV), and AMS Variance (AMSV), which can be generically
expressed as XDe f − XOri(X ∈ {MR, AMD, AED, APCR, ADMS, ALMS}).

Average Adversarial Confidence Change (AACC): The amount of change in the con-
fidence of the adversarial example generated by the model before and after defense, which
is used to measure the degree of impact of the defense on the attack. The AACC consists of
two sub-metrics, Average Reduction in Adversarial-class Confidence (ARAC) and Average
Increase in True-class Confidence (AITC), revealing the extent to which the defense miti-
gates the attack’s deception of the classifier, which means the attacked picture is classified
as an adversarial class or deviates from the true class. ARAC and AITC can be expressed
as:

ARAC =
1
n

Σn
i=1

[
PO(xa

i )FO(xa
i )
− PD

(
xaD

i

)
FD(xaD

i )

]
(20)

AITC =
1
n

Σn
i=1

[
PO(xa

i )yi
− PD

(
xaD

i

)
yi

]
(21)

3.2. Evaluation Methods
3.2.1. Evaluation Example Selection

In order to calculate the multi-class evaluation metrics mentioned in Section 3.1 to
evaluate the security of the model and the effectiveness of the attack and defense methods,
we will generate multiple adversarial examples on the target model using the selected
attack methods and use the model to infer the mentioned adversarial examples. Apart
from early single-step attacks, methods for generating adversarial examples can be broadly
classified into two categories:

Perturbation restriction: restricting the perturbation and iterating to obtain the best
misclassification rate under the current perturbation, as in method A in Figure 2a;

Misclassification rate restriction: restricting the attack misclassification rate and it-
erating to obtain the optimal perturbation under the current misclassification rate, as in
method B in Figure 2a.
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Misclassification rate restriction: restricting the attack misclassification rate and it-
erating to obtain the optimal perturbation under the current misclassification rate, as in 
method B in Figure 2a. 
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ate evaluation example based on this point alone. As in Figure 2b, when we add per-
turbations, there are two possibilities at this point: 

(1) The new data point is ܦଵ௧. Since ܦଵ௧ has a significantly higher misclassification 
rate compared to ܦ෩, it can be argued that the perturbation restriction prevents 
the misclassification rate from increasing, and using ܦ෩ for the evaluation would 
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(2) The new data point is ܦଶ௧. As there is no significant change in the misclassifica-
tion rate of ܦଶ௧ compared to ܦ෩, it can be argued that ܦ෩ has reached its limit, and 
the significant increase in the perturbation budget has degraded the example 
quality, and using ܦଶ௧ would compromise the fairness of the evaluation. There-
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Similarly, as in Figure 2c, when we reduce the perturbation, the pending point is up-
dated from ܦ෩ to ܦଷ௧ if the new data point is ܦଷ௧; if the new data point is ܦସ௧, then the 
pending point remains ܦ෩ unchanged. 
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of the attack methods limit the failure of examples, i.e., reduce the adversarial per-
turbation budget while always ensuring that the examples can attack successfully, 

Figure 2. (a) The attack represented by A is to limit the perturbation to rise by iterations to reach the
maximum MR under a certain perturbation limit; the attack represented by B is to limit the MR to fall
by iterations to reach the minimum perturbation under a certain MR limit. For A: (b) finds appropriate
example points by gradually raising the perturbation limit. If the MR changes significantly after
the perturbation limit is raised, the current point is dropped, and the point that is increased after
the perturbation is taken as the new point; otherwise, the current point is not changed; (c) finds the
appropriate example point by gradually decreasing the perturbation. If the MR changes significantly
after the perturbation is decreased, the current point is not changed; otherwise, the current point
is dropped, and the point decreased after the perturbation is taken as the current point. For B: the
appropriate example points can be found automatically.

The evaluation example selection scheme for these two types of algorithms is as follows:

1. When restricting the perturbations of the evaluation examples, inappropriate pertur-
bation restrictions may prevent the attack method from achieving its full performance.

As in Figure 2b,c, the data point
∼
D to be determined is measured under a randomly

selected perturbation, and we cannot determine whether it is an appropriate evalua-
tion example based on this point alone. As in Figure 2b, when we add perturbations,
there are two possibilities at this point:

(1) The new data point is Dt
1. Since Dt

1 has a significantly higher misclassification

rate compared to
∼
D, it can be argued that the perturbation restriction prevents

the misclassification rate from increasing, and using
∼
D for the evaluation

would compromise the fairness of the evaluation. Therefore, the pending point
is updated to Dt

1 and the perturbation test needs to continue to be added.
(2) The new data point is Dt

2. As there is no significant change in the misclassifi-

cation rate of Dt
2 compared to

∼
D, it can be argued that

∼
D has reached its limit,

and the significant increase in the perturbation budget has degraded the ex-
ample quality, and using Dt

2 would compromise the fairness of the evaluation.

Therefore, the point to be determined remains
∼
D unchanged.

Similarly, as in Figure 2c, when we reduce the perturbation, the pending point is

updated from
∼
D to Dt

3 if the new data point is Dt
3; if the new data point is Dt

4, then

the pending point remains
∼
D unchanged. After adding a perturbation, if the pending

point has not changed, then we reduce the perturbation until it does not change
anymore, and the reached point is the appropriate evaluation example point; if the
pending point changes, then we continue to increase until it does not change anymore,
and the reached point is the appropriate evaluation example point.

2. In limiting the misclassification rate of the evaluation examples, we note that some of
the attack methods limit the failure of examples, i.e., reduce the adversarial pertur-
bation budget while always ensuring that the examples can attack successfully, thus
we default to no upper limit on the misclassification rate of the attacks, and the final
iteration completed is the appropriate evaluation example point.
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3.2.2. Evaluation Data Collection

We will use multiple attack methods to generate multiple adversarial examples on
multiple target models and will use the target model to infer these adversarial examples.
The red blocks of data shown in Figure 3 are the evaluation data obtained through this
process. To measure the transferability of the attack algorithm, we can also use other
models that do not match the target model to infer the above adversarial examples, and the
resulting evaluation data is marked with grey blocks. After applying the above method
to the K attack methods on M models, we can form a data matrix of K×M×M, denoted
as ∆KM2 .
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Figure 3. Schematic diagram of the evaluation data matrix, where the model includes A, B, . . ., M
and the attack-method include I, II, . . ., K. Gray blocks indicate transfer tests (the generated base
model is different from the test model), and red blocks indicate non-transfer tests (the generated base
model is the same as the test model).

3.2.3. Two-Way “Attack Effectiveness–Model Robustness” Evaluation Strategy

Clearly, the multiple types of evaluation metrics mentioned in Section 3.1 measure both
the attack method’s capability and the model’s robustness. For models, the more robust
the model, the lower the attack effectiveness metrics such as MR, AIAC, and ARTC, and
the higher the attack perturbation perception cost metrics such as AND and AMS should
be when attacked by the same method; for attack methods, the better the performance
of the attack method, the higher the attack effectiveness metrics and the lower the attack
perturbation perception cost metrics should be when attacking the same model.

For ∆KM2 , if the transferability evaluation is not considered, only all the red data
blocks marked in Figure 3 can be taken for evaluation, and the data matrix is then denoted
as ∆KM. As shown in Figure 4a, when considering model robustness evaluation, we
squeeze the data of ∆KM along the recursive direction of K, thus combining the evaluation
results of multiple attack methods against the same model to obtain the data sequence ∆ ∼

M
,

i.e., the data blocks labeled green. This process allows us to measure model robustness at
the same threat strength by avoiding the potential bias caused by a single attack method to
the maximum extent. Similarly, when considering the effectiveness of the attack method,
we squeeze along the progression of M to obtain the data sequence ∆K, i.e., the data blocks
labeled yellow. By performing a ranking analysis on ∆ ∼

M
, we achieve the measurement of

the robustness of the M models. By performing a ranking analysis on ∆K, we achieve the
measurement of the effectiveness of the K attack methods.
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Figure 4. (a) Two-way evaluation strategy. The model includes A, B, . . ., M and the attack-method
include I, II, . . ., K. After collecting the data, taking the mean value of the data along the attack-method
axis, we will get the difference in model robustness independent of the attack method; taking the
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method IV is added, IV can quickly draw conclusions without completing the full model evaluation,
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will be.

Based on this, we only need to establish a benchmark ∆KM2 that makes it as inclusive
as possible of models and attack methods that are currently widely used in academia and
can effectively give their relative ranking when measuring the effectiveness of new attacks
or the robustness of models, thus revealing whether these attacks or models have achieved
SOTA, and through which provide a widely accepted standard for adversarial robustness
evaluation and the effectiveness of adversarial methods. As shown in Figure 4b, due to
the independence of the data blocks from each other, researchers do not need to complete
all the testing tasks initially but only need to exclude incomplete items to obtain a quick
ranking, which saves researchers’ time and allows them to devote their efforts to other
areas rather than repeatedly testing known data.

3.2.4. Transferability Evaluation

Adversarial examples can generate attacks on models with different structures and
parameters, i.e., an attacker can use an adversarial example generated on an alternative
model to attack an unknown target model. For ∆KM2 , considering transferability evaluation,
all the grey data blocks marked in Figure 3 are taken for evaluation, at which point the data
matrix is noted as ∆

K
←→
M2

= ∆KM2 − ∆KM.

As shown in Figure 5a, for one of the K attack methods, we squeeze ∆←→
M2

to obtain the

matrix of observable transferrable metrics ∆B←→
M

for different alternative models if squeezed

along the transfer test model direction and ∆T←→
M

for different transfer test models if squeezed

along the generation model direction. ∆B←→
M

can reveal on which model the method generates

a better adversarial example with and ∆T←→
M

can reveal which models are more vulnerable to

the transfer attack of the method. Squeezing ∆B←→
M

or ∆T←→
M

again yields an observable metric

of transferability for the attack method.
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attack results on a certain test model as the transfer vulnerability evaluation result of the model.

In ∆←→
M2

, the transferability is based on the observations of all models except itself,

which means that the data size will increase rapidly as the number of models evaluated
increases. In order to quickly measure the transferability of an attack method, we design
a simple evaluation model of attack transferability, as shown in Figure 5b. In this model,
the transferability of an attack method will be observed by a specified test model, denoted
as ∆B′←→

M
. Using ∆B′←→

M
instead of ∆B←→

M
, the simple metric of transferability for the method is

obtained. The simple mode will reduce the comprehensiveness and credibility of the
evaluation due to the choice of model, but it still gives a general indication of the difference
in transferability of different attack methods.

Considering M models subject to K attack methods, calculate ∆T←→
M

for each attack

method separately and combine them into ∆T←→
KM

, where for a given model, ∆T←→
K

reveals

which transfer attack it is more susceptible to. By squeezing ∆T←→
K

, we obtain a threat metric

for the model’s transfer attack. To quickly measure this metric, we devise a simple model
transfer attack threat evaluation mode as shown in Figure 5c. All models except itself will
observe the transfer misclassification rate of an attack method in this model, but only the
adversarial examples generated based on a particular model, denoted as ∆T′←→

M
. Using ∆T′←→

M
instead of ∆T←→

M
gives the model’s simple transfer attack threat metric. Unlike the use of ∆T←→

M
,

the calculation of ∆T′←→
M

results in the selected transfer example generating model ∆T←→
K

being

zero, and, therefore, the simple mode results in the transferability of a given model not
being tested. In addition, empirically, there is significant variation in the transferability of
adversarial attacks, and if the majority of attacks in K have poor transferability, this will
also have an impact on the differentiation of the metric, so it is recommended that only
attacks with good transferability are used for this evaluation.

3.3. Evaluation Results Ranking

We consider the model, the attack, and the defense methods all as subjects. A good
measure should, as far as possible, serve to differentiate between subjects when it is
meaningful in its own right. This is an issue that has not been rigorously considered in
other studies. At the same time, the question of how to rank test takers who have completed
the test has yet to be addressed. The simplest and most easily understood approach would
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be to simply add up the participants’ scores on each item to obtain a total score and then
rank them according to the total score. However, this approach ignores the differences in
difficulty and differentiation between test items, making the results less rigorous.

We might consider the testing of models, attacks, and defenses as an examination of the
students. The statistical model of Item Response Theory (IRT) is often used by researchers
to analyze test scores or questionnaire data, assuming that the subject has a measurable
“latent trait” (generally referred to as a latent ability in tests). If we use θ to represent this,
then as a subject’s level of ability changes, the expected score on an item, Score(θi), changes
accordingly. This mathematical model of the relationship between potential ability levels
and item response outcomes is known as the Item Characteristic Function (ICF) and is
represented graphically as the Item Characteristic Curve (ICC) [27].

IRT is based on several assumptions:

a. Unidimensionality Assumption: This assumption posits that various test items in
the evaluation collectively measure a single latent trait encompassed within all test
items. The subject’s performance on the assessment can be explained solely by one
underlying trait.

b. Local Independence Assumption: This assumption posits that the subjects’ responses
to the test items are influenced solely by their individual ability levels and specific
properties, without affecting other subjects or their reactions to other test items. In
other words, the ability factor in the item response model is the sole factor influencing
the subject’s responses to the test items.

c. Monotonicity Assumption: This assumption posits that the expected scores of the
subjects on the test items are expected to increase monotonically with their ability levels.

It is generally believed that the unidimensionality assumption and the local indepen-
dence assumption are equivalent, with local independence being a necessary outcome of
the unidimensionality assumption [27].

Based on IRT theory, we can learn that there are two main factors that influence their
test scores on items: the first aspect is the level of ability of the subjects themselves; the
second aspect is the measurement properties of the test items, such as item difficulty, item
discrimination, and guessability. We may let the θi parameter denote the ability of the ith
subject, the aj parameter denote the discrimination of the jth test item, the β j parameter
denote the difficulty of the jth test item, the cj parameter denote the guessing parameter of
the jth test item, and the event Xij denote that subject i got test item j correctly (means a full
score on test item j). On the jth test, item parameters are aj, β j, cj, and the ability of the ith
subject is θi, the probability of subject i doing test item j correctly (score expectation on j) is:

P
(
θi; aj, β j, cj

)
= cj +

(
1− cj

) eDaj(θi−β j)

1 + eDaj(θi−β j)
(22)

where D is a constant. When D takes a value of 1.702, the difference in the probability
density of this function between the normal shoulder type curve is less than 0.01, so D
generally takes a value of 1.702.

We wish to estimate the parameters in the formula, i.e., the discrimination, difficulty,
and guessability of each test metric in a measurement sense, based on a set of actual data
from the subjects (i.e., data from the model or method’s evaluation), while measuring each
subject’s latent ability. Based on Bayes’ theorem, there is p(Θ|X) ∝ p(X|Θ)p(Θ), where Θ
is the parameter to be estimated, X is the actual data, and the expectation of the posterior
distribution, p(Θ|X), is exactly the value of the parameter we wish to estimate. In the
Logistic model, the prior distribution of the parameters p(Θ) is generally: θ ∼ N(0, 1),
Log(a) ∼ N(0, 1), b ∼ N(0, 1), c ∼ B(5, 17). We may consider the final score as the
probability expectation of getting a full or zero score on this test item in order for it to satisfy
the binomial distribution. Since each example is independent, by Bernoulli’s theorem, we

easily know that P(X|Θ) =
n
∏
1

P(Θ)Score(1− P(Θ))1−Score. At this point, p(Θ|X) can be

137



Electronics 2023, 12, 3665

determined by the prior distribution of all parameters and the likelihood function of the
subjects’ responses. We can take the M-H (Metropolis-Hastings) algorithm under Gibbs
sampling based on the Markov Chain Monte Carlo (MCMC) method to generate a Markov
chain with a smooth distribution of exactly P(X|Θ), and then draw example points on the
chain and use their means as estimates of the parameter Θ. Since the parameter Θ consists
of four covariates together, the subject parameter θi and the item parameters aj, β j, cj, θi is
only related to the subject and aj, β j, cj are only related to the test item, we may assume
that θi is known to estimate aj, β j, cj, and then assume that aj, β j, cj are known to estimate
θi, and keep repeating this process until the final result converges. The specific algorithm is
formulated as Algorithm 1.

Algorithm 1. MCMC-based parameter estimation algorithm for the IRT model

Input: Number of subjects N, Number of test items m, Subject score matrix Xi=1→N,j=1→m,
Markov Chain length L and stability period M
1: for k ∈ Ldo
2: At the kth moment, sampling θk

i ∼ N
(

θk−1
i , C2

θ

)
for each subject (i = 1,2,. . .,N)

3: Sampling from uniform distribution u ∼ Uni f orm[0, 1]
4: if u ≤ α

(
θk−1

i , θk
i

)
1 then

5: Accept to transfer, θk
i = θk

i
6: else
7: Reject to transfer, θk

i = θk−1
i

8: Sampling of each item parameter (j=1,2,. . .,m):

aj ∼ N
(

ak−1
j , C2

a

)
, β j ∼ N

(
βk−1

j , C2
β

)
, cj ∼ N

(
ck−1

j , C2
c

)

9: Sampling from uniform distribution u ∼ Uni f orm[0, 1]

10: if u ≤ α

((
ak−1

j , βk−1
j , ck−1

j

)
, (a

k

j
, βk

j , ck
j

))
1 then

11: Accept to transfer,
(

ak
j , βk

j , ck
j

)
=
(

ak
j , βk

j , ck
j

)

12: else
13: Reject to transfer,

(
ak

j , βk
j , ck

j

)
=
(

ak−1
j , βk−1

j , ck−1
j

)

14: Discarding the burn-in period data, we obtain:

θi =
1
M

k

∑
L−M≤k<L

θk
i

(
aj, β j, cj

)
=

1
M

k

∑
L−M≤k<L

(
ak

j , βk
j , ck

j

)

Output: θi=1→N ; aj=1→m, β j=1→m, cj=1→m

1 This is the transfer condition for the Markov Chain in the algorithm for estimating IRT parameter
values using the MCMC method.

In the MCMC algorithm, α(i, j) is generally referred to as the acceptance rate, with a
value between [0,1]. Specifically, the equation for α(i, j) in Algorithm 1 is:

α
(

θk−1
i , θk

i

)
= min





p
(

Xi,j=1→m

∣∣∣θk
i , ak−1

j , βk−1
j

)
p
(

θk
i

)

p
(

Xi,j=1→m

∣∣∣θk−1
i , ak−1

j , βk−1
j

)
p
(

θk−1
i

) , 1



 (23)

α

((
ak−1

j , βk−1
j , ck−1

j

)
, (a

k

j
, βk

j , ck
j

))
= min





p
(

Xi=1→N,j

∣∣∣θk
i , ak

j , βk
j

)
p
(

ak
j

)
p
(

βk
j

)
p
(

ck
j

)

p
(

Xi=1→N,j

∣∣∣θk
i , ak−1

j , βk−1
j

)
p
(

ak−1
j

)
p
(

βk−1
j

)
p
(

ck−1
j

) , 1



 (24)
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With the above algorithm, we obtain the subjects’ ability Θ, which we use as a score
that allows us to rank model robustness as well as attack- and defense-method effectiveness,
thus giving a ranking and relative position for each model, attack, or defense method, which
can significantly reveal differences in ability between models or methods and can provide
future research with a view to enable better improvements. In the actual calculation process,
we will first use IRT to calculate Θ for a large category (Sections 3.1.1–3.1.4) based on all
the metrics under that category and then use IRT to calculate the final result based on Θ for
the relevant large category. The first layer of computation will avoid the problem of bias
due to inconsistency in the number of metrics in the broad categories.

Since some of the metrics listed in Section 3.1 take values that cannot simply be used as
IRT scores, we normalize them to [0,1] for evaluation by using the “max-min” normalization
method. This ensures that the values are not concentrated in a small interval, which would
otherwise bias the IRT calculation.

4. Open-Source Platform

We are committed to providing an open, fair, and comprehensive set of metrics and
want to build a platform that fully implements these metrics. The platform should make it
extremely easy to introduce new attack/defense algorithms and DL models while ensuring
that these algorithms can be tightly integrated with the models to produce model robustness
scores and attack/defense algorithm effectiveness scores. At the same time, we want to
build a large dataset that is closely related to the platform, including the results of all
SOTA attack/defense algorithms on the most widely used models. This platform is named
Canary, and an overview of the platform is detailed in Figure 1. The Canary platform is
now available on GitHub (https://github.com/NeoSunJZ/Canary_Master, accessed on
1 August 2023).

The Canary platform consists of a web visualization interface, a data server, and the
Security Evaluation Fast Integration (SEFI) framework. Researchers can construct attacks or
defenses in the web interface or from the command line and visualize the query results with
analysis reports at the end of execution, while SEFI executes the relevant commands defined
by the web interface or by the researcher. For more about the platform, see Appendix B:
Open-source platform structure and metrics calculation process. Basically, SEFI consists of
four core components:

1. Component Modifiers. Component modifiers can modify four types of components:
attack methods, defense methods, models, and datasets. The component modifiers
allow researchers to easily test and evaluate their implementations of attacks, defenses,
or models using SEFI. A large library of pre-built components, Canary Lib, is also
available for researchers.

2. Security Testing Module. The security testing module consists of five sub-modules:
Attack Unit, Model Inference Unit, Adv Disturbance-Aware Tester, Image Processing
Unit, and Model Training Unit. The combination of these test modules will provide
the necessary data to support the security evaluation.

3. Security Evaluation Module. The security evaluation module consists of three sub-
modules: attack evaluation, model-baseline evaluation, and defense evaluation:

(1) Attack Evaluation: This module contains the Attack Cost Evaluator (Adv
Example Disturbance-aware and Cost Evaluator) and the Attack Deflection
Capability Evaluator. In this module, we implement the calculation of 17 nu-
merical metrics for adversarial attacks (see Sections 3.1.2 and 3.1.3 for details).
The attack evaluation allows the user to evaluate how well the generated ad-
versarial examples transfer the inference results of the target model, the quality
of the examples themselves, and how well these adversarial examples transfer
against non-target models.

(2) Model-baseline Evaluation: This module contains the Model Inference Capa-
bility Analyzer. In this module, we implement three common baseline metrics
of model inference capability (see Section 3.1.1 for details). The model-baseline
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evaluation allows the user to evaluate the model’s performance to be tested
and to make better trade-offs between model quality and robustness.

(3) Defense Evaluation: This module contains the Defense Capability Analyzer. In
this module, we have implemented four (classes of) common baseline metrics
of model inferential capabilities (see Section 3.1.4 for more details; due to the
nature of defense evaluation, most of the relevant sub-metrics are presented
in the form of pre- and post-defense differences, so we will not repeat them
here). The defense evaluation allows the user to evaluate the effectiveness of
the defense method to be tested.

4. System Module. The system modules include the SQLite access module, the disk
file access module, the web service module, the exception detection module, the
interruption recovery module, and so on. These modules are mainly used to access
test data, interact with experimental data and progress to the visualization interface,
provide error information when an error occurs, and resume the experimental task
from the point of interruption.

The private VUE-based GUI of Canary and SpringBoot-based Basic Information Data
Server is now available on GitHub (GUI: https://github.com/NeoSunJZ/Canary_View,
accessed on 1 August 2023; Data Sever: https://github.com/NeoSunJZ/Canary_Server,
accessed on 1 August 2023).

In order to provide a benchmark for testing and evaluation, we have additionally
provided a library of presets and a benchmark database:

1. A library of pre-built components. The in-built library is integrated using component
modifiers. The presets library contains three types of components that have been
pre-implemented:

(1) Attack methods. We have integrated 30 adversarial attack methods in the
presets library, including 15 white-box attacks and 15 black-box attacks. These
attack methods have been selected, considering attack specificity, attack paths,
and perturbation characteristics to make the coverage as comprehensive as pos-
sible.

(2) Defense methods. We have integrated 10 adversarial defenses in the pre-built
library, including 4 image processing defenses, 4 adversarial training, and
2 adversarial example identification defenses. The selection of these methods
takes into account the path of defense, the target of the defense, and the cost of
the defense so that the coverage is as comprehensive as possible.

(3) Models. We integrated 18 artificial intelligence models in the pre-built library
and provided them with pre-training parameters based on ImageNet, CIFAR-
10/100 datasets.

In selecting these pre-built components, we focused on the importance of discussion
and relevant contributions in the open-source community and finally selected those
algorithms, models, and datasets that are being widely discussed and used.

2. In-built benchmarking database. We have conducted a comprehensive cross-test of
15 models and 20 attack methods and constructed the results into an open benchmark
database. For details, please refer to Section 5 of this paper.

Currently, some similar frameworks or toolkits are already in use. A detailed compari-
son of our framework with mainstream adversarial attack and defense tools is described in
Table 3.
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Table 3. A detailed comparison of our framework with adversarial attack and defense tools. Legend
‘×’ indicates that the item is not applicable to this tool.

Tool

Type

Publication
Tim

e

R
esearcher

Support
Fram

ew
ork

3

Test
D

ataset
3

D
efense

A
lgorithm

3

D
efense

A
lgorithm

3

N
um

ber
of

Evaluation
M

etrics
3

In-builtM
odel

3

Filed

CleverHans
[14]

Method
Toolkit 2016

Pennsylvania
State

University
3 × 16 1 × × Image Classification

Foolbox [15] Method
Toolkit 2017 University of

Tübingen 3 × >30 1 3 × Image Classification

ART [16] Method
Toolkit 2018 IBM Research

Ireland 10 × 28 1 >20 1 6 ×
Image Classification

Target Detection
Target Tracking

Speech Recognition

AdverTorch
[17]

Evolution
Framework 2019 Borealis AI 1 × 21 7 × × Image Classification

DEEPSEC [18] Evolution
Framework 2019 Zhejiang

University 1 2 16 13 14 4 Image Classification

AdvBox [19] Method
Toolkit 2020 Baidu Inc. 7 × 10 6 × × Image Classification

Target Detection

Ares [20] Evolution
Framework 2020 Tsinghua

University 1 2 19 10 2 15 Image Classification

RobustBench
[21]

Evolution
Framework 2021 University of

Tübingen × 3 1 × × 120+ 2 Image Classification

AISafety [22] Evolution
Framework 2023

Beijing
University of
Aeronautics

and
Astronautics

1 2 20 5 23 3 Image Classification

Canary
(Ourselves)

Evolution
Framework 2023

Beijing
Institute of
Technology

1 4 >30 10 26 18 Image Classification

1 We only counted algorithms belonging to image classification. 2 This is a baseline platform that allows researchers
to self-share their evaluation data. 3 This information is counted in August 2023, most of the tools (including
ourselves) are still adding new or removing old attack and defense algorithms, the actual supported frameworks,
number of embedded algorithms, etc. are based on the latest situation.

5. Evaluations

In this section, we first test the performance of a range of attack methods, then evaluate
the models’ security and explore the best defense options. Specifically, we have conducted
a comprehensive cross-test of 15 models and 20 attack methods, generating about 250,000
adversarial examples and the white-box attack data matrix ∆w

(8)(15), the black-box attack

data matrix ∆b
(8)(15), and the transfer attack data matrix ∆wt

(4×2)(15).
Note that all experimental code has been integrated into Canary’s in-built libraries,

and specific experimental parameters are given in the Canary documentation, which you
can find on GitHub. All experiments were performed on an Nvidia RTX 3090 GPU, and
the results database has been open-sourced, which you can find in Canary’s in-built pre-
test dataset.
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5.1. Experimental Setup

We used the most popular 1000 classification dataset, ImageNet, which more closely
resembles a real-life image classification task compared to MNIST and CIFAR-10. To fully
evaluate the effectiveness of all methods, we used 15 of the most widely used models to
date, encompassing a wide range of model structures from simple to complex. We used
the best pre-trained weight data provided by PyTorch [76] Torchvision, and the models all
achieved near SOTA accuracy on the ImageNet dataset.

The experimental images were segmented using standard training/test segmentation
and rescaled in ImageNet to 224 × 224 × 3. We converted the range of image pixels from
[0,255] to the input domain required by the model (in this experiment, the model input
domain was [0,1]) and entered the attack method, then cropped the resulting perturbed
image to the input domain and restored it to [0,255]. We note that although such a con-
version is almost equivalent, this process will inevitably lead to subtle effects due to the
floating point arithmetic used for the pixels. In this experiment, the magnitude of the effect
on a single pixel is about 1 × 10−5. For very few special attack methods, this can cause a
reduction in the misclassification rate of the attack. Similarly, if we truncate all fractional
parts to store these images as image files, the impact is more severe. In our experiments,
we store all generated perturbed images separately as image and floating-point array files
and evaluate them based on the array files only.

Our evaluation method is as follows. First, we take 1000 images from the test set of the
ImageNet dataset for the white-box attack and 600 images for the black-box attack. When
counting, we only count the images that can be correctly classified on the corresponding
model. Then, for each attack method, we generate 1000 (white-box attack) or 600 (black-box
attack) adversarial examples on the 15 models using the extracted images. Next, using
the security evaluation and security testing modules of the Canary platform, we monitor
the adversarial example generation process, cross-test these adversarial examples on the
15 models, and obtain all the information needed to calculate the metrics. Finally, we
calculate all the test metrics and estimate the capability of the attack algorithm using the
MCMC method and further get the IRT-score.

Our parameter configuration principles are as follows: For all integrated attack meth-
ods, we prioritized the relevant code open-sourced by the authors or available on Clev-
erHans and Foolbox, and for attack methods for which the original code was completely
unavailable, we reproduced it as described in the authors’ paper. In our evaluation, we
gave priority to the hyperparameters suggested by the method authors in their paper or
the open-source code.

We followed the requirements of Section 3.2.1 regarding the selection of evaluation
examples, adjusting some of the parameters so that the resulting adversarial examples are
suitable for evaluation. Subject to these requirements, we set the limit to 1/255 (smaller
perturbation) or 16/255 (larger perturbation) for all methods that use L∞ to limit the size of
the perturbation; for black-box methods, we limit the maximum query budget to 10,000 per
image. For targeted attacks, the target class for each target is chosen among the labels other
than the original labels chosen randomly and evenly.

5.2. Evaluation of Adversarial Attack Effectiveness

We use the correlation method in Section 3.2 to squeeze the data matrix ∆w
(8)(15),

∆b
(8)(15), and ∆wt

(4×2)(15) along the model direction, making it possible to ignore the model

factors and transform to the data series ∆w
(8)

, ∆b
(8)

, and ∆wt
(4×2)

.
Our evaluation results for the attack are displayed in two tables, where the Effects Part

is shown in Table 4, and the Cost Part is shown in Table 5.
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Table 4. Effectiveness evaluation results of all adversarial attacks on 15 models.

Attack Attack Effects

Attack Type Attacks MR
ACC ACAMC OTR 1

AIAC ARTC ACAMCA ACAMCT Simple Full

White Box

FGSM 79.1% 21.4% 64.3% 0.895 0.900 32.47% -
JSMA 75.3% 23.1% 45.1% 0.811 0.955 6.86% -

DeepFool 99.9% 38.3% 49.7% 0.893 0.985 0.61% -
I-FGSM 96.9% 80.6% 74.6% 0.841 0.871 3.22% -

C&W Attack 98.4% 33.6% 43.7% 0.884 0.987 0.61% -
PGD 96.4% 78.8% 74.4% 0.843 0.880 3.23% -
EAD 99.4% 45.5% 59.4% 0.904 0.956 5.98% -
SSAH 78.4% 20.1% 62.2% 0.930 0.841 1.74% -

Black Box
(Transferable

Attack)

MI-FGSM
ε = 1 95.6% 70.5% 74.2% 0.886 0.841 3.84% -
ε = 16 100.0% 96.0% 75.8% 0.829 0.612 - 39.1%

VMI-FGSM
ε = 1 93.8% 62.4% 73.4% 0.890 0.850 4.53% -
ε = 16 99.9% 95.3% 75.8% 0.838 0.605 - 62.1%

NI-FGSM
ε = 1 97.2% 82.3% 74.6% 0.872 0.839 3.39% -
ε = 16 100.0% 96.4% 75.8% 0.828 0.597 - 33.2%

SI-FGSM
ε = 1 95.2% 71.0% 73.8% 0.886 0.835 4.36% -
ε = 16 100.0% 96.4% 75.8% 0.826 0.596 - 38.3%

Black Box

AdvGan 94.8% 50.6% 69.5% 0.808 0.896 26.92% -
LSA 55.1% 6.8% 35.2% 0.931 0.963 22.63% -
BA 73.1% 12.1% 44.3% 0.907 0.978 1.15% -
SA 42.6% 12.3% 21.5% 0.958 0.975 12.05% -

SPSA 58.5% 20.2% 44.9% 0.937 0.959 10.05% -
HSJA 51.2% −18.3% 55.4% 0.916 0.946 32.05% -
GA 22.0% −20.1% 35.8% 0.956 0.975 4.50% -

TREMBA 61.8% 32.5% 32.7% 0.932 0.976 3.63% -

1 Legend ‘-’ indicates that mutually exclusive metrics have been calculated.

Table 5. Cost evaluation results of all adversarial attacks on 15 models.

Attack Calculate Cost Disturbance-Aware Cost

Attack Type Attacks CTC 1

QNC 1 AND AED-FD AMS

QNCF QNCB APCR AED
(10−2)

AMD
(10−1)

FDL
(10−2)

FDH
(10−2)

ADMS
(10−1)

ALMS
(10−1)

White Box

FGSM Very Fast 1 1 98.3% 3.528 0.627 6.840 0.831 2.611 0.994
JSMA Slow ~1300 ~1300 0.7% 1.434 7.890 3.174 1.387 0.872 0.499

DeepFool Very Fast ~100 ~100 32.3% 0.091 0.089 0.241 0.055 0.041 0.007
I-FGSM Very Fast ~100 ~100 76.2% 0.186 0.039 0.443 0.097 0.139 0.015

C&W Attack Very Slow - - 11.0% 0.033 0.116 0.137 0.035 0.020 0.003
PGD Very Fast ~100 ~100 77.0% 0.188 0.039 0.441 0.098 0.134 0.015
EAD Slow ~10,000 ~5000 9.3% 0.930 1.972 2.667 1.345 0.448 0.150
SSAH Fast - - 68.9% 0.351 0.289 0.869 0.027 0.268 0.016

Black Box
(Transferable

Attack)

MI-FGSM
ε = 1

Fast ~100 ~100
85.1% 0.203 0.039 0.477 0.103 0.166 0.017

ε = 16 99.0% 2.996 0.627 5.953 0.873 2.213 0.877

VMI-
FGSM

ε = 1
Slow ~2000 ~2000

84.3% 0.202 0.039 0.477 0.103 0.185 0.017
ε = 16 97.4% 2.992 0.628 5.990 0.903 2.369 0.980

NI-FGSM
ε = 1 Very Fast ~100 ~100

77.0% 0.188 0.039 0.448 0.099 0.146 0.016
ε = 16 99.4% 2.165 0.627 4.638 0.660 1.861 0.617

SI-FGSM
ε = 1

Fast ~300 ~300
80.2% 0.194 0.039 0.465 0.103 0.176 0.016

ε = 16 99.4% 2.262 0.627 4.736 0.709 1.946 0.681

Black Box

AdvGan - - - 93.0% 2.462 2.868 5.814 0.938 2.778 0.589
LSA Normal ~200 0 5.3% 5.310 9.125 9.384 3.527 1.963 1.404
BA Normal ~10,000 0 81.3% 1.117 0.815 1.756 0.188 0.597 0.129
SA Very Fast ~120 0 96.0% 17.058 9.591 16.919 25.327 2.458 3.058

SPSA Slow ~200 0 97.3% 2.617 0.688 4.475 0.746 1.756 0.419
HSJA Very Fast ~200 0 93.0% 8.865 1.891 13.031 1.420 3.526 1.387
GA Normal ~10,000 0 95.6% 2.244 0.629 3.840 0.452 1.589 0.311

TREMBA - - - 97.2% 0.846 0.157 2.009 0.287 0.894 0.151

1 Legend ‘-’ indicates that the metric is not applicable to this algorithm.

143



Electronics 2023, 12, 3665

5.2.1. Evaluation of Attack Effectiveness

We quantified and analyzed the effectiveness of the attacks on the adversarial examples
in terms of ACC, MR, OTR, and ACAMC.

For the ACC metric, AIAC and ARTC reflect the reduction in the confidence of the
attack method on the true label and the increase in the confidence of the adversarial label,
respectively. We argue that the confidence bias metric can reveal how the attack works:
examples with higher ARTC are less likely to be inferred by the model to the true category,
i.e., “hide themselves”; examples with higher AIAC are more effective in inducing the
model to converge to a particular label, i.e., “misleading enhancement”. Considering the
ACC metric, for most of the attack methods, the ARTC is significantly higher than or stays
the same as AIAC, which means that when the misclassification rate or perturbation budget
reaches a critical state, the perturbation optimization goal is to “hide themselves”; after
reaching a critical value (e.g., setting the perturbation budget of methods such as MI-FGSM
to ε = 16), the goal of perturbation optimization changes to “misleading enhancement”
as the ARTC is already approaching its peak with the perturbation budget continues to
increase. In addition, we found that most of the attacks derived from FGSM exhibit an
excellent ability to “hide themselves”, which may be one of the reasons why FGSM-like
methods are more transferable at higher perturbation budgets.

Considering the MR metric, the misclassification rate of black-box attacks is about
51.6%, while the misclassification rate of white-box attacks is about 93.5%, significantly
higher than that of black-box attacks, and iterative attacks always outperform non-iterative
attacks. We found that for the 15 models of the ImageNet dataset, the MR of most of the
white-box attacks can achieve approximately 100%, while the MR of black-box attacks
achieves close to 60%. Combined with the confidence bias metric, the ARTC is only slightly
lower for most black-box attacks than for white-box attacks, but the AIAC is significantly
lower than for white-box attacks, suggesting that the lack of access to model gradient
data hinders black-box attacks in terms of “misleading enhancement” and is one of the
bottlenecks that limit their misclassification rate.

For the ACAMC metric, ACAMCA and ACAMCT reflect the deviation of the model’s
attention to the inferred and true labels before and after the attack from the perspective of
model interpretability. Considering the ACAMC metric, none of the attack methods tested
have an ACAMCA below 0.8, indicating that although the attack effectively deviated from
the label results, it did not produce a substantial deviation of their attention regions, i.e., the
attack would have caused the model to misperceive within similar attention regions. The
black-box ACAMC metric is significantly higher than the white-box attack, i.e., the black-
box attack is more difficult to alter the model’s attention area, further demonstrating the
dilemma of the black-box attack in terms of “misleading enhancement”. Similar to the
findings revealed by the ACC metric, the ACAMCT also shows that further increases in the
perturbation budget can lead to a larger transfer in the attention area of the true class, thus
enhancing misleadingness.

For the OTR metric, we performed a full test for the methods used primarily for
transferrable attacks, giving their full results for cross-testing on all models. Simple results
are given for all methods other than these based on the DenseNet model test. Considered
in conjunction with the OTR and AND metrics, an increase in the perturbation magnitude
AMD leads to higher transferability, and examples such as VMI-FGSM and black-box
attacks using partially simulated gradients to implement the attack also suggest that
enriching the diversity of gradients to avoid the attack “over-fitting” to a particular attacked
model can generate adversarial examples with higher transferability.

5.2.2. Evaluation of Computational Cost

To evaluate the computational cost of the attacks, we tested the running time CTC and
the number of model queries QNC that the attack methods used to generate an adversarial
example on average over the 15 models. It would be unfair to compare their running
times directly due to various complex factors (e.g., code implementation, support for batch

144



Electronics 2023, 12, 3665

computing or not, and different computing devices). We, therefore, only give empirically
based five-level grading results in our evaluation, and we note that CW, JSMA, EAD,
VMI-FGSM, and SPSA are significantly slower than other attacks. In particular, we have
dropped the evaluation of the black-box methods ZOO and One-pixel in this paper because
they are too slow to compute.

For the model query quantity QNC, we restrict the upper limit of QNC for the black-
box model to 10,000, but no lower limit; meanwhile, the QNCB for the black-box model
must be 0. In fact, for white-box iterative attacks, QNC is closely related to the configuration
of the number of iterations of the attack method. For fairness, QNC will be taken as the
minimum value after the misclassification rate of the attack method reaches its limit, and the
lower limit of iterations of the attack method is 100, but no upper limit. For the black-box
methods, we note that the BA and GA queries are significantly higher than other attacks.
For the white-box methods, we note that both JSMA and EAD require more rounds to reach
the limit; when the number of iterations is 100, in order to enhance their transferability,
VMI-FGSM, and SI-FGSM have higher query numbers compared to MI-FGSM, etc.

In addition, we cannot give average runtime data and model query number data for
all attacks that require prior training, regardless of whether they are adversarial patches
or generative models. In the case of AdvGan, once the generator has been trained, it
can generate adversarial examples in a very short time, and the number of adversarial
examples generated will determine the dilution of the training time, so we cannot use CTC
as a simple measurement for such methods. Also, AdvGan does not call the original model
during the attack, so neither the CTC nor the QNC part is available.

5.2.3. Evaluation of Perturbation-Awareness Cost

We quantified and analyzed the perturbation-awareness cost of the adversarial exam-
ples in terms of AND, AED-FD, and AMS. Collectively, the perturbation-awareness cost of
the black-box model is significantly higher than that of the white-box attack. For the same
attack method, a higher perturbation-awareness cost will lead to a higher MR before the
MR reaches its limit, which does not necessarily hold for different attack methods.

The work of Carlini et al. states that a successful attack needs to satisfy: a. the gap
between the adversarial example and the corresponding clean example should be as small
as possible; b. the adversarial example should make the model misclassify with as high a
confidence level as possible [23]. The experimental results show a competitive relationship
between the effectiveness of the attack and the perturbation imperceptibility of the same
attack method. In perturbation-limited attacks, such as I-FGSM and its derivative methods,
the misclassification loss is often included in the loss function used to optimize the pertur-
bation, while the perturbation magnitude is limited using gradient projection, gradient
truncation, etc. The perturbation always limits the misclassification rate from increasing
further until the misclassification rate reaches the limit of the method. In misclassification
rate first attacks, such as BA, HJSA, etc., they further optimize the perturbation by dis-
carding failed examples to limit the misclassification rate. After the perturbation has been
reduced to the method limit, the misclassification rate always limits further reductions of
the perturbation. This limitation is precisely caused by competition, i.e., there is a limit
bound consisting of both misclassification rate and perturbation perception, which is the
best that the method can achieve. In addition to the above attacks, some of the attacks rep-
resented by CW and EAD incorporate both the misclassification rate and the perturbation
limit into the optimization objective. CW, for example, makes use of a dichotomous lookup
weight parameter c to measure the ratio of the two effects at the cost of a significant sacrifice
in computational speed, but when we gradually increase the trade-off constant k from
0, the perturbation-awareness cost metrics of CW both increase significantly, suggesting
that a competitive relationship between the two still exists. Furthermore, we found that in
perturbation-limited attacks, the perturbation imperceptibility was not further optimized
after the misclassification rate reached its limit but always fully reached the perturbation-
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limited value and that poor perturbation limits would seriously affect the conclusions of
this class of methods in terms of perturbation-awareness cost evaluation.

The AMS class metrics are based on norm definitions since existing attacks often
use norms to measure and constrain perturbation magnitude. We note that their choice
of metric norm has better metric performance than other norms. For example, infinite
norm-based attacks perform better in the AMD metric but perform more mediocrely in the
AED and APCR.

AMS-like metrics are more sensitive to human perception than AND-like metrics.
In general, AMS-like metrics have a similar trend to AED and AMD, which means that
attacks based on L2 norm or infinite norm restrictions produce more visually imperceptible
adversarial examples than those produced by other attacks. In addition, the AMS also
depends on the characteristics of the attack method itself, e.g., the SSAH method based
on frequency domain attacks does not achieve a worse AMS, although its AMD, AED,
and APCR are all significantly larger than those of algorithms such as FGSM. We find that
relatively balanced AMD metrics, i.e., attack methods with low and balanced AMD, AED,
and APCR, have a lower AMS. Similar to the AND metrics, the AMS includes metrics
with inconsistent performance between ADMS and ALMS: ADMS is more concerned with
changes in the textural nature of the picture, as in the case of HSJA, AdvGan, and FGSM
in Figure 6, where perturbations produce more severe texture problems, and their ADMS
ranking is worse than other methods, while ALMS is more concerned with changes in the
gradient of the picture, such as significant unsmooth noise, as shown below for LSA, HSJA,
and FGSM, which produce significantly higher noise pixel variability than other methods.
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Figure 6. ALMS and ADMS values and rankings of the adversarial example generated by 6 methods
based on the AlexNet model.

In particular, attack methods that involve fundamental transformation of the image,
such as SA, which relies on rotating and translating the picture rather than adding perturba-
tions to achieve the attack, although they do not differ significantly from the original image
in terms of content, are easily perceived and identified because they significantly twist the
picture, and the perturbation-awareness cost, in this case, cannot be simply measured by
the AND or AMS metrics.

5.3. Evaluation of Transferability

To reveal which models are more vulnerable to transfer attack threats and which
models based on which generated adversarial examples have more transferability, we
generate adversarial examples based on 15 models using the 4 methods MI-FGSM, VMI-
FGSM, NI-FGSM, and SI-FGSM under ε = 16 and perform a full transfer test in the above
models to generate the transfer matrix ∆

(4)
←→
(15)2

.

The performances of the selected models on the four methods mentioned above are
shown in Table 6.
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Table 6. Transferability evaluation results of 4 attacks on 15 models. We excluded all data generated
on a certain model and tested on this model, i.e., the blank squares in the heat map of the transferability
matrix.

Attacks

Observable Transfer

MR
ACC

AIAC ARTC

M
I-FG

SM

Hot
Map

Average 39.113% 5.310% 34.187%
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Figure 6. ALMS and ADMS values and rankings of the adversarial example generated by 6 methods based on the AlexNet model.
Average 33.175% 2.190% 30.077%
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Figure 7. ALMS and ADMS values and rankings of the adversarial example generated by 6 methods based on the AlexNet model.

Average 38.256% 4.320% 34.247%
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Figure 7. ALMS and ADMS values and rankings of the adversarial example generated by 6 methods based on the AlexNet model.Average 62.132% 17.287% 51.870%
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In terms of attack methods, VMI-FGSM (VMIM) achieves significantly better transfer
rates, while SI-FGSM (SIM) and NI-FGSM (NIM) do not achieve better results than MI-
FGSM (MIM). This is because the improvement of SIM and NIM over MIM is that a
higher misclassification rate can be achieved with fewer iterations, whereas the number of
rounds and perturbations we have chosen makes the number of iterations of these methods
the same, and all have reached the upper limit, in which case there is no significant
advantage for SIM and NIM. In terms of the confidence bias metric, the ARTC for all attacks
is significantly higher than the AIAC, i.e., the transfer attack relies heavily on “hiding
themselves” rather than “misleading enhancement”. Also, the stronger the transfer attack,
the better the “hide themselves” effect.

In terms of models, the adversarial examples based on ResNet, DenseNet, and Con-
vNeXt have stronger transferability, while those based on EfficientNetV2 and ShuffleNetV2
generally have poor transferability. Meanwhile, ViT and SwinTransformer show stronger
resistance to transfer-based attacks, but it seems that the adversarial examples generated
by MIM or VMIM based on the ConvNeXt alternative model can effectively erode Swin-
Transformer. VGG, SqueezeNet, and MNASNet are more vulnerable to transfer-based
attacks than other models. As we can find in Section 5.4, this does not correlate with the
misclassification rate of non-transfer attacks for these models.

5.4. Evaluation of Model Robustness

We use the method related in Section 3.2 to squeeze the data matrix ∆w
(8+4)(15), ∆b

(8)(15)
along the direction of the attack. So that it ignores the attack method itself and transforms
into a data sequence ∆w∼

(15)
, ∆b∼

(15)
.

Our evaluation results for the model are displayed in two tables, where the Capabilities
Part is shown in Table 7 and the Under Attack Effectiveness Part is shown in Table 8.

Table 7. Model capabilities results of all models.

Model
Model Capability

CA CF CC

AlexNet 53.6% 0.413 44.3%
VGG 72.4% 0.612 65.1%

GoogLeNet 68.5% 0.567 54.3%
InceptionV3 79.1% 0.694 68.4%

ResNet 74.4% 0.643 67.2%
DenseNet 78.8% 0.692 73.4%

SqueezeNet 54.8% 0.441 43.3%
MobileNetV3 71.7% 0.611 66.6%
ShuffleNetV2 74.2% 0.636 38.2%

MNASNet 77.0% 0.672 29.9%
EfficientNetV2 87.0% 0.813 63.2%

VisionTransformer 73.9% 0.627 60.0%
RegNet 81.2% 0.723 76.6%

SwinTransformer 84.0% 0.766 72.2%
ConvNeXt 85.0% 0.781 57.6%
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Table 8. Model under attack effectiveness results of all models.

Model

Attack Effects Disturbance-Aware Cost

MR

ACC ACAMC AND AED-FD AMS

AIAC ARTC ACAMCA ACAMCT APCR AED
(10−2)

AMD
(10−1)

FDL
(10−2)

FDH
(10−2)

ADMS
(10−1)

ALMS
(10−1)

W
hite

AlexNet 96.5% 50.3% 65.9% 0.925 0.950 65.1% 0.815 1.221 1.805 0.432 0.620 0.204
VGG 98.2% 70.4% 76.1% 0.886 0.938 59.5% 0.700 1.016 1.574 0.302 0.725 0.147

GoogLeNet 96.1% 45.3% 65.2% 0.933 0.942 60.8% 0.749 1.148 1.675 0.328 0.614 0.218
InceptionV3 90.3% 53.8% 73.5% 0.923 0.920 59.7% 1.063 1.300 2.370 0.530 0.678 0.270

ResNet 96.5% 66.7% 74.4% 0.924 0.963 60.3% 0.767 1.160 1.684 0.360 0.687 0.198
DenseNet 96.1% 71.4% 77.2% 0.933 0.970 61.3% 0.777 1.178 1.708 0.392 0.725 0.219

SqueezeNet 98.4% 57.3% 64.7% 0.931 0.969 60.3% 0.743 1.253 1.611 0.330 0.609 0.176
MobileNetV3 97.0% 69.1% 77.7% 0.880 0.852 62.3% 0.752 1.022 1.757 0.306 0.716 0.200
ShuffleNetV2 94.5% 34.1% 42.7% 0.807 0.862 56.2% 0.681 1.035 1.557 0.264 0.486 0.137

MNASNet 91.2% 31.3% 31.7% 0.801 0.882 57.4% 0.700 0.971 1.574 0.346 0.643 0.150
EfficientNetV2 82.1% 48.4% 57.3% 0.766 0.884 58.9% 0.921 1.114 2.287 0.784 0.527 0.211

ViT 86.8% 40.5% 61.7% 0.754 0.837 66.6% 0.978 1.296 2.326 0.822 0.703 0.278
RegNet 95.4% 70.5% 78.5% 0.889 0.953 59.8% 0.745 1.080 1.568 0.314 0.682 0.160
SwinT 91.9% 63.8% 68.7% 0.877 0.880 55.8% 0.847 1.297 1.743 0.399 0.654 0.188

ConvNeXt 91.6% 49.6% 55.7% 0.575 0.898 61.7% 0.812 1.156 1.792 0.582 0.579 0.168

B
lack

AlexNet 67.8% 13.6% 49.8% 0.938 0.961 81.1% 4.922 3.130 6.636 4.715 1.760 0.899
VGG 63.6% 15.2% 52.6% 0.910 0.962 79.0% 4.900 3.130 6.573 4.385 1.729 0.888

GoogLeNet 55.7% −0.5% 42.8% 0.971 0.989 82.1% 5.561 3.271 7.456 4.868 1.893 0.996
InceptionV3 39.1% −6.3% 43.0% 0.968 0.984 78.9% 6.770 3.995 8.996 5.294 1.910 1.186

ResNet 49.9% 5.0% 40.0% 0.967 0.986 80.8% 5.251 3.205 7.037 4.635 1.812 0.959
DenseNet 53.2% 12.4% 43.9% 0.975 0.989 81.2% 5.632 3.289 7.534 4.802 1.920 1.018

SqueezeNet 74.9% 14.4% 50.4% 0.954 0.977 79.2% 4.471 3.010 5.973 4.497 1.575 0.810
MobileNetV3 53.5% 8.6% 46.8% 0.912 0.952 81.5% 5.199 3.209 7.236 4.337 1.816 0.975
ShuffleNetV2 50.5% −1.4% 26.6% 0.937 0.977 80.4% 5.240 3.223 7.158 4.387 1.804 0.955

MNASNet 49.0% −1.4% 19.7% 0.949 0.978 80.4% 5.196 3.191 7.033 4.646 1.787 0.961
EfficientNetV2 32.9% −0.6% 25.2% 0.943 0.976 78.6% 6.597 4.069 8.604 4.702 1.761 1.138

ViT 50.7% 6.3% 35.5% 0.817 0.872 80.8% 5.974 3.365 8.091 4.737 1.966 1.087
RegNet 50.9% 12.4% 44.0% 0.934 0.978 80.7% 5.392 3.230 7.214 4.710 1.900 0.977
SwinT 44.1% 8.1% 33.0% 0.972 0.987 81.1% 5.995 3.426 8.243 4.453 2.022 1.064

ConvNeXt 37.8% 1.6% 25.0% 0.868 0.950 81.0% 6.116 3.422 8.327 4.637 2.006 1.075

5.4.1. Evaluation of Model Capabilities

The capabilities of the tested models are demonstrated in Table 7.

5.4.2. Evaluation of Under-Attack Effectiveness

We quantified and analyzed the model’s effectiveness under attack in terms of both
the under-attack effect and the perturbation budget. The results are as Table 8.

Considering the MR, the average misclassification rate of the white-box attacks is
93.5%, while that of the black-box attacks is 51.6%. For white-box attacks, models such
as SwinTransformer, ConvNeXt, MNASNet, InceptionV3, ViT, and EfficientNetV2 per-
formed relatively well, with an average MR of 89%; other models performed poorly, with
an average MR of 97%. In terms of black-box attacks, SqueezeNet, AlexNet, and VGG
models performed the worst with an average MR of 69%; SwinTransformer, InceptionV3,
ConvNeXt, and EfficientNetV2 models performed the best with an average MR of 39%;
other models performed more similarly with an average MR of 52%.

Considering the structure and performance of the models themselves, we found that
the robustness of the models generally improves further as the depth, width, and resolution
of the model network increase. AlexNet, which consists of a simple overlay of five large
kernel convolutional layers, is less robust. To achieve lightweight, SqueezeNet significantly
reduces the size of its convolutional layers, and although it uses Fire to maintain a similar
misclassification rate with AlexNet, there is a significant dip in robustness, with the highest
MR obtained in both white-box and black-box attacks; VGG also uses several smaller
convolutional kernels instead of the large convolutional kernels in AlexNet, but VGG
increases the network depth to ensure the learning of more complex patterns, so the
robustness is hardly significantly different from AlexNet. ResNet greatly increases the
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number of network layers by stacking residual networks, and DenseNet further reduces
the number of parameters and enhances feature reuse, allowing for more complex feature
pattern extraction and thus better robustness than models such as AlexNet, EfficientNet;
on the other hand, scales depth, width, and resolution uniformly through a fixed set of
scaling factors, significantly improving its robustness and obtaining the lowest MR in both
white-box and black-box attacks. Similarly, GoogLeNet further balances network depth
and width as it evolves to InceptionV3, which also results in better robustness.

Further, we note that the model’s ability to perceive image information from a more
global and diverse perspective will help improve its robustness. For example, Vit divides
the input image into multiple 16 × 16 patches and then projects them as fixed-length
vectors, thus modeling the long-range dependency in the image using the self-attentive
mechanism in Transformer. Similar to ViT, SwimTransformer uses a self-attentive mecha-
nism based on moving windows, while ConvNeXt changes the parameters of the Stem layer
convolution kernel of ResNet to rasterize the image in the manner of Transformer, dividing
the image into patches before processing. All three models adopt a similar approach to
segmenting images, obtaining different information about the input image, and building
a comprehensive perception. This approach, while improving model performance, also
increases the difficulty of correctly classifying against adversarial perturbation, and such
models consequently exhibit lower MR than other models. For example, ConvNeXt shows
better robustness than ResNet, and the Inception family of models uses convolutional
kernels of different sizes to extract image features and obtain diverse information, showing
better robustness than their contemporaries.

The higher consistency of the misclassification rate ranking under black- and white-
box attacks suggests that the more robust models can resist both attacks. We also found
that the misclassification rate ranking showed an inverse relationship with the model
accuracy. This may be due to the researchers’ enhanced feature learning capability and
global sensing capability to improve the model inference capability, resulting in improved
model robustness as well.

5.4.3. IRT-Based Comprehensive Evaluation

We used IRT to synthesize the tested models’ robustness evaluation results to obtain
the scores, which are shown in Table 9. When evaluating model robustness using IRT, we
first calculate the Model Capability Θ1, Attack Effects Θ2, and Disturbance-aware Cost Θ3,
respectively, and then use Θ1, Θ2, and Θ3 to calculate the comprehensive results.

Table 9. CA, MR, and IRT results of all models on 20-attacks.

Model CA ↑
Rank 1

MR ↓ IRT ↑

White
Rank 1

Black
Rank 1

White Black

Score (Θ) Rank 1 Score (Θ) Rank 1

SqueezeNet 2 1 1 0.07 2 0 1
MobileNet V3 4 3 5 0 1 0.35 4

VGG 5 2 3 0.08 3 0.2 3
AlexNet 1 4 2 0.18 5 0.1 2

ShuffleNet V2 7 9 9 0.16 4 0.47 6
MNASNet 9 12 11 0.38 7 0.52 7

ResNet 8 5 10 0.38 7 0.55 8
ConvNeXt 14 11 14 0.31 6 0.76 12
GoogLeNet 3 6 4 0.4 9 0.57 9

ViT 6 14 8 0.76 13 0.36 5
RegNet 12 8 7 0.47 10 0.6 10

DenseNet 10 7 6 0.67 12 0.66 11
SwinT 13 10 12 0.59 11 0.91 13

Inception V3 11 13 13 0.99 14 1 15
EfficientNet V2 15 15 15 1 15 0.93 14

1 “↑” indicate that the smaller the item’s value, the smaller the rank, and “↓” indicate that the larger the item’s
value, the smaller the rank. The smaller the rank, the worse the adversarial robustness.
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5.4.4. Black- and White-Box Attack Differences

Considering the ACC, the ARTC is always higher than the AIAC, regardless of whether
the attack is carried out using a black-box or white-box approach, i.e., the contribution of a
significant reduction in the confidence in the true classification of the model to the success
of the attack is higher than the contribution of a significant increase in the confidence
in the adversarial classification, which is particularly evident in the black-box attack.
Furthermore, for the same model, the white-box attack achieves significantly better results
than the black-box attack, both in terms of confidence and attention bias, due to the direct
access to the gradient. In terms of perturbability, the white-box attack can achieve smaller
perturbations, and the perturbations are primarily concentrated in the low-frequency
domain, making the white-box attack’s perturbations more difficult to perceive by the
human eye. In comparison, the perturbations of the black-box attack are about seven times
larger than those of the white-box, and there is no significant difference in the ratio of
high-frequency to low-frequency perturbations, which reflects the lack of effective planning
of the perturbations of the black-box attack and makes them more easily detected by the
human eye.

5.5. Attack vs. Model

To reveal which attacks the models are more vulnerable to and which models the
attacks are more sensitive and effective against, we counted 3 attacks with the best MR
and 3 attacks with the worst MR in each of the 15 models, respectively, and the results are
shown in Figure 7.
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We note an interesting phenomenon that the researchers proposing these methods
seem to prefer to use those models in their articles with the best performance of their
attacks for testing. For example, it can be seen through our experiments that SSAH has the
best misclassification rate for ResNet, RegNet, and VGG, and coincidentally, the authors
also developed experiments based on ResNet and observed its transferability based on
ResNet and VGG; TREMBA has the best misclassification rate for VGG, SqueezeNet, and
MobileNet, and the authors of the paper also happened to include VGG and MobileNet.
In addition, another thing worth exploring is that the misclassification rates reported by
the authors are often higher than our measurements (even significantly higher, but never
lower). We believe that this could be caused by differences in test models and dataset
selection or could be related to parameter configuration. However, it is undeniable that
researchers prefer to choose models or datasets that have a lower attack difficulty and a
higher attack misclassification rate to prove that their attacks are effective and better.

6. Discussion

After conducting extensive experiments with these models and attack methods using
our comprehensive evaluation framework, we will explore the differences from other works
and the value, limitations, and future of our work.

Additional Related Work. Attack methods for image classification are constantly be-
ing innovated, and various evaluation metrics and methods exist. Although the adversarial
attack and defense library [14,15,17,19] covers a variety of attack and defense algorithms,
the consistency of the experimental conditions and metrics in conducting adversarial robust-
ness evaluation cannot be guaranteed, which makes it difficult to compare the adversarial
robustness from model to model and before and after the model defense. We built Canary,
a model robustness evaluation framework, to comprehensively integrate various attack
and defense algorithms, datasets, and evaluation metrics, and to analyze the model’s ability
to defend against adversarial attacks and the effectiveness of the attacks at multiple levels
and fine-grains, following a consistent evaluation strategy in a standardized environment.

Firstly, in terms of metric selection, we considered universality as the first priority
of metrics and effectiveness as the second priority. Thus, we propose a set of generic,
quantifiable, and comprehensive adversarial robustness evaluation metrics, including
26 (sub)metrics. This means that when considering a set of valid metrics, we will first
select the ones with more remarkable universality. To ensure the metrics’ universality,
we primarily rely on the Softmax Output of the model to measure the effectiveness of
the attack to make it broadly applicable; for interpretability evaluation, we use the most
widely applicable Grad-CAM as part of the construction of the evaluation metrics; and
for image quality evaluation, we cover the three main paradigms that are widely used by
attacking methods. Unlike previous work [18,20,22], this allows our evaluation metrics to
be measured without relying on any particular attack method or model and will enable
researchers to use the Canary evaluation framework to integrate customized new models
and attack methods with just a few Python decorators, without having to make any
extensive modifications to them.

When designing the metrics, we also focused on the validity of the metrics. Previous
research [18,22] used methods such as SSIM [69] to measure the visual difference between
the adversarial examples and the original images. However, their performance was not
good, so we chose the newest and best-performing IQA methods, MS-GMSD [71] and
DISTS [73], as a replacement; the confidence level of the adversarial examples is regarded as
an essential metric to measure the effectiveness of the adversarial examples. However, we
found that the confidence level of the adversarial examples generated by the same attack
method on different models and the confidence level of the original images are inconsistent
and cannot be compared, so we chose the confidence change to evaluate it better. In addi-
tion, we also considered the performance of the adversarial perturbation in the frequency
domain with different norm distances to further enhance the comprehensiveness of the
evaluation. Given that the experiments of Yan et al. [55] on the DeepGauge framework [54]
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demonstrated a minimal correlation between Neuron Coverage metrics [54] and neural
network safety and robustness and that some of the Neuron Coverage metrics impose
constraints on the model structure, we dropped all the metrics in question.

Secondly, we noted that many evaluation methods/frameworks, as represented by
the work [18], simply provide a table consisting of multiple metrics upon completion of
the evaluation, which often leaves researchers with only rough and vague judgments of
strengths and weaknesses. Therefore, after proper processing, we used the IRT algorithm
to compute these metrics into scores that reflect the score of the effectiveness of the attack
and defense methods or model robustness, making it possible for us to compare and rank
model robustness and the effectiveness of the attack method. To our knowledge, this is the
first application of IRT in the field of AI robustness evaluation.

Finally, in terms of the evaluation subject and evaluation scale, considering that related
work [18,20,22] focused on the evaluation of the effectiveness of attack methods (using the
same structural model to evaluate several different attack/defense methods), and related
work [21] focused on the evaluation of the robustness of the model (using one attack
method to test multiple structural models), we believe that these works do not fully reveal
the model robustness and the effectiveness of attack methods and may introduce biases.
Therefore, we conducted the largest experimental study to date on the effectiveness and
transferability of 10 white-box attacks, 8 query black-box attacks, 4 transferable black-box
attacks, and the robustness of 15 models (a total of 15× (14× 1000 + 8× 600) adversarial
examples were generated and tested, within approximately 1960 man-hours), which, in
contrast to the above work, allows us to focus on the large differences in the performance of
each of the 22 attacks on 15 different models (rather than just on different training datasets
of the same model). At the same time, our open access to this part of the data (the baseline)
allows researchers to perform comprehensive evaluations by simply integrating and testing
their own models or attack methods to understand the performance ranking of the model
or method, thus providing strong support for their work.

Limitations and Future Work. Firstly, although we tried to cover as many attacks and
models as possible, we were still unable to exhaust and replicate everything, which may
lead to some new conclusions and observations. Therefore, we have open-sourced Canary
Lib, containing all our chosen testing methods and models. We encourage researchers to
test their attacks, defenses, and models based on Canary and to upload their results to the
platform to provide benchmarks and help more people.

Secondly, we defined an optimal parameter setting for each attack in the evaluation.
Specifically, we prioritized the validity of the evaluation example, and to ensure validity,
we kept the exclusivity parameters in the attack the same or similar to the original paper
and standardized generic parameters (such as perturbation budget) to ensure fairness of
comparison. If the computing power is sufficient, researchers can also use Canary to try
more combinations of parameters to find the best parameters for a given attack. We have
yet to focus on comparing model defense methods in the current development. Researchers
can also integrate and try multiple defense scenarios based on Canary to compare the
performance of the models before and after the defense.

Thirdly, adding or removing any metrics from the list of metrics will eventually lead
to a change in the computation of IRT. In the actual experiments, we adopted a two-layer
computation method to maintain its robustness, i.e., removing or adding a small number
of metrics in the broad categories will not disrupt the evaluation results. However, further
investigation into the robustness of the IRT algorithm may still be necessary, and researchers
can conduct other studies from a quantitative perspective or mathematical principles.

Finally, in the experimental part, we tried to analyze the reasons for the differences in
model robustness. However, we still have not entirely determined the internal mechanism,
especially since specific attack methods seem to have very different effectiveness and
transferability on various models, which leaves plenty of room for future theoretical
research work on the existence mechanism of adversarial examples, and the vulnerability
and interpretability of deep learning models, etc.
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Application of Work. We believe that this work has the potential to play a significant
role in the design and training of artificial intelligence models. It assists researchers in
accurately evaluating the strengths and weaknesses of model robustness, thus promoting
fundamental improvements in model design and training methods. This work can also help
people understand the actual robustness of models to avoid using low-robustness models
in security-sensitive domains. In addition, the designers of attack or defense methods can
use this platform to measure whether their proposed methods are truly effective and to
what extent they are effective, thereby advancing the development of this field.

7. Conclusions

In this work, we establish a framework for evaluating model robustness and effective-
ness of attack/defense methods that includes 26 metrics that consider model capabilities,
attack effects, attack costs, and defense costs. We also give a complete evaluation scheme
as well as a specific method IRT to calculate the ability scores of models or attack/defense
methods based on the metrics results for ranking. In addition, we provide an open-source
model robustness evaluation platform, Canary, which can support users to freely integrate
any CNN model and attack/defense method and evaluate them comprehensively. To fully
demonstrate the effectiveness of our framework, we conducted large-scale experiments
using 8 white-box attacks, 8 query black-box attacks, and 4 transfer black-box attacks on
15 models trained by the ImageNet dataset using an open-source platform. The experi-
mental results reveal the very different behaviors of different models when subjected to
the same attack, the huge difference between different attack methods when attacking the
same model as well as other very interesting conclusions. Finally, we present a discussion
that comprehensively contrasts our work with other related work and explores limitations,
future work, and applications. The work aims to provide a comprehensive evaluation
framework and method that can rigorously evaluate the robustness of the model. We
hope that our paper and the Canary platform will help other researchers better understand
adversarial attacks and model robustness as well as further improve them.
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Appendix A. Details of the Main Adversarial Attack Algorithms in Our Evaluations

Appendix A.1. White-Box Attacks

The white-box approach of generating adversarial examples is based on the gradient
of the neural network, adding perturbations to the pixels to generate adversarial examples.
Szegedy et al. first identified adversarial examples that could be misclassified by deep
learning models using the L-BFGS [7] method. Goodfellow et al. proposed a gradient-
based attack method, the fast gradient (FGSM [32]) algorithm. Based on this, Kurakin et al.
proposed an iterative fast gradient (I-FGSM [35], also known as BIM) algorithm based on
improved FGSM. BIM can generate more effective adversarial examples than FGSM by
gradually increasing the loss function in small iterative steps. Since FGSM is a single-step
attack, i.e., adding gradients only once against an image, this method has a low misclassifi-
cation rate for a complex non-linear model. Therefore, Madry et al. considered multiple
small steps instead of one large step in FGSM and proposed the Project Gradient Descent
(PGD [36]) attack. Compared to I-FGSM, PGD increases the number of iteration rounds
and adds a layer of randomization. Furthermore, Dong et al. proposed a momentum-based
iterative method (MI-FGSM [37], also known as MIM) attack based on FGSM and I-FGSM.
MIM can accelerate gradient descent by accumulating velocity vectors on the gradient of the
loss function. Derivatives of FGSM also include TI-FGSM [77], SI-FGSM [38], NI-FGSM [38],
VMI-FGSM [39], etc.

In contrast to the idea of FGSM, Moosavi-Dezfooli et al. proposed an iterative algo-
rithm, DeepFool [34], which generates perturbations by an iterative method that iteratively
moves pixels within the classification boundary to outside the boundary until the whole
picture is misclassified. Based on DeepFool, Moosavi-Dezfooli et al. also found that the
method could be extended to find a universal adversarial perturbation on a batch of images
such that all images are misclassified, a method known as universal adversarial pertur-
bations (UAP [78]). Papernot et al. proposed a saliency map-based method, JSMA [33],
which assigns a salient value to each dimension of the input and generates a Jacobi saliency
map, thereby capturing the most sensitive features that affect the neural network’s infer-
ence result and selectively modifying image pixels. Notably, Carlini et al. proposed an
optimization-based attack method (C&W [23]) algorithm that comprehensively measured
accuracy versus perturbation budget in the hope that the presence of an attack can be imper-
ceptible when the adversarial example can make the model misclassified. This concept has
also been widely adopted in many subsequent works, such as the EAD [40] proposed by
Chen et al., which followed the objective function of the C&W attack while adding elastic
L1 and L2 norm regularisation terms to enhance attack transfer capability and promoting
perturbation sparsity by measuring L1 loss.

While the attackers in the above approaches generally base their analysis on the spatial
information of image pixels, Luo et al. showed that the attack could also be performed in
the frequency domain. They proposed the SSAH [41] attack based on semantic similarity,
using a low-frequency constraint to limit the noise to the high-frequency space and to
effectively reduce the human visual perception of the perturbation.

In Section 5, the FGSM, BIM, PGD, DeepFool, JSMA, C&W, EAD, and SSAH algorithms
and their improved derivatives are experimented with and evaluated.

Appendix A.2. Query-Based Black-Box Attacks

In this section, we consider the query-based black-box attacks.
In decision-based attacks, the attacker only has access to the hard-label by inference,

and optimization-based attacks, boundary attacks, and other methods are proposed to
perform the attack. The core idea of decision-based was first proposed by Brendel et al. in
the Boundary Attack (BA [44]) algorithm. BA first generates an initial adversarial example
x′0 that makes the target model misclassify. The randomly generated x′0 differs significantly
from the original example x and is not an ideal adversarial example, so BA takes x′0 as the
initial point and conducts a random walk along the boundary between the adversarial
and non-adversarial regions, moving in two steps at a time towards the orthogonal and
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target directions. After k iterations, it will result in a sufficient reduction in the distance
between x′k and image x while maintaining adversarial. However, as determining the
optimal boundary location requires multiple walk iterations, BA requires a massive query
of the target model. Similarly, the Hop Skip Jump Attack (HSJA [46]) algorithm proposed
by Chen et al. uses a dichotomous search to reach the boundary, followed by a Monte
Carlo method to estimate the approximate gradient direction at the boundary and then a
step search through geometric progression. HSJA demonstrates that a suitable step length
optimizes the final result to a fixed point. Furthermore, the work of Engstrom et al. showed
that simple image transformations such as translation or rotation are sufficient to deceive
neural network-based visual models on a large proportion of the input, and their proposed
Spatial Attack (SA [45]) can also rely solely on inferential labeling queries of the target
model to achieve the attack.

In the score-based class, the attacker can obtain probabilities for one or all classes
and use spatial search, gradient estimation, and other means to carry out the attack. For
spatial search, the Local Search Attack (LSA [43]) proposed by Narodytska et al. iteratively
modifies a single pixel or a small number of pixels to generate sub-images, uses a greedy
algorithm to search, and retains the best example to achieve the attack. Further on, the One
Pixel Attack (OPA [42]) proposed by Su et al. uses a differential evolutionary algorithm to
search and retain the best sub-image for attack based on the fitness function. However, all
such algorithms suffer from a large search volume, and image size can severely affect the
effectiveness of these algorithms.

In terms of gradient estimation, Chen et al. proposed a zero-order optimization attack
(ZOO [49]) to estimate the gradient of the target model to generate an adversarial example.
ZOO uses a differential numerical approximation to estimate the gradient of the target
function with respect to the input and then uses a gradient-based approach to perform
the attack. Similarly, Uesato et al. proposed a method to perform an attack using the
Simultaneous Perturbed Stochastic Approximation (SPSA [48]) algorithm for gradient
estimation, which achieves higher efficiency than ZOO through feature reduction and
random sampling; Alzantot et al. proposed a gradient-free optimization attack (Gen Attack,
GA [47]), which uses a genetic algorithm to generate adversarial examples with several
orders of magnitude fewer queries than ZOO; Huang et al. proposed the TREMBA [51]
attack, which uses a pre-trained codec to generate low-dimensional embeddings, and then
uses NSE to search for valid examples in the embedding space to attack the black-box
model, which can effectively improve the misclassification rate of the black-box attack and
significantly reduce the number of queries.

In addition, Xiao et al. proposed an AdvGan [50] attack based on generative ad-
versarial networks by mapping clean examples to adversarial perturbations through a
perturbation generator G, superimposing perturbations to clean examples and inputting
them into a discriminator D to determine whether they are adversarial examples, and at
the same time querying the model to measure the loss of the adversarial target, and finally
optimizing the above objective function using the mini-max game and obtaining G. The
adversarial examples are directly generated using G in the following process. Derivative
methods of AdvGan also include AdvGan++ [79], etc.

In Section 5, the BA, HSJA, LSA, SPSA, GA, AdvGan, TREMBA, and SA algorithms
are experimented with and evaluated. Attack algorithms such as ZOO and OPA are also
replicated in this paper but are not fully experimented with and evaluated due to the
prohibitive time cost.

Appendix A.3. Transferable Black-Box Attacks

In this section, we consider the transfer-based class of black-box attacks. There are
three main types of transfer-based black-box attacks, namely Gradient-based Attack, which
improves transferability by designing new gradient updates; Input Transformations Attack,
which improves transferability by increasing the diversity of data using input transforma-
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tions; and Feature-Level Attack, which improves transferability by attacking intermediate
layer features.

Regarding optimal gradient updating, the gradient calculation methods of FGSM
and I-FGSM effectively improved the transferability of the adversarial examples. On
this basis, Dong et al. proposed MI-FGSM [37], which integrates the momentum term
into the iterative process of the attack to stabilize the update direction and get rid of
undesirable local maxima during the iterative process to further improve the transferability.
Lin et al. proposed NI-FGSM [38] to modify the MI-FGSM gradient information and
adopted Nesterov accelerated gradients to enhance the attack transferability. Further,
Wang et al. proposed VMI-FGSM [39], where instead of directly using the current gradient
for momentum accumulation in each iteration of the gradient calculation, the current
gradient is further adjusted by considering the variance of the gradient from the previous
iteration, and the variance-based adjustment method can improve the transferability of the
gradient-based attack.

In terms of input transformations, Xie et al. proposed DIM [80] to increase data
diversity by randomly resizing and padding the input data, and Dong et al. proposed
the TIM [77] attack based on translation invariance to improve transferability by using
a predefined kernel to convolve the gradients of untranslated images to moderate the
different discriminative regions between different models. Similarly, Lin et al. proposed a
SIM [38] attack based on image scaling invariance, which computes the gradient of a single
image scaled multiple times and approximates the final gradient, which is also effective
in improving the transferability of the attack. For intermediate layer feature modification,
Wang et al. proposed the FIA [81] attack, which significantly enhances the transferability of
the adversarial examples by corrupting the key object-perceptual features that dominate
the decisions of different models.

In Section 5, the MI-FGSM (MIM), NI-FGSM (NIM), SI-FGSM (SIM), and VMI-FGSM
(VMIM) algorithms are experimented with and evaluated.

Appendix B. Open-Source Platform Structure and Metrics Calculation Process

We envisage that the Canary platform should follow the following design guidelines:

- Fairness—the platform’s evaluation of model security and attack and defense effec-
tiveness should be conducted on an equal footing or with the introduction of necessary
parameters to eliminate discrepancies, resulting in a fair score and ranking.

- Universality—the platform should include comprehensive and rigorous metrics that
can be universally applied to all types of models and the most representative baseline
models, attack, and defense methods to draw comprehensive conclusions.

- Extensibility—the platform should be fully decoupled from the attack/defense meth-
ods library, making it easy to integrate new attack/defense methods while reducing
intrusion into the target code.

- Clearness—the platform should give intuitive, clear, and easy-to-understand final
evaluation results and be able to accurately measure the distance of the model or
method under test against a baseline and against other models or methods.

- Quick Deployability—the platform should be quickly deployable to any device with-
out the need for cumbersome configuration and coding and without creating baselines,
repeatedly allowing for rapid evaluation results.

Accordingly, we designed and developed the Canary platform. The platform consists
of a component modifier, a security testing module, a security evaluation module, and a
system module. The security evaluation module includes attack evaluation, model-baseline
evaluation, and defense evaluation. The evaluation process and structure can be expressed
as follows:

Canary SEFI calculates the metrics presented in Section 3.1 based on the component
modifier, security test module, and security evaluation module. Specifically, SEFI divides
the metrics collection into four phases.
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As shown in Figure A1, in the model capability testing phase, SEFI will test and collect
Grad-CAM data and confidence matrix data for the model based on a randomly selected
set of picture examples χ = {x1, x2, · · · , xn} and calculate all the metrics in Section 3.1.1.
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Figure A1. Schematic diagram of the process of testing and evaluating model inference capability.
The component manager collects and builds model objects sent to the inference unit after the Hook.
The inference results, confidence, and Grad-CAM data are obtained after inferring the test dataset,
stored in the database, and finally, the metrics are calculated by the analyzer.

As shown in Figure A2, in the adversarial example generation phase, an adversarial
example χa is generated from χ based on the target model using the specified attack method,
and data on the number of model queries and the time of adversarial example generation
are collected and stored.
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Figure A2. Schematic diagram of the process of adversarial example generation. The component
manager collects and constructs the model object and attack method object, the model object is sent
to the attack unit with the attack method object after the Hook, and the model query number, time,
and adversarial example images are obtained after generating the adversarial examples based on the
test dataset. Finally, they are stored in the database and disk respectively.

As shown in Figure A3, in the evaluation phase, SEFI first tested and collected Grad-
CAM data and confidence matrix data for the model based on χa and compared them with
the data collected during the model capability testing phase to calculate the metrics in
Section 3.1.2; then evaluated the difference between χa and χ, and further calculated the
metrics in Section 3.1.3.

As shown in Figure A4, in the defense phase, for the adversarial classification defense,
the adversarial example classification model capability can be evaluated based on χa;
for the image processing defense, the image processing result ϕ(χa) can be generated
and stored, and the evaluation phase can be completed using ϕ(χa), comparing χa to
measure the image processing defense capability and calculating the applicable metrics in
Section 3.1.4. For adversarial training, the weights can be stored and used for post-defense
model capability testing, adversarial example generation and evaluation, comparing the
pre-defense model to measure the adversarial training defense capability, and calculating
the applicable metrics in Section 3.1.4.
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Figure A3. Schematic diagram of the process of attack testing and evaluation. The component
manager collects and constructs model objects, which are sent to the inference unit after the Hook.
The inference results, confidence, and CAM Data are obtained after inference of the generated
adversarial examples and stored in the database. Finally, the analyzer calculates the metrics by
comparing the change in quality and inference results of the images before and after the attack
(original images and adversarial examples).
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Abstract: With the widespread popularity of smart home devices and the emergence of smart home
integration platforms such as Google, Amazon, and Xiaomi, the smart home industry is in a stage
of vigorous development. While smart homes provide users with convenient and intelligent living,
the problem of smart home devices leaking user privacy has become increasingly prominent. Smart
home devices give users the ability to remotely control home devices, but they also reflect user home
activities in traffic data, which brings the risk of privacy leaks. Potential attackers can use traffic
classification technology to analyze traffic characteristics during traffic transmission (e.g., at the traffic
exit of a smart home gateway) and infer users’ private information, such as their home activities,
causing serious consequences of privacy leaks. To address the above problems, this paper focuses on
research on privacy protection technology based on traffic obfuscation. By using traffic obfuscation
technology to obscure the true traffic of smart home devices, it can prevent malicious traffic listeners
from analyzing user privacy information based on traffic characteristics. We propose an enhanced
smart home traffic obfuscation method called SHTObfuscator (Smart Home Traffic Obfuscator) based
on the virtual user technology concept and a virtual user behavior construction method based on
logical integrity. By injecting traffic fingerprints of different device activities into the real traffic
environment of smart homes as obfuscating traffic, attackers cannot distinguish between the real
device working status and user behavior privacy in the current home, effectively reducing the effect
of traffic classification attack models. The protection level can be manually or automatically adjusted,
achieving a balance between privacy protection and bandwidth overhead. The experimental results
show that under the highest obfuscation level, the obfuscation method proposed in this paper can
effectively reduce the classification effect of the attack model from 95% to 25%.

Keywords: smart home privacy; traffic obfuscation; traffic fingerprint

1. Introduction

In recent years, the smart home industry is in a rapid development stage. According
to research conducted by relevant institutions, it is predicted that by 2025, 21.3% of house-
holds worldwide will use smart home devices, and the total number of smart home devices
will reach 5.44 billion units [1]. While smart home devices provide users with convenient
and intelligent living experiences, they also pose privacy risks by reflecting users’ home
activities in traffic data. Smart home devices are typically limited in functionality and de-
signed for specific purposes. The changes in traffic patterns are highly correlated with user
behavioral activities. Potential attackers can exploit this by performing traffic classification
attacks to identify the activity states of users’ devices, as illustrated in Figure 1, particularly
in the traffic exit of smart home gateways. Therefore, it is relatively easy to identify user
activities and infer privacy information from smart home traffic data, leading to significant
privacy risks in this regard.

Electronics 2023, 12, 3477. https://doi.org/10.3390/electronics12163477 https://www.mdpi.com/journal/electronics164
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Relevant studies [2] have shown that even with data encryption, attackers can infer
users’ privacy-sensitive information from traffic data, as each device has unique traffic
characteristics and corresponding activity events. Information such as device types, actions,
statuses, and user behaviors can be deduced from the traffic, making it possible to identify
user activity even during interactions with smart home devices, such as conversing with
voice assistants, opening/closing smart door locks, or watching smart TVs. Detecting
changes in traffic rates, averages, and other features can reveal user behavioral patterns
and activity states. In specific cases, even the traffic variations in a smart light can pro-
vide insights into a household’s daily routines, including when users come home, when
children go to bed, or whether a user stays up late. Such privacy-sensitive information
can potentially facilitate further attacks, such as break-ins when no one is home, crimes
targeting individuals living alone, or the sale of personal information to criminals for profit.

Previous traffic classification techniques for smart home traffic have primarily relied on
the concept of traffic fingerprints according to [3–6]. Based on relevant information about
smart home devices and their operational traffic data, traffic data are transformed into
representative feature vectors. These feature vectors are used to construct traffic fingerprints
for each device and even for specific device behaviors within the target household. By
matching and detecting traffic fingerprints, the behavior of devices can be identified, and
user privacy can be inferred.

In this paper, we focus on the side channel attacks where adversaries monitor the
incoming/outgoing network traffic to/from smart homes, infer activities of smart home
devices with traffic classification algorithms, and gain advantages in conducting subsequent
severe attacks. We propose the use of traffic obfuscation techniques at the traffic exit of smart
home gateways to obfuscate the actual traffic generated by devices, thereby preventing
attackers from inferring users’ privacy information based on traffic characteristics. To
identify the appropriate timing for traffic injection, we adopted the concept of virtual users.
The concept of virtual users in this research is inclined towards constructing a logically
coherent and realistic user behavior pattern that is projected onto the household traffic,
rather than a combination of individual or a few device behaviors. This approach aims
to ensure that the injected false traffic is more deceptive, thereby preventing attackers
from extracting genuine user privacy information. The key challenge lies in developing an
adaptive strategy for generating virtual user behaviors.

Furthermore, considering the cost and bandwidth constraints in real smart home
environments, another significant research focus in recent years has been on achieving a
defense mechanism that can be adjusted based on the current network conditions. For
example, one approach proposes adjusting the intensity of noise addition by altering the
privacy budget [7], allowing users to select an appropriate defense level according to their
specific circumstances. This addresses the practicality of implementing effective defense
measures while considering the limitations of smart home environments.

Overall, we propose an enhanced smart home traffic obfuscation method called SHTO-
bfuscator (Smart Home Traffic Obfuscator). The method utilizes the concept of virtual users
and injects obfuscated traffic to construct a “realistic” user behavior trajectory within the
smart home traffic data. Additionally, a smart home traffic privacy protection system, SHT-
Protector (Smart Home Traffic Protector), is designed and implemented. The functionality
of each module in the system is tested through experiments, validating the feasibility and
effectiveness of the SHTObfuscator approach. The specific research work is as follows:

The contribution of this paper is as follows:
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(1) The proposal of an enhanced smart home traffic obfuscation method called SHTOb-
fuscator based on the virtual user technology concept. By injecting traffic fingerprints
of different device activities into the real traffic environment, we effectively reduce
the effect of traffic classification attack models.

(2) A smart home traffic privacy protection system SHTProtector is designed and im-
plemented. Experiments of device identification monitoring, device fingerprint ex-
traction, traffic obfuscation effect and traffic obfuscation overhead are carried out in
the real environment of smart home, and the effectiveness of the proposed method
is verified.

(3) Achieved the balance between privacy preserving and communication overhead in
accordance with the network condition.

The organizational structure of this paper is as follows. We introduce the related work
of traffic obfuscation for smart homes in Section 2, and the motivation in Section 3. We
propose the design and simulation of our mechanism in Section 4 and the experimental
evaluation in Section 5. We conclude this paper in Section 6.

2. Related Work

Attackers can infer the privacy of smart homes through traffic classification. However,
traffic obfuscation techniques can confuse real traffic, thereby preventing attackers from
inferring users’ private information based on traffic characteristics. Current research on
smart home traffic obfuscation techniques, both domestically and internationally, mainly
includes packet padding, traffic shaping, fake traffic injection, and virtual user.

Yao ZJ [8] proposed an evaluation framework for assessing the effectiveness of traffic
obfuscation methods. The evaluation metrics for traffic obfuscation methods include
stealthies, computational overhead, and deployment difficulty.

Stealthies refers to the ability of network traffic to be obfuscated in order to evade de-
tection by observers. Computational overhead refers to the number of resources consumed
during the obfuscation process, including computational time, number of computations,
and required physical resources. Additionally, the deployment difficulty of obfuscation
techniques is also an important factor that affects user experience. Therefore, when se-
lecting suitable traffic obfuscation techniques, it is necessary to consider a comprehensive
range of factors, including stealthies, computational overhead, and deployment difficulty.

In order to minimize privacy breaches in smart homes, in 2019, Nicolazzo S et al. [9]
proposed a privacy-preserving solution for mitigating feature disclosure in a multiple
IoT environment, which draws inspiration from concepts in database theory, specifically
k-anonymity and t-closeness. Additionally, in 2022, Corradini E et al. [10] proposed a
two-tier Blockchain framework to increase the security and autonomy of smart objects in
the IoT by implementing a trust-based protection mechanism. They have implemented
robust privacy measures to safeguard the personal information of IoT devices.

Packet padding primarily targets attack methods that rely on packet size features,
while traffic shaping focuses on overall statistical features of data flows, including temporal
patterns, periodicity, and rates of traffic.

In 2018, Pinheiro A J et al. [11] summarized and compared the obfuscation strategies
for packet length, and proposed a lightweight packet filling mechanism, which adopted
the combination of maximum filling and random filling, and reduced the accuracy of traffic
classification algorithm from 92% to 30.38% at the cost of delay increase of approximately
19.8%. The limitation lies in less experimental settings and the need to use VPN.

In 2019, Apthorpe et al. [12] improved and proposed a new traffic shaping algorithm
Stochastic Traffic Padding (STP), which allowed users to make a trade-off between cost
and privacy. STP performed traffic shaping during user activities and selectively injected
confused traffic in other time periods, which improved the disadvantage of constant rate
traffic classifier that the cost of no user activities was too high.

Xiong et al. [13] introduced the concept of differential privacy for data packet padding.
The authors employed a differential privacy model to obfuscate the traffic of each smart
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home device. They adjusted the level of obfuscation flexibly by defining different pri-
vacy levels, allowing for different obfuscation strengths for low-bandwidth and high-
bandwidth devices. This approach aimed to meet the usage requirements of different smart
home users.

In 2020, Pinheiro et al. [14] improved upon the static data packet padding mechanism
proposed in 2018. To address the high overhead issue, they proposed an adaptive data
packet padding method based on Software-Defined Networking (SDN). This method
adjusts the number of inserted data packets based on changes in the utilization of the
home network. The padding mechanism is set by an SDN application that monitors
network traffic variations, with the goal of dynamically balancing privacy protection and
communication overhead.

Wang et al. [15] introduced the concept of differential privacy for traffic obfuscation.
The authors modeled the distribution of packet inter-arrival times and packet sizes and used
privacy parameters to determine the level of privacy protection provided by differential
privacy. The advantage of this method is its controllable overhead. However, the drawback
is that the obfuscation noise increases the latency of the data packets, which may impact
the normal operation of devices.

In 2021, Prates N et al. [16] proposed a defense mechanism that combines active
monitoring and passive defense. It includes two modules: a vulnerability monitoring
module that collects traffic from smart home devices and extracts requests exchanged
between the devices and the gateway along with their timestamps. Possible privacy leaks
are inferred using time-based statistical algorithms. The traffic shaping module introduces
delays to the traffic of devices experiencing privacy leaks, making it difficult for attackers
to perform inference attacks. The limitation of this method is also the lack of in-depth
exploration of the impact of delays on the normal operation of devices.

In traffic shaping methods, there are also smart home traffic obfuscation schemes based
on adversarial learning, which typically utilize Generative Adversarial Networks (GANs),
Deep Convolutional GANs (DCGANs), and similar techniques to generate obfuscation
noise for traffic. Relevant research in this area includes:

In 2020, Ibitoye et al. [17] proposed a privacy protection scheme for smart homes
based on GANs, specifically addressing the privacy issues of audio devices such as smart
speakers. In the face of audio-based inference attacks, this method effectively defends
against inference attacks while preserving the semantics of audio samples.

In the same year, Ranieri et al. [18] focused on defense methods against traffic attacks
on smart devices, particularly targeting smart speakers. The authors built a testbed for
the smart home environment to evaluate the effectiveness of deep adversarial learning
techniques. The experiments validated the effectiveness of using Additive White Gaussian
Noise (AWGN) for traffic shaping, but the limitation is the lack of further optimization
regarding the method’s overhead.

Packet padding and traffic shaping aim to blur the characteristics of real traffic by
adjusting its features, thus preventing attackers from extracting users’ private information
from the traffic. On the other hand, the purpose of fake traffic injection is to mimic the
traffic generated by real devices by injecting fake traffic, thereby concealing the users’ actual
activities, and preventing attackers from analyzing their network behavior. These methods
have a relatively low deployment difficulty since they do not require modifications at the
protocol or device level.

Fake traffic injection can be divided into two types: random injection and adaptive
injection. Random injection involves injecting randomly generated fake traffic into the real
traffic, making it difficult for attackers to distinguish between genuine and fake traffic. This
method can effectively increase the cost of attacks and reduce the success rate but may also
increase the false positive rate and potentially impact the normal operation of some smart
home devices.

In 2017, Apthorpe et al. [19] explored the feasibility and implementation methods of
privacy protection through injecting dummy traffic. The authors suggested that injecting
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virtual traffic could be done on the device itself or on the smart home gateway. The
challenge lies in determining the timing of injection, ensuring that the distribution of the
generated fake events is similar to that of real events without creating logical conflicts.

In 2019, Hafeez et al. [20] proposed a method of constructing virtual traffic. To
conceal background traffic, they suggested sending a constant stream of traffic on the
upstream link regardless of the actual activity of smart home devices. When the devices are
inactive, virtual traffic representing device activity is sent on the upstream link, preventing
adversaries from identifying the real activities of the smart home devices. The limitation of
this method also lies in the increased network overhead.

In 2021, Zhu et al. [21] proposed different traffic injection strategies for devices with
different bandwidths. The authors divided smart home devices into two categories: high-
bandwidth devices and low-bandwidth devices, allowing for better cost planning. Addi-
tionally, the proposed method does not modify the original traffic, which has the advantage
of not introducing latency to device traffic and not affecting normal device communication.

In 2022, Xu et al. [22] addressed the attack of traffic classification based on device
behavior fingerprints, as proposed by Trimananda et al. [5]. They proposed a low-cost
defense method by adding noise to these device behavior fingerprints using mechanisms
such as random noise. For example, for a smart outlet, the sequence pattern of its on/off
events may have only slight differences, so incorporating them into the same pattern
would not incur significant overhead. If the on/off events have the same device behavior
fingerprint, attackers would not be able to distinguish between the events occurring on
the device.

Virtual users are an optimization method proposed in recent years, based on the
concept of fake traffic injection, and utilizing adaptive injection techniques. The limitation
of traditional fake traffic injection methods is that attackers can use causal relationship
analysis or context integrity detection to infer the occurrence of fake events. This is
especially true for random injection methods, which can lead to logical conflicts between
the behavior of virtual devices and real devices. Therefore, virtual users are more inclined
to construct a logically coherent and realistic user behavior pattern that is projected into
the household traffic, rather than a combination of individual or a few device behaviors.
This ensures that the injected fake traffic is more deceptive and prevents attackers from
prying into the real users’ privacy information.

In 2021, Liu et al. [23] proposed a defense mechanism against privacy leakage in smart
home wireless networks by constructing virtual users. They improved the deception of
virtual users based on real users’ behavioral patterns, achieving a good obfuscation effect.
However, the limitation of their study is that they only obfuscated the unidirectional traffic
from the gateway to the devices, which somewhat weakened the defense effectiveness.

In the same year, Yu et al. [24] presented a low-cost and open-source user defense
system targeting user activity attack models based on machine learning and deep learning.
The authors employed device behavior fingerprint learning using random forests, user
behavior modeling based on LSTM, and device behavior fingerprint injection to obfuscate
users’ home privacy. The defense system showed promising results but lacked a balance
between defense effectiveness and bandwidth consumption.

Based on the above analysis, this study believes that the smart home traffic obfuscation
method based on the concept of virtual users has great potential for development. However,
further optimization is needed in terms of method design and bandwidth consumption.

3. Motivation

In this section, we first present the threat model, which includes the smart home
environment and attackers that we consider. Next, we describe the goals and design
challenges.
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3.1. Threat Model

Our threat model assumes that the attacker knows which IoT devices are in a home,
the identity (e.g., MAC addresses) of the IoT device, and the size and time of the packets
each device is sending. We assume all packet payloads are encrypted. The goal of the
adversaries is to extract the fingerprint of device events and infer privacy from user events.
This goal is intentionally broad to encompass different types of devices. For example, a
user event for a sleep monitor might be someone falling asleep or waking up.

Although most packets of smart home devices are encrypted, traffic metadata (e.g.,
timestamps, lengths, and directions) is still available to attackers. Attackers also have access
to unencrypted packet headers, which are used to extract valuable information such as
Network and MAC addresses. Via side-channel analysis, attackers can use these data to
infer privacy-sensitive information about the target home, such as IoT device types, device
states, and user behaviors. For the small number of IoT devices that send unencrypted
packets, attackers can see the meaningful information about an IoT device from the payload
directly and thus need not use any side-channel analysis method [25]. Countermeasures
against information leakage from unencrypted packets are out of the scope of this work.

IoT generates traffic different from traffic generated by other individual devices, such
as smartphones, routers, or tablets. Besides, traffic of the IoT network follows a stable
pattern and the generated network traffic being very predictable which is different from
the traffic in ISPs. Among the many threats to privacy introduced by IoT devices, network
traffic classification based on side-channel information, such as packet length, interval
between packets, flow direction, and transmission rate, represents a major concern as it can
lead to leaks of user data and behavior.

Attackers may sniff the export traffic and extracted the device event fingerprints based
on the length packet length with machine learning algorithms. The fingerprints will be
used for matching device events and furthermore, inferring user privacy information. For
example, the use of the packet size alone in machine learning techniques enables inferring
if an individual has sleep disorders or health conditions and/or engages in sexual or
extra-marital activities. Along these lines, blackmail and extortion become clear threats
that stand to violate and detrimentally affect an individual’s autonomy, which is one of the
most important aspects of privacy [26]. Therefore, it is essential to provide mechanisms
that prevent personal information from IoT devices from being compromised or leaked
and potentially used to maliciously make inferences about the private life of individuals.

Based on the analysis mentioned above, the main steps and objectives of the smart
home traffic privacy attacker in this study are depicted in Figure 2:

(1) The attacker captures the outgoing traffic from the gateway of the target smart
home by sniffing, and uses relevant classification features and algorithms to identify the
types of devices present in the household, such as smartphones, computers, and smart
home devices such as smart lights, smart cameras, and smart speakers.

(2) After identifying the various devices in the target home, the attacker extracts packet-
level features for each behavior of the devices based on relevant classification algorithms.
They construct corresponding device behavior fingerprints and infer the behaviors of
smart home devices, such as turning on/off smart lights and taking photos or videos with
cameras. This allows them to obtain the behaviors of different types of devices and their
corresponding timestamps within a certain period.

(3) The attacker performs logical analysis of device behaviors and, using machine
learning or deep learning algorithms, establishes mapping relationships between device
behaviors and user behaviors. This enables them to infer the underlying user behaviors
behind the device behaviors. By continuously observing the target household over a period
(e.g., a week or a month), the attacker can also deduce more in-depth privacy information
about the user, such as the time when the user leaves the house or the periods when the
camera is turned off.
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3.2. Feature Selection

For traffic fingerprint training, there are various features can be extracted at the packet
level, flow level, and behavior level. Packet-level features are those features which are
extracted from each packet. These packet-level features including source and destination
port, packet length, and packet payload length. A network flow is defined by its 5-tuples,
which are source IP address, destination IP addresses, source port number, destination port
number, and transport layer protocol [27]. A network flow usually represents one complete
message exchange between a client and a server. Flow level features including flow length,
flow ratio, flow payload length, flow duration. There are few features in each IoT device,
which is independent of packet-level or flow-level features but depends on the application
behavior of devices and are called behavioral level features. The behavior level features
including NTP interval, DNS interval, transmission rate, DNS queries, cipher suites and
sleep time.

For the features above, packet length, flow length, flow ratio, and transmission rate
are often used for extracting device event fingerprint and infer privacy. Therefore, padding
mechanism based on packet length should be an effective solution.

3.3. Goals and Challenges

Due to the relatively small scale of smart home device traffic data compared to network
traffic and the high accuracy and real-time nature of packet-level features [28], most of
the related research utilizes classification algorithms based on packet-level features for
traffic classification by attackers. Therefore, this study designs attack models that infer user
privacy information based on packet-level traffic fingerprints of smart home devices to
demonstrate the feasibility and potential harm of smart home traffic classification attacks.
These attack models are used to evaluate the effectiveness of the proposed SHTObfuscator
defense method. It should be noted that SHTObfuscator also alters features such as
transmission speed and data flow size, thereby providing a certain level of defense against
attack models that rely on data flow-level features as well.

Our goals are as follows:
(1) Injecting traffic fingerprints of different device behaviors into the smart home traffic

environment as obfuscation traffic, constructing a flow behavior trajectory for a virtual user,
which can effectively reduce the effectiveness of user privacy inference models.

(2) The behavior logic of the virtual user is self-consistent and does not conflict with
real user behavior, making it difficult for attackers to uncover the virtual user through
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logical inference. Additionally, the injection of obfuscation traffic does not interfere with
the normal operation of smart home devices and the daily lives of real users.

(3) The privacy protection level can be adjusted to control the number of obfuscated
packets injected, achieving a balance between privacy protection and bandwidth overhead.

4. Design
4.1. Overall Design

The main idea of the proposed smart home traffic obfuscation method, SHTObfuscator
is as follows:

As mentioned earlier, attackers can use traffic fingerprinting techniques to launch
traffic classification attacks on smart home. Similarly, injecting obfuscation traffic based on
device traffic fingerprints into real smart home traffic can reduce the classification effec-
tiveness of traffic classification models. This makes it difficult for attackers to distinguish
which traffic is generated by the devices, thus hindering their ability to infer the real user’s
behavior privacy, and ensuring user privacy to a large extent.

Meantime, previous research has shown that if the injected obfuscation traffic only
involves a single device, or if the virtual device behavior lacks logical consistency or
conflicts with the real user’s behavior, attackers can use causal analysis or logic integrity
checks to discern the virtual device behavior corresponding to the obfuscation traffic.
Once attackers identify the obfuscation traffic, the defense mechanism of traffic obfuscation
becomes ineffective. Therefore, to achieve better defense, simply simulating device behavior
and injecting fake traffic from the device level is insufficient. Since a smart home user’s
behavior may involve interactions among multiple devices, simulating behavior at the user
level is more effective in defense and deception.

Based on the above analysis, before generating obfuscation traffic, SHTObfuscator
follows a series of steps to construct a logically consistent sequence of virtual user behav-
iors. It generates corresponding virtual device behavior sequences based on the mapping
relationship between the target user’s behavior and device behavior. Finally, using the
fingerprint data saved in the smart home device traffic fingerprint library, obfuscation
traffic is generated using a traffic generation tool and injected into the gateway traffic of the
target smart home. This creates a seemingly realistic user behavior trajectory within the
smart home traffic data, making it difficult for attackers to distinguish between inferred
behaviors of real users and virtual users, thus ensuring user privacy.

As the number of virtual devices and behaviors increases, attention must be given
to the increase in bandwidth overhead. To address this concern, this paper proposes a
“tunable” privacy protection level for the traffic obfuscation scheme, allowing users to dy-
namically balance privacy protection and cost overhead based on their home’s bandwidth
conditions and requirements.

The traffic obfuscation process of SHTObfuscator consists of three functional stages:
traffic fingerprint extraction, virtual user generation, and obfuscation traffic injection. The
processes and detailed steps of each functional stage are depicted in Figure 3.

4.2. Event Fingerprint Extraction

Obviously, an adversary could easily use traffic rate changes to infer user activities.
There are many works trying to classify different smart home devices based on their traffic
characteristics. Features in different resolutions, including packet level, flow level and
behavior level are extracted as fingerprints and then fed into machine learning models to
identify the type of the device which generates the traffic [29].

For example, Trimananda et al. [5] proposed a smart home device activity classification
method. By extracting the size and direction characteristics of smart home traffic data
packets, a unique fingerprint was established for each activity of each device, and the
activities (such as light bulb on/off) were classified by detecting the fingerprint. They
identified the traffic flows that occurred immediately after each event and observed that
certain pairs of packets with specific lengths and directions followed each ON/OFF event:

171



Electronics 2023, 12, 3477

the same pairs consistently showed up for all events of the same type (e.g., ON), but were
slightly different across event types (ON vs. OFF). The pairs were comprised of a request
packet in one direction, and a reply packet in the opposite direction. Intuitively, this makes
sense: if the smart home device changes state, this information needs to be sent to (request),
and acknowledged by (reply), the cloud server to enable devices that are not connected to
the home network to query the smart home device’s current state.
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With the approach of [5], we extracted the stream on/off fingerprints of Xiaomi smart
camera, as shown in Figure 4, we observed an exchange of 2 TLS Application Data packets
between the plug and an Internet host where the packet lengths were 115, 299, 364 and
1061 when the stream was toggled ON, but 445 and 442 for OFF. This preliminary analysis
indicates that each type of event is uniquely identified by the exchange of pairs (or longer
sequences) of packets of specific lengths.

Once the candidate fingerprints are selected, their usability as device behavior finger-
prints is verified using a detection algorithm. If the maximum number of device behaviors
detected using the device behavior fingerprint is the same (or similar) as the actual number
of device behaviors, and the timestamps of the detected device behaviors match the times-
tamps of the events recorded during the training period, the device behavior fingerprint
is finally determined to be a valid device behavior fingerprint and stored in the device
behavior fingerprint file.

Device behavior fingerprints can be generated for multiple devices and their different
behaviors, forming a dynamically maintained device behavior fingerprint library. The de-
vice behavior fingerprint library includes the device types and traffic fingerprints of various
behaviors. Since device behavior fingerprints may change with changes in manufacturer
software or protocol versions, regular updates and maintenance are required.
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4.3. Virtual User Generation
4.3.1. User Behavior Analysis

The design objective of the virtual user is to make the attacker perceive them as a
real person living in the home based on the traffic characteristics. Therefore, the behavior
associations or habits of the virtual user should closely resemble those of the target home’s
real user. At the same time, the behavior of the virtual user should be sufficiently different
from that of the real user to prevent the attacker from distinguishing between the two. The
behavior of the virtual user should be logically consistent and not conflict with the behavior
of the real user.

The effectiveness of the virtual user concept lies in how to construct a reasonable
sequence of home behaviors for the virtual user. Before doing so, it is important to clarify
which smart home devices and their corresponding behavior activities are associated with
each user behavior pattern. This may vary significantly for different users due to their
individual behavioral habits. Therefore, it is necessary to establish a mapping relationship
between user behaviors and device behaviors in the target home, ensuring that each user
behavior includes a sequence of behaviors from one or more devices. This device behavior
sequence not only includes different types of devices but also captures the sequential
relationships between behaviors of different devices. Therefore, the behavior Ba of a real
user a in a smart home can be represented by the Formula (1).

Ba = {< D1, Event1, Time1 >, . . . , < Di, Eventi, Timei >} (1)

The Di represents the smart home devices present in the household, Eventi represents
the associated device behavior, and Timei represents the occurrence time of the device
behavior. These three parameters can be used to describe the behavior of a smart home user.
In order to model the behavior of smart home users and virtual users in future research, it
is important to have a clear understanding of their actions and patterns.

Since the captured traffic data are continuous, it is necessary to segment the device
behavior streams in the traffic files to ensure that each segmented device behavior stream
accurately represents a user behavior and establish the mapping relationship. Then, based
on these segments, the device-level features of user behavior are extracted, allowing for the
selection of activities to be built for the virtual user and the generation of obfuscated traffic
based on identifiers. Therefore, the first step is to reasonably segment the device behavior
streams in the traffic data.
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(1) Device Behavior Segmentation

Due to the variety and granularity of current smart home devices, directly identifying
and classifying device behaviors from raw device traffic data can be complex. Therefore, it
is possible to first divide the scenarios of smart home users’ daily life patterns. For example,
the user’s daily pattern can be divided into scenarios such as waking up, cooking, leaving
home, coming back home, and sleeping based on time relationships. The main types of
devices involved in each pattern can be predefined. For instance, the “coming back home”
pattern often involves changes in the status of devices such as smart locks, smart lights,
and smart cameras. Then, based on the captured traffic transmission time, the current user
scenario Xi can be preliminarily determined, and the approximate range of devices can be
defined. The corresponding device traffic fingerprints can be extracted from the fingerprint
database, and device behaviors can be identified and classified by matching the traffic
fingerprints. This approach can greatly improve the efficiency of segmentation.

Specifically, device traffic can be divided into Ba = {b1, . . . , bi}, where bi represents a
user behavior, denoted as bi =

{
e1, . . . , ej

}
, and ej is one device behavior within it. The

segmentation is based on three factors: time intervals between traffic fingerprints, proximity
between traffic fingerprints, and the frequency of occurrence of traffic fingerprints [30], as
described below:

(i) Time intervals between traffic fingerprints: By observing the time intervals between
traffic fingerprints, device behaviors can be divided into different time periods or stages.
For example, device behaviors with short time intervals can be grouped together, indicating
that the user performed multiple consecutive device operations within a short period.
Device behaviors with long time intervals can be grouped separately, indicating that the
user performed the next device operation after a longer time.

(ii) Proximity between traffic fingerprints: This factor measures the correlation and
continuity between device behaviors. If there is a strong proximity between the user’s
device behaviors, they can be grouped together. For example, if the user sequentially turns
on the TV, sound system, and lights, indicating a high proximity between these devices,
they can be grouped together.

(iii) Frequency of occurrence of traffic fingerprints: By observing the frequency of
occurrence of traffic fingerprints, device behaviors can be categorized. For example, if a user
frequently turns on a particular device, those frequently occurring device behaviors can be
grouped together, while infrequently occurring device behaviors can be grouped separately.

By considering these three factors, device behavior streams can be effectively seg-
mented and classified.

(2) User Behavior Feature Extraction

Based on segmenting and classifying device behavior streams, we can deduce which
device behaviors belong to the same user behavior and establish an initial mapping rela-
tionship. However, to make the mapping relationship more comprehensive and complete,
further exploration of user behavior features is needed.

Firstly, through observation and analysis, it is evident that smart home user behavior
data exhibit symmetry. This symmetry refers to the regularity and consistency in user
device operations. Specifically, the symmetry behavior features of smart home users can be
manifested in the following aspects:

(i) Symmetry in turning on and off: The symmetry behavior feature of smart home
users can be reflected in the activation and deactivation of devices. For example, if a user
turns on the lights in the living room at a certain time, according to the symmetry feature,
the user is likely to turn off the lights at some future time to maintain the symmetry of
device behavior.

(ii) Symmetry in temporal patterns: The symmetry behavior feature of smart home
users can also be observed in the temporal patterns of device operations. User behaviors
may exhibit symmetry within specific time periods during the day. For instance, if a user
turns on the bedroom air conditioner at a specific time in the evening, according to the
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symmetry feature, the user may also turn off the air conditioner during the subsequent
same time period.

(iii) Symmetry in device combinations: The symmetry behavior feature of smart home
users can be reflected in device combinations. User behaviors may exhibit symmetry when
simultaneously using multiple devices. For example, if a user turns on the television, they
may also turn on the stereo system simultaneously, and then turn them off after a certain
period to maintain the symmetry of device behavior.

Therefore, the behavior symmetry parameter M can be introduced to describe this
user behavior feature.

Furthermore, based on relevant research [31], due to the significant randomness in
smart home user behavior, the device behaviors within the same user behavior class can
be divided into deterministic behaviors and non-deterministic behaviors. For example,
consider a smart motion-sensing light installed at the entrance of a kitchen in a household.
The user’s cooking behavior would involve both deterministic and non-deterministic
behaviors. When the motion sensor detects the user passing by, the light turns on. This
device behavior is deterministic, occurring every time the user engages in cooking. Apart
from deterministic behaviors, there are other behaviors as well. For instance, during the
cooking process, the use of a microwave, refrigerator, or kettle is not always certain. These
uncertain behaviors represent variation and randomness, while deterministic behaviors
constitute inherent characteristics of user behavior. In such cases, the device behaviors
associated with a specific user behavior can be represented as db ∪ nb, where db represents
deterministic behaviors and nb represents non-deterministic behaviors.

In summary, the mapping relationship BD between user behavior and device behavior
can be described using the formula:

BD = ((db + Mdb) ∪ (nb + Mnb)) (2)

(3) User Behavior Connections Exploration

In real smart home environments, user behaviors often follow certain patterns known
as behavioral habits. To effectively protect the privacy of target households’ user behaviors,
this study creates deceptive virtual users whose behaviors differ from real users. To
achieve this, it is necessary to uncover the regularities and patterns of real users’ behavioral
habits. This study considers two main types of associations in the target household’s
behaviors: the association between user behaviors and time, and the association between
user behaviors themselves.

The association between behavior and time represents the relationship between a
behavior and the time it occurs, such as the user’s habit of performing a specific action
at a certain time of the day. Based on relevant studies [32], the probability of a behavior
occurring at a specific time can be calculated by analyzing the behavioral records from the
previous three days or a week, using a time unit of two hours. This probability, denoted
as P1, serves as a parameter for capturing the temporal relationships when constructing
virtual user behaviors.

The association between user behaviors represents the occurrence of other behaviors
when a particular behavior takes place, capturing the temporal order of behaviors based
on real users’ habits. The probability of two behaviors occurring together can be obtained
through statistical analysis of the associations between user behaviors. This probability,
denoted as P2, serves as a parameter for capturing the behavioral relationships when
constructing virtual user behaviors.

Based on the above probability parameters, a preliminary model can be developed to
represent the behavioral habits of real users in smart home environments. This enables the
generation of virtual user behaviors that are more aligned with real users, thus enhancing
the deceptive nature of the generated behaviors. However, it should be noted that this
model is still based on probabilistic parameters derived from statistical analysis and cannot
accurately predict the specific behaviors of each user. Therefore, it is important to con-
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sider other practical factors to improve the accuracy and realism of the generated virtual
user behaviors.

4.3.2. Behavior Sequence Generation

(1) Construction of Virtual User Behaviors

Based on the previous three steps and after obtaining the required information from
the target smart home, the construction of virtual user behaviors begins. This study adopts
a top-down approach to build virtual users. Firstly, the behavior sequences of virtual
users are constructed. Then, for each user behavior, the corresponding sequences of device
behaviors are generated. Finally, traffic fingerprints are extracted from the fingerprint
library corresponding to each device behavior, and obfuscated traffic is injected into the
target home.

According to Equation (1), based on the behavior patterns Ba of real user a, the daily
behavior of virtual user a, denoted as Va, can be described as:

Va = {< Ve0, Time0 >, . . . , < Vei, Timei >} (3)

Vei represents a virtual user behavior, and Timei = < Tbegin, Tend > represents its time
information, including the start time Tbegin and end time Tend. For example, the behavior
pattern “having breakfast from 7 a.m. to 8 a.m. and cooking from 11 a.m. to 12 p.m.”
is part of the user behavior pattern. To avoid suspicion from attackers, it is necessary to
generate dynamic behaviors for virtual users each day. Based on the real users’ behavioral
habits learned in the target household, a function F is used to determine the virtual user’s
behavior Vei and its occurrence time Timei:

< Vei, Timei >= F(Xi, P1, P2, Pasti, Mi) (4)

Xi is the user’s current context at time ti, P1 and P2 are the probabilities of a certain
user behavior occurring, obtained from the analysis of real user behavior habits in terms
of time and behavioral associations, respectively. These probabilities can be derived from
statistical analysis of the learned real user behavior patterns in the target home. Pasti
represents the behaviors that the virtual user has already performed at a specific time, and
Mi is the result of the symmetry analysis of the real user’s already occurred behaviors. By
considering multiple factors, it is possible to simulate the real user’s behavior and ensure
the logical integrity of the virtual user’s own behavior.

If there is a high similarity between real and virtual users, attackers may still be able
to infer the real user’s behavior [33]. Therefore, the behavior patterns of virtual users
should be different from those of real users. Planning the occurrence time of virtual user
behaviors ensures that real and virtual users are engaged in different activities. Based on
the behavioral associations and temporal relationships described earlier, the next behavior
of the virtual user is determined based on the previous behavior and its duration. Thus,
the assigned behaviors to virtual users are logically reasonable.

Furthermore, to strike a balance between smart home privacy protection and band-
width consumption, a privacy protection level f can be introduced. Different privacy
protection levels correspond to different quantities of generated virtual user behaviors. As
the privacy protection level f decreases, the number of generated virtual user behaviors
decreases accordingly. This is because under high privacy protection levels, the generated
virtual user behaviors should closely resemble those of real users to ensure effective ob-
fuscation of real user traffic. However, in situations where network resources are scarce,
an excessive number of virtual user behaviors can have a negative impact on network
performance. Therefore, it is necessary to control the quantity of virtual user behaviors.
Based on the analysis above, the daily behavior Va of a virtual user can be generated using
the following Equation (5):

Va = D (F, f , < Ve0, Time0 >) (5)
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In the above statement, F is the function used to generate virtual user behaviors and
their corresponding time. f is the adjustable privacy protection level, and Ve0 represents the
first behavior of the day, typically waking up. For a virtual user, the time of their waking
up behavior, Time0 can be randomly generated within a certain range. The algorithm for
function D is shown in Algorithm 1. Throughout the day, based on the generated initial
behaviors of the virtual user and referring to the probabilities of real user behavior habits
and the already occurred user behaviors, the virtual user’s behaviors are constructed step
by step in chronological order.

Algorithm 1. Virtual User Behavior Generation

INPUT: Initial behavior of virtual user <Ve0, Time0>
Real user behavior probabilities P1, P2
Current context mode Xi, symmetry test parameter Mi
Confusion level parameter f
OUTPUT: Virtual user’s daily behavior pattern

Va = <Ve0, Time0>, . . ., <Ven, Timen>
DATA: SQLite Fingerprint Database DB

1. Initialize C(f ) as the threshold for the number of virtual user behaviors under the
predetermined f level

2. count = 1
3. Va = <Ve0, Time0>
4. for Houri ∈ [0,23] do
5. if C(f )/24 >= count then
6. Pasti =<Ve0, Time0>, . . ., <Vei, Timei−1>
7. <Vei, Timei>= F(Xi, P1, P2, Pasti, Mi)
8. add <Vei, Timei> to Va
9. count = count + 1
10. end
11. end

(2) Device Event Sequence Generation

After constructing the virtual user’s behavior sequence for a day, the next step is to
generate the corresponding device behavior sequence based on the established mapping
relationship. One key challenge is to ensure the contextual consistency and logical integrity
of the device behavior sequence. Device behaviors are not only influenced by the current
behavior but also by previous behaviors. For example, if the virtual user has previously
turned on the lights in the living room, they should turn off the lights when leaving the
room to maintain the coherence and consistency of device behaviors. Therefore, a symmetry
test is also required for device behaviors.

The symmetry test for device behaviors can effectively reduce the occurrence of two
unfavorable situations for privacy protection:

(i) Continuous virtual device behaviors that may unintentionally leak user privacy. For
example, the sequence of three device behaviors: (real user) turn on the lights→ (virtual
user) turn off the lights→ (virtual user) turn on the lights. In this case, an attacker can still
determine the real state of the lights. To address this, when generating virtual user device
behaviors, we can check if the previous behavior was a real “turn on” behavior and ensure
that subsequent behaviors logically match it.

(ii) Logical conflicts between consecutive virtual device behaviors that render the
confusion ineffective. For example, the sequence of three device behaviors: (virtual user)
turn off the lights→ (virtual user) turn off the lights→ (virtual user) turn off the lights.
When the same behavior occurs consecutively, an attacker may realize the presence of
a virtual user, which could compromise the privacy protection. To mitigate this, when
the virtual user attempts to turn off a device that is already off, a symmetry test can be
performed to validate and correct the logical behavior.
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Additionally, continuous monitoring of the target smart home is necessary. This
includes monitoring the real home environment to ensure the virtual user’s behavior
aligns with the real user’s behavior and promptly detecting any anomalous behaviors. In
the same smart home environment, device behaviors should not create logical conflicts
between home users (real and virtual), so the virtual user’s behavior model needs to be
updated accordingly.

The algorithm for generating the virtual user’s device behavior sequence is presented
in Algorithm 2. It involves symmetry behavior testing and deterministic behavior analysis
based on the obtained user behavior sequence. The occurrence times of device behaviors
are then sorted according to Equation (4), resulting in the final corresponding virtual device
behavior sequence.

Algorithm 2. Device Behavior Sequence Generation

INPUT: Virtual user behavior sequence Va
Symmetry test parameter Mi
Association between user behavior and device behavior BD
Confusion level parameter f
OUTPUT: Device behavior sequence Ea = {de1, de2, . . ., den}

1. Decompose Va into user behavior and time sequence
2. <Ve0, Time0>, . . ., <Vem, Timem>.
3. count = 1
4. while count ≤ m do
5. i = count
6. dei = F (d0, t0, BD)
7. if Mi
8. add dei to Ea
9. else
10. continue
11. count = count + 1
12. end

4.4. Obfuscated Traffic Injection

After generating the behavior of virtual users and the corresponding device behavior
sequences, the corresponding device behavior traffic fingerprints will be extracted from the
fingerprint library and injected into the smart home outbound traffic through the gateway.

The construction process of obfuscating data packets is as follows: based on the
captured original network traffic, the packet size and direction are determined according
to the traffic fingerprint. By using MAC addresses that are similar or identical to real
devices, attackers can be misled in the first step of identifying all device types within
a home, thus affecting the subsequent stages of behavior identification. Additionally,
virtual devices can be constructed using MAC addresses that are identical to real devices,
effectively obfuscating the device behavior of a specific device and making it difficult for
attackers to distinguish whether the identified device behavior comes from a real device.
The obfuscated data packets use the same destination/source IP, port numbers, etc., as the
real device traffic. The payload can be filled using relevant packet construction tools and
dynamically adjusted.

Many smart home devices have bidirectional traffic interactions, such as smart voice
assistants, which frequently exchange data with device cloud services during operation.
The behavior traffic fingerprints of such devices are mostly bidirectional. To simulate this
bidirectional interaction at the gateway exit, traffic obfuscation units can be deployed on
both the local gateway and remote servers. When the gateway transmits traffic outward,
the remote server masquerades as a role in the smart home device cloud service, responding
to the “traffic demands” of the local virtual devices by sending obfuscated traffic to the
gateway server. Within the limits of cost, the number of remote servers can be increased,
establishing a many-to-one mapping relationship with the smart home gateway. This way,
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if one remote server is unable to work due to an attack or other reasons, other servers can
still provide obfuscation support, ensuring the reliability and stability of privacy protection
methods. By injecting bidirectional traffic between the gateway and cloud services, the
obfuscated traffic becomes more covert, making it difficult for attackers to differentiate
between real and virtual device traffic and thus making it challenging for attackers to target
smart homes.

Based on the above, traffic obfuscation methods often incur certain network bandwidth
overhead, which may increase the latency of smart home devices and affect user experience.
For sensitive devices such as smart speakers that require high network performance,
excessive network latency can also impact the normal functionality of the device. Therefore,
to strike a better balance between privacy protection in smart homes and bandwidth
overhead, SHTObfuscator provides three different levels of obfuscation intensity: Level I,
Level II, and Level III. Under different obfuscation levels, the density of virtual user
behaviors will correspondingly increase or decrease, resulting in flexible changes in the
bandwidth overhead caused by obfuscated traffic. Smart home users can dynamically
adjust the obfuscation intensity based on the current network conditions at home to achieve
the best outcome.

According to related research [34], real smart home users generate an average of
30 behaviors per day. Therefore, for Level I obfuscation, approximately 15 user behaviors
can be generated for each virtual user per day. For Level II obfuscation, approximately
30 user behaviors can be generated per virtual user per day. For Level III obfuscation,
approximately 45 user behaviors can be generated per virtual user per day. By changing
the obfuscation intensity to modify the number of user behaviors, the required size of
obfuscated traffic can be adjusted, achieving a balance between privacy protection and
bandwidth consumption optimization.

Based on observations of laboratory smart home devices, it has been found that
the effectiveness of the attack model varies between day and night, with less privacy
information exposed during the night. This is because fewer smart home devices are
active during the night when users are asleep. Therefore, it is possible to reduce the
obfuscation intensity during nighttime to save costs. Since there is a significant difference
in the number of user behaviors between daytime and nighttime for real users, and the
purpose of designing virtual users is to make attackers perceive them as real individuals,
it is unnecessary to obfuscate the traffic patterns of daytime and nighttime into the same
pattern. This functionality can be implemented in the subsequent system implementation
to be automatically handled by the system itself without requiring manual switching by
users. Of course, this should be done under the premise of confirming that the user is not
staying up late or has already fallen asleep.

Meanwhile, in the subsequent system implementation, an adaptive obfuscation
method can be designed to allow the system to determine the current time and auto-
matically adjust the obfuscation intensity based on different time periods, thereby ensuring
the balance between the security of privacy information and cost-effectiveness. For example,
during nighttime periods, the system can choose to appropriately reduce the obfuscation
intensity to reduce resource consumption, while during daytime periods, the system can
use stronger obfuscation intensity to ensure the security of privacy information.

This adaptive obfuscation method can be implemented in the system through program-
ming languages. The current time can be obtained using modules such as “datetime” in
Python, and then the obfuscation intensity can be adjusted based on conditional statements
according to the time period. At the same time, the actual usage patterns of users, such as
their sleep time and habits, should be considered during the implementation process to
avoid excessive or insufficient obfuscation when users need to use smart home devices.

In conclusion, the adaptive obfuscation method can balance the security of privacy in-
formation while saving network bandwidth resources and improving the cost-effectiveness
of the system. During implementation, the user’s usage habits and time factors should be
considered to make the system more intelligent and flexible.
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5. Experimental Evaluation
5.1. Experimental Setup

The padding process is application independent and can be performed at the transport,
network, and link layers. The padding mechanism can be implemented in software, acting
as a middlebox on devices, such as a home router and gateway.

The experimental environment topology, as shown in Figure 5, consists of seven types of
smart home devices such as smart cameras and smart speakers, as well as non-smart home
devices such as smartphones and computers. These devices are connected to the smart home
gateway via WiFi and interact with a cloud server, forming a smart home living scenario. The
smart home gateway is deployed with the SHTProtector traffic privacy protection system,
and the remote server supports bidirectional injection of obfuscated traffic.
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The hardware and software information of the smart home gateway based on OpenWrt
is provided in Table 1.

Table 1. Hardware and Software Information.

Component Specifications

CPU i5-8400
RAM 8 GB

OpenWrt 19.07
DNSmasq 2.8.5
Hostapd v2.10-devel

The real environment of the experiments is shown in Figure 6, including the smart home
gateway and smart home devices (including cameras, smart speakers, and smart sensors).

The dataset used to generate traffic fingerprints consists of device traffic captured in
the real laboratory environment. The laboratory environment dataset includes behavioral
traffic and idle traffic from 10 devices. The device types include 7 smart home devices
and 3 non-smart home devices, as shown in Table 2. The collection time for idle traffic
is 10 min, while the collection of behavioral traffic is manually triggered based on the
functional behaviors of each device. During the collection process, only the target smart
home devices and non-smart home devices are in an active state. Each device behavior
is triggered 30 times, with each trigger lasting 10 s, and the time of each behavior trigger
is recorded.
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Table 2. Laboratory Device Information.

Manufacturer Name Function Device Behavior

Lenovo Camera Fingerprinting View monitoring
Xiaomi Smart Pan-Tilt Camera Fingerprinting Recording

Hikvision Ezviz Camera Fingerprinting Recording
Baidu Xiaodu Speaker Fingerprinting Conversation
Aqara Smart Light Fingerprinting On/Off
Aqara Motion Sensor Fingerprinting Motion detection
Aqara Smart Switch Fingerprinting On/Off

Huawei Mate20 Smartphone Background Video browsing
Lenovo IdeaPad 16 Laptop Background File downloading
Lenovo ThinkPad Laptop Background Standby

To evaluate the functionalities of the SHTProtector smart home privacy protection
system, the following experiments were designed to validate the effectiveness of vari-
ous modules, including the deceptive nature of virtual traffic, the effectiveness of traffic
obfuscation methods, and the efficacy of privacy balancing optimization.

5.1.1. Traffic Obfuscation Effectiveness Experiment

This experiment consists of two parts: device behavior recognition experiment and
user behavior inference experiment.

(i) Device Behavior Recognition Experiment: The objective is to verify the deceptive
nature of virtual traffic. Assume that an attacker extracts device behavior fingerprints from
the dataset and trains a random forest classification model, this model is used to detect
whether injected packets can be identified by the attacker as the expected device behavior
and whether fake packets can be distinguished from real packets.

(ii) User Behavior Inference Experiment: The purpose is to validate the effectiveness
of the obfuscation methods. Using a commonly used Hidden Markov Model (HMM) in
the smart home domain, user behavior inference is performed to evaluate the obfuscation
effect of the proposed traffic obfuscation method on the user behavior inference model.

5.1.2. Traffic Obfuscation Overhead Experiment

The goal of this experiment is to test the obfuscation effect and bandwidth overhead
under different defense levels, in order to verify the balance between privacy protection
strength and bandwidth overhead. The experiment evaluates the obfuscation effect and
household traffic size under different defense levels and includes a control group for
comparison, aiming to validate the effectiveness of privacy balancing optimization.
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5.2. Efficiency of Obfuscation

Assume that attackers extract device behavior fingerprints from a dataset, they trained
a random forest classification model. This model is used to detect whether injected packets
can be recognized by the attacker as the intended device behavior and whether fake packets
can be distinguished from real ones.

The results of the device behavior inference experiment are presented in Table 3.
The recall rate of device behavior inference represents the ratio of successfully inferred
behaviors to the total number of behaviors. The precision of device behavior inference
represents the ratio of correctly inferred events to the total number of inferred events. The
F1 score is the harmonic mean of both metrics. From the experimental results, it can be
observed that the recall rate and F1 score of virtual packets used for confusion are very
similar to those of real packets. This indicates that attackers tend to identify the behavior
of virtual users as real device behavior, thus validating the high deceptive nature of the
generated confusing traffic based on the proposed method in this paper. It effectively
confuses attackers in real-world scenarios.

Table 3. Device Behavior Recognition Results.

Device Behavior Real Virtual

Device Behavior F1 Score (%) F1 Score (%)

Xiaomi Camera Record 91.7 91.1
Aqara Switch Turn On 98.0 98.3

Xiaodu Speaker Talk 91.5 93.0
Smart Light Turn On 97.4 96.3

Motion Sensor Sensor 96.6 96.5

After inferring device behavior, attackers need to construct a new classification model
to infer user behavior. Previous research [35] has shown that Hidden Markov Models
(HMMs) perform well in inferring user behavior in smart home environments. Based on
observations and usage of smart home devices in a laboratory environment, the following
analysis is presented:

In a smart home environment, user behavior typically involves multiple smart home
devices. For example, the user’s behavior of returning home may involve actions such as
unlocking the door, turning on lights, adjusting the thermostat, and activating smart plugs.
In such cases, attackers can use HMMs to infer user behavior from the states of smart home
devices. The fundamental assumption of HMMs is that the hidden state forms a Markov
chain, meaning that the current hidden state only depends on the previous hidden state
and is independent of previous states. Therefore, when attackers observe a sequence of
states from smart home devices, they can use HMMs to predict the sequence of hidden
states (i.e., user behavior) and infer the user’s privacy information.

Since the effectiveness of classifying device behavior attacks has been experimentally
validated in the previous step, it is possible to identify the device behavior sequence within
a specific time period in the home using a classification model. Therefore, a training dataset
can be created, which includes sequences of device behavior and their corresponding user
behaviors. Attackers can use this dataset to train an HMM and utilize the HMM to infer
user behavior.

Table 4 shows the user behaviors and the underlying device behaviors involved. As
shown in Table 5, the experimental results of user behavior inference before and after traffic
obfuscation demonstrate that the proposed traffic obfuscation method has a good effect
on confusing the classification model for user behavior inference. It effectively reduces
the inference accuracy of the classification model for user behaviors such as leaving home,
returning home, sleeping, waking up, and walking. The detailed experimental results can
be found in the Appendix A.
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Table 4. User and Device Behavior.

User Behavior Relevant Device Behavior

Control Smart Light Turn on, turn off, change color, adjust brightness

Control Smart Plug Turn on, turn off

Talk to Smart Speaker Turn on and engage in conversation with smart speaker

Sleep Activate camera, turn on motion sensor, turn off smart light

Wake Up Turn off motion sensor, turn off camera, turn on speaker

Leave Home Turn off motion sensor, turn on camera, turn off light, unlock/lock door

Back Home Unlock/lock door, turn on light, turn on motion sensor, turn off camera

Table 5. User Behavior Recognition Results under Different Defense Levels.

Original Level I Level II Level III

Behavior F1 Score (%)

Leave Home 92.2 31.4 27.3 22.6
Return Home 91.4 29.1 23.1 21.4

Sleep 90.6 28.0 24.6 19.3
Wake Up 91.3 26.3 22.7 18.0

Walk 94.5 25.6 22.8 19.5

Based on the key steps of the proposed SHTObfuscator method, the traffic obfuscation
process was simulated on the dataset. The obfuscated traffic was then tested using the
HMM user behavior inference model mentioned earlier. In addition, packet padding and
traffic shaping methods were included as a comparison. The detailed experimental results,
shown in Figure A1, demonstrate that the three obfuscation levels of the SHTObfuscator
method significantly reduce the F1 scores of the attack model for all seven user behaviors,
indicating effective privacy protection.

Among the compared traffic obfuscation methods, the effectiveness of packet padding
surpasses that of obfuscation levels I and II. This is likely due to the ability of packet
padding to directly alter the fundamental feature of packet size, providing more direct
obfuscation for simple user behaviors such as controlling a single device. However, packet
padding requires high granularity and results in significant bandwidth consumption.

Under the highest obfuscation level III, SHTObfuscator outperforms packet padding in
obfuscating complex user behaviors, and the obfuscation levels I and II also yield better re-
sults compared to traffic shaping. Through these experimental comparisons, it is confirmed
that the SHTObfuscator method exhibits excellent privacy protection performance.

5.3. Overhead Evaluation

The traffic obfuscation overhead experiment primarily focuses on comparing the
network bandwidth consumption of SHTProtector at different obfuscation levels and testing
the functionality of the privacy balancing module. The experiment involves collecting and
comparing the sizes of traffic generated by smart home devices and their corresponding
obfuscation effects (measured by the F1 score of the obfuscated attack model) over the
course of one week after deploying the gateway. The average values are calculated for each
obfuscation level.

Table 6 presents the results of the privacy balancing optimization experiment. For the
three different levels of traffic obfuscation, the SHTProtector privacy protection system
incurs approximately 6.7–17.8% additional bandwidth consumption, resulting in a decrease
in the F1 score of the attack model from around 95% to 29.4–20.6%, with an average of
approximately 25%. Compared to the control group methods such as packet padding,
traffic shaping, and fake traffic injection, SHTProtector achieves a good balance between
obfuscation effectiveness and lower bandwidth consumption.
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Table 6. Overhead Evaluation of Padding Strategy.

Method Effectiveness (%) Traffic Overhead (%)

Original Traffic - 310 MB -
Obfuscation Level I 29.4 331 MB 6.7
Obfuscation Level II 25.5 346 MB 11.6
Obfuscation Level III 20.6 365 MB 17.8

Packet Padding 21.3 - 87.5
Traffic Shaping 33.2 - 29.0

Fake Traffic Injection 28.3 - 31.1

Compared to existing related research, our study has made significant improvements
to the smart home traffic obfuscation method based on the concept of virtual users. We have
adopted a bidirectional traffic injection approach, enabling the obfuscated traffic to more
realistically simulate the interactions among smart home devices. By injecting obfuscated
traffic into the network, we increase the difficulty for attackers to analyze and identify
traffic patterns, thereby enhancing the effectiveness of privacy protection.

It is worth noting that we have carefully considered the issue of logical integrity
during the process of injecting obfuscated traffic. The obfuscated traffic not only effectively
hides the users’ real behaviors but also ensures that it does not cause system anomalies or
data loss. Through a well-designed bidirectional traffic injection strategy, we maintain the
coherence and interpretability of the traffic, making the obfuscated traffic more realistic
and less detectable by potential attackers.

In addition to improving the quality of obfuscated traffic, this study also addresses
the problem of bandwidth consumption during the traffic obfuscation process. We have
achieved adaptive control of traffic obfuscation, allowing users to choose appropriate
levels of protection based on their specific needs and privacy requirements. This balanced
approach between privacy protection and cost control provides smart home users with
more personalized privacy protection solutions.

Overall, the proposed smart home traffic obfuscation method based on virtual users
not only enhances privacy protection but also considers the feasibility and practicality of
traffic obfuscation. It offers an effective and feasible solution for data security and privacy
protection in smart home environments, providing strong support for the security and
privacy of future smart home systems.

6. Conclusions and Prospect

In recent years, the smart home industry has experienced rapid growth. While smart
home devices provide users with convenient and intelligent living experiences, they also
reflect users’ household behaviors in traffic data, which poses privacy risks. To address
the issue of smart home traffic privacy protection, this paper proposes an enhanced smart
home traffic obfuscation method called SHTObfuscator, and designs and implements a
smart home traffic privacy protection system called SHTProtector. The main contributions
of this paper are as follows:

(1) Based on the concept of virtual users, an improved traffic obfuscation method,
SHTObfuscator, is proposed. This method injects traffic fingerprints of different device
behaviors into the real traffic environment of smart homes as obfuscated traffic. It effectively
prevents attackers from distinguishing the real device operation status and user behavior
privacy in the home, thereby reducing the effectiveness of traffic classification attack
models. It also provides different levels of protection to achieve a balance between privacy
protection and bandwidth overhead.

(2) A virtual user behavior construction method based on logical integrity is proposed.
This paper classifies the different behaviors of virtual users and their corresponding device
behaviors and considers the logical relationship between virtual user behaviors and real
user behaviors. The method ensures that the constructed virtual user behaviors have a
high level of deception while performing traffic obfuscation.
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(3) The design and testing of an adaptive smart home traffic privacy protection system.
Based on the SHTObfuscator traffic obfuscation method, a smart home traffic privacy
protection system, SHTProtector, is designed and implemented. It includes functions such
as device identification, traffic fingerprint extraction, obfuscated traffic injection, and pri-
vacy balance optimization. Experiments are conducted in an experimental environment
composed of smart home gateways and smart home devices to evaluate device identifica-
tion monitoring, traffic fingerprint extraction, traffic obfuscation effectiveness, and traffic
obfuscation overhead, thereby validating the effectiveness of the proposed methods.

Based on the research on smart home traffic obfuscation methods, further exploration
is needed in the following areas:

(1) It is necessary to continue investigating the bandwidth consumption introduced
by the virtual user based smart home traffic obfuscation method in real environments and
find a better balance between privacy protection strength and bandwidth consumption.

(2) This paper primarily focuses on the case of a single virtual user. Further research is
needed to explore obfuscation methods for constructing multiple virtual users.

(3) For smart home privacy protection systems, further research is needed on how to
make the system more intelligent in adjusting traffic obfuscation modes to achieve more
efficient utilization of computational resources.
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Abstract: Advanced Persistent Threat (APT) seriously threatens a nation’s cyberspace security. Cur‑
rent defense technologies are typically unable to detect it effectively since APT attack is complex and
the signatures for detection are not clear. To enhance the understanding of APT attacks, in this paper,
a novel approach for extracting APT attack events from web texts is proposed. First, the APT event
types and event schema are defined. Secondly, an APT attack event extraction dataset in Chinese
is constructed. Finally, an APT attack event extraction model based on the BERT‑BiGRU‑CRF archi‑
tecture is proposed. Comparative experiments are conducted with ERNIE, BERT, and BERT‑BiGRU‑
CRFmodels, and the results show that theAPT attack event extractionmodel based on BERT‑BiGRU‑
CRF achieves the highest F1 value, indicating the best extraction performance. Currently, there is
seldom APT event extraction research, the work in this paper contributes a new method to Cyber
Threat Intelligence (CTI) analysis. By considering the multi‑stages, complexity of APT attacks, and
the data source from huge credible web texts, the APT event extraction method enhances the under‑
standing of APT attacks and is helpful to improve APT attack detection capabilities.

Keywords: network security; event extraction; deep learning; APT event; BERT‑BiGRU‑CRF

1. Introduction
APT refers to the sustained and effective attack activities of an organization against

specific objects. It is defined as attackers with complex technologies to create opportunities
with rich resources to achieve their own purposes [1]. APT aims to attack infrastructure
and steal sensitive intelligence and has a strong national strategic intention so that the
network security threat has evolved from a random attack to a purposeful, organized, and
premeditated group attack [2]. APT seriously threatens the nation’s cyberspace security.
In recent years, organized APT attacks continue to occur at a high rate [3]. APT attacks are
rampant and frequent, so it is urgent to carry out more research to improve detection and
defense technology.

Current APT defense solutions include detection based on APT attack life cycle, big
data analysis, and dynamic behavior analysis [4–12]. Unfortunately, current defense tech‑
nologies are unable to detect an APT attack accurately in time, since APT attacks are highly
targeted, have strong concealment, and have a long duration. More work is needed to un‑
derstand APT attack features for effective detection. Currently, the APT sample data are
not sufficient and the features for detection are not clear.

Except for traditional attack detectionmethods, there is a new direction as CTI has ap‑
peared. Threat intelligence information is analyzed and shared to improve detection accu‑
racy, shorten response time, and reduce defense costs. CTI research includes the following:
(1) CTI sharing; there are some works on CTI sharing [13–15] whereby researchers have
studied the CTI sharing framework and format. (2) CTI analysis; to analyze CTI automati‑
cally from huge sources, Information Extraction (IE) attracts researchers’ interest naturally.
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Knowledge Graphs (KG) and Indicators of Compromise (IOC) are extracted from unstruc‑
tured CTI texts [16,17]. It should be noted that most CTI research is in English. More CTI
research in Chinese is needed.

Regarding CTI analysis research, currently, there is seldom specific CTI research for
APT attacks. CTI analysis for APT attacks will bring benefit to understanding APT attack
features. This is definitely helpful for APT detection. From the previous investigation, it
was observed that many reports and articles on APT‑related vulnerabilities, security re‑
ports, event analysis, corresponding organizations, and attack alarms are published from
authoritative network security technology centers, major manufacturers, research institu‑
tions, honker organizations, forums, etc. They are good data sources for APT CTI analysis.
At the same time, sometimes organizations are alarmed that they will launch an APT to
a specific field or affiliation at a specific time, even with some details described. In addi‑
tion, the same APT attack sometimes can be launched at different times in different fields.
Such important information is worth analyzing carefully to strengthen the APT detection
ability. To collect big data and accelerate data analysis, it is imperative to study automatic
information exaction methods.

This paper explores a new APT event extraction method based on deep learning with
orienting APT Web texts in Chinese. We address the following objectives:
(1) An APT event schema is proposed based on analyzing APT attack stages. Event

schemas are different in different fields. For APT events, it needs to define a proper
schema to extract effective information.

(2) An APT event dataset in Chinese is constructed to train models. There is no APT
event dataset although there are many event datasets. It is necessary to construct a
corresponding dataset to train extraction models.

(3) An APT event extraction method based on the BERT‑BiGRU‑CRF model is proposed.
This offers numerous advantages, which are helpful for solving the issues of insuffi‑
cient attack sample data and low detection accuracy.
This research provides a novel CTI analysis method to extract APT events from cred‑

ible web texts. The current CTI analysis is mainly about KG construction and IOC extrac‑
tion. There is little CTI analysis of APT event extraction. Event extraction is proper to
extract APT attack features, since event types are proper to express different APT attack
stages, and rich event arguments are applicable to extract APT attack signatures. At the
same time, this paper studies the APT event extraction from Chinese web texts. Most of
the existing CIT analysis is in English. In the Chinese language, there is no blank space
between words in a sentence. It needs to first cut words. The accuracy of cut words im‑
pacts downstream extraction tasks. In addition, Chinese word semantics are richer, and
sentence structures are more complex than English ones.

The remainder of this paper is organized as follows: Section 2 describes relatedworks.
Section 3 details our proposal for APT event extraction. Section 4 reports the results of our
experiments. Finally, the conclusion and discussion are presented in Section 5.

2. Related Works
2.1. APT Attack Detection Method

From the perspective of the APT attack detection method, the traditional solutions
mainly focus on three aspects: (1) Detection based on the APT attack lifecycle. Yang [4]
proposed a classification frame of APT attack behavior based on phased characteristics to
fully understand APT attack behavior. In article [5], it is proposed that a classification and
evaluation method of APT attack behavior is based on stage characteristics. (2) Detection
based on big data analysis. Fu [6] analyzed four APT attack detection technologies based
on big data analysis. Chen [7] analyzed large data processing technologies to solve the
real‑time restoration and analysis of high‑performance network traffic. Wang [8] analyzed
data on user access control, data isolation, data integrity, privacy protection, security audit,
advanced persistent attack prevention, etc. (3) Detection based on dynamic behavior anal‑
ysis. Sun [9] applied themethod that runs virus samples in the sandbox or virtual machine
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to analyze the dynamic behavior of the APT virus. Sun [10] proposed a new APT detec‑
tion model by combiningMapReduce and the support vector machine (SVM) algorithm to
reduce calculation costs. Eslam [11] studied the dynamic Windows malicious code detec‑
tion method based on context understanding analysis of API calls. Hamid [12] proposed a
method of deep learning for static and dynamic malware detection. Zhang [18] proposed
a mathematical backdoor model to summarize all kinds of backdoor attacks.

2.2. CTI Analysis
In addition to the above methods, in recent years CTI research appears which pro‑

vides a new direction for carrying out the cyber‑attack defense. CTI research mainly in‑
cludes CTI sharing and analysis. CTI sharing studies the sharing format, standard, and
framework [13–15,19,20]. As for CTI analysis, there are many types of research based on
IE from Nature Language Processing (NLP). IE and textual data mining of open‑source
intelligence on the Web have become increasingly important topics in cyber security [16].
Liao [21] proposed iACE, a new solution for fully automated IOC extraction to obtain IP,
MD5, and other IOC‑like strings in the articles. Husari [22] developed automated and
context‑aware analytics of CTI to accurately learn attack patterns from commonly avail‑
able CTI sources. Zhu [23] designed a network security knowledge ontology to construct
KG from CTI sources. While inconsistencies exist in the constructed KG, Jo [16] studied
semantic inconsistencies in findingmethods. There is research on IOC extraction, malware
KG construction, inconsistency checks, etc. While there is no specific APT‑related CTI in‑
formation extraction.

2.3. Event Extraction
For IE, it includes entity, entity relations, event, and event relation extractions. Event

and relation extraction methods include the following: (1) Pattern matching, such
as [24–27]. (2) Pattern matching and machine learning combination, such as [28–31].
(3) Deep learning, such as [32–36]. In [37], a tree‑based neural network model is proposed
to learn syntactic features automatically. The bidirectional recurrent neural networks de‑
scribed in [38] with a joint framework show good extraction performance. At the same
time, event extraction data source and application fields are extended. Ritter presented a
novel approach for discovering important event categories and classifying extracted events
based on latent variable models from Twitter [39]. Lu studied event extraction in question‑
and‑answer tasks and proposed a question–generation model to generate questions [40].
There are some IE works to unify the extraction model. The various IE predictions are
unified into a linearized hierarchical expression under a GLMmodel [41]. There are many
event extraction works but few for APT event extraction. Since APT is complex with multi‑
ple stages, it is meaningful to apply event extraction technology to describe the stages and
features of APT attacks accurately.

To train extraction models, event extraction corpora and datasets are needed. There
are many event corpora [42–45] but no APT‑related event dataset.

In conclusion, it is interesting to extract APT events fromCTI web texts based on deep
learning technology. ConsideringAPTdefense’s existing issues, namely, weakpenetration
protection, low detection accuracy, difficulty in obtaining evidence of attack range, and un‑
known new attack response, it is worth studying to extract information from unstructured
APT‑related texts, which can help understand APT attacks more completely. In this paper,
based on current CTI analysis and event extraction technology, an APT event schema is
proposed, an APT event dataset is constructed, and an APT event extraction method is
proposed based on BERT‑BiGRU‑CRF.

3. Materials and Methods
The overview of the APT event extraction method is shown in Figure 1.
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It consists of a data collector, preprocessor, schema definition, annotation, and extrac‑
tion model. (1) The data collector collects data from different sources, including web texts
and reports. Different plugs are designed to handlemultiple data sources. (2) Data are pre‑
processed to unify format and remove stop words, etc. (3) APT event types and schema
are defined. (4) According to the schema, the APT event dataset is constructed for further
model training. (5) The BERT‑BiGRU‑CRF model is trained to extract APT events.

3.1. Data Source and Preprocess
At first, corresponding data are collected and preprocessed. The key point is to find

credible data sources for APT texts. As shown in Table 1, they are some credible websites
that can provide potential APT information sources.

Table 1. APT information sources.

Types of Web Sites Detail Information

Authoritative network security
technology center

https://www.cert.org.cn/ *
https://www.cnvd.org.cn/ *

https://cve.mitre.org/
https://nvd.nist.gov/

https://www.cvedetails.com/

Major manufacturers https://www.oracle.com/security‑alerts/
https://msrc.microsoft.com/update‑guide/ *

Research institutions
https://www.kaspersky.com.cn/ *
https://www.nsfocus.com.cn/ *
https://www.qianxin.com/ *

Forum honker or hacker organizations and forums

APT dataset https://github.com/cyber‑research/APTMalware
Note: The links with * mean that the web texts are in Chinese.

The APT data collector is designed to acquire APT‑related vulnerabilities, security
reports, event analysis, corresponding organizations, alarms, etc. A distributed webpage
crawler system based on the Scrapy framework is designed and implemented. The follow‑
ing rules are considered: (1) A distributed structure is used to improve crawling speed
by easily adding hosts. (2) Modularization architecture is used for improved scalability.
When adding a new target website, it can focus on creating a specific code for the web‑
site’s crawling, parsing, and loading rules, while no big change is required for the com‑
mon module. (3) It shall be easy to deploy. (4) There is real‑time monitoring. (5) It has
high performance.

Data preprocessing is necessary. It includes the following steps: (1) Remove the html
label such as <a, <font, etc. Such labels are filtered and real content is obtained. (2) Down‑
load a file if a downloadable file is found. (3) Cut words and remove stop words. A word
dictionary and stop word table are built for APT texts. The APT dictionary includes huge
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network security words of APT attacks, new APT technologies, related affiliations, ad‑
dresses, and period reference pronouns. At the same time, a customized stop word table is
created for APT attacks. These are intended to improveword cutting accuracy. (4) Remove
the spam content, such as advertisements.

The acquisition of APT attack texts mainly adopts crawler technology, using the re‑
quests library in Python to request page data fromwebpages. For example, for theQi’anxin
Threat Intelligence Center, the BeautifulSoup library is used to complete the parsing of
page data. After downloading, each article is named with the title of each event, and the
content includes the title, time, and description of the APT attack. Afterward, further pro‑
cessing is carried out on the crawled information, such as removing duplicate content. For
some websites, an anti‑crawler mechanism exists, so a manual copy is used.

3.2. APT Attack Stages and Event Schema
The APT attack has a complex long duration and is hard to detect. There are some

existing works that studied the APT stages. In [46], it described an APT attack tree model,
including reconnaissance, establishing a foothold, lateral movement, exfiltration or imped‑
iment, and post‑exfiltration or post‑impediment stages. In [47–49], the APT lifecycle is di‑
vided into three stages: attack prelude, intrusion implementation, and subsequent attacks.

According to the APT lifecycle, when defining the event schema for APT, it is nec‑
essary to consider APT stages. We define the APT event categories, which match the
stages. The lifecycle of an APT attack includes three stages, as shown in Figure 2. In
different stages, it has different key features or signatures, which can be defined as APT
event arguments.
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Figure 2. The lifecycle of APT attacks.

In our research, to simplify the problem, we focus on the stages of preparation before
attack and implementation. By analyzing the stages, we define the schema: (1) Define
two event categories: preparation and implementation. (2) In each category, according to
typical APT attack types, we define nine APT event types. (3) For each APT event type,
we define the corresponding arguments. The schema of the APT event is defined below
in Table 2.

Table 2. APT categories, event types, and arguments.

NO. Event
Category Event Type Argument

Role1
Argument
Role2

Argument
Role3

Argument
Role4

Argument
Role5

1
Preparation

Spear phishing attack Fake file True file Attacker Target Attack tactics
2 Water hole attack Fake file True file Attack weapon
3 Scan Target
4 Steal information Attacker Target Stolen target Attack weapon
5

Implementation

Trojan Attacker Target Attack weapon Attack tactics
6 Worm Attacker Target Attack weapon
7 Back door Attacker Target Attack weapon
8 Virus Attacker Target Attack weapon Attack tactics
9 Vulnerability exploitation Attacker Target Attack weapon Attack tactics

3.3. APT Dataset Construction
At present, there are many event datasets, but unfortunately, there is no existing

event dataset for APT events. To train the model, it needs to construct an APT event
dataset. Referring to the annotation method of DuEE1.0 (Chinese event extraction dataset)
from Baidu released in 2020, we annotated APT event samples of an APT dataset. This
annotation method is beneficial to define different event types and the flexibility of the
corresponding arguments.
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An example template of annotation for a single APT attack event is shown in Figure 3.
The annotated events are saved in the data exchange format JSON, which is not only con‑
venient for conversion but also easy to read.
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The annotated events are saved in a JSON tree structure. There are many indenta‑
tions, line breaks, and spaces that take up a lot of space. To save space, we save each
annotated event as a single line. Therefore, when annotating events and writing them into
a JSON file, the JSON is compressed by setting the attributes (setting the dump() function’s
indent = 4, separators = (‘,’, ‘:’) ). Each line of the generated JSONfile is the extraction result
of one event, and the new line is another event. As in Figure 4.
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Figure 4. APT attack event dataset.

Finally, the APT event dataset is constructed, resulting in a total of 130 event informa‑
tion types. Although the size is not big, it covers the main APT attack stages, attack types,
etc. It is divided into training sets, validation sets, and testing sets in a ratio of 8:1:1.

3.4. APT Attack Event Extraction Based on BERT‑BiGRU‑CRF
The event extraction tasks for an APT attack include the identification of event types

according to the defined APT event type and arguments schema, and the extraction of all
related arguments. After our investigation and large experiments, the BERT‑BiGRU‑CRF
model is constructed to extract APT events and shows good performance. The overview of
the APT event extraction model based on BERT‑BiGRU‑CRF is shown in Figure 5
as follows:
(1) BERT layer. At first, the BERT model is applied to pre‑train word vectors. The BERT

encoding layer is located at the bottom of themodel. In the encoding layer, tokens are
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segmented from the input of APT texts, and the segmented tokens are transformed
into corresponding word vectors by extracting the semantic feature.

(2) BiGRU layer. Secondly, it connects with BiGRU to carry out the APT trigger word
and event argument extraction. The pre‑trained word vector is fed into the BiGRU
layer, which will continue to extract its features and obtain the emission matrix of
its sequence. The final output is the predicted label (APT‑related trigger word or
arguments defined in the schema) corresponding to each word.

(3) CRF layer. The obtained result is then constrained by the CRF layer and its transfer
matrix is obtained. Ultimately, the optimal label sequence is output.

Electronics 2023, 12, x FOR PEER REVIEW  7  of  15 
 

 

3.4. APT Attack Event Extraction Based on BERT‐BiGRU‐CRF   

The event extraction tasks for an APT attack include the identification of event types 

according to the defined APT event type and arguments schema, and the extraction of all 

related arguments. After our investigation and large experiments, the BERT-BiGRU-CRF 

model is constructed to extract APT events and shows good performance. The overview 

of the APT event extraction model based on BERT-BiGRU-CRF is shown in Figure 5 as 

follows: 

Output the optimal label sequence

B-Attacker   I-Attacker  I-Attacker B-Vulnerability  I-Vulnerability                          B-Target  I-Target

CRF

BiGRU

BERT 

Input

Output

CRF

BERT

GRU GRU GRU GRU GRU GRU GRU GRU GRU GRU

e7e1 e6e5e4e3e2 e8 e9 e10e0 e11

GRU

e12

h7h1 h6h5h4h3h2 h8 h9 h10 h11

洞蔓 漏用利花灵 攻 击 我CLS 国 SEP

Man          ling          flower                   exploit                   vulnerability                    attack         our        country  

Figure 5. Overview of the APT event extraction model based on BERT-BiGRU-CRF. 

(1) BERT layer. At first, the BERT model is applied to pre-train word vectors. The BERT 

encoding layer is located at the bottom of the model. In the encoding layer, tokens 

are  segmented  from  the  input  of  APT  texts,  and  the  segmented  tokens  are 

transformed into corresponding word vectors by extracting the semantic feature. 

(2) BiGRU layer. Secondly, it connects with BiGRU to carry out the APT trigger word 

and event argument extraction. The pre-trained word vector is fed into the BiGRU 

layer, which will continue to extract its features and obtain the emission matrix of its 

sequence.  The  final  output  is  the  predicted  label  (APT-related  trigger  word  or 

arguments defined in the schema) corresponding to each word.   

(3) CRF layer. The obtained result is then constrained by the CRF layer and its transfer 

matrix is obtained. Ultimately, the optimal label sequence is output. 

3.4.1. BERT Pre-Training Layer   

To improve extraction performance, BERT is applied as a pre-training model.   

As  shown  in Figure  6, using  the  text  “蔓灵花利用漏洞  (Manling flower  exploits 

vulnerability)“ as an example, the input text is first cut into single Chinese words, and the 

CLS mark is added at the beginning of the sentence, and the SEP mark is added at the end. 

Then,  through multi-layer  transformers,  the vectors of word,  clause,  and position  are 

obtained, and they are  integrated together. Finally,  it serves as the  input vector for the 

BiGRU layer. 

Figure 5. Overview of the APT event extraction model based on BERT‑BiGRU‑CRF.

3.4.1. BERT Pre‑Training Layer
To improve extraction performance, BERT is applied as a pre‑training model.
As shown in Figure 6, using the text “蔓灵花利用漏洞 (Manling flower exploits vul‑

nerability)“ as an example, the input text is first cut into single Chinese words, and the
CLS mark is added at the beginning of the sentence, and the SEP mark is added at the
end. Then, through multi‑layer transformers, the vectors of word, clause, and position are
obtained, and they are integrated together. Finally, it serves as the input vector for the
BiGRU layer.

Electronics 2023, 12, x FOR PEER REVIEW  8  of  15 
 

 

Output

Token cut

Input

Multilayer bidirectional Transformer

e7e1 e6e5e4e3e2 e8e0

T7T1 T6T5T4T3T2 T8

洞蔓 漏用利花灵CLS SEP

Man          ling          flower                   exploit                   vulnerability

洞蔓 漏用利花灵CLS SEP

Token vector

Token feature 

vector
T0

T7T1 T6T5T4T3T2 T8T0

 

Figure 6. BERT layer structure. 

3.4.2. BiGRU Layer   

The input of the BiGRU layer is a word vector pre-trained by the BERT layer, and the 

output is the score of the predicted label corresponding to each word (as shown in Figure 

7). 

B-Attacker

I-Attacker

B-Attack Weapon

I-Attack Weapon

O

BERT

BiGRU

洞蔓 漏用利花灵

Man               ling              flower                 exploit                          vulnerability

1.5

0.9

0.1

0.08

0.05

Word 

vector layer

BiGRU BiGRU BiGRU BiGRU BiGRUBiGRU

0.2

0.4

0.1

0.11

0.05

0.09

0.02

0.03

0.08

0.1

0.08

0.01

0.03

0.07

0.15

0.04

0.02

0.5

0.07

0.03

0.03

0.02

0.3

0.08

0.05

0.2

0.6

0.12

0.15

0.04

 

Figure 7. Output of BiGRU layer-1. 

The output of the BiGRU layer is also known as the emission matrix. It consists of 

emission  scores.  Each  score  represents  the  value  of  each  label  corresponding  to  the 

character. Using  the word “蔓  (Man)” as an example,  the outputs  through  the BiGRU 

level are 1.5 (B-Attacker), 0.9 (I-Attacker), 0.1 (B-Attack Weapon), 0.08 (I-Attack Weapon), 

and 0.05 (O). These numbers are the scores given to the word “蔓” based on each label. 

That is, for the word “蔓”, its score of the label “B-Attacker” is 1.5 which is the highest 

one, and  the score of  the  label “I-attacker”  is 0.9, and so on. The higher  the  score,  the 

greater  the  likelihood of representing  this category. The character “蔓” has  the highest 

score  in  the  “B-Attacker”  category,  so  the word  “蔓”  is  temporarily  labeled  as  “B-

Attacker”. The matrix that combines the emission scores of each word together is called 

the emission matrix, which will also serve as the input to the CRF layer. 

   

Figure 6. BERT layer structure.

194



Electronics 2023, 12, 3349

3.4.2. BiGRU Layer
The input of the BiGRU layer is a word vector pre‑trained by the BERT layer, and the

output is the score of the predicted label corresponding to each word (as shown
in Figure 7).
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The output of the BiGRU layer is also known as the emission matrix. It consists of
emission scores. Each score represents the value of each label corresponding to the char‑
acter. Using the word “蔓 (Man)” as an example, the outputs through the BiGRU level are
1.5 (B‑Attacker), 0.9 (I‑Attacker), 0.1 (B‑Attack Weapon), 0.08 (I‑Attack Weapon), and
0.05 (O). These numbers are the scores given to the word “蔓” based on each label. That
is, for the word “蔓”, its score of the label “B‑Attacker” is 1.5 which is the highest one, and
the score of the label “I‑attacker” is 0.9, and so on. The higher the score, the greater the
likelihood of representing this category. The character “蔓” has the highest score in the
“B‑Attacker” category, so the word “蔓” is temporarily labeled as “B‑Attacker”. The ma‑
trix that combines the emission scores of each word together is called the emission matrix,
which will also serve as the input to the CRF layer.

3.4.3. CRF Layer
Even without the CRF layer, we can still train an event extraction model based on

BERT‑BiGRU, because the BiGRU model provides scores for each label corresponding to
eachword. We can choose the label with the highest score (marked in red) as the prediction
result. For example, if the character “灵 (Ling)” has the highest score of “I‑attacker” (0.4),
thenwe can choose “I‑attacker” as the prediction result. However, the actual situationmay
result in the following predicted results (as shown in Figure 8).

The CRF layer can add some constraints to ensure the effectiveness of the final pre‑
diction result. The constraints can be automatically learned by the CRF layer during data
training. Possible constraints include the following:
(1) The beginning of the sentence should be “B‑“ or “O”, not “I‑“; as shown in Figure 8,

the sentence cannot start with “I‑Attack Weapon”.
(2) B‑lablel1 I‑label2 I‑label3… “In this case, categories 1, 2, and 3 should be the same

entity category.” For example, “B‑attacker I‑attacker” is correct, while “B‑attacker
I‑attack weapon” is incorrect.

(3) “O I‑Attack Weapon” is incorrect, the beginning of the named entity should be “B‑“
instead of “I‑“.
With the above useful constraints, erroneous prediction sequences will be greatly re‑

duced. The CRF layer mainly utilizes a transition matrix to ensure these constraints. The
transition score is the score transferred from one label to another label, as shown in Table 3.
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Table 3. Transition matrix.

Transition
Matrix 0 B‑Attacker I‑Attacker B‑Attack

Weapon
I‑Attack
Weapon

0 0.8 0.07 0 0.12 0
B‑Attacker 0 0 1 0 0
I‑Attacker 0.18 0 0.85 0 0
B‑Attack
Weapon 0 0 0 0 1

I‑Attack
Weapon 1 0 0 0 0

Using the third row and third column in Table 3 as an example, 0.85 represents the
score for transitioning from the label “I‑Attacker” to the label “I‑Attacker”.

Finally, combining the emission matrix obtained from the BiGRU layer and the tran‑
sition matrix obtained from the CRF layer, we can calculate the tag path with the highest
score, as shown in Figure 9.
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The tag path of “B‑Attacker I‑Attacker I‑Attacker O O B‑AttackWeapon I‑Attack
Weapon” has a score of 0.9 (marked in red), which is the highest score. Therefore, this
path is the final output.

4. Experimental Results
4.1. Model Construction and Training

When implementing themodels of theAPT event extraction described in Section 3, the
deep learning framework of Baidu PaddlePaddle is applied. It integrates the functions of
model training, inference framework, and basic model library. BERT‑BiGRU‑CRF models
are constructed based on the PaddlePaddle. The specific training parameters are shown
in Table 4.

Table 4. Specific training parameters.

Parameter Name Values

num_epoch(training rounds) 60
learnin_rate(learning_rate) 5 × 10−5
weight_decay(weight decay) 0.01

warmup_proportion(warmup proportion) 0.1
gru_hidden_size(gru hidden size) 300

4.2. Experimental Results
4.2.1. Comparison with Other Models

The evaluation indicators will use the following three indicators as references:
1. Precision = number of correct predictionswith “Positive”/number of predictionswith

“Positive”, mainly focusing on the accuracy of the results predicted by themodel. The
formula is as shown below:

Precision =
TP

TP+ FP
(1)

For TP, FP, etc., the meanings are as shown in Table 5.
2. Recall = number of correctly predicted items with “Positive”/number of manually

annotated items with “Positive”, mainly focusing on what the model missed. The
formula is as shown below:

Recall =
TP

TP+ FN
(2)

3. F1 = 2 × Precision × Recall/(Precision + Recall), the formula is calculated as follows:

F1 =
2 × Precision× Recall
Precision+ Recall

(3)

Table 5. Confusion matrix.

True/False Examples
Prediction

Positive Negative

True TP FN
False FP TN

We compared several models with BERT‑BiGRU‑CRF to extract APT events. The re‑
sults are as shown in Table 6.

From Table 6, for APT trigger word detection, it can be seen that the F1 values are 1.00
for ERNIE and BERT, and 0.9951 for BiGRU‑CRF. The F1 values for trigger word extrac‑
tion are all very high. This is because the trigger words of APT attacks are not huge, or
relatively concentrated, so models show high precision and recall performance to identify
APT trigger words.
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Table 6. Comparison of experimental results.

Model
Trigger Word Detection APT Event Argument

Recognition

Precision Recall F1 Precision Recall F1

ERNIE 1.00 1.00 1.00 0.5859 0.8189 0.6831
BERT 1.00 1.00 1.00 0.5812 0.8813 0.7004

BiGRU‑CRF 0.9903 1.00 0.9951 0.5211 0.8462 0.6451
BERT‑BiGRU‑CRF 1.00 1.00 1.00 0.7013 0.8011 0.7479

The APT event argument recognition is harder than the APT trigger word detection.
It can be seen that the F1 value of BERT‑BiGRU‑CRF is 0.7479, which is better than the F1
values of BERT (0.7004) and BiGRU‑CRF (0.6451). From Table 6, without BERT as a pre‑
training model, the final extraction F1 value can be seen as lower by about 10% than our
proposed model.

From our experiment, it is found that pre‑training improves the final extraction per‑
formance for APT events. ERNIE and BERT can both be used as the pre‑training model.
For our APT event extraction, BERT pre‑training shows better performance. Therefore, we
ultimately used the BERT model for the pre‑training of word vectors, and then connected
it to the BiGRU‑CRF model.

Firstly, we applied BERT as a pre‑training model. The BERT model can effectively
learn the underlying information of the sequence, and if the data volume is small, it is also
recommended to pre‑train word vectors.

Secondly, it connected with the BiGRU model, which learned the sequence informa‑
tion well, resulting in better learning of the APT semantics. The BiGRU model can effec‑
tively solve the problem of long sentences, enabling better learning of deep semantics, and
ultimately using the CRF model for constraints.

At last, we applied CRF to carry out constraints to improve accuracy.
In summary, for APT attack events, according to the experimental results, the BERT‑

BiGRU‑CRFmodel has the best extraction effect and the highest event extraction efficiency.

4.2.2. Performance Analysis of BERT‑BiGRU‑CRF Model for APT Attack Event Extraction

For the BERT‑BiGRU‑CRFmodel, during training for APT attack event extraction, the
corresponding F1 values are shown in Figure 10, showing the F1 change trend during the
training process.
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As shown in Figure 10, the F1 value of the trigger words significantly increased at
Epoch16, reaching a peak of 1.0 at Epoch16. The argument character also showed a signif‑
icant increase in F1 value at Epoch16, ultimately reaching a peak of 0.75 at Epoch39.

4.2.3. Case Study
After the model training is finished, it can be used to carry out event extraction. The

process of APT extraction is shown in Figure 11.

1 
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Figure 11. APT event extraction based on BERT‑BiGRU‑CRF model.

Using a case for example, the input text is as follows:
“南亚次大陆地区的响尾蛇组织被发现利用CVE‑2019‑2215漏洞针对安卓终端目标用户

实施移动端的APT攻击。” (Translation: it is found that the Rattlesnake organization in
the subcontinent of South Asia implemented mobile APT attacks against target users of
Android terminal exploiting the CVE‑2019 2215 vulnerability.)

(1) The input data were preprocessed including word cut, word2id, long text cut, and
short text padding.

(2) The preprocessed data were input to the first BERT‑BiGRU‑CRF model to extract the
trigger word. In this case, the trigger word is “漏洞利用” (“exploit vulnerability”),
and the corresponding event type is “攻击实施‑漏洞利用” (“Attack implementation‑
Vulnerability exploitation”).

(3) According to the APT event type, the event roles are decided. Data are input to the
second BERT‑BiGRU‑CRF model to extract the corresponding arguments.

All the outputs are merged to generate the final APT event for this text, as
shown below:

event0–event_type:攻击实施‑漏洞利用 (attack implementation–vulnerability exploita‑
tion), trigger: 漏洞利用 (exploit vulnerability)

role_type: 攻击者 (Attacker), argument: 响尾蛇组织 (Rattlesnake organization)
role_type: 攻击武器 (Attack weapon), argument: CVE‑2019 2215漏洞 (vulnerability)
role_type: 受害目标 (Target), argument: 安卓终端目标用户 (target users of

Android terminal).

5. Conclusions and Discussion
This paper defines APT event types and templates, constructs an APT attack event ex‑

traction dataset, and builds an APT attack event extraction model based on BERT‑BiGRU‑
CRF. Through comparative experiments with ERNIE, BERT, and BiGRU‑CRF models, it
was found that the APT attack event extraction model based on BERT‑BiGRU‑CRF had
the highest F1 value, with an F1 value of 1.00 for trigger word extraction and 0.75 for argu‑
ment role extraction, indicating the best extraction effect. This model first uses the BERT
model to pre‑train word vectors, then connects the BiGRU model for feature extraction,
and then connects the CRF model for constraints, ultimately completing event extraction.

Considering there is little APT event extraction research, the work in this paper is a
valuable contribution to CTI analysis and APT detection. It proposes a novel CTI analysis
method by extracting APT events from Chinese web texts. During the APT event schema
design, it considers the APTmulti‑stages and complexity, which is good for deeply under‑
standing APT attacks. This is beneficial to improve APT attack detection ability.
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There is a limitation to this research. For dataset construction, although there are
some event datasets, unfortunately, there is no APT event dataset. During the research,
we constructed the APT attack event dataset. The annotation cost is not low. Limited
by the annotation resources, the annotation dataset is not big. This causes the following:
(1) Event type numbers are not balanced. For example, much threat intelligence started
with the spear‑phishing attack as the starting point, the constructed dataset has a high
proportion of “Attack preparation” and “Spear‑phishing attack” events. (2) The trigger
words related to APT are not completely included, indirectly resulting in some complex
APT attack event information not being able to be extracted well.

Although the extractionmethod is effective, the potential weak point is that themodel
is a pipelinemodel, which separates triggerword extraction from argument role extraction.
ForAPT attack events, there is some correlation between triggerwords and argument roles,
so using a joint extraction model may be worth studying further.

To remove the limitation and weak point, the next steps include the following: (1) Ex‑
pand the data sources, obtain more unstructured information related to APT attack events
on multiple websites, and make the constructed dataset contain complete event types and
APT‑related trigger words. (2) Consider applying the few‑shot learning method to miti‑
gate the data sparse issue. (3) Improve the use of a joint model for extraction.
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Abstract: Unmanned aerial vehicle (UAV) object detection technology is widely used in security
surveillance applications, allowing for real-time collection and analysis of image data from camera
equipment carried by a UAV to determine the category and location of all targets in the collected
images. However, small-scale targets can be difficult to detect and can compromise the effectiveness
of security surveillance. In this work, we propose a novel dual-backbone network detection method
(DB-YOLOv5) that uses multiple composite backbone networks to enhance the extraction capability of
small-scale targets’ features and improve the accuracy of the object detection model. We introduce a bi-
directional feature pyramid network for multi-scale feature learning and a spatial pyramidal attention
mechanism to enhance the network’s ability to detect small-scale targets during the object detection
process. Experimental results on the challenging UAV aerial photography dataset VisDrone-DET
demonstrate the effectiveness of our proposed method, with a 3% improvement over the benchmark
model. Our approach can enhance security surveillance in UAV object detection, providing a valuable
tool for monitoring and protecting critical infrastructure.

Keywords: object detection; UAV; security surveillance; feature pyramid network; attention mechanism

1. Introduction

The use of drones for remotely detecting and tracking persons or vehicles has become
increasingly prevalent in the field of security surveillance, particularly in urban areas. How-
ever, the widespread use of drones also raises concerns about network security and privacy.
Due to their small size and limited power supply performance, UAVs have low computing
power, which poses significant challenges for accurate object detection tasks [1]. In 2012, the
introduction of the deep convolutional neural network (CNN) by Krizhevsky et al. [2] rev-
olutionized the field of computer vision, leading to the development of more efficient and
accurate object detection models, such as the RCNN model proposed by Girshick et al. [3]
in 2015. Since then, deep learning-based object detection technology has undergone rapid
development, providing significant potential for enhancing security surveillance capabili-
ties while also requiring careful consideration of network security and privacy concerns.
Recent studies such as [4] have focused on developing AI-driven solutions to address
network security and privacy challenges in the context of UAV object detection.

Currently, object detection methods based on deep learning can be mainly divided into
two-stage and one-stage categories. Among them, the two-stage method is based on target
candidate regions for detection. This method extracts candidate regions and performs deep
learning on the corresponding regions, which has high classification accuracy of detection
results. This type of algorithm mainly includes a series of methods such as RCNN [3],
Fast R-CNN [5], Faster R-CNN [6], R-FCN [7], CoupleNet [8], Mask RCNN [9], Cascade
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RCNN [10], Libra R-CNN [11], Reasoning-RCNN [12], EfficientDet [13], D2Det [14], De-
Feat [15], MViTv2 [16], and AdaMixer [17]. Otherwise, the one-stage method can directly
calculate the category probability and position coordinate value of the object through
regression, including SSD [18], DSSD [19], FSSD [20], ScratchDet [21], ExtremeNet [22],
MimicDet [23], I3Net [24], SaFT [25], CapDet [26], YOLO [27], YOLOv2 [28], YOLOv3 [29],
YOLOv4 [30], YOLOv5, YOLOx [31], YOLOF [32], YOLOv6 [33], YOLOv7 [34], YOLOv8,
and other methods. The detection result is directly obtained after single detection, which
greatly improves the speed of the model. For example, the YOLOv5 model improves the ac-
curacy and speed of YOLOv4. The training phase of the model includes improvements such
as mosaic data enhancement, adaptive image scaling, and adaptive anchor box calculation.

With the successive birth of various object detection models with superior performance
and improved experimental results on the MS COCO dataset, object detection for UAV
has also attracted increasing attention as an important computer vision task. UAV object
detection plays an important role in understanding long-range images. Unlike general
object detection, the aerial photography angles of UAVs all look down, which leads to a
small scale and many targets in the image. Therefore, object detection models that are
suitable for general data sets cannot achieve high robustness in UAV aerial photography.
As shown in Figure 1, when the YOLOv5 model for object detection is employed in the
VisDrone UAV dataset, pedestrian targets with small scales are more likely to be missed
compared to vehicle targets with larger scales, which leads to weak generalization ability
of the UAV object detection model.
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Figure 1. After the YOLOv5 model performs object detection on the VisDrone dataset, there is a
phenomenon of both missed detection and false positives. The figure shows the detected targets
marked with positioning boxes of different colors, but many vehicles and pedestrians are still not
detected or are incorrectly identified.

In general, small-scale targets can be defined as the size range of objects in an image
that are smaller than the minimum detectable size threshold of the object detection model.
One way to define this threshold is to use the concept of object coverage ratio, which refers
to the proportion of the image area covered by an object. For example, a commonly used
threshold for object detection is 0.005, which means that an object must occupy at least 0.5%
of the image area to be detected by the model. In this case, too-small scales would refer to
objects that are smaller than the minimum size required to achieve an object coverage ratio
of 0.005.
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Based on the above discussion, our paper proposes a DB-YOLOv5 object detection
model that is suitable for UAV, aiming at the problem of too-small targets in UAV. The
model adopts a composite backbone network, which connects multiple identical backbone
networks in a composite manner and fuses high-level and low-level features of multiple
backbone, which expands the receptive field of the network. The bi-directional feature
pyramid network structure is also introduced in the feature extraction stage, which can fuse
multi-scale features conveniently, quickly, and effectively to improve the detection accuracy
of small-scale targets. The spatial pyramid attention mechanism is used in the output
stage, which can maintain the feature representation and spatial location information of
the target and further strengthen the ability to identify and locate small targets. Finally,
EIoU_loss is used to further optimize the bounding box of the small-scale target to improve
the bounding box problem in small target detection.

The main contributions of this paper are as follows:

1. The dual-backbone network model DB-YOLOv5 is proposed. Aiming at the problem
of missed and false detection of small targets in UAV images, the model integrates the
high-level and low-level features of multiple identical backbone networks to expand
the receptive field of the network for small target features.

2. The model uses a bi-directional feature pyramid network, which fuses multi-scale
features through the bottom-up and top-down approaches to strengthen the network’s
multi-scale feature fusion for small targets.

3. The spatial pyramid attention mechanism enables the model to maintain both the
feature information and the location information of small targets, which strengthens
their identification and positioning.

The remainder of this paper is organized as follows. Section 2 presents the related
work. Section 3 details the proposed method. The experiments and results analyses are
provided in Section 4 while introducing the selected dataset and evaluation indicators.
Finally, conclusions are drawn in Section 5.

2. Related Work

With the increasing demand for security surveillance, object detection models are
being used more frequently in aerial remote sensing to detect potential security threats.
However, one of the major challenges in this field is detecting small targets in aerial images.
To address this problem, researchers have proposed various multi-angle improvements
to different general object detection models with the aim of enhancing the robustness
and generalization ability of the detection models for aerial photography datasets in
the context of network security and privacy. For example, Cheng et al. [35] proposed
a concept of coarse-grained density maps for the problem of dense small objects and
uneven distribution in aerial remote sensing images and designed a density map-based
clustering region generation algorithm. They improved the Mosaic data augmentation
method to divide the image into multiple sub-regions so that dense small objects could
be adjusted to a reasonable scale. This method improved the detection performance of
rare objects and difficult samples and alleviated the foreground–background and class
imbalances. Huang et al. [36] designed a unified foreground assembly and multi-agent
detection network for the problem of dense small targets and target shape similarity in
aerial images. The method combines the subregions provided by the coarse detector to
suppress the background by clustering, and this method then assembles the resulting
subregions into mosaics for a single inference. The method models the object distribution
in a fine-grained manner by using multi-agent learning, thereby significantly reducing the
overall time cost and improving the efficiency and accuracy of detection. Wang et al. [37]
proposed a model based on multiple center points to solve the problem of small target
detection in images. The method first located multiple center points and then estimated
the offset and scale of multiple corresponding targets, which can improve the detection
performance of small targets. Xu et al. [38] aimed at the detection of small targets in aerial
images and believed that IoU, as the most commonly used indicator in object detection
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tasks, was not suitable for small targets. They proposed a simple and effective dot distance
method, which was defined as the normalized Euclidean distance between the center
points of the two bounding boxes. This method was suitable for small target detection
and achieved better detection performance. Tan et al. [39] proposed the YOLOv4_Drone
method based on YOLOv4, aiming at the problems of small targets, complex background,
and mutual occlusions of targets in UAV images. This method employed the concept of hole
convolution. It introduced an ultra-lightweight subspace attention mechanism and soft-nms
to resample the same feature map, which implemented multi-scale feature representation, to
solve the problem of missed detection caused by adjacent or even occluded targets captured
by drones. In order to improve the precision of UAV object detection while satisfying the
lightweight feature, Yang et al. [40] modified the YOLOv5s model. To address the small
object detection problem, a prediction head is added to better retain small object feature
information. The CBAM attention module is also integrated to better find attention regions
in dense scenes. The original IOU-NMS is replaced by NWD-NMS in post-processing to
alleviate the sensitivity of IOU to small objects.

Although the above algorithms have carried out various studies and explorations
on the problem of small targets in UAV images, the proposed models still cannot obtain
real-time and efficient detection results of small targets in practical UAV applications.
Therefore, based on the YOLOv5 algorithm, this paper introduces a composite backbone
network, a bidirectional feature pyramid network structure, and a spatial pyramid attention
mechanism and proposes the UAV image object detection model DB-YOLOv5.

The YOLOv5 model has excellent speed and accuracy in the detection algorithm due to
using the CSPDarknet53 backbone network to extract features. The CSPDarknet53 is based
on the Darknet53 in YOLOv3, which combines the CSPNet [41] to develop the backbone
structure. This network contains five CSP modules, which are composed of convolution
kernels with a size of 3 × 3 and a stride of 2, so it can play a role in downsampling. Thus,
the model adopts the CSPDarknet53 backbone network, which can enhance the feature
learning ability of network, maintain the model accuracy while remaining lightweight,
and reduce the computational cost of the model. In addition, the input of the model
adopts the mosaic method for data enhancement, which splices four pictures through
random scaling, cropping, and arrangement. This method is highly effective for small
target detection. In the Neck stage of YOLOv5, the PANet [42] structure of FPN + PAN [43]
is adopted, with which the model can strengthen the multi-scale feature fusion ability,
accurately save the location information of small targets, and contribute to locating the
target correctly. Although the DB-YOLOv5 model focuses on improving object detection
in low-altitude aerial images, there are also several studies addressing other challenges
in video surveillance. Sun et al. [44] proposed a dynamic partial-parallel data layout
(DPPDL) for green video surveillance storage, which aims to reduce energy consumption
and improve storage efficiency. Similarly, Yu et al. [45] introduced an extra-parity energy-
saving data layout for video surveillance, which reduces energy consumption and optimizes
storage utilization. These studies demonstrate the importance of developing efficient and
sustainable solutions for video surveillance, which can have significant implications for
various applications, such as security and public safety. Zhang et al. [46] conducted research
on backdoor attacks on deep neural network models used in image classification. They
analyzed the impact of these attacks on classification accuracy and proposed a defense
mechanism to mitigate them. This study emphasizes the importance of developing secure
and robust deep neural network models for reliable image classification.

In low-altitude aerial images, the visual information contained in tiny targets is limited
by the condition of looking down, which results in significant difficulties in aerial target
detection. Therefore, improving the detection performance of small and ambiguous targets
and reducing the occurrence of missed and false detections is an urgent problem for UAV
image object detection. This paper is dedicated to providing an effective solution to this
purpose, namely, the UAV image object detection model DB-YOLOv5.

206



Electronics 2023, 12, 3296

3. Methods
3.1. Overall Structure

The DB-YOLOv5, which the UAV object detection model proposed, improves the
capabilities of feature extraction and fusion by introducing a composite backbone network,
a bidirectional feature pyramid network, and a spatial pyramid attention mechanism. The
problem of false and missed detection because the scale of targets in the UAV environment
is too small can be solved by this model. Thus, the model can improve the accuracy of
small targets. The structure of DB-YOLOv5 is shown in Figure 2.
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The model performs data enhancement using the Mosaic operation in the image
preprocessing stage, scales the input UAV image to the prescribed input size of 640 × 640
for this network model, and performs data preprocessing operations such as normalization.
After that, Focus slicing and convolution are performed on the input image to obtain
320 × 320 × 32 feature maps. In the N-layer assisting backbone network (yellow part
in Figure 1), the H × W × C feature map of layer N − 1 can be obtained after 3 × 3
convolution and normalization operations to obtain the H/2 ×W/2 × 2C N-layer feature
map. To clarify, in the N-layer main backbone network (green part in Figure 1), the process
to obtain the Nth-layer H ×W × C feature map involves superimposing and fusing the
2H × 2W × C/2 feature maps of the N − 1st-layer and the Nth-layer feature maps in
the assisting backbone network. This process is shown in Equation (1), where xN

main and
xN−1

main denote the feature maps of the main backbone network at layer N and layer N − 1,
respectively; xN

assist denotes the feature map of the assisting backbone network at layer N;
and UP(·) denotes the UpSampling operation. The value of N used in this paper is 5.

xN
main= xN−1

main⊕UP
(

xN
assist

)
(1)

where n is the feature fusion stage with N′ output scales, and the dimension H ×W × C of
the N′th output feature map is obtained by fusing the N′ − 1st output feature map with
a scale of 2H × 2W × C/2 and the feature maps of the same H ×W × C dimensions in
the shallow network processed by the bidirectional feature pyramid network, as shown
in Equation (2), where xN′

f pn and xN′−1
f pn denote the N′th and N′ − 1st feature fusion output,

respectively; xN′
backward denotes the feature map of the same size as the N’th output in the

shallow network; and Bi(·) denotes the bidirectional feature pyramid network. In this
paper, the value of N′ is taken as 3.

xN′
f pn= xN′−1

f pn ⊕Bi
(

xN′
backward

)
(2)
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The feature maps after feature extraction and multiscale fusion are adaptively averaged
pooled at three scales of 80 × 80, 40 × 40, and 20 × 20 through a spatial pyramid structure
to generate an attention map. The generated attention maps are weighted by a combination
of a fully connected layer and a sigmoid activation layer to generate attention weights
in the corresponding feature maps, which label the small targets in the original images
more accurately.

3.2. Composite Backbone Network Based on CSPDarknet53

The backbone of the YOLOv5 model adopts the CSPDarknet53 network combined with
the CSP structure. However, the feature extraction ability of this network for small-scale
targets cannot achieve satisfactory results. Most of the current research on the backbone
network focuses on deepening or widening the backbone. To deepen the network of the
model without introducing additional pre-training overhead, we introduce the structure
of the composite backbone network (CBNet) in the backbone stage of DB-YOLOv5. The
structure aims to superimpose multiple layers of the same type of backbone to expand
the feature receptive field of the network, thereby enhancing capability of the backbone’s
feature extraction for the small target in UAV.

CBNet is divided into two types: the main backbone and the assisting backbone. The
purpose of using the assisting backbone is to complement the features extracted by the
main backbone. Each backbone has L stages, which contain a series of layers of convolution
and have the same size of feature maps. The nonlinear transformation implemented in the
lth stage is defined as Fl . The output of the lth stage of the assisting backbone (denoted as
xl

assist) is fused with the output of the l − 1st stage of the main backbone (xl−1
main), which is

the input in the parallel stage (l) of the main backbone, as shown in Equation (3):

xl
main = Fl

main

(
xl−1

main + g
(

xl
assist

))
, l ≥ 2 (3)

where g(·) represents a layer of 1× 1 convolution and a layer of batch normalization, whose
purpose is to concatenate the features of the main and assisting backbones.

As shown in Figure 3, after the 80 × 80 feature image obtained by convolution in the
assisting CSPDarknet53 backbone is input to the main backbone, it is superimposed and
fused with the feature image obtained after the 640 × 640 original image is processed by
Focus slicing, and the obtained result is input as the input content to the starting position
of the main backbone. The 40 × 40 feature image obtained by convolution processing in
the assisting backbone model and the 80 × 80 feature image in the main backbone model
are then superimposed and fused, and the result is used as the input to continue the next
convolution process. Finally, the 20 × 20 feature image output by the assisting backbone
is superimposed and fused with the 40 × 40 feature image in the main backbone model,
and the result is input to the main backbone model to continue the convolution operation.
Thus, the obtained feature image is passed to the next module. After that, the feature
information extracted from the backbone network is used as the input in Section 3.3 to
perform multi-scale stacking and processing of features through the bidirectional feature
pyramid network. Using the features learned by the network, combined with the spatial
pyramid attention mechanism in Section 3.4, the objects in the input images of the model
are classified and localized.

Meanwhile, to further enhance the operating efficiency and cut down on time cost, we
no longer connect the low-level features of the first two layers in the composite backbone
network module and only connect and stack the features of the last two layers of backbone
networks. The high-level semantic feature information is further saved and learned while
retaining lower-level location information, thereby easing the contradiction between time
and accuracy to a certain extent. We named this module CBNet-tiny, as shown in Figure 4.
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3.3. Bidirectional Feature Pyramid Network

The feature information extracted by the composite backbone network in Section 3.2
is also deviated in sensitivity to small targets according to the different feature extraction
scales. In order to coordinate the feature information extracted from different scales, the
model needs to combine the extracted features for multi-scale fusion and learning—that
is, to take methods to further represent and process multi-scale features effectively, which
is also one of the difficulties in target detection. Early detection models usually make
predictions through a pyramid structure directly, which is based on features extracted
from the backbone. In this process, the feature pyramid network plays an important role,
proposing the idea of combining multi-scale features in a top-down manner. Inspired by
this idea, PANet, based on FPN, adds a bottom-to-top path to further aggregate the feature
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information. However, it also consumes a lot of time, especially in the training phase, but
achieves good performance. Since the contribution of nodes—only one input edge—to the
fusion feature network is small, the Bi-FPN removes the intermediate nodes of P3 and P7 in
PANet to form a simplified bidirectional network to reduce model overhead. Additionally,
this module adds a skip connection between input nodes to output nodes at the same scale,
incorporating more features without increasing excessive computational overhead. At the
same time, the model regards the Bi-FPN module, which achieves feature fusion through a
bidirectional path, as a network layer and reuses it many times to achieve better feature
fusion, as shown in Figure 5.
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In the bidirectional feature pyramid network, the output results of each node are
shown in Equations (4)–(6):

xl
f pn = Fconv

(
xl + Fconv

(
xl+1

))
. (4)

xl
f pn = Fconv

(
xl + Fconv

(
xl + Fconv

(
xl+1

))
+ xl−1

f pn

)
. (5)

xl
f pn = Fconv

(
xl + xl−1

f pn

)
. (6)

where Fconv(·) represents the convolutional layer, xl represents the input features of the
bidirectional pyramid network, and xl

f pn represents the output features. Equation (4)
represents the output result of node P3 in Figure 5, Equation (5) represents the output result
of node P7 in Figure 5, and Equation (6) represents the output result of the intermediate
node in Figure 5. Although the PANet structure of YOLOv5 can fuse multi-scale target
feature information, it can easily cause missing features in the process of feature fusion
between small and large targets, thus affecting the ability of the model to detect small-
scale targets. To address this, we use the Bi-FPN module four times in DB-YOLOv5 to
bi-directionally fuse multi-scale feature information multiple times on the three output
branches to further strengthen the model’s feature fusion and extraction capabilities for
small targets and ensure the accuracy of positioning and classification of small targets in
the model.

3.4. Spatial Pyramid Attention Mechanism

Although the model can strengthen the feature fusion and extraction capabilities of
small objects through the bidirectional feature pyramid network described in Section 3.3,
it may still be challenging to fully grasp the mechanism involved. However, in practical
applications, the model also needs to be able to ignore the complex background and other
interfering information features in the image and identify the desired feature information
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of the small target. To achieve accurate classification and positioning to avoid the problem
of missed detection and false detection in the detection of small targets in the drone
environment, we use the spatial pyramid attention network (SPANet) in DB-YOLOv5.
The introduction of an attention mechanism makes our model focus on the small target
part in the image and selectively extract key information from images while ignoring
the interference of irrelevant information, such as the background. This improves the
localization and classification performance of the entire model for small-scale targets and
the accuracy of the detection model.

The feature processing process of the spatial pyramid attention mechanism is shown
in Equation (7):

xweight = sigmoid
(

Ff c(P1×1(x) + P2×2(x) + P4×4(x))
)

(7)

Among them, Ff c(·) represents the fully connected layer; sigmoid(·) represents the
activation function layer; P1×1(·), P2×2(·), and P4×4(·) represent the 1 × 1, 2 × 2, and 4 × 4
adaptive average pooling layers, respectively; and xweight represents the output weight.
The spatial pyramid attention mechanism locates the information of interest by using the
structure of the spatial pyramid instead of global average pooling, which consists of two
parts. As shown in Figure 6, the input feature maps are passed through a spatial pyramid
structure, which is adaptively average pooled at three scales, to generate attention maps.
Among them, the purpose of the 1 × 1 adaptive average pooling layer is to obtain the key
information of the category in the feature map, the 2 × 2 pooling layer is used to save
the less important key feature information in the image, and the 4 × 4 average pooling
can effectively obtain the key position information in the feature map. Afterwards, the
generated attention map is passed through a weight module, which is composed of a fully
connected layer and a sigmoid activation layer, to generate the attention weights in the
corresponding feature map. Thus, through the attention weight output by the attention
module, the small objects in the original image are more accurately marked.
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4. Experiments
4.1. Datasets

The data selected for the experiments were from the VisDrone-DET dataset. This
dataset was collected by the AISKYEYE team at the Machine Learning and Data Min-
ing Laboratory of Tianjin University, China. The dataset consisted of 10,209 still images
captured by various drone-mounted cameras, including different locations (taken from
14 different cities that were thousands of kilometers apart in China), different environments
(urban and rural), different objects (pedestrians, vehicles, bicycles, etc.), and different densi-
ties (sparse and crowded scenes). There were mainly 10 categories of objects. The number
of samples for each category is shown in Figure 7.
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4.2. Experimental Details

We conducted our experiment using 6471 images from VisDrone2019-DET-train as the
training set, 548 images from VisDrone2019-DET-val as the validation set, and 1610 images
from VisDrone2019-DET-test-dev as the test set.

For DB-YOLOv5, we set the model input image size to 640 × 640, the batch size was
16, the confidence threshold was 0.25, and the Intersection over Union threshold was 0.45.
The learning rate was initialized to 10–4 and halved after every 50% training batch. We
implemented our model on the Torch 1.8.0 platform and conducted 300 epochs of training
experiments on the training and validation sets on a single NVIDIA GeForce RTX 3070.

4.3. Quantitative Experiments

To verify the detection effect of the model proposed in the paper, we compared our
model with other models in the field of object detection. The detection results are shown in
Table 1.

Table 1. Experimental results of different object detection models on the VisDrone-DET dataset.

Method mAP Ped People Bicycle Car Van Trunk Tricycle Awn.
* Bus Motor

Corner Net [47] 17.41 20.43 6.55 4.56 40.94 20.23 20.54 14.03 9.25 24.39 12.1
Light-R CNN [48] 16.53 17.02 4.83 5.73 32.39 22.12 18.39 16.63 11.91 29.02 11.93

FPN [42] 16.51 15.69 5.02 4.93 38.47 20.82 18.82 15.03 10.84 26.72 12.83
Cascade RCNN [10] 16.09 16.28 6.16 14.85 4.18 37.29 17.11 14.48 12.37 20.38 24.31
Sparse R-CNN [48] 36.70 26.50 18.40 11.80 56.00 35.80 25.40 19.50 12.20 43.30 26.10

YOLOv4 [30] 40.99 15.20 11.50 22.40 65.40 60.70 59.40 33.60 52.60 71.40 22.10
YOLOv4_Drone [39] 45.67 18.00 13.00 23.00 69.00 62.00 68.00 42.00 60.00 76.00 26.00

YOLOv5 48.44 49.20 24.80 25.90 74.30 62.20 69.60 31.40 30.50 73.40 43.10
DB-YOLOv5 51.53 52.70 28.10 28.40 77.10 72.30 65.40 33.80 33.90 76.60 47.00

* The meaning of awn. is awning-tricycle.

It can be seen from the mean average precision (mAP) results in Table 1 that, compared
with the anchor-based method adopted by DB-YOLOv5, the anchor-free detection model
CornerNet [47] was not suitable for UAV detection. At the same time, the comparison of
our model with FPN [42] also verifies that the BiFPN structure of the bidirectional path
combined with the composite backbone network method could achieve more excellent
results than basic FPN in UAV object detection. The comparison of Cascade RCNN [10]
and Sparse R-CNN [48] shows that the one-stage method outperformed the two-stage
method for the detection of small targets of UAVs. Obviously, compared with YOLO series
models such as YOLOv4 [30] and YOLOv4_Drone [39], our model improved the overall
detection performance and the performance of various categories. For example, in the three
categories of “pedestrian”, “people”, and “motor”, our model obtained an improvement of
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346% and 292%, 244% and 216%, and 213% and 180%, respectively, which verifies the high
accuracy of our model for the detection of small objects like pedestrians and motorcycles.
However, it can also be observed that our model had lower accuracy on the three target
categories of “trunk”, “tricycle”, and “awning-tricycle”. After analysis, it is believed that
the detection ability of small targets with similar semantics will be enhanced after the
detection ability of our model for small targets is further improved. Due to the semantic
similarity between tricycles and bicycles, trunks and vans, and awning-tricycles and cars,
it is a significant challenge to distinguish them through the model during the learning
process. Through the above experiments, the effectiveness of the improvement idea of our
proposed target detection method applicable to small targets of UAVs can be seen, so we
also hope that the improvement method proposed in this thesis can be applied to the same
kind of YOLO algorithm and make performance breakthroughs on these versions as well,
which is the work we will continue to study in depth in the future.

4.4. Qualitative Experiments

The detection results of the DB-YOLOv5 model are visualized in Figure 8. The figure
includes the detection results under various conditions of insufficient light, sufficient
light, dark, blurred image, and top-down angle. We can see that our method could better
detect small and dense objects, especially in the central region. The target in the image is
marked by a bounding box, whose color was randomly generated, and the same category
in an image is marked with the same color, whereas different categories are marked with
different colors.
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4.5. Ablation Experiment
4.5.1. Influence of the Number of Backbone Networks

In the composite backbone network module of DB-YOLOv5, the visualization of the
experimental results shows that the effect of using two backbone networks was better
than three backbone networks in this model, as shown in Figure 9. Therefore, in this
paper, we connected the two CSPDarknet53 backbone networks through the connection
module to strengthen the main backbone with the assisting backbone, thereby improving
the capability of feature extraction in the backbone.
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Figure 9. Schematic diagram of the detection results of two backbone networks (a) and three backbone
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networks in the composite backbone network is better than that of the three backbone networks.

4.5.2. Influence of Composite Backbone Network on Model Parameters

In the module of CBNet, we improved the ability of the backbone network to extract
image features by adding two identical CSPDarknet53 backbone networks. However, the
introduction of two backbone networks into the model caused an exponential increase
in the parameters of the entire network model. Our experiment demonstrated that our
proposed improvements can meet the requirements of high precision and short time
consumption for UAV object detection. The parameter comparison after the improved
model is shown in Table 2. Based on the above results, although the introduction of a
composite backbone network structure in the model led to a significant improvement in
parameters, it did not increase by multiples. At the same time, we can see that the floating
point operations (FLOPs) computing power of the model was doubled. Therefore, after
experimental verification, it can be concluded that the method of adding a composite
backbone network structure in the model has feasibility and practical application prospects.

Table 2. Comparison of parameters of different detection models.

Model Size (Pixels) Params (M) FLOPs@640 (B)

YOLOv5s 640 7.2 12.6
DB-YOLOv5s 640 12.9 41.6

YOLOv5m 640 21.2 49.0
DB-YOLOv5m 640 32.8 102.6

YOLOv5l 640 46.5 109.1
DB-YOLOv5l 640 88.4 220.3

YOLOv5x 640 86.7 205.7
DB-YOLOv5x 640 176.5 440.6

4.5.3. The Influence of Each Module on the Model

To verify the performance of the improved detection model, we compared the pro-
posed model with the original YOLOv5 model and calculated the mean average precision
(mAP) index for evaluation. As discussed in Section 3, we refer to the model with the
CBNet module as YOLOv5_cb, the model with the CBNet-tiny module is YOLOv5_cbty,
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the YOLOv5_cb model with the BiFPN module is YOLOv5_bi, and the model proposed in
this paper is DB-YOLOv5. The experimental results are shown in Table 3.

Table 3. Ablation experiment results of the model on the VisDrone-DET dataset.

Model CBNet-tiny CBNet Bi-FPN SPANet mAP

YOLOv5 48.44%
YOLOv5_cbty X 49.26%
YOLOv5_cb X 49.65%
YOLOv5_bi X X 50.74%
DB-YOLOv5 X X X 51.53%

It can be seen from the results in Table 3 that the three improved methods proposed in
this paper significantly increased the detection accuracy of the categories in the UAV dataset
VisDrone-DET. Compared with the baseline model, after adding the faster CBNet-tiny
module, the YOLOv5_cbty model achieved an 0.82% improvement on the mAP indicator.
At the same time, the mAP index of the model with a complete CBNet module had a 1.21%
improvement compared to the benchmark model and a 0.4% performance improvement
compared to the YOLOv5_cbty model. On this basis, the model obtained by adding the
BiFPN module also had a 2.3% improvement in performance indicators compared to the
benchmark model and a 1.1% performance improvement based on the YOLOv5_cb model.
Moreover, our proposed model DB-YOLOv5 had a performance improvement of nearly
3.1% compared to the benchmark model and a 0.8% improvement compared to YOLOv5_bi.
The contribution of the three modules to our model from high to low were CBNet, BiFPN,
and SPA.

5. Conclusions

In this paper, we proposed a DB-YOLOv5 UAV object detection algorithm to address
the issue of detecting small targets in UAV images. We built the model on top of YOLOv5 by
incorporating a composite backbone network, bidirectional feature pyramid, and pyramid
attention mechanism, which improved the network’s capability for multi-scale feature
fusion and small target detection. Our experiments on the VisDrone-DET dataset demon-
strated that the proposed model achieved better performance in terms of objective detection
metrics, making it suitable for small target detection tasks in UAV images. The proposed
method has significant implications for security surveillance, particularly in the field of
network security and privacy. By identifying small targets in UAV images, our approach
can aid in detecting potential security threats, such as identifying security vulnerabilities in
critical infrastructure and monitoring public events for potential security risks. Overall, this
research provides a valuable contribution to the field of security surveillance by enhancing
the capabilities of object detection algorithms for small target detection in UAV images,
ultimately improving network security and privacy. Our next step is to develop a practical
platform based on the simulation experiments. However, since we need to collect image
data before learning, this process may be relatively slow. Our ultimate goal is to create a
real-time platform and conduct experiments in a real environment. These are the directions
for our future work.
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Abstract: Nowadays, the industrial Internet is developing rapidly, but at the same time it faces
serious information security risks. At present, industrial Internet data generally have the problems of
complex attack sample types, large numbers, and high feature dimensions. When training a model,
the complexity and quantity of attack samples will result in a long detection time for the intrusion
detection algorithm, which will fall short of the system’s real-time performance. Due to the high
feature dimension of the data, shallow feature extraction will be unable to extract the data’s more
significant features, which will render the model’s overall detection capacity insufficient. Aiming
at the above problems, an industrial Internet intrusion detection method based on Res-CNN-SRU
is proposed. This method not only considers the temporality of network traffic data but can also
effectively capture the local features in the data. The dataset used in the experiment is the gas
pipeline industry dataset proposed by Mississippi State University in 2014. Experiments show that
the algorithm can effectively improve the recognition rate of the system and reduce the false-alarm
rate. At the same time, the training time required for this method is also greatly shortened, and it can
perform efficient intrusion detection on the industrial Internet.

Keywords: intrusion detection; deep learning; industry Internet; residual connection

1. Introduction

Today’s digital and Internet technology is profoundly changing our way of production
and life. The traditional industrial control system mostly runs on the isolated Intranet,
and almost does not need to consider the threat of the external network to hardware,
protocols, deployment, etc. However, with the rapid development of communication,
Internet of Things and other technologies, it has brought great changes to the application
of industrial automation control systems and the business and technical architecture in
the industrial environment and formed a new industrial platform, that is, the industrial
Internet platform [1–3]. Driven by industrial Internet technology, in order to improve
production efficiency, more enterprises have begun to realize the digitization, networking,
and intelligence of production processes. However, with the continuous improvement
in industrial equipment interconnection and intelligent technology, industrial Internet
systems are also facing various attacks from the network, including computer viruses,
malware, distributed denial-of-service attacks, and so on. These attacks can cause systems
to crash, data to be compromised, or industrial equipment to be remotely controlled. At
the same time, the industrial Internet involves a large amount of data transmission and
storage, including production data, sensitive information and trade secrets. Hackers may
attempt to steal these data for malicious purposes, such as industrial espionage, extortion,
or theft of intellectual property. In February 2021, a water treatment plant system was
attacked in Florida, the United States. The attacker remotely logged into the system by
stealing credentials, obtained SCADA access, and then started an HMI program to send
attack signals, destroy the liquid level control and dosage setting process, and increase the
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concentration of sodium hydroxide to 111 times the normal value, directly threatening the
safety of citizens [4]. Therefore, industrial Internet intrusion detection has become more
and more important.

Industrial Internet intrusion attacks may not only cause losses to the production and
economy of enterprises but also have an irreversible impact on society. Therefore, intrusion
detection for the industrial Internet is a major challenge to be solved urgently. Industrial
Internet intrusion detection refers to discovering intrusion attacks by monitoring network
traffic, identifying abnormal behaviors and threats, and taking corresponding measures to
prevent and respond to attacks.

Nowadays, the combination of deep learning methods and network intrusion detection
has become more and more popular. The convolutional neural network is a deep learning
model that has been widely used in the field of image and speech processing. It can realize
intrusion detection by analyzing and modeling network traffic data. In addition, due to the
successful application of recurrent neural networks in the field of sequence data processing,
more and more researchers have begun to apply it to network intrusion detection in recent
years. Based on RNN, SRU (simplified recurrent unit) is a new recurrent neural network
structure with fast operation and better representation ability.

The main contributions of this paper are as follows.

• A depth feature extraction method for high dimensional network traffic is proposed,
which can extract local features without losing time features, and add residual con-
nections, which not only alleviates the problem of gradient disappearance but also
improves the convergence speed of the network.

• Combination with a parallel algorithm of SRU abnormal traffic detection. Compared
with the traditional LSTM model, the SRU model has the advantages of high com-
putational efficiency, fast training, strong sequence modeling ability, low memory
utilization rate, and is able to train the accuracy of the model faster.

• Experiments show that the proposed method has high detection accuracy and low
time consumption, and can effectively detect complex malicious response injection
attacks, denial-of-service attacks, reconnaissance attacks and other attack types in the
industrial Internet environment.

2. Related Work

In recent years, China and other nations have attached great importance to industrial
Internet security and carried out a great deal of intrusion detection theory and technology
research, among which the most representative is the intrusion detection method based on
machine learning, especially the deep learning method, which can reduce false-positive
rates and improve detection rates and adaptability.

2.1. Industrial Internet Intrusion Detection Based on Machine Learning

Machine learning has been widely used in computer vision, natural language pro-
cessing, biometric identification, search engines, data mining and other fields. In the field
of intrusion detection, machine learning also plays an important role, including support
vector machine [5,6], K-means clustering algorithm [7] and Bayesian network model [8].
R. Zhang et al. [9] proposed a network intrusion detection scheme based on an improved
SVM algorithm. This method simplifies the intrusion detection system through sample
classification and selects the optimal parameters as the basis of intrusion detection through
iterative processing. Simon D. Duque Anton et al. [10] used an anomaly detection algorithm
based on machine learning and time series to analyze network data containing industrial
operations to detect attacks that introduce the data. To detect attacks, two machine learning-
based algorithms, SVM and random forest, are used. Both perform well and solve the
problem of feature extraction and selection and processing of missing data.

Through sample categorization and iterative processing, this technique chooses the
best parameters to serve as the intrusion detection system’s foundation. However, as a
nonparametric model, SVM is mainly used for the classification and verification of small
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datasets. With the increasing interconnection of modern heavy industry and manufacturing,
the scale of integration is gradually expanding, and the traffic in the industrial Internet
is also developing to a larger order of magnitude. In the face of the industrial Internet
with huge data, support vector machines face problems such as high time overhead,
reduced detection efficiency, and difficulty in obtaining hyperplanes. Ahsan Al Zaki
Khan et al. [11] employed machine learning algorithms using WEKA to develop a misuse
intrusion detection system designed to identify attacks on a SCADA system network of a
gas pipeline infrastructure. They used naïve Bayes, rule-based and tree-based classifiers in
supervised learning mode for classifying the attacks. Majed Al-Asiri et al. [12] presented a
case study simulating a natural gas pipeline dataset to compare the effectiveness of decision
tree classifiers for various types of features in SCADA systems. Oliver Eigner et al. [13]
improved the K nearest neighbors algorithm and applied it to the industrial Internet,
successfully detecting an attack. S. Jaiswal et al. [14] improved the KNN model by using the
ant colony optimization algorithm, and conducted experiments on the KDD99 dataset. The
above experiments of applying KNN to intrusion detection have indeed achieved certain
results, but the KNN model is applied to industrial control systems, especially when the
industry is large, because KNN has to calculate the distance from all data for each test
sample and has the problem of high time overhead and poor performance.

In summary, the machine learning algorithm has good detection when dealing with
fewer feature dimensions. However, due to the massive and high-dimensional characteris-
tics of industrial Internet network data, traditional machine learning has been unable to
meet this demand. Therefore, it is imperative to carry out deep learning research.

2.2. Industrial Internet Intrusion Detection Based on Deep Learning

Since traditional machine learning methods can no longer meet the needs of increas-
ingly complex networks, many researchers use deep learning to replace traditional machine
learning methods. Deep learning has been well applied in many fields, such as image,
video recognition, natural language processing and robot technology. Nowadays, deep
learning application scenarios are more and more extensive, and it has been proved that
deep learning has certain advantages over traditional machine learning methods in in-
dustrial Internet intrusion detection. The development of deep learning has brought new
possibilities to intrusion detection. Xia W et al. [15] optimized the BP neural network and
used the Adaboost algorithm to obtain the optimal weight and threshold by continuously
adjusting the weight of training samples, which effectively solves the problem of intrusion
detection. Aiming at the security problem of the Internet of Things, Yang Aimin et al. [16]
proposed an LM-BP neural network model by improving the BP network, and applied it to
the intrusion detection system. However, the BP neural network model has a single struc-
ture, and a large number of parameters will be generated when fitting complex functions,
which will easily lead to overfitting and performance degradation, so the detection results
are not ideal. Y Li, Y Xu et al. [17] proposed a multi-CNN fusion-based intrusion detection
system. The processed data showed a better training result for deep learning.

Chuanlong Yin et al. [18] proposed a deep learning approach for intrusion detection
using recurrent neural networks. The RNN-IDS model improves the accuracy of intrusion
detection and provides a new research method for intrusion detection. Bipraneel Roy
et al. [19] presented a novel deep learning technique for detecting attacks within the IoT
network using a bidirectional long short-term memory recurrent neural network. The
experimental outcome showed that BLSTM RNN was highly efficient for building a high-
accuracy intrusion detection model and offered a novel research methodology. Song
Zhiwen [20] used a genetic algorithm to obtain the optimal selection for the training set
and test set, and combined convolutional neural network and gated loop unit to propose a
CNN-GRU intrusion detection method based on a genetic algorithm.

Zhou et al. [21] proposed a variational long short-term memory (VLSTM) learning
model for intelligent anomaly detection based on reconstructed feature representation to
solve the industrial Internet’s imbalance in data distribution in high-dimensional anomaly
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detection for industrial applications. RH Hwang, MC Peng et al. [22] proposed an intru-
sion detection model based on word embedding and long short-term memory network,
which can classify malicious traffic. The experimental results show that the method has a
significant classification effect in normal and malicious binary classification detection. Jie
Ling, Zhishen Zhu et al. [23] proposed an intrusion detection method based on a bidirec-
tional simple recurrent unit. With skip connections employed, the optimized bidirectional
structure in the SRU neural network is able to alleviate the vanishing gradient problem
and improve training effectiveness. As mentioned above, these detection algorithms have
achieved some success, but the RNN model they use has many parameters and the perfor-
mance is not good enough. It is easy to cause gradient disappearance or gradient explosion,
and compared with the convolution model, it has no advantage in the final recognition rate.

Therefore, compared with traditional machine learning methods, deep learning per-
forms well in processing large-scale and high-dimensional data, and deep learning can
automatically learn and extract features, but there are still problems such as limited feature
learning ability and gradient disappearance, so further optimization is needed.

In summary, traditional machine learning methods cannot extract features very accu-
rately in the field of industrial Internet intrusion detection. Therefore, for the industrial
Internet with large network traffic, its detection accuracy is usually low. This paper pro-
poses an industrial Internet intrusion detection model based on 1D CNN with residual
structure and a simple recurrent unit algorithm to solve this problem using 1D CNN to
extract features and improve the accuracy of data classification. The residual structure
can make the model deeper and more powerful, which helps to improve the accuracy
of intrusion detection. It also can improve the generalization ability of the model, avoid
the problem of gradient disappearance through skip connection, and reduce overfitting.
Compared with the traditional LSTM model, the SRU model has faster training and lower
memory consumption, and can train a model with high accuracy faster.

Combined with the Mississippi natural gas pipeline dataset for experiments, it can be
found that the proposed convolutional neural network and simple recurrent unit model
combined with residual structure are more efficient than other algorithms in intrusion detec-
tion. While improving the detection accuracy, it also takes into account the stability of the
model. After many experiments, it is proved that the improved model has better detection.

3. Proposed Method

This paper proposes an industrial Internet intrusion detection model based on Res-
CNN-SRU. A deep neural network hybrid model is constructed by fusing 1D CNN and
a simple recurrent unit network. One-dimensional CNN combines the direct connection
structure of the residual network. The direct connection of the residual structure can
avoid the disappearance of the depth gradient. The SRU will further screen the data
after convolution extraction and mine the timing information. Specifically, the intrusion
detection process is regarded as a classification problem, and the traffic characteristics in
the network are classified to determine whether there is an attack in the network.

3.1. Intrusion Detection Model Based on Res-CNN-SRU

The method consists of three parts: one-dimensional convolutional neural network,
residual connection, and simple recurrent unit.

3.1.1. One-Dimensional Convolutional Neural Network

A convolutional neural network (CNN) is a kind of feedforward neural network with
convolution calculation and deep structure [24]. Among them, 1D CNN is often used in
the field of natural language processing [25], while 2D CNN and 3D CNN are often used in
image recognition [26], Mandarin speech recognition [27], face recognition [28] and other
fields. The traditional neural network uses matrix multiplication to establish the connection
by using the input data and the neural network parameter matrix. Each input unit interacts
with the output unit through the parameters in the parameter matrix. However, CNN
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reduces the number of network model parameters by local connection and weight sharing,
which not only reduces the computational complexity of the model but also makes the
network easy to optimize [29].

The 1D CNN is a convolutional neural network that uses one-dimensional convolution
to extract features from one-dimensional time series, which can ensure that local features
are extracted without losing time series features [30].

Convolutional neural networks usually comprise three layers:

1. Convolution layer. In order to achieve the effect of feature extraction, the input
features are scanned by the convolution kernel, subjected to matrix operations in the
“receptive field,” and superimposed with deviations [31].

2. Pooling layer. The pooling layer has a variety of different forms of nonlinear pooling
functions. It divides the input image into several rectangular regions and outputs the
maximum value for each subregion. The pooling layer will continuously reduce the
space size of the data, so the number of parameters and the amount of calculation will
also decrease, which also controls the overfitting to a certain extent.

3. Fully connected layer. The extracted features are nonlinearly combined and output to
other fully connected layers. The convolution layer and pooling layer can achieve the
purpose of automatically extracting local features of data, while the fully connected
layer can achieve feature learning.

The one-dimensional convolution formula is shown in Equation (1).

Zm+1 = [Zm ∗ wm+1] + d = ∑m
z=1 [Z

m
k (s0 + x)wm+1

k (x)] + d (1)

The maximum pooling formula is shown in Equation (2).

Am+1
i (j) = max

(j−1)W+1≤t≤jW
{Fm

i (t)} (2)

In the formula, Zm is the value of the convolution input of the m layer, Zm+1 is the
value of the convolution output of the m + 1 layer, d is the value of the deviation, wm+1

k is
the value of the weight of the corresponding node of the m + 1 layer, f is the value of the
convolution kernel size of the convolution layer, s0 is the value of convolution step size of
the convolution layer, Fl

i (t) is the value of the t neuron in the i feature of the m layer, W is
the value of the pooled area, Am+1

i is the value of the output of the m + 1 layer neuron.

3.1.2. Residual Connection

It is found that with the deepening of the number of the network layer, not only will
the gradient disappearance problem occur but also the network degradation will lead to
the occurrence of overfitting. Residual connection can effectively solve the above problems.
The idea of residual connection is derived from the gating idea of LSTM, which expresses
the output as a linear superposition of a nonlinear transformation of input and input [32,33],
as shown in Figure 1.

The traditional neural network layer can be expressed as y = F(x), where F() is the
mapping function of the network layer. Suppose there is a residual block whose input is
x and output is H(x). In the residual network, we hope to learn the residual F(x) through
the residual connection so that the output can be expressed as y = H(x) + F(x). Through
the residual connection, we can optimize the network by learning the residual F(x). If
the network can successfully learn the identity mapping, that is, f (x) = H(x), then the
residual F(x) is close to zero and the output of the network is close to the input. In this
way, the network can gradually optimize the performance of the model by adjusting the
residual part.
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The output formula of the residual block is shown in Equation (3).

xm+1 = xm + F(xml, wm) (3)

In the formula, xm+1 is the output of the m + 1 layer, xm is the input of the layer m, f(xm,
wm) is the residual of layer m.

In summary, residual connection is a design that introduces skip connections. It
allows the input of the previous layer to be added directly to the output of the subsequent
layer, making it easier for the network to learn the residual part, thereby improving the
performance and training effect of the network. Through residual connections, information
can flow more freely in the network, and gradient signals can also spread more easily.
The introduction of this structure makes it possible to train deeper networks, improve the
performance of the model, and solve the problem of gradient disappearance and gradient
explosion in deep neural networks.

3.1.3. Simple Recurrent Unit

Many advances in the field of deep learning come from enhanced modeling capabil-
ities and related computing capabilities, which usually involve deeper neural networks.
While the deep neural network brings significant improvements, it also has certain draw-
backs, that is, it requires a lot of training time. Simplified recurrent unit is a sequence
modeling method for processing time series data, such as text and voice data. It is a model
similar to recurrent neural network, but it has a simpler structure and more efficient cal-
culation. Traditional RNN has some problems, such as difficulty in capturing long-term
dependencies, low computational efficiency, and difficulty in parallel computing. The SRU
structure is simple and contains only two key operations: reset gate and update gate. Most
importantly, SRU has parallel computing capabilities. When calculating each time step,
the traditional RNN needs to rely on the results of the previous time step, which makes it
difficult to perform parallel computing. SRU does not have this limitation, and can process
the entire input sequence in parallel, thus speeding up the training. The structure of SRU is
shown in Figure 2.
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The SRU model is roughly divided into two parts: the light recurrence component and
the highway network component. The light recurrence section computes the sequence of
states ct while reading the input vectors xt one at a time in order to collect sequential data.
The input xt and the state ct generated by the light recurrence are adaptively combined
using the reset gate rt. The skip connection technique is used to calculate the hidden state
ht of the highway network unit.

The light recurrence component is mainly manifested in the following two ways. First,
in order to reduce the degree of recursion, its two gating units, the forgetting gate and
the reset gate, no longer depend on the hidden state ht−1 at the previous moment, but
depend on the intermediate state ct−1 at the previous moment; second, in order to reduce
the amount of calculation, the Hadamard product is used instead of the matrix product.
The specific implementation process is as follows.

First, the input xt is linearly transformed, as shown in Equation (4).

x̃t = Wxt (4)

The forget gate of SRU is a vector that controls forgetting based on current information
and past information. It obtains sequence information by reading the input vector xt in
order and calculates the state vector Ct. The calculation as shown in Equation (5).

ft = σ(Wfxt + vf �Ct−1 + bf) (5)

In the formula, � represents the element-by-element multiplication, σ represents the
sigmoid function, bf represents the offset term, and the intermediate state Ct synthesizes
the information of the past state and the information of the current input. How much
past information is retained depends on the calculated forgetting gate ft, as shown in
Equation (6).

Ct = ft �Ct−1 + (1− ft)� x̃t (6)

The highway network unit directly incorporates the input xt into the calculation,
which is equivalent to a crossover of the input in the residual network, as shown in
Equations (7) and (8).

rt = σ(Wrxt + vr �Ct−1 + br) (7)

ht = rt � g(Ct) + (1− rt)� xt (8)
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Here, br represents the offset term, and (1 − rt)�xt is a skip connection, which can
optimize the gradient propagation. When the network depth increases, the gradient will
not disappear because the propagation distance is too far.

In the above formula, although the dependence of the previous moment is removed,
there is still a certain bottleneck, that is, the operation of three matrix multiplications, which
provides a deeper optimization strategy matrix multiplication. Batch processing can be
performed at all time steps, which can significantly improve the intensity of calculation
and improve the utilization of GPU. In the above formula, matrix multiplication can be
combined into one, and subsequent processing can be found according to the index, as
shown in Equation (9).

UT =




W
W f
Wr


[x1, x2, .xn] (9)

Among them, U ∈ Rn×3D is the calculated matrix, d is the hidden state size, and n is
the sequence length of the input data.

3.2. Detection Model

LSTM and GRU can suppress gradient disappearance and gradient explosion to a
certain extent when capturing long-distance related information, and their effects are
better than traditional SimpleRNN. However, as variants of SimpleRNN, they have the
disadvantage of the RNN structure itself, that is, parallel computing cannot be performed.
SRU can realize parallel computing of hidden layer dimension, with less calculation,
fewer parameters and fast training. In industrial Internet intrusion detection, CNN can
locally perceive network traffic data through convolution operation and capture local
features and signs of attack in the data so as to realize sensitive detection of intrusion
behavior. In addition, CNN can adaptively learn and optimize network weights through the
backpropagation algorithm in the training process, thereby improving the generalization
ability of the model and the ability to detect unknown attacks. However, as the number
of layers of the model network becomes deeper and deeper, the problem of gradient
disappearance will inevitably become more obvious, which will consume a lot of computing
resources. Thus, we introduce the residual connection. The residual connection allows
information to be transmitted across layers in the network, avoiding the problem of gradient
disappearance and gradient explosion. This direct connection method can maintain the
information integrity of the input data and enable the network to learn and model complex
intrusion behaviors more deeply.

The detection model based on Res-CNN-SRU intrusion constructed in this paper is
shown in Figure 3. The process is as follows.
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1. Firstly, the original gas pipeline traffic is preprocessed, and the preprocessed data are
input into the convolution layer.

2. Feature extraction. In the 1D residual block, the input has two paths. In the first
path, the data are first extracted by the convolutional layer, and then the features are
convoluted to summarize the output. Within the residual structure, feature reuse is
completed through weight sharing. The second path is where the data are directly
output after shortcut processing, and the final output is the sum of two parts. The
obtained results are then passed through 1 BN layer, Conv1D layer and maximum
pooling layer, and finally the extracted features are obtained. Finally, we use the
output vector as the input of the SRU to predict the subsequent features.

3. First, a time series is generated for the input data so that the input data become
sequence data with a time step. After the time series traffic is generated, we set the
learning rate attenuation to control the learning rate in segments, in order to achieve
more efficient learning at different stages and train the neural network. We use small
batches of random gradient descent for training. The output obtained by the SRU is
passed through the fully connected layer. In order to prevent overfitting, a dropout
layer is added. Finally, the classification is performed through the softmax layer.

Dropout function is set after the pooling layer, and some neuron nodes are randomly
discarded during the training process, with a probability of 0.2. The mechanism of ran-
domly discarding some neurons is equivalent to training different neural networks in each
iteration, which can effectively suppress the occurrence of overfitting. The vector operation
of the dropout function is expressed in Equation (10).

dropout
(

xl′
j

)
= xl′

j ◦m (10)

where xi
j is the value of the input vector, m is the value of the random mask vector, and ◦

represents the product of elements, that is, the multiplication of the same elements. When
the corresponding position element of the mask matrix or vector is 1, the input element is
retained. When the corresponding position element is 0, the input element is discarded.

The classification stage uses the features learned by the model based on Res-CNN-SRU
to mark the input instance. At this stage, a fully connected output layer maps the learned
features to the output class. The output of this stage is controlled by the softmax function,
as shown in Equation (11).

y(x) = softmax(ϕ) (11)

where ϕ is the output of the dropout layer.

4. Experiment

In this section, we first introduce the dataset used in the experiment, then describe the
implementation and evaluation indicators of data preprocessing and carry out multiple
comparative tests by constantly adjusting parameters.

4.1. Experimental Dataset

In 2014, Mississippi State University published a set of industrial control system in-
trusion detection standard datasets from the network layer data of a natural gas pipeline
control system [34]. Compared with the KDD CUP99 dataset, the data collected in Missis-
sippi are the data collected in the industrial network, which have higher dimensions and
more types of attacks. The attack types of the dataset are shown in Table 1.

4.2. Data Preprocessing

Data preprocessing plays an important role in the experiment and testing of the
industrial Internet intrusion detection model, which affects the performance and detection
accuracy of the intrusion detection model. The data preprocessing in this paper is mainly
divided into three steps: low-variance filter, normalization, and one-hot encoding.
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Table 1. Description of datasets.

Attack Type Description Label Number

Normal Normal data 0 61,156
NMRI Naive malicious response injection attack 1 2763
CMRI Complex malicious response injection attack 2 15,466
MSCI Malicious state command injection attack 3 782
MPCI Malicious parameter command injection attack 4 7637
MFCI Malicious function command injection attack 5 573
DOS Denial-of-service attack 6 1837
Recon Reconnaissance attack 7 6805

4.2.1. Low-Variance Filter

Our dataset is complex and variable, with many eigenvalues, but not every eigenvalue
is well distinguished, that is, it has a very low variance. Such eigenvalues have no analytical
value, so we choose to remove them directly. For example, if a feature of a column accounts
for 95% of the instance value of all input samples, it can be considered not very useful. If
100% is 1, then this feature is meaningless. This paper chooses to remove the nine feature
columns with the smallest variance, and finally obtains a dataset with 17-dimensional
effective eigenvalues.

4.2.2. Normalization

The gas pipeline dataset has high-dimensional features, and the maximum and mini-
mum intervals of these features are large. We set the data eigenvalues in a small specific
interval. We use min–max normalization to map the features to the range [0, 1]. The
normalization formula is as shown in Equation (12).

x′p =
xq −min

(
xp
)

max
(
xp
)
−min

(
xp
) (12)

4.2.3. One-Hot Encoding

The classifier cannot directly process the disordered discrete features of the natural gas
pipeline dataset. We use one-hot coding to establish a mapping table for discrete feature
data to make them ordered and continuous. The dataset has eight classification results.
They can be encoded as (1,0,0,0,0,0,0,0), (0,1,0,0,0,0,0,0), (0,0,1,0,0,0,0,0), (0,0,0,1,0,0,0,0),
(0,0,0,0,1,0,0,0), (0,0,0,0,0,0,0,1,0,0), (0,0,0,0,0,0,0,0,1,0), (0,0,0,0,0,0,0,0,0,0,0,1), as shown in
Equation (13).

One− hot encoding =





(1, 0, 0, 0, 0, 0, 0, 0), i f the result is Normal(0).
(0, 1, 0, 0, 0, 0, 0, 0), i f the result is NMRI(1).
(0, 0, 1, 0, 0, 0, 0, 0), i f the result is CMRI(2).
(0, 0, 0, 1, 0, 0, 0, 0), i f the result is MSCI(3).
(0, 0, 0, 0, 1, 0, 0, 0), i f the result is MPCI(4).
(0, 0, 0, 0, 0, 1, 0, 0), i f the result is MFCI(5).
(0, 0, 0, 0, 0, 0, 1, 0), i f the result is DOS(6).
(0, 0, 0, 0, 0, 0, 0, 1), i f the result is Recon(7).

(13)

4.3. Benchmarking Metrics

Accuracy, precision, recall and F1 are used as key performance indicators to evaluate
the proposed method. The calculation methods of these four indicators are as shown in
Equations (14)–(17).

Accuracy =
TN + TP

TP + FP + TN + TP
(14)

Precision =
TP

TP + FP
(15)
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Recall =
TP

FN + TP
(16)

F1 =
2TP

2TP + FP + FN
(17)

Among them, TP represents the abnormal flow instance of correct classification, TN
represents the normal flow instance of correct classification, FP is the normal flow instance of
wrong classification, and FN represents the abnormal flow instance of wrong classification.

4.4. Performance Comparison

The performance of the proposed algorithm is evaluated and analyzed, mainly involv-
ing detection time, detection accuracy and loss.

4.4.1. Experimental Parameter Settings

This method is compared with three traditional machine learning methods (SVM, naïve
Bayes and REPtree) and three deep learning methods based on RNN. The experiment is
carried out on a workstation with Intel Core i7-9700H CPU, NVIDIA GeForce GTX745 GPU,
32GB RAM and Windows 10 64-bit operating system. We use the 2.3.1 version of the Keras
package to implement our model. Experiments are carried out under the same hardware,
software environment and algorithm parameters. The ratio of the training set to the test set
is 8:2. We conducted four experiments under different dataset partitions with an average
accuracy of 98.7%, similar to the results described in the paper. The specific parameters of
the simulation platform are shown in Table 2.

Table 2. Experimental parameters.

Parameter Name Description Value

depth Hidden layer size 4
optimizer Gradient descent algorithm RMSprop
activation Activation function softmax

epochs Iteration size 100
batch_size Samples per epoch 100

unit Hidden unit size 128
dropout Random deactivation rate 0.2

4.4.2. Hyperparameter Optimization

In this paper, we use the hyperparameter optimization of grid search to obtain the
best performance. This method can evaluate each possible permutation of the selected
hyperparameters. This paper focuses on the selection of activation function, optimizer and
batch size.

Activation function is an important part of neural network design that directly affects
the performance of neural network. Each activation function has different effects on the
overall performance and convergence of the neural network, so the choice of activation
function is very important. In this paper, we choose three most commonly used activation
functions for experiments, namely, rectified linear unit (ReLU), softmax, and hyperbolic
tangent (Tanh).

One cycle of learning and adjusting the network weights is called an epoch, and the
number of samples used in another iteration becomes the batch size. Different batch sizes
affect the convergence speed and convergence effect of this model. In this paper, we choose
10 and 100 as the batch size for hyperparameter search.

In the training process, the choice of the optimizer also affects the best solution to
the model parameters. A suitable optimizer can make the model fall into overfitting and
achieve global optimization. In this paper, we choose three optimizers, such as Adam, SGD,
and RMSprop, to conduct experiments.
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Table 3 shows the performance of each hyperparameter combination. By adjusting the
hyperparameters, the model with the highest accuracy of 98.79% is obtained. The activation
function to achieve the optimal result is softmax, the optimization method is RMSprop,
and the batch size is 100.

Table 3. The effect of different hyperparameters on model accuracy.

Activation Optimizer Batch_Size Accuracy (%) Precision (%) Recall (%) F1 (%)

ReLU Adam 10 98.5 94.06 94.01 94.05
ReLU Adam 100 96.51 79.67 77.41 78.44
ReLU SGD 10 90.71 62.26 62.2 62.26
ReLU SGD 100 78.43 31.58 63.15 42.1
ReLU RMSprop 10 97.78 88.04 86.91 87.42
ReLU RMSprop 100 96.26 95.38 95.49 95.42

softmax Adam 10 98.54 94.35 94.07 94.21
softmax Adam 100 98.55 94.25 94.23 94.24
softmax SGD 10 94.54 78.48 78.09 78.26
softmax SGD 100 90.71 62.27 62.31 62.26
softmax RMSprop 10 98.55 94.26 94.27 94.26
softmax RMSprop 100 98.79 95.34 95.04 95.19

Tanh Adam 10 98.66 94.72 94.70 94.73
Tanh Adam 100 98.35 93.77 93.08 93.41
Tanh SGD 10 87.51 60.15 60.22 60.19
Tanh SGD 100 90.71 62.26 62.31 62.27
Tanh RMSprop 10 98.42 93.09 92.63 92.83
Tanh RMSprop 100 98.63 95.15 93.84 94.46

4.4.3. Comparison of Methods

Table 4 shows the performance comparison of our method with the other six methods,
including three classical machine learning methods and three deep learning methods based
on RNN. The results show that compared with the other methods, the intrusion detection
method based on Res-CNN-SRU has the highest accuracy, precision, recall rate and F1 on
the gas pipeline dataset, and the training time is the shortest. This means that our proposed
method achieves the best intrusion detection results on the gas pipeline dataset.

Table 4. Comparison with other methods.

Paper Method Accuracy
(%)

Precision
(%) Recall (%) F1 (%) Training

Time (s)

[10] SVM 92.5 78.2 93.6 85.2 -
[11] Naïve Bayes 71.94 70.6 71.9 71.24 -
[12] Decision Tree 84.9 86.1 84.9 87 -
[18] RNN 94.95 78.89 78.17 77.98 -
[19] BLSTM 97.36 89.59 89.36 90.1 102
[20] CNN-GRU 94.69 78.94 78.92 75.45 107

Ours 98.79 95.34 95.04 95.38 89

Figure 4 shows the comparison of training accuracy and loss between our method and
three RNN-based deep learning methods. All models train 100 epochs. In contrast, our
method converges faster in the training process and can obtain higher accuracy.

Experiments are performed on normal data and various types of attack data, as shown
in Figure 5. The results show that the RNN algorithm has low accuracy for CMRI and DOS
data, the BLSTM algorithm has low accuracy for DOS data, and the CNN-GRU algorithm
has low accuracy for NMRI, CMRI, DOS and Recon data. Compared with other algorithms,
our method has better performance on all kinds of data in the gas pipeline dataset, and the
accuracy of DOS data is significantly higher than other algorithms.
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The output vector based on 1D CNN with residual connection is put into a time-
varying model based on RNNs. These four models are SimpleRNN, LSTM, GRU and SRU.
We use the softmax activation function and RMSprop optimizer.

In Figure 6, SRU has the highest accuracy of the methods. In Figure 7, the training
time of SRU is significantly shorter than that of LSTM and GRU. SimpleRNN has the least
training time because of its simplest internal structure. However, SimpleRNN is prone to
gradient disappearance and gradient explosion. It can be seen from the above results that
the accuracy of SRU is the highest among the models, and the training time is shorter than
LSTM and GRU.

We conducted a model ablation study to verify the effect of our model. Specifically,
verification improvements come from each component. Each component is removed from
the Res-CNN-SRU-based model in turn and compared with the complete model based on
Res-CNN-SRU.

The results of the ablation study are shown in Figure 8. This proves that whatever
components are removed from the model, the final accuracy, precision recall and F1 will
decline. Among them, the accuracy of the model based on Res-CNN-SRU is 0.9879, the
precision is 0.9534, the recall is 0.9504, and the F1 is 0.9519. If there is no CNN, the accuracy
rate is obviously lagging behind and becomes the worst result. After deleting the SRU or
residual connection part, all performance indicators also decreased. This shows that the
use of CNN can effectively and automatically extract the features of industrial Internet
network traffic and improve the accuracy of intrusion detection.
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5. Conclusions

Aiming at the problems of large industrial network traffic and difficult processing of
features, this paper proposes an industrial Internet intrusion detection method based on
Res-CNN-SRU. Our main contribution is to introduce a deep feature extraction method
that combines spatial and temporal dimensions. Firstly, we propose a 1D CNN for spatial
feature extraction of high-dimensional network traffic, which can extract local features
without losing temporal features. At the same time, residual connection can not only
alleviate the problem of gradient disappearance but also improve the convergence speed
of the network. Then, a parallel computing SRU anomaly traffic detection algorithm is
proposed. Compared with the traditional LSTM model, the SRU model has the advantages
of efficient calculation, fast training, strong sequence modeling ability and low memory
usage, and can train a model with high accuracy faster. Finally, using the gas pipeline
dataset, the performance test and ablation experiment of the proposed intrusion detection
model are carried out. The experimental results show that the accuracy of this method
on the Mississippi natural gas pipeline dataset can reach 0.9879, the precision is 0.9534,
the recall is 0.9504, and the F1 is 0.9519, giving higher accuracy and calculation efficiency
than the existing method. This proves the performance advantages and effectiveness of
our method on the gas pipeline dataset. In real life, the application of industrial Internet
intrusion detection can detect and respond to intrusion events in time to reduce potential
risks and losses. Early detection and response can prevent attackers from causing more
damage to industrial systems and reduce downtime and production disruptions.

However, with the rapid development of the Internet, network intrusion behaviors
are ever-changing, and many new attacks have emerged. Due to the lack of sufficient
sample data to train machine learning models or detect the characteristics of new attacks,
the encryption of network traffic and privacy protection measures may limit the visibility
of intrusion detection systems to attack activities. The detection effect of this system against
unknown attacks is not ideal. The detection of unknown type attacks is a complex and
challenging problem. In the future, we will adopt a combination of supervised learning
and unsupervised learning. For the attacks that cannot be identified by the classification
model, unsupervised learning will be adopted to perform cluster analysis so as to enhance
the detection ability of the intrusion detection system to unknown-type attacks.
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Abstract: Key–value (KV) stores based on the LSM-tree have become the mainstream of contemporary
store engines, but there are problems with high write and read amplification. Moreover, the real-world
workload has a high data skew, and the existing KV store lacks hot-awareness, leading to its unreliable
and poor performance on the highly skewed real-world workload. In this paper, we propose HoaKV,
which unifies the key design ideas of hot issues, KV separation, and hybrid indexing technology in a
system. Specifically, HoaKV uses the heat differentiation in KV pairs to manage the hot data and the
cold data and conducts real-time dynamic adjustment data classification management. It also uses
partial KV separation technology to manage differential KV pairs for large and small KV pairs in the
cold data. In addition, HoaKV uses hybrid indexing technology to index the hot data and the cold
data, respectively, to improve the performance of reading, writing, and scanning at the same time. In
the mixed read and write workloads experments show that HoaKV performs significantly better than
several state-of-the-art KV store technologies such as LevelDB, RocksDB, PebblesDB, and WiscKey.

Keywords: key–value store; LSM-tree; hash indexing; hot-awareness; KV separation

1. Introduction

Persistent KV stores are an essential part of modern store infrastructure [1,2]. KV stores
are used in a wide variety of applications due to its excellent horizontal scalability and ac-
cess speed and support for unstructured data stores, such as web search [3–6], e-commerce,
social networking, data deduplication [7], and graph stores [8]. KV stores, organizes, and
manages data in the form of KV pairs, usually providing a set of simple interfaces for data
operation: write, read, and scan. With the development of Internet applications, the scale of
user access and data are growing rapidly. Compared with relational databases, KV stores
can better support mass user access.

The Log-Structured Merge-tree (LSM-tree) [9] is the main structure of persistent
KV stores, such as the classic Google LevelDB [10]; Facebook RocksDB [11], which is a
multi-threaded improvement based on LevelDB; Amazon DynamoDB [12]; the Apache-
distributed database Cassandra [13]; the large-scale KV store HBase [3]; and BigTable [4].
The LSM-tree is a persistent index structure optimized for write-intensive workloads. The
core idea is to improve write efficiency by sacrificing partial read performance and con-
verting random write requests into sequential writes. The LSM-tree has the advantages of
efficient write performance, efficient range query performance, and scalability. Compres-
sion operation is the key technology to ensure the read speed of the LSM-tree, but a large
number of compression operations will reduce the system performance and lead to write
amplification, which has always been the main limitation of the LSM-tree. Therefore, the
previous research directions of KV store optimization based on the LSM-tree mainly include
write amplification, compression operation optimization [14], adaptation to new hardware
problems [15], special workload [16], secondary index or memory optimization [17,18],
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etc. Reducing the write amplification [19] is often accompanied by a decline in query
performance or the use of large memory. Thus, the full performance potential of KV stores
are still constrained by the inherent multi-level-based LSM-tree design.

Among KV store workloads in the real world, delete-intensive and update-intensive
workloads dominate many store scenarios, including server log cleaning [20] and online
transaction processing [21]. Therefore, hot issues in mixed workloads (that is, a small
number of projects frequently visited in highly skewed workloads) [22] are a common
problem in real scenarios and have been extensively studied in the literature [23,24]. Many
store systems, such as LevelDB [10] and RocksDB [11], use KV stores in memory to manage
hot projects. UniKV [25] takes the latest incoming data as the hot data and uses the hash
index in memory to index the hot data, to achieve efficient access performance. HotRing [26]
is optimized for massively concurrent access to a small portion of items and dynamically
adapts to the shift of hotspots by pointing bucket heads to frequently accessed items.
However, how to accurately judge the hot and cold of the currently accessed file block has
always been a research difficulty. In recent years, with the development of machine learning
technology, various classification algorithms have been increasingly applied to the field
of system structure design. Therefore, the use of machine learning algorithms, to predict
the hot and cold of the file block and is applied to the cache optimization mechanism, is a
problem worth studying. In addition, the access frequency of data changes dynamically, so
it is meaningful to take timely response measures to the access of data.

To this end, we design a novel KV store. Based on the differentiated key-value
management scheme, mixed index method, and a variety of well-designed technologies,
HoaKV achieves high read, write, and scan performance for large KV stores with mixed
workloads. Our main contributions are summarized as follows:

• We propose HoaKV, which coordinates the differential management of the hot data
and the cold data to effectively adapt to mixed workloads. Specifically, HoaKV divides
KV pairs according to the frequency of read and write access (i.e., heat), preferentially
allocates system resources for the hot data to achieve fast access, and further carries
out special management for the cold data according to its size.

• We propose a dynamic adjustment technology for the hot and cold data to achieve
high scalability in large KV stores. Specifically, we timely adjust the classification of
data and change its store management method according to the heat of real-time data
changes.

• We propose a hybrid index method, namely the three-level hash index method in
memory designed for the hot data and the three-level direct index technology on
disk designed for the cold data, to improve I/O performance and reduce memory
overhead.

• We propose a fine-grained partial KV separation and distinguish between small and
large KV pairs in the cold data management to reduce the I/O overhead caused by
frequent value movement caused by the compression operation of large KV pairs in
the LSM-tree. In order to improve the performance of reading, writing, and scanning,
we also propose a dynamic value grouping method to effectively manage the large KV
pairs.

• We implemented a HoaKV prototype on LevelDB [10] and evaluated its perfor-
mance using micro-benchmark and YCSB [24]. For micro-benchmark testing, HoaKV
achieved efficient loading throughput, compared to LevelDB [10], RocksDB [11], Wis-
cKey [19], and PebblesDB [27]. It also achieved significant throughput improvements
in updates and reads.

2. Related Work

HoaKV is based on the previous work of building and optimizing KV stores. This
section briefly introduces the previous work and the work close to HoaKV.

LSM-tree. Many persistent KV stores are built on the LSM-tree to solve scanning and
scalability problems. In addition to building KV stores on new hardware such as non-

236



Electronics 2023, 12, 3227

volatile memory or describing the real-world KV store workload, some research focuses
on optimizing the write performance of the LSM-tree KV store, including optimizing the
structure of the LSM-tree [27,28], KV separation [19,29,30], and reducing the compression
overhead [31,32]. The main problem of write performance is the write amplification caused
by the merge operation. For this reason, many researchers focus on how to optimize the
merge operation. This can be roughly divided into two directions. One is the separation of
key and value. WiscKey [19] uses the KV separation strategy to directly write the value
into the value log and write the key and its corresponding value address into the LSM-
tree. Helen H.W. Chan et al. put forward HashKV [29] based on WiscKey. Its core idea
is to use the hash to group KV pairs, store the KV pairs in the corresponding segment
group, and use the segment group as the unit when performing GC, thus reducing the
GC overhead. However, its write performance is not ideal. Another research direction
is reducing the write amplification by relaxing the requirement of data ordering in the
same layer. DiffKV [28] utilizes a new structure, vTree, for value management with partial
ordering. PebblesDB [31] proposes a fragmented LSM-tree, which relaxed the complete
sorting of KV pairs by dividing each level into multiple non-overlapping segments and
allowing KV pairs in each segment to not be sorted. UniKV [25] unifies hash indexing
and the LSM-tree in a single system and leverages data locality with a layered design and
dynamic range partitioning.

Hot-awareness. HashKV [29] proposes a distinction strategy between hot keys and
cold keys. HashKV stores the hot keys in the segment of vLog, and separates the cold key,
stores in the disk then. HotRing [26] proposes a novel hotspot-aware KVS, named HotRing,
which is optimized for massively concurrent access to a small portion of items. Based on
the cost–benefit model, uCleaner [33] proposes a method to separate the hot and cold data
to reduce the I/O traffic caused by the phenomenon of valid data movement during GC.

Hybrid indexing. UniKV [25] aims to simultaneously achieve high performance in
read, write, and scan, while supporting scalability, and it is also deployable in commodity
store devices (e.g., SSDs). Data Calculator [34] and Continuums [35] focus on unifying
the major different data structureto achieve self-designed KV stores. HiKV [36] and Nov-
eLSM [37] designed a new index structure for nonvolatile memory. KVS_Top [38] uses a
combination of hash and b-tree technologies to support the high-speed search of a large
number of keys (40 million). DPPDL [39] adopts a dynamic partial-parallel strategy, which
dynamically allocates the storage space with an appropriate degree of partial-parallelism
according to performance requirements.

HoaKV also adopts the mixed index method. Different from the above hybrid index
technology, HoaKV aims to achieve high-performance read, write, and scan, and supports
scalability at the same time. HoaKV combines log structure and KV stores based on hash
and sorting and uses a compact hash table to reduce the memory usage of each key. That
is to say, HoaKV divides the data into the hot data and the cold data. Different methods
are used for indexing the hot data and the cold data. In order to achieve fast read/write
performance of the hot data, we use the hash index in memory. At the same time, for the
index of the cold data, we use a common index that does not consume memory resources.

3. HoaKV Design

We propose HoaKV, which divides KV pairs into the hot data and the cold data, and
further divides them into the large KV pairs and the small KV pairs according to the size
of the cold data to achieve differential management of KV pairs. It supports efficient read
and write through the hash index and the normal index. The data classification is adjusted
through the dynamic change of the key value to the heat, to realize the dynamic scalable
and high-performance KV store.

3.1. Architectural Overview

HoaKV consists of two parts as shown in Figure 1. The first part is called the HotStore,
which stores the hottest part of KV pairs, and that is the data with the highest recent
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read/write access frequency. The second part is called the ColdStore, which stores KV pairs
differentiated by value size. Our insight is to calculate the heat of data using the read and
write frequencies of KV pairs. The hot data are the largest part of the read–write ratio and
accounts for only a small fraction of all KV pairs, so we keep them in the HotStore (fully
sorting by heat) and index them directly with in-memory hash indexing for fast reads and
writes. Meanwhile, we keep the remaining large amount of cold KV pairs in the ColdStore
for efficient scans and scalability. HoaKV realizes the idea via the following techniques:

• Hot-awareness splitting. HoaKV stores the hot data in the HotStore. When KV pairs
in a data block are written from in-memory, we calculate the heat of each KV pair and
compare it with the minimum heat of the HotStore, then, if it is large, we store it in the
HotStore.

• Hot KV indexing. To improve read performance, HoaKV stores the keys and values
of the hot data separately. Also, HoaKV designs lightweight three-level hash hot
indexing to balance memory usage and hash collisions. The hash indexing tables
indexes keyTag, heat, and vTableID.

• Partial KV separation. To efficiently manage KV pairs in the ColdStore, HoaKV
presents a partial KV separation scheme. The cold data are divided into small KV
pairs and large KV pairs. Furthermore, a differentiated and fine-grained key-value
management mechanism is implemented in the ColdStore to avoid frequent value
movement in the merge process.

• Dynamic value grouping. To achieve high read and write performance in large KV
stores, HoaKV proposes a value grouping scheme that dynamically splits KV pairs
into multiple groups that are independently managed according to the key ranges, to
expand a KV store in a scale-out manner.

• Cold KV indexing. In order to quickly find the location of the values of KV pairs and
update the heat of the cold data in real-time, HoaKV uses the cold indexing table to
record keys, heat, and group ID, where the value is located.
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3.2. Hot-Awareness Splitting

HoaKV divides all KV pairs into the hot data and the cold data. The hot data, which
are the most frequently read–write accessed part of the data, accounts for a small portion of
all key value pairs. The remaining data are the cold data, which accounts for the majority of
the total data, and the cold data has less read and write access in a short time. HoaKV stores
the hot data in the HotStore, and KV pairs are sorted by heat, that is, the data with the
highest heat achieves the fastest read–write access efficiency. To reduce sorting overhead
for the hot data, HoaKV stores the keys and values of the hot data separately.

We define the frequency of read–write access to KV pairs per unit time as heat, whose
probability density function is as follows:

heat = (PWi + PRi)/T (1)

where PWi and PRi represent the write frequency and read frequency of the ith KV pair,
respectively, in the time T, and T is time. Data blocks are passed in from memory and
the heat of each KV pair in the data block is calculated. HoaKV limits the size of the heat.
When a KV pair has a heat greater than or equal to the predetermined threshold HeatLimit,
the KV pair is the hot data, and HoaKV stores the KV pair in the HotStore. The KV pairs
in the HotStore are sorted by heat, and the heat of KV pairs changes dynamically. The
HotStore needs to sort the KV pairs frequently. To reduce sorting overhead, the HotStore
stores the key and value of the hot data separately. The HotStore stores the key and the
corresponding heat in the heat sorting and stores the value separately in the hot vlog.

Figure 2 depicts the hot-awareness splitting design. The data block are passed in from
in-memory, and HoaKV updates and calculates the heat of each KV pair. If the heat of a
KV pair is greater than or equal to HeatLimit, the KV pair is the hot data and are stored in
the HotStore. For frequent read–write access to the hot data, the HotStore stores the keys
and heat of the hot data in the hot sorting and sorts by heat. To reduce sorting overhead,
the HotStore stores the values of the hot data in the hot vlog. The hot vlog is composed
of multiple vTables, and the value of the hot data is stored in the vTable. The value of
HeatLimit in the HotStore is dynamic. HeatLimit represents the minimum heat of the hot
data. Due to the size of the HotStore being fixed, when the heat of the newly inserted KV
pair is greater than HeatLimit, the KV pair corresponding to HeatLimit is redefined as the
cold data, which is extracted from the HotStore and transferred into the ColdStore as the
cold data. Then, the minimum heat in the latest sorting result is taken as HeatLimit, so the
value of HeatLimit is dynamic.

The cold and hot data adjustment. The read and write access of KV pairs will increase
the heat. The hot and cold data are not fixed, so they need to be adjusted dynamically. As
shown in Algorithm 1, when a KV pair is inserted into the disk, we use a hash function
to calculate the keyTag based on the key. Then, we search for the keyTag in the hot
indexing table first. If it exists, it indicates that the KV pair is the hot data. We update its
corresponding heat and perform a new hot sorting. The motivation proposed in this article
is suitable for highly tilted workloads, so it is necessary for the efficient processing of the
hot data. According to real-time reading and writing accesses of the data, we will timely
update the location of the hot data in the disk through the heat sorting, so that the hot data
that we need is accessed at the fastest speed and improves the performance of the storage
engine. Furthermore, we require a higher time complexity for the sorting of the hot data,
and the space complexity is not high. According to Algorithm 1, if the keyTag is in the
hot indexing table, the system will update the heat of the hot data. As it is only updated
and then sorted, the heat order sequence is basically orderly and decreasing, and the heat
update of the hot data has been increasing. Therefore, based on the above characteristics,
we have chosen the best sorting algorithm suitable for this situation for the hot sorting.
Specifically, after updating the heat of the hot data, we start to compare and move forward
from the position of the key to the previous node until the heat is less than the previous
node. Therefore, in the worst case, the time complexity of this sorting algorithm is O
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(N), and the space complexity is O (N). If corresponding to a read operation, the value
corresponding to the key is returned from the hot vlog based on the vTableID in the hot
indexing table. If it is a write operation, due to the real-time requirement for processing the
hot data, we find the corresponding value from the hot vlog based on the vTableID and
recycle the invalid value directly, where we then store the written value in the location of
the old value. If the keyTag is in the cold indexing table and represents the KV pair as the
cold data, we update its heat in the cold indexing table and compare it with HeatLimit. If it
is greater than HeatLimit, we update it to the hot data. Specifically, we find the key with
the lowest heat from the hot sorting, calculate the keyTag, find the vTableID from the hot
indexing table, and then return the value from the hot vlog based on the vTableID. (this
is the process of taking the heat minimum KV pair). Then, we update it to the cold data,
compare its value to the threshold Value_Size (if greater than the threshold, take the key
value separation technique, otherwise store the KV pair directly in LSM-tree). Then, we
insert the new hot data into the hot sorting to further redo the hot sorting. Specifically, we
calculate the keyTag of the new hot data, store the heat in the hot indexing table, store the
value of the hot data in the vTable of the hot vlog, and then return the vTableID which is
stored in the indexing entry of the hot indexing table. For the read operation, the value of
the hot data is returned directly when the new hot data are inserted into the HotStore. For
the write operation, we insert the latest value directly into the vTable of the hot vlog. If the
keyTag is not in the cold indexing table, we insert it directly into the ColdStore. For read
operation, we return the null values directly. For write operation, we write directly when
the KV pair is inserted into the ColdStore. This enables dynamic adjustment of the cold
and hot data.
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Algorithm 1: Flow chart of dynamic adjustment of the cold and hot data

Input: KV pairs <key, value>
1: Calculate the keyTag
2: if the keyTag in the hot indexing table then
3: update heat in the hot sorting and the hot indexing table
4: adjust heat sorting
5: read the vTableID according to the keyTag
6: if operation == read then
7: read value according to the vTableID in the hot vlog
8: return value
9: else if operation == write then
10: find the value from the hot vlog based on the vTableID
11: recycle the invalid value
12: store the written value in the location of the old value
13: end if
14: else if the keyTag in the cold indexing table then
15: update heat
16: if heat > HeatLimit then
17: take the heat minimum KV pair
18: calculate the keyTag
19: update it to the cold data
20: if value > Value_Size then
21: take the key value separation technique
22: else
23: store the KV pair directly in the LSM-tree
24: end if
25: insert the new hot data into the HotStore
26: redo the hot sorting
28: if operation == read then
29: return the value of the new hot data
30: else if operation == write then
31: insert the latest value directly into the vTable
32: end if
33: end if
34: else
35: insert it directly into the ColdStore
36: if operation == read then
37: return null
38: else if operation == write then
39: write value
40: end if
41: end if

3.3. Hot KV Indexing

For data management in memory, HoaKV adopts a similar method to the traditional
KV store based on the LSM-tree and ensures data durability using write-ahead logging
(WAL). That is, the KV pairs are first appended to the log on the disk for crash recovery
and then inserted into the MemTable, which is organized into a skiplist in memory. When
the MemTable is full, it is converted into an Immutable MemTable. Then, according to the
heat, a part of KV pairs, that is, the hot data, are refreshed to the HotStore on the disk via a
background process.

Keys and values of KV pairs in the HotStore are stored separately; keys and the latest
heat are stored in hot sorting via a heat-sorted manner; values are stored separately in the
vTable of the hot vlog; and keys and values are indexed using a hash index in memory. To
update and read the latest value in time, HoaKV also stores the heat in the hash index table.
Its constituent level: <keyTag, vTableID, heat>. The keyTag stores the upper two bytes of
the hash result calculated with the different hash functions. The vTableID is the location of
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the hot data stored in the vTable of the hot vlog. The heat is the frequency of read–write
access to KV pairs per unit time.

At the same time, in order to reduce the use of memory, HoaKV establishes a lightweight
hash index, which uses a three-level hash. In addition, HoaKV uses the hash chain and
cuckoo hashing method to solve the hash conflicts problem. As shown in Figure 3, the hash
index contains N buckets. Each bucket stores the index entries of KV pairs with cuckoo
hashing, so it may append one or several overflowed index entries due to hash conflicts.
When we create an index item for a KV pair, we search the bucket according to the hash
results calculated using N hash functions (from the general hash function library), i.e., (h1,
h2, . . ., he, . . ., hE) (key)% N, until we find an empty bucket. Note that we can use up to
N hash functions in this cuckoo hash scheme. If we cannot find an empty bucket among
N buckets, we will generate an overflow index entry and append it to the bucket located
using hE (key)% N.
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After finding a bucket, we record the keyTag and vTableID of the hot data in the
selected index entry. Each index entry contains four attributes:<keyTag, vTableID, heat,
pointer>. The keyTag stores the upper two bytes of the hash result calculated using the
different hash functions, that is, hn+1 (key). It is used to quickly filter out index entries
during key searching. The vTableID uses two bytes to store a vTableID. We can index
128 GB of vTables in the HotStore, each of which is 2 MB in size. The heat uses two bytes
to store the latest value. The pointer uses two bytes to point to the next index entry in the
same bucket.

The finding key and updating heat process works as follows: First, we use hn+1 (key) to
calculate the keyTag. Then, we search for candidate buckets from hn (key)% N to h1 (key)%
N until we find the hot data and update the heat. For each candidate bucket, the latest
overflow entry is appended to the tail. Therefore, we compare the keyTag with the index
entry belonging to the bucket from the tail of the overflow entry. Once we find a matching
keyTag, we will use the vTableID to retrieve the metadata of the vTable andchange the heat
value of the hot data. Note that due to the hash conflicts of hn+1 (key), the queried KV pair
may not exist in this vTable, i.e., different keys have the same keyTag. Finally, if the KV
pair is not found in the HotStore, it indicates that it is the cold data andwe need to further
search in the ColdStore.

We now analyze the memory cost of the hash index. Each KV pair in the HotStore will
consume an index entry, and each index entry will consume 8 bytes of memory. Therefore,
for every 1 GB of hot data in the HotStore and the size of 1 KB KV pairs, it has about
1 million index entries. Considering that in our experiment, the bucket utilization is about
80%, it requires about 10 MB of memory. This memory usage is less than 1% of the data
size in the HotStore. Note that for very small KV pairs, hash indexing may incur a large
memory overhead. However, since all the data stored in the HotStore are the hot data,

242



Electronics 2023, 12, 3227

that is, frequent read and write operations will occur in a short period, the large memory
overhead caused by very small KV pairs is acceptable.

Our hash index scheme is a tradeoff in design. On the one hand, when we allocate
buckets for KV pairs, there may be hash conflicts, i.e., different keys have the same hash
value h(key) and are allocated to the same bucket. Therefore, we need to store the key
information in the index entry so that the key can be distinguished during the lookup. On
the other hand, storing a complete key wastes memory. In order to balance memory usage
and read performance, HoaKV uses three hash values and reserves only a 2-Byte hash as a
keyTag. This greatly reduces the probability of hash conflicts, which is also demonstrated
in our experiment. Even if hash conflicts occur, we can still resolve them by comparing the
keys stored on the disk.

3.4. Partial KV Separation

Recall that HoaKV stores a small number of hot data KV pairs in the HotStore and
indexes with an in-memory hash index, which incurs additional memory overhead. The
data that are not frequently read or written recently are defined as the cold data, which
accounts for the majority of KV pair sequences. HoaKV stores the cold data in the ColdStore,
that is, the data whose key value to heat is less than HeatLimit. As the size of KV pairs in
the cold data is not uniform, if the large KV pairs data are directly stored in the LSM-tree,
as in the traditional LSM-tree based KV store, it may cause great I/O overhead. As a result,
the existing KV pairs in the LSM-tree need to be read and written back after merging.
Therefore, how to reduce the merging cost of the cold data is a challenging, key problem for
HoaKV. To improve the range query performance, HoaKV proposes a partial KV separation
strategy, that is, the cold data are further divided according to its KV pair size; the key and
value address of the large KV pair is stored in the LSM-tree; the value is stored separately
in the cold vlog; and the key and value of the small KV pair are retained in the LSM-tree.

After the KV pairs sequence is split by the heat, the remaining KV pairs are the cold
data, and we further classify the cold data. Depending on the size of the value, HoaKV
categorizes the cold data as the small KV pairs and the large KV pairs. Differentiated
fine-grained key-value management mechanisms are implemented for the different types
of KV pairs. As shown in Algorithm 2, according to the threshold value which we set as
Value_Size, HoaKV classifies the cold data KV pairs. Specifically, all KV pairs whose values
are smaller than Value_Size are classified as the small KV pairs. KV pairs whose value is
larger than Value_Size are classified as the large KV pairs. HoaKV uses different store and
garbage collection mechanisms for different KV pairs. At the same time, HoaKV uses the
heat index table on the disk to index the heat and the key and value for each KV pair.

Algorithm 2: Partial KV separation

Input: Cold KV pairs <key, value>
1: if value > Value_Size then
2: store value in the cold vlog
3: return value location
4: store key and value location in the LSM-tree
5: else
6: store key and value in the LSM-tree
7: end if

For the small KV pairs, HoaKV always stores the keys and values together in the SST
file of the LSM-tree without KV separation. For the small KV pairs, KV separation will not
bring obvious benefits, but will exacerbate issues such as read–write amplification and GC
costs. The core of the key value separation technology is to store the key and the address
of the value in the LSM-tree and store the value alone in the value log. For the garbage
collection of the key value, which uses the key value separation technology, we need to find
the corresponding address from the LSM-tree, find the value from the value log according
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to the address, and then perform the garbage collection. This process increases the garbage
collection cost of the storage system. Therefore, we need to reduce the cost of garbage
collection as much as possible, and the garbage collection of the small key value is in the
compaction process of LSM-tree. At the same time, due to the value of the small key value
being relatively small, it has a small impact on the scale of the LSM-tree. This strategy
reduces the system’s garbage collection cost to a certain extent and retains the advantages
of LSM-tree technology, including excellent insertion and search performance, and at the
same time, alleviates the problem of I/O amplification. Therefore, the key value separation
technology for small key values can lead to reading and writing amplification and GC costs.
For the large KV pairs, HoaKV always performs a KV separation mechanism. HoaKV
stores the value of the large KV pairs in the cold vlog, and the value in the LSM-tree is
the location information of the value in the cold vlog. Therefore, for the large KV pairs,
merging operations between levels on the LSM-tree only need to rewrite keys and metadata
and do not need to move values, greatly reducing the write magnification of the large
KV pairs.

3.5. Dynamic Value Grouping

With the data size growth of HoaKV, if we simply add more levels to large-scale stores
as most existing LSM-tree based KV stores, moving data from a lower level to a higher level
will lead to frequent compaction operations during write process, and trigger multi-level
access during read process. Therefore, HoaKV proposes a dynamic value grouping scheme
to expand the store horizontally. The scheme stores the values of the large KV pairs in
different groups and manages them independently according to different key ranges.

The dynamic value grouping scheme works as follows (shown in Figure 4): Initially,
HoaKV writes the value in a group (i.e., G0). Once the size of the group exceeds the prede-
termined threshold GroupSize, HoaKV will divide the group into two groups according to
the key range and manage them independently (for example, G0 is divided into G0 and
G1). For the value grouping strategy, the main feature is that the keys corresponding to the
values stored in two groups are not overlapping. Therefore, how to split a group is crucial.
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To split the values in the cold vlog, HoaKV first locks them and stops the write request.
Note that the unit of locking is a group, that is, HoaKV locks the entire group and stops
all writes to the group during splitting. Then, it sorts all the keys corresponding to the
values to avoid overlapping between groups. It first reads all the SSTable files related to the
large KV pairs from the LSM-tree, sorts the keys, divides the sorted keys into two parts,
and records the boundary key as K between the two parts. Note that the boundary K acts
as a dividing point, that is, if the key of a large KV pair is less than K, its value is put into
G0, and the remaining values are stored in G1. By dividing the points, HoaKV divides the
values in the cold vlog into two groups whose keys do not overlap. Finally, HoaKV stores
the value position with the corresponding key in the pointer, writes the key and pointer
back to the corresponding SSTable file, and updates the value grouping information in
the index table. HoaKV releases the lock and resumes processing the write request after
splitting the value.
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3.6. Cold KV Indexing

KV pairs in the ColdStore are managed differently by size. For large KV pairs, the
KV separation strategy is implemented by storing the key and the address of the value in
the LSM-tree and the true value in the cold vlog. For small KV pairs, the KV separation
strategy is not implemented, and the key and value are stored directly in the LSM-tree. The
data stored in the ColdStore are the cold data, but the heat of the data is changing. We need
to adjust the store location and key-value management according to the heat of the data.
We use an index structure to index the heat, key, and grouping number of the values.

To reduce disk usage, we build a lightweight index with three levels. Its constituent
level: < heat, key, GID >. The heat is the frequency of read–write access to KV pairs per
unit time. The key is the unique identification of the KV pair. The GID is the ID of the
large KV pair in the cold data which is stored in the group. The hash index of the hot
data uses the hash results calculated by the hash function to store the bucket. Unlike this,
although the index structure also contains N buckets, it uses the direct indexing method.
Considering that for large-scale store engines, if the direct indexing method is used purely,
the search efficiency of the system will be reduced. Therefore, in order to speed up the
search efficiency, we have improved the direct indexing method. The value of the cold
data is stored in a dynamic grouping mode, so multiple values are stored in a group and
the keys corresponding to these values are in the same range. Therefore, as shown in
Figure 5, we store relevant information in the index structure according to the grouping
sequence number (GID) of the cold data value, and HoaKV stores the heat information in
the same bucket as the GID. Different values have the same GID, which will cause conflicts
in the index structure. We use the link method to resolve conflicts. Therefore, one or more
overflow index entries may be appended to each bucket due to the conflict of the GID.
When we create an index item for a KV pair, we search the bucket according to the GID
corresponding to the value. Note that in this scheme, if the bucket we find according to
the GID is not empty, we will generate an overflow index entry and attach it to the bucket
located by the GID.
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4. Evaluation

In this section, we evaluate the performance of HoaKV using real-workload-based
benchmarks. In particular, we compare the throughput and scalability of HoaKV with
several state-of-the-art KV stores: LevelDB, RocksDB, PebblesDB, and WiscKey. We also
provide detailed evaluations to demonstrate the effectiveness of the major designs adopted
by HoaKV.

4.1. Setup

We run all experiments on a machine with a 20 core Intel Xeon Silver 4210 2.20 GHz
CPU which made by Intel Corporation from California, USA, 64 GB RAM, and a 4 TB
SSD. The machine runs Ubuntu 20.04.6 LTS, with the 64-bit Linux 5.4 kernel and the ext4
file system.
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For LevelDB, RocksDB, PebblesDB, and WiscKey, we use the same default parameters.
Specifically, we set memtable_size as 64 MB (same as RocksDB by default), bloom_bits as
10 bits, and open_files as 1000. For block_cache_size, HoaKV sets it as 20 MB by default,
while other KV stores set it as 170 MB to match the size of HoaKV’s hash index for fair
comparisons. The remaining memory is used as the page cache of the kernel. For the other
parameters of different KV stores, we use their default values. For other parameters of
HoaKV, by default, to balance write performance and memory costs, we set the group size
to 40 GB. To limit the hash index in the HotStore, we set the size of the HotStore to 4 GB.
For GC operations, HoaKV uses a single GC thread. In each test, if no other specification
is made, we will use the default setting: 32 threads. We allow other KV stores to use all
available capacity in our SSD RAID volume so that their major overheads come from read
and write amplifications in the LSM-tree management. Finally, HoaKV uses YCSB [24] to
generate various types of workloads. Generally, HoaKV sets the size of KV pairs to 1 KB
and the key size to 24-Byte. HoaKV makes a request based on the Zipfian distribution,
where the Zipfian constant defaults to 0.99 in YCSB.

4.2. Micro-Benchmarks

We evaluate the performance of the different KV stores, including the performance
of load, read, update, and scan under the single-thread operations and the size of the KV
stores. Specifically, we use YCSB to generate the workload and set the size of each KV pair
to 1 KB, which consists of 8-Byte metadata (including key/value size fields and retention
information), a 24-Byte key, and a 992-Byte value. We first randomly load 100 M KV pairs
(approximately 100 GB). We then evaluate the performance of 10 M read operations, 100 M
update operations, and 1 M scan operations that scan 50 GB of data. In addition, HoaKV
sets some parameters, such as HotStore Size, Group Size, HeatLimit, and Value_size. During
the evaluation of the micro-benchmarks, HoaKV takes the values of these parameters as:
HotStore Size is 16 GB, Group Size is 20 GB, HeatLimit is 0.95:0.05, and Value_size is 32 KB.

Experiment 1 (the Performance of Load). We evaluate the load throughput for different
KV stores and HoaKV. Figure 6a shows the load throughput of each KV store. Compared
to other KV stores, it shows that HoaKV’s load performance is 9.6 times that of LevelDB,
6.2 times that of RocksDB, 1.8 times that of PebblesDB, and 0.8 times that of WiscKey. It is
important to note that HoaKV is implemented based on LevelDB, but its performance is
higher than other specifically optimized KV stores except WiscKey. This is because WiscKey
separates each KV pair, so the LSM-tree has the least amount of data and therefore has
a higher load throughput than HoaKV. The load throughput of HoaKV is much greater
than LevelDB because HoaKV uses partial KV separation. There are more KV pairs in the
same layer, which also makes HoaKV have more I/O resources to service user requests, so
HoaKV has a much higher load performance than LevelDB. Load performance is mainly
affected by write amplification, so the comparison results of load performance are similar
to those of write amplification.
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Experiment 2 (the Performance of Read). We then evaluate the performance of 10 M
read operations on various KV stores. Figure 6b shows the throughput of each KV store
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performing read operations. As can be seen, HoaKV has the best-read performance. The
read performance of HoaKV is better than WiscKey, mainly because for HoaKV, the small
KV pairs in the cold data do not perform KV separation, and there is no need to issue
another I/O request during reading. The read throughput of HoaKV increases by nearly
five times compared to LevelDB, which is also because HoaKV’s differentiated key-value
management strategy allows the LSM-tree to store more KV pairs per layer than LevelDB,
with an average of fewer layers to search for a KV pair.

Experiment 3 (the Performance of Update). We evaluate the performance of 100 M
update operations for different KV stores and HoaKV. As shown in Figure 6c, WiscKey has
the highest update performance because it directly writes KV pairs to the value log without
the need to update them to WAL files and memory tables. It also has the lowest update I/O
volume and performs the best. HoaKV has a lower update performance than WiscKey, but
its update throughput is 7.5 times higher than LevelDB. This is mainly because LevelDB’s
severe write amplification affects its update performance, while the write amplification
problem of HoaKV is much better because it stores the value of the hot data in the hot vlog
and stores the value of the large KV pairs in the cold data into the cold vlog.

Experiment 4 (the Performance of Scan). We also test the scan performance of various
store systems. Figure 6d shows the scanning throughput of each store system. According
to the results, LevelDB performs the best for scan operations as it stores all KV pairs in
an orderly manner in the LSM-tree without performing KV separation. Compared with
WiscKey which fully implements KV separation, HoaKV has a 12.5% improvement in scan
performance. This is because most of the data in the LSM-tree is stored in the bottom two
layers, while in the LSM-tree of HoaKV, small KV pairs do not perform KV separation,
greatly improving scan performance.

Experiment 5 (the Usage of Space). Figure 6e shows the total KV store size for different
KV stores after all load and update requests are issued. In addition, they have very similar
KV store sizes, meaning that all systems consume similar store space during the loading
phase. HoaKV incurs a slight additional store overhead, mainly used to store and record
pointers to the value positions of the hot data and the large KV pairs in the cold data.

4.3. YCSB Evaluation

Experiment 6 (YCSB performance). Next, we evaluate the performance of various KV
stores using the default workload of YCSB, which is an industry standard for evaluating KV
stores. As shown in Table 1, YCSB provides four different core workloads (Workloads A-D),
each representing a read–write mode in a real-world application scenario. Specifically,
Workloads A and B are read–write mixed with 50% and 95% reads, respectively. Workload
C is a read-only workload with 100% reads. Workload D also includes 95% reads, but reads
queries for the latest values.

Table 1. YCSB Read/Update ratio.

Workload Workload A Workload B Workload C Workload D

Read 0.5 0.95 1 0.95
Update 0.5 0.05 0 0.05

We present the performance results of LevelDB, RocksDB, PePePebblesDB, WiscKey,
and HoaKV under the default YCSB core workload. Figure 7 shows the total throughput of
each KV store area under each YCSB workload. In both read–write-dominated workloads,
HoaKV always performs better than other KV stores. In Workload A, compared to other
KV stores, HoaKV is 4.7 times that of LevelDB, 1.2 times that of RocksDB, 3.2 times that of
PebblesDB, and 2.2 times that of WiscKey, respectively. The performance of HoaKV and
RocksDB is similar, mainly because under workloads with fewer updates, RocksDB no
longer delays write operations to refresh the MemTable. It can better provide reads and
updates through multi-threading optimization. Next, we consider Workload B, Workload C,
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and Workload D, all of which are read-intensive. HoaKV is 4.4–11.4 times that of LevelDB,
1.2–3.0 times that of RocksDB, 2.3–7.4 times that of PebblesDB, and 1.0–2.5 times that of
WiscKey, respectively.
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4.4. Performance Impact

Experiment 7 (Impact of the HotStore size). We investigate the effect of the HotStore
size on HoaKV. We randomly load 100 M KV pairs and issue a 10 M read operation.
Figure 8a shows the result of modifying the size of the HotStore from 1 GB to 16 GB when
the fixed group size is 40 GB. As the size of the HotStore increases, the load throughput also
increases, while the read performance remains almost unchanged. However, the memory
cost of hash indexing for the HotStore will increase. Therefore, the size of the HotStore
should be limited to balance performance and memory overhead.
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Experiment 8 (Impact of the Group size). We analyze the impact of the group size on
HoaKV. We randomly load 100 M KV pairs again and issue a 10 M read. Figure 8b shows
the result of changing the group size from 20 GB to 60 GB while fixing the store area size of
the HotStore to 4 GB. The impact of group size on write performance is minimal, while it
has almost no impact on read performance. The reason is that GC operates independently
within each group. Therefore, the smaller the grouping, the more effective the GC operation.
However, group size can affect memory costs, as HoaKV needs to allocate a MemTable for
each group. Therefore, smaller groups may occupy more memory, so group size should
be limited.

Experiment 9 (Impact of HeatLimit). We evaluate the impact of HeatLimit on HoaKV’s
update performance. The size of the heat threshold HeatLimit also represents the proportion
of the hot data and the cold data in HoaKV, so we consider five different proportions of
the hot data and the cold data, including 0.05:0.95, 0.25:0.75, 0.5:0.5, 0.75:0.25, and 0.95:0.05.
Figure 8c shows the update throughput for the different ratios in the hot data and the cold
data. Thus, as the proportion of the hot data becomes heavier, the update performance of
HoaKV becomes higher. As the hot data indexes the keyTag, vTableID, and heat through
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a hash index table in memory, HoaKV can quickly find the corresponding KV pairs and
update them.

Experiment 10 (Impact of Value_Size). We investigate the effect of KV size ranging from
256 B to 32 KB and maintained other parameter settings. Figure 9 shows the throughput
of randomly loading 100 GB KV pairs, reading 10 GB, and updating 100 GB KV pairs. To
better illustrate the performance trend of data access, the throughput shown in this graph
is in MB/s. As the size of KV pairs increase, both HoaKV and PebblesDB have higher
throughput due to their efficient sequential I/Os. HoaKV always outperforms PebblesDB
in terms of load, read, and update performance. When the KV pair becomes larger, the
improvement of HoaKV reduces the throughput of loading the KV store and increases
the throughput of reads and updates. The reason is that as the size of KV pairs increase,
PebblesDB maintains more SSTables in the first level. This reduces compression overhead
but can cause read operations to check these SSTables one by one, resulting in a decrease in
read performance.
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5. Conclusions

In this paper, we propose HoaKV, which divides KV pairs into the hot data and
the cold data, and further divides them into the large KV pairs and the small KV pairs
according to the size of the cold data to achieve the differential management of KV pairs. It
supports efficient read and write through the hash index and the normal index. The data
classification is adjusted through the dynamic change of the key value to the heat, to realize
the dynamic scalable and high-performance KV store. In HoaKV, the differentiated GC
method is used for the two log files. Due to the unique characteristics of the hot data, the
GC of the hot data requires timeliness. In order to reduce GC overhead, HoaKV proposes a
delay method based on the number of invalid values in each packet of the cold vlog. The
test experiment shows that HoaKV achieves efficient read, write, and scan performance
and has low store cost. HoaKV achieves a balance of performance in all aspects.

Future research directions are as follows: the optimization of distributed KV storage
systems. This article mainly focuses on optimizing KV storage systems on a single machine.
For distributed KV storage systems, more issues need to be considered. In a distributed
system, there may be load imbalance among nodes, which affects the overall performance
of the distributed KV storage system. Therefore, we hope to conduct more in-depth research
on data consistency and load balancing in distributed KV storage systems.
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Abstract: With the rapid popularity and continuous development of social networks, users’ com-
munication and interaction through platforms such as microblogs and forums have become more
and more frequent. The comment data on these platforms reflect users’ opinions and sentiment
tendencies, and sentiment analysis of comment data has become one of the hot spots and difficulties
in current research. In this paper, we propose a BERT-ETextCNN-ELSTM (Bidirectional Encoder
Representations from Transformers–Enhanced Convolution Neural Networks–Enhanced Long Short-
Term Memory) model for sentiment analysis. The model takes text after word embedding and BERT
encoder processing and feeds it to an optimized CNN layer for convolutional operations in order to
extract local features of the text. The features from the CNN layer are then fed into the LSTM layer for
time-series modeling to capture long-term dependencies in the text. The experimental results proved
that compared with TextCNN (Convolution Neural Networks), LSTM (Long Short-Term Memory),
TextCNN-LSTM (Convolution Neural Networks–Long Short-Term Memory), and BiLSTM-ATT (Bidi-
rectional Long Short-Term Memory Network–Attention), the model proposed in this paper was more
effective in sentiment analysis. In the experimental data, the model reached a maximum of 0.89, 0.88,
and 0.86 in terms of accuracy, F1 value, and macro-average F1 value, respectively, on both datasets,
proving that the model proposed in this paper was more effective in sentiment analysis of comment
data. The proposed model achieved better performance in the review sentiment analysis task and
significantly outperformed the other comparable models.

Keywords: sentiment analysis; BERT; long short-term memory; convolutional neural network

1. Introduction

With the rapid development and popularity of social media platforms such as Weibo,
Zhihu, and Twitter [1–3], more and more users can post their views, attitudes, and emotions
on certain topics on these social media platforms, resulting in a large amount of textual data
consisting of comments with emotional overtones. Analyzing textual data with emotional
overtones not only makes it possible to obtain information about the user’s psychological
state at the moment, his or her inclination to voice an opinion on various matters, and
to understand the general views and attitudes of users, but the data also have potential
economic value [4]. The analysis can even be used to monitor undesirable comments and
thus ensure online safety. Therefore, sentiment analysis of text comment data has important
research implications.

The three main methods for text sentiment analysis are based on sentiment dictionaries,
machine learning, and deep learning [5]. The sentiment dictionary approach matches a
dataset with words in a sentiment dictionary. It calculates the sentiment polarity of the
text through weighting, but a complete dictionary is challenging to construct [6]. Machine
learning [7] methods use algorithms such as Naive Bayes (NB) and Support Vector Machines
(SVM) to achieve sentiment analysis. Still, traditional machine learning methods often fail
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to integrate contextual information, thoroughly affecting the accuracy of classification, so
they are not well suited to a variety of scenarios. Both methods have apparent drawbacks,
based on which deep learning-based approaches have been proposed [8]. Compared
with traditional machine learning models, deep learning methods can actively extract
text features [9–15], reduce the complexity of text construction features, and perform
better on sentiment analysis tasks. This paper focuses on sentiment analysis using deep
learning methods.

Typical neural network learning methods include Convolutional Neural Networks
(CNN), Recurrent Neural Networks (RNN), Long Short-Term Memory (LSTM) networks,
etc. Sentiment analysis methods based on deep learning can be subdivided into single
neural network sentiment analysis methods, hybrid (combined, fused) neural network sen-
timent analysis methods, sentiment analysis with the introduction of attention mechanisms,
and sentiment analysis using pre-trained models. This paper uses pre-trained models
and optimized hybrid (combinatorial, fusion) neural networks for sentiment analysis to
effectively address the problem of ignoring contextual semantics in traditional sentiment
analysis methods and to better extract the semantic information of the corresponding words
to achieve effective sentiment classification of text.

2. Related Studies

Sentiment analysis is an important research hotspot in the field of natural language
processing and has a wide range of research areas in data mining, web mining, text mining,
and opinion analysis. In recent years, sentiment analysis methods based on deep learning
have been widely used, the most common of which are convolutional neural network [16]
models and recurrent neural network models.

With the continuous development of deep learning technology, more and more re-
searchers have started to apply deep learning research methods to sentiment analysis of
text classes. For example, convolutional neural networks and recurrent neural networks
have been widely used by Sun [17] and others have used recurrent neural networks to
process text features in order to address the problem of sparse text features, achieving good
results on Chinese datasets. However, because of the special structure of RNNs, gradient
explosion and gradient dispersion problems are prone to occur. Therefore, variants of
RNNs are generally used to deal with sentiment analysis problems at present.

Alhagr et al. [18] argued that sentiment analysis is essentially a sequence problem
and so they used a Long Short-Term Memory network (LSTM) to deal with sequences and
proposed six LSTM models with different parameters. These models have shown excellent
performance on multiple datasets. However, it is difficult to accurately capture the local
information of a sentence using only LSTM models, so some researchers have also explored
combining deep learning methods such as CNN and LSTM to improve the accuracy of
sentiment analysis.

The convolutional neural network model proposed by Kim [19] is one of the classic
approaches in the field of sentiment analysis. The model used convolutional and max-
pooling operations to extract features from the input text and fed the extracted features into
a fully connected layer for classification. Kim applied the model to an IMDB movie review
dataset and achieved the best performance at the time.

The recurrent neural network-based sentiment analysis method proposed by
Zhuge et al. [20] in 2015 used a Long Short-Term Memory network model (LSTM) to en-
code text and then used a word vector and sentiment dictionary approach for text feature
extraction. The method was applied to several datasets and achieved good performance.

Zhou et al. [21] proposed a deep learning-based sentiment analysis method, the
Bidirectional Long Short-Term Memory Network (BiLSTM) model, for text encoding and
an attention mechanism to adaptively select important text features. In sentiment analysis
tasks, the model could accurately identify sentiment tendencies in text. In addition, the
model had good generalization capabilities and could be applied to different datasets
and tasks.
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Later, Cheng et al. [22] proposed a method for simultaneous text reading compre-
hension and aspect-level-based sentiment analysis. The method used a Gated Recurrent
Unit (GRU) to encode the text and a Multi-Head Attention mechanism to adaptively select
the important features in the text. In addition, the method could simultaneously identify
different aspects of the text and perform sentiment analysis separately, thus improving the
accuracy and efficiency of sentiment analysis.

Munikar et al. [23] used a deep bidirectional language model based on the Transformer
architecture, a pre-trained BERT model, and fine-tuned it. Their experiments showed that
their model outperformed other popular models without the complex architecture.

Based on the above summary comparison, in the field of sentiment analysis [24], deep
learning methods that have been developed in recent years [25–27] can automatically and
quickly extract relevant features from large-scale text data and capture deep semantic infor-
mation more easily, with better classification results. However, there are still limitations in
word vector representation and the neural network feature extraction processes in deep
learning methods [28–30], which may lead to incomplete feature extraction or failure to ad-
equately capture semantic information, thus affecting the classification results. To address
this problem, this paper constructed BERT and optimized an improved CNN-LSTM model
as BERT-ETextCNN-ELSTM (BERT–Enhanced Convolution Neural Networks–Enhanced
Long Short-Term Memory) to improve comment sentiment analysis with improved accu-
racy and efficiency. While retaining the advantages of CNN and LSTM models, the model
was enhanced with the introduction of BERT and optimized CNN-LSTM for representation
learning and generalization, aiming to further improve the accuracy and efficiency of
sentiment analysis.

3. Model Construction

The flow of the model is shown in Figure 1. In this paper, a fused BERT and optimally
improved TextCNN-LSTM model were constructed as BERT-ETextCNN-ELSTM. In the
model architecture, a fusion mechanism was introduced to fuse BERT, text embedding,
and CNN layer representations. This fusion allowed the model to take full advantage of
the deep contextual understanding of BERT and the local feature extraction capabilities
of CNN. The outputs of these different layers were integrated to capture a more com-
prehensive representation of the input text, effectively capturing both global and local
semantic information. Exploiting the synergy of the strengths of the two approaches, BERT
excelled in capturing long-term dependencies and global semantic information, while CNN
enhanced the model’s ability to capture local nuances and fine-grained features. This fusion
enabled our model to effectively capture both macro and micro levels in sentiment analysis,
resulting in better performance in sentiment analysis tasks.

3.1. Input Layer

(1) Data pre-processing: the original text data are cleaned, divided into words, and
deactivated to obtain a data format that can be processed by the model.

(2) Text embedding layer: The text sequence after word separation is mapped into
a high-dimensional vector representation, where each word corresponds to a vector
{W1, W2,..., Wn−1, Wn}, which is used to capture the semantic information of each word. In
the model of this paper, a BERT [31] pre-training model was used for text embedding. The
BERT model is shown in Figure 2.

3.2. Feature Extraction Layer
3.2.1. Enhanced Convolutional Neural Networks

A convolutional neural grid [19] contains convolutional layers, most commonly a
two-dimensional convolutional layer. It has two spatial dimensions, height and width,
which are often used to process image data, and it is currently widely used in sentiment
analysis research [32–34], as shown in Figure 3. The processing of TextCNN in this paper
used the Keras concatenate layer for the second part of the convolutional neural network
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to enhance processing and then put the second part of the six-layer convolutional neural
network into the concatenate layer. Not only did this reduce the complexity of the model
and loss of gradients due to model redundancy, but it also increased the number of output
channels in the TextCNN network, allowing for better extraction of features from the data.
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3.2.2. Enhanced Long and Short-Term Memory Neural Networks

In this paper, an LSTM model was considered and improved on top of the enhanced
convolutional neural network. The LSTM [8] consists of oblivion, input, and output
gates. The oblivion gate determines whether the information needs to be retained by the
sigmoid function; the input gate filters the input information, ignores the information with
the output feature dimension of 0, and updates the current cell state by combining the
temporary and previous cell states; while the output gate selectively retains and ignores the
information at the present moment and calculates the output result by the tanh function as
the input information at the next moment. The structure of the LSTM network is shown in
Figure 4, and the main calculation equations are as follows.

at = tanh(Waxt + Uaht−1 + ba) (1)

it = σ(Wixt + Uiht−1 + bi) (2)

ft = et ◦ σ(W f xt + U f ht−1 + b f ) (3)

ot = σ(Woxt + UOht−1 + bo) (4)

ct = ft ◦ ct−1 + it ◦ at (5)

ht = ot ◦ tanh(ct) (6)

where the activation function σ is a sigmoid-like function such as σ(x) = (1/1 + e−x);
◦ is a Hadamard product operator; U and W denote the weight matrix calculated from the
output ht−1 of the previously hidden layer and the current input xt, respectively; and b* is
the input bias of the three S-shaped functions. In the above equations, it, ft, and ot denote
the outputs of the input, oblivion, and output gates, respectively.

In this paper, the traditional LSTM was considered to rebuild the network model
as Enhanced Long Short-Term Memory (ELSTM), as shown in Figure 5. Therefore, it
can be seen that this paper considered adding a fully connected layer and a dropout
layer on top of the LSTM to prevent the model from overfitting in the training process.
Then, the two neural networks were put into the concatenate layer to form a strengthened

256



Electronics 2023, 12, 2910

LSTM neural network. Then, the three strengthened neural networks were put into the
concatenate layer to enhance the LSTM neural network and achieve better extraction of data
features, as shown in Figure 4. The LSTM needed to be connected to a fully connected layer
to transform the output of the LSTM into the desired result. The final product of this paper
was a fully connected layer of four dimensions. Based on the extracted feature vectors, the
output layer used a dropout mechanism combined with softmax for sentiment classification.
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4. Experiment
4.1. Datasets and Pre-Processing

To more fully validate the applicability and stability of the model proposed in this
paper, experiments were conducted on two Chinese datasets, namely the microblog review
dataset simplifyweibo_4_moods and the hotel review dataset ChnSentiCorp_htl_all, which
are described below.

The data were prepared from the official Weibo comment dataset simplifyweibo_4_moods
downloaded from the web, containing four emotions: joy, anger, disgust, and depression.
Each category had about 50,000 comments. The labeling methods and some of the data are
shown in Tables 1 and 2. As each comment came from the web and used more symbolic
language, regular expressions were applied to clean the comments. The words were split
using Jieba in Python, and the length of each comment after breaking was calculated in
preparation for creation of the splitter below. Figure 6 demonstrates that the number
of reviews selected for each category in the chosen dataset was evenly distributed. The
frequency histogram in Figure 7 shows the length of each sentence after the word splitting
process, and it can be seen that the average size was 95 words and most comments were
under 100 words, so the maximum number of words chosen for the next splitter was 100.

Table 1. Description of the simplifyweibo_4_moods dataset.

Field Description

label 0 joy, 1 anger, 2 disgust, 3 depression
review Microblog content

Table 2. Selected data from the simplifyweibo_4_moods dataset.

Serial Number Label Review

257031 2 It’s a nasty feeling, I’m always too impulsive...
56901 0 Come and see my little pill stencil~ ~Wow, wow, wow, wow~

351395 3
The most complete one I’ve found. This is when you go to see

your son in the north. Nostalgia. By the way, why am I
wearing that torn shirt? So ugly...

249801 1
Poor, help this child to turn down, Hope will not be because

of the alleged contact business what responsibility ah... is
wanting fans to want crazy what situation ah? Want to...
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After the first part of the analysis, an understanding of the parameters of the word
splitter was obtained. The Keras tokenizer was used to process the word-sorted data to
obtain a matrix of training, stable, and test datasets, as well as a dictionary of the frequency
and number of words corresponding to the occurrences. The dimensionality of the data
processed by the sorter was 20,000 × 100 for the training set, 8000 × 100 for the stable
set, and 2000 × 100 for the test set, which accounted for 66.7%, 26.7%, and 6.7% of the
dataset, respectively.

The ChnSentiCorp_htl_all dataset was a dataset compiled by Mr. Songbo Tan with
7766 hotel reviews, including 5322 positive reviews and 2444 negative reviews. The
allocation for the dataset was 4660 training samples, 1553 validation samples, and 1553 test
samples for various sentiment analysis-related experiments. They accounted for 60%, 20%,
and 20% of the dataset, respectively. The labeling methods and some of the comment data
are shown in Tables 3 and 4.

Table 3. Description of the ChnSentiCorp_htl_all dataset.

Field Description

label 1 indicates a positive comment, 0 indicates a negative comment
review Content

Table 4. Selected data from the ChnSentiCorp_htl_all dataset.

Serial Number Label Review

5612 0

The room is unimaginably small, it is recommended that large
people do not choose, the average sleeping feet can not be
straight. The room is not more than 10 square feet, and the

color TV is 14...

7321 0
Our family took the kids to the “May Day”. The hotel is a

great place to stay, but it seems to be wrong. 1. The hotel is in
addition to...

3870 1 I went to the West Hill on Saturday to pick oranges and
thought it would be a good hotel to stay at when I passed by...

4057 1 Convenient transportation is within walking distance to
Fisherman’s Wharf and Macau Ferry Terminal...

1452 1 It is a very nice hotel with a big bed and very comfortable.
The hotel staff is very friendly.
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4.2. Evaluation Indicators

This paper used accuracy, F1 score, Macro F1, and binary cross entropy loss function
as evaluation metrics. Accuracy provided a clear judgment of the model’s performance;
F1 score was the summed average of accuracy and recall, which takes into account the
accuracy and recall of the classification model; and Macro F1 was the average F1 score per
category, providing an overview of the overall performance assessment. Below are the
calculation formulas.

Accuracy =
TP + TN

TP + TN + FP + FN
(7)

Precision(P) =
TP

TP + FP
(8)

Recall(R) =
TP

TP + FN
(9)

F1 = 2× P× R
P + R

(10)

H(p, q) = −∑ p(x)log(q(x)) (11)

where TP indicates the number of sentiment predictions that are positive and correct, and
TN shows the number of sentiment predictions that are negative and correct. FP suggests
the number of harmful category errors predicted as positive. FN indicates the number of
positive category errors predicted as unfavorable. The loss function was calculated using
Equation (11) where p and q represent the true distribution and the prediction, respectively.

4.3. Model Parameter Settings

The model parameters and their descriptions are shown in Table 5.

Table 5. Model parameter settings.

Name of Experimental Parameter Parameter Values

Max Length of Sentences 100
Size of Word Vector 100

Batch Size 100
Window Size 3, 4, 5

Epochs 10
Dropout_rate 0.5

Optimizer Adam
Learning_rate 0.001

4.4. Comparative Tests

To verify the validity of the hybrid neural network model, several classical models
were selected for comparison experiments.

(1) TextCNN: Used for sentiment classification of text, it is a single basic convolutional
neural network sentiment analysis method. In this paper, it was optimized by layer
stacking.

(2) LSTM: Used for sentiment classification of text, it is a single basic long- and short-term
memory neural network sentiment analysis method. In this paper, the LSTM was
enhanced by increasing its number and complexity.

(3) TextCNN-LSTM: The text data are first transformed into word vectors through the
embedding layer, and then features at different levels are extracted through multi-
ple convolutional kernels in the TextCNN part. These extracted features are then
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transformed into a time series and handed over to the LSTM part for subsequent
processing.

(4) BiLSTM-ATT: First, the text sequence is transformed into a word vector through the
embedding layer. Next, an attention mechanism is introduced for weighting the
contribution of different words to the output of a given input text sequence to obtain
more accurate and important information.

(5) Attention-Based Convolutional Neural Network (ABCNN): Combining the attention
mechanism and CNN to sentence modeling, the goal is to construct a new sentence
model containing sentence contextual relationships by taking into account the correla-
tions between sentences through the attention mechanism.

(6) BERT-ETextCNN-ELSTM: First, the input text sentences are processed by the BERT
pre-training model to obtain the corresponding word vector representation. Then,
the TextCNN is optimally fused with an LSTM enhanced by increasing the number
and complexity through layer stacking into an ETextCNN-ELSTM, after which the
obtained word vectors are input into the ETextCNN-ELSTM to capture the features in
the text sequence to different degrees through multiple convolutional kernels.

4.5. Analysis of Experimental Results

The error and accuracy obtained by the BERT-ETextCNN-ELSTM model trained on
the simplifyweibo_4_moods and ChnSentiCorp_htl_all datasets at different numbers of
iterations are shown in Figures 8 and 9. We can see that the accuracy of the model on the
training set reached its highest at the 10th iteration, and therefore the number of iterations
for this model was chosen to be 10.
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From the above experiments, we can see that the number of iterations also affected the
performance of the models, so we compared the results of each comparison model at differ-
ent iterations to select the most appropriate number of iterations. Figures 10 and 11 show
the experimental results for the six comparison models on the simplifyweibo_4_moods and
ChnSentiCorp_htl_all datasets at different numbers of iterations.

From the above results, it can be seen that the BERT-ETextCNN-ELSTM model
achieved the best sentiment analysis performance on both datasets compared to the other
five comparison models, and it can also be seen that the best results were achieved when
the number of iterations was 10, so the number of iterations for the model in this paper
was set to 10.
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In the training process of the model, this experiment introduced the dropout method.
The dropout value is an important parameter, and a suitable value can make the model
converge better, prevent the model from overfitting, and improve the performance of the
model. Therefore, we chose different dropout values for training. The dropout values set
in this experiment were [0.2, 0.3, 0.4, 0.5, 0.6, 0.7], and the best dropout value was selected
from the training results of the model. The experiments were conducted on the simplify-
weibo_4_moods dataset and the results of the experiments on the simplifyweibo_4_moods
and ChnSentiCorp_htl_all dataset are shown in Figures 12 and 13. Through the results we
can see that only the LSTM model worked best when the dropout value was 0.6, while the
rest of the models achieved the best results when the dropout value was 0.5. The dropout
value at this time could guarantee the accuracy of the results on the premise of the dropout
value effectively preventing the model from overfitting, so the dropout value of the model
in this paper was set to 0.5.
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In the process of gradient back propagation to update the parameters of the neural
network, the optimizer used in this experiment was Adam. The Adam optimization
algorithm is computationally efficient and converges quickly. To better exploit the efficiency
of this algorithm, this paper chose different learning rate values to conduct experiments
on the simplifyweibo_4_moods and ChnSentiCorp_htl_all datasets. The results on the
simplifyweibo_4_moods and ChnSentiCorp_htl_all datasets are shown in Figures 14 and 15.
From the experimental results, it can be seen that the model had the highest accuracy when
the corresponding learning rate of Adam was 0.001. Therefore, the learning rate of the
Adam optimizer in this paper was taken to be 0.001.
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The experimental results of the proposed model and other comparative models on the
simplifyweibo_4_moods and ChnSentiCorp_htl_all datasets are shown in Tables 6 and 7 and
Figure 16. To verify the effectiveness of the hybrid (combined, fused) neural network model
proposed in this paper, using pre-trained models as well as optimized ones, several classical
models were selected for comparison experiments. In the single neural network approach
to sentiment analysis, the TextCNN and LSTM models were selected for comparison
experiments. In the hybrid (combined, fused) neural network approach to sentiment
analysis, among the sentiment analysis methods that introduce an attention mechanism,
BiLSTM-ATT and Attention-Based Convolutional Neural Network (ABCNN) were chosen
for comparison experiments. In both experiments, the best results of each model were
selected for comparison.

Table 6. Table comparing experimental results on the simplifyweibo_4_moods dataset.

Model Accuracy F1 Score Macro F1

TextCNN 0.72 0.71 0.69
LSTM 0.76 0.74 0.72

TextCNN-LSTM 0.81 0.79 0.78
BiLSTM-ATT 0.79 0.78 0.77

Attention-Based Convolutional
Neural Network (ABCNN) 0.82 0.80 0.79

BERT-ETextCNN-ELSTM 0.86 0.85 0.84

Table 7. Table comparing experimental results on the ChnSentiCorp_htl_all dataset.

Model Accuracy F1 Score Macro F1

TextCNN 0.76 0.75 0.74
LSTM 0.80 0.79 0.78

TextCNN-LSTM 0.86 0.85 0.83
BiLSTM-ATT 0.83 0.81 0.79

Attention-Based Convolutional
Neural Network (ABCNN) 0.85 0.84 0.83

BERT-ETextCNN-ELSTM 0.89 0.88 0.86
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From the experimental results, it can be seen that the BERT-ETextCNN-ELSTM model
proposed in this paper achieved the best sentiment analysis performance on both the
simplifyweibo_4_moods and ChnSentiCorp_htl_all datasets, with the highest accuracy,
F1 value, and macro-average F1 value. From the results, it can be seen that the overall
performances of TextCNN-LSTM, BiLSTM-ATT, Attention-Based Convolutional Neural
Network (ABCNN), and the model in this paper, BERT-ETextCNN-ELSTM, were signifi-
cantly higher than those of TextCNN and LSTM. Additionally, the hybrid (combined, fused)
neural networks for sentiment analysis compared to single neural network approaches
were studied, and the advantages of different approaches were considered before com-
bining and improving these approaches. Their use for sentiment analysis achieved good
results, indicating that this approach was significantly effective in alleviating the problem of
reliance on the model’s structure. Among the hybrid models, the performance of the model
proposed in this paper, BERT-ETextCNN-ELSTM, was significantly higher than that of
TextCNN-LSTM, BiLSTM-ATT, and ABCNN, indicating that the BERT model incorporated
in this paper could better handle contextual information and deal with problems such as
polysemy and ambiguity. In addition, the optimization of TextCNN-LSTM in this paper
enabled the model to more fully exploit the deep semantic information of short textbooks,
thus further improving sentiment analysis of comment data.

5. Conclusions

With the development of the Internet, comment data have become more diverse and
the structure of comment data has become more complex. Traditional sentiment analysis
methods are no longer able to produce results with great accuracy, and deep learning
methods are constantly developing new models due to their ability to actively extract text
features and their excellent performance in sentiment analysis tasks.

The research content of this paper aimed to address the shortcomings in deep learning
and improve its sentiment analysis performance. The main contributions and findings of
this thesis are as follows:

In response to the problem that traditional deep learning models cannot extract deep
semantic information and that it becomes more difficult for traditional deep learning mod-
els to extract text features when the information from review data keeps changing, such
as the emergence of new vocabulary, an optimized CNN-LSTM model was proposed to
better complete the extraction of features. The model superimposed layers on the convolu-
tional neural network, which not only reduced the complexity of the model and gradient
disappearance due to redundancy of the model, but it also increased the output channels
in the TextCNN network, enhanced the LSTM, increased the number and complexity of the
LSTM, and achieved better extraction of data features.

By introducing the BERT model, our model could take full advantage of deep bi-
directional contextual understanding to better capture the global semantic information of
sentences. The pre-training capability of BERT and learning from a large corpus enabled
our model to better understand Chinese text and perform an accurate analysis of sentiment.
Experimental results on two publicly available datasets, simplifyweibo_4_moods and
ChnSentiCorp_htl_all, validated the superiority of our model over current mainstream
models and achieved better performance and results. This demonstrated the robustness
and applicability of the model, as well as its effectiveness for Chinese sentiment analysis
tasks. However, comment data from websites have complex issues such as imperfect
expression and inaccuracy. This experiment will further refine the advancement of the
algorithm since, for example, speech, images, and videos also intuitively express people’s
emotions, and the next work will also explore applications in the fields of speech, image,
and video processing to improve the accuracy of the analysis.
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Abstract: Recently, malware detection models based on deep learning have gradually replaced
manual analysis as the first line of defense for anti-malware systems. However, it has been shown
that these models are vulnerable to a specific class of inputs called adversarial examples. It is possible
to evade the detection model by adding some carefully crafted tiny perturbations to the malicious
samples without changing the sample functions. Most of the adversarial example generation methods
ignore the information contained in the detection results of benign samples from detection models.
Our method extracts sequence fragments called benign payload from benign samples based on
detection results and uses an RNN generative model to learn benign features embedded in these
sequences. Then, we use the end of the original malicious sample as input to generate an adversarial
perturbation that reduces the malicious probability of the sample and append it to the end of the
sample to generate an adversarial sample. According to different adversarial scenarios, we propose
two different generation strategies, which are the one-time generation method and the iterative
generation method. Under different query times and append scale constraints, the maximum evasion
success rate can reach 90.8%.

Keywords: adversarial examples; evasion attack; malware detection; artificial intelligence security

1. Introduction

Deep learning has shown great potential in several fields. In recent years, with the
continuous deepening of its research, deep learning models have been introduced in many
fields, and have achieved quite good results. However, it has been shown that deep
learning models can be attacked by a specific class of inputs called adversarial examples [1].
Adversarial examples first appeared in the field of image classification. It is generated
by adding some small perturbations to the original samples, which can deceive deep
learning models and make them misclassified. With the development of research, the
existence of adversarial examples has also been found in other fields. At present, the
research on adversarial attack and defense has become a domain task, jointly promoting
the development of deep learning models.

In the field of malware detection, traditional manual analysis methods require a lot of
time and professional domain knowledge, which is difficult to cope with the ever-growing
malware and a large number of variants. Additionally, deep learning—especially end-to-
end deep learning models have excellent performance in the face of these problems. The
most typical one is a convolutional neural network model called Malconv [2]. This model
is a malware detection model for PE files jointly proposed by the Laboratory of Physical
Sciences (LPS) and NVIDIA. It takes the first 2 M bytes of PE samples as input and has
become one of the better detection models recognized in the field.

It is more difficult to generate adversarial examples in the malware detection adversar-
ial field because it is necessary to ensure that the functions of the samples are not affected
when adding adversarial perturbations and that the adversarial examples whose original
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functions are affected are meaningless. Therefore, the most commonly used method of
adding perturbation is to append several bytes at the end of the sample, which can ensure
the structural integrity of the PE file and minimize the probability that the function of
the sample will be affected. Currently, many effective adversarial attack methods have
been proposed based on this strategy, but most of them ignore the information contained
in the feedback of the detection model to benign samples. Our method starts with the
confidence score of a benign sample and extracts sequence fragments called benign payload
from the benign sample. These sequence fragments will be used as training data for our
RNN generation model after processing, helping the RNN generation model learn how to
generate sequences that reduce the confidence score of the detection model. Finally, we use
the end-byte sequence of the original malicious sample as an input to the RNN generation
model to generate adversarial perturbations and append them to the end of the malicious
sample, thereby generating adversarial examples.

Our study shows that it is possible to successfully craft adversarial examples that
evade detection models with only some model feedback on benign examples. Furthermore,
our method is not designed to help intruders evade detection models but to potentially help
detection model researchers improve the robustness of models against adversarial attacks.
At present, some methods have been proposed to improve the defense performance of
detection models in the presence of adversarial examples, and all these methods require a
large number of adversarial examples. We compare our method with several other methods,
and the results show that our method has certain advantages in both evasion performance
and perturbation scale.

2. Background and Related Work
2.1. Malware Detection Method Based on Machine Learning

Malware detection is gradually shifting from traditional rule-based methods to machine-
learning-based and deep learning methods, which are heavily introduced to improve the
detection capabilities of models. In this paper, we mainly focus on PE files [3] for the Win-
dows platform. These methods can be divided into three categories, depending on how they
process the input. The first category is image-based methods, which treat bytes as pixels,
convert the entire software sample into a color or grayscale image, and apply image classifi-
cation methods for detection. Nataraj et al. [4] first adopted this idea to convert software
samples into grayscale images and used the K-nearest neighbor method to classify using the
texture features of the image. Since then, more excellent image classification models have
been introduced based on this idea, including VGGNet [5], ResNet [6], Inception-V3 [7], etc.
The second category is disassembly-based methods. Such methods usually disassemble
software samples first, then extract features such as control flow graph and function call
graph from the assembly code, and finally use related methods of graph classification to
detect and classify [8–11]. Some people also directly extract features from the disassembled
assembly opcode sequence for detection [12,13]. The third category is to use raw binary byte
sequences directly. Jain et al. [14] directly extract n-gram features from byte sequences and
use traditional machine learning methods for detection. Raff et al. [15] proposed a detection
model that only selects a few bytes of the header of the PE file as input, which can use less
domain knowledge to achieve better results. Raff et al. [2] also proposed the first end-to-end
shallow CNN model that allows almost the entire malware byte sequence (first 2 M bytes)
as input, called Malconv. It can achieve 94.0% accuracy and 98.1% AUC after training on
a dataset including 2 million PE files, so we choose this model as the target model for our
adversarial attack.

2.2. Adversarial Attack

Adversarial attacks (also known as evasion attacks) are a popular research topic
recently, and the goal of this task is to generate effective adversarial examples. For a certain
sample x that the model can detect correctly, add an imperceptible small perturbation η to
it to obtain the perturbed sample x̃, if x̃ can successfully evade the detection model, then x̃
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is an effective adversarial sample. According to the different information mastered by the
attacker, the types of attacks can be simply divided into white-box attacks and black-box
attacks. In a white-box attack, the attacker can obtain information, such as the model
structure, parameters, training set, etc.; in a black-box attack, the attacker can only obtain
the classification results of some samples by the model. Early research mainly focused on
the field of image classification. Szegedy et al. [1] first proposed the concept of adversarial
examples in 2014 and proved the existence of adversarial examples. They construct an
adversarial perturbation based on the gradient information when the model classifies a
certain sample, so that the classification result moves in the wrong direction as much as
possible, thereby generating an adversarial sample. Subsequently, Goodfellow et al. [16]
proposed the famous FGSM algorithm, which maximizes the prediction error of the model
while ensuring that the input l0 norm remains unchanged after the perturbation, and
can find adversarial examples with low-performance overhead. In the field of black-box
attacks, the intuitive idea is to transform unknown black-box attack problems into known
white-box attacks. Papernot et al. [17] introduced this idea. They collect the prediction
output of the target model for some samples and use these input and output to train a
surrogate model, and then use the method of white-box attack on the surrogate model to
generate adversarial examples. Xu et al. [18] introduced the idea of a genetic algorithm, they
generate random perturbation samples and then make the samples evolve continuously
based on the confidence scores of the model on these samples, and finally generate effective
adversarial examples. Su et al. [19] adopted similar ideas to implement adversarial attacks
that only change a few or even a single pixel.

In the field of malware detection, many methods have also been proposed to generate
adversarial examples. Kreuk et al. [20] first migrated the FGSM method to the field of
adversarial malware. They mapped discrete bytes into a continuous space to solve the prob-
lem that the gradient of the objective function cannot be obtained and introduced domain
knowledge to ensure that the function of the adversarial sample remains unchanged. Kolos-
njaji et al. [21] and Demetrio et al. [22] also proposed gradient-based white-box methods,
where they added perturbations to the tail and head of PE files, respectively. Hu et al. [23]
proposed a GAN-based black-box attack method where they trained a GAN with a sur-
rogate model to indirectly generate adversarial examples that minimize the confidence
score predicted by the detection model. Rosenberg et al. [24] focused on attacking malware
classification models based on API calls. They still used alternative models plus white-box
attacks to implement black-box attacks and proved the transferability of these attacks on
different models. In order not to rely on the surrogate model and achieve a true black-box
attack, genetic algorithms are introduced to solve this problem [25,26]. They use genetic
algorithms to optimize random perturbations until the perturbed samples successfully
evade the detector. Demetrio et al. [27] made further optimizations based on this idea. The
perturbation they generated came from benign samples, and hyperparameters that control
the scale of perturbation and the number of queries were introduced into the loss function.
Another widely studied strategy is reinforcement learning [28–32]. This strategy is feasible
when generating a small number of samples, but it is difficult to solve the problem of
generating effective adversarial examples in large numbers. Park et al. [33] worked on
attacking image-based malware classification models. They convert malware samples
into images and employ FGSM or C&W methods to generate standard adversarial sample
images, and then use dynamic programming algorithm to generate adversarial examples
closest to standard samples. Ebrahimi et al. [34] proposed a black-box attack method based
on the RNN model. They train the RNN model to learn the semantic features of benign
samples, then generate adversarial perturbations with malicious samples as input and
append them to the end to imitate benign samples, thereby evading the detection model.
Chen et al. [35] proposed two methods for CNN-based detection models in white-box and
black-box cases, respectively. In the white box case, the saliency vector is generated by
the Grad-CAM method to divide the benign and malignant regions in the file, and the
benign features are appended to the end of the malicious sample. In the case of a black
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box, the method of optimizing random perturbation is first used to attack, the successful
attack trajectory is recorded, and the contribution of each data block to the success of the
attack is calculated, which is used as a guide for subsequent attacks. After collating these
studies, we find that most black-box attacks focus on the detection model’s feedback on
malicious samples, whether hard or soft labels, but ignore the confidence score feedback of
the detection model on benign samples. Our method is able to collect this information and
extract the features of benign samples contained in it, to train our RNN generation model,
which will play a crucial role in subsequent adversarial attacks.

2.3. Generative RNN Model

Recurrent Neural Networks are a class of neural networks specialized for processing
sequential data. Its basic structure is similar to that of a normal neural network, but at
each moment t, a single node accepts a hidden state ht affected by the previous moment
in addition to the input xt at the current moment and generates an output from it. These
characteristics of RNN mean that it can record the historical information of the input, so it
is especially suitable for data processing with sequential nature, including natural language
processing [36], speech recognition, video analysis, etc. Considering the similarity between
software data sequences and text sequences, the model can also be used in malware-
related domains. There have been studies that have demonstrated the feasibility of using
RNN models in the malware domain, whether for detection, classification, or adversarial
attack [34,37–40]. The target model of our adversarial attack, Malconv, takes byte sequences
as input, so we directly build the RNN model at the byte level. To control the scale of
the input and output, we introduce the idea of a seq2seq model [41] with encoding and
decoding layers between the input and output.

3. Proposed Method

The overall processing flow of our method is shown in Figure 1. Similar to other
malware adversarial attack methods, we first introduce our threat model, followed by the
benign payload we defined, and then the architecture design of the RNN model. Finally,
based on the trained RNN model, according to the number of times the detection model is
queried, we propose two different adversarial example generation methods, the one-time
generation method, and the iterative generation method.

3.1. Threat Model

Our method focuses on the information obtained from the confidence scores of benign
samples, and we focus on how to generate adversarial examples in batches with little
impact on the original samples. The following is our threat model:

• Adversary’s Goal: Generating batches of adversarial examples that can evade a deep
learning-based malware detection model (the Malconv model in this paper), making
the perturbation scale as small as possible under the premise of successful evasion.

• Adversary’s Knowledge: The adversary cannot know the structure and parameters
of the malware detection model, nor can it know the model’s data set, training hyper-
parameters, and other information, but it can obtain the confidence score feedback
of some models for samples. Furthermore, in the one-time generation method, the
adversary does not need to query the detection model, but in the iterative generation
method, the adversary needs to conduct several confidence score queries to optimize
adversarial perturbations.

• Adversary’s Capabilities: Appending adversarial perturbations to the end of malware
without changing sample functionality.
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Figure 1. The overall processing flow chart of our method. (a) Flow of RNN generation model
training; (b) flow of two adversarial example generation methods.

3.2. Benign Payload Extraction

Before introducing the definition of benign payload, we first illustrate our observations
and thoughts on the deep learning-based end-to-end malware detection model and its
adversarial examples. According to previous research on deep neural networks [1], the
mapping from input space to output is discontinuous due to the use of a large number of
nonlinear functions in neural networks. It is this discontinuity that leads to small pertur-
bations that can change the results predicted by the model. We conducted experiments
and observations on the Malconv model. The Malconv model can accept input of any
length up to 2 M bytes. Therefore, we consider taking the first n bytes of the sample as
input and observe the change trend of the confidence score of the Malconv model when n
increases from small to large with a certain step size. Note that since the confidence score
finally output by Malconv comes through the sigmoid layer, the sigmoid layer is sensitive
to values near 0 but not to values at both ends, so we observe the original confidence score
before the sigmoid layer. We found that there is indeed a sudden change in the confidence
score with a small change in the value of n, as shown in Figure 2. These mutations may
serve as an opening to attack the Malconv model. Our goal is to train an RNN model that
generates perturbation sequences that reduce the confidence score of the Malconv model,
and it is the sequence of bytes after the mutation point that makes the confidence score of
the Malconv model significantly lower. From the effect point of view, this sequence is the
key factor for the Malconv model to predict that the entire sample is benign, that is, the
benign payload. Its detailed definition is as follows:
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Let the target detection model be F, and we mainly focus on its original confidence
score, which is the output of the model before passing through the sigmoid layer. If the
output is less than 0, the model predicts it as a benign sample, and the smaller the output,
the higher the probability that the model thinks it is a benign sample, and vice versa. As
shown in Figure 3, select a split point c in the entire benign sample to obtain sequence a of
arbitrary length and sequence b of fixed length. If the difference between F(a) and F(a + b)
is greater than a certain threshold ε, the sequence b appended to sequence a is considered
to be a benign payload that reduces its confidence score. We also record the difference by
which the benign payload reduces the confidence score of the sample.
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In order for the RNN model to learn how to generate perturbed sequences that degrade
the model’s confidence score, we take the benign payload and a fixed-length sequence
before the benign payload as a training data sample of the RNN model and take several
training data samples from several benign samples as the training set of the RNN model.

3.3. RNN Generation Model

The RNN model is especially suitable for dealing with sequence problems because the
sequence is continuous, and the processing of the input of a certain node must not only
use the information of the current node, but also combine the information of the previous
sequence. In RNN, the information of the previous sequence is saved by the hidden state.
Specifically, the hidden state ht at each moment is given by the following formula:

ht = f (Wht−1 + Uxt) (1)
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where ht−1 is the hidden state at the previous moment, W is the parameter matrix related
to it, xt is the input at the current moment, U is the parameter matrix related to the input,
and f is the nonlinear activation function. That is, the hidden state is affected by the hidden
state of the previous moment and the current input, and the output ŷt at each moment is
given by the following formula:

ŷt = f (Vht) (2)

where ht is the hidden state at the current moment, V is the parameter matrix associated
with it, and f is the nonlinear activation function. In the above formula, W, U, and V are
all parameters that the model needs to learn.

Similar to MalRNN [34], we also adopt the GRU model to learn the knowledge of
benign payload. GRU is an improved RNN model proposed by Chung et al. [42], which
can alleviate the problem of gradient disappearance when processing long sequences. Our
model accomplishes the task of generating perturbed byte sequences from malware byte
sequences, so we employ an encoder-decoder type of architecture. The encoder first embeds
the original byte sequence into a low-dimensional feature vector, then the GRU also predicts
the next possible output in the form of a feature vector, and finally, the decoder converts
it into the corresponding byte sequence output. During model learning, the optimizer
optimizes the following loss:

loss = ∑
t
L(ŷt, yt) (3)

where ŷt is the predicted value of the model at position t, yt is the real value of the sample
sequence at position t, and L represents the function for calculating cross-entropy.

After the training is completed, the model accepts the input of a certain length of
byte sequence at the end of the malicious sample and gives an adversarial perturbation
sequence that may reduce the confidence score of the detection model. Our model adopts a
random sampling strategy according to the probability distribution when giving prediction
results, so the model may give different results for the same input.

During the experiment, we found that the perturbation sequence that can successfully
reduce the confidence score of the model usually needs to have a certain complexity, that
is, a large entropy value. Due to our random sampling strategy, the model occasionally
outputs sequences with low entropy, such as sequences with a large number of repetitions
of the same pattern or sequences with a large proportion of zero bytes. In order to further
improve the evasion rate, we will calculate the entropy value of the perturbed sequence
generated by the model, and the sequence with an entropy value lower than a certain
threshold will be discarded and regenerated.

3.4. Adversarial Example Generation Method

After the RNN generation model training is completed, the generation model can
be used to make adversarial examples. We have two different strategies for generating
adversarial examples, the one-time generation method and the iterative generation method.

3.4.1. One-Time Generation Method

One-time generation methods do not need to query the detection model for feedback
at generation time. Our generative RNN model employs an encoder-decoder architec-
ture with variable-length inputs and outputs. Therefore, this method directly takes the
byte sequence of a certain length at the end of the original malicious sample to be gen-
erated as an adversarial sample as the input of the RNN generation model, and directly
adds the generated perturbation sequence of a certain length to the end of the original
malicious sample.

This method is a straightforward use of a trained RNN generative model. It does
not need to query the detection model when generating it, nor does it have any other
complicated operations, which is especially suitable for occasions where there are not many
restrictions on the perturbation scale and a large number of adversarial examples need to
be produced.
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We test the method’s performance under different perturbation scales, respectively,
and the results are detailed in Section 4.

3.4.2. Iterative Generation Method

In more practical scenarios, the perturbation scale of adversarial examples is usually
limited. To reduce the perturbation scale, we propose the iterative generation method. The
iterative generation method adopts the strategy of generating small perturbations multiple
times. When generating adversarial examples, instead of generating large-scale adversarial
perturbations at one time, a small-scale (such as 1 KB) perturbation is generated each time,
and the guidance of the confidence score of the current perturbed sample is introduced
during the generation process. If a single perturbation makes the model’s confidence score
of the perturbed sample drop beyond a certain threshold, the perturbation is retained;
otherwise, the perturbation is discarded and regenerated. At the same time, due to the
small scale of a single perturbation, there may be several consecutive failed perturbations.
Our approach to this is to define an upper limit for the number of consecutive failures. If
the number of consecutive failures reaches the upper limit, the last failure will be retained,
and the generation will continue on this basis. The pseudocode of the iterative generation
method is shown in Algorithm 1.

Algorithm 1: Iterative Generation Method

x: original malicious sample
x̃: adversarial example
s: confidence score of the detection model for current sample
Q: maximum number of queries
P: maximum perturbation size
S: confidence score difference threshold for a single perturbation
F: maximum number of consecutive failures
countptb: current perturbation count
countqry: current query count
count f ail : current consecutive failure count
linput: input length for RNN model
loutput: output length for RNN model

Input: x, P, Q, S, F
Output: x̃
1 s← Model.predict(x)
2 countptb ← 0, countqry ← 0, count f ail ← 0
3 x̃ ← x
4 while countptb ∗ loutput < P and countqry < Q do
5 if s < 0
6 return x̃
7 end if
8 ptb← RNN.generate

(
x̃
[
−linput :

])

9 if (s−Model.predict(x.append(ptb))) > S or count f ail ≥ F then
10 x̃ ← x̃.append(ptb)
11 s← Model.predict(x̃)
12 count f ail ← 0
13 countptb ← countptb + 1
14 else
15 count f ail ← count f ail + 1
16 end if
17 countqry ← countqry + 1
18 end while
19 return False
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Generally speaking, when generating adversarial examples, the number of queries and
the perturbation scale are mutually restrictive. On the premise of ensuring the successful
generation of adversarial examples, limiting the number of queries will increase the scale
of the perturbation, and limiting the scale of the perturbation requires more queries. Our
approach allows users to flexibly define upper bounds on the perturbation scale and the
number of queries and generate adversarial examples that successfully evade the detection
model as much as possible while meeting these upper bounds. We have evaluated the
performance of our method under a variety of different constraints, and the experimental
results are detailed in Section 4.

4. Experiments Evaluation
4.1. Dataset

Our dataset contains both malware samples and benign software samples. The mal-
ware samples are a total of 6171 malicious PE files collected from VirusShare [43] websites
in recent years. Benign samples are about 6000 benign PE files extracted from Windows
10 system files and commercial software from dozens of different software companies.
Considering that the maximum input length of the Malconv model is 2 MB, we eliminated
all files whose size exceeds 1.95 MB to avoid perturbed adversarial examples exceeding
the maximum input length of Malconv. These excluded files accounted for a very small
percentage of all files.

4.2. Detection Model Evaluation

We choose the Malconv model [2] as the target detection model we want to attack.
The Malconv model is currently one of the most successful end-to-end malware detection
models based on deep learning. Many adversarial attack methods use this model as the
target detection model to attack. We reproduced the model using the Pytorch [44] library
with a maximum input sequence length of 2,000,000, a 1D convolution filter size of 500,
and a stride of 500. The data set is divided into training set, validation set, and test set
according to 6:1:1. We conducted four experiments under different dataset partitions, with
an average accuracy of 93.1% and an average AUC of 97.7%, similar to the results described
in the paper.

4.3. Benign Payload Extraction and RNN Generation Model Training

Extracting the benign payload requires the help of the trained Malconv model. Our
Malconv model can directly output its raw confidence score for a sample (that is, the score
before passing through the sigmoid layer). A score less than 0 indicates benign, and greater
than 0 indicates malicious, and the greater the absolute value, the higher the probability.
We extract benign payloads on all benign samples with confidence scores less than −8.0.
The size of the benign payload is fixed at 1 KB, and the entropy value of the sequence is
first calculated before being sent to the detection model query. A sequence with too small
entropy value will be considered to carry too little information to affect the prediction of
the Malconv model and the query will be abandoned. If a benign payload is successfully
found, it and its previous 1 KB sequence will be saved as the training data for our RNN
generation model. We successfully extracted 2000 such sequences from the validation and
training sets of the Malconv model.

The RNN generation model is trained on these training data sets, and its input and
output sizes are fixed at 1 KB. After training, the RNN generation model will be used to
generate perturbation sequences.

4.4. Evasion Performance Evaluation

Similar to other adversarial attack methods, we also use the evasion rate as the main
indicator to evaluate the effect of our method. The evasion rate is the percentage of adver-
sarial examples that successfully evade the detection model for all adversarial examples.
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In order to ensure the invariance of the function of the adversarial examples, we will
put the original malicious samples and the generated adversarial examples in the sandbox
for behavioral analysis and comparison, and the samples that cannot run or whose behavior
changes will be marked as failed to generate.

We randomly selected 500 malicious samples from the malicious samples that did not
participate in Malconv training and were correctly classified by the Malconv model as the
original malicious samples to evaluate the performance of our method. The average size of
these samples is 282.3 KB.

4.4.1. One-Time Generation Method

The one-time generation method can generate the adversarial perturbation to be
appended at one time. This method only uses the RNN generation model trained by
the benign payload before and does not need to obtain any confidence scores during the
generation process. This method takes several bytes at the end of the malicious sample as
the input of the RNN generation model and appends the generated fixed-size perturbation
bytes to the end of the original malicious sample, in order to try to make an adversarial
example that evades the Malconv detection model.

We conduct experiments with perturbation sizes of 0.5 KB, 1 KB, 2 KB, 5 KB, 10 KB, and
20 KB, and record the evasion rate as well as the average confidence score of the generated
adversarial examples on the detection model (these confidence scores are not disclosed to
the generative model, they are only used for result analysis). The experimental results are
shown in Table 1 and Figure 4.

Table 1. Results of the one-time generation method at different perturbation sizes.

Perturbation Size/KB 0 0.5 1 2 5 10 20

Evasion Rate / 1.0% 3.8% 13.8% 35.4% 54.2% 66.8%

Mean Confidence Score 7.09 6.87 6.17 4.81 2.00 −0.29 −1.99
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Figure 4. Evasion rate and average confidence score as a function of append size (KB) using the
one-time generation method.

It can be seen from the figure that the evasion rate increases with the increase of the
appended size, and the average confidence score decreases accordingly. The rising or
falling trends of the two are basically the same, and they are gradually slowing down. This
shows that as the appended size grows, the perturbation per KB is less effective. When
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the appended size reaches the maximum value of 20 KB set in our experiment, 66.8% of
the adversarial examples successfully evade the target detection model, which can pose a
certain threat to the target detection model as a black-box method.

4.4.2. Iterative Generation Method

The iterative generation method adopts the strategy of generating small perturbations
multiple times. In our experiments, we use the RNN generative model to generate an
adversarial perturbation with a fixed size of 1 KB each time and attach this perturbation
to malicious samples. Then, we query the confidence score of the Malconv model for
the current malicious sample and decide whether to keep this adversarial perturbation
according to the difference between the confidence scores before and after adding this
perturbation. Here, we set the threshold of the confidence score difference as 0.2, i.e., only
adversarial perturbations that successfully reduce the confidence score by more than 0.2
will be retained. In addition, we made some restrictions in the experiment. The upper limit
of the number of times to query the confidence score of the Malconv model is set to 50,
and the upper limit of the total size of the adversarial perturbation is set to 20 KB. Our
iterative generation method consumes the number of queries to optimize each adversarial
perturbation until an adversarial example that can evade the detection model is successfully
generated. If the number of queries or the size of the perturbation reaches the upper limit
before then, the generation fails.

Under these conditions, 454 adversarial examples were successfully generated, and
the evasion rate reached 90.8%. We counted the distribution of the number of queries
and perturbation sizes required to successfully generate adversarial examples, as shown
in Figure 5.
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It can be seen that the number of queries is mostly distributed within 1–20 times. The
append size is mostly concentrated in 1–10 KB, and the peak value is around 3 KB. To
reduce the influence of the size of the malicious sample itself on the perturbation scale,
we also counted the relative ratio (%) of the perturbation scale and the malicious sample
itself. It can be seen that the vast majority of perturbations only account for less than 10%
of the original malicious samples, and those with an append size percentage of less than
5% account for more than 60% of all samples.

According to our statistics, among all the samples that successfully generate adversar-
ial examples, the average number of queries is 13.87, the average size of the perturbation
is 5541 bytes, and the average ratio of the perturbation size to the original sample size
is 6.16%.

Since the evasion rate is affected by two factors, the number of queries and the
appended size, we also counted and studied how the evasion rate is affected by these two
factors, as shown in Figures 6 and 7.
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From the comprehensive analysis and comparison of Figures 6 and 7, it can be seen
that both the number of queries and the appended size have a significant marginal effect
on the evasion rate. That is to say, with the improvement of these two abilities, the effect
on the increase of evasion rate is getting weaker and weaker. Roughly speaking, when
the number of queries reaches 30, increasing the number of queries has little effect on
improving the evasion rate. Similarly, for the appended size, the improvement of the
evasion rate is significantly weakened by adding the appended size after reaching 10 KB
or 10% of the original sample size. In addition, the number of queries and the appended
size will also interact with each other on the evasion rate results. Due to the settings of our
method, each iteration of the query will generate at most 1 KB of adversarial perturbation.
When the upper limit of the number of queries is much smaller than the upper limit of
the perturbation size (KB), the generated adversarial perturbation will not reach the upper
limit of the perturbation size, that is, the full ability of appending perturbation will not be
exerted, and vice versa. Therefore, according to the experimental data and our experience,
when the number of queries is about 3–4 times of the appended size (KB), better results can
be obtained under the current conditions. Moreover, when the two increase simultaneously,
the effect of increasing the evasion rate is more obvious, and the effect of improving a
certain ability alone is limited.
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In conclusion, our iterative generation method can achieve a 90.8% evasion rate under
the maximum capacity condition we set (20 KB perturbation, 50 queries). Even if the ability
is reduced by about half (10 KB perturbation, 20 queries), the evasion rate of 70.6% can still
be achieved. Although each query needs to obtain the confidence score result given by the
detection model, compared with the one-time generation method, the iterative method can
more accurately find out the adversarial perturbation and can obtain a better evasion rate
result at the lowest possible cost.

4.4.3. Comparison with Other Methods

We also compared it with other attack methods that employ the append strategies. We
choose two white-box methods and two black-box methods to compare with our method.

• Benign Features Append (BFA): It is a white box method proposed by Chen et al. [35],
which introduces the Grad-CAM method proposed by Selvaraju et al. [45] to generate
a saliency vector for the sample. A saliency vector, which contains features of a series
of data blocks in an input binary file, can roughly show the benign and malicious
regions of the file. Based on the saliency vector, they continuously select data blocks
with benign features as perturbations to append to the end of the sample until the
detection model is successfully evaded.
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• Enhanced BFA: It is an improved version of the BFA method. This method [35] uses
the important benign feature data blocks obtained from the BFA method as the initial
perturbation of the FGSM method, which can more efficiently and quickly attract the
attention of the model to obtain the backpropagation gradient. Compared with BFA
method, it can significantly improve the success rate of evasion.

• Random Append: It is a relatively simple black-box adversarial method, which ap-
pends randomly generated perturbation bytes at the end of the sample to try to evade
the detection model.

• Experience Based Method: It is a black box method proposed by Chen et al. [35].
This method first divides the benign sample into several data blocks and randomly
appends the data blocks to the end of the malicious sample until the detection model
is successfully evaded. Then, these attacks are repeated, and the contribution of
each data block is calculated based on the trajectory of the successful attack. This
contribution information replaces the saliency vector in the BFA method, and the
subsequent attack process is the same as the BFA method.

Figure 8 shows the comparison results of evasion rates of several methods under
different perturbation scales. First, our method achieves an evasion rate much higher than
that of the random append method at any append size, indicating that the adversarial
perturbation bytes generated by our method are targeted and the effect is relatively ideal.
Furthermore, for the one-time generation method, it tends to vary with the perturbation
size roughly the same as the experience-based method, but the evasion rate is slightly
lower than that of the experience-based method. For the iterative generation method,
when the perturbation size is less than 5 KB, its evasion rate is not as good as that of the
experience-based method, but its evasion rate increases rapidly with the increase of the
perturbation size. After it is greater than 5 KB, it has surpassed all other black-box methods,
and gradually approaches the best white-box method in the figure, the enhanced BFA.
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In short, the one-time generation method is a basic method to directly use the RNN
generation model to generate adversarial perturbation. The method is relatively simple and
direct, and the information required is relatively small. Its evasion rate increases relatively
steadily with the change in the perturbation scale. For the iterative generation method,
since the perturbation size of our iteration is set to 1 KB, it is difficult to take advantage
of iteration when the perturbation size is small (less than 5 KB), and the evasion rate at
this time is not high. However, as the perturbation size grows, the evasion rate increases
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rapidly, surpassing the experience-based black-box method and gradually approaching the
enhanced BFA white-box method.

5. Conclusions and Future Work

In this paper, we investigate the problem of insufficient robustness of current end-to-
end malware detection models based on deep learning, especially the Malconv model. In
recent years, these models, which do not require feature engineering and expert knowledge,
are increasingly being used in automated anti-malware systems. Our research shows that
under the condition of only obtaining the scores of some benign sample from the detection
model, adversaries can train RNN generation models based on this information to generate
adversarial perturbations, thereby making adversarial examples on a large scale. This is
our one-time generation method, which achieves the highest evasion rate of 66.8%. If the
score of the model on the intermediate samples can be obtained during the generation, the
scale of additional perturbations can be further reduced and the success rate of evasion can
be improved, that is, the iterative generation method, which achieves a maximum evasion
rate of 90.8%. These results prove the vulnerability of the current deep learning-based
malware detection model. Anti-malware systems usually do not pay enough attention
to the detection and scoring information of benign samples, which may give adversaries
an opportunity.

In the future, in terms of attack direction, due to the generality of our method, we will
consider extending it to other models of the same type. While for other types of models,
such as non-end-to-end, based on opcodes or other features, we still consider treating them
as sequences and further transfer our method. In the direction of defense, we will consider
the most basic adversarial training to improve the robustness of the model. Furthermore,
in the introduction to the benign payload, we plot the model confidence score versus the
first n bytes of the sample (Figure 2). Our research may imply that models with a smoother
and less abrupt curve are more robust and harder to attack. In the future, we may start
from this point to study how to improve the defense ability of detection models against
adversarial attacks.

Author Contributions: Conceptualization, S.W.; Methodology, S.W.; Software, S.W.; Formal analysis,
S.W.; Data curation, S.W. and Z.K.; Writing—original draft, S.W.; Writing—review & editing, S.W.,
Y.W. and Z.K.; Supervision, J.X. and Y.W.; Project administration, J.X. and Y.W.; Funding acquisition,
J.X. All authors have read and agreed to the published version of the manuscript.

Funding: This research and the APC was funded by Major Scientific and Technological Innovation
Projects of Shandong Province (2020CXGC010116), the National Natural Science Foundation of China
(No. 62172042), and the National Key Research & Development Program of China (2020YFB1712104).

Data Availability Statement: Previously published articles were used to support this study and
these prior studies and datasets are cited at relevant places within this article. The link to the datasets
is https://virusshare.com/ (accessed on 26 March 2022).

Conflicts of Interest: The authors declare that there is no conflict of interest regarding the publication
of this paper.

References
1. Szegedy, C.; Zaremba, W.; Sutskever, I.; Bruna, J.; Erhan, D.; Goodfellow, I.; Fergus, R. Intriguing properties of neural networks.

In Proceedings of the International Conference on Learning Representations (ICLR), Banff, AB, Canada, 14–16 April 2014.
2. Raff, E.; Barker, J.; Sylvester, J.; Brandon, R.; Catanzaro, B.; Nicholas, C. Malware detection by eating a whole EXE. In Proceedings

of the 32nd AAAI Workshops, New Orleans, LA, USA, 2–3 February 2018; pp. 268–276.
3. Pietrek, M. Peering Inside the PE: A Tour of the win32 (R) Portable Executable File Format. Microsoft Syst. J. 1994, 9, 15–38.
4. Nataraj, L.; Karthikeyan, S.; Jacob, G.; Manjunath, B. Malware images: Visualization and automatic classification. In Proceedings

of the 8th International Symposium on Visualization for Cyber Security, Pittsburgh, PA, USA, 20 July 2011; pp. 1–7. [CrossRef]
5. Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. arXiv 2014, arXiv:1409.1556.
6. Kaiming, H.; Xiangyu, Z.; Shaoqing, R.; Jian, S. Deep Residual Learning for Image Recognition. In Proceedings of the 2016 IEEE

Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [CrossRef]

283



Electronics 2023, 12, 2346

7. Szegedy, C.; Vanhoucke, V.; Ioffe, S.; Shlens, J.; Wojna, Z. Rethinking the inception architecture for computer vision. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 2818–2826.

8. Hassen, M.; Chan, P. Scalable Function Call Graph-based Malware Classification. In Proceedings of the Seventh ACM Conference
on Data and Application Security and Privacy(CODASPY), Scottsdale, AZ, USA, 22–24 March 2017; ACM: New York, NY, USA,
2017; pp. 239–248. [CrossRef]

9. Kinable, J.; Kostakis, O. Malware classification based on call graph clustering. J. Comput. Virol. 2011, 7, 233–245. [CrossRef]
10. Kong, D.; Yan, G. Discriminant malware distance learning on structural information for automated malware classification. In

Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Chicago, IL, USA,
11–14 August 2013; pp. 1357–1365. [CrossRef]

11. Yan, J.; Yan, G.; Jin, D. Classifying malware represented as control flow graphs using deep graph convolutional neural network. In
Proceedings of the 2019 49th Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN), Portland,
OR, USA, 24–27 June 2019; pp. 52–63. [CrossRef]

12. Santos, I.; Brezo, F.; Ugarte-Pedrero, X.; Bringas, P.G. Opcode sequences as representation of executables for data-mining-based
unknown malware detection. Inf. Sci. 2013, 231, 64–82. [CrossRef]

13. Awad, Y.; Nassar, M.; Safa, H. Modeling malware as a language. In Proceedings of the 2018 IEEE International Conference on
Communications (ICC), Kansas City, MO, USA, 20–24 May 2018; pp. 1–6. [CrossRef]

14. Jain, S.; Meena, Y.K. Byte level n–gram analysis for malware detection. In Proceedings of the International Conference on
Information Processing, Shanghai, China, 13–17 November 2011; Springer: Berlin/Heidelberg, Germany, 2011; pp. 51–59.
[CrossRef]

15. Raff, E.; Sylvester, J.; Nicholas, C. Learning the pe header, malware detection with minimal domain knowledge. In Proceedings of
the 10th ACM Workshop on Artificial Intelligence and Security, Dallas, TX, USA, 3 November 2017; pp. 121–132. [CrossRef]

16. Goodfellow, I.; Shlens, J.; Szegedy, C. Explaining and harnessing adversarial examples. arXiv 2014, arXiv:1412.6572.
17. Papernot, N.; McDaniel, P.; Goodfellow, I.; Jha, S.; Celik, Z.; Swami, A. Practical Black-Box Attacks against Machine Learning.

In Proceedings of the 2017 ACM on Asia Conference on Computer and Communications Security (ASIACCS ′17), Abu Dhabi,
United Arab Emirates, 2–6 April 2017; Association for Computing Machinery: New York, NY, USA, 2017; pp. 506–519. [CrossRef]

18. Xu, W.; Qi, Y.; Evans, D. Automatically evading classifiers. In Proceedings of the 2016 Network and Distributed Systems Security
Symposium, San Diego, CA, USA, 21–24 February 2016; p. 10.

19. Su, J.; Vargas, D.V.; Sakurai, K. One Pixel Attack for Fooling Deep Neural Networks. IEEE Trans. Evol. Comput. 2019, 23, 828–841.
[CrossRef]

20. Kreuk, F.; Barak, A.; Aviv-Reuven, S.; Baruch, M.; Pinkas, B.; Keshet, J. Deceiving end-to-end deep learning malware detectors
using adversarial examples. arXiv 2018, arXiv:1802.04528.

21. Kolosnjaji, B.; Demontis, A.; Biggio, B.; Maiorca, D.; Giacinto, G.; Eckert, C.; Roli, F. Adversarial malware binaries: Evading deep
learning for malware detection in executables. In Proceedings of the 26th European Signal Processing Conference (EUSIPCO),
Rome, Italy, 3–7 September 2018; pp. 533–537. [CrossRef]

22. Demetrio, L.; Biggio, B.; Lagorio, G.; Roli, F.; Armando, A. Explaining vulnerabilities of deep learning to adversarial malware
binaries. arXiv 2019, arXiv:1901.03583.

23. Hu, W.; Tan, Y. Generating Adversarial Malware Examples for Black-Box Attacks Based on GAN. In DMBD 2022: Data Mining
and Big Data; Communications in Computer and Information Science; Springer: Singapore, 2023; Volume 1745. [CrossRef]

24. Rosenberg, I.; Shabtai, A.; Rokach, L.; Elovici, Y. Generic black-box end-to-end attack against state of the art API call based
malware classifiers. In Research in Attacks, Intrusions, and Defenses, Proceedings of the 21st International Symposium, RAID 2018,
Heraklion, Crete, Greece, 10–12 September 2018; Proceedings 21; Springer International Publishing: Berlin/Heidelberg, Germany,
2018; pp. 490–510. [CrossRef]

25. Castro, R.L.; Schmitt, C.; Dreo, G. AIMED: Evolving Malware with Genetic Programming to Evade Detection. In Proceedings
of the 18th IEEE International Conference on Trust, Security and Privacy in Computing and Communications/13th IEEE
International Conference on Big Data Science and Engineering (TrustCom/BigDataSE), Rotorua, New Zealand, 5–8 August 2019;
pp. 240–247. [CrossRef]

26. Castro, R.L.; Schmitt, C.; Rodosek, G.D. ARMED: How Automatic Malware Modifications Can Evade Static Detection. In
Proceedings of the 5th International Conference on Information Management (ICIM), Cambridge, UK, 24–27 March 2019;
pp. 20–27. [CrossRef]

27. Demetrio, L.; Biggio, B.; Lagorio, G.; Roli, F.; Armando, A. Functionality-Preserving Black-Box Optimization of Adversarial
Windows Malware. IEEE Trans. Inf. Forensics Secur. 2021, 16, 3469–3478. [CrossRef]

28. Anderson, H.S.; Kharkar, A.; Filar, B.; Evans, D.; Roth, P. Learning to evade static PE machine learning malware models via
reinforcement learning. arXiv 2018, arXiv:1801.08917.

29. Chen, J.; Jiang, J.; Li, R.; Dou, Y. Generating Adversarial Examples for Static PE Malware Detector Based on Deep Reinforcement
Learning. J. Phys. Conf. Ser. 2020, 1575, 012011. [CrossRef]

30. Song, W.; Li, X.; Afroz, S.; Garg, D.; Kuznetsov, D.; Yin, H. Mab-malware: A reinforcement learning framework for attacking static
malware classifiers. arXiv 2020, arXiv:2003.03100.

31. Li, X.; Li, Q. An IRL-based malware adversarial generation method to evade anti-malware engines. Comput. Secur. 2020,
104, 102118. [CrossRef]

284



Electronics 2023, 12, 2346

32. Anderson, H.S.; Kharkar, A.; Filar, B.; Roth, P. Evading machine learning malware detection. In Proceedings of the Black Hat,
Las Vegas, NV, USA, 22–27 July 2017.

33. Park, D.; Khan, H.; Yener, B. Generation and Evaluation of Adversarial Examples for Malware Obfuscation. In Proceedings of the
18th IEEE International Conference on Machine Learning and Applications (ICMLA), Boca Raton, FL, USA, 16–19 December 2019;
pp. 1283–1290. [CrossRef]

34. Ebrahimi, M.; Zhang, N.; Hu, J.; Raza, M.T.; Chen, H. Binary black-box evasion attacks against deep learning-based static malware
detectors with adversarial byte-level language model. arXiv 2020, arXiv:2012.07994.

35. Chen, B.-C.; Ren, Z.-R.; Yu, C.; Hussain, I.; Liu, J.-T. Adversarial Examples for CNN-Based Malware Detectors. IEEE Access 2019,
7, 54360–54371. [CrossRef]

36. Takase, S.; Suzuki, J.; Nagata, M. Character n-Gram Embeddings to Improve RNN Language Models. Proc. Conf. AAAI Artif.
Intell. 2019, 33, 5074–5082. [CrossRef]

37. Kolosnjaji, B.; Zarras, A.; Webster, G.; Eckert, C. Deep Learning for Classification of Malware System Call Sequences. In AI
2016: Advances in Artificial Intelligence; Kang, B., Bai, Q., Eds.; AI 2016. Lecture Notes in Computer Science; Springer: Cham,
Switzerland, 2016; Volume 9992. [CrossRef]

38. Rosenberg, I.; Shabtai, A.; Elovici, Y.; Rokach, L. Defense methods against adversarial examples for recurrent neural networks.
arXiv 2019, arXiv:1901.09963.

39. Harun Babu, R.; Vinayakumar, R.; Soman, K.P. RNNSecureNet: Recurrent neural networks for Cyber security use-cases. arXiv
2019, arXiv:1901.04281.

40. Zuo, F.; Li, X.; Young, P.; Luo, L. Neural machine translation inspired binary code similarity comparison beyond function pairs.
arXiv 2018, arXiv:1808.04706.

41. Cho, K.; Van Merriënboer, B.; Gulcehre, C.; Bahdanau, D.; Bougares, F.; Schwenk, H.; Bengio, Y. Learning phrase representations
using RNN encoder-decoder for statistical machine translation. arXiv 2014, arXiv:1406.1078.

42. Chung, J.; Gulcehre, C.; Cho, K.H.; Bengio, Y. Empirical evaluation of gated recurrent neural networks on sequence modeling.
arXiv 2014, arXiv:1412.3555.

43. Available online: https://virusshare.com/ (accessed on 26 March 2022).
44. Available online: https://pytorch.org/ (accessed on 20 March 2022).
45. Selvaraju, R.R.; Cogswell, M.; Das, A.; Vedantam, R.; Parikh, D.; Batra, D. Grad-cam: Visual explanations from deep networks

via gradient-based localization. In Proceedings of the IEEE International Conference on Computer Vision (ICCV), Venice, Italy,
22–29 October 2017; pp. 618–626.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

285



Citation: Sun, Y.; Zheng, J.; Lyn, L.;

Zhao, H.; Li, J.; Tan, Y.; Liu, X.; Li, Y.

The Same Name Is Not Always the

Same: Correlating and Tracing

Forgery Methods across Various

Deepfake Datasets. Electronics 2023,

12, 2353. https://doi.org/10.3390/

electronics12112353

Academic Editor: Miin-shen Yang

Received: 17 April 2023

Revised: 13 May 2023

Accepted: 17 May 2023

Published: 23 May 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

The Same Name Is Not Always the Same: Correlating and
Tracing Forgery Methods across Various Deepfake Datasets
Yi Sun 1,2 , Jun Zheng 1, Lingjuan Lyn 3, Hanyu Zhao 1, Jiaxing Li 1, Yunteng Tan 1, Xinyu Liu 1

and Yuanzhang Li 1,*

1 Beijing Institute of Technology, No. 5, South Street, Zhongguancun, Haidian District, Beijing 100811, China;
3120195532@bit.edu.cn (Y.S.); zhengjun@bit.edu.cn (J.Z.); 3220221483@bit.edu.cn (H.Z.);
jiaxingxx@outlook.com (J.L.); 1120203017@bit.edu.cn (Y.T.); lxy1653300572@163.com (X.L.)

2 Department of Information Systems Technology and Design, Singapore University of Technology and Design,
8 Somapah Road, Singapore 487372, Singapore

3 Sony AI Inc., 1-7-1 Konan Minato-ku, Tokyo 108-0075, Japan; lingjuanlvsmile@gmail.com
* Correspondence: popular@bit.edu.cn

Abstract: Deepfakes are becoming increasingly ubiquitous, particularly in facial manipulation.
Numerous researchers and companies have released multiple datasets of face deepfakes labeled to
indicate different methods of forgery. However, naming these labels is often arbitrary and inconsistent,
leading to the fact that most researchers now choose to use only one of the datasets for research
work. However, researchers must use these datasets in practical applications and conduct traceability
research. In this study, we employ some models to extract forgery features from various deepfake
datasets and utilize the K-means clustering method to identify datasets with similar feature values.
We analyze the feature values using the Calinski Harabasz Index method. Our findings reveal that
datasets with the same or similar labels in different deepfake datasets exhibit different forgery features.
We proposed the KCE system to solve this problem, which combines multiple deepfake datasets
according to feature similarity. We analyzed four groups of test datasets and found that the model
trained based on KCE combined data faced unknown data types, and Calinski Harabasz scored 42.3%
higher than combined by forged names. Furthermore, it is 2.5% higher than the model using all data,
although the latter has more training data. It shows that this method improves the generalization
ability of the model. This paper introduces a fresh perspective for effectively evaluating and utilizing
diverse deepfake datasets and conducting deepfake traceability research.
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1. Introduction

Facial recognition has become increasingly prevalent in recent years, with many
applications utilizing it as the primary method for identity recognition. However, with the
rapid development of deep learning-driven facial forgery technologies in recent years, such
as deepfakes [1], there has been a rise in fraudulent practices within media and financial
fields, which has sparked widespread social concern [2–4]. Consequently, there is a crucial
need for the traceability of forged data.

Deepfake tracking methods can be broadly classified into traditional [5–7] and deep
learning-based methods [8,9]. Traditional methods rely on techniques, such as image
forensics and metadata analysis to detect signs of manipulation in a deepfake. These
methods are based on analyzing the visual properties of an image or video, and they can
include analyzing the distribution of colors, identifying inconsistencies in lighting and
shadows, or detecting distortions in the image caused by manipulation. These traditional
methods require extensive domain knowledge and specialized software to execute. On the
other hand, deep learning-based methods rely on machine learning algorithms’ power to
detect deepfakes. These methods train deep neural networks on large datasets of real and
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fake images or videos, and they can detect deepfakes by analyzing the patterns in the data.
Deep learning-based methods are highly effective at detecting deepfakes, but they require
large amounts of training data and computing resources to execute. This paper mainly
conducts related research based on the latter method.

Tracing the source of deep forgery relies on identifying the forgery algorithms used.
However, the category labels in deepfake datasets fundamentally differ from those in the
general computer vision field. In typical computer vision datasets, such as the CIFAR [10],
ImageNet [11], and MNIST [12], the category labels are objective and have real-world
meaning. For instance, the labels for salamander and setosa are assigned by biologists
based on the biological characteristics of these species, or humans can accurately recognize
facial expressions such as anger or happiness, as shown in Figure 1. These labels remain un-
changed despite variations in camera equipment, lighting conditions, and post-processing
of images. However, humans cannot classify deepfake pictures visually, and the images
can only be named based on their forgery method. The names given to the forgery methods
by different producers are highly subjective and arbitrary, as shown in Table 1. Many
“wild datasets” do not provide forgery method labels. Furthermore, subsequent operations
such as image compression and format conversion [13] may significantly alter the forgery
characteristics of the images.

Figure 1. The first row shows the common CV dataset, the second row shows the human facial
expression dataset, and the third row shows the deepfake dataset.

Improving facial forgery recognition and tracking technology relies on collecting and
utilizing as many facial forgery datasets as possible. These datasets include ForgeryNet [14],
DeepfakeTIMIT [15], FakeAVCeleb [16], DeeperForensics-1.0 [17], and others. Additionally,
numerous “wild datasets” are gathered from the Internet. However, these datasets are
published by different institutions, use varying forgery methods, and have different naming
conventions. In some cases, the exact generation algorithm is not provided. This situation
leads some researchers to use only one dataset in their experiments. Dealing with those
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with similar or identical names can create challenges for users when multiple datasets
are employed.

Measuring the relevance of each deepfake dataset is crucial. To address this problem,
we use the Xception model [18] as a forgery feature extractor, which is commonly used in
the deepfake recognition field. We train both multi-classification and binary classification
models that map various deepfake images into the feature space illustrated in Figure 2.

Figure 2. The circle’s center represents the center position of this category of the dataset, and the area
of the circle represents the rank of the Covariance Matrix of these datasets. Distances between the
fake datasets represent the similarity of these fake features.

After mapping the deepfake datasets to feature space, we use PCA for dimensionality
reduction and the K-means method for clustering. We use these cluster datasets to retrain
the Xception model. We also combine these deepfake datasets based on forgery method
labels and use them to train another Xception model as a control group. We perform a
series of experiments on the test data using these models and use the Calinski Harabasz
Index [19] as a measure to judge the performance of the models. To improve the credibility
of the experimental results, we also repeat some experiments on The Frequency in Face
Forgery Network (F3-Net) [9] and Residual Neural network (ResNet) [20].

Our main contributions are summarized as follows:

• We point out that the forgery category labels in the deepfake dataset lack objectivity.
Our experiments prove that some forgery category labels of the same name differ
significantly across different datasets.

• We establish the KCE-System. It is a deepfake dataset similarity evaluation index
system that provides a measure of the similarity between different datasets and lays
the foundation for subsequent researchers to use these datasets comprehensively.

• Our experiments confirm that when the forgery method of the deepfake dataset is
unknown, the model can achieve better generalization performance by training on
datasets that are merged based on closer feature distances.

2. Related Works
2.1. Deepfake Datasets

Numerous deepfake datasets have been created by researchers and institutions, in-
cluding FaceForensics++ [21], Celeb-DF [22], DeepFakeMnist+ [15], DeepfakeTIMIT [1],
FakeAVCeleb [16], DeeperForensics-1.0 [17], ForgeryNet [14], and Patch-wise Face Image
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Forensics [23]. These datasets cover various forgery methods, have significant data scales,
and are widely used. Please refer to Table 1 for more details.

Table 1. Common deepfake datasets, the symbol * represents the number of pictures.

Dataset Real Fake Forgery Method

CelebDFv1 [22] 409 795 FaceswapPro

CelebDFv2 [22] 590 5639 FaceswapPro

DeeperForensics1.0 [17] 50,000 10,000 DeepFake Variational Auto-Encoder (DF-VAE) [24]

FakeAVCeleb [16] 178 11,833 Faceswap [25], Faceswap GAN (FSGAN) [26], Wav2Lip [27]

DeepFakeMnist+ [15] 10,000 10,000 First Order Motion Model for Image Animation (FOMM) [28]

DeepfakeTIMIT [1] 320 640 faceswap-GAN [29]

FaceForensics++ [21] 1000 5000 Faceswap [30], Deepfakes [31], Face2Face [32], FaceShifter [33],
NeuralTextures [34]

DeepFakeDetection [35] 363 3068 Faceswap

ForgeryNet [14] 99,630 121,617

ATVG-Net [36], BlendFace, DeepFakes, DeepFakes-StarGAN-Stack,
DiscoFaceGAN [37], FaceShifter [33], FOMM [28], FS-GAN [26],
MaskGAN [38], MMReplacement, SC-FEGAN [39],
StarGAN-BlendFace-Stack, StarGAN2 [40], StyleGAN2 [41],
Talking Head Video [42]

Patch-wise Face Image
Forensics [23] * 25,000 * 25,000 PROGAN [43], StyleGAN2 [41]

2.2. Deepfake Identification and Traceability
2.2.1. Methods Based on Spectral Features

Many scholars consider upsampling to be a necessary step in generating most face
forgeries. Cumulative upsampling can cause apparent changes in the frequency domain,
and minor forgery defects and compression errors can be well described in this domain.
Using this information can identify fake videos. Spectrum-based methods have certain
advantages in generalization because they provide another perspective. Most existing
image and video compression methods are also related to the frequency domain, making
the method based on this domain particularly robust.

Chen et al. [44] proposed a forgery detection algorithm that combines spatial and
frequency domain features using an attention mechanism. The method uses a convolutional
neural network and an attention mechanism to extract spatial domain features. After the
Fourier transform, the frequency domain features are extracted, and, finally, these features
are fused for classification. Qian et al. [9] proposed a network structure called F3-Net
(Frequency in Face Forgery Network) and designed a two-stream collaborative learning
framework to learn the frequency domain adaptive image decomposition branch and
image detail frequency statistics branch. The method has a significant lead over other
methods on low-quality video. Liu et al. [45] proposed a method based on Spatial Phase
Shallow Learning (SPSL). The method combines spatial images and phase spectra to
capture upsampled features of facial forgery. For forgery detection tasks, local texture
information is more critical than high-level semantic information. By making the network
shallower, the network is more focused on local regions. Li et al. [46] proposed a learning
framework based on frequency-aware discriminative features and designed a single-center
loss function (SCL), which only compresses the intra-class variation of real faces while
enhancing the inter-class variation in the embedding space. In this way, the network can
learn more discriminative features with less optimization difficulty.
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2.2.2. Methods Based on Generative Adversarial Network Inherent Traces

Scholars suggest that fake faces generated by generative adversarial networks have
distinct traces and texture information compared to real-world photographs.

Guarnera et al. [47] proposed a detection method based on forgery traces, which uses
an Expectation Maximization algorithm to extract local features that model the convolu-
tional generation process. Liu et al. [48] developed GramNet, an architecture that uses
global image texture representation for robust forgery detection, particularly against image
disturbances such as downsampling, JPEG compression, blur, and noise. Yang et al. [49]
argue that existing GAN-based forgery detection methods are limited in their ability to
generalize to new training models with different random seeds, datasets, and loss functions.
They propose DNA-Det, which observes that GAN architecture leaves globally consistent
fingerprints, and model weights leave varying traces in different regions.

2.3. Troubles with Current Deepfake Traceability

Methods based on frequency domain and model fingerprints provide traceability for
different forgery methods. Although researchers claim high accuracy rates in identifying
and tracing related forgery methods, they typically only use a specific dataset for research.
This approach reduces the comprehensiveness of traceability and the model’s generalization
ability. Therefore, researchers need to consider the similarity and correlation between
samples in each dataset to make full use of these datasets.

However, this presents a significant challenge. Unlike typical computer vision datasets,
deepfake datasets’ labels are based on technical methods and forgery patterns rather than
human concepts, making it impossible for humans to identify and evaluate them. The more
severe problem is that the labels of forgery methods used in various deepfake datasets
are entirely arbitrary. Some labels are based on implementation technology, while others
are based on forgery modes. For example, many datasets have the label “DeepFakes”.
The irregularity and ambiguity of these labeling methods make it difficult to utilize the
forged data of various deepfake datasets fully. Additionally, some deepfake datasets do
not indicate specific forgery methods, such as “wild datasets”.

3. Research Methods
3.1. K-Means and Calinski Harabasz Evaluation System

We trained an Xception model as a feature extractor using various deepfake datasets
and real datasets as training sets. When examining different deepfake datasets in feature
space, we observe that specific forgery methods are clustered together. In contrast, some
forgery methods with similar names are separated, as shown in Figure 2. For example,
one of the FOMM forgery methods is very close to the FaceSwap method but far from the
other FOMM forgery methods. It shows that the forgery methods with the same name
have a significant feature gap in different datasets, and different forgery methods will have
relatively similar features. The same trend can be seen in the Cosine Similarity results
in Figure 3. In order to evaluate the similarity between different forgery methods across
various datasets. We assume that incorporating datasets that use the same forgery methods
will beneficially enhance the model’s performance. Conversely, merging different datasets
or dividing the similar dataset into separate subsets may adversely affect the model’s
performance. We developed the K-means and Calinski Harabasz Evaluation System based
on the above assumptions. For the sake of simplicity, we refer to it as the KCE-System
for short.

The KCE-System incorporates unsupervised learning. The system divided the deep-
fake datasets into training sets and evaluation sets. Then it trains a deepfake recognition
model using training sets, and extracting high-dimensional vectors from the middle layer
of the model. After dimensionality reduction, the system used the K-means clustering
method to merge various deepfake datasets. The system then trains the new Xception,
F3-net, and ResNet models using these datasets. The trained models are then used to
extract 2048-dimensional or 512-dimensional values from the evaluation set as feature
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values. Finally, the system uses the Calinski Harabasz Index method on the feature values
after dimensionality reduction to evaluate The model’s performance, as shown in Figure 4.
Next, we will introduce several main parts of the system in detail.

Figure 3. Similarity matrices for different forgery methods in each deepfake dataset.
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3.2. Feature Extractor

Theoretically, when a model reaches a high classification accuracy for various cate-
gories of deep fake data, the model can extract the corresponding deepfake feature. We use
the trained deepfake recognition model as a feature extractor, as the accuracy of these mod-
els in deepfake multi-classification tasks can reach more than 90%. For a comprehensive
evaluation, we provide several representative models with different sizes.

The Xception [18] is a traditional CNN model based on separable convolutions with
residual connections. The model has shown high accuracy when detecting deepfake videos.
In terms of the training process of the feature extractor, the forgery method indicated in each
dataset is used as a pseudo-labelling for multi-class training on the Xception. The training
accuracy rate reaches 94%, and the model converges after three rounds of training. We
use the trained model extract feature on the data of 27 categories of deepfake datasets. We
take out its 2048-dimensional data as the sample’s feature from the global pooling layer of
Xception. Considering the trade-off between performance and efficiency, we select Xception
as the baseline model.

The ResNet [20] is an improvement over the traditional deep neural network archi-
tecture that solves the problem of vanishing gradients and allows the training of much
deeper networks. One of the main advantages of ResNet is its ability to handle deeper
architectures, which leads to better accuracy in image classification tasks. Another notable
model in facial forgery detection is the F3-Net, as proposed in [9]. This model leverages
frequency domain analysis and comprises two branches, one focused on learning subtle
forgery patterns via Frequency-aware Image Decomposition (FAD) and the other aimed
at extracting high-level semantics from Local Frequency Statistics (LFS). Extensive experi-
ments have demonstrated the effectiveness of the F3-Net in identifying low-quality forgery
videos. Given the widespread applicability of the ResNet model in various computer
vision fields and the unique position of the F3-Net in the domain of deepfake detection,
we also select these two models as evaluation models and test them on half of the test
group. To avoid the interference of the model itself on the experimental results to the
greatest extent.

3.3. Dimensionality Reduction and Clustering

In this field, clustering algorithms, such as K-means [50], Gaussian Mixture, and DB-
SCAN [51] are commonly used. However, the DBSCAN algorithm is ineffective in con-
trolling the number of clusters formed. In our system, we need to control the number
of clusters formed for easy comparison with the data merged by name. The Gaussian
Mixture algorithm is mainly designed for non-spherical clusters, while we focus more on
the distance between categories in feature space, which emphasizes spherical clustering.
Therefore, we chose to use the K-means clustering algorithm in our system.

The K-means algorithm uses Euclidean distance for clustering, but it can fail in high
dimensions, so a dimension reduction method must be used. Two methods we utilized
for comparison are PCA [52] and t-SNE [53]. PCA is stable but retains less information
when reduced to two or three dimensions. When reducing dimensions to 64 using PCA,
the interpretable variance contribution rate can be preserved at 95.2%. From Figure 5, we
can see that it effectively preserves most of the information needed for clustering. The
t-SNE supports low-dimensional reduction for visual analysis, but it has poor stability.

We utilize five different dimensionality reduction parameters to determine the most
appropriate clustering dimension. We apply the t-SNE algorithm to reduce the high-
dimensional feature data to 2 dimensions and use the PCA algorithm to reduce the dimen-
sionality to 32, 64, and 128 dimensions. We also keep the 2048 dimensional original features
without applying any dimensionality reduction algorithm. We then performed K-means
clustering on each of these dimensions individually.
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Figure 5. Illustration of dimensionality reduction using PCA. After using PCA to reduce the dimen-
sion, use the t-SNE method to reduce the dimension to two dimensions for display (Different colors
indicate different forgery methods).

3.4. Selection of Evaluation Algorithms

We select four categories of deepfake datasets not involved in the training and clus-
tering process as evaluation sets. We extract Xception, ResNet, and F3-net models’ global
pooling layer output and use the PCA algorithm reduces the data to 128 dimensions.
An example of the results in Figure 6, demonstrating a clear distinction between the four
unknown deepfake categories. This figure indicates that our model has indeed learned the
relevant characteristics for identifying deepfakes.

Evaluating the performance of models trained with unreliably labeled or unlabeled
data is difficult. We can not use precision and recall because we do not have a way to
figure out whether each sample is classified correctly. To address this issue, we utilize the
Calinski Harabasz Index [19], introduced by Calinski and Harabasz in 1974, as an effective
evaluation method. This index is defined in Equation (1) as the ratio of the sum of between-
cluster dispersion and inter-cluster dispersion for all clusters. Therefore, the Calinski
Harabasz Index can be used to evaluate the models, with higher scores indicating that the
model performs better on the test datasets.

For a set of data E of size nE, which has been clustered into k clusters, the Calinski
Harabasz score s is defined as the ratio of the between-cluster dispersion means and the
within-cluster dispersion, as shown in Equation (1).

s =
tr(Bk)

tr(Wk)
× nE − k

k− 1
(1)

where tr(Bk) is trace of the between group dispersion matrix and tr(Wk) is the trace of the
within-cluster dispersion matrix defined by:

Bk =
k

∑
q=1

nq(cq − cE)(cq − cE)
T (2)

Wk =
k

∑
q=1

∑
x∈Cq

(x− cq)(x− cq)
T (3)
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Here, Cq represents the set of points in cluster q, cq represents the center of cluster q,
cE represents the center of E, and nq represents the number of points in cluster q.

When using the Calinski Harabasz Index to evaluate clustering quality, it can be
observed that the elbow points of the Calinski Harabasz Index tend to be around 3 or 4 of
cluster number, as depicted in Figure 7. The results obtained from the Calinski Harabasz
Index are consistent with the number of forged method categories in the actual evaluation
set. This suggests that the Calinski Harabasz Index is a valuable method to assess the
model’s ability to identify new categories of deepfakes. When other training parameters
remain the same, if a model’s performance is outstanding, it indicates that the quality of the
training set is excellent, with fewer incorrect labels. In other words, we effectively improve
the reliability of these classification labels in the training set. Therefore, the Calinski
Harabasz Index can effectively evaluate the correlation of these unreliable classification
labels in our system.

Figure 6. The model output of the evaluation sets, that be reduced to three dimensions using the
t-SNE method for display.
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Figure 7. Using Calinski Harabasz Index to evaluate its clustering quality, it can be found that its
elbow point is about 3 to 4.
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4. Experiment

In this section, we first introduce the overall experimental setup. Our equipment
includes four NVIDIA GeForce2080Ti GPUs. We use PyTorch to train and evaluate models,
OpenCV to image data preprocessing, and Scikit-learn algorithm library for data analy-
sis. We extract 620,000 fake face images from 10 deepfake datasets and train 40 models,
including 32 Xception, 4 F3-net, and 4 ResNet models. The entire data preparation and
experimental process spanned approximately 3 months.

4.1. Data Dividing and Preprocessing

We select 31 datasets labeled with forgery method names from CelebDF, DeeperForensics-
1.0, DeepFakeMnist+, FaceForensics++, ForgeryNet, and FakeAVCeleb, see Table 1 for
details. We use a random method to divide 31 deepfake categories into two sets, where
the training set contains 27 categories, and the evaluation set contains four categories. We
repeat the above division four times to obtain four sets of training sets and evaluation sets.
See Table 2 for details.

Table 2. The table displays four sets of experimental data, each containing four evaluation datasets,
with the remaining 27 datasets designated for training purposes.

Group Evaluation Datasets

1 Faceforensics++_FaceShifter, FakeAVCeleb_FaceSwap, ForgeryNet_ATVG-Net,
ForgeryNet_FOMM

2 DeeperForensics_DF-VAE, Faceforensics++_Face2Face, FakeAVCeleb_Wav2Lip,
ForgeryNet_DiscoFaceGAN

3 DeepfakeTIMIT_FaceSwap-GAN, ForgeryNet_BlendFace, ForgeryNet_StarGAN2,
Patch-wise-Face-Image-Forensics _PROGAN

4 CelebDFv2_FaceSwapPRO, Faceforensics++_ NeuralTextures, ForgeryNet_FS-GAN,
ForgeryNet_Talking Head Video

We extract the frame data of each category according to the instructions of the relevant
dataset and use the face detection model Retinaface [54] to intercept the face area. Then,
we increase the side length of the image by a factor of 1.25. Finally, we randomly select
20,000 fake faces of each category and save these images as test data in png. format.

4.2. Merge Training Data Based on the Category Name

In order to verify our conjecture that there is large randomness in the naming of the
forged methods in the deepfake dataset, we specially merged the training set data according
to the principle of the same or close to the forged method names and used them as a control
group. We use the following merging rules.

(a) Merge the FaceSwapPRO category in the CelebDFv1 dataset and the FaceSwapPRO
category in the CelebDFv2 dataset.

(b) Merge the FOMM category in the DeepFakeMnist+ dataset and the FOMM category
in the ForgeryNet dataset.

(c) Merge the FaceSwap-GAN category in the DeepfakeTIMIT dataset, the DeepFakeDe-
tection FaceSwap category and the FaceSwap category in the FaceForensics++ dataset,
and the faceswap category in the FakeAVCeleb dataset.

(d) Merge the DeepFakes category in the Faceforensics++ dataset and the DeepFakes
category in the ForgeryNet dataset.

(e) Merge the FSGAN category in the FakeAVCeleb dataset and the FS-GAN category in
the ForgeryNet dataset.

(f) Merge DeepFakes-StarGAN-Stack category, StarGAN-BlendFace-Stack category and
StarGAN2 category in ForgeryNet dataset.

(g) Merge the StyleGAN2 category in the ForgeryNet dataset and the STYLEGAN2 cate-
gory in the Patch-wise Face Image Forensics dataset.
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We randomly sample corresponding proportions of data from the merged dataset and
reassemble them into 20,000 images per category. The number of training set categories of
the merged four groups is that Group 1 has a total of 19 categories, Group 2 has a total of
17 categories, Group 3 has a total of 19 categories, and Group 4 has a total of 19 categories.

4.3. Merge Training Data Based on the Results of K-Means Clustering

One of the purposes of our experiment is to determine the appropriate dimensionality
for K-means clustering to address this type of problem. We need to ensure that we do not
lose too many classification features due to excessive dimensionality reduction, nor do we
cause the K-means algorithm to fail due to excessive dimensionality. Since we chose the
Xception model as the baseline, we use the PCA algorithm to reduce the 2048-dimensional
output to 128, 64, and 32 dimensions. We also reduce it to two dimensions using the t-SNE
algorithm. For the F3-net and ResNet models, we only use the PCA algorithm to reduce
the output feature value to 64 dimensions since we only need to verify that our method
applies to these models.

In the previous section, we created training data for the control group based on
name mergers. To facilitate comparison, we ensure that the number of categories of the
experimental data for each group is identical. Therefore, we use the K-means clustering
algorithm to cluster these training sets based on the specified number of clusters. Groups 1,
3, and 4 have 19 clusters, while Group 2 has 17 clusters. Finally, we use the results of the
K-means clustering algorithm to combine the training set.

4.4. Experimental Results

We train Xception, F3-net, and ResNet models using training data merged by K-means
clustering results and category names, respectively. For comparison, we also train the same
models using the original training set without merging.

To obtain feature vectors for the validation set, we used these models as feature
extractors and applied PCA to reduce them to 64 dimensions. We then calculated the
Calinski Harabasz Index. Please refer to Table 3 for the result.

Table 3. The Calinski Harabasz Index results. The bold type indicates the best result for that group of
tests.

Model Train Data Merge by Group 1 CH Group 2 CH Group 3 CH Group 4 CH Avg CH

Xception Without merging 128.02825 117.448499 68.6994684 93.5723306 101.937137

Xception Name 84.0837009 73.8172086 74.579957 61.2651927 73.4365148

Xception K-means on 2048D 124.241305 105.070655 76.2218761 84.212058 97.4364735

Xception K-means on t-SNE 2D 103.627829 87.1461055 66.6143003 76.5264273 83.4786656

Xception K-means on PCA 64D 137.241584 101.192327 85.2535376 94.2137508 104.4753

Xception K-means on PCA 128D 101.197038 101.502163 74.8441997 86.6358341 91.0448087

Xception K-means on PCA 32D 114.247635 89.1934801 62.3932779 75.9596147 85.4485019

F3-net Name 62.6592813 65.6510862 64.1551837

F3-net K-means on PCA 64D 85.361067 72.018708 78.6898875

ResNet Name 42.895651 47.9716533 45.4336522

ResNet K-means on PCA 64D 49.7529116 54.0786263 51.915769

The Calinski Harabasz Index of the model trained on the data merged by K-means is
42.27% higher than that pooled by name. Furthermore, these scores are slightly higher than
those directly using the original training set, even though the original set contains more data.
At the same time, the Calinski Harabasz Index is also higher at 22.66% and 14.27% in F3-net
and ResNet models. These prove an appropriate combination of deepfake datasets with
similar features improves the model’s generalization in the unknown forgery categories.
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The Calinski Harabasz Index of merging by names is lower than by various cluster-
based and original training sets, indicating significant differences in the characteristics of
these same-name forgery methods. Merged by name harms the model.

Compared with the other three groups, the results of Group 2 are different. Further-
more, its Calinski Harabasz Index is lower than the training results on the original data.
Because Group 2 has only 17 categories after the merger, with fewer training samples than
other groups. More information loss can destroy the performance of the model.

5. Conclusions

This article starts with the traceability requirements of the deep forgery method. When
using multiple deepfake datasets, we found many different deepfake datasets using the
same or similar label names. Confusion arises in how to use these datasets comprehensively.

We leverage the Xception model to extract fake features from the deepfake dataset.
Subsequently, PCA and t-SNE methods are employed to reduce dimensionality and perform
K-means clustering. Then, combine the datasets based on the clustering results, and use the
combined data to train Xception, F3-net, and ResNet models, respectively. Finally, we use
these models to extract features from the evaluation set and evaluate the generalization of
these models using the Calinski Harabasz index as an evaluation metric. Our contributions
are mainly three-fold:

• We prove the labels of various deepfake datasets contain many randomnesses. If re-
searchers use more than two deepfake datasets, combining these datasets only based
on forgery labels will hurt the performance of the model.

• We propose K-means and Calinski Harabasz evaluation systems to evaluate the
similarity of various deepfake datasets, laying the foundation for future researchers to
use them comprehensively.

• We prove that the generalization ability of the deepfake recognition model in the face of
new samples can be improved by merging datasets with high forgery feature similarity.

Our research is only a helpful exploration for entirely using various deep forgery
datasets from the source of deep forgery methods. We mainly revealed the arbitrariness of
label naming in deepfake datasets and the resulting troubles in the traceability of forgery
methods. There is still a long way to go to solve this problem completely. In addition,
different image compression algorithms and image resolutions significantly impact the fake
features of deepfake datasets, which will seriously interfere with the model’s extraction of
fake features from deepfake datasets, and pose a significant challenge to the identifiability
and traceability of deepfake datasets. We are committed to conducting further research to
address these challenges effectively.

To ensure the healthy development of the field, research institutions and universities
should standardize the label nomenclature of deepfake datasets. Additionally, legislation
should require digital watermarking and blockchain technology to trace deepfake content
to its source accurately. Our research is a helpful exploration of the use of various deep
forgery datasets, and we hope it will inspire future work in this field.
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Abstract: Few-shot, multi-pose face recognition has always been an interesting yet difficult subject in
the field of pattern recognition. Researchers have come up with a variety of workarounds; however,
these methods make it either difficult to extract effective features that are robust to poses or difficult
to obtain globally optimal solutions. In this paper, we propose a few-shot, multi-pose face recognition
method based on hypergraph de-deflection and multi-task collaborative optimization (HDMCO).
In HDMCO, the hypergraph is embedded in a non-negative image decomposition to obtain images
without pose deflection. Furthermore, a feature encoding method is proposed by considering the
importance of samples and combining support vector data description, triangle coding, etc. This
feature encoding method is used to extract features from pose-free images. Last but not the least,
multi-tasks such as feature extraction and feature recognition are jointly optimized to obtain a solution
closer to the global optimal solution. Comprehensive experimental results show that the proposed
HDMCO achieves better recognition performance.

Keywords: few-shot learning; face recognition; pose variations; hypergraph

1. Introduction

Face recognition is a very important technology with a wide range of applications, such
as video surveillance, forensics, and security [1–3]. Pose change is one of the difficulties in
face recognition. Posture changes involved in images can cause images of one person to
look like images of other people. That is to say, the change in pose will lead to an increase in
intra-class difference and a decrease in inter-class difference, which will hinder the classifier
from correctly recognizing the face images. One study shows that the performance of
most algorithms decreases by more than 10% from frontal-frontal to frontal-profile face
verification; however, there is only a small drop in the recognition performance of the
human eye [4]. Therefore, it is of great significance to study face recognition involving
pose change.

Many methods have been proposed to solve the multi-pose face recognition
problem [5–11]. These methods can be divided into the following categories: face normal-
ization, feature representation, spatial mapping, and pose estimation.

The method based on face normalization can better identify the image by normalizing
the image with attitude deflection to the front image or the image close to the front image.
For example, Ding et al. [12] transform images with pose deflection into frontal images
by pose normalization. Luan et al. [13] take geometry preservation into account in GAN
networks and exploit perceptual loss constraints along with norm loss to obtain the frontal
images that preserve global and local information. Liu et al. [14] use pixel-level loss, feature
space perception loss, and identity-preserving loss to generate real class-invariant frontal
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images. Yin et al. [15] embed the contextual dependency and the local consistency into
GAN networks to extract the frontal images. Lin et al. [16] use the deep representation
alignment network to extract the pose-invariant face feature. Yang et al. [17] use the multi-
bit binary descriptor to extract the pose-invariant feature. Tu et al. [18] jointly optimize
image inpainting and image frontalization to deal with the recognition of low-resolution
face images involving pose variations.

Learning the effective feature representations of images can be beneficial for tackling
the task of classification. For example, Zhou et al. [19] use the divide-and-strategy to deal
with the representation and classification of samples, which can reduce the challenge of
posture. Zhang et al. [20] use locality-constrained and label information to enhance the
representational power of regression-based methods. Gao et al. [21] use the multi-modal
hashing and discriminative correlation maximization analysis for feature representation
learning to allow them to obtain the easily distinguishable feature representation of each
pose image. Yang et al. [22] learn the more discriminative feature representations by
imposing penalties on weighted vectors. Huang et al. [23] use the samples and feature
centers to enhance the similarity of features between samples of the same class.

The method based on spatial mapping can reduce the intra-class differences and
increase the inter-class differences by mapping samples into a new space, which is beneficial
for classification. For example, He et al. [24] use the identity consistency loss and the pose-
triplet loss to minimize the intra-class and maximize the inter-class. Wang et al. [25] use the
divergence loss to increase the diversity among multiple attention maps. Furthermore, the
attention sparsity loss is used to highlight the regions with strong discriminative power.
He et al. [26] reduce the difference between images with different modes by applying
adversarial learning to both image-level and feature level. Liu et al. [27] use the source
domain data to improve the performance of target domain data so that the poses of two
images with the same category from the source and target domains are markedly different.
Sun et al. [28] use the equalized margin loss to reduce the impact of unevenly distributed
data (uneven distribution of attitude deflection).

It is also a good way to estimate the attitude deflection angle of the image and use the
information of the deflection angle to recognize the image. For example, Zhang et al. [29]
use the pose-guided margin loss to estimate the head poses, then the recognition process
can be completed in the same pose. Badave et al. [30] use multiple cameras for pose
estimation and then use the estimated pose to recognize the face images. Wang et al. [31]
combine the learned sub-classifiers into a classifier with a strong performance by learning
the dictionaries and the sub-classifiers at the same time.

The above methods have good effects on face recognition involving small posture
deflection or face recognition with a large number of samples. However, most face recogni-
tion is either few-shot face recognition or face recognition involving large pose deflection.
It is difficult for these methods to learn the intrinsic relationship between multiple sam-
ples of the same category in the process of model learning, and the essential attributes
of the samples of the same category summarized by the learned model are incomplete
or inaccurate.

Hypergraphs can represent complex relationships between objects. Unlike ordinary
graphs (where each edge of an ordinary graph can only connect two nodes), each edge
of a hypergraph can connect multiple nodes. That is, a hypergraph can reveal complex
relationships between multiple nodes. Furthermore, non-negative matrix factorization
is widely used in the field of computer vision, such as feature extraction. A matrix can
be decomposed into two matrices with different properties by non-negative matrix fac-
torization. Inspired by non-negative matrix factorization, we can decompose each image
involving attitude changes through non-negative matrix decomposition, and one matrix
obtained by the decomposition is used as the image without attitude deflection, and the
other matrix is used as the attitude change matrix. The image without pose deflection is
finally obtained through multiple iterative decompositions. Inspired by the hypergraph,
we treat each image as a node in the hypergraph and embed the hypergraph formed by
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multiple images into a non-negative matrix decomposition to extract images with better
performance and no attitude deflection. A few-shot multi-pose face recognition method
based on hypergraph de-deflection and multi-task collaborative optimization (HDMCO)
is proposed in this paper. First, HDMCO uses the hypergraph and non-negative matrix
factorization to obtain the images that are approximately frontal. Then, a novel feature
encoding method based on the improved support vector data description is proposed, and
it is jointly optimized with a dictionary learning-based classifier for feature extraction and
feature classification. Figure 1 shows the flowchart of the proposed HDMCO.
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Figure 1. The flowchart of the proposed HDMCO. si represents the distance between the patch qj

and Oi, Oi is the center of the i -th SVDD sphere, i = 1, 2, · · · , C. X is the training. Sample set, D is
the dictionary, Z is the representation coefficient matrix.

In the de-attitude deflection phase of Figure 1, the image without attitude deflection is
separated from the image with attitude deflection by non-negative matrix decomposition.
In this process, the hypergraph is embedded in the non-negative decomposition to protect
the structural information of the image. In the feature extraction phase, the improved
support vector data description is used to obtain the clustering center and radius of each
cluster, and triangle coding is used to encode features for each patch. Then, image coding
can be obtained. In the feature classification phase, the dictionary learning-based classifier
recognizes the features of the image and then determines the category of the image.

The main innovations of this paper are as follows.

(1) A novel multi-pose face recognition framework based on hypergraph de-deflection
is proposed. The framework first isolates the pose-free deflection images, then uti-
lizes the proposed feature coding method based on improved support vector data
description to extract the features of the pose-free deflection images, and recognizes
the extracted features.

(2) A new feature encoding method based on improved support vector data description
is proposed. The feature encoding method utilizes the improved support vector data
description and triangle encoding to make the extracted features more discriminative.

(3) An effective feature extraction and feature classification optimization model is con-
structed, which makes it easy to obtain a solution closer to the global optimum and
helps to improve the recognition performance of the algorithm.
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The subsequent sections of this article are arranged as follows: Section 2 introduces
related studies. Section 3 describes the proposed method. Section 4 outlines the details of
the experiments, and Section 5 presents the conclusion.

2. Relate Studies

This section will introduce some theories related to the proposed method. Specifically,
few-shot face recognition, non-negative matrix factorization, and hypergraph theory will
be introduced in turn.

2.1. Few-Shot Face Recognition

Few-shot face recognition has always been an interesting yet difficult research topic.
Few-shot learning provides an effective solution to the very relevant and unavoidable
problem of data scarcity in many applications. Prior knowledge is applied to small datasets
so that few-shot learning can be generalized to new tasks and samples [32].

Researchers have proposed many methods to solve the problem of few-shot face
recognition by using few-shot learning [33–35]. Masi et al. [36] propose the pose-aware
model (PAM). PAM uses multiple networks to synthesize various pose images and uses
the synthesized pose images to train the model to improve its recognition ability. However,
this method needs a large amount of memory to store a large number of training images
when using a variety of networks to generate a large number of images of various poses,
so it is difficult to carry out during the actual process. Elharrouss et al. [37] propose
the cascade networks (abbreviated as MCN) corresponding to multiple tasks to enhance
the recognition ability of the recognition network for images involving pose variations.
However, the diversity of attitude changes considered by this method is limited during
model training, so the learned model is invalid when processing images involving other
pose changes. Liu et al. [38] use multiple profile images to generate frontal images and
use the Siamese network to learn the depth representation of the generated frontal images.
The depth representation of the images is more easily recognized by the classifier, which
helps to improve the recognition rate of the algorithm. Tao et al. [39] use the identity
information of the images and the latent relationship between the frontal and profile images
to model the distribution of the profile images and reduce the difference between the profile
images and the frontal images. However, it is difficult to judge whether the underlying
relationship between the frontal and profile images used is correct and comprehensive.
Gao et al. [40] propose a multilayer locality-constrained structural orthogonal Procrustes
regression (MLCSOPR) and use MLCSOPR to extract pose-robust features. This method
only considers the horizontal change in the posture, but in practice, the image involves
both the horizontal and vertical changes of the posture, so the application scope of this
method is very narrow.

2.2. Non-Negative Matrix Factorization

Given any non-negative matrix X0, it can be decomposed into two non-negative

matrices
↔
Y and PT . 




min↔
Y ,PT
‖X0 −

↔
YPT‖

2

F

s.t.
↔
Y ≥ 0, P ≥ 0

(1)

where X0 ∈ <m×n is the non-negative matrix,
↔
Y ∈ <m×r is the basis matrix, PT ∈ <r×n is

the submatrix.

304



Electronics 2023, 12, 2248

Then,
↔
Y and PT can be updated by





↔
Y ij ←

↔
Y ij

(XP)ij

(
↔
YPTP)ij

(PT)jk ← (PT)jk
(
↔
Y

T
X)jk

(
↔
Y

T
YPT)jk

(2)

2.3. Hypergraph Theory

A hypergraph is very helpful for maintaining the internal structure of the data. Next,
we will briefly introduce the hypergraph theory.

Hypergraph is defined as follows: Hypergraph G is an ordered binary group G = (V, e),
where V is a non-empty set with nodes or vertices as elements, which is called vertex set; e
is a cluster of non-empty subsets whose elements are called hyperedges. Unlike ordinary
graphs, each edge of the hypergraph can connect not only two vertices but also more
vertices. Here, the hypergraph is undirected.

Given a hypergraph G = (V, e), V = {v1, v2, · · · , vk} is a set of finite data points,
vi(i = 1, 2, · · · , k) is a vertex. e = {e1, e2, · · · , et} is the set of hyperedges, ej is a hyperedge.

The hyperedge set e satisfies the following two conditions:

(a) ej /∈ φ, j = 1, 2, · · · , t;
(b) e1 ∪ e2 ∪ e3 · · · ∪ et = V;

Each hyperedge ej has a corresponding weight wj. Vertices hyperedges will form an
association matrix H ∈ <|V|×|e|, any element in H can be calculated by Equation (3):

Hij =

{
1, vi ∈ ej
0, vi /∈ ej

(3)

To better understand the hypergraph theory, we take the hypergraph in Figure 2 as an
example to illustrate the knowledge of the hypergraph. In Figure 2, the set of all vertices
is denoted as V = {v1, v2, · · · , v8}, e1 = {v1, v2, v3}, e2 = {v4, v5, v6} and e3 = {v7, v8}
denote the three hyperedges of G. The set of all hyperedges is denoted as e = {e1, e2, e3}.
The value of each element in H can be obtained according to Equation (3) and shown
in Figure 2. Each image serves as a data point and becomes a vertex in the hypergraph.
Hyperedges are composed of several similar data points. Similar data points indicate
images in which the contents of the images appear to be relatively close, such as two images
of the same person with small differences in attitude.

The degree di of each vertex in the hypergraph is defined as the sum of the weights of
the hyperedges to which it belongs, and the degree ρi of the hyperedges is defined as the
number of nodes to which the hyperedge belongs. di and ρi are calculated as follows:





di =
t

∑
j=1

wjHij

ρi =
k
∑

i=1
Hij

(4)

Let Dv denotes a diagonal matrix, whose main diagonal elements are Dvii = di, where
i = 1, 2, · · · , k. Similarly, let De and W be the diagonal matrices generated by ρj and wj,
respectively, where j = 1, 2, · · · , t. Then, the non-regularized hypergraph Laplacian matrix
can be calculated by Equation (5).

LH = Dv −HWD−1
e H (5)
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Figure 2. Examples of the hypergraph G. vi is the vertex, i = 1, 2, · · · , 8. ej is the hyperedge, j = 1, 2, 3.
H is the association matrix, Hij is the element in row i and column j in H.

3. Proposed Method

In this section, we introduce the proposed method (the few-shot, multi-pose face
recognition method based on hypergraph de-deflection and multi-task collaborative op-
timization). The main idea of the proposed method is as follows. First, we propose a
feature discrimination enhancement method based on non-negative matrix factorization
and hypergraph embedding and use it to extract near-frontal images from pose-deflected
images. After that, we propose a feature encoding method based on improved support
vector data description and use it to extract the distinguishing features. Meanwhile, those
distinguishing features are classified by the dictionary learning-based classifier. When
performing feature extraction and feature classification, these two processes are jointly
optimized. Hence, we mainly introduce the feature discrimination enhancement method
based on non-negative matrix factorization and hypergraph embedding, feature encoding
method, dictionary learning-based classifier, joint optimization of the feature extraction,
and feature classification.

3.1. Feature Discrimination Enhancement Method Based on Non-Negative Matrix Factorization
and Hypergraph Embedding

Suppose a given dataset is denoted as Y ∈ <m×n, and each column in Y represents
an image sample. First, we apply a Gaussian filter to each image in Y to remove the noise
in the image. Next, we check whether the pixel value of each image is negative, change
the negative value to 0 for the negative values, and keep the original value for the positive
values, then obtain YW . After that, we construct the deregularized hypergraph Laplacian
matrix LH of YW . Assume that the number of hyperedges is t, the number of data in the
hypergraph is N and t is equal to N. The number of vertices contained in each hyperedge is
s. The vertices contained in each hyperedge are generated by YW

n itself and its nearest s− 1
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neighbors, where YW
n is the nth column of YW . LH is calculated according to Equation (5),

where wj can be calculated by Equation (6).

wj = ∑
YW

n1
,YW

n2
∈ej

exp(−‖Y
W
n1
− YW

n2
‖

δ2 ) (6)

where δ = 1
s×t

t
∑

j=1
∑

YW
n1

,YW
n2
∈ej

‖YW
n1
− YW

n2
‖.

After YW and LH are obtained, the objective function is as follows.




min‖YW −
↔
YPT‖

2

F + λTr(PTLHP)

s.t.
↔
Y ≥ 0, P ≥ 0

(7)

where YW ∈ <m×n,
↔
Y ∈ <m×n, P ∈ <n×n, LH ∈ <n×n, ‖YW −

↔
YPT‖

2

F represents the
error resulting from the non-negative decomposition of YW . Tr(PTLHP) is the hypergraph
regular term, which can protect the local geometric structure of the data and improve the
performance of the algorithm. The value of λ is set to 0.3.

It is difficult to solve Equation (7) directly, so an iterative solution method is adopted
to solve this problem. The Lagrangian function corresponding to Equation (8) is:

∆ = ‖YW −
↔
YPT‖

2

F + λTr(PTLHP) + Tr(Ψ
↔
Y

T
) + Tr(ΦPT) (8)

where Ψ is the matrix formed by the Lagrange multipliers of Ψmk for
↔
Ymk ≥ 0, Φ is the

matrix formed by the Lagrange multipliers of Φnk for Pmk ≥ 0.
∆ in Equation (8) can be rewritten as

∆ = Tr(YWT
YW)− Tr(YWT↔

YPT)− Tr(P
↔
Y

T
YW)

+Tr(P
↔
Y

T↔
YPT) + λTr(PTLHP) + Tr(Ψ

↔
Y

T
) + Tr(ΦPT)

= Tr(YWT
YW)− 2Tr(P

↔
Y

T
YW) + Tr(P

↔
Y

T↔
YPT)

+λTr(PTLHP) + Tr(Ψ
↔
Y

T
) + Tr(ΦPT)

(9)

By taking the partial derivatives of ∆ with respect to
↔
Y and P, respectively, we obtain





∂∆

∂
↔
Y
= −2YWP + 2

↔
YPTP + Ψ

∂∆
∂P = −2YWT↔

Y + 2P
↔
Y

T↔
Y + 2λLHP + Φ

(10)

According to the KKT conditions Ψmk
↔
Ymk = 0 and ΦnkPnk = 0 , we obtain

−(YWP)mk

↔
Ymk + (

↔
YPTP)mk

↔
Ymk = 0 (11)

−(YWT↔
Y)nkPnk + (P

↔
Y

T↔
Y)nkPnk + λ(LHP)nkPnk = 0 (12)

In Equations (11) and (12), the subscript of each variable indicates the number of
iterations of the variable.
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Then,
↔
Ymk and Pnk can be updated by the following two equations.

↔
Ymk ←

↔
Ymk ⊗

(YWP)mk

(
↔
YPTP)mk

(13)

Pnk ← Pnk ⊗
(YWT↔

Y)nk + (λHWD−1
e HP)nk

(P
↔
Y

T↔
Y)nk + (λDvP)nk

(14)

The variables in Equations (13) and (14) have appeared before; please see the previous
section for their definitions. The subscript of each variable indicates the number of iterations

of the variable. ⊗ represents the element-wise multiplication of two matrices. The output
↔
Y

is the image set with almost no attitude deflection. The features of each image with almost
no attitude deflection can be obtained by using the proposed feature coding method, which
has high-class discrimination.

Figure 3 shows the process of extracting near-frontal images from images involving
pose variations. Y represents the original image set involving pose deflection, YW represents

the image set after preprocessing Y,
↔
Y represents the image set of the approximate frontal

image obtained by decomposition and iteration, P represents the pose change matrix.
In Figure 3, we first preprocess each image in the original image set to obtain a non-
negative image set without noise pollution. Then, the hypergraph is embedded into the
non-negative matrix factorization to preserve the structure of the decomposed images.
Finally, the image set with almost no deflection is obtained through matrix factorization
and multiple iterative updates.
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is the original image set involving pose deflection, YW is the image set after preprocessing Y,
↔
Y is

the image set of the approximate frontal image obtained by decomposition and iteration, P is pose

change matrix, PT is the transpose of P,
↔
Y i is the value of

↔
Y at the i -th iteration, Pi

T is the value of
PT at the i -th iteration.
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3.2. Feature Coding Method Based on Improved Support Vector Data Description

The main idea of the proposed feature coding method based on improved support
vector data description is as follows. First, we propose an improved support vector data
description and use it to obtain the sphere center and radius of each cluster. After that, the
radius and center of the ball corresponding to each cluster are used for feature encoding.
The existing support vector data description considers that each data point plays the same
role when calculating the radius of each cluster, which is not in line with reality. Hence,
we assign a learned weight to each data in the model learning and propose an improved
support vector data description; its model is as follows.





min
r,χ

r2 + ς
num
∑

i=1
ρ(yi)χi

s.t.‖yi − b‖2 ≤ r2 + χi, χi ≥ 0, b = 1
num

num
∑

i=1
yi

(15)

where r is the radius of the ball, yi is the ith sample, ρ(yi) is the weight of yi, b is the center
of the ball, num is the number of the samples, χi is the slack variable. ς is a parameter
whose value is set to 0.4.

The weight of any sample is calculated as follows.
First, we divide the whole data set into C clusters, and assume that the sample

set of the kth cluster is denoted as
{

yk
1, yk

2, · · ·, yk
Pk

}
, where yk

i is the ith data point in
{

yk
1, yk

2, · · ·, yk
Pk

}
, i = 1, 2, · · · , Pk. Pk is the number of data points in

{
yk

1, yk
2, · · ·, yk

Pk

}
, and

yk
i = [vki

1 , vki
2 , · · · , vki

d ]
T ∈ <d×1.

Denote the average distance between two data points in
{

yk
1, yk

2, · · ·, yk
Pk

}
as mk.

If the number of data points contained in
{

yk
1, yk

2, · · ·, yk
Pk

}
is greater than one, then

mk =
2

pk(pk − 1)

pk

∑
i=1

pk

∑
j=i+1

d(yk
i , yk

j ) (16)

d(yk
i , yk

j ) =

√
(vki

1 − vkj
1 )

2
+ (vki

2 − vkj
2 )

2
+ · · ·+ (vki

d − vkj
d )

2
(17)

If the number of data points contained in
{

yk
1, yk

2, · · ·, yk
Pk

}
is equal to one, then

mk =
1

C
∑

i=1,i 6=k
pk

C

∑
t=1,t 6=k

Pt

∑
i=1

d(yk
1, yt

i) (18)

Generally speaking, the distances between data points in the same cluster are far less
than the distances between data points in different clusters. Thus, we assume that data
points in the same cluster have the same weight.

ρk = 1− mk
C
∑

i=1
mi

(19)

The Lagrange function of Equation (15) can be written as

L̃(r, χ, α, β) = r2 + ς
num
∑

i=1
ρ(yi)χi +

num
∑

i=1
αi

{
‖yi − 1

num

num
∑

j=1
yj‖

2
− r2 − χi

}
−

num
∑

i=1
βiχi

(20)
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Let ∂L̃
∂r = 0 and ∂L̃

∂χi
= 0, we can obtain

{
min

α

2
num αQe− αTΩ

s.t. αTe = 1
(21)

where Q = (< yi, yj >)
num×num

, Ω = (< yi, yj >)
num×1

, e = (1, 1, 1, · · · , 1)T , yi and yj are

the ith sample and jth sample in the dataset with attitude deflection removed, respectively,
α = [α1, α2, · · · , αnum]. α can be obtained by using the linear programming algorithm.

r can be obtained by using Equation (22).

r2 = yi · yj − 2
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Let 0L
r

∂ =
∂


 and 0

i

L
χ
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∂
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 = 1

T

T
num
s.t.

 −



Qe

e
α

α α

α

Ω
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where ( , )i j num num×= < >Q y y  , 1( , )i j num×= < >y yΩ  , (1,1,1, ,1)T= e  , iy   and jy  are the 
thi sample and thj  sample in the dataset with attitude deflection removed, respectively, 

1 2[ , , , ]numα α α= α .α  can be obtained by using the linear programming algorithm. 
r  can be obtained by using Equation (22). 

2

, 1 , 1
2 ( ) ( )i j i i j i j i j

i j i j
r α α α

ϒ ϒ

= =

= ⋅ − ⋅ + ⋅ y y y y y y  (17)

where ϒ  is the set of support vectors, the sample points used in Equation (22) are the 
support vectors. Whether the data point is a support vector, the following condition needs 
to be met: if the data point iy   is a support vector, its corresponding iα   is non-zero. 

1 2[ , , , ]Cr r r r=  , C  is the number of clusters in the dataset. 
Then, for each image with pose deflection removed, it is decomposed into N  

patches (each patch has the same size), and each patch is encoded. The schematic diagram 

∑
i,j=1

αi(yi · yj) +
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Generally speaking, the distances between data points in the same cluster are far less 
than the distances between data points in different clusters. Thus, we assume that data 
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where ( , )i j num num×= < >Q y y  , 1( , )i j num×= < >y yΩ  , (1,1,1, ,1)T= e  , iy   and jy  are the 
thi sample and thj  sample in the dataset with attitude deflection removed, respectively, 
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where ϒ  is the set of support vectors, the sample points used in Equation (22) are the 
support vectors. Whether the data point is a support vector, the following condition needs 
to be met: if the data point iy   is a support vector, its corresponding iα   is non-zero. 

1 2[ , , , ]Cr r r r=  , C  is the number of clusters in the dataset. 
Then, for each image with pose deflection removed, it is decomposed into N  

patches (each patch has the same size), and each patch is encoded. The schematic diagram 

∑
i,j=1

αiαj(yi · yj) (22)
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is the set of support vectors, the sample points used in Equation (22) are the
support vectors. Whether the data point is a support vector, the following condition
needs to be met: if the data point yi is a support vector, its corresponding αi is non-zero.
r = [r1, r2, · · · , rC], C is the number of clusters in the dataset.

Then, for each image with pose deflection removed, it is decomposed into Ñ patches
(each patch has the same size), and each patch is encoded. The schematic diagram of the
image being divided into small pieces is shown in the Figure 4. For example, for an image
q with attitude deflection removed, it is divided into Ñ small patches. Ñ is determined by
our experience. For any small patch qj, j = 1, 2, · · · , Ñ, it can be encoded as U(qj).

U(qj) = [ U1(qj) U2(qj) · · · UC(qj) ]
T (23)

where Ui(qj) = [ Ui,1(qj) Ui,2(qj) ], i = 1, 2, · · · , C, j = 1, 2, · · · , Ñ, Ui,1(qj) and Ui,2(qj)

are obtained by the triangle coding. Ui,1(qj) = max
{

0, d(s)− si(qj)
}

, si(qj) = ‖qj − oi‖2
represents the distance from qj to oi, d(s) is the mean of all si(qj) values. Ui,2(qj) =
max

{
0, A(m)−mi(qj)

}
, mi(qj) = ri

C
∑

k=1
rk

, A(m) is the mean of all mi values.
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on our experience.

Figure 5 shows the schematic diagram of the encoding. qj represents the jth patch of
the image q (The image q is divided into Ñ patches). oi denotes the center of the SVDD
sphere formed by the jth cluster (multiple sample points are clustered into a cluster.), ri.
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Figure 5. The schematic diagram of the encoding. oi and oj are the centers of the i -th and j -th SVDD
balls, respectively. ri and rj are the radius of the i th and j th SVDD balls, respectively. si(qj) and
sj(qj) represent the distance from patch qj to oi and oj, respectively. denotes the radius of the SVDD
sphere formed by the ith cluster. si(qj) represents the distance between qj and oi. oj denotes the center
of the SVDD sphere formed by the jth cluster, rj denotes the radius of the SVDD sphere formed by the
jth cluster. sj(qj) represents the distance between qj and oj. For the specific encoding of each patch,
please refer to Equation (19).

Hence, the image q can be encoded as Fq, and the expression of Fq is as follows.

Fq = [ (U(q1))
T

(U(q2))
T · · · (U(qÑ))

T
]
T

(24)

3.3. Dictionary Learning-Based Classifier

The de-deflection operations and feature encoding operations described above greatly
reduce the influence of posture changes on face recognition. To further improve the
recognition rate of the whole algorithm on this basis, we decided to learn the classifier,
questioning which classifier can not only realize the learning function but also learn the
characteristics related to the classified samples in the process of learning. Recent studies
have shown that sparse representations have been successfully applied in many fields,
such as image restoration and image classification. Dictionaries play an important role
in sparse representation, and the quality of dictionaries greatly affects the performance
of sparse representation. The latest research on dictionary learning shows that learning a
desirable dictionary from the training data itself can usually yield good results for tasks
on images or video [41]. Inspired by this, we are ready to learn the dictionary and use the
learned dictionary to represent the test samples, and then determine the category of the
test samples according to the representation residual.

The basic model of the dictionary learning-based classifier is as follows.

{
min
D,Z
‖X−DZ‖2

F + η‖Z‖1

s.t.‖di‖2
2 ≤ 1

(25)

where X is the training samples, D represents the dictionary to be learned, Z is the repre-
sentation coefficient, di represents the ith atom in D. η is set to 0.3.

3.4. Joint Optimization of the Feature Extraction and Feature Classification

To obtain the globally optimal solution of HDMCO, we jointly optimized the feature
extraction and feature classification.

The model for jointly optimizing the feature extraction and feature classification is
as follows. {

min
α,D,Z
‖X−DZ‖2

F + η( 2
num αTQe− αTΩ)‖Z‖1

s.t.αTe = 1, ‖di‖2
2 ≤ 1

(26)

According to Equation (26), we can obtain α, D and Z.
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α can be obtained by using Equation (27).
{

min
α

η( 2
num αTQe−αTΩ)‖Z‖1

s.t.αTe = 1
(27)

Then, the value of α can be obtained by using the linear programming algorithm.
D can be obtained by solving Equation (28).

{
min

D
‖X−DZ‖2

F

s.t.‖di‖2
2 ≤ 1

(28)

Solving Equation (28) can be converted to solving Equation (29).




D = argmin
D
‖X−DZ‖2

F + ϑ‖D− V + J‖2
F

V = argmin
V

ϑ‖D− V + J‖2
F, s.t.‖vi‖2

2 ≤ 1

J = J + D− V

(29)

where
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where ϑ  is set to 0.2. 
Then, D  can be obtained by iteratively solving the variables in Equation (29). 

is set to 0.2.
Then, D can be obtained by iteratively solving the variables in Equation (29).
Z can be obtained by solving Equation (30).

min
Z
‖X−DZ‖2

F + η(
2

num
αTQe− αTΩ)‖Z‖1 (30)

The solution to Equation (30) is as follows.

Z = shrink(D−1X,
η( 2

num αTQe− αTΩ)

2
) (31)

where shrink(x, a) = signmax(|x| − a, 0).
Figure 6 shows the schematic diagram of seeking a globally optimal solution.
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4. Experiments
4.1. Dataset

Here, Multi-PIE [42], MegaFace [43], CAS-PEAL [44], YTF [45], CPLFW [46], and
CVL [47] are used in experiments to verify the performance of HDMCO.

Multi-PIE mainly involves pose variations and illumination variations, and includes a
total of more than 750,000 images of 337 different people. Figure 7a shows some samples of
multi-PIE.
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Figure 7. Example images from different datasets. (a) Multi-PIE (b) MegaFace (c) CAS-PEAL (d) YTF
(e) CPLFW (f) CVL.

MegaFace is a challenging, large-scale face dataset. It contains the gallery set and the
probe set. The gallery set contains more than 1 million face images, while the probe set
contains 106,863 face images of 530 celebrities. Figure 7b shows some samples of MegaFace.

CAS-PEAL includes 99,450 images of 1040 different people, which mainly involve pose
variations, expression variations, and lighting variations. Figure 7c shows some samples
of CAS-PEAL.

YTF contains 3425 videos of 1595 subjects with diverse ethnicities. Figure 6d shows
some samples of YTF.

CPLFW includes 11,652 images of 5749 different people, which mainly involves pose
variations. Figure 7e shows some samples of CPLFW.

CVL contains 798 images of 114 different people, which mainly involves pose varia-
tions. Figure 7f shows some samples of CVL.

4.2. Experimental Results and Analysis
4.2.1. Comparison with State-of-the-Art Methods
Experimental Setup

Resnet [48], Duan’s method [49], PGM-Face [29], PCCycleGAN [14], LDMR [20], MH-
DNCCM [21], DRA-Net [16], TGLBP [35], MCN [37], 3D-PIM [50] WFH [17], mCNN [51],
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HADL [31], RVFace [52], DTDD [53], ArcFace [54], VGG [55], and DeepID [56] are used as
the comparison methods.

For multi-PIE, we choose images with pose deflection angles of −45
◦
, −30

◦
, −15

◦
, 0
◦
,

15
◦
, 30

◦
, 45

◦
for experiments. In other words, a total of 2359 images of 337 subjects were

used for the experiments. For images of each subject, we randomly selected three images
for training and the remaining images for testing. It means that the number of training
images accounted for 42.85% of the total number of images, and the number of testing
images accounted for 57.15% of the total number of images.

For MegaFace, we selected the samples of categories with the number of images greater
than or equal to two for experiments. For each class of samples used for experiments, we
randomly selected one image for training and one image for testing. Namely, the number
of training images accounted for 50% of the total number of images, and the number of
testing images accounted for 50% of the total number of images.

For CAS-PEAL, we choose those images involving 800 subjects in three different poses
(0
◦
, −45

◦
and 45

◦
) for experiments. That is to say, each subject contains three images

deflected at different angles. The image with a deflection angle of 0 degrees in each subject
is used for training and the rest are used for testing. Specifically, the number of training
images accounted for 33.33% of the total number of images and the number of testing
images accounted for 66.67% of the total number of images.

For YTF, we selected 226 subjects with four or more videos available. Then, we selected
225 subjects from 226 subjects for experiments and divided the 225 subjects into five groups,
each group involving 45 subjects. For each group, the first three videos of each subject
as gallery sets and the remaining videos for testing. The results obtained from the five
groups of experiments are averaged as the final experimental result. The number of training
samples accounted for 43.29% of the total number of images, and the number of testing
samples accounted for 56.71% of the total number of images.

For CPLFW, we selected the samples of 2000 classes to form a subset. For samples
belonging to a certain class (each class) in this subset, we randomly selected one image as
the training sample and one image as the test sample. Precisely, the number of training
images accounted for 50% of the total number of images, and the number of testing images
accounted for 50% of the total number of images.

For CVL, we choose three images in each class for training and the rest for testing.
That is to say, the number of training images accounted for 42.85% of the total number
of images, and the number of testing images accounted for 57.15% of the total number
of images.

The images used in the experiments are cropped to 60× 80.

Experimental Result

The Accuracies of different methods on different datasets are shown in Table 1. It can
be seen from the experimental results on multi-PIE that ArcFace has the highest recognition
rate, reaching 95.89%. This may be because the proportion of images involving large
pose changes is relatively small, resulting in the difference between most training images
and test images not being too large, and ArcFace can achieve good recognition results.
Furthermore, almost all methods have achieved good results. The reason for this result is
as follows. The Multi-PIE dataset involves relatively few images with large pose deflection.
For example, the number of images with an attitude deflection of 45 degrees only accounts
for two-sevenths of the total dataset, which means most of the images used for training
have little difference from the test images. Then, the trained model can better identify the
test samples.
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Table 1. Accuracies (%) of Different Methods on Different Datasets.

Methods\Datasets Multi-PIE [40] MegaFace [41] CAS-PEAL [42] YTF [43] CPLFW [44] CVL [45]

Reset [48] 91.06 87.77 90.77 76.05 82.36 89.56

Duan [49] 87.68 82.55 89.37 73.88 81.06 85.17

PGM-Face [29] 90.23 85.33 90.01 73.20 78.58 88.06

PCCycleGAN [14] 88.99 85.01 88.85 75.16 80.66 87.38

LDMR [20] 91.33 86.23 92.29 77.22 85.06 90.23

MH-DNCCM [21] 91.78 85.89 90.46 76.11 82.50 87.98

DRA-Net [16] 93.06 83.99 93.16 76.47 82.97 90.01

TGLBP [35] 89.06 86.13 90.67 75.60 83.71 86.97

MCN [37] 92.01 86.24 91.37 77.05 85.20 88.31

3D-PIM [50] 93.02 86.31 91.79 78.05 85.07 89.22

WFH [17] 91.55 86.01 92.70 74.88 84.01 87.34

mCNN [51] 88.68 85.17 87.58 72.89 80.59 81.38

HADL [31] 90.82 85.35 90.47 75.95 84.35 86.40

RVFace [52] 92.10 88.03 93.17 78.05 85.97 90.03

DTDD [53] 90.39 88.37 93.55 77.35 86.23 88.80

ArcFace [54] 95.89 91.37 92.13 83.40 84.88 87.23

VGG [55] 95.14 89.29 90.92 81.05 83.06 85.71

DeepID [56] 93.88 87.58 88.15 78.45 83.46 85.12

HDMCO [ours] 95.19 90.67 95.88 80.34 88.41 92.19

For the experimental results on MegaFace, almost all methods based on deep learning
achieved good results. The possible reasons are as follows: although the number of samples
used for training in each category is not large, the difference between the large number
of samples used for pre-training and the test samples is not too large. Thus, the final
learned model has better classification ability for the test samples. Among all the methods,
Duan’s method has the worst performance, which may be because the performance of the
method depends on finding the parts related to the pose. However, it cannot completely
and correctly determine which parts of the image are related to the pose. Furthermore,
this method mainly solves face recognition involving pose changes, while the MegaFace
dataset involves not only pose changes but also other changes, so the recognition rate of
this method on MegaFace is not very high.

The experimental results on YTF show that the recognition rate of all algorithms
does not exceed 85%. This is because YTF datasets involve large changes (e.g., large pose
changes, large expression changes), so their performance is not very good. Specifically, for
methods based on deep learning, the pre-trained model is not suitable for the classification
of test images. This is because a large number of samples used for pre-training are quite
different from the images in the used dataset. For HADL, because the samples used for
training may be quite different from the samples used for testing, the learned dictionary
cannot accurately represent the test samples, which means that the algorithm cannot obtain
a higher recognition rate. For Duan’s method, because the samples used for training may
be quite different from the samples used for testing, the learned characteristics of a certain
category are quite different from those of the same category of images in the test set. Then,
the recognition rate of the algorithm on the YTF dataset is not very high.

The experimental results on CPLFW show that the recognition rate of our method
is higher than that of other algorithms. This may be because our proposed non-negative
matrix factorization based on hypergraph embedding extracts the frontal images with
better quality. In other words, we use hypergraph and non-negative matrix factorization to

315



Electronics 2023, 12, 2248

separate the frontal image from the profile image. The extracted pose-free features are then
used to learn the dictionaries with strong performance, and the learned dictionaries are
used to accurately represent the test samples, thereby greatly improving the recognition
rate of the algorithm. The reasons why the recognition rate of the deep learning-based

Method is not as high as that of our method are as follows. A large number of samples
used for pre-training are too different from the samples in the test set. For example, many
samples used for pre-training are images with small attitude deflection, while many test
samples are images with large attitude deflection. Then, the rules summarized for each
category through training are not suitable for the rules of the same category of images in
the test set.

The experimental results on CVL show that the recognition rate of our method is 92%,
which is higher than that of other methods. The reasons for this result are as follows: the
hypergraph is embedded in the non-negative matrix factorization so that the resulting
images retain the intrinsic properties of the original images. Furthermore, triangular
encoding is used to encode the obtained pose-free images, which makes the extracted
features highly unique. Furthermore, we use the encoded features to train the dictionary, so
that the learned dictionary has a stronger representation ability. Then, the test samples can
be accurately represented by the dictionaries, thereby achieving the purpose of improving
the recognition rate. The performance of deep learning-based methods is not the best
among all methods, and the reasons for this result are as follows. The rules summarized for
each category through pre-training are quite different from the rules of the same category
of images in the test set. Therefore, the model obtained by training is not suitable for the
classification of the test images, or the model obtained by training cannot correctly classify
many test images. For HADL and LDMR, it is difficult for them to extract the pose-invariant
features of the images when dealing with images with large pose changes, which makes it
difficult for subsequent classifiers to correctly identify samples.

Tables 2 and 3 show the recall and precision of different methods on different datasets.
The experimental results obtained are generally consistent with those in Table 1; HDMCO
has the best effect.

Table 2. Recall (%) of Different Methods on Different Datasets.

Methods\Datasets Multi-PIE [40] MegaFace [41] CAS-PEAL [42] YTF [43] CPLFW [44] CVL [45]

Reset [48] 78.35 70.68 76.18 82.67 76.83 81.33

Duan [49] 76.02 65.43 72.67 77.61 73.25 78.69

PGM-Face [29] 79.66 73.14 75.68 75.60 77.25 80.39

PCCycleGAN [14] 81.64 72.95 77.62 73.08 76.89 76.28

LDMR [20] 83.58 76.89 72.99 75.03 75.88 79.01

MH-DNCCM [21] 82.05 73.91 70.03 73.26 74.19 80.06

DRA-Net [16] 85.11 80.34 77.68 79.32 80.64 81.39

TGLBP [35] 80.24 78.92 78.33 75.17 78.38 79.68

MCN [37] 83.67 80.20 81.08 77.68 80.34 78.18

3D-PIM [50] 85.02 81.35 81.69 79.67 77.58 76.64

WFH [17] 82.67 78.54 76.44 77.39 79.14 75.89

mCNN [51] 80.33 78.67 79.58 78.99 80.01 78.66

HADL [31] 78.89 80.59 79.44 79.88 78.46 80.62
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Table 2. Cont.

Methods\Datasets Multi-PIE [40] MegaFace [41] CAS-PEAL [42] YTF [43] CPLFW [44] CVL [45]

RVFace [52] 82.24 80.30 77.89 79.01 81.33 80.23

DTDD [53] 80.95 80.68 79.25 79.31 80.64 82.07

ArcFace [54] 82.53 85.01 82.34 80.09 81.69 80.60

VGG [55] 79.28 81.02 78.08 75.89 79.88 79.47

DeepID [56] 81.08 82.16 79.66 81.06 81.06 78.30

HDMCO [ours] 88.37 85.67 86.17 85.60 88.32 88.97

Table 3. Precision (%) of Different Methods on Different Datasets.

Methods\Datasets Multi-PIE [40] MegaFace [41] CAS-PEAL [42] YTF [43] CPLFW [44] CVL [45]

Reset [48] 89.26 86.08 86.92 78.34 80.16 86.57

Duan [49] 85.06 80.38 88.15 75.06 79.68 86.23

PGM-Face [29] 89.32 86.42 88.95 75.01 77.19 86.27

PCCycleGAN [14] 86.27 85.39 86.19 77.12 79.18 85.61

LDMR [20] 88.97 85.09 90.87 75.80 83.97 87.18

MH-DNCCM [21] 88.39 82.17 88.69 78.02 80.05 85.10

DRA-Net [16] 90.86 82.34 92.05 75.24 80.34 87.19

TGLBP [35] 86.95 85.06 91.21 75.32 81.99 85.43

MCN [37] 90.67 83.97 89.68 76.38 83.97 87.32

3D-PIM [50] 90.98 85.11 90.08 75.86 83.46 87.68

WFH [17] 89.30 83.67 90.79 74.02 83.97 86.22

mCNN [51] 86.91 85.06 86.40 70.66 79.30 79.66

HADL [31] 88.69 84.39 88.67 76.08 83.97 85.88

RVFace [52] 90.68 86.92 91.86 78.68 85.02 88.60

DTDD [53] 88.67 87.08 92.43 76.18 85.15 87.67

ArcFace [54] 93.91 90.28 90.88 82.91 82.69 86.41

VGG [55] 95.86 88.06 88.67 79.38 81.67 85.02

DeepID [56] 93.05 86.14 85.97 77.68 81.97 84.67

HDMCO [ours] 96.08 91.35 94.86 81.57 88.05 92.30

4.2.2. Cross-Validation Experiment

In order to further verify the performance of HDMCO, cross-validation experiments
are carried out in this section. For each data set, we selected the face image with an attitude
deflection angle greater than 45◦, and 5-fold cross-validation was performed. Specifically,
the data set was divided into five parts, four of which were taken as training data and one as
test data in turn, and the experiment was carried out. Each trial obtained the corresponding
recognition rate. The average recognition rate of the results of five times was used as the
estimation of the algorithm accuracy.

As can be seen from Table 4, the average recognition rate of many algorithms on
the multi-PIE data set and CAS-PEAL data set is more than 80%. At the same time, it
can also be seen that the recognition rate of the proposed HDMCO is higher than that of
other algorithms.
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Table 4. The Results (%) of Cross-validation.

Methods\Datasets Multi-PIE [40] MegaFace [41] CAS-PEAL [42] YTF [43] CPLFW [44] CVL [45]

Reset [48] 81.32 78.92 81.24 68.05 73.68 80.92

Duan [49] 80.68 75.60 80.38 63.58 71.99 78.96

PGM-Face [29] 77.68 79.31 77.59 72.38 68.56 77.90

PCCycleGAN [14] 76.82 75.66 74.97 68.33 69.98 78.62

LDMR [20] 80.38 83.29 80.64 73.20 76.82 80.93

MH-DNCCM [21] 81.60 81.32 83.67 64.51 71.93 79.71

DRA-Net [16] 83.64 83.16 81.46 66.49 74.69 80.97

TGLBP [35] 80.32 80.97 76.91 64.98 72.64 77.62

MCN [37] 80.06 79.86 80.46 71.61 71.62 78.59

3D-PIM [50] 81.30 80.61 78.67 70.38 73.92 78.61

WFH [17] 81.69 80.67 81.33 63.89 73.68 79.68

mCNN [51] 79.37 75.31 76.82 63.99 71.68 70.29

HADL [31] 80.34 73.97 80.34 73.61 73.61 77.85

RVFace [52] 77.31 76.89 83.89 75.06 75.38 79.33

DTDD [53] 78.39 80.67 82.58 73.68 78.99 78.99

ArcFace [54] 82.67 78.59 81.37 77.31 74.63 77.97

VGG [55] 80.69 77.98 80.59 73.68 73.91 76.89

DeepID [56] 83.99 77.86 78.61 71.68 77.35 77.95

HDMCO [ours] 89.30 85.07 85.99 78.95 83.93 83.97

4.2.3. The Effect of Feature Dimension on the Recognition Performance of the Algorithms

To illustrate the effect of feature dimension on the recognition rate of our method,
we conducted experiments. DDTD, HADL, and PCCycleGAN are used as comparison
methods. The experimental conditions are the same as the experimental conditions in
Section 4.2.1. The only difference is that the dimension of the features ranges from 100
to 600. Figure 8 shows the effect of feature dimension on the recognition rate of different
methods. It can be seen from Figure 8 that the recognition rates of all methods first
gradually increase with the feature dimension and then remain unchanged. Furthermore,
the recognition performance of our method is better than other methods.

4.2.4. The Display of the Extracted Frontal Images

To illustrate that our method can effectively separate pose-free images from pose-
deflected images, we show the obtained separated images. In Figure 9, the left half of each
subfigure shows the original image, and the right half shows the pose-free deflection image
separated from the original image. As can be seen from Figure 9, the separated images are
close to the frontal image. This shows that the proposed feature discrimination enhance-
ment method based on non-negative matrix factorization and hypergraph embedding can
indeed achieve the de-pose function.
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4.2.5. Ablation Experiment

To verify the role of each component in the proposed method, we performed abla-
tion experiments. The main components of the method proposed in this paper are the
“feature discrimination enhancement method based on non-negative matrix factorization
and hypergraph embedding”, the “feature coding method based on improved support
vector data description”, “dictionary learning-based classifier”, and “joint optimization of
the feature extraction and feature classification”, which are abbreviated as de-deflection,
feature coding, dictionary learning, and joint optimization.
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Experimental Setup

The experimental conditions are the same as in Section 4.2.1.

Experimental Results

Figure 10 shows the results of ablation experiments. It can be seen from Figure 10a
that using the de-deflection component can improve the recognition rate of the algorithm
by about 2% on some datasets, and more on some datasets, such as 5% and 7%. As can be
seen from Figure 10b, the use of feature encoding component improves the recognition rate
of the algorithm by about 2% on almost all datasets. It can be seen from Figure 10c that the
use of the dictionary learning component improves the recognition rate of the algorithm by
about 1% on some datasets and by about 2% on others. It can be seen from Figure 10d that
using the joint optimization component improves the recognition rate of the algorithm by
about 3% on almost all datasets.

4.2.6. The Effect of Parameters on the Recognition Performance of HDMCO

In HDMCO, η and λ are the main parameters. To explore their impact on the recog-
nition rate of HDMCO, we conducted experiments. The experimental conditions are the
same as the experimental conditions in Section 4.2.1. The only difference is that η ranges
from 0.1 to 0.6, and λ ranges from 0 to 1. Figure 11 shows the effect of the main parameters
on the recognition rate of HDMCO. It can be seen from Figure 11 that the recognition rate
of HDMCO is the highest when the value of η is about 0.3, and the recognition rate of
HDMCO is the highest when the value of λ is about 0.5.
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4.2.7. Comparison of Computational Complexity

In this section, we analyze the computational complexity of the proposed algorithm
and compare it with the computational complexity of several existing methods. The
computational complexity of HDMCO is mainly dervived from solving α using linear
programming; meanwhile, the computational complexity of calculating α is o(n2

0), and
n0 is the number of training samples. Thus, the computational complexity of HDMCO is
o(n2

0). HADL [27] and LDMR [19] are used as comparative methods. The computational
complexity of HADL is O(Mτ(Kn3

0 + Kmax(L, K))), where τ is the iteration number, and
L is the dimension of each sample, K is the number of atoms in the dictionary. M is the
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maximum number of the iteration number. The computational complexity of LDMR is
O(u0v0n2

0 + n3
0 + τ(u0v2

0 + u0v0n0)), and u0 and v0 are the width and height of the image,
respectively. It is easy to see from the computational complexity expressions of the three
algorithms that the computational complexity of HDMCO is n2

0, while the computational
complexity of the other two algorithms is n3

0. Hence, HDMCO has low computational
complexity. Meanwhile, for example, the running time of HDMCO on the multi-PIE
database is 713.45 s, while the running time of HADL and LDMR are 4397.45 s and 5813.24 s.
The configuration of our computer is as follows: Intel Core i7-9700 K, 3.6 GHz, Nvidia
GeForce RTX 2080 Ti.

5. Conclusions

In this paper, we propose a novel few-shot, multi-pose face recognition method
based on hypergraph de-deflection and multi-task collaborative optimization (HDMCO).
HDMCO uses the hypergraph theory and non-negative matrix decomposition to separate
the frontal images from the attitude deflection images, and then uses the improved support
vector data description and triangle coding to extract the features of the separated images
without attitude deflection. Dictionary learning-based classifier is then also used to classify
those features. The feature extraction process and feature classification process are jointly
optimized. The large number of experimental results show that the proposed HDMCO
does achieve good results. Although we have jointly optimized feature extraction and
feature classification and achieved better results, since the separation of frontal images is
separate from the subsequent feature extraction, the obtained recognition result is still not
the ultimate optimal result of HDMCO. In future work, we will continue to explore the
joint optimization of the separation of frontal images and feature extraction to obtain the
ultimate optimal recognition effect of HDMCO.
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Abstract: As deep neural networks (DNNs) are widely used in the field of remote sensing image
recognition, there is a model security issue that cannot be ignored. DNNs have been shown to be
vulnerable to small perturbations in a large number of studies in the past, and this security risk
naturally exists in remote sensing object detection models based on DNNs. The complexity of remote
sensing object detection models makes it difficult to implement adversarial attacks on them, resulting
in the current lack of systematic research on adversarial examples in the field of remote sensing
image recognition. In order to better deal with the adversarial threats that remote sensing image
recognition models may confront and to provide an effective means for evaluating the robustness
of the models, this paper takes the adversarial examples for remote sensing image recognition as
the research goal and systematically studies vanishing attacks against a remote sensing image object
detection model. To solve the problem of difficult attack implementation on remote sensing image
object detection, adversarial attack adaptation methods based on interpolation scaling and patch
perturbation stacking are proposed in this paper, which realizes the adaptation of classical attack
algorithms. We propose a hot restart perturbation update strategy and the joint attack of the first and
second stages of the two-stage remote sensing object detection model is realized through the design
of the attack loss function. For the problem of the modification cost of global pixel attack being too
large, a local pixel attack algorithm based on sensitive pixel location is proposed in this paper. By
searching the location of the sensitive pixels and constructing the mask of attack area, good local
pixel attack effect is achieved. Experimental results show that the average pixel modification rate of
the proposed attack method decreases to less than 4% and the vanishing rate can still be maintained
above 80%, which effectively achieves the balance between attack effect and attack cost.

Keywords: adversarial examples; remote sensing image object detection; vanishing attack

1. Introduction

Remote sensing images have been an important data source for natural resource
investigation, disaster monitoring, and public safety management. With the increasing
computational power and the growing abundance of remote sensing data, deep convolu-
tional neural networks have been more widely used in remote sensing image applications,
such as image classification tasks [1–4] and target detection tasks related to image recogni-
tion [5–9] in the field of remote sensing. However, the vulnerability of deep neural networks
has been exposed in recent years by the results of studies in which they are susceptible to
well-designed adversarial samples [10] by attackers. An adversarial sample is a malicious
input sample carefully generated by an attacker to deceive a deep learning model using
an adversarial attack algorithm. The adversarial sample can cause the model to output
wrong prediction results. Adversarial samples have subsequently gained the attention of
many researchers in computer vision, and various adversarial attack algorithms have been
developed rapidly in the following years. In the development process of adversarial attack
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techniques, Goodfellow et al. [11] proposed a fast method for generating adversarial sam-
ples, namely FGSM (Fast Gradient SignMethod), where the algorithm is optimized in the
direction of the gradient sign generated by the target adversarial sample. The perturbation
will always be in the direction of increasing the attack loss. Madry et al. [12] proposed
the PGD algorithm, Kurakin et al. [13] proposed the iterative I-FGSM (Iterative-FGSM)
method, and Dong et al. [14] proposed the MI-FGSM (Momentum-based I-FGSM) method
that uses momentum to accelerate the convergence process. (Momentum-based Iterative
FGSM) algorithm to accelerate the convergence process. Carlini and Wagner [15] proposed
an optimization-based adversarial sample generation algorithm, C&W, whose innovation
lies in defining an objective function that reduces the distance between the adversarial
sample and the original sample while increasing the prediction error of the target model.

Remote sensing classification models have been proven unsafe by several researchers
in the field of remote sensing image tasks [16–21]. Adversarial attacks against remote
sensing image classification models were first proposed by Chen et al. [16]. Their study
analyzed the adversarial sample problem in remote sensing image classification systems.
The experimental results showed that remote sensing classification models are also vul-
nerable to adversarial sample attacks, proving the threat of adversarial samples to the
security of remote sensing applications. Burnel et al. [18] generated adversarial samples
with good transferability using generative adversarial networks. The experimental results
in the paper have confirmed that the adversarial samples are still transferable on remote
sensing classification models. The generated adversarial samples still have good attacks on
black-box models. Czaja et al. [19] include in their research setup some practical factors
that an attacker needs to consider when launching physical world attacks, providing the
feasibility of physical world attacks. These studies make it possible to construct more
realistic adversarial samples and further invisibility of adversarial samples when launching
physical-world attacks. Xu et al. [20] conducted a systematic study of adversarial samples
on remote sensing classification models, providing a baseline of the effectiveness of ad-
versarial sample attacks on several common remote sensing image classification datasets.
These studies only provided technical pavement for the study of adversarial samples on re-
mote sensing image classification models but did not consider how to impose the attacks on
remote sensing target detection models with more complex model structures. The studies
that exist for adversarial attacks on remote sensing image target detection models include
the study of adversarial patches proposed by Den et al. [21]. They disguised the adversarial
patch on an aircraft object to help the aircraft escape from the YOLO V2 target detection
model. The study has some limitations, firstly, the vanishing attack in the study only targets
the aircraft category, and the study is weak in systematicity; in addition, the study only
performed the attack on the more easily breached generic single-stage target detector and
did not perform the attack study on the advanced remote sensing target detector.

In the field of adversarial samples for remote sensing image models, the research of
adversarial attack algorithms for classification models is beginning to take shape. However,
the implementation of adversarial attacks on remote sensing object detection models is
complex due to the characteristics of remote sensing images that are different from close-up
images and the complexity of remote sensing object detection models. It causes the research
of adversarial attack algorithms for remote sensing object detectors to be still scarce, and
large-scale systematic analysis and research are even more lacking, which is obviously not
conducive to the model to deal with the security threats that may appear in the future.
We propose well-performing adaptive improved adversarial attack algorithms based on
the characteristics of remote sensing object detection models to construct transferable
adversarial samples.

In view of the current situation of the lack of research on the countermeasure samples
on the remote sensing object detector, this work first realizes the adaptation of the typical
white-box attack algorithm, successfully implements the vanishing attack on the model,
and builds a comparative baseline for the subsequent research, and then proposes the
adaptive improved global pixel attack method and local pixel attack method according to
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the characteristics of the remote sensing target detector. Specifically, the contributions of
this paper are as follows:

1. We design an attack adaptation method based on interpolation scaling and block-
based perturbation superposition to successfully adapt a variety of typical white-box
attacks to the remote sensing object detection, and we use a hot restart strategy to effec-
tively solve the perturbation failure problem caused by image splitting preprocessing
transformations. Moreover, through the design of the loss function, a joint attack
on the two-stage remote sensing target detector RPN module and the classification
refinement module is realized;

2. We propose an attack sensitivity mapping algorithm to realize the search for the
location of sensitive pixel points and improve the attack effect;

3. We propose a local pixel attack algorithm (Sensitive Pixel Localization C&W, SPL-
C&W) based on sensitive pixel point localization. By searching the location of attack-
sensitive pixel points in the original image and constructing a technical scheme for
mask extraction of the attack region, the local pixel attack is implemented while still
adopting the hot restart perturbation update strategy, balancing the attack effect with
the overhead of attacking the number of modified pixels.

2. Related Work
2.1. Remote Sensing Image Object Detection

Generic object detectors are divided into two-stage object detectors and single-stage
object detectors. The two-stage object detector usually consists of two stages. Take Faster
R-CNN [22] as an example, it consists of the following three modules: (1) Backbone network
for extracting features. The feature information in the image is extracted by the convolution
operation of this module to form a Feature Map and sent to the next stage. (2) Region
Proposal Network (RPN). The function of this module is to distinguish the foreground
from the background. (3) Classification refinement stage. In this stage, local features are
extracted from the proposed regions sent in to achieve further classification refinement
and position regression, obtain the specific categories and positions of objects, and obtain
the final prediction results through postprocessing. The YOLO [23], as an example of a
single-stage object detector, differs from the two-stage object detector in that it does not
contain a module that distinguishes explicitly between the foreground and the background
but directly regresses the class and location of the target to be detected in the output layer.

Remote sensing images differ in several ways from conventional images in real life.
Firstly, they possess an enormous size; for example, the images in the DOTA dataset [24]
range from 800 × 800 to 4000 × 4000. Secondly, the objects in remote sensing images are
generally small and densely arranged, with some appearing in a formation and complex
background. Thirdly, these images are primarily captured from an aerial view, leading to
immense variability in the size, direction, and shape of the objects. Therefore, developing a
remote sensing object detection model requires a unique approach. The rotational object
detectors using deep neural networks are found to be suitable for remote sensing object
detection due to its progress in deep learning technology and abundant data resources.
In recent years, several excellent remote sensing object detectors based on deep neural
networks have been developed [5,6,8] such as the two-stage Gliding Vertex [5] model and
the ROI-Transformer [6] model, where ROI stands for Region of Interests. The Gliding
Vertex model represents the location of the object using four points’ offset on a horizontal
frame. On the other hand, the ROI-Transformer model uses the two-stage object detector
architecture for detection, and its final prediction stage’s output is similar to that of a
generic object detector—comprising the object’s coordinate information and its category
label. However, the coordinates for determining the rotation detection frame differ slightly
from those of the Gliding Vertex model. Moreover, due to the massive size of remote sensing
images, feeding the entire high-resolution image directly into the operation during training
or testing is not possible using most GPUs. Therefore, most remote sensing object detection
models perform preprocessing image transformations, cutting images into feasible sizes
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before training and testing. Overall, these unique characteristics of remote sensing images
require the development of novel and robust remote sensing object detection models.

2.2. Adversarial Examples

The adversarial attack optimizes the loss function by adding small perturbations
directly to the image pixels through an optimization algorithm, thus causing the modified
sample detection results to deviate from the actual label. The attacks can be classified into
global pixel attacks and local pixel attacks according to the number of image pixels involved.
The global pixel attack involves the whole image, while the local pixel attack involves only
some pixels. Almost all traditional attacks against image classification tasks are global pixel
attacks, such as FGSM [11], I-FGSM [13], MI-FGSM [14], PGD [12], and C&W [15]. From the
analysis of the above-mentioned related studies, it is clear that the specific implementation
of category attacks that reduce the classification accuracy of object detectors should be the
modules in the detectors involved in the classification process. In this paper, the subsequent
research on the vanishing attack for remote sensing object detectors should also focus on
these modules of the object detectors to achieve the attack effect. The effect of the attack on
the target detector by the antagonistic sample can be briefly described as two: reduction of
detector accuracy and vanishing attack. The DAG(Dense Adversary Generation) attack
algorithm proposed by Xie et al. [25] and subsequently proposed by Chen et al. [7]. The
ShapeShifter algorithm focuses the attack on the classification refinement phase of the
two-stage object detector. The common goal of the vanishing attack is to make all objects in
the image bypass the detection of the detector. The vanishing attack involves more orders
of magnitude and is more difficult than an attack that misclassifies an object in the image.
Vanishing attacks also reduce the detector’s accuracy, target hiding is often more relevant,
and the studies we have conducted have focused on vanishing attacks.

2.3. CAM

Among the interpretable approaches to neural networks, some studies on the vi-
sualization of image classification model predictions have commonly used the gradient
information flowing back in the model [8,10]. In these studies, CNN predictions are visual-
ized by highlighting pixels in the image that are “more important” for a particular class (i.e.,
changes in these pixels have the most significant impact on the prediction scores for that
class). An example of the Class Activation Mapping (CAM) algorithm [8] on a GoogleNet
classification model is shown in Figure 1. CAM uses the gradient information returned on
the image classification model to obtain the response value of a layer of the feature map for
a particular class, where a higher response value represents a higher contribution to the
classification of that class. This way, a class activation map is obtained, and then the image
regions most relevant to a particular class can be identified from the map by upsampling it.

Figure 1. A CAM’s example.

3. Attack Strategies
3.1. Problem Definition and Notation for Deep Neural Networks

First, the notation is defined by t to denote the number of the round of the multi-round
attack, and the resulting adversarial sample is denoted as x∗t ; α denotes the step size of the
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multi-round attack, which represents the value of pixel modification at each round of the
gradient-based attack algorithm; ε denotes the maximum value of pixel modification when
using the L∞ norm constraint; J(·) denotes the loss function of the adversarial attack, and
∇x J(·) denotes the gradient obtained by passing the attack loss back to the original image
x. Y denotes the correct classification class of the image after the classification model Z,
and Y′ represents the target class set by the attack.

Our white-box attack is inspired by the formulation of the C&W attack. C&W [15] is
an optimization-based adversarial attack algorithm. The algorithm proposes a new loss
function that reduces the distance between the adversarial sample and the original sample
while increasing the prediction error of the target model, i.e., subject to the L2 norm. To
facilitate optimization, the C&W algorithm first introduces the tanh space variable w to
represent the adversarial sample x∗ , and the transformation range of x∗ is transformed
from (0, 1) to(−∞,+∞). The variable w is calculated as follows:

x∗ =
1
2
(tanh(w) + 1). (1)

The optimization expression for C&W against attacks consists of two parts, which are
formulated as follows:

min||δ||22 + c · f (x∗), (2)

here, ||δ||22 represents the Euclidean distance between the original image and the generated
adversarial sample, and f (·) represents the probability distance between the category
correctly predicted by the model and the category incorrectly predicted into the attack
target. δ and f (·) represent the expressions respectively as follows:

δ = x∗ − x, (3)

f (x∗) = max
(
max

{
Z(x∗)i : i 6= Y′

}
− Z(x∗)Y′ , −k

)
, (4)

where c is a parameter measuring the loss function of the two components and k is the
confidence that the model is misclassified, the larger the chance that the adversarial sample
will be misclassified, but it will also be harder to find, and a better balance is usually
achieved when it is greater than 40. The attack is usually implemented using the Adam
optimizer to optimize the process.

3.2. Splitting Preprocessing

Due to the huge size of remote sensing images, most GPUs cannot support putting
the whole high-resolution image directly on the GPU for calculation during training or
prediction. If the image is scaled directly, some information will be lost. We take a single
large image and split it into a collection of multiple subgraph splits that the GPU can
process by some rules, i.e., we preprocess the image by splitting. The pseudo-code of the
Split algorithm is shown in Algorithm 1.

Given a remote sensing image x of size (w,h), the relevant parameters are as follows:
(1) rate represents the rate of image scaling before cutting; (2) the Boolean type parameter
padding for whether to perform a 0-pixel padding operation; (3) gap is represented by the
distance between two adjacent slices; (4) the size of the single subgraph after cutting. The
significance of the cutting parameters is as follows: rate represents the scaling ratio and the
expected values are 1.0 and 0.5, where 1.0 means no image scaling and 0.5 means reducing
the image size by half. When cutting the image, the split size is smaller than the set sub-size,
and when the parameter padding is set to True, the pieces will be transformed by image
padding, and the size will be expanded to the sub-size. The scaling transformation and
the padding transformation are standard data enhancement tools used in image tasks,
and these two parameters can be considered data enhancement operations in the cut
preprocessing process.
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Algorithm 1 The Framework of Split

Require: original remote sensing image x
Require: rate, padding, gap, subsize
Ensure: subgragh set P = {p1, p2, . . . , pn}

1: Let (le f t, up) = (0, 0)
2: resize x according to rate and update (w, h)
3: while le f t ≤ w do
4: up = 0
5: while up ≤ h do
6: Split subgraph according to (le f t, up)
7: Fill the subgragh based on the padding parameter
8: Update P set
9: if up + subsize ≥ h then

10: Break
11: end if
12: Update up
13: end while
14: if le f t + subsize ≥ w then
15: Break
16: end if
17: Update le f t
18: end while
19: return P

In addition, the target information at the edge of the slices may be missing during
the cutting process. Therefore, the parameter gap is set to a certain overlap area between
the adjacent subgraphs. This parameter is usually set to around 50% of the cut image size.
The implementation process of the cutting preprocessing algorithm can be regarded as the
process of sliding window cutting on the image. When updating the top-left coordinate
(le f t, up) of the subgraph corresponding to the original image during each slide, a judgment
operation is needed. Taking the update of le f t as an example, if le f t + slide + subsize ≤ w,
then the le f t update is le f t + slide; otherwise, it is updated to w− subsize. The update of
up is similar. The following is the process of the cutting preprocessing, as shown in the
Figure 2. After the cutting preprocessing, we obtain a set of subgraphs P = {p1, p2, . . . , pn}.

Figure 2. The process of the cutting preprocessing.

3.3. Hot Disturbance Update Strategy

The cutting preprocessing module, while ensuring smooth operation of the remote
sensing algorithm, might reduce the effectiveness of the attack. Suppose all slices in the
set of subgraph slices are attacked individually. In that case, all the perturbation blocks in
the set are added to the original graph at once according to the corresponding positions
of the subgraphs to generate the adversarial examples. However, as a result of the many
overlaps between subgraphs, the overlap area of the perturbation blocks added in front will
be covered by the perturbation blocks added later, resulting in partial loss of perturbation
information. Finally, the generated adversarial examples are more biased towards the
perturbation blocks added later, which is a kind of “local optimum” in the attack. If
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such an adversarial example is preprocessed by cutting and sent to the detector, the
detection accuracy of the subgraph slices partially covered by the perturbation may not be
reduced, and the accuracy of the final detection results obtained after merging the subgraph
detection results will not be significantly reduced. The adversarial examples generated by
this perturbation update strategy are less robust when using the cut preprocessing module.
Therefore, when adding perturbations to the original image to generate the adversarial
examples, instead of a one-time static addition, a dynamic approach should be taken to
update the perturbations. To overcome this challenge, we propose a hot restart perturbation
update strategy for dynamic updates of adversarial samples.

Hot restart is an approach where, after updating the perturbations for all subgraphs
in the set P from the cutting preprocessing stage, the adversarial samples generated are
reprocessed through cutting and preprocessing before the next attack round. It is important
to note that the non-minimizable image transformation operation cuts off the backprop-
agation of the attack loss and makes the attack impossible to execute. Therefore, the cut
preprocessing used in the attack is rewritten according to the cut preprocessing algorithm.
This finer-grained perturbation update strategy can enhance the robustness of the generated
perturbations. The drawback is that the update of the slice set is performed before each
round of attack, and the perturbation update on the original image brought by a single
attack on each slice in the slice set is calculated during each round of attack. Hence, the
number of iterations of the attack increases, and the attack speed decreases.

The role of the RPN module in the two-stage target detector is to distinguish the
foreground from the background and to fine-tune the object positions. Therefore, we can
not only attack the classification refinement module to make it misclassified as a back-
ground class when performing a vanishing attack, but also attack the RPN module. The
RPN module eventually sorts out the wrong proposed region (i.e., the background region)
and sends it to the second stage, thus achieving the effect of the vanishing attack. The
RPN module is understood as a binary classification model that distinguishes between
foreground and background, and the confidence probability c is understood as the proba-
bility that the category is foreground. To accommodate the hot-restart strategy, the final
attack process consists of two parts, the attack RPN module and the attack classification
refinement module. Justifiably, the joint loss function J consists of two parts, Jrpn and Jroi.
The loss function equation of the attack is expressed as follows:

J = βJrpn + Jroi, (5)

Jroi = −
m

∑
i=1

logp
(
y′i
∣∣bi
)
. (6)

Jrpn = −
n

∑
cε{ci |ci>obj}

log(1− c). (7)

where β is the parameter to measure the proportion of Jrpn and Jroi. Jroi represents the
loss of the attack classification refinement module, where the b = {b1, b2, . . . , bm} denotes
the number of detection frames sent to the second stage after filtering in the RPN stage,
n. Y denotes the correct classification class of the image after the classification model.
Y′ = {y′1, y′2, . . . , y′n} denotes the set attack target class label. Here is the background class
with the label 0.

3.4. Sensitive Pixel Point Selection

The hot restart perturbation update strategy proposed above effectively solves the
perturbation failure problem caused by the image cut preprocessing module in the remote
sensing target detection model. It implements a global pixel attack with a high attack success
rate on the remote sensing target detection model. However, the whole image is the range of
modified pixels involved in the global pixel attack. The overhead of modified pixels in this
attack can be accepted for conventional images with small sizes. If the size of a remote sensing

331



Electronics 2023, 12, 1987

image is 3000 × 3000, the number of modified pixels involved in a global pixel attack is
9,000,000, which is a large number. In order to balance the attack effect and the overhead, the
number of pixels involved in the attack needs to be reduced as much as possible. Inspired by
the Class Activation Mapping (CAM) algorithm [8] introduced above, an Attack Sensitivity
Mapping (ASM) algorithm is proposed here, and the algorithm pseudo-code is shown in
Algorithm 2. This algorithm can search for the pixel points in the original image that are
more sensitive to the attack during the attack, and being more sensitive to the attack means
that the modification of these pixels contributes more to the attack effect.

Algorithm 2 Attack Sensitivity Mapping (ASM)

Require: original image x, gradient graph on the original image ∇x J
Require: K,kernel
Ensure: coordinates set of Top K sensitive pixels L = {l1, l2, . . . , lk}

1: for each x(i,j) ∈ ∇x J do
2: Calculate the sensitivity s of each pixel
3: end for
4: Update sensitivity matrix S
5: S′ = conv(S, kernel)
6: Pixels = Sortdesc(S′)
7: Select Top K points from Pixels Set
8: for each k ∈ Top K do
9: Map the index of k back to S

10: Obtain sensitive pixels position coordinates
11: Update Set L
12: end for
13: return L

The algorithm first performs the calculation of the attack sensitivity s. After back-
propagating the attack loss J to the original image x, each pixel point x(i,j) is given its
gradient, and the direction of the gradient represents the direction where the attack loss
decreases fastest at this pixel point. The magnitude of the gradient represents the value
of the decrease. The ASM algorithm determines the sensitivity of each pixel point in the
image to the attack based on the magnitude of the gradient obtained by backpropagating
the attack loss J to the original image x along the model network s. The expression for s is
given as follows:

s =
c

∑
n

∣∣∣∣∣

(
∂J
∂x

∣∣∣∣
x(i,j)

)∣∣∣∣∣, (8)

where c represents the number of channels of the image, for a grayscale map with a single
channel, c = 1, s is ultimately equal to the absolute value of the gradient size on the pixel
point; for a color map with three channels of RGB, c = 3, s is ultimately equal to the sum
of the absolute values of the gradient sizes of the three channels on the pixel point. So
far, we can obtain the sensitivity matrix S with the same size as the original image, S(i,j)
corresponds to the attack sensitivity information on the pixel x(i,j) in the original image.

The sensitivity matrix S can be regarded as a numerical sensitivity map. In order to
make the selection result of sensitive pixel points more robust, the sensitivity matrix S is
convolved here before the selection of sensitive pixel points. For the convolution operation,
a 1× 1 convolution kernel is used with a size of kernel, which is usually an odd number.
The stride is set to 1.The matrix S′ is obtained after the convolution process. All the points
in the matrix S′ are sorted in descending order according to their values, and the top K
points are filtered out to obtain the Top K point set; for each point in the Top K point set,
its position index is mapped back to S before the convolution process, thus obtaining the
coordinate information of each point corresponding to kernel× kernel in the original image.
The coordinate information of each point corresponds to kernel × kernel of sensitive pixels
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in the original image. After all the points in the Top K point set are processed, the coordinate
information of the sensitive pixel points is retained and used for the construction of the
attack region mask in next section. Finally, L = {l1, l2, . . . , ln}is used to denote the set of
coordinates of the sensitive pixel points selected from the original image.

Using the ASM algorithm to search for sensitive pixel points in the original image, the
sensitive pixel point localization maps for different values of K at kernel = 1 are shown in
Figure 3. The K is taken as K = 10, 50, 100, 500, 1000, and the number of sensitive pixels
accounts for 0.12%, 0.56%, 1.06%, 4.03%, and 5.35% of the original image, respectively. The
distribution pattern of highly sensitive pixels in the image can be perceived from the changes
of sensitive pixel location maps based on different K values. That is, most of the pixels that
are highly sensitive to the attack are distributed in a particular area of the image containing
the object to be detected, which should be focused on when performing local pixel attacks.

Figure 3. When Kernel = 1, the images of sensitive pixel location under different K values.

3.5. Construction of the Attack Area Mask

After searching the position information of Top K sensitive pixel points by the ASM
algorithm, the position mask about these K pixel points can be constructed directly by
setting the pixel value of the corresponding position to 1 and the remaining positions to 0,
as shown in Figure 4. Suppose we use the obtained Top K sensitive pixel point position
masks as attack region masks straightly. In that case, observation of the constructed position
mask shows that there will be many isolated sensitive pixel points, especially at the edges
of the image. It might be detrimental to future attack studies that might be conducted in
the physical world. In addition, we can find that most pixel points susceptible to the attack
are distributed within a specific area of the image containing the object to be detected. This
phenomenon inspires us to construct the attack region mask by directly selecting the region
containing the object to be detected. The detection frame information in the detection result
of the original image by the target detection model can be used for construction. It is worth
noting that the target detection model will use the contextual information to correct the
classification results, so the attack range is only limited to the inside of the detection frame
and may not be optimal; in addition, as the remote sensing target detection model adopts
rotating frame detection, the detection frame is mostly a directed rectangular frame, so the
edges of some objects with regular shapes will most likely overlap with the detection frame,
and thus will not be included in the detection frame mask and finally, not in the attack area.
Such a situation exists for the vehicle class in the DOTA dataset, and the contribution of
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the object’s edge contour feature to the detection result cannot be ignored. Based on the
above two points, a slight expansion of the detection frame area should be considered when
constructing the mask. The graphical morphology method of expansion is used to slightly
expand all the detection frame areas in the image so that part of the contextual information
and the edge contours of the object can also be included in the mask range after processing.
The parameter kernel0 is the expanded convolution kernel used to perform the expansion
operation. This scheme can eventually build a detection frame mask with a regular shape,
but the number of pixels involved in the attack will be more significant.

(a) (b)

(c) (d)

Figure 4. Attack area mask. (a) Original image; (b) kernel = 3, K = 500; (c) Mb, kernel0 = 7; (d) M.

In summary, by fusing the ideas of the above two schemes, an attack region mask
scheme that uses the detection frame mask to limit further the search range of Top K sensi-
tive pixel points are designed here, and this attack region mask scheme will eventually filter
out fewer sensitive pixel points. The detailed process of attack region mask construction is
described below: firstly, the post-inflated detection frame mask Mb is constructed based
on the detection frame information, and the gradient map ∇x J is obtained by using Mb
to mask the gradient map after passing back the attack loss to the original map, which is
expressed as the following:

∇x J′ = ∇x J �Mb. (9)

The ASM algorithm runs then, by which the search for Top K sensitive pixel points
can be performed in the area already restricted by Mb so that the localized sensitive pixel
points are more distributed in the object itself and around the object. The attack area masks

334



Electronics 2023, 12, 1987

M can be constructed by constructing the localization map after obtaining the location
information of Top K sensitive pixel points.

An example attack region mask constructed according to the above process is shown in
Figure 4. Figure 4b represents an example map of sensitive pixel location obtained directly
according to the ASM algorithm, where kernel = 3 and K = 500, and the number of
sensitive pixels finally selected accounts for 6.09% of all pixels in the original image; Figure 4c
represents an example map of detection frame mask constructed according to the detection
frame information. Figure 4d represents the final attack region mask constructed according to
the attack region mask scheme in this section, with the number of pixels in the attack region
accounting for 4.73% of the original image. From Figure 4, it can be seen that the attack region
mask constructed according to the scheme designed in this section can, on the one hand,
make the attack focus more on the region where the object itself is located, and on the other
hand, filter out the pixel points from these regions that are more sensitive to the attack, further
reducing the overhead of modifying the number of pixels in the attack.

3.6. SPL-C&W

The process of implementing the vanishing attack by the Sensitive Pixel Localization
C&W(SPL-C&W) algorithm proposed in conjunction with the above schemes is shown in
Figure 5. The SPL-C&W algorithm performs the vanishing attack against the second-stage
classification refinement module of the two-stage target detector.

Figure 5. The overview of SPL C&W.

In order to generate an adversarial sample in the attack with splitting preprocessing,
a hot restart perturbation update strategy is used in the algorithm. The ASM algorithm
is utilized to search sensitive pixel points and construct the attack region mask during
each round, explicitly targeting slicing in a single attack. The attack region mask makes it
possible to update the perturbations only in the attack region and always keep the same
initial value as the original image x for the pixel points outside the attack region. This
adversarial sample optimization process can be expressed as follows:

x∗t = x� (1−Mt) + ξt �Mt, (10)

where t represents the number of rounds of attacks, and ξt is used to denote the perturbation
generated in the t th round of attacks, Mt represents the attack region mask updated from
this round, and x∗t represents the adversarial samples generated in the t th round of attacks.
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In the multi-round iterative attack, the attack region mask is first updated at every single
attack, and then the adversarial samples are optimized within the limits of the mask. In
this way, the local pixel attack based on sensitive pixel point localization is finally achieved.
The algorithmic framework of the SPL-C&W attack is shown in Algorithm 3.

Algorithm 3 The Framework of SPL-C&W

Require: real image x; the detector D; mask of the detection boxes Mb; patches set
P = {p1, p2, . . . , pn}; proposal regions set B = {B1, B2, . . . , Bn} on P; detected label set
Y = {Y1, Y2, . . . , Yn}; adversarial target label set Y′ = {Y′1, Y′2, . . . , Y′n}

Require: iterations T; attack parameters c and k; ASM parameters K and kernel; construct
mask parameters kernel0

Ensure: adversarial example x∗

1: Let x∗0 = x; P∗ = Split( x∗0)
2: for t = 0 · · · T − 1 do
3: P∗t = Split(x∗t )
4: Input P∗t to D
5: Update Set Bt , Set Yt and Set Y′t
6: if Yt == Y′t then
7: Break
8: end if
9: for each patch p∗tn

∈ P∗t do
10: Input p∗tn

to D
11: Attack p∗tn

by Attack method and backpropagation Loss J
12: Optimize the ξt and obtain the gradient ∇x J(p∗tn

, Y′tn)

13: ∇x J(p∗tn
, Y′tn)

′
= ∇x J(p∗tn

, Y′tn)�Mb
14: // Search for the locations of sensitive pixels by ASM algorithm
15: L = ASM(x,∇x J(p∗tn

, Y′tn)
′
)

16: Update Mask M according to L
17: Update x∗t according to x∗t = x� (1−M) + ξt �M
18: end for
19: end for
20: return x∗ = x∗T

4. Evaluation

In this section, the SPL-C&W algorithm is used to perform the vanishing attack on two
white-box remote sensing target detection models, and the rationality of the sensitive pixel
point localization and attack region mask construction scheme proposed in this chapter is
verified through comparative experiments; subsequently, it is verified that the SPL-C&W
local pixel attack algorithm proposed in this chapter can balance between the attack success
rate and the attack modification pixel overhead through comparison experiments with the
attack effect of global pixel attack.

4.1. Setup

The experiments in this section are based on Pytorch and are conducted on a Linux
server with a GeForce RTX2080 Ti graphics card and 64 GB of RAM. The adopted dataset
uses validation set images from the DOTA V 1.0 remote sensing image dataset. The local
pixel attack takes a long time to perform multiple searches for sensitive pixel points and
the construction of attack region masks in each round of attack, and 100 images from the
validation set are randomly selected for the experiments here.

In this chapter, the Gliding Vertex [5] with ROI-Transformer [6] detector is still used as
the local white-box model on which the local pixel attack algorithm based on the feedback
of sensitive pixel points is implemented. The R3Det [26] and BBAVectors [27] are used as
the local black-box model, and Gliding Vertex and ROI-Transformer are mutually black-box
models to verify the transferability of the generated adversarial samples. The four models
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of the experimental attack can operate normally locally before being attacked, and the
detection performance on the 100 randomly selected images in this chapter is good, with
the Gliding Vertex achieving 87.41% mAP (Mean Average Precision), the ROI-Transformer
detector achieving 82.88% mAP, and the R3Det achieving 87.04% mAP, and BBAVectors can
reach 88.79% mAP.

To compare with the global pixel attack method without ASM, the attack we use has
the same parameters as follows: (1) normalize the original image from the pixel range of
[0, 255] to [0, 1]; (2) the attacks are constrained by the L2 norm; (3) the maximum number of
attack rounds T = 50 for multi-round attacks; (4) the model misclassification confidence
k = 50 and the loss function parameter c = 10. It should be noted that in the experiment,
a convolution operation was performed on the gradient map using the attack sensitivity
algorithm with a convolution kernel of kernel = 3, and another parameter K = 500 was
used for the ASM algorithm. The inflated convolution kernel kernel0 ∈ [1, 3, 5, 7, 9] detects
the box mask when constructing the attack region mask.

4.2. Effectiveness Analysis of Sensitive Pixel Location

In order to verify the effectiveness of the sensitive pixel points positioned in the attack
and the rationality of the attack region mask scheme, this section constructs different attack
region masks for comparison experiments. It implements SPL-C&W local pixel attacks on
the white-box Gliding Vertex model and ROI-Transformer model to analyze the differences
in attack effects.

The descriptions of several groups of attack area masks used in the experiments are as
follows: (1) Small squares of size 3× 3 are randomly selected in the image several times
to construct area masks. Then, local pixel attacks are performed, symbolically denoted
as randomK, and K represents the number of randomly selected squares. The randomly
selected 5000 and 10,000 small squares in the image correspond to the average modification
rates of 4.27% and 8.26% in the images participating in the experiments, respectively,
and the attacks have the same average image modification rates on the two white-box
models; (2) using the ASM algorithm, the convolutional operation is performed using a
convolutional kernel of kernel = 3 with parameters k = 500, constructing a position mask
as the attack region mask for each round of SPL-C&W attack, symbolically denoted as
conv3. The average image modification rate of the final attack is 7.63% on the Gliding
Vertex model and 7.33% on the ROI-Transformer model; (3) Using the attack region mask
scheme, the detection frame mask restriction ASM algorithm is added, searching the area
range of Top K sensitive pixel points. The detection box is not inflated here first to exclude
the influence of other factors, and the parameter kernel0 = 1 is symbolically represented as
box1conv3. The final attack has an average image modification rate of 2.82% on the Gliding
Vertex model and 2.29% on the ROI-Transformer model. Figure 6 shows the comparison of
the local pixel attack effect under the above different attack region masks.

(a) (b)

Figure 6. Comparison of attack effects based on different attack area masks. (a) Gliding Vertex ;
(b) ROI-Transformer.

337



Electronics 2023, 12, 1987

Figure 6a shows the result of attacking the Gliding Vertex model, and Figure 6b shows
the result of attacking the ROI-Transformer model. From Figure 6, it can be intuitively
seen that the attack effect of the local pixel attack based on conv3 mask is better than that
of the local pixel attack based on random10, 000 mask for the Gliding Vertex model and
the ROI-Transformer model with less than 1% difference in the attack modification rate.
The mAP Drop of the attack is 27.27% and 22.28% higher on the two models, and the
vanishing rate is 7.97% and 9.2% higher, respectively. The experimental results effectively
demonstrate the effectiveness of the selected sensitive pixel points in enhancing the effect
of local pixel attacks.

In addition, it can be learned from Figure 6 that the box1conv3 mask constructed
according to the attack region mask scheme reduces the attack modification rate in the
SPL-C&W attack. In contrast, the attack effect performs the best in several groups of
comparison experiments. With less than 2% difference in the attack modification rate, the
attack improves the mAP Drop on the two models by 45.19% and 46.84% for the Gliding
Vertex model and ROI-Transformer model respectively, and the vanishing rate by 29.92%
and 30.92%; compared with the SPL-C&W attack based on the conv3 mask, for the Gliding
Vertex and ROI-Transformer models, the attack on the two models has a 4.81% and 5.04%
lower modification rate, 5.47% and 17.41% higher mAP Drop, and vanishing rate increased
by 0.5% and 8.08% respectively. The SPL-C&W attack based on box1conv3 mask can achieve
more than 80% vanishing rate on two models with less than 3% modification rate only. The
experimental results further prove the effectiveness of the selected sensitive pixel points on
the local pixel attack effect and verify the superiority of the attack area mask scheme.

4.3. Attack on Remote Sensing Object Models

After verifying the effectiveness of the attack sensitivity mapping algorithm and the
constructed attack region mask proposed in this chapter, it is necessary to explore the
attack effect of the SPL-C&W attack. Firstly, we analyze the effect of different detection
frame expansion parameters kernel0 on the attack effect of SPL-C&W attack. As shown in
Figure 7, the changes of mAP Drop and vanishing rate when the detection frame expansion
parameter kernel0 takes different values during the construction of the attack area mask for
the local pixel attack with two white-box models. Table 1 shows the average modification
rate of the attack on the image for different values of kernel0.

(a) (b)

Figure 7. Comparison of attack effects under different size of kernel0. (a) Gliding Vertex; (b) ROI-
Transformer.

Table 1. Average modification rate of local pixel attack under different kernel0.

Model 1 3 5 7 9

Gliding Vertex 2.82% 2.95% 3.12% 3.24% 3.37%
ROI-Transformer 2.29% 2.41% 2.49% 2.60% 2.72%

After finding the appropriate detection frame mask parameters, it is necessary to
analyze whether the local pixel attack implemented by the SPL-C&W algorithm can achieve
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a good balance between the success rate of the attack and the attack modification pixel
overhead with the appropriate parameters. A comparison of the attack effectiveness
between the global pixel attack SW-C&W and the local pixel attack SPL-C&W is performed,
as shown in Table 2 for the comparison of the attack success rate against the sample in the
white-box case. From Table 2, we can learn that the difference between the mAP Drop of
the SPL-C&W attack on the two white-box models and the SW-C&W attack is less than 5%.
The maximum vanishing rate is reduced by about 11%, but the modification rate can be
reduced from the original 100% to less than 4%. The loss of the attack effect brought by the
decrease in the number of attack pixels is within the acceptable range.

Table 2. Comparison of global and local pixel attacks on two models.

Model Attack mAP Drop Vanishing Rate Modification
Rate

Gliding Vertex SW-C&W 76.12% 97.70% 100%
SPL-C&W 72.73% 86.72% 3.37%

ROI-Transformer SW-C&W 65.43% 94.74% 100%
SPL-C&W 65.74% 88.01% 2.49%

As shown in Figures 8 and 9, the comparison of the transferability of the adversarial
samples generated by the global pixel attack SW-C&W and the local pixel attack SPL-C&W
on the black-box model is shown. From Figures 8 and 9, we can see that the difference
between the adversarial samples generated by SW-C&W and SPL-C&W on the two white-
box models is less than 0.1% on the local black-box R3Det model, which is related to the fact
that the R3Det model itself is easier to break single-stage target detection model; the ROI-
Transformer model as a black-box model, the transferability of the adversarial samples
generated by SPL-C&W is even improved compared with SW-C&W, the mAP Drop is
improved by 3.62%, and the vanishing rate improves by 20.23%; when the Gliding Vertex
model is used as a black-box model, the attack of the adversarial samples generated by SPL-
C&W attack For the local black-box BBAVectors model, the mAP Drop of the adversarial
samples generated by the SPL-C&W algorithm attacking the Gliding Vertex model and
the adversarial samples generated by the ROI-Transformer model decreased by 5.34% and
4.06%, respectively. Moreover, 4.06% and the vanishing rate decrease by 4.55% and 0.56%,
respectively, and the loss of transferability of the adversarial samples due to the reduction
of the number of attack pixels is within the acceptable range.

The experimental results effectively demonstrate that the local pixel attack proposed
in this chapter reduces the attack overhead at the expense of a small fraction of the attack
success rate and transferability. The average modification rate of the image is reduced by
more than 96% relative to the global pixel attack.

(a) (b)

Figure 8. Adversarial Sample Transferability Tests Generated by Attacking the Gliding Vertex.
(a) mAP Drop; (b) vanishing rate.
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(a) (b)

Figure 9. Adversarial sample transferability test generated by attacking the ROI-Transformer.
(a) mAP Drop; (b) vanishing rate.

Figures 10 and 11 present the visual detection results of the SPL-C&W attack on the
two white-box models obtained for the adversarial samples. The first column of each
row shows the visual detection result of the original image on the model, and the second
column shows the final generated noise map. The third column shows the visual detection
result of the adversarial sample on the model. From Figures 10 and 11, we can see that after
applying the vanishing attack on the two white-box models using the SPL-C&W method,
the effect of hiding all objects in the image by attacking only some pixels in the image is
successfully achieved.

(a) (b) (c)

(d) (e) (f)

Figure 10. Results visualization for Gliding Vertex model. (a) Original image; (b) Perturbation image;
(c) Adversarial image; (d) Original image; (e) Perturbation image; (f) Adversarial image.

340



Electronics 2023, 12, 1987

(a) (b) (c)

(d) (e) (f)

Figure 11. Results visualization for ROI-Transformer model. (a) Original image; (b) Perturbation
image; (c) Adversarial image; (d) Original image; (e) Perturbation image; (f) Adversarial image.

5. Conclusions

In this work, we propose a local pixel attack method SPL-C&W applicable to remote
sensing target detection models and implement the vanishing attack on several remote
sensing object detectors. We design an attack adaptation method based on cut blocks’
perturbation superposition and successfully adapt a typical adversarial attack algorithm
to a remote sensing target detection model. A generalized hot restart perturbation update
strategy is used in the algorithm, which can be used in combination with various attack
algorithms to effectively solve the perturbation failure problem caused by cutting prepro-
cessing modules. We implement the search for the location of attack-sensitive pixel points
in the image by designing an attack sensitivity mapping method. The attack region mask
scheme with the detection frame information limits the search range of sensitive pixel
points, reducing the overhead of attack modification pixels. The experimental results show
the superiority of the adversarial samples generated by our method in terms of attack effect
and transferability, laying a solid foundation for the subsequent research on adversarial
samples in the field of remote sensing image recognition and providing reference and
guidance for the development of more secure and robust remote sensing image recognition
models in the future.
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Abstract: In recent years, unmanned aerial vehicle (UAV) image target tracking technology, which
obtains motion parameters of moving targets and achieves a behavioral understanding of moving
targets by identifying, detecting and tracking moving targets in UAV images, has been widely used
in urban safety fields such as accident rescue, traffic monitoring and personnel detection. Due to
the problems of complex backgrounds, small scale and a high density of targets, as well as mutual
occlusion among targets in UAV images, this leads to inaccurate results of single object tracking (SOT).
To solve the problem of tracking target loss caused by inaccurate tracking results, this paper proposes
a strong interference motion target tracking method based on the target consistency algorithm for
SOT based on an interframe fusion and trajectory confidence mechanism, fusing previous frames for
the tracking trajectory correction of current frames, learning again from previous frames to update
the model and adjusting the tracking trajectory according to the tracking duration. The experimental
results can show that the accuracy of the proposed method in this paper is improved by 6.3% and
the accuracy is improved by 2.6% compared with the benchmark method, which is more suitable for
applications in the case of background clutter, camera motion and viewpoint change.

Keywords: UAVs; target tracking; interframe fusion; trajectory confidence

1. Introduction

In recent years, unmanned aerial vehicles (UAVs) have developed rapidly. Due to their
small size, low cost and high mobility, UAVs are widely used in exploration, rescue, traffic
monitoring, personnel detection and other urban safety fields [1]. For special missions such
as disaster rescue, urban patrol and anti-terrorist investigation, UAVs are usually used
to accomplish tasks due to the complexity of the environment and mission scenarios [2];
thus, they have great potential for application in the field of urban security. Meanwhile,
they play an important role in emergency rescue work in several security fields such as
emergency mapping, environmental monitoring, earthquake relief, etc., where UAVs play
an important role due to their flexibility, remote operation and powerful scalability [3,4].

With the continuous development of computer vision technology, target tracking in
complex scenes with UAVs has gradually become a challenging research direction and focus,
attracting many experts and scholars to conduct in-depth research and exploration and
promoting the rapid development and wide application of UAV target tracking technology
on the basis of deep learning [5].

Currently, target tracking methods can be divided into three categories: correlation
filter-based target tracking, multi-feature fusion-based target tracking and deep learning
method-based target tracking. Among them, the correlation filter-based target tracking
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method proposes a filtering template for performing operations on candidate target re-
gions. The target position of the current frame is the position of its maximum output
response. Correlation filtering-based target tracking methods are suitable for real-time
applications, especially on embedded systems with limited computational resources. For
example, Qin et al. [6] constructed a target tracking model based on Kalman filtering and
the Camshift method of multi-feature fusion, which can effectively improve the tracking
effectiveness. Zhang et al. [7] introduced the background information of a target’s neigh-
borhood into the similarity measurement between the target and the candidate, proposed a
scale estimation mechanism that relies only on the Hellinger distance mean shift process
and detected the size estimation to reduce the effect of background clutter.

To address the limitations of single features, researchers have investigated ways to
improve the performance of target tracking by fusing different features. The Staple [8]
algorithm uses a combination of the global color histogram and histogram of oriented
gradient (HOG) methods to describe the target. First, in the global color template, the mo-
tion foreground and static background are further computed based on their pre-estimated
positions, and then the score of each pixel is obtained to derive the color response map.
Then, in the HOG template, the HOG features are extracted from the previously deter-
mined target regions, and, thus, the dense response template is obtained. Finally, the
scores of the two templates are linearly combined and the location of the target is finally
estimated. The spatially regularized discriminative correlation filters (SRDCF) [9] tracking
algorithm uses spatially regularized components to address boundary effects, employing
regularized weights to penalize the filter coefficients during training and generate a more
discriminative model. The temporal regularized correlation filters (STRCF) [10] tracking
algorithm introduces temporal regularization into the SRDCF tracking algorithm. The
background-aware correlation filters (BACF) [11] tracking algorithm dynamically models
the foreground and background of the target using HOG features, while an alternating
direction method of multipliers (ADMM) [12] optimization method is designed to solve
the filter. The aberrance repressed correlation filters (ARCF) [13] tracking algorithm sup-
presses the rate of change of the response map that occurs at the time of detection and then
suppresses the aberration of the response map in cases such as target occlusion, as a way to
improve the tracking accuracy.

The purpose of a target tracking method based on deep learning is to optimize the
distance metric between detections. Due to the consideration of a variety of influencing fac-
tors that are not beneficial for target tracking, such as the generally low resolution of aerial
UAV videos, more interfering targets, and faster viewpoint transformation, Bi et al. [14]
proposed a context-based target tracking method for aerial UAV videos. The effect of
regression is improved by connecting multiple convolutional layers with a residual module,
which can effectively improve the tracking effect of the algorithm. Zha et al. [15] added
the semantic space sub-module to the twin network-based model as an adaptation to track
the target captured by the UAV in the middle of the temporal space, which can solve
the problems of target occlusion and target disappearance and improve the accuracy of
target tracking.

In summary, the general step of target tracking is to estimate the trajectory model
(including position, the direction of motion, shape, etc.) of the tracked target in each scene
of the captured video, and a powerful tracker can then assign consistent markers to the
target object in successive scenes. Therefore, visual tracking is an operation designed to
locate, detect and define a dynamic configuration of one or more targets in a video sequence
from one or more cameras. With the rapid development of UAVs and the rapid increase in
video material from aerial UAV photography, single target tracking for aerial UAV video is
one of the key problems studied by scholars, which can provide fundamental support for
practical applications in related UAV fields.

Therefore, to address the problem of inaccurate target tracking results in aerial UAV
video due to complex backgrounds, a high density of small-scale targets and mutual
occlusion between targets, this paper proposes a strong interference motion target tracking
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method based on the target consistency algorithm for UAVs. The main contributions of the
method are as follows:

(1) The interframe fusion method is introduced in the model to correct the model’s
tracking trajectory of the target by fusing the current frame with the previous frames,
and to update the model’s tracking trajectory by combining the tracking results of the
previous frames and learning them again.

(2) The model introduces a trajectory confidence mechanism, which defines the confi-
dence level of the trajectory according to the duration of the tracked trajectory, and
corrects and updates the trajectory in multiple directions to ensure the accuracy of the
tracking results.

(3) The model optimizes the objective function using the ADMM algorithm and solves
the function by iteration to obtain the optimal tracking trajectory.

The remainder of this paper is organized as follows. Section 2 presents the related
work. Section 3 details the proposed method. The experiments and results analyses are
provided in Section 4 while introducing the selected dataset and evaluation indicators.
Finally, conclusions are drawn in Section 5.

2. Related Works

At present, scholars related to target tracking methods for aerial UAV video have con-
ducted in-depth research and exploration, and many excellent results have been achieved;
the details of some UAV target tracking algorithms are shown in Table 1. Among them,
Liu et al. [16] constructed a target tracker TLD-KCF based on a conditional scale adaptive
algorithm for aerial UAV video, and this method improved the tracking capability of
quadrotor UAVs in complex outdoor scenes. Li et al. [17] designed a multi-vehicle tracking
method for UAVs by combining SOT-based forward position prediction with results from
intersection over union tracker (IOUT), which enhanced the detection results of the associa-
tion phase. Chu et al. [18] used the results of target detection as SOT results and designed a
multiple object tracking (MOT) network using multiple target interactions, which had a
significant improvement in the performance of the MOT. Since a large number of targets
overlap and obscure each other when performing UAV image multi-object tracking, this
leads to identity-switch problems between targets and affects the performance of the algo-
rithm. Feng et al. [19] used an SOT tracker and a reidentification network of the siamese
region proposal network (SiameseRPN) [20] to extract short-term and long-term cues of
targets, respectively. Then, a data association method with switcher-aware classification
was used to improve the tracking results of the network while solving the identity-switch
problem. However, in this method, the mutual independence of the SOT tracker and
data association prevented the modules from collaborating well in the algorithm. For this
reason, Zhu et al. [21] proposed a dual matching attention network to integrate single object
tracking and data association into a unified framework to deal with intra-class interference
and frequent interactions between targets. Wan et al. [22] designed a target tracking method
based on sparse representation theory for aerial drone videos to solve the problem of partial
occlusion between objects present in aerial drone videos that are used to localize the objects
captured by UAVs, which contain pedestrians, vehicles, etc.

Table 1. Details of some UAV target tracking algorithms.

Proposer(s) Dataset Description Characteristic

Liu et al. [16] VOT 2014
A target tracker TLD-KCF based on a

conditional scale adaptive algorithm for
aerial UAV video.

Improved tracking capability of quadcopter
UAVs in complex outdoor scenarios.

Li et al. [17] UA-DETRAC A multi-vehicle tracking method
for UAV.

Combining SOT-based forward position
prediction with results from IOUT enhances

detection results in the association stage.
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Table 1. Cont.

Proposer(s) Dataset Description Characteristic

Chu et al. [18] MOT15
MOT16

A CNN-based framework for
online MOT.

The MOT network is designed through the
interaction of multiple SOT results, so that the

performance of MOT is significantly improved.

Feng et al. [19] MOT16
MOT17 A unified MOT learning framework.

Makes full use of both long-term and short-term
cues to deal with the complexities of MOT

scenes, and considers potential identity-switch
through switcher-aware classification.

Zhu et al. [21] MOT16
MOT17

An MOT with Dual Matching attention
networks.

Integrates the merits of single object tracking
and data association methods in a unified
framework to handle noisy detections and

frequent interactions between targets.

Wan et al. [22] VOT2015
A target tracking method for aerial UAV

video based on sparse representation
theory.

Solves the problem of partial occlusion between
targets in aerial drone video.

Liu et al. [23] MDMT
A multi-match authentication network

MIA-net for multi-target tracking
missions with multiple UAVs.

Solves cross-UAV association problems by
constructing cross-UAV target topology

relationships through local–global matching
algorithms.

Yeom [24] Practical scenarios A long-range ground target tracking
algorithm for small UAVs.

Selects the most suitable trajectory from multiple
trajectories in a dense trajectory environment

using nearest neighbor association rules.

Jiang et al. [25] The 1st Anti-UAV
Workshop and Challenge

An improved YOLOv5 UAV detection
and tracking algorithm.

High-speed tracking performance by training
low-resolution detectors combined with Kalman

algorithms.

Lin et al. [26] VisDrone2019 An improved UAV multi-target tracking
model based on FairMOT.

Improves model tracking performance by
sorting out temporal correlation structures and

separating different functional heads.

Bhagat et al. [27] Simulation experiments A DQN-based persistent target tracking
model for urban environments.

Enables UAVs to continuously track targets in
different environments while avoiding obstacles

in the environment.

Yang et al. [28] ImageNet A novel framework for hierarchical deep
learning task assignments.

Performs tasks that require intensive computing
with mobile edge computing servers that are rich

in computing resources.

Bi et al. [14] UAV123
A context-based remote sensing target

tracking method for aerial UAV
video MDnet.

Introduction of the RA-CACF module into the
online tracking phase of the tracking network.

He et al. [29] Visdrone-mot2020
A method for tracking different classes
of multiple targets in different scenarios

COFE model

Includes three main modules: multi-class target
detection, coarse-class multi-target tracking and

fine-grained trajectory refinement.

Liu et al. [23] proposed a multi-matching identity authentication network (MIA-Net)
for a multi-target tracking task with multiple UAVs. The MIA-Net effectively solved the
cross-UAV association problem by constructing cross-UAV target topology relationships
through a local–global matching algorithm, and effectively complemented the obscured
targets by taking advantage of multiple UAV viewpoint mapping. Yeom [24] studied
ground target tracking algorithms at long distances (up to 1 km) using small UAVs and
improved the association between trajectories by selecting the most suitable of multiple
trajectories in a dense trajectory environment using nearest neighbor association rules. The
detection of moving targets in the algorithm also includes frame-to-frame subtraction and
thresholding, morphological operations and false alarm elimination based on object size
and shape property, and the target’s trajectory is initialized by the difference between the
two nearest points in consecutive frames; then, the measurement statistically nearest to the
state prediction updates the target’s state. Jiang et al. [25] proposed an improved YOLOv5
UAV detection algorithm and tracking method to address the difficulties of poor imaging
contrast, complex background and small target scale. The method improved UAV detection
probability by adding a detection head and attention module, and achieved high-speed
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tracking performance by training low-resolution detectors combined with the Kalman
algorithm. Lin et al. [26] proposed an improved UAV multi-target tracking model based on
FairMOT. The model contains a structure that separates the detection head and the ReID
head to reduce the influence between each functional head. In addition, they developed a
temporal embedding structure to enhance the characterization capability of the model. By
combing the temporal association structure and separating the different functional heads,
the performance of the model in UAV tracking tasks is improved.

Bhagat et al. [27] proposed a deep learning technique based on target-tracking DQN
networks for persistent target tracking in urban environments. After experiments, it
was shown that the algorithm enabled UAVs to persistently track targets in different en-
vironments while avoiding obstacles in both the training environment and the unseen
environment. Since UAVs are generally severely limited in power supply and have a
low computational power to perform tasks requiring intensive computation on their own,
this poses a great challenge in terms of computational power, low latency and inference
accuracy. Based on the above reasons, Yang et al. [28] proposed a novel hierarchical deep
learning task assignment framework in which UAVs are embedded in the lower layers of
the pre-trained CNN models, while mobile edge computing servers with abundant com-
putational resources handle the higher layers of the CNN models; the effectiveness of the
proposed offloading framework was demonstrated after experimental results. Bi et al. [14]
proposed a context-based remote sensing target tracking method MDnet for aerial UAV
video. In the network structure, residual connections are applied to fuse multiple con-
volutions, thus improving the network representation of remote sensing targets. In the
pre-training phase, an enhancement strategy of rotating an adversarial autoencoder is
used to generate enough negative samples to enhance the ability to distinguish between
targets and background interference. In the online tracking phase, the RA-CACF module is
introduced into the tracking network for remote sensing target tracking in aerial UAV video
applications. He et al. [29] proposed a COFE method model for tracking different classes of
multi-targets in different scenarios. The method contains three main modules: multi-class
target detection, coarse-class multi-target tracking and fine-grained trajectory refinement.

With the development of UAV target tracking technology, we must at the same time
be primarily aware of the risks involved. Especially when UAV target detection technology
is applied in the field of urban security, it is important for professionals to be aware of
the importance of UAV communication security, to understand possible threats, attacks
and countermeasures related to UAV communication. It is also able to secure its commu-
nication using technologies such as blockchain technology, machine learning technology,
fog computing and software-defined networking to guarantee the security and privacy of
relevant data [30]. To deal with attacks and security threats such as jamming, information
leakage and spoofing in UAV communication, Ko et al. [31] proposed a secure protocol
after studying the security prerequisites of UAV communication protocols as a way to
protect the communication between UAVs and between UAVs and ground control stations.
The protocol can achieve perfect forward secrecy and non-repudiation, and is believed to
have good applications in the field of urban security, where a high level of communication
security is required. In summary, the correlation filter-based target tracking method can
update the tracker at any time according to the diverse changes of the tracked targets, and
it runs faster and is more suitable for target tracking in aerial UAV videos. Existing discrim-
inative correlation filter-based trackers use predefined regularization terms to optimize
learning for the target, such as to suppress the learning for the background or to adjust the
change rate of the correlation filter. However, the predefined parameters not only require a
lot of effort to adjust, but also cannot be adapted to new situations where no rules have
been established.

Therefore, the automatic spatio-temporal regularization tracker (AutoTrack) [32] track-
ing algorithm improves on the STRCF algorithm, which uses the connection of the responses
of two adjacent frames as an adaptive spatio-temporal regularization term and uses the
global response change to determine its update rate, thus improving the tracking perfor-
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mance. The spatio-temporal regularization term proposed in this algorithm can make full
use of local and global response variations to achieve both spatial and temporal regular-
ization, as well as automatic and adaptive hyperparameter optimization, based on the
local and global information hidden in the response graph. The algorithm uses response
variation to achieve regularization because the information hidden in the response graph is
crucial in the detection process, and its quality somehow reflects the similarity between the
target appearance model learned in the previous frames and the actual target detected in
the current frame. Additionally, the reason why the algorithm utilizes both local and global
response changes is that, if only global response map changes are used, then local response
changes in the plausibility of different locations in the target image are ignored, and drastic
local changes will lead to low plausibility, and vice versa.

Existing target tracking algorithms use a frame-by-frame approach to update the
model, which can easily ignore the issue of whether the tracking effect of the current frame
is accurate or not and update the tracker blindly, which can lead to tracker learning errors.
Therefore, this paper proposes a strong interference motion target tracking method based
on the target consistency algorithm for the problem of losing the tracked target due to the
inaccurate tracking result of the current frame.

3. Method
3.1. Overall Structure

We propose in this paper a strong interference motion target tracking method based on
the target consistency algorithm for aerial UAV video, and the general framework is shown
in Figure 1. In the tracking model, the current frame is fused with the previous frame for
tracking trajectory correction, and the previous frame is combined to update the model.
Secondly, a trajectory confidence mechanism is proposed in the tracking model. The longer
a trajectory is tracked, the more reliable this trajectory is, as a way to enhance the accuracy
of subsequent tracking. Finally, the objective function is optimized using ADMM, and the
problem is decomposed into multiple sub-problems to iteratively solve the problem and
finally obtain the global optimal solution.
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Figure 1. The general framework diagram.

3.2. Interframe Fusion

Since the tracking effect of the AutoTrack algorithm on the target only depends on the
response map linkage between adjacent frames, when there is wrong tracking, it will cause
the model to lose the effective tracking target information. Therefore, this paper improves
the method based on the AutoTrack algorithm to enhance the interframe fusion capability
of the model.

The method learns online and updates the relevant parameters automatically, using
spatial local response variation as spatial regularization, allowing the filter to focus on
learning the plausible places while using global response variation to determine the update
rate of the filter and ensure its stability. This method adaptively learns and continuously
adjusts the predefined parameters, which also use local as well as global response maps,
with local variation indicating local plausibility in the target bounding box and global vari-
ation indicating global plausibility in the target bounding box, where severe illumination
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changes and partial occlusion reduce the plausibility of the appearance, to dynamically
adjust the spatial as well as temporal weights so that it is possible to make better use of the
local and global information implied in the response map.

When the problem of losing the tracking target due to inaccurate tracking results of
the current frame occurs, the method fuses the previous frames on the tracking results of
the current frame for tracking trajectory correction, and updates the model by combining
the previous frames to learn again to avoid tracker learning errors, thus enhancing the
accuracy of subsequent tracking.

3.3. Trajectory Confidence Mechanism

To integrate the decomposability of the pairwise ascent method with the excellent
convergence properties of the augmented Lagrange multiplier method, an improved form
of the optimal alternating direction method of multipliers (ADMM) has been proposed.
The aim is to be able to decompose the original function and the augmented function to
facilitate parallel optimization under more general assumptions.

The core of the correlation filter-based target tracking problem is the solution of filters.
With the advent of advanced algorithms, the models of filters are becoming more and more
complex and computationally slow, making the advantage of correlation filtering in terms
of computational speed less and less obvious. For example, the AutoTrack algorithm we
improved in Section 3.2 uses spatio-temporal regularization to solve the boundary effect,
and this measure to solve the boundary effect will make the tracking of correlation filtering
face the challenge of real-time. Therefore, introducing the ADMM algorithm in this context
can be a good way to divide a large optimization problem into multiple subproblems that
can be solved simultaneously in a distributed manner, so that the objective function of
the filter can be quickly minimized by iterating over the subproblems to obtain the global
optimal solution.

The ADMM algorithm provides a framework for solving optimization problems with
linear equation constraints, allowing us to break down the original optimization problem
into several relatively well-solved suboptimization problems for iterative solving. This
“disassembly” function is the core of the ADMM algorithm. The algorithm takes the
following form.

min
x,z

f (x) + g(z)

s.t.Ax + Bz = c
(1)

Here, both f (x) and g(z) are convex functions. At this point, their corresponding
augmented Lagrangian functions are:

Lρ(x, z, y) = f (x) + g(z) + yT(Ax + Bz− c) +
(ρ

2

)
‖Ax + Bz− c‖2

2 (2)

Additionally, its optimization steps are:

xk+1 := arg min
x

Lρ

(
x, zk, yk

)

zk+1 := arg minLρ

(
xk+1, z, yk

)

yk+1 := yk+ρ
(

Axk+1 + Bzk+1 − c
)

(3)

This is a combination of the pairwise ascent method and the multiplicative Lagrange
multiplier method. Theoretically, the optimization variables can be further split into more
blocks, such as x, z, z1, . . . If we express the optimal solution of the original problem as:

p∗ = in f { f (x) + g(z)|Ax + Bz− c} (4)

then the ADMM algorithm, satisfying the basic assumptions, ensures that:

f
(

xk
)
+ g
(

zk
)
→ p∗ask→ ∞ (5)
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This also reflects the convergence of the algorithm, i.e., the final global optimal solution
is obtained.

In summary, the trajectory confidence mechanism in this paper refers to the process of
fusing the previous frames, which is not just a simple additive relationship, but is adjusted
according to the tracking duration during the tracking process. The longer the tracking
duration indicates that the tracking is more stable and therefore this trajectory is more
credible, the higher the weight occupied by the current frame, as shown in Equation (6).
This method performs fusion in a cumulative manner, not only with a particular frame, as
a way to solve the tracking problem that is overly dependent on two adjacent frames.

Si = α ∗ Si−1 + β ∗ Ri (6)

where i is the current frame, Ri is the detection position of the current frame, Si is the correct
position of the current frame and α and β are the weighting coefficients.

4. Experiment
4.1. Experimental Environment

The operating system of this experimental platform: Memory 16GB, GPU: NVIDIA
GeForce RTX 2060, Graphic memory: 8GB.

4.2. Dataset

This experiment used the VisDrone-SOT [33] UAV image single target tracking dataset.
This dataset was collected by the AISKYEYE team at the Lab of Machine Learning and
Data Mining, Tianjin University, China. The benchmark dataset consists of 400 video clips
formed by 265,228 frames and 10,209 static images captured by various drone-mounted
cameras, covering a wide range of aspects including location (taken from 14 different cities
separated by thousands of kilometers in China), environment (urban and country), objects
and density (sparse and crowded scenes). The dataset was collected in different scenarios
and under various weather and lighting conditions. These frames were manually annotated
by more than 2.6 million bounding boxes or frequent target points of interest, and contain
a total of 10 categories of targets for bus, car, van, truck, awning-tricycle, tricycle, motor,
bicycle, pedestrian and people. To better utilize the data, some important attributes are also
provided, including aspect ratio change, background clutter, camera motion, full occlusion,
illumination variation, low resolution, partial occlusion, scale variation, similar objects,
viewpoint change and several other cases. Based on the above, we believe that the dataset
contains geographic factors, scene factors, weather and lighting factors and common target
types in urban security, and can represent a real urban security environment to some extent.

4.3. Evaluation Metrics

To verify the effectiveness of the proposed method, a comparison is made using
precision and success rates.

(1) Precision Plot

The accuracy graph mainly measures the percentage of successful frames of the target
rectangular bounding box predicted by the tracker within a given threshold distance,
and the distance between the predicted target position and the center point between the
actual positions was calculated to obtain the accuracy value. The number of video frames
whose distance between the predicted position and the center point of the actual position
was smaller than the set threshold varies for different thresholds, and their percentage is
different, so a curve can be obtained.
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(2) Accuracy Plot

The accuracy rate plot shows the proportion of bounding boxes predicted by the
tracker with a coincidence rate score greater than a given threshold. The overlap rate is
defined as:

OS =
|a ∩ b|
|a ∪ b| (7)

where OS is the coincidence score, which takes values from 0 to 1, a is the rectangular
bounding box of the target predicted by the tracker, b is the rectangular bounding box of
the real position of the target and |•| denotes the number of pixels in the region. A frame is
a successful frame if its coincidence score is greater than a given threshold. The accuracy
rate is the number of all successful frames as a percentage of the number of all frames.

4.4. Experimental Results and Analysis of Target Tracking Algorithms for UAVs

Since the algorithm proposed in this paper is based on a UAV’s target tracking task in
the urban security domain, we will validate and analyze the experimental results of the
algorithm proposed in this paper and some of the UAV tracking algorithms mentioned in
Section 2 on the VisDrone-SOT dataset in this section.

The results in Table 2 show that our proposed algorithm is in the leading position in
terms of accuracy compared with other UAV target tracking algorithms at 59.8%. However,
in terms of precision, the SO-MOT algorithm [34] is the best at 91.7% and our algorithm is
91.5%, with a difference of 0.2%. This is due to the presence of a strong detector based on
Cascade RCNN and an embedding model based on a multi-grain network in the SO-MOT
algorithm and the creation of a simple online multi-target tracker. The model initializes
some tracklets based on the estimated bounding box in the first frame, and in subsequent
frames, associates the bounding box with the existing tracklets based on the distance
measured by the embedding features, making it possible to update the appearance features
of trackers at each time step to handle appearance changes.

Table 2. Experimental results of target tracking algorithms for UAVs.

Methods Precision (%) Accuracy (%)

FairMOT + ReID [26] 90.4 57.8

TF-DQN [27] 88.4 52.6

Mdnet [14] 90.2 54.9

COFE [29] 91.1 58.7

SO-MOT [34] 91.7 59.6

Ours 91.5 59.8

In summary, we believe that the algorithm proposed in this paper can satisfy a UAV’s
target tracking task in urban security in terms of precision and accuracy. Although the
present algorithm is for single-target tracking, we believe that it can still be improved and
applied to multi-target tracking tasks, which will be the next step of our research.

4.5. Visualization of Experimental Results

Figure 2 shows a visualization of the experimental results of the proposed method on
the dataset, where the leftmost image is a screenshot of the original video, and the three
images on the right are screenshots of the visualization of the algorithm tracking a single
target on the original video, where the target labeled by the bounding box is the target we
need to track.
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Figure 2. Visualization results of the algorithm under different conditions. The leftmost figure shows
the original image in the dataset, and the right three figures show the resultant video frames of
the tracking model. (a,i) shows the tracking effect when the light is sufficient and the targets are
small in scale; (b,f) shows the tracking effect when the light is sufficient and the targets are obscured;
(c,h) shows the tracking effect when the light is insufficient and the targets are dense; (d,e) shows the
tracking effect when it is dark and the targets are small in scale; (g) shows the tracking effect when
the targets are sparse and too small in scale.
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4.6. Analysis of Trajectory Confidence Parameters

For the weight coefficients α and β in Equation (6), α should be less than 0.5, β
should be greater than 0.5 and the sum of the weight coefficients should be 1, which means
α + β = 1, since the detection position of the current frame should account for a larger
percentage. Since the method proposed in this paper is an improvement of the AutoTrack
algorithm, we used its experimental results as a benchmark to find the optimal weighting
values by comparing the experimental results of α and β of the grid search taking values.

The precision and total precision of the proposed method in various scenarios when
the weights α and β were taken as different values are shown in Table 3 and Figure 3. The
results of the experiments show that the improved method proposed in this paper does
not have the best accuracy in all cases. Among them, in the cases of complete occlusion,
illumination change and partial occlusion, the detection precision is higher for the cases of
occlusion and the complex environment because the AutoTrack algorithm itself introduces
a temporal regularization term to locate similar targets between different video frames.
Similarly, the improved method with α = 0.4, β = 0.6 is better in the case of aspect ratio
variation and low resolution, because the key information of the target in the previous
frames is more helpful for the model to achieve better interframe fusion to track the target
correctly in the case of aspect ratio variation and low resolution. The improved method
of α = 0.1, β = 0.9 works better when the background is cluttered, the camera is moving
and the viewpoint is changing, also because the target position information of the current
frame is more important than the previous frame in the above case, which can guarantee
the precision better. Finally, according to the results of total precision, it can be seen that
the precision of all four weight distributions is higher than that of the original AutoTrack
algorithm, among which the precision is highest when α = 0.1, β = 0.9, which is 6.3% better
than that of the AutoTrack algorithm.

The accuracy and total accuracy of the proposed method in various scenarios when
the weights α and β take different values are also shown in Table 3 and Figure 3. The
results of the experiments also show that the improved method proposed in this paper does
not have the best accuracy in all cases. Among them, in the cases of aspect ratio change,
complete occlusion, illumination change and low resolution, the accuracy of video frame
detection in the case of large front-to-back changes of the target and a complex environment
will be higher because the AutoTrack algorithm itself has a temporal regularization term.
Meanwhile, the improved method of α = 0.2, β = 0.8 works better in the case of proportional
change because in this case, the key information of the target in the previous frame needed
to be balanced with the target information of the current frame to ensure the detection
accuracy of video frames. The improved method of α = 0.1, β =0.9 works better when the
background is cluttered, the camera is moving and the viewpoint is changing, again because
in this case, the target position information of the current frame was more important than
that of the previous frame, which can better guarantee the accuracy. Finally, according to the
results of the total accuracy, it can be seen that the accuracy of all four weight distributions
is higher than that of the original AutoTrack algorithm, and the accuracy is still the highest
when α = 0.1, β = 0.9, which is 2.6% higher than that of the AutoTrack algorithm. Therefore,
this paper adopts the improved algorithm with α = 0.1, and β = 0.9 weight distribution.
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Figure 3. Comparison of total precision and total accuracy under different weights. (a) is the precision
when α = 0.4, β = 0.6, (b) is the accuracy when α = 0.4, β = 0.6, (c) is the precision when α = 0.3,
β = 0.7, (d) is the accuracy when α = 0.3, β = 0.7, (e) is the precision when α = 0.2, β = 0.8, (f) is the
accuracy when α = 0.2, β = 0.8, (g) is the precision when α = 0.1, β = 0.9 and (h) is the accuracy when
α = 0.1, β = 0.9.

4.7. Experiment Results and Analysis of Target Tracking Algorithm Based on Correlation Filtering

To test the effectiveness of the tracking algorithms proposed in this paper, we selected
three excellent target tracking algorithms with correlation filter-based performance, Au-
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totrack, Staple and ARCF, mentioned in Sections 1 and 2, and compared them with the
algorithm proposed in this paper using the VisDrone-SOT dataset. Among them, Autotrack
is the benchmark model of the algorithm proposed in this paper, which achieves both spa-
tial and temporal regularization by making full use of local and global response variations
through the spatio-temporal regularization term to achieve target localization. Additionally,
Staple, based on the color response map derived from the global color histogram, uses
the HOG method to extract the HOG features to obtain the dense response template and
linearly combines the scores of the two templates to estimate the target location. In contrast,
ARCF suppresses the rate of change of the response map at the time of detection, thus sup-
pressing the distortion of the response map in the case of target occlusion and improving
the tracking accuracy. Through experimental comparison with these three methods, the
effectiveness of the proposed algorithm in this paper can be verified from three perspectives:
the baseline model, the target tracking in complex cases and the target tracking in occlusion
cases. The evaluation was performed using One-Pass Evaluation (OPE), which initializes
the first frame of the image with the position of the actual labeled target, and the average
accuracy and precision were obtained by calculation.

4.7.1. Precision and Accuracy Comparison of Different Correlation Filtering Algorithms

The comparison results of the precision and accuracy of different correlation filtering
algorithms for various scenarios are shown in Table 4 and Figure 4.
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Figure 4. Comparison of the total precision and total accuracy under different correlation filtering
algorithms. (a) is the total precision of different algorithms, (b) is the total accuracy of different
algorithms.

It can be seen that the precision of Staple is higher in the cases of aspect ratio change,
camera motion and viewpoint change, because Staple can derive the target location by
combining both color response maps and HOG dense response templates, and thus has
the best target precision performance for the case of target scale change. Meanwhile, the
precision of AutoTrack is higher in cases of complete occlusion, illumination change and
partial occlusion, also because it has its spatio-temporal regularization term, which can
guarantee the detection precision in the case of target occlusion change. Our proposed
algorithm, on the other hand, can still guarantee detection precision in background clutter
due to the introduction of the trajectory confidence mechanism. Finally, the comparison
of the total precision of different correlation filtering algorithms shows that the precision
of the proposed method is as high as 91.5%, which is not only higher than the precision
of the AutoTrack algorithm, but also higher than the precision of the Staple and ARCF
algorithms. Therefore, the method proposed in this paper is better under the comprehensive
consideration of multiple cases.
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Again, it can be seen that the accuracy of Staple is higher in the cases of aspect ratio change,
background clutter, camera motion, complete occlusion and viewpoint change, again because
Staple can derive the location of the target from the color response and dense response templates,
and thus has the best accuracy for detecting targets in video frames in cases such as target
scale change. At the same time, the accuracy of AutoTrack is higher in the case of illumination
changes and low resolution, also because it has its spatio-temporal regularization term, which
can guarantee detection accuracy in the case of large target changes. Our proposed algorithm,
on the other hand, is able to guarantee detection accuracy in the case of scale changes and similar
objects due to the introduction of an interframe fusion mechanism. Finally, the comparison of
the total accuracy of different correlation filtering algorithms shows that the accuracy of the
proposed method in this paper reaches 59.8%, which is higher than the accuracy of AutoTrack
and ARCF algorithms and approaches the 59.9% accuracy of Staple. Therefore, the method
proposed in this paper still has an excellent performance in a variety of situations.

4.7.2. Robustness Testing of Different Correlation Filtering Algorithms

To verify the robustness of the algorithms, the data set was disrupted in time and space
and then evaluated using two evaluation metrics, namely Temporal Robustness Evaluation
(TRE) based on disrupted time and Spatial Robustness Evaluation (SRE) based on dis-
rupted space. SRE evaluates whether the algorithm is sensitive to initialization by slightly
translating and scaling up or down the real labeled target position to produce an initialized
position for target tracking, and finally obtains the average accuracy and precision.

Comparisons of the precision and accuracy of different correlation filtering algorithms
under TRE or SRE are shown in Table 5 and Figure 5. In the case of TRE metrics, it can be
seen that the precision of ARCF is higher in the case of aspect ratio change, background clutter,
camera motion, complete occlusion, partial occlusion and viewpoint change; AutoTrack is more
precise in the case of illumination change, low resolution and similar objects; and Staple is more
precise in the case of scale change. AutoTrack is more accurate in the case of low resolution
and similar objects, and ARCF is more accurate in several other cases. In terms of overall
performance, the total precision and total accuracy of the ARCF algorithm under TRE are higher
than the other algorithms compared with the total precision and total accuracy, which are both
low under OPE. Meanwhile, it can be seen in the case of SRE metrics that AutoTrack has higher
precision in cases of aspect ratio change, complete occlusion, partial occlusion, scale change
and similar objects, while Staple has higher precision in several other cases. The accuracy of
AutoTrack is higher in cases of complete occlusion, partial occlusion, scale change and similar
objects, while the accuracy of Staple is higher in cases of aspect ratio change, background clutter,
camera motion, illumination change and viewpoint change, and the accuracy of the proposed
method in this paper is higher in the case of low resolution. In terms of overall performance, the
Staple algorithm has the highest total precision and total accuracy.

In conclusion, after the results of comparison experiments and robustness experiments
are evaluated, the method proposed in this paper outperforms AutoTrack in the case of
background clutter, camera motion and viewpoint change, the method proposed in this
paper has higher precision than other algorithms in the case of background clutter and the
method proposed in this paper has higher accuracy than other algorithms in the case of scale
change and similar objects. In terms of robustness, the proposed method in this paper is
sensitive to the initial position given in the first frame, which will cause a relatively large
impact at different positions or frame initials, and is also sensitive to the bounding box given
during initialization. Therefore, the generalizability of the algorithm proposed in this paper in
detecting both the temporal and spatial aspects of the video needs to be improved by further
research. However, at the same time, this algorithm is intended to be applicable to UAV target
tracking tasks targeting the urban security field, so a high accuracy and precision in the case
of background clutter, camera motion, viewpoint change and similar objects can meet the task
requirements well. Additionally, the generalizability of the algorithm for time and spatial
location can be compensated to some extent by means of human intervention during the task.
Therefore, this method can be well-applied to tracking tasks related to urban security.
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under different metrics. (a) is the total precision of different correlation filtering algorithms under
TRE, (b) is the total accuracy of different correlation filtering algorithms under TRE, (c) is the total
precision of different correlation filtering algorithms under SRE and (d) is the total accuracy of
different correlation filtering algorithms under SRE.

5. Conclusions

To address the problem of losing the tracked target due to inaccurate tracking results of
the current frame, this paper proposes a strong interference motion target tracking method
based on the target consistency algorithm. When there is a tracking problem in the current
frame, the tracking accuracy of the subsequent tracking is enhanced by combining the
previous trajectories to learn again and updating the model according to the trajectory
confidence mechanism to avoid tracker learning errors. The experimental results prove
that the proposed method of this paper improves 0.2% of the accuracy compared with
the current advanced UAV target tracking algorithm SO-MOT on the basis of guaranteed
tracking precision, and also improves 6.3% of the total accuracy and 2.6% of the total
accuracy compared with the benchmark model AutoTrack, which proves the effectiveness
of the method. In particular, the high precision and accuracy in the case of background
clutter, camera movement, viewpoint change and similar objects can well-meet the needs
of target tracking tasks in aerial UAV video in the field of urban security. In the future, we
expect that this method can be better applied in the field of urban security drone inspection
to ensure the safety and stability of urban environments.
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Abstract: The increasing popularity of Industry 4.0 has led to more and more security risks, and
malware adversarial attacks emerge in an endless stream, posing great challenges to user data
security and privacy protection. In this paper, we investigate the stateful detection method for
artificial intelligence deep learning-based malware black-box attacks, i.e., determining the presence
of adversarial attacks rather than detecting whether the input samples are malicious or not. To
this end, we propose the MalDBA method for experiments on the VirusShare dataset. We find that
query-based black-box attacks produce a series of highly similar historical query results (also known
as intermediate samples). By comparing the similarity among these intermediate samples and the
trend of prediction scores returned by the detector, we can detect the presence of adversarial samples
in indexed samples and thus determine whether an adversarial attack has occurred, and then protect
user data security and privacy. The experimental results show that the attack detection rate can
reach 100%. Compared to similar studies, our method does not require heavy feature extraction
tasks or image conversion and can be operated on complete PE files without requiring a strong
hardware platform.

Keywords: stateful detection; adversarial defence; artificial intelligence security; privacy protection

1. Introduction

With the advent of the Industry 4.0 era, security threats have increased dramatically,
and the number of malware introduced by attackers is rising every year. The volume of
malware threats observed by McAfee Labs averaged 688 threats per minute, an increase of
40 threats per minute (3%) in the first quarter of 2021 [1]. VirusTotal’s database had more
than one million signed samples that were considered suspicious (with more than 15%
anti-viruses detecting them as malicious) from January 2021 to April 2022 [2]. Researchers
are constantly looking for effective malware detection and classification methods, and with
the popularity of artificial intelligence (AI), they find that deep learning-based malware
detection and classification methods work well [3–5]. However, deep learning (DL) models
are highly vulnerable to adversarial examples [6,7]. Therefore, analyzing and detecting DL-
based malware black-box adversarial attacks is a difficult task for anti-malware researchers.
The existing optimal defense methods are stateless detection methods such as adversarial
retraining and distillation, which detect whether the input sample is benign or malicious
without judging whether there is an adversarial attack [8,9]. Existing malware stateful
detection methods are implemented in the feature space, which requires data preprocessing
and feature extraction [10,11]. At present, there is no malware stateful detection strategy
implemented in the problem space.

Driven by this, we propose the MalDBA(Detection for Query-based Malware Black-
box adversarial Attacks) to defend against malware black-box adversarial attacks. The
process of MalDBA is as follows: First, malicious datasets are obtained from the VirusShare
website [12], benign datasets are collected through crawling, and a malware detection
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model MalConv is pretrained [13]. Then, two different black-box adversarial attacks are
reconstructed [14,15], and the history of query results (also known as the intermediate
samples) of these attacks are saved. We can find that the prediction scores of these interme-
diate samples under MalConv model detection are gradually decreasing (meaning that the
original malware tends to become a benign-looking sample after adding perturbations).
After that, the similarities of the sample sets saved in the query process are compared using
the similarity comparator [16]. We find that these intermediate samples are highly similar
to each other and the original malicious file, but not similar to other samples. Thus, we
can perform the stateful detection of query-based malware black-box adversarial attacks.
When it is found that the samples input to the detector model for querying are similar and
the predicted scores returned by these similar samples gradually decrease (from malicious
to benign), it is judged that the detector is experiencing adversarial attacks.

We evaluated MalDBA on the downloaded dataset and achieved satisfactory results.
In summary, the main contributions in this paper are as follows:

(1) We propose MalDBA to defend against query-based malware black-box attacks,
which can help analysts effectively detect the existence of adversarial attacks.

(2) We propose a stateful detection method for black-box adversarial attacks. Most
of the previous detection methods for adversarial examples (AEs) are stateless, and the
method proposed by us can precisely carry out a supplementary defense. The existing
stateful detection methods of malware black-box attacks are based on the feature space
level, while our method is based on the complete malicious file (i.e., problem space).

(3) We propose a novel similarity comparator based on the MinHash algorithm to
analyze the history of queries (i.e., intermediate samples) received by the malware detector.

(4) MalDBA can be run on ordinary personal workstations and does not require high-
performance hardware resources, so it meets the needs of ordinary researchers to deal with
a large number of malicious codes.

The structure of the article is as follows: In Section 2, we first introduce the necessary
background knowledge and the summary of the related work. Section 3 describes the
overall framework of the MalDBA. The experimental details are presented in Section 4.
Then evaluate it in Section 5. Section 6 discusses some issues. Finally, we conclude in
Section 7.

2. Background and Related Work

The adversarial attack and defense of malware is an iterative and complementary
process. In recent years, the research of malware black-box attack and detection has
emerged [17–19]. To better introduce the content of this paper, we first outline the research
background and related work.

2.1. Background
2.1.1. Query-Based Black-Box Attack

Currently, the black-box adversarial attack can be divided into transfer-based attacks
and query-based attacks. Transfer-based attacks generate adversarial examples on local sur-
rogate models and directly use the generated adversarial examples to attack the black-box
model. However, the attack performance of transfer-based attacks is usually unsatisfactory
due to overfitting the local surrogate models. Query-based attacks approximate the gradi-
ent information by queries to the target model to craft adversarial examples. Query-based
black-box attack is generally divided into decision-based black-box attack and score-based
black-box attacks [20]. The decision-based black-box attack, also known as hard-label
black-box adversarial attack, iteratively perturbs the original sample by estimating the
gradient or boundary proximity and generating AEs according to some strategies [21].
The score-based black-box attack estimates the gradient of the target model loss function
according to the output of the target model for the input samples (i.e., the probability scores
of each category), and generates the corresponding adversarial samples [22]. Query-based
black-box attack often requires multiple queries to generate a successful AE to achieve
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optimal attack performance. In this paper, the attack we use is a score-based black-box
attack, and the attack scenario is shown in Figure 1.

Figure 1. Scenario for score-based malware black-box attacks.

2.1.2. Stateful Detection Method

Stateful detection examines a series of queries submitted by each user to decide
whether the user is an attacker [10,23,24]. Given user A and the set of queries he submits,
stateful detection checks if an adversarial attack occurred in these queries. Specifically,
stateful detection calculates the similarity between queries q1, q2, ..., qn from A. If the simi-
larity exceeds a threshold and the prediction scores returned by the malware detector range
from malicious to benign, stateful detection marks A as an adversarial attacker. To calculate
the similarity between samples, a similarity comparator is proposed for comparison. In
general, the stateful detection method judges whether an adversarial attack has occurred,
rather than detecting whether the input samples are malicious.

2.2. Related Work

Research on the detection of adversarial attacks was first proposed in the field of
computer vision, including detection methods for model stealing attacks, surrogate model
attacks, and evasion attacks [23–27]. Chen et al. [23] proposed a new adversarial sample
defense method – stateful detection defense for image black-box attacks. Moreover, they
proposed a similarity encoder based on the Euclidean distance metric. Then, they introduce
a novel type of attack, query blinding, which is designed to bypass the stateful detection
defense. This paper is evaluated using the CIFAR-10 dataset, and the experiments work
well. However, this study applies well to image adversarial samples, but is limited to video
classification, and does not involve malware detection.

Li et al. [24] designed Blacklight, a defense framework against query-based black-
box adversarial attacks. The method uses probabilistic content fingerprint-based query
matching to mitigate individual attack queries. They experimentally evaluated Blacklight
on multiple datasets and image classification models for eight SOTA black-box attacks, and
the experimental results were not only high in detection rate but also fast. Nevertheless,
this method cannot defend against surrogate model attacks. If there are not highly similar
adversarial examples, Blacklight can be evaded.

For deep neural network models (DNNs), Cohen et al. [26] put forward using Nearest-
Neighbours and Influence Functions to detect adversarial samples. The core idea of this
algorithm is that there should be a correspondence between the training data and the
network classification. That is, for normal images, there is a strong correlation between
their nearest neighbors in the DNN embedding space and their most helpful training
examples, while adversarial examples are the opposite. They tested the performance of
detection in both black-box and white-box attacks. However, this study uses the L2 distance
metric, which is computationally time-consuming and needs to be further improved in the
future.

In order to quickly infer the intent of black-box attackers, Pang et al. [27] proposed a
new estimation model, AdvMind. This model can reliably identify the query of interest
(QOI) and accurately detect the target category of the attack at an early stage for timely
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remediation. The authors used four datasets and DNNs to perform experiments on the
detection of three black-box attacks. However, AdvMind focuses on query-based attacks
and is not effective for substitute model attacks.

With the increasing threat of black-box adversarial attacks in the industrial Internet
of Things (IIOT), Esmaeili et al. [10] proposed a stateful query analysis strategy for the
detection of adversarial scenarios. Their method includes two CNN-based components,
namely similarity encoder, and classifier. Moreover, they introduced the Mahalanobis
distance metric for the loss function of the detection model, which improved the detection
rate. However, their architecture is to process the malware opcode features into greyscale
images and use methods in the field of computer vision to classify and generate adversarial
images, without generating malicious files. Future research on other distance indicators
and data types should also be further developed.

As previous defense methods are static and cannot dynamically adapt to adversarial
attacks, Li et al. [11] proposed the first instance-based online machine learning dynamic
defense method against black-box attacks. Extensive experiments are conducted on image
and malware datasets, and effects significantly outperform existing SOTA defense methods.
Nevertheless, DyAdvDefender may need a manual inspection of samples to achieve optimal
performance in the real world, and incorrect selection of malware feature sets may lead to
defense failure.

Regarding a Windows adversarial attack, Fang et al. [8] proposed an automatic adver-
sarial sample generation model based on reinforcement learning called RLAttackNet, which
can successfully bypass the DeepDetectNet malware detection model. They proposed a
new method for extracting features of PE files, including the Import Function Feature,
General Information Feature, and Bytes Entropy Feature. Retraining the detection model
by drawing on the idea of GAN revealed a significant decrease in the success rate of the
attack. More attention needs to be paid to hyper-parameter optimization methods in deep
learning models in the future.

In addition, unlike previous work, Maiorca et al. [9] presented a survey of PDF malware
detection in an adversarial environment. They provide a comprehensive study on PDF pre-
processing. Furthermore, they outline adversarial attacks against PDF malware detectors.
They have discussed existing mitigating strategies as well as future research directions.

In summary, we can find that there are shortcomings in the existing research results
in detecting malware black-box attacks: (1) Most researchers are devoted to the detection
of image and PDF adversarial attacks, and the research on stateful detection of malware
adversarial attacks is insufficient; (2) The existing stateful detection methods of malware
black-box attacks need to extract features from original samples or convert them into
images for further processing. Based on this, we propose the MalDBA method for stateful
detection research on complete sample files.

3. Overview
3.1. Motivation

Machine learning has great potential in malware analysis, and DL-based malware
detectors have been extensively studied, yet the problem remains unsolved. One of the key
challenges currently facing malware detection and classification research is the adversarial
examples [28]. Without addressing adversarial attacks, proposing malware detectors or
classifiers is an endless and unfruitful task lacking substantial scientific advancement. For
instance, the DL-based static malware detector proposed in another paper worked well in
the evaluation, but malware adversarial samples still sneak through the model [13–15,29].
That is probably why the malware never stops despite the hundreds of detectors being
proposed. It is urgent to detect black-box attacks based on the DL malware detector. The
stateful detection method has been used in computer vision [11,23,24,27], but it has not
been attempted in malware black-box attacks which generate real adversarial samples.
Therefore, we designed the MalDBA framework to detect query-based black-box attacks.
This article aims to detect the generation of adversarial samples, not to try to detect whether
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the input files are malicious or benign. When generating an adversarial sample, existing
query-based black-box attacks produce a series of highly similar queries (i.e., each query in
the set is similar to the previous queries), and the scores returned by the detector gradually
change from malicious to benign. Based on this, we propose a defense approach that uses
a similarity comparison algorithm to identify such queries and detects black-box attacks
against malware detectors through this strategy.

3.2. Overall Framework

MalDBA mainly consists of four steps, namely training the malware detection model,
simulating the black-box attack, saving the intermediate samples and prediction scores,
and performing adversarial attack detection, as shown in Figure 2.

Figure 2. The process of MalDBA.

4. Our Scheme
4.1. Training Malware Detector

The function of this step is to train a mature malware detection model. For the
DL-based static malware detector, we choose the MalConv model(as shown in Figure 3),
which is not only the current popular malware detection model, but also the target model
selected by many malware adversarial attacks [14,15,30–35]. By training the MalConv
model, a binary classifier that can distinguish benign samples from malicious samples can
be obtained.

Figure 3. The architecture of MalConv model.

MalConv model is the first convolutional neural network architecture (CNN) address-
ing the classification problem of extremely long sequences, proposed by Raff et al. [13]. Its
input is a PE file and returns a score to judge whether this file is malware or not. The model
distinguishes programs based on the byte representation of the input, without extracting
any features. If the input file length exceeds 2MB, the file will be truncated to the specified
size; otherwise, the file will be padded with the value 0.

4.2. Reproduce Black-Box Attacks

Our work is dedicated to detecting query-based black-box attacks and the function
of this module is to reproduce typical query-based black-box attacks. Since malware
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adversarial attacks were investigated later than image adversarial attacks and most of
the AEs are generated on feature vectors or substitute models [28,36–40], there are not
many query-based black-box attack methods that can generate real AE files and publish
open source codes [14,15,41,42]. We choose two advanced score-based black-box attack
frameworks [14,15]. The target detectors of these two attacks are both MalConv models,
we reproduce them through open-source code and compare the attack success rate. The
process of generating adversarial samples is roughly illustrated in Figure 4.

Figure 4. The process of generating adversarial examples.

4.3. Save the Intermediate Samples

Figure 5 shows the process of saving the historical query results of the black-box attack.
The historical queries (i.e., intermediate samples), as well as the prediction scores returned
from the detector in the process of generating adversarial sample queries, are saved in
preparation for the next step.

Figure 5. The process of saving the history queries.

4.4. Detect the Adversarial Attacks

Algorithm 1 sketches the procedure of MalDBA. Different numbers of benign and
malicious samples are randomly selected with the intermediate samples saved above to
form the indexed sample sets of different sizes. Then use the similarity comparator based
on the Minhash algorithm to compare the similarity and judge whether the scores returned
by MalConv gradually decrease, so as to determine whether there is an adversarial attack
and achieve the purpose of defense. The process of detection is shown in Figure 6.

Algorithm 1: The procedure of MalDBA
Initialization: indexed samples set K, query_set (q1, . . . , qn), predict_score S,

similarity comparator H. (qi ∈ K)
Output: Whether adversarial attacks exist in the K (Ture or False)
for c in K do

Lc = new List ()
Lc ← Obtain the index set o f samples similar to c through H

end for
if (q1, . . . , qn) in the same L and (Sq1 , . . . , Sqn ) decline then
return True

369



Electronics 2023, 12, 1751

Figure 6. The process of detection.

5. Evaluation
5.1. Experimental Setup

We implemented MalDBA in Python. The experimental environment is configured as
follows: (1) Lenovo ThinkStation, Intel®Core TM i7-6700U CPU @3.40GHz × 16.0 GB RAM,
and an Nvidia GeForce GTX 1070 (2) 64bit Windows 10 operation system, (3) Pycharm
Professional Edition with Anaconda plugin 2020.

5.1.1. Dataset

The experimental data in this paper includes malware samples and benign files, among
which malicious samples are from VirusShare corpus [12], and benign PE files are extracted
from Windows 10 system files and different software companies. Since the input file size of
the GAMMA model cannot exceed 1MB, we filtered the dataset (samples larger than 1MB
are only a minority). Table 1 and Figure 7 illustrates the distribution of the dataset.

Table 1. The Dataset.

Dataset Benign Files Malicious Files Total

Num 5309 3720 9029

Figure 7. The distribution of a dataset.

5.1.2. Black-Box Attack Methods

Two typical query-based malware black-box attacks are selected for experimentation
during our evaluation (as shown in Table 2).
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Table 2. Query-based malware black-box attacks.

Black-Box Attack Method

MalRNN [14]

MalRNN automatically generates adversarial examples to attack DL-based
static malware detectors in the way of language modeling. Using the Seq2Seq
RNN Language Model to generate benign looking byte sequences successfully
eludes anti-malware engines.

GAMMA [15]

GAMMA is a malware adversarial attack method based on optimized genetic
algorithm. It extracts benign contents which are easy to evade the DL-based
static malware detector and injects them into the end of malicious samples or
the newly-created sections (i.e., Padding and Section-Injection attacks)

5.2. Experimental Results and Discussion

In this section, we experimentally evaluate the detection effectiveness of MalDBA.
Firstly, we evaluate the MalConv malware detector model selected using the original
dataset. Secondly, the selected black-box attack algorithm is applied to the dataset and
target detector, and then our proposed MalDBA method is used to detect the black-box
attacks and evaluate the attack success rate of the attacks without and with the defense.
After that, the relationship between the average response time (ART) and attack detection
rate (ADR) with the number of indexed samples (K) on attacks is discussed. Finally, we
compare the MalDBA with similar studies.

5.2.1. The Experimental Results of Malware Detector

We chose MalConv, a popular DL-based static malware detection model, which is used
as the target model for many malware adversarial attacks [14,15,30–35]. We reproduced
the model using the Python programming language. The dataset is divided according to
the ratio of training set: validation set: test set = 6:2:2. We conduct the experiments on
randomly partitioned datasets and the results are shown in Table 3. The accuracy of the
test set is 95.03%, which is not far from the experimental results of the original paper [13].

Table 3. Performance of MalConv model.

Detector
Metrics Test_Loss Test_Accuracy Train_Loss Train_Accuracy

MalConv 0.1380 95.03% 0.0862 96.32%

5.2.2. The Detection Results with Different Black-Box Attack Methods

In this section, we replicate the MalRNN and GAMMA black-box attack frameworks,
using Attack Success Rate (ASR) as an evaluation metric. Each experiment is performed
three times, and the results are averaged as the final experimental results. As shown in
Table 4, the effectiveness of two black-box attacks with no defense and defense with the
MalDBA detection method is presented. It can be seen from Table 4 that our defense
method can reduce the success rate of the attacks to 0%.

Table 4. Attack success rate (ASR) of attacks.

Attack Defence ASR

MalRNN No defence 88.6%
MalDBA 0%

GAMMA No defence 86.3%
MalDBA 0%

5.2.3. The Relation between the ART and ADR with K on Attacks

We randomly save 20 historical query results of malware and randomly select different
numbers of benign and malicious files respectively to form the indexed sample set K. The
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sizes of K are taken as 30, 70, 320, 520, 770, and 1020, respectively. The relationship between
the average response time (ART) and the number of indexed samples (K) for MalRNN and
GAMMA attacks are shown in Table 5. The relationship between the ART, attack detection
rate (ADR) with K for these two attacks are depicted in Figures 8 and 9 respectively. From
the figures, it can be found that the ADR of MalDBA for these two black-box attacks is
100%, and the ADR is independent of K. With increasing K, the ART fluctuates to a certain
extent and then gradually stabilizes around 23 s.

Table 5. The relationship between the average response time (ART) and the number of indexed
samples (K) on MalRNN and GAMMA.

Attack

ART(s) K
30 70 320 520 770 1020

MalRNN 7.11 6.71 18.41 23.20 23.10 22.67
GAMMA 7.20 6.62 18.50 23.11 23.22 22.72

Figure 8. The relation between the attack detection rate (ADR) and average response time (AST) with
the number of indexed samples (K) on MalRNN attack.

Figure 9. The relation between the attack detection rate (ADR) and average response time (AST) with
the number of indexed samples (K) on GAMMA attack.

5.2.4. Comparison with Similar Studies

In this section, we compare MalDBA with similar studies in terms of datasets, target
models, experimental setup, the accuracy of the target model, and attack detection rate
(ADR). The results of the comparison are shown in Table 6.
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Table 6. Comparison with similar studies.

MalDBA Esmaeili et al. [10] Miles Q. Li et al. [11] Steven Chen
et al. [23] Ren Pang et al. [27] Huiying Li et al. [24]

Datasets PE 2-digit hexadecimal
bytecode vectors CIFAR-10, MNIST, PE CIFAR-10 CIFAR-10, CIFAR-100,

ISIC, Mini-VGGface2
MNIST, GTSRB,

CIFAR10, ImageNet
Target
models Malconv CNN CNN, FNN ResNet DNNs DNN

Experimental
setup

A desktop with one
Intel®Core TM

i7-6700U CPU, 16.0 GB
RAM , and an Nvidia

GeForce GTX 1070

-

A server with one
Intel®Core TM

i9-9980XE CPU, 128
GB memory, and an
Nvidia GeForce RTX

2080 Ti Graphics Card

- - Nvidia Titan RTX

Accuracy of
target
model

95.03% 98% - 92% 92.44%, 70.47%,
88.17%, 96.17% -

ADR 100% 93.1% Extract PE Strings
feature: 94.7% 100% Can reach to 100% Can reach to 100%

Compared with similar studies, MalDBA has the following advantages: (1) MalDBA
references the idea of image stateful detection, but does not need to convert PE files into
images (which will lose some important features). (2) MalDBA can directly detect complete
malware, skipping the dataset preprocessing, feature extraction, feature selection, and
feature fusion stages, saving a lot of time. (3) MalDBA requires a moderate-performance
hardware platform, so it has good universality and a high detection rate.

6. Discussion

Our proposed detection method operates on complete files, which inevitably takes
some time. Therefore, we put forward an idea: drawing on the knowledge of computer
vision, extracting the features of the deep neural network model’s middle layer for sample
similarity comparisons in order to detect adversarial attacks [43,44]. We adopted three
methods to carry out experiments with different numbers of indexed samples (K). The
MalConv was chosen for the deep neural network model and the MalRNN framework was
selected as the black-box attack model. After extracting the features of the neural network
model’s middle layer, we adopted L2 distance, K-means, and Minhash methods to measure
the similarity among the indexed samples. Experimental results of different methods with
different numbers of index samples are shown in Table 7. From the table, it can be seen that
the features of the neural network model’s middle layer are not effective for the similarity
measure among the samples. The existence of an adversarial attack could not be detected.
The reason for this may be that PE samples and images are fundamentally different: The
middle layer features of an image under a deep neural network model is an image whose
general outline can still be seen, whereas the middle layer features of a malicious or benign
sample is a multidimensional array of tensors.

Table 7. The effects of different methods with the number of indexed samples (K) under MalRNN.

Methods
K

30 200 400

L2 × × ×
K-means × × ×
Minhash × × ×

‘×’ denotes the features of the neural network model’s middle layer are ineffective for the similarity measure
among the samples.

7. Limitations and Conclusions

Limitations of MalDBA: (1) The false positive rate of the MalDBA will rise if highly
similar malicious samples are fed into the detector for querying (as if there is a similarity
among malicious samples of the same family). (2) MalDBA detects historical query se-
quences generated during the iteration of query-based black-box attacks and cannot defend
against non-query-based attacks (e.g., substitute model attacks).
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Malware black-box attacks cause security risks to AI and pose a threat to data security
as well as privacy, and their defense is a complex issue [18,19]. In this paper, we manage to
solve the problem of stateful detection for malware score-based black-box attacks. First, the
set of historical query samples generated during the attack is saved. Afterward, similarity
comparison is performed on different numbers of indexed samples by a similarity com-
parator. Finally, the presence or absence of an adversarial attack is detected according to
the trend of scores returned by the malware detector. The results show that the detection
rate of MalDBA against score-based black-box attacks is 100%, and the detection rate is
independent of the number of indexed samples.

In the future, we plan to investigate the following research directions: (1) Study of a
general attack strategy for stateful detection defense. (2) Drawing on the similarity encoder
proposed in computer vision, consider whether it can be studied by extracting the function
call graph or control flow graph of malware and combining it with graph neural networks.
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Abstract: The rapid development of wearable technology has facilitated the collection and sharing
of health data, allowing patients to benefit from caretakers and medical research. However, these
personal health data often contain sensitive information and it is typically not known in advance
with whom the information will be shared. Therefore, messages must be encrypted and shared while
adhering to the decoupled communication model. This paper presents NACDA, a secure many-
to-many data-sharing service on the Named Data Network (NDN). NACDA uses Identity-Based
Encryption with Wildcard Key Derivation (WKD-IBE) to allow naming-based access control, enabling
data subjects to share data securely and flexibly regardless of the data processor. In addition, NACDA
supplements a decentralized authorization mechanism with blockchain to ensure data subjects’ data
ownership and enforce access policies. We developed an NDN-based prototype and performed a
security analysis to demonstrate NACDA’s feasibility.

Keywords: NDN; access control; authorization; data sharing

1. Introduction

In recent years, with the development of communication technology, wearable devices
have rapidly developed in the healthcare domain. This trend promotes users sharing
medical and health data with multiple hospitals or research institutions to enable disease
diagnosis and health analysis [1,2]. Thus, the relationship between the user and the institu-
tion is a complex many-to-many communication rather than a one-to-one communication.
In addition, medical and health data often contain a large amount of private information
that, if leaked, would seriously threaten the security of users’ personal property. Therefore,
secure healthcare data sharing in many-to-many communication scenarios is crucial.

Secure sharing in many-to-many communications requires data subjects (i.e., the owner
of data) to securely, selectively, and flexibly grant access to data processors (i.e., someone
who wants to access data). Ideally, it provides the four following features: (i) decoupling
data subjects and data processors: data subjects that classify and publish data to storage
servers, and data processors that request or subscribe to specific data types; (ii) data
confidentiality and integrity: encryption primitives are independent of the data processor,
and encryption operations are relatively efficient and can be verifiable; (iii) fine-grained
access control: data subjects limit what data types to share and who can access which time
range of the data; (iv) decentralized management: data subjects are free from dependence
on trusted intermediaries, such as resource management and access authorization, avoiding
the problems of transparency and single point of failure.

Most current many-to-many communication systems rely on TCP/IP. However, TCP/IP
does not directly support many-to-many communication but requires the implementation
of complex logic at the application layer [3]. We implement the four above features by utiliz-
ing the functionalities provided by NDN, a data-centric network architecture [4]. In NDN,
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the data receivers drive communication by hierarchical names and fetch cryptographic
data from intermediate caches by intelligent forwarding strategies. On top of NDN, several
access control schemes have been proposed to enable secure data sharing in NDN, such as
role-based access control (RBAC) and attribute-based encryption (ABE) [5]. However, these
schemes rely on the role or attributes of the data receivers, and users may not know which
institutions they will share in advance. With the publish–subscribe paradigm in NDN, a
more appropriate encryption idea is to encrypt the based on the data’s properties.

This paper leverages WKD-IBE [6] in NDN. WKD-IBE is a public key encryption
scheme that enhances the concept of hierarchical identity-based encryption (HIBE) [7] by
allowing more general key delegation patterns. We take NDN’s hierarchical naming as a
pattern of WKD-IBE to implement naming-based access control. In addition, access control
and authorization need to be designed together to enable a complete data-sharing process.
We further introduce blockchain technology [8] as a trusted intermediary to address the
trust risk of centralized data retrieval and authorization services in NDN. In brief, we build
a secure many-to-many data-sharing framework called NACDA with naming-based access
control and decentralized authorization. The NACDA’s contributions are as follows.

• A naming-based access control model is proposed based on WKD-IBE, which ensures
data confidentiality and integrity as well as fine-grained access control for many-to-
many communications in NDN.

• To effectively and securely share resources, we introduce a decentralized authorization
mechanism, which allows data subjects to manage the data and access policies. Fur-
thermore, this mechanism grants permissions in a transparent and auditable manner.

• We evaluate the prototype of NACDA and analyze its security.

The remainder of this paper is organized into seven sections. Section 2 describes the
background and related work. Section 3 describes NACDA at a high level, including design
concepts and architecture. Section 4 presents a name-based access control model that
encrypts the data for fine-grained access control in NDN. Section 5 offers a decentralized
authorization mechanism that manages data and policies for trusted authorization with the
blockchain. Section 6 implements and evaluates the prototype. Finally, Section 7 concludes
and discusses this paper.

2. Background and Related Work

This section introduces the related work of access control in NDN and blockchain-
based authorization.

2.1. Access Control in NDN

NDN communication consists of two types of packets: an interest packet and data
packet, as shown in Figure 1. A processor sends an interest packet, specifying the name of
the desired data, and then obtains a data packet containing the data’s content if the storage
or route node owns the data. Therefore, NDN drives communication based on the content
name and decouples the content from its original location. This phenomenon leads to a loss
of control over the content, which causes challenges in achieving effective access control
mechanisms [9]. The existing solutions are as follows.

Figure 1. Two packets in NDN.
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Zhang et al. [10] proposed a well-designed naming convention that facilitates ex-
plicitly communicating access policies and efficiently assigning access control keys. In
this work, the data subject generates a production credential named a key encryption key
(KEK) and a consumption credential named a key decryption key (KDK) related to the
data naming. The data producer obtains the KEK and uses it to encrypt the content key
(CK), and the authorized processor will obtain the corresponding KDK and decrypt the
data. Fan et al. [11] extended [10] to support spatio-temporal policies by adding location
information to the KEK and KDK names. However, in fine-grained data access control
cases, the data subject needs to generate, manage and transmit many KEKs and KDKs,
resulting in high resource consumption.

Feng et al. [5] propose a decentralized CP-ABE scheme. The publisher creates an
access policy and encrypts the data according to the policy, the current time, and the time
the router caches the data. However, having full knowledge of the processor attributes in
advance in large-scale publish/subscribe systems is not practical, and the solution also
requires publishers to be available at all times.

Fotiou et al. [12] used HIBE to build name-based security mechanisms for content
distribution. The content owner utilizes the Namecoin blockchain to deliver the system
parameters. A subscriber then obtains system parameters to verify a digital signature over
the item, no matter the providing endpoint. However, it has limitations in hierarchical key
derivation, a helpful function of data sharing in NDN.

Table 1 compares NACDA with other name-based access control research regarding
key features. Our work focuses on many-to-many data-sharing service with efficiently
fine-grained access control.

Table 1. Comparison of NACDA With Other Name-based Access Control.

Related Research Name-Based
Security

Multiple Naming
Granularity

Keys Distribution
Flexibility

Decoupling and
Namespace
Delegation

Namespace
Granting

Simplicity

[10] Y N N N N
[11] Y Y N N N
[5] Y Y Y N N
[12] Y Y Y Y N

Our work Y Y Y Y Y

2.2. Blockchain-Based Authorization

While a content-based access control scheme is appropriate in NDN, this scheme
cannot be directly associated with data processors. Therefore, it requires additional au-
thorization mechanisms to complement the secure sharing process. The authorization
mechanism based on trusted third parties may have the problems of a single point of failure
and a non-transparent authorization process. In contrast, blockchain technology is a new
decentralized infrastructure and distributed computing paradigm. It has the properties of
decentralization, persistency, and auditability, which make the authorization process more
secure and credible. The current solutions are presented below.

Ouadda et al. [13] store access policies in blockchain transactions. They use authoriza-
tion tokens to represent unspent transaction output (UTXO), which can be passed from one
peer to another via transactions, thus enabling authorization management. However, its
decision-making process counts on a centralized authorization entity, which still suffers
from a single point of failure.

Truong et al. [14] proposed a resource access control scheme based on smart contracts,
which consists of two ledgers: the 3A_ledger, which is responsible for storing resource
summaries and access policies, and the log_ledger, which records authorization tokens.
Afterwards, resource servers can query the authorization records in the log_ledger to
verify whether the data processors’ requests are legitimate. This work implements the
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OAuth2 standard [15] authorization process but does not further consider data security
and fine-grained access control.

Our research combines a content encryption-based access control scheme with a smart
contract-based authorization mechanism to achieve a complete secure sharing process
in NDN.

3. NACDA’s Overview

This section describes NACDA in a nutshell and its architecture.

3.1. NACDA in a Nutshell

NACDA is a decentralized access control system that enables data subjects to securely,
selectively, and granularly share their data with data processors in a scenario of many-to-
many communication. NACDA is designed to use namespaces as the basis for data search,
data encryption, and access control, as shown in Figure 2. First, NDN uses hierarchical
semantic names to identify content, and the resulting namespace is used for NDN data
requests (Section 4.2). Second, since fine-grained data sharing is based on fine-grained data
encryption, the namespace naturally serves as the basis for fine-grained encryption. That
is, the leaf nodes of the namespace serve as the minimum granularity of data encryption
(Section 4.3). Thirdly, the data subject sets the namespace’s node associated with the access
policy (Section 5.1) and then denotes the sub-namespace right to a data processor as an
access token (Section 5.2). Finally, since fine-grained data encryption generates many
keys, there may be problems with key management and distribution. Therefore, we have
adopted an access control approach based on hierarchical encryption, where authorized
data processors obtain the decryption keys corresponding to the namespace’s nonleaf
nodes, and then derive all decryption keys for that sub-namespace themselves (Section 4.3).

Figure 2. NACDA’s design concept.

Note that we covered the terms authorization and access control, which are relatively
easy to confuse. Authorization is the specification of access policies, and access control is
the enforcement of access policies [16]. In the above paragraph, we discuss the specification
of access control policies and their mappings to access tokens, which we summarize as a
decentralized authorization mechanism (Section 5). The remaining parts are summarized
as a name-based access control model (Section 4).

3.2. Architecture

Figure 3 shows the architecture of NACDA, and Table 2 explains the entities and compo-
nents involved. It is essential to note that data sharing should comply with GDPR’s require-
ments when EU citizens are involved, so we define the entities referring to GDPR [14,17].

The name-based access control model takes namespaces as the basis for data encryp-
tion, as shown in the upper part of Figure 3. First of all, the data subject initializes the
namespace, which contains a hierarchy of resources and time, and grants sub-namespace to
the IoT devices (Step 1). Furthermore, IoT devices generate and encrypt data in the related
namespace (Step 2). The encryption process allows different resources to be encrypted at
different times using unique encryption parameters and does not require generating and

380



Electronics 2023, 12, 1651

managing extensive encryption keys. Then, the encrypted data are packaged and published
on the NDN (Step 3). NDN uses an in-network cache mechanism so that each node in the
transmission path can cache the content and quickly respond to the corresponding request.
Additionally, the authorized data processor requests data from the NDN (Step 8) and can
decrypt the data with the corresponding decryption keys (Steps 10–12).

Figure 3. NACDA architecture.

Table 2. Notation of entries in NACDA architecture.

Notation Description Function

IoT devices Devices for producing
data

Producing, encrypting, and
uploading data

Data subject The owner of data
The management of names,
spaces, access policies, and

decryption keys

Data controller
Someone or an institution

who manages personal data
Assuring the rights

of data subjects

Data processor
Someone who wants

to access data

Requesting access rights,
decryption keys, and

decrypting data

NDN Internet architecture Storing, caching, and
forwarding data

Blockchain Decentralized servers
Storing namespaces, access

policies, and granting access
rights

The name-based access control module ensures data confidentiality. However, it does
not adequately consider how to authorize data processors (including verifying identity,
managing access policies, and granting access rights). Therefore, the blockchain is intro-
duced to implement a decentralized authorization mechanism, which acts as an agent to
handle authorization requests from data processors in a unified manner, as illustrated in
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the lower part of Figure 3. The data subject uploads the namespace and the corresponding
access policy to the blockchain (Steps 4–5). Then, the data processor requests the blockchain
to obtain the exact name of the packets and access token (Steps 6–7). When a data processor
requests data, the NDN’s node that caches the data will validate access permission again
based on the blockchain’s authorization log and choose to allow or deny the data access
request (Step 9).

4. Name-Based Access Control Model

The objectives of the name-based access control model can be summarized as follows:
(i) data encryption: using the namespace as the basis for the fine-grained and effective
encryption primitives. (ii) access control: a data processor can get succinct keys for an access
scope grant. Given all the above, the critical point is that NDN naturally organizes the data
into hierarchies, resulting in a namespace that could act as the encryption parameter of
the lightweight encryption algorithm WKD-IBE. Furthermore, a WKD-IBE’s decryption
key related to a namespace can derive all keys of its sub-namespace but not for the parent
namespace (Section 4.1). The detailed workflow of the name-based access control module is
shown in Figure 4, which is further broken down into name-based encryption (Section 4.2)
and fine-grained access control (Section 4.3).

Figure 4. Name-based access control model.

4.1. Generic WKD-IBE
Algorithms

WKD-IBE normally generates a secret key based on an identity string template where
wildcards can replace elements. Then, this secret key can derive keys for other identity
string vectors that match the above template. Although the original WKD-IBE scheme
focuses on the user’s identity information as a template, it can also abstract other details
as a template. For example, Kumar et al. [18] proposed that in a system where resources
have hierarchical structures, a user has a key with the resource prefix a/b/*, i.e., a/b/*
is encoded as a string template and * denotes a wildcard, then it can derive keys with
resources a/b/c, a/b/d, etc.

WKD-IBE consists of four operations: Setup, KeyDer, Enc, and Dec. They are de-
scribed as follows [18]:

• Setup(1`)→ Params, MasterKey. This operation outputs public parameters (Params)
and master secret key (MasterKey).

• KeyDer(Params, KeyPatternA , PatternB) → KeyPatternB . This operation derives a key
for PatternB, where KeyPatternA is MasterKey or PatternA matches PatternB.

• Enc(Params, Pattern, m) → CiphertextPattern,m. This operation receives a ciphertext
encrypted by Params and Pattern.
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• Dec(KeyPatternA , CiphertextPattern,m) → m. This operation receives a ciphertext en-
crypted by Params and Pattern. Then, it obtains a plain text message m with the help
of KeyPattern.

WKD-IBE can also be used to sign data to verify its integrity. It is illustrated as follows:

• Sign(Params, KeyPatternm , m)→ S. This operation uses KeyPatternm to sign a message
m and output the signature S.

• Verify(S, Params, Patternm, m) → >or⊥. This operation uses the Patternm and the
message m to verify the signature S. The output > indicates a successful verification
and the output ⊥ indicates a failed one.

4.2. Name-Based Encryption

The named-based encryption part includes the following steps: the data subject
initializes the namespace and WKD-IBE (Section 4.2.1), then grants the IoT devices the right
to generate data under the sub-namespace (Section 4.2.2). Finally, the IoT devices generate,
encrypt, and publish the data (Section 4.2.3).

4.2.1. Initialization

NDN names resources with hierarchically structured names similar to URI, which
group data with similar attributes in the same namespace. This naming way reflects the
relationship between different data blocks and facilitates the management and sharing of
resources. The data subject and the processor can agree to express a standard namespace
structure. Taking the health scenario as an example, the data subject Alice uses the health
app to collect her health data and activity data, dividing the corresponding namespace
into two sub-namespaces: alice/health and alice/activity, where health data are further
divided into blood pressure and heart rate data, corresponding to the sub-namespace:
alice/health/BP and alice/health/HR, as shown in Figure 5. Once the resource hierarchy
is determined, the resources can be further divided according to the set temporal gran-
ularity, i.e., a temporal hierarchy is added to the hierarchy of resources. For example,
layers 4–6 in Figure 5 divide the resources by year, month, and day, and the namespace
corresponding to the blood pressure data generated by Alice on 12 December 2020 are
called alice/health/BP/2020/12/12. The granularity of the namespace division determines
the granularity of the subsequent data encryption and sharing.

Figure 5. Alice’s namespace.
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After defining the NDN’s namespace, the data subject initiates WKD-IBE, which takes
the depth of the namespace as input parameters and outputs the public parameters and the
master key. This step is represented as follows.

• Setup
(

1`
)

: select g, g2, g3, h1, . . . , h`, hs
$← G, α

$← Zp and let g1 = gα. Then, the
output: Params = (g, g1, g2, g3, h1, . . . , h`, hs) and MasterKey = gα

2 . G is a bilinear
group if the group action in G can be efficiently computed and there exists both a
group G1 and an efficiently computable bilinear map e: G × G → G1.

This datum subject performs this step (or the authority trusted by the data subject)
and keeps MasterKey secret. Params can be stored publicly, which data processors use
subsequently, so we can use blockchain to disseminate Params, i.e., holding them along
with the namespace in the data subject’s blockchain account.

Subsequently, the data subject has two aspects of work. One is to grant the right to
generate data under the sub-namespace to the IoT devices, and the other is to distribute
the decryption keys of an authorized sub-namespace for the data processors. Both of these
tasks rely on the key derivation step. Note that we can distinguish encryption and sign by
adjusting Params and MasterKey [19].

• KeyDer(Params, K, Pattern): when K is MasterKey, let K = gα
2 , and r $← Zp. The

private key for the Pattern of sub-namespace is:

gα

2 ·

g3 · ∏

(i,ai)∈fixed(Pattern)
hai

i




r

, gr,
{(

j, hr
j

)}
j∈free(Pattern)


.

when K is not MasterKey, then parse K as (k0, k1, B), B = {(i, bi)}. Let t $← Zp. The
private key for S is:


k0 ·

(
g3 · ∏

(i,ai)∈fixed(Pattern)
hai

i

)t

· ∏
(i,ai)∈fixed(Pattern)

(i,bi)∈B

bai
i , gt · k1,

{(
j, ht

j · bj

)}
j∈free(Pattern)

)
.

The KeyDer step considers the case where K is MasterKey or not. Generally, the
data subject depends on MasterKey derivation because these have the right to their entire
namespace. The case where K is not MasterKey, on the other hand, is typically when the
IoT devices or data processors obtain the derived key and handle their own sub-namespace.

4.2.2. Sub-Namespace Authorization

The security of the NDN is built into the data themselves, which requires that each
packet be signed. The digital signature’s legitimacy ensures the integrity and authentication
of the message, preventing it from being tampered with or forged.

Specifically, the data subject grants the producer permission to produce data under its
sub-namespace. These permission keys could use an out-of-band channel (e.g., Bluetooth
low energy) to exchange between the subject and devices. Then, the devices obtain the
keys, generate data, and sign the hash of the data, which is subsequently published to the
NDN along with the data packet. The data processor then obtains the data packet and
verifies its origin and integrity. The above process is summarized in two steps.
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• Sign(Params, KeyPatternm , Hashm) → S: Parse the key K as (k0, k1, B), (s, bs) ∈ B.
Hashm is the hash value of message m whose pattern is Patternm, and KeyPatternm is

the corresponding sign key. Select t $← Zp and output the signature S:


k0 ·


g3 · hHashm

s · ∏
(i,ai)∈fixed(Patternm)

hai
i




t

· bHashm
s , gt · k1




• Verify(Params, S, Patternm, Hashm)→ >or⊥: parse the signature S as (s0, s1). Check:

e(s0, g) ?
= e(g1, g2) · e


g3 · hHashm

s · ∏
(i,ai)∈ f fixed(Patternm)

hai
i , s1




The Sign function is usually combined with the KeyDer function (usually when K is
not MasterKey) since the sub-namespace obtained by the IoT device is often not a specific
sub-namespace. In addition, the data processor verifies the received S to check whether the
signature is correct. If the device is authorized, then the hash value can verify the integrity of
the data. We use an example to further illustrate the process. Data subject Alice derives the
signing key Keyalice/health for sub-namespace alice/health and sends it to her device. When
Alice produces plaintext data m under alice/health/BP/2020/12/12, she calculates the
Hashm and signs it, i.e., KeyDer(Params, Keyalice/health, Patternalice/health/BP/2020/12/12)→
Keyalice/health/BP/2020/12/12, then Sign(Params, Patternalice/health/BP/2020/12/12, Hashm) →
S. The data processor obtains the signature S and uses Patternalice/health/BP/2020/12/12 to
verify the origin and integrity of the m.

4.2.3. Data Encryption

IoT devices generate the data, encrypt them according to WKD-IBE, and publish them
to the NDN. Given that IoT devices are usually low-power and have a large amount of data,
a hybrid encryption scheme combining WKD-IBE and symmetric encryption is suitable. In
detail, the data devices encrypt the plaintext data using a symmetric key and invoke WKD-
IBE to encrypt the symmetric key based on the temporal granularity of the namespace. The
next encryption round will flip the symmetric key and modify the WKD-IBE encryption
parameter. The process is brief in the following step.

• Enc(Params, Patternm, Km) → CTKm : Km is the symmetric key of message m, then

selects s $← Zp and outputs CTKm :


e(g1, g2)

s · Km, gs,


g3 · ∏

(i,ai)∈fixed(Patternm)

hai
i




s
.

To further explain the process, we consider an instance of datum m generated un-
der alice/health/BP/2020/12/12. The IoT devices use the AES algorithm to sample a
symmetric key Km to encrypt m. The corresponding generated ciphertext CTm, together
with the signature information in Section 4.2.2, are packaged and published to the NDN.
Meanwhile, as another data packet, Km is encrypted to generate the key ciphertext CTKm .
Note that the minimum time granularity of alice/health/BP/2020/12/12 is in days, so the
data producer flips the symmetric key and invokes WKD-IBE to encrypt it once a day. The
finer temporal hierarchy brings in the finer encryption’s granularity, which benefits flexible
data sharing. However, this may cause resource waste, so a balance between granularity
and consumption is best based on practical cases.
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4.3. Fine-Grained Access Control

The fine-grained access control consists of the following steps: the authorized data
processor sends an interest packet to the NDN and requests decryption keys within its
authorization from the key server (Section 4.3.1). The data processor then obtains the
decryption keys and decrypts the data (Section 4.3.2). Note that this subsection assumes
that the data processor has already obtained an access token (Section 5).

4.3.1. Decryption Keys Delegation

When requesting data from the NDN, an authorized data processor first retrieves
the ciphertext packet, which usually contains the corresponding key packet name so
that the data processor can continue to request key packets. In addition, NDN’s node
will verify the data processor’s access token by the blockchain’s authorization log before
returning the data, which could intercept data requests from attackers or those with expired
authorization tokens.

The data processor also needs to request the decryption keys within the scope of
the access token. We previously mentioned in Section 4.2.1 that data subjects distribute
decryption keys for data users. However, it would be stressful for the data subject to
generate and distribute all decryption keys in advance, so we generate them when the
authorized data processor triggers the request. In addition, the single point of failure and
performance problems may occur if the only data subject is the only key server responding
to a decryption key request.

Considering the derivation nature of WKD-IBE’s keys, the data processor with priv-
ileges and the data subject can act together as a key server. When a user requests autho-
rization from the blockchain, the blockchain acts as an authorization server to determine
that the user is legitimate and returns the token along with other processors that can derive
the decryption key. After receiving the token, the user requests one of the processors to
obtain the decryption key (the token supports obtaining the decryption key only once, and
decryption keys could be encrypted with the user’s public key), decrypt the data, and
verify it against the signature.

4.3.2. Data Decrypt

After obtaining the two packets and the decryption keys, the data processor first
decrypts the symmetric key from the key packet and then decrypts the plaintext data using
the symmetric key. The operation is succinct in the step below.

• Dec(KeyPatternm , CTKm) → Km : Parse the KeyPattern as (k0, k1, B), and the ciphertext
CTKm as (X, Y, Z). Output Km:

X · e(k1, Z) · e(Y, k0)
−1

The Dec function also depends on the KeyDer function to obtain the decryption keys of
specific sub-namespace. For example, Bob achieved Keyalice/health and then KeyDer(Params,
Keyalice/health, Patternalice/health/BP/2020/12/12) → Keyalice/health/BP/2020/12/12. He used the
key to decrypt the symmetric key of alice/health/BP/2020/12/12.

5. Decentralized Authorization Mechanism

The decentralized authorization mechanism consists of two parts: (i) content manage-
ment: the data subject publishes the namespace and access policy, and the data processor
retrieves the relevant content; (ii) decentralized authorization: the data processor is granted
an access token according to the access policy. We utilize smart contracts to manage the
content and automate the authorization operations for those two parts. As shown in
Figure 6, there are three smart contracts: the namespace smart contract, the policy smart
contract, and the decentralized authorization smart contract. Moreover, all user operations
are recorded in the ledgers for auditing at any time.
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Figure 6. Decentralized Authorization Mechanism.

5.1. Content Management

When a data processor requests dynamically generated data in the NDN, the data
are usually retrieved based on the part of the data name. For instance, the data processor
sends an interest packet with the name alice/health/BP to retrieve a data packet with the
name alice/health/BP/2020/12/12 if it exists and then requests the actual packet. This
retrieval process may send multiple interest packets to obtain the datum’s exact name,
resulting in more invalid interest packets and inefficient retrieval in the NDN. It is desirable
to have a retrieval mechanism to confirm the data name before sending interest packets.
Centralized retrieval mechanisms run the risk of a single point of failure. Blockchain,
as a decentralized and trusted intermediary, can be used to establish a transparent and
reliable named retrieval mechanism. Hence, the data subject publishes the namespace on
the blockchain, and the data processor queries to efficiently obtain the exact name of the
data (Section 5.1.1). Furthermore, the data subject can further update the access policy
based on the namespace, allowing the owner to take ownership of its data and share them
selectively and flexibly (Section 5.1.2).

5.1.1. Naming Management

The namespace contract implements naming management, which contains creating
and updating namespaces by data subjects and retrieving naming by data processors. The
first ledger in Figure 6 shows the structure of the content.

Initially, the data subject registers credentials based on a uniquely named prefix
identifier, representing the ability to create and update smart contracts. In addition, the
namespace uses a dictionary tree as a storage structure, which is query-efficient. The data
subject also stores the hash of static resources and the public parameters of WKD-IBE on
the namespace, which assists the data processor in validating and decrypting the data.
When a data processor retrieves a naming, the contract checks whether the naming format
is standardized and retrieves the dictionary tree. If the naming is already fully named,
returning exists. Otherwise, it uses naming as a prefix to search for the relevant specific
name and returns the set of names (other restricted parameters can be added, such as the
rightmost child, which improves the retrieval efficiency). Overall, data processors can
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reduce the number of invalid interest packets in the NDN by confirming the specific name
before sending the interest packet. Algorithm 1 illustrates the naming retrieval process.

Algorithm 1: Naming Retrieval.
Input: pkDP, pkDS, namepre
Output: result

1 Initialization: pkDS’s namespace trees T1, T2...
2 if pkDP and pkDS then
3 if pkDS exist a tree Ti prefix with namepre then
4 result← GetState(pkDS).SearchUrls(Ti, namepre)
5 else
6 result← no such pre f ix here
7 end
8 else
9 result← no such user here

10 end
11 return result

5.1.2. Policy Management

Policy management is implemented in the policy contract, which contains the creation
and updating of the policy by data subjects and the retrieval of the policy by data processors.
The second ledger in Figure 6 shows the structure of the content.

When a data subject creates an access policy, nodes in the namespace are bound to
different access control lists (ACLs) to enable fine-grained access. We can set the ACL to the
same level node of the namespace. For example, the data subject Alice uniformly sets her
authorization granularity to the fifth level of the namespace, i.e., to authorize access to data
by month. This approach improves the efficiency of policy retrieval but limits the minimum
sharing granularity. We can also set the ACL to any node of the namespace, which increases
the retrieval time but allows flexibility in setting sharing granularity. Algorithm 2 illustrates
the policy update process. In addition, there are two types of data-operation abilities for
data processors. The authorized data processor can only read the data or further delegate
keys to other data processors.

Algorithm 2: Policy update.
Input: pkDS, pkDP, Ti, URLs, Permissions
Output: result

1 Initialization: pkDS’s namespace trees T1, T2..., some nodes associated with an
ACL

2 if pkDP and pkDS then
3 if pkDS exist a tree Ti then
4 pu← GetState(pkDS).SearchUrls(Ti, URLs)
5 result← PutState(pkDS, UpdatePolicy(pu, pkDP, Permissions))
6 else
7 result← no such tree here
8 end
9 else

10 result← no such user here
11 end
12 return result

Naming and policies need to be regularly maintained and updated. For the case of data
subjects cleaning up outdated data, leading to updates to the namespace. In addition, some
malicious users need to be removed from the policy as soon as they are discovered. The
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data subject must periodically check its namespace and policy whilst the data processors of
the relevant updates are notified.

5.2. Decentralized Authorization

The smart contract for decentralized authorization checks the access policy after
receiving the request from the data processor. Then, it returns the result and records it in
the log ledger. The third ledger in Figure 6 shows the structure of the content.

When a data processor requests read or delegated rights to the resources, the decen-
tralized authorization contract determines the naming’s legitimacy based on the naming
contract, and whether the processor is in the access policy based on the policy contract.
If the conditions are met, the authorization contract returns an access token for the data
processor. Algorithm 3 illustrates the decentralized authorization process. The access token
consists of the token header and the token payload, where the token header contains the
token ID and the token type. The token ID is a (pseudo) random and unique string, and the
token type indicates it is a read or delegated operation. The payload contains specific autho-
rization information, including the grantor (data subject), the grantee (data processor), the
scope of the authorization, the authorization time, and the expiration. Moreover, decentral-
ized authorization smart contracts confirm the access token, i.e., whether the data processor
requests keys or content, the corresponding node will recheck the token to verify its validity.

Algorithm 3: Decentralized authorization.
Input: pkDS, pkDP, URLs, Permissions
Output: result

1 Initialization: if pkDP and pkDS then
2 if URLs exist then
3 if pkDP has Permissions for URLs according to ACL then
4 token←(pkDS, pkDP, URLs, Permissions, random,

Timeissue, Timeexpiry, updatecount)
5 PutState(pkDS, UpdateAccess(pkDP, tokenenc))
6 result← tokenenc

7 else
8 result← no permission
9 end

10 else
11 result← no such resource here
12 end
13 else
14 result← no such user here
15 end
16 return result

6. Implementation and Evaluation

This section describes the experiment environment and evaluates the experimental results.

6.1. Experimental Environment

In this section, we implement the NACDA prototype based on the above design ideas.
The name-based access control model was developed in C++ and used the Named Data
Networking Forwarding Daemon (NFD) [20] to route and forward NDN packets. The decen-
tralized authorization mechanism built the blockchain environment with the Hyperledger
Fabric (HLF) [21] platform. The HLF is a consortium blockchain [22] that allows authenticated
and authorized nodes to join the network, resulting in higher levels of security. Therefore, HLF
is designed for enterprise environments and is more suitable for this paper’s many-to-many
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data-sharing usage scenario. All of the above were evaluated in a macOS Monterey 12.6
operating system configured with a 2 GHz quad-core Intel Core i5, 16 GiB RAM.

6.2. Experimental Results

The goal of the decentralized authorization mechanism is that the data subject pub-
lishes the namespace and access policy information on the blockchain, and the data proces-
sor retrieves the relevant content and obtains an access token. The detailed experimental
design is as follows: (i) The HLF platform consists of two peer organizations, Org1 and
Org2, each with two Peers, Peer0, and Peer1. It also configures a single-node Raft ordering
service. All HLF participants are issued certificates by the built-in fabric certificate authority
(CA). (ii) We measured the performance of the authorization mechanism using Caliper [23],
an evaluation tool developed for the Hyperledger Foundation. (iii) The mechanism consists
of three smart contracts and two ledgers. Namespace and policy information are stored
in one ledger, and the access token is stored in another to facilitate the subsequent token
verification operations.

Figures 7 and 8 shows the evaluated results of the decentralized authorization mecha-
nism. Figure 7 interprets the performance results for the query ledger (query naming and
policy). Figure 7a sets the Caliper to submit 2000 transactions per round. By varying the
transaction’s rate controller from 100TPS to 1000TPS, it can be seen that the throughput
leveled off after a period of increase, but the latency kept trending upwards. Figure 7b
sets the transaction’s rate controller to 750 TPS for each round. By varying the number of
transactions submitted from 1000 to 10,000, the maintained throughput remained at approx-
imately 700 TPS, with the success rate of transactions at a high level. Figure 7 illustrates
that, when the transaction’s rate controller reaches approximately 700 TPS, an increase in
the transaction throughput is blocked, i.e., the local system processing bottleneck is reached.
Figure 8 shows the performance results for the updated ledger (update authorization token).
The combination of Figure 8a,b demonstrates that the maximum processing capacity of the
system is of approximately 150TPS. Accordingly, comparing Figures 7 and 8, it is evident
that the performance of the query ledger is much higher than that of the updated ledger
because the query ledger operation involves the interaction with only one peer node. On
the contrary, the updated ledger operation involves multiple participants (peer endorser,
orderer, committer peer) and multiple stages [15].

In the naming-based access control model, the device encrypts and publishes data
packets based on the resource namespace. The data processor sends interest packets to
achieve encrypted data and decryption keys and decrypts data according to the derived
keys. We assume that all data packets the data processor requests can be returned, and the
obtained decryption key can decrypt all relevant data. Furthermore, the calculated time of
the data producer includes the total time from generating the data to publishing them, and
the data processor’s total time includes requesting the data to decrypt them.
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Figure 7. Performance of READ from HLF’s ledgers. (a) Performance of Different Send Rates with a
TxNumber Equal to 2000. (b) Performance of Different TxNumber with a Send Rate Equal to 750.
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Figure 8. Performance of WRITE to HLF’s ledgers. (a) Performance of Different Send Rates with a
TxNumber Equal to 2000. (b) Performance of Different TxNumber with a Send Rate Equal to 150.

Figure 9 shows the time of publishing/receiving data with different packet sizes and
numbers with the namespace depth equal to 10. In Figure 9a,b, the different size packets
merged multiple data points ranging from 1 KB to 6 KB (up to 8 KB per packet). The results
show that the time spent on encryption, decryption, signing, and verification accounts for
relatively little of the total time. The remaining time includes packet and communication
time in NDN, spending a relatively large amount of time. In addition, as the packet size
increases, there is a slight increase in the time spent in each phase. In Figure 9c,d, we fix the
packet size to 4 KB to verify the effect of namespace depth on the published and received
data. The results show that the time spent in each phase increases as the number of packets
increases, where the majority of time is still spent in the NDN.
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Figure 9. Performance of Publishing/Receiving a Message with Different Packet sizes and Numbers.
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Figure 10 assesses the relationship between the latency time and packet numbers with
different namespace depths. The results of Figure 10a indicate that as the packet numbers
increase, a different namespace depth does not have much effect on the publishing time. In
contrast, Figure 10b shows that time spent by data processors significantly increases with
higher namespace depths. This is because, when the device encrypts data, the namespace’s
length has little effect on the encryption operation. Instead, the data processor needs to
derive multiple keys when deeper in the namespace’s length.
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Figure 10. Performance of Publishing/Receiving a Message with Different Namespace Depths and
Packet Numbers. (a) Publishing with Different Namespace Levels and Packet Numbers. (b) Receiving
with Different Namespace Levels and Packet Numbers.

Subsequently, we compare NACDA to NAC-ABE [24], which uses ABE in NDN,
as shown in Figure 11. Since our method considers a data-centric encryption approach,
the user attributes and attribute policies in NAC-ABE are converted into data-centric
representation. Take the two sub-namespaces /alice/health/BP and /alice/health/HR as
examples. In data encryption, both NACDA and NAC-ABE use “1-alice, 2-health, 3-BP”
and “1-alice, 2-health, 3-HR” as encryption parameters. When distributing decryption keys,
NACDA only needs to share the key for /alice/health/*. In contrast, NAC-ABE needs to
share the key for the policies “(1-alice AND 2-health AND 3-BP) or (1-alice AND 2-health
AND 3-HR)”. Thus, our method only needs to distribute a smaller size key, which is an
advantage, especially when the namespace depth is large. As for decryption, NACDA
has one more key derivation step than NAC-ABE. However, we can learn from Figure 9
that the operation in NDN takes more time than data encryption- and decryption-related
steps. Thus, reducing the key size can further reduce the time spent on packaging and
communication in the NDN, which further reduces the overhead of decryption.
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Figure 11. Publishing/Receiving Comparison with Different Namespace Depths: (a) Publishing Com-
parison with Different Namespace Depths; (b) Receiving Comparison with Different Namespace Depths.
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6.3. Security Analysis

In this section, we analyze the security of our method. We focus on privacy protection
and access control in NDN, which includes four security objectives: (i) data security: data
security is built into the data themselves and is not dependent on the recipient. (ii) data
integrity: the data need to prove their origin; they cannot be altered once created; and
(iv) access control: only authorized data processors can access the data. Next, we analyze
the objectives and the corresponding attacks in theory and practice. Note that the attacks
associated with routing in NDN networks are beyond our scope.

6.3.1. Data Security

NDN relies on WKD-IBE for data security. The WKD-IBE scheme is IND-sWKID-CAP
security, described as follows.

Theorem 1. A WKD-IBE scheme is indistinguishable under a selective-identity, chosen-plaintext
attack, i.e., IND-sWKID-CAP secure (Indistinguishability against Selective-Identity with Wildcard
Key, Chosen-Plaintext Attack), if and only if for all probabilistic polynomial-time attacker A whose
advantage of winning the following game interacting with challenger C is negligible for the security
parameter k [6].

Initialization. Give the depth of the namespace ` and security parameter k, C run Setup to
generate the public parameters Params and the master key MasterKey, and thenA obtains Params
from the blockchain.

Query1. A asks C for the keys of its sub-namespace. In the ith query, A adaptively selects a
sub-namespace s. C runs KeyDer to generate sks and sends it to A.

Challenge. A chooses two messages, m0 and m1, with the same length and sends them to C.
Then, C chooses a random bit b ∈ {0, 1}, encrypts mb under the pattern p, runs Enc(Params, p, mb),
and sends the generated ciphertexts to A.

Query2. A can continue to query like Query 1.
Guess.A outputs guess b′. if b = b′,Awins the game. The advantage ofA is

∣∣∣Pr[b = b′]− 1
2

∣∣∣.

Analysis. Based on the IND-sWKID-CAP security guarantee, we analyze data security
in NDN. In Initialization, each data subject initializes MasterKey and Params, respectively,
and MasterKey remains private while Params is propagated by the blockchain, avoiding
single-point-failure attack. In the data encryption phase, IoT devices only encrypt the data
but cannot access decryption keys. The decryption keys are also not shared with storage
services, intermediate nodes, or authorization services. Then, an A Query step is performed
by A, and we divide it into two cases. The first case assumes that A is a non-authorized
user. A will request the authorization service to obtain an access token before requesting
the decryption keys. However, A is not qualified to obtain that token and, thus, not eligible
to request the decryption keys. The second case assumes that A is a user authorized by
a data subject. A obtains an access token and requests the decryption key. Additionally,
A wants to obtain decryption keys outside the authorized scope. However, the token for
the keys only supports Query once, and does not perform continuous querying. Thus,
attacker A does not have the opportunity to perform an ongoing Query, so it is challenging
to perform a successful Guess.

Accordingly, our method guarantees data confidentiality in the NDN and can block
constant attempts by attackers. Furthermore, even if the key of the sub-namespace is
compromised, the data storage node will validate the data access token to check whether it
is an authorized user. Taking a further step back, even if both the key access token and the
data access token are compromised, the attacker can only access data in that sub-namespace
scope within the token’s validity time.

6.3.2. Data Integrity

The integrity guarantees can be formalized using a game similar to Theorem 1. We do
not repeat the description here.
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Analysis. Our method is based on WKD-IBE to guarantee data integrity. The data
subject allocates to each IoT device a signing key certificate associated with the authorized
sub-namespace. Then, the devices put their signing key name into each NDN’s packet
before publishing. The data processor can verify the signature, which prevents the message
from being tampered with or forged. Therefore, the authentication mechanism of each
packet prevents the malicious tampering of the message by man-in-the-middle attacks.

6.3.3. Access Control

The standard blockchain threat model assumes that the blockchain network is secure
if an adversary cannot control a large percentage of nodes.

Analysis. NDNs are named after content and need to add access control to the
content to establish a relationship with authorized consumers. Our approach is based
on the blockchain to provide a decentralized authorization service. The decentralized
nature of the blockchain ensures that an adversary cannot compromise the blockchain
network to make unauthorized changes to the ledger. In addition, if the authorized token
is compromised during transmission, a secondary verification mechanism can reconfirm it
to prevent compromise, which alleviates token impersonation attacks.

7. Conclusions and Future Work

This paper introduces NACDA, a decentralized access control framework based on
NDN. It enables data subjects to share their data autonomously and securely in a many-
to-many communication scenario. Specifically, the named-based access control model
provides encryption and access control schemes that decouple data subjects and proces-
sors, enabling secure, flexible, and selective data sharing. The decentralized authorization
mechanism solves the problem of a single point of failure for NDN data retrieval and
authorization services, allowing data subjects to customize access policies. Our experi-
mental results and security analysis indicate the feasibility and applicability of NACDA in
many-to-many communication scenarios.

There are two aspects to be improved. Firstly, NDN’s naming concerns data semantics
and access control. An attacker may infer sensitive information about a user by monitoring
the user’s requests. Therefore, the main challenge for naming is maintaining name privacy
while ensuring the routability and decodability. Secondly, blockchain immutability provides
the ability to audit authorization records to verify users’ compliance with GDPR. However,
there exists conflict between the immutability of recorded transactions and the GDPR’s
‘right to be forgotten’. The above-mentioned decodability can be a way to mitigate that
conflict since the ‘right to be forgotten’ is associated with the ability to decode a namespace
on the ledger.
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Abstract: Deep neural networks are extremely vulnerable to attacks and threats from adversarial
examples. These adversarial examples deliberately crafted by attackers can easily fool classification
models by adding imperceptibly tiny perturbations on clean images. This brings a great challenge to
image security for deep learning. Therefore, studying and designing attack algorithms for generating
adversarial examples is essential for building robust models. Moreover, adversarial examples are
transferable in that they can mislead multiple different classifiers across models. This makes black-box
attacks feasible for practical applications. However, most attack methods have low success rates and
weak transferability against black-box models. This is because they often overfit the model during the
production of adversarial examples. To address this issue, we propose a Nadam iterative fast gradient
method (NAI-FGM), which combines an improved Nadam optimizer with gradient-based iterative
attacks. Specifically, we introduce the look-ahead momentum vector and the adaptive learning rate
component based on the Momentum Iterative Fast Gradient Sign Method (MI-FGSM). The look-ahead
momentum vector is dedicated to making the loss function converge faster and get rid of the poor
local maximum. Additionally, the adaptive learning rate component is used to help the adversarial
example to converge to a better extreme point by obtaining adaptive update directions according to
the current parameters. Furthermore, we also carry out different input transformations to further
enhance the attack performance before using NAI-FGM for attack. Finally, we consider attacking the
ensemble model. Extensive experiments show that the NAI-FGM has stronger transferability and
black-box attack capability than advanced momentum-based iterative attacks. In particular, when
using the adversarial examples produced by way of ensemble attack to test the adversarially trained
models, the NAI-FGM improves the success rate by 8% to 11% over the other attack methods. Last
but not least, the NAI-DI-TI-SI-FGM combined with the input transformation achieves a success rate
of 91.3% on average.

Keywords: adversarial examples; black-box attacks; transferability; deep neural networks

1. Introduction

Currently, deep learning as the core technology of artificial intelligence is widely
applied in various scenarios in life. In particular, deep neural networks (DNNs) show
strong advantages in improving the performance of various visual tasks, including image
classification [1,2], natural language processing [3], autonomous driving [4] and medical
diagnosis [5], and in some areas, even surpass human processing power. However, DNNs
show great vulnerability to threats and attacks from adversarial examples [6]. These adver-
sarial examples deliberately crafted by attackers can make the network model misclassify
by adding imperceptibly tiny perturbations on clean images. This brings a great challenge
to image security for deep learning. Therefore, studying and designing attack algorithms
for generating adversarial examples is essential for building robust models. It can also help
us to better test and evaluate the security of these models [7–9].
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We can classify the attack methods into white-box and black-box attacks based on
whether all relevant information of the model can be successfully accessed during the
attack. In the white-box situation, the attacker has a sufficient amount of details of the
target model. In contrast, in the black-box situation, the attacker only obtains the inputs and
outputs to the model. Gradient-based attacks [8,10,11] are extensively used in white-box
situations due to their simplicity and speed. This method produces perturbations in the
gradient direction of the image about the loss function by maximizing the loss.

In real-world scenarios, attackers are often faced with black-box situations where
they cannot access the details of the model. As a result, black-box attacks are often more
challenging to implement, but more practical. The most commonly used black-box attacks
are transfer-based methods [12–20], with the idea that the adversarial examples produced
in a certain model setting may also be adversarial for other models. Liu et al. [21] refer
to this property of adversarial examples as transferability. Therefore, we can take full
advantage of the transferability property to perform black-box attacks.

To this end, different kinds of strategies have been proposed to boost transfer-based at-
tacks. On the one hand, some works focused on better optimization algorithms for gradient
computation [13–16]. On the other hand, other works concentrate on input transformations
to perform data augmentation [17,18]. In addition, Dong et al. [13] considered simultane-
ously attacking ensembles of models to perform model augmentation, while Lin et al. [14]
proposed to derive multiple models from the source model for model augmentation. In this
paper, we focus on a better optimization algorithm.

However, there are still some problems with the current study. (1) Most of the attacks
are less effective and have lower success rates in the black-box situation. (2) The adversarial
examples produced by transfer-based attacks normally overfit the training model easily,
and usually fall into a poor local extremum. This leads to weaker transferability.

In order to better optimize and solve the above issues, we propose the Nadam Iterative
Fast Gradient Method (NAI-FGM), which combines an improved Nadam optimizer with
gradient-based iterative attacks. Specifically, we introduce the look-ahead momentum
vector and the adaptive learning rate component based on the Momentum Iterative Fast
Gradient Sign Method (MI-FGSM) [13]. The look-ahead momentum vector is dedicated
to making the loss function converge faster and get rid of the poor local maximum. Addi-
tionally, the adaptive learning rate component is used to help the adversarial example to
converge to a better extreme point by obtaining adaptive update directions according to
the current parameters. We validate the NAI-FGM through a large number of experiments
and compare it with advanced attacks. Experimental results show that the NAI-FGM has
stronger transferability and black-box attack capability than advanced attacks. The ad-
versarial examples produced by several momentum-based iterative attacks are shown in
Figure 1.

The contributions of this paper are as follows:

• Inspired by the idea of the Nesterov-accelerated Adaptive Moment Estimation (Nadam)
[22] optimization algorithm, we apply the modified Nadam optimizer for adversarial
example generation in each iteration. Based on the MI-FGSM, the look-ahead mo-
mentum vector and adaptive learning rate component are introduced. The proposed
method can update the direction adaptively according to the current gradient infor-
mation, optimize the convergence process, and enhance gradient-based adversarial
attack transferability.

• We further improve the attack transferability by naturally combining advanced data
augmentation methods with the proposed NAI-FGM.

• We apply the strategy of ensemble attack to NAI-FGM to produce higher success rates
of the black-box attack.
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Figure 1. Raw images and adversarial examples after attack by MI-FGSM [13], NI-FGSM [14], and
the proposed NAI-FGM on Inc-v3 [23].

2. Related Work
2.1. Adversarial Attacks

Existing attack methods can be broadly classified into white-box attacks and black-box
attacks. Figure 2 briefly depicts the principles and differences between the various kinds of
attacks. White-box attacks are further subdivided into gradient-based attacks [8,10,11] and
optimization-based attacks [6,7]. Optimization-based attacks can produce visually better
adversarial examples than gradient-based attacks, but they can also consume greater time
costs. Black-box attacks can also be further classified into transfer-based attacks [12–19],
score-based attacks [24,25], and decision-based attacks [26]. In contrast to transfer-based
attacks, both score-based and decision-based attacks involve massive accesses and queries
to the neural network, which is harder to implement in practical scenarios. Therefore, we
focus our research around transfer-based attacks. Transfer-based attacks usually occur in
two steps. First, a white-box attack is employed under an alternative model to generate
adversarial examples. Afterwards, these examples are transferred to the target model for
the attack. This white-box attack is typically referred to as gradient-based attacks, as they
are relatively efficient and easy to implement. Here, we mainly review the work related to
transfer-based attacks.

Gradient-based 
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Model
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Attacks
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Decision-based 

Attacks

Attacker
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Figure 2. Principles and differences of various types of adversarial attacks.
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Dong et al. [13] applied the momentum idea to the Iterative Fast Gradient Sign Method
(I-FGSM) [11]. Additionally, they also considered simultaneous attacks on multiple models
to enhance attack performance. Lin et al. [14] proposed the Nesterov Iterative Fast Gradient
Sign Method (NI-FGSM), which combined Nesterov’s accelerated gradient with I-FGSM.
The Diverse Input Method (DIM) [17] resizes and pads the input images with a certain
probability of transformation. The Translation-Invariant Method (TIM) [18] adopts a trans-
lation operation for the input image. The Scale-Invariant Method (SIM) [14] applies a set
of scaling transformations to the image. Yin et al. [16] proposed the Adam Iterative Fast
Gradient Method (AI-FGM), which uses the Adam optimizer [27] to optimize the gradient
calculation. Wu et al. [20] proposed the Adversarial Transformation-Enhanced Transfer At-
tack (ATTA), which uses blurring and coloring transformations on input images and trains
an adversarial transformation network to produce adversarial examples. Wang et al. [15]
optimize the adversarial perturbation by variance adjustment strategy. Wang et al. [28]
proposed a spatial momentum attack to accumulate the contextual gradients of different
regions within the image. Huang et al. [12] superimpose feature information with variances
on the images before iterative attacks. Additionally, double sampling variance aggregation
is used to optimize the image gradient. Wang et al. [19] designed an affiliated network
to capture the potential spatial information of images. Additionally, an edge detection
algorithm was combined to find out the minimum effective perturbation region.

However, the transferability of the adversarial examples generated by most existing
transfer-based attacks remains poor. The underlying reason is that these adversarial
examples tend to overfit the alternative models and usually fall into poor local optima
during the generation process. For this reason, we apply a better optimizer to the generation
algorithm of adversarial examples. The gradient direction is more rationally computed
and optimized so that the adversarial examples converge to a better local optimum during
the generation process. The final effect of mitigating the overfitting phenomenon of the
adversarial examples and improving the transferability of the attacks is achieved.

2.2. Adversarial Defenses

To improve the robustness of DNNs, several advanced defense methods have been
proposed. We can roughly summarize these methods into three categories.

Adversarial Training: Adversarial training is widely regarded by academia as the
most powerful defense strategy against attacks. This method trains clean examples and
adversarial examples in the same model [6,8,10,29]. Tram’er et al. [9] involved adversarial
examples from multiple other models in the local model for training, in terms of augmenting
the training dataset. This is referred to as ensemble adversarial training.

Input Preprocessing: Input preprocessing aims to alleviate the impact of perturbations
on the model by transforming the inputs. Xie et al. [30] used two randomization operations,
that is, random resizing of the image and random padding around the image. Guo et al. [31]
adopted conversion techniques, such as total variance minimization and image stitching
for input images. Liu et al. [32] developed a compression framework of JPEG to improve
defense efficiency and reduce marginal accuracy.

Adversarial Examples Detection: Adversarial examples detection includes inconsis-
tency judgments by differences between adversarial examples and normal examples or
training additional detectors to detect adversarial examples. Xu et al. [33] adopted a feature
compression strategy that combines images corresponding to different feature vectors
into one sample, reducing the attacker’s search space. Pang et al. [34] used a minimiza-
tion reverse cross-entropy and threshold strategy as a detector for adversarial examples.
Ma et al. [35] designed a technique to extract the invariants of DNNs to detect adversarial
examples by analyzing the internal structure of DNNs under different attacks.

3. Methodology

Let x denote a clean example, and y denote its real label. Additionally, f denotes a
trained deep neural network classifier that correctly classifies x as y. The attacker generates
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the adversarial example xadv = x + δ by adding perturbation δ to x, thus causing f to
misclassify. The perturbation δ is obtained in most cases by maximizing the cross-entropy
loss function J(x, y; θ), where θ denotes the parameter of f . For the perturbation δ, we
use the L∞ norm to restrict its size, that is, ||xadv − x||∞ ≤ ε, ε denotes the maximum
perturbation value.

Let f1 and f2 denote two different deep neural network classifiers, and their corre-
sponding network parameters are, respectively, θ1 and θ2. Both of them can correctly
classify clean example x as label y. In the black-box situation, only θ1 is known and θ2 is
unknown. The goal of transfer-based attacks is to produce an adversarial example xadv

under f1 by applying its transferability; f1 and f2 can simultaneously classify the clean
example x incorrectly, that is, satisfy f1(xadv) 6= y and f2(xadv) 6= y.

3.1. Gradient-Based Attacks

Since our algorithm is based on MI-FGSM for research and improvement, we briefly
introduce MI-FGSM and its related attack methods here.

FGSM [10] is a one-step attack and the first gradient-based method. The updated
equation is:

xadv = x + ε · sign(5x J(x, y; θ)) (1)

where ε is the factor regulating the size of the perturbation,5x J(·) is the gradient of J(·)
about x, and sign(·) is the sign function to make δ meet the L∞ norm bound.

I-FGSM [11] subdivides the one-step perturbation computation process in FGSM
into T steps and restricts the image pixels to the effective area by a clipping operation.
The updated equation is:

xadv
0 = x, xadv

t+1 = Clipε
x{xadv

t + α · sign(5x J(xadv
t , y; θ))} (2)

where T is the total number of iterations, α = ε/T is the step size, and Clipε
x{·} serves to

constrain adversarial examples xadv
t in the ε neighborhood of x.

MI-FGSM [13] introduces the idea of momentum based on I-FGSM, which significantly
improves the transferability. The updated equation is:

gt+1 = µ · gt +
5x J(xadv

t , y; θ)

|| 5x J(xadv
t , y; θ)||1

xadv
t+1 = Clipε

x{xadv
t + α · sign(gt+1)}

(3)

where gt is the gradient sum accumulated over t iterations, g0 = 0 and µ is the decay factor
of the momentum term gt.

NI-FGSM [14] applies Nesterov’s accelerated gradient [36] to I-FGSM, and substitutes
to xadv

t in Equation (3) with xadv
t + α · µ · gt to further enhance the transferability.

DIM [17] adopts random resizing and padding transformations to images with a cer-
tain probability before the start of each iteration, from the perspective of data augmentation
to enhance adversarial attacks transferability.

TIM [18] applies translation operations to images to generate adversarial examples.
Specifically, TIM uses a Gaussian kernel matrix to convolve the gradients of untranslated
images instead of computing the gradients of translating different pixel images, further
improving the transferability.

SIM [14] considers model augmentation to improve transferability and exploits the scale-
invariant property of DNNs to calculate gradients on the scale copies of the input images.

3.2. Motivation

FGSM is the earliest gradient-based attack with low time cost but a low success rate.
I-FGSM subdivides the one-step perturbation calculation process in FGSM into multiple
steps to improve attack efficiency. However, I-FGSM are often easy to overfit to the local
maximum, so the transferability is weak. MI-FGSM introduces momentum terms into
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I-FGSM, which helps adversarial examples to escape from the poor local maximum and
stabilize the updating direction. NI-FGSM adopts NAG into I-FGSM to make use of
its looking-ahead property to modify the previously accumulated gradient and further
improve the transferability.

Momentum and NAG are two algorithms for optimizing gradient descent that can
significantly enhance the effect of deep learning models. MI-FGSM and NI-FGSM after
combining the advantages of Momentum and NAG, respectively, help the adversarial
examples to obtain better transferability. Therefore, we suppose that other gradient descent
optimization algorithms can also be applied to attacks to improve their performance.

In this work, we consider applying the modified Nadam optimizer to gradient-based
iterative attacks to optimize the gradient calculation.

3.3. Nadam Iterative Fast Gradient Method

Nadam, proposed by Dozat [22], is an advanced gradient descent optimization al-
gorithm, which improves the convergence speed and quality of the DNNs. Nadam is a
modification of the Adam [27]. Nadam naturally combines Nesterov’s accelerated gradient
(NAG) [36] and Adam and modifies the momentum component of Adam while retaining
the adaptive learning rate component.

To improve the transferability of adversarial examples, we propose the NAI-FGM
(Nadam Iterative Fast Gradient Method), which combines an improved Nadam optimizer
with gradient-based iterative attacks. Specifically, we introduce the look-ahead momentum
vector and the adaptive learning rate component based on MI-FGSM. Figure 3 describes
the attack idea of NAI-FGM. First, we input the pre-processed clean image into the network
to obtain the gradient. Then, we process the gradients with the NAI-FGM algorithm to
produce adversarial perturbations. Finally, the input images are superimposed with the
perturbations to generate adversarial examples after multiple iterations.

Specifically, different from the momentum in MI-FGSM, the momentum in NAI-FGSM
accumulates both the gradient and the square of the gradient during the iteration, which
helps the loss function converge quickly on the small gradient dimension. At the same time,
we directly applied the look-ahead momentum vector to replace applying the momentum
step twice to update the gradient and parameter separately in NI-FGSM, which helped us
get rid of the poor local maximum more quickly. The adaptive learning rate component
uses the gradually decreasing step size, which is helpful to obtain the adaptive updating
direction, so as to converge to a better extreme point.

Number of iterations

 ≥ T

Convolutional Neural 

Network

Calculate the gradient

NAI-FGM

Clean image

Adversarial 

example

Yes

No

Adversarial 

perturbation

Figure 3. Principle of the attack based on the NAI-FGM algorithm.

The Nadam iterative fast gradient method (NAI-FGM) is summarized in Algorithm 1.
Specifically, we first initialize the clean example x as an adversarial example xadv

0 and
input xadv

t into the classifier f at the first t iteration to obtain the gradient5x J(xadv
t , y; θ),

then normalize it by its L1 distance, defined in Equation (5). The term mt denotes the
first momentum used to accumulate the sum of the gradients of t iterations, defined in
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Equation (6). The term nt denotes the second momentum used to accumulate the sum
of squares of gradients for t iterations, defined in Equation (7). The terms µ1 and µ2
denote the decay factors of mt and nt, respectively. The look-ahead momentum vector is
µ1 ·mt+1 + (1− µ1) · gt. The terms m

′
t and n

′
t compute the bias-corrected first and second

momentums, defined in Equations (8) and (9), respectively. The updated equation of an
adversarial example xadv

t is defined in Equation (10), where ξ is the denominator stability
factor to make sure the denominator is not equal to zero. The adaptive learning rate

component is 1/
√

n′t+1 + ξ.
Existing works typically use the sign function to compute the direction of the gradient

such that the adversarial perturbation satisfies the limitation of the L∞ norm. However, our
method adaptively updates and calculates the gradient direction. Therefore, we constrain
the perturbation within the L2 norm bound, defined in Equation (10).

3.4. Attacking Ensemble of Models

The attack performance of NAI-FGM can be further enhanced by attacking the en-
semble of models. Liu et al. [21] shows that if an adversarial example can fool different
network models at the same time, it can also attack other models to a large extent. We
adopt the logits ensemble attack strategy in the literature [13], that is, we simultaneously
attack several different networks that fuse logit activations together. Specifically, the logits
fusion equation for attacking an ensemble of K models is as follows:

l(x) =
K

∑
k=1

ωkLk(x) (4)

where lk(x) are the logits output of the k-th model, ωk is the ensemble weight with ωk ≥ 0

and
K
∑

k=1
ωk = 1.

Algorithm 1 NAI-FGM
Input: A classifier f with loss function J; a clean example x and ground-truth label y;
Input: Perturbation size ε; maximum iterations T; the dimension of the input image N;
Input: Nadam decay factors µ1 and µ2; a denominator stability factor ξ.
Output: An adversarial example xadv with ||xadv − x||∞ ≤ ε.
1: α = ε ·

√
N/T

2: m0 = 0; n0 = 0; g0 = 0; xadv
0 = x

3: for t = 0 to T − 1 do
4: obtain the gradient5x J(xadv

t , y; θ)

5: gt =
5x J(xadv

t ,y;θ)
||5x J(xadv

t ,y;θ)||1
(5)

6: mt+1 = µ1 ·mt + (1− µ1) · gt (6)
7: nt+1 = µ2 · nt + (1− µ2) · g2

t (7)
8: m

′
t+1 = µ1·mt+1+(1−µ1)·gt

1−µt+1
1

(8)

9: n
′
t+1 = µ2·nt+1

1−µt+1
2

(9)

10: xadv
t+1 = Clipε

x{xadv
t + α · ( m

′
t+1√
n′t+1+ξ

/|| m
′
t+1√
n′t+1+ξ

||2)} (10)

11: end for
12: return xadv = xadv

T

3.5. Differences from Existing Advanced Attacks

In Table 1, we compare the proposed NAI-FGM with various advanced gradient-based
attacks according to the features of different algorithms. The meanings of all the features in
the table are mentioned in Section 3.3. Here we can clearly draw the difference between
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NAI-FGM and any attack algorithm in the table. For example, compared with AI-FGM,
we add a look-ahead momentum vector to optimize the gradient calculation and adopt a
constant step size to add perturbation to the image. For another example, we introduce
the second momentum and adaptive learning rate component on the basis of NI-FGSM,
and replace the limit of L∞ on adversarial perturbation with L2.

Table 1. The differences between gradient-based attacks.

Feature FGSM I-FGSM MI-FGSM NI-FGSM AI-FGM NAI-FGM

The one-step attack Yes
The iterative attack Yes Yes Yes Yes Yes

The momentum/The first momentum Yes Yes Yes
The second momentum Yes Yes

The look-ahead momentum vector Yes Yes
The adaptive learning rate component Yes Yes

The constant step size Yes Yes Yes Yes Yes
The variable step size Yes

L∞ norm Yes Yes Yes Yes
L2 norm Yes Yes

Table 2 provides a distinction between the current state-of-the-art attacks with input
transformations. Each attack in the table has a different input transformation method.
In particular, ATTA is quite different from the input transformation methods of other
attacks. ATTA first trains an additional adversarial transformation network to destroy
the perturbation, and then makes the generated adversarial examples resistant to this
transformation, thus enhancing the transferability of the adversarial examples.

Table 2. The difference between attacks with input transformations.

Feature DIM TIM SIM ATTA

Transformation method of input image Resizing and padding Translation Scaling Blurring and coloring

4. Experiments

We conduct relevant experiments for NAI-FGM and compare it with some advanced
attacks. In Section 4.1, the detailed experimental setup is described. In Section 4.2, we show
the experimental results of attacking a single network model using gradient-based methods
and combined data and model enhancement methods respectively. In Section 4.3, we
provide experimental results of attacking an ensemble of models using several momentum-
based iterative methods. Finally, we investigate the influence of NAI-FGM on the at-
tack effect under different hyperparameter settings in Section 4.4. Additionally, we give
suggestions for the values of the relevant parameters involved in the attack based on the
experimental findings.

4.1. Experimental Setup

Dataset. We use 1000 images from the ImageNet dataset [37], which are randomly
selected from different categories. Almost all images are able to be correctly classified by
the networks we tested. Before using this dataset, these images are preprocessed to a size
of 299 × 299 × 3.

Models. We consider testing the proposed attack method on seven networks, including
normally trained models—Inception-v3 (Inc-v3) [23], Inception-v4 (Inc-v4), Inception-
Resnet-v2 (IncRes-v2) [38] and Resnet-v2-101 (Res-101) [2], and adversarially trained
models—Inc-v3ens3, Inc-v3ens4 and IncRes-v2ens [9].

Hyper-parameters. We set the maximum perturbation ε = 16 of each pixel, total
iteration number T = 10, step size α = ε/T and decay factor µ = 1.0 [13]. We set the
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transformation probability p = 0.5 of input images for DIM [17] and the size of the Gaussian
kernel matrix to 7 × 7 for TIM [18]. For SIM [14], we set up five scale copies. For NAI-FGM,
the denominator stability factor is set to ξ = 10−8, the Nadam decay factors µ1 = 0.99 and
µ2 = 0.999 [16]. Additionally, the dimension N of the input image is set to 299 × 299 × 3,
step size α = ε ·

√
N/T.

4.2. Attack a Single Model
4.2.1. Comparison with Advanced Gradient-Based Attacks

First, we compare and test the attack performance of FGSM, I-FGSM, MI-FGSM and
NAI-FGM on seven models. The experimental results are presented in Table 3, where *
indicate the white-box attacks and the data in bold indicates the highest success rates of
four attack algorithms for testing the same model. We use the four network models in the
first column to produce adversarial examples by four attacks mentioned above. The seven
network models in the first row are used for testing transferable effects of these adversarial
examples. The attack success rate is used as an assessment indicator for the transferable
effect of the adversarial example. Here, the attack success rate means the percentage of
the number of adversarial images that can cause the test model to misclassify to the total
number of adversarial images generated by each attack. In addition, in the last two columns
of the table, we evaluate and calculate the time complexity of various attack algorithms
and the generation time of each adversarial example.

Table 3. The success rates (%) of NAI-FGM compared to advanced gradient-based attacks when
attacking a single model. * indicates the white-box attacks.

Model Attack Inc-v3 Inc-v4 IncRes-v2 Res-101 Inc-v3ens3 Inc-v3ens4 IncRes-v2ens Time Complexity
The Generation
Time (s) of an

Adversarial Example

Inc-v3

FGSM 67.7 * 26.4 25.7 24.7 10.2 10.1 4.8 O(1) 0.3
I-FGSM 100.0 * 22.2 19.4 15.4 5.8 5.4 3.1 O(n) 2.3

MI-FGSM 100.0 * 44.7 41.6 35.4 14.6 12.4 6.2 O(n) 3.5
NAI-FGM 100.0 * 47.5 44.6 36.1 16.7 14.3 8.6 O(n) 2.2

Inc-v4

FGSM 27.9 52.5 * 23.0 23.3 9.9 9.8 5.6 O(1) 0.4
I-FGSM 31.6 99.9 * 21.8 20.9 5.6 6.6 4.1 O(n) 4.2

MI-FGSM 55.2 99.7 * 46.1 41.1 16.5 15.0 7.7 O(n) 6.9
NAI-FGM 60.4 100.0 * 49.6 43.1 19.7 18.7 9.7 O(n) 4.1

IncRes-v2

FGSM 27.3 20.2 42.3 * 24.5 9.9 9.5 5.8 O(1) 0.5
I-FGSM 32.5 26.2 98.1 * 21.1 7.7 6.6 4.9 O(n) 4.7

MI-FGSM 60.1 51.4 98.0 * 45.2 21.8 16.8 11.6 O(n) 7.8
NAI-FGM 61.7 52.0 98.5 * 45.1 27.0 20.5 15.6 O(n) 4.9

Res-101

FGSM 36.7 31.4 30.4 78.5 * 15.1 13.6 7.2 O(1) 0.5
I-FGSM 31.4 25.3 23.5 99.8 * 9.0 8.7 5.4 O(n) 5.0

MI-FGSM 57.7 51.5 48.8 99.3 * 25.0 21.2 12.9 O(n) 8.1
NAI-FGM 59.2 54.2 49.7 99.9 * 27.9 26.1 17.0 O(n) 5.1

We can observe that the success rate of all the other three iterative attacks in the white-
box setting is almost 100% except the one-step attack FGSM. This indicates that iterative
attacks have a significant advantage over one-step attacks. Meanwhile, I-FGSM show the
worst results among the six black-box tests in comparison to the other attacks. Therefore,
in subsequent experiments, we only compare with momentum-based attacks. And in
the black-box situation, NAI-FGM has the highest success rate among these four attack
methods. For example, NAI-FGM achieved a 100% white-box success rate when attacking
Inc-v3, which is the same effect as I-FGSM and MI-FGSM. In addition, the success rate
of NAI-FGM is 60.4% and 18.7% when the adversarial examples produced on Inc-v4 are
transferred to Inc-v3 and Inc-v3ens4. Nevertheless, the success rate of MI-FGSM with good
transferability is 55.2% and 15.0%, respectively, which fully demonstrates the advantage of
NAI-FGM in improving attack transferability.

Moreover, from the time complexity point of view, the time complexity of iterative
attacks is O(1), while that of single-step attacks is O(n). This indicates that iterative attacks
consume more time. Meanwhile, the time to generate an adversarial example for NAI-FGM
under Res-101 is 5.1 s, compared to 8.1 s for MI-FGSM and 5.0 s for I-FGSM. This shows
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that NAI-FGM only needs to spend approximately the same time as I-FGSM to obtain
better effects than MI-FGSM.

4.2.2. Comparison with Momentum-Based Iterative Attacks with Input Transformations

The work of DIM, TIM and SIM shows that integrating the ideas of data augmentation
and model augmentation into gradient-based adversarial attacks can significantly improve
the transferability. Therefore, we combine NAI-FGM and two other momentum-based
iterative attacks (MI-FGSM, NI-FGSM) with the above mentioned enhancement methods,
called NAI-DI-TI-SI-FGM, MI-DI-TI-SI-FGSM and NI-DI-TI-SI-FGSM. We use these three
methods to attack a single model and compare the success rates.

From Table 4 we can observe that NAI-DI-TI-SI-FGM has significantly higher success
rates in testing the three adversarially trained networks. Specially, the success rate of
NAI-DI-TI-SI-FGM outperforms NI-DI-TI-SI-FGSM against adversarially trained models
by 5–15%, and the average success rate of NAI-DI-TI-SI-FGM increased by more than 5%
of MI-DI-TI-SI-FGSM. As described in Table 2, the integrated methods enable the attack to
be transferred more effectively.

Table 4. Comparison of the success rates (%) of attacking a single model by three momentum-based
iterative attacks with input transformations. * indicates the white-box attacks.

Model Attack Inc-v3 Inc-v4 IncRes-v2 Res-101 Inc-v3ens3 Inc-v3ens4 IncRes-v2ens Time Complexity

The
Generation
Time (s) of

an
Adversarial

Example

Inc-v3
MI-DI-TI-SI-FGSM 99.5 * 85.0 80.5 76.0 65.1 62.5 47.5 O(n2) 10.5
NI-DI-TI-SI-FGSM 99.5 * 84.3 81.0 77.2 60.1 56.6 40.1 O(n2) 10.5
NAI-DI-TI-SI-FGM 99.5 * 87.0 81.3 76.4 70.4 70.0 51.6 O(n2) 10.5

Inc-v4
MI-DI-TI-SI-FGSM 86.2 98.8 * 82.6 77.1 70.0 67.5 56.7 O(n2) 19.8
NI-DI-TI-SI-FGSM 87.1 99.6 * 83.7 77.5 66.5 62.8 50.0 O(n2) 19.8
NAI-DI-TI-SI-FGM 87.8 98.6 * 83.8 78.7 75.9 70.4 60.9 O(n2) 20.0

IncRes-v2
MI-DI-TI-SI-FGSM 88.7 86.4 98.4 * 83.9 78.6 74.5 72.6 O(n2) 21.7
NI-DI-TI-SI-FGSM 89.6 88.5 99.5 * 83.1 73.0 67.6 63.5 O(n2) 22.0
NAI-DI-TI-SI-FGM 90.1 88.6 98.5 * 85.4 82.7 79.3 78.0 O(n2) 22.0

Res-101
MI-DI-TI-SI-FGSM 85.5 81.7 84.3 98.9 * 75.8 71.7 62.1 O(n2) 22.8
NI-DI-TI-SI-FGSM 85.7 84.0 85.0 99.6 * 72.9 67.8 57.3 O(n2) 22.4
NAI-DI-TI-SI-FGM 86.4 83.5 84.6 98.9 * 80.4 76.8 69.4 O(n2) 22.5

4.3. Attack an Ensemble of Models

Furthermore, we also implement ensemble attacks on multiple network models si-
multaneously with NAI-FGM and NAI-DI-TI-SI-FGM, respectively. Specifically, we attack
the ensemble of Inc-v3, Inc-v4, IncRes-v2, and Res-101, and each model is set to the same
ensemble weights, that is, ωk = 1/4. It is worth noting that we set up 2 scale copies of the
SIM for the time cost.

From Table 5 we can observe that the success rates of NAI-FGM in attacking the
three adversarially trained models can improve MI-FGSM by more than 8% and NI-FGSM
by more than 11%. In addition, NAI-DI-TI-SI-FGM obtains 88.9–93.0% attack success
rates on all three adversarially training models. However, MI-DI-TI-SI-FGSM and NI-DI-
TI-SI-FGSM only obtained the corresponding 81.2–88.5% and 83.0–91.7% attack success
rates, respectively, further demonstrating the advantage of NAI-DI-TI-SI-FGM. Meanwhile,
the proposed method can still maintain similar white-box success rates as the two other
momentum-based iterative attacks.
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Table 5. Comparison of the success rates (%) of various advanced momentum-based iterative attacks
when attacking an ensemble of models. The bolded data indicates the highest success rate for the
same type of attack.

Attack Inc-v3 Inc-v4 IncRes-v2 Res-101 Inc-v3ens3 Inc-v3ens4 IncRes-v2ens Time Complexity
The Generation Time (s)

of an Adversarial
Example

MI-FGSM 99.9 99.6 99.3 99.0 47.8 43.2 28.0 O(n) 14.6
NI-FGSM 100.0 99.9 99.9 100.0 46.1 40.6 25.9 O(n) 14.8
NAI-FGM 100.0 100.0 99.5 100.0 57.4 52.1 36.1 O(n) 14.8

MI-DI-TI-SI-FGSM 99.6 99.4 99.0 99.4 88.5 87.4 81.2 O(n2) 30.4
NI-DI-TI-SI-FGSM 100.0 99.9 99.8 100.0 91.7 88.4 83.0 O(n2) 30.9
NAI-DI-TI-SI-FGM 99.9 99.9 99.8 99.9 93.0 92.0 88.9 O(n2) 31.2

4.4. Study on Hyperparameters

Decay factors µ1 and µ2. First, we study the effects of the decay factors µ1 and µ2
on the attack performance. We produce adversarial examples on Inc-v3 and test them on
Inc-v3, Inc-v4 and Inc-v3ens4. These three models are chosen because they represent a
white-box attack, an attack against an undefended model and an attack against a defended
model, respectively. This makes our study more adequate and experimental findings more
general. Figure 4 shows the attack effect of NAI-FGM with different decay factor settings.
In the experiment, µ1 and µ2 are set to the same value and the size varies from 0.1 to 0.9 in
step of 0.1. From the Figure 4, we can observe that the success rate of the white-box model
remains at 100% as µ1 and µ2 increase, and the success rates of the two black-box models
as a whole are increasing.

From this, we can draw a preliminary conclusion that the size of the decay factor is
irrelevant to the effectiveness of the white-box attack. Meanwhile, as the gradual grow of
the value of the decay factor, the effect of the black-box attack improve accordingly. Also,
since we first set the values of the two decay factors in the interval [0.1, 0.9], then we should
continue to explore in the interval with values [0.9, 1). Here, values of the two decay factors
cannot be set to 0, 1 or other range of values due to the limitation of our algorithm.

To further study the optimal values of the two decay factors on the attack performance,
we choose different combinations of values for µ1 and µ2 in the interval of [0.9, 1) to test
the success rate of NAI-FGM. From Table 6 we can observe that the maximum values
of the success rate of each model of the attack fall in the interval of µ1 ∈ (0.99, 0.999).
Additionally, we conjecture that the sensitivity of different models to the decay factors µ1
and µ2 may be different, but the optimal value of µ1 should be in the interval of (0.99, 1)
and the optimal value of µ2 should be in the interval of (0.9, 1). Therefore, we can select
and set the optimal value of the decay factor according to the specific attack target. In this
experiment, we set the values of µ1 and µ2 to 0.99 and 0.999, respectively.

Size of perturbation ε. Second, we study the effect of the ε on the attack performance.
Figure 5 demonstrates the effect of NAI-FGM attack at different sizes of perturbation. In this
experiment, the size of perturbation ε varies from 0 to 20 in step of 2. From the Figure 5, we
can clearly see that the success rate of the white-box model of NAI-FGM can reach 100%
very quickly. Additionally, The effectiveness of the attack under the six black-box models
tested improves with increasing of ε.

However, the larger the perturbation value, the worse the visual effect of the antagonis-
tic example produced by the attack will be. Ultimately, we propose to set the perturbation
size of NAI-FGM to ε = 16.
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Figure 4. Attack success rates (%) of NAI-FGM on three networks using adversarial examples
produced on Inc-v3 with different decay factors.

Table 6. Attack success rates (%) of NAI-FGM on seven networks using adversarial examples
produced on Inc-v3 with different combinations of decay factors. The data marked with * indicate
the highest success rate on each black-box model, and the bolded data indicate the success rate that is
in the largest integer interval in each model.

µ1 & µ2 Inc-v3 Inc-v4 IncRes-v2 Res-101 Inc-v3ens3 Inc-v3ens4 IncRes-v2ens

0.9 & 0.9 100.0 45.8 42.1 35.2 15.9 14.3 8.0
0.9 & 0.99 100.0 45.4 41.2 35.8 15.9 14.0 7.0

0.9 & 0.999 100.0 44.3 42.8 35.2 15.3 14.2 7.9
0.99 & 0.9 100.0 47.4 44.9 * 37.9 * 17.1 13.7 8.5

0.99 & 0.99 100.0 47.6 44.4 36.6 16.8 14.3 8.5
0.99 & 0.999 100.0 47.5 44.6 36.1 16.7 14.3 8.6 *
0.999 & 0.9 100.0 47.7 * 44.4 37.1 17.1 14.6 * 7.7
0.999 & 0.99 100.0 46.2 44.2 36.8 17.4 * 14.5 7.6

0.999 & 0.999 100.0 46.6 44.9 * 37.4 17.4 * 14.1 8.2

Total iteration number T. Finally, we study the effect of the T on the attack performance
against three adversarially trained black-box models. Figure 6 shows the effect of three
momentum-based iterative attacks (NAI-FGM, MI-FGSM and NI-FGSM) with different
iteration number. In this experiment, T varies from 2 to 16 in step of 2. We use adversarial
examples produced on Inc-v3 to attack Inc-v3ens3, Inc-v3ens4 and IncRes-v2ens models.
From figure (a), (b) and (c), we can observe that the overall success rates of NAI-FGM
outperform MI-FGSM and NI-FGSM for different black-box model settings and different
iteration number settings. Because the points on the red line representing the success
rate of the NAI-FGM are above the blue and green line points. From another perspective,
NAI-FGM requires only fewer iterations to can obtain similar success rates as other two
attacks. This indicates that NAI-FGM requires less time cost when the success rates are the
same. For example, when attacking the Inc-v3ens3, NAI-FGM achieves a success rate of
about 15% in only 4 iterations, while MI-FGSM requires 10 iterations, which fully shows
the advantages of NAI-FGM.

In addition, Figure 6 presents that the attack success rate curve of NAI-FGM under
different iteration number settings undergoes a slight oscillation. However, with T increases,
the attack effect is getting better in the overall. Therefore, we can derive that the greater the
number of iterations, the better the attack effect, but the corresponding time cost will also
increase. Ultimately, we propose to set the number of iterations of NAI-FGM to T = 10.
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Figure 5. Attack success rates (%) of NAI-FGM on seven networks with Inc-v3 as the origin model
with different sizes of perturbation.

(a) Inc-v3ens3 (b) Inc-v3ens4 (c) IncRes-v2ens

Figure 6. Attack success rates (%) of NAI-FGM, MI-FGSM and NI-FGSM on three adversarially
trained networks with Inc-v3 as the origin model with different number of iterations.

5. Discussion

We design a new adversarial example generation algorithm: NAI-FGM. First, a look-
ahead momentum component is added to MI-FGSM, which speeds up the convergence
of the loss function and gets rid of the poorer local maxima. Secondly, we introduce an
adaptive learning rate component to obtain an adaptive update direction based on the
current gradient information and converge to a better local extreme point. After extensive
experimental validation, our approach mitigates the overfitting effect of the adversarial
examples produced in the current attack methods and enhances the transferability of them
to some extent.

However, our method still has some shortcomings. For example, without combining
input transformation and integration, our black-box attack success rate is only about 50%
for the undefended model. Additionally, our attack success rate is still less than 30% for the
model with defense. This indicates that the transfer-based attacks still need to be improved.
We conjecture that it may be due to the fact that our study only produces adversarial
examples relied on the information of the current gradient, and does not consider the
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gradient information of multiple samples in different time states. This is an important
reason why the attack is less effective under black-box testing and it is something that will
be investigated in our next work.

In future research, we will also consider linking adversarial attacks to IoT-related
technologies. In particular, in the field of communication, the attack efficiency is quite
sensitive to the latency of data processing. How to trade-off and choose between time cost,
complexity of training alternative models and attack algorithm performance is the issue we
have to focus on.

6. Conclusions

In this work, we propose the Nadam iterative fast gradient method (NAI-FGM) to
boost adversarial attacks from the perspective of improving the transferability of adversarial
examples. Although our attack is based on MI-FGSM with improvements, there are still
some differences. First, the momentum term of MI-FGSM accumulates only the sum of
the gradients during the iteration. While the first momentum term of NAI-FGM is used to
accumulate the gradient sums, the second momentum term gathers the sum of squares of
the gradients. Meanwhile, the second momentum term constitutes the adaptive learning
rate component, which is used to help the adversarial example to converge to a better
extreme point by obtaining adaptive update directions according to the current parameters.
Second, we introduce the look-ahead momentum vector, which is dedicated to make the
loss function converge faster and get rid of the poor local maximum. Thirdly, we use
L2 norm instead of L∞ norm to calculate the direction of change of the current gradient,
with the aim of matching our algorithm to obtain adaptive update directions.

Experimental results indicate that NAI-FGM realizes obviously higher attack success
rates in the black-box case and obtains similar success rates against the white-box models
compared to traditional momentum-based iterative attack methods. In particular, when
using the adversarial examples produced by way of ensemble attack to test the adversari-
ally trained models, the NAI-FGM improves the success rate by 8% to 11% over the other
attack methods on attacking ensemble models. Last but not least, the NAI-DI-TI-SI-FGM
combined with the input transformation achieves a high success rate of 91.3% on average.
This poses higher requirements and greater challenges to the security of DNNs. There-
fore, it is urgent and necessary to study and design models with better performance and
higher robustness.
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Abstract: Traditional audio steganography by cover modification causes changes to the cover features
during the embedding of a secret, which is easy to detect with emerging neural-network steganalysis
tools. To address the problem, this paper proposes a coverless audio-steganography model to conceal
a secret audio. In this method, the stego-audio is directly synthesized by our model, which is based
on the WaveGAN framework. An extractor is meticulously designed to reconstruct the secret audio,
and it contains resolution blocks to learn the different resolution features. The method does not
perform any modification to an existing or generated cover, and as far as we know, this is the first
directly generated stego-audio. The experimental results also show that it is difficult for the current
steganalysis methods to detect the existence of a secret in the stego-audio generated by our method
because there is no cover audio. The MOS metric indicates that the generated stego-audio has high
audio quality. The steganography capacity can be measured from two perspectives, one is that it
can reach 50% of the stego-audio from the simple size perspective, the other is that 22–37 bits can
be hidden in a two-second stego-audio from the semantic. In addition, we prove using spectrum
diagrams in different forms that the extractor can reconstruct the secret audio successfully on hearing,
which guarantees complete semantic transmission. Finally, the experiment of noise impacts on the
stego-audio transmission shows that the extractor can still completely reconstruct the semantics of
the secret audios, which indicates that the proposed method has good robustness.

Keywords: audio steganography; coverless steganography; GAN; covert communication; informa-
tion hiding

1. Introduction

The many rapidly developed internet technologies make our lives more convenient.
However, in some cases, there is a strong demand for a private secure transmission that can
prevent a message from being disclosed. Information hiding is an important technology to
protect private information. Currently, information hiding technology has been developed
into two branches: digital steganography and digital watermarking technology [1]. The
former is mainly used for covert communication, and the latter is mainly used for copyright
protection. Steganography is an art and science that hides a secret in one or more covers
and then the stego-objects are transmitted in public channels without being noticed.

At present, the digital covers for steganography include texts, images, audios, videos,
and network traffic. With the prevalence of social networks supporting short audio files [2]
and the popularization of VoIP services [3], audio has become a popular media. This
prevalence is one feature of the best covers. Our hearing system is not very sensitive, and
audio files have large redundancy. Therefore, audio has become a main cover for digital
steganography. Traditional audio steganography mainly utilizes the redundancy of audio
to embed a secret [4]. This kind of embedding generally performs some modifications to
the cover, which, in turn, leads to changes to the cover features.

A third party can detect the existence of a secret in such a stego-audio by analyzing
the changes to the statistical features. More importantly, with the emergence of various
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new detection tools, especially those based on the neural networks and deep-learning
technologies, the detection accuracy has become very high [5]. Table 1 shows the detection
accuracy of different steganalysis methods based on deep-learning technologies for the
traditional steganography methods by cover modification with the difference embedding
rates. The high detection accuracy shows that the traditional audio steganography by
cover modification has lost its utility. Compared to steganography by cover modification,
steganography by cover generation aims to generate a natural cover to cope with the
detection issues caused by cover modification.

Generative Adversarial Networks (GANs) [6] are an important technology to realize
steganography by cover generation, and they have been applied in audio covers. Ref. [7]
first proposed audio steganography based on adversarial examples to modify an existing
audio cover. Ref. [8] encoded the cover audio and the secret audio to generate a stego-audio
automatically based on a GAN. Ref. [9] proposed a framework based on a GAN to achieve
optimal embedding for audio steganography in the temporal domain. Ref. [10] employed
LSBM steganography to embed a secret into a generated cover with high security.

In [11], the secret audio and cover audio were preprocessed using the time-domain
zero-padding method and then input into the encoder to generate the stego-audio, which
improved the security greatly. Ref. [12] proposed end-to-end audio steganography, and the
encoder encoded the secret message into the audio cover. However, the encoder generated
a modified vector of the audio sample value instead of stego-audio, which greatly reduced
the distortion caused by message embedding.

Although these previous works utilized GANs for audio steganography, they per-
formed modifications on an existing or generated cover, and a third party can still detect the
existence of a secret in the stego-audio by analyzing the changes to the statistical features
of the generated cover. As far as we know, there are currently no steganography methods
that directly generate a stego-audio without a cover-audio.

Table 1. The detection accuracy of different steganalysis methods based on deep learning under the
different embedding rates.

Steganalysis Methods Steganography Methods Embedding Rates Accuracy

Spec-ResNet [13] LSB-EE [4]

0.1 0.9151
0.2 0.946
0.3 0.9608
0.5 0.9724

LARxNet [5] SIGN [14]

0.1 0.9427
0.2 0.9665
0.3 0.9854
0.5 0.9912

WASDN [15] MIN [16]

0.1 0.9357
0.2 0.9572
0.3 0.9643
0.5 0.9881

MultiSpecNet [17] LSB-EE [4]

0.1 0.9433
0.2 0.957
0.3 0.9675
0.5 0.9796

In this paper, a coverless audio steganography that does not perform any modification
to an existing or generated cover is proposed. Herein, being coverless does not mean
that there is no media to carry a secret, instead, it means that there is not any embedding
operation on the existing or generated cover [18].
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Consequently, the stego-audio is directly generated without a cover in this work.
Therefore, the proposed method only needs to transmit the stego-audio. For attackers, there
is no cover to refer to. This application scenario has better security than the traditional
audio steganography by cover modification. The main contributions of this paper are
summarized as follows:

(1) A coverless audio-steganography model is proposed based on the general audio
synthesis framework WaveGAN [19] to directly synthesize a stego-audio instead of
modifying an existing or generated audio to generate a stego-audio. A post-processing
layer is replenished in the original WaveGAN generator to improve the quality of
the generated stego-audio. The loss metrics indicate that the improved model has
good convergence performance. Furthermore, extensive experiments show that this
steganography method has high security and undetectability. Some previous works
have utilized GAN for audio steganography; however, those works either modified
an existing audio or perform certain changes on a generated one. As far as we know,
our method is the first directly generated stego-audio.

(2) As an essential part of a steganography method, an extractor is carefully designed
to reconstruct the secret audio from the stego-audio. This consists of five resolution
blocks, which are composed with a residual network structure to learn the acoustic
features of different frequency bands on the audio spectrum, and this can effectively
reduce feature loss. The experimental results show that this extractor can guarantee
the complete transmission of a secret audio in both auditory and semantic aspects.

(3) The proposed method does not perform any embedding operation on the existing
or generated audio cover, and the distributions of the sample value of the stego-
audio and real audio are the same, which can fundamentally resist detection from
steganalysis tools.

The rest of this paper is organized as follows. The relevant literature is summarized
and analyzed in Section 2. Section 3 describes the details of the proposed method. Our
experiments and analyses are presented in Section 4 to verify the performance. Finally, our
conclusions are given in Section 5.

2. Related Work

Traditional audio steganography can be implemented in three domains: the time
domain, transform domain, and compression domain [20]. In the time domain, the most
common is Least Significant Bit (LSB) steganography [21], whose basic idea is to replace
the least significant bit in audio sample values with a secret bit. Other typical audio
steganography methods in this domain include echo steganography [22], which utilizes
the masking effect of the human auditory system; spread spectrum steganography [23], in
which, a narrow band information signal is expanded over a wide frequency range; and
Quantized Index Modulation steganography (QIM), which treats a secret message as a
quantization index [24].

The transform domains used for audio steganography methods include discrete
Fourier transform (DFT) [25], discrete cosine transform (DCT) [26] and discrete wavelet
transform (DWT) [27]. With the development of audio compression technologies, au-
dio encoded in a compressed way has become popular and, thus, has become a suitable
cover option. Furthermore, this kind of steganography can be categorized into three ap-
proaches [28]: one is to embed a secret into an audio cover to obtain a stego-audio and then
compress it, another is to directly embed a secret into a compressed audio cover, and the
last is to decompress the compressed cover and embed a secret and then recompress it to
obtain a stego-audio.

GANs [6] were, first, applied to natural language processing [29], computer vision [30],
and other fields and are gradually being employed in the information hiding field. Until
now, most steganography methods based on GANs took images as covers. Furthermore,
coverless image steganography based on GANs is becoming a research hotspot and has
also achieved some fruitful research findings. In 2017, Volkhonskiy et al. [31] opened up a
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new space for a GAN in information hiding fields and proposed a DCGAN based image
steganography model, which consists of three parts: a generator (G), a discriminator (D),
and a steganalyzer (S).

Ref. [32] proposed an adaptive steganography method based on a GAN by learning the
embedding cost for image steganography, and this outperformed hand-crafted steganogra-
phy algorithms for the first time in all kinds of steganographic performance. Furthermore,
ref. [18] encoded a secret into a cover image using GAN to generate a stego-image. The
stego-image is visually indistinguishable from its corresponding cover image. Although
a stego-image is generated in this method, the cover is modified. Furthermore, the ste-
ganalysis methods can still detect the existence of a secret in the generated stego-image by
analyzing the changes to the statistical features.

Ref. [33] first realized coverless information hiding based on a GAN, where the stego-
image was directly generated by replacing the class labels of the input data with a secret as a
driver, and then the secret was extracted from the stego-image by the discriminator. Herein,
as mentioned above, ’coverless’ does not mean that there is no media to carry a secret;
instead, it means that it does not perform any embedding operation on an existing cover.

Ref. [34] also proposed a coverless image information hiding method, which employed
the Wasserstein Generative Adversarial Network (WGAN) and was driven by a secret
image to generate a stego-image directly without performing any modification to either the
existing cover or a generated cover. In 2021, a cryptographic coverless information hiding
method [35] was proposed, which utilized a generative model to transmit a secret image
between two different image domains. Aiming at the problem of face privacy leakage in
social robots, ref. [36] proposed a visual face privacy protection method. Based on the
above knowledge, it can be seen that GANs have been well applied in image covers.

Due to the great achievements of GANs regarding images, they have been gradu-
ally applied to audio media, such as audio synthesis [37], speech enhancement [38], and
speech emotion [39]. In 2019, a general audio synthesis framework based on DCGAN,
named WaveGAN [19], was proposed. WaveGAN is the first attempt to employ a GAN
to synthesize raw waveform audio in an unsupervised way. Its main work is to flatten a
two-dimensional DCGAN into a one-dimensional model due to the different structures of
images and audios.

This contribution provided a new idea for generative audio steganography. In addition,
the existing generative audio steganography still needs a cover, which might be an existing
cover or a generated cover, and this still relies on the security and robustness of the
algorithm as in the traditional methods. Therefore, in order to fundamentally resist the
detection of the steganography analysis tools, this paper proposes audio steganography
based on WaveGAN that directly generates a stego-audio driven by a secret audio without
any modification.

3. The Coverless Audio Steganography Framework

In this section, a coverless audio steganography method is proposed based on Wave-
GAN, which directly generates a stego-audio when a secret audio is input. In addition, the
reconstruction module is designed to reconstruct the secret message from the stego-audio.
In order to describe the proposed method more clearly, the relevant symbols in this paper
are summarized in Table 2.
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Table 2. The meanings of the main symbols used in this paper.

Symbol The Meaning

R, S Real dataset, Secret dataset
θ Network parameters
r, s Real audio, Secret audio
D, G, E Discriminator, Generator, Extractor
B Batch size
M, N The number of rows and columns in an audio 2-D array
MD The matrix of the MFCC distance
C The number of correctly recognized audios
T Total number of tested audios

Xspec, Yspec
The matrix obtained by short-time Fourier transform of the secret audio and the
reconstructed secret audio

X, Y The norm matrixes, representing the norms of each elements in Xspec and Yspec,
respectively.

D f ake
The probability of misattribution that the discriminator regards the input
stego-audio from the generator as a real audio

Dreal
The probability that the discriminator regards the input real audio from the real
dataset as a real audio

Dvalid
f ake

The probability of misattribution that the discriminator regards the input
stego-audio from the generator as a real audio in the validation procedure

Dvalid
real

The probability that the discriminator regards the input real audio from the
validation dataset as a real audio

gp The clipped gradient norm in the training dataset
gpvalid The clipped gradient norm in the validation dataset

3.1. The Proposed Method

A complete steganography algorithm includes the process of hiding a secret and
extracting a secret. Similarly, a complete coverless steganography algorithm also includes
the generation module of the stego-audio and the extraction module of the secret messages.
Therefore, the proposed model is divided into two subsections: the generation module
and the reconstruction module. The entire model is illustrated in Figure 1. Furthermore,
each module is introduced in detail from two perspectives: the function perspective and its
network architecture perspective.

Secret audio Generator

Stego-audio Discriminator Score

Audio samples 

in real dataset
Input

Output

Input

Extractor
Reconstructed 

secret audio

Input

Output

The reconstruction module

The generation module

Input

Figure 1. The model of the proposed steganography.
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3.1.1. The Generation Module

In this paper, the stego-audios are expected to be generated directly. Therefore, the
audio synthesis model WaveGAN is applied to the generation module, which consists of
a generator and a discriminator, to generate stego-audios. However, it was improved as
follows: First, instead of a noise being fed into the WaveGAN, a secret audio is input into
the generator. Second, a post-processing layer is added after the generator. Consequently,
the secret audio will be transformed into a stego-audio in our model.

At the same time, for the sake of security, an essential demand is that the feature distri-
bution and the auditory characteristics of the stego-audio should be the same as the audios
in the real dataset. In order to meet the above security requirements, the discriminator is
used to guide the training of the generator to generate a more authentic stego-audio. When
the stego-audio or real audio is input to the discriminator, the discriminant score will be
obtained. Specifically, the stego-audio is input to the discriminator to output the probability
D f ake, and the real audio is input to output the probability Dreal . These two probabilities
will be used to calculate the loss functions to optimize this model.

The design principle of the generation module is essentially audio generation, and
the audio synthesis model WaveGAN is employed as the basis of the generation module
to realize the generative steganography. The generator is composed of two parts: the
core part and the post-processing part. The core part and the discriminator are based on
the WaveGAN as shown in Figure 2. Since the audio signal is sequential, the WaveGAN
model employs 1D convolution (Conv1d) to extract sequential features. The core part of
the generator consists of a linear layer, five groups of transposed convolutions and their
activation functions.

After the secret audio is input to the generator, the secret audio will be input to
the post-processing part after passing through the core part to obtain the final stego-
audio. The structure of the discriminator is in the opposite state to the core part of the
generator. The discriminator is composed of five groups of Conv1d, a linear layer and
the activation function between them. The discriminator introduces the phase shuffle
operation after each activation function. The reason why phase shuffle is introduced is that
the transposed convolution in the generator gives the generated stego-audio strong periodic
information. Furthermore, the kind of periodic information makes the discriminator judge
the authenticity of the stego-audio only through periodicity.

Consequently, the discriminator will not work well, and the generator cannot generate
high-quality stego-audio. In order to solve the above problem, a phase-shuffling operation
is added between each Conv1d to randomly change the phase of the audio, which can
remove the periodic noise effect. Consequently, the discriminator can judge more accurately,
and the audio generated by the generator sounds more realistic.

In this work, WaveGAN is used to directly generate stego-audio and realize coverless
audio steganography. However, for the security of the steganography algorithm, it is
necessary to guarantee the audio quality of the stego-audio first. Therefore, on the basis of
using WaveGAN as the generation module, a post-processing layer is replenished to reduce
the noise and improve the quality of the generated stego-audio. The post-processing part is
supplied after the core part of the network structure in the generation module. Furthermore,
it is composed of a Conv1d layer. Subsequent ablation experiment in Section 4.4 show
that the post-processing layer effectively improves the audio quality of the generated
stego-audio.
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Figure 2. The generator and discriminator structure.

3.1.2. The Reconstruction Module

The reconstruction module is carefully designed as an extractor denoted as E. Its
design principle is that the receiver directly inputs the stego-audios into the extractor to
reconstruct the secret audios. In the scenario considered in this work, the receiver does
not have prior knowledge of the original secret audio. Therefore, in the beginning, the
reconstruction module should be trained until the reconstruction module can effectively
reconstruct the complete secret audio. The sender and receiver share the trained model.
After receiving the stego-audio, the receiver inputs it into the trained reconstruction module
to obtain the secret audio. Therefore, unlike the traditional steganography, the proposed
method does not need an extra secret key. In other words, for the steganography framework
proposed in this paper, the received stego-audio itself is the key.

Its network structure is illustrated in Figure 3. The generated stego-audios are input
into the extractor. This network includes five groups of convolution neural networks and a
full connection layer. Each group consists of a Conv1d operation and a resolution block.
The resolution block is a residual network structure consisting of four Dilated Conv1d
layers and four Conv1d layers. The Dilated Conv1d in the resolution block can provide the
different receptive fields. In addition, a residual network structure is used in the resolution
block to learn the acoustic features of different frequency bands on the audio spectrum,
which effectively reduces feature loss during training. Finally, a feature transformation is
performed through the fully connected layer to obtain the final reconstructed secret audio.
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Figure 3. The extractor structure.

3.2. The Loss Function

In this paper, two types of loss functions are defined. One is only involved in back-
propagation to guide the training; and the other is used to verify the results without
participating in the backpropagation. Among them, four loss functions are defined to guide
the model training, including Ltrain

D , Dtrain
wass , LG, and Larray.

The first two loss functions (namely, Ltrain
D and Dtrain

wass ) improve the discriminator to
judge accurately; LG guides the generator to generate more realistic stego-audios; and
Larray ensures that the reconstructed secret audios by the extractor are less loss and more
sound. At the same time, four loss functions are defined to verify the results—namely,
Lvalid

D , Dvalid
wass , Lmag, and Lsc. Lvalid

D and Dvalid
wass are used to verify the distinctive ability of the

discriminator, and Lmag and Lsc are employed to verify the reconstruction ability of the
extractor. The above loss functions are described as follows in the module that they are
located in.

In the generation module, the generator and the discriminator are trained iteratively.
The generator is optimized by minimizing D f ake to make the generated stego-audio increas-
ingly realistic, and its loss function is shown below:

LG = −
(

D f ake

)
(1)

For the discriminator, the generated stego-audio and the audio samples from the real
dataset are fed at the same time. The same loss indicators as used in the WaveGAN are
employed to optimize the discriminator, including Dtrain

wass and Ltrain
D , and they are calculated

as follows:

Ltrain
D = D f ake − Dreal + gp (2)

Dtrain
wass = Dreal − D f ake (3)

The former minimizes the distribution difference between the generated stego-audio
and the samples from the real dataset by minimizing the Wasserstein distance; the latter
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replaces the weight clipping in [40] and adds the gradient penalty [41] to strengthen the
constraints to successfully train the model.

At the same time, the discriminator, as a steganalyzer, determines whether the input
data is real audio or stego-audio, that is to say, the discriminator is used to determine
whether the input data contains the secret or not. After the continuous optimization on the
generator and the discriminator, the statistic features of the generated stego-audio are near
to the real ones to such an extent that the steganalyzer cannot determine whether the input
audio contains a secret.

In order to prevent the overfitting phenomenon, the following loss function is given
to verify the distinctive ability of the discriminator

Lvalid
D = Dvalid

f ake − Dvalid
real + gpvalid (4)

Dvalid
wass = Dvalid

real − Dvalid
f ake (5)

During the training, after a batch of secret audios are fed into the generator, stego-
audios are synthesized. In the reconstruction module, the stego-audios are fed into the
extractor to reconstruct the secret audios. Every original secret audio has one corresponding
reconstructed secret audio. Herein, the first extractor loss Larray is defined as the function
(6), and it is used to optimize the extractor in the gradient back propagation.

Larray =
1

B×M× N

B

∑
b=1

M

∑
i=1

N

∑
j=1
|sij − Eij(G(s))| (6)

Herein, the secret audio and the reconstructed secret audio are represented in the form
of multi-dimension arrays, and M and N represent the number of rows and columns of
the array, respectively. M is the frame of the audio, N is the channel of the audio, and B is
the batch size. sij represents the sampling value of the jth channel in the ith frame in the
original secret audio; Eij(G(s)) represents the element in the reconstructed secret audio
extracted by the extractor E.

To further verify the integrity of the reconstructed secret audio, the following two loss
indicators are defined, namely, Lmag and Lsc. The former is to evaluate the differences in
amplitude, and the latter is to evaluate the differences in the frequency domain. In addition,
they are only verification indicators and do not participate in the gradient back propagation.

X = ||Xspec|| (7)

Y = ||Yspec|| (8)

Lmag =
1
B

B

∑
b=1

∣∣∣logYb
e − logXb

e

∣∣∣ (9)

where Xspec and Yspec represent the matrix obtained by short-time Fourier transform of the
secret audio and the reconstructed secret audio, respectively. X and Y are the norm matrix,
whose values are the norms of the corresponding elements in Xspec and Yspec, respectively.

Lsc =
B

∑
b=1

√
∑i ∑j

(
Yb,i,j − Xb,i,j

)2

√
∑i ∑j

(
Yb,i,j

)2
(10)

where Xb,i,j is the element in X. Concretely, Xb,i,j represents the value of the element whose
time is i and frequency is j in the bth audio. Similarly, Yb,i,j represents an element in Y.

The whole training process is shown in the following pseudocode marked as Algorithm 1.
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Algorithm 1 The training process of the proposed model.

1: Initialize the real dataset R and the secret dataset S, Batch size B;
2: Initialize the generator net G with random θg;
3: Initialize the discriminator net D with random θd;
4: Initialize the extractor net E with random θe;
5: for each training iteration do
6: Sample a batch of real data (denoted as r) from R;
7: Sample a batch of secret data (denoted as sd) from S;
8: Obtain fake audio G(sd) by inputting sd to Generator;
9: Obtain D f ake by inputting fake audio G(sd) to Discriminator;

10: Update Discriminator parameters θd by minimizing:
11: Ṽ = 1

B ∑B
i=1 log D(ri) + 1

B ∑B
i=1 log(1− D( f akei)),

12: θd ← θd + η∇Ṽ(θd)
13: Sample another batch of secret data (denoted as sg) from S;
14: Update Generator parameters θg by minimizing:

15: Ṽ = 1
B ∑B

i=1 log
(

1− D
(

G
(

sg
i

)))
,

16: θg ← θg + η∇Ṽ
(
θg
)

17: Freeze Generator parameters θg and Discriminator parameters θd;
18: Sample another batch of secret data (denoted as sc) from S;
19: Update extractor parameters θe by minimizing:

20: Larray = 1
B×M×N

B
∑

b=1

M
∑

i=1

N
∑

j=1
|se

ij − Eij(G(se))|

21: θe ← θe + η∇Larray(θe)
22: end for

4. The Experiments and Analysis

In this section, extensive experiments are presented to verify the effectiveness of our
method. The proposed method was implemented using PyTorch1.18.0 and trained on
NVIDIA RTX2080 Ti GPUs, with a total of 500 training epochs. The parameter settings of
the proposed method is shown in Table 3.

Table 3. Parameter settings.

Generator Value Discriminator Value Extractor Value

TransposeConv1d Layer 5 Conv1d Layer 5 Conv1d Layer 5

Upsample Factor 4 PhaseShuffle Layer 4 Resolution Block 5

Stride 1 PhaseShuffle Factor 0.2 Dilated Conv1d Layer 4

Learning Rate 1 × 10−4 Learning Rate 1 × 10−4 Learning Rate 1 × 10−4

Two kinds of datasets are required to train our model: the secret audios and the real
dataset. The SC09 dataset was taken as the secret audios. The SC09 dataset is a subset of
the Speech Commands Dataset [42], which contains 0∼9 monophonic voice commands of
various male and female voices, and the duration of each voice command is one second.
The sampling rate of the SC09 dataset was degraded from 16,000 to 8000.

A subset [43] of the Xeno Canto [44] bird sound dataset was modified as the real
dataset, which contains 88 kinds of bird songs. In order to save computing resources, the
modifications were performed as follows: (1) convert the original flac files into wav files;
(2) crop them into two-second bird sound audios and filter out the cropped blank audios;
and (3) modify the original sampling rate from 44,100 to 8000.

A total of 800 secret audios and 1600 real audios were randomly chosen for training
in the whole experiment. Additionally, the training dataset, test dataset, and validation
dataset are split into an 80:10:10 ratio.
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4.1. Model Performance

The loss function used in the training process of the model is mentioned above, and
the experimental results are shown in Figures 4 and 5. Figure 4 shows the changes in
various loss indicators for the generator and the discriminator. Figure 5 displays the
changes in various loss indicators for the extractor. It can be seen from the above two
figures that, with the increase of the training epochs, the values of each loss indicator
tend to be stable. This shows that the model can converge well. On the premise of the
convergence performance, analysis was performed on the steganography performance and
the reconstructed secret audios.

Figure 4. The changes of the loss indicators for the generator and discriminator.

Figure 5. The changes of the loss indicators for the extractor.

4.2. Analysis on the Steganography Performance
4.2.1. The Steganographic Capacity

Steganographic capacity refers to the maximum number of bits that can hide secret
messages in a digital cover under the precondition that it cannot be detected. In the pro-
posed coverless steganography method, a two-second stego-audio is generated by the
generator driven by a one-second secret audio. Furthermore, different from the previous
steganography, the form of the secret in the proposed method is audio. In this section,
the steganographic capacity of this method is calculated from the following two perspec-
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tives: one is a general method from the size perspective; the other is calculated from the
semantic perspective.

From the first perspective, two-second stego-audio is generated directly driven by
one-second secret audio, and the ratio of their time lengths between the secret audio and
the generated stego-audio can be used to calculate the steganographic capacity. In the
proposed method, the read secret audio is fed into the generator in the form of an array,
and the stego-audio is also generated in the form of an array.

The ratio between the length of the secret audio array and the length of the generated
stego-audio array can also be used to indirectly measure its steganographic capacity. After
experimental measurement, the length of the secret audio array to be hidden is 8192, and
the length of the generated stego-audio array is 16,384. Consequently, from this perspective,
the ratio of the above two methods is 50%. As a result, the proposed method has a high
capacity according to this measure indicator.

Although the secret message is transmitted in the form of audio, what is transmitted
in essence is the semantic content in the secret audio. From the second perspective, the
semantic content in the secret audio should be extracted, and its bit-length is calculated
as its steganographic capacity. In this experiment, the duration of each secret audio is
one-second, and the semantic content is the speech command of 0∼9. The semantic content
that needs to be transmitted is uncertain. Thus, we need to calculate the semantic content
that can be generally transmitted in one second. This is expressed in letters in English and
similar languages or in alternate characters or digits in other languages.

The following takes secret messages in English as an example. The number of letters
can be an indicator of the steganography capacity. It is found that the average speaking
speed of British English reaches 198 words per minute [45]. Average word lengths were
computed in the range of 6.665∼11.14 [46]. According to ASCII or UTF-8 encoding rules,
an English letter is equal to 8 bits. Therefore, it can be concluded that the words that can
be speech per minute occupy an average of about 1320∼2206 bits. As a result, it can be
calculated that 22∼37 bits of semantic content can be transmitted in a one-second audio.

4.2.2. The Audio Quality

In the proposed method, the stego-audio is generated directly. It must be ensured
that the generated stego-audios are acoustically indistinguishable from the natural audios.
Therefore, a subjective indicator, MOS (Mean Opinion Score) [47], was chosen to measure
the quality of the generated stego-audio. It adopts five levels to evaluate the quality of the
tested speech. Thirty listeners were selected to rate the generated stego-audio. Before that,
each listener was required to listen to a series of audio samples from the real dataset to
ensure that they have the same standard as much as possible.

Ten stego-audios were selected randomly for the experiment. Each listener listened to
the ten audios and gave a score. Thus, each stego-audio received 30 scores from 30 different
listeners. Finally, the average score of each stego-audio was calculated in turn, and these
are listed in Table 4. This shows that the generated stego-audio had high quality and low
distortion. The average MOS of the above stego-audios was further calculated as 4.15,
indicating that it is not easy for third parties to detect the existence of the secret message.

Table 4. The average MOS of ten randomly selected stego-audios generated by this model with a
post-processing layer.

The Stego-Audios 1 2 3 4 5 6 7 8 9 10

The average MOS 4.13 4.09 4.17 4.09 4.21 4.12 4.25 4.14 4.01 4.30

4.2.3. The Authenticity in Statistical Characteristics

In order to prevent third parties from detecting the presence of the secret message, it
is necessary to ensure not only the speech quality of the generated stego-audio but also its
authenticity compared with the real audio. Therefore, in this section, two different methods
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were meticulously designed to verify the authenticity of the generated stego-audio in terms
of the statistical characteristics.

Kernel Density Estimation

The GAN makes it impossible to find the real audio in the real dataset corresponding
to a given stego-audio. That is to say, there is no one-to-one relationship between a stego-
audio and a real audio. Kernel Density Estimation (KDE) is usually used to estimate
the unknown density function in the probability theory, which is one nonparametric test
method. The distribution of the sample data itself can be seen intuitively through the kernel
density estimation diagram. Therefore, KDE is employed to calculate the distribution of
the generated stego-audios and real audios.

To calculate their sample value distribution, ten audios were randomly selected from
the generated stego-audios and real audios, respectively. The statistical results are shown
in Figures 6 and 7. It can be seen in the figures that the generated stego-audios and real
audios have very similar distributions. Therefore, the conclusion can be drawn that the
generated stego-audios and the real audios have the same statistical distribution.

Figure 6. The sample value distribution comparison. On the left is the distribution curve and
histogram of the sample values in the real audios, where the x-axis represents random variables, the
left y-axis represents the frequency, and the right y-axis represents the density which is calculated as
multiplying the frequency by the group distance. The same is true on the right for the stego-audios.

Figure 7. The distributions of the stego-audios and real audio samples.

The Euclidean Distances between the MFCCs

The human auditory system is a special nonlinear system, and its sensitivity to differ-
ent frequency signals is different from these. The nonlinear representation of the MFCC
(Mel Frequency Cepstrum Coefficient) can well reflect the specific features of audio. The
Euclidean distance between the MFCCs of the two audios can reflect the difference be-
tween them.
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Furthermore, the Euclidean distance between the MFCCs of the generated stego-audio
and its most similar audio in the real dataset can reflect the authenticity of the generated
stego-audio. Therefore, the nearest neighbor in the training dataset for each generated
stego-audio was found, and the Euclidean distances between the MFCCs were calculated.
In order to verify the effectiveness of the nearest neighbor in the training dataset, the
nearest neighbor in the test dataset for each generated stego-audio was found again, and
the Euclidean distances between the MFCCs were calculated.

Then, we compared the Euclidean distances between the MFCCs of each generated
stego-audio with its nearest neighbors in the training dataset and test dataset to verify the
authenticity of the generated stego-audios. The experimental steps are briefly described
as follows:

(1) Calculate the Euclidean distances between the MFCCs of each stego-audio and all
real audio samples in the training dataset in turn, denoted as MDtrain, which is a matrix
of size m ∗ n. m and n denote the number of stego-audios and real audio samples in the
training dataset, respectively. Each element MDtrain

ij (i ∈ {1, ..., m}, j ∈ {1, ..., n}) of the
matrix represents the Euclidean distance between the MFCCs of the ith stego-audio and the
jth real audio sample in the training dataset. Find the minimum value of each row in the
matrix MDtrain, denoted as MDtrain

min , which is a matrix of size m ∗ 1. This step is illustrated
in Figure 8. Consequently, we find the most similar audio samples for each stego-audio
from the training dataset. In other words, the nearest neighbors from the training dataset
for each stego-audio are found.

(2) Calculate the Euclidean distances between the MFCCs of each stego-audio and all
real audio samples in the test dataset, denoted as MDtest, which is a matrix of size m ∗ t. t
is the number of audio samples in the test dataset. Each element MDtest

ij (i ∈ {1, . . . , m}, j ∈
{1, . . . , t}) of the matrix represents the Euclidean distance between the MFCCs of the ith
stego-audio and the jth real audio sample in the test dataset. Find the minimum value
of each row in the matrix MDtest, marked as MDtest

min, which is a matrix of size m ∗ 1. This
step is illustrated in Figure 9. Therefore, we find the most similar audio samples for each
stego-audio from the test dataset. In other words, the nearest neighbors from the test
dataset for each stego-audio are found.

(3) Compare the values of the corresponding elements in the MDtrain
min and MDtest

min.

Stego-audios

Real audios in the 

training dataset

1,1
train

MD
1, 2
train

MD
1, 1
train

MD
n - 1,

train
MD

n

train
MD

min_
1
train

MD

min_ train
MD
m

min_ train
MD

Find the min value of 
each row

Figure 8. Illustration of Step (1).
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Stego-audios

Real audios in the 

test dataset

1,1
test

MD
1, 2
test

MD
1, 1
test

MD
t - 1,

test
MD

t

test
MD

min_
1
test

MD

min_ test
MD
m

min_ test
MD

Find the min value of 
each row

Figure 9. Illustration of Step (2).

As shown in Figure 10, the green and red curves represent the MDtrain
min and MDtest

min,
respectively. Furthermore, the different values between their corresponding elements
in MDtrain

min and MDtest
min are shown in the blue curve of Figure 10. It can be seen from

Figure 10 that the Euclidean distances between the MFCCs of each stego-audio and its
nearest neighbor in the training dataset are basically the same as the Euclidean distances
between the MFCCs of its nearest neighbor in the test dataset. The different values of their
Euclidean distances between the MFCCs are very small.

This shows that the generated stego-audios have great similarity with the real audios.
Consequently, the generated stego-audio is very real, and it is not easy for a third party to
detect the existence of a secret by detecting the particularity of the generated stego-audio.
In addition, the similarity of the distances between the MFCCs of the stego-audio and the
nearest neighbors in the training dataset and test dataset can also indicate that there is no
overfitting in this model.

Figure 10. The Euclidean distances between the MFCCs of each stego-audio and the nearest neighbor
in the training dataset as well as its nearest neighbor in the test dataset.

4.2.4. Steganalysis

To verify that the proposed method is fundamentally resistant to detection by exist-
ing steganalysis methods, we used the trained steganalysis methods Chen-Net [48] and
Lin-Net [49] to directly detect the generated stego-audios. Furthermore, we compared
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the accuracy with three different audio steganographies: The traditional steganography
method [50] refers to a modified audio steganography that embeds a secret in the cover.

The method based on generating a cover [10] refers to audio steganography that
embeds a secret in the generated cover. The proposed method refers to audio steganography
that directly generates the stego-audio. As shown in Table 5, the accuracy of the method
based on generating the cover is significantly lower than the traditional method, and the
trained steganalysis methods fail to detect this proposed method. Therefore, our method is
fundamentally resistant to detection by steganalysis methods.

Table 5. The accuracy of steganalysis detection with the different steganography algorithms under
different embedding rates.

Steganography Methods Steganalysis Methods
Embedding Rates

0.1 0.2 0.3 0.5

Traditional method
Chen-Net 50.00 56.95 63.28 69.77

Lin-Net 57.34 64.06 67.93 74.13

Based on generating a cover
Chen-Net 48.14 51.29 57.34 61.25

Lin-Net 49.03 52.33 59.43 64.39

The proposed method
Chen-Net 50.00 50.00 50.00 50.00

Lin-Net 50.00 50.00 50.00 50.00

4.3. Analysis on the Reconstructed Secret Audio
4.3.1. On the Auditory

In the proposed algorithm, the type of secret messages is audio, and the secret is
reconstructed by neural networks, which might make the reconstructed secret audios dis-
torted. This distortion may affect the transmission of secret audios on the audio. Therefore,
this distortion can be measured by comparing the difference between the secret audios to
be hidden and the reconstructed secret audios. In this section, two methods are used to
compare the differences between them. One is to employ the various loss indicators of the
extractor. The other is to use various spectrograms to visually compare differences.

In the process of model training, the secret audio to be hidden and the reconstructed se-
cret audio were guaranteed to have a one-to-one correspondence. Therefore, the differences
between them are compared by calculating the Larray, which can reflect the distortion de-
gree of the reconstructed secret audios in the time domain. In addition, based on the above
information, Lmag can reflect the differences between the secret audio and the reconstructed
secret audio in amplitude, and Lsc can reflect their differences in the frequency spectrum.
Figure 5 shows that, with the increase of training epochs, these three loss values are all
close to 0. This indicates that the difference between them becomes very little. It can be
stated that the extractor successfully reconstructs the secret audio with little distortion. Due
to the large redundancy of the audio, it is verified that the secret audios can be transmitted
completely through audio.

In order to further observe the differences between them, different forms of spectro-
grams are used for comparison. Figures 11–13 show the comparison results of two groups
of secret audio and reconstructed secret audio, respectively. Furthermore, in Figures 11–13,
the upper and lower lines are a group of secret audios and the reconstructed secret audios,
respectively. It can be seen from Figures 11–13 that there is a small gap between them.
Furthermore, this gap is caused by the subtle noise of the reconstructed secret audios. As
audios have some redundancy, the secret audios can still be transmitted integrally on audio.
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Figure 11. The time-domain waveform. The left column is the time-domain waveform of the secret
audios, and the right column is the time-domain waveform of the reconstructed secret audios.

Figure 12. The frequency-domain waveform. The left column is the frequency-domain waveform
of the secret audios, and the right column is the frequency-domain waveform of the reconstructed
secret audios.
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Figure 13. The log spectrogram. The left column is the log spectrogram of the secret audios, and the
right column is log spectrogram of the reconstructed secret audios.

4.3.2. On the Semantics

In essence, the ultimate goal of reconstructing the secret audios is to recover their
complete secret semantics. As mentioned above, the reconstructed secret audios have some
slight distortion, which likely affects the complete semantic transmission of a secret. In
this section, we verify that this method guarantees the semantic transmission of the secret
audios. These experiments are conducted from the following two perspectives: One is
to use the STOI (Short-Time Objective Intelligibility) indicator to test the degree that the
reconstructed secret audios can be fully understood. Another is to use speech recognition
methods to test the probability that the semantics in the reconstructed secret audios can be
correctly recognized.

STOI is one of the important indicators to measure speech intelligibility. A word in a
speech signal can only be understood or not. From this perspective, it can be considered
that the intelligibility is binary; thus, the value range of STOI is quantified between 0 and 1.
STOI represents whether a word can be understood correctly, and a value of 1 indicates
that the speech can be fully understood [51].

Since the audios have some redundancy, the reconstructed secret audios are allowed
to be distorted; however, it is necessary to ensure that the receivers can understand them.
Accordingly, the STOI indicator was chosen to verify the integrity of the reconstructed
secret audios. In this experiment, twenty-four reconstructed secret audios were randomly
selected to detect their STOI values, and the results are shown in Table 6. The calculations
show that the average STOI was 0.9887, indicating that the reconstructed secret audios can
be understood well and completely transmitted with semantics.

429



Electronics 2023, 12, 1253

Table 6. The STOI values of the reconstructed secret audios.

Number 1 2 3 4 5 6 7 8
STOI 0.9993 0.9495 0.9990 0.9885 0.9860 0.9948 0.9972 0.9554

Number 9 10 11 12 13 14 15 16
STOI 0.9642 0.9745 0.9990 0.9981 0.9999 0.9991 0.9994 0.9983

Number 17 18 19 20 21 22 23 24
STOI 0.9998 0.9841 0.9457 0.9996 0.9995 0.9992 0.9999 0.9979

From the second perspective, the speech recognition method was used to detect
the specific semantic information of the reconstructed secret audios. In this experiment,
sixty-four reconstructed secret audios were randomly selected, and speech recognition
was performed on them. Two speech recognition tools were chosen: Speech Recognition-
PocketSphinx [52] and Google Cloud Speech API [53]. The speech recognition accuracy
rate is defined as the following formula. Table 7 shows the accuracy rate of the secret audio
using the above speech recognition tools. Table 7 explains that the semantic information
of all the reconstructed secret audios was correctly identified. As a result, the proposed
method realized the complete semantic transmission of the secret messages.

Accuracy =
C
T
× 100% (11)

where C is the number of correctly recognized audios and T is the total number of
detected audios.

Table 7. The speech recognition accuracy under different speech recognition APIs.

Speech Recognition Tools Accuracy

Speech Recognition-PocketSphinx 100%
Google Cloud Speech API 100%

4.4. Ablation Experiment

A post-processing layer was added to solve the noise problem in the generated stego-
audios in this model. Therefore, it was necessary that ablation experiments were conducted
to demonstrate the effectiveness. The speech quality of the generated stego-audio was
tested using the same method as in Section 4.2.2 when the post-processing layer was
not added. The ten stego-audios generated by this model without the post-processing
layer were selected randomly for the experiment. The average MOS values of these ten
stego-audios are listed in Table 8.

Compared with Table 4, it can be seen that the average MOS of the generated stego-
audios with a post-processing layer had better voice quality. In addition, the average MOS
of all the stego-audios without a post-processing layer was calculated as 3.52, and the
average MOS of all the stego-audios with a post-processing layer was calculated as 4.15
as shown in Table 9. Apparently, the post-processing layer effectively solved the noise
problem and improved the speech quality.

Table 8. The average MOS of ten randomly selected stego-audios generated by this model without a
post-processing layer.

The Stego-Audios 1 2 3 4 5 6 7 8 9 10

Their average MOS 3.70 3.51 3.65 3.54 3.38 3.49 3.47 3.42 3.43 3.56
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Table 9. The MOS ablation experiment for a post-processing layer.

The Post-Processing Layer Yes No

MOS 4.15 3.52

4.5. Robustness Experiment

The stego-audio may be jammed during transmission in the public channel; thus, the
received audio may contain some extra noises, which might lead to the reconstruction
failure of a secret audio. Therefore, it is necessary to evaluate the robustness of the proposed
model. The experimental settings were as follows. Thirty-two stego-audios were randomly
selected for the robustness testing. Every stego-audio with superposed noises of 5, 10, 15,
and 20 db was sent to the extractor, respectively, and 128 audios were reconstructed.

We performed speech recognition on these 128 reconstructed secret audios using the
same speech recognition methods as in Section 4.3.2. The speech recognition accuracy rate
defined in Equation (11) was also employed here. The experimental results are shown
in Table 10. It can be seen in the table that additional noises added to stego-audios did
not affect the reconstruction of the secret audios. In other words, even if a stego-audio is
jammed to some extent, the receiver can still completely recover the meaning of the secret
audio. Thus, the result states that the proposed method has good robustness.

Table 10. The speech recognition accuracy.

Speech Recognition Method
Accuracy

0 db 5 db 10 db 15 db 20 db

Speech Recognition-PocketSphinx 100% 100% 100% 100% 100%

Google Cloud Speech API 100% 100% 100% 100% 100%

5. Summary

In this paper, we proposed a new coverless audio steganography method. This is the
first work that directly generates stego-audio in audio steganography. The covert commu-
nication of the proposed method demonstrated good reliability and security. Experimental
and theoretical analysis shows that this proposed method not only has high security and
undetectability but also guarantees the complete semantic transmission of secret audio
even in the case of distortion.

However, there are still some shortcomings. First, this work considered an idealized
scenario in which the sender shares the network model with the receiver, and this premise
is a great challenge in reality. In addition, the generation module and the reconstruction
module need prior knowledge of the secret audio. If a new secret audio is given, the
proposed method needs be further trained on the original basis. Therefore, in future work,
we plan to propose a model-free audio steganography framework that can achieve audio
steganography from both the time and frequency domains.
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Abstract: Deep map prediction plays a crucial role in comprehending the three-dimensional structure
of a scene, which is essential for enabling mobile robots to navigate autonomously and avoid obstacles
in complex environments. However, most existing depth estimation algorithms based on deep neural
networks rely heavily on specific datasets, resulting in poor resistance to model interference. To
address this issue, this paper proposes and implements an optimized monocular image depth
estimation algorithm based on conditional generative adversarial networks. The goal is to overcome
the limitations of insufficient training data diversity and overly blurred depth estimation contours in
current monocular image depth estimation algorithms based on generative adversarial networks.
The proposed algorithm employs an enhanced conditional generative adversarial network model
with a generator that adopts a network structure similar to UNet and a novel feature upsampling
module. The discriminator uses a multi-layer patchGAN conditional discriminator and incorporates
the original depth map as input to effectively utilize prior knowledge. The loss function combines
the least squares loss function and the L1 loss function. Compared to traditional depth estimation
algorithms, the proposed optimization algorithm can effectively restore image contour information
and enhance the visualization capability of depth prediction maps. Experimental results demonstrate
that our method can expedite the convergence of the model on NYU-V2 and Make3D datasets, and
generate predicted depth maps that contain more details and clearer object contours.

Keywords: autonomous mobile robot; conditional generative adversarial network; depth map
prediction; intelligent manufacturing

1. Introduction

Today, intelligent logistics has become an essential component of the promotion
of “intelligent manufacturing”. It is extensively used in production line assembly for
discrete manufacturing industries and material access in enterprise warehouse rooms.
Intelligent warehousing, a result of warehouse automation, can be achieved through
various automation and interconnection technologies that work together to enhance the
production efficiency of the production line and the distribution efficiency of the warehouse,
minimize labor, and reduce errors.

In intelligent logistics and warehousing, Automated Guided Vehicles (AGVs) [1]
and Autonomous Mobile Robots (AMRs) [2] play vital roles in handling materials such
as raw materials, tools, products, and accessories. Unlike AGVs, which require preset
guidance devices and simple programming instructions, AMRs can carry out more complex
operations and processing and provide greater flexibility. They can realize more intelligent
navigation functions such as map construction and autonomous obstacle avoidance, making
them the best choice for realizing intelligent logistics and warehousing.

As the environmental complexity increases in intelligent manufacturing enterprises,
two-dimensional maps are no longer sufficient for mobile robots’ environmental perception.
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Three-dimensional maps can provide more comprehensive environmental information and
are a current research hotspot in the field of mobile robot map construction [3].

The depth map is a common way of expressing 3D scene information, where the value
of each pixel in the map represents the distance between the corresponding point of the
object and the collector in the scene. Image depth prediction, widely used in autonomous
driving, robot obstacle avoidance, 3D map reconstruction, and object detection [4], is a
classic problem in computer vision research. When using two or more cameras to predict
the depth of the same object., the method is called binocular or binocular image depth
prediction. The method of monocular image depth prediction only requires obtaining a
large quantity of depth information from a single camera, which is low-cost and more
widespread, and increasingly a current research focus in the field of computer vision.

With the rapid development of deep learning, much progress has been made in
solving classical problems in computer vision. Deep learning has played an essential role
in addressing computer vision tasks such as object recognition, object tracking, and image
segmentation, resulting in significant improvements in efficiency and accuracy. The first
monocular image depth prediction method that utilized a convolutional neural network
was proposed by Eigen et al. [5] in 2014. Their approach, which employed an AlexNet-
based network structure, consisted of two scales: one to capture global information and
the other to capture local information. The global information capture was partly based
on AlexNet. This method achieved promising results on both the NYU Depth and KITTI
datasets. Since then, several monocular image deep models based on convolutional neural
networks have been proposed, resulting in a range of outcomes [6–8]. Although existing
models have shown effectiveness on standard public datasets, they rely too heavily on
specific datasets and are vulnerable to security attacks.

In practical applications, recognized objects can vary greatly in shape, and the lighting
of the environment can change. Intelligent warehousing scenarios pose particular chal-
lenges due to highly stacked objects, and the diverse shapes and sizes of goods, which can
make it difficult for intelligent vehicles to accurately estimate depth information. Moreover,
deep neural networks themselves are prone to security issues and can be vulnerable to
security attacks.

To improve the robustness and generalization ability of the deep estimation algorithm,
and to mitigate potential security threats, this article proposes an optimization algorithm for
monocular image depth estimation, based on conditional generative adversarial networks.

The contributions to this article are as follows:
First, we present the conditional generative adversarial network (cGAN) structure as

the fundamental framework for the monocular depth estimation algorithm. The cGAN can
generate more realistic synthetic data, which increases the amount of available training
data. The model uses conditional variables, such as the depth map and original image, as
prior knowledge to enhance the accuracy of generated depth maps and the discrimination
ability of the discriminator. Moreover, the cGAN training improves the learning of the
mapping between input images and depth images, thereby enhancing the robustness of
the system.

Second, we introduce a novel feature upsampling module in the generator that im-
proves the resolution of the feature map. This is achieved by incorporating new decon-
volution layers into the existing upsampling module, thereby improving the accuracy of
the generated depth maps. We also use an improved loss function that combines the L1
norm loss with the least squares loss function. This resolves the issues of difficult conver-
gence and mode collapse commonly encountered in generative adversarial networks. The
improved loss function guides the model to generate more accurate depth maps.

The rest of this article is arranged as follows: Section 2 provides a brief overview of the
current state-of-the-art in monocular image deep estimation methods, as well as adversarial
generative networks based on convolutional neural networks. Section 3 delves into the
key techniques and algorithmic framework design. Section 4 presents the implementation
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results and their analysis. Finally, in Section 5, we draw conclusions from the results and
discuss the next work.

2. Related Work
2.1. Deep Estimation Methods for Monocular Images Based on Deep Learning

The monocular image deep prediction methods based on deep learning can be broadly
classified into three categories: supervised learning, unsupervised learning, and semi-
supervised learning. Supervised learning, which involves training a model on labeled
data, was pioneered by Eigen et al. in 2014 [5] and 2015 [6]. They used convolutional
neural networks, including AlexNet and VGGNet-16, to estimate monocular image depth.
In 2014, the author used AlexNet [5] as the fundamental model to produce an initial
global depth map. To refine the depth map, a local fine network structure was used in
conjunction with the original image information, which yielded favorable results at that
time. However, due to the limited expressiveness of the AlexNet network, the depth
prediction results were not satisfactory. Shortly after, in 2015, Eigen et al. [6] improved
this work by incorporating deeper and more multi-scale convolutional neural networks.
The authors employed VGGNet-16 for feature extraction and depth prediction, leading to
better performance on standard datasets. Laina et al. [7] proposed a fully convolutional
neural network structure based on deep residual networks to address the issue of excessive
network parameters in monocular depth prediction. To enhance the depth prediction
results, they introduced an up-projection module and utilized back-pooling to increase the
depth map resolution.

Monocular image depth prediction is a complex task that involves calculating the
depth value for each pixel in an image. Typically, this is treated as a high-dimensional
regression problem where the model estimates the difference between the predicted depth
value and the actual depth value, which is then used as the basis for the loss function.
However, a more efficient approach is to transform the problem into a classification problem
by dividing depth values into intervals and grouping pixels into corresponding bins,
similar to a histogram. Cao et al. [8] applied this technique to extract features using
deep residual networks, which were then fused using fully connected conditional random
fields. The resulting model was trained using cross-entropy loss in the classification model.
Liu et al. [9] used isolated conditional random fields for monocular image depth prediction.
SENet-154 [10] introduced a new Squeeze-and-Excitation (SE) network module, which
can adaptively learn the correlations between feature channels, thereby enhancing the
network’s representation and generalization capabilities. Meanwhile, the DenseDepth
algorithm [11] proposed a transfer learning-based method that fine-tunes pre-trained
models from large datasets like ImageNet for depth estimation. To further enhance the
robustness and precision of depth estimation, the AdaBins algorithm [12] presents an
adaptive depth estimation technique that adjusts the depth range in different scenarios
and employs a novel loss function. Finally, the GLPDepth [13] algorithm proposes a novel
Vertical CutDepth depth estimation method that leverages vertical information in-depth
images to improve accuracy and efficiency. The authors also suggest a global-local path
network architecture that captures both global and local information in scenes, leading to
more accurate depth estimation.

In the field of unsupervised and semi-supervised learning, several researchers have
proposed innovative methods to improve the accuracy and robustness of depth prediction
and camera motion estimation. Godard et al. [14] utilized left-right view consistency for
unsupervised depth prediction, which improved robustness by leveraging parallax and
optimizing performance. Kuznietsov et al. [15] proposed a semi-supervised approach that
utilizes sparse deep images as labels to achieve better performance. Mahjourian et al. [3]
proposed an end-to-end learning approach that uses view synthesis as a supervised signal,
resulting in a video sequence-based unsupervised learning framework for monocular image
depth and camera motion estimation. Bian et al. [16] leveraged geometric consistency
constraints to achieve scale consistency between adjacent frames and used this to detect
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and remove dynamic objects and masked regions. This approach outperforms previous
algorithms trained on binocular video. Casser et al. [17] proposed a model that takes RGB
image sequences as input and is supplemented by a pre-computed instance segmentation
mask. Bhutani et al. [18] proposed a Bayesian inference-based method for monocular
image depth estimation and confidence prediction. This method estimates the posterior
distribution of each pixel’s depth and confidence through a combination of a neural network
that estimates the prior distribution of pixel depth and a noise model, and the pixel
values of the input image. Almalioglu et al. [19] proposed a monocular visual odometry
(VO) and depth estimation algorithm based on depth learning. This method trains an
unsupervised monocular VO and depth estimation model using geometric constraints
from binocular vision, allowing for motion estimation and scene depth estimation even
in extreme environments. The method introduces a new “Persistent” loss function which
enables the network to learn persistent estimation of optical flow and scene depth, while
reverse depth estimation and optical flow prediction increase the loss function’s robustness.
The method also employs a pyramid depth network, designed to extract depth information
from various scale feature maps, resulting in more accurate and robust depth estimation.

Although the results may not always be outstanding, these methods and their practical
applications are still worth exploring.

2.2. Current Status of Generative Adversarial Networks

In 2014, Ian J. Goodfellow [20] introduced Generative Adversarial Networks (GANs),
which consist of a generator and a discriminator. The generator takes a high-dimensional
noise vector as input and generates data that is fed into the discriminator. The discriminator
then determines whether the input is a real sample or a fake sample generated by the
generator. GANs use an unsupervised learning approach and reach an equilibrium point
through a two-player game. at which point the generator can produce data that the
discriminator cannot effectively distinguish as fake.

However, early GANs faced issues with training stability and the lack of control
over the output. To address these problems, researchers introduced conditional GANs
(cGANs) [21] in 2014, which incorporate additional conditional information during training
to ensure the generator produces specific content. Despite these efforts, GANs are still
challenging to train. The literature proposes various modifications to improve training
stability, including Deep Convolutional Generative Adversarial Networks (DCGANs [22]),
least squares loss functions (LSGANs [23]), Wasserstein loss functions (WGANs [24]),
gradient normalization (WGAN-up [25]), and proportional control (BEGAN [26]).

In the context of monocular image depth prediction, GANs can partially solve the
problem of over-smooth or under-detailed depth prediction. By training a GAN to measure
the similarity between the predicted depth graph and the original depth label, the visual-
ization of the depth estimate can be improved. Lsola et al. [27] propose a general model
based on conditional GANs to solve image-to-image translation problems, including the
monocular image depth prediction problem.

3. Methods

Similar to the conditional generative adversarial network structure proposed in the
literature [27], we utilize an enhanced conditional generator and conditional discriminator
for our GAN model. Specifically, we incorporate a generator structure based on deep
residual networks, which includes a new up-sampling module (labeled as Up-Decon). Our
discriminator classifier structure is based on the conditional patchGAN classifier introduced
in literature [27], but with modifications to the loss function to enhance the performance of
the generative adversarial networks.

3.1. Network Structure

The original GAN structure generates images by processing random noise through a
neural network, which can lead to uncontrolled output content. To overcome this limitation,
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additional constraints must be imposed on the original GAN. This paper proposes an
optimized conditional GAN (op-cGAN) for monocular image depth estimation, which is a
visual task performed at the image-to-image level. The specific model structure is depicted
in Figure 1. The generator (G) takes the original image (x), the depth map (y), and random
noise (z) as inputs, and outputs the predicted depth map (y’). The discriminator (D) takes
the original image (x) and depth map as inputs and determines whether the depth map is
from the training dataset (y) or generated by the generator (y’). A “fake” output from the
discriminator indicates that the depth map is generated; while a “real” output indicates
that the depth map is from the training dataset. By including the original image (x) as a
constraint, the discriminator has access to additional priori knowledge, resulting in a more
accurate and detailed depth map generation.
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3.2. Generator

The generator section of the model follows an encoder-decoder structure, where the
encoder extracts features and the decoder transforms these features into the final output. As
shown in Figure 2, the generator employs a network structure based on deep residuals. The
feature extraction process is aligned with the ResNet And begins with a stride-convolution
and max-pooling to reduce the input image’s resolution and minimize the number of
parameters. The feature map then passes through four ResBlock, which reduces the feature
map’s resolution by half after each ResBlock while doubling the number of feature map
layers. This process results in a feature map resolution that is 1/32 of the input resolution.

After extracting the upper feature map, a 1 × 1 convolutional kernel integrates the
features. Next, the feature map passes through four Up-Decon modules, each consisting
of three parts. The first part is a convolutional layer, followed by a concatenation layer
that directly concatenates features of the same resolution extracted from the previous
feature extraction stage. Lastly, a deconvolution layer is used to increase the feature
map’s resolution. The convolutional layer uses a 1 × 1 kernel to integrate cross-channel
information and adjust the number of feature map channels. The concatenation layer uses
concatenation or bitwise addition to combine the features and the deconvolution layer uses
a 4 × 4 kernel with a stride of 2 and padding of 1 to double the feature map’s resolution.
After the Up-Decon modules, the feature map is processed by two convolutional modules
to generate a depth prediction map with half the input resolution. Each pixel in the depth
prediction map represents a predicted depth value in meters and is stored as a 32-bit
floating-point number.
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3.3. Discriminator

To extract local image information, we adopt a conditional patchGAN discriminator,
similar to the one proposed in reference [27]. As shown in Figure 3, the discriminator
comprises a 5-layer full convolution network, which takes a concatenation of the depth
map and the original image as input, without the sigmoid function on the last layer, since
we use the least square function for loss calculation in this work. The original image serves
as a conditional vector to guide the discriminator’s classification. During training, the
predicted depth map and the original image are concatenated as the negative samples, while
the depth map from the training dataset and the original image are the positive samples.
PatchGAN partitions the image into multiple patches and computes the classification
results for each patch, thus treating the image as a Markov random field and assuming
the independence of pixels across different patches. The final output of the discriminator
is obtained by averaging the output of each patch. The loss function is calculated using
convolution, enabling the use of smaller block sizes.
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Figure 3. The structure of discriminator.
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3.4. Loss Function

The loss function of traditional GAN is:

min
G

max
D

VGAN(D, G) = Ex∼pdata(x)[logD(x)] +Ez∼pz(z)[log(1− D(G(z)))] (1)

in which G is a generator, D is a discriminator, z is a noise variable sampled from a
normalized or Gaussian distribution, pdata(x) represents the probability distribution of real
data x, and pz(z) represents the probability distribution of z, Ex∼pdata(x) is the expectation
value of x and Ez∼pdata(z) is the expectation value of z. The goal is to train G to generate
samples that are indistinguishable from real data, while D tries to correctly distinguish
between real and fake samples. However, a major issue with traditional GAN training is
that as D gets better, the gradient signal that G receives becomes weaker, which leads to
poor sample quality. To address this problem, LSGAN (Least Squares GAN) [23] replaces
the binary classification objective of D with a least squares regression objective, which
removes the sigmoid activation function from its final layer. This change has two main
benefits: (1) LSGAN assigns a penalty to samples based on their distance from the decision
boundary, which ensures that G generates samples that are closer to the boundary, and
(2) LSGAN generates stronger gradients for samples that are far from the boundary, which
mitigates the gradient vanishing problem in traditional GAN. The optimal loss functions
proposed in this paper are as follows:

min
D

VLSGAN(D) =
1
2
Ex∼pdata(x)

[
(D(x)− 1)2

]
+

1
2
Ez∼pz(z)

[
(D(G(z)))2

]
(2)

min
G

VLSGAN(G) =
1
2
Ez∼pz(z)

[
(D(G(z))− 1)2

]
(3)

According to reference [21], experiments have shown that adding the L1 loss function
to the original loss function during the training of adversarial networks can lead to the
generation of more realistic images. The L1 loss function is defined as follows:

LL1(G) = Ex,y,z[ ||y− G (x, y, z) ||1 ] (4)

in which y refers to the depth map from the training datasets that correspond to the real
image x. As a result, the final loss function used in this paper can be expressed as follows:

min
D

VcGAN(D) =
1
2
Ex,y

[
(D(x, y)− 1)2

]
+

1
2
Ex,z

[
(D(x, G(x, y, z)))2

]
(5)

min
G

VcGAN(G) =
1
2
Ex,z

[
(D(x, G(x, y, z))− 1)2

]
+ λLL1(G) (6)

4. Experimental Results and Analysis

This section describes the experimental process and results of the monocular image
depth prediction algorithm proposed in this study, which is based on op-cGAN.

4.1. Experimental Design

To take into account the complex and unique convergence process of cGAN training,
we conducted our experiments in two stages. In the first stage, we compared our op-cGAN
algorithm with several monocular image depth prediction algorithms based on classical
deep learning models. This is because cGANs are generative models, and the generator in
a cGAN can be trained to generate the predicted depth map y’ from an observed image
x and a random noise vector z. In the second stage, we compared the monocular image
depth prediction algorithm based on op-cGAN with the one based on the original cGAN.
We evaluated the performance of these algorithms from both quantitative and qualitative
perspectives. To conduct a comprehensive evaluation, we used two datasets: NYU-V2 for
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indoor scenes and Make3D for indoor and outdoor scenes. We utilized industry-standard
valuation metrics to assess the effectiveness of depth prediction from different viewpoints.
Assuming that yi is the actual depth value, yi* is the predicted depth value, and T represents
the number of effective pixels, the evaluation metrics are described as follows:

Absolute Relative Difference(rel) = 1
|T| Σ

y∈T
|y− y∗|/y∗

Root Mean Squared Error(rmse) =

√
1
|T| Σ

y∈T

∣∣∣∣
∣∣∣∣y− y∗

∣∣∣∣
∣∣∣∣2

Root Mean Squared Log-Error(rmse(log)) =

√
1
|T| Σ

y∈T

∣∣∣∣
∣∣∣∣log y− log y∗

∣∣∣∣
∣∣∣∣2

Mean log 10 Error : 1
|T| Σ

y∈T

∣∣log10(y)− log10(y
∗)
∣∣

(7)

4.2. Training Method of Model

Unlike the general deep learning network model, cGAN has its own training method.
Algorithm 1 shows the pseudo-code for the training procedure of monocular image depth
prediction based on the op-cGAN.

Algorithm 1: Pseudo-code of monocular image depth prediction based on the cGAN

For the number of training iterations, do:
For k steps do:

• sample minibatch of m images { x(1), . . . , x(m)} and corresponding depths images
{ y(1), . . . , y(m)}

• sample minibatch of m noise images { z(1), . . . , z(m)}
• update discriminator by descending its stochastic gradient when fixed generator gradient:

min
D

VcGAN(D)

End for

• sample minibatch of m images { x(1), . . . , x(m)} and corresponding depths images
{ y(1), . . . , y(m)}

• sample minibatch of m noise images { z(1), . . . , z(m)}
• update generator by descending its stochastic gradient when fixed discriminator:

min
G

VcGAN(G)

End for

Training a neural network from scratch can be extremely challenging. Therefore, to
achieve better results, the academic community usually relies on pre-trained network
models. In this study, we pre-trained our model on ImageNet. Pre-training on ImageNet
offers two benefits: (1) it speeds up the training process as the pre-trained model has learned
feature extraction methods on millions of training examples, and fine-tuning is sufficient to
achieve better results on small datasets; (2) it improves the results on the training set, as
deep networks are challenging to train, and the millions of training examples on ImageNet
can enhance the network’s expressive power. In our experiment, we set the K value to 1
because the generator’s main body is pre-trained with ResNet-50, which provides it with a
strong feature extraction ability.

Furthermore, Batch normalization is highly effective in aiding the flow of gradients
flow within the network and reducing the impact of parameter initial values on the training
process. This allows for a higher learning rate during training and also helps to regularize
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the model, reducing the need for Dropout operations. The formula for batch normalization
is as follows:

x̂(k) =
x(k) − E

[
x(k)

]

√
Var

[
x(k)

] (8)

where x(k) represents the output of each layer’s linear activation function. Batch Normal-
ization is applied to this output by subtracting the mean and standard deviation of the
minibatch it belongs to. This normalization transforms x̂(k) into a normal distribution with
mean 0 and variance 1, effectively solving the “internal covariate shift” problem. However,
this transformation can reduce the expressive power of the network. To address this issue,
the authors of [28] introduced two learnable parameters, scale, and shift, to each layer’s
output. With the addition of these two parameters, the original normalization method is
modified into y(k) = r(k) x̂(k) + β(k), in which r(k) and β(k) has a size equal to the original
batch size.

However, a drawback of this approach is that during inference, when there is only an
input instance (i.e., batch size of 1), the statistics used for normalization become meaningless.
To address this, practical deep-learning frameworks do not use batch normalization during
inference. During training, the batch mean and variance are computed in the same way,
but additional variables that are independent of batch size are retained to calculate the
global mean and variance. During inference, batch normalization uses the global mean and
variance that was calculated during training.

4.3. Experimental Results and Conclusions
4.3.1. NYU-V2 Dataset

We demonstrate the efficacy of our proposed algorithm using the NYU-V2 dataset,
which is one of the largest indoor depth datasets worldwide. The NYU-V2 dataset consists
of video sequences captured by Microsoft’s Kinect camera. The dataset is divided into
groups of continuous frames containing image and depth information, with some images
being manually annotated with pixel categories. The dataset includes:

1. 1449 densely annotated aligned image-depth pairs;
2. Data from 464 new scenes across 3 cities;
3. 407,024 unannotated frames.

We sampled around 5000 data pairs evenly from the original dataset, with a pixel
resolution of 480 × 640. As the dataset was collected over an extended period, there are
many invalid pixels in the surroundings with a depth value of less than 0. To mitigate the
impact of these invalid pixels, we excluded them during data processing by determining
the average range of invalid pixels in all images and subtracting it from the correspond-
ing training pairs in the original dataset. We then downsampled the data to 224 × 256,
and to increase the training data diversity and avoid overfitting, we employed two data
augmentation methods:

1. Random noise addition: Add some noise to each random vector during each training
epoch, where the noise is sampled from a Gaussian distribution with a mean of 0 and
a variance of 1.

2. Conditional vector addition: Use room type, indoor furniture, lighting, and other
information vectors as conditional inputs to the generator to generate realistic images.

Each training data pair was augmented with one of these methods, resulting in a final
set of 150,000 training pairs.

In the first stage of the experiments, we evaluated the performance of our op-cGAN-
based monocular depth estimation model in comparison with established models such as
AlexNet [5], VGGNet [6], ResNet [7], DORN [29], and the SOTA algorithm PixelFormer [30].
We carried out quantitative and qualitative assessments, and Table 1 shows the quantitative
results. All evaluation metrics in this paper are sourced from the original papers. The
generator named ResNet-Up-Decon in our op-cGAN model used the following parameters:
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the learning rate r was set to 0.01, the optimization algorithm used was momentum = 0.9,
the model was trained for 10 epochs, and the loss function is L1.

Table 1. Comparison of the proposed approach against other methods on the NYU-V2 dataset.

NYU V2 REL RMSE RMSE (log) δ<1.25 δ<1.252 δ<1.253

Eigen et al. [5] 0.215 0.907 0.285 0.611 0.887 0.971
Eigen and Fergus [6] 0.158 0.641 0.214 0.769 0.95 0.988

Laina et al. [7] 0.127 0.573 0.195 0.811 0.953 0.988
DORN [29] 0.115 0.509 - 0.828 0.964 0.992

PixelFormer [30] 0.090 0.322 - 0.929 0.992 0.998
ours 0.115 0.492 0.167 0.878 0.972 0.992

Our proposed method outperforms all previous algorithms except for the latest al-
gorithm PixelFormer, as measured by all metrics. While literature [5,6] use AlexNET and
VGGNet as the model backbone, our method, which benefits from ResNet’s stronger net-
work representation, far exceeds the methods presented in these two papers in terms of
results. Additionally, our method produces depth estimation images with higher resolution.
It is worth mentioning that compared to [7], which also uses pre-trained ResNET-50 as the
model backbone, our proposed method achieves a decrease of 0.11 in the rel metric, 0.081 in
the rmse metric, and 0.28 in the rmse(log) metric. Most importantly, our method increases
by 0.067 on the metric δ < 1.25, which means that 5% more pixels fall within this range of
estimated depth values than in [7]. This demonstrates the effectiveness of our proposed
method and the improved depth estimation prediction resolution module. Compared with
the DORN algorithm [29], which uses the spacing-increasing discretization (SID) strategy,
our method still outperforms it in the rmse, log10, δ < 1.25, and δ < 1.252 metrics.

The latest algorithm, PixelFormer [30], uses an improved attention module (Skip
Attention Module) and Bin Center Predictor (BCP) module. Based on the experimental
results of the original paper, PixelFormer outperforms the proposed algorithm across all
metrics. As the actual training data used by our algorithm is not exactly the same as the
standard NYU-V2 dataset, the absolute difference in evaluation metrics between the two
algorithms has little reference value. Nonetheless, PixelFormer still exhibited superior
performance. In future work, we will integrate the Skip Attention Module and Bin Center
Predictor module into the conditional generative adversarial network framework, and
compare it to PixelFormer to explore the impact of the conditional generative adversarial
network framework on depth estimation algorithms.

Figure 4 displays the visual results of two depth prediction algorithms based on the
VGGNet [6] and ResNet model [7], both implemented by the authors and with model
parameters provided in the published parameter files. The visualization shows that the
method proposed in [6] can generate relatively good depth map estimations. However,
the limited expressive power of the VGGNeT model used for feature extraction, results in
many predicted depth values being significantly different from the actual values. Finally,
our proposed method not only achieves more accurate depth estimation results, but also
resolves the issue of overly smooth depth estimations to a certain extent.

In the second stage of the experiment, we compared the performance of the standalone
generator model proposed in this paper with the op-cGAN model as a whole.

During the training of the standalone generator model, we used the momentum
optimization algorithm with momentum set to 0.9, a batch size of 8, and an L1 loss function.
The learning rate was set to 0.01, and we did not use a learning rate decrease method.
The model was trained for 10 epochs, and the best-performing model on the test set was
selected from the 10 trained models.

The cGAN training is different from traditional deep learning networks. After numer-
ous experiments, we obtained a set of relatively good training parameters. The generator’s
learning rate was set to 0.0001, and we used the Adam optimization algorithm. In the
loss function, we set the λ value to 10. For the discriminator, we set the learning rate to
5 × 10−4, the batch size to 8, and used the Adam optimization algorithm.
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Figures 5–7 show the experimental results of the two models under different evaluation
metrics and training epochs.
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Figure 5 depicts the models’ performance under different training epochs with a
particular evaluation metric δ < 1.25. The op-cGAN model significantly outperformed the
standalone generator model after the first epoch and gradually improved in the following
epochs. Moreover, the op-cGAN model exhibited greater stability and minimal fluctuations.
After ten epochs, the op-cGAN model achieved a depth error value of 0.85, indicating that
over 85% of the pixels’ depth estimation values were smaller than the actual depth value.
These results demonstrated the effectiveness of the op-cGAN model.

Figures 6 and 7 show the performance of the op-cGAN model compared to the stan-
dalone generator model in the evaluation metrics rmse and rmse (log) under different
training epochs. The figures indicate that the op-cGAN model has a faster convergence
rate and higher stability in these two evaluation metrics and outperformed the generator
model significantly after the 5th epoch.

As this paper aims to address the issue of blurry depth maps generated by existing
monocular image depth prediction algorithms, the visualization results are crucial. We
saved the depth map visualization results to a file, adding a “0” as a separator between each
depth map. Figure 8 shows selected depth estimation results from the test set, including the
ground truth of the depth map, the depth map generated by the standalone generator, and
that generated by the op-cGAN model from left to right. The visualization results indicate
that the op-cGAN model generates clearer and more accurate depth maps, as demonstrated
by the clear display of the windows in the first image’s ground truth, object contours in the
second image’s ground truth, and the door and window in the third image’s ground truth.
These results confirm the effectiveness of our proposed op-cGAN model.

4.3.2. Make3D Dataset

Next, we will evaluate the performance of different depth estimation algorithms on
the Make3D dataset. This dataset contains depth maps of indoor and outdoor scenes
obtained from LIDAR scans. The official split includes 400 aligned image-depth pairs for
training and 134 images for testing. Due to the age of this dataset, the resolution of the
depth map is only 305 × 55, while the resolution of the images is 1704 × 2272. Therefore,
during preprocessing, we first adjust the resolution of all training data to 256 × 192 using
bilinear interpolation to serve as input to the model. Furthermore, because 400 image-
depth pairs are insufficient for training a neural network, we use the following offline data
enhancement methods to expand the training dataset.
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1. Scaling: the Input and target images are scaled with the corresponding depth data
divided by s ∈ [1, 1.5].

2. Rotation: the input and target images are rotated by r ∈ [−5, 5] degrees.
3. Color adjustment: the Input image is multiplied by a random RGB value c ∈ [0.8, 1.2].
4. Flips: the Input and target images are horizontally flipped with a 0.5 probability
5. Adding conditional vector: information vectors such as city or rural, lighting, and

roads can be added as conditional vectors to the generator to generate realistic images.

Specifically, we applied the first four data enhancement methods to each of the original
400 training pairs to generate new training data pairs, which we repeated 10 times. Finally,
one of the conditional information from the 5th method is chosen to obtain 50 K training
data pairs.

In the first stage of the experiment, we compare the performance of the depth estima-
tion algorithms based on the DCNN model and CRF model [31,32], ResNet model [7], and
the generator in the op-cGAN model proposed in this paper, from both quantitative and
visual perspectives. Because there are limited evaluations on this dataset, we used results
reported in the literature for the quantitative comparison. For the visual results, we could
not access the authors’ visualization results, so we only present the results of the generator
in the op-cGAN model proposed in this paper.

During training, we used the L1 loss function and momentum optimization algorithm
with a value of 0.9. The generator was trained for 40 epochs, with the learning rate halved
every 20 epochs. The quantitative results are shown in Table 2, where we observed that
the proposed method in this paper has improved in all evaluation metrics except for the
rmse metric, which is lower than the method proposed in [7]. The reason could be that the
dataset is too small and of low quality, making it difficult to train such a large network.

Table 2. Comparison results of different algorithms in the Make3D dataset.

Make 3D REL RMSE Log10

Li et al. [31] 0.335 9.39 0.137
Liu et al. [32] 0.278 7.19 0.092
Laina et al. [7] 0.223 4.89 0.089

ResNet-Up-Decon 0.214 6.99 0.083
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The visual results are shown in Figure 9, from which we can see that the proposed
method can predict the contours of the depth map well and has no scale prediction error,
validating the effectiveness of our method. Due to the limitation of the original training set,
the resolution of the image in the training dataset is much higher than that of the depth
images, leading to many mismatches.
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In the second stage of the experiment, we compared the performance of a generator in
the op-cGAN model with the full op-cGAN model for monocular depth estimation.

During the experiment, we trained the ResNet-Up-Decon model on the Make3D
dataset, with all hyperparameters the same as those used for the NYU-V2 dataset, except
for the number of training epochs, which was set to 20. Similarly, for the full op-cGAN
model, we used the same hyperparameters as those used for NYU-V2, except for the
number of training epochs, which was also set to 20.

Figures 10 and 11 display the experimental results of these two models under different
training iterations. Specifically, Figure 10 presents the performance of the absolute relative
difference metric for different training epochs. It can be observed that the depth estimation
algorithm based on the cGAN model is superior to the ResNET-Up-Decon model in terms
of stability and convergence speed. The former achieved a very low error rate in the first
epoch and continued to reduce the error in subsequent epochs.

Figure 11 shows the performance of the log10 error evaluation metric across different
training epochs. Invalid values (represented by 0) are caused by negative predicted depth
values, which result in an invalid log10 error. The ResNet-Up-Decon model displays fewer
invalid values than the op-cGAN model, indicating greater stability. Regarding the error
values, the op-cGAN model has low errors, thus providing some validation of the proposed
algorithm’s effectiveness.

Figure 12 presents the visual results of the two models. For a fair comparison, all
final depth values were scaled to the same scale. Values closer to the original depth pixel
values are indicative of more accurate results. The op-cGAN model proposed in this paper
performs better at recovering contour information from the images, which was attributed
to the use of original images in the discriminator’s input and the high pixel quality of the
original images in the Make3D dataset, leading to the deep neural network learning the
details of the original images.
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5. Limitation

The limitations of our approach primarily consist of two aspects:

1. The primary drawback of using GANs is that they can be challenging to train. Despite
the implementation of various empirical tricks to improve efficiency (such as using
batch normalization in our proposed method), GANs remain difficult to train.

2. Compared with the latest monocular image depth estimation algorithms, the perfor-
mance of our algorithm is not outstanding enough, possibly because we have not opti-
mized the generator structure optimization well, especially since the attention module
has not been added. Experiments have shown that the attention mechanism can
significantly improve the accuracy and detail extraction of image depth estimation.

6. Conclusions

Mobile robot plays an important role in the intelligent logistics and intelligent ware-
housing applications of the smart manufacturing industry. 3D map reconstruction is a core
problem, which can help mobile robots achieve autonomous cruising and automatic obsta-
cle avoidance in a complex environment. Monocular depth prediction is a fundamental
method for understanding the 3D map’s geometric information. This paper proposed an
improved monocular image depth prediction method based on a conditional generative
adversarial network to address the problem of insufficient diversity of training data and of
overly blurry depth maps in monocular image depth prediction. Our method employed an
improved monocular image depth estimation model based on depth residual networks as
the generator of the conditional GAN, with a 5-layer patchGAN network as the discrimina-
tor. We combined the LSGAN loss function with the L1 loss function for the generator’s
loss function. Experimental results indicated that our proposed method can accelerate the
convergence on the small Make3D dataset and can achieve a more optimized model on the
larger NYN-V2 dataset, despite slower initial convergence. The visualization results show
that our method can recover images with more detailed and clearer contours.

Although our proposed monocular depth estimation methods based on cGANs face
difficulties in GAN network training and do not have the best performance on the evalua-
tion metrics compared to the latest algorithm PixelFormer, their strong anti-interference
with training sample and good model stability make these drawbacks acceptable. In the
future, we will integrate the Skip Attention Module and Bin Center Predictor module into
the conditional generative adversarial network framework, and compare it to PixelFormer
again to explore the impact of the conditional generative adversarial network framework
on depth estimation algorithms.
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Abstract: Currently, most network intrusion detection systems (NIDSs) use information about an
entire session to detect intrusion, which has the fatal disadvantage of delaying detection. To solve
this problem, studies have been proposed to detect intrusions using only some packets belonging
to the session but have limited effectiveness in increasing the detection performance compared to
conventional methods. In addition, space complexity is high because all packets used for classification
must be stored. Therefore, we propose a novel NIDS that requires low memory storage space and
exhibits high detection performance without detection delay. The proposed method does not need to
store packets for the current session and uses only some packets, as in conventional methods, but
achieves very high detection performance. Through experiments, it was confirmed that the proposed
NIDS uses only a small memory of 25.8% on average compared to existing NIDSs by minimizing
memory consumption for feature creation, while its intrusion detection performance is equal to or
higher than those of existing ones. As a result, this method is expected to significantly help increase
network safety by overcoming the disadvantages of machine-learning-based NIDSs using existing
sessions and packets.

Keywords: hybrid feature; network intrusion detection; session feature; packet feature; two-stage LSTM

1. Introduction

Currently, a network intrusion detection system (NIDS) manages traffic by dividing it
into logical groups called sessions. Therefore, it should collect the necessary information
by creating state information for the current active session and monitoring traffic [1–5],
implying that an NIDS with finite computing and memory resources has a limited number
of simultaneous sessions that can be handled. Owing to the steadily increasing size of
networks and the increasing amount of network traffic, the number of sessions that an
NIDS has to handle is also increasing [6].

Accurately distinguishing between network intrusion and normal sessions requires
much information about the session. To date, many NIDSs have stored the entire traffic
belonging to the session, used it to analyze the total traffic sent and received after the session
ended, extracted its statistical characteristics, and used them to distinguish intrusion from
normal sessions [1–4]. However, collecting all traffic during a session’s lifetime requires
excessive storage space. Instead of collecting traffic, it can collect only a portion of the
packet, such as the packet header, and create features for the session; however, using
storage space in proportion to the number of packets remains a problem.

An NIDS using session characteristics requires a high storage space and also has the
disadvantage of detecting intrusions only after the session is terminated. To solve these
problems, a new type of NIDS that collects only session initial packets and uses them for
detection has been proposed [5], where, instead of collecting traffic, it can collect only
a portion of the packet, such as the packet header, and create features for the session.
However, this approach still uses storage space in proportion to the number of packets.
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To solve the problem of existing NIDSs, the proposed method directly inputs the
received packet data to the classifier without collecting the packet data and stores the
output through it. In addition, when the next session packet is received, the previously
stored output and received new packet are input back to the classifier; therefore, partial
classification is performed every time a packet is received. Further, whenever a new
session packet is received, several state values for the session are updated, and a feature
set of the machine-learning (ML) model is finally created using these values. In addition,
instead of using all packets for each session, intrusion detection is performed before session
termination because only some packets are used at the beginning of the session, as in the
conventional method.

Therefore, this study makes the following contributions.

- 002D presents an NIDS model that progressively classifies using an ML model every
time a packet is received.

- Suggests a hybrid feature creation method that uses packet and session data simultaneously.
- Proposes an NIDS capable of fast intrusion detection while maintaining high detection

performance using partial packet data instead of entire session packets.

The remainder of this study is organized as follows. Section 2 briefly summarizes the
related research work. Section 3 describes the proposed NIDS, while Section 4 compares
and analyzes the performance of the proposed system with that of the latest competing
work. Finally, Section 5 presents the conclusions of the study.

2. Existing Work
2.1. Session-Based NIDS

A machine learning-based NIDS (ML-NIDS) converts received traffic into features
and classifies them to detect network intrusions. At this time, an ML-NIDS is classified
according to how the received traffic is converted into features. Traffic is divided into
sessions and monitored, and its nature (intrusion or normal traffic) is determined. Therefore,
to convert traffic into features, it is divided into a specific session, and then features for
the session are created using traffic belonging to the session [7–13]. A session is a concept
that exists in the Transmission Control Protocol (TCP), but the User Datagram Protocol
(UDP) and Internet Control Message Protocol (ICMP) also extend the concept of TCP to
define sessions. The method primarily used at this time classifies traffic with a key of five
tuples: same source IP address, destination IP address, source port, destination port, and
protocol. Packets with the same five tuples are considered to belong to the same session,
but UDP does not have a packet indicating the end of the session. Therefore, if the packet
inter-arrival time (IAT) of two adjacent packets exceeds a certain value (i.e., maximum IAT),
the existing session is considered to be terminated. Subsequent packets are considered to
belong to another session. In ICMP, a session can be defined as four tuples using the source
IP address, destination IP address, type, and protocol fields, rather than five tuples. For
this protocol, the end of the session is also defined using the IAT of the adjacent packets.

Thus, when defining the start and end of a session with the value of the IAT, it
should be noted that even in TCP, a retransmitted packet may be received during session
termination or a timeout may occur owing to packet loss [14]. Ultimately, the maximum
IAT for a session in an NIDS should be set to a sufficiently large value to handle these
situations. If the maximum IAT is set, packets whose IATs exceed this value are not
processed as packets belonging to the existing session, even if they belong to the existing
session. Instead, they are treated as packets belonging to a completely new session with the
same five tuples. Therefore, the maximum IAT must be carefully assigned. It is assigned a
value of 30 to 180 s, although it varies depending on the type of NIDS [15].

Although the maximum IAT is an important value for distinguishing between ses-
sions, it can negatively affect the NIDS detection of intrusions because a delay equal to
the maximum IAT necessarily occurs between the times when a session is terminated
and when the NIDS determines that the session is terminated. Nevertheless, traffic is
classified as a unit of session because NIDS requires tremendous hardware performance
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to determine whether an intrusion has occurred for every individual packet received. A
packet processing performance of up to 30 million packets per second must be supported
to process 10 Gbps ethernet traffic without loss, implying that the NIDS must perform deep
learning ML classification 30 million times per second, which is difficult to support even
with dedicated hardware accelerators. Network traffic should be classified in any unit, i.e.,
single packet or session, and determining intrusion for each session is the most realistic
implementation approach in current hardware technology.

2.2. Session Features

In this section, converting the traffic of each session into an ML input when the network
traffic is divided into sessions is explained. The most common approach in existing studies
is to extract multiple characteristics for a single session through statistical analysis of session
traffic. This method extracts simple characteristics, such as the total data amount of session
traffic and the total number of packets of session traffic, as well as those that require total
traffic, such as the average value of the IAT or standard deviation. An example of a session
feature is presented in Table 1 [9–13].

We call the session information obtained in this manner a session feature. An NIDS
using the session feature must collect the entire traffic of each session until it is terminated.
Therefore, an NIDS using session features collects intra-session traffic, analyzes session
traffic after session termination, creates session features, and uses them to detect intrusions,
as shown in Figure 1.

At this time, to detect session termination, the user must wait for the maximum IAT
after the actual session termination. Therefore, if a network intrusion occurs, it is detected
only after the maximum IAT has elapsed after the actual session termination [10–20].
Therefore, session-based NIDSs have the major disadvantage of long delays in detecting
intrusions. Additionally, because the session feature is created using the total traffic per
session, a considerable amount of traffic must be stored. Storage space may be saved by only
storing packet headers, instead of storing raw packets or storing only some information
necessary to create features. However, this process also requires storage space proportional
to the number of packets belonging to the session. In addition, an NIDS using session
features must decide in advance which characteristics of the session to use as features. These
decisions are determined by the designer, with the performance of an NIDS significantly
affected by the type of feature selected. Furthermore, when a new attack emerges, existing
features may be insufficient to detect it. In this case, a new feature must be designed, posing
a considerable burden on NIDS developers. Table 2 lists the strengths and weaknesses of
session-based NIDS.
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Figure 1. Typical procedure of the session-feature-based-NIDS to process the session.

Table 2. Advantages and disadvantages of session-feature-based NIDS.

Advantages

‚ Intrusion detection is performed at every session termination
instead of every received packet, reducing computational
overhead required for detection.

‚ Robust against loss of some packets.

Disadvantages

‚ Huge memory requirement to store received packets per session.
‚ The NIDS developer must select and design the feature type.
‚ When a new attack emerges, it is likely that a new feature type

will have to be designed.
‚ Detection delay occurs due to waiting for the maximum

inter-arrival time to recognize session termination.
‚ Vulnerable to NIDS detection bypass attacks through repetitive

transmission of packets by an attacker to change important
session feature values.

2.3. Packet Features

Although the session feature has excellent advantages, it also has many fatal dis-
advantages, necessitating studies for its improvement. Among them, the most effective
alternative involves using the traffic belonging to the session as a feature [5]. Using raw
packet data directly as a feature fundamentally avoids determining the type of session
feature in advance. As the ML model automatically determines the most effective char-
acteristics for existing attacks, it is sufficient to train the model again with the updated
dataset when the session data for a new type of intrusion are added. However, because
raw packet data are used as a feature, the packet itself must be stored, placing a heavy
burden on the storage space per session. Thus, only part of the packet is stored, with only
some of the session’s initial packets used instead of all the packets. Let us call the features
directly transformed from raw packet data packet features. The packet feature uses some
session packets, but the actual detection performance is comparable to that of the existing
session-feature-based NIDS. In addition, unlike the session feature, maximum IAT need
not be used because there is no need to wait until the session ends. Therefore, the NIDS can
rapidly detect an intrusion after it has occurred, which is the most important characteristic
of the packet-feature-based method; thus, the packet-feature-based NIDS is advantageous
in securing networks.

As mentioned earlier, session features and packet features have different characteristics
because the methods of creating features are completely different. Considering session
and packet features can complement each other’s disadvantages, research on a new type
of feature that further strengthens the advantages of the two features and improves the
disadvantages is continuously required.

However, in the field of NIDS, there is no research to apply both features at the same
time. In order to apply both feature types simultaneously, there are problems to be solved.
First, the memory usage required for feature creation can increase significantly. Currently,
even NIDS using only session features or packet features requires high memory usage, so it
is technically very difficult to create both features at the same time. In addition to this, we
need a machine learning model that can apply both features together. While all packets
belonging to each session are required to create a session feature, only some packets at the
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beginning of a session are used to create a packet feature. Therefore, a new NIDS design is
needed to combine the advantages of both methods rather than simply using them. Table 3
lists the strengths and weaknesses of packet-based NIDS.

Table 3. Advantages and disadvantages of packet-feature-based NIDS.

Advantages

‚ When a new attack emerges, it can automatically create features to
detect the new attack, eliminating the need for NIDS
developer intervention.

‚ Intrusion detection is possible before session termination.
‚ When it handles long sessions, there is no detection delay due to the

maximum inter-arrival time for end-of-session recognition.
‚ It supports deep packet inspection.
‚ Detection rate is very high.

Disadvantages

‚ High memory requirement to store some packet data per session.
‚ Patterns located in packet payloads that are not used as features

cannot be detected.

3. Materials and Methods
3.1. Motivation

According to previous studies on NIDS, session and packet features have significantly
different characteristics, which can considerably improve detection performance through
synergistic effects if they can be used together. However, the amount of information to be
stored and maintained increases excessively when both feature types are used simultane-
ously. In addition, the detection delay may intensify as the time required for packet feature
processing is added to the delay required for detection caused by using session features.
However, if this problem can be resolved, the intrusion detection performance of the NIDS
can be dramatically improved by comprehensively using session and packet features.

The significant data needed to create a feature requires a correspondingly large storage
space. Packet-feature-based NIDS collects sequentially received packets for each session up
to a predetermined size and then inputs them to an ML model for classification. Therefore,
past packets must be stored until sufficient packet data are gathered. Hence, creating an
ML model where a packet-feature-based NIDS performs classification tasks incrementally
every time packets are received and only stores intermediate classification results of small
size and does not store packet data will significantly reduce the storage space required
for NIDS.

The session-feature-based NIDS stores all packet data or packet headers for all packets
in the session and analyzes them after the session is completed to determine their statistical
characteristics, resulting in a high storage burden and long delay to confirm session termi-
nation, as explained above. Here, re-examining the characteristics of packet-feature-based
NIDS indicates that some data from sessions can be used to achieve sufficiently high de-
tection rates; thus, session features obtained from some initial session packets are likely to
contain sufficient information. In addition, it is possible to fundamentally solve the delay
problem of waiting for the maximum IAT until the end of a session. However, assuming
that NIDS has improved to generate session features with only some initial session packets,
the same storage space as the existing NIDS will be eventually used if all those packets still
need to be stored; thus, storage space issues will remain unresolved again. Therefore, a new
approach to creating session features that can address these constraints is urgently needed.

As session features primarily use statistical values that reflect the entire session, pack-
ets need not be stored if each session feature can be represented as a recurrent expression.
With this approach, packet data can be discarded immediately after updating the existing
session feature value every time a packet is received. Therefore, if both ideas can be im-
plemented, the overhead for storing packet data can be fundamentally solved, even if the
NIDS uses packet and session features simultaneously.
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The proposed approach presents solutions to the two questions presented in the
aforementioned motivation: ‘Can classification be performed each time a packet is received?’
and ‘Can session features be generated in a recurrent manner?’ Each solution is described
in detail.

3.2. Incremental Classification Using Packet Data

In a typical deep learning model with fixed input shapes, it is not possible to perform
a gradual classification of the sessions to which the received packets belong each time they
are received [21,22]. However, deep learning models, such as recurrent neural network
(RNN), gated recurrent unit (GRU), and long short-term memory (LSTM), address these
constraints by generating cycles between nodes [23–26]. Thus, the deep learning model
of the proposed NIDS performs classification with the LSTM classifier for every packet
received, stores the results, and uses this result and newly received packets as LSTM inputs
to progressively continue the classification for the session. Therefore, the required storage
space can be significantly reduced because the packet data itself need not be stored and only
the output result of the corresponding cell of the LSTM needs to be stored. Figure 2 shows a
block diagram of the LSTM used in the proposed scheme for the incremental classification
of sessions. When the proposed NIDS receives the first packet (i.e., Packet 1) of the session,
it inputs packet 1 to the first cell (i.e., Cell 1) of the LSTM classifier. Afterwards, the hidden
states and cell states of cell 1 are temporarily stored in the buffer until the next packet of
the session (i.e., Packet 2) is received. When NIDS receives Packet 2, it inputs the values
stored in the buffer and Packet 2 into Cell 2 to proceed with the next classification process,
and the hidden states and cell states of Cell 2 are stored in the buffer again. In this way,
classification of one session is gradually progressed, and the output value of the last cell
(i.e., Packet N) is used as a feature to classify the session.
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3.3. Recurrent Session Feature Generation

For the feature set presented in ISCXIDS2012, the importance of each feature was
measured using a random forest, and 15 features, including the top 10 features, were
selected and analyzed to determine whether they could be expressed recursively. According
to the analysis results shown in Table 4, although some states for feature generation need to
be added, the features and state values for the current packet can be recurrently calculated
through the features and state values for the previous packet. Using this approach, instead
of collecting all packets and then creating session features, we update the state and features
online as each packet is received and create the features shown in Table 1 when needed,
eliminating the need to store any packets.
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Table 4. Recurrently creating selected features without storing any packet data. Fifteen features
are created recursively using seven states in addition to fifteen features. For example, for the Flow
Duration feature, ‘old Flow Duration + new Flow IAT’ implies that a new Flow Duration value can be
obtained by adding the updated Flow IAT value to the previous Flow Duration, when a new packet
belonging to the current session is received.

Label Type Recurrent Expression

Last Flow Timestamp State current packet timestamp

Flow IAT State new Last Flow Timestamp—old Last Flow Timestamp

Fwd Last Timestamp State new current packet timestamp if the current packet is sent forwards

Bwd Last Timestamp State new current packet timestamp if the current packet is sent backwards

Fwd IAT State new Last Flow Timestamp—old Fwd Last Timestamp if the current packet is
sent forwards

Flow IAT2 Mean State (old Flow IAT2 Mean × old Tot Pkts + new Flow IAT2)/new Tot Pkts

Pkt Len2 Mean State ((old Tot Fwd Pkts + old Tot Bwd Pkts) × old Pkt Len2 Mean + packet size2)/(new Tot
Fwd Pkts + new Tot Bwd Pkts)

Flow Duration Feature old Flow Duration + new Flow IAT

Tot Fwd Pkts Feature old Tot Fwd Pkts + 1 if the current packet is sent forwards

Tot Bwd Pkts Feature old Tot Bwd Pkts + 1 if the current packet is sent backwards

Flow IAT Mean Feature (old Flow IAT Mean × old Tot Pkts + new Flow IAT)/new Tot Pkts

TotLen Fwd Pkts Feature old TotLen Fwd Pkts + the packet size if the current packet is sent forwards

TotLen Bwd Pkts Feature old TotLen Bwd Pkts + the packet size if the current packet is sent backwards

Pkt Len Mean Feature (new TotLen Fwd Pkts + new TotLen Bwd Pkts)/(new Tot Fwd Pkts + new Tot Bwd Pkts)

Flow IAT Std Feature sqrt(new Flow IAT2 Mean − new Flow IAT Mean2)

Fwd Pkts/s Feature new Tot Fwd Pkts/(new Flow Duration − (new Last Flow Timestamp − new Fwd
Last Timestamp)

Flow Pkts/s Feature (new Tot Fwd Pkts + new Tot Bwd Pkts)/new Flow Duration

Fwd IAT Mean Feature (old Fwd IAT Mean × old Tot Fwd Pkts + new Fwd IAT)/new Tot Fwd Pkts if current
packet is sent forwards

Pkt Len Std Feature sqrt(new Pkt Len2 Mean − new Pkt Len Mean2)

Bwd Pkts/s Feature new Tot Bwd Pkts/(new Flow Duration − (new Last Flow Timestamp − new Fwd
Last Timestamp)

Flow IAT Mean Feature (old Flow IAT Mean × old Tot Pkts + new Flow IAT)/new Tot Pkts

Flow IAT Max Feature max(old Flow IAT, new Flow IAT)

3.4. System Architecture

Essentially, the packet-feature-based NIDS uses only a few packets at the beginning of
the session. Therefore, to use both the packet and session features, a session feature must
be created using only the packets used by the packet-feature-based NIDS. If the number of
packets used to create a packet feature and session feature is different, using more packets
will eventually become a bottleneck in the feature creation speed.

Owing to varying packet sizes, even one packet cannot be classified by deep learning
models, such as convolution neural network (CNN) and deep neural network (DNN),
which can only process fixed input sizes. Therefore, a classifier consisting of a two-stage
LSTM is required. The first-stage LSTM classifies packets of various sizes and inputs the
result to a specific cell of the second-stage LSTM, enabling the second-stage LSTM classifier
to classify sessions of various lengths.

Simultaneously, packets processed by LSTM update some features and state the values
necessary for creating the rest of the session features. For the packet input to the last LSTM
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cell, after updating the features and states, the session features for the session to which the
current packet belongs are created. The generated session features are concatenated with
the output of the two-stage LSTM and passed as input to the DNN to detect intrusion.

Figure 3 shows the overall architecture of the proposed NIDS. When packets belonging
to a session are sequentially received, NIDS updates states and some feature values used to
create session features. When the NIDS receives the M-th packet, the states and features
are used to generate session features after updating, and the created session features are
input to the DNN. At the same time, the received packet is divided into equal sizes as
shown in Figure 3, and each partial packet is sequentially input to the first stage LSTM to
create a packet feature to be used in the second stage LSTM. The generated packet feature
is input to each cell of the second stage LSTM, and after the packet feature for the M-th
packet is input, the output of cell M is input to another feature of the DNN. Now, the DNN
determines whether the session is malicious by combining the two input features as inputs
and using them for classification.
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4. Results

To accurately analyze the performance of the proposed scheme, we compared it
with various existing deep-learning-based NIDS. In particular, the ISCXIDS2012 and CIC-
IDS2017 datasets were used to verify the performance in various environments [9,10];
the characteristics of these datasets are listed in Tables 5 and 6, respectively. The fields
dependent on a specific session, such as the source IP, destination IP, and source port, were
removed from the packet data and session features to accurately train the ML models. In
addition, representative deep learning algorithms, such as DNN, CNN, and HAST-I, were
selected for comparison. Parameter settings for each algorithm are shown in Table 7. For
performance analysis, we compared the performance of the proposed method and other
algorithms by measuring the accuracy, precision, recall, F1-score, and confusion matrix.
Each definition of metric is as follows:

• accuracy =
TP + TN

TP + FP + FN + TN
• precision =

TP
TP + FP

• recall =
TP

TP + FN

• F1− score =
2 · recall · precision
recall + precision

where, TP, TN, FP, and FN represent the true positive, true negative, false positive,
and false negative, respectively. We also compared the proposed method and other NIDSs
in terms of memory requirement and detection speed.
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Table 5. Details of the ISCXIDS2012 dataset.

Number of features 81

Number of classes 5

Number of sessions 78,878

Number of sessions for each class

Normal 22,382
DDoS 21,702

BruteForceSSH 18,145
HTTPDoS 9487
Infiltration 7162

Table 6. Details of the CIC-IDS2017 dataset.

Number of features 81

Number of classes 11

Number of sessions 123,236

Number of sessions for each class

Benign 27,234
DDoS 24,860

DoS Hulk 20,419
DoS GoldenEye 15,305

PortScan 6459
FTP-Patator 6267
SSH-Patator 6029

DoS slowloris 5256
DoS Slowhttptest 4630

Bot 3546
Web Attack Brute Force 3231

Table 7. Parameter configuration for each NIDS.

Type Parameter Value

Proposed

Packet LSTM Unit 512, 256
Session LSTM Unit 1024

Session Unit 256, 128, 16
Session Drop Out 0.1, 0.1, 0.1

Activation ReLU

CNN

Conv Unit 3, 3, 3, 3
Kernel size 3, 3, 3, 3

Unit 512, 256, 128
Activation ReLU

DNN
Unit 1024, 768, 512, 256, 128

Density 0.5
Activation ReLU

HAST-I

Conv_unit 32, 64
Kernel size 5, 5
Pooling size 3, 3

Unit 1024
Activation ReLU

4.1. Memory Requirement

Table 8 shows the memory size required to store the packet data used to create the
feature. In the existing session-feature-based NIDS, the size of memory required to store
packets for generating features is proportional to the average session length. On the other
hand, the existing packet-feature-based NIDS uses some data for an initial fixed number
of packets, so the required memory size is smaller than that of the session-feature-based
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NIDS. The proposed NIDS minimizes the required memory area even though both feature
types are used simultaneously. First, instead of using packet data to create session features,
all features are created using only 17 states and some session features. Therefore, the
proposed method always uses the same memory to create session features regardless of
the session length. In addition, when generating packet features, only the current packet
is used instead of several packets received so far, so only a fixed size of memory is used
regardless of the session length. From Table 8, the existing session-based NIDS consumes
21,066 and 5791 bytes per session on average for the ISCXIDS2012 and the CIC-IDS2017,
respectively. This means that the sessions in the ISCXIDS2012 are longer than the sessions in
the CIC-IDS2017 and therefore use more memory. On the other hand, packet-feature-based
NIDS requires 418 bytes per session in the CIC-IDS2017 instead of 357 bytes per session in
the ISCXIDS2012. From this result, we find that ISCXIDS2012 contains more sessions, or six
packets shorter than the CIC-IDS2017.

Table 8. Average memory size in bytes for storing the packet data needed to create the feature.
Assume that only initial six packets are used for each session and only 100 bytes of each packet are
used to create packet-based features.

Dataset Session-Feature-Based Packet-Feature-Based Proposed

ISCXIDS2012 21,066 357 296 (196 + 100)
CIC-IDS2017 5791 418 296 (196 + 100)

The proposed NIDS creates two types of features simultaneously, using 196 bytes of
memory per session for session features and only 100 bytes of memory per session for
packet features. Therefore, since a total of 296 bytes of memory is used per session, the
proposed NIDS consumes less memory than the existing session-based NIDS or packet-
based NIDS, even though both features are used simultaneously. Above all, it is also a great
advantage that the size of memory required per session is always fixed. It is advantageous
for system design, such as being able to accurately calculate the memory required for the
number of concurrent sessions that can be supported.

4.2. Detection Speed

Table 9 shows the number of packets required for intrusion detection per session
between the existing session-feature-based NIDS and the proposed NIDS, where a smaller
number of packets means faster detection speed. Although the number of packets required
for detection varies depending on the dataset used, it shows that the proposed method
uses a very small number of packets compared to the existing session-feature-based NIDS.
In general, packet-feature-based NIDS is advantageous in increasing intrusion detection
speed because it uses only some initial session packets. However, it should be noted that
the proposed NIDS uses session features in addition to packet features. From Table 9, it is
confirmed that the detection speed of the proposed NIDS can be greatly improved, unlike
the existing session-feature-based NIDS, even though the proposed method uses the same
session features to session-feature-based NIDSs. Due to the synergistic effect of packet and
session features, the proposed NIDS can reduce the number of required packets effectively,
increasing detection speed.

Table 9. The average number of packets required to detect an intrusion per session.

Dataset Session-Feature-Based Proposed

ISCXIDS2012 32.92 3.6
CIC-IDS2017 9.04 4.1

4.3. Intrusion Detection Accuracy

Figure 4 shows the intrusion detection rates of each algorithm for the datasets men-
tioned. As shown in the figure, the proposed scheme has the highest detection rate com-
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pared with the existing NIDS. In particular, it is noteworthy that the proposed NIDS has
the highest performance for all metrics, i.e., accuracy, precision, recall, and F1-score, among
all the comparison algorithms. Considering that the proposed method detects intrusion
without packet storage, in contrast to the existing methods that require a large memory size
to store many packets to create features, the high detection accuracy of the proposed NIDS
proves that it effectively mitigates the disadvantages of existing NIDSs while maintaining
high detection accuracy.
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4.4. Confusion Matrix

Figures 5 and 6 show the confusion matrices for each algorithm for the two datasets.
The confusion matrix is advantageous for analyzing detailed performance because it can
analyze the performance of individual classes. When using ISCXIDS2012, the proposed
method has a slightly lower detection rate for distributed denial-of-service (DDoS) than
HAST-I but exhibits the highest performance for the other classes.
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As shown in Figure 5, the DDoS class shows the lowest detection rate regardless of
algorithm type. The reason is that DDoS attacks use many zombie PCs to attack one target
with multiple sessions, so the characteristics are very different from other classes. Most
NIDS today detect attacks based only on information about a single session, making them
vulnerable to DDoS attacks that use multiple sessions. In this case, the additional use of
characteristics for multiple sessions is helpful for detection.

In contrast, CIC-IDS2017 exhibits almost the same performance as HAST-I as shown
in Figure 6. Therefore, these two confusion matrices confirm that the proposed NIDS has a
high detection rate for the entire dataset but can also significantly improve the detection
rate for individual classes.

CIC-IDS2017 has fewer noises than other datasets including the ISCXIDS2012. There-
fore, compared to the ISCXIDS2012, the classification accuracy is higher regardless of
the machine learning algorithm, so the margin for improving the accuracy is very small.
Nevertheless, it shows that the proposed method is superior in that the proposed NIDS
improves F1-scores by 3.67% points and 1.46% points, respectively, compared to DNN and
CNN models. Since performance differences are evident for each classification model, it
also shows that the CIC-IDS2017 is sufficient to be used for performance comparison.

5. Conclusions

The proposed NIDS does not need to store the received packets for feature creation;
therefore, in contrast to the existing ML-based As, the amount of memory consumed for
processing each active session is minimal. Because the same memory can support a greater
number of concurrent sessions than other NIDS, the insufficient NIDS processing capacity
owing to the recent increase in network traffic can be significantly improved. Above all,
it is a significant advantage that the intrusion detection performance can be improved
compared to the existing NIDS, despite the small memory footprint. As network attacks
diversify and zero-day attacks become frequent in an environment where the amount
of network traffic increases drastically, NIDS faces technically significant challenges in
simultaneously improving processing capacity, speed, and detection accuracy. Hence, the
proposed NIDS is expected to significantly aid in solving these problems.

As the proposed NIDS operates optimally when packets within a session are received
in order, the amount of memory used for sorting increases when there are many out-of-
order packets. The proposed NIDS is designed under the assumption that session packets
are received without loss. However, some packets may be lost in real networks. It is
expected that packet loss causes a negative impact on intrusion detection performance.
The weaknesses of the proposed NIDS will be addressed through future research, and we
expect that the proposed NIDS will be fully applied to an actual network.
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