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Abstract: Herein, a complete study of the electrochemical behavior of the most commonly used
tetracycline antibiotics (TCs) on unmodified carbon screen-printed electrodes (SPEs) is presented.
In addition, the oxidation pathway of TCs on SPE is elucidated, for the first time, with liquid
chromatography-quadrupole time-of-flight mass spectrometry (LC-QTOF-MS). Square wave voltam-
metry (SWV) was used to study the electrochemical fingerprint (EF) of the antibiotics shaping the
different oxidation processes of the TCs in a pH range from 2 to 12. Their characteristic structure
and subsequent EF offer the possibility of distinguishing this class of antibiotics from other types.
Under the optimized parameters, calibration curves of tetracycline (TET), doxycycline (DOXY),
oxytetracycline (OXY), and chlortetracycline (CHL) in a Britton Robinson buffer solution (pH 9)
exhibited a linear range between 5 and 100 μM with excellent reproducibilities (RSDTET = 3.01%,
RSDDOXY = 3.29%, RSDOXY = 9.78% and RSDCHL = 6.88% at 10 μM, N = 3) and limits of detection
(LOD) of LODTET = 4.15 μM, LODDOXY = 2.14 μM, LODOXY = 3.07 μM and LODCHL = 4.15 μM.
Furthermore, binary, tertiary, and complex mixtures of all TCs were analyzed with SWV to investigate
the corresponding EF. A dual pH screening (pH 4 and pH 9), together with the use of a custom-made
Matlab script for data treatment, allowed for the successful confirmation of a single presence of TCs
in the unknown samples. Overall, this work presents a straightforward study of the electrochemical
behavior of TCs in SPE, allowing for the future on-site identification of residues of tetracycline
antibiotics in real samples.

Keywords: tetracycline antibiotics; electrochemical fingerprint; liquid chromatography mass
spectrometry; oxidation pathway

1. Introduction

Tetracycline antibiotics (TCs) produced by Streptomyces are broad-spectrum agents
characterized by containing four condensed aromatic rings known as naphthacene cores
(see Figure S1). TCs are especially effective against a broad variety of Gram-positive and
Gram-negative bacteria, such as Staphylococcus, Streptococcus, Pneumococcus, Gonococcus,
Cholera, Dysentery bacillis, Pertussis, Rickettsia, Chlamydia, and Mycoplasma [1,2]. Since
their first introduction into medicine in the 1940s, antibiotics have been widely used in
livestock farming—as veterinary medicines, feed additives, growth promoters [3], or to
prevent/treat mastitis and metritis in cows [4]—and in healthcare for the treatment of many
different infections, such as respiratory tract infections, urethritis and severe acne, or even
malaria [5,6]. TCs can be divided into four main types: tetracycline (TET), doxycycline
(DOXY), oxytetracycline (OXY), and chlortetracycline (CHL), which are most often applied
to livestock animals (including honeybees) because of their affordability [5]. However,
during the last decades, the generation of new TCs has increased considerably, with more
than nine different types of TC [1]. The action mechanism of TC lies in its active transport
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into the cells of the susceptible bacteria, for the inhibition of protein biosynthesis after
binding to the 30S ribosomal subparticle [1,7].

In spite of its unquestionably antibacterial clinical application, the excessive use of TCs
exhibits important disadvantages and concerns in our society. First, some examples are the
possible allergic sensibilization of exposed individuals (raising intracranial pressure and
skin infections, such as rosacea or perioral dermatitis) [8] and adverse effects, including
gastrointestinal disturbances (due to the selective pressure that antimicrobial drug residues
may exert over human gut microflora) and renal dysfunction [6,9]. Moreover, TCs have
been described as hepatotoxic, more dangerous during pregnancy [8,10], and carcinogenic
agents, therefore, exposure to them should be reduced to the minimum possible level [11].
Finally, the overuse of these antibiotics promotes resistance genes in bacteria [12]. These
resistant bacteria may spread from animals to humans via the food chain [13]. Thus,
pathogens could possibly become resistant to these drugs leading to a failure risk of the
antibiotic treatment, decreasing its efficiency and triggering potential negative effects for
both human and animal health [5,13,14].

According to the World Health Organization (WHO), more than half of the global
production of antibiotics is used in farm animals [15]. As TCs have been widely used for
animal feed, meat, milk, and fish production, the analytical methods developed are mainly
focused on their determination in food samples. Although a maximum residue limit (MRL)
has been set for these compounds in food-safety control programs in many countries (see
Table S1, MRLs established by European Union), a fast and sensitive analytical method is
still needed for achieving the lowest possible detection limit [5].

On the other hand, as TCs are difficult to completely decompose in the body of animals
and people, significant quantities of the toxic TC are discharged into the environment [16].
In this way, residues of TCs can also be heavily adsorbed into environmental materials, as
well as in waste effluents from hospitals and pharmaceutical industry, where they keep
their activity, leading to bacterial resistance [17]. For example, it has been demonstrated
that OXY remains undegraded for more than ten months when it is adsorbed in marine
sediments and soils [17]. A few studies have reported that the concentration of TCs in
groundwater and surface water is as high as 0.2–10 nM, which may be sufficient to cause
serious pollution of the aquatic environment [16]. However, the possible contamination of
ground water is largely unknown [18], and the exhaustive control of these residues in the
environment should be addressed in the near future [19,20]. Hence, accurate monitoring,
based on highly sensitive and selective user-friendly sensors for in situ application, is
urgently required.

Electrochemical-based detection is of particular interest due to its remarkable advan-
tages, such as low cost, excellent sensitivity, portability, and fast response in comparison to
laboratory-based equipment such as high-performance liquid chromatographic (HPLC),
spectrophotometry, or capillary electrophoresis, which require relatively expensive in-
strumentation, have long analysis times, and entail trained personnel [6,21]. Moreover,
electrochemical sensors manufactured using screen-printing technology offer huge advan-
tages, utilizing the progressive drive towards miniaturized, sensitive, and portable device
and making them user-friendly and disposable [22].

During the last decades, the electrochemical detection of several types of TCs has
been pursued using different approaches. Biorecognition is one of the most common strate-
gies and uses aptamer-based sensors [23–32], which are the most recent and commonly
found in the literature, followed by enzyme-linked immunoassay (ELISA) functionaliza-
tion [14,15,33,34], and sensors based on molecular imprinted polymers (MIPs) [35,36] or
antibodies [8,37,38] (see Table S2). Furthermore, the oxidation of TCs has been reported us-
ing diverse types of electrodes and materials, ranging from metallic nanoparticles [39–45],
graphene oxide [46–50], composites [43,51–55], gold [3,11,56], boron-doped diamond elec-
trode (BDDE) [57–60], ruthenium oxide-hexacyanor-uthenate (RuO-RuCN) [61], or multi-
wall carbon nanotubes (MWNTs) [17,21] (Table S3). Interestingly, several cases have shown
a combination of electrochemical detection (ED) with other analytical methods, such as
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HPLC [59,62,63], as well as flow-injection (FI) [6,57,58,64–66] (see Table S3). However,
to date, few studies have explored and reported an understanding of the basis of the
electrochemistry of TCs per se. One example is the work reported by Hou et al., where
the authors studied the electrochemical behavior of four different TCs by cyclic voltam-
metry and differential pulse voltammetry at electrochemically pre-treated glassy carbon
electrodes [67]. Furthermore, there is a lack of information and publications specifically
showing the oxidation pathways and their corresponding oxidation products.

Herein, a meaningful study of the electrochemical behavior of the most commonly
used TCs (TET, DOXY, OXY, and CHL) on carbon screen-printed electrodes (SPE), as
well as the elucidation of the oxidation pathway on the SPE via liquid chromatography-
quadrupole time-of-flight mass spectrometry (LC-QTOF-MS), is for the first time presented.
First, the voltammetric response of the four TCs at different pHs (ranging from 2 to 12) was
measured, to explore their characteristic electrochemical fingerprints (EF). Afterwards, the
selective identification of single TCs and the influence of binary and complex mixtures on
the EF of TCs was studied by square wave voltammetry (SWV), using a dual pH strategy
(pH 4 and pH 9). Moreover, a custom-made data treatment based on Matlab software was
used to enhance the peak separation, thus facilitating the identification of the TCs [68,69].
In parallel, the oxidation mechanism of TCs was studied by analyzing partially electrolyzed
samples with LC-QTOF-MS, aiming to understand the redox processes at the carbon SPE.
Overall, the characteristic EF of TCs shown in this work enables a clear discrimination
between them and other antibiotics, due to their specific electrooxidation processes. This
rapid and low-cost profiling approach will ultimately allow the identification of TET, DOXY,
OXY, and CHL in a decentralized manner.

2. Materials and Methods

2.1. Reagents

Tetracycline antibiotic with >91% purity was obtained from Alfa Aesar Thermo Fisher
(Kandel) Germany, doxycycline hyclate purity >98% and chlortetracycline hydrochloride
purity >89.5% were purchased from Acros Organics (Geel, Belgium), and oxytetracycline
hydrochloride purity 95% was acquired from TCI Tokyo Chemical Industry. Phenol
with purity 99% was obtained from J&K scientific GmbH, Germany. Benz[b]anthracene,
N,N-dimethylcyclohexylamine and 6,11-dihydroxy-5,12-naphthacenedione, as well as all
analytical grade salts of potassium chloride, sodium phosphate, sodium acetate, sodium
borate, and potassium hydroxide were purchased from Sigma-Aldrich (Overijse, Belgium).
All TCs stocks were prepared in 18.2 MΩ cm−1 doubly deionized water, except TET
stock, which was prepared in ethanol, all in a concentration of 10 mM. Electrochemical
measurements were performed in Britton Robinson buffer at 20 mM ionic strength with a
supporting electrolyte 100 mM KCl by applying 50 μL of the buffer onto the SPE.

2.2. Instrumentation and Apparatus

All solutions were prepared in 18.2 MΩ cm−1 doubly deionized water (Sartorius,
Arium® Ultrapure Water Systems). The pH was measured using a 913 pH meter consisting
of a glass pH electrode (6.0262.100) with a reference electrolyte 3 M of KCl from Metrohm
(The Netherlands).

All SWV measurements were performed using a MultiPalmSens4 or EmStat Blue
potentiostats (PalmSens, The Netherlands) with PSTrace/MultiTrace or PStouch software,
respectively. Disposable ItalSens IS-C graphite screen-printed electrodes (SPE) (provided by
PalmSens, Utrecht, The Netherlands), containing a graphite working electrode (Ø = 3 mm),
a carbon counter electrode, and a (pseudo) silver reference electrode were used for all
measurements. The optimized SWV parameters: potential range of 0–1.5 V, frequency
10 Hz, 35 mV amplitude, and 5 mV step potential were used (see Supplementary Material).
All the voltammograms were background corrected using the “moving average iterative
background correction” (peak width = 1) tool in PSTrace software.
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A custom-made script (Matlab R2018b, MathWorks, Natick, MA, USA) [68,69] was
used after the analysis by SWVs to enhance peak identification. In brief, the script removes
the background signal and applies a top-hat filter that provides an enhanced separation of
overlapped peaks, which permits a successful identification of the TCs at pH 9 [70].

The chromatography-mass spectrometry experiments were performed on an liquid
chromatograph coupled to a quadrupole time-of-flight mass spectrometer (LC-QTOF-
MS) using electrospray ionization (ESI) in positive mode. The apparatus consisted of
a 1290 Infinity LC (Agilent Technologies, Wilmington, DE, United States) connected to
a 6530 Accurate-Mass QTOF-MS (Agilent Technologies) with a heated-ESI source (Jet-
Stream ESI). Further information on the LC-QTOF-MS conditions can be found in the
Supplementary Material.

3. Results and Discussions

3.1. Electrochemical Behavior of Tetracyclines via SWV

The electrochemical behavior of TCs was studied on carbon SPE in the whole pH
range (2–12) using SWV. SWV was chosen because it is considered a faster and more
sensitive technique, which allows for a better resolution and separation between peaks of
the oxidation processes in comparison with cyclic voltammetry (CV) [71]. It is important to
highlight that TCs are derived from a system of four six membered rings arranged linearly
with characteristic double bonds and they have several functional groups, resulting in
strong complexing properties [72]. The high similarity between structures (i.e., all TCs
contain the same phenolic and di(methyl)amino substituents on position 10 and 4, respec-
tively [73]) (Figure S1a–e) allows for an easy electrochemical discrimination from other
types of antibiotics, such as amoxicillin or penicillin (see Figure 1). Therefore, it is expected
that the electrochemical oxidation of the TCs will occur through the aforementioned moi-
eties. Accordingly, two main oxidation peaks were observed in all TCs during the pH
screening, with the exception of the appearance of a third oxidation process at basic pH or
the merge of all the peaks at neutral pH (Figure 2). Figure 2 shows the EF of TCs (black
lines), exhibiting similar electrochemical oxidation processes. Few noteworthy similarities
were found between the EF in the couples TET–OXY and DOXY–CHL at pHs below 7,
whereas the similarity among the couples becomes the opposite at higher pHs (TET–CHL
and DOXY–OXY). As reported in the literature, TCs have variable charges on different
sites, depending on the pH of the solution, because they contain three ionizable groups
(tricarbonyl, dimethylammonium, and phenolic-diacetone) [10,74]. Hence, when the pH is
under 4, TC exists as a cation (TCH3+), due to the protonation of the dimethylammonium
group (pKa = 9.7). At a pH between 3.5 and 7.5, TC exists as a zwitterion (TCH2

0), due to
the loss of a proton from the phenolic diketone moiety (pKa = 7.7). At a pH higher than
7, TC exists as an anion (TCH− or TC2−), due to the loss of protons from the tri-carbonyl
system (pKa = 3.3) and phenolic diketone moiety [75].

Taking into account the three ionizable groups, whole pH screening (2–12) was sub-
sequently carried out using another four chemical compounds with similar structures
(see Figure S1f–i) in order to confirm the origin of the oxidation peaks. Figure 2 sum-
marizes the EF of the four TCs (black lines) and the other chemical compounds using
the entire range of pH, and Figure S2 shows those afterward selected as optimal, pH 4
and pH 9. Benz[b]anthracene (Figure S1f) was identified as the naphthacene core shared
by all TCs, thus, it was used as negative control. As expected, no oxidation peaks were
observed in the EF of Figure 2 and Figure S2 (grey dashed line). Phenol (Figure S1g)
directly corresponds with the phenolic substituent in position 10 (see Figure S1a), showing
similar electrochemical behaviors among the EFs, as can be seen in Figure 2 and Figure
S2 (blue dashed line). It is important to point out that the overlap between the EFs of
phenol and the TCs was not complete in some examples, such as DOXY and CHL (see
Figure 2b,d). This could be due to the presence of a chlorine atom in position 7 in the
case of CHL and the absence of the hydroxyl group (–OH) at position 6 in the case of
DOXY, which influences the oxidation, causing a shift towards higher potentials. Except
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for this minor shift, a clear visual correlation can be observed between both EFs (phenol
and TCs), which mostly coincides with the first oxidation peak of TCs in the pH screening.
Subsequently, N,N-dimethylcyclohexylamine (Figure S1h) was used in the experiment,
because of its tertiary amine ionizable group, to verify the origin of the second peak. As
can be seen in Figure 2 and Figure S2 (red dashed line), both EFs from the corresponding
TC and the N,N-dimethylcyclohexylamine overlap at pHs above 8, since the tertiary amine
is protonated bellow pH 7, making its oxidation difficult [68,76]. Last but not least, the
origin of a third oxidation process at higher potentials and basic pHs could be associated
with the oxidation of some hydroxyl groups present in the chemical structures of TCs.
To corroborate this, 6,11-dihydroxy-5,12-naphthacenedione (Figure S1i) was used, as it
contains hydroxyl groups in a naphthacene core. Interestingly, the suggested oxidation of a
hydroxyl group was shown as a peak at basic pHs (i.e., pH 9 to 12) (Figure 2 and Figure S2
green dashed line). Notably, the concentration of 6,11-dihydroxy-5,12-naphthacenedione
was increased until 1 mM to lighten the oxidation peaks in the voltammogram (green
dashed line, Figure 2 and Figure S2), while the rest of pH screenings were performed with
a concentration of 10 μM. Overall, the EF of TC is enriched at basic pH, exhibiting multiple
oxidation peaks attributed to the aforementioned oxidizable groups. A clear example
is shown for the TC at pH 9, were the obtained EF shows three overlapped oxidation
peaks. At this point, from a electrochemical point of view, the origin of the oxidation peaks
exhibited in the EF of the four TCs can be confirmed.

According to the EF, the best-resolved anodic signals for oxidation of TCs on SPE were
obtained at basic pHs due to the deprotonation of the oxidizable groups. However, the
possibility of a dual pH approach for a selective detection of TC was parallelly considered.
In particular, pH 9 was chosen as one optimal option, due to the similarities between
the couples TET–CHL and DOXY–OXY, which yielded EFs with three distinguishable
peaks (P1TET = 0.65 V, P2TET = 0.74 V, P3TET = 0.84 V and P1CHL = 0.64 V, P2CHL = 0.71 V,
P3CHL = 0.81 V) and two peaks (P1DOXY = 0.65 V, P2DOXY = 0.77 V and P1OXY = 0.65 V,
P2OXY = 0.78 V), respectively. These results differ from the previous studies reported in the
literature, where the more favorable peaks always appeared at acidic pHs [54]. However, it
is important to clarify that the oxidative processes and the oxidation potential may vary
depending on the type of electrode, which hinders a direct comparison.

 

Figure 1. Comparison between (a) chemical structures and (b) peak potential range of the char-
acteristic electrochemical fingerprints of the tetracyclines (Doxycycline, pink region) with other
type of antibiotics, such as Amoxicillin and Cefadroxil (orange and grey region) or Cephalexin and
Penicillin G (green and blue region). Moving average corrected square wave voltammogram using a
concentration of 100 μM for each antibiotic, except for Penicillin G (1 mM).
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Figure 2. Square wave voltammograms (baseline-corrected) obtained in the whole pH screening
range (2–12) using Britton Robinson buffer of all TCs (black line) (a) TET, (b) DOXY, (c) OXY, and
(d) CHL at 10 μM concentration each. Phenol (blue dashed line), benz[b]anthracene (grey dashed
line), and N,N-dimethylcyclohexylamine (red dashed line) in a concentration of 10 μM, and 6,11-
dihydroxy-5,12-naphthacenedione (green dashed line) in a concentration of 1 mM.
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Figure S3 shows the shift in the oxidation peak potential of TC oxidation as a function
of pH (from pH 2 to 12) for the first peak corresponding to the phenol group (P1, blue
squares) and the second peak corresponding to the tertiary amine group (P2, red dots).
Indeed, the Ep for P1 and P2 shifts negatively with the increase of pH, which corresponds to
the oxidation process of phenolic compounds and tertiary amines [73]. When a regular shift
in the peak potential with pH is observed, this indicates the involvement of protons during
TC oxidation reaction [40]. Some authors stated that the first peak is due to the phenol
oxidation, whereas the second peak can be attributed to the oxidation of the intermediates
generated during the first reaction (redox process from hydroquinone to benzoquinone)
and that this can be justified because of the linear regions along the pH increment [40,73]. In
this case, the linear relationship (from pH 2 to pH 12) follows a pseudo-Nernstian response
in the case of the first peak (Ep (V)TET = −0.047 pH + 1.04, Ep (V)DOXY = −0.039 pH + 0.95,
Ep (V)OXY = −0.049 pH + 1.09, Ep (V)CHL = −0.044 pH + 0.97), probably caused by the
different overlapping of both peaks between pH 7 and 10 (see Figure S3), and a closer
to Nernstian response in the case of the second peak (Ep (V)TET = −0.053 pH + 1.22,
Ep (V)DOXY = −0.039 pH + 1.10, Ep (V)OXY = −0.049 pH + 1.2, Ep (V)CHL = −0.059 pH + 1.22).
Interestingly, the secondary peak of CHL reaches a plateau from pH 10 to pH 12, likely
due to the deprotonated tertiary amine (pKa = 8.61). The linear relationship suggests
the equal transfer of proton and electrons (2e−/2H+), matching the elucidated oxidation
pathway (see Scheme 1). Interestingly, the breaks of linearity evidence that the pKa of the
different moieties was reached during the pH screening [54]. It is important to highlight
that the electrodes and electrochemical approaches of the previously reported studies
were different from our conditions, making it difficult to compare between the observed
oxidation processes. Therefore, the elucidation of the oxidation pathway on the SPE by
LC-QTOF-MS is crucial for understanding and confirming the oxidation processes (see
Section 3.2).

 

Scheme 1. Observed oxidation products in the electrochemical oxidation of tetracycline antibiotics.

3.2. Elucidation of the Oxidation Pathway of Tetracyclines via LC-QTOF-MS

Understanding the oxidation processes taking place during the voltammetric scans
can play an important role in the development of efficient detection strategies [69]. Several
authors have tried to explain the oxidation of different TCs through voltammetric stud-
ies; some of these are very well summarized in the work reported by Calixto et al. [54].
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However, to the best of our knowledge, a profound analysis focussing on the identification
of oxidation products has not yet been reported. Therefore, in order to gain an insight
into the oxidation processes at the SPE and to identify possible oxidation products, TC
solutions were partially electrolyzed on SPE and subsequently analysed using LC-QTOF-
MS. A solution of 200 μM TCs was electrolyzed in Britton Robinson buffer pH 9 at 0.66 V
and 0.85 V and in pH 4 at 0.8 V and 1.0 V. After 60 min the electrolyzed samples were
diluted 1:5 with ultrapure water and directly injected into the equipment. The obtained
chromatograms are compared against the standards of TCs in the same concentration,
diluted 1:5. Figure 3 shows the results for DOXY, OXY, TET, and CHL (top, in black) and
the three main oxidations product, all information is summarized in Table S4.

 

Figure 3. Extracted ion chromatogram of (a) TET, (b) DOXY, (c) OXY, and (d) CHL (diluted 1:5) and the oxidation products
found after electrolysis in both Britton Robinson buffer pH 9: 0.66 V (red line) and 0.85 V (red dashed line), and pH 4: 0.8 V
(blue line) and 1.0 V (blue dashed line) for 60 min.

One product was principally formed for all four TCs during the electrolysis at lower
potentials, respectively 0.66 V for pH 9 and 0.80 V for pH 4. The structural information
needed to suggest the structures of the oxidation products lies in these MS/MS fragmen-
tation patterns. The key fragment in the case of the tetracyclines is “F2” (m/z 154.0498),
which includes the electrochemically active tertiary amine in the tetracycline structure. In
product 1 (D1, O1, T1 and C1), this F2 was not found as m/z 154.0498, but rather as 140.0340,
which elutes just before the remaining non-oxidized TC with a clear loss of −14 Da, indi-
cating the loss of a methyl-group. Surprisingly, the first electrochemical oxidation signal
is not related to the phenolic-moiety of the TCs, as was previously shown by the SWV
results, but rather the oxidation of the tertiary-amine group. During the oxidation process,
the tertiary amine is oxidatively converted to a secondary amine. This was confirmed by
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comparing the MSMS spectra of DOXY (Figure S4a) and the oxidation products D1 and
D2 (Figure S4b,c). Not only the mother-ion [M + H]+ of product D1 exhibits a clear loss of
the 14 Da compared to DOXY (m/z 431.1454 versus m/z 445.1603, see Table S4), but it can
also be seen in the typical fragment of m/z 154.0498 of DOXY observed in product D1 as
m/z 140.0430 (Figure S4a,b), corresponding with the loss of a methyl-group. Moreover, the
fragment that indicates the presence of the tertiary amine group, m/z 58.0657 ([C3H8N]+),
could not be observed for D1, while other fragments such as m/z 321.075 ([C19H13O5]+) and
m/z 267.065 ([C16H11O4]+) are identical to DOXY as they do not contain any nitrogen atoms.

For the electrolysis at higher potentials, namely 0.85 V for pH 9 and 1.00 V pH 4, a
second main oxidation product was formed (D2, O2, T2 and C2, Figure 3 and Table S4),
while the products of the first oxidation peak had almost completely disappeared. When
the molecular ion masses of the products are compared to the corresponding non-oxidized
TC, a clear addition of 16 Da is observed for all TCs, indicating that an additional oxygen
is incorporated into the structure. Based on the MSMS fragmentation pattern of D2 this
addition does not take place close to the tertiary amine group, as the fragment m/z 154.0498
can still be observed. Therefore, this product is formed during the oxidation of the phenolic-
moiety in the DOXY, and the same conclusion is attributed to the rest of the TCs. On
the other hand, it is extremely difficult to assign a specific position to the additional
hydroxyl-group in this product based on the LC-QTOF-MS analysis alone. In the literature,
for oxidative degradation of tetracyclines this is sometimes suggested to be at either
the para, meta, or ortho-position of the phenolic-group (OH groups indicated in red in
Scheme 1), whereas other articles suggest a similar product as for the enzymatic oxidation
of tetracyclines [16,77–79]. Herein, it is known that the oxidative addition takes place at the
11a position. At these higher potentials the newly formed incorporated hydroxyl-group
can be even oxidized, resulting in a keto analogue of the second oxidation product, which
corresponds to the remaining oxidation products D3, O3, T3, and C3 (Figure 3, Table S4).
However, this does not explain the appearance of the third oxidation peak previously
shown only for TET and CHL (Figure 2). However, the answer lies in the occurrence of a
second peak in the chromatogram at 4.72 min (m/z 445.1605) and 5.44 min (m/z 479.1233) of
the standards of TET and CHL, respectively. These products possess the same m/z-value as
the TC itself, meaning that they are rearranged degradation products specific to these TC.
It has been reported for TET and CHL that these two TCs are particularly sensitive to the
formation of iso(chlor)tetracycline [80]. Therefore, the formation of isotetracycline is the
most likely explanation for this part of the study and was also shown to be electroactive
by the HPLC coupled to an electrochemical detector (Figure S5). These results correlate
with the third oxidation peak observed throughout the SWV analysis. Hence, the redox
pathway suggested for the oxidation of tetracycline antibiotics is exhibited in Scheme 1.

3.3. Calibration Curves

A preliminary optimization was carried out before performing the calibration curve at
pH 9 to test the analytical performance of the sensor towards different TCs (Figure 4). First,
the influence of supporting electrolytes (potassium chloride, KCl) on the electrochemical
response was initially studied at pH 2 (Figure S6), showing an oxidation peak at ca. 0.95 V
corresponding to the oxidation of the phenolic moiety. Hence, 100 mM KCl was selected
as an optimal concentration for further experiments. Moreover, the optimization of the
SWV parameters—step potential (E step), amplitude, and frequency—was carried out (see
Figure S7). As a result, an E step of 5 mV, amplitude of 35 mV, and frequency of 10 Hz were
chosen as optimal conditions to obtain the best performance regarding the peak intensity,
better signal-to-noisy ratio, and/or the best adaptation to the specific software for data
treatment (Matlab script). Figure 4a–d displays the SW voltammograms of the TCs upon
increasing concentrations. Accordingly, Figure 4e–h exhibits the corresponding calibration
curves, with the calculated analytical parameters shown in Table 1. Subsequently, the
reproducibility (N = 3) of the SWV of the TCs at pH 9 in a concentration of 10 μM, as well as
the stability of the stock solutions (from 1 to 3 weeks) at pH 9 to test its possible degradation
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over time in the alkaline solution, were evaluated (Figures S8 and S9, respectively). The
results show excellent reproducibility, with RSD < 10% (Table 1). Moreover, negligible
degradation of DOXY, OXY, and CHL solution stocks in pH 9 was observed over time
(more than 3 weeks period), showing RSD values (N = 3) of 5.04%, 5.72%, and 5.15%,
respectively. On the other hand, TET exhibits higher degradation after the first week with
an RSD of 20.23% (N = 3), consistent with the change in color (from yellow to red) and the
appearance of precipitates.

 

Figure 4. Baseline-corrected SWV for (a) TET, (b) DOXY, (c) OXY, and (d) CHL at pH 9 in Britton Robinson buffer in a range
from 1 to 100 μM using carbon SPE. Corresponding calibration curves of the four TCs (e) TET, (f) DOXY, (g) OXY, and (h)
CHL showing the peak current versus concentration of the different TCs (N = 3).

Table 1. Analytical parameters obtained from calibrations curves of TET, DOXY, OXY, and CHL in a
range from 1 to 100 μM concentration and RDS obtained from the reproducibility study (Figure S8).

TET DOXY OXY CHL

Sensitivity (μA μM−1) 0.013 0.030 0.015 0.020
R-squared 0.998 0.999 0.999 0.999

Linear range (μM) 5–100 5–100 5–100 5–100
Limit of detection (μM) 4.17 2.14 3.07 2.49
RSD (%) at 10 μM, N = 3 3.01 3.29 9.78 6.88

3.4. Data Treatment towards an Enhanced Peak Analysis

A Matlab script was designed to improve the identification of the oxidation peaks
in the EF [68,69]. In particular, for the cases in which the overlapping of signals creates
shoulders and tails in the peak, the aforementioned tool improves the peak separation, and
thus the peak identification, allowing for a trustworthy compound identification based on
the characteristic oxidation processes of the EF [70]. Hence, the script was implemented
for all the EF obtained during the pH screening. After studying the general behavior
of the TCs at different pHs, two pHs exhibited a characteristic enrichment of the EFs:
(i) pH 9 showed high peak intensity and interesting EF similarities (same Ep) between the
couples TET–CHL (with three peaks, P1TET = 0.65 V, P2TET = 0.74 V, P3TET = 0.84 V and
P1CHL = 0.64 V, P2CHL = 0.71 V, P3CHL = 0.81 V) and DOXY–OXY (in contrast showing two
peaks, P1DOXY = 0.65 V, P2DOXY = 0.77 V and P1OXY = 0.65 V, P2OXY = 0.78 V, respectively),
and (ii) pH 4 due to the easy identification between the peak potentials of two different
couples of TCs, TET–OXY (P1TET = 0.84 V, P2TET = 1.02 V, P1OXY = 0.85 V, P2OXY = 1.02 V)
and DOXY–CHL (P1DOXY = 0.75 V, P2DOXY = 0.99 V, P1CHL = 0.76 V, P2CHL = 1 V). Therefore,
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a dual pH strategy might permit the selective determination of specific TCs based on the
EF in an unknown sample.

Figure 5 summarizes the comparison of SWVs obtained from the potentiostat software
(i.e., baseline corrected by moving average correction), and after employing data analysis
(i.e., tailor-made script) of the four TCs at pH 4 and pH 9. The script did not improve
the peak separation for pH 4 (Figure 5a–b). On the contrary, the script was crucial to
elucidate the number of peaks at pH 9 that potentially correspond to different oxidation
processes. Figure 5c shows the SWVs of TCs that clearly exhibit shoulders on oxidation
peaks corresponding to partially overlaying signals of different electroactive groups. After
data analysis (Figure 5d), an improved peak separation was accomplished, allowing for an
easy identification of the specific EF for each TC, showing three peaks in the case of TET
and CHL, and only two peaks in the case of DOXY and OXY. Therefore, at this point, a
two-step protocol was established for the determination of TET, DOXY, OXY, and CHL: (i) a
preliminary screening at pH 4 to obtain a first identification between two different couples
(TET–OXY or CHL–DOXY), followed by (ii) a confirmatory screening at pH 9 to elucidate
the specific TC present in the sample, taking advantage of the similarities between the
different couples (three peaks in the couple TET–CHL and two peaks in DOXY–OXY).

 

Figure 5. Data treatment with Matlab script to improve peak separation/identification. (a) Baseline-
corrected SWVs of tetracyclines at pH 4, (b) output signal after the application of the script at pH 4,
(c) baseline-corrected SWVs of TCs at pH 9, where overlapping of peaks exists, and (d) output signal
after the application of the script at pH 9.

3.5. Single, Binary, Tertiary, and Complex Mixtures of TCs

The aim of the proposed approach was not just being able to distinguish TCs among
other antibiotics (which was successfully shown in Figure 1), but also between themselves,
and thus to identify possible overlapping and suppression effects, which could lead to false
positive and false negative results, respectively. Therefore, apart from being able to detect
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single TCs in an unknown sample, the next step was to analyze if different TCs could be
identified in binary, tertiary, or quaternary mixtures. Figure S10 shows another example
where all TCs in different mixtures at pH 9 can be compared between the SWVs obtained
from the potentiostat software (i.e., moving average correction), and after employing data
analysis (i.e., tailor-made script), which facilitates the separation between peaks. It is
worth mentioning that the treated signal after the script does not correspond to the current
intensity of the SWVs, thus producing signals for a qualitative analysis.

Figure 6 displays the whole summary of single, binary, tertiary, and quaternary
combinations of the four studied TCs at pH 4 (Figure 6a) and pH 9 (Figure 6b). A dashed
line color code has been added to facilitate the identification of the TC present in the
corresponding mixture, i.e., orange for TET, green for DOXY, blue for OXY, and purple
for CHL. As can be seen from the figure, if a single TC is present in the sample, the
identification can be successfully achieved (green tick) by the dual pH strategy and the
Matlab script (only required at pH 9, see Figure S10). As a practical example, if an EF
showing two peaks at 0.82 V and 1.1 V is obtained at pH 4, one could easily identify the
presence of TET or OXY. Afterwards, a second SWV at pH 9 is carried out to confirm which
TC is present in the sample. Therefore, the appearance of two peaks (after Matlab script) at
0.63 V and 0.79 V means that the TC present in the sample is OXY.

Figure 6. Electrochemical fingerprint of TCs in all type of combinations and mixtures at (a) pH 4,
SWVs raw data (moving average correction) and (b) pH 9, output signal after the application of the
script. The successful recognition of the TC is represented in the figure with a green tick (

√
), followed

by an orange question mark (?) or a red cross (X) for inconclusive and unsuccessful identifications,
respectively.
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After the binary mixtures are introduced, the complexity of the exercise increases,
making possible a proper identification in some cases (i.e., DOXY + OXY and TET + DOXY,
Figure 6b). Other mixtures lead to inconclusive results (orange question mark), such as
TET + CHL and TET + OXY, where the middle peaks corresponding to CHL and TET
appear with a slight shoulder after applying the Matlab script, instead of being clearly
separated. Unfortunately, tertiary and quaternary mixtures of TCs were very difficult to
determine (red cross). Future steps will consider a deeper exploration and optimization
in both the electrochemical setup and the Matlab script. Nevertheless, it is important to
again point out that although the identification becomes challenging upon increasing the
complexity of the mixtures, it is still possible to distinguish the entire class of TCs from
other types of antibiotics (Figure 1).

4. Conclusions

This work reveals, for the first time, a complete study of the electrochemistry of four
different tetracyclines (TC) antibiotics: tetracycline (TET), doxycycline (DOXY), oxytetracy-
cline (OXY), and chlortetracycline (CHL). The aim of the present manuscript was to collect
detailed information about the oxidation processes of these TCs from both electrochemical
and chromatographic points of view, in order to clarify the reactions and pave the way
towards the development of more accurate and reliable detection platforms. Furthermore,
a broad overview of the previously reported electrochemical sensors and biosensors based
on surface modification, aptamers, antibodies, enzymes, or MIP for TC determination
was included. From the electrochemical section, the electrochemical fingerprint of the
tetracyclines in the whole pH range (from 2 to 12) was studied via SWV on unmodified
carbon SPEs. Moreover, the main oxidation processes were attributed to the corresponding
electroactive groups (i.e., phenol, tertiary amine, and hydroxyl groups) by comparing
the electrochemical behavior of TCs with different chemical compounds sharing similar
moieties. In addition, a successful protocol for the identification of a single TC in unknown
samples was developed based on a dual pH strategy and an innovative custom-made
script designed to enhance the separation between oxidation peaks. Subsequently, from
a chromatographic perspective, the oxidation mechanism of the TCs was elucidated for
the first time by LC-QTOF-MS and different oxidation products were clearly detected and
identified after the electrolysis at SPE. Overall, this work encompasses relevant information
about the electrochemical behavior of TCs and points out a simple, rapid, and reliable
electrochemical approach for the identification of tetracycline antibiotics in combination
with a custom Matlab script. The present work aims to pave the way and bring new insights
towards the development of future analytical platforms for the reliable determination of
antibiotics in decentralized settings.
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10 μM, Figure S6. Electrochemical influence of the supporting electrolyte, Figure S7. Optimization
of the main parameters used in SWV, Figure S8. Reproducibility study, Figure S9. Stability study,
Figure S10. Output signal after the utilization of the script, Table S1. Maximum residue limit
(MRL) for tetracyclines in animal tissues, Table S2. Summary of electrochemical biosensors based
on aptamers, antibodies, molecular imprinted polymers and enzyme-linked immunoassays for
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Abstract: Macronutrients (carbohydrates, fat and protein) are the cornerstones of daily diet, among
which carbohydrates provide energy for the muscles and central nervous system during movement
and exercise. The breakdown of carbohydrates starts in the oral cavity, where they are primarily
hydrolyzed to glucose and then metabolized to organic acids. The end products may have an impact
on the oral microenvironment, so it is necessary to monitor the process of microbial metabolism and to
measure the pH change. Although a pH meter has been widely used, it is limited by its sensitivity. We
then introduce a light addressable potentiometric sensor (LAPS), which has been used in extracellular
acidification detection of living cells with the advantages of being objective, quantitative and highly
sensitive. However, it is difficult to use in monitoring bacterial metabolism because bacteria cannot
be immobilization on the LAPS chip as easily as living cells. Therefore, a microphysiometric system
integrated with Transwell insert and microfluidic LAPS chip was designed and constructed to solve
this problem. The decrease in pH caused by glucose fermentation in Lactobacillus rhamnosus was
successfully measured by this device. This proves the feasibility of the system for metabolism
detection of non-adhere targets such as microorganisms and even 3D cells and organoids.

Keywords: microphysiometer; LAPS; pH measurement; biosensor; microbial metabolism

1. Introduction

Macronutrients (carbohydrates, fat and protein) are the main components of most
foods and beverages. As essential energy sources for humans, the breakdown of macronu-
trients starts in the oral cavity. The primary hydrolysis of the ingested biomolecules is
catalyzed by digestive enzymes supplied by host and microbial sources [1]. Then, after
complex metabolic activities, the ecology and biology of the oral microenvironment changes
due to a series of end products. Carbohydrates, for example, are primarily hydrolyzed into
monosaccharides such as glucose, which can be further catabolized by microorganisms in
the oral cavity. Organic acids and other substances produced by metabolism can impact
the balance of the local oral environment and can even lead to diseases such as tooth decay.
Hence, it is necessary to monitor the process of microbial metabolism.

The microbial ecology of the oral cavity is very complex, with over 700 species of
bacteria colonizing on mucosal and tooth surfaces [2]. Numerous studies have shown
that lactic acid bacteria (LAB) exist in human oral cavity, especially in saliva, as normal
flora [3,4], by which monosaccharides can be fermented to lactic acid and other organic
acids [5]. By contrast, sugar substitutes that are increasingly used in food to replace sucrose
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cannot be broken down by LAB. The purpose of the present study is to detect the pH
change in glucose and sugar substitutes solutions caused by metabolism of LAB and to
provide the basis for studying the change in oral microenvironment.

It has been reported that a pH meter was used to detect the pH-lowering potential
caused by acid production of Lactobacillus rhamnosus [3], but this method has low sensitivity
and is time-consuming. In contrast, light addressable potentiometric sensor (LAPS) is
more suitable for monitoring metabolic activity of microorganisms due to its outstanding
superiority with its high sensitivity toward pH [6,7]. However, LAPS was commonly used
to detect the metabolism of living cells, which can be immobilized [8,9]. Only a few studies
have investigated the acidification of non-adherent targets such as microorganism directly
in suspension [10–12]. In this work, a microphysiometer based on the LAPS principle and a
microfluidic system combined with an innovative structure fabricated by a Transwell insert
was constructed for real-time and long-term monitoring of fermentation process conducted
by Lact. rhamnosus. Compared with the traditional microphysiometer [13], the combination
of Transwell and LAPS is a simpler and lower-cost structure, which can be promoted as
a model system for detecting the metabolism of microorganisms and other non-adherent
targets.

2. Methods and Experiments

2.1. Principle
2.1.1. Biological Basis of Metabolism in LAB

According to the pathways of glucose fermentation with different end-products, LAB
can be categorized into three main types: homofermentative, heterofermentative and facul-
tative heterofermentative. Lact. rhamnosus belongs to the third type [3], which can either
produce several end products such as lactic acid and acetic acid similar to heterofermen-
tative bacteria or only produce lactic acid such as homofermentative bacteria. Figure 1
illustrates the principal steps involved in the fermentation process of Lact. rhamnosus, in
which protons are generated and released using glucose as a carbon source. In the ho-
molactic fermentation, one molecule of glucose is transformed to fructose-1,6-diphophate
and then converted to two pyruvate molecules through the Embden-Meyerhof-Parnas
(EMP) pathway. Lactic acid is formed by the reduction of pyruvate. In contrast, during
the process of heterolactic fermentation, glucose is converted to xylulose-5-phosphate
which is then catalyzed by phosphoketolase to glyceraldehyde-3-phosphate and acetyl
phosphate. The former is transformed into lactic acid, while the latter is transformed into
acetic acid [5,14,15]. In conclusion, regardless of the kind of fermentation, a large amount of
acidic substance is produced, so the physiological state and activity of LAB can be reflected
by monitoring the pH change during the metabolism process.

2.1.2. The Principle of LAPS Based Bacterial Metabolism Detection

The principle of detecting acidic metabolites of LAB by LAPS was similar to that of
cellular acidification detection described previously, Si3N4 was still used as the H+ sensitive
material [8,9]. The H+ concentration in the solution can affect the surface potential of the
LAPS chip, which can affect the width of the depletion layer formed between the silicon
layer and the insulating layer when a DC bias voltage is applied onto the reference electrode
(RE) of the sensor. Due to the frequency-modulated illumination at the bottom of the sensor,
hole–electron pairs and, subsequently, an AC photocurrent with the same frequency are
generated [16]. The back-side illumination was chosen instead of front-side because the
solution with bacteria is a suspension and bacteria are difficult to be immobilized on the
surface of sensor chip. Since the light needs to pass through the whole silicon layer to reach
the depletion layer, the LAPS chip was partially thinned to improve the signal-to-noise
ratio of the sensor. A schematic illustration of the thinned LAPS chip for detecting acidic
metabolites is depicted in Figure 2a.
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Figure 1. Schematic of the main steps of glucose metabolism in lactic acid bacteria in human oral
cavity. The major intermediate and end products are shown in yellow background, of which lactic
acid and acetic acid are the key substance causing pH change in the solution.

Figure 2. The detection principle and fabrication of the thinned LAPS chip. (a) The principle of acidic
metabolites detection by the thinned LAPS chip. (b) The processing flow of the thinned LAPS chip.

2.2. Sensor Preparation
2.2.1. LAPS Chip Fabrication

The LAPS chip was partially thinned to achieve a backside illumination. Silicon was
used as the sensor substrate, SiO2 was used as the insulating layer, and Si3N4 was used
as the sensing material for pH detection. The procedures of the LAPS chip fabrication are
demonstrated in Figure 2b, and the 300 μm single-polished silicon wafer (4”, <100>) was
thermally oxidized to grow 50 nm SiO2 layers on both sides. Then, the SiO2 on the rough
side was removed by 5% HF etching, and the central part of the Si substrate was thinned to
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100 μm. After deionized water washing and nitrogen drying, a 300 nm aluminum layer
was thermally evaporated outside the thinned part to form an ohmic contact. Finally, a 50
nm Si3N4 layer was deposited by plasma-enhanced chemical vapor deposition (PECVD) to
achieve a pH sensor. The processed LAPS chip was cut into 1.7 cm × 1.7 cm with a thinned
central part of 7 mm × 7 mm and then in turn washed by acetone, ethanol and deionized
water for storage and use. The thicknesses of the Si3N4 and SiO2 layer and the thinned
central part were confirmed using a field emission scanning electron microscope (Zeiss,
Sigma300, Jena, Germany) and a surface profiler (KLA–Tencor, Alpha Step D–100, San Jose,
CA, USA), respectively (Figure S1).

2.2.2. Manufacture of Sensor Unit with Transwell Insert

The Transwell insert with a 0.4 μm pore polycarbonate membrane (6.5 mm, Corning,
CLS3413, New York, NY, USA), which can block the LAB while allowing liquids to pass
through, was used innovatively to solve the problem that bacteria are difficult to adhere
to the surface of LAPS chip. The polydimethylsiloxane (PDMS) chamber was made by
mold casting, and the diameter of the through hole in the center was 9.5 mm to fix the
Transwell insert. Then, the PDMS chamber was bonded with the LAPS chip by O2 plasma
treatment, and an O-ring was placed at the bottom of the chamber to maintain a constant
space between the Transwell insert and the sensor chip. The LAB was placed within the
scope of the O-ring. The PDMS plug in the Transwell insert was also achieved by the casting
method, with two holes used as the inlet and outlet made by a puncher (0.5 mm, WPI).
Then, two stainless-steel catheters (20 ga × 15 mm, Instech laboratories, Plymouth Meeting,
PA, USA) were fixed into the inlet and outlet connecting the microbore tubings (0.031”
ID × 0.094” OD, Cole-Parmer, Vernon Hills, IL, USA). The plug (with the stainless-steel
catheters) was put into the upper compartment of the Transwell insert, and a small amount
of uncured PDMS was used to encapsulate the edges to prevent liquid leakage. It is worth
noting that the PDMS stopper was in the shape of a truncated cone, with the bottom edge
closely attached to the inner wall of the Transwell insert to prevent contamination of the
polycarbonate membrane from the uncured PDMS. The backside of the chip was pasted
on a PCB pad with a hole using conductive silver glue to expose the thinned area and
connected to the working electrode (WE). The counter electrode (CE) was connected to
the stainless-steel catheter of the outlet. The reference electrode was held in a reservoir
made of a PE tube, and the hole on the side wall was made to maintain the liquid volume.
Figure 3a,b describe the composition of the sensor unit with Transwell insert, and the
physical map is shown in Figure 3c.

2.3. LAPS System Set-Up

A 3D-printed resin scaffold was used to fix the optical path and the sensor unit
(Figure 3d). The modulated laser with a wavelength at 685 nm was connected to the
adjustable focusing collimator via pigtail. The parallel light after collimation (spot of about
1 mm) passed through the 45◦ optical mirror and illuminated vertically to the thinned area
on the back of the LAPS chip. The optical mirror was fixed in a groove at the bottom of
the resin scaffold so that the front and back positions could be fine-tuned when necessary.
The sensor unit was fixed by the pin header and female header on the PCB pad, which was
convenient for installation and disassembly. The scaffold and the sensor unit were placed
together in a 37 ◦C thermostatic incubator for experiment. The medium was delivered to
the chamber by the syringe pump (TYD02-10, Lead Fluid Technology Co., Ltd., Baoding,
China). The other parts of the detection system were similar to those in a previous study [9].
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Figure 3. Schematic of microphysiometer sensor unit with the Transwell insert. (a) Schematic of the
detection chamber fabricated by the Transwell insert with a microporous membrane. (b) Schematic
of the microphysiometer sensor unit with a microfluidic structure. (c) Photography of the device. (d)
Schematic of the 3D-printed resin scaffold used to fix the optical path and the sensor unit.

2.4. Lactobacillus rhamnosus Cultivation

The Lactobacillus rhamnosus (ATCC 7469) strain was purchased from the China gen-
eral microbiological culture collection center (CGMCC). Before the experiment, the Lact.
rhamnosus was inoculated into MRS (Solarbio, M8540, Beijing, China) broth medium, which
was sterilized at 121 ◦C for 15 min. The bacteria were cultivated in an incubator (37 ◦C) for
two generation to restore its activity and were identified by colony morphology and Gram
staining. An optical density (OD) measurement (λ = 600 nm, OD600) was carried out to
evaluate the growth density and to obtain the growth curve of Lact. rhamnosus (SpectraMax
Paradigm, Molecule Device, Sunnyvale, CA, USA).

2.5. Preparation of Test Solutions

Glucose (Macklin, G6172), which is commonly used in food, as well as a commercial
sugar substitute (Shandong Youlezi Biotechnology Co., Ltd., Zibo, China) wer selected.
Glucose is about 0.75 times sweeter than sucrose, while the substitute sweetener, which is a
mixture of sucralose and erythritol, is about twice as sweet as sucrose. Most commercially
available sugary beverages have 8–12% (w/v) added sugar, so the concentration of glucose
solution was chosen as 12% (w/v) and the concentration of substitute sweetener of corre-
sponding sweetness was 4.5% (w/v). All sugar solutions were prepared with artificial saliva
(Dongguan Xinheng Technology Co., Ltd., Dongguan, China) to mimic the human oral
environment while providing supporting electrolytes. The artificial saliva containing the
same inorganic components as actual saliva was prepared according to ISO 10271 and was
sterilized. The artificial saliva without sugar was used as a blank control group. Moreover,
the 2.4% (w/v) glucose solution, which has a similar concentration to the glucose in the
MRS broth medium, was selected for the experiment as well to verify that the acidification
rate of glucose metabolism was different in glucose solutions of different concentrations.
In addition, 1% (w/v) tryptone (Solarbio, T8490) was added to each solution to ensure the
survival of Lact. Rhamnosus.
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2.6. Bacterial Metabolism Monitoring

At the beginning of each measurement, the bacterial suspension was centrifuged at
3000 r/min for 10min and washed three times with artificial saliva, and the pellet was
then resuspended in about 40 μL of artificial saliva. Subsequently, Lact. rhamnosus in
suspension was pipetted into the sensor chamber formed by the Transwell insert, sensor
chip and O-ring, where the bacteria were entrapped by the microporous membrane, while
the nutrients and metabolites can pass through freely. The microbore tubing at the inlet
was connected to the syringe pump and that at the outlet was connected to the PE tube.
Glucose and substitute sweetener solutions were injected at 6 min intervals by the syringe
pump to provide nutrients for the bacteria. The medium temperature was maintained at
a constant 37 ◦C using a thermostatic water bath for the duration of the experiment. It is
worth noting that all the materials such as O-ring, silicone tubing and metal hollow catheter
were autoclaved prior to use and kept sterile until needed in order to avoid biofouling,
which may affect the accuracy of the results.

3. Results and Discussion

3.1. Sensor Unit Characteristic Test

Phosphate buffer saline (PBS) was used in the experiment for sensor calibration, and
the pH in a series of PBS solutions was adjusted between 3.2 and 7.2 using 0.1 mol/L
HCl and NaOH solutions. The measurement parameters were as follows: the bias voltage
between RE and WE ranged from −5500 mV to −1000 mV, with a step voltage of 10 mV.
The modulated light frequency was 10 kHz with a wavelength at 685 nm. Figure 4a shows
the detected I–V (photocurrent vs. bias voltage) curves in solutions with different pH
gradients. It can be observed that the I–V curve shifts to the left as the pH decreases. The
photocurrent value in the greatest slope was selected as the working point [17]. In this
work, the goal was to detect the bacterial acidification; the pH change was small and did
not exceed the linear part of I–V curve. Therefore, the constant voltage mode was chosen
and the sensitivity at the working point was 93.73 nA/pH, as shown in Figure 4b.

Figure 4. Performance evaluation of sensor unit. (a) I–V curves in different gradient pH solutions. (b)
Sensor calibration curve in constant voltage mode (U = −3760 mV).

In addition, the stability and repeatability of the LAPS sensor was verified by PBS
solution (pH = 7.4). In constant voltage mode, the photocurrent was continuously recorded
for more than 30 min at the working point voltage. In three replicate experiments, photocur-
rent showed good stability, and the similar results also demonstrated good repeatability
(Figure S2a). The fluid exchange capability of the designed microfluidic system with porous
membrane was also verified. The photocurrent curve was obtained by alternately injecting
PBS and 10-fold diluted PBS into the sensor chamber because the photocurrent amplitude
was affected by the impedance of the solution (Figure S2b). The photocurrent value varied
with the solution concentration and showed good consistency when the solution was
repeatedly injected. Thus, the microfluidic system with porous membrane presents good
fluid exchange capability, which can be used for bacterial metabolism monitoring.
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3.2. Lactobacillus rhamnosus Cultivation and Identification

Figure 5a,b showed that the colony of Lact. rhamnosus was light yellow, smooth, moist,
round with neat edges, slightly raised center, and about 1 mm in diameter. Microscopically,
the bacteria had a shape of a slender, flexuous rod and yielded a positive result in Gram
stain test (Figure 5c), which was consistent with the characteristics of Lact. rhamnosus.

Figure 5. Morphological characteristics and growth curve of Lactobacillus rhamnosus. (a) The
growth state of Lact. rhamnosus on MRS agar plate. (b) Observation of single colony under an optical
microscope. (c) Bacterial morphology with Gram staining (×100 magnification). (d) Growth curve of
Lact. rhamnosus.

In order to create a growth curve of Lact. rhamnosus, the OD600 value of the bacterial
suspension was detected every two hours until the growth of the bacteria became visibly
slow. As shown in Figure 5d, the curve was S-shaped, indicating that Lact. rhamnosus
underwent various stages from rapid proliferation to steady growth. The bacteria entered
the logarithmic phase at 2–4 h and the number began to increase exponentially. Moreover,
the curve tended to be flat after 10 h, demonstrating that the bacteria entered a stationary
phase. The bacteria at post-log phase, that is, about 8 h after inoculation into MRS broth
medium, were chosen because of the strong reproduction ability and vigorous metabolism,
which was conductive to the experiment.

3.3. Lactobacillus rhamnosus Metabolism Monitoring by the Microphysiometer

The sensor unit was always placed in the 37 ◦C thermostatic incubator during the
experiment to maintain the strain vitality, and all of the medium was placed in the 37
◦C thermostatic water bath. Initially, the 2.4% glucose solution was injected until there
was liquid flowing out of the hole on the side wall of the PE tube. The bias voltage of
the working point was applied, and the photocurrent was recorded continuously under
constant voltage mode. The solution was injected at 6 min intervals by the syringe pump,
and the photocurrent–time curve was obtained. After five flow–stop cycles, 12% glucose
solution was injected, replacing the solution in the whole device completely, and the acidity
change was also recorded, followed by the 4.5% sugar substitute solution and artificial
saliva. The blank group had the same condition as the experimental group except the
absence of Lact. rhamnosus.
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According to the formula in Figure 4b, the photocurrent value was converted to a pH
value to obtain the pH–time curves, which demonstrated the pH changes in the process
of Lact. rhamnosus metabolism (Figure 6a). In the 2.4% glucose solution, the pH decreased
because Lact. rhamnosus used glucose to produce acid substances such as lactic acid. After
the glucose concentration was increased to 12%, a steeper decrease in pH occurred due
to the enhanced metabolism. However, sucralose and erythritol could not be utilized as
a carbon source by Lact. rhamnosus, so the pH the solution hardly changed, which was
similar to the results of artificial saliva.

Figure 6. The pH change and ECAR values of sweetener metabolism of Lactobacillus rhamnosus. (a)
The pH changed with time, and a fresh medium was injected every 360s; the 2.4% (w/v) glucose
solution, the 12% (w/v) glucose solution, the 4.5% (w/v) sugar substitute solution and artificial saliva
were injected successively. (b) The average ECAR values of different sweetener solutions and artificial
saliva.

Due to the addition of fresh solution, the peak of the photocurrent appeared at the
beginning of each cycle. It could be seen from the blank group that the photocurrent
decreased slightly after 80 s in each cycle; thus, it could be inferred that the change in pH
after 80 s was caused by bacterial metabolism. Therefore, the difference in pH change
between the experimental group and the blank group 80 s after the beginning of each
cycle was defined as ΔpH. Then, the extracellular acidification rate (ECAR) was obtained
by the ratio of the ΔpH value to the time interval (280 s), and the average ECAR values
of each group were calculated and shown in Figure 6b. The average of ECAR in the
2.4% glucose solution was −42.38 mpH/min but changed to −155.41 mpH/min in the
12% glucose solution. Additionally, the averages of ECAR in the 4.5% sugar substitute
solution and artificial saliva were −10.79 mpH/min and −16.12 mpH/min, respectively.
It can be concluded that the glucose fermentation in Lact. rhamnosus caused the pH of
the solution to decrease, and with the increase in glucose concentration, the acidification
rate also significantly increased. However, the pH of the sugar substitute solution and
artificial saliva almost did not change, which confirmed that sugar substitute combined
with sucralose and erythritol could not be utilized by Lact. rhamnosus.

In a previous study, the 24 h pH drop caused by glucose fermentation of LAB include
Lact. rhamnosus was detected using a pH meter [3]. However, it has obvious limitations,
such as the accuracy and sensitivity not being high and achieving real-time detection being
difficult, which were overcome in this study with the newly designed microphysiometric
system. In addition, there also exist several studies that use LAPS-based differential sensors
to detect the extracellular acidification of bacteria [10,11]. Since the solution cannot be
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renewed, there are still problems in realizing continuous long-term monitoring. The results
of this study confirmed that the microphysiometric system integrated with the Transwell
insert and LAPS could monitor the metabolism of microorganisms such as Lact. rhamnosus
in real time and with high sensitivity. The microfluidic system ensured continuous renewal
of the medium to achieve long-term monitoring, and the stable illumination avoided
disturbances in the large photocurrent fluctuation. In this way, long-term monitoring for
metabolism of living microorganisms can be achieved.

3.4. Verification of Activity of Lactobacillus rhamnosus after Experiment

After the experiment, the bacterial suspension was collected and streaked on a MRS
agar plate. After 48 h of incubation at 37 ◦C, single colonies of Lact. rhamnosus but
no other types of colonies were observed (Figure S3). This indicated that the bacteria
remained alive after a long time of detection, and there was no other bacterial contamination
during the experiment. However, it could be found that the colony density was not high,
which indicated that the number of viable bacteria decreased, or the ability of growth and
reproduction reduced. It may be because the bacteria had left the most suitable medium
environment for a long time, and sugar substitute and artificial saliva could not be used
as carbon sources. According to the results, it can be concluded that the pH change in the
glucose solution was caused by the metabolism of Lact. rhamnosus.

4. Conclusions

Although LAPS is widely used in extracellular acidification detection of living cells, it
is rarely used to investigate non-adherent targets directly in suspension. In this study, a
microphysiometric system with a novel structure fabricated by a Transwell insert and a
microfluidic LAPS chip was used to detect the pH change in glucose and sugar substitutes
solutions in the presence of Lact. rhamnosus, respectively. All of the solutions were prepared
with artificial saliva to mimic the human oral environment. A polydimethylsiloxane
(PDMS) chamber was manufactured for bacterial culture, and microfluidic flow paths
were designed for medium delivery. A Transwell insert with a 0.4 μm pore polycarbonate
membrane was used innovatively to solve the problem that adhering bacteria to the surface
of a LAPS chip is difficult, which not only prevents bacteria from being washed away
but also allows nutrients and metabolites to pass through. Additionally, the existence of
O-ring restricts the bacteria to the effective detection area and avoids contact between the
Transwell and the LAPS chip. Similar to previous studies, the experiment was carried out
in several flow–stop cycles and compared with the control groups without the presence
of bacteria. Lact. rhamnosus caused a decrease in the pH of the glucose solution, and
the change became more significant when the glucose concentration increased, while the
pH of other solutions hardly changed. The results presented that this microphysiometric
system performed well in real-time monitoring of microbial metabolism. The functions of
a traditional microphysiometer were achieved with simpler structure devices. Although
changes in acidity can be evaluated by sensory evaluation, the pH change can be measured
more objectively and quantitatively by this microphysiometric system. Further work can be
carried out to improve the sensitivity of the sensor, such as using Al2O3 [18] or Ta2O5 [19]
layers deposited on an insulator. In summary, our work presents a model system for
non-adhere targets such as microorganisms and even 3D cells and organoids.

Supplementary Materials: The following supporting information can be downloaded at https://www.
mdpi.com/article/10.3390/chemosensors10050177/s1, Figure S1: Verification of the thickness of the
thinned LAPS chip; Figure S2: Verification of stability, repeatability and fluid exchange capability of the
system; Figure S3: Verification of the activity of Lactobacillus rhamnosus after experiment.
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Abstract: Moisture content is extremely imoprtant to the processes of storage, packaging, and trans-
portation of grains. In this study, a portable moisture measuring device was developed based on
microwave microstrip sensors. The device is composed of three parts: a microwave circuit mod-
ule, a real-time measurement module, and software to display the results. This work proposes an
improvement measure by optimizing the thickness of paddy rice samples (8–13 cm) and adding
the ambient temperatures and the moisture contents (13.66–27.02% w.b.) at a 3.00 GHz frequency.
A random forest, decision tree, k-nearest neighbor, and support vector machine were applied to
predict the moisture content in the paddy rice. Microwave characteristics, phase shift, and tem-
perature compensation were selected as the input variables to the prediction models, which have
achieved high accuracy. Among those prediction models, the random forest model yielded the
best performance with highest accuracy and stability (R2 = 0.99, RMSE = 0.28, MAE = 0.26). The
device showed a relatively stable performance (the maximum average absolute error was 0.55%, the
minimum absolute error was 0.17%, the mean standard deviation was 0.18%, the maximum standard
deviation was 0.41%, and the minimum standard deviation was 0.08%) within the moisture content
range of 13–30%. The instrument has the advantages of real-time, simple structure, convenient
operation, low cost, and portability. This work is expected to provide an important reference for
the real-time in situ measurement of agricultural products, and to be of great significance for the
development of intelligent agricultural equipment.

Keywords: microstrip microwave sensor; microwave attenuation; phase shift; moisture content;
random forest

1. Introduction

Moisture content is an important index that reflects the freshness, preservation state,
and internal quality of agricultural products [1], and it is a key measurement and control
parameter in the processes of purchasing, processing, storing, and transporting. High
moisture content leads to grain mildew, shortened storage time, and effects on the food
taste [2]. Grain moisture content is a crucial factor for the management of harvesting and
postharvest operations and is a basis for pricing in the grain trade [3].

The grain moisture content generally is measured by direct-contact methods or
indirect-noncontact methods [4]. The direct-contact methods usually employ desiccation or
a chemical method to measure the moisture content [5], such as the oven-drying method
and the Karl Fisher titration method, which have the advantages of simple steps and high
accuracy of the detection result. However, the processes of sample preparation and the
long operation of inspection equipment would be occurred, which is not suitable for the
real-time or field measurements there [6]. By detecting the variable parameters related to
the water content of materials, indirect-noncontact methods, such as the neutron gauge [7],
resistance detection [8], the capacitance method [9], near-infrared spectroscopy [10], and
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the microwave-drying method [11], serve to determine the moisture content in grains.
Indirect-contact methods generally have a high measurement speed but usually have their
own disadvantages, respectively. For near-infrared spectroscopy, the absorption spectrum
varies with the moisture content of the material, and the infrared penetration depth is
on the micron level, which means the detection area will be quite small on the surface of
samples; however, for agricultural products, the measurement area should be as large as
possible, thus results in limited application of the near-infrared method. The capacitance
method regards the detected objects as a dielectric material and measures the dielectric
constant of the measured objects [12]; however, the results of this method are greatly
affected by the environment’s temperature, and the device needs to be recalibrated after
a long period of use. The capacitance method demonstrates poor performance for materials
with high moisture content and is not a perfect solution for on-line measurement because
the capacitive sensor takes a long time to introduce samples between the electrodes [13].

The principle of the microwave method is similar to that of the capacitance method,
and it has the advantages of non-destructive detection, high speed, and real-time mon-
itoring [14]. For moisture measurement based on microwaves, the dominant detecting
method can be mainly divided into microwave reflection and microwave transmission [15].
One of the advantages of microwave reflection detection is that the integration of signal
transmission and reception can simplify the installation; however, the advantage can also
turn into a disadvantage, as it causes a low resolution and smaller reflected signals from
individual antennae, which need special auxiliary hardware to amplify the signals and
improve precision [16]. Applications of microwave transmission on the moisture mea-
surements of peanuts, corn, and soybeans [17–19] have been achieved, but the detection
equipment based on horn antenna were large and the experiments were inconvenience
when carrying on-site. With the development of microstrip antenna sensors in recent
years, it is possible to use microstrip antenna sensors instead of a horn antenna to realize
microwave signal receiving and transmitting [20] and to design a set of portable real-time
detection devices for grain moisture content.

The water molecule in the detected material is a strong dipole, which plays a dominant
role in the impact on the dielectric properties compared to the dry matter. Therefore, the
moisture content in the detected material can be measured by analyzing the dielectric
properties, but the detecting equipment is expensive and complicated. This study converts
to directly measure the parameters related to the dielectric properties, such as microwave
attenuation and phase shift, to detect the moisture content of the material and to make the
detecting equipment portable.

In general, very limited optimization work has been carried out regarding the realiza-
tion of the on-line measurement of the moisture content of agricultural and food products.
In this context, the aims of the present study are: (1) to develop a low-cost portable device
for the real-time measurement of paddy rice with a moisture content range of generally
13–30%; (2) to determine the optimal measurement parameters according to experimental
objects (microwave characteristics, phase shift, and temperature compensation); and (3) to
develop an effective moisture content prediction model by comparing different regression
algorithms. This work is expected to provide an important reference for the real-time in
situ measurement of other agricultural products and to be of great significance for the
development of intelligent agricultural equipment.

2. The Design of the Portable Moisture Content Detecting Device

2.1. The Principle of Microwave Transmission Detection

As a non-contact detecting method, microwave transmission detection has the advan-
tages of a fast detection speed, high applicability, and strong practicability. The detection
principle of the microwave transmission method is as follows:
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The relationships between attenuation and phase shift and the dielectric properties
are shown in Figure 1. The attenuation and phase shift of the microwave signal can be
obtained as follows:

ΔA = Pinc − Ptra − Pref (1)

Δϕ = ϕtra −ϕinc − 2πn (2)

where Pinc is the incident signal power, dBm; Ptra is the transmitted signal power, dBm; Pref
is the reflected signal power, dBm; ϕinc is the phase of the incident signal, rad; ϕtra is the
phase of the transmitted signal, rad; and N is an integer determined by the thickness of the
test sample.

Figure 1. Detection principle of microwave transmission method: ε’ is the dielectric constant; ε” is
the loss factor; Δϕ is the phase shift, rad; λ0 is the wavelength, m; D is the sample thickness, m; ΔA is
the attenuation, dB.

2.2. The Portable Detection Device
2.2.1. The Structure and the Principle

A schematic diagram of the detection device is shown in Figure 2. The device is
divided into three sub-modules: (a) the microwave signal transmission-generation module,
MSTGM; (b) the real-time measurement module (RTMM) with two microstrip microwave
sensors (transmitting and receiving); (c) and the signal receiving–processing module, SRPM.
The MSTGM sends a microwave signal at the specified frequency, which goes into the
power distributor by the splitter. Two of the same microwave signals are generated after the
power splitter. One microwave signal, processed by the low-noise amplifier 2 is translated
to the microstrip transmitting antenna in RTMM as the incident signal. The incident signal
perpendicularly irradiates the grain samples, a part of which is reflected by the sample
surface to form a reflected signal. Due to the reverse cut-off function caused by the isolator,
the reflected signal is extremely reduced, and the signal generator is protected. The other
part of the microwave incident signal turns into the transmission signal after penetrating
the grain samples. The transmission signal, which is received by the microstrip receiving
antenna, is transmitted to the radio-frequency port of the in-phase and quadrature mixer
(IQ mixer) as the input radio-frequency (RF) input signals. The other signal from the power
splitter is amplified by the low-noise amplifier 1 and then enters the local oscillator (LO) of
the IQ mixer as the input reference signal.

The microstrip transmitting antenna and microstrip receiving antenna were in close
contact with the tested sample during measurement, and the distance between the
two antennas changed as the sample cell distance changed. The microwave attenua-
tion data, phase-shift data, and environment temperature data were transmitted to the
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upper computer via a serial communication protocol. Then, different regression models set
in the upper computer train and process the data. The model with the best performance
index was integrated into the microcontroller, and the predicted grain moisture content
was displayed on the liquid crystal display (LCD) screen in real time.

 

Figure 2. Schematic diagram of detection device: (a) a microwave signal transmission-generation
module; (b) a real-time measurement module; (c) a signal receiving-processing module.

2.2.2. The Measurement of Attenuation and Phase Shift

The attenuation and phase shift of the microwave signal were derived from the
two output signals of the IQ mixer. As shown in Figure 2a, the IQ mixer had a total of
four ports: two input ports (RF and LO), and two output ports (I and Q). The microwave
signal that did not penetrate the sample to the input port LO was treated as a reference
signal; the microwave transmission signal that did penetrate the sample to the input port
RF was considered a radio-frequency signal. The IQ mixer generated the identity signal
of the radio-frequency signal and the reference signal in the output port I. An orthogonal
signal was generated by mixing the radio-frequency signal from the output port Q and the
reference signal that has undergone a 90-degree phase-shift transformation. The attenuation
and phase shift of the microwave were calculated from the reference signal LO, and the
radio-frequency signal RF was calculated from the output signal at the port I end and the
output signal at the port Q [21].

The output signals from port I and port Q were direct currents in this study, and the
signal processing procedure was same as the work in our preview work [22].

2.3. The Hardware Part of the Device
2.3.1. Circuit Module

The circuit module is shown in Figure 3. The whole device was divided into
two layers: Figure 3a shows the superstructure, which was the high-frequency microwave
circuit module. Figure 3b shows the lower structure, which was the low-frequency cir-
cuit and power module. Figure 3c shows the 3D simulation of the overall structure. The
two parts were supported by four copper columns with fixed bolts at each corner. The
height distance between the two parts was slightly greater than that of the highest circuit
components. This design scheme made the overall structure compact and stable.
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Figure 3. Circuit module: (a) high-frequency microwave circuit module; (b) low-frequency circuit
power module; (c) 3D simulation of the whole module; �. Microwave signal generator; �. Isolator;
�. Power splitter; �. Low-noise amplifier 2; �. Low-noise amplifier 1; �. IQ mixer; �. AD converter;
	. Microcontroller; 
. Power terminal block; �. Switching power supply.

In Figure 3a,c, the high-frequency microwave circuit module consisted of an isolator,
a power divider, two low-noise amplifiers, and an IQ mixer. The main functions of this part
were the transmission of the high-frequency microwave signal, isolation of the unwanted
reflected wave signals received from the microstrip transmitting antenna, amplification of
the microwave signal, and conversion of the transmission signal received by the microstrip
receiving antenna into a low-frequency signal. In Figure 3b,c, the low-frequency circuit
and power module in the lower structure consisted of an AD converter, an STM32 module,
a power terminal block, and a switching power supply. The main functions of this part were
the power supply of the whole device, reception/conversion/processing of low-frequency
signals, and conversion of low-frequency signals into attenuation and phase-shift data.
This structure effectively separated high- and low-frequency signals from each other and
prevented interference, while greatly saving installation space and making the overall
device smaller.

The microwave signal generator was DSINSTRUMENTS SG6000L (Suzhou Ruibeis
Electronic Technology Co., Ltd., Suzhou, China), whose output frequency ranged from
25 Mhz to 6000 Mhz, and the phase noise is less than −72 dbc. The signal generator’s
maximum output power level was over +10 dBm. The size of this part was
7.0 cm × 3.2 cm × 5.5 cm, which is easy to integrate and carry. Marki’s IQ-0205 model was
selected as the IQ mixer. The IQ mixer operated in the frequency range of 2000–5000 Mhz
and had a maximum conversion loss of 8 dB. Designed with a small size, IQ-0205 is quite
convenient for portable device design.

2.3.2. Real-Time Measurement Module

As shown in Figure 4, the microstrip transmitting antenna and the microstrip receiving
antenna were the same sizes in the real-time measurement module. Figure 4b shows
one sample of a sample cell, and there were six sample containers of the same material,
same height, same width, but different lengths, in this experiment, and they were all made
by 3D printing.

Figure 4c shows that the real-time measurement module consists of two microstrip
antennae, a sample cell, a fixed base, two guide rails, and a four-T antenna fixed frame.
Both the fixed base and the T-shaped fixed antenna stand are made by 3D printing.

The two-microstrip antenna sensor GAUA3000M-40M-A (Beijing Gwave Technology
Co., Ltd., Beijing, China) operate at 3 Ghz and has a bandwidth of 20 Mhz and a gain
of 7 dBi with A coaxial SMA interface. Compared with the common horn antenna, the
microstrip antenna has a narrow working bandwidth with a small volume advantage. The
size of the microstrip antenna sensor is 80 mm × 80 mm × 1.5 mm, which is very suitable
for integration in small-scale equipment.
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Figure 4. Real-time measurement module: (a) microstrip antenna; (b) sample cell; (c) real-time
measurement module; �, transmitting antenna; �, receiving antenna; �, fixed base; �, guide rail;
�, antenna fixing frame; �, measuring sample.

2.3.3. Integral Structure of the Portable Moisture Detecting Device

As shown in Figure 5, the circuit module and the real-time measurement module
are installed in the same cuboid white plastic box. The two modules communicate with
each other through the coaxial line. The size of the entire shell is 42 cm × 32 cm × 16 cm.
The device is appropriate, lightweight, and easy to carry, thus offering the possibility to
measure the moisture content of grains in situ.

Figure 5. Integral measuring device: (a) inner structure; (b) external structure.

2.4. The Software Parts

An STM32F103RBT6 chip (Sichuan Kangwei Technology Co., Ltd., Sichuan, China)
was installed as the microcontroller for signal receiving and processing and to realize
the functions of the signal AD conversion, attenuation, and phase-shift data calculation,
grain moisture content calculation, LCD control, temperature sensor control, and serial
communication. The attenuation and phase-shift data were converted into code calculation
by Formulas (1)–(6), and the moisture content was calculated by the best regression model
selected by the upper system. The AD7606 module (Sichuan Kangwei Technology Co.,
Ltd., Sichuan, China) was applied to the AD conversion. An SPI communication protocol,
a 16-bit analog-to-digital converter (ADC), and an eight-channel synchronous sampling
were adopted to obtain a more stable signal compared to the ADC of the STM32, and
the frequency of the obtained signal could reach up to 200 kSPS. The real-time ambient
temperature data were collected by the DS18B20 (Sichuan Kangwei Technology Co., Ltd.,
Sichuan, China), which has a small volume and light weight, by separately calculating the
integer and decimal digits of the parameters. The organic light-emitting diode (OLED)
with the resolution of 128 × 64 was chose as the device screen. The result was displayed on
the OLED screen.

The whole program adopted a modular design and was divided into different program
modules according to the different functions. The defined peripheral header files only
needed to import to the main program, and the whole set worked immediately once the
main program was started. If the relevant functions needed modification, the corresponding
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header files were changed (or replaced) directly, which was quite convenient. The whole
program was written in C language, and the code was compiled by the Keil software
(Version 5, ARM Germany GmbH, Grasbrunn, Germany). The program flow chart is shown
in Figure 6.

Figure 6. Program flow chart.
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2.5. Sample Preparation

The fresh paddy rice (Oryza sativa L.) samples were purchased from a local super-
market (Hangzhou, China), and the initial moisture content of the samples was 13.66%.
Before the experiment, all paddy rice was filtered with mesh to remove particles and other
matters, and the rice with minimal damage and uniform shape were selected as the final
experimental samples. An amount of 500.00 g of the paddy rice sample was weighed for
each group, and eight groups were selected in this study. According to the initial mois-
ture content of paddy rice, deionized water (0, 10.88, 29.69, 43.02, 49.94, 64.31, 79.46, and
95.45 g) was added to the eight groups. Then, the samples were sealed in plastic bags and
stored in a dry, cool, unventilated environment for 2–3 days. During storage, the paddy
rice was fully agitated to absorb as much water as possible for the sample. A standard
oven-drying method [23] was applied to detect the moisture content of processed samples
(5 g paddy rice was used here), and the results were 13.66, 15.65, 18.20, 20.17, 21.22, 23.21,
25.45, and 27.02% for each group of paddy rice. The eight groups with different moisture
contents are shown in Figure 7. To verify the results, two groups of additional samples
were prepared with random moisture contents (15.01 and 21.90%); the procedure was the
same as for the eight groups of paddy rice above.

Figure 7. Paddy rice samples with different moisture contents.

2.6. Measurement Procedure and Data Acquisition

The effects of temperature and sample thickness on the signals were considered. The
tests under the same temperature with different thicknesses were carried out, as well
as the tests under the same thickness with different temperatures. The samples were
filled with sample cells in the way of free fall. Before the moisture detection experiment,
the conductivity of an empty sample container was tested three times, and the average
value was taken as the reference data, which was used to obtain the real attenuation and
phase-shift data. The results of the three measurements were averaged. The measured
distance between the transmitting antenna and the receiving antenna depended on the
thickness of the sample container, and the two antennae were closely connected with the
sample container.

The thicknesses of the samples were 8–13 cm, respectively. The sample containers
with different thicknesses are shown in Figure 8. All sample containers were made by 3D
printing (WESTI Science Park Incubator Co., Ltd., Xi’an, China) with nylon (polyamide
material) (WESTI Science Park Incubator Co., Ltd., Xi’an China). During measurement
of the samples with different thicknesses, the ambient temperature was 21 ◦C. During
the measurement of the samples with the same thickness, the ambient set temperatures
were 15 ◦C, 20 ◦C, 25 ◦C, and 30 ◦C, respectively. For each measurement, three replicate
trials were taken, and the detecting time was set to 5 s. After each measurement, the
true values of the samples and the no-load values with on samples and were detected at

35



Chemosensors 2022, 10, 376

different temperatures. All the obtained data were translated and transmitted through
serial communication, and stored at the upper computer.

Figure 8. Sample containers with different thicknesses.

3. Results and Discussion

3.1. Eigenvalue Selection

The data obtained from the experiment included attenuation data, phase-shift data,
and temperature data. For experiments with different thicknesses, the temperature was
constant, and the feature values were attenuation and phase shift. For experiments at dif-
ferent temperatures, the sample thickness was constant, and the temperature was variable.
To compensate for the temperature of the model, it was set as the characteristic value in
the regression models. Our previous studies have shown that the microwave attenuation
values at different frequencies were different for corn samples with different moisture con-
tents [22]. When the microwave frequency was 2–10 Ghz, the attenuation value of samples
with a moisture content lower than 29% did not change much, and when moisture content
was higher than 29%, only the phase shift signals could distinguish the samples [21,24].

In this study, the microwave signal frequency was 3 Ghz, and the frequency selection
source was from our previous work [24]. For the quantitative analysis of the importance of
the attenuation and phase shift at 3 Ghz, a random forest was used to analyze the data with
different thicknesses, and the final features were selected according to the importance of the
feature values given by the random forest regression model. By calculating the contribution
value of each feature, the importance of each feature is sorted according to its contribution
value when constructing each tree within a random forest model. Usually, the Gini index
or OOB error rate can be used to calculate the contribution value. The results are shown
in Table 1.

The importance of the phase shift was much greater than that of the attenuation
under different thicknesses. The average value of the attenuation under six thicknesses
is 10.27%, and the average value of the phase shift is 89.73%. To verify the accuracy of
the characteristic importance results given by a random forest, the cross-validation results
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of the random forest were applied. The input eigenvalues were divided into three cases:
attenuation, phase shift, and attenuation + phase shift. The evaluation index took the
determination coefficient R2, the mean absolute error (MAE), and the root mean square
error RMSE (RMSE), and the results are shown in Figure 9.

Table 1. Feature importance.

Thickness (cm)
The Importance of Feature Values (%)

Attenuation (dB) Phase Shift (m)

8 16.84 83.16
9 6.55 93.45
10 7.43 92.57
11 9.21 90.79
12 7.94 92.06
13 8.81 91.19

 

Figure 9. Feature importance verification: (a) the results based on attenuation; (b) the results based
on phase shift; (c) the results based on attenuation and phase shift.

Figure 9 demonstrates: When the attenuation data were used as the only input eigen-
value, the average value of R2 under six thicknesses was about 0.6; the average value of
the MAE was about 2%, and the average value of the RMSE was about 3%. When the
phase-shift data were used as the only input eigenvalue, the average value of R2 was about
0.981, the average value of the MAE was about 0.4%, and the average value of the RMSE
was about 0.6%. The model based on phase shift was obviously better than the model
based on the attenuation characteristics, which may indicate that the influence of the phase
shift on sample moisture content was dominant in this study. When the random forest
model is combined with the attenuation and phase shift, the average values of the three
indexes performed better than those of the models based on attenuation or phase shift
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alone. Therefore, the combination of attenuation and phase shift was applied as the input
eigenvalue for the final regression model.

3.2. Sample Thickness Selection

The distance between the two antenna sensors was changed by changing the thick-
nesses of different sample cells, and the optimal sample thickness was decided by the
prediction results. The sample thickness was divided into six groups, from 8 to 13 cm, with
an interval of 1 cm. The random forest and decision tree have too many parameters to be
adjusted and are easy to fall into over-fitting, and the k-nearest neighbor algorithm has the
problems of difficult neighbor selection and easy classification error. The multiple linear
regression (MLR) was selected to choose the best thickness.

The signal data of 240 samples (five samples for each group × eight groups ×
six levels of thickness) were used for the MLR model training. As mentioned in
Section 2.5, two additional samples were made with random moisture contents to test
the trained model; thus, 10 groups of samples were prepared for testing the established
MLR model. The moisture content predictions of 180 samples (three samples for each group
× 10 groups × six levels of thickness) under the thickness of 8 cm to 13 cm are displayed in
Figure 10. Figure 10 shows the true and predicted values of the moisture contents for each
sample with different colors.

 
Figure 10. Prediction results under different sample thicknesses: (a) with the thickness of 8 cm;
(b) with the thickness of 9 cm; (c) with the thickness of 10 cm; (d) with the thickness of 11 cm; (e) with
the thickness of 12 cm; (f) with the thickness of 13 cm.

As shown in Figure 10, when the sample thickness was 8 cm: The R2 value was only
0.887, while the R2 values of other thicknesses were higher than 0.960. The MAE value was
higher than 1.5%, while the MAE values of other thicknesses were lower than 0.8%. The
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RMSE value was higher than 1.6%, while the RMSE values of other thicknesses were lower
than 0.9%. It can be concluded that under the thickness of 8 cm, the prediction of moisture
contents in paddy rice was the worst. According to the values of R2, MAE, and RMSE, the
prediction performance with a 12 cm sample thickness was best among those of 8–13 cm
thickness. Thus, the final sample thickness of 12 cm was selected as the best test thickness.

3.3. Temperature Compensation

The ambient temperature has a certain impact on the accuracy of moisture content
measurement. Based on the input characteristics determined above and the test thickness
(12 cm), tests on four groups with different temperatures (15 ◦C, 20 ◦C, 25 ◦C, and 30 ◦C,
respectively) were carried out respectively. The results are shown in Figure 11.

 

Figure 11. Performance results of different temperature test sets: (a) results at 15 ◦C ambient
temperature; (b) results at 20 ◦C ambient temperature; (c) results at 25 ◦C ambient temperature;
(d) results at 40 ◦C ambient temperature.

To reduce the influence that the environment temperature might cause during in situ
testing, the temperature data were put into the training model as compensation data. As
shown in Figure 11, the R2 values at the four temperatures showed no obvious difference.
When the ambient temperature was 20 ◦C, the MAE and RMSE values were the smallest,
indicating that 20 ◦C might be the best ambient temperature for moisture content detection.
Then, the model was verified with a random temperature (18 ◦C in this work). The results
are shown in Figure 12.
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Figure 12. Performance index results before and after adding temperature compensation: (a) results
before temperature compensation, (b) results after temperature compensation.

Figure 12 shows that before and after the addition of temperature compensation, the
improvement in the R2 value was not significant. However, the MAE and RMSE values
after adding temperature compensation were lowered obviously. Therefore, it is necessary
to compensate the temperature as the characteristic data in the model.

3.4. The Prediction of Moisture Content Based on Four Models

After the eigenvalues, sample thickness, and temperature compensation are all de-
termined, it is necessary to find an algorithm with the best performance to return to the
microcontroller as the final model to predict the unknown samples. A random forest,
decision tree, k-nearest neighbor, and support vector machine were used to train the data,
and the trained models were verified by predicting the new verification samples. The
prediction results of the four models are shown in Figure 13.

 

Figure 13. Prediction results of four algorithms: (a) results based on random forest; (b) results based
on decision tree; (c) results based on k-nearest neighbor; (d) results based on support vector machine.
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Figure 13 shows that the results of the three performance indexes of the random forest
were better than the other three models, and the performance of the k-nearest neighbor
algorithm was the worst (There was a large deviation between the predicted value and
the real value of the moisture content in paddy rice.). Therefore, the random forest was
chosen as the final model returned to the microprogrammed control unit (MCU) to predict
the moisture content in the paddy rice samples.

3.5. The Final Display

The selected model parameters (random forest) were written into the MCU code,
and portable moisture detection was applied to detect the moisture content of the rice.
Some actual display effects are shown in Figure 14, where “Temp” refers to the ambient
temperature measured in real time, “MC” refers to the measured moisture content value,
and the measurement is repeated three times.

 

Figure 14. Display of actual moisture content measurement results.

As shown in Table 2, the maximum average absolute error of the equipment was 0.55%,
and the minimum absolute error was 0.17% when compared to the results obtained from
the standard drying method; thus, the measurement results from the portable moisture
detection device are acceptable. The mean standard deviation was 0.18%, the maximum
standard deviation was 0.41%, and the minimum standard deviation was 0.08%, indicating
that the measurement results are relatively stable. In practical moisture detection, the
content range of rice is generally 13–30%, and content outside the range is of little signifi-
cance. The prediction result clearly follows the normal distribution, and the accuracy of the
moisture measurement is acceptable [25,26]. Therefore, the device can be applied to the
detection of grain moisture content.

Table 2. Comparison of measurement results of samples with different moisture content.

No.
The Moisture Content

Measured by the Standard
Drying Method ± SD(%)

The Measured Content
Measured by the Portable

Moisture Detection ± SD(%)
MAE (%)

1 27.02 ± 0.10 27.57 ± 0.10 0.55
2 25.58 ± 0.23 25.32 ± 0.10 0.26
3 23.21 ± 0.10 22.94 ± 0.08 0.27
4 21.45 ± 0.26 21.47 ± 0.41 0.28
5 20.17 ± 0.14 20.22 ± 0.25 0.17
6 19.19 ± 0.12 18.74 ± 0.11 0.45
7 18.20 ± 0.11 17.77 ± 0.10 0.43
8 15.65 ± 0.15 15.39 ± 0.15 0.26
9 13.66 ± 0.20 13.64 ± 0.23 0.17
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4. Conclusions

In this study, a novel portable real-time detection device for grain moisture measure-
ment based on microwave microstrip antenna sensors is developed, which can operate in
situ with high accuracy. The main conclusions are as follows:

1. A real-time detection device for paddy rice moisture content was designed, and
a microwave measurement module was built to carry out non-destructive measure-
ments. The STM32F103RBT6 chip was designed as the signal receiving and processing
module to realize the functions of AD conversion, microwave attenuation and phase-
shift calculation, temperature acquisition and display, and screen control and serial
port communication. The final moisture content was displayed in real time on the
LCD screen.

2. The attenuation, phase-shift, and temperature data were obtained. The characteristic
value of the best combined form was determined using a random forest, after com-
parison with the performances of decision tree model, k-nearest neighbor model, and
support vector machine model. The temperature compensation was added to opti-
mize the model. Finally, the model parameters with the best performance index in the
above four algorithms were selected and returned to the single-chip microcomputer
to display the measured value of the grain moisture content in real time.

3. Nine groups of grains with different moisture contents were measured by the detection
device. The maximum and minimum average absolute errors of the measurement
results were 0.55% and 0.17%, respectively. The maximum standard deviation was
0.41%, and the minimum was 0.08%. The accuracy and stability of the measurement
results were within the acceptable range.

In this study, the portable moisture detection device designed for grain moisture
content is small, light, highly expansive, and accurate. This work is expected to provide
an important reference for the development of real-time measurement of other agricultural
products, and to be of great significance for the development of intelligent agricultural
equipment and industrial applications. In our future studies, the adaptability of the
microwave moisture measurement system for moisture measurement of agricultural prod-
ucts with complex surfaces and shapes, such as tea leaf, soybean, and crop straw, will
be investigated.
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Abstract: Traditional vehicle exhaust pollutant detection methods, such as bench test and remote
sensing detection, have problems such as large volume, high cost, complex process, long waiting
time, etc. In this paper, according to the main components of vehicle exhaust pollutants, an electronic
nose with 12 gas sensors was designed independently for real-time and rapid detection of vehicle
exhaust pollutants. In order to verify that the designed electronic nose based on machine learning
classification method can accurately identify the exhaust pollutants from different engines or different
concentration levels from the same engine. After feature extraction of the collected data, Random
Forest (RF) was used as the classifier, and the average classification accuracy reached 99.92%. This
result proved that the designed electronic nose combined with RF method can accurately and
sensitively judge the concentration level of vehicle exhaust pollutants.. Then, in order to enable
the electronic nose to be vehicle-mounted and to achieve real-time and rapid detection of vehicle
exhaust pollutants. We used Recursive Feature Elimination with Cross Validation (RFECV), Random
Forest Feature Selector (RFFS) and Principal Component Analysis (PCA) to optimize the sensor array.
The results showed that these methods can effectively simplify the sensor array while ensuring the
RF classifier’s classification recognition rate. After using RFECV and RFFS to optimize the sensor
array, the RF classifier’s classification recognition rate of the optimized sensor arrays for vehicle
exhaust pollutants reached 99.77% and 99.44%, respectively. The numbers of sensors in the optimized
sensor arrays were six and eight respectively, which achieved the miniaturization and low-cost of
the electronic nose. With the limitation of six sensors, RFECV is the best sensor array optimization
method among the three methods.

Keywords: vehicle exhaust pollutants; electronic nose; sensor array optimization; feature extraction;
feature selection

1. Introduction

Vehicle exhaust contains hundreds of harmful substances and a large number of
greenhouse gases [1]. It is of great significance to strengthen the monitoring of vehicle
exhaust pollutants for environmental protection. The main components of vehicle exhaust
pollutants include carbon monoxide (CO), nitrogen oxides (NOx), hydrocarbons (HC) and
sulfur dioxide (SO2) [2].

At present, the main vehicle exhaust pollutant detection methods include remote sens-
ing detection [3], vehicle equipment detection [4] and traditional bench test [5]. However,
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these methods have many problems, such as large volume, high cost, complex process,
long waiting time, etc.

An electronic nose is an odor recognition system [6–8] composed of sensor arrays,
which simulates the working principle of mammalian olfactory organs. Electronic nose
has been widely used in various fields, such as the food industry, chemical industry, med-
ical field, etc. [9–13]. In previous work, it has been proved that the use of gas sensors
can identify CO, NOx, HC, SO2 and other exhaust pollutants and judge their concen-
tration levels [14–17]. Therefore, the electronic nose with 12 gas sensors designed inde-
pendently was used in this paper to carry out real-time and rapid detection of vehicle
exhaust pollutants.

In order to make it possible for the vehicle-mounted electronic nose to rapidly detect
vehicle exhaust pollutants in real time, it is necessary to simplify the sensor array to achieve
the miniaturization and low-cost of the electronic nose. At the same time, because the
sensor array in the electronic nose has cross sensitivity, there will be redundancy in the
sensor array. Optimizing the sensor array can not only reduce the volume and cost [18–20],
but also remove redundant information and improve the recognition rate of the electronic
nose in identifying pollutants.

At present, many feature selection methods have been used to optimize the sensor ar-
ray of electronic nose, and have achieved good results. Recursive Feature Elimination (RFE)
is a feature selection algorithm that searches for the optimal feature subset by repeatedly
constructing models, and has been widely used in the optimization of electronic nose’s
sensor array [21,22]. Genetic Algorithm (GA) is a randomized search method with global
optimization capability, and has also been used in sensor array optimization of electronic
nose [23,24]. While Random Forest (RF) can not only solve classification and regression
problems, it also has certain applications in the optimization of an electronic nose’s sensor
array [25]. This paper used two popular feature selection methods: Recursive Feature
Elimination with Cross Validation (RFECV) and Random Forest Feature Selector (RFFS).
As a contrast, this paper also used the traditional Principal Component Analysis method to
optimize the sensor array, and compares the optimization results of the popular feature
selection methods and the traditional method.

2. Materials and Methods

2.1. Structure of the Electronic Nose

The electronic nose system designed in this paper mainly includes a sampling unit and
a detection unit. The sampling unit is mainly composed of a sampling pipe, three-way valve,
flowmeter and chamber. The detection unit mainly includes a sensor array, regulating
circuit board, analog digital converter (16 channel 12 bits of Beijing Pop WS-5921/U60216),
computer, several connecting wires and a power supply (5V DC). The sensor converts
the odor information into electrical signals through the change of the internal resistance
value, then transmits it to the regulating circuit board in turn, and converts the electri-
cal signals into digital signals through the analog digital converter, finally transmits the
digital signals to the Vib’SYS signal acquisition, processing and analysis software at the
computer terminal.

As the main components of vehicle exhaust pollutants are carbon monoxide (CO),
nitrogen oxides (NOx), hydrocarbons (HC), Pb compounds (Pb), carbon dioxide (CO2),
particulate emissions (PM), sulfur dioxide (SO2) and other gases [2], this paper used 12 gas
sensors that are sensitive to the above gases. The details of the selected gas sensors are
shown in Table 1.

The sensor array chamber is composed of an external cavity column and an octagonal
plate, respectively. The gas sensor is fixed through the hole on the octagonal plate in the
same direction, and the detection surface of the gas sensor is in the inner plane of the
chamber. The 3D schematic diagram of the sensor cavity structure is shown in Figure 1.
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Table 1. Information of the 12 gas sensors.

Serial
Number

Sensor Response Characteristics Producer (Country)

A GSBT11 VOCs, toluene, benzene, formaldehyde Ogam (Korea)
B MP135 Ethanol, cigarette smoke, air pollutants Winsen (China)
C MP901 Alcohol, smoke, formaldehyde Winsen (China)
D WSP1110 Carbon dioxide Winsen (China)
E WSP2110 Toluene, benzene, alcohol, acetone Winsen (China)
F TGS2600 Air quality gas (hydrogen sulfide, etc.) Figaro (Japan)
G TGS2602 Formaldehyde and VOCs Figaro (Japan)
H TGS2603 Sulfur odor gas Figaro (Japan)
I TGS2610 Butane, liquefied gas Figaro (Japan)
J TGS2611 Natural gas Figaro (Japan)
K TGS2612 Combustible gas Figaro (Japan)
L TGS2620 Liquor Figaro (Japan)

Figure 1. 3D schematic diagram of sensor cavity structure. (a) The schematic diagram of external
cavity column. (b) The schematic diagram of octagonal plate.

2.2. Engine Bench Test

In order to summarize the concentration variation law of diesel engine’s exhaust
pollutants, we conducted the engine bench test at first. The CA4D28C5 diesel engine
and the G01 gasoline engine were used in the test. The bench was set at the same rotary
speed and different torques, and the exhaust pollutants concentration was measured in a
continuous time. The engine’s testing bench and device are shown in Figure 2.

Figure 2. Engine bench test device diagram. (a) Engine’s testing bench. (b) The CA4D28C5 diesel
engine testing device.

An AVL DICOM 4000 pollutant analyzer and a HORIBA MEXA-7100DEGR pollutant
analyzer were used for vehicle exhaust pollutant detection, respectively. The former was
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used for diesel engine pollutant detection, and the latter was used for gasoline engine
pollutant detection. These two pollutant analyzers not only meet the standards of vehicle
exhaust pollutants detection, but also have the advantages of moderate measurement range,
high measurement accuracy, stable reading and good anti-interference performance. The
two pollutant analyzers are shown in Figure 3. The changes diagrams of exhaust pollu-
tants concentration of CA4D28C5 diesel engine measured by AVL DICOM 4000 pollutant
analyzer under the operating conditions of 1600 r/min and 2200 r/min, respectively with
different torques (Nm) are shown in Figure 4.

Figure 3. Physical diagram of the two pollutant analyzers. (a) AVL DICOM 4000 pollutant analyzer.
(b) HORIBA MEXA-7100DEGR pollutant analyzer.

 
Figure 4. Exhaust pollutants concentration diagrams of CA4D28C5 diesel engine under different
torques (Nm) with different rotary speeds conditions. (a) Variation in exhaust pollutants concentration
under different torques (Nm) with 1600 r/min. (b) Variation in exhaust pollutants concentration
under different torques (Nm) with 2200 r/min.

It can be seen from the changes in exhaust pollutants concentrations under different
working conditions in Figure 4 that, at the same rotary speed, with the increase in torque, the
concentrations of carbon monoxide (CO) and total hydrocarbons (THC) gradually decrease,
however the concentrations of nitric oxide (NO) and nitrogen oxides (NOx) gradually
increase, and their change ranges are similar; at the same torque with different rotary
speeds, the change trends of CO, THC, NO and NOx are similar, but the concentrations
are different.

According to the above concentration variation law of the diesel engine’s exhaust
pollutants, we believe that the sensor array in the electronic nose needs to have the ability to
accurately identify the exhaust pollutants from different engines or different concentration
levels from the same engine. The test scheme developed according to the concentration
variation law of the diesel engine’s exhaust pollutants obtained from the above engine
bench test is shown in Section 2.3.
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2.3. Experimental Setups

According to the concentration variation law of the diesel engine’s exhaust pollutants
in Section 2.2, we designed five groups of experiments using electronic nose to detect
vehicle exhaust pollutants. The first four groups used a CA4D28C5 diesel engine, which
was tested under the conditions of the same rotary speed with different torques. That is,
the experiments were conducted under the conditions that the types of exhaust pollutants
gases were the same, but the concentration levels of each pollutant were only slightly
different. The fifth group used G01 gasoline engine, which means that the experimental
conditions of different exhaust pollutants gas types and different concentration levels were
taken as the control group.

The total test time of each sample was 300 s, of which 90 s is the data acquisi-
tion time, and the data acquisition frequency was 50 Hz, so that each sample contains
12 × 90 × 50 = 54,000 data points. The other 210 s is the cleaning time of the electronic nose
chamber and the zero-setting time of the resistance.

The actual experimental steps are as follows:

(1) Check the connection tightness and safety of each component.
(2) Power on, start the electronic nose detection system, warm up for 30 min, and expose

the sensor to clean air.
(3) The sample gas is introduced into the electronic nose’s chamber through the catheter

connected with the three-way valve.
(4) Collect and store the signal of the sample gas.
(5) After the data collection of one group of samples is completed, clean the electronic

nose with clean air for about 210 s.
(6) Perform the next set of experiments and repeat steps (2–5).

A total of 225 samples were obtained in the experiments. The concentration levels
of the main exhaust pollutants under the test conditions and corresponding operating
conditions of the samples are shown in Table 2.

Table 2. Composition of experimental samples.

Experimental
Number

Engine
Rotary Speed

(r/min)
Torque
(Nm)

CO (%vol) CO2 (%vol)
THC

(ppm)
Number of

Samples

1

Diesel engine

2000 29 0.03 9.6 96 45
2 2000 41.5 0.08 6.1 90 45
3 2000 103.9 0.02 9.0 54 45
4 2000 153 0.01 9.7 42 45
5 Gasoline engine 1200 67 1200 926 1.38 45

2.4. Feature Extraction

After completing the data acquisition steps in Section 2.3, in order to reduce the data
dimension and ensure the effectiveness of the subsequent pattern recognition algorithm [26],
we extracted four features from each data sample obtained: Maximum Value (MAX),
Average Value (Mean), Integral Value (IV) and Wavelet Transform (WT). MAX reflects the
steady state information of the whole gas sensor response curve. Mean and IV combine
all the information of the whole gas sensor response curve. WT can better reflect the
transient information of the whole gas sensor response curve. MAX, Mean, IV and WT
were extracted from each data sample obtained from 12 sensors. After feature extraction,
each data sample changes from a data sample containing 54,000 data points to a feature
sample containing only 12 data points. The feature samples extracted from 225 samples
were spliced together to obtain a feature matrix containing 12 feature vectors and each
feature vector contains 225 feature values.
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2.5. Sensor Array Optimization

In order to enable the electronic nose to realize real-time and rapid detection of vehicle
exhaust pollutants, it is necessary to make the electronic nose more miniaturized and
low-cost. On the one hand, the sensor array optimization method can simultaneously
realize the miniaturization and low-cost of the electronic nose. On the other hand, due
to the cross sensitivity of gas sensors, sensor array optimization can reduce the training
time of classification models, improve the recognition rate of classification models, and
avoid the occurrence of over fitting problems. Three sensor array optimization (i.e., feature
selection) methods based on different principles and optimization strategies were used
in this paper: Recursive Feature Elimination with Cross Validation (RFECV) based on
the packaging method, Random Forest Feature Selector (RFFS) based on an embedding
method, and traditional Principal Component Analysis (PCA) as the comparison. They are
briefly introduced below.

2.5.1. Sensor Array Optimization Based on RFECV

Recursive Feature Elimination (RFE) was proposed by Guyon [27] and has been
widely used in solving feature selection problems. RFECV is a feature selection process
for recursive feature elimination in the cross-validation cycle [28], which can automatically
find the feature subset with the optimal number of features to obtain feature selection
results. In this paper, Random Forest (RF) was used as the classification model in the
process of recursive feature elimination. In the recursive step of each iteration, remove the
last feature according to feature ranking, retrain the RF model with the retained features,
and cross verify the performance of the RF model until there is only one feature left. Finally,
according to the performance of RF model in different feature numbers and feature subsets
composed of different features, the optimal number of features and the optimal feature
subset can be obtained.

2.5.2. Sensor Array Optimization Based on RFFS

Random forests can not only deal with classification and regression problems, but
also can be used to evaluate and select features because they can estimate the importance
of features [29]. The principle of using random forests to evaluate and select features
is based on the difference between the classification performance of random forest on
the original dataset and the randomly extracted dataset. By calculating the classification
performance difference of each decision tree in the random forest on different randomly
extracted datasets, the importance of features can be estimated and the feature ranking can
be obtained. The importance of the features is estimated by Equations (1) and (2):

The importance of feature Aj is estimated as:

I
(

Aj
)
= ∑

di
n × SEdi

, (1)

where di represents the performance difference of decision tree i and SEdi represents the
standard error of all decision trees:

SEdi =
SDdi√

n
, (2)

where SDdi is the standard deviation of di and n is the number of elements in the dataset.

2.5.3. Sensor Array Optimization Based on PCA

Principal Component Analysis is a dimension reduction method, which transforms
the original multivariable in high-dimensional space into a set of linear independent
comprehensive indexes in low-dimensional space through orthogonal transformation [30].
The eigenvalues obtained through Principal Component Analysis are sorted from large to
small to measure the importance of features. Finally, features are selected according to the
importance of features [18].
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Assuming that X = (x1, x2, . . . , x12) is the original variable (the feature extracted
from 12 gas sensors), Z =

(
z1, z2, . . . , zp

)
, (p ≤ 12) as the comprehensive indexes in the

low dimensional space. The transformation process from the original variable matrix X to
the comprehensive index matrix Z can be expressed as:

z1 = a1,1x1 + a1,2x2 + . . . + a1,12x12
z2 = a2,1x1 + a2,2x2 + . . . + a2,12x12

...
zp = ap,1x1 + ap,2x2 + . . . + ap,12x12

(3)

where ap,12 represents the 12th coefficient in the p-th comprehensive index.
Calculate the absolute value of the sum of the coefficients of the original variable cor-

responding to each feature in all comprehensive indexes, such as the absolute value of the
sum of coefficients of the feature values extracted from the 12th sensor in all comprehensive
indexes A12:

z2 = |a1,12|+ |a2,12|+ . . . +
∣∣ap,12

∣∣. (4)

The absolute value of the sum of the coefficients of each feature is used to represent
the contribution degree of each feature in the comprehensive indexes, and then the feature
selection can be obtained by descending order.

3. Results and Discussion

Different sensor array optimization methods will result in different sensor array
optimization results, in which the number and combination of sensors in the sensor array
will be different. The experimental results of this paper were obtained by taking the original
data and the data after sensor array optimization as the input data of the Random Forest
(RF) classifier. The classification recognition rate of the test set is the main index to evaluate
the effectiveness of the original sensor array and the optimized sensor array. Therefore, this
paper used the classification recognition rate of the test set to evaluate the results of sensor
array optimization. In order to make the classification results more reliable and credible,
the stratified sampling strategy was used to conduct 3-fold cross-validation 100 times, and
the average of the 300-test set classification recognition rate was calculated as the final
classification recognition rate of the test set. In the sensor array optimization stage, the
original data set was divided into 2/3 training set and 1/3 test set; the test set was not used
in the sensor array optimization stage.

The classification recognition rate obtained using RF without sensor array optimization
is shown in Figure 5a. It can be seen that the four feature extraction methods have achieved
high classification recognition rate when using RF as the classifier. The highest MAX has
an average classification recognition rate of 99.92%, and the WT with the lowest average
classification recognition rate has also reached 98.16%. This shows that the original sensor
array is effective and has the ability to accurately identify exhaust pollutants from different
engines or different concentration levels from the same engine.

The results of sensor array optimization of the four extracted eigenvalues based
on RF model and RFECV method are shown in Table 3. The optimized sensor array
includes six gas sensors: MP135, TGS2600, TGS2610, TGS2611, TGS2612, and TGS2620. The
optimization of sensor array based on RFECV method has achieved good results. Figure 5b
shows that Mean and IV, which have the lowest average classification recognition rate after
the optimization of sensor array, still reached 97.94%, almost without any loss. This shows
that the RFECV method is very effective for sensor array optimization.

The classification recognition rate of sensor array optimization using RFFS is shown in
Figure 5c. Compared with the RFECV method, RFFS retains a total of eight gas sensors. In
addition to the six same gas sensors selected in the RFECV method, it also retains two gas
sensors, GSBT11 and TGS2602. It can be seen from the comparison of average classification
recognition rate between Figure 5b,c that the classification recognition rate of RFFS with
eight gas sensors is slightly improved in Mean and IV compared with RFECV with six gas
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sensors, but it is decreased in MAX with the highest classification recognition rate, and it
also need to bear the cost of increasing the development of two gas sensors.

 

Figure 5. (a) The RF classifier’s average classification recognition rate of the four feature extrac-
tion methods without sensor array optimization. (b) The RF classifier’s average classification
recognition rate of the four feature extraction methods after using RFECV as the sensor array
optimization method. (c) The RF classifier’s average classification recognition rate of the four
feature extraction methods after using RFFS as the sensor array optimization method. (The er-
ror bars represent the standard deviations of the recognition rates, and the calculation formula is

σ =

√(
(x1 − x)2 + (x2 − x)2 + . . . + (xn − x)2

)
/n, where σ represents the standard deviation, x1,

x2, . . . ,xn represent recognition rates, x represents the average recognition rate, n is the number of
recognition rates. In this paper, we used 3-fold cross validation 100 times, so the value of n is 300.)

Table 3. The sensor array optimization results of RFECV based on RF.

Feature Extraction Method
Number of Sensors after

Optimization
Sensor Serial Number

Retained after Optimization

MAX

6
B, E, H
I, K, L

Mean
IV

WT

Using PCA to optimize sensor arrays requires setting corresponding thresholds to
limit the absolute value of the sum of coefficients of each feature. In this paper, in order to
compare with RFECV and RFFS, the threshold values are set at the values required when
six and eight gas sensors were reserved. The sensor array optimization results and the
corresponding RF classification recognition rate is shown in Table 4. Obviously, when the
number of optimized sensors is limited, the classification recognition rate of sensor array
optimized by PCA is worse than that of other sensor array optimization methods. When
eight sensors are retained, the classification recognition rate of MAX decreased by more
than 2% compared with RFFS. When six sensors are retained, the classification recognition
rate of MAX, Mean and IV declined compared with RFECV.

When PCA was used as the sensor array optimization method, TGS2600, TGS2603,
TGS2610, TGS2611, TGS2612 and TGS2620 were selected to be retained in almost every
feature extraction method, regardless of whether six or eight gas sensors were retained,
which indicates that they have a good response to vehicle exhaust pollutants. However,
MP135 and MP901, which were retained for many times when eight gas sensors were
retained, were rarely selected when six gas sensors were retained. This may be because the
target gases detected by them overlap with the six gas sensors frequently selected above.
When different feature extraction methods retained the same number of gas sensors, the
main reason why the gas sensors selected for retention were different and the main reason
why the sensor array optimization using PCA method was not as effective as the other
two sensor array optimization methods may be because it is an unsupervised dimension
reduction method, and its realization method is to maximize the variance in the projection
direction, so the category information is not fully utilized.
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Table 4. The sensor array optimization results and the classification recognition rate based on RF
after using PCA.

Feature Extraction
Number of Sensors
after Optimization

Sensor Serial
Number Retained
after Optimization

Recognition Rate
(%)

MAX

8

A, C, F, H,
I, J, K, L 97.12

Mean B, C, F, H,
I, J, K, L 98.34

IV B, C, F, H,
I, J, K, L 98.34

WT B, F, G, H,
I, J, K, L 98.59

MAX

6

A, F, I,
J, K, L 97.44

Mean F, H, I,
J, K, L 96.26

IV F, H, I,
J, K, L 96.26

WT B, F, H,
J, K, L 98.63

When the number of sensors retained after using different methods to optimize the
sensor array is the same, the sensor array with higher classification recognition rate is better.
When the classification recognition rate of sensor arrays is the same, the sensor array with
fewer sensors is better. A good sensor array needs to achieve the highest recognition rate
when the number of sensors is as small as possible. Considering that the recognition rate of
the sensor array composed of six gas sensors is almost no lower than that of the original
sensor array composed of 12 gas sensors, and the sensor array composed of six gas sensors
can reduce volume and save the cost to make it possible for the vehicle-mounted electronic
nose to rapidly detect vehicle exhaust pollutants in real time. We believe that the optimal
number of sensors is to retain six gas sensors. After limiting the number of sensors in the
sensor array to six, the recognition rate of each sensor array optimization method is shown
in Table 5.

Table 5. The classification recognition rate based on RF after using different methods (limited the
number of sensors in the sensor array to six).

Feature Extraction Sensor Array Optimization Method Recognition Rate (%)

MAX
RFECV 99.77
RFFS 99.77
PCA 97.44

Mean
RFECV 97.94
RFFS 97.94
PCA 96.26

IV
RFECV 97.94
RFFS 97.94
PCA 96.26

WT
RFECV 98.44
RFFS 98.33
PCA 98.63

In this case, the average RF classification recognition rate of MAX after using RFECV
and RFFS for sensor array optimization has both reached 99.77%. The classification recog-
nition rate of WT after using RFECV was higher than using RFFS. It means that RFECV is a
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better sensor array optimization method, and MAX is a better feature extraction method
than the other three. In addition, the sensor array optimized by RFECV method and us-
ing MAX as the feature extraction method includes sensors: MP135, TGS2600, TGS2610,
TGS2611, TGS2612 and TGS2620.

The cost of using only the above six gas sensors is $32, which can save about 56% of
the cost compared with the original 12 sensor arrays. It can also greatly reduce the volume
of the electronic nose to achieve the purpose of miniaturization. The average time of using
MAX as the feature extraction after using RFECV to test a new real sample was 0.021 s
(using Python 3.10.5 and Visual Studio Code 2022). The miniaturization and the rapid
detection time make it possible for the vehicle-mounted electronic nose to rapidly detect
vehicle exhaust pollutants in real time.

4. Conclusions

In this paper, a self-designed electronic nose composed of 12 gas sensors was used
to detect vehicle exhaust pollutants from different engines or the same engine at different
concentration levels. Firstly, we conducted an engine bench test to summarize the concen-
tration variation law vehicle exhaust pollutants. After analyzing the experimental data
and extracting the features, the highest RF classification recognition rate was up to 99.92%
without optimizing the sensor array. In order to enable the vehicle-mounted electronic
nose to quickly detect vehicle exhaust pollutants in real time, reduce the volume, save
development cost, and save detection time, we used RFECV, RFFS, and PCA to optimize
the sensor array. When the number of sensors was not fixed, the classification recognition
rate of MAX after using RFECV and RFFS methods reached 99.77% and 99.44% respectively,
while RFECV retained less sensors. When the number of sensors was limited to six, the
classification recognition rate of MAX after using RFFS was up to 99.77%, as high as that
of RFECV. The classification recognition rate of WT after using RFECV was higher than
using RFFS, which means RFECV is a better sensor array optimization method in this
case. The cost of the sensor array optimized by RFECV method and using MAX as the
feature extraction method is only 32$ with almost no loss of recognition rate. In addition,
its average detection time of a new sample was 0.021 s.

In summary, through the research in this paper, we found that it is feasible to use
electronic nose for real-time and rapid detection of vehicle exhaust pollutants, and electronic
nose has a good application prospect in this area. At the same time, combined with the
sensor array optimization methods, the electronic nose can be miniaturized and low-cost,
which makes it possible to detect vehicle exhaust pollutants in real time. In the future,
we will use the vehicle-mounted electronic nose in combination with the developing edge
computing and cloud computing technologies to develop corresponding cloud calculating
platforms. We can monitor vehicle exhaust pollutants in real time, and make corresponding
predictions regarding air quality.
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Abstract: Waste incineration is regarded as an ideal method for municipal solid waste disposal
(MSW), with the advantages of waste-to-energy, lower secondary pollution, and greenhouse gas
emission mitigation. For incineration leachate, the information from the headspace gas that varies
at different processing processes and might be useful for chemical analysis, is ignored. The study
applied a novel electronic nose (EN) to mine the information from leachate headspace gas. By
combining manifold learnings (principal component analysis (PCA) and isometric feature mapping
(ISOMAP), and uniform manifold approximation and projection (UMAP) and ensemble techniques
(light gradient boosting machine (lightGBM) and extreme gradient boosting (XGBT)), EN based
on the UMAP-XGBT model had the best classification performance with a 99.95% accuracy rate in
the training set and a 95.83% accuracy rate in the testing set. The UMAP-XGBT model showed the
best prediction ability for leachate chemical parameters (pH, chemical oxygen demand, biochemical
oxygen demand, ammonia, and total phosphorus), with R2 higher than 0.99 both in the training and
testing sets. This is the first study of the EN application for leachate monitoring, offering an easier
and quicker detection method than traditional instrumental measurements for the enforcement and
implementation of effective monitoring programs.

Keywords: electronic nose; incinerator leachate; data mining; prediction; classification

1. Introduction

The world generates 2.01 billion tons of municipal solid waste (MSW) annually, and
waste generated per person per day averages at 0.74 kg. When looking forward, global
waste is expected to grow to 3.40 billion tons by 2050 [1]. Comprised of physicochemical
and biological characteristics that are aggressive to the soil, water resources, fauna and
flora, and MSW is difficult to handle for most countries and regions [2]. To date, the main
disposal methods for MSW are landfill and incineration. MSW landfill causes some issues
to the environment, including: (1) high greenhouse gas (GHG) emissions if landfill gas is
not properly collected, (2) leachate produced damages the ecosystem, (3) a larger space
is needed for the project set up [3]. Therefore, waste incineration is regarded as an ideal
method for MSW disposal [4], with the advantages of waste-to-energy, lower secondary
pollution, greenhouse gas emission mitigation, and so on.

However, for MSW incineration, a considerable number of challenges are still gener-
ated at different points, including but not limited to leachate processing. For incineration
leachate, research has mainly focused on the characteristics of leachate concentrate [5], the
organic matter molecular transformation in leachate [6], and the degradation of refrac-
tory organics [7]. All these direct or indirect studies relate to the leachate headspace gas,
which hints that the information in the leachate headspace gas can be mined for leachate
processing or monitoring. Until now, few in-depth studies have been conducted to fetch
information from the vast amounts of original data about the varieties, concentrates, and
changes of those materials.
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The electronic nose (EN) appears to be a promising candidate for headspace gas detect-
ing, mimicking the human nose, with a range of applications, including the food industry,
disease diagnosis, and environment monitoring [8]. Different from instrumental methods,
such as gas chromatography (GC) with a flame photometric detector (FID), photoionization
(PID), or a mass spectrometer (MS), EN offers the whole information that is unique for
each sample headspace gas instead of specific materials or their concentrations. EN has
been predominately used for indoor air monitoring [9], soil contamination detection [10],
and water quality monitoring [11]. However, studies on leachate detection based on EN
technology are rare, according to our best knowledge.

Novel EN devices, based on machine learning algorithms capable of real-time de-
tection of industrial and municipal pollutants, have been developed to monitor specific
environmental-pollutant levels for enforcement and implementing effective pollution-
abatement programs [12]. Manifold learning, such as isometric feature maps (ISOMAPs)
and uniform manifold approximation and projection (UMAP), uncover a low-dimensional
manifold embedded in a high-dimensional space while respecting the intrinsic geome-
try [13]. Manifold learning, as a novel data pre-processing technology, can improve the
performance of EN detecting.

Ensemble methods are designed to overcome problems with weak predictors and meet
the fast, high-performance requirement [14]. Combining manifold learning and ensemble
methods techniques makes it possible to identify and differentiate between gases of different
leachate samples based on EN and mine useful information for leachate monitoring. A
novel EN based on manifold learning and ensemble methods was applied to monitor the
changes in leachate headspace gas. The main objectives are: (1) to study the variation of
leachate headspace gas based on EN with different processing procedures; (2) to investigate
the manifold structure of EN original data based on principal component analysis, ISOMAP,
and UMAP; and (3) to mine the relationship between leachate headspace gas and chemical
parameter changes based on ensemble methods (extreme gradient boosting and light
gradient boosting machines). The study provides insights into the relationship between
leachate gas emission and chemical parameters based on EN combined with manifold
learning and ensemble methods and offers an easier and quicker monitoring method than
traditional instrumental measurements for the enforcement and implementation of effective
monitoring programs.

2. Materials and Methods

2.1. Sample Collection

The incineration leachate samples collected were from Wenling Green New Energy Co.,
Ltd. (Wenling, China), which was invested in by Zheneng Jinjiang Environment Holding
Co., Ltd. (Hangzhou, China), who is a forerunner and leading waste-to-energy operator
in China’s waste-to-energy (WTE) industry. The Wenling incineration power generation
plant is located in the northern part of the Eastern New District of Wenling City, next to
the East China Sea, with a total area of 7.3 × 105 sqm. The leachate treatment scale of
the incineration plant is 1600 tons/day in two phases, and for now, the treatment scale
of the first phase is 800 tons/day (600 tons/day of domestic waste and 200 tons/day of
dry sludge). The leachate treatment process of the incineration power plants is shown in
Figure 1.

Leachate samples from six water outlets were collected on the 15 July 2022. In Figure 2,
the samples from six water outlets were named leachate raw water (LRW), leachate effluent
(LE), internal circulation reactor effluent, aerobic effluent (AeroE), anaerobic effluent (ANE),
and MBR effluent (MBRE). The samples were preserved in a refrigerator at a temperature
lower than 4 ◦C and were forwarded to the laboratory.
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Figure 1. Process flow diagram of incineration leachate treatment in the study.

Figure 2. Leachate sample collection: (a) leachate raw water (LRW), (b) leachate effluent (LE),
(c) internal circulation reactor effluent (ICRE), (d) aerobic effluent (AeroE), (e) Anaerobic effluent
(ANE), and (f) MBR effluent (MBRE).

2.2. Chemical Parameters Detection for Incinerator Leachate

In general, incinerator leachate is tested by conventional parameters, including pH,
chemical oxygen demand (COD), biochemical oxygen demand after 5 days (BOD5), ammo-
nia (NH4+-N), and total phosphorus (TP). The values of those conventional parameters
exhibit considerable differences due to variations in composition and moisture content,
as well as seasonal factors and incinerator location. The value of pH was tested by the
electrode method [15]. For COD detection, the dichromate method is not suitable for the
water samples in which the chloride ion concentration is higher than 1000 mg/L. The
chlorine emendation method was applied to detect the contents of COD in the incinerator
leachate samples [16]. The concentration of ammonia nitrogen was measured according to
Nessler’s reagent spectrophotometry [17]. The alkaline potassium persulfate digestion UV
spectrophotometric method [18] was used to detect total nitrogen content. The ammonium
molybdate spectrophotometric method [19] was applied to detect the content of TP.
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2.3. E-Nose Detection

The EN mainly consists of two parts: the sensor array, which is applied to sense
the information in the sample’s headspace, and the software part, which handles the
information received from the sensors. According to the sensing materials, metal-oxide-
semiconductor (MOS), quartz crystal microbalance, and surface acoustic wave sensors
are most applied in the EN system [20]. MOS gas sensors are most sensitive to hydrogen
and unsaturated hydrocarbons or solvent vapors containing hydrogen atoms [21]. The
headspace gas from incinerator leachate contents is mainly composed of volatile organic
compounds (VOCs), including hydrogen sulphide, methyl mercaptan, acetylene, propylene,
and ethylene, and also varies according to source, season, the incinerator site, and so on [22].

A commercial PEN2 electronic nose (Airsense Analytics, GmBH, Schwerin, Germany)
was applied to detect the headspace gas from incinerator leachate samples at different
processing procedures. For PEN2, MOS sensors are the core part, and the details of MOS
sensors are presented in Table 1. The MOS sensors convert the information about gas types
and concentrations into an electrochemical signal. The EN signal was expressed as G/G0,
where G and G0 represent the resistance of a sensor in sample headspace gas and clean air.
As the sensors are cross-sensitive to a class of gas compounds, EN does not give the specific
information of one material but offers the headspace gas complementary information.

Table 1. Sensors used and their main applications in the EN.

No. Sensor Name General Description Reference

S1 W1C Aromatic compounds Toluene, 0.1 g/kg

S2 W5S Very sensitive with negative signal, broad range
sensitivity, react on nitrogen oxides NO2, 1 × 10−3 g/kg

S3 W3C Very sensitive with aromatic compounds Benzene, 1 × 10−2 g/kg
S4 W6S Mainly hydrogen, selectively, (breath gases) H2, 0.1 g/kg
S5 W5C Alkanes, aromatic compounds, less polar compounds Propane, 1 × 10−3 g/kg

S6 W1S Sensitive to methane (environment). Broad range, similar
to S8; CH4, 0.1 g/kg

S7 W1W Reacts on sulfur compounds, or sensitive to many
terpenes and sulfur organic compounds; H2S, 1 × 10−4 g/kg

S8 W2S Detects alcohol’s, partially aromatic compounds,
broad range CO, 0.1 g/kg

S9 W2W Aromatics compounds, sulfur organic compounds H2S, 1 × 10−3 g/kg

S10 W3S Reacts on high concentrations > 0.1 g/kg, sometime very
selective (methane) CH4, 0.1 g/kg

During the EN detection, incinerator leachate liquid with a 5 mL volume was placed
into a 500 mL beaker. The beaker was sealed by plastic wrap and was kept still for 30 min to
balance the headspace gas generated from the incinerator leachate. Two holes were made,
one for EN detection and the other for a steady stream of gas while EN detecting. The EN
detection time was set to 80 s, and then the gas path and sensor chamber were cleaned
with clean air. The gas flow rate was 200 mL/min, and one signal per second was collected.
Landfill leachate was collected from six water outlets with 24 samples; thus, 144 samples
(24 samples × 6 procedures) were prepared. All the detection was accomplished on the
sample collection day.

2.4. Data Reduction Based on Manifold Learning
2.4.1. Principal Component Analysis

As a multivariate technique, Principal Component Analysis (PCA) was applied to ana-
lyze a data set consisting of several inter-correlated quantitative dependent variables [23].
By calculating eigenvalue and eigenvector from the covariance matrix of the original data
set, the new orthogonal variables will be derived and usually called principal components
(PC). The cumulative contribution rate of PCs should reach more than 85% of the total
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variance, then the PCA will be considered to have extracted the main information of the
original data.

2.4.2. Isometric Feature Mapping

As a nonlinear dimensionality reduction technique, Isometric Feature Mapping (ISOMAP)
maintains the essential geometric structure of nonlinear data [24]. ISOMAP is multidimen-
sional scaling combined with geodesic distance for reducing the dimensionality of data
sampled from a smooth manifold. ISOMAP tries to solve the shortest path to obtain the
geodesic distance that preserves the characteristics of high-dimensional data structures
as much as possible. Multidimensional scaling is used to calculate the coordinates of
each data point in the low-dimensional space, and the original data is embedded in the
high-dimensional set.

2.4.3. Uniform Manifold Approximation and Projection

As a nonlinear dimensionality reduction technique, uniform manifold approximation
and projection (UMAP) was developed for the analysis of any type of high-dimensional
data [25]. From a theoretical framework based in Riemannian geometry and algebraic
topology, UMAP learns the data representation between points in high-dimensional space
and maps to low dimensions by calculating the joint probability density between high-
dimensional sample points. Spectral clustering analysis is used to initialize the low-
dimensional data and then project it into the low-dimensional space. Adjustable parameters
are used in joint probability density to control the change of conditional probability and
ensure the symmetry of the data. Low-dimensional data also provides two parameters
to adjust the aggregation of mapped data so that low-dimensional data can better fit
high-dimensional spatial data.

2.5. Classification and Prediction
2.5.1. Classification and Regression Tree

Classification and Regression Tree (CART) selects features based on the minimization
of the Gini coefficient to generate a binary tree. By pre-pruning through empirical judgment,
the useless attributes can be removed. After the construction is completed, the algorithm
can resist overfitting and has better generalization ability by cutting off a part of the
information with less proportion.

In addition, the shortcomings that CART cannot handle large amounts of data, un-
derfitting, and overfitting, can be overcome by integrating multiple CART classifiers into
a single ensemble model with the ideas of bagging and boosting. The study selects a
boosting algorithm with relatively stable generalization performance. Boosting is a kind of
optimization algorithm based on the greedy strategy of selecting the fixed loss function (op-
timization function and objective function) based on a greedy strategy for the optimization
of the loss function, committed to obtaining the minimum loss optimization function, such
as eXtreme Gradient Boosting (XGBT) and Light Gradient Boosting Machine (lightGBM).

2.5.2. eXtreme Gradient Boosting

eXtreme Gradient Boosting (XGBT) uses the first and second partial derivatives, and
the second derivatives help the gradient descend faster and more accurately. Using Taylor
expansion to obtain the function as the second derivative form of the independent variable,
the leaf splitting optimization calculation can be carried out only by relying on the value of
the input data without selecting the specific form of the loss function, essentially separating
the selection of the loss function from the optimization of the model algorithm/parameter
selection [26]. The algorithm goes:

1. Initialize model with a constant value:

f̂0(x) = argmin
n

∑
i

L(yi, θ)
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For m = 1 to M:
a. Compute so-called pseudo-residuals:

ĝm(x) = −
[

∂L(yi, f (xi))

∂ f (xi)

]
f (x)= f̂m−1(x)

ĥm(x) = −
[

∂2L(yi, f (xi))

∂ f (xi)
2

]
f (x)= f̂m−1(x)

b. Fit a base learner using the training set {xi,
ĝm(xi)

ĥm(xi)
}n

i=1
by solving the optimization

problem below:

ϕ̂m = argmin
N

∑
i

1
2

ĥm(xi)

[
− ĝm(xi)

ĥm(xi)
− ϕ(xi)

]2

f̂m(x) = αϕ̂m(x)

c. Update the model:
f̂m(x) = f̂m−1(x) + f̂m(x)

2. output FM(x).

2.5.3. Light Gradient Boosting Machine

Light Gradient Boosting Machine (LightGBM) grows trees leaf-wise instead of level-
wise, yielding the largest loss decrease. LightGBM implements a highly optimized histogram-
based decision tree learning algorithm, which greatly improves efficiency and memory
consumption [27]. The algorithm goes:

(1) The sample points are sorted in descending order according to the absolute value of
their gradient;

(2) Select the first samples of the sorted results to generate a subset of large gradient
sample points;

(3) For 100% samples of the remaining sample set (1 − a), randomly select b (1 − a) × 100%
sample points to generate a set of small gradient sample points;

(4) Merge the large gradient samples with the sampled small gradient samples;
(5) Multiply the small gradient samples by a weight coefficient;
(6) Learn a new weak learner (CART) using the above-sampled samples;
(7) Continuously repeat steps (1)~(6) until the specified number of iterations or conver-

gence is reached.

2.6. The Evaluation of Data Processing

To evaluate the accuracy and precision of the established models, 100 samples were
set as the training data, and the rest, 44 samples, were set as the testing data.

The receiver operative curve (ROC) was deployed as a performance indicator for the
classification models. True positive and negative rates are the most commonly used to
evaluate the performance of classification tests. The higher the probability value of these
two indicators, represents the better the judgment effect in the model [28].

The coefficient R2 and RMSE were selected as the evaluation parameters for prediction
models. The higher the R2 was and the lower the RMSE was, the more accurate the
prediction ability of the model would be.

3. Results and Discussion

3.1. The Chemical Parameter Changes of Leachate

The composition of leachate is highly variable and heterogeneous. In general, in-
cinerator leachate is tested using conventional parameters, including pH, COD, BOD5,
ammonia, and TP. The changes in the chemical parameters for leachate samples are shown
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in Table 2. There were statistically significant differences (Turkey HSD, p < 0.05) in the
contents of COD, BOD5, ammonia, TN, and TP. It was noteworthy that the values of COD
decreased significantly at each process procedure. The changes were also noticeable for
BOD, ammonia, TN, and TP. Different from the other five chemical parameters, the value of
pH changes a lot at the last processing procedure. All the chemical parameters were all up
to standard, when the processed leachate was discharged to the municipal pipe network.

Table 2. Average values of leachate chemical parameters.

pH
COD

(mg/L)
BOD5

(mg/L)
Ammonia

(mg/L)
TN

(mg/L)
TP

(mg/L)

LRW 8b 4.23 × 103 f 1.10 × 103 c 1.92 × 103 d 2.18 × 103 c 15.4 b
RPE 8b 6.14 × 103 e 1.50 × 103 d 1.70 × 103 c 2.14 × 103 c 24.3 c
ICRE 8.1b 2.90 × 103 d 0.70 × 103 b 1.54 × 103 c 1.76 × 103 b 24.1 c
AnE 8.3b 2.00 × 103 c 0.52 × 103 b 0.71 × 103 b 1.32 × 103 a 15.2 b

AeroE 7.8b 1.5 × 103 b 0.10 × 103 a 0.12 × 103 a 1.20 × 103 a 10.3 a
MBRE 6a 0.33 × 103 a 0.09 × 103 a 0.04 × 103 a 1.13 × 103 a 4.61 a

The values are the average of the total score of the ten experts with respect to three replications of leachate samples.
Mean in the same row followed by different inline letters (a, b, c, d, e, f) is statistically different as confirmed by
Tukey’s HSD test (p < 0.05).

3.2. The Result of EN Detection

The EN was used to analyze the headspace gas of the leachate samples at different
process periods. A typical response of the EN sensors array during exposure to sample gas,
which was randomly selected from the 144 samples, is depicted in Figure 3a. The procedure
of extracting the sample gas from the beaker to the sensing chamber took 5 seconds,
and then the sensors could react with the gas. The sensor signals changed significantly
from 5 to 35 s, and then the signals achieved a dynamic equilibrium. The various signal
values (maximum or minimum), the shifts, the response areas, and so on indicated that
the sensors offered unique and abundant characteristics about the headspace gas of the
leachate samples. To simplify data processing, sensor signals at 80th second were selected
as the input data of the analysis models. To fully understand the sensor signals, the average
values of 10 sensors were calculated and shown in Figure 3b. The overall signals (at the 80th
second) varied a lot in the first three process periods (LRW, LE, and ICRE), and for ANE,
AeroE, and MBRE samples, the signals changed not so remarkably. To further analyze the
behaviors of those sensors, a radar fingerprint chart of EN signals is shown in Figure 3c: S2,
the most sensitive sensor, showed the biggest variance, and S10 stayed almost still, and S10
stayed almost still. The impacts of leachate headspace gas on the responses of S8, S6, S9,
and S5 were to different degrees, and those on S7 and S4 were not so obvious.

Figure 3. A typical response of EN sensor array during exposure to sample gas: (a) a typical response
of EN during leachate detection, (b) the average values of EN signals at the 80th second, and (c) a
radar fingerprint chart of EN signals.
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3.3. Data Reduction Based on Manifold Learning

Data reduction helps transfer an abundant and disordered original data set into a
simplified and ordered form. PCA is a popular technology in dimensionality reduction
and is flexible, fast, and easily interpretable. PCA does not perform well when there are
nonlinear relationships within the data. For high-dimensional data, it is difficult to affirm
whether the EN data is linear or not linear. ISOMAP and UMAP, as two kinds of manifold
learning, were applied and compared with PCA.

The best description of differences in the original data can be found by calculating the
eigen-decomposition of positive semi-definite matrices and the singular value decomposi-
tion of rectangular matrices. The PCs are ordered by ranking according to their contribution
(eigenvalue). In Figure 4a, the contributions of PCs are displayed, and the first three PCs
have extracted the most information from the original EN data at the 80th second (more
than 85%). The sample distributions of 144 samples based on the first three PCs (PC1, PC2,
and PC3) are shown in Figure 4b. LPW, LE, and ICRE can be easily classified, but ANE,
AeroE, and MBRE are overlapped in a three-dimensional space. The result is similar to
those shown in Figure 3b in some ways.

Figure 4. EN data reduction based on PCA: (a) PCs ordered according the eigenvalues, (b) sample
distributions based on the first three PCs.

ISOMAP constructs the geodesic distance graph from the original EN data, and
uses eigenvalue decomposition of MDS on the geodesic distance matrix to achieve low-
dimensional embeddings. The ICs are ordered and displayed by ranking the contribution
in Figure 5a. The first three ICs also extracted the most information of the original EN
data at 80th second (more than 85%), which are very similar to that in Figure 4a. Because
PCA and ISOMAP used eigen-decomposition and eigenvalue in this study, but there were
minuscule differences in the data. The sample distributions based on the first three ICs are
shown in Figure 5b. Similar as in Figure 4b, LPW, LE, and ICRE can be easily classified, but
ANE, AeroE, MBRE overlapped.

UMAP preserves the local and global data structures and offers short run times
based on Riemannian geometry and algebraic topology. Calculating the distance between
embedding spaces is an approximate measure to determine how sensitive the canonical em-
bedding space’s topology is, which is the feature importance. Figure 6a provides a careful
look at the feature importance of 10 UCs, which is quite different from Figures 4a and 5a.
The first three UCs obviously did not extract more than 85% of the information from the
original EN data, but not meaning that UMAP would do badly for later classification and
prediction. In Figure 6b, most of the samples seem to be clustered narrowly. LPW, LE,
and ICRE are classified clearly and can be easily distinguished in a three-dimensional
space. ANE and AeroE are overlapped, along with two MERE samples. In general, in
three-dimensional space, UMAP outperformed the PCA and ISOMAP in Figures 4b and 5b.
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Figure 5. EN data reduction based on ISOMAP: (a) ICs ordered according the eigenvalues, (b) sample
distributions based on the first three ICs.

Figure 6. EN data reduction based on UMAP: (a) UCs ordered according the eigenvalues, (b) sample
distributions based on the first three UCs.

3.4. Classification Based on EN Signals
3.4.1. Classification Result Based on LightGBM

ROC graphs are used to organize classifiers and visualize the results. As can be seen
from the ROC curve of the lightGBM in Figure 7, the classification accuracy results of the
original, PCA, ISOMAPa, and UMAP data are very different in the training set, respectively.
In the view of the lightGBM models, the PCA better retains the majority of the information
of the original data set according to the ROC curve, and the overall AUC area reaches 100%.
From the ROC results, the performance of UMAP was better than that of ISOMAP, and
only one category 6 classification showed partial errors. In the ISOMAP-lightGBM model,
samples from classes 4 and 6 were misclassified.
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Figure 7. Overall receiver operating characteristics (ROC) curve of lightGBM showing the true
positive and false-positive: (a) based on original data, (b) based on the PCA data, (c) based on the
ISOMAP data, and (d) based on the UMAP data. Class S1 refers to LRW samples, class S2 refers to LE,
class S3 refers to ICRE, class S4 refers to AeroE, class S5 refers to ANE, and class S6 refers to MBRE.

To explore further the models based on different data sets, testing data sets were
applied to verify the classification result. Moreover, to reduce the volatility attributable,
each model was run 20 times, and the average results are displayed in Table 3. The best
classification performance is the UMAP-XGBT model, with a 99.95% accuracy rate in the
training set and a 97.36% accuracy rate in the testing set, indicating that UMAP-XGBT has
the most stable robustness. For PCA-lightGBM, the classification results were worse than
those of the original-lightGBM model in the testing set. ISOMAP-lightGBM has a 100%
average accuracy rate in the training set and a 96.81 average accuracy rate in the testing set.

Table 3. The classification results in the training set and testing set based on lightGBM.

Model Accurate Rate in the Training Set (%) Accurate Rate in the Testing Set (%)

Original-lightGBM 100 96.25
PCA-lightGBM 100 94.44

ISOMAP-lightGBM 100 96.81
UMAP-lightGBM 99.95 97.36

3.4.2. Classification Result Based on XGBT

According to the ROC results in Figure 8, the best performance of classification models
is PCA-XGBT, with only two error classification cases. In the UMAP-XGBT model, samples
of LE and AeroE were misclassified, but the overall performance was better than that of the
original-XGBT. The ISOMAP-XGBT model, with the worst classification performance, has
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categories LE and AeroE misclassified. According to the training set, ISOMAP-XGBT has
the worst performance.

Figure 8. Overall receiver operating characteristics (ROC) curve of XGBT showing the true positive
and false-positive: (a) based on the original data, (b) based on the PCA data, (c) based on the ISOMAP
data, and (d) based on the UMAP data. Class S1 refers to LRW samples, class S2 refers to LE, class S3
refers to ICRE, class S4 refers to AeroE, class S5 refers to ANE, and class S6 refers to MBRE.

For XGBT models, the data training took 20 times to decrease the instability, and the
result is shown in Table 4. The accuracy rates of XGBT models were lower than those of the
lightGBM-based models. From Table 4, it can be concluded that the UMAP-XGBT model
had the best classification performance, with a 99.95% accuracy rate in the training set and
a 95.83% accuracy rate in the testing set.

Table 4. The classification results in the training set and testing set based on XGBT.

Model
Accurate Rate in the

Training Set (%)
Accurate Rate in the Testing

Set (%)

Original-XGBT 100 94.72
PCA-XGBT 100 93.61

ISOMAP-XGBT 100 95.28
UMAP-XGBT 99.95 95.83

From Tables 3 and 4, models of original-XGBT, PCA-XGBT, and ISOMAP-XGBT always
had a satisfying performance with a 100% accuracy rate in the training set in the 20 times
it was run, while they fell short in the testing set. This might be because the models were
overfit in the modeling, so the results in the testing set were not very good.

3.5. Chemical Parameter Prediction Based on EN Signals
3.5.1. Prediction Results Based on LightGBM

As an ensemble learning program, lightGBM aims to build a comprehensive model
by parallelizing and serializing weak learners (CART). For lightGBM models, a histogram-
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based algorithm and tree leaf-wise growth strategy with a maximum depth limit are
adopted to increase the training speed. For lightGBM, the max-features was set 4, and the
tree leaf-wise was set 3 to simplify the lightGBM model in preliminary work. Then, the
number of decision trees was the most important parameter in the later modeling. The
number of CARTs was optimized, and the optimization procedure is carried out in Figure 9
(taking COD prediction as an example) according to the R2s and EMSEs in the training set
and testing set. The lightGBM was 20 times for each number of CARTs to minimize the
contingency. As shown in Figure 9, the results in the training set have stable precision with
the increasing decision tree numbers. While the result precision in the testing set was not
stable regardless of which data set was applied. All in all, the lightGBM model with the
UMAP data set had a slight advantage (not so obvious) when compared to the other three
data sets. When the number of CARTs was 25, the lightGBM model showed a satisfactory
result. The best number of CARTs for the lightGBM model was decided.

Figure 9. The performance of lightGBM according to the numbers of decision trees: (a) based on the
original data set, (b) based on the PCA data set, (c) based on the ISOMAP data set, and (d) based on
the UMAP data set.

EN signals offered the entirety of the information on leachate headspace gas, which
mainly consisted of volatile organic compounds (VOCs), including hydrogen sulphide,
methyl mercaptan, acetylene, and so on. The materials in the headspace gas were most
closely correlated to the value of COD. The EN combined with the data mining method
could predict the contents of COD in leachate samples. Table 5 summarizes the prediction
results based on different data reductions for five chemical parameters (pH, COD, BOD5,
AN, TN, and TP). According to the R2s and EMSEs in the training set and testing set, the
PCA process had no effect on the lightGBM models compared to models based on original
data. LightGBM models based on ISOMAP and UMAP showed satisfactory outcomes. The
prediction of five chemical parameters based on the UMAP-lightGBM model showed the
best performance with an R2 higher than 0.98 in the training set and testing set (RMSEs are
not comparable when it comes to different parameters and units).
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Table 5. Comparison of the LightGBM prediction models based on different manifold learning methods.

Data Set
R2

(Training)
RMSE

(Training)
R2

(Testing)
RMSE

(Testing)
Data
Set

R2

(Training)
RMSE

(Training)
R2

(Testing)
RMSE

(Testing)

Original
data

pH 0.9721 0.2278 0.7217 0.6870

PCA

pH 0.9258 0.3716 0.8690 0.4521
COD 0.9987 120.72 0.9779 492.01 COD 0.9968 189.74 0.9916 302.91
BOD 0.9991 27.82 0.9843 110.01 BOD 0.9968 50.89 0.9893 94.20
AN 0.9991 40.66 0.9753 208.42 AN 0.9974 68.20 0.9957 87.06
TN 0.9953 52.35 0.9785 110.42 TN 0.9857 90.85 0.9694 132.52
TP 0.9978 0.5781 0.9347 3.11 TP 0.9952 0.8652 0.9739 2.02

ISOMAP

pH 0.9211 0.3834 0.8793 0.4286

UMAP

pH 0.9806 0.1339 0.9803 0.1721
COD 0.9968 189.29 0.9963 202.01 COD 0.9989 113.43 0.9881 356.88
BOD 0.9967 51.98 0.9921 80.49 BOD 0.9991 27.82 0.9947 66.30
AN 0.9973 68.55 0.9959 85.75 AN 0.9991 40.52 0.9938 105.89
TN 0.9837 96.96 0.9701 130.60 TN 0.9952 52.45 0.9933 62.07
TP 0.9953 0.8512 0.9844 1.51 TP 0.9982 0.5229 0.9895 0.5742

3.5.2. Prediction Results Based on XGBT

As with lightGBM, the parameters of the XGBT models, including the number of trees,
maximal depth, and minimum rows, were optimized. Finally, the max-features was set 4,
max-depth was set 2, and min-split was set 2 to simplify the XGBT model. The number
of decision trees (CART) was the most important parameter in the later modeling. The
optimization procedure is carried out in Figure 10 (taking COD prediction as an example)
according to the R2s and EMSEs in the training set and testing set, 20 times for each
modeling step to minimize the contingency. As shown in Figure 10, the overall prediction
performance of XGBT models was much better than lightGBM in Figure 10. XGBT models
have very strong robustness and stability, particularly for the ISOMAP-XGBT models in
Figure 10c. When the number of decision trees was 25, the XGBT models had a relatively
satisfactory result, meanwhile the model was not so big, the same as the lightGBM models.

Figure 10. The performance of XGBT according to the numbers of decision trees: (a) based on the
original data set, (b) based on the PCA data set, (c) based on the ISOMAP data set, (d) based on the
UMAP data set.
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Table 6 summarizes the prediction results based on different data reductions for five
chemical parameters. All in all, prediction results based on XGBT have achieved better
results compared to lightGBM models. Different from PCA-lightGBM models, PCA-XGBT
models have a slight edge over the (original data)-XGBT models in the testing set. The
prediction of five chemical parameters based on the UMAP-XGBT model showed the best
performance with an R2 higher than 0.99 in the training set and testing set.

Table 6. Comparison of the XGBT prediction models based on different manifold learning methods.

Data Set
R2

(Training)
RMSE

(Training)
R2

(Testing)
RMSE

(Testing)
Data Set

R2

(Training)
RMSE

(Training)
R2

(Testing)
RMSE

(Testing)

Original
data

pH 0.9721 0.2278 0.7217 0.6870

PCA

pH 0.9258 0.3716 0.8690 0.4521
COD 0.9987 120.72 0.9779 492.01 COD 0.9968 189.74 0.9916 302.91
BOD 0.9991 27.82 0.9843 110.01 BOD 0.9968 50.89 0.9893 94.20
AN 0.9991 40.66 0.9753 208.42 AN 0.9974 68.20 0.9957 87.06
TN 0.9953 52.35 0.9785 110.42 TN 0.9857 90.85 0.9694 132.52
TP 0.9978 0.5781 0.9347 3.11 TP 0.9952 0.8652 0.9739 2.02

ISOMAP

pH 0.9861 0.1834 0.9803 0.1986

UMAP

pH 0.9806 0.1939 0.9833 0.1721
COD 0.9968 189.29 0.9963 202.01 COD 0.9989 113.43 0.9901 156.88
BOD 0.9967 51.98 0.9921 80.49 BOD 0.9991 27.82 0.9947 66.30
AN 0.9973 68.55 0.9959 85.75 AN 0.9991 40.52 0.9938 105.89
TN 0.9837 96.96 0.9701 130.60 TN 0.9952 52.45 0.9933 62.07
TP 0.9953 0.8512 0.9844 1.51 TP 0.9982 0.5229 0.9975 0.5574

For prediction models, the overall performances of XGBT models are better than those
of lightGBM, and the data set based on UMAP reduction has a slight advantage both in the
training set and the testing set when compared to other three data sets.

4. Conclusions

MSW incineration is regarded as an ideal method for MSW disposal, with many
advantages. This study applied an EN detection method for monitoring MSW incinerator
leachate combined with manifold learning and ensemble methods. Some conclusions can
be drawn:

(1) COD, BOD5, ammonia, TN, and TP of leachate were significantly changed during the
processing procedure, especially for COD;

(2) EN sensors offered unique and abundant characteristics of leachate samples in the
headspace gas. The signals at the 80th second varied a lot in the first three process
periods (LRW, LE, and ICRE), for ANE, AeroE, and MBRE samples, the signals
changed not so remarkably;

(3) Manifold learnings (PCA, ISOMAP, and UMAP) were applied to extract the informa-
tion hidden in the headspace gas of leachate detected by EN. The first three PCs and
ICs have extracted the most information from the original data (>85%), and samples
of LPW, LE, and ICRE could be easily classified according to the three-dimensional
space, while others were not so satisfied. UMAP outperformed the performance of
PCA and ISOMAP;

(4) Ensemble methods (LightGBM and XGBT) were applied to mine the relationship
between EN signals of leachate headspace gas and chemical parameter changes
combined with PCA, ISOMAP, and UMAP. The UMAP-XGBT model had the best
classification performance, with a 99.95% accuracy rate in the training set, and a
95.83% accuracy rate in the testing set. The UMAP-XGBT model showed the best
prediction ability for the leachate chemical parameters R2 higher than 0.99 in the
training and testing sets.

Up until now, there have been few in-depth studies that have been conducted to
fetch information from the headspace gas of leachate samples. This is the first study
with an EN application for leachate monitoring based on manifold learning and ensemble
methods, offering an easier and quicker monitoring method than traditional instrumental
measurements. Future work will focus on the potential relationship between microor-
ganisms and headspace gas in the leachate based on EN technology to fully understand
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the MSW incineration leachate chemical parameter changes, which is quite important for
leachate disposal.
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Abstract: Honey adulteration is a worldwide problem; however, its detection is a challenge for
researchers and authorities. There are numerous ways of honey counterfeiting; amongst them, direct
adulteration is one of the most common methods. Correlative techniques, such as near-infrared
spectroscopy (NIRS), are useful tools in the detection of honey adulteration; however, this method has
not been applied to Hungarian honeys. The aim of this research was to investigate the performance
of NIRS for the detection of sugar syrup addition to Hungarian honeys at lower concentration levels
(<10% w/w). Acacia, rape, forest, sunflower, and linden honeys were mixed with high-fructose-
content sugar syrup, rice syrup, or self-made glucose fructose syrup in 3%, 5%, and 10% w/w. NIRS
analysis was performed in the spectral range of 950–1650 nm. Principal component analysis was
coupled with linear discriminant analysis and partial least square regression models were built for
the classification and prediction of adulteration levels, respectively. Our results showed that the
performance of NIRS highly depends on both type of syrup and honey. PCA-LDA models provided
the 100% correct classification of control in the case of all the models, while PLSR results could predict
the added sugar syrup content in the case of rice and F40 syrup models, obtaining >2.2 RPDCV value.

Keywords: honey; fraud; sugar syrup; chemometrics; NIRS

1. Introduction

Honey is a well-known nutritious food, mostly used as a sweetener and nutraceuti-
cal product. It is a supersaturated solution of sugars in water matrix. Fructose, glucose,
monosaccharides, disaccharides, and other sugars make up more than 80% of the total
weight of honey [1–3]. In addition to sugars, water is the other principal compound; accord-
ing to legislation, its amount should generally not exceed 20% (with some exceptions) [4–6].
Honey has a high value for consumers and on the market, owing to its high nutritional
value and health benefits [7].

Recently, the increasing market value and price of some foods have accelerated the
problem of food adulteration. Amongst these foods, honey is considered to be one of the
most frequently counterfeited foods [8]. Honey fraud has many aspects, such as misla-
beling of botanical or geographical origin, direct adulteration with sugar syrups, indirect
adulteration by feeding bees with sugar in the collection period, and resin filtration [9,10].
During direct adulteration, different types of sugar syrups are used, such as corn, rice,
invert sugar, glucose, beet, and other syrups. The exact methods and protocols used for
the detection of this honey fraud are challenging; meanwhile, accuracy highly depends on
the type of syrups and method. Lately, different analytical techniques have been tested
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and found to be useful in honey authentication; however, there is still demand for a re-
liable and accurate method [9,10]. Recently, the use of correlative techniques, such as
near-infrared spectroscopy (NIRS) has increased in the field of food products, including
honey adulteration detection [11,12]. NIRS coupled with chemometric analysis methods,
such as principal component analysis (PCA), PCA-coupled linear discriminant analysis
(PCA-LDA), artificial neural network (ANN) or partial least square regression (PLSR) have
been used in studies outside of Hungary for the detection and quantification of honey
adulteration. Chinese researchers analyzed mixtures of pure acacia, vitex, and jujube honey
with rice and corn syrup at 5%, 10%, 20%, and 40% w/w. In this study the NIRS provided
100% correct classification of all the samples and levels [13]. Bázár et al. [14], studied the
effect of high-fructose-content corn syrup addition, and found that the structure of water
in honey sample changes as a result of adulteration. In another Chinese study, the NIRS
was found to be effective in the detection of adulterants in honey; the average correct
classification was 85.71% [15]. Spanish researchers could also predict the level of syrup
addition in honey with high accuracy using PLSR (R2 > 0.9) using NIRS in the range of
5–40% w/w adulteration [16]. These results show that the NIRS is a promising technology
in the detection of honey adulteration. Moreover, it is non-destructive and does not require
any reagents; therefore, it can be considered a sustainable green technology [13,17–21]. In
Hungary, the application of NIRS for the detection and quantification of honey adulteration
has not been studied deeply. On the other hand, studies around the world focusing on
the detection and quantification of honey adulteration have generally used higher syrup
concentration levels (≥5% w/w). Based on these findings, it can be concluded that there is
a lack of research in adulteration detection of specific Hungarian honey types, especially
below the 5% w/w adulteration level.

Therefore, in this study, our aim was to analyze the applicability of NIRS for the
detection (PCA-LDA) and quantification (PLSR) of glucose–fructose, high-fructose-content
corn syrup, and rice syrup addition to acacia, forest, sunflower, rape, and linden honeys
from Hungary. A further aim was to apply concentration levels of 3%, 5%, and 10% that
had not been studied in depth in Hungary prior to this research.

2. Materials and Methods

The whole experimental setup was performed in two sets, including a preliminary set
(PS), and an extended set (ES).

2.1. Samples and Sample Preparation

In the preliminary set acacia (RP—Robinia pseudoacacia) and linden (TI—Tilia spp.)
honey were mixed with F40 high-fructose-content corn syrup, (HFCS—Kall Ingredients,
Tiszapüspöki, Hungary) and rice syrup (RI—dm; drogerie markt GmbH & Co. KG, Karl-
sruhe, Germany) in 3%, 5%, and 10%. Prior to the current study, the concentration range
of 0% ,5%, 50% was studied and—based on those results—the levels below 10% were
chosen [22]. The concentrations were chosen based on the results of Bodor et al. (2019),
where the levels below 10% were most challenging ones to detect. Moreover, based on the
available studies, adulterations below 5% w/w were not typically applied [13–16], as this
was mentioned in the introduction.

The extended study set was completed with rape (BN—Brassica napus), sunflower
(HA—Helianthus annuus), and forest (HD) honeys. The authentic samples were mixed with
the same rice and HFCS syrups and, additionally, with a self-made glucose–fructose syrup
(GS). The GS syrup was prepared as follows: using an analytical balance, 240 g of fructose
and 160 g of glucose were weighed and transferred into a volumetric flask of 500 mL. The
flask was filled up to volume with distilled water, before putting it in a water bath at 60 ◦C
to ensure and force the solvation of the sugars. The solution was then cooled down to room
temperature prior to further steps.

In the case of both sets, a total of 20 g of the sample were prepared to provide three
replicates (R1, R2, R3), resulting in a total of 141 samples, including three replicates of
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the controls and the sugar syrups. The coding of the samples was generated with the
concatenation of the type of honey (RP, TI, BN, HA, and HD), the syrup added (RI, F40,
GF), and the level of syrup (3%, 5%, and 10%).

2.2. Determination of the Main Physical Properties

The determination of the main physical parameters, such as moisture, pH, and elec-
trical conductivity was performed according to the guidebook of the International Honey
Commission [23]. Moisture content was determined using Abbé-type refractometer, pH and
electrical conductivity were measured with a Mettler Toledo SevenMulti analyzer with the
respective probes (Mettler Toledo, Columbus, OH, USA). Moisture content readings were
performed in two replicates, the pH and electrical conductivity in three–three replicates
per sample.

2.3. Near-Infrared Spectroscopy Measurements

Near-infrared spectra (NIRS) were recorded using the benchtop MetriNIR spectropho-
tometer (MetriNIR Research, Development and Service Co., Budapest, Hungary) in the
spectral range of 740–1700 with 2 nm spectral resolution. The instrument is equipped with
an InGaAs two-beam detector. The spectral recording was performed using a transflectance
setup with a temperature-controlled cuvette at 25 ◦C. The layer thickness of the sample
was 0.5 mm in the cuvette. All the samples were measured in randomized order. In the
preliminary set five and in the extended set three consecutive scans were recorded per
sample. This resulted in 15 and 9 spectra for the preliminary and the extended sample set,
respectively, in the case of all adulteration levels.

2.4. Statistical Evaluation
2.4.1. Evaluation of the Physical Parameters

Statistical evaluation of the quality indicators was performed with descriptive statistics:
mean and standard deviation of the different adulteration levels were calculated separately
for the different honey types. One-way analysis of variance (ANOVA) was performed to
check the significant differences among the different adulteration levels and control. The
evaluation was performed separately for the different honey types. Prior to the analysis,
the assumptions of ANOVA were tested such as the normality (Shapiro–Wilk test) and the
homogeneity of the variances (Levene’s test). As in most of the cases the homogeneity of
the variances did not assume, the pairwise comparison was tested using the Games–Howell
test, which is not sensitive to inhomogeneity [24].

2.4.2. Spectral Preprocessing

Evaluation of the NIR spectra was performed in the spectral range of 950–1650 nm.
The pretreatment of the spectra was optimized using different pretreatments and their
combinations. Single, double, or triple combination of

• Savitzky–Golay smoothing (different window sizes 13, 17, 21, and/or derivation
levels—0, 1st, 2nd);

• Multiplicative scatter correction (MSC);
• Standard normal variate (SNV) or;
• Detrending (detr).

The list and abbreviation of the pretreatments can be found in Supplementary Table S1.
In total 41 pretreatment combinations were tested during the model optimization of the
following methods.

For the spectral presentation, the averaged spectra of the different sample groups
were chosen, where the spectra of one sample was averaged (coming from the 9 or
15 consecutives). In the case of the preprocessed spectra, the averaging was performed
after the pretreatment.
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2.4.3. Chemometric Analysis of the near-Infrared Spectra

During the chemometric analysis—in the case of all the models—consecutive spectra
of different samples were used (without averaging).

As a first step, principal component analysis (PCA) was used for pattern recognition
and extreme outlier detection of the spectral data. The flow of the chemometric analysis
can be found in Figure 1.

Figure 1. Flowchart of the chemometric analysis of NIRS data.
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Classification models were built using PCA-coupled linear discriminant analysis (PCA-
LDA). The models were built for the different honey types separately. In the case of each
honey type, models were constructed for the classification of different adulteration levels.
Two types of models were built:

(1) including the results of all the syrups (all syrup models, one model per honey type)
(2) and separately, including only data of one syrup mixture set and control (resulting

in two models in the case of linden and acacia, and three models in the case of rape,
sunflower, and forest honeys).

During the analysis, threefold cross-validation was applied. Each model was built us-
ing all the pretreatments. After the pretreatment, the PCA-LDA model was built using prin-
cipal component (PC) number optimization. The model with the highest cross-validation
accuracy after choosing the optimal pretreatment was chosen for data interpretation. Dur-
ing the analysis, the correct classification of control after training and validation, and the
average correct classification of all the groups for training and validation were computed.

Partial least square regression models (PLRS) were built for the prediction of the
added syrup concentration. Models were also computed using the data of different honey
types separately. Predictions were performed on the total data set of one honey type (all
syrup models, one model per honey type) and separately for the different sugar syrups
(resulting in two models in the case of linden and acacia, and three models in the case of
rape, sunflower, and forest honeys). During the model construction leave-one-group-out
validation was used where one replicate of one sample was left out for validation in each
iteration. During the evaluation, the following model parameters were calculated:

• Determination coefficient of training (R2C) and validation (R2CV)—the higher the
value, the better the model;

• Root mean square error of training and RMSEC validation (RMSECV)—the lower the
value, the better the model;

• Residual prediction deviation training (RPDC) and validation (RPDCV).

The benefit of RPD is that it considers the variation of the dataset at the same time
with the prediction error. Therefore, RPD provides more detailed information about the
reliability, robustness, and validity of the model [25]. The higher the RPD value, the better
the model. Based on the work of Muncan et al. [26,27], we considered PLSR satisfactory if
the RPD values were above 1.5 [28].

Statistical evaluation was performed using Microsoft Office Excel and R-project soft-
ware with the package Aquap2 designed for NIRS analysis [29].

3. Results and Discussion

3.1. Results of the Physical Analysis

The moisture contents of the three syrups were the following, in decreasing order: F40
syrup: 21.88 ± 0.44%, GF syrup: 18.4 ± 0.54%, and RI syrup: 17.53 ± 0.66%. In the case
of all the honey types, an increasing tendency in moisture content was observed with the
increase in the amount of the added syrup. The exception was the forest honey mixed with
the RI syrup where a slight, but not significant decrease was observed compared to the
control (17.30%) Table 1). However, it can be seen that at these levels the moisture content
did not increase above 20%, which is the legislation limit [4,5]. Moreover, the increase of
moisture content of acacia, forest, and linden honeys was not significant compared to the
authentic honeys. In the case of rape honey, only the honey mixed with the F40 syrup in
10% showed a significant increase, while in the case of sunflower honey, almost all the
mixed honeys had significantly higher moisture contents.

The pH of sugar syrups was similar to the pH of honey samples in general. The F40
syrup had a pH of 4.02 ± 0.12 and the RI syrup had pH of 4.48 ± 0.37. Higher pH was
observed in the case of the GF syrup (5.33 ± 0.19). Despite this, the pH of the different
honey samples did not increase significantly in most of the cases (Table 1).
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Table 1. Results of the physical properties of different honey types.

Honey Sample Moisture % pH Electrical conductivity μS/cm

Acacia

RP Control 16.60 ± 0.14 a 3.59 ± 0.01 a 141.40 ± 0.03 a

RP F40 3% 17.15 ± 0.35 a 3.59 ± 0.02 a 137.81 ± 0.40 b

RP F40 5% 16.95 ± 0.07 a 3.61 ± 0.01 a 136.12 ± 1.65 abcd

RP F40 10% 17.40 ± 0.00 a 3.64 ± 0.04 a 132.11 ± 1.66 bcd

RP RI 3% 17.00 ± 0.14 a 3.60 ± 0.02 a 137.69 ± 0.27 bc

RP RI 5% 17.05 ± 0.07 a 3.60 ± 0.02 a 135.77 ± 0.52 c

RP RI 10% 17.10 ± 0.00 a 3.60 ± 0.02 a 130.12 ± 0.44 d

Linden

TI Control 16.60 ± 0.14 a 4.34 ± 0.02 a 627.44 ± 3.50 a

TI F40 3% 17.15 ± 0.35 a 4.32 ± 0.01 a 607.44 ± 1.90 b

TI F40 5% 16.95 ± 0.07 a 4.32 ± 0.01 a 593.89 ± 6.26 bcd

TI F40 10% 17.40 ± 0.00 a 4.32 ± 0.01 a 568.00 ± 1.00 c

TI RI 3% 17.00 ± 0.14 a 4.33 ± 0.01 a 607.22 ± 1.50 b

TI RI 5% 17.05 ± 0.07 a 4.31 ± 0.01 a 597.78 ± 0.96 d

TI RI 10% 17.10 ± 0.00 a 4.34 ± 0.01 a 570.33 ± 3.61 c

Rape

BN Control 17.83 ± 0.08 a 3.56 ± 0.01 a 180.98 ± 1.16 a

BN F40 3% 17.83 ± 0.05 a 3.56 ± 0.01 a 175.46 ± 0.47 bc

BN F40 5% 17.97 ± 0.15 ab 3.57 ± 0.01 a 172.72 ± 0.74 d

BN F40 10% 18.18 ± 0.04 b 3.57 ± 0.02 ab 165.76 ± 1.46 e

BN GF 3% 17.82 ± 0.13 a 3.56 ± 0.01 a 175.06 ± 0.46 b

BN GF 5% 17.83 ± 0.05 a 3.61 ± 0.02 b 172.18 ± 0.66 d

BN GF 10% 17.83 ± 0.05 a 3.58 ± 0.04 ab 165.17 ± 2.51 ef

BN RI 3% 17.82 ± 0.04 a 3.55 ± 0.01 ac 176.06 ± 0.60 c

BN RI 5% 17.92 ± 0.1 a 3.53 ± 0.02 cd 172.68 ± 0.22 d

BN RI 10% 18.22 ± 0.31 ab 3.52 ± 0.01 d 167.88 ± 0.40 f

Sunflower

HA Control 16.65 ± 0.08 a 3.20 ± 0.01 a 416.78 ± 0.67 ab

HA F40 3% 17.02 ± 0.04 bc 3.19 ± 0.01 ab 421.11 ± 1.27 c

HA F40 5% 17.17 ± 0.20 bcd 3.19 ± 0.01 ab 415.78 ± 1.09 a

HA F40 10% 17.25 ± 0.12 b 3.19 ± 0.01 ab 395.44 ± 0.73 d

HA GF 3% 16.85 ± 0.08 d 3.18 ± 0.01 b 418.56 ± 1.24 b

HA GF 5% 16.82 ± 0.18 acd 3.18 ± 0.01 ab 407.00 ± 2.60 e

HA GF 10% 17.07 ± 0.10 bcd 3.19 ± 0.01 ab 387.33 ± 1.32 f

HA RI 3% 16.90 ± 0.11 cd 3.28 ± 0.08 abc 425.56 ± 1.33 g

HA RI 5% 16.75 ± 0.18 acd 3.23 ± 0.02 c 417.78 ± 0.97 b

HA RI 10% 16.98 ± 0.04 cd 3.23 ± 0.02 c 397.78 ± 1.20 h

Forest

HD Control 17.30 ± 0.17 abcd 3.87 ± 0.01 a 508.78 ± 3.07 a

HD F40 3% 17.25 ± 0.12 abc 3.88 ± 0.00 ab 493.33 ± 1.58 b

HD F40 5% 17.38 ± 0.04 abd 3.88 ± 0.00 a 483.56 ± 1.51 c

HD F40 10% 17.60 ± 0.18 ad 3.88 ± 0.01 ab 461.22 ± 2.17 d

HD GF 3% 17.27 ± 0.10 abc 3.89 ± 0.01 bc 496.89 ± 2.15 e

HD GF 5% 17.37 ± 0.08 abd 3.88 ± 0.01 ab 485.89 ± 2.52 cf

HD GF 10% 17.53 ± 0.10 d 3.88 ± 0.01 ab 462.11 ± 2.89 d

HD RI 3% 17.13 ± 0.10 c 3.89 ± 0.01 abc 496.00 ± 2.55 be

HD RI 5% 17.17 ± 0.15 bc 3.87 ± 0.01 a 488.22 ± 1.39 f

HD RI 10% 17.13 ± 0.15 bc 3.90 ± 0.01 c 472.11 ± 1.05 g

Letters denote the significant differences among the different samples within one honey type due to the ANOVA
Games–Howell post-hoc test. Bold letters denote the samples of values significantly different from control honeys.
RI: rice syrup; F40: high fructose-content corn syrup; GF: self-made glucose–fructose syrup.

On the contrary, the electrical conductivity results showed a significant decrease
in most of the cases due to the fact that the electrical conductivity of the sugar syrups
was very low: F40 18.72 ± 1.42 μS/cm, GF 3.42 ± 0.55 μS/cm, and RI 10.73 ± 1.33 μS/cm.
It can be observed that the highest decrease occurred at the highest sugar syrup
addition level.

77



Chemosensors 2023, 11, 89

In a Romanian study, a similar increase in moisture and a decrease in electrical con-
ductivity was observed in acacia honey upon the addition of sugar syrups at 5% and 10%
w/w level [30]. Moreover, in another Hungarian study, similar results were found, where
30% and 40% w/w of sugar syrup was mixed with acacia honey [31].

3.2. Results of Near-Infrared Spectroscopy

In this section, the results of the chemometric analysis are going to be introduced.

3.2.1. Introduction of the Spectra

For the interpretation of the raw spectra, the entire wavelength range was used
(Figure 2a). In the case of the individual honey types (Figure 2b–f), the same preprocessing
method was chosen. In this case, the Saviztky–Golay smoothing (2nd order polynomial
with 21-window size) coupled with multiplicative scatter correction was chosen, as this
preprocessing had the best results in the case of the all syrup models of PCA-LDA for all
the honey types.

Figure 2. Cont.
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Figure 2. Near-infrared average spectra of the analyzed samples: (a) raw spectra (740–1700 nm)
and spectra after Savitzky–Golay smoothing (2nd order polynomial, 21 window size, no derivation)
and multiplicative scatter correction (950–1650 nm) in the case of (b) acacia samples (RP) (c) linden
samples (TI), (d) sunflower samples (HA), (e) rape samples (BN), and (f) forest honey samples and
their mixtures with rice, F40, and self-made glucose–fructose syrup (GF).

The recorded spectra of the different samples showed similar pattern in the case of
all the honey types and their mixtures. Peaks were found around wavelength range of
950–1050 nm, 1200 nm, and 1450 nm (Figure 2). Another underlying peak was found
around 1550–1600 nm. The spectral assignation is discussed in Section 3.2.4. Based on
the raw and the pretreated spectra, the large water peak can be found in the range of
1400–1500 nm [14]. In this region, the highest absorbance values were found for the sugar
syrups, followed by the sunflower (Figure 2d), rape (Figure 2e), forest (Figure 2f), acacia
(Figure 2b), and linden (Figure 2c) honeys. This can be attributed to the higher water
content of the sugar syrups. Moreover, in the case of all the honeys, it can be observed that
the sugar syrups had a lower absorbance value in the range of the 1550–1600 nm region,
which was the region assigned to the sugar content of the samples [14].

3.2.2. Results of the PCA-LDA Analysis

The results of the PCA-LDA analysis performed on the different honeys with different
sugar syrup additions provided promising results. Different honeys and sugar syrup
models needed different spectral pretreatment in most of the cases. For the interpretation of
the results, we chose models containing all the syrups and models where 100% classification
was not achieved. The model of acacia honey provided 100% correct classification of all
the groups in the case of all the models. This shows that not only the adulterant, but also
the type of adulterant could be discriminated based on the model including both syrups
(Figure 3a).

Similar results were obtained for the linden honey in the case of the models of F40
and rice syrup mixtures. However, when the two syrups were included in the model, the
average correct classification was 97.62% in both training and validation (Figure 3b). The
confusion tables showed correct classification of the control, 3%, and 10% mixtures. The
honey mixed with rice syrup in 5% (TI Rice 5%) was misclassified as belonging to the 5%
F40 mixture in 16.67% (TI F40 5%).
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Figure 3. PCA-LDA model score plot of the (a) acacia (RP) and (b) linden (TI) honey samples for the
classification of rice and high-fructose corn (F40) syrup addition levels including the results of all
the samples.

The model of the forest honey was like the model of acacia honey, where all the models
showed 100% correct classification. Figure 4a shows the model built for the classification of
forest honeys including all the sugar syrups. In the figure, the control group separates from
the rest of the models, also providing 100% classification of the control. The result of the
rape honey model was similar to the model of linden where the models built separately
for the different syrups provided the 100% classification. The model including results of
all the syrups altogether provided the average correct classification of the training model
and 98.89% correct classification of validation model, as can be seen in Figure 4b. A
misclassification was found in the case of the sample mixed with F40 syrup in 3% (BNF40
3%), which was misclassified as belonging to the 5% F40 mixture (BNF40 5%) in 11.11%.

The “weakest” model was obtained for the sunflower honey where the models of
honeys mixed with the rice and F40 syrups provided 100% correct classification for all the
sample groups. The model of the GF syrup mixtures and model including data of all the
samples (Figure 4c) provided a correct classification of the control, but misclassifications
were found for the mixtures. The model of the GF syrup mixtures showed average correct
classification of 94.45%; its score plot can be seen in Figure 4d. The honey mixtures of 3%
w/w and 5% w/w were classified correctly, while the honey mixed with 10% w/w using
the GF syrup (HA GF 10% w/w) was classified as honey mixed with 5% w/w GF syrup
(HA GF 5% w/w) in 22.22%. Similar results were obtained by Chinese researchers, where
honeys mixed with 5% w/w and 10% w/w sugar syrups were misclassified as belonging to
each other [13]. The PCA-LDA of sunflower honey built for all the samples classified all
the samples correctly during the training; however, in the case of validation, the average
correct classification was 96.67%. In this model, the sample containing F40 syrup at 3%
w/w lead to misclassification as belonging to the honey mixed with 5% w/w of F40 syrup
at 11.11%. In our study, compared with the Chinese and other studies, the detection of
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adulterants could be achieved not only on the levels presented in those studies (5–40%
w/w), but also at a lower level of 3% w/w [13–16]. Moreover, for the results of PCA-LDA,
in all cases, the control could be discriminated from the adulterated samples, which was
not assumed in the case of the physical parameters (Table 1).

Figure 4. PCA-LDA model score of the classification model of rice, high-fructose corn (F40), and
self-made glucose–fructose (GF) syrup addition levels in the case of models containing results of all
the syrups of (a) forest (HD), (b) rape (BN), and (c) sunflower (HA) honey, and (d) classification of
sunflower (HA) honeys blended with self-made glucose–fructose syrup.
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3.2.3. Results of the Partial Least Square Regression Models

Similar to the PCA-LDA results, the model parameters were different in the case of the
different honeys and syrup models within honeys (Table 2). Moreover, the accuracy highly
depended on the applied pretreatment, which was also different in the case of the models.

Table 2. Result of the partial least square regression models built to regress on the added syrup
concentration of sugar syrups adapted from Bodor Z. (2022) [32].

Honey Syrup Pretreatment
Number of

Latent
Variables

R2C
RMSEC

%
RPDC R2CV

RMSECV
%

RPDCV

Acacia
All syrups sgol@2-13-0+sgol@2-17-1 4 0.99 0.29 11.42 0.98 0.49 6.70

Rice sgol@2-13-0+deTr 2 0.98 0.52 6.79 0.94 0.84 4.22
F40 sgol@2-17-0+sgol@2-21-1 4 0.99 0.36 9.69 0.98 0.50 6.83

Linden
All syrups deTr+snv 4 0.97 0.68 5.49 0.92 1.07 3.50

Rice sgol@2-21-0 3 0.96 0.71 5.25 0.80 1.64 2.27
F40 deTr 3 0.94 0.93 4.03 0.86 1.37 2.73

Forest

All syrups sgol@2-17-0+snv 4 0.92 0.89 3.53 0.88 1.07 2.95
Rice sgol@2-17-0+sgol@2-17-2 4 1.00 0.22 14.70 0.95 0.72 4.52
F40 sgol@2-21-0+sgol@2-21-1 4 0.99 0.36 9.32 0.97 0.54 6.20
GF sgol@2-21-0+sgol@2-13-2 4 0.98 0.54 6.46 0.71 1.85 1.89

Rape

All syrups msc 3 0.77 1.53 2.09 0.68 1.80 1.78
Rice sgol@2-17-0+sgol@2-21-2 3 0.96 0.69 4.80 0.88 1.13 2.93
F40 deTr 2 0.98 0.49 7.14 0.96 0.72 4.91
GF sgol@2-13-0+sgol@2-21-2 4 0.92 0.99 3.70 0.46 2.62 1.39

Sunflower

All syrups msc 4 0.60 2.11 1.60 0.36 2.69 1.26
Rice sgol@2-17-0+sgol@2-17-1 4 0.99 0.40 9.29 0.92 1.01 3.67
F40 sgol@2-13-0 4 0.99 0.41 8.36 0.94 0.80 4.27
GF msc 4 0.83 1.50 2.49 0.39 2.89 1.29

R2C and R2CV determination coefficient of training and validation; RMSEC and RMSECV root mean square error
of training and validation; RPDC and RPDCV residual prediction deviation training and validation.

Results of acacia, linden, and forest honeys were better than models obtained for the
rape and sunflower honeys.

The prediction model of acacia provided >0.94 R2CV with RMSECV values lower
than 0.9% for the syrup addition. Moreover, the RPDCV values were also good, with
>4.22 values. The best model was obtained in this case for the prediction of F40 and all
syrups together, while the model built for the prediction of rice syrup was slightly weaker,
however still very good.

The results obtained in the case of the linden honey were similarly good; during the
cross validation, the R2CV values were >0.80, with an RMSECV error lower than 1.65%.
Similar to acacia, the models built for the prediction of syrup concentration including
results of all the samples and prediction of F40 was better than in the case of the rice
syrup model.

The models of the forest honey provided satisfactory results based on the RPDCV
values. In this case, the best model was obtained for the prediction of the rice and the F40
model with R2CV ≥0.95 and RPDCV higher than 4.5. The model built for all the syrups was
also quite satisfactory; in this case, the R2CV value was higher than 0.8, with an RMSECV
of 1.07%. The worst results were obtained in the case of the GF syrup prediction model,
this resulting in R2CV of 0.71 and RMSECV of 1.85%.

In the case of the PLSR models of rape honey, the trend was similar to the results of
the forest honey. The best results were obtained for the prediction of the F40 syrup, where
the R2CV was above 0.96 and the RPDCV value was 4.91, and lower than 1% RMSECV.
Slightly worse values were obtained for the prediction of rice syrup, while the worst model
was obtained for the GF syrup prediction. In this case, based on the RPDCV values, the
models could not be considered satisfactory.

Similar results were provided by the model of the sunflower honey. The prediction
of rice and F40 syrup could be considered good, with R2CV > 0.92 and RPDCV > 3.5.
The error of prediction based on the RMSECV values was lower than 1.01%. The models
built for the prediction of all the syrups and for the prediction of GF syrup reached lower
performance. In these cases, the RPDCV values were below 1.5; therefore, these could not
be considered satisfactory.
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Results showed that the accuracy of prediction highly depends on the type of honey
and type of syrup. PLRS model parameters of acacia, linden, and forest honeys were
better than models obtained for the rape and sunflower honeys. Moreover, the results
obtained for the prediction of rice and F40 were also better than those obtained for the GF
syrup. Chinese researchers also found different accuracies of prediction between HFCS
and maltose syrups [31].

3.2.4. Regression Vectors and Spectral Assignations

Based on the regression vectors of the different PLSR models and spectra (Figure 2), it
can be concluded that in the case of the models, similar wavelength ranges contributed to
the PLSR models (Table 3), which are in line with the peaks found during the observation of
the raw and pretreated spectra (Figure 2). Mostly all of the models showed the contributing
range of 950–1000 nm, which can be assigned to the O–H stretches of the second overtone.
The second overtone O–H (1000–1130) and C–H stretches (1150–1220) were also affected
in most of the models. Moreover, all the models provided the changes in the range
of the 1300–1600 nm region, which is known as the region of the O–H stretches of the
first overtone. Based on the latest aquaphotomics-related studies, the water spectral
pattern changes can be well-discovered in the 1300–1600 nm range. A wavelength range of
1320–1420 nm can be assigned to the water with less or no hydrogen bonds. Within this
range, the water solvation shells OH–(H2O)1,2,4 (1360–1366 nm), free water (1412 nm), and
free OH– bond were affected (1398–1418 nm) the most [33–35].

The spectral range of 1432–1444 nm can be assigned to water molecules with one
hydrogen bond, and the range of 1458–1495 nm is connected to water molecules with
2–4 hydrogen bonds [35–37]. The range of around 1490–1520 nm is assigned to ν1, ν2,
symmetrical stretching fundamental vibrations and strongly bonded water (1516 nm).
Moreover, as honey is mainly composed of sugars and water, the changes in the sugar
composition were also reflected in the spectra. Studies showed that the 1439 nm wavelength
can be assigned to the sucrose molecules, and higher wavelengths, such as 1520 nm and
1590 nm, to the glucose [37]. The changes in the spectra can be explained by the fact that
the sugar profile of the sugar syrups differs highly from that of the honeys, and also the
water structure of these sugars is different. Therefore, the addition of these sugars syrups is
well-reflected in the spectra [14,33,35–43]. Previous Hungarian research has shown that the
addition of sugar syrup to honey results an in the increase in the absorbance in the range of
1342–1480 nm, while the decrease in absorbance can be observed at 1512 nm. This shows
that the addition of sugar syrups increased the free water and decreased the amount of
highly bonded water molecules, which was also proven in the current study [22].

Table 3. Spectral assignation based on the regression vectors contributing to the PLSR models of all
the models and syrups.

Spectral Region nm Models Spectral Assignation Based on [14,33,37–43]

950–1000

Acacia—all syrups, F40
Linden—Rice syrup
Forest—All models

Rape—all syrups, GF
Sunflower—Rice

N–H stretches of second overtone

1000–1130 All the models except sunflower GF model O–H stretches of second overtone

1150–1220
Acacia—all syrups, F40

Linden, forest, rape, all models
Sunflower—all syrups, rice, and GF

C–H (CH2, CH3) stretches of second overtone, C–H
combination stretch of first overtone (CH2, CH3)

1300–1600 All the models 1st overtone O–H stretches

4. Conclusions

Our study focused on the adulteration detection of different honey types using three
types of sugar syrup. The changes resulting from the syrup addition were evaluated with
physical methods and near-infrared spectroscopy.
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The results showed that at these levels (3%, 5%, and 10% w/w) the moisture and the
pH did not provide sufficient support for detection of adulteration while, conductivity
seemed to be a good indicator. The electrical conductivities of sugar-blended and control
honeys were significantly different from each other in most of the cases (Table 1). Still, these
differences are not relevant enough, as in the Hungarian and international legislation there
are no specific limits for all the honey types in terms of electrical conductivity.

The results of the NIRS analysis showed that pretreatment and PC number opti-
mization have a high importance in the model parameters and robustness. Following
correct model optimization, promising results could be achieved for both the detection
and quantification of adulteration even at the lowest level (3% w/w), which is lower than
the most commonly studied sugar syrup concentration in such studies. The results of the
PCA-LDA models showed a high accuracy of classification in the case of the optimized
models. Control honeys were classified correctly in the case of all the models. The worst
average classification accuracy was ~94%, obtained for the model of the sunflower honeys
containing GF sugar syrup. However, in this case misclassifications were found among the
5% and 10% w/w mixtures. With the model optimization 100% correct classification could
be achieved for the control for all the studied syrup concentrations (3, 5, 10% w/w). PLSR
results of the acacia, linden, and forest honeys could also be considered good based on the
obtained model parameters: the R2CV values were above 0.80 for the prediction of F40 and
rice syrup, and the added syrup concentration was predicted with lower than 1% of error
based on the RMSECV values. Similarly good models were obtained for the prediction
of the F40 and rice syrup addition (R2CV >0.8 and RPDCV > 2.97) of the rape, sunflower,
and forest honeys. Based on the results, we can conclude that the model accuracy highly
depends on both the honey and syrup type. These observations were more obvious in the
case of the PLSR models. In most of the cases the worst model parameters were obtained
for the self-made glucose–fructose syrups. Based on our research, it can be concluded that
it is very important to build specific models using the NIRS method on different honey
types and with different sugar syrup adulterants. The main limitation of the study was that
the applied NIR instruments worked only in the spectral range of 740–1700 nm, therefore
lacking the region of higher wavelengths where chemical bounds can be found for the sug-
ars (1800 nm) [14]. Another limitation and possibility of further work could be the analysis
of more physicochemical parameters and sugar properties of the honeys. Moreover, the
applicability of this in an authority level could be achieved only with a large database. This
should be built containing numerous spectra of authentic honeys; furthermore, spectra of
honeys that were syrup added with different type of syrups and at different concentrations.
Nonetheless, based on the results, NIRS applied together with well-optimized models can
be an effective tool in the detection of adulteration with sugar syrups even at low levels. In
the future, these models could be further improved by the extension of the database with
more honey and syrup types.
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Abstract: The rapid and specific point-of-care (POC) analysis of virulent pathogenic strains plays a
key role in ensuring food quality and safety. In this work, a paper-based fluorescent phage biosensor
was developed for the detection of the virulent E. coli O157:H7 strain (as the mode of virulent
pathogens) in food samples. Firstly, phages that can specifically combine with E. coli O157:H7 (E. coli)
were stained with SYTO-13 dye to prepare a novel fluorescent probe (phage@SYTO). Simultaneously,
a micro-porous membrane filter with a pore size of 0.45 μm was employed as a paper chip so as to
retain the E. coli-phage@SYTO complex (>1.2 μm) on its surface. The phage@SYTO (200 nm in size)
was able to pass through the pores of the chip, and the complex could be retained on the paper chip
using the free phage@SYTO probes. The E. coli-phage@SYTO could emit a visual fluorescent signal
(excited at 365 nm; emitted at 520 nm) onto the chip, which could be detected by a smartphone to
reflect the concentration of E. coli. Under optimized conditions, the detection limit was as low as
50 CFU/mL (S/N = 3) and exhibited a wide linear range from 102 to 106 CFU/mL. The sensor has
potential application value for the quick and specific POCT detection of virulent E. coli in foods.

Keywords: POCT assay; paper-chip-based phage biosensor; smartphone; E. coli O157:H7; foods

1. Introduction

Threats to food safety caused by pathogenic bacteria infections have given rise to seri-
ous damage worldwide and resulted in serious losses in livestock husbandry, agriculture,
and aquaculture [1–4]. To preserve food security, early diagnostic methods for foodborne
pathogens should be developed so as to prevent pathogenic infections in advance [5–7].
Moreover, there is a great need to develop rapid on-site assays for the identification of
pathogenic bacterial strains because the virulence of different strains of the same bacte-
ria varies greatly; for example, E. coli O157:H7 is significantly more virulent than other
E. coli strains.

The conventional culture-based bacterial detection assays are cumbersome and te-
dious [8,9]. Due to their high equipment and laboratory environment requirements, nucleic-
acid-based polymerase chain reaction (PCR) detection methods can discriminate different
strains of the same bacteria, but are not conducive to large-scale promotion, especially in
resource-limited areas [10,11]. The fabrication of a commercial point-of-care (POC) diag-
nostic platform has become a cutting-edge and challenging task in the field of rapid on-site
analysis [1]. It is hoped that such a platform will be able to perform quick, user-friendly
analysis through a cheap, automatic, and easily operated setup. The paper-chip-based
biosensor is a promising alternative for the detection of samples because of its visual and
sensitivity properties [12,13]. As the base of the analytical platform, paper has the advan-
tages of a low cost, liquid flow features, biodegradability, and good chemical properties,
and it has been widely used in various analytical systems. Compared with traditional
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analytical chips, the paper-chip-based analytical platform does not require external fluid
pumping equipment or a complex chip design, and can be used for sample sampling and
delivery through the capillaries of paper fibers. In addition, paper chips with different pore
sizes can also be employed as filter membranes to be used for enriched or filter bacteria. As
this method is suitable for mass production, it has attracted much attention.

In addition, the combination of paper chips and a smartphone can fulfill the require-
ments for fabricating field devices with good sensitivity and specificity [14–17]. Being easy
to operate and carry, smartphones have attracted great attention in healthcare, environmen-
tal monitoring, and the on-site analysis of food production [18,19]. With the proliferation of
smartphones, their digital imaging capabilities render them an excellent analytical platform
for the development of instant detection sensors. Compared to single-emission fluores-
cence detection, the proportional fluorescence detection method used in this experiment
has a built-in self-calibration function that avoids interference caused by various target-
independent factors and circumvents/reduces the output of false-positive results, thereby
improving the detection accuracy and extending the dynamic detection range for complex
food matrices [20]. Aiming to recognize a specific bacterial strain, biological probes are
essential for fabricating paper-chip-based sensors. Phages are viruses that attack and eat
bacteria and are mainly composed of nucleic acids and protein shells [15,21]. The shell of
the phage can specifically combine with the receptor on the surface of the host bacteria,
and its genetic material, DNA, or RNA can be injected into the host bacteria. Compared
with antibodies, phages exhibit much higher specificity towards bacterial strains [22–24].
Moreover, they have a higher affinity for live strains. Therefore, phage probes can be
employed to establish paper chips for the POC detection of E. coli O157:H7. [15,16] Their
signal changes marking the emergence of pathogenic bacteria can be monitored by the
biosensors and detected by the smartphone [17,25–27].

Hence, herein, we propose a novel paper-based phage sensor using a phage probe
integrated with a smartphone for the visual detection of E. coli O157:H7 based on RGB
values. The fabrication of the phage probe and the sensor is shown in Figure 1. Firstly, the
phage, which can specifically combine with E. coli O157:H7 (E. coli), was stained with SYTO
13 florescence dye, a universal DNA embedding dye [17,18], to prepare the phage@SYTO
probe. The probes were mixed with samples containing the bacteria that would specifically
combine with the target E. coli of the E. coli-phage@SYTO complex (>1.2 nm) and be retained
on the paper chip (the filter membrane with a pore size of 0.45 μm). The free phage@SYTO
probes, with a size of approximately 200 nm, can pass through the pores of the paper
chip. Thus, the conjugate complex (E. coli phage@SYTO) can easily be separated from the
free probes and enriched on the paper chips. In the next step, the complex was excited
by 365 nm light using a green fluorescence light with an emission wavelength of 520 nm,
which can be visually observed and recorded by a smartphone. The G value from RGB was
employed for the quantification of the target bacteria. The sensor was also successfully
employed to detect E. coli in food samples.
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Figure 1. The preparation of the phage@SYTO probe and detection of E. coli O157:H7. based on a
paper chip biosensor.
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2. Materials and Methods

2.1. Chemicals

SYTO-13 (99.5% wt) was obtained from Macklin Co., Ltd. (Shanghai, China) (250 μL,
5 mmol). Phages of E. coli O157:H7 were screened at Dr Dengfeng Li’s lab. The strains used
in this study included Vibrio parahaemolyticus (V. P, ATCC 17802), Salmonella typhimurium
(S. T, ATCC 14028), and Staphylococcus aureus (S. A, ATCC 43300), which were purchased
from Shanghai Luwei Technology Co., Ltd. (Shanghai, China); Listeria monocytogenes (L. M,
CICC 21662), which was purchased from the China Industrial Culture Collection (CICC);
and Escherichia coli O157:H7 (ATCC 25922), obtained from Dengfeng Li’s group at Ningbo
University. Cellulose membrane filters with pore sizes of 0.10, 0.22, 0.45, 0.65, and 1.00 μm
were purchased from Shanghai Luwei Technology Co., Ltd. (Shanghai, China). The LB
broth and agar powder (bacterial grade) were derived from Hangzhou Microbial Reagent
Co., Ltd. (Hangzhou, China).

2.2. Apparatus

The fluorescence, probe excitation, and emission spectra were measured using a fluo-
rescence spectrophotometer which was purchased from Shimadzu Co., Ltd. (Kyoto, Japan).
The centrifuge was purchased from Sigma Laborzentrifugen GmbH (Berlin, Germany).
The medical constant temperature incubator was purchased from Panasonic Appliances
Cold Chain Co., Ltd. (Tokyo, Japan). The desktop constant temperature oscillator was
purchased from Jiemei Electronics Co., Ltd. (Suzhou, China). We used a transmission
electron microscope (TEM, JEM 2100F, Tokyo, Japan). The FL images were captured via an
Android smartphone (model number: Xiaomi 11X hypercharge, with camera specifications
of 64 MP/26 mm wide). A 365 nm LED light was placed above the sample, positioned
over one side. The distance from the excited LED light source to the sample remained
constant (5 cm) during the measurement. Color analysis software was used to divide the
color fluorescence image of the sample into red (R), green (G), and blue (B) pixels. In the
required analysis, we added different concentrations of bacteria (10~108 CFU/mL) to the
solution, each on a different piece of paper. The software used was Colour Reader, a free
and open-source software downloaded from the Android mobile app market.

2.3. Culture and Preparation of Phages

The phages were purified using the bilayer medium method. First, the already purified
bacterial stock solution was diluted to 107 CFU/mL, and 100 μL of 107 CFU/mL bacteria
was added to 1 mL of LB broth until the broth was slightly cloudy. The already purified
phage solution was diluted 10-fold to obtain a concentration of 102–109 PFU/mL of phage
solution for further use. The semi-solid (0.7% agar by volume) was heated in the medium
using a muffle until it was completely melted, and then it was dispensed into 3 mL
centrifuge tubes. In total, 100 μL of diluted bacteria and 100 μL of phage solution of
different concentrations were placed in 3 mL centrifuge tubes. The solution was well
shaken and poured onto the plate.

The densities of the phage spots in the Petri dishes were dependent on the concentra-
tion of phage. The cultured phage Petri dishes were placed in a biosafety cabinet, 3 mL
LB bouillon was added, and the medium containing phage, as well as the LB bouillon,
was scraped into a 50 mL centrifuge tube using a sterilized glass spatula. The scraped
mixture was centrifuged at 8000 rpm for 30 min, and the liquid was then passed through
a disposable paper membrane filter with a pore size of 0.22 um. Two purifications were
required to obtain the final phage for the experiment. The concentration of phage was
determined by the plate counting method.

2.4. Culture and Preparation of Bacteria

In the biological safety cabinet, a small amount of E. coli, S.a, and S.T was scraped
from the bacteriophage plate using an alcohol-sterilized catch ring and placed into 3 mL
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LB broth, which was sterilized in an autoclave (120 ◦C, 2 h) and incubated overnight
in a shaker (37 ◦C, 180 rmp) until it gradually became turbid. The concentration of bacteria
was calculated using the plate counting method. First, the bacteria were serially diluted
108 times using PBS (the dilution was performed 10 times), and 100 μL of the diluted
solution was taken and inoculated in a semi-solid Petri dish and incubated in a 37 ◦C
thermostat for 24 h. The bacterial concentration of the original solution was calculated by
counting the plaque numbers on the dish.

2.5. Phage Specificity and Probe Activity

A total of 100 μL 1011 PFU/mL of phage stock solution was added to PBS (pH = 7.4,
0.01 M) and diluted stepwise to 108 CFU/mL. Then, 100 μL 108 PFU/mL of phage was
taken; 10 μL SYTO13 (5 mM, 250 μL) was added to the experimental group; 10 μL water
was added to the control group; and 100 μL 107 CFU/mL E. coli, S.a, and S.T was treated as
the phage culture and incubated overnight in Petri dishes in a 37 ◦C incubator.

A total of 100 μL 1011 PFU/mL of phage stock solution was added to PBS (pH = 7.4,
0.01 M) and diluted stepwise to 108 CFU/mL. Then, 100 μL 108 PFU/mL of phage was
taken, and 10 μL SYTO13 (5 mM, 250 μL) was added to the experimental group. Simul-
taneously, 10 μL water and 100 μL 107 CFU/mL E. coli, S.a, and S.T were spiked into the
control group and proliferated overnight in a 37 ◦C incubator. Then, the phage specificity
and probe activity were discussed.

2.6. Synthesis of Phage @ DNA Probes

A total of 450 μL 1010 PFU/mL phage was mixed with 50 μL 0.1 mg/mL dye in a 1 mL
centrifuge tube. Afterwards, it was shaken for 30 s and incubated for 10 min. The tube was
then placed into a 50 kd dialysis tube and centrifuged for 5 min at 8000 rpm. The phage’s
molecular weight (MW) was much larger than 50 kd, and it could not pass through the
dialysis membrane. Though the free SYTO dye, with a MW of approximately 320, could
pass through the membrane pores, the membrane retained the dye-modified phage, as
the free dye had no fluoresce, and the dye bound to the phage emitted green fluorescence
under 360 nm excitation light. Therefore, after ultrafiltration, the upper solution of the
filter membrane was taken out, and the emitted light at 520 nm was measured using a
fluorometer under 365 nm excitation. Then, 50 μM of another phage@SYTO (E. coli) was
taken and incubated with S.A, S.T, V.P, E. coli, and the mixture for 20 min, respectively, and
excited by blue light from a fluorescence microscope.

2.7. Detection of Escherichia coli O157:H7 (E. coli) in Fishes

The food samples (shrimp, fish, and others) were mixed with 100 mL 100 μM PBS
(pH 7.5) for 10 min. Then, the supernatant was collected for further detection. Firstly, 10 μL
of 1 μM pahge@SYTO was mixed with the 100 mL supernatant solution and then agitated
(200 rpm on the vortex machine) for 10 min at room temperature. After that, the mixture
solution was passed through a micropore membrane filter with a pore size of 450 nm using
a syringe. The E. coli-phage@SYTO complex (whose size was larger than 1.2 μm) could
be separated and retained on the membrane, whereas the free probes, whose size was
approximately 200 nm, could pass through the pores. The paper chip was first dried, and
then the fluorescent (FL) detection was performed on the paper chip after excitation at
360 nm. All the test samples were placed in a black box, being unaffected by ambient
light, and the FL intensity was recorded using a smartphone. Different color intensities can
be employed for different concentrations of analytes to determine the presence of some
bacterial strains without using any analytical apparatus. We also designed an improved
version of the portable fluorimeter by separating the different concentrations into different
sections in order to introduce the respective phage@SYTO probes. Images of the spiked
samples, as well as the real samples, were taken with an Android smartphone. The distance
between the excitation light source and the sample was kept constant (30 cm) during
the measurements. For each sample, the data for five points were detected from the
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center to the edge of the same sample according to the five-point sampling method. The
photographed photos were also imported into the analytical software, which enabled the
color fluorescence image of the sample to be divided into red (R), green (G), and blue (B)
channels by reading the G value of the paper chip’s surface and comparing it to the G0
read from the paper chip with the uncaptured bacteria. The G/G0 was employed for the
qualification of the targets.

3. Results and Discussion

3.1. Characterization of the Phage@SYTO Probes

SYTO 13 is a specific phage dye which cannot emit fluorescent light by itself, but
can emit fluorescence light after the staining of the phage. From Figure 2, it can be seen
that 10 μg/mL of phage@SYTO could emit strong fluorescence light after being excited at
365 nm, whereas the dye itself could only emit negligible light and the phage did not emit
any light. All these findings illustrated that the phage@SYTO probes had been successfully
prepared. From the FL intensity of the phage@SYTO, it can be seen that the SYTO could
penetrate the phage’s DNA [18].

Figure 2. The fluorescent light of 10 μg/mL phage@SYTO probes, SYTO, or phage only.

3.2. The Phage Specificity and Probe Activity

The activity of the probe had a significant effect on the experimental results. Therefore,
a comparison of the activity of the phage@SYTO and pure phage was conducted. The
comparison shown in Figure 3A,D revealed no significant change in the number of phage
spots after the SYTO 13 modification, indicating that the dye had no effect on the activity of
the phage. Moreover, the probe was still able to identify the specific bacteria. In addition,
as shown in Figure 3A,D, it was found that the plate with spiked E. coli produced phage
spots. By comparison, Figure 3B,E and Figure 3C,F, which represent the S.A and V.P plate
with the addition of the phage@SYTO probes, depicted no significant plaques. All of these
findings indicated that the phage@SYTO was specific to E. coli, but not other bacteria.
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Figure 3. The plaques produced after mixing the 105 PFU/mL phage and phage@SYTO on plates
containing (A,D) E. coli O157:H7, (B,E) S.a, or (C,F) V.P. The TEM of the (G) phage and (H) phages
surrounding E. coli O157:H7.

Furthermore, transmission electron microscopy (TEM) was employed to reveal the
formation process of the plaques. As shown in Figure 3G, phages with heads and tails of
approximately 200 nm in length could be found. In Figure 3H, there are a large number of
phages adhered to the outer cells of E. coli O157. The results indicated that the phage has a
strong affinity for E. coli O157:H7.

3.3. Principle of the Assay

From Figure 4, it can be seen that the phage@SYTO could only bind with E. coli to
emit fluorescence light. Moreover, the mixture of E. coli with other bacteria could also
emit fluorescence light. These findings demonstrated that the phage@SYTO has enough
specificity and discrimination capacity to identify the target bacteria [19,20]. The labeling
of the SYTO amount on the probes was very important for the detection sensitivity. An
amount of 100 μL SYTO-13 at different concentrations was mixed with 100 μL 109 PFU/mL
phage. The changes in fluorescence light intensity (I) were continuously recorded with the
change in the dye concentration. Because SYTO-13 only emitted fluorescence light when
combined with the phage to form the phage@SYTO, the labeled amount of SYTO-13 on
the phage@SYTO could reach saturation after the fluorescence intensity reached its highest
level. According to the amount of SYTO-13 material at this time point, the amount of
SYTO-13 in each phage could be calculated. According to the highest peak intensity of
SYTO-13 at 0.1 μM, we calculated approximately 60,200 SYTO on each phage (equation:
10−7 M × 10−4 L × 6.02 × 1023/108 PFU = 60,200 SYTO/phage).
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Figure 4. The fluorescence light of the phage@SYTO probe for different targets.

3.4. The Optimization of the Assay

In order to improve the detection performance of this strategy, several reaction con-
ditions were optimized (the concentration of E. coli in the optimization experiment was
105 CFU/mL). We first optimized the binding time for the phage@SYTO to bind to the
pathogenic bacteria E. coli. It can be seen from Figure 5A that the optimal binding time
was 20 min. The bacteria’s surface combined more easily with the phage@SYTO, which
meant that the phage did not lose its bioactivity during labeling with SYTO. In the detection
process, the concentration of phage@SYTO was also crucial, as a probe concentration that
is too low will prevent the phage from fully combining with the target bacteria when the
concentration of bacteria is high. However, if the probe concentration is too high, they will
be stained on the membrane easily; thus, the background signal will be too high. As can be
seen from Figure 5B, the optimum concentration of phage@SYTO was 108–109 PFU/mL,
and the signal to noise ratio (I/I0) reached its highest value. If the concentration is too
high, there will be a strong background signal, even if the signal from E. coli-phage@SYTO
is high. Taken together, the amount of 108 PFU/mL phage@SYTO was selected for the
detection. The membrane pore size was also very important for the filtering of the unbound
phage@SYTO. From Figure 5C, we can see that the optimum membrane pore size was
0.45 μm, whereas 0.25 μm retained too much phage@SYTO in the solution. Moreover, with
a 1 μm pore size, the E. coli-phage@SYTO could also pass through the pores, leading to a
lower signal. The reaction pH was also optimized, and we found that pH 5.0 to 8.0 was
the suitable reaction pH. From Figure 6D, we can see that a pH that was too low or high
resulted in a lower FL signal. This may be due to the fact that the phage@SYTO could not
combine well with the bacteria. The usual pH of the sample solution was between 5 and 8;
therefore, the assay was suitable for many types of real samples.
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Figure 5. Optimization of experimental conditions: (A) phage@SYTO capture time; (B) phage@SYTO13
concentration; (C) pore size of membrane; (D) reaction pH.

 
Figure 6. The calibration line of E. coli at different concentrations and its FL signals detected by
a smartphone.
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3.5. Determination of E. coli in the Real Samples

Under the optimal experimental conditions, E. coli was diluted with PBS to different
concentrations (106, 105, 104, 103, 102, 10 CFU/mL) for visual fluorescence detection and
subsequent microfluidic chip analysis. For visual fluorescence detection, we used different
concentration gradients of E. coli Figure 6). It can be found that as the concentration of
E. coli increased, the visualized fluorescence gradually increased. It was easy to observe
103 CFU/mL E. coli with the naked eye, and no fluorescence could be observed with the
naked eye at 100 and 10 CFU/mL. Therefore, the lower limit of detection for visualizing
fluorescence with the naked eye was 103 CFU/mL.

In addition, this method was compared with some reported E. coli detection methods
(Table 1). Despite the shortcomings of the drop method, the prepared phage DNA probes
still had a better detection range and lower limit of detection compared with the other
methods. This is because phages are highly specific to the target bacteria. At the same time,
rolling circle amplification (RCA) of the DNA on the phage can amplify the length of the
DNA chain by tens of thousands of times, greatly reducing the detection limit.

Table 1. Comparison with E. coli detection methods in the literature.

Method
Linear Range

(CFU/mL)
LOD (CFU/mL) Time Ref.

Nanogap network
electrochemical method 103–108 102 >3 h [28]

SERS 1.0 × 103–5.0 × 107 102 ~30 min [29]

The fiberoptic surface
plasmon resonance method 1.5 × 103–1.5 × 105 5.0 × 102 45 min [30]

Field environment
monitoring 103–108 200 40 min [31]

Fluorescence method 10–106 14 2 h [32]

This work (fluorimeter) 103–106 300 45 min [33]

This work 102–106 50 10 min

3.6. Specificity, Stability, and Precision of the Sensor

To assess the method’s anti-interfering capacity for E. coli, we included Salmonella
typhimurium (S.T), Staphylococcus aureus (S.A), Listeria monocytogenes (L.M), Vibrio vulnificus
(V.V), and Vibrio parahaemolyticus (V.P) in the comparison, and the concentration of the
other bacteria was 107 CFU/mL, except for E. coli, which was 105 CFU/mL. As shown in
Figure 7A, the difference in the signals indicated that other bacteria did not interfere with
the detection of E. coli. In addition, some common ions in the sample solution were selected
to perform anti-interference experiments. As shown in Figure 7B, the effects of the above
substances on the detection of E. coli were negligible. The above results show that the phage
sensor has a good specificity and anti-interference ability for the detection of the target
bacteria. The assay was used to detect 106 CFU/mL of E. coli five times using the same
batch of phage@SYTO probes. The RSD was lower than 7%, which proved that the sensor
showed high stability. We also tested the same sample over 5 days of storage using the
same batch of phage@SYTO probes, and the RSD was 5.8%. This indicated that the probe
showed approximately 5 days of stability. Moreover, the inter- and intra-precision were
detected using 106 CFU/mL of E. coli. The RSD values were 5.3% and 6.2%, respectively.
All of these findings demonstrated that the sensor exhibited high precision.

To evaluate the potential application of this strategy, some samples mixed with dif-
ferent concentrations of E. coli were tested. The results are summarized in Table 2. The
recovery rates of E. coli in the pork samples ranged from 95.2% to 102%. Compared with the
ELISA method for the rapid detection of E. coli, the detection limit of this method is lower,
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which further illustrates the superiority of this method. The above conclusion demonstrates
that the proposed sensing platform can be used for E. coli in food samples.

(A) (B)

Figure 7. (A) The bacterial specificity based on paper chip analysis. (B) The resistance ability
formicrofluidic chip bacteria analysis based on matrix interference.

Table 2. Detection of E. coli in real samples using the proposed method (n = 5).

Samples
Spiked

(CFU/mL)
Measured
(CFU/mL)

Recovery
(%)

RSD (%)
ELISA

(CFU/mL)

Fish 1 0 ND ND

103 (0.95 ± 0.06) × 103 95.2 6.5 ND

105 (0.98 ± 0.05) × 105 98.1 5.4 (1.18 ± 0.10) × 105

Fish 2 0 ND ND

103 (0.96 ± 0.05) × 103 96.3 5.9 ND

105 (1.02 ± 0.07) × 105 102 6.8 (0.94 ± 0.19) × 105

Shrimp 1 0 ND ND

103 (1.01 ± 0.05) × 103 101 4.7 ND

105 (0.99 ± 0.06) × 105 99.4 6.1 (1.10 ± 0.14) × 105

ND: No detection.

4. Conclusions

In conclusion, the fabricated FL phage sensor can be used to POC quantify E. coli O157
bacteria in foods. Its particular merits illustrate the simplicity of its manipulation. It avoids
the need for the employment of any precise instrumentation or trained persons. It also has
sufficient sensitivity, a wide detection range, and high selectivity. The LOD for the bacteria
is below 100 CFU/mL, which meets the standards established by governmental agencies
for E. coli O157. Although it is comparable to ELISA, the new paper-chip-based platform
has the potential to be developed as a simple, portable, sensitive, and low-cost analytical
tool for immediate bacterial diagnosis and POC tests of food safety.
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Abstract: The purpose of this study was to investigate the use of an experimental electronic nose
(E-nose) as a predictive tool for detecting the formation of chemical process contaminants in roasted
almonds. Whole and ground almonds were subjected to different thermal treatments, and the levels
of acrylamide, hydroxymethylfurfural (HMF) and furfural were analysed. Subsequently, the aromas
were detected by using the electronic device. Roasted almonds were classified as positive or negative
sensory attributes by a tasting panel. Positive aromas were related to the intensity of the almond
odour and the roasted aroma, whereas negative ones were linked to a burnt smell resulting from
high-intensity thermal treatments. The electronic signals obtained by the E-nose were correlated
with the content of acrylamide, HMF, and furfural (R2

CV > 0.83; R2
P > 0.76 in whole roasted almonds;

R2
CV > 0.88; R2

P > 0.95 in ground roasted almonds). This suggest that the E-nose can predict the
presence of these contaminants in roasted almonds. In conclusion, the E-nose may be a useful device
to evaluate the quality of roasted foods based on their sensory characteristics but also their safety
in terms of the content of harmful compounds, making it a useful predictive chemometric tool for
assessing the formation of contaminants during almond processing.

Keywords: roasted almond; sensory analysis; electronic nose; acrylamide; hydroxymethylfurfural;
furfural

1. Introduction

The temperatures applied during the production and cooking of foods can have a
significant impact on the quality and nutritional aspects of these products. Such changes
are related to the development of the Maillard reaction, which leads to the formation of
compounds responsible for the taste, aroma, and appearance of food products [1], as well
as desirable compounds with potential health benefits [2]. However, concurrently, other
harmful and undesirable compounds may also be generated, such as acrylamide and some
emerging process contaminants, including hydroxymethylfurfural (HMF) and furfural [3,4].
Acrylamide is considered a potential carcinogen for humans by the International Agency
for Research on Cancer [5]. It is formed when free asparagine and reducing sugars react
at temperatures above 120 ◦C. The European Food Safety Agency (EFSA) has identified
the presence of acrylamide in food as a public health concern [6]. HMF and furfural are
intermediate products of the Maillard reaction, and HMF can also be produced by the
caramelization of sugars at high temperatures [7,8]. These compounds have been evaluated
as emerging processing contaminants due to the potential genotoxic and mutagenic effects
of HMF [9–11] and the association of furfural with hepatotoxicity outcomes [12].

Normalized analytical protocols are applied to monitor the occurrence of regulated
chemical contaminants in processed foods. These methods involve robust, highly special-
ized instrumentation, time-consuming and expensive procedures, and predominating chro-
matographic techniques, such as GC–MS, GC–MS–MS, HPLC–MS, and LC–MS–MS [13]. To
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facilitate the determination, there is an increasing demand for rapid and precise alternative
methods that allow a fast screening of these harmful compounds in foods. In this regard,
the European regulation for acrylamide allows its analysis to be replaced by measuring
product attributes or process parameters as long as a statistical correlation can be demon-
strated between them and the acrylamide level [14]. Most of these methodologies rely on
linking the colour of processed foods to the acrylamide levels [15,16]. However, few studies
have established a connection between the formation of chemical process contaminants
and the development of aromatic compounds [17].

The electronic nose (E-nose) is a cost-effective and powerful electronic device able to
conduct fast measurements to discriminate flavours. It is widely used in many disciplines
as a commodity, such as environmental, medicinal and food sciences, mainly with the aim
of evaluating the quality of the products and detecting off-flavours that can be attributed
to food deterioration [18,19]. Since molecules responsible for the aromas released during
food processing are recognizable by the human nose, it may be possible to use the E-
nose to detect changes that occur in processed food products. Moreover, due to the
relationship between the formation of aromatic compounds and the generation of chemical
contaminants during processing, the E-nose could also be used as a chemometric tool to
predict the formation of the toxic compounds. In a previous study, Martín-Tornero et al. [17]
used an E-nose to analyse the aroma of table olives, demonstrating the effectivity of this
device to indirectly quantify the acrylamide levels in these foods. Based on these results, it
would be worthwhile to verify the effectiveness of the E-nose in other food matrices.

Almonds are among the most consumed tree nuts in the world [20], and they are rec-
ommended as a healthy food and a source of beneficial constituents for human health [21].
Nevertheless, they contain amino acids and reducing sugars in appreciable amounts, and
therefore, the roasting temperature and physical form (whole, sliced, and cut) of the al-
mond kernel strongly promote the development of the Maillard reaction, leading then
to the formation of aromatic compounds but also to the generation of chemical process
contaminants [22]. Previous studies have examined the development of acrylamide and
furanic compounds during the roasting of almonds at various temperature and time set-
tings [22–25]. However, none of them have explored the possible correlation between these
compounds and the resulting aroma, which could be measured with chemometric tools
such as the electronic nose. In this context, the objective of this work was to evaluate
the feasibility of using an E-nose as a predictive tool for the formation of acrylamide and
furanic compounds in almonds that were processed under different roasting conditions
and in different structural formats (whole and ground). The findings would provide a
straightforward and efficient approach to manage the development of contaminants during
the processing of this particular food matrix.

2. Materials and Methods

2.1. Reagents and Chemicals

Acrylamide standard (99%) [CAS. 79-06-01], potassium hexacyanoferrate (II) trihy-
drate (98%, Carrez-I) [CAS. 14459-95-1], and zinc acetate dihydrate (>99%, Carrez-II)
[CAS. 5970-45-6] were purchased from Sigma (St. Louis, MO, USA). Formic acid (98%)
[CAS. 64-18-6], methanol (99.5%) [CAS. 67-56-1] and hexane [CAS. 110-54-3] were obtained
from Panreac (Barcelona, Spain). [13C3]-acrylamide (isotopic purity 99%) [CAS.287399-26-2]
was obtained from Cambridge Isotope Labs (Andover, MA, USA). The Milli-Q water used
was produced using an Elix 3 Millipore water purification system coupled to a Milli-Q mod-
ule (model Advantage A10) (Millipore, Molsheim, France). All other chemicals, solvents,
and reagents were of analytical grade.

2.2. Samples and Roasting Treatments

Two formats (whole and ground) of raw almonds (Prunus dulcis) from the Marcona
cultivar were purchased from Spanish markets between March/2022 and April/2022.
Fifteen bags of the same batch were acquired for each format to ensure that there was
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a sufficient quantity of the same sample to conduct the complete kinetic study of the
roasting experiments.

Roasting experiments were carried out in a convective and air-forced oven (Mem-
mert UFE400, Scwabach, Germany). Two batches of whole almonds (60 g) and ground
almonds (30 g) were roasted simultaneously in aluminium trays (21.9 × 15.8 × 3.8 cm;
length × wide × height). Samples were placed on the tray laying in a uniform layer. A cali-
brated K-type thermocouple data logger (Delta Ohm, Caselle di Selvazzano, Italy) was used
to monitor and register the temperature of hot air within and above the almonds (◦C/s).
Samples were roasted at 120, 135, 150, 165, 180, and 200 ◦C for 20 min. Temperature/time
combinations would resemble two levels at moderate and three at more intense heat load
above a reference. The temperature/time combination at 150 ◦C/20 min was selected as
reference. After roasting, samples were cooled until the temperature within the tray stayed
below 30 ◦C. A portion was placed in a sealed bottle and kept under refrigeration (4–6 ◦C)
until analysis.

2.3. Analysis
2.3.1. Sensory Analysis

Sensory analysis was carried out by a tasting committee made up of eight tasters in the
tasting room of the Research Centre of Extremadura (CICYTEX). The panel members were
trained to evaluate agri-food products. The samples, consisting of 3 g of whole and ground
roasted almonds, were placed in a standard glass on a heating plate at 25 ◦C. The tasting
panel identified almond and roasted aromas as positive attributes, while burnt attributes
were classified as negative in both whole and ground almond samples. The roasted aroma
was evaluated on a scale of 0 to 10 points based on its intensity, with scores categorized as
either positive or negative. The test was considered valid only if the coefficient of variation
was less than 20% [19].

2.3.2. LC-ESI-MS/MS Determination of Acrylamide

Liquid chromatography-electrospray ionization-tandem mass spectrometry (LC-ESI-
MS/MS) was used to determine the levels of acrylamide, following the method described by
González-Mulero et al. [26]. Acrylamide standard was added to the samples to determine
the recovery rate, obtaining values between 95% and 107%. Relative standard deviations
(RSD) for precision (2.8%), repeatability (1.2%), and reproducibility (2.5%) were calculated
to confirm the precision of the analysis. Analytical determination was checked through
the analysis of different food matrices provided as proficiency tests by the Food Analysis
Performance Assessment Scheme (FAPAS) program. The z-scores obtained from these tests
demonstrated the accuracy of the results: −0.1 for crispbread (test 30,118, January 2022)
and 0.4 for potato crisps (test 30,120, April 2022). The limit of quantitation (LOQ) was set at
15 μg/kg, and the results were expressed as μg/kg sample.

2.3.3. HPLC Determination of Hydroxymethylfurfural and Furfural

HMF and furfural were determined by HPLC according to Mesias et al. [27]. The LOQ
for HMF and furfural were estimated to be 0.6 mg/kg and 0.3 mg/kg, respectively, and the
results were expressed as mg/kg sample.

2.3.4. E-Nose Analysis

Researchers from the School of Industrial Engineering at the University of Extremadura
were the designers of the handmade electronic device (E-nose). This device contains four
electronic chips with a total of eleven sensors that emit different signals related to the
aroma of the sample headspace [28]. Samples (~3 g) were placed in the tasting glasses in
the same way as the tasting panel and E-nose was placed on the top of the cup. In a first
phase, known as the adsorption phase, the E-nose was allowed to adsorb the headspace of
the sample for 60 s. Once this time elapsed, the electronic device was moved to an empty
cup to carry out the desorption phase for 30 s to obtain the baseline. The electronic nose
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received data in one-second intervals, and eight measurements were carried out for each
roasted almond sample. Data analysed were transferred from the E-nose to a smart device
via Bluetooth, and a multivariate analysis was performed.

2.4. Chemometric Analysis

Different methods were performed using MATLAB software and PLS_Toolbox: (i) Prin-
cipal component analysis (PCA); (ii) Partial least squares (PLS). First, a PCA was performed
to show the discrimination between the different samples based on the profile of volatile
components [29]. The original variables were autoscaled because the study variables
were measured in different units. Finally, for the detection of acrylamide, furfural, and
hydroxymethylfurfural with the E-nose data, a PLS model was carried out [30].

2.5. Statistical Analysis

Statistical analyses were performed using SPSS version 18.0 (SPSS Inc., Chicago,
IL, USA). Data were expressed as mean ± standard deviation (SD). One-way ANOVA
followed by Tukey’s method, or Student’s t-test, was used to identify the overall significance
of differences. The homogeneity of variances was determined using Levene’s test. All
statistical parameters were evaluated at p < 0.05 significance level.

3. Results and Discussion

3.1. Sensory Analysis

A tasting committee made up of eight tasters conducted a sensory analysis for the
discrimination of the aromas of the roasted almond samples (Table 1). The samples were
classified as having positive or negative attributes. Positive aroma was associated with
the intensity of the almond odour and the roasted aroma caused by the thermal treatment.
Conversely, the negative aroma was related to the burnt smell resulting from the over-
roasting of the samples. It should be noted that the aroma of almond in both whole and
ground samples was more intense when roasted at 150 ◦C, with a score of 3.8 for whole
almonds and 3.2 for ground almonds. From this treatment onwards, the almond aroma
started to decrease until it was undetectable in samples roasted at 200 ◦C. Regarding the
roasted odour, it was not detected until Treatment 3 (heating at 150 ◦C), being of lower
intensity in ground almonds. In this case, both type of samples showed the highest intensity
at temperatures of 165 ◦C, with 3.5 points for whole almonds and 2.0 for ground almonds,
decreasing with more intense treatments. Again, samples roasted at 200 ◦C did not exhibit
a roasted aroma. In contrast to the positive attributes, burnt aroma was not present in
samples heated at lower temperatures, but it was detected when the temperature that was
applied was 180 ◦C, and it reached the maximum value at 200 ◦C (4.5 points in whole
almonds and 4.0 points in ground samples). In conclusion, it can be inferred that most of
the whole and ground almond samples roasted up to 165 ◦C exhibited the most desirable
aromas, without any burnt notes.

In a similar study, Schlörmann et al. [31] conducted a sensory evaluation of roasted
nuts assigning points ranging from five (no deviation of expected quality) to one (clear
defects) for attributes such as appearance, texture, odour, and taste. Nuts roasted at low
(120–140 ◦C) or middle temperatures (140–160 ◦C) obtained the highest scores (4.8 and
4.7, respectively), followed by those heated at temperatures between 160–180 ◦C (4.4). In
contrast, a hedonic analysis established points between one (excellent) and five (highly
disliked). In this case, nuts roasted at low or middle temperatures received the best scores
(1.8 and 2.1, respectively), whereas higher temperatures resulted in lower scores (2.8).
Based on these results, temperatures of up to 160 ◦C were recommended for obtaining
almond products suitable for consumption, as higher roasting conditions may result in
bitter and over-roasted flavours. Amrein et al. [22] also noted that 165 ◦C is the upper limit
for almond roasting, due to the formation of a bitter and over-roasted flavour, in agreement
with findings of the present study and with those reported by other authors [23].
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Table 1. Descriptive sensory olfactory evaluation of roasted whole and ground almond aroma
evaluated by the tasting panel. All samples were roasted at different temperatures for 20 min.

Treatments T (◦C)
Whole Almond Aroma Ground Almond Aroma

Almond Roasted Burnt Almond Roasted Burnt

1 120 2.0 ± 0.1 b <LOD <LOD 1.0 ± 0.1 a <LOD <LOD
2 135 3.5 ± 0.2 c <LOD <LOD 2.0 ± 0.2 c <LOD <LOD
3 150 3.8 ± 0.2 c 2.5 ± 0.2 b <LOD 3.2 ± 0.2 e 1.5 ± 0.2 b <LOD
4 165 3.0 ± 0.3 c 3.5 ± 0.2 c <LOD 2.5 ± 0.3 d 2.0 ± 0.2 c <LOD
5 180 1.5 ± 0.2 a 1.5 ± 0.3 a 3.0 ± 0.3 a 1.5 ± 0.2 b 1.0 ± 0.3 a 2.5 ± 0.3 a
6 200 <LOD <LOD 4.5 ± 0.2 b <LOD <LOD 4.0 ± 0.2 b

Results are expressed as mean ± standard deviation (SD) of three replicates. Different lowercase letters mean
statistically significant differences between samples (p < 0.05). LOD: limit of detection.

3.2. Effect of Thermal Treatments on Chemical Process Contaminant Content in Roasted Almonds

The temperature-dependent formation of acrylamide, HMF, and furfural in roasted al-
mond is shown in Table 2. As expected, an increase in temperature promoted the formation
of the chemical process contaminants during roasting. Several studies have suggested that
the formation of acrylamide in almonds is primarily influenced by the roasting temperature
rather than the duration of the thermal treatment [22–24]. In that sense, an increase of
15 ◦C resulted in an almost 3-fold increase in acrylamide content in whole almonds and
up to 2.5-fold in ground almonds. Whole and ground almonds exhibited different profiles
for the acrylamide levels, ranging from 25 to 466 μg/kg in whole samples and from 19 to
397 μg/kg in ground nuts. Acrylamide concentration in whole almonds reached the highest
level when roasted at 165 ◦C and drastically (p < 0.05) decreased to 285 and 170 μg/kg
when the temperature was raised to 180 and 200 ◦C, respectively. In the case of ground
almonds, the maximum formation was observed at 180 ◦C, decreasing to 301 μg/kg with
roasting at 200 ◦C. This type of kinetic pattern was similar to that observed in roasted coffee,
sesame seeds or chia seeds, as reported in previous studies [32–34]. As is known, during
the thermal treatment of foods, both the formation and the elimination of acrylamide occur
simultaneously. Acrylamide formation will predominate in the presence of its precursors
(asparagine and carbonyl compounds), while its elimination becomes dominant in the
absence of any precursor. Almonds contain acrylamide precursors in high quantity in
the range of 98–641 mg/100 g for free asparagine [35], 3100–4680 mg/100 g for sucrose,
and 70–134 mg/100 g for the total content of glucose and fructose [36]. Among them,
strong correlations between asparagine levels and acrylamide formation in almonds have
been reported, suggesting that asparagine may be the limiting factor in this food [22,24,25].
Based on the results, it can be inferred that at temperatures of 165 ◦C (for whole almonds)
and 180 ◦C (for ground almonds), the precursor content (particularly asparagine) would be
significantly reduced, leading to a higher prevalence of elimination over the formation of
acrylamide, resulting in decreased levels of the contaminant in the roasted samples.

The acrylamide content reported by other authors has shown high variability, probably
due to the different content of the precursor associated with the almond variety or even with
the growing region and harvest year in addition to the processing conditions. Similar vales
have been described in almonds experimentally roasted for 22.5 min at 130 ◦C (94 μg/kg),
but higher after roasting for 20 min at 145 ◦C (around 500 μg/kg) and 165 ◦C (more than
1500 μg/kg). Industrial samples heated for 22 min at 150 ◦C also exhibited greater values
(885 μg/kg) [22]. In contrast, Lasekan and Abbas [37] presented results between 42 and
65 μg/kg in almonds roasted at 150 ◦C for 15 and 25 min, respectively, increasing only
up to 60 and 86 μg/kg at 200 ◦C. Regardless of the levels reached, all the studies found
in the literature indicate that acrylamide formation begins when the temperature exceeds
130 ◦C [25], with low levels at 145 ◦C, and reaching a maximum in the range of 165–180 ◦C,
decreasing afterward [24], and leading to unacceptable bitter off-flavours [25], in agreement
with observations of this research.
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Table 2. Acrylamide (μg/kg), HMF (mg/kg) and furfural (mg/kg) content of whole and ground
almonds roasted under different temperatures for 20 min. Descriptive sensory olfactory evaluation of
roasted whole and ground almonds aromas evaluated by the tasting panel. All samples were roasted
at different temperatures (range 120–200 ◦C) for 20 min.

Treatments T (◦C)
Whole Almond Ground Almond

Acrylamide HMF Furfural Acrylamide HMF Furfural

1 120 25 ± 0.71 a 0.99 ± 0.02 a 0.35 ± 0.02 a 19 ± 0.01 a 0.75 ± 0.07 a 0.42 ± 0.02 a
2 135 82 ± 4.24 b 4.21 ± 0.10 ab 0.72 ± 0.01 a 51 ± 2.12 a 4.96 ± 0.04 b 1.04 ± 0.01 a
3 150 166 ± 2.12 c 11.09 ± 0.51 b 1.53 ± 0.02 a 128 ± 0.71 b 20.28 ± 0.05 c 2.22 ± 0.09 a
4 165 466 ± 20.51 e 22.58 ± 0.83 c 3.65 ± 0.22 b 265 ± 8.49 c 53.32 ± 0.37 d 6.16 ± 0.03 b
5 180 285 ± 0.01 d 100.14 ± 3.39 d 13.21 ± 0.71 c 397 ± 24.04 d 145.58 ± 1.15 e 11.94 ± 0.97 c
6 200 170 ± 0.71 c 98.92 ± 1.43 d 23.85 ± 0.36 d 301 ± 14.14 c 149.77 ± 0.98 f 13.32 ± 0.11 c

Results are expressed as mean ± standard deviation (SD) of three replicates. Different lowercase letters mean
statistically significant differences between samples (p < 0.05).

The formation of HMF and furfural increased during roasting at all temperatures,
except for whole almonds roasted at 200 ◦C, where it slightly decreased. At the lowest
temperatures (120 ◦C), the levels of these compounds were relatively low, but they signifi-
cantly increased as the temperature rose to 200 ◦C. In whole almonds, HMF concentrations
ranged between 0.99 and 100.14 mg/kg, with maximum formation at 180 ◦C, and de-
creased to 98.92 mg/kg at 200 ◦C. For ground almonds, HMF levels increased from 0.75
to 149.77 mg/kg, with maximum values at the maximum temperature. Furfural concen-
trations in whole samples increased from 0.35 to 23.85 mg/kg, and in ground samples
from 0.42 to 13.32 mg/kg. The results for HMF were within the range reported for roasted
commercial samples (10.52–49.37 mg/kg) [38].

Comparing the two sample formats, ground almonds promoted a greater formation
of HMF, reaching maximum levels 200 times higher than those at 120 ◦C. In contrast, the
largest increase for furfural was observed in the whole almonds, with concentrations almost
70 times higher than those at 120 ◦C. Previous studies have reported that the grinding
increases the accessibility of constituents of the inner part of chia seeds, and consequently,
their reactivity to promote the formation of acrylamide [34]. This may explain why roasted
ground almonds showed the highest levels of furanic compounds compared to whole
almonds. However, this was not observed in the acrylamide results. In this regard, it is
necessary to point out that the raw materials were not the same, and therefore, they could
present a different composition, with differences in the levels of precursors, leading to
varying levels of acrylamide. To analyse the content of precursors in the raw material was
not the objective of this work; however, it is known that the levels of free asparagine in
almonds can vary considerably and to a larger extent than those of the sugars [22], which
could explain the variability in the acrylamide levels and the highest concentrations for
furanic compounds in ground samples.

3.3. Discrimination of Roasted Almonds by Using E-Nose

Roasted almonds submitted to different thermal treatments were analysed by an
electronic devise. The following algorithm feature was used to obtain the raw data for
the E-nose: maximum signal value minus minimum, plus 100, and minus one. Then,
Principal Component Analysis (PCA) was carried out to observe the clusters formed in
the different thermal treatments on both roasted whole and ground almonds (Figure 1).
In the two groups of samples, more than 90% of the total variance was explained by PC1.
The clustering of the results in both PCA showed that the E-nose is able to discriminate
the different thermal treatments. In ground almonds the clusters are better differentiated.
However, in the PCA of whole almonds, samples roasted at 200 ◦C (Treatment 6) are far
behind the rest of the treatments, in the negative region. Almonds heated at 165 and 180 ◦C
(Treatments 4 and 5) are found in the quadrant of PC1 positive and PC2 positive, whereas
those roasted at the lowest temperatures (120 and 135 ◦C, Treatments 1 and 2) are in PC1
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positive and PC2 negative. It should be noted that these analyses support the tasting panel
as neither the almond odour nor the roasted one was detected in Treatment 6 (200 ◦C),
in which the burnt aroma appears with a high intensity. These results demonstrate the
effectiveness of the electronic nose to differentiate the quality of the almonds according
to the degree of roasting, allowing an adequate classification of these products. Previous
studies have also reported the successful use of the electronic olfaction in food quality
control, such as in the analysis of edible oils to detect adulteration and deterioration
caused by external factors [39–41] or in roasted coffee samples to differentiate the degree
of roasting [28,42].

Figure 1. Score plot of the Principal Component Analysis (PCA) for roasted whole (A) and ground (B)
almond aroma submitted to different thermal treatments (1–6), at different temperatures for 20 min.
Treatment 1, 120 ◦C; Treatment 2, 135 ◦C; Treatment 3, 150 ◦C; Treatment 4; 165 ◦C; Treatment 5,
180 ◦C; Treatment 6, 200 ◦C.

3.4. Prediction of the Presence of Chemical Process Contaminants in Roasted Almonds by E-Nose

A PLS model was stablished to correlate the data obtained by E-nose and the presence
of chemical process contaminants in the roasted almonds (Figure 2). A total of 70% of the
sample data were used for calibration and cross-validation of the models, whereas the
remaining 30% were used for testing the strength and precision of the generated models.
Three distinct models were built for both whole and ground roasted almonds, considering
the three compounds evaluated in the present study (acrylamide, HMF, and furfural). In
the case of whole roasted almonds, the R2

CV value was 0.89 for the model developed for
acrylamide and furfural and 0.83 for HMF. Higher values were found for ground roasted
almonds, with results of 0.99 for acrylamide, 0.98 for HMF, and 0.88 for furfural. The
RMSECV values were also estimated, being 61.1, 18.4, and 3.0, for acrylamide, HMF, and
furfural, respectively, in whole roasted almonds, and 14.0, 9.8, and 1.8 for ground roasted
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samples. R2
P and RMSEP are parameters related to the validation methods. Regarding

the R2
P values, they were 0.76 for acrylamide, 0.85 for HMF and 0.94 for furfural in whole

roasted almonds, increasing up to 0.99, 0.97, and 0.95, respectively, in ground roasted
almonds. Finally, the RMSEP values for whole almonds were 78.8, 18.6, and 2.6 for ground
almonds and 17.7, 11.3, and 1.2 for the three compounds, respectively. The results show
a good correlation between the experimental and the predicted values, suggesting that
this model is suitable for prediction and allows the quantification of the chemical process
contaminants in roasted almonds.

A 1 B 1

A 2 B 2

A 3 B 3

Figure 2. Experimental values for acrylamide (1), HMF (2) and furfural (3) against PLS cross-
validation predictions (•) and validation set predictions (×) for roasted whole (A) and ground (B)
almond aromas submitted to different thermal treatments (1–6), at different temperatures for 20 min.
Treatment 1, 120 ◦C; Treatment 2, 135 ◦C; Treatment 3, 150 ◦C; Treatment 4; 165 ◦C; Treatment 5,
180 ◦C; Treatment 6, 200 ◦C.

Until now, the use of the electronic nose as a predictive device for the formation of
chemical contaminants during processing has been very rare. In a previous study, Martín-
Tornero et al. [17] characterized the polyphenol and volatile fractions of Californian-style
black olives and demonstrated the innovative application of the E-nose in determining the
acrylamide content in these foods. These positive results together with those found in the
present study encourage the continuation of the usage of the E-nose not only to control the
quality of food but also as a quick and effective chemometric tool to predict the formation
of contaminants during processing.
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4. Conclusions

The processing of foods promotes the development of the Maillard reaction, leading
to the formation of compounds that contribute to the sensory properties of foods, including
taste, aroma, and the appearance of foods. However, this reaction can also produce
undesirable compounds, known as chemical process contaminants. The determination
of compounds such as acrylamide, HMF and furfural requires robust, highly specialized
instrumentation, and time-consuming and expensive procedures. Therefore, there is a
need to develop other rapid and precise alternative methods that allow a fast screening
of these harmful compounds in foods. In the present study, an experimental electronic
nose was tested to detect and discriminate between the content of acrylamide, HMF, and
furfural in whole and ground almonds roasted under different thermal treatments. The
results showed that the E-nose was able to discriminate the positive and negative aromas
of different samples and to predict the levels of chemical process contaminants in the
roasted almonds. In conclusion, the use of this electronic device, together with a suitable
statistical model, allows for the assessment of the quality of roasted foods according to their
sensory characteristics, as well as their safety regarding harmful compounds. Therefore,
it can be used as a predictive chemometric tool for the formation of contaminants during
almond processing.
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Abstract: Optical immunosensors are one of the most popular categories of immunosensors with
applications in many fields including diagnostics and environmental and food analysis. The latter
field is of particular interest not only for scientists but also for regulatory authorities and the public
since food is essential for life but can also be the source of many health problems. In this context,
the current review aims to provide an overview of the different types of optical immunosensors
focusing on their application for the determination of pathogenic bacteria in food samples. The
optical immunosensors discussed include sensors based on evanescent wave transduction principles
including surface plasmon resonance (SPR), fiber-optic-, interferometric-, grating-coupler-, and ring-
resonator-based sensors, as well as reflectometric, photoluminescence, and immunosensors based
on surface-enhanced Raman scattering (SERS). Thus, after a short description of each transduction
technique, its implementation for the immunochemical determination of bacteria is discussed. Finally,
a short commentary about the future trends in optical immunosensors for food safety applications
is provided.

Keywords: immunosensor; optical detection; bacteria

1. Introduction

Foodborne diseases affect, according to the World Health Organization (WHO), 1 in
10 people every year worldwide [1], with symptoms ranging from mild diarrhea to severe
complications and even death [2]. According to the WHO, it has been estimated that cases
of food poisoning have reached up to 600 million, with 420,000 deaths worldwide, amongst
which 125,000 were children under the age of 5 [1]. In particular, pathogenic bacteria play a
crucial role in food poisoning, with the majority of incidents being caused by 15 pathogenic
bacteria including Listeria monocytogenes, Escherichia coli O157:H7, Clostridium botulinum,
Legionella pneumophila, Campylobacter jejuni, Salmonella spp., Staphylococcus aureus, Shigella,
Vibrio vulnificus, and Bacillus cereus [3]. Most of these bacteria are detected in dairy products,
fresh vegetables, raw products, and undercooked meat and seafood [4,5].

The efficiency and reliability of the techniques employed to detect these pathogens in
food matrices are of paramount importance for the prevention of foodborne diseases. [6,7].
The conventional methods for bacteria detection and identification are based on culturing
and colony counting. Those methods are reliable, sensitive, and are considered as the “gold
standard” for detecting the presence of bacteria; however, prior to detection, they require
several steps such as pre-enrichment, selective enrichment, isolation, and confirmation
through biochemical and serological tests [8,9]. Thus, there was an urgent need for rapid
bacteria detection techniques, which led to the development of new methods such as
molecular and immunological ones [10].

Molecular methods rely on the polymerase chain reaction (PCR) [11,12] or isother-
mal nucleic acid amplification methods such as nucleic acid sequence-based amplification
(NASBA), loop-mediated isothermal amplification (LAMP), strand displacement ampli-
fication (SDA), recombinase polymerase amplification (RPA), rolling circle amplification
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(RCA), helicase-dependent amplification, and others [13] to rapidly and effectively identify
various bacteria through their genetic fingerprinting. In particular, isothermal nucleic
acid amplification methods have the potential for on-site determinations since they do
not require thermal cycling with strict temperature control like the standard PCR. Despite
this advantage, isothermal nucleic acid amplification methods can be inhibited by several
compounds present in foods, like polysaccharides and polyphenolic compounds, leading
to false negative results [13]. Moreover, molecular methods cannot discriminate between
dead and live bacteria, and this can lead to false positive results.

On the other hand, immunoassays rely on antibodies that recognize specific proteins
or liposaccharides of the bacterial external membrane. Chemiluminescent enzyme im-
munoassay (CL-EIA) [14] and enzyme-linked immunosorbent assay (ELISA) [15–17] are
the immunochemical methods most widely employed for rapid bacterial detection and
quantification. Immunoassays are characterized by high sensitivity and accuracy, simple
sample preparation, and low costs of instrumentation compared to other instrumental meth-
ods such as chromatographic ones. Compared to molecular methods, the immunochemical
ones are less prone to false negative results, but they can also produce false positive results
due to the cross-reactivity of antibodies used with other bacteria species or sub-species
of the targeted one. In addition, they are laboratory bound since they involve multiple
processing steps and desktop instrumentation [18,19].

The quest for portable analytical devices that can provide reliable results in a short
amount of time and that are suitable for on-site applications has been the driving force
behind the development of biosensors. Nowadays, the realization of biosensor systems
that combine outstanding analytical performance with portability has moved from the
sphere of fiction to reality due to significant progress in the field of nanotechnology [20].
Thus, modern biosensor technologies can provide high detection sensitivity and specificity,
high-speed analysis, and quantitative results in real time [21]. Biosensors are defined by
the IUPAC as analytical devices that provide quantitative or semi-quantitative information
by combining a biological recognition element with a physicochemical transducer, which
transforms the biorecognition event into a physically detectable signal [22]. The recognition
element can be any bioreceptor [23], such as a nucleic acid probe, aptamer, phage, antibody,
antigen, whole cell, enzyme, etc., that can bind the target molecule specifically and with
high affinity [24–31] (Figure 1a).

 
(a) (b) 

Figure 1. (a) Schematic of a biosensor. (b) The different categories of biosensors.

Immunosensors, i.e., biosensors that rely on antibody–antigen reactions for analyte
detection, are the most abundant category of biosensors due to the indispensable ability
of antibodies for the highly selective detection of the targeted analytes in complex media
and the versatility of available assay formats that could be employed for the determination
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of different kinds of analytes, including bacteria [31]. They can be divided according to
the transduction principle into electrochemical [32–35], piezoelectric [36,37], or optical
ones [32,38], which can detect biological interactions by recording the variations in the elec-
trical signal, mass, or light, respectively (Figure 1b). Electrochemical immunosensors are
cost-efficient devices and have the potential for miniaturization. Although their detection
sensitivity is high and the detection limits achieved are suitable for bacteria detection at
very low concentrations, especially in cases where labels are involved to enhance the signal,
they are prone to interferences from the matrix, which can reduce the reproductivity of
the readings and lead to either false positive or false negative results [39]. Immunosen-
sors based on piezoelectric phenomena, even though suitable for label-free detection, are
characterized in general by relatively low detection sensitivity [40]. On the other hand,
optical immunosensors exhibit high sensitivity and offer simple, fast, and accurate de-
tection of a great variety of analytes, including bacteria [41]. Optical detection methods
(Figure 1b) are based on different transduction principles such as light absorbance, total
internal reflectance, photoluminescence, fluorescence, light polarization, interferometry,
Raman scattering, and surface plasmon resonance [42,43].

The scope of this review is to summarize the achievements of optical immunosen-
sors for foodborne bacteria detection. First, short descriptions of the different detection
principles reported so far for bacteria detection will be provided. Then, the application of
optical immunosensors for bacteria detection in different food matrices will be extensively
presented. Finally, a short commentary on the future trends regarding the prospective
applications and challenges of optical immunosensors in food analysis is included.

2. Principles of Optical Immunosensors

2.1. Assay Formats

In principle, most immunosensors offer the potential to monitor antigen–antibody
binding in real time. Such direct detection although simpler and faster, since there is no
need for additional reaction steps, is usually limited to high-molecular-weight analytes, for
which the antigen–antibody reaction results in a measurable change in sensor response [32].
Therefore, in most immunosensors, the assay formats usually applied in microtiter plate
solid-phase immunoassays are followed, i.e., the competitive or non-competitive assay
format. As schematically depicted in Figure 2, competitive immunoassays are based either
on an immobilized antibody (Figure 2A), an immobilized analyte, or an analyte–protein
conjugate (Figure 2B). In the first approach, the antibody is immobilized onto the transducer
surface, and the concentration of the analyte is defined through its competition with a
labeled analyte or analyte–protein conjugate for binding to the antibody. In the second
approach, the analyte is immobilized onto the transducer surface (either directly or as an
analyte–protein conjugate) and competes with the analyte in the sample for the binding
sites of the antibody. Although both approaches are applicable for a given analyte–antibody
pair, the second might be advantageous regarding the stability of immobilized biomolecule,
i.e., the analyte or analyte–protein conjugate, since antibodies are known to lose a great part
of their functionality upon immobilization. The non-competitive or sandwich immunoassay
format is suitable for analytes that have at least two antigenic determinants or epitopes in
their molecule. This means that at least two antibodies recognizing two different parts of
the analyte are available. This is essential for the realization of a non-competitive assay
since, as depicted in Figure 2C, an antibody immobilized onto the transducer surface
(usually referred to as the capture antibody) binds the analyte through one epitope, and a
second antibody (referred to as the detection or reporter antibody) is attached to a different
epitope forming a “sandwich” with the analyte. The detection antibody can be labeled or
not depending on the transduction principle involved.
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Figure 2. Schematic presentation of different immunoassay formats applied to optical immunosensors.
(A) competitive immunoassay based on immobilized antibody; (B) competitive immunoassay based
on immobilized analyte or analyte–protein conjugate; (C) non-competitive sandwich immunoassay.

2.2. Main Optical Transduction Principles

The optical transduction principles can be divided into two main categories: those
involving labels and the label-free ones.

2.2.1. Detection Using Labels

A significant number of optical immunosensors are based on the use of labels such as
enzymes, fluorescent organic dyes, gold nanoparticles, or quantum dots for the quantifi-
cation of antibody–analyte reactions and the determination of analyte concentrations in a
sample [44]. Using enzymes as labels in immunosensors is endorsed by their successful
implementation in standard microtiter plate immunoassays. Enzymes offer significant
signal enhancement in a short time; however, their use in combination with optical trans-
ducers is rather limited to insoluble substrates that can precipitate on the transducer, thus
generating a measurable signal change. Biosensing using fluorescently labeled molecules
and optical fibers was amongst the first optical transduction principles to be explored [45].
Apart from the typical cylindrical optical fibers, planar waveguides and capillaries that
enable light propagation through total internal reflection have also been employed as
transducers for the development of optical fluorescence immunosensors [46,47]. Over
the years, metal nanoparticles have been employed as labels and incorporated into im-
munochromatographic strips or used as liquid phase reagents to obtain semi-quantitative
information, relying on visual evaluation, or quantitative results through the implementa-
tion of an instrument that could quantitate the color, fluorescence, or chemiluminescence
intensity. The latter can be performed using smartphones as detection, signal processing,
and transmission apparatus, moving the realization of portable devices a step forward [48].

2.2.2. Label-Free Detection

Label-free optical biosensing, on the other hand, is based almost exclusively on moni-
toring refractive index changes due to immunochemical reactions taking place on top of
the optical transducer [37]. There are two main categories of label-free optical transduction
principles: the refractometric and the reflectometric ones [49]. In refractometric immunosen-
sors, the light that is transmitted through a waveguide creates an electromagnetic field,
known as an evanescent field (Figure 3), which extends in the medium above the biosensor
surface. This field is influenced by refractive index changes over the transducer surface
resulting from the biomolecular layer thickness increase due to immunoreactions. Thus,
when the evanescent wave field is coupled back to the transducer, a change in the intensity,
polarization, or phase of the waveguided light is observed, which is proportional to the
concentration of analyte in the sample, enabling its quantitative determination [50–52].
Transducers based on surface plasmon resonance (SPR), fiber optics, grating couplers,
interferometers, and ring resonators fall into this category of optical sensors (Figure 4).
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Figure 3. Schematic of the evanescent-field-sensing principle, where n1 is the refractive index of the
waveguide material and n2 is the refractive index of the covering medium. For effective waveguiding
n1 > n2.

Figure 4. Schematic presentation of basic conformations of refractometric label-free optical transduc-
ers including SPR and localized SPR, grating coupler waveguides, interferometers, ring resonators,
and photonic crystals.

Reflectometric sensors are based on light reflection by a stack of materials with different
refractive indices leading to the creation of an interference spectrum. The most widely
explored reflectometric sensing method is the one introduced in 1991 by Gauglitz et al. [53],
which is known as reflectometric interference spectroscopy (RIfS). RIfS transducers are
made of a glass substrate on top of which a thin layer of transparent dielectric material has
been deposited. Immunochemical reactions that take place on top of the dielectric layer are
evidenced as shifts in the reflected interference spectrum. This spectrum is created due to
the reflection of the light beam at each interface of different refractive indices with a slightly
different angle leading to either constructive or destructive interference. The spectrum
shift is directly correlated with the increase in the biomolecular layer thickness due to
immunoreactions, and therefore, it can be correlated with the analyte concentration in the
sample through a calibration curve. Since the first report on RifS sensors, a lot of progress
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has been made in the direction of reducing the cost and size of the instrumentation and
increasing the multiplexing capabilities, e.g., by monitoring, instead of the whole spectrum,
specific wavelengths [54] or even a single wavelength [55]. In addition, materials other
than glass have been employed as transducers including porous silicon with or without
thermally grown oxide [56], porous silicon–carbon composites [57], other porous materials
such as TiO2 [58], or non-transparent substrates such as silicon with a transparent dielectric
composed of silicon dioxide [59–61] or silicon nitride [62].

3. Application of Optical Sensors for Bacteria Detection

3.1. Evanescent-Wave-Based Biosensors
3.1.1. SPR Immunosensors

Surface plasmon resonance (SPR)-based immunosensors are the optical biosensors
most frequently used for the single or multiplex, label-free detection of foodborne pathogenic
bacteria due to their high detection sensitivity and ability to monitor binding reactions in
real-time. The SPR phenomenon relies on the excitation of metal-free electrons (surface
plasmons) when polarized light strikes a metal layer (usually gold) deposited on the surface
of an optically transparent material (prism, grating coupler, or dielectric waveguide) at a
certain angle. The excited plasmons create an evanescent wave field at the solution/gold
interface. This wave is very sensitive to refractive index changes at the gold layer surface
occurring due to a biomolecular reaction, and as a result, the angle of incident light has to
change during the course of the reaction to preserve the surface plasmon wave, providing
the means to monitor these reactions in real time. Thus, it is possible to monitor both the
immobilization of specific biomolecules (e.g., antibodies) as well as the binding of analytes
in real time (Figure 5) [41,44].

Figure 5. SPR response during the binding of a bacteria-specific antibody onto the biosensor surface
followed by capture of the bacteria by the immobilized antibody.

The first report regarding the detection of bacteria with an SPR sensor dates back to
1998 [63], and it was based on a sandwich immunoassay for the detection of Escherichia
coli O157:H7 in buffer. The sensor was modified with protein A or protein G, and a mouse
monoclonal or a rabbit polyclonal antibody, respectively, was then immobilized. Depending
on the antibody used for detection, LODs in the range 5–7 × 107 cfu/mL have been achieved.
Vibrio cholerae O1 was also identified in buffer with an SPR biosensor functionalized with a
protein G layer [64]. The sensor chip was modified with a self-assembled monolayer of a
mixture of 11-mercaptoundecanoic acid and hexanethiol on which protein G was covalently
bound and used to immobilize a monoclonal antibody specific to V. cholera O1. The LOD of
the assay was 105 cfu/mL. The same antibody immobilization approach was employed to
immobilize an antibody against Legionella pneumophila onto SPR chips, achieving an LOD
of 105 cfu/mL in buffer [65]. Salmonella enterica serovar Enteritidis and Escherichia coli were
detected in spiked skim milk by a direct binding assay on SPR chips modified with protein
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G to which the anti-bacteria specific antibodies were then bound [66]. The LOD achieved
after 1 h assay was 25 cfu/mL for E. coli and 23 cfu/mL for Salmonella.

The detection of Salmonella groups B, D, and E in buffer with SPR has also been
reported, employing a sandwich assay format and using antibody pairs from different
animals [67]. It was found that the LOD improved 200 times compared to direct detec-
tion [67]. The benefits of the sandwich immunoassay format for bacteria detection have
also been demonstrated in a study for the detection of Staphylococcus aureus with SPR in
buffer, where the LOD was improved from 1 × 107 to 1 × 105 cfu/mL when a sandwich
immunoassay format was followed instead of direct detection [68]. In another report,
where the direct binding assay was compared to a sandwich assay for the detection of
E. coli O157:H7 in buffer, a 1000-fold improvement in sensitivity was reported, leading
to an LOD of 103 cfu/mL [69]. The immobilization of the polyclonal antibody against
E. coli was performed through covalent bonding to a monolayer of mixed thiol-terminated
polyethylene glycol with thiol-terminated polyethylene-carboxylic acid. In another report,
the free amine groups of protein A were converted to thiol groups, through a reaction with
2-iminothiolane, to facilitate its immobilization onto SPR chips, which are then modified
with an antibody against Salmonella paratyphi [70]. An LOD of 102 cfu/mL was achieved in
buffer employing the antibody-modified chip in a direct binding assay.

In another study, the SPR chip was modified with brushes of poly(carboxybetaine
acrylamide) to reduce the non-specific binding of bacteria to its surface, while antibody-
modified gold nanoparticles were used as labels to increase the detection sensitivity [71].
This immunosensor could detect E. coli O157:H7 in hamburger and cucumber samples
at concentrations as low as 57 and 17 cfu/mL and Salmonella spp. at 7.4 × 103 and
11.7 × 103 cfu/mL, respectively [71]. Gold nanoparticles modified with an antibody
against Campylobacter jejuni were also employed as labels in an SPR sandwich immunoas-
say that allowed for the detection of this bacterium in buffer at concentrations as low as
4 × 104 cfu/mL [72]. A gold-labeled secondary antibody was also employed to increase
the detection sensitivity in a sandwich SPR for L. monocytogenes by two–four orders of
magnitude compared to the direct binding assay, providing an LOD of 102 cfu/mL in
buffer [73]. In another study, in order to achieve signal enhancement, a precipitate 3,3′,5,5′-
tetramethylbenzidine (TMB) substrate was used in combination with an antibody labeled
with horse radish peroxidase (HRP) to detect bacteria captured by an antibody attached to
an SPR chip through covalent bonding to a self-assembled monolayer of mercaptounde-
canoic acid [74]. Following this approach, 250% signal enhancement was achieved with
respect to the assay not employing the HRP/TMB system, leading to an LOD of 104 cfu/mL
for the detection of E. coli in spinach leaves [74].

SPR chips were modified in a plasma reactor in the presence of cyclopropylamine
vapors to induce reactive moieties containing nitrogen which were in turn used to im-
mobilize antibodies using glutaraldehyde activation [75]. The chips were employed to
detect Salmonella typhimurium in buffer by a direct binding assay that provided an LOD of
105 cfu/mL.

Along with the optimization of the SPR assays for bacteria detection, efforts have been
devoted to sample treatment methods aiming either to improve detection sensitivity or
alleviate non-specific matrix effects. For example, the performance of an SPR sensor for
the detection of live, heat-killed, or detergent-lysed E. coli O157:H7 cells was investigated,
and LODs of 106, 105, and 104 cfu/mL, respectively, were reported [76]. The differences
observed were ascribed to changes in cell size and morphology upon treatment with
ethanol, whereas treatment with detergent probably led to fragmentation of cells to smaller
particles that were recognized more efficiently by the antibody. The effect of the sample
preparation method was also evident in another study for the detection of E. coli O157:H7
in different food samples [77]. In this study, milk, apple juice, and ground beef patties
were spiked with E. coli O157:H7 at various concentrations and then analyzed with a
portable SPR instrument commercialized by Texas Instruments Inc. under the tradename
SPREETATM. The sensor chip was modified with neutravidin to enable the immobilization
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of biotinylated antibodies against E. coli O157:H7. The spiked milk and apple juice samples
were run without pretreatment, whereas the ground beef sample was extracted with buffer
and homogenized prior to analysis. The LODs achieved ranged from 102 to 103 cfu/mL
depending on the sample analyzed. In another report, where a sandwich SPR assay for
Salmonella with an LOD of 1.25 × 105 cells/mL was developed [78], the authors claimed
that the presence of milk did not affect the assay performance, alleviating the need for
sample preparation or clean-up steps.

It has been suggested that the detection of whole bacteria using SPR generally results
in lower sensitivity compared to other techniques, due to the limited interaction of bacteria
with the evanescent wave electromagnetic field (the size of the bacteria is multiple times the
penetration depth of the evanescent wave field) and the small difference in the refractive
index between the bacterial cytoplasm and the surrounding aqueous medium [79]. Thus,
instead of running over the sensor the bacteria-containing sample, it is first incubated
with the pathogen-specific antibody, and after the separation of the free antibody from the
bound antibody, the free antibody is quantified. This assay format is known as subtraction
inhibition assay (SIA) and has been applied for the detection of L. monocytogenes [80], E. coli
O157:H7 [81], and B. anthracis spores in buffer [82]. The LODs reported were 1 × 105,
3.0 × 104, and 104 cfu/mL, respectively, and were one order of magnitude lower than those
achieved with the direct binding assay. The SIA format was also applied for the detection of
fungal cells that are considerably larger than bacterial ones [83]. Thus, it has been applied for
the detection of Phytophthora infestans [83] and the detection of Puccinia striiformis in buffer
with LODs of 2.2 × 106 sporangia/mL and 3.1 × 105 urediniospores/mL, respectively [84].
A similar assay format was also applied for the SPR detection of Cryptosporidium parvum
oocysts in water with an LOD of 1 × 102 oocysts/mL [85].

In a different approach for indirect bacteria detection by SPR, a polyclonal antibody
against a cell extract enriched for the invasion-associated protein, internalin B, was used
to develop an inhibition assay for Listeria monocytogenes [86]. After incubation of bacteria
containing solutions with the antibody, the mixture was injected over an SRP chip modified
with purified-recombinant internalin B, and the signal was inversely proportional to the
L. monocytogenes concentration achieving an LOD of 2 × 105 cells/mL.

In addition to single bacteria detection, multiplexed bacteria detection with SPR sys-
tems has been also explored. Thus, an antibody microarray was developed on an SPR
chip for the simultaneous detection of S. typhimurium, E. coli O157:H7, Yersinia enterocolitica,
and Legionella pneumophila by modifying the chip with protein G to allow for the immo-
bilization of each one of the anti-bacteria specific antibodies at different areas of the chip
through spotting [87]. All bacteria were detected simultaneously in buffer samples each
at a concentration of 105 cfu/mL. E. coli O157:H7, L. monocytogenes, Campylobacter jejuni,
and S. choleraesuis were also simultaneously detected both in buffer and apple juice using a
multi-channel SPR system [88]. The whole chip surface was modified with streptavidin,
and the four bacteria antibodies were immobilized using an eight-channel fluidic device
(two channels per antibody; one for the specific and the other for the non-specific signal
monitoring). The LODs achieved were 1.4 × 104 cfu/mL for E. coli, 4.4 × 104 cfu/mL for
S. choleraesuis, 1.1 × 105 cfu/mL for C. jejuni, and 3.5 × 103 cfu/mL for L. monocytogenes.

An SPR imaging device was combined with an array of antibodies specific to different
serotypes of L. monocytogenes with the aim of monitoring the growth of live listeria cells
in culture [89]. Emphasis was placed on the characterization of the antibodies rather than
the analytical performance of the sensor. Similarly, the detection of Salmonella with an SPR
imaging array was optimized, and LODs of 2.1 × 106 and 7.6 × 106 cfu/mL in buffer and
chicken carcass rinse were demonstrated, respectively [90]. An SPR imaging sensor was
applied for the simultaneous label-free detection of Salmonella spp., Shiga-toxin-producing
E. coli (STEC), and L. monocytogenes in chicken carcass rinse [91]. The antibodies specific
to each bacterium were immobilized on the same chip, and an LOD for Salmonella of
106 cfu/mL was achieved. An SPR imaging sensor (Figure 6) was also implemented for
the simultaneous detection of Listeria monocytogenes and Listeria innocua, achieving an LOD
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of 2 × 102 cfu/mL for both bacteria after 7 h incubation of the sample in the fluidic cell
attached to the SPR chip [92].

Figure 6. Schematic of a resolution-optimized prism-based SPR imaging apparatus [92]. Copyright
2019. Reproduced with permission from the Royal Society of Chemistry.

Despite the fact that SPR has found numerous applications in diverse fields and
several companies have commercialized devices based on this transduction principle, the
majority of these instruments are suitable for use in a lab. Thus, considerable efforts
have been devoted to reducing the equipment size and complexity in order to build up
systems appropriate for analysis at the point of need. The SPREETATM SPR biosensor
mentioned above was a successful outcome of such an effort. It included an AlGaAs light-
emitting diode (LED, 840 nm), a polarizer, a temperature sensor, two photodiode arrays,
and a reflecting mirror combined with a gold-coated glass slide and a silicone rubber
gasket of two channels. The instrument was accompanied by software that provided
all the information related to the analysis of the SPR curve, the real-time binding, the
layer thickness, and the flow cell temperature. In addition to the determination of E. coli
O157:H7 in various food samples [77], the SPREETATM SPR biosensor has also been used
for the detection of Campylobacter jejuni with an LOD of 103 cfu/mL in both buffer and
spiked broiler meat samples [93]. SPREETA™ has also been employed to develop a sensor
to detect E. coli O157:H7 in laboratory cultures [94]. The sensitivity and specificity of
detection were determined. Thus, for an assay of 35 min, an LOD for E. coli O157:H7 of
8.7 × 106 cfu/mL was determined in single-bacteria culture, whereas in mixed cultures
with non-target bacteria concentrations up to 106 cfu/mL or less, the LOD was 107 cfu/mL.
For higher concentrations of non-target bacteria, the sensor’s sensitivity was negatively
affected. In another report, application of the SPREETA™ SPR sensor for E. coli detection
in water with an LOD of 90 cfu/mL was reported for a direct binding assay that lasted less
than 30 min [95]. The much lower LOD achieved in this report with respect to previous
ones could be attributed to the fact that the specific antibody was immobilized onto
the chip surface via streptavidin and not directly. Finally, SPREETA™ was applied to
detect Salmonella typhimurium at concentrations equal to or higher than 1 × 106 cfu/mL in
chicken [96]. To increase the detection sensitivity of a SPREETA™ sensor for the detection
of E. coli, Au-coated magnetic nanoparticles were modified with an antibody against E. coli
and used not only to concentrate E. coli cells from lake, river, puddle, and tap water samples
but also as labels in a SPR sandwich immunoassay using SPREETA™ chips, which were
modified with an anti-E. coli antibody, achieving a detection limit of 3 cfu/mL [97].

Apart from SPREETA™, other attempts to create portable instruments based on the
SPR principle of detection have been reported in the literature. Thus, a portable instrument
that combined microfluidic and SPR technologies on a single platform was applied for the
determination of E. coli and S. aureus in buffer samples [98]. In this setup, an LED was
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used to illuminate a gold-covered rectangular prism, and the reflected light was captured
by a CMOS sensor and then transferred for processing to a PC. The chip was modified
with 11-mercaptoundecanoic acid to facilitate the covalent binding of protein G in which
an antibody against the lipopolysaccharide (LPS) of E. coli was captured, enabling E. coli
detection in buffer at a concentration of 3.2 × 105 cfu/mL. In another attempt, Salmonella
typhimurium was detected in buffer at concentrations ranging from 107 to 109 cfu/mL
within 1 h using an SPR biosensor in which the incident light from a diode laser (instead of
an LED) was directed to the gold film by a rotating mirror, and the light reflected from the
metal film was captured by a CMOS image sensor [99].

Another approach to surpass the portability limitations of standard SPR instruments
is the implementation of a localized SPR or LSPR transduction approach. In LSPR, the con-
tinuous metal surface is replaced by noble-metal nanoparticles (nanospheres, nanorods, or
nanodisks) of sub-wavelength size around which the surface plasmons are localized [100].
The light that strikes the nanostructures excites the surface plasmons and when resonance
is achieved, certain wavelengths are scattered from the nanostructures. Thus, immunoreac-
tions can be monitored in real time as shifts in the resonance wavelength [101]. The advent
of LSPR opened up new horizons for the detection of pathogens, especially in the direction
of portable systems. Nonetheless, the first report showed that LSPR was less sensitive than
the classical SPR configuration [102] or more vulnerable to interferences from the matrix
of the samples analyzed [103]. More recent reports, however, show improved detection
sensitivity achieved mainly through optimization of the dimensions and stability of the
nanoparticles [104]. Thus, an LSPR sensor was developed for the determination of E. coli
O157:H7 in buffer employing spherical gold nanoparticles non-covalently modified with a
specific anti-E. coli avian antibody. An LOD of 10 cfu/mL was achieved in less than 2 h,
making the sensor suitable for E. coli O157:H7 determination at the point of need [104].
Instead of using non-continuous gold surfaces, structuring of the gold film through its
deposition onto a nanostructured fluoropolymer enabled the development of an SPR sensor
based on grating-coupled long-range surface plasmons, which were employed for the
detection of E. coli O157:H7 in spiked buffer samples through a sandwich immunoassay
implementing metal nanoparticles modified with another anti-E. coli O157:H7 antibody as
labels to achieve an LOD of 50 cfu/mL [105].

The reports regarding bacteria detection in water and food samples with SPR-based
immunosensors are summarized in Table 1.

Table 1. SPR-based immunosensors for bacteria detection.

Analyte Detection Principle Assay Type Sample Type Assay Duration LOD Ref. No.

E. coli
SPR direct milk 5–7 min

23 cfu/mL [66]
S. enteritidis 25 cfu/mL

E. coli O157:H7
Salmonella sp. SPR

sandwich with biotinylated
detection antibody and

streptavidin labeled with
gold nanoparticles

hamburger/
cucumber ~1 h

57/17 cfu/mL
7.4 × 103/

11.7 × 103 cfu/mL
[71]

E. coli SPR

sandwich with detection
antibody labeled with

peroxidase + TMB
substrate

fresh spinach ~2 h 104 cfu/mL [74]

E. coli O157:H7 SPR direct
milk

apple juice
ground beef

30 min 102–103 cfu/mL [77]

S. typhimurium SPR sandwich milk 1 h 1.25 × 105 cfu/mL [78]

C. parvum
oocysts SPR subtractive inhibition water 30 min 102 oocysts/mL [85]

L. monocyto-
genes SPR inhibition chocolate milk 30 min 2 × 105 cfu/mL [86]
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Table 1. Cont.

Analyte Detection Principle Assay Type Sample Type Assay Duration LOD Ref. No.

L. monocyto-
genes

SPR imaging direct apple juice 30 min

3.5 × 103 cfu/mL

[88]E. coli O157:H7 1.4 × 104 cfu/mL

C. jejuni 1.1 × 105 cfu/mL

S. typhimurium 4.4 × 104 cfu/mL

L. monocyto-
genes

SPR
imaging direct lettuce 30 min 107 cfu/mL [89]

S. typhimurium SPR
imaging direct chicken

carcass rinse ~20 min 7.6 × 106 cfu/mL [90]

Salmonella spp.
Shiga-toxin
producing

Escherichia coli
L. monocytogenes

SPR
imaging direct chicken

carcass rinse 106 cfu/mL [91]

C. jejuni Portable SPR direct broiler meat <30 min 103 cfu/mL [93]

E. coli Portable SPR direct water ~17 min 90 cfu/mL [95]

S. typhimurium Portable SPR direct chicken
carcass 3 min 106 cfu/mL [96]

E. coli SPR direct
lake, river,

puddle, and
tap water

20 min 3 cfu/mL [97]

3.1.2. Fiber Optic Immunosensors

Fiber optic immunosensors rely on the immobilization of immunoreagents onto a part
of the optical fiber from which the cladding layer has been removed to allow interaction
of the waveguided photons, through the evanescent wave field, with the analyte in the
solution surrounding the fiber (Figure 7). In order to increase the evanescent field effect,
fiber tapering is applied either in the form of a tapered tip or of a continuous tapered
fiber [45,106]. Tapered tips are created by gradually reducing the diameter at the end of an
optical fiber down to nanometers. In order to obtain the highest possible sensitivity due to
reactions, the recognition biomolecules are immobilized on the tip region with the smallest
diameter where the evanescent field is stronger. Continuous tapered fibers usually have a
biconical taper, comprising a region of decreasing diameter, a region of constant diameter
called the waist, and a region of increasing diameter [107]. Sensing takes place on the waist
region where the evanescent field exhibits its higher intensity, whereas the emitted light is
collected from the region of increasing diameter [108]. Fiber optic biosensors have been
widely employed in the field of foodborne pathogen detection due to their convenience,
small size, lack of electromagnetic interference, cost-effectiveness, high sensitivity, and
accuracy [109].

Figure 7. Main configurations of fiber optic sensors: (a) de-cladded optical fiber, (b) tapered optical
fiber, (c) tapered tip, and (d) U-shaped optical fiber probe.

The first label-free approach for the detection of pathogens was realized using a U-bent
optical fiber sensor [110]. Bending a de-cladded fiber into a U-shaped structure enhances
the penetration depth of evanescent waves and, hence, the sensitivity of the probe. This
system could detect E. coli in concentrations lower than 103 cfu/mL in buffer with an assay
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duration of 1 h. A similar approach employing a plastic fiber optic sensor with a U-shaped
sensing probe functionalized with an antibody against E. coli serotype O55 was employed
for E. coli detection in buffer, resulting in an LOD of 103 cfu/mL for an assay duration of
10 min per sample [111]. Upon exposure of the sensor to bacteria solutions, the output
signal decreased with time due to the attachment of the bacteria onto the probe surface,
which resulted in an increase in the refractive index value close to the probe.

Several fiber optic immunosensors employing labels have also been reported for
bacteria detection. Thus, tapered fiber tips have been used for the detection of Salmonella
in culture medium [112] and E. coli O157:H7 in ground beef [113] with LODs of 104 and
103 cfu/mL, respectively. The first employed silica fibers with tapered tips were modified
with mercaptosilane to facilitate the covalent bonding of an anti-Salmonella antibody, while
a second antibody labeled with a fluorescent dye was used as a detection antibody. In the
second report [113], polystyrene fibers were first coated with biotinylated bovine serum
albumin and then reacted with streptavidin and a biotinylated anti-E. coli antibody. A
fluorescently labeled antibody was also used for detection in this case. Polystyrene fibers
were integrated into a portable instrument commercialized under the name RAPTORTM

to develop an instrument that could be used for on-site determinations. This instrument
was used for the detection of S. typhimurium in rinse water from sprouted alfalfa seeds
through modification of the fibers first with streptavidin and then with a biotinylated
antibody [114]. A second fluorescently labeled antibody was used for detection, achieving
an LOD of 105 cfu/mL or 50 cfu/g of sprouted alfalfa seeds after 67 h of bacteria enrichment.
The RAPTOR™ biosensor has also been used to detect Enterococcus faecalis in ambient
water, with an LOD of 5.0 × 105 cells/mL [115], and L. monocytogenes in several food
matrices, with LODs ranging from 103 to 4.3 × 103 cfu/mL [116–118]. In all cases, sandwich
immunoassays were implemented with the exception of [117] where a fluorescently labeled
aptamer (aptamer A8) specific for internalin A, an invasin protein of L. monocytogenes, was
used for detection. The sensor was applied for the detection of L. monocytogenes in hot dog
and bologna sausages at concentrations down to 10 cfu/g after 24 h of enrichment [116] as
well as 102 cfu/g in ready-to-eat meat products (sliced beef, chicken, and turkey) after 18 h
of enrichment [117]. A version of RAPTORTM that supported multiplexed determinations
was applied for the detection of L. monocytogenes, E. coli O157:H7, and S. enterica in several
meat products [119]. The LODs achieved were 50 cfu/mL for S. enterica and 103 cfu/mL
for L. monocytogenes, and the sensor could detect the three bacteria (Salmonella, E. coli, and
Listeria) in ready-to-eat beef, chicken, and turkey meats inoculated with each pathogen at
100 cfu/25 g after enrichment for 18 h.

Fluorescence resonance energy transfer, i.e., the non-radiative energy transfer from a
fluorescent donor molecule to an acceptor one when these two are in close proximity, has
been also implemented for the detection of S. typhimurium with an optical fiber tip sensor
in ground beef samples [120]. The anti-Salmonella antibody was labeled with the donor flu-
orophore (AlexaFluor 546) and protein G was labeled with the acceptor fluorophore (Alexa
Fluor 594). Upon binding of S. typhimurium to the antibody, the induced conformation
changes reduced the distance between the donor and acceptor molecules, resulting in an
increase in emitted fluorescence and achieving an LOD of 105 cfu/g for the samples.

In recent years, fiber optic immunosensors based on surface modifications with nano-
materials have shown significant improvements compared to conventional fiber optic
sensors regarding detection speed and sensitivity. For example, a fiber optic biosensor
modified with zinc oxide (ZnO) nanorods for the detection of E. coli in water with an LOD
of 103 cfu/mL was developed [121].

Fiber optic sensors in which the exposed fiber core is coated with a gold layer to
take advantage of the SPR phenomenon have also been used for bacteria detection. Such
a sensor has been employed for the detection of Legionella pneumophila by a direct assay
after modification of the fiber gold-covered area with 11-mercaptoundecanoic to allow the
covalent bonding of an anti-L. pneumophila antibody [122]. An LOD of 10 cfu/mL was
achieved for a direct assay that lasted 1 h. In another report, a fiber optic SPR sensor was
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modified with MoS2 nanosheets on which the specific antibodies were attached, and an
LOD of 94 cfu/mL for E. coli was achieved compared to 391 cfu/mL received from fibers
without MoS2 nanosheets [123]. The reports regarding bacteria detection in water and food
samples with fiber-optic-based immunosensors are summarized in Table 2.

Table 2. Fiber optic sensors for bacteria detection.

Analyte Detection Principle Assay Type Sample Type Assay Duration LOD Ref. No.

E. coli O157:H7 fiber optic
fluorescence sandwich ground beef 2.5 h 103 cfu/mL [113]

S. typhimurium plastic fiber optic
fluorescence sandwich

sprouted
alfalfa seeds
rinse water

~30 min 105 cfu/mL
50 cfu/g (67 h) *

[114]

E. faecalis plastic fiber optic
fluorescence indirect ambient

water 2.5 h 105 cfu/mL [115]

L. monocytogenes plastic fiber optic
fluorescence sandwich hot dog

bologna 2.5 h 4.3 × 103 cfu/mL
10 cfu/g (24 h) *

[116]

L. monocytogenes plastic fiber optic
fluorescence sandwich meat products 4.0 h 103 cfu/mL

102 cfu/g (18 h) *
[117]

L. monocytogenes plastic fiber optic
fluorescence sandwich frankfurter 12 min 5 × 105 cfu/mL [118]

L. monocytogenes
plastic fiber optic

fluorescence
sandwich

beef
chicken
turkey

4.0 h
103 cfu/mL

4 cfu/g (18 h) *
[119]E. coli O157:H7

S. enterica

S. typhimurium FRET-based
optical fiber direct

buffer
5 min

103 cells/mL
[120]

ground pork 105 cfu/g

E. coli
fiber optic with a

gold layer and ZnO
nanorods

direct water 3 s 103 cfu/mL [121]

E. coli O157:H7 fiber optic SPR direct drinking water ~15 min 94 cfu/mL [123]

* Enrichment time required to achieve the relevant LOD.

3.1.3. Interferometric Immunosensors

Interferometric immunosensors are another category of devices that have been im-
plemented for the detection of different bacteria. These sensors can detect refractive
index changes down to 10−8 RIU and have demonstrated excellent analytical performance
regarding the determination of analytes in complex matrices [124,125]. The most popu-
lar configurations of interferometric sensors are Mach–Zehnder (MZI) [125–128], Young
(YI) [129], Hartman [130–132], and bimodal interferometers [133,134] (Figure 8).

In Mach–Zehnder interferometers (Figure 8a), a waveguide splits into two arms: one
that can detect the variations in the refractive index over its surface through a window in
the cladding layer (sensing arm) and the other which is fully covered by the cladding layer
and operates as a reference (reference arm) [124,125]. The two arms combine again after
some point to a single waveguide, and the output light intensity is monitored. Biomolecular
reactions taking place in the sensing arm window change the refractive index and cause a
phase difference between the light beams guided in the two arms. Thus, the output light is
a cosine function of the input light. This means that the sensitivity to effective refractive
index changes would be the maximum at the quadrature points and the minimum in
the vicinity of the extrema. Regarding the geometrical characteristics of the transducer,
most MZIs are symmetric, i.e., the sensing and the reference arms have equal lengths
while asymmetric MZIs, i.e., MZIs with different lengths for the two arms, have been also
explored. The majority of MZI-based detection systems implement monochromatic light

122



Chemosensors 2023, 11, 430

sources, i.e., lasers, which complicate the instrument miniaturization and development of
portable systems; therefore broad-band light sources have been explored instead of lasers.
In this direction, external broad-band light sources have been coupled to MZIs integrated
on the substrate [126,127], or silicon light-emitting diodes (LED) integrated onto the same
silicon chip with planar silicon nitride waveguides have been implemented [125,127]. It
should be noted that the detection sensitivities in terms of the refractive index achieved
with these configurations were comparable to those of MZIs implementing lasers as light
sources.

 
(a) (b) 

 

 

 

(c) (d) 

Figure 8. Schematic representation of (a) Mach–Zehnder, (b) Young, (c) Hartman, and (d) bimodal
interferometer [124]. The arrows indicate the incoming and outgoing light beam. Copyright 2014.
Reproduced with permission from the Elsevier B.V.

A Young interferometer (YI) also consists of a waveguide divided into two arms by
means of a Y-junction (Figure 8b). The critical difference between MZIs and YIs is that in the
second case, the two waveguides do not combine again but the output light interferes in air
and the “interferogram” created is depicted on a CCD array. Thus, in YIs, the changes in the
effective refractive index over the sensing arm due to binding reactions that cause the phase
difference between the two interfering beams are recorded as a shift in the interference
fringes [124]. There are considerably fewer reports of integrated YIs as compared to MZIs;
nonetheless, it has been demonstrated that YI-based sensors can achieve an LOD 9 × 10−9

in terms of the bulk refractive index and therefore, they are supposed to be more sensitive
than the other interferometric sensors as well as SPR.

Hartman interferometers are based on planar waveguides in which the two modes of
light, TE and TM, propagate and interact with the adlayer on the same path (Figure 8c) [124].
Changes in the refractive index cause phase shifts of the two polarizations that are not
equal because the sensitivity of the two modes to refractive index changes differs.

Bimodal interferometers are the fourth and most recently developed category of
interferometric sensors (Figure 8d) [124]. In a bimodal interferometer, the transducer is
a single waveguide with two different zones: the first supporting a single mode and the
second supporting two modes (fundamental and first-order modes). Those two modes
interfere and propagate until they reach the waveguide’s output. When refractive index
changes occur at the waveguide surface, due to binding reactions, the interference pattern at
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the waveguide output also changes since the velocity with which the two modes propagate
depends on the refractive index of the waveguide adlayer.

The first report for bacteria detection based on interferometric sensors was the im-
munochemical detection of S. typhimurium with a Hartman interferometer in buffer [130].
The sensor could detect 5 × 108 cfu/mL of Salmonella in a direct assay that lasted 40 min.
An integrated two-channel Hartman interferometer was also applied for the detection of
S. typhimurium in spiked chicken rinse fluid [132]. Detection by direct binding of Salmonella
cells to antibody-modified waveguides was compared to a sandwich assay. Both configura-
tions provided an LOD of 104 cfu/mL for an assay duration of 10 min, which corresponded
to 20 cfu/mL of chicken rinse fluid after 12 h of enrichment.

Mach–Zehnder interferometers (MZIs) have also been employed for bacteria detec-
tion. Thus, MZIs integrated onto silicon chips were modified with an antibody against
L. monocytogenes following a chemical activation protocol specific to silicon nitride so as to
limit antibody attachment to the sensing window areas [126]. The protocol consisted of
chip treatment with HF for the creation of amine groups onto the silicon nitride followed
by reaction with glutaraldehyde to enable the covalent bonding of antibody molecules
through their free amine group. An LOD of 105 cfu/mL was achieved for a direct binding
assay of 15 min. In another report, the MZIs’ waveguide was formed by patterning a
photoresist layer deposited on a glass coverslip [127]. The immobilization of an antibody
against E. coli was performed after modification of the sensing arm with an aminosilane and
subsequent activation with glutaraldehyde. The assay duration was 10 min and the LOD
was 106 cfu/mL. In another report, a chip integrating ten MZIs along with the respective sil-
icon light-emitting diodes was employed for the simultaneous detection of S. typhimurium
and E. coli through a competitive immunoassay format [128]. The chip was activated with
aminosilane, and then the liposaccharides of S. typhimurium and E. coli were spotted onto
the sensing arm windows of different MZIs of the chip and immobilized through physical
adsorption. MZIs spotted with the blocking protein (bovine serum albumin) were used as
reference sensors. For the assay, mixtures of calibrators or samples with the bacteria-specific
antibodies were run over the chip followed by reaction with biotinylated secondary anti-
bodies and streptavidin for signal enhancement. Following this format, LODs of 40 cfu/mL
for S. typhimurium and 110 cfu/mL for E. coli in both water and milk samples were achieved
for a 10-min assay [128]. It was also calculated that 7.5 h enrichment was necessary to
detect 1 cfu/25 mL of Salmonella spp. and E. coli in order to comply with the EU legislation
(CE 1441/2007), which requires the absence of these bacteria (zero tolerance) in 25 g of milk
or drinking water.

Regarding Young interferometers there are no reports for the detection of bacteria,
although they have been employed for the immunochemical detection of viruses, and
more specifically of herpes simplex virus type 1 (HSV-1), achieving an LOD of 850 parti-
cles/mL [129]. On the other hand, the label-free detection of B. cereus and E. coli with a
bimodal interferometric immunosensor has also been reported [132]. The immobilization
of antibodies was carried out either by physical adsorption on aminosilane-modified chips
or by covalent binding to chips modified with a carboxysilane after conversion of surface
carboxyl groups to active ester groups. The device could detect 70 cfu/mL of B. cereus in
12.5 min and 40 cfu/mL of E. coli in 25 min. The same bimodal interferometric sensor was
also applied for the detection of multidrug-resistance bacteria genes without amplification
through a DNA hybridization assay [133]. Table 3 summarizes the application and analyti-
cal performance of integrated interferometric sensors for the detection of bacteria in water
and food samples.

3.1.4. Grating-Coupler-Based Immunosensors

Grating coupler sensors are based on planar waveguides with a grating incorporated
into the waveguide to enable coupling and transmission of the incident light in a manner
dependent on the refractive index of the medium over the waveguide surface [42]. Thus,
binding reactions that occur onto the waveguide surface can be monitored by determining
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the incident light in-coupling angle. In addition, since the binding reactions affect the trans-
mitted light (through interaction with the evanescent wave field), the light out-coupling
angle is also altered and can also be used to monitor the binding reactions. The second
configuration is advantageous compared to the first one since there is no need for preci-
sion alignment of the light, thus leading to simpler experimental setups. Over the years,
grating coupler sensors have been upgraded through the introduction of two-dimensional
grating structures [135] or new configurations such as wavelength-interrogated optical
sensors (WIOSs), which implement two gratings for light in- and out-coupling to the
waveguide [136], or angle interrogated optical sensors, which use a MEMS micro-mirror
to scan the angle of the incident light of the gratings [137]. All these novel configurations
have allowed for the development of systems for multiplexed determinations of analytes.
Gratings have also been combined with other evanescent wave-based biosensors such as
interferometric [138], SPR [139], SPR imaging [140], optical fiber [141], and silicon microring
resonators [142] in order to create more flexible and sensitive biosensors.

Table 3. Bacteria detection with integrated interferometric immunosensors.

Analyte Detection Principle Assay Type Sample Type Assay Duration LOD Ref. No.

S. typhimurium Hartman
interferometer

sandwich
and direct

buffer
10 min 104 cfu/mL

20 cfu/mL (12 h) *
[132]

chicken carcass

S. typhimurium E.
coli MZI

competitive
with biotinylated

secondary
antibodies and

streptavidin

water
milk 10 min

40 cfu/mL
110 cfu/mL

1 cfu/25 g (7.5 h) *
[128]

E. coli Bimodal
interferometer direct buffer

25 min 40 cfu/mL
[133]

B. cereus 12.5 min 70 cfu/mL

* Enrichment time required to achieve the relevant LOD.

A reverse symmetry waveguide sensor with an integrated grating coupler was ap-
plied for the detection of E. coli K12 in buffer by monitoring the adhesion of bacteria cells
onto the sensor surface, which was modified with poly-L-lysine, creating a positively
charged layer that enabled bacteria binding through electrostatic interactions [143]. An
LOD of 60 cells/mm2 was achieved following this approach [143]. Optical fiber long-
period grating (LPFG) sensors have also been used for the detection of Staphylococcus
aureus in buffer through modification of the fiber surface with ionic self-assembled mul-
tilayers that facilitated the covalent bonding of antibodies specific to penicillin-binding-
protein 2a of methicillin-resistant staphylococci. The sensor could discriminate between
methicillin-resistant and methicillin-sensitive bacteria, with an LOD of 102 cfu/mL for
methicillin-resistant bacteria [144]. Similarly, a long-period fiber grating sensor modified
with nano-pitted polyelectrolyte coatings and an antibody was implemented for detection
of S. aureus in buffer, with an LOD of 224 cfu/mL for a 30-min assay [145]. Another LPG
immunosensing platform formed by two identical cascaded chirped long period gratings
was applied for the detection of E. coli in buffer (Figure 9) [146]. The sensor worked like a
Mach–Zehnder interferometer due to the space between the two gratings and could detect
E. coli at concentrations as low as 7 cfu/mL. Finally, a grating-coupler-based biosensing
platform known as Optical Waveguide Lightmode Spectroscopy System (OWLS), commer-
cialized by Microvacuum Ltd. (Microvacuum Ltd.; URL: http://www.owls-sensors.com/,
accessed on 18 June 2023), was applied for the label-free immunochemical detection of
S. typhimurium [147] and L. pneumophila [148] in water following a direct binding assay
format with LODs of 1.3 × 103 and 1.3 × 104 cfu/mL, respectively.
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Figure 9. Schematic of antibody immobilization and Escherichia coli bacteria detection by a cascaded
chirped long-period gratings immunosensor [146]. Copyright 2019. Reproduced with permission
from AIP Publishing.

3.1.5. Ring-Resonator-Based Immunosensors

Ring resonators rely on the coupling of light propagating along a linear waveguide,
through the evanescent wave field, to a circular one on which it propagates in the form
of whispering-gallery modes. Any change in the refractive index in the proximity of the
ring surface affects the spectral position of the whispering-gallery modes and changes the
wavelength of the incident light for which resonance is achieved. As the light propagating
in the ring can interact with the molecules on its surface multiple times, ring resonators
are expected to provide the same performance (denoted by the Q factor) as that obtained
from linear waveguides with many times longer lengths. Thus, by implementing ring
resonators as transducers, smaller-sized devices as compared to linear waveguides and
denser transducer arrays can be realized. Ring resonators can adopt not only the 2D format
of a microdisk [149] or microring [150] but also the 3D format of a microtoroid [151]. Toroids
claim higher Q factors than the planar resonators and therefore, higher detection sensitivity
is expected. Sensors based on microring resonators have also been explored with regard
to bacteria detection. The detection of E. coli in buffer with a microring resonator sensor
has been reported and the relatively high LOD of 105 cfu/mL was ascribed to suboptimal
functionalization of resonators with bacteria-binding antibodies (Figure 10) [152].

Figure 10. Scanning electron micrographs of a small section of the test and control micro-rings on
a resonator chip showing specific bacterial binding at 2200× magnification [152]. Copyright 2007.
Reproduced with permission from Elsevier B.V.

Finally, a whispering gallery mode optical microdisk resonator was modified with the
phage protein LysK, an endolysin from the staphylococcal phage K that binds strongly to
staphylococci and used to detect S. aureus in buffer with an LOD of 5 × 106 cfu/mL [153].

3.2. Reflectrometric Immunosensors

Reflectometric sensors rely on monitoring shifts in the interference spectrum due to
binding reactions taking place on a stack of materials with different refractive indices. The
illumination sources usually employed are white light sources.

A commercially available RIfS-based biosensing device was used to detect L. pneu-
mophila in buffer by monitoring either the direct capture of bacteria cells via electrostatic
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interaction onto the chip surface or through a sandwich assay [154]. The device’s perfor-
mance was compared to that of SPR, and an LOD of 1 × 105 cfu/mL was determined in
both cases. A white-light-reflectance-spectroscopy-based immunosensor exhibited better
performance regarding the rapid and sensitive detection of S. typhimurium in drinking
water (Figure 11) [155]. The sensor chip consisted of a Si die with a thin SiO2 layer on top,
and S. typhimurium detection was performed through a competitive immunoassay format
between the bacteria in the sample and the Salmonella liposaccharide immobilized onto
the chip. An LOD of 320 cfu/mL in drinking water was achieved for an assay duration of
15 min.

Figure 11. Illustration of the white light reflectance spectroscopy (WLRS) optical setup and sensing
principle [155]. Copyright 2021. Reproduced with permission from MDPI.

Porous silicon has been also employed as substrate for detection of bacteria through
reflectance spectroscopy. Thus, the label-free detection of E. coli K12 in buffer was achieved
using a sensor based on a nanostructured oxidized porous silicon thin film [156,157]. The
sensor surface was functionalized with specific antibodies against E. coli through aminosi-
lanization and activation of surface amine groups with bis(N-succinimidyl)carbonate for
the coupling of antibodies via their free amine groups [156,157]. The LOD determined was
about 104 cells/mL and the assay was completed in 30 min. Optimization of the same sen-
sor, in which a different surface modification was followed (Figure 12), resulted in an LOD
of 103 cells/mL in water for an assay of 45 min [158]. In this case, after aminosilanization,
the surface was functionalized with glutaraldehyde to introduce aldehyde groups through
which streptavidin was bound onto the surface to facilitate immobilization of biotinylated
anti-bacteria-specific antibodies.

Another biosensor developed for E. coli detection on porous silicon substrates involved
surface modification with a hydrogel made of polyacrylamide to which biotinylated specific
monoclonal antibodies were immobilized onto the streptavidin covalently bound to the
surface after appropriate chemical functionalization [159]. A detection limit in the range of
103–105 cell/mL was determined for a direct bacteria binding assay of 30 min. Furthermore,
for the direct detection of E. coli, a biosensor based on the blockage of nanopores created by
etching of a Si chip was presented, achieving a detection limit in buffer of 103 cfu/mL [160].
More specifically, when E. coli cells were trapped into the chip nanopores, a decrease
in effective optical thickness was recorded. Thus, by monitoring the change of effective
optical thickness value, it was possible to quantitatively determine the cells captured in the
nanopores via indirect Fourier Transformed Reflectometric Interference Spectroscopy.
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Figure 12. (a) A top-view high-resolution scanning electron microscope image of a porous SiO2

film with pores in the range of 60–100 nm. (b) Schematic representation of the steps followed to
bio-functionalize the porous SiO2 surface with IgG, including: (I) 3-aminopropyl-triethoxysilane
modification, (II) reaction of amine-terminated porous SiO2 with one of the aldehyde groups of the
cross-linker glutaraldehyde, (III) grafting of streptavidin onto the aldehyde-terminated surface, and
(IV) conjugation of biotinylated-IgG (E. coli) via biotin-streptavidin binding [158]. Copyright 2016.
Reproduced with permission from Springer Nature.

Finally, an interferometric reflectance imaging system (IRIS) was employed for the
label-free detection of E. coli in tap water [161]. The bacteria specific antibody was spotted
onto a SiO2/Si chip modified with a polymer and after incubation for 2 h with the bacteria
solutions the bound cells were counted using a low-magnification optical setup accom-
panied by an appropriate software. Based on experimental data, an extrapolated LOD of
2.2 cfu/mL was calculated which is the lowest, so far, reported for direct bacteria detection.
Table 4 summarizes the analytical performance of reflectometric sensors for detection of
bacteria in water and food samples.

Table 4. Bacteria detection with reflectrometric immunosensors.

Analyte Detection Principle Assay Type Sample Type Assay Duration LOD Ref. No

S. typhimurium WLRS competitive drinking water 15 min 320 cfu/mL [155]

E. coli
reflectance

spectroscopy on
porous silicon

direct water 45 min 103 cells/mL [158]

E. coli
reflectance

spectroscopy
imaging

direct tap water 2 h 2.2 cfu/mL [161]

3.3. Photoluminescence-Based Immunosensors

Photoluminescence (fluorescence and phosphorescence) is the phenomenon of light
emission from a molecule that has been excited by absorption of photons in the visible or
UV region [162]. Thus, the decrease in photoluminescence intensity of TiO2 nanoparticles
deposited on glass slides and modified with antibodies against S. typhimurium upon binding
of bacteria was exploited in an immunosensor that could detect S. typhimurium in the range
from 103 to 105 cells/mL [163]. In another report, a soda lime glass was employed as a
waveguide and microarray substrate for the detection of S. typhimurium in several food
samples as well as in chicken excretal samples through a sandwich immunoassay with
fluorescently labeled detection antibodies [164]. The LOD achieved was 8 × 104 cfu/mL
for an assay duration of 15 min and could be improved 10-times by increasing the assay
duration to 1 h [164]. This array biosensor was also used to detect Shigella dysenteriae
and Campylobacter jejuni in buffer and a variety of food and beverage samples (chicken
carcass rinse, ground turkey, buffered milk, and lettuce leaf rinse) at concentrations of
4.9 × 104 and 9.7 × 102 cfu/mL, respectively, by applying sandwich immunoassays that
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lasted 25 min [165]. The same sensor was applied to detect the bacterium Campylobacter
jejuni following a 25-min sandwich immunoassay in a number of different food matrices
(ground turkey, sausage, ham, carnation non-fat dried milk, and vanilla fat-free yogurt)
with an LOD of 500 cells/mL [166]. Finally, the sensor was applied to detect Escherichia coli
in less than 30 min in various spiked food matrices (ground beef, turkey sausage, carcass
wash, and apple juice) with LODs in the range 1–5 × 104 cells/mL [167].

A homogeneous FRET immunosensor using antibodies conjugated to graphene oxide
quantum dots and graphene oxide sheets was designed for the detection of C. jejuni cells in
food samples [168]. The antibody conjugated to graphene oxide quantum dots interacted
with the graphene oxide sheets through π-π stacking, leading to fluorescence quenching.
When C. jejuni was selectively captured by the antibody, this interaction was disrupted,
and the fluorescence emission increased proportionally to the concentration of bacteria in
the sample. The assay was completed in 1.5 h and the LOD for the detection of C. jejuni to
poultry liver was 100 cfu/mL. In Table 5, the analytical performance of photoluminescence-
based sensors for the detection of bacteria in water and food samples are presented.

Table 5. Photoluminescence-based immunosensors for bacteria detection.

Analyte Detection Principle Assay Type Sample Type Assay Duration LOD Ref. No.

S.
typhimurium fluorescence sandwich

sausage
cantaloupe

whole liquid egg
alfalfa sprouts

chicken carcass rinse
chicken excretal

samples

15 min
1 h

8 × 104 cfu/mL
8 × 103 cfu/mL

or cfu/g
[164]

Shigella
dysenteriae

C. jejuni
fluorescence sandwich

buffer
chicken carcass rinse

ground turkey
buffered milk

lettuce leaf rinse

25 min 4.9 × 104 cfu/mL
9.7 × 102 cfu/mL

[165]

C. jejuni fluorescence sandwich

ground turkey
sausage

ham
carnation non-fat dried

milk
vanilla fat-free yogurt

25 min 500 cells/mL [166]

E. coli fluorescence sandwich

ground beef
turkey

sausage
carcass wash
apple juice

30 min 1–5 × 104

cells/mL
[167]

C. jejuni homogeneous FRET direct poultry liver 1.5 h 100 cfu/mL [168]

3.4. Surface Enhanced Raman Scattering (SERS)-Based Immunosensors

SERS-based biosensors combine Raman inelastic scattering of incident light with signal
enhancement provided by nanostructured noble metal substrates [169]. More specifically,
the Raman signal of molecules adsorbed onto the SERS surfaces is enhanced by a factor of
104–108 due to the strong electromagnetic field generated on the surface of these substrates.
This enhanced scattering phenomenon results in characteristic peaks due to resonance with
the vibrational modes of the molecules, which are unique for each molecule. Thus, in SERS-
based bioanalysis, the target molecules can either be detected directly after their attachment
to the nanostructured surfaces (Figure 13a), through their binding to surface-anchored
recognition elements, such as antibodies (Figure 13b), or through sandwich immunoassays
employing SERS-active labels for signal enhancement (Figure 13c) [170–173]. SERS active
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labels or tags are prepared by conjugating the analyte-specific antibodies to nanoparticles
along with Raman reporter molecules, which are low-molecular-weight moieties with
strong and distinguishable Raman signals. All of these approaches have been implemented
for bacteria detection through SERS.

   
(a) (b) (c) 

Figure 13. Schematic illustration of SERS-based approaches for detection (a) without any specific
recognition molecule, (b) through binding to a surface-immobilized antibody, or (c) through sandwich
immunoassays employing a surface-immobilized capture antibody and a detection antibody labeled
with a SERS tag.

Knauer et al. developed direct label-free SERS-based immunochemical methods for
the detection of L. pneumophila and S. typhimurium in a single run [174], and of E. coli
separately [175]. Regarding the simultaneous determination of S. typhimurium and L. pneu-
mophila, glass substrates were modified with an epoxy-silane and then reacted with a
diamine-polyethylene glycol to introduce amine groups onto the surfaces, which were then
implemented for the covalent bonding of antibodies specific against the two bacteria by
spotting of the respective solutions at different areas of the substrate. After bacteria binding,
the surfaces were incubated with an Ag colloid preparation that aggregated onto the im-
mobilized bacteria, creating “hot spots” which provided a strong Raman signal. The assay
lasted 65 min, and the LODs achieved were 106 and 108 cells/mL for L. pneumophila and
S. typhimurium, respectively, in the water samples [174]. For E. coli detection, the antibody-
modified substrates were combined with a flow-through system, enabling the detection of
E. coli strains in water samples at concentrations down to 4.3 × 103 cfu/mL [175].

An LOD of 10 cfu/mL in spiked ground beef homogenates was achieved for E. coli
O157:H7 with a SERS-based non-competitive immunoassay that combined antibody-
modified magnetic particles and gold nanoparticles modified with an anti-bacterium
antibody and a SERS tag molecule [176]. At first, the bacteria solution was incubated with
the antibody-labeled magnetic nanoparticles, and after magnetic separation, the bound
bacteria were incubated with the SERS-tagged antibody-modified gold nanoparticles. The
immunocomplexes formed were separated from free antibodies using a membrane filter on
which the Raman signal was determined [176].

A similar immunoassay format was applied to the simultaneous detection of E. coli
O157:H7 and S. aureus, with LODs of 10 and 25 cfu/mL, respectively [177]. In this case,
magnetic beads and SERS active gold nanoparticles functionalized with specific antibody
pairs against each bacterium were used, and the simultaneous determination was based
on implementation of a different SERS tag for each bacterium. After the formation of
immunocomplexes in the liquid phase, a magnetic field was applied and the Raman signals
from the two different tags were quantified [177]. The sensor was applied for the detection
of the two bacteria in spiked samples of bottled water and milk.

In another report, the capture antibodies were immobilized on magnetite-gold nanopar-
ticles to enable separation and concentration of the E. coli O157 cells from the liquid, fol-
lowed by reaction with gold nanoparticles modified with antibodies and Raman tags [178].
This method provided rapid separation and detection (less than one hour) of E. coli in apple
juice, achieving an LOD of 102 cfu/mL. A similar approach was applied for the isolation
and detection of multiple pathogenic bacteria through the implementation of lectin func-
tionalized silver coated magnetic nanoparticles prior to reaction with SERS-tagged silver
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nanoparticles functionalized with antibodies specific to each one of the targeted bacteria.
Thus, E. coli, S. typhimurium, and methicillin-resistant S. aureus isolation and detection in
buffer were achieved at concentrations as low as 10 cfu/mL [179].

Gold-coated magnetic nanoparticles (gold-coated MnFe2O4 nanoparticles) were con-
jugated with antibodies against S. aureus and used as SERS tags, as well as for bacteria
capture and separation from spiked buffer samples, resulting in an assay with an LOD of
10 cfu/mL [180]. Spherical and rod-shaped gold nanoparticles modified with Raman tags
and an antibody against E. coli were compared as labels in a sandwich immunoassay with
capture antibody immobilized onto a gold-coated glass slide [181]. The LODs determined
in buffer using the gold nanorods and the spherical gold nanoparticles as labels were 4 and
5 cfu/mL, respectively.

Rod-shaped gold-covered magnetic nanoparticles modified with an antibody against
E. coli have also been investigated as labels in a liquid phase assay for the detection of
E. coli in buffer at concentrations as low as 35 cfu/mL [182]. The difference in the LOD
of this report compared to the previous one that used the same label [181] was attributed
to the lower capture efficiency of magnetic gold nanorod particles as compared to the
gold-coated glass slide surface. Thus, when the same group implemented gold-coated
magnetic spherical nanoparticles modified with an anti-E. coli antibody in combination
with rod-shaped gold nanoparticles modified with Raman tags and an anti-E. coli antibody,
an LOD for E. coli detection in water samples of 8 cfu/mL was achieved [183].

In another detection approach, SERS was combined with a microfluidic dielectrophoretic
device to detect Salmonella enterica serotype Choleraesuis and Neisseria lactamica in buffer [184].
The SERS labels employed were silica-coated dye-induced aggregates of a small number of
gold nanoparticles, denoted as nanoaggregate-embedded beads, and they were modified
with antibodies specific to each bacterium to allow their online detection with an LOD of
70 cfu/mL.

SERS detection was also combined with lateral flow strip biosensors. Thus, L. mono-
cytogenes and S. typhimurium were simultaneously detected with a lateral flow sandwich
immunoassay employing gold nanoparticles modified with a Raman tag and specific anti-
bodies against each one of the targeted bacteria [185]. The LODs achieved were 75 cfu/mL
for both bacteria, and the strip assay was applied for bacteria detection in milk samples.
Another lateral flow strip biosensor employing SERS labels combined with recombinase
polymerase amplification (RPA) was applied for the simultaneous determination of S. enter-
itidis and L. monocytogenes [186]. The method made use of forward primers labeled with
digoxin and fluorescein for S. enteritidis and L. monocytogenes, respectively, whereas the
reverse primers were labeled with biotin. Thus, when the RPA product was applied to
the sample pad, it was run along with gold nanoparticles modified with streptavidin and
Raman tags toward the two test lines where antibodies against digoxin and fluorescein
have been spotted, resulting in the creation of the respective colored lines (Figure 14). The
LODs achieved in buffer were 27 and 19 cfu/mL for S. enteritidis and L. monocytogenes,
respectively [186]. The method was applied for the detection of the two bacteria in milk,
chicken breast, and beef samples with slightly increased LODs, which were 31, 35, and
35 cfu/mL for S. Enteritidis and 36, 29, and 22 cfu/mL for L. monocytogenes, respectively.
The same approach was employed to detect Escherichia coli O157:H7, with an LOD of
5 × 104 cfu/mL in milk, chicken breast, and beef [187].

In Table 6, data regarding bacteria detection with SERS-based biosensors in food and
water samples are presented.
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(a) (b) 

Figure 14. (a) Schematic illustration of: (A) preparation of gold nanoparticles modified with strepta-
vidin and Raman tags (MBA), and (B) the multiplex lateral flow SERS assay. (b) (A) Results from
lateral flow strips for the simultaneous detection of S. enteritidis (test line 1) and L. monocytogenes (test
line 2). The test lines could be observed by the naked eye at a concentration of 1.9 × 102 cfu/mL
of L. monocytogenes and 2.7 × 102 cfu/mL of S. enteritidis. The SERS signal of the test lines could be
detected at a concentration of 1.9 × 101 cfu/mL of L. monocytogenes and 2.7 × 101 cfu/mL of S. enteri-
tidis. (B) Specificity of the lateral flow strip assay against three L. monocytogenes and three S. enteritidis
bacteria [186]. Copyright 2017. Reproduced with permission from the American Chemical Society.

Table 6. SERS-based immunosensors for bacteria detection.

Analyte Detection Principle Assay Type Sample Type Assay Duration LOD Ref. No

L. pneumophila
S. ty-

phimurium
SERS direct water 65 min 106 cfu/mL

108 cfu/mL
[174]

E. coli
O157:H7 SERS direct water >60 min 4.3 × 103 cfu/mL [175]

E. coli
O157:H7 SERS sandwich ground beef ~2 h 10 cfu/mL [176]

E. coli
S. aureus SERS sandwich bottled water milk ~2 h 10 cfu/mL

25 cfu/mL [177]

E. coli O157 SERS sandwich apple juice <1 h 102 cfu/mL [178]

E. coli SERS sandwich water 70 min 8 cfu/mL [183]

L. monocyto-
genes
S. ty-

phimurium

LFIA SERS sandwich milk 10 min 75 cfu/mL [185]

S. enteritidis/
L. monocyto-

genes
LFIA SERS sandwich

buffer
chicken breast

beef
milk

30 min

27/19 cfu/mL
35/29 cfu/mL
35/22 cfu/mL
31/36 cfu/mL

[186]

E. coliO157:H7 LFIA SERS sandwich milk
chicken breast beef 15 min 5 × 104 cfu/mL [187]

4. Conclusions and Outlook

This review has outlined the principles and applications of antibody-based optical
sensors in the detection of food pathogenic bacteria. Although there is an abundance of
relative publications, it seems that very few of the available sensing principles have been
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exploited for the detection of bacteria in real food samples. An additional reason for that
can be the fact that the LODs achieved in most cases cannot cover the requirements set
by the existing regulations, according to which highly dangerous and contagious bacteria
like Salmonella and L. monocytogenes should not be detected in 25 g of food samples (e.g.,
Commission Regulation (EC) No 2073/2005).

Thus, although fiber optic sensors employing fluorescent labels have been the first to
be implemented for bacteria detection in food samples, the great majority of references,
especially the most recent ones, rely on SPR sensors. The reason for that is probably due
to the availability of different instruments based on the SPR detection principle, some of
which are commercially available. Nevertheless, the LODs achieved in most of the cases
ranged from 103–105 cfu/mL, which are considered high for direct application to food
analysis, and they should be combined with a sample enrichment procedure that adds a
few hours to the total time required from sampling to answer.

There are a few reports, however, that report LODs of a few or a few tens of
cfu/mL [66,95,97,103–105], from which only one is performed in a standard benchtop
SPR instrument [66], and two others with a commercially available portable SPR instru-
ment (SPREETA™) [95,97], which is not currently in the market. The first two reports
were based on direct binding assays for the label-free detection of targeted bacteria [66,95],
whereas in the third, gold magnetic particles were employed as labels to drop the LOD to
3 cfu/mL [97]. The rest of the reports implement the localized SPR (LSPR) principle either
in the form of gold nanoparticles [103,104] or in the form of nanostructured gold film [105].
In addition to higher detection sensitivity, LSPR is also considered more easily adaptative
to portable low-cost devices, and it remains to be seen what would be carried out in this
direction in the near future.

Regarding the majority of fiber-optic-based immunosensors, the LODs achieved for
bacteria detection also ranged from 103–105 cfu/mL. LODs of less than 100 cfu/mL were
achieved only when fibers were combined with SPR via covering their sensing area with a
gold film or gold nanoparticles or films of other materials (e.g., MoS2 nanosheets) [122,123].
Since fiber optic experimental setup can also be reduced in size and cost, the combination
with SPR might also be proved a viable solution for portable devices in the future.

Integrated interferometers, particularly in the form of MZIs [128] and bimodal interfer-
ometers [133], have shown adequate sensitivity for bacteria detection (LODs in the range of
a few tens of cfu/mL) combined with short assay times and great potential for multiplexed
determinations. They also seem to be the most promising candidate in the direction of
portable devices suitable for point-of-need determinations. On the other hand, microring
resonators or microtoroids, despite their claimed high detection sensitivity, are the optical
transducers less frequently employed for bacteria detection, whereas a few existing reports
present LODs as non-competitive to other types of optical biosensors [152,153]. The same
seems to be true for most of the immunosensors based on grating couplers for which there
is only one report, with an LOD of a few cfu/mL in which an optical fiber grating device
was implemented [144].

Immunosensors based on reflectance spectroscopy have also demonstrated potential
for the detection of bacteria at concentrations as low as 2.2 cfu/mL [161], whereas the assay
was performed in a 24-well plate with the interferometric reflectance imaging system (IRIS)
chip placed at the bottom of each well and lasted over 2 h. A more compact system based
on reflectance spectroscopy achieved an LOD of 320 cfu/mL with a 15-min assay, allowing
for the detection of bacteria in food samples after a pre-enrichment step of approximately
8 h [155]. The most impressive performance regarding the percentage of reports that mention
LODs of less than 100 cfu/mL present immunosensors based on SERS [176–182,184–186].
However, with the exception of two reports where Raman spectroscopy is combined with
a lateral flow immunoassay [182,184], for which the assay duration was less than 30 min,
most sensors required more than 1 h to complete the assay.

Regarding the assay type implemented for bacteria detection with optical immunosen-
sors, although direct binding onto antibody-modified transducers has been widely used, it
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has rarely led to high detection sensitivity combined with a short assay time. Thus, compet-
itive or non-competitive immunoassay formats have been employed to increase detection
sensitivity and/or decrease assay duration. This might complicate the development of
portable devices a bit since it requires the integration of optical sensors with microfluidic
modules, pumps, and valves, which will provide for the automated execution of the assay
steps. In addition, this integration should be performed in such a way that it will not
increase either the device size or the cost.

In the direction of developing portable devices based on optical transducers, the tools
offered by the continuously evolving smartphone gadgets, either as light sources or for
the detection of optical signals or the ability to run the instrument software in such a
device, process the data, and transfer them wirelessly to central facilities, are considered a
significant asset.

Although the current technological limitations are more than certain to be surpassed
in the near future, there are some aspects of optical immunosensors that need to be fur-
ther addressed prior to their application for bacteria detection at the point of need. For
example, the study of relevant literature reveals that sensitive bacteria detection with
immunochemical techniques is often challenging due to lack of appropriate antibodies.
Thus, in many instances, optical immunosensors have been developed using in-house
produced antibodies that are not widely available. Even if antibodies with appropriate
binding characteristics for the specific and sensitive detection of a particular bacterium are
commercially available, their suitability for the detection of bacteria in processed food has
to be investigated since the structure of bacteria epitopes could change dramatically when
the food has been processed under certain temperature or pH conditions. In addition, in
many instances, antibodies cannot discriminate viable from non-viable cells, providing
false positive results.

Despite the above-mentioned limitations of optical immunosensors for bacteria de-
tection, they remain one of our best hopes for sensitive portable devices that would be
available at affordable prices with low operation costs but most importantly in a shorter
time compared to the established techniques for bacteria detection in food. The long
time required from sampling to testing by most of the established methods (especially
the microbiological ones) is and will remain the driving force behind the development
of biosensors for application in food safety. Even if the necessity for sample enrichment
remains, suppression of the time required from days to a few hours will help to test a
higher amount of raw food materials and ready-to-eat food by both the industry and the
food-safety control departments.
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P.; Homola, J. Low-fouling surface plasmon resonance biosensor for multi-step detection of foodborne bacterial pathogens in
complex food samples. Biosens. Bioelectron. 2016, 80, 84–90. [CrossRef]

72. Masdor, N.A.; Altintas, Z.; Tothill, I.E. Surface plasmon resonance immunosensor for the detection of Campylobacter jejuni.
Chemosensors 2017, 5, 16. [CrossRef]

73. Poltronieri, P.; De Blasi, M.D.; D’Urso, O.F. Detection of Listeria monocytogenes through real-time PCR and biosensor methods.
Plant Soil Environ. 2009, 55, 363–369. [CrossRef]

74. Linman, M.J.; Sugerman, K.; Cheng, Q. Detection of low levels of Escherichia coli in fresh spinach by surface plasmon resonance
spectroscopy with a TMB-based enzymatic signal enhancement method. Sens. Actuators B 2010, 145, 613–619. [CrossRef]
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Abstract: At present, the majority of water testing is carried out in the laboratory, and portable field
methods for the quantification of elements in natural waters remain to be established. In contrast,
portable instruments like portable X-ray fluorescence (pXRF) analysis and portable laser-induced
breakdown spectroscopy (pLIBS) have become routine analytical methods for the quantification of
elements in solids. This study aims to show that pLIBS can also be used for chemical compositional
measurements of natural waters. Bottled mineral waters were selected as sample materials. A
surface-enhanced liquid-to-solid conversion technique was used to improve the detection limits and
circumvent the physical limitations in liquid analysis. The results show that low to medium miner-
alised waters can be analysed quantitatively for their ions using the documented method. For more
highly concentrated samples, typically above an electrical conductivity (EC) of 1000 μS/cm, further
adjustment is required in the form of self-absorption correction. However, water with a conductivity
up to this limit can be analysed for the main cations (Li+, Na+, Mg2+, K+, Ca2+, and Sr2+) as well as
the main anions (SO4

2− and Cl−) using the documented method. This study demonstrates that there
is significant potential for developing field-based pLIBS as a tool for quantitative water analysis.

Keywords: portable laser-induced breakdown spectroscopy; pre-screening; handheld; inorganic
water analysis; hydrochemistry; in-field water analysis; SciAps Z-300; water-quality testing

1. Introduction

An understanding of water quality is traditionally obtained using laboratory-based
analyses and continuous monitoring techniques [1–3]. This is despite the need for fast,
reliable, and, if possible, inexpensive in-field measurement methods, particularly in re-
mote regions. Although hand-held instruments like portable X-ray fluorescence (pXRF)
and portable laser-induced breakdown spectroscopy (pLIBS) have been established in
geochemical analysis of solid samples for many years [4–7], inorganic water analyses are
still performed almost exclusively in the laboratory [2]. Typical equipment used includes
ion chromatography (IC), atomic absorption spectroscopy (AAS), and inductively cou-
pled plasma-mass spectroscopy (ICP-MS). These techniques require trained personnel
and proper sample transport, storage, and handling prior to analysis; are expensive to
maintain; and are time consuming [8]. This often prevents quick action, as it can take
more than a week from the time the sample is taken to the actual analysis of samples and
data generation. In addition, in less developed countries, analyses are less likely to be
carried out due to the cost and expertise required. Therefore, reliable field instruments
are needed to quantify as many elements and compounds as possible. In on-site analysis,
lower sensitivity and higher detection limits are usually accepted, if immediate results and
higher data density are feasible, especially if pre-screening is performed [4,9].
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Typical field-ready measuring equipment for inorganic water analysis available on the
market includes photometers, test kits, and ion selective electrodes. The main reason why
field methods have not yet been widely adopted for measuring the inorganic chemistry of
waters is presumably due to the fact that reliable methods for simultaneous determination
of a range of elements have not been developed to date.

Laser-induced breakdown spectroscopy (LIBS) is an atomic emission spectroscopy
technique capable of simultaneously determining the complete elemental chemistry of a
sample. A focused, pulsed laser beam is directed at a sample to form a plasma containing
the elements of the small sample volume that is being ablated. By spectral analysis of
the emitted light, it is possible to obtain qualitative and quantitative data on the elements
present, provided a suitable calibration is used [4,6]. Although LIBS currently plays rather
a niche role in water analysis, several studies have shown that laboratory-based LIBS
systems can be used to simultaneously quantify almost any element in water with very
low detection limits [10–23]. For example, Na has been quantitatively analysed in aqueous
solutions with a detection limit of 0.57 μg/L [20]. Mg, Ca, Sr, and Ba have been detected
down to 0.3, 0.6, 1.0, and 0.7 ppm, respectively [16], and Mg, Cr, Mn, and Re have been
detected down to 0.1, 0.4, 0.7, and 8 mg/L, respectively [11].

However, many of these laboratory applications described use complicated experi-
mental setups, such as measurement in a liquid jet [11,20] or liquid to aerosol [16]. This is
because direct bulk liquid analysis by LIBS is prone to low sensitivity and accuracy due to
energy losses as a result of liquid evaporation, plasma cooling, and intense splashing [24].
A simpler sample preparation method, which is also feasible in the field and adaptable to
a portable laser-induced breakdown spectroscopy (pLIBS) instrument, is liquid-to-solid
conversion (LSC). At the same time, this method offers the advantage that the detection
limits are lowered by pre-concentration. Therefore, in a previous work, a surface-enhanced
(SE) liquid-to-solid conversion (LSC) method was adapted to a pLIBS for quantitative anal-
ysis of Li, Na, and K in standard solutions containing nearly no other cations [25]. Instead
of directly shooting the liquid with the laser, the evaporation residue (EvR) was analysed
on a commercially available aluminium foil, which was SE with a thin layer of graphite
pencil powder. Low detection limits could be achieved by LSC while avoiding negative
physical effects such as splashing and cooling of the plasma that occur when analysing
liquid samples. Moreover, by preparing the aluminium foil with pencil powder, the surface
became more hydrophobic, and therefore, the EvR were distributed more homogenously,
leading to better reproducibility. A self-designed template that fits on the nose of the SciAps
Z-300 guaranteed fixation during the analysis of 100 positions in a fixed grid on and around
the EvR. Results of the study showed that a portable LIBS analyser is well suited for the
quantitative analysis of light alkali elements in standard solutions up to 160 mg/L [25]. To
our knowledge, that was the first time that a handheld LIBS instrument had been used to
quantify dissolved elements in aqueous solutions using an LSC technique. The portability
of the method opens up new possibilities for on-site screening and quantitative analysis of
inorganic water chemistry.

However, to date, the method has only been applied to single-element standard
solutions. In order to identify possible matrix effects and to further adapt the method
for field use, bottled mineral waters from different manufacturers and with as diverse a
chemistry as possible were chosen as examples in this study (see Table 1 and Figure 1).
When using bottled mineral waters from grocery stores, it is possible to choose from a
wide range of different mineralised waters, as the manufacturers in the European Union
are obliged to print analysis results on their bottles. These may often not be particularly
up to date, but they provide a rough guide on the likely chemical composition of bottled
waters. There has also been a lot of research into the testing of bottled mineral water for
mineralisation [26–29]. As can be seen in Figure 1, the choice of bottled mineral water
allowed very different types of water to be selected. This is important in order to have a
diverse test series to study possible matrix effects.
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Table 1. List of bottled mineral waters analysed by this study.

Abbr. Name/Brand Spring Location State Country Bottle
TDS

(mg/L)
EC (μS/cm)

Adhz Adelholzener Adelholzener
Alpen Quell Bergen BY De PET 511 598

AqMi Aqua Mia Geotaler Löhne NW De PET 1284 1575

BeWa Bergische
Waldquelle

Bergische
Waldquelle Haan NW De PET 159 257

Blk Blank sample - laboratory - - HDPE 1.3

Extl Extaler-
Mineralquell

Extaler-
Mineralquell

Rinteln-
Exten NI De TP 1603 1708

Fach Staatl. Fachingen Staatl. Fachingen Fachingen RP De glass 4306 2726

Gest Gerolsteiner
Naturell Naturell Gerolstein RP De PET 807 878

Laur Lauretana Lauretana Graglia 21 It PET 17 20.5
Löng K-Classic Quelle Löningen Löningen NI De PET 162 275
Mar Marius-Quelle Marius-Quelle Sachsenheim BW De PET 2435 2650
Nat Naturalis still Urstromquelle Wolfhagen HE De PET 126 212

Odwq Odenwald-Quelle Odenwald Quelle Heppenheim HE De PET 760 727

Qubr Quellbrunn
Werretaler Werretaler Löhne NW De PET 729 971

Rosb Rosbacher Naturell Rosbacher Naturell Rosbach
v.d. Höhe HE De PET 1235 1363

Saw Sawell Genussquelle 3 Emsdetten NW De PET 377 589

Vit Vittel Vittel Bonne
Source Vittel 88 Fr PET 490 444

BY = Bavaria, NW = North Rhine-Westphalia, NI = Lower Saxony, RP = Rhineland-Palatinate, BW = Baden
Württemberg, HE = Hesse, 21 = Piemont, 88 = Département des Vosges, De = Germany, It = Italy, Fr = France,
PET = polyethylene terephthalate, HDPE = high-density polyethylene, TP = Tetra Pak, TDS = total dissolved
solids (as indicated), EC = electrical conductivity (as measured).

Figure 1. Piper plot of the bottled mineral waters. The chemical data were obtained by IC and field
photometer (hydrogen carbonate) analyses.
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In this study, the analytical approach of the former study [25] was extended to include
elements and compounds (Ca2+, Mg2+, Sr2+, Cl−, SO4

2−, and NO3
−) to cover the main

cations and anions in natural waters and documented on bottled mineral water. The results
of this study therefore contribute to the ongoing development of hydrochemical field
testing tools.

2. Materials and Methods

2.1. Sample Preparation

Water samples were taken from commercially available bottled mineral waters pur-
chased from supermarkets. Fifteen different brands were chosen, and waters with the most
diverse chemistry according to their information labels were selected to obtain a diverse test
series (Table 1 and Figure 1). Only non-carbonated bottled water was selected to compen-
sate for precipitation by degassing. With two exceptions (Fach., glass, and Extl., Tetra Pak),
all mineral waters were bottled in PET. Two 50 mL samples of each mineral water were
prepared by filling centrifuge tubes. One was acidified with HNO3 to prevent precipitation
(cation sample). The anion sample was not prepared further. An additional blank sample
was prepared from distilled deionised water (18 MΩ) in the same way as the mineral waters.
A portion of each anion sample was used for the analysis of physico-chemical parameters
(temperature (T), electrical conductivity (EC), pH, and HCO3

−) and pLIBS analysis before
all samples were sealed with Parafilm® and sent directly to the laboratory for subsequent
ion exchange chromatography (IC) and inductively coupled plasma–mass spectrometry
(ICP-MS) analysis (Technical University of Darmstadt, Darmstadt, Germany).

For subsequent measurements, aqueous single-element AAS standard solutions on a
2% nitric acid basis with a concentration of 1000 mg/L were used for the calibration of the
cations (ROTI®Star, Carl Roth, Karlsruhe, Germany). From each of the standard solutions,
16 different concentrations ranging from 0.1 to 1000 mg/L were prepared by diluting with
2% nitric acid. The latter was made by diluting 65% nitric acid (ROTIPURAN® ≥ 65%,
Carl Roth, Karlsruhe, Germany) with distilled deionised water (18 MΩ). Li+, Na+, and
K+ were prepared as single-element standard dilution series. Mg2+ and Ca2+ were mixed
with each other as paired standard dilution series. Concentrations above 500 mg/L were
prepared as single-element standards. The same procedure was used for Zn2+ and Sr2+. In
addition, a water-based multi-element anion IC standard solution containing Cl−, SO4

2−,
and NO3

− was used to calibrate the main anions by dilution with distilled deionised water
at concentrations ranging from 0.5 to 1000 mg/L.

Furthermore, mixed solutions were prepared by using the single-element standard
solutions in equal amounts and diluting with 2% nitric acid. Six mixed solutions containing
Li, Na, and K (ranging from 2 to 250 mg/L) and six containing Li+, Na+, K+, Mg2+, Sr2+,
and Ca2+ (ranging from 1 to 125 mg/L) were prepared. Cl−, SO4

2−, and NO3
− were not

included in the mixed standards, as the cationic single element standards already contained
nitrate in different quantities.

2.2. Instrumentation

As in the previous study [25], the commercially available handheld LIBS analyser
SciAps Z-300 (SciAps, Woburn, MA, USA) was used. It contains a class 3B Nd:YAG laser
that produces laser light with a wavelength of 1064 nm and an energy of 5–6 mJ/pulse
with a duration of 1 ns and an adjustable firing rate of between 1 and 50 Hz [30]. Three
spectrometers consisting of time-gated charge-coupled diodes (CCD) detect the emitted
light in the spectral range of 190–950 nm by three spectrometers [30].

The acquisition settings of the pLIBS analyses have been detailed by a previous
study [25]. Due to the small size of the EvR after LSC and the possibility of laying a
raster over an area with the SciAps Z-300, it was possible to analyse the whole EvR and
a small area around it. One hundred locations were fired at four times each in order to
obtain data. For each location, the four individual analyses were averaged into a spectrum,
resulting in 100 spectra per sample. Since fresh samples were applied to the SE aluminium
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foil, no cleaning shots were needed, and this setting was set to 0. The use of gating can
improve the signal-to-noise ratio because the continuum radiation, which contains no
useful information and occurs mainly at the beginning of a measurement, has a lower
proportion with a slightly delayed measurement [23]. In the previous study, the gate
delay for Li, Na, and K was optimised [25]. In order to obtain comparable data, the gate
delay was not further adjusted in this work. An internal integration delay (IID) of 84 was
used, corresponding to a delay time (td) of approximately 2 μs. In order to achieve signal
enhancement [30,31], an Ar atmosphere was used for the measurements. The coordinates
were set to start at 100, 100, 70 and end at 350, 350. Finally, the test rate was set to 50 Hz. A
custom stencil designed for the SciAps Z-300 described in [25] was used to facilitate and
speed up handling by fixing the substrate and the device itself.

2.3. Liquid Analysis

First, the pH and EC of each bottled mineral water were determined. For this purpose,
the bottled waters were poured into centrifuge tubes large enough to fit the probes of
the pH and conductivity electrode. This method has already been described by [32] and
helps to reduce the required sample volume. In this study, a slightly larger sample volume
of about 20–25 mL was used. Conductivity and temperature were measured first (CA
10141 with conductivity probe XCP4ST1, Chauvin Arnoux, Asnières-Sur-Seine, France),
making sure that the probe was thoroughly cleaned with distilled water and then dried
before measurement. Afterwards, the pH value was analysed with a likewise cleaned
probe (HI 991002 with pH/ORP probe HI1297, Hanna Instruments, Vöhringen, Germany).
Hydrogen carbonate was measured with a field-ready photometer (HI775 Checker HC,
Hanna Instruments, Vöhringen, Germany) using a sample of maximum 15 mL.

For the comparative measurements in the laboratory, one cation and one anion sample
were prepared, the former being acidified with 10 droplets of 10% nitric acid (diluted
ROTIPURAN® ≥ 65%, Carl Roth, Karlsruhe, Germany) to prevent precipitation. The
samples were analysed for the main cations and anions with IC at the Institute of Ap-
plied Geosciences of Technical University of Darmstadt (Metrohm 882 Compact IC plus,
Metrohm, Herisau, Switzerland).

Sr and Zn were analysed using ICP-MS (Analytik Jena Plasma Quant MS Elite®, Jena,
Germany). Instrumental conditions were optimised using a 1 μg/L tuning solution (diluted
10 mg/L Analytik Jena Tuning solution, Jena, Germany), leading to high sensitivities of
the containing elements Be, In, Pb, and Th in the tuning solution with simultaneous low
oxide and a doubly charged ion ratio. Helium was used as a collision gas in the integrated
collision–reaction cell (iCRC) for the minimisation of potential interferences. A 10 μg/L
Y solution (diluted ROTI®Star 1000 mg/l Y, Carl Roth, Karlsruhe, Germany) was added
online via a peristaltic pump to all samples and standards in order to compensate for drifts
of the ICP-MS system. Standard deviations of laboratory analyses are provided in Table A2.

The ion balances were calculated from the equivalent concentrations of the cations and
anions according to [33]. High ion balance deviations are an indication that certain ions
have not been recorded or have been recorded incorrectly. The algebraic sign is an indicator
of whether the error could be on the anion or cation side. Another plausibility check is
the calculation of the EC of a water sample from the main cations and anions [34]. This
method was used to evaluate whether there was any inconsistency between the measured
and calculated conductivity, indicating that certain cations or anions had not been detected
or had been incorrectly detected.

The underlying method for the analysis of cations and anions in water with pLIBS
has been presented in detail by [25] for the three alkali elements Li, Na, and K. Here, the
SE aluminium foil, prepared with a thin layer of pencil powder, was placed between the
base and the stencil and the sample solutions were applied through the recesses using a
micropipette (cf. Figure 2). A total of 0.75 μL of the sample solutions was applied to the
aluminium foil in the same way each time with the help of an auxiliary line. In this way,
15 droplets can be placed on one sample foil. After application, the aluminium foil was
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removed and heated on the heating table to achieve LSC until only the EvR remained. The
aluminium foil was then placed back between the base and the stencil and the EvR was
analysed with the pLIBS. Standard deviations and relative standard deviations of replicate
pLIBS analyses are provided in Table A3. By fixing the nose of the device, it is possible to
quickly switch between the individual samples without additional focusing. In addition,
the measuring device does not slip during the measurement of the 100 spots per EvR.

Figure 2. Summary of the method involving surface enhancement, fixed liquid application, liquid-to-
solid conversion (LSC), and fixed analysis by portable LIBS.

2.4. Calibration Settings

With the calibrations in this work, it should later be possible to examine as wide a range
of differently mineralised waters as possible. It can thus be assumed that the matrices in the
EvR will also vary strongly. However, even small changes in the matrix, e.g., due to different
concentrations of the analytes, alter the physical and chemical properties in the plasma to
such an extent that the emitted signal is no longer proportional to the concentration. This
leads to so-called matrix effects [35]. To compensate for matrix effects [35], multivariate
calibration was performed for all elements of interest (EoI) using multiple linear regression
(MLR). Using the intensities of Al in the denominator to normalise the numerator (analyte)
adds an internal standard [35,36], as Al foil was used as a substrate. Intensity ratios
(IR) were calculated by using the intensities of the EoI in the numerator (analyte) and Al
intensities in the denominator. The intensities chosen for both the EoIs and Al were selected
to avoid possible overlap of nearby peaks of other EoIs due to peak broadening and to
maintain an equal sequence of intensities as the concentration of the analytes increases and
constant intensity at the intensities of the standard. For this reason, small changes were
also made to the lines used for Li, Na, and K compared to [25]. The spectral lines used for
calibration in this study are listed in Table 2. However, the integration was performed in
the same way in SciAps’ Profile Builder, applying the zeroth order derivative and Savitzky–
Golay smoothing with 7 and 9 as input values for the analytes and Al, respectively, to filter
out noise [25].

Table 2. Statistical assessment of the calibrations for single-element standards (Li, Na, K) and
paired-element standards (Mg/Ca, Zn/Sr, NO3/SO4/Cl).

z EoI State λ LoD Range y R2 RMSE S
nm mg/L mg/L mg/L mg/L

3 Li I 497.1

0.006

0.1–2.5 28.133x − 0.3725 0.918 0.17 0.18
I 610.4 2.5–100 37.973x − 2.3069 0.995 6.65 6.71
I 670.8 100–1000 11.632x2.1134 0.954 202.18 204.19
I 812.9

11 Na II 330.2

0.014

0.1–2.5 45.219x + 0.0149 0.971 2.00 2.03
I 589.0 2.5–100 184.47x − 11.45 0.960 3.54 4.01
I 589.6 100–1000 8152.3x8.359 0.538 1131.01 1141.34
I 818.3
I 819.5
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Table 2. Cont.

z EoI State λ LoD Range y R2 RMSE S
nm mg/L mg/L mg/L mg/L

12 Mg II 279.6

0.008

0.1–10 78.378x − 0.0589 0.979 0.00 0.00
II 279.8 10–100 173.46x − 14.439 0.973 6.83 6.93
II 280.3 100–1000 - - - -
I 285.2
I 293.6
I 382.9
I 383.2
I 383.8
I 516.7
I 517.3
I 518.4

19 K I 691.2

0.006

0.1–10 343.08 + 9.4034 0.987 0.49 0.49
I 693.9 10–160 292.55x + 9.7589 0.973 10.70 10.82
I 766.5 160–1000 62.902e1.6945x 0.913 266.10 269.77
I 769.8

20 Ca II 315.9

0.021

0.1–2.5 23.014x − 0.0512 0.990 0.03 0.03
II 317.9 2.5–100 103.34x − 12.964 0.893 3.79 3.82
II 318.1 100–1000 −527.31x2 + 2456.7x − 1766.7 0.889 155.42 157.59
II 370.6
II 393.3
II 396.8
I 422.6
I 430.2
I 430.8
I 443.5
I 445.5
I 526.5
I 527.0
I 558.9

30 Zn II 202.6 0.0005 0.1–2.5 621.9x − 0.1649 0.988 0.07 0.07
I 213.9 2.5–50 544.01 − 0.4883 0.998 1.38 1.40
I 334.5 50–1000 2449.2x2 + 1115.7x − 94.322 0.989 102.14 103.02
I 468.0
I 481.1
I 636.2

38 Sr II 215.3 0.0008 0.1–5 38.764x + 0.0607 0.999 0.14 0.14
II 216.6 5–75 136.68x2 − 0.3885x + 3.2393 0.998 7.64 7.74
II 338.1 75–1000 6.1616e3.7x 0.851 4708.79 4754.73
II 407.7
II 416.2
II 421.6
II 430.6
I 460.7
I 496.2
I 525.7
I 548.1

7 N II 567.6
0.0017

0.5–160 2014.3x 0.853 105.13 105.97
II 568.6 160–1000 100.07e7.0029x 0.872 195.30 197.96
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Table 2. Cont.

z EoI State λ LoD Range y R2 RMSE S
nm mg/L mg/L mg/L mg/L

16 S I 921.2
0.0002

0.5–160 175098x + 106.97 0.647 93.42 94.12
I 922.8 160–1000 109.42e2043.1x 0.829 621.23 629.69
I 923.7

17 Cl I 833.3

0.0004

0.5–160 33588x 0.976 97.18 98.04
I 837.6 160–1000 18.869e561.95x 0.912 1113.22 1126.09
I 857.5
I 858.6
I 894.8

13 Al * I 236.7
I 237.3
I 308.2
I 394.4
I 396.1

z = atomic number, EoI = element of interest (EoI), λ = wavelength of the lines used for calibration (* Al
used as internal standard), LoD = limit of detection: calculated according to the 3σ-IUPAC criterion (LoD = 3*
σB/k) [37], y = formula used for calibration, R2 = coefficient of determination, RMSE = root mean square error,
S = residual standard deviation, σB = standard deviation of the background signal at the lowest solution concen-
tration, k = slope of the calibration line.

For more extensive possibilities in calibration, the IRs were calculated with these
settings, exported as a .csv file, and used in a spreadsheet for calibration. Subsequently,
outliers were eliminated by 1.5 inter-quartile range (IQR) method. For most concentrations,
15 IR values were used for calibration, of which at least 12 remained after outlier elimination.
Some higher concentrations were tested with up to 27 IR values. The mean of the respective
IR values per element for blanks was then subtracted from all IR values. Due to effects such
as self-absorption at higher analyte concentrations [35], the slope of a single calibration
curve over the entire concentration range (0.1–1000 mg/L) changes strongly. Ref. [21]
encountered the same problem when analysing K, Na, Ca, and Mg in liquid solutions
dried on filter paper. They had to use two calibration lines over the concentration range of
10–1000 mg/L [21]. Therefore, in this work, three concentration ranges were defined for all
cationic species, which were chosen differently due to the different slopes for the individual
elements. Only two concentration ranges were defined for the anionic species. Wherever
possible, linear calibration lines were used. For higher concentration ranges, exponential or
quadratic calibrations were often required. The different concentration ranges are listed in
Table 2. According to the 3σ-IUPAC criterion [37], LoDs for the EoI were calculated and
are also listed in Table 2. Within the concentration ranges, other statistical parameters are
given, such as the coefficient of determination (R2) of the calibration lines, the root mean
square error (RMSE) of the regression, and the residual standard deviation based on the
regression (S).

3. Results

In Table 2, the statistical evaluation of the calibrations for single-element standards
(Li, Na, K) and paired-element standards (Mg/Ca, Zn/Sr, NO3/SO4/Cl) is shown. The
calculated LoDs were quite low (<0.03 mg/L) and therefore notably lower than the lowest
concentration used for calibration (0.1 mg/L). In general, high coefficients of determination
(R2) were obtained for the low and medium concentration ranges. The third concentration
range generally suffered from lower R2 and higher RMSE and S (e.g., Na, Sr). The analysis
of anionic species was generally less sensitive than that of cationic species, as indicated by
the high to very high RMSE and S. It was not possible to establish a calibration line for Mg
above 100 mg/L, as the IR did not increase with further increases in concentration. The
calibration curves for Sr are shown in Figure 3. In order not to go beyond the scope of this
paper, the other calibration curves are not shown here.
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(a) (b) (c) 

Figure 3. Calibration curves for Sr between the prepared concentration and the calculated intensity
ratio (IR) for the concentration ranges (a) 0.1–5 mg/L, (b) 5–75 mg/L, and (c) 75–1000 mg/L.

By applying the calibration curves provided in Table 2, subtracting the respective IR
blank values (see Table A1) and using the respective threshold values from Table A1 to select
the correct concentration range, the results of the analysis of the bottled mineral waters
were obtained and are given in Table 3. The values were compared with the laboratory
analyses (IC and ICP-MS). The absolute and relative deviations are provided. In addition,
ion balances of all waters are presented and were compared between the laboratory and
the pLIBS analysis. The electrical conductivities calculated from the laboratory and pLIBS
analyses are shown and the latter were compared with values measured before the analysis.
As highly mineralised bottled mineral waters, typically above 1000 μS/cm, showed very
low accuracy, these were excluded from evaluation in order to increase clarity. In addition,
Zn and NO3 were excluded, as they showed low analytical performance (low accuracy—in
particular, inconsistent overestimation).

Table 3. Results of the analysis with the pLIBS compared to laboratory analysis (lab), excluding
SO4 and Zn. pLIBS values are presented as the mean of five measurements (Adhz: 15). All bottled
mineral waters with a conductivity above 1000 μS/cm were omitted. Standard deviations are given
in Tables A2 and A3. Laboratory analyses were performed using ion exchange chromatography (IC)
except for Sr (inductively coupled plasma–mass spectrometry (ICP-MS)). The absolute deviation
(dev) and the relative deviation (r-dev) of the pLIBS from the laboratory value are given for each
value. The ionic balance (IB) was calculated using additional hydrogen carbonate values measured
with a field photometer. Electrical conductivity was calculated according to [34] for both laboratory
and LIBS analysis.

Abbr. Li Na Mg K Ca Sr SO4 Cl Unit IB EC
eq-% μS/cm

Adhz

lab <LoD 11.95 30.63 1.26 18.40 1.891 28.46 18.95 mg/L −41.3 496 lab
pLIBS <LoD 16.11 22.69 0.32 18.74 1.460 <LoD 16.71 mg/L −44.9 434 pLIBS

dev 0.022 4.16 7.94 0.95 0.34 0.431 28.46 2.24 mg/L 598 meas
r-dev 78.6 34.8 25.9 74.8 1.9 22.8 100 11.8 % −3.7 −164 dev

BeWa

lab <LoD 6.19 6.96 0.97 30.16 0.103 21.81 15.46 mg/L −0.7 252 lab
pLIBS <LoD 9.41 7.06 1.86 40.15 <LoD 17.98 11.08 mg/L 30.2 277 pLIBS

dev 0.022 3.21 0.10 0.88 9.99 0.1022 3.83 4.37 mg/L 257 meas
r-dev 78.6 51.9 1.4 91.1 33.1 99.2 17.5 28.3 % 30.9 20 dev
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Table 3. Cont.

Abbr. Li Na Mg K Ca Sr SO4 Cl Unit IB EC
eq-% μS/cm

Blk

lab <LoD <LoD <LoD <LoD 0.24 0.004 1.68 2.01 mg/L −171.2 17 lab
pLIBS <LoD <LoD <LoD 0.01 <LoD <LoD <LoD 0.28 mg/L −193.6 9 pLIBS

dev 0.022 0.005 0.051 0.047 0.077 0.003 1.68 1.73 mg/L 1 meas
r-dev 78.6 26.3 86.4 88.7 78.6 79.4 100 86.2 % −22.4 8 dev

Gest

lab <LoD 11.86 39.42 4.45 31.57 0.529 24.23 20.61 mg/L −45.8 684 lab
pLIBS <LoD 13.71 22.08 4.96 33.25 0.363 10.98 6.36 mg/L −61.8 573 pLIBS

dev 0.022 1.85 17.34 0.52 1.69 0.166 13.25 14.25 mg/L 878 meas
r-dev 78.6 15.6 44.0 11.6 5.3 31.4 54.7 69.2 % −15.9 −305 dev

Laur

lab <LoD 0.97 0.34 0.36 1.38 0.010 3.21 2.13 mg/L −73.2 26 lab
pLIBS <LoD 0.46 0.04 0.01 1.74 < LoD 42.50 0.95 mg/L −163.0 81 pLIBS

dev 0.022 0.51 0.29 0.35 0.36 0.009 39.29 1.18 mg/L 21 meas
r-dev 78.6 52.1 86.9 98.3 26.2 91.8 1225 55.3 % −89.9 60 dev

Löng

lab <LoD 15.05 3.23 1.70 30.33 0.066 40.08 28.79 mg/L 4.8 281 lab
pLIBS <LoD 21.31 3.23 4.17 30.05 0.001 24.99 22.56 mg/L 29.1 278 pLIBS

dev 0.022 6.25 0.00 2.47 0.28 0.065 15.09 6.22 mg/L 275 meas
r-dev 78.6 41.5 0.0 145 0.9 98.8 37.6 21.6 % 24.3 3 dev

Nat

lab <LoD 6.28 7.01 3.09 22.48 0.057 12.02 9.29 mg/L 46.8 177 lab
pLIBS <LoD 5.21 6.05 2.60 37.28 0.001 0.00 6.36 mg/L 98.8 182 pLIBS

dev 0.022 1.07 0.96 0.49 14.80 0.056 12.02 2.94 mg/L 212 meas
r-dev 78.6 17.0 13.7 15.8 65.9 98.6 100 31.6 % 52.1 −30 dev

Odwq

lab 0.036 13.04 23.87 5.83 41.52 0.834 17.56 24.54 mg/L −42.7 592 lab
pLIBS <LoD 22.15 15.25 10.54 36.16 0.694 35.49 19.86 mg/L −57.1 602 pLIBS

dev 0.030 9.11 8.62 4.71 5.37 0.140 17.94 4.68 mg/L 727 meas
r-dev 83.3 69.9 36.1 80.7 12.9 16.8 102 19.1 % −14.4 −125 dev

Rosb

lab <LoD 59.91 65.13 3.09 30.59 0.284 18.15 91.57 mg/L −9.2 1016 lab
pLIBS 0.057 57.49 42.53 7.67 37.75 0.001 0.0002 44.85 mg/L −16.4 876 pLIBS

dev 0.029 2.42 22.60 4.58 7.17 0.284 18.15 46.72 mg/L 1363 meas
r-dev 103 4.0 34.7 148 23.4 100 100 51.0 % −7.3 −487 dev

Saw

lab <LoD 18.73 3.52 1.17 71.03 0.722 58.00 52.78 mg/L 3.7 524 lab
pLIBS <LoD 41.18 4.29 0.62 65.17 0.296 0.0002 32.02 mg/L 60.5 439 pLIBS

dev 0.022 22.45 0.78 0.55 5.86 0.427 58.00 20.76 mg/L 589 meas
r-dev 78.6 120 22.1 47.1 8.2 59.0 100 39.3 % 56.8 −150 dev

Vit

lab 0.055 6.02 19.45 5.07 54.26 0.877 113.17 6.87 mg/L 5.0 511 lab
pLIBS <LoD 5.93 11.94 7.16 43.63 0.764 70.51 4.33 mg/L 1.5 390 pLIBS

dev 0.049 0.09 7.51 2.09 10.63 0.113 42.65 2.54 mg/L 444 meas
r-dev 89.1 1.5 38.6 41.4 19.6 12.9 37.7 37.0 % −3.6 −54 dev

Median r-dev 78.6 34.8 34.7 80.7 19.6 79.4 100.0 37.0 %

Adhz = Adelholzner, BeWa = Bergische Waldquelle, Blk = blank sample, Gest = Gerolsteiner, Laur = Lauretana,
Löng = Löningen, Nat = Naturalis, Odwq = Odenwaldquelle, Rosb = Rosbacher, Saw = Sawell, Vit = Vittel.

Figures 4–6 show correlations between pLIBS predicted concentrations and laboratory
concentrations for all EoIs, excluding bottled mineral waters with a conductivity greater
than 1000 μS/cm. Of these, Figure 4 shows only the singly charged cations (alkali metals)
and Figure 5 the doubly charged cations (alkaline earth elements). The correlations for the
anionic species, excluding NO3, are illustrated in Figure 6.
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Figure 4. Correlations of LIBS predicted concentrations versus IC for the light alkali metals. Li and K
values were adjusted by subtracting a slightly higher value than the blank IR value, otherwise the
results would be overestimated. An optimal correlation is indicated by the black line. Results for
Aqua Mia, Extaler, Fachinger, Marius, and Quellbrunn are not included.

   

Figure 5. Correlations of LIBS predicted concentrations versus IC or ICP-MS analyses (Sr) for the
alkaline earth metals. An optimal correlation is indicated by the black line. Results for Aqua Mia,
Extaler, Fachinger, Marius, and Quellbrunn are not included.

  

Figure 6. Correlations of LIBS predicted concentrations versus IC for the anionic species, excluding
SO4. An optimal correlation is indicated by the black line. Results for Aqua Mia, Extaler, Fachinger,
Marius, and Quellbrunn are not included.
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Figure 7 shows combined Stiff diagrams for all selected bottled mineral waters. Stiff
plots simplify the comparison of waters [38] and are usually applied to compare different
waters—for example, to illustrate spatial or temporal differences in water chemistry. Here,
combined Stiff diagrams were used to compare the same water in different analyses (pLIBS
and laboratory). For each water sample, a Stiff diagram is shown for the laboratory and
for the pLIBS analysis results. Perfectly matching analyses should produce exactly the
same polygon for both analyses. Since an additional photometer was used for the HCO3
concentrations, the results for laboratory and LIBS analysis are identical for HCO3.

Figure 7. Combined Stiff diagrams of the selected bottled mineral waters. One shows the diagram
for the IC and one for the pLIBS results. HCO3 concentrations were measured with a field-ready
photometer and were therefore identical for both analyses.

Figures 8 and 9 show the results of applying the calibrations used for single-element
or paired-element standard solutions (Table 2) to mixed standard solutions. The first
of the two figures shows the results of the mixed test series containing all three singly
charged cations simultaneously (cf. Figure 8). K concentrations appear to have been
slightly underestimated for prepared concentrations below 10 mg/L and overestimated
for prepared concentrations between 40 mg/L and 75 mg/L. For higher concentrations,
the prepared concentrations were clearly underestimated. Li concentrations were slightly
overestimated for concentrations up to 30 mg/L, fit relatively well for concentrations up
to 80 mg/L, and were underestimated for even higher concentrations. Na concentrations
up to 20 mg/L seem to have fit well, but at higher prepared concentrations the predicted
concentrations also seem to have been underestimated.

Figure 9 shows the results of the test series with mixed standards containing all six
cations simultaneously. Compared to the mixed standards with less different cations,
all three alkali elements seem to have behaved differently. The overestimation at low
concentrations and underestimation at high concentrations was even more pronounced for
Li, Na, and K in the second series of tests. Li, in particular, changed and ended up behaving
very similarly to Na. It is noticeable that the alkaline earth metals (doubly charged cations)
Mg, Ca, and Sr behaved similarly to each other but quite differently to the alkali elements
(singly charged cations). They were more clearly underestimated at higher concentrations
but not overestimated at low concentrations. For all elements in both test series, there
appears to have been a plateau at higher concentrations where even higher concentrations
did not produce more signal and therefore a predicted concentration. Attenuation at higher
concentrations appears to have been greater for alkaline earth elements (divalent cations)
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than for alkali elements (monovalent cations). A series of attenuations can be formed from
low to high: K < Li < Na < Mg < Sr < Ca.

Figure 8. Results of applying the calibrations to a series of tests using mixed solutions of known
concentration containing equal concentrations of Li, Na, and K. The (right) graph shows a section of
the (left) graph for better comparison with Figure 9.

Figure 9. Results of applying the calibrations to a series of tests using mixed solutions of known
concentration containing equal concentrations of Li, Na, K, Mg, Ca, and Sr. The light alkali elements
are shown on the (left) and the alkaline earth metals on the (right).

4. Discussion

All calculated LoDs were quite low (in the ppb range). However, these low detection
limits are deceptive. The lowest concentrated standard used was 0.1 mg/L for the cations
and 0.5 mg/L for the anions. Nevertheless, the highest LoD calculated was 0.021 mg/L
(Ca). It is particularly striking that the detection limits for the anions were particularly
low. It has been shown in earlier research that the quantitative analysis of sulphur and
chlorine with LIBS is subject to some difficulties and that indirect determination is often
necessary to achieve low detection limits [39,40]. This is due to the low excitation in the
plasma caused by the high ionisation energy of Cl and S [39]. However, [41] pointed out
that the determination of LoDs with the outdated IUPAC formula used in this work is
not particularly appropriate for multivariate LIBS analysis [41]. Yet, since this formula is
currently the most widely used calculation of the LoD and comparability with [25] should
be ensured, a different calculation was not used. Although the absolute detection limits may
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be somewhat higher in reality, it has been shown that very low concentrations (<0.1 mg/L)
can be detected in standard solutions with pLIBS.

It may seem cumbersome to have several calibration curves within one EoI for different
concentration ranges, but by using THVs (cf. Table A1) the selection of the correct range
and therefore the formula can be completed automatically in a spreadsheet. The advantage
of having multiple calibration curves for an EoI at different concentration ranges is that
the changing slope of a single curve can be better represented. If self-absorption correction
is applied in the future, it may not be necessary to have several concentration ranges but
rather only one calibration curve, as the slope will no longer change as much.

The high determination coefficients for Li, Na, and K in [41] could also be achieved for
other elements and compounds, especially at low to medium concentrations (cf. Table 2). At
higher concentrations (generally > 100 mg/L), the determination coefficients were higher,
as expected. For Mg, no calibration line could be established, as the IR did not increase
with increasing concentration. This is an indication of strong self-absorption [35].

Zn, and NO3 were excluded from the evaluation, as they showed low analytical perfor-
mance. For Zn, on the one hand, the test series was not diverse enough to make statements
on the applicability to natural waters and, on the other hand, the measured values were
clearly overestimated. NO3 concentrations showed no clear correlation between pLIBS and
IC analysis, with a strong tendency of overestimation. For the pLIBS analysis of NO3, it
cannot be excluded that the results were partly falsified. It is possible that some cation
samples were used for the pLIBS measurements instead of the unaltered anion samples.
In contrast to the anion samples, these were acidified with HNO3 (see liquid analyses) to
prevent the cations from precipitating during transport to the laboratory for IC and ICP-MS
analyses. Since only very small amounts of diluted high-purity nitric acid were used, this
should only have had an influence on the nitrate concentrations. However, this would
explain why there was no correlation between pLIBS and IC analyses for nitrate.

The median of the relative deviation for all Ca analyses with pLIBS compared to
laboratory analyses was fairly good, at 19.6% (cf. Table 3). Figure 5 shows a fairly good
correlation between pLIBS and IC data for Ca up to 75 mg/L.

The median of the relative deviation for all Na and Mg analyses with pLIBS compared
to laboratory analyses was reasonable, at 34.8% and 34.7%, respectively (cf. Table 3).
Figure 4 shows a fairly good correlation between pLIBS and IC data for Na with only one
conspicuous outlier with a very high standard deviation (9.52 mg/L). Figure 5 shows a
correlation between pLIBS and IC data for Mg, with a tendency for higher concentrations to
be underestimated. This trend could be interpreted as a progressive exponential function,
which could indicate an increase in self-absorption with increasing concentration.

The median of the relative deviation for all Cl analyses with pLIBS compared to
laboratory analyses was still reasonable, at 37.0% (cf. Table 3). Figure 6 shows a fairly good
correlation between pLIBS and IC up to 30 mg/L, with a tendency to underestimate higher
concentrations, similar to Mg (cf. Figure 5), from which the same conclusions can be drawn.

The median of the relative deviation with pLIBS compared to laboratory analyses was
quite high for Li, Sr, and K, at 78.6, 79.4, and 80.7%, respectively (cf. Table 3). However, the
test series was not very diverse for Li, with most values close to or below the LoD of the
IC analyses (0.027 mg/L). It is therefore hardly surprising that most of the values for the
pLIBS Li analysis were also close to or below the LoD of the pLIBS analysis. A large part of
the relative deviation for Li thus resulted from the different LoDs between pLIBS and IC
analysis. As the test series was not diverse enough for Li concentrations (cf. Figure 4), it is
also difficult to say whether there was a good correlation between pLIBS and IC analysis.
For Sr, the deviation also mainly came from very low concentrations. Many pLIBS results
were below the LoD of 0.0008 mg/L. However, there was a correlation between pLIBS and
IC data for concentrations up to 2 mg/L (cf. Figure 5). For K, Figure 4 shows a fairly good
correlation between pLIBS and IC data, with a tendency for all concentrations to be slightly
overestimated.
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The median of the relative deviation for all SO4 analyses with pLIBS compared to
laboratory analyses was quite high, at 100.0% (cf. Table 3). In addition, the correlation
between pLIBS and IC data was quite poor (cf. Figure 6).

The IB can help to identify possible analytical discrepancies between cationic and
anionic species concentrations. Therefore, a negative IB indicates excessive findings of
anionic species concentration or underestimation of cationic species concentration. A
positive IB indicates too low an analysed anionic species concentration or too high a cationic
species concentration. Seven out of 11 results of IB calculated with pLIBS had a negative IB,
which indicates that mostly anions were overestimated and or cations underestimated.

Ideally, the calculated ECs for both analyses (pLIBS and laboratory) should match
the measured EC value. A deviation from the measured value is a clear indication of
non-analysed or incorrectly analysed ions. If the calculated EC value of the laboratory
measurement differs from the measured value, it can be assumed that either ions precip-
itated, samples were contaminated, or they were measured incorrectly. Looking at the
values in Table 3, one water stands out as having had a deviation of more than 30% for the
laboratory EC measurements: the blank one. This was mainly due to the low mineralisation
of the deionised water, where minimal absolute differences in the analysis result in large
percentage deviations. For the pLIBS analysis, 4 of the 11 waters showed a deviation of
more than 30% (Blk, Gest, Laur, Löng, Saw). This is an indication that the total of all
determined ions for these waters differs from the real solution content.

Furthermore, precipitation of CaCO3 prior to both pLIBS and IC analysis can be ob-
served by comparing the analysis results with the values indicated on the bottles (Adhz,
Gest, Odwq, Rosb, Vit). However, other cations or anions do not appear to have been af-
fected and precipitation occurred prior to analysis, as shown by comparative measurements
with newly purchased bottles and re-measurements of the original samples.

The Stiff diagrams perfectly illustrate the differences between pLIBS and laboratory
analyses (cf. Figure 7). Based on the agreement between the analyses, the plots can be
grouped into two categories: good correlation between laboratory and pLIBS analysis
(first row) and moderate correlation (second and third rows). A third category with
poor correlation would have been needed for waters with a conductivity greater than
1000 μS/cm or concentrations of several ions >> 6 mmoleq/L.

For clarity, the uncertainty and the precision of the pLIBS analysis of the bottled
waters are reported separately in Table A3 in the Appendix A. Standard deviations (SD) for
replicates on one sample in the range of 0.003 to 14.01 mg/L for all selected samples and
elements are quite acceptable for a portable instrument, taking into account the diverse
chemistry, with up to approximately 120 mg/L solution content per element (cf. Table A3,
highly mineralised waters excluded). Looking at the median relative standard deviation
(RSD) for the different elements, the values appear quite high. The lowest RSD was
11% (Ca) and the highest 39% (SO4). However, these values are comparable to the RSDs
reported by other authors who analysed aqueous samples by laboratory LIBS. For example,
a precision of 2–6% RSD was achieved for aerosol LIBS and a precision of 13–22% for
microdrop LIBS [16]. For more similar sample preparation techniques using LSC, 11–17%
RSD was achieved for geometric constraint LSC and 25–36% RSD for unconstrained direct
LSC [19]. Precision in LIBS analysis is typically low (5–20%) due to shot-to-shot variability
and matrix effects [42]. Other effects, such as the slightly different distribution of the
EvR, may also occur, resulting in lower precision. It is therefore advisable to perform
multiple measurements per sample. At least three or, better, five measurements per sample
are recommended for the presented method. Due to the small sample volume required
(0.75 μL) and the short measurement time, this can be achieved quickly and easily.

Compared to testing single-element standard solutions [25], it is to be expected that
there are more effects affecting the results of an analysis of mixed solutions or natural
waters with an even more complex matrix. As LIBS analysis is highly susceptible to the
so-called matrix effect [35], small changes in the matrix can cause the emitted signal to be no
longer proportional to the concentration. There are several indications of matrix effects in
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the results of the mineral water analyses. These are particularly evident in the fact that more
highly mineralised waters such as Aqua Mia, Extaler, and Marius generally showed very
poor analytical results and were omitted from the evaluation. If a suitable self-absorption
correction is used in the future, these more highly mineralised waters should also be
analysable. In addition, especially for Mg and Cl concentrations above 15 mg/L, there
is a systematic underestimation, which can even be seen as a recognisable (progressive)
exponential function in the correlation plots (cf. Figures 5 and 6). For the other cations,
this effect might also occur if samples with higher concentrations had been analysed. The
discarded data for Ca and Sr confirm this assumption. However, the self-absorption effect
is difficult to investigate in complex natural waters.

In order to gain a better understanding of this effect, mixed standard solutions were
analysed in addition to the bottled mineral waters, and the calibrations developed were
used for analysis. A small mixed standard containing Li, Na, and K and a more com-
prehensive one containing Li, Na, K, Ca, Mg, and Sr were analysed. The results of the
two test series show clearly that there were both amplifying and attenuating effects that
cancelled out the proportionality (cf. Figures 8 and 9). Nevertheless, a clear correlation
is recognisable. This can be described as degressive proportionality, in which the mea-
sured concentration increases less and less as the real concentration increases. Typically,
with low concentrations attenuating effects can be visible, especially for the light alkali
elements Li, Na, and K. This effect was less pronounced in the test series without the doubly
charged cations. As with all elements in both test series, a plateau was reached at higher
concentrations, where even higher concentrations did not produce significantly more signal
and therefore a predicted concentration, the linearity, was cancelled out. This is a clear
hint of self-absorption [41]. When using single-element standards, these problems were
encountered with concentrations typically above 160 mg/L [25]. This limit seems to have
dropped significantly for more complex waters and was more pronounced for the alkaline
earth metals than for the alkali elements (cf. Figures 8 and 9).

Typically, self-absorption has several effects on the line shape, so these should be
visible in the lines used for calibration. Self-reversal can occur in LIBS analysis when there
are spatial gradients in plasma temperature and electron number density. This can lead
to a dip at the centre of an emission peak, which can be strong enough to erroneously
identify two peaks [43]. In this work, no line showed typical self-reversal effects such as a
dip at any maximum. However, this does not mean that there was no self-absorption [44].
Self-absorption was visible in several lines, as the IR did not grow proportionally with
increasing concentration (typically above 100 mg/L) and the curve saturated (cf. Figures 8
and 9). This can also be seen in the broadening of the peaks, which resulted in a higher
full width half maximum (FWHM) (cf. Figure 10a,b). It can clearly be seen that for both
K 769.8 and Li 670.7 the lines not only increased in height with increasing concentration
but also became wider. Between 10 and 25 mg/L there was still a large difference in peak
height for K 769.8 (cf. Figure 10b). Between 50 and 125 mg/L the difference was already
smaller and the height variation at the same concentration was greater. In addition, the
lines at 10 mg/L were only a little more than half a nm wide at the base. At 125 mg/L, it
was already more than 2 nm. This made integration more difficult. If the integration range
is too large, there may be overlap with other peaks. If it is too small, the area under the
peaks will be underestimated for higher concentrations. The effect of peak broadening also
occurred with all other lines of the other elements and compounds investigated. However,
it was particularly pronounced for the higher-intensity peaks.

157



Chemosensors 2023, 11, 479

  
(a) (b) 

Figure 10. Line broadening with increasing concentration (1–125 mg/L). (a) Li 670.7 nm;
(b) K 769.8 nm. Experimental parameters: 5–6 mJ/pulse, 50 Hz, 2 μs gate delay, Ar atmosphere.

Ref. [43] did not observe any self-reversal or self-absorption when analysing the
liquids directly, even at a concentration of 40,000 mg/L. In contrast to [43], self-absorption
played a significant role with increasing concentration when using LSC. However, [43] also
found both self-reversal and self-absorption effects when analysing solids, and the main
difference in this study is that by analysing the evaporation residue, solids were analysed
instead of liquids.

This difference was also highlighted by [43] and attributed to the fact that the atomic
densities of analytes in plasma are approximately 1000 times greater for a pure solid than
for liquid solutions and are therefore optically thicker.

Ref. [21], who used LSC on filter paper in the concentration range of 0–1000 mg/L, also
experienced self-absorption and therefore had to apply two calibration lines per element
to fit the data. At lower concentrations, a steeper straight line could be applied than at
higher concentrations [21]. This clearly reduced the sensitivity at higher concentrations, as
in this work.

The same effect was observed by [17], who also used an SE LSC method. They
explained the increased effect of self-absorption by the fact that analytes and standards are
concentrated in a very small area after drying [17]. It can therefore be assumed that the
effect is even stronger with SE methods without filter paper, since the evaporation residue
is confined to a smaller area than when a filter paper is used.

In this work, a relatively long gate delay of 2 μs was used. The gate delay was initially
optimised for Li, Na, and K [25] and not further adjusted in this work to obtain comparable
data. Ref. [45] showed that sensitivity is not significantly affected by increasing the gate
delay but that precision is increased and self-absorption reduced by a longer gate delay.
However, they used significantly shorter gate delays of 250 ns and 500 ns. Ref. [46] also
recommend mitigating self-absorption by recording the signal with a longer gate delay,
since this effect tends be more prominent in the early stages of laser-generated plasma.

Looking at the spectra of the gate delay investigations in [25], which were recorded
similarly to the data within this study, it is noticeable that not only was the peak height
affected by a change in gate delay at the same concentration (cf. Figure 11).There is also
a clear broadening of the line at shorter gate delays (more intense grey values). With a
longer gate delay, the peaks become significantly narrower and the effect of self-absorption
decreases. This effect was observed for the three tested elements of Li, Na, and K.
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(a) (b) 

Figure 11. Line broadening with increasing gate delay (0–132 IID). (a) Li 670.7 nm; (b) K 769.8 nm.
Experimental parameters: stable concentration of evaporated droplets (1000 mg/L), 5–6 mJ/pulse,
50 Hz, variable gate delay, Ar atmosphere. Grey value increase with increasing gate delay.

Due to the strong self-absorption effects, future work will focus on the improvement
of the method by the addition of a self-absorption correction to improve accuracy and
compensate for the underestimation of higher predicted concentrations. When applying
self-absorption correction, it may also be possible to have only one calibration curve instead
of two or three for different concentration ranges. However, in this work, it was important
to show that the method is basically applicable to natural waters and to determine the
influencing factors. These seem to be determined less by the number of different elements
than by self-absorption. In addition to filters to remove any undissolved components prior
to analysis, a mobile hot plate to evaporate the micro droplets is required for future field
application of the method.

The possibility to set up calibration curves for Zn with high coefficients of determina-
tion in standard solutions (cf. Table 3) proves that, in principle, it is also possible to analyse
environmentally relevant elements in aqueous solutions with portable LIBS. In this work,
no correlation between pLIBS and ICP-MS results for Zn could be found with the bottled
mineral waters used. However, the test series was not very diverse for Zn, with all but one
value below 0.1 mg/L in ICP-MS analyses. With an appropriate self-absorption correction
and a diverse test series, Zn and possibly other problematic elements such as Pb and As
should theoretically also be quantifiable.

It is clear that the documented analytical approach is not only applicable to single-
element standard solutions but also to low mineralised natural waters with complex
matrices. By adding a self-absorption correction, it should also be possible to quantitatively
analyse more highly mineralised waters and improve the precision. As demonstrated, there
is significant potential for developing field-based pLIBS for quantitative water analysis.

5. Conclusions

In our previous study, pLIBS was evaluated for the quantitative analysis of dissolved
alkali metals in single-element standard solutions. The aim of this work was to show
whether pLIBS can also be used for chemical compositional measurements of natural
waters. The results of this study demonstrate that it is possible to quantitatively analyse
low to medium mineralised bottled mineral waters with pLIBS for some of the main cations
and anions. In higher mineralised waters with an EC above approximately 1000 μS/cm,
the concentrations of the main cations and anions were mostly underestimated. This effect
was mainly due to self-absorption, which was clearly visible in strong line broadening with
increasing concentration. The effect of self-absorption was quite strong, despite a long
gate delay being used, which should have compensated for high self-absorption. However,
no self-reversal could be detected in any peak, which should have made self-absorption
correction easier. There have been differences observed for singly ionised cations (alkali
elements) compared to doubly ionised cations (alkaline earth metals). The self-absorption

159



Chemosensors 2023, 11, 479

seems to have been pronounced for alkaline earth metals. Therefore, the analysis of alkali
elements is currently more reliable than for alkaline earth metals, and the analysis of
higher concentrations is more reliable for alkali elements. Analysis of anions is less reliable,
even though LoDs may be calculated lower than for the other investigated ions. Of the
anions, only Cl showed reasonably reliable results in natural waters. In general, the low
detection limits are deceptive and do not reflect how well an EoI can be analysed. An
analysable concentration range for natural mineral waters using the method described is
approximately between 0.1 and 100 mg/L per element.

The next step in the development of the method is the introduction of an adapted
self-absorption correction. It is quite promising that more elements will be calibratable
(e.g., Zn). It should therefore be possible to analyse environmentally significant elements
in the future. In any case, the ability to analyse natural mineral waters with complex
matrices for their main ions opens up many new possibilities for pre-screening and on-site
water analysis.
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Appendix A

Table A1. Threshold values (THV) for selecting the correct formula according to the concentration
range and the mean values of the blank IR (mean b), which were subtracted from the calculated IR
values. THV I = transition of the first to the second concentration range. THV II = transition of the
second to the third concentration range. Unitless IR values are given.

Li Na Mg K Ca Sr SO4 Cl

THV I 0.100 0.070 0.130 0.020 0.175 0.140 0.0002 0.0028
THV II 3.000 0.600 0.700 0.550 1.000 0.850

mean b 0.015 0.0141 0.0222 0.022 0.0093 0.0019 0.0003 0.0001

Table A2. Relative standard deviations (RSDs) and detection limits (LoDs) of IC and ICP-MS*
analysis.

Abbr. Li Na Mg K Ca Sr* SO4 Cl Unit

RSD 0.611 0.476 0.449 0.666 0.355 0.149 0.072 %
LoD 0.028 0.019 0.059 0.053 0.098 0.0000214 0.218 0.075 mg/L
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Table A3. Standard deviations (SDs) calculated from five pLIBS (Adhz: 15) measurements per water
sample and median values of the relative standard deviations (RSDs) for the elements investigated.
Readings below the detection limit were not included in the calculation of the RSD. For this reason,
no RSD could be calculated for Li.

SD Li Na Mg K Ca Sr SO4 Cl Unit

Adhz 0.06 4.21 4.86 0.73 3.08 0.23 13.51 4.56 mg/L
BeWa 0.06 1.89 0.51 0.54 2.62 0.00 7.00 2.14

Blk 0.03 0.13 0.05 0.29 0.13 0.01 14.01 3.31
Gest 0.06 4.23 4.94 0.97 5.28 0.08 7.00 1.65
Laur 0.04 0.29 0.10 0.34 0.18 0.01 8.58 3.02
Löng 0.05 3.21 0.21 0.20 3.23 0.01 8.58 3.44
Nat 0.05 2.44 0.96 0.88 4.33 0.01 13.10 2.70

Odwq 0.10 1.60 1.78 1.08 3.03 0.09 7.00 1.65
Rosb 0.07 2.37 3.05 1.08 2.26 0.01 8.58 2.14
Saw 0.15 9.52 0.74 0.71 4.24 0.03 11.07 2.53
Vit 0.16 2.34 3.37 1.88 7.22 0.16 7.00 2.14

Median RSD - 25 17 29 11 22 39 26 %
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