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Preface

There is a large amount of data from different types of sensors, for instance, multispectral

electro-optical/infrared (EO/IR) and computed tomography/magnetic resonance (CT/MR) images,

among others. How to take advantage of multimodal data for object detection and pattern recognition

is an active field of research. Information fusion (IF) is used for enhancing the performance of pattern

classification, while deep learning (DL) technologies, including convolutional neural networks

(CNNs), are powerful tools for improving object detection, segmentation, and recognition. It is viable

to combine DL and IF to boost the overall performance of pattern classification and target recognition.

Such combinations of powerful techniques may exploit the deeply hidden features of the multimodal,

spatial, or temporal data.

This Reprint presents cutting-edge research utilizing deep learning (DL) and information

fusion (IF) techniques. Key research areas include image and video analysis, covering topics

such as super-resolution, object detection, semantic segmentation, video captioning, and text

processing, including labeling enhancement and screening misinformation (e.g., from social media).

Biometric applications explore innovations in human identification using facial and finger vein

recognition, facial micro-expression analysis, and fatigue detection. Advanced applications extend

to handwritten recognition, tracking supermarket customer behavior, parcel sorting, predicting road

surface conditions, and plastic waste classification.

Yufeng Zheng and Erik Blasch

Guest Editors
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Article

Exponential Fusion of Interpolated Frames Network (EFIF-Net):
Advancing Multi-Frame Image Super-Resolution with
Convolutional Neural Networks
Hamed Elwarfalli 1 , Dylan Flaute 1,2 and Russell C. Hardie 1,*

1 Department of Electrical and Computer Engineering, University of Dayton, 300 College Park,
Dayton, OH 45469, USA; elwarfallih1@udayton.edu (H.E.); flauted1@udayton.edu (D.F.)

2 Applied Sensing Division, University of Dayton Research Institute, 300 College Park, Dayton, OH 45469, USA
* Correspondence: rhardie1@udayton.edu

Abstract: Convolutional neural networks (CNNs) have become instrumental in advancing multi-
frame image super-resolution (SR), a technique that merges multiple low-resolution images of the
same scene into a high-resolution image. In this paper, a novel deep learning multi-frame SR
algorithm is introduced. The proposed CNN model, named Exponential Fusion of Interpolated
Frames Network (EFIF-Net), seamlessly integrates fusion and restoration within an end-to-end
network. Key features of the new EFIF-Net include a custom exponentially weighted fusion (EWF)
layer for image fusion and a modification of the Residual Channel Attention Network for restoration
to deblur the fused image. Input frames are registered with subpixel accuracy using an affine
motion model to capture the camera platform motion. The frames are externally upsampled using
single-image interpolation. The interpolated frames are then fused with the custom EWF layer,
employing subpixel registration information to give more weight to pixels with less interpolation error.
Realistic image acquisition conditions are simulated to generate training and testing datasets with
corresponding ground truths. The observation model captures optical degradation from diffraction
and detector integration from the sensor. The experimental results demonstrate the efficacy of EFIF-
Net using both simulated and real camera data. The real camera results use authentic, unaltered
camera data without artificial downsampling or degradation.

Keywords: multiframe super-resolution; convolutional neural network; fusion of interpolated frames;
image restoration; subpixel registration

1. Introduction

In most image acquisition scenarios, there is a desire for the highest spatial resolution
possible. However, ultimately, image resolution is limited by the sensor technology and
characteristics. Using image post-processing techniques, it is possible to mitigate some
of the limitations of a given sensor that may include noise, blur, and aliasing from un-
dersampling. Processing that seeks to improve the resolution of an image beyond that of
the native sensor is referred to as super-resolution (SR) [1]. Methods that use one input
low-resolution (LR) image and produce one output high-resolution (HR) image are referred
to as single-image super-resolution (SISR), while methods where multiple frames are fused
to produce one HR image are referred to as multi-frame SR (MFSR). Several significant
works documented in the literature [2–8] address SR for high-dimensional inputs, such as
videos and 3D scans. The generation of HR images offers enriched details of locations and
inherent objects, proving crucial in various applications, including high-definition TV sets,
larger computer screens, and portable devices, like cameras, laptops, and mobile phones.

Convolutional neural networks (CNNs) have successfully been applied to many image
processing and analysis tasks in security, surveillance, satellite, and medical imaging [9–17].
Early CNN-based SISR methods were introduced by Dong et al. [18,19]. Kim et al. presented

Sensors 2024, 24, 296. https://doi.org/10.3390/s24010296 https://www.mdpi.com/journal/sensors1
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the VDSR and DRCN networks [20,21]. Tai et al. pioneered DRRN and introduced memory
blocks in MemNet [22,23]. Furthermore, SRGAN, a GAN-based approach for photo-
realistic SR, was proposed by Ledig et al. [11]. ResNet was introduced by K. He et al.,
which was later extended to SRResNet [24]. EnhanceNet utilized a GAN-based model
to merge perceptual loss with automated texture synthesis [14]. Recent years have seen
significant improvements in deep SISR algorithms, such as EDSR [13], wide feature models
by Yu et al. [25], and the residual channel attention network (RCAN) by Zhang et al. [26].

In contrast to SISR, MFSR focuses on extracting information from multiple LR images
of the same scene, proving effective in overcoming undersampling issues in imaging
systems [1]. In cases with relative motion between the scene and camera during video
acquisition, subpixel displacements are common between frames. The diversity in sampling
due to this motion can be leveraged to increase the sampling rate, reducing aliasing and
improving resolution [27]. With MFSR, there is a trade-off between the temporal and spatial
resolution [28]. Deep learning-based approaches have recently been applied to MFSR
problems [29–34]. Bhat et al. proposed a multi-frame burst SR method that uses PWCNet
for feature alignment and an attention-based fusion mechanism [35]. Notably, deformable
convolution has proven effective in addressing interframe alignment issues [36–39]. Several
recent architectural advancements have been proposed for specific purposes. For example,
the work by Cao et al. [40] focuses on enhancing the resolution of human facial images. This
approach involves extracting distinctive features from each LR image and utilizing these
features, along with the relative shifts among LR images, to reconstruct the final SR image.
In another study by An et al. [41], deep learning methodologies are applied within satellite
and remote sensing domains. Additionally, there have been endeavors to integrate SISR
and MFSR approaches. For instance, Gonbadani et al. [42] proposed an optimization-based
method leveraging LR images and their associated semi-HR images generated via SISR.
This optimization yields a closed-form solution, constituting a weighted combination of
LR and semi-HR images. A multiframe network has also been introduced by the current
authors that uses a single CNN architecture to fuse and restore multiple interpolated input
frames [43].

This paper introduces a novel MFSR CNN model, named the Exponential Fusion of
Interpolated Frames Network (EFIF-Net). The EFIF-Net extends the authors’ previous
algorithm, the Fusion of Interpolated Frames Network (FIFNET) [43]. This new model
seamlessly combines multi-frame image fusion and restoration within a single end-to-end
network. Key enhancements in EFIF-Net include the introduction of a custom exponen-
tially weighted fusion (EWF) layer for image fusion and a modification of the RCAN for
restoration to reduce the blurring in the fused image. We employ subpixel affine motion
registration that accounts for camera platform motion. The input frames are externally
upsampled and aligned using single-image interpolation. The interpolated frames are then
fused using the custom EWF layer, taking into account subpixel registration information to
assign more weight to pixels with lower interpolation errors.

For the generation of training and testing datasets, we simulate realistic image acquisi-
tion conditions, incorporating ground truth data. Our observation model captures optical
degradation from diffraction and detector integration in the sensor. The experimental
results highlight the effectiveness of EFIF-Net, using both simulated and real camera data.
Notably, the real camera results are based on unaltered, authentic camera data without
artificial downsampling or degradation. Owing in large part to the newly introduced
EWF layers, the EFIF-Net method surpasses the performance of the previous FIFNET,
particularly when dealing with a higher number of input frames.

The remainder of this paper is organized into several sections as follows. In Section 2,
we define our observation model and introduce the proposed EFIF-Net MFSR method.
We also provide details about network training and the performance analysis conducted.
Experimental results are presented in Section 3. Finally, we conclude the paper with a
discussion in Section 4.
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2. Materials and Methods
2.1. Observation Model

The observation model is a mathematical model that captures the nature of the degra-
dation processes that occur during image acquisition. The observation model can be used
to generate synthetic datasets with degraded images and corresponding ground truth
images for deep learning. In order to ensure that a CNN can provide a useful SR solution,
the degradation process applied to generate training data must imitate realistic degradation
effects. In this work, the observation model relates a static 2D ideal scene image with a
group of LR observed frames with affine motion, blur, undersampling, and noise.

A block diagram of our observation model is shown in Figure 1. This is similar
to the one used in the author’s prior work [43], except here we incorporate an affine
motion model rather than simple translation as before. The affine model makes the current
approach more widely applicable to realistic camera platform motion [44]. The observation
model replicates the physical image acquisition process by starting with a Nyquist sampled
desired 2D fixed scene d(n1, n2). Next, the model uses affine warping with bicubic subpixel
interpolation to model the relative motion between the camera and scene (usually the result
of camera motion and static scene). The affine coordinate warping may be expressed as

x̃(k) = Akx + tk, (1)

where x = [x, y]T are the reference spatial coordinates and x̃(k) = [x̃(k), ỹ(k)]T are the
warped coordinates for frame k. Note that the rotation, zoom and shear for each frame
relative to a reference are captured in the matrices

Ak =

[
A1,1(k) A1,2(k)
A2,1(k) A2,2(k)

]
, (2)

and translation is captured in tk = [tx(k), ty(k)]T , for k = 1, 2, ..., K. The output of the
warping process is represented as dk(n1, n2) as shown in Figure 1.

Figure 1. Observation model used to generate training data with known ground truth, as well as
testing data for quantitative performance analysis. The input of the observation model is a single HR
image d(n1, n2), and its output is a sequence of K LR images fk(n1, n2).

The next step involves applying a realistic imaging-system point spread function (PSF),
hd(n1, n2), using 2D convolution to create the blurred frames f̃k(n1, n2). The PSF modeling
follows that reported previously by the authors [43] using the optical parameters in Table 1.
The blurred image is then downsampled keeping every L’th pixel in the horizontal and
vertical dimensions to produce a below Nyquist rate sampled image. This downsampled
image is then corrupted with additive Gaussian noise, resulting in a set of K LR frames
denoted by fk(n1, n2), where k = 1, 2, . . . , K. While this one set of camera parameters is
employed here, our observation model can be readily adapted to any camera, given the
basic optical parameters of that system.

3
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Table 1. Optical parameters used for training and testing for real and simulated images. These
parameters are based on an Imaging Source DMK21BU04 visible USB camera with a Sony ICX098BL
CCD sensor. The camera is equipped with a 5 mm focal length lens set to an f-number of F = 5.6.
The camera/sensor and optics were obtained from The Imaging Source, LLC, Charlotte, NC, USA.

Parameter Value

Aperture D = 0.893 mm
Focal length l = 5.00 mm
F-number F = 5.60
Wavelength λ = 0.550 µm
Optical cut-off frequency ρc = 324.68 cyc/mm
Detector Pitch p = 5.6 µm
Sampling frequency 1/p = 178.57 cyc/mm
Undersampling M = 3.636
Upsampling factor L = 3.000
Noise model Additive Gaussian (ση = 0.001)
Dynamic range of dataset 0–1
Camera motion model Affine

2.2. EFIF-Net Multiframe Super-Resolution

In this section, we present the EFIF-Net MFSR architecture and describe the pre-
processing steps. Furthermore, we introduce and explore the significance of our unique
innovation, the custom EWF fusion layer. This layer plays a pivotal role in seamlessly
fusing interpolated frames, significantly enhancing the overall efficiency and performance
of our model. Finally, we detail the network training process.

2.2.1. EFIF-Net Architecture

The EFIF-Net model is an end-to-end MFSR method as shown in Figure 2. The input
is composed of the upsampled and aligned interpolated frames gk(n1, n2) and the corre-
sponding subpixel registration arrays Rk(n1, n2) for k = 1, 2, . . . K. More will be said about
the preprocessing required to produce this input in Section 2.2.2. The EFIF-Net output
is one SR image estimate. We design the EFIF-Net model to accomplish two main aims:
fusion and deconvolution. The fusion stage is completed by our custom EWF layer that is
described in detail in Section 2.2.3. For deconvolution, we employ a modified version of the
RCAN model. The RCAN model is a state-of-the-art CNN architecture originally designed
for SISR [26]. In particular, we use only the residual in residual (RIR) structure of RCAN
to form a very deep network to deconvolute/restore the imagery to produce the final SR
image estimate. We remove the upscaling module from the RCAN network because the
input size of the network matches the size of its output.

Figure 2. EFIF-Net architecture. Interpolated and aligned observed frames are combined with the
subpixel registration information to form the input channels. The red layer represents our custom
fusion layer. The fused feature images are then processed with a non-upsampling RCAN network to
perform restoration. The output of the EFIF-Net is a single SR image.

4
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2.2.2. Preprocessing

We preprocess the frames generated by the observation model depicted in Figure 1
using MATLAB Version R2022b to prepare it as the input for EFIF-Net. The LR frames,
denoted as fk(n1, n2) and produced by the observation model, are individually subjected to
upsampling and alignment using MATLAB’s “interp2” function with bicubic interpolation.
This step brings them onto a common L× upsampled HR grid. To automatically determine
the necessary affine warping for alignment, we employ subpixel affine image registration
using the method in [45], with the initial frame serving as the reference. These individually
interpolated frames are represented as gk(n1, n2), where k ranges from 1 to K. Bicubic
interpolation is chosen due to its ability to strike a balance between computational efficiency
and performance as outlined in previous research by Hardie et al. [46].

Furthermore, we compute subpixel interframe registration information denoted as
Rk(n1, n2) for each interpolated pixel and introduce these data as additional input channels
to the neural network. The distance computation is given by

Rk(n1, n2) =
√

d2
x(k, n1, n2) + d2

y(k, n1, n2), (3)

where dx(k, n1, n2), and dy(k, n1, n2) are the horizontal and vertical distances, respectively,
of interpolated pixel gk(n1, n2) to the nearest LR pixel in the k’th input frame. A visual
representation of Equation (3) is provided in Figure 3.

Figure 3. Spatial sampling grid shown in LR pixel spacings. The pixel positions of interpolated frame
g3(n1, n2) are shown as blue circles for L = 3. The corresponding LR frame samples f3(n1, n2) are
shown as red squares for a shift of s3 = [0.18, 0.6]T LR pixels and rotation of θ = −2.527 degrees.
The subpixel distances R3(n1, n2) are shown as black lines. An example of a large distance value is
shown in magenta, and a small one is shown in green.

Note that the interframe registration information in Equation (3) has the same dimen-
sions as the interpolated frames and may be viewed as images. This is illustrated in Figure 4
for K = 3 frames with shift and rotation frame motion and L = 3. In this figure, the darker
pixels correspond to pixels with smaller interpolation distances, and therefore (presumably)

5
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lower interpolation error [44]. We designate the x- and y-shifts in LR pixels for frame k as sk
and the rotation in degrees as θk. Figure 4a corresponds to the interpolated reference frame
with no motion (i.e., s1 = [0.00, 0.00]T and θ0 = 0). Here, every L’th pixel starting from pixel
n1 = n2 = 1 lines up exactly with an input pixel and has an interpolation distance of 0. We
present three example patches of subpixel registration arrays with motion in Figure 4b–d.
They correspond to frame motions of s2 = [0.52,−0.40]T , θ2 = −0.37, s3 = [0.93,−1.08]T ,
θ3 = −0.48, and s4 = [0.83, 1.28]T , θ4 = −4.46, respectively.

(a) (b) (c) (d)

Figure 4. Visualization of Rk(n1, n2) for a 25× 25 patch size with different shifts and rotations for four
frames and L = 3. The pixel brightness is proportional to the interpolation distance and presumed
interpolation error. Pixel shifts and rotation are (a) s1 = [0.00, 0.00]T , θ1 = 0, (b) s2 = [0.52,−0.40]T ,
θ2 = −0.37, (c) s3 = [0.93,−1.08]T , θ3 = −0.48, and (d) s4 = [0.83, 1.28]T , θ4 = −4.46.

2.2.3. Exponential Weighted Fusion Layer

In our proposed EFIF-Net architecture, the custom EWF layer is located immediately
after the input layer as shown in Figure 2. The EWF layer produces linear combinations
of the input frames (fusion), pixel-by-pixel, with weights determined by a decreasing
(negative-exponential) function of an interpolated frame’s distance to the nearest measured
sample point Rk(n1, n2). That is, the EWF layer takes in the K interpolated and aligned
input frames gk(n1, n2) along with the per-frame subpixel distance arrays Rk(n1, n2) and
outputs S different fused frames Fs(n1, n2) as shown in Figure 5. Specifically, the fused
images are given by

Fs(n1, n2) =
∑K

k=1 wk,s(n1, n2)gk(n1, n2)

∑k
k=1 wk,s(n1, n2)

, (4)

for s = 1, 2, . . . , S, where the fusion weights are defined as

wk,s(n1, n2) = e−Rk(n1,n2)
2/β2

s . (5)

The basic idea behind the EWF layer is that an interpolated pixel that is near an
original LR pixel will have less interpolation error and should be given a higher weight in
estimating the true intensity of the pixel based on the noisy interpolated intensities. This
takes advantage of the multiframe setting since, if diverse camera motion is present, each
HR interpolated pixel is likely to have an LR pixel nearby in at least one of the input frames.
The rate of decay of the exponential with respect to distance Rk(n1, n2) is a hyperparameter
βs that we control independently for each output fusion frame Fs(n1, n2). Note that the
fusion process produces a stack of fused frames, each with a different βs, and these are
used as input channels for RCAN restoration. Let us define the vector of all of these EWF
hyperparameters as β = [β1, β2, . . . , βS]

T . The optimal choice of β is unknown. But since
the EWF layer is differentiable with respect to β, we can optimize β via gradient descent as
a learnable parameter of the EFIF-Net model during training. We randomly initialize these
parameters and update them during the training process.

6
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Figure 5. The EWF layer combines interpolated frames gk(n1, n2) with subpixel registration infor-
mation Rk(n1, n2) across various values of the parameter vector β to yield fused frames denoted as
FS(n1, n2) for s = 1, 2, . . . , S as given by Equations (4) and (5).

2.2.4. Network Training

For training the EFIF-Net model, we use Python Version 3.8 with the PyTorch machine
learning framework. The RCAN network model is modified from the publicly available
version found in [47]. All pre- and post-processing is performed using MATLAB.

We chose images in the publicly available DIV2K Training dataset, which consists of
800 RGB images of 2K resolution [48]. These images are used as ground truth SR imagery.
We converted all the images to grayscale with a dynamic range of 0–1. To simulate degra-
dation during training and testing, we used the observation model explained in Section 2.1
and used SR with L = 3. Additionally, we added Gaussian noise with ση = 0.001 to prepare
the network for simulated testing data. We used affine motion in the observation model to
simulate the effects of camera motion in real-world image acquisition systems. In this study,
we applied random affine motion to each image in the training and testing datasets using a
transformation model that captures translation and rotation. Transformation parameters
were randomly generated and applied to each image to simulate camera motion [45]. We
then introduced PSF blur and additive Gaussian noise to the transformed image. By adding
camera rotation to the observation model, we are able to address more realistic scenarios
than translation alone as was done previously [43].

As the training patches are usually small compared to the original image size, we
cropped the 2K resolution images to 480 × 480 sub-images. The size of the sub-images is
different from the training patch size, which is 48 × 48, but this allows us to avoid reading
the entire image when only a small part of it is needed. Each of the 800 images in the DIV2K
dataset is cropped to create around 8 non-intersecting sub-images, resulting in a total of
6920 training sub-images of size 480 × 480. To determine the best length of the β vector
S in the custom EWF layer, we tested various lengths and found that S = 7 is the most
effective. The β vector is initialized randomly with values between 0 and 1.

We trained the EFIF-Net model using the default settings of the original RCAN
network with 10 residual groups and 20 residual blocks as described in Section 4.1 from
the original RCAN paper [26]. The batch size was set to 16 patches, and we used the
Adam optimizer [49] with a learning rate of 10−4. The model was trained for 104k updates
using the L1 loss metric. To train the network, we used a Windows workstation with an
AMD Ryzen 3970X 32-core processor running at 3.7 GHz and equipped with two NVIDIA
GeForce RTX 3090 Graphics Processing Units. The workstation was sourced from Exxact
Corp., Fremont, CA, USA. The training time varied between 8 h and 10 days, depending
on the number of frames (K).
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2.3. Performance Analysis

We evaluate the performance of the proposed EFIF-Net in comparison to benchmark
methods. A quantitative performance analysis is conducted using images subjected to
simulated degradation. Subsequently, a subjective assessment using authentic, unaltered
camera data is conducted to evaluate the model’s real-world performance.

2.3.1. Simulated Data

The imagery used for quantitative testing comes from three publicly available databases.
These are the DIV2K Validation dataset [48] (100 images), the Set14 dataset [48] (14 images),
and the BSDS100 dataset [50] (100 images). None of the images contained in these databases
were used in training. The testing data underwent the same observation motion as the
training data described in Section 2.2.4 so that we have objective ground truth for quan-
titative performance assessment. As benchmarks for the proposed EFIF-Net SR method,
we also used single-frame bicubic interpolation, SISR with RCAN [26], and MFSR using
FIFNET [43]. We employed two performance metrics, Peak Signal-to-Noise Ratio (PSNR)
and the Structural Similarity Index (SSIM) [51]. We also present a number of processed
images for subjective evaluation.

2.3.2. Real Camera Data

In addition to the quantitative performance analysis with simulated image degrada-
tion, we also applied the EFIF-Net and benchmark methods to real camera data acquired
by the authors. The camera is an Imaging Source DMK21BU04 visible USB camera with
a Sony ICX098BL CCD sensor with the optical parameters listed in Table 1. The camera
is equipped with a 5 mm focal length lens set to an f-number of F = 5.6. The interframe
motion was generated by manually panning and tilting the camera on a tripod during
image acquisition, which was carried out at a rate of 30 frames per second. Using real-world
images for testing SR models provides a more realistic evaluation of their performance.

Because the data were not artificially degraded, there are no corresponding ground
truth images available for comparison. Thus, the results with real camera data are presented
solely for subjective evaluation purpose. To facilitate this process, we selected familiar
scene content and a well-defined test pattern. Since the observation model presented in
Section 2.1 is based on a realistic camera PSF, the trained network can be applied directly to
the data from that camera. However, to better match the observed signal-to-noise ratio for
these real camera data, the networks were trained with appropriate values of ση defined in
Section 3.2.

3. Results

The experimental results are presented in this section for the simulated data in Sec-
tion 3.1 and real camera data in Section 3.2. The details of the experimental procedure
regarding pre-processing are given in Section 2.2.2. Network training details are given in
Section 2.2.4, and the performance analysis details are provided in Section 2.3.

3.1. Quantitative Results with Simulated Data

The graph in Figure 6 shows the average PSNR results for the DIV2K Validation
dataset, based on the number of input frames used. The upsampling factor L is set to three,
and the noise standard deviation is ση = 0.001. The graph shows results for EFIF-Net
and benchmark methods. The results in this experiment show that EFIF-Net outperforms
all of the benchmark methods for K > 1, with similar performance to the single-frame
RCAN method for K = 1. Furthermore, increasing the number of input frames improves
the performance of EFIF-Net. This is demonstrated by the smooth increase in the PSNR
performance curve of the EFIF-Net model in Figure 6 as the number of input frames K
increases. Table 2 presents additional quantitative results, including the PSNR and SSIM
values, for all three test databases. The results demonstrate that the EFIF-Net model with
K = 60 yields the best quantitative performance across all three databases.
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Figure 6. Quantitative performance comparison using simulated data from the DIV2K Validation
dataset for L = 3 and ση = 0.001. The average PSNR is shown as a function of the number of input
frames for the methods shown in the legend.

Table 2. Average PSNR(dB)/SSIM for K = 1, 9, 30, and 60 using different methods and three
different datasets: BSDS100, Set14, and DIV2K Validation. The numbers in bold font indicate the best
performance for the corresponding metric and dataset category.

Dataset K
PSNR(dB)/SSIM

Bicubic RCAN FIFNET EFIF-Net

Set14

1 23.55/0.692 27.46/0.814 27.44/0.808 27.51/0.814
9 - - 31.45/0.909 32.67/0.925

30 - - 31.16/0.909 33.71/0.939
60 - - 31.03/0.903 34.24/0.945

BSDS100

1 24.31/0.720 26.36/0.781 26.29/0.775 26.36/0.781
9 - - 30.11/0.898 31.26/0.918

30 - - 29.98/0.897 32.56/0.937
60 - - 29.89/0.892 33.18/0.945

DIV2K

1 26.61/0.790 30.00/0.866 29.69/0.859 29.81/0.864
9 - - 33.10/0.919 34.48/0.940

30 - - 32.67/0.917 34.97/0.946
60 - - 32.41/0.9111 35.16/0.948

Figures 7–10 provide several processed images for subjective evaluation. Each figure
includes the truth image in (a), and the processed ROIs in (b)–(e). It is important to note
that the images in (b), and (c) in these figures are for single-frame methods, while the
(d), and (e) are for multiframe methods with K = 60 frames. The captions of the figures
provide the error metric values associated with the images. The image of an airplane
in Figure 7 serves as a good example of the typical results. The bicubic interpolation
method applied in Figure 7b results in significant blurring and aliasing artifacts in the
form of jagged edges along the plane’s wing. Conversely, the RCAN single-frame method
applied in Figure 7c performs well in sharpening and reconstructing the edges of the wing.
Nevertheless, the ill-posed nature of the inverse problem is evident in the numbers “0”,
“9” and “4” in this image. The multiframe methods are relatively successful in recovering
these numbers. However, the EFIF-Net result in Figure 7e appears to offer the sharpest
images with minimal aliasing artifacts. In addition, the EFIF-Net result in Figure 7e is
3.375 dB higher than the FIFNET model. Similar relative performance results are observed
in Figures 8–10.
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Figure 7. Results for image “071” in the BSDS100 dataset. The PSNR(dB)/SSIM values are (b) 26.755/0.726,
(c) 30.895/0.839, (d) 33.183/0.886, and (e) 36.558/0.925. The noise has a standard deviation of
ση = 0.001, and K = 60 frames are used in (d,e). (a) Truth, (b) Bicubic, (c) RCAN, (d) FIFNET,
(e) EFIF-Net.
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Figure 8. Results for image “91” in the DIV2K dataset. The PSNR(dB)/SSIM values are (b) 24.445/0.753,
(c) 28.279/0.878, (d) 30.776/0.928, and (e) 34.440/0.961. The noise has a standard deviation of
ση = 0.001, and K = 60 frames are used in (d,e). (a) Truth, (b) Bicubic, (c) RCAN, (d) FIFNET,
(e) EFIF-Net.
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Figure 9. Results for image “10” in the Set14 dataset. The PSNR(dB)/SSIM values are (b) 25.025/0.688,
(c) 27.532/0.796, (d) 30.255/0.886, and (e) 33.168/0.934. The noise has a standard deviation of
ση = 0.001, and K = 60 frames are used in (d,e). (a) Truth, (b) Bicubic, (c) RCAN, (d) FIFNET,
(e) EFIF-Net.

(a) (b) (c)

Figure 10. Cont.
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(d) (e)
Figure 10. Results for image “92” in the DSBS100 dataset. The PSNR(dB)/SSIM values are (b) 25.025/0.688,
(c) 27.532/0.796, (d) 29.318.255/0.889, and (e) 34.753/0.960. The noise has a standard deviation of
ση = 0.001, and K = 60 frames are used in (d,e). (a) Truth, (b) Bicubic, (c) RCAN, (d) FIFNET,
(e) EFIF-Net.

3.2. Subjective Results with Real Camera Data

We present the results for two distinct real-camera multiframe datasets in
Figures 11 and 12. For each dataset, the multiframe methods use K = 60 frames with
L = 3. As mentioned above, these results showcase the potential of the algorithm in a
real-world application (and without artificial degradation). Figure 11 illustrates the appli-
cation of SR models on a bookshelf dataset captured indoors. Note that there is no actual
ground truth available for such real images, but the scene content of books on bookshelf
is familiar. We selected a value of ση = 0.01 for the training noise used for the network
that processed these data. In Figure 11a, the bicubic interpolation image exhibits aliasing
artifacts on the lettering. Although the RCAN method managed to decrease the aliasing
artifacts on larger letters (Figure 11b), it performed more poorly on smaller lettering. On the
other hand, the EFIF-Net outcome shown in Figure 11d offers better sharpness and superior
noise suppression than that of FIFNET in Figure 11c.

The image in Figure 12 depicts a circularly symmetric chirp pattern that is specifically
chosen to demonstrate the ability of the tested methods to reduce aliasing. For these data,
we selected a value of ση = 0.025 for the training noise level. The bicubic interpolation
image in Figure 12a shows aliasing in the form of a Moiré pattern on the high-frequency
components of the chirp, causing the concentric ring pattern to appear inverted on the top
and right of the image. The SISR RCAN method output shown in Figure 12b increases con-
trast but is unable to accurately reconstruct the true chirp structure from the undersampled
imagery. The MFSR FIFNET method output shown in Figure 12c does show reduced alias-
ing and resolves more of the concentric rings than single-image bicubic or RCAN. However,
the EFIF-Net output in Figure 12d provides the best sharpness and greater noise reduction.
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(a) (b)

(c) (d)

Figure 11. Image results for the real camera data of a bookshelf. The images shown are (a) Bicubic,
(b) RCAN, (c) FIFNET and (d) EFIF-Net. The noise has a standard deviation of ση = 0.01 and
K = 60 frames for (c,d).

(a) (b)

(c) (d)

Figure 12. Image results for the real camera data of a chirp. The images shown are (a) Bicubic,
(b) RCAN, (c) FIFNET and (d) EFIF-Net. The noise has a standard deviation of ση = 0.025 and
K = 60 frames for (c,d).
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4. Discussion

In this paper, we introduced the EFIF-Net approach to tackle the challenge of MFSR
using CNNs. Diverging from many previous methodologies, our approach incorporates a
realistic observation model in the creation of both the training and testing datasets. This
model faithfully accounts for the genuine degradation effects introduced by the camera
during image capture. Consequently, we developed a more robust CNN model equipped
for real-world scenarios. Furthermore, we enhanced the previous FIFNET in several ways.
First, we extended the camera motion model from translation to a more practical affine
model. This affine model allows for rotation, scaling, and shear in addition to translation.
Rotation, in particular, is important, as it is commonly introduced when acquiring an image
sequence from a non-fixed platform. Another innovation in EFIF-Net, that is not in FIFNET,
is the inclusion of the custom EWF layer for performing image fusion. Specifically, the EWF
layer employs exponential weights to interpolated pixels so as to give more weight to pixels
with less interpolation error. Finally, the current method provides superior restoration of
the fused image by incorporating a modified RCAN network with many layers, whereas
FIFNET uses a relative small CNN.

The experimental results presented in Section 3 demonstrate the performance benefits
of the innovations described above. The results show that the MFSR methods provide
higher PSNR values than the SISR benchmark method. This shows that the spatial sampling
diversity provided by multiple frames, when properly exploited, is a significant benefit to
the restoration quality given undersampled input frames. Furthermore, the EFIF-Net con-
sistently outperforms the previous FIFNET in all quantitative and subjective performance
analyses. The performance improvement of EFIF-Net is most pronounced with higher
numbers of input frames. In fact, the performance of FIFNET initially went down in PSNR
when more than four input frames were used. We attribute this drop in performance to the
inability of the FIFNET architecture to efficiently fuse large numbers of input frames by
simply concatenating them. The EWF layer in the EFIF-Net addresses this issue and reduces
the number of learnable parameters associated with image fusion to just the S = 7 values
in β, compared with a much larger number of learnable parameters associated with the full
convolution layers in FIFNET. As a result, the EFIF-Net performance consistently improves
with an increased number of input frames as one would hope from an MFSR method.
We also observed, in the subjective image results with simulated and real data, that the
EFIF-Net provided final results that appeared sharper and less noisy than the benchmark
methods. We attribute this to the improved restoration provided by the modified RCAN
processing layers, compared with the relatively small number of convolution layers used
by the earlier FIFNET.

Our study had limitations. One limitation is that we considered only one camera
model due to the significant network training time needed for multiple numbers of input
frames and multiple noise levels. Additional performance analyses would be helpful in
future work to better understand how the EFIF-Net performs with other cameras and
optical parameters. Another important limitation to be aware of relates to the fact the MFSR
methods presented here assume a static scene and affine camera motion. The presence
of in-scene motion, like moving cars and people, is not addressed in the current study.
However, it may be possible to incorporate some scene motion detection and alternative
processing [52] in future work. Also, if there is no camera motion, there is generally
no spatial sampling diversity. Consequently, the benefits of MFSR over SISR are more
limited. Interestingly, the work in [46] demonstrated that mild atmospheric turbulence
can provide sampling diversity to improve MFSR, even with a fully stationary camera
and scene. Finally, we consider only grayscale images here so as to focus on the essential
characteristics of MFSR. However, our approach can be readily extended to color in future
work by employing some of the concepts described in [53].

Based on a subjective analysis, the results of the proposed EFIF-Net method using
real camera data appear very consistent with the results with simulated data. In the real
data, EFIF-Net produced clearly visible aliasing reduction, particularly in the chirp image
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(designed to illustrate aliasing). It also produced images with increased sharpness and
increased noise reduction compared with all of the benchmark methods. Good results on
real camera data are particularly notable since the training data were generated using our
theoretical observation model and images with simulated degradation. The trained model
generalized well from the simulated training data to the real camera testing data that had
no artificial degradation, demonstrating robust real-world performance.

The main advantage of the proposed method is the ability to efficiently fuse multiple
input frames using the EWF layer in a manner that scales to a virtually limitless number
of input frames. In particular, after the EWF layer that produces S = 7 fusion images,
the rest of the network does not grow in complexity with an increased number of input
frames. One important area of future work is to investigate how to address scene motion
within the proposed framework in such a way as to preserve moving objects and provide
SR enhancement where possible.
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Abstract: Salient Object Detection (SOD) in RGB-D images plays a crucial role in the field of computer
vision, with its central aim being to identify and segment the most visually striking objects within a
scene. However, optimizing the fusion of multi-modal and multi-scale features to enhance detection
performance remains a challenge. To address this issue, we propose a network model based on seman-
tic localization and multi-scale fusion (SLMSF-Net), specifically designed for RGB-D SOD. Firstly, we
designed a Deep Attention Module (DAM), which extracts valuable depth feature information from
both channel and spatial perspectives and efficiently merges it with RGB features. Subsequently, a
Semantic Localization Module (SLM) is introduced to enhance the top-level modality fusion features,
enabling the precise localization of salient objects. Finally, a Multi-Scale Fusion Module (MSF) is
employed to perform inverse decoding on the modality fusion features, thus restoring the detailed
information of the objects and generating high-precision saliency maps. Our approach has been
validated across six RGB-D salient object detection datasets. The experimental results indicate an
improvement of 0.20~1.80%, 0.09~1.46%, 0.19~1.05%, and 0.0002~0.0062, respectively in maxF, maxE,
S, and MAE metrics, compared to the best competing methods (AFNet, DCMF, and C2DFNet).

Keywords: RGB-D; salient object detection; multi-modal and multi-scale features

1. Introduction

Salient Object Detection (SOD) plays a crucial role in the field of computer vision, with
its primary objective being the identification and accentuation of the most visually engaging
objects within a scene [1,2]. These objects typically draw the majority of observer attention
and play a vital role in image and video processing tasks, such as object tracking [3,4],
image segmentation [5,6], and scene understanding [7,8]. With the rapid advancement of
depth sensor technology, RGB-D salient object detection has elicited significant interest
among researchers. Compared to using only RGB images, RGB-D datasets offer a richer
array of information, including color and depth details, which are invaluable in enhancing
the performance of salient object detection. However, the achievement of accurate salient
object detection under complex scenarios, with multi-scale objects and noise interference,
continues to present a substantial challenge. Current research is confronted with two main
issues [9–37]:

1. The Modality Fusion Problem: Undoubtedly, depth information opens up signifi-
cant possibilities for enhancing detection performance. The distance information
it provides between objects aids in clearly distinguishing the foreground from the
background, thereby endowing the algorithm with robustness when dealing with
complex scenarios. However, an urgent challenge that remains to be solved is how to
fully exploit this depth information and effectively integrate it with the color, texture,
and other features of RGB images to extract richer and more discriminative features.
This challenge becomes particularly pressing when dealing with issues of incom-
plete depth information and noise interference, which necessitate further exploration
and research.
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2. The Multi-level Feature Integration Problem: To more effectively integrate multi-level
features, it’s vital to fully consider the characteristics of both high-level and low-level
features. High-level features contain discriminative semantic information, which
aids in the localization of salient objects, while low-level features are rich in detailed
information, beneficial for optimizing object edges. Traditional RGB-D salient object
detection methods often fuse features from different levels directly, disregarding their
inherent differences. This approach can lead to semantic information loss and make
the method vulnerable to noise and background interference. Therefore, there is a
need to explore more refined feature fusion techniques that fully take into account
the characteristics of different levels of features, aiming to boost the performance of
salient object detection.

To address the aforementioned challenges, we propose a Semantic Localization and
Multi-Scale Fusion Network (SLMSF-Net) for RGB-D salient object detection. SLMSF-Net
constitutes two stages: encoding and decoding. During the encoding phase, SLMSF-Net
utilizes the ResNet50 network to separately extract features from RGB and depth images
and employs a depth attention module for modal feature fusion. In the decoding phase,
SLMSF-Net first accurately localizes salient objects through a semantic localization module,
and then constructs a reverse decoder using a Multi-Scale Fusion Module to restore the
detailed information of the salient objects. Our main contributions can be summarized
as follows:

1. We propose a depth attention module that leverages channel and spatial attention
mechanisms to fully explore the effective information of depth images and enhance
the matching ability between RGB and depth feature maps.

2. We propose a semantic localization module that constructs a global view for the
precise localization of salient objects.

3. We propose a reverse decoding network based on multi-scale fusion, which imple-
ments reverse decoding on modal fusion features and generates detailed information
on salient objects through multi-scale feature fusion.

The design of the SLMSF-Net is poised to address key issues in the current RGB-D
salient object detection domain and provide new research insights for other tasks within
the field of computer vision. Extensive experimental results fully demonstrate that the
SLMSF-Net exhibits excellent performance in RGB-D SOD tasks, enhancing the accuracy
and effectiveness of salient object detection.

2. Related Works

In this section, we will review research works [17–37] related to the RGB-D salient
object detection method that we propose. These related studies can be broadly divided into
two categories: salient object detection based on RGB images and salient object detection
based on RGB-D images.

2.1. Salient Object Detection Based on RGB Images

Salient object detection based on RGB images mainly focuses on visual cues such as
color, texture, and contrast. Early saliency detection methods primarily depended on hand-
crafted features and heuristic rules. For instance, Itti et al. [17] proposed a saliency detection
model based on the biological visual system, which estimates saliency by calculating the
local contrast of color, brightness, and directional features. Achanta et al. [18] introduced a
frequency-tuned salient region detection method, which extracts global contrast features
in the frequency domain of the image to detect salient regions. Tong et al. [19] combined
global and local cues for salient object detection, using a variety of cues (such as color,
texture, and contrast) to handle complex scenarios.

In recent years, deep learning technology has achieved significant success in the field
of salient object detection. Models such as the deep learning saliency model proposed
by Chen et al. [20] accomplish hierarchical representation of saliency features to realize
end-to-end salient object detection. Cong et al. [21] proposed a salient object detection
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method based on a Fully Convolutional Network (FCN), which uses global contextual
information and local detail information for saliency prediction. Hou et al. [22] developed
a deeply supervised network for salient object detection, improving upon the Holistically
Nested Edge Detector (HED) architecture. They introduced short connections between
network layers, enhancing salient object detection by combining low-level and high-level
features. Zhao et al. [23] proposed GateNet, a new network architecture for salient object
detection. This model introduced multilevel gate units to balance encoder block contri-
butions, suppressing non-salient features and contextualizing for the decoder. They also
included Fold-ASPP to gather multiscale semantic information, enhancing atrous convolu-
tion for better feature extraction. Zhang et al. [24] combined neural network layer features
to improve salient object detection accuracy in images. Their approach used both coarse
and fine image details and incorporated edge-aware maps to enhance boundary detection.
Wu et al. [25] proposed a cascaded partial decoder that discarded low-level features to
reduce computational complexity while refining high-level features for accuracy.

Moreover, some researchers have applied attention mechanisms to RGB-based salient
object detection models, such as [26–28]. These methods enable the models to concentrate
their attention on the visually prominent regions of the image. Chen et al. [26] presented
an approach for enhancing salient object detection through the use of reverse attention
and side-output residual learning. This method aimed to refine saliency maps with a
particular focus on improving resolution and reducing the model’s size. Wang et al. [27]
presented PAGE-Net, a model for salient object detection. The model utilized a pyra-
mid attention module to enhance saliency representation by incorporating multi-scale
information, thereby effectively boosting detection accuracy. Additionally, it featured a
salient edge detection module, which sharpened the detection of salient object boundaries.
Wang et al. [28] introduced PiNet, a salient object detection model designed for enhancing
feature extraction and the progressive refinement of saliency. The model incorporated
level-specific feature extraction mechanisms and employed a coarse-to-fine process for
refining saliency features, which helped in overcoming common issues in existing methods
like noise accumulation and spatial detail dilution. Although methods based on RGB
images can achieve good performance in many situations, they lack the ability to handle
depth information.

2.2. Salient Object Detection Based on RGB-D Images

With the advancement of depth sensors, RGB-D images (which contain both color and
depth information) have been widely applied in salient object detection. For instance, Lang
et al. [29] investigated the impact of depth cues on saliency detection, where they found
that depth information holds significant value for salient object detection. Based on this,
many researchers have begun to explore how to fully utilize depth information for salient
object detection.

Peng et al. [30] proposed a multi-modal fusion framework that improves saliency
detection performance by fusing local and global depth features with color and texture fea-
tures. Zhang et al. [31] presented a new RGB-D salient object detection model, addressing
challenges with depth image quality and foreground–background consistency. The model
introduced a two-stage approach: firstly, an image generation stage that created high-
quality, foreground-consistent pseudo-depth images, and secondly, a saliency reasoning
stage that utilized these images for enhanced depth feature calibration and cross-modal fu-
sion. Ikeda et al. [32] introduced a model for RGB-D salient object detection that integrated
saliency and edge features with reverse attention. This approach effectively enhanced
object boundary detection and saliency in complex scenes. The model also incorporated
a Multi-Scale Interactive Module for improved global image information understanding
and utilized supervised learning to enhance accuracy in salient object and boundary areas.
Xu et al. [33] introduced a new approach to RGB-D salient object detection, addressing
the object-part relationship dilemma in Salient Object Detection (SOD). The proposed
CCNet model utilized a Convolutional Capsule Network based on Feature Extraction and
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Integration (CCNet) to efficiently explore the object-part relationship in RGB-D SOD with
reduced computational demand. Cong et al. [34] presented a comprehensive approach to
RGB-D salient object detection, focusing on enhancing the interaction and integration of
features from both RGB and depth modalities. It introduced a new network architecture
that efficiently combined these modalities, addressing challenges in feature representation
and fusion. However, these methods overlook the feature differences between different
modalities, resulting in insufficient information fusion.

To address this issue, Qu et al. [35] introduced a simple yet effective deep learning
model, which learns the interaction mechanism between RGB and depth-induced saliency
features. Yi et al. [36] proposed a Cross-stage Multi-scale Interaction Network (CMINet),
which intertwines features at different stages with the use of a Multi-scale Spatial Pooling
(MSP) module and a Cross-stage Pyramid Interaction (CPI) module. They then designed
an Adaptive Weight Fusion (AWF) module for balancing the importance of multi-modal
features and fusing them. Liu et al. [37] proposed a cross-modal edge-guided salient object
detection model for RGB-D images. This model extracts edge information from cross-modal
color and depth information and integrates the edge information into cross-modal color and
depth features, generating a saliency map with clear boundaries. Sun et al. [38] introduced
an RGB-D salient object detection method that combined cross-modal interactive fusion
with global awareness. This method embedded a transformer network within a U-Net struc-
ture to merge global attention mechanisms with local convolution, aiming for enhanced
feature extraction. It utilized a U-shaped structure for extracting dual-stream features from
RGB and depth images, employing a multi-level information reconstruction approach to
suppress lower-layer disturbances and minimize redundant details. Peng et al. [39] intro-
duced MFCG-Net, an RGB-D salient object detection method that leveraged multimodal
fusion and contour guidance to improve detection accuracy. It incorporated attention
mechanisms for feature optimization and designed an interactive feature fusion module to
effectively integrate RGB and depth image features. Additionally, the method utilized con-
tour features to guide the detection process, achieving clearer boundaries for salient objects.
Sun et al. [40] introduced a new approach for RGB-D salient object detection, leveraging a
cascaded and aggregated Transformer Network structure to enhance feature extraction and
fusion. They employed three key modules: the Attention Feature Enhancement Module
(AFEM) for multi-scale semantic information, the Cross-Modal Fusion Module (CMFM) to
address depth map quality issues, and the Cascaded Correction Decoder (CCD) to refine
feature scale differences and suppress noise. Although some significant results have been
achieved in existing research, it remains a formidable challenge to achieve accurate salient
object detection in complex scenes through cross-modal and cross-level feature fusion.

3. Proposed Method

In this section, we first provide an overview of our method in Section 3.1. Following
that, in Section 3.2, we elaborate on the depth attention module we propose, which is used
to mine valuable depth information. In Sections 3.3 and 3.4, we introduce the semantic
localization module and the reverse decoding network based on the Multi-Scale Fusion
Module, respectively. Finally, in Section 3.5, we discuss the loss function.

3.1. Overview of SLMSF-Net

Figure 1 displays the overall network structure of SLMSF-Net. Without loss of gener-
ality, we adopt Resnet50 [41] as the backbone network to extract features from both RGB
images and depth images separately. Resnet50 encompasses five convolution stages; we
removed the final pooling layer and the fully connected layer, resulting in a fully convolu-
tional neural network, and use the outputs of the intermediate five convolution blocks as
feature outputs. These output feature maps are denoted as M1, M2, M3, M4, and M5, with
their sizes being 1/2, 1/4, 1/8, 1/16, and 1/32 of the original image, respectively.
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1. Modal Feature Fusion: As shown in Figure 1, we proposed a Depth Attention Module.
This module performs a modal fusion of RGB image features and depth image features,
forming the modal fusion features FFuse

1 , FFuse
2 , FFuse

3 , FFuse
4 and FFuse

5 .
2. Semantic Localization: We proposed a Semantic Localization Module. This module

first downsamples the top-level modal fusion feature to compute a global view. It
then performs coordinate localization on the global view and ultimately fuses the
localization information with the global view, thereby precisely locating the salient
object. Assuming the semantic localization module is represented as the SLM function,
its output result can be written as: Fo f= SLM(FFuse

5 ).
3. Multi-Scale Fusion Decoding: After performing semantic localization, we predicted

the clear boundaries of the salient object through reverse multi-level feature inte-
gration from front to back. To accomplish this multi-level feature integration, we
constructed a Multi-Scale Fusion Module, which effectively fuses features at all levels.

Figure 1. The overall network architecture of SLMSF-Net.

3.2. Depth Attention Module

In the process of fusing RGB and depth features, we need to address two main
issues. The first one is the modal mismatch problem, which requires us to resolve the
modal differences between the two types of features. The second one is the information
complementarity problem; since RGB and depth features often capture different aspects of
object information, we need to consider how to let these two types of features complement
each other’s information, aiming to enhance the accuracy and robustness of object detection.
Inspired by [42], we designed a depth attention module to improve the matching and
complementarity of multi-modal features.

Specifically, FRGB
i represents the ith RGB image feature and FDep

i represents the ith
depth image feature, where i is a natural number from 1 to 5. As shown in Figure 2, the
depth attention module first enhances the depth image feature through channel attention.
The enhanced result is then multiplied element-wise with the RGB image feature to obtain
the channel-enhanced fusion feature. Following this, the channel-enhanced fusion feature
undergoes spatial attention enhancement, and the enhanced result is multiplied element-
wise with the RGB image feature, thus obtaining the modal fusion feature. To enhance
the matching of depth features, we stacked a depth attention module behind each depth
feature branch. By introducing attention units, we can enhance the saliency representation
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ability of depth features. The fusion process of the two modal features can be expressed as
follows:

FFuse
i = FRGB

i × SA(FRGB
i ×CA(FDep

i )) (1)

Herein, CA(·) symbolizes the channel attention operation, SA(·) indicates the spatial
attention operation, and × represents the element-wise multiplication operation.

Figure 2. Depth attention module.

3.3. Semantic Localization Module

In the process of salient object localization, high-level features play a crucial role.
Compared to low-level features, high-level features are capable of capturing more abstract
information, which aids in highlighting the location of salient objects. Therefore, we
introduced a semantic localization module designed to effectively learn the global view of
the entire image, thereby achieving more precise salient object localization. As depicted
in Figure 3, the semantic localization process is divided into three stages: initially, the
first stage downsamples the top-level modal fusion features to compute a global view;
subsequently, the second stage carries out coordinate localization on the global view; finally,
the third stage fuses the localization information with the global view.
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Figure 3. Semantic localization module.

In the first stage, we implement a 1/2 scale downsample operation on the top-level
modal fusion features FFuse

5 , followed by two ConvBR3×3 operations, thereby obtaining
the first layer of the global feature map Fov

1 . Subsequently, we perform the same 1/2 scale
downsample and two ConvBR3×3 operations on the first layer of the global feature map,
resulting in the second layer of the global feature map Fov

2 . As observed, these two global
feature maps possess a significantly large receptive field, enabling them to serve as the
global view of the entire image. The computation process for the global view can be
described as follows:

Fov
1 = ConvBR3×3(ConvBR3×3(DownS1/2(FFuse

5 ))) (2)

Fov
2 = ConvBR3×3(ConvBR3×3(DownS1/2(Fov

1 ))) (3)

Herein, DownS1/2(·) denotes a 1/2 scale downsample operation on the input feature
map. ConvBR3×3(·) represents a convolution operation performed on the input feature
map using a kernel size of 3× 3, followed by batch normalization and activation operations,
where the activation function is Relu. This can be expressed as:

ConvBR3×3(X) = Relu(BN(Conv3×3(X))) (4)

Herein, Conv(·) symbolizes the convolution operation, BN(·) denotes the batch nor-
malization operation, and Relu(·) represents the Relu activation function.

In the second stage, for the second layer of the global feature map Fov
2 , we utilize a

pooling kernel of size (1, W) to perform average pooling along the vertical coordinate of the
feature map, followed by a convolution operation with a kernel size of 1× 1, resulting in
the height-oriented feature map TH. Simultaneously, we use a pooling kernel of size (H, 1)
to conduct average pooling along the horizontal coordinate of the feature map Fov

2 , then
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perform a convolution operation with a kernel size of 1× 1, yielding the width-oriented
feature map TW. This can be described as:

TH = ConvBR1×1(
1

W ∑
0≤i<W

Fov
2 (H, i)) (5)

TW = ConvBR1×1(
1
H ∑

0≤j<H
Fov

2 (j, W)) (6)

Herein, feature map TH extends in the width direction, while feature map TW expands
in the height direction. The two expanded feature maps undergo pixel-wise multiplication,
and then through a Sigmoid activation function, a coordinate localization feature map FC is
formed. This can be described as:

FC= Sigmoid(K(TH)×K(TW)) (7)

Herein, the K(·) operation refers to expanding the input feature map in the width or
height direction to match the size of feature map A, while Sigmoid(·) signifies the Sigmoid
activation function.

In the third stage, we view the localization feature map as a self-attention mechanism
for calibrating the global view. Specifically, we perform a pixel-wise multiplication oper-
ation between the localization feature map FC and the second layer of the global feature
map Fov

2 , followed by a pyramid feature fusion operation on the multiplication results,
yielding feature map Fof∗ . Subsequently, we upscale the localization feature map FC twice
and perform a pixel-wise multiplication operation with the first layer of the global feature
map Fov

1 . The result is stacked with Fof∗ , and then the stacked result is subjected to a pyramid
feature fusion operation to finally obtain the global localization fusion feature Fof. This can
be described as:

Fof
∗ = Pyramid(FC × Fov

2 ) (8)

Fof= Pyramid(concat(UP( FC)× Fov
1 , Fof

∗ )) (9)

Herein, Pyramid(·) represents the pyramid feature fusion operation, concat(·) signi-
fies the stacking operation along the channel, and UP(·) denotes the operation of upscaling
by a factor of two.

The pyramid feature fusion operation is depicted in Figure 4. Initially, we conduct a
convolution operation with a kernel size 1× 1, adjusting the number of channels in the
input feature map X to 32, which yields the feature map Y. Following this, we execute
feature extraction on Y, with the specific extraction method detailed as follows:

Y= ConvBR1×1(X) (10)

P1= ConvBR3×3(ConvBR 3×3(Y)) (11)

Pi= ConvBR2i−1
3×3 (ConvBR 3×3(Y)+Pi−1)), i(i ∈ {2, 3}) (12)
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Herein, ConvBR2i−1
3×3 (·) represents a dilated convolution with a kernel size of 3× 3 and

a dilation rate of 2i − 1. We perform a concatenation operation along the channel with
the three extracted features. Subsequently, we conduct a convolution operation on the
concatenation result with a kernel size of 1× 1, adjusting the channel count to match that
of the input feature map. Finally, a residual connection is established with the input feature
map. This process can be described as follows:

Pyramid(X) = ConvBR1×1(concat(P1, P2, P3, P4)) + X (13)

3.4. Multi-Scale Fusion Module and the Reverse Decoding Process

Following semantic localization, we integrate multi-layer features in a forward-to-
backward manner to delineate intricate details of the salient object. To achieve this multi-
layer feature integration, we designed and constructed a Multi-Scale Fusion Module. The
reverse decoder operates in five stages, each accepting the output from the preceding stage
for reverse multi-scale fusion decoding. Importantly, the input for the fifth stage of the
decoder is the global localization fusion feature Fof. The process of the reverse decoder can
be described as follows:

Decode∗5 = UP(ConvBR1×1(Fof)) (14)

Decode5 = MSF(concat(ConvBR1×1(FFuse
5 ), Decode∗5)) (15)

Decode∗i = UP(ConvBR1×1(Decodei+1)) (16)

Decodei = MSF(concat(ConvBR1×1(FFuse
i ), Decode∗i )), i(i ∈ {1, 2, 3, 4}) (17)

Herein, MSF(·) stands for the Multi-Scale Fusion Module. We upscale the output from
the first stage of the decoder to the size of the input image, thereby obtaining the final
saliency prediction map. The specific formula used to generate the saliency prediction map
is as follows:

S = Sigmoid(Conv 1×1(UP in(Decode1))) (18)

Herein, S represents the saliency prediction map, UPin(·) denotes the upscaling of
the feature map to the size of the input image, while Conv1×1(·) signifies a single-channel
convolution with a kernel size of 1× 1. The primary purpose of Conv1×1(·) is to adjust the
channel count of the feature map to 1.

As illustrated in Figure 5, the multi-scale feature fusion module comprises four parallel
branches and a residual connection. Initially, we employ a convolutional operation with
a kernel of size 1× 1 to reduce the number of channels in the input feature map to 64.
Following this, in the first branch, we sequentially execute a convolution with a kernel also
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of size 1× 1, followed by another with a kernel of size 3× 3. For the i−th(i ∈ {2, 3, 4})
branch of the module, the procedure commences with a convolution involving a kernel
of size (2i− 1)× 1, proceeded by another convolution with a kernel of size 1× (2i− 1).
Finally, a dilated convolution operation with a kernel of size 3× 3 and a dilation rate of
2i− 1 is applied. This design strategy is aimed at extracting multi-scale information from
the multi-modal fusion features, thereby enriching the representational power of the model.
Next, the outputs from the four branches are stacked along the channel dimension, and the
channel count of the stacked output is adjusted to match the input feature map’s channel
count, using a convolution operation with a kernel size of 1× 1. Finally, the adjusted result
is connected to the input feature map via a residual connection. The entire fusion process
can be described as follows:

branch1(x) = ConvBR3×3(ConvBR1×1(x)) (19)

branchi(x) = ConvBR2i−1
3×3 (ConvBR1×(2i−1)(ConvBR(2i−1)×1(ConvBR1×1(x)))),

i ∈ {2, 3, 4}
(20)

MSF(x) = ConvBR1×1(concat(branch1(x), branch2(x), branch3(x), branch4(x))) + x (21)
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Herein, branchi(x) denotes the ith parallel branch, while x symbolizes the input
feature map.

3.5. Loss Function

As depicted in Figure 1, at each stage of the decoder, the decoded output is upsampled
to the size of the input image. Following this, a convolution operation with a single-channel
convolution kernel of 1 × 1 is performed, and then a prediction saliency map is generated
through a sigmoid activation function. The saliency maps predicted at each of the five
stages are denoted as Oi (i = 1, 2, · · · , 5). Following the same process, we can also generate
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the predicted saliency map Oof corresponding to the output of the semantic localization
module. This process can be described as follows:

Oi = Sigmoid(Conv1×1(UPin(Decodei))) (22)

Oof = Sigmoid(Conv1×1(UPin(Fof))) (23)

Assuming the predicted saliency map is denoted as O, and the real saliency map
is denoted as GT, the formula for calculating the loss value of the prediction results is
as follows:

Loss(O, GT) = Bce(O, GT) + Dice(O, GT) (24)

Bce(O, GT) = GT · logO + (1−GT) · log(1−O) (25)

Dice(O, GT) = 1− 2 ·GT ·O
||GT||+||O|| (26)

Herein, Bce(·) represents the binary cross-entropy loss function, Dice(·) denotes the
Dice loss function [43], and ||·|| represents the L1 norm. The total loss function during the
training phase is described as follows:

L = α ·
5

∑
i=1

Loss(Oi, GT) + (1− α) · Loss(Oof, GT) (27)

wherein, α represents the weight coefficients. During the testing phase, O1 is the final
prediction result of the model.

4. Experiments

Section 4.1 provides a detailed description of the implementation details, Section 4.2
discusses the sources of the datasets used, Section 4.3 introduces the setup of the evalua-
tion metrics, Section 4.4 presents the comparison with the current state-of-the-art (SOTA)
methods, and Section 4.5 is dedicated to the discussion of the ablation experiments. To-
gether, these sections form the experimental analysis and evaluation part of the paper,
comprehensively demonstrating the effectiveness and reliability of the research method.

4.1. Implementation Details

The salient object detection method proposed in this paper is implemented based
on the Pytorch framework [44,45], and all experimental procedures were carried out on a
single NVIDIA RTX A6000 GPU(NVIDIA, Santa Clara City, CA, USA). The initialization
parameters of the backbone model, ResNet50, are derived from a pre-trained model on
ImageNet [46]. Specifically, both the RGB image branch and the depth image branch use a
ResNet50 model for feature extraction, with the only difference being that the input channel
number for the depth image branch is 1. To enhance the model’s generalization capability,
various augmentation strategies, such as random flipping, rotation, and boundary cropping,
were applied to all training images. Throughout the training process, the Adam optimizer
was employed, with parameters set to β1 = 0.9 and β2 = 0.999, and a batch size of 10.
The initial learning rate was set to 1 × 10−4 and was divided by 10 every 50 rounds. The
dimensions of the input images were all adjusted to 768 × 768. The model converged
within 200 rounds. In order to show the training process of our model more clearly, we
report the training and validation loss curve of our network in Figure 6.
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4.2. Datasets

In this study, SLMSF-Net was extensively evaluated across six widely used datasets,
including NJU2K [47], NLPR [30], STERE [48], SSD [49], SIP [50], and DES [51]. These
datasets contain 1985, 1000, 1000, 80, 929, and 135 images, respectively. For the training
phase, we utilized 1485 images from the NJU2K dataset and 700 images from the NLPR
dataset. During the testing phase, the remaining images from the NJU2K and NLPR
datasets, as well as the entire STERE, SSD, SIP, and DES datasets were used.

4.3. Evaluation Metrics

We employed four widely used evaluation metrics to compare SLMSF-Net with
previous state-of-the-art methods, namely E-Measure, F-measure, S-measure, and MAE.

E-Measure (Eξ) is a saliency map evaluation method based on cognitive vision, capable
of integrating statistical information at both the image level and local pixel level. This
measurement strategy was proposed by [52] and is defined as follows:

Eξ =
l

W×H

W

∑
i=1

H

∑
j=1

ξ(i, j) (28)

Here, W and H represent the width and height of the saliency map, respectively,
while ξ signifies the enhanced alignment matrix. E-measure has three different variants:
maximum E-measure, adaptive E-measure, and average E-measure. In our experiments,
we used the maximum E-measure (maxE) as the evaluation criterion.

F-measure (Fβ) serves as a weighted harmonic mean of precision and recall. It is
defined as follows:

Fβ =
(1 + β2)Precision× Recall

β2 × Precision + Recall
(29)

Here, β is a parameter used to balance Precision and Recall. In this study, we set β2 to
0.3. Similar to E-measure, F-measure also has three different variants: maximum F-measure,
adaptive F-measure, and average F-measure. In our experiments, we reported the results
of the maximum F-measure (maxF).

S-measure (Sα) is a method for evaluating structural similarity. It assesses from
two perspectives: region awareness (Sr) and object awareness (So). It is defined as follows:

Sα = α× So + (1− α)Sr (30)
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Here, α ∈ [0, 1] is a hyperparameter used to balance between So and Sr. In our
experiments, α is set to 0.5.

MAE (Mean Absolute Error) represents the average per-pixel absolute error between
the predicted saliency map S and the ground truth map GT. It is defined as follows:

MAE =
1

W×H

W

∑
i=1

H

∑
j=1
|S(i, j)−GT(i, j)| (31)

Here, W and H, respectively, denote the width and height of the saliency map. The
MAE is normalized to a value in the [0, 1] interval.

4.4. Comparison with SOTA Methods

We compared the SLMSF-Net model proposed in this study with ten deep learning-
based RGB-D saliency detection methods, including AFNet [53], HINet [54], C2DFNet [55],
DCMF [56], CFIDNet [57], CIR-Net [58], DCF [59], DASNet [60], D3Net [50], and ICNet [61].
To ensure a fair comparison, we used the saliency maps provided by the authors. If the
saliency maps were not provided, we computed them using the source code and model
files provided by the authors.

4.4.1. Quantitative Comparison

Figure 7 presents the comparison results of PR curves from different methods, while
Table 1 presents the quantitative comparison results for four evaluation metrics. As shown
in the figure and table, our PR curve outperforms all other comparison methods, whether
on the NJU2K, NLPR, DES, SIP, SSD, or STERE datasets. This advantage is largely at-
tributed to our designed semantic localization and multi-scale fusion strategies, which,
respectively, achieve precise localization of salient objects and capture of detailed boundary
information. Additionally, our designed depth attention module can effectively utilize
depth information to enhance the model’s segmentation performance. Concurrently, the
table data reflects the same conclusion, i.e., our method outperforms all comparison meth-
ods in performance on the NJU2K, NLPR, DES, SIP, SSD, and STERE datasets. Compared
with the best comparison methods (AFNet, C2DFNet, and DCMF), we have improved the
MAE, maxFβ, maxEξ, Sα evaluation metrics by 0.0002~0.0062, 0.2~1.8%, 0.09~1.46%, and
0.19~1.05%, respectively. Therefore, both the PR curves and evaluation metrics affirm the
effectiveness and superiority of our method proposed for the RGB-D SOD task.

Table 1. Comparison of results for four evaluation metrics—mean absolute error (MAE), maximum
F-measure (maxF), maximum E-measure (maxE), and S-measure (S)—across six datasets. The symbol
“↑” indicates that a higher value is better for the metric, while “↓” indicates that a lower value is
better. The best performance in each row is highlighted in bold.

Datasets Evaluation
Metrics

Deep Learning-Based RGB-D Saliency Detection Methods

DASNet
ICMM2020

D3Net
TNNLS

2020

ICNet
TIP2020

DCF
CVPR2021

CIRNet
TIP2022

CFIDNet
NCA2022

DCMF
TIP2022

C2DFNet
TMM2022

HINet
PR2023

AFNet
NC2023 Ours

NJU2K
[47]

MAE↓ 0.0418 0.0467 0.0519 0.0357 0.0350 0.0378 0.0357 0.0387 0.0385 0.0317 0.0315

maxF↑ 0.9015 0.8993 0.8905 0.9147 0.9281 0.9148 0.9252 0.9089 0.9138 0.9282 0.9352

maxE↑ 0.9393 0.9381 0.9264 0.9504 0.9547 0.9464 0.9582 0.9425 0.9447 0.9578 0.9615

S↑ 0.9025 0.9 0.8941 0.9116 0.9252 0.9142 0.9247 0.9082 0.9153 0.9262 0.9306
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Table 1. Cont.

Datasets Evaluation
Metrics

Deep Learning-Based RGB-D Saliency Detection Methods

DASNet
ICMM2020

D3Net
TNNLS

2020

ICNet
TIP2020

DCF
CVPR2021

CIRNet
TIP2022

CFIDNet
NCA2022

DCMF
TIP2022

C2DFNet
TMM2022

HINet
PR2023

AFNet
NC2023 Ours

NLPR
[30]

MAE↓ 0.0212 0.0298 0.0281 0.0217 0.0280 0.0256 0.0290 0.0217 0.0257 0.0201 0.0199

maxF↑ 0.9218 0.8968 0.9079 0.9118 0.9071 0.9054 0.9057 0.9166 0.9062 0.9249 0.9298

maxE↑ 0.9641 0.9529 0.9524 0.9628 0.9554 0.9553 0.9541 0.9605 0.9565 0.9684 0.9693

S↑ 0.9294 0.9118 0.9227 0.9239 0.9208 0.9219 0.9220 0.9279 0.9223 0.9362 0.9388

DES
[51]

MAE↓ 0.0246 0.0314 0.0266 0.0241 0.0287 0.0233 0.0232 0.0199 0.0215 0.0221 0.0176

maxF↑ 0.9025 0.8842 0.9132 0.8935 0.8917 0.9108 0.9239 0.9159 0.9220 0.9225 0.9307

maxE↑ 0.9390 0.9451 0.9598 0.9514 0.9407 0.9396 0.9679 0.9590 0.9670 0.9529 0.9739

S↑ 0.9047 0.8973 0.9201 0.9049 0.9067 0.9169 0.9324 0.9217 0.9274 0.9252 0.9403

SIP
[50]

MAE↓ 0.0508 0.0632 0.0695 0.0518 0.0685 0.0601 0.0623 0.0529 0.0656 0.0434 0.0422

maxF↑ 0.8864 0.861 0.8571 0.8844 0.8662 0.8699 0.8719 0.8770 0.8550 0.9089 0.9114

maxE↑ 0.9247 0.9085 0.9033 0.9217 0.9047 0.9088 0.9111 0.9160 0.8993 0.9389 0.9408

S↑ 0.8767 0.8603 0.8538 0.8756 0.8615 0.8638 0.8700 0.8715 0.8561 0.8959 0.9045

SSD
[49]

MAE↓ 0.0423 0.0585 0.0637 0.0498 0.0523 0.0504 0.0731 0.0478 0.0488 0.0383 0.0321

maxF↑ 0.8725 0.834 0.8414 0.8509 0.8547 0.8707 0.8108 0.8598 0.8524 0.8848 0.9007

maxE↑ 0.9298 0.9105 0.9025 0.9090 0.9119 0.9261 0.8970 0.9171 0.9160 0.9427 0.9565

S↑ 0.8846 0.8566 0.8484 0.8644 0.8725 0.8791 0.8382 0.8718 0.8652 0.8968 0.9062

STERE
[48]

MAE↓ 0.0368 0.0462 0.0446 0.0389 0.0457 0.0426 0.0433 0.0385 0.0490 0.0336 0.0331

maxF↑ 0.9043 0.8911 0.8978 0.9009 0.8966 0.8971 0.9061 0.8973 0.8828 0.9177 0.9195

maxE↑ 0.9436 0.9382 0.9415 0.9447 0.9388 0.9420 0.9463 0.9429 0.9325 0.9572 0.9584

S↑ 0.9104 0.8985 0.9025 0.9022 0.9013 0.9012 0.9097 0.9023 0.8919 0.9184 0.9201

4.4.2. Qualitative Comparison

For a qualitative comparison, we present a selection of representative visual examples
in Figure 8. Upon observation, our method demonstrates superior performance in several
challenging scenarios compared to other methods. Examples of these scenarios include
situations where the foreground and background colors are similar (rows 1–2), in complex
environments (rows 3–4), in scenes with multiple objects present (rows 5–6), for small
object detection (rows 7–8), and under conditions of low-quality depth images (rows 9–10).
These visual examples show that our method can more precisely locate salient objects and
generate more accurate saliency maps.

4.5. Ablation Studies

As shown in Table 2, we conducted an in-depth ablation analysis to verify the effec-
tiveness of each module. DAM represents the Deep Attention Module, SLM is the Semantic
Localization Module, and MSFM stands for Multi-Scale Fusion Module. “Without DAM”,
“without SLM”, and “without MSFM” refer to the models obtained after removing the
DAM, SLM, and MSFM modules from the SLMSF-Net model, respectively. By comparing
the data in the third column with the sixth column, we can clearly see that the introduction
of the DAM module significantly improves the performance of the model. Similarly, by
comparing the data in the fourth and sixth columns, we can see that the introduction of
the SLM module can significantly enhance the performance of the model. Comparing the
data in the fifth and sixth columns, we can see that adding the MSFM module will enhance
the model’s performance. These results prove the importance of the three modules: the
DAM module introduces depth image information, the SLM module realizes the precise
semantic location of salient objects, and the MSFM module can fuse multi-scale features to
refine the boundaries of salient objects. Each of these three functional modules resulted
in a significant increase in model performance. In the last column, we can see that the
SLMSF-Net model that incorporates these three modules achieved the best results.
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Table 2. Comparison of ablation study results. The symbol “↑” indicates that a higher value is better
for the metric, while “↓” indicates that a lower value is better. The best performance in each row is
highlighted in bold.

Datasets Evaluation
Metrics Without DAM Without SLM Without MSFM SLMSF-Net

NJU2K
[47]

MAE↓ 0.0362 0.0352 0.0393 0.0315

maxF↑ 0.9214 0.9215 0.9165 0.9352

maxE↑ 0.9516 0.9508 0.9478 0.9615

S↑ 0.921 0.9225 0.9185 0.9306

NLPR
[30]

MAE↓ 0.0235 0.0234 0.0284 0.0199

maxF↑ 0.9226 0.9193 0.911 0.9298

maxE↑ 0.9627 0.964 0.9593 0.9693

S↑ 0.9328 0.9327 0.9238 0.9388
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Table 2. Cont.

Datasets Evaluation
Metrics Without DAM Without SLM Without MSFM SLMSF-Net

DES
[51]

MAE↓ 0.0191 0.0228 0.0231 0.0176

maxF↑ 0.9284 0.9174 0.9263 0.9307

maxE↑ 0.9704 0.9618 0.9687 0.9739

S↑ 0.9342 0.9260 0.9317 0.9403

SIP
[50]

MAE↓ 0.0569 0.0528 0.0600 0.0422

maxF↑ 0.8827 0.8916 0.8748 0.9114

maxE↑ 0.9154 0.9202 0.9119 0.9408

S↑ 0.8776 0.8830 0.8739 0.9045

SSD
[49]

MAE↓ 0.0537 0.0534 0.0548 0.0321

maxF↑ 0.8378 0.8381 0.8395 0.9007

maxE↑ 0.9093 0.9042 0.9045 0.9565

S↑ 0.8661 0.865 0.8658 0.9062

STERE
[48]

MAE↓ 0.0443 0.0376 0.0508 0.0331

maxF↑ 0.8919 0.9100 0.8906 0.9195

maxE↑ 0.9381 0.9479 0.9330 0.9584

S↑ 0.9014 0.9143 0.8986 0.9201

5. Conclusions

In complex scenarios, achieving precise RGB-D salient object detection against mul-
tiple scales of objects and noisy backgrounds remains a daunting task. Current research
primarily faces two major challenges: modality fusion and multi-level feature integration.
To address these challenges, we propose an innovative RGB-D salient object detection
network, the Semantic Localization and Multi-Scale Fusion Network (SLMSF-Net). This
network comprises two main stages: encoding and decoding. In the encoding stage,
SLMSF-Net utilizes ResNet50 to extract features from RGB and depth images and employs
a depth attention module for the effective fusion of modal features. In the decoding stage,
the network precisely locates salient objects through the semantic localization module and
restores the detailed information of salient objects in the reverse decoder via the Multi-Scale
Fusion Module. Rigorous experimental validation shows that SLMSF-Net exhibits superior
accuracy and robustness on multiple RGB-D salient object detection datasets, outperform-
ing existing technologies. In the future, we plan to further optimize the model, improve the
attention mechanism, delve into refining edge details, and explore its application in RGB-T
salient object detection tasks.
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Abstract: Transformer-based semantic segmentation methods have achieved excellent performance in
recent years. Mask2Former is one of the well-known transformer-based methods which unifies com-
mon image segmentation into a universal model. However, it performs relatively poorly in obtaining
local features and segmenting small objects due to relying heavily on transformers. To this end, we
propose a simple yet effective architecture that introduces auxiliary branches to Mask2Former during
training to capture dense local features on the encoder side. The obtained features help improve
the performance of learning local information and segmenting small objects. Since the proposed
auxiliary convolution layers are required only for training and can be removed during inference, the
performance gain can be obtained without additional computation at inference. Experimental results
show that our model can achieve state-of-the-art performance (57.6% mIoU) on the ADE20K and
(84.8% mIoU) on the Cityscapes datasets.

Keywords: deep learning; semantic segmentation; image segmentation; transformer; convolutional
neural networks

1. Introduction

Transformer, a type of a deep learning model based on self-attention [1], was first
applied to natural language processing (NLP) tasks and achieved significant improvements.
Inspired by the huge success of Transformer architectures in NLP, extensive research has
been recently performed to apply Transformer to various computer vision tasks [2–4].
The basic idea for vision transformers is to break down images into sequential patches
and learn self-attention features without using convolutional layers. Unlike traditional
convolutional neural network (CNN) models [5,6], transformer-based ones can better
capture global attention and broader range relations throughout the entire layers.

Recently, several semantic segmentation approaches [7–11] based on vision trans-
formers have been proposed to exploit the benefits of transformer models for improving
semantic segmentation. One way to improve semantic segmentation is to adopt a feature
pyramid network (FPN) [12] in a transformer model to obtain multi-scale feature maps.
For example, SETR [7] designs a top-down feature aggregation at the decoder side. It gen-
erates the final predictions by collecting the feature maps from the transformer backbone.
SegFormer [8] proposes a hierarchical transformer at the encoder side. The feature outputs
are then fused into a multilayer perceptron (MLP) decoder to aggregate information. An-
other way is to replace per-pixel classification with mask classification to predict the final
outputs. Segmenter [9] utilizes a transformer-based decoder to generate class masks by
computing the scalar product between the patch embeddings and the class embeddings.
MaskFormer [10] observes that mask classification is sufficiently general to solve both
semantic- and instance-level segmentation tasks. It converts per-pixel classification into a
mask classification model using a set prediction mechanism. Mask2Former [11] improves
the performance on top of [10] and presents a universal segmentation model using the
same mask classification mechanism.
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However, we observe that these segmentation approaches rely heavily on transformer
models and therefore lose local information at a certain level. Even Mask2Former [11],
a powerful unified segmentation model, still faces the issue of learning local features
and segmenting small objects. In contrast, convolutional layers can better capture local
features since most CNN models adopt a small window-sized learning manner. In addition,
the optimization with CNN models is easier and more robust compared to transformer
models. Therefore, many researchers consider a hybrid model which combines the benefits
of CNNs and transformers. For example, ref. [13] replaces the ViT patching module with
a convolutional stem to achieve faster convergence and more stable training. BotNet [14]
incorporates multi-head self-attention modules on top of the ResNet. It provides a backbone
architecture that uses transformer-like blocks for downstream tasks. Visformer [15] offers
an empirical study by transforming a transformer-based model to a CNN model and
then proposes a new hybrid architecture by absorbing the advantages and discarding
the disadvantages.

Inspired by these hybrid approaches, we propose a simple yet effective method on
top of [11] to boost semantic segmentation performance. In this work, we introduce
an auxiliary CNN on the encoder side. It encourages the model to learn dense local
features compared to a pure transformer-based backbone. Additionally, unlike the existing
hybrid models, our proposed auxiliary convolution layers can be removed. Therefore, it
enhances the semantic segmentation performance without any additional computational
cost at inference. Since [11] is a universal segmentation model, we will also show that
our proposed method can improve the semantic segmentation performance using a single
panoptic model. The contributions of this work can be summarized as follows:

(1) We design an auxiliary CNN on top of Mask2Former [11] to help improve semantic
segmentation performance. The proposed network consists of simple convolutional
layers without bells and whistles. We demonstrate that the proposed method improves
the semantic segmentation performance quantitatively and qualitatively. Specifically,
we show that the proposed method is effective in learning local features and segment-
ing small objects more accurately.

(2) Since the proposed auxiliary convolution layers are required during the training stage
only, the proposed method incurs no additional computation overhead at inference.
This is one of the important properties of the proposed method because enhancing
the performance while maintaining the complexity at inference is crucial for real-
world applications.

(3) The proposed auxiliary convolution layers are effective for both semantic and panoptic
segmentation. Since Mask2Former is a universal architecture for different segmenta-
tion tasks and our proposed method is designed to enhance Mask2Former, we show
that the proposed method achieves state-of-the-art performance for semantic and
panoptic segmentation on the ADE20K [16] and Cityscapes [17] datasets.

The rest of the paper is organized as follows: In Section 2, the related work is discussed.
In Section 3, the proposed method is explained in detail. Section 4 introduces the dataset,
implement details, ablation study and experimental results. Section 5 is the conclusion and
future work.

2. Related Work
2.1. Semantic Segmentation

Semantic segmentation aims to assign a category label to each pixel. Ref. [18] is the first
work to train a fully convolutional network (FCN) end-to-end for semantic segmentation.
SegNet [19] and UNet [20] extend the segmentation model with a symmetric encoder-
decoder architecture to gradually recover image resolutions. ParseNet [21] augments the
features with the average feature for each layer to exploit global context information. PSP-
Net [22] and DeepLab [23–25] follow the ideas of Spatial Pyramid Pooling (SPP) [26] to
capture dense contextual information at multiple levels. DANet [27] appends two separate
attention modules on top of FCN to obtain global dependencies in spatial and channel di-
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mensions, respectively. CCNet [28] proposes a criss-cross attention module on the decoder
side to harvest contextual information along the criss-cross path. OCNet [29] presents an
object context aggregation scheme with an interlaced spare self-attention to address the
semantic segmentation task. These well-known models are all based on convolutional
neural networks to learn image features. With the advent of vision transformers [2–4],
many semantic segmentation approaches are proposed based on transformers. SETR [7]
reformulates semantic segmentation as a sequence-to-sequence learning problem and de-
ploys a pure encoder-decoder transformer model for semantic segmentation. SegFormer [8]
designs a hierarchical transformer encoder with a lightweight MLP decoder to generate
segmentation results without heavy computational cost. Segmenter [9] refers to ViT [2] and
extends it to semantic segmentation. It adopts a mask transformer on the decoder side to
generate class masks.

2.2. Panoptic Segmentation

Panoptic segmentation [30] aims to combine semantic and instance segmentation
into a general unified output. Panoptic-Deeplab [31] and TASCNet [32] build one shared
backbone with two segmentation heads to learn semantic and instance features individually.
UPSNet [33] designs a parameter-free panoptic head using pixel-wise classification to
resolve the conflicts between semantic and instance features. BGRNet [34] adopts a graph
structure on top of a panoptic network to mine intra- and inter-modular relations between
foreground and background classes. Auto-Panoptic [35] proposes an automated framework
to search for main components simultaneously in a panoptic network, achieving a reciprocal
relation between things and stuff classes. Panoptic-FCN [36] represents things and stuff
uniformly using a proposed kernel head, which generates unique weights for both classes.
MaskFormer [10] demonstrates that mask classification is sufficient to be used for both
semantic- and instance-level segmentation tasks. It shows that a simple mask classification
can outperform state-of-the-art per-pixel classification models. Mask2Former [11] is an
improved version of [10] and utilizes masked attention to extract localized features. It is a
universal image segmentation model that outperforms specialized segmentation models
across different tasks.

2.3. Hybrid Models Using Convolutions and Transformers

Recently, numerous approaches that combine both convolutions and transformers
have been proposed. DETR [26] adopts a CNN backbone with a transformer decoder
for object detection. ViLBERT [37] builds a multimodal two-steam model to process
visual and textual inputs through co-attentional transformer layers. It utilizes a BERT [4]
architecture for the linguistic stream and a Faster-RCNN [38] to capture image regions.
PVT [39,40] borrows the pyramid structure concept in CNNs and designs a pyramid vision
transformer for learning multi-scale features with high resolutions. P2T [41] implements a
pooling-based self-attention module with depthwise convolutional operations for multi-
scale feature learning. Ref. [13] demonstrates that the optimization challenges in ViT [2] are
related to the patchify stem and shows that the use of convolutional stem enables a much
faster convergence in training. BotNet [14] and Visformer [15] analyze the behaviors in
convolution- and transformer-based models. Both methods incorporate Multi-Head Self-
Attention (MHSA) modules on top of the ResNet-like models to improve the performance
of the baseline models. In this work, we propose a simple yet efficient method that
introduces an auxiliary CNN on top of the Mask2Fomer [11]. It helps increase the semantic
segmentation performance, especially for the local features and small objects. Unlike the
existing hybrid models, the proposed method can be removed at the inference stage and
therefore does not incur any additional computation overhead at inference.
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3. Proposed Method
3.1. Overall Architecture

Our proposed method is integrated with the transformer-based model to improve
semantic segmentation. Figure 1 illustrates the overall architecture, where the proposed
auxiliary CNN is jointly trained with the main segmentation network. First, the input image
is fed to a Swin [42] backbone to generate feature embeddings Fl , where l ∈ {1, . . . , L}
and L is the total number of the stages represented in the Swin backbone. Then, feature
embeddings Fl are shared between two separate branches: the main segmentation head
and the proposed auxiliary CNN. We use Mask2Former [11] which adopts a pixel decoder
and a transformer decoder to generate mask predictions as the main segmentation head.
In the auxiliary CNN, feature embeddings Fl are first fed to a simple CNN-based network,
aiming to learn local features with different resolutions. Then, an auxiliary loss is calculated
based on the auxiliary outputs and added to the main loss to compute the total loss.

Figure 1. Architecture overview. The proposed method is instantiated on top of Mask2Former [11],
which uses Swin Transformer [42] as the backbone network to extract feature embeddings {F1, . . . , FL}.
The proposed auxiliary CNN consists of several simple convolutional layers to learn more accurate
local features by using the feature embedding produced by the Transformer backbone as input.
An auxiliary loss is used along with the main loss to compute the total loss for segmentation.
The auxiliary CNN is used for training only and will be removed at inference.

3.2. Auxiliary CNN

We design an auxiliary branch with convolutional layers to generate multi-scale local
features from the backbone, as illustrated in Figure 1.

For a feature embedding Fl ∈ R
HW
r2
l
×Cl

, we first reshape it into a feature map F
′
l with a

size of Cl × H
rl
× W

rl
, where Cl is the channel dimension of the feature map at the lth stage

in the Swin backbone. H and W are the height and width of the input image, respectively.
rl is the resolution factor equal to 4, 8, 16, and 32 for stages 1, 2, 3, and 4, respectively.
Then, the reshaped feature map F

′
l is applied to a series of residual blocks for local feature

learning. The residual block consists of a stack of three convolutional layers. The three
layers are 1 × 1, 3 × 3, and 1 × 1 convolutions, where the 1 × 1 layers are responsible
for downsampling and upsampling the channel dimensions and 3× 3 filters are used
for feature learning. A skip connection and an element-wise summation are included in
the residual block to refine the optimization processing during the training phase. Then,
the output from the residual block is fed to a 1× 1 convolutional layer to reduce the feature
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dimension from Cl × H
rl
× W

rl
to N × H

rl
× W

rl
, where N is the number of categories in the

dataset. Finally, we adopt a cross-entropy function for auxiliary loss calculation. Note that
the reshaping operation in the proposed method is not mandatory. Depending on the shape
of the output obtained from the Transformer backbone, the proposed auxiliary CNN can be
used without reshaping the feature embeddings.

3.3. Auxiliary Loss

We define the loss function for auxiliary CNN as a cross-entropy loss. Specifically,
the loss function for auxiliary branch at the lth stage is computed as:

Ll
aux =

W l

∑
w=1

Hl

∑
h=1

CE(yl(w, h), gtl(w, h)), (1)

where W l = W/rl and Hl = W/rl . yl is the auxiliary prediction at the l stage, and gtl

is the corresponding ground truth for semantic segmentation. CE is the cross-entropy
loss function. The total auxiliary segmentation loss Laux is the normalized sum of the
cross-entropy loss Ll

aux over all L stages and is defined as:

Laux =
L

∑
n=1

norm(Ll
aux). (2)

When training with the auxiliary CNN, the total loss function is defined as:

Ltotal = Lmask−cls + βLaux, (3)

where Lmask−cls is the mask classification loss defined in [11], β is the weight for auxiliary
segmentation loss. In our ablation study, the best β is selected as 0.1.

4. Experimental Results
4.1. Dataset

We conduct experiments on the ADE20K [16] and Cityscapes [17] datasets. The ADE20K
dataset is a densely annotated dataset for scene parsing with 150 categories. The training
set contains 20K images, and the validation set contains 2K images. The Cityscapes dataset
is a street-view dataset with 19 classes, focusing on a semantic understanding of urban
street scenes. It contains 5K images with fine annotations and 20K images with coarse
annotations. The fine-annotated dataset contains 2975, 500, and 1525 images for training,
validation, and testing, respectively. The ADE20K validation dataset is used for the ablation
study to compare the performance with our baseline Mask2Former [11] and other setups.

We use the mean Intersection-over-Union (mIoU) metric for semantic segmentation
and the standard Panoptic Quality (PQ) metric for panoptic segmentation. PQ metric [30]
evaluates the performance of both stuff and things in a unified manner. Additionally, we
use the same metric settings for semantic and instance segmentation based on a single
panoptic model as in [11]. Specifically, we report mIoUpan for semantic segmentation by
merging instance masks with the same category, and APpan for instance segmentation,
evaluated on the “thing” categories with instance segmentation annotations.

4.2. Implementation Details

Our implementation is based on PyTorch [43] framework with Detectron2 [44]. We
use the AdamW [45] optimizer and the step learning rate schedule, where the base learning
rate is initialized to 0.0001. All the training has a weight decay of 0.05 and a momentum of
0.9. The input image is resized to 640× 640 and 512× 1024 for ADE20K and Cityscapes,
respectively. Data augmentation includes random crop, random flip, and large-scale
jittering (LSJ) [46]. Following the default settings in [11], we adopt batch normalization for
the Cityscapes dataset only. The query number is 100 for all training except that we set
200 queries for the panoptic model with the Swin-L backbone.
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Due to the GPU memory limitation, we use smaller batch sizes with higher numbers
of training iterations so that we can have similar training settings as in Mask2Former.
Specifically, for the ADE20K dataset, we set the batch sizes to 16, 16, 12, and 8 for the Swin-
T, Swin-S, Swin-B, and Swin-L transformer backbones, respectively. The corresponding
training iterations for these Swin transformer backbones are set to 160K, 160K, 240K,
and 360K, respectively. For the Cityscapes dataset, we assign the batch sizes to 12, 8, and
6 for the Swin-S, Swin-B, and Swin-L, respectively. The corresponding training iterations
are set to 120K, 180K, and 240K, respectively. By doing so, the number of training epochs is
the same as [11]. We also represent the reproduced Mask2Former with our settings, marked
as Mask2Former(ours), for a fair comparison.

4.3. Ablation Study

We conduct our ablation study on the ADE20K validation dataset. To evaluate our
proposed method fairly, we use the same experimental environments to compare the
performance with different settings. We use the Mask2Former with Swin-B backbone as
the base network. The cropping size of the input data is set to 640× 640.

Effectiveness of auxiliary CNN: To determine the best architecture of the proposed
auxiliary CNN for local feature learning, we first use different combinations of the multi-
scale feature maps obtained from the Swin transformer backbone as input and evaluate the
performance. Specifically, we set various setups by using {F1}, {F2}, {F3}, {F1, F2}, {F1, F3},
{F2, F3}, and {F1, F2, F3} as the feature inputs for our auxiliary branches. The subscript in
Fl indicates the stage number in the Swin backbone. Table 1 shows that the use of auxiliary
CNN with any feature map generated from the transformer backbone improves the per-
formance compared to the baseline method. Among all settings, the best performance is
obtained when {F1, F2, F3} is used as input to the proposed auxiliary CNN. The experimen-
tal results verify that the proposed auxiliary CNN is effective in learning additional local
features and achieves better performance when multi-scale features are used. Since the
proposed auxiliary CNN will be removed at inference, we use {F1, F2, F3} as input to the
proposed auxiliary CNN for the remaining experiments to achieve the best performance.

Table 1. Performance comparison of different auxiliary CNN setups using the ADE20K validation set.
baseline: Mask2Former with Swin-B backbone for semantic segmentation. Fl : feature embeddings
extracted at the lth stage from the Swin-B backbone. ss: single-scale. ms: multi-scale.

Setups Baseline F1 F2 F3 mIoU (ss) mIoU (ms) #params

Setup 1
√

53.9 55.1 107.0M
Setup 2

√ √
54.2 (↑0.3) 55.3 (↑0.2) 107.1M

Setup 3
√ √

54.3 (↑0.4) 55.3 (↑0.2) 107.3M
Setup 4

√ √
54.0 (↑0.1) 55.1 (-) 109.2M

Setup 5
√ √ √

54.3 (↑0.4) 55.3 (↑0.2) 107.4M
Setup 6

√ √ √
54.2 (↑0.3) 55.2 (↑0.1) 109.3M

Setup 7
√ √ √

54.3 (↑0.4) 55.3 (↑0.2) 109.5M
Setup 8

√ √ √ √
54.5 (↑0.6) 55.5 (↑0.4) 109.6M

Architecture of auxiliary CNN: One of the main design criteria for the proposed aux-
iliary CNN is to learn some useful local information based on the feature maps generated
from the transformer backbone network using simple architectures. We consider four
different simple CNN architectures: a 1× 1 convolutional layer, a 3× 3 convolutional layer,
a residual block (a stack of 1× 1, 3× 3, and 1× 1 convolutional layers with a skip connec-
tion), and a stack of two residual blocks. Table 2 shows the comparison of performance gain
in semantic segmentation obtained by using these different auxiliary CNN architectures for
the ADE20K validation dataset. Among the simple architectures we considered, a stack
of two residual blocks achieved the best performance improvement. Since stacking more
than two residual blocks does not improve the performance gain significantly, we build
our proposed auxiliary CNN by using a stack of two residual blocks.
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Table 2. Performance comparison of various auxiliary CNNs using the ADE20K validation set. ss:
single-scale. ms: multi-scale.

Auxiliary Structure mIoU (ss) mIoU (ms) #params

- 53.9 55.1 -
1× 1 conv. 53.6 (↓0.3) 54.7 (↓0.4) 1.4M
3× 3 conv. 54.0 (↑0.1) 55.0 (↓0.1) 12.4M

one residual block 54.2 (↑0.3) 55.2 (↑0.1) 1.3M
two residual blocks 54.5 (↑0.6) 55.5 (↑0.4) 2.6M

Weighting parameter of auxiliary CNN: A weighting parameter β is introduced in
Equation (3) to balance the loss between the main and the auxiliary tasks. The auxiliary
CNN is trained along with the main segmentation network to enhance local features and
improve segmenting small objects. However, while achieving this objective, the auxiliary
task should not dominate the overall segmentation task. Table 3 shows the performance
comparison when four different weighting parameters are used to adjust the contribution
of the auxiliary loss. To maximize the overall performance by balancing the main and the
auxiliary tasks, we set the weighting parameter β to 0.1.

Table 3. Performance comparison of different weighting parameters β using the ADE20K validation
set. ss: single-scale. ms: multi-scale.

Weighting Parameter β mIoU (ss) mIoU (ms)

- 53.9 55.1
0.1 54.5 (↑0.6) 55.5 (↑0.4)
0.2 54.4 (↑0.5) 55.3 (↑0.2)
0.3 54.1 (↑0.2) 55.2 (↑0.1)

0.05 54.2 (↑0.3) 55.3 (↑0.2)

4.4. Experimental Results for Semantic Segmentation

We compare the semantic segmentation performance of the proposed method with the
recent transformer-based semantic segmentation models on the ADE20K and Cityscapes
validation datasets. Since the performance of each model can be different from the one pre-
sented in the original paper depending on the hardware environment, we also include the
performance of the baseline model Mask2Former obtained by our reproduced experiments.

For the ADE20K dataset, we can observe in Table 4 that our proposed method im-
proves the performance of Mask2Former for all Swin Transformer backbones. Specifically,
the proposed auxiliary CNN with Swin-T transformer backbone improves the baseline
Mask2former by 0.9% and achieves 48.8% in mIoU (ss). With Swin-S, Swin-B†, and Swin-L†

Transformer backbones, the proposed method improves the mIoU by 0.9%, 0.4%, and
0.4%, respectively.

For the Cityscapes dataset, it can be seen from Table 5 that the proposed auxiliary
CNN can enhance the Mask2Former’s semantic segmentation performance by 0.5%, 0.6%
and 0.3% when Swin-S, Swin-B†, and Swin-L† transformer backbones are used, respec-
tively. Both experimental results show that our proposed method consistently outperforms
Mask2Former with different Swin Transformer-based backbones. We observe that the
performance with Swin-B is slightly better than with Swin-L. Two possible explanations
for these results are: the use of smaller batch size for Swin-L in our experimental settings
and the better multi-scale inference performance of Swin-B compared to Swin-L from
the baseline.
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Table 4. Performance comparison of semantic segmentation on the ADE20K validation dataset with
150 categories. †: backbone pretrained on ImageNet-22K. ss: single-scale. ms: multi-scale.

Method Backbone Crop Size mIoU (ss) mIoU (ms)

PVTv1 [39] PVTv1-L 512 × 512 44.8 -
PVTv2 [40] PVTv2-B5 512 × 512 48.7 -

P2T [41] P2T-L 512 × 512 49.4 -
Swin-UperNet [42,47] Swin-L † 640 × 640 - 53.5

FaPN-MaskFormer [10,48] Swin-L † 640 × 640 55.2 56.7
BEiT-UperNet [4,47] BEiT-L † 640 × 640 - 57.0

MaskFormer [10]

Swin-T 512 × 512 46.7 48.8
Swin-S 512 × 512 49.8 51.0

Swin-B † 640 × 640 52.7 53.9
Swin-L † 640 × 640 54.1 55.6

Mask2Former [11]

Swin-T 512 × 512 47.7 49.6
Swin-S 512 × 512 51.3 52.4

Swin-B † 640 × 640 53.9 55.1
Swin-L † 640 × 640 56.1 57.3

Mask2Former (Ours)

Swin-T 512 × 512 47.9 49.7
Swin-S 512 × 512 51.3 52.5

Swin-B † 640 × 640 54.1 54.9
Swin-L † 640 × 640 56.0 57.1

Ours

Swin-T 512 × 512 48.8 50.3
Swin-S 512 × 512 52.2 53.1

Swin-B † 640 × 640 54.5 55.5
Swin-L † 640 × 640 56.4 57.6

Table 5. Performance comparison of semantic segmentation on the Cityscapes validation dataset
with 19 categories. †: backbone pretrained on ImageNet-22K. ss: single-scale. ms: multi-scale.

Method Backbone Crop Size mIoU (ss) mIoU (ms)

Segmenter [9] ViT-L † 768 × 768 - 81.3
SETR [7] ViT-L † 768 × 768 - 82.2

SegFormer [8] MiT-B5 768 × 768 - 84.0

Mask2Former [11]
Swin-S 512 × 1024 82.6 83.6

Swin-B † 512 × 1024 83.3 84.5
Swin-L † 512 × 1024 83.3 84.3

Mask2Former (Ours)
Swin-S 512 × 1024 82.4 83.5

Swin-B † 512 × 1024 83.2 84.3
Swin-L † 512 × 1024 83.3 84.3

Ours
Swin-S 512 × 1024 82.9 83.8

Swin-B † 512 × 1024 83.8 84.8
Swin-L † 512 × 1024 83.6 84.5

Since one of the main objectives of the proposed auxiliary CNN is to improve the
segmentation performance in complex scenes which include small objects and require
detailed local information for accurate segmentation, we show several qualitative results
for the ADE20K and Cityscapes datasets. Figure 2 presents the qualitative results of
the ADE20K validation dataset. In the first row, the category “light” on the ceiling is
misclassified as a pillar by the baseline. Our proposed method can label the small object
with the correct category. In the second row, the category “bread” labeled with khaki
color is not segmented correctly using the baseline approach. However, our method can
accurately segment most of them. In the third row, the baseline model fails to segment the
category “plant” in the middle, while ours can detect and fully segment it.
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Figure 2. Semantic segmentation results based on the ADE20K validation dataset. (a) RGB input,
(b) ground truth, (c) baseline method, and (d) our proposed method. The proposed method using
the auxiliary CNN improves the detection of local information and small objects compared with the
baseline method Mask2Former.

Figure 3 shows the qualitative results of the Cityscapes validation dataset. In the first
column, we can observe that the results generated by the baseline mislabeled the category
“road” (labeled with purple) on the right-middle side as the category “sidewalk” (labeled
with pink). Our proposed method can well distinguish both categories and segment them
accurately. In the second column, the baseline approach cannot tell the difference between
the category “terrain” (labeled with cyan) and “sidewalk” (labeled with pink), shown on
the left side. As a result, the baseline erroneously merges both categories into one, while
ours can correctly detect and segment these two categories. In the third column, we can
observe that the baseline has difficulty detecting objects with similar textures on the left side.
It recognizes the category “terrain” (labeled with cyan) and “road” (labeled with purple) as
“sidewalk” (labeled with pink). Our proposed method can distinguish them clearly and
accurately. The qualitative results prove that our proposed method can effectively learn
local features and identify small objects much better than its baseline method.
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Figure 3. Semantic segmentation results based on the Cityscapes validation dataset. (a) RGB input,
(b) ground truth, (c) baseline method, and (d) our proposed method. The proposed method using
the auxiliary CNN improves the detection of local information and small objects compared with the
baseline method Mask2Former.

4.5. Experimental Results for Panoptic Segmentation

Since our baseline method Mask2Former is a well-known universal segmentation
model, we evaluate our proposed method using a single panoptic model. Again, since the
hardware’s difference, we marked “Mask2Former(Ours)” as our reproduced results for the
baseline method. Following the baseline’s settings, we set 100 queries for Swin-B backbone
and 200 queries for Swin-L backbone.

The experimental results in Tables 6 and 7 show that our proposed method can
improve all segmentation performance. Specifically, we enhance the ADE20K’s panoptic,
instance, and semantic segmentation performance with Swin-L backbone by 0.5%, 1.1%,
and 0.3%, respectively. We also improve the panoptic, instance, and semantic segmentation
performance for the Cityscapes dataset by 0.3%, 1.6%, and 0.3%, respectively. It proves that
our proposed method can also improve all segmentation performance, even using a single
panoptic model.

4.6. Limitations

The proposed method aims to adopt a simple auxiliary CNN on top of a transformer
backbone to increase the overall segmentation performance. In Tables 4 and 5, we can
observe that the performance gain gradually decreases when the scale size of a Swin
transformer backbone increases. It indicates that a fixed-size auxiliary CNN has less impact
on a larger transformer. In our future work, we hope to design an auxiliary CNN that can
be adaptive to the transformer backbones with different scales.
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Table 6. Performance comparison of panoptic segmentation on the ADE20K validation dataset.
Single-scale (ss) inference is adopted by default. Multi-scale results are marked with *. †: backbone
pretrained on ImageNet-22K.

Method Backbone Panoptic Model
PQ (ss) APpan mIoUpan

BGRNet [34] R50 31.8 - -
Auto-Panoptic [35] ShuffleNetV2 [49] 32.4 - -
MaskFormer [10] R50 34.7 - -
Kirillov et al. [30] R50 35.6 * - -

Panoptic-DeepLab [31] SWideRNet [50] 37.9 * - 50.0 *
Mask2Former [11] Swin-L † 48.1 34.2 54.5

Mask2Former (Ours) Swin-L † 48.3 34.0 54.4
Ours Swin-L † 48.8 35.1 54.7

Table 7. Performance comparison of panoptic segmentation on the Cityscapes validation dataset.
Single-scale (ss) inference is adopted by default. Multi-scale results are marked with *. †: backbone
pretrained on ImageNet-22K. ‡: backbone pretrained on ImageNet-1K and COCO.

Method Backbone Panoptic Model
PQ (ss) APpan mIoUpan

TASCNet [32] R50 ‡ 59.2 - -
Kirillov et al. [30] R50 61.2 * 36.4 * 80.9 *

UPSNet [33] R101 ‡ 61.8 * 39.0 * 79.2 *
Panoptic-DeepLab [31] SWideRNet [50] 66.4 40.1 82.2

Panoptic-FCN [36] Swin-L † 65.9 - -

Mask2Former [11] Swin-B † 66.1 42.8 82.7
Swin-L † 66.6 43.6 82.9

Mask2Former (Ours) Swin-B † 65.7 42.8 82.1
Swin-L † 66.4 43.0 82.9

Ours Swin-B † 66.6 43.8 82.9
Swin-L † 66.7 44.6 83.2

5. Conclusions

In this paper, we propose a simple yet effective auxiliary CNN architecture that in-
troduces auxiliary convolutional layers to Mask2Former during training to learn dense
local features. Since the proposed auxiliary CNN is required only for training and can
be removed at inference, the segmentation performance can be improved without addi-
tional computation overhead at inference. Experimental results show that our proposed
method achieves an mIoU of 57.6% on the ADE20K validation dataset and an mIoU of
84.8% on the Cityscapes validation dataset. In the future, we hope to develop a model
that can be adaptive to the transformer backbones with different scales to improve the
segmentation performance.
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Abstract: Dense video caption is a task that aims to help computers analyze the content of a video
by generating abstract captions for a sequence of video frames. However, most of the existing
methods only use visual features in the video and ignore the audio features that are also essential for
understanding the video. In this paper, we propose a fusion model that combines the Transformer
framework to integrate both visual and audio features in the video for captioning. We use multi-
head attention to deal with the variations in sequence lengths between the models involved in our
approach. We also introduce a Common Pool to store the generated features and align them with
the time steps, thus filtering the information and eliminating redundancy based on the confidence
scores. Moreover, we use LSTM as a decoder to generate the description sentences, which reduces
the memory size of the entire network. Experiments show that our method is competitive on the
ActivityNet Captions dataset.

Keywords: dense video caption; video captioning; multi-modal feature fusion; feature extraction;
neural network

1. Introduction

A dense video caption is an abstract representation of the important events in unedited
videos that may contain different scenes. Thanks to the popularity of Internet resources
and mobile devices, the amount of video data is increasing, and the types of which are
becoming very rich. As an important way to disseminate information, videos have become
inseparable from people’s daily lives, and the use of live videos has become a trend. The
tasks of dense video captions are to effectively label different types of content, and can be
applied to various scenarios in videos towards extraction of higher-level semantics. For in-
stance, monitoring traffic safety, finding target people, assisting in reviewing video content,
and improving network security [1–3]. In contrast to tasks such as object recognition and
tracking, video captioning requires a combination of computer vision [4–7] and Natural
Language Processing (NLP) techniques [8]. In addition to spatial and temporal information,
there is also the contextual information contained in the video, including sound effects and
speeches. It makes dense captioning much more challenging. Video captioning requires the
computer to not only unambiguously recognize objects in the video, but also to understand
the relationships between the objects. Finally, it requires the computer to express the
contents of the video in logical terms of human languages [9–11].

The emergence of deep learning [12] first achieved breakthroughs in image caption
tasks, and the encoder–decoder framework was quickly transferred to video caption do-
mains by researchers who have obtained various results [13,14]. Video caption tasks aim to
generate a natural language sentence that summarizes the main content of a given short
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video. However, most videos do not contain only one event, but are composed of multiple
scenarios. The events in a given video are usually related to each other, and most events
are action-oriented and can even overlap [15,16]. These characteristics make it difficult for
a single sentence to fully express the complex content of the video. To solve this problem,
a dense video caption task was proposed to generate a natural language paragraph that
describes all of the important events and details in a given video. The dense video caption
task accurately expresses the complex content of the video through multiple compound
sentences, which is more in line with human needs for artificial intelligence [17].

Figure 1 shows one of the successive frames of an unedited video containing different
scenes. It can be seen that this video converts four different scenes, and it is difficult to fully
capture all of the content of the video without the help of a dense video caption task. As a
result, the generated text is incomplete and incoherent. Furthermore, Figure 1 indicates
the importance of combining audio patterns to generate text descriptions. As we can see,
the first segment of the video determines the caption as “a woman in a red top talking
to the camera” from a purely visual perspective. In fact, the woman in this video is a
broadcaster providing the news via audio, and talking about a surfer who accidentally got
lost while attempting a huge wave. From the above example, we can conclude that the
audio enables our model to produce captions that match the full content of the video more
closely. Therefore, it is important to integrate audio features into dense video caption tasks,
which help computers to comprehend relatively abstract videos and express rich scenes
in text.

0:00
0:32

GT: A woman in red top is talking in the camera.

Ours: The woman is telling about the loss of a surfer.

0:26 1:09

GT: A man in black shirt is giving interview.

Ours: A man in an interview described what happened while surfing.

0:58
2:03

GT: Surfers are surfing in the huge waves, and some people are riding motorcycles on the sea.

Ours: Two people are surfing in the huge waves, and the lifeguard is riding a motorcycle to search and rescue.

Figure 1. Example video with the predictions of our model alongside the ground truth.

Building on previous work, we focus on how to fully integrate features into video and
audio sequences as vectors of different lengths. The main contributions of this paper are
as follows:

(1) We introduce a new framework for dense video caption generation. Such framework
makes use of the Transformer’s multi-head attention module to efficiently fuse video
and audio features in video sequences, thus improving the accuracy and richness of
the model-generated captions.

(2) We propose a confidence module to select major events, which addresses the problem
of unequal recall and precision after using fused video–audio features, making the
fused audiovisual features more effective in generating descriptive texts.

(3) We employ LSTM as a decoder for sentence representation, which has the advantage
of long-term memory to meet the requirements of text description generation, and
also enhances the overall computational efficiency of the framework.

53



Sensors 2025, 23, 5565

(4) We show that our framework is competitive with existing methods on the ActivityNet
Captions dataset.

We arrange the following content as below. Section 2 gives an overview of the related
work in video captioning and the deep learning approaches. Section 3 describes the
structure of our multi-modal approach and the technical details. The setup of experiments,
the discussions of results, and the comparisons with other methods are presented in
Section 4. Finally, we conclude the paper in Section 5.

2. Related Work

Video captioning is an introduction to what the video contains in logical sentences.
A typical video sequence is formed by playing more than a dozen frames (images) per
second quickly. Therefore, the initial methods for dense video captioning were largely
inspired by the image caption field, especially the encoder–decoder structure based on
deep learning, which can encode the visual features and decode them into natural language
sentences [18–20]. The sequence-to-sequence–video-to-text [21] (S2VT) model follows
this idea, where a certain number of frames are extracted from the video as images. The
encoding part uses the VGG [22] network to process the characteristics of the input data,
and adds the optical flow method as an auxiliary. Then, the extracted features are averaged,
and a text description is generated in the decoding part using LSTM [23]. However, due to
the particularity of video, this method does not take into account the timing information
contained in the video, and the generated text description is not detailed enough.

The emergence of convolutional three-dimension networks (C3D) has solved the above
problems to a certain extent [24]. It adds the time dimension to the original structure of a 2D
CNN, which is more conducive to processing complex video data, and the extracted video
features are more comprehensive. Therefore, C3D gradually occupies a major position in
the field of video captioning [25–28], and many other projects use it as an encoder for the
feature extraction of videos. The inflated 3D convNet (I3D) adds optical flow features on
the basis of C3D [29]. The weight of the 2D CNN model pre-trained on ImageNet is used as
the initial parameter to train the model, which further improves the performance of video
feature extraction. The pseudo-3D residual network (P3D) decomposes 3D convolutions
into two-dimensional space convolutions and one-dimensional time convolutions, and adds
the concept of residual connection to increase the overall depth of the network, and obtains
good results [30].

Dense video caption [31] has raised the video caption task to a new level. On the
basis of the S2VT model, the original short description text is extended to the problem of
caption generation based on regional sequences, which improves the comprehensiveness
and diversity of descriptions and maintains the accuracy. For this task, the ActivityNet
Captions dataset is also proposed, which has a high position in the field of dense video
captioning [32,33]. Yu et al. proposed the concept of converting a video into an article, using
multiple sentences to form a long text paragraph to summarize the video substance [34].
The decoding part of the model is divided into two modules: sentence generation and
paragraph composition. The description text as referenced in the dataset is used as a part
of the input to train the model to learn the correlation information between sentences. The
effective results of this work have inspired the research on video caption tasks to a certain
extent. The single-stream temporary action proposal (SST) [35] model obtains the timing
information of the video by filtering the threshold, and uses the attention mechanism to
analyze the information; the output video features are input to the decoder as the initial
state. The Meteor [36] score of this model on the ActivityNet Captions dataset is 9.65, which
is higher than that of other models at the same stage.

Because of the outstanding performance, recurrent neural networks (RNN) in the
NLP field are applied to video caption tasks. Most models use the characteristics of LSTM
that can remember long sequences as a decoder to generate description text. Pan et al.
proposed the LSTM-E model [37], which is on the basis of traditional cross-entropy loss. A
correlation loss is added to allow the model to learn both semantic relationships and visual
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content, fully associated sentences used as references with visual features, and improve
the accuracy of the output. The boundary-aware encoder [38] model uses LSTM as the
encoding part, and proposes a recurrent video coding scheme, which can better explore
and use the hierarchical structure in the video, and enhance the matching degree with the
timing information in the video.

More importantly, researchers have sought to apply the attention mechanism to the
field of video captioning and achieved good results. Yao et al. proposed to introduce
attention weight α on the basis of an S2VT model to calculate features of time series, paying
high attention to important information in the video, and ignoring some interference or
unimportant information [39]. The evaluation index of this behavior is higher than other
models in the same period. The spatio-temporal and temporo-spatial attention (STaTS)
model [40] takes the language state as the premise, complements the spatial and temporal
information of a video through two different attention combinations, and proposes an
LSTM-based time sequence function (sorting attention), which can be used to capture
actions in the video.

In order to solve the problem that the LSTM structure cannot be trained in parallel,
the Transformer frame builds a global relationship on the semantic information of the
reference description statements in the dataset based on the attention mechanism, and
has achieved good results in dealing with the problem of missing details of video caption
tasks [41–45]. Wang et al. proposed a training model based on a Transformer (EEDVC) [46],
with one encoder corresponding to two decoders. The video is divided according to
different events, and each extracted event is described separately. However, this approach
relies too much on the quality of video feature extraction, and the time information captured
in the video is insufficient. Wang et al. proposed the parallel decoding method (PDVC) [47]
on the basis of EEVDC, which enhanced the model’s learning of video features and semantic
relationships in reference sentences through two different parallel Transformer methods.
The diverse paragraph captioning for untrimmed videos (TDPC) [48] uses the Transformer
framework, and adds a dynamic video memory module to interpret the global features of
video in stages, taking into account the accuracy and diversity of text descriptions.

The description text generated only for the visual modal information in the video
cannot cover all of its content [49,50]. The enhanced topic-guided system [51] introduces
the Mel frequency cepstrum coefficient (MFCC) [52] to extract the audio feature information
in the video, and fully integrates the visual and audio features, to achieve the purpose of
an all-around description. Iashin et al. continued this theory, using I3D and VGGish [53] to
extract features of visual and audio modes in the video, and introduced a bi-Transformer
framework to abstract video expression [54]. The multi-modal dense video caption (MDVC)
model [55] builds upon the Transformer architecture, where the visual, audio, and speech
in the video are used as input data, and finally converted into text descriptions. Chang et al.
proposed an EMVC method [56], using visual-audio cues to generate event proposals,
and developed an attention gate that dynamically fused and adjusted the multi-modal
information control mechanism. Hao et al. proposed three different depth fusion strategies
for multi-modal information in videos, trying to maximize the advantages of audio-visual
resonance [57]. Park et al. combined the human face information in the video, extracted
the spatio-temporal features in the video using I3D, and combined it with the Transformer
architecture to predict the relationship between different IDs and objects [58].

Based on the above analysis, we summarize some methods for video captioning in
Table 1. In addition, we can clearly understand that the video caption field has achieved
significant performance improvement in recent years, but it still faces some challenges and
problems. On the one hand, video captioning needs to fully utilize the multimodal data
features in videos, such as visual, audio, and text, but most current methods only focus
on visual features and ignore the importance of other features for generating accurate and
rich descriptions. On the other hand, video captions need to generate natural language
descriptions that are highly relevant and grammatically correct for the video content, but
most of the current methods only use template-based or sequence learning-based language
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models, lacking the modeling of complex relationships and logical reasoning abilities
between video and text.

Table 1. Summary of selected video caption methods.

Method CNN RNN Attention Transformer Visual Audio Others
S2VT [21], LSTM-E [37] X X X

DCE [31], SST [35], STS [39], STaTS [40] X X X X
AMT [42], SwinBERT [43], PDVC [47], TDPC [48] X X

ETGS [51], VGA [57] X X X X X
DVMF [50] X X X X X X

MDVC [55], BMT [54], EMVC [56], FiI [58] X X X

Therefore, how to better utilize the multi-modal data features in videos, and how to
more effectively model the complex relationships and logical reasoning abilities between
video and text, are still challenges that need to be focused on and solved in the future
research of this field.

3. Methodology

Considering the importance of audio patterns in a video and combining the above
research points, a dense video caption generation model that fully integrates visual and
audio patterns is proposed. This model applies the I3D and VGGish approaches to extract
visual and audio features, respectively. Moreover, the output features produced by these
approaches are always presented in different sizes, we thus introduce a multi-head attention
module to integrate the extracted visual and audio features. Finally, the LSTM is used as a
decoder to implement a descriptive textual representation of the video content.

3.1. Model Overview

The framework of the proposed model consists of three parts: feature extraction,
multi-modal feature fusion, and caption generation. Figure 2 presents the entire framework
and the data flow between the three parts in a schematic diagram.
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Figure 2. Overall framework of the proposed model.

Feature Extraction Since there are size differences between visual and audio features,
they need to be extracted separately to remove noise and redundancy. For the visual
pattern features, the I3D network is applied to achieve the extraction of spatial features
present in the video, while optical flow features are also added to further improve the
performance. Next, VGGish is used to extract a selection of audio features that can
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effectively convert the audio stream into a feature vector corresponding to natural
language elements.

Multi-Modal Feature Fusion The features extracted from visual and audio modalities
produce vectors of different dimensions that cannot be directly fused. Therefore,
a multi-model attention fusion module is proposed as an encoder based on the Trans-
former framework, aiming to fully fuse the audio and visual features for information
resonance. Furthermore, a confidence module is added to filter the major information
in this part.

Caption Generation We employ LSTM to retain the attributes of lengthy sequences as a
decoder. The proposals evaluated by the confidence module serve as the initial state
input of the decoder, which simulates the distribution in the vocabulary encoded
by the embedded position. Finally, a detailed textual description for the video is
generated automatically.

3.2. Feature Extraction

Currently, there is no method to extract both visual and audio features from a video
simultaneously. These features can only be extracted from different modalities. As noted in
Section 2, CNN is a highly regarded method in the field of computer vision that outperforms
in dense video caption. Since a video is essentially a collection of still images that contain
temporal information, relying solely on 2D CNN networks to extract information from
video frames ignores the correlation between frames and thus fails to fully extract the rich
information in the video. Therefore, we recommend applying the I3D pre-trained on the
Kinetics dataset [59] as the backbone for extracting visual features from the video. This
approach adds optical flow features to the spatio-temporal features of the video that can be
learned by the C3D approach. We also train the RGB and optical flow networks separately
as the input features, then average them during testing. Additionally, I3D contains a deeper
network structure and a multi-branch structure, allowing for reduced parameters and
increased efficiency. In practice, we apply I3D to extract RGB and optical flow features
from each video frame, then combine these two features and encode them using linear
layers to achieve a simple, compact, and well-suited network model for intensive video
annotation tasks.

We also use the VGGish network to extract audio features from videos. Numerous stud-
ies have demonstrated that VGGish outperformed traditional methods for audio extraction.
This is achieved by combining the deep structure of the VGG network with log-mel features
and training on a large amount of audio data from the Audioset dataset [60]. The pre-
trained parameters show strong generalization capabilities. In our framework, the audio
clips are represented as log-mel-scale spectrograms of size 96× 64, obtained by a short-
time Fourier transform. The VGGish network converts the audio into 128-dimensional
feature vectors with semantic information, where high-level feature vectors have more
expressive power.

3.3. Multi-Modal Feature Fusion

Most dense video caption tasks rely on visual features, and a few integrate multi-
modal features by concatenating or sharing the weights of different features rather than
fully fusing them. As a result, multi-modal features are not fully functional in nature. To
address this problem, we propose a multi-modal feature fusion approach that includes a
multi-modal encoder, proposal heads, and confidence module. The multi-modal encoder
stacks visual (Vn) and audio (An) features into N multi-modal encoder blocks to enable
full fusion of the two features. Each multi-modal encoder block consists of self-attentive,
multi-head attention, and fully connected layers. The process is described as follows. First,
the self-attentive layer of the Transformer processes variable-length information sequences
and dynamically generates different weights for the extracted visual and auditory features.
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self Attention(Q, K, V) = Softmax
(

QKT
√

d

)
V, (1)

where Q, K, and V denote query, key, and value, respectively. The
√

d as a training
parameter controls the gradient of Softmax with the purpose of enhancing the attention
weights and distinguishing the differences between these features.

Vself
n = self Attention

(
Vfc

n−1, Vfc
n−1, Vfc

n−1

)
, (2)

Aself
n = self Attention

(
Afc

n−1, Afc
n−1, Afc

n−1

)
. (3)

Then, multiple queries (Q) of multi-head attention are obtained to compute and
produce a score for determination. These heads are concatenated as an output feature after
the multi-head attentions are determined.

headh(Q, K, V) = self Attention
(

QWQ
h , KWK

h , VWV
h

)
, h ∈ [1, H]. (4)

All headh will be concatenated and input to the multi-head attention:

MultiHeadAttention(Q, K, V) = [head1(Q, K, V), . . . , headH(Q, K, V)]Wout. (5)

Note that there are two different dimensions of multi-head attention weights produced
by the two modalities, so concatenation processing is required to fuse them together.

VA
n = MultiHeadAttention

(
Vself

n , Aself
n , Aself

n

)
, (6)

AV
n = MultiHeadAttention

(
Aself

n , Vself
n , Vself

n

)
. (7)

At this point, the module will produce two fully merged new feature sequences: the
visual feature Vfc

n and audio feature Afc
n , which also contain the most interesting information

for the visual and audio components in this part, respectively.

Vfc
n = FullyConnected

(
VA

n

)
, (8)

Afc
n = FullyConnected

(
AV

n

)
. (9)

Once the visual and audio features have been corrected, they are passed to the proposal
heads to predict a set of proposal tags to initialize the video. This process can help select
features that match the video content and improve the accuracy of the captioning module.
However, due to differences in sequence lengths between the video and audio modalities,
the feature sequences of the two modalities cannot match every proposal in the video at
every time step. To alleviate this problem, a Common Pool is introduced to store the video
or audio modality proposal corresponding to each time stamp. This allows filtering out
noise and redundant information based on confidence scores.

As shown in Figure 3, there are two proposal heads Kv (video) and Ka (audio) as
input features, which are passed to the proposal model in parallel. Each proposal head
is a fully-CNN model consisting of three convolutional layers with different kernel sizes,
and their paddings are used to unify the sequence length between each layer. The kernel
size of the first convolutional layer is configured as k× k, which is used to scale-down the
input size while extracting the most important features. Next, the kernel size of the other
two convolutional layers is set to 1, with the goal of performing trainable weight batching
for tensor learning. Each layer is separated by an activation function ReLU, and a Dropout
layer is connected to the end in order to avoid overfitting.
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Figure 3. After the multi-modal encoder, the output features are marked in the proposal heads.
The Common Pool is used to store the proposals predicted for each mode at each time step, and extract
more important proposals by confidence.

The purpose of the Common Pool is to store proposals from different modalities, which
are feature vectors extracted from video or audio modalities that reflect the content and
semantics at each timestamp. The Common Pool puts these feature vectors into a shared
space, allowing for comparison and communication between different modalities. Then,
by using contrastive learning methods, the Common Pool can learn a unified representation
that enables alignment and interaction between cross-modal proposals, thus providing a
basis for subsequent processing and fusion.

We aim to select the most accurate proposals from the Common Pool based on their
confidence score. We use the top-100 accuracy as a metric to evaluate the quality of the
proposals and filter out the ones that are redundant or irrelevant. To further refine the
proposals, we apply the K-means clustering algorithm with a Euclidean distance metric to
estimate the optimal size of the kernel for each proposal. The kernel size is determined by
predicting the threshold and receptive range that correspond to various high probability
events in the feature space. We then scale the feature time span according to the clustering
centroids and use them to obtain the values in grid cell coordinates. This way, we can
generate more precise and compact proposals for different modalities. The details are
as follows,

cp = pi + θ(lc), (10)

where pi = (start, end, confidence), i ∈ [1, 100], and lc is the length. This θ(lc) represents
the cp (centre) position relative to position p in the sequences. The Sigmoid function θ
ensures that the range must be [0, 1].

start = cp −
lc
2

, (11)

end = cp +
lc
2

, (12)

confidence = θ(lo), (13)

where the proposal pi can be judged by the time bounds of “begin” and “end”, as well as
the confidence scores, as in (13). Finally, the accuracy of the top 100 is obtained and the
encoder is used to process the pruned features. Overall, the feature vectors with rich event
relationships can be obtained after completing the multi-modal feature fusion module,
which is important for generating comprehensive and logical text descriptions in this work.
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3.4. Caption Generation

The decoder part of the model takes as input the feature vector output by the multi-
modal feature fusion module and the previously generated word embedding representation.
These inputs are then passed to the decoder layer for processing. We recommend using
the LSTM as the RNN decoder part because it can effectively alleviate gradient explosion
and remember long sequences. The LSTM iterates the next predicted word and generates
the description text. Compared with the Transformer, LSTM also has good performance
and can greatly reduce the model training time. Moreover, the output features of the last
layer of the decoder can be used in the generator to predict the next caption word. The
LSTM-based headline generation module is implemented by the following,

It =

{
N

∑
i=1

exp(θ(lc))
(

Vfc
n , Afc

n

)
, Wt

c

}
, (14)

where It represents the initial state of the current caption generation module, Vfc
n and Afc

n
represent the video feature, including part of the audio and video feature, respectively. The
exp(·) function is used to determine the weight of the input feature, and Wt

c denotes the
subtitle word embedding feature. An input rule of LSTM is expressed in (15),

ht = LSTM(yt−1, ht−1, It−1), (15)

which is used to produce the current hidden state ht. It receives the caption word embed-
ding feature y, and ht−1 and lt−1 denote the two inter-hidden states that must be considered
in each recurrent. The Softmax layer is used to compute the probability distribution p for
the word prediction of the video caption,

p(yt | yt−1) = Softmax(yt−1, ht, It). (16)

According to the predicted index of the vocabulary, the determined word can be con-
tinuously embedded and pass the net recurrent for the next word prediction until the
end-of-sentence (<EOS>) symbol is received. Finally, the predictions are measured against
the ground truth results, the difference is calculated using the cross-entropy function
LCE(µ), and the gradient is contributed to the training energy. Given g, the reference
caption in the dataset is the ground truth, µ is the training parameter in the proposed
model, and a complete cross-entropy function is thus expressed as follows,

LCE(µ) = −
T

∑
t=1

log
(

pµ(gt | gt−1)
)
. (17)

4. Experiment

To evaluate the effectiveness of the proposed model, we performed experiments on
the public ActivityNet Captions dataset and compared it with state-of-the-art methods.

4.1. Dataset and Data Pre-Processing

In our experiments, MSVD [61], ActivityNet Captions [31], and YouCook2 [62] are
commonly used public datasets in the field of video caption. ActivityNet is mainly designed
for dense video captioning tasks and covers a wide range of domains, which is exactly what
our method requires. The ActivityNet Captions dataset contains 20,000 video clips with an
average duration of 2 min. Each video is labeled with the events it contains, and the start
and end times of each event are clearly marked, along with a manually created description
of the event content. Note that some videos have been removed or altered by the original
author and are no longer directly downloadable from the online resource. Following the
approach used by most scholars, there are 10,024 videos in the training set, 4926 in the
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validation set, and 5044 in the test set. However, the labels in the test set are not yet publicly
available, so we use the validation set for experiments and comparisons.

For the training preprocessing, the truecase, tokenization, and cleaning symbols must
be completed, and the start mark <BOS> and end mark <EOS> must be inserted at the
beginning and end of a sentence, respectively. Due to the limited size of the vocabulary
and the misleading description of low-frequency word pairs, words with a frequency of
less than 5 in the text are uniformly replaced by <UNK>, whose semantics are discarded
and considered to be out of the vocabulary. To prevent no input from the decoder at the
beginning, the <BOS> is also inserted as the first token, and the caption will be generated
verbatim until a unique end token <EOS> is also inserted.

4.2. Implementation

The environment we set up was a Ubuntu 20.04 system, and we made use of Py-
Torch [63] as the neural network engine for our implementation. These experiments were
trained on NVIDIA GeForce RTX 3070Ti GPUs with 8.0 GB of device memory. The I3D
network had been pre-trained on the Kinetics dataset used in the visual feature extraction
stage. The input consisted of RGB features extracted at 25.0 fps and 64 optical flow features
of size 2242. The dimension of the output features was 1024. Additionally, audio features
were extracted by VGGish pre-trained on AudioSet, where the pre-classification layer
embedded 128 dimensions for each feature, and configured the batch size as 32. In addition,
the learning rate was initialized to 10−4, and Adam [64] was used as the optimizer.

For the multi-modal feature fusion module, we took features of different sizes and
mapped them to an inner space with a 1024-dimensional vector. Then, we used two different
sizes of features as 128 features for visual and 48 features for audio, and stacked N = 2
and H = 4 in multi-head attention. In Section 3.3, we configured the proposal header
with Kv = Ka = 10, while for the kernel K, we used a different size. The size of the visual
modality was determined after calculating the K mean. Next, the LSTM was connected
to the proposed heads that received the hidden state and performed the decoding. These
results were passed to Softmax to compute the probability of the next word determination.
In practice, the word embedding size was 468 and the learning rate was 5 × 10−5. The
localization and target loss factor was 1.0. To maintain a balance between the two modalities,
we set the size of the two hidden layers of the proposal header to 512, so the input size of
the fully connected layer was also 512.

4.3. Results and Analysis

To demonstrate the performance of the proposed framework, we performed validation
on the ActivityNet Captions dataset and compared it with various state-of-the-art methods.
We provide ablation studies to validate the impacts of the individual modules in our
framework on the experimental results. We also report the results of the qualitative analysis,
which highlights the superiority of our proposed model.

4.3.1. Comparison to the State-of-the-Art

We compared the proposed model with various state-of-the-art methods on the dense
video caption tasks, including: EEDVC [46], DCE [31], MFT [32], WLT [49], SDVC [33],
EHVC [25], MDVC [55], BMT [54], PDVC [47], and EMVC [56]. The results of the compari-
son are shown in Table 2.

Among them, B@N represents the evaluation metric BLEU [65], which compares the
degree of overlapping of N-grams between translated results of predicted and reference.
It is widely used to evaluate the level of text expression in neural machine translation
(NMT). Furthermore, METEOR [36] considers the recall rate and accuracy rate based on
BLEU, and uses the F-Value as the final evaluation metric. Moreover, CIDEr [66] mainly
calculates the similarity between predicted and reference sentences, whose principle meets
the evaluation requirements in the field of image and video caption. Higher values of these
evaluation metrics indicate better performance of the generated text description.
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Table 2. Comparison of the performance of our proposed method with state-of-the-art methods on
the ActivityNet Captions dataset. The bold fonts indicate the best results.

Models B@1 B@2 B@3 B@4 METEOR CIDEr

EEDVC [46] 9.96 4.81 2.91 1.44 6.91 9.25
DCE [31] 10.81 4.57 1.90 0.71 5.69 12.43
MFT [32] 13.31 6.13 2.84 1.24 7.08 21.00
WLT [49] 10.00 4.20 1.85 0.90 4.93 13.79
SDVC [33] 17.92 7.99 2.94 0.93 8.82 -
EHVC [25] - - - 1.29 7.19 14.71
MDVC [55] 12.59 5.76 2.53 1.01 7.46 7.38
BMT [54] 13.75 7.21 3.84 1.88 8.44 11.35
PDVC [47] - - - 1.96 8.08 28.59
EMVC [56] 14.65 7.10 3.23 1.39 9.64 13.29
Proposed 16.77 8.15 4.03 1.91 10.24 32.82

All experimental results are shown in Table 2, and the proposed work achieved better
results than the others. Note that the SDVC model incorporates reinforcement learning in
the training process, so the score of BLEU-1 was higher than our method. It is worth noting
that the proposed model outperformed both BMT and EMVC in the scores of each item, and
their approaches were also based on audiovisual feature fusion for intensive video caption
generation. They differ from our model in that both models use the Bi-Transformer in both
the encoder and decoder, and we use the Transformer framework only in the encoder; we
instead use the LSTM as the decoder for generating descriptive text. In addition, some
missing parts of the ActivityNet Captions dataset did not provide complete metrics for
BMT and EMVC. Even so, this still proved that our method not only required less training
time, but also performed competitively.

4.3.2. Ablation Study

We conducted a large number of comparative experiments to verify the impact of different
components of the proposed model on the output results, including multi-modal feature
extraction, a Transformer for multi-modal feature fusion, and an LSTM for caption generation.

Table 3 indicates the impact of multi-modal features on the generated captions. The
results using fused audio and visual features always outperform the best under different
evaluation metrics. In all three cases, the results using pure audio modality features were
the weakest, which means that the visual modality may contain more information about
the video content. However, the difference between visual and audio remained fixed,
but the fusion effect was good, indicating that audio played a certain role as additional
feature information.

Table 3. The impact of proposed multi-modal features on generated captions. The bold fonts indicate
the best results.

Modality B@1 B@2 B@3 B@4 METEOR CIDEr

Visual-only 13.71 7.08 2.58 1.15 6.98 18.36
Audio-only 12.14 6.27 2.64 1.03 5.82 15.74
Proposed 16.77 8.15 4.03 1.91 10.24 32.82

We also conducted an ablation study to verify the effectiveness of using Transformer’s
multi-head attention to fully fuse multi-modal features in our model. We compared our
method with a baseline method that used only multi-modal features for concatenation
without attention. The results are shown in Table 4. We can see that our method outperforms
the baseline method on all metrics, indicating that the proposed method can achieve a
more complete and robust feature fusion by using Transformer. Moreover, we can observe
that the proposed method can generate more comprehensive and accurate video captions
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than the baseline method, as it can capture more details and nuances from both visual and
audio modalities.

Table 4. Comparing the impact of different fusion methods on proposed multi-modal features. The
bold fonts indicate the best results.

Method B@1 B@2 B@3 B@4 METEOR CIDEr

Concatenate 14.84 5.19 3.61 1.66 7.53 25.47
Proposed 16.77 8.15 4.03 1.91 10.24 32.82

We tested the effect of using LSTM, GRU, and the Transformer as decoders on the
abstract representation of the video. As shown in Table 5, we observe that most of the
methods that used Transformer as a decoder to generate text descriptions achieved slightly
higher scores than the LSTM we employed. However, the difference was not significant,
and our method still outperformed most of the Transformer-based methods on some
metrics. Moreover, our method has the advantage of faster training and inference speed
than other methods, as it requires less memory and computation. The time to generate text
descriptions for each video was correspondingly shorter, which is desirable for practical
applications. Therefore, we conclude that our approach is still competitive and efficient for
dense video caption.

Table 5. The effect of different decoder on dense video caption. The bold fonts indicate the best results.

Decoder B@1 B@2 B@3 B@4 METEOR CIDEr

Transformer 18.14 8.29 4.12 1.87 10.31 33.46
GRU 15.57 6.56 3.81 1.64 8.73 28.95
LSTM 16.77 8.15 4.03 1.91 10.24 32.82

4.3.3. Qualitative Analysis

Furthermore, we demonstrated text description generation using the proposed multi-
modal feature fusion method on the ActivityNet Captions dataset. We also compared the
video captions generated with visual or audio-only features as input, as shown in Figure 4.

As the results show in Figure 4, both our method and the method using only audio
features captured the keyword “futsal” at the beginning of the video time [0:00–0:15]. In
contrast, the method using only visual features missed this keyword and only expressed
the conversation between two people. It is impossible to obtain the specific content of
the chat without the audio features as a complement, so the generated captions are not
acceptable. Furthermore, at video time [1:26–1:41], there was a gap between the audio and
visual features provided in this solution, so the auxiliary function of the audio features was
not highlighted. The entire video lasted more than 2 min, and the captions generated by
our proposed model were more detailed and accurate than the reference captions provided
by the ground truth.
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0:00
0:15

GT: A man and a woman are sitting on couches.

Visual-only: A man and a woman are talking on the sofa.

Audio-only: A man is talking about a futsal tournament.

Ours(Visual-Audio): Two people sitting on the sofa and talking about the futsal tournament.

GT: People are playing indoor soccer in an arena.

Visual-only: People play football in the indoor stadium.

Audio-only: Explain the rules of the futsal .

Ours(Visual-Audio): People are playing futsal soccer in the indoor arena.

GT: A man falls down trying to kick the ball.

Visual-only: A man fell down.

Audio-only: Five fouls, one free kick.

Ours(Visual-Audio): A man falls down while trying to get the ball.

GT: People in the stands cheer for them.

Visual-only: People is cheering when goal was scored.

Audio-only: People are cheering.

Ours(Visual-Audio): People are cheering and celebrating a goal.

0:20 2:18

2.:03
2:37

1:26 1:41

Figure 4. Results of a qualitative analysis of a video from the ActivityNet Caption validation dataset.
The predicted results of the proposed model are compared to the visual-only model, the audio-only
model, and the ground truth (GT) reference.

5. Conclusions

We propose a framework for enhancing the performance of dense video caption using
a multi-modal feature fusion approach. The proposed framework employs I3D to extract
visual features and VGGish to extract audio features from videos. The Transformer encodes
the multi-modal features, and LSTM decodes them to generate descriptive text for the
video. The overall framework is compact and efficient for training. To generate more
accurate results, we fed the feature output from the encoder into the proposal head module.
Moreover, to align the visual-audio features with different sequence lengths at each time
step after the fusion, we use a Common Pool to predict and fuse each modality of every
recurrent step. Furthermore, we use confidence scores to extract more consistent features
for video content, which can improve the quality of the model-generated sentences.

Experiments show that the proposed multi-modal feature fusion model surpasses
other approaches that use only visual or audio modality features. The model is also
competitive with other dense video caption models. The text generated by the proposed
model follows natural language rules, highlighting the importance of audio features for
this task.

Our work still has shortcomings compared to the ground truth, and we cannot fully
recognize the short-term killing parts. Future work could explore the addition of other
modalities in video to enhance the expression of video content with more auxiliary in-
formation, increase the accuracy of computer understanding of videos, and improve the
fine-grained caption generation.
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Abstract: Supervised learning requires the accurate labeling of instances, usually provided by an
expert. Crowdsourcing platforms offer a practical and cost-effective alternative for large datasets
when individual annotation is impractical. In addition, these platforms gather labels from multiple
labelers. Still, traditional multiple-annotator methods must account for the varying levels of expertise
and the noise introduced by unreliable outputs, resulting in decreased performance. In addition, they
assume a homogeneous behavior of the labelers across the input feature space, and independence
constraints are imposed on outputs. We propose a Generalized Cross-Entropy-based framework
using Chained Deep Learning (GCECDL) to code each annotator’s non-stationary patterns regarding
the input space while preserving the inter-dependencies among experts through a chained deep
learning approach. Experimental results devoted to multiple-annotator classification tasks on several
well-known datasets demonstrate that our GCECDL can achieve robust predictive properties, outper-
forming state-of-the-art algorithms by combining the power of deep learning with a noise-robust loss
function to deal with noisy labels. Moreover, network self-regularization is achieved by estimating
each labeler’s reliability within the chained approach. Lastly, visual inspection and relevance analysis
experiments are conducted to reveal the non-stationary coding of our method. In a nutshell, GCEDL
weights reliable labelers as a function of each input sample and achieves suitable discrimination
performance with preserved interpretability regarding each annotator’s trustworthiness estimation.

Keywords: deep learning; multiple annotators; chained approach; generalized cross-entropy; classification

1. Introduction

Conventional Machine Learning (ML) and Deep Learning (DL) techniques utilize a
prediction function that maps input data to output targets. In supervised tasks, output
values (or “ground truth”) are available for training, but in many real-world scenarios,
these values may be unknown or too costly to obtain [1]. With the rise of DL-based
approaches, there has been an increasing interest in their use as the primary tool in various
classification and regression tasks [2]. However, a crucial factor that dramatically impacts
the performance of DL models is the quantity and quality of labeled data used during
training [3]. Concerning this, crowdsourcing is a widely recognized approach for obtaining
labeled data cost-effectively and efficiently from multiple annotators. It involves the use of
online platforms, such as Amazon Mechanical Turk (AMT), to recruit a large number of
individuals (annotators) to label the data and provide their subjective interpretation of the
unknown ground truth [4].

In the ML field, assigning labels to instances with the help of multiple annotators
is a common practice. However, it presents a significant challenge when traditional su-
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pervised algorithms are applied because they rely on the assumption that the training
labels provided by a single expert are reliable [5]. When multiple annotators with varying
levels of expertise are employed, the reliability of the labels becomes uncertain, leading to
decreased performance and inaccurate model predictions. Addressing this issue is crucial
for developing practical ML and DL models that perform well on real-world datasets.

Traditional supervised learning algorithms cannot account for the varying levels of
expertise and the noise introduced by unreliable labels, resulting in decreased performance.
Further research is needed to develop methods that can effectively handle the problem of
multi-annotator label aggregation and overcome this challenge. Moreover, several issues
arise when using DL in a multiple annotator scenario. One of the main challenges is the
variability of annotator effectiveness, which may depend on the sample instance presented.
Even for a single task, annotators can provide inconsistent or incorrect outputs, leading to
noisy labels [6]. These samples can negatively impact the model’s performance by affecting
the gradients and making it difficult to converge on a suitable solution [7,8].

Learning from Crowds (LFC) scenarios pose a significant challenge for ML models,
and multiple approaches have been developed to tackle this issue. The most commonly
used strategy is to adapt supervised learning algorithms and use majority voting for
label aggregation. Yet, this approach has limitations since it assumes that annotators
have the same level of reliability [9,10]. In addition, incorrect labels and outliers can
influence the consensus, decreasing performance. Therefore, more advanced models,
such as the Expectation-Maximization (EM) framework, have been considered to address
these issues [11,12]. This approach simultaneously estimates true labels and annotator
reliability, making more accurate predictions. Another strategy is to train a supervised
learning algorithm while also modeling annotator behavior [13]. This approach yields
better results than label aggregation and can be used to identify unreliable labelers and
remove their outputs from the training set. On the other hand, recent work has shown that
relaxing the independence assumption among annotators can lead to more accurate ground
truth estimation [14,15]. Then, sophisticated models have been proposed, such as those
that use regression tasks to model annotator behavior employing a multivariate Gaussian
distribution [16,17]. Moreover, such techniques can help identify the relationships among
experts and improve the overall accuracy of the predictions.

Furthermore, learning with noisy labels is a challenging problem in ML and DL. Re-
cently, numerous methods have been proposed for learning noisy labels with DL-based
approaches [18]. These methods can involve developing a robust architecture [19,20],
enforcing a DL-model with robust regularization techniques [8] and identifying true la-
beled examples from noisy training data via multi-network [21,22] or multi-round learn-
ing [23,24]. In addition, sparse loss functions such as the Mean Absolute Error (MAE)
are employed [25,26]. The MAE can help the model focus on correctly labeled examples;
however, performance decreases when it is used on large and complex databases [26].

Here, we introduce a Chained Deep Learning (CDL) strategy to learn from multi-
ple noisy annotators in classification tasks. Such an approach allows coding the non-
stationary patterns of each annotator regarding the input space while preserving the
inter-dependencies among experts. In addition, we combine the capabilities of CDL with
a Generalized Cross-Entropy-based loss function aiming to build a model, termed the
Generalized Cross-Entropy-based Framework using CDL (GCECDL), that is less prone
to outlier annotations. Our proposal is similar to the works in [27,28] in that we use a
deep-learning-based strategy to build a supervised learning model in the context of multi-
ple annotators. Moreover, network self-regularization is accomplished by predicting each
labeler’s reliability within our chained scheme. On the other hand, the proposed research
uses t-distributed Stochastic Neighbor Embedding- (t-SNE) [29] and Gradient-based Class
Activation Maps [30] to interpret and validate the obtained results visually. Finally, experi-
mental results related to multiple-annotator classification on several well-known datasets
(synthetic and real-world scenarios) demonstrate that GCECDL outperforms state-of-the-art
techniques.
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The agenda for this paper is as follows: Section 2 summarizes the related work.
Section 3 describes the methods. Sections 4 and 5 present the experiments and discuss the
results. Finally, Section 6 outlines the conclusions and future work.

2. Literature Review

Several approaches have been developed to address LFC scenarios. In this light, we
recognize two main groups: combining the annotations to estimate the gold standard or
adapting supervised learning algorithms to that type of labels [31]. The primary method
is called label aggregation. One of the most used techniques is known as Majority Voting
(MV), which has been applied to different multi-labeler problems due to its simplicity [32].
In MV, the most frequent output among the experts is chosen as the final prediction. The
latter is simple to implement and effective in some cases, but it also has limitations because
MV relies on the assumption that annotators have the same level of reliability, which is
challenging to fulfill in real-world scenarios. Additionally, the consensus can be heavily
influenced by incorrect labels and outliers [10]. In this sense, EM methods have been
proposed to handle imbalanced labeling to handle these issues [32,33]. The EM framework
aims to estimate the true label and the annotator’s reliability simultaneously, while methods
to handle imbalanced labeling try to adjust for the differences in the annotator’s expertise
level. These more advanced models provide more robust solutions to the problem of
multi-annotator label aggregation and can lead to better performance than MV.

An alternate approach to addressing multi-labeler tasks is to simultaneously train
a supervised learning algorithm while also modeling the behavior of the annotators. It
has been empirically demonstrated that this approach yields better results than label
aggregation. Furthermore, features that train the learning algorithm can also be exploited to
infer the ground truth [13]. One introductory study in this field is the EM-based framework
presented by authors in [34], which estimates the sensitivity and specificity of annotators
while also training a logistic regression classifier. This approach has served as a foundation
for various algorithms that address multi-labeler tasks, including regression [35,36], binary
classification [37,38], multi-class classification [4,39], and sequence labeling [40]. Likewise,
some studies have adapted these ideas for DL techniques by incorporating an additional
layer that contemplates multiple labelers [27,28].

In turn, the study in [15] represents an early exploration of the relationship between
annotators’ parameters and input features. The authors propose a method for binary classi-
fication with multiple labelers, where input data are grouped using a Gaussian Mixture
Model (GMM). The algorithm posits that annotators have specific performance levels in
terms of sensitivity and specificity. However, it does not incorporate information from
multiple experts as input for GMM, which may result in labelers’ parameter deviation. Like-
wise, the authors in [6] presented a binary classification algorithm that employs Bernoulli
and Gaussian distributions to code the annotators’ performance as a function of the input
space. In addition, a linear relationship between the annotator’s expertise and the input
space is assumed, which can be problematic. For example, when assessing documents
online, annotators may have varying levels of labeling accuracy. These differences could be
due to their familiarity with specific topics related to the studied documents [41]. Moreover,
in [36], a Gaussian Process (GP)-based regression procedure is proposed to incorporate
multiple annotators. The annotators’ parameters are estimated as a nonlinear function
of the input space by using an additional GP. Nevertheless, since this approach is based
on a classical formulation of GPs, its computational complexity is prohibited for large
datasets [39]. Furthermore, relaxing the independence assumption among annotators has
led to a more accurate estimation of the ground truth, as demonstrated in [14,15]. In [17],
an unsupervised regression task is described where the labelers’ behavior is modeled using
a multivariate Gaussian distribution, with the covariance matrix encoding the annotators’
interdependencies. Again, the authors in [38] proposed a binary classification method that
utilizes a weighted combination of classifiers. The weights are estimated using a kernel
alignment-based algorithm.
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Of note, when multiple annotators are present, the training set may contain noisy
labels, negatively impacting the model’s generalization ability. Typical regularization
approaches, such as dropout and batch normalization, only partially outweigh the over-
fitting drawback for DL [18]. An alternative is to use more robust loss functions to train DL
models. Because of its fast convergence and generalization capability, most deep learning-
based classifiers use Categorical Cross-Entropy (CE) as cost function. Nevertheless, MAE
has been found to perform better when dealing with noisy labels [26]. However, the
robustness of MAE can concurrently cause increased difficulty in training and lead to a
performance drop. This limitation is particularly evident when using neural networks
on complicated datasets. To combat this drawback, Zhang et al. [42] proposed the GCE,
establishing a more general type of noise-robust loss function taking advantage of both
MAE and CE, yielding good performance in the presence of noisy labels. Moreover, it can
be readily applied to any existing neural network architecture.

Our proposal follows the lines of the work in [27,28] in that GCECDL uses a deep-
based approach to build a supervised learning model in the context of multiple-annotator
classification. Yet, while such approaches code the annotators’ parameters as fixed points,
we model them as functions to consider dependencies between the input features and
the labelers’ behavior. GCECDL is also similar to the works in [14,43]. Both approaches
model the annotators’ performance as a function of the input instances and consider the
interdependencies among the labelers. Even so, unlike [14], where it is necessary to use as
many classifiers as annotators, our approach only needs to train a single classifier from a DL
representation, which is advantageous for a large number of labelers. Moreover, unlike [43],
our loss function can deal with noisy labels and more difficult training scenarios by using a
generalization between MAE and CE. Indeed, network self-regularization is accomplished
by predicting each labeler’s reliability.

3. Methods
3.1. Generalized Cross-Entropy

Let us consider a K-class classification problem from a given prediction function
f : RP → [0, 1]K, trained on the input–output set {X∈RN×P, Y∈{0, 1}N×K} and holding
P—dimensional input features in N row vectors xn∈RP corresponding to each ground truth
label yn ∈ {0, 1}K, n ∈ {1, 2, . . . , N}. The prediction function f (·) is commonly coupled by
a softmax output to fulfill 1− K one-hot labels. In turn, the well-known Mean Absolute
Error (MAE) and Categorical Cross-Entropy (CE) losses, used typically for optimizing f ,
are defined as follows:

MAE(y, f (x)) =‖y− f (x)‖1, (1)

CE(y, f (x)) =
K

∑
k=1

yk log( fk(x)); (2)

where yk ∈ y, fk(x) ∈ f (x), and ‖ · ‖1 stands for the l1-norm. Of note, 1>y = 1> f (x) = 1,
1∈{1}K being an all-ones vector. In addition, the MAE loss can be rewritten for softmax
outputs, yielding:

MAE(y, f (x)) = 2(1− 1>(y� f (x))) (3)

where � stands for the Hadamard product.
On the one hand, CE is sensitive to label noise, being a nonsymmetric and unbounded

loss function. On the other hand, MAE is noise-robust because of its symmetric property,
that is [26]:

K

∑
k=1

MAE(y, f (x)|k) =
K

∑
k=1

2(1− fk(x)) = C, ∀x ∈ RP, ∀ f ; (4)
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where C ∈ R+. The symmetric property of MAE for softmax-based outputs allows extend-
ing the L1-norm expression in Equation (1) to a vectorized form in Equation (3). Note that
the symmetric property is only fulfilled for softmax-based representations. Therefore, the
L1-norm favors sparse coding when computing the mismatch between target and predic-
tion, favoring the filtering of noisy outputs, as commonly studied for L1-based filtering
approaches [44].

Though MAE is symmetric and bounded, it also has some drawbacks when used as
classification loss for deep learning networks trained on large datasets employing stochastic
gradient-based techniques. Specifically, for a given network with parameter set θ, the MAE
and CE gradients can be computed as:

∂MAE(y, f (x; θ)|k)
∂θ

=−∇θ fk(x; θ), (5)

∂CE(y, f (x; θ)|k)
∂θ

=− 1
fk(x; θ)

∇θ fk(x; θ). (6)

As seen in Equations (5) and (6), less congruent samples have greater weights in CE
than predictions that agree more with ground truth labels; meanwhile, the MAE penalizes
equally during gradient descent optimization. At first glance, MAE can deal with noisy
labels; still, this can lead to longer and more difficult training scenarios, particularly for
large databases.

Therefore, authors in [42] proposed a trade-off between MAE and CE using a Box–Cox
transformation [45], yielding to the following Generalized Cross-Entropy (GCE) loss for
training deep learning models:

GCE(y, f (x)) = 2
1−

(
1>(y� f (x))

)q

q
, (7)

with q ∈ (0, 1]. Remarkably, the limiting case for q → 0 in GCE is equivalent to the CE
expression, and when q = 1, it equals the MAE loss. In addition, the GCE in Equation (7)
holds the following gradient with regard to θ:

∂GCE(y, f (x; θ)|k)
∂θ

= − fk(x; θ)q−1∇θ fk(x; θ). (8)

As depicted in Equation (8), the GCE’s gradient weighs samples using the fk(x; θ)q−1

factor, which could affect robustness against noisy labels depending on the hyperparameter
value q. In summary, the larger the q value, the more noise robustness is attained. Therefore,
a suitable q is required to find a trade-off between noisy robustness and better learning
dynamics during network training.

Lastly, since tighter loss bounding would imply more robust noise tolerance, GCE can
be extended to its truncated version as follows [42]:

TGCE(y, f (x); λ̃x, C̃) = λ̃x
1−

(
1>(y� f (x))

)q

q
+ (1− λ̃x)

1− (C̃)q

q
, (9)

where λx ∈ [0, 1] and C̃ ∈ (0, 1). Note that λx prunes samples regarding a noise tolerance
ruled by C̃.

3.2. Chained Deep Learning Fundamentals

The seminal Chained Gaussian Processes (CGP) in [46] fixes a likelihood function with
J parameters depending on the input–output set {X, Y}, as follows:

p(Y |X, ξ) =
N

∏
n=1

p(yn|ξ1(xn), . . . , ξ J(xn)), (10)
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ξ =
[
ξ1 . . . , ξ J

]>∈RNJ being a parameter vector and ξ j =
[
ξ j(x1) . . . ξ j(xN)

]>∈RN . In ad-
dition, each ξ j(x)∈Mj maps an input instance to the parameter space (j∈{1, 2, . . . , J}). The
likelihood in Equation (10) allows modeling the function parameters with J independent
GPs (one GP prior per parameter).

Likewise, we can extend the concept of CGP to the field of DL. Hence, suppose a DNN
with L layers, where the output layer contains J outputs (neurons). The DNN model can be
represented by the following composite function f (x) = [ f1(x), . . . , f J(x)]>∈RJ ,

f (x) = (ϕL ◦ ϕL−1 ◦ · · · ◦ ϕ1)(x), (11)

where ◦ stands for function composition. Accordingly, Chained Deep Learning (CDL)
links each likelihood parameter ξ j(x) to one of the J outputs. Each CDL parameter can
be estimated as: ξ j(x) = hj( f j(x)), where hj : R → Mj maps each f j(x) prediction to
Mj. Furthermore, each function ϕl(·), with l∈{1, 2, . . . , L}, depends on a set of parameters
φ = [φ1, . . . , φL]

>, e.g., weights and biases, that can be optimized via gradient descent and
back-propagation [47].

3.3. Generalized Cross-Entropy-Based Chained Deep Learning for Multiple Annotators

Nowadays, in several real-world classification problems, instead of the ground truth
Y , multiple labels are provided by R experts with different levels of ability, e.g., Multiple
Annotators (MA) [28]. For the sake of clarity, we assume that the r-th expert annotates
|Ωr| ≤ N instances, |Ωr| being the cardinality of the set Ωr containing the indices of
samples labeled by annotator r. Moreover, let Ψn be the index set gathering the annotators
who labeled the n-th instance. Then, a multiple annotators dataset {X ∈ RN×P, Ỹ ∈
{0, 1,∅}N×K×R}, where ỹr

n ∈ {0, 1,∅}K is the 1− K one-hot label of expert r for instance
n, can be built to feed a CDL approach holding J = R + K outputs. The former R outputs
code each expert reliability λr

n∈{0, 1}, and the remaining K predictions approximate the
ground truth yn.

In this sense, given an input sample x, each annotator’s reliability can be predicted by
fixing a sigmoid activation to the first R neurons within layer L in Equation (11), as:

λ̂r
n =

1
1 + exp(− fr(xn))

, (12)

where λ̂r
n ∈ [0, 1].

Moreover, a softmax function is set to the last K outputs in φL(·) to predict the ground
truth label, as follows:

ŷk =
exp( fR+k(x))

∑J
i=R+1 exp( fi(x))

. (13)

where k = {1, 2, . . . , K}, ŷk ∈ [0, 1], and ∑k ŷk = 1.
Here, to circumvent noisy annotators while coding their non-stationary behavior along

the input space, and to favor the CDL training ruled by the optimization of the parameter
set φφφ, a TGCE-based loss as in Equation (9) is proposed for multiple-annotator classification,
yielding:

φφφ∗ = arg min
φφφ

N

∑
n=1

∑
r∈Ψn

[
λ̂r

n(φφφ)
K

∑
k=1

ỹr
n,k

(
1− ŷq

n,k(φφφ)

q

)
+ (1− λ̂r

n(φφφ))

(
1− ( 1

K )
q

q

)]
(14)

where ỹr
n,k ∈ ỹr

n and q ∈ (0, 1].
As seen above, self-regularization is achieved through each expert’s reliability esti-

mation λ̂r
n(φφφ) in Equation (14), which prunes the TGCE loss ruled by q. Of note, when

λ̂r
n(φφφ) → 1, ŷn(φφφ) ∈ [0, 1]K holds the 1-K ground truth predictions as in Equation (13).

As a consequence, only samples with λ̂r
n(φφφ)→ 1 are kept for updating the CDL parame-

ters. In contrast, noisy or unreliable annotations (λ̂r
n(φφφ) → 0) are avoided to update the

network parameters. Therefore, our GCE-based CDL, termed GCECDL, allows coding
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the non-stationary patterns of each annotator regarding each input instance space while
preserving the interdependencies among experts through a CDL approach. In summary,
our approach benefits CDL and GCE by circumventing noisy experts with non-stationary
patterns. Figure 1 summarizes the GCECDL sketch.

...

. . .

. . .

. . .

. . .

...
...

...

...
...

...

...

...

Figure 1. GCECDL sketch for multiple-annotator classification holding ground truth prediction and
instance-based expert reliability estimation.

4. Experimental Set-Up

The following section comprehensively describes the tested datasets and the key
experimental conditions utilized.

4.1. Tested Datasets

Our GCECDL approach, designed for multiple-annotator classification, is evaluated
using synthetic and real-world datasets. The experiments aim to uncover the key insights
and advantages of GCECDL for coding non-stationary and unreliable expert labels on
complex datasets.

We generate synthetic data for a 1-dimensional, 3-class classification problem by
randomly sampling 5000 points from a uniform distribution within the interval [0, 1] and
using these points to construct the input feature matrix X. The true label yn,k for each
sample is determined by taking the maximum value of tn,k for k in the set 1, 2, 3, where
tn,1 = sin(2πxn), tn,2 = − sin(2πxn), and tn,3 = − sin(2π(xn + 0.25)) + 0.5. We also create
a test set by extracting 2000 equally spaced samples from the same interval.

We then look for datasets where the input data come from real-world applications. Still,
the labels from multiple annotators are obtained synthetically. The synthetic labeling is carried
out to control the labeling process. In particular, six binary and multi-class classification task
datasets are studied from the famous UCI repository (http://archive.ics.uci.edu/ml, accessed
on 19 August 2022). The chosen datasets include: Occupancy Detection (Occupancy),
Skin Segmentation (Skin), Tic-Tac-Toe Endgame (tic-tac-toe), Iris Plants (Iris), Wine (Wine),
and Image Segmentation (Segmentation). Moreover, the Fashion-MNIST dataset [48], as
well as the Balance and New Thyroid datasets, are also selected from the Keel-dataset
Repository (https://sci2s.ugr.es/keel/category.php?cat=clas, accessed on 3 October 2022).
In addition, the publicly available bearing data collected by the Case Western Reserve
University (Western) are used. The aim is to build a system to diagnose an electric motor’s
status based on two accelerometers. The feature extraction is performed as in [49]. We also
evaluate our proposed GCECDL classifier on two large image classification sets: MNIST
of Handwritten Digits (MNIST) [50], an easily interpretable image database of labeled
handwritten digits with 60,000 images for training and 100,000 for test sets, and the Cats
vs. Dogs database, consisting of 25,000 images of dogs and cats [51], each class being
represented by 1 and 0, respectively.

Finally, we include three real-world datasets provided with human annotations. First,
the CIFAR-10H comprises over 500 k crowdsourced human categorization judgments
obtained through AMT and includes ten categories: airplane, automobile, bird, cat, deer,
dog, frog, horse, ship, and truck [52]. In our study, we applied a rigorous data-filtering
process and discarded any samples that at least one annotator did not label. This filtering
step resulted in 19.233 labeled samples, out of which 10.000 were used for testing. The
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second dataset is LabelMe, which aims to classify images into eight different classes:
highway, inside city, tall building, street, forest, coast, mountain, and open country. It
consists of 2688 images; each image was labeled by an average of 2547 workers, with a
mean accuracy of 69.2%. We used the prepared dataset from [28], which performs a feature
extraction stage based on a pre-trained VGG-16 deep neural network [53]. The third one
is the Music genre database [54], comprising one thousand 30-second samples of songs
categorized into classical, country, disco, hip-hop, jazz, rock, blues, reggae, pop, and metal.
Each class contains 100 representative samples. A random selection of 700 samples was
published on the AMT platform for workers to classify them from one to ten based on their
genre. Feature extraction was performed following the method outlined in [55], resulting
in an input space of 124 features. Table 1 summarizes the tested synthetic, semi-synthetic,
and real-world datasets.

Table 1. Description of the number of features (P), instances (N), and classes (K) of tested datasets for
multiple-annotator classification.

Name Input Shape (P) Number of Instances (N) Number of Classes (K)

1D Synthetic 1 500 3
Ocupancy 7 20,560 2

Skin 4 245,057 2
Tic-Tac-Toe 9 958 2

Balance 4 625 3
Iris 4 150 3

New Thyroid 5 215 3
Wine 13 178 3

Fashion-Mnist 784 70,000 10
Segmentation 18 2310 7

Western 7 3413 4
Cat vs. Dog 200 × 200 × 3 25,000 2

Mnist 28 × 28 × 1 70,000 10
CIFAR-10H 32 × 32 × 3 19,233 10

LabelMe 256 × 256 × 3 2688 8
Music 124 1000 10

4.2. Provided and Simulated Annotations

To test our GCECDL classifier, we simulate annotator labels as corrupted versions of
the hidden ground truth. Here, the simulations are performed by assuming: (i) dependen-
cies among annotators and (ii) the labelers’ performances are modeled as a function of the
input features. In turn, the semiparametric latent factor model is used to build the labels,
as follows [56]:

• Define Q deterministic functions µ̂q : χ → R and their combination parameters
ω̂lr ,q ∈ R, ∀r ∈ R, n ∈ N .

• Compute f̂lr ,n = ∑Q
q=1 ω̂lr ,qµ̂q(x̂n), where x̂n ∈ R is the n-th component of x̂ ∈ RN , x̂

being the 1-D representation of the input features in X by using t-SNE approach [29].
• Calculate λr

n = sigmoid( f̂lr ,n), where sigmoid(·) ∈ [0, 1] is the sigmoid function.

• Finally, find the r-th label as yn
r =

{
yn if λn

r ≥ 0.5
y̆n if λn

r < 0.5
, where y̆n is a flipped version

of the actual label yn.

4.3. Performance Measures, Method Comparison, and Training

As quantitative assessment concerning the classification performance, the overall
Accuracy (ACC) and the Balanced Accuracy (BACC) are reported on the testing set, which
can be written as follows:

ACC[%] = 100
TP + TN

TP + TN + FP + FN
(15)
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BACC[%] =
100
2

(
TP

TP + FN
+

TN
TN + FP

)
(16)

where TP, FN, and FP represent the true positive, false negative, and false positive predic-
tions, respectively, after comparing the actual and estimated labels yn and ŷn for a given
input sample xn.

In addition, we consider the Normalized Mutual Information (NMI) between the
output and the target [57]. The NMI measures the amount of shared information between
two variables and quantifies the strength of their relationship, yielding:

NMI[%] = 100
1
N

N

∑
n=1

2I(yn, ŷn)

H(yn) + H(ŷn)
, (17)

where I(·, ·) stands for mutual information and H(·) for marginal entropy. Furthermore,
we estimate the Area Under the ROC Curve (AUC) that can be computed by varying
the decision boundary concerning the sensitivity (Sen) and specificity (Spe) measures, as
follows [47]:

AUC[%] = 100
Sen + Spe

2
(18)

For concrete testing, we use a cross-validation scheme with 10 repetitions holding 70%
of the samples for training and the remaining 30% for testing (except for the Mnist, F-Mnist,
CIFAR-10H, and music dataset, where training and testing sets are clearly defined).

Moreover, Table 2 displays the tested state-of-the-art algorithms for comparison pur-
poses. The abbreviations are fixed as follows: Regularized Chained Deep Neural Network
Classifier for Multiple Annotators (RCDNN) [43], Deep Learning Majority Voting (DL-MV),
and Deep Learning from Crowds (DL-CW(MW)) [28]. Our Python codes are publicly avail-
able for DL-CL(MW), DL-MV, RCDNN, and GCECDL at https://github.com/Jectrianama/
GCCE_TEST (accessed on 19 December 2022). Regarding DL-CL(MW), we use the codes
at http://www.fprodrigues.com/ (accessed on 19 December 2022). Of note, DL-GOLD
is a deep learning model trained with the true label, which is used only to provide an
upper bound.

In turn, to better grasp the behavior of our GCECDL classifier over every dataset, we imple-
mented a grid-search scheme to fix the q value within the grid [0.001, 0.1, 0.2, 0.3, 0.4, 0.5, 0.75].

Table 2. A brief overview of the state-of-the-art methods tested.

Algorithm Description

DL-GOLD A DL classification model using the real labels (upper bound).
DL-MV A DL classification model using the MV of the labels as the ground truth.

RCDNN [43] A regularized chained deep neural network which predicts the ground truth
and annotators’ performance from input space samples.

DL-CL(MW) [28] A crowd Layer for DL, where annotators’ parameters are constant across the
input space.

The proposed GCECDL architecture for multiple annotators comprises (i) a fully
connected network for tabular data (see Figure 2) and (ii) a convolutional network for
image data (see Figure 3). For all provided layers, elastic-net-based weight regularizers are
used. As usual, the optimization problem is solved using a back-propagation algorithm.
Moreover, to favor scalability, we utilize a mini-batch-based gradient descent approach with
automatic differentiation (the Adam-based optimizer is fixed). In addition, we employed
callbacks during the training process to monitor the model’s performance. Specifically, we
used an EarlyStopping callback to stop the training process if the validation performance
did not improve for a specified number of epochs and a LearningRateScheduler callback,
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allowing the model to converge more quickly by avoiding becoming stuck in a suboptimal
solution. These callbacks allowed us to optimize the performance of our neural network
and sidestep overfitting. Finally, we selected the best performance between models with or
without callbacks for each database. All experiments were conducted in Python 3.8, with
the Tensorflow 2.4.1 API, on a Google Colaboratory environment.

Figure 2. GCECDL-based fully connected architecture for tabular databases. FC stands for a fully
connected (dense) layer. FC1 and FC2 use a selu activation. A dropout layer (Dropout) is included to
avoid overfitting. The MA layer contains two fully connected layers that output the hidden ground
truth label and the annotator’s reliability, fixing a softmax and a sigmoid activation, respectively.

conv1

conv2

conv3

conv4

fc1

N x P x 32

N/2x P/2 x 32

N/4 x P/4 x 64

1 x 1 x 128

Convolutional 3x3 + ReLU

Max pooling 2x2

Fully connected + ReLU

MA layer

N/8 x P/8 x 64

Batch Normalization

Dropout

MAflatten

INPUT  
N x P x C 

Figure 3. GCECDL-based convolutional architecture for image databases. Four convolutional layers
with 3 × 3 patches, 2 × 2 max pooling, and ReLU activations are included. The MA layer outputs the
hidden ground truth label and the annotator’s reliability fixing a softmax and a sigmoid activation,
respectively.

5. Results and Discussion
5.1. Reliability Estimation and Visual Inspection Results

We first perform a controlled experiment to test the GCECDL’s capability when dealing
with binary and multiclass classification. We use the one-dimensional synthetic dataset
described in Section 4. In addition, five labelers (R = 5) are simulated with different levels of
expertise. To simulate the error variances, we define Q = 3 µ̂q(·) functions (see Section 4.2),
yielding:

µ̂1(x) = 4.5 cos(2πx + 1.5π)− 3 sin(4.3πx + 0.3π) (19)

µ̂2(x) = 4.5 cos(1.5πx + 0.5π) + 5 sin(3πx + 1.5π) (20)

µ̂3(x) = 1, (21)
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where x ∈ [0, 1]. In addition, the combination weights are gathered within the following
combination matrix Ŵ ∈ RQ×R:

Ŵ =




0.4 0.7 −0.5 0.0 −0.7
0.4 −1.0 −0.1 −0.8 1.0
3.1 −1.8 −0.6 −1.2 1.0


 (22)

holding elements ω̂lr ,q, which are used to combine functions µ̂1, µ̂2, and µ̂3.
For visual inspection purposes, Figure 4 shows the predictive label’s probability (PLP)

and the AUC, for all studied approaches regarding the one-dimensional synthetic database.
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Figure 4. Synthetic results—1D dataset. The predictive label’s probability (PLP) is shown, comparing
the prediction of our GCECDL (AUC = 0.99) against: DL-CL(MW) (AUC = 0.79), DL-MV (AUC = 0.9),
and RCDNN (AUC = 0.99). Label classes are represented as blue, green, and orange.

As seen in Figure 4, DL-CL(MW) and RCDNN have a different shape than the ground
truth. Additionally, DL-MV has the worst accuracy for two out of the three classes. Upon
further analysis of the results of our GCECDL method, we note that its predictive accuracy
is quite close to the absolute ground truth, which is the theoretical upper limit. Thus,
GCECDL offers a more suitable representation of the labelers’ behavior compared to its
competitors. This is because GCECDL takes into account both the annotators’ dependencies
and the relationship between the input features and the annotators’ performance.

To support the previous statement, Figure 5 illustrates the per-annotator reliability
estimated by our model and the simulated accuracy of each annotator. As can be seen, our
model provides an excellent representation for annotators one and five and an acceptable
representation for annotators two, three, and four. This is a direct result of modeling the
labelers’ parameters as functions of the input features. This outcome demonstrates how
our approach effectively identifies the areas where a specific labeler aligns with the regions
of higher accuracy of the simulated annotators.
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Figure 5. GCECDL-based annotators’ performance (reliability) estimation for the synthetic 1D
experiment. Orange dashed line depicts (from left to right) the simulated accuracy for each annotator
based on Equations (19)–(22). The blue line shows (from left to right) the estimated annotator’s
reliability (λr).

In this next step, we conduct two crucial experiments utilizing the MNIST dataset, as
outlined in Section 4. These experiments include an examination of explainable multiple-

78



Sensors 2023, 23, 3518

annotator classification and a t-SNE-based 2D visualization of the data. To achieve this,
we employed the Gradient-weighted Class Activation Mapping (Grad-CAM++) approach
to extract normalized class activation mapping from the image data, as described in [30].
We then plotted heatmap images related to the FC 2 layer, which represents the high-level
visual features that are extracted from the characteristics. These feature maps are then
projected onto a two-dimensional space using the t-SNE algorithm. The visual analysis
of these results shows that the same color image samples cluster together in the 2D, low-
dimensional space according to their class, while preserving the spatial relationships from
the input space.

Figure 6 presents a visualization of the gold standard and simulated annotators (R = 3
for illustrative purposes) plotted over the resulting 2D features projection for the training
set. It can be observed that the features extracted possess a high degree of separability
and discriminative ability, as every class (0–9) is represented by a distinct cluster. For
illustration purposes, a few images are depicted over each corresponding projection. The
last two rows show a selection of simulated labels and their different scores (annotator
reliability). We can see the different levels of expertise obtained from the confusion matrix.
The first annotator, whose accuracy score with respect to the ground truth labels is 97%,
is depicted over the projection. We can observe how most samples have a correct version
of the ground truth. However, it tends to fail more for classes 0, 2, 3, and 8. This behavior
becomes more pronounced for the last two annotators, whose accuracy drops to 41% and
11%, respectively. The mismatch between the labels and the ground truth is more evident
in the top figure. We expected to compare this with the estimated reliability obtained by
our model.

Then, Figure 7 illustrates the hidden ground truth prediction and reliability estimation
generated by our GCECDL approach. As shown, GCECDL demonstrates a high level of
suitability for the MNIST digit classification problem by achieving an ACC score of 0.99,
which highlights its generalization capability, even in cases where the ground truth is
unknown. This is because the proposed model takes into account both the relationship
between the input space and the annotator’s behavior, as well as the dependencies among
their labels, which improves the quality of expert codification, as described in [4,38]. To
provide further insights, we also generated visual explanations for a subset of the samples
in the test dataset. To achieve this, Grad-CAM++ was applied to a given image and class K
to determine the regions of the image that are most competitive for classification. As seen
in the CAM, the important regions highlighted in red reveal that our model can effectively
exploit the most relevant features to correctly identify the image’s class. The second row of
the figure depicts some visual explanations on the 2D projections. Notably, class 4 can be
confused by the model with a seven or a nine in a few samples.

In the last row of Figure 7, we can infer that our method effectively identifies the
zones where the labelers have the best accuracy. This is not unexpected as the annotators’
accuracy (simulated) is compared with their reliability (estimated); therefore, the clusters
where a specific labeler obtains the highest accuracy should align with the clusters where
the estimated reliability is closest to 1 (yellow). To further support this statement, we
depict the estimated probability function through a kernel density estimation (KDE) plot,
to show the reliability estimated per annotator. For example, regarding annotator 1 (blue),
as most of its estimates are reliable, the KDE increases when the reliability is 1. However,
for annotator two (orange), its peak KDE value is slightly lower when the reliability is one.
Similarly, annotators 3 (green) and 4 (red) exhibit an inverse behavior, as their performance
is more doubtful.

In addition, it is important to note that our proposed GCECDL encodes the interde-
pendence between annotators. By comparing the simulated annotators and the labelers’
performance in Figures 6 and 7, it is clear that our proposed model closely follows the
performance pattern of the labelers’ capabilities. Therefore, when a suitable labeler is
presented, the model provides a high estimation for the same labeler in the zones where
the labelers have the best accuracy. Conversely, when malicious labelers are present, the
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model reflects this in poor reliability estimation. This highlights how the ability to label
and reliability estimation are closely related. Furthermore, it is worth noting that anno-
tators with high uncertainty tend to have CAMs with more energy, which supports the
aforementioned statement empirically.
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Figure 6. Simulated annotators’ for the MNIST database. A 2D t-SNE-based projection of the Mnist
training set from the FC1 layer feature maps is shown (some exemplary images are depicted over
their 2D projections, where numbers from zero to nine stand for each MNIST class). The ground truth
labels are used as a color. The second row depicted the 2D projection of each annotator’s labels in
color. The third row presents the confusion matrix of each expert and their achieved accuracy.
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Figure 7. Visual inspection results for the MNIST database. A 2D t-SNE-based projection of the Mnist
test set from the FC1 layer feature maps is shown (some exemplary images are depicted over their 2D
projections, where numbers from zero to nine stand for each MNIST class). The ground truth labels
are shown in color. The second row depicted the 2D projection of the ground truth prediction in color
with some explanation maps for visualization purposes. The third row presents the 2D projection of
each annotator’s reliability estimation in color.

5.2. Method Comparison Results for Multiple-Annotator Classification

Table 3 presents the results of our experiments on real-world datasets. The non-
parametric Friedman test results for every quantitative assessment measure establish their
statistical significance. The null hypothesis is rejected, indicating that all algorithms attain
different performances as described in [58]. Additionally, the significance threshold is fixed
at p < 0.05. The DL-GOLD standard is not included in the test to compare state-of-the-
art approaches exclusively. It is worth noting that most classification schemes exhibit a
highly satisfactory performance for the datasets with simulated annotators, as reflected in
the scores.
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Table 3. Method comparison results—multiple-annotator classification. Bold: the highest score for
each measure excluding the upper bound (target) classifier DL-GOLD. For our GCECDL, the fixed
q-value is presented in parentheses. Friedman test: we obtain a Chi-square of 27.08, 23.48, 28.03,
and 7.92 (p-value = 5.6× 10−6 , 3.56× 10−6, 3.20× 10−5, and 0.047) for ACC, BACC, NMI, and AUC
measures, respectively.

Database Measure DL-GOLD DL-CL(MW) DL-MV RCDNN GCECDL

ACC [%] 97.59± 0.11 90.89± 0.92 90.31± 0.80 96.61± 0.42 97.50± 0.06 (0.1)
BACC [%] 95.92± 0.09 74.30± 3.04 75.50± 0.99 93.22± 1.27 95.86± 0.10 (0.1)
NMI [%] 83.91± 0.35 57.98± 2.16 52.32± 3.56 77.93± 2.51 83.64± 0.31 (0.1)Ocupancy

AUC [%] 97.96± 0.05 87.17± 1.52 87.75± 0.49 99.03± 0.14 97.92± 0.05 (0.1)

ACC [%] 99.74± 0.13 56.48± 0.36 80.55± 3.23 89.45± 2.06 96.06± 0.59 (0.1)
BACC [%] 99.62± 0.15 45.07± 0.46 79.80± 1.79 64.27± 10.66 90.60± 4.31 (0.1)
NMI [%] 96.86± 1.15 18.31± 0.21 13.56± 1.06 38.99± 8.25 71.14± 5.22 (0.1)Skin

AUC [%] 99.81± 0.08 91.80± 1.03 80.45± 6.22 82.13± 5.33 99.30± 0.10 (0.1)

ACC [%] 98.47± 0.17 80.00± 3.73 78.26± 1.85 90.49± 17.16 97.28± 1.17 (0.2)
BACC [%] 96.00± 0.27 66.24± 5.98 56.09± 2.14 78.74± 38.93 93.10± 2.78 (0.2)
NMI [%] 88.57± 1.52 36.88± 6.07 23.90± 2.05 71.42± 24.79 83.52± 6.13 (0.2)Tic-Tac-Toe

AUC [%] 98.05± 0.14 96.48± 1.00 85.37± 1.21 91.71± 21.93 96.55± 1.39 (0.2)

ACC [%] 91.91± 2.50 85.27± 1.93 73.72± 1.51 91.33± 1.14 90.21± 0.83 (0.1)
BACC [%] 60.00± 5.68 74.9± 4.09 43.39± 0.8 46.93± 1.00 75.27± 7.33 (0.1)
NMI [%] 73.34± 3.32 61.98± 3.58 59.43± 2.04 66.52± 3.30 68.00± 2.19 (0.1)Balance

AUC [%] 83.66± 4.91 84.97± 4.08 70.66± 3.35 64.51± 17.36 81.11± 8.25 (0.1)

ACC [%] 97.34± 0.94 95.11± 2.59 95.33± 1.59 96.89± 1.15 97.34± 0.94 (0.1)
BACC [%] 96.47± 1.24 91.67± 4.54 91.56± 1.84 94.24± 2.03 96.06± 2.11 (0.1)
NMI [%] 91.69± 1.91 86.82± 5.59 87.61± 2.86 89.68± 3.74 91.15± 3.07 (0.1)Iris

AUC [%] 100.00± 0.00 100.00± 0.00 100.00± 0.00 99.83± 0.00 100.00± 0.00 (0.1)

ACC [%] 96.15± 0.77 95.69± 1.15 97.69± 1.03 95.08± 0.62 96.00± 1.84 (0.01)
BACC [%] 92.5± 1.94 92.61± 2.8 93.88± 2.65 88.41± 2.22 90.52± 4.36 (0.01)
NMI [%] 82.98± 3.44 82.38± 3.86 90.44± 3.61 80.40± 2.42 83.61± 6.85 (0.01)New Thyroid

AUC [%] 96.19± 0.96 95.46± 1.78 97.80± 0.6 94.72± 1.67 95.19± 2.23 (0.01)

ACC [%] 97.59± 0.85 95.74± 1.67 73.15± 3.73 94.26± 2.10 96.48± 2.38 (0.01)
BACC [%] 96.59± 1.08 94.17± 2.52 64.44± 5.42 91.99± 2.59 96.68± 2.92 (0.01)
NMI [%] 91.50± 3.07 85.54± 4.03 44.18± 4.39 82.91± 5.97 89.87± 5.37 (0.01)Wine

AUC [%] 98.88± 0.37 99.88± 0.37 87.76± 2.88 97.13± 1.26 100.0± 0.00 (0.01)

Acc [%] 86.45± 0.25 79.54± 9.16 85.83± 0.35 86.98± 0.71 88.26± 0.26 (0.01)
BACC [%] 84.92± 0.27 77.28± 10.11 84.23± 0.38 85.50± 0.77 86.94± 0.28 (0.01)
NMI [%] 77.16± 0.21 72.92± 3.84 76.46± 0.38 78.75± 0.48 79.89± 0.21 (0.01)F-Mnist

AUC [%] 88.75± 1.61 85.61± 13.95 90.42± 1.46 89.33± 2.93 89.11± 2.27 (0.01)

ACC [%] 95.17± 0.25 94.65± 0.95 91.11± 0.94 91.85± 0.67 94.88± 0.8 (0.01)
BACC [%] 94.49± 0.59 93.81± 1.09 89.79± 1.09 90.69± 0.77 94.15± 0.95 (0.01)
NMI [%] 91.07± 0.77 90.38± 1.18 84.46± 1.65 86.27± 0.70 89.92± 1.25 (0.01)Segmentation

AUC [%] 99.95± 0.13 99.76± 0.20 98.71± 0.44 98.94± 0.33 99.79± 0.22 (0.01)

ACC [%] 99.25± 0.38 95.94± 4.39 95.11± 1.15 97.89± 0.40 98.31± 0.61 (0.01)
BACC [%] 99.22± 0.42 94.37± 5.54 93.47± 1.45 97.25± 0.57 98.00± 0.97 (0.01)
NMI [%] 98.61± 0.70 96.80± 1.70 94.33± 0.97 97.16± 0.30 97.35± 0.60 (0.01)Western

AUC [%] 100.00± 0.00 100.00± 0.00 98.97± 0.85 99.99± 0.01 100.00± 0.00 (0.01)

ACC [%] 85.00± 0.44 68.97± 0.84 58.69± 1.02 70.84± 4.71 74.15± 0.58 (0.1)
BACC [%] 70.19± 0.22 37.44± 0.35 16.50± 0.51 43.51± 2.08 48.24± 0.54 (0.1)
NMI [%] 40.66± 0.41 11.03± 0.25 2.50± 0.12 16.02± 1.04 20.79± 0.33 (0.1)Cats vs. Dogs

AUC [%] 93.17± 0.22 68.94± 0.80 58.63± 0.98 70.98± 4.57 82.99± 0.30 (0.1)

ACC [%] 99.32± 0.06 87.99± 2.73 92.88± 0.54 99.09± 0.05 99.11± 0.08 (0.01)
BACC [%] 99.22± 0.06 86.49± 3.11 91.97± 0.59 98.98± 0.06 99.02± 0.09 (0.01)
NMI [%] 97.95± 0.15 82.82± 2.29 83.43± 1.02 97.28± 0.11 97.39± 0.21 (0.01)Mnist

AUC [%] 99.81± 0.08 99.82± 0.02 97.88± 0.33 99.71± 0.06 99.68± 0.08 (0.01)

ACC [%] 71.72± 1.12 60.80± 1.59 68.24± 1.05 69.53± 0.63 69.24± 0.67 (0.01)
BACC [%] 68.46± 0.28 56.56± 1.72 64.69± 1.18 66.18± 0.72 65.88± 0.76 (0.01)
NMI [%] 64.2± 0.23 43.09± 1.21 49.55± 1.4 51.44± 0.81 50.95± 0.78 (0.01)CIFAR-10H

AUC [%] 96.08± 0.11 89.42± 0.7 94.81± 0.35 95.17± 0.16 95.01± 0.19 (0.01)

ACC [%] 90.91± 0.44 83.11± 0.96 76.94± 1.15 89.09± 0.41 88.97± 0.55 (0.01)
BACC [%] 90.03± 0.42 81.85± 0.86 75.08± 1.25 88.01± 0.42 87.97± 0.57 (0.01)
NMI [%] 81.36± 0.79 73.92± 0.80 68.36± 0.54 77.82± 0.55 78.00± 0.70 (0.01)LabelMe

AUC [%] 99.37± 0.06 96.34± 0.88 97.65± 0.13 99.14± 0.06 99.11± 0.08 (0.01)

ACC [%] 76.4± 0.88 57.13± 2.80 62.8± 1.06 65.80± 2.83 65.63± 2.41 (0.01)
BACC [%] 74.32± 0.91 51.47± 2.91 57.67± 1.27 61.96± 3.32 61.83± 2.84 (0.01)
NMI [%] 65.86± 1.16 57.25± 1.55 53.87± 1.49 57.02± 2.63 57.36± 1.40 (0.01)Music

AUC [%] 96.34± 0.13 88.62± 3.08 93.58± 0.21 94.07± 0.94 94.13± 0.50 (0.01)

ACC [%] −−±−− 3.26± −− 3.40±−− 2.00± −− 1.33± −−
BACC [%] −−±−− 3.00± −− 3,40±−− 2.33± −− 1.26± −−
NMI [%] −−±−− 3.14± −− 3.46±−− 2.21± −− 1.20± −−Average Ranking

AUC [%] −−±−− 2.67± −− 3.13±−− 2.47± −− 1.73± −−
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Our approach outperforms the selected state-of-the-art methods across most evalua-
tion measures. For example, our proposal achieves the highest accuracy on 12 of 15 datasets,
as shown in Table 3. Similarly, GCECDL outperforms tested strategies regarding BACC,
NMI, and AUC for most datasets. This outcome is due to the fact that GCECDL properly
codes annotators’ reliability by considering the correlations among their decision, even
for noisy outputs. Remarkably, RCDNN reaches the second highest average performance.
Indeed, it obtains the highest performance on CIFAR-10H, LabelMe, and Music. In general,
RCDNN is similar to GCECDL, but it is significantly affected when the annotators’ perfor-
mance is below 60%. Furthermore, it struggles with databases with a high class imbalance
ratio. This behavior highlights that RCDNN is more susceptible to noisy or imbalanced
scenarios.

Moreover, we observe that high NMI values for some datasets suggest that the labels
provided by the annotators are consistent and reliable. Our GCECDL method effectively
captured these dependencies. For example, in the MNIST dataset, a high NMI value of
97.39% is attained, indicating that the labels provided by the different annotators and the
hidden ground truth prediction are highly consistent. In contrast, in the Cats vs. Dogs
dataset, we observe a lower NMI value of 20.79%, pointing to more significant variability
in the annotations and highlighting the challenges of dealing with noisy or inconsistent
annotations.

Finally, the DL-CL(MW) approach outperforms the DL-MV scheme, which can be
observed in the average ranking. Furthermore, it is worth noting that DL-CL(MW) includes
the introduction of the CrowdLayer, which allows for training neural networks directly
from multiple labels without encoding the annotators’ behavior. On the other hand, DL-MV
presents the lowest performance among the studied methods. It can be explained by the
fact that DL-MV is the most naive approach, and most annotators were simulated with a
low level of expertise, negatively impacting the outcome of the majority voting strategy.

6. Conclusions

This article introduced a Generalized Cross-Entropy-based Chained Deep Learning
model, termed GCECDL, to deal with multiple-annotator scenarios. Our method follows
the ideas of [43,46], where each parameter is modeled in a multi-labeler likelihood by
using the outputs of a deep neural network. Nonetheless, unlike [43]—where a CCE-based
loss was used—we also introduced a noise-robust loss function based on GCE [42] as a
tradeoff between MAE and CCE. Thus, GCECDL codes the non-stationary patterns of
each annotator regarding the input space. We tested our approach for classification tasks
using fully synthetic and real-world databases from well-known repositories, including
structured data and images. According to the results, our GCECDL can achieve robust
predictive properties for the used datasets defeating the selected state-of-the-art models. We
attribute this behavior to the coupled MAE and CE within GCE, exploiting the symmetry
property of MAE for softmax-based outputs and the L1-norm and cross-entropy tradeoff
in weighting noisy annotations as a function of the input space. In addition, our chained
architecture yields a self-regularization strategy within a DL framework that favors proper
labeler’s reliability estimation and ground truth prediction. On the other hand, we created
visual explanations using GradCam++ [30] to identify the most influential regions that
demonstrate the model’s ability to correctly predict the hidden ground truth and assess
the reliability of the annotators. Furthermore, using t-SNE [29] to project the extracted
features onto a two-dimensional space allowed us to retain the spatial relationships from
the original input space.

As future work, extending the GCECDL for regression tasks is a promising research
area, as demonstrated by the model introduced in [35]. Our next step is to experiment
with various activation functions and deeper convolutional and recurrent architectures to
tackle complex tasks such as computer vision, natural language processing, and graph-
based modeling [59]. Additionally, we plan to develop a model for identifying non-
stationary patterns from multidomain input spaces holding noisy targets in an agricultural
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context, using multispectral imagery, climatic data, and infield data, instead of relying on
annotators [60]. Furthermore, we plan to test more Explainable AI methods to provide
deeper insight into our model performance [61–63], e.g., Layer-wise Relevance Propagation
that captures both negative and positive relevance. Finally, actionable and explainable AI
extensions based on our GCECDL would be an exciting research line [64].
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Abstract: Currently, one can observe the evolution of social media networks. In particular, humans
are faced with the fact that, often, the opinion of an expert is as important and significant as the
opinion of a non-expert. It is possible to observe changes and processes in traditional media that
reduce the role of a conventional ‘editorial office’, placing gradual emphasis on the remote work
of journalists and forcing increasingly frequent use of online sources rather than actual reporting
work. As a result, social media has become an element of state security, as disinformation and
fake news produced by malicious actors can manipulate readers, creating unnecessary debate on
topics organically irrelevant to society. This causes a cascading effect, fear of citizens, and eventually
threats to the state’s security. Advanced data sensors and deep machine learning methods have great
potential to enable the creation of effective tools for combating the fake news problem. However,
these solutions often need better model generalization in the real world due to data deficits. In
this paper, we propose an innovative solution involving a committee of classifiers in order to tackle
the fake news detection challenge. In that regard, we introduce a diverse set of base models, each
independently trained on sub-corpora with unique characteristics. In particular, we use multi-label
text category classification, which helps formulate an ensemble. The experiments were conducted on
six different benchmark datasets. The results are promising and open the field for further research.

Keywords: deep learning; fake news; ensemble of classifiers; text classification; misinformation

1. Introduction

Today, the level of expertise, education, or experience is no longer an obstacle to
spreading opinions and becoming a content creator. Through the Internet, content creators
are able to remain fully anonymous if they so choose. Nevertheless, this situation has laid
the groundwork for the fake news trend to surface. Though the disinformation problem is
as old as modern civilization, the evolution of digital media has dramatically transformed
the way deception is spread. Eventually, it became a highly influential weapon.

With the evolution of machine learning and, in particular, the development of deep
learning NLP-based methods, an array of new tools has been proposed to combat fake
news problems [1–3].

However, most of the analyzed solutions propose a monolithic approach that focuses
on fake news detection as a single-task learning problem in which the entire ML model
is trained mainly from scratch [4–6]. Moreover, only some approaches consider domain
segmentation before fake news detection, as, typically, the existing methods mix different
types of models for feature extraction and other classification solutions.

Therefore, in this paper, the authors put forward a more scalable solution where a
committee of classifiers is composed to address the problem of fake news detection. In
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more detail, the authors propose an alternative, novel approach in which the construction
of a diversified pool of base models is learned independently on a sub-corpus of texts with
unique characteristics (resulting directly from multi-label classification). This improves the
detection efficiency of fake news in textual form.

The paper is structured as follows. First, the related work is discussed in Section 2.
Next, in Section 3, the authors introduce the framework for the proposed deep learning
solution. The experimental evaluation results are included in Section 4. Finally, the paper
closes with final remarks, at the same time outlining the perspectives on future work in
Section 5.

2. Related Work

At the beginning of this millennium, it has started to become evident that the diversifi-
cation of sources providing online news, as well as the utilization of social network sites to
filter and consume them, may lead to the risk of containing its users within inevitable “bub-
bles” where only information that goes along with their intuition is presented to them [7].
Moreover, online opinion leaders have begun to appear and increasingly influence online
communities, often using fake news [8].

The rapid expansion of fake news has put more pressure on legitimate news sources
to ensure reliable information and create tools to verify the presented facts. In this vein,
various projects started to appear. Firstly, fact-checkers, i.e., specialized websites, have
been widely adopted by consumers. This includes, for instance, FactCheck.org in the USA,
Maldita.es in Spain, Demagog.org.pl in Poland, and FactCheck Initiative in Japan. These
websites allow for, e.g., the presentation of multimedia content metadata so anyone can
verify its originality. However, there are better solutions than this, as metadata can be easily
modified, and there is no information on what has been changed in such content. Secondly,
there are solutions like Trustproject (https://thetrustproject.org/), where over 120 news
organizations, including well-known media companies such as the BBC, South China
Morning Post, and Bay Area News Group, are working towards greater transparency and
accountability in the global news industry. Trustproject provides a protocol encompassing
eight indicators of trust. For example, one of them concerns the capability of the news
addressee to assess the journalist’s level of expertise. Although news consumers have
welcomed solutions like Trustproject, it must be noted that their procedures still need to be
automated owing to the lack of suitable tools.

Apart from the above, many technological developments have also been used to try to
detect fake news. These solutions have already been analyzed in several surveys on this
topic, e.g., in [9–11].

One such solution is digital watermarking, which may be used to overcome issues
such as copyright protection, content authentication, detection of tampering, and so on [12].
For example, one of the watermarking applications is fingerprinting, which allows one
to apply a unique fingerprint, which may then be utilized to identify the recipient of the
content; this is true for each individual copy of the disseminated content. Owing to that, it
becomes possible to deter illegal redistribution as it makes it possible for the content owner
to find out where the redistributed copy came from [13,14]. However, it has been proved
that the application of digital watermarking techniques is of great value in the domain of
fake news identification and tracing; this line of research is currently pursued within the
DISSIMILAR project [15].

Many works have been devoted to tackling the problem of fake news detection in
various types of content (text, multimedia, etc.) using AI-based solutions.

At present, the research community is casting a discerning eye on one particular form
of fake news: deepfakes. In these fake videos, it is practically impossible to distinguish
whether they are forged or not. This brings an urgent need to create automated detection
methods. The existing literature on this subject discusses several attempts at countering
deepfakes [16] or fake news in images [17]. Conventionally established methodologies for
identifying counterfeit videos center on discerning the subtle features present within these
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manipulated recordings. For instance, the technique introduced in [18] relies on identifying
eye blinking, as this physiological signal is typically incorrectly mapped in synthesized fake
videos. Conversely, the approach presented in [19] offers a visualization of the CNN layers
and filters, demonstrating that the eyes and mouth are instrumental in identifying faces
tampered with by prevailing deepfake software utilities [20,21]. A recent paper presents
another solution, i.e., DeepTag, an end-to-end deep watermarking framework incorporating
a GAN simulator that can employ common distortions to facial images [22]. Consequently,
one can extract the watermark to discern the original, untouched facial image.

It is also worth noting that to accelerate advancements in the detection of fake media,
the DFDC (DeepFake Detection Challenge) dataset [23] was created and released by several
major industry players like Amazon Web Services (AWS), Facebook, Microsoft, and the
Partnership on AI’s Media Integrity Steering Committee and academics. The main aim
of this challenge is to boost research to design and develop innovative new solutions to
expedite deepfakes and manipulated media detection.

Additionally, significant research has been devoted to detecting fake news in textual
information. In [24], for instance, the authors introduce an innovative model for automated
fake news credibility assessment. Leveraging a combination of overt and latent attributes
derived from text, they establish a deep diffusive network model that concurrently learns
representations for news pieces, their authors, and topics.

In [4], Khan et al. investigate the performance of various classical machine learning
techniques and neural network models for textual fake news detection using three different
datasets. They concluded that the best-performing solution was Naive Bayes with n-gram
(bigram TF-IDF) features.

Next, in [5], the authors simultaneously analyze the correlations of publisher bias, news
stance, and relevant user engagements. Then, based on these observations, they introduce
a novel fake news detection framework. The experimental results obtained on two compre-
hensive real-world fake news datasets prove the effectiveness of the proposed approach.

Another fake news detection approach is described in [6]. The authors use propagation
features to detect fake news on Twitter. They note that real news is significantly larger than
fake news and is typically spread by users who have been active on Twitter for a long time
and have more followers and fewer followings. Then, using these features, they train a
Random Forest classifier, which results in 87% accuracy. Finally, they also use Geometric
Deep Learning solutions and create a graph neural network that directly learns from the
propagation graphs and results in 73.3% accuracy.

Huh et al. [25] unveil a learning algorithm adept at identifying visual alterations in
images. Remarkably, it is trained solely on a substantial collection of authentic photographs
and capitalizes on the inherent photo EXIF metadata as the guiding beacon for model
training. This allows for evaluating if an image is produced by a single imaging pipeline.
The experimental analysis revealed that the proposed approach achieves state-of-the-art
performance on the chosen image forensics benchmark datasets.

In [1], the authors present a deep hierarchical co-attention network. This network is
designed to learn feature representations for fake news detection and to identify relevant
sentences or comments. The experimental evaluation conducted on real-world datasets
showed that the proposed framework is effective. Another attention-based approach was
proposed in [26].

Then, in [27], another approach to supervised learning-based fake news detection is
presented. Apart from analysing the usability of features proposed in the literature, the
authors point to a new set of features and evaluate the prediction performance of existing
solutions and features for performing automatic detection. The obtained experimental
results prove that the prediction performance of the utilized features in combination with
state-of-the-art classifiers has suitable discriminative power for detecting fake news.

In [28], Perez-Rosas et al. discuss the automatic identification of textual fake news.
Apart from proposing a new detection approach capable of achieving accuracy ca. 76%,
the authors also introduce two datasets that can help the research community in bench-
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marking fake news detection methods. Additionally, the paper also includes the results of
a comparative analysis of the automatic and manual identification of fake news.

A unique strategy for fake news detection was introduced in [28]. This method merges
the publishing and sharing patterns of both publishers and users to enhance the accuracy
of detecting fake news and predicting its credibility. When tested on three actual datasets,
the method showcased its capability by achieving a detection accuracy surpassing 91%.

The following solution to fake news detection proposed in [29] emphasizes considering
relational features like sentiment, named entities, and facts extracted from structured and
unstructured data. Based on the presented experimental evaluation, the obtained results
are generally better for all tested classifiers.

O’Brien et al. [2] try to overcome a lack of transparency in the decision-making process
(black-box problem) of deep neural networks by showing that the emergent representations
of such networks can pinpoint subtle differences between fake and real news. This makes
convolutional neural networks a powerful tool for detecting fake news. The authors’
evaluation also shows the generalization capabilities of such solutions in detecting fake
news in novel subjects based solely on language patterns.

The UMLARD model was proposed in [30]. It focuses on rumor detection. In particular,
the authors tackled the problem of learning representations from different user perspectives.
They utilized a fusion mechanism to enhance prediction. The authors reported performance
improvements with respect to various baseline methods.

In [31], the researchers introduce a Deep Normalized Attention-based mechanism
designed to enhance the extraction of dual emotion features. The proposal also uses
Adaptive Genetic Weight Update-Random Forest (AGWu-RF), which is utilized for the
classification. Similarly, in [32] the authors propose a novel rumor detection model called
graph contrastive learning with feature augmentation (FAGCL). This technique allows the
author to inject noise into the feature space, which enables the model to learn contrastively
by constructing asymmetric structures.

A fast fake news detection model was proposed in [33]. This approach is particularly
focused on cyber–physical social services. The authors mostly rely on Chinese texts.
Moreover, they argue that fake news items are generally short texts and can be effectively
accompanied by relevant keywords. In order to extract feature vectors for the analyzed
texts, a convolution neural network (CNN) is facilitated.

In the quest to combat misinformation, traditional methods often rely on intricate
features or credibility networks, requiring expert knowledge and extensive engineering.
Recent advances in deep learning have offered promising approaches, but they struggle
with over-reliance on content features and neglect the individual user’s impact in spreading
rumors. Addressing these challenges, the proposed UMLARD model (User-aspect Multi-
view Learning with Attention for Rumor Detection) effectively captures different user
perspectives, combines them using a distinctive fusion mechanism, and integrates these
learned features with content features for improved rumor detection. Experiments on
real-world datasets demonstrate that UMLARD surpasses existing methods, providing
both enhanced performance and interpretability.

Finally, in [34], the authors develop a deep learning-based system for concept ex-
traction and relation identification. The solution is based on the BERT ensemble using a
majority voting strategy.

The analysis of the state-of-the-art reveals various limitations of the existing methods,
which the authors intend to address in this work. These can be summarized as follows:

• Observation: The majority of the analyzed solutions propose a monolithic approach
that focuses on fake news detection as a single-task learning problem (STL), where the
entire ML model is trained mainly from scratch.
Proposed solution: In this paper, the authors propose a more scalable solution where
a committee of classifiers is composed to address the fake news detection problem.

• Observation: Very few approaches consider domain segmentation prior to fake news
detection. Instead, the authors frequently mix different types of models for feature
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extraction (e.g., RNN, CNN) and different classification methods (e.g., DNN, SVM,
RF, etc.).
Proposed solution: In this approach, a diversified pool of base models is considered
that were trained independently on a sub-corpus of texts with unique characteristics.

3. Proposed Solution

In this section, the authors outline the architecture of the approach proposed in this
paper. Then, they characterize how data harvesting and open media crawling are typically
performed. Finally, the utilized document representation and classification are described.

3.1. Architecture

The architecture of the proposed solution is presented in Figure 1. The textual data
were collected from open data sources (e.g., news providers) utilizing data harvesters
(described in Section 3.2). Next, the collected data were normalized regarding the format
so that all documents were stored in a similar and coherent way (e.g., title, document,
body, author, and date when the article was published). It must be emphasized here that
the feature vectors (the document encoding step) are extracted only from the document
body. This way, one can avoid judging the document by its author or origins. The extracted
features rely on the BERT language model described in Section 3.4. The novelty of the
architecture is the fact that the document source is predicted, which drives the votes
obtained by several (domain-related) content classification models.

Final Decision

Internet Data Harvester Document

Document Encoding 

(Feature Vector)

Document Source
Classification 

(Multi-label classification)

Content Classification

(Ensemble of models)

Consensus
Algorithm 

Format 

Normalisation

Figure 1. Information flow used by the proposed approach.

3.2. Data Harvesting and Open Media Crawling

In fake news-related research, an important question is always associated with data
sources. One solution that could be utilized for this purpose is media crawling, often
called harvesting. In this technique, specialized software, which behaves as a browser
with custom logic, automatically visits a predefined list of resources on the Internet and
downloads certain content (e.g., files) for further analysis. These solutions have been used
during various kinds of research for years. The first papers describing such systems in the
IEEExplore database are from the late 1990s, for example, [35,36].

Access to data gathered by web crawlers can be achieved by various means. A short
survey presented in [37] defines three methods of how a researcher can obtain data via
web harvesters. The first one utilizes dedicated extensions to the web browser, which
record some valuable information to JSON, XLS, CSV, or HTML files. Currently, such a
solution can be used within Firefox and Google Chrome browsers. The second solution is
related to dedicated Open Source, commercial, or is even delivered as SaaS products. The
provided software harvests all previously defined data sources. The third method utilizes
some auxiliary tools and libraries that the researcher can use to develop a custom harvester
specialized in the nature of the conducted research. This solution requires the highest effort
from the three ways mentioned above. However, it also gives the best results. Further on
in this section, the latter kind of solution is discussed.
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Figure 2 presents the architecture of a custom harvester which was developed during
the DISSIMILAR project. The system consists of two standard parts: (i) the front-end and
(ii) the back-end.

Figure 2. Architecture of the harvester, which consists of front-end (for administration) and back-end
(for data harvesting) parts. The core of the system utilizes Celery task distribution framework, which
controls data crawling process.

While the front-end is designed for system administration, the back-end focuses on
data crawling. The connection to web servers is performed via Scrapy library (https:
//scrapy.org/, accessed on 21 October 2022). Since modern web pages, in most cases, are
dynamically created using JavaScript, Splash framework (https://splash.readthedocs.io/
en/stable/, accessed on 21 October 2022) is used to execute scripts and provide the final
version of the generated HTML code.

In order to have control over the harvesting process, we developed the processing
pipeline on top of the Celery task distribution subsystem. This allows for controlling
dedicated workers delegated to harvesting and analyzing processes. Moreover, such an
architecture enables the distribution of web scraping on multiple machines.

3.3. BERT-Based Document Representation and Classification

As part of the research, a collection of benchmark sets (commonly used by various
researchers) was compiled. This allowed us to create an integrated language corpus that
eventually mixed various categories of content (e.g., politics, health, news, etc.). Because
the datasets differ in terms of various characteristics (e.g., text length), there is a separate
problem related to the extraction of features from documents.

To address this, a unified and common methodology for all datasets’ feature extraction
was adopted. In particular, the same BERT language model (see Figure 3) was adapted
to establish word, sentence, and document representation. In that regard, each input
sentence is first transformed by a tokenizer, which breaks the sequence of words into
individual tokens and then adds unique [CLS] (Classification) and [SEP] (Separator) tokens
at the beginning and the end, respectively. Moreover, each token is replaced with the
corresponding unique identifiers, which are established from the so-called embedding
table. To simplify the text processing and classification pipeline, the tokenizer is configured
to either truncate or pad sentences to a maximum of 512 tokens.

In this paper, the authors adapted the pre-trained DistilBERT model, which is a
’lightweight’ variant of BERT. While training the entire model (DistilBERT + classification
head), the BERT layers are left frozen during this process, and only the weights in the
classification head are updated. In order to decrease the feature vector dimension, average
pooling over the tokens returned by the BERT model was applied.
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Figure 3. Document representation and classification model.

3.4. Document Source Classification

As is visible in Figure 3, on top of the document representation layer are two classi-
fication pathways. The right pathway is actually a committee of classifiers. In this case,
each model in the ensemble is specialized in a different type of document. The one on the
left is responsible for document source classification. In this paper, we used six different
datasets, as detailed in Section 4.2, and therefore, each dataset is considered as a different
source. The role of the document source classifier is to build consensus in the community
in the above-mentioned processing pathway. More precisely, the classifier outputs the
weights which are assigned to the responses of the base models. For example, if we have
a document entirely devoted to COVID, (most likely) the document source classifier will
delegate the prediction (will associate the highest weight) to the responses provided by the
base model, which has competencies in this domain. Moreover, we used a diverse set of
base models that we independently trained on sub-corpora with unique characteristics.
Therefore, (from our perspective) multi-label text category classification is the entity that
formulates the abovementioned ensemble.

4. Results

First, this section describes the data and methodology used to conduct the experimen-
tal evaluation. Next, the results for a single dataset are presented. Then, the outcomes of
the text source classification accuracy are outlined. Finally, the authors focus on the results
from the ensemble of BERT models.
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4.1. Methodology and Tools Used for Experiments

In order to compare different approaches and configurations on different datasets, the
5x2-fold cross-validation method was employed. In this method, conventional two-fold
cross-validation is utilized, with outcomes being averaged. Additionally, the standard
deviation from the mean is computed to highlight both the variability and the importance
of the distinctions. The 5x2-fold cross-validation (CV) method’s nested structure helps
achieve a more robust model. The outer loop helps assess how well the model generalizes
across different subsets of the data, and the inner loop (two-fold CV) can help reduce the
variance in estimates compared to a single-fold validation.

To assess the performance, we used common metrics for comparing classification
effectiveness, namely the following:

• Precision = TP
TP+FP .

• Recall (Sensitivity) = TP
TP+FN .

• Specificity = TN
TN+FP .

• Balanced Accuracy = Sensitivity+Speci f icity
2 .

• F1-score = 2 ∗ Precision∗Recall
Precision+Recall .

• G-mean =
√

Sensitivity ∗ Speci f icity.

In the above equations, TP, FP, FN, and TN indicate True Positive, False Positive,
False Negative, and True Negative, respectively. TP (True Positive) is the number of fake
news cases correctly classified as such. FN (False Negative) is the number of fake news
cases incorrectly classified as real news. FP (False Positive) is the number of real news cases
that are incorrectly identified as Fake, and TN (True Negative) is the number of real news
cases correctly classified as such.

4.2. Data Used for Experiments

Six different datasets related to the fake news detection problem were used in all
experiments. The details of the datasets, as well as the numbers they will be referred to as
in this paper, are presented in Table 1.

Table 1. Summary of datasets related to news authenticity.

No. Dataset
Name Size Content Type Description Reference

1 COVID-19
Fake News

10,200
items
(∼9700 fake,
∼500 real)

News
(COVID-19)

Fake and legitimate
news items related
to COVID-19.

[38]

2 MM-Covid

11,000
items
(∼4000 fake,
∼7000 real)

News
(Multilingual)

Fake and legitimate
news items with
social context.

[39]

3 Q-Prop 50,000
articles News

Articles labeled
as “legitimate”
or “propaganda”.

[40]

4 ISOT

44,898
documents
(23,481 fake,
21,417 real)

News

Trustworthy and
fake documents
with additional
metadata.

[41]

5 GRAFN 13,000 posts
News
(Global
Politics)

Text and metadata
from 244 websites. [42]

6 PubHealth Not specified
Health
(Public
/Biomedical)

Documents with
labels and explanations
related to public
health topics.

[43]

4.3. Single Dataset Performance

In this subsection, for the classification, we report the accuracy obtained with a BERT-
based classifier (as defined in Section 3) on the considered datasets. The results are reported
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in Table 2. In all cases, the authors repeated five times two-fold cross-validation (5x2
CV) on a single dataset. The presented outcomes are shown as averages along with the
standard deviation from the mean value. In the case of the F1, Precision, and Recall metrics,
a weighted average calculated on both classes (fake news and real news) is reported. Here,
it can be noticed that for all datasets, the BERT model achieves relatively high values of
performance metrics (e.g., Balanced Accuracy exceeds 75%).

Table 2. Performance of BERT-based classifier trained and evaluated on the same datasets (results
reported using 5x2-fold cross-validation methodology).

Dataset Bal. Acc. F1 G-Mean Precision Recall

Covid-FN 87.6 ± 0.8 91.9 ± 0.4 87.0 ± 0.9 92.2 ± 0.3 92.2 ± 0.3
MMCovid 78.8 ± 0.5 80.2 ± 0.5 78.6 ± 0.5 80.2 ± 0.5 80.2 ± 0.5

QProp 77.3 ± 1.3 96.7 ± 0.2 74.1 ± 1.8 96.7 ± 0.2 97.0 ± 0.2
ISOT 76.7 ± 0.4 92.6 ± 0.1 73.8 ± 0.6 92.5 ± 0.1 93.1 ± 0.1

GRAFN 99.3 ± 0.0 99.2 ± 0.0 99.3 ± 0.0 99.2 ± 0.0 99.2 ± 0.0
PubHealth 79.9 ± 0.2 88.5 ± 0.1 78.4 ± 0.2 88.4 ± 0.1 88.9 ± 0.1

In such cases, the results can be promising and considered optimistic. However, the
truth is that the model needs to be better generalized to other datasets. It is quite vivid
when observing Figure 4. The diagram depicts the base model’s performance pre-trained
on one dataset and evaluated on the other. As a pre-trained model, one understands the
best model amongst all validation folds. The bright diagonal in Figure 4 indicates that
the classifier performs well on the original dataset. One can also notice some brighter
areas, which may suggest that some datasets share similar contents (e.g., ISOT and GRAFN,
which are highly populated with political news).

Figure 4. Balanced Accuracy achieved with BERT classifier (pre-trained on a single dataset and
evaluated on another: 0—CovidFN, 1—MMCovid, 2—QProp, 3—ISOT, 4—GRAFN, 5—PubHealth).

4.4. Text Source Classification Accuracy

In Table 3, various metrics for multi-label source classification are presented. As in
the previous cases, the 5x2 cross-validation was employed to compare and report the
classification performance. The goal of the multi-label classification model is to correctly
recognize the dataset (the source of the analyzed text). The worst results were obtained
for QProp, while for the other datasets, performance metrics achieved relatively high
values (e.g., F1 scores close to 90%). In Table 3, the Accuracy, Balanced Accuracy, and the
G-mean are reported only as an average because these involve all labels when calculating
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their values (e.g., Balanced Accuracy requires an average of recall scores per class to
be calculated).

Table 3. Performance of the proposed text source classification model (dataset name is considered
here as a label returned by the model).

F1 Precision Recall

CovidFN 97.5 ± 0.1 97.2 ± 0.2 97.8 ± 0.2
MMCovid 88.7 ± 0.3 89.6 ± 0.7 87.8 ± 0.3

QProp 14.2 ± 0.9 45.6 ± 3.4 8.4 ± 0.6
ISOT 92.7 ± 0.1 91.8 ± 0.2 93.7 ± 0.1

GRAFN 92.1 ± 0.1 91.4 ± 0.1 92.8 ± 0.2
PubHealth 87.0 ± 0.2 87.9 ± 0.4 86.1 ± 0.4

Average 91.0 ± 0.1 90.9 ± 0.1 91.5 ± 0.1

Accuracy 91.5 ± 0.1
Balanced Accuracy 77.8 ± 0.1

4.5. Ensemble of BERT Models

Finally, in this subsection, the results obtained for the ensemble of BERT models are
showcased. More precisely, the ensemble is constructed of a diversified pool of base models
which learned independently from a sub-corpus of texts. The unique characteristics result
from multi-label classification, which was presented in the previous section.

In Table 4, the authors compare the proposed approach to other techniques known
from the literature, namely the following:

• Batch MTL—a single classification model is trained from scratch on the entire dataset.
• Majority Voting—an ensemble of the BERT model is constructed, and the consensus is

established using a hard voting approach (e.g., [34]).
• Weighted Voting—an ensemble of BERT models combined with a soft voting approach

(e.g., [44]).

Table 4. Classification performance of BERT model ensembles integrated using text source classifier.

Approach Balanced Accuracy Avg. F1

Proposed Ensemble Method 82.7 ± 0.1 84.8 ± 0.1
Batch MTL 77.7 ± 0.1 84.0 ± 0.1

Majority Voting BERT
Ensemble 65.7 ± 0.1 67.3 ± 0.1

Weighted BERT Ensemble 54.4 ± 0.1 33.5 ± 0.2

Based on the results presented in Table 4, it is visible that the method proposed in
this paper outperformed other state-of-the-art solutions. This demonstrates the potential
of the proposed approach. Concerning the Balanced Accuracy, the introduced technique
turned out to be better by almost 30% than the Weighted BERT Ensemble and 5% better
than Batch MTL. Regarding the average F1 metric, the improvement over the Weighted
BERT Ensemble is even more remarkable, i.e., about 50%, but at the same time comparable
to Batch MTL (0.8% increase).

5. Conclusions

Advanced deep learning techniques offer potent tools for addressing the issue of false
news. However, these systems often struggle with poor model generalization in real-world
scenarios due to data limitations. Unfortunately, many existing solutions adopt a monolithic
approach, treating fake news detection as a single-task learning problem and utilizing a
variety of models and classification methods without considering domain segmentation.

To overcome these limitations, our paper proposes an innovative solution involving a
committee of classifiers in order to tackle the fake news detection challenge. In that regard,
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we introduce a diverse set of base models, each independently trained on sub-corpora with
unique characteristics. In order to evaluate different approaches and configurations on the
considered datasets, we employed the 5x2-fold cross-validation (CV) method. This nested
CV structure enhances model robustness by assessing generalization across different data
subsets and reducing variance in estimates.

The experimental results (on six different benchmark datasets) show that the suggested
approach is promising, opening further research areas. In particular, the proposed approach
outperforms the Weighted BERT Ensemble by nearly 30% in Balanced Accuracy and exhibits
a 50% improvement in the F1 metric. It also sustains competitiveness with Batch MTL, with
a slight 0.8% increase in the F1 score.

The promising results and performance indicate the future direction and value of
using ensembles of classifiers in misinformation detection systems.
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Abstract: In today’s information age, how to accurately identify a person’s identity and protect
information security has become a hot topic of people from all walks of life. At present, a more
convenient and secure solution to identity identification is undoubtedly biometric identification, but
a single biometric identification cannot support increasingly complex and diversified authentication
scenarios. Using multimodal biometric technology can improve the accuracy and safety of identifica-
tion. This paper proposes a biometric method based on finger vein and face bimodal feature layer
fusion, which uses a convolutional neural network (CNN), and the fusion occurs in the feature layer.
The self-attention mechanism is used to obtain the weights of the two biometrics, and combined
with the RESNET residual structure, the self-attention weight feature is cascaded with the bimodal
fusion feature channel Concat. To prove the high efficiency of bimodal feature layer fusion, AlexNet
and VGG-19 network models were selected in the experimental part for extracting finger vein and
face image features as inputs to the feature fusion module. The extensive experiments show that the
recognition accuracy of both models exceeds 98.4%, demonstrating the high efficiency of the bimodal
feature fusion.

Keywords: CNN; dual-channel biometric identification system; biometric fusion; face recognition;
finger vein recognition; identification system

1. Introduction

In recent years, with the increasing level of science and technology, people direct pro-
gressively more attention to information security [1]. Traditional authentication methods,
such as using account numbers and passwords are easily replaced by impersonation once
they are stolen. Biometrics is an emerging security technology and one of the most promis-
ing technologies in this century. Compared with traditional identification, biometrics has
many advantages, such as the technology will not be lost, stolen or copied. Biometrics
mainly refers to a technology that authenticates identity through measurable physical or
behavioral biometrics [2]. Biological features are divided into two categories: Physical
features and behavioral features [3]. Physical features, such as fingerprints, retinas, and
faces, are mostly inborn, and behavioral features, such as gait and keystrokes, are mostly
acquired due to habit [4].

Primarily, a biometric identification system involves four processes: Image acquisition,
image processing feature extraction, feature value comparison, and individual identification.
There are two biometric systems, single-modal and multimodal. A single-modal biometric
system refers to the use of a single biometric feature to identify users. Although the
current biometric technologies, such as face recognition [1], fingerprint recognition [5],
and iris recognition [6] are relatively mature, with the outbreak of COVID-19, single
biometric technologies, such as fingerprint recognition have suffered serious challenges.
Face recognition hidden behind masks fails, and fingerprint recognition with protective
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gloves cannot be unlocked. Single biometric technologies represented by fingerprints and
faces are increasingly difficult in application.

With the upgrading and development of biometric identification technology, biometric
identification is constantly changing from single to multimodal. Through careful design
and fusion algorithm, it can realize the combination of face, fingerprint, fingerprint vein,
iris, voice print, and other biometrics, which can lead to complementary information
and further improvement of recognition accuracy. Multimodal biometrics refer to the
integration or fusion of multiple human biometrics, using the respective advantages of
biometrics and combining different feature fusion algorithms to make the identification
process more accurate and secure [7]. Compared with single biometric identification
technology, multimodal biometric identification technology has the advantages of high
identification accuracy, higher security, and wider application range.

Although the current single-modal biometric technology has been relatively mature,
this single-mode biometric recognition technology is not only affected by the external
environment in practical applications, but also affected by the limitations of single-mode
biometrics itself, which greatly limits its application scenarios and reduces the accuracy
of identity recognition. For example, in fingerprint recognition, fingerprint damage and
finger wetness will affect the correct rate of collection and recognition. In face recognition,
the growth of age and wearing masks will affect its recognition accuracy. To overcome
these problems, we propose a bimodal recognition method that fuses face and finger veins.
Compared with the three-modal, four-mode, and other modes, the finger vein and face
bimodal not only reduce the complexity of time, algorithm, design, and production, but
also complement the advantages of in vivo biometrics (finger veins) and in vitro biometrics
(faces). It breaks the application limitations of single biometrics and improves the security
and accuracy of identity information.

In this study, we chose face and finger veins as the targets for the following reasons:
Faces are chosen since facial features are the most pronounced, and more data are used,
making them more precise. Face recognition does not require any contact, it can be
identified by air. Finger veins are chosen since they are internal physiological features that
are difficult to forge and have a high level of safety [2]. It has the advantages of enabling
non-contact measurement, good hygiene, and easy acceptance for users. In addition, the
use of each person’s finger vein is unique and cannot be forged, especially for places with
high safety requirements.

Traditional biometric systems primarily have four components: Pre-processing, feature
extraction, matching, and decision-making phases [8]. Feature extraction methods can
affect the system significantly. In view of the excellent performance of convolutional neural
networks in image recognition and image feature extraction tasks, this study aims to deeply
study the application of convolutional neural network algorithms in finger vein and face
biometric recognition. In this paper, a bimodal biometric system based on a deep learning
model of finger veins and face images is proposed. First, the finger vein and face images
were acquired, and the region-of-interest (ROI) was intercepted on the finger vein images.
For the problem of the lack of data in the finger veins, the image enhancement method
was adopted, and then the finger vein and face images were input into the dual-channel
convolutional neural network to extract the features. Feature fusion is performed before
the fully connected layer, and weights are assigned according to the confidence level of
each feature, and finally user identification is performed.

The rest of the paper is organized as follows: Section 2 provides a brief description of
the relevant research. Section 3 proposes the method used in this article. Section 4 discusses
and analyzes the results. Finally, Section 5 concludes the paper and discusses potential
future work.

2. Related Work

Multimodal biometric technology refers to the fusion of more than two kinds of single
biometric features as a new feature for identification [9]. According to the location of the
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fusion, it can be divided into image layer fusion, feature layer fusion, matching layer fusion,
and decision layer fusion [10].

Haghiatt et al. [11] proposed discriminative correlation analysis (DCA), which per-
forms an effective feature fusion by maximizing the pairwise correlations across the two
feature sets and, at the same time, eliminating the between-class correlations and restricting
the correlations to be within the classes. Shaheed et al. [12] considered the issues of convolu-
tional neural networks (CNNs). The authors presented a pre-trained CNN network named
Xception model based on depth-wise separable CNNs with residual connection, which
is considered as a more effective, less complex neural network to extract robust features.
Their proposed method for the SDUMLA database achieved an accuracy of 99% with an
F1-score of 98%. While on THU-FVFDT2, the proposed method obtained an accuracy of
90% with an F1-score of 88%. Qi et al. [13] proposed a biometric method based on three
biometric patterns of face, iris, and palm print, and introduced a strategy of fusion of
multiple features. Cherrat et al. [14] proposed a hybrid system based on a multi-biometric
fingerprint, finger vein, and face recognition system that combines a convolutional neural
network (CNN), Softmax, and a random forest (RF) classifier, using K-means and density-
based spatial clustering of application with Noise (DBSCAN) algorithms that employ image
preprocessing to separate foreground and background areas. Experiments have shown
that multimodality can provide accurate and efficient matching, which can be significantly
better than the single-modal representation accuracy.

Few studies focus on identifying users through behavioral biometrics, and in the
process of research, feature recognition and feature extraction are more difficult since user
behavior is non-repeatable and variable. Abinaya et al. [15] used two different unmoded
biometric keystrokes (typography) and acoustics (speech) to identify the use of pre-trained
deep learning models, using weighted linear feature-level fusion, and trained by CNN
classifier simulation. The results show that the system has good accuracy. Ding et al. [16]
proposed a deep learning structure consisting of a neural network (CNN) and a three-
layer stacked autoencoder, and then concatenated the extracted features to form a high-
dimensional feature vector. This method achieves a recognition rate of up to 99.0% on
the Labeled Faces in the Wild (LFW) database. Chawla et al. [17] investigated the finger
vein recognition problem. They employed one-shot learning model namely the Triplet loss
network model and evaluated its performance. The extensive set of experiments that they
have conducted yield classification and correct identification accuracies in ranges upwards
of 95% and equal error rates less than 4%.

In recent years, research on finger vein recognition has been particularly active. For
example, Alay et al. [18] combined three CNN models of iris, finger vein, and face to fuse at
the feature and fractional levels, respectively, using the VGG-16 model, where the accuracy
of feature-level fusion was 100% and the accuracy of different score-level fusion methods
was 100%. Ammour et al. [8] proposed a new feature extraction technique for a multimodal
biometric system using face–iris traits. The iris feature extraction is carried out using an
efficient multi-resolution 2D Log-Gabor filter to capture textural information in different
scales and orientations. On the other hand, the facial features are computed using the
powerful method of singular spectrum analysis (SSA) in conjunction with the wavelet
transform. Kim et al. [19] studied a biometric system capable of recognizing finger veins
and finger shapes, and constructed a CNN biometric system, using fusion methods, such
as weighted sum and Bayesian rules to fuse two features on the fractional level.

Yang et al. [20] proposed a research method for the fusion of finger veins and finger-
prints, developed a feature-level fusion strategy for three fusion options, and combined the
details of finger vein fingerprint image features. Soleymani et al. [21] proposed a fusion
method for the fingerprints of the human face and the iris. Multiple features are extracted
from each modal-specific CNN in multiple different convolutional layers for joint feature
fusion, optimization, and classification. Waisy et al. [22] proposed a deep learning method
based on the left and right iris images of people, using a hierarchical fusion method to
fuse the results, which is called IrisConvNet. The recognition rate of the database used is
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100% and the recognition time is less than 1 s. Ren et al. [23] proposed a new finger vein
image encryption scheme, which applies Rivest–Shamir–Adleman encryption technology
to finger vein image encryption. In addition, a complete cancelable finger vein recogni-
tion system with template protection is proposed to ensure the security of the user’s vein
template while maintaining the recognition performance. Jomaa et al. [4] aimed at the
serious vulnerability of fingerprint system in presentation attack (PA), they proposed a
novel architecture based on end-to-end deep learning to fuse between neuroprinting and
ECG, improving PA detection in fingerprint biometrics and using EfficientNet to generate
fingerprint features. Experimental results show that the architecture produces better av-
erage classification accuracy than the single fingerprint. Tyagi et al. [24] proposed highly
accurate and robust multimodal biometric identification as well as recognition systems
based on fusion of face and finger vein modalities. The feature extractions for both face
and finger vein are carried out by exploiting deep convolutional neural networks.

In view of the selected biological features that are easy to be affected by external factors
and different fusion locations, this study selected face and finger vein, complementing
the advantages of internal biological features (finger vein) and external biological features
(face), and integrating in the feature layer with the most rich and effective information. Not
only does it make up for the shortcomings of single biometric recognition and improve the
accuracy of identity recognition, but also compared with the three-mode, four-mode, and
other modes, the finger vein and face bimodal reduces the time, algorithm, design, and
production complexity.

3. Method

In this study, a two-channel CNN feature fusion framework is proposed as shown in
Figure 1, and the fusion occurs at the feature layer. The framework is mainly divided into
three parts, namely the feature extraction part, the feature fusion part, and the classification
recognition part. In the feature extraction, the collected finger vein pictures and face
pictures are mainly pre-processed, such as the interception of the finger vein area of interest
and data enhancement, and then the biometrics are convoluted into the neural network
model, and the biometrics of the images are extracted through multi-layer convolution
and pooling layers. In the feature fusion module, fusion Conv is first performed to reduce
dimensions and then pass through the Softmax layer, which obtains the self-attention
weights and multiplies the features obtained by feature extraction, and then channel Concat
cascades the two features together to obtain the fusion features of finger vein and face (Fv
+ Face_feature). To prevent the loss of some feature information during feature fusion,
the finger vein features and face features after feature extraction are obtained, as well as
feature cascading after the feature three-channel Concat. The classification recognition part
is mainly classified in the fully connected layer.

3.1. Network

Mode convolutional neural network is a feedforward neural network, which is the
mainstream technology in image processing today [24]. Using CNN for processing pictures
can not only effectively reduce the dimension of large data volume to small data amount,
but also can effectively retain the characteristics of pictures, which complies with the
principle of image processing. Similar to other neural networks, CNN networks also
contain several parts: Input layer, hidden layer, and output layer. The convolutional
layer [25] is the core layer of building a convolutional neural network, the convolutional
layer is composed of multiple convolutional units, and the parameters of each convolutional
unit are optimized by backpropagation algorithms. Convolutional operations are mainly
to extract the features of the image, the first few layers are mainly to extract the low-
level features of the image, such as color and other information, with the increase in the
convolutional layer, the multi-layer network can extract more complex image features.
Linear rectification mainly refers to the ReLU function of the activation function operation,
which can realize the non-linear mapping function of the network, increase the expression
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ability of the network, and have a good effect on feature extraction. The input of the pooling
layer is multiple feature mapping and pooling input operation. After convolution, the
dimensional features of the image still divide the feature matrix into several single blocks
to take its maximum or average, which can play a role in dimensionality reduction and
reduce the calculation of the network and avoid overfitting. Overfitting is also known as
over-fitting. Due to over-fitting of the training samples, the ability to accept samples other
than the training samples is poor, and the model cannot have good generalization ability.
The input of the pooling layer is multiple feature mapping and pooling the input. After
convolution, the dimensional features of the image are still many, and the feature matrix is
divided into several single blocks to take their maximum or average values, which can play
a role in reducing dimensionality, reducing network computation, and avoiding overfitting.
As the last layer of the CNN model, the fully connected layer combines all local features
and the feature matrix of each channel into vector representations, and calculates the score
of each final class, as shown in Figure 2.

Figure 1. Bimodal feature fusion framework.
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Figure 2. Schematic diagram of convolutional neural network structure.

To demonstrate the high efficiency of bimodal feature fusion, the feature extraction
networks of two representative AlexNet [25] and VGG-19 [26] networks are selected as the
benchmark [27,28], discarding their fully connected layers and using only the convolutional
and pooling layers before the fully connected layers.

AlexNet: The network, designed by 2012 ImageNet competition winner Hinton and
his student Alex Krizhevsky, consists of five convolutional layers (conv) and three fully
connected layers (fc) as shown in Figure 3. The activation function uses ReLU, and the
entire network has more than 62 million trainable parameters. The input is a 224 × 224 × 3
image, and the output is a 1000-dimensional vector corresponding to the probability of each
classification. The first, second, and fifth convolution layers add a pooling layer (MaxPool)
with a kernel of 3 × 3 and a stride of 2, which can improve the accuracy of the pooling
layer, as shown in Figure 3.

Figure 3. Schematic diagram of the AlexNet model architecture.

VGG-19: The network has 19 layers with 16 convolutional layers and 3 fully connected
layers as shown in Figure 4. The convolution kernels are all 3 × 3 in size, which reduces the
network parameters by repeatedly stacking the 3 × 3 convolution kernels rather than a large
convolution kernel. Compared with the AlexNet network, VGG-19 is able to extract deeper
features of images. Therefore, in the feature extraction module, the first 16 convolutional
layers of VGG-19 are used to extract finger vein face image features.

3.2. Data Preprocessing

Face images use the face public dataset CASIA-WebFace [29], which performs pre-
processing, such as resize and normalization in the network. Since the final experimental
data worked well, no other complex pre-processing operations were performed.
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Figure 4. Schematic diagram of the VGGNet model architecture.

For finger veins, since the SDUMLA-FV dataset [30] does not provide the region-of-
interest (ROI) of the finger vein, an interception of the ROI region of the dataset is required
to remove excessive background information which is likely to be useless. First, the Prewitt
edge detection operator is used to detect the upper and lower edges in the vertical direction
of the original diagram of the finger vein, and for the phenomenon of pseudo-edges, the
pseudo-edges are removed by setting the connection domain threshold. Use least squares
linear regression to fit the central axis of the finger, and correct the image rotation according
to the angle between the fitted line and the horizontal line. Fit the inner tangent of the
upper and lower edges of the finger. According to the brightness change trend in the
horizontal direction of the image, select the knuckle (brightness peak). Finally, the venous
ROI area of the finger is intercepted.

To obtain clear finger vein lines, contrast-limited adaptive histogram equalization
(CLAHE) is also required for the captured region-of-interest (ROI) images, and a Gabor
filter is added after the CLAHE image enhancement to remove noise. The ROI original
image, after CLAHE image enhancement and Gabor filtering, can get clear vein lines
compared with the original image. The finger vein dataset provided only 6 images of veins
per finger, and to prevent overfitting during CNN model training, we amplified the data
for each type of finger vein, including random translation, rotation, cropping, brightness
adjustment, and contrast adjustment of the image, expanding the original 6 images per
class to 36 pictures. The FV-USM dataset [31] provides ROI images, thus only image
enhancement and augmentation are required for this dataset, as shown in Figure 5.

Figure 5. SDUMLA-FV dataset image preprocessing.
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3.3. Feature Layer Fusion

In the feature layer fusion method, the face image feature (Face_feature) and the finger
vein image feature (Fv_feature) are taken as the input to the self-attention mechanism
to obtain their respective attention weights. The vein and face features are combined
with their respective attention weights, and they are cascaded to form cascade features
(Fv + Face_feature). The cascade features (Fv + Face_feature) are taken as the input of the
fusion module to convolute the cascade features to extract the deeper features and obtain
the fusion features (Fusion feature). To prevent the loss of some feature information during
feature fusion and ensure the maximization of effective feature information, the fusion
features are fused again with the single finger venous features and the single face features
into new features and output in Figure 6.

Figure 6. Schematic diagram of the feature fusion module framework.

The self-attention mechanism proposed in this article consists of three convolutional
layers and one Softmax layer, and the structure of the convolutional layer is shown in
Table 1. The convolutional kernel size of the first convolution is 1 × 1, padding is 0, and
the convolutional kernel size of the second and third convolutions is 3 × 3, and padding
is 1. After the convolutional layer, the ReLU activation function is used, and the ReLU
activation function can not only quickly converge the network, but also solve the problem
of gradient disappearance. Table 1 shows the convolutional structure in the self-attention
mechanism network, and Table 2 is the convolutional structure in the Fusion Block fusion
module proposed in this paper.

Table 1. Convolutional architecture in self-attention networks.

Layer Name In Channel Out Channels Convolutional Kernel Size Padding Stride

Conv1 a a/2 1 0 1
Conv2 a/2 a/4 3 1 1
Conv3 a/4 1 3 1 1
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Table 2. Convolutional layer structure in fusion block.

Layer Name In Channel Out Channels Convolutional Kernel Size Padding Stride

Conv1 2 × a a 1 0 1
Conv2 a a/2 3 1 1
Conv3 a/2 a 3 1 1

The ReLU function formula is as follows:

ReLU(x) = max(0,x) (1)

The input of the whole dual-channel convolutional neural network is two images
(one finger vein image and one face image), and new features are formed after the feature
extraction module and feature fusion module. New features were used as input to the
classification identification module.

4. Experimental Results and Analysis
4.1. Experimental Environment and Data Distribution

The language used in this experiment is Python3.8, the software environment is
Ubuntu18.04 (64-bit), and the framework used for deep learning is Pytorch 1.7.1, CUDA11.0,
cuDNN8.0, using two NVIDIA GeForce RTX 3080Ti GPUs.

To demonstrate the effectiveness of the method studied in this paper, we used three
publicly available datasets, CASIA-WebFace [29], Finger Vein USM (FV-USM) [31], and
SDUMLA-FV [30], to test the proposed bimodal feature fusion algorithm and compare
it with single-modal biometric identification. The SDUMLA-FV dataset was created by
Shandong University and captured a total of 3816 images. A total of 636 classes contained
106 finger vein images of the left and right index fingers, 6 middle fingers, and ring fingers.
Each image is stored in “BMP” format (320 × 240) pixel size. FV-USM is a Malaysian
Polytechnic finger vein dataset with 2952 maps. A total of 492 types of fingers contains
6 middle finger images and 123 images of the left and right hands, and the advantage of
using this dataset is that it provides already intercepted region-of-interest (ROI) images.
The CASIA-WebFace dataset is one of the most widely available datasets for applied face
recognition, which collects face images on the network with a total of 10,575 classes and
494,414 images.

This experiment used two finger vein public datasets, FV-USM, SDUMLA-FV, and
one face dataset, CASIA-WebFace. In single-mode experiments, each sample was amplified
to 36 pictures using the data amplification method, and 636 categories were randomly
selected for the face dataset. Additionally, each dataset divides the training, validation, and
testing. Sixty percent of patterns are assigned to the training set, 10% to the validation set,
and 30% to the test set. To increase the generalization capacity of the network, n × n is used
to match each finger vein image belonging to the same class with each face image. For the
dataset of 636 classes, the training set total is 636 × 21 × 21 = 280,476 images, validation set
total is 636 × 3 × 3 = 5724 images, and test set total is 636 × 12 × 12 = 91,584 images. Then,
the total amounts were divided into training sets, validation sets, and test sets.

4.2. Testing and Analysis of Biometric Systems
4.2.1. Performance Evaluation

This article mainly provides a bimodal fusion method. To evaluate the structural
performance of this model, we measure the performance of the model by the following
indicators.

Confusion Matrix: In the field of image recognition, it is mainly used to compare
the relationship between the classification results and the actual predicted values. Table 3
shows the confusion matrix, positive represents positive samples, and negative represents
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negative samples. Each column represents the predicted value, and each row represents
the actual value.

Table 3. Confusion matrix.

Actual Value
Predicted Value

Positive Negative

Positive True Positive (TP) False Negative (FN)
Negative False Positive (FP) True Negative (TN)

Accuracy rate: In all the samples, the proportion of the correct number of samples in
the total number of samples is predicted; the mathematical expression is as follows:

accuracy_rate =
TP + TN

TP + TN + FP + FN
(2)

Precision: In all the samples with positive class prediction result, the proportion of the
samples is actually positive class and the prediction result is also positive class number; the
mathematical expression is as follows:

precision =
TP

TP + FN
(3)

Recall rate: In all the samples that are actually positive, the proportion of the number
of samples is predicted as positive; the mathematical expression is as follows:

recall =
TP

TP + FN
(4)

ROC curve: The abscissa of ROC curve is negative positive rate (false positive rate,
FPR). The ordinate is the true class rate (true positive rate, TPR).

FPR =
FP

FP + TN
(5)

TPR =
TP

TP + FN
(6)

The area under the ROC curve represents AUC (area under curve), and its value can
directly reflect the performance of the classification model. The value range is between 0.1
and 1. The closer the value is to 1, the better the performance of the classification model.

P-R curve: The P-R curve is constructed with precision as the ordinate and recall as
the abscissa, and the area enclosed by the coordinate axis indicates the average accuracy
(average precision, AP). The value of AP reflects the performance of the classification model.
The closer the AP value is to 1, then the classification model has good performance.

4.2.2. Experimental Results and Analysis of Single-Mode Identification

In the single-mode biometric experiment, three datasets, SDUMLA-FV, FV-USM, and
CASIA-WebFace, were used to experiment on the CNN network framework (AlexNet, VGG-
19). As can be seen from Table 4, in the two network models, the identification accuracy
of single-modal experiment can reach 87.57% and the lowest is 45.61%. Compared with
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Yuancheng’s face recognition experiment [15], the accuracy of single-modal identification
is not high and the number of parameters is large.

Table 4. Results of a single-mode experiment.

Model

Dataset Parameter
Quantity

Test Set Accuracy

SDUMLA-FV USM-FV CASIA-WebFace

AlexNet 16,630,440 0.7020 0.4561 0.5395
VGG-19 143,667,240 0.8757 0.6734 0.5575

4.2.3. Experimental Results and Analysis of Multimodal Recognition

In Table 5, the accuracy of the recognition of face and finger veins in the feature layer
fused under the two CNN network models is shown. Compared with the single-mode
experimental results, the accuracy rate of AlexNet as a feature extraction network was above
99.3%. In the experiment using VGG-19 as the feature extraction network, the feature fusion
experimental recognition accuracy of the SDUMLA-FV dataset and the CASIA-WebFace
face dataset reached 99.98%, and the feature fusion experimental recognition accuracy
of the USM-FV dataset and the CASIA-WebFace face dataset reached 98.42%. Through
the experimental data, we can prove that the proposed method can greatly improve the
accuracy and effectively shorten its model parameters.

Table 5. Results of multimodal experiments.

Model

Dataset
Parameter Quantity

Test Set Accuracy

SDUMLA-FV +
CASIA-WebFace

USM-FV +
CASIA-WebFace

AlexNet-Fusion 9,858,994 0.9990 0.9935
VGG-19-Fusion 45,229,938 0.9998 0.9842

The following figure is the plotted ROC curve. There are two methods of ROC curve
drawing, which are micro average and macro average. Micro average refers to calculating
the prediction accuracy of each sample model, establishing a global confusion matrix, and
then calculating the corresponding indicators globally to draw the micro average ROC
curve of the dataset, regardless of the category of each test sample in the dataset. Macro-
averaging refers to the separation of each class of the dataset, then calculates the accuracy
of each class, establishing the confusion matrix, and finally averaging the average of the
ROC curve and the AUC values.

Figure 7 shows the ROC curves of the FV-USM dataset and the SDUMLA-FV dataset
combined with the CASIA-WebFace face dataset to use the bimodal feature fusion method
on the AlexNet feature extraction network. As you can see from the figure, the AUC of the
micro average and the macro average is both 1.

Figure 7. Fusion of identified ROC curves on AlexNet feature extraction network.
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Figure 8 shows the ROC curves of experimental results for different datasets using the
bimodal feature fusion method on the VGG-19 feature extraction network. As you can see
from the figure, the AUC at both the micro average and the macro average is 1.

Figure 8. Fusion of identified ROC curves on the VGG-19 feature extraction network.

Table 6 shows a bimodal dataset consisting of two different finger vein datasets and
a face dataset, and the area AUC of the ROC curve and the curve surrounded by the
coordinate axis is summarized on three different feature extraction networks. As you can
see from the summary table, the AUC is all 1.

Table 6. AUC summary of different datasets under different feature extraction networks.

Dataset

Feature Extraction Network AUC

AlexNet VGG-19

FV-USM + CASIA-WebFace 1 1
SDUMLA-FV + CASIA-WebFace 1 1

In summary, according to Yasen’s experimental analysis [25], the closer the ROC curve
is to the upper left corner, the better the performance. Experimental data show that the
bimodal feature fusion method proposed in this paper has good classification performance
in different bimodal datasets and different feature extraction networks.

To evaluate the proposed bimodal feature fusion recognition method more objectively
and accurately, we plotted the P-R curves for each experimental result. Figure 9 shows
the P-R curve results of different datasets using the bimodal feature fusion method on the
AlexNet feature extraction network. Among them, the bimodal feature fusion experiment
of the FV-USM dataset has an area AP of 0.88 surrounded by coordinate values, and the
area AP of the SDUMLA-FV dataset surrounded by coordinate axes is 0.9.

Figure 9. Fusion of identified P-R curves on the AlexNet feature extraction network.

Figure 10 shows the P-R curve results of different datasets using the bimodal feature
fusion method on the VGG-19 feature extraction network. As can be seen from the figure,
the area AP enclosed by the P-R curve and the coordinate values is 0.92 and 0.8, respectively.

111



Sensors 2022, 22, 6039

Figure 10. Fusion of identified P-R curves on the VGG-19 feature extraction network.

Table 7 shows a summary of the values of two different bimodal datasets on the P-R
curve as well as the coordinate axis surrounded by the P-R curve and coordinate axis on
two different feature extraction networks.

Table 7. Summary of AP values of different datasets under different feature extraction networks.

Dataset

Feature Extraction Network AP

AlexNet VGG-19

FV-USM + CASIA-WebFace 0.88 0.92
SDUMLA-FV + CASIA-WebFace 0.90 0.88

For the P-R curve index, the average accuracy AP value is greater than 0.88 and
the highest is 0.92 in all experimental results. Compared with Yang’s experiments [31],
they used the precision-recall (P-R) curve to measure the accuracy-recall trade-off due
to unbalanced datasets and reported sensitivity and specificity on the receiver operating
characteristic curve. The area under the precise-recall curve showed an average accuracy
of 0.874, indicating that the proposed method has good classification performance.

5. Conclusions

This study proposes a two-modal feature layer fusion method based on convolutional
neural network, combining the advantages of in vivo biometric features (finger vein) and
in vitro biometric features (human face). This method introduces the weight of the self-
attention mechanism to update the different features within the feature fusion module,
and adopts the residual structure to maximize the effective feature information. The
feature extraction was performed on the AlexNet and VGG-19 feature extraction modules,
respectively, and then the bimodal feature fusion method proposed in this paper was used.
In multimodal experiments, the lowest identification accuracy of the experimental results
was 98.84%, and the highest identification accuracy was 99.98%. In addition, the ROC
curve and P-R curve of the fusion experiment are plotted, which verifies that the proposed
method has very good classification performance. The research in this paper is currently
limited to computers with high computing power of GPUs, and cannot be deployed to
mobile embedded terminals, which greatly limits the application in practice. Subsequently,
the network results of bimodal fusion will be lightweight, and the fusion model will be
ported to an embedded terminal within an acceptable range.
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Abstract: In the billions of faces that are shaped by thousands of different cultures and ethnicities, one
thing remains universal: the way emotions are expressed. To take the next step in human–machine
interactions, a machine (e.g., a humanoid robot) must be able to clarify facial emotions. Allowing
systems to recognize micro-expressions affords the machine a deeper dive into a person’s true feelings,
which will take human emotion into account while making optimal decisions. For instance, these
machines will be able to detect dangerous situations, alert caregivers to challenges, and provide
appropriate responses. Micro-expressions are involuntary and transient facial expressions capable of
revealing genuine emotions. We propose a new hybrid neural network (NN) model capable of micro-
expression recognition in real-time applications. Several NN models are first compared in this study.
Then, a hybrid NN model is created by combining a convolutional neural network (CNN), a recurrent
neural network (RNN, e.g., long short-term memory (LSTM)), and a vision transformer. The CNN
can extract spatial features (within a neighborhood of an image), whereas the LSTM can summarize
temporal features. In addition, a transformer with an attention mechanism can capture sparse spatial
relations residing in an image or between frames in a video clip. The inputs of the model are short
facial videos, while the outputs are the micro-expressions recognized from the videos. The NN
models are trained and tested with publicly available facial micro-expression datasets to recognize
different micro-expressions (e.g., happiness, fear, anger, surprise, disgust, sadness). Score fusion and
improvement metrics are also presented in our experiments. The results of our proposed models are
compared with that of literature-reported methods tested on the same datasets. The proposed hybrid
model performs the best, where score fusion can dramatically increase recognition performance.

Keywords: facial micro-expression; human-machine interaction; long short-term memory (LSTM);
convolutional neural network (CNN); vision transformer; score fusion; deep learning

1. Introduction

Facial expressions serve as a universally understood form of human communication
intimately linked to one’s mental states, attitudes, and intentions. In addition to the
typical facial expressions displayed in daily life, known as macro-expressions, there exists
a distinct category called micro-expressions. These micro-expressions emerge in specific
conditions, unveiling people’s concealed emotions during high-stakes situations when they
strive to mask their true feelings [1,2]. Unlike macro-expressions, micro-expressions are
involuntary, spontaneous, subtle, and rapid, lasting typically between 40 and 450 ms. They
are instinctive facial movements that react to emotional stimuli [3,4]. While individuals
can consciously conceal or restrain their genuine emotions through macro-expressions,
micro-expressions are beyond their control, inevitably exposing the authentic emotions
they experience [5–8].

Recognizing micro-expressions is a daunting task as they are fleeting, involuntary,
and exhibit low intensity. Only extensively trained experts possess the ability to discern
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these subtle facial cues. However, even with rigorous training, the average human can
only identify approximately 47% of micro-expressions [9]. Moreover, human analysis of
micro-expressions is error-prone and costly. Therefore, there is a pressing need to develop
an automated system for the analysis and recognition of micro-expressions.

Facial expressions result from the intricate interplay of facial skin, connective tissue,
and the activation of facial muscles controlled by facial nerve nuclei. These nuclei, in
turn, are regulated by cortical and subcortical upper motor neuron circuits. A noteworthy
neuropsychological study investigating facial expressions [10] unveiled two distinct neural
pathways situated in different brain areas, each playing a role in mediating facial behavior.
The cortical circuit, located within the cortical motor strip, primarily governs deliberate,
voluntary facial expressions. Conversely, the subcortical circuit, residing in subcortical
brain regions, primarily governs spontaneous, involuntary emotional facial expressions.
In intense emotional situations where individuals endeavor to conceal or suppress their
feelings, both systems are likely to be activated, resulting in fleeting glimpses of genuine
emotions through micro-expressions [11]. Consequently, when attempting to mask their
emotions, true feelings can swiftly “leak out” and manifest as micro-expressions [5].

Micro-expressions encompass the ability to convey seven universal emotions: dis-
gust, anger, fear, sadness, happiness, surprise, and contempt [12]. Differing from macro-
expressions, micro-expressions are characterized by their short duration and pronounced
inhibition of facial muscle movement [1,13]. This distinctive feature allows them to authen-
tically reflect a person’s true emotions, as they occur involuntarily and are more difficult
to control [14]. However, micro-expression recognition is very challenging. According to
a literature report [15] tested on the micro- and macro-expression warehouse (MMEW)
dataset up to 2021, the best traditional machine learning (ML) method uses Directional
Mean Optical Flow (MDMO) features [16], which can achieve 65.7% accuracy. Meanwhile,
the best deep learning (DL) method applies a transferring long-term convolutional neural
network (TLCNN) to extract frame features [17], which can be as high as 69.4% accuracy.

One of the challenges in micro-expression recognition is how to extract the tem-
porospatial features from facial videos, which contain big and redundant data. Traditional
feature extraction methods based on single image analysis [16] are not effective. Regular
CNNs [17] are good for capturing spatial features but lack temporal analyses between
sequential frames.

Therefore, in this study, to extract facial features from sequential frames (video clips),
we propose a hybrid model comprised of a transformer and RNN (LSTM). The transformer
can summarize the sparse spatial relations among image blocks [18], whereas the LSTM
can analyze the temporal changes among frames. Furthermore, score fusion methods
are applied to the multiple scores (from different NN models) in order to improve micro-
expression recognition accuracies. The remainder of this paper is organized as follows.
Section 2 describes datasets and preprocessing. Section 3 reviews the CNN and RNN.
Section 4 presents the experimental results. Section 5 summarizes the paper.

2. Micro-Expression Dataset and Image Preprocessing
2.1. Facial Micro-Expression Dataset

There are two datasets used in this study, which are briefly described in this sub-section.
The MMEW dataset [15] follows the same elicitation paradigm used in other published

datasets [19–23], i.e., watching emotional video episodes while attempting to maintain a
neutral expression. The full details of the MMEW dataset construction process are presented
in Reference [15]. All samples in MMEW were carefully calibrated by experts with onset,
apex, and offset frames, and the action unit (AU) [15] annotation from the Facial Action
Coding System (FACS) [24] was used to describe the facial muscle movement area. MMEW
contains 300 micro-expression samples (image sequences). The samples in MMEW have a
large image resolution (1920 × 1080 pixels). Furthermore, MMEW has a facial image size of
400× 400 pixels. MMEW has seven elaborate emotion classes (see Figure 1), i.e., Happiness
(36), Anger (8), Surprise (89), Disgust (72), Fear (16), Sadness (13), and Others (66).
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Figure 1. Facial micro-expression samples: (a) MMEW dataset—Facial video clip (14 frames shot
at 90 FPS) labeled as “Happiness”; (b) CASME II dataset—Facial video samples (24 frames shot at
200 FPS) labeled as “Disgust”. All facial images are resized to 224 × 224 × 3.

The Chinese Academy of Sciences Micro-expression CASME II [22] dataset was de-
veloped in a well-controlled laboratory environment, where four lamps were chosen to
provide steady and high-intensity illumination. To elicit micro-expressions, participants
were instructed to maintain a neutral facial expression when watching video episodes with
high emotional valence. CASME II used a high-speed camera with a sampling rate of
200 fps. There are 247 image sequences, which consist of facial images of 280 × 340 pixels.
CASME II contains the samples of five emotion classes (see Figure 1), i.e., Happiness
(33 samples), Repression (27), Surprise (25), Disgust (60), and Others (102).

2.2. Facial Image Standardization and Normalization

All facial images have been extracted from both datasets (as shown in Figure 1). Face
detection is unnecessary in this study as the dataset contains one face per image.

General standardization is applied to all facial images, which is defined as follows.

I′N = IN − IM, (1)

IS =
(
I′N − µ

)
/σ, (2)

where IN is the normalized facial image, IM is the mean image of all faces in the dataset,
and I′N is their difference image. IS is the standardized image; µ and σ denote the mean
and standard deviation of the I′N image, respectively.

Image normalization (intensity scaling) is required by neural network models, which
is defined as

IN = (I0 − IMin)
LMax − LMin

IMax − IMin
+ LMin, (3)

where IN is the normalized image, I0 is the original (input) image; IMin and IMax are the
minimum and maximum pixel values in I0, while LMin and LMax are the desired minimum
and maximum pixel values in IN. For example, we may select LMin = 0 and LMax = 1.0.
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3. Convolutional and Recurrent Neural Networks
3.1. Convolutional Neural Networks

Convolutional neural networks (CNNs) draw inspiration from the biological function-
ing of the visual cortex, where small groups of cells exhibit sensitivity to specific regions
within the visual field. CNNs blend principles from biology, mathematics, and computer
science, making them pivotal innovations in the domains of computer vision and artifi-
cial intelligence (AI). The year 2012 marked a significant turning point for CNNs when
Krizhevsky et al. [25] utilized an eight-layer CNN (comprising five convolutional layers
and three fully-connected layers) to secure victory in the ImageNet competition. This
groundbreaking achievement, known as AlexNet, reduced the classification error rate from
25.8% in 2011 to an impressive 16.4% in 2012, signifying a remarkable improvement at
that time. Since then, deep learning CNNs have spurred the development of numerous
applications in various domains.

During the training of AlexNet, batch stochastic gradient descent (SGD) was employed,
incorporating carefully selected momentum and weight decay values. This groundbreaking
model achieved exceptional performance on the challenging ImageNet dataset, setting a
new record in the competition and solidifying the superior capabilities of CNNs. Later,
there are many well-known CNNs developed, such as VGG-19, ResNet-50, Inception-V3,
DenseNet-201, etc. Hereby our review begins with ResNet and Xception models, followed
by a discussion on vision transformers, and then finishes with RNNs.

3.2. ResNet and Xception Models

The ResNet-50 model [26] is composed of 50 layers, featuring 16 residual blocks with
three layers each, in addition to input and output layers. These residual blocks introduce
identity connections that facilitate incremental or residual learning, enabling effective back-
propagation. Through this approach, the identity layers progressively evolve from simple
to complex representations. This evolution is particularly beneficial when the parameters
of a CNN block start at or near zero. The inclusion of residual blocks helps address the
challenging issue of vanishing gradients encountered in training deep neural networks
with more than 30 layers.

Recently, an Xception [27] (Extreme Inception) network architecture has been pro-
posed on the following hypothesis: the mapping of cross-channel correlations and spatial
correlations in the feature maps of CNNs can be entirely decoupled. Thus, the Inception
modules can be replaced with depthwise separable convolutions. The feature extraction base of
the Xception architecture is constructed with 36 convolutional layers. For image classifica-
tion, a logistic regression layer follows the convolutional base. Optionally, fully-connected
layers can be added before the logistic regression layer. These 36 convolutional layers are
organized into 14 modules, with linear residual connections encompassing each module,
except for the first and last ones. When compared to Inception V3, Xception exhibits a
comparable parameter count while demonstrating slight enhancements in classification
performance on the ImageNet dataset.

In the Xception model, a depthwise separable convolution, also known as a separa-
ble convolution in deep learning frameworks, such as TensorFlow/Keras, is employed.
This approach involves two steps: first, a depthwise convolution is performed indepen-
dently on each channel of the input, followed by a pointwise convolution, which is a
1 × 1 convolution. The pointwise convolution projects the output channels from the depth-
wise convolution into a new channel space. The scenario of separable convolution plus
pointwise convolution can significantly reduce the load of convolutional computation in
contrast with a regular two-dimensional (2D) or three-dimensional (3D) convolutional
layer; thus, it speeds up the CNN model training and the inference process.

3.3. Vision Transformers

Initially, transformers were developed and applied primarily to tasks in natural lan-
guage processing (NLP), as evidenced by language models, such as BERT (Bidirectional

118



Sensors 2023, 23, 5650

Encoder Representations from Transformers) [28]. Transformers ascertain the connections
between pairs of input tokens, such as words in NLP, through a mechanism called at-
tention. However, this approach becomes increasingly computationally expensive with a
growing number of tokens. When dealing with images, the fundamental unit of analysis
becomes the pixel. Nevertheless, computing relationships between every pair of pixels
becomes prohibitively costly in terms of memory and computation. To address this, Vi-
sion Transformers (ViTs) calculate relationships among smaller image regions, typically
16 × 16 pixels, resulting in reduced computational requirements. These regions, accompa-
nied by positional embeddings, are organized into a sequence. The embeddings represent
learnable vectors. Each region is vectorized and multiplied by an embedding matrix. The
resulting sequence, along with the positional embeddings, is then fed into the transformer
for further processing. The Video ViT (ViViT) model has one additional process, called a
video tube (cube, i.e., frames by height by width, e.g., 4 × 16 × 16) positional embedding,
while the rest of the ViViT process is the same as ViT.

Self-attention is commonly applied to the vision transformer model. The calculation of
self-attention is to create three vectors from each of the encoder’s input vectors (in the NLP
case, the embedding of each word). So for each word, a Query vector, a Key vector, and a
Value vector are created by multiplying the embedding by three matrices that were trained
during the training process. Multi-headed attention expands the model’s ability to focus
on different positions. It gives the attention layer multiple “representation subspaces”.
The multi-headed attention has multiple sets of Query/Key/Value weight matrices (e.g., a
transformer uses eight attention heads, consisting of eight sets of weight matrices for each
encoder/decoder). Each of these sets is randomly initialized. Then, after training, each set
is used to project the input embeddings (or vectors from lower encoders/decoders) into a
different representation subspace.

Two designs of the ViViT architecture are illustrated in Table 1, where the input is the
frames of a video clip (shape of MMEW input: (14, 224, 224, 3)), while the output includes
seven probabilities corresponding to seven micro-expression classes. The ViViT_FM2 model
has an additional CNN block, X_CNN, which is comprised of the first five convolutional
layers plus one residual block from the Xception model.

Table 1. Transformer model architectures—ViViT_FM1 and ViViT_FM2. Normalization and Dropout
layers are omitted. The batch size (typically shown as None) is omitted in the “Output Shape” column.
Attn_FF means attention-based feed-forward network. The numbers shown in “Output Shape” are
assumed to be the inputs from the MMEW dataset.

ViViT_FM1 (8.6 M Paras) ViViT_FM2 (8.8 M Paras)

Layer (Type) Output Shape Layer (Type) Output Shape

Frame_Input (14, 224, 224, 3) Frame_Input (14, 224, 224, 3)

time_distributed(X_CNN)
(5 × Conv2D, 1 × Res.) (14, 112, 112, 32)

Tubelet_Embedding
(Conv3D→ 7 × 16 × 16 patches) (1792, 64) Tubelet_Embedding

(Conv3D→ 7 × 16 × 16 patches) (1792, 64)

Positional_Encoder (1792, 64) Positional_Encoder (1792, 64)

6 × Attn_FF: 6 × Attn_FF:

MultiHeadAttention MultiHeadAttention
(heads = 8, key_dim = 64) (heads = 8, key_dim = 64)

Feed_Forward_Net Feed_Forward_Net
(256→ 64) (256→ 64)

Add_Attn_FF_Norm (1792, 64) Add_Attn_FF_Norm (1792, 64)

MaxPooling1D
(pool_size = 4, strides = 4) (448, 64) MaxPooling1D

(pool_size = 4, strides = 4) (448, 64)
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Table 1. Cont.

Flatten (28672) Flatten (28672)

Dense (256) Dense (256)

Dense (Output) (7) Dense (Output) (7)

3.4. Recurrent Neural Networks—ConvLSTMmodels

Recurrent neural networks (RNNs) are designed to leverage sequential information in
data. Unlike traditional neural networks that assume inputs and outputs are independent
of each other, RNNs recognize the importance of dependencies in tasks such as natural
language processing (NLP); for instance, predicting the next word in a sentence benefits
from knowledge about the preceding words. RNNs are termed “recurrent” because they
execute the same operation for each element of a sequence, with the output relying on
previous computations. Another way to conceptualize RNNs is as having a “memory” that
retains information about prior calculations. In theory, RNNs can utilize information from
arbitrarily long sequences, but in practice, they are typically limited to considering only a
few preceding steps. Figure 2 provides an illustration of a typical RNN architecture.
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Figure 2. Illustration of a recurrent neural network and the unfolding in time of its forward computation.

RNNs have exhibited remarkable achievements in various NLP tasks and applications
involving temporal signals [29]. Among the different types of RNNs, long short-term memory
(LSTM) networks are widely used and excel in capturing long-term dependencies. LSTMs
are essentially similar to RNNs, but they employ a distinct method to compute the hidden
state. In LSTMs, memories are referred to as cells, functioning, such as black boxes that take
the previous (hidden) state, st−1, and the current input, xt, as inputs. These cells internally
make decisions about what information to retain or discard from memory. Subsequently,
they combine the previous state, the current memory, and the input. Remarkably, these
LSTM units have proven highly effective at capturing long-term dependencies.

In some applications (e.g., predicting weather changes), we want to model temporal
evolution (e.g., temperature changing over time), ideally using recurrence relations (e.g.,
LSTM). In facial micro-expression recognition, we need to capture the facial muscle move-
ment over time. At the same time, we also expect to efficiently extract spatial features (e.g.,
facial muscle movement varying with locations), something that is normally done with con-
volutional filters. Ideally, then, an architecture includes both recurrent and convolutional
mechanisms, which are convolutional LSTM (ConvLSTM) layers.

As shown in Table 2, two designs of ConvLSTM models are illustrated for facial
micro-expression recognition. The outputs of the 14× 7 dimension correspond to 14 frames
and seven micro-expression classes (MMEW), and the final recognition results of each
video sample are the averaged results of 14 frames. The major difference between these
two models is that the X_ConvLSTM_FM4 model is comprised of bidirectional ConvLSTM
layers. In the context of an NLP model, a unidirectional ConvLSTM block can find some
hints (such as the meaning of “it”) from future sentences, while a bidirectional ConvLSTM
block can find hints from both future sentences and previous sentences. It is not surprising
that the number of model parameters in the bidirectional X_ConvLSTM_FM3 model is
more than doubled compared with that of a unidirectional X_ConvLSTM_FM4 model.
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Table 2. RNN model architectures—X_ConvLSTM_FM3 and X_ConvLSTM_FM4. Normalization
and Dropout layers are omitted. The batch size is omitted in the “Output Shape” column.time_distr
= time_distributed. R_CNN consists of the first six convolutional layers plus one residual block from
the ResNet-50 model.

X_ConvLSTM_FM3 (37.3 M Paras) X_ConvLSTM_FM4 (17.5 M Paras)

Layer (Type) Output Shape Layer (Type) Output Shape

Frame_Input (14, 224, 224, 3) Frame_Input (14, 224, 224, 3)

time_distr (R_CNN)
(6 × Conv2D, 1 Res) (14, 56, 56, 64) time_distr (R_CNN)

(6 × Conv2D, 1 Res) (14, 56, 56, 64)

time_distr (MaxPool2D)
(pool_size = (3,3), strides = (2,2)) (14, 28, 28, 64)

Bidirectional_ConvLSTM2D
(filters = 256, kernel_size = (3,3)) (14, 28, 28, 256) ConvLSTM2D

(filters=128, kernel_size=(3,3)) (14, 56, 56, 128)

time_distr (MaxPool2D)
(pool_size = (2,2), strides = (2,2)) (14, 14, 14, 256) time_distr (MaxPool2D)

(pool_size = (2,2), strides = (2,2)) (14, 28, 28, 128)

Bidirectional_ConvLSTM2D
(filters = 384, kernel_size = (3,3)) (14, 14, 14, 384) ConvLSTM2D

(filters = 256, kernel_size = (3,3)) (14, 28, 28, 256)

time_distr (MaxPool2D)
(pool_size = (2,2), strides = (2,2)) (14, 7, 7, 384) time_distr (MaxPool2D)

(pool_size = (2,2), strides = (2,2)) (14, 14, 14, 256)

time_distr (Flatten) (14, 18816) time_distr (Flatten) (14, 50176)

time_distr (Dense) (14, 256) time_distr (Dense) (14, 256)

time_distr (Dense)
(Output) (14, 7) time_distr (Dense)

(Output) (14, 7)

3.5. Hybrid Models

As described in previous subsections, we know that CNNs can extract spatial features;
furthermore, ConvLSTM layers can capture spatial-temporal changes. CNNs are good at
modeling neighborhood changes, whereas transformers with attention can grasp sparse
spatial relations (e.g., among different image blocks or across frames in a video clip). As
shown in Table 3, two designs of hybrid models combine three NN models: CNN, ConvL-
STM, and ViViT. The two models differ in the ConvLSTM layer, where the Hybrid_FM5
model has 128 filters and is followed by a pooling layer. The goal is to combine the methods
to enhance the performance of a single method.

The Hybrid_FM6 model is illustrated in Figure 3, which consists of three blocks: CNN,
ConvLSTM, and Transformer. First, the CNN block (of six convolutional layers) provides
local spatial features, where the feature image is the last-layer output randomly selected
from 1 of 64 filters and 1 or 14 frames. Second, the ConvLSTM block (of one layer and
64 filters) generates temporal features, where the feature image is randomly selected
from 1 of 64 filters and 1 or 14 frames. Third, the Transformer block (of 343 patches and
96 embedding dimensions) presents sparse spatial relations. Fourth, there is a fully con-
nected layer (of 512 filters) prior to the output layer (of seven filters). The Hybrid_FM6
model can predict a micro-expression (e.g., “Anger”) with a given facial video (e.g.,
of 14 frames).

Table 3. Hybrid model architectures—Hybrid_FM5 and Hybrid_FM6 that combine 3 NN models:
CNN, ConvLSTM, and ViViT. Normalization and Dropout layers are omitted. The batch size is
omitted in the “Output Shape” column. time_distr = time_distributed.

Hybrid_FM5 (20.6 M Paras) Hybrid_FM6 (20.4 M Paras)

Layer (Type) Output Shape Layer (Type) Output Shape

Frame_Input (14, 224, 224, 3) Frame_Input (14, 224, 224, 3)

time_distr (R_CNN)
(6 × Conv2D, 1 Res) (14, 56, 56, 64) time_distr (R_CNN)

(6 × Conv2D, 1 Res) (14, 56, 56, 64)
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Table 3. Cont.

Hybrid_FM5 (20.6 M Paras) Hybrid_FM6 (20.4 M Paras)

Layer (Type) Output Shape Layer (Type) Output Shape

ConvLSTM2D
(filters = 128, kernel_size = (3,3)) (14, 56, 56, 128) ConvLSTM2D

(filters = 64, kernel_size = (3,3)) (14, 56, 56, 64)

time_distr (MaxPool2D)
(pool_size = (2,2), strides = (2,2)) (14, 28, 28, 128)

Tubelet_Embedding
(Conv3D→ 7 × 7 × 7 patches) (343, 96) Tubelet_Embedding

(Conv3D→ 7 × 7 × 7 patches) (343, 96)

Positional_Encoder (343, 96) Positional_Encoder (343, 96)

6 × Attn_FF: 6 × Attn_FF:

MultiHeadAttention MultiHeadAttention
(heads = 8, key_dim = 64) (heads = 8, key_dim = 64)

Feed_Forward_Net Feed_Forward_Net
(384→ 96) (384→ 96)

Add_Attn_FF_Norm (343, 96) Add_Attn_FF_Norm (343, 96)

Flatten (32928) Flatten (32928)

Dense (512) Dense (512)

Dense (Output) (7) Dense (Output) (7)
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nected layer (of 512 filters) prior to the output layer (of seven filters). The Hybrid_FM6 
model can predict a micro-expression (e.g., “Anger”) with a given facial video (e.g., of 14 
frames). 

 
Figure 3. Feature maps of the Hybrid_FM6 model (refer to Table 3): The dimensions of feature 
maps are shown on the top, whereas the block functions are given at the bottom. The input is a 
video sample of 14 frames (the 1st MMEW sample), and the output is a vector of 7 probabilities: 
[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0]. The index of the predicted class is 6 (max prob.), which corresponds to 
a labeled micro-expression, “Anger”. 

4. Experimental Results 
Both datasets, MMEW and CASME II, were used in our experiments. The number of 

frames varies with different video files. Based on manual analyses of the minimal and 
maximal length of clips and filming speed (FPS), 14 frames are clipped in the MMEW 
dataset, whereas 24 frames are clipped in the CASME II dataset. If the number of frames 
in a video file is as m times long as the number of clipped frames (n), then m (typically m ≤ 
2) samples (clips) are clipped from that file. However, there are no overlapped (repeat-

Figure 3. Feature maps of the Hybrid_FM6 model (refer to Table 3): The dimensions of feature maps
are shown on the top, whereas the block functions are given at the bottom. The input is a video
sample of 14 frames (the 1st MMEW sample), and the output is a vector of 7 probabilities: [0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 1.0]. The index of the predicted class is 6 (max prob.), which corresponds to a labeled
micro-expression, “Anger”.

4. Experimental Results

Both datasets, MMEW and CASME II, were used in our experiments. The number
of frames varies with different video files. Based on manual analyses of the minimal and
maximal length of clips and filming speed (FPS), 14 frames are clipped in the MMEW
dataset, whereas 24 frames are clipped in the CASME II dataset. If the number of frames in
a video file is as m times long as the number of clipped frames (n), then m (typically m ≤ 2)
samples (clips) are clipped from that file. However, there are no overlapped (repeatedly
used) frames in the m samples from the same video file. The distributions of facial video
samples (clips) from two datasets are shown in Figure 4, where the numbers of clips are
larger than the number of video files. During the data splits (k-fold cross-validation) for
training and testing, we will make sure that (i) multiple clips from one video file will split
into one subset, i.e., either in training or in testing; (ii) the training set includes samples
from all classes (stratified split).
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F1 (Surprise) 0.9062 0.869 0.9067 0.8467 0.9100 0.8971 0.8667 0.9133 
F1 (Disgust) 0.8601 0.8946 0.9262 0.9016 0.9104 0.9151 0.9098 0.9180 
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Figure 4. (a) Facial video clips (14-frame sequences @ 90 FPS) distributions of seven micro-expressions:
a total of 497 samples from 300 original video clips in the MMEW dataset. (b) Facial video clips
(24-frame sequences @ 200 FPS) distributions of five micro-expressions: a total of 265 samples from
247 original video clips in the CASME II dataset.

All facial images were resized to 224 × 224 pixels, then standardized and normalized
(intensity stretched). Ten-fold cross-validation was used in our experiments, and the
final classification results were calculated by merging all 10-fold testing scores (instead of
averaging 10 testing accuracies).

The first subsection briefly reviews the performance metrics used in our experiments.
Then, the classification performances of eight NN models are presented. Score fusion
improvement is described and quantitatively measured in the next two subsections. The
time costs are reported in the last subsection.

4.1. Classification Performance Metrics

The performance of micro-expression recognition is measured by F1 score and accuracy,
as shown in Tables 4 and 5, where the two metrics are defined as follows.

Table 4. F1 scores of seven micro-expressions, weighted F1 scores, and Accuracy values varying
over eight different NN models tested on the MMEW dataset (14 frames at 90 FPS in each sample).
The tests were conducted using 10-fold cross-validations. The prediction (probability) values from
10 validation folds were merged in one set to calculate the overall F1 (weighted average) and Accuracy
scores. The highest F1 score or accuracy in each row is bolded. Notice that the highest accuracy of
0.6940 was reported on this dataset in 2018 [17].

Metric\NN Model ResNet-50 Xception ViViT_FM1 X_ViViT_FM2 X_ConvLSTM
_FM3

X_ConvLSTM
_FM4 Hybrid_FM5 Hybrid_FM6

F1 (Happiness) 0.8622 0.8935 0.9298 0.8947 0.8935 0.9273 0.9298 0.9298

F1 (Surprise) 0.9062 0.869 0.9067 0.8467 0.9100 0.8971 0.8667 0.9133

F1 (Disgust) 0.8601 0.8946 0.9262 0.9016 0.9104 0.9151 0.9098 0.9180

F1 (Others) 0.8284 0.8158 0.7850 0.7664 0.8178 0.8204 0.7944 0.8318

F1 (Fear) 0.7371 0.7086 0.6800 0.6400 0.7371 0.7343 0.7600 0.7200

F1 (Sadness) 0.7041 0.7551 0.8095 0.7143 0.7245 0.7381 0.7619 0.7619

F1 (Anger) 1.0 1.0 1.0 0.933 0.9952 0.9952 1.0 1.0

F1 (Weighted Avg.) 0.8601 0.8588 0.8760 0.8365 0.8753 0.8779 0.8675 0.8855

Accuracy 0.8588 0.8577 0.8752 0.835 0.8744 0.8765 0.8632 0.8853
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Table 5. F1 scores of five micro-expressions, weighted F1 scores, and Accuracy values varying over
eight different NN models tested on the CASME II dataset (24 frames at 200 FPS in each sample).
The highest F1 score or accuracy in each row is bolded. Notice that the best accuracy of 0.6341 was
reported in 2014 [29] on this dataset.

Metric\NN Model ResNet-50 Xception ViViT_FM1 X_ViViT_FM2 X_ConvLSTM
_FM3

X_ConvLSTM
_FM4 Hybrid_FM5 Hybrid_FM6

F1 (Happiness) 0.4545 0.4375 0.4706 0.3860 0.3980 0.4595 0.5067 0.5000

F1 (Surprise) 0.6809 0.6312 0.5882 0.6301 0.6288 0.6670 0.6957 0.6479

F1 (Disgust) 0.6398 0.6335 0.6466 0.5672 0.6364 0.6545 0.6667 0.6197

F1 (Others) 0.6910 0.7004 0.7014 0.6564 0.6695 0.7054 0.7058 0.7281

F1 (Repression) 0.5905 0.5299 0.6038 0.5588 0.5310 0.6357 0.6207 0.5862

F1 (Weighted Avg.) 0.6378 0.6325 0.6544 0.5934 0.6272 0.6627 0.6739 0.6543

Accuracy 0.6375 0.6238 0.6301 0.5886 0.6028 0.6468 0.6565 0.6452

The Precision is the ratio TP/(TP + FP) where TP is the number of true positives, and
FP is the number of false positives. False positives are the samples that are predicted as
positives but labeled as negatives. The Precision is intuitively the ability of the classifier not
to predict a negative sample as positive.

The Recall is the ratio TP/(TP + FN) where TP is the number of true positives, and
FN is the number of false negatives. False negatives are the samples that are predicted as
negatives but labeled as positives. The Recall is intuitively the ability of the classifier to
correctly predict all the positive samples.

The F1 score can be interpreted as a harmonic mean of the Precision and Recall, where
an F1 score reaches its best value at 1 and worst score at 0. The relative contribution of
Precision and Recall to the F1 score is equal. The formula for the F1 score is

F1 = 2 × (Precision × Recall)/(Precision + Recall). (4)

Precision = TP/(TP + FP) (5)

Recall = TP/(TP + FN) (6)

Accuracy = (TP + TN)/(TP + FN + TN + FP) (7)

In the multi-class and multi-label cases, the average of the F1 score of each class is
analyzed with a weighting parameter. The weights for averaging can be calculated by the
number of supported samples in each class divided by the total samples. The F1 score is an
alternative to the Accuracy metric as it does not require one to know the total number of
observations (e.g., TN). On the other hand, Accuracy tells how often we can expect a machine
learning model will correctly predict an outcome out of the total number of predictions.

4.2. NN Model Performance on Two Datasets

Table 4 shows the F1 scores of seven micro-expressions, weighted F1 scores, and
Accuracy values varying over eight different NN models when tested on the MMEW
dataset. Based on the accuracy values, the model of Hybrid_FM6 achieves 0.8853, which
is the best on the MMEW dataset. Compared to the literature-reported accuracy of 0.6940
on this dataset (by a CNN model in 2018—the best performance on the same dataset that
we could find from the literature) [17], Hybrid_FM6’s accuracy is very high. It seems that
ConvLSTM models are slightly better than ViViT models, both of which are better than CNN
models (ResNet-50, Xception). According to the F1 scores, it looks as though “Anger” is the
easiest to be recognized, while “Fear” and “Sadness” are mostly difficult to be detected.
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Table 5 shows the F1 scores of seven micro-expressions, weighted F1 scores, and
Accuracy values varying with eight different NN models when tested on the CASME II
dataset. Based on the accuracy values, the model of Hybrid_FM5 is the best on the MMEW
dataset, and its accuracy is 0.6565. Compared to the literature-reported accuracy of 0.6341
on this dataset (by an SVM classifier in 2014—the best performance on the same dataset
that we could find from the literature) [29], Hybrid_FM5’s accuracy is pretty high. It seems
that ConvLSTM models are slightly better than ViViT models, both of which are better
than CNN models (ResNet-50, Xception). According to the F1 scores, it looks as though
“Happiness” is the most difficult to be detected, while the other four expressions are equally
hard to be recognized.

Overall, the hybrid models (combination of ResNet, ConvLSTM, ViViT) overperform
non-hybrid models, such as CNN, ViViT, and ConvLSTM models.

4.3. Performance Improvement Using Score Fusion

The performance of facial micro-expression can be improved using score fusion
methods, where the multiple scores are from eight different NN models, as presented in
Tables 4 and 5. There are several types of score-fusion methods: arithmetic fusion (e.g., av-
erage, majority vote) [30], classifier-based fusion, and density-based fusion (e.g., Gaussian
mixture model) [31,32]. Based on score fusion performance [33,34], two classification-based
score fusion methods are selected and presented in this study: Support-Vector Machine
(SVM) and Random Forest (RF). The multiple scores are combined as feature vectors and
then fed into a classifier for training (with labeled score vectors) or testing.

The Support-Vector Machine (SVM) is a supervised learning model utilized for non-
linear classification and data analysis [35]. In the context of training data with categorized
observations, the SVM training algorithm constructs a model that can assign new data
points to specific categories. For classification purposes, an SVM establishes a hyperplane
(or a set of hyperplanes) as a separating line between data points belonging to different
classes. The objective is to find the optimal hyperplane that maximizes the distance
between the hyperplane and the closest data points in each class. This approach effectively
minimizes the generalization error of the classifier by maximizing the margin between the
hyperplane and the nearest data points in each class [36].

Random forest (RF) is a classification model employed in supervised learning tasks. It
leverages ensemble learning, which combines multiple models to tackle complex problems
rather than relying on a single model. The RF algorithm enhances accuracy by utilizing
bagging or bootstrap aggregating. It generates individual decision trees by using random
subsets of the training dataset as subsamples. Each decision tree produces its own output or
classification. The final output is determined through majority voting, where the RF output
corresponds to the class chosen by the majority of trees. This approach effectively mitigates
the impact of overfitting that may occur in individual decision trees.

In this study, the SVM method employed a Gaussian kernel function and a one-versus-
one coding design. This configuration resulted in the utilization of seven (or five) binary
learners for the corresponding seven (or five) classes. In the RF model, we trained an
ensemble comprising 100 classification trees using the complete training dataset. At each
decision split, a random subset of predictors (scores) was utilized. The selection of split
predictors aimed to maximize the gain of the split criterion across all possible splits of the
predictors. The final classifications were obtained by combining the results from all the
trees in the ensemble.

Scores used for fusion are created in two ways: (i) a feature vector consists of eight
class indices (e.g., 0, 1, . . . n − 1; n = 7 or 5) for the predicted classes (pred-class) from eight
NN models; (ii) a feature vector consists of n accumulated probability values (sum-prob)
per (onto) its predicted classes (n = 7 or 5) from eight different NN models. Three score
feature-vector (pred-class or sum-prob) examples from datasets are shown in Tables 6 and 7.
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Table 6. Three pred-class feature-vector examples from two datasets (top for MMEW and bottom
for CASME II)—predicted class index (0–6 for MMEW, 0–4 for CASME II) and its probability value
(between 0 and 1).

Dataset\Model ResNet-50 Xception ViViT_FM1 X_ViViT_FM2 X_ConvLSTM
_FM3

X_ConvLSTM
_FM4 Hybrid_FM5 Hybrid_FM6

MMEW Smpl 1 6 (0.9998) 6 (0.9117) 6 (0.9683) 6 (0.9598) 6 (0.9990) 6 (0.9906) 6 (0.9926) 6 (1.0000)

MMEW Smpl 2 2 (0.9988) 2 (0.8669) 4 (0.4080) 2 (0.5816) 2 (0.9956) 2 (0.9976) 2 (0.9678) 2 (1.0000)

MMEW Smpl 3 1 (0.9998) 1 (0.9317) 1 (0.5577) 4 (0.4170) 1 (0.5820) 1 (0.7767) 2 (0.2843) 2 (0.8847)

CASME II Smpl 1 3 (0.9892) 3 (0.5876) 3 (0.6981) 3 (0.4532) 3 (0.5273) 3 (0.8401) 3 (0.3726) 3 (0.8442)

CASME II Smpl 2 3 (0.9800) 1 (0.5690) 2 (0.3846) 2 (0.8025) 3 (0.4887) 1 (0.8988) 2 (0.4726) 2 (0.6003)

CASME II Smpl 3 2 (0.7515) 0 (0.4152) 0 (0.5328) 4 (0.8950) 2 (0.3420) 3 (0.4979) 4 (0.9895) 4 (0.8853)

Table 7. Three sum-probability feature-vector examples from two datasets (left for MMEW and right
for CASME II). For the MMEW Sample 2, the ViViT_FM1 model classified it as “Fear” (4) with a
probability of 0.4080 (refer to Table 6), while the rest of the seven models classified it as “Disgust” (2)
with the accumulated probability value of 6.4083.

ME\Dataset MMEW Smpl
1

MMEW Smpl
2

MMEW Smpl
3

CASME II
Smpl 1

CASME II
Smpl 2

CASME II
Smpl 3 Dataset/ME

0 (Happiness) 0.0000 0.0000 0.0000 0.0000 0.0000 0.9480 0 (Happiness)

1 (Surprise) 0.0000 0.0000 3.8479 0.0000 1.4677 0.0000 1 (Surprise)

2 (Disgust) 0.0000 6.4083 1.1689 0.0000 2.2599 1.0936 2 (Disgust)

3 (Others) 0.0000 0.0000 0.0000 5.3123 1.4687 0.4979 3 (Others)

4 (Fear) 0.0000 0.4080 0.4170 0.0000 0.0000 2.7698 4 (Repression)

5 (Sadness) 0.0000 0.0000 0.0000 - - - -

6 (Anger) 7.8217 0.0000 0.0000 - - - -

Table 6 lists six pred-class feature vectors (for six facial video samples in six rows),
each of which consists of the predicted class index (0–6 for MMEW, 0–4 for CASME II)
across eight NN models, where its probability value (between 0 and 1) is also given
(to calculate sum-prob features). Table 7 presents lists six sum-prob feature vectors (in
six columns), each of which consists of the accumulated probability values (sum-prob)
with regard to its predicted classes across n micro-expresses (n = 7 or 5) for each facial
video sample. For CASME II Sample 2, two models classified it as “Surprise” (1) with
sum-prob = 1.4677, four models classified it as “Disgust” (2) with sum-prob = 2.2599, and
the other two models classified it as “Others” (3) with sum-prob = 1.4687. The majority-
voted result is “Disgust”.

In sum, each pred-class feature vector is the concatenated classification results (indices
of classes) from different models, while each sum-prob feature vector is the summed classi-
fication probabilities from different models unfolded along with various micro-expressions.

The score fusion experiments are conducted using 10-fold cross-validation, and the
final results (as shown in Tables 6 and 7) are calculated with the merged 10-fold prediction
outcomes. In the MMEW dataset, the RF method with pred-class features achieves the
best overall. The accuracy of facial micro-expression recognition is improved to 0.9684
from 0.8853, which is a very good improvement. In the CASME II dataset, overall, the best
method is still the RF method with pred-class features, which reaches 0.9112 in contrast
with the best single NN model accuracy, 0.6565.

It seems the RF method with sum-prob features is better at recognizing some facial
micro-expressions, such as Happiness, Surprise, and Disgust.

4.4. Metric for Fusion Improvement—Relative Rate Increase (RRI)

The performance improvement using score fusion (SF) cannot be properly measured
by using the absolute difference of two accuracy rates (RV). For example, improving
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RV from 80% to 90% seems to be more difficult than the improvement from 98% to 99%.
Generally speaking, the improvement of RV via SF becomes increasingly difficult when
the original rate approaches 100%. Thus, it is proposed to use the Relative Rate Increase
(RRI) [29] to evaluate the fusion improvement, where

RRI =
ARI

1− RV
=

RF − RV

1− RV
, (8)

RF is the accuracy rate via SF and RV is the mean of the accuracy rates from all
classification models. If RV = 1 (no need to improve the accuracy via SF), then set
RRI = 1. The absolute rate increase ARI = RF − RV, may not precisely measure the per-
formance improvement as stated earlier. RRI ∈ (0, 1], where a higher value is better.
According to the RRI definition, two fusion improvements—from 80% to 90% and from 98%
to 99%—are equivalent, and both RRI values are 0.50. The two improvements are equiv-
alent in the sense of their difficulty levels and the extent of the effort to implement them.
Many metrics (e.g., F1, Precision, Recall) can be devised, wherein the RRI metric seeks to
measure the actual improvement against the total amount of possible improvement.

The RRI values from the best SF results are listed in the right-most columns in
Tables 8 and 9. In Table 8, RRI [F1(Anger)] = 1.0 means the SF improvement is perfectly
done (cannot be better). RRI [F1(Fear)] = 0.8977 (the second best) means that the SF rate
of 0.9708 is 89.77% improved in contrast with the mean rate of 0.7146. In Table 9, the best
RRI [F1(Repression)] = 0.8914 represents that the SF rate of 0.9546 has an 89.14% improve-
ment from the mean rate of 0.5821. The second best RRI [F1(Surprise)] = 0.8527 means an
85.27% SF increase on the basis of the averaged performance of individual models.

Table 8. Improved performance via score fusion (SF)—F1 scores of seven micro-expressions, weighted
F1 scores, and Accuracy values varying over two fusion methods vs. two combined scores originating
from the MMEW dataset. The Mean Rate and Max Rate are computed (or extracted) from Table 4.
The Best SF RRI values are calculated with the best SF rates (bolded, from Sum-Prob RF column
and Pred-Class RF column) and the mean rates using Equation (8). The top two RRI values are
highlighted with a shaded background.

Metric\NN Model Mean Rate Max Rate
Hybrid_FM6

Pred-Class
SVM

Pred-Class
RF

Sum-Prob
SVM

Sum-Prob
RF

Best SF
RRI

F1 (Happiness) 0.9076 0.9298 0.934 0.9739 0.9145 0.9823 0.8085
F1 (Surprise) 0.8895 0.9133 0.9103 0.9722 0.9126 0.9743 0.7675
F1 (Disgust) 0.9045 0.9180 0.9044 0.9732 0.9351 0.9691 0.7194
F1 (Others) 0.8075 0.8318 0.8774 0.9619 0.8637 0.9545 0.8021
F1 (Fear) 0.7146 0.7200 0.7750 0.9708 0.8336 0.9514 0.8977
F1 (Sadness) 0.7462 0.7619 0.7561 0.9048 0.8105 0.9017 0.6249
F1 (Anger) 0.9904 1.0 0.9952 1.0 1.0 0.9976 1.0000
F1 (Weighted Avg.) 0.8672 0.8855 0.8951 0.9686 0.9033 0.9664 0.7636
Accuracy 0.8658 0.8853 0.8948 0.9684 0.9024 0.9662 0.7646
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Table 9. Improved performance via score fusion—F1 scores of seven micro-expressions, weighted F1
scores, and Accuracy values varying over two fusion methods vs. two combined scores originating
from the CASME II dataset. The Mean Rate and Max Rate are computed (or extracted) from Table 5.
The highest F1 score or accuracy in each row is bolded. The top two RRI values are highlighted with
a shaded background.

Metric\NN Model Mean Rate Max Rate
Hybrid_FM5

Pred-Class
SVM

Pred-Class
RF

Sum-Prob
SVM

Sum-Prob
RF

Best SF
RRI

F1 (Happiness) 0.4516 0.5067 0.2338 0.8653 0.4681 0.8726 0.7677
F1 (Disgust) 0.6331 0.6667 0.6041 0.8826 0.6689 0.8871 0.6923
F1 (Others) 0.6947 0.7058 0.7112 0.9246 0.7330 0.9161 0.7530
F1 (Surprise) 0.6462 0.6957 0.5635 0.9377 0.7507 0.9479 0.8527
F1 (Repression) 0.5821 0.6207 0.6646 0.9546 0.6043 0.9383 0.8914
F1 (Weighted Avg.) 0.6420 0.6739 0.6290 0.9143 0.6707 0.9120 0.7606
Accuracy 0.6289 0.6565 0.6164 0.9112 0.6733 0.9093 0.7607

4.5. Time Costs of NN Models

All models were implemented with Tensorflow 2.10 and ran in Jupyterlab
(Version 3.4.4) on a desktop computer, HP Omen, with the following configuration:
Intel i7- 10700KF CPUs 3.8 GHz, 32 GB RAM, 1 TB hard disk, Ubuntu 20.04; NVIDIA
GeForce RTX 3090 Graphics Board with 24 GB video memory (onboard) and 10,496
CUDA cores.

The number of model parameters and time costs of models are presented in Table 10
(on MMEW) and Table 11 (on CASME II). Time costs are related to the NN model (number
of parameters) and data size (number of frames and samples). Model training is typically
completed offline. In a real application, model inferencing (predicting) only processes one
set of given frames or images. For example, using the Hybrid_FM6 model takes approx.
20 milliseconds per sample (14 frames) for predicting micro-expression, which is fast
enough for real-time applications. The time costs on the CASME II dataset are longer due
to processing more frame data (24 frames per video sample).

Table 10. Model parameters, training time (seconds per epoch), and testing time (milliseconds per
sample) vary with NN models tested on the MMEW dataset. Time costs slightly change at different
runs due to data caching and optimization.

Metric\NN Model ResNet-50 Xception ViViT_FM1 X_ViViT_FM2 X_ConvLSTM
_FM3

X_ConvLSTM
_FM4 Hybrid_FM5 Hybrid_FM6

Number of Parameters 25,693,063 22,966,831 33,934,215 13,029,487 28,597,319 17,578,183 20,643,719 20,446,727

Training Time
(s/epoch) 17 22 17 101 34 22 15 17

Testing Time
(ms/sample) 1 1 18 14 26 18 22 20

Table 11. Model parameters, training time (seconds per epoch), and testing time (milliseconds per
sample) vary with NN models tested on the CASME II dataset. Time costs slightly change at different
runs due to data caching and optimization.

Metric\NN Model ResNet-50 Xception ViViT_FM1 X_ViViT_FM2 X_ConvLSTM
_FM3

X_ConvLSTM
_FM4 Hybrid_FM5 Hybrid_FM6

Number of Parameters 25,691,013 22,964,781 29,823,877 13,569,133 28,596,805 17,577,669 18,603,941 18,800,165

Training Time
(s/epoch) 17 21 8 165 32 21 14 19

Testing Time
(ms/sample) 1 1 26 27 46 31 39 36

5. Summary and Discussion

In this study, we compared eight different neural network models in recognizing facial
micro-expressions based on two datasets, where 6 of 8 models were newly designed for
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micro-expression recognition. The performance of the NN model in terms of accuracy (from
high to low) is as follows: hybrid, ConvLSTM, vision transformer, and CNN. Overall we
suggest the hybrid models that achieve the highest accuracy and yet are fast enough for real
applications. The hybrid models are created by combining the fundamental building blocks
from CNN, ConvLSTM, and vision transformer models, which are capable of extracting
spatial features (in image neighborhood by CNN), summarizing temporal features (among
video frames by LSTM), and capturing sparse spatial relations (among image blocks and
video frames by transformer).

Score fusion can significantly increase facial micro-expression recognition rate. For
example, “Fear” was only recognized at a low rate of 0.7146 (on the MMEW dataset).
Random forest fusion improved the rate up to 0.9708, which is an 89.77% improvement
according to the Relative Rate Increase (RRI) metric. The best overall accuracies from the
hybrid models are 0.8853 (on the MMEW dataset) and 0.6565 (on the CASME II dataset),
while score fusion can boost them up to 0.9684 and 0.9112. In addition, score fusion utilizes
the outputs (e.g., predicted classes or probabilities) from multiple classifiers and has no
additional hardware costs.

Information fusion can increase the recognition accuracy by combining the classifica-
tion scores from different NN models and from different imaging modalities (e.g., infrared
camera). With a large-scale dataset, the recognition reliability will also be improved. The
inference latency may be further reduced with highly configured hardware (GPUs or
multiple GPUs).

Our experimental results shed light on a new method for real-time micro-expression
recognition. Also, score fusion can further improve the recognition system performance
without extra hardware costs. Real-time micro-expression recognition can be implemented
and integrated into mobile devices or humanoid robots, which will enable a friendly human–
machine interface taking micro-expressions into account for better decision-making.

Author Contributions: Conceptualization, Y.Z. and E.B.; Methodology, Y.Z.; Validation, E.B.; Investi-
gation, Y.Z.; Writing—original draft, Y.Z.; Writing—review & editing, E.B. All authors have read and
agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: The authors would like to thank the dataset providers who shared their precious
MMEW dataset [15] and CASME II [20] dataset. We also thank Richard Zheng, who pioneered the
work of facial micro-express recognition in this study.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Ekman, P. Darwin, deception, and facial expression. Ann. N.Y. Acad. Sci. 2003, 1000, 205–221. [CrossRef]
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Abstract: Existing vision-based fatigue detection methods commonly utilize RGB cameras to extract
facial and physiological features for monitoring driver fatigue. These features often include single
indicators such as eyelid movement, yawning frequency, and heart rate. However, the accuracy of
RGB cameras can be affected by factors like varying lighting conditions and motion. To address
these challenges, we propose a non-invasive method for multi-modal fusion fatigue detection called
RPPMT-CNN-BiLSTM. This method incorporates a feature extraction enhancement module based
on the improved Pan–Tompkins algorithm and 1D-MTCNN. This enhances the accuracy of heart
rate signal extraction and eyelid features. Furthermore, we use one-dimensional neural networks to
construct two models based on heart rate and PERCLOS values, forming a fatigue detection model.
To enhance the robustness and accuracy of fatigue detection, the trained model data results are
input into the BiLSTM network. This generates a time-fitting relationship between the data extracted
from the CNN, allowing for effective dynamic modeling and achieving multi-modal fusion fatigue
detection. Numerous experiments validate the effectiveness of the proposed method, achieving an
accuracy of 98.2% on the self-made MDAD (Multi-Modal Driver Alertness Dataset). This underscores
the feasibility of the algorithm. In comparison with traditional methods, our approach demonstrates
higher accuracy and positively contributes to maintaining traffic safety, thereby advancing the field
of smart transportation.

Keywords: intelligent traffic; fatigue detection; multi-modal feature fusion; heart rate;
bidirectional LSTM

1. Introduction

Recently, with the rapid expansion of the transportation industry and the widespread
use of vehicles, instances of traffic accidents resulting from fatigue driving have become
increasingly common. Prolonged periods of driving or insufficient sleep can induce fatigue
in drivers, significantly elevating the risk of accidents. Research indicates that driver
drowsiness and sleep deprivation are primary contributors to road traffic accidents [1],
accounting for approximately 25% to 30% of such incidents [2]. The ramifications of traffic
accidents extend beyond individual safety and property loss, permeating into the broader
stability of both a nation and society. Consequently, the timely detection of fatigue in
drivers and the provision of alerts to prompt breaks are critical measures for upholding
traffic safety and ensuring secure travel. In light of these considerations, addressing the
issue of fatigue-related accidents assumes paramount importance. Developing effective
methods for detecting and mitigating driver fatigue can substantially contribute to reducing
accident rates, thereby safeguarding lives, property, and the overall stability of society.
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Currently, fatigue driving detection methods can be broadly categorized into advan-
tage detection, single-mode feature detection, and multi-mode feature detection [3]. Ad-
vantages are primarily assessed with public questionnaires and advantage scales. However,
these individual methods exhibit significant differences, and their time-consuming nature
renders them insufficient for real-time detection and prevention. This article addresses
fatigue characteristics in two other dimensions.

Single-modal feature detection relies on individual features to assess fatigue. Among
the current methods focusing on single-modal features, utilizing facial features has proven
to be effective in determining a driver’s fatigue status. Facial features encompass expres-
sions, eye states, head posture, etc., extracted from a driver’s facial images or videos.
For instance, Zhuang [4] introduced an efficient fatigue detection method based on eye
status, utilizing pupil and iris segmentation. Yang et al. [5] proposed a yawn detection
method based on subtle facial action recognition, utilizing 3D convolution and bidirectional
long short-term memory networks to detect a driver’s fatigue state. Liu [6] presented a
fatigue detection algorithm based on facial expression analysis. Xing [7] applied a con-
volutional neural network to face recognition, implementing a straightforward eye state
judgment method using the PERCLOS algorithm to determine a driver’s fatigue state,
with experimental results demonstrating an 87.5% fatigue recognition rate. Moujahid [8]
introduced a face monitoring system based on compact facial texture descriptors, capable of
encompassing the most discriminative drowsy features. Bai [9] utilized the facial landmark
detection method to extract a driver’s facial landmarks from real-time videos, subsequently
obtaining driver drowsiness detection results with 2s-STGCN and significantly improving
driver drowsiness detection. Ahmed [10] proposed an ensemble deep learning architecture
operating on merged features of eye and mouth subsamples, along with decision structures,
to ascertain driver fitness.

The exploration of fatigue driving detection based on physiological characteristics has
evolved into a significant research direction. In recent years, traditional heart rate detection
has predominantly relied on wearable devices utilizing electroencephalogram (EEG) or
electrocardiogram (ECG). For instance, Zhu [11] proposed a wearable EEG-based vehicle
driver drowsiness detection method using a convolutional neural network (CNN). Gao [12]
developed a novel EEG-based spatiotemporal convolutional neural network (ESTCNN) for
driver fatigue detection, achieving a high classification accuracy of 97.37%. Despite their
accuracy, traditional methods are hindered by issues such as expensive equipment and
inconvenient wearing. In response to these challenges, non-contact physiological feature
extraction has emerged as a research hotspot. Heart rate (HR) and heart rate variability
(HRV) are crucial vital signs, with their changes directly or indirectly reflecting information
on the physiological state of the human body. Research indicates that heart rate and HRV
can objectively indicate fatigue. For instance, Dobbs [13] used a portable device to conve-
niently record HRV, showing a small absolute error compared with electrocardiography.
Monitoring changes in heart rate and HRV is crucial for determining driver fatigue. Lu [14]
emphasized the significance of HRV as a physiological marker for detecting driver fatigue,
measurable during real-life driving. Systematic reviews, such as the one conducted by
Persson [15], explore the relationship between HRV measurements and driver fatigue, as
well as the performance of HRV-based fatigue detection systems. In medical contexts,
Allado et al. [16] evaluated the accuracy of imaging photoplethysmography compared
to existing contact point measurement methods in clinical settings, demonstrating that
rPPG can accurately and reliably assess heart rate. Cao [17] et al. introduced a drowsi-
ness detection system using low-cost photoplethysmography (PPG) sensors and motion
sensors integrated into wrist-worn devices. Comas [18] proposed a lightweight neural
model for remote heart rate estimation, focusing on efficient spatiotemporal learning of
facial photoplethysmography (PPG). Patel [19] introduced an artificial intelligence-based
system designed to detect early driver fatigue by leveraging heart rate variability (HRV) as
a physiological measurement. Experimental results demonstrated that this HRV-based fa-
tigue detection technology served as an effective countermeasure against fatigue. Gao [20]
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proposed a novel remote heart estimation algorithm incorporating a signal quality attention
mechanism and a long short-term memory (LSTM) network. Experiments indicated that the
LSTM with an attention mechanism accurately estimated heart rate from corrupted rPPG
signals, performing well across cross-subject and cross-dataset tasks. Additionally, the sig-
nal quality model’s predicted scores were found to be valuable for extracting reliable heart
rates. The accuracy of existing heart rate detection based on RGB cameras is susceptible to
various factors such as lighting conditions and motion, leading to challenges in achieving
precise heart rate estimation. Recent advancements have addressed these challenges. For
instance, Yin [21] and colleagues proposed a new multi-task learning model combining the
strengths of signal-based methods and deep learning methods to achieve accurate heart
rate estimation, even in scenarios with changing lighting and head movement. Given the
dynamic lighting changes typical in vehicle cabins, heart rate measurement in automotive
contexts presents specific challenges. To tackle these issues, Ming [22] and collaborators
introduced a method named Illumination Variation Robust Remote Photoplethysmography
(Ivrr-PPG) for monitoring a driver’s heart rate during road driving. Rao [23] proposed a
distracted driving recognition method based on a deep convolutional neural network using
in-vehicle camera-captured driving image data. Experimental analysis indicated an accu-
racy of 97.31%, surpassing existing machine learning algorithms. Consequently, methods
based on deep convolutional neural networks prove effective in enhancing the accuracy
of distracted driving identification. Addressing challenges related to dramatic lighting
changes and significant driver head movements during driving, Nowara [24] demonstrated
that narrowband near-infrared (NIR) video recordings can mitigate external light variations
and yield reliable heart rate estimates. Rajesh [25] utilized the Pan–Tompkins method
for R-peak detection to identify irregularities in human heart rate (DIIHR), achieving an
average accuracy of 96.

The above-mentioned fatigue driving detection methods mainly rely on single modal
data, which limits the adaptability to various scenarios and the reliability of model pro-
cessing. Each parameter has its advantages and disadvantages. Therefore, identifying how
to effectively combine and utilize multiple driver characteristics is an important research
direction for real-time and accurate driver detection.

There are currently some methods that combine multi-modal data together for fatigue
detection, which involve multi-modal feature fusion models. Most of the existing multi-
modal fusion is implemented based on decision fusion and feature fusion methods of RGB
cameras. For example, Kassem [26] proposed a low-cost driver fatigue level prediction
framework (DFLP) for detecting driver fatigue at the earliest stage. Experimental results
show that this method can predict the driver fatigue level with an overall accuracy of
93.3%. Du [27] proposed a novel non-invasive method for driver multi-modal fusion
fatigue detection by extracting eyelid features and heart rate signals from RGB videos.
The results show that the multi-modal feature fusion method can significantly improve
the accuracy of fatigue detection. Dua and colleagues [28] proposed a driver drowsiness
detection system in their paper. They use the driver’s RGB video as input to help detect
drowsiness. The results show that the accuracy of the system reaches 85%. Liu [29] focused
on RGB-D cameras and deep learning generative adversarial networks and utilized multi-
channel schemes to improve fatigue detection performance. Research indicates that fatigue
features extracted with convolutional neural networks outperform traditional manual
fatigue features. However, relying on a single feature may not guarantee robustness.
Du [30] and colleagues used a single RGB-D camera to extract three fatigue features:
heart rate, eye-opening, and mouth-opening. They proposed a novel multi-modal fusion
recurrent neural network (MFRNN) that integrates these three features to enhance the
accuracy of driver fatigue detection. To address issues such as poor comfort, susceptibility
to external factors, and poor real-time performance in existing fatigue driving detection
algorithms, Jia [31] designed a system for detecting driver facial features (FFD-System) and
an algorithm for judging driver fatigue status (MF-Algorithm). Akrout [32] proposed a
fusion system based on yawn detection, drowsiness detection, and 3D head pose estimation.
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Traditional fatigue detection methods often require the connection of inconvenient sensors
(such as EEG and ECG) or use video camera systems sensitive to light, compromising
privacy. Akrout suggests accounting for changes in lighting conditions during the day and
night to avoid limiting the fusion system. Using an infrared camera could be a potential
solution. Zhang [33] introduced Ubi-Fatigue, a non-contact fatigue monitoring system
combining vital signs and facial features to achieve reliable fatigue detection. The results
demonstrated that Fatigue-Radio’s detection accuracy reached 81.4%, surpassing ECG or
visual fatigue detection systems. Ouzar [34] and colleagues compared the performance of a
single-modal approach using facial expressions or physiological data with a multi-modal
system fusing facial expressions with video-based physiological cues. The multi-modal
fusion model improved emotion recognition accuracy, with the fusion of facial expression
features and iPPG signals achieving the best accuracy of 71.90%. This underscores the
efficacy of multi-modal fusion, particularly in combining facial expression features with
iPPG signals for enhanced emotion recognition accuracy.

To summarize, the existing fatigue driving detection systems face limitations in equip-
ment deployment, environmental changes, and real-time monitoring. Addressing these
challenges represents a crucial research direction for the future development of driving
fatigue detection systems [35]. Consequently, this article will concentrate on resolving the
following three problems:

1. The problem of the low fatigue detection accuracy of a single feature. Traditional
vision-based fatigue detection methods usually only use a single feature, such as facial
features, physiological features, etc., resulting in low fatigue detection accuracy.

2. The problem of low feature extraction accuracy. Existing multi-modal fusion is mostly
implemented based on RGB camera methods, and its detection accuracy will be
affected by different lighting conditions, motion, etc., resulting in the inability to
correctly detect a driver’s fatigue state.

3. The problem of the poor robustness and temporal nature of detection models. In
the actual driving environment, a driver’s fatigue state changes dynamically, and
the fatigue state is continuous time series data. The existing methods focus on pro-
cessing the characteristics of a certain moment while ignoring the changes in fatigue
characteristics over time, which affects the robustness of the detection model.

It can be seen that it is very important to design a multi-modal fatigue driving detection
system with high accuracy, strong robustness, portability, and real-time performance.

To address the aforementioned challenges, we propose a non-invasive method for
multi-modal fusion fatigue detection based on heart rate features and eye and face features.
Our approach involves the use of an infrared camera in conjunction with rPPG and MTCNN
to extract a driver’s physiological features and eye and face features, respectively. This
combination aims to reduce errors in extracting physiological signals and facial features
caused by varying lighting conditions during the day and night. To enhance feature
extraction accuracy, we implemented feature extraction enhancement modules based on
an improved Pan–Tompkins algorithm and 1D-MTCNN. These modules aim to more
accurately extract heart rate signals and eyelid features. Subsequently, we utilize one-
dimensional convolutional neural networks (1D CNNs) to establish two models based
on PERCLOS values and heart rate signals for fatigue detection. Heart rate signals and
PERCLOS are critical analysis objects, and their accurate extraction is pivotal for driver
fatigue detection. For the extraction of heart rate signals, we use singular spectrum analysis
(SSA) and filtering technology to process rPPG physiological signals. This process aims to
extract relatively pure heart rate signals and enhance detection accuracy. The heart rate
signal is then analyzed in the time–frequency domain, and the time–frequency domain
temporal feature matrix related to fatigue is extracted. This matrix is input into a one-
dimensional convolutional neural network (1D CNN) to establish a fatigue detection model
based on heart rate. For PERCLOS extraction, 1D-MTCNN is utilized to calculate the
PERCLOS value. Specifically, the MTCNN algorithm is used for face detection and key
point positioning, offering faster and more accurate results compared with traditional
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algorithms while minimizing the impact of varying lighting conditions. Finally, the trained
data results from the two models are input into the BiLSTM network, and the outputs of
the two models are weighted to achieve multi-modal fusion fatigue detection.

2. Principles and Methods

This paper proposes a non-invasive method for multi-modal fusion fatigue detection
based on heart rate features and eye and face features: RPPMT-CNN-BiLSTM. The overall
framework of the multi-modal fusion fatigue driving detection model can be seen in
Figure 1.
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The model mainly includes the following 3 parts:

(1) Non-contact multi-modal feature extraction. We apply real-time face detection and
ROI area tracking, utilizing infrared cameras in conjunction with rPPG and MTCNN
combined with the BiFPN pyramid network to extract a driver’s physiological charac-
teristics and facial features, thereby reducing errors in extracting the driver’s physio-
logical signals and facial features caused by lighting changes during the day and night.

(2) An RPPMT-CNN feature extraction enhanced network. We introduce an infrared-
based enhanced network for RPPMT-CNN feature extraction. In this paper, we estab-
lish an improved feature extraction enhancement module based on Pan–Tompkins
and 1D-MTCNN. This module aims to extract heart rate signals and eyelid features
more accurately. Subsequently, we create two fatigue detection models based on heart
rate and PERCLOS values, utilizing one-dimensional convolutional neural networks
(1D CNNs) for each model, respectively.

(3) A multi-modal feature fusion fatigue driving recognition model. To enhance the
robustness and timeliness of fatigue detection, we introduce a multi-modal feature
fusion fatigue driving recognition model. The outcomes of the trained model data are
fed into the Bidirectional Long Short-Term Memory (BiLSTM) network. This allows
the BiLSTM network to learn the temporal relationships between the data extracted
from the 1D CNN, facilitating effective dynamic modeling of the input and output
data. Ultimately, the outputs of the two models are weighted to achieve multi-modal
fusion fatigue detection.

2.1. Non-Contact Multi-Modal Feature Extraction
2.1.1. Face Detection and ROI Area Tracking

When collecting a real-time driver video, accounting for the driver’s head movement is
crucial. Fixed-face Region of Interest (ROI) areas may inadvertently include non-skin areas
alongside the actual skin area, thereby compromising the quality of subsequently extracted
remote photoplethysmography (rPPG) signals. To address this, we use the Haar-Cascade
face detector to identify faces in all frames of the video stream. Subsequently, we utilize the
SLIC algorithm for superpixel skin segmentation on the detected face areas. This process
determines the face ROI area for each frame in the picture, ensuring its precise position.
The input video stream is segmented into multiple regions called superpixels. Superpixels
corresponding to the cheek region, with the highest achromaticity in the forehead region,
are selected as ROI. rPPG is then calculated for these selected superpixels, and the remain-
ing superpixels are eliminated. This approach significantly reduces computation time.
The method guarantees that during the extraction of physiological signals, the ROI area
exclusively encompasses facial skin, thereby minimizing interference from motion artifacts.

2.1.2. Physiological Feature Extraction

Remote photoplethysmography (rPPG) is a non-contact method for extracting human
physiological signals, developed based on the traditional photoplethysmography (PPG)
principle. This approach leverages the periodic changes in blood flow induced by the
human heartbeat within the skin capillaries, causing the absorption or reflection of periodic
light signals. While these periodic signals are not directly observable by the human eye,
high-definition cameras can capture facial data, enabling the analysis and monitoring of
human physiological characteristics.

The advantage of rPPG technology lies in its non-invasive nature, as it eliminates
the need for subjects to wear sensors, thereby avoiding interference with the human body.
Additionally, the widespread availability and use of ordinary high-definition cameras have
significantly reduced the cost of implementing rPPG technology, making it highly promis-
ing for various applications. For instance, in the context of driving fatigue monitoring,
rPPG technology can be used to monitor a driver’s heart rate and heart rate variability in
real time. This real-time monitoring allows for the determination of the degree of fatigue,
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enabling timely reminders for the driver to take necessary rest measures and ensuring
overall driving safety.

For rPPG signal extraction, the approach involves calculating the average of the pixel
intensity values within the Region of Interest (ROI) area. In each frame of the facial video,
assumed to correspond to time t, all pixels within the infrared single channel in the selected
ROI area are spatially averaged. The spatial average value of the ROI area at time t can be
expressed as:

at =
M

∑
i=0

ai
M

(1)

where is the total pixels in the selected ROI area and is the value of the i− th pixel in the
ROI area.

A 30s video (a total of 900 frames) is collected starting from time t at a frame rate
of 30 frames/second. The sequence of skin areas in consecutive image frames can be
expressed as:

At = [at, at+τ , at+2τ , · · · , at+(N−1)τ ], N = 900 (2)

where is the time interval used to obtain one frame of video, which is the reciprocal of the
sampling frequency.

The obtained signal is defined as the original input rPPG physiological signal at time t,
and every 1 s (30 frames) thereafter, the original input rPPG physiological signal starting
from the next second is obtained.

2.1.3. Facial Feature Extraction

To extract facial features from drivers in a fatigued state during driving, this article
uses the MTCNN algorithm in conjunction with the BiFPN pyramid network as the core
of the facial feature extraction module. The MTCNN algorithm comprises three cascaded
networks (P-Net, R-Net, O-Net) and is utilized for face detection and key point localiza-
tion. However, in complex driving environments, factors such as lighting changes, facial
postures, gender, and partial occlusion may impact its performance. To enhance the al-
gorithm’s robustness, the BiFPN pyramid network is introduced, which better captures
multi-scale features and improves adaptability to illumination changes. The output of
BiFPN is connected with the cascade network of MTCNN to form a comprehensive facial
feature extraction module. This approach yields a richer and more accurate representation
of facial features. The algorithm demonstrates faster and more accurate performance than
traditional methods, reducing the impact of varying lighting conditions. It maintains accu-
rate face and key point detection even when a face is tilted, pitched, or partially obscured.
Consequently, it is highly suitable for driver detection during driving. The structure of the
BiFPN pyramid network is illustrated in Figure 2.
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The input N videos are sampled at 30 frames/s to obtain n groups of frame images.
The size of these images is reduced to 0.5 times the original images and formed into n
sample sets. The sample set is used as the input of the MTCNN network and is calculated
as follows:

Li(det, box, landmark) = MTCNN(Xi) (3)

where i ∈ [1, n] Li(det, box, landmark) represents the face candidate frames and key points
Xi obtained using the network output. Among them, Li(det, box, landmark) includes the
coordinate values of 5 key points on the face (left eye, right eye, nose, and left and right
corners of the lips).

2.2. The RPPMT-CNN Feature Extraction Enhancement Network

After acquiring the initial facial information and original physiological signals, we
incorporated the RPPMT-CNN feature extraction enhancement network. This method is
grounded in an improved algorithm and devises a 1D CNN (convolutional neural network)
structure tailored for facial feature processing, enabling the capture of spatiotemporal
relationships inherent in facial features. Concurrently, a distinct 1D CNN structure was
formulated for processing physiological features, aiming to more precisely capture the
time–frequency domain characteristics of physiological signals. Following the separate
optimization of facial and physiological features, their characteristic information can be
maximally captured. The combination of facial and physiological information yields
more accurate and comprehensive features, establishing the groundwork for subsequent
comprehensive analysis and application.

2.2.1. Singular Spectrum Analysis

Due to the non-orthogonal characteristics of physiological sources, the usual blind
source separation method cannot directly extract the heart rate pulse signal from the
original rPPG signal. Therefore, based on singular spectrum analysis, we propose the
following method to separate the target signal. The data matrix A of each time series A_t
of length N can be expressed as:

A =




at at+τ · · · at+(K−1)τ
at+τ at+2τ · · · at+Kτ

... · · · . . .
...

at+(M−1)τ at+Mτ · · · at+(N−1)τ


 (4)

where K = N −M + 1.
Then, we perform singular value decomposition (SVD) on the data matrix to solve the

characteristic matrix of A. Its singular value decomposition expression is:

A = U∑ VT (5)

A =
M

∑
i=1

UiPT
i (6)

Pi =
√

λiVi (7)

where U and V are the two orthogonal bases representing the left singular matrix and right
singular matrix, respectively. The diagonal matrix ∑ is composed of singular values σi. It
satisfies the relationship with the eigenvalue λ of AAT (covariance matrix) in eigenvalue
decomposition (EVD): σi =

√
λi.

After singular value decomposition, the data matrix A is decomposed into M compo-
nents. Then, we extract the heart rate pulse signal Ri from the M independent components,
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where Ri = PiUT
i (i < r). Finally, we recover the output time series gi(t) from Ri using

anti-angle averaging.

gi(t) =





1
m

m
∑

h=1
Ri

h,t+1−h ,(t≤K)

1
m

m
∑

h=1
Ri

t+h−K,K−h+1,(t>K)
(8)

Due to significant noise corruption in the heart rate pulse signal obtained with singular
spectrum analysis, further filtering is necessary. In this case, a moving average filter is
used for low-pass filtering to eliminate low-frequency interference caused by factors such
as breathing. The original sampled data forms a one-dimensional queue of length N,
and a sliding window of length L is applied to it. The average value of the data within
the window is computed as the output of the filter at the current moment. The window
progresses in the positive direction of the time axis, generating filter outputs for subsequent
moments until all the data points are covered. The calculation formula for the moving
average filter at the i− th moment is given by:

G(i) =
1
L

j=i+L−1

∑
j=1

g(j)(i = 1, 2, 3, . . . , N − L + 1) (9)

Subsequently, a Hamming window bandpass filter with a passband frequency of
0.8~4 Hz is applied to eliminate high-frequency and low-frequency noise outside the heart
rate range, aiming to minimize noise interference.

2.2.2. Time Domain Analysis of Heart Rate Signals

Building upon [10], this paper uses the enhanced Pan–Tompkins algorithm for primary
wave detection and localization. The main wave detection involves a combination of
Shannon energy and adaptive dual threshold methods to accurately identify the main
wave and pinpoint its peak for extracting the target signal. The detailed algorithmic flow is
illustrated in Figure 3.
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The time difference between two adjacent main wave peaks is called the DD interval,
denoted as DDi(i = 1, 2, 3 . . . . . .). By integrating the physiological characteristics of the
heart rate signal with pertinent medical insights, we designate the interval between the
peaks of the main waves as the duration of one heartbeat, constituting a single cardiac cycle.
According to existing research, the standard deviation of the cardiac cycle in the human
body tends to notably increase as fatigue intensifies. Hence, this paper uses the standard
deviation (SD) of the RR interval as the time domain analysis index, with its calculation
formula as follows:

MEAN =
N

∑
i=1

DDi
N

(10)

SD =

√√√√ 1
N

N

∑
i=1

(DDi −MEAN)2 (11)

The flow chart and specific implementation process of the improved algorithm are
shown in Figure 4.
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We initially differentiate the filtered heart rate pulse signal to extract waveform slope
information, using the five-point numerical differentiation formula:

y′(i) = x[i− 2 : i + 2] · [ 1
12

,− 8
12

, 0,
8

12
,− 1

12
]
T

(12)

where y′(i), y′(i) represents the slope of the heart rate pulse signal at the i− th time point,
the symbol “:” is used to represent an array or vector, and the symbol “·” is used to represent
matrix or vector multiplication. Before performing the Shannon energy calculation, the
differentiated data are standardized as follows:

ỹ(n) = y(n)/max
i

(|y(n)|) (13)

Then, the output of the derivative undergoes nonlinear amplification using the Shan-
non energy formula. This process ensures that all data points become positive, accentuates
high- and medium-intensity components, and attenuates other intensity values. This en-
hancement aids in better locating the main wave and detecting its peak. The Shannon
energy formula is as follows:

y(nT) = −[x(nT)]2 ln([x(nT)]2) (14)

Following the calculation of Shannon energy, numerous closely spaced and small wave
peaks are obtained. To enhance the concentration of energy, a moving window integration
is applied to smooth the waveform. The choice of window size is crucial for main wave
detection. If the selected window is too small, the resulting signal waveform after moving
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integration may lack smoothness, hindering main wave peak detection and potentially
leading to false detections. Conversely, if the window is too large, the energy of the main
wave in the signal may be dispersed, increasing the risk of missed detection.

Typically, the size of the moving window integral after Shannon energy processing is
correlated with the sampling frequency. The window size is generally chosen as 0.18 times
the sampling frequency of 0.18 fs. For instance, with a sampling rate of 200 samples/s, the
window width is set to 30 samples (150 MS).

The rising edge peak of the signal waveform obtained after moving window integra-
tion is marked as the main wave peak to be detected, and it is then adjusted using adaptive
dual-threshold technology to determine the true main wave peak. If the peak value DP to
be detected is greater than the threshold T1, it is the main wave peak value; otherwise, it is
the noise peak value. The driver’s heart rate signal extracted in the first 3 s is selected as
the initial data, one-third of the maximum detected peak value is used as the initial signal
threshold (ST), and half of the average value of all detected peak values is used as the initial
noise threshold (NT). The adaptive dual threshold adjustment process is as follows:

If DP is the peak of the main wave:
If H is the main wave peak:

ST =
1
8

DP +
7
8

ST (15)

If DP is the noise peak:

NT =
1
8

DP +
7
8

NT (16)

Our dual thresholds, denoted as T1 and T2 for discrimination, vary with ST and NT.
As ST and NT change, T1 and T2 dynamically adjust accordingly. This relationship can be
expressed by the following formula:

T1 = NT +
1
4
(ST − NT) (17)

T2 =
1
2

T1 (18)

Considering the refractory period between two adjacent main waves and the phys-
iological characteristics of the human heartbeat, we set the refractory period to 200 MS.
During this period, redundant detection points are removed to prevent errors.

The average of the last eight DD intervals serves as the reference for the average
interval. If the presently detected DD interval exceeds 1.66 times the average interval,
indicating a potential detection miss, we initiate a backcheck using threshold T2 and
update the signal threshold as follows:

ST =
1
4

DP +
3
4

ST (19)

2.2.3. Frequency Domain Analysis of Heart Rate Signals

Frequency domain analysis is used to depict the fundamental information regarding
the changes in signal energy concerning frequency. The frequency domain component
of the heart rate variability signal is intricately linked to the physiological state of the
human body. Notably, high-frequency power mirrors the regulatory influence of the vagus
nerve on the heart rate, while low-frequency power reflects the intricate interplay between
sympathetic and parasympathetic nerves in the heart rate regulation process. The LF/HF
ratio is a metric used to quantify the balance between sympathetic and parasympathetic
tension. When the body is fatigued, sympathetic tension tends to dominate. Studies have
indicated that the power spectral ratio of low-frequency power values (LF) and LF/HF
to the heart rate variability signal significantly increases during fatigue, while the high-
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frequency power value diminishes. The LF/HF index serves as a crucial indicator of driver
sleepiness and fatigue status. Therefore, LF/HF is utilized as the frequency domain analysis
index for the target signal. The specific algorithm flow is illustrated in Figure 5.
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Given the target signal’s inherent variability associated with a driver’s heart rate and
its substantial randomness, we use the Welch method to estimate the power spectrum of
the target signal. The Welch method is an enhanced periodogram power spectral density
estimation technique that is well-suited for rapid Fourier calculations. This method involves
selecting window data, segmentally obtaining the power spectrum, and subsequently
averaging it. The specific steps for our frequency domain analysis are outlined as follows.

First, we sample the obtained target signal to obtain the discretized signal y(n) (0 ≤ n ≤ N).
The window size is positioned as L, and y(n) is divided into J segments when a quarter
overlap is allowed, J = (N − L/4)/(L/4). For the data in paragraph i:

yi(m) = y[m +
(i− 1)L

4
] (20)

where 0 ≤ m ≤ L− 1, 1 ≤ i ≤ J.
Consider the i− th segment as an example to calculate the power spectrum of each

segment of the data:

Ŷi(w) =
1

LU
|

L−1

∑
m=0

yi(m)D(m)e−jwm|2 (21)

where, in this formula, U = 1
L ∑L−1

m=0 D2(m) is the normalization factor, which ensures that
the obtained spectrum is an asymptotically unbiased estimate, and D(m) is the added
window function. Next, we add the power spectra of all segments and take the average
value to obtain the power spectrum y(n):

Ỹ(w) =
1

LUJ

J

∑
i=1
|

L−1

∑
m=0

yi(m)D(m)e−jwm|2 (22)

The extracted time–frequency domain feature matrix is input into 1D CNN for process-
ing. The 1D CNN method is effective in capturing the correlation between time–frequency
domain features using convolution and pooling operations. HRV (heart rate variability)
refers to the change in the heart rate over a period of time. The current HRV-based fatigue
detection method typically obtains an ECG signal by attaching electrodes to the subject’s
skin and then converts the signal into HRV. However, obtaining HRV directly from the
heart rate is not feasible. Since our goal is to learn how the heart rate signal changes over
time, considering the heart rate of the sliding window over time can aid in achieving
fatigue driving detection. Therefore, we designed a method to extract heart rate changes at
adjacent moments during fatigue activities and established a 1D CNN-based model.

We utilize the 1D CNN for fatigue detection, as illustrated in Figure 6. The network
comprises an input layer, three convolutional layers, and two fully connected layers. The
input size is 1024 × 1. There are three convolutional layers with a filter length of 32, each
utilizing the ReLU activation function. The convolution kernel sizes for layer 1, layer 2,
and layer 3 are 16 × 1, 8 × 1, and 4 × 1, respectively. Following the convolutional layers,
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two fully connected layers (FCLs) with 256 and 128 neurons, respectively, are added for
classification. To prevent overfitting, a dropout layer is introduced after the fully connected
layer. Finally, the SoftMax classifier calculates the probability of two fatigue states.
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Figure 7. Using 1D-MTCNN to extract PERCOLS. 

Local patterns and correlation information in sequence data can be captured using 
1D CNN; therefore, it is suitable for processing video data from consecutive frames. The 
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2.2.4. Using 1D-MTCNN to Extract PERCOLS

Leveraging insights from [25], our approach acquires accurate key point coordinates
with MTCNN. Subsequently, these key point coordinates are used to extract images of the
eye and mouth regions. The extracted eye areas serve as input for the 1D CNN model to
extract features. The detailed implementation process is depicted in Figure 7.
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Local patterns and correlation information in sequence data can be captured using 1D
CNN; therefore, it is suitable for processing video data from consecutive frames. The eye
and mouth status of the region image is then classified. First, we connect the center points
of the left and right eyes to obtain line a and define the angle between the connecting line a
and the horizontal line as α. The width and height of the eye area frame are defined as w
and h = w/2, respectively. Then, we connect the left and right corners of the lips to obtain
line b and draw a vertical line b from the key point of the nose to the connecting line c. The
vertical distance is defined as d; then, the upper edge of the mouth area frame is d/2, and
the lower edge is the vertical line c. At the extension line 5d/3, after obtaining the eye and
mouth area frames, we perform two classifications. With an interval of 60 s, there are a
total of 1200 frames of images. Based on the PECLOS criterion and prior knowledge, we
can state that:

P =
Eyes closed frames

The total number of frames in the detection period
× 100% (23)

L =
yawn frames

The total number of frames in the detection period
× 100% (24)

The PERCOLS algorithm has been proven to be able to accurately determine driver
fatigue in real time. At the same time, based on prior knowledge, it can be determined
whether the driver is in a fatigue state by detecting the number of times the subject yawns
per minute. Therefore, the p value and the L value are selected as facial features.
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Our proposed one-dimensional CNN architecture for fatigue detection is depicted in
Figure 3. The architecture is composed of an input layer, three convolutional layers, and
two fully connected layers. The input size is specified as 600 × 1. The convolutional layers
feature filter lengths of 24, using the ReLU activation function. The size of the convolution
kernel is set at 10 × 1 for convolution layer 1, 5 × 1 for layer 2, and 3 × 1 for convolution
layer 3. To finalize the network, two fully connected layers (FCLs) are added, containing 128
and 64 neurons, respectively, for classification. In order to mitigate overfitting, the SoftMax
classifier is utilized to compute the probability of two fatigue states. The initialization of
the network’s values is accomplished by assigning random values. Given that PERCLOS
and heart rate features are represented by one-dimensional signals, and considering the
time and performance advantages of one-dimensional CNN in processing such signals, our
choice of one-dimensional CNN for fatigue detection is well-founded.

2.3. Multi-modal Feature Fusion Fatigue Driving Identification Model

The LSTM network has shown unique advantages in the fields of text generation,
machine translation, speech recognition, generated image description, and video tagging,
demonstrating its powerful functions in processing and searching for spatio-temporal data.
The schematic representation of the LSTM cell structure is shown in Figure 8.
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The control gate mechanism of LSTM solves the problem of gradient disappearance
when the RNN is processing a long sequence. The working principles of the three control
gates are as follows:

The forget gate:
Γf = σ(W f [ht−1, xt] + b f ) (25)

the input gate:
Γu = σ(Wu[ht−1, xt] + bu) (26)

C̃t = tanh(Wc[ht−1, xt] + bc) (27)

Ct = Γu× C̃t + Γ f × Ct−1 (28)

and the output gate:
Γo = σ(Wo[ht−1, xt] + bo) (29)

ht = Γo × Ct (30)

where xt is the input at time t. Γu, Γ f , Γo are the input, forget, and output gates at time t,
respectively. The output gate passes the activation function values Wu, W f , Wc, Wo, and
bu, b f , bo are the weights and deviations of the gates, respectively. C̃t is the state of the
memory element at time t, and ht is the final output.
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A driver’s driving state is a dynamic process, with the driver’s physiological signal
data changing over time, representing standard time series data. When utilizing LSTM to
process the time–frequency domain time series feature matrix reflecting the driver’s state,
only past information is considered, and future information is disregarded [20], potentially
impacting the accurate assessment of the current state. To address this limitation, Bi-LSTM
emerges as a solution. Bi-LSTM comprises two LSTMs operating in opposite directions.
One LSTM processes information in a forward pass to retain past information, while the
other LSTM processes information in a backward pass to incorporate future information.
The outputs of these two LSTMs are then combined to derive the driver’s status judgment
using Softmax. The network structure of Bi-LSTM is illustrated in Figure 9. In driver fatigue
detection, the time–frequency domain time series feature matrix reflecting the driver’s state
is fed into Bi-LSTM in real time. The forward and backward propagation layers in Bi-LSTM
work together to precisely determine the driver’s status by incorporating both past and
future information.
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3. Experimental Results and Discussion

This section encompasses an introduction to the experimental environment, collected
in-vehicle driving datasets, evaluation indicators, currently prevalent models, and a con-
clusive analysis of the experimental results. The experimental flow chart is depicted in
Figure 10.
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In this section, we elaborate on the details of the experiment. Figure 10 illustrates the
entire experimental process, which is segmented into four parts. Initially, we introduce
some fundamental experimental settings and datasets. Subsequently, utilizing the ECG
signal as a reference, we measure the error induced by infrared rPPG, analyze heart
rate variability, and calculate its correlation. Following that, the Bi-LSTM and LSTM
networks are trained using time–frequency domain feature indicators, emphasizing the
distinctive advantages of Bi-LSTM in detecting driver fatigue through comparison. Finally,
we evaluate and analyze our model against existing physiological feature-based driver
fatigue detection models.

3.1. Experiment Platform
3.1.1. Experimental Equipment

The experimental equipment and environment include an infrared camera, Windows11
64-bit operating system, Intel i9 2.20 GHz processor, 16 GB memory, NVIDIA RTX 4060
(GPU), Python (3.7), and the Keras (Tensorflow2.1) framework.

In this research, the infrared camera serves as the pivotal hardware component for
extracting the infrared rPPG signal. The original infrared time signal is derived from the
video data collected with the infrared camera and utilized as the input for the rPPG signal.
Consequently, the quality of the infrared camera profoundly influences the accuracy and
reliability of heart rate signal extraction.

In selecting the appropriate infrared camera, several factors were taken into consid-
eration, encompassing signal quality, performance, and cost. To guarantee the extraction
of high-quality infrared rPPG signals, a cost-effective yet high-performance infrared cam-
era with a superior signal-to-noise ratio was chosen, namely, the Oni S500 model. The
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Oni S500 infrared camera was selected for its advantageous cost-performance ratio and
notable signal-to-noise ratio. This attribute proves pivotal in extracting delicate biological
signals, as a high signal-to-noise ratio aids in diminishing interference and noise, ultimately
enhancing the accuracy and stability of heart rate signal extraction.

The utilization of the Oni S500 infrared camera, known for its high performance
and cost-effectiveness, allowed us to acquire high-quality infrared time signals for our
research. This serves as a robust foundation for the subsequent processing and analysis
of rPPG signals. Additionally, considering cost implications, the selection of the Oni S500
presents an economical hardware solution for our research, ensuring that this study can
yield accurate and reliable experimental results.

3.1.2. Experimental Dataset

In this study, due to the limited availability of public RGB and infrared multi-modal
fatigue driving datasets, we opted to create our dataset, named the MDAD (Multi-Modal
Driver Alertness Dataset). The dataset is illustrated in Figure 11. Our data collection used
the Oni S500 binocular infrared camera, equipped with color RGB and infrared IR sensors.
This binocular camera, capable of flexible installation on the rearview mirror or dashboard,
simultaneously captures RGB and infrared images at a sampling rate of 30 Hz, with an
image resolution of 640 × 480. Despite a minor offset in the positions of the RGB and IR
cameras, it has been validated that this difference insignificantly impacts the effectiveness
of data collection.

To ensure the diversity of the dataset, we collected real driving scenarios involving
different types of vehicles (private cars, taxis, trucks, etc.) during both the daytime and
nighttime. Throughout the data collection phase, a total of 52 participants (28 men and
24 women) with ages ranging from 22 to 53 years were involved. Each participant drove
once on different road segments, engaging in typical driving activities. The entire driving
session lasted approximately 2 h. Various real-world complexities, including changes in
lighting conditions, driver head deflection, and partial occlusion, were intentionally intro-
duced during the data collection to guarantee the diversity and randomness of the samples.
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Following the completion of data collection, we organized and segmented the videos
into 60 s short video clips. These videos were then precisely labeled as either awake or
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fatigued based on the Karolinska Sleepiness Scale (KSS) in chronological order. The entire
dataset comprises a total of 4000 1200 × 650 RGB-IR driving videos. Among these, 2530 are
labeled as awake, while 1470 are labeled as fatigued.

The self-made MDAD serves as a crucial experimental foundation and resource for
this research. Encompassing a diverse range of real driving scenarios, the dataset facilitates
robust testing and evaluation of fatigue driving detection algorithms. This initiative
contributes to enhancing the model’s resilience and generalization. The utilization of this
dataset is anticipated to drive further advancements in the field of fatigue driving detection.

3.2. HRV Time–Frequency Domain Analysis Experiment

In this section, we perform experiments to evaluate the accuracy and stability of our
proposed HRV time–frequency domain analysis method for assessing driver fatigue. For the
comparative analysis, we selected a widely used and advanced contact electrocardiogram
(ECG) monitoring system. Fifteen participants, randomly chosen from a total of 52 subjects,
were involved in the experiment. Subjects numbered 1–7 conducted the experiment at
12:00 noon, while subjects numbered 8–15 conducted it at 23:00 in the evening. This timing
variation allowed us to accurately extract their heart rate (HR) and heart rate variability
(HRV), including low frequency (LF) and high frequency (HF) data. Subjects were required
to wear ECG monitors, ensuring correct placement for accurate signal extraction. The
collected electrocardiogram and infrared video signals were then processed to extract
heartbeat intervals for calculating heart rate variability.

3.2.1. Comparison of the RPPG and Infrared RPPG Signal Intensities

In the case of the long-distance extracted remote photoplethysmography (rPPG) signal,
its signal strength is weakened due to the extended transmission distance, making it
susceptible to environmental factors like lighting. The extraction of rPPG signals is crucial
for our fatigue recognition task, particularly in relation to the extraction of heart rate
variability (HRV) signals. If the obtained HRV signal is too weak or significantly affected by
noise interference, it can directly impact our subsequent data analysis, ultimately reducing
the accuracy of driver fatigue assessment.

To mitigate this issue, we used both infrared rPPG and traditional rPPG methods
for heart rate extraction. The experimental results, depicted in Figure 12, indicate that in
comparison with the traditional rPPG signal, the heart rate signal obtained with infrared
rPPG is less influenced by noise. Moreover, the heart rate signal acquired with infrared
rPPG exhibits enhanced anti-interference capabilities. This implies that the rPPG signal,
after minimizing environmental interference, is more robust, thus aiding in the extraction
of accurate heart rate signals during subsequent data processing. Consequently, this
contributes to an improved accuracy in assessing the driver’s fatigue state.
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3.2.2. Verification of the Reliability of HRV Signal Extraction with Infrared RPPG

We assessed the reliability of HRV signal extraction using infrared rPPG by comparing
the time–frequency domain index values of the ECG signal and the infrared rPPG signal,
as illustrated in Figure 13. A comparison with the literature [16] reveals a high degree of
overlap in the upper points of the polyline in Figure 13a,b for the SD value obtained from
the infrared rPPG signal and the LF/HF ratio, which is consistent with the ECG signal.
This suggests that the HRV signal can be effectively extracted from the infrared rPPG signal.
Using electrocardiogram results as the standard, the accuracy of infrared rPPG, measured
after 25 rounds of experiments, is approximately 95%.
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3.2.3. Verification of the Relationship between Time–Frequency Domain Indicators and
Driver Fatigue

We conducted tests and verified, as indicated in the literature [14], that when transi-
tioning from a normal state to a fatigue state, there are changes in time domain features such
as SD and frequency domain features like the LF/HF ratio. This validates the feasibility of
utilizing HRV time–frequency domain indices to detect driver fatigue.

The observations in Figure 14 indicate that when subjects transition from a normal
state to a fatigue state, there are notable changes in both the SD value and the LF/HF value.
With increasing fatigue, both SD and LF/HF values are higher than in the normal state,
exhibiting a clear upward trend.
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Figure 14. Verification of the relationship between time–frequency domain indicators and driver
fatigue. (a) The value of SD changes between alarm and fatigue. (b) The LF/HF ratio changes
between alarm and fatigue.

3.3. Experimental Evaluation of the Fatigue Driving Detection System
3.3.1. Comparison of the Effects of BI-LSTM and LSTM Network Training

The experiment aimed to assess the training effect of the Bi-LSTM network. Thirty
sets of 30 s facial videos were utilized to train both the Bi-LSTM and LSTM network
models. A comparison of the loss function and accuracy between the two networks is
presented in Figure 10. The results reveal that in most cases, Bi-LSTM outperforms LSTM,
demonstrating superiority in fatigue detection. This suggests that integrating both past
and future physiological signals of the driver enhances the judgment process, leading to
improved results. As shown in Figure 15, after the 15th training cycle, the loss function
approaches 0, and around the 20th cycle, the accuracy of Bi-LSTM approaches 98%.
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3.3.2. Model Evaluation

The sensitivity (Se), true positive rate (+P), and accuracy rate (Acc) were used to
evaluate the overall performance of the proposed algorithm. The calculation formulas are
as follows:

Se =
TP

TP + FN
(31)

+P =
TP

TP + FP
(32)
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Acc =
TP

TP + FP + FN
(33)

where true positive (TP) represents the number of correctly detected fatigue states or non-
fatigue states, false positive (FP) represents the number of non-fatigue states judged as
fatigue states, and false negative (FN) indicates the number of fatigue states judged as
non-fatigue.

The average absolute error is the average of the sum of the absolute differences
between the DD interval values of all test samples in the test sample and the RR interval
control value, which can be expressed as:

Error =
1
N

N

∑
i=1
|DDi − RRi| (34)

where N represents the total number of test samples.

3.3.3. Comparative Experiments on Different Modal Feature Input Algorithms

By comparing the literature [34], this study aims to more effectively evaluate the
classification effect after multi-modal data fusion and the single-modal classification effect.
To ensure consistency in the experimental environment and subjects, different modal
features were input into various algorithms for comparison. The feature categories were
divided into four groups: physiological features, visual features, mixed visual features, and
mixed features. These four groups of feature types were categorized into a fatigue state and
an awake state based on given labels. They were then input into traditional SVM, DBN,
random forest, and CNN networks simultaneously to compare the obtained classification
accuracy with the method proposed in this paper. The experimental results are shown in
Table 1.

Table 1. Comparison of the accuracy rates of different algorithms input with different feature types.

Category Feature Index SVM Random Forest DBN CNN Ours

Physiological
characteristics

ECG HR, HRV 0.792 0.827 0.853 0.874 0.894
rPPG HRV 0.778 0.817 0.827 0.864 0.895

Visual characteristics
Eyes PERCLOS 0.785 0.822 0.849 0.868 0.877

Mouth Yawn frequency 0.757 0.783 0.806 0.855 0.895

Mixed visual
features Eyes + Mouth PERCLOS, yawn

frequency 0.814 0.836 0.869 0.896 0.948

Mixing multi-class
features

Eyes + Mouth
+ rPPG

PERCLOS, yawn
frequency, HRV 0.774 0.842 0.871 0.949 0.972

Note: Bold is the best result.

According to Table 1, the proposed method in this paper achieves the highest classifica-
tion accuracy across all feature types. Concerning physiological characteristics, our method
demonstrates relatively high accuracy rates when utilizing both ECG and rPPG, achieving
0.894 and 0.895, respectively. Regarding visual features, the accuracy of our method using
eye and mouth features is 0.877 and 0.895, respectively, also surpassing the traditional clas-
sification algorithms. Notably, the combination of visual features (Eyes + Mouth) performs
exceptionally well in our method, achieving an accuracy of 0.948, significantly outperform-
ing other algorithms. Additionally, we observe that compared with traditional algorithms
(SVM and random forest), the deep learning models (DBN and CNN) exhibit superior
performance, affirming the advantages of deep learning in processing multi-modal data. In
the case of mixed multi-class features (Eyes + Mouth + rPPG), our method excels with an
accuracy of 0.972, surpassing the other traditional algorithms.

In summary, based on the data results from the comparative experiments, we can
confidently conclude that the multi-modal fusion fatigue detection method proposed in this
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article demonstrates high accuracy across various feature types. The optimal performance
is achieved when combining multiple types of features, establishing the effectiveness and
promising application prospects of this method in fatigue detection.

3.3.4. Comparative Experiments on Different Fatigue Driving Detection Methods

In order to enhance the generalization and reliability of the experimental results, we
conducted a comparison between the algorithm proposed in this paper and the existing
mainstream fatigue driving detection algorithms. This comparison includes the multi-
class support vector machine (MCSVM) presented in [20] and the multi-granularity deep
convolution model (RF-DCM) introduced in [27]. The dataset utilized for experimentation
is our self-compiled MDAD, comprising continuous facial videos of drivers navigating
diverse and challenging driving scenarios. The accuracy of each algorithm in fatigue
detection was evaluated, and the results are presented in Table 2 below.

Table 2. Comparison of the accuracy of fatigue driving detection methods in complex environments.

Method Acc (%)

MCSVM [36] 87.3%
RF-DCM [37] 94.6%

Drowsiness detection system [28] 85%
Fatigue-Radio [33] 81.4%

FFD system [31] 97.8%
MTCNN + InceptionV3 [10] 91.1%

HDDD [38] 88.9%
CNN + DF-LSTM [39] 88.9%

Fusion system [32] 97.3%
Ours 98.2%

Note: Bold is the best result.

4. Conclusions

To address the challenges associated with the low accuracy and poor robustness of
traditional fatigue detection methods, particularly under varying lighting conditions, we
propose a non-invasive approach for multi-modal fusion fatigue detection that integrates
heart rate features with eye and face features. Leveraging an infrared camera in conjunc-
tion with rPPG and MTCNN combined with the BiFPN pyramid network, we extract
a driver’s physiological characteristics and facial features, mitigating errors introduced
by day-to-night lighting changes and enhancing the stability and reliability of fatigue
detection. Furthermore, we introduce a feature extraction enhancement module based
on an improved Pan–Tompkins algorithm and 1D-MTCNN to more accurately extract
heart rate signals and eyelid features. These enhancement modules contribute to elevating
the quality and precision of the data, forming a solid foundation for subsequent fatigue
detection models. Two independent fatigue detection models are established using a one-
dimensional convolutional neural network (1D CNN), where one model is based on the
PERCLOS value, and the other is based on the heart rate signal. After training these models,
accurate detection and classification of different fatigue characteristics are achieved. To
enhance robustness, real-time performance, and accuracy, the BiLSTM network is used
to input the data results from the two trained models, allowing it to learn the temporal
relationships between the data. This dynamic modeling approach effectively processes
forecast time series input data, improves the model’s applicability in real-world scenarios,
and realizes multi-modal fatigue detection. Extensive experiments and comparisons of
the self-compiled MDAD demonstrate that the proposed model exhibits excellent fatigue
detection performance, boasting high accuracy and robustness across different scenarios.
The multi-modal fusion fatigue detection method presented in this paper provides an
effective solution for achieving accurate and reliable fatigue driving detection.
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Abstract: Handwritten Arabic character recognition has received increasing research interest in recent
years. However, as of yet, the majority of the existing handwriting recognition systems have only
focused on adult handwriting. In contrast, there have not been many studies conducted on child
handwriting, nor has it been regarded as a major research issue yet. Compared to adults’ handwriting,
children’s handwriting is more challenging since it often has lower quality, higher variation, and larger
distortions. Furthermore, most of these designed and currently used systems for adult data have not
been trained or tested for child data recognition purposes or applications. This paper presents a new
convolution neural network (CNN) model for recognizing children’s handwritten isolated Arabic
letters. Several experiments are conducted here to investigate and analyze the influence when training
the model with different datasets of children, adults, and both to measure and compare performance
in recognizing children’s handwritten characters and discriminating their handwriting from adult
handwriting. In addition, a number of supplementary features are proposed based on empirical
study and observations and are combined with CNN-extracted features to augment the child and
adult writer-group classification. Lastly, the performance of the extracted deep and supplementary
features is evaluated and compared using different classifiers, comprising Softmax, support vector
machine (SVM), k-nearest neighbor (KNN), and random forest (RF), as well as different dataset
combinations from Hijja for child data and AHCD for adult data. Our findings highlight that the
training strategy is crucial, and the inclusion of adult data is influential in achieving an increased
accuracy of up to around 93% in child handwritten character recognition. Moreover, the fusion of the
proposed supplementary features with the deep features attains an improved performance in child
handwriting discrimination by up to around 94%.

Keywords: child handwriting; handwritten character recognition; writer-group classification; convolutional
neural network; deep learning; machine learning

1. Introduction

Despite significant advances in technology, the textual compositions of many people
are still handwritten [1]. Thus, using automated recognition techniques for handwritten
data in many applications is crucial. These techniques convert handwritten data (e.g.,
texts, words, characters, or digits) into corresponding digital representations, which can be
accurately processed offline, such as scanned handwritten documents, or online, such as
handwriting data input via electronic pen tip [2–4]. Developing automatic handwriting
recognition systems is a difficult task in computer vision due to the wide variety of hand-
writing sizes and styles, besides the characteristics of the language to be recognized [4].
Handwritten character recognition is one of the most challenging research fields in docu-
ment image processing. Most investigations in this field have been conducted on different
languages (e.g., English, French, and Chinese), but only a little work has been conducted
on other languages like Arabic [3].
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In recent years, handwritten Arabic character recognition has gained considerable
research interest. This is due to the importance of the Arabic language, which is considered
one of the five most widely spoken languages worldwide and used for reading and writing
by hundreds of millions of people from hundreds of nations [5]. However, it is considered
a challenging task in pattern recognition and computer vision, as it still requires significant
effort to construct generalized systems capable of handling various recognition problems
and achieving highly feasible accuracy [6]. These challenges are due to the unique char-
acteristics of the Arabic script, e.g., cursive nature, the existence of diacritics and dots,
diagonal strokes, different alternative character shapes in the middle of words, and many
characteristics [2,3,5]. Moreover, there are high diversities in handwriting styles across
individuals; even at the individual level, a person’s handwriting may change significantly
or slightly every time, which may make it difficult for a system to recognize the letters from
their own handwriting [4].

The majority of research on handwritten Arabic character recognition has focused on
adult handwriting, as the findings have revealed the effectiveness of their systems in achiev-
ing accuracy rates of up to 99% using deep learning and machine learning techniques [7–15].
Furthermore, a few researchers have recently focused on children’s handwriting data for
recognizing Arabic letters due to its great significance for many applications and different
purposes [4,16–20]. Employing character recognition capabilities in child-related applica-
tions such as education [21], interactive learning, physical or mental health assessment,
or other possible practical purposes is critical for many future research areas. However,
it poses a further challenge due to many differences between the nature of children’s and
adults’ handwriting in several different aspects, including generally being of lesser quality,
having more variances, and having more considerable distortions [16].

Handwritten Arabic character recognition technologies have evolved rapidly and
achieved progress dramatically using different algorithms, such as support vector ma-
chines (SVMs), k-nearest neighbor (KNN), artificial neural networks (ANNs), and, later,
convolutional neural networks (CNNs). CNNs have recently outperformed machine learn-
ing (ML) techniques that require manually generated features, while CNNs automatically
detect and extract distinctive and representative features from the analyzed images [18].
Furthermore, building handwriting recognition hybrid systems using CNNs as a feature ex-
tractor and ML algorithms as a classifier has yielded effective results in several handwritten
Arabic character datasets [15,18].

In this paper, we develop a novel CNN architecture for recognizing children’s hand-
written isolated Arabic characters using the Hijja dataset [4] to compose a child data subset
for testing. As previously stated, most recognition systems nowadays were neither trained
nor tested on children’s handwriting character datasets. However, they were exclusively on
adult datasets, although character recognition accuracy may be significantly improved by
carefully considering the strategy in selecting the training dataset on which the model is to
be trained. Therefore, we investigate and analyze the effect of training the suggested model
using different datasets of handwritten Arabic characters by either children, adults, or both
to assess and compare the fluctuations in model performance in recognizing children’s
handwritten characters. Moreover, we use three popular machine learning SVM, KNN, and
RF techniques as classifiers to assess the automatically derived features from the suggested
trained CNN-based deep learning model and compare their performance variation; then,
we observe how well these models perform in the classification process compared with the
Softmax classifier.

For writer-group classification, Shin et al. [22] proposed a machine learning-based
method to automatically classify individuals as adults or children based on their handwrit-
ten data, including Japanese scripts and drawn patterns. To the best of our knowledge,
no similar research has focused on differentiating between children’s and adults’ hand-
writing for Arabic characters. Establishing this capability in this research could open new
horizons for other research fields serving multiple purposes, such as fraud or forgery
detection and prevention, recognizing and discriminating handwriting more accurately
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and working on improving skills, comprehending similarities and differences in ways of
writing, and further estimating age groups. Finally, after analyzing handwriting, we pro-
pose some appropriate supplementary features that can be used along with the extracted
deep features of the proposed CNN model to improve the accuracy of child and adult
writer-group classification.

The main contributions of this study can be summarized as follows:

• Developing an effective CNN model for recognizing children’s handwritten Arabic characters.
• Investigating and analyzing the effect on child handwritten Arabic character recog-

nition performance when training the proposed CNN model on a variety of datasets
that either belong to children, adults, or both.

• Examining the capability of the suggested CNN model to classify the writers of Arabic
characters into two writer groups, either children or adults.

• Suggesting some supplementary features that contribute to distinguishing between
children’s and adults’ handwriting and augment the performance of the suggested
CNN model.

• Extended performance analysis, evaluation, and comparison of the extracted deep fea-
tures learned by the proposed CNN model and the proposed supplementary features
using SVM, KNN, RF, and Softmax classifiers.

The rest of this paper is organized as follows: Section 2 discusses the previous studies
on handwritten Arabic character recognition for adults and children data samples. Section 3
describes the used datasets and the proposed research methodology. The experimental
work is demonstrated in Section 4, and the findings are provided in Section 5. Section 6
discusses the results and compares the proposed approach to other approaches from the
literature. Finally, Section 7 concludes the proposed research work alongside a few ideas
for future works.

2. Related Work

In this section, the previous work in the literature is reviewed, presenting various
approaches using machine learning and deep learning techniques for adults’ and children’s
handwritten Arabic character recognition. Most of the latest previous studies relevant to
our work mainly focused on proposing different approaches to solve this challenging task
using CNN-based models.

2.1. Handwritten Arabic Character Recognition for Adult Writers

Most researchers have focused on adult handwriting in Arabic character recognition.
In 2017, El-Sawy et al. [7] developed a novel CNN model that was trained and tested on their
own dataset, AHCD, which contains 16,800 handwritten Arabic characters collected from
60 persons aged between 19 and 40 years and divided into 28 classes, where their model
achieved an accuracy of 94.9%. Another research by Younis [8] introduced a deep model
using CNN to recognize handwritten Arabic letters, and it was improved by applying
multiple optimization strategies to avoid overfitting. The results demonstrated that their
model could classify letters using two datasets, AIA9k and AHCD, achieving 94.8% and
97.6% accuracy, respectively. In 2021, another new handwritten Arabic character dataset
named HMBD was introduced by Balaha et al. [9]. They also suggested two CNN-based
architectures known as HMB1 and HMB2. They investigated the effect of changing the
complexity of these architectures using overfitting reduction strategies on various datasets,
including HMBD, AIA9k, and CMATER, to increase recognition accuracy. The uniform
weight initializer and the AdaDelta optimizer scored the highest accuracies, where the
performance was improved via data augmentation using the HMB1 model, achieving the
top overall performance of 90.7%, 98.4%, and 97.3% on AIA9k, HMBD, and CMATER
datasets, respectively.

In [10], De Sousa suggested VGG12 and REGU deep models for recognizing hand-
written Arabic letters and numbers. Both models were trained twice, once with data
augmentation and once without. Then, an ensemble of the four models was created by
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averaging the predictions of each model. The highest accuracy of their ensemble model
was 98.42% for AHCD and 99.47% for MADbase. Boufenar et al. [11] also built a DCNN
model similar to Alexnet architecture. They investigated the role of preprocessing data
samples in enhancing their model performance using three learning strategies: training
the model from scratch, utilizing a transfer-learning technique, and fine-tuning the CNN.
Overall, their experimental findings revealed that the first technique outperformed the
others, either way, with and without preprocessing, achieving an average of 100% and
99.98% accuracy on OIHACDB-40 and AHCD, respectively. Moreover, Ullah et al. [12]
investigated the dropout technique’s effect on their built CNN model. They noticed a
considerable difference in performance when the model was trained with and without
dropout, indicating that dropout regularization could effectively prevent model overfit-
ting. The model reported a test accuracy of 96.78% on the AHCD dataset using dropout.
Alyahya et al. [13] studied how the ResNet-18 architecture could be effective in recognizing
handwritten Arabic characters. They suggested four ensemble models: the first two were
the original ResNet-18 and the updated ResNet-18, using one fully connected layer with
or without a dropout layer. The last two models were the original ResNet-18 and the
updated ResNet18, but they included two fully connected layers with or without a dropout
layer. The original ResNet-18 model achieved the highest test score of 98.30% from other
ensemble models on the AHCD dataset. In [14], a CNN model was developed to recognize
Arabic letters written by hand. The model was trained and tested using an AHCD dataset.
Their experiment has shown that the suggested method achieved a recognition rate of
97.2%. Meanwhile, once data augmentation techniques were used, their model’s accuracy
rose to 97.7%. Ali et al. [15] designed a CNN-based SVM model with a dropout technique
utilizing two deep neural networks and evaluated it on various datasets, including AHDB,
AHCD, HACDB, and IFN/ENIT, for recognizing handwritten Arabic letters. The authors
reported improved performance of the suggested model compared to previous models
created for the same domain by obtaining the accuracies of 99%, 99.71%, 99.85%, and
98.58% on AHDB, AHCD, HACDB, and IFN/ENIT, respectively. Table 1 summarizes these
handwritten Arabic character recognition studies using adults’ data.

Table 1. A summary of related work on handwritten Arabic character recognition for adult writers.

Ref. Year Feature
Extractor Classifier Dataset Type Size Accuracy

[7] 2017 CNN Softmax AHCD Characters 16,800 94.9%

[8] 2017 CNN Softmax AIA9k
AHCD

Characters
Characters

9000
16,800

94.8%
97.6%

[10] 2018 CNN Softmax AHCD
MADbase

Characters
Digits

16,800
70,000

98.42%
99.47%

[11] 2018 CNN Softmax OIHACD
AHCD

Characters
Characters

30,000
16,800

100%
99.98%

[9] 2020 CNN Softmax
HMBD
AIA9k

CMATER

Characters
Characters

Digits

54,115
9000
3000

90.7%
98.4%
97.3%

[13] 2020 CNN Softmax AHCD Characters 16,800 98.30%

[14] 2021 CNN Softmax AHCD Characters 16,800 97.7%

[15] 2021 CNN SVM

AHDB
AHCD

HACDB
IFN/ENIT

Words and Texts
Characters
Characters

Words

15,084
16,800
6600

26,459

99%
99.71%
99.85%
98.58%

[12] 2022 CNN Softmax AHCD Characters 16,800 96.78%
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2.2. Handwritten Arabic Character Recognition for Child Writers

A few efforts have been made to address the issue of children’s Arabic handwriting
recognition. In 2020, unlike earlier research, Altwaijry et al. [4] concentrated on recognizing
Arabic letters for children’s writing. They collected a new dataset named Hijja, consisting of
47,434 disconnected and connected Arabic characters written by children aged 7 to 12 years.
They also developed a functional CNN-based model to study and evaluate its performance
on their dataset. They compared the performance of their model with the model suggested
in El-Sawy’s paper [7] on both datasets, Hijja and AHCD. According to the experiment
findings, their model outperformed the other compared model, achieving an accuracy
of 88% and 97% on the Hijja and AHCD datasets, respectively. Alkhateeb et al. [16] also
proposed a deep learning-based system for recognizing handwritten Arabic letters using
CNN and three separate datasets, AHCR, AHCD, and Hijja, to validate the proposed
system. Based on their experimental results, the suggested approach achieved accuracies
of 89.8%, 95.4%, and 92.5% on the AHCR, AHCD, and Hijja datasets, respectively. Another
study proposed by Nayef et al. [17] discussed using CNN models to recognize handwrit-
ten Arabic characters with an improved Leaky-ReLU activation function. To evaluate
the performance of their compared models, they used four datasets, AHCD, HIJJA, and
MNIST, in addition to their own dataset containing 38,100 handwritten Arabic characters,
categorized into 28 classes that were collected from elementary school students in grades
one to three. The proposed CNN model with Leaky-ReLU optimization outperformed
the other compared model of [8] with an accuracy of 99%, 95%, and 90% on AHCD, their
dataset, and Hijja, respectively.

Alrobah et al. [18] employed a different approach, merging CNN deep-learning models
for feature extraction with SVM and XGBoost machine-learning models for classification
to build a hybrid model. They used the two CNN architectures presented in [9], namely
HMB1 and HMB2. The study attained an accuracy of 96.3% using the HMB1 model and
the SVM classifier on the Hijja dataset, highlighting their hybrid model’s efficiency. In
2022, Wagaa et al. [19] presented a new CNN architecture that achieved 98.48% and 91.24%
accuracies on the AHCD and Hijja datasets, respectively, by applying rotation and shifting
data augmentation techniques and using the Nadam optimizer. They also investigated the
impact of mixing the two AHCD and Hijja datasets of handwritten Arabic characters in
varying proportions on the model’s performance during the training and testing phases
using different data augmentation approaches. Their results showed that using the Nadam
optimizer together with rotation and shifting data augmentation techniques gave their
highest test accuracy of 98.32% among other choices when mixed with 80% of AHCD and
20% of Hijja for training along with 20% of AHCD and 10% of Hijja for testing. Bouchriha
et al. [20] also presented a novel CNN model for recognizing handwritten Arabic characters.
They focused on unique characteristics of Arabic text, particularly the difference in the
shape of letters according to their location in the word, and by using the Hijja dataset,
they attained an accuracy of 95%. Table 2 summarizes these handwritten Arabic character
recognition studies on children’s data.

Table 2. A summary of related work on handwritten Arabic character recognition for child writers.

Ref. Year Feature
Extractor Classifier Dataset Type Size Accuracy

[4] 2020 CNN Softmax Hijja
AHCD

Characters
Characters

47,434
16,800

88%
97%

[16] 2020 CNN Softmax
AHCR
AHCD

Hijja

Characters
Characters
Characters

28,000
16,800
47,434

89.8%
95.4%
92.5%
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Table 2. Cont.

Ref. Year Feature
Extractor Classifier Dataset Type Size Accuracy

[17] 2021 CNN Softmax

AHCD
Proposed dataset

Hijja
MNIST

Characters
Characters
Characters

Digits

16,800
38,100
47,434
70,000

99%
95.4%
90%
99%

[18] 2021 CNN
Softmax

SVM
XGBoost

Hijja Characters 47,434
89%

96.3%
95.7%

[19] 2022 CNN Softmax AHCD
Hijja

Characters
Characters

16,800
47,434

98.48%
91.24%

[20] 2022 CNN Softmax Hijja Characters 47,434 95%

3. Proposed Methodology

In this study, we conducted two different tasks, handwritten character recognition
and writer-group classification. Figure 1 shows the framework designed to achieve the
suggested approach for recognizing children’s handwritten Arabic characters and classi-
fying them into a child or an adult writer group. The proposed approach is divided into
four phases: data preprocessing, feature extraction using CNN and other supplementary
features, classification using three additional popular ML-based classifiers, and evaluation
of the results and model performance using standard assessment measurement techniques.
The following subsections provide more information on each of these four stages.
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Figure 1. Overview of the framework of the proposed methodology.

3.1. Data Preprocessing Phase

Data preprocessing is an important prior step meant to facilitate the extraction of signif-
icant features and improve classification accuracy. This section describes the datasets used
to conduct the experimental work and how they were preprocessed using several methods.

3.1.1. Datasets Description

This study uses two publicly available datasets of handwritten Arabic characters
to conduct all experiments: Hijja dataset for child writers and the Arabic handwritten
characters dataset (AHCD) for adult writers. The Hijja dataset [4] comprises 47,434 letter
samples of size 32 × 32 written by 591 children aged 7 to 12 years. It has 108 subclasses
arranged into 29 main classes, 28 classes for Arabic letters, and one more class for the
“Hamza” character (Z). Each of the 28 classes contains up to four additional subclasses,
categorized into connected (beginning, middle, and end of a word) and disconnected
characters. Moreover, it was divided into 80% (37,933 samples) for training and 20% (9501
samples) for testing. Note that we only used the disconnected characters totaling 12,355
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character samples for conducting the experimental work here. We divided them by the same
proportion into two groups, 80% (9884 characters) for training and 20% (2471 characters)
for testing.

The AHCD dataset [7] contains 16,800 character samples of size 32 × 32 written by
60 people aged 19 to 40 years, and it includes 28 classes for isolated (disconnected) Arabic
characters. Each participant wrote each of the 28 characters ten times, from the character

“Alf” (


@) to “Yaa” (ø
 ). It was similarly divided into 80% for training with 13,440 samples

(480 per class) and 20% for testing with 3360 samples (120 per class). Table 3 statistically
describes the used child and adult datasets.

Table 3. Description of the used datasets.

Dataset Characteristic Hijja AHCD

Number of writers 591 60
Total samples per character for each writer 1 10

Total character samples per writer 28 280
Total samples per character 400~500 600

Total isolated character samples 12,355 16,800
Category of writers Children Adults

3.1.2. Character Image Preprocessing

As mentioned above, we used all images in the Hijja dataset that only contain the
character in its separate (disconnected) form. The preprocessing stage has included a
number of procedures that help the proposed system achieve the highest possible accuracy.
Firstly, these images were converted into grayscale images and then inverted to set the
foreground as bright pixels and the background as dark pixels. Secondly, because some of
the grayscale inverted images were too low-contrast and blurry, the contrast was adjusted
to increase the intensity values of the foreground components and reduce the pixel values
of the background to appear as dark as possible. After that, the brightness was raised by
2%. Thirdly, after empirically testing different image threshold values, the resulting pixels
were thresholded by considering all values less than 90 as background pixels and resetting
their values to zero. Finally, the foreground pixels were centered by drawing a rectangle
around the character pixels and then cropped, after which zeros were added around the
character to be the size 32 × 32.

For the AHCD dataset, the same thresholding was applied to all images and the
characters were then centered. Moreover, the Hijja dataset has a different number of images
for each class, which may negatively impact the efficiency of adequately training our deep
model on all classes, especially in the comparison between different training strategies
using child, adult, and both datasets. To solve this problem, we just increased the number
of samples for each class in the Hijja training dataset using different data augmentation
methods to match the number of samples for each class in the AHCD training dataset,
which is 480, resulting in a sum of 13,440 character samples in the new augmented Hijja
training dataset. The augmentation techniques used were zoom range, height shift range,
and width shift range, all of which are equal to 0.1, and a rotation range of 5.

In addition, we combined both the Hijja and AHCD training and testing datasets
to create a new dataset consisting of 26,880 characters for training and 5831 characters
for testing. The combined training dataset was used in training both tasks of character
recognition and writer-group classification, while the combined testing dataset was only
used for probing the second task of writer-group classification. It is worth noting that, for
writer-group classification, all images were further converted into binary images, unlike
for character recognition using grayscale images.

163



Sensors 2023, 23, 6774

3.2. Feature Extraction Phase

In this phase, the proposed features for handwritten character images and the classi-
fication process are extracted. This section explains the suggested CNN architecture and
supplementary features in detail.

3.2.1. Proposed CNN Architecture

CNNs have been proven successful and effective in recognizing handwritten characters [23].
A CNN is a multi-layered hierarchical model composed of convolution, pooling, and fully
connected layers (FCLs). The purpose of convolution layers is to extract essential features
from input images and generate feature maps using several filters. Pooling layers are
used to minimize the dimensions of feature maps and to retrain the most critical features.
Eventually, FCLs receive the high-level features from the preceding layers as input (formed
as flat feature vectors) and yield several output classes, each with a value that indicates the
class probability [23].

As shown in Figure 2, the suggested CNN model to extract features has ten layers,
comprising four convolution layers, four max-pooling layers, and two fully connected
layers. The input is a grayscale image for the child’s character recognition task and a binary
image for the child’s handwriting discrimination task from the adult’s handwriting as a
writer’s group, both images with a size of 32 × 32. All convolution layers use a 3 × 3
kernel, one stride, padding equal to the same input size, and a ReLU activation function
that converts x (an input feature value) less than zero to zero, as defined in Equation (1).

ReLU (x) = max (0, x) (1)
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Figure 2. The proposed CNN architecture.

The number of filters used in each convolution layer varies, such that the first con-
volution has 16 filters, the second has 32 filters, the third has 64 filters, and the fourth
has 128 filters. Each convolution layer is followed by a max-pooling layer with a size of
2 × 2 and a stride of 1. A dropout rate of 0.2 is used after all convolution and max-pooling
layers. Moreover, there are two dense layers in the last two fully connected layers. The first
contains 512 neurons with a ReLU activation. In contrast, the second has 28 neurons for the
character recognition task and two for the writer-group classification task with a Softmax
activation, as defined in Equation (2), where xi is the output feature vector from CNN, e is
a mathematical constant known as Euler’s number, and N is the number of output classes.
After the first dense layer, a dropout rate of 0.4 was applied.

Softmax(xi) =
exi

∑N
k=1 exk

(2)
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3.2.2. Proposed Supplementary Features

The purpose of these features is to supplement the CNN-based features and improve
the discrimination accuracy between children’s and adults’ handwriting. In this study, we
used a histogram of oriented gradient (HOG)-based features and other statistical-based
features as supplementary features to help distinguish between child and adult writers.

• Histogram of Oriented Gradient (HOG)-based Features

An HOG generates descriptive features for an object’s shape and appearance in an
image by calculating gradients distribution or contour directions [24]. We used an HOG to
extract features of the distinctive shape aspects of handwritten characters to distinguish
children’s writing typical style from that of adults. To extract HOG features, the gradients
for each pixel in the image were first computed in both the vertical and horizontal directions
using the following Equations (3) and (4):

dx = I(x + 1, y)− I(x, y) (3)

dy = I(x, y + 1)− I(x, y) (4)

where dx and dy represent the horizontal and vertical gradient directions, and I(x, y) is
the pixel value at (x, y). Hence, the gradient magnitude, |d|, and orientation, θ, were then
calculated by Equations (5) and (6):

|d| =
√

d2
x + d2

y (5)

θ(x, y) = tan−1 dy

dx
(6)

In the next step, the gradient image was divided into small cells of 8 × 8 pixels
to calculate the histogram of gradient direction for each pixel inside the cell and place
them into a nine-bin histogram. These histograms were then combined to represent HOG
features. For better results, these histograms were then normalized by taking overlapping
3 × 3 blocks and applying L2-Hys normalization. Finally, the gradient histograms inside
each cell between each block were then added together to obtain the final HOG feature
vector of size 1 × 324.

• Statistical-Based Features

We proposed some statistical-based features that assisted in differentiating between the
handwriting of children and adults after analyzing their character data samples. Figure 3
shows the differences between adult and children’s handwriting for some characters such

as Kha (p), Alif (


@), Thaa ( �H), Qaaf ( ��), Tha ( 	 ), and Shiin ( ��). Statistical features are based

on the analysis of the spatial distribution of pixels and basic dimensions of a character
sample [25]. The total of these features is twelve, as illustrated in Table 4, which are divided
into two main groups as follows:

1. Ratio of Height to Width:

This feature depends on the main dimensions of a character, where the ratio of height
h to width w (F1) is calculated for the bounding box of an unnormalized character sample
(only the main body of the character, no “hamza” or “dots”) [25,26]. This feature is useful in
differentiating between the sizes of letters written by children and adults since most letters
written by children usually have common sizing characteristics, which can be utilized for
differentiating them from those written by adults, and vice versa.

2. Ratios of Pixel Distribution:

These features depend on the spatial distribution of pixels in an image. We derived
eleven features through the distribution of foreground f g (white) pixels and background
bg (black) pixels for the bounding box of an unnormalized character sample. Firstly, we
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computed (F2) as the ratio of all foreground pixels to all background pixels for the whole
character image [25]. Secondly, we divided the character image into four equal quadrants:
upper-left (UL), upper-right (UR), bottom-left (BL), and bottom-right (BR) to calculate
the ratio of the number of foreground pixels to the number of background pixels in each
quarter (F3–F6). Finally, as inspired by [25], we computed the ratio of background pixels in

each pairwise combination of the four quarters computed as
(

4
2

)
, resulting in six features

(F7–F12). These features are helpful for distinguishing pen strokes and font width between
child and adult handwriting, as most of the children’s handwriting was intermittent, pen-
down, pen-up actions, and displayed hesitancy, and it was somewhat light, while the adults’
handwriting was mostly uninterrupted and bold, indicating more confidence, convenience,
and consistency.
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Table 4. A summary of statistical-based features.

Feature Formula Feature Formula Feature Formula

F1 h/w F5 ( f g/bg)BL F9 bgUL/bgBL
F2 ( f g/bg)All F6 ( f g/bg)BR F10 bgUR/bgBR
F3 ( f g/bg)UL F7 bgUL/bgUR F11 bgUR/bgBL
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3.3. Classification Phase

After the CNN model was trained and tested, we used it as a major feature extractor
by replacing the final output FCL (Softmax classifier) with three well-known ML-based
SVM, KNN, and RF classifiers for performance variation measurement and comparison
purposes across all experiments. The feature vector obtained from the trained CNN consists
of 512 features when trained on child data, adult data, and both for the children’s character
recognition. For the writer-group classification task, we used the feature fusion method
to supplement CNN-extracted features with statistical-based features, with HOG-based
features, and with both. The feature vector obtained from the statistical-based feature
extractor constitutes twelve features, while the one obtained from the HOG-based feature
extractor comprises 324 features. All these extracted features were normalized to range
from 0 to 1 using min-max normalization. The fused feature vector was initially trained
and evaluated using the Softmax classifier by constructing a feed-forward neural network
(FFNN) with six layers. The first layer is the input layer showing the number of features
in each feature vector, while the remaining layers are illustrated in Figure 4. All these
extracted features were then trained by the ML classifiers. After training, the trained
ML classifiers were used for testing in the classification phase for children’s handwritten
character recognition and children and adult handwriting discrimination with/without
supplementary features.
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3.3.1. Support Vector Machine (SVM) Classifier

SVM is an effective supervised learning technique used for classification and regression
tasks. It works on training data examples as plotted points in a high-dimensional feature
space. The classification process is then performed by finding an optimal hyperplane that
separates between classes correctly when achieving the maximum possible margin between
them [1,27,28]. The nascent SVM performance significantly relies on the three primary
hyperparameters: kernel function, regularization (usually defined as C), and gamma [15]. In
this work, we used a nonlinear SVM classifier that can be defined as shown in Equation (7).

f (x) = ∑l
i=1 wiΦi(x) + b (7)

where Φ(x) represents a feature map and w refers to the corresponding weights. Φ means
transform x input vector from input space into a higher dimensional feature space using
kernel functions. Kernel functions have two main parameters: C and gamma. We examined
here multiple nonlinear SVM kernel functions with several values of C and gamma to find
the optimal values that yield the best possible classification accuracy.

3.3.2. K-Nearest Neighbor (KNN) Classifier

KNN is the simplest supervised learning classifier, requiring no previous intensive
training process or probabilistic classification. It works by finding k nearest samples and
their class labels in the training dataset to predict the class of a new sample in the testing
dataset. The classification process is performed by measuring the distance between feature
vectors of training and testing samples in feature space. The k-nearest samples with their
class labels are then retrieved to choose the predominant class label as a class for the test
sample [29]. In this work, we tested different distance metrics with different odd k numbers,
where the distance measures used in KNN are Euclidean and Manhattan distances, which
can be defined as given in Equations (8) and (9), respectively [30].

d(x, y) =
√

∑n
i=1(xi − yi)2 (8)

d(x, y) = ∑n
i=1|xi − yi| (9)

where x and y are the feature vectors in the feature space, and xi and yi refer to their i-th
feature of the total n features.

3.3.3. Random Forest (RF) Classifier

RF is an ensemble machine learning algorithm used for classification and regression
problems [31]. It is composed of multiple decision trees that are generated in parallel
using a subset of randomly selected training data samples, each of which works as an
independent classifier. Their predictions are then aggregated to determine the final outcome
by calculating the majority vote for the results of each output decision tree. RF enables fast
learning even with high-dimensional features. Moreover, the random selection of training
data makes it robust against noise [22]. This work tested different numbers of trees and
their maximum depth.
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3.4. Evaluation Phase

The overall performance of the proposed model was evaluated using the accuracy,
precision, recall, and F1-score metrics inferred via the four distributions, true positive (TP),
false negative (FP), true negative (TN), and false negative (FN), as follows:

• Accuracy (A) is the ratio of correctly predicted characters to the total of all predicted
characters. Equation (10) shows the accuracy evaluation metric.

Accuracy =
TP + TN

TP + FP + FN + TN
(10)

• Precision (P) is the ratio of correctly predicted positive characters to the total number
of correctly and incorrectly predicted positive characters. Equation (11) shows the
precision classification rate.

Precision =
TP

TP + FP
(11)

• Recall (R) is the ratio of correctly predicted positive characters to the total number of
positive characters, calculated using Equation (12).

Recall =
TP

TP + FN
(12)

• F1-score (F1) combines the recall and precision measures, as shown in Equation (13).

F1 − score =
2(Recall × Precision)

Recall × Precision
(13)

4. Experiments

This section describes the environment used, experimental setup, and design of exper-
iments with implementation details, hyperparameter tuning, and data augmentation.

4.1. Experimental Setup

All experiments were conducted using the Google Colab environment. In addition,
several open source Python libraries were used, such as Kares to build and train the CNN
model, Scikit-learn to address ML classifiers and print evaluation measurement tools, CSV
to read Excel data files, TensorFlow to implement and evaluate the CNN model, and others.

4.2. Experiments Design

In this research, we conducted five experiments with different scenarios. The first
three experiments are related to testing the proposed CNN model in recognizing children’s
handwritten Arabic letter data (Hijja) by training the model on children’s data (Hijja),
on adult data (AHCD), and on both types of data (combined Hijja and AHCD). The last
two experiments are associated with discriminating between adult and child handwriting
of Arabic letters by training and testing the model on both data samples (combined Hijja
and AHCD) with and without the proposed supplementary features. The extracted features
by the CNN and supplementary features are trained and evaluated using Softmax, SVM,
KNN, and RF classifiers. Table 5 briefly describes the objective of each experiment. The
three datasets used for experimental work were prepared and rearranged by dividing
them into 80% for training and 20% for testing for all classifiers. To tune the CNN model’s
hyperparameters, the training dataset was divided into 60% for training and 20% for
validation. Table 6 shows for each experiment the number of images and the image
type of each of the training, validation, and test datasets for tuning the proposed CNN
model’s hyperparameters.
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Table 5. An overview of conducted experimental work.

Experiment No. Task Training Dataset Testing Dataset

Experiment 1
Character Recognition

Hijja Hijja
Experiment 2 AHCD Hijja
Experiment 3 Combined Hijja and AHCD Hijja

Experiment 4 Writer-Group Classification without
Supplementary Features Combined Hijja and AHCD Combined Hijja and AHCD

Experiment 5 Writer-Group Classification with
Supplementary Features Combined Hijja and AHCD Combined Hijja and AHCD

Table 6. Statistics of the used datasets.

Dataset Training Dataset Validation Dataset Testing Dataset Normalized Image Type

Hijja 10,752 2688 2471
GrayscaleAHCD 10,752 2688 2471

Combined Hijja and AHCD 21,504 5376 2471

Combined Hijja and AHCD 21,504 5376 5831 Binary

4.3. Hyperparameters Tuning and Data Augmentation

To tune the proposed CNN model’s hyperparameters, we examined three different
optimizers and three weight initializers in all experiments using the validation dataset
to find the optimal hyperparameters for the training dataset in order to make the model
generalized and as not overfitted as possible. The examined optimizers are Adam, Nadam,
and RMSProp, while the weight initializers are Normal, Uniform, and He Normal. Nadam
optimizer and He Normal weight initializer are used to optimize our model since they gave
better results than the others. In addition, categorical cross-entropy was used to calculate
the loss for the child’s character recognition and binary cross-entropy for the writer-group
classification, where accuracy was assigned as the metric. The model was also trained
using a batch size equal to 80 and an epoch number set to 100. Moreover, we used the
ReduceonLRPPlateau approach that periodically reduces the learning rate in the Kares
library, beginning from 0.001 until 0.00001 when multiplied by a factor equal to 0.1. For
the FFNN model, it was also trained using 80 batch sizes and 100 epochs, with the Nadam
optimizer and the binary cross-entropy.

We set the following hyperparameters for the SVM classifier: C = (1, 10, 100, 1000),
kernel = [‘poly’, ‘sigmoid’, ‘rbf’], and gamma = (0.01, 0.001, 0.0001), whereas for the
KNN classifier we set the following: k = (5, 7, 9, 11), weights = [‘distance’], and met-
ric = [‘Euclidean’, ‘Manhattan’]. We also set the hyperparameters for the RF classifier as
n_estimators = (50, 100, 200, 300, 400) and max_depth = (5, 10, 15, 20, 25, 30). We tuned the
hyperparameters of these classifiers using the grid search method and then determined
the optimal hyperparameters that provide the highest possible classification accuracy.
Finally, we used the same data augmentation techniques applied to the Hijja training
dataset to be balanced in training the CNN model by increasing the overall size of the Hijja
and AHCD datasets, with a view to overcome the overfitting problem and improve the
model’s performance.

5. Results

The results obtained from the five conducted experiments are reported in this section
to evaluate and compare the proposed model’s performance using different classifiers for
recognizing children’s handwritten Arabic characters and distinguishing between child
and adult handwriting. It is worth noting that the data split for all five experiments using
different classifiers was 80% for training and 20% for testing.

Experiment 1 was conducted to show how the proposed model performed after being
trained and tested on the Hijja dataset alone. The results of this experiment are presented in
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Table 7. Furthermore, the accuracy and loss curves of the training and validation are shown
in Figure 5. The model achieved the best performance with an accuracy of 91.95% using
the SVM classifier with radial basis function (SVM-RBF) kernel values set to (C = 100 and
gamma = 0.001). The RF classifier reported the second-highest accuracy at 91.87%, while
Softmax and KNN achieved the lowest performance compared to the others. It is worth
noting that the hyperparameter of the KNN was set to Manhattan distance and k = 5, and
the RF was set to n_estimators = 300 and max_depth = 30.

Table 7. Child character recognition results of Experiment 1, using Hijja for training and testing.

Classifier Accuracy Precision Recall F1-Score

Softmax 91.78% 91.87% 91.76% 91.76%
SVM 91.95% 92.07% 91.91% 91.93%
KNN 91.50% 91.62% 91.46% 91.47%

RF 91.87% 91.93% 91.82% 91.81%
Results in bold indicate the highest scores achieved among the different classifiers.
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curves over the training epochs. Here, the highest accuracy reported in this experiment 
was 80.17%, achieved by the SVM classifier, while KNN, RF, and Softmax received lower 
accuracies of 79.24%, 79.16, and 78.67%, respectively. Noting that the hyperparameter of 
the SVM-RBF kernel was set to C = 10 and gamma = 0.01, KNN was set to Manhattan dis-
tance, with k = 9, and RF was set to n_estimators = 200 and max_depth = 20. 

  
Figure 6. Learning accuracy and loss performance of Experiment 2. 

  

Figure 5. Learning accuracy and loss performance of Experiment 1.

Experiment 2 investigated the effect of training the proposed model using the adult
handwriting dataset (AHCD) alone on testing the child handwriting dataset (Hijja). Table 8
shows the results obtained in Experiment 2, and Figure 6 displays its accuracy and loss
curves over the training epochs. Here, the highest accuracy reported in this experiment
was 80.17%, achieved by the SVM classifier, while KNN, RF, and Softmax received lower
accuracies of 79.24%, 79.16, and 78.67%, respectively. Noting that the hyperparameter of the
SVM-RBF kernel was set to C = 10 and gamma = 0.01, KNN was set to Manhattan distance,
with k = 9, and RF was set to n_estimators = 200 and max_depth = 20.

Table 8. Child character recognition results of Experiment 2, using AHCD for training and Hijja
for testing.

Classifier Accuracy Precision Recall F1-Score

Softmax 78.67% 80.54% 78.66% 78.87%
SVM 80.17% 81.87% 80.12% 80.28%
KNN 79.24% 81.12% 79.21% 79.40%

RF 79.16% 80.62% 79.12% 79.15%
Results in bold indicate the highest scores achieved among the different classifiers.

170



Sensors 2023, 23, 6774

Sensors 2023, 23, 6774 14 of 21 
 

 

in Table 7. Furthermore, the accuracy and loss curves of the training and validation are 
shown in Figure 5. The model achieved the best performance with an accuracy of 91.95% 
using the SVM classifier with radial basis function (SVM-RBF) kernel values set to (C = 
100 and gamma = 0.001). The RF classifier reported the second-highest accuracy at 91.87%, 
while Softmax and KNN achieved the lowest performance compared to the others. It is 
worth noting that the hyperparameter of the KNN was set to Manhattan distance and k = 
5, and the RF was set to n_estimators = 300 and max_depth = 30. 

  
Figure 5. Learning accuracy and loss performance of Experiment 1. 

Table 7. Child character recognition results of Experiment 1, using Hijja for training and testing. 

Classifier  Accuracy Precision Recall F1-Score 
Softmax 91.78% 91.87% 91.76% 91.76% 

SVM 91.95% 92.07% 91.91% 91.93% 
KNN 91.50% 91.62% 91.46% 91.47% 

RF 91.87% 91.93% 91.82% 91.81% 
Results in bold indicate the highest scores achieved among the different classifiers. 

Experiment 2 investigated the effect of training the proposed model using the adult 
handwriting dataset (AHCD) alone on testing the child handwriting dataset (Hijja). Table 8 
shows the results obtained in Experiment 2, and Figure 6 displays its accuracy and loss 
curves over the training epochs. Here, the highest accuracy reported in this experiment 
was 80.17%, achieved by the SVM classifier, while KNN, RF, and Softmax received lower 
accuracies of 79.24%, 79.16, and 78.67%, respectively. Noting that the hyperparameter of 
the SVM-RBF kernel was set to C = 10 and gamma = 0.01, KNN was set to Manhattan dis-
tance, with k = 9, and RF was set to n_estimators = 200 and max_depth = 20. 

  
Figure 6. Learning accuracy and loss performance of Experiment 2. 

  

Figure 6. Learning accuracy and loss performance of Experiment 2.

Experiment 3 was carried out to see whether the proposed model could improve
recognition accuracy when trained on both child and adult data samples (combined Hijja
and AHCD) to recognize the Hijja testing dataset. Table 9 summarizes all the recognition
results of the Hijja testing dataset when child and adult datasets were combined during the
training phase. Also, the accuracy and loss curves are shown in Figure 7. Interestingly, this
experiment achieved a higher accuracy of 92.96% for both SVM and Softmax and 92.72%
for RF and 92.47% for KNN than the prior two experiments trained only on either the child
or adult dataset in isolation. It is worth noting that hyperparameter of the SVM-RBF kernel
was set to C = 10 and gamma = 0.01, KNN was set to Manhattan distance and k = 9, and RF
was set to n_estimators = 400 and max_depth = 25. Table 10 summarizes and compares the
performance results of the three experiments along with their average performance of the
different classifiers used.

Table 9. Child character recognition results of Experiment 3, using combined Hijja and AHCD for
training and Hijja for testing.

Classifier Accuracy Precision Recall F1-Score

Softmax 92.96% 92.99% 92.92% 92.92%
SVM 92.96% 93.14% 92.91% 92.94%
KNN 92.47% 92.52% 92.44% 92.42%

RF 92.72% 92.81% 92.68% 92.69%
Results in bold indicate the highest scores achieved among the different classifiers.
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Table 10. Aggregated child character recognition results and average performance of Experiments 1
to 3.

Experiment 1 Experiment 2 Experiment 3

Classifier Accuracy F1-Score Accuracy F1-Score Accuracy F1-Score

Softmax 91.78% 91.76% 78.67% 78.87% 92.96% 92.92%
SVM 91.95% 91.93% 80.17% 80.28% 92.96% 92.94%
KNN 91.50% 91.47% 79.24% 79.40% 92.47% 92.42%

RF 91.87% 91.81% 79.16% 79.15% 92.72% 92.69%

Average 91.78% 91.74% 79.31% 79.43% 92.78% 92.74%
Results in bold indicate the highest scores achieved among the different classifiers.

Experiments 4 and 5 assessed how well the suggested model could classify writ-
ers based on their handwriting into two groups: a child writer and an adult writer,
with/without supplementary features. In Experiment 4, we trained and tested the CNN
model without using supplementary features. Table 11 shows the model’s writer-group
classification performance. Moreover, Figure 8 illustrates the learning accuracy and loss
performance for Experiment 4. The RF classifier received the best accuracy of 90.41%,
where n_estimators was set to C = 200 and max_depth = 30. On the other hand, the SVM,
KNN, and Softmax classifiers achieved a lower accuracy of 89.85%, 89.74%, and 88.24%,
respectively, where the SVM-RBF kernel values were set to C = 100 and gamma = 0.01, and
the hyperparameters of KNN were Euclidean distance and k = 11.

Table 11. Writer-group classification performance of Experiment 4, without supplementary features
using combined Hijja and AHCD for training and testing.

Classifier Accuracy Precision Recall F1-Score

Softmax 88.24% 88.57% 91.37% 89.95%
SVM 89.85% 90.56% 91.96% 91.26%
KNN 89.74% 92.44% 89.52% 90.96%

RF 90.41% 90.50% 89.82% 90.11%

Average 89.56% 90.52% 90.67% 90.57%
Results in bold indicate the highest scores achieved among the different classifiers.
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The results of Experiment 4 were also analyzed and validated using the confusion
matrix, as shown in Figure 9. Hence, we observed that the RF classifier, shown in Figure 9d,
outperformed the Softmax, SVM, and KNN classifiers by achieving 94% accuracy for
accurate adult classification and only 6% of adults were misclassified as children. Never-
theless, the best child classification accuracy was 90% using the KNN classifier, as shown
in Figure 9c, whereas only 10% of the child samples were misclassified as adult ones.
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For Experiment 5, we combined the CNN-extracted deep features as follows: first, 
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pared to the results of Experiment 4, by utilizing the fusion of CNN deep features with 
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in Table 12 show that, when all extracted features from CNN, SF, and HOG were fused,
we received the highest performance for all classifiers, for all evaluation metrics, with the
highest achieved accuracies of 93.98%, 92.11%, 92.06%, and 91.00% for Softmax, KNN,
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accuracies were scored by CNN and SF fusion ranging from 89.88% to 91.92%. It is
worth noting that, in all three fusion cases, the Softmax classifier was superior, by all
means, in writer-group classification performance over KNN, RF, and SVM. Subsequently,
compared to the results of Experiment 4, by utilizing the fusion of CNN deep features
with the proposed supplementary SF and HOG features, the classification performance
of discriminating between adult and child handwriting was significantly improved by up
to 5.74%, 5.48, 2.24%, and 3.86% for accuracy, precision, recall, and F1-score, respectively,
where the average scores of these four metrics were also enhanced by up to 3.11%, 2.01%,
1.71%, and 1.84%, respectively. The hyperparameter of the SVM-RBF kernel was set
to C = 100 and gamma = 0.01 for each combination of features fusion, the KNN distances
were set as Euclidean with k = 7, Manhattan with k = 9, and Manhattan with k = 11, and the
RF was set to n_estimators = 200, 300, and 200 with max_depth = 30, respectively.

Table 12. Writer-group classification performance of Experiment 5, with supplementary features
using combined Hijja and AHCD for training and testing.

CNN + SF CNN + HOG CNN + SF + HOG
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Average 90.49 90.36 90.16 90.24 92.15 92.10 91.89 91.95 92.29 92.23 92.05 92.09

Results in bold indicate the highest scores achieved among the different classifiers.

6. Discussion and Comparison
6.1. Discussion of the Results

In this work, extensive experiments were conducted to investigate how the proposed
methodology can improve performance in the more challenging task of children’s hand-
written Arabic character recognition. The investigation was conducted by training the
model on child data samples, adult data samples, and both. In addition, we evaluated the
proposed approach’s capabilities in classifying writers of testing handwritten character
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samples as adults or children and how the proposed supplementary features can help
improve the classification accuracy. Based on analysis of the results of Experiments 1 to 3,
it can be observed, as in Table 10, that when the (child) Hijja and (adult) AHCD datasets
were merged for the training of the proposed model, as in Experiment 3, to recognize child
handwritten Arabic characters, achieving 92.78% average accuracy with about 1% higher
score than the 91.78% average accuracy obtained by training the proposed model on the
(child) Hijja dataset only, as in Experiment 1. Such an improvement in accuracy may be a
result of providing the trained model with clearer and higher-quality supportive samples
of the (adult) AHCD dataset during training, which enhanced the modeling process and
increased the trained model’s ability to recognize more confusable children’s letter samples
via balanced and non-overfitted learning as possible by combining both child and adult
training data. Consequently, incorporating adult data alongside children’s data during the
training phase improved the recognition accuracy of the (child) Hijja test datasets.

In contrast, when the same model was trained on the (adult) AHCD dataset alone and
tested on the (child) Hijja dataset, as in Experiment 2, the recognition accuracy decreased
noticeably, scoring a lower average accuracy of 79.31% compared to Experiment 1 and 3.
The reason is that the (child) Hijja dataset is considered more complex and challenging
than the (adult) AHCD dataset since it contains many letter samples that can be distorted,
unclear, and low-quality, as we noticed and also stated in [16]. In other words, the model
was trained using only adult samples that were fairly clear and more consistent in terms
of the characteristics, shape, and size of the letter, and there were no notable distortions
compared with the Hijja dataset of child samples. Due to this, the trained model could not
recognize numerous confusable (child) Hijja data samples.

After analyzing the results and seeing the misclassified samples of Experiment 4, we
observed that there were similarities between the handwriting of children and adults in
terms of character and sizing characteristics, presence of distortions, pen stroke, and font
width. Based on these similarities, some children’s data samples were classified as being
written by adults because they were mostly closer to the common writing style of adults.
On the contrary, some adult data samples were classified as being written by children due
to the presence of some adult samples with a similar style to the common children’s writing
style. Several factors led to such similarities between child and adult writing styles, such as
growing age and educational level. The quality of a person’s handwriting improves with
growing age, except for exceptionally aging or sick people. Also, the higher a person’s
education level, the more likely it is that their handwriting will be better. However, for most
of those grown people who resort to overusing technology devices rather than traditional
paper-and-pen, over time, their handwriting may remain or become low-skilled, closer to
children’s handwriting level. In Experiment 5, combining all the proposed supplementary
features (SF and HOG) or only HOG with the CNN deep features contributed to increasing
discrimination accuracy between child and adult handwriting by approximately 6% using
the Softmax classifier. Generally, in Experiment 5, the classification accuracy was improved
in all cases compared with Experiment 4 in various ratios, as shown in Table 12.

6.2. Comparison with Existing Works

We compared our suggested methodology with different related approaches from the
literature that concentrated on children’s handwritten Arabic character recognition using
the Hijja dataset. The comparison was made in terms of the target task, the methods used
for feature extraction and classification, suggested supplementary (handcrafted) features,
applied feature fusion technique, and the dataset used for training and testing the model.
In these studies [4,16,17,20], researchers developed a new character recognition system
using a CNN deep learning model, trained it, and tested it on children’s data samples.
In [18], they designed a hybrid model by combining existing CNN models as feature
extractors with SVM and XGBoost machine learning models as classifiers, which were
trained and evaluated using the Hijja dataset. The hybrid model has outperformed other
models using the SVM classifier. However, these studies did not investigate the effect of
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training their suggested models on the AHCD dataset (comprising adult data samples)
or on a combination of the (child) Hijja and (adult) AHCD datasets to be eventually only
focused and tested on the more challenging Hijja child data samples alone.

In [19], a novel CNN model was created, trained, and evaluated using children’s
data. In addition, they studied how the use of data augmentation techniques affected the
performance of recognition during the model training and testing when combining the
two datasets, Hijja and AHCD, in various ratios. Nevertheless, they did not train their
model on combined child and adult datasets in an equal proportion to exclusively be
tested on the challenging child dataset. Finally, none of these studies or earlier studies
addressed classifying handwritten Arabic letters into child or adult writer groups. Table 13
demonstrates different aspects of comparison between the suggested strategy and several
methodologies used in earlier studies.

Table 13. Comparison between our proposed methodology and current approaches in the literature.

Ref. Task
Feature Extraction Feature

Fusion Classification Dataset Used

CNN Handcrafted Softmax SVM KNN RF Training Testing

[4]

Character
Recognition

√ √
Hijja Hijja

[16]
√ √

Hijja Hijja

[17]
√ √

Hijja Hijja

[20]
√ √

Hijja Hijja

[18]
√ √ √

Hijja Hijja

[19]

√ √
Hijja Hijja

√ √ A mixture of Hijja
and AHCD in

a different ratio

A mixture of Hijja
and AHCD in a
different ratio

Our
study

Character
Recognition

√ √ √ √ √
Hijja Hijja√ √ √ √ √

AHCD Hijja

√ √ √ √ √ A mixture of Hijja
and AHCD in an

equal ratio
Hijja

Writer-
Group

Classification

√ √ √ √ √ √ √ Both Hijja
and AHCD

Both Hijja
and AHCD

7. Conclusions

In this paper, several experiments were conducted for two tasks: handwritten character
recognition and writer-group classification. First, we designed a CNN model for children’s
handwritten Arabic character recognition. Then, the model was used to study the impact
of the training process on various handwritten Arabic character datasets belonging to
children, adults, or both in particularly recognizing letter samples written by children only.
We concluded that, when the model was trained on both samples of children and adult data,
we achieved the best performance and obtained the highest average accuracy of 92.78%,
which is rather higher than the accuracy resulting from training the model on children’s
data in isolation. Moreover, training the model on adult data alone, even though there are
much higher-quality data compared to child data, had a negative effect on the model’s
performance in recognizing children’s data.

The same model with necessary changes was also used to examine and assess its capa-
bility to differentiate between children’s and adults’ handwriting. As a result, it initially
achieved an average classification accuracy of 89.28%, demonstrating after extended analy-
sis that there could be considerably confusable similarities in writing style between adults
and children. To confront such confusable similarities and improve the child handwriting
discrimination performance and results, we suggested HOG-based and statistical-based
supplementary features to supplement the deep features extracted from the CNN model.
Amongst three proposed feature fusion approaches in Experiment 5, the approach combin-
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ing CNN-based deep features with both statistical-based and HOG-based supplementary
features augmented the model’s performance in distinguishing between child and adult
handwriting using combined Hijja and AHCD for training and testing. It yielded the
highest average accuracy of 92.29%, about 2.73% higher than the result obtained using
only CNN features. In addition, we trained and tested all extracted features using Softmax,
SVM, KNN, and RF classifiers, where SVM with the RBF kernel gave a higher accuracy
than the Softmax classifier in the character recognition task. On the other hand, in the
writer-group classification task, Softmax was the superior classifier among all, according to
all performance evaluation measures.

For future work, this approach can be extended and used to recognize handwritten
connected Arabic letters for children and propose further useful supplementary features
that may contribute to improving character recognition accuracy. Moreover, the capability
of this approach using some intentional mistakes can also be investigated and analyzed.
Moreover, it can also be enforced in various practical applications to discriminate between
children’s and adults’ handwriting through texts or words.
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Abstract: Transactional data from point-of-sales systems may not consider customer behavior before
purchasing decisions are finalized. A smart shelf system would be able to provide additional data
for retail analytics. In previous works, the conventional approach has involved customers standing
directly in front of products on a shelf. Data from instances where customers deviated from this
convention, referred to as “cross-location”, were typically omitted. However, recognizing instances
of cross-location is crucial when contextualizing multi-person and multi-product tracking for real-
world scenarios. The monitoring of product association with customer keypoints through RANSAC
modeling and particle filtering (PACK-RMPF) is a system that addresses cross-location, consisting of
twelve load cell pairs for product tracking and a single camera for customer tracking. In this study, the
time series vision data underwent further processing with R-CNN and StrongSORT. An NTP server
enabled the synchronization of timestamps between the weight and vision subsystems. Multiple
particle filtering predicted the trajectory of each customer’s centroid and wrist keypoints relative to
the location of each product. RANSAC modeling was implemented on the particles to associate a
customer with each event. Comparing system-generated customer–product interaction history with
the shopping lists given to each participant, the system had a general average recall rate of 76.33%
and 79% for cross-location instances over five runs.

Keywords: smart shelves; visual analytics; retail analytics; computer vision; sensor fusion

1. Introduction

Retail analytics involves the analysis of data to provide insight into different aspects
of retail operations. Through this type of analytics, trends in sales and customer behavior
may be characterized [1]. Retailers are able to make data-driven decisions regarding
business strategies related to pricing, product placement, and more. These strategies may
help reduce costs, increase sales, and improve the overall customer experience [2]. When
it comes to inventory management, neither a surplus nor deficit are beneficial. Ideally,
the supply should sufficiently meet customer demand to prevent products remaining
in inventory for prolonged periods of time which may lead to deterioration or eventual
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discarding, which would incur losses [3]. Hence, inventory management is one of the most
crucial considerations when it comes to data analytics in the retail industry.

Point-of-sale (POS) systems monitor and execute transactions, making them the most
common data source for retail analytics in physical establishments. Although this system
effectively tracks sale volumes, more data is required to accurately provide information
regarding product sales and availability relative to customer response [4]. This is also taking
into consideration that additional POS system features may be kept behind a paywall that
puts micro, small, and medium enterprises (MSMEs) at a disadvantage compared to their
well-established competitors, who have more resources [5]. Additionally, unlike online
retailers, which can monitor non-purchasing customer behavior, final purchase information
from onsite retail stores is limited to data provided by POS systems [6].

Further research suggests that implementing smart shelf systems is an effective way
of obtaining additional and unseen data from existing methods in physical retail stores.
Several approaches have been made in designing such systems, all of which generally
focus on customer interaction with products [4,7–9]. An autonomous shopping solutions
provider [10] uses a scalable multi-camera approach to account for problems with occlusion.
However, the processing of vision data is computationally intensive. Another approach for
implementing smart shelves is making use of cameras and weight sensors [11]. However,
its main limitation is the degraded system performance, due to the system not being able
to detect cross-location or a situation when a person reaches for a product in different
weight bins.

We take the view that the difficulty of cross-location [11] is rooted in the lack of
object identifiers tracked in a video across a time period, known as track ID, from a multi-
object tracker. Furthermore, a multi-product multi-person setting further leads to a noisy
trajectory for track ID. Our study aims to develop a smart shelf system incorporating PACK-
RMPF that solves cross-location problems while alleviating the effect of a noisy trajectory.
Enhanced by this approach, our smart shelf systems evaluate customer interactions with
fixed, shelved products through a combination of sensors and object recognition.

The main contributions of this study are as follows:

1. A smart shelf system that uses single camera and weight sensor arrays for a multi-
person, multi-product tracking system

2. A PACK-RMPF sensor fusion algorithm that enhances the tracking of product interac-
tion by associating weight event data and multi-object tracking data with the use of
state filters and inlier estimators to address occlusion and localization problems and
cross-location.

3. A simulated supermarket experiment setup that evaluates system performance based
on a customer’s journey of purchasing goods based on a pre-defined shopping list.

2. Related Work

Generally, inventory management seeks to maximize the collection and use of inventory-
related data. In the case of retail stores, it often involves streamlining an inventory with
consideration for customer demand and carrying costs, among other factors and risks.
One aspect of inventory management is the tracking of goods as they move from an inven-
tory to customers. The emergence of smart retailing, through various technologies that
enable more advanced retail analytics, aims to extend the functionality of POS systems
from merely tracking inventory movement to making logical inferences about how cus-
tomer behavior and customer–product interactions are correlated with the turnover of
products in an inventory. Smart shelves, a common approach to smart retailing, utilize
a variety of ways to extract pertinent data that can be used to predict inventory with
respect to customer behavior, including, but not limited to, weight sensors, RFID tags, and
specialized cameras [12].

Higa and Iwamoto [13] proposed a low-cost solution involving surveillance cameras
as a tool for tracking the amount of products on a shelf in 2019. The method utilized
was background subtraction wherein the background of an image is removed before the
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foreground—which contains the products—is observed. Through the use of a CNN, the
system compares fully replenished, partially stocked, and empty shelf conditions. At the
end of the research, the system was able to garner an 89.6% accuracy rate. The authors
proposed that this data could eventually be utilized to improve profits in retail stores by
improving the shelf availability of products [13]. A similar solution was proposed back in
2015 [14]. In this solution, it was suggested that image detection and processing should alert
store managers upon the need to replenish shelves, as well as the discrepancies detected
such as misplaced products.

When it comes to the use of weight sensors for product tracking, physical interactions
with a product have been typically tracked through changes in weight sensor data, as
determined by algorithms. Ref. [8] utilized a bin system in their research wherein a single
shelf row was divided into bins that had dedicated load cells for tracking a specified type
of product instead of having a single platform for all available products on the row. In [15],
each shelf row was equipped with load cell weight sensors arranged so that positional
tracking would be possible on the shelf. This approach worked through constant weight
readings from the load cells and an algorithm for detecting significant changes in the weight
of a load cell in the system to be registered as a pick up. Through the use of support vector
regression (SVR) and artificial neural networks (ANNs), the position of the product could
also be predicted.

Unmanned retail stores, otherwise referred to as cashier-less stores, utilizing smart
shelf systems typically implement human pose estimation (HPE) for customer tracking.
Implementing HPE for customer tracking is advantageous—especially in solving action
recognition problems—due to the plethora of pre-trained data readily available to use [16].
As an example, [17] developed a system for an unmanned retail store that makes use of
visual analytics and grating sensors. With the grating sensors emitting infrared beams, the
creation of an invisible curtain-like barrier was formed. Once a customer’s hand passed
through the curtain, the infrared beams would be interrupted and the motion would be
flagged as an item being taken. One camera was integrated with a human pose estimation
algorithm to classify the hand action when such an event occurred. The rest of the cameras
that were installed were used to determine which product was taken. Mask R-CNN
was utilized for multiple customer tracking. Under this model, the body was tracked as
one silhouette. Furthermore, under this system, occlusions were solved by adding the
possible losses in each part of the silhouette.

Smart shelf systems vary in terms of the extent of weight sensor and computer vision
integration. For those that primarily or solely use computer vision, there is usually a
focus on security, autonomous or cashier-less checkouts, or visual indicators of customer
behavior. AiFi, asserting itself as a provider of autonomous shopping solutions, uses
an extensive amount of cameras to be able to effectively run stores [10]. In addition to
occlusion problems, there may be a question of redundancy depending on the actual system
design. The in-store autonomous checkout system (ISACS) for retail proposed by [11], on
the other hand, was divided into three major tracking subsystems: product tracking with
weight sensors, customer tracking through cameras whose feeds underwent human pose
estimation, and multi-human to multi-product tracking through sensor fusions. These
systems were highly dependent on the pose estimation in associating the weight event
detected with the person. However, a major limitation of these systems is the problem
of collision and cross-location, especially when multiple customers are interacting with
a shelf.

Hence, there are several approaches for implementing sensor fusions. An example
of this approach is making use of a particle filter, which can be divided into four stages:
generation, prediction, updating, and resampling. Particles are uniformly generated, and
the positions of the generated particles are predicted. The sensor readings are compared
with the predicted position of each particle, and the probability that relates the distance of
the particles to the measured position from a sensor is calculated. The particles are then
resampled so that only the nearer particles are measured. Finally, the algorithm can retrieve
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the trajectory of a moving object. We were able to recreate the trajectory of the wireless
signals, sourcing from the moving objects, through the particle filter, and we recommend
this as a solution for localization problems in sensor fusion.

3. Smart Shelf System Design
3.1. Shelf Physical Overview

The shelf tested was a double-sided gondola shelf equipped with two rows, 0.5 m
apart, on each side. Each row contained three (3) weighing platforms primarily operational
through a pair of straight bar load cells, hereinafter referred to as weight bins, for a total of
twelve (12) weight bins. Distinct products were placed on each weight bin, corresponding
to twelve (12) products. The number of units per product varied based on the dimensions
of each product. The camera was located 2.43 m away from the shelf and 2.26 m from the
ground, as depicted in Figure 1.
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Figure 1. Physical system setup.

3.2. System Overview

PACK-RMPF utilizes the data from the weight sensors and video feed per unit time.
For weight sensor data, the signals undergo a filter process as a safeguard against extreme
signal spikes, movements, or errors. Extreme signal spikes and movements are referred to
weight signal changes where the weight signal steps are deemed impossible. For instance,
a 300 g product is deemed impossible to move higher than 1 kg of a weight signal step
considering that the products are removed one at a time. Additionally, errors in retrieving
weight values will send out an error string instead of float values. Thus, for extreme
signal spikes, movements, or errors, forward data filling using the padding method was
utilized. Afterward, the signal underwent a weight event detection algorithm. A three-
period moving average and a three-period moving variance were performed. Each product
contained a specific moving variance threshold based on the initial calibration results for
each product. Thus, the start of an event was triggered when the moving variance was
higher than the threshold two consecutive times, while the end of its event was triggered
when the moving variance was lower than the threshold two consecutive times. The
moving average was utilized to handle possible volatility. As such, it was utilized for
determining the weight value at the start and end of an event. When a weight sensor
decreased by the end of an event, it was labelled a pick up; likewise, if it increased by the
end of an event, it was labelled a putback.
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The data for the vision system contained the detected customers per frame attached to
a unique track ID, a bounding box, and keypoint detections. Since the vision system had
Re-ID features, it was able to trace a lost tracked bounding box, typically due to occlusion,
back to the customer using their appearance features [18]. It was equally important that
only the customer’s hand were extracted from the human pose estimation (HPE), since it
was the only one of significance to the system.

The integration system used a particle filter for trajectory tracking of the bounding box
and the hand keypoints. These trajectories were processed via random sample consensus
(RANSAC) to identify the correct customer who performed the weight event. With that,
the data process of PACK-RMPF is summarized in Figure 2.
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Figure 2. System overview.

At the end of the integration system where the product and the customer’s behavior
are associated, PACK-RMPF is able to record each customer’s action. Likewise, the system
is able to process, derive, and obtain the history of each customer’s action, the current
products in their cart, the current inventory status of the shelf, the average retention time
of each product, and the number of specific actions the customer performed.
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4. Weight Change Event Detection System
4.1. Weight Bin

Each weight bin consisted of a pair of straight bar load cells. An acrylic sheet was
mounted on top of the load cells to aid in weight distribution. The load cells were also
screwed onto the shelf. Each load cell had a capacity of 3 kg for a total capacity of
6 kg per weight bin. The dimensions of each weight bin are listed on Figure 3.
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Figure 3. Dimension of each weight bin.

As illustrated in Figure 4, the wires of each load cell were connected in parallel when
interfaced with the inputs of an HX711 amplifier module. By default, the module had
a gain of 124 and a corresponding sampling rate of 80 Hz. Each module was connected to
a Raspberry Pi 4B that would then process the readings from each weight bin concurrently.
The ground, supply, and clock pins for each HX711 module were the same, while each
digital output was connected to a dedicated GPIO pin.
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4.2. Weight Sensor Array Hardware

The weight sensor hardware system is shown in Figure 5. Every weight bin has
a unique assignment on the physical location along the double-sided shelf. Furthermore,
each weight bin is assigned a unique product item. Each row on one side of the shelf is
partitioned into three slots, leading to three weight bins per row. On each side of the shelf,
there are two rows, a top row and a bottom row. A total of 18 weight bins are connected to
Raspberry Pi 4B, which acts as the controller.
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The controller was interfaced with a host computer using secure shell (SSH) protocol.
The host computer also served as the network time protocol (NTP) server to set the weight
reading timestamps. Through the network, a server would be initialized to enable the RPi to
continuously send timestamps and weight readings for each weight bin to a client device.

4.3. Weight Change Event Detection System

An overview of the weight sensor data processing, with the main goal of identifying
and classifying weight change events, is found in Figure 6. The weight sensor data acquired
from the controller are grouped by specific weight bin location λ. Forward filling is also
implemented so that invalid readings from a weight bin assume the value of the last valid
reading from the same weight bin. Then, processing is conducted based on three-period
moving variance values.
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Figure 6. Weight event detection system.

The moving mean µt and moving variance νt calculate the mean and variance along
a specific windowing period, respectively. N is the window length and wt is the weight
values at time t. We define the ff as follows:

µt =
1
N

t

∑
i=t−N

wi (1)
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N

t
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Each weight data stream is continuously processed via its moving variance, vλ
t . The

weight change event detection, ∆νλ
t , is shown in Equation (3). It is considered to be detected

once a weight data stream, vλ
t , goes above a pre-defined product threshold, Tλ

p .

∆νλ
t =

{
1 , vλ

t ≥ Tλ
p

0 , vλ
t < Tλ

p
(3)

The product threshold Tλ
p is calibrated based on the product weight per unit and em-

pirical repeated testing conducted with the corresponding weight bin. Table 1 summarizes
the thresholds used for each weight bin.

Once a weight change event is detected, it must be further classified as either a
customer picking up a product (pick up) or a customer putting back a product (put back).

When the moving variance threshold is surpassed, the algorithm considers the specific
weight event involved as a significant weight change that must be classified as a pick
up or a put back. With this, a sliding window mechanism is implemented to determine
two consecutive events. The start of an event for each product is determined when the
moving variance exceeds the moving variance threshold two consecutive times. Likewise,
the end of an event for each product is determined when it is below the moving variance
threshold two consecutive times. The average readings of the start and the end of an event
are then compared. A weight change event would be flagged as a pick up if the reading at
the end of the event was less than that at the start of the weight event. On the other hand,
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a weight event would be flagged as a put back if the reading at the end of the event was
greater than that at the start of the weight event.

Table 1. Moving variance threshold for each weight sensor.

Product Weight Bin Weight (g) Threshold, Tλ
p

Piattos HX1 40 100
Cream-O HX2 33 100

Whattatops HX3 35 100
Loaded HX4 32 100
Bingo HX5 28 50

Cheesecake HX6 42 7000
Water HX7 360 1000

Zesto (Orange) HX8 200 200
Lucky Me (Beef) HX9 55 200

Mogu Mogu HX10 330 8000
Zesto (Apple) HX11 200 200

Lucky Me
(Calamansi) HX12 80 200

5. Vision System
5.1. Physical Camera

In this study, a webcam was considered. The A4Tech PK910P has a resolution of 720p
and served as the primary camera during the testing of the complete, integrated system.
Moreover, the live processing of vision data was simplified with this camera. To facilitate
this processing, a computer equipped with an Intel Core i7 CPU and a dedicated NVIDIA
GeForce RTX 3060 GPU was used.

5.2. Extraction of Multi-Object Trajectory

Primarily, the vision system aims to track and assign an identifier to customers inter-
acting with the shelf. We present the vision system in Figure 7. This process is handled by
Keypoint R-CNN [19] and StrongSORT [18].
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The Keypoint R-CNN used was the built-in PyTorch model (accessed on 7 November 2023
https://pytorch.org/vision/main/models/keypoint_rcnn.html) with ResNet-50 [20] and
feature pyramid networks [21] as the backbone. Our Keypoint R-CNN used a pre-trained
model from the COCO dataset [22]. Each person identified via the model was assigned to
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have 17 keypoints. Alongside with these keypoints, the corresponding bounding box was
also detected via the model. Only those detections having a confidence score of 80% or
higher were considered—this rule was put in place to filter out false positive detections.
Each bounding box was assigned an ID through StrongSORT, which is an MOT baseline
that utilizes a tracking-by-detection paradigm approach. This tracked and associated ob-
jects in a scene through the appearance and velocity of the objects. The most pertinent
keypoints from Keypoint RCNN were keypoints 9 and 10 which tracked the left and right
hands, respectively. After performing both vision processes, the bounding box information
and ID, keypoints 9 and 10, and the timestamps for each frame were exported to a comma
separated- values (CSV) file.

Furthermore, the vision system utilized a pre-trained StrongSORT model for assigning
each customer a track ID and for Re-ID purposes. Its detector was trained on the CrowdHu-
man dataset [20,21] and the MOT17 half-training set [20]. The training data were generated
by cutting annotated trajectories, not tracklets, with random spatiotemporal noise at a
1:3 ratio of positive and negative samples [20]. Adam was utilized as the optimizer, and
cross-entropy loss was utilized as the objective function and was trained for 20 epochs with
a cosine annealing learning rate schedule [20]. For the appearance branch, the model was
pretrained on the DukeMTMC-reID dataset [20]. In the study, strongSORT Re-ID weights
utilized osnet_x_25_msmt17. Additionally, strongSORT was equipped with human pose
estimation using a pre-trained Keypoint RCNN, Resnet 50 fpn model. Its purpose was to
detect the hands of the customers, which would later be utilized in the integration system
to track the trajectories of a customer’s hand.

6. PACK-RMPF
6.1. PACK-RMPF Initialization

The fusion of the weight detection system data with the vision data system is per-
formed via the product association with customer keypoints (PACK) through RANSAC
modelling and particle filtering (RMPF). This includes the implementation of a particle
filter and random sample consensus (RANSAC). For the particle filter, objects are tracked
with respect to a landmark. Specifically, the landmarks were placed at the center of each
weight bin based on its location in a frame. A sample of the points of each landmark is
provided in Figure 8.
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A pre-defined rectangular area is created for each weight bin, as shown in Figure 9,
for which a RANSAC model of all possible locations of the keypoints bounded by the box
is created.
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Figure 9. Sample of weight bin pre-defined rectangular area.

6.2. PACK-RMPF System and Cross-Location

The PACK-RMPF algorithm associates the customers with the interacted product
using the multiple particle filter and RANSAC modeling. The timestamps from the weight
and vision data are matched for the purpose of synchronization. Each detected customer’s
keypoints are filtered in the multiple particle filter where the particles are compared to the
RANSAC model. Each detected customer outputs an inlier score. The customer with the
highest inlier score is associated with the interacted item. Each block of the PACK-RMPF
algorithm shall be discussed in detail in the following sections. Furthermore, a summary of
all the blocks is provided in Figure 10.
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6.2.1. Timestamp Matching

As shown in Algorithm 1, the timestamp matching algorithm aims to match a weight
event action wt, through its weight event timestamp t, to vision attributes Vτ and its event
timestamp τ. The vision attributes include the track ID information with its corresponding
bounding box and left and right hand keypoint coordinates. The algorithm iterates based
on the length of the weight event actions wt. The timestamp matching algorithm begins by
calculating the ∆time of wt. The following is the formula for ∆time:

∆time = t − 3.5 seconds (4)

Then, the algorithm tries to find where the timestamps of t and τ are equal—or if there
are no equal timestamps—within the 500 ms latency. Then, from Equation (1), all vision
attributes associated with a vision timestamp Vt within the range of the ∆time are selected.
The selected Vt are stored alongside τ, t, and wt for processing in the multiple particle
filter block.
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Algorithm 1: Timestamp Matching Algorithm

1: Input:weight event timestamp (t ), weight event action (wt ), vision event
timestamp (τ ), vision Attributes (Vτ)
2: Output: matched weight event timestamp with vision event timestamp (Mτ )
3: For Each iterations conducted
4: Calculations are made as follows:
5: Find where t = τ or τ is within 500 ms of wt
6: Store wt and selected vision attributes in one Mτ array
7: Store t, wt, and selected vision attributes in one Mτ array
8: End

6.2.2. Multiple Particle Filter

The purpose of the multiple particle filter is to be able to track the trajectory of the
bounding box and hand keypoints. The knowledge of the trajectory of the system is
what enables PACK-RMPF to be able to determine events where cross-location occurred.
Algorithm 2 describes the system flow of the particle filter.

Algorithm 2: Multiple Particle Filter Algorithm

1: Input: (Mτ) containing matched vision attributes (Vτ ) : customer track ID (VτT_ID ),
bounding box coordinates (Vτbbox ), Keypoint 9 coordinates (VτK9 ), Keypoint 10
coordinates (VτK10 )
2: Output: Bounding box particles (Pbbox ), Keypoint 9 particles (PK9 ), Keypoint 10
particles (PK10 ) of each track ID (VτT_ID )
3: For len(Mτ ) iterations, follow the following procedure:
4: Extract the vision attributes inside Mτ

5: If Vτ
1, then

6: Initialize random particles P with coordinates
(

Px, Py ) based on
the initial coordinates of Vτ

1

7: Compute the distance between the landmark and initial coordinates Vτ
1

8: Move the particles diagonally by adding a diagonal distance to the particles
9: Calculate for the weights of each particle
10: Apply systemic resampling
11: Store particles (P ) to global particles repository
12: Otherwise
13: Extract global particles (P ) containing current Pbbox, PK9, PK10
14: Compute the distance between the landmark and the current coordinates Vτ

n

15: Move the particles diagonally by adding a diagonal distance to the particles
16: Calculate the weights of each particle
17: Apply systemic resampling
18: Store particles (P) to global particles repository
19: End
20: Collect final particles (P ) containing final Pbbox, PK9, PK10

The particle filter process can be summarized into three steps. These steps are predict,
update and resample. The predict step is used to predict the trajectory of the keypoints [22].
For the context of PACK-RMPF, the predict step begins by generating uniform random par-
ticles based on the initial position of the vision attributes, Vτ, consisting of the coordinates
of the position of the bounding box and the hands. Then, each particle is moved, with one
unit moved to the x axis and one unit moved to the y axis.

Then, the particles are updated based on their position relative to the weight bin
landmarks. The following equation was utilized to calculate the position of the particles
with respect to the landmarks [22]:

distance =
√
(VAx − xl)

2 +
(
VAy − yl

)2 (5)
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where VAx and VAy are the coordinates of the vision attributes, and xl and yl are the
coordinates of the weight bin landmarks.

Finally, the particles are resampled. The following principle of systematic resampling
was utilized, where wk represents the weights based on the distance of each particle, and
Ns is the number of particles [22]:

Ne f f =
1

∑NS
i=1

(
wi

k
)2 (6)

After processing the associated vision attributes to the weight event, the final particles
are then evaluated in RANSAC.

6.2.3. Random Sample Consensus (RANSAC)

RANSAC or random sample consensus associates the trajectory produced by the
multiple particle filter with the right person who interacted with the smart shelf. RANSAC
in this study utilized the SciPy library. This library created a RANSAC model through the
use of the possible points inside each weight bin. The model utilized the mean absolute
deviation of the possible points of the weight bin to create the model. The following is the
formula utilized for the mean average deviation [23]:

MAD =
∑
∣∣∣ybin − µybin

∣∣∣
Nybin

(7)

where ybin is the possible y coordinates in the weight bin; µybin is the mean of these possible
y coordinates; and Nybin is the number of possible y coordinates that could land in the
weight bin. The algorithm creating the RANSAC Weight Bin is illustrated in Algorithm 3.

Algorithm 3: RANSAC Weight Bin Training

1: Input: The top left and bottom right coordinates of the pre-defined rectangular area
2: Output: RANSAC model of the weight bin
3: Generate all possible keypoints based on the top left and bottom right coordinates of the
pre-defined rectangular area
4: Calculate the mean absolute deviation of the possible keypoints
5: Generate the RANSAC linear regression model

After generating the RANSAC model, the particles from the multiple particle filter are
evaluated. This process is illustrated in Algorithm 4.

Algorithm 4: RANSAC evaluation for each trajectory

1: Input:states S containing Scentroid, SK9, SK10
2: Output: number of inliers I
3: For Each s in (Scentroid , SK9, SK10),
4: X, Y = s
5: y pred= RANSAC weight bin model (X)

6: Adev =
∣∣∣ypred − y

∣∣∣
7: If Adev < MAD
8: classify as inlier I
9: Otherwise
10: classify as outlier O
11: End
12: Return number of inliers
13: Trajectory with the highest number of inliers is associated to the weight event

The trajectories of the three states S, centroid (Scentroid) and the left (SK9), and right
(SK10) hands, are evaluated. The first step of the RANSAC evaluation involves feeding the
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x-coordinate of S to the generated RANSAC weight bin model. The predicted y-coordinate
is evaluated based on its absolute deviation. The absolute deviation is as defined as follows:

Adev =
∣∣∣ypredicted − ymodel

∣∣∣ (8)

where ypredicted is the predicted y value from the states, and ymodel is the y-coordinate from
the RANSAC weight bin model.

After computing, if the Adev is less than MAD, then it is tagged as an inlier. However,
if the Adev is greater than MAD, then it is classified as an outlier. Finally, the trajectory
with the highest count of inliers is the one associated with the event. Finally, the collated
associated weight events with the trajectories are exported as a CSV File.

7. Results and Discussions
7.1. Simulated Supermarket Experimental Setup

The system performance of PACK-RMPF was evaluated by implementing a simulated
supermarket setup. A simulated supermarket setup is a setup that emulates a supermarket.
In this setup, participants were given a list of instructions detailing which products to
pick up and put back and from which part of the shelf. Furthermore, there were instances
where customers deviated from what was given in the list. These deviations from the
lists were recorded by the proponents. Moreover, items with cross-location were also
mentioned in these lists. Overall, a total of forty-four (44) shopping lists were distributed
to all participants. Videos were stored in secure file storage accessible only to the au-
thors. No personally identifiable information, such as faces, were collected from the video
recordings.

The simulated supermarket setup was implemented by dividing the duration of each
test to four 30 min tests and a single 60 min test. During these durations, customers
were expected to interact with the shelf according to their shopping lists. The simulated
supermarket setup was implemented in one of the research laboratories of De La Salle
University where the demographics of the participants were students. The duration of the
experimentation lasted two days. The first day was dedicated to the 30 min tests, while the
second day was dedicated to the 60 min test.

From these tests, the system performance was evaluated based on its recall rate, as
defined in the equation below [11]:

% Correct Association =
Identi f ied Correct Items

Identi f ied Correct Items + Unidenti f ied Correct Items
(9)

PACK-RMPF tracks the bounding box and the hands of each customer. That is why, to
further check the system performance of the system, the proponents tested the components
of PACK-RPMF separately.

7.2. Weight Event Detection System Results

The weight event detection system is designed to identify pickups and putbacks. This
is necessary in order to kickstart the process of associating customer interactions with
customers. All in all, the weight event detection system successfully identified pick up and
put back events that happened in quick succession of each other. A single event included
a minimum of two points of data, equivalent to two seconds, given the rate that weight
readings were acquired. In this study, the quick weight change events evaluated spanned
as long as four rows of the time series data equivalent to four seconds. It may have been
possible to have more responsive weight event detection if the frequency of the weight
sensor readings had been increased. This process is illustrated in Figure 11.
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Figure 11. Weight event detection with quick pick ups and putbacks.

For each weight bin, there were minimal false or error weight readings. Weight Bin
7, corresponding to the platform with water, exhibited the most errors at 0.10% with
10 false readings among 9,753 data points. On average, 0.03% of the readings per weight
bin returned were false. Evaluating each run, as low as 0.005866% and not more than
0.01725% of readings returned false. The overall performance report of each weight bin is
found in Table 2.

Table 2. Overall performance report of each weight bin.

Weight Bin Ratio False Readings Total Count

HX1 0.00% 0 9836
HX2 0.04% 4 9875
HX3 0.01% 1 9881
HX4 0.02% 2 9797
HX5 0.02% 2 9828
HX6 0.04% 4 9836
HX7 0.10% 10 9753
HX8 0.03% 3 9759
HX9 0.03% 3 9839

HX10 0.03% 3 9846
HX11 0.01% 1 9835
HX12 0.01% 1 9855

Average 0.03% 2.833333333 9828.333333

7.3. Vision System Results

The vision system plays an important role in identifying the customers interacting
with the shelf. The vision system assigns each customer a track ID. The track ID serves as
the identifier and is used to associate a weight event with a customer.

Figure 12 illustrates that the vision system could reliably track up to three customers at
a time roaming around the double-sided shelf. It was possible for the system to detect and
track upward of five people at a time, even without pre-training the StrongSORT model.
However, adjustments to StrongSORT parameters, a different camera angle, or multiple
cameras may still be needed to improve reliability.
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Figure 12. Three people tracked while interacting with the shelf.

Based on these results, the developed smart shelf system reliably accommodates up to
two customers at a time. It must be noted that the reliability was greater in instances where
only one customer at a time was present on each side of the shelf. In cases where adjacent
occlusion was minimal or did not occur around the time that weight events occurred, up to
three customers could be detected, tracked, and associated with some reliability.

7.4. PACK-RMPF Simulated Supermarket Setup Results

The simulated supermarket setup aims to check the system performance of PACK-
RMPF. PACK-RMPF tracks the bounding box and the hands of each customer. These
keypoints play a big role in associating product movement with the customers in the frame.
Furthermore, tracking these keypoints is what enables PACK-RMPF to associate a product
with a customer during scenarios with cross-location. Hence, the proponents performed
experimentation and tried gauging the performance of PACK-RMPF if PACK-RMPF only
tracked (1) the bounding box, (2) the hands, and (3) both the bounding box and the hands
of each customers.

The previous literature has added emphasis on tracking head keypoint [11]. However,
PACK-RMPF gives weight on tracking the centroid of the bounding box. Table 3 illustrates
the average percent of associations per run when PACK-RMPF is calibrated to track only
the bounding box of each customer.

Table 3. Average percent of associations per run of the bounding box approach of PACK-RMPF.

Run Duration Average Percent of Correct Association

1 30 min 74.76%
2 30 min 72.79%
3 30 min 75.77%
4 30 min 91.67%
5 60 min 78.36%

Overall Average Percent of Association 78.67%

The iteration of each run consisted of scenarios where (1) there were multiple partici-
pants interacting with the shelf and (2) there was a single participant interacting with the
shelf. Overall, PACK-RMPF, when tracking only the bounding box of the customer, yields
an overall average percent association of 78.67%.

In the previous literature, tracking only the head has worked well when there was
only one customer interacting with the shelf. The accuracy could reach as high as 100% [11].
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PACK-RMPF when tracking the bounding box also reaches this same accuracy in single
customer scenarios. However, incorrect associations increase as the number of participants
interacting with the shelf increases. In the case of PACK-RMPF, the overall percent of
association—only considering the scenarios with multiple customers—yields an average
percent of association of around 57%.

The density of people interacting with the shelf affects the system performance of
smart shelves due to occlusions [11]. Similarly, this was the case with PACK-RMPF. Correct
associations considered whether the expected weight events triggered by a customer
were associated with that customer. Upon analyzing the integrated data and reviewing
the camera footage, false associations were mainly attributed to instances of adjacent
occlusions—where customers were occluded from the camera’s point of view while another
customer is on the same side of the shelf—due to customer stalling or customers entering
in groups.

In the example shown in Figure 13, the keypoints of the occluded customer were able
to be determined by the system. However, the tracked bounding box was not assigned
since the confidence score threshold was not met. Although there were instances where the
customer was not occluded, factors such as the 3.5 s interval considered by the integration
system typically led to a higher RANSAC inlier score for the non-occluded customer
standing closer to the camera.
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Similarly, the same trend, as illustrated in Table 4, can also be seen with PACK-RMPF
that only tracks the hands of the participants.

Table 4. Average percent of associations per run of the hands approach of PACK-RMPF.

Run Duration Average Percent of Correct Association

1 30 min 78.36%
2 30 min 81.97%
3 30 min 66.92%
4 30 min 87.77%
5 60 min 75.25%

Overall Average of Percent Association 78.05%

The hands approach of tracking in PACK-RMPF garnered an almost similar 78% over-
all average percent of association. But, what sets the hands approach of PACK-RMPF apart
is the fact that it was able to garner an average percent of association of 58% in the multiple
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people tracking scenario. Even if the hands were occluded from the shelf, the system was
still able to garner a higher score compared to previous approaches that only garnered 40%
accuracy [11]. Similarly, the probable source of inaccuracies in associating the customer
with the product is adjacent occlusion which was discussed in the previous paragraph.

Finally, Table 5 illustrates the results of using PACK-RMPF as a whole system, which
combines both hand tracking and bounding box tracking, achieved an average of 76.33%
correct associations of customers with weight events per run.

Table 5. Average percent of associations per run of PACK-RMPF.

Run Duration Average Percent of Correct Association

1 30 min 74.22%
2 30 min 77.55%
3 30 min 68.17%
4 30 min 86.11%
5 60 min 75.62%

Overall Average Percent of Association 76.33%

7.5. PACK-RMPF with Cross-Location Results

A persistent limitation of threshold-based approaches in related studies that sought
to associate customers with weight sensor data is the instance wherein customers interact
with products that they were not standing directly in front of [11]. This includes the picking
up or putting back of products on the same side of the shelf. Figure 14 provides a visual
example of an instance of a cross-location pick up.
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In this study, these instances are referred to as cross-location events. By utilizing
a particle filter to keep track of the trajectory of the left and right wrists of each customer,
along with the assignment of the RANSAC inlier scores for the tracked keypoints, this
problem was addressed. Table 6 illustrates the performance of this system in terms of
associating customers and products with cross-location.
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Table 6. PACK-RMPF cross-location results.

Run Duration Number of Items
with Cross-Location

Number of Items
Correctly
Identified

Percent of Correct
Association with
Cross-Location

1 30 min 5 5 100%
2 30 min 2 2 100%
3 30 min 5 3 60%
4 30 min 4 3 75%
5 60 min 5 3 60%

Overall Average Percent of Association 79%

Overall, the system was able to achieve an average of 79% correct associations across
all runs. Similarly, the deviations in the percent of correct association could be associated
with adjacent occlusion. Adjacent occlusion is the occlusion of vision data needed to process
and gather pieces of information, such as the location of the keypoints and the bounding
box with respect to the shelf. These pieces of information are crucial in the processing of
particle filters and RANSAC. Despite this, the percent of correct association per run was at
least 60%.

8. Real-World Business Use for Case-Enhancing Retail Experience and Optimization

The smart shelf system offers enormous potential for improving customer experience
and optimizing operations in brick-and-mortar retail stores.

8.1. Inventory Management and Product Placement

The real-time tracking of inventory levels, facilitated by the weight sensors on shelves,
detect stock levels and can assist in preventing inventory shortage. This solution reduces the
costs associated with manual stock checking labor. Moreover, strategic product placement
is enabled by the analysis of customer interaction data, identifying high-traffic areas and
providing insights into product appeal. For example, high velocity impulse purchase items
can be strategically placed near checkout counters to maximize sales, or slow-moving items
could be placed in locations that would improve their velocity.

For the proposed system, the expected replacement policy is that a member of the
supermarket staff is responsible for handling item replacements requested by the customer.

Furthermore, to optimize product placement, the ability of the system to detect pickups
and putbacks at specific locations of the smart shelf enables the identification of hotspots
where customers frequently interact with the shelf. These hotspots can be helpful in formu-
lating data-driven product selection and placement strategies leading to product purchases.

8.2. Operational Efficiency

The integration of the smart shelf system with existing retail management systems,
such as point-of-sale and inventory management, could facilitate the improvement of data-
driven decision making across various business operations [24]. Sale trends and interaction
data could be used to optimize purchase decisions and supply chain activities, thereby
contributing to more efficient operational processes.

Hence, the ability of the smart shelf to track the frequency of pickups and putbacks
gives retailers an insight into customer patterns. For example, the data on the frequency of
pickups and putbacks can give the retailer an insight into which products are frequently
picked up and returned. Then, from these patterns, they can deduce plans or strategies that
could help facilitate a higher probability of purchase for products.

Moreover, the smart shelf system enables retailers to undertake a data-driven ap-
proach in optimizing their product placement and strategy. By continuously monitoring
pickups and putbacks, the retailers are equipped with a closed-loop cycle of formulated
strategies and can execute a new strategy, evaluate against conventional placements, and
re-formulate strategies.

196



Sensors 2024, 24, 367

8.3. Addressing Challenges and Considerations

While the potential of such smart retail technologies is promising, careful consideration
must be given to customer privacy and the perception of surveillance [25]. Establishing
clear policies and maintaining transparency with customers about data collection and
usage is critical. In addition, current brick-and-mortar retail businesses could face technical
challenges in the adoption of these AI solutions.

9. Conclusions

Weight sensor and computer vision systems were successfully integrated as a smart
shelf system. Through data processing and sensor fusion, weight change events detected
through the weight system could be associated with a specific customer to help characterize
touch-based customer behavior and generate a log of customer–product interactions. The
use of a network time protocol server allowed timestamps of both systems to be matched,
which then enabled the integration of their data. The weight system performed well with
an average of 98% correct event detections and a maximum of 0.01725% invalid readings in
a single run. It was also able to detect events that happened in quick succession of each
other. The vision system had particularly good detection rates when handling up to three
customers at a time. Customers were reidentified by the system after short periods of
occlusion. The particle filter and RANSAC implemented in the integration system were
able to associate the weight change events with each customer, with a recall rate of 68% or
higher. Furthermore, the problem of cross-location was resolved, which can be exemplified
by the 79% overall recall rate of the system with cross-location.

Despite the overall success, certain challenges were noted. These include customer
stalling and larger groups on the vision data leading to relatively low detection percentages
for specific customers. Recommendations for improvement include considering alternative
materials and components for shelf and prototype construction, optimizing load cell config-
urations for weight distribution, and refining wiring through proper PCB implementation.
Prospects involve scaling up the system to accommodate additional shelves, exploring the
use of multiple cameras in terms of reliability and scalability, and investigating real-time
data processing for enhanced system responsiveness. Furthermore, future studies could
take the opportunity to fine tune the PACK-RMPF system so that it can take advantage of
tracking both the bounding box and the hands, especially in scenarios where multiple peo-
ple interact with the shelf. Moreover, future experimentation involving multiple product
pickups and putbacks is also recommended. Use cases of the smart shelf system could be
deployed in small-scale grocery stores.
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Abstract: With the development of smart logistics, current small distribution centers have begun to
use intelligent equipment to indirectly read bar code information on courier sheets to carry out express
sorting. However, limited by the cost, most of them choose relatively low-end sorting equipment in a
warehouse environment that is complex. This single information identification method leads to a
decline in the identification rate of sorting, affecting efficiency of the entire express sorting. Aimed at
the above problems, an express recognition method based on deeper learning and multi-information
fusion is proposed. The method is mainly aimed at bar code information and three segments of
code information on the courier sheet, which is divided into two parts: target information detection
and recognition. For the detection of target information, we used a method of deeper learning to
detect the target, and to improve speed and precision we designed a target detection network based
on the existing YOLOv4 network, Experiments show that the detection accuracy and speed of the
redesigned target detection network were much improved. Next for recognition of two kinds of
target information we first intercepted the image after positioning and used a ZBAR algorithm to
decode the barcode image after interception. The we used Tesseract-OCR technology to identify the
intercepted three segments code picture information, and finally output the information in the form
of strings. This deeper learning-based multi-information identification method can help logistics
centers to accurately obtain express sorting information from the database. The experimental results
show that the time to detect a picture was 0.31 s, and the recognition accuracy was 98.5%, which has
better robustness and accuracy than single barcode information positioning and recognition alone.

Keywords: deeper learning; multiple information fusion; YOLOv4; express sorting; information
to identify

1. Introduction

With the rapid development of the world economy, people’s living standards are im-
proving day by day; At the same time, the rapid development of the internet enables more
and more consumers to choose convenient online shopping. According to the statistics of
the China Post Bureau, the business volume of express service enterprises in China has
reached 108.30 billion, up 29.9% year on year, and business revenue has reached 1033.23 bil-
lion yuan, up 17.5% year on year. In 2021, because of the increase of express business, this
has put existing logistics systems to a huge test. At present, the sorting of express delivery
is mainly by a courier sheet that can be divided into automatic sorting, semi-automatic
sorting and manual sorting. Automatic sorting is by use of infrared bar code detection
based on radio frequency identification (rfid) technology for delivery information [1]. This
method is costly, difficult to popularize, and mainly used in large-scale logistics express
sorting centers [2]. Semi-automatic sorting involves a semi-automatic sorting machine
based on machine vision for sorting. The staff put the courier sheet upward and then put it
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on a conveyor belt. A camera above the conveyor belt acquires pictures of the courier sheet,
and then the central processor identifies the barcode information to generate an electrical
signal and control the conveyor belt to send the express to different areas. Manual sorting
done directly by a labor force, which is inefficient. With the continuous development of
smart logistics and the limitations of cost, most small logistics sorting centers now adopt a
semi-automatic sorting method. However, due to the limitations of the sorting environ-
ment and equipment, barcodes cannot normally be recognized in the identification process,
which requires manual intervention to increase sorting efficiency.

The courier sheet mainly contains a one-dimensional barcode, three segments of
express code and the user’s personal information. The one-dimensional bar code is econom-
ical, time-dependent and has abundant logistics information. When this semi-automatic
sorting method scans the one-dimensional bar code for sorting, the bar code can be dis-
turbed obscured by stains and distortion after layer-by-layer sorting, which seriously affects
express sorting. The light in the warehouse, creases and other factors affect detection of
the barcode. An express three-segment code is composed of characters with larger fonts,
and each segment represents different information, including cities, outlets and salesmen.
However, the three-segment code is also easily affected by the characteristics of its sur-
face, resulting in low accuracy in detecting the three-segment code area. Therefore, in
the process of express sorting, the positioning of target information is key to sorting an
determines its efficiency. Existing sorting methods based on single information on the
courier sheet can be divided into two categories. One is a method based on traditional
digital image processing. For example, Huang et al. [3] used Halcon visual recognition
technology to extract single three-segment code information from the courier sheet with
good accuracy but high cost. Weihao et al. [4] used a Hough transform to detect regions
containing barcodes. Katona M [5] used algorithms based on morphological operations
to detect barcodes, and an improved version [6] used Euclidean distance maps to match
barcode candidates. However, such methods are subject to environmental factors and
depend on digital image processing, so it is difficult to detect barcodes accurately and
efficiently in complex environments. Another method is based on deeper learning [7]. With
the continuous development of convolutional neural networks in object detection, these
have been widely used in sorting. Zamberletti A et al. [8] first used a deep neural network
for barcode detection, but it was not very effective in practice because it was developed
using experimental images. Kolekar A and Ren Y [9,10] used the deeper learning detector of
SSD for barcode detection, and achieved good performance under a complex background.
Li J et al. [11] used the Faster R-CNN network for barcode detection and achieved better
detection results with higher accuracy and strong robustness. Z. Pan [12] used a YOLO
algorithm for detection of packages when dealing with the problem of express stacking. R.
Shashidhar [13] used a YOLOv3 model and OCR to detect and recognize license plates and
achieved good results. Methods based on traditional digital processing are easily affected
by environmental factors when detecting the target area, which leads to inaccurate detected
areas and may cause recognition errors. The use of deeper learning methods to detect the
target area has advantages. In image recognition, a convolutional neural network is used
to learn various features of the target, which is more robust in target detection. In this
regard, considering the complexity of the express sorting environment, we decided to use a
deeper learning method to detect the target information. At the same time, we considered
that it would be too simple to select only certain information as the sorting information
in the real-time sorting process, and the robustness would be poor. In a complex logistics
environment, false detection will occur, which will affect sorting efficiency. Therefore, we
chose the multi-information method t better guarantee the accuracy of identification.

In summary, we propose a deeper learning-based multi-information fusion method
for courier sheet recognition. The method is mainly divided into two stages, one being
the positioning of the one-dimensional barcode and the three-segment code on the courier
sheet, and the other the decoding of the barcode and the recognition of the three-segment
code. As shown in Figure 1, the images are first input into the target detection network
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for positioning of the two kinds of information. In enable accurate detection in complex
environments, we redesigned the key positioning network, which was optimized based
on YOLOv4, and ensured the speed and accuracy of the optimized network. The network
includes the backbone feature extraction network of YOLOv4, the spatial pooling layer
after adding the cross-stage module, the attention module SE, and the use of FPN structure.
As a backbone feature extraction network, CSPDarKet53 can ensure accuracy and greatly
reduce the number of parameters. A spatial pooling layer with inter-phase modules was
used instead of the original spatial pooling layer, which helped to ensure the accuracy
and reduce the number of parameters. The attention module SE was added to enhance
features that improved the accuracy of detection. Replacing the original structure with an
FPN structure effectively reduces the network complexity and parameter number, and the
optimized positioning network is much better than the YOLOv4 network. The next step
is the recognition of target information. First, the rectangular boxes containing barcode
information and three-segment code information are captured, and the pictures containing
barcode information are decoded and output by the ZBAR algorithm. The characters of the
three-segment code information box are recognized by Tesseract-OCR text recognition. The
string information of the two is written into the text so that the express sorting information
can be accurately obtained from the database. Our main contributions are as follows.

• We propose a multi-information fusion courier sheet recognition method instead of
single information target recognition in the process of express sorting to improve the
recognition rate of sorting.

• The YOLOv4 target detection model was optimized for target information positioning.
Compared with other detection networks, the performance of courier sheet detection
is more powerful.
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Figure 1. Method structure diagram.

The rest of this article is as follows. Section 2 describes the target detection network
used by the method. Section 3 mainly describes the recognition method of target informa-
tion. In Section 4, experiments are described to verify the reliability of the detection model
and the recognition algorithm, and the whole method is evaluated to verify the feasibility
of the proposed method. Section 5 provides the conclusion.

2. Target Detection Network

Widely used target detection algorithms in current target detection tasks are all based
on deep convolutional neural networks [14] that can learn features from a large amount of
data. At present, detection is mainly divided into two-stage with detectors such as R-CNN,
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Fast R-CNN, Faster R-CNN [15–17] and single-stage detectors such as YOLO [18] series
and SSD [19]. The output of the single-stage detector only needs a CNN operation to obtain
the result directly. The two-stage detector needs to be divided into two steps. The first step
is to perform a simple CNN operation, and the second step is to score the results obtained
in the first step. Then, the candidate regions with high scores are input into CNN for final
prediction. Because of the existence of candidate regions, the two-stage detector has high
accuracy but is not as fast as the single-stage detector. Therefore, for fast real-time target
detection, a single-stage detector is preferred. Whether target detectors are efficient free
(e.g., CenterNet [20]) or anchor based (e.g., EfficientDet and YOLOv4. [21,22]) divides them
into two types based on anchor points. The biggest advantage of the former is that the speed
of the detector is very fast, and there is no need for preset anchor and direct regression,
which greatly reduces time consumption and computational power. The latter has higher
accuracy and can extract richer features, but it takes more time and computational power.
Therefore, our research considers this selection.

YOLOv4 was improved on the basis of YOLOv3 [23]. As an efficient and powerful
target detection model, it takes into account both speed and accuracy. It is mainly composed
of three parts: a feature extraction network, Backbone; a Neck for feature fusion, and a
detection Head, Yolo Head, for classification and regression operation.

As shown in Figure 2, a picture of the courier sheet captured is input into the YOLOv4
network. The network first adjusts the picture to the size of [3, 416, 416], and then trunk
feature extraction network CSPDarknet53 extracts target features. A shallow feature map,
deep feature number, and a deep feature map are introduced into the Neck part. After
using the SPP structure to enhance the receptive field on the deep feature map, the three
feature maps are put into the path aggregation network PANet [24] to extract features
repeatedly, and finally into the Yolo Head. The image can be divided into [52, 52, N],
and [13, 13, N] feature maps of different sizes for detection of large targets, medium targets
and small targets, where N = 3× (5 + C), which depends on the model category.

The loss function of YOLOv4 can be divided into three parts: confidence loss Lcon f ,
classification loss lclass, and regression frame loss lCoU . Lcon f and lclass. These are expressed
in Equations (1) and (2).

Lcon f =
s2

∑
i=0

B

∑
j=0

Iobj
ij
(
Ci − Ĉi

)2
+ λnoobj

s2

∑
i=0

B

∑
j=0

Inoobj
ij

(
Ci − Ĉi

)2 (1)

lclass =
s2

∑
i=0

Iobj
i ∑

c∈classes
(pi(c)− p̂i(c))

2 (2)

Regression box loss represents the error between the prediction box and the real
box. To ensure more accurate calculation results, several aspects are considered, including
the overlapping area of the detection frame, the distance of the center point, and the
length-width ratio. Regression box loss lCoU formula is shown in Equation (5).

v =
4

π2

(
arctan

ωgt

hgt − arctan
ω

h

)2

(3)

α =
v

(1− IoU) + V
(4)

lCoU = 1− IoU +
d2

c2 + αv (5)

Note that α and v are penalty terms for the aspect ratio, ωgt and hgt are the width
and height of the real box, w and h are the width and height of the predicted box, d is
the Euclidean distance between the two center points, and c is the diagonal distance of
the closure.
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The loss function of YOLOv4 is expressed in Equation (6).

loss(object) = lCoU − lcon f − lclass (6)
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into CNN for final prediction. Because of the existence of candidate regions, the two-stage 
detector has high accuracy but is not as fast as the single-stage detector. Therefore, for fast 
real-time target detection, a single-stage detector is preferred. Whether target detectors 
are efficient free (e.g., CenterNet [20]) or anchor based (e.g., EfficientDet and YOLOv4. 
[21,22]) divides them into two types based on anchor points. The biggest advantage of the 
former is that the speed of the detector is very fast, and there is no need for preset anchor 
and direct regression, which greatly reduces time consumption and computational power. 
The latter has higher accuracy and can extract richer features, but it takes more time and 
computational power. Therefore, our research considers this selection. 

YOLOv4 was improved on the basis of YOLOv3 [23]. As an efficient and powerful 
target detection model, it takes into account both speed and accuracy. It is mainly 
composed of three parts: a feature extraction network, Backbone; a Neck for feature 
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As shown in Figure 2, a picture of the courier sheet captured is input into the YOLOv4 
network. The network first adjusts the picture to the size of [3, 416, 416], and then trunk 
feature extraction network CSPDarknet53 extracts target features. A shallow feature map, 
deep feature number, and a deep feature map are introduced into the Neck part. After 
using the SPP structure to enhance the receptive field on the deep feature map, the three 
feature maps are put into the path aggregation network PANet [24] to extract features 
repeatedly, and finally into the Yolo Head. The image can be divided into [52, 52, N], [26, 
26, N] and [13, 13, N] feature maps of different sizes for detection of large targets, medium 
targets and small targets, where N = 3 × (5 + C), which depends on the model category. 
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2.1. SPP Module of Csp Modularization

In deeper learning, the high-level network layer has a large receptive field, so it has
a strong ability to represent semantic information. However, the feature map has low
resolution and poor ability to represent spatial information. The receptive field ratio of
low layer network layer is small, in contrast to that of high layer network layer. Therefore,
spatial pyramid pooling SPP [25] was proposed to deal with these problems [26]. This
structure is mainly about the maximum pooling of 5 × 5, 9 × 9 and 13 × 13 with different
sizes after convolution, batch normalization and activation function. The maximum pooling
of the characteristic graph is joined together to change the channel to 2048 with the original
size unchanged. Such operation by integrating different receptive fields can enrich the
semantic information of feature maps and effectively improve model performance [27]. At
the same time, we know that CSPDarknet53, the backbone feature extraction network of
YOLOv4, is the key factor in obtaining good results with this network. The cross-stage part
network (CSPNet [28]) is a structure proposed from the perspective of network architecture,
as shown in Figure 2, CSP_X. This structure divides the input part into two parts, and the
backbone part continues the residual The stacking of the other part is directly connected
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to the end to achieve channel splicing with the backbone part, which is equivalent to a
large residual edge. Splitting first and then overlapping greatly reduces the number of
parameters and computation, and meanwhile strengthens the CNN’s learning ability and
eliminates a computing bottleneck [29]. A K layer CNN with B basic layer channels is
shown in Table 1 below.

Table 1. Add CSP structured Dark Layer FLOPs.

Model Original To CSP

Dark layer 5whkb2 whb2(3/4 + 5k/2)

In addition to the CSP structure of the trunk network, we considered combining the
SPP structure mentioned above with the CSP module and optimizing it in the network.
This KIND of CSP modular SPP structure reduces the amount of calculation resulting
from increasing the SPP module and improves accuracy, achieving the purpose of reducing
parameters but ensuring accuracy [28]. The improved CSP-SPP module is shown in Figure 3.
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2.2. Attention Module SE

The attention model was originally used in machine translation and has become an
important part of neural networks. The attentional mechanism module can pick out helpful
features by attaching weights to different concerns within the network. Among many
attention modules, the SE module is the classic. This focuses on the relationships between
channels so that the model learns only useful channel characteristics. It first reduces the
dimension of spatial features to 1 × 1 by global average pooling based on the width and
height of feature graphs, as shown in Equation (7). Then, two fully connected layers
and nonlinear activation functions are used to establish connections between channels, as
shown in Equation (8).

zC = Fsq(xc) =
1

1− 1× w

H

∑
i=1

W

∑
j=1

xc(i, j) (7)

ẑ = T2(ReLU(T1(z))) (8)
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The normalized weight is obtained by a Sigmoid activation function, and weighted to
each channel of the original feature map by multiplication to complete the re-calibration of
the original feature by channel attention, as shown in Equation (9) below.

x̂ = x·σ(ẑ) (9)

After global average pooling, the global receptive field can be obtained. During
the first full connection, the parameters and calculation amount are greatly reduced by
reducing the dimension of the feature graph. Following the nonlinear activation function,
the correlation between channels is completed by restoring the original channel number
through a full connection. See Figure 4.
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2.3. Use of the Feature Pyramid Structure

We used a feature pyramid structure, FPN, to replace the PANet path aggregation
structure. PANet is an improved version of FPN, which adds a top-down path after a top-
down path to achieve feature fusion. Such a structure can be more beneficial to classification
and positioning, but at the same time greatly increases the cost of computing. The object
features to be detected in our study are not complex, and the difference between the two
structures is not obvious. However, it was hoped that the computation and complexity of
the network would be reduced, so the FPN structure was used for feature fusion.

2.4. Improved YOLOv4 Algorithm

The structure of the detection network is shown in Figure 5. We continued to use
the backbone feature extraction network of YOLOv4, and added the SE module after
three output layers and after up-sampling to improve positioning accuracy. After that,
the backbone part was used with the above-mentioned Csp-spp module to reduce more
parameters while improving the receptive field, and finally we used the FPN structure to
fuse the features and then output the targe.
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3. Identification of Target Information
3.1. Barcode Decoding

To decode a barcode on the courier sheet, we chose the Zbar algorithm for the decoding
operation. The Zbar algorithm is an open-source barcode detection algorithm online. The
algorithm can not only read a variety of sources of barcode, such as image files, and videos,
but also supports a variety of barcode types, including EAN-13/UPC-A, UPC-E, EAN-8,
Code128, Code38, and QR. Our form of bar code was mainly code128. This is shown in
Figure 6. Code128 consists of a series of parallel bars and blanks divided from left to right
into left margin, start bit, data, validator, end bit, and right margin.
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Figure 6. Diagram of bar code.

(1) Band Code. Four values of 1, 2, 3 and 4 are assigned according to the thickness,
thickness and width of the bar, and the blank respectively. The Band Code of the barcode
can be obtained successively.

(2) Left and right-side blank area. A blank space should be left on both sides of the bar
code and the width should be 10 times the unit width (note: the unit width is the stripe
width of width (1), allowing the bar code reader to enter the readability stage.
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(3) Starting bit. The bar and blank detected in the first area of the barcode, which is
the beginning of the visible part of the barcode, is composed of six interwoven bars and
blanks of different thickness, with a total of 11-unit widths. In Code128, the starting bits
of code A, B, and C are 211412, 211214, and 211232 respectively. The type of Code128 is
determined by the start bit.

(4) Data. The data area expresses the coding information of the barcode, which is
composed of multiple characters. Each character also consists of six bars and blanks.

(5) Validator. This is used to verify the validity of the barcode. The method of checksum
module 103 was adopted, and the calculation method [31] is shown in Equation (10).

C = I·Nmod103 (10)

N is the value of the bit data.
(6) End character. This indicates the end-state of the barcode, which is fixed, and the

corresponding Band Code is 2331112;
After the image is put into the detection network to detect the area of the bar code, the

rectangular box containing the bar code must be captured. After the captured image is put
into the ZBar algorithm, the algorithm analyzes and scans the image, and determines the
Band Code of the bar code by the width of the bar and the empty, to extract the character
information contained in the bar code.

As shown in Figure 6, the string “ST089030003” was identified by this algorithm, so
that the sorting information of the express could be retrieved from the database.

3.2. Recognition of Three Segments of Code

Three-segment code characters are mainly printed bodies combining digits, hyphens
and English letters. After obtaining pictures containing three-segment code characters,
OCR (Optical Character Recognition) Character Recognition is required. Only when the
string information is obtained can the sorting information corresponding to the character
be obtained through the database. From the collected data, it was seen that the character
distortion of the package would inevitably occur during the transportation process, and the
recognition environment could be complex, which would affect the accuracy of recognition.
Therefore, Tesseract was used for recognition. Tesseract is an open-source OCR engine. The
fourth-generation version can support deep learning OCR, can recognize multiple formats
of image files, and convert these to text. Figure 7 shows the single three-segment code style
on the express side.
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After obtaining the rectangular box containing three sections of code information, we
used OpenCV and Tesseract together to obtain text recognition. As shown in Figure 8, after
the image is first input, we use OpenCV’s EAST text detector to detect the text in the image.
The EAST text detector provides the bounding box coordinates of the text ROI. We extract
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each text ROI and input these into the LSTM deep learning text recognition algorithm of
Tesseract V4. Finally, the output of the LSTM provides the actual OCR result, which is
a string. After obtaining the string, we find the sorting information represented by the
corresponding number through the database.
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4. Experimental Design
4.1. Dataset

A dataset was created to simulate the environment of logistics and contained a total
of 1680 images, mainly captured by cameras. The pictures of express delivery sheets
included multiple express companies and different materials and different sizes, and were
sampled under different lighting conditions and different angles. After obtaining the
dataset, we used the open-source labeling tool labelimg to label in the VOC dataset format.
Before image training, we also augmented the data set, and improved the generalization
performance of the model by adjusting the image rotation angle, hue, saturation and other
operations. Finally, the data set was divided into a training set and a test set with a ratio
of 9:1. Each sample corresponded to two files, namely (1) a JPG file with the image of the
package containing the express receipt, and (2) an xml file that stores image information,
labels and coordinates corresponding to the region of interest in the image.

4.2. Experimental Environment and Training Process

This experiment used the operating system win 10 64 and the neural network frame-
work pytorch. The hardware configuration included a CPU with Intel(R) Core (TM) i9-
10900K CPU @ 3.70 GHz 3.70 GHz; RAM is 64 GB; GPU is NVIDIA GeForce RTX 2080 Ti.

In the object detection network experiment, the size of the input image was 416 × 416,
the batch size was 16, the maximum number of iterations was 100, the initial learning rate
was 0.001, and the attenuation coefficient was 0.0005. The ratio of training set to test set
was 9:1.

At the same time, using the pre-trained model in the detection network, an accurate
model could be obtained in a short time by transfer learning.

4.3. Analysis of Detection Experiment Results
4.3.1. Evaluation Index of Experimental Results

The target detection model was applied to the distribution center for real-time detec-
tion, so the detection speed and accuracy were more important evaluation criteria. The
experiment used frame rate per second (FPS) as the speed evaluation index. The FPS
value reflects the number of pictures that can be processed per second. The higher the
FPS, the faster the detection speed. After that, the FPS data was obtained in the above
configuration. Finally, it was decided to use the average precision (AP), precision rate (P),
recall rate (R), F1-measure (F 1) value, model size and FPS in the detection network to
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evaluate the network performance. The calculation formulas of P, AP and F1 are expressed
as Equations (10)–(12):

P =
TP

TP + FP
(11)

AP =
∫ 1

0
P(R)dR (12)

F1 =
2TP

2TP + FP + FN
(13)

Among them, TP represents positive samples predicted to be positive, FP represents
negative samples predicted to be positive, and FN represents positive samples predicted to
be negative.

4.3.2. Improved YOLOv4 Model Evaluation

The results of the improved YOLOv4 model are shown in Figure 9. It can be seen
from various indicators that the experimental results of this positioning network model
were good.
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Ablation Experiments

In this section, the SPP structure combined with CSP structure is denoted as CS-
YOLOv4, and the SE module is denoted as SCS-YOLOv4. Through experimental testing,
we found that the performance of our model was improved in various aspects.

It can be seen from Tables 2 and 3 that the optimized YOLOv4 network SCS-YOLOv4
has different degrees of improvement in AP, P, FPS and size compared with the YOLOv4
network. In particular, in the detection of three-segment codes, the AP value increased by
1.7 percentage points, and the p value increased by 3.5 percentage points.
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Table 2. Comparison of model performance after optimization (bar code).

Model P FPS Size (MB)

YOLOv4 96.6% 21 245
CS-YOLOv4 96.3% 22 174

SCS-YOLOv4 96.9% 26 174

Table 3. Comparison of model performance after optimization (three-segment code).

Model P FPS Size (MB)

YOLOv4 73.6% 21 245
CS-YOLOv4 92.4% 22 174

SCS-YOLOv4 94.9% 26 174

Comparative Experiments of Different Models

In our study, the common positioning model and SCS-YOLOv4 model were selected
to compare their performance. Tables 4 and 5 show model comparisons with respect to five
aspects of AP, F1, P, FPS and size. All the results were obtained from the same data set.

Table 4. Performance comparison of different models (bar code).

Model AP F1 P FPS Size

SSD 96.1% 0.86 96.4% 70 110
YOLOv3 85.3% 0.78 87.9% 34 236
YOLOv4 96.9% 0.97 91.44% 21 245

Faster R-CNN 99.8% 0.99 99.9% 12 522
Ours 99.6% 0.97 96.9% 26 174

Table 5. Performance comparison of different models (three-segment code).

Model AP F1 P FPS Size

SSD 86.5% 0.66 94.4% 70 110
YOLOv3 85.3% 0.78 87.8% 34 236
YOLOv4 96.7% 0.93 91.4% 21 245

Faster R-CNN 99.0% 0.98 95.7% 12 522
Ours 98.40% 0.95 93.9% 26 174

The two tables above clearly show the differences between the models. The two-stage
target detection network Faster R-CNN model has a significant advantage in accuracy, but
the model detection speed is too slow and the model is too large. The SSD300 test model
has faster speed and more suitable size, but the accuracy is slightly different from other
models. YOLOv4 network takes into account both speed and accuracy, and performs well
as a whole. Considering that speed and accuracy are important indicators for sorting of
express deliveries in a logistics center, and our network is more powerful than the YOLOv4
network and has been improved in various aspects, we used our network to achieve the
positioning of target information.

4.4. Experimental Results Analysis

After the SCS-YOLOV4 algorithm was used to complete positioning, information was
identified. During recognition, we found that it was difficult to accurately and quickly
identify a picture with a large deflection angle, so it was necessary to correct this. We
intercepted the extent of the bounding box, then the edge detection algorithm in OpenCV
is used to process the captured image, and the minAreaRect () method was used to obtain
the deflection angle of the image. Finally, affine transformation was used to correct the
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deflection image. After the corrected picture was obtained, we used the ZBar algorithm to
identify the bar code, and the Tesseract to identify the three-segment code.

4.4.1. Evaluation of Experimental Results

In the logistics environment, if you want to carry out real-time recognition, recognition
accuracy P and recognition speed S are important indicators. P is defined in Equation (14).

p =
N1

N
× 100% (14)

where N is the number of samples, and N1 is the number of correctly identified samples.

Barcode Decoding Test

We selected 200 bar code pictures as samples for the bar code recognition experiment.
The experimental results are shown in Table 6.

Table 6. Barcode decoding test results.

The Number of Samples Correct Number of Decoders Decoding Success Rate

200 194 97%

Three-Segment Code Identification Test

We selected 200 images of three sections of code as samples for the barcode recog-
nition experiment. We found that the image had a lot of interference information which
affected recognition accuracy. Therefore, after rotation correction, three code regions were
positioned to reduce the interference information and increase the recognition accuracy.
The experimental results are shown in Table 7.

Table 7. Barcode decoding test results.

The Number of Samples Correct Number of Decoders Decoding Success Rate

200 192 96%

Multi-Information Target Recognition Test

We analyzed the recognition results of 200 pictures. From the perspective of the overall
method, the success rate of express sorting recognition was 98.5%, whether it was single
information recognition or multiple information recognition. The results are shown in
Table 8.

Table 8. Method identification success rate.

The Number of Samples Number of Correct Output Messages Decoding Success Rate

200 197 98.5%

4.5. Time Performance

In our research, the above three algorithm modules were tested separately using 16GB
RAM on a 64-bit Windows operating system, with an Intel(R) Core (TM) I7-10875H CPU
@ 2.30 GHz, and a main frequency of 2.30 GHz. The running time is shown in Table 7 in
seconds (s), and the average running time was 0.31 s when processing a 416 × 416 size
package image, as shown in Table 9.

Table 9. Method time performance.

Object Detection Decoding of Bar Code Three-Segment Code Identification

0.04 0.08 0.19
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4.6. Comparison of Different Express Sorting Methods

We compared several express sorting methods as shown in Table 10.

Table 10. Different Identification methods of the courier sheet.

Method Target Detection Time Total Time Information Recognition Accuracy

Katona M [5] 0.05 0.15 91.6%

Liu W [8] 0.02 0.11 93.6%
Polat E [32] 0.48 0.57 97.4%

Ours 0.04 0.31 98.5%

It can be seen from Table 9 that the method of Liu W et al. is better in time performance,
and can reach 0.11 s, but the recognition accuracy is low. The time performance of our
method is not outstanding, only 0.31 s, but our method can attain 98.5% accuracy, which is
more robust than other methods.

5. Conclusions

Aiming at the problem of the low recognition rate of single information sorting
methods in small semi-automatic sorting centers, our research proposes a fast recognition
method for courier sheet analysis based on deeper learning using multi-information fusion
of a one-dimensional barcode and three-segment code. The experimental results show
that the method can obtain the information on the courier sheet accurately. At the same
time, considering that the overall recognition time is slower than that of single information,
we can take the barcode information as the main information and the three-segment code
information as the auxiliary information. Only when the barcode cannot be identified is the
three-segment code information identified to reduce the sorting time. In general, although
this method is slower than the single information recognition method, the multi-information
recognition method ensures the accuracy of recognition and has good robustness.
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Abstract: This paper proposes a multimodal Transformer model that uses time-series data to detect
and predict winter road surface conditions. For detecting or predicting road surface conditions,
the previous approach focuses on the cooperative use of multiple modalities as inputs, e.g., images
captured by fixed-point cameras (road surface images) and auxiliary data related to road surface
conditions under simple modality integration. Although such an approach achieves performance
improvement compared to the method using only images or auxiliary data, there is a demand
for further consideration of the way to integrate heterogeneous modalities. The proposed method
realizes a more effective modality integration using a cross-attention mechanism and time-series
processing. Concretely, when integrating multiple modalities, feature compensation through mutual
complementation between modalities is realized through a feature integration technique based on a
cross-attention mechanism, and the representational ability of the integrated features is enhanced.
In addition, by introducing time-series processing for the input data across several timesteps, it is
possible to consider the temporal changes in the road surface conditions. Experiments are conducted
for both detection and prediction tasks using data corresponding to the current winter condition and
data corresponding to a few hours after the current winter condition, respectively. The experimental
results verify the effectiveness of the proposed method for both tasks. In addition to the construction
of the classification model for winter road surface conditions, we first attempt to visualize the
classification results, especially the prediction results, through the image style transfer model as
supplemental extended experiments on image generation at the end of the paper.

Keywords: deep learning; transformer; multimodal analysis; time-series processing; winter road
surface condition

1. Introduction

In snow-covered and cold regions, which account for approximately 60% of the land
area in Japan, numerous winter-related traffic accidents occur due to weather conditions,
e.g., snowfall. Approximately 90% of these accidents are slip-related incidents associated
with winter road surface conditions due to snow accumulation and ice formation [1]. In
this context, road managers need to undertake snow and ice control operations, e.g., snow
removal and the spreading of anti-freezing agents by detecting or predicting road surface
conditions to prevent slip accidents [1,2].

Previous studies have investigated the detection or prediction of winter road surface
conditions [3–8]. In the literature [3], the road surface condition was predicted based on
the heat balance theory using digital geographical data, which represent the shape of the
land, including roads on computers; however, this method requires the analysis of digital
geographical data related to the road, and it is difficult to collect and accumulate such data

Sensors 2024, 24, 3440. https://doi.org/10.3390/s24113440 https://www.mdpi.com/journal/sensors215



Sensors 2024, 24, 3440

for all roads. In another study [7], the automatic detection of winter road surface conditions
was realized using deep learning models trained on images captured by vehicle-mounted
cameras. Similarly, winter road surface conditions were classified using hierarchical deep
learning models applied to images also captured by vehicle-mounted cameras [8]. Here, to
use images captured by vehicle-mounted cameras, it is necessary to drive on the road to be
analyzed with vehicles equipped with cameras. To reduce such efforts, in the literature [4],
data obtained from sensors and fixed-point cameras installed along roads were adopted
to detect or predict the winter road surface conditions using rule-based methods. In
addition, a previous study [5] achieved detection by classifying road surface conditions
using differential methods based on images captured by fixed-point cameras installed
along the road (hereafter referred to as road surface images). However, due to the temporal
variability of road surfaces and roadside features, methods based on differential approaches
require manual updating of the reference images. Thus, there is a demand for models
that can classify road surface conditions automatically and accurately to facilitate precise
detection and prediction. Several studies have focused on the winter road surface condition
classification using the images captured by vehicle-mounted cameras [9–11]. The purpose
of these studies is to help with the construction of autonomous vehicles; however, our
purpose is to assist road managers in reducing winter-related traffic accidents using fixed-
point cameras.

The multimodal analysis, which uses several information sources, e.g., images and
natural languages, has attracted significant attention for improving the representational
ability of models [12–15]. For example, contrastive language image pre-training has been
proposed as the pre-training framework for the multimodal analysis of vision and lan-
guage [16]. Another example is to use the texts obtained from Twitter in addition to
images for image sentiment analysis [17]. In this way, most works on multimodal analysis
have used vision and language modalities; however, in the classification task of winter
road surface conditions, the text information does not exist, and the other information is
needed for multimodal analysis. Then, we previously proposed an automated classifica-
tion method for road surface conditions using a multimodal multilayer perceptron (MLP)
using images and auxiliary data [18]. Concretely, in that study, the features calculated
from multiple modalities, including road surface images and auxiliary data related to the
road surface conditions such as temperatures and traffic volume, were concatenated and
input to the MLP to classify the road surface conditions. The cooperative use of multiple
modalities allows for mutual complementation between modalities, and we improved clas-
sification accuracy compared to using a single modality. However, in the previous study,
we focused on the construction of machine learning models using multiple modalities
and performed multimodal analysis through a simple feature concatenation process. As
a result, this approach may have inherent limitations in terms of classification accuracy.
Thus, further improvements in classification accuracy can be expected by introducing the
following processes.

1. Time-series Analysis
In the field of glaciology, a previous study [19] reported that snow accumulation
extremes exhibit time-series variability. In addition, Hirai et al. [20] suggested that
changes in road surface conditions are related to the transitions of these conditions
over the past several timesteps. Thus, rather than relying on data from a single
timestep (as in our previous study), using time-series data to classify road surface
conditions is expected to improve the detection and prediction accuracy.

2. Feature Integration using Attention Mechanisms
In our previous study, feature integration was performed by concatenating the features
derived separately from image and auxiliary data and then inputting them into an
MLP. On the other hand, in the machine learning field, Transformers [21–24], which
are the novel machine learning architecture focusing on the relationship of input data,
have attracted significant attention for the remarkable performance based on the strong
representational ability. With the advancement of such Transformers, recent research
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on feature integration has demonstrated that intermediate fusion, which combines
features in the intermediate layers of neural networks using cross-attention, achieves
higher accuracy than traditional feature integration methods [25–29]. Cross-attention
is an attention mechanism [21] with several inputs, which facilitates the compensation
of heterogeneous features calculated from multiple modalities. As a result, the cross-
attention module enhances the representational ability after integration, and the
use of feature integration based on cross-attention is expected to further improve
classification accuracy.

In this paper, we propose a new method for classifying winter road surface conditions
using a multimodal transformer (MMTransformer) capable of processing time-series data.
In the proposed method, image and auxiliary features are extracted from data spanning
multiple timesteps, and feature integration considering temporal changes is performed by
applying cross-attention. With cross-attention, correlations are calculated feature-wise for
input data across multiple timesteps, and attention is computed for each timestep. This
procedure enables feature integration that accounts for temporal changes in road surface
conditions. Finally, the classification of winter road surface conditions is realized using an
MLP. By exploring methods for integrating multiple modalities and introducing time-series
processing, we aim to achieve improvements in accuracy in the detection and prediction of
road surface conditions.

In addition, the proposed method can learn the relationship between the input data
and the corresponding teacher labels, which are the labels related to winter road surface
conditions for training the model. By altering the teacher labels assigned to the input data
during training, the proposed method can be adapted to both detection and prediction
tasks. In experiments conducted on real-world data, we evaluated the effectiveness of
the proposed method for both detection and prediction tasks with two sets of teacher
labels. One experiment was conducted with the teacher labels being the road surface
condition corresponding to the input data, and the subsequent experiment was conducted
with the teacher labels being the road surface condition a few hours after the input data.
This dual approach allows for a comprehensive assessment of the capabilities of the pro-
posed method in detecting the current road surface conditions and predicting future road
surface conditions.

In addition to the experiments on the classification of winter road surface conditions,
we conducted supplemental extended experiments on image generation to visualize the
classification results, particularly the prediction results in the Appendix A. To help road
managers make decisions, it can be effective to incorporate classification results and road
surface images that visualize the results. In this study, we generated such images using an
image style transfer model conditioned by road surface conditions. Through these supple-
mental experiments and visualizing the transferred images, we confirmed the potential of
the image transfer model for road surface images.

The primary contributions of this study are summarized as follows.

1. A multimodal transformer model based on time-series processing and attention mech-
anisms is constructed to classify road surface conditions.

2. Experiments conducted to evaluate the road surface condition detection and prediction
tasks verify the effectiveness of the proposed classification model.

3. The results of the supplemental extended experiments in the Appendix A demonstrate
the potential of the image transfer model for road surface images.

The remainder of this paper is organized as follows. Section 2 introduces the data used
in this study. The proposed method for the classification of winter road surface conditions
is explained in Section 3. Then, the experimental results are reported in Section 4, and
the supplemental extended experiments are discussed in Appendix A. Finally, Section 5
concludes the paper.
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2. Data

In the following, we describe the data used in this study. We utilized road surface
images acquired using fixed-point cameras and auxiliary data related to the road surface
conditions. Specifically, these data were provided by the East Nippon Expressway Com-
pany Limited and were acquired from 2017 to 2019. The road surface images were captured
at 20-min intervals from 1 December at 00:00 to 31 March at 23:40 each year. In addition,
each road surface image was labeled with one of the following seven categories related to
road surface conditions.

• Dry
The road surface is free of snow, ice, and wetness.

• Wet
The road surface is wet due to moisture.

• Black sherbet
Tire tread marks are present, the snow contains a high amount of moisture, and the
color of the road surface is black.

• White sherbet
Tire tread marks are present, the snow contains a high amount of moisture, and the
color of the road surface is white.

• Snow
Snow has accumulated on the road surface, and the snow does not contain a high
amount of moisture.

• Compacted snow
There is no black shine and no tire tread marks.

• Ice
Snow and ice are present on the road surface, and it appears black and shiny.

These labels were assigned by three experienced road managers, and they divided the
annotation task and assigned the labels through visual inspections. Example road surface
images for each category are shown in Figure 1, and the locations where the road surface
images were captured are shown in Figure 2. Here, the image size is 640× 480 pixels. Please
note that road surface images, including vehicles, were considered for analysis because the
vehicles did not cover the entire road surface in the images.

Table 1 shows the contents of the auxiliary data and the corresponding data types. As
shown in Table 1, the “location of road surface images” and “weather forecast” are discrete
information, while other data contents are represented as continuous values. As shown
in Figure 1 and Table 1, the images and auxiliary data differ significantly; thus, a feature
integration mechanism is required to complement the deficiencies in each modality. Thus,
we attempt to improve the classification accuracy of road surface conditions by integrating
multiple modalities at several timesteps.

Figure 1. Road surface images for each winter road surface condition.
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Figure 2. Locations where the road surface images were captured.

Table 1. Auxiliary data and corresponding data types.

Data Content Data Type

Location of road surface images Discrete
Temperature Continuous
Road temperature Continuous
Amount of snowfall Continuous
Traffic volume Continuous
Average of vehicle speed Continuous
Weather forecast six hours ago Discrete
Temperature forecast six hours ago Continuous
Snowfall forecast six hours ago Continuous
Weather forecast 12 h ago Discrete
Temperature forecast 12 h ago Continuous
Snowfall forecast 12 h ago Continuous
Weather forecast 18 h ago Discrete
Temperature forecast 18 h ago Continuous
Snowfall forecast 18 h ago Continuous
Weather forecast 24 h ago Discrete
Temperature forecast 24 h ago Continuous
Snowfall forecast 24 h ago Continuous

3. Classification of Winter Road Surface Conditions Using MMTransformer

In this section, we describe the proposed method to classify winter road surface
conditions based on the MMTransformer, which can process time-series data using images
and auxiliary data at multiple timesteps as inputs. First, we construct encoders for both the
image and auxiliary data at each timestep to extract relevant features. We then calculate
the integrated features with the characteristics of both the image and auxiliary data by
performing feature integration based on cross-attention. Finally, by inputting the integrated
features into an MLP, we can classify the winter road surface conditions. An overview
and flowchart of the proposed method are shown in Figures 3 and 4, respectively. Please
note that the proposed model is trained in an end-to-end manner, which allows the image
encoder to be fine-tuned and the parameters in the MLP to be optimized simultaneously. In
the following, we explain the methods for feature extraction and feature integration based
on cross-attention in Sections 3.1 and 3.2, respectively.
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Figure 3. Overview of the proposed method.

Figure 4. Flowchart of MMTransformer.

3.1. Feature Extraction

Here, we describe the method employed to construct the encoders used to extract the
features from the image and auxiliary data.

3.1.1. Visual Features

The proposed method utilizes output values from the intermediate layers of a pre-
trained deep learning model as visual features. For the deep learning model, we employ
the Vision Transformer (ViT) [24] or its derivative methods [22,23], which have achieved
high classification accuracy in image classification tasks. Training a model based on the
ViT requires a large amount of training data; thus, we fine-tune a model pretrained on
ImageNet [30] to extract the visual features with high representational ability from the road
surface images.

In the ViT, as shown in Figure 5, patches obtained by dividing the images and position
embeddings are input sequentially to linear layers and the Transformer encoder. The output
values are calculated by the MLP head after the Transformer encoder. During fine-tuning
of the ViT, transfer learning is performed on the Transformer encoder by replacing the MLP
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head. Specifically, in the proposed method, the visual feature x(vis)
t ∈ Rdvis for image Vt at

timestep t (t = 1, 2, . . . , T, where T is the number of timesteps) is calculated as follows:

x(vis)
t = f (Evis(Vt)), (1)

where Evis(·) is the pretrained Transformer encoder in the ViT-based model, and f (·) is the
MLP that calculates the visual features for input into the cross-attention mechanism. Thus,
by employing an MLP head suitable for feature integration, it is possible to fine-tune the
ViT-based model and train the cross-attention mechanism simultaneously.

Figure 5. Architecture of the ViT [24].

3.1.2. Auxiliary Features

In the proposed method, the auxiliary data include both continuous quantitative
variables, e.g., temperature and road temperature, and discrete qualitative variables, using
nominal scales, e.g., location and weather conditions. Generally, in machine learning
involving qualitative variables as inputs, one-hot encoding is used as a preprocessing
method [31–33]. In one-hot encoding, elements equal to the number of items in the nominal
scale are prepared, and the corresponding element is set to 1 (while others are set to 0).
This procedure enables machine learning models to process qualitative variables. However,
when one-hot encoded features {xi}n

i=0 are input to a neural network–based model, in the
first layer of the forward propagation process, only the weights corresponding to the input
elements with 1 are updated as follows:

a01 =
n

∑
i=0

xiWi0 + b0, (2)

where {Wi0}n
i=0 represents the weights corresponding to xi, and a01 is the output value

at the 0th neuron in the first layer. As a result, the other weights corresponding to input
elements with 0 are not updated, which makes it difficult to learn the correlations between
the input elements. It has been reported that applying soft label encoding (SLE) to nominal
scales in auxiliary data improves accuracy [33]. In SLE, the correlation between features can
be learned by replacing the elements that are 0 in one-hot encoding with 0.1. Actually, in
the literature [33], SLE (Figure 6) enabled the learning of correlations within auxiliary data
and enhanced the representational ability. Thus, for the auxiliary data used in this study,
applying SLE to the discrete qualitative variables is expected to improve the classification
accuracy. Consequently, in the proposed method, SLE is applied to the discrete values, and
a vector combined with continuous values is input to the MLP to calculate the auxiliary
feature x(aux)

t ∈ Rdaux at timestep t.
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Figure 6. Example of SLE.

3.2. Feature Integration Based on Cross-Attention Mechanism

This section explains the cross-attention-based feature integration method. In the cross-
attention module, the importance of each element in the features is determined using the
query q ∈ RT×d′m , key k ∈ RT×d′m and the value v ∈ RT×d′m (m ∈ {vis, aux}, d′m = dm/h).
Here, h is a hyperparameter. The tuple (q, k, v) for each feature is calculated as follows:

qm = XmW (q,m)>, (3)

km = XmW (k,m)>, (4)

vm = XmW (v,m)>, (5)

s.t. m ∈ {vis, aux}, (6)

where W (q,m) ∈ Rd′m×dm , W (k,m) ∈ Rd′m×dm and W (v,m) ∈ Rd′m×dm are the trainable param-
eters. In addition, Xm = [xm

1
>, xm

2
>, . . . , xm

T
>] ∈ RT×dm . Next, using the tuple (q, k, v)

among the heterogeneous features, the cross-attention CA(·, ·, ·) is calculated as follows:

CA
(

qm ′, km, vm
)
=
[

head(m′ ,m)
1 , head(m′ ,m)

2 , . . . , head(m′ ,m)
h

]
W (o,m), (7)

head(m′ ,m)
i = Softmax


qm ′km>

√
dm

y


, (8)

s.t. m′ 6= m, i = 1, 2, . . . , h, (9)

where W (o,m) ∈ Rhd′m×dm′ is the trainable parameter. Finally, feature integration is per-
formed by applying residual connections to each feature and the output values of the
cross-attention mechanism as follows:

X̂m = Xm + CA(qm, km′ , vm′), (10)

X̂ int = [X̂vis, X̂aux]. (11)

In the proposed method, vectorization is performed by applying mean pooling to the
integrated feature X̂ int, which is then input to the MLP to output the final classification
results. Thus, using cross-attention-based feature integration, the proposed method corrects
features using heterogeneous data and processes time-series data across multiple timesteps.
As a result, the proposed method improves the detection and prediction accuracy of winter
road surface conditions.

4. Experiments

Experiments were conducted to verify the effectiveness of the proposed classification
method based on MMTransformer. In the following, Section 4.1 describes the experimen-
tal dataset, Section 4.2 explains the experimental settings, and Section 4.3 presents the
experimental results and a corresponding discussion.
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4.1. Experimental Dataset

Here, we describe the dataset used in the experiments. The experiments utilized the
winter road surface images and auxiliary data discussed in Section 4.1 to verify the effec-
tiveness of the proposed method on real-world data. In addition, the seven categories (dry,
wet, black sherbet, white sherbet, snow, compacted snow, and ice) were reorganized into
three new categories, i.e., dry/wet, sherbet, and snow/compacted snow/ice, to detect and
predict the winter road surface conditions from a practical perspective. The experiments
were designed to confirm the effectiveness of using data across multiple timesteps to detect
and predict winter road surface conditions. The classifications of road surface conditions
were made for {0, 1, 3} hours later when inputting data at T (= {1, 3, 5}) timesteps. Here,
the data at one timestep were acquired at 20-min intervals. Please note that the input data
were used on a per-timestep basis, and the teacher labels were used on an hourly basis. The
number of samples for each road surface condition and the experimental settings are shown
in Tables 2–4. In the multi-timestep experimental settings, missing data were imputed
using the average values from the data at other timesteps. In addition, data from 2017 and
2018 were used as the training data without distinction of the location, and data from 2019
were used as the test data. Also, note that the number of samples in each category varied
significantly in the training data; thus, to suppress the reduction in classification accuracy
due to the imbalanced number of samples, random extraction was performed such that the
number of samples belonging to each category was approximately equal. As a result, the
number of samples in the training data was smaller than that of test data through such an
undersampling operation.

Table 2. Breakdown of experimental data used to immediately predict (detect) the road surface
condition (0 h later).

Number of Timesteps Used as Input

1 3 5

Road Surface Condition Training Test Training Test Training Test

Dry/Wet 6000 35,771 6000 36,388 6000 36,460
Sherbet 5829 2474 5921 2505 5939 2506

Snow/Compacted snow/Ice 4614 418 4740 420 4747 420

Sum 16,443 38,663 16,661 39,313 16,686 39,386

Table 3. Breakdown of experimental data used to predict the road surface condition one hour later.

Number of Timesteps Used as Input

1 3 5

Road Surface Condition Training Test Training Test Training Test

Dry/Wet 6000 35,738 6000 36,370 6000 36,444
Sherbet 5838 2477 5935 2504 5948 2506

Snow/Compacted snow/Ice 4604 416 4730 420 4739 420

Sum 16,442 38,631 16,665 39,294 16,687 39,370

Table 4. Breakdown of experimental data used to predict the road surface condition three hours later.

Number of Timesteps Used as Input

1 3 5

Road Surface Condition Training Test Training Test Training Test

Dry/Wet 6000 35,703 6000 36,332 6000 36,407
Sherbet 5836 2475 5942 2504 5954 2506

Snow/Compacted snow/Ice 4604 416 4730 420 4741 420

Sum 16,428 38,593 16,667 39,256 16,695 39,333
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4.2. Experimental Settings

Here, we describe the experimental settings. The MLP used in the proposed method
comprised three layers, and the feature dimensions of the images and auxiliary data were
set to dvis = 16 and daux = 16, respectively. For the Transformer encoder in the proposed
method, we employed the ViT-B/16 model [24], which was pretrained on ImageNet [30].
For the loss function, cross-entropy loss was used, and for the optimization method, the
Adam optimizer [34] with a learning rate of 0.001 was employed. During the training, the
batch size was set to 8, and the number of epochs was set to 10. Moreover, we set h = 4 as
the hyperparameter.

To verify the effectiveness of the cross-attention–based feature integration imple-
mented in the proposed method, we compared a method (Concatenation) that does not
employ cross-attention by replacing Equation (11) with the following expression:

X̂ int = [Xvis, Xaux]. (12)

To evaluate the performance of the detection and prediction results, accuracy, macro
precision, macro recall, and macro F1 metrics were considered, which are frequently used
in the machine learning field for multiclass classification tasks. Each evaluation metric is
calculated as follows:

• Accuracy

Accuracy =
∑L

l=1 TPl

∑L
l=1(TPl + FPl)

. (13)

• Macro Precision

Macro Precision =
1
L

L

∑
l=1

Precisionl , (14)

Precisionl =
TPl

TPl + FPl
. (15)

• Macro Recall

Macro Recall =
1
L

L

∑
l=1

Recalll , (16)

Recalll =
TPl

TPl + FNl
. (17)

• Macro F1

Macro F1 =
1
L

L

∑
l=1

F1l , (18)

F1l =
2× Recalll × Precisionl

Recalll + Precisionl
. (19)

Here , TPl and FNl represent the number of true positive samples and false negative
samples for the lth category, respectively, and FPl denotes the number of false positive
samples for the lth category.

4.3. Results and Discussion
4.3.1. Effectiveness of Time-Series Analysis

The experimental results obtained with different numbers of timesteps in the input
data are shown in Tables 5–7. Under all experimental conditions, the increase in the number
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of timesteps resulted in a higher macro F1 score, and we confirmed the effectiveness of
using multiple timesteps when detecting and predicting the winter road surface conditions.
On the other hand, when comparing MMTransformer w/5 with MMTransformer w/3 in
Table 5, the macro Precision score decreased. Similarly, when comparing MMTransformer
w/5 with MMTransformer w/3 in Table 7, the macro Recall score decreased. These score
decreases were caused by differences in FPl for macro Precision and in FNl for macro Recall;
however, both FPl and FNl should be evaluated for the classification model. Thus, we
mainly focused on the harmonic mean of macro Precision and macro Recall, i.e., macro
F1, and discussed the difference in the performance based on the macro F1. Thus, the
effectiveness of time-series analysis with input data at multiple timesteps in the proposed
method has been verified.

Table 5. Experimental results obtained when varying the number of timesteps in the experiment to
immediately predict (detect) the road surface condition.

Method Accuracy Macro Precision Macro Recall Macro F1

MMTransformer w/1 timestep 0.954 0.689 0.768 0.702
MMTransformer w/3 timesteps 0.958 0.710 0.791 0.735
MMTransformer w/5 timesteps 0.956 0.698 0.808 0.740

Table 6. Experimental results obtained when varying the number of timesteps in the experiment to
predict the road surface condition one hour later.

Method Accuracy Macro Precision Macro Recall Macro F1

MMTransformer w/ 1 timestep 0.941 0.633 0.774 0.678
MMTransformer w/ 3 timesteps 0.944 0.636 0.791 0.683
MMTransformer w/ 5 timesteps 0.948 0.667 0.799 0.717

Table 7. Experimental results obtained when varying the number of timesteps in the experiment to
predict the road surface condition three hours later.

Method Accuracy Macro Precision Macro Recall Macro F1

MMTransformer w/ 1 timestep 0.919 0.560 0.746 0.612
MMTransformer w/ 3 timesteps 0.926 0.579 0.747 0.627
MMTransformer w/ 5 timesteps 0.936 0.625 0.737 0.666

4.3.2. Effectiveness of Cross-Attention Mechanism

The experimental results comparing the proposed method with other methods are
shown in Tables 8–10. As can be seen, the macro F1 score of the proposed method surpasses
that of the compared methods, which confirms the effectiveness of the MMTransformer.
Specifically, by comparing MMTransformer and Concatenation, we verified that the cross-
attention-based feature integration is effective for the classification of winter road surface
conditions. On the other hand, when comparing MMTransformer w/5 with Concatenation
w/5 in Table 10, the macro Recall score decreased. As well as macro Precision in Table 5
and macro Recall in Table 7, we mainly focused on the harmonic mean of macro Precision
and macro Recall, i.e., macro F1, and discussed the difference in the performance based on
the macro F1.

Table 8. Comparison of results in experiments to immediately predict (detect) road surface conditions.

Method Accuracy Macro Precision Macro Recall Macro F1

Concatenation w/5 timesteps 0.957 0.697 0.796 0.722
MMTransformer w/5 timesteps 0.956 0.698 0.808 0.740
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Table 9. Comparison of results in experiments to predict road surface conditions one hour later.

Method Accuracy Macro Precision Macro Recall Macro F1

Concatenation w/5 timesteps 0.944 0.647 0.799 0.701
MMTransformer w/5 timesteps 0.948 0.667 0.799 0.717

Table 10. Comparison of results in experiments to predict road surface conditions three hours later.

Method Accuracy Macro Precision Macro Recall Macro F1

Concatenation w/5 timesteps 0.927 0.590 0.756 0.644
MMTransformer w/5 timesteps 0.936 0.625 0.737 0.666

Thus, the effectiveness of using feature integration based on the cross-attention mech-
anism as the feature integration method has been verified. In addition, confusion matrices
for the classification results of Concatenation w/5 timesteps and MMTransformer w/5
timesteps are shown in Figures 7–9. In Figures 7 and 8, the number of samples classified
correctly for the dry/wet and snow/compacted snow/ice categories is approximately
the same for both the MMTransformer and Concatenation. For the sherbet category, the
MMTransformer outperformed the Concatenation considerably in terms of the number of
correctly classified samples. In Figure 9, the number of correctly classified samples for the
sherbet and snow/compacted snow/ice categories is similar; however, the MMTransformer
outperformed the Concatenation considerably in the dry/wet category. These results con-
firm that the MMTransformer can predict winter road surface conditions more accurately
than the Concatenation. However, when predicting the winter road surface conditions
three hours later, as shown in Figure 9, there was no significant improvement in terms of
classification accuracy for the important sherbet and snow/compacted snow/ice categories,
which are critical for the effective detection and prediction of winter road surface conditions.
Thus, improving the accuracy of predictions for winter road surface conditions at later
times remains a challenge for future work.

(a) Concatenation w/5 timesteps (b) MMTransformer w/5 timesteps

Figure 7. Confusionmatrix for the experiment to immediately predict (detect) the road surface
condition (corresponding to Table 8).

(a) Concatenation w/5 timesteps (b) MMTransformer w/5 timesteps

Figure 8. Confusion matrix for the experiment to predict the road surface condition one hour later
(corresponding to Table 9).
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(a) Concatenation w/5 timesteps (b) MMTransformer w/5 timesteps

Figure 9. Confusionmatrix for the experiment to predict the road surface condition three hours later
(corresponding to Table 10).

4.3.3. Qualitative Evaluation through Visualization

In the MMTransformer, the output values obtained from the ViT model’s intermediate
layers are used as image features. The ViT model employs an attention mechanism that
recognizes important regions in images automatically and applies weighting to these
regions. To achieve this, attention rollout [35], which presents the regions focused on by
ViT through visualizing the weights in the attention mechanism, has been proposed. The
regions presented by attention rollout are expected to serve as a basis for the rationale
behind the classification results obtained by the ViT. In the proposed method, by observing
the regions for winter road surface images, it is possible to gain insights into the relationship
between the winter road surface images and winter road surface conditions and to use this
information to enhance the performance of the classification model.

Figure 10 shows a visualization example obtained by applying attention rollout to the
ViT encoder in MMTransformer, where redder regions are of higher interest in MMTrans-
former, and bluer regions are of lower interest. Here, the visualization was performed for
MMTransformer w/5 timesteps in the experimental setting to detect the winter road surface
conditions. As can be seen, there is more attention on the snow at the roadside at 20:00 and
20:40, and there is consistent attention to certain parts of the road surface over all timesteps.
These observations imply that MMTransformer w/5 timesteps recognizes the presence of
snow on the roadside but correctly identifies the road surface condition as sherbet due
to the lesser amount of snow compared to the snow/compacted snow/ice conditions.
From this result, it can be inferred that MMTransformer w/5 timesteps performs detection
and prediction by focusing on the snow accumulation on the surface of the road in the
images. Thus, by outputting the visualization results for the input images, we can gain
insights into the relationship between the winter road surface images and the road surface
conditions, and these insights can be used to enhance the performance of detection and
prediction models.

Figure 10. Example visualizationobtained by applying attention rollout to the ViT model, i.e., the
image encoder in MMTransformer.
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5. Conclusions

This paper has proposed the MMTransformer method, which uses time-series data
to detect and predict winter road surface conditions. The proposed method enhances the
representational ability of the integrated features by performing feature correction through
mutual complementation between modalities based on a cross-attention-based feature
integration method for multiple modalities, e.g., road surface images and auxiliary data. In
addition, by introducing time-series processing for the input data at multiple timesteps, the
proposed method can integrate features in consideration of the temporal changes in winter
road surface conditions. As a result, the proposed method improves the classification
accuracy of winter road surface conditions by introducing a new integration for multiple
modalities and time-series processing.

Experiments confirmed that the proposed MMTransformer method achieves high
accuracy in classifying winter road surface conditions and is effective for both the detection
and prediction tasks by varying the teacher labels. In addition, using attention rollout for
visualization, we expected to provide additional insights into the relationship between
road surface images and road surface conditions. In this way, as the experimental findings,
it was implied that attention rollout works well for the multimodal classification model of
winter road surface conditions. The visualization in the image encoder can be utilized to
enhance the classification model when detecting and predicting road surface conditions,
and the experimental findings discussed in this paper have demonstrated the potential of
this technique.

On the other hand, confusion matrices indicate that performance improvement was
slight for the data belonging to sherbet or snow/compacted snow/ice categories since the
road surface images belonging to sherbet or snow/compacted snow/ice categories were
visually similar to those of each other category. Such limitations caused by visual similarity
can be solved by effectively leveraging non-visual information, including auxiliary data,
which remains in future works.
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Appendix A. Supplemental Extended Experiments on Image Generation

Appendix A.1. Background

In this section, to visualize the classification results, especially in terms of the prediction
results, we conducted supplemental extended experiments focusing on image generation.

In the classification of road surface conditions, we assume that the workflow of the
classification model presents only the classification results of road surface conditions
to road managers. Such a workflow makes it difficult to visualize the detailed state of
the road surface. Thus, by visually presenting the road surface conditions a few hours
later in addition to the classification results, it is expected that more informed decisions
will be made with the knowledge and experience of road managers. In this way, the
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visualization of classification results facilitates effective decision support for snow and ice
removal operations.

In the computer vision field, tasks involving the style transformation of images have
traditionally been addressed [36,37]. Such style transfer tasks involve learning the relation-
ships between domains to transform a target image into a desired image style. For example,
by learning the relationship between a domain of images capturing a horse and a domain
of images capturing a zebra, the image style transfer model can output an image where
the patterns on the body of the horse are transformed into that of the zebra. Similarly, for
road surface images, it is possible to transfer an input image to an image with the style
of the predicted road surface condition using the image style transfer model. As a result,
the image generation reflecting the style of the predicted road surface conditions can be
realized using image style transfer with input road surface images. The generated images
hold promise in terms of providing visual decision support for road managers making
snow and ice removal decisions.

In the supplemental extended experiments, we first attempted to generate images
using the style of specific road surface conditions using the image style transfer model.
Specifically, since there are multiple categories of road surface conditions, we performed
multidomain style transfer for each category as a domain. Here, we used StarGAN v2 [38]
as the style transfer model. The StarGAN v2 model is a well-known multidomain style
transfer model that achieves efficient multidomain style transfer by training a single gener-
ator to handle multiple domains to acquire domain-specific features.

Appendix A.2. Image Style Transfer

In this subsection, we summarize the method used to transform the road surface
conditions in the road surface images using the StarGAN v2 model. An overview of the
image style transfer process using the StarGAN v2 model is shown in Figure A1. When
the input image and domain are denoted x ∈ X and y ∈ Y , respectively, StarGAN v2
attempts to transform the input image x into the style of each domain y using a single
generator G. Here, X and Y represent the set of images and the set of domains after
transformation, respectively. To generate images that reflect the style of each domain from
a single generator, domain-specific style features are input along with the input image,
and the StarGAN v2 model controls the style of the image output by the generator G. In
the following, we explain the modules used in the StarGAN v2 model, i.e., the generator,
mapping function, style encoder, discriminator, and the objective function for optimization.

Figure A1. Overview of image generation using the style transfer model. It should be noted that the
discriminator D is used to close the styles of the reference images and those of the transferred images.

In the StarGAN v2 model, the generator G transforms the input image x into image
G(x, s) using style features s obtained from either the mapping function F or the style
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encoder E. By incorporating adaptive instance normalization [39,40] into the generator,
StarGAN v2 enables style transfer using the style features s. As a result, by calculating
the style code s to represent domain-specific features, it is possible to generate images that
reflect the style of multiple domains using only a single generator (without the need to
construct separate generators for each domain).

The mapping function F calculates the style features s from the random latent variables
z. Specifically, by utilizing an MLP with multiple output branches corresponding to each
road surface condition, the style features are calculated as s = F(z). This multitask
architecture enables efficient calculation of the style features.

The style encoder E extracts the style features s from the image x as s = E(x). Us-
ing the style features calculated by inputting a reference image into the style encoder,
it is possible to transform the input image into an image that reflects the style of the
reference image.

The discriminator D distinguishes between images that belong to the target domain
and images that are transformed by the generator when an image is input. Here, efficient
learning is achieved by adopting a multitasking architecture similar to the mapping function
F and style encoder E.

In the StarGAN v2 model, to enable a single generator to output images corresponding
to the styles of multiple domains, the entire model is trained by optimizing the following
objective function:

min
G,F,E

max
D
Ladv + λstyLsty − λdsLds + λcycLcyc, (A1)

where λsty, λds, and λcyc are hyperparameters, and Ladv is the adversarial loss used to
acquire domain-specific style features and enhance the quality of the generated images.
In addition, Lsty is the style reconstruction loss, which is used to enable the extraction
of style features that correspond to each domain from images. This reconstruction loss
is inspired by the literature [41,42]; however, the main difference lies in the ability to
extract style features for multiple domains using a single style encoder. Lds is the di-
versity regularization loss [43,44] used to ensure the diversity of the generated images,
and Lcyc is the cycle consistency loss [45–47], which is used to preserve domain-invariant
features in the input image in the transformed image. Using these different losses, it is
possible to generate images that correspond to the styles of multiple domains using only a
single generator.

Appendix A.3. Experimental Results

We conducted the supplemental extended experiment using the StarGAN v2 model to
transform the surface conditions in the road surface images using a style transfer model.
The road surface conditions targeted in this experiment and the number of training images
labeled for each condition are shown in Table A1. Please note that the number of road
surface conditions differed from that described in Section 4.1 to confirm that the image
style transfer models can represent diverse road surface conditions. Here, the purpose
of this section is to confirm the potential of applying image style transfer models to road
surface images, and we experimentally used as many road surface conditions as possible.
In addition, the labels were assigned not by the classification models, e.g., MMTransformer,
but by experienced road managers (Section 2) to evaluate the image style transfer model
without misclassification effects.

Table A1. Number of training images labeled with each road surface condition.

Road Surface Condition Dry Wet Black Sherbet White Sherbet Snow Ice Compacted Snow Sum

39,807 45,778 13,568 2910 2313 320 2045 106,741
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In this experiment, the hyperparameters λsty, λds, and λcyc were all set to 1, and the
dimensionality of the random latent variables was set to 16. In addition, the dimensionality
of the style features was set to 64. The model was optimized using the Adam optimizer [34]
with 100,000 epochs and a batch size of 8. The learning rates for D, E, and G were set to
0.0001, and the learning rate for F was set to 0.000001.

Figure A2 shows examples of road surface condition transfer in road surface images
and the corresponding compared images. Here, the compared images are road surface
images labeled with the same conditions as the transferred images. The experimental
results confirm that the transferred images visually resemble the compared images. In
addition, the ability to acquire visually distinct images accurately supports the potential to
generate road surface images with transferred road surface conditions by training a style
transfer model on road surface images.

Figure A2. Examples of road surface condition transformation in road surface images using StarGAN
v2 model. For reference and comparison, a road surface image with the same label as the transferred
image is also shown.

Appendix A.4. Conclusions

In addition to the construction of the classification model for winter road surface
conditions, we conducted supplemental extended experiments on image generation to
visualize the classification results, especially the prediction results. The experimental results
demonstrate that the generated images reflect the specified styles. Thus, the classification
results can be represented as images using image style transfer models to help road man-
agers make decisions. However, comparative experiments and quantitative evaluations
were not conducted in this study, although we have supported the potential of using an
image style transfer model for road surface images. Thus, the construction of an image
style transfer model specific to road surface images and its evaluation remains an issue for
future work.
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Abstract: Microplastic particles produced by non-degradable waste plastic bottles have a critical
impact on the environment. Reasonable recycling is a premise that protects the environment and
improves economic benefits. In this paper, a multi-scale feature fusion method for RGB and hy-
perspectral images based on Segmenting Objects by Locations (RHFF-SOLOv1) is proposed, which
uses multi-sensor fusion technology to improve the accuracy of identifying transparent polyethy-
lene terephthalate (PET) bottles, blue PET bottles, and transparent polypropylene (PP) bottles on
a black conveyor belt. A line-scan camera and near-infrared (NIR) hyperspectral camera covering
the spectral range from 935.9 nm to 1722.5 nm are used to obtain RGB and hyperspectral images
synchronously. Moreover, we propose a hyperspectral feature band selection method that effectively
reduces the dimensionality and selects the bands from 1087.6 nm to 1285.1 nm as the features of the
hyperspectral image. The results show that the proposed fusion method improves the accuracy of
plastic bottle classification compared with the SOLOv1 method, and the overall accuracy is 95.55%.
Finally, compared with other space-spectral fusion methods, RHFF-SOLOv1 is superior to most of
them and achieves the best (97.5%) accuracy in blue bottle classification.

Keywords: plastic bottles recycling; hyperspectral image; multi-scale feature fusion

1. Introduction

The common raw materials of disposable plastic bottles are polyethylene tereph-
thalate (PET) and polypropylene (PP). PET and PP plastic bottles are widely used in the
beverage-packaging industry due to their advantages of non-friability and safety. More than
480 billion plastic bottles were sold worldwide in 2016 [1]. Not only do waste plastics
pollute the environment, but the microplastics produced by them are also more harmful
to bio-safety. If waste plastic bottles are not recycled in time, they will take up consider-
able amounts of land and cause water and soil pollution [2]. Therefore, the recycling of
waste plastic bottles is becoming an important issue from the perspective of protecting the
environment and improving economic efficiency.

Since plastic bottles of different colors and materials have different recycling values,
they are generally classified according to colors [3,4] and materials [5–7]. The advanced
classification technologies of waste plastic bottles include deep-learning-based computer
vision techniques and spectral detection techniques.

According to research conducted in recent years, computer vision techniques based
on deep learning are widely used in various engineering fields, such as fruit picking [8]
and the fault diagnosis of structures [9]. In the waste-sorting field, classifying plastic
bottles based on computer vision is also effective. Jaikumar P et al. used the mask re-
gion proposal convolutional neural network (Mask R-CNN) to perform object detection
and instance segmentation of waste plastic bottles in a customized dataset containing
192 images. Data augmentation was used to improve the model’s performance in order to
address the limitations of small datasets, and the final model achieved a 59.4 mean average
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precision (mAP) [10]. Some researchers used convolutional neural networks (CNN) and
support vector machines (SVM) to classify plastic bottle images in a dataset containing a
total of 1100 images and demonstrated that the CNN outperformed the SVM classifier in
terms of testing accuracy [11].

There are several types of plastic resins in plastic bottles; if they are mixed during
recycling, they will cause serious problems and the product quality will suffer [12]. There-
fore, it is critical to classify plastic bottles according to materials. Optical and spectroscopic
methods are used to identify the materials of plastics. Masoumi et al. [13] proposed a
plastic identification and separation system based on near-infrared light (NIR). This system
achieved the separation of polyethylene terephthalate (PET), high-density polyethylene
(HDPE), polyvinyl chloride (PVC), polypropylene (PP), and polystyrene (PS) by calculating
the reflectance ratio between 1656 nm and 1724 nm. With the widespread use of CNNs,
some researchers have started to focus on combining NIR with a CNN to achieve a highly
robust and accurate method of plastic classification, while preprocessing methods such as
principal component analysis (PCA) are used for the dimensionality reduction of feature
vectors [7].

However, the problem faced in waste plastic bottles’ classification is that computer
vision technology based on deep learning mainly relies on RGB images. Distinguishing
between blue and transparent plastic bottles on a black conveyor belt is difficult due to
the influence of the bottles’ quality and the nearby light source. For spectral detection
techniques, a disadvantage of NIR is that it is strongly affected by dark colors [14], which
not only leads to the shift of reflection but also eliminates the peak value, and hues do not
affect spectral reflectance [13,15]. Therefore, although spectral detection techniques can
effectively distinguish plastic bottles according to materials, they can not classify them
more precisely according to colors.

Light blue PET bottles, transparent PET bottles, and transparent PP bottles on black
conveyor belts are difficult to classify via computer vision techniques based on deep
learning, and it is difficult to distinguish light blue PET bottles and transparent PET bottles
by spectral detection techniques. In this paper, a multi-scale feature fusion method for
RGB and hyperspectral images (HSI) based on Segmenting Objects by Locations [16]
(RHFF-SOLOv1) is proposed, and the classification accuracy of waste plastic bottles is
improved by the feature fusion of RGB and HSI. This paper first introduces the dual camera
platform for image acquisition and preprocessing methods. Then, the network structure
of RHFF-SOLOv1 is described. In addition, a spectral feature interval selection method is
proposed. Finally, the proposed RHFF-SOLOv1 is compared with other spatial-spectral
fusion methods. The results show that our method is superior to most of them and achieves
the best accuracy of 97.5% in the classification of blue PET bottles.

2. Materials and Methods
2.1. Samples Preparation and Data Collection

In this study, waste plastic bottles were collected from the recycled products of a
company, including blue PET bottles, transparent PET bottles, and transparent PP bottles.
Twenty-five samples were collected for each category as training and test datasets. The
caps and labels were removed, as these materials are different from the bottle.

For data acquisition, RGB images were collected by a line-scan camera produced by
Dalsa, and hyperspectral images were collected by NIR spectral camera with a wavelength
range of 935.9–1722.5 nm with 224 bands. In this study, using a variable-speed conveyor as
the bottle conveying device, the speed of the belt in the experiment was set to 0.36 m/s.
The dual camera platform used for image acquisition is shown in Figure 1.

The dual camera acquisition platform mode of image acquisition was used to collect
RGB and hyperspectral images of waste plastic bottles simultaneously. These samples were
randomly placed on the conveyor belt and repeatedly collected. In order to address the
limitations of custom datasets, we also tried to improve the generalization performance of
our model by using data augmentation and Copy-Paste [17]. The final datasets included
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768 images in the training set and 300 images in the test set. The size of RGB images is
640 × 640, while the size of hyperspectral images is 640 × 640 pixels with 224 bands in
the wavelength range of 935.9–1722.5 nm. According to the color and material of plastic
bottles, they were divided into three categories: transparent PET bottles (Trans_PET),
blue PET bottles (Blue_PET), and transparent PP bottles (Trans_PP). All experiments were
conducted on a workstation equipped with a Giga Texel Shader eXtreme (GTX) 3090
graphics-processing unit (GPU) and 24 G of memory.
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2.2. Data Processing

The spectrum data of samples is easily affected by various factors, such as the light
source and the background. In order to eliminate the effects of dark current and the noise
caused by the uneven intensity of the light source, it is necessary to use the black-and-white
correction method to convert the collected data into reflectivity, as shown in Formula (1):

r =
DN − DNb

DNw − DNb
(1)

where DN denotes the collected raw data, while DNw denotes the standard white frame
data, which is obtained by collecting standard whiteboards. DNb represents the stan-
dard black frame data obtained by covering the camera lens, and r denotes the obtained
reflectivity data.

2.3. Network Structure of RHFF-SOLOv1

The proposed multi-scale feature fusion method for RGB and hyperspectral images
based on SOLOv1 (RHFF-SOLOv1) consists of feature extraction and fusion. In terms of
feature extraction, Resnet50 and feature pyramid networks (FPN) are used as the backbone
network for the RGB imagery feature extraction branch, and in the branch of hyperspectral
image feature extraction, “Multi-scale Filter Bank” [18] is used to obtain the spatial-spectral
feature map, which is input into the hyperspectral imagery convolutional neural network
(HSI-CNN) to extract multi-scale feature maps. In terms of feature fusion, the feature maps
output by FPN and HSI-CNN is concatenated according to its size. Finally, the fused feature
maps are input into the detection head of SOLOv1 to predict the position and category of
plastic bottles. The proposed RHFF-SOLOv1 integrates multi-scale features of RGB and
HSI, and the classification accuracy of plastic bottles is improved. The network structure of
RHFF-SOLOv1 is shown in Figure 2.
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2.3.1. RGB Imagery Feature Extraction Branch

Resnet50 and FPN are used as the backbone network of the RGB image feature
extraction branch, while the output from the second feature extraction stage to the fifth
feature extraction stage of Resnet50 is connected with FPN, and FPN outputs multi-scale
feature maps. This has the advantage of combining low-detail level information with
high-level semantic information.

2.3.2. Hyperspectral Imagery Feature Extraction Branch

In the hyperspectral imagery feature extraction branch, a 3D CNN block with a kernel
of n × 3 × 3 and n × 1 × 1 is used to form a “Multi-scale Filter Bank”, where the former is
used to extract spatial information, and the latter is used to extract spectral information.
Then, the spatial-spectral feature map is used as the input of HSI-CNN, which contains
five hyperspectral image convolution blocks (HSI Conv Block). The network structure of
HSI CNN is shown in Figure 3.
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In the hyperspectral imagery feature extraction branch, a 3D CNN block with a ker-
nel of n × 3 × 3 and n × 1 × 1 is used to form a “Multi-scale Filter Bank”, where the former 
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Figure 3. Network structure of HSI-CNN. 

  

Figure 3. Network structure of HSI-CNN.

2.3.3. Multi-Scale Feature Fusion and Detection Head

Before feature fusion, maximum pooling is used to compress the shallow feature map
that is output by HSI Conv Block, and it is added to the deep feature map. The feature
fusion method of RGB and hyperspectral images is used to concatenate the feature maps
output from FPN and HSI-CNN by size. The multi-scale feature fusion maps are used as
the input of the detection head of SOLOv1 and a 2D CNN layer with the kernel of 1 × 1
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is used to reduce the channel from 384 to 256. The HSI Conv Block and RHFF Block are
shown in Figure 4.
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The detection head of SOLOv1 divides the image into S × S grids; the grid where
the center of the instance is located is responsible for predicting the instance category and
mask, so the output of the detection head has a category branch and mask branch. The
category branch predicts the category of the instance, and the final output is S × S × C,
where C represents the number of classes. In the mask branch, the mask of the instance is
predicted by the decoupled head, which predicts X and Y to obtain the mask through an
“Element-Wise” operation. The detection head of SOLOv1 is shown in Figure 5.
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3. Results
3.1. Hyperspectral Band Selection

In a hyperspectral image, each pixel includes 224 bands and contains many spectral
features that will increase the complexity of the model. Therefore, reducing the number of
spectral bands in hyperspectral images is necessary.

Figure 6 shows the average spectral curves of Tans_PET, Blue_PET, and Trans_PP. It
can be seen that the spectral curves of Trans_PET and Blue_PET are similar, and only the
peaks are different. Moreover, the spectral curve of Trans_PP exhibits a large fluctuation
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amplitude, and it has two obvious absorption valleys at 1200.5 nm and 1394.5 nm. In this
paper, a method of hyperspectral feature band selection is proposed, 224 bands are divided
into several spectral intervals, and the interval with the most apparent feature is selected.
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Specifically, the mean spectral curves of the waste plastic bottles were smoothed by
the Savitzky-Golay filter, and the extreme points were calculated. In order to find the
spectral band with the best classification result among the three types, several split points
were chosen from among the extreme points, including 1087.6 nm, 1285.1 nm, 1419.2 nm,
1542.6 nm, and 1666.1 nm. The spectral feature intervals are shown in Figure 7.
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The bands before 1087.6 nm and after 1666.1 nm were not retained due to noise and
inconspicuous features. Finally, different classifiers such as SVM, 1D convolutional neural
networks (1D-CNN), and Random Forest (RF) were used to classify the plastic bottles based
on the spectral feature intervals. Table 1 shows the overall accuracy of the classification
results (%).
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Table 1. The overall accuracy of classification results based on feature intervals.

Classifiers Interval 1 Interval 2 Interval 3 Interval 4 Interval 5 Interval 6

SVM 71.9 70.0 59.5 70.8 70.6 75.7
1D-CNN 88.4 81.8 74.7 79.2 84.8 86.4

RF 76.3 75.6 68.5 73.6 75.4 77.3

The results show that the classification performance is better when interval 1
(1087.6 nm–1285.1 nm) and interval 6 (1419.2 nm–1666.1 nm) are selected, which means
that these feature intervals contain important features for the classification of Trans_PET,
Blue_PET, and Trans_PP.

3.2. Evaluating Indicators

The indicators used to evaluate the classification results include precision (P), recall
(R), overall accuracy (OA), average accuracy (AA), and Kappa (k). The calculation methods
are shown in Formulas (2)–(7). TP is the True Positive, FN is the False Negative, TN is the
True Negative, and FP is the False Positive.

P =
TP

TP + FP
× 100% (2)

R =
TP

TP + FN
× 100% (3)

OA =
TP
n

× 100% (4)

AA =
sum(R)

C
× 100% (5)

k =
po − pe

1 − pe
× 100% (6)

Pe =

C
∑

i=1
ai × bi

n2 (7)

in which C is the number of classes, n is the total number of samples, the number of
samples of each category is ai, and the number of prediction samples of each category is bi.
In Formula (6), po is OA, and k is used to evaluate the consistency between the predicted
results and the actual classification results.

3.3. Comparison between Different Intervals

In order to select the best spectral feature interval, this study used the hyperspectral
image of feature intervals 1 and 6 as the input of RHFF-SOLOv1 for comparative exper-
iments. The HSI size of interval 1 is 640 × 640 × 57, and the HSI size of interval 6 is
640 × 640 × 71. The comparison of the experimental results is shown in Table 2.

Table 2. RHFF-SOLOv1 classification results (%) based on different spectral feature intervals.

Interval 1 Interval 6

Blue_PET 97.60 97.60
Trans_PET 94.80 94.12
Trans_PP 96.00 95.43

OA 95.55 95.01
AA 95.69 95.06

Kappa × 100 93.28 92.47
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The results show that the characteristic of spectral interval 1 is better than that of
spectral interval 6; so, interval 1 was selected as the hyperspectral image for this study.

3.4. Comparison between RHFF-SOLOv1 and Other Methods

In order to verify the feasibility and effectiveness of RHFF-SOLOv1, this paper first
compares the classification results of SOLOv1 and RHFF-SOLOv1. Table 3 shows the
comparative experimental results (%).

Table 3. The classification results of SOLOv1 and RHFF-SOLOv1.

SOLOv1 RHFF-SOLOv1

Blue_PET 87.80 97.60
Trans_PET 87.88 94.80
Trans_PP 92.16 96.00

OA 86.66 95.55
AA 87.51 95.69

Kappa × 100 80.10 93.28

Compared with SOLOv1, the results of OA and AA of the proposed RHFF-SOLOv1
were improved by 8.89% and 8.18%, respectively.

Recently, a large number of studies have applied CNNs to hyperspectral image classi-
fication, and these methods can be applied to different applications. Our proposed method
is compared with the spatial-spectral fusion networks such as ContextualNet [18], 3D-
CNN [19], the Spectral-Spatial Residual Network (SSRN) [20], and Hybrid SpectralNet
(HybridSN) [21] to demonstrate that RHFF-SOLOv1 is also superior to spectral detection
technology. Since these networks are based on the classification of pixels in HSI, in order
to ensure the same number of prediction instances in all experiments, 300 hyperspectral
images based on interval 1 in the test set are selected as their datasets, with a size of
640 × 640 × 57. Each HSI is divided into pixels with a ratio of Datasettrain:Datasettest = 3:7, and
the class results with the most pixels in the instance constitute the category of the instance.
The comparison of the experimental results (%) is shown in Table 4.

Table 4. Classification results between RHFF-SOLOv1 and other fusion methods.

ContextualNet 3D-CNN SSRN HybridSN RHFF-SOLOv1

Blue_PET 79.02 89.89 93.26 92.11 97.60
Trans_PET 86.43 94.49 95.67 98.11 94.80
Trans_PP 97.47 99.48 98.99 96.48 96.00

OA 86.52 94.07 95.69 95.42 95.55
AA 87.68 94.44 96.06 95.69 95.69

Kappa × 100 75.59 91.01 93.47 93.06 93.28

From the results, the proposed RHFF-SOLOv1 improves the OA, AA, and Kappa
of waste plastic bottles’ classification results by fusing the hyperspectral image feature
map and RGB feature map. Compared with other spatial-spectral fusion networks, RHFF-
SOLOv1 is superior, except with respect to SSRN in the evaluation indicators. Among them,
RHFF-SOLOv1 achieves the highest accuracy in terms of accuracy for determining blue
PET bottles.

Figure 8 shows the classification maps for the bottles using SOLOv1, ContextualNet,
3D-CNN, SSRN, HybridSN, and RHFF-SOLOv1. It can be seen that the prediction charts
obtained by HybridSN and RHFF-SOLOv1 are of good quality and can correctly identify
blue PET bottles more efficiently than other methods.

The proposed RHFF-SOLOv1 can also achieve good classification results when waste
plastic bottles are cluttered and stacked. However, compared to other methods, our method
cannot segment the contours of some plastic bottles completely during the segmentation of
the instances. The classification maps of the cluttered bottles are shown in Figure 9.
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Alongside improving the classification accuracy by multi-scale feature fusion, the
determination of a method for more accurately segmenting the contours of the instances is
also a future research direction.
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4. Conclusions

This study proposes a multi-scale feature fusion method of RGB and hyperspectral
images based on SOLOv1 (RHFF-SOLOv1). The spectral interval 1 (1087.6 nm–1285.1 nm)
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was selected as the spectral feature of waste plastic bottles classification through the hyper-
spectral band selection method. To effectively combine spatial and spectral information,
multi-scale feature maps of RGB and HSI were extracted and integrated using RHFF-
SOLOv1. In terms of bottle classification accuracy, our proposed method achieves the best
(97.5%) accuracy with respect to blue PET bottle classification only. However, the OA, AA,
and Kappa results of the proposed method are better than SOLOv1 and the state-of-the-art
spatial-spectral fusion network, except with respect to SSRN, which confirms the feasibility
and effectiveness of RHFF-SOLOv1. With the development of multi-sensor fusion tech-
nology, multiple sources of information can be integrated by effective fusion methods to
address the difficulty of classification.
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