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Editorial

Editorial for the Special Issue “Advances in Differential and
Difference Equations and Their Applications”

Lingju Kong 1,* and Min Wang 2

1 Department of Mathematics, University of Tennessee at Chattanooga, Chattanooga, TN 37403, USA
2 Department of Mathematics, Kennesaw State University, Marietta, GA 30060, USA; mwang23@kennesaw.edu
* Correspondence: lingju-kong@utc.edu

This Special Issue of Mathematics titled “Advances in Differential and Difference Equa-
tions and Their Applications” presents a collection of articles that highlight the significant
progress in the study of differential and difference equations. These contributions cover
a wide range of topics, from boundary value problems and the asymptotic behavior of
solutions to complex mathematical models and the application of fractional and difference
equations in various scientific and engineering fields.

Differential equations are a core mathematical tool for modeling dynamic systems in
a diverse range of areas, such as physics, biology, economics, and engineering. Likewise,
difference equations provide discrete counterparts to continuous models, which are crucial
in understanding phenomena occurring in digital systems and various computational
models. The papers presented in this issue reflect the latest theoretical advancements and
applications in these important research areas.

1. Radially Symmetric Positive Solutions of the Dirichlet Problem for the p-Laplace

Equation, by Bo Yang, presents new lower estimates for positive solutions of the
p-Laplace boundary value problem, offering significant insights into the existence and
nonexistence conditions for such solutions (https://doi.org/10.3390/math12152351).

2. Minimum Principles for Sturm–Liouville Inequalities and Applications, by Phuc
Ngo and Kunquan Lan, introduces a minimum principle for Sturm–Liouville inequal-
ities, providing a framework to understand solution behavior in boundary-value
contexts (https://doi.org/10.3390/math12132088).

3. Global Existence of Small Data Solutions to Weakly Coupled Systems of Semi-

Linear Fractional σ-Evolution Equations, by Seyyid Ali Saiah et al., explores the
existence of a long-term solution in fractional evolution equations, analyzing memory
terms and initial conditions (https://doi.org/10.3390/math12131942).

4. Stability and Bifurcation Analysis in a Discrete Predator–Prey System, by Luyao
Lv and Xianyi Li, investigates a Leslie-type predator–prey model, focusing on the
influence of functional responses on stability, bifurcation, and dynamics (https://doi.
org/10.3390/math12121803).

5. Differentiation of Solutions of Caputo Boundary Value Problems, by Jeffrey W.
Lyons, generalizes differentiation techniques for fractional boundary value problems,
expanding upon classical results (https://doi.org/10.3390/math12121790).

6. Kamenev-Type Criteria for Testing Asymptotic Behavior of Solutions, by Hail
S. Alrashdi et al., examines third-order quasi-linear neutral differential equations,
offering new tools for studying the asymptotic behavior of solutions (https://doi.org/
10.3390/math12111734).

7. Existence of Solutions to a System of Fractional q-Difference Boundary Value

Problems, by Alexandru Tudorache and Rodica Luca, analyzes multi-point boundary
conditions in q-difference systems, demonstrating their existence (https://doi.org/10
.3390/math12091335).

Mathematics 2024, 12, 3880. https://doi.org/10.3390/math12243880 https://www.mdpi.com/journal/mathematics1
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8. Bifurcation Analysis for an OSN Model with Two Delays, by Liancheng Wang and
Min Wang, delves into the dynamics of online social networks, focusing on delays
representing user activity transitions (https://doi.org/10.3390/math12091321).

9. The Blow-Up of the Local Energy Solution to the Wave Equation, by Yulong Liu,
studies finite-time blow-up and local existence for wave equations with nontrivial
boundary conditions (https://doi.org/10.3390/math12091317).

10. A Signed Maximum Principle for Riemann–Liouville Fractional Differential Equa-

tions, by Paul W. Eloe et al., derives conditions for maximum principles in fractional
differential equations with periodic boundary conditions (https://doi.org/10.3390/
math12071000).

11. Periodic Solutions to Nonlinear Second-Order Difference Equations, by Daniel
Maroncelli, offers conditions for periodic solutions in nonlinear difference equations,
highlighting their computational and theoretical implications (https://doi.org/10.339
0/math12060849).

12. Chains with Connections of Diffusion and Advective Types, by Sergey Kashchenko,
investigates oscillator chains, emphasizing their stability under diffusive and advec-
tive couplings (https://doi.org/10.3390/math12060790).

13. Existence and Limit Behavior of Constraint Minimizers for a Non-Local Kirchhoff-

Type Energy Functional, by Xincai Zhu and Hanxiao Wu, studies minimization
problems in energy functionals, connecting them to Kirchhoff-type equations (https:
//doi.org/10.3390/math12050661).

14. Multivalued Contraction Fixed-Point Theorem in b-Metric Spaces, by Bachir Slimani
et al., extends fixed-point theorems in b-metric spaces, contributing to fixed-point
theory (https://doi.org/10.3390/math12040567).

15. Multiplicity Results of Solutions to Schrödinger–Kirchhoff-Type Double Phase

Problems, by Yun-Ho Kim and Taek-Jun Jeong, establishes solutions for double
phase problems with concave–convex nonlinearities using advanced theorems (https:
//doi.org/10.3390/math12010060).

16. Global Existence, Blowup, and Asymptotic Behavior for a Kirchhoff-Type Parabolic

Problem, by Zihao Guan and Ning Pan, investigates pseudo-parabolic equations with
fractional Laplacians and logarithmic nonlinearities, analyzing the dynamics of the
solution (https://doi.org/10.3390/math12010005).

We extend our gratitude to all of the authors who contributed their original work to
this Special Issue, and to the reviewers whose critical evaluations ensured the high quality
of this collection. Finally, we thank the Editorial team of Mathematics for their professional
support and for providing a platform to publish this important body of work.

We hope that this Special Issue serves as a valuable resource for researchers, sparks
new ideas, and strengthens the connections within the global mathematical community.

Conflicts of Interest: The authors declare no conflicts of interest.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.
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Article

Global Existence, Blowup, and Asymptotic Behavior for a
Kirchhoff-Type Parabolic Problem Involving the Fractional
Laplacian with Logarithmic Term

Zihao Guan † and Ning Pan *,†

Department of Mathematics, Northeast Forestry University, Harbin 150040, China; gzh2023108@nefu.edu.cn
* Correspondence: pn@nefu.edu.cn
† These authors contributed equally to this work.

Abstract: In this paper, we studied a class of semilinear pseudo-parabolic equations of the
Kirchhoff type involving the fractional Laplacian with logarithmic nonlinearity:⎧⎪⎨⎪⎩

ut + M([u]2s )(−Δ)su + (−Δ)sut = |u|p−2uln|u|, in Ω × (0, T),
u(x, 0) = u0(x), in Ω,
u(x, t) = 0, on ∂Ω × (0, T),

, where [u]s is the Gagliardo

semi-norm of u, (−Δ)s is the fractional Laplacian, s ∈ (0, 1), 2λ < p < 2∗s = 2N/(N − 2s), Ω ∈ RN

is a bounded domain with N > 2s, and u0 is the initial function. To start with, we combined the
potential well theory and Galerkin method to prove the existence of global solutions. Finally, we
introduced the concavity method and some special inequalities to discuss the blowup and asymptotic
properties of the above problem and obtained the upper and lower bounds on the blowup at the
sublevel and initial level.

Keywords: parabolic; Kirchhoff type; logarithmic; Galerkin method; potential wells

MSC: 35R11; 35K92; 47G20

1. Introduction

We deal with the following fractional Kirchhoff-type semilinear pseudo-parabolic
problem involving logarithmic nonlinearity:⎧⎨⎩

ut + M([u]2s )LKu +LKut = f (u), in Ω × (0, T),
u(x, 0) = u0(x), in Ω,
u(x, t) = 0, on ∂Ω × (0, T),

(1)

where f (u) = |u|p−2uln|u| and the Kirchhoff function M(t) = tλ−1 with t ∈ R+
0 and

λ ∈ [1, 2∗s
2 ) for 2∗s = 2N/(N − 2s). For convenience, we set the functions:

T ϕ(x, y) = |ϕ(x)− ϕ(y)|2K(x, y),

T ϕ,φ(x, y) = (ϕ(x)− ϕ(y))(φ(x)− φ(y))K(x, y).

As a non-local integration operator, LK satisfies:

LK ϕ(x) = 2 lim
ε→0+

∫
RN\Dω(x)

T ϕ(x, y)dy,

[ϕ]s =

(∫∫
R2N

|u(x)− u(y)|2K(x − y)dxdy
)1/2

,

Mathematics 2024, 12, 5. https://doi.org/10.3390/math12010005 https://www.mdpi.com/journal/mathematics3
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for ∀ϕ ∈ C∞
0 (RN), where Dω(x) refers to a sphere in RN with x ∈ RN as the center and

ω > 0 as the radius. The function K : RN\{0} → R+ satisfies: K(x) ≥ m|x|−(N+2s) for
∀x ∈ RN\{0}, where m is a positive number and s ∈ (0, 1), so that K0K ∈ L1(RN)
when K0(x) = min{|x|2, 1}. Usually, we set K(x) = |x|−(N+2s) to meet the above condi-
tions. Ergo, it can be inferred that LKu = (−Δ)su for ∀u ∈ C∞

0 (RN). For more-relevant
details about the fractional Laplacian and fractional Sobolev space, we can refer to the
literature [1,2].

In recent years, research on the problem of parabolic equations with the fractional
Laplacian and Kirchhoff term has been a hot topic. In [3], the prototype of the Kirchhoff
termcan be traced back to 1883:

χ
∂2u

Bythedescriptiono f t2 −
(

P0

h
+

E
2L

∫ L

0
|∂u(x)

∂x
|2dx

)
∂2u
∂x2 = 0,

which described the physical phenomenon of elastic string vibration. As a result, more and
more scholars are attempting to introduce the Kirchhoff model into the study of parabolic
equations, obtaining many interesting results and more-complex changes. In [4], the authors
put forward the following Kirchhoff-type problems with a non-local integral operator:

−M(‖u‖2
Z)LKu = λ f (x, u) + |u|2∗−2u; (2)

here, 2∗ is equal to 2∗s in this article. (2) imposes a special constraint on f when proving the
existence of non-negative solutions, while considered an auxiliary problem with

Ma(t) =
{

M(t), if 0 ≤ t ≤ t0,
0, if t ≥ t0.

Application and research on the Kirchhoff term can be found in [4–12], where we note
that, in each of these papers, the authors gave the following restrictions to the Kirchhoff
function:

(M0)M : R+
0 → R+ is a continuous and non-decreasing function.

(M1)M(t) ≥ a, where a > 0, for ∀t ∈ R+
0 .

We let M(t) = a + b tλ−1 (t ≥ 1) meet the conditions M0 and M1, where a ≥ 0 and
b > 0. Specifically, in this article, we set a = 0, b = 1, and λ ∈ [1, 2∗s

2 ).
In [13], since Sattinger introduced the theory of potential wells in the construction of

the global existence of the solution for hyperbolic equations, a growing number of authors
have introduced the theory of potential wells in the study of various properties of solutions
of parabolic equations; see [5–8,14]. On the other hand, Levine established the concavity
method in [15,16]. In [5], Pan and Zhang opened up a way of investigating the nature
of Kirchhoff-type parabolic problems containing the fractional p-Laplacian when they
investigated the existence of global solutions at sublevel (H (u0) < d) and critical energy
level (H (u0) = d) for (3), combining, for the first time, the theory of the potential wells
and the Galerkin method:

ut + [u](λ−1)p
s,p (−	)s

pu = |u|q−2u, (3)

where p < q < NP/(N − sp) with 1 < p < N/s and 1 ≤ λ < N/(N − sp). In [9], Yang
and Tian took a deeper look at (3) by letting p and q satisfy 2 < pλ < q < Np/(N − sp)
with 1 ≤ λ < N/(N − sp). They obtained the blowup properties and asymptotic behavior
of the weak solutions at the sublevel and critical energy level by means of the potential
well theory, the concavity method, and some inequality tricks. In [10], Zhang and Xiang
investigated the burstiness of non-negative solutions at sublevel (H (u0) < d), critical
(H (u0) = d), and supercritical (H (u0) > 0) in p = 2, in addition to obtaining the
corresponding upper and lower bounds on the blowup at different energy levels. We can
also see [11,12,17,18] for more details on the application of these two methods.

4
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In [19], Ding and Zhou made p = 2 and replaced the polynomial term at the right of
Equation (3) with the logarithmic nonlinear term:

ut + M([u]2s )LKu = |u|q−2u ln |u|; (4)

at this point, the Kirchhoff term M(t) = a + btλ−1(a ≥ 0, b > 0) was taken. In order to
analyze the effect of the logarithmic terms on (4), the logarithmic fractional-order Sobolev
spaces were introduced, and some inequality tricks were cleverly used to analyze the
problem in depth and to obtain the global existence, invariance of the region, blowup, and
asymptotic behavior. In [20], the authors also considered (4), with the difference that the
Kirchhoff function is an unknown function, and they used differential inequality techniques
to overcome these difficulties to obtain upper and lower bounds for the blowup.

For the problem:
ut −	ut −	u = up,

the authors studied the initial-boundary-value problem with subcritical level H (u0) < d
for P(u0) < 0 and P(u0) > 0, critical level H (u0) = d with P(u0) ≥ 0, and high initial
energy H (u0) > d and also introduced invariants for three sets B, G, and G0. Moreover, to
learn more about the nature of solutions and the definition of the sets, we can refer to [21].
In [22], Chen and Tian introduced a logarithmic term on the above model to obtain the
following semilinear pseudo-parabolic equation:

ut −	ut −	u = up ln |u|;

for the above model, the authors utilized a modified potential well theory and the definition
of the logarithmic Sobolev space to obtain quite different results from parabolic equations
containing polynomial nonlinear terms. The details with logarithmic Sobolev spaces can be
found in [7,8,12,19,23–25].

Inspired by the above work, we added a fractional-order nonlinear dissipative term
(−Δ)sut to (4) and let M(t) = tλ−1, different from the Kirchhoff function considered in [19].
In the subsequent proofs, we introduce the correlation function Pι(u), as well as the new
set of potential wells Ψι and a tighter control of the logarithmic terms. In this article, we
considered the problem (1). In Section 2, we give the definition and related properties of
the logarithmic fractional Sobolev space. In Section 3, we give the modified potential well
theory and some necessary Lemmas. In Section 4, we construct an approximate solution to
the problem (1) using the Galerkin method. In Section 5, we focus on proving the existence
of global solutions when H (u0) = d for P(u0) > 0 or 0 ≤ H (u0) ≤ d for P(u0) = 0.
In Section 6, we prove the finite-time blowup at subcritical (H (u0) < d) and critical
(H (u0) = d) energy levels and derive the corresponding upper and lower bounds. At the
same time, we obtain the asymptotic behaviors of the global solutions. In Section 7, we
give an example to illustrate our results. In Section 8, we provide a conclusion of the entire
article.

2. Preliminaries

In the following, we first give some necessary definitions about fractional Sobolev
spaces and related properties, and we can refer to [26,27] for more details.

Now, we introduce some definitions. We define Lγ(Ω) to be the usual Lebesgue space
for γ ≥ 1 with the norm:

‖u‖γ =

(∫
Ω
|u|γdx

)1/γ

;

in particular, when γ = 2, we define the inner-product in the following form:

(u, v) =
∫

Ω
uvdx.

5
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In the following, let 0 < s < 1 and define the fractional critical exponent 2∗s by

2∗s =

⎧⎨⎩
2N

N − 2s
, if 2s < N,

∞, if 2s ≥ N.

Put Q = RN\O, where O = C(Ω)× C(Ω) ⊂ R2N and C(Ω) = RN\Ω. We considered
the fractional Sobolev space Ψ satisfying the Lebesgue measurable functions u from RN to
R, i.e., ∫∫

Q
T u(x, y)dxdy < ∞.

The space Ψ is prescribed the norm:

‖u‖Ψ =

(
‖u‖2

L2(Ω) +
∫∫

Q
T u(x, y)dxdy

)1/2
.

We considered the closed linear subspace:

Ψ0 = {u ∈ Ψ : u(x) = 0 a.e. in ∂Ω},

its norm being defined as

‖u‖Ψ0 =

(∫∫
Q

T u(x, y)dxdy
) 1

2
. (5)

The function space Ψ0 denotes that

Ψ0 = C∞
0 (Ω)

Ψ
.

For all u, v ∈ Ψ0, we define

(u, v)Ψ0 =
∫∫

Q
T u,v(x, y)dxdy.

From now on, we will only consider the general case where K(x − y) = |x − y|−(N+2s),
and more relevant details can be found in [27].

Lemma 1. (i) There exists σ = σ(N, ν, s) > 0, where ν ∈ [1, 2∗s ], such that, for arbitrary
v ∈ Ψ0,

‖v‖2
Lν(Ω) ≤ σ

∫∫
Ω×Ω

T v(x, y)dxdy ≤ σ

β

∫∫
Q

T v(x, y)dxdy.

(ii) There exists σ̃ = σ̃(N, s, β, Ω) > 0 such that, for arbitrary v ∈ Ψ0,∫∫
Q

T v(x, y)dxdy ≤ ‖v‖2
Ψ ≤ σ̃

∫∫
Q

T v(x, y)dxdy.

(iii) For any bounded sequence (vj)j in Ψ0, there exists v ∈ Lν(RN), with v = 0 a.e. in ∂Ω, such
that, up to a subsequence, still denoted by (vj)j,

vj → v strongly in Lν(Ω) as j → ∞,

for any ν ∈ [1, 2∗s ).

Definition 1 ([28]). (Maximal existence time) T for which u is a weak solution of Equation (1) and
satisfies the following two conditions is called the maximal existence time:

(1) If u(t) exists for ∀t ∈ [0,+∞), thenT = +∞.

6
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(2) Let t0 ∈ (0,+∞) and u(t) exist for 0 ≤ t < t0, but be non-existent at t0, so that T = t0.

3. The Potential Well

In the following, we will give some notations and Lemmas. First of all, we define

H (u) =
1

2λ
‖u‖2λ

Ψ0
− 1

p

∫
Ω
|u|p ln |u|dx +

1
p2 ‖u‖p

p, (6)

and

P(u) = ‖u‖2λ
Ψ0

−
∫

Ω
|u|p ln |u|dx. (7)

A definition of potential well as followsin Equation (1) is defined as follows:

Ψ = {u(x) ∈ Ψ0|P(u) > 0, H (u) < d} ∪ {0};

the external set Θ is indicated as

Θ = {u(x) ∈ Ψ0|P(u) < 0, H (u) < d},

where

d = inf
u∈I

H (u), (8)

denotes the depth of the potential well and the Nehari manifold is indicated as

I = {u ∈ Ψ0|P(u) = 0, u �= 0}.

Moreover, the positive set and negative set are represented as

I+ = {u ∈ Ψ0|P(u) > 0},
I− = {u ∈ Ψ0|P(u) < 0}.

Obviously, from (6) and (7), we have

H (u) =
1
p
P(u) + (

1
2λ

− 1
p
)‖u‖2λ

Ψ0
+

1
p2 ‖u‖p

p. (9)

Moreover, for ∀ι ∈ [0, ∞), we set

Pι(u) = ι‖u‖2λ
Ψ0

−
∫

Ω
|u|p ln |u|dx,

δ(ι, ε) = (
ιεe

Ep+ε
∗

)
1

p+ε−2λ ,
(10)

where 2λ < p + ε < 2∗s and E∗ is the optimal embedding constant for embedding Ψ0 into
Lp+ε, i.e.,

E∗ = sup
u∈Ψ0\{0}

‖u‖p+ε

‖u‖Ψ0

.

We impose a new series of potential wells such that

Ψι = {u(x) ∈ Ψ0(Ω)|Pι(u) > 0, H (u) < d(ι)} ∪ {0},

Θι = {u(x) ∈ Ψ0(Ω)|Pι(u) < 0, H (u) < d(ι)},

where
d(ι) = inf

u∈I
H (u),

7
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and
I = {u ∈ Ψ0|Pι(u) = 0, u �= 0}.

Specifically, we can substitute (10) for (9):

H (u) =
1
p
Pι(u) + (

1
2λ

− ι

p
)‖u‖2λ

Ψ0
+

1
p2 ‖u‖p

p. (11)

Definition 2. u = u(t) is named a weak solution of the problem (1), if u(t) ∈ L∞(0, ∞; Ψ0) with
ut ∈ L2(0, ∞; L2(Ω)) and it satisfies the following equation∫

Ω
utνdx + 〈u, ν〉Ψ0 + (ut, ν)Ψ0 =

∫
Ω
|u|p−2u ln |u|νdx,

where
〈u, ν〉Ψ0 = M([u]2s )

∫∫
Q

T u,ν(x, y)dxdy,

(ut, ν)Ψ0 =
∫∫

Q
T ut ,ν(x, y)dxdy,

for any ν ∈ Ψ0.

Lemma 2. Let ε be a positive number; we can obtain

ln s ≤ 1
eε

sε, ∀s ∈ [1,+∞).

Proof. Let g(s) = ln s − 1
eε sε for all s ≥ 1. Clearly, g attains its maximum value at s∗ = e

1
ε ;

thus, g(s) ≤ g(s∗) = 0 for all s ≥ 1.

Lemma 3. Let u ∈ Ψ0\{0}, and consider a function l:� �→ H (�u) for ∀� > 0:

(1) lim
�→0+

l(�) = 0, lim
�→+∞

l(�) = −∞.

(2) Function l(�) is strictly monotonically increasing on (0, �∗), strictly monotonically decreas-
ing on (�∗, ∞) for unique �∗, and max l(�) = l(�∗).

(3) P(�u) > 0 for � ∈ (0, �∗), P(�u) < 0 for � ∈ (�∗, ∞), and P(�∗u) = 0.

Proof. (1) By the description of H (u) in (6), we have

l(�) =
�2λ

2λ
‖u‖2λ

Ψ0
− �p

p

∫
Ω
|u|p ln |u|dx − �p

p
ln �‖u‖p

p +
�p

p2 ‖u‖p
p.

Obviously, (1) holds.
(2) By simple calculations, we have

l′(�) = �2λ−1
(
‖u‖2λ

Ψ0
− �p−2λ

∫
Ω
|u|p ln |u|dx − �p−2λ ln k‖u‖p

p

)
.

Set o(�) = �1−2λl′(�), then we have

o′(�) = −�p−2λ−1
(
(p − 2λ) ln �‖u‖p

p + (p − 2λ)
∫

Ω
|u|p ln |u|dx + ‖u‖p

p

)
;

therefore, by taking

�1 = exp

{
−‖u‖p

p − (p − 2λ)
∫

Ω |u|p ln |u|dx

(p − 2λ)‖u‖p
p

}
> 0,

8



Mathematics 2024, 12, 5

thus o′(�) > 0 for � ∈ (0, �1), o′(�) < 0 for � ∈ (�1,+∞) and o′(�1) = 0. We
can notice that o(0) = ‖u‖2λ

Ψ0
> 0 and lim

�→+∞
o(�) = −∞, so o(�∗) = 0 for a unique

�∗ ∈ (0,+∞) yields l′(�∗) = �2λ−1o(�∗) = 0; it is shown that (2) holds.
(3) By the description of P(u), we can obtain �l′(�) = I(�u); thus, (3) holds.

Lemma 4. If u ∈ Ψ0 and for ε > 0, it satisfies 2λ < p + ε < 2∗s , then:

(1) If 0 < ‖u‖Ψ0 ≤ δ(ι, ε), then Pι(u) ≥ 0. Pre-eminently, if 0 < ‖u‖Ψ0 ≤ δ(1, ε), then
P(u) > 0.

(2) If Pι(u) < 0, then ‖u‖Ψ0 > δ(ι, ε). Pre-eminently, if P(u) < 0, then ‖u‖Ψ0 > δ(1, ε).
(3) If Pι(u) = 0, then ‖u‖Ψ0 ≥ δ(ι, ε) or ‖u‖Ψ0 = 0 holds. Pre-eminently, ||u||Ψ0 ≥ δ(1, ε) or

‖u‖Ψ0 = 0 when P(u) = 0.

Proof. (1) 0 < ‖u‖Ψ0 ≤ δ(ι, ε), (10) and Lemma 2 gives

∫
Ω
|u|p ln |u|dx ≤ 1

eε
‖u‖p+ε

p+ε ≤
Ep+ε
∗
eε

‖u‖p+ε
Ψ0

=
Ep+ε
∗
eε

‖u‖2λ
Ψ0
‖u‖p+ε−2λ

Ψ0
≤ ι‖u‖2λ

Ψ0
,

implying Pι(u) ≥ 0. Pre-eminently, P(u) ≥ 0, where ι = 1.
(2) By Lemma 2 and Pι(u) < 0,

ι‖u‖2λ
Ψ0

<
∫

Ω
|u|p ln |u|dx ≤ 1

eε
‖u‖p+ε

p+ε ≤
Ep+ε
∗
eε

‖u‖p+ε
Ψ0

=
Ep+ε
∗
eε

‖u‖2λ
Ψ0
‖u‖p+ε−2λ

Ψ0
;

thus, ‖u‖Ψ0 > δ(ι, ε). If we put ι = 1, we can conclude that ‖u‖Ψ0 > δ(1, ε).
(3) Pι(u) = 0 when ‖u‖Ψ0 = 0. In contrast, if Pι(u) = 0 and ‖u‖Ψ0 �= 0, we can obtain

ι‖u‖2λ
Ψ0

=
∫

Ω
|u|p ln |u|dx ≤ 1

eε
‖u‖p+ε

p+ε ≤
Ep+ε
∗
eε

‖u‖p+ε
Ψ0

=
Ep+ε
∗
eε

‖u‖2λ
Ψ0
‖u‖p+ε−2λ

Ψ0
,

i.e., ‖u‖Ψ0 ≥ δ(ι, ε). If we put ι = 1, (3) is valid.

Lemma 5. For all ι > 0 and for ε > 0 satisfying 2λ < p + ε < 2∗s ,

d(ι) = (
1

2λ
− ι

p
)δ2λ(ι, ε),

and it is description as follows:

d(ι) = in f {H (u)|u ∈ Ψ0, ||u||Ψ0 �= 0, Pι(u) = 0}.

Proof. Fix ι > 0. Pι(u) = 0 and ||u||Ψ0 �= 0 with u ∈ Ψ0, then

ι‖u‖2λ
Ψ0

=
∫

Ω
|u|p ln |u|dx ≤ 1

eε
‖u‖p+ε

p+ε ≤
Ep+ε
∗
eε

‖u‖p+ε
Ψ0

=
Ep+ε
∗
eε

‖u‖2λ
Ψ0
‖u‖p+ε−2λ

Ψ0
.

Hence,

‖u‖Ψ0 ≥ (
ιεe

Ep+ε
∗

)
1

p+ε−2λ = δ(ι, ε).

9
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Therefore, by Lemma 4(3),

H (u) =
1
p
Pι(u) + (

1
2λ

− ι

p
)‖u‖2λ

Ψ0
+

1
p
‖u‖p

p

≥ (
1

2λ
− ι

p
)‖u‖2λ

Ψ0

≥ (
1

2λ
− ι

p
)δ2λ(ι, ε).

Thus, d(ι) = in f {H (u)|u ∈ Ψ0, ||u||Ψ0 �= 0, Pι(u) = 0}, as claimed. If we let ι = 1,
we can deduce that

d = d(1) = (
1

2λ
− ι

p
)δ2λ(1, ε). (12)

Lemma 6. If u ∈ Ψ0, d(ι) follows these properties:

(1) d(ι) ≥ k(ι)δ2λ(ι, ε), where k(ι) = 1
2λ − ι

p , 0 < ι < p
2λ .

(2) There exists a unique π ∈ (1,+∞), such that d(π) = 0, and d(ι) > 0, where ι ∈ (1, π).
(3) When ι ∈ (0, 1], d(ι) is monotonically increasing and monotonically decreasing, where

ι ∈ (1, π) with a maximum at ι = 1.

Proof. (1) Let u ∈ Iι; the definition of H (u) and Lemma 4(3) give

H (u) = (
1

2λ
− ι

p
)||u||2λ

Ψ0
+

1
p
Pι(u) +

1
p2 ||u||

p
p

≥ k(ι)||u||2λ
Ψ0

≥ k(ι)δ2λ(ι, ε).

(2) Set

h(θ) = ι||u||2λ
Ψ0

− θp−2λ
∫

Ω
|u|p ln |u|dx − θp−2λ ln θ||u||pp,

then

h′(θ) = −θp−2λ−1
[
(p − 2λ) ln θ||u||pp + (p − 2λ)

∫
Ω
|u|p ln |u|dx + ||u||pp

]
;

let h′(θ) = 0; we can obtain

θ∗ = exp

{
−||u||pp − (p − 2λ)

∫
Ω |u|p ln |u|dx

(p − 2λ)||u||pp

}
> 0;

thus h′(θ) > 0 on (0, θ∗), h′(θ) < 0 on (θ∗,+∞). We can clearly see that
h(0) = ι||u||2λ

Ψ0
> 0, as well as lim

θ→+∞
h(θ) = −∞ for all u ∈ Ψ0 satisfy ||u||Ψ0 �= 0; by

the definition of Pι(u), we have

Pι(θu) = θ2λh(θ);

10
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therefore, there exists a unique θ1 ∈ [0,+∞) such that Pι(θ1u) = 0, which implies
θ1u ∈ Iι. By the expression d(ι), one obtains

d(ι) ≤ H (θu)

= θp
(

θ2λ−p

2λ
||u||2λ

Ψ0
− 1

p

∫
Ω
|u|p ln |u|dx − 1

p
ln θ||u||pp +

1
p2 ||u||

p
p

)
→ −∞(θ → +∞);

hence,
lim

ι→+∞
d(ι) ≤ 0.

In addition, due to d = d(1) > 0 by (12) and d(ι) being continuous about ι, so letting
d′(ι) = 0, we have ι = p

p+ε , which implies that d(ι) is increasing when ι ∈ (0, p
p+ε ]

and decreasing when ι ∈ ( p
p+ε ,+∞). Since p

p+ε < 1, we have d( p
p+ε ) > d(1) > 0, and

we have that d(ι) is decreasing in [1,+∞), which leads to the existence of a unique
π ∈ [1,+∞) such that d(π) = 0 and d(ι) > 0 when ι ∈ [1, π).

(3) For arbitrary 0 < ι′ < ι
′′
< 1 or 1 < ι

′′
< ι′ < π and arbitrary u ∈ I′′ , there exist

v ∈ I′ and a constant ζ(ι′, ι
′′
) > 0 such that H (v) < H (u)− ζ(ι′, ι

′′
) holds. Clearly,

for the above u, we can define the same θ1(ι) that appears in the proof of Lemma 6(2)
to be satisfied, such that Pι(θ1(ι)u) = 0 and θ1(ι

′′
) = 1. Let φ(θ1) = H (θ1u), then

d
dθ1

φ(θ1) =
1
θ1
[(1 − ι)‖θ1u‖2λ

Ψ0
+ Iι(θ1u)] = θ2λ−1

1 (1 − ι)‖u‖2λ
Ψ0

.

Taking v = θ1(ι
′′
)u, then v ∈ I

ι
′′ . If 0 < ι′ < ι

′′
< 1, then

H (u)−H (v) = φ(1)− φ(θ1(ι
′)) =

∫ 1

θ1(ι′)

d
dθ1

(φ(θ1))dθ1

=
∫ 1

θ1(ι′)
(1 − ι)θ2λ−1

1 ‖u‖2λ
Ψ0

dθ1

> (1 − ι
′′
)r2λ−1(ι

′′
, ε)θ2λ−1

1 (ι′)(1 − θ1(ι
′))

:= ζ(ι′, ι
′′
) > 0.

If 1 < ι
′′
< ι′ < π, then

H (u)−H (v) = φ(1)− φ(θ1(ι
′))

> (ι
′′ − 1)r2λ−1(ι

′′
, ε)θ2λ−1

1 (ι
′′
)(θ1(ι

′)− 1)

:= ζ(ι′, ι
′′
) > 0.

Thus, (3) holds.

Lemma 7. Let 0 < H (u) < d for u ∈ Ψ0 and ι1 < 1 < ι2 be two roots of d(ι) = H (u). Then,
the sign of Pι(u) remains unchanged for ι1 < ι < ι2.

Proof. If the sign of Pι(u) changes in (ι1, ι2), H (u) > 0 implies ‖u‖Ψ0 �= 0, according to
Pι(u) being continuous about ι, and we can pick an ι∗ ∈ (ι1, ι2) such that Iι∗(u) = 0. Thus,
H (u) ≥ d(ι∗), which forms a contradiction with H (u) = d(ι1) = d(ι2) < d(ι∗).

Lemma 8. Let ι ∈ (0, p
2λ ) and u ∈ Ψ0. Assuming H (u) ≤ d(ι), then:

(1) If Pι(u) > 0, then ‖u‖2λ
Ψ0

< d(ι)
k(ι) , where k(ι) = 1

2λ − ι
p .

(2) If ‖u‖2λ
Ψ0

> d(ι)
k(ι) , then Pι(u) < 0.

11
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(3) If Pι(u) = 0, then ‖u‖2λ
Ψ0

≤ d(ι)
k(ι) .

Proof. For 0 < ι < p
2λ :

H (u) = (
1

2λ
− ι

p
)‖u‖2λ

Ψ0
+

1
p2 ‖u‖p

p +
1
p
Pι(u) ≤ d(ι),

then ‖u‖2λ
Ψ0

< d(ι)
k(ι) .

The proofs of (2) and (3) closely resemble the proof of (1).

Lemma 9. Assume H (u) ≤ d with u ∈ Ψ0. Then, P(u) ≥ 0 if and only if

‖u‖2λ
Ψ0

≤ δ2λ(1, ε). (13)

Proof. If (13) holds, from

∫
Ω
|u|p ln |u|dx ≤ 1

eε
‖u‖p+ε

p+ε ≤
Ep+ε
∗
eε

‖u‖p+ε
Ψ0

=
Ep+ε
∗
eε

‖u‖2λ
Ψ0
‖u‖p+ε−2λ

Ψ0
= ‖u‖2λ

Ψ0
,

P(u) ≥ 0 is valid.
In contrast, P(u) ≥ 0 and

H (u) =
1
p
P(u) +

p − 2λ

2λp
‖u‖2λ

Ψ0
+

1
p2 ‖u‖p

p ≤ d =
p − 2λ

2λp
δ2λ(1, ε),

yield
p − 2λ

2λp
‖u‖2λ

Ψ0
≤ p − 2λ

2λp
δ2λ(1, ε).

4. Galerkin Method

In the following that, we prove that there is an approximate solution to (1) by the
Galerkin method. For the Galerkin solution, we refer to [5,29,30].

Put {ωj}∞
j=1 as a column of a base function in L2(Ω). Firstly, we define m(t, κ) :

[0, T]×RN → R and ηn(t, κ) : [0, T]×RN → RN by

(ηn(t, κ))i =
∫∫

Q
|

n

∑
j=1

κj(t)ωj(x)−
n

∑
j=1

κj(t)ωj(y)|[ωi(x)− ωi(y)]K(x − y)dxdy,

m(t, κ) =

(∫∫
Q
|

n

∑
j=1

κj(t)ωj(x)−
n

∑
j=1

κj(t)ωj(y)|2K(x − y)dxdy

)λ−1

,

where κ = (κ1, κ2, · · · , κn) and m(t, h) and ηn(t, k) are continuous about t and k; we consider
the ordinary differential equation.{

V′ + m(t, V)ηn(t, V) + ηn(t, V′) = fn(V),
V(0) = An(0),

where An(0)i =
∫

Ω un(0)ωidx, gn(V)i =
∫

Ω ϕ(V)ωidx.
Multiplying the above equation by V to obtain

V′V + m(t, V)ηn(t, V)V + ηn(t, V′)V = fn(V)V,

12
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where

m(t, V)ηn(t, V)V =

[∫∫
Q
|

n

∑
j=1

Vj(t)ωj(x)−
n

∑
j=1

Vj(t)ωj(y)|2K(x − y)dxdy

]λ−1

·
∫∫

Q
|

n

∑
j=1

Vj(t)ωj(x)−
n

∑
j=1

Vj(t)ωj(y)|

·
[

n

∑
i=1

Vi(t)ωi(x)−
n

∑
i=1

Vi(t)ωi(y)

]
K(x − y)dxdy > 0,

νn(t, V′)V =
∫∫

Q
|

n

∑
j=1

V′
j(t)ωj(x)−

n

∑
j=1

V′
j(t)ωj(y)|

·
[

n

∑
i=1

Vi(t)ωi(x)−
n

∑
i=1

Vi(t)ωi(y)

]
K(x − y)dxdy,

thus
V′V + ηn(t, V′)V ≤ fn(V)V,

i.e.,
1
2

∂

∂t
|V(t)|2 + 1

2
∂

∂t
ηn(t, V)V ≤ | fn(V)||V| ≤ 1

2
| fn(V)|2|V|2,

and combining this with Gronwall’s Lemma yields |V(t)| ≤ Cn(T) for t ∈ [0, T].
Let

t0 = 0, |V(t)− V(0)| ≤ 2Cn(T),

H = max
(t,V)∈[0,T]×RN

| fn(V)− m(t, V)ηn(t, V)|,

and

h = min{T,
2Cn(T)

H
},

for which there exists a local solution when |t − t0| ≤ h. Letting t1 = h as an initial
value, one obtains the existence of the local solution to the ordinary differential equation in
[t1, t2], t2 = t1 + h, . . . , then we divide [0, T] into [0, t1], . . . , [tn−1, tn], where ti = ti−1 + h,
i = 1, . . . , n− 1, tn = T; thus, there is a local solution on the interval [ti−1, ti]. So, b ∈ C1[0, T]
as a solution to the above ordinary differential equation. By the definitions of m(t, V) and
ηn(t, V), we construct the following approximate solution un(x, t) of the problem (1):

un(x, t) =
n

∑
j=1

bjn(t)ωj(x), n = 1, 2, . . . , (14)

satisfying

(unt, ωj) + 〈un, ωj〉Ψ0 + (unt, ωj)Ψ0 = (|un|p−2un ln |un|, ωj), (15)

where

〈un, ωj〉Ψ0 =

[∫∫
Q

T un(x, y)dxdy
]λ−1

·
∫∫

Q
T un ,ωj(x, y)dxdy,

and

(unt, ωj)Ψ0 =
∫∫

Q
T unt ,ωj(x, y)dxdy.

13
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un(0) ∈ W, un(0) =
n

∑
j=1

ξ jnωj(x) → u0 ∈ Ψ0 as n → ∞. (16)

Since V ∈ C1[0, T], then un ∈ C1([0, T]; Ψ0). Multiplying (15) by V′
jn(t) and adding j

from 1 to n, we obtain

∫
Ω
|unt|22dx +

[∫∫
Q

T un(x, y)dxdy
]λ−1 ∫∫

Q
T un ,unt(x, y)dxdy +

∫∫
Q

T unt(x, y)dxdy

=
∫

Ω
|un|p−2ununt ln |un|dx,

i.e.,

∫
Ω
|unt|22dx +

1
2λ

d
dt

[∫∫
Q

T un(x, y)dxdy
]λ

+
∫∫

Q
T unt(x, y)dxdy

=
d
dt
(

1
p

∫
Ω
|un|p ln |un|dx − 1

p2 ‖un‖p
p),

(17)

then integrating (17) about t yields∫ t

0
‖unt‖2

2dt +
∫ t

0
‖unt‖2

Ψ0
dt +

1
2λ

‖un‖2λ
Ψ0

− 1
p

∫
Ω
|un|p ln |un|dx +

1
p2 ‖un‖p

p

=
1

2λ
‖un(0)‖2λ

Ψ0
− 1

p

∫
Ω
|un(0)|p ln |un(0)|dx +

1
p2 ‖un(0)‖p

p;

since un(0) ∈ W, we can obtain∫ t

0
funt(t)dt +H (un(t)) = H (un(0)) < d, 0 ≤ t ≤ T, (18)

where the description of fu(t) can be seen in Theorem 4; we will not emphasize this in the
sequel.

Next, we show that un(t) ∈ Ψ holds for n large enough. If the conclusion is incorrect,
there exists a t0 ∈ (0, T] such that un(t0) ∈ ∂Ψ, i.e., H (un(t0)) = d and un(t0) ∈ Ψ0\{0} or
P(un(t0)) = 0. Obviously, H (un(t0)) = d contradicts (18). In fact, H (un(t0)) ≥ d from
the description of d in (8) in the even of un(t0) ∈ I , which denies the truth of (18). So, we
have un(t) ∈ Ψ for large enoughn and t ∈ [0, T].

un(t) ∈ Ψ; thus, P(un(t)) > 0. Furthermore, by (18) and the definition of H (u) in (9),
for large enough n and all t ∈ [0, T],∫ t

0
‖unt‖2

2dt +
∫ t

0
‖unt‖2

Ψ0
dt +

p − 2λ

2λp
‖un(t)‖2λ

Ψ0
+

1
p2 ‖un(t)‖p

p < d,

which yields ∫ t

0
‖unt(t)‖2

2dt < d, ∀t ∈ [0, T], (19)

‖un(t)‖2λ
Ψ0

<
2λpd

p − 2λ
, ∀t ∈ [0, T], (20)

‖un(t)‖p
p < p2d, ∀t ∈ [0, T], (21)

14
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for arbitrary T > 0. By a straightforward calculation,

∫
Ω

∣∣∣|un(t)|p−2un(t) ln |un(t)|
∣∣∣ p

p−1 dx

=
∫

Ω1

∣∣∣|un(t)|p−2un(t) ln |un(t)|
∣∣∣ p

p−1 dx +
∫

Ω2

∣∣∣|un(t)|p−2un(t) ln |un(t)|
∣∣∣ p

p−1 dx,

where
Ω1 = {x ∈ Ω| |u(x, t)| ≤ 1}, Ω2 = {x ∈ Ω| |u(x, t)| > 1}.

Since
inf

s∈(0,1)
sp−1lns = sp−1lns|

s=e
− 1

p−1
= − 1

(p − 1)e
,

we deduce that∫
Ω1

∣∣∣|un(t)|p−2un(t) ln |un(t)|
∣∣∣ p

p−1 dx ≤ (
1

(p − 1)e
)

p
p−1 |Ω| := D0, ∀t ∈ [0, ∞).

Taking ε = (2∗s −p)(p−1)
p into Lemma 2, by Lemma 1(i) and (20), we have

∫
Ω2

∣∣∣|un(t)|p−2un(t) ln |un(t)|
∣∣∣ p

p−1 dx ≤ C
∫

Ω2

|un(t)|2
∗
s dx ≤ C‖un(t)‖2∗s

L2∗s (Ω)

≤ CC1‖un(t)‖2∗s
Ψ0

≤ CC1(
2λpd

p − 2λ
)

2∗s
2λ ,

where C1 = C0
β in Lemma 1(i). Thus, from the above proof, it follows that

∫
Ω

∣∣∣|un(t)|p−2un(t) ln |un(t)|
∣∣∣ p

p−1 dx ≤ D0 + CC1(
2λpd

p − 2λ
)

2∗s
2λ := D1. (22)

Next, we prove un(t) ∈ L∞(0, ∞; Ψ0), unt ∈ L2(0, ∞; L2(Ω)).
Combining (19) and (20) with (22), there exists u(t) ∈ L∞(0, ∞; Ψ0) with

ut ∈ L2(0, ∞; L2(Ω)), |u|p−2u ln |u| ∈ L2(0, ∞; L
p

p−1 (Ω)) and a subsequence of {un}∞
n=1,

still denoted by {un}∞
n=1, such that

un
∗
⇀ u in L∞(0, ∞; Ψ0), (23)

unt ⇀ ut in L2(0, ∞; L2(Ω)), (24)

|un|p−2un ln |un| ∗
⇀ |u|p−2u ln |u| in L∞(0, ∞; L

p
p−1 (Ω)); (25)

by (23), (24) and Lemma 1(iii),

un → u in L2(0, ∞; Lp(Ω)), (26)

which implies |un|p−2un ln |un| → |u|p−2u ln |u| a.e. in Ω × (0, ∞).
By (23)–(25), letting ωj = v ∈ Ψ0 and n → ∞ in (15),

(ut, v) + 〈u, v〉Ψ0 + (ut, v)Ψ0 = (|u|p−2u ln |u|, v).

Indeed, as indicated by (23) and (24), we have un(x, 0) ⇀ u(x, 0) in L2(Ω), then for the
union with (16), u(x, 0) = u0(x) ∈ Ψ0.

Finally, we prove the energy level inequality:∫ t

0
fut(t)dt +H (u) ≤ H (u0). (27)

15
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By (22), (25), and Hölder’s inequality, we obtain∣∣∣∣∫Ω
|un|p ln |un|dx −

∫
Ω
|u|p ln |u|dx

∣∣∣∣
=

∣∣∣∣∫Ω
|un|p ln |un| − uun|un|p−2 ln |un|+ uun|un|p−2 ln |un| − |u|p ln |u|dx

∣∣∣∣
≤

∣∣∣∣∫Ω
(un − u)un|un|p−2 ln |un|dx

∣∣∣∣+ ∣∣∣∣∫Ω
u(|un|p−2un ln |un| − |u|p−2n ln |u|)dx

∣∣∣∣
≤ D

p−1
p ‖un − u‖p +

∣∣∣∣∫Ω
u(|un|p−2un ln |un| − |u|p−2n ln |u|)dx

∣∣∣∣
→ 0 as n → ∞.

(28)

By (18), (23), (24), (26), and (28), the construction of the approximate solution in (14) and (16),
and the definition of H (u) in (6), we deduce that∫ t

0
fut(t)dt +

1
2λ

‖u‖2λ
Ψ0

+
1
p2 ‖u‖p

p

≤ lim inf
n→∞

∫ t

0
‖unt‖2

2dt + lim inf
n→∞

∫ t

0
‖unt‖2

Ψ0
dt + lim inf

n→∞
‖un‖2λ

Ψ0
+

1
p2 lim inf

n→∞
‖un‖p

p

≤ lim inf
n→∞

(
∫ t

0
‖unt‖2

2dt +
∫ t

0
‖unt‖2

Ψ0
dt + ‖un‖2λ

Ψ0
+

1
p2 ‖un‖p

p)

= lim inf
n→∞

(E(un) +
1
p

∫
Ω
|un|p ln |un|dx +

∫ t

0
‖unt‖2

2dt +
∫ t

0
‖unt‖2

Ψ0
dt)

= lim
n→∞

(E(un(0)) +
1
p

∫
Ω
|un|p ln |un|dx)

= H (u0) +
1
p

∫
Ω
|u|p ln |u|dx,

which implies that (27) holds.

5. Existence of Global Solutions

In the following, we consider the global existence solutions of the problem (1).

Theorem 1. Suppose that u0 ∈ Ψ0, H (u0) = d, P(u0) > 0 or 0 ≤ H (u0) ≤ d, P(u0) = 0.
Then, the problem (1) has a global solution u(t) ∈ L∞(0, ∞; Ψ0) such that ut ∈ L2(0, ∞; L2(Ω))
and u(t) ∈ Ψ, where

Ψ = Ψ ∪ ∂Ψ = {u ∈ Ψ0|P(u0) ≥ 0, H (u0) ≤ d}.

Proof. Let θm = 1 − 1
m , u0m(x) = θmu0(x), m = 2, 3, . . . . Consider the initial condition

u(x, 0) = u0m(x) and the corresponding equation:⎧⎨⎩
ut + M

(
[u]2s

)
Lku +Lkut = |u|p−2u ln |u|, in Ω ×R+,

u(x, t) = u0m(x), in Ω
u(x, t) = 0, in ∂Ω ×R+

0 .
(29)

If u0 = 0, the problem (1) has a global solution u(t) ≡ 0, so we mainly consider u0 ∈ Ψ0\{0}
in the following proofs. Now, we prove P(u0m) > 0; in fact,

P(u0m) = θ2λ
m ‖u0‖2λ

Ψ0
− θ

p
m

∫
Ω
|u0|p ln |u0|dx − θ

p
m ln θm

∫
Ω
|u0|pdx

> θ2λ
m ‖u0‖2λ

Ψ0
− θ

p
m

∫
Ω
|u0|p ln |u0|dx

= θ2λ
m (‖u0‖2λ

Ψ0
− θ

p−2λ
m

∫
Ω
|u0|p ln |u0|dx);

(30)

16
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we note that there are two aspects: (1)
∫

Ω |u0|p ln |u0|dx > 0 and (2)
∫

Ω |u0|p ln |u0|dx ≤ 0:
(1) If

∫
Ω |u0|p ln |u0|dx > 0, by P(u0) > 0 or P(u0) = 0, we have

‖u0‖2λ
Ψ0

≥
∫

Ω
|u0|p ln |u0|dx,

and from (30), we obtain

P(u0m) > θ2λ
m (‖u0‖2λ

Ψ0
− θ

p−2λ
m

∫
Ω
|u0|p ln |u0|dx) > 0. (31)

(2) If
∫

Ω |u0|p ln |u0|dx ≤ 0, from (30), we obtain

P(u0m) > θ2λ
m ‖u0‖2λ

Ψ0
> 0. (32)

Thus, we obtain P(u0m) > 0. By the calculation,

d
dθm

H (θmu) = θ2λ−1
m ‖u‖2λ

Ψ0
− θ

p−1
m

∫
Ω
|u|p ln |u|dx − θ

p−1
m ln θm‖u‖p

p

=
1

θm
(θ2λ

m ‖u‖2λ
Ψ0

− θ
p
m

∫
Ω
|u|p ln |u|dx − θ

p
m ln θm‖u‖p

p)

=
1

θm
P(θmu).

(33)

Therefore, combining (31)–(33), we obtain

d
dθm

H (u0m) =
d

dθm
H (θmu0) =

1
θm

P(θmu0) > 0;

this means that H (u0m) is strictly monotonically increasing with θm. So, we have

H (u0m) = H (θmu0) < H (u0) ≤ d.

In Section 4, we proved that the problem (29) admits a global solution um(t) ∈ L∞(0, ∞; Ψ0)
with umt ∈ L2(0, ∞; L2(Ω)) and um(t) ∈ Ψ for 0 ≤ t < ∞, satisfying

(umt, v) + 〈um, v〉Ψ0 + (umt, v)Ψ0 = (|um|p−2um ln |um|, v), ∀v ∈ Ψ0. (34)

Combining (18) with (9), we deduce that∫ t

0
‖umt‖2

2dt +
∫ t

0
‖umt‖2

Ψ0
dt +

p − 2λ

2λp
‖um‖2λ

Ψ0
+

1
p2 ‖um‖p

p +
1
p
P(um(t)) < d. (35)

Since P(um(t)) > 0, from (35), we have∫ t

0
‖umt‖2

2dt < d,

‖um‖2λ
Ψ0

<
2λpd

p − 2λ
,

‖um‖p
p < p2d;

thus, by a similar discussion as in Section 4, there exists u and a subsequence of {um}∞
m=1,

still denoted by {um}∞
m=1, such that

um
∗
⇀ u in L∞(0, ∞; Ψ0),

umt ⇀ ut in L2(0, ∞; L2(Ω)),

17
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|um|p−2um ln |um| ∗
⇀ |u|p−2u ln |u| in L∞(0, ∞; L

p
p−1 (Ω)).

Making m → ∞ in (34),

(ut, v) + 〈u, v〉Ψ0 + (ut, v)Ψ0 = (|u|p−2u ln |u|, v), ∀v ∈ Ψ0, t ≥ 0.

Making m → ∞ in um(0) = u0m(x), we can obtain u(0) = u0(x) ∈ Ψ0. Therefore, u(x, t) is
a global solution of the problem (1). Moreover,∫ t

0
fut(t)dt +H (u) ≤ H (u0).

Then, the subsequent proof is in common with Section 4.

6. Blowup and Decay of Solutions

In the following, we discuss the blowup and asymptotic stability of the solutions to
the problem (1). For this purpose, we provide some preliminary Lemmas.

Lemma 10 ([15]). Suppose that 0 < T ≤ ∞ and the function G(t) ∈ C2[0, T) with G(t) ≥ 0
satisfies

G(t)G′′(t)− (1 + ξ)(G′(t))2 ≥ 0,

for some constants ξ > 0. If G(0) > 0 and G′(0) > 0, then

T ≤ G(0)
ξG′(0)

< +∞,

and G(t) → +∞ as t → T.

Lemma 11. Taking H (u0) ≤ d and the sets I− and I+ as both invariant for u(t), we have:

(1) If u0 ∈ I−, then u(t) ∈ I− for ∀t ∈ [0, T).
(2) If u0 ∈ I+, then u(t) ∈ I+ for ∀t ∈ [0, T).

Proof. (1) We begin by considering H (u0) < d. Conversely, if u(t) /∈ I−, by the
description of the energy inequality in (27),

H (u(t)) ≤ H (u0) < d; (36)

thus, P(u(t0)) = 0 and P(u(t)) < 0 for t0 ∈ (0, T) with t ∈ (0, t0) hold. By
Lemma 4(2), we have ‖u(t0)‖Ψ0 > δ(1, ε) > 0, so u(t0) ∈ I . We can deduce
H (u(t0)) ≥ d from (8), which contradicts (36).
Next, we consider H (u0) = d. Conversely, if u(t) /∈ I−, since P(u0) < 0, there
exists t1 such that P(u(t1)) = 0 and P(u(t)) < 0 for t ∈ [0, t1). From (2) of Lemma 4,
we have ‖u‖Ψ0 > δ(1, ε) > 0 for t ∈ [0, t0); this means that u(t1) �= 0, and we can
obtain u(t1) ∈ I ; by the description of d in (8), we can obtain

H (u(t1)) ≥ d. (37)

In contrast, from (ut, u) + (ut, u)Ψ0 = −P(u(t)) > 0 for t ∈ [0, t1) and u(t)|∂Ω = 0,
we can obtain ut �= 0 and

∫ t1
0 fut(t)dt > 0. From the energy inequality, we obtain

H (u(t1)) ≤ H (u0)−
∫ t1

0
fut(t)dt < d,

which conflicts with (37).
(2) This is similar to the proof of (1) and will not be repeated.

18
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Lemma 12. If u ∈ Ψ0 and P(u) < 0, then there exists a k∗ ∈ (0, 1), such that P(k∗u) = 0.

Proof. Set
χ(k) = kp−2λ

∫
Ω
|u|p ln |u|dx + kp−2λ ln k‖u‖p

p,

then we have

P(ku) = k2λ‖u‖2λ
Ψ0

−
∫

Ω
|ku|p ln |ku|dx = k2λ(‖u‖2λ

Ψ0
− χ(k));

since p > 2λ, lim
k→0+

χ(k) = 0 holds and there exists a k ∈ (0, 1), such that P(ku) > 0 and

P(u) < 0 when k = 1, the final conclusion can be drawn.

Lemma 13. Assume u ∈ Ψ0 with P(u) < 0; thus,

P(u) < p(H (u)− d).

Proof. Set
Λ(k) = pH (ku)−P(ku).

By calculation,

Λ(k) =
k2λ(p − 2λ)

2λ
‖u‖2λ

Ψ0
+

kp

p
‖u‖p

p,

in view of Lemma 4(2), we have

Λ′(k) = k2λ−1(p − 2λ)‖u‖2λ
Ψ0

+ kp−1‖u‖p
p

≥ k2λ−1(p − 2λ)‖u‖2λ
Ψ0

> k2λ−1(p − 2λ)δ2λ(1, ε) > 0,

which implies that Λ is strictly monotonically increasing; thus, Λ(1) > Λ(k) for ∀k ∈ (0, 1).
By Lemma 12, letting k = k∗ ∈ (0, 1) and P(k∗u) = 0, then

Λ(1) = pH (u)−P(u) > Λ(k∗) = pH (k∗u)−P(k∗u) = pH (k∗u) ≥ pd;

this completes the proof.

Lemma 14. Assume u ∈ Ψ0 is a (weak) solution of the problem (1), then (ut, u)Ψ0 ≤ ‖u‖Ψ0‖ut‖Ψ0 .

Proof. Let ν = u in Definition 2:

(ut, u)Ψ0 =
∫∫

Q
T ut ,u(x, y)dxdy;

from the definition’sequivalent norm on Ψ0 in (5),

‖u‖Ψ0 =

(∫∫
Q

T u(x, y)dxdy
) 1

2
,

‖ut‖Ψ0 =

(∫∫
Q

T ut(x, y)dxdy
) 1

2
.

Set a function:

γ(k) =k2
∫∫

Q
T u(x, y)dxdy + 2k

∫∫
Q

T ut ,u(x, y)dxdy +
∫∫

Q
T ut(x, y)dxdy.
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Then, for any k, we have

γ(k) =
∫∫

Q
(|u(x)− u(y)|k + |ut(x)− ut(y)|)2K(x − y)dxdy ≥ 0.

Hence, (∫∫
Q

T ut ,u(x, y)dxdy
)2

≤
∫∫

Q
T u(x, y)dxdy

∫∫
Q

T ut(x, y)dxdy,

i.e.,
(ut, u)Ψ0 ≤ ‖u‖Ψ0‖ut‖Ψ0 .

Lemma 15. If u ∈ Ψ0 and ϑ and κ > 0 are two constants, thus(∫ t

0
fu(t)dt + ϑ(t +κ)2

)(∫ t

0
fut(t)dt + ϑ

)
≥

(∫ t

0
(u, ut) + (u, ut)Ψ0 dt + ϑ(t +κ)

)2
.

Proof. In view of Lemma 14 and the Cauchy inequality,

∫ t

0
(u, ut)dt ≤

∫ t

0
‖u‖2‖ut‖2dt ≤

(∫ t

0
‖u‖2

2dt
) 1

2
(∫ t

0
‖ut‖2

2

) 1
2
, (38)

∫ t

0
(u, ut)Ψ0 dt ≤

∫ t

0
‖u‖Ψ0‖ut‖Ψ0 dt ≤

(∫ t

0
‖u‖2

Ψ0
dt
) 1

2
(∫ t

0
‖ut‖2

Ψ0

) 1
2
. (39)

Let

ν1(t) = (
∫ t

0
‖ut‖2

2dt)
1
2 , μ1(t) = (

∫ t

0
‖u‖2

2dt)
1
2 ,

ν2(t) = (
∫ t

0
‖ut‖2

Ψ0
dt)

1
2 , μ2(t) = (

∫ t

0
‖u‖2

Ψ0
dt)

1
2 .

Then,

(
∫ t

0
fu(t)dt + ϑ(t +κ)2)(

∫ t

0
fut(t)dt + ϑ)

= (μ2
1(t) + μ2

2(t) + ϑ(t +κ)2)(ν2
1(t) + ν2

2(t) + ϑ)

= μ2
1(t)ν

2
1(t) + μ2

2(t)ν
2
1(t) + ϑ(t +κ)2ν2

1(t) + μ2
1(t)ν

2
2(t) + μ2

2(t)ν
2
2(t)

+ ϑ(t +κ)2ν2
2(t) + ϑμ2

1(t) + ϑμ2
2(t) + ϑ2(t + σ)2;

(40)

by (38) and (39),

(
∫ t

0
(u, ut) + (u, ut)Ψ0 dt + ϑ(t +κ))2

= (
∫ t

0
(u, ut)dt)2 + (

∫ t

0
(u, ut)Ψ0 dt)2 + ϑ2(t +κ)2 + 2

∫ t

0
(u, ut)dt

∫ t

0
(u, ut)Ψ0 dt

+ 2ϑ(t + σ)
∫ t

0
(u, ut)dt + 2ϑ(t +κ)

∫ t

0
(u, ut)Ψ0 dt

≤ μ2
1(t)ν

2
1(t) + μ2

2(t)ν
2
2(t) + 2ν1(t)μ1(t)ν2(t)μ2(t) + 2ϑ(t +κ)ν1(t)μ1(t)

+ 2ϑ(t +κ)ν2(t)μ2(t) + ϑ2(t +κ)2.

(41)
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Combining (40) with (41),

(
∫ t

0
fu(t)dt + ϑ(t +κ)2)(

∫ t

0
fut(t)dt + ϑ)− (

∫ t

0
(u, ut) + (u, ut)Ψ0 dt + ϑ(t +κ)2

≥ ϑ(t +κ)2ν2
1(t) + μ2

1(t)ν
2
2(t) + μ2

2(t)ν
2
1(t) + ϑ(t +κ)2ν2

2(t) + ϑμ2
1(t) + ϑμ2

2(t)

− (2ν1(t)μ1(t)ν2(t)μ2(t) + 2ϑ(t +κ)ν1(t)μ1(t) + 2ϑ(t +κ)ν2(t)μ2(t))

= (
√

ϑ(t +κ)ν1(t)−
√

ϑμ2(t))2 + (
√

ϑ(t +κ)ν2(t)−
√

ϑμ1(t))2

+ (μ1(t)ν2(t)− μ2(t)ν1(t))2 ≥ 0,

which ends of proof.

Corollary 1. Let u ∈ Ψ0, then(∫ t

0
fu(t)dt

)(∫ t

0
fut(t)dt

)
≥

(∫ t

0
(u, ut) + (u, ut)Ψ0 dt

)2
.

Proof. Specifically, we make ϑ = 0 in Lemma 15, then the conclusion holds.

Theorem 2. Let u0 ∈ Ψ0, satisfying H (u0) < d and P(u0) < 0, then the solution u(x, t) of the
problem (1) blows up in finite time, i.e., there exists T > 0 such that

lim
t→T

∫ t

0
fu(t)dt = +∞.

Proof. By contradiction, if T = ∞, we set

A(t) =
∫ t

0
fu(t)dt + (T − t) fu(0).

By the description of weak solutions and making ν = u in Definition 2, we obtain∫
Ω

utudx + M([u]2s )
∫∫

Q
T u(x, y)dxdy +

∫∫
Q

T ut ,u(x, y)dxdy =
∫

Ω
|u|p−1u ln |u|dx;

we can deduce from the above equation that

d
dt

fu(t) = −2(‖u‖2λ
Ψ0

−
∫

Ω
|u|p−1u ln |u|dx) = −2P(u). (42)

Therefore,

A′(t) = fu(t)− fu(0) = 2
∫ t

0
(u, ut) + (u, ut)Ψ0 , dt

and
A

′′
(t) = 2

(
(u, ut) + (u, ut)Ψ0

)
= −2P(u).

By Lemma 13, Lemma 15, and the description of energy inequality in (27),

A
′′
(t) = −2P(u) > 2pd − 2pH (u)

A ≥ 2p(d −H (u0)) + 2p
∫ t

0
fut(t)dt;
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thus, by Corollary 1,

A
′′
(t)A(t)− p

2
(A′(t))2 >2p(d −H (u0))A(t) + 2p

∫ t

0
fut(t)dt

∫ t

0
fu(t)dt

− 2p
(∫ t

0
(u, ut) + (u, ut)Ψ0 dt

)2

≥ 2p(d −H (u0))A(t) > 0.

Therefore, we have

(A−b(t))
′′
=

−b
Ab+2(t)

(
A(t)A

′′
(t)− (b + 1)(A′(t))2

)
≤ 0, b =

p − 2
2

> 0, (43)

Lemma 10 and (43) imply that there exists a T > 0 such that

lim
t→T

A−b(t) = 0 and lim
t→T

A(t) = +∞,

which contradicts T = ∞.

Theorem 3. Under the assumptions of Theorem 2, the blowup upper bound is

4(p − 1) fu(0)
p(d −H (u0))(p − 2)2 .

Proof. Set

B(t) =
∫ t

0
fu(t)dt + (T − t) fu(0) + ϑ(t +κ)2,

where ϑ and κ > 0 are two constants.
Obviously, P(u) < 0 from Lemma 36, and (42) implies that fu(t) is strictly monotoni-

cally increasing, so

B′(t) = fu(t)− fu(0) + 2ϑ(t +κ) > 0,

i.e.,

B(t) > B(0) = T fu(0) + ϑκ2.

From ∫ t

0
(ut, u)dt =

1
2

∫ t

0

d
dt
‖u‖2

2dt =
1
2
(‖u‖2

2 − ‖u0‖2
2),

and ∫ t

0
(ut, u)Ψ0 dt =

1
2

∫ t

0

d
dt
‖u‖2

Ψ0
dt =

1
2
(‖u‖2

Ψ0
− ‖u0‖2

Ψ0
),

we have

B′(t) = 2
∫ t

0
(ut, u)dt + 2

∫ t

0
(ut, u)Ψ0 dt + 2ϑ(t +κ).

Combining Lemma 13 with (27),

B
′′
(t) = 2(u, ut) + 2(u, ut)Ψ0 + 2ϑ

= −2P(u) + 2ϑ

> 2pd − 2pH (u) + 2ϑ

≥ −2pH (u0) + 2p
∫ t

0
fut(t)dt + 2pd + 2ϑ.
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With the above calculations,

B
′′
(t)B(t)− p

2
(B′(t))2

>

(
−2pH (u0) + 2p

∫ t

0
fut(t)dt + 2pd + 2ϑ

)
B(t)

− 2p
(∫ t

0
(ut, u)dt +

∫ t

0
(ut, u)Ψ0 dt + ϑ(t +κ)

)2

≥ 2pB(t)
(
−H (u0) +

∫ t

0
fut(t)dt + d +

ϑ

p

)
− 2p

(∫ t

0
fu(t)dt + ϑ(t +κ)2

)(∫ t

0
fut(t)dt + ϑ

)
≥ 2pB(t)

(
−H (u0) +

∫ t

0
fut(t)dt + d +

ϑ

p

)
− 2pB(t)

(∫ t

0
fut(t)dt + ϑ

)
= 2pB(t)

(
−H (u0) + d − p − 1

p
ϑ

)
,

which is non-negative if we let ϑ be sufficiently small and satisfy

0 ≤ ϑ <
p

p − 1
(d −H (u0)).

By Lemma 10, we can obtain

T ≤ F(0)
( p

2 − 1)F′(0)
=

fu(0)
(p − 2)ϑκ

T +
κ

p − 2
, (44)

taking κ large enough and satisfying

κ >
fu(0)

(p − 2)ϑ
.

By calculating (44), we can obtain

T ≤ ϑκ2

(p − 2)ϑκ − fu(0)
;

let

π(χ,κ) =
ϑκ2

(p − 2)ϑκ − fu(0)
,

then

T ≤ inf
(χ,κ)∈Z

π(χ,κ) =
4(p − 1)( fu(0))

p(d −H (u0))(p − 2)2 ,

where χ = ϑκ and

Z =

{
(χ,κ)|χ >

fu(0)
p − 2

,κ ≥ (p − 1)χ
p(d −H (u0))

}
.

Theorem 4. Under the assumptions of Theorem 2, the blowup lower bound is

εe( fu(0))1−ξ

2(ξ − 1)C̃
,
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where

C̃ = (C)
2λ

2λ−(1−θ)(p+ε) (eε)
(θ−1)(p+ε)

2λ−(1−θ)(p+ε) ,

ξ =
θλ(p + ε)

2λ − (1 − θ)(p + ε)
.

Here,

C = sup
u∈Ψ0

‖u‖p+ε

‖u‖1−θ
Ψ0

‖u‖θ
2

,

and

θ =
2(2∗s − p − ε)

(2∗s − 2)(p + ε)
, ε ∈ (0, 2λ + 2 − 4λ/2∗s − p).

Proof. As shown in [19], as θ ∈ (0, 1), C is well-defined, and ξ > 1. Set

fu(t) = ‖u‖2
2 + ‖u‖2

Ψ0
,

satisfying
fu(T) = ∞. (45)

It follows that
fu

′(t) = 2(ut, u) + 2(ut, u)Ψ0 = −2P(u).

We know that P(u0) < 0, and by Lemma 11, we have P(u) < 0, so that

‖u‖2λ
Ψ0

<
∫

Ω
|u|p ln |u|dx. (46)

Specifically, we chose ε ∈ (0, 2λ + 2 − 4θ/2∗s − p) in Lemma 2, and combining the
interpolation inequality with (46),∫

Ω
|u|p ln |u|dx ≤ 1

eε
‖u‖p+ε

p+ε ≤
1
eε

C‖u‖(1−θ)(p+ε)
Ψ0

‖u‖θ(p+ε)
2

=
1
eε

C(‖u‖2λ
Ψ0
)
(1−θ)(p+ε)

2λ ‖u‖θ(p+ε)
2

<
1
eε

C(
∫

Ω
|u|pln|u|)

(1−θ)(p+ε)
2λ ‖u‖θ(p+ε)

2

≤ C(eε)
(θ−1)(p+ε)

2λ −1(‖u‖p+ε
p+ε)

(1−θ)(p+ε)
2λ ‖u‖θ(p+ε)

2 .

(47)

Since 0 < ε < 2λ + 2 − 4λ/2∗s − p, 2λ < p < p + ε and θ = 2(2∗s −p−ε)
(2∗s −2)(p+ε)

∈ (0, 1), we can
obtain

(1 − θ)(p + ε)

2λ
< 1.

Therefore, (47) yields

‖u‖p+ε
p+ε < C̃(‖u‖2

2)
ξ ≤ C̃( fu(t))ξ , (48)

where

ξ =
θλ(p + ε)

2λ − (1 − θ)(p + ε)
,

and

C̃ = (C)
2λ

2λ−(1−θ)(p+ε) (eε)
(θ−1)(p+ε)

2λ−(1−θ)(p+ε) .
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Thus,

fu
′(t) = −2P(u) = −2‖u‖2λ

Ψ0
+ 2

∫
Ω
|u|p ln |u|dx

≤ 2
∫

Ω
|u|p ln |u|dx ≤ 2

eε
‖u‖p+ε

p+ε

<
2
eε

C̃( fu(t))ξ .

(49)

Next, we inform that fu(t) > 0 for any t ∈ [0, T). As a paradox, there exists a t1 ≥ 0
such that

fu(t1) = 0,

which is a paradox with respect to (48). Then, we can deduce from (49) that

fu
′(t)

( fu(t))ξ
<

2
eε

C̃. (50)

Integrating (50) from 0 to t,

( fu(0))1−ξ − ( fu(t))1−ξ <
2
eε
(ξ − 1)C̃t, (51)

from (45) and letting t → T in (51),

T >
εe( fu(0))1−ξ

2(ξ − 1)C̃
.

Theorem 5. Let u0 ∈ Ψ0, satisfying H (u0) = d and P(u0) < 0, then the solution u(x, t) of the
problem (1) blows up in finite time, i.e., there exists T > 0 such that

lim
t→T

∫ t

0
fu(t)dt = +∞.

Proof. We deduce that P(u(t)) < 0 for t ≥ 0 from Lemma 11; thus,

(u, ut) + (u, ut)Ψ0 = −P(u(t)) > 0,

which yields fut(0) > 0 for t ≥ 0; there exists a t1 > 0 such that we let t1 be a new initial
time and satisfy

H (u(t1)) ≤ H (u0)−
∫ t1

0
fut(t)dt < d.

This is similar to Theorem 2.

Theorem 6. Put u0 ∈ Ψ0, satisfying H (u0) < 0, and u(t) is a weak solution of the problem (1),
then the blowup upper bound is

fu(0)
p(p − 2)H (u0)

.

Proof. By the description of H (u) in (6) and P(u) in (7), set

μ(t) = −2pH (u) = −2p
(

1
2λ

‖u‖2λ
Ψ0

− 1
p

∫
Ω
|u|p ln |u|dx +

1
p2 ‖u‖p

p

)
= 2

∫
Ω
|u|p ln |u|dx − 2

p
‖u‖p

p −
p
λ
‖u‖2λ

Ψ0
.
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Obviously,

fu
′(t) = 2(u, ut) + 2(u, ut)Ψ0

= −2P(u) = 2
∫

Ω
|u|p ln |u|dx − 2‖u‖2λ

Ψ0
≥ μ(t).

(52)

By the description of weak solutions and making ν = ut in Definition 2,∫
Ω

u2
t dx + M([u]2s )

∫∫
Q

T u,ut(x, y)dxdy +
∫∫

Q
T ut(x, y)dxdy =

∫
Ω
|u|p−2uut ln |u|dx,

we can deduce from the above equation that

fut(t) = − 1
2λ

d
dt
‖u‖2λ

Ψ0
+

1
p

d
dt

∫
Ω
|u|p ln |u|dx − 1

p2
d
dt
‖u‖p

p,

i.e.,

d
dt

H (u) = − fut(t). (53)

By (53), we have

μ′(t) = −2p
d
dt

H (u) = 2p( fut(t)) ≥ 0,

and μ(0) = −2pH (u0) > 0; therefore, μ(t) > 0 for 0 ≥ t > T. By Theorem 4, we have
fu(t) > 0 for t ∈ [0, T), according to Corollary 1,

fu(t)μ′(t) ≥ 2p((u, ut) + (u, ut)Ψ0)
2 =

p
2
( fu

′(t))2. (54)

Combining (52) with (54), we can obtain

fu(t)μ′(t) ≥ p
2

fu
′(t)μ,

i.e.,

μ′(t)
μ

≥ p
2

fu
′(t)

fu(t)
, (55)

and integration of (55) over (0, t) yields

μ

( fu(t))p/2 ≥ μ(0)
( fu(0))p/2 ,

thereby having

fu
′(t)

( fu(t))p/2 ≥ μ(0)
( fu(0))p/2 . (56)

Now, we integrate (56) over (0, t), yielding

1
( fu(t))(p−2)/2

≤ 1
( fu(0))(p−2)/2

− p − 2
2

μ(0)
( fu(0))p/2 t,

and letting t → T in the above inequality,

T ≤ fu(0)
p(p − 2)H (u0)

.
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Next, we begin to compute the decay estimates for arbitrary solutions of the prob-
lem (1), and before proving this, we give some properties about the vacuum isolating
behavior of the solutions.

Lemma 16. Assume u0 ∈ Ψ0, 0 < q < d, and ι1 and ι2, with 0 < ι1 < ι2 are the two roots of
d(ι) = q, where ι ∈ (ι1, ι2), then:

(1) All solutions u of (1) with H (u0) = q belong to Ψι, provided P(u0) > 0.
(2) All solutions u of (1) with H (u0) = q belong to Θι, provided P(u0) < 0.

Proof. (1) Taking u(t) as an arbitrary solution to (1) satisfying H (u0) = q, P(u0) > 0 or
‖u0‖Ψ0 = 0, T is the maximum existence time of u. If ‖u0‖Ψ0 = 0, then u0(x) ∈ Ψι for
all ι ∈ (0, p

2λ ). If P(u0) > 0, from Lemma 5, the energy level inequality in (27), and
Lemma 7, we can deduce that Pι(u0) > 0 and H (u0) < d(ι) are valid, which implies
u0 ∈ Ψι for all ι ∈ (ι1, ι2).
We prove that u(x, t) ∈ Ψ0 for all ι ∈ (ι1, ι2) with t ∈ (0, T). As a paradox, there is
u(t) ∈ ∂Ψι0 for t0 ∈ (0, T) and ι0 ∈ (ι1, ι2). That is, Pι0(u(t)) = 0 either ‖u(t0)‖Ψ0 �= 0
or H (u(t0)) = d(ι0), which together with (27) give∫ t

0
fut(0)dt +H (u) ≤ H (u0) < d(ι), ι ∈ (ι1, ι2); (57)

thus, H (u(t0)) �= d(ι0). Meanwhile, H (u(t0)) ≥ d(ι0) when Pι0(u(t0)) = 0 and
‖u(t0)‖Ψ0 �= 0, which contradicts (57).

(2) Similar to the proof of (1), assume that either P(u0) < 0 or ‖u0‖Ψ0 = 0. We prove
that u(x, t) ∈ Ψ0. As a paradox, there is some t0 ∈ (0, T), ι0 ∈ (ι1, ι2), such that
u(t) ∈ ∂Ψι0 , that is Pι0(u(t)) = 0, and either ‖u(t0)‖Ψ0 �= 0 or H (u(t0)) = d(ι0).
Again, (57) shows that H (u(t0)) �= d(ι0). Otherwise, take t0 ∈ (0, T) as the initial
time satisfying Pι0(u(t0)) = 0, then Pι0(u(t)) < 0 for 0 ≤ t < t0. By Lemma 4(2), we
have ‖u(t0)‖Ψ0 > δ(ι0, ε) for 0 ≤ t < t0 and H (u(t0)) �= d(ι0); this contradicts (57)
and proves the claim.

Theorem 7. Let u0 ∈ Ψ0, satisfying H (u0) < d and P(u0) > 0; arbitrary global weak solutions
u of the problem (1) have the following decay estimate

fu(t) ≤ M (t) :=

⎧⎪⎨⎪⎩
( f 2

u(0)) exp
{

−2λ1
1+λ1

(1 − ι1)t
}

, λ = 1,[
2(1 − ι1)(λ − 1)( λ1

1+λ1
)λt + ( fu(0))1−λ

] 1
1−λ , λ > 1,

where λ1 = inf
u∈Ψ0\{0}

‖u‖2
Ψ0

‖u‖2
2

.

Proof. Take u(t) as a global weak solution of the problem (1). By 0 < H (u0) < d,
P(u0) > 0, and Lemma 16, we deduce that u(t) ∈ Ψι for all ι ∈ (ι1, ι2) and t ∈ [0, ∞),
where ι1 and ι2 are two roots of d(ι) = H (u0); Lemma 7 indicates that Pι(u) ≥ 0 for all
ι ∈ (ι1, ι2) and Pι1(u) ≥ 0 for t ∈ [0, ∞). Thus, (42) gives

d
dt

fu(t) + 2(1 − ι1)‖u‖2λ
Ψ0

= −2Pι1(u) ≤ 0; (58)

from (58) we also obtain

d
dt

fu(t) ≤ −2(1 − ι1)‖u‖2λ
Ψ0

. (59)

Now, we consider two situations: (1) λ = 1; (2) λ > 1:
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(1) If λ = 1,

d
dt

fu(t) ≤ −2(1 − ι1) fu(t) + 2(1 − ι1)‖u‖2
2, (60)

then divide by fu(t) on both sides of (60), and by the definition of λ1,

d
dt fu(t)
fu(t)

≤ −2(1 − ι1) + 2(1 − ι1)
‖u‖2

2
fu(t)

≤ −2(1 − ι1) + 2(1 − ι1)
1

1 + λ1

= − 2λ1

1 + λ1
(1 − ι1),

(61)

i.e.,

fu(t) ≤ ( fu(0)) exp
{
− 2λ1

1 + λ1
(1 − ι1)t

}
.

(2) If λ > 1, by the definition of λ1, we can obtain

fu(t) ≤ (1 +
1

λ1
)‖u‖2

Ψ0
. (62)

Thus, (59) and (62) lead to

d
dt
( fu(t)) ≤ −2(

λ1

1 + λ1
)λ(1 − ι1)(‖u‖2

2 + ‖u‖2
Ψ0
)λ,

and a simple calculation yields

fu(t) ≤
[

2(1 − ι1)(λ − 1)(
λ1

1 + λ1
)λt + ( fu(0))1−λ

] 1
1−λ

.

End of the proof.

Theorem 8. Let u0 ∈ Ψ0, satisfying H (u0) = d and P(u0) > 0; any global weak solution u of
the problem (1) has the following decay estimate:

fu(t) ≤ N (t) :=

⎧⎪⎨⎪⎩
fu(t1) exp

{
−2λ1
1+λ1

(1 − ι1)(t − t1)
}

, λ = 1,[
2(1 − ι1)(λ − 1)( λ1

1+λ1
)λ(t − t1) + ( fu(t1))

1−λ
] 1

1−λ , λ > 1,

where λ1 = inf
u∈Ψ0\{0}

‖u‖2
Ψ0

‖u‖2
2

.

Proof. Taking u(t) as a global weak solution of the problem (1) with H (u0) = d, P(u0) >
0, by the definition of the energy inequality in (27) and Lemma 11, we obtain H (u) < d and
P(u) > 0 for 0 ≤ t < ∞. Immediately afterwards, by (ut, u) + (ut, u)Ψ0 = −P(u) < 0
and fu(t) > 0, we have

∫ t
0 fut(t)dt monotonically increasing for all 0 ≤ t < ∞. For any

t1 > 0, let

� = d −
∫ t

0
fut(t)dt.

It follows from (27) that 0 < H (u) ≤ � < d and u(t) ∈ Ψι hold on ι1 < ι < ι2 and
0 ≤ t < ∞, where ι1 and ι2 are two roots of d(ι) = p; thus, Pι1(u) ≥ 0 on t ≥ t1.

The subsequent steps are similar to Theorem 7.
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7. Example

We take λ = 1 in the Kirchhoff function M(t) = tλ−1 of (1), which gives us the problem
below: ⎧⎨⎩

ut + (−Δ)su + (−Δ)sut = |u|p−2uln|u|, in Ω × (0, T),
u(x, 0) = u0(x), in Ω,
u(x, t) = 0, on ∂Ω × (0, T).

From the main theorem of this article, it can be concluded that the global solution of the
problem exists and blows up in finite time.

In particular, let p = 2; the above problem becomes⎧⎨⎩
ut + (−Δ)su + (−Δ)sut = uln|u|, in Ω × (0, T),
u(x, 0) = u0(x), in Ω,
u(x, t) = 0, on ∂Ω × (0, T),

which was studied in [31]; the authors considered both blowup and decay solutions;
furthermore, they obtained relevant conclusions.

8. Conclusions

In this paper, we studied the suitability of solutions to a class of fractional-order
parabolic equations with Kirchhoff terms M(t) involving the fractional-order damping
(−Δ)s and logarithmic source terms |u|q−2u ln |u|. Firstly, the correlation functions H (u),
P(u) and some necessary Lemmas were introduced; in addition, we introduced fractional
Sobolev spaces for logarithmic terms. Based on these, we combined the Galerkin method
and potential wells to prove the global existence of the solutions. Then, using some
inequality techniques and an improved concave function method to simultaneously select
a new auxiliary function, it was proven that the solution blows up in finite time, and the
upper and lower bounds on the blowup time were also obtained. Finally, the invariant
set at subcritical energy levels was obtained by combining H (u), P(u), and the potential
well Ψ. Using the Galerkin method and Gronwall’s inequality, the asymptotic behavior of
the solution was proven.
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Abstract: The present paper is devoted to establishing several existence results for infinitely many
solutions to Schrödinger–Kirchhoff-type double phase problems with concave–convex nonlinearities.
The first aim is to demonstrate the existence of a sequence of infinitely many large-energy solutions
by applying the fountain theorem as the main tool. The second aim is to obtain that our problem
admits a sequence of infinitely many small-energy solutions. To obtain these results, we utilize the
dual fountain theorem. In addition, we prove the existence of a sequence of infinitely many weak
solutions converging to 0 in L∞-space. To derive this result, we exploit the dual fountain theorem
and the modified functional method.

Keywords: Kirchhoff function; double phase problems; Musielak–Orlicz–Sobolev spaces; multiple
solutions; variational methods
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1. Introduction

In this paper, we demonstrate the existence of multiple solutions for the following
double phase problem in RN :

− M
(∫

RN

1
p
|∇w|p + ν(y)

q
|∇w|q dy

)
div(|∇w|p−2∇w + ν(y)|∇w|q−2∇w)

+V(y)(|w|p−2w + ν(y)|w|q−2w) = σ(y)|w|r−2w + θg(y, w) in RN , (1)

where N ≥ 2, 1 < p < q < N, 1 < r < p, θ is a positive real parameter, g : RN ×R → R is
a Carathéodory function,

q
p
≤ 1 +

1
N

, ν : RN → [0, ∞) is Lipschitz continuous,

and V : RN → (0, ∞) is a potential function satisfying

(V) V ∈ C(RN), ess infy∈RN V(y) > 0, and meas
{

y ∈ RN : V(y) ≤ V0
}
< +∞, for all

V0 ∈ R.

Furthermore, let us assume that a Kirchhoff function M : R+
0 → R+ satisfies the

following conditions:

(M1) M ∈ C(R+) fulfills infζ∈R+ M(ζ) ≥ κ0 > 0, where κ0 is a constant;

(M2) There exists a constant ϑ ≥ 1 such that ϑM(ζ) = ϑ
∫ ζ

0 M(τ)dτ ≥ M(ζ)ζ for ζ ≥ 0.

The double phase operator, which is the natural generalization of the p-Laplace opera-
tor, has been studied extensively by many researchers. The research interest in differential

Mathematics 2024, 12, 60. https://doi.org/10.3390/math12010060 https://www.mdpi.com/journal/mathematics31
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equations and variational problems with double phase operators can be regarded as a key
factor in diverse fields of mathematical physics, such as strongly anisotropic materials, the
Lavrentiev phenomenon, plasma physics, biophysics, chemical reactions, etc.; for more
information, see [1,2]. In relation to regularity theory for double phase functionals, there
is a series of remarkable papers by Mingione et al. [3–8]. Eigenvalue problems for a class
of double phase variational integrals driven by Dirichlet double phase operators have
been dealt with [9]. A study on a remarkable existence result of solutions to quasilinear
equations involving a general variable exponent elliptic operator was investigated in the
recent work by Zhang and Radulescu [10]. Recently, the authors in [11] provided a new
class of double phase operators with variable exponents. As its application, they gave the
existence and uniqueness results for quasilinear elliptic equations with a convection term.
Other existence results for double phase problems can be found in the papers [12,13].

The study of elliptic problems with the non-local Kirchhoff term was initially intro-
duced by Kirchhoff [14] in order to study an extension of the classical d’Alembert’s wave
equation by taking into account the changes to the lengths of strings during vibration.
The variational problems of the Kirchhoff type have had influence in various applications
in physics and have been intensively investigated by many researchers in recent years; for
examples, see [15–28] and the references therein. A detailed discussion about the physical
implications based on the fractional Kirchhoff model was initially suggested by the work
of Fiscella and Valdinoci [20]. They derived the existence of non-trivial solutions by tak-
ing advantage of the mountain-pass theorem and a truncation argument on a non-local
Kirchhoff term. In particular, the conditions imposed on the non-degenerated Kirchhoff
function M : R+

0 → R+
0 were that M is an increasing and continuous function with (M1);

also, see [24] and references therein. However, this increasing condition eliminated the case
that is not monotone; for example,

M(ζ) = (1 + ζ)k + (1 + ζ)−1 with 0 < k < 1

for all ζ ∈ R+
0 . In this regard, the existence of multiple solutions to a class of Schrödinger–

Kirchhoff-type equations involving the fractional p-Laplacian was provided by refer-
ence [25] when the Kirchhoff function M is continuous and satisfies (M1) and the condition:

(M3) For 0 < s < 1, there is ϑ ∈ [1, N
N−sp ) such that ϑM(ζ) ≥ M(ζ)ζ for any ζ ≥ 0.

We also referred to [15,16,25–29] for recent results.
Recently, the authors of [22] studied the existence result of a positive ground-state

solution for an elliptic problem of the Kirchhoff type with critical exponential growth
under the following condition:

(M4) There exists ϑ > 1 such that M(ζ)
ζϑ−1 is non-increasing for ζ > 0.

From this condition and direct computation, we immediately recognize that ϑM(ζ)−
M(ζ)ζ is non-decreasing for all ζ ≥ 0, and thus, this implies the condition (M2). A typical
model for the Kirchhoff function M satisfying (M2) is given by M(ζ) = 1 + aζϑ, with a ≥ 0
for all ζ ≥ 0. Hence, the condition (M2) includes this classical example as well as cases
that are not monotone. Under this condition, the authors of [18] obtained multiplicity
results for certain classes of double phase problems of the Kirchhoff type with nonlinear
boundary conditions; also, see [19] for the Dirichlet boundary condition. For these reasons,
the nonlinear elliptic equations with a Kirchhoff coefficient satisfying (M2) have been
comprehensively investigated by many researchers in recent years [15,17–19,21,25,27,28].

The main aim of the present paper is to provide several multiplicity results of solutions
for Schrödinger–Kirchhoff-type problems involving a double phase operator for the com-
bined effect of concave–convex nonlinearities. In this paper, we first discuss that Problem
(1) has infinitely many large-energy solutions. Second, we demonstrate the existence of a
sequence of infinitely many small-energy solutions. Finally, we provide the existence of a
sequence of infinitely many weak solutions converging to 0 in L∞-space. To derive such
results, we exploit the fountain theorem, the dual fountain theorem, and the modified func-
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tional method as the main tools. The present paper is motivated by recent work in [30,31].
Moreover, the authors of [30] obtained multiplicity results to the double phase problem
as follows:

−div(|∇u|p−2∇u + ν(y)|∇u|q−2∇u) +V(y)(|u|p−2u + ν(y)|u|q−2u)

= λσ(y)|w|r−2w + g(y, u) in RN ,

where V : RN → (0, ∞) is a potential function satisfying (V) and g : RN ×R → R fulfills the
Carathéodory condition. In particular, in the work [30], the authors obtained the existence
of a sequence of small-energy solutions under specific conditions of the nonlinear term that
were different from those in previous studies [23,32–37]. More precisely, in view of [32–35],
the conditions of the nonlinear term g near zero as well as at infinity were decisive for
proving the hypotheses in the dual-fountain theorem. However, the authors also ensured
the hypotheses when the behavior at infinity was not assumed, and the condition near
zero—namely, g(y, ζ) = o(|ζ|p−2ζ) as |ζ| → 0 uniformly for all y ∈ RN—was replaced by
(G4), which is discussed in Section 2. Although this study is inspired by [30,31], the presence
of the non-local Kirchhoff coefficient M required more complicated analyses that had
to be performed meticulously. In particular, one of the key ingredients to obtain this
multiplicity result in [30,31] is that the potential function V ∈ C(RN , (0, ∞)) is coercive:
that is, lim|x|→∞ V(x) = +∞, which is crucial to guarantee the compactness condition of
the Palais–Smale type. However, in order to prove this condition, we employ a weaker
condition (V) than the coercivity of the function V. Therefore, in this study, we develop a
multiplicity result for double phase problems of the Kirchhoff type under various conditions
on the convex term g.

Our multiplicity result of infinitely many small-energy solutions converging to 0 in
L∞-space is motivated by [38–42]. However, in contrast to [38,41,42], we utilize the dual-
fountain theorem instead of the global variational formulation in [43]. This multiplicity
result yielding small-energy solutions for variational elliptic equations based on the dual
fountain theorem does not guarantee the boundedness of the solutions. For this reason,
the authors of [39,40] combined the modified functional method with the dual-fountain
theorem in order to demonstrate the existence of multiple small-energy solutions converg-
ing to zero in L∞-space. In this direction, our final result is based on recent research [39,40].
However, our approach differs from [40] when validating a condition in the dual fountain
theorem, as shown in the Section 4. Furthermore, we have to carry out more complicated
analyses than those in [39]: not only because our problem has the Kirchhoff coefficient M
but also because the given domain is the whole space RN .

The outline of this paper is as follows. We present necessary preliminary knowledge of
function spaces for the present paper. Next, we provide the variational framework related
to problem (1), and then we establish various existence results of infinitely many non-
trivial solutions to the Kirchhoff-type double phase equations with concave–convex-type
nonlinearities under certain conditions on g.

2. Preliminaries

In this section, we briefly discuss the definitions and the essential properties of
Musielak–Orlicz–Sobolev space. For more in-depth examinations of these spaces, we
refer to [9,44–46].

The functions H : RN × [0, ∞) → [0, ∞) and HV : RN × [0, ∞) → [0, ∞) are defined
as follows:

H(y, ζ) := ζ p + ν(y)ζq, HV(y, ζ) := V(y)(ζ p + ν(y)ζq) (2)

For almost all y ∈ RN and for any ζ ∈ [0, ∞) with 1 < p < q,

q
p
≤ 1 +

1
N

, ν : RN → [0, ∞) is Lipschitz continuous,
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and V : RN → R is a function satisfying (V).
We define the Musielak–Orlicz space LH(RN) as

LH(RN) :=
{

v : RN → R is measurable : ςH(v) < ∞
}

,

induced by the Luxemburg norm

||v||H := inf
{

λ > 0 : ςH
(

y,
∣∣∣ v
λ

∣∣∣) ≤ 1
}

,

where ςH denotes the H-modular function with

ςH(v) :=
∫
RN

H(y, |v|)dy. (3)

If we replace H with HV, we obtain the definition of the Musielak–Orlicz space
(LHV

(RN), || · ||HV
), i.e.,

LHV
(RN) :=

{
v : RN → R is measurable : ςHV(v) < ∞

}
,

induced by the Luxemburg norm

||v||HV
:= inf

{
λ > 0 : ςHV

(
y,
∣∣∣ v
λ

∣∣∣) ≤ 1
}

,

where ςHV denotes the HV-modular function as

ςHV(v) :=
∫
RN

HV(y, |v|)dy. (4)

According to [45,47], the spaces LH(RN) and LHV
(RN) are separable and reflexive

Banach spaces.

Lemma 1 ([47]). For ςHV(v) given in (4) and v ∈ LHV

(
RN)

, we have:

(i) for v �= 0, ||v||HV
= λ iff ςHV( v

λ ) = 1;
(ii) ||v||HV

< 1(= 1;> 1) iff ςHV(v) < 1(= 1;> 1);
(iii) if ||v||HV

> 1, then ||v||pHV
≤ ςHV(v) ≤ ||v||qHV

;
(iv) if ||v||HV

< 1, then ||v||qHV
≤ ςHV(v) ≤ ||v||pHV

.

Furthermore, analogous results hold for ςH(u), given in (3), and ‖ · ‖H.

The weighted Musielak–Orlicz–Sobolev space W1,H
V (RN) is defined by

W1,H
V (RN) = {v ∈ LHV

(RN) : |∇v| ∈ LH(RN)}.

Then, it is provided with the following norm:

||v|| = ||∇v||H + ||v||HV
.

Note that W1,H
V (RN) is a separable reflexive Banach space [45]. In the following

calculations, the notation E ↪→ F indicates that space E is continuously embedded into
space F, while E ↪→↪→ F denotes that E is compactly embedded into F.

According to Lemma 1, we obtain the following results:

Lemma 2 ([47]). The following embeddings hold:

(i) LHV
(RN) ↪→ LH(RN);

(ii) W1,H
V (RN) ↪→ Lτ(RN) for τ ∈ [p, p∗];
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(iii) W1,H
V (RN) ↪→↪→ Lτ(RN) for τ ∈ [p, p∗).

Lemma 3 ([47]). Let

A(v) :=
∫
RN

H(y, |∇v|)dy +
∫
RN

HV(y, |v|)dy.

Then, the following properties hold:

(i) A(v) ≤ ||v||p + ||v||q for all v ∈ W1,H
V (RN);

(ii) If ||v|| ≤ 1, then 21−q||v||q ≤ A(v) ≤ ||v||p;
(iii) If ||v|| ≥ 1, then 2−p||v||p ≤ A(v) ≤ 2||v||q.

Let us define the functional Φ : E := W1,H
V (RN) → R by

Φ(w) = M
(∫

RN
Hp,q(y, |∇w|) dy

)
+

∫
RN

HV,p,q(y, |w|) dy,

where the functions Hp,q : RN × [0, ∞) → [0, ∞) and HV,p,q : RN × [0, ∞) → [0, ∞) are
defined as

Hp,q(y, ζ) :=
1
p

ζ p +
ν(y)

q
ζq and HV,p,q(y, ζ) := V(y)

(
1
p

ζ p +
ν(y)

q
ζq
)

.

Then, it is standard to check that Φ ∈ C1(E,R), and its Fréchet derivative Φ′ : E → E∗ is
defined as follows:〈

Φ′(w), v
〉
=M

(∫
RN

Hp,q(y, |∇w|) dy
) ∫

RN
(|∇w|p−2∇w · ∇v + ν(y)|∇w|q−2∇w · ∇v) dy

+
∫
RN

V(y)(|w|p−2wv + ν(y)|w|q−2wv) dy

for all w, v ∈ E, where E∗ denotes the dual space of E, and 〈·, ·〉 denotes the pairing between
E and E∗.

Throughout this paper, the Kirchhoff function M satisfies the conditions (M1)–(M2),
and the potential V fulfills the condition (V).

Definition 1. We say that w ∈ E is a weak solution for Problem (1) if

M
(∫

RN
Hp,q(y, |∇w|) dy

) ∫
RN

(|∇w|p−2∇w · ∇u + ν(y)|∇w|q−2∇w · ∇u) dy

+
∫
RN

V(y)(|w|p−2wu + ν(y)|w|q−2wu) dy =
∫
RN

σ(y)|w|r−2wu dy + θ
∫
RN

g(y, w)u dy

for any u ∈ E.

We assume the following:

(B1) 1 < r < p < q < � < p∗;

(B2) 0 ≤ σ ∈ L
γ0

γ0−r (RN) ∩ L∞(RN) with meas
{

y ∈ RN : σ(y) �= 0
}
> 0 for any γ0 with

p < γ0 < p∗;
(G1) g : RN × R → R satisfies the Carathéodory condition, and there is an s ∈ [p, p∗),

0 ≤ ρ1 ∈ Ls′(RN) ∩ L∞(RN) and a positive constant ρ2 such that

|g(y, ζ)| ≤ ρ1(y) + ρ2|ζ|�−1

for all ζ ∈ R and for almost all y ∈ RN ;
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(G2) There exist μ > ϑq and M0 > 0 such that

g(y, ζ)ζ − μG(y, ζ) ≥ 0

for all (y, ζ) ∈ RN ×R with |ζ| ≥ M0 where G(y, ζ) =
∫ ζ

0 g(y, s) ds;
(G3) There exist μ > ϑq, ς ≥ 0, and M1 > 0 such that

g(y, ζ)ζ − μG(y, ζ) ≥ −ς|ζ|p

for all (y, ζ) ∈ RN ×R with |ζ| ≥ M1;
(G4) There exist M2 > 0, 1 < d < p, τ > 1 with p ≤ τ′d ≤ p∗, and a positive function

ξ ∈ Lτ(RN) ∩ L∞(RN) such that

lim inf
|ζ|→0

g(y, ζ)

ξ(y)|ζ|d−2ζ
≥ M2

uniformly for almost all y ∈ RN .

Remark 1. It is clear that the condition (G3) is weaker than (G2), which was initially provided
by [48]. If we consider the function

g(y, ζ) = ρ(y)
(

ξ(y)|ζ|d−2ζ + |ζ|p−2ζ +
2
p

sin ζ

)
with its primitive function

G(y, ζ) = ρ(y)
(

ξ(y)
d

|ζ|d + 1
p
|ζ|p − 2

p
cos ζ +

2
p

)
,

where ρ ∈ C(RN ,R) with 0 < infy∈RN ρ(y) ≤ supy∈RN ρ(y) < ∞, and d, ξ are given in (G4),
then it is obvious that this example satisfies the condition (G3) but not (G2). However, the conditions
(G1) and (G4) are also satisfied.

Let us define the functional Ψθ : E → R as

Ψθ(w) =
1
r

∫
RN

σ(y)|w|r dy + θ
∫
RN

G(y, w) dy.

Then, it is easy to show that Ψθ ∈ C1(E,R), and its Fréchet derivative is

〈
Ψ′

θ(w), z
〉
=

∫
RN

σ(y)|w|r−2wz dy + θ
∫
RN

g(y, w)z dy

for any w, z ∈ E [47]. Next, we define the functional Eθ : E → R by

Eθ(w) = Φ(w)− Ψθ(w).

Then, it follows that the functional Eθ ∈ C1(E,R) and its Fréchet derivative is:〈
E′

θ(w), z
〉
=

〈
Φ′(w), z

〉
−

〈
Ψ′

θ(w), z
〉

for any w, z ∈ E.

Before describing the proofs of our results, we present several preliminary assertions.

Lemma 4 ([47]). Assume that (B1), (B2), and (G1) hold. Then, Ψθ and Ψ′
θ are sequentially weakly

strongly continuous.

Definition 2. Suppose that X is a real Banach space. We say that the functional F satisfies
the Cerami condition at level c ((C)c-condition for short) in X if any (C)c-sequence {wn} ⊂ X,
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i.e., F (wn) → c and ||F ′(wn)||X∗(1 + ||wn||X) → 0 as n → ∞ has a convergent subsequence
in X.

The following Lemmas 5 and 6 are the compactness condition for the Palais–Smale
type that play a crucial role in obtaining our main results. The basic concepts behind the
proofs of these logical consequences follows the analogous arguments in [30]. However,
more complicated analyses have to be carried out because of the presence of the non-local
Kirchhoff coefficient M.

Remark 2. The basic concepts of the proofs for the following logical consequences use similar
arguments to those in [30,31]. From this point of view, it is important that the potential function
V ∈ C(RN , (0, ∞)) is coercive. As mentioned in the introduction, we show this condition without
assuming the coercivity of the function V.

Lemma 5. Suppose that (B1), (B2), (G1), and (G2) hold. Then, the functional Eθ ensures the
(C)c-condition for any θ > 0.

Proof. For c ∈ R, let {wn} be a (C)c-sequence in E, i.e.,

Eθ(wn) → c and ||E ′
θ(wn)||X∗(1 + ||wn||X) → 0 as n → ∞, (5)

which show that
c = Eθ(wn) + o(1) and 〈Eθ(wn), wn〉 = o(1), (6)

where o(1) → 0 as n → ∞. Firstly, we verify that the sequence {wn} is bounded in E. To do
this, we claim that( 1

ϑq
− 1

μ

) ∫
RN

HV(y, |wn|) dy − C1

∫
{|wn |≤M0}

|wn|p + ρ1(y)|wn|+ ρ2|wn|� dy (7)

≥ 1
2

( 1
ϑq

− 1
μ

) ∫
RN

HV(y, |wn|) dy −K0

for any positive constant C1 and for some positive constant K0, where HV, as given in (2).
Indeed, without the loss of generality, we suppose that M0 > 1. By Young’s inequality, we
know that ( 1

ϑq
− 1

μ

) ∫
RN

HV(y, |wn|) dy

− C1

∫
{|wn |≤M0}

(|wn|p + ρ1(y)|wn|+ ρ2|wn|�) dy

≥
( 1

ϑq
− 1

μ

) ∫
RN

HV(y, |wn|) dy

− C1

∫
{|wn |≤M0}

(
|wn|p + ρs′

1 (y) + |wn|s + ρ2|wn|�
)

dy

≥ 1
2

( 1
ϑq

− 1
μ

)[∫
RN

HV(y, |wn|) dy +
∫
{|wn |≤M0}

HV(y, |wn|) dy
]

− C1

∫
{|wn |≤1}

(
|wn|p + |wn|s + ρ2|wn|�

)
dy

− C1

∫
{1<|wn |≤M0}

(
|wn|p + |wn|s + ρ2|wn|�

)
dy − C1||ρ1||s

′
Ls′ (RN)

(8)

≥ 1
2

( 1
ϑq

− 1
μ

)[∫
RN

HV(y, |wn|) dy +
∫
{|wn |≤M0}

HV(y, |wn|) dy
]

− C1(2 + ρ2)
∫
{|wn |≤1}

|wn|p dy − C1||ρ1||s
′

Ls′ (RN)
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− C1

(
1 +M0

s−p +M0
�−pρ2

) ∫
{1<|wn |≤M0}

|wn|p dy

≥ 1
2

( 1
ϑq

− 1
μ

)[∫
RN

HV(y, |wn|) dy +
∫
{|wn |≤M0}

HV(y, |wn|) dy
]

− C1(2 + ρ2)
∫
{|wn |≤1}

H(y, |wn|) dy − C1||ρ1||s
′

Ls′ (RN)

− C1

(
1 +M0

s−p +M0
�−pρ2

) ∫
{1<|wn |≤M0}

H(y, |wn|) dy

≥ 1
2

( 1
ϑq

− 1
μ

)[∫
RN

HV(y, |wn|) dy +
∫
{|wn |≤M0}

HV(y, |wn|) dy
]

− C̃0

∫
{|wn |≤M0}

H(y, |wn|) dy − C̃1,

where H, as given in (2), C̃0 := C1

(
1 +M0

s−p +M0
�−pρ2

)
. and C̃1 := C1||ρ1||s

′
Ls′ (RN)

.

We set
Br0 = {y ∈ RN : |y| < r0}, A = {y ∈ RN \Br0 : V(y) ≥ V0}

and
B = {y ∈ RN \Br0 : V(y) < V0}

for any V0 > 0. Then, it is clear that A ∪ B = Bc
r0

, where A and B are disjoint. If y ∈ A,

then for any V0 ≥ 2ϑqμC̃0
μ−ϑq , we know that

HV(y, |wn|) ≥
2ϑqμC̃0

μ − ϑq
H(y, |wn|) (9)

for |y| ≥ r0. Furthermore, since V ∈ L1(Br0), we infer∫
{|wn |≤M0}∩Br0

HV(y, |wn|) dy < +∞ and
∫
{|wn |≤M0}∩Br0

H(y, |wn|) dy < +∞ (10)

for some positive constants C̃2, C̃3. Using (V), we know meas
(
{y ∈ RN : |wn(y)| ≤ M0} ∩ B

)
is finite, and thus,∫

{|wn |≤M0}∩B
HV(y, |wn|) dy < +∞ and

∫
{|wn |≤M0}∩B

H(y, |wn|) dy < +∞. (11)

This, together with (8)–(11), yields the following:( 1
ϑq

− 1
μ

) ∫
RN

HV(y, |wn|) dy − C1

∫
{|wn |≤M0}

(|wn|p + ρ1(y)|wn|+ ρ2|wn|�) dy

≥ 1
2

( 1
ϑq

− 1
μ

)[ ∫
RN

HV(y, |wn|) dy +
∫
{|wn |≤M0}∩Bc

r0

HV(y, |wn|) dy

+
∫
{|wn |≤M0}∩Br0

HV(y, |wn|) dy
]

− C̃0

[ ∫
{|wn |≤M0}∩Bc

r0

H(y, |wn|) dy +
∫
{|wn |≤M0}∩Br0

H(y, |wn|) dy
]
− C̃1

≥ 1
2

( 1
ϑq

− 1
μ

)[ ∫
RN

HV(y, |wn|) dy +
∫
{|wn |≤M0}∩A

HV(y, |wn|) dy

+
∫
{|wn |≤M0}∩B

HV(y, |wn|) dy
]
− C̃0

[ ∫
{|wn |≤M0}∩A

H(y, |wn|) dy

+
∫
{|wn |≤M0}∩B

H(y, |wn|) dy
]
− K̃0
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≥ 1
2

( 1
ϑq

− 1
μ

) ∫
RN

HV(y, |wn|) dy +
μ − ϑq
2ϑqμ

∫
{|wn |≤M0}∩A

HV(y, |wn|) dy

− C̃0

∫
{|wn |≤M0}∩A

H(y, |wn|) dy −K0

≥ 1
2

( 1
ϑq

− 1
μ

) ∫
RN

HV(y, |wn|) dy −K0

where K̃0 and K0 are suitable constants. From this, the relation (7) is proved. Combining
(7) with (B1), (B2), (G1), and (G2), we find the following:

c + 1 ≥ Eθ(wn)−
1
μ

〈
E′

θ(wn), wn
〉

= M
(∫

RN
Hp,q(y, |∇wn|) dy

)
+

∫
RN

HV,p,q(y, |wn|) dy

− 1
r

∫
RN

σ(y)|wn|r dy − θ
∫
RN

G(y, wn) dy

− 1
μ

M
(∫

RN
Hp,q(y, |∇wn|) dy

) ∫
RN

H(y, |∇wn|) dy

− 1
μ

∫
RN

HV(y, |wn|) dy +
1
μ

∫
RN

σ(y)|wn|r dy +
θ

μ

∫
RN

g(y, wn)wn dy

≥ 1
ϑ

M
(∫

RN
Hp,q(y, |∇wn|) dy

) ∫
RN

Hp,q(y, |∇wn|) dy

+
∫
RN

HV,p,q(y, |wn|) dy − 1
r

∫
RN

σ(y)|wn|r dy − θ
∫
RN

G(y, wn) dy

− 1
μ

M
(∫

RN
Hp,q(y, |∇wn|) dy

) ∫
RN

H(y, |∇wn|) dy

− 1
μ

∫
RN

HV(y, |wn|) dy +
1
μ

∫
RN

σ(y)|wn|r dy +
θ

μ

∫
RN

g(y, wn)wn dy

≥
(

1
ϑq

− 1
μ

)
M

(∫
RN

Hp,q(y, |∇wn|) dy
) ∫

RN
H(y, |∇wn|) dy

+

(
1
q
− 1

μ

) ∫
RN

HV(y, |wn|) dy −
(

1
r
− 1

μ

) ∫
RN

σ(y)|wn|r dy

+
θ

μ

∫
RN

g(y, wn)wn − μG(y, wn) dy

≥ κ0

(
1

ϑq
− 1

μ

) ∫
RN

H(y, |∇wn|) dy +

(
1
q
− 1

μ

) ∫
RN

HV(y, |wn|) dy

−
(

1
r
− 1

μ

) ∫
RN

σ(y)|wn|r dy +
θ

μ

∫
{|wn |≤M0}

g(y, wn)wn − μG(y, wn) dy

+
θ

μ

∫
{|wn |≥M0}

g(y, wn)wn − μG(y, wn) dy

≥ κ0

(
1

ϑq
− 1

μ

) ∫
RN

H(y, |∇wn|) dy +

(
1
q
− 1

μ

) ∫
RN

HV(y, |wn|) dy

−
(

1
r
− 1

μ

) ∫
RN

σ(y)|wn|r dy

− C1

∫
{|wn |≤M0}

|wn|p + ρ1(y)|wn|+ ρ2|wn|� dy

≥ κ0

(
1

ϑq
− 1

μ

) ∫
RN

H(y, |∇wn|) dy +
1
2

(
1
q
− 1

μ

) ∫
RN

HV(y, |wn|) dy

−
(

1
r
− 1

μ

) ∫
RN

σ(y)|wn|r dy −K0
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≥ min{κ0, 1}(μ − ϑq)
2ϑqμ

[∫
RN

H(y, |∇wn|) dy +
∫
RN

HV(y, |wn|) dy
]

−
(

1
r
− 1

μ

)
||σ||

L
γ0

γ0−r (RN)
||wn||rLγ0 (RN) −K0

≥ min{κ0, 1}(μ − ϑq)
2ϑqμ

min
{ ||wn||p

2p ,
||wn||q
2q−1

}
−

(
1
r
− 1

μ

)
||σ||

L
γ0

γ0−r (RN)
||wn||rLγ0 (RN) −K0

≥ min{κ0, 1}(μ − ϑq)
2ϑqμ

min
{ ||wn||p

2p ,
||wn||q
2q−1

}
−

(
1
r
− 1

μ

)
||σ||

L
γ0

γ0−r (RN)
Cγ0,imb||wn||r −K0,

where Cγ0,imb is an embedding constant of E ↪→ Lγ0(RN). Since p > r > 1, we assert that
the sequence {wn} is bounded in E, and thus, {wn} has a weakly convergent subsequence
in E. Passing to the limit, if necessary, to a subsequence according to Lemma 2, we have
the following:

wn ⇀ w0 in E, wn(y) → w0(y) a.e. in RN and wn → w0 in Lτ(RN) (12)

as n → ∞ for any τ ∈ [p, p∗). To prove that {wn} converges strongly to w0 in E as n → ∞,
we let ψ ∈ E be fixed and let Φ̃ψ denote the linear function on E as defined by

Φ̃ψ(v) =
∫
RN

|∇ψ|p−2∇ψ · ∇v dy +
∫
RN

ν(y)|∇ψ|q−2∇ψ · ∇v dy (13)

for all v ∈ E. Obviously, by the Hölder inequality, Φ̃ψ is also continuous, as

|Φ̃ψ(v)| ≤ C2

(
|||∇ψ|p−1||Lp′ (RN)

+ |||∇ψ|q−1||Lq′ (ν,RN)

)
||v||

≤ C2

(
||∇ψ||p−1

Lp(RN)
+ ||∇ψ||q−1

Lq(ν,RN)

)
||v||

for any v ∈ E and a positive constant C2. Hence, (12) yields

lim
n→∞

[
M

(∫
RN

Hp,q(y, |∇wn|) dy
)
− M

(∫
RN

Hp,q(y, |∇w0|) dy
)]

Φ̃w0(wn − w0) = 0, (14)

as the sequence
{

M
(∫

RN Hp,q(y, |∇wn|) dy
)
− M

(∫
RN Hp,q(y, |∇w0|) dy

)}
is bounded in

R. Using (G1) and the Hölder inequality, it follows that∫
RN

|(g(y, wn)− g(y, w0))(wn − w0)| dy

≤
∫
RN

[
2ρ1(y) + ρ2

(
|wn|�−1 + |w0|�−1

)]
|wn − w0| dy

≤ 2||ρ1||Ls′ (RN)||wn − w0||Ls(RN)

+ ρ2

(
||wn||�−1

L�′ (RN)
+ ||w0||�−1

L�′ (RN)

)
||wn − w0||L�(RN).

Then, (12) implies that

lim
n→∞

∫
RN

(g(y, wn)− g(y, w0))(wn − w0) dy = 0. (15)
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Let us denote γ := γ0
γ0−r . Then, by Young’s inequality, we obtain the following:

∫
RN

∣∣∣σ(y)(|wn|r−2wn − |w0|r−2w0

)∣∣∣γ0
′
dy

=
∫
RN

|σ(y)|γ0
∣∣∣(|wn|r−2wn − |w0|r−2w0

)∣∣∣γ0
′
dy

≤
∫
RN

|σ(y)|γ0
(
|wn|r−1 + |w0|r−1

)γ0
′
dy

≤
∫
RN

⎡⎢⎢⎣ (|σ(y)|γ0)
γ

γ0
′

γ
γ0

′
+

[
(|wn|r−1 + |w0|r−1)γ0

′]( γ
γ0

)′
(

γ
γ0

)′

⎤⎥⎥⎦ dy (16)

=
∫
RN

[
γ0

′

γ
|σ(y)|γ +

r − 1
γ0 − 1

(
|wn|r−1 + |w0|r−1

) γ0
r−1

]
dy

≤ C3

∫
RN

γ0
′

γ
|σ(y)|γ +

r − 1
γ0 − 1

(|wn|γ0 + |w0|γ0) dy

for a positive constant C3. Invoking (12), (16), and the convergence principle, we have∣∣∣σ(y)|wn|r−2wn − σ(y)|w0|r−2w0

∣∣∣γ0
′
≤ f1(y)

for almost all y ∈ RN and for some f1 ∈ L1(RN), and thus, σ(y)|wn|r−2wn → σ(y)|w0|r−2w0
as n → ∞ for almost all y ∈ RN . This, together with Lebesgue’s dominated convergence
theorem, yields the following:

lim
n→∞

∫
RN

σ(y)
(
|wn|r−2wn − |w0|r−2w0

)
(wn − w0) dy = 0. (17)

Because wn ⇀ w0 in E and E′
θ(wn) → 0 in E∗, as n → ∞, we obtain the following:

〈E ′
θ(wn)− E′

θ(w0), wn − w0〉 → 0 as n → ∞. (18)

Let us denote Ψ̃ψ in E with

Ψ̃ψ(v) :=
∫
RN

V(y)
(
|ψ|p−2ψ + ν(y)|ψ|q−2ψ

)
v dy.

Then, we infer

〈E ′
θ(wn)− E′

θ(w0), wn − w0〉

= M
(∫

RN
Hp,q(y, |∇wn|) dy

)
Φ̃wn(wn − w0)

− M
(∫

RN
Hp,q(y, |∇w0|) dy

)
Φ̃w0(wn − w0)

+
∫
RN

V(y)
(
|wn|p−2wn + ν(y)|wn|q−2wn

)
(wn − w0) dy

−
∫
RN

V(y)
(
|w0|p−2w0 + ν(y)|w0|q−2w0

)
(wn − w0) dy

−
∫
RN

σ(y)
(
|wn|r−2wn − |w0|r−2w0

)
(wn − w0) dy

− θ
∫
RN

(
g(y, wn)− g(y, w0)

)
(wn − w0) dy

= M
(∫

RN
Hp,q(y, |∇wn|) dy

)[
Φ̃wn(wn − w0)− Φ̃w0(wn − w0)

]
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+
[

M
(∫

RN
Hp,q(y, |∇wn|) dy

)
− M

(∫
RN

Hp,q(y, |∇w0|) dy
)]

Φ̃w0(wn − w0)

+
∫
RN

V(y)
(
|wn|p−2wn − |w0|p−2w0 + ν(y)(|wn|q−2wn − |w0|q−2w0)

)
× (wn − w0) dy

−
∫
RN

σ(y)
(
|wn|r−2wn − |w0|r−2w0

)
(wn − w0) dy

− θ
∫
RN

(
g(y, wn)− g(y, w0)

)
(wn − w0) dy

=
[

M
(∫

RN
Hp,q(y, |∇wn|) dy

)[
Φ̃wn(wn − w0)− Φ̃w0(wn − w0)

]
+ Ψ̃wn(wn − w0)− Ψ̃w0(wn − w0)

]
+

[
M

(∫
RN

Hp,q(y, |∇wn|) dy
)
− M

(∫
RN

Hp,q(y, |∇w0|) dy
)]

Φ̃w0(wn − w0)

−
∫
RN

σ(y)
(
|wn|r−2wn − |w0|r−2w0

)
(wn − w0) dy

− θ
∫
RN

(
g(y, wn)− g(y, w0)

)
(wn − w0) dy.

This together with Equations (14), (15), (17), and (18) yields

lim
n→∞

[
M

(∫
RN

Hp,q(y, |∇wn|) dy
)[

Φ̃wn(wn − w0)− Φ̃w0(wn − w0)
]

+ Ψ̃wn(wn − w0)− Ψ̃w0(wn − w0)
]
= 0.

By convexity, (M1), and (V), we have the following:

M
(∫

RN
Hp,q(y, |∇wn|) dy

)[
Φ̃wn(wn − w0)− Φ̃w0(wn − w0)

]
≥ 0 (19)

and

V(y)
(
|wn|p−2wn − |w0|p−2w0 + ν(y)

(
|wn|q−2wn − |w0|q−2w0

))
(wn − w0) ≥ 0. (20)

It follows that

lim
n→∞

[
Φ̃wn(wn − w0)− Φ̃w0(wn − w0)

]
= 0 (21)

and

lim
n→∞

[
Ψ̃wn(wn − w0)− Ψ̃w0(wn − w0)

]
= 0. (22)

It should be noted that there are the well-known vector inequalities:

|ξ − η|m ≤

⎧⎪⎪⎨⎪⎪⎩
C(m)(|ξ|m−2ξ − |η|m−2η) · (ξ − η) for m ≥ 2,

C(m)
[
(|ξ|m−2ξ − |η|m−2η) · (ξ − η)

]m
2

×(|ξ|m + |η|m) 2−m
2 for 1 < m < 2

(23)

for all ξ, η ∈ RN , where C(m) is a positive constant depending only on m [49]. It is now
assumed that 2 ≤ p < q. Then, according to (23), we know the following:∫

RN
|∇wn −∇w0|p dy
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≤ C(p)
∫
RN

(|∇wn|p−2∇wn − |∇w0|p−2∇w0) · (∇wn −∇w0) dy (24)

and ∫
RN

ν(y)|∇wn −∇w0|q dy

≤ C(q)
∫
RN

ν(y)(|∇wn|q−2∇wn − |∇w0|q−2∇w0) · (∇wn −∇w0) dy. (25)

Then, based on (24), (25), and the definition of Φ̃ψ in (13), it follows that∫
RN

|∇wn −∇w0|p + ν(y)|∇wn −∇w0|q dy

≤ max{C(p), C(q)}
(
Φ̃wn(wn − w0)− Φ̃w0(wn − w0)

)
. (26)

Similarly, utilizing (V) and (23),∫
RN

V(y)|wn − w0|p dy

≤ C̃(p)
∫
RN

V(y)(|wn|p−2wn − |w0|p−2w0)(wn − w0) dy (27)

and ∫
RN

V(y)ν(y)|wn − w0|q dy

≤ C̃(q)
∫
RN

V(y)
(

ν(y)|wn|q−2wn − ν(y)|w0|q−2w0

)
(wn − w0) dy. (28)

Then, according to (27) and (28), we deduce that∫
RN

V(y)
(
|wn − w0|p + ν(y)|wn − w0|q

)
dy

≤ max{C̃(p), C̃(q)}
[
Ψ̃wn(wn − w0)− Ψ̃w0(wn − w0)

]
. (29)

However, we consider the case where 1 < p < q < 2. As {wn} is bounded
in E, there exist positive constants of C4 and C5 such that

∫
RN |∇wn|p dy ≤ C4 and∫

RN ν(y)|∇wn|q dy ≤ C5 for all n ∈ N. By (23) and the Hölder inequality, we have∫
RN

|∇wn −∇w0|p dy

≤ C(p)
∫
RN

[
(|∇wn|p−2∇wn − |∇w0|p−2∇w0) · (∇wn −∇w0)

] p
2

× (|∇wn|p + |∇w0|p)
2−p

2 dy

≤ C(p)
(∫

RN
(|∇wn|p−2∇wn − |∇w0|p−2∇w0) · (∇wn −∇w0) dy

) p
2

(30)

×
(∫

RN
(|∇wn|p + |∇w0|p) dy

) 2−p
2

≤ C(p)(2C4)
2−p

2

(∫
RN

(|∇wn|p−2∇wn − |∇w0|p−2∇w0) · (∇wn −∇w0) dy
) p

2

and∫
RN

ν(y)|∇wn −∇w0|q dy

≤ C(q)
∫
RN

[
ν(y)(|∇wn|q−2∇wn − |∇w0|q−2∇w0) · (∇wn −∇w0)

] q
2
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×
[
ν(y)(|∇wn|q + |∇w0|q)

] 2−q
2

dy

≤ C(q)
(∫

RN
ν(y)(|∇wn|q−2∇wn − |∇w0|q−2∇w0) · (∇wn −∇w0) dy

) q
2

(31)

×
(∫

RN
ν(y)|∇wn|q + ν(y)|∇w0|q dy

) 2−q
2

≤ C(q)(2C5)
2−q

2

(∫
RN

ν(y)
(
|∇wn|q−2∇wn − |∇w0|q−2∇w0

)
· (∇wn −∇w0) dy

) q
2
.

Then, according to (30), (31), and the definition of Φ̃ψ in (13), it follows that∫
RN

|∇wn −∇w0|p + ν(y)|∇wn −∇w0|q dy

≤ C
(
Φ̃wn(wn − w0)− Φ̃w0(wn − w0)

)α, (32)

where C := max
{

C(p)(2C4)
2−p

2 , C(q)(2C5)
2−q

2

}
and α is either p

2 or q
2 . Similarly, from (V)

and the boundedness of {wn} in E, there exist positive constants C6 and C7 such that∫
RN V(y)|wn|p dy ≤ C6 and

∫
RN V(y)ν(y)|wn|q dy ≤ C7 for all n ∈ N. According to (23)

and the Hölder inequality, we have the following:∫
RN

V(y)|wn − w0|p dy

≤ C̃(p)
∫
RN

[
V(y)

(
|wn|p−2wn − |w0|p−2w0

)
(wn − w0)

] p
2

×
[
V(y)(|wn|p + |w0|p)

] 2−p
2

dy

≤ C̃(p)
(∫

RN
V(y)

[
(|wn|p−2wn − |w0|p−2w0)(wn − w0)

]
dy

) p
2

(33)

×
(∫

RN
V(y)|wn|p +V(y)|w0|p dy

) 2−p
2

≤ C̃(p)(2C6)
2−p

2

(∫
RN

V(y)
[
(|wn|p−2wn − |w0|p−2w0)(wn − w0)

]
dy

) p
2

and ∫
RN

V(y)ν(y)|wn − w0|q dy

≤ C̃(q)
∫
RN

[
V(y)ν(y)

(
|wn|q−2wn − |w0|q−2w0

)
(wn − w0)

] q
2

×
[
V(y)ν(y)(|wn|q + |w0|q)

] 2−q
2

dy

≤ C̃(q)
(∫

RN
V(y)ν(y)

[
(|wn|q−2wn − |w0|q−2w0)(wn − w0)

]
dy

) q
2

(34)

×
(∫

RN
V(y)ν(y)|wn|q +V(y)ν(y)|w0|q dy

) 2−q
2

≤ C̃(q)(2C7)
2−q

2

(∫
RN

V(y)ν(y)
[
(|wn|q−2wn − |w0|q−2w0)(wn − w0)

]
dy

) q
2
.
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Then, based on (33) and (34), we get that∫
RN

V(y)(|wn − w0|p + ν(y)|wn − w0|q) dy

≤ C̃
(
Ψ̃wn(wn − w0)− Ψ̃w0(wn − w0)

)β, (35)

where C̃ := max
{

C̃(p)(2C6)
2−p

2 , C̃(q)(2C7)
2−q

2

}
and β is either p

2 or q
2 . Then, with the foun-

dation of (21) and (22) and according to (26), (29), (32), and (35), we obtain ||wn − w0|| → 0
as n → ∞. Hence, Eθ satisfies the (C)c-condition. This completes the proof.

Remark 3. As mentioned in Remark 1, condition (G3) is weaker than (G2). However, to obtain
the following compactness condition, we need an additional assumption on the nonlinear term g
at infinity.

Lemma 6. Suppose that (B1), (B2), (G1), and (G3) hold. In addition,

(G5) lim|ζ|→∞
G(y,ζ)
|ζ|ϑq = ∞ uniformly for almost all y ∈ RN

holds. Then, the functional Eθ fulfills the (C)c-condition for any θ > 0.

Proof. For c ∈ R, let {wn} be a (C)c-sequence in E satisfying (5). Based on Lemma 5, it is
sufficient to prove that {wn} is bounded in E. To this end, suppose, to the contrary, that
||wn|| > 1 and ||wn|| → ∞ as n → ∞, and a sequence {�n} is defined by �n = wn/||wn||.
Then, up to the subsequence denoted by {�n}, we obtain �n ⇀ �0 in E as n → ∞, and due
to Lemma 2,

�n → �0 a.e. in RN and �n → �0 in Lt(RN) (36)

as n → ∞ for any t with p ≤ t < p∗. By Lemma 3 and assumption (B2), we have

Eθ(wn) = M
(∫

RN
Hp,q(y, |∇wn|) dy

)
+

∫
RN

HV,p,q(y, |wn|) dy

− 1
r

∫
RN

σ(y)|wn|r dy − θ
∫
RN

G(y, wn) dy

≥ 1
ϑ

M
(∫

RN
Hp,q(y, |∇wn|) dy

) ∫
RN

Hp,q(y, |∇wn|) dy

+
∫
RN

HV,p,q(y, |wn|) dy − 1
r

∫
RN

σ(y)|wn|r dy − θ
∫
RN

G(y, wn) dy

≥ κ0

ϑq

∫
RN

H(y, |∇wn|) dy +
1
q

∫
RN

HV(y, |wn|) dy (37)

− 1
r

∫
RN

σ(y)|wn|r dy − θ
∫
RN

G(y, wn) dy

≥ min{κ0, ϑ}
ϑq

( ∫
RN

H(y, |∇wn|) dy +
∫
RN

HV(y, |wn|) dy
)

− 1
r

∫
RN

σ(y)|wn|r dy − θ
∫
RN

G(y, wn) dy

≥ min{κ0, ϑ}
ϑq2p ||wn||p −

1
r
||σ||

L
γ0

γ0−r (RN)
||wn||rLγ0 (RN) − θ

∫
RN

G(y, wn) dy

≥ min{κ0, ϑ}
ϑq2p ||wn||p −

C8

r
||wn||r − θ

∫
RN

G(y, wn) dy
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for a positive constant C8. Since Eθ(wn) → c as n → ∞, ||wn|| → ∞ as n → ∞, and r < p,
we assert that∫

RN
G(y, wn) dy ≥ 1

θ

(
min{κ0, ϑ}

ϑq2p ||wn||p −
C8

r
||wn||r − Eθ(wn)

)
→ ∞ as n → ∞. (38)

According to Lemma 3, we have

Eθ(wn) = M
(∫

RN
Hp,q(y, |∇wn|) dy

)
+

∫
RN

HV,p,q(y, |wn|) dy

− 1
r

∫
RN

σ(y)|wn|r dy − θ
∫
RN

G(y, wn) dy

≤ M
(∫

RN
Hp,q(y, |∇wn|) dy

)
+

∫
RN

HV,p,q(y, |wn|) dy

− θ
∫
RN

G(y, wn) dy

≤ M
(∫

RN
Hp,q(y, |∇wn|) dy

)
+

1
p

∫
RN

HV(y, |wn|) dy

− θ
∫
RN

G(y, wn) dy (39)

≤ M(1)

(
1 +

(∫
RN

Hp,q(y, |∇wn|) dy
)ϑ

)
+

∫
RN

HV(y, |wn|) dy −
∫
RN

G(y, wn) dy

≤ C9max{M(1), 1}
(

1 +
∫
RN

H(y, |∇wn|) dy +
∫
RN

HV(y, |wn|) dy
)ϑ

− θ
∫
RN

G(y, wn) dy

≤ C9max{M(1), 1}(1 + 2||wn||q)ϑ − θ
∫
RN

G(y, wn) dy

≤ 4ϑC9max{M(1), 1}||wn||ϑq − θ
∫
RN

G(y, wn) dy

for a positive constant C9, where M(τ) ≤ M(1)
(
1+ τϑ

)
for all τ ∈ R+ because if 0 ≤ τ < 1,

then M(τ) =
∫ τ

0 M(s) ds ≤ M(1), and if τ > 1, then M(τ) ≤ M(1)τϑ. Furthermore,

4ϑC9max{M(1), 1}||wn||ϑq ≥ Eθ(wn) + θ
∫
RN

G(y, wn) dy. (40)

Due to assumption (G5), there exists a δ > 1 such that G(y, ζ) > |ζ|ϑq for all x ∈ RN

and |ζ| > δ. Taking into account (G1), we obtain |G(y, ζ)| ≤ Ĉ for all (y, ζ) ∈ RN × [−ζ0, ζ0]
for a constant Ĉ > 0. Therefore, there is C1 ∈ R such that G(y, ζ) ≥ C1 for all (y, ζ) ∈
RN ×R, and thus,

G(y, wn)− C1

4ϑC9max{M(1), 1}||wn||ϑq ≥ 0 (41)

for all y ∈ RN and n ∈ N. Combining (7) with (B1), (B2), (G1), and (G3), we have
the following:

c + 1 ≥ Eθ(wn)−
1
μ

〈
E′

θ(wn), wn
〉

= M
(∫

RN
Hp,q(y, |∇wn|) dy

)
+

∫
RN

HV,p,q(y, |wn|) dy

− 1
r

∫
RN

σ(y)|wn|r dy − θ
∫
RN

G(y, wn) dy
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− 1
μ

M
(
Hp,q(y, |∇wn|)

) ∫
RN

H(y, |∇wn|) dy

− 1
μ

∫
RN

HV(y, |wn|) dy +
1
μ

∫
RN

σ(y)|wn|r dy

+
θ

μ

∫
RN

g(y, wn)wn dy

≥ κ0

(
1

ϑq
− 1

μ

) ∫
RN

H(y, |∇wn|) dy

+

(
1
q
− 1

μ

) ∫
RN

HV(y, |wn|) dy −
(

1
r
− 1

μ

) ∫
RN

σ(y)|wn|r dy

+
θ

μ

∫
{|wn |≤M1}

g(y, wn)wn − μG(y, wn) dy

+
θ

μ

∫
{|wn |≥M1}

g(y, wn)wn − μG(y, wn) dy

≥ κ0

(
1

ϑq
− 1

μ

) ∫
RN

H(y, |∇wn|) dy

+

(
1
q
− 1

μ

) ∫
RN

HV(y, |wn|) dy −
(

1
r
− 1

μ

) ∫
RN

σ(y)|wn|r dy

− C1

∫
{|wn |≤M1}

|wn|p + ρ1(y)|wn|+ ρ2|wn|� dy

− θ

μ

∫
{|wn |≥M1}

ς|wn|p dy

≥ κ0

(
1

ϑq
− 1

μ

) ∫
RN

H(y, |∇wn|) dy

+
1
2

(
1
q
− 1

μ

) ∫
RN

HV(y, |wn|) dy −
(

1
r
− 1

μ

) ∫
RN

σ(y)|wn|r dy

− θ

μ

∫
RN

ς|wn|p dy −K0

≥ min{κ0, 1}
2

(
1

ϑq
− 1

μ

)
×

[∫
RN

H(y, |∇wn|) dy +
∫
RN

HV(y, |wn|) dy
]

−
(

1
r
− 1

μ

)
||σ||

L
γ0

γ0−r (RN)
||wn||rLγ0 (RN)

− θς

μ
||wn||pLp(RN)

−K0

≥ min{κ0, 1}(μ − ϑq)
2p+1ϑqμ

||wn||p

−
(

1
r
− 1

μ

)
||σ||

L
γ0

γ0−r (RN)
Cγ0,imb||wn||r

− θς

μ
||wn||pLp(RN)

−K0.

Hence, we know that

c +
(

1
r
− 1

μ

)
||σ||

L
γ0

γ0−r (RN)
Cγ0,imb||wn||r +

θς

μ
||wn||pLp(RN)

+K0 + 1

≥ min{κ0, 1}(μ − ϑq)
2p+1ϑqμ

||wn||p.
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Dividing this by min{κ0,1}(μ−ϑq)
2p+1ϑqμ

||wn||p and then taking the limit supremum of this
inequality as n → ∞, we find the following:

1 ≤ 2p+1ϑqθς

min{κ0, 1}(μ − ϑq)
lim sup

n→∞
||�n||pLp(RN)

=
2p+1ϑqθς

min{κ0, 1}(μ − ϑq)
||�0||pLp(RN)

. (42)

Hence, based on (42), it follows that �0 �= 0. Set A1 =
{

y ∈ RN : �0(y) �= 0
}

. By
Equation (36), we infer that |wn(y)| = |�n(y)|||wn|| → ∞ as n → ∞ for all y ∈ A1. Thus,
by using (G5),

lim
n→∞

G(y, wn)

||wn||ϑq = lim
n→∞

G(y, wn)

|wn|ϑq |�n|ϑq = +∞, for y ∈ A1. (43)

Hence, we obtain that meas(A1) = 0. Indeed, if meas(A1) �= 0, according to
Equations (38)–(43) and the Fatou lemma, we have the following:

1
θ
= lim inf

n→∞

∫
RN G(y, wn) dy

θ
∫
RN G(y, wn) dy + Eθ(wn)

≥ lim inf
n→∞

∫
RN

G(y, wn)

4ϑC9max{M(1), 1}||wn||ϑq dy

= lim inf
n→∞

∫
RN

G(y, wn)

4ϑC9max{M(1), 1}||wn||ϑq dy

− lim sup
n→∞

∫
RN

C1

4ϑC9max{M(1), 1}||wn||ϑq dy

= lim inf
n→∞

∫
A1

G(y, wn)− C1

4ϑC9max{M(1), 1}||wn||ϑq dy

≥
∫

A1

lim inf
n→∞

G(y, wn)− C1

4ϑC9max{M(1), 1}||wn||ϑq dy

=
∫

A1

lim inf
n→∞

G(y, wn)

4ϑC9max{M(1), 1}||wn||ϑq dy

−
∫

A1

lim sup
n→∞

C1

4ϑC9max{M(1), 1}||wn||ϑq dy = ∞,

which is impossible. Thus, �0(y) = 0 for almost all y ∈ RN . Consequently, we yielded a
contradiction, and thus, the sequence {wn} is bounded in E. The proof is completed.

3. Main Results

In this section, we illustrate two existence results for a sequence of infinitely many
solutions to Problem (1). The primary tools for these consequences are the fountain theorem
and the dual-fountain theorem in [37]. Let X be a real reflexive and separable Banach space;
then, it can be known (see [50,51]) that {ek} ⊆ X and { f ∗k } ⊆ X∗ exist such that

X = span{ek : k = 1, 2, · · · }, X∗ = span{ f ∗k : k = 1, 2, · · · }

and

〈
f ∗i , ej

〉
=

{
1 if i = j

0 if i �= j.

Let us denote Xk = span{ek}, Fn =
⊕n

k=1 Xk, and Gn =
⊕∞

k=n Xk.
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Lemma 7 (Fountain Theorem [34,37]). Assume that (X, || · ||) is a Banach space, the functional
F ∈ C1(X,R) satisfies the (C)c-condition for any c > 0, and F is even. Therefore, if, for each
sufficiently large n ∈ N, there are βn > αn > 0 such that

(1) δn := inf{F (�) : � ∈ Gn, ||�|| = αn} → ∞ as n → ∞;
(2) ρn := max{F (�) : � ∈ Fn, ||�|| = βn} ≤ 0.

Then F has an unbounded sequence of critical values, i.e., there is a sequence {�k} ⊂ X such that
F′(�k) = 0 and F (�k) → +∞ as k → +∞.

Lemma 8. Let us denote
χι,n = sup

||u||=1,u∈Gn

||u||Lι(RN)

and
χn = max{χ�,n, χs,n, χγ0,n}. (44)

Then χn → 0 as n → ∞ (see [34]).

Lemma 9. Assume that (B1), (B2), (G1), and (G5) hold. Then, there are βn > αn > 0 such that

(1) δn := inf{Eλ(w) : w ∈ Gn, ||w|| = αn} → ∞ as n → ∞;
(2) tn := max{Eλ(w) : w ∈ Fn, ||w|| = βn} ≤ 0

for a sufficiently large n .

Proof. The basic concept of the proof is carried out similarly to [52] (see also [32]). For the
reader’s convenience, we provide the proof. For any w ∈ Gn, suppose that ||w|| > 1.
From assumptions (B1), (B2), (G1), and Lemma 3, as well as the similar argument in (37), it
follows that

Eθ(w) = M
(∫

RN
Hp,q(y, |∇w|) dy

)
+

∫
RN

HV,p,q(y, |w|) dy

− 1
r

∫
RN

σ(y)|w|r dy − θ
∫
RN

G(y, w) dy

≥ min{κ0, ϑ}
ϑq

( ∫
RN

H(y, |∇w|) dy +
∫
RN

HV(y, |w|) dy
)

− 1
r

∫
RN

σ(y)|w|r dy − θ
∫
RN

G(y, w) dy

≥ min{κ0, ϑ}
ϑq2p ||w||p − 1

r
||σ||

L
γ0

γ0−r (RN)
||w||rLγ0 (RN)

− θ||ρ1||Ls′ (RN)||w||Ls(RN) −
θρ2

�
||w||�L�(RN)

≥ min{κ0, ϑ}
ϑq2p ||w||p − 1

r
||σ||

L
γ0

γ0−r (RN)
χr

n||w||r

− θ||ρ1||Ls′ (RN)χn||w|| − θρ2

�
χ�

n||w||�

≥
(

min{κ0, ϑ}
ϑq2p − χ�

nθρ2

�
||w||�−p

)
||w||p − 1

r
||σ||

L
γ0

γ0−r (RN)
χr

n||w||r

− θ||ρ1||Ls′ (RN)χn||w||.

Since p < �, we obtain

αn =
(ϑq2p+1χ�

nθρ2

min{κ0, ϑ}�
) 1

p−� → ∞

49



Mathematics 2024, 12, 60

as n → ∞. Hence, if w ∈ Gn and ||w|| = αn, then we find that

Eθ(w) ≥ min{κ0, ϑ}
ϑq2p+1 α

p
n −

1
r
||σ||

L
γ0

γ0−r (RN)
χr

nαr
n − θ||ρ1||Ls′ (RN)χnαn → ∞ as n → ∞,

which implies (1) because αn → ∞, χn → 0 as n → ∞ and p > r > 1.
Next, we show condition (2). To the contrary, suppose there is n ∈ N such that

condition (2) is not fulfilled. Then, sequence {wk} exists in Fn such that

||wk|| → ∞ as k → ∞ and Eλ(wk) ≥ 0. (45)

Let zk = wk/||wk||. Since dimFn < ∞, there is a z ∈ Fn \ {0} such that, up to a
subsequence still denoted by {zk},

||zk − z|| → 0 and zk(y) → z(y)

for almost all y ∈ RN as k → ∞. We assert that z(y) = 0 for almost all y ∈ RN . If z(y) �= 0,
then |wk(y)| → ∞ for all y ∈ RN as k → ∞. Hence, in accordance with (G5), it follows that

lim
k→∞

G(y, wk)

||wk||ϑq = lim
k→∞

G(y, wk)

|wk(y)|ϑq |zk(y)|ϑq = ∞ (46)

for all y ∈ B1 :=
{

y ∈ RN : z(y) �= 0
}

. In the same fashion as in the proof of Lemma 6, we
can choose a C2 ∈ R such that G(y, ζ) ≥ C2 for all (y, ζ) ∈ RN ×R, and so

G(y, wk)− C2

||wk||ϑq ≥ 0

for all y ∈ RN and k ∈ N. Using (46) and the Fatou lemma, we have the following:

lim inf
k→∞

∫
RN

G(y, wk)

||wk||ϑq dy ≥ lim inf
k→∞

∫
B1

G(y, wk)

||wk||ϑq dy − lim sup
k→∞

∫
B1

C2

||wk||ϑq dy

= lim inf
k→∞

∫
B1

G(y, wk)− C2

||wk||ϑq dy

≥
∫
B1

lim inf
k→∞

G(y, wk)− C2

||wk||ϑq dy

=
∫
B1

lim inf
k→∞

G(y, wk)

||wk||ϑq dy −
∫
B1

lim sup
k→∞

C2

||wk||ϑq dy.

Thus, we infer ∫
RN

G(y, wk)

||wk||ϑq dy → ∞ as k → ∞.

We may assume that ||wk|| > 1. Therefore, by (39), we have

Eθ(wk) ≤ 4ϑC9 max{M(1), 1}||wk||ϑq − θ
∫
RN

G(y, wk) dy

≤ ||wk||ϑq
(

4ϑC9 max{M(1), 1} − θ
∫
RN

G(y, wk)

||wk||ϑq dy
)
→ −∞ as k → ∞,

which contradicts (45). This completes the proof.

With the help of Lemma 7, we are ready to establish the existence of infinitely many
large-energy solutions.
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Theorem 1. Assume that (B1), (B2), (G1), (G2), and (G5) hold. If g(y,−ζ) = −g(y, ζ) holds
for all (y, ζ) ∈ RN ×R, then for any θ > 0, Problem (1) yields a sequence of non-trivial weak
solutions {wk} in E such that Eθ(wk) → ∞ as k → ∞.

Proof. Clearly, Eθ is an even functional and the (C)c-condition by Lemma 5 is ensured.
From Lemma 9, this assertion can be immediately derived from the fountain theorem. This
completes the proof.

Theorem 2. Assume that (B1), (B2), (G1), (G3), and (G5) hold. If g is odd in E, then for any θ > 0,
Problem (1) yields a sequence of non-trivial weak solutions {wk} in E such that Eθ(wk) → ∞ as
k → ∞.

Proof. If we replace Lemma 5 with Lemma 6, the proof is the same as in Theorem 1.

Definition 3. Suppose that (X, || · ||) is a real separable and reflexive Banach space. We say that F
satisfies the (C)∗c -condition (with respect to Fk) if any sequence {wk}k∈N ⊂ X for which wk ∈ Fk
for any k ∈ N

F (wk) → c and ||(F|Fk )
′(wk)||X∗(1 + ||wk||) → 0 as k → ∞,

possesses a subsequence converging to a critical point of F .

Lemma 10 (Dual Fountain Theorem [34]). Assume that (X, || · ||) is a Banach space, and
F ∈ C1(X,R) is an even functional. If n0 > 0 so that for each n ≥ n0 there exists βn > αn > 0
such that the following holds:

(A1) inf{F (�) : � ∈ Gn, ||�|| = βn} ≥ 0;
(A2) δn := max{F (�) : � ∈ Fn, ||�|| = αn} < 0;
(A3) φn := inf{F (�) : � ∈ Gn, ||�|| ≤ βn} → 0 as n → ∞;
(A4) F fulfills the (C)∗c -condition for every c ∈ [φn0 , 0),

then F yields a sequence of negative critical values dk < 0 satisfying dk → 0 as k → ∞.

Next, we check all the conditions of the dual fountain theorem.

Lemma 11. Assume that (B1), (B2), (G1), and (G2) hold. Then, the functional Eθ satisfies the
(C)∗c -condition for any θ > 0.

Proof. First, we claim that Φ′ is a mapping of type (S+). Let {wk} be any sequence in E

such that wk ⇀ w0 in E as k → ∞ and

lim sup
k→∞

〈Φ′(wk)− Φ′(w0), wk − w0〉 ≤ 0.

Then, by using the notation in Lemma 5, we know the following:

lim
k→∞

[
M

(∫
RN

Hp,q(y, |∇wk|) dy
)[

Φ̃wk (wk − w0)− Φ̃w0(wk − w0)
]

+ Ψ̃wk (wk − w0) + Ψ̃w0(wk − w0)
]
≤ 0.

According to (19) and (20), we find the following:

lim
k→∞

〈Φ′(wk)− Φ′(w0), wk − w0〉 = 0.

Therefore, using (12), (26), (29), (32), and (35), wk → w0 in E as k → ∞ as claimed.
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Let c ∈ R, and let the sequence {wk} in E be such that wk ∈ Fk for any k ∈ N

Eθ(wk) → c and ||(Eθ |Fk )
′(wk)||E∗(1 + ||wk||) → 0 as k → ∞.

Therefore, we obtain c = Eθ(wk) + ok(1) and
〈
E′

θ(wk), wk
〉
= ok(1), where ok(1) → 0

as k → ∞. Repeating the argument from Lemma 6 proof, we derive the boundedness of
{wk} in E. Therefore, there is a subsequence, still denoted by {wk}, and a function w0 in E

such that wk ⇀ w0 in E as k → ∞.
To complete this proof, we will show that wk → w0 in E as k → ∞, and also, w0 is a

critical point of Eθ . Though the concept of this proof follows that in [34] (Lemma 3.12), we
provide it here for convenience. As E =

⋃
k∈N Fk, we can choose vk ∈ Fk, k ∈ N such that

vk → w0 as k → ∞. Since ||(Eθ |Fk )
′(wk)||E∗ → 0, {wk − vk} is bounded, and wk − vk ∈ Fk,

we have
〈E ′

θ(wk), wk − vk〉 = 〈(Eθ |Fk )
′(wk), wk − vk〉 → 0 as k → ∞. (47)

The analogous argument in Lemma 9 [47] implies that Φ′ is continuous, bounded,
and strictly monotone. This, together with Lemma 4, indicates that {E ′

θ(wk)} is bounded
because {wk} is bounded. Thus,

〈E ′
θ(wk), vk − w0〉 → 0 as k → ∞. (48)

Using (47) and (48), we find that

〈E ′
θ(wk), wk − w0〉 → 0 as k → ∞.

Therefore,
〈E ′

θ(wk)− E′
θ(w0), wk − w0〉 → 0 as k → ∞. (49)

According to Lemma 4, we know the following:

〈Ψ′
θ(wk)− Ψ′

θ(w0), wk − w0〉 → 0 as k → ∞. (50)

Based on (49) and (50), we derive that

〈Φ′(wk)− Φ′(w0), wk − w0〉 → 0 as k → ∞.

Since Φ′ is a mapping of type (S+), we conclude that wk → w0 as k → ∞. Furthermore,
we have E′

θ(wk) → E′
θ(w0) as k → ∞. Then, we can prove that w0 is a critical point of Eθ .

Indeed, fix k0 ∈ N and take any u ∈ Fk0 . For k ≥ k0, we find that

〈E ′
θ(w0), u〉 = 〈E ′

θ(w0)− E′
θ(wk), u〉+ 〈E ′

θ(wk), u〉
= 〈E ′

θ(w0)− E′
θ(wk), u〉+ 〈(Eθ |Fk )

′(wk), u〉;

thus, passing the limit on the right side of the previous equation, as k → ∞, we obtain

〈E ′
θ(w0), u〉 = 0 for all u ∈ Fk0 .

As k0 is taken arbitrarily and
⋃

k∈N Fk is dense in E, we have E′
θ(w0) = 0 as required.

Then, we conclude that Eθ satisfies the (C)∗c -condition for any c ∈ R and for any θ > 0.

Lemma 12. Assume that (B1), (B2), (G3), and (G5) hold. Then, the functional Eθ satisfies the
(C)∗c -condition for any θ > 0.

Proof. Based on Lemma 6, we obtain that {wn} is a bounded sequence in E. The proof is
the same as for Lemma 11.
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Lemma 13. Assume that (B1), (B2), and (G1) hold. Then, there is n0 > 0 so that for each n ≥ n0,
there exists βn > 0 such that

inf{Eθ(w) : w ∈ Gn, ||w|| = βn} ≥ 0.

Proof. Let χn < 1 for a sufficiently large n. Based on (G1), Lemma 3, and the definition of
χn, we find

Eθ(w) ≥ min{κ0, ϑ}
ϑq

( ∫
RN

H(y, |∇w|) dy +
∫
RN

HV(y, |w|) dy
)

− 1
r

∫
RN

σ(y)|w|r dy − θ
∫
RN

G(y, w) dy

≥ min{κ0, ϑ}
ϑq2p ||w||p − 1

r
||σ||

L
γ0

γ0−r (RN)
χr

n||w||r

− θ||ρ1||Ls′ (RN)χn||w|| − θρ2

�
χ�

n||w||�

≥ min{κ0, ϑ}
ϑq2p ||w||p −

(1
r
||σ||

L
γ0

γ0−r (RN)
+

θρ2

�

)
χr

n||w||�

− θ||ρ1||Ls′ (RN)χn||w||

for a sufficiently large n and ||w|| ≥ 1. Let us choose

βn =

[(
1
r
||σ||

L
γ0

γ0−r (RN)
+

θρ2

�

)
ϑq2p+1

min{κ0, ϑ}χr
n

] 1
p−2�

. (51)

Let w ∈ Gn with ||w|| = βn > 1 for a sufficiently large k . Then, there is n0 ∈ N

such that

Eθ(w) ≥ min{κ0, ϑ}
ϑq2p ||w||p

−
(

1
r
||σ||

L
γ0

γ0−r (RN)
+

θρ2

�

)
χr

n||w||� − θ||ρ1||Ls′ (RN)χn||w||

≥ min{κ0, ϑ}
ϑq2p+1 β

p
n

− θ||ρ1||Ls′ (RN)

[(
1
r
||σ||

L
γ0

γ0−r (RN)
+

θρ2

�

)
ϑq2p+1

min{κ0, ϑ}

] 1
p−2�

χ
r+p−2�

p−2�
n

≥ 0

for all n ∈ N with n ≥ n0, which implies that the conclusion holds since limn→∞ β
p
n = ∞

and χn → 0 as n → ∞.

Lemma 14. Assume that (B1), (B2), (G1), and (G4) hold. Then for each sufficiently large n ∈ N,
there exists αn > 0 with 0 < αn < βn such that

(1) δn := max{Eθ(w) : w ∈ Fn, ||w|| = αn} < 0;
(2) φn := inf{Eθ(w) : w ∈ Gn, ||w|| ≤ βn} → 0 as n → ∞,

where βn is given in Lemma 13.

Proof. (1): Since Fn is a finite dimensional, || · ||Ld(ξ,RN), || · ||L�(RN), and || · || are equivalent
on Fn. Then, �1,n > 0 and �2,n > 0 exist such that

�1,n||w|| ≤ ||w||Ld(ξ,RN) and ||w||L�(RN) ≤ �2,n||w||
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for any w ∈ Fn. Let w ∈ Fn with ||w|| ≤ 1. Based on (G1) and (G4), there are C10, C11 > 0
such that

G(y, ζ) ≥ C10ξ(y)|ζ|d − C11|ζ|�

for almost all (y, ζ) ∈ RN ×R. According to Lemma 3, we obtain∫
RN

Hp,q(y, |∇w|) dy ≤ K

for some positive constant K. Then, we have

Eθ(w) ≤ M
(∫

RN
Hp,q(y, |∇w|) dy

)
+

∫
RN

HV,p,q(y, |w|) dy

− 1
r

∫
RN

σ(y)|w|r dy − θ
∫
RN

G(y, w) dy

≤
(

sup
0≤ζ̃≤K

M(ζ̃)

)∫
RN

Hp,q(y, |∇w|) dy +
∫
RN

HV,p,q(y, |w|) dy (52)

− θC10

∫
RN

ξ(y)|w|d dy + θC11

∫
RN

|w|� dy

≤ C12||w||p − θC10||w||dLd(ξ,RN) + θC11||w||�L�(RN)

≤ C12||w||p − θC10�d
1,n||w||d + θC11��2,n||w||�

for some positive constant C12. Let f (x) = C12xp − θC10�d
1,nxd + θC11��2,nx�. Since d < p < �,

we infer f (x) < 0 for all x ∈ (0, x0) for sufficiently small x0 ∈ (0, 1). Hence, we can find
αn > 0 such that Eθ(w) < 0 for all w ∈ Fn with ||w|| = αn < x0 for a sufficiently large k.
If necessary, we can change n0 to a large value so that βn > αn > 0 and

δn := max{Eθ(w) : w ∈ Fn, ||w|| = αn} < 0

for all n ≥ n0.

(2): Because Fn ∩Gn �= φ and 0 < αn < βn, we have φn ≤ δn < 0 for all n ≥ n0.
For any w ∈ Gn with ||w|| = 1 and 0 < t < βn, we have

Eθ(tw) ≥ M
(∫

RN
Hp,q(y, |∇tw|) dy

)
+

∫
RN

HV,p,q(y, |tw|) dy

− 1
r

∫
RN

σ(y)|tw|r dy − θ
∫
RN

G(y, tw) dy

≥ −1
r

∫
RN

σ(y)|tw|r dy − θ
∫
RN

G(y, tw) dy

≥ −1
r
||σ||

L
γ0

γ0−r (RN)
||tw||rLγ0 (RN)

− θ
∫
RN

ρ1(y)|tw|dy − θρ2

�

∫
RN

|tw|�dy (53)

≥ −1
r
||σ||

L
γ0

γ0−r (RN)
βr

n||w||rLγ0 (RN)

− βnθ
∫
RN

ρ1(y)|w|dy − θρ2

�
β�

n

∫
RN

|w|�dy

≥ −1
r
||σ||

L
γ0

γ0−r (RN)
βr

nχr
n − θ||ρ1||Ls′ (RN)βnχn −

θρ2

�
β�

nχ�
n

for a sufficiently large n, where χn and βn are given in (44) and (51), respectively. Hence,
based on the definition of βn, it follows that
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0 > φn ≥ −
||σ||

L
γ0

γ0−r (RN)

r
βr

nχr
n − θ||ρ1||Ls′ (RN)βnχn −

θρ2

�
β�

nχ�
n

= −
||σ||

L
γ0

γ0−r (RN)

r

[(
1
r
||σ||

L
γ0

γ0−r (RN)
+

θρ2

�

)
q2p+1

] r
p−2�

χ
(r+p−2�)r

p−2�
n

− ||ρ1||Ls′ (RN)

[(
1
r
||σ||

L
γ0

γ0−r (RN)
+

θρ2

�

)
q2p+1

] 1
p−2�

χ
r+p−2�

p−2�
n

− ρ2

�

[(
1
r
||σ||

L
γ0

γ0−r (RN)
+

θρ2

�

)
q2p+1

] �
p−2�

χ
(r+p−2�)�

p−2�
n .

Because p < p + r < 2� and χn → 0 as n → ∞, we derive that limn→∞ φn = 0.

With the aid of Lemmas 10 and 11, we are in a position to establish our final
consequences.

Theorem 3. Under the assumptions in Theorem 1, if (G4) holds, then Problem (1) yields a sequence
of non-trivial weak solutions {wk} in E such that Eθ(wk) → 0 as k → ∞ for any θ > 0.

Proof. Due to Lemma 11, we note that the functional Eθ is even and fulfills the (C)∗c -
condition for every c ∈ [φn0 , 0). Based on Lemmas 13 and 14, we ensure that properties
(A1), (A2), and (A3) in the dual fountain theorem hold. Therefore, problem (1) possesses a
sequence of weak solutions {wk} with a sufficiently large k. The proof is complete.

Theorem 4. Under the assumptions in Theorem 2, if (G4) holds, then Problem (1) yields a sequence
of non-trivial weak solutions {wk} in E such that Eθ(wk) → 0 as k → ∞ for any θ > 0.

Proof. Similar to Theorem 3, instead of Lemma 11, we apply Lemma 12 to obtain this
result.

Finally, we demonstrate the existence of a sequence of infinitely many weak solutions
to (1) that converges to 0 in L∞-space. To accomplish this, we needed the following
additional assumptions regarding g:

(G6) There exists a constant ζ1 > 0 such that g(y, ζ) is odd in RN × (−ζ1, ζ1) and pG(y, ζ)−
g(y, ζ)ζ > 0 for all y ∈ RN and for 0 < |ζ| < ζ1;

(G7) lim|ζ|→0
g(y,ζ)
|ζ|p−2ζ

= +∞ uniformly for all y ∈ RN .

The following assertion follows upon the analogous arguments of Proposition 1 in [40]
and Proposition 3.1 in [39].

Proposition 1. Assume that (G1) holds. If w is a weak solution of Problem (1), then w ∈ L∞(RN),
and there exist positive constants C, η independent of w such that

||w||L∞(RN) ≤ C||w||ηL�(RN)
.

With the help of Lemma 10 and Proposition 1, we are in a position to derive our final
major result.

Theorem 5. Suppose that (B1), (B2), (G1), (G6), and (G7) hold. In addition, suppose that

(M5) M(t) ≤ M(t)t for any t ≥ 0.

Then, there exists an interval Γ such that problem (1) has a sequence of non-trivial solutions {wn}
in E whose Eθ(wn) → 0 and ||wn||L∞(RN) → 0 as n → ∞ for every θ ∈ Γ.
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Proof. To obtain the desired properties of the energy functional, as in Lemma 10, we modify
the nonlinear term g as follows. According to (G6) and (G7), for any M3 > 0, there exists
ζ2 ∈ (0, min{ζ1, 1}) such that

G(y, ζ) ≥ M3|ζ|p for a.e. y ∈ RN and all |ζ| < ζ2. (54)

Fix ζ3 ∈ (0, ζ2/2), and let ϕ ∈ C1(R,R) be such that ϕ is even, ϕ(ζ) = 1 for |ζ| ≤ ζ3,
ϕ(ζ) = 0 for |ζ| ≥ 2ζ3, |ϕ′(ζ)| ≤ 2/ζ3, and ϕ′(ζ)ζ ≤ 0. We then define the modified
function g̃ : RN ×R → R as

g̃(y, ζ) :=
∂

∂ζ
G̃(y, ζ),

where
G̃(y, ζ) := ϕ(ζ)G(y, ζ) + (1 − ϕ(ζ))ξ|ζ|p

for some fixed ξ ∈
(

0, min
{

1
p , 1

qCp
p,imb

})
with Cp,imb being the embedding constant for the

embedding E ↪→ Lp(RN) by means of Lemma 2. Clearly, G̃ is even in ζ,

g̃(y, ζ) = ϕ′(ζ)G(y, ζ) + ϕ(ζ)g(y, ζ)− ϕ′(ζ)ξ|ζ|p + (1 − ϕ(ζ))ξ p|ζ|p−2ζ, (55)

and

pG̃(y, ζ)− g̃(y, ζ)ζ = ϕ(ζ)
[
pG(y, ζ)− g(y, ζ)ζ

]
− ϕ′(ζ)ζ

[
G(y, ζ)− ξ|ζ|p

]
.

Thus, the definition of ϕ and (54) yield the following:

pG̃(y, ζ)− g̃(y, ζ)ζ ≥ 0 for a.e. y ∈ RN and all ζ ∈ R, (56)

and
pG̃(y, ζ)− g̃(y, ζ)ζ = 0 if and only if ζ = 0 or |ζ| ≥ 2ζ3. (57)

By the definition of G̃ and (G1), we infer

G̃(y, ζ) ≤ ρ1(y)|ζ|+
ρ2

�
|ζ|� + ξ|ζ|p (58)

for a.e. y ∈ RN and all ζ ∈ R. Consider the modified energy functional Ẽθ : E → R given by

Ẽθ(w) := Φ(w)− Ψ̃θ(w),

where
Ψ̃θ(w) =

1
r

∫
RN

σ(y)|w|r dy + θ
∫
RN

G̃(y, w) dy.

Subsequently, by a standard argument invoking the embedding E ↪→ Lp(RN) and the
differentiability of Φ, we can show that Ẽθ ∈ C1(E,R) is an even functional. Furthermore,
we have

Ẽθ(u) = 0 = 〈Ẽ ′
θ(u), u〉 if and only if u = 0. (59)

Indeed, let Ẽθ(u) = 〈Ẽ ′
θ(u), u〉 = 0. Then, according to (M5), we find that

0 = −pẼθ(u)

= −pM
(∫

RN
Hp,q(y, |∇u|) dy

)
− p

∫
RN

HV,p,q(y, |u|) dy

+
p
r

∫
RN

σ(y)|u|r dy + θp
∫
RN

G̃(y, u) dy

≥ −pM
(∫

RN
Hp,q(y, |∇u|) dy

) ∫
RN

Hp,q(y, |∇u|) dy (60)
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−
∫
RN

HV(y, |∇u|) dy +
∫
RN

σ(y)|u|r dy + θ
∫
RN

pG̃(y, u) dy

≥ −M
(∫

RN
Hp,q(y, |∇u|) dy

) ∫
RN

H(y, |∇u|) dy

−
∫
RN

HV(y, |∇u|) dy +
∫
RN

σ(y)|u|r dy + θ
∫
RN

pG̃(y, u) dy

and

〈Ẽ ′
θ(u), u〉 = M

(∫
RN

Hp,q(y, |∇u|) dy
) ∫

RN
H(y, |∇u|) dy

+
∫
RN

HV(y, |∇u|) dy −
∫
RN

σ(y)|u|r dy − θ
∫
RN

g̃(y, u)u dy = 0. (61)

Based on Equations (60) and (61), it follows that∫
RN

(
pG̃(y, u)− g̃(y, u)u

)
dy ≤ 0.

Consequently, the relations (56) and (57) imply u = 0.
(A1): Let χn < 1 for a sufficiently large n. Based on Lemmas 1 and 3 as well as the

similar argument in (37), it follows that

Ẽθ(w) = Φ(w)− Ψ̃θ(w)

= M
(∫

RN
Hp,q(y, |∇w|) dy

)
+

∫
RN

HV,p,q(y, |w|) dy

− 1
r

∫
RN

σ(y)|w|r dy − θ
∫
RN

G̃(y, w) dy

≥ min{κ0, ϑ}
ϑq

[∫
RN

Hp,q(y, |∇w|) dy +HV,p,q(y, |w|) dy
]

− 1
r

∫
RN

σ(y)|w|r dy − θ
∫
RN

(G(y, w) + ξ|w|p) dy

≥ min{κ0, ϑ}
ϑq2p ||w||p − 1

r
||σ||

L
γ0

γ0−r (RN)
||w||rLγ0 (RN)

− θ
∫
RN

G(y, w) dy − θξ
∫
RN

|w|p dy

≥ min{κ0, ϑ}
ϑq2p ||w||p − 1

r
||σ||

L
γ0

γ0−r (RN)
||w||rLγ0 (RN)

− θ
∫
RN

(
ρ1(y)|w|+ ρ2

�
|w|�

)
dy − θξχ

p
n||w||p

≥ min{κ0, ϑ}
ϑq2p ||w||p − 1

r
||σ||

L
γ0

γ0−r (RN)
||w||rLγ0 (RN)

− θ||ρ1||Ls′ (RN)||w||Ls(RN) −
θρ2

�
||w||�L�(RN)

− θξχ
p
n||w||p

≥ min{κ0, ϑ}
ϑq2p ||w||p − 1

r
||σ||

L
γ0

γ0−r (RN)
χr

n||w||r

− θ||ρ1||Ls′ (RN)χn||w|| − θρ2

�
χ�

n||w||� − θξχ
p
n||w||p

≥ min{κ0, ϑ}
ϑq2p ||w||p − 1

r
||σ||

L
γ0

γ0−r (RN)
χr

n||w||r

− θ||ρ1||Ls′ (RN)χn||w|| − θ
(ρ2

�
+ ξ

)
χ

p
n||w||�.
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for a sufficiently large n and ||w|| ≥ 1. Let us choose

β̃n =

[
θ
(ρ2

�
+ ξ

) ϑq2p+1χ
p
n

min{κ0, ϑ}

] 1
p−2�

and let w ∈ Gn with ||w|| = β̃n > 1 for a sufficiently large n. Then, there exists n0 ∈ N

such that

Ẽθ(w) ≥ min{κ0, ϑ}
ϑq2p ||w||p − 1

r
||σ||

L
γ0

γ0−r (RN)
χr

n||w||r

− θ||ρ1||Ls′ (RN)χn||w|| − θ
(ρ2

�
+ ξ

)
χ

p
n||w||�

≥ min{κ0, ϑ}
ϑq2p+1 β̃

p
n −

1
r
||σ||

L
γ0

γ0−r (RN)

[
θ
(ρ2

�
+ ξ

) ϑq2p+1

min{κ0, ϑ}

] r
p−2�

χ
2r(p−�)

p−2�
n

− θ||ρ1||Ls′ (RN)

[
θ
(ρ2

�
+ ξ

) ϑq2p+1

min{κ0, ϑ}

] 1
p−2�

χ
2(p−�)
p−2�

n

≥ 0

for all n ∈ N with n ≥ n0 by being

lim
n→∞

min{κ0, ϑ}
ϑq2p+1 β̃

p
n = ∞.

Then, we find the following:

inf{Ẽθ(w) : w ∈ Gn, ||w|| = β̃n} ≥ 0.

(A2): Observe that || · ||L∞(RN), || · ||Lp(RN), and || · || are equivalent on Fn. Then, there are
positive constants �̃1,n and �̃2,n such that

�̃1,n||w||L∞(RN) ≤ ||w|| ≤ �̃2,n||w||Lp(RN) (62)

for any w ∈ Fn. From (G6) and (G7), for any M3 > 0, there exists ζ3 ∈ (0, ζ2/2) such that

G(y, ζ) ≥
M3�̃

p
2,n

p
|ζ|p

for almost all y ∈ RN and all |ζ| ≤ ζ3. Choose α̃n := min{ 1
2 , ζ3�̃1,n} for all n ∈ N. Then, we

know that ||w||L∞(RN) ≤ ζ3 for w ∈ Fn with ||w|| = α̃n, and so G̃(y, w) = G(y, w). From the
analogous argument in (52) and based on (62), we derive the following:

Ẽθ(w) = M
(∫

RN
Hp,q(y, |∇w|) dy

)
+

∫
RN

HV,p,q(y, |w|) dy

− 1
r

∫
RN

σ(y)|w|r dy − θ
∫
RN

G̃(y, w) dy

≤
(

sup
0≤ζ̃≤K

M(ζ̃)

)∫
RN

Hp,q(y, |∇w|) dy

+
∫
RN

HV,p,q(y, |w|) dy − θ
∫
RN

M3�̃
p
2,n

p
|w|p dy

≤ C12||w||p −
θM3�̃

p
2,n

p
||w||pLp(RN)
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≤ C12||w||p − θM3

p
||w||p

≤ pC12 − θM3

p
α̃

p
n

for any w ∈ Fn with ||w|| = α̃n. If we choose a sufficiently large M3 such that 1 < θM3, we
obtain the following:

δ̃n = max{Ẽθ(w) : w ∈ Fn, ||w|| = α̃n} < 0.

If necessary, we can change n0 to a larger value so that β̃n > α̃n > 0 for all n ≥ n0.
(A3): Because Yn ∩Gn �= φ and 0 < α̃n < β̃n, we have φ̃n ≤ δ̃n < 0 for all n ≥ n0.

For any w ∈ Gn with ||w|| = 1 and 0 < t < β̃n, we have

Ẽθ(tw) = M
(∫

RN
Hp,q(y, |∇tw|) dy

)
+

∫
RN

HV,p,q(y, |tw|) dy

− 1
r

∫
RN

σ(y)|tw|r dy − θ
∫
RN

G̃(y, tw) dy

≥ −1
r

β̃r
n

∫
RN

σ(y)|w|r dy − θ
∫
RN

(G(y, tw) + ξ|tw|p) dy

≥ −1
r

β̃r
n||σ||

L
γ0

γ0−r (RN)
||w||rLγ0 (RN)

− θ
∫
RN

G(y, tw) dy − θξ
∫
RN

|tw|p dy

≥ −1
r

β̃r
n||σ||

L
γ0

γ0−r (RN)
||w||rLγ0 (RN)

− θ
∫
RN

ρ1(y)|tw| dy − θρ2

�

∫
RN

|tw|� dy − θξ
∫
RN

|tw|pdy

≥ −1
r

β̃r
n||σ||

L
γ0

γ0−r (RN)
||w||rLγ0 (RN)

− θβ̃n

∫
RN

ρ1(y)|w| dy − θρ2

�
β̃�

n

∫
RN

|w|� dy − θξβ̃
p
n

∫
RN

|w|p dy

≥ −1
r
||σ||

L
γ0

γ0−r (RN)
β̃r

nχr
n − θ||ρ1||Ls′ (RN) β̃nχn −

θρ2

�
β̃�

nχ�
n − θξβ̃

p
nχ

p
n,

where χn is given in (44). Hence, we achieve

0 > φ̃n ≥ −
||σ||

L
γ0

γ0−r (RN)

r
β̃r

nχr
n − θ||ρ1||Ls′ (RN) β̃nχn −

θρ2

�
β̃�

nχ�
n − θξβ̃

p
nχ

p
n

≥ −
||σ||

L
γ0

γ0−r (RN)

r

[
θ
(ρ2

�
+ ξ

) ϑq2p+1

min{κ0, ϑ}

] r
p−2�

χ
2r(p−�)

p−2�
n

− θ||ρ1||Ls′ (RN)

[
θ
(ρ2

�
+ ξ

) ϑq2p+1

min{κ0, ϑ}

] 1
p−2�

χ
2(p−�)
p−2�

n

− θρ2

�

[
θ
(ρ2

�
+ ξ

) ϑq2p+1

min{κ0, ϑ}

] �
p−2�

χ
2�(p−�)

p−2�
n

− θξ

[
θ
(ρ2

�
+ ξ

) ϑq2p+1

min{κ0, ϑ}

] p
p−2�

χ
2p(p−�)

p−2�
n .

Because p < � and χn → 0 as n → ∞, we conclude that limn→∞ φ̃n = 0.
(A4): Before proving that Ẽθ ensures the (C)∗c -condition, we have to show that Ψ̃′

θ

is sequentially weakly strongly continuous on E for any θ > 0 and that Ẽθ is coercive.
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Therefore, we first derive that Ẽθ ensures the (C)c-condition for any c ∈ R and for every
θ ∈ Γ. Let {wk} be a sequence in E such that wk ⇀ w in E as k → ∞. Since {wk} is bounded
in E, Lemma 3 guarantees that there exists a subsequence

{
wkj

}
such that

wkj
(y) → w(y) a.e. in RN and wkj

→ w in Lm(RN) as j → ∞, (63)

where p ≤ m < p∗. By the convergence principle, there exists a subsequence {wkj
} and a

non-negative function v ∈ Lp(RN) ∩ L�(RN) ∩ Lγ0(RN) such that wkj
(y) → v(y) as j → ∞

for almost all y ∈ RN , and |wkj
(y)| ≤ v(y) for all j ∈ N and for almost all y ∈ RN . For any

u ∈ E, we have ∣∣∣〈Ψ̃′
θ

(
wkj

)
− Ψ̃′

θ(w), u〉
∣∣∣

=
∣∣∣ ∫

RN

(
σ(y)

∣∣∣wkj

∣∣∣r−2
wkj

− σ(y)|w|r−2w
)

u dy

+ θ
∫
RN

(
g̃
(

y, wkj

)
− g̃(y, w)

)
u dy

∣∣∣
≤

(∫
RN

∣∣∣∣σ(y)∣∣∣wkj

∣∣∣r−2
wkj

− σ(y)|w|r−2w
∣∣∣∣r′ dy

)
||u||Lr(RN)

+ θ

∣∣∣∣∫
RN

(
g̃
(

y, wkj

)
− g̃(y, w)

)
u dy

∣∣∣∣.
By Young’s inequality, we infer that

∫
RN

∣∣∣∣σ(y)∣∣∣wkj

∣∣∣r−2
wkj

− σ(y)|w|r−2w
∣∣∣∣r′ dy

≤ C13

∫
RN

|σ(y)|
1

r−1 |σ(y)|
(∣∣∣wkj

∣∣∣r + |w|r
)

dy

≤ C14

∫
RN

|σ(y)|
(∣∣∣wkj

∣∣∣r + |w|r
)

dy

≤ C15

∫
RN

(
2(γ0 − r)

γ0
|σ(y)|

γ0
γ0−r +

r
γ0

|v|γ0 +
r

γ0
|w|γ0

)
dy (64)

for some positive constants C13, C14, and C15. By the definition of ϕ and (G1) and based on
(55), we deduce that

|g̃(y, ζ)| ≤ C16

(
ρ1(y) + ρ2|ζ|�−1 + ξ p|ζ|p−1

)
. (65)

Due to (65), we obtain∣∣∣∣∫
RN

(
g̃
(

y, wkj

)
− g̃(y, w)

)
u dy

∣∣∣∣
≤

∫
RN

(∣∣∣g̃(y, wkj

)∣∣∣+ |g̃(y, w)|
)
|u| dy (66)

≤ C17

∫
RN

(
2ρ1(y) + ρ2

∣∣∣wkj

∣∣∣�−1
+ ξ p

∣∣∣wkj

∣∣∣p−1
+ ρ2|w|�−1 + ξ p|w|p−1)|u| dy

≤ C17

∫
RN

(
2ρ1(y) + ρ2

(
|v|�−1 + |w|�−1

)
+ ξ p

(
|v|p−1 + |w|p−1

))
|u| dy

for some positive constants C16 and C17. Invoking (63)–(66) and the convergence principle,
we find the following:∣∣∣∣σ(y)∣∣∣wkj

∣∣∣r−2
wkj

− σ(y)|w|r−2w
∣∣∣∣r′ ≤ f1(y) and

∣∣(g̃
(

y, wkj

)
− g̃(y, w)

)
u
∣∣ ≤ f2(y)
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for almost all y ∈ RN and for some f1, f2 ∈ L1(RN), and also, σ(y)
∣∣∣wkj

∣∣∣r−2
wkj

→ σ(y)|w|r−2w

and
∣∣(g̃

(
y, wkj

)
− g̃(y, w)

)
u
∣∣ → 0 as j → ∞ for almost all y ∈ RN . This, together with

Lebesgue’s dominated convergence theorem, yields that

||Ψ̃′
θ

(
wkj

)
− Ψ̃′

θ(w)||E∗

= sup
||u||≤1

∣∣∣〈Ψ̃′
θ

(
wkj

)
− Ψ̃′

θ(w), u
〉∣∣∣

= sup
||u||≤1

∣∣∣ ∫
RN

(
σ(y)

∣∣∣wkj

∣∣∣r−2
wkj

− σ(y)|w|γ−2w
)

u dy

+ θ
∫
RN

(
g̃
(

y, wkj

)
− g̃(y, w)

)
u dy

∣∣∣ → 0

as j → ∞. Therefore, we derive that Ψ̃′
θ

(
wkj

)
→ Ψ̃′

θ(w) in E∗ as j → ∞. Let w ∈ E with

||w|| ≥ 1. We set Λ1 := {y ∈ RN : |w(y)| ≤ ζ3}, Λ2 := {y ∈ RN : ζ3 ≤ |w(y)| ≤ 2ζ3}, and
Λ3 := {y ∈ RN : 2ζ3 ≤ |w(y)|}, where ζ3 is given in (57). From the condition of ϕ, we have

Ẽθ(w) = M
(∫

RN
Hp,q(y, |∇w|) dy

)
+

∫
RN

HV,p,q(y, |w|) dy

− 1
r

∫
RN

σ(y)|w|r dy − θ
∫
RN

G̃(y, w) dy

≥ min{κ0, ϑ}
ϑq2p ||w||p − 1

r
||σ||

L
γ0

γ0−r (RN)
||w||rLγ0 (RN) − θ

∫
Λ1

|G(y, w)| dy

− θ
∫

Λ2

ϕ(w)|G(y, w)|+ (1 − ϕ(w))ξ|w|p dy − θ
∫

Λ3

ξ|w|p dy

≥ min{κ0, ϑ}
ϑq2p ||w||p − 1

r
||σ||

L
γ0

γ0−r (RN)
Cr

γ0,imb||w||r

− θ
∫

Λ1∪Λ2

|G(y, w)| dy − θ
∫

Λ2∪Λ3

ξ|w|p dy

≥ min{κ0, ϑ}
ϑq2p ||w||p − 1

r
||σ||

L
γ0

γ0−r (RN)
Cr

γ0,imb||w||r

− θ
∫

Λ1∪Λ2

ρ1(y)|w| dy − θ
∫

Λ1∪Λ2

ρ2

�
|w|� dy − θ

∫
Λ2∪Λ3

ξ|w|p dy

≥ min{κ0, ϑ}
ϑq2p ||w||p − 1

r
||σ||

L
γ0

γ0−r (RN)
Cr

γ0,imb||w||r

− 2θ||ρ1||Ls′ (RN)||w||Ls(RN) − θ
(ρ2

�
+ ξ

) ∫
RN

|w|p dy

≥ min{κ0, ϑ}
ϑq2p ||w||p − 1

r
||σ||

L
γ0

γ0−r (RN)
Cr

γ0,imb||w||r

− 2Cs,imbθ||ρ1||Ls′ (RN)||w|| − θ
(ρ2

�
+ ξ

)
||w||pLp(RN)

≥
[

min{κ0, ϑ}
ϑq2p − θ

(ρ2

�
+ ξ

)
Cp,imb

]
||w||p

− 1
r
||σ||

L
γ0

γ0−r (RN)
Cr

γ0,imb||w||r − 2Cs,imbθ||ρ1||Ls′ (RN)||w||

where Cm,imb is an embedding constant of E ↪→ Lm(RN) for any m with p ≤ m < p∗.
Therefore, we deduce that for any

θ ∈ Γ :=

(
0,

�min{κ0, ϑ}
ϑq2p(ρ2 + �ξ)Cp,imb

)
,
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the functional Ẽθ is coercive in E; that is, Ẽθ(w) → ∞ as ||w|| → ∞. Based on the analogous
argument in Lemma 9 in [47], it follows that Φ′ is strictly monotone and coercive. Similar
to the proof of Lemma 11, Φ′ is a mapping of type (S+). According to the Browder–Minty
theorem, the inverse operator of Φ′ exists (see Theorem 26.A in [53]). Since Φ′ is of type
(S+), it is clear that it has a continuous inverse. From the compactness of the operator Ψ̃′

θ

and the coercivity of Ẽθ , it follows that the functional Ẽθ satisfies the (C)c-condition for any
c ∈ R and for every θ ∈ Γ as required.

Finally, we show that (A4) is verified. Let c ∈ R and let the sequence {wk} in E be
such that wk ∈ Fk for any k ∈ N,

Ẽθ(wk) → c and ||(Ẽθ |Fk )
′(wk)||E∗(1 + ||wk||) → 0 as k → ∞.

Then, based on the coercivity of Ẽθ , it follows that {wk} is bounded in E for every θ ∈ Γ.
Following the concept of the proof of Lemma 11, we deduce that wk → w0 in E as k → ∞
and also that w0 is a critical point of Ẽθ . Therefore, we conclude that the functional Ẽθ

satisfies the (C)∗c -condition for any c ∈ R and for any θ > 0. This shows the condition (A4).
Consequently, all conditions of Proposition 10 hold, and thus, for θ ∈ Γ, we find a

sequence of negative critical values dk for Ẽθ satisfying dk → 0 when k goes to ∞. Then, for
any {wk} ∈ E with Ẽθ(wk) = dk and ||Ẽ ′

θ(wk)||E∗ = 0, the sequence {wk} is a (C)0-sequence
of Ẽθ(w), and {wk} yields a convergent subsequence. Thus, up to the subsequence denoted
by {wk}, we have wk → w in E as k → ∞. Equations (56), (57), and (59) imply that 0 is
the only critical point with 0 energy and the subsequence {wk} has to converge to 0 in E;
thus, ||wk||Lt(RN) → 0 as n → ∞ for any t with p ≤ t ≤ p∗. By virtue of Proposition 1, any
weak solution w of (1) belongs to the space L∞(RN), and there are positive constants of
C, η independent of w such that

||w||L∞(RN) ≤ C||w||ηL�(RN)
.

Therefore, we know ||wk||L∞(RN) → 0. Hence, by applying (56) and (57) once again, we
achieve ||wk||L∞(RN) ≤ ζ3 for a sufficiently large k. Thus, {wk} with a sufficiently large k is
a sequence of weak solutions to (1). The proof is complete.

4. Conclusions

In order to use the dual fountain theorem, the authors of [23,36,37,40,47] considered
the existence of two sequences 0 < αn < βn → 0 as n → ∞. However, our approach differs
from the above papers. In view of the papers [32–35], we adopted the conditions (G5) and

(g) G(y, ζ) = o(|ζ|q) as ζ → 0 uniformly for all y ∈ RN .

These conditions play an important role in proving the assumptions of the dual fountain
theorem, and the authors of [30,32–35] established the existence of two sequences 0 < αn <
βn, which are both sufficiently large. However, when utilizing the analogous argument
from [33,34], we cannot ensure property (2) in Lemma 14. More precisely, if we replace βn
in (51) with

β̂n =

[(
1
r
||σ||

L
γ0

γ0−r (RN)
+

θρ2

�

)
ϑq2p+1

min{κ0, ϑ}χr
n

] 1
p−�

,

and r + p > �, then in Equation (53),

β̂nχn =

[(
1
r
||σ||

L
γ0

γ0−r (RN)
+

θρ2

�

)
ϑq2p+1

min{κ0, ϑ}

] 1
p−�

χ
r+p−�

p−�
n → ∞ as n → ∞.

However, the authors of [32,35] overcame this difficulty with a new setting for βn,
as in (51). Although the basic idea for proving Lemmas 13 and 14 is analogous to [32,35], in
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this paper, we derive these conditions without assuming (G5) and (g). For this reason, our
approach is slightly different from those of previous related studies [23,32–37,40,47].

Additionally, a new research direction is the study of Kirchhoff-Schrödinger-type
problems with Hardy potentials:

− M
(∫

RN

1
p
|∇w|p + ν(y)

q
|∇w|q dy

)
div(|∇w|p−2∇w + ν(y)|∇w|q−2∇w)

+V(y)(|w|p−2w + ν(y)|w|q−2w) = λ

( |w|p−2w
|y|p + ν(y)

|w|q−2w
|y|q

)
+ θg(y, w) in RN ,

where N ≥ 2, 1 < p < q < N, λ ∈ (−∞, λ∗) for some λ∗ > 0, θ is a positive real parameter,
g : RN ×R → R is a Carathéodory function,

q
p
≤ 1 +

1
N

, ν : RN → [0, ∞) is Lipschitz continuous,

and V : RN → (0, ∞) is a potential function satisfying (V), and a Kirchhoff function
M : R+

0 → R+ satisfies the conditions (M1) and (M2).
Because of the term λ(|w|p−2w|y|−p + ν(y)|w|q−2w|y|−q), when λ �= 0, the classical

variational approach is not applicable to our focus in the present paper. The reason is that
the Hardy inequality only guarantees the embeddings of the Musielak–Orlicz–Sobolev
space W1,H

0 (RN) ↪→ Lp(RN , |y|−p) and W1,H
0 (RN) ↪→ Lq(RN , ν(y), |y|−q). However, these

embeddings are not compact. Hence, problems with λ �= 0 must be handled more carefully
due to the lack of compactness.

Also, we indicate some further research for degenerated Kirchhoff coefficients as fol-
lows. {

−M(ϕH(|∇u|))div
(
(|∇u|p−2 + b(y)|∇u|q−2)∇u

)
= g(u) in Ω,

u = 0 on ∂Ω,

where the modular function ϕH is defined by ϕH(|∇u|) :=
∫

Ω |∇u|p + b(y)|∇u|q dy for all
u ∈ W1,H

0 (Ω), g is a continuous function with suitable conditions, and the exponents p, q
and the weight function b : Ω → [0,+∞) satisfy the following condition:

(K1) 1 < p < N, p < q < p∗ := Np
N−p , and b ∈ L∞(Ω; [0,+∞)).

Also, M : [0,+∞) → [0,+∞) is the Kirchhoff function satisfying the condition:

(K2) M is continuous and there are constants 0 = s0 < s1 < s2 < · · · < sR such that
M(s�) = 0 for each � ∈ {0, 1, . . . , R} and M(s) > 0 for all s ∈ [0, sR] \ {s0, s1, . . . , sR}.

Regarding this problem, the authors of [54] considered a nonlinear elliptic equation
involving a nonlocal term that vanishes at finitely many points, a double phase differential
operator that satisfies unbalanced growth, and a nonlinear reaction term. The model is
referred as the double phase degenerate Kirchhoff problem, as it involves a nonlocal Kirch-
hoff term, too. The major contribution of this paper is to establish a multiplicity theorem in
which the main method is based on a truncation technique and variational method.
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1. Introduction

Fixed-point theory is a major and important tool in the study of nonlinear phenomena.
This theory has been applied in such diverse fields as topology, differential equations and
inclusions, economics, game theory, engineering, physics, optimal control, and nonlinear
functional analyses. Many authors are interested in fixed-point theorems in metric spaces.
The concept of a b-metric space is an old notion that is used in many areas of mathematics.
In 1970, Coifman and Guzffian [1] introduced a weaker notion of a metric space called a
quasi-metric space; some researchers have used the notion of the b-distance in an attempt
to include b-distance functions such as

d(x, y) = |x − y|n, x, y ∈ Rn,

to resolve some central questions in harmonic analyses (see also [2–4]). The actual definition
of a b-metric was introduced in 1979 by Madas and Segovia [5]. The notion of a b-metric
was first used in fixed-point theory by Bakhtin [6] and extended by Czerwik [7]. Chapter 12,
and in particular Section 12.1, of the monograph by Kirk and Shahzad [8] presents a nice
introduction to the origin and history of this type of metric space as well as some elementary
examples of such spaces.

Our aim in this work is to prove some new versions of the Covitz and Nadler fixed-
point theorem [9,10] and to answer a question proposed by Kirk and Shahzad [8], namely,
does Nadler’s theorem hold in strong b-metric spaces [8] (page 128) (see Theorem 3 below)?

2. Preliminaries

We begin with some essential concepts and results. In what follows, P(X) denotes
the set of all nonempty subsets of X so that Pcl,b(X) is the set of all nonempty closed and
bounded subsets of X, and Pcp(X) is the set of all nonempty compact subsets of X.

Definition 1. Let A, B ∈ P(X) and define:

• H∗
d (A, B) = sup{d(a, B) : a ∈ A};
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• H∗
d (B, A) = sup{d(A, b) : b ∈ B};

• Hd(A, B) = max(H∗
d (A, B), H∗

d (B, A)) (the b-Hausdorff distance between A and B).

Remark 1. For ε > 0, let
Aε = {x ∈ X : d(x, A) < ε}.

Then,

H∗
d (A, B) = inf{ε > 0 : A ⊂ Bε}, H∗

d (B, A) = inf{ε > 0 : B ⊂ Aε}.

Next, we define what is meant by a b-metric space and a strong b-metric space.

Definition 2. Let X be a nonempty set and s ≥ 1. By a b-metric on X, we mean a map d:
X × X → [0, ∞) with the following properties for all x, y, z ∈ X:

(i) d(x, y) = 0 if and only if x = y;
(ii) (Symmetry) d(x, y) = d(y, x);
(iii) (s-relaxed triangle inequality) d(x, y) ≤ s[d(x, z) + d(z, y)].

The triple (X, d, s) is called a b-metric space.

Definition 3. Let X be a nonempty set and s ≥ 1. By a strong b-metric on X, we mean a map
d : X × X → [0, ∞) with the following properties for all x, y, z ∈ X:

(i) d(x, y) = 0 if and only if x = y;
(ii) (Symmetry) d(x, y) = d(y, x);
(iii) (s-relaxed triangle inequality) d(x, y) ≤ d(x, z) + sd(z, y).

The triple (X, d, s) is called a strong b-metric space.

A useful generalization of the s-relaxed triangle inequality is given in the
following lemma.

Lemma 1. Let (X, d, s) be a strong b-metric space. Then, for x0, x1, . . . , xn ∈ X, we have

d(x0, xn) ≤
n−2

∑
i=0

si+1d(xi, xi+1) + sn−1d(xn−1, xn).

The next two lemmas will be used in our proofs.

Lemma 2. Let (X, d, s) be a strong b-metric space. Then, d is a continuous mapping.

Proof. For any x, y, x0, y0 ∈ X,

d(x, y) ≤ sd(x, x0) + d(x0, y)

≤ sd(x, x0) + d(x0, y0) + sd(y0, y).

Hence,
d(x, y)− d(x0, y0) ≤ sd(x, x0) + sd(y0, y).

Similarly,
d(x0, y0)− d(x, y) ≤ sd(x, x0) + sd(y0, y). (1)

This implies that

|d(x, y)− d(x0, y0)| ≤ s[d(x, x0) + d(y0, y)],

and therefore d is continuous.
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Lemma 3 ([11]). Let (X, d, s) be a b-metric space. Then, every sequence (xn)n∈N ⊂ X for which
there exists γ ∈ (0, 1) such that

d(xn, xn+1) ≤ γd(xn, xn−1), n ∈ N,

is a Cauchy sequence.

Lemma 4. Let (X, d, s) be a b-metric space and A, B ∈ Pcp(X), which is the set of all nonempty
compact subsets of X. If d is a continuous b-metric, then for any x ∈ A, there exists y ∈ B such that

d(x, y) ≤ d(x, B).

Proof. Let x ∈ A; then, for every n ∈ N, there exists yn ∈ B with

d(x, yn) ≤ d(x, B) +
1
n

. (2)

Since B is compact, there exists a subsequence (ynk )k∈N of (yn)n∈N converging to y ∈ B.
Since d is continuous, letting n → ∞ in (2), we obtain

d(x, y) ≤ d(x, B) ≤ Hd(A, B),

which proves the lemma.

3. Covitz–Nadler-Type Fixed-Point Theorems

In this section, we give versions of the Covitz and Nadler fixed-point theorem in
b-metric spaces. They proved their classical fixed-point theorem in metric spaces for con-
traction multi-valued operators in 1970 (see [9,10]) (also see Deimling [12] (Theorem 11.1)).

Definition 4. A mapping F : X → P(X) is a multivalued map if for each x ∈ X, F(x) ∈ P(X).
The point p is a fixed point of a multivalued map F if p ∈ F(p). We will denote the set of fixed
points of the mapping F by Fix F.

We also have the notion of a contraction for multivalued maps.

Definition 5. If the mapping F has a Lipschitz constant c < 1, then f is called a multivalued
contraction mapping.

The following lemma is referred to as the Covitz and Nadler fixed-point theorem [9].

Lemma 5. Let (X, d) be a complete metric space. If F : X → Pcl(X) is a contraction, then
Fix X �= ∅.

Our first result is contained in the following theorem.

Theorem 1. Let (X, d, s) be a complete b-metric space and d be continuous. If F : X → Pcp(X) is
a contraction, then Fix F �= ∅.

Proof. Assume that Hd(F(x), F(y)) ≤ Ld(x, y) for every x, y ∈ X, where L ∈ [0, 1), and let
x ∈ X. Since F(x) is compact, by Lemma 4, we can choose x1 ∈ F(x) such that

d(x, x1) ≤ d(x, F(x)).

Then, we may choose x2 ∈ F(x1) such that

d(x1, x2) ≤ d(x1, F(x1)) implies d(x1, x2) ≤ Hd(F(x), F(x1)).
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This means that
d(x1, x2) ≤ Ld(x, F(x)).

Continuing this way, we can find a sequence {xn : n ∈ N} ⊂ X with

d(xn, xn+1) ≤ d(xn, F(xn)).

Hence,

d(xn, xn+1) ≤ d(xn, F(xn)) ≤ Hd(F(xn−1), xn)

≤ Ld(xn−1, xn) ≤ Lnd(x, F(x)).

By Lemma 3, {xn}n∈N is a Cauchy sequence. Since X is complete, we let x̃ = lim
n→∞

xn.

Then, xn+1 ∈ F(xn) for every n ∈ N, and

0 ≤ d(x̃, F(x̃)) ≤ s[d(xn+1, x̃) + d(xn+1, F(x̃))] ≤ s[d(xn+1, x̃) + Ld(xn, x̃)].

Letting n → +∞ gives x̃ ∈ F(x̃) as claimed, and this proves the theorem.

As a direct consequence of Theorem 1, we are able to obtain the following generaliza-
tion of Nadler’s fixed-point theorem to strong b-metric spaces.

Corollary 1. Let (X, d, s) be a complete strong b-metric space. If F : X → Pcp(X) is an L-
contraction, then Fix F �= ∅.

Proof. Since (X, d, s) is a complete strong b-metric space, it is complete. By Lemma 2, d is
continuous. By Theorem 1, F has at least one fixed point, and this completes the proof.

Our next result on the existence of a fixed point is contained in the following theorem.

Theorem 2. Let (X, d, s) be a complete b-metric space and F : X → Pcl,b(X) be an L-contraction
multi-valued mapping. Then, F has a fixed point in X.

Proof. We will employ a standard iterative procedure for contracting mappings. Let
L ∈ (0, 1) be such that

Hd(F(x), F(y)) ≤ Ld(x, y) for all x, y ∈ X.

Let x0 ∈ X be fixed and choose x1 ∈ F(x0) such that

d(x1, x0) ≤ d(x0, F(x0)) + L.

From the definition of the Hausdorff distance, we can find x2 ∈ F(x1) with

d(x1, x2) ≤ d(x1, F(x1)) + L, which implies d(x1, x2) ≤ Hd(F(x0), F(x1)) + L.

Similarly, we can find x3 ∈ F(x2), with

d(x3, x2) ≤ Hd(F(x2), F(x1)) + L2.

Continuing this process, we obtain a sequence (xn)n∈N in X such that xi+1 ∈ (xn) and

d(xi+1, xi) ≤ Hd(F(xi), F(xi−1)) + Li.

For fixed m ∈ N,
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d(xm, xm+1) ≤ Hd(F(xm), F(xm−1)) + Lm

≤ Ld(xm, xm−1) + Lm

≤ LHd(F(xm−1), F(xm−2)) + 2Lm

≤ L2d(xm−1, xm−2) + 2Lm

≤ L2(Hd(F(xm−2), F(xm−3)) + Lm−2) + 2Lm

≤ L3d(xm−2, xm−3) + 3Lm

...

≤ Lmd(x1, x0) + mLm.

By the s-relaxed triangle inequality in b-metric spaces, for every p ∈ N and q = [log2 p],

d(xm+1, xm+p) ≤ sd(xm+1, xm+2) + sd(xm+2, xm+p)

≤ sd(xm+1, xm+2) + s2d(xm+2, xm+22) + s2d(xm+22 , xm+p)

...

≤
q

∑
n=1

snd(xm+2n−1 , xm+2n) + sq+1d(xm+2q , xm+p).

By Lemma 1, we obtain

d(xm+1, xm+p) ≤
q

∑
n=1

s2n
m+2n−1−1

∑
i=m

d(x2n−1+i, xm+2n−1+i+1)

+ s2(q+1)
m+p−2q−1

∑
i=m

d(x2q+i, x2q+i+1).

Consequently,

d(xm+1, xm+p) ≤
q

∑
n=1

s2n
m+2n−1−1

∑
i=m

(L2n−1+id(x0, x1) + (2n−1 + i)L2n−1+i)

+ s2(q+1)
m+p−2q−1

∑
i=m

(L2q+id(x0, x1) + (2q + i)L2q+i)

≤
q+1

∑
n=1

s2n
2n−1−1

∑
i=0

[L2n−1+i+md(x0, x1)

+ (2n−1 + i + m)L2n−1+i+m]

≤ Lm
q+1

∑
n=1

s2n
2n−1−1

∑
i=0

L2n−1+id(x0, x1)

+ Lm
q+1

∑
n=1

s2n
2n−1−1

∑
i=0

(2n−1 + i)L2n−1+i

+ mLm
q+1

∑
n=1

s2n
2n−1−1

∑
i=0

(2n−1 + i)L2n−1+i.

Using simple calculations, we can see that

Lm
q+1

∑
n=1

s2n
2n−1−1

∑
i=0

L2n−1+id(x0, x1) ≤
Lmd(x0, x1)

1 − L

q+1

∑
n=1

L2n logL s+2n−1
, (3)
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and

Lm
q+1

∑
n=1

s2n
2n−1−1

∑
i=0

(2n−1 + i)L2n−1+i

≤ Lm
q+1

∑
n=1

s2n2n−1L2n−1
2n−1−1

∑
i=0

Li + Lm
q+1

∑
n=1

s2nL2n−1
2n−1−1

∑
i=0

iLi

≤ 2Lm

1 − L

q+1

∑
n=1

(2s)2nL2n−1
+ Lm

∞

∑
i=0

iLi
q+1

∑
n=1

s2nL2n−1
.

Then,

Lm
q+1

∑
n=1

s2n
2n−1−1

∑
i=0

(2n−1 + i)L2n−1+i

≤ 2Lm

1 − L

q+1

∑
n=1

L2n logL 2s+2n−1
+ Lm

∞

∑
i=0

iLi
q+1

∑
n=1

L2n logL s+2n−1
.

Hence,

Lm
q+1

∑
n=1

s2n
2n−1−1

∑
i=0

2n−1L2n−1+i ≤ 2Lm

1 − L

q+1

∑
n=1

L2n logL 2s+2n−1
, (4)

and

Lm
q+1

∑
n=1

s2n
2n−1−1

∑
i=0

iL2n−1+i ≤ Lm
∞

∑
i=0

iLi
q+1

∑
n=1

L2n logL s+2n−1
. (5)

We observe that

lim
n→∞

(2n logL s + 2n−1 − n) = lim
n→∞

(2n logL 2s + 2n−1 − n) = ∞.

For a fixed M > 0, there exist n0 ∈ N such that

2n logL s + 2n−1 − n ≥ M, and 2n logL 2s + 2n−1 − n ≥ M, for all n ≥ n0.

Then,
L2n logL s+2n−1 ≤ LMLn and L2n logL 2s+2n−1 ≤ LnLM,

and since limn→∞
(n+1)Ln+1

nLn = L ∈ (0, 1), we conclude that

L1 :=
∞

∑
n=1

L2n logL s+2n−1
, L2 :=

∞

∑
n=1

L2n logL 2s+2n−1
, L3 :=

∞

∑
n=1

nLn (6)

are convergent series. Using (3)–(6), we obtain

d(xm+1, xm+p) ≤
LmL1d(x1, x0)

1 − L
+

(2 + (1 − L)L1)L2(1 + m)Lm

1 − L
.

Thus, (xn)n∈N is a Cauchy sequence, and so xn → x for some x ∈ X.
Next, we prove that x ∈ F(x). For all n ∈ N,

0 ≤ d(x, F(x)) ≤ s[d(x, xn) + d(xn, F(x))]

≤ s[d(x, xn) + Hd(F(xn−1), F(x))]

≤ s[d(x, xn) + Ld(xn−1, x)].

Letting n → ∞, we see that
d(x, F(x)) = 0,
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which implies x ∈ F(x), and so x is a fixed point of F. This proves the theorem.

Remark 2. In [13], Czerwik obtained the result in Theorem 2 for b-metric spaces, but with the
more restrictive condition that sL ∈ (0, 1). Kirk and Shahzad [8] (Theorem 12.5) relaxed the result
for strong b-metric spaces with L ∈ (0, 1). Theorem 2 is an extension of the results of Czerwik and
Kirk and Shahzad.

4. Local Version of the Covitz–Nadler Theorem

For the next result, we give a version of the fixed-point theorems proved by Beer and
Dontchev [14] (see Theorem 4) and Dontchev and Hager [15] in a strong b-metric space.
Hence, we obtain a partial answer to the question raised by Kirk and Shahzad [8] (p. 128).

Theorem 3. Let (X, d, s) be a complete strong b-metric space and F : X → Pcp(X). Assume there
exist x0 ∈ X, r > 0, and sL ∈ (0, 1) such that

(i) d(x0, F(x0)) < r(1 − sL);
(ii) H∗

d (F(x) ∩ B̄(x0, r), F(y)) ≤ Ld(x, y) for all x, y ∈ B̄(x0, r).

Then, F has a fixed point in B̄(x0, r).

Proof. Since F(x0) ∈ Pcp(X), there exists x1 ∈ F(x0) with x1 ∈ B(x0, r) such that

d(x1, x0) < r(1 − sL) (7)

and
H∗

d (F(x0) ∩ B̄(x0, r), F(x1)) ≤ Ld(x1, x0).

Since x1 ∈ F(x0) ∩ B̄(x0, r),

d(x1, F(x1)) ≤ H∗
d (F(x0) ∩ B̄(x0, r), F(x1)) ≤ Ld(x1, x0) < r(1 − sL)L.

Then, there exists x2 ∈ F(x1) with

d(x1, x2) < r(1 − sL)L,

so we have

d(x0, x2) ≤ d(x0, x1) + sd(x1, x2) < r(1 − sL) + sr(1 − sL)L,

that is,

d(x1, x2) < r(1 − sL)L, d(x0, x2) < r(1 − (sL)2), and x2 ∈ B̄(x0, r). (8)

Hence,

d(x2, F(x2)) ≤ H∗
d (F(x1) ∩ B̄(x0, r), F(x2)) ≤ Ld(x1, x2) < rL2(1 − sL).

Then, there exists x3 ∈ F(x2) such that

d(x2, x3) < rL2(1 − sL),

and so

d(x0, x3) ≤ d(x0, x2) + sd(x2, x3) ≤ r(1 − (sL)2) + srL2(1 − sL)

≤ r(1 − (sL)2) + srL2(1 − (sL)2)

since sL < 1. We then have

d(x2, x3) < rL2(1 − sL), d(x0, x3) < r(1 − (sL)4), and x3 ∈ B̄(x0, r). (9)
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From (7)–(9), we can proceed by induction, so that there exist (xn)n∈N ⊂ B̄(x0, r) with
xn ∈ F(xn−1), n ∈ N, such that

d(xn, xn+1) < rLn(1 − sL), n ∈ N0.

By the s-relaxed triangular inequality, for n ≥ m, we have

d(xm, xn) ≤ s
n−1

∑
i=m

d(xi, xi+1) ≤ rs(1 − sL)
n−1

∑
i=m

Li ≤ rs(1 − sL)Lm
∞

∑
i=0

Li.

Therefore,

d(xm, xn) ≤
rs(1 − sL)Lm

1 − L
→ 0 as m → ∞,

which implies that (xn)n∈N is a Cauchy sequence in X. Since X is complete, there exists
x ∈ X such that lim

n→∞
xn = x ∈ B̄(x0, r). By condition (ii),

d(xn, F(x)) ≤ H∗
d (F(xn−1) ∩ B̄(x0, r), F(x)) ≤ Ld(xn−1, x).

The s-relaxed triangle inequality implies that

d(x, F(x)) ≤ sd(x, xn) + d(xn, F(x)) ≤ sd(x, xn) + Ld(xn−1, x) → 0

as n → ∞. Therefore, d(x, F(x)) = 0, and hence, x is a fixed point of F. This proves the
theorem.

A second result in the same direction is contained in the following theorem.

Theorem 4. Let (X, d, s) be a complete strong b-metric space and F : X → Pcl(X). Assume there
exist x0 ∈ X, r > 0, and L ∈ (0, 1) such that

(i) d(x0, F(x0)) <
r
s (1 − L);

(ii) H∗
d (F(x) ∩ B̄(x0, r), F(y)) ≤ Ld(x, y) for all x, y ∈ B̄(x0, r).

Then, F has a fixed point in B̄(x0, r).

Proof. Since F(x0) ∈ Pcp(X), there exists x1 ∈ F(x0) with x1 ∈ B̄(x0, r) such that

d(x1, x0) <
r
s
(1 − L)

and
H∗

d (F(x0) ∩ B̄(x0, r), F(x1)) ≤ Ld(x1, x0).

Since x1 ∈ F(x0) ∩ B̄(x0, r),

d(x1, F(x1)) ≤ H∗
d (F(x0) ∩ B̄(x0, r), F(x1)) ≤ Ld(x1, x0) <

r
s
(1 − L)L,

and so there exists x2 ∈ F(x1) such that

d(x1, x2) <
r
s
(1 − L)L.

Hence, we have

d(x0, x2) ≤ s[d(x0, x1) + d(x1, x2)] < r(1 − L) + r(1 − L)L = r(1 − L2),

which means

d(x1, x2) <
r
s
(1 − L)L, d(x0, x2) < r(1 − L2), and x2 ∈ B̄(x0, r).
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Thus,

d(x2, F(x2)) ≤ H∗
d (F(x1) ∩ B̄(x0, r), F(x2)) ≤ Ld(x1, x2) <

r
s

L2(1 − L),

and so then there exists x3 ∈ F(x2) such that

d(x2, x3) <
r
s

L2(1 − L).

This implies

d(x0, x3) ≤ d(x0, x2) + sd(x2, x3) ≤ r(1 − L2) + rL2(1 − L)

≤ r(1 − L2) + rL2(1 − L2)

since L < 1. Thus, we have

d(x2, x3) <
r
s

L2(1 − L), d(x0, x3) < r(1 − L4), and x3 ∈ B̄(x0, r).

Proceeding by induction, there exists (xn)n∈N ⊂ B̄(x0, r) with xn ∈ F(xn−1), n ∈ N,
such that

d(xn, xn+1) <
r
s

Ln(1 − L), n ∈ N0.

As in the proof of Theorem 3, we again see that (xn)n∈N0 is a Cauchy sequence. Since
X is complete, there exists x ∈ B̄(x0, r) such that lim

n→∞
xn = x and x ∈ F(x), which proves

the theorem.

The next result is our improvement of Dontchev and Hager’s [15] (Lemma) fixed-point
theorem.

Theorem 5. Let (X, d, s) be a complete strong b-metric space and F : X → P(X). Assume there
exist x0 ∈ X, r > 0, and L ∈ (0, 1) such that

(i) The set Gr(F) ∩ B̄(x0, r)× B̄(x0, r) is a closed set;
(ii) d(x0, F(x0)) <

r
s (1 − L);

(iii) H∗
d (F(x) ∩ B̄(x0, r), F(y)) ≤ Ld(x, y) for all x, y ∈ B̄(x0, r).

Then, F has a fixed point in B̄(x0, r).

Proof. Since d(x0, F(x0)) <
r
s (1 − L), there exists x1 ∈ F(x0) with x1 ∈ B̄(x0, r) such that

d(x1, x0) <
r
s
(1 − L) (10)

and
H∗

d (F(x0) ∩ B̄(x0, r), F(x1)) ≤ Ld(x1, x0).

Since x1 ∈ F(x0) ∩ B̄(x0, r),

d(x1, F(x1)) ≤ H∗
d (F(x0) ∩ B̄(x0, r), F(x1)) ≤ Ld(x1, x0) <

r
s
(1 − L)L,

and so there exists x2 ∈ F(x1) such that

d(x1, x2) <
r
s
(1 − L)L

and
d(x0, x2) ≤ s[d(x0, x1) + d(x1, x2)] < r(1 − L) + r(1 − L)L = r(1 − L2).
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That is,

d(x1, x2) <
r
s
(1 − L)L, d(x0, x2) < r(1 − L2), and x2 ∈ B̄(x0, r). (11)

Hence,

d(x2, F(x2)) ≤ H∗
d (F(x1) ∩ B̄(x0, r), F(x2)) ≤ Ld(x1, x2) <

r
s

L2(1 − L),

so there exists x3 ∈ F(x2) such that

d(x2, x3) <
r
s

L2(1 − L).

It follows that

d(x0, x3) ≤ d(x0, x2) + sd(x2, x3) ≤ r(1 − L2) + rL2(1 − L)

≤ r(1 − L2) + rL2(1 − L2),

that is,
d(x2, x3) <

r
s

L2(1 − L), d(x0, x3) < r(1 − L4), and x3 ∈ B̄(x0, r). (12)

By induction, there exists

(xn)n∈N ⊂ B̄(x0, r), xn ∈ F(xn−1), n ∈ N, (13)

with
d(xn, xn+1) <

r
s

Ln(1 − L), n ∈ N0.

As in the proof of Theorem 3, (xn)n∈N0 is a Cauchy sequence, and since X is complete,
there exists x ∈ B̄(x0, r) such that lim

n→∞
xn = x. Hence, (xn−1, xn) → (x, x) as n → ∞.

From (13) and condition (i), we have

{(xn−1, xn)}n∈N ⊂ Gr(F) ∩ B̄(x0, r)× B̄(x0, r),

and so
(x, x) ∈ Gr(F) ∩ B̄(x0, r)× B̄(x0, r).

Therefore, x ∈ F(x) and this completes the proof of the theorem.
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Abstract: In this paper, we study the constrained minimization problem for an energy functional
which is related to a Kirchhoff-type equation. For s = 1, there many articles have analyzed the limit
behavior of minimizers when η > 0 as b → 0+ or b > 0 as η → 0+. When the equation involves
a varying non-local term

( ∫
R3 |∇u|2dx

)s, we give a detailed limit behavior analysis of constrained
minimizers for any positive sequence {ηk} with ηk → 0+. The present paper obtains an interesting
result on this topic and enriches the conclusions of previous works.
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1. Introduction and Main Results

We consider the following Kirchhoff-type equation with a varying non-local term

−
(

η + b
( ∫

R3
|∇u|2dx

)s
)

Δu + V(x)u = μu + λ|u|pu, (1)

where b > 0 is a constant, parameters η ≥ 0, λ > 0, exponents s > 0, 0 < p < 4 and μ is a
Lagrange multiplier. The b

( ∫
R3 |∇u|2dx

)s in (1) arises as a varying non-local term.
In recent years, there have been many articles involved in different types of varying

non-local problems similar to (1) such as the model⎧⎨⎩− C
( ∫

Ω
|∇u|2dx

)sΔu = h(x, u)
( ∫

Ω
f (x, u)dx

)r, x ∈ Ω,

u = 0, x ∈ ∂Ω,

which mainly studied the existence of solutions by using variational theory and analytical
methods, as seen in [1–4].

Especially for s = 1 in (1), the Kirchhoff-type constrained minimization problems are
related to

−
(

η + b
∫
R3

|∇u|2dx
)

Δu + V(x)u = μu + λ|u|pu

which have attracted a significant number of mathematicians to study their existence,
non-existence, uniqueness and limit behavior of constraint minimizers. More detailed,
for V(x) = 0, Ye [5,6] obtained some results of existence and nonexistence on constraint
minimizers. Zeng and Zhang [7] proved the local uniqueness of minimizer, and then
they [8] provided an analysis of asymptotic behavior for minimizers when V(x) satisfies
periodic potential. Guo, Zhang and Zhou [9] analyzed the existence and limit behavior
of minimizers if the trapping potential V(x) > 0 satisfies lim inf|x|→+∞ V(x) = ∞. In pa-
pers [10–13], the authors studied the existence and non-existence of constraint minimizers
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for the Kirchhoff-type energy functional with a L2-subcritical term. Also for V(x) being a
polynomial function, the articles [14,15] obtained the limit behavior of L2-norm solutions
when η > 0 as b → 0+ or b > 0 as η → 0+.

Coincidentally for s = 0 and R3 replaced by R2, the (1) comes from an interesting
physical context, which is associated with the well known Bose–Einstein condensates
(BECs). The mathematical theory study of BECs can be described by a Gross–Pitaevskii
(GP) functional [16,17], which is related to the elliptic equation

Δu + V(x)u = μu + λ|u|pu.

There are many researchers devoted to exploring the properties of the ground states for
the GP functional related to the above elliptic equation. More precisely, when the external
trapping potentials V(x) are in the forms of polynomial, ring-shaped, multi-well, periodic
and sinusoidal, the articles [18–22] gave the existence, non-existence and mass concentration
behavior analysis of the ground states. If V(x) behaves like logarithmic or homogeneous
potential [23,24], the local uniqueness and refined spike profiles of ground states for the GP
functional are analyzed when λ tends to a critical value λ∗.

However, as far as we know, there are few papers using the constrained variational
approaches to study the varying non-local problem (1). Inspired by the above articles,
the aim of the present paper is to study the following constrained minimization problem
related to (1), which is defined by

I(η, s, λ) := inf
u∈U

E(u), (2)

where E(u) fulfills

E(u) : =
η

2

∫
R3

|∇u|2dx +
b

2(s + 1)
( ∫

R3
|∇u|2dx

)s+1

+
1
2

∫
R3

V(x)|u|2dx − λ

p + 2

∫
R3

|u|p+2dx.
(3)

The above U in (2) is restricted to meet

U :=
{

u ∈ H |
∫
R3

|u|2dx = 1
}

, (4)

where H satisfies

H :=
{

u ∈ H1(R3) |
∫
R3

V(x)|u|2dx < ∞
}

as well as with the norm ‖u‖H :=
( ∫

R3 |∇u|2dx +
∫
R3

(
1 + V(x)|u|2

)
dx

) 1
2
. Assume that

the V(x) in (1) satisfies

(V1). V(x) ∈ L∞
loc(R

3) ∩ Cα
loc(R

3), α ∈ (0, 1), lim
|x|→∞

V(x) = +∞ and min
R3

V(x) = 0.

To state our main results, we introduce an elliptic equation such as

−3p
4

ΔQp +
(
1 − p

4
)
Qp − |Qp|pQp = 0, x ∈ R3, 0 < p < 4. (5)

In fact, up to the translations, (5) has a unique positive radially symmetric solution
Qp ∈ H1(R3), as seen in [25]. For convenience, we denote a critical constant

λ∗ :=
b

(s + 1)
‖Q‖

4(s+1)
3

L2 ,
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where Q is the unique positive solution of (5) for p = 4(s+1)
3 . According to the above

conditions, the existence and non-existence theorems on constraint minimizers for I(η, s, λ)
are established as follows:

Theorem 1. For η, s > 0, 0 < p < 4 and if (V1) holds, then I(η, s, λ) has at least one minimizer
for p < 4(s+1)

3 or p = 4(s+1)
3 , 0 < λ ≤ λ∗. The I(η, s, λ) has no minimizer for p > 4(s+1)

3 or

p = 4(s+1)
3 , λ > λ∗.

Theorem 2. For η = 0, s > 0, p = 4(s+1)
3 and if (V1) holds, then I(η, s, λ) has at least one

minimizer if 0 < λ < λ∗. Moreover, I(η, s, λ) has no minimizer for λ ≥ λ∗

Remark that similar conclusions appear elsewhere for studying different types of Kirchhoff
equations, as seen in [7,12,14,15]. For convenience, we give a detailed proof of Theorems 1 and 2
in Section 3. In view of the above theorems, one knows that, for η > 0, p = 4(s+1)

3 and

λ = λ∗, the I(η, s, λ) has at least one minimizer. However, for η = 0, p = 4(s+1)
3 and λ = λ∗,

the I(η, s, λ∗) admits no minimizer. A nature question is what happens to constraint minimizers
of I(η, s, λ) when η tends to 0 from the right?

Suppose that uη is a minimizer for I(η, s, λ); then, one can restrict uη ≥ 0 due to
E(u) ≥ E(|u|) for any u ∈ U . At the same time, we always assume that I(η, s, λ) admits
a positive minimizer by applying the strong maximum principle to (1). In truth, for any
positive sequence {ηk} with ηk → 0+ as k → ∞, one can verify that the positive constraint
minimizers uηk satisfy

∫
R3 |∇uηk |2dx → +∞ as k → ∞ (see Section 4); that is, the minimiz-

ers enact blow-up behavior as ηk → 0+. In order to obtain a more detailed limit behavior of
the constraint minimizers, some appropriate assumptions on V(x) are necessary. For this
purpose, we assume that V(x) is a form of polynomial function, and admits n ≥ 1 isolated
minima. More narrowly, there exist n ≥ 1 distinct points xi ∈ R3, numbers qi > 0 and
constant M > 0 fulfilling

(V2). V(x) = C(x)
n

∏
i=1

|x − xi|qi with M < C(x) <
1
M for all x ∈ R3;

here, lim
x→xi

C(x) exists for all 1 ≤ i ≤ n. For convenience, we denote

q = max{q1, · · · , qn} > 0, (6)

θi =
1

‖Q‖2
L2

lim
x→xi

V(x)
|x − xi|q

∫
R3

|x|q|Q(x)|2dx > 0,

where Q(x) satisfies (5) for p = 4(s+1)
3 . Moreover, let

θ = min{θ1, · · · θn} > 0 (7)

and the set of flattest global minima for V(x) is denoted by

W = {xi : θi = θ}. (8)

In light of Theorems 1 and 2, and inspired by [12,14,15,26], for any positive sequence
{ηk} and set uηk being the positive minimizers of I(ηk, s, λ∗), we next establish the following

theorem on limit behavior of constraint minimizers for I(ηk, s, λ∗) when p = 4(s+1)
3 and

λ = λ∗ as ηk → 0+.
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Theorem 3. Assume that (V1) and (V2) hold. For p = 4(s+1)
3 , λ = λ∗ and any positive

sequence {ηk} with ηk → 0+ as k → ∞, define εηk :=
( ∫

R3 |∇uηk |2dx
)− 1

2 ; then, the following
conclusions hold:

(i) The uηk has a unique local maximum zηk satisfying lim
k→∞

zηk = xi and xi ∈ W is a flattest

global minimum of V(x). Moreover, we have as k → ∞

ε
3
2
ηk uηk (εηk x + zηk ) →

Q(|x|)
‖Q‖2

strongly in H1(R3),

where Q denotes the unique positive solution of (5) for p = 4(s+1)
3 .

(ii) The εηk fulfills as k → ∞

εηk ≈ (qθ)
− 1

q+2 (ηk)
1

q+2 .

(iii) The least energy I(ηk, s, λ∗) satisfies as k → ∞

I(ηk, s, λ∗) ≈
[1

2
q

2
q+2 + q

−q
q+2

]
θ

2
q+2 (ηk)

q
q+2 ,

where q, θ are stated by (6) and (7).

Notice that the f (ηk) ≈ g(ηk) in Theorem 3 means f /g → 1 as k → ∞. In fact,
for the case in which s = 0 and V(x) behave in sinusoidal, ring-shaped, periodic and
multi-well forms, the papers [19–22] widely studied the mass concentration behavior of
the constrained minimizers.Particularly for s = 1, the authors in [14,15] also analyzed the
limit behavior of minimizers when η > 0 as b → 0+ or b > 0 as η → 0+. As described in
Theorem 3, our paper obtains an interesting result on this topic when it involves a varying
non-local term, and it thus enriches the study of such issues.

The present paper is structured as follows. Section 3 shall establish the existence and
non-existence proof of constrained minimizers for I(η, s, λ) when the parameters η, λ and
exponents s, p satisfy suitable range. For p = 4(s+1)

3 , λ = λ∗ and any positive sequence
{ηk} with ηk → 0+ as k → ∞, in Section 4 we plan to give the accurate energy estimation of
I(ηk, s, λ∗), and then analyze the detailed limit behavior of positive constrained minimizers
as ηk → 0+.

2. Preliminaries

In this paper, we shall make full use of the following notations:

• The H1(R3) is a Sobolev space with norm ‖u‖H1 =:
( ∫

R3 |∇u|2dx +
∫
R3 |u|2dx

) 1
2 .

• On any compact support set of R3, the L∞
loc(R

3) denotes the essentially bounded
measurable function space, and Cα

loc(R
3) is a Hölder continuous function space.

• The Lp(R3), p ∈ (1, ∞) denotes a Sobolev space with norm ‖u‖Lp =:
( ∫

R3 |u|pdx
) 1

p .
• The symbol → (resp. ⇀) means the strong (resp. weak) convergence.
• The letters A, C, D, E , F , K and M represent different positive constants.

Moreover, we introduce the following equality, as seen in [9]:

‖∇Qp‖2
L2 = ‖Qp‖2

L2 =
2

p + 2
‖Qp‖p+2

Lp+2 , 0 < p < 4. (9)

Recall also from [27] (Proposition 4.1) that Qp(x) has the exponential decay property

|∇Qp(x)|, Qp(|x|) = O(|x|−1e−|x|) as |x| → ∞. (10)
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At last, we give a Gagliardo–Nirenberg (G-N)-type inequality [28] such as

‖u‖2+p
L2+p ≤ p + 2

2‖Qp‖p
L2

‖∇u‖
3p
2

L2 ‖u‖2− p
2

L2 , 0 < p < 4, (11)

where Qp is the unique positive solution of (5).
For proving the existence of constraint minimizers, the following compactness lemma

is necessary:

Lemma 4 ([29] (Theorem 2.1 )). Suppose that (V1) is holding; then, for any p ∈ (2, 6), the imbedding

H ↪→ Lp(R3),

is compact, where H is given by (4).

3. Proof of Theorems 1 and 2

In this section, we shall give the proof of existence and non-existence on constraint
minimizers for (2), which are divided into the following two parts:

Proof of Theorem 1. Under the assumption of Theorem 1, for any u ∈ U , we deduce from
G-N inequality (11) that for η > 0, p < 4(s+1)

3

E(u) ≥ η

2

∫
R3

|∇u|2dx +
b

2(s + 1)
( ∫

R3
|∇u|2dx

)s+1

+
1
2

∫
R3

V(x)|u|2dx − λ

2‖Qp‖p
L2

( ∫
R3

|∇u|2dx
) 3p

4 .
(12)

For p = 4(s+1)
3 and 0 < λ ≤ λ∗ = b

(s+1)‖Q‖
4(s+1)

3
L2 , one derives from (11) that

E(u) ≥ η

2

∫
R3

|∇u|2dx +
b

2(s + 1)
( ∫

R3
|∇u|2dx

)s+1

+
1
2

∫
R3

V(x)|u|2dx − λ

2‖Qp‖p
L2

( ∫
R3

|∇u|2dx
)s+1

≥ η

2

∫
R3

|∇u|2dx +
λ∗ − λ

2‖Q‖
4(s+1)

3
L2

( ∫
R3

|∇u|2dx
)s+1

+
1
2

∫
R3

V(x)|u|2dx.

(13)

Both p < 4(s+1)
3 and p = 4(s+1)

3 , 0 < λ ≤ λ∗ hold, (12) and (13) yield a fact that, for
any sequence {un} ⊆ U , the E(un) is bounded uniformly from below. Hence, there admits
a minimization sequence {un} ⊆ U as fulfilling

I(η, s, λ) = lim
n→∞

E(un).

In truth, one can obtain from (12) and (13) that {un} is bounded in H. Applying the
Lemma 4, there exists a ū ∈ H, and {un} has a subsequence {unk} such that as k → ∞

unk ⇀ ū weakly in H, unk → ū strongly in Lν(R3), 2 < ν < 6.

Using the weak lower semi-continuity, we obtain

lim inf
k→∞

∫
R3

|∇unk |2dx ≥
∫
R3

|∇ū|2dx.
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The above results give that

I(η, s, λ) = lim inf
k→∞

E(unk ) ≥ E(ū) ≥ I(η, s, λ)

which then yields E(ū) = I(η, s, λ). Hence, ū is a minimizer for I(η, s, λ).
The non-existence proof of constraint minimizer comes true by establishing energy

estimation for I(η, s, λ). To meet this goal, we choose a test function such as

ut(x) :=
Pt

‖Q‖L2
t

3
2 Φ(x − xi)Q(t|x − xi|)(t > 0), (14)

where Q fulfills (5) for p = 4(s+1)
3 , and xi ∈ W satisfies V(xi) = 0. The function Φ(x) ∈

C∞
0 (R3) in (14) is chosen as ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

Φ(x) = 1, |x| ≤ 1,

0 < Φ(x) < 1, 1 < |x| < 2,

|Φ(x)| = 0, |x| ≥ 2,

|∇Φ(x)| ≤ C, x ∈ R3.

Notice that Pt in (14) makes sure ‖ut‖2
L2 = 1. It is deduced from (10) and (14) that

1 ≤ Pt ≤ 1 + O(t−∞) and lim
t→+∞

Pt = 1, (15)

where g(t) = O(t−∞) means lim
t→+∞

|g(t)|td = 0 for any d > 0. One can attain from (9) that

as t → ∞

I(η, s, λ) ≤ ηP2
t t2

2‖Q‖2
L2

∫
R3

|∇Q|2dx +
bP2(s+1)

t t2(s+1)

2(s + 1)‖Q‖2(s+1)
L2

( ∫
R3

|∇Q|2dx
)s+1

− λPp+2
t t

3p
2

(p + 2)‖Q‖p+2
L2

∫
R3

|Q|p+2dx + V(x0) + o(1) + O(t−∞)

(16)

which yields that, for any p > 4(s+1)
3 , the I(η, s, λ) → −∞ as t → ∞. For η > 0 and

p = 4(s+1)
3 , we derive from (16) that

I(η, s, λ) ≤ ηt2

2
+

bt2(s+1)

2(s + 1)
− λt2(s+1)

2‖Q‖
4(s+1)

3
L2

+ o(1) + O(t−∞)

=
ηt2

2
+

(λ∗ − λ)t2(s+1)

2‖Q‖
4(s+1)

3
L2

+ o(1) + O(t−∞) → −∞.

(17)

We can deduce from (17) that for λ > λ∗, the I(η, s, λ) → −∞ as t → ∞. Hence,
for any η > 0, if either p > 4(s+1)

3 or p = 4(s+1)
3 , λ > λ∗ holds, then I(η, s, λ) has no

minimizer.

Proof of Theorem 2. Under the assumption of Theorem 2, for any u ∈ U , one can derive
from (11) that for η = 0 and p = 4(s+1)

3 that

E(u) ≥ λ∗ − λ

2‖Q‖
4(s+1)

3
L2

( ∫
R3

|∇u|2dx
)s+1

+
1
2

∫
R3

V(x)|u|2dx. (18)

If 0 < λ < λ∗, repeating the proof of Theorem 1, one claims that I(0, s, λ) has a minimizer.
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The non-existence proof of constraint minimizer is established as follows: for η = 0
and p = 4(s+1)

3 , similar to the estimation of (17), one obtains that

I(0, s, λ) ≤ E(ut) =
(λ∗ − λ)t2(s+1)

2‖Q‖
4(s+1)

3
L2

+ o(1) + O(t−∞) → −∞ (19)

It then yields that I(0, s, λ) has no minimizer due to I(0, s, λ) = −∞ for λ > λ∗.
For η = 0 and λ = λ∗, one can obtain from (18) and (19) that I(0, s, λ∗) = 0. We next

argue that I(0, s, λ∗) has no minimizer by establishing a contradiction. If this is not true,
suppose that û ∈ U is a minimizer of I(0, s, λ∗). As stated in Section 1, we may assume that
û is positive. Since V(x) ≥ 0 and

∫
R3 |û|2dx = 1, the G-N inequality (11) then yields that

1
(s + 1)

( ∫
R3

|∇û|2dx
)s+1

=
3λ∗

2s + 5

∫
R3

|û|
4(s+1)

3 +2dx,

where the equality holds only for û = Q, and Q is the unique positive solution of (5) for
p = 4(s+1)

3 . One obtains from (12) that û satisfies∫
R3

V(x)û2dx = min
R3

V(x) = 0.

However, the above two equalities cannot be held at the same time because the first
one presents a fact that û has no compact support, and the second one needs û = Q to
possess a compact support. Thus, one claims that I(0, s, λ∗) has no minimizer. So far,
the non-existence proof of constraint minimizer is completed.

4. Proof of Theorem 3

In this section, for p = 4(s+1)
3 , λ = λ∗ and any positive sequence {ηk} with ηk → 0+ as

k → ∞, we plan to analyze the limit behavior on minimizers uηk for I(ηk, s, λ∗) as ηk → 0+.
Before proving Theorem 3, some indispensable lemmas are necessary, which are stated
as follows:

Lemma 5. Under the assumption of Theorem 3, set v̂ηk (x) := ε
3
2
ηk uηk (εηk x) and εηk =

( ∫
R3 |∇uηk |2

dx
)− 1

2 > 0; then, as k → ∞, the εηk → 0 and v̂ηk satisfy

∫
R3

|∇v̂ηk |2dx = 1,
∫
R3

|v̂ηk |
4(s+1)

3 +2 → b
[
2s + 5

]
3(s + 1)λ∗ .

Proof. If uηk are positive minimizers of (2), then uηk satisfies

−
(

ηk + b
( ∫

R3
|∇uηk |2dx

)s
)

Δuηk + V(x)uηk = μηk uηk + λ∗|uηk |
4(s+1)

3 uηk (20)

here, μηk ∈ R denote Lagrange multipliers. Set

v̂ηk (x) := ε
3
2
ηk uηk (εηk x), (21)

where εηk =
( ∫

R3 |∇uηk |2dx
)− 1

2 > 0. On the contrary, we assume that εηk � 0 as ηk → 0+;
then, {uηk} is bounded uniformly in H. Similar to the proof of Theorems 1 and 2 in
Section 3, one asserts that there exists a u0 ∈ U and {uηk} has a subsequence (still denoted
by {uηk}) such that as ηk → 0+

uηk ⇀ u0 weakly in H, uηk → u0 strongly in Lp(R3), 2 < p < 6. (22)
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To obtain our result, we need to prove that I(ηk, s, λ∗) → 0 as ηk → 0+. For this
purpose, we choose a test function the same as (14). Based on (10), (14) and (15), one
calculates that ∫

R3
|∇ut|2dx =

P2
t t2

‖Q‖2
L2

∫
R3

|∇Q|2dx + O(t−∞)

and ∫
R3

|ut|
4(s+1)

3 +2dx =
P

4(s+1)
3 +2

t t2(s+1)

‖Q‖
4(s+1)

3 +2
L2

∫
R3

|Q|
4(s+1)

3 +2dx + O(t−∞).

Since V(x) satisfies (V1) and (V2), one obtains that as t → ∞∫
R3

V(x)|ut|2dx = V(xi) + o(1) = o(1).

It thus follows from (9) that, for p = 4(s+1)
3 and λ = λ∗ as t → +∞

I(ηk, s, λ∗) ≤ ηkP2
t t2

2‖Q‖2
L2

∫
R3

|∇Q|2dx +
bP2(s+1)

t t2(s+1)

2(s + 1)‖Q‖2(s+1)
L2

( ∫
R3

|∇Q|2dx
)s+1

− λ∗Pp+2
t t4

(p + 2)‖Q‖p+2
L2

∫
R3

|Q|p+2dx + V(xi) + o(1) + O(t−∞)

=
ηkt2

2
+

bt2(s+1)

2(s + 1)
− λ∗t2(s+1)

2‖Q‖
4(s+1)

3
L2

+ o(1) + O(t−∞)

=
ηkt2

2
+ o(1) + O(t−∞).

(23)

Taking t = (ηk)
− 1

3 into (23), it yields that as k, t → ∞

I(ηk, s, λ∗) ≤ E(ut) =
η

1
3
k
2

+ o(1) + O(t−∞) → 0. (24)

We can deduce from (3), (22) and (24) that

0 = I(0, s, λ∗) ≤ E(u0) ≤ lim inf
k→∞

E(uηk ) = lim
k→∞

I(ηk, s, λ∗) = I(0, s, λ∗) = 0

which yields a fact that u0 is a minimizer of I(0, s, λ∗). However, this is a contradiction
since Theorem 2 shows that I(0, s, λ∗) has no minimizer. Thus, εηk → 0 holds as k → ∞.

By (21), we just have
∫
R3 |∇v̂ηk |2dx = ε−2

ηk

∫
R3 |∇uηk |2dx = 1. Since uηk are minimizers

of I(ηk, s, λ∗) for any ηk > 0, we can derive from (11) and (24) that as k → ∞

0 ≤ E(uηk ) = I(ηk, s, λ∗) ≤ E(ut) → 0

which yields that as k → ∞

b
2(s + 1)

( ∫
R3

|∇uηk |2dx
)2(s+1) − 3λ∗

4s + 10

∫
R3

|uηk |
4(s+1)

3 +2dx → 0. (25)

It hence follows from (21) and (25) that as k → ∞

b
2(s + 1)

− 3λ∗

4s + 10

∫
R3

|v̂ηk |
4(s+1)

3 +2dx → 0,
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which shows as k → ∞ ∫
R3

|v̂ηk |
4(s+1)

3 +2dx → b
[
2s + 5

]
3(s + 1)λ∗ .

We have finished the proof of Lemma 5.

Assume that uηk are positive minimizers of I(ηk, s, λ∗) for any ηk > 0. Since
∫
R3 |uηk |2

dx = 1, one has uηk (x) → 0 as |x| → ∞. This yields that uηk (x) has at least one local
maximum, which is denoted by zηk . We define a function

vηk (x) := ε
3
2
ηk uηk (εηk x + zηk ), (26)

where εηk is given in Lemma 5. We next establish the following lemma, which is related to
convergence properties of vηk and zηk .

Lemma 6. Under the assumption of Theorem 3, set zηk as a local maximum of uηk and vηk defined
by (26); then, we have

(i) There exist a finite ball B2s(0) and a constant D > 0 such that

lim inf
k→∞

∫
B2s(0)

|vηk (x)|2dx ≥ D > 0.

(ii) The zηk is a unique maximum of uηk and satisfies zηk → x0 for some x0 ∈ R3 as k → ∞.
Furthermore, the x0 is a minimum of V(x), that is, V(x0) = 0.

(iii) The function vηk satisfies

lim
k→∞

vηk (x) = lim
k→∞

ε
3
2
ηk uηk (εηk x + zηk ) =

Q(|x|)
‖Q‖L2

strongly in H1(R3),

where Q is the unique solution of (5) for p = 4(s+1)
3 .

Proof. (i) By (20), we see that vηk fulfills the elliptic equation

−
(

ηkε2s
ηk
+ b

)
Δvηk + ε

2(s+1)
ηk V(x)vηk = ε

2(s+1)
ηk μηk vηk + λ∗|vηk |

4(s+1)
3 vηk , (27)

here, μηk are Lagrange multipliers. In truth, (2) and (20) give that

μηk = 2I(ηk, s, λ∗) +
sb

s + 1
( ∫

R3
|∇uηk |2dx

)s+1 − 2(s + 1)λ∗

2s + 5

∫
R3

|uηk |
4(s+1)

3 +2dx. (28)

Repeating the proof of (24), one obtains that as k → ∞

ε
2(s+1)
ηk I(ηk, s, λ∗) → 0 and

∫
R3

V(εηk x + zηk )v
2
ηk
(x)dx → 0. (29)

Since 0 < p = 4(s+1)
3 < 4 yields 0 < s < 2, we can obtain from (28), (29) and Lemma 5 that

as k → ∞

μηk ε
2(s+1)
ηk = 2ε

2(s+1)
ηk I(ηk, s, λ∗) +

sb
s + 1

− 2b
3

→ (s − 2)b
3(s + 1)

< 0. (30)

Since uηk take local maxima at x = zηk , it yields that vηk obtain local maxima at x = 0. We
thus derive from (27) and (30) that there exists a constant K > 0 satisfying as k → ∞

vηk (0) ≥ K > 0. (31)
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Furthermore, one obtains from (27) that

−Δvηk − c(x)vηk ≤ 0, x ∈ R3, (32)

where c(x) = λ∗|vηk |
4(s+1)

3 . In view of the De Giorgi–Nash–Moser theory, as seen in [30]
(Theorem 4.1), one declares that there exist a finite ball B2s(0) ⊂ R3 and constant C > 0
such that

max
Bs(0)

vηk ≤ C
( ∫

B2s(0)
|vηk |2dx

) 1
2
. (33)

It hence yields from (31) and (33) that there exists a constant D > 0 satisfying

lim inf
k→∞

∫
B2s(0)

|vηk |2dx ≥ D > 0. (34)

(ii) On the contrary, one may assume that |zηk | → ∞ as k → ∞. By applying (34) and
Fatou’s lemma, for any large constant A, one has

lim inf
k→∞

∫
R3

V(εηk x + zηk )|vηk (x)|2dx

≥
∫

B2s(0)
lim inf

k→∞
V(εηk x + zηk )|vηk (x)|2dx ≥ A > 0

(35)

which contradicts (29), and it hence shows that |zηk | is bounded in R3. Taking a subsequence
of {zηk} if necessary (still denoted by {zηk}), there admits a x0 ∈ R3 such that zηk → x0
as k → ∞. In fact, one can claim that x0 is a minimum of V(x), that is, V(x0) = 0. If not,
repeating the proof of (35), it also yields a contradiction. Thus, we say that zηk → x0 as
k → ∞ and V(x0) = 0.

(iii) The Lemma 5 shows that sequence {vηk} is bounded in H1(R3), and under the
sense of subsequence, there exists a v0 ∈ H1(R3) such that vηk ⇀ v0 as k → ∞. Using (30)
and passing weak limit to (27), one obtains that v0 satisfies

−Δv0 +
2 − s

3(s + 1)
v0 =

λ∗

b
|v0|

4(s+1)
3 v0, x ∈ R3, (36)

where 0 < s < 2. By (34) and applying the strong maximum principle to (36), one has
v0 > 0. Taking p = 4(s+1)

3 in (5), one knows that

−ΔQ +
2 − s

3(s + 1)
Q =

1
s + 1

|Q|
4(s+1)

3 Q, x ∈ R3. (37)

Due to the fact that (37) has a unique positive radially symmetric solution Q ∈ H1(R3), it
hence yields from (36) that

v0(x) =
Q(|x − y0|)

‖Q‖L2
for some y0 ∈ R3. (38)

Similar to the procedure of Theorem 1, one declares that as k → ∞, vηk → v0 strongly
in H1(R3). Using the standard elliptic regularity theory, we obtain from (27) that as k → ∞

vηk → v0 in C2,α
loc (R

3), α ∈ (0, 1). (39)

Applying the method [18] (Theorem 2), one knows that the y0 = 0 in (38), and 0 is the
unique global maximum of v0. Therefore, v0 behaves like

v0(x) =
Q(|x|)
‖Q‖L2

, x ∈ R3. (40)
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By (39), using the technique of [19] (Theorem 1.2), we know that zηk is the unique global
maximum of uηk .

To obtain a more detailed description on limit behavior of constraint minimizers uηk

as ηk → 0+, some precise energy estimation of I(ηk, s, λ∗) as ηk → 0+ is necessary. Toward
this aim, we begin with the upper-bound estimation of I(ηk, s, λ), which is sated as the
following lemma:

Lemma 7. Assume that (V1) and (V2) hold. If p = 4(s+1)
3 and λ = λ∗, then for any positive

sequence {ηk} with ηk → 0+ as k → ∞, the I(ηk, s, λ) satisfies as k → ∞

I(ηk, s, λ∗) ≤
[1

2
q

2
q+2 + q

−q
q+2

]
θ

2
q+2 (ηk)

q
q+2 (1 + o(1)),

where q, θ are defined by (6) and (7).

Proof. Choosing (14), we can deduce from (9)–(11) that there exist positive constants d1, d2
such that as t → +∞

b
2(s + 1)

( ∫
R3

|∇ut|2dx
)s+1 − 3λ∗

4s + 10

∫
R3

|ut|
4(s+1)

3 +2dx

≤ bt2(s+1)

2(s + 1)
− λ∗t2(s+1)

2‖Q‖
4(s+1)

3
L2

+ d1e−d2t = d1e−d2t
(41)

and there exist positive constants d3, d4 such that as t → +∞

ηk
2

∫
R3

|∇ut|2dx =
P2

t t2

‖Q‖2
L2

∫
R3

|∇Q|2dx =
ηkt2

2
+ d3e−d4t. (42)

Since V(x) satisfies (V1) and (V2), we derive that there exist positive constants d5, d6
such that as t → +∞∫

R3
V(x)u2

t dx ≤ 1
‖Q‖2

L2

∫
B√

t(0)
V(

x
t
+ xi)|Q|2dx + d5e−d6t

=
1

‖Q‖2
L2

∫
B√

t(0)
C(

x
t
+ xi)

n

∏
j=1

| x
t
+ xi − xj|qj |Q|2dx + d5e−d6t

=t−q 1
‖Q‖2

L2

lim
x→xi

V(x)
|x − xi|q

∫
R3

|x|q|Q(x)|2dx + o(t−q) + d5e−d6t

=θt−q + o(t−q) + d5e−d6t,

(43)

where q, θ defined by (6) and (7). Using (41)–(43), we have

I(ηk, s, λ∗) ≤ηkt2

2
+ θt−q + o(t−q) + d1e−d2t + d3e−d4t + d5e−d6t

=
ηkt2

2
+ θt−q(1 + o(1)

)
.

(44)

Taking t = (qθ)
1

q+2 (ηk)
− 1

q+2 , one can deduce from (44) that as ηk → 0+

I(ηk, s, λ∗) ≤
[1

2
q

2
q+2 + q

−q
q+2

]
θ

2
q+2 (ηk)

q
q+2 (1 + o(1)).
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Proof of Theorem 3. According to the results of Lemmas 5–7, it remains to prove (ii) and
(iii) in Theorem 3, which can be realized by establishing the precise lower energy estimation
of I(ηk, s, λ∗) as ηk → 0+. To meet this goal, we set {uηk} as the positive minimizers of
I(ηk, s, λ∗), zηk being their unique global maxima, and we define vηk by (26). Using Lemma 6,
one knows that for {zηk}, choosing a subsequence if necessary (still stated by {zηk}),
the zηk → x0 and V(x0) = 0.

In fact, we can go a step further, that is, we can come to the following conclusion:

zηk → xi and
|zηk − xi|

εηk

is bounded uniformly as k → ∞, (45)

where xi ∈ W and xi denotes a flattest global minimum of V(x). To obtain (45), we firstly
claim that

|zηk − x0|
εηk

is bounded uniformly as k → ∞. (46)

If this is false, then we assume that
|zηk−x0|

εηk
→ ∞ as k → ∞. It then follows from (V2)

and Lemma 6 (i) that, for any large positive constant F ,

lim inf
k→∞

1

ε
qi0
ηk

∫
R3

V(εηk x + zηk )v
2
ηk

dx

≥C
∫

B2s(0)
lim inf

k→∞
|x +

zηk − x0

εηk

|qi0 ·
n

∏
j=1,j �=i0

|εηk x + zηk − xj|qj v2
ηk

dx ≥ F .
(47)

Recall from G-N inequality (11) that we also have for p = 4(s+1)
3 and λ = λ∗

lim inf
k→∞

( b
2(s + 1)

( ∫
R3

|∇uηk |2dx
)s+1 − λ∗

p + 2

∫
R3

|uηk |p+2dx
)
≥ 0 (48)

which together with (47) then gives

lim inf
k→∞

I(ηk, s, λ∗) = lim inf
k→∞

E(ηk) ≥
ηkε−2

ηk

2
+Dε

qi0
ηk ≥ Eη

qi0
qi0

+2

k , (49)

where E is a arbitrarily large constant. However, this is a contradiction with the upper
energy in Lemma 7. Hence, (46) holds. In truth, the upper energy of I(ηk, s, λ∗) also
compels that x0 = xi ∈ W. If not, by repeating the proof process from (46) to (48), one still
derives a contradiction. Thus, we complete the proof of (i) in Theorem 3.

Using (45) and similar to estimation of (47), one can deduce that there admits a x̂ ∈ R3

such that
lim inf

k→∞

1
ε

q
ηk

∫
R3

V(εηk x + zηk )v
2
ηk

dx

= lim
x→xi

V(x)
|x − xi|q

∫
R3

|x + x̂|qv2
0dx

≥ lim
x→xi

V(x)
|x − xi|q

∫
R3

|x|qv2
0dx = θ,

(50)

where θ, q given by (6) and (7). As a fact, the equality in (50) holds only for x̄ = 0. One then
calculates from (49) and (50) that

lim inf
k→∞

I(ηk, s, λ∗) = lim inf
k→∞

E(ηk) ≥
ηkε−2

ηk

2
+ θε

q
ηk . (51)
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Due to the restriction of energy upper bound in Lemma 7, it yields that ελk is in the form of

εηk = (qθ)
− 1

q+2 (ηk)
1

q+2

which shows a fact that the (ii) in Theorem 3 holds.
Taking the above εηk into (51), we can obtain that

lim inf
k→∞

I(ηk, s, λ∗) ≥
[1

2
q

2
q+2 + q

−q
q+2

]
θ

2
q+2 (ηk)

q
q+2 .

which together with Lemma 7 yields that as k → ∞

I(ηk, s, λ∗) ≈
[1

2
q

2
q+2 + q

−q
q+2

]
θ

2
q+2 (ηk)

q
q+2 .

So far, we have finished the proof of (iii) in Theorem 3.

5. Conclusions

There are many significant results for (2) when the exponent s = 1, and the readers
are advised to refer to Section 1. In the present paper, we have studied the constrained
minimization problem (2) with s > 0, which may be the first one studying the varying non-
local problem by applying constrained variational methods. Under the assumptions of (V1)
and (V2), our first conclusion is involved in the existence and non-existence of constraint
minimizers for (2), which can be stated by Theorems 1 and 2. Furthermore, the second
conclusion in Theorem 3 is concerned with the limit behavior of constraint minimizers as
ηk → 0+. In detail, when the trapping potential V(x) is a polynomial function and fulfills
(V1) and (V2), we can prove that the mass of minimizers must concentrate (i.e., blow up)
at some flattest global minimum of V(x) as ηk → 0+. However, the local uniqueness of
the constraint minimizer is hard to prove as ηk → 0+. Hence, in the future, we may try to
overcome this problem.
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Abstract: The local dynamics of a system of oscillators with a large number of elements and with
diffusive- and advective-type couplings containing a large delay are studied. Critical cases in the
problem of the stability of the zero equilibrium state are singled out, and it is shown that all of
them have infinite dimensions. Applying special methods of infinite normalization, we construct
quasinormal forms, namely, nonlinear boundary value problems of the parabolic type, whose nonlocal
dynamics determine the behavior of the solutions of the initial system in a small neighborhood of
the equilibrium state. These quasinormal forms contain either two or three spatial variables, which
emphasizes the complexity of the dynamical properties of the original problem.

Keywords: boundary value problem; delay; stability; normal form; dynamics; asymptotics of
solutions; bifurcations; singular perturbations; oscillators

MSC: 34K25

1. Introduction

We consider the dynamics of chains with diffusive and advective couplings containing
a large delay. The second-order equation with cubic nonlinearity,

ü + au̇ + u + f (u, u̇) = 0, (1)

f (u, u̇) = b1u3 + b2u2u̇ + b3uu̇2 + b4u̇3, (2)

serves as a basic example.
A chain of N equations of the form in (1) has the form

üj + au̇j + uj + f (uj, u̇j) = d
N

∑
k=1

aj−kuk(t − T), (3)

where T > 0 is the delay time, ak denotes the coefficients of the couplings, and uk(t) denotes
N-periodic functions of the index k:

uk±N ≡ uk.

The dynamics of chains of this kind have been studied by many authors, such as [1–3],
where chains without a delay were considered, and [4–12], where chains with a delay were
studied. The main assumption is that the number N of oscillators is sufficiently large; i.e.,
the value ε = 2πN−1 is sufficiently small:

0 < ε � 1. (4)

Functions uk(t) are conveniently associated with the values of a function of two variables,
uk(t) = u(t, xk), where xk denotes points with angular coordinates uniformly distributed
on some circle: xk = 2πkN−1. Condition (4) gives reason to transition from the system in (3)
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to the problem of studying functions of two variables, u(t, x), with a continuous spatial
variable x ∈ (−∞, ∞) and with the periodicity condition

u(t, x + 2π) ≡ u(t, x), (5)

for which
∂2u
∂t2 + a

∂u
∂t

+ u + f
(

u,
∂u
∂t

)
= d

∞∫
−∞

Φ(s, ε)u(t − T, x + s)ds. (6)

The values of the function Φ(s, ε) are determined by coupling coefficients ak. Let us describe
the classes of functions Φ(s, ε) that will be studied in this paper. We arbitrarily set σ > 0
and introduce a Gaussian function:

Fε(s) =
1

σε
√

2π
exp

(
− (s − ε)2

2ε2σ2

)
.

Let Φ0(s, ε) denote the function

Φ0(s, ε) = Fε(s)− 2F0(s) + F−ε(s). (7)

Due to the fact that, for every continuous function u(x),

lim
σ→0

∞∫
−∞

Φ0(s, ε)u(x + s)ds = u(x + ε)− 2u(x) + u(x − ε), (8)

it is natural to call (7) a diffusion-type coupling, since the right part of this equality resem-
bles the expression for the standard difference approximation of the diffusion operator
∂2u/∂x2. Such couplings were used, for example, in [8,12–14]. Let us also note the work
in [15], where chains of systems of laser equations were considered.

Let us introduce two more functions:

Φ1(s, ε) = Fε(s)− F−ε(s) (9)

and
Φ2(s, ε) = Fε(s)− F0(s). (10)

For each fixed continuous function u(x) bounded on the interval (−∞, ∞), we have the
following equations:

lim
σ→0

∞∫
−∞

Φ1(s, ε)u(x + s)ds = u(x + ε)− u(x − ε), (11)

lim
σ→0

∞∫
−∞

Φ2(s, ε)u(x + s)ds = u(x + ε)− u(x). (12)

The right-hand sides of (11) and (12) usually arise, for example, when applying the standard
difference approximation of the advection (transfer) operator ∂u/∂x. Therefore, it is natural
to call the right-hand side in (6) an advection-type coupling.

Another assumption that paves the way for the application of asymptotic methods is
that the value of T is sufficiently large: for some c > 0, we have

T = cε−1. (13)
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In Equation (6), we perform time normalization t → Tt. As a result, we arrive at the
singularly perturbed equation

ε2 ∂2u
∂t2 + εa

∂u
∂t

+ u + f
(

u, ε
∂u
∂t

)
= d

∞∫
−∞

Φ(s, ε)u(t − c, x + s)ds. (14)

Note that the degenerate at ε = 0 in Equation (14) does not give information about the
behavior of solutions. We will use classical asymptotic methods based on the application of
methods of many scales: methods characteristic of the theory of averaging (see, for exam-
ple, [16]) and methods of singular perturbations [17–19]. In order to study the dynamical
properties of solutions under conditions (4) and (13), we will use the special asymptotic
methods of local analysis developed in [20,21].

Let us study the behavior of all solutions of the boundary value problem (14) as t → ∞
with initial functions sufficiently small in the norm C1

[−c,0] × C[0,2π] and 2π-periodic in the
spatial variable x.

In the study of the local—in the neighborhood of the zero equilibrium state—behavior
of solutions, the linearized boundary value problem

ε2 ∂2u
∂t2 + εa

∂u
∂t

+ u = d
∞∫

−∞

Φ(s, ε)u(t − c, x + s)ds, (15)

u(t, x + 2π) ≡ u(t, x). (16)

plays an important role. Its characteristic equation, which we obtain by substituting the
Euler solutions u = exp(ikx + λt) into (15), has the form

ε2λ2 + εaλ + 1 = dγ(z) exp(−cλ), (17)

where, in the case of diffusion coupling,

γ(z) = −4 sin2 z
2
· exp

(
− 1

2
σ2z2

)
, z = εk, k = 0,±1,±2, . . . .

In advective coupling (9),
γ(z) = 2i sin z, (18)

and at the connection of the form in (10),

γ(z) = exp(iz)− 1. (19)

In the case where all roots of Equation (17), for all k = 0,±1,±2, . . ., have negative real
parts that move away from zero as ε → 0, the solutions of the boundary value prob-
lem (15), (16) are asymptotically stable, and the solutions of (14), (16) with sufficiently
small and ε-independent (by the norm C1

[−c,0] × C[0,2π]) initial conditions tend to zero as
t → ∞. If Equation (17) has a root with a positive real part that moves away from zero
as ε → 0, then the solutions of (15), (16) are unstable, and the dynamics problem (14), (16)
becomes nonlocal.

Here, we will consider the critical case where there are no roots with a positive real
part that moves away from zero in (17), but there are roots that tend to the imaginary axis as
ε → 0. Note that, in the case of the finite dimensionality of the critical case, the methodology
for the study of local dynamics is well known. It relies on the method of integral manifolds
and the method of normal forms (see, e.g., [22,23]). A characteristic feature of all of the
problems considered below is the fact that they realize infinite-dimensional critical cases
when infinitely many roots of the characteristic equation tend to the imaginary axis as
ε → 0. Therefore, the methods of integral manifolds and normal forms are not directly
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applicable. The approach developed in [20,21], which is related to the construction of
infinite-dimensional quasinormal forms, is essentially used here.

Let us briefly look at the research design used below. First, a linearized boundary
value problem is considered, and its characteristic equation is studied. We determine
those parameters at which a critical case occurs in the problem of the stability of solutions.
Then, we obtain the asymptotics of those roots of the characteristic equation that tend
to the imaginary axis as the small parameter tends to zero. Since there are infinitely
many such roots, there are also infinitely many solutions corresponding to the linearized
boundary value problem. The set of such solutions can be written in a special form using
another spatial variable. Therefore, it is possible to determine the structure of the main
approximation of solutions to a nonlinear boundary value problem. Let us denote it
conditionally by εU1.

The solutions of the nonlinear boundary value problem are then found in the form of a
formal series in powers of ε, the coefficients of which are periodic in t. Since, for simplicity,
there is no quadratic nonlinearity in the equation, then, as a consequence, there are no
terms of order ε2 in the formal asymptotic series. Substituting the formal series into the
original equation, we obtain a special linear inhomogeneous boundary value problem for
the elements of this series. Using the solvability conditions for the resulting equation, we
arrive at an equation for the unknown slowly varying amplitudes included in U1. These
equations are called quasinormal forms. They describe the local behavior of the original
boundary value problem.

Note that the form of the notation in (7) is convenient from a purely technical point of
view. Below, we will use the equality

∞∫
−∞

F±(s, ε) exp(iks)ds = exp(±ikε) exp
(
− σ2ε2k2

2

)
.

The σ parameter defines the set of chain elements that significantly affect each specific
element. In addition, it also sets the strength of the corresponding influence: the farther the
elements are from each other, the weaker this influence is.

At σ = 0, an additional critical case arises; therefore, this work examines the dynamics
of the system under the condition σ � 1. As it turns out, in these cases, the quasinormal
form acquires an additional spatial variable. It follows that, for σ → 0, there is a tendency
for the dynamic properties of solutions to become more complex.

The corresponding results are given in Sections 2.3 and 3.5.
Chains of this type without a delay were studied in [14]. The presence of a delay, on the

one hand, allows one to obtain explicitly formal expressions for critical cases. On the other
hand, the dimensionality of critical cases increases, and the corresponding quasinormal
forms become even more complicated.

This paper consists of two parts. The first part studies diffusion-type couplings,
whereas the second part deals with advection-type couplings.

2. Diffusion-Type Coupling

Linear analysis has a central role in the study of the boundary value problem (14), (16).

2.1. Linear Analysis

Let us consider the roots of the characteristic Equation (17). Recall that critical cases in
the stability problem (15), (16) are realized when Equation (17) has a root with a zero or
sufficiently close to zero real part for some k. In this connection, for some real value of ω,
let us set λ = iωε−1 in (17). As a result, we obtain the following:

1 − ω2 + iaω = dγ(z) exp
(
− iωε−1c

)
, z = εk, k = 0,±1,±2, . . . . (20)
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Let p(ω) denote the modulus of the left part of (20):

p(ω) =
[
(1 − ω2)2 + a2ω2]1/2,

and let
p0 = min

−∞<ω<∞
p(ω) = p(ω0).

Here,

ω0 =

⎧⎪⎨⎪⎩
0, if a2 ≥ 2,(

1 − a2

2

)1/2

, if a2 < 2,
p0 =

⎧⎨⎩1, if a2 ≥ 2,
a2

2
(4 − a2)1/2, if a2 < 2.

Note that p0 = 0 for a = 0.
In this section, we will focus on the first case, where

σ > 0. (21)

The case
σ = εσ1. (22)

will be discussed in Section 2.3.
Let condition (21) be satisfied. For each fixed z and under the condition

d|γ(z)| < p0

Equation (20) has no real roots. Below, we assume that

γ0 = max
−∞<z<∞

γ(z) = γ(z0) (z0 ≥ 0). (23)

The value of z0 is defined in a unique way and is found simply. From the condition
γ′(z0) = 0, we find that z0 is the first positive root of the equation

z
2
= 2(σ2z)−1.

Given d|γ0| < p0 and sufficiently small ε, all roots of Equation (17) have negative
real parts that move away from zero as ε → 0. Given d|γ0| > p0, we find z0 such that
Equation (17) has a root with a positive real part that moves away from zero as ε → 0.

Let us restrict ourselves to the case where the parameter d is positive. The value of
the parameter d0, which distinguishes the critical case in the stability problem (15), (16), is
determined by the equality

d0 = p0|γ0|−1.

In this connection, we assume below that, for an arbitrary fixed value d1 for the parameter
d, we have

d = d0 + ε2d1. (24)

Under this condition, let us consider the asymptotics of all those roots of the character-
istic Equation (17) whose real parts tend to zero as ε → 0. We note at once that there are
infinitely many such roots, so the critical case has infinite dimensionality.

Let us introduce some more notations. Let Ω0 = Ω0(ω0) be a real value for which

1 − ω2
0 + iω = p0 exp(iΩ0).

We let θω = θω(ε) ∈ [0, 2π) denote an expression that complements the value ω0(cε)−1 to
an integer multiple of 2π. When ω0 = 0, then θω = 0. We will similarly let θz = θz(ε) ∈ [0, 1)
denote an expression that complements the value z0ε−1 to an integer. Given z0 = 0, we
consider that θz = 0.
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Let us formulate two simple statements about the asymptotics of the roots of (17).

Lemma 1. Let
a2 > 2. (25)

Then, d0 = p0 = 1, ω0 = 0, and for the roots λkn(ε) (k, n = 0,±1,±2, . . .) of (17), the real parts
of which tend to zero as ε → 0, the asymptotic equations

λkn(ε) = πic−1(2n + 1) + ελ1kn + ε2λ2kn + . . . , (26)

are satisfied, where
λ1kn = −c−2iaπ(2n + 1),

λ2kn = c−3
(

1 − 1
2

a2
)
(π(2n + 1))2 − ic−3a2π(2n + 1) + c−1d1γ0 p−1

0 +

+
1
2

c−1γ′′
0 (z0)(θz + k)2(p0γ0)

−1.

Lemma 2. Let
0 < a2 < 2. (27)

Then, ω0 > 0, and for the roots λkn(ε) (k, n = 0,±1,±2, . . .) of (17) whose real parts tend to zero
as ε → 0, the asymptotic equations

λkn(ε) = i
ω0

ε
+ λ0n + ελ1kn + ε2λ2kn + . . . (28)

hold, where
λ0n = ic−1[π(2n + 1) + θω − Ω0

]
, κ = p0 exp(iΩ0),

λ1kn = ic−1κ−1(2ω0 − ia)λ0n, (29)

λ2kn =c−1
[(

κ−1 − 1
2
(−2ω0 + ia)2κ−2

)
λ2

0n + d1 p−1
0 −

+
1
2

γ′′(z0)(θz + k)2(p0γ0)
−1 − (cκ)−12iω0κ

−1(2ω0 − ia)λ0n − iκ−1aλ0n

]
.

Note that the following conditions hold:

�
(
κ−1 − 1

2
(−2ω0 + ia)2κ−2

)
< 0, �λ1kn = 0. (30)

The first condition in (30) is obvious. Regarding the second equality in (30), it suffices to
prove that the expression

(2ω0 − ia)κ−1

is purely imaginary. In this case, P(ω) = p(ω) exp(iΩ(ω)) and P′(ω) =
(

p′(ω)+ iΩ′(ω)p(ω)
)

exp
(
iΩ(ω)

)
; hence,

P′(ω) = iΩ′(ω0)p0 exp(iΩ0) = −2ω0 + ia.

Therefore, we conclude that (−2ω0 + ia)κ−1 = iΩ′(ω0) = 2ia−1.
The roots λkn(ε) of the characteristic Equation (17) allow us to determine solutions to

the linear boundary value problem (15), (16):

ukn(t, x, ε) = exp
(
i(z0ε−1 + θz + k)x + λkn(ε)t

)
,
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and hence, the formal set of solutions is

u(t, x, ε) =
∞

∑
k,n=−∞

(
ξknukn(t, x, ε) + ξ̄knūkn(t, x, ε)

)
, (31)

where ξkn denotes arbitrary complex constants.

Remark 1. Together with the roots λkn(ε) of Equation (17), there are roots λkn(ε), which corre-
spond to the solutions of the boundary value problem (15), (16):

ukn(t, x, ε) = exp
(
− i(z0ε−1 + θz + k)x + λkn(ε)t

)
.

Note that for the parameters z and −z, the roots in (17) are the same, since the dependence of the
right-hand side of (17) on z is even. This means that for the modes of −(z0ε−1 + θz + k), the roots
are the same: λkn(ε). Therefore, the problem (15), (16) has the solutions

ũkn(t, x, ε) = exp
(
− i(z0ε−1 + θz + k)x + λkn(ε)t

)
.

Under the conditions of Lemma 1, we have the following:

ũkn(t, x, ε) = ukn(t, x, ε),

which is not the case under the conditions of Lemma 2.

2.2. Nonlinear Analysis

We separately consider the cases where a2 > 2 and where 0 < a2 < 2.

2.2.1. Case a2 > 2

In this case, we have the equality ω0 = 0, Ω0 = 0, p0 = 1. The critical case in the
stability problem is defined by the equality

d0|γ0| = 1. (32)

We will base the following on the representation in (31). Let us write it in a more convenient
form:

u(t, x, ε) = E(x)
∞

∑
k,n=−∞

ξkn exp
(
ikx + ic−1π(2n + 1)(1 − εc−1a)t + (λ2kn + O(ε))τ

)
=

= E(x)
∞

∑
k,n=−∞

ξkn(τ) exp
(
ikx + iπ(2n + 1)x1

)
= E(x)ξ(τ, x, x1), (33)

where τ = ε2t is the “slow” time, E(x) = exp
(
i(z0ε−1 + θz)x

)
, and ξkn(τ) = ξkn exp

(
(λ2kn +

O(ε))τ
)

denotes the coefficients of the expansion ξ(τ, x, x1) into a Fourier series by the
2π-periodic argument x and 1-antiperiodic argument x1 = c−1(1 − εc−1a)t.

The solutions of the nonlinear boundary value problem (14), (16) are found in the form

u = ε
(
E(x)ξ(τ, x, x1) + cc

)
+ ε3u3(τ, x, x1) + . . . . (34)

Here and below, cc denotes the term that is complex conjugate to the previous one. The un-
known complex function ξ(τ, x, x1) is to be defined. Let us substitute (34) into (14) and
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equate the coefficients of the various powers of ε. Then, at the first degree of ε, we obtain
the identity. Equating the coefficients of ε3, we arrive at the equation

c
∂ξ

∂τ
=(2c2)−1(a2 − 2)

∂2ξ

∂x2
1
+ (2γ0)

−1γ′′(z0)
∂2ξ

∂x2 − iγ−1
0 γ′′(z0)θz

∂ξ

∂x
−

− ac−2 ∂ξ

∂x1
+

(
(2γ0)

−1γ′′(z0)θ
2
z − γ−1

0 d1
)
ξ + 3b1ξ|ξ|2 (35)

with the boundary conditions

−ξ(τ, x, x1 + 1) ≡ ξ(τ, x, x1) ≡ ξ(τ, x + 2π, x1). (36)

Here, we take into account the relations

dξ

dt
=ε2 ∂ξ

∂τ
+

∂ξ

∂x1
(1 − εac−1),

ξt−c =ξ(τ − ε2c, x, x1 − c(1 − εac−1)) =

=ξ(τ, x, x1)− ε2c
∂ξ

∂τ
+ εa

∂ξ

∂x1
+

1
2

ε2a2 ∂2ξ

∂x2
1
+ o(ε2).

Let us introduce the following notation. We arbitrarily fix the value θ0z ∈ [0, 1) and let
εn = εn(θ0z) denote a sequence such that εn → 0, for n → ∞, and θz(εn, θ0z) = θ0z. The
above constructions justify the following result.

Theorem 1. Let a2 > 2 and conditions (24) and (32) be satisfied. Let θ0z ∈ [0, 1) be arbitrarily
fixed, and let the boundary value problem (35), (36) for θz = θ0z have a bounded solution ξ(τ, x, x1)
for τ → ∞, x ∈ [0, 2π], x1 ∈ [0, 1]. Then, the function u(t, x, ε) = ε

(
E(x)ξ(τ, x, x1) + cc

)
+

ε3u3(τ, x, x1) satisfies the boundary value problem (14), (16) up to o(ε3).

Thus, the parabolic boundary value problem (35), (36) is a quasinormal form for the
boundary value problem (14), (16).

2.2.2. Case 0 < a2 < 2

The dynamical properties in this case are significantly more complicated. The principal
parts of the roots λkn(ε) of the characteristic equation are close to iω0ε−1: i.e., they are
asymptotically large. Therefore, it is natural to expect that the oscillations in the boundary
value problem (14), (16) will be rapid.

Note that, in this case,

ω0 =

(
1 − a2

2

)1/2

, p0 =
a2

2
(4 − a2)1/2, d0 = p0|γ0|−1. (37)

The roots of λkn(ε) correspond to the Euler solutions of the linear boundary value prob-
lem (15), (16):

u±
kn(t, x, ε) = exp

(
± i(z0ε−1 + θz + k)x + λkn(ε)t

)
.

It is more convenient to write these functions in the form

u±
kn(t, x, ε) = E±(t, x) exp

(
ikx + iπ(2n + 1)x1 + (λ2kn + O(ε))τ

)
,

where

E±(t, x) = exp
(
± i(c−1ω0ε−1 + c−1(θω − Ω0) + εc−1κ−1(2ω0 − ia)·

· ic−1(θω − Ω0))t + i(z0ε−1 + θz)x
)
,
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R = κ−1(2ω0 − ia) · ic−1(θω − Ω0) = 2(ca)−1, �R = 0,

τ = ε2t, x1 = c−1(1 − εc−1R)t. Hence, we find that

∞

∑
k,n=−∞

ξ±knu±
kn(t, x, ε) = E±(t, x)

∞

∑
k,n=−∞

ξ±kn(τ) exp
(
ikx + iπ(2n + 1)x1

)
=

= E±(t, x)ξ±(τ, x, x1).

Here, ξ±kn denotes arbitrary complex constants, and ξ±kn(τ) = ξ±kn exp
(
(λ2kn + O(ε))τ

)
.

The functions ξ±kn(τ) are the Fourier coefficients of the function ξ±(τ, x, x1), which is 2π-
periodic with respect to x and 1-antiperiodic with respect to x1.

The solutions of the nonlinear boundary value problem (14), (16) are found in the form

u(t, x) = u+(t, x) + u−(t, x), (38)

u±(t, x) = ε
(
ξ±(τ, x, x1)E±(t, x) + cc

)
+ ε3u3(t, τ, x, x1) + . . . ,

where the dependence on t, x and x1 is periodic.
Let us substitute (38) into (14) and equate the coefficients of the same powers ε. In the

first step, we obtain the identity, and for ε3, we obtain an equation for u3. From the
condition in the specified class of functions, we arrive at the relation. Let us substitute (38)
into (14) and equate the coefficients of the same powers ε. In the first step, we obtain the
identity, while, by equating the coefficients of ε3, we obtain an equation for u3. From its
solvability condition in the specified class of functions, we arrive at the relation

∂ξ±

∂τ
= A1

∂2ξ±

∂x2
1

+ A2
∂ξ±

∂x1
+ A3ξ± + B1

∂2ξ±

∂x2 + B2
∂ξ±

∂x
+ c−1βξ±(|ξ±|2 + 2|ξ∓|2), (39)

in which

A1 =− c−3
[
κ−1 − 1

2
(ia − 2ω0)

2κ−2
]

,

A2 =c−3
[
− 2(κ−1 − 1

2
(ia − 2ω0)

2κ−2(θω − Ω0)) + cκ−22ω0(2ω0 − ia)+

+ c2κ−1a(θω − Ω0)

]
,

A3 =c−3
[

1
2
(ia − 2ω0)κ

2(θω − Ω0)
2 −κ−1

]
+ d1c−1 p−1

0 +

+
1
2

γ′′(z0)c−1θ2
z (p0γ0)

−1 − i(cκ)−22iω0(2ω0 − ia)·

· (θω − Ω0)− i(cκ)−1a(θω − Ω0),

B1 =
1
2

c−1γ′′(z0)(p0γ0)
−1,

B2 =c−1γ′′(z0)θz(p0γ0)
−1,

β =b1 + iω0b2 − ω2
0b3 − iω3

0b4.

Recall that the function ξ(τ, x, x1) satisfies the boundary conditions

−ξ(τ, x, x1 + 1) ≡ ξ(τ, x, x1) ≡ ξ(τ, x + 2π, x1). (40)

In order to formulate the final result, we introduce some notations. We arbitrarily fix
θ0ω ∈ [0, 2π) and let the sequence εs = εs(θ0ω) be defined by the condition θω(εs(θ0ω)) =
θ0ω (s = 1, 2, . . .). Let Γ(θ0ω) denote all limit points of the sequence θz(εs(θ0ω)) from the
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interval [0, 1]. Let θ0z denote the limit element of Γ(θ0ω) and let the subsequence εsΓ of the
sequence εs be such that

lim
Γ→∞

θz(εsΓ) = θ0z.

Note that it is possible that the set Γ(θ0ω) coincides with the segment [0, 1], and it is possible
that this set consists of a single element.

Theorem 2. Let 0 < a2 < 2 and d0 = p0|γ0|−1. We arbitrarily fix θ0ω ∈ [0, 2π) and let
θ0z ∈ Γ(θ0ω). Let ξ±(τ, x, x1) be the solution of the boundary value problem (39), (40) that is
bounded for τ → ∞, x ∈ [0, 2π], x1 ∈ [0, 1]. Then, the function

u(t, x, ε) = ε
(
ξ+(τ, x, x1)E+(t, x) + cc + ξ−(τ, x, x1)E−(t, x) + cc

)
+ ε3u3(t, τ, x, x1)

satisfies the boundary value problem (14), (16) up to o(ε3
sΓ
) for τ = ε2t, x1 = (1 − εc−1R)t, for

the sequence ε = εsΓ .

Thus, the boundary value problem (39), (40) is a quasinormal form for the original
boundary value problem (14), (16) in this critical case.

2.3. Small Values of Parameter σ

Below, we will consider important questions about the dynamical properties of the
boundary value problem (14), (16) for small values of σ. We will assume that for some fixed
value of σ1, equality (22) is satisfied.

The interest in this case is due to the fact that, first, as is shown above for small σ,
the corresponding integral expressions in the boundary value problem (14), (16) are close
to being written in the form of a finite difference on the spatial variable.

Second, it follows from (17) that the value of exp
(
− σ2z2/2

)
on the right-hand side

of (17) is small, and hence, the critical cases are determined by the periodic function γ(z).
Thus, the critical values of z0 in (23) are obviously not unique. There are obviously infinitely
many such values. This suggests that the quasinormal form becomes significantly more
complex, and the dynamical properties more interesting and diverse.

Under condition (22) for the function γ(z), we have the equality

γ(z) = −4 sin2
(

z
2

)
· exp

(
− 1

2
ε2σ2

1 z2
)

.

Let
γ0(z) = −4 sin2 z

2
.

Then,

γ(z) = γ0(z)
(

1 − 1
2

ε2σ2
1 z2 + O(ε4)

)
.

The largest value |γ0(z)| = 4, and for all values zm at which this value is reached, we have
the equations

zm = π(2m + 1), m = 0,±1,±2, . . . .

Recall that ε = 2πN−1. Below, we will assume that the value N is even, so all values of
π(2m + 1)ε−1 are integers for all integers m.

Consider the set of integers π(2m + 1)ε−1 + k, k, m = 0,±1,±2, . . .. Let ukmn(t, x)
denote the Euler solutions of the linear problem (15), (16):

ukmn(t, x) = exp
[
i
(
π(2m + 1)ε−1 + k

)
x + λkmn(ε)t

]
.

Here, λkmn(ε) represents the roots of the characteristic equation (17) whose real parts tend
to zero as ε → 0.

100



Mathematics 2024, 12, 790

2.3.1. Building A Quasinormal Form For A2 > 2

Recall that, given a2 > 2, we have ω0 = Ω0 = 0, p0 = 1, |γ0| = 4, and d0 = 1/4. Let
us first consider the asymptotics of λkmn(ε).

Lemma 3. Let conditions (22), (24) and (25) be satisfied. Then, there are asymptotic equalities:

λkmn(ε) = c−1iπ(2n + 1) + ελ1kmn + ε2λ2kmn + . . . ,

where

λ1kmn =iac−2π(2n + 1),

λ2kmn =
1
2
(2 − a2)c−3(π(2n + 1)

)2 − ia2c−3π(2n + 1) + 4d1 −
1
2

σ2
1
(
π(2m + 1)

)2−

− 1
4
(θz + k)2.

The set of Euler solutions of the linear boundary value problem (15), (16)

u(t, x, ε) =
∞

∑
k,m,n=−∞

ξkmn exp
(
i(π(2m + 1)ε−1 + k)x + λkmn(ε)t

)
can be written in the form

u(t, x, ε) =
∞

∑
k,m,n=−∞

ξkmn(τ) exp
(
ikx + iπ(2m + 1)y + iπ(2n + 1)x1

)
=

= ξ(τ, x, y, x1). (41)

Here,

ξkmn(τ) = ξkmn exp
(
λ2kmn + O(ε)τ

)
, y = xε−1, x1 = (1 + εac−1)t.

Based on the representation in (41), we will look for solutions of the nonlinear boundary
value problem (14), (16) of the form

u(t, x) = εξ(τ, x, y, x1) + ε3u3(τ, x, y, x1) + . . . . (42)

After substituting (42) into (14) and following the standard steps, we arrive at the boundary
value problem for determining the unknown function ξ(τ, x, y, x1):

∂ξ

∂τ
=

a2 − 2
2c

· ∂2ξ

∂x2
1
− a2

c2 · ∂ξ

∂x1
+

σ1

2c
· ∂2ξ

∂y2 +
1
4c

· ∂2ξ

∂x2 − iθz

2c
· ∂ξ

∂x
+

+

(
4d1

c
− 1

4c
θ2

z

)
ξ +

b1

c
ξ3, (43)

−ξ(τ, x, y + 1, x1) ≡ ξ(τ, x, y, x1) ≡ ξ(τ, x + 2π, y, x1), (44)

−ξ(τ, x, y, x1 + 1) ≡ ξ(τ, x, y, x1). (45)

As a result of the above constructions, we come to the justification of the following result.

Theorem 3. Let conditions (22), (24) and (25) be satisfied. Let θz0 ∈ [0, 1) be arbitrarily fixed,
and let ξ(τ, x, y, x1) be a solution of the boundary value problem (43)–(45) bounded for τ → ∞,
x ∈ [0, 2π], y ∈ [0, 1], x1 ∈ [0, 1]. Then, for the sequence εs(θz(εs(θz0) = θz0), the function

u(t, x) = εξ(τ, x, y, x1) + ε3u3(τ, x, y, x1)

satisfies the boundary value problem of (14), (16) up to o(ε3
s) for θz = θz0.
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2.3.2. Building Quasinormal Forms for 0 < A2 < 2

Recall that, in this case, Equation (37) holds.
Let us consider the asymptotics of such roots of the characteristic Equation (17) whose

real parts tend to zero as ε → 0.
In the following, θω denotes such a quantity that complements the expression ω0ε−1

to a value that is an odd multiple of πc−1.

Lemma 4. Let 0 < a2 < 2 and let conditions (22) and (24) be satisfied. Then, for λkmn(ε),
k, m, n = 0,±1,±2, . . . , the asymptotic equalities take place:

λkmn(ε) = i
(
ωε−1 + θω − c−1Ω0 + c−1π(2n + 1)

)
+ ελ1kmn + ε2λ2kmn + . . . ,

λ1kmn = −2i(ac)−1K, K = θω − c−1Ω0 + c−1π(2n + 1),

λ2kmn = −D1K2 + D2K − 1
2

σ2
1
(
π(2m + 1)

)2
+ d1d−1

0 − K2,

D1 = 2a−2c−3 − (1 + iaω0 − ω2
0)

−1c−3,

D2 = 2i(2iω0 + a)
(

p0 exp(iΩ0)ca
)−1.

Note that �D1 > 0.
The set of Euler solutions of the linear boundary value problem (15), (16) can then be

represented as

u(t, x) =
∞

∑
k,m,n=−∞

ξkmn exp
(
i(π(2m + 1)ε−1 + k)x + λkmn(ε)t

)
=

= E(t)
∞

∑
k,m,n=−∞

ξkmn(τ) exp
(
iπ(2m + 1)y + ikx + iπ(2n + 1)x1

)
=

= E(t)ξ(τ, x, y, x1). (46)

Here, τ = ε2t, E(t) = exp
[
i(ω0ε−1 + (θω − c−1Ω0)(1 − 2ε(ca)−1))t

]
, ξkmn(τ) = ξkmn ·

exp
(
(λ2kmn + O(ε))τ

)
, y = xε−1, x1 = c−1(1 − 2ε(ca)−1)t. Based on the representation

in (46), we will look for solutions of the nonlinear boundary value problem (14), (16) of
the form

u(t, x) = ε
(
ξ(τ, x, y, x1)E(t) + cc

)
+ ε3u3(t, τ, x, y, x1) + . . . , (47)

where the dependence on x, y, x1 and t is periodic.
By substituting (47) into (14) and performing some straightforward calculations, we

arrive at an equation for u3. From its solvability condition in the specified class of functions,
we obtain

∂ξ

∂τ
=D1

∂2ξ

∂x2
1
+ i(2D1 + D2)

∂ξ

∂x1
(θω − c−1Ω0) +

1
2c

σ2
1

∂2ξ

∂y2 +

+
1
c

∂2ξ

∂x2 +
(
− D1(θω − Ω0)

2 + D2(θω − Ω0)
)
ξ + c−1βξ|ξ|2. (48)

For this equation, the boundary conditions are satisfied:

−ξ(τ, x, y, x1 + 1) ≡ ξ(τ, x, y, x1) ≡ ξ(τ, x + 2π, y, x1), (49)

−ξ(τ, x, y + 1, x1) ≡ ξ(τ, x, y, x1). (50)

Let us summarize.
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Theorem 4. Let conditions (22), (24) and (27) be satisfied. We arbitrarily fix θ0ω ∈ [0, c−1π) and
let ξ(τ, x, y, x1) be a solution of the boundary value problem (48)–(50) for θω = θ0ω bounded for
τ → ∞, x ∈ [0, 2π], y ∈ [0, 1], x1 ∈ [0, 1]. Then, the function

u(t, x) = ε
(
ξ(τ, x, y, x1)E(t) + cc

)
+ ε3u3(t, τ, x, y, x1)

satisfies the boundary value problem (14), (16) up to o(ε3) for τ = ε2t, x1 = c−1(1 − 2ε(ca)−1)t
and ε = εs(θ0ω).

Thus, in this section, we construct quasinormal forms, namely, boundary value prob-
lems of the parabolic type, (43)–(45) and (48)–(50), with three spatial variables. They play
the role of the normal forms of the original boundary value problem (14), (16) in the above
critical cases.

3. Advective-Type Coupling

3.1. The Results of Linear Analysis in the Case Φ(s) = Φ1(s)

At each fixed z and under the condition

d|γ(z)| < p0

Equation (20) has no real roots. Let us assume that

γ0 = max
−∞<z<∞

|γ(z)| = |γ(z0)| (z0 ≥ 0). (51)

The value of z0 is defined in a unique way and is found simply. From the condition
|γ(z0)|′ = 0, we find that z0 is the first positive root of equation

z = 2(σ2z)−1. (52)

Given d|γ0| < p0 and sufficiently small ε, all roots of Equation (17) have negative
real parts that move away from zero as ε → 0. Given d|γ0| > p0, we find a z0 such that
Equation (17) has a root with a positive real part that moves away from zero as ε → 0.

Let us restrict ourselves to the case where the parameter d is positive. The value of
the parameter d0, which distinguishes the critical case in the stability problem (15), (16), is
determined by the equality

d0 = p0|γ0|−1.

In this connection, we assume below that, for an arbitrary fixed value d1 for the parameter
d, we have

d = d0 + ε2d1. (53)

Under this condition, let us consider the asymptotics of all those roots of the character-
istic Equation (17) whose real parts tend to zero as ε → 0. There are infinitely many such
roots, so the critical case has infinite dimensionality.

Let us introduce some more notations. Let Ω0 = Ω0(ω0) be a real value for which

1 − ω2
0 + iω = p0 exp(iΩ0).

As above, we let θω = θω(ε) ∈ [0, 2π) denote an expression that complements the value of
cω0ε−1 to an integer multiple of 2π. Given ω0 = 0, we consider θω = 0. We similarly let
θz = θz(ε) ∈ [0, 1) denote an expression that complements the value of z0ε−1 to an integer.
Given z0 = 0, we consider that θz = 0.

We shall now formulate a statement about the asymptotics of the roots of (17) in the
case of (18).

Lemma 5. Let γ(z) = γ1(z) and
a2 > 2. (54)
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Then, d0γ0 = p0 = 1, ω0 = 0, and for the roots λkn(ε) (k, n = 0,±1,±2, . . .) of Equation (17),
the real parts of which tend to zero as ε → 0, the asymptotic equations are satisfied:

λkn(ε) = πic−1
(

2n +
1
2

)
+ ελ1kn + ε2λ2kn + . . . , (55)

where

λ1kn = −c−2iaπ

(
2n +

1
2

)
,

λ2kn = c−3
(

1 − 1
2

a2
)(

π

(
2n +

1
2

))2

− ic−3a2π

(
2n +

1
2

)
+ c−1d1γ0 p−1

0 +

+
1
2

c−1γ′′
0 (z0)(θz + k)2(p0γ0)

−1.

Lemma 6. Let γ(z) = γ1(z) and
0 < a2 < 2. (56)

Then, ω0 > 0, and for the roots λkn(ε) (k, n = 0,±1,±2, . . .) of Equation (17) whose real parts
tend to zero as ε → 0, the asymptotic equations are satisfied:

λkn(ε) = iω0ε−1 + λ0n + ελ1kn + ε2λ2kn + . . . , (57)

where

λ0n = ic−1
[

π

(
2n +

1
2

)
+ θω − Ω0

]
, κ = p0 exp(iΩ0),

λ1kn = ic−1κ−1(2ω0 − ia)λ0n, (58)

λ2kn =c−1
[(

κ−1 − 1
2
(−2ω0 + ia)2κ−2

)
λ2

0n + d1 p−1
0 −

+
1
2

γ′′(z0)(θz + k)2(p0γ0)
−1 − (cκ)−12iω0κ

−1(2ω0 − ia)λ0n − iκ−1aλ0n

]
.

Note that

�
(
κ−1 − 1

2
(−2ω0 + ia)2κ−2

)
< 0, �λ1kn = 0. (59)

The roots λkn(ε) of the characteristic Equation (17) allow us to determine solutions to
the linear boundary value problem (15), (16):

ukn(t, x, ε) = exp
(
i(z0ε−1 + θz + k)x + λkn(ε)t

)
,

and hence, the formal set of solutions is

u(t, x, ε) =
∞

∑
k,n=−∞

(
ξknukn(t, x, ε) + ξ̄knūkn(t, x, ε)

)
, (60)

where ξkn denotes arbitrary complex constants.

Remark 2. Together with the roots λkn(ε) of Equation (17), there are the roots λkn(ε), which
correspond to the solutions of the boundary value problem (15), (16):

ukn(t, x, ε) = exp
(
− i(z0ε−1 + θz + k)x + λkn(ε)t

)
.
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Note that for the parameters z and −z, the roots in (17) are the same, since the dependence of the
right-hand side of (17) on z is even. This means that for the modes of −(z0ε−1 + θz + k), the roots
are the same, i.e., λkn(ε). Therefore, the problem (15), (16) has the following solutions:

ũkn(t, x, ε) = exp
(
− i(z0ε−1 + θz + k)x + λkn(ε)t

)
.

Under the conditions of Lemma 5, we have

ũkn(t, x, ε) = ukn(t, x, ε),

and under the conditions of Lemma 6, this is no longer the case.

3.2. The Results of Linear Analysis in the Case Φ(s) = Φ2(s)

In the case of (19), the value of z0 > 0 is defined as the first positive root from the
equation

z
2
= (2σ2z)−1. (61)

Lemma 7. Let condition (19) be satisfied and a2 > 2. Then, d0γ0 = p0 = 1, ω0 = 0, and for
the roots λkn(ε) (k, n = 0,±1,±2, . . .) of Equation (17) whose real parts tend to zero as ε → 0,
the asymptotic equations are satisfied:

λkn(ε) =

[
iπ

(
1
2
+ 2n

)
+

i
2
(
z0 + ε(θz + k)

)]
c−1 + ελ1kn + ε2λ2kn + . . . , (62)

where

λ1kn = −ic−2a
(

π

(
1
2
+ 2n

)
+

z0

2

)
− 1

2
c−1(θz + k),

λ2kn =

(
2πn

c

)2[2 − a2

c

]
+

2πn
c

[
π

2c2 (2 − a2) +
z0

c2 (2 − a2) + i
a2

c

]
+ d0c−1γ′′(z0)k2+

+ 2d0c−1γ′′(z0)θzk + B1,

B1 = c−1d1γ0 + c−1d0γ′′(z0)θ
2
z +

π2

4c3 (2− a2)+
π2

2c3 z0(2− a2)+
z2

4c3 (2− a2)− ia2

2c2 (π + z0).

Lemma 8. Let condition (19) be satisfied and

0 < a2 < 2. (63)

Then, ω0 > 0, and for the roots λkn(ε) (k, n = 0,±1,±2, . . .) of Equation (17), the real parts of
which tend to zero as ε → 0, the asymptotic equations are fulfilled:

λkn(ε) = i
[
ω0ε−1 + c−1λ0n

]
+ ε

(
i
2

c−1(θz + k) + λ1kn

)
+ ε2λ2kn + . . . , (64)

where

λ0n = π

(
2n +

1
2

)
+ θω − Ω0 +

z0

2
, κ = p0 exp(iΩ0),

λ1kn = − 2i
ac2 λ0n, (65)

λ2kn =− 2c−3a−2λ2
0n + d1(cd0)

−1 + d0(cγ0)
−1γ′′(z0)(θz + k)2+

+ (cp0 exp(iΩ0))
−1

[
c−2λ2

0n − (2iω0 + a)
(
− 2i

ac
λ0n +

1
2
(θz + k)

)]
.
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Remark 3. The roots λkn(ε) of the characteristic Equation (17) allow us to determine solutions to
the linear boundary value problem (15), (16):

ukn(t, x, ε) = exp
(
i(z0ε−1 + θz + k)x + λkn(ε)t

)
,

and hence, the formal set of solutions is

u(t, x, ε) =
∞

∑
k,n=−∞

(
ξknukn(t, x, ε) + ξ̄knūkn(t, x, ε)

)
, (66)

where ξkn denotes arbitrary complex constants.

This remark applies to Lemmas 5–8.

3.3. Nonlinear Analysis for Φ(s) = Φ1(s)

Consider the cases a2 > 2 and a2 < 2 separately.

3.3.1. Case a2 > 2

In this case, we have the equality ω0 = 0, Ω0 = 0, p0 = 1. The critical case in the
stability problem is defined by the equality

d0|γ0| = 1. (67)

The following will be based on the representation in (66). Let us write it in a more conve-
nient form:

u(t, x, ε) = E(t, x)
∞

∑
k,n=−∞

ξkn exp
(

ikx + 2iπnc−1(1 − εc−1a)t + (λ2kn + O(ε))τ

)
=

= E(t, x)ξ(τ, x, x1), (68)

where τ = ε2t is the “slow” time, E(t, x) = exp(i(z0ε−1 + θz)x+ iπ(2c)−1(1− εac−1)t), and
ξkn(τ) = ξkn exp

(
(λ2kn + O(ε))τ

)
denotes coefficients of the expansion of ξ(τ, x, x1) into

a Fourier series with respect to the 2π-periodic argument x and the c-periodic argument
x1 = (1 − εc−1a)t.

Solutions of the nonlinear boundary value problem (14), (16) are found in the form

u = ε
(
E(t, x)ξ(τ, x, x1) + cc

)
+ ε3u3(τ, x, x1) + . . . . (69)

Here and below, cc denotes the term that is complex conjugate to the previous one. The un-
known complex function ξ(τ, x, x1) is to be defined. Let us substitute (69) into (14) and
collect the coefficients of the same powers of ε. Then, at the first power of ε, we obtain an
identity. Equating the coefficients of ε3, we arrive at the equation

c
∂ξ

∂τ
=

(
1
2

a2 − 1
)

∂2ξ

∂x2
1
+ (2γ0)

−1γ′′(z0)
∂2ξ

∂x2 − iγ−1
0 γ′′(z0)θz

∂ξ

∂x
+

+ ic−1
(

a2 − π

2

(
1 − 1

2
a2
))

∂ξ

∂x1
+ B0ξ + 3b1ξ|ξ|2, (70)

B0 = c−2π2 1
4

(
1 − 1

2
a2
)
+ ia2c−2 1

2
π +

1
2

γ′′(z0)θ
2
z + 2d1c−1γ0

with the boundary conditions

ξ(τ, x, x1 + c) ≡ ξ(τ, x, x1) ≡ ξ(τ, x + 2π, x1). (71)
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Here, the following relations are taken into account:

dξ

dt
=ε2 ∂ξ

∂τ
+

∂ξ

∂x1
(1 − εac−1),

ξt−c =ξ(τ − ε2c, x, x1 − c(1 − εac−1)) =

=ξ(τ, x, x1)− ε2c
∂ξ

∂τ
+ εa

∂ξ

∂x1
+

1
2

ε2a2 ∂2ξ

∂x2
1
+ o(ε2).

Let us introduce the following notation. We arbitrarily fix the value θ0z ∈ [0, 1) and
let εn = εn(θ0z) denote a sequence for which εn → 0 as n → ∞ and θz(εn, θ0z) = θ0z. The
above constructions justify the following result.

Theorem 5. Let a2 > 2 and conditions (53) and (67) be satisfied. Let θ0z ∈ [0, 1) be arbitrarily
fixed, and let the boundary value problem (70), (71) at θz = θ0z have a bounded solution ξ(τ, x, x1)
as τ → ∞, x ∈ [0, 2π], x1 ∈ [0, c]. Then, the function u(t, x, ε) = ε

(
E(t, x)ξ(τ, x, x1) + cc

)
+

ε3u3(τ, x, x1) satisfies the boundary value problem (14), (16) with accuracy up to o(ε3).

Thus, the parabolic boundary value problem (70), (71) is a quasinormal form for the
boundary value problem (14), (16).

3.3.2. Case a2 < 2

The dynamical properties in this case are much more complicated. The principal
parts of the roots λkn(ε) of the characteristic equation are close to iω0ε−1: i.e., they are
asymptotically large. Therefore, the oscillations in the boundary value problem (14), (16)
will be rapid.

Note that, in this case,

ω0 =

(
1 − a2

2

)1/2

, p0 =
a2

2
(4 − a2)1/2, d0 = p0|γ0|−1. (72)

The roots of λkn(ε) correspond to the Euler solutions of the linear boundary value prob-
lem (15), (16):

u±
kn(t, x, ε) = exp

(
± i(z0ε−1 + θz + k)x + λkn(ε)t

)
.

It is more convenient to write these functions in the form

u±
kn(t, x, ε) = E±(t, x) exp

(
ikx + 2iπnx1 + (λ2kn + O(ε))τ

)
,

where

E±(t, x) = exp
(

i(c−1ω0ε−1 + c−1
(

θω − Ω0 +
π

2

)
+ εc−1κ−1(2ω0 − ia)·

· ic−1(θω − Ω0))t ± i(z0ε−1 + θz)x
)

,

R = κ−1(2ω0 − ia) · ic−1(θω − Ω0), �R = 0,

τ = ε2t, x1 = (1 − εc−1R)t. Hence, we find that

∞

∑
k,n=−∞

ξ±knu±
kn(t, x, ε) = E±(t, x)

∞

∑
k,n=−∞

ξ±kn(τ) exp
(
ikx + 2iπnx1

)
=

= E±(t, x)ξ±(τ, x, x1).
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Here, ξ±kn denotes arbitrary complex constants, and ξ±kn(τ) = ξ±kn exp
(
(λ2kn + O(ε))τ

)
.

The functions ξ±kn(τ) are the Fourier coefficients of the function ξ±(τ, x, x1), which is 2π-
periodic with respect to x and c-periodic with respect to x1.

Solutions of the nonlinear boundary value problem (14), (16) are found in the form

u(t, x) = u+(t, x) + u−(t, x), (73)

u±(t, x) = ε
(
ξ±(τ, x, x1)E±(t, x) + cc

)
+ ε3u3(t, τ, x, x1) + . . . ,

where the dependencies on t, x and x1 are periodic.
Let us substitute (73) into (14) and equate the coefficients of the same powers of ε.

In the first step, we obtain an identity, and by collecting the coefficients of ε3, we obtain the
equation for u3. From its solvability condition in the specified class of functions, we arrive
at the relation

∂ξ±

∂τ
= A1

∂2ξ±

∂x2
1

+ A2
∂ξ±

∂x1
+ A3ξ± + B1

∂2ξ±

∂x2 + B2
∂ξ±

∂x
+ c−1βξ±(|ξ±|2 + 2|ξ∓|2), (74)

in which

A1 =− c−3
[
κ−1 − 1

2
(ia − 2ω0)

2κ−2
]

,

A2 =c−3
[
− 2(κ−1 − 1

2
(ia − 2ω0)

2κ−2(θω − Ω0)) + cκ−22ω0(2ω0 − ia)+

+ c2κ−1a(θω − Ω0)

]
,

A3 =c−3
[

1
2
(ia − 2ω0)κ

2(θω − Ω0)
2 −κ−1

]
+ d1c−1 p−1

0 +

+
1
2

γ′′(z0)c−1θ2
z (p0γ0)

−1 − i(cκ)−22iω0(2ω0 − ia)·

· (θω − Ω0)− i(cκ)−1a(θω − Ω0),

B1 =
1
2

c−1γ′′(z0)(p0γ0)
−1,

B2 =c−1γ′′(z0)θz(p0γ0)
−1,

β =b1 + iω0b2 − ω2
0b3 − iω3

0b4.

Recall that the function ξ(τ, x, x1) satisfies the boundary conditions

ξ(τ, x, x1 + c) ≡ ξ(τ, x, x1) ≡ ξ(τ, x + 2π, x1). (75)

In order to formulate the final result, we introduce some notations. We arbitrarily fix
θ0ω ∈ [0, 2π) and let the sequence εs = εs(θ0ω) be defined by the condition θω(εs(θ0ω)) =
θ0ω (s = 1, 2, . . .). We let Γ(θ0ω) denote all limit points of the sequence θz(εs(θ0ω)) from the
interval [0, 1]. We let θ0z denote the limit element of Γ(θ0ω) and let the subsequence εsΓ of
the sequence εs be such that

lim
Γ→∞

θz(εsΓ) = θ0z.

Note that it is possible that the set Γ(θ0ω) coincides with the segment [0, 1], and it is possible
that this set consists of a single element.

Theorem 6. Let 0 < a2 < 2 and d0 = p0|γ0|−1. We arbitrarily fix θ0ω ∈ [0, 2π) and let
θ0z ∈ Γ(θ0ω). Let ξ±(τ, x, x1) be a bounded solution of the boundary value problem (74), (75)
as τ → ∞, x ∈ [0, 2π], x1 ∈ [0, c]. Then, the function

u(t, x, ε) = ε
(
ξ+(τ, x, x1)E+(t, x) + cc + ξ−(τ, x, x1)E−(t, x) + cc

)
+ ε3u3(t, τ, x, x1)
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satisfies the boundary value problem (14), (16) up to o(ε3
sΓ
) for τ = ε2t, x1 = (1 − εc−1R)t, for

the sequence ε = εsΓ .

Thus, the boundary value problem (74), (75) is a quasinormal form for the original
boundary value problem (14), (16) in this critical case.

3.4. Nonlinear Analysis for Φ(s) = Φ2(s)

And here, we consider the cases a2 > 2 and a2 < 2 separately.

3.4.1. Case a2 > 2

In this case, we have the equality ω0 = 0, Ω0 = 0, p0 = 1. The critical case in the
stability problem is defined by the equality

d0|γ0| = p0. (76)

The following will be based on the representation in (66). Let us write it in a more conve-
nient form:

u(t, x, ε) = E(t, x)
∞

∑
k,n=−∞

ξkn exp
(

ikx + 2iπnc−1(1 − εc−1a)t + (λ2kn + O(ε))τ

)
=

= E(t, x)ξ(τ, x, x1), (77)

where τ = ε2t is the “slow” time,

E(t, x) = exp
(
i(ω0ε−1 + θω − Ω0 +

1
2
(z0 + π + εθz)) + i(z0ε−1 + θz)x + iπ(2c)−1(1 − εac−1)t

)
,

and ξkn(τ) = ξkn exp
(
(λ2kn + O(ε))τ

)
denotes coefficients of the expansion of ξ(τ, x, x1)

into a Fourier series with respect to the 2π-periodic argument x and the c-periodic argument
x1 = (1 − εc−1a)t.

The solutions of the nonlinear boundary value problem (14), (16) are found in the form

u = ε
(
E(t, x)ξ(τ, x, x1) + cc

)
+ ε3u3(τ, x, x1) + . . . . (78)

Here and below, cc denotes the term that is complex conjugate to the previous one. The un-
known complex function ξ(τ, x, x1) is to be defined. Let us substitute (78) into (14) and
collect the coefficients of the same powers of ε. Then, at the first power of ε, we obtain an
identity. Equating the coefficients of ε3, we arrive at the equation

c
∂ξ

∂τ
=

(
1
2

a2 − 1
)

∂2ξ

∂x2
1
+ (2γ0)

−1γ′′(z0)
∂2ξ

∂x2 − iγ−1
0 γ′′(z0)θz

∂ξ

∂x
+

+ ic−1
(

a2 − π

2

(
1 − 1

2
a2
))

∂ξ

∂x1
+ B0ξ + 3b1ξ|ξ|2, (79)

B0 = c−2π2 1
4

(
1 − 1

2
a2
)
+ ia2c−2 1

2
π +

1
2

γ′′(z0)θ
2
z + 2d1c−1γ0

with the boundary conditions

ξ(τ, x, x1 + c) ≡ ξ(τ, x, x1) ≡ ξ(τ, x + 2π, x1). (80)

Let us introduce some notation. We arbitrarily fix the value θ0z ∈ [0, 1) and let εn = εn(θ0z) de-
note a sequence for which εn → 0 as n → ∞ and θz(εn, θ0z) = θ0z. The above constructions
justify the following result.

Theorem 7. Let a2 > 2 and conditions (53) and (76) be satisfied. Let θ0z ∈ [0, 1) be arbitrarily
fixed, and let the boundary value problem (79), (80) at θz = θ0z have a bounded solution ξ(τ, x, x1)
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as τ → ∞, x ∈ [0, 2π], x1 ∈ [0, c]. Then, the function u(t, x, ε) = ε
(
E(t, x)ξ(τ, x, x1) + cc

)
+

ε3u3(τ, x, x1) satisfies the boundary value problem (14), (16) with accuracy up to o(ε3).

Thus, the parabolic boundary value problem (79), (80) is a quasinormal form for the
boundary value problem (14), (16).

3.4.2. Case a2 < 2

The principal parts of the roots λkn(ε) of the characteristic equation are close to
iω0ε−1: i.e., they are asymptotically large. Therefore, the oscillations in the boundary value
problem (14), (16) will be rapid.

Note that, in this case,

ω0 =

(
1 − a2

2

)1/2

, p0 =
a2

2
(4 − a2)1/2, d0 = p0|γ0|−1. (81)

The roots of λkn(ε) correspond to the Euler solutions of the linear boundary value prob-
lem (15), (16):

u±
kn(t, x, ε) = exp

(
± i(z0ε−1 + θz + k)x + λkn(ε)t

)
.

It is more convenient to write these functions in the form

u±
kn(t, x, ε) = E±(t, x) exp

(
ikx + 2iπnx1 + (λ2kn + O(ε))τ

)
,

where

E±(t, x) = exp
(

i(c−1ω0ε−1 + c−1
(

θω − Ω0 +
π

2

)
+ εc−1κ−1(2ω0 − ia)·

· ic−1(θω − Ω0))t ± i(z0ε−1 + θz)x
)

,

R = κ−1(2ω0 − ia) · ic−1(θω − Ω0) =
2
a

, �R = 0,

τ = ε2t, x1 = (1 − εc−1R)t. Hence we find that

∞

∑
k,n=−∞

ξ±knu±
kn(t, x, ε) = E±(t, x)

∞

∑
k,n=−∞

ξ±kn(τ) exp
(
ikx + 2iπnx1

)
=

= E±(t, x)ξ±(τ, x, x1).

Here, ξ±kn denotes arbitrary complex constants, and ξ±kn(τ) = ξ±kn exp
(
(λ2kn + O(ε))τ

)
.

The functions ξ±kn(τ) are the Fourier coefficients of the function ξ±(τ, x, x1), which is 2π-
periodic with respect to x and c-periodic with respect to x1.

The solutions of the nonlinear boundary value problem (14), (16) are found in the form

u(t, x) = u+(t, x) + u−(t, x), (82)

u±(t, x) = ε
(
ξ±(τ, x, x1)E±(t, x) + cc

)
+ ε3u3(t, τ, x, x1) + . . . ,

where the dependencies on t, x and x1 are periodic.
Let us substitute (82) into (14) and equate the coefficients of the same powers of ε.

In the first step, we obtain an identity, whereas, by collecting the coefficients of ε3, we obtain
the equation for u3. From its solvability condition in the specified class of functions, we
arrive at the relation

c
∂ξ±

∂τ
= A1

∂2ξ±

∂x2
1

+ A2
∂ξ±

∂x1
+ A3

∂2ξ±

∂x2 + A4
∂ξ±

∂x
+ A5ξ + βξ±(|ξ±|2 + 2|ξ∓|2), (83)
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in which

A1 = 2a2 −
(

p0 exp(iΩ0)
)−1, �A1 > 0,

A2 = 2iA1lc−1 + 4a−2,

A3 = d0γ−1
0 γ′′(z0),

A4 = −2iθzd0γ−1
0 γ′′(z0)− 2(a2c)−1,

A5 = A1l2 + d1d−1
0 + d0γ−1

0 γ′′(z0)θ
2
z − 4i(a2c)−1l + a−1θz,

l = θω − Ω0 +
1
2
(π + z0),

β = b1 + iω0b2 − ω2
0b3 − iω3

0b4.

Recall that the function ξ(τ, x, x1) satisfies the boundary conditions

ξ(τ, x, x1 + c) ≡ ξ(τ, x, x1) ≡ ξ(τ, x + 2π, x1). (84)

In order to formulate the final result, we introduce some notations. We arbitrarily fix
θ0ω ∈ [0, 2π) and let the sequence εs = εs(θ0ω) be defined by the condition θω(εs(θ0ω)) =
θ0ω (s = 1, 2, . . .). Let Γ(θ0ω) denote all limit points of the sequence θz(εs(θ0ω)) from the
interval [0, 1]. Let θ0z denote the limit element of Γ(θ0ω), and let the subsequence εsΓ of the
sequence εs be such that

lim
Γ→∞

θz(εsΓ) = θ0z.

We formulate the final result.

Theorem 8. Let 0 < a2 < 2 and d0 = p0|γ0|−1. We arbitrarily fix θ0ω ∈ [0, 2π) and let
θ0z ∈ Γ(θ0ω). Let ξ±(τ, x, x1) be a bounded solution of the boundary value problem (74), (75) as
τ → ∞, x ∈ [0, 2π], x1 ∈ [0, c]. Then, the function

u(t, x, ε) = ε
(
ξ+(τ, x, x1)E+(t, x) + cc + ξ−(τ, x, x1)E−(t, x) + cc

)
+ ε3u3(t, τ, x, x1)

satisfies the boundary value problem (14), (16) up to o(ε3
sΓ
) for τ = ε2t, x1 = (1 − εc−1R)t, for

the sequence ε = εsΓ .

Thus, the boundary value problem (74), (75) is a quasinormal form for the original
boundary value problem (14), (16) in this critical case.

3.5. Quasinormal Forms in the Case of Small Values of the Parameter σ

Here, we assume that for each fixed σ1 > 0, the following condition is satisfied:

σ = εσ1. (85)

Let us separately consider the cases where Φ(s) = Φ1(s) and Φ(s) = Φ2(s).

3.5.1. Building a Quasinormal Form under the Condition Φ(s) = Φ1(s) and A2 > 2

Under condition (85) for the function γ(z), we have the following:

γ(z) = 2i(sin z) · exp
(
− 1

2
ε2σ2

1 z2
)

.

Set
γ0(z) = 2i sin z.

Then,

γ(z) = γ0(z)
(

1 − 1
2

ε2σ2
1 z2 + O(ε4)

)
.
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The largest value |γ0(z)| = 2, and for all values z±m at which this value is reached, we have
the equations

z±m = π

(
2m ± 1

2

)
, m = 0,±1,±2, . . . .

Recall that ε = 2πN−1. Consider the sets of integers π(2m ± 1/2)ε−1 + k, k, m = 0,±1,±2, . . ..
We let ukmn(t, x) denote the Euler solutions of the linear problem (15), (16):

u±
kmn(t, x) = exp

[
i
(
π

(
2m +

1
2

)
ε−1 + θzm + k

)
x + λ±

kmn(ε)t
]

.

Here, λ±
kmn(ε) denotes the roots of the characteristic Equation (17) whose real parts tend to

zero as ε → 0. Note that

θzm =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
0, N = 4P
3/4, N = 4P + 1
1/2, N = 4P + 2
1/4, N = 4P + 3.

Recall that, for a2 > 2, we have ω0 = Ω0 = 0, p0 = 1, |γ0| = 2, d0 = 1/2. Let us first
consider the asymptotics of λ±

kmn(ε).

Lemma 9. Let conditions (53), (54) and (85) be satisfied. Then, there are the asymptotic relations

λ±
kmn(ε) = c−1iπ

(
2n ± 1

2

)
+ ελ±

1kmn + ε2λ±
2kmn + . . . ,

where

λ±
1kmn =iac−2π

(
2n ± 1

2

)
,

cλ±
2kmn =

1
2
(2 − a2)c−2π2

(
2n ± 1

2

)2

− ia2c−2π

(
2n ± 1

2

)
+ 4d1 −

1
2

σ2
1 π2

(
2m ± 1

2

)2

−

− 1
4
(k ± θzm)

2.

The set of Euler solutions of the linear boundary value problem (15), (16)

u±(t, x, ε) =
∞

∑
k,m,n=−∞

ξ±kmn exp
[

i
(

π

(
2m ± 1

2

)
ε−1 ± θzm + k

)
x + λ±

kmn(ε)t
]

can be written in the form

u±(t, x, ε) =E±(t, x)
∞

∑
k,m,n=−∞

ξ±kmn(τ) exp
[

ikx + 2iπnc−1x1 + 2iπmy
]
=

= ξ±(τ, x, x1, y). (86)

Here,

E±(t, x) = exp
[
± i

π

2

(
c−1(1 − εac−1)t + (ε−1 + θzm)x

)]
,

ξ±kmn(τ) = ξ±kmn exp
(
λ±

2kmn + O(ε)τ
)
, y = xε−1, x1 = (1 + εac−1)t.
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Given that E−(t, x) = E+
(t, x), we will look for solutions of the nonlinear boundary value

problem (14), (16) in the form of

u(t, x) = ε

(
E(t, x)ξ(τ, x, x1, y) + cc

)
+ ε3u3(τ, x, x1, y) + . . . . (87)

Substituting (87) into (14) and performing the standard steps, we arrive at the boundary
value problem for determining the unknown function ξ(τ, x, y, x1):

c
∂ξ

∂τ
= −

(
1 − 1

2
a2
)

∂2ξ

∂x2
1
+

∂ξ

∂x1

(
a2

c
− iπ

c

(
1 − 1

2
a2
))

+
∂2ξ

∂x2 + iθz ·
∂ξ

∂x
− σ2

1
2

· ∂2ξ

∂y2 +

+ iσ2
1 π2 · ∂ξ

∂y
+

(
2d1 +

π2

4c2

(
1 − 1

2
a2
)
+ i

a2π2

c2 − 1
2

θ2
z −

1
8

σ2
1 π2

)
ξ + b1ξ|ξ|2, (88)

ξ(τ, x + 2π, x1, y) ≡ ξ(τ, x, x1, y) ≡ ξ(τ, x, x1 + c, y) ≡ ξ(τ, x, x1, y + 1). (89)

As a result of the above constructions, we come to the justification of the following result.

Theorem 9. Let conditions (53), (54) and (85) be satisfied. Let θz0 ∈ [0, 1) be arbitrarily fixed, and let
ξ(τ, x, x1, y) be a bounded solution of the boundary value problem (88)–(89) as τ → ∞, x ∈ [0, 2π],
y ∈ [0, 1], x1 ∈ [0, c]. Then, for the sequence εs(θz(εs(θz0) = θz0), the function

u(t, x) = ε
(
E(t, x)ξ(τ, x, x1, y) + cc

)
+ ε3u3(τ, x, x1, y)

satisfies the boundary value problem of (14), (16) up to o(ε3
s) at θz = θz0.

3.5.2. Building Quasinormal Forms under the Conditions Φ(s) = Φ2(s), σ = εσ1
and A2 > 2

The values of the parameter z for which the critical cases are realized are determined
by the following relation:

zm = π(2m + 1); m = 0,±1,±2, . . . .

Thus, γ0(zm) = −2 and p0 = 1, ω0 = Ω0 = 0, d0 = 1/2. It follows from the condition
ε = 2πN−1 that

θz = θzm =

⎧⎨⎩0, if N − even,
1
2

, if N − odd.

Below, we separately consider the cases where θz = 0 and where θz = 1/2.

3.5.3. Building Quasinormal Forms for θz = 0

For the roots λkmn(ε) (k, m, n = 0,±1,±2, . . .) of the characteristic Equation (17) whose
real parts tend to zero as ε → 0, the following asymptotic equality takes place:

λkmn(ε) = iπ(2n + 1) + ελ1kmn + ε2λ2kmn + . . . , (90)

λ1kmn = −iac−2π(2n + 1) +
1
2

ic−1k,

cλ2kmn =

(
1 − 1

2
a2
)
(π(2n + 1)c−1)2 − 1

8
k2 − 1

2
σ2

1 (π(2m + 1))2 − 1
2

aπ(2n + 1)k+

+ ia2c−1π(2n + 1)− ia(2c)−1k + 2d1.
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The solutions of the linear boundary value problem (15), (16) can then be written in the form

u(t, x) =
∞

∑
k,m,n=−∞

ξkmn exp
[
iπ(2m + 1)ε−1x + kx +

(
iπ(2n + 1)(1 − εac−1)−

− εa(2c)−1k
)
t + (λ2kmn + O(ε))τ

]
=

=
∞

∑
k,m,n=−∞

ξkmn(τ) exp
[
iπ(2m + 1)y + iπ(2n + 1)x1 + ikx2

]
=

= ξ(τ, x1, x2, y), (91)

where
ξkmn(τ) = ξkmn · exp[(λ2kmn + O(ε))τ],

x1 = (1 − εac−1)t, x2 = x − εa(2c)−1t, y = xε−1.
(92)

Based on equality (91), we seek solutions to the nonlinear boundary value problem (14),
(16) of the form

u(t, x, ε) = εξ(τ, x1, x2, y) + εu3(τ, x1, x2, y) + . . . .

Substituting this expression into (14) and performing the standard steps, we arrive at the
parabolic boundary value problem for finding a real function ξ(τ, x1, x2, y):

c
∂ξ

∂τ
=

(
1
2

a2 − 1
)

∂2ξ

∂x2
1
+

1
8

∂2ξ

∂x2
2
+

σ2
1

2
· ∂2ξ

∂y2 − 1
2

∂2ξ

∂x1∂x2
+ ac−1 ∂ξ

∂x1
−

− a(2c)−1 ∂ξ

∂x2
+ 2d1ξ + b1ξ|ξ|2, (93)

with the boundary conditions

−ξ(τ, x1 + c, x2, y) ≡ ξ(τ, x1, x2, y) ≡ ξ(τ, x1, x2 + 2π, y), (94)

−ξ(τ, x1, x2, y + 1) ≡ ξ(τ, x1, x2, y). (95)

This boundary value problem is a quasinormal form in the considered case.

3.5.4. Quasinormal Form for θz = 1/2

In this case, let us give the following formulas for the elements of λ1kmn and λ2kmn :

λ1kmn = −iac−2π(2n + 1) +
1
2

ic−1
(

1
2
+ k

)
,

cλ2kmn =

(
1 − 1

2
a2
)
(π(2n + 1)c−1)2 − 1

8
k2 − 1

2
σ2

1 (π(2m + 1))2−

− 1
2

aπ(2n + 1)c−1
(

1
2
+ k

)
+ ia2c−2π(2n + 1)− ia(2c)−1

(
1
2
+ k

)
+ 2d1.

The “critical” solutions of the linear boundary value problem (15), (16) can be written in
the form

u(t, x) =E(t, x)
∞

∑
k,m,n=−∞

ξkmn exp
[
iπ(2m + 1)y + iπ(2n + 1)x1 + ikx2

]
=

= E(t, x)ξ(τ, x1, x2, y),

where

E(t, x) = exp
[

i
1
2
(x + ε(2c)−1t)

]
= exp

[
i
1
2

x2

]
.
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Therefore, solutions of the nonlinear boundary value problem (14), (16) are sought in
the form

u(t, x, ε) = ε
(
E(t, x)ξ(τ, x1, x2, y) + cc

)
+ ε3u3(t, τ, x1, x2, y) + . . . .

Let us substitute this expression into (14). After straightforward calculations, we obtain a
parabolic boundary value problem, namely, a quasinormal form, for finding the complex
function ξ(τ, x1, x2, y):

c
∂ξ

∂τ
=

(
1
2

a2 − 1
)

∂2ξ

∂x2
1
+

1
8

∂2ξ

∂x2
2
+

σ2
1

2
· ∂2ξ

∂y2 − 1
2

∂2ξ

∂x1∂x2
+

(
i
a
2
+ ac−1

)
∂ξ

∂x1
+

+

(
i
8
− a(2c)−1

)
∂ξ

∂x2
+

(
2d1 −

1
32

− ia
4c

)
ξ + 3b1ξ|ξ|2 (96)

with boundary conditions (94) and (95).
Let us make one remark. In the right part of (96), there is no term of the form

Const · E2(t, x)ξ3. This is due to the fact that

E(t, x) = exp
[

i
1
2
(x + (2cε)−1τ)

]
.

As a result of the principle of averaging over a rapidly oscillating periodic argument τ (see,
e.g., [16,17]), the corresponding term in the principal term vanishes.

3.6. Building a Quasinormal Form under the Conditions Φ(s) = Φ2(s), σ = εσ1, 0 < a2 < 2

We first give the values of the coefficients λ1,2,kmn in formula (90) for the asymptotic rep-
resentation of the roots λkmn(ε) (k, m, n = 0,±1,±2, . . .) of the characteristic Equation (17):

λ1kmn = −2i(ac)−1R + i(2c)−1(θz + k),

cλ2kmn = −1
2
(
2a−1R +

1
2
(θz + k)

)2
+

1
2
(
2a−1R − 1

2
(θz + k)

)
(θz + k)−

− c−1(θz + k)2 + (p0 exp(iΩ0))
−1R2 + 2ω0

(
2a−1R − 1

2
(θz + k)

)
−

− 2ic−1R + ia(2c)−1(θz + k)− 1
2

σ2
1
(
π(2m + 1)

)2
+ 2d1 p−1

0 ,

where R = (θω − Ω0 + π(2n + 1))c−1.
Let us write the “critical” solutions of the linear boundary value problem (15), (16) in

the form

u(t, x) =E(t, x)
∞

∑
k,m,n=−∞

ξkmn exp
[
iπ(2n + 1)x1 + ikx2 + iπ(2m + 1)y

]
=

= E(t, x)ξ(τ, x1, x2, y),

where

E(t, x) = exp
[
i(ω0ε−1 + (θω − Ω0)c−1(1 − 2εac−1) + εc−1θz)t + iθzx

]
,

and for x1,2 and y, the relations in (92) hold. Then, the solutions of the nonlinear boundary
value problem (14), (16) are found in the form

u(t, x, ε) = ε
(
E(t, x)ξ(τ, x1, x2, y) + cc

)
+ ε3u3(t, τ, x1, x2, y) + . . . , (97)

and the dependence on t, x1, x2 and y is periodic. Let us substitute (97) into (14), and in the
resulting formal identity, we will successively equate the coefficients of the same powers of
ε. As a result, we arrive at an equation for u3, from the solvability condition of which we
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obtain a boundary value problem for determining the unknown amplitude ξ(τ, x1, x2, y) in
the specified class of functions:

c
∂ξ

∂τ
=H1

∂2ξ

∂x2
1
+ H2

∂ξ

∂x1
− 1

8
∂2ξ

∂x2
2
+ H3

∂ξ

∂x2
+

(
1
4
− a−1

)
∂2ξ

∂x1∂x2
+

+
1
2

σ2
1

∂2ξ

∂y2 + H4ξ + 3βξ|ξ|2 (98)

with boundary conditions (94) and (95), where

H1 = −κ−1 +
1
2
(ia − 2ω0)

2κ−2,

H2 = c−1
[
− 2(κ−1 − 1

2
(ia − 2ω0)

2κ−2(θω − Ω0)) + cκ−22ω0(2ω0 − ia)+

+ c2κ−1a(θω − Ω0)

]
,

H3 = i
[
2θz −

(
− (2a)−1(θω − Ω0) + a−1 − ω0 + ia(2c)−1)],

H4 = −1
2

(
2(θω − Ω0) +

1
2

θz

)2

+
1
2

(
2a−1(θω − Ω0)−

1
2

θz

)
θz − c−1θ2

z+

+

(
p0 exp(iΩ0)

−1(θω − Ω0) + 2ω0(2a−1(θω − Ω0)−
1
2

θz

)
+ 2ic−1(θω − Ω0)+

+ ia(2c)−1θz + 2d1 p−1
0 ,

β =b1 + iω0b2 − ω2
0b3 − iω3

0b4.

Recall that, depending on the evenness or oddness of N, the value of θz takes a value of 0
or 1/2.

The main result is that the boundary value problem (94), (95), (98) obtained here plays
the role of a quasinormal form for the boundary value problem (14), (16) in the above
critical case.

4. Conclusions

The local dynamics of a system of coupled identical oscillators are considered. The large
number of oscillators gave grounds for the transition to the consideration of the boundary
value problem with a continuous spatial variable. The presence of a large delay in the
couplings made it possible to use special asymptotic methods [20,21].

Critical cases in the problem of the stability of the zero equilibrium state were singled
out. It was shown that all of them have infinite dimensionality, so the known methods of
local analysis based on the use of methods of invariant integral manifolds and methods of
normal forms [22,23] are not directly applicable. This research is based on special infinite
normalization methods [24,25]. The main results include the construction of the analogs of
normal forms—quasinormal forms—nonlinear equations of the parabolic type containing
no small parameters. Their nonlocal dynamics determine the local dynamics of the original
problem. The corresponding quasinormal forms contain two or three spatial variables, so
we can conclude that the dynamics of the problems under consideration are, in general,
complex. Asymptotic formulas linking the solutions of quasinormal forms and solutions of
the original equation were given.

We emphasize that asymptotic approximations were constructed on an infinite time
interval. Therefore, a quasinormal form requires the existence of a bounded solution on
the entire axis. Most often, “quasinormal forms” are boundary value problems of the
parabolic type, which have the property of local solvability. Based on the known results
of the numerical analysis of such problems (see, e.g., [26]), one can often conclude that
solutions bounded on the entire axis exist. However, in the present paper, we do not talk
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about the asymptotics of exact solutions of the original system, but about the asymptotic
approximation of functions satisfying the original system with a certain degree of accuracy.
Of course, one can formulate conclusions about determining the asymptotics of solutions
by means of solutions of a quasinormal form on a finite O(ε−1)-order time-varying interval,
especially since the dependence on the time variable x1 = c−1(1 − εc−1a)t is periodic.

It is interesting to note that, in the case of a2 > 2, the quasinormal forms contain a
coefficient at nonlinearity b1 and do not contain the coefficients of b2, b3 or b4. In the case of
a2 < 2, the quasinormal forms contain all coefficients of the function f .

The parameter a plays an important role in the dynamics of quasinormal forms.
The structure of solutions in the case a2 < 2 is much more complicated than in the case
a2 > 2, because quasinormal forms at a2 < 2 are complex boundary value problems of
the Ginzburg–Landau type, and the solutions contain rapidly oscillating t components.
Explicit formulas are obtained that allow us to trace the role of the parameter c, included in
the delay coefficient (13).

Quasinormal forms do not explicitly contain the parameter ε but depend essentially
on ε through θω and θz. As ε → 0, these quantities run indefinitely from 0 to cω0 and from
0 to 1, respectively. At the same time, unlimited alternations of forward and backward
bifurcations can be observed in quasinormal forms. This indicates the high sensitivity of
the dynamical properties to changes in the parameter ε and, hence, to changes in the values
of N and T. In particular, even changing a large value of N to 1 can significantly affect the
dynamics of the problem.

Cases where the parameter σ is small enough were considered. It was shown that
quasinormal forms become even more complicated, since there appears a third spatial vari-
able, and the dimensionality of the diffusion operator increases. It entails the complication
of the dynamics of the initial problem. It is important to note that the condition σ � 1 is
of special interest: the couplings between elements are more “close” to those that arise at
standard approximations of the diffusion and advection operators (see (11), (12)).

It is interesting to note that, under the condition T � 1, we were able to obtain explicit
formulas for all parameters defining the critical cases.

Let us focus on the most interesting differences in the structure of the solutions
for the cases Φ(s) = Φ1(s) and Φ(s) = Φ2(s). The “critical” modes are adjacent to the
values z0ε−1 + θz, and these values are determined by relations (52) and (61). When
σ is small, these values are also different. In the first case, zm = π(m + 1/2), and in
the second, π(2m + 1) (m = 0,±1,±2, . . .). Not only are the coefficients and even the
number of equations in the corresponding quasinormal forms different, but the boundary
conditions (89) and (94), (95) are also different. Thus, the dynamics, even in the case of
different advective-type couplings, can be essentially different.

The obtained results can be extended to other systems with diffusive, advective or
other couplings (see, for example, [27]). We note that accounting for quadratic nonlinearities
in (14) does not lead to additional difficulties.

It is important to emphasize that the principal terms of the asymptotics of the solu-
tions of the original equation are determined by the solutions of the (nonlocal) quasinor-
mal forms.
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1. Introduction

In this work, we provide conditions for the existence of periodic solutions to nonlinear,
second-order difference equations of the form

y(t + 2) + by(t + 1) + cy(t) = g(y(t)). (1)

Throughout our discussion, we will assume that b and c are real parameters, c �= 0, and
g : R → R is continuous.

In the paper [1], the authors prove the existence of N-periodic solutions to (1) under
various restrictions on the nonlinearity g, the parameters b and c, and the period N. Two of
the most prominent results are the following:

Proposition 1. Suppose that the following conditions hold:

A1. lim
r→∞

‖g‖r
r

= 0, where, for s > 0, ‖g‖s = sup
x∈[−s,s]

|g(x)|;

A2. there exists a positive number ẑ such that xg(x) > 0 whenever |x| > ẑ;
A3. if N arccos(− b

2 ) is a multiple of 2π, then c �= 1 or 2 ≤ |b|.
If N is odd with N > 1, then (1) has a N-periodic solution.

Proposition 2. Suppose the following conditions hold:

B1. c = 1, |b| < 2, and N arccos(− b
2 ) = 2πr for some r ∈ N;

B2. the function g is bounded, say by K;
B3. there are constants ẑ and J > 0 such that for all x ∈ R with x ≥ ẑ, g(−x) ≤ −J < 0 < J ≤

g(x);

B4.
N

gcd(r, N)
≥ max

{
3,

K
J
+ 1

}
, where gcd(r, N) denotes the greatest common divisor of r

and N.

If N is odd, then (1) has a N-periodic solution.

Clearly, the assumptions of Proposition 1 generate the existence of solutions to (1) for
a more general class of nonlinearities, g, than do the assumptions of Proposition 2, since
unbounded nonlinearities can easily satisfy the conditions of Proposition 1. For particular
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examples of such g, see [1]. Now, the reason that Proposition 2 requires stronger conditions
on the nonlinearity, g, is simple. In Proposition 1, the assumption A3. ensures that the
dimension of the solution space to the N-periodic homogeneous problem

y(t + 2) + by(t + 1) + cy(t) = 0 (2)

is one-dimensional. In Proposition 2, condition B1. forces the solution space to (2) to
be two-dimensional. See the appendix for the details. When the solution space of (2) is
two-dimensional, the analysis of (1) is more complex, as the interaction of the solution space
and the nonlinearity is much more complicated. For this reason, additional requirements
were placed.

As a final remark at the end of [1], the authors left open the question of whether similar
results to Proposition 2 hold without a boundedness assumption placed on g. In particular,
they posed the question of whether the existence of solutions to (1) could be proved when
condition B1. holds, but under assumptions “similar” to A1. and A2. In this paper, we show
that this is indeed the case; that is, we prove the existence of solutions to (1) when B1. holds
and assumptions A1. and A2. are valid. Interestingly, we will also show that this more
general result holds when N is even, something that is not discussed in [1], where they
always assume N is odd. We will also discuss the existence of solutions to (1) when b = 0,
c = −1, and N is even with N ≥ 4. As it turns out, see the appendix for the details, for real
parameters b and c, the case when b = 0 and c = −1 is the only case in which condition
B1. does not hold, and the solution space of (2) is two-dimensional. So, in this regard,
this paper shows that conditions A1. and A2. of Proposition 1 are sufficient to prove the
existence of solutions to (1) in all cases where the solution space of (2) is two-dimensional.

To provide a bit more concreteness to the discussion above, we list here, for reference,
our main result, Theorem 2, which will be proved in Section 3.

Theorem (Theorem 2). Suppose the following conditions hold:

C1. the solution space to (2) is two-dimensional;

C2. lim
s→∞

‖g‖s
s

= 0, where, for w > 0, ‖g‖w = sup
x∈[−w,w]

|g(x)|;

C3. there is a positive number ẑ such that xg(x) > 0 whenever |x| > ẑ.

Then (12) has a N-periodic solution.

Remark 1. We would like to point out, while Propositions 1 and 2, and Theorem 2 are close by, that
Theorem 2 is obviously a substantial generalization of Proposition 2; we will discuss the various
“advantages” of Theorem 2 in more detail after the proof of Theorem 2. Additionally, Theorem 2 is
also the “ideal” analog of Proposition 1 in the more complicated setting where the solution space to
(2) is two-dimensional. However, as similar as the statements of Proposition 1 and Theorem 2 may
be, their proofs take an entirely different route. In fact, the proof of Theorem 2 differs, almost in its
entirety, from the original proofs of Propositions 1 and 2 (found in [1]), and it is this new approach
that makes our work novel.

The theory of periodic solutions to nonlinear differential/difference equations is
extensive. Most of the deep results in this setting are for problems in which an associated
linear homogeneous problem has at most a one-dimensional kernel. There are also some
known results when the dimension of this solution space is odd but of a higher dimension.
Very little is known in cases of resonance where the dimension of resonance is even. For
those readers interested in known results in this area of study, we mention a few that are
relevant to this work. In [2–5], periodic solutions are analyzed. In [6–11] the authors study
the existence of solutions to nonlinear discrete Sturm-Liouville problems. Refs. [12–15]
establish existence results for multi-point problems. Positive solutions are treated in [16–18].
Results regarding the existence of multiple solutions may be found in [19–21].
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The paper is organized as follows: In Section 2, we introduce the preliminary ideas
needed to study (1) from an operator theoretic point of view. Section 2 contains noth-
ing novel and is included simply for completeness. Those familiar with the theory of
linear difference equations at resonance can safely skim Section 2 and move directly to
Section 3. Section 3 contains our main result, which is proved using Schaefer’s fixed the-
orem. Section 4 contains an example showing the type of nonlinearities we had in mind
when developing the main result, Theorem 2. Section 5 contains some concluding remarks.
Lastly, in Appendix A, we conclude the paper with an appendix that contains calculations
verifying the dimension of the solution space to (2) under various conditions on the real
parameters b and c. The calculations in the appendix are not difficult; however, they are a
bit tedious, which is why we have designated them as an appendix.

2. Preliminaries

We begin with several preliminary ideas that will be needed to develop our main
result, Theorem 2. All of the statements in this section are well-known and can be found
in [1]. We include these results to improve readability, especially for those who may not be
experts in this area, and to make the document essentially self-contained.

Our approach to analyzing the nonlinear boundary value problem, (1), will be to view
it as an operator problem for an equivalent system of difference equations. We start by
defining

A =

(
0 1
−c −b

)
,

and f : R2 → R2 by

f (u, v) =
(

0
g(u)

)
.

If we let x(t) denote
(

y(t)
y(t + 1)

)
, then finding N-periodic solutions to (1) is equivalent to

solving
x(t + 1) = Ax(t) + f (x(t)) (3)

subject to
x(0)− x(N) = 0. (4)

To view our new system in an operator theoretic framework, we introduce the follow-
ing function space and associated operators: First, we let

XN =
{

ϕ : N0 → R2|ϕ is N-periodic
}

.

We view XN as a finite-dimensional normed space using the supremum norm, which we
will denote by ‖·‖. When needed, we will use | · | to denote the standard Euclidean norm
on R2. We now define operators

L : XN → XN by
(Lx)(t) = x(t + 1)− Ax(t),

and
F : XN → XN by

F (x)(t) = f (x(t)).

It should be clear that finding N-periodic solutions to (1) is now equivalent to solving

Lx = F (x). (5)

As a first step in our analysis of the nonlinear boundary value problem (1), we analyze
the linear nonhomogeneous problem Lx = h, where h is a N-periodic function. Our
characterization of the im(L) (the image of L) will then be used to create a projection
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scheme, often referred to as the Lyapunov-Schmidt projection scheme, which will be used
to analyze (1). The characterization of the im(L) is straightforward; it depends to a large
extent on the fact that the principal fundamental matrix solution to

x(t + 1) = Ax(t) (6)

is given by Φ(t) = At, where t is as in (6). For those readers not familiar with this result,
we suggest [22,23]. Ref. [23] is a great resource for those already familiar with many
standard results from the theory of linear ordinary differential equations. Ref. [22] has
a nice introduction to several standard topics in difference equations, their discussion of
periodic linear systems being the one most relevant to the work of this paper.

As our first introductory result, we completely characterize the im(L). As is often the
case for differential and difference operators, the image of our mapping is “essentially” an
orthogonal complement. As a matter of notation, since it will appear several times moving
forward, we point out, that for any matrix C, we will use CT to denote its transpose.

Proposition 3. An element h ∈ XN is contained in the im(L) if and only if

AN
N−1

∑
i=0

A−(i+1)h(i) ∈ ker
((

I − AN
)T

)⊥
,

where for any subspace E of R2, E⊥ = {v ∈ R2 | vTw = 0 for all w ∈ E}.

Proof. Suppose Lx = h for some x ∈ XN . Using the variation of parameters formula,
we have

x(t) = Atx(0) + At
t−1

∑
i=0

A−(i+1)h(i).

Since x(0) = x(N), we must have that

x(0) = x(N) = AN x(0) + AN
N−1

∑
i=0

A−(i+1)h(i).

It now easily follows that Lx = h if and only if AN
N−1

∑
i=0

A−(i+1)h(i) ∈ im(I − AN). The

statement of the proposition is now a consequence of the fact that for any square matrix C,
im(C) = ker(CT)⊥.

We also have the following result regarding the linear homogeneous system, (6).

Corollary 1. The ker(L) and ker
(

I − AN
)

have the same dimension.

Proof. From the proof of Proposition 3, Lx = 0 if and only if x(t) = Atv and (I − AN)v = 0
for some v ∈ R2.

Let W denote any matrix whose columns form a basis for ker
(
(I − AN)T). It follows

from Proposition 3 that h ∈ im(L) if and only

WT AN
N−1

∑
i=0

A−(i+1)h(i) = 0.
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For t ∈ N0, we define Ψ(t) =

{
(AN)

TW t = 0

(A−(i+1))
T
(AN)

TW t > 0
. It is then a routine verification

to show that Lx = h if and only if

N−1

∑
i=0

ΨT(i + 1)h(i) = 0. (7)

During the proof of Theorem 2, we will take advantage of the fact that the columns of
Ψ span the solution space of the N-periodic linear homogeneous “adjoint” problem.

L∗x = 0, (8)

where L∗ : XN → XN is defined by

(L∗x)(t) = x(t + 1)− A−Tx(t).

As a reminder, (·)T denotes transpose. If you know a bit about adjoint operators, L∗ is the
adjoint operator of L. From the basic theory of linear difference equations, we have that
any fundamental matrix solution to the “adjoint” problem, (8), is of the form Ψ(t)D, for
some invertible matrix D. Using (7), we have that Lx = h if and only if

N−1

∑
i=0

ΓT(i + 1)h(i) = 0 (9)

for any fundamental matrix solution to (8), Γ.
We intend to prove the existence of solutions to (1) using a Schaefer fixed point

argument. In this setting, it will be useful to know that the “adjoint” system produces
periodic solutions to a scalar difference equation which is very similar to (1). In fact, in
the cases of interest to this paper, the adjoint scalar difference equation and (1) agree.
The derivation, regardless of the dimension of ker(L), proceeds along the following lines:
Calculating A−T , we get

A−T =
1
c

(−b c
−1 0

)
. (10)

It is now easy to see that solving (8) is equivalent to

cx1(t + 1) = −bx1(t) + cx2(t)

cx2(t + 1) = −x1(t)

or
cx2(t + 2) + bx2(t + 1) + x2(t) = 0.

Thus, the second component of a solution to the “adjoint” system is a N-periodic solution
to

cy(t + 2) + by(t + 1) + y(t) = 0. (11)

As was mentioned above, we intend to analyze the nonlinear periodic problem (1)
using an alternative method in conjunction with Schaefer’s fixed point theorem. Crucial
to the use of this alternative method is the construction of projections onto the kernel and
image of L. The proofs of the following two results are trivial, so they are omitted. For
readers interested in the proofs of Propositions 4 and 5, see [4].

Proposition 4. Let V be the orthogonal projection onto ker(I − AN). If we define P : XN → XN
by (Px)(t) = AtVx(0), then P is a projection onto the ker(L).
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Proposition 5. If we define Q : XN → XN by

(Qh)(t) = Ψ(t)

(
N−1

∑
j=0

|Ψ(j)|2
)−1 N−1

∑
i=0

ΨT(i)h(i),

then Q is a projection with ker(Q) = im(L).

The following is a formulation of the alternative method we will use to analyze (1).
Since under our assumptions, ker(L) will be two-dimensional, L will not be invertible.
When L is not invertible, using fixed point methods to analyze (1) is not straightforward.
However, the development of the Lyapunov-Schmidt projection scheme will allow us to
define a mapping, say H, on appropriate sequence spaces, for which the solutions to (1) are
precisely the fixed points of H. For those readers interested in a more thorough treatment
of alternative methods, we suggest [24]. Again, this result is well-known, we include the
proof of this result for the benefit of the reader.

Proposition 6. Solving Lx = F (x) is equivalent to solving the system⎧⎨⎩
x = Px + Mp(I − Q)F (x)

and
QF (x) = 0

,

where Mp is (L|Ker(P))
−1.

Proof. Lx = F (x) for some x ∈ XN if and only if⎧⎨⎩
(I − Q)(Lx −F (x)) = 0

and
Q(Lx −F (x)) = 0

.

Since QLx = 0, we conclude ⎧⎨⎩
Lx − (I − Q)F (x) = 0

and
QF (x) = 0

.

Applying Mp to the first equation in the system gives⎧⎨⎩
MpLx − Mp(I − Q)F (x) = 0

and
QF (x) = 0

,

which is equivalent to ⎧⎨⎩
(I − P)x − Mp(I − Q)F (x) = 0

and
QF (x) = 0

.

Remark 2. Since ker(Q) = im(L), QF (x) = 0 if and only if

N−1

∑
i=0

ΓT(i + 1)
(

0
g(x(i))

)
= 0
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for all fundamental matrix solutions Γ to (8). We will return to this idea shortly when constructing
the mapping, H, mentioned above.

3. Existence Results When dim(ker(L)) = 2

In this section, we prove our main existence theorem for the periodic difference
Equation (1). As a reminder, we are interested in finding N-periodic solutions to

y(t + 2) + by(t + 1) + cy(t) = g(y(t)) (12)

for N ∈ N with N ≥ 3. Our interest will be limited to cases where the solution space is a
linear, homogeneous problem

y(t + 2) + by(t + 1) + cy(t) = 0 (13)

is two-dimensional, since in this case very little is known. As has been mentioned in the
introduction and is proved in the appendix, the solution space to (13) is two-dimensional
only in the following cases:

R1. c = 1, |b| < 2, and N arccos(− b
2 ) = 2πr for some r ∈ N;

R2. c = −1, b = 0, and N ∈ 2Z with N ≥ 4.

The analysis of (12) depends, to some extent, on which condition R1. or R2. holds, and so
for the ease of the reader, we have broken the proof of our main result, Theorem 2, into
two cases.

As has been mentioned in our earlier discussion of Theorem 2, we will prove the
existence of solutions to (1) when B1. of Proposition 2 holds and assumptions A1. and A2.
of Proposition 1 are valid. Existence will be proved using Schaefer’s fixed point theorem,
which we now state for the convenience of the reader.

Theorem 1 (Schaefer’s Theorem). Let X be a finite-dimensional Banach space, and for ν > 0,
let B(0, ν) denote the closed ball of radius ν centered at the origin, with ∂B(0, ν) denoting its
boundary. Suppose T : X → X is a continuous mapping. If there exists an R > 0 such that
S = {(x, λ) ∈ ∂B(0, R)× (0, 1) | x = λT(x)} = ∅, then T has a fixed point in B(0, R).

We now come to our main result.

Theorem 2. Suppose the following conditions hold:

C1. the solution space to (2) is two-dimensional, that is, suppose either R1. or R2. holds;

C2. lim
s→∞

‖g‖s
s

= 0, where, for w > 0, ‖g‖w = sup
x∈[−w,w]

|g(x)|;

C3. There exists a positive number ẑ such that xg(x) > 0 whenever |x| > ẑ.

Then (12) has a N-periodic solution.

Proof. (The case R1.) We start by assuming that condition R1. holds; that is, we will be
assuming that c = 1, |b| < 2, N is a fixed natural number with N ≥ 3, and Nθ = 2πr for
some natural number r, where θ = arccos

(
− b

2

)
. In this case, see the appendix, it follows

that

Φ(t) =
(

cos(θt) sin(θt)
cos(θ(t + 1)) sin(θ(t + 1))

)
is a fundamental matrix solution to (6). Since c = 1, we have found that the periodic scalar
problems (1) and (11) agree, so that

Γ(t) =
( − cos(θt) − sin(θt)

cos(θ(t − 1)) sin(θ(t − 1))

)
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is a fundamental matrix solution to the adjoint system (8).
Let

H(α, x) =

⎛⎜⎝α −
N−1

∑
j=0

eiθ jg(〈α, eiθ j〉+ [x]1(j))

Mp(I − Q)F (Φ(·)α + x)

⎞⎟⎠,

whenever α ∈ R2 and x ∈ im(I − P), where here eiθ j =

(
cos(θ j)
sin(θ j)

)
. From Proposition 6,

Remark 2, and the discussion above, it follows that the solutions to (12) are precisely
the fixed points of H. We will show that H has a fixed point using Schaefer’s fixed
point theorem.

The norm generating the topology on R2 × im(I − P) is not terribly important, but for
concreteness we make R2 × im(I − P) a Banach space under the topology generated by
the norm

‖(α, x)‖ = max{|α|, ‖x‖}.

Let S = {(α, x) ∈ R2 × im(I − P) | (α, x) = λH(α, x) for some λ ∈ (0, 1)}. We will
show that S is a bounded set, and thus, by Schaefer’s theorem, H will have a fixed
point. To reach a contradiction, suppose that S is unbounded and choose sequences
(αn)n∈N, (xn)n∈N, (λn)n∈N with (αn, xn) = λnH(αn, xn), and ‖(αn, xn)‖ → ∞. By going to
subsequences if needed, we may assume that there exist α0 ∈ R2, x0 ∈ im(I − P), and
λ0 ∈ [0, 1], with 1

‖(αn ,xn)‖ (αn, xn) → (α0, x0) and λn → λ0.

To simplify notation, for α ∈ R2 and x ∈ im(I − P), let

p(α, x) = Mp(I − Q)F (Φ(·)α + x).

Observe that any α ∈ R2 and any x ∈ im(I − P)

|〈α, eiθk〉+ [x]1(k)| ≤ |α|+ |[x]1(k)| ≤ |α|+ ‖x‖ ≤ 2‖(α, x)‖,

where [x]1 is the first component of the vector x. Therefore,

‖p(α, x)‖ =
∥∥Mp(I − Q)F (Φ(·)α + x)

∥∥
≤

∥∥Mp(I − Q)
∥∥‖F (Φ(·)α + x)‖

=
∥∥Mp(I − Q)

∥∥ sup
k∈N0

|g(〈α, eiθk〉+ [x]1(k))|

≤
∥∥Mp(I − Q)

∥∥‖g‖2‖(α,x)‖,

(14)

where
∥∥Mp(I − Q)

∥∥ = sup‖z‖=1

∥∥Mp(I − Q)z
∥∥.

From (14) and C2., we see that

p(αn, xn)

‖(αn, xn)‖
→ 0.

Under essentially the same reasoning, we conclude that

H(αn, xn)

‖(αn, xn)‖
→ (α0, 0).

But (αn, xn) = λn H(αn, xn), so that

(α0, x0) = lim
n→∞

1
‖(αn, xn)‖

(αn, xn) = lim
n→∞

1
‖(αn, xn)‖

λn H(αn, xn) = λ0(α0, 0).

It follows that λ0 = 1, x0 = 0. Further, since ‖(α0, x0)‖ = 1, we must have |α0| = 1.
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Suppose for the moment that 〈α0, eiθ j〉 �= 0 for all j ∈ {0, · · · , N
gcd(r,N)

− 1}. Thus,
1

‖(αn ,xn)‖ 〈αn, eiθ j〉 �= 0 for all j ∈ {0, · · · , N
gcd(r,N)

− 1} and large enough n ∈ N. However,

since xn
‖(αn ,xn)‖ = λn p(αn ,xn)

‖(αn ,xn)‖ → 0, we see that ‖(αn, xn)‖ = |αn| for large enough n ∈ N. Since

we are assuming that for every j ∈ {0, · · · , N
gcd(r,N)

− 1} we have 〈α0, eiθ j〉 �= 0, it follows

that 〈αn, eiθ j〉+ [xn]1(j) → ±∞ for all j ∈ {0, · · · , N
gcd(r,N)

− 1} and that the sign (of ±∞) is

that of 〈α0, eiθ j〉.
Since the collection eiθ j, j = 0, · · · , N − 1, is just gcd(r, N) copies of the collection

eiθ j, j = 0, · · · ,
N

gcd(r, N)
− 1, we easily deduce that 〈αn, eiθ j〉 + [xn]1(j) → ±∞ for each

j ∈ {0, · · · , N − 1} and that the sign is still the same as 〈α0, eiθ j〉. But then, for large enough
n ∈ N, we must have, using C3., that

〈αn, eiθ j〉g(〈αn, eiθ j〉+ [xn]1(j)) > 0 (15)

for all j ∈ N0, since the signs of 〈α0, eiθ j〉 and 〈αn, eiθ j〉 agree, at least for large enough n ∈ N.
It follows that for large enough n ∈ N,〈

αn,
N−1

∑
j=0

eiθ jg(〈αn, eiθ j〉+ [xn]1(j))

〉
=

N−1

∑
j=0

〈αn, eiθ j〉g(〈αn, eiθ j〉+ [xn]1(j))

> 0.

(16)

However, the result in (16) is contradictory, since from (αn, xn) = λnH(αn, xn) we deduce

(1 − λn)αn + λn

N−1

∑
j=0

eiθ jg(〈αn, eiθ j〉+ [xn]1(j)) = 0, (17)

so that by taking an inner product of the expression in (17) and αn, we see that

(1 − λn)|αn|2 + λn

N−1

∑
j=0

〈αn, eiθ j〉g(〈αn, eiθ j〉+ [xn]1(j)) = 0, (18)

which is not possible, since from (16), (18) is a sum of positive terms, at least for large
n ∈ N.

Our previous contradiction now forces 〈α0, eiθ j〉 = 0 for some j ∈ {0, · · · , N
gcd(r,N)

− 1}.

If we let F = {j ∈ {0, · · · , N
gcd(r,N)

− 1} | 〈α0, eiθ j〉 �= 0}, then

N−1

∑
j=0

〈α0, eiθ j〉g(〈αn, eiθ j〉+ [xn]1(j)) = gcd(r, N) · ∑
j∈F

〈α0, eiθ j〉g(〈αn, eiθ j〉+ [xn]1(j))

> 0,

whenever F �= ∅, since as was just argued above, for all j ∈ F,

〈α0, eiθ j〉g(〈αn, eiθ j〉+ [xn]1(j)) > 0,

whenever n ∈ N is large. Now it is entirely possible that F = ∅, but in this case, we
trivially have

N−1

∑
j=0

〈α0, eiθ j〉g(〈αn, eiθ j〉+ [xn]1(j)) = 0,
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so that for all cases of N,

N−1

∑
j=0

〈α0, eiθ j〉g(〈αn, eiθ j〉+ [xn]1(j)) ≥ 0. (19)

If we now have an inner product (17) with α0, we deduce

(1 − λn)〈α0, αn〉+ λn

N−1

∑
j=0

〈α0, eiθ j〉g(〈αn, eiθ j〉+ [xn]1(j)) = 0. (20)

However, (20) also produces a contradiction for large enough n ∈ N. Indeed, since
|αn| → ∞ and 〈α0, αn

|αn | 〉 → 〈α0, α0〉 = 1, we must have

〈α0, αn〉 = |αn|〈α0,
αn

|αn|
〉 → ∞.

Further, by (19), ∑N−1
j=0 〈α0, eiθ j〉g(〈αn, eiθ j〉+ [xn]1(j)) ≥ 0 whenever n ∈ N is large. Thus,

(20) must be positive for large enough n ∈ N.
Since a contradiction is produced for all choices of α0, it must be that S is bounded

and so, by Schaefer’s fixed point theorem, H has a fixed point. This fixed point is our
solution to (12), which proves the existence of a solution to (12) in the case where condition
R1. holds.

(The case R2.)
The proof for the case when condition R2. holds is very similar to what was given for

the case when condition R1. is valid. Due to the similarity, we will not provide a complete
proof for this case, but we do want to point out the few differences. First, in the case where
R1. holds, see Appendix A, we have that

Φ(t) =
(

1 (−1)t

1 −(−1)t

)
is a fundamental matrix solution to (6). However, since b = 0 and c = −1, the periodic
scalar problems (1) and (11) once again agree. It follows that

Γ(t) =
(

1 (−1)t

1 −(−1)t

)
is a fundamental matrix solution to (8).

Let

H(α, x) =

⎛⎜⎝α −
N−1

∑
j=0

(
1

(−1)j

)
g(〈α,

(
1

(−1)j

)
〉+ [x]1(j))

Mp(I − Q)F (Φ(·)α + x)

⎞⎟⎠,

whenever α ∈ R2 and x ∈ im(I − P). Once again, it follows that the solutions to (12) are
precisely the fixed points of H. The proof now proceeds, essentially as in the case when R1.
holds, by assuming

S = {(α, x) ∈ R2 × im(I − P) | (α, x) = λH(α, x) for some λ ∈ (0, 1)}

is unbounded and reaching a contradiction. The argument is almost identical; most of the

changes consist of replacing eiθ j by
(

1
(−1)j

)
in the appropriate places.

Remark 3. Theorem 2 is a substantial generalization of Proposition 2, since if g is bounded, then
certainly assumption C2. is valid. Additionally, C3. is clearly satisfied when B3. of Proposition 2 is.
It is also extremely important to note that condition B4. of Proposition 2 is no longer required.
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Remark 4. In Proposition 2, it is assumed that N is odd. In Theorem 2, we make no such
assumption. Thus, Theorem 2 not only generalizes Proposition 2 in that it allows for much more
general nonlinearities, but it also generalizes it to allow for many more cases of the period N.

4. Example

The simplicity of the hypotheses of Theorem 2 makes it very easy to visualize examples
of nonlinearities, g, which will allow periodic solutions to (1). We now provide an example
of a nonlinearity that we had in mind when formulating Theorem 2. Suppose either R1. or
R2. holds, and let

g(x) = ln(1 + |x|) arctan(x) + sin(x).

Clearly, g is continuous. It is obvious that for this choice of g, C2. holds, since, with our
notation as in theorem 2, we have, for s > 0,

‖g‖s ≤ ln(1 + s) arctan(s) + 1.

It is also not hard to see that C3. holds. Thus, for this choice of g, (1) has a periodic solution
under the conditions placed by either R1. or R2.

5. Concluding Remarks

We conclude our work, with the exception of the appendix, with a few closing remarks.
First, even though it was not of interest to this paper, it is easy to establish that Proposition 1
can be extended from the assumption that N is odd to cases where N is even. This amounts
to showing that ker(L) and ker(L∗) have not changed in these cases where N is even.
Lastly, there are several open questions in this setting that remain; I mention two that are of
interest to the author. First, it is certainly of interest to know to what extent condition C2.
of Theorem 2 can be weakened. Condition C2. is often referred to as a sublinear growth
condition. It is currently an active area of research, in both nonlinear differential equations
and nonlinear difference equations, to look for existence theorems under growth conditions
on nonlinearities that are less stringent than sublinear growth. I encourage interested
readers to look for existence results in this setting. Second, problem (1) is perfectly well-
formulated when the parameters b and c are complex and the nonlinearity g : C → C. The
analysis in this complex setting is much more difficult, but it is certainly of interest to see to
what extent Theorem 2 can be transferred to this complex setting.

Funding: This research received no external funding.

Data Availability Statement: No data sets were generated during this research.

Conflicts of Interest: The author declares no conflicts of interest.

Appendix A

In this final section, we present the characterizations of the ker(L) that were used in
the proofs of our main result, Theorem 2. The calculations here are not difficult, but they
do require a bit of tedious analysis, which is why they are deferred to this appendix.

As was shown in Proposition 1, L is singular if and only if ker(I − AN) is singular, and
in this case, dim(ker(L)) is precisely equal to dim(ker(I − AN)). In fact, in Proposition 1,
we showed that if {v1, · · · , vm} is a basis for ker(I − AN), then {ϕ1, · · · , ϕm} is a basis of
ker(L), where for t ∈ {0, · · · , N} and k ∈ {1, · · · , m}, ϕk(t) = Atvk. Let us point out that
since A is a 2 × 2 matrix, when I − AN is singular, we must have m = 1 or m = 2.

Now it is a simple characterization from linear algebra that I − AN is singular if and
only if at least one eigenvalue of A is an Nth root of unity. However, since

A =

(
0 1
−c −b

)
,
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We know that the eigenvalues of A are precisely the roots of the characteristic polynomial
p(z) = z2 + bz + c. In what follows, we show that:

D1. The dimension of the kernel of L is precisely the number of roots of the characteristic
polynomial, which are Nth roots of unity.

The Case of a Repeated Root Is Considered to Have One Nth Root of Unity

Suppose that λ1 and λ2 are the complex roots of the characteristic polynomial p(z) =
z2 + bz + c. Since (z − λ1)(z − λ2) = z2 − (λ1 + λ2)z + λ1λ2, we see that b = −(λ1 + λ2)
and c = λ1λ2. Note that since c �= 0, neither λ1 nor λ2 is zero. If neither λ1 nor λ2 is a Nth
root of unity, then from our discussion above, L is invertible, and so A1. holds in this case.

Now, without loss of generality, assume that λ1 is an Nth root of unity. At the moment,
suppose that λ1 �= λ2. It is well-known that when λ1 �= λ2,

ϕ1(t) =
(

λt
1

λt+1
1

)
and ϕ2(t) =

(
λt

2
λt+1

2

)
are linearly independent solutions to (6). If c1 ϕ1 + c2 ϕ2 was N-periodic, then we would have(

c1 + c2
c1λ1 + c2λ2

)
=

(
c1λN

1 + c2λN
2

c1λN+1
1 + c2λN+1

2

)
=

(
c1 + c2λN

2
c1λ1 + c2λN+1

2

)
,

since λ1 is an Nth root of unity. Equivalently, we have(
c2(1 − λN

2 )
c2λ2(1 − λN

2 )

)
=

(
0
0

)
.

If λ2 is not an Nth root of unity, then c2 = 0 and ϕ1 must span ker(L). However, if λ2 is an
Nth root of unity, then ϕ1, ϕ2 must be a basis for ker(L). It follows that D1. holds for these
cases of λ1, λ2.

The remaining case is when λ1 = λ2 and λ1 is an Nth root of unity. As mentioned
above, we are considering this case to have one Nth root of unity; D1. will be proved
if we can show that dim(ker(L)) = 1 for this case. Now in the repeated roots case, it is
well-known that

ϕ1(t) =
(

λt

λt+1

)
and ϕ2(t) =

(
tλt

(t + 1)λt+1

)
are linearly independent solutions to (6), where λ = λ1 = λ2. If c1 ϕ1 + c2 ϕ2 was N-periodic,
then we would have (

c1
(c1 + c2)λ

)
=

(
c1 + Nc2

(c1 + (N + 1)c2)λ

)
,

since λN = 1. It follows easily that c2 = 0 and that c1 can be any complex constant; that is,
ϕ1 spans ker(L) and so dim(ker(L)) = 1.

From what was just shown, we know that dim(ker(L)) = 2 if and only if both roots
of the characteristic polynomial p(z) = z2 + bz + c are roots of unity. We now look a bit
more closely at these cases, under the assumptions that the coefficients b and c are real.

(Complex Roots)
If the parameters b and c are real, then in the case of complex roots, we must have that

the roots are conjugate pairs. Thus, suppose that the roots of z2 + bz + c are λ and λ, for
some complex number λ. Here λ denotes the conjugate of λ. We then have that

z2 + bz + c = (z − λ)(z − λ) = z2 − 2 Re(λ) + |λ|2.

It follows that b = −2 Re(λ) and c = |λ|2.
Now λ is an Nth root of unity if and only if λ is an Nth root of unity, so if L (or

equivalently I − AN) is singular, then |λ| = 1. Since c = |λ|2, we deduce that when L
is singular, then c = 1. If we now write λ = eiθ in polar form, then we also see that
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Re(λ) = cos(θ) and so b = −2 cos(θ). Thus, in this complex setting, we have deduced the
following: if L is singular, then c = 1 and −2 < b < 2. We point out that these conditions
on b and c are necessary conditions for L to be singular, but they are certainly not sufficient.

In fact, we can say a bit more. If λ = eiθ is an Nth root of unity, then we may arrange
(swap λ and λ if needed) so that θ = 2πr

N for some natural number r with 0 < r < N
2 .

Rearranging gives Nθ = 2πr, where, from above, we would have θ = arccos(− b
2 ). It is

well known that in this complex case,

Φ(t) =
(

cos(θt) sin(θt)
cos(θ(t + 1)) sin(θ(t + 1))

)
is a fundamental matrix solution to (6), as was claimed in the proof of Theorem 2.

(Real Distinct Roots)
The final case in which we may have that dim(ker(L)) = 2 is when the roots of

the characteristic polynomial p(z) = z2 + bz + c are real and distinct. So, suppose that
λ1 and λ2 are distinct roots of the characteristic polynomial p(z) = z2 + bz + c. Since
(z − λ1)(z − λ2) = z2 − (λ1 + λ2)z + λ1λ2, we see that b = −(λ1 + λ2) and c = λ1λ2. If
λ1 and λ2 are both roots of unity, then we may assume λ1 = 1 and λ2 = −1. This forces N
to be even. Our characteristic polynomial becomes z2 − 1, so that c = −1 and b = 0. It is a
simple consequence of the theory of linear difference equations that, in this case,

Φ(t) =
(

1 (−1)t

1 (−1)t+1

)
is a fundamental matrix solution to (6), as was claimed in the proof of Theorem 2.
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Abstract: Sufficient conditions are obtained for a signed maximum principle for boundary value
problems for Riemann–Liouville fractional differential equations with analogues of Neumann or
periodic boundary conditions in neighborhoods of simple eigenvalues. The primary objective is to
exhibit four specific boundary value problems for which the sufficient conditions can be verified.
To show an application of the signed maximum principle, a method of upper and lower solutions
coupled with monotone methods is developed to obtain sufficient conditions for the existence of a
maximal solution and a minimal solution of a nonlinear boundary value problem. A specific example
is provided to show that sufficient conditions for the nonlinear problem can be realized.

Keywords: fractional boundary value problem; signed maximum principle; fractional Neumann
boundary conditions; fractional periodic boundary conditions

MSC: 34K37; 34A08; 34B27

1. Introduction

Applications of the maximum principle in functional analysis are well known and we
refer the interested reader to the authoritative account [1]. In recent years, the maximum
principle has become an important tool in the study of boundary value problems for
fractional differential equations. Early applications appear in [2,3] where explicit Green’s
functions, expressed in terms of power functions, were constructed; sign properties of
the Green’s function were analyzed so that fixed point theorems could be applied to give
sufficient conditions for the existence of positive solutions. More recently, Green’s functions,
expressed in terms of Mittag-Leffler functions, have been constructed so that fixed-point
theorems and the maximum principle can be applied. See, for example, Refs. [4–7].

Credit for the discovery of an anti-maximum principle is given to Clément and
Peletier [8]. Although primarily interested in partial differential equations, they initially
illustrated the anti-maximum principle with the boundary value problem, y′′ + λy = f ,
y′(0) = 0, y′(1) = 0, with 0 < λ < π2

4 . They showed, if 0 < λ < Λ = π2

4 and if f ∈ L[0, 1],
then the boundary value problem is uniquely solvable and f ≥ 0 implies y ≥ 0 where y is
the unique solution associated with f .

At λ = 0, the boundary value problem, y′′ + λy = f , y′(0) = 0, y′(1) = 0, is at
resonance, and λ = 0 is a simple eigenvalue of the homogeneous problem. Moreover, for
λ < 0, then f ≥ 0 implies y ≥ 0; that is, for λ < 0, the boundary value problem obeys a
maximum principle. Thus, there has been a change in the sign property, maximum principle
or anti-maximum principle, through the simple eigenvalue λ = 0. In more succinct terms,
if 0 < |λ| < Λ = π2

4 , and if f ∈ L[0, 1], then the boundary value problem is uniquely
solvable and f ≥ 0 implies λy ≥ 0 where y is the unique solution associated with f . Since

Mathematics 2024, 12, 1000. https://doi.org/10.3390/math12071000 https://www.mdpi.com/journal/mathematics133
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the publication of [8], the change in behavior from maximum to anti-maximum principles
as a function of the parameter has received considerable attention. For partial differential
equations, see [9–16]. For ordinary differential equations, see [17–21]. More recently, this
change in behavior from maximum to anti-maximum principles has also been noticed
and studied in fractional differential equations. For equations analyzing the fractional
p−Laplacian, see [22,23]; for fractional differential equations of one independent variable,
see [24].

In [9], the authors studied the nature of the maximum principle for boundary value
problems for an abstract differential equation, (A + λI)y = f , defined on [0, 1] with
f ∈ L[0, 1], under a fundamental assumption that λ = 0 was a simple eigenvalue for the
homogeneous problem. Under mild sufficient conditions, they proved the existence of
Λ > 0, and a constant K > 0, independent of f , such that

λy(t) ≥ K| f |1, λ ∈ [−Λ, Λ] \ {0}, 0 ≤ t ≤ 1, (1)

where y is the unique solution of the boundary value problem associated with (A+ λI)y = f
and | f |1 =

∫ 1
0 | f (s)|ds. If (1) holds and λ < 0, then f ≥ 0 implies y ≤ 0; that is, the

boundary value problem for (1) obeys a maximum principle. If (1) holds and λ > 0, then
f ≥ 0 implies y ≥ 0; that is, the boundary value problem for (1) obeys an anti-maximum
principle [8].

The methods of [9] were recently adapted to apply to a boundary value problem
with a parameter for a Riemann–Liouville fractional differential equation [24]. During the
review process for [24], those authors were asked by one referee if the methods of [9] could
be successfully adapted to apply to analogues of Neumann or periodic boundary value
problems for Riemann–Liouville fractional differential equations. In [24], the eigenspace
generated by λ = 0 is contained in the space of continuous functions on [0, 1]. The corre-
sponding eigenspace for boundary value problems analogous to Neumann or periodic
type boundary value problems will contain a singularity. Thus, the question is interesting.
The purpose of this study is to address that question with a positive response.

In Section 2, we shall introduce preliminary notations and concepts from fractional
calculus. We shall also introduce four boundary value problems for which the general
theorem, stated in Section 3, applies. In Section 3, we introduce the notations adapted
from [9] and state and prove the abstract theorem. The proof of the abstract theorem
closely models the proofs of analogous theorems in [9,24]; with subtle differences in the
technical details due to the specific function space, we shall produce a proof here for the
self-containment of the manuscript. In Section 4, we shall apply the abstract theorem to
each of the four examples introduced in Section 2. In Section 5, to illustrate an application
of the abstract theorem, we develop a monotone method motivated by the abstract theorem
and apply the monotone method to a nonlinear problem related to one of the examples
introduced in Section 2. The monotone method closely models one that has been developed
in [24] with subtle differences in the convergence argument. In Section 6, we illustrate
the monotone method with a specific example. In this example, a Green’s function is
constructed using Mittag-Leffler functions. The purpose of introducing the Green’s function
is not to produce an explicit function on which to analyze sign properties, as is the case in
say, [2] or [3]; the purpose is to obtain a verifiable bound on Λ so that if 0 < |λ| < Λ, then
f ≥ 0 implies λy ≥ 0.

2. Preliminaries

In this section, we introduce notations from fractional calculus and state common
properties that we shall employ throughout. For authoritative accounts on the development
of fractional calculus, we refer to the monographs [25–27].
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Assume γ > 0. For y ∈ L[0, 1], the space of Lebesgue integrable functions, a Riemann–
Liouville fractional integral of y of order γ, is defined by

Iγ
0 y(t) =

∫ t

0

(t − s)γ−1

Γ(γ)
y(s)ds, 0 ≤ t ≤ 1,

where
Γ(z) =

∫ ∞

0
sz−1e−s, Re z > 0,

denotes the special gamma function. For γ = 0, I0
0 is defined to be the identity operator.

Let n denote a positive integer and assume n − 1 < α ≤ n. A Riemann–Liouville fractional
derivative of y of order α is defined by Dα

0 y(t) = Dn In−α
0 y(t), where Dn = dn

dtn , if this
expression exists. In the case α is a positive integer, we may write Dα

0 y(t) = Dαy(t) or
Iα
0 y(t) = Iαy(t) since the Riemann–Liouville derivative or integral agrees with the classical

derivative or integral if α is a positive integer.
For the sake of self-containment, we state properties that we shall employ in this

study. It is well known that the Riemann–Liouville fractional integrals commute; that is, if
γ1, γ2 > 0, and y ∈ L[0, 1], then

Iγ1
0 Iγ2

0 y(t) = Iγ1+γ2
0 y(t) = Iγ2

0 Iγ1
0 y(t).

A power rule is valid for the Riemann–Liouville fractional integral; if δ > −1 and γ ≥ 0,
then

Iγ
0 tδ = Iγ

0 (t − 0)δ =
Γ(δ + 1)

Γ(δ + 1 + γ)
tδ+γ.

A power rule is valid for the Riemann–Liouville fractional derivative; if δ > −1 and γ ≥ 0,
then

Dγ
0 tδ =

Γ(δ + 1)
Γ(δ + 1 − γ)

tδ−γ.

If n − 1 < α ≤ n, and if Dα
0 y(t) exists, then Dα−1

0 y(t) exists and

Dα
0 y(t) = Dn In−α

0 y(t) = DDn−1 I(n−1)−(α−1)
0 y(t) = DDα−1

0 y(t).

Thus, it is clear that for each j ∈ {1, . . . , n − 1}, Dα−j
0 y(t) exists and

Dα
0 y(t) = DjDα−j

0 y(t).

A Green’s function will be constructed in Section 6. The two-parameter Mittag-
Leffler function

Eα,β(z) =
∞

∑
n=0

zn

Γ(αn + β)
, Re(α) > 0, β ∈ C, z ∈ C,

will be employed in those calculations. Many properties and identities for the two-
parameter Mittag-Leffler are derived in [26].

In [24], a boundary value problem,

Dα
0 y(t) + βDα−1

0 y(t) = f (t), 0 < t ≤ 1, 1 < α ≤ 2,

y(0) = 0, Dα−1
0 y(0) = Dα−1

0 y(1),

was studied. This is an example of a boundary value problem at resonance since < tα−1 >,
the linear span of tα−1, denotes the solution space of the homogeneous problem, Dα

0 y = 0,
with the given homogeneous boundary conditions; moreover, β = 0 is a simple eigenvalue
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of the homogeneous problem. There, an abstract theorem was proved that gave the
existence of B > 0, and a constant K > 0, independent of f , such that

βDα−1
0 y(t) ≥ K| f |1, β ∈ [−B,B] \ {0}, 0 ≤ t ≤ 1, (2)

where y is the unique solution associated with f . Thus, f ≥ 0 implies βDα−1
0 y ≥ 0. It was

also proved in [24] that βDα−1
0 y(t) ≥ 0, y(0) = 0, implies βy ≥ 0. Thus, with control of

the sign of both βDα−1
0 y and y, a monotone method was developed to obtain sufficient

conditions for a solution of the nonlinear problem,

Dα
0 y(t) + βDα−1

0 y(t) = f (t, y(t), Dα−1
0 y(t)), 0 < t ≤ 1, 1 < α ≤ 2,

y(0) = 0, Dα−1
0 y(0) = Dα−1

0 y(1).

Since the purpose of this study is to modify the methods developed in [9] to
apply to Neumann-like or periodic-like boundary conditions, we shall focus on a
differential equation,

Dα
0 y(t) + λy(t) = f (t), 0 < t ≤ 1, n − 1 < α ≤ n,

where n ≥ 2 is an integer.
Consider the fractional differential equation To study the Neumann-like boundary

conditions, assume 1 < α ≤ 2. Consider the fractional differential equation

Dα
0 y(t) + λy(t) = f (t), 0 < t ≤ 1, 1 < α ≤ 2, (3)

We shall refer to the boundary conditions

Dα−1
0 y(0) = 0, Dα−1

0 y(1) = 0, (4)

as Neumann boundary conditions. The first exhibited boundary value problem is the
boundary value problem, (3), (4).

To study periodic-like boundary conditions we shall consider a fractional differential
equation

Dα
0 y(t) + aDα−1

0 y(t) + λy(t) = f (t), 0 < t ≤ 1, 1 < α ≤ 2, (5)

or
Dα

0 y(t) + λy(t) = f (t), 0 < t ≤ 1, n − 1 < α ≤ n. (6)

In the second exhibited example, we study the boundary value problem, (5), with
boundary conditions

In−α
0 y(0) = In−α

0 y(1), Dα−1
0 y(0) = Dα−1

0 y(1),

in the third exhibited example, we study the boundary value problem, (6), with the bound-
ary conditions

In−α
0 y(0) = In−α

0 y(1), Dα−j
0 y(0) = Dα−j

0 y(1), j = 1, . . . , n − 1, (7)

and in the final exhibited boundary value problem we study the boundary value problem,
(6), with the boundary conditions

lim
t→0+

tn−αy(t) = y(1), Dα−j
0 y(0) = Dα−j

0 y(1), j = 1, . . . , n − 1. (8)

3. The Abstract Theorem

Let C[0, 1] denote the Banach space of continuous functions defined on [0, 1] with the
supremum norm, | · |0, and let L[0, 1] denote the space of Lebesgue integrable functions
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with the usual L1 norm. Let n ≥ 2 denote an integer. Assume n − 1 < α ≤ n. Employing
notation introduced in [28], define

Cα−n[0, 1] = {y : (0, 1] → R : y(t) is continuous for t ∈ (0, 1], and lim
t→0+

tn−αy(t) exists }.

It is clear that y ∈ Cα−n[0, 1] if, and only if, there exists z ∈ C[0, 1] such that y(t) = tα−nz(t)
for t ∈ (0, 1]. Define |y|α−n = |z|0 and Cα−n[0, 1] with norm | · |α−n is a Banach space.

The following definition is motivated by Definition 1 found in [9].

Definition 1. Assume A is a linear operator with Dom (A) ⊂ Cα−n and Im (A) ⊂ L[0, 1].
For λ ∈ R \ {0}, the operator A+ λI , where I denotes the identity operator, satisfies a signed
maximum principle in λy if for each f ∈ L[0, 1], the equation

(A+ λI)y = f , y ∈ Dom (A),

has unique solution y, and f ≥ 0, implies λy(t) ≥ 0, 0 < t ≤ 1. The operator A+ λI satisfies a
strong signed maximum principle in λy if f ≥ 0, and f (t) �= 0 a.e. implies λy(t) > 0, 0 < t ≤ 1.

Remark 1. In [9], the authors employed the phrase, maximum principle. We have taken the liberty
to employ the phrase signed maximum principle to distinguish further from classical usage of
maximum principle or anti-maximum principle.

Remark 2. The phrases “maximum principle” or “anti-maximum principle” are used loosely and
we mean the following. Maximum principle means f ≥ 0 implies y ≤ 0. This is precisely the case
for the classical second order ordinary differential equation with Dirichlet boundary conditions.
Anti-maximum principle means f ≥ 0 implies y ≥ 0. This is the case observed in [8] for α = 2,
where the phrase anti-maximum principle was coined.

For f ∈ L[0, 1] (or f ∈ Cα−n[0, 1]), let | f |1 =
∫ 1

0 | f (s)|ds and define f =
∫ 1

0 f (t)dt. Define

C̃ ⊂ Cα−n[0, 1] = {y ∈ Cα−n[0, 1] : y = 0}, L̃ ⊂ L[0, 1] = { f ∈ L[0, 1] : f = 0}.

Assume A : Dom (A) → L[0, 1] denotes a linear operator satisfying

Dom (A) ⊂ Cα−n[0, 1], Ker (A) =< tα−n >, Im (A) = L̃, (9)

where < tα−n > denotes the linear span of tα−n. Assume further that for f̃ ∈ L̃, the problem
Ay = f̃ is uniquely solvable with solution ỹ ∈ Dom(A) and such that

∫ 1
0 ỹ(t)dt = ỹ = 0.

In particular, define

Dom (Ã) = {ỹ ∈ Dom (A) : ỹ = 0} ⊂ C̃, (10)

and then
A| Dom (Ã) : Dom (Ã) → L̃

is invertible. Moreover, if Aỹ = f̃ for f̃ ∈ L̃, ỹ ∈ Dom(Ã), assume there exists a constant
M > 0 depending only on A such that

|ỹ|α−n ≤ M| f̃ |1. (11)

For f ∈ L, define
f̃ = f − (α − n + 1) f tα−n,

which implies f̃ ∈ L̃, and for y ∈ Dom (A) define

ỹ = y − (α − n + 1)ytα−n,
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which implies ỹ ∈ Dom (Ã).
Since Ker(A) =< tα−n >, with the decompositions f̃ = f − (α − n + 1) f tα−n and

ỹ = y − (α − n + 1)ytα−n, it follows that

Ay + λy = f , y ∈ Dom (A), (12)

which decouples as follows:

Aỹ + λỹ = (A+ λI)ỹ = f̃ , (13)

λ(α − n + 1)ytα−n = (α − n + 1) f tα−n. (14)

Denote the inverse of (A+ λI), if it exists, by Rλ and denote the inverse of

A| Dom (Ã)

by R0. So, R0 : L̃ → C̃ and

ỹ = R0 f̃ if, and only if, Aỹ = f̃ . (15)

Note that (15) implies that since ỹ ∈ Dom(Ã),

ỹ = R0Aỹ. (16)

Note that (11) implies that R0 : L̃ → C̃ is continuous, and hence, R0 : L̃ → C̃ is a bounded
linear operator with ||R0||L̃→C̃ ≤ M. To note the continuity, if R0( f̃n) = ỹn,R0( f̃ ) = ỹ,
and | f̃n − f̃ |1 → 0, as n → ∞, then |ỹn − ỹ|α−n ≤ M| f̃n − f̃ |1 → 0, as n → ∞.

Since C̃ ⊂ L̃, we can also consider R0 : C̃ → C̃. Equation (11) also implies that
R0 : C̃ → C̃ is continuous and hence, bounded. To see this, assume | f̃n − f̃ |α−n → 0, as
n → ∞. Then, t2−α| f̃n − f̃ | → 0 uniformly as n → ∞. For each ε > 0, | f̃n − f̃ |(t) < εtα−2

and | f̃n − f̃ |1 < ε
α−1 , eventually; in particular, | f̃n − f̃ |1 → 0, as n → ∞, which implies

|ỹn − ỹ|α−n → 0, as n → ∞.

Theorem 1. Assume A : Dom (A) → L[0, 1] denotes a linear operator satisfying (9). Define Ã
by (10) and assume

A| Dom (Ã) : Dom (Ã) → L̃

is invertible. Finally, if Aỹ = f̃ for f̃ ∈ L̃, ỹ ∈ Dom(Ã), assume there exists a constant M > 0
depending only on A such that (11) is satisfied. Then there exists Λ1 > 0 such that if 0 < |λ| ≤ Λ1,
then Rλ : C̃ → C̃, the inverse of (A+ λI), exists. Moreover, if f̃ ∈ L̃, if Λ1||R0||C̃→C̃ < 1,
where R0 denotes the inverse of A| Dom (Ã), and if 0 < |λ| ≤ Λ1, then

|Rλ f̃ |α−n ≤ ||R0||L̃→C̃
1 − Λ1||R0||C̃→C̃

| f̃ |1. (17)

Further, there exists Λ ∈ (0, Λ1) such that if 0 < |λ| ≤ Λ, then the operator (A+ λI) satisfies a
strong signed maximum principle in λy.

Proof. Employ (16) and apply R0 to (13) to obtain

ỹ + λR0ỹ = R0 f̃ .

It has been established that (11) implies that each of R0 : L̃ → C̃ and R0 : C̃ → C̃ are
bounded linear operators. Since |λ|||R0||C̃→C̃ < 1, it follows that (I + λR0) : C̃ → C̃ is
invertible and

ỹ = (I + λR0)
−1R0 f̃ .
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Assume 0 < Λ1 < 1
||R0||C̃→C̃

and assume |λ| ≤ Λ1. Then, Rλ = (I + λR0)
−1R0 exists.

Since Λ1||R0||C̃→C̃ < 1 and 0 < |λ| ≤ Λ1, it follows that

|ỹ|α−n − |λR0ỹ|α−1 =
∣∣∣|ỹ|α−n − |λR0ỹ|α−1

∣∣∣
and so the triangle inequality implies

|ỹ|α−n − Λ1||R0||C̃→C̃|ỹ|α−n ≤ |ỹ|α−n − |λ|||R0||C̃→C̃|ỹ|α−n

≤ |(I + λR0)ỹ|α−n = |R0 f̃ |α−n ≤ ||R0||L̃→C̃| f̃ |1.

Thus, (17) is proved since R0 f̃ = ỹ ∈ Cα−n[0, 1].
Now assume f ∈ L[0, 1] and assume f ≥ 0 a.e. Then, f = | f |1. Let 0 < |λ| ≤ Λ1 <

1
||R0||C̃→C̃

, write f = (α − n + 1) f tα−n + f̃ , and consider

λy = λRλ f = λRλ

(
(α − n + 1) f tα−n + f̃

)
.

Note that λRλ(α − n + 1) f tα−n = (α − n + 1) f tα−n since (A + λI)(α − n + 1) f tα−n =
λ(α − (n − 1)) f tα−n. Thus,

λy = λRλ f = λRλ

(
(α − n + 1) f tα−n + f̃

)
= (α − n + 1) f tα−n + λRλ f̃ ≥ (α − n + 1)| f |1 − |λ||Rλ f̃ |α−n.

Continuing to assume that 0 < |λ| ≤ Λ1, it now follows from (17) that

λy ≥ (α − (n − 1))| f |1 − |λ|
( ||R0||L̃→C̃

1 − Λ1||R0||C̃→C̃

)
| f̃ |1.

Since f̃ = f − (α − n + 1) f tα−n, and | f̃ |1 ≤ | f |1 + f = 2| f |1, the theorem is proved with

Λ < min
{

Λ1, (α − n + 1)
(1 − Λ1||R0||C̃→C̃

2||R0||L̃→C̃

)}
.

In particular, if 0 < |λ| ≤ Λ, then

λy(t) ≥ K| f |1 = (α − n + 1)
(

1 − Λ
( 2||R0||L̃→C̃

1 − Λ1||R0||C̃→C̃

))
| f |1.

4. Four Examples

To apply Theorem 1, there are two primary tasks. First, if f̃ ∈ L̃, we must show there
exists a unique solution ỹ ∈ Dom (A) of Ay = f̃ satisfying ỹ = 0. In the case of ordinary
differential equations or partial differential equations, one can often appeal to a Fredholm
alternative to complete this task. For the Riemann–Liouville fractional differential equation,
we only know to construct ỹ explicitly, and show uniqueness to complete this task. Second,
we must show the existence of a constant M > 0 such that |ỹ|α−n ≤ M| f̃ |1. This will be a
straightforward task since we will have constructed ỹ explicitly.

Example 1. Let 1 < α ≤ 2, and consider the linear boundary value problem, with a Riemann–
Liouville analogue of Neumann boundary conditions, (3), (4); that is, consider,

Dα
0 y(t) + λy(t) = f (t), 0 < t ≤ 1,

Dα−1
0 y(0) = 0, Dα−1

0 y(1) = 0.
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For the boundary value problem (3), (4), A = Dα
0 , and Ker(A) =< tα−2 > . We show that the

operator A satisfies the hypotheses of Theorem 1.
One can show directly that Im(A) = L̃. If f ∈ Im(A), then there exists a solution y of

Dα
0 y(t) = f (t), 0 < t ≤ 1, Dα−1

0 y(0) = 0, Dα−1
0 y(1) = 0,

which implies

0 = Dα−1
0 y(1)− Dα−1

0 y(0) =
∫ 1

0
Dα

0 y(t)dt =
∫ 1

0
f (t)dt,

and f ∈ L̃. Likewise, if f ∈ L̃, then

ỹ(t) =
1

Γ(α)

∫ t

0
(t − s)α−1 f (s)ds − (α − 1)tα−2

Γ(α + 1)

∫ 1

0
(1 − s)α f (s)ds (18)

= Iα
0 f (t)− (α − 1)Iα+1

0 f (1)tα−2 ∈ Dom (A)

is a solution of

Dα
0 y(t) = f (t), 0 < t ≤ 1, Dα−1

0 y(0) = 0, Dα−1
0 y(1) = 0,

and ỹ = 0. To verify that ỹ satisfies these properties, note that any solution of Dα
0 y(t) = f (t),

0 < t ≤ 1, has the form, Iα
0 f (t) + c2tα−2 + c1tα−1. Thus, Dα

0 ỹ(t) = f (t), 0 < t ≤ 1. To see that
the boundary conditions are satisfied, write

Dα−1
0 Iα

0 f (t) = Dα−1
0 Iα−1

0 I1
0 f (t) = I1

0 f (t) =
∫ t

0
f (s)ds,

and note that Dα−1
0 tα−2 = 0. Thus, Dα−1

0 Iα
0 f |t=0 = 0, and Dα−1

0 Iα
0 f |t=1 = 0 since f ∈ L̃; in

particular, the boundary conditions are satisfied. To see that ỹ = 0, note that

I Iα
0 f (t) = Iα+1

0 f (t)

and so,
ỹ = Iα

0 f − Iα+1
0 f (1) = Iα+1

0 f (1)− Iα+1
0 f (1) = 0.

To argue that Ay = f̃ is uniquely solvable with solution ỹ ∈ Dom (Ã), (18) implies the
solvability. For uniqueness, if y1 and y2 are two such solutions, then (y1 − y2)(t) = ctα−2 and
y1 − y2 = 0 implies c = 0.

Finally, (18) implies (11) is satisfied with M = 1
Γ(α) +

α−1
Γ(α+1) =

2α−1
Γ(α+1) .

Theorem 1 applies and there exists Λ > 0 such that if 0 < |λ| ≤ Λ, then (A+ λI) satisfies a
signed maximum principle in y; that is, f ≥ 0 implies λy ≥ 0.

Example 2. For the second example, let 1 < α ≤ 2, and let a ∈ R. Consider the linear boundary
value problem, with a Riemann–Liouville analogue of periodic boundary conditions, (5), (7); that
is, consider,

Dα
0 y(t) + aDα−1

0 y(t) + λy(t) = f (t), 0 < t ≤ 1,

I2−α
0 y(0) = I2−α

0 y(1), Dα−1
0 y(0) = Dα−1

0 y(1).

Now, A = Dα
0 + aDα−1

0 , and Ker(A) =< tα−2 > . We show that the operator A satisfies the
hypotheses of Theorem 1.

We show directly that Im (A) = L̃. If f ∈ Im (A), then

I f (t) = I
(

Dα
0 y(t) + aDα−1

0 y(t)
)

=
(

Dα−1
0 y(t)− Dα−1

0 y(0)
)
+ a

(
I2−α
0 y(t)− I2−α

0 y(0)
)

;
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thus, I f (1) = 0 since y satisfies the periodic boundary conditions. In particular, f ∈ L̃.
Now assume f ∈ L̃. We first construct a general solution of

Dα
0 y(t) + aDα−1

0 y(t) = f (t), 0 < t ≤ 1,

I2−α
0 y(0) = I2−α

0 y(1), Dα−1
0 y(0) = Dα−1

0 y(1).

Since Dα
0 y = DDα−1

0 y, apply an integrating factor, eat, and

D(eatDα−1
0 y(t)) = eat f (t),

which implies

Dα−1
0 y(t) = Dα−1

0 y(0)e−at +
∫ t

0
e−a(t−s) f (s)ds.

Then,

y(t) = ct(α−1)−1 + Iα−1
0

(
Dα−1

0 y(0)e−at +
∫ t

0
e−a(t−s) f (s)ds

)
= ctα−2 + Dα−1

0 y(0)Iα−1
0 e−at + Iα−1

0

( ∫ t

0
e−a(t−s) f (s)ds

)
.

Apply the periodic boundary conditions. Then,

Dα−1
0 y(t) = Dα−1

0 y(0)e−at +
∫ t

0
e−a(t−s) f (s)ds,

and the boundary condition Dα−1
0 y(0) = Dα−1

0 y(1) implies

Dα−1
0 y(0) =

1
1 − e−a

∫ 1

0
e−a(1−s) f (s)ds

is uniquely determined. Now,

I2−α
0 y(t) = cΓ(α − 1) + Dα−1

0 y(0)Ie−at + I
( ∫ t

0
e−a(t−s) f (s)ds

)
= cΓ(α − 1) + Dα−1

0 y(0)
∫ t

0
e−asds +

∫ t

0

( ∫ s

0
e−a(s−r) f (r)dr

)
ds

= cΓ(α − 1) + Dα−1
0 y(0)

(1 − e−at)

a
−

∫ t

0

(e−a(t−s) − 1)
a

f (s)ds.

Thus, I2−α
0 y(0) = cΓ(α − 1) and

I2−α
0 y(1) = cΓ(α − 1) + Dα−1

0 y(0)
(1 − e−a)

a
−

∫ 1

0

(e−a(1−s) − 1)
a

f (s)ds

= cΓ(α − 1) +
∫ 1

0

e−a(1−s)

a
f (s)ds −

∫ 1

0

e−a(1−s)

a
f (s)ds − 1

a

∫ 1

0
f (s)ds

= cΓ(α − 1).

At this point in the construction, c is still undetermined and

y(t) = ctα−2 + Dα−1
0 y(0)Iα−1

0 e−at + Iα−1
0

( ∫ t

0
e−a(t−s) f (s)ds

)
is a general solution of

Dα
0 y(t) + aDα−1

0 y(t) = f (t), 0 < t ≤ 1,
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I2−α
0 y(0) = I2−α

0 y(1), Dα−1
0 y(0) = Dα−1

0 y(1).

To obtain the parameter c uniquely, Theorem 1 requires that ỹ = 0. Thus,

0 =
c

α − 1
+ Dα−1

0 y(0)Iα−1
0 e−at + Iα−1

0

∫ t

0
e−a(t−s) f (s)ds

and

c = (1 − α)Dα−1
0 y(0)Iα−1

0 e−at + Iα−1
0

∫ t

0
e−a(t−s) f (s)ds

is uniquely determined.
Note that

Dα−1
0 y(0) =

1
1 − e−a

∫ 1

0
e−a(1−s) f (s)ds implies |Dα−1

0 y(0)| ≤ 1
1 − e−a | f |1.

Thus,

y(t) = ctα−2 + Dα−1
0 y(0)Iα−1

0 e−at + Iα−1
0

( ∫ t

0
e−a(t−s) f (s)ds

)
implies (11) is satisfied.

This concludes the second example.
Before proceeding to the third example, we observe that Theorem 1 does not apparently apply

to a Neumann boundary value problem (5), (4) in the case 1 < α ≤ 2, a �= 0. Assume f ∈ L̃ and
begin the construction of a general solution. As before, one obtains

Dα−1
0 y(t) = Dα−1

0 y(0)e−at +
∫ t

0
e−a(t−s) f (s)ds =

∫ t

0
e−a(t−s) f (s)ds.

Take for example, f (t) = t − 1
2 ∈ L̃. Then, Dα−1

0 y(1) �= 0.

Example 3. For the third example, let n ≥ 2, let n − 1 < α ≤ n, and consider the linear boundary
value problem, with a Riemann–Liouville analogue of periodic boundary conditions, (6), (7); that
is, consider,

Dα
0 y(t) + λy(t) = f (t), 0 ≤ t ≤ 1,

In−α
0 y(0) = In−α

0 y(1), Dα−j
0 y(0) = Dα−j

0 y(1), j = 1, . . . , n − 1.

For the boundary value problem (6), (7), A = Dα
0 and Ker(A) =< tα−n > . Again, we

show Im (A) = L̃. First, note that if the boundary value problem (6), (7) is solvable, then
the boundary condition Dα−1

0 y(0) = Dα−1
0 y(1) implies f ∈ L̃ since I f (t) = IDα

0 y(t) =

Dα−1
0 y(t)− Dα−1

0 y(0). Thus,
∫ 1

0 f (t)dt = Dα−1
0 y(0)− Dα−1

0 y(0) = 0.
Now assume f ∈ L̃. If ỹ ∈ Dom (Ã), then

ỹ(t) = Iα
0 f (t) +

n

∑
j=1

cα−jtα−j.

We show the coefficients cα−j are uniquely determined. The condition Dα−1
0 ỹ(0) = Dα−1

0 ỹ(1)
implies

I f (0) + cα−1Γ(α) = I f (1) + cα−1Γ(α)

which implies cα−1 is undetermined at this point in the construction. Let k ∈ {2, . . . , n}. Then,

Dα−k
0 ỹ(t) = Ik

0 f (t) +
k

∑
j=1

cα−j
Γ(α + 1 − j)
Γ(k + 1 − j)

tk−j. (19)
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Apply the boundary conditions Dα−j
0 ỹ(0) = Dα−j

0 ỹ(1) in the order j = 2, . . . , n. At j = 2,

I2 f (0) + cα−2Γ(α − 1) = Dα−2
0 ỹ(0) = Dα−2

0 ỹ(1) = I2 f (1) + cα−2Γ(α − 1) + cα−1
Γ(α)
Γ(2)

.

Thus, cα−1 = − Γ(2)
Γ(α) I2 f (1) is uniquely determined. Employ (19) inductively and for j = k,

Ik f (0) + cα−kΓ(α + 1 − k)) = Dα−k
0 ỹ(0) = Dα−k

0 ỹ(1)

= Ik f (1) + cα−kΓ(α + 1 − k) +
k−1

∑
j=1

cα−j
Γ(α + 1 − j)
Γ(k + 1 − j)

.

Inductively, cα−j, j = 1, . . . k − 2 have been uniquely determined and so,

cα−(k−1) = − Γ(2)
Γ(α − (k − 2))

(
Ik f (1) +

k−2

∑
j=1

cα−j
Γ(α + 1 − j)
Γ(k + 1 − j)

)
(20)

is uniquely determined. To summarize, the boundary conditions Dα−j
0 y(0) = Dα−j

0 y(1), j =
1, . . . , n − 1, uniquely determine the coefficients, cα−1, . . . , cα−(n−2).

To determine the coefficient, cα−(n−1), employ the boundary condition In−α
0 ỹ(0) = In−α

0 ỹ(1).
Since

In−α
0 ỹ(t) = In

0 f (t) +
n

∑
j=1

cα−j
Γ(α + 1 − j)
Γ(n + 1 − j)

tn−j,

it follows that

cα−(n−1) = − Γ(2)
Γ(α − (n − 2))

(
In f (1) +

n−2

∑
j=1

cα−j
Γ(α + 1 − j)
Γ(n + 1 − j)

)
(21)

is uniquely determined.
Finally, the application of Theorem 1 requires that ỹ = 0. Thus,

0 = Iα
0 f +

cα−n

α + 1 − n
+

n−1

∑
j=1

cα−j

α + 1 − j
.

Hence, cα−n is uniquely determined and the proof that f ∈ L̃ implies ỹ ∈ Dom (Ã) is uniquely
determined is complete.

To see that M in (11) can be computed, recall that

ỹ(t) = Iα
0 f (t) +

n

∑
j=1

cα−jtα−j.

and employ (20) and (21). Note that cα−1 is a multiple of I2 f (1), which implies that cα−k is a linear
combination of Ik f (1), . . . , I2 f (1), for k = 1, . . . , n. Thus, M is computable. Thus, Theorem 1
applies and there exists Λ > 0 such that if 0 < |λ| ≤ Λ, then (A+ λI) satisfies the strong signed
maximum principle in y.

Example 4. Theorem 1 can also apply to the boundary value problem with boundary conditions
analogous to periodic boundary conditions, (6), (8); that is, consider,

Dα
0 y(t) + λy(t) = f (t), 0 ≤ t ≤ 1,

lim
t→0+

tn−αy(t) = y(1), Dα−j
0 y(0) = Dα−j

0 y(1), j = 1, . . . , n − 1.
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The unique determination of cα−k, k = 1, . . . n− 2 proceeds precisely as in Example (3). Apply
the boundary condition limt→0+ tn−αy(t) = y(1) to ỹ(t) = Iα

0 f (t) + ∑n
j=1 cα−jtα−j to obtain

cα−n = In f (1) +
n

∑
j=1

cα−j

and cα−(n−1) = −
(

In f (1) + ∑n−2
j=1 cα−j

)
is uniquely determined. Then, as in Example 3, cα−n is

uniquely determined by the requirement that ỹ = 0.
Thus, Theorem 1 applies and there exists Λ > 0 such that if 0 < |λ| ≤ Λ then (A+ λI)

satisfies the strong signed maximum principle in y.

5. A Monotone Method

The application of monotone methods in the presence of a maximum principle or in
the presence of an anti-maximum principle to construct approximate solutions of initial
value or boundary value type problems enjoys a long history. The purpose of this section
is to employ (1) to quickly recognize the presence of the maximum principle or the anti-
maximum principle. There are recent applications of monotone methods to periodic-like
boundary value problems for Riemann–Liouville fractional differential equations; see, for
example, [6,7]. In each of those application, 0 < α ≤ 1, and the anti-maximum principle
is observed by the explicit construction of a corresponding Green’s function in terms of
Mittag-Leffler functions.

Assume f : (0, 1]×R → R is continuous and consider the boundary value problem

Dα
0 y(t) = f (t, y(t)), 0 < t ≤ 1, 1 < α ≤ 2, (22)

Dα−1
0 y(0) = 0, Dα−1

0 y(1) = 0. (23)

Assume that
y(t) ∈ Cα−2[0, 1] implies f (t, y(t)) ∈ Cα−2[0, 1], (24)

and assume further that f satisfies the following monotonicity property,

f (t, y1) < f (t, y2) for (t, y) ∈ (0, 1]×R, y1 > y2. (25)

Thus, f is monotone decreasing in the second component.
Apply Theorem 1 and find Λ > 0 such that if 0 < λ ≤ Λ, then (A+ λI) satisfies

a strong signed maximum principle in λy. Apply a shift [29] to (22) and consider the
equivalent boundary value problem,

Dα
0 y(t) + λy(t) = f (t, y(t)) + λy(t), 0 < t ≤ 1,

with boundary conditions (23) where −Λ ≤ λ < 0 and Λ > 0 is shown to exist in
Theorem 1. Note that if g(t, y) = f (t, y) + λy and f satisfies (24) and (25), then g satisfies
(24) and g satisfies (25) if λ < 0.

Assume the existence of solutions, w1, v1 ∈ Cα−2[0, 1], of the following boundary value
problems for differential inequalities

Dα
0 w1(t) ≥ f (t, w1(t)), 0 < t ≤ 1, Dα

0 v1(t) ≤ f (t, v1(t)), 0 < t ≤ 1, (26)

Dα−1
0 w1(0) = 0, Dα−1

0 w1(1) = 0, Dα−1
0 v1(0) = 0, Dα−1

0 v1(1) = 0.

Assume further that
v1(t)− w1(t) ≥ 0, 0 < t ≤ 1. (27)

Since λ < 0, define a partial order �λ<0 on Cα−2[0, 1] by

u �λ<0 0 ⇐⇒ u(t) ≤ 0, 0 < t ≤ 1.
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Then, the assumption (27) implies w1 �λ<0 v1.
Define iteratively the sequences {vk}∞

k=1, {wk}∞
k=1, where

Dα
0 vk+1(t) + λvk+1(t) = f (t, vk(t)) + λvk(t), 0 < t ≤ 1, (28)

Dα−1
0 vk+1(0) = 0, Dα−1

0 vk+1(1) = 0,

and

Dα
0 wk+1(t) + λwk+1(t) = f (t, wk(t)) + λwk(t), 0 < t ≤ 1, (29)

Dα−1
0 wk+1(0) = 0, Dα−1

0 wk+1(1) = 0.

Inductively, Theorem 1 implies the existence of each vk+1, wk+1 since |λ| ≤ Λ implies the
inverse of (A+ λI) exists, and, for example, f (t, vk(t)) + λvk(t) ∈ Cα−2[0, 1].

Theorem 2. Assume f : (0, 1]×R → R is continuous, assume that f satisfies (24), and assume f
satisfies the monotonicity properties (25). Assume the existence of functions v1, w1 ∈ Cα−2[0, 1]
satisfying (26) and (27). Define the sequences of iterates {vk}∞

k=1, {wk}∞
k=1 by (28) and (29),

respectively. Then, for each positive integer k,

wk �λ<0 wk+1 �λ<0 vk+1 �λ<0 vk. (30)

Moreover, {vk}∞
k=1 converges in Cα−2 to a solution v ∈ Cα−2[0, 1] of the boundary value problem

(22), (23) and {wk}∞
k=1 converges in Cα−2[0, 1] to a solution w ∈ Cα−2[0, 1] of the boundary value

problem (22), (23) satisfying

wk �λ<0 wk+1 �λ<0 w �λ<0 v �λ<0 vk+1 �λ<0 vk. (31)

Proof. Since v1 satisfies a differential inequality given in (27), then for 0 < t ≤ 1,

Dα
0 v2(t) + λv2(t) = f (t, v1(t)) + λv1(t) ≥ Dα

0 v1(t) + λv1(t).

Set u = v2 − v1 and u satisfies a boundary value problem for a differential inequality,

Dα
0 u(t) + λu(t) ≥ 0, 0 < t ≤ 1, Dα−1

0 u(0) = 0, Dα−1
0 u(1) = 0.

The signed maximum principle applies and u �λ<0 0; in particular, v2 �λ<0 v1. Similarly,
w1 �λ<0 w2. Now set u = w2 − v2 and

Dα
0 u(t) + λu(t) =

(
f (t, w1(t))− f (t, v1(t))

)
+ λ(w1(t)− v1(t)), 0 < t ≤ 1,

Dα−1
0 u(0) = 0, Dα−1

0 u(1) = 0.

Since f satisfies (25) and w1 �λ<0 v1, then

Dα
0 u(t) + λu(t) ≥ 0, 0 ≤ t ≤ 1,

and again the signed maximum principle applies and u �λ<0 0. In particular, w2 �λ<0 v2.
Thus, (30) is proved for k = 1.

Before applying a straightforward induction to obtain (30), we must show Dα
0 w2(t) ≥

f (t, w2(t)), and Dα
0 v2(t) ≤ f (t, v2(t)), for 0 < t ≤ 1. Since f (t, v1(t)) ≤ f (t, v2(t)), λ < 0

and (v1 − v2)(t) ≥ 0, it follows that

Dα
0 v2(t) = f (t, v1(t)) + λ(v1 − v2)(t) ≤ f (t, v2(t)).

Similarly, Dα
0 w2(t) ≥ f (t, w2(t)) and (30) is valid.
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To obtain the existence of limiting solutions v and w satisfying (31), note that the
sequence {vk} is monotone decreasing and bounded below by {w1}. Thus, the sequence
{vk} is converging pointwise to some v(t) for each t ∈ (0, 1]. Moreover, if

zk(t) = t2−αvk ∈ C[0, 1], zk(0) = ak,

the sequence {zk} is converging pointwise to some z(t) = t2−αv(t), z(0) = a0 where
ak converges monotonically to a0. At this point in the argument, the convergence is
pointwise. Since

Dα
0 vk+1(t) = f (t, vk(t)) + λ(vk(t)− vk+1(t)), 0 < t ≤ 1,

if follows that {Dα
0 vk} is converging pointwise to g(t) = f (t, v(t)) for each t ∈ (0, 1]. Since

Dα−1
0 vk(0) = 0,

vk(t) = aktα−2 + Iα
0 Dα

0 vk(t), 0 < t ≤ 1.

Thus, by the dominated convergence theorem

v(t) = a0tα−2 + Iα
0 g(t), 0 < t ≤ 1;

in particular,
Dα

0 v(t) = g(t) = f (t, v(t)), 0 < t ≤ 1,

and v satisfies the fractional differential equation. To see that v satisfies the Neumann type
boundary conditions, again observe

Dα
0 vk+1(t) = f (t, vk(t)) + λ(vk(t)− vk+1(t)), 0 < t ≤ 1,

Dα−1
0 vk(0) = 0, Dα−1

0 vk(1) = 0.

Since 0 = Dα−1
0 vk(1)− Dα−1

0 vk(0) =
∫ 1

0 Dα
0 vk+1(s)ds, it follows that

∫ 1

0

(
f (s, vk(s)) + λ(vk(s)− vk+1(s))

)
ds = 0.

Again, the dominated convergence theorem implies that
∫ 1

0 f (s, v(s))ds = 0. Thus,

Dα−1
0 v(t) =

∫ t

0
f (s, v(s))ds

which implies Dα−1
0 v(0) = 0 and Dα−1

0 v(1) =
∫ 1

0 f (s, v(s))ds = 0.
Note that since w1(t) ≤ v(t) ≤ v1(t) on (0, 1] and Dα−1

0 v(t) =
∫ t

0 f (s, v(s))ds, then
Dα−1

0 v is uniformly continuous on any compact subinterval of (0, 1]. Thus,

v(t) = a0tα−2 + Iα−1
0 Dα−1

0 v(t), 0 < t ≤ 1,

implies v ∈ Cα−2[0, 1] and
wk �λ<0 v �λ<0 vk

for each k. Moreover, Dini’s theorem now applies and the convergence of t2−αvk(t) is uniform.
Similar details apply to {wk} and the theorem is proved.

Suppose now f satisfies the “anti”-inequalities to (25); that is, suppose f satisfies

f (t, y1) > f (t, y2) for (t, y) ∈ (0, 1]×R, y1 > y2. (32)

One can appeal to the signed maximum principle, apply a shift to (22), and consider the
equivalent boundary value problem, Dα

0 y(t) + λy(t) = f (t, y(t)) + λy(t), 0 < t ≤ 1, where
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0 < λ ≤ Λ, and Λ > 0 is given by Theorem 1. Note, if f satisfies (32) and λ > 0, then
g(t, y) = f (t, y) + λy satisfies (32).

Now, assume the existence of solutions, w1, v1 ∈ Cα−2[0, 1], of the following differen-
tial inequalities

Dα
0 w1(t) ≤ f (t, w1(t)), 0 < t ≤ 1, Dα

0 v1(t) ≥ f (t, v1(t)), 0 < t ≤ 1, (33)

Dα−1
0 w1(0) = 0, Dα−1

0 w1(1) = 0, Dα−1
0 v1(0) = 0, Dα−1

0 v1(1) = 0.

Assume further that
(v1(t)− w1(t)) ≥ 0, 0 < t ≤ 1. (34)

Noting that λ > 0 defines a partial order �λ>0 on Cα−2[0, 1] by

u �λ>0 0 ⇐⇒ u(t) ≥ 0, 0 < t ≤ 1.

In particular, in (34), assume v1 �λ>0 w1.

Theorem 3. Assume f : (0, 1]×R → R is continuous, assume that f satisfies (24), and assume f
satisfies the monotonicity properties, (32). Assume the existence of w1, v1 ∈ Cα−2[0, 1] satisfying
(33) and (34). Define the sequences of iterates {vk}∞

k=1, {wk}∞
k=1 by (28) and (29), respectively.

Then, for each positive integer k,

vk �λ>0 vk+1 �λ>0 wk+1 �λ>0 wk.

Moreover, {vk}∞
k=1 converges in Cα−2 to a solution v ∈ Cα−2[0, 1] of the boundary value problem

(22), (23) and {wk}∞
k=1 converges in Cα−2[0, 1] to a solution w ∈ Cα−2[0, 1] of the boundary value

problem (22), (23) satisfying

vk �λ>0 vk+1 �λ>0 v �λ>0 w �λ>0 wk+1 �λ>0 wk. (35)

6. Example

We close the article with an example in which Theorem 3 applies and in which upper
and lower solutions, v1 and w1, are explicitly produced. To do so, we construct an explicit
Green’s function to obtain an estimate on Λ > 0, and we exhibit verifiable conditions on f
so that (24) is satisfied.

The two-parameter Mittag-Leffler function

Eα,β(z) =
∞

∑
n=0

zn

Γ(αn + β)
, Re(α) > 0, β ∈ C, z ∈ C

will be employed to construct an appropriate Green’s function.
Assume 1 < α < 2, assume λ �= 0, and consider a Neumann boundary value problem

for nonhomogenous linear Equations (3) and (4). We restate the boundary value problem
for convenience.

Dα
0 y(t) + λy(t) = f (t), 0 < t ≤ 1, 1 < α < 2,

Dα−1
0 y(0) = 0, Dα−1

0 y(1) = 0.

Thus, y(t) = −λIα
0 y(t) + Iα

0 f (t) + ctα−2 where c is still undetermined or

(I + λIα
0 )y(t) = Iα

0 f (t) + ctα−2.
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Employ the Neumann series to see that if (I + λIα
0 )y(t) = h(t), then

y(t) =
∞

∑
n=0

(−λ)n Iαn
0 h(t) =

(
I +

∞

∑
n=1

(−λ)n Iαn
0

)
h(t)

= h(t) +
∫ t

0

∞

∑
n=1

(−λ)n (t − s)αn−1

Γ(αn)
h(s)ds

= h(t)− λ
∫ t

0
(t − s)α−1

∞

∑
n=0

(−λ(t − s)α)n

Γ(αn + α)
h(s)ds

= h(t)− λ
∫ t

0
(t − s)α−1Eα,α(−λ(t − s)α)h(s)ds.

Thus,

y(t) = h(t) + (−λ)
∫ t

0
(t − s)α−1Eα,α(−λ(t − s)α))h(s)ds,

where h(t) = Iα
0 f (t) + ctα−2. Employ the identity

∫ b

a
(t − a)β(x − t)n−1dt =

Γ(β + 1)Γ(n)
Γ(β + 1 + n)

(x − a)n+β

and note that

tα−2 + (−λ)
∫ t

0
(t − s)α−1Eα,α(−λ(t − s)α)sα−2ds

= Γ(α − 1)
tα−2

Γ(α − 1)
+

∞

∑
n=0

(−λ)n+1
∫ t

0

(t − s)αn+α−1sα−2

Γ(αn + α)
dt

= Γ(α − 1)
tα−2

Γ(α − 1)
+

∞

∑
n=0

(−λ)n+1 Γ(α − 1)
Γ(α(n + 1) + α − 1)

tα(n+1)+α−2

= Γ(α − 1)tα−2Eα,α−1(−λtα).

Thus,

y(t) = Iα
0 f (t) + (−λ)

∫ t

0
(t − s)α−1Eα,α(−λ(t − s)α))Iα

0 f (s)ds

+ cΓ(α − 1)tα−2Eα,α−1(−λtα). (36)

To calculate Dα−1
0 y(t), we have Dα−1

0 Iα
0 f (t) = I1 f (t),

Dα−1
0 tα−2Eα,α−1(−λtα) = t−1Eα,0(−λtα)

= t−1
∞

∑
n=0

(−λtα)n

Γ(αn)
= t−1

∞

∑
n=1

(−λtα)n

Γ(αn)

= (−λ)tα−1
∞

∑
n=0

(−λtα)n

Γ(αn + α)
= (−λ)tα−1Eα,α(−λtα),
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and

Dα−1
0 tα−2

∫ t

0
(t − s)α−1Eα,α(−λ(t − s)α))Iα

0 f (s)ds

= DI2−α
0 tα−2

∫ t

0
(t − s)α−1Eα,α(−λ(t − s)α))Iα

0 f (s)ds

=
∫ t

0
Eα,1(−λ(t − s)α)Iα

0 f (s)ds

=
∫ t

0
Eα,1(−λ(t − r)α)

∫ r

0

(r − s)α−1

Γ(α)
f (s)dsdr

=
∫ t

0

( ∫ t

s

∞

∑
n=0

(−λ(t − r)α)n

Γ(αn + 1)
(r − s)α−1

Γ(α)
dr
)

f (s)ds

=
∫ t

0
(

∞

∑
n=0

(−λ)n(t − s)αn+α

Γ(αn + α + 1)
(t − s)αn+α) f (s)ds

=
∫ t

0
(t − s)αEα,α+1(−λ(t − s)α) f (s)ds.

Thus,

Dα−1
0 y(1) = I1 f (1) + (−λ)

∫ 1

0
(1 − s)αEα,α+1(−λ(1 − s)α)) f (s)ds

− λcΓ(α − 1)Eα,α(−λ).

Employ the boundary condition Dα−1
0 y(1) = 0 and obtain

c =

∫ 1
0 f (s)ds − λ

∫ 1
0 (1 − s)αEα,α+1(−λ(1 − s)α) f (s)ds
λΓ(α − 1)Eα,α(−λ)

,

if Eα,α(−λ) �= 0.
The solution y in (36) satisfies λy = −λDα

0 y + f or

y =
1
λ

(
λ
∫ t

0
(t − s)α−1Eα,α(−λ(t − s)α) f (s)ds + λcΓ(α − 1)tα−2Eα,α−1(−λtα)

)
=

∫ t

0
(t − s)α−1Eα,α(−λ(t − s)α) f (s)ds + cΓ(α − 1)tα−2Eα,α−1(−λtα)

Define

g(α, λ; t, s) =
tα−2Eα,α−1(−λtα)

(
1 − λ(1 − s)αEα,α+1(−λ(1 − s)α)

)
λEα,α(−λ)

=
tα−2Eα,α−1(−λtα)Eα,1(−λ(1 − s)α)

)
λEα,α(−λ)

,

where an identity Eα,β(z) = 1
Γ(β)

+ zEα,α+β has been employed. Then,

y(t) =
∫ 1

0
G(α, λ; t, s) f (s)ds,

where

G(α, λ; t, s) =

⎧⎨⎩g(α, λ; t, s), 0 ≤ t ≤ s ≤ 1,

g(α, λ; t, s) + (t − s)α−1Eα,α(−λ(t − s)α), 0 ≤ s < t ≤ 1.
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One can see from this construction that a maximum principle will be valid for λ ∈
(−∞, 0). For the anti-maximum principle, it is shown in ([30], Corollary 3) that Eα,α(−z)
has the smallest in modulus root which is a positive root. From the identity,

Iα−1
0 Eα,1(−λtα) = tα−1Eα,α(−λtα),

and integrating from 0 to 1, it is clear that Eα,1(−z) has the smallest positive root which is
smaller than the smallest root of Eα,α(−z). Then, the identity

I2−α
0 tα−2Eα,α−1(−λtα) = Eα,1(−λtα),

implies that Eα,α−1(−z) has the smallest positive root which is smaller than the smallest
positive root of Eα,1(−z). Thus, from the construction, an anti-maximum principle will
be valid for λ ∈ (0, λ0), where λ0 is the smallest positive real root of the Mittag-Leffler
function, Eα,α−1(−z).

Now, consider a boundary value problem for nonlinear fractional differential
Equations (22) and (23). Assume f : (0, 1]×R → R is continuous, assume f satisfies the
monotonicity property (25), and assume there exists λ < 0 such that f (t, s) = g(t, s)− λs
and g(t, s) is bounded and continuous on (0, 1]×R. Then, f satisfies (24).

Corollary 1. Assume 1 < α < 2. Assume f : (0, 1] × R → R is continuous, and assume f
satisfies the monotonicity property (25). Assume there exists λ < 0 such that f (t, s) = g(t, s)− λs
and g(t, s) is bounded and continuous on (0, 1]×R. Then, there exists a solution of the boundary
value problem

Dα
0 y(t) = f (t, y(t)), 0 < t ≤ 1,

Dα−1
0 y(0) = 0, Dα−1

0 y(1) = 0.

Proof. As noted above, the boundedness condition on g implies that f satisfies (24). Let
(−λ)M denote an upper bound on |g|. Set v1(t) = Mtα−2 and set w1(t) = −Mtα−2. Thus,
v1 and w1 satisfy the boundary conditions (4). Moreover,

Dαv1(t) + λv1(t) = λMtα−2 ≤ λM ≤ −|g(t, Mtα−2)| ≤ f (t, v1(t)) + λv1(t),

or Dαv1(t) ≤ f (t, v1(t)). Similarly, Dαw1(t) ≥ f (t, w1(t)) and Theorem 2 applies.

Corollary 2. Assume 1 < α < 2. Assume f : (0, 1]×R → R is continuous and assume f satisfies
the monotonicity property (32). Let λ0 > 0 denote the smallest positive real root of Eα,α−1(−z).
Assume there exists λ ∈ (0, λ0) such that f (t, s) = g(t, s) − λs and g(t, s) is bounded and
continuous on (0, 1]×R. Then, there exists a solution of the boundary value problem

Dα
0 y(t) = f (t, y(t)), 0 < t ≤ 1,

Dα−1
0 y(0) = 0, Dα−1

0 y(1) = 0.

Proof. Let λM denote an upper bound on |g|. Set v1(t) = Mtα−2 and set w1(t) = −Mtα−2.
v1 and w1 satisfy (33) and Theorem 3 applies.

7. Conclusions

In this paper, we study a λ dependent boundary value problem for a Riemann–
Liouville fractional differential equation. Denoting the boundary value problem abstractly
as Ay + λy = f , λ = 0 is assumed to be a simple eigenvalue. Sufficient conditions
are obtained to show the existence of Λ > 0 such that if |λ| ∈ (0, Λ), then (A + λI) is
invertible and f ≥ 0 implies λy ≥ 0 where y denotes the unique solution of (A + λI)y = f .
Four examples are produced illustrating the abstract result. An application of monotone

150



Mathematics 2024, 12, 1000

methods and the method of upper and lower solutions is produced for a nonlinear boundary
value problem.
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The Blow-Up of the Local Energy Solution to the Wave Equation
with a Nontrivial Boundary Condition
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School of Mathematics and Statistics, Taiyuan Normal University, Jinzhong 030619, China; liuylmath@139.com

Abstract: In this study, we examine the wave equation with a nontrivial boundary condition. The
main target of this study is to prove the local-in-time existence and the blow-up in finite time of the
energy solution. Through the construction of an auxiliary function and the imposition of appropriate
conditions on the initial data, we establish the both lower and upper bounds for the blow-up time of
the solution. Meanwhile, based on these estimates, we obtain the result of the local-in-time existence
and the blow-up of the energy solution. This approach enhances our understanding of the dynamics
leading to blow-up in the considered condition.

Keywords: positive initial energy; boundary value problem; auxiliary function; lower and upper bounds

MSC: 35B35; 35L05; 35L20

1. Introduction

In this paper, we are concerned with the local-in-time existence of the energy solution
to the following wave equation:

⎧⎪⎪⎨⎪⎪⎩
u′′(x, t)− μ(t)	u(x, t) + h(u(x, t)) = 0 in Ω × (0,+∞)
u(x, t) = 0 on Γ0 × (0,+∞)

μ(t) ∂u
∂ν + g(u′) = |u|γu on Γ1 × (0,+∞)

u(x, 0) = u0(x), u′(x, 0) = u1(x) in Ω

(1)

where Ω is a bounded domain of Rn(n = 1, 2, 3) with boundary Γ = Γ0 ∪ Γ1 of class C2.
Here, Γ0 �= ∅, Γ0 and Γ1 are closed and disjoint. Let ν be the outward normal to Γ; 	 stands
for the Laplace operator.

System (1) has been studied in [1]. When μ,γ and g satisfy appropriate assumptions,
the solution of System (1) will blow up within a finite time. In this article, based on the
solution blow-up, we will continue to study the upper and lower bounds for the blow-up
time of System (1). Based on these estimates, we will obtain the result of the local-in-time
existence of the energy solution. There is relatively little existing literature on the problem
of calculating the upper and lower bounds of the blow-up time, but accurately calculating
the blow-up time has significant practical significance in specific engineering problems. The
authors of Ref. [2] study a nonlinear viscoelastic wave equation with damping and source
terms. By using the concavity method, it shows a finite time blow-up result and obtains
the upper bound for the blow-up time. Ref. [3] deals with a nonlinear viscoelastic wave
equation with strong damping. By means of a first-order differential inequality technique,
the estimate the lower bound for the blow-up time is obtained. Ref. [4] deals with the blow-
up for a class of nonlinear viscoelastic wave equations. Based on a first-order differential
inequality technique and some Sobolev-type inequality, a lower bound for blow-up time
is obtained. However, each reference listed above has the Dirichlet’s boundary condition.
The previous studies that have been performed related to trivial boundary conditions.
More importantly, the problem with nontrivial boundary conditions has extremely few
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results. In the references above, it always assumes that u = 0 on ∂Ω, which greatly reduces
the difficulty of estimating the blow-up time boundary. Unlike the previous literature,
our article considers nontrivial boundary conditions, and these boundary conditions are
nonlinear, increasing the difficulty of estimating the blow-up time. In addition, nontriv-
ial boundary conditions can also cause difficulties in inequality estimation and auxiliary
function construction. Therefore, our research can fill the gap in this area of study. There
are still many other studies on handling blow-up time under trivial boundary conditions,
for example, G.A. Philippin [5] explores the lower bounds for the blow-up time in the
context of the wave equation with trivial boundary conditions. However, this study does
not currently address the upper bounds for blow-up time. Future research endeavors may
extend the investigation to include upper bounds and further enrich our understanding of
the dynamics in this particular scenario. J. Zhou [6] considered the blow-up time with three
different ranges of initial energy under the condition of atrivial boundary. Furthermore,
considering positive initial energy and nonlinear boundary damping, T.G.Ha [1,7] estab-
lished the blow-up of solutions for the semilinear wave equation. However, the specific
determination of the blow-up time is not addressed within the current scope of the research.
Investigating the blow-up time in this context could provide valuable insights into the
temporal evolution of the solutions.

On the other hand, the blow-up behavior of solutions to the wave equation is not only
related to the interaction between damping terms and source terms, but also to the sign
of the system’s initial energy. Generally speaking, negative initial energy is more likely to
cause system solution blow-up, while positive initial energy requires stricter conditions for
system solution blow-up. This article has already addressed the issue of system solution
blow-up under positive initial energy, and we further estimate the upper and lower bounds
of the solution blow-up time. Considerable progress has been made in demonstrating to
the wave equation, especially in cases where the initial energy is negative, the conclusions
about blow-up solution have been proved [8–15]. Meanwhile, many similar results also
have been found when the initial energy is positive (see [16–19]). However, the problem of
computing exact blow-up time T has not been considered. In instances where the solution
of the wave equation experiences blow-up, the exact computation of the blow-up time T is
often not feasible. So figuring out the bounds for T is valuable in practical applications. In
recent years, there have been some advances in research on the bounds of blow-up time.
However, a great deal of research work has focused on parabolic equations [20–25]. Very
few researchers have focused their work on hyperbolic equations with nontrivial boundary
conditions [5]. In addition, the above literature only obtained the bounds of blow-up time,
but did not analyze the sharpness of blow-up time. In [26,27], not only the limit of blasting
time is obtained, but also the sharpness of blasting time is analyzed.

Compared to existing literature results, this paper addresses a notable gap in the
existing research, as minimal attention has been dedicated to investigating the lower and
upper bounds for the blow-up time of the wave equation with weak boundary damping
and source term. The primary focus of this work is to contribute to this specific aspect of
the field.

This paper aims to investigate how the interaction between the damping term and
source term influences the occurrence of blow-up in the solution. Specifically, the focus
is on demonstrating that the blow-up and blow-up time are intricately controlled by the
interplay of these two terms. Building upon the findings of [7], the objective is to extend
and generalize the results by precisely computing both lower and upper bounds for the
blow-up time T in the context of the wave equation with weak boundary damping and
source term. Therefore, the motivation of this paper is to generalize the results under
trivial boundary conditions, and further solve the problem of constructing new auxiliary
functions to estimate the bounds of blow-up time under nontrivial boundary conditions.

This paper follows a structured organization. Section 2 provides a review of notation,
hypotheses, and crucial preliminary steps. It also introduces the blow-up solution for
Equation (1). Moving on to Section 3, the main result is presented, and the paper precisely
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computes both lower and upper bounds for the blow-up time T in the context of problem (1).
This organization ensures a clear and systematic presentation of the research.

2. Preliminaries

Before delving into our principal discovery, it is crucial to take a moment to revisit
the extant body of research pertaining to the local existence, uniqueness, and blow-up
of the solution. This foundational understanding will provide a solid foundation for our
forthcoming discussion and findings. We begin this part by outlining a few theories and
some necessary results. To be more precise, we have the following hypotheses:

Hypothesis 1. Ω ⊂ Rn is a bounded domain, n ≥ 1, where the boundary of Ω is Γ = Γ0 ∪ Γ1 of
class C2.

Here, Γ0 �= ∅, Γ0 and Γ1 are closed and disjoint, satisfying the following conditions:

m(x) · ν(x) ≥ σ > 0 on Γ1, m(x) · ν(x) ≤ 0 on Γ0,

m(x) = x − x0 (x0 ∈ Rn) and R = maxx∈Ω|m(x)|,
where ν represents the unit outward normal vector to Γ. We assume that

μ(0)
∂u0

∂ν
+ g(u1) = |u0|γu0 on Γ1.

Hypothesis 2. Assume μ ∈ W2,∞(0, T) ∩ W2,1(0, T), and μ(t) > 0 is monotonic decreasing.
Meanwhile, h : R → R is a continuous function and h(s)s ≥ 0 for all s ∈ R.

Hypothesis 3. Assume γ is a constant and satisfies requirements:{
0 ≤ γ < 1, if n = 3,
γ ≥ 0, if n = 1, 2.

Hypothesis 4. Assume g is a monotone increasing function and satisfies g(0) = 0. There exist a
non-negative constant m and a strictly increasing and odd function β of C1 class on [−1, 1] such that

|β(s)| ≤ |g(s)| ≤ |β−1(s), if |s| ≤ 1,

C1|s|m+1 ≤ |g(s)| ≤ C2|s|m+1, if |s| > 1,

where β−1 denotes the inverse function of β and C1 and C2 are positive constants.

2.1. Wellposedness Result

First of all, one can define the energy E(t) associated with system (1).

E(t) =
1
2
‖u′‖2

2 +
∫

Ω
Ψ(u(x, t))dx +

1
2

μ(t)‖∇u‖2
2 −

1
γ + 2

‖u‖γ+2
γ+2,Γ1

, (2)

where Ψ(t) =
∫ t

0 h(s)dx. By calculation, we can obtain

E′(t) = μ′(t)‖∇u‖ −
∫

Γ1

g(u′)u′dΓ, (3)

where ∇ is the gradient operator. According to the Hypothesis 2, E(t) is monotone decreas-
ing function.

Remark 1. The proof of the energy identity (2)–(3) will be proved in (7)–(8).

With the notion we set, the following conclusion will be obtained [28].
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Theorem 1. Assume Hypotheses 1–4 hold and

m ≥ γ or (u0, u1) ∈ {(u0, u1) ∈ H1
Γ0
(Ω)× L2(Ω); ‖∇u‖ < λ0, E(0) < d}.

Then, the problem (1) has a unique local solution

u ∈ C0(0, T; H1
Γ0
(Ω)) ∩ C1(0, T; L2(Ω)).

2.2. Blow-Up Solution

Next, we have the corresponding blow-up result.

Theorem 2. Assume Hypotheses 1–4 hold and m < γ. Meanwhile, to System (1), we suppose that

(u0, u1) ∈ {(u0, u1) ∈ H1
Γ0
(Ω)× L2(Ω); ‖∇u0‖2 > λ0, E(0) < E1 < d, E1 ∈ R}

and

β−1 ≤
(
(γ + 2)(μ0γλ0 − 2(γ + 2)E1)

2

8(γ + 1)meas(Γ1)(μ0λ2
0 − 2E1)

) γ+1
γ+2

.

Consequently, the solution u(t) blows up.

The result of Theorem 2 has been obtained in [7]. We can now report our primary
finding in the next section.

3. The Bounds for T

In this section, we turn our attention to examining the lower bound of the blow-up
time for the blow-up solution of Equation (1). Prior to presenting and demonstrating our
primary result, we require the following lemma that plays a pivotal role in establishing the
upper bounds for the blow-up time T.

Lemma 1. In the case of the assumptions specified in Theorem 2, the solution to system (1) yields
the following result

‖∇u(t)‖2 > λ0.

Lemma 1 closely parallels Lemma 1 in [1]. Therefore, the proof will be omitted
for brevity.

Theorem 3. Assume Hypotheses 1–4 hold. Under the result in Theorem 2, the solution u(x, t) to
System (1) will blow up at a finite T, and blow-up time T satisfies

∫ F(T−)

F(0)

dy

y + 2k + C0y
2γ+3
2γ+4 (meas(Γ1))

1
2γ+4

≤ T ≤ 1 − χ

C7[L(0)]
χ

1−χ

,

where C0, C7 is a positive constant, 0 < χ < χ < γ−m
(m+2)(γ+2) and

F(0) =
∫

Ω
|u0|2dx +

∫
∂Ω

|u0|γ+2dΓ + t∗
∫

∂Ω
|u1|γ+2dΓ,

k :=
1
2
‖u1‖2 +

∫
Ω

Ψ(u0)dx +
1
2

μ(t)‖∇u0‖2
2 −

1
γ + 2

‖u0‖γ+2
γ+2,Γ1

. (4)

Proof. (i): In this section, we initiate the estimation of the upper bound of time T using

auxiliary function that allows us to establish an upper bound

E1 is a constant and satisfies E(0) < E1 < d; then, we define H(t) as follows:

H(t) = E1 − E(t).
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Subsequently, we obtain

H′(t) = 0 − E′(t) = −E′(t) ≥ 0.

It is straightforward to derive that H(t) is nondecreasing. Meanwhile, we have,

H(t) ≥ H0 := E1 − E(0) ≥ 0, f or all t ≥ 0.

According to Lemma 1 and Hypothesis 2, we obtain

H(t) ≤ E1 −
1
2

μ(0)‖∇u‖2
2 +

1
γ + 2

‖u(t)‖γ+2
γ+2,Γ1

< d − 1
2

μ(0)λ2
0 +

1
γ + 2

‖u(t)‖γ+2
γ+2,Γ1

≤ 1
γ + 2

‖u(t)‖γ+2
γ+2,Γ1

.

Afterward, we will examine:

I =
d
dt

∫
Ω

u′udx = (
Φ′(t)

2
)′.

By similar calculation as in [1,7], we can see that the following estimate holds:

I = ‖u′‖2
2 −

∫
Ω

h(u)udx − μ(t)‖∇u‖2
2 + ‖u‖γ+2

γ+2,Γ1
−

∫
Γ1

g(u′)udΓ + θE(t)− θE(t)

≥
(

1 +
θ

2

)
‖u′‖2

2 − μ0

(
θ

2
− 1

)
‖∇u‖2

2 − θE1 +

(
1 − θ

γ + 1

)
‖u‖γ+2

γ+2,Γ1

+ θH(t)−
∫

Γ1

g(u′)udΓ

≥ C5

(
‖u′‖2

2 + ‖u(t)‖γ+2
γ+2,Γ1

+ H(t)− H′(t)Hχ−χ
0 H−χ(t)

)
, (5)

where 0 < χ < χ < γ−m
(m+2)(γ+2) and C5 > 0 .

To derive the corresponding estimate, we construct an auxiliary function that allows
us to establish the upper bound for T.

L(t) = H1−χ(t) + δΦ′(t),

where Φ(t) = ‖u(t)‖2
2.

By taking the derivative of L(t) and utilizing (5), we obtain:

L′(t) = (1 − χ)H−χ(t)H′(t) + δΦ′′(t)

≥
(

1 − χ − 2C5δHχ−χ
)

H−χH′(t) + 2C5δ
(
‖u′‖2

2 + ‖u(t)‖γ+2
γ+2,Γ1

+ H(t)
)

.

Choosing 0 < χ < min{ 1
2 , χ} and making δ sufficiently small, we establish

L′(t) ≥ C6

(
‖u′‖2

2 + ‖u(t)‖γ+2
γ+2,Γ1

+ H(t)
)

,

where C6 is a positive number, so L(t) > 0 is an increasing function. Using the same
reasoning as in [1], we establish:

L′(t) ≥ C7L
1

1−χ (t), f or all t ∈ [0, T], (6)
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where C7 > 0 is constant and satisfies 1 < 1
1−χ < 2.

Then, a straightforward integration of (6) over (0, T) produces

L
χ

1−χ ≥ 1

L
−χ

1−χ (0)− C7T χ
1−χ

,

therefore L(t) blows up in time

T ≤ 1 − χ

C7χ[L(0)]
χ

1−χ

.

(ii): In this section, we initiate the estimation of the lower bound of time T using a

series of energy mode estimation and inequality reduction techniques.

By multiplying both sides of the first equation by u′ and integrating over the domain,
we obtain the following energy mode estimate:∫

Ω
(u′′u′ − μ(t)	uu′ + h(u)u′)dx = 0

by Green’s formulas we have∫
Ω

u′′u′dx − μ(t)(
∫

∂Ω
u′ ∂u

∂ν
dΓ −

∫
Ω
∇u∇u′dx) +

∫
Ω

h(u)u′dx = 0

Because of the bound condition of Γ in Equation (1), we obtain∫
Ω

u′′u′dx −
∫

Γ1

|u|γ+1uu′dΓ +
∫

Γ1

u′g(u′)dΓ + μ(t)
∫

Ω
∇u∇u′dx +

∫
Ω

h(u)u′dx = 0.

It is straightforward to derive that

d
dt

(
1
2

∫
Ω
|u′|2dx − 1

γ + 2

∫
Γ1

|u|γ+2dΓ +
1
2

μ(t)
∫

Ω
|∇u|2dx +

∫
Ω

∫ u

0
h(s)dsdx

)
=

1
2

μ′(t)
∫

Ω
|∇u|2dx −

∫
Γ1

g(u′)u′dΓ. (7)

Through the above calculation, we can deduce the result (2), and

E′(t) =
1
2

μ′(t)
∫

Ω
|∇u|2dx −

∫
Γ1

g(u′)u′dΓ ≤ 0. (8)

So
E(t) ≤ E(0) = k.

It is straightforward to derive that

2E(t) +
2

γ + 2
‖u‖γ+2

γ+2,Γ1

≤ 2k +
2

γ + 2
‖u‖γ+2

γ+2,Γ1
. (9)

Next, we will define an auxiliary function as follows:

F(t) =
∫

Ω
|u|2dx +

∫
∂Ω

|u|γ+2dΓ + (t∗ − t)
∫

∂Ω
|u1|2γ+3dΓ,
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where t∗ > 0 is a time large enough; furthermore, we can set t∗ = 1−χ

C7χ[L(0)]
χ

1−χ

, then

F′(t) = 2
∫

Ω
uu′dx + (γ + 2)

∫
∂Ω

|u|γuu′dΓ −
∫

∂Ω
|u1|2γ+3dΓ.

By using a series of inequality reduction techniques, we have

F′(t) ≤
∫

Ω
|u|2dx +

∫
Ω
|u′|2dx + ε

∫
∂Ω

|u′|2γ+3dΓ

+ Cε

∫
∂Ω

|u|(γ+1) 2γ+3
2γ+2 dΓ −

∫
∂Ω

|u1|2γ+3dΓ

≤
∫

Ω
|u|2dx +

∫
Ω
|u′|2dx + ε

∫
∂Ω

|u′|2γ+3dΓ

+ Cε

(∫
∂Ω

|u|γ+2dΓ
) 2γ+3

2γ+4
(meas(Γ))

1
2γ+4 −

∫
∂Ω

|u1|2γ+3dΓ,

where Cε is a constant depending on ε. Furthermore we choose ε =
∫

∂Ω |u1|2γ+3dΓ
2
∫

∂Ω |u′ |2γ+3dΓ small

enough so that

ε
∫

∂Ω
|u′|2γ+3dΓ −

∫
∂Ω

|u1|2γ+3dΓ ≤ 0,

then, we have

F′(t) ≤
∫

Ω
|u|2dx +

∫
Ω
|u′|2dx + Cε

(∫
∂Ω

|u|γ+2dΓ
) 2γ+3

2γ+4
(meas(Γ1))

1
2γ+4 .

Through (9) we obtain

F′(t) ≤
∫

Ω
|u|2dx + 2k +

2
γ + 2

‖u‖γ+2
γ+2,Γ1

+ Cε

(∫
∂Ω

|u|γ+2dΓ
) 2γ+3

2γ+4
(meas(Γ1))

1
2γ+4

≤
∫

Ω
|u|2dx + 2k +

2
γ + 2

‖u‖γ+2
γ+2,Γ1

+ Cε

(∫
∂Ω

|u|γ+2dΓ
) 2γ+3

2γ+4
(meas(Γ1))

1
2γ+4 + (t∗ − t)

∫
∂Ω

|u1|
γ+2

2 dΓ

≤
∫

Ω
|u|2dx + ‖u‖γ+2

γ+2,Γ1
+ (t∗ − t)

∫
∂Ω

|u1|
γ+2

2 dΓ + 2k

+ Cε(F(t))
2γ+3
2γ+4 (meas(Γ1))

1
2γ+4

≤ F(t) + 2k + C0(F(t))
2γ+3
2γ+4 (meas(Γ1))

1
2γ+4 , (10)

where C0 = Maxt∈(0,T){Cε}.
From Theorem 2, it is straightforward to derive that the solution of System (1) blows

up; as a consequence, we concluded that

lim
t→T−

F(t) = ∞

and by (10), we have ∫ ∞

F(0)

dy

y + 2k + C0y
2γ+3
2γ+4 (meas(Γ1))

1
2γ+4

≤ T.

Finally, we complete the proof of Theorem 3.
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Remark 2. Theorem 3 gives an upper and lower bound on the blow-up time, but does not analyze
the sharpness of the blow-up time. According to (10), we have

F′(t) ≤ F(t) + Ca(F(t))
2γ+3
2γ+4

with p = 2γ+3
2γ+4 . This differential inequality may be reduced to a linear differential inequality by the

process of solving the Bernoulli equation. Moreover, we can obtain

(F(t))1−p ≥ (F(0))1−p + Cae(1−p)t − Ca,

where Ca is a positive constant. Hence, F(t) bounded for t ∈ [0, T) with

1
1 − p

(log{1 +
1

Ca
(F(0))1−p}) ≤ T

if we let
u(x, 0) = ε1u0(x), u′(x, 0) = ε2u1(x),

where ε1 and ε2 are small parameters. Then, we can determine the sharpness of the lower bound

Cmlog(1 + ε
2−2p
0 ) ≤ T(ε0)

where ε0 = max{ε1, ε2} and Cm is a positive constant independent of ε0.
In the same way, we can obtain the sharpness of the upper bound

T(ε0) ≤ CMε
γ+2− γ−m

m+2
0 .

where CM is a positive constant independent of ε0.

4. Conclusions

The present paper substantially expands upon T.G. Ha’s findings on the blow-up
solution to the wave equation with damping and source terms, which were initially in-
troduced in 2015. The main conclusions of this article are as follows: Firstly, through a
series of energy mode estimations and auxiliary function techniques, the result of both
upper and lower bounds for blow-up time is obtained. Based on these estimates, we obtain
the result of the local-in-time existence of the energy solution. In comparison to previous
studies, the most original contribution of this paper is the construction of a new auxiliary
function under nontrivial boundary conditions, which solves the problem of estimating the
bounds of blow-up time. Second, this work also delves deeper into how the source term
and damping term impact blow-up time, revealing their effects more comprehensively.
These insights provide valuable theoretical support and reference points for real-world
engineering applications. Moving forward, we will study the effect of increasing the vis-
coelastic term and the time delay term on the blasting of the equation solution, and then
estimate the upper and lower bounds of the blow-up time. Therefore, estimating the upper
and lower bounds of the blow-up time under the influence of the viscoelastic term and the
time delay term within the domain will be the focus of our next research.
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Abstract: In this research, we introduce and analyze a mathematical model for online social networks,
incorporating two distinct delays. These delays represent the time it takes for active users within the
network to begin disengaging, either with or without contacting non-users of online social platforms.
We focus particularly on the user prevailing equilibrium (UPE), denoted as P∗, and explore the role
of delays as parameters in triggering Hopf bifurcations. In doing so, we find the conditions under
which Hopf bifurcations occur, then establish stable regions based on the two delays. Furthermore,
we delineate the boundaries of stability regions wherein bifurcations transpire as the delays cross
these thresholds. We present numerical simulations to illustrate and validate our theoretical findings.
Through this interdisciplinary approach, we aim to deepen our understanding of the dynamics
inherent in online social networks.
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1. Introduction

The emergence of online social networks (OSNs) has significantly reshaped the land-
scape of information dissemination and interpersonal connectivity over the last two decades.
Platforms like Facebook, Twitter, and Instagram have revolutionized how individuals ex-
change ideas and interact, profoundly influencing daily life. OSNs serve as virtual spaces
where users can present themselves, engage with others, and forge connections irrespective
of geographical boundaries. Their widespread adoption, particularly among tech-savvy
generations, has had far-reaching implications across various domains, such as education,
elections, and information dissemination. Understanding the intricate ways in which OSNs
influence societal, political, and economic realms, as well as individual behaviors, has
become increasingly imperative.

To better comprehend the dynamics of OSNs, mathematical models have been devel-
oped, offering profound insights into how social networks shape opinions and behaviors.
Noteworthy contributions include seminal works by, for example [1–11]. Many of these
models draw inspiration from SIR/SEIR disease-type models, providing a framework to
study OSN dynamics effectively. Interested readers can delve into classic and advanced
results on SIR/SEIR mathematical models and SIR/SEIR mathematical models with delays
in works such as those by [12–24] and references therein. Most recently, Barman and
Mishra [25,26] introduced a graph Laplacian diffusion into SIR/SEIR type network models
and carried out Hopf bifurcation analysis.

In the realm of OSN modeling, the total population N(t) at time t is often partitioned
into three distinct sub-classes representing key populations within OSN dynamics: poten-
tial users, active users, and individuals opposed to OSNs, denoted by x(t), y(t), and z(t),
respectively. Cannarella and Spechler [2] introduced the “infectious recovery” SIR-type
model to analyze user adoption and abandonment of OSNs, later extended in ordinary,
fractional, and stochastic differential equation models as given in [3,5,6]. Graef et al. [5] ex-
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plored the following OSN model with demography to examine adoption and abandonment
dynamics, conducting both local and global stability analyses.⎧⎪⎨⎪⎩

x′ = Λ − αxy − μx,
y′ = αxy − ηyz − (μ + δ)y,
z′ = ηyz + δy − μz.

(1)

Motivated by existing research and the nuanced complexities of OSNs, Wang and
Wang [27] proposed a dynamic mathematical model capturing unique characteristics such
as users’ varying interests and the impact of time delays. Their model accounts for the
transition of potential users to active ones and the eventual abandonment of OSNs by
active users due to disinterest or interaction with those opposed to OSNs. This interaction
is described by a system of differential equations as follows:⎧⎨⎩

x′ = A − αxy − μx,
y′ = αxy − ηy(t)z(t)− δy(t − τ)− μy,
z′ = B + ηy(t)z(t) + δy(t − τ)− μz,

(2)

where the parameters A > 0 and B ≥ 0 represent the rates that newcomers come into the
community as either potential online network users or as people who are never interested
in OSNs. α > 0 denotes the contact rate between the potential and active OSN users;
μ > 0 is the death rate for all people; η > 0 is the contact rate between active users and
people who are opposed to OSNs; δ > 0 is the transferring rate describing the rate the
active users lose their interest and become opposing to OSNs; and τ ≥ 0 is the time delay
that represents the time for active users to starting abandoning the network. Wang and
Wang [27] performed a detailed analysis for System (2), including local and global analysis
for user free equilibrium (UFE) and UPE. Hopf bifurcation was also carried out using
the delay τ as the bifurcating parameter. Conditions and critical values were found that
guarantee the occurrence of Hopf bifurcation.

Building upon prior work, considering the fact that it will take some time for active
users to disengage after interacting with non-users, we introduce the following refined
model that accounts for this time delay. Our proposed system of equations incorporates a
time delay ρ, representing the period for active users to abandon OSNs after contact with
non-users. This addition of a new time delay can indeed make it more representative of real-
world situations and more accurately representing real-world dynamics and improving the
reliability of predictions and control strategies. Notably, our model encompasses previous
formulations as special cases, offering a comprehensive framework to study the evolving
dynamics of OSNs⎧⎨⎩

x′ = A − αxy − μx,
y′ = αxy − ηy(t − ρ)z(t − ρ)− δy(t − τ)− μy,
z′ = B + ηy(t − ρ)z(t − ρ) + δy(t − τ)− μz.

(3)

For System (3), define

f (z) = Aα(δ + ηz) (4)

and

g(z) = μη(α + η)z2 + [μ(μ + δ)(α + η) + η(μδ − Bα)]z + (μ + δ)(μδ − Bα). (5)

Let R0 be the basic reproduction number defined by

R0 =
Aα

Bη + μ(μ + δ)
. (6)
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The following results are established by Wang and Wang [27].

Theorem 1. Let R0 be defined by (6). If R0 ≤ 1, then System (3) has a unique user free equilibrium
P0 = (A/μ, 0, B/μ) and it exists for all parameter values. If R0 > 1, then System (3) has two
equilibria: P0 and a unique user prevailing equilibrium P∗ = (x∗, y∗, z∗), where z∗ is the unique
positive root of the equation f (z) = g(z), such that z∗ > B/μ, and x∗ and y∗ are given by

x∗ =
μ + δ

α
+

η

α
z∗, (7)

and
y∗ =

μz∗ − B
δ + ηz∗

. (8)

Theorem 2. Let R0 be defined by (6) and assume that τ = ρ = 0. If R0 < 1, P0 is locally
asymptotically stable; if R0 = 1, P0 is neutrally stable; and if R0 > 1, P0 becomes unstable, and P∗

emerges and it is locally asymptotically stable.

The following result was established by Ruan and Wei [28] and will be used in this research.

Lemma 1. Consider the following exponential polynomial:

P(λ, τ1, τ2, · · · , τm) = λn + a(0)1 λn−1 + · · ·+ a(0)n

+ [a(1)1 λn−1 + · · ·+ a(1)n ]e−λτ1

+ · · ·
+ [a(m)

1 λn−1 + · · ·+ a(m)
n ]e−λτm ,

where τi ≥ 0 (i = 1, 2, · · · , m) and a(i)j (i = 0, 1, 2, · · · , m; j = 1, 2, · · · , n) are constants.
As (τ1, τ2, · · · , τm) changes, the sum of the orders of the zeros of P in the open right half plane can
change only if a zero appears on or crosses the imaginary axis.

In this research, we were interested in finding out what network user dynamics the
new model presents, in particular, whether or not a Hopf bifurcation will occur for this
new OSN model after adding a time delay. In doing so, we performed a Hopf bifurcation
analysis for System (3) using two delays τ and ρ as bifurcating parameters. We investigated
the Hopf bifurcations at the unique user prevailing equilibrium point when R0 > 1. Stability
regions were established in terms of two delays τ and ρ. Conditions and critical curves
were obtained so that the Hopf bifurcation occurs as (τ, ρ), passing through the boundary
of the stability regions.

The remainder of the manuscript is structured as follows: In Section 2, we delve
into Hopf bifurcation analysis concerning the interplay of two delays. We explore the
establishment of stability regions and identify critical values under scenarios where either
one delay is absent, or both delays are concurrently present. Our investigation delves into
the conditions conducive to Hopf bifurcations and delineates the associated implications.
To augment our theoretical insights, we present numerical simulations aimed at illustrating
the dynamics of the system under consideration.

Finally, Section 3 encapsulates our findings and conclusions drawn from the preceding
analyses. We synthesize the key insights gleaned from our study and discuss their broader
implications in understanding the dynamics of online social networks.

2. Hopf Bifurcation

From Wang and Wang [27], we know that the dynamics of System (3) is completely
determined by the basic reproduction number R0 when delays ρ = τ = 0. In particular, we
know that when R0 > 1, the unique user prevailing equilibrium P∗ is locally asymptotically
stable. We are interested in the question of whether the delays ρ and τ could cause the
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stability of the UPE P∗ to switch as they increase. In this section, we study the occurrence of
Hopf bifurcations using the delays ρ and τ as the bifurcation parameters. Note that when
R0 > 1 there is a unique UPE P∗ = (x∗, y∗, z∗). For this section, we always assume that
R0 > 1.

The characteristic equation of System (3) at the unique equilibrium P∗ when ρ, τ ≥ 0
is the determinant of the matrix

J∗ =

⎛⎝ λ + αy∗ + μ αx∗ 0
−αy∗ λ + μ − αx∗ + ηz∗e−λρ + δe−λτ ηy∗e−λρ

0 −ηz∗e−λρ − δe−λτ λ + μ − ηy∗e−λρ

⎞⎠,

which is
(λ + μ)(λ2 + aλ + b + η(cλ + d)e−λρ + δ(λ + h)e−λτ) = 0, (9)

where

a = 2μ + αy∗ − αx∗,

b = μ(μ + αy∗ − αx∗),

c = z∗ − y∗, (10)

d = (z∗ − y∗)(μ + αy∗) + αx∗y∗,

h = μ + αy∗,

and x∗, y∗, and z∗ are given in Theorem 1.

One root of Equation (9) is λ = −μ < 0. The other roots are determined by the
transcendental equation:

λ2 + aλ + b + η(cλ + d)e−λρ + δ(λ + h)e−λτ = 0. (11)

We know that if R0 > 1 and ρ = τ = 0, all roots of Equation (11) have negative real
parts and P∗ is locally asymptotically stable. Our interest is to see whether or not the delays
ρ and τ cause the stability of P∗ to switch as ρ and τ increase while R0 remains larger than
the unity. Due to Lemma 1, we need to investigate if a zero of Equation (11) appears on or
crosses the imaginary axis as ρ and τ increases. Keep in mind that when R0 > 1, z∗ > B/μ,
see [27].

From (10) and using the expressions given in (7) and (8), we can obtain

b + ηd + δh =
(μz∗ − B)

(
α
(
η
(

B + η(z∗)2)+ δ2 + δ(μ + 2ηz∗)
)
+ η(δ + ηz∗)2)

(δ + ηz∗)2 > 0

since z∗ > B/μ. Therefore, λ = 0 is not a root of (11). Therefore, there are no zero-
Hopf bifurcations.

2.1. Hopf Bifurcation When ρ = 0

For the case that ρ = 0, the Hopf bifurcation analysis was carried out completely by
Wang and Wang [27]. For completeness, we only cite key definitions and results here. We
refer readers to [27] for a detailed analysis. When ρ = 0, Equation (11) becomes

λ2 + a1λ + b1 + (δλ + c1)e−λτ = 0, (12)

where
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a1 = 2μ + αy∗ + ηz∗ − αx∗ − ηy∗,

b1 = μ2 + μ(αy∗ + ηz∗ − αx∗ − ηy∗) + αηy∗(x∗ + z∗ − y∗), (13)

c1 = δ(μ + αy∗).

Now, let λ = ωi (ω > 0) be a root to Equation (12). Plug it into (12), then ω has to
satisfy the following equation:

ω4 + (a2
1 − δ2 − 2b1)ω

2 + b2
1 − c2

1 = 0.

Let p = w2 and denote a2 = a2
1 − δ2 − 2b1 and b2 = b2

1 − c2
1. Then, the above equation

can be rewritten as:
p2 + a2 p + b2 = 0. (14)

The following result is well known.

Lemma 2. For Equation (14), we have

(a) If b2 < 0 or if b2 = 0 and a2 < 0, then it has a unique positive root.
(b) If a2 ≥ 0 and b2 ≥ 0, then it has no positive roots.
(c) If a2 < 0 and b2 > 0, then it has no positive roots if a2

2 − 4b2 < 0; one positive root if
a2

2 − 4b2 = 0; and two positive roots if a2
2 − 4b2 > 0.

Plug a1, b1, c1, given in (13) and x∗, and y∗, given in (7) and (8), into a2 and b2, and we have

a2 =a2
1 − δ2 − 2b1 =

1
(δ + ηz∗)2 P1(z∗), (15)

b2 =b2
1 − c2

1 =
(μz∗ − B)
(δ + ηz∗)4 P2(z∗)P3(z∗), (16)

where

P1(z) = −2η2μ(α + η)z3 + (2Bη2(α + η) + μ(α2μ − 4αδη − 2αδη2))z2

+(B(4αδη + 2δη2 − 2αμ)− 2αδ2μ)z

+B2(η2 + α2) + δ2μ2 + 2Bδ(αδ + ημ), (17)

P2(z) = (αη2 + η3)z2 + (2αδη + 2δη2)z + αδ2 + αδμ + αBη + δ2η,

P3(z) = (αη2μ + η3μ)z3 − (αBη2 + Bη3)z2

+(−αδ2μ + αδμ2 + αBημ − 2Bδη2 − 3δ2ημ)z

−αB2η + αBδ2 − αBδμ − Bδ2η − 2δ3μ. (18)

We then have the following results; see Wang and Wang [27].

Theorem 3. Let R0 > 1, and let a2, b2, P1 and P3 be defined by (15), (16), (17), and (18). Assume
that P1 and P3 have unique positive roots z1 and z2, respectively.

(I) When any of the following conditions is satisfied, Equation (14) has no positive roots.

(1) z1 = z2 and z∗ = z1;
(2) z1 > z2 and z2 ≤ z∗ ≤ z1;
(3) z∗ > max{z1, z2} and a2

2 − 4b2 < 0.

(II) When any of the following conditions is satisfied, Equation (14) has a unique positive root.

(1) z1 < z2 and z∗ ≤ z2;
(2) z1 ≥ z2 and z∗ < z2;
(3) z∗ > max{z1, z2} and a2

2 − 4b2 = 0.

(III) Equation (14) has two positive roots if z∗ > max{z1, z2} and a2
2 − 4b2 > 0.
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Now assume that R0 > 1 and Equation (14) has at least one positive root. Solving p
from Equation (14) for the positive roots gives

p± =
1
2

[
− (a2

1 − δ2 − 2b1)±
√
(a1 − δ2 − 2b1)2 − 4(b2

1 − c2
1)

]
.

Note that if Equation (14) has a unique positive root, then it is p+. Let ω± =
√

p±
and define

f1(ω) =
c1ω2 − a1δω2 − b1c1

c2
1 + δ2ω2

and

f2(ω) =
ω(a1c1 − b1δ + δω2)

c2
1 + δ2ω2

.

Also define τ±
n , n = 0, 1, 2, · · · , as

τ±
n =

⎧⎨⎩
1

ω± (arccos f1(ω
±) + 2nπ) if f2(ω

±) > 0,

1
ω± (2π − arccos f1(ω

±) + 2nπ) if f2(ω
±) ≤ 0.

(19)

Hence, τ±
n > 0 and Equation (11) has a pair of purely imaginary roots ±iω± when τ = τ±

n
for n = 0, 1, 2, · · · .

Theorem 4. Assume that R0 > 1 and let a2, b2, P1, P3, z∗, ω+, τ+
0 be defined above. Assume that

P1 and P3 have unique positive roots z1 and z2, respectively. We then have the following results.

(I) All roots of Equation (12) have negative real parts for all delay τ ≥ 0, if

(1) z1 = z2 and z∗ = z1, or
(2) z1 > z2 and z2 ≤ z∗ ≤ z1, or
(3) z∗ > max{z1, z2} and a2

2 − 4b2 < 0.

Therefore, P∗ is locally asymptotically stable for all τ ≥ 0.
(II) There is a τ+

0 > 0, such that all roots of Equation (12) have negative real parts for all
τ ∈ [0, τ+

0 ). It has a pair of purely imaginary roots ±iω+, and all other roots have negative
real parts when τ = τ+

0 , if

(1) z1 < z2 and z∗ ≤ z2, or
(2) z1 ≥ z2 and z∗ < z2, or
(3) z∗ > max{z1, z2} and a2

2 − 4b2 ≥ 0.

Therefore, P∗ is locally asymptotically stable for all τ < τ+
0 . Hopf bifurcation occurs as τ

passes through τ = τ+
0 .

We use one numerical simulation to illustrate the above theoretical results. If we choose
A = 10, B = 0.2, α = 0.1, η = 0.5, μ = 0.2, δ = 0.4. Then we have
P∗ = (43.239, 0.3127, 7.4479), i.e., z∗ = 7.4479. Calculations show that R0 = 4.54545 > 1, and

a1 = 0.325082, b1 = 0.682603, c1 = 0.092508.

Two polynomials P1 and P3 can be found:

P1(z) = 0.0392 + 0.0488z + 0.0044z2 − 0.06z3,

P3(z) = −0.042 − 0.0876z − 0.03z2 + 0.03z3.

By Descartes’ Rule of Signs, both P1 and P3 have a unique positive root and they are

z1 = 1.20208, z2 = 2.43518.

We also find that
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a2 = −1.41953, b2 = 0.457389.

Thus
a2

2 − 4b2 = 0.185503 > 0.

Therefore, Condition (II)(3) of Theorem 4 is satisfied and a τ+
0 > 0 exists. Using (19), we

find that
τ+

0 = 0.440535.

According to Theorem 4, all roots of Equation (11) have negative real parts for all
τ < τ+

0 , thus P∗ is locally asymptotically stable for all τ < τ+
0 . When τ = τ+

0 , Equation (11)
has a pair of purely imaginary roots, and all other roots have negative real parts. Hopf
bifurcation occurs as τ passes across τ = τ+

0 . See Figure 1 for solutions to converge to P∗

for τ = 0.2 < τ+
0 , Figure 2 for Hopf bifurcations to occur and periodic solutions to appear

when τ = τ+
0 = 0.440535, and Figure 3 for solutions blow out when τ moves to the right of

τ+
0 = 0.440535.
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Figure 1. τ = 0.2 < τ+
0 . Solutions converge to P∗.
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Figure 2. τ = τ+
0 = 0.440535. Periodic solutions appear.
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Figure 3. τ = 0.4406 > τ+
0 . Solutions go to infinity.
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2.2. Hopf Bifurcation When τ = 0

When τ = 0, Equation (11) becomes

λ2 + a3λ + b3 + η(c3λ + d3)e−λρ = 0, (20)

where

a3 = 2μ + δ + αy∗ − αx∗,

b3 = μ(μ + αy∗ − αx∗) + δ(μ + αy∗), (21)

c3 = z∗ − y∗,

d3 = (z∗ − y∗)(μ + αy∗) + αx∗y∗.

Now, let λ = ωi (ω > 0) be a root to Equation (20). When plugged into (20), separating
the real and imaginary parts gives

d3η cos(ωρ) + ηc3ω sin(ωρ) = ω2 − b3, (22)

ηc3ω cos(ωρ)− d3η sin(ωρ) = −a3ω. (23)

Squaring both sides and adding them together yields

ω4 + (a2
3 − η2c2

3 − 2b3)ω
2 + b2

3 − η2d2
3 = 0.

Let q = ω2 and denote a4 = a2
3 − η2c2

3 − 2b3 and b4 = b2
3 − η2d2

3. Then, the above
equation can be rewritten as:

q2 + a4q + b4 = 0. (24)

Plug a3, b3, c3 and d3 given in (21) and x∗ and y∗ given in (7) and (8) into a4 and b4,
calculations yield

a4 =a2
3 − η2c2

3 − 2b3 =
1

(δ + ηz∗)2 Q1(z∗), (25)

b4 =b2
3 − η2d2

3 =
(μz∗ − B)
(δ + ηz∗)4 Q2(z∗)Q3(z∗), (26)

where Q1, Q2 and Q3 are polynomials of z, such that

Q1(z) = 2η2μ(η − α)z3 + (μ
(

α2μ − 4αδη + 2δη2
)
+ 2Bη2(α − η))z2

−2
(

δμ(αδ − ημ) + B
(

α2μ − 2αδη + η2(δ − μ)
))

z

+B2
(

α2 − η2
)
+ 2αBδ2 + δ2μ2, (27)

Q2(z) = αδ2 + αδμ + αBη + δ2η + αη2z2 + η3z2 + 2αδηz + 2δη2z,

Q3(z) = −η2μ(α + 3η)z3 + η(2μ(αμ − 3δη) + Bη(α + η))z2

+δμ(α(δ + μ)− 3δη) + Bη(2δη − 3αμ)z

+B
(

δ2η − α
(
−Bη + δ2 + δμ

))
. (28)

Note that Q1(z) is a degree three polynomial with Q1(B/μ) = B2η2 + 2Bδημ+ δ2μ2 >
0. Obviously, Q2(z∗) > 0, and μz∗ − B > 0 as z∗ > B/μ if R0 > 1. Q3(z) is also a degree
three polynomial of z, such that

Q3(B/μ) = −2B3η3

μ2 − 4B2δη2

μ
− 2Bδ2η ≤ 0

and
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Q3(B/μ) < 0

if B > 0.
Applying the results of Lemma 2, we have the following results.

Theorem 5. Let R0 > 1, and let Q1 and Q3 be defined by (27), and (28). We then have:

(I) If Q1(z∗) ≥ 0 and Q3(z∗) ≥ 0, then Equation (24) has no positive roots.
(II) If Q3(z∗) < 0, or if Q3(z∗) = 0 and Q1(z∗) < 0, then Equation (24) has a unique

positive root.

Now assume that R0 > 1 and Equation (24) has at least one positive root. Solving q
from Equation (24) for the positive roots gives

q± =
1
2

[
− (a2

3 − η2c2
3 − 2b3)±

√
(a3 − η2c2

3 − 2b3)2 − 4(b2
3 − η2d2

3)

]
.

Note that if Equation (24) has a unique positive root, then it is q+. Let ω± =
√

q±.
Solving for sin(ωρ) and cos(ωρ) from (22) and (23), we obtain

cos(ωρ) =
(d3 − a3c3)ω

2 − b3d3

η
(
c2

3ω2 + d2
3
) = g1(ω)

and

sin(ωρ) =
ω
(
c3ω2 + a3d3 − b3c3

)
η
(
c2

3ω2 + d2
3
) = g2(ω).

Define ρ±n , n = 0, 1, 2, · · · , as

ρ±n =

⎧⎨⎩
1

ω± (arccos g1(ω
±) + 2nπ) if g2(ω

±) > 0,

1
ω± (2π − arccos g1(ω

±) + 2nπ) if g2(ω
±) ≤ 0.

(29)

Hence, ρ±n > 0 and Equation (20) has a pair of purely imaginary roots ±iω± when ρ = ρ±n
for n = 0, 1, 2, · · · . Next, we attempt to establish the transversality condition for Hopf
bifurcation. For ρ > 0, let

λ(ρ) = α(ρ) + iw(ρ) (30)

be the root of Equation (20), satisfying

α(ρ±n ) = 0, w(ρ±n ) = w±.

Differentiating both sides of Equation (20) with respect to ρ gives

Re
(

dλ

dρ

)−1

ρ=ρ±n
=

±
√

a2
4 − 4b4

d2
3 + c2

3ω2
. (31)

Note that a2
4 − 4b4 > 0 since in this case Equation (24) has two positive roots. We thus

established that Re
(

dλ
dρ

)−1

ρ=ρ+n
> 0 and Re

(
dλ
dρ

)−1

ρ=ρ−n
< 0. The discussion above establishes

the following stability and Hopf bifurcation results.

Theorem 6. Assume that R0 > 1 and let a4, b4, Q1, Q3, z∗, ω+, ρ+0 be defined above. We then
have the following results.

(I) If Q1(z∗) ≥ 0 and Q3(z∗) ≥ 0, then all roots of Equation (20) have negative real parts for all
delay ρ ≥ 0. Therefore, P∗ is locally asymptotically stable for all ρ ≥ 0.
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(II) If Q3(z∗) < 0, or if Q3(z∗) = 0 and Q1(z∗) < 0, then there is a ρ+0 > 0, such that all roots
of Equation (20) have negative real parts for all ρ ∈ [0, ρ+0 ). It has a pair of purely imaginary
roots ±iω+, and all other roots have negative real parts when ρ = ρ+0 . Therefore, P∗ is locally
asymptotically stable for all ρ < ρ+0 , and is unstable for all ρ > ρ+0 . Hopf bifurcation occurs
as ρ passes through ρ = ρ+0 .

If we choose the same parameter values as in Section 2.1, i.e., A = 10, B = 0.2, α = 0.1,
η = 0.5, μ = 0.2, δ = 0.4. Then we have P∗ = (43.239, 0.3127, 7.4479), i.e., z∗ = 7.4479. We
also have R0 = 4.54545 > 1, and calculations give

Q1(z) = 0.0032 + 0.0048z − 0.0156z2 + 0.04z3,

Q3(z) = 0.0132 − 0.0092z − 0.086z2 − 0.08z3.

Therefore, Q1(z∗) = 15.6992, Q3(z∗) = −37.87 < 0, which means that the condition (II) of
Theorem 6 is satisfied, and a ρ+0 > 0 exists. Actually, calculations yield

ρ+0 = 0.0474351.

That means that all roots of Equation (20) have negative real parts when ρ < ρ+0 ; there-
fore, P∗ is locally asymptotically stable for all ρ < ρ+0 . When ρ = ρ+0 , Equation (20) has a
pair of purely imaginary roots, and all other roots have negative real parts. Hopf bifur-
cation occurs as ρ passes across ρ = ρ+0 . See Figure 4 for solutions to converge to P∗ for
ρ = 0.02 < ρ+0 , Figure 5 for Hopf bifurcations to occur and periodic solutions to appear
when ρ = ρ+0 = 0.0474351, and Figure 6 for solutions blow out when ρ moves to the right
of ρ+0 = 0.0474351.
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Figure 4. ρ = 0.02 < ρ+0 . Solutions converge to P∗.
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Figure 5. ρ = ρ+0 = 0.0474351. Periodic solutions appear.
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Figure 6. ρ = 0.05 > ρ+0 . Solutions go to infinity.

2.3. Hopf Bifurcation When ρ > 0 and τ > 0

Now, assume that ρ ≥ 0 and τ ≥ 0. Let λ = ωi (ω > 0) be a root to Equation (11).
Plug it into (11), and separate the real and imaginary parts, we obtain

cηω sin(ρω) + dη cos(ρω) = ω2 − b − δω sin(τω)− δh cos(τω), (32)

cηω cos(ρω)− dη sin(ρω) = −aω − δω cos(τω) + δh sin(τω). (33)

Squaring both sides and adding them together yields

2δ[ω
(
ah − b + ω2) sin(τω) + (ω2(h − a)− bh) cos(τω)]

= ω4 + (a2 + δ2 − 2b − c2η2)ω2 + b2 + h2δ2 − d2η2

which is equivalent to

sin(θ + ωτ) =
ω4 + (a2 + δ2 − 2b − c2η2)ω2 + b2 + h2δ2 − d2η2

2δ
√
(h2 + ω2)(a2ω2 + (ω2 − b)2)

,

where

θ = arcsin
(h − a)ω2 − bh√

(h2 + ω2)(a2ω2 + (ω2 − b)2)
.

Let
F(ω) = sin(θ + ωτ) (34)

and

G(ω) =
ω4 + (a2 + δ2 − 2b − c2η2)ω2 + b2 + h2δ2 − d2η2

2δ
√
(h2 + ω2)(a2ω2 + (ω2 − b)2)

. (35)

Now, we study the existence of positive solutions to the equation

F(ω) = G(ω)

when τ ≥ 0. First, note that if ω = 0, then we have

(h − a)ω2 − bh√
(h2 + ω2)(a2ω2 + (ω2 − b)2)

=
−b
|b| =

{
1, if b < 0,

−1, if b > 0.

Therefore, it follows that

F(0) =
{

1, if b < 0,
−1, if b > 0.

we also have

G(0) =
b2 + h2δ2 − d2η2

2δh|b| =
b2 + h2δ2

2δh|b| − d2η2

2δh|b|
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and G(ω) → ∞ as ω → ∞. Also note that F has a sine-shaped curve. If the equation
F(ω) = G(ω) has positive solutions, it has only a finite number of solutions.

Solving Equations (32) and (33) for cos(ωρ) and sin(ωρ), we obtain

cos(ωρ) = − acω2+bd+δ cos(τω)(cω2+dh)+δω(d−ch) sin(τω)−dω2

η(c2ω2+d2)
= h1(ω) (36)

sin(ωρ) =
adω−bcω−δ sin(τω)(cω2+dh)+δω(d−ch) cos(τω)+cω3

η(c2ω2+d2)
= h2(ω). (37)

For values of τ, such that F(ω) = G(ω) has positive roots, assume that 0 < ω1 <
ω2 < · · · < ωm are the roots, and define ρ+jk , j = 1, 2, · · · , m, and k = 0, 1, 2, · · · , as

ρ+jk =

{ 1
ωj

[
2kπ + arccos h1(ωj)

]
if h2(ωj) > 0,

1
ωj

[
2π(k + 1)− arccos h1(ωj)

]
if h2(ωj) ≤ 0.

(38)

It follows that for every 1 ≤ j ≤ m, k = 0, 1, 2, · · · , ρ+jk > 0 is a function of τ on some

interval and for each j, ρ+jk are defined on the same interval for all k. There are a number of

different cases in terms of functions ρ+jk . We list a couple of cases here. For more information
regarding the stability regions if a system has two delays, see Hale and Huang [29] and
Wang [30].

Theorem 7. Assume that R0 > 1. Let a, b, c, d, and h be defined by (10), and a1, b1, and c1 be
defined by (13). Also let F, G be defined in (34) and (35). We then have the following results.

(I) Equation (14) has no positive roots. Then

• If the equation F(ω) = G(ω) has no positive solutions for any τ ≥ 0, then all roots of
Equation (11) have negative real parts for all delays ρ ≥ 0 and τ ≥ 0. Therefore, P∗ is
locally asymptotically stable for all ρ ≥ 0 and τ ≥ 0. The stability region of P∗ is the
whole first quadrant of the (τ, ρ) plane.

• If the equation F(ω) = G(ω) has positive solutions for some τ ≥ 0, then there exists
a ρ(τ) > 0, such that all roots of Equation (11) have negative real parts for all delays
0 ≤ ρ < ρ(τ). When ρ = ρ(τ), it has a pair of imaginary roots ±iω, and all other roots
have negative real parts. Therefore, P∗ is locally asymptotically stable for all ρ < ρ(τ),
and Hopf bifurcations occur as ρ passes through ρ(τ). The stability region of P∗ is the
region given by

{(τ, ρ) : 0 ≤ τ < ∞, 0 ≤ ρ < ρ(τ).}
(II) Equation (14) has positive roots. Thus, a τ+

0 > 0 exists and is given by (19). Then

• If the equation F(ω) = G(ω) has no positive solutions for any 0 ≤ τ < τ+
0 , then all roots

of Equation (11) have negative real parts for all delays ρ ≥ 0 and 0 ≤ τ < τ+
0 . Therefore,

P∗ is locally asymptotically stable for all (τ, ρ) in the region {(τ, ρ) : τ < τ+
0 , ρ ≥ 0}.

• If the equation F(ω) = G(ω) has one positive solution for all 0 ≤ τ < τ+
0 , then there

exists a ρ(τ) > 0, such that all roots of Equation (11) have negative real parts for all
delays (τ, ρ) in the region R = {(τ, ρ) : 0 ≤ τ < τ+

0 , ρ < ρ(τ)}. When ρ = ρ(τ), it
has a pair of imaginary roots ±iω, and all other roots have negative real parts. Therefore,
P∗ is locally asymptotically stable for all (τ, ρ) in R, and Hopf bifurcations occur as
(τ, ρ) crosses through the curve given by ρ = ρ(τ).

Again, we perform some numerical simulations to illustrate our theoretical results.
First, if we choose the same parameter values as in Sections 2.1 and 2.2 as A = 10,
B = 0.2, α = 0.1, η = 0.5, μ = 0.2, δ = 0.4. Then, we have P∗ = (43.239, 0.3127, 7.4479),
R0 = 4.54545 > 1. In this case, both τ+

0 > 0 and ρ+0 > 0 exist, and they are

τ+
0 = 0.440535, ρ+0 = 0.047453.
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A function ρ(τ) > 0 as a function of τ can be found using (38), such that the stability
region S in the τρ-space can be identified. P∗ is locally asymptotically stable for all (τ, ρ)
in the interior of S, and Hopf bifurcation occurs as (τ, ρ) passes across the boundary of
S, where

S = {(τ, ρ) : 0 ≤ τ ≤ τ+
0 , 0 ≤ ρ ≤ ρ(τ)}.

See Figure 7 for the stability region S and Figure 8 for solutions to converge to P∗

when (τ, ρ) = (0.1, 0.1) is in the interior of S. Also see Figure 9 for Hopf bifurcations to
occur and periodic solutions to appear when (τ, ρ) = (0.2, 0.0314633) is on the boundary
of the stability region S, and Figure 10 for solutions blow out when (τ, ρ) moves out of the
stability region S.
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Figure 7. The stability region.
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Figure 8. τ = 0.1, ρ = 0.01, (τ, ρ) ∈ S. Solutions converge to P∗.
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Figure 9. τ = 0.2, ρ = 0.0314633. (τ, ρ) is on the boundary of S. Periodic solutions appear.
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Figure 10. τ = 0.2, ρ = 0.04. (τ, ρ) is outside of S. Solutions go to infinity.

Next, if we choose the parameter values as A = 2, B = 0.2, α = 0.3, η = 0.5, μ = 0.3,
δ = 0.1, then we have P∗ = (4.8471, 0.37484, 2.1094), and R0 = 2.72727 > 1. In this case,
calculations show that:

a2 = 0.629726, b2 = 0.0992197.

So, Equation (14) has no positive roots, and that implies that τ+
0 > 0 does not exist. But in

this case, ρ+0 > 0 exists, and
ρ+0 = 0.325204.

A function of ρ(τ) > 0 as a function of τ can be found using (38), such that the stability
region S in the τρ-space can be identified. P∗ is locally asymptotically stable for all (τ, ρ) in
the interior of S; Hopf bifurcation occurs as (τ, ρ) passing across the boundary of S, where

S = {(τ, ρ) : 0 ≤ τ, 0 ≤ ρ ≤ ρ(τ)}

See Figure 11 for the stability region S, Figure 12 for solutions to converge to P∗ when
(τ, ρ) = (0.1, 0.1) is in the interior of S, and Figure 13 for Hopf bifurcations to occur and
periodic solutions to appear when (τ, ρ) = (1, 0.2413) is on the boundary of the stability
region S. As (τ, ρ) moves out of the stability region S, solutions will blow out to infinity.
It’s similar to cases above, so we omit a numerical simulation here.
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Figure 11. The stability region.
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Figure 12. τ = 1, ρ = 0.18, (τ, ρ) ∈ S. Solutions converge to P∗.
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Figure 13. τ = 1, ρ = 0.2413. (τ, ρ) is on the boundary of S. Periodic solutions appear.

3. Discussion

In this paper, we introduced and explored a mathematical model for online social
networks, wherein the population is categorized into three distinct sub-classes: potential
network users, active users, and individuals opposed to networks. Diverging from existing
literature, our model accounts for the presence of individuals who will never express
interest in using online networks. Additionally, active online social network users may
exhibit a tendency to lose interest and subsequently abandon the platform over time,
with or without interacting with non-users.

Assuming that the basic reproduction number R0 exceeds unity, we delved into an
investigation of whether time delays affecting active users’ abandonment of the network
can induce a switch in the stability of the unique user prevailing equilibrium (UPE) denoted
as P∗. We established conditions ensuring the asymptotic stability of P∗ for all delays τ ≥ 0
and ρ ≥ 0, enabling individuals across all three sub-classes to settle into equilibrium
over time. Furthermore, we identified stability regions and associated conditions under
which Hopf bifurcations occur as the delays (τ, ρ) traverse the boundaries of these regions.
Consequently, periodic solutions emerged, leading to oscillations in the populations of the
three sub-classes.

To validate our theoretical findings, we conducted numerical simulations, providing
empirical evidence to support the dynamics predicted by our model. Through this compre-
hensive analysis, we shed light on the complex dynamics inherent in online social networks
and elucidate the role of time delays in shaping equilibrium states and oscillatory behavior.
Our study contributes to a deeper understanding of the underlying mechanisms driving the
evolution of online social networks, with implications for diverse fields including sociology,
network science, and computational modeling.
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1. Introduction

We examine the system of fractional q-difference equations⎧⎨⎩
(
Dα

qu
)
(ν) +F

(
ν, u(ν), v(ν), Iδ1

q u(ν), Iγ1
q v(ν)

)
= 0, ν ∈ (0, 1),(

Dβ
qv

)
(ν) + G

(
ν, u(ν), v(ν), Iδ2

q u(ν), Iγ2
q v(ν)

)
= 0, ν ∈ (0, 1),

(1)

subject to the multi-point boundary conditions⎧⎪⎪⎪⎨⎪⎪⎪⎩
Di

qu(0) = 0, i = 0, . . . , n − 2, Dς
qu(1) =

a

∑
i=1

aiD
�i
q u(ξi) +

b

∑
i=1

biD
σi
q v(ωi),

Di
qv(0) = 0, i = 0, . . . , m − 2, Dϑ

qv(1) =
c

∑
i=1

ciD
ηi
q u(ζi) +

d

∑
i=1

diD
ρi
q v(θi).

(2)

Here, q ∈ (0, 1), α, β ∈ R, α ∈ (n − 1, n], β ∈ (m − 1, m], n, m ∈ N, n, m ≥ 2;
a, b, c, d ∈ N; ς, �i, ηk ∈ [0, α − 1); ϑ, σj, ρι ∈ [0, β − 1); ai, bj, ck, dι ∈ R; ξi, ωj, ζk, θι ∈ (0, 1);
Dκ

q is the fractional q-derivative of order κ, for κ = α, β, ς, ϑ, �i, σj, ηk, ρι, for all i = 1, . . . , a,
j = 1, . . . , b, k = 1, . . . , c, ι = 1, . . . , d; Dp

q represents the q-derivative of order p, for
p = 0, . . . , n − 2 and p = 0, . . . , m − 2; δr, γr > 0 for r = 1, 2; Iκ

q is the fractional q-
integral of order κ, for κ = δi, γi, i = 1, 2, and F ,G are nonlinear functions satisfying
some assumptions.

In this paper, we aim to set forth conditions on the functions F and G that guarantee
the existence of at least one solution to problem (1), (2). Our proofs will make use of various
fixed-point theorems, including the Leray–Schauder nonlinear alternative, the Schaefer
fixed-point theorem, the Krasnosel’skii fixed-point theorem for the sum of two operators,
and the Banach contraction mapping principle. Furthermore, we will include references
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to relevant literature closely associated with our investigated problem. In [1], the author
studied the existence, uniqueness, and multiplicity of positive solutions for problem (1), (2)
under different assumptions than those used in our present paper. The associated Green
functions are constructed, and some of their properties are presented. For the proof of the
principal findings, the author employed in [1] a range of fixed point theorems, including
the Schauder fixed point theorem, the Leggett–Williams fixed point theorem, and the Guo–
Krasnosel’skii fixed point theorem. Therefore, the methods used in [1] are distinct from
those we will apply in our paper. In [2], the authors investigated the system of nonlinear
fractional q-difference equations{

(Dα1
q u)(t) + P(t, u(t), v(t), Iω1

q u(t), Iδ1
q v(t)) = 0, t ∈ (0, 1),

(Dα2
q v)(t) + Q(t, u(t), v(t), Iω2

q u(t), Iδ2
q v(t)) = 0, t ∈ (0, 1),

(3)

with the coupled nonlocal boundary conditions⎧⎪⎨⎪⎩
Di

qu(0) = 0, i = 0, . . . , m − 2, Dζ0
q u(1) =

∫ 1

0
Dζ

qv(t) dqH(t),

Di
qv(0) = 0, i = 0, . . . , n − 2, Dξ0

q v(1) =
∫ 1

0
Dξ

qu(t) dqK(t),
(4)

where q ∈ (0, 1), α1, α2 ∈ R, α1 ∈ (m − 1, m], α2 ∈ (n − 1, n], m, n ∈ N, m ≥ 2, n ≥ 2,
ωi > 0, δi > 0, i = 1, 2, ζ ∈ [0, α2 − 1), ξ ∈ [0, α1 − 1), ζ0 ∈ [0, α1 − 1), ξ0 ∈ [0, α2 − 1),
the integrals from (4) are Riemann–Stieltjes integrals, and H and K are bounded variation
functions. Utilizing diverse fixed-point theorems, they established results affirming the
existence and uniqueness of solutions to problem (3), (4). In [3], the authors analyzed the
existence of solutions to the fractional q-difference equation subject to nonlocal bound-
ary conditions⎧⎨⎩ (CDβ

qu)(t) = f(t, u(t)), for a.e. t ∈ (0, T),

u(0)− u′(0) =
∫ T

0
h(s, u(s)) ds, u(T) + u′(T) =

∫ T

0
g(s, u(s)) ds,

(5)

where T > 0, q ∈ (0, 1), β ∈ (1, 2], and CDα
q is the Caputo fractional q-derivative of

order α. In demonstrating the main result, they employed the Mönch fixed-point theorem,
and the method of measures of noncompactness. In [4], the authors examined the existence,
uniqueness and multiplicity of positive solutions to the fractional q-difference equation
supplemented with nonlocal boundary conditions{

(Dβ
qu)(t) + g(t, u(t)) = 0, t ∈ (0, 1),

(Di
qu)(0) = 0, i = 0, . . . , m − 2, (Dγ

qu)(1) = a(Dγ
qu)(η),

(6)

where q ∈ (0, 1), β ∈ (m − 1, m], m > 2, γ ∈ [1, m − 2], η ∈ (0, 1), a ∈ [0, 1], and
g : [0, 1]× [0, ∞) → [0, ∞) satisfies Caratheodory type conditions. In proving the main the-
orems, they utilized multiple fixed-point theorems. In [5], based on the Guo–Krasnosel’skii
fixed point theorem, the author explored the existence of positive solutions for the fractional
q-difference equation subject to boundary conditions{

(Dγ
qv)(t) = −g(t, v(t)), t ∈ (0, 1),

v(0) = (Dqv)(0) = 0, (Dqv)(1) = β,
(7)

where q ∈ (0, 1), γ ∈ (2, 3], β ≥ 0, and g : [0, 1]× R → R is a nonnegative continuous
function. In [6], the author studied the existence of nontrivial solutions for the nonlinear
q-fractional boundary value problem{

(Dγ
qv)(t) = −g(t, v(t)), t ∈ (0, 1),

v(0) = v(1) = 0,
(8)
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where q ∈ (0, 1), γ ∈ (1, 2], and g : [0, 1] × R → R is a nonnegative continuous func-
tion. To prove the main results, he also used the Guo–Krasnosel’skii fixed point theorem.
For other research works that investigate fractional q-difference equations and systems of
fractional q-difference equations with either coupled or uncoupled boundary conditions,
we refer the reader to the following papers [7–14].

The domain of q-difference calculus, commonly known as quantum calculus, finds
its roots in the seminal contributions of Jackson [15,16]. For a comprehensive exploration
of diverse applications within this field, readers are encouraged to delve into the research
conducted by Ernst [17]. The inception of fractional q-difference calculus can be traced
back to the works of Al-Salam [18] and Agarwal [19]. To stay updated on advancements
in this subfield, covering q-analogs of integral and differential fractional operators, along
with properties such as q-analogs of Cauchy’s formula, the fractional Leibniz q-formula,
q-Taylor’s formula, q-Laplace transform, and q-analogs of the Mittag–Leffler function, see
the papers [19–31].

The novelty aspects of our problem (1), (2), compared to that examined in [1] are the
following. In our paper, we study the existence of solutions for problem (1), (2), in contrast
to [1], where the author investigated the existence of positive solutions for (1), (2). For
this reason, the assumptions on the orders of the fractional derivatives in [1] are stronger
than those used here, and they assure the nonnegativity of the associated Green functions.
Indeed, in [1], the orders ς and ϑ must be greater than or equal to 1, an assumption that
does not appear in our present work. In addition, in [1], there are connections between ς, �i
and ηk for i = 1, . . . , a and k = 1, . . . , c, on the one hand, and ϑ, σj and ρι for j = 1, . . . , b and
ι = 1, . . . , d, on the other hand. Namely, �i and ηk are less than or equal to ς, for i = 1, . . . , a
and k = 1, . . . , c, and σj and ρι are less than or equal to ϑ, for j = 1, . . . , b and ι = 1, . . . , d.
These last conditions are not used in our paper. Furthermore, the theorems applied in the
present paper are different than those utilized in [1]. Related to paper [2], the differences
between [2] and our paper are in the form of boundary conditions, which in our case
(boundary conditions (2)) are more general than the conditions (4); our conditions (2) are
generalized coupled boundary conditions.

Our paper is structured as follows: Section 2 presents auxiliary results essential
for the subsequent sections. In Section 3, we unveil the primary existence results for
the problem (1), (2). Moving on, Section 4 offers illustrative examples to showcase the
applicability of our theorems. Finally, Section 5 concludes the paper by providing a
summary of the findings and presenting comprehensive conclusions.

2. Auxiliary Results

This section provides initial findings that will be utilized in subsequent sections. We
begin by examining the linear system associated with our given problem (1), (2), namely{

(Dα
qu)(ν) + h(ν) = 0, ν ∈ (0, 1),

(Dβ
qv)(ν) + k(ν) = 0, ν ∈ (0, 1),

(9)

with the boundary conditions (2), where h, k ∈ C[0, 1].
We introduce the constants

Λ1 =
Γq(α)

Γq(α − ς)
−

a

∑
i=1

ai
Γq(α)

Γq(α − �i)
ξ

α−�i−1
i ,

Λ2 =
b

∑
i=1

bi
Γq(β)

Γq(β − σi)
ω

β−σi−1
i , Λ3 =

c

∑
i=1

ci
Γq(α)

Γq(α − ηi)
ζ

α−ηi−1
i ,

Λ4 =
Γq(β)

Γq(β − ϑ)
−

d

∑
i=1

di
Γq(β)

Γq(β − ρi)
θ

β−ρi−1
i ,

Δ = Λ1Λ4 − Λ2Λ3.

(10)
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Lemma 1 ([1]). If Δ �= 0, then the solution (u(ν), v(ν)), ν ∈ [0, 1] of problem (9), (2) is given by

u(ν) = − 1
Γq(α)

∫ ν

0
(ν − qτ)(α−1)h(τ) dqτ

+
να−1

Δ

[
Λ4

Γq(α − ς)

∫ 1

0
(1 − qτ)(α−ς−1)h(τ) dqτ

−Λ4

a

∑
i=1

ai
Γq(α − �i)

∫ ξi

0
(ξi − qτ)(α−�i−1)h(τ) dqτ

−Λ2

c

∑
i=1

ci
Γq(α − ηi)

∫ ζi

0
(ζi − qτ)(α−ηi−1)h(τ) dqτ

]

+
να−1

Δ

[
−Λ4

b

∑
i=1

bi
Γq(β − σi)

∫ ωi

0
(ωi − qτ)(β−σi−1)k(τ) dqτ

+
Λ2

Γq(β − ϑ)

∫ 1

0
(1 − qτ)(β−ϑ−1)k(τ) dqτ

−Λ2

d

∑
i=1

di
Γq(β − ρi)

∫ θi

0
(θi − qτ)(β−ρi−1)k(τ) dqτ

]
, ν ∈ [0, 1],

v(ν) =
νβ−1

Δ

[
−Λ1

c

∑
i=1

ci
Γq(α − ηi)

∫ ζi

0
(ζi − qτ)(α−ηi−1)h(τ) dqτ

+
Λ3

Γq(α − ς)

∫ 1

0
(1 − qτ)(α−ς−1)h(τ) dqτ

−Λ3

a

∑
i=1

ai
Γq(α − �i)

∫ ξi

0
(ξi − qτ)(α−�i−1)h(τ) dqτ

]
− 1

Γq(β)

∫ ν

0
(ν − qτ)(β−1)k(τ) dqτ

+
νβ−1

Δ

[
Λ1

Γq(β − ϑ)

∫ 1

0
(1 − qτ)(β−ϑ−1)k(τ) dqτ

−Λ1

d

∑
i=1

di
Γq(β − ρi)

∫ θi

0
(θi − qτ)(β−ρi−1)k(τ) dqτ

−Λ3

b

∑
i=1

bi
Γq(β − σi)

∫ ωi

0
(ωi − qτ)(β−σi−1)k(τ) dqτ

]
, ν ∈ [0, 1].

(11)

By the definition of fractional q-integrals, we obtain the next lemma.

Lemma 2. The following relations are satisfied:

(a)
1

Γq(α)

∫ ν

0
(ν − qτ)(α−1) dqτ =

να

Γq(α + 1)
(
= (Iα

q1)(ν)
)
, ν ≥ 0,

(b)
1

Γq(β)

∫ ν

0
(ν − qτ)(β−1) dqτ =

νβ

Γq(β + 1)

(
= (Iβ

q1)(ν)
)

, ν ≥ 0,

(c)
1

Γq(α − ς)

∫ 1

0
(1 − qτ)(α−ς−1) dqτ =

1
Γq(α − ς + 1)

,

(d)
1

Γq(β − ϑ)

∫ 1

0
(1 − qτ)(β−ϑ−1) dqτ =

1
Γq(β − ϑ + 1)

,

(e)
1

Γq(α − �i)

∫ ξi

0
(ξi − qτ)(α−�i−1) dqτ =

ξ
α−�i
i

Γq(α − �i + 1)
, i = 1, . . . , a,

(f)
1

Γq(α − ηi)

∫ ζi

0
(ζi − qτ)(α−ηi−1) dqτ =

ζ
α−ηi
i

Γq(α − ηi + 1)
, i = 1, . . . , c,

(g)
1

Γq(β − σi)

∫ ωi

0
(ωi − qτ)(β−σi−1) dqτ =

ω
β−σi
i

Γq(β − σi + 1)
, i = 1, . . . , b,

(h)
1

Γq(β − ρi)

∫ θi

0
(θi − qτ)(β−ρi−1) dqτ =

θ
β−ρi
i

Γq(β − ρi + 1)
, i = 1, . . . , d.
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Lemma 3 ([1]). If w ∈ C[0, 1], then for κ > 0, we have

|Iκ
qw(ν)| ≤ ‖w‖

Γq(κ + 1)
, ∀ ν ∈ [0, 1], (12)

where ‖w‖ = supν∈[0,1] |w(ν)|.

We consider now the Banach space U = C([0, 1],R) with the supremum norm
‖u‖ = supν∈[0,1] |u(ν)|, and the Banach space V = U ×U with the norm ‖(u, v)‖V = ‖u‖+
‖v‖. We define the operator E : V → V , E(u, v) = (E1(u, v), E2(u, v)), with E1, E2 : V → U
given by

E1(u, v)(ν) = − 1
Γq(α)

∫ ν

0
(ν − qτ)(α−1)Fuv(τ) dqτ

+
να−1

Δ

[
Λ4

Γq(α − ς)

∫ 1

0
(1 − qτ)(α−ς−1)Fuv(τ) dqτ

−Λ4

a

∑
i=1

ai
Γq(α − �i)

∫ ξi

0
(ξi − qτ)(α−�i−1)Fuv(τ) dqτ

−Λ2

c

∑
i=1

ci
Γq(α − ηi)

∫ ζi

0
(ζi − qτ)(α−ηi−1)Fuv(τ) dqτ

]

+
να−1

Δ

[
−Λ4

b

∑
i=1

bi
Γq(β − σi)

∫ ωi

0
(ωi − qτ)(β−σi−1)Guv(τ) dqτ

+
Λ2

Γq(β − ϑ)

∫ 1

0
(1 − qτ)(β−ϑ−1)Guv(τ) dqτ

−Λ2

d

∑
i=1

di
Γq(β − ρi)

∫ θi

0
(θi − qτ)(β−ρi−1)Guv(τ) dqτ

]
, ν ∈ [0, 1],

E2(u, v)(ν) =
νβ−1

Δ

[
−Λ1

c

∑
i=1

ci
Γq(α − ηi)

∫ ζi

0
(ζi − qτ)(α−ηi−1)Fuv(τ) dqτ

+
Λ3

Γq(α − ς)

∫ 1

0
(1 − qτ)(α−ς−1)Fuv(τ) dqτ

−Λ3

a

∑
i=1

ai
Γq(α − �i)

∫ ξi

0
(ξi − qτ)(α−�i−1)Fuv(τ) dqτ

]
− 1

Γq(β)

∫ ν

0
(ν − qτ)(β−1)Guv(τ) dqτ

+
νβ−1

Δ

[
Λ1

Γq(β − ϑ)

∫ 1

0
(1 − qτ)(β−ϑ−1)Guv(τ) dqτ

−Λ1

d

∑
i=1

di
Γq(β − ρi)

∫ θi

0
(θi − qτ)(β−ρi−1)Guv(τ) dqτ

−Λ3

b

∑
i=1

bi
Γq(β − σi)

∫ ωi

0
(ωi − qτ)(β−σi−1)Guv(τ) dqτ

]
, ν ∈ [0, 1],

(13)

for (u, v) ∈ V , where Fuv(τ) = F (τ, u(τ), v(τ), Iδ1
q u(τ), Iγ1

q v(τ)), Guv(τ) = G(τ, u(τ), v(τ),
Iδ2
q u(τ), Iγ2

q v(τ)), for any τ ∈ [0, 1].
By Lemma 1, we see that (u, v) is a solution of problem (1), (2) if and only if (u, v) is a

fixed point of operator E .

3. Existence of Solutions

In this section, we will outline the principal existence results for the problem defined
by Equations (1) and (2).

183



Mathematics 2024, 12, 1335

We introduce the fundamental assumptions that form the basis of our theorems.

(J1) q ∈ (0, 1), α, β ∈ R, α ∈ (n − 1, n], β ∈ (m − 1, m], n, m ∈ N, n, m ≥ 2; a, b, c, d ∈ N;
ς, �i, ηk ∈ [0, α − 1); ϑ, σj, ρι ∈ [0, β − 1); ai, bj, ck, dι ∈ R; ξi, ωj, ζk, θι ∈ (0, 1), for all
i = 1, . . . , a, j = 1, . . . , b, k = 1, . . . , c, ι = 1, . . . , d; δκ , γκ > 0 for κ = 1, 2; Δ �= 0 (given
by (10)).

We also define the constants

Υ1 =
1

Γq(α + 1)
+

1
|Δ|

[
|Λ4|

1
Γq(α − ς + 1)

+ |Λ4|
a

∑
i=1

|ai|
ξ

α−�i
i

Γq(α − �i + 1)

+|Λ2|
c

∑
i=1

|ci|
ζ

α−ηi
i

Γq(α − ηi + 1)

]
,

Υ2 =
1
|Δ|

[
|Λ2|

1
Γq(β − ϑ + 1)

+ |Λ4|
b

∑
i=1

|bi|
ω

β−σi
i

Γq(β − σi + 1)

+|Λ2|
d

∑
i=1

|di|
θ

β−ρi
i

Γq(β − ρi + 1)

]

Υ3 =
1
|Δ|

[
|Λ3|

1
Γq(α − ς + 1)

+ |Λ3|
a

∑
i=1

|ai|
ξ

α−�i
i

Γq(α − �i + 1)

+|Λ1|
c

∑
i=1

|ci|
ζ

α−ηi
i

Γq(α − ηi + 1)

]
,

Υ4 =
1

Γq(β + 1)
+

1
|Δ|

[
|Λ1|

1
Γq(β − ϑ + 1)

+ |Λ3|
b

∑
i=1

|bi|
ω

β−σi
i

Γq(β − σi + 1)

+ |Λ1|
d

∑
i=1

|di|
θ

β−ρi
i

Γq(β − ρi + 1)

]
.

(14)

Under assumption (J1), we remark that Υ1 > 0, Υ2 ≥ 0, Υ3 ≥ 0, Υ4 > 0, and so
Υ1 + Υ3 > 0, Υ2 + Υ4 > 0.

The initial existence and uniqueness theorem for problem (1), (2) is as follows, relying
on the Banach contraction mapping principle, as detailed in [32].

Theorem 1. Suppose that (J1) holds. In addition, we assume that the functionsF , G : [0, 1]×R4 → R

are continuous and satisfy the condition

(J2) There exist the functions Hi, Ki ∈ C([0, 1],R+), i = 1, . . . , 4, (R+ = [0, ∞)), such that

|F (ν, u1, u2, u3, u4)−F (ν, v1, v2, v3, v4)| ≤
4

∑
i=1

Hi(ν)|ui − vi|,

|G(ν, u1, u2, u3, u4)− G(ν, v1, v2, v3, v4)| ≤
4

∑
i=1

Ki(ν)|ui − vi|,
(15)

for all ν ∈ [0, 1] and ui, vi ∈ R, i = 1, . . . , 4.

If
Θ0 < 1, (16)

where Θ0 = max{Θ1, Θ2},

Θ1 =

(
h∗1 +

h∗3
Γq(δ1 + 1)

)
(Υ1 + Υ3) +

(
k∗1 +

k∗3
Γq(δ2 + 1)

)
(Υ2 + Υ4),

Θ2 =

(
h∗2 +

h∗4
Γq(γ1 + 1)

)
(Υ1 + Υ3) +

(
k∗2 +

k∗4
Γq(γ2 + 1)

)
(Υ2 + Υ4),

(17)
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and h∗i = supν∈[0,1] Hi(ν), k∗i = supν∈[0,1] Ki(ν), i = 1, . . . , 4, then the boundary value prob-
lem (1), (2) has a unique solution (u(ν), v(ν)), ν ∈ [0, 1].

Proof. We denote by Ξ1 = supν∈[0,1] |F (ν, 0, 0, 0, 0)| and Ξ2 = supν∈[0,1] |G(ν, 0, 0, 0, 0)|.
We consider the positive number

R ≥ Ξ1(Υ1 + Υ3) + Ξ2(Υ2 + Υ4)

1 − Θ0
, (18)

and let the set Ω = {(u, v) ∈ V , ‖(u, v)‖V ≤ R}.
We will show firstly that E(Ω) ⊂ Ω. For this, let (u, v) ∈ Ω, that is ‖u‖+ ‖v‖ ≤ R.

Then, by (J1) and Lemma 3, we obtain for all ν ∈ [0, 1]

|Fuv(ν)| = |F (ν, u(ν), v(ν), Iδ1
q u(ν), Iγ1

q v(ν))|
≤ |F (ν, u(ν), v(ν), Iδ1

q u(ν), Iγ1
q v(ν))−F (ν, 0, 0, 0, 0)|+ |F (ν, 0, 0, 0, 0)|

≤ H1(ν)|u(ν)|+H2(ν)|v(ν)|+H3(ν)|Iδ1
q u(ν)|+H4(ν)|Iγ1

q v(ν)|+ Ξ1

≤ h∗1‖u‖+ h∗2‖v‖+ h∗3
‖u‖

Γq(δ1 + 1)
+ h∗4

‖v‖
Γq(γ1 + 1)

+ Ξ1

=

(
h∗1 +

h∗3
Γq(δ1 + 1)

)
‖u‖+

(
h∗2 +

h∗4
Γq(γ1 + 1)

)
‖v‖+ Ξ1 =: Auv,

|Guv(ν)| = |G(ν, u(ν), v(ν), Iδ2
q u(ν), Iγ2

q v(ν))|
≤ |G(ν, u(ν), v(ν), Iδ2

q u(ν), Iγ2
q v(ν))− G(ν, 0, 0, 0, 0)|+ |G(ν, 0, 0, 0, 0)|

≤ K1(ν)|u(ν)|+K2(ν)|v(ν)|+K3(ν)|Iδ2
q u(ν)|+K4(ν)|Iγ2

q v(ν)|+ Ξ2

≤ k∗1‖u‖+ k∗2‖v‖+ k∗3
‖u‖

Γq(δ2 + 1)
+ k∗4

‖v‖
Γq(γ2 + 1)

+ Ξ2

=

(
k∗1 +

k∗3
Γq(δ2 + 1)

)
‖u‖+

(
k∗2 +

k∗4
Γq(γ2 + 1)

)
‖v‖+ Ξ2 =: Buv.

(19)

Therefore, we find

|E1(u, v)(ν)| ≤ 1
Γq(α)

∫ ν

0
(ν − qτ)(α−1)|Fuv(τ)| dqτ

+
1
|Δ|

[
|Λ4|

1
Γq(α − ς)

∫ 1

0
(1 − qτ)(α−ς−1)|Fuv(τ)| dqτ

+|Λ4|
a

∑
i=1

|ai|
Γq(α − �i)

∫ ξi

0
(ξi − qτ)(α−�i−1)|Fuv(τ)| dqτ

+|Λ2|
c

∑
i=1

|ci|
Γq(α − ηi)

∫ ζi

0
(ζi − qτ)(α−ηi−1)|Fuv(τ)| dqτ

]

+
1
|Δ|

[
|Λ4|

b

∑
i=1

|bi|
Γq(β − σi)

∫ ωi

0
(ωi − qτ)(β−σi−1)|Guv(τ)| dqτ

+|Λ2|
1

Γq(β − ϑ)

∫ 1

0
(1 − qτ)(β−ϑ−1)|Guv(τ)| dqτ

+|Λ2|
d

∑
i=1

|di|
Γq(β − ρi)

∫ θi

0
(θi − qτ)(β−ρi−1)|Guv(τ)| dqτ

]
≤ Auv

{
1

Γq(α)

∫ ν

0
(ν − qτ)(α−1) dqτ +

1
|Δ|

[
|Λ4|

1
Γq(α − ς)

∫ 1

0
(1 − qτ)(α−ς−1) dqτ

185



Mathematics 2024, 12, 1335

+|Λ4|
a

∑
i=1

|ai|
Γq(α − �i)

∫ ξi

0
(ξi − qτ)(α−�i−1) dqτ

+|Λ2|
c

∑
i=1

|ci|
Γq(α − ηi)

∫ ζi

0
(ζi − qτ)(α−ηi−1) dqτ

]}

+Buv
1
|Δ|

[
|Λ4|

b

∑
i=1

|bi|
Γq(β − σi)

∫ ωi

0
(ωi − qτ)(β−σi−1) dqτ

+|Λ2|
1

Γq(β − ϑ)

∫ 1

0
(1 − qτ)(β−ϑ−1) dqτ

+|Λ2|
d

∑
i=1

|di|
Γq(β − ρi)

∫ θi

0
(θi − qτ)(β−ρi−1) dqτ

]

= Auv

{
να

Γq(α + 1)
+

1
|Δ|

[
|Λ4|

1
Γq(α − ς + 1)

+ |Λ4|
a

∑
i=1

|ai|
ξi

α−�i

Γq(α − �i + 1)

+|Λ2|
c

∑
i=1

|ci|
ζ

α−ηi
i

Γq(α − ηi + 1)

]}

+Buv
1
|Δ|

[
|Λ4|

b

∑
i=1

|bi|
ω

β−σi
i

Γq(β − σi + 1)
+ |Λ2|

1
Γq(β − ϑ + 1)

+|Λ2|
d

∑
i=1

|di|
θ

β−ρi
i

Γq(β − ρi + 1)

]
≤ AuvΥ1 + BuvΥ2, ∀ ν ∈ [0, 1],

(20)

and

|E2(u, v)(ν)| ≤ 1
|Δ|

[
|Λ1|

c

∑
i=1

|ci|
Γq(α − ηi)

∫ ζi

0
(ζi − qτ)(α−ηi−1)|Fuv(τ)| dqτ

+|Λ3|
1

Γq(α − ς)

∫ 1

0
(1 − qτ)(α−ς−1)|Fuv(τ)| dqτ

+ |Λ3|
a

∑
i=1

|ai|
Γq(α − �i)

∫ ξi

0
(ξi − qτ)(α−�i−1)|Fuv(τ)| dqτ

]
+

1
Γq(β)

∫ ν

0
(ν − qτ)(β−1)|Guv(τ)| dqτ

+
1
|Δ|

[
|Λ1|

1
Γq(β − ϑ)

∫ 1

0
(1 − qτ)(β−ϑ−1)|Guv(τ)| dqτ

+|Λ1|
d

∑
i=1

|di|
Γq(β − ρi)

∫ θi

0
(θi − qτ)(β−ρi−1)|Guv(τ)| dqτ

+ |Λ3|
b

∑
i=1

|bi|
Γq(β − σi)

∫ ωi

0
(ωi − qτ)(β−σi−1)|Guv(τ)| dqτ

]

≤ Auv
1
|Δ|

[
|Λ1|

c

∑
i=1

|ci|
Γq(α − ηi)

∫ ζi

0
(ζi − qτ)(α−ηi−1) dqτ

+|Λ3|
1

Γq(α − ς)

∫ 1

0
(1 − qτ)(α−ς−1) dqτ

+ |Λ3|
a

∑
i=1

|ai|
Γq(α − �i)

∫ ξi

0
(ξi − qτ)(α−�i−1) dqτ

]
+Buv

{
1

Γq(β)

∫ ν

0
(ν − qτ)(β−1) dqτ +

1
|Δ|

[
|Λ1|

1
Γq(β − ϑ)

∫ 1

0
(1 − qτ)(β−ϑ−1) dqτ

+|Λ1|
d

∑
i=1

|di|
Γq(β − ρi)

∫ θi

0
(θi − qτ)(β−ρi−1) dqτ

+ |Λ3|
b

∑
i=1

|bi|
Γq(β − σi)

∫ ωi

0
(ωi − qτ)(β−σi−1) dqτ

]}

(21)
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= Auv
1
|Δ|

[
|Λ1|

c

∑
i=1

|ci|
ζ

α−ηi
i

Γq(α − ηi + 1)
+ |Λ3|

1
Γq(α − ς + 1)

+ |Λ3|
a

∑
i=1

|ai|
ξ

α−�i
i

Γq(α − �i + 1)

]

+Buv

{
νβ

Γq(β + 1)
+

1
|Δ|

[
|Λ1|

1
Γq(β − ϑ + 1)

+ |Λ1|
d

∑
i=1

|di|
θ

β−ρi
i

Γq(β − ρi + 1)

+ |Λ3|
b

∑
i=1

|bi|
ω

β−σi
i

Γq(β − σi + 1)

]}
≤ AuvΥ3 + BuvΥ4, ∀ ν ∈ [0, 1].

Therefore, by (20), (21) and (18), we deduce

‖E(u, v)‖V = ‖E1(u, v)‖+ ‖E2(u, v)‖ ≤ Auv(Υ1 + Υ3) + Buv(Υ2 + Υ4)

=

[(
h∗1 +

h∗3
Γq(δ1 + 1)

)
‖u‖+

(
h∗2 +

h∗4
Γq(γ1 + 1)

)
‖v‖+ Ξ1

]
(Υ1 + Υ3)

+

[(
k∗1 +

k∗3
Γq(δ2 + 1)

)
‖u‖+

(
k∗2 +

k∗4
Γq(γ2 + 1)

)
‖v‖+ Ξ2

]
(Υ2 + Υ4)

=

[(
h∗1 +

h∗3
Γq(δ1 + 1)

)
(Υ1 + Υ3) +

(
k∗1 +

k∗3
Γq(δ2 + 1)

)
(Υ2 + Υ4)

]
‖u‖

+

[(
h∗2 +

h∗4
Γq(γ1 + 1)

)
(Υ1 + Υ3) +

(
k∗2 +

k∗4
Γq(γ2 + 1)

)
(Υ2 + Υ4)

]
‖v‖

+Ξ1(Υ1 + Υ3) + Ξ2(Υ2 + Υ4)
= Θ1‖u‖+ Θ2‖v‖+ Ξ1(Υ1 + Υ3) + Ξ2(Υ2 + Υ4)
≤ Θ0‖(u, v)‖V + Ξ1(Υ1 + Υ3) + Ξ2(Υ2 + Υ4)
≤ Θ0R + Ξ1(Υ1 + Υ3) + Ξ2(Υ2 + Υ4) ≤ R.

(22)

Therefore, we conclude that E(Ω) ⊂ Ω.
Subsequently, we will prove that E is a contraction. For this, let (u1, v1), (u2, v2) ∈ V .

By relations (15), we find for any τ ∈ [0, 1]

|Fu1v1(τ)−Fu2v2(τ)| ≤ H1(τ)|u1(τ)− u2(τ)|+H2(τ)|v1(τ)− v2(τ)|
+H3(τ)|Iδ1

q u1(τ)− Iδ1
q u2(τ)|+H4(τ)|Iγ1

q v1(τ)− Iγ1
q v2(τ)|

≤ h∗1‖u1 − u2‖+ h∗2‖v1 − v2‖+
h∗3

Γq(δ1 + 1)
‖u1 − u2‖+

h∗4
Γq(γ1 + 1)

‖v1 − v2‖

=

(
h∗1 +

h∗3
Γq(δ1 + 1)

)
‖u1 − u2‖+

(
h∗2 +

h∗4
Γq(γ1 + 1)

)
‖v1 − v2‖ =: Cuv,

|Gu1v1(τ)− Gu2v2(τ)| ≤ K1(τ)|u1(τ)− u2(τ)|+K2(τ)|v1(τ)− v2(τ)|
+K3(τ)|Iδ2

q u1(τ)− Iδ2
q u2(τ)|+K4(τ)|Iγ2

q v1(τ)− Iγ2
q v2(τ)|

≤ k∗1‖u1 − u2‖+ k∗2‖v1 − v2‖+
k∗3

Γq(δ2 + 1)
‖u1 − u2‖+

k∗4
Γq(γ2 + 1)

‖v1 − v2‖

=

(
k∗1 +

k∗3
Γq(δ2 + 1)

)
‖u1 − u2‖+

(
k∗2 +

k∗4
Γq(γ2 + 1)

)
‖v1 − v2‖ =: Duv.

(23)

Then, for any ν ∈ [0, 1], we obtain

|E1(u1, v1)(ν)− E1(u2, v2)(ν)|
≤ 1

Γq(α)

∫ ν

0
(ν − qτ)(α−1)|Fu1v1(τ)−Fu2v2(τ)| dqτ

+
1
|Δ|

[ |Λ4|
Γq(α − ς)

∫ 1

0
(1 − qτ)(α−ς−1)|Fu1v1(τ)−Fu2v2(τ)| dqτ

+|Λ4|
a

∑
i=1

|ai|
Γq(α − �i)

∫ ξi

0
(ξi − qτ)α−�i−1)|Fu1v1(τ)−Fu2v2(τ)| dqτ

+|Λ2|
c

∑
i=1

|ci|
Γq(α − ηi)

∫ ζi

0
(ζi − qτ)(α−ηi−1)|Fu1v1(τ)−Fu2v2(τ)| dqτ

]
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+
1
|Δ|

[
|Λ4|

b

∑
i=1

|bi|
Γq(β − σi)

∫ ωi

0
(ωi − qτ)(β−σi−1)|Gu1v1(τ)− Gu2v2(τ)| dqτ

+
|Λ2|

Γq(β − ϑ)

∫ 1

0
(1 − qτ)(β−ϑ−1)|Gu1v1(τ)− Gu2v2(τ)| dqτ

+|Λ2|
d

∑
i=1

|di|
Γq(β − ρi)

∫ θi

0
(θi − qτ)(β−ρi−1)|Gu1v1(τ)− Gu2v2(τ)| dqτ

]
≤ Cuv

{
1

Γq(α)

∫ ν

0
(ν − qτ)(α−1) dqτ +

1
|Δ|

[ |Λ4|
Γq(α − ς)

∫ 1

0
(1 − qτ)(α−ς−1) dqτ

+|Λ4|
a

∑
i=1

|ai|
Γq(α − �i)

∫ ξi

0
(ξi − qτ)(α−�i−1) dqτ

+ |Λ2|
c

∑
i=1

|ci|
Γq(α − ηi)

∫ ζi

0
(ζi − qτ)(α−ηi−1) dqτ

]}

+Duv
1
|Δ|

[
|Λ4|

b

∑
i=1

|bi|
Γq(β − σi)

∫ ωi

0
(ωi − qτ)(β−σi−1) dqτ

+
|Λ2|

Γq(β − ϑ)

∫ 1

0
(1 − qτ)(β−ϑ−1) dqτ

+ |Λ2|
d

∑
i=1

|di|
Γq(β − ρi)

∫ θi

0
(θi − qτ)(β−ρi−1) dqτ

]
≤ CuvΥ1 + DuvΥ2.

(24)

In a similar manner, for any ν ∈ [0, 1], we deduce

|E2(u1, v1)(ν)− E2(u2, v2)(ν)| ≤ CuvΥ3 + DuvΥ4. (25)

Then, by (24), (25) and (17), we conclude that

‖E(u1, v1)− E(u2, v2)‖V = ‖E1(u1, v1)− E1(u2, v2)‖+ ‖E2(u1, v1)− E2(u2, v2)‖
≤ Cuv(Υ1 + Υ3) + Duv(Υ2 + Υ4)

=

(
h∗1 +

h∗3
Γq(δ1 + 1)

)
(Υ1 + Υ3)‖u1 − u2‖+

(
h∗2 +

h∗4
Γq(γ1 + 1)

)
(Υ1 + Υ3)‖v1 − v2‖

+

(
k∗1 +

k∗3
Γq(δ2 + 1)

)
(Υ2 + Υ4)‖u1 − u2‖+

(
k∗2 +

k∗4
Γq(γ2 + 1)

)
(Υ2 + Υ4)‖v1 − v2‖

=

[(
h∗1 +

h∗3
Γq(δ1 + 1)

)
(Υ1 + Υ3) +

(
k∗1 +

k∗3
Γq(δ2 + 1)

)
(Υ2 + Υ4)

]
‖u1 − u2‖

+

[(
h∗2 +

h∗4
Γq(γ1 + 1)

)
(Υ1 + Υ3) +

(
k∗2 +

k∗4
Γq(γ2 + 1)

)
(Υ2 + Υ4)

]
‖v1 − v2‖

= Θ1‖u1 − u2‖+ Θ2‖v1 − v2‖ ≤ Θ0(‖u1 − u2‖+ ‖v1 − v2‖)
= Θ0‖(u1, v1)− (u2, v2)‖V .

(26)

By (16) and (26), we deduce that E is a contraction operator. Therefore, by the Ba-
nach contraction mapping principle, the operator E has a unique fixed point (u∗, v∗) ∈ Ω.
Therefore, problem (1), (2) has a unique solution (u∗(ν), v∗(ν)), ν ∈ [0, 1] with
‖u∗‖+ ‖v∗‖ ≤ R. Moreover, for any (u0, v0) ∈ Ω, the sequence ((un, vn))n≥0 defined by
(un, vn) = E(un−1, vn−1) for n ≥ 1 converges to (u∗, v∗) as n → ∞. By the proof of Banach
theorem, we obtain the error estimate

‖(un, vn)− (u∗, v∗)‖V ≤ Θn
0

1 − Θ0
‖(u1, v1)− (u0, v0)‖V . (27)

Corollary 1. Suppose that (J1) holds. In addition, we assume that the functions F , G : [0, 1]×R4 → R

are continuous and
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(J2)′ There exist Li ≥ 0, Mi ≥ 0, i = 1, . . . , 4 such that

|F (ν, u1, u2, u3, u4)−F (ν, v1, v2, v3, v4)| ≤
4

∑
i=1

Li|ui − vi|,

|G(ν, u1, u2, u3, u4)− G(ν, v1, v2, v3, v4)| ≤
4

∑
i=1

Mi|ui − vi|,
(28)

for all ν ∈ [0, 1] and ui, vi ∈ R, i = 1, . . . , 4.

If Θ0 < 1, where Θ0 = max{Θ1, Θ2},

Θ1 =

(
L1 +

L3

Γq(δ1 + 1)

)
(Υ1 + Υ3) +

(
M1 +

M3

Γq(δ2 + 1)

)
(Υ2 + Υ4),

Θ2 =

(
L2 +

L4

Γq(γ1 + 1)

)
(Υ1 + Υ3) +

(
M2 +

M4

Γq(γ2 + 1)

)
(Υ2 + Υ4),

(29)

then the boundary value problem (1), (2) has a unique solution (u(ν), v(ν)), ν ∈ [0, 1].

The following two outcomes regarding the existence of solutions to problem (1), (2)
rely on the Krasnosel’skii fixed point theorem applied to the combination of two operators
(refer to [33] for details).

Theorem 2. Suppose that assumptions (J1) and (J2) hold. In addition, we assume that the
functions F ,G : [0, 1]×R4 → R are continuous and

(J3) There exist the functions Φ, Ψ ∈ C([0, 1],R+) such that

|F (ν, u1, u2, u3, u4)| ≤ Φ(ν), |G(ν, u1, u2, u3, u4)| ≤ Ψ(ν), (30)

for all ν ∈ [0, 1], ui ∈ R, i = 1, . . . , 4.

If
L0 < 1, (31)

where L0 = max{L1,L2} with

L1 =

(
h∗1 +

h∗3
Γq(δ1 + 1)

)(
Υ1 + Υ3 −

1
Γq(α + 1)

)
+

(
k∗1 +

k∗3
Γq(δ2 + 1)

)(
Υ2 + Υ4 −

1
Γq(β + 1)

)
,

L2 =

(
h∗2 +

h∗4
Γq(γ1 + 1)

)(
Υ1 + Υ3 −

1
Γq(α + 1)

)
+

(
k∗2 +

k∗4
Γq(γ2 + 1)

)(
Υ2 + Υ4 −

1
Γq(β + 1)

)
,

(32)

then problem (1), (2) has at least one solution (u(ν), v(ν)), ν ∈ [0, 1].

Proof. We define the number r > 0, which satisfies the condition

r ≥ (Υ1 + Υ3)‖Φ‖+ (Υ2 + Υ4)‖Ψ‖, (33)

and the closed set Ω0 = {(u, v) ∈ V , ‖(u, v)‖V ≤ r}. We shall verify the assumptions of
the Krasnosel’skii fixed point theorem for the sum of two operators. We split the operator
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E defined on Ω0, as E = P +Q, P = (P1,P2), Q = (Q1,Q2), where Pi, Qi, i = 1, 2 are
defined by

P1(u, v)(ν) = − 1
Γq(α)

∫ ν

0
(ν − qτ)(α−1)Fuv(τ) dqτ,

Q1(u, v)(ν) = E1(u, v)(ν)−P1(u, v)(ν),

P2(u, v)(ν) = − 1
Γq(β)

∫ ν

0
(ν − qτ)(β−1)Guv(τ) dqτ,

Q2(u, v)(ν) = E2(u, v)(ν)−P2(u, v)(ν),

(34)

for all ν ∈ [0, 1] and (u, v) ∈ Ω0.
Firstly, we will prove that P(u1, v1) +Q(u2, v2) ∈ Ω0 for all (u1, v1), (u2, v2) ∈ Ω0.

For this, let (u1, v1), (u2, v2) ∈ Ω0. Then, we find

|P1(u1, v1)(ν) +Q1(u2, v2)(ν)| ≤
1

Γq(α)

∫ ν

0
(ν − qτ)(α−1)|Fu1v1(ν)| dqν

+
να−1

|Δ|

[ |Λ4|
Γq(α − ς)

∫ 1

0
(1 − qτ)(α−ς−1)|Fu2v2(τ)| dqτ

+|Λ4|
a

∑
i=1

|ai|
Γq(α − �i)

∫ ξi

0
(ξi − qτ)(α−�i−1)|Fu2v2(τ)| dqτ

+ |Λ2|
c

∑
i=1

|ci|
Γq(α − ηi)

∫ ζi

0
(ζi − qτ)(α−ηi−1)|Fu2v2(τ)| dqτ

]

+
να−1

|Δ|

[
|Λ4|

b

∑
i=1

|bi|
Γq(β − σi)

∫ ωi

0
(ωi − qτ)(β−σi−1)|Gu2v2(τ)| dqτ

+
|Λ2|

Γq(β − ϑ)

∫ 1

0
(1 − qτ)(β−ϑ−1)|Gu2v2(τ)| dqτ

+ |Λ2|
d

∑
i=1

|di|
Γq(β − ρi)

∫ θi

0
(θi − qτ)(β−ρi−1)|Gu2v2(τ)| dqτ

]
≤ ‖Φ‖

{
1

Γq(α)

∫ ν

0
(ν − qτ)(α−1) dqτ +

1
|Δ|

[ |Λ4|
Γq(α − ς)

∫ 1

0
(1 − qτ)(α−ς−1) dqτ

+|Λ4|
a

∑
i=1

|ai|
Γq(α − �i)

∫ ξi

0
(ξi − qτ)(α−�i−1) dqτ

+ |Λ2|
c

∑
i=1

|ci|
Γq(α − ηi)

∫ ζi

0
(ζi − qτ)(α−ηi−1) dqτ

]}

+‖Ψ‖ 1
|Δ|

[
|Λ4|

b

∑
i=1

|bi|
Γq(β − σi)

∫ ωi

0
(ωi − qτ)(β−σi−1) dqτ

+
|Λ2|

Γq(β − ϑ)

∫ 1

0
(1 − qτ)(β−ϑ−1) dqτ

+ |Λ2|
d

∑
i=1

|di|
Γq(β − ρi)

∫ θi

0
(θi − qτ)(β−ρi−1) dqτ

]

= ‖Φ‖
{

να

Γq(α + 1)
+

1
|Δ|

[
|Λ4|

Γq(α − ς + 1)
+ |Λ4|

a

∑
i=1

|ai|
ξ

α−�i
i

Γq(α − �i + 1)

+|Λ2|
c

∑
i=1

|ci|
ζ

α−ηi
i

Γq(α − ηi + 1)

]}

+‖Ψ‖ 1
|Δ|

[
|Λ4|

b

∑
i=1

|bi|
ω

β−σi
i

Γq(β − σi + 1)
+ |Λ2|

1
Γq(β − ϑ + 1)

+ |Λ2|
d

∑
i=1

|di|
θ

β−ρi
i

Γq(β − ρi + 1)

]
≤ ‖Φ‖Υ1 + ‖Ψ‖Υ2, ∀ ν ∈ [0, 1].

(35)

In a similar manner, we obtain

|P2(u1, v1)(ν) +Q2(u2, v2)(ν)| ≤ ‖Φ‖Υ3 + ‖Ψ‖Υ4, ∀ ν ∈ [0, 1]. (36)
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Therefore, we deduce

‖P(u1, v1) +Q(u2, v2)‖V = ‖P1(u1, v1) +Q1(u2, v2)‖+ ‖P2(u1, v1) +Q2(u2, v2)‖
≤ (Υ1 + Υ3)‖Φ‖+ (Υ2 + Υ4)‖Ψ‖ ≤ r,

(37)

that is, P(u1, v1) +Q(u2, v2) ∈ Ω0.
Subsequently, we will show that operator Q is a contraction mapping. Indeed, for all

(u1, v1), (u2, v2) ∈ Ω0, by using assumption (J2), we obtain

|Q1(u1, v1)(ν)−Q1(u2, v2)(ν)| ≤ Cuv

(
Υ1 −

1
Γq(α + 1)

)
+ DuvΥ2, ∀ν ∈ [0, 1],

|Q2(u1, v1)(ν)−Q2(u2, v2)(ν)| ≤ CuvΥ3 + Duv

(
Υ4 −

1
Γq(β + 1)

)
, ∀ν ∈ [0, 1].

(38)

Therefore, we find

‖Q(u1, v1)−Q(u2, v2)‖V
≤ Cuv

(
Υ1 + Υ3 −

1
Γq(α + 1)

)
+ Duv

(
Υ2 + Υ4 −

1
Γq(β + 1)

)
=

[(
h∗1 +

h∗3
Γq(δ1 + 1)

)
‖u1 − u2‖+

(
h∗2 +

h∗4
Γq(γ1 + 1)

)
‖v1 − v2‖

]
×
(

Υ1 + Υ3 −
1

Γq(α + 1)

)
+

[(
k∗1 +

k∗3
Γq(δ2 + 1)

)
‖u1 − u2‖+

(
k∗2 +

k∗4
Γq(γ2 + 1)

)
‖v1 − v2‖

]
×
(

Υ2 + Υ4 −
1

Γq(β + 1)

)
=

[(
h∗1 +

h∗3
Γq(δ1 + 1)

)(
Υ1 + Υ3 −

1
Γq(α + 1)

)
+

(
k∗1 +

k∗3
Γq(δ2 + 1)

)(
Υ2 + Υ4 −

1
Γq(β + 1)

)]
‖u1 − u2‖

+

[(
h∗2 +

h∗4
Γq(γ1 + 1)

)(
Υ1 + Υ3 −

1
Γq(α + 1)

)
+

(
k∗2 +

k∗4
Γq(γ2 + 1)

)(
Υ2 + Υ4 −

1
Γq(β + 1)

)]
‖v1 − v2‖

= L1‖u1 − u2‖+ L2‖v1 − v2‖ ≤ L0‖(u1, v1)− (u2, v2)‖V .

(39)

By condition (31), we conclude that operator Q is a contraction.
The operators P1, P2 and P are continuous by the continuity of functions F and G.

Moreover, P is uniformly bounded on Ω0, because

‖P1(u, v)‖ ≤ 1
Γq(α)

sup
ν∈[0,1]

(∫ ν

0
(ν − qτ)(α−1)|Fuv(τ)| dqτ

)
≤ sup

ν∈[0,1]
Φ(ν)

1
Γq(α)

sup
ν∈[0,1]

∫ ν

0
(ν − qτ)(α−1) dqτ

= ‖Φ‖ sup
ν∈[0,1]

να

Γq(α + 1)
=

1
Γq(α + 1)

‖Φ‖, ∀ (u, v) ∈ Ω0,

‖P2(u, v)‖ ≤ 1
Γq(β)

sup
ν∈[0,1]

(∫ ν

0
(ν − qτ)(β−1)|Guv(τ)| dqτ

)
≤ sup

ν∈[0,1]
Ψ(ν)

1
Γq(β)

sup
ν∈[0,1]

∫ ν

0
(ν − qτ)(β−1) dqτ

= ‖Ψ‖ sup
ν∈[0,1]

νβ

Γq(β + 1)
=

1
Γq(β + 1)

‖Ψ‖, ∀ (u, v) ∈ Ω0,

(40)
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and then
‖P(u, v)‖ ≤ 1

Γq(α + 1)
‖Φ‖+ 1

Γq(β + 1)
‖Ψ‖, ∀ (u, v) ∈ Ω0. (41)

In the last part of the proof, we will prove that P is compact. Let ν1, ν2 ∈ [0, 1], ν1 < ν2.
Then for all (u, v) ∈ Ω0, we obtain

|P1(u, v)(ν2)−P1(u, v)(ν1)|
=

∣∣∣∣− 1
Γq(α)

∫ ν2

0
(ν2 − qτ)(α−1)Fuv(τ) dqτ +

1
Γq(α)

∫ ν1

0
(ν1 − qτ)(α−1)Fuv(τ) dqτ

∣∣∣∣
≤ 1

Γq(α)

∫ ν1

0

[
(ν2 − qτ)(α−1) − (ν1 − qτ)(α−1)

]
|Fuv(τ)| dqτ

+
1

Γq(α)

∫ ν2

ν1

(ν2 − qτ)(α−1)|Fuv(τ)| dqτ

≤ ‖Φ‖
{

1
Γq(α)

∫ ν1

0

[
(ν2 − qτ)(α−1) − (ν1 − qτ)(α−1)

]
dqτ

+
1

Γq(α)

∫ ν2

ν1

(ν2 − qτ)(α−1) dqτ

}
= ‖Φ‖ 1

Γq(α)

(∫ ν2

0
(ν2 − qτ)(α−1) dqτ −

∫ ν1

0
(ν1 − qτ)(α−1) dqτ

)
= ‖Φ‖ 1

Γq(α + 1)
(να

2 − να
1 ),

(42)

which tends to 0 as ν2 → ν1, independently of (u, v) ∈ Ω0.
In a similar manner, we find

|P2(u, v)(ν2)−P2(u, v)(ν1)| ≤ ‖Ψ‖ 1
Γq(β + 1)

(
ν

β
2 − ν

β
1

)
, (43)

which tends to 0 as ν2 → ν1, independently of (u, v) ∈ Ω0.
Therefore, the operators P1, P2 and P are equicontinuous. Using the Arzela–Ascoli

theorem, we deduce that P is compact on Ω0. Then, by the Krasnosel’skii fixed point theorem
(see [33]), we conclude that problem (1), (2) has at least one solution (u(ν), v(ν)), ν ∈ [0, 1].

Theorem 3. Suppose that (J1) holds and the functions F ,G : [0, 1]×R4 → R are continuous
and satisfy the assumptions (J2) and (J3). If

M0 < 1, (44)

where M0 = max{M1,M2} with

M1 =
1

Γq(α + 1)

(
h∗1 +

h∗3
Γq(δ1 + 1)

)
+

1
Γq(β + 1)

(
k∗1 +

k∗3
Γq(δ2 + 1)

)
,

M2 =
1

Γq(α + 1)

(
h∗2 +

h∗4
Γq(γ1 + 1)

)
+

1
Γq(β + 1)

(
k∗2 +

k∗4
Γq(γ2 + 1)

)
,

(45)

then problem (1), (2) has at least one solution (u(ν), v(ν)), ν ∈ [0, 1].

Proof. We consider again, similar to the proof of Theorem 2, the positive number
r ≥ (Υ1 + Υ3)‖Φ‖+ (Υ2 + Υ4)‖Ψ‖, and the closed set Ω0 = {(u, v) ∈ V , ‖(u, v)‖V ≤ r}.
We also split the operator E defined on Ω0 as E = P +Q, P = (P1,P2), Q = (Q1,Q2),
where Pi, Qi, i = 1, 2 are given by (34). For (u1, v1), (u2, v2) ∈ Ω0, we deduce, as in the
first part of the proof of Theorem 2, that ‖P(u1, v1) +Q(u2, v2)‖V ≤ r.
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In what follows we will show that the operator P is a contraction. Indeed, for (u1, v1),
(u2, v2) ∈ Ω0, we obtain

|P1(u1, v1)(ν)−P1(u2, v2)(ν)|
=

∣∣∣∣− 1
Γq(α)

∫ ν

0
(ν − qτ)(α−1)Fu1v1(τ) dqτ +

1
Γq(α)

∫ ν

0
(ν − qτ)(α−1)Fu2v2(τ) dqτ

∣∣∣∣
≤ 1

Γq(α)

∫ ν

0
(ν − qτ)(α−1)|Fu1v1(τ)−Fu2v2(τ)| dqτ

≤ Cuv
1

Γq(α)

∫ ν

0
(ν − qτ)(α−1) dqτ = Cuv

να

Γq(α + 1)
≤ Cuv

Γq(α + 1)
, ∀ ν ∈ [0, 1],

|P2(u1, v1)(ν)−P2(u2, v2)(ν)|
=

∣∣∣∣− 1
Γq(β)

∫ ν

0
(ν − qτ)(β−1)Gu1v1(τ) dqτ +

1
Γq(β)

∫ ν

0
(ν − qτ)(β−1)Gu2v2(τ) dqτ

∣∣∣∣
≤ 1

Γq(β)

∫ ν

0
(ν − qτ)(β−1)|Gu1v1(τ)− Gu2v2(τ)| dqτ

≤ Duv
1

Γq(β)

∫ ν

0
(ν − qτ)(β−1) dqτ = Duv

νβ

Γq(β + 1)
≤ Duv

Γq(β + 1)
, ∀ ν ∈ [0, 1],

(46)

where Cuv, Duv are given by (23).
So we conclude that

‖P(u1, v1)−P(u2, v2)‖V
≤

[
1

Γq(α + 1)

(
h∗1 +

h∗3
Γq(δ1 + 1)

)
+

1
Γq(β + 1)

(
k∗1 +

k∗3
Γq(δ2 + 1)

)]
‖u1 − u2‖

+

[
1

Γq(α + 1)

(
h∗2 +

h∗4
Γq(γ1 + 1)

)
+

1
Γq(β + 1)

(
k∗2 +

k∗4
Γq(γ2 + 1)

)]
‖v1 − v2‖

= M1‖u1 − u2‖+M2‖v1 − v2‖ ≤ M0‖(u1, v1)− (u2, v2)‖V ,

(47)

that is, by (44), the operator P is a contraction.
By the continuity of the functions F and G , the operators Q1, Q2 and Q are continuous.

In addition, Q is uniformly bounded on Ω0, because we have

|Q1(u, v)(ν)| ≤ 1
|Δ|

[ |Λ4|
Γq(α − ς)

∫ 1

0
(1 − qτ)(α−ς−1)|Fuv(τ)| dqτ

+|Λ4|
a

∑
i=1

|ai|
Γq(α − �i)

∫ ξi

0
(ξi − qτ)(α−�i−1)|Fuv(τ)| dqτ

+ |Λ2|
c

∑
i=1

|ci|
Γq(α − ηi)

∫ ζi

0
(ζi − qτ)(α−ηi−1)|Fuv(τ)| dqτ

]

+
1
|Δ|

[
|Λ4|

b

∑
i=1

|bi|
Γq(β − σi)

∫ ωi

0
(ωi − qτ)(β−σi−1)|Guv(τ)| dqτ

+
|Λ2|

Γq(β − ϑ)

∫ 1

0
(1 − qτ)(β−ϑ−1)|Guv(τ)| dqτ

+ |Λ2|
d

∑
i=1

|di|
Γq(β − ρi)

∫ θi

0
(θi − qτ)(β−ρi−1)|Guv(τ)| dqτ

]

≤ ‖Φ‖ 1
|Δ|

[
|Λ4|

Γq(α − ς + 1)
+ |Λ4|

a

∑
i=1

|ai|
ξ

α−�i
i

Γq(α − �i + 1)

+ |Λ2|
c

∑
i=1

|ci|
ζ

α−ηi
i

Γq(α − ηi + 1)

]

+‖Ψ‖ 1
|Δ|

[
|Λ4|

b

∑
i=1

|bi|
ω

β−σi
i

Γq(β − σi + 1)
+

|Λ2|
Γq(β − ϑ + 1)

+ |Λ2|
d

∑
i=1

|di|
θ

β−ρi
i

Γq(β − ρi + 1)

]
= ‖Φ‖

(
Υ1 −

1
Γq(α + 1)

)
+ ‖Ψ‖Υ2, ∀ ν ∈ [0, 1], (u, v) ∈ Ω0,

(48)
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and

|Q2(u, v)(ν)| ≤ 1
|Δ|

[
|Λ1|

c

∑
i=1

|ci|
Γq(α − ηi)

∫ ζi

0
(ζi − qτ)(α−ηi−1)|Fuv(τ)| dqτ

+|Λ3|
1

Γq(α − ς)

∫ 1

0
(1 − qτ)(α−ς−1)|Fuv(τ)| dqτ

+|Λ3|
a

∑
i=1

|ai|
1

Γq(α − �i)

∫ ξi

0
(ξi − qτ)(α−�i−1)|Fuv(τ)| dqτ

]
+

1
|Δ|

[ |Λ1|
Γq(β − ϑ)

∫ 1

0
(1 − qτ)(β−ϑ−1)|Guv(τ)| dqτ

+|Λ1|
d

∑
i=1

|di|
Γq(β − ρi)

∫ θi

0
(θi − qτ)(β−ρi−1)|Guv(τ)| dqτ

+ |Λ3|
b

∑
i=1

|bi|
1

Γq(β − σi)

∫ ωi

0
(ωi − qτ)(β−σi−1)|Guv(τ)| dqτ

]

≤ ‖Φ‖ 1
|Δ|

[
|Λ1|

c

∑
i=1

|ci|
ζi

α−ηi

Γq(α − ηi + 1)
+

|Λ3|
Γq(α − ς + 1)

+ |Λ3|
a

∑
i=1

|ai|
ξ

α−�i
i

Γq(α − �i + 1)

]

+‖Ψ‖ 1
|Δ|

[
|Λ1|

Γq(β − ϑ + 1)
+ |Λ1|

d

∑
i=1

|di|
θ

β−ρi
i

Γq(β − ρi + 1)

+ |Λ3|
b

∑
i=1

|bi|
ω

β−σi
i

Γq(β − σi + 1)

]
= ‖Φ‖Υ3 + ‖Ψ‖

(
Υ4 −

1
Γq(β + 1)

)
, ∀ ν ∈ [0, 1], (u, v) ∈ Ω0.

(49)

Therefore we deduce

‖Q1(u, v)‖ ≤ ‖Φ‖
(

Υ1 −
1

Γq(α + 1)

)
+ ‖Ψ‖Υ2, ∀ (u, v) ∈ Ω0,

‖Q2(u, v)‖ ≤ ‖Φ‖Υ3 + ‖Ψ‖
(

Υ4 −
1

Γq(β + 1)

)
, ∀ (u, v) ∈ Ω0,

(50)

and then

‖Q(u, v)‖V ≤ ‖Φ‖
(

Υ1 + Υ3 −
1

Γq(α + 1)

)
+ ‖Ψ‖

(
Υ2 + Υ4 −

1
Γq(β + 1)

)
, ∀ (u, v) ∈ Ω0, (51)

that is, Q is uniformly bounded on Ω0.
We finally prove that operator Q is compact. Let ν1, ν2 ∈ [0, 1], ν1 < ν2. Then for all

(u, v) ∈ Ω0, we find

|Q1(u, v)(ν2)−Q1(u, v)(ν1)|

≤ να−1
2 − να−1

1
|Δ| ‖Φ‖

[ |Λ4|
Γq(α − ς)

∫ 1

0
(1 − qτ)(α−ς−1) dqτ

+|Λ4|
a

∑
i=1

|ai|
Γq(α − �i)

∫ ξi

0
(ξi − qτ)(α−�i−1) dqτ

+ |Λ2|
c

∑
i=1

|ci|
Γq(α − ηi)

∫ ζi

0
(ζi − qτ)(α−ηi−1) dqτ

]

+
να−1

2 − να−1
1

|Δ| ‖Ψ‖
[
|Λ4|

b

∑
i=1

|bi|
Γq(β − σi)

∫ ωi

0
(ωi − qτ)(β−σi−1) dqτ

+
|Λ2|

Γq(β − ϑ)

∫ 1

0
(1 − qτ)(β−ϑ−1) dqτ

(52)

194



Mathematics 2024, 12, 1335

+ |Λ2|
d

∑
i=1

|di|
Γq(β − ρi)

∫ θi

0
(θi − qτ)(β−ρi−1) dqτ

]

=
να−1

2 − να−1
1

|Δ| ‖Φ‖
[

|Λ4|
Γq(α − ς + 1)

+ |Λ4|
a

∑
i=1

|ai|
ξ

α−�i
i

Γq(α − �i + 1)

+ |Λ2|
c

∑
i=1

|ci|
ζ

α−ηi
i

Γq(α − ηi + 1)

]

+
να−1

2 − να−1
1

|Δ| ‖Ψ‖
[
|Λ4|

b

∑
i=1

|bi|
ω

β−σi
i

Γq(β − σi + 1)
+

|Λ2|
Γq(β − ϑ + 1)

+ |Λ2|
d

∑
i=1

|di|
θ

β−ρi
i

Γq(β − ρi + 1)

]
= (να−1

2 − να−1
1 )

[
‖Φ‖

(
Υ1 −

1
Γq(α + 1)

)
+ ‖Ψ‖Υ2

]
,

which tends to zero as ν2 → ν1, independently of (u, v) ∈ Ω0.
In a similar manner, we obtain

|Q2(u, v)(ν2)−Q2(u, v)(ν1)|
≤ (ν

β−1
2 − ν

β−1
1 )

[
‖Φ‖Υ3 + ‖Ψ‖

(
Υ4 −

1
Γq(β + 1)

)]
,

(53)

which tends to zero as ν2 → ν1, independently of (u, v) ∈ Ω0.
Therefore the operators Q1, Q2 and Q are equicontinuous. Utilizing the Arzela–

Ascoli theorem, we ascertain the compactness of Q on Ω0. Consequently, employing
the Krasnosel’skii fixed-point theorem, we deduce the existence of at least one solution
(u(ν), v(ν)) ν ∈ [0, 1] to problem (1), (2)

The forthcoming result relies on the Schaefer fixed-point theorem (refer to [34]).

Theorem 4. Suppose that assumption (J1) holds. In addition, we assume that the functions
F ,G : [0, 1]×R4 → R are continuous and satisfy the condition

(J4) There exist positive constants T1, T2 such that

|F (ν, x1, x2, x3, x4)| ≤ T1, |G(ν, x1, x2, x3, x4)| ≤ T2,
∀ ν ∈ [0, 1], xi ∈ R, i = 1, . . . , 4.

(54)

Then, there exists at least one solution (u(ν), v(ν)), ν ∈ [0, 1] of problem (1), (2).

Proof. We prove firstly that operator E is completely continuous. Operator E is continuous.
Indeed, let (un, vn) ∈ V , n ∈ N, with (un, vn) → (u, v), as n → ∞ in V . Then, for each
ν ∈ [0, 1], we deduce, as in the proof of Theorem 1, that

|E1(un, vn)(ν)− E1(u, v)(ν)|
≤ 1

Γq(α)

∫ ν

0
(ν − qτ)(α−1)|Funvn(τ)−Fuv(τ)| dqτ

+
1
|Δ|

[ |Λ4|
Γq(α − ς)

∫ 1

0
(1 − qτ)(α−ς−1)|Funvn(τ)−Fuv(τ)| dqτ

+|Λ4|
a

∑
i=1

|ai|
Γq(α − �i)

∫ ξi

0
(ξi − qτ)(α−�i−1)|Funvn(τ)−Fuv(τ)| dqτ

+ |Λ2|
c

∑
i=1

|ci|
Γq(α − ηi)

∫ ζi

0
(ζi − qτ)(α−ηi−1)|Funvn(τ)−Fuv(τ)| dqτ

]

+
1
|Δ|

[
|Λ4|

b

∑
i=1

|bi|
Γq(β − σi)

∫ ωi

0
(ωi − qτ)(β−σi−1)|Gunvn(τ)− Guv(τ)| dqτ

(55)
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+
|Λ2|

Γq(β − ϑ)

∫ 1

0
(1 − qτ)(β−ϑ−1)|Gunvn(τ)− Guv(τ)| dqτ

+ |Λ2|
d

∑
i=1

|di|
Γq(β − ρi)

∫ θi

0
(θi − qτ)(β−ρi−1)|Gunvn(τ)− Guv(τ)| dqτ

]
,

and

|E2(un, vn)(ν)− E2(u, v)(ν)|

≤ 1
|Δ|

[
|Λ1|

c

∑
i=1

|ci|
Γq(α − ηi)

∫ ζi

0
(ζi − qτ)(α−ηi−1)|Funvn(τ)−Fuv(τ)| dqτ

+
|Λ3|

Γq(α − ς)

∫ 1

0
(1 − qτ)(α−ς−1)|Funvn(τ)−Fuv(τ)| dqτ

+ |Λ3|
a

∑
i=1

|ai|
Γq(α − �i)

∫ ξi

0
(ξi − qτ)(α−�i−1)|Funvn(τ)−Fuv(τ)| dqτ

]
+

1
Γq(β)

∫ ν

0
(ν − qτ)(β−1)|Gunvn(τ)− Guv(τ)| dqτ

+
1
|Δ|

[ |Λ1|
Γq(β − ϑ)

∫ 1

0
(1 − qτ)(β−ϑ−1)|Gunvn(τ)− Guv(τ)| dqτ

+|Λ1|
d

∑
i=1

|di|
Γq(β − ρi)

∫ θi

0
(θi − qτ)(β−ρi−1)|Gunvn(τ)− Guv(τ)| dqτ

+ |Λ3|
b

∑
i=1

|bi|
Γq(β − σi)

∫ ωi

0
(ωi − qτ)(β−σi−1)|Gunvn(τ)− Guv(τ)| dqτ

]
.

(56)

Because F and G are continuous, we obtain

|Funvn(τ)−Fuv(τ)| = |F (τ, un(τ), vn(τ), Iδ1
q un(τ), Iγ1

q vn(τ))

−F (τ, u(τ), v(τ), Iδ1
q u(τ), Iγ1

q v(τ))| → 0,
|Gunvn(τ)− Guv(τ)| = |G(τ, un(τ), vn(τ), Iδ2

q un(τ), Iγ2
q vn(τ))

−G(τ, u(τ), v(τ), Iδ2
q u(τ), Iγ2

q v(τ))| → 0,

(57)

as n → ∞, for all τ ∈ [0, 1]. Therefore, by the inequalities (55)–(57), we find

‖E1(un, vn)− E1(u, v)‖ → 0, ‖E2(un, vn)− E2(u, v)‖ → 0, as n → ∞, (58)

and then
‖E(un, vn)− E(u, v)‖V → 0, as n → ∞, (59)

that is, E is a continuous operator.
In what follows, we prove that E maps bounded sets into bounded sets in V . For R > 0,

let Ω1 = {(u, v) ∈ V , ‖(u, v)‖V ≤ R}. Then, by using the inequalities (54) and similar
computations as those from the first part of the proof of Theorem 1, we obtain

|E1(u, v)(ν)| ≤ T1Υ1 + T2Υ2, |E2(u, v)(ν)| ≤ T1Υ3 + T2Υ4, (60)

for all ν ∈ [0, 1] and (u, v) ∈ Ω1. Then, we deduce

‖E(u, v)‖V ≤ T1(Υ1 + Υ3) + T2(Υ2 + Υ4), ∀ (u, v) ∈ Ω1, (61)

that is, E(Ω1) is bounded.
Subsequently, we will demonstrate that E transforms bounded sets into equicontinu-

ous sets. To illustrate this, consider ν1, , ν2 ∈ [0, 1] with ν1 < ν2 and (u, v) ∈ Ω1. Employing
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computations akin to those found in the proofs of Theorems 2 and 3, we arrive at the
following conclusions

|E1(u, v)(ν2)− E1(u, v)(ν1)|
≤ |P1(u, v)(ν2)−P1(u, v)(ν1)|+ |Q1(u, v)(ν2)−Q1(u, v)(ν1)|
≤ T1

Γq(α + 1)
(να

2 − να
1 ) +

[
T1

(
Υ1 −

1
Γq(α + 1)

)
+ T2Υ2

]
(να−1

2 − να−1
1 ) → 0,

|E2(u, v)(ν2)− E2(u, v)(ν1)|
≤ |P2(u, v)(ν2)−P2(u, v)(ν1)|+ |Q2(u, v)(ν2)−Q2(u, v)(ν1)|
≤ T2

Γq(β + 1)
(ν

β
2 − ν

β
1 ) +

[
T1Υ3 + T4

(
Υ4 −

1
Γq(β + 1)

)]
(ν

β−1
2 − ν

β−1
1 ) → 0,

(62)

as ν2 → ν1, independently of (u, v) ∈ Ω2.
Therefore, the operators E1 and E2 are equicontinuous, and so E is also an equicontin-

uous operator on Ω2. Then, the operator E : Ω2 → V is completely continuous using the
Arzela–Ascoli theorem.

In the concluding section of the proof, we establish the boundedness of the set
Z = {(u, v) ∈ V , (u, v) = λE(u, v), 0 ≤ λ ≤ 1}. Take (u, v) ∈ V , implying there
exists λ ∈ [0, 1] such that (u, v) = λE(u, v) or u(ν) = λE1(u, v)(ν) and v(ν) = λE2(u, v)(ν)
for all ν ∈ [0, 1]. Utilizing (J4), we infer, similarly to the initial part of this proof, that

|u(ν)| = λ|E1(u, v)(ν)| ≤ |E1(u, v)(ν)| ≤ T1Υ1 + T2Υ2, ∀ ν ∈ [0, 1],
|v(ν)| = λ|E2(u, v)(ν)| ≤ |E2(u, v)(ν)| ≤ T1Υ3 + T2Υ4, ∀ ν ∈ [0, 1],

(63)

and then
‖(u, v)|V = ‖u‖+ ‖v‖ ≤ T1(Υ1 + Υ3) + T2(Υ2 + Υ4). (64)

This final inequality indicates the boundedness of the set Z . Consequently, employing
the Schaefer fixed-point theorem, we establish the existence of at least one fixed point
for the operator E . Thus, problem (1), (2) possesses at least one solution. This concludes
the proof.

In the subsequent existence theorem, we will employ the Leray–Schauder nonlinear
alternative (refer to [35]).

Theorem 5. Assume that assumption (J1) holds. In addition, we suppose that the functions
F ,G : [0, 1]×R4 → R are continuous and the following conditions are satisfied

(J5) There exist the functions ϕ1, ϕ2 ∈ C([0, 1],R+) and the functions ψ1, ψ2 ∈ C((R+)4,R+)
nondecreasing in each of variables such that

|F (ν, x1, x2, x3, x4)| ≤ ϕ1(ν)ψ1(|x1|, |x2|, |x3|, |x4|),
|G(ν, x1, x2, x3, x4)| ≤ ϕ2(ν)ψ2(|x1|, |x2|, |x3|, |x4|),

(65)

for all ν ∈ [0, 1], xi ∈ R, i = 1, . . . , 4.
(J6) There exists a positive constant V such that

‖ϕ1‖ψ1

(
V, V,

V
Γq(δ1 + 1)

,
V

Γq(γ1 + 1)

)
(Υ1 + Υ3)

+‖ϕ2‖ψ2

(
V, V,

V
Γq(δ2 + 1)

,
V

Γq(γ2 + 1)

)
(Υ2 + Υ4) < V.

(66)

Then, the q-fractional boundary value problem (1), (2) has at least one solution
(u(ν), v(ν)), ν ∈ [0, 1].
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Proof. We define the set W = {(u, v) ∈ V , ‖(u, v)‖V < V}, where V is the constant given
by (66). The operator E : W → V is completely continuous. We suppose that there exist
(u, v) ∈ ∂W such that (u, v) = μE(u, v) for some μ ∈ (0, 1). Then, we obtain

|u(ν)| = μ|E1(u, v)(ν)| ≤ |E1(u, v)(ν)|
≤ ‖ϕ1‖ψ1

(
‖u‖, ‖v‖,

‖u‖
Γq(δ1 + 1)

,
‖v‖

Γq(γ1 + 1)

)
Υ1

+‖ϕ2‖ψ2

(
‖u‖, ‖v‖,

‖u‖
Γq(δ2 + 1)

,
‖v‖

Γq(γ2 + 1)

)
Υ2,

|v(ν)| = μ|E2(u, v)(ν)| ≤ |E2(u, v)(ν)|
≤ ‖ϕ1‖ψ1

(
‖u‖, ‖v‖,

‖u‖
Γq(δ1 + 1)

,
‖v‖

Γq(γ1 + 1)

)
Υ3

+‖ϕ2‖ψ2

(
‖u‖, ‖v‖,

‖u‖
Γq(δ2 + 1)

,
‖v‖

Γq(γ2 + 1)

)
Υ4,

(67)

for all ν ∈ [0, 1], and so we find

‖(u, v)‖V = ‖u‖+ ‖v‖
≤ ‖ϕ1‖ψ1

(
‖u‖, ‖v‖,

‖u‖
Γq(δ1 + 1)

,
‖v‖

Γq(γ1 + 1)

)
(Υ1 + Υ3)

+‖ϕ2‖ψ2

(
‖u‖, ‖v‖,

‖u‖
Γq(δ2 + 1)

,
‖v‖

Γq(γ2 + 1)

)
(Υ2 + Υ4)

≤ ‖ϕ1‖ψ1

(
‖(u, v)‖V , ‖(u, v)‖V ,

‖(u, v)‖V
Γq(δ1 + 1)

,
‖(u, v)‖V

Γq(γ1 + 1)

)
(Υ1 + Υ3)

+‖ϕ2‖ψ2

(
‖(u, v)‖V , ‖(u, v)‖V ,

‖(u, v)‖V
Γq(δ2 + 1)

,
‖(u, v)‖V

Γq(γ2 + 1)

)
(Υ2 + Υ4).

(68)

Therefore, we deduce

V/
[
‖ϕ1‖ψ1

(
V, V,

V
Γq(δ1 + 1)

,
V

Γq(γ1 + 1)

)
(Υ1 + Υ3)

+‖ϕ2‖ψ2

(
V, V,

V
Γq(δ2 + 1)

,
V

Γq(γ2 + 1)

)
(Υ2 + Υ4)

]
≤ 1,

(69)

which, by (66), is a contradiction.
We conclude that there is no (u, v) ∈ ∂W such that (u, v) = μE(u, v) for some

μ ∈ (0, 1). Consequently, by employing the Leray–Schauder nonlinear alternative, we infer
that E possesses a fixed point (u, v) ∈ W , serving as a solution to problem (1), (2). This
concludes the proof.

4. Examples

Let q = 1
2 , α = 5

2 , n = 3, β = 10
3 , m = 4, δ1 = 34

11 , γ1 = 71
25 , δ2 = 48

13 , γ2 = 95
32 , ς = 6

5 ,
ϑ = 9

7 , a = b = c = d = 1, �1 = 2
9 , σ1 = 5

4 , η1 = 2
3 , ρ1 = 21

10 , ξ1 = 1
8 , ω1 = 1

2 , ζ1 = 1
4 ,

θ1 = 1
16 , a1 = 3, b1 = − 7

12 , c1 = 4
15 , d1 = −2.

We consider the system of q-difference equations⎧⎨⎩ (D5/2
1/2u)(ν) +F

(
ν, u(ν), v(ν), I34/11

1/2 u(ν), I71/25
1/2 v(ν)

)
= 0, ν ∈ (0, 1),

(D10/3
1/2 v)(ν) + G

(
ν, u(ν), v(ν), I48/13

1/2 u(ν), I95/32
1/2 v(ν)

)
= 0, ν ∈ (0, 1),

(70)

with the boundary conditions⎧⎨⎩ u(0) = D1/2u(0) = 0, D6/5
1/2u(1) = 3D2/9

1/2u
(

1
8

)
− 7

12 D5/4
1/2v

(
1
2

)
,

v(0) = D1/2v(0) = D2
1/2v(0) = 0, D9/7

1/2v(1) = 4
15 D2/3

1/2u
(

1
4

)
− 2D21/10

1/4 v
(

1
16

)
.

(71)
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By using the Mathematica program, we obtain Λ1 ≈ 1.05480868, Λ2 ≈ −0.48038739,
Λ3 ≈ 0.10410274, Λ4 ≈ 3.76405767, and Δ ≈ 4.02037036 �= 0. Therefore, assumption (J1)
is satisfied.

In addition, after some computations, we find Υ1 ≈ 1.37638598, Υ2 ≈ 0.16737542,
Υ3 ≈ 0.02789379, and Υ4 ≈ 0.49956085.

Example 1. We consider the functions

F (ν, u, v, x, y) =
sin(3ν + 2)

4
√

ν3 + 2
+

1
9

e−(ν−1)2√
u2 + 1 − 1

17
e−2ν3+1 arctan v

+
ν

4(ν2 + 1)
sin x − 3ν

25
cos2 y,

G(ν, u, v, x, y) = −ν2 + 5 +
1

8(ν + 1)
sin2 u − 2

31(ν2 + 4)
|v|

1 + |v| −
1
2

x

+
1

6(ν3 + 1)
y

y2 + 1
,

(72)

for all ν ∈ [0, 1], u, v, x, y ∈ R.
For these continuous functions, we obtain the following inequalities

|F (ν, u1, v1, x1, y1)−F (ν, u2, v2, x2, y2)|
≤ H1(ν)|u1 − u2|+H2(ν)|v1 − v2|+H3(ν)|x1 − x2|+H4(ν)|y1 − y2|,
|G(ν, u1, v1, x1, y1)− G(ν, u2, v2, x2, y2)|
≤ K1(ν)|u1 − u2|+K2(ν)|v1 − v2|+K3(ν)|x1 − x2|+K4(ν)|y1 − y2|,

(73)

for all ν ∈ [0, 1], ui, vi, xi, yi ∈ R, i = 1, 2, where

H1(ν) =
1
9

e−(ν−1)2
, H2(ν) =

1
17

e−2ν3+1, H3(ν) =
ν

4(ν2 + 1)
, H4(ν) =

6ν

25
,

K1(ν) =
1

4(ν + 1)
, K2(ν) =

2
31(ν2 + 4)

, K3(ν) =
1
2

, K4(ν) =
1

6(ν3 + 1)
,

(74)

for all ν ∈ [0, 1]. The functions Hi, Ki, i = 1, . . . , 4 are continuous, and we find h∗1 ≈ 0.11111111,
h∗2 ≈ 0.15989893, h∗3 = 0.125, h∗4 = 0.24, k∗1 = 0.25, k∗2 ≈ 0.01612903, k∗3 = 0.5, and
k∗4 ≈ 0.16666667. In addition, we obtain Θ1 ≈ 0.46864611, Θ2 ≈ 0.41971398, and so
Θ0 = Θ1 < 1. Therefore, assumption (J2) and condition (16) are satisfied. Then, by Theo-
rem 1, we deduce that problem (70), (71) with the functions F and G given by (72) has a unique
solution (u(ν), v(ν)), ν ∈ [0, 1].

Example 2. We consider the functions

F (ν, u, v, x, y) =
cos(ν3 + 7)

2ν + 5
− 1

ν2 + 6
4u4 + 1
u4 + 3

+
(ν5 + 2)e−3ν+1

6(ν4 + 27)
sin v

− ν

8(ν2 + 1)
cos2 x +

1
ν + 4

|y|
1 + 3|y| ,

G(ν, u, v, x, y) = − e−ν+4

3ν2 + 1
+

1
ν2 + 7

u
u2 + 1

− ν + 1

9
√

ν4 + 5
e−v2

+
2
11

sin2 x − ν|y|
6(1 + 4|y|) ,

(75)

for all ν ∈ [0, 1], u, v, x, y ∈ R. For these continuous functions, we obtain the following inequalities

|F (ν, u, v, x, y) ≤ 1
2ν + 5

+
4

ν2 + 6
+

(ν5 + 2)e−3ν+1

6(ν4 + 27)
+

ν

8(ν2 + 1)
+

1
3(ν + 4)

=: Φ(ν),

|G(ν, u, v, x, y) ≤ e−ν+4

3ν2 + 1
+

1
2(ν2 + 7)

+
ν + 1

9
√

ν4 + 5
+

2
11

+
ν

24
=: Ψ(ν),

(76)
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for all ν ∈ [0, 1], u, v, x, y ∈ R. In addition, we find

|F (ν, u1, v1, x1, y1)−F (ν, u2, v2, x2, y2)|
≤ H1(ν)|u1 − u2|+H2(ν)|v1 − v2|+H3(ν)|x1 − x2|+H4(ν)|y1 − y2|,
|G(ν, u1, v1, x1, y1)− G(ν, u2, v2, x2, y2)|
≤ K1(ν)|u1 − u2|+K2(ν)|v1 − v2|+K3(ν)|x1 − x2|+K4(ν)|y1 − y2|,

(77)

for all ν ∈ [0, 1], ui, vi, xi, yi ∈ R, i = 1, 2, where

H1(ν) =
2.9678
ν2 + 6

, H2(ν) =
(ν5 + 2)e−3ν+1

6(ν4 + 27)
, H3(ν) =

ν

4(ν2 + 1)
, H4(ν) =

1
ν + 4

,

K1(ν) =
1

ν2 + 7
, K2(ν) =

0.8578(ν + 1)

9
√

ν4 + 5
, K3(ν) =

4
11

, K4(ν) =
ν

6
,

(78)

for all ν ∈ [0, 1]. Therefore, assumptions (J2) and (J3) are satisfied. In addition, we obtain
h∗1 ≈ 0.49463333, h∗2 ≈ 0.03355903, h∗3 = 0.125, h∗4 = 0.25, k∗1 ≈ 0.14285714, k∗2 ≈ 0.07782119,
k∗3 ≈ 0.36363636, k∗4 ≈ 0.16666667, and so L1 ≈ 0.56557327, L2 ≈ 0.25625052, and L0 = L1 <
1. Then, condition (31) is also satisfied. Therefore, by Theorem 2, we conclude that problem (70),
(71) with functions (75) has at least one solution (u(ν), v(ν)), ν ∈ [0, 1].

Example 3. We consider the functions

F (ν, u, v, x, y) =
e−4ν+3
√

ν3 + 1
cos(uv + x2 − y)− 1

6
3
√

ν2 + 12,

G(ν, u, v, x, y) =
1

2(ν + 1)
e−(u+v)2 − arctan

√
x2 + 2 +

ν2

ν5 + 3
4y2 + 1
y2 + 3

− sin(2ν + 1),
(79)

for all ν ∈ [0, 1], u, v, x, y ∈ R. For these continuous functions, we obtain the following inequalities

|F (ν, u, v, x, y)| < 20.4919 = T1, |G(ν, u, v, x, y)| < 4.0708 = T2. (80)

Therefore, assumption (J4) is satisfied. Then, by Theorem 4 we infer that problem (70), (71)
with functions (79) has at least one solution (u(ν), v(ν)), ν ∈ [0, 1].

Example 4. We consider the functions

F (ν, u, v, x, y) =
2

ν3 + 5

(
u − 3x + 1

34
sin(u2 − 8v + x3)−

√
v2 + 4y2

27
arctan

u + xy
y2 + 3

+
1
9

)
,

G(ν, u, v, x, y) =
3ν

ν4 + 71

(
4u − 5y

43
cos(ux − 3vy)− v + 7x

11
e−(u+3y)2 − 2

15

)
,

(81)

for all ν ∈ [0, 1], u, v, x, y ∈ R. For these continuous functions, we obtain the inequalities

|F (ν, u, v, x, y)| ≤ 2
ν3 + 5

( |u|
34

+
π|v|
54

+
3|x|
34

+
π|y|
27

+
43

306

)
,

|G(ν, u, v, x, y)| ≤ 3ν

ν4 + 71

(
4|u|
43

+
|v|
11

+
7|x|
11

+
5|y|
43

+
2

15

)
,

(82)

for all ν ∈ [0, 1], u, v, x, y ∈ R. Therefore, the continuous functions ϕi, ψi, i = 1, 2 from (65) are
given by

ϕ1(ν) =
2

ν3 + 5
, ψ1(a, b, c, d) =

a
34

+
πb
54

+
3c
34

+
πd
27

+
43
306

,

ϕ2(ν) =
3ν

ν4 + 71
, ψ2(a, b, c, d) =

4a
43

+
b

11
+

7c
11

+
5d
43

+
2
15

,
(83)

for all ν ∈ [0, 1] and a, b, c, d ∈ R+; that is, assumption (J5) is satisfied. In addition, we find
‖ϕ1‖ = 2

5 and ‖ϕ2‖ = 3
72 . If V ≥ 0.1, then assumption (J6) is also satisfied. Therefore,
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by Theorem 5, we conclude the existence of at least one solution (u(ν), v(ν)), ν ∈ [0, 1] for problem
(70), (71) with functions (81).

5. Conclusions

In this study, we explored the existence and uniqueness of solutions to a system of
fractional q-difference equations with fractional q-integral terms (1), subject to the multi-
point boundary conditions (2), which encompass q-derivatives and fractional q-derivatives
of diverse orders. We associated an operator (E ) on the space V with our problem, where
the solutions of (1) and (2) correspond to the fixed points of this operator. Consequently,
our main results involved the utilization of various fixed-point theorems, including the
Banach contraction mapping principle (employed in Theorem 1), the Krasnosel’skii fixed-
point theorem for the sum of two operators (applied in Theorems 2 and 3), the Schaefer
fixed-point theorem (utilized in Theorem 4), and the Leray–Schauder nonlinear alternative
(employed in Theorem 5). To exemplify our findings, we concluded by presenting several
illustrative examples.
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Abstract: This paper aims to study the asymptotic properties of nonoscillatory solutions (eventually
positive or negative) of a class of third-order canonical neutral differential equations. We use Riccati
substitution to reduce the order of the considered equation, and then we use the Philos function
class to obtain new criteria of the Kamenev type, which guarantees that all nonoscillatory solutions
converge to zero. This approach is characterized by the possibility of applying its conditions to a wider
area of equations. This is not the only aspect that distinguishes our results; we also use improved
relationships between the solution and the corresponding function, which in turn is reflected in a
direct improvement of the criteria. The findings in this article extend and generalize previous findings
in the literature and also improve some of these findings.

Keywords: quasi-linear differential equations; asymptotic and oscillatory analysis; third-order;
neutral delay arguments
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1. Introduction

One type of functional differential equation (FDE) that accounts for the temporal
memory of phenomena is the delay differential equation (DDE). Thus, it is simple to
understand how these equations are applied in a wide spectrum of fields, including as
biological, engineering, and physical models, as well as in other sciences [1,2].

A variety of inquiries concerning oscillatory behavior and asymptotic features of DDE
solutions are addressed by oscillation theory, a subfield of qualitative theory. The basic task
of oscillation theory is to identify the criteria that eliminate the nonoscillatory solutions. A
variety of findings, techniques, and strategies for examining the oscillation of DDEs were
gathered in monographs [3–6].

The investigation of oscillation for solutions of ordinary, partial, and fractional FDEs
with delay, neutral delay (NDDE), mixed delay, and damping is a recent, significant ex-
pansion and enhancement of the oscillation theory. It is known that differential equations
with delay have received the most attention, particularly for non-canonical cases. For in-
stance, refer to [7–15] for delay, advanced, and neutral equations, respectively. Furthermore,
Refs. [16–21] show how investigations of odd-order equations have evolved. Moreover,
one may trace the variation of fractional DDEs in Survey [22]. Whereas [23–25] dealt
with damping equations, and [26–29] studied mixed equations. Over the past 20 years,
functional dynamic equations have also drawn a lot of attention; see, for instance, [30–32].

Mathematics 2024, 12, 1734. https://doi.org/10.3390/math12111734 https://www.mdpi.com/journal/mathematics203
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In this paper, we present new criteria for the oscillation of quasi-linear third-order
neutral DDEs: (

a(s)
(
(x(s) + η(s)x(g(s)))′′

)r)′
+ q(s)xr(τ(s)) = 0, (1)

where s ≥ s0, and r is the ratio of any two positive odd integers. Here, in this work, the
following assumptions are satisfied:

(I) a ∈ C1([s0, ∞), (0, ∞)), a′(s) ≥ 0, and T (s0, ∞) = ∞, where

T (l, s) =
∫ s

l

1
a1/r(θ)

dθ; (2)

(II) η, q ∈ C([s0, ∞), [0, ∞)) with 0 ≤ η(s) ≤ η0 < ∞ and q(s) does not vanish eventually;

(III) g, τ ∈ C([s0, ∞),R), g(s) ≤ s, τ(s) ≤ s, and lims→∞ g(s) = lims→∞ τ(s) = ∞.

For the solution of (1) on [sx, ∞), we refer to a real-valued function x ∈ C([sx, ∞),R),
sx ≥ s0, which satisfies (1) on [sx, ∞), and has the properties (x + η · (x ◦ g)) ∈ C2([sx, ∞),R)

and
(

a ·
(
(x + η · (x ◦ g))′′

)r)
∈ C([sx, ∞),R). We only consider those solutions x(s) of (1)

satisfying sup{|x(s)| : s ≥ S} > 0 for all S ≥ sx, and we assume that (1) has such solutions.
A solution of (1) is said to be oscillatory if it has arbitrarily large zeros in [s0, ∞), and is
called nonoscillatory otherwise. Equation (1) is said to be oscillatory if all of its solutions
are oscillatory.

In the study of neutral equations, the corresponding function z to the solution x,
defined as

z(s) := x(s) + η(s)x(g(s)), (3)

is vital.
Numerous studies have been conducted on third-order functional differential equa-

tions and the oscillation behavior of solutions; see [33–40]. There exists a theoretical and
applicable interest in the problem of oscillatory properties of neutral DDEs; see Hale [1] for
some important applications in various applied sciences.

In what follows, we survey some of the most important research that handles the
study of third-order NDDEs using different techniques and some different restrictions to
obtain conditions that ensure that the solution is oscillatory or tends to zero to cover the
the largest area when applied to special cases.

Baculikova and Dzurina [41] tested the asymptotic features of a pair of third-order
NDDEs, (

a(s)
(
(x(s)± η(s)x(g(s)))′′

)r)′
+ q(s)xr(τ(s)) = 0, s ≥ s0, (4)

where 0 ≤ η(s) ≤ η < 1. They established novel sufficient conditions that confirm that all
nonoscillatory solutions of (4) converge to zero.

Thandapani and Li [42] studied the oscillatory features of the third-order NDDE
(1), where g′(s) ≥ g0 > 0, τ ◦ g = g ◦ τ and 0 ≤ η(s) ≤ η < ∞. By using the Riccati
transformation, they established some sufficient criteria, which confirm that any solution
of (1) is oscillatory or tends to zero.

Graef et al. [43] discussed the oscillatory properties of a class of solutions of third-order
nonlinear NDDEs: ((

(x(s) + η(s)x(g(s)))′′
)r)′

+ q(s)xr(τ(s)) = 0

where a = 1 and η(s) ≥ 1. They presented novel sufficient criteria for any solution of the
studied equation to be either oscillating or converging to zero.

Kumar and Ganesan [44] discussed the third-order nonlinear NDDE in the form(
a(s)ϕ

(
z′′(s)

))′
+ q(s)ϕ(x(τ(s))) = 0, s ≥ s0 > 0, (5)
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where ϕ(u) = |u|r−1u, g′(s) ≥ g0 > 0 and τ ◦ g = g ◦ τ. The third- and first-order equation
comparison principles provide the foundation for the obtained results. Below, we present
some results obtained in previous studies to facilitate the reader’s understanding.

Theorem 1 ([42]). Let r ≥ 1, τ ∈ C1([s0, ∞)) and τ′ > 0. Assume that

∫ ∞

s0

∫ ∞

v

(
1

a(g(u))

∫ ∞

u
Q(θ)dθ

)1/r
dudv = ∞,

holds and τ(s) ≤ g(s). Moreover, assuming there is a function ρ ∈ C1([s0, ∞), (0, ∞)), for all
s1 ≥ s0 large enough, there exists s1 ≥ s0 where

lim sup
s→∞

∫ s

s2

⎛⎝ρ(l)Q(l)
2r+1 −

(
1 + ηr

0
g0

)(
(ρ′(l))+

)r+1

(r + 1)r+1(ρ(l)β1(τ(l), s1)τ′(l))r

⎞⎠dl = ∞,

for Q =min{q(s), q(g(s))}, (ρ′(s))+ := max{0, ρ′(s)} and β1(s, s1) =
∫ s

s1
1la1/r(θ)dθ.

Then, (1) is almost oscillatory.

Theorem 2 ([44]). Let τ(s) ≤ g(s) ≤ 1. Assuming that 0 < r ≤ 1,

∫ s

s1

g′(v)
∫ ∞

v

(
g′(u)

a(g(u))

∫ ∞

u
Q(t)dt

)1/r

dudv = ∞

and the first-order DDE

w′(s) +
g0

go + ηr
0

Q1(s)w
(

g−1(τ(s))
)
= 0

oscillates, then any positive solution of (5) meets lims→∞ x(s) = 0, where g−1(s) is an inverse
function of g(s), and

Q1(s) = Q(s)
(∫ τ(s)

s1

(T (l, t)− T (l, t1))dt
)

.

Our goal in this study was to examine the asymptotic properties of a class of neutral
third-order NDDEs. Based on the improved relationship between x and z that was derived
in [45], we obtained new relationships between x and z. The new relationship is character-
ized by taking into account both cases η ≤ 1 and η > 1; this was not common in previous
third-order studies. We present Kamenev-type criteria that ensure that all solutions of the
neutral DDE, (1), either converge to zero or are oscillatory. We begin by deducing some
new relationships that help improve the approach. Then, we use the Philos function class
to obtain the required conditions. The criteria we obtain improve and extend some results
from previous studies. Finally, we employ the results in the special case of our studied
equation.

2. Preliminaries

We begin with lemmas, notations that are required throughout this paper. For con-
venience, we use the symbol P to state the category of all eventually positive solutions
to (1), the symbol P↓ to denote the class of solutions x ∈ P , whose corresponding func-
tion confirms z′(t) < 0, and the symbol P↑ to denote the class of solutions x ∈ P whose
corresponding function confirms z′(t) > 0.

Lemma 1 ([41] (Lemma 1)). Assume that x ∈ P . Then, z meets one of the following possible
cases, eventually:

(i) z > 0, z′ > 0 and z′′ > 0;
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(ii) z > 0, z′ < 0 and z′′ > 0.

Lemma 2 ([41] (Lemma 2)). Suppose that x ∈ P↓. If

∫ ∞

s0

∫ ∞

v

(
1

a(u)

∫ ∞

u
q(θ)dθ

)1/r
dudv = ∞, (6)

then lims→∞ x(s) = lims→∞ z(s) = 0.

Lemma 3 ([41] (Lemma 3)). Suppose that u ∈ C2([s0, ∞),R). Assume that u(s) > 0, u′(s) ≥
0 and u′′(s) ≤ 0, on [s0, ∞). Then, there exist a s1 ≥ s0 for each k1 ∈ (0, 1) such that

u(τ(s))
u(s)

≥ k1
τ(s)

s
,

where s ≥ s1.

Lemma 4 ([46]). Suppose that u ∈ Cm+1([s0, ∞),R), u(j)(s) > 0, for j = 0, 1, . . . , m, and
u(m+1)(s) ≤ 0. Then, there exist a s1 ≥ s0, for each k2 ∈ (0, 1), such that

u(s)
u′(s)

≥ k2

m
s,

where s ≥ s1.

Notation 1. For simplicity, let G[0](s) := s, G[j](s) = G
(

G[j−1](s)
)

, G[−j](s) = G−1
(

G[−j+1](s)
)

,
for j = 1, 2, . . ..

Lemma 5 ([45]). Suppose that x ∈ P↑ ∪ P↓. Then,

x >
m

∑
k=0

(
2k

∏
n=0

η
(

g[n]
))⎛⎝ z

(
g[2k]

)
η
(

g[2k]
) − z

(
g[2k+1]

)⎞⎠, (7)

eventually, where m > 0, m ∈ Z.

Let � be class of functions, the function K ∈ �, where K ∈ C(H,R), H = {(s, θ, �) :
s0 ≤ � ≤ θ ≤ s ≤ ∞}, if K satisfies the following hypotheses:

(1) K(s, s, �) = 0, K(s, �, �) = 0, K(s, θ, �) �= 0, for � < θ < s;
(2) K(s, θ, �) possesses the partial derivative ∂K/∂θ on H with the condition that ∂K/∂θ

can be integrated locally in terms of θ in H and

∂K(s, θ, �)
∂θ

= h(s, θ, �)K(s, θ, �), (8)

for some h ∈ C(H,R).

This class of functions is defined by Philos [47].

Notation 2. During the main results, we need to define the following abbreviations:

ψ(s) =
∫ s

s0

T (s0, u)du,

Θ1(s) =
m

∑
k=0

(
2k

∏
n=0

η
(

g[n](τ(s))
))(

1
η
(

g[2k](τ(s))
) − 1

)
ψ
(

g[2k](τ(s))
)

ψ(τ(s))
,
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Θ2(s) =
m

∑
k=1

(
2k−1

∏
j=1

1
η
(

g[−j](τ(s))
))

⎛⎝1 − 1
η
(

g[−2k](τ(s))
) ψ

(
g[−2k](τ(s))

)
ψ
(

g[−2k+1](τ(s))
)
⎞⎠,

Θ(s) =

⎧⎪⎨⎪⎩
1, for η = 0
Θ1(s), for 0 < η < 1
Θ2(s), for η > ψ

(
g[−2k](τ(s))

)
/ψ

(
g[−2k+1](τ(s))

)
,

and

M0 =
r+1

∑
j=0

(
r + 1

r − j + 1

)
(−1)r−j+1γr−j+1λj Γ(γ + j − r)Γ(λ − j + 1)

Γ(γ + λ − r + 1)
, for r ∈ Z+,

where γ, λ ∈ (r, ∞),

Γ(θ) =
∫ +∞

0
xθ−1e−xdx, θ > 0,

and
k0 =

1

(r + 1)(r+1)
.

3. Main Results

We present new conditions that guarantee that each solution to DDE (1) oscillates or
converges to zero.

Theorem 3. Suppose that (6) holds and the function K ∈ �. In the event that a function,
ρ ∈ C1([s0, ∞),R+), is present and satisfies ρ′(s) ≥ 0 such that

lim sup
s→∞

∫ s

�
K(s, θ, �)ρ(θ)

(
kr

1kr
2

τ2r(θ)

(2θ)r q(θ)Θr(θ)− k0a(θ)
(

h(s, θ, �) +
ρ′(θ)
ρ(θ)

)r+1
)

dθ > 0, (9)

for any k1, k2 ∈ (0, 1), then the solution x(s) oscillates or tends to zero.

Proof. Suppose that x ∈ P . Suppose that there is an s ≥ s1 such that x(s) > 0, x(g(s)) >
0, and x(τ(s)) > 0. Clearly, z(s) > 0, s ≥ s1. From Lemma 1, we can see that (i) or (ii) is
satisfied.

Assume that (ii) is satisfied. Since (6) holds, following from Lemma 2 that lims→∞ x(s) = 0.
Now, assume that (i) is satisfied. We have

z′(s) ≥
∫ s

s0

a1/r(u)z′′(u)
a1/r(u)

du ≥ a1/r(s)z′′(s)
∫ s

s0

1
a1/r(u)

du

≥ a1/r(s)z′′(s)T (s0, s), s ≥ s1

therefore, we find(
z′(s)

T (s0, s)

)′
=

T (s0, s)z′′(s)− z′(s)a−1/r(s)
T 2(s0, s)

=
a1/r(s)T (s0, s)z′′(s)− z′(s)

a1/r(s)T 2(s0, s)
≤ 0, s ≥ s1. (10)

Since

z(s) ≥
∫ s

s0

T (s0, u)z′(u)
T (s0, u)

du, for s ≥ s1

by using (10), we obtain

z(s) ≥ z′(s)
T (s0, s)

∫ s

s0

T (s0, u)du ≥ z′(s)
T (s0, s)

ψ(s)
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and so(
z(s)
ψ(s)

)′
=

ψ(s)z′(s)− z(s)T (s0, s)
ψ2(s)

=
T −1(s0, s)ψ(s)z′(s)− z(s)

T −1(s0, s)ψ2(s)
≤ 0, s ≥ s1. (11)

From (3), we have
x(s) = z(s)− η(s)x(g(s)).

Now, assume that η < 1. Since z(s) satisfies (i), following Lemma 5, that (7) holds.
Using g[2k+1](s) ≤ g[2k](s) ≤ s, z′(s) > 0 and (11), we obtain

z
(

g[2k+1](s)
)
≤ z

(
g[2k](s)

)
≤ z(s), s ≥ s1

and

z
(

g[2k](s)
)
≥

ψ
(

g[2k](s)
)

z(s)

ψ(s)
, for k = 0, 1, . . . .

Thus, we see that (7) becomes

x(s) >
m

∑
k=0

(
2k

∏
n=0

η
(

g[n](s)
))⎛⎝ z

(
g[2k](s)

)
η
(

g[2k](s)
) − z

(
g[2k](s)

)⎞⎠
>

m

∑
k=0

(
2k

∏
n=0

η
(

g[n](s)
))(

1
η
(

g[2k](s)
) − 1

)
z
(

g[2k](s)
)

> z(s)
m

∑
k=0

(
2k

∏
n=0

η
(

g[n](s)
))(

1
η
(

g[2k](s)
) − 1

)
ψ
(

g[2k](s)
)

ψ(s)
, s ≥ s1.

Using this inequality in (1), we obtain(
a(s)

(
(x(s) + η(s)x(g(s)))′′

)r)′
≤ −q(s)zr(τ(s))Θr(s), s ≥ s1. (12)

Now, assume that η > 1. It follows from the (3) that

x(s) =
1

η(g−1(s))

(
z
(

g−1(s)
)
− x

(
g−1(s)

))
=

z
(

g−1(s)
)

η(g−1(s))
− 1

η(g−1(s))η
(

g[−2](s)
)(z

(
g[−2](s)

)
− x

(
g[−2](s)

))
=

z
(

g−1(s)
)

η(g−1(s))

− 1
η(g−1(s))η

(
g[−2](s)

)(z
(

g[−2](s)
)
− 1

η
(

g[−3](s)
)(z

(
g[−3](s)

)
− x

(
g[−3](s)

)))

=
z
(

g−1(s)
)

∏1
j=1 η

(
g[−j](s)

) −
z
(

g[−2](s)
)

∏2
j=1 η

(
g[−j](s)

)
+

1

∏3
j=1 η

(
g[−j](s)

)(z
(

g[−3](s)
)
− x

(
g[−3](s)

))
, s ≥ s1,

and so on. Thus, we have

x(s) >
m

∑
k=1

(
2k−1

∏
j=1

1
η
(

g[−j](s)
))(

z
(

g[−2k+1](s)
)
− 1

η
(

g[−2k](s)
) z

(
g[−2k](s)

))
, s ≥ s1. (13)
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From the facts that g[−2k] ≥ g[−2k+1] ≥ s, z′ > 0 and (11), we arrive at

z
(

g[−2k+1](s)
)
≥ z(s), s ≥ s1 (14)

and

z
(

g[−2k](s)
)
≤

ψ
(

g[−2k](s)
)

z
(

g[−2k+1](s)
)

ψ
(

g[−2k+1](s)
) , s ≥ s1. (15)

Using (14) and (15) in (13), we obtain

x(s) > z(s)
m

∑
k=1

(
2k−1

∏
j=1

1
η
(

g[−j](s)
))

⎛⎝1 − 1
η
(

g[−2k](s)
) ψ

(
g[−2k](s)

)
ψ
(

g[−2k+1](s)
)
⎞⎠, s ≥ s1

and so

x(τ(s)) > z(τ(s))
m

∑
k=1

(
2k−1

∏
j=1

1
η
(

g[−j](τ(s))
))

⎛⎝1 − 1
η
(

g[−2k](τ(s))
) ψ

(
g[−2k](τ(s))

)
ψ
(

g[−2k+1](τ(s))
)
⎞⎠, s ≥ s1.

From the above inequality and (1), we obtain (12), therefore,(
a(s)

(
(x(s) + η(s)x(g(s)))′′

)r)′
≤ 0. (16)

Using (16), a′(s) ≥ 0, and z′′(s) > 0, we have z′′′(s) ≤ 0. Therefore, there exists an
s2 ≥ s1 such that z(s) satisfies

z(τ(s)) > 0, z′(s) > 0, z′′(s) > 0, z′′′(s) ≤ 0, s ≥ s2.

We define ω(s) as follow:

ω(s) = ρ(s)
a(s)(z′′(s))r

(z′(s))r , s ≥ s2. (17)

We see that ω(s) > 0 and

ω′(s) = ρ′(s)
a(s)(z′′(s))r

(z′(s))r

+
ρ(s)(z′(s))r(a(s)(z′′(s))r)′ − rρ(s)a(s)(z′′(s))r(z′(s))r−1z′′(s)

(z′(s))2r , s ≥ s2.

By using (12) and (17), we have

ω′(s) ≤ ρ′(s)
ω(s)
ρ(s)

− ρ(s)
q(s)zr(τ(s))Θr(s)

(z′(s))r − r
ω(r+1)/r(s)

a1/r(s)ρ1/r(s)
, s ≥ s2. (18)

By using Lemma 3 with u(s) = z′(s), there exists a s3 ≥ s2 such that

z′(τ(s))
z′(s)

≥ k1
τ(s)

s
, s ≥ s3 ≥ s2. (19)

By using Lemma 4, we have

z(s)
z′(s)

≥ 1
2

k2s, s ≥ s3. (20)
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From (19) and (20), we obtain

1
z′(s)

≥ k1
τ(s)

sz′(τ(s))
≥ k1k2

τ2(s)
2s

1
z(τ(s))

, s ≥ s3. (21)

Using (18) and (21), we obtain

ω′(s) ≤ ρ′(s)
ω(s)
ρ(s)

− kr
1kr

2
τ2r(s)
(2s)r ρ(s)q(s)Θr(s)− r

ω(r+1)/r(s)
a1/r(s)ρ1/r(s)

, s ≥ s3

and so

kr
1kr

2
τ2r(s)
(2s)r ρ(s)q(s)Θr(s) ≤ −ω′(s) + ρ′(s)

ω(s)
ρ(s)

− r
ω(r+1)/r(s)

a1/r(s)ρ1/r(s)
, s ≥ s3. (22)

Multiplying the above inequality by K(s, θ, �) and integrating from � ≥ s3 to s, we
obtain ∫ s

�
K(s, θ, �)kr

1kr
2

τ2r(θ)

(2θ)r ρ(θ)q(θ)Θr(θ)dθ

≤ −
∫ s

�
K(s, θ, �)ω′(θ)dθ +

∫ s

�
K(s, θ, �)ρ′(θ)

ω(θ)

ρ(θ)
dθ (23)

−r
∫ s

�

K(s, θ, �)ω(r+1)/r(θ)

a1/r(θ)ρ1/r(θ)
dθ, � ≥ s3.

By using (8), for all s ≥ �, we have

∫ s

�
K(s, θ, �)kr

1kr
2

τ2r(θ)

(2θ)r ρ(θ)q(θ)Θr(θ)dθ

≤
∫ s

�
K(s, θ, �)

((
h(s, θ, �) +

ρ′(θ)
ρ(θ)

)
ω(θ)− r

ω(r+1)/r(θ)

a1/r(θ)ρ1/r(θ)

)
dθ, s ≥ �. (24)

Set

F(ϑ) =
(

h(s, θ, �) +
ρ′(θ)
ρ(θ)

)
ϑ − r

ϑ(r+1)/r

a1/r(θ)ρ1/r(θ)
, s ≥ �.

A simple calculation implies when

ϑ = k0ρ(θ)a(θ)
(

h(s, θ, �) +
ρ′(θ)
ρ(θ)

)r

, s ≥ �

F(ϑ) has the maximum

k0ρ(θ)a(θ)
(

h(s, θ, �) +
ρ′(θ)
ρ(θ)

)r+1

, s ≥ �

that is,

F(ϑ) ≤ Fmax = k0ρ(θ)a(θ)
(

h(s, θ, �) +
ρ′(θ)
ρ(θ)

)r+1

, s ≥ �. (25)

Using (24) and (25), we have

0 ≥
∫ s

�
K(s, θ, �)kr

1kr
2

τ2r(θ)

(2θ)r ρ(θ)q(θ)Θr(θ)dθ

−
∫ s

�
K(s, θ, �)k0ρ(θ)a(θ)

(
h(s, θ, �) +

ρ′(θ)
ρ(θ)

)r+1

dθ, s ≥ �
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and so

∫ s

�
K(s, θ, �)ρ(θ)

(
kr

1kr
2

τ2r(θ)

(2θ)r q(θ)Θr(θ)− k0a(θ)
(

h(s, θ, �) +
ρ′(θ)
ρ(θ)

)r+1
)

dθ ≤ 0, s ≥ �.

Taking the super limit, we obtain

lim sup
s→∞

∫ s

�
K(s, θ, �)ρ(θ)

(
kr

1kr
2

τ2r(θ)

(2θ)r q(θ)Θr(θ)− k0a(θ)
(

h(s, θ, �) +
ρ′(θ)
ρ(θ)

)r+1
)

dθ ≤ 0, s ≥ �.

This contradicts (9) and the proof is complete.

Theorem 4. Assume that (6) holds and

K(s, θ, �) = (s − θ)σ(θ − �)ϑ,

where σ, ϑ are constants greater than r. If there is a ρ ∈ C1([s0, ∞),R+) satisfying ρ′(s) ≥ 0 such
that

lim sup
s→∞

∫ s

�
(s − θ)σ(θ − �)ϑρ(θ)Φ(s, l, θ)dθ > 0 (26)

for any k1, k2 ∈ (0, 1), then, the solution x(s) is oscillatory or converges to zero, where

Φ(s, l, θ) := kr
1kr

2
τ2r(θ)

(2θ)r q(θ)Θr(θ)− k0a(θ)
(

ϑs − (σ + ϑ)θ + σ�

(s − θ)(θ − �)
+

ρ′(θ)
ρ(θ)

)r+1

.

Proof. Suppose that x ∈ P . Suppose that there is an s ≥ s1 such that x(s) > 0, x(g(s)) >
0, and x(τ(s)) > 0. Clearly, z(s) > 0, s ≥ s1. Since

K(s, θ, �) = (s − θ)σ(θ − �)ϑ, s ≥ �,

by using (8), we have

h(s, θ, �) =
ϑs − (σ + ϑ)θ + σ�

(s − θ)(θ − �)
, s ≥ �.

Now, as in the proof of Theorem 3, we arrive at

lim sup
s→∞

∫ s

�
(s − θ)σ(θ − �)ϑρ(θ)Φ(s, l, θ)dθ ≤ 0, s ≥ �.

This contradicts (26) and the proof is complete.

Theorem 5. Assume that (6) holds and

K(s, θ, �) = (T (s0, s)− T (s0, θ))γ(T (s0, θ)− T (s0, �))λ,

where γ, λ are constants greater than r. If there exists a function ρ ∈ C1([s0, ∞),R+) satisfying
ρ′(s) ≥ 0 such that

lim sup
s→∞

∫ s

�
(T (s0, s)− T (s0, θ))γ(T (s0, θ)− T (s0, �))λρ(θ)Ψ(s, l, θ)dθ > 0 (27)
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for any k1, k2 ∈ (0, 1), then, the solution x(s) is oscillatory or converges to zero, where

Ψ(s, l, θ) : = kr
1kr

2
τ2r(θ)

(2θ)r q(θ)Θr(θ)

−k0a(θ)
(

λT (s0, s)− (γ + λ)T (s0, θ) + γT (s0, �)
a1/r(θ)(T (s0, s)− T (s0, θ))(T (s0, θ)− T (s0, �))

+
ρ′(θ)
ρ(θ)

)r+1

.

Proof. Suppose that x ∈ P . Suppose that there is an s ≥ s1 such that x(s) > 0, x(g(s)) >
0, and x(τ(s)) > 0. Clearly, z(s) > 0, s ≥ s1. Since

K(s, θ, �) = (T (s0, s)− T (s0, θ))γ(T (s0, θ)− T (s0, �))λ, s ≥ �,

by using (8), we have

h(s, θ, �) =
λT (s0, s)− (γ + λ)T (s0, θ) + γT (s0, �)

a1/r(θ)(T (s0, s)− T (s0, θ))(T (s0, θ)− T (s0, �))
, s ≥ �.

Now, as in the proof of Theorem 3, we arrive at

lim sup
s→∞

∫ s

�
(T (s0, s)− T (s0, θ))γ(T (s0, θ)− T (s0, �))λρ(θ)Ψ(s, l, θ)dθ ≤ 0, s ≥ �.

This contradicts (27) and the proof is complete.

Corollary 1. Suppose that (6) holds, r is an odd natural number and ρ(s) = 1. If there exist two
constants γ, λ > r such that

lim sup
s→∞

∫ s
� (T (s0, s)− T (s0, θ))γ(T (s0, θ)− T (s0, �))λkr

1kr
2

τ2r(θ)
(2θ)r q(θ)Θr(θ)dθ

(T (s0, s)− T (s0, �))γ+λ−r > k0M0 (28)

for any k1, k2 ∈ (0, 1), then, the solution x(s) is oscillatory or converges to zero.

Proof. As in Theorem 5 with ρ(s) = 1, we have to sufficiently prove that (28) leads to (27).
From ∫ 1

0
yγ−1(1 − y)λ−1dy =

Γ(γ)Γ(λ)
Γ(γ + λ)

.

Using y = �/δ, we obtain

∫ δ

0
(δ − �)γ+j−r−1�λ−jd� =

∫ 1

0
δγ+λ−r(1 − y)γ+j−r−1yλ−jdy

= δγ+λ−r Γ(γ + j − r)Γ(λ − j + 1)
Γ(γ + λ − r + 1)

. (29)

Let � = T (s0, θ)− T (s0, �) and δ = T (s0, s)− T (s0, �). Then, by (9),∫ s

�
a(θ)(T (s0, s)− T (s0, θ))γ(T (s0, θ)− T (s0, �))λ�(s, l, θ)dθ

=
∫ δ

0
(δ − �)γ−r−1�λ−r−1(λ(δ − �)− γ�)r+1d�, (30)

where

�(s, l, θ) :=
(

λT (s0, s)− (γ + λ)T (s0, θ) + γT (s0, �)
a1/r(θ)(T (s0, s)− T (s0, θ))(T (s0, θ)− T (s0, �))

)r+1
, s ≥ �,
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and

(λ(δ − �)− γ�)r+1 =
r+1

∑
j=0

(−1)j
(

r + 1
j

)
(λ(δ − �))j(γ�)r+1−j. (31)

From (30) and (31), we have∫ s

�
a(θ)(T (s0, s)− T (s0, θ))γ(T (s0, θ)− T (s0, �))λ�(s, l, θ)dθ

=
r+1

∑
j=0

(
r + 1

r − j + 1

)
(−1)r−j+1γr−j+1λj

∫ δ

0
�λ−j(δ − �)γ+j−r−1d� (32)

= (T (s0, s)− T (s0, �))γ+λ−r M0, s ≥ �.

Hence, by (28) and (32), (27) holds. The proof is complete.

Corollary 2. Suppose that (6) holds, r is an odd natural number, and ρ(s) = 1. If there exist two
constants γ, λ > r such that

lim sup
s→∞

∫ s
� (T (s0, s)− T (s0, θ))γ(T (s0, θ)− T (s0, �))λ τ2r(θ)

θr q(θ)Θr(θ)dθ

(T (s0, s)− T (s0, �))γ+λ−r > 2rk0M0, (33)

then, the solution x(s) is oscillatory or converges to zero.

Proof. We shall show (33) implies (28). Note that (33) implies(
k1k2

2

)r
q(s)Θr(θ)

(
τ2(s)

s

)r

=

(
k
2

)r
q(s)Θr(θ)

(
τ2(s)

s

)r

, (34)

where k = k1k2. Conversely, (33) suggests, for k ∈ (0, 1),

lim sup
s→∞

∫ s
� (T (s0, s)− T (s0, θ))γ(T (s0, θ)− T (s0, �))λ τ2r(θ)

θr q(θ)Θr(θ)dθ

(T (s0, s)− T (s0, �))γ+λ−r >
1
kr 2rk0M0, s ≥ �. (35)

Combining (34) and (35), we obtain that (28) holds. Hence, by Corollary 1, we complete the
proof.

Example 1. For the third-order NDDE(
x(s) +

1
2

x
( s

2

))′′′
+

κ

s3 x
( s

2

)
= 0, s > 1. (36)

Note that r = 1, a(s) = 1, η(s) = 1/2 < 1, q(s) = κ/s3, κ > 0, g(s) = s/2, and τ(s) = s/2.
Condition (6) is satisfied, where

∫ ∞

s0

∫ ∞

v

(
1

a(u)

∫ ∞

u
q(θ)dθ

)1/r
dudv =

∫ ∞

s0

∫ ∞

v

∫ ∞

u

κ

θ3 dθdudv = ∞.

Note that
T (s0, s) =

∫ s

s0

dθ

a1/r(θ)
=

∫ s

s0

dθ = (s − s0) = (s − 1).
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We may choose γ = 4, λ = 5, then

M0 =
r+1

∑
j=0

(
r + 1

r − j + 1

)
(−1)r−j+1γr−j+1λj Γ(γ + j − r)Γ(λ − j + 1)

Γ(γ + λ − r + 1)

=
1+1

∑
j=0

C1−j+1
1+1 (−1)1−j+141−j+15j Γ(4 + j − 1)Γ(5 − j + 1)

Γ(4 + 5 − 1 + 1)
= 4.1664 × 10−2

and so

2rk0M0 = (2)
(

1
4

)(
4.1664 × 10−2

)
= 2.0832 × 10−2.

Now,

ψ
(

g[2k](τ(s))
)
=

s2

24k+3 ,

Θ1(s) =
m

∑
k=0

(
2k

∏
n=0

η
(

g[n](τ(s))
))(

1
η
(

g[2k](τ(s))
) − 1

)
ψ
(

g[2k](τ(s))
)

ψ(τ(s))

=
20

∑
k=0

(
1
2

)2k+1

(1)
s2

24k+3
23

s2 =
20

∑
k=0

(
1
2

)2k+1 1
24k

≈ 0.50794 := μ0,

Moreover, for s > � > 1, the left side of (33) is

lim sup
s→∞

∫ s
� (T (s0, s)− T (s0, θ))γ(T (s0, θ)− T (s0, �))λ τ2r(θ)

θr q(θ)Θr(θ)dθ

(T (s0, s)− T (s0, �))γ+λ−r

= lim sup
s→∞

μ0κ

4(s − �)8

∫ s

�

(s − θ)4(θ − �)5

θ2 dθ

=
μ0

1120
κ.

Therefore, from Corollary 2, it confirms that every positive solution of (36) approaches zero and that
κ � 45.934.

Example 2. Consider the third-order NDDE⎛⎝s

((
x(s) +

1
3

x
( s

2

))′′′)3
⎞⎠+

κ

s6 x3
( s

2

)
= 0, s > 1. (37)

Note that r = 3, a(s) = s, η(s) = 1/3 < 1, q(s) = κ/s6, κ > 0, g(s) = s/2, and τ(s) = s/2.
Condition (6) is satisfied, where

∫ ∞

s0

∫ ∞

v

(
1

a(u)

∫ ∞

u
q(θ)dθ

)1/r
dudv =

∫ ∞

s0

∫ ∞

v

(
1
u

∫ ∞

u

κ

`6 dθ

)1/3
dudv = ∞.

Note that
T (s0, s) =

∫ s

s0

dθ

a1/r(θ)
=

3
2

(
s2/3 − 1

)
.
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We may choose γ = 4, λ = 5, then

M0 =
r+1

∑
j=0

(
r + 1

r − j + 1

)
(−1)r−j+1γr−j+1λj Γ(γ + j − r)Γ(λ − j + 1)

Γ(γ + λ − r + 1)

=
3+1

∑
j=0

C3−j+1
3+1 (−1)3−j+143−j+15j Γ(4 + j − 3)Γ(5 − j + 1)

Γ(4 + 5 − 3 + 1)
= 27.5

and so
2rk0M0 = 23 1

(4)4 (27.5) = 0.85938.

Now,

ψ
(

g[2k](τ(s))
)
=

9
10

s5/3

2(10k+5)/3
,

Θ1(s) =
m

∑
k=0

(
2k

∏
n=0

η
(

g[n](τ(s))
))(

1
η
(

g[2k](τ(s))
) − 1

)
ψ
(

g[2k](τ(s))
)

ψ(τ(s))

=
20

∑
k=0

(
1
3

)2k+1

(2)
s5/3

2(10k+5)/3
25/3

s5/3 =
20

∑
k=0

(
1
3

)2k+1

(2)
1

210k/3

≈ 0.67410 := μ0,

and, for s > � > 1, the left side of (33) takes

lim sup
s→∞

∫ s
� (T (s0, s)− T (s0, θ))γ(T (s0, θ)− T (s0, �))λ τ2r(θ)

θr q(θ)Θr(θ)dθ

(T (s0, s)− T (s0, �))γ+λ−r

= lim sup
s→∞

(
3
2

)9 μ3
0κ

26
(
s2/3 − �2/3

)6

∫ s

�

(
s2/3 − θ2/3

)4(
θ2/3 − �2/3

)5

θ3 dθ

=

(
3
2

)9 μ3
0κ

26(20)
.

Hence, by Corollary 2, it confirms that every nonoscillatory solution of (37) converges to zero
provided that κ � 93.412.

Remark 1. Consider the NDDE(
x(s) +

1
2

x
( s

4

))′′′
+

κ

s3 x
( s

2

)
= 0, s > 1. (38)

We find that Theorem 1 in [42] and Theorem 2 in [44] cannot be applied to this equation because
τ(s) = s/2 > g(s) = s/4. While using the results we obtained, we find that the solutions of (38)
are oscillatory or tend to zero. Therefore, our results improve the results in [42,44].

Remark 2. We note that additional conditions were mentioned in [42,44], including the composition
condition (τ ◦ g = g ◦ τ), which is a harsh condition on the delay functions, while we were able
to dispense with these conditions in our results. We also note that the results we obtained are
considered an expansion and extension of both [41,43], as we find that in [41], (1) was studied when
0 ≤ η(s) ≤ η < 1, and we find in [43] that Equation (1) was studied when a = 1 and η(s) ≥ 1,
while in our study, Equation (1) was studied when 0 ≤ η(s) ≤ η0 < ∞.

Remark 3. From Example 1 in [41], we find that every nonoscillatory solution of (37) converges to
zero provided that κ > 93/2. However, by using our criterion (33), we find that every nonoscillatory
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solution of (37) converges to zero provided that κ > 93.412. Hence, our findings enhance those
presented in [41].

4. Conclusions

It is known that studying the solution behavior of odd-order differential equations
is more difficult than studying even-order equations. This is due to several reasons, one
of which is the ability to obtain relationships between the different derivatives of positive
solutions, as well as the multiplicity of derivative possibilities for positive solutions. Based
on the improved relationship between x and z that was derived in [45], we obtained new
relationships between x and z. The new relationship takes into account the cases η ≤ 1
and η > 1, and this was not usual in previous studies of neutral third-order differential
equations. Using the appropriate Riccati substitution, we obtained the Riccati inequality
and then applied the Philos approach to obtain new criteria for the asymptotic behavior of
the studied equation. The new criteria ensure that all nonoscillatory solutions converge
to zero. The results provided in this work improve and extend the well-known results in
previous works; for instance, see [41–44]. It would also be of interest to use this approach
to study the equation(

a(s)
(
(x(s) + η(s)x(g(s)))(n−1)

)r)′
+ q(s)xr(τ(s)) = 0,

where n ≥ 3.
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Abstract: Under suitable continuity and uniqueness conditions, solutions of an α order Caputo
fractional boundary value problem are differentiated with respect to boundary values and boundary
points. This extends well-known results for nth order boundary value problems. The approach
used applies a standard algorithm to achieve the result and makes heavy use of recent results for
differentiation of solutions of Caputo fractional intial value problems with respect to initial conditions
and continuous dependence for Caputo fractional boundary value problems.
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1. Introduction

Let n ∈ N with α ∈ (n − 1, n) and a < t0 < b in R. Our concern is characterizing
partial derivatives with respect to the boundary data for solutions to the Caputo fractional
boundary value problem

Dα
∗t0

x(t) = f (t, x(t), x′(t), . . . , x(n−1)(t)), a < t0 < t < b, (1)

satisfying conjugate boundary conditions

x(ti) = xi (2)

where Dα
∗t0

x is the Caputo fractional derivative of order α of the function x(t) and a <
t0 ≤ t1 < t2 < . . . < tn < b and xi ∈ R for 1 ≤ i ≤ n. These partial derivatives solve the
associated Caputo fractional variational equation.

Definition 1. The α order Caputo fractional variational equation of (1) along a solution x(t) is the
differential equation

Dα
∗t0

z(t) =
n−1

∑
j=0

∂ f
∂xj

(t, x(t), x′(t), . . . , x(n−1)(t))z(j). (3)

In this paper, we impose suitable continuity and uniqueness hypotheses so that given
a solution of (1), (2), one may take the derivative with respect to the boundary data. This
derivative solves the variational Equation (3) with interesting boundary data where all
but one of the boundary values are zero. Colloquially, we refer to this as studying the
smoothness of conditions.

The history of initial and boundary data smoothness dates back to Peano and his
work on the smoothness of initial conditions as cited by Hartman [1]. Subsequently, Peter-
son [2], Spencer [3], and Sukup [4] were among the first to shift to studying the smoothness
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of boundary conditions. In the following decade, these results were then extended by
Henderson to right-focal boundary conditions [5,6] and conjugate-type boundary condi-
tions [7]. Over the next several decades, results were introduced for nonlocal boundary
conditions [8–10], difference equations [11–13], dynamic equations on time scales [14–16],
and researchers incorporated parameters into the nonlinearity [15,17].

With this work, we broaden the scope even further by analyzing smoothness of solu-
tions to Caputo fractional boundary value problems. Research into fractional differential
equations has seen an explosion of articles in the past decade that seek to generalize results
for integer order differential equations to fractional order. To name a few, we cite [18–27].
In fact, there also seem to be a limitless number of different ways to define a fractional
derivative. However, two definitions have become the source of focus amongst a broad
range of researchers in the field; namely the Riemann-Liouville and Caputo fractional
derivatives. Brief definitions may be found in Section 2. For expository material on
fractional differential equations, we refer the reader to [28–31].

The theorems and proof in this article are novel as no other research to date has
attempted to extend boundary data smoothness to fractional differential equations. The rea-
son is that the results found in this article rely heavily upon two recent results for Caputo
fractional differential equations. The first establishes differentiation of solutions of Caputo
initial value problems with respect to the initial data [22], and the second establishes the
continuous dependence on boundary conditions for Caputo boundary value problems [32].

The idea behind the proof of our main result is to first assume a unique solution to a
Caputo boundary value problem. Then, we define a difference quotient with respect to the
boundary point or boundary value of interest. We view this difference quotient in terms of
an initial value problem and apply Theorem 3.2 from [22]. This yields that the difference
quotient solves the variational equation. Finally, we take a limit by applying the continuous
dependence result, Theorem 4.2, from [32] which yields the desired result.

The remainder of the paper is organized as follows. In Section 2, one will find brief
definitions of fractional integrals and derivatives. Section 3 is where we establish our
sufficient hypotheses. For Section 4, we present important recent results in continuous
dependence and smoothness of initial conditions. Following this, we have Section 5 that
contains the main result and its proof. Finally, we conclude with a summary of project and
thoughts on future research avenues.

2. Fractional Derivatives

Let α > 0. The Riemann-Liouville fractional integral of a function x of order α, denoted
Iα
t0

x, is defined as

Iα
t0

x(t) =
1

Γ(α)

∫ t

t0

(t − s)α−1x(s)ds, t0 ≤ t,

provided the right-hand side exists. Moreover, let n ∈ N denote a positive integer and
assume n − 1 < α ≤ n. The Riemann-Liouville fractional derivative of order α of the
function x, denoted Dα

t0
x, is defined as

Dα
t0

x(t) = Dn In−α
t0

x(t),

provided the right-hand side exists. If a function x is such that

Dα
t0

(
x(t)−

n−1

∑
i=0

x(i)(t0)
(t − t0)

i

i!

)

exists, then the Caputo fractional derivative of order α of x is defined by

Dα
∗t0

x(t) = Dα
t0

(
x(t)−

n−1

∑
i=0

x(i)(t0)
(t − t0)

i

i!

)
.
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Remark 1. A sufficient condition to guarantee the existence of the Caputo fractional derivative
is the absolute continuity of the (n − 1)st derivative of x(t). See Theorem 3.1 in [28] and discus-
sion thereafter.

3. Preliminaries

Throughout this work, we make use of the following assumptions which are required
to apply the continuous dependence and differentiation results from [22,32]

(1) f : (a, b)×Rn → R is continuous;
(2) for 1 ≤ i ≤ n, ∂ f (t, x1, . . . , xn)/∂xi : (a, b)×Rn → R is continuous; and
(3) solutions to initial value problems for (1) are unique on (a, b);

Next, we present two more hypotheses which establish a uniqueness condition for (1)
and (3), respectively.

(4) Given points a < t0 ≤ t1 < t2 < . . . < tn < b, if y and z are solutions of (1) such that
for 1 ≤ i ≤ n, y(ti) = z(ti), then y(t) = z(t) on [t0, b); and

(5) given points a < t0 ≤ t1 < t2 < . . . < tn < b, if u is a solution of (3) along (1) such
that for 1 ≤ i ≤ n, u(ti)=0, then u(t) ≡ 0 on [t0, b).

Next, we present two crucial results that make this work possible.
Let [c, d] ⊂ R and for x ∈ C[c, d], define

‖x‖0,[c,d] = max
t∈[c,d]

|x(t)|.

If k ∈ N, for x ∈ Ck[c, d], define

‖x‖k,[c,d] = max{‖x‖0,[c,d], ‖x′‖0,[c,d], . . . , ‖x(k)‖0,[c,d]}.

We seek a boundary value problem result as an analog of the initial value problem
result from Eloe et al. [22].

Theorem 1. Assume that hypotheses (1)–(3) hold. Let y(t) := y(t; t0, y0, . . . , yn−1) be the unique
solution of the initial value problem (1) satisfying

y(i)(t0) = yi, i = 0, . . . , n − 1, (4)

with maximal interval of existence [t0, ω). Choose [c, d] ⊂ [t0, ω). Then,

(a) for each 0 ≤ j ≤ n − 1, γj(t) := ∂y(t)/∂yj exists and is the solution of the variational
Equation (3) along y(t) on [c, d] and hence, [t0, ω) satisfying the initial conditions

γ
(i)
j (t0) = δij, 0 ≤ i ≤ n − 1;

(b) if, in addition, f has a continuous first derivative with respect to t and

f (t0, y0, y1, . . . , yn−1) = 0,

then β(t) := ∂y(t)/∂t0 exists and is the solution of the variational Equation (3) along y(t)
on [c, d] and hence, [t0, ω) satisfying the initial conditions

β(i)(t0) = −y(i+1)(t0), 0 ≤ i ≤ n − 1; and

(c) Under the additional in (b), β(t) = −
n−1

∑
i=0

y(i+1)(t0)γi(t).

We also use recent continuous dependence on boundary conditions results for Caputo
fractional differential equations [32]. The first one is if the left-most boundary condition is
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to the right of the starting point of the Caputo fractional derivative; namely t0 < t1, and the
second is if they are equal; namely t0 = t1. Note that the second result has an additional
condition to establish continuous dependence to the left of t0.

Theorem 2. [Case when t0 < t1] Assume that hypotheses (1), (3), and (4) hold. Let x(t) be
a solution of (1) on [t0, b), [c, d] ⊂ [t0, b) with points t0 ≤ c < t1 < t2 < . . . < tn < d,
and ε > 0. Then, there exists a δ(ε, [c, d]) > 0 such that if for 1 ≤ i ≤ n, |ti − τi| < δ with
c < τ1 < τ2 < τ3 < . . . τn < d and |x(ti)− yi| < δ with yi ∈ R, then there exists a solution y(t)
of (1) satisfying y(τi) = yi. Also,

||x(t)− y(t)||n−1,[c,d] < ε.

Theorem 3. [Case when t0 = t1] Assume that hypotheses (1), (3), and (4) hold. Let x(t) be a
solution of (1) on [t1, b), [c, d] ⊂ [t1, b) with points c = t1 < t2 < . . . < tn < d, and ε > 0.
Then, there exists a δ(ε, [c, d]) > 0 such that if for 2 ≤ i ≤ n, |ti − τi| < δ with c < τ2 < τ3 <
. . . τn < d and for 1 ≤ i ≤ n, |x(ti)− yi| < δ with yi ∈ R, then there exists a solution y(t) of (1)
satisfying y(t1) = y1 and for 2 ≤ i ≤ n, y(τi) = yi. Also,

||x(t)− y(t)||n−1,[c,d] < ε.

Additionally, if fk : (a, b)×Rn → R is a sequence of continuous functions that converge uniformly
to f on compact subsets of [c, d]×Rn and for k ≥ 1, tk

1 is an increasing sequence such that tk
1 ↑ t−1

as k → ∞, then there exists a K such that if k ≥ K, then

||xk(t)− x(t)||n−1,[c,d] → 0 as k → ∞.

4. Main Results

In this section, we present our boundary value problem analog. First, we state and
prove the result when t0 < t1.

Theorem 4. [Case when t0 < t1] Assume conditions (1)–(5) are satisfied and that t0 < t1. Let
x(t) := x(t, t1, . . . , tn, x1, . . . , xn) be a solution of (1) satisfying x(ti) = xi for 1 ≤ i ≤ n on
[t0, ω) ⊂ (a, b). Then,

(a) for each 1 ≤ j ≤ n, zj(t) := ∂x(t)/∂xj exists and is the solution of the variational
Equation (3) along x(t) on [c, d] and hence, [t0, ω) satisfying the boundary conditions

zj(ti) = δij, 1 ≤ i ≤ n;

(b) if f has a continuous first derivative with respect to t and for each 1 ≤ j ≤ n,

f
(

tj, x(tj), x′(tj), . . . , x(n−1)(tj)
)
= 0,

then wj(t) := ∂x(t)/∂tj exists and is the solution of the variational Equation (3) along x(t)
on [c, d] and hence, [t0, ω) satisfying the boundary conditions

wj(ti) = −x′(ti)δij, 1 ≤ i ≤ n; and

(c) Under the conditions of (b), for each 1 ≤ j ≤ n, wj(t) = −x′(tj)zj(t).

Proof. We will only prove part (a) as the proof of part (b) is similar. Part (c) is an immediate
consequence from parts (a) and (b) when coupled with hypothesis (5).

Let 1 ≤ j ≤ n, and consider ∂x(t)/∂xj. In the interests of conserving space and
lessening the tedious notation, we denote x(t; t1, . . . , tn, x1, . . . , xj, . . . , xn) by x(t; xj) as xj
is the boundary value of interest.
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Let δ > 0 be as in Theorem 2, 0 < |h| < δ be given, and define the difference quotient
with respect to xj by

zjh(t) =
1
h
[x(t; xj + h)− x(t; xj)].

Note that for every h �= 0,

zjh(tj) =
1
h
[x(tj; xj + h)− x(tj; xj)]

=
1
h
[(xj + h)− xj]

=
1
h
[h]

= 1.

Also, for every h �= 0, 1 ≤ k ≤ n with k �= j,

zjh(tk) =
1
h
[x(tk; xj + h)− x(tk; xj)]

=
1
h
[xk − xk]

= 0.

Now that we have established the boundary conditions for zjh(t), we show that zjh(t)
solves the variational equation. To that end, for 1 ≤ i ≤ n − 1, let

vi = x(i)(tj; xj)

and
εi = εi(h) = x(i)(tj; xj + h)− vi.

By Theorem 2, for 1 ≤ i ≤ n − 1, εi = εi(h) → 0 as h → 0. Using the notation of
Theorem 1 for solutions of initial value problems for (1), viewing x(t) as the solution of an
initial value problem, and denoting the solution x(t) by y(t; tj, xj, v1, . . . , vn−1), we have

zjh(t) =
1
h
[y(t; tj, xj + h, v1 + ε1, . . . , vn−1 + εn−1)− y(t; tj, xj, v1, . . . , vn−1)].

Then, by utilizing telescoping sums, we have

zjh(t) =
1
h

{
[y(t; tj, xj + h, v1 + ε1, . . . , vn−1 + εn−1)− y(t; tj, xj, v1 + ε1, . . . , vn−1 + εn−1)]

+ [y(t; tj, xj, v1 + ε1, . . . , vn−1 + εn−1)− y(t; tj, xj, v1, . . . , vn−1 + εn−1)]

+ [y(t; tj, xj, v1, . . . , vn−1 + εn−1))− · · · ]

+ [y(t; tj, xj, v1, . . . , vn−1 + εn−1))− y(t; tj, xj, v1, . . . , vn−1)]
}

.

By Theorem 1 and the Mean Value Theorem, we obtain
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zjh(t) =
1
h

[
γ0(t, y(t; tj, xj + h̄, v1 + ε1, . . . , vn−1 + εn−1))(xj + h − xj)

+ γ1(t, y(t; tj, xj, v1 + ε̄1, . . . , vn−1 + εn−1))(v1 + ε1 − v1) + · · ·

+ γn−1(t, y(t; tj, xj, v1, . . . , vn−1 + ε̄n−1))(vn−1 + εn−1 − vn−1)
]

=γ0(t, y(t; tj, xj + h̄, v1 + ε1, . . . , vn−1 + εn−1))

+
ε1

h
γ1(t, y(t; tj, xj, v1 + ε̄1, . . . , vn−1 + εn−1)) + · · ·

+
εn−1

h
γn−1(t, y(t; tj, xj, v1, . . . , vn−1 + ε̄n−1))

where, for 0 ≤ k ≤ n − 1, γk(t, y(·)) is the solution of the variational Equation (3) along
y(·) satisfying

γ
(i)
k (tj) = δik, 0 ≤ i ≤ n − 1.

Furthermore, for each 1 ≤ i ≤ n − 1, vi + ε̄i is between vi and vi + εi. Thus, to show
lim
h→0

zjh(x) exists, it suffices to show, for each 1 ≤ i ≤ n − 1, lim
h→0

εi/h exists.

Now, from the construction of zjh(t), we have

zjh(tk) = 0, 1 ≤ k ≤ n with k �= j.

Hence, for 1 ≤ k ≤ n with k �= j, we have a system of n − 1 linear equations with n − 1
unknowns:

− γ0(tk, y(t; tj, xj + h̄, v1 + ε1, . . . , vn−1 + εn−1))

=
ε1

h
γ1(tk, y(t; tj, xj, v1 + ε̄1, . . . , vn−1 + εn−1)) + · · ·

+
εn−1

h
γn−1(tk, y(t; tj, xj, v1, . . . , vn−1 + ε̄n−1)).

In the system of equations above, we notice that y(·) is not always the same. Therefore, we
consider the coefficient matrix M based on y(t)

M :=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

γ1(t1, y(t)) γ2(t1, y(t)) · · · γn−1(t1, y(t))
γ1(t2, y(t)) γ2(t2, y(t)) · · · γn−1(t2, y(t))

...
...

. . .
...

γ1(tj−1, y(t)) γ2(tj−1, y(t)) · · · γn−1(tj−1, y(t))
γ1(tj+1, y(t)) γ2(tj+1, y(t)) · · · γn−1(tj+1, y(t))

...
...

. . .
...

γ1(tn, y(t)) γ2(tn, y(t)) · · · γn−1(tn, y(t)))

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

We claim det(M) �= 0. Suppose to the contrary that det(M) = 0. Then, there exist pi ∈ R

for 1 ≤ i ≤ n − 1 not all zero such that

p1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

γ1(t1, y(t))
γ1(t2, y(t))

...
γ1(tj−1, y(t))
γ1(tj+1, y(t))

...
γ1(tn, y(t))

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
+ · · ·+ pn−1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

γn−1(t1, y(t))
γn−1(t2, y(t))

...
γn−1(tj−1, y(t))
γn−1(tj+1, y(t))

...
γn−1(tn, y(t))

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0
...
0
0
...
0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.
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Set
w(t, y(t)) := p1γ1(t, y(t)) + · · ·+ pn−1γn−1(t, y(t)).

Then, w(t, y(t)) is a nontrivial solution of the variational Equation (3). However, w(tj, y(t))
= 0, and for 1 ≤ k ≤ n − 1 with k �= j, w(xk, y(t)) = 0. By hypothesis (5), w(t, y(t)) = 0.
Thus, p1 = p2 = · · · = pn−1 = 0 which is a contradiction to the choice of the p′is. Hence,
det(M) �= 0.

As a result of continuous dependence, for h �= 0 and sufficiently small, det(M(h)) �= 0
implying M(h) has an inverse where M(h) is the appropriately defined matrix from the
system of equations. Therefore, for each 1 ≤ i ≤ n − 1, we are able to find εi/h using
Cramer’s rule.

Note as h → 0, det(M(h)) → det(M), and so for 1 ≤ i ≤ n − 1, εi(h)/h →
det(Mi)/ det M := Bi as h → 0, where Mi is the n − 1 × n − 1 matrix found by replacing
the appropriate column of the matrix defining M by

col
[
− γ0(t1, x(t)),−γ0(t2, x(t)), . . . ,−γ0(tj−1, x(t)),−γ0(tj+1, x(t)), . . . ,−γ0(tk, x(t))

]
.

Now, let zj(t) = lim
h→0

zjh(t), and by construction of zjh(t),

zj(t) =
∂x
∂xj

(t).

Furthermore,

zj(t) = lim
h→0

zjh(t) = γ0(t, x(t)) +
n−1

∑
i=1

Biγi(t, x(t))

which is a solution of the variational Equation (3) along x(t). In addition, for 1 ≤ j ≤ n,

zj(xk) = lim
h→0

zjh(xk) = δjk.

This completes the argument for ∂x(t)/∂xj.

Next, with the additional assumption from Theorem 3, the same result is established for
t0 = t1 and the proof remains the same. Without this additional assumption, the derivative
at t1 would only be a right-hand derivative but the result still holds.

Theorem 5. [Case when t0 = t1] Assume conditions (1)–(5) are satisfied and that t0 = t1. Let
x(t) := x(t, t1, . . . , tn, x1, . . . , xn) be a solution of (1) satisfying x(ti) = xi for 1 ≤ i ≤ n on
[t0, ω) ⊂ (a, b). Then,

(a) for each 1 ≤ j ≤ n, zj(t) := ∂x(t)/∂xj exists and is the solution of the variational Equation
(3) along x(t) on [c, d] and hence, [t0, ω) satisfying the boundary conditions

zj(ti) = δij, 1 ≤ i ≤ n;

(b) if f has a continuous first derivative with respect to t,

f
(

t1, x(t1), x′(t1), . . . , x(n−1)(t1)
)
= 0,

and additionally, fk : (a, b)×Rn → R is a sequence of continuous functions that converge
uniformly to f on compact subsets of [c, d]×Rn and for k ≥ 1, tk

1 is an increasing sequence
such that tk

1 ↑ t−1 as k → ∞, then w1(t) := ∂x(t)/∂t1 exists and is the solution of the
variational Equation (3) along x(t) on [c, d] and hence, [t0, ω) satisfying the boundary
conditions

w1(ti) = −x′(ti)δi1, 1 ≤ i ≤ n;
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(c) for each 2 ≤ j ≤ n, if f has a continuous first derivative with respect to t and

f
(

tj, x(tj), x′(tj), . . . , x(n−1)(tj)
)
= 0,

then wj(t) := ∂x(t)/∂tj exists and is the solution of the variational Equation (3) along x(t)
on [c, d] and hence, [t0, ω) satisfying the boundary conditions

wj(ti) = −x′(ti)δij, 1 ≤ i ≤ n; and

(d) Under the conditions of (b) and (c), for each 1 ≤ j ≤ n, wj(t) = −x′(tj)zj(t).

5. Conclusions

In this paper, we showed that under suitable continuity and uniqueness conditions
that a solution Caputo fractional conjugate boundary value problem may be differentiated
with respect to the boundary points and the boundary values. The resulting function solves
the Caputo fractional version of the variational equation. This work only recently became
possible as its proof relies extensively upon the differentiation of a solution to a Caputo
fractional initial value problem [22] and the continuous dependence of solutions to Caputo
fractional boundary value problems with respect to boundary data [32].

The results contained herein are novel and have not been explored or considered
previously. We believe this result is foundational in smoothness of solutions for Caputo
fractional boundary value problems and the proof sets a template for how to proceed
for several future research avenues such as Caputo fractional differential equations with
varying types of boundary conditions including parameter dependence, Caputo fractional
difference equations, and Caputo fractional dynamic equations.

When looking at the wide breadth and depth of research conducted for smoothness of
solutions for integer order differential, difference, and dynamic equations, it is clear there
is a lot of work to be done in this area.

Other future work could entail loosening the hypothesis that the nonlinearity be con-
tinuously differentiable. This was posited for future study in [22]. Another avenue would
be finding sufficient conditions to guarantee the uniqueness condition in hypothesis (3) in
certain contexts.
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Abstract: In this paper, we use a semi-discretization method to consider the predator–prey model of
Leslie type with ratio-dependent simplified Holling type IV functional response. First, we discuss the
existence and stability of the positive fixed point in total parameter space. Subsequently, through
using the central manifold theorem and bifurcation theory, we obtain sufficient conditions for the flip
bifurcation and Neimark–Sacker bifurcation of this system to occur. Finally, the numerical simulations
illustrate the existence of Neimark–Sacker bifurcation and obtain some new dynamical phenomena
of the system—the existence of a limit cycle. Corresponding biological meanings are also formulated.

Keywords: discrete predator–prey system of Leslie type; Holling type IV functional response;
semi-discretization method; flip bifurcation; Neimark–Sacker bifurcation

MSC: 39A28; 39A30

1. Introduction and Preliminaries

In the past few decades, mathematical models have played a crucial role in the study
of biology. According to different application environments, the interaction between
populations can be expressed as consumer–resource [1], plant–herbivore [2], parasite–
host [3], etc. Predator–prey models are the building blocks of ecosystems, as biomass grows
from resource masses. This topic plays an important role in ecology [4–16].

Two of the most famous predator–prey dynamical models are the Lotka–Volterra
model and the Leslie type model. Based on these models, subsequent scholars have
considered more influencing factors, such as the fear effect [9], the Allee effect [12], super-
predators [13], etc.

In [4], Leslie first proposed that the carrying capacity of the environment for the
predator is proportional to the number of prey. So, this form of predator growth is also
called Leslie–Gower type and can be represented as

dy
dt

= sy(1 − y
hx

)

Therefore, the dynamical relationship between prey and predator may be expressed as{
dx
dt = g(x)x − f (x, y)y
dy
dt = sy(1 − y

hx )
(1)

where x and y represent prey and predator population sizes or densities, respectively; the
function g(x) characterizes the growth rate of prey in the absence of a predator, and may be
represented through logistic growth g(x) = r

(
1 − x

k
)
; f (x, y) is a functional response curve

and has many different forms, such as Holling types I–IV [17,18], Beddington–DeAngelis
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type [19,20], Hassell–Varley type [15,21], etc.; the parameter s signifies the intrinsic growth
rate of the predator; and k and h denote the carrying capacity of the prey and predator
provided by the environment, respectively.

As is well-known, the generalized Holling-IV response function is f (x, y) = mx
ax2+bx+1 .

There is far less research on the Holling-IV response function than on the Holling-I–III
response functions. Here, we assume that the prey growth follows logistic growth, and the
functional response f (x, y) is taken as a Holling-IV response function. Then, the system (1)
can be reformulated as {

dx
dt = rx(1 − x

k )− mx
a+x2 y

dy
dt = sy(1 − y

hx )
(2)

Here, m and a are positive constants, the parameter m is the maximal predator per capita
consumption rate, the parameter a is the number of prey necessary to achieve half of the
maximum rate m, and the parameter r signifies the intrinsic growth rate of prey.

If one takes the functional response f (x, y) as the ratio-dependent type, i.e., f (x, y) =
m x

y
a+( x

y )
2 .,

then one has {
dx
dt = rx(1 − x

k )−
mxy2

ay2+x2

dy
dt = sy(1 − y

hx )
(3)

For the sake of the simplicity of mathematical analysis, we now non-dimensionalize
the system (3). To accomplish this, let x

k → u, y
l → v, rt → τ, hk → l, k2r

m → α, a
k2 → β, and

s
r → δ. Then, one can derive an equivalent to the system (3) as follows:{

du
dτ = u(1 − u)− αuv2

βv2+u2

dv
dτ = δv(1 − v

u )
(4)

This continuous system has been discussed in [18], whereas its discrete version has
not been found to be investigated yet. It is very difficult to solve a complicated continuous
equation or system without using a computer. Meanwhile, many models in nature look
more reasonable in their discrete forms. So, it is crucial to consider the discrete version
corresponding to a continuous model.

Now, we use a semi-discretization method to discretize the system (4). Let [t] denote
the greatest integer not exceeding t. Consider the average change rate of the system (4) at
integer number points, namely, the following model:⎧⎨⎩

1
u(τ)

du
dτ = 1 − u([τ])− αv2([τ])

βv2([τ])+u2([τ])
1

v(τ)
dv
dτ = δ(1 − v([τ])

u([τ]) )
(5)

One can see that a solution (u(τ), v(τ)) of the system (5) for τ ∈ [0,+∞) has the
following characteristics:

1. On the interval [0,+∞), u(τ) and v(τ) are continuous;

2. du(τ)
dτ and dv(τ)

dτ exist everywhere when τ ∈ [0,+∞), possibly except at the points
{0, 1, 2, 3, · · · };

3. The system (5) is true on any interval [n, n + 1) with n = 0, 1, 2, · · · .

The following system can be obtained by integrating the system (5) over the interval
[n,τ] for any τ ∈ [n, n + 1) and n = 0, 1, 2, · · ·⎧⎨⎩ ln u(τ)

u(n) =
(

1 − un − α(vn)2

β(vn)2+(un)2

)
(τ − n),

ln v(τ)
v(n) = δ(1 − vn

un
)(τ − n)

(6)
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Subsequently, we simultaneously take the exponent with e as the base for Equation (6):⎧⎨⎩ u(τ) = une

(
1−un− α(vn)2

β(vn)2+(un)2

)
(τ−n)

v(τ) = vneδ(1− vn
un )(τ−n)

(7)

where un = u(n) and vn = v(n). Letting τ → (n + 1)− in the system (7) produces⎧⎨⎩ un+1 = une
1−un− α(vn)2

β(vn)2+(un)2

vn+1 = vneδ(1− vn
un )

(8)

where the parameters α, β, δ > 0, and they are the same as in (4). The system (8) will be
considered in the sequel.

The rest of this paper is organized as follows. In Section 2, we discuss the existence
and stability of the positive fixed point because of the biological significance. In Section 3,
we provide the sufficient conditions for the existence of the flip bifurcation and Neimark–
Sacker bifurcation. In Section 4, we illustrate the theoretical results derived with numerical
simulations. Finally, some conclusions and discussions are stated in Section 5.

2. Existence and Stability of Fixed Points

We discuss the existence and stability of non-negative fixed points of the system (8) in
this section. The fixed point of the system (8) satisfies the following equation:

u − ue
1−u− αv2

βv2+u2 = 0, v − veδ(1− v
u ) = 0

It is easy to show that the system (8) has two non-negative fixed points E1 = (1, 0)
and E2 = (u∗, v∗) for α < β + 1, where

u∗ =
1 + β − α

1 + β
, v∗ = u∗

The Jacobian matrix of the system (8) at a fixed point E(x, y) is

J(E) =

⎛⎜⎝
(

1 − u + 2αu2v2

(u2+βv2)2

)
e

1−u− αv2

βv2+u2 − 2αu3v
(u2+βv2)2 e

1−u− αv2

βv2+u2

δv2

u2 eδ(1− v
u )

(
1 − δv

u

)
eδ(1− v

u )

⎞⎟⎠
and its characteristic equation is

F(λ) = λ2 − Tr(J(E))λ + Det(J(E))= 0

where

Tr(J(E)) =
(

1 − u +
2αu2v2

(u2 + βv2)2

)
e

1−u− αv2

βv2+u2 +

(
1 − δv

u

)
eδ(1− v

u )

Det(J(E)) =
[(

1 − u +
2αu2v2

(u2 + βv2)2

)
(1 − v

u
) +

2αuv3

(u2 + βv2)2

]
e

1−u− αv2

βv2+u2 +δ(1− v
u )

Before analyzing the properties of the fixed points of the system (8), we provide the
following definition and Lemma [22–25].

Definition 1. Let E(x, y) be a fixed point of the system (8) with multipliers λ1 and λ2.
(i) If |λ1| < 1 and |λ2| < 1, E(x, y) is called sink, then a sink is locally asymptotically stable.
(ii) If |λ1| > 1 and |λ2| > 1, E(x, y) is called source, then a source is locally asymptotically

unstable.
(iii) If |λ1| < 1 and |λ2| > 1 (or |λ1| > 1 and |λ2| < 1), then E(x, y) is called saddle.
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(iv) If either |λ1| = 1 or |λ2| = 1, then E(x, y) is called to be non-hyperbolic.

Lemma 1. Let F(λ) = λ2 + Bλ + C, where B and C are two real constants. Suppose λ1 and λ2
are two roots of F(λ) = 0. Then, the following statements hold.
(i) If F(1) > 0, then
(i.1) |λ1| < 1 and |λ2| < 1 if and only if F(−1) > 0 and C < 1;
(i.2) λ1 = −1 and λ2 �= −1 if and only if F(−1) = 0 and B �= 2;
(i.3) |λ1| < 1 and |λ2| > 1 if and only if F(−1) < 0;
(i.4) |λ1| > 1 and |λ2| > 1 if and only if F(−1) > 0 and C > 1;
(i.5) λ1 and λ2 are a pair of conjugate complex roots and |λ1| = |λ2| = 1

if and only if −2 < B < 2 and C = 1;
(i.6) λ1 = λ2 = −1 if and only if F(−1) = 0 and B = 2.

(ii) If F(1) = 0, namely, 1 is one root of F(λ) = 0, then another root
λ satisfies |λ| = (<,>)1 if and only if |C| = (<,>)1.

(iii) If F(1) < 0, then F(λ) = 0 has one root lying in (1, ∞). Moreover
(iii.1) the other root λ satisfies λ < (=)− 1 if and only if F(−1) < (=)0;
(iii.2) the other root −1 < λ < 1 if and only if F(−1) > 0.

Due to biological significance, we only consider E2. By using Definition 1 and Lemma 1,
the following result can be obtained.

Theorem 1. For α < 1 + β, E2 = (u∗, v∗) = ( 1+β−α
1+β , 1+β−α

1+β ) is a positive fixed point of the
system (8).

Let δ1 = 2 + 4α
(1+α+β)(1+β)

and δ2 = 3+β
1+β − 1+β

α . The following statements are true about
the positive fixed point E2.

Case 1. When 0 < α ≤ (1+β)2

3+β , δ2 ≤ 0 < δ1:
(1) if 0 < δ < δ1, then E2 is a sink;
(2) if δ = δ1, then E2 is non-hyperbolic;
(3) if δ > δ1, then E2 is a saddle.

Case 2. When (1+β)2

3+β < α < 1 + β, 0 < δ2 < δ1:
(1) if 0 < δ < δ2, then E2 is a sink;
(2) if δ = δ2, then E2 is non-hyperbolic;
(3) if δ2 < δ < δ1, then E2 is a source;
(4)if δ = δ1, then E2 is non-hyperbolic;
(5) if δ > δ1, then E2 is a saddle.

Proof. The Jacobian matrix J(E) of the system (8) at E2 is

J(E2) =

(
α

1+β + 2α
(1+β)2 − 2α

(1+β)2

δ 1 − δ

)

whose characteristic polynomial can be written as

F(λ) = λ2 − Pλ + Q (9)

with
P =

α

1 + β
+

2α

(1 + β)2 + 1 − δ

Q =

(
α

1 + β
+

2α

(1 + β)2

)
(1 − δ) +

2δα

(1 + β)2

=
α

1 + β

(
3 + β

1 + β
− δ

)
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It is easy to see that F(1) = δ(1 − α
1+β ) > 0 always holds for α < 1 + β. Simple

calculations display that

F(−1) = 2[1 +
α

1 + β
+

2α

(1 + β)2 ]− δ(1 +
α

1 + β
)

=
1 + α + β

1 + β
(δ1 − δ)

Q − 1 =
α

1 + β
+

2α

(1 + β)2 − δα

1 + β
− 1

=
α

1 + β
(δ2 − δ)

We can see that when δ > (=,<)δ1, then F(−1) < (=,>)0, and when δ > (=,<)δ2,
then Q < (=,>)1.

Case 1. If 0 < α ≤ (1+β)2

3+β , then δ2 ≤ 0 < δ1.

If 0 < δ < δ1, then F(−1) > 0. But Q − 1 = α
1+β (δ2 − δ) < 0, namely, Q < 1. Lemma 1

(i.1) states that E2 is a stable node, i.e., a sink. If δ = δ1, then F(−1) = 0; hence, E2 is
non-hyperbolic. If δ > δ1, then F(−1) < 0, then Lemma 1 (i.3) says that E2 is a saddle.

Case 2. If (1+β)2

3+β < α < 1 + β, then 0 < δ2 < δ1.

When 0 < δ < δ2, then F(−1) > 0 and Q > 1. By Lemma 1 (i.4), |λ1| > 1 and |λ2| > 1;
therefore, E2 is an unstable node, i.e., a source. When δ = δ2, F(−1) = 0 and Q = 1. On
one hand, the following applies:

P + 2 =
α

1 + β
+

2α

(1 + β)2 + 1 −
(

3 + β

1 + β
− 1 + β

α

)
+ 2

=
α

1 + β
+

2α

(1 + β)2 +
2β

1 + β
+

1 + β

α
> 0

So, P > −2. On the other hand, the following applies:

P − 2 =
α

1 + β
+

2α

(1 + β)2 −
(

3 + β

1 + β
− 1 + β

α

)
− 1

=
α

1 + β
+

2α

(1 + β)2 − 4 + 2β

1 + β
+

1 + β

α

=
1

α(1 + β)

(
3 + β

1 + β
α2 − 2(1 + β)α + (1 + β)2

)
< 0 because

(1 + β)2

3 + β
< α < 1 + β

Hence, P < 2. Accordingly, −2 < P < 2. By Lemma 1 (i.5), Equation (9) has a pair of
conjugate complex roots λ1and λ1 with |λ1| = |λ2| = 1, implying that E2 is non-hyperbolic.
When δ2 < δ < δ1, Q < 1. Lemma 1 (i.1) tells us that |λ1| < 1 and |λ2| < 1, so E2 is a stable
node, i.e., a sink.

When δ = δ1, then F(−1) = 0 and E2 is non-hyperbolic.
When δ > δ1, according to Lemma 1 (i.3), |λ1| < 1 and |λ2| > 1. Therefore, E2 is a

saddle. Summarizing the above discussions, we obtain the following Table 1.

232



Mathematics 2024, 12, 1803

Table 1. Type of the fixed point E2.

Conditions Eigenvalues Properties

0 < α ≤ (1+β)2

3+β

0 < δ < δ1 |λ1| < 1, |λ2| < 1 sink (stable node)

δ = δ1 λ1 = −1, λ2 �= −1 non-hyperbolic

δ > δ1 |λ1| < 1, |λ2| > 1 saddle

(1+β)2

3+β < α < 1 + β

0 < δ < δ2 |λ1| > 1, |λ2| > 1 source (unstable
node)

δ = δ2 |λ1| = |λ2| = 1 non-hyperbolic

δ2 < δ < δ1 |λ1| < 1, |λ2| < 1 sink (stable node)

δ = δ1 λ1 = −1, λ2 �= −1 non-hyperbolic

δ > δ1 |λ1| < 1, |λ2| > 1 saddle

3. Bifurcation Analysis

In this section, we employ the center manifold theorem and bifurcation theory to
research the local bifurcation problems of the system (8) at the fixed point E2.

3.1. Main Results

One can see from Theorem 1 that the fixed point E2 is a non-hyperbolic fixed point
when δ = δ1. As soon as the parameter δ goes through the critical value δ1, a flip bifurcation
probably occurs near the fixed point E2. Namely, the bifurcation probably occurs in the
space of parameters

(α, β) ∈ Ω1 =
{
(α, β) ∈ R2

+ | 0 < α < 1 + β, β > 0
}

In fact, a result is obtained as follows.

Theorem 2. Suppose the paramenters (α, β) ∈ Ω1. Let δ1 = 2 + 4α
(1+α+β)(1+β)

. Assume

c2
200 + c300 �= 0, where c200 and c300 will be defined in the sequel. If the parameter δ varies in a

small neighborhood of the critical value δ1, then the system (8) experiences a flip bifurcation at the
fixed point E2.

When δ = δ2, there is a pair of conjugate imaginary roots with |λ1| = |λ2| = 1, which
ensures the necessary condition for a Neimark–Sacker bifurcation to occur. The following
result may be obtained.

Theorem 3. Suppose we have the following parameters:

(α, β) ∈ Ω2 =

{
(α, β) ∈ R2

+ | (1 + β)2

3 + β
< α < 1 + β, β > 0

}
Let δ2 = 3+β

1+β − 1+β
α , and let L be defined in (18). Then, the system (8) undergoes a Neimark–

Sacker bifurcation at the fixed point E2 when the parament δ varies in a small neighborhood of the
critical value δ2. Moreover, if L < (>)0, then a (an) stable (unstable) invariant closed orbit is
bifurcated out from the fixed point E2 of the system (8).
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3.2. Proof of Main Results

Proof of Theorem 2. First, let Xn = un − u∗ and Yn = vn − u∗, which transforms the fixed
point E2 to the origin. Then, the system (8) becomes⎧⎨⎩ Xn+1 = (Xn + u∗)e

1−Xn−u∗− α(Yn+u∗)2
β(Yn+u∗)2+(Xn+u∗)2 − u∗

Yn+1 = (Yn + u∗)eδ(1− Yn+u∗
Xn+u∗ ) − u∗

(10)

Second, giving a small perturbation δ∗ of the parameter δ around δ1, i.e., δ∗ = δ − δ1
with 0 < |δ∗| � 1, and letting δ∗n+1 = δ∗n = δ∗, the system (10) is perturbed into⎧⎪⎪⎨⎪⎪⎩

Xn+1 = (Xn + u∗)e
1−Xn−u∗− α(Yn+u∗)2

β(Yn+u∗)2+(Xn+u∗)2 − u∗

Yn+1 = (Yn + u∗)e(δ1+δ∗n)(1− Yn+u∗
Xn+u∗ ) − u∗

δ∗n+1 = δ∗n

(11)

Using the Taylor expansion of the system (11) at (Xn, Yn, δ∗n) = (0, 0, 0), one has⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

Xn+1 = a100Xn + a010Yn + a200X2
n + a020Y2

n + a110XnYn
+a300X3

n + a030Y3
n + a210X2

nYn + a120XnY2
n + o(ρ3

1)

Yn+1 = b100Xn + b010Yn + b001δ∗n + b200X2
n + b020Y2

n + b002(δ
∗
n)

2

+b110XnYn + b101Xnδ∗n + b011Ynδ∗n + b300X3
n + b030Y3

n
+b003(δ

∗
n)

3 + b210X2
nYn + b201X2

nδ∗n + b120XnY2
n + b021Y2

n δ∗n
+b102Xn(δ∗n)

2 + b012Yn(δ∗n)
2 + b111XnYnδ∗n + o(ρ3

1)

(12)

where ρ1 =
√

X2
n + Y2

n + (δ∗n)2.

a100 =
α

1 + β
+

2α

(1 + β)2 , a010 = − 2α

(1 + β)2

a200 =
2α

u∗(1 + β)2

(
1 +

α

(1 + β)2 − u∗

2

)
+

α(β − 3)
u∗(1 + β)3

a020 =
2α2

u∗(1 + β)4 +
α(3β − 1)
u∗(1 + β)3

a110 = − 2α

(1 + β)2

(
2α

u∗(1 + β)2 − α

1 + β

)
+

4α(1 − β)

u∗(1 + β)3

a300 =
4u∗

3

(
α

u∗(1 + β)2 − 1
2

)3
+ 2

(
α

u∗(1 + β)2 − 1
2

)2
− 2α

(u∗)2(1 + β)3

+
2α(β − 3)

(u∗)2(1 + β)3

(
α

u∗(1 + β)2 − 1
2

)
+

α(β − 3)
1 + β

(
1

(u∗)2(1 + β)2 − 2(u∗)2

β(1 − 3β)

)
a030 =

α(3β − 1)
(u∗)2(1 + β)3

(
α

(1 + β)2 +
2

1 + β
+ α

)
+

2α

(u∗)2(1 + β)3

(
2α

3(1 + β)3 − 1
)

a210 =
4α

u∗(1 + β)2

(
u∗ − β

u∗(1 + β)
+

1
2

)
+

αβ

(1 + β)3

(
16 − 3β

(u∗)2

)
− 4α

3(1 + β)2

(
α

u∗(1 + β)2 − 1
2

)2
+

2α(β − 3)
(u∗)2(1 + β)3

(
1 − β

1 + β
− α

(1 + β)2

)
+

4(1 − β)

u∗(1 + β)2

(
α

1 + β
− 2

)(
α

u∗(1 + β)2 − 1
2

)
a120 =

(
10α2

3u∗(1 + β)4 +
(α + 1)(3β − 1)

u∗(1 + β)3

)(
α

u∗(1 + β)2 − 1
2

)
+

16αβ

(u∗)2(1 + β)3

(
β

(u∗)2(1 + β)
− 1

)
+

α(3β − 1)
(u∗)2(1 + β)3

(
2β

1 + β
+ 1

)
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+
2α

(u∗)2(1 + β)2

(
α

(1 + β)2 − β

(u∗)2(1 + β)
+ 1

)
+

α2

(u∗)2(1 + β)5

(
(β − 3)

3u∗(1 + β)2 − 8(1 + β)

)
b001 = b002 = b003 = b102 = b012 = 0, b100 = mδ1, b010 = 1 − δ1, b200 = − δ1(2 − δ1)

2u∗

b020 = − δ1(2 − δ1)

2u∗ , b110 =
δ1(2 − δ1)

u∗ , b101 = 1, b011 = −1, b030 =
δ2

1(3 − δ1)

6(u∗)2

b300 =
δ1

2(u∗)2

(
2 − δ1 −

δ1(3 − δ1)

3

)
, b210 =

δ1

(u∗)2

(
− δ2

1
2
+

5δ1

2
− 2

)
, b201 =

(δ1 − 1)
u∗

b120 =
δ2

(u∗)2

(
δ2

1
2
− 2δ1 + 1

)
, b021 =

δ1 − 1
u∗ , b111 =

2(1 − δ1)

u∗

Therefore, we obtain the Jacobian matrix of the system (11) at the fixed point E2

J(E2) =

⎛⎜⎝
α

1+β + 2α
(1+β)2 − 2α

(1+β)2 0
δ1 1 − δ1 0
0 0 1

⎞⎟⎠
and its eigenvalues

λ1 = −1, λ2 = a100 + 2 − δ1, λ3 = 1

with corresponding eigenvectors

ξ1 =

⎛⎝ 1
M
0

⎞⎠, ξ2 =

⎛⎝ 1
N
0

⎞⎠, ξ3 =

⎛⎝ 0
0
1

⎞⎠
where M = 1 + (1+β)(1+α+β)

2α and N = 2(1+β)
1+α+β .

Set T = (ξ1, ξ2, ξ3), i.e.

T =

⎛⎝ 1 1 0
M N 0
0 0 1

⎞⎠
then

T−1 =

⎛⎝ N
N−M − 1

N−M 0
− M

N−M
1

N−M 0
0 0 1

⎞⎠
Taking the transformation

(Xn, Yn, δ∗n)
T = T(ln, mn, ωn)

T

the system (11) is changed into the following form:⎛⎝ ln+1
mn+1
ωn+1

⎞⎠ =

⎛⎝−1 0 0
0 λ2 0
0 0 1

⎞⎠⎛⎝ ln
mn
ωn

⎞⎠+

⎛⎝g1(ln, mn, ωn) + o(ρ3
2)

g2(ln, mn, ωn) + o(ρ3
2)

0

⎞⎠ (13)

where ρ2 =
√

l2
n + m2

n + ω2
n.

g1(ln, mn, ωn) = c200l2
n + c020m2

n + c002ω2
n + c110lnmn + c101lnωn + c011mnωn
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+ c300l3
n + c030m3

n + c003ω3
n + c210l2

nmn + c201l2
nωn + c120lnm2

n

+ c102lnω2
n + c012mnω2

n + c021m2
nωn + c111lnmnωn

g2(ln, mn, ωn) = d200l2
n + d020m2

n + d002ω2
n + d110lnmn + d101lnωn + d011mnωn

+ d300l3
n + d030m3

n + d003ω3
n + d210l2

nmn + d201l2
nωn + d120lnm2

n

+ d102lnω2
n + d012mnω2

n + d021m2
nωn + d111lnmnωn

c102 = c012 = c002 = c003 = 0

c200 = γa200 + μb200 + M(γa110 + μb110) + M2(γa020 + μb020)

c110 = 2(γa200 + μb200) + (M + N)(γa110 + μb110) + 2MN(γa020 + μb020)

c020 = γa200 + μb200 + N(γa110 + μb110) + N2(γa020 + μb020)

c101 = μMb011 + μb101, c011 = μNb011 + μb101

c300 = γa300 + μb300 + M3(γa030 + μb030) + M(γa210 + μb210)

+M2(γa120 + μb120), c030 = γa300 + μb300 + N3(γa030 + μb030)

+N(γa210 + μb210) + N2(γa120 + μb120)

c210 = 3(γa300 + μb300) + 3M2N(γa030 + μb030) + (2M + N)(γa210 + μb210)

+(M2 + 2MN)(γa120 + μb120), c120 = 3(γa300 + μb300) + 3MN2(γa030 + μb030)

+(M + 2N)(γa210 + μb210) + (N2 + 2MN)(γa120 + μb120)

c201 = μb201 + μM2b021 + μMb111, c021 = μb201 + μN2b021 + μNb111

c111 = μb201 + μMNb021 +
μ(M + N)b111

2
d102 = d012 = d002 = d003 = 0

d200 = εa200 − μb200 + M(εa110 − μb110) + M2(εa020 − μb020)

d110 = 2(εa200 − μb200) + (M + N)(εa110 − μb110) + 2MN(εa020 − μb020)

d020 = εa200 − μb200 + N(εa110 − μb110) + N2(εa020 + μb020)

d101 = −μMb011 − μb101, c011 = −μNb011 − μb101

d300 = εa300 − μb300 + M3(εa030 − μb030) + M(εa210 − μb210)

+M2(εa120 − μb120), d030 = εa300 − μb300 + N3(εa030 − μb030)

+N(εa210 − μb210) + N2(εa120 − μb120)

d210 = 3(εa300 − μb300) + 3M2N(εa030 − μb030) + (2M + N)(εa210 − μb210)

+(M2 + 2MN)(εa120 − μb120), d120 = 3(εa300 − μb300) + 3MN2(εa030 − μb030)

+(M + 2N)(εa210 − μb210) + (M2 + 2MN)(εa120 − μb120)

d201 = −μb201 − μM2b021 − μMb111, d021 = −μb201 − μN2b021 − μNb111

d111 = −μb201 − μMNb021 −
μ(M + N)b111

2

γ =
N

N − M
, ε = − M

N − M
, μ = − 1

N − M

Assume on the center manifold that

mn = h(ln, ωn) = h20l2
n + h11lnωn + h02ω2

n + o(ρ2
3)

where ρ3 =
√

l2
n + ω2

n. Then, according to (13), we obtain

mn+1 =h(ln+1, ωn+1) = λ2h(ln, ωn) + g2(ln, h(ln, ωn), ωn) + o(ρ3
3)

h(ln+1, ωn+1) = h20(−ln + g1(ln, h(ln, ωn), ωn))
2
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+ h11(−ln + g1(ln, h(ln, ωn), ωn))ωn + h02ω2
n + o(ρ3

3)

Comparing the corresponding coefficients of terms in the above center manifold
equation, it is easy to derive that

h20 =
d200

1 − λ2
, h11 =

d101

1 − λ2
, h02 = 0

So, the system (13) restricted to the center manifold is given by

ln+1 = f (ln, ωn) =: −ln + g1(ln, h(ln, ωn), ωn) + o(ρ3
3)

= −ln + c20l2
n + c11lnωn + c30l3

n + c21l2
nωn + c12lnω2

n + o(ρ3
3)

Accordingly, we have the following:

f 2(ln, ωn) = ln − 2c11lnωn − 2(c2
20 + c30)l3

n + (c2
11 − 2c12)lnω2

n − c11c20l2
nωn + o(ρ3

3)

with c20 = c200, c11 = c101, c30 = c300, c21 = c100h11 + c011h20 + c201, and c12 = c011.
It is not difficult to calculate

f (ln, ωn)|(0,0) = 0,
∂ f
∂ln

|(0,0) = −1,
∂ f 2

∂ωn
|(0,0) = 0,

∂2 f 2

∂l2
n
|(0,0) = 0

∂2 f 2

∂ln∂ωn
|(0,0) = −2c11 = −2c101 = −2μ(1 − M)

=
2(1 + β)(1 + α + β)2

2α(1 + β − α)− (1 + β)(1 + α + β)2

=
2(1 + β)(1 + α + β)2

−2α(β2 + β + 1)− (1 + β)((1 + β)2 + α2)
< 0( �= 0)

∂3 f 2

∂l3
n
|(0,0) = −12(c2

20 + c30) = −12(c2
200 + c300) �= 0

According to (21.1.43)–(21.1.46) in [26], p. 507, all conditions are valid for a flip
bifurcation to occur; hence, the system (8) undergoes a flip bifurcation at the fixed point E2.
The proof is complete.

Next, we provide a proof for Theorem 3.

Proof of Theorem 3. First, give a small perturbation δ∗∗ of the parameter δ around δ2 in the
system (10), i.e., δ∗∗ = δ − δ2 with 0 < |δ∗∗| � 1. Under the perturbation, the system (10) is⎧⎨⎩ Xn+1 = (Xn + u∗)e

1−Xn−u∗− α(Yn+u∗)2
β(Yn+u∗)2+(Xn+u∗)2 − u∗

Yn+1 = (Yn + u∗)e(δ2+δ∗∗)(1− Yn+u∗
Xn+u∗ ) − u∗

(14)

The characteristic equation of the linearized equation of the system (14) at the origin
(0,0) is

F(λ) = λ2 − p(δ∗∗)λ + q(δ∗∗) = 0 (15)

where

p(δ∗∗) =
α(3 + β)

1 + β
+ 1 − δ2

q(δ∗∗) =
α(3 + β)

1 + β
(1 − δ2 − δ∗∗) +

α(δ2 − δ∗∗)
(1 + β)2
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Notice that p2(0)− 4q(0) =
(

2 + αδ2
1+β − δ2

)2
− 4 < 0; so, for 0 < |δ∗∗| � 1, the two

roots of F(λ) = 0 in (15) are

λ1,2(δ
∗∗) =

p(δ∗∗)± i
√

4q(δ∗∗)− p2(δ∗∗)
2

The occurrence of a Neimark–Sacker bifurcation requires the following two conditions
to be satisfied [26]:

1.
(

d|λ1,2(δ
∗∗)|

dδ∗∗

)∣∣∣∣
δ∗∗=0

�= 0;

2. λi
1,2(0) �= 1, i = 1, 2, 3, 4.

It is easy to observe that |λ1,2(δ
∗∗)| =

√
q(δ∗∗) and (|λ1,2(δ

∗∗)|)|δ∗∗=0 =
√

q(0) = 1.
Therefore (d|λ1,2(δ

∗∗)|
dδ∗∗

)∣∣∣∣
δ∗∗=0

= −α(2 + β)2

(1 + β)2 < 0( �= 0)

Obviously, λi
1,2(0) �= 1 for i = 1, 2, 3, 4,; so, the two conditions are satisfied.

Second, in order to derive the normal form of the system (14), one expands (14) in a
power series up to the third-order term around the origin to obtain⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

Xn+1 = s10Xn + s01Yn + s20X2
n + s11XnYn + s02Y2

n
+s30X3

n + s21X2
nYn + s12XnY2

n + s03Y3
n + o(ρ3

7)

Yn+1 = t10Xn + t01Yn + t20X2
n + t11XnYn + t02Y2

n
+t30X3

n + t21X2
nYn + t12XnY2

n + t03Y3
n + o(ρ3

7)

(16)

where ρ7 =
√

X2
n + Y2

n .

s10 = a100, s01 = a010, s20 = a200, s11 = a110

s02 = a020, s30 = a300, s21 = a210, s12 = a120, s03 = a030

t10 = δ2, t01 = 1 − δ2, t20 =
δ2(δ2 − 2)

2u∗ , t02 =
δ2(δ2 − 2)

2u∗

t11 = − δ2(δ2 − 2)
u∗ , t30 =

mδ2(δ
2
2 − 6δ2 + 6)
6(u∗)2

t03 = − δ2
2(δ2 − 3)
6(u∗)2 , t12 =

δ2(δ
2
2 − 2δ2 + 2)
2(u∗)2

b21 = − δ2(δ
2
2 − 5δ2 + 4)
2(u∗)2

Take matrix

T =

(
0 s01

η 1 − ζ

)
, then T−1 =

( ζ−1
η01

1
η

1
s01

0

)
Make a change in variables

(X, Y)T = T(M, N)T

Then, the system (16) is changed to the following form:(
M
N

)
→

(
ζ −η
η ζ

)(
M
N

)
+

(
g3(M, N) + o(ρ4

8)
g4(M, N) + o(ρ4

8)

)
(17)

where ρ8 =
√

M2 + N2.

g3(M, N) = j20X2 + j11XY + j02Y2 + j30X3 + j21X2v + j12XY2 + j03Y3
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g4(M, N) = k20X2 + k11XY + k02Y2 + k30X3 + k21X2Y + k12XY2 + k03Y3

X = s01N, Y = ηM + (1 − ζ)N

j20 =
s20(ζ − 1)

ηs01
+

t20

η
, j02 =

s02(ζ − 1)
ηa01

+
t02

η
, j11 =

s11(ζ − 1)
ηs01

+
t11

η

j30 =
s30(ζ − 1)

ηs01
+

t30

η
, j03 =

s03(ζ − 1)
ηs01

+
t03

η
, j12 =

s12(ζ − 1)
ηa01

+
t12

η

j21 =
s21(ζ − 1)

ηs01
+

t21

η
, k20 =

s20

s01
, k02 =

s02

s01
, k11 =

s11

s01
, k30 =

s30

s01

k03 =
s03

s01
, k12 =

s12

s01
, k21 =

s21

s01

Furthermore

FXX |(0,0) = 2j02η3, FXY|(0,0) = j11s01η + 2j02η(1 − ζ)

FYY|(0,0) = 2j02s2
01 + 2j11s01(1 − ζ), FXXX |(0,0) = 6j03η3

FXXY|(0,0) = 2j21s01η2 + 6j03η2(1 − ζ)

FXYY|(0,0) = 2j21s2
01η + 4j12s01η(1 − ζ) + 6j03η(1 − ζ)2

FYYY|(0,0) = 4(1 − ζ)3 + 6j30s3
01 + 4j21s2

01(1 − ζ) + 6j12s01(1 − ζ)2

GXX |(0,0) = 2k02η3, GXY|(0,0) = k11s01η + 2k02η(1 − ζ)

GYY|(0,0) = 2k02s2
01 + 2k11s01(1 − ζ), GXXX |(0,0) = 6j03η3

GXXY|(0,0) = 2k21s01η2 + 6k03η2(1 − ζ)

GXYY|(0,0) = 2k21s2
01η + 4k12s01η(1 − ζ) + 6k03η(1 − ζ)2

GYYY|(0,0) = 4(1 − ζ)3 + 6k30s3
01 + 4k21s2

01(1 − ζ) + 6k12s01(1 − ζ)2

To determine the stability and direction of the bifurcation curve (closed orbit) for the
system (8), the discriminating quantity L should be calculated and not be zero, where

L = −Re
( (1 − 2λ1)λ

2
2

1 − λ1
θ20θ11

)
− 1

2
|θ11|2 − |θ02|2 + Re(λ2θ21) (18)

θ20 =
1
8
[FXX − FYY + 2GXY + i(GXX − GYY − 2FXY)]|(0,0)

θ11 =
1
4
[FXX + FYY + i(GXX + GYY)]|(0,0)

θ02 =
1
8
[FXX − FYY − 2GXY + i(GXX − GYY + 2FXY)]|(0,0)

θ21 =
1

16
[FXXX + FXYY + GXXY + GYYY

+ i(GXXX + GXYY − FXXY − FYYY)]|(0,0)

Based on [26–28], we see that if L < (>)0, then an attracting (a repelling) invariant
closed curve bifurcates from the fixed point.

The proof is then complete.
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4. Numerical Simulation

In this section, by using the software Matlab, we obtain the bifurcation diagrams and
phase portraits of the system (8) at the fixed point E2, which illustrate our theoretical results
previously derived and reveal some new dynamical behaviors.

First, vary δ in the range (2.7, 3) and (0.35, 0.6), respectively, and fix α = 0.8, β = 0.5
with the initial value (x0, y0) = (0.4667, 0.4667). Figure 1a shows the existence of a flip
bifurcation at the fixed point E2 = (0.4667, 0.4667) when δ = δ1 = 2 + 4α

(1+α+β)(1+β)
≈ 2.93

and indicates the periodic orbits and chaos in the system (8) as δ increases. Meanwhile, we

can calculate that c2
200 + c300 ≈ −10.92 < 0 and − ∂2 f 2

∂ln∂ωn
/ ∂3 f 2

∂l3
n
|(0,0) > 0, which means that

the direction of the flip bifurcation is on the right side of the critical value. Furthermore,
according to Case 2, we can clearly see that the nature of the system (8) changes from
unstable to stable near δ2. This change is shown in Figure 1b, and the periodic orbit is
simulated in Figure 2b. This agrees with the conclusion in Theorem 2.

Then, we choose different values of the parameter δ. The corresponding phase portraits
are plotted in Figures 3 and 4, respectively. Figure 3 implies that the closed curve is stable
inside, while Figure 4 indicates that the closed curve is stable outside. That is to say, there
occurs a stable invariant closed curve around the fixed point E2. This agrees with the
conclusion in Theorem 3.

Finally, take initial values (x0, y0) = (0.43, 0.43) in Figure 2a and (0.4667, 0.4667) in
Figure 2b. One finds a new dynamical phenomenon—the existence of a limit cycle. This
means that the system produces periodic oscillations here.

(a) δ ∈ (2.7, 3) (b) δ ∈ (0.35, 0.6)

Figure 1. Bifurcation of the system (8) in (δ, x)-plane with α = 0.8, β = 0.5, and the initial value
(x0, y0) = (0.4667, 0.4667).

(a) δ = 0.67857 (b) δ = 0.45833

Figure 2. Phase portraits of the system (8) with different parameter values: (a) α = 0.8, β = 0.4,
and δ = 0.67857; and (b) α = 0.8, β = 0.5, and δ = 0.45833. Different initial values: (a) (x0, y0) =

(0.43, 0.43) and (b) (x0, y0) = (0.4667, 0.4667).
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(a) δ = 0.3 (b) δ = 0.35

(c) δ = 0.39 (d) δ = 0.4

Figure 3. Phase portraits for the system (8) with α = 0.8, β = 0.5, and different δ with the initial value
(x0, y0) = (0.4667, 0.4667) inside the closed orbit.

(a) δ = 0.45 (b) δ = 0.49

(c) δ = 0.5 (d) δ = 0.52

Figure 4. Phase portraits for the system (8) with α = 0.8, β = 0.5, and different δ with the initial value
(x0, y0) = (0.4667, 0.4667) outside the closed orbit.

5. Conclusions and Discussion

In this paper, we analyze a predator–prey model of Leslie type with ratio-dependent
simplified Holling type IV functional response. By using the semi-discretization method,
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the system (4) is transformed to the discrete system (8). At first, one considers the existence
and stability of the positive fixed point E2 = ( 1+β−α

1+β , 1+β−α
1+β ). Subsequently, one studies

the existence conditions of the flip bifurcation and Neimark–Sacker bifurcation of the
system (8) at the fixed point E2 by using the center manifold theorem and bifurcation
theory. In the end, we confirm the correctness of the theoretical results previously derived
through numerical simulations. In the process of simulation, the existence of a limit cycle is
also found.

As for the biological significance, our results indicate that a limit cycle will occur
when the parameter δ is small. This means that the interaction between prey and predator
leads to periodic oscillations, indicating the rich dynamic properties of the system. When
appropriately adding the value of the parameter δ, the prey and predator populations will
coexist and the limit cycle will be eliminated. Our studies provide a theoretical basis for
the stable coexistence of predator and prey.

However, there still are some questions worth investigating. For example, we only know
of the existence and bifurcation of the system (3) at the fixed point E2 when 0 < α < 1 + β.
How about the case when α ≥ 1+ β? Are there more interesting dynamical properties if we
discuss the impact of seasonality on the system’s behavior? How about using discrete methods
other than the semi-discretization method that we use in this paper? We hope that interested
readers consider these questions.
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Abstract: We study in this paper the long-term existence of solutions to the system of weakly coupled
equations with fractional evolution and various nonlinearities. Our objective is to determine the
connection between the regularity assumptions on the initial data, the memory terms, and the
permissible range of exponents in a specific equation. Using Lp − Lq estimates for solutions to the
corresponding linear fractional σ–evolution equations with vanishing right-hand sides, and applying
a fixed-point argument, the existence of small data solutions is established for some admissible range
of powers (p1, p2, . . . , pk).

Keywords: σ–evolution equations; small data solutions; global in time existence; fractional equations;
nonlinear memory; weakly coupled system; loss of decay

MSC: 35R11; 35A01

1. Introduction

This paper is devoted to the weakly coupled system of k semi-linear fractional
σ–evolution equations. The system incorporates mass terms and different memory terms
and our focus is on small data solutions to the corresponding Cauchy problem.⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

∂1+α1
t u1 + (−Δ)σ1 u� + M2

1u1 = Fμ1,p1(uk),
∂1+α2

t u2 + (−Δ)σ2 u2 + M2
2u2 = Fμ2,p2(u1),

.

.
∂

1+αk
t uk + (−Δ)σk uk + M2

k uk = Fμk ,pk (uk−1),
u�(0, x) = u0l(x), ∂tu�(0, x) = 0, � = 1, 2, ..., k,

(1)

where k ≥ 2, for l = 1, · · · , k, αl ∈ (0, 1), μl ∈ (0, 1), pl > 1, Ml > 0, σl ≥ 1, (t, x) ∈
[0, ∞)×Rd, with

Fμ,p(u)(t, x) :=
t∫

0

(t − s)−μ|u(s, x)|pds. (2)
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The fractional derivative is defined as follows: ∂
1+αl
t u = Dαl

t (ut), where

Dαl
t ( f ) = ∂t(I1−αl

t f ) and Iβ
t f =

1
Γ(β)

∫ t

0
(t − s)β−1 f (s) ds for β > 0.

Here, Dα
t ( f ) and Iβ

t f denote the fractional Riemann–Liouville derivative and the frac-
tional Riemann–Liouville integral, respectively, of f in [0, t], and Γ is the Euler Gamma function.

In this discussion, we will illustrate two distinct Cauchy problems: the semi-linear
heat equation and the semi-linear wave equation.

Firstly, let us consider the semi-linear heat equation:

ut − Δu = |u|p, u(0, x) = u0(x).

According to Fujita’s results in [1], the critical exponent for this equation is defined as
pFuj := 1 + 2

n . It is noteworthy that for p > pFuj, small initial data solutions exist globally
(in time), while for 1 < p < pFuj, a blow-up phenomenon occurs. The critical case p = pFuj
was further studied in [2,3], where it was shown that blow-up does indeed occur.

Moving on, let us shift our focus to the semi-linear wave equation:

utt − Δu = |u|p, u(0, x) = u0(x), ut(0, x) = u1(x).

For the specific case when n = 3, ref. [4] proved that the critical exponent can be
determined as the positive root of the quadratic equation (n − 1)p2 − (n + 1)p − 2 = 0. The
exponent obtained from the quadratic equation is known as the Strauss exponent, denoted
as pS. Based on the Strauss exponent pS, we can conclude that there is the global (in time)
existence of small data weak solutions when p ≥ pS. However, for p > 1 and large data,
we can only expect the local (in time) existence of solutions. The optimality of the Strauss
exponent pS in R2 was demonstrated in [5,6]. After that, the global existence of solutions
for n = 2, 3 was treated in [7], while for n ≥ 4, it was addressed in [8,9]. The nonexistence
of solutions with compactly supported data was studied in [10] for the range 1 < p < n+1

n−1 .
For the specific case of n = 3, optimal results were proven in [11] for p = 1+

√
2. Moreover,

in [12], it was proved that for n > 3 and 1 < p < pS, there is a nonexistence result for
small data.

In 2017, D’Abbicco et al. [13] studied the semi-linear fractional wave equation, which
can be expressed as follows:

∂1+λ
t u − Δu = |u|p, u(0, x) = u0(x), ut(0, x) = u1(x), (3)

where λ ∈ (0, 1), which represents the fractional Riemann–Liouville derivative. The
authors successfully proved the critical power for the existence of solutions with small
initial data in spatial dimensions that are relatively low. The case of non-null Cauchy data
and the use of the Caputo fractional order were studied in [13].

In [14], they proved the global (in time) existence of small data solutions for semi-
linear fractional σ-evolution equations. These equations incorporated either mass or power
nonlinearity. Furthermore, a related problem was addressed in [15], where instead of the
power nonlinearity, a memory term was considered.

For the weakly coupled system consisting of semi-linear heat equations, we have the
following equations:

ut − Δu = |v|p, u(0, x) = u0(x), ut(0, x) = u1(x),
vt − Δv = |u|q, v(0, x) = v0(x), vt(0, x) = v1(x),
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where t ∈ [0, ∞), x ∈ Rd, and p, q > 1 with pq > 1. In [16], it was shown that the exponents
p and q satisfying

d
2
=

max{p, q}+ 1
pq − 1

are critical. This means that solutions exist globally if d
2 > max{p,q}+1

pq−1 , while blow-up occurs
for the opposite case. For more details on the system of semi-linear heat equations, please
refer to [17–20].

Considerations are made in several papers regarding weakly coupled systems of semi-
linear classical damped wave equations with power nonlinearities. The specific problem of
interest is:

utt − Δu + ut = |v|p, u(0, x) = u0(x), ut(0, x) = u1(x),
vtt − Δv + vt = |u|q, v(0, x) = v0(x), vt(0, x) = v1(x),

(4)

where t ∈ [0, ∞), x ∈ Rd. In 2007, Sun and Wang proved in [21] that

λ :=
max{p; q}+ 1

pq − 1
<

d
2

, (5)

For the case of d = 1 or d = 3, it has been proven that the solution exists globally in
time for small initial data in weakly coupled systems of semi-linear classical damped wave
equations with power nonlinearities. However, if λ ≥ d

2 , it has been shown that every
solution with a positive average value does not exist globally.

In the paper [22], these results were generalized to the case where d = 1, 2, 3. Addition-
ally, improved time-decay estimates have been provided specifically for the case of d = 2.
In 2014, Nishihara and Wakasugi used the weighted energy method to prove the critical
exponent for any space dimension in [23]. Furthermore, considering time-dependent dissi-
pation terms, the authors in [24–26] demonstrated the global (in time) existence of small
data solutions under certain conditions that illustrate the interplay between the exponents
of the power nonlinearities.

During the last years, many authors have studied the Cauchy problem for weakly
coupled systems, see, e.g., [24,27,28], where the derivative introduced in their work is
the classical derivative. In [29], the authors studied a weakly coupled system where the
fractional derivative involves in the equations with special Cauchy data.

The paper is organized into several sections. First, we provide an overview of the
study and present the main results (Section 2). Following that, Section 3 introduces the
necessary background information and definitions for the foundation used to prove the
results. Then, the proofs of the theorems are presented, utilizing previous estimates of linear
equations (Section 5). Finally, Section 6 summarizes the study, highlights its contributions,
and suggests potential directions for future research.

In a recent paper [30], the author investigated the following Cauchy problem for
weakly coupled systems of semi-linear fractional σ-evolution equations. The system in-
volves mass terms and different power nonlinearities.⎧⎪⎨⎪⎩

∂1+α1
t u + (−Δ)σ1 u + M2

1u = |v|p1 ,
∂1+α2

t v + (−Δ)σ2 v + M2
2v = |u|p2 ,

u(0, x) = u0(x), v(0, x) = v0(x), ut(0, x) = vt(0, x) = 0,
(6)

where αk ∈ (0, 1), σk ≥ 1 , Mk > 0 for k = 1, 2, (t, x) ∈ [0, ∞)×Rd, ∂
1+αk
t u = Dαk

t (ut) with

Dαk
t ( f ) = ∂t(I1−αk

t f ) and Iβ
t f =

1
Γ(β)

∫ t

0
(t − s)β−1 f (s) ds for β > 0.

Dα
t ( f ) and Iβ

t f are defined as above.
The author proved the following results.
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Proposition 1. Let us assume 0 < α1, α2 < 1, σ1, σ2 ≥ 1, M1, M2 > 0 and m1, m2 ≥ 1. Assume
that for all δ > 0

p1 > max
{m2

m1
− δ,

1
1 − α2

}
,

and

p2 > max
{m1

m2
− δ,

1
1 − α1

}
.

Then, there exists a positive constant ε, such that for any data

(u0, v0) ∈ Am2
m1 :=

(
Lm1(Rd) ∩ L∞(Rd)

)
×

(
Lm2(Rd) ∩ L∞(Rd)

)
,

with ‖(u0, v0)‖Am2
m1

≤ ε, we have a uniquely determined global (in time) Sobolev solution

(u, v) ∈ C
(
[0, ∞), Lm1(Rd) ∩ L∞(Rd)

)
× C

(
[0, ∞), Lm2(Rd) ∩ L∞(Rd)

)
to the Cauchy problem (6). Moreover, for all s ≥ 0, the solution satisfies the following decay estimates:

‖u(s, ·)‖Lr � (1 + s)α1−1‖u0‖Lm1∩L∞ for all r ∈ [m1, ∞],

‖v(s, ·)‖Lr � (1 + s)α2−1‖v0‖Lm2∩L∞ for all r ∈ [m2, ∞].

Proposition 2 (Loss of decay). Let us assume 0 < α1, α2 < 1, σ1, σ2 ≥ 1 ,M1, M2 > 0 and
m1, m2 ≥ 1. Assume that for all δ > 0

max
{

1,
α1

1 − α2
,

m2

m1
− δ

}
< p1 <

1
1 − α2

,

p2 > max
{m1

m2
− δ,

1
p1(1 − α2)− α1

}
.

Then, there exists a positive constant ε, such that for any data

(u0, v0) ∈ Am2
m1 with ‖(u0, v0)‖Am2

m1
≤ ε

we have a uniquely determined global (in time) Sobolev solution

(u, v) ∈ C
(
[0, ∞), Lm1(Rd) ∩ L∞(Rd)

)
× C

(
[0, ∞), Lm2(Rd) ∩ L∞(Rd)

)
to the Cauchy problem (6). Moreover, for all s ≥ 0, the solution satisfies the following decay estimates:

‖u(s, ·)‖Lr � (1 + t)α1−p1(1−α2)‖u0‖Lm1∩L∞ for all r ∈ [m1, ∞],

‖v(s, ·)‖Lr � (1 + s)α2−1‖v0‖Lm2∩L∞ for all r ∈ [m2, ∞]

Proposition 3 (Loss of decay). Let us assume 0 < α1, α2 < 1, σ1, σ2 ≥ 1 and M1, M2 > 0.
Assume that δ > 0 is small enough for all

p1 =
1

1 − α2
and p2 >

1
1 − α1 − δ

.

Then, there exists a positive constant ε, such that for any data

(u0, v0) ∈ A1
1 with ‖(u0, v0)‖A1

1
≤ ε
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we have a uniquely determined global (in time) Sobolev solution

(u, v) ∈ C
(
[0, ∞), L1(Rd) ∩ L∞(Rd)

)
× C

(
[0, ∞), L1(Rd) ∩ L∞(Rd)

)
to the Cauchy problem (6). Moreover, for all s ≥ 0, the solution satisfies the following decay estimates:

‖u(s, ·)‖Lr � ln(2 + s)(1 + s)α1−1‖u0‖L1∩L∞ for all r ∈ [1, ∞],

‖v(s, ·)‖Lr � (1 + s)α2−1‖v0‖L1∩L∞ for all r ∈ [1, ∞].

In the subsequent sections, we will utilize the notation f � g, indicating the existence
of a non-negative constant C, such that f ≤ Cg. Our main findings concerning the global (in
time) existence of small data Sobolev solutions will be presented in the following section.

2. Main Results

Theorem 1. Let us assume 0 < α� < 1, α� < μ� < 1, σ� ≥ 1, ml ≥ 1, and M� > 0 for all
� = 1, ..., k. Assume that for all δ > 0

p1 > max
{mk

m1
− δ,

1
μk − αk

}
,

p� > max
{ml−1

ml
− δ,

1
μ�−1 − α�−1

}
, for all � = 2, ..., k.

Then, there exists a positive constant ε, such that for any data (u01, .., u0k) ∈ Ak :=
∏k

�=1
(

Lml (Rd) ∩ L∞(Rd)
)

with ‖(u01, .., u0k)‖Ak ≤ ε, we have a uniquely determined global (in
time) Sobolev solution

u ∈
k

∏
�=1

C
(
[0, ∞), Lml (Rd) ∩ L∞(Rd)

)
to the Cauchy problem (1). Moreover, for all s ≥ 0 and l = 1, ..., k, the solution satisfies the
following decay estimates:

‖u�(s, ·)‖Lq � (1 + s)α�−μ�‖u0l‖Lml∩L∞ for all q ∈ [ml , ∞].

Theorem 2 (Loss of decay). Let us assume 0 < α� < 1, α� < μ� < 1, σ� ≥ 1, ml ≥ 1, and
M� > 0 for all � = 1, ..., k. Assume that for all δ > 0

max
{

1,
α1 − μ1 + 1

μk − αk
,

mk
m1

− δ
}
< p1 <

1
μk − αk

,

max
{

1,
α2 − μ2 + 1

μ1 − α1 − γ
(μk)
(αk)

(p1)
,

m1

m2
− δ

}
< p2 <

1

μ1 − α1 − γ
(μk)
(αk)

(p1)

and for l = 3, · · · , k − 1

p� <
1

μ�−1 − α�−1 − γ
(μk ,...,μ�−2)
(αk ,...,α�−2)

(p1, ..., p�−1)
,

pl >max
{

1,
α� − μ� + 1

μ�−1 − α�−1 − γ
(μk ,...,μ�−2)
(αk ,...,α�−2)

(p1, ..., p�−1)
,

ml−1
ml

− δ
}

and

pk > max
{ mk

mk−1
− δ,

1

μk−1 − αk−1 − γ
(μk ,...,μk−2)
(αk ,...,αk−2)

(p1, ..., pk−1)

}
,

248



Mathematics 2024, 12, 1942

where, for l = 3, · · · , k − 1⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
γ
(μk)
(αk)

(p1) = 1 − p1(μk − αk)

γ
(μk ,μ1)
(αk ,α1)

(p1, p2) = 1 − p2(μ1 − α1) + p2γ
(μk)
(αk)

(p1)

γ
(μk ,...,μ�−1)
(αk ,...,α�−1)

(p1, ..., p�) = 1 − p�(μ� − α�) + p�γ
(μk ,...,μ�−2)
(αk ,...,α�−2)

(p1, ..., p�−1).

(7)

Then, there exists a positive constant ε, such that for any data

(u01, .., u0k) ∈ Ak :=
k

∏
�=1

(
Lml (Rd) ∩ L∞(Rd)

)
with ‖(u01, .., u0k)‖Ak ≤ ε,

we have a uniquely determined global (in time) Sobolev solution

u ∈
k

∏
�=1

C
(
[0, ∞), Lml (Rd) ∩ L∞(Rd)

)
to the Cauchy problem (1). Moreover, for all s ≥ 0 and l = 2, · · · , k − 1, the solution satisfies the
decay estimate

‖u1(s, ·)‖Lq � (1 + s)α1−μ1+γ
μk
αk
(p1)‖u01‖Lm1∩L∞ for all q ∈ [m1, ∞],

‖u�(s, ·)‖Lq � (1 + s)
α�−μ�+γ

(μk ,...,μ�−1)
(αk ,...,α�−1)

(p1,...,p�)‖u0l‖Lml∩L∞ for all q ∈ [ml , ∞],

‖uk(s, ·)‖Lq � (1 + s)αk−μk‖u0k‖Lmk∩L∞ for all q ∈ [mk, ∞].

We suppose m1 = m2 = 1 in the following result.

Theorem 3 (Loss of decay). Let us assume 0 < α� < 1, α� < μ� < 1, σ� ≥ 1, M� > 0 for all
� = 1, ..., k. Assume that for all δ > 0

p1 =
1

μk − αk
.

p� =
1

μ�−1 − α�−1
. � = 2, ..., k − 1

pk >
1

μk−1 − αk−1 − δγ(pk−1)
,

where {
γ(p1) = 1
γ(pl) = 1 + plγ(pl−1), for l = 2, · · · , k − 1.

(8)

Then, there exists a positive constant ε, such that for any data

(u01, .., u0k) ∈ Ak =
k

∏
�=1

(
L1(Rd) ∩ L∞(Rd)

)
with ‖(u01, .., u0k)‖Ak ≤ ε

we have a uniquely determined global (in time) Sobolev solution

u ∈
k

∏
�=1

C
(
[0, ∞), L1(Rd) ∩ L∞(Rd)

)

249



Mathematics 2024, 12, 1942

to the Cauchy problem (1). Moreover, for l = 1, · · · , k − 1 and for all s ≥ 0, the solution satisfies
the following decay estimate:

‖u�(s, ·)‖Lq � (1 + s)α�−μ�
(

ln(2 + s)
)γ(pl)‖u0l‖L1∩L∞ for all q ∈ [1, ∞],

‖uk(s, ·)‖Lq � (1 + s)αk−μk‖u0k‖L1∩L∞ for all q ∈ [1, ∞].

Remark 1. The nonlinear term Fμ,p(t, w) in (2) may be written as

Fμ,p(t, w) = Γ(1 − μ)I1−μ
t (|w|p)

where Γ is the Euler Gamma function, and I1−μ
t (|w|p) is the fractional Riemann–Liouville integral

of |w|p in [0, t]. Therefore, it is reasonable to expect that the relations with the power nonlinearities
introduced in Proposition 1, Proposition 2, and Proposition 3 as μl tend to 1, for all l = 1, · · · , k
and k = 2.

3. Preliminaries

Let us consider the Cauchy problem

∂1+α
t v + (−Δ)σv + m2v = F(t, x)

v(x, 0) = v0(x), vt(0, x) = 0,
(9)

With parameters α ∈ (0, 1), σ ≥ 1, and m > 0, and under the data condition
vt(0, x) = 0, the problem can be formally transformed into an integral equation. The
solution of the problem is then given by:

u(t, x) = Gm
σ,α(t, x) � v0(x) + Nm

α,σ(v)(t, x) (10)

with

Gm
σ,α(t, x) =

∫
Rd

eix·ξ Eα+1
(
− tα+1〈ξ〉2

m,σ
)

dξ, (11)

Nm
σ,α(v)(t, x) =

∫ t

0
GM

α,σ(t − s) �(x) Iα
s (F)(t, s) ds, (12)

where the semigroup of operators Gm
σ,α(t, ·)t≥0 is defined through the Fourier transform

as follows:

̂(Gm
σ,α(t, ·) f )(t, ξ) = Eα+1

(
− tα+1〈ξ〉2

m,σ
)

f̂ (ξ) with 〈ξ〉2
σ,m = |ξ|2σ + m2.

Here, Eβ(z) =
∞
∑

k=0

zk

Γ(βk+1) denotes the Mittag-Leffler function (see [31]).

According to [14], a representation of solutions to the linear problem associated
with Equation (9) (without the term F(t, x)) can be given as v(t, x) = Gm

σ,α(t, x) � v0(t, x).
This representation involves convolving the initial data v0(t, x) with the semigroup of
operators Gm

σ,α(t, x).
In [14], the authors proved the following result.

Proposition 4 (see [14]). Let us assume that α ∈ (0, 1), r ≥ 1, σ ≥ 1, and v0 ∈ Lr ∩ L∞. Then,
the solution of the linear Cauchy problem

∂1+α
t v + (−Δ)σv + m2v = 0,

v(x, 0) = v0(x), vt(0, x) = 0,
(13)

for all t ≥ 0 and 1 ≤ r ≤ q ≤ ∞, satisfies the following Lr − Lq estimates:

‖v(t, ·)‖Lq � (1 + t)−(1+α)‖v0‖Lr∩L∞ . (14)
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4. Analysis of Weakly Coupled Linear Systems

We will use the decay estimates for solutions to:⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

∂1+α1
t u1 + (−Δ)σ1 u� + M2

1u1 = 0,
∂1+α2

t u2 + (−Δ)σ2 u2 + M2
2u2 = 0,

.

.
∂

1+αk
t uk + (−Δ)σk uk + M2

k uk = 0,
u�(0, x) = u0l(x), ∂tu�(0, x) = 0, � = 1, 2, ..., k.

(15)

In order to establish the global existence (over time) of Sobolev solutions with small
initial data for the weakly coupled systems of semi-linear models (1), we express their
solutions in the following form:

uln
l (t, x) := GMl

σl ,αl (t, x) ∗(x) u0l(x), for all l = 1, · · · , k. (16)

Proposition 5. Let u0l ∈ Lml ∩ L∞ with ml ≥ 1 for all l = 1, · · · , k. Then, the solution of the
linear Cauchy problem (15) satisfies the following Lml − Lq estimates:∥∥uln

l (t, ·)
∥∥

Lq � (1 + t)−(1+αl)‖u0l‖Lml∩L∞ for all q ∈ [ml , ∞].

By applying Duhamel’s principle and some fixed-point argument, we can derive the
formal integral representation of solutions to (1) as follows:

u1(t, x) := uln
1 (t, x) +

∫ t
0 GM1

σ1,α1(t − �, ·) ∗(x) Fμ1,p1(uk)d� = (uln
1 + unl

1 )(t, x),
ul(t, x) := uln

l (t, x) +
∫ t

0 GMl
σl ,αl (t − �, ·) ∗(x) Fμl ,pl (ul−1)d� = (uln

l + unl
l )(t, x).

(17)

for all l = 2, · · · , k.

Here, unl
1 =

∫ t
0 GM1

σ1,α1(t − �, ·) ∗(x) Fμ1,p1(uk)d� is the solution to{
∂1+α1

t u1 + (−Δ)σ1 u1 + M2
1ul = Fμ1,p1(uk),

u1(0, x) = 0, ∂tu1(0, x) = 0.

and unl
l =

∫ t
0 GMl

σl ,αl (t − �, ·) ∗(x) Fμl ,pl (ul−1)d� is the solution to{
∂

1+αl
t ul + (−Δ)σl u� + M2

l ul = Fμl ,pl (ul−1),
ul(0, x) = 0, ∂tul(0, x) = 0, � = 2, ..., k.

.

5. Proof of Main Results

Before showing our results, we recall the following lemma from [32].

Lemma 1. Let us consider θ ∈ [0, 1), a ≥ 0, and b ≥ 0. There exists a constant C = C(a, b, θ) > 0,
such that the following estimate holds for all t > 0:∫ t

0 (t − �)−θ(1 + t − �)−a(1 + �)−b d�

≤

⎧⎨⎩
C(1 + t)−min{a+θ,b} if max{a + θ, b} > 1,
C(1 + t)−min{a+θ,b} ln(2 + t) if max{a + θ, b} = 1,
C(1 + t)1−a−θ−b if max{a + θ, b} < 1.

(18)
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5.1. Proof of Theorem 1

Let T > 0. We introduce the space Xk(T) as follows:

Xk(T) :=
k

∏
�=1

C
(
[0, T], Lml (Rd) ∩ L∞(Rd)

)
with the norm

‖u‖Xk(T) := ‖(u1, u2, ..., uk)‖Xk(T) := sup
0�t�T

{ k

∑
�=1

R�(t, ul),
}

,

where

R�(t, ul) = (1 + t)μ�−α�(‖u�(t, ·)‖Lml + ‖u�(t, ·)‖L∞),

and the operator P by

P : u = (u1, u2, ..., uk) ∈ Xk(T) → P(u) = P(u)(t, x) := uln(t, x) + unl(t, x).

In order to prove the global (in time) existence and uniqueness of Sobolev solutions in
Xk(T), we will demonstrate that the operator P satisfies the following two inequalities:

‖P(u)‖Xk(T) � ‖(u01, u02, ...u0k)‖Ak +
�=k

∑
�=1

‖u‖p�
Xk(T), (19)

‖P(u)− P(ũ)‖Xk(T) � ‖u − ũ‖Xk(T)

�=k

∑
�=1

(
‖u‖p�−1

Xk(T) + ‖ũ‖pl−1
Xk(T)

)
. (20)

Using the definition of the norm in Xk(T) and Proposition 5, we may conclude:

‖uln‖Xk(T) � ‖(u01, u02, ..., u0k)‖Ak .

Hence, in order to complete the proof of (19), it is reasonable to show the following
inequality:

‖unl‖Xk(T) �
�=k

∑
�=1

‖u‖p�
Xk(T).

If u := (u1, u2, · · · , uk) ∈ Xk(T), then by interpolation we derive for l = 1, · · · , k

‖u�(t, ·)‖Lq � (1 + t)(α�−μ�)‖u‖Xk(T) for all q ∈ [ml , ∞].

On the other hand, we also have

‖unl
1 (t, ·)‖Lq � ‖

∫ t

0
GM1

σ1,α1(t − �, ·) ∗(x) Iα1
s (Fμ1,p1(uk))d�‖Lq

�
∫ t

0
(1 + t − �)−(1+α1)

∫ �

0
(� − s)α1−1

∫ s

0
(s − η)−μ1‖uk(η, ·)‖p1

Lp1q dη ds d�

� ‖u‖p1
Xk(T) J1(t) for all t ∈ [0, T] and p1q ∈ [mk, ∞],

where

J1(t) =
∫ t

0
(1 + t − �)−(1+α1)

∫ �

0
(� − s)α1−1

∫ s

0
(s − η)−μ1(1 + η)−p1(μk−αk) dη ds d�. (21)
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We are interested in estimating the right-hand side of (21). For this we need Lemma 1.
We put

ω(s) =
∫ s

0
(s − η)−μ1(1 + η)−p1(μk−αk) dη.

By using Lemma 1, we obtain ω(s) � (1 + s)−μ1 , if we assume that p1 > 1
μk−αk

. On
the other hand, the conditions q ∈ [m1, ∞] and p1q ∈ [mk, ∞] imply that p1 ≥ mk

m1
.

Once more, we apply Lemma 1 to obtain

J1(t) �
∫ t

0
(1 + t − �)−(1+α1)

∫ �

0
(� − s)α1−1(1 + s)−μ1 ds d�

�
∫ t

0
(1 + t − �)−(1+α1)(1 + �)α1−μ1 d�

� (1 + t)α1−μ1 .

For l = 2, · · · , k and q ∈ [ml , ∞], we have

‖unl
� (t, ·)‖Lq � ‖u‖p�

Xk(T) Jl(t) for all t ∈ [0, T] and p�q ∈ [ml−1, ∞],

where

Jl(t) =
∫ t

0
(1+ t− �)−(1+α�)

∫ �

0
(�− s)α�−1

∫ s

0
(s− η)−μ�(1+ η)−p�(μ�−1−α�−1) dη ds d�. (22)

To estimate the right-hand side of (22), we require the use of Lemma 1. Let

ω(s) =
∫ s

0
(s − η)−μ�(1 + η)−p�(μ�−1−α�−1) dη.

By using Lemma 1, we obtain ω(s) � (1 + s)−μ� , if we assume that p� > 1
μ�−1−α�−1

.

On the other hand, the conditions q ∈ [ml , ∞] and p�q ∈ [ml−1, ∞] imply that p� ≥ ml−1
ml

.
Once more, we apply Lemma 1 to obtain

Jl(t) �
∫ t

0
(1 + t − �)−(1+α�)

∫ �

0
(� − s)α�−1(1 + s)−μ� ds d�

�
∫ t

0
(1 + t − �)−(1+α�)(1 + s)α�−μ� d�

� (1 + t)α�−μ� .

In order to prove (24), let us consider two vector-functions u and ũ belonging to Xk(T).
Then, we have

P(u)− P(ũ)

=
( ∫ t

0
GM1

σ1,α1(t − s) � Iα1
s (

∫ s

0
(s − η)−μ1

(
|uk(η, ·)|p1 − |ũk(η, ·)|p1

)
dη)(t, s, x) ds, · · · ,∫ t

0
GMk

σk ,αk (t − s) � Iαk
s (

∫ s

0
(s − η)−μk

(
|uk−1(η, ·)|pk − |ũk−1(η, ·)|pk

)
dη)(t, s, x) ds

)
.

We estimate, for q ∈ [m1, ∞],∥∥∥ ∫ t

0
GM1

σ1,α1(t − s) � Iα1
s (

∫ s

0
(s − η)−μ1

(
|uk(η, ·)|p1 − |ũk(η, ·)|p1

)
dη)(t, s, ·) ds

∥∥∥
Lq

�
∫ t

0
(1 + t − �)−(1+α1)

∫ �

0
(� − s)α1−1

∫ s

0
(s − η)−μ1

∥∥|uk(η, ·)|p1 − |ũk(η, ·)|p1
∥∥

Lq dη dsd�.
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Using Hölder’s inequality implies the inequality∥∥|uk(s, ·)|p1 − |ũk(s, ·)|p1
∥∥

Lq �
∥∥uk(s, ·)− ũk(s, ·)

∥∥
Lqp1

(
‖uk(s, ·)‖p1−1

Lqp1 + ‖ũk(s, ·)‖p1−1
Lqp1

)
.

By using the definition of the norm of the solution space Xk(T), for p1 ≥ mk
m1

and
0 � s � t, we obtain the following estimates:∥∥uk(s, ·)− ũk(s, ·)

∥∥
Lqp1 � (1 + s)αk−μk Rk(s, uk − ũk),∥∥uk(s, ·)‖p1−1

Lqp1 � (1 + s)(p1−1)(αk−μk)‖u‖p1−1
Xk(T),∥∥ũk(s, ·)

∥∥p1−1
Lqp1 � (1 + s)(p1−1)(αk−μk)‖u‖p1−1

Xk(T).

Hence, we obtain∥∥|uk(s, ·)|p1 − |ũk(s, ·)|p1
∥∥

Lq � (1 + s)−p1(μk−αk)Rk(s, uk − ũk)
(
‖u‖p1−1

Xk(T) + ‖ũ‖p1−1
Xk(T)

)
� (1 + s)−p1(μk−αk)‖u − ũ‖Xk(T)

(
‖u‖p1−1

Xk(T) + ‖ũ‖p1−1
Xk(T)

)
.

By the same argument, for l = 2, ..., k and 0 � s � t, we obtain the following estimate:∥∥|u�(s, ·)|p� − |ũ�(s, ·)|p�
∥∥

Lq � (1 + s)p�(α�−μ�)Rl(s, u�−1 − ũ�−1)
(
‖u‖p�−1

Xk(T) + ‖ũ‖p�−1
Xk(T)

)
� (1 + s)p�(α�−μ�)‖u − ũ‖Xk(T)

(
‖u‖p�−1

Xk(T) + ‖ũ‖p�−1
Xk(T)

)
.

So, for p1 > 1
μk−αk

and pl > 1
μl−1−αl−1

for all l = 2, · · · , k, we obtain the desired
estimate (20).

Remark 2. All estimates (19) and (20) are uniform with respect to T ∈ (0, ∞).

From (19), we can see that P maps Xk(T) into itself for all T and for small data. By
using standard contraction arguments, the estimates (19) and (20) lead to the existence of a
unique solution to u = P(u) and, consequently, to (1). This implies that the solution of (1)
satisfies the desired decay estimate. Since all constants are independent of T, we can let T
tend to ∞, which yields a global (in time) existence result for small data solutions to (1).
This concludes the proof.

5.2. Proof of Theorem 2

Let T > 0. We introduce the space Xk(T) as follows:

Xk(T) :=
k

∏
�=1

C
(
[0, T], Lml (Rd) ∩ L∞(Rd)

)
with the norm

‖u‖Xk(T) := sup
0�t�T

{
(1 + t)

−γ
(μk)
(αk)

(p1)R1(t, u1) +
k−1

∑
l=2

(1 + t)
−γ

(μk ,...,μ�−1)
(αk ,...,α�−1)

(p1,...,p�)R�(t, ul) + Mk(t, uk)
}

,
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where, for l = 1, · · · , k,

R�(t, ul) = (1 + t)μ�−α�
(
‖u�(t, ·)‖Lml + ‖u�(t, ·)‖L∞

)
, and⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

γ
(μk)
(αk)

(p1) = 1 − p1(μk − αk)

γ
(μk ,μ1)
(αk ,α1)

(p1, p2) = 1 − p2(μ1 − α1) + p2γ
(μk)
(αk)

(p1)

γ
(μk ,μ1,μ2)
(αk ,α1,α2)

(p1, p2, p3) = 1 − p3(μ2 − α2) + p3γ
(μk ,μ1)
(αk ,α1)

(p1, p2)

.

.

.

γ
(μk ,...,μ�−1)
(αk ,...,α�−1)

(p1, ..., p�) = 1 − p�(μl−1 − αl−1) + p�γ
(μk ,...,μ�−2)
(αk ,...,α�−2)

(p1, ..., p�−1),

for l = 3, · · · , k − 1. and the operator P by

P : u = (u1, u2, ..., uk) ∈ Xk(T) → P(u) = P(u)(t, x) := uln(t, x) + unl(t, x).

We will prove that, for u = (u1, u2, ..., uk); ũ = (ũ1, ũ2, ..., ũk) in Xk(T), the operator P
satisfies the following two inequalities:

‖P(u)‖Xk(T) � ‖(u01, u02, ...u0k)‖Ak +
�=k

∑
�=1

‖u‖p�
Xk(T), (23)

‖P(u)− P(ũ)‖Xk(T) � ‖u − ũ‖Xk(T)

�=k

∑
�=1

(
‖u‖p�−1

Xk(T) + ‖ũ‖pl−1
Xk(T)

)
. (24)

Using the definition of the norm in Xk(T) and Proposition 5, we may conclude:

‖uln‖Xk(T) � ‖(u01, u02, ..., u0k)‖Ak .

Hence, in order to complete the proof of (19), it is reasonable to show the following
inequality:

‖unl‖Xk(T) �
�=k

∑
�=1

‖u‖p�
Xk(T).

If u := (u1, u2, · · · , uk) ∈ Xk(T), then, for l = 2, · · · , k − 1, by interpolation, we derive

‖u1(t, ·)‖Lq � (1 + t)
(α1−μ1)+γ

(μk)
(αk)

(p1)‖u‖Xk(T) for all q ∈ [m1, ∞]

‖u�(t, ·)‖Lq � (1 + t)
(α�−μ�)+γ

(μk ,...,μ�−1)
(αk ,...,α�−1)

(p1,...,p�)‖u‖Xk(T) for all q ∈ [ml , ∞],

‖uk(t, ·)‖Lq � (1 + t)αk−μk‖u‖Xk(T) for all q ∈ [mk, ∞].

On the other hand, for q ∈ [m1, ∞], we have

‖unl
1 (t, ·)‖Lq � ‖u‖p1

X(T) J1(t) for all t ∈ [0, T] and p1q ∈ [mk, ∞],

where

J1(t) =
∫ t

0
(1 + t − �)−(1+α1)

∫ �

0
(� − s)α1−1

∫ s

0
(s − η)−μ1(1 + η)−p1(μk−αk) dη ds d�. (25)
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We are interested in estimating the right-hand side of (25). For this we need Lemma 1.
We put

ω(s) =
∫ s

0
(s − η)−μ1(1 + η)−p1(μk−αk) dη.

Thanks to Lemma 1, we obtain ω(s) � (1 + s)1−μ1−p1(μk−αk), if we assume that
p1 < 1

μk−αk
.

Once more, we apply Lemma 1 to obtain

J1(t) �
∫ t

0
(1 + t − �)−(1+α1)

∫ �

0
(� − s)α1−1(1 + s)1−μ1−p1(μk−αk) ds d�

�
∫ t

0
(1 + t − �)−(1+α1)(1 + �)1+α1−μ1−p1(μk−αk) d�

� (1 + t)1+α1−μ1−p1(μk−αk)

� (1 + t)α1−μ1+γ
μk
αk
(p1).

On the other hand, the conditions q ∈ [m1, ∞] and p1q ∈ [mk, ∞] imply that p1 ≥ mk
m1

.
For l = 2 and q ∈ [m2, ∞], we have

‖unl
2 (t, ·)‖Lq �

∫ t

0
(1 + t − �)−(1+α2)

∫ �

0
(� − s)α2−1‖|u1(s, ·)|p2‖Lq ds d�

�
∫ t

0
(1 + t − �)−(1+α2)

∫ �

0
(� − s)α2−1

∫ s

0
(s − η)−μ2‖u1(η, ·)‖p2

Lp2q dη ds d�

� ‖u‖p2
X(T) J2(t) for all t ∈ [0, T] and p2q ∈ [m1, ∞],

where

J2(t) =
∫ t

0
(1 + t − �)−(1+α2)

∫ �

0
(� − s)α2−1

∫ s

0
(s − η)−μ2(1 + η)

−p2(μ1−α1)+p2γ
(μk)
(αk)

(p1) dη ds d�. (26)

We are interested in estimating the right-hand side of (26). For this, we need Lemma 1.
We put

ω(s) =
∫ s

0
(s − η)−μ2(1 + η)

−p2(μ1−α1)+p2γ
(μk)
(αk)

(p1) dη.

Thanks to Lemma 1, we obtain

ω(s) � (1 + s)
1−μ2−p2(μ1−α1)+p2γ

(μk)
(αk)

(p1),

if we assume that p2 < 1

μ1−α1−γ
(μk)
(αk)

(p1)
and μ1 − α1 − γ

(μk)
(αk)

(p1) > 0.

The condition μ1 − α1 − γ
(μk)
(αk)

(p1) > 0 is equivalent to p1 > 1+α1−μ1
μk−αk

.
Once more, we apply Lemma 1 to obtain

J2(t) �
∫ t

0
(1 + t − �)−(1+α2)

∫ �

0
(� − s)α2−1(1 + s)

1−μ2−p2(μ1−α1)+p2γ
(μk)
(αk)

(p1) ds d�

�
∫ t

0
(1 + t − �)−(1+α2)(1 + �)

1+α2−μ2−p2(μ1−α1)+p2γ
(μk)
(αk)

(p1) d�

� (1 + t)
1+α2−μ2−p2(μ1−α1)+p2γ

(μk)
(αk)

(p1)

� (1 + t)
1+α2−μ2−p2(μ1−α1)+p2γ

(μk)
(αk)

(p1)

� (1 + t)
α2−μ2+γ

(μk ,μ1)
(αk ,α1)

(p1,p2).
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On the other hand, the conditions q ∈ [m2, ∞] and p2q ∈ [m1, ∞] imply that p2 ≥ m1
m2

.
For l = 3, · · · , k − 1 and q ∈ [ml , ∞], we have

‖unl
� (t, ·)‖Lq �

∫ t

0
(1 + t − �)−(1+α�)

∫ �

0
(� − s)α�−1‖|u�−1(s, ·)|p�‖Lq ds d�

�
∫ t

0
(1 + t − �)−(1+α�)

∫ �

0
(� − s)α�−1

∫ s

0
(s − η)−μ�‖u�−1(η, ·)‖p�

Lp�q dη ds d�

� ‖u‖p�
X(T) Jl(t) for all t ∈ [0, T] and p�q ∈ [ml−1, ∞],

where

Jl(t) =
∫ t

0
(1 + t − �)−(1+α�)

∫ �

0
(� − s)α�−1

×
∫ s

0
(s − η)−μ�(1 + η)

−p�(μ�−1−α�−1)+p�γ
(μk ,...,μ�−2)
(αk ,...,α�−2)

(p1,...,p�−1) dη ds d�. (27)

On the other hand, we are interested in estimating the right-hand side of (27). For this,
we need Lemma 1. We put

ω(s) =
∫ s

0
(s − η)−μ�(1 + η)

−p�(μ�−1−α�−1)+p�γ
(μk ,...,μ�−2)
(αk ,...,α�−2)

(p1,...,p�−1) dη.

Thanks to Lemma 1, we obtain

ω(s) � (1 + s)
1−μ�−p�(μ�−1−α�−1)+p�γ

(μk ,...,μ�−2)
(αk ,...,α�−2)

(p1,...,p�−1),

if we assume that
p� <

1

μ�−1 − α�−1 − γ
(μk ,...,μ�−2)
(αk ,...,α�−2)

(p1, ..., p�−1)

and
μ�−1 − α�−1 − γ

(μk ,...,μ�−2)
(αk ,...,α�−2)

(p1, ..., p�−1) > 0.

The last condition is equivalent to

pl−1 >
1 + αl−1 − μl−1

μ�−2 − α�−2 − γ
(μk ,...,μ�−3)
(αk ,...,α�−3)

(p1, ..., p�−2)

On the other hand, the conditions q ∈ [ml , ∞] and p�q ∈ [ml−1, ∞] imply that
p� ≥ ml−1

ml
.

Once more, we apply Lemma 1 to obtain

Jl(t) �
∫ t

0
(1 + t − �)−(1+α�)

∫ �

0
(� − s)α�−1(1 + s)

1−μ�−p�(μ�−1−α�−1)+p�γ
(μk ,...,μ�−2)
(αk ,...,α�−2)

(p1,...,p�−1) ds d�

�
∫ t

0
(1 + t − �)−(1+α�)(1 + s)

α�−μ�+1−p�(μ�−1−α�−1)+p�γ
(μk ,...,μ�−2)
(αk ,...,α�−2)

(p1,...,p�−1) d�

� (1 + t)
α�−μ�+1−p�(μ�−1−α�−1)+p�γ

(μk ,...,μ�−2)
(αk ,...,α�−2)

(p1,...,p�−1)

� (1 + t)
α�−μ�+γ

(μk ,...,μ�−1)
(αk ,...,α�−1)

(p1,...,p�).
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Finally, for q ∈ [mk, ∞], we have

‖unl
k (t, ·)‖Lq �

∫ t

0
(1 + t − �)−(1+αk)

∫ �

0
(� − s)αk−1‖|uk−1(s, ·)|pk‖Lq ds d�

�
∫ t

0
(1 + t − �)−(1+αk)

∫ �

0
(� − s)αk−1

∫ s

0
(s − η)−μk‖uk−1(η, ·)‖pk

Lpkq dη ds d�

� ‖u‖pk
X(T) Jk(t) for all t ∈ [0, T] and pkq ∈ [mk−1, ∞],

where

Jk(t) =
∫ t

0
(1 + t − �)−(1+αk)

∫ �

0
(� − s)αk−1

×
∫ s

0
(s − η)−μk (1 + η)

−pk

(
μk−1−αk−1−γ

(μ1,...,μk−2)
(α1,...,αk−2)

(p1,...,pk−1)
)

dη ds d�. (28)

We are interested in estimating the right-hand side of (28). For this we need Lemma 1.
We put

ω(s) =
∫ s

0
(s − η)−μk (1 + η)

−pk

(
μk−1−αk−1−γ

(μ1,...,μk−2)
(α1,...,αk−1)

(p1,...,pk−1)
)

dη.

Thanks to Lemma 1 we obtain ω(s) � (1 + s)−μk , if we assume that

pk >
1

μk−1 − αk−1 − γ
(μk ,...,μk−2)
(αk ,...,αk−2)

(p1, ..., pk−1)

and
μk−1 − αk−1 − γ

(μk ,...,μk−2)
(αk ,...,αk−2)

(p1, ..., pk−1) > 0

which equivalent to

pk−1 >
αk−1 − μk−1 + 1

μk−2 − αk−2 − γ
(μk ,...,μk−3)
αk ,...,αk−3 (p1, ..., pk−2)

.

Once more, we apply Lemma 1 to obtain

Jk(t) �
∫ t

0
(1 + t − �)−(1+αk)

∫ �

0
(� − s)αk−1(1 + s)−μk dη ds d�

�
∫ t

0
(1 + t − �)−(1+αk)(1 + �)αk−μk d�

� (1 + t)αk−μk .

The proof of (24) is similar to the proof of (20) of Theorem 1. This completes the proof.

5.3. Proof of Theorem 3

Let T > 0. We introduce the space Xk(T) as follows:

Xk(T) :=
k

∏
�=1

C
(
[0, T], Lml (Rd) ∩ L∞(Rd)

)
with the norm

‖u‖Xk(T) := sup
0�t�T

{ k−1

∑
l=1

(1 + t)−γ(pl)Rl(t, ul) + Rk(t, uk)
}

,
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where, for l = 1, · · · , k,

R�(t, ul) = (1 + t)μ�−α�
(
‖u�(t, ·)‖Lml + ‖u�(t, ·)‖L∞

)
,{

γ(p1) = 1
γ(pl) = 1 + plγ(p�−1), for l = 2, · · · , k − 1.

The operator P is defined by

P : u = (u1, u2, ..., uk) ∈ Xk(T) → P(u) = P(u)(t, x) := uln(t, x) + unl(t, x).

We will prove that, for u = (u1, u2, ..., uk); ũ = (ũ1, ũ2, ..., ũk) in Xk(T), the operator P
satisfies the following two inequalities:

‖P(u)‖Xk(T) � ‖(u01, u02, ...u0k)‖Ak +
�=k

∑
�=1

‖u‖p�
Xk(T), (29)

‖P(u)− P(ũ)‖Xk(T) � ‖u − ũ‖Xk(T)

�=k

∑
�=1

(
‖u‖p�−1

Xk(T) + ‖ũ‖pl−1
Xk(T)

)
. (30)

Using the definition of the norm in Xk(T) and Proposition 5, we may conclude:

‖uln‖Xk(T) � ‖(u01, u02, ..., u0k)‖Ak .

Hence, in order to complete the proof of (29), it is reasonable to show the following
inequality:

‖unl‖Xk(T) �
�=k

∑
�=1

‖u‖p�
Xk(T).

If u := (u1, u2, · · · , uk) ∈ Xk(T), then by interpolation, we derive, for l = 1, · · · , k − 1,

‖u�(t, ·)‖Lq � (1 + t)(α�−μ�)+γ(p�)‖u‖Xk(T) for all q ∈ [1, ∞],

‖uk(t, ·)‖Lq � (1 + t)αk−μk‖u‖Xk(T) for all q ∈ [1, ∞].

On the other hand, for q ∈ [1, ∞], we have

‖unl
1 (t, ·)‖Lq � ‖u‖p1

X(T) J1(t) for all t ∈ [0, T],

where

J1(t) =
∫ t

0
(1 + t − �)−(1+α1)

∫ �

0
(� − s)α1−1

∫ s

0
(s − η)−μ1(1 + η)−p1(μk−αk) dη ds d�. (31)

We are interested in estimating the right-hand side of (31). For this, we need Lemma 1.
We put

ω(s) =
∫ s

0
(s − η)−μ1(1 + η)−p1(μk−αk) dη.

Thanks to Lemma 1, we obtain ω(s) � (1 + s)−μ1 ln(1 + s), if we assume that
p1 = 1

μk−αk
.

259



Mathematics 2024, 12, 1942

Once more, we apply Lemma 1 to obtain

J1(t) � ln(2 + t)
∫ t

0
(1 + t − �)−(1+α1)

∫ �

0
(� − s)α1−1(1 + s)−μ1 ds d�

�
∫ t

0
(1 + t − �)−(1+α1)(1 + �)α1−μ1 d�

� (1 + t)α1−μ1 ln(2 + t)

� (1 + t)α1−μ1
(

ln(2 + t)
)γ(p1).

For l = 2, · · · , k − 1 and q ∈ [1, ∞], we have

‖unl
� (t, ·)‖Lq �

∫ t

0
(1 + t − �)−(1+α�)

∫ �

0
(� − s)α�−1‖|u�−1(s, ·)|p�‖Lq ds d�

�
∫ t

0
(1 + t − �)−(1+α�)

∫ �

0
(� − s)α�−1

∫ s

0
(s − η)−μ�‖u�−1(η, ·)‖p�

Lp�q dη ds d�

� ‖u‖p�
X(T) Jl(t) for all t ∈ [0, T] and p�q ∈ [ml−1, ∞],

where

Jl(t) =
∫ t

0
(1 + t − �)−(1+α�)

∫ �

0
(� − s)α�−1

×
∫ s

0
(s − η)−μ�(1 + η)−p�(μ�−1−α�−1)

(
ln(1 + η)

)p�γ(p�−1) dη ds d�.

We remark that

Jl(t) �
(

ln(2 + t)
)p�γ(p�−1)

∫ t

0
(1 + t − �)−(1+α�)

∫ �

0
(� − s)α�−1

×
∫ s

0
(s − η)−μ�(1 + η)−p�(μ�−1−α�−1) dη ds d�. (32)

On the other hand, we are interested in estimating the right-hand side of (32). For this,
we need Lemma 1. We put

ω(s) =
∫ s

0
(s − η)−μ�(1 + η)−p�(μ�−1−α�−1) dη.

Thanks to Lemma 1, we obtain

ω(s) � (1 + s)−μ� ,

if we assume that
p� =

1
μ�−1 − α�−1

.

Once more, we apply Lemma 1 to obtain

Jl(t) �
(

ln(2 + t)
)p�γ(p�−1)

∫ t

0
(1 + t − �)−(1+α�)

∫ �

0
(� − s)α�−1(1 + s)−μ� ds d�

�
(

ln(2 + t)
)p�γ(p�−1)

∫ t

0
(1 + t − �)−(1+α�)(1 + �)α�−μ� d�

� (1 + t)α�−μ�
(

ln(2 + t)
)p�γ(p�−1)
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Finally, for q ∈ [1, ∞], we have

‖unl
k (t, ·)‖Lq �

∫ t

0
(1 + t − �)−(1+αk)

∫ �

0
(� − s)αk−1‖|uk−1(s, ·)|pk‖Lq ds d�

�
∫ t

0
(1 + t − �)−(1+αk)

∫ �

0
(� − s)αk−1

∫ s

0
(s − η)−μk‖uk−1(η, ·)‖pk

Lpkq dη ds d�

� ‖u‖pk
X(T) Jk(t) for all t ∈ [0, T]

where

Jk(t) =
∫ t

0
(1 + t − �)−(1+αk)

∫ �

0
(� − s)αk−1

×
∫ s

0
(s − η)−μk (1 + η)−pk(μk−1−αk−1)

(
ln(1 + η)

)pkγ(pk−1) dη ds d�. (33)

We are interested in estimating the right-hand side of (33). Let δ > 0 be small enough
and we use the fact that ln(2 + t) � (1 + t)δ to obtain

Jk(t) �
∫ t

0
(1 + t − �)−(1+αk)

∫ �

0
(� − s)αk−1

×
∫ s

0
(s − η)−μk (1 + η)−pk(μk−1−αk−1−δγ(pk−1)) dη ds d�. (34)

For this, we need Lemma 1. We put

ω(s) =
∫ s

0
(s − η)−μk (1 + η)−pk(μk−1−αk−1−δγ(pk−1)) dη.

Thanks to Lemma 1, we obtain ω(s) � (1 + s)−μk , if we assume that

pk >
1

μk−1 − αk−1 − δγ(pk−1)
.

Once more, we apply Lemma 1 to obtain

Jk(t) �
∫ t

0
(1 + t − �)−(1+αk)

∫ �

0
(� − s)αk−1(1 + s)−μk dη ds d�

�
∫ t

0
(1 + t − �)−(1+αk)(1 + �)αk−μk d�

� (1 + t)αk−μk .

The proof of (30) is similar to the proof of (20) of Theorem 1. This completes the proof.

6. Conclusions

In the present paper, we proved the global (in time) existence of small data Sobolev
solutions to the weakly coupled system of k semi-linear fractional σ-evolution equations
with mass and different memory terms. We studied the relationship between the regularity
assumptions for the data, the memory terms, and the admissible range of exponents
(p1, p2, . . . , pk) in Equation (1). In a forthcoming paper, we will study the blow-up of
solutions to (1).
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Abstract: A minimum principle for a Sturm–Liouville (S-L) inequality is obtained, which shows that
the minimum value of a nonconstant solution of a S-L inequality never occurs in the interior of the
domain (a closed interval) of the solution. The minimum principle is then applied to prove that
any nonconstant solutions of S-L inequalities subject to separated inequality boundary conditions
(IBCs) must be strictly positive in the interiors of their domains and are increasing or decreasing
for some of these IBCs. These positivity results are used to prove the uniqueness of the solutions of
linear S-L equations with separated BCs. All of these results hold for the corresponding second-order
differential inequalities (or equations), which are special cases of S-L inequalities (or equations).
These results are applied to two models arising from the source distribution of the human head
and chemical reactor theory. The first model is governed by a nonlinear S-L equation, while the
second one is governed by a nonlinear second-order differential equation. For the first model, the
explicit solutions are not available, and there are no results on the existence of solutions of the first
model. Our results show that all the nonconstant solutions are increasing and are strictly positive
solutions. For the second model, many results on the uniqueness of the solutions and the existence of
multiple solutions have been obtained before. Our results are applied to prove that all the nonconstant
solutions are decreasing and strictly positive.

Keywords: Sturm–Liouville inequalities; minimum principles; second-order differential inequalities;
boundary value problems; strictly positive solutions

MSC: 34B24; 26D10; 34A12; 34A30; 34A34; 34B05

1. Introduction

We study the properties of solutions of a Sturm–Liouville (S-L) inequality of the form

−(p(x)u′(x))′ ≥ 0 for each x ∈ [a, b], (1)

where p : [a, b] → R+ is a function satisfying p(x) > 0 for each x ∈ (a, b), and u′ denotes
the first-order derivative of a function u.

A function u : [a, b] → R is said to be a solution of (1) if u ∈ C[a, b], u′(x) and
(p(x)u′(x))′ exist for each x ∈ [a, b] and u satisfies (1). A solution of (1) is said to be strictly
positive if u(x) > 0 for each x ∈ (a, b).

Note that p may be zero at either a or b, and p is not required to be continuous
or differentiable on [a, b]. We do not require pu′ to be in L1[a, b], so pu′ may not be an
absolutely continuous function on [a, b]. Hence, if u is a solution of (1), then the following
assertion may not be true:∫ x

a
(p(x)u′(x))′ dx = p(x)u′(x)− p(a)u′(a) for each x ∈ [a, b].
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This shows that we cannot obtain any results by taking the integral from a to x on
both sides of (1).

However, in this paper, we use monotonicity of the function pu′ to derive a new
minimum principle for nonconstant solutions of (1). More precisely, we prove that, if u is a
nonconstant solution of (1), then u cannot reach its minimum in (a, b), that is,

min{u(x) : x ∈ [a, b]} = min{u(a), u(b)} < u(x) for each x ∈ (a, b). (2)

It is well known that, if a function u : [a, b] → R is twice differentiable on [a, b] and
satisfies that u′′(x) ≤ 0 for each x ∈ [a, b], then u is concave down on [a, b], that is, u satisfies

u(ta + (1 − t)b) ≥ tu(a) + (1 − t)u(b) for each t ∈ [0, 1].

This implies that

u(x) ≥ min{u(a), u(b)} for each x ∈ [a, b]. (3)

Hence, the new minimum principle (2) with p ≡ 1 enhances (3) by replacing the
inequality sign with the strict inequality on (a, b).

The minimum principle (2) holds for (1) without any boundary conditions (BCs).
However, if we consider suitable BCs, then new properties of solutions for the boundary
value problems can be obtained. Here, we apply the minimum principle to obtain new
results on the positivity of the solutions of the S-L inequality (2) subject to the separated
inequality boundary conditions (IBCs):

αu(a)− βu′(a) ≥ 0 and γu(b) + δu′(b) ≥ 0, (4)

where α, β, γ, δ ∈ R+ satisfy (α + β)(γ + δ) > 0. We refer to [1,2] for the study on a mini-
mum principle (or strong minimum principle) and Hopf’s boundary minimum principle
for S-L inequality (1), which holds a.e on (a, b) with the IBCs u(a) ≥ 0 and u(b) ≥ 0.

The separated IBCs contain Dirichlet (β = δ = 0), Robin (α = γ and β = δ) and
Neumann (α = γ = 0) IBCs. We show that (1) with the Neumann IBCs u′(a) ≤ 0 and
u′(b) ≥ 0 only has constant solutions. By the minimum principle, we prove that all the
nonconstant solutions of (1) with the other IBCs of (4) are strictly positive in (a, b) and are
increasing if α > 0 and γ = 0 or decreasing if α = 0 and γ > 0. We apply these positivity
results to obtain the uniqueness of the solutions of linear S-L equations with separated BCs

αu(a)− βu′(a) = 0 and γu(b) + δu′(b) = 0 (5)

with α > 0 or γ > 0.
An important special case of S-L inequality (1) is the following second-order differen-

tial inequalities:
−u′′(x)− r(x)u′(x) ≥ 0 for each x ∈ [a, b], (6)

where r : [a, b] → R is a continuous function. We prove that, if u is a solution of (6), then
u is a solution of (1). Hence, the minimum principle, positivity result and uniqueness
for (6) without or with the separated IBCs can be obtained via the results on S-L inequalities
or equations.

The minimum principle and positivity results can be used to study solutions of
nonlinear S-L equations such as

−(p(x)u′(x))′ = f (x, u(x)) for each x ∈ [a, b] (7)

when f (x, u(x)) ≥ 0 for each x ∈ [a, b]. There are many results on the existence of
nonnegative solutions of (7) with suitable boundary conditions, for example, in [3–7], and
on the eigenvalues of the following S-L equations (see [8–10]).

−(p(x)u′(x))′ = λu(x) for each x ∈ [a, b], (8)
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The minimum principle and positivity results can be used to obtain the minimum
principle and positivity on nonconstant solutions of (7) and eigenfunctions of the eigenvalue
problem (8).

As illustrations, we consider two models arising in the heat conduction of the human
head and chemical reactor theory. The first model is governed by a nonlinear S-L equation
(see [8,11–16] for computations of solutions). The second one is governed by a nonlinear
second-order differential equation (see [17,18] for the existence of solutions). For the first
model, the explicit solutions are not available, and there are no results on the existence
of solutions of the first model. There is little study on the existence of solutions, possibly
because of the lack of Green’s functions. Our results show that, if the solutions exist, then
all the solutions are increasing and are strictly positive. For the second models from the
chemical reactor theory, there have been many results on the uniqueness of the solutions
and the existence of multiple solutions (see [17,18] and the references therein). We prove
that all the solutions are decreasing and are strictly positive.

The structure of this paper is as follows: In Section 2 of this paper, we study the
minimum principle, positivity and uniqueness of solutions for the S-L inequalities and
linear S-L equations. In Section 3, we apply these results on the S-L inequalities or linear S-L
equations to deal with some second-order differential equations. In Section 4, we consider
the two models governed by a nonlinear S-L equation and a nonlinear second-order
differential equation, respectively, and obtain the minimum principles and monotonicity of
their solutions.

2. Sturm–Liouville Inequalities

We study the properties of solutions for the Sturm–Liouville (S-L) inequality of
the form

−(p(x)u′(x))′ ≥ 0 for each x ∈ [a, b], (9)

where p : [a, b] → R+ is a function satisfying p(x) > 0 for each x ∈ (a, b), and u′ denotes
the first-order derivative of a function u. We allow p to be zero at a or b.

We denote by C[a, b], C1[a, b] and AC[a, b] the Banach space of continuous functions
on [a, b] with the maximum norm, the space of continuously differentiable functions on
[a, b] and the space of absolutely continuous functions on [a, b], respectively. It is well
known that

C1[a, b] ⊂ AC[a, b] ⊂ C[a, b].

Definition 1. A function u : [a, b] → R is said to be a solution of (9) if u ∈ C[a, b], u′(x) and
(p(x)u′(x))′ exist for each x ∈ [a, b] and u satisfies (9). A solution u of (9) is said to be nonnegative
if u(x) ≥ 0 for each x ∈ [a, b] and to be strictly positive on (a, b) if u(x) > 0 for each x ∈ (a, b).

In Definition 1, we only require a solution u to satisfy that (p(x)u′(x))′ exists for each
x ∈ [a, b]. We do not require (pu′)′ ∈ L1[a, b], so pu′ may not be in AC[a, b].

Notation: For c ∈ R, we define a constant function ĉ : [a, b] → R by

ĉ(x) = c for each x ∈ [a, b]. (10)

It is trivial that the constant function ĉ is a solution of (9) for each c ∈ R. Hence, we
concentrate on the nonconstant solutions of (9), that is, the solution u satisfies that there
exist two different points x1, x2 ∈ [a, b] such that u(x1) �= u(x2).

We first prove the following minimum principle for nonconstant solutions of (9),
which shows that the minimum values of nonconstant solutions of (9) never occur at the
interior points of [a, b].

Theorem 1. If u is a nonconstant solution of (9), then

min{u(a), u(b)} < u(x) for each x ∈ (a, b). (11)
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Proof. Let u be a nonconstant solution of (9). By Definition 1, u is a continuous function on
[a, b]. Let m be the minimum value of u on [a, b], that is,

m = min{u(x) : x ∈ [a, b]}.

We prove that
m < u(x) for each x ∈ (a, b). (12)

If (12) is false, then there exists x∗ ∈ (a, b) such that

u(x∗) = min{u(x) : x ∈ [a, b]}. (13)

Since u′(x) exists for each x ∈ (a, b), it follows from Fermat’s Theorem that u′(x∗) = 0.
By (9), pu′ is decreasing on [a, b]. Hence,

p(x)u′(x) ≥ p(x∗)u′(x∗) = 0 for each x ∈ [a, x∗] (14)

and
0 = p(x∗)u′(x∗) ≥ p(x)u′(x) for each x ∈ [x∗, b]. (15)

Since p(x) > 0 for each x ∈ (a, b), by (14) and (15), we obtain u′(x) ≥ 0 for each
x ∈ (a, x∗] and u′(x) ≤ 0 for each x ∈ [x∗, b). Hence, u is increasing on (a, x∗] and
decreasing on [x∗, b). It follows that

u(x) ≤ u(x∗) for each x ∈ (a, b).

This with (13) implies that

u(x) = u(x∗) = min{u(x) : x ∈ [a, b]} for each x ∈ (a, b). (16)

Since u ∈ C[a, b], taking limits on (16) as x → a+ and x → b− implies that u(a) = u(x∗)
and u(b) = u(x∗). This with (16) shows that u is a constant function, which contradicts
the hypothesis that u is a nonconstant function. Hence, (12) holds. Since u ∈ C[a, b], there
exists x0 ∈ [a, b] such that u(x0) = m. It follows from (12) that x0 = a or x0 = b, and the
result holds.

As an illustration of Theorem 1, we consider the S-L inequality

−(x2u′(x))′ ≥ 0 for each x ∈ [0, 1]. (17)

Example 1. Let
u(x) = cos

π

2
x for x ∈ [0, 1]. (18)

Then, the following assertions hold:
(1) u is a solution of (17);
(2) min{u(0), u(1)} < u(x) for each x ∈ (0, 1).

Proof. (1) Differentiating both sides of (18), we have

u′(x) = −π

2
sin

π

2
x for each x ∈ [0, 1]. (19)

By (19), we have

x2u′(x) = −π

2
x2 sin

π

2
x for each x ∈ [0, 1]. (20)

Taking derivatives on both sides of the above equation implies that

−
(

x2u′(x)
)′

=
π

2

[
2x sin

π

2
x +

π

2
x2 cos

π

2
x
]
≥ 0 for each x ∈ [0, 1]. (21)
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By (19), (20), (21) and Definition 1, u is a solution of (17).
(2) By (18) and the result (1), u is a nonconstant solution of (17). The result follows

from Theorem 1.

As an application of Theorem 1, we provide another new result which provides suffi-
cient boundary value conditions ensuring that the first-order derivative of the nonconstant
solutions of (9) at a (or at b) is greater than 0 (or less than 0). The new result will be used to
derive a Hopf’s boundary minimum principle for the S-L inequalities with a Dirichlet-type
inequality BC (see Theorem 6).

To do this, we first prove the following lemma, which shows that the signs of the
first-order derivative of solutions of (9) at a (or at b) determine the monotonicity that is
decreasing or increasing on [a, b] of solutions of (9).

Lemma 1. Assume that u : [a, b] → R is a solution of (9). Then, the following assertions hold:
(i) If u′(a) ≤ 0, then u is decreasing on [a, b];
(ii) If u′(b) ≥ 0, then u is increasing on [a, b].

Proof. (i) By (9), pu′ is decreasing on [a, b]. This with u′(a) ≤ 0 implies that

p(x)u′(x) ≤ p(a)u′(a) ≤ 0 for each x ∈ [a, b].

Since p(x) > 0 for each x ∈ (a, b), we have u′(x) ≤ 0 for each x ∈ (a, b), and u is
decreasing on (a, b). Since u ∈ C[a, b], we have

u(b) ≤ u(x) ≤ u(a) for each x ∈ [a, b]

and u is decreasing on [a, b].
(ii) By (9), pu′ is decreasing on [a, b]. This with u′(b) ≥ 0 implies that

0 ≤ p(b)u′(b) ≤ p(x)u′(x) for each x ∈ [a, b].

Since p(x) > 0 for each x ∈ (a, b), we have u′(x) ≥ 0 for each x ∈ (a, b), and u is
increasing on (a, b). Since u ∈ C[a, b], u is increasing on [a, b].

By Theorem 1 and Lemma 1, we prove the new result, which is a key for obtaining the
Hopf’s boundary minimum principle (Theorem 6) for the S-L inequalities.

Theorem 2. Assume that u : [a, b] → R is a nonconstant solution of (9). Then, the following
assertions hold:

(1) If u(a) ≤ u(b), then u′(a) > 0;
(2) If u(a) ≥ u(b), then u′(b) < 0.

Proof. (1) If the result (1) is false, then u′(a) ≤ 0. By Lemma 1 (1), u is decreasing on [a, b],
and u(x) ≤ u(a) for each x ∈ [a, b]. This with Theorem 1 implies that

u(b) < u(x) ≤ u(a) for each x ∈ (a, b),

which contradicts the hypothesis that u(a) ≤ u(b).
(2) If the result (2) is false, then u′(b) ≥ 0. By Lemma 1 (2), u is increasing on [a, b],

and u(x) ≤ u(b) for each x ∈ [a, b]. This with Theorem 1 implies that

u(a) < u(x) ≤ u(b) for each x ∈ (a, b),

which contradicts the hypothesis that u(a) ≥ u(b).

Theorem 1 applies to any nonconstant solutions of (9) in C[a, b] and does not involve
any inequality boundary conditions (IBCs) at a or at b.

Below, we consider nonconstant solutions of (9) subject to the separated IBCs of the form

αu(a)− βu′(a) ≥ 0 and γu(b) + δu′(b) ≥ 0. (22)
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where α, β, γ, δ ∈ R+ satisfy
(α + β)(γ + δ) > 0. (23)

The separated IBCs (22) contain Dirichlet (β = δ = 0), Robin (α = γ and β = δ) and
Neumann (α = γ = 0) IBCs.

Under the assumption (23), it is easy to verify that (22) is equivalent to the following
four IBCs:
(B1) u(a)− βu′(a) ≥ 0 and u(b) + δu′(b) ≥ 0 for β, δ ∈ R+. (α > 0, β ≥ 0, γ > 0, δ ≥ 0);
(B2) u(a)− βu′(a) ≥ 0 and u′(b) ≥ 0 for β ∈ R+. (α > 0, β ≥ 0, γ = 0, δ > 0);
(B3) u′(a) ≤ 0 and u(b) + δu′(b) ≥ 0 for δ ∈ R+. (α = 0, β > 0, γ > 0, δ ≥ 0);
(B4) u′(a) ≤ 0 and u′(b) ≥ 0. (α = 0, β > 0, γ = 0, δ > 0).

It is clear that if α > 0 or γ > 0, then the BC (22) is equivalent to the three BCs (B1),
(B2) and (B3), and, if α = γ = 0, then the BC (22) is (B4).

Definition 2. A function u : [a, b] → R is said to be a solution (nonnegative solution or strictly
positive solution) of (9) with (22) if u ∈ C[a, b] is a solution (nonnegative solution or strictly
positive solution) of (9) and satisfies (22).

We state the following simple result of constant solutions of (9) with (22).

Theorem 3. Let c ∈ R. Then, the following assertions hold:
(i) ĉ is a solution of (9) with (Bi) if and only if c ≥ 0 for each i ∈ {1, 2, 3};
(ii) ĉ is a solution of (9) with (B4).

Theorem 4. Assume that u : [a, b] → R is a solution of (9) with (B4). Then, u is a constant
solution.

Proof. By (B4) and Lemma 1, u is decreasing and increasing on [a, b]. It follows that

u(b) ≤ u(x) ≤ u(a) ≤ u(x) ≤ u(b) for each x ∈ [a, b].

This implies that u(x) = u(b) for each x ∈ [a, b], and the result holds.

By Theorem 3 (ii) and Theorem 4, (9) with (B4) has no nonconstant solutions. There-
fore, we only discuss nonconstant solutions of (9) with (Bi) for each i ∈ {1, 2, 3}. Hence,
from now on, we always assume that α, β, γ, δ ∈ R+ satisfy

(α + β)(γ + δ) > 0 and either α > 0 or γ > 0, (24)

which excludes the BC (B4).

Lemma 2. Assume that u : [a, b] → R is a nonconstant solution of (9). Then, the following
assertions hold:
(i) If u(a) ≤ u(b) and u(a)− βu′(a) ≥ 0, then u(a) ≥ 0;
(ii) If u(a) ≥ u(b) and u(b) + δu′(b) ≥ 0, then u(b) ≥ 0.

Proof. Let u : [a, b] → R be a nonconstant solution of (9) with (22). By Theorem 1, we have

min{u(a), u(b)} < u(x) for each x ∈ (a, b). (25)

(i) Since u(a) ≤ u(b), by (25), we have

u(a) = min{u(a), u(b)} < u(x) for each x ∈ (a, b). (26)

If the result were false, then u(a) < 0. Since u(a)− βu′(a) ≥ 0, we have

0 > u(a) ≥ βu′(a).
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This implies that β > 0, and u′(a) < 0. Hence, there exists ε0 ∈ (0, b − a) such that

u(x) ≤ u(a) for each x ∈ [a, a + ε0).

This with (26) implies that

u(a) < u(x) ≤ u(a) for each x ∈ [a, a + ε0),

which is a contradiction.
(ii) Since u(a) ≥ u(b), by (25), we have

u(b) = min{u(a), u(b)} < u(x) for each x ∈ (a, b). (27)

If the result is false, then u(b) < 0. Since u(b) + δu′(b) ≥ 0, we have

0 > u(b) ≥ −δu′(b).

This implies that δ > 0, and u′(b) > 0. Hence, there exists ε0 ∈ (0, b − a) such that

u(x) ≤ u(b) for each x ∈ (b − ε0, b].

This with (27) implies that

u(b) < u(x) ≤ u(b) for each x ∈ (b − ε0, b],

which is a contradiction.

Now we prove the positivity result on (9) subject to the BCs (B1)–(B3).

Theorem 5. (i) If u : [a, b] → R is a nonconstant solution of (9) with (B1), then

0 ≤ min{u(a), u(b)} < u(x) for each x ∈ (a, b). (28)

(ii) If u : [a, b] → R is a nonconstant solution of (9) with (B2), then u is increasing on
[a, b], and

0 ≤ u(a) < u(x) ≤ u(b) for each x ∈ (a, b). (29)

(iii) If u : [a, b] → R is a nonconstant solution of (9) with (B3), then u is decreasing on
[a, b], and

0 ≤ u(b) < u(x) ≤ u(a) for each x ∈ (a, b). (30)

Proof. Let u : [a, b] → R be a nonconstant solution of (9). By Theorem 1, we have

min{u(a), u(b)} < u(x) for each x ∈ (a, b). (31)

(i) Since (B1) holds, if u(a) ≤ u(b), then it follows from u(a) − βu′(a) ≥ 0 and
Lemma 2 (i) that u(a) ≥ 0. If u(a) ≥ u(b), then by u(b)− βu′(b) ≥ 0 and Lemma 2 (ii),
we have u(b) ≥ 0. This with (31) implies (28).

(ii) By (B2), we have u′(b) ≥ 0. By Lemma 1 (ii), u is increasing on [a, b], and

u(a) ≤ u(x) ≤ u(b) for each x ∈ [a, b].

This with (31) implies (29).
(iii) By (B3), we have u′(a) ≤ 0. By Lemma 1 (i), u is decreasing on [a, b], and

u(b) ≤ u(x) ≤ u(a) for each x ∈ [a, b].

This with (31) implies (30).

As an application of Theorem 5, we consider the S-L inequality (17), that is,

−(x2u′(x))′ ≥ 0 for each x ∈ [0, 1] (32)
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subject to the IBC
u(0)− βu′(0) ≥ 0 and u(1) + δu′(1) ≥ 0, (33)

where β, δ ≥ 0 are given.
We first provide an example of a nonconstant solution u of (32), which is not a solution

of (32)–(33).

Example 2. Let u be the same as in (18). Then, u is a solution of (32) but is not a solution
of (32)–(33).

Proof. The first result follows from Example 1. By (18) and (19), we have

u(1)− δu′(1) = 0 − δ
π

2
< 0.

Hence, u does not satisfy (33).

Next, we provide an example of a nonconstant solution of (32)–(33).

Example 3. Let A ≥ π
2 δ, and

u(x) = A + cos
π

2
x for x ∈ [0, 1]. (34)

Then, the following assertions hold:
(1) u is a solution of (32)–(33);
(2) 0 ≤ min{u(0), u(1)} < u(x) for each x ∈ (0, 1).

Proof. (1) Differentiating both sides of (34), we have

u′(x) = −π

2
sin

π

2
x for x ∈ [0, 1]. (35)

By (35), we have

x2u′(x) = −x2 π

2
sin

π

2
x for x ∈ [0, 1].

Taking derivatives on both sides of the above equation implies that

−
(

x2u′(x)
)′

=
π

2

[
2x sin

π

2
x + x2 π

2
cos

π

2
x
]
≥ 0 for x ∈ [0, 1]

and u satisfies (32). By (34) and (35), we have

u(0)− βu′(0) = (1 + A)− β[−π

2
sin

π

2
(0)] = 1 + A ≥ 0.

and, since A ≥ π
2 δ, we have

u(1) + δu′(1) = A − δ
π

2
≥ 0.

Hence, u is a solution of (32)–(33).
(2) By the result (1), u is a nonconstant solution of (32)–(33). The result follows from

Theorem 5 (i).

Now, by applying Theorems 2 and 5, we give the Hopf’s boundary minimum principle.

Theorem 6. (i) If u : [a, b] → R is a nonconstant solution of (9) with (B1), then the following
assertions hold:

(1) If u(a) = 0, then u′(a) > 0;
(2) If u(b) = 0, then u′(b) < 0.
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(ii) If u : [a, b] → R is a nonconstant solution of (9) with (B2), then u′(a) > 0;
(iii) If u : [a, b] → R is a nonconstant solution of (9) with (B3), then u′(b) < 0.

Proof. (1) Since u(a) = 0, it follows from Theorem 5 (i) that u(a) = 0 ≤ u(b). By
Theorem 2 (1), u′(a) > 0.

(2) Since u(b) = 0, it follows from Theorem 5 (i) that u(b) = 0 ≤ u(a). By
Theorem 2 (2), u′(b) < 0.
(ii) By Theorem 5 (ii), we have u(a) < u(b). By Theorem 2 (1), u′(a) > 0.
(iii) By Theorem 5 (iii), we have u(b) < u(a). By Theorem 2 (2), u′(b) < 0.

Remark 1. The Hopf’s boundary minimum principle for some S-L inequalities with the BCs
u(a) ≥ 0 and u(b) ≥ 0 was studied in [1] (p. 1072). Hence, Theorem 6 (i) with β > 0 or δ > 0
and (ii) and (iii) are new. Our method is different from that used in [1] (p. 1072).

Applying Theorem 5, we study the uniqueness of the solutions of the boundary value
problem (BVP) of the S-L equation

−(p(x)u′(x))′ = 0 for each x ∈ [a, b] (36)

subject to the separated BC

αu(a)− βu′(a) = 0 and γu(b) + δu′(b) = 0, (37)

where α, β, γ, δ ∈ R+ satisfy (24).

Theorem 7. Equation (36) with Equation (37) has only a zero solution.

Proof. It is obvious that 0̂ is a solution of (36) with (37). Let u be a nonconstant so-
lution of (36) with (37). Then it is easy to see that −u is a solution of (36) with (37).
By Theorem 5, we obtain u = 0. Hence, (36) with (37) has no nonconstant solutions. By
Theorem 3 (i), (36) with (37) has no nonzero constant solutions. The result follows.

We study the uniqueness of the solutions of the BVP of the S-L equation

−(p(x)u′(x))′ = v(x) for each x ∈ [a, b] (38)

subject to the separated BC

αu(a)− βu′(a) = c0 and γu(b) + δu′(b) = c1, (39)

where v : [a, b] → R is a function, α, β, γ, δ ∈ R+ satisfy (24) and c0, c1 ∈ R.

Definition 3. A function u : [a, b] → R is said to be a solution of (38) if u ∈ C[a, b], u′(x) and
(p(x)u′(x))′ exist for each x ∈ [a, b] and u satisfies (38).

Theorem 8. Equation (38) with Equation (39) has at most one solution.

Proof. Assume that (38) and (39) have a solution uj for each j ∈ {1, 2}. Let

u(x) = u1(x)− u2(x) for each x ∈ [a, b].

It is easy to see that u is a solution of (36) with (37). By Theorem 7, (36) with (37) has
only a zero solution. Hence, u = 0 and u1 = u2.

3. Second-Order Linear Differential Inequalities

Closely related to the S-L inequality is the second-order differential inequality

−u′′(x)− r(x)u′(x) ≥ 0 for each x ∈ [a, b], (40)
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where r : [a, b] → R is assumed to be a continuous function. Note that r is not necessarily
nonnegative. We can apply the results obtained in Section 2 to derive results on (40).

Definition 4. A function u : [a, b] → R is said to be a solution of (40) if u ∈ C1[a, b], u′′(x)
exists for each x ∈ [a, b] and u satisfies (40).

In Definition 4, u is required to satisfy that u′′(x) exists for each x ∈ [a, b], but u′′ is
not required to be continuous on (a, b). This is different from the the classical solutions,
that is, u ∈ C2(a, b) ∩ C1[a, b] studied in (p. 634, [19]), where the one-dimensional strongly
uniformly elliptic equations were considered.

The inequality (40) can be studied via the following S-L inequality:

−(p(x)u′(x))′ ≥ 0 for each x ∈ [a, b], (41)

where p : [a, b] → (0, ∞) is a function defined by

p(x) = e
∫ x

a r(s) ds. (42)

We note that the function p satisfies p(x) > 0 for each x ∈ [a, b] and is continuous on
[a, b]. By (42) and continuity of r, we obtain

p′(x) = p(x)r(x) for each x ∈ [a, b]. (43)

Lemma 3. If u is a solution of (40), then u is a solution of (41).

Proof. Let u be a solution of (40). By Definition 4, u ∈ C1[a, b] and u′′(x) exist for each
x ∈ [a, b]. By (43), we have

(p(x)u′(x))′ = p(x)u′′(x) + p′(x)u′(x) = p(x)u′′(x) + p(x)r(x)u′(x)

= p(x)[u′′(x) + r(x)u′(x)] ≤ 0 for each x ∈ [a, b] (44)

and (p(x)u′(x))′ exist for each x ∈ [a, b]. It follows from Definition 1 that u is a solution
of (41).

Similar to (9), we have the following minimum principle for nonconstant solutions
of (40).

Theorem 9. If u is a nonconstant solution of (40), then

min{u(a), u(b)} < u(x) for each x ∈ (a, b).

Proof. Let u be a nonconstant solution of (40). By Lemma 3, u is a nonconstant solution
of (41). The results follow from Theorem 1.

Definition 5. A function u : [a, b] → R is said to be a solution of (40) with (22) if u ∈ C1[a, b] is
a solution of (40) and satisfies (22).

Similar to (9), we have the following positivity result on (40) subject to the BCs (B1)–(B3).

Theorem 10. (i) If u : [a, b] → R is a nonconstant solution of (40) with (B1), then

0 ≤ min{u(a), u(b)} < u(x) for each x ∈ (a, b). (45)

(ii) If u : [a, b] → R is a nonconstant solution of (40) with (B2), then u is increasing on
[a, b], and

0 ≤ u(a) < u(x) ≤ u(b) for each x ∈ (a, b). (46)
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(iii) If u : [a, b] → R is a nonconstant solution of (40) with (B3), then u is decreasing on
[a, b], and

0 ≤ u(b) < u(x) ≤ u(a) for each x ∈ (a, b). (47)

Proof. Let u be a nonconstant solution of (40). By Lemma 3, u is a nonconstant solution
of (41). The result follows from Theorem 5.

Similar to S-L equations, we obtain the following uniqueness results.

Theorem 11. The BVP of the second-order differential equation

−u′′(x)− r(x)u′(x) = 0 for each x ∈ [a, b] (48)

subject to the separated BC (37) has only a zero solution.

Theorem 12. The BVP of the second-order differential equation

−u′′(x)− r(x)u′(x) = v(x) for each x ∈ [a, b] (49)

subject to the BC (39) has at most one solution, where v : [a, b] → R is a function.

4. Applications

We consider the model arising from the source distribution of the human head gov-
erned by the following nonlinear S-L equation:

−(x2u′(x))′ = λx2e−qu(x) for each x ∈ [0, 1] (50)

subject to the BC
u(0) = 0 and γu(1) + u′(1) = 0, (51)

where λ, q > 0 (see [11]). Some related models can be found in [13,14]. The exact solutions
of the BVP (50)–(51) are not available, and there are no results on the existence of solutions
of (50)–(51); therefore, there are extensive studies on computation of solutions of (50)–(51)
(see [12,14–16] and the reference therein). There are generalizations on the computation of
solutions to fractional differential equations [8]. Since p : [0, 1] → R+ defined by p(x) = x2

for x ∈ [0, 1] does not satisfy 1/p ∈ L1[0, 1], the Green’s function does not exist. Hence,
the previous results on the existence of solutions of the BVP for the S-L equations obtained,
for example, in [3–5,7,20–22], via Green’s functions cannot be used to deal with (50)–(51).

Here, we use Theorem 1 to obtain the following new result.

Theorem 13. (1) If u is a solution of (50), then

min{u(0), u(1)} < u(x) for each x ∈ (0, 1). (52)

(2) If u is a solution of the BVP (50)–(51), then u is decreasing on [0, 1], and

0 ≤ u(1) < u(x) ≤ u(0) for each x ∈ (0, 1). (53)

Proof. Let u ∈ C[0, 1] be a solution of (50). By (50), it is easy to see that

−(x2u′(x))′ = λx2e−qu(x) ≥ 0 for each x ∈ [0, 1] (54)

and u is a nonconstant solution of (54).
(1) The result (1) follows from (54) and Theorem 1.
(2) Let u ∈ C[0, 1] be a solution of (50)–(51). Note that the BC (51) is a special

case of (B3). It follows from (54) and Theorem 10 (iii) that u is decreasing on [0, 1],
and (53) holds.
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The second model we consider is the following BVP of the second-order
differential equation

−βu′′(x) + u′(x) = f (u(x)) for each x ∈ [0, 1] (55)

subject to the BC
αu(0)− βu′(0) = 0 and u′(1) = 0, (56)

where f : R+ → R is defined by

f (u) = λ(q − u)e
−k

1+u . (57)

The BVP (55)–(56) arises in chemical reactor theory. The function u represents the
dimensionless temperature in the reactor, and λ, q, k > 0 are known constants. The function
f (u) in (57) is the Arrhenius reaction rate, which essentially represents the rates of chemical
production of the species (or the rate of heat generation) in the reactor (see [17,18] and the
references therein).

It is proved in Theorem 3.5 of [17] that, if
(

f (u)
u

)′
< 0 for u ∈ [0, q], then (55)–(56) have

a unique solution. When k > 4(1 + 1/q), it is proved in [18] that, under suitable conditions
on λ, (55)–(56) have at least two or three nonnegative solutions. However, these results do
not show that these solutions are strictly positive solutions.

By Theorems 9 and 10, we prove the following result which shows that all the solutions
of (55)–(56) are strictly positive.

Theorem 14. (1) If u ∈ C[0, 1] is a solution of (55), then

min{u(0), u(1)} < u(x) for each x ∈ (0, 1). (58)

(2) If u ∈ C[0, 1] is a solution of the BVP (55)–(56), then u is increasing on [0, 1], u is a
strictly positive solution and

0 ≤ u(0) < u(x) ≤ u(1) for each x ∈ (0, 1). (59)

Proof. Let u be a solution of (55). By (55) and (57), u is a nonconstant solution. By
Theorem 3.1 of [17], u(x) ≤ q for x ∈ [0, 1]. By (57), we obtain

f (u(x)) ≥ 0 for each x ∈ [0, 1].

This with (55) implies that

−βu′′(x) + u′(x) = f (u(x)) ≥ 0 for x ∈ [0, 1]. (60)

(1) The result (1) follows from Theorem 9.
(2) Let u be a solution of (55)–(56). Note that the BC (51) is a special case of (B2).

The result (2) follows from Theorem 10 (ii).
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1. Introduction

Differential equations involving p-Laplace operators have wide applications in physics,
and they have received quite some attention recently. For example, in 2007, by using the
theory of lower and upper solutions, Jin, Yin, and Wang [1] studied the existence of positive
radial solutions for the p-Laplacian boundary value problem

−div(|∇u|p−2∇u) = f (|x|, u), x ∈ Ω,

u(x) = 0, x ∈ ∂Ω,

where p > 1 and Ω ⊂ Rn is the unit open ball centered at the origin. We refer the reader
to [2] for a historical account of the origin of the p-Laplace operator. For a very short list
of some recent papers on p-Laplace boundary value problems, we refer the reader to the
papers [3–11].

In this paper, we consider the boundary value problem

Δpw(x) + g(|x|) f (w(x)) = 0, x ∈ Ω, (1)

w = 0, x ∈ ∂Ω. (2)

Here, Ω ⊂ Rn is the unit open ball centered at the origin, |x| denotes the Euclidean norm
of x ∈ Rn, and

Δpw = div
(
|∇w|p−2∇w

)
.

Throughout the paper, we assume that

(H) n ≥ 1 is a positive integer, p ∈ (n,+∞) is a positive real number, g : [0, 1] →
[0,+∞) and f : [0,+∞) → [0,+∞) are continuous functions, and g(t) �≡ 0 on the
interval [0, 1].

For convenience, we define the function Φp : R → R by

Φp(x) =

{
|x|p−2x, x �= 0,
0, x = 0.

It is clear that Φp(x) is an increasing and continuous function, and xΦp(x) ≥ 0 for all real
x. The inverse function of Φp(x) is denoted by Φ−1

p (x) in this paper.
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It is well known (see [1], for example) that if we consider only radially symmetric
positive solutions of problem (1),(2), then problem (1),(2) reduces to the following boundary
value problem for a second-order ordinary differential equation:

t1−n(tn−1Φp(u′(t)))′ + g(t) f (u(t)) = 0, 0 < t < 1, (3)

u′(0) = 0, u(1) = 0. (4)

That is, if u(t) is a solution to problem (3),(4), then w(x) = u(|x|) solves the boundary
value problem (1),(2), and vice versa.

Our main focus in this paper is on positive solutions to problem (3),(4). By a positive
solution to problem (3),(4), we mean a solution u(t) such that u(t) > 0 on (0, 1). As has
been repeatedly pointed out in the literature (see [6,12], for example), in the study of
positive solutions to boundary value problems, a priori upper and lower estimates for
positive solutions play a crucial role. In particular, once we obtain some a priori upper
and lower estimates, we can use these estimates to approximate the first eigenvalue of
the corresponding eigenvalue problem (see [13], for example). Also, by using these upper
and lower estimates, we can establish some nice existence results for multiple positive
solutions (see [12,14], for example). The main purpose of this paper is to present a new
lower estimate for positive solutions to problem (3),(4).

Throughout this paper, we let X = C[0, 1] be equipped with the supremum norm

‖v‖ = max
t∈[0,1]

|v(t)| for all v ∈ X.

Clearly, X is a Banach space. We define

Y = {v ∈ X | v(t) ≥ 0 for 0 ≤ t ≤ 1}.

It is clear that Y is a positive cone in X. It is also clear that the boundary value problem
(3),(4) is equivalent to the integral equation

u(t) =
∫ 1

t
Φ−1

p

(
r1−n

∫ r

0
sn−1g(s) f (u(s))ds

)
dr, 0 ≤ t ≤ 1.

Define the operator T : Y → X by

(Tu)(t) =
∫ 1

t
Φ−1

p

(
r1−n

∫ r

0
sn−1g(s) f (u(s))ds

)
dr, 0 ≤ t ≤ 1, ∀u ∈ Y.

It is clear that if (H) holds, then T(Y) ⊂ Y. By some standard arguments, we can show that
T is a completely continuous operator. Also, it is now clear that u ∈ Y is a fixed point of T
if and only if u is a non-negative solution to problem (3),(4).

This paper is organized as follows. In Section 2, we prove a new type of lower estimate
for positive solutions of problem (3),(4). In Sections 3 and 4, we prove some existence and
nonexistence results for positive solutions for problem (3),(4). An example is included at
the end of the paper to illustrate our existence and non-existence results.

2. A New Lower Estimate

In this section, we present a new lower estimate for positive solutions to problem
(3),(4). This lower estimate (see (7) below) is called by some authors the norm-type, for the
simple reason that its expression is the norm ‖u‖ times a function of t. To the best of our
knowledge, there is no lower estimate of this type for problem (3),(4) in the literature.

For this purpose, we define the function a : [0, 1] → [0, 1] by

a(t) = 1 − t(p−n)/(p−1), 0 ≤ t ≤ 1. (5)
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The function a(t) is used to give the lower estimate for positive solutions of problem (3),(4).
Since p > n, a(t) is continuous on [0, 1], it is clear that a(0) = 1 and a(1) = 0. We leave it to
the reader to verify that a(t) is decreasing on [0, 1]. We begin with some technical lemmas.

Lemma 1. If u ∈ C2(0, 1] ∩ C1[0, 1] satisfies the boundary conditions (4) and u is such that

(tn−1Φp(u′(t)))′ ≤ 0, 0 < t < 1, (6)

then,
u(t) ≥ 0 and u′(t) ≤ 0

on the interval [0, 1], and u(0) = ‖u‖.

The proof of the lemma is quite straightforward and is, therefore, left to the reader.
The next lemma gives a lower estimate for positive solutions of problem (3),(4).

Lemma 2. Suppose that (H) holds. If u ∈ C2(0, 1] ∩ C1[0, 1] satisfies the boundary conditions (4)
and the inequality (6) holds, then

u(t) ≥ ‖u‖a(t), 0 ≤ t ≤ 1. (7)

Proof. By Lemma 1, we have u(t) ≥ 0 on [0, 1] and u(0) = ‖u‖. We define an auxiliary
function h(t) as follows:

h(t) = u(t)− ‖u‖a(t), 0 ≤ t ≤ 1.

It is easy to see that
h(0) = h(1) = 0.

To prove the lemma, it suffices to show that h(t) ≥ 0 for 0 ≤ t ≤ 1. We use the method
of contradiction to prove the lemma. For this purpose, we assume, to the contrary, that
h(t0) < 0 for some t0 ∈ (0, 1).

Since h(0) = 0 > h(t0), by the mean value theorem, there exists t1 ∈ (0, t0) such that
h′(t1) < 0. Since h(t0) < 0 = h(1), there exists s1 ∈ (t0, 1) such that h′(s1) > 0.

Note that h′(t1) < 0 and h′(s1) > 0 imply that

u′(t1)− ‖u‖a′(t1) < 0, u′(s1)− ‖u‖a′(s1) > 0.

Since Φp is strictly increasing, we have

Φp(u′(t1))− Φp(‖u‖a′(t1)) < 0, Φp(u′(s1))− Φp(‖u‖a′(s1)) > 0.

We now define another auxiliary function v(t) as follows:

v(t) = tn−1(Φp(u′(t))− Φp(‖u‖a′(t))
)
, 0 ≤ t ≤ 1. (8)

It is clear that v(t1) < 0 and v(s1) > 0. Since v(t1) < 0 < v(s1), there exists t2 ∈ (t1, s1) ⊂
(0, 1) such that

v′(t2) > 0. (9)

On the other hand, by Equations (5), (6), and (8), we have

v′(t) = (tn−1Φp(u′(t)))′ ≤ 0, 0 < t < 1,

which contradicts (9). The proof of the lemma is now complete.

We now summarize our findings in the following theorems.
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Theorem 1. Suppose that (H) holds. If u ∈ C2(0, 1] ∩ C1[0, 1] satisfies the boundary conditions
(4), and the inequality (6) holds, then u(t) ≥ 0 on [0, 1], and

a(t)u(0) ≤ u(t) ≤ u(0), 0 ≤ t ≤ 1. (10)

In particular, if u ∈ C2(0, 1] ∩ C1[0, 1] is a nonnegative solution to the boundary value problem
(3),(4), then u(t) satisfies the estimates (10).

The next theorem follows immediately.

Theorem 2. Suppose that (H) holds. If w(x) is a radially symmetric positive solution to the
p-Laplace boundary value problem (1),(2), then

w(0) ≥ w(x) ≥ w(0)a(|x|), |x| < 1.

Here, 0 = (0, 0, · · · , 0) is the origin of the Rn space.

Now, we define a subset P of Y as follows:

P = {v ∈ Y : a(t)v(0) ≤ v(t) ≤ v(0) on [0, 1]}.

Clearly, P is a positive cone of the Banach space X. From now on, we restrict the operator T
on the cone P. Again, T : P → Y is a completely continuous operator. And, by the same
arguments as those used to prove Theorem 1, we can show that T(P) ⊂ P provided (H)
holds. We also note that if v ∈ P, then

‖v‖ = v(0).

Now, it is clear that, in order to solve problem (3),(4) for a positive solution, we only need
to find a fixed point u of T in P such that ‖u‖ > 0.

3. Existence of Positive Solutions

As an application of the lower estimate obtained in the last section, we now establish
some existence and nonexistence results for positive solutions to problem (3),(4). We
use the following fixed point theorem, which is due to Krasnosel’skii [15], to prove our
existence results.

Theorem 3. Let X be a Banach space over the reals, and let P ⊂ X be a cone in X. Let ≤ be the
partial order on X determined by P. Assume that Ω1 and Ω2 are bounded open subsets of X with
0 ∈ Ω1 and Ω1 ⊂ Ω2. Let

L : P ∩ (Ω2 − Ω1) → P

be a completely continuous operator such that, either

(K1) Lu �≥ u if u ∈ P ∩ ∂Ω1, and Lu �≤ u if u ∈ P ∩ ∂Ω2; or
(K2) Lu �≤ u if u ∈ P ∩ ∂Ω1, and Lu �≥ u if u ∈ P ∩ ∂Ω2.

Then, L has a fixed point in P ∩ (Ω2 − Ω1).

Remark 1. In Theorem 3, ≤ is the partial order on X determined by P. That is, if f , g ∈ X, then

f ≤ g ⇐⇒ (g − f ) ∈ P.

Hence, the inequality Lu �≥ u means that (Lu − u) �∈ P, and the inequality Lu �≤ u means that
(u − Lu) �∈ P.
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We begin by defining constants A and B by

A =
∫ 1

0
Φ−1

p

(
r1−n

∫ r

0
sn−1g(s)(a(s))p−1ds

)
dr

and

B =
∫ 1

0
Φ−1

p

(
r1−n

∫ r

0
sn−1g(s)ds

)
dr.

Also, we define the following constants that are related to the function f :

F0 = lim sup
x→0+

f (x)
xp−1 , f0 = lim inf

x→0+

f (x)
xp−1 ,

F∞ = lim sup
x→+∞

f (x)
xp−1 , f∞ = lim inf

x→+∞

f (x)
xp−1 .

These constants are used in the statements of our existence and nonexistence theorems.
Our first existence result is given below. Though Krasnosel’skii’s fixed point theorem has
become quite a standard tool for finding positive solutions; the proof of the next theorem is
included here for completeness and reference purposes.

Theorem 4. If
BF1/(p−1)

0 < 1 < A f 1/(p−1)
∞ ,

then problem (3),(4) has at least one positive solution.

Proof. Choose ε > 0 such that B(F0 + ε)1/(p−1) < 1. Then, there exists H1 > 0 such that

f (x) ≤ (F0 + ε)xp−1 for 0 < x ≤ H1.

For each u ∈ P with ‖u‖ = H1, we have

(Tu)(0) =
∫ 1

0
Φ−1

p

(
r1−n

∫ r

0
sn−1g(s) f (u(s))ds

)
dr

≤
∫ 1

0
Φ−1

p

(
r1−n

∫ r

0
sn−1g(s)(F0 + ε)(u(s))p−1ds

)
dr

= (F0 + ε)1/(p−1)
∫ 1

0
Φ−1

p

(
r1−n

∫ r

0
sn−1g(s)(u(s))p−1ds

)
dr

≤ (F0 + ε)1/(p−1)
∫ 1

0
Φ−1

p

(
r1−n

∫ r

0
sn−1g(s)(u(0))p−1ds

)
dr

= (F0 + ε)1/(p−1)u(0)
∫ 1

0
Φ−1

p

(
r1−n

∫ r

0
sn−1g(s)ds

)
dr

= (F0 + ε)1/(p−1)u(0)B

< u(0) = ‖u‖,

that is, (Tu − u)(0) < 0, which implies that (Tu − u) �∈ P. So, if we let

Ω1 = {u ∈ X | ‖u‖ < H1},

then,
Tu �≥ u, for any u ∈ P ∩ ∂Ω1.

To construct Ω2, we first choose a positive real number f̂ such that f̂ < f∞ and

1 < A f̂ 1/(p−1).
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Then, we choose c ∈ (3/4, 1) and δ > 0 such that

( f̂ − δ)1/(p−1)
∫ c

0
Φ−1

p

(
r1−n

∫ r

0
sn−1g(s)(a(s))p−1ds

)
dr > 1.

Now, there exists H3 > 0 such that f (x) ≥ ( f̂ − δ)xp−1 for x ≥ H3. Let H2 = H1 + H3/a(c).
If u ∈ P with ‖u‖ = H2, then, for 0 ≤ t ≤ c, we have

u(t) ≥ a(t)‖u‖ ≥ a(c)H2 > H3.

So, if u ∈ P with ‖u‖ = H2, then

(Tu)(0) =
∫ 1

0
Φ−1

p

(
r1−n

∫ r

0
sn−1g(s) f (u(s))ds

)
dr

≥
∫ c

0
Φ−1

p

(
r1−n

∫ r

0
sn−1g(s) f (u(s))ds

)
dr

≥
∫ c

0
Φ−1

p

(
r1−n

∫ r

0
sn−1g(s)( f̂ − δ)(u(s))p−1ds

)
dr

= ( f̂ − δ)1/(p−1)
∫ c

0
Φ−1

p

(
r1−n

∫ r

0
sn−1g(s)(u(s))p−1ds

)
dr

≥ ( f̂ − δ)1/(p−1)
∫ c

0
Φ−1

p

(
r1−n

∫ r

0
sn−1g(s)(u(0)a(s))p−1ds

)
dr

= ( f̂ − δ)1/(p−1)u(0)
∫ c

0
Φ−1

p

(
r1−n

∫ r

0
sn−1g(s)(a(s))p−1ds

)
dr

> 1 · u(0) = u(0) = ‖u‖,

which means Tu �≤ u. So, if we let Ω2 = {u ∈ X : ‖u‖ < H2}, then Ω1 ⊂ Ω2, and

Tu �≤ u, for any u ∈ P ∩ ∂Ω2.

Therefore, condition (K1) of Theorem 3 is satisfied, and so there exists a fixed point of T in
P. This completes the proof of the theorem.

Our next theorem is a companion result to the one above.

Theorem 5. If
BF1/(p−1)

∞ < 1 < A f 1/(p−1)
0 ,

then the boundary value problem (3),(4) has at least one positive solution.

The proof of Theorem 5 is similar to that of Theorem 4 and is, therefore, left to
the reader.

4. Nonexistence Results and Example

In this section, we give some sufficient conditions for the nonexistence of positive
solutions.

Theorem 6. Suppose that (H) holds. If f (x) < (x/B)p−1 for all x ∈ (0,+∞), then problem
(3),(4) has no positive solutions.

Proof. Assume, on contrary, that u(t) is a positive solution of problem (3),(4). Then, u ∈ P,
u(t) > 0 for 0 < t < 1, and

u(0) =
∫ 1

0
Φ−1

p

(
r1−n

∫ r

0
sn−1g(s) f (u(s))ds

)
dr
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<
∫ 1

0
Φ−1

p

(
r1−n

∫ r

0
sn−1g(s)(u(s)/B)p−1ds

)
dr

= B−1
∫ 1

0
Φ−1

p

(
r1−n

∫ r

0
sn−1g(s)(u(s))p−1ds

)
dr

≤ B−1
∫ 1

0
Φ−1

p

(
r1−n

∫ r

0
sn−1g(s)(u(0))p−1ds

)
dr

= u(0)B−1
∫ 1

0
Φ−1

p

(
r1−n

∫ r

0
sn−1g(s)ds

)
dr

= u(0)B−1B = u(0),

which is a contradiction. The proof of the theorem is now complete.

In a similar fashion, we can prove the next theorem.

Theorem 7. Suppose that (H) holds. If f (x) > (x/A)p−1 for all x ∈ (0,+∞), then problem
(3),(4) has no positive solutions.

We conclude this section with an example.

Example 1. Consider the following p-Laplace boundary value problem:

Δpw(x) + λg(|x|) f (w(x)) = 0, x ∈ Ω, (11)

w = 0, x ∈ ∂Ω, (12)

where λ > 0 is a parameter, p = 4, Ω ⊂ R2 is the unit open ball centered at the origin, and

g(t) = 1 − t2, 0 ≤ t ≤ 1,

f (u) = λu3 · 1 + 8u
1 + u

, u ≥ 0.

It is clear that, if we seek a radially symmetric solution only, then problem (11),(12) reduces to the
following problem:

t−1(tΦ4(u′(t))
)′
+ g(t) f (u(t)) = 0, 0 < t < 1, (13)

u′(0) = 0, u(1) = 0. (14)

Here, Φ4(x) = x3.
We easily see that problem (13),(14) is a special case of problem (3),(4) in which n = 2 and

p = 4. In this case, we have a(t) = 1 − t2/3. Also, we have F0 = f0 = λ and F∞ = f∞ = 8λ. It
is clear that

λx3 < f (x) < 8λx3, x > 0.

Calculations by using a standard Computer Algebra System (CAS) indicate that

A ≈ 0.317485, B ≈ 0.550302.

From Theorem 4, we see that if

3.906 ≈ 1
8A3 < λ <

1
B3 ≈ 6.0006, (15)

then problem (13),(14) has at least one positive solution. From Theorems 6 and 7, we see that if

either λ <
1

8B3 ≈ 0.7501 or λ >
1

A3 ≈ 31.2487 (16)
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then problem (13),(14) has no positive solutions.
It follows that, if (15) holds, then problem (11),(12) has at least one radially symmetric positive

solution. And if (16) holds, then problem (11),(12) has no radially symmetric positive solutions.

5. Conclusions

In summary, we present a new lower estimate for radially symmetric positive solutions
to the Dirichlet boundary value problem for the p-Laplace equation. The proof of this
new lower estimate is elementary, making it accessible to undergraduate students. As
an application, some sufficient conditions for the existence and nonexistence of positive
solutions are obtained. In proving the existence results, we apply Krasnosel’skii’s fixed
point theorem on cones.

Some future developments we would like to see include

• Using the lower estimate in conjunction with other fixed-point theorems to establish
new existence results;

• Using the lower estimate to solve the corresponding singular boundary value problem.
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