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Abstract: The research scope of the papers published in this Special Issue mainly focuses on high-
precision and high-reliability positioning, navigation, and timing (PNT) with Global Navigation
Satellite System (GNSS) or multi-source sensors, resilient PNT with GNSSs or multi-source sensors in
challenging environments, integrated PNT with GNSSs and multi-sensor systems, applications of
PNT with GNSSs or multi-source sensors, etc.

Keywords: PNT; GNSS; multi-sensor system; challenging environment; applications of GNSSs and
multi-sensor systems

1. Introduction

Global Navigation Satellite Systems (GNSSs) provide high-precision positioning, nav-
igation, and timing (PNT) capabilities in open areas and have gained widespread use
in various fields, including high-precision monitoring and intelligent transportation [1].
However, their performance is hindered in challenging environments where signals are
susceptible to reflection, refraction, diffraction, and blockage by buildings [2–4]. These
factors can degrade signal quality, leading to inconsistent or disrupted PNT with GNSSs.
Fortunately, certain sensors complement GNSSs, and thus multi-source sensors, including
the inertial measurement unit (IMU), light detection and ranging (LiDAR), and vision and
odometer sensors, are extensively explored and employed, particularly in autonomous
driving and ground unmanned vehicles [5–8]. Simultaneous Localization and Mapping
(SLAM) stands out as a notable application of multi-source sensor fusion, attracting sig-
nificant attention due to its high robustness and accuracy [9,10]. The diversification of
GNSS constellations, multi-source sensors, and observation environments put forward
higher requirements for technology and algorithms to maintain high-precision and high-
reliability PNT services [11]. Advanced algorithms serve as the key to solving practical
application issues related to GNSSs and multi-source sensors, thereby expanding their
scope of applications.

This Special Issue aimed to present studies covering improved methods and the
latest challenges in PNT, especially in challenging environments, covering a wide range of
research investigations and practical applications. Both theoretical and applied research
contributions in GNSSs and multi-source sensor fusion technologies in all disciplines were
considered. Topics may cover anything from high-precision and high-reliability PNT
with GNSS or multi-source sensors, resilient PNT with GNSS or multi-source sensors
in challenging environments, integrated PNT with GNSS and multi-sensor systems, and
applications of PNT with GNSS or multi-source sensors. Therefore, new algorithms for high-
precision positioning and navigation, fusion of multi-sensor systems, software development

Remote Sens. 2024, 16, 4403. https://doi.org/10.3390/rs16234403 https://www.mdpi.com/journal/remotesensing1
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for data collection, integration, and processing, and their applications in various fields are
all included.

2. Overview of Contributions

This section provides a synthesis of the key findings and contributions from each paper
published in the Special Issue “High-Precision and High-Reliability Positioning, Navigation,
and Timing: Opportunities and Challenges”. Here, we examine each contribution to
highlight its significance in advancing methodologies, addressing current challenges, and
enhancing the overall understanding of PNT in diverse environments.

Dai et al. (contribution 1) proposed a structural health monitoring (SHM) scheme
where an inertial measurement unit (IMU) and multi-antenna GNSS were tightly integrated.
The phase centers of multiple GNSS antennas were transformed into the IMU center,
which increased the observation redundancy and strengthened the positioning model. To
evaluate the performance of the tight integration of an IMU and multiple GNSS antennas,
high-rate vibrational signals were simulated using a shaking table (i.e., vibrational test
platform), and the errors of horizontal displacements of different positioning schemes
were analyzed using recordings of a high-precision ranging laser as the reference. The
results demonstrated that applying triple-antenna GNSS/IMU integration for measuring
the displacements can achieve an accuracy of 2.6 mm, which was about 33.0% and 30.3%
superior to the accuracy achieved by the conventional single-antenna GNSS-only and
GNSS/IMU solutions, respectively.

Zhang et al. (contribution 2) proposed an improved Carrier Smoothing Code (CSC)
algorithm by considering Satellite-induced Code Bias (SICB) for Geostationary Orbit (GEO),
Inclined Geosynchronous Orbit (IGSO), and Medium Earth Orbit (MEO) satellites in Bei-
Dou Navigation Satellite System (BDS) constellations. The correction model of SICB for
IGSO/MEO satellites was established by using a 0.1-degree interval piecewise weighted
least squares Third-Order Curve Fitting Method (TOCFM). The Variational Mode Decom-
position combined with Wavelet Transform (VMD-WT) was proposed to establish the
correction model of SICB for the GEO satellite. To verify the proposed method, the SICB
model was established by collecting 30 Multi-GNSS Experiment (MGEX) BDS stations in
different seasons of the year, in which the BDS data of ALIC, KRGG, KOUR, GCGO, GAMG,
and SGOC stations were selected for 11 consecutive days to verify the effectiveness of the
algorithm. The results showed that there was obvious SICB in the BDS-2 Multipath (MP)
combination, but the SICB in the BDS-3 MP was smaller and could be ignored. Compared
with the modeling in the references, TOCFM was more suitable for IGSO/MEO SICB
modeling, especially for the SICB correction at low elevation angles. After the VMD-WT
correction, the root mean square error (RMSE) of SICB of B1I, B2I, and B3I in GEO satel-
lites was reduced by 53.35%, 63.50%, and 64.71%, respectively. Moreover, Zhang et al. [2]
carried out Ionosphere-Free Single Point Positioning (IF SPP), Ionosphere-Free CSC SPP
(IF CSC SPP), CSC single point positioning with the IGSO/MEO SICB correction based
on the TOCFA method (IGSO/MEO SICB CSC), and CSC single point positioning with
the IGSO/MEO/GEO SICB correction based on VMD-WT and TOCFA (IGSO/MEO/GEO
SICB CSC), respectively. Compared to IF SPP, after the IGSO/MEO/GEO SICB correction,
the overall improvement was about 10%, and positioning improved significantly.

Guo et al. (contribution 3) designed and implemented a satellite–ground microwave
time–frequency comparison system and method based on a three-frequency mode in
response to the requirements for assessing the long-term stability of high-precision space
atomic clocks. Ground-based experimental results demonstrated that the equipment layer
could achieve a satellite–ground time comparison accuracy better than 0.4 ps (RMS), with
the equipment delay stability (ADEV) for all three frequencies being better than 8 × 10−18 at
86,400. The authors constructed a satellite–ground time–frequency comparison simulation
and verification platform by using the ground-based experimental results. This platform
realized ultra-high-precision satellite–ground time–frequency comparison based on the
China Space Station. After correcting various transmission delay errors, the satellite–
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ground time comparison achieved an accuracy better than 0.8 ps and an ADEV better
than 2 × 10−17 at 86,400 s (i.e., 24 h). This validation of the novel satellite–ground time–
frequency comparison system and method, capable of achieving a stability of 10−17 order,
was not only a significant contribution to the field of space time–frequency systems but
also paved the way for future advancements and applications in space science exploration.

Cai et al. (contribution 4) proposed a low-cost and robust multi-sensor data fusion
scheme for heterogeneous multi-robot collaborative navigation in indoor environments,
which integrated data from IMUs, laser rangefinders and cameras, among others, into
heterogeneous multi-robot navigation to address the challenge in the multi-robot collabora-
tive systems. Based on Discrete Kalman Filter (DKF) and Extended Kalman Filter (EKF)
principles, a three-step joint filtering model was used to improve the state estimation, and
the visual data were processed using the YOLO deep learning target detection algorithm
before updating the integrated filter. The proposed integration was tested at multiple
levels in an open indoor environment following various formation paths. The results
showed that the three-dimensional root mean square error (RMSE) of indoor cooperative
localization was 11.3 mm, the maximum error was less than 21.4 mm, and the motion error
in occluded environments was suppressed. The proposed fusion scheme was able to satisfy
the localization accuracy requirements for efficient and coordinated motion of autonomous
mobile robots.

Sun et al. (contribution 5) considered the code multipath to be influenced not only
by the elevation and azimuth angle of certain stations to satellites but also to be related
to satellite characteristics such as nadir angle. Hence, azimuth angle, elevation angle,
nadir angle, and carrier-to-noise power density ratio were taken as multiple indicators
to characterize the multipath significantly. Then, the authors proposed an Attention-
based Convolutional Long Short-Term Memory (AT-Conv-LSTM) that fully exploited the
spatiotemporal correlations of multipaths derived from multiple indicators. The main
processing procedures using AT-Conv-LSTM were given. Finally, the AT-Conv-LSTM was
applied to a station for 16 consecutive days to verify the multipath mitigation effectiveness.
Compared with sidereal filtering, multipath hemispherical map (MHM), and trend-surface
analysis-based MHM, the experimental results showed that using AT-Conv-LSTM could
decrease the root mean square error and mean absolute error values of the multipath
error by more than 60% and 13%, respectively. The proposed method could correct the
code multipath to the centimeter level, which was one order of magnitude lower than the
uncorrected code multipath. Therefore, the proposed AT-Conv-LSTM network could be
used as a powerful alternative tool to realize multipath reduction and will be of broad
practical value in the fields of standard and high-precision positioning services.

Yu et al. (contribution 6) presented a novel RGB-D dynamic Simultaneous Localization
and Mapping (SLAM) method that improved the precision, stability, and efficiency of local-
ization while relying on lightweight deep learning in a dynamic environment compared
to the traditional static feature-based visual SLAM algorithm. Based on ORB-SLAM3, the
GCNv2-tiny network instead of the ORB method improved the reliability of feature extrac-
tion and matching and the accuracy of position estimation; then, the semantic segmentation
thread employed the lightweight YOLOv5s object detection algorithm based on the GSConv
network combined with a depth image to determine potentially dynamic regions of the
image. Finally, to guarantee that the static feature points are used for position estimation,
dynamic probability is employed to determine the true dynamic feature points based on the
optical flow, semantic labels, and the state in the last frame. The authors have performed
experiments on the TUM datasets to verify the feasibility of the algorithm. Compared with
the classical dynamic visual SLAM algorithm, the experimental results demonstrated that
the absolute trajectory error was significantly reduced in dynamic environments and that
the computing efficiency was improved by 31.54% compared with the real-time dynamic
visual SLAM algorithm with close accuracy, demonstrating the superiority of DLD-SLAM
in accuracy, stability, and efficiency.
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Quan et al. (contribution 7) proposed a robust method based on factor graphs to
improve the performance of integrated navigation systems. The authors proposed a
detection method based on multi-conditional analysis to determine whether the GNSS was
anomalous or not. Moreover, the optimal weight of GNSS measurement was estimated
under anomalous conditions to mitigate the impact of GNSS outliers. The proposed method
is evaluated through real-world road tests, and the results showed that the positioning
accuracy of the proposed method was improved by more than 60% and the missed alarm
rate was reduced by 80% compared with the traditional algorithms.

Li et al. (contribution 8) proposed a stationary detection method based on the fast
Fourier transform (FFT) for a stopped land vehicle with an idling engine. An urban
vehicular navigation experiment was conducted with the authors’ GNSS/IMU integration
platform. Three stops for 10 to 20 min were set to analyze, generate, and evaluate the
FFT-based stationary detection method. The FFT spectra showed clearly idling vibrational
peaks during the three stop periods. Through the comparison of FFT spectral features
with decelerating and accelerating periods, the amplitudes of vibrational peaks were put
forward as the key factors of stationary detection. For consecutive stationary detection
in the GNSS/IMU integration process, a three-second sliding window with a one-second
updating rate of the FFT was applied to check the amplitudes of the peaks. For the
assessment of the proposed stationary detection method, GNSS observations were removed
to simulate outages during three stop periods, and the proposed detection method was
conducted together with the ZVU. The results showed that the proposed method achieved a
99.7% correct detection rate, and the divergence of the positioning error constrained via the
ZVU was within 2 cm for the experimental stop periods, which indicated the effectiveness
of the proposed method.

Wang et al. (contribution 9) investigated the feasibility of extracting ionospheric
observables from the multi-GNSS single-frequency (SF) UU-PPP to reduce the cost of
ionospheric modeling. Meanwhile, the between-satellite single-differenced (SD) method
was applied to remove the effects of the receiver differential code bias (DCB) with short-
term time-varying characteristics in regional ionospheric modeling. With the introduction
of the proposed SD ionospheric model into the multi-GNSS kinematic RT SF-PPP, the
initialization speed of vertical positioning errors can be improved by 21.3% in comparison
with the GRAPHIC (GRoup And PHase Ionospheric Correction) SF-PPP model. After
reinitialization, both horizontal and vertical positioning errors of the SD ionospheric-
constrained (IC) SF-PPP can be maintained within 0.2 m. This proved that the proposed
SDIC SF-PPP model could enhance the continuity and stability of kinematic positioning
in the case of some GNSS signals missing or blocked. Compared with the GRAPHIC
SF-PPP, the horizontal positioning accuracy of the SDIC SF-PPP in kinematic mode can be
improved by 37.9%, but its vertical positioning accuracy may be decreased. Overall, the 3D
positioning accuracy of the SD ionospheric-constrained RT SF-PPP can be better than 0.3 m.

Pang et al. (contribution 10) introduced a cost-effective Simultaneous Localization
and Mapping (SLAM) system design that maintains high performance while significantly
reducing costs. First, the authors developed a robust robotic platform based on a traditional
four-wheeled vehicle structure, enhancing flexibility and load capacity. Then, they adapted
the SLAM algorithm using the LiDAR-inertial odometry framework coupled with the Fast
Iterative Closest Point (ICP) algorithm to balance accuracy and real-time performance.
Finally, they integrated the 3D multi-goal Rapidly exploring Random Tree (RRT) algorithm
with Nonlinear Model Predictive Control (NMPC) for autonomous exploration in complex
environments. Comprehensive experimental results confirmed the system’s capability for
real-time, autonomous navigation and mapping in intricate indoor settings, rivaling more
expensive SLAM systems in accuracy and efficiency at a lower cost.

Zhang et al. (contribution 11) presented a Sage–Husa Kalman filter where the noise
uncertainty of strong motion acceleration was adaptively estimated to integrate GNSSs
and strong motion acceleration for obtaining the displacement series. The performance
of the proposed method was validated by a shake table simulation experiment and the
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GNSS/strong motion co-located stations collected during the 2023 Mw 7.8 and Mw 7.6
earthquake doublet in southeast Turkey. The experimental results showed that the proposed
method enhanced adaptability to the variation in strong motion accelerometer noise levels
and improved the precision of the integrated displacement series. The displacement derived
from the proposed method was up to 28% more accurate than that from the Kalman filter
in the shake table test, and the correlation coefficient with respect to the references arrived
at 0.99. The application to the earthquake event showed that the proposed method can
capture seismic waveforms at a promotion of 46% and 23% in the horizontal and vertical
directions, respectively, compared with the results of the Kalman filter.

Tian et al. (contribution 12) conducted a systematic and comprehensive evaluation
of signal characteristics for BDS-3, BDS-2, GPS, and Galileo regarding carrier-to-noise
ratio (C/N0), code noise, and multipath in the contribution using the data of the globally
distributed MGEX stations. First, a comprehensive signal quality assessment method for
BDS/Galileo/GPS satellites and signals was proposed, including C/N0 modeling and MP
modeling. For BDS, the BDS-3 satellites apparently have higher signal power than the
BDS-2 satellites at the same frequency, such as B1I and B3I, and the B2a signal of BDS-3
was superior to other signals with a signal power that was comparable with the superior
Galileo E5 and GPS L5 signals. Among all the signals, the observation accuracy of E5
was the highest regardless of receiver type, and the next highest was BDS-3 B2a and GPS
L5. Due to not being affected by the systematic code errors of BDS-2, the observations
of BDS-3 satellites contained smaller multipath errors than those of BDS-2 satellites. As
for the multipath suppression performance, the BDS-3 B2a signal, GPS L5, and Galileo
E5 and E5b performed better than the other signals, which may be related to their wide
signal bandwidths.

Mu et al. (contribution 13) proposed a cruise speed model based on the self-attention
mechanism for speed estimation in Autonomous Underwater Vehicle (AUV) navigation
systems. By utilizing variables such as acceleration, angle, angular velocity, and propeller
speed as inputs, the self-attention mechanism was constructed using Long Short-Term
Memory (LSTM) for handling the above information, enhancing the model’s accuracy
during persistent bottom-track velocity failures. Additionally, this study introduced the
water-track velocity information to enhance the generalization capability of the network
and improved its speed estimation accuracy. The sea trial experiment results indicated that
compared to traditional methods, this model demonstrated higher accuracy and reliability
with both position error and velocity error analysis when the used Pathfinder DVL fails,
providing an effective solution for AUV combined navigation systems.

Gong et al. (contribution 14) proposed a new unified positioning algorithm using
multi-sensor time difference in arrival (TDOA) and frequency difference in arrival (FDOA)
measurements without prior target source information. The method represented the
position of the target source using MPR and described the localization problem as a
weighted least squares (WLS) problem with two constraints. The authors first obtained
the initial estimates by WLS without considering the constraints and then investigated
a two-step error correction method based on the constraints. The first step corrected the
initial estimate using the Taylor series expansion technique, and the second step corrected
the DOA estimate in the previous step using the direct error compensation technique
based on the properties of the second constraint. Simulation experiments showed that the
method was effective for the unified positioning of moving targets and could achieve the
Cramer–Rao lower bound (CRLB).

Liu et al. (contribution 15) proposed a new method to locate UAVs via shape and
spatial relationship matching (SSRM) of buildings in urban scenes as an alternative to
UAV localization via image matching to address the challenge of capturing the unique
characteristics of buildings due to their high density and similarity in shape within urban
environments. SSRM first extracted individual buildings from UAV images using the
SOLOv2 instance segmentation algorithm. Then, these individual buildings were subse-
quently matched with vector e-map data (stored in .shp format) based on their shape and
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spatial relationship to determine their actual latitude and longitude. Control points were
generated according to the matched buildings, and finally, the UAV position was deter-
mined. SSRM can efficiently realize high-precision UAV localization in urban scenes. Under
the verification of actual data, SSRM achieved localization errors of 7.38 m and 11.92 m in
downtown and suburban areas, respectively, with better localization performance than the
radiation-variation insensitive feature transform (RIFT), channel features of the oriented
gradient (CFOG), and SSM algorithms. Moreover, the SSRM algorithm exhibited a smaller
localization error in areas with higher building density.

Li et al. (contribution 16) developed a dual-media stereovision measurement simula-
tion model and conducted comprehensive simulation experiments to analyze the impact
of refraction-parameter deviations on measurements in underwater structure visual nav-
igation. The results indicated that to achieve high-precision underwater measurement
outcomes, the calibration method for refraction parameters, the distribution of the targets
in the field of view, and the distance of the target from the camera must all be meticu-
lously designed. These findings provided guidance for the construction of underwater
stereo-vision measurement systems, the calibration of refraction parameters, underwater
experiments, and practical applications.

3. Conclusions and Future Directions

The contributions to this Special Issue highlight significant advancements in high-
precision and high-reliability PNT technologies. These advancements pave the way for
more reliable, accurate, and versatile PNT solutions across various applications, from
structural health monitoring to autonomous navigation systems. Key takeaways include:

(1) Integration of multiple sensors and data fusion techniques greatly enhances PNT
accuracy and reliability, particularly in challenging environments.

(2) Machine learning and deep learning approaches show promise in improving GNSS
signal processing, multipath mitigation, and SLAM algorithms.

(3) Innovative algorithms for error correction and adaptive filtering demonstrate substan-
tial improvements in positioning accuracy across various applications.

(4) The BeiDou Navigation Satellite System (BDS) continues to evolve, with BDS-3 show-
ing improved performance over BDS-2 in many aspects.

As the field continues to evolve, interdisciplinary approaches combining advances in
sensor technology, signal processing, artificial intelligence (AI), and application-specific
knowledge will likely play a crucial role in driving innovation in PNT systems. Therefore,
based on the findings published in this Special Issue, future research directions in PNT
may include:

(1) Further development of robust multi-sensor fusion algorithms for seamless indoor–
outdoor navigation.

(2) Exploration of advanced AI techniques for real-time signal processing and error
mitigation in GNSSs and other positioning systems.

(3) Investigation of novel approaches for PNT in emerging fields such as autonomous
vehicles, UAVs, and underwater navigation.

(4) Continued improvement of GNSS performance, particularly in challenging urban and
indoor environments.

These future directions aim to address the ongoing challenges in PNT technologies while
pushing the boundaries of accuracy, reliability, and applicability across various domains.
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Abstract: There has been substantial research on multi-medium visual measurement in fields such as
underwater three-dimensional reconstruction and underwater structure monitoring. Addressing the
issue where traditional air-based visual-measurement models fail due to refraction when light passes
through different media, numerous studies have established refraction-imaging models based on the
actual geometry of light refraction to compensate for the effects of refraction on cross-media imaging.
However, the calibration of refraction parameters inevitably contains errors, leading to deviations
in these parameters. To analyze the impact of refraction-parameter deviations on measurements in
underwater structure visual navigation, this paper develops a dual-media stereo-vision measurement
simulation model and conducts comprehensive simulation experiments. The results indicate that to
achieve high-precision underwater-measurement outcomes, the calibration method for refraction
parameters, the distribution of the targets in the field of view, and the distance of the target from the
camera must all be meticulously designed. These findings provide guidance for the construction of
underwater stereo-vision measurement systems, the calibration of refraction parameters, underwater
experiments, and practical applications.

Keywords: multi-medium visual measurement; stereo vision; refraction-parameter deviation; under-
water navigation

1. Introduction

Multi-medium visual measurement is a crucial branch of the visual-measurement
field. Common multi-media visual-measurement scenarios include situations where light
traverses two mediums, such as air–water, or three mediums, such as air–glass–air and
air–glass–water [1–3]. Examples of such scenarios include the visual measurement of
thermal deformation of alumina ceramic plates and stainless-steel plates under radiant
heating [4] as well as the three-dimensional shape measurement of underwater bridge
piers [5].

Multi-medium visual measurement has garnered extensive attention in areas such
as underwater deformation monitoring and three-dimensional reconstruction [1,5–8]. In
addition, it can also be applied to underwater navigation and positioning. In underwater
engineering, such as immersed tunnels, the precise alignment of prefabricated elements re-
quires high-precision underwater navigation and positioning [9]. Similarly, the autonomous
recovery of autonomous underwater vehicles (AUVs) necessitates accurate navigation [10].
For navigation scenarios involving the docking of underwater structures at close range,
visual measurement becomes a crucial method due to its rich information and high accu-
racy [11,12].
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In underwater visual measurement, cameras are either placed in waterproof housings
or positioned above the water surface. Consequently, a significant characteristic is that
light propagation undergoes refraction at the interfaces of different media, causing the
light rays to deviate from a straight-line path. Therefore, traditional air-based stereo-
vision measurement models are no longer applicable under multi-media conditions [13].
When the camera images an object through a sealed housing’s transparent window, the
interface typically comes in shapes such as planar, hemispherical, and cylindrical [14–16].
Hemispherical ports counteract the refraction effect through their specific shapes, do not
reduce the field of view, and can withstand high pressure in deep water, but they may
induce image blurring and have higher manufacturing requirements [17,18]. Cylindrical
interfaces have the advantage of allowing a larger field of view (in one direction) and
are relatively simple and cost-effective to manufacture [19]. Although flat interfaces can
significantly reduce the field of view and may introduce chromatic aberration, they are
well-studied and have lower manufacturing costs [17]. Therefore, the focus of this paper is
on underwater visual measurement with a flat interface.

The basic problems of underwater photogrammetry with a flat interface, including the
basic formulas and the methods of automatic reduction to one perspective, were explored
decades ago [20–22]. Since no later than the 1960s, researchers have proposed numerous
methods for refractive compensation in planar underwater visual measurement. Broadly,
these methods can be categorized into three solutions. The first approach involves placing
two auxiliary calibration grids or a calibration frame within the object space, utilizing the
calibration structure to determine the direction of light prior to its incident [23]. However,
this method necessitates the customization of specific calibration grids or frames, making
the implementation process relatively complex. The second approach entails focal length
compensation or refraction absorption, wherein the pixel offset error induced by refraction
is approximated as an error stemming from changes in lens focal length or distortion. By
calibrating the camera’s lens or distortion parameters, the influence of refraction can be
mitigated [24–26]. Nevertheless, due to the nonlinearity of the refractive effect and the
dependence of the refraction error’s magnitude on the object’s position and the angle of
incidence, these methods only approximate the elimination of refraction effects [13,27]. The
final method is geometric refraction correction, which involves establishing an underwater
refraction imaging model through geometric analysis to explicitly account for the refractive
effects, thereby theoretically ensuring the accuracy of the measurement results [8,28–37].

Research on geometric refraction correction primarily focuses on the development
of calibration methods and measurement models. The two-stage underwater camera
calibration represents a groundbreaking advancement in the field [29]. The optimization
method can also be employed to calibrate parameters such as the normal vector of the
refraction interface and the distance from the interface to the camera. However, it is essential
to assign appropriate initial values in advance [30]. Leveraging the geometric property that
two incident light rays from the same object entering the stereo camera lie on the same plane,
the calibration parameters can also be optimized through 3D point remapping [33]. The
refractive index varies with different light frequencies. The parameters of the underwater
camera can be calibrated by calculating the offset in the imaging position of different
light frequencies emitted by a specially designed calibration plate placed at the same
location [31]. To eliminate measurement errors caused by the spherical refraction interface,
an underwater calibration algorithm based on an advanced non-dominated sorting genetic
algorithm is proposed. This approach, utilizing an integrated geometric refraction model,
significantly enhances the performance of underwater visual measurement [35].

Regarding the influence of refraction on visual measurements, for multi-view (more
than two views) underwater 3D reconstruction, the influence on the accuracy of the 3D
reconstruction is evaluated quantitatively and systematically in [25]. Tong [38] used sim-
ulation and real experiments to analyze the influence of different refraction parameters
and proposed measures to reduce the influence. However, due to the inevitability of
measurement errors, the calibrated refraction parameters must contain deviations. When
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using the refraction-measurement model for refraction compensation, the impact of the
parameter deviation on the visual measurement results is also worth studying. In addi-
tion, conducting underwater experiments is relatively challenging, so performing relevant
analyses through simulation experiments is a preferable option. To the best of our knowl-
edge, current research does not provide specific algorithms for simulation analysis. To
investigate the impact of refraction-parameter deviations on stereo-visual measurement
in dual-media conditions, this paper first established a simulation model for stereo-visual
measurement in the air–water scenario. Then, a thorough analysis of the relationship
between the stereo-visual measurement model and refraction-parameter deviations us-
ing simulation experiments was conducted. The conclusions can provide guidance for
the construction of underwater stereo-vision measurement systems, refraction parameter
calibration, underwater experiments, and practical applications.

The subsequent structure of the paper is arranged as follows. Section 2 introduces the
light refraction geometry and measurement model for multi-media stereo vision, estab-
lishes a simulation algorithm for dual-media stereo-visual measurement and provides a
simulation experimental design. The experimental results are presented and discussed in
Sections 3 and 4, respectively. Section 5 presents the conclusions.

2. Methods

2.1. Measurement Model

The stereo-vision measurement system includes left and right cameras. It is assumed
that the cameras image the target through a transparent window inside a watertight cabin.
The material of the transparent window is generally glass. The light reflected or emitted
by the underwater target reaches the camera through three mediums and two refraction
interfaces. Both interfaces are assumed to be planar and parallel to each other. The refraction
geometry is shown in Figure 1.

Figure 1. Refractive geometry for air–glass–water medium with two flat interfaces.

The camera coordinate system of the left camera O¯XYZ is used as the reference
coordinate system. P is the target point underwater and its coordinate is (X, Y, Z). The
two refraction interfaces are denoted as π1 and π2. The distance from the left camera
optical center to the interface π1 is D, and the thickness of the glass layer is d. Due to
refraction, the optical paths between P and the cameras are not straight lines, but the
broken lines PB¯BA¯AO and PBR¯BRAR¯AROR according to Snell’s law. The refraction
angles of the two rays are denoted by αi and βi. It is assumed that both cameras have been
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carefully calibrated. The camera coordinate system of the right camera is OR¯XRYRZR,
and the coordinates of the origin OR in the reference coordinate system are denoted as
t =

(
tx, ty, tz

)
, which is the translation vector of the right camera with respect to the

left camera.
The target point P is the intersection point of the lines BP and BRP. If the equations

of two lines are found, the intersection point is the coordinate of P. The derivation of the
equations for the lines BP and BRP is detailed below [1].

After obtaining two images from the left and right cameras and completing target
recognition and matching, the point Pv is obtained using conventional triangulation. The
points O, A, and Pv are collinear. The points OR, AR, and Pv are also collinear. The
coordinates of the points O, OR, and Pv are known. Therefore, the unit direction vectors of
the lines OA and ORAR can be obtained as⎧⎨⎩ ζ1 =

(
ζ1

x, ζ1
y, ζ1

z

)
= Pv−O
‖Pv−O‖

ξ1 =
(

ξ1
x, ξ1

y, ξ1
z

)
= Pv−OR
‖Pv−OR‖

(1)

In terms of the direction vector of the line and a point on the line, the equations for the
lines OA and ORAR are ⎧⎨⎩

X
ζ1

x
= Y

ζ1
y
= Z

ζ1
z

X−tx
ξ1

x
=

Y−ty

ξ1
y

= Z−tz
ξ1

z

(2)

The points A and AR are the intersections of the lines OA and ORAR with the interface
π1. Assuming that the normal vector N =

(
Nx, Ny, Nz

)
of π1 is known, the equation for π1

can be expressed as
NXT + D = 0 (3)

Combining Equations (2) and (3), the coordinates of the points A and AR can be
obtained as ⎧⎪⎨⎪⎩

A =
(

Ax, Ay, Az
)
= − D

N(ζ1)
T ζ1

AR = −NtT+D
N(ξ1)

T ξ1 + t
(4)

According to the vector inner product formula, the angles α1 and β1 are⎧⎪⎨⎪⎩
α1 = N·ζ1

‖N‖‖ζ1‖
β1 = N·ξ1

‖N‖‖ξ1‖
(5)

Based on Snell’s law, the angles α2 and β2 are⎧⎨⎩α2 = sin−1
(

n1·sin α1
n2

)
β2 = sin−1

(
n1·sin β1

n2

) (6)

For the left camera, the lines OA, AB, and the camera optical axis are coplanar, so the
normal vector of this plane is ⎧⎪⎪⎨⎪⎪⎩

nl =

⎡⎣0
0
1

⎤⎦
k = ζ1 × nl =

[
k1 k2 k3

] (7)

where nl is the unit direction vector of the left camera optical axis. Through Rodriguez’s formula,
the rotation matrix RA and the unit direction vector ζ2 of the line AB are determined as
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⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

RA = I + [k]×sin α2 + [k]2×(1− cos α2)

[k]× =

⎡⎣ 0 −k3 k2
k3 0 −k1
−k2 k1 0

⎤⎦
ζ2 =

(
ζ2

x, ζ2
y, ζ2

z

)
= (RAnl)

T∥∥∥(RAnl)
T
∥∥∥

(8)

where I is the unit matrix and [k]× is the antisymmetric matrix generated by k.
Considering the thickness d of the glass layer, we can obtain the coordinates of point B

B =
(

Bx, By, Bz
)
= A +

d
cos α2

ζ2 (9)

Because α2 = α3, similar to Equations (6) and (8), the angle α4 and the unit direction
vector of line BP can be calculated as⎧⎪⎪⎪⎨⎪⎪⎪⎩

α4 = sin−1
(

n2·sin α2
n3

)
RB = I + [k]×sin α4 + [k]2×(1− cos α4)

ζ3 =
(

ζ3
x, ζ3

y, ζ3
z

)
= (RBnl)

T∥∥∥(RBnl)
T
∥∥∥

(10)

For the line BP, the direction vector ζ3 and a point on the line, B, are known; therefore,
its equation is

X− Bx

ζ3
x

=
Y− By

ζ3
y

=
Z− Bz

ζ3
z

(11)

For the right camera, the equation of the line BRP can be obtained following a similar
derivation process

X− BRx

ξ3
x

=
Y− BRy

ξ3
y

=
Z− BRz

ξ3
z

(12)

In theory, the intersection of the lines BP and BRP is point P, which is to be determined.
However, the lines BP and BRP may not intersect due to the errors. Suppose there exists a
point H on the line BP and a point M on the line BRP and the line from H to M forms the
vector Q ⎧⎨⎩

H = B + s1ζ3

M = BR + s2ξ3

Q = H−M
(13)

where s1 and s2 are the coefficients. Our aim is to minimize the length of Q. The length of
the common perpendicular segment of two lines is the smallest. If Q is perpendicular to
both lines BP and BRP, we have {

Q·ζ3 = 0
Q·ξ3 = 0

(14)

According to Equation (14), s1 and s2 can be calculated, and then H and M can be
obtained. The average of H and M is considered to be point P

P =
H + M

2
(15)

The model is derived for a three-medium scenario, but with minor adjustments, it is
equally applicable to a two-medium scenario.

2.2. Dual-Medium Simulation Model

The refraction parameters involved in the above measurement model include the
distance from the camera to the refraction interface, the normal direction of the refraction
interface, and the refractive indices of different mediums. Calibration errors of these param-
eters may impact the measurement results. Therefore, it is necessary to assess the impact
of refractive parameter deviations on measurement results. However, conducting such
evaluations through underwater experiments is relatively complex. In contrast, simulation
experiments are more efficient. Consequently, this paper investigates a simulation model
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for underwater stereo-visual measurement. For simplicity, the camera is placed in the air
and the target in the water, constituting an air–water scenario.

Taking the left camera coordinate system as the reference coordinate system. Given the
coordinate of the target P is (x1, y1, z1); the distance from the left camera to the refractive
interface is D, and the normal vector of the refractive interface is N. The camera is in the air.
The target is in the water. The refractive indices of air and water are n1 and n2, respectively.

For the left camera, the refraction geometry is shown in Figure 2. O represents the
camera’s optical center. P is the target. C is the refraction point. C′ is the intersection of the
line OP with the refractive interface. The objective is to calculate the coordinate of point C.

Figure 2. Refracted light in the dual-medium scenario.

The direction vector ϕ of line OP is

ϕ = P−O (16)

The entire refracted light PC-CO is in a refraction plane. Since PC and CO are coplanar
with the normal vector N of the refraction interface, the normal vector of the refraction
plane is

χ =
ϕ×N
‖ϕ×N‖ =

[
χ1 χ2 χ3

]
(17)

where × denotes the cross-product. The unit normal vector of the intersection CC′ of the
refraction plane and the refractive interface is

ω =
χ×N
‖χ×N‖ =

[
ω1 ω2 ω3

]
(18)

Determine the coordinate of a point on line CC′, denoted as (x0, y0, z0). Then, the line
CC′ can be expressed as ⎧⎨⎩

x = x0 + λω1
y = y0 + λω2
z = z0 + λω3

(19)

where λ is the coefficient.
According to the relationship between refractive index and the speed of light, if the

speed of light in vacuum is c, the speeds of light in the air and water are{
va =

c
n1

vw = c
n2

(20)
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Let the coordinate of point C be (x2, y2, z2). The lengths of the two optical paths OC
and CP are ⎧⎨⎩ lOC =

√
x2

2 + y2
2 + z2

2

lCP =
√
(x1 − x2)

2 + (y1 − y2)
2 + (z1 − z2)

2
(21)

According to the relationship between speed, time, and distance, the propagation time
of the light between O and P is

t =
lOC
va

+
lCP
vw

(22)

The refraction point C is a point that satisfies Equation (19). When all refraction
parameters are known, Equation (22) is a function of coefficient λ. According to Fermat’s
principle, the actual path of light passing between two fixed points in space is always the
shortest optical path (or propagation time). So, the derivative of t is equal to 0, which is

f (λ) =
dt
dλ

= 0 (23)

Solving the above formula, we can get the value of λ. Combining it with Equation (19),
the coordinate of point C can be obtained. So, the complete propagation path of the light is
established. For the right camera, the simulation process is similar, the only difference is
that lOC in Equation (21) is transformed into the following form

lOC =

√
(xR − x2)

2 + (yR − y2)
2 + (zR − z2)

2 (24)

where (xR, yR, zR) is the coordinate of the origin of the right camera coordinate system in
the reference coordinate system.

The target pixel coordinate can be easily calculated based on the coordinate of point
C and the camera parameters using the perspective imaging model, thus realizing the
simulation of the imaging process.

2.3. Simulation Experimental Design

The purpose of the simulation experiments is to evaluate the impact of the deviations
of the refraction parameters in the measurement model on the results and to provide
guidance for the calibration of the refraction parameters and the construction of the mea-
surement system. The cameras are placed in the air and the target in the water, as shown in
Figure 3. The intrinsic and external parameters of the left and right cameras are known. The
two cameras share the same refraction interface. The refraction parameters that affect the
measurement model are the distance D between the left camera and the refraction interface,
the medium refractive indices n1 and n2, and the refraction interface normal N. Since the
refraction angle of the light depends on the relative refractive index, the relative refractive
index nr = n1/n2 is discussed in the simulation experiments.

Figure 3. Air–water dual-medium visual-measurement scenario with one flat interface.
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Take the left camera coordinate system as the reference coordinate system. We sim-
ulated a 2.8× 2.8 m2 square area and its distribution in the XOY plane of the left camera
coordinate system is shown in Figure 4. The Z coordinate of the square area can take
different values.

Figure 4. Target area and four feature points.

The intrinsic and external parameters of the left and right cameras and the target
coordinates are known. The true values of the refraction parameters are set as shown in
Table 1. The simulation process is shown in Figure 5. The experiments consist of four steps.
(1) In step 1, based on the camera parameters, the refraction parameters without deviations,
and the target coordinates, the simulation model proposed in Section 2.2 is used to simulate
the coordinate of the refraction point. (2) In step 2, based on the camera parameters and
the refraction point coordinate, the corresponding pixel coordinate is obtained using the
perspective imaging model. (3) In step 3, based on the camera parameters, the target pixel
coordinate, and the refraction parameters with certain deviations, the refractive measure-
ment model described in Section 2.1 is used to estimate the target coordinate. (4) In step
4, the deviation between the estimated and the true coordinates of the target is calculated.
The true coordinate of the target is (X, Y, Z), and the estimated coordinate obtained in
step 3 is (Xe, Ye, Ze). The coordinate deviations are denoted as dx, dy, and dz, respectively.⎧⎨⎩

dx = Xe − X
dy = Ye −Y
dz = Ze − Z

(25)

Table 1. True values of the refraction parameters.

D nr N

10 cm n1
n2

= 1
1.33 (0, 0, 1)

The total coordinate deviation is given by dp, where dp =
√

d2
x + d2

y + d2
z . Since the

pixel coordinate of the target is obtained through the imaging model in step 2, they do
not contain any errors. The refraction parameters used in step 3 are added with a certain
amount of deviation, with the requirement that the deviation is added to only one parameter
at a time. Three experiments were conducted. Experiment 1 discussed the sensitivity of the
measurement model to the refraction parameters. Experiment 2 analyzed the influence of
the fixed refraction-parameter deviation on the targets at different distances. Experiment 3
studied the change in the measurement results of fixed targets with the refraction parameter.

16



Remote Sens. 2024, 16, 3286

Figure 5. Simulation process.

3. Results

3.1. Experiment 1

The aim of this experiment is to analyze the sensitivity of the dual-medium visual
measurement model to deviations in refraction parameters. All targets are on the same
plane with a Z-distance of 5 m as shown in Figure 4. After intentionally introducing devia-
tions in the refraction parameters, the measured coordinates of the targets will differ from
their true values, resulting in coordinate discrepancies. Sequentially introduce deviations
in different refraction parameters until the maximum dp reaches 1 cm.

First, analyze the impact of deviation in the relative refractive index. The true value of
the relative refractive index is nr. When the relative refractive index changes to 0.99843nr,
the maximum dp is 10 mm, as shown in Figure 6. In this case, the discrepancies in X and Y
coordinate components are minimal, less than 0.5 mm, and dp primarily depends on the
discrepancy in Z coordinate component. Relative refractive index deviation is more likely
to cause Z coordinate deviation. The maximum coordinate discrepancy occurs at the four
corners in Figure 4.

Figure 6. Coordinate deviation of the target area at Z = 5 m when the relative refraction is 0.99843nr.
max

(
dp

)
= 10 mm.

Next, analyze the impact of deviation in the distance from the camera to the refractive
interface. The true value of this distance is denoted as D. When the distance changes to
0.805D, the maximum dp is 10 mm, as shown in Figure 7. The deviation in D has a minimal
impact on X and Y coordinate components of the target, less than 1 mm. It is more likely to
cause discrepancies in the Z coordinate component, with dp primarily depending on the
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discrepancy in the Z coordinate component. The maximum coordinate discrepancy occurs
at the four corners in Figure 4.

Figure 7. Coordinate deviation of the target area at Z = 5 m when the distance is 0.805D.
max

(
dp

)
= 10 mm.

Finally, analyze the impact of deviation in the normal direction of the refractive surface.
The theoretical direction of the refractive surface normal is parallel to the optical axis of the
left camera. The normal direction deviation is represented by the simultaneous rotation of
its three attitude angles by the same angle. When the rotation angle is 0.195◦, the maximum
dp is 10 mm, as shown in Figure 8. Deviations in the normal direction have a significant
impact on all three coordinate components of the targets, especially the Y and Z coordinates.
The extent of the impact varies across different points in the target area; points closer to the
center are less affected, while points closer to the four corners are more affected.

Figure 8. Coordinate deviation of the target area at Z = 5 m when the rotation angle of the normal
direction of the refractive surface is 0.195◦. max

(
dp

)
= 10 mm.

Combining Figures 6–8, it is evident that the dual-medium stereo-vision measurement
model is highly sensitive to deviations in the relative refractive index. Even a deviation of
0.157% can result in a maximum comprehensive coordinate deviation of up to 10 mm in
the target area. In contrast, the measurement model is less sensitive to deviations in the
distance from the camera to the refractive interface and the normal direction of the refractive
interface. This indicates that in underwater experiments or practical applications, special
attention must be given to the calibration of the refractive indices of different mediums.

3.2. Experiment 2

In Experiment 1, we fixed the target area at Z = 5 m. However, with the same
deviations in refraction parameters, the coordinate deviations of the target might differ if
the distance between the target and the camera varies. Four different Z values were set
at intervals of 2 m, ranging from 2 m to 8 m. Deviations were sequentially introduced
in different refraction parameters: the relative refractive index changed to 0.99843nr, the
distance from the camera to the refractive interface changed to 0.805D, and the rotation
angle of the refractive surface normal was 0.195◦.
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3.2.1. Target Plane

When the relative refractive index is 0.99843nr, the coordinate discrepancies of the
three components in the target area are shown in Figures 9–11. For different Z values,
the discrepancies in X and Y coordinate components remain relatively small. However,
the smaller the Z value, the relatively larger the dx and dy discrepancies. At Z = 2 m,
the maximum values of dx and dy are approximately ±2 mm and ±1 mm, respectively.
The discrepancy in Z coordinate component, dz, exhibits a significantly different variation
pattern. The larger the Z value, the larger the dz. At Z = 2 m, dz is the smallest, with a
maximum value of approximately 7.4 mm in the edge of the target area; at Z = 8 m, dz is
the largest, with both the maximum and minimum values of dz in the target area being
approximately 14 mm. Since dz is significantly larger than dx and dy, when the relative
refractive index deviation is constant, the closer the target is to the camera, the smaller the
resulting dp. The closer the target is to the center of the region, the smaller its dp is.

Figure 9. X coordinate deviation of the target area at different distances from the camera when the
relative refraction is 0.99843nr.

Figure 10. Y coordinate deviation of the target area at different distances from the camera when the
relative refraction is 0.99843nr.

Figure 11. Z coordinate deviation of the target area at different distances from the camera when the
relative refraction is 0.99843nr.

When the distance from the camera to the refractive interface is 0.805D, the coordinate
discrepancies of the three components in the target area are shown in Figures 12–14. When
Z is greater than 4 m, as Z value increases, dx, dy, and dz gradually decrease. At Z = 2 m,
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the maximum values of dx and dy are approximately ±18 mm, and the maximum value of
dz is approximately 54 mm, occurring at the four corners of the area. Overall, the farther
the target plane is from the camera, the smaller the values of dx, dy, and dz, resulting in a
smaller dp. Additionally, the closer the target is to the center of the area, the smaller the dp.

Figure 12. X coordinate deviation of the target area at different distances from the camera when the
distance is 0.805D.

Figure 13. Y coordinate deviation of the target area at different distances from the camera when the
distance is 0.805D.

Figure 14. Z coordinate deviation of the target area at different distances from the camera when the
distance is 0.805D.

When the three attitude angles of the refractive interface normal all change by 0.195◦,
the coordinate discrepancies of the three components in the target area are shown in
Figures 15–17. As the Z value increases from 2 m to 8 m, dx changes from positive to
negative, and its absolute value generally increases. At Z = 2 m, there is a noticeable
variation in dx among different points in the target area, with dx decreasing towards the
center of the area. As the Z value increases, the variation in dx among different points in
the target area gradually diminishes. At Z = 8 m, dx reaches −7 mm. The dy component
exhibits a similar trend with changes in Z; the larger the Z value, the greater the absolute
value of dy. At Z = 2 m, there is a noticeable variation in dy among different points in the
target area, with dy decreasing towards the center of the area. The relationship between dz
and Z is relatively less pronounced. As Z increases from 2 m to 8 m, dz slightly decreases.
However, there are noticeable differences in dz among different points in the target area.
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Figure 15. X coordinate deviation of the target area at different distances from the camera when the
rotation angle of the normal direction of the refractive surface is 0.195◦.

Figure 16. Y coordinate deviation of the target area at different distances from the camera when the
rotation angle of the normal direction of the refractive surface is 0.195◦.

Figure 17. Z coordinate deviation of the target area at different distances from the camera when the
rotation angle of the normal direction of the refractive surface is 0.195◦.

3.2.2. Fixed Points

To further analyze the relationship between the coordinate deviations of the target and
Z value, we selected the four corners of the target area shown in Figure 4 as feature points
for the experiment. The Z values range from 0.5 m to 8 m. Based on the previous analysis,
we know that when Z value is fixed, these four points have the largest dp within the entire
target area. We sequentially analyzed different refraction parameters, maintaining the same
deviation magnitudes as discussed earlier.

When the relative refractive index is 0.99843nr, the coordinate discrepancies of the
four points are shown in Figure 18. As Z increases, dx and dy exhibit similar trends: both
initially increase rapidly, then decrease, with the rate of decrease being fast at first and then
slowing down. The maximum values of dx and dy occur around Z = 2.2 m, about ±1 mm.
For dx, the trends for P1 and P3, as well as P2 and P4, are completely consistent. For dy, the
trends for P1 and P2, as well as P3 and P4, are very similar. dz increases with increasing Z.
Since dz is much larger than dx and dy, dp mainly depends on the magnitude of dz. The
trends for dz and dp are consistent for all four points.
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Figure 18. Relationship between the coordinate components of the four target points and Z when the
relative refraction is 0.99843nr.

When the distance from the camera to the refractive interface is 0.805D, the coordinate
discrepancies of the four points are shown in Figure 19. Similar to Figure 18, as Z increases,
dx and dy exhibit similar trends: both initially increase rapidly, then decrease, with the rate
of decrease being fast at first and then slowing down. However, the maximum values of dx
and dy occur around Z = 1.7 m, reaching approximately ±30 mm. For dx, the trends for P1
and P3, as well as for P2 and P4, are consistent. For dy, the trends for P1 and P2, as well as
for P3 and P4, are similar. dz decreases with increasing Z, with the rate of decrease being
fast at first and then slowing down, with an inflection point around Z = 3 m. Although the
values of dx and dy around Z = 1.7 m exceed ±20 mm, they are still an order of magnitude
smaller than dz. Therefore, dp mainly depends on the magnitude of dz. The trends for dz
and dp are consistent for all four points; as Z value increases, dp decreases.

Figure 19. Relationship between the coordinate components of the four target points and Z when the
distance is 0.805D.

When the three attitude angles of the refraction interface normal change by 0.195◦,
the coordinate component deviations of the four points are shown in Figure 20. For Z
less than 3 m, the variation trends of the three coordinate component deviations are quite
complex. The variation trends of dz differ significantly among different points. For points
P2 and P3, dz is significantly larger than dx and dy. In contrast, for points P1 and P4, the
deviations in all three coordinate components are relatively small. When Z is greater than
3 m, dx and dy generally increase with increasing Z, while dz shows no obvious variation.
Additionally, dx and dy are similar in magnitude and significantly larger than dz. For points
P2 and P3, when Z is small, the deviation dp is mainly determined by dz. However, when
Z is large, dp is primarily influenced by dx and dy. For points P1 and P4, dp is affected by
all three coordinate components, and as Z increases, the influence of dx and dy becomes
more significant.
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Figure 20. Relationship between the coordinate components of the four target points and Z when the
rotation angle of the normal direction of the refractive surface is 0.195◦.

3.3. Experiment 3

In the aforementioned experiments, we fixed the deviation of the refraction parame-
ters. However, as the deviations of the refraction parameters vary, the target-coordinate
deviations also change accordingly. Therefore, we conducted this experiment to investigate
the relationship between target-coordinate deviations and refraction-parameter deviations.
In this experiment, we continued to select the four feature points shown in Figure 4 as
targets and set Z to 5 m. We then sequentially introduced deviation sequences into different
refraction parameters.

The relationship between the deviations of the target coordinate and the three refraction-
parameter deviations—relative refractive index, the distance from the camera to the refraction
interface, and the direction of the refraction interface normal—is shown in Figures 21–23. dx,
dy, and dz all exhibit a linear relationship with the refraction-parameter deviations. The dp plot
displays a symmetric distribution with the true value of the refraction parameters as the axis
of symmetry, indicating that both positive and negative deviations in the refraction parameters
have the same effect on dp. The smaller the deviation in the refraction parameters, the closer
dx, dy, dz, and dp are to zero.

Figure 21. Relationship between target-coordinate deviation and relative refractive index deviation.

Figure 22. Relationship between target-coordinate deviation and camera-to-refractive-interface
distance deviation.
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Figure 23. Relationship between target-coordinate deviation and normal direction of refraction interface.

4. Discussion

When the cameras are in the air and the target is in the water, the light path from
the target to the camera undergoes refraction, causing the light to deviate from a straight
line. In order to compensate for refraction in stereo-vision measurement, a theoretically
rigorous approach is to use the refraction-measurement model. However, the refraction-
measurement model involves refraction parameters such as the refractive indices of the
medium, the distance from the camera to the refractive interface, and the normal of the
refractive interface. These parameters generally require calibration. Due to the presence
of errors, the calibrated refraction parameters inevitably differ from their true values.
The experimental results in Section 3 demonstrate the impact of deviations in refraction
parameters on stereo-vision measurement.

The impact of different refraction-parameter deviations on stereo-vision measurement
varies, and the magnitude of this impact is related to the distribution of the target within
the plane. Deviations in the relative refractive index and the distance between the target
and the camera are more likely to cause discrepancies in the Z coordinate, while their effect
on the X and Y coordinates is relatively minor. The total coordinate deviation of the target
is primarily determined by the Z-coordinate deviation, and the closer the target is to the
edge of the field of view, the greater its coordinate deviation. Deviations in the orientation
of the refractive interface normal significantly affect all three coordinate components of the
target. Regardless of the type of refraction-parameter deviation, the overall trend shows
that the closer the target is to the edge of the field of view, the greater the coordinate
deviation. A deviation of 0.157% in the relative refractive index can result in a maximum
target-coordinate deviation of up to 1 cm, indicating that the stereo-visual measurement
model is highly sensitive to deviations in the relative refractive index in the air–water
condition. In underwater experiments or practical applications, special attention must be
paid to the calibration of refractive indices of different media.

The impact of refraction-parameter deviations on stereo-visual measurement is related
to the distance between the target and the camera, and the influence of different refraction
parameters varies with the distance. When the deviation in the relative refractive index is
constant, the closer the target is to the camera, the smaller the total coordinate deviation
of the targets. When the deviation in the distance between the camera and the refractive
interface is constant, as the distance between the target and the camera increases, the
deviations in X and Y coordinates first increase rapidly, then decrease rapidly, and finally
stabilize, while the deviation in Z coordinate decreases rapidly and gradually stabilizes.
The deviation in the Z coordinate is an order of magnitude greater than that in the X and Y
coordinates, so the overall coordinate deviation is determined by the Z coordinate deviation.
For points at different positions within the field of view, the overall coordinate deviations
caused by the deviations in the relative refractive index and the camera-refractive interface
distance with the changes in the Z coordinate are approximately consistent. The impact of
deviations in the orientation of the refractive interface normal varies more complexly with
changes in the Z coordinate and is related to the distribution of the target. In underwater
experiments or practical applications to mitigate the impact of deviations in the orientation
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of the refractive interface normal, attention must be paid to the distribution of the target
within the field of view.

For the fixed targets, changes in the refraction parameters deviations result in linear
variations in the X, Y, Z, and overall coordinate deviations. The larger the deviation in
the refraction parameters, the greater the coordinate deviations. Whether the refraction
parameter is greater or less than its true value, the impact on the overall coordinate
deviation remains the same.

According to the experimental results, targets closer to the edge of the field of view
are more susceptible to the influence of refraction-parameter deviations. This indicates that
the current refraction-measurement model performs better for targets near the center of the
field of view, while it may not fully eliminate refraction errors for targets near the edges.

5. Conclusions

This paper introduces a refraction-based visual-measurement model, establishes a
stereo-vision simulation model, and conducts specific simulation experiments to study in
detail the impact of deviations in various refraction parameters on stereo-visual measure-
ment. The simulation accurately determines the coordinates of the refraction points based
on the positions of the cameras and the targets, thereby obtaining the corresponding pixel
coordinates used to estimate the targets’ position. Experimental results demonstrate that
the influence of different refraction-parameter deviations on stereo-visual measurement
varies and is related to the distribution of the target within the field of view and the distance
between the target and the camera. The overall coordinate deviation of the target is not
necessarily minimized by simply increasing or decreasing the distance between the target
and the camera; it must be determined based on the magnitude of the deviation in each
refraction parameter. The stereo-visual measurement model is particularly sensitive to de-
viations in the relative refractive index in the air–water condition. Therefore, in underwater
experiments or practical applications, careful calibration of the refractive indices of different
media and attention to the distribution of targets within the field of view are crucial. The
work and conclusions presented in this paper provide guidance for the construction of
underwater stereo-vision measurement systems, refraction parameter calibration, under-
water experiments, and practical applications. However, this study primarily conducted
research by developing a simulation model and performing simulated experiments. Future
work should include underwater experiments to validate the conclusions of this paper. In
addition, the current refraction-measurement model is more suitable for targets located
near the center of the field of view, whereas its effectiveness for targets at the edges is
less than ideal, indicating the need for further optimization of the refraction-measurement
model in the future.
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Abstract: In urban scenes, buildings are usually dense and exhibit similar shapes. Thus, existing
autonomous unmanned aerial vehicle (UAV) localization schemes based on map matching, especially
the semantic shape matching (SSM) method, cannot capture the uniqueness of buildings and may
result in matching failure. To solve this problem, we propose a new method to locate UAVs via shape
and spatial relationship matching (SSRM) of buildings in urban scenes as an alternative to UAV
localization via image matching. SSRM first extracts individual buildings from UAV images using
the SOLOv2 instance segmentation algorithm. Then, these individual buildings are subsequently
matched with vector e-map data (stored in .shp format) based on their shape and spatial relationship
to determine their actual latitude and longitude. Control points are generated according to the
matched buildings, and finally, the UAV position is determined. SSRM can efficiently realize high-
precision UAV localization in urban scenes. Under the verification of actual data, SSRM achieves
localization errors of 7.38 m and 11.92 m in downtown and suburb areas, respectively, with better
localization performance than the radiation-variation insensitive feature transform (RIFT), channel
features of the oriented gradient (CFOG), and SSM algorithms. Moreover, the SSRM algorithm
exhibits a smaller localization error in areas with higher building density.

Keywords: UAV; vision-based localization; spatial relationship matching; urban scene

1. Introduction

Owing to the small size and suitable flexibility of unmanned aerial vehicles (UAVs),
their application fields are constantly expanding, and they are now widely employed in map
surveying and mapping, emergency search and rescue, and military reconnaissance fields.
Accurate positioning is a prerequisite for UAVs to realize precise control and mission execution.
A global navigation satellite system (GNSS) provides a universal localization method for UAVs.
However, GNSS signals readily exhibit interference in complex electromagnetic environments,
where the localization accuracy and reliability are substantially affected [1,2]. Therefore, it is
necessary to assist UAVs in obtaining localization information by other means.

UAVs generally carry small, low-cost vision sensors when performing tasks; thus, vision-
based localization methods are generally used to replace or as a supplement to GNSS [3,4]. In
the vision-based localization method, vision sensors carried by UAVs are used to sense the
environment, after which the position of the UAVs can be estimated upon image information
processing and analysis. Vision-based localization methods do not rely on external signals and
provide the advantage of high anti-interference ability [5,6]. For outdoor scenes, the absolute
visual localization method based on image matching is the most commonly employed method.
The basic principle of vision-based localization is to match real-time UAV images with geo-
referenced data, which are usually pre-collected UAV images or satellite remote sensing
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images. Then, the latitude and longitude corresponding to each pixel of the UAV images can
be obtained, and finally, the UAV position can be determined [1,7]. Image matching methods,
such as the mutual information (MI) and scale-invariant feature transform (SIFT) methods,
generally involve the use of grayscale and texture features to describe image similarity [8,9],
leading to failure when there are temporal, imaging perspective, and lighting condition
differences between the geo-referenced images and UAV images.

To address the above challenges, a few researchers have proposed the use of map-
based matching methods to achieve UAV localization. For example, Nassar [10] considered
the shape and area information of individual buildings to match UAV images and a map
produced from geo-referenced images, referred to as semantic shape matching (SSM).
Map-based matching methods can overcome the differences in color and lighting between
UAV images and geo-referenced data [11]. However, the existing map-based matching
methods entail the use of geo-referenced maps produced from remote sensing images,
which indicates that these maps may not be accurate. Moreover, buildings within a given
city are often dense and exhibit similar shapes. Thus, the use of the shape and area of
buildings alone cannot capture their uniqueness. Therefore, prior methods can hardly
match individual buildings in urban scenes.

According to theory in the field of geographic information science, the most accurate
feature of a spatial scene is the spatial relationship [12], and the spatial distribution of
buildings can uniquely characterize a given scene. To address the issue of insufficient
feature descriptions and the possible failure of existing map-based matching methods,
we propose a novel autonomous UAV localization method for urban scenes based on the
shape and spatial relationship matching (SSRM) of buildings in urban scenes. The main
contributions of our study are as follows:

(1) In SSRM, vector e-map data (stored in .shp format) are used as geo-referenced data
instead of pre-collected images or image-based map-related data. The e-map data
can comprehensively reflect the individual and spatial relationship characteristics of
buildings while also reducing the amount of data prestored on UAVs.

(2) We propose a scene matching method in which the shape information and spatial
relationships of buildings are used to match UAV images and geo-referenced data.
Compared with existing map-based matching methods, increased consideration is
given to the spatial relationships between buildings, thus greatly enhancing the
robustness of the matching process.

(3) The effectiveness of the SSRM method is verified via simulation flight data. Moreover,
we compare the SSRM method with the radiation-variation insensitive feature trans-
form (RIFT) feature matching algorithm [13], the channel features of oriented gradient
(CFOG) template matching algorithm [14], and the SSM map-based algorithm [10].
The consideration of the shape and spatial relationships of buildings ensures the
accuracy of scene matching and provides far better localization accuracy.

The remainder of the article is organized as follows: In Section 2, related works are
introduced. Our method is described in detail in Section 3. Section 4 presents the datasets
and experiments used to validate our method. Section 5 provides the validation results and
the comparative experimental results. The factors that may introduce errors are discussed in
Section 6. Finally, conclusions are noted, and future research directions are outlined in Section 7.

2. Related Works

Absolute visual localization methods are classified into two categories according to
the geo-referenced data used for matching UAV images: image-based matching methods
and map-based matching methods.

2.1. Image-Based Matching Methods

Image-based matching methods generally involve the use of high-resolution satellite
remote sensing images or pre-collected UAV images with geographic coordinates as geo-
referenced images, and UAV images are matched with geo-referenced images. The different
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image matching algorithms can be subcategorized into template matching methods, feature
matching methods, and deep learning-based matching methods.

2.1.1. Template Matching Methods

Template matching methods typically entail the use of robust similarity metrics to
evaluate image similarity within a predefined window. Grayscale information within the
window is usually employed to compute the similarity metric [15]. In template matching,
it is usually assumed that there is a slight difference in appearance between the UAV and
geo-referenced images, so the sum of squared differences (SSD) and normalized cross
correlation (NCC) are often adopted as standard matching templates [16,17]. However,
there are inevitably temporal differences, illumination differences, and imaging perspective
differences between UAV images and geo-referenced images, which usually lead to the
failure to match UAV images with geo-referenced images [1]. The MI method is more
robust to radiometric differences and can resist nonlinear grayscale distortion, and this
method aims to calculate the mutual information value in the search window between the
UAV images and geo-referenced images [18].

In addition to using grayscale information to calculate the template similarity metric,
the geometric structure and morphological features can be used to characterize the sim-
ilarity between images. For projecting and quantizing histograms of oriented gradients
(PQ-HOG) algorithms [19], oriented gradients are used as the basic similarity metric. More-
over, the phase congruency (PC) exhibits greater resistance to illumination and contrast
variations, so the histogram of oriented phase congruency (HOPC) method utilizes phase
congruency intensity and orientation information to construct similarity descriptors [20].
On the basis of the HOPC method, the CFOG method extracts local descriptors at each
pixel to form a pixelwise feature representation, and fast Fourier transform (FFT) is used to
define a fast similarity measure in the frequency domain for improving the computational
efficiency [14]. The CFOG method has been successfully applied in multiple commercial
software programs and has been demonstrated to achieve higher matching accuracy than
does the HOPC method [21].

When land cover change occurs between the UAV and geo-referenced image, the
above methods may fail. In addition, template matching methods usually require iteration
of the geo-referenced image to calculate the similarity within different windows, after
which the window with the greatest similarity can be selected as the matching result, thus
requiring intensive computations.

2.1.2. Feature Matching Methods

Feature matching methods do not search the whole image but extract representative
feature points, so the number of computations is greatly reduced [22]. However, seasonal
or color differences between the UAV and geo-referenced images usually lead to the failure
of classical feature operators, such as the SIFT, ORB, and SURF operators. Therefore,
researchers have proposed image matching schemes that are independent of image color
differences. Mantelli et al. proposed the abBRIEF operator, which aims to use the CIE
color space to match UAV and geo-referenced images [23]. Ye et al. constructed a feature
detector, namely, the minimum moment of phase congruency (MMPC)-Lap method, to
robustly determine luminance and contrast variations [20]. Li et al. proposed the RIFT
method, using PC for feature point detection and the maximum index map (MIM) for
feature description, which makes it unsensitive to nonlinear radiation distortions [13].

In noncooperative areas, high-resolution satellite remote sensing images are usually
used as geo-referenced images, and the scale and color differences between UAV and geo-
referenced images are generally obvious. In addition, when there are imaging perspective
differences between the UAV and geo-referenced images, the complex three-dimensional
structure within a city can lead to different areas of exposure for buildings, and a land
object can exhibit varying appearances. Therefore, feature matching methods typically
yield more mismatched points and a poorer performance.
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2.1.3. Deep Learning-Based Matching Methods

Compared with template matching and feature matching methods, deep learning-
based methods provide superior learning and representation capabilities for deep features
of images and provide obvious advantages in scene adaptation and robustness. Initially,
deep learning-based methods were used to extract more representative feature points,
which were then combined with traditional similarity metrics to increase the image align-
ment accuracy [24,25]. Thereafter, research gradually shifted to end-to-end image matching.
Danial et al. proposed a self-supervised image matching framework, SuperPoint, which
first utilized feature points of simple geometric shapes (e.g., triangles, rectangles) in a
synthetic dataset to train a pre-trained detector, namely, MagicPoint. The homographic
adaptation module was subsequently used to help relate the feature points across different
perspectives and scales to increase the feature point redetection rate and the cross-domain
utility [26]. Sarlin et al. proposed a network, namely, SuperGLUE, that can simultaneously
perform feature matching and nonmatching point filtering. In SuperGLUE, a graph neural
network (GNN) is used to predict the loss function of matching, solve the differentiable
optimal transport problem, and ultimately realize feature matching. Moreover, SuperGLUE
uses a flexible content aggregation mechanism based on the attention mechanism, which
enables it to perceive potential 3D scenes and perform feature matching [27]. Inspired by
the SuperGLUE architecture, Sun et al. proposed a new detector-free local image feature
matching method, namely, LoFAR. In the LoFAR method, a transformer with self- and
cross-attention layers is employed to obtain the feature descriptors of two images. Dense
matching is achieved at the coarse-grained level, and dense matching is subsequently
refined at the subpixel level [28].

The SuperPoint, SuperGLUE, and LoFAR methods are widely used in simultaneous
localization and mapping (SLAM), which also indicates that they require that the matched
images exhibit the same size. In outdoor image matching, UAV images and geo-referenced
data are always of different sizes, and iteration of the whole geo-referenced image for
matching with the UAV image is needed. Furthermore, deep learning-based methods
require numerous samples for training, and many geo-referenced images must be stored
on UAVs in advance, especially for large flight areas.

2.2. Map-Based Matching Methods

Instead of using pre-collected or satellite remote sensing images as geo-referenced
data, maps reflecting land cover are used in map-based matching methods.

UAV images may exhibit different colors due to weather and temporal differences, but
the land cover type rarely changes. Therefore, land cover data can be used as geo-referenced
data. Masselli et al. employed land cover classification results from Google Earth images as
geo-referenced data [29]; during flight, the collected images were classified to land cover and
matched with the aforementioned geo-referenced map. Choi proposed a building ratio map
(BRM) method, in which the building layer from pre-collected remote sensing images is applied
as geo-referenced data. In the BRM method, the ratio of buildings within circles with different
radii is determined to produce feature vectors, which are then used to estimate the similarity
between UAV images and the building layer for retrieving candidate UAV flight areas [11]. Hao
et al. abstracted buildings as point clouds, which could be further regarded as geo-referenced
data to match UAV images via a point cloud matching algorithm [30]. Wang et al. reported that
the shadow map is a stable feature for scene matching navigation and proposed a shadow-based
matching method for the localization of low-altitude flight UAVs [31].

Currently, only a few studies have focused on map-based matching, and there is no
unanimously recognized scheme. Moreover, existing methods still entail the use of pre-
collected remote sensing images as geo-referenced data, which introduces additional errors.

3. Methodology

In the absence of GNSS signals, if the takeoff position of the UAV is known, the
inertial navigation system (INS) can provide rough location information for the UAV within
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a certain period. The flight altitude of the UAV is generally derived from barometric
altimeters. Furthermore, the internal parameters of the camera are known, so the spatial
resolution of the UAV images can be calculated directly. The magnetometer can provide
UAV flight orientation information. Thus, UAV images can be geometrically corrected with
flight orientation information [32,33]. When the camera is at the real nadir, the latitude and
longitude of the central pixel of an image reflect the UAV position.

If the takeoff position, spatial resolution, and orientation of UAV images are known,
our method first extracts the roof outlines of individual buildings from UAV images, after
which they are matched with building entities in the e-map based on their shape and spatial
relationship. The buildings with the highest matched frequency can be used to generate
control points accordingly, which ultimately can be applied to determine the UAV position.
The overall flow is shown in Figure 1.

Figure 1. Flowchart of UAV autonomous localization in urban scenarios based on shape and spatial
relationship matching of buildings.

If the UAV location at takeoff is also unknown, then as long as the city where the UAV
is located is known and a rough location is manually specified for the UAV, SSRM takes
more time only in the first matching. And once the approximate position of the UAV at a
certain moment is determined, the matching range can be narrowed down.

3.1. Individual Building Extraction

The instance segmentation algorithm not only exhibits the characteristics of semantic
segmentation (for pixel-level classification and effective outline extraction) but also exhibits
the characteristics of target detection (for distinguishing and locating different individuals
of the same category). Therefore, the instance segmentation algorithm is generally selected

32



Remote Sens. 2024, 16, 3065

to extract individual buildings from remote sensing images. Owing to the need for fast
image interpretation in UAV localization and considering that the buildings in UAV im-
ages are almost always large targets, we use the SOLOv2 model for individual building
extraction, thereby relying on its efficiency and favorable instance segmentation ability for
large targets [34,35]. The SOLOv2 model, based on the SOLO architecture, uses ResNet101
trained on the ImageNet dataset as the backbone network to extract features. And then,
the feature pyramid network (FPN) outputs feature maps of different sizes as inputs for
the prediction head, which divides the input feature maps into S × S grids. If the center
of the object falls within a grid cell, the grid is responsible for (1) predicting the semantic
category by a category branch and (2) segmenting the object instance by a mask branch.
Finally, the SOLOv2 model uses matrix non-maximum suppression (NMS) to parallelize
the NMS, which renders it advantageous in terms of both its speed and accuracy.

Implementation Details. We use the SOLOv2 model under the MMDetection framework.
Multiscale sampling and random flipping are employed for image enhancement during
training to adapt to buildings with varying scales at different spatial resolutions. The base
learning rate is set to 0.01 with a weight decay of 0.0001 and a momentum of 0.9. The Dice
coefficient, which is a metric used to estimate the similarity between the image segmentation
results and ground-truth data, is adopted as the loss function of the mask branch. The Dice
coefficient represents the degree of overlap between the image segmentation target and the
ground truth. The maximum number of iteration epochs is set to 5000 for training.

After extracting the individual buildings from UAV images, the buildings are converted
into outline information and stored in the form of image coordinate strings. To reduce the
computational burden for subsequent scene matching, the building outlines are thinned via
the Douglas–Peucker algorithm [36]. Furthermore, individual buildings with areas smaller
than 50 pixels are removed. Considering that the UAV orientation and flight altitude are
known, the resolution of the images can be estimated, and the central pixel coordinates, actual
area, and aspect ratio of the minimum bounding rectangle for all buildings can be calculated.

3.2. Scene Matching and UAV Position Determination

It is necessary to determine the scene of UAV images before the UAV spatial location
can be obtained, which suggests the matching of semantic information interpreted from
the UAV images with the e-map to determine which building within the geographic space
corresponds to the building in the UAV images. Owing to the complexity of urban scenes
and the high frequency of similar buildings, it is unreliable to use only the shape features of
buildings for scene matching, such as in SSM [10]. Spatial scenes are most accurately char-
acterized by spatial relationships rather than the shape and size of targets [12]. Therefore,
we design a vector scene matching method based on the shape and spatial relationships of
individual buildings, and the basic concept of this approach is shown in Figure 2.

 

Figure 2. Basic diagram of the SSRM method.
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Assuming that the UAV localization uncertainty is R = 500 m, A is the UAV image, and
Map denotes the geo-referenced map, then the longest side length of each UAV image is r. The
process of matching A and Map is as follows:

(1) Iterate over building individuals Ai (1 ≤ i ≤ N) extracted from UAV images.
(2) Using the initial position of the UAV as the center and a radius of (R + r) m, perform

a spatial retrieval on Map, and the retrieval result is B. The central geographic coordinates
of the buildings Bj (1 ≤ j ≤M) in B are denoted as (Lonj, Latj).

(3) Compute the Euclidean distances (spatial resolution × pixel distance) of the central
pixel (xi, yi) of Ai from the four boundaries of the current UAV image. The distance between
Ai and the upper boundary is Lt, the distance from the lower boundary is Lb, the distance
from the left boundary is Ll, and the distance from the right boundary is Lr.

(4) Iterate over Bj. If the area ratio of Bj to Ai AreaRatio(Bj, Ai) and the minimum bound-
ing rectangle aspect ratio of Bj to Ai AspectRatio(Bj, Ai) satisfy the following relationship:

0.5 ≤ AreaRatio
(

Bj, Ai
) ≤ 2 (1)

0.5 ≤ AspectRatio
(

Bj, Ai
) ≤ 2 (2)

then, Bj matches A, and proceed to the next step. Otherwise, continue iterating over Bj.
(5) With Bj as the center, construct the buffer zone along four directions in B. The

buffer distance on the north side is Lt, the buffer distance on the south side is Lb, the buffer
distance on the west side is Ll, and the buffer distance on the east side is Lr. The buildings
within the buffer zone constitute the final candidate map to be matched.

(6) Calculate the Euclidean vector distance (Xk, Yk) between the central pixel of each
Ak(k �= i) and the central pixel of Ai and apply the spatial analysis technique to determine
whether point P(Lonj + Xk, Latj + Yk) is located in a building on the candidate map. If not,
there is no matching building for Ai, and if P is located in building Bc on the candidate map,
we further determine whether the following relationships between Ak and Bc are satisfied:

0.5 ≤ AreaRatio(Bc, Ak) ≤ 2 (3)

0.5 ≤ AspectRatio(Bc, Ak) ≤ 2 (4)

If the above relationships hold, Bc is considered successfully matched with Ak, and the
number of matches is increased by one. Otherwise, Ak is not associated with a matching building.

Finally, the frequency of successfully matched pairs of buildings in A and B is counted,
and the top N (N ≤ 15) pairs of (Am, Bm) with matched frequencies greater than 3 are adopted
as the final successfully matched pairs. Considering the uncertainty in the instance segmenta-
tion algorithm when extracting building outlines, we assume that the central coordinates of
the successfully matched Am(xm, ym) and Bm(Lonm, Latm) are the ground control point pairs.
When the UAV camera is at the real nadir, the geographic coordinates corresponding to the
central pixel of the image are the geographic coordinates of the UAV. Therefore, as expressed
in Equations (5)–(10), the geographic coordinate of the central pixel of the UAV image can
be calculated via a linear regression algorithm, and control points with an error greater than
2 times the standard deviation are excluded in the regression process:

b =
∑15

m=1
(

Latm − Lat
)
(ym − y)

∑15
m=1(ym − y)2 (5)

a = Lat− by (6)

Latcenter = bycenter + a (7)
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d =
∑15

m=1
(

Lonm − Lon
)
(xm − x)

∑15
m=1(xm − x)2 (8)

c = Lon− bx (9)

Loncenter = dxcenter + c (10)

where a, b, c, and d are the coefficients of the linear equation between the geographic coordi-
nates and the image pixel coordinates; Latm and Lonm are the central geographic coordinates
of the successfully matched building in the e-map; Lat and Lon are the mean values of
Latm and Lonm, respectively; xm and ym are the central pixel coordinates of the successfully
matched buildings in the UAV image; x and y are the mean values of xm and ym, respec-
tively; xcenter and ycenter are the central pixel coordinates of the UAV image; and Latcenter and
Loncenter are the geographic coordinates corresponding to the center of the UAV image.

4. Data and Experiments

4.1. Instance Segmentation Dataset

Considering that images acquired during UAV flights exhibit a very high spatial
resolution, we used Google Earth images with a spatial resolution of 0.3 m as the building
instance segmentation dataset, and the sources included the publicly available BONAI
dataset [37] and the self-constructed dataset for the Shijiazhuang area in China. The BONAI
dataset contains 3300 images of 1024 pixels by 1024 pixels from six cities in China: Shanghai,
Beijing, Harbin, Jinan, Chengdu, and Xi’an. As a supplement, 565 image samples from the
Shijiazhuang area were used. The roofs of the buildings in all the images are labeled in
detail and stored in Common Objects in Context (COCO) format (a commonly used sample
set format proposed by Microsoft). A total of 3000 samples were randomly selected as the
training set, 450 samples were selected as the validation set, and 415 samples were selected
as the test set. Figure 3 shows examples of our dataset.

 

Figure 3. Examples of instance segmentation datasets. The red boxes are the labeled outlines of buildings.

4.2. Geolocalization Dataset

Although the spatial resolution of low altitude UAV images is usually at the centimeter
level, image matching methods typically expect similar or identical resolutions between UAV
images and geo-referenced images to ensure matching accuracy. Even though the spatial
resolution of UAV images is particularly high, the SOLOv2 algorithm cannot guarantee
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accurate extraction of the outline of the building. In addition, a high spatial resolution also
means a large computational volume and low computational efficiency. Therefore, considering
the restrictions of UAV flights inside cities, we referred to the method of Nassar [10] to simulate
UAV images of about 0.3 m resolution with Google Earth images. We selected Shijiazhuang,
China, as the experimental area. We randomly plotted two routes in Google Earth. The first
one occurs in the downtown area with an extremely high building density, and the second
one occurs in the suburb area with a relatively low building density. A total of 17 points along
the first route and 10 points along the second route were then randomly chosen as UAV image
acquisition points. Images with a side length of 500 m, a spatial resolution of 0.235 m along
the longitudinal direction, and a spatial resolution of 0.3 m along the latitudinal direction
centered on these acquisition points were collected via Google Earth. These images exhibited
a resolution of 2127 pixels by 1675 pixels. The latitude and longitude of the image acquisition
points were recorded as the ground truth.

4.3. E-Map Dataset

The building outline vector data of Shijiazhuang, as shown in Figure 4, were obtained
from Gaode Map (an electronic map navigation software of China). The vector data are based
on the GCJ-02 coordinate system, which is a coordinate system obtained by offsetting the
WGS84 coordinates. Therefore, the vector data were reprojected to the WGS84 geographic
coordinate system via the open-source GIS software Geographic Resources Analysis Support
System (GRASS 7.0.3). Moreover, GRASS was used to calculate geometric features, such as the
area, aspect ratio, and orientation of the smallest bounding rectangle and the central latitude
and longitude of each building. The vector data employed in this study covered an area of
over 786 km2 in the Shijiazhuang area, with a total data volume of 21.1 Mb.

 

Figure 4. Electronic map vector data of a region in Shijiazhuang city from Gaode Map (an electronic
map navigation software of China), superimposed on a satellite remote sensing image.

4.4. Comparison Experiments

The geo-referenced image used in the comparison experiments was a 1 m spatial
resolution digital orthophoto image with geographic coordinate information. Notably, the
image was refined by the surveying and mapping department. The image acquisition
time was 2019, indicating that there were obvious color, imaging perspective, and scale
differences between the geo-referenced image and the UAV images, as shown in Figure 5.
Assuming that the UAV localization uncertainty is 500 m, an area of 1500 m × 1500 m com-
pletely covering the UAV image was randomly cropped within the geo-referenced image
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as the image patch to be matched. The digital orthophoto image used in the comparison
experiments covered an area of 200 km2, with a total data volume of 572 Mb.

Figure 5. Comparison between the UAV and geo-referenced image in the comparison experiments.
(a,c) show UAV images and (b,d) show subsets of the geo-referenced image, and the red boxes
indicate the positions of the UAV images in the subset.

The RIFT feature matching algorithm is insensitive to nonlinear radiation distortions and
has been validated for different types of multimodal image datasets, including optical–optical,
infrared–optical and synthetic aperture radar (SAR)–optical datasets [13]. The CFOG method
also exhibits better adaptability to image color differences and has been demonstrated as a
better algorithm than the MI and HOPC methods [14,21]. Thus, we chose the RIFT and CFOG
algorithms as comparison algorithms for the image-based method. Moreover, we chose the
SSM map-based method [10] as the ablation comparison algorithm for the SSRM method.

In the RIFT algorithm, both corner and edge points in the PC map are extracted as
feature points. Because the PC map is sensitive to the spatial resolution, we resampled
the UAV image to the spatial resolution of the geo-referenced image. The log-Gabor
convolution sequence was subsequently used to construct the MIM, and the MIM was used
to describe feature points via a SIFT-like method. Finally, an exhaustive search method
was employed to match the feature points, and the random sample consensus (RANSAC)
algorithm was used to filter outliers [13].
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The CFOG algorithm was originally used for matching remote sensing images, so it
defaults to the presence of geographic projections and coordinates in the images, and the
geometric error is relatively small. However, in our experiments, the UAV position uncertainty
is 500 m, so we first resampled the UAV image to the spatial resolution of the geo-referenced
image and then manually selected eight control point pairs to approximate the transformation
relationship between the UAV and geo-referenced images. Afterward, 200 template windows
of 140 × 140 pixels in the UAV image were selected to match the geo-referenced image, and
the central pixels of the matched windows were regarded as the final matched points [14].

In the SSM algorithm, the geo-reference map is extracted from the e-map with a
coverage area of 750 m × 750 m centered on the UAV position. The features of the
buildings in the UAV images were matched with those in the geo-reference map one by one.
The buildings with the highest sum of the area similarity, minimum bounding rectangle
similarity, and orientation similarity were regarded as successfully matched buildings, and
duplicate matching pairs were removed [10].

5. Results

5.1. Instance Segmentation Results

We conducted instance segmentation experiments on a PC with an NVIDIA Tesla
V100 GPU and 32 GB of video RAM. Figure 6 shows the building extraction results for
some of the UAV images. Buildings with clear outlines and larger areas were extracted
well. SOLOv2 achieved a value of 67.4% for AP50, which is the average precision at an
intersection over union (IoU) threshold of 0.5, and a value of 64.1% for the recall rate for
the test set, which is relatively satisfactory. However, there were still a few cases where
buildings with high similarity with the background, small areas, or no obvious differences
between individuals (e.g., buildings in urban villages) were missed. Moreover, the outlines
of some buildings were not very accurate.

 

Figure 6. Building extraction results. (a–c) show UAV images and (d–f) show building mask maps.
(a,b) show the downtown area and (c) shows the suburb area.

In terms of the processing efficiency, the average processing time for a single UAV
image was 0.433 s, with an image interpretation time of 0.4 s and a thinning time of 0.033 s
for converting building patches into outline information. Rapid extraction of individual
buildings is highly beneficial for real-time UAV localization.
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5.2. Scene Matching Results

The matching results of the RIFT algorithm are shown in Figures 7 and 8. Figure 7
shows the results with small matching errors. According to the matching results, although
there were differences in the lighting and imaging angles between the UAV and geo-
referenced images, the phases between the images remained consistent, so the matching
effect was relatively satisfactory. Figure 8 shows the results with a poor match performance.
Owing to the existence of high-rise buildings, the significant differences in lighting angles
and imaging perspectives resulted in the phase deviating between the UAV and geo-
referenced images, leading to a poor matching performance. Therefore, the RIFT algorithm
is still greatly influenced by the scene.

 
Figure 7. Good matching results of the RIFT algorithm. (a) shows the downtown area and (b) shows
the suburb area.
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Figure 8. Poor matching results of the RIFT algorithm. (a) shows the downtown area and (b) shows
the suburb area.

Figure 9 shows the matching results of the CFOG algorithm, and almost no feature
points were matched correctly. This occurred because the assumption of phase consistency
no longer holds when there are obvious lighting angle and imaging perspective differences
between the UAV and geo-referenced images.

Figure 10 shows the matching results of the SSM method. Owing to the large number
of similar buildings, many individual buildings were mismatched.
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Figure 9. Matching results of the CFOG algorithm. (a) shows the downtown area and (b) shows the
suburb area.

 

Figure 10. Matching results of the SSM method. (a,d) show the UAV images, (b,e) show the building
extraction results, and (c,f) show the e-maps. (a) shows the downtown area and (d) shows the suburb
area. The red points indicate the central points of the buildings, and the points connected by the
green lines indicate the successfully matched buildings.

41



Remote Sens. 2024, 16, 3065

Figure 11 shows the matching results of the SSRM method for three scenes. A comparison
of Figure 11a–c revealed that although some buildings in the UAV images were missed or
demonstrated less accurate edges, the scene matching process filtered out those buildings and
successfully matched those with good extraction results and clear contours. A comparison of
Figure 11d–f revealed that, owing to sensor side-view imaging, the tops and bottoms of some
tall buildings did not completely overlap, so the tops of buildings at different heights did not
fully reflect the true spatial relationships among them. However, the scene matching process
could facilitate the elimination of this inconsistency, and only buildings with consistent spatial
relationships were matched with the e-map. According to the comparison of Figure 11g–i,
owing to the phase difference, there were also inconsistencies in the e-map compared with the
UAV images, such as redundant buildings, but the scene matching process was resistant to
these e-map inaccuracies and could achieve correct scene matching.

 

Figure 11. Scene matching results of the SSRM method. (a,d,g) UAV images; (b,e,h) building
extraction results from the UAV images; and (c,f,i) e-map data. (a,d) Downtown area and (g) suburb
area. The red points indicate the central points of the buildings, and the points connected by the
green lines indicate the successfully matched buildings.

5.3. UAV Localization Results

The overall localization performance of each algorithm is detailed in Table 1. The
average UAV localization errors of the RIFT algorithm were 38.46 and 250.11 m, with root
mean square error (RMSE) values of 105.82 and 196.77 m, for the downtown and suburb

42



Remote Sens. 2024, 16, 3065

datasets, respectively. The average UAV localization errors of the CFOG algorithm were
49.59 and 59.85 m, with RMSE values of 21.45 and 35.08 m, for the downtown and suburb
datasets, respectively. The localization results are shown in Figures 12 and 13, and the
performance differences among UAV images of different methods are shown in Figure 14.
According to Figures 7 and 8, and Table 1, although the RIFT algorithm performed well in
matching certain images, its average localization error was still relatively large, indicating that
it does not completely overcome the matching difficulties caused by lighting and imaging
perspective differences. In addition, the localization error of the RIFT algorithm for the
downtown dataset was much smaller than that for the suburb dataset. This occurred because
in the suburb dataset, there were significant changes in the land cover type, as well as
significant lighting angle and brightness differences between some UAV and geo-referenced
images, resulting in significant phase consistency differences between these images and
leading to poor matching results. Moreover, the RMSE of the RIFT algorithm was relatively
large, indicating that this algorithm is not robust enough and is greatly affected by image
scenes. Although the CFOG algorithm could rarely match the feature points correctly, the
manually selected control points limited the scope of the template matching process. Therefore,
although the average localization accuracy of the CFOG algorithm was low, the localization
error and RMSE did not differ much between the urban and suburb datasets.

Table 1. UAV localization results.

Method
Error/m RMSE/m

Time/s
Downtown Suburb Downtown Suburb

RIFT 38.46 250.11 105.82 196.77 18.65
CFOG 49.59 59.85 21.45 35.08 2.01
SSM 43.74 96.44 18.12 35.81 0.748

SSRM 7.38 11.92 4.12 7.57 3.58

Figure 12. UAV localization results for the downtown dataset. The black line indicates the real UAV
flight path, and the red, green, blue, and purple lines indicate the UAV flight paths estimated by
SSRM, RIFT, CFOG, and SSM methods, respectively.
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Figure 13. UAV localization results for the suburb dataset. The black line indicates the real UAV
flight path, and the red, green, blue, and purple lines indicate the UAV flight paths estimated by the
SSRM, RIFT, CFOG, and SSM methods, respectively.

Figure 14. Comparison of the UAV localization errors of the different algorithms.

The SSM method achieved localization errors of 43.74 and 96.44 m, with RMSEs of
18.12 and 35.81 m, for the downtown and suburb datasets, respectively (Figures 12 and 13,
respectively). Sparse buildings resulted in poorer performance for the SSM algorithm for
the suburb dataset. The shape and orientation features of buildings constrained the range of
feature matching. However, multiple similar buildings in the urban scenes still limited the
matching accuracy.

The SSRM method achieved average localization errors of 7.38 and 11.92 m, with
RMSEs of 1.12 and 7.57 m, for the downtown and suburb datasets, respectively, as shown
in Figures 12 and 13, respectively. This demonstrated that the SSRM method significantly
reduced the localization error compared with the SSM method, and the denser the buildings
are, the higher the localization accuracy. In addition, the SSRM method is robust enough for
the different scenes. The SSRM method completely avoids the matching problems caused
by land cover change, image illumination, and imaging perspective differences between
the UAV and geo-referenced images.
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The CFOG algorithm is characterized by high computational efficiency, and its average
matching time is 2.01 s. Owing to the complexity of feature point extraction and description,
the RIFT algorithm achieves high computational complexity, and its average matching
time is 18.65 s (including UAV image resampling). The average time of the SSM algorithm
is 0.748 s, with the extraction of buildings from the UAV images requiring 0.4 s and the
matching process lasting 0.3 s. The average time of the SSRM method is 3.58 s, of which the
average time for building extraction from the UAV images is 0.40 s, the thinning operation
time is 0.03 s, and the average time for scene matching based on SSRM is 3.15 s. The
computational efficiency of the SSRM method is lower than that of the CFOG and SSM
algorithms but significantly greater than that of the RIFT algorithm.

6. Discussion

The building layer of the Gaode map originates from the surveying department and
exhibits a small geometric error. Although some buildings in the map may not be consistent
with the UAV images due to rapid urban renewal, it does not affect the scene matching
process and does not result in UAV localization errors.

The factor that influences the accuracy of the SSRM method is the accuracy of the
control points, i.e., the accuracy of the central position of the successfully matched building.
The central position of the building outlines is determined by the building extraction
process. The deep learning-based building extraction method mainly leads to omission and
commission errors and inaccurate outlines. Some buildings with similar features relative to
the surrounding background, such as roads, could be missed. The omission of a building
will result in it not being used as a ground control point, which does not affect the UAV
localization accuracy when there are sufficient control points. Ground targets with similar
features to those of buildings may be detected incorrectly. Misdetected buildings exhibit
fewer matches in the scene matching process and are not regarded as control points. Thus,
they do not affect the UAV localization accuracy.

The building outlines in the e-map represent the bottoms of the buildings, whereas
the building outlines extracted from the UAV images represent the building roofs. Because
there is an imaging angle in the UAV images, the roof outlines of the buildings do not
coincide with the bottom outlines, as shown in Figure 6b, which leads to errors in the
control points. For a fixed imaging angle, the higher the building is, the greater the position
deviation between the top and bottom outlines in the UAV images and the larger the control
point error. When the top outline does not overlap the bottom outline completely, the
building is not considered to calculate the control points.

7. Conclusions

In this article, a novel UAV autonomous visual localization method, namely, the SSRM
method, is proposed for urban scenes as an alternative to traditional methods based on
image matching. The SSRM method first extracts individual buildings from the UAV
images, and then uses the shape and spatial relationships of the buildings to match the
UAV images with the vector e-map. According to the matching results, control points are
generated using the center of the matched buildings, and they are applied to determine the
UAV position. The SSRM method can address the impact of lighting, scale, and imaging
perspective differences in the image matching process. The SSRM algorithm achieves a
smaller localization error in areas with denser buildings. Moreover, the SSRM method
requires much less data to be prestored on UAVs than does the image matching method,
which is more advantageous in large-area scenarios.

To illustrate the effectiveness of the SSRM method, we apply it to simulated UAV
images from Google Earth. In addition, the RIFT, CFOG, and SSM algorithms are utilized
for absolute visual localization of UAVs in comparison experiments. The results show that
the SSRM method better realizes scene localization and UAV position determination. The
obvious difference in performance between the downtown and suburb datasets shows
that the RIFT algorithm is not robust enough and is greatly affected by image scenes.
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The RIFT algorithm may still fail when there are obvious land cover changes or lighting
angle and brightness differences between the UAV and geo-referenced images, because the
assumption of phase consistency may not hold. The CFOG algorithm still cannot overcome
the problems caused by lighting and imaging differences. The SSM algorithm, although
extremely efficient computationally, results in incorrect matching due to the high similarity
of buildings, further yielding a low localization performance. The results show that the
SSRM method achieves better localization accuracy and is more robust.

Considering that the shape and spatial relationships of buildings are used for scene
matching in the SSRM method, it may fail when dense buildings do not occur in UAV
images for a long period. In addition, the SSRM method requires known orientation and
scale information of the UAV images, and a possible future research direction is a scene
matching method given an unknown orientation and scale of the UAV images.
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Abstract: When the near-field and far-field information of a target is uncertain, it is necessary to
choose a suitable localization method. The modified polar representation (MPR) method integrates
the two scenarios and achieves a unified localization with direction of arrival (DOA) estimation in the
far field and position estimation in the near field. Previous studies have only proposed solutions for
stationary environments and have not considered the motion factor. Therefore, this paper proposes
a new unified positioning algorithm using multi-sensor time difference of arrival (TDOA) and
frequency difference of arrival (FDOA) measurements without prior target source information. The
method represents the position of the target source using MPR and describes the localization problem
as a weighted least squares (WLS) problem with two constraints. We first obtain the initial estimates
by WLS without considering the constraints and then investigate a two-step error correction method
based on the constraints. The first step corrects the initial estimate using the Taylor series expansion
technique, and the second step corrects the DOA estimate in the previous step using the direct error
compensation technique based on the properties of the second constraint. Simulation experiments
show that the method is effective for the unified positioning of moving targets and can achieve the
Cramer–Rao lower bound (CRLB).

Keywords: passive localization; unified model; TDOA; FDOA; weighted least squares

1. Introduction

Passive sensor positioning technology does not actively emit signals and is character-
ized by strong survivability and long-range capabilities. It has been widely used in sensor
networks, radar, sonar, navigation, wireless communications, and other fields [1–5]. When
the sensor and the target source remain stationary, a commonly used positioning method is
to use the relevant parameters received by the sensor network, such as the time of arrival
(TOA) [6–8], time difference of arrival (TDOA) [9–12], angle of arrival (AOA) [13–15], and
received signal strength (RSS) [16,17], to establish a system of nonlinear measurement equa-
tions to estimate the source position. When there are motion characteristics of the sensor or
target, a common positioning system is the combination of multiple types of measurements
from sensors, such as the TDOA and frequency difference of arrival (FDOA) [18–21], to
obtain the position and velocity of the target at the same time.

The premise for estimating the target position based on sensor measurements is to
assume that the target is not too far away from the sensor [22], as the signal wavefront
is curved in this condition, which helps determine the unique source location. However,
the wavefront of the signal is approximately planar under far-field conditions, the target
position cannot be derived, and only the direction of arrival (DOA) estimation can be
performed. In actual scenarios, the distance of the target source location is usually un-
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known. If an inappropriate positioning algorithm is selected, the positioning performance
will decrease.

To resolve this issue, Ref. [23] initially studied the unified far-field and near-field
localization model based on the TDOA. They proposed to use the modified polar repre-
sentation (MPR) method to represent the location by decoupling the target position into
the DOA and inverse distance. Subsequently, the localization problem is transformed into
a maximum likelihood estimation (MLE) problem and solved using a Gaussian Newton
iterative method, where the initial values of the iterations are provided by the semidefinite
relaxation (SDR) method. The method achieves a unified positioning with long-range
direction finding and close-range positioning, where the position of the source is obtained
by inverse-range recovery. However, the iterative method requires a proper initial value,
otherwise divergence may occur. To eliminate the convergence problem, Ref. [22] proposed
two closed-form solution methods, SUM and GTRS, in the framework of the MPR model,
which can estimate the target parameters directly without initial values and achieve optimal
localization performance. On this basis, Ref. [24] proposed the SCO-MPR method, which
further reduced the estimation bias. In order to improve the robustness in strong noise
environments, Ref. [25] proposed two SDR methods to estimate the source parameters,
and both of their estimation performances can be close to the CRLB. Ref. [26] proposed
unified localization models based on the AOA and hybrid AOA-TDOA, which are itera-
tively solved using the initial values of the SDR method. In contrast, Ref. [27,28] proposed
AOA-based closed-form solution algorithms and SDR algorithms, respectively, which are
not iterative solution algorithms, avoiding the divergence risk in [26]. In addition, con-
sidering the difficulty of determining the propagation velocity of a signal in an unknown
medium, Ref. [29] proposed an SDR method with high noise immunity and an algebraic
solution method with low computational degree, which realizes the unified localization
of the unknown signal velocity. Although the above studies achieved significant results
in the case of a stationary target, they did not consider the case of a moving target, and
motion between the sensor and the target source is common in real application scenarios.
For instance, the strategic placement of monitoring stations along the coastline is essential
for detecting sea vessels and aerial crafts. Should we fail to anticipate their subsequent
actions through the analysis of their velocities, we might miss the preemptive opportunity,
potentially exposing us to grave dangers.

This paper investigates uniform localization without prior information about the
target for moving target scenarios. Based on available research results, we continue to
use the MPR model to express the target position and propose a new algebraic solution
approach. The method converts the nonlinear localization equation into a linear equation
by introducing auxiliary variables. Then, we obtain a WLS problem with two constraints by
analyzing the nonlinear relationship between the elements of the auxiliary vector. Among
them, the second constraint only relates to the source DOA information. We first ignore the
constraints to x◦ obtain the initial estimation by the WLS algorithm and use the constraints
to build new equations to improve the initial estimation to obtain the exact solution. Finally,
simulation experiments show that the proposed algorithm is effective.

We use bold lowercase letters for vectors and bold uppercase letters for matrices: is
the true value of x; ||x|| is the l2 norms of x; x(i) is the ith element of x; x(i : j) is the vector
consisting of the ith to jth elements of x; X(i1 : i2, j1 : j2) is the matrix consisting of row
i1 to row i2 and column j1 to column j2 of X; 0N and 1N are column vectors of 0 and 1 of
length N; OM×N denotes the M × N matrix of zero; IN is the identity matrix of size N;
diag(x1, x2) denotes the diagonal matrix with x1 and x2 on the diagonal; and � denotes the
Hadamard product.

2. Measurement Model

We choose three-dimensional space as the localization scene. As shown in Figure 1, the
position of the sensor is mi = [x◦i , y◦i , z◦i ]

T and the speed is
.

mi = [
.
x◦i ,

.
y◦i ,

.
z◦i ]

T , the position of
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the target is p◦ = [x◦, y◦, z◦]T and the speed is
.
p
◦
= [

.
x◦,

.
y◦,

.
z◦]T , and d◦i is the range between

the target source and the sensor, where i = 1, · · · , M. We set m1 as the reference sensor.

 

Figure 1. The 3D localization scenarios.

Next, we derive the equations that relate the target parameters to the TDOA and
FDOA. From the TDOA measurements, we obtain

d◦i1 = d◦i − d◦1, (1)

where d◦i1 is the range difference (RD), which is the product of the TDOA and the signal
propagation velocity, and d◦i can be expressed using the coordinates of the target as

d◦i = ‖p◦ −mi‖ =
√
(p◦ −mi)

T(p◦ −mi) (2)

To obtain the FDOA measurement formula, we take the derivative of both sides of (1)
with respect to time, and the outcome is

.
d
◦
i1 =

.
d
◦
i −

.
d
◦
1, (3)

where
.
d
◦
i1 is the range difference rate (RDR), which can be calculated from FDOA measure-

ments [18], and
.
d
◦
i denotes the range rate, which is derived from Equation (2) for time:

d◦i =
(

.
p
◦ − .

mi)
T
(p◦ −mi)

d◦i
. (4)

Considering the error due to noise in the real situation, we make the measurement
value the following:

[dT ,
.
d

T
]
T
= [d◦T ,

.
d
◦T
]
T
+ [ηT ,

.
η

T
]
T

, (5)

where d = [d21, d31, · · · , dM1]
T and

.
d = [

.
d21,

.
d31, · · · ,

.
dM1]

T
. In addition, d◦ = [d◦21, d◦31, · · · , d◦M1]

T

is the true RD vector,
.
d
◦
= [

.
d
◦
21,

.
d
◦
31, · · · ,

.
d
◦
M1]

T
is the true RDR vector, andη = [η21, η31, · · · , ηM1]

T

and
.
η = [

.
η21,

.
η31, · · · ,

.
ηM1]

T are the measurement noise vectors.
We assume that η and

.
η obey a Gaussian distribution with zero mean and

cov([
.
η

T ,
.
η

T
]
T
) =

[
Qt O(M−1)×(M−1)

O(M−1)×(M−1) Q f

]
= Q, where Qt is the covariance ma-

trix of η, and Q f is the covariance matrix of
.
η.
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3. The Proposed Location Method

Since the source range is unknown, inappropriate algorithms may be selected and
result in suboptimal positioning performance. To solve this problem, referring to [23],
this paper represents the position of the source as MPR coordinates to obtain a unified
localization model. We introduce the velocity vector

.
p
◦ and denote the vector of the target

parameters as
�
p
◦
= [α◦, β◦, g◦,

.
p
◦T
]
T

, where α◦ is the azimuth angle of the target relative to
the sensor m1, β◦ is the elevation angle of the target relative to the sensor m1, and g◦ is the
inverse range between the target and the sensor m1 and g◦ = 1/d1.

Squaring both sides of Formula (1) and combining it with formula (2), we obtain the
TDOA equation [9]:

d◦i1
2 + 2d◦i1d◦1 = mT

i mi −mT
1 m1 − 2(mi −m1)

Tp◦. (6)

From Equation (6), we can see that the TDOA equation is only related to the position
p◦ and not to the velocity

.
p
◦, so we let (6) be derived with respect to time to obtain the

FDOA equation:

.
d
◦
i1d◦i1 +

.
d
◦
i1d◦1 + d◦i1

.
d
◦
1 =

.
m

T
i mi − .

m
T
1 m1 − (

.
mi − .

m1)
T

p◦ − (mi −m1)
T .

p
◦. (7)

To express the TDOA and FDOA equations using the MPR form, we can make
p◦ = (p◦ −m1) + m1 and divide both sides of (6) and (7) by 2d◦1:

d◦i1 = (m1 −mi)
T—

p
◦
+ 0.5(

∣∣∣∣∣∣mi −m1

∣∣∣∣∣∣2 − d◦i1
2)g◦, (8)

.
d
◦
i1 = (

.
m1 − .

mi)
T—

p
◦
+ [(mi −m1)

T .
mi −

.
d
◦
i1d◦i1]g

◦ − (mi −m1)
T .

p
◦g◦ − d◦i1

.
d
◦
1g◦, (9)

where
—
p
◦

is the unit vector of the m1 pointing to the target, which has the expression

—
p
◦
= (p◦ −m1)/d◦1 = [cos α◦ cos β◦, sin α◦ cos β◦, sin β◦]T . (10)

Then, substituting (5) into (8) and (9) and keeping only the linear error term, we can
finally obtain the equations considering noise:

di1 − [(m1 −mi)
T—

p
◦
+ 0.5(

∣∣∣∣∣∣mi −m1

∣∣∣∣∣∣2 − d2
i1)g◦] = εi, (11)

.
di1 −

{
(

.
m1 − .

mi)
T—

p
◦
+ [(mi −m1)

T .
mi −

.
di1di1]g◦ − (mi −m1)

T .
p
◦g◦ − di1

.
d
◦
1g◦

}
=

.
εi, (12)

where i = 2, 3, · · · , M, εi =
d◦i
d◦1

ηi1 and
.
εi =

.
d
◦
i

d◦1
ηi1 +

d◦i
d◦1

.
ηi1 represent noise error terms.

3.1. Unconstrained WLS

To design an estimation method for the nonlinear Equations (11) and (12), we define an

auxiliary vector κ◦1 = [
—
p
◦T

, g◦, (
.
p
◦g◦)T ,

.
d
◦
1g◦]

T
of size 1× 8 to turn the equations into linear

equations and write the M− 1 sets of measurement Equations (11) and (12) as a matrix:

f1-E1κ
◦
1=ε1, (13)

where

f1=[dT ,
.
d

T
]
T

, (14)
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E1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(m1 −m2)
T 0.5(

∣∣∣∣m2 −m1
∣∣∣∣2 − d2

21) 0T
3 0

...
...

...
...

(m1 −mM)T 0.5(
∣∣∣∣mM −m1

∣∣∣∣2 − d2
M1) 0T

3 0
(

.
m1 − .

m2)
T

(m2 −m1)
T .

m2 −
.
d21d21 (m1 −m2)

T −d21
...

...
...

...
(

.
m1 − .

mM)
T

(mM −m1)
T .

mM −
.
dM1dM1 (m1 −mM)T −dM1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (15)

ε1 = [ε1, · · · , εM,
.
ε1, · · · ,

.
εM]

T . (16)

Although we now have the linear matrix, Equation (13), the elements of the auxiliary
vector have a nonlinear relationship with the target parameters, which can affect the
estimation accuracy.

The derivation of the constraints is given below. Multiplying both sides of Equation (4)
by g◦ gives the first constraint:

.
d
◦
1g◦ =

(
.
p
◦ − .

m1)
T
(p◦ −m1)

d◦1
g◦ = (

.
p
◦g◦ − .

m1g◦)T—
p
◦
. (17)

Moreover, according to the definition of
—
p
◦
, we can obtain the second constraint:

—
p
◦T—

p
◦
= 1. (18)

Thus, the localization problem is transformed into a WLS problem with two constraints:

min
ψ1

(f1 − E1κ
◦
1)

TW1(f1 − E1κ
◦
1)

s.t.
.
d
◦
1g◦ = (

.
p
◦g◦ − .

m1g◦)T—
p
◦

—
p
◦T—

p
◦
= 1

, (19)

where W1 is the weighting matrix with the expression

W1 = E[ε1ε
T
1 ]
−1

= (B1QBT
1 )
−1

, (20)

and

B1 =

[
B O(M−1)×(M−1)
.
B B

]
, (21)

{
B = diag([d◦2/d◦1, · · · , d◦M/d◦1]).
B = diag([

.
d
◦
2/d◦1, · · · ,

.
d
◦
M/d◦1])

. (22)

Through (2) and (22), we can know that W1 depends on the true parameters of the
source, which are unknown. To solve this problem, we can make W1 = Q−1 [18] and ignore
the two constraints to solve for the unconstrained WLS estimate of κ◦1:

κ1 = (ET
1 W1E1)

−1
ET

1 W1f1. (23)

From (23), we can obtain the parameters needed for W1. Then, we continue to solve
for κ1 by substituting W1 into (23), and so on several times to obtain a more accurate κ1.

We assume that the measurement error in matrix E1 is negligible, and then the covari-
ance matrix of κ1 is

cov(κ1) = (ET
1 W1E1)

−1
. (24)
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3.2. Optimization Algorithm Based on Constraints
3.2.1. Considering the First Constraint

This subsection uses the first constraint
.
d
◦
1g◦ = (

.
p
◦g◦ − .

m1g◦)T—
p
◦

to reduce the esti-

mation error of the previous step. We define a new auxiliary vector κ1 = [
—
p

T

, ĝ, (
.
pĝ)

T

]

T

of
size 1× 7 and express the auxiliary as the previous step estimate minus the error:

κ1 = κ1(1 : 7)− Δκ1, (25)

where Δκ1 = [Δ
—
p

T
, Δg, (Δ

.
pg)

T
]
T

is the estimation error term.
By expanding the first constraint in a first-order Taylor expansion [30], we obtain

.
d
◦
1g◦ ≈

.
d1g +

—
p

T
Δ

.
pg− .

m
T
1

—
pΔg + (

.
pg− .

m1g)TΔ
—
p. (26)

Then, substituting (25) and (26) into (11) and (12) and combining the M− 1 sets of
measurement equations, we obtain the matrix equation

a− E2Δκ1 = ε1, (27)

where
E2 = [ET

21, ET
22]

T
, a = [aT

1 , aT
2 ]

T
, (28)

and the respective elements in the ith row of a1 and a2 are

a1(i) = di1 − (m1 −mi)
T—

p − 0.5(
∣∣∣∣∣∣mi −m1

∣∣∣∣∣∣2 − d2
i1)g, (29)

a2(i) =
.
di1 − (

.
m1 − .

mi)
T—

p − [(mi −m1)
T .

mi −
.
di1di1]g + (mi −m1)

T .
pg + di1

.
d1g, (30)

and the respective elements in the ith row of E21 and E22 are

E21(i) = [(m1 −mi)
T , 0.5(

∣∣∣∣∣∣mi −m1

∣∣∣∣∣∣2 − d2
i1), 0T

3 ], (31)

E22(i) =

⎡⎢⎣ (
.

m1 − .
mi) + di1(

.
pg− .

m1g)
(mi −m1)

T .
mi −

.
di1di1 − di1mT

1
—
p

di1
—
p − (mi −m1)

⎤⎥⎦
T

. (32)

Using WLS to solve (25), we can obtain the error:

Δκ1 = (ET
2 W1E2)

−1
ET

2 W1b. (33)

Therefore, the final estimate is obtained as

κ1 = [
—
p

T

, ĝ, (
.
pĝ)

T

]

T

= κ1(1 : 7)− Δκ1. (34)

Similarly, we assume that the measurement error in matrix E2 is negligible, and then
the covariance matrix of (34) is

cov(κ1) = cov(κ1(1 : 7)) + (ET
2 W1E2)

−1
. (35)
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3.2.2. Considering the Second Constraint

In the previous subsection, we ignored the constraint on the unit vector
—
p
◦
. Since

this constraint is only relevant for the DOA, this section uses this constraint to reduce the

estimation results of
—
p from the previous step.

Defining
—
p as the true value plus the error value, we obtain

—
p =

—
p
◦
+ Δ

—
p, (36)

where Δ
—
p is the error vector.

Substituting (36) into the second constraint and retaining the linear error term yields

—
p �—

p −—
p
◦ �—

p
◦
= 2

—
p � Δ

—
p. (37)

Since
—
p is the first three elements of κ1, Equation (37) can be rewritten as

κ1(1 : 3)� κ1(1 : 3)− κ◦1(1 : 3)� κ◦1(1 : 3) = 2κ1(1 : 3)� Δκ1(1 : 3), (38)

where Δκ1(1 : 3) = Δ
—
p.

Through Equation (10), we know that

κ◦1(1)
2 + κ◦1(2)

2 + κ◦1(3)
2 = 1. (39)

Then, by defining the vector κ2 = [
—
p
◦
(1)2,

—
p
◦
(2)2,

—
p
◦
(1)2 +

—
p
◦
(2)2]

T
and combining

(38) and (39) to create the matrix, we can obtain the matrix

f2 − E3κ2 = ε2, (40)

where

f2 =

[
κ1(1 : 2)� κ1(1 : 2)

κ1(3)
2 − 1

]
, (41)

E3 =

[
I2
−1T

2

]
, (42)

ε2 = B2Δκ1(1 : 3), (43)

and

B2 = diag([2
—
p(1 : 3)]). (44)

The WLS result of (40) is

κ2 = (ET
3 W2E3)

−1
ET

3 W2f2, (45)

where W2 is the weighting matrix and

W2 = E[ε2ε
T
2 ]
−1

= (B2cov(κ1(1 : 3, 1 : 3))−1BT
2 )
−1

. (46)

The calculation of W2 requires the real parameters of the source, which can be derived
with the help of the estimation results of the previous step since the parameter errors of the
source obtained in the previous step are already small.
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Finally, we can obtain the expression for the moving target parameter as⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

�
α = arctan

(√
κ2(2)√
κ2(1)

)
�
β = arctan

(√
1−κ2(1)−κ2(2)√
κ2(1)+κ2(2)

)
�
g = κ1(4)
�
.
p = κ1(5:7)

κ1(4)

. (47)

3.3. The Algorithmic Steps

In this subsection, we summarize the process of each step of the proposed method in
this paper, as shown in Figure 2.

 

Figure 2. The algorithmic flowchart.

4. Derivation of the CRLB

In this section, we present a detailed formulation of the CRLB under the model
proposed in this paper. The CRLB is a lower bound describing the optimal performance of
an unbiased estimator [31], which is defined as

CRLB(
�
p
◦
) = FIM−1(

�
p
◦
), (48)

where FIM is the Fisher information matrix and

FIM(
�
p
◦
) =

∂F◦T

∂
�
p
◦ Q−1 ∂F◦

∂
�
p
◦T , (49)

55



Remote Sens. 2024, 16, 3047

where F◦ = [d◦T ,
.
d
◦T
]
T

.

The partial derivative of F◦ with respect to
�
p
◦

is expressed as

∂F◦

∂
�
p
◦ =

⎡⎢⎣ ∂d◦
∂α◦

∂d◦
∂β◦

∂d◦
∂g◦

∂d◦

∂
.
p
◦T

∂
.
d
◦

∂α◦
∂

.
d
◦

∂β◦
∂

.
d
◦

∂g◦
∂

.
d
◦

∂
.
p
◦T

⎤⎥⎦. (50)

From (1) and (4), we have

d◦i1 =||p◦ −mi||−||p◦ −m1||◦
= 1

g◦

√
1− 2g◦(mi −m1)

T—
p
◦
+ g◦2(mi −m1)

T(mi −m1)− 1
g◦

, (51)

.
d
◦
i1 = (

.
p
◦− .

mi)
T
(p◦−mi)

d◦i
− (

.
p
◦− .

m1)
T
(p◦−m1)

d◦1

= (
.
p
◦− .

mi)
T
[
—
p
◦
+g◦(m1−mi)]

g◦d◦i
− (

.
p
◦ − .

m1)
T—

p
◦ , (52)

where i = 2, · · · , M.
Using (51), we can obtain

∂d◦

∂α◦
=

⎡⎢⎢⎢⎢⎢⎢⎣
(

—
p
◦−g◦(m2−m1))

T∣∣∣∣∣∣—p◦−g◦(m2−m1)
∣∣∣∣∣∣g◦ · ∂

—
p
◦

∂α◦

...
(

—
u
◦−g◦(mM−m1))

T∣∣∣∣∣∣—u◦−g◦(mM−m1)
∣∣∣∣∣∣g◦ · ∂

—
p
◦

∂α◦

⎤⎥⎥⎥⎥⎥⎥⎦, (53)

∂d◦

∂β◦
=

⎡⎢⎢⎢⎢⎢⎢⎣
(

—
p
◦−g◦(m2−m1))

T∣∣∣∣∣∣—p◦−g◦(m2−m1)
∣∣∣∣∣∣g◦ · ∂

—
p
◦

∂β◦

...
(

—
p
◦−g◦(mM−m1))

T∣∣∣∣∣∣—p◦−g◦(mM−m1)
∣∣∣∣∣∣g◦ · ∂

—
p
◦

∂β◦

⎤⎥⎥⎥⎥⎥⎥⎦, (54)

∂d◦

∂g◦
=

⎡⎢⎢⎢⎢⎢⎢⎣
(

—
p
◦−g◦(m2−m1))

T ·p∣∣∣∣∣∣—p◦−g◦(m2−m1)
∣∣∣∣∣∣g◦ + 1

g◦2

...
(

—
p
◦−g◦(mM−m1))

T ·p∣∣∣∣∣∣—p◦−g◦(mM−m1)
∣∣∣∣∣∣g◦ + 1

g◦2

⎤⎥⎥⎥⎥⎥⎥⎦, (55)

∂d◦

∂
.
p
◦ = O(M−1)×3, (56)

where

∂
—
p
◦

∂α◦
=

⎡⎣− sin α◦ cos β◦

cos α◦ cos β◦

0

⎤⎦, (57)

∂
—
p
◦

∂β◦
=

⎡⎣− cos α◦ sin β◦

− sin α◦ sin β◦

cos β◦

⎤⎦, (58)

p = −—
p
◦
/g◦. (59)
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Using (52), we can obtain

∂
.
d
◦

∂α◦
=

⎡⎢⎢⎢⎢⎣
(

.
p
◦− .

m2)
T−g◦d◦2(

.
p
◦− .

m1)
T

g◦d◦2
· ∂

—
p
◦

∂θ◦ − (
.
p
◦− .

m2)
T
[
—
p
◦−g◦(m2−m1)]

g◦d◦2
2

· ∂d◦2
∂α◦

...
(

.
p
◦− .

mM)
T−g◦d◦M(

.
p
◦− .

m1)
T

g◦d◦M
· ∂

—
p
◦

∂θ◦ − (
.
p
◦− .

mM)
T
[
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where r◦i is
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1
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and from (64), we can obtain
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With the above derivation, we end up with the FIM(
�
p
◦
). Substituting (49) into (48),

we obtain the CRLB. The trace of the CRLB matrix is the minimum theoretical variance of
the source parameters.

5. Numerical Simulations

In this section, we will verify the effectiveness of the proposed method through
simulation. We use seven sensors, and their positions and velocities are shown in Table 1.
For simplicity, we place the reference sensor at the origin. The covariance matrices are set
to Qt = σ2R and Q f = 0.1σ2R, where σ2 is the variance of the measurement noise and R

is a matrix with diagonal elements of 1 and the rest of the elements of 0.5 [18,21]. To fully
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analyze the positioning performance, we use two evaluation metrics, mean square error
(MSE) and bias, which are calculated as follows:

MSE(
�
p) =

1
L

L

∑
l=1
||�p

◦
− �

pl ||2, (68)

Bias(
�
p) =

∥∥∥∥∥�
p
◦
− 1

L

L

∑
l=1

�
pl

∥∥∥∥∥, (69)

where L = 2000 is the number of Monte Carlo runs and
�
pl is the estimation of the true

value
�
p
◦

in the lth Monte Carlo experiment.

Table 1. Positions and speeds of sensors.

Sensors no.n Position (m) Velocity (m/s)

1 s◦1 = [0, 0, 0]T
.
s
◦
1 = [30,−20,−20]T

2 s◦2 = [456.4,−714.2, 636.5]T
.
s
◦
2 = [−30, 10, 20]T

3 s◦3 = [1030.2,−65.8, 826.6]T
.
s
◦
3 = [10,−20, 10]T

4 s◦4 = [465.7, 619.8,−789.0]T
.
s
◦
4 = [10, 20, 30]T

5 s◦5 = [579.8,−255.4,−838.5]T
.
s
◦
5 = [−20, 10, 10]T

6 s◦6 = [1201.2,−541.2, 351.7]T
.
s
◦
6 = [30, 20, 20]T

7 s◦7 = [−836.6, 1004.8,−802.9]T
.
s
◦
7 = [10, 20, 20]T

In this paper, two simulation scenarios are considered to estimate the target parameters
based on target range variation and noise power variation, respectively. The algorithm
presented in Section 3.2.1 of this paper is called OCWLS, and the algorithm after correcting
the estimates in Section 3.2.2 is called TCWLS. Since all near-field localization algorithms in
the Cartesian coordinate system have threshold effects, the classical Ho-TSWLS algorithm
mentioned in [18] and the improved Ali-TSWLS algorithm mentioned in [21] are chosen as
comparison algorithms. In addition, the CRLB is used as a standard for MSE estimation.

5.1. Impact of Source Range on Estimation Error

In this scenario, the target distance is increased from 10 to 200 km. The noise variance is
σ2 = 1 m2 and the angle of the source is randomly set to α◦ = 20 deg and β◦ = 12 deg. The
variation in the DOA and inverse-range MSE estimations with increasing target distance
is shown in Figures 3 and 4. OCWLS and Ali-TSWLS have not achieved the CRLB, and
their performance is approximately 2.7 dB above the CRLB. After using the optimized
algorithm, we can observe that the localization performance is improved, with TCWLS
reaching the CRLB and still maintaining an accurate estimation of the DOA at long range.
However, the estimation of the DOA by Ho-TSWLS fails when the range increases to
120 km, and Ali-TSWLS fails when the range increases to 160 km due to the threshold effect.
As seen in Figure 4, TCWLS also achieves the CRLB for the inverse-range MSE estimate.
But Ho-TSWLS and Ali-TSWLS gradually increase starting from a Range = 60 km. Figure 5
shows the performance comparison of velocity MSE estimation with distance. When the
Range > 100 km, Ho-TSWLS starts to deviate from the CRLB, while TCWLS stays close to
the CRLB until the Range = 160 km. Ali-TSWLS is the best and stays close to the CRLB.
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Figure 3. Variation in MSE with distance for DOA estimate.

Figure 4. Variation in MSE with distance for inverse-range estimate.

Figure 5. Variation in MSE with distance for velocity estimate.
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The variation in estimation bias with distance for the source parameters is shown in
Figures 6–8. For DOA estimation, the estimation bias of both OCWLS and TCWLS is much
smaller than that of Ho-TSWLS and Ali-TSWLS, and TCWLS performs better than OCWLS,
which is in line with the theoretical analysis. For inverse-distance estimation, the bias of
TCWLS is much smaller than that of Ho-TSWLS and Ali-TSWLS, and Ali-TSWLS is about
3 dB lower than Ho-TSWLS. For speed estimation, the bias of the TCWLS and Ali-TSWLS
methods is reduced by about 17 dB compared to Ho-TSWLS. The bias of TCWLS is lower
than that of Ali-TSWLS up to 130 km, and beyond this point, the deviation of Ali-TSWLS
becomes even lower. The results show that the proposed algorithm is equally effective for
far-field targets, while Ho-TSWLS and Ali-TSWLS fail due to the threshold effect. Although
Ali-TSWLS performs better for velocity estimation, it is poor for angle estimation.

Figure 6. Variation in bias with distance for DOA estimate.

Figure 7. Variation in bias with distance for inverse-range estimate.
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Figure 8. Variation in bias with distance for velocity estimate.

Next, we transform the source parameters from MRP to the Cartesian coordinate
system and compare the MSE and deviation of the source position to ensure the validity
of the estimation of the target position. Figure 9 shows that before the distance reaches
160 km, the performance of all algorithms is equivalent, and the proposed algorithm begins
to have a threshold effect when the Range > 160 km. This is caused by converting the
inverse range into distance. A small inverse-range perturbation will cause a huge distance
error, thus causing the position MSE to become larger. Although the MSE estimates of
Ho-TSWLS and Ali-TSWLS are reasonable, they cannot provide an accurate DOA estimate.
Figure 10 shows that TCWLS achieves the lowest deviation performance. We can conclude
that TCWLS has the best bias performance in target location estimation, but sometimes the
MSE performance may be degraded due to smaller inverse-range perturbations caused by
excessively long distance or strong noise.

Figure 9. Variation in MSE with distance for position estimate.

61



Remote Sens. 2024, 16, 3047

Figure 10. Variation in bias with distance for position estimate.

5.2. Impact of Measurement Noise on Estimation Error

In the previous subsection, it is known that the proposed algorithm applies to far-
field sources. In this subsection, we will analyze the effect of noise power on the po-
sitioning performance of the proposed algorithm in the near-field case. Noise power
increased from -40 dB to 40 dB. The target is at a fixed distance of 15 km, with coordinates
p◦ = [13787, 5018.2, 3118.7]Tm and speed

.
p
◦
= [25, 20, 40]Tm/s.

Figures 11–13 compare the MSE performance of several methods for target parameter
estimation. For target angle estimation, OCWLS and TCWLS are consistently close to the
CRLB, and OCWLS is about 2 dB higher than TCWLS. In contrast, Ho-TSWLS already
deviates from the CRLB when 10 log(σ2) = 10, and Ali-TSWLS already deviates from the
CRLB when 10 log(σ2) = 20. Similarly, TCWLS has stable performance for target inverse-
range estimation, whereas Ho-TSWLS and Ali-TSWLS start to deteriorate in performance
when 10 log(σ2) = 20. For speed estimation, TCWLS and Ho-TSWLS already deviate from
the CRLB when 10 log(σ2) > 20, while Ali-TSWLS remains close to it until 10 log(σ2) = 25.

Figure 11. Variation in MSE with noise power for DOA estimate.
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Figure 12. Variation in MSE with noise power for inverse-range estimate.

Figures 14–16 present the bias estimations. For DOA estimates, OCWLS and TCWLS
are about 11 dB lower than Ho-TSWLS and about 6 dB lower than Ali-TSWLS. TCWLS
has the best bias performance. For velocity estimation, TCWLS is about 19 dB lower
than Ho-TSWLS when 10 log(σ2) ≤ 25 and about 4.5 dB lower than Ali-TSWLS when
10 log(σ2) ≤ 20. However, Ali-TSWLS performance is best when 10 log(σ2) ≥ 25.

Figure 13. Variation in MSE with noise power for velocity estimate.
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Figure 14. Variation in bias with noise power for DOA estimate.

Figure 15. Variation in bias with noise power for inverse-range estimate.

Next, the target parameters are transformed from MRP to a Cartesian coordinate
system to compare the MSE and bias of the target location. Figure 17 shows that the
performance of all algorithms is consistent when 10 log(σ2) ≤ 20. However, the MSE
estimates of the position of Ho-TSWLS and Ali-TSWLS are smaller when 10 log(σ2) > 20.
The reason why the MSE of the proposed algorithm suddenly becomes larger was explained
in Section 5.1 and will not be repeated here. Figure 18 compares the bias of all algorithms
for position estimation and shows that TCWLS is the best when 10 log(σ2) < 35.
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Figure 16. Variation in bias with noise power for velocity estimate.

Figure 17. Variation in MSE with noise power for position estimate.

Figure 18. Variation in bias with noise power for position estimate.

5.3. Computation Time

Finally, to compare the complexity of the algorithms, we calculated the average
running time of several algorithms. Our simulation processing platform consists of a
typical PC harnessing the power of an Intel i7-10700 CPU and a substantial 32.0 GB RAM.
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The equipment was sourced from Lenovo, in Beijing, China. It employs MATLAB R2021b as
its software environment for executing the simulation processes. The simulation scenario is
the one in Section 5.2, and the running time is shown in Table 2. Since several algorithms are
closed-form solution algorithms, the running times are in the same order of magnitude, and
the proposed algorithm has a slightly higher running time than Ho-TSWLS and Ali-TSWLS
for the estimation of a moving target.

Table 2. Average running time.

Method TCWLS Ho-TSWLS Ali-TSWLS

Time (ms) 0.50 0.31 0.27

6. Discussion

This paper proposes a new moving target positioning method in three-dimensional
space. The algorithm aims to locate the target without prior information of distance.
The positions of the sensors in this paper are picked uniformly and randomly in three-
dimensional space without having to maintain a certain configuration to be effectively
localized. This can be successfully applied in complex scenarios.

From the simulation results, it can be concluded that under low noise power conditions,
TCWLS can achieve the CRLB with a lower bias than the near-field Ho-TSWLS and Ali-
TSWLS. However, it should be acknowledged that TCWLS first deviates from the CRLB
for the velocity estimate as the noise power increases. This is the direction we need to
continue to study in the future. In addition, we need to be aware that small perturbations
in the distance inverse estimate can cause large distance and position estimation errors
in far-field or strongly noisy power situations. As shown in Equation (46), if the azimuth
or elevation angles are at certain specific angles, such as α◦ = 90 deg, this can cause the
weighting matrix W2 to become a singular matrix affected by B2, ultimately leading to
poor positioning performance. This can be avoided by selecting a different sensor as the
reference sensor.

TCWLS can also be used in two-dimensional space by simplifying the equations.
Furthermore, it can also be used with slight modifications if sensor parameter errors need
to be considered.

7. Conclusions

We propose a new positioning algorithm that does not require prior distance knowl-
edge of the moving target. For a near-field target, we can accurately estimate the location
and velocity of the target. For a far-field target, we can accurately estimate the DOA of the
target. The method first builds a unified model using MPR, then creates an optimization
problem with two constraints, and finally obtains an exact closed-form solution via WLS
and an optimization algorithm. Simulation experiments validate that the proposed unified
localization approach is superior to the traditional near-field moving target localization
method. Our future work will focus on improving the robustness of the proposed algorithm
in strong noise environments.
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Abstract: This study proposes a cruise speed model based on the Self-Attention mechanism for speed
estimation in Autonomous Underwater Vehicle (AUV) navigation systems. By utilizing variables such
as acceleration, angle, angular velocity, and propeller speed as inputs, the Self-Attention mechanism is
constructed using Long Short-Term Memory (LSTM) for handling the above information, enhancing
the model’s accuracy during persistent bottom-track velocity failures. Additionally, this study
introduces the water-track velocity information to enhance the generalization capability of the
network and improve its speed estimation accuracy. The sea trial experiment results indicate that
compared to traditional methods, this model demonstrates higher accuracy and reliability with both
position error and velocity error analysis when the used Pathfinder DVL fails, providing an effective
solution for AUV combined navigation systems.

Keywords: AUV; navigation; deep learning; speed estimation; self-attention mechanism

1. Introduction

Recently, interest in marine resources has grown considerably, resulting in increased
marine development activities. Autonomous Underwater Vehicles (AUVs) are crucial for
tasks such as seabed resource exploration, submarine pipeline maintenance, and marine
data collection [1,2]. Therefore, obtaining precise navigation and positioning technology
for AUVs is crucial to ensuring successful and timely task completion, owing to the
highly complex marine environment. In contrast to land robots [3] and aerial robots [4],
AUVs do not receive GPS signals underwater, posing a challenge for traditional satellite-
dependent navigation techniques in this environment. Emerging technologies have been
increasingly employed recently for successful underwater localization and navigation.
The primary underwater navigation and localization techniques are categorized into four
main groups: acoustic navigation [5–7], geophysical navigation [8–10], Simultaneous
Localization and Mapping (SLAM), and inertial navigation and dead reckoning [11,12].
Acoustic waves are the most effective method for transmitting information underwater,
making acoustic navigation the primary method for underwater target navigation and
localization. Nonetheless, the acoustic beacons must be placed in advance, as acoustic
navigation is ineffective in an unknown environment. Geophysical navigation can be
divided into three primary groups based on the requisite geophysical parameters: terrain-
matching navigation, marine geomagnetic navigation, and gravity navigation. However,
geophysical navigation is limited by the requirement to obtain geophysical parameters
in advance. Conversely, SLAM enables AUVs to create maps of their surroundings and
determine their position within that environment. However, SLAM requires external
environmental information measured by additional sensors and high computation capacity.
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Inertial navigation is an autonomous system known for not relying on external infor-
mation or emitting energy externally. The Inertial Navigation System (INS) uses triaxial
gyroscopes and accelerometers to measure angular rate and acceleration. Then, the atti-
tude, velocity, and position information of the AUV is calculated by an integral operation.
However, the integration process results in error accumulation in the INS, and over a
long navigation period, the position can be shifted considerably. This approach partially
mitigates the error accumulation problem by utilizing a Doppler Velocity Logger (DVL)
for bottom-track velocity and integrating INS and DVL measurements. Kalman filtering
(KF) is a widely applied data fusion method [13], and it can achieve optimal filtering with
Gaussian white noise in the system process. The bottom-track velocities measured by the
DVL are indispensable in the data fusion algorithm. However, the DVL is sensitive to the
complex marine environment, which may cause inaccuracies in velocity measurements.
For instance, DVL bottom tracking can be vulnerable to interference and disruptions due to
steep seafloor slopes or rifts, AUV attitude, currents, and fish populations [14], as shown in
Figure 1. In cases where the DVL produces anomalous values for a brief period, the issue
can be resolved by utilizing effective bottom tracking from the previous moment. Never-
theless, this method is inadequate when the DVL outputs anomalous data for an extended
period or is inactive, in which case the INS solution error accumulates and the navigation
accuracy significantly degrades over time. Consequently, investigating the navigation
method when the DVL output remains invalid for an extended period is crucial.

Figure 1. Vulnerability to bottom-track interference.

Some methods have been commonly used in the existing literature to address invalid
bottom tracking [15,16]: One approach involves implementing combined navigation by
installing additional sensors to replace the DVL in case of failure; however, this method
increases costs and system complexity. Conversely, another method replaces the DVL
with a mathematical model generating virtual bottom velocity information, solved by
way of modeling single- and three-degree-of-freedom dynamics [17]. And Kinsey et al.
developed a single-degree-of-freedom nonlinear dynamic model estimator and verified its
feasibility [18]. Zhao et al. introduced a mechanism for outlier detection in DVL data and
compensated for velocity anomalies using a kinematic model. However, the complexity
of AUV models in challenging marine environments makes it difficult to obtain accurate
hydrodynamic parameters. Therefore, building precise AUV dynamic models is evidently
impractical. Establishing dynamic models with single and three degrees of freedom,
validated through sea trials, demonstrated that the speeds calculated using these models
closely aligned with those measured by the DVL.

Various machine learning algorithms, such as Support Vector Machines (SVMs) [19],
Random Forests (RFs) [20], Extreme Learning Machines (ELMs) [21], and Artificial Neu-
ral Networks (ANNs) [22], have been employed in diverse fields owing to the recent
widespread application of artificial intelligence technology. In their study, Mu et al. [23]
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applied the time-series learning mechanism to AUV navigation and proposed a novel neu-
ral network framework using Long Short-Term Memory (LSTM) to process multi-sensor
data and determine the position of an AUV during navigation. Another study [19] devel-
oped a hybrid predictor by combining partial least squares regression and support vector
regression to estimate the bottom velocity of a DVL when faced with DVL failure. Lv et al.
employed ELM to establish a model relationship between the AUV’s thruster speed, at-
titude, rudder information, and bottom velocity to compensate for DVL failures. Li et al.
proposed a nonlinear autoregressive framework with heteroscedastic inputs (NARX) and
adaptive Kalman filtering to predict and fuse DVL outputs. Water-track velocity and
flow rate estimation during anomalous DVL bottom velocity were also investigated [24].
Our study presents a deep learning framework incorporating LSTM and Self-Attention to
address this issue, considering the current velocity as a variable to estimate the water-track
velocity of the DVL. The effectiveness of our approach is validated by comparing the results
with the measured data.

This paper proposes a cruise speed model based on the Self-Attention mechanism for
estimating AUV speeds in complex marine environments. Utilizing inputs like acceleration,
angle, angular velocity, and propeller speed, the model estimates cruise speed via the
Self-Attention mechanism. This cruise speed corresponds to the velocities along the three
axes of the AUV onboard coordinate system. As a consequence, the model sustains high
navigation accuracy even when the bottom-track velocity data are consistently unavailable.
The main contributions of this paper are as follows:

(1) To address the continuous failure of bottom-track velocity measurements in com-
plex marine environments, a deep learning-based AUV speed estimation model is con-
structed to predict and output bottom-track velocities, enhancing AUV navigation accuracy
during DVL failures.

(2) LSTM will be used to separately extract time-series data from different data sources,
and Self-Attention will be employed to enhance the encoding of time-series data. Water
flow rate information is introduced into the network as input to compensate for ocean
current information, increasing the model’s generalization capability.

(3) The proposed Self-Attention-based cruise speed model’s effectiveness on AUVs
will be validated through sea trials and simulation data. The results show that the pro-
posed model achieves better navigation accuracy compared to using water-track velocity
compensation.

The rest of this paper is organized as follows: Section 2 describes the AUV and equip-
ment specifications used for the field trials. Section 3 derives a model for the application
of Kalman filtering in combined AUV navigation. Section 4 details the network model
framework and analyzes the results obtained in Section 5. Finally, Section 6 concludes
the study.

2. An Introduction of the AUV Platform

Herein, we present the AUV used in our experiment, depicted in Figure 2. The XH
R300 employs a double main thrust propulsion system capable of attaining a maximum
speed of 5 knots and sustaining continuous travel for up to 10 km. The hydrodynamic
characteristics of the XH R300 are notably intricate, necessitating the formulation of a
three-degree-of-freedom dynamics model to elucidate its motion. This modeling endeavor
is predicated on several key assumptions: first, the AUV is treated as a rigid body; second,
the current is assumed to be a two-dimensional flow lacking rotational components; and
third, the fluid medium is regarded as uniform and unbounded. The kinetic equations
governing the AUV’s motion are conventionally expressed as follows:

M
·
v + C(v )v + D(v )v = f (1)

where v denotes the triaxial component of the AUV velocity in the carrier coordinate system,
M and C, respectively, denote the inertia matrix and the Coriolis centripetal matrix of the
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rigid body, f = [(τ)X , (τ)Y, (τ)N ] are external forces and moments, (τ)X and (τ)Y are,
respectively, the axial and lateral forces acting on the AUV, and (τ)N is the yaw external
moment. The expression is as follows:

f =

⎡⎣τX
τY
τN

⎤⎦ =

⎡⎣ Tport + Tstbd
0(

Tport − Tstbd
)

B/2

⎤⎦ (2)

where Tport and Tstbd are, respectively, the thrust of the port and starboard thrusters, and
B is the distance between the thrusters. The three-degree-of-freedom nonlinear dynamics
model of the AUV can be described as

τX = (m− Xu̇)u̇−m
(

xGr2 + vr
)
+ Yv̇vr +

Yṙ + Nv̇

2
r2 + Xuu + X|u|u|u|u

τY = (m−Yv̇)v̇ + (mxG −Yṙ)ṙ + (m− Xu̇)ur + Yvv + Yrr + Y|v|v|v|v + Y|r|r |r|r

τN = (mxG − Nv̇)v̇− (Izz − Nṙ)ṙ + mxGur−Yv̇uv− Yṙ + Nv̇

2
ur + Xu̇uv + Nvv

+ Nrr + N|v|v|v|v + N|r|r |r|r

(3)

where X(·), Y(·), and N(·) represent hydrodynamic coefficients. According to Equations (2)
and (3), the AUV speed is related to the acceleration, angle, angular velocity, and amount
of rudder thrust. The thrust of the servos, in turn, is related to the rotational speed and
current obtained through various sensor measurements, which will be used later in this
study to estimate the AUV speed. The equipment used to obtain the relevant data is
illustrated below.

Figure 2. Basic structure of XH R300.

The XH R300 is equipped with a signal cabin, control cabin, power control cabin,
and power operation cabin. The primary sensors include a GPS module, Iridium satellite,
radio, Wifi, INS, DVL, and depth gauge to obtain AUV position, acceleration, angle,
and angular velocity information. Based on functionality, the main control can be divided
into a control unit, navigation and positioning unit, guidance and planning unit, perception
unit, fault detection unit, and data storage unit. The navigation and positioning unit is
crucial for real-time acquisition of AUV pose information and provides the foundational
support for the operation of the control unit and guidance and planning unit. The GPS
module offers real-time precise latitude and longitude data while the AUV operates on the
water surface, as delineated in Table 1. Nevertheless, owing to the rapid attenuation of GPS
signals in water, the XH R300 incorporates the INS (detailed in Table 2) that derives the
AUV’s position, velocity, and triaxial attitude angle by integrating data from the gyroscope,
measuring angular rates, and the accelerometer, gauging triaxial accelerations. However,
the integration process inevitably results in error accumulation within the INS, impinging
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upon navigation accuracy. Consequently, the XH R300 is outfitted with a Pathfinder 600
KHz DVL developed by Teledyne, described in Table 3, to rectify these discrepancies.
The DVL emits sound waves via a transducer when a phased array is employed, which,
upon reaching the seabed, bounce back, enabling velocity estimation relative to the seafloor
by analyzing frequency shifts in the received echoes. When GPS signals are unavailable
underwater, the disparity between the raw speed of the INS and the speed of the DVL
serves as feedback, refining the INS output through an indirect approach.

Table 1. GPS module specifications.

Equipment Type GPS Module

Single-point positioning accuracy <1.5 m
Velocimetry accuracy 0.03 m/s

Maximum data update frequency 1 Hz

Table 2. INS specifications.

Equipment Type INS

Heading accuracy 0.5°
Attitude accuracy 0.02°

Gyro accuracy 0.05°/h (1σ)
Plus meter accuracy 200 μg (1σ)

Table 3. DVL specifications.

Equipment Type DVL

Maximum height 89 m
Minimum height 0.2 m

Speed range ±9 m/s
Resolution 0.1 cm/s

Pinging frequency 12 Hzmax

However, in deep-sea environments exceeding the operational range of the DVL or
encountering steep seabed inclines, the acoustic waves of the DVL may fail to reach or be
detected upon seabed contact, rendering the bottom-track data invalid and precluding its
integration with INS for high-precision navigation. Although the DVL can also provide
water-track velocities, they are notably less precise than bottom-track velocities and fail to
meet stringent navigation accuracy requisites. A novel solution addressing these challenges
is proposed herein and elaborated upon subsequently. Additionally, a depth gauge ISD4000
developed by Impact Subsea is integrated into the XH R300 for precise depth determination,
ensuring accurate depth measurement.

3. AUV Combined Navigation Model

The combined AUV navigation model outlined in this section primarily relies on
integrating the INS and DVL systems. Initially, the INS error model is used to formulate
the state equations of the integrated navigation system. Subsequently, data gathered by
the INS facilitate AUV motion prediction. Observations from the INS and DVL are then
incorporated into the model, refining its predictions to align more closely with actual values.
This iterative process, conducted in the time domain, culminates in achieving combined
AUV navigation. This section details the model construction process and the updated
predicted values, which constitute a pivotal aspect of the process.

Model Construction

This study employs two coordinate systems: the navigation and carrier coordinate
systems. The navigational coordinate system, denoted as O− XnYnZn, situates its origin
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at sea level, with the OXn axis pointing northward, the OYn axis eastward, and the OZn

axis directed toward the geocentric North-East Earth (NEU) geographical coordinates.
Conversely, the carrier coordinate system, denoted as O − XbYbZb, positions its origin
at the center of gravity of the AUV, with the OXb axis directed forward, the OYb axis
starboard, and the OZb axis downward. The navigational coordinate system undergoes
three rotational transformations with respect to the carrier coordinate system: the heading
angle α around the OZn axis, the pitch angle β around the OYn axis, and the roll angle γ
around the OXn axis. Typically, instruments are situated in the carrier coordinate system.
Therefore, to determine the AUV’s absolute position in the navigation coordinate system,
the various AUV states are multiplied by its rotation matrix Cn

b , defined as follows:

Cn
b =

⎡⎣cosγcosα− sinγsinβsinα −sinαcosβ cosγsinα + sinαsinβsinγ
sinγcosα + cosγsinβsinα cosβcosα sinγsinα− cosγsinβcosα

−cosβsinγ sinβ cosγcosβ

⎤⎦ (4)

In the navigation system, the navigation parameter errors of INS are selected as state
variables. Due to the generally small error values, the state equation can be considered
a first-order linear system, with the speed difference between INS and DVL used as the
measurement variable. The error amount is then optimally estimated through standard
Kalman filtering to feedback and correct the INS output. Leveraging the INS error model,
the state vectors are identified as 15-dimensional error quantities of the INS, including
attitude error φE, φN , φU , velocity error δvE, δvN , δvU , position error δpE, δpN , δpU , gyro
zero bias εx, εy, εz, and accelerometer zero bias ∇x,∇y,∇z.

X =
[
φE, φN , φU , δvE, δvN , δvU , δpE, δpN , δpU , εx, εy, εz,∇x,∇y,∇z

]T (5)

The state equation of the system is as follows:

·
X = FX + W (6)

where F is the state transfer matrix and W is the state noise. The system error propagation
equation is shown as follows:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

δ̇L = − VN
(RM+h)2 δh + 1

RM+h δVN

δ̇λ = VE tan L sec L
RN+h δL− VE sec L

(RN+h)2 δh + sec L
RN+h δVE

δ̇h = δVU

δ̇VE=(2ΩVN cos L + VEVN sec2 L
RN+h + 2ΩVU sin L)δL + VEVU−VN VE tan L

(RN+h)2 δh

+ VN tan L−VU
RN+h δVE + (2Ω sin L + VE tan L

RN+h )δVN − (2Ω cos L + VE
RN+h )δVU

+ fN ϕU − fU ϕN +∇E

δ̇ VN=− (2ΩVE cos L + VEsec2 L
RN+h )δL + ( VEtan2 L

(RN+h)2 +
VN VU

(RM+h)2 )δh

−(2Ω sin L + VE tan L
RN+h )δVE − VU

RM+h δVN − VN
RM+h δVU

+ fU ϕE − fE ϕU +∇N

δ̇ VU=− 2ΩVE sin LδL−
[

V2
E

(RN+h)2 +
V2

N
(RM+h)2

]
δh + (2Ω cos L + VE

RN+h )δVE

+ VN
RM+h δVN + fE ϕN − fN ϕE +∇U

ϕ̇E = VN
(RM+h)2 δh− 1

RM+h δVN + (Ω sin L + VE
RN+h tan L)ϕN

−(Ω cos L + VE
RN+h )ϕU − εE

ϕ̇N = −Ω sin LδL + VE
(RN+h)2 δh + 1

RN+h δvE − (Ω sin L + VE
RN+h tan L)ϕE

− VN
RM+h ϕU − εN

ϕ̇U = (Ω cos L + VE
RN+h sec2L)δL− VE tan L

(RN+h)2 δh + tan L
RN+h δVE

+(Ω cos L + VE
RN+h )ϕE + VN

RM+h ϕN − εU

(7)

The measurement equation for combined navigation is as follows:

Z = HX + V (8)
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where H is the measurement matrix and V is the measured noise.
The error equation for the DVL in the navigation coordinate system is as follows:

∼
V

n

dvl =
∼
C

n

b Cb
dVd

dvl

= [I − ψ×]Cn
b Cb

dVd
dvl

= Vn
dvl − ψ×Vn

dvl

= Vn
dvl + Vn

dvl × ψ

δVn
d =

∼
V

n

dvl −Vn
dvl = Vn

dvl × ψ

(9)

where Cb
d denotes the rotation matrix from the DVL instrument coordinate system to the

carrier coordinate system. We take the difference between the SINS and DVL velocities as
the measure and construct the measure model according to the error model of the DVL
as follows:

Z =
∼
V

n

b −
∼
V

n

d = (Vn + δVn
b )− (Vn + δVn

d )

= δVn
b − δVn

d = δVn
b −Vn

d × ψ

= HX + V

(10)

The specific form of H is as follows:

H =

⎡⎣ 0 Vn
d U −Vn

d N 1 0 0
−Vn

d U 0 Vn
d E 0 1 0

Vn
d N −Vn

d E 0 0 0 1
03×9

⎤⎦ (11)

where Vn
d E, Vn

d N , and Vn
d U , respectively, denote the triaxial components of the DVL-

measured velocity in the geographic coordinate system. Here, the combined SINS/DVL
navigation model construction is completed.

4. Deep Learning Navigation Architecture

The AUV state data, captured as a time series, exhibit significant correlations over
time. Previous studies on DVL anomalies often treated sensor data at each moment in
isolation, neglecting the time-series correlations. Furthermore, not all data points are
equally important in predicting subsequent states. In response to these considerations,
this section presents a detailed description of a novel deep learning network architecture,
developed after comprehensively examining these two aspects.

4.1. Basic LSTM Principles

Deep learning has recently emerged as a ubiquitous tool across various domains,
with researchers continuously introducing new network architectures that demonstrate
remarkable performance in practical applications. Among these architectures, Recurrent
Neural Networks (RNNs) have found widespread use in tasks involving time-series pre-
diction and natural language processing, owing to their adeptness in handling sequential
data. Given that AUV sensor data inherently represent time-series data, RNNs are a nat-
ural choice for AUV navigation tasks. However, conventional RNNs struggle to retain
long-term dependencies, with information relevance diminishing as it recedes from the
current moment. This limitation stems from the BackPropagation Through Time (BPTT)
method employed during training, where gradients associated with distant moments grad-
ually vanish, rendering conventional RNNs inadequate to address long-term dependency
issues [25].

LSTM [26] networks were introduced to mitigate the challenge of vanishing gradients
and effectively model long-term dependencies. LSTM represents a specialized variant
of RNNs explicitly designed to tackle gradient instability encountered when training
sequences with long time-series spans. By introducing more gating units to control the
information flow within the network, the stability of the parameter optimization process is
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enhanced. The Tanh function is used to extract valid information to alleviate the problem
of vanishing gradients in the calculation of memory cells and hidden states. The LSTM
architecture, depicted in Figure 3, incorporates memory cells and introduces several gating
mechanisms to regulate the flow of information within the network. At each time step,
the input Xt from the current moment and the hidden state Ht−1 from the preceding
moment are fed into the LSTM gates, which undergo processing via three fully connected
layers equipped with sigmoid activation functions to compute the input, forget, and output
gate values. This computation proceeds as follows:

It = σ(XtWxi + Ht−1Whi + bi)

Ft = σ
(

XtWx f + Ht−1Wh f + b f

)
Ot = σ(XtWxo + Ht−1Who + bo)

(12)

where Wxc, Wx f , Wxo and Whi, Wh f , Who are weight parameters and bi, b f , bo are bias

parameters. The candidate memory element
∼
Ct is calculated similarly to the gate but using

the tanh function as the activation function. Its equation at moment t is as follows:

∼
Ct = tanh(XtWxc + Ht−1Whc + bc) (13)

where Wxc and Whc are weight parameters and bc are bias parameters. Subsequently,
the memory cells are computed, utilizing the previously derived input and forget gate
values to determine the extent to which new data from candidate memory cells are in-
corporated while retaining relevant past information. This approach effectively mitigates
the issue of vanishing gradients and facilitates capturing relationships with long-term
dependencies within the time series. The computation of memory cells can be described
as follows:

Ct = Ft � Ct−1 + It �
∼
Ct (14)

Figure 3. LSTM network structure.

Finally, the hidden state Ht is computed, leveraging the output gate and memory cells.
When the output gate is close to 1, it signifies the effective propagation of all memorized
information to the prediction phase. Conversely, when the output gate is close to 0, it
implies information retention solely within the memory cells without updating the hidden
state. This computation unfolds as follows:

Ht = Ot � tanh(Ct) (15)

LSTM has found extensive utility in natural language processing owing to its adeptness
in handling long-term dependencies. The proposed model leverages LSTM to process
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time-series data, with the output of the LSTM layer serving as input to the subsequent
attention mechanism layer, as elaborated upon in subsequent sections.

4.2. Self-Attention Mechanism

The Self-Attention mechanism represents a network configuration that comprehen-
sively considers the overall context while prioritizing salient features. In time-series data,
the information at any given moment is often interdependent on preceding moments.
However, the correlation between data from different moments and the current moment
varies. Therefore, during data training, incorporating information from previous moments
and emphasizing the most pertinent information is crucial. This is commonly referred to as
the Self-Attention mechanism.

The computational process of the Self-Attention mechanism is illustrated in Figure 4.
The input Ht is subjected to multiplication by three weight matrices WQ, WK, and WV

to derive Q, K, and V, respectively. Subsequently, the resultant Q and K are used to
compute the correlation between input vectors α, typically through dot-multiplication.
Normalization is then performed using the SoftMax function to obtain A. Finally, A is
multiplied by V to yield the output of the Self-Attention mechanism layer.

Figure 4. Self-attentive machine architecture.

4.3. The Deep Learning Navigation Framework Based on Self-Attention

In the complex marine environment, the navigation and localization of AUVs predom-
inantly rely on INS and DVL. However, DVL may produce invalid readings under certain
conditions, such as encountering a school of fish, resulting in short-term data invalidation.
Prolonged DVL invalidity occurs in ultra-deep waters or when encountering steep seabed
slopes with no echo returns. While short-term invalidations can be compensated for using
kinetic models, relying on such models for extended durations introduces deviations from
actual velocities, impeding high-precision navigation and localization.

This section proposes a deep learning navigation framework based on the Self-Attention
mechanism to achieve precise navigation over extended periods. The framework adopts an
encoder–decoder architecture, organizing sensor data into time-series sequences inputted
into the LSTM layer for encoding. Subsequently, time-series data are further refined through
the Self-Attention mechanism, followed by decoding through fully connected layers and
water-track velocity.

According to the AUV dynamics model outlined in Section 2, the velocity of the AUV
correlates with acceleration, angular velocity, angle, thrust [27], and other factors. Accelera-
tion encompasses triaxial acceleration in the instrument coordinate system, while angular
velocity includes the triaxial angular velocity of the gyroscope. The angle comprises pitch
and roll angles obtained from the INS. Thrust indirectly indicates the speed and current of
twin thrusters. Although these data constitute time-series sequences, their sampling fre-
quencies vary among sensors; for example, the collection frequency of the INS is 10, and the
collection frequency of the thruster is 2. Although interpolation methods can be used to
unify data of different frequencies to a common frequency, models built using this method
may cause information increase and loss due to artificial data accumulation or interpolation.
Separately processing data of different frequencies can also reduce the data preprocessing
process. Additionally, separately processing data from different sources allows the encoder
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to only encode the data without handling the relationships between data, thus decoupling
the network functionally and reducing repetitive work. Hence, data from sensors with
different frequencies are inputted into corresponding LSTM layers. As depicted in Figure 5,
this framework employs five LSTM layers to receive acceleration, angular velocity, angle,
thruster speed, and current information. After extracting and compressing the time-series
data of sensors into context vectors through the LSTM layer, the hidden layer serves as
the input for further training on data significance at different moments through the Self-
Attention mechanism layer. Finally, the Self-Attention mechanism layer output and the
DVL-derived bottom-track velocity are fed into the fully connected layer for decoding.

Figure 5. Deep learning navigation framework.

The encoder–decoder architecture decouples the network, reducing redundancy while
facilitating input–output sequence correspondence modeling. In the encoder stage, sensor
time-series data are compressed into context vectors by LSTM, albeit with inevitable
information loss. To address this information loss, a Self-Attention mechanism enhances
time-series data encoding, learning correlations between input moments. The input in the
decoder stage comprises timing vectors enhanced by the Self-Attention module. Given that
the output solely represents the AUV velocity at the current moment without necessitating
multiple sequence outputs, a linear layer is employed to map high-dimensional time-series
vectors to a low-dimensional sample space, yielding the output of the model. To enhance
model generalization during decoding, water-track velocity is encoded by LSTM and
combined with timing input, serving as the final input to the linear layer. This enables the
model to learn embedded sea current information.

The entire model can be summarized into two categories: First, LSTM and Self-
Attention encode the timing information to obtain optimal timing vectors, addressing the
long-term dependency problem and extending the inputs to high dimensions to extract
effective information in all aspects. Second, the linear layer decoder maps the extracted
time-series data to lower dimensions and learns the sea current information and water-track
velocities to enhance the generalizability of the model and obtain the optimal output.

4.4. Portfolio Navigation Framework

After constructing the deep learning navigation model based on Self-Attention as
described in the previous subsection, the collected INS, DVL, and thruster data are divided
into two paths when the DVL operates normally. One input feeds into the combined
navigation model for AUV position computation, while the other input trains optimized
network parameters for AUV speed estimation. During a short DVL failure, the Pathfinder
DVL outputs a valid flag for the bottom-track velocity, where an A flag indicates that the
measured bottom-track velocity is valid and any other flag indicates that it is invalid. Con-
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sequently, no more fault detection activity is performed, and the combination is navigated
by compensating for the speed of the AUV using the water-track velocity. Conversely,
during prolonged DVL invalidity, the DVL is determined to be invalid for a long time by
calculating the time tinvalid since the last valid flag bit. When tinvalid is larger than 10 s,
the DVL for the bottom-velocity measurement is considered to have been invalid for a
long time. At this point, the data from the corresponding sensors are fed into the AUV
speed estimation model to predict the current AUV speed, and then the predicted speed
is subtracted from the INS speed to obtain the measured value for optimal estimation.
During the training and prediction of the AUV speed estimation model, the corresponding
sensor data must be saved according to the set time interval. The frequency at which
the DVL measures water-track velocity is used and is typically set to 1 s. The specific
framework diagram is shown in Figure 6.

Figure 6. Combined navigation framework during DVL failure.

5. Experimental Results and Discussion

5.1. Test Configuration

To verify the performance of the proposed cruise speed estimation model, a large
amount of data was collected at Xuejiadao Wharf, Qingdao, with the XH R300 AUV.
The on-site experiment is shown in Figure 7. The data include acceleration, angular
velocity, angle, water-track velocity, and bottom-track velocity at each acquisition moment.
Additionally, rotational speed and current information are collected for the main thrusts.
While bottom-track velocities serve as the target values for training, the remaining data are
used as network input to predict velocity. After preprocessing the data, 19,010 pairs of data
were selected as the training set and 3140 pairs of data as the validation set. The test set of
Experiment 1 contains 4840 pairs of data and the test set of Experiment 2 contains 5340 pairs
of data. And the deep learning framework was implemented using Pytorch, with model
hyperparameters set as follows: the experiments were executed using NVIDIA GeForce
GTX 1050Ti GPU; the time consumption on the training was about 20 ms; the number of
nodes in the hidden layer of the LSTM and the output dimension of the Self-Attention layer
were both set to 30; when Self-Attention was employed, its head was set to 2, indicating two
parallel Self-Attention mechanism layers for extracting timing information from different
aspects; the LSTM and Self-Attention dropout layers were set to 0; and the learning rate
was set to 0.0001.
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Figure 7. On-site experimental diagram.

5.2. AUV Real Experimental Data Test

GPS latitude and longitude were not selected as the ground truth values, as the deep-
learning speed estimation model references bottom-track velocities. Instead, the trajectory
derived from the bottom-track velocities was utilized. AUVs typically navigate in straight
lines or execute comb trajectories based on mission requirements; hence, both scenarios
were considered in experimental trajectory selection. Figure 8 illustrates a trajectory com-
parison between different methods, where purple represents trajectories computed using
bottom-track velocities, red denotes trajectories computed using water-track velocities,
and yellow depicts trajectories computed using velocities estimated by the Deep Learning
Model (DLM). In Experiment 1 (Figure 8a), the trajectories exhibit minimal disparity during
straight-line navigation. However, during turns, the trajectory derived from the water-track
velocity lags, indicating diminished accuracy compared to the trajectory generated using
the speed estimation model. Similar observations were noted in Experiment 2 (Figure 8b),
particularly during comb trajectory execution.

(a) (b)

Figure 8. Trajectory comparison chart. (a) Experiment 1, (b) Experiment 2.

Position error comparison in Figure 9 reveals consistent small errors in trajectories
computed from speeds estimated by the deep learning model, irrespective of the experimen-
tal scenario. Conversely, trajectory errors computed from water-track velocity occasionally
decrease but rapidly accumulate during maneuvers, resulting in noticeable divergence over
time. The deep learning model effectively addresses this issue.
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(a) (b)

Figure 9. Position error comparison chart. (a) Experiment 1. (b) Experiment 2.

The estimated velocities of the bottom-track velocity, water-track velocity, and the
speed estimation model are shown in Figures 10 and 11, where the green lines are water-
track velocities, the red lines are bottom-track velocities, and the blue lines are velocities
estimated by the DLM. As can be seen in the figure, the water-track velocity has the largest
amplitude, indicating that the measured velocity values are unstable. The reason for this is
that the water-track velocity measures the velocity of the AUV relative to the water flow,
which has a great deal of variability. However, the bottom-track velocity is more stable and
has a smaller amplitude because it measures the velocity of the AUV relative to the seafloor,
which is stationary. The velocities estimated by the DLM are as steady as the bottom-track
velocity, and they have the same general trend. Consequently, the calculated trajectories
are more consistent with those calculated for the bottom-track velocities.

Figure 10. Comparison of velocity for Experiment 1.
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Figure 11. Comparison of velocity for Experiment 2.

Velocity error comparisons are presented in Figures 12 and 13 for straight and comb
trajectory cases, respectively, to further elucidate the problem. Fluctuations in the forward
and rightward velocity errors are notably higher for the water-track velocity. This discrep-
ancy arises from uncertainties in the water-mass flow velocity, impacting absolute velocity
measurements. Conversely, the deep learning model incorporates water-track velocity, ex-
tracting flow information and mitigating error fluctuations. Table 4 lists the maximum and
average value of forward speed errors, maximum and average value of rightward speed
errors, and maximum and average value of position errors obtained from Experiments 1
and 2, indicating consistently smaller error parameters for the deep learning-based speed
estimation model compared to the water-track velocity. Consequently, the speed estimation
model can effectively improve the accuracy of navigation.

(a) (b)

Figure 12. Comparison of velocity errors for Experiment 1. (a) Longitudinal velocity error. (b) Trans-
verse velocity error.

82



Remote Sens. 2024, 16, 2580

(a) (b)

Figure 13. Comparison of velocity errors for Experiment 2. (a) Longitudinal velocity error. (b) Trans-
verse velocity error.

Table 4. Comparison chart of error parameters.

Experiment 1 Experiment 2

Water Track DL Water Track DL

Maximum value of forward speed error (m/s) 0.853 0.266 0.853 0.591
Average of forward speed error (m/s) 0.192 0.067 0.201 0.088

Maximum value of rightward speed error (m/s) 1.030 0.320 0.810 0.345
Average of rightward speed error (m/s) 0.204 0.073 0.203 0.063

Maximum value of position error (m) 30.442 5.754 14.193 4.074
Average of position error (m) 12.420 2.784 5.889 1.973

Navigation accuracy 5.20% 0.90% 2.13% 0.48%

The experimental results on real data from the XH R300 demonstrate that the deep
learning-based speed estimation model significantly enhances the combined navigation
effectiveness of the DVL in cases of persistent bottom-track velocity failure. This study
developed a deep learning speed estimation model based on LSTM and Self-Attention
mechanisms, leveraging the time-series relationships among variables. Compensating the
AUV velocity using the proposed model type was validated to incur less error compared
to direct compensation with water-track velocity, thereby fulfilling the requirements of
high-precision combined navigation. The cruise speed model did not consider large-scale
vertical motions, which will be investigated in future work.

6. Conclusions

This study proposes a deep learning model leveraging acceleration, angle, angular
velocity, and thruster speed as inputs to estimate AUV speed. LSTM is employed to
extract time-series data from these variables, while Self-Attention enhances time-series data
encoding to address long-term dependency issues. Water flow rate information, crucially
embedded in water-track velocity, is separately encoded and utilized to enhance network
generalization. The experimental results based on sea trial data demonstrate that the deep
learning-based speed estimation model outperforms direct compensation with water-track
velocity, achieving higher speed accuracy and meeting the demand for high-precision
combined navigation in persistent DVL failure scenarios, thus enhancing the accuracy of
the combined navigation system. Additionally, this research can be extended to scenarios
with significant ocean currents, sharp turns, or muddy conditions that severely reduce DVL
accuracy, further enhancing the reliability of the integrated navigation system.

Although the proposed method demonstrates superiority in most cases, the accuracy
of the speed estimation model may deteriorate with declining bottom-track accuracy,
warranting further investigation.
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Abstract: With the modernization of global navigation satellite systems (GNSS), especially the rapid
development of the BeiDou Navigation Satellite System (BDS), more observations of satellites and
signals have become available. Using data of the globally distributed MGEX stations, a systematic and
comprehensive evaluation of signal characteristics for BDS-3, BDS-2, GPS, and Galileo is conducted
in terms of carrier-to-noise ratio (C/N0), code noise, and multipath in the contribution. First, a
comprehensive signal quality assessment method for BDS/Galileo/GPS satellites and signals is
proposed, including C/N0 modeling and MP modeling. For BDS, the BDS-3 satellites apparently have
higher signal power than the BDS-2 satellites at the same frequency such as B1I and B3I, and the
signal B2a of BDS-3 is superior to other signals in regard to signal power, which is comparable with
the superior Galileo E5 signals and GPS L5. Among all the signals, the observation accuracy of E5
is the highest regardless of receiver types, and next highest are BDS-3 B2a and GPS L5. Due to not
being affected by the systematic code errors of BDS-2, the observations of BDS-3 satellites contain
smaller multipath errors than that of BDS-2 satellites. As for the multipath suppression performance,
the BDS-3 signal B2a, GPS L5, and Galileo E5 and E5b perform better than the other signals, which
may be related to their wide signal bandwidths.

Keywords: BDS-3; signal quality assessment

1. Introduction

As of May 2024, the data of 30 BDS-3 satellites in orbit are available, including 3 GEO
satellites, 3 IGSO satellites, and 24 MEO satellites [1–4], and currently, BDS constellation
is composed of BDS-2 and BDS-3 [5,6]. Furthermore, four BDS-3 experimental satellites
(BDS-3s) are available, including two IGSO and two MEO satellites [7,8]. BDS-3 added two
new signals, B1C and B2a, on the basis of compatibility with BDS-2 B1I and B3I signals [9–13].
Table 1 shows the characteristics of the current BDS-3 public signals. Apparently, the two
new signals, B1C and B2a, have higher ranging accuracy, wider bandwidth, and better
interoperability. In the signal design, to provide better compatibility and interoperability, the
B1C frequency is selected as 1575.42MHz, which is used for frequency multiplexing with
Galileo E1 and GPS L1, and B2a is selected as 1176.45 MHz, which is compatible with Galileo
E5a and GPS L5.

With the continuous improvement of the GNSS navigation and positioning theory,
the research on signal quality evaluation of GPS, Galileo, BDS-2, and other systems has
been relatively mature. The contents of the signal quality evaluation include the observed
signal-to-noise ratio [14–16], pseudorange multipath and noise [17–20], and pseudorange
and carrier observation accuracy [21–23]. For the new signal E5 of the Galileo, the research
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of Zaminpardaz et al. on the four IOV and nine FOC satellites showed that the E5 signal
modulated with AltBOC has significantly better signal power and lower noise and multi-
path biases among the five Galileo signals. The instantaneous ambiguity fixation on the E5
signal can be achieved by correcting the multipath [19]. Similarly, the research by Tian et al.
and Simsky et al. indicated that apart from outperforming others in signal powers, the E5
signal has a high level of short delay multipath suppression, which may be related to its
advanced signal modulation method [22,23]. As for BDS, the characteristics of the signals
B1C, B2a, and B2b were first analyzed by Zhang et al., utilizing the five BDS-3 satellites,
and it was found that the elevation-dependent pseudorange biases that appeared in the
BDS-2 satellite observations no longer exist in the new-generation BDS-3 satellites [24].

Table 1. BDS-3 open service signal system.

Signal
Component

Frequency
(MHz)

Bandwidth
(MHz)

Code Rate
(Mcps)

Modulation
Broadcast
Satellite

Compatible
Frequency

B1I 1561.09 4.092 2.046 BPSK (2) All

B3I 1268.52 20.46 10.23 BPSK (10) All

B1C_data
1575.42 32.736 1.023

BOC (1,1)
IGSO MEO L1, E1

B1C_pilot QMBOC (6,1,4/33)

B2a_data
1176.45 20.46 10.23 BPSK (10) IGSO MEO L5, E5a

B2a_pilot

B2b_I
1207.14 — 10.23 QPSK (10) IGSO MEO E5b

B2b_Q

The availability of more BDS-3 satellite observation data has made the evaluation of
BDS-3 performance a research hotspot. Fu Zheng et al. studied the receiver pseudorange
deviation between BDS-2 and BDS-3 and found that the receiver pseudorange deviation
between BDS-3 and BDS-2 varies greatly and is related to the receiver type [25]. By
investigating the intrinsic characteristics of receiver-related biases in the combination of
BDS-3 and BDS-2, Mi et al. concluded that there exist noticeable differences in the epoch-
wise DCB estimates of the same type between BDS-3 and BDS-2 [26]. As for the atomic clock,
the drift rate and frequency stability of the clock on the BDS-3 satellite are significantly better
than those on BDS-2 [27,28]. Furthermore, when studying the combination positioning
of BDS-3 and other systems, the increase in BDS-3 new signals can significantly improve
the positioning performance of BDS/GPS/Galileo [29,30]. However, it was found that the
inter-system bias (ISB) between BDS-3 and other GNSS systems cannot be ignored. Even
ISB exists between BDS-3 and BDS-2 [31,32].

The excellent characteristics of BDS-3 interest us in further evaluating its perfor-
mance compared to other GNSS systems. In addition, with the completion of BDS-3,
the multi-system fusion positioning service with BDS as the core has preliminary condi-
tions. The combination of BDS-3 with other GNSS systems can provide sufficient obser-
vations and huge potential for improving the accuracy, reliability, and availability of PNT
services [33–35], yet the differences in data quality and random characteristics between
observations of different types of satellites and signals make it impossible to achieve ideal
results in multi-system fusion positioning. In addition, there are currently many brands of
receivers for BDS-3 data processing, which also makes the quality and characteristics of the
observation data inconsistent. Therefore, conducting a comprehensive evaluation of BDS-3
is of great significance, as compared to other GNSS systems.

Utilizing data from globally distributed MGEX stations that can receive BDS-3 satellite
signals, this paper first provides a brief description of the BDS-3 signal regime, then
provides a systematic and comprehensive assessment of its data quality, analyzing and
comparing it with other GNSS systems.
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2. Data and Methods

In order to study the performances of signals and satellites of BDS-3, quality evalu-
ations on C/N0, code noise, and multipath were conducted using data from the MGEX
stations that can process the BDS-3 signals.

2.1. Data

Table 2 shows the classification of the MGEX stations that can process BDS-3 signals
from 14 May to 20 May 2019 (DOYs 2019, 134–140). The earlier use of data here is because
BDS-3 data are just available at this time, and BDS-2 data are also relatively complete,
laying a solid foundation for the subsequent BDS performance analysis. In the experi-
ment, as the stations equipped with the same type of receiver showed high consistency,
the observations of the representative stations were used for experimental analysis to
compare the characteristics of C/N0, code noise, and the multipath between BDS-3 and
the other GNSS systems in different types of receivers. All the selected stations were
installed in an open sky environment, and data can be found at the IGS official website
(http://www.igs.org/mgex/data-products/#data, accessed on 2 April 2024).

Table 2. Classifications of different receiver types in MGEX stations (G: GPS; E: Galileo; C: BDS).

Receiver Type Firmware Version Observation Signal Selection of Stations

JAVAD

TRE_3 3.7.6
G: L1, L2, L5

E: E1, E5a, E5b, E5
C: B1I, B2I, B3I, B2a

POTS, SGOC, SUTM,
ULAB, URUM, WIND,

WUH2

Others
G: L1, L2, L5

E: E1, E5a, E5b, E5
C: B1I, B2I, B3I

9 measuring stations,
such as BSHM, KOKV

LEICA GR10, GR25, GR30, GR50
G: L1, L2, L5

E: E1, E5a, E5b, E5
C: B1I, B2I

25 measuring stations,
such as ALIC, EBRE

TRIMBLE NETR9
G: L1, L2, L5

E: E1, E5a, E5b, E5
C: B1I, B2I, B3I,

48 measuring stations,
such as BOR1, CUT0

SEPT POLARX5
G: L1, L2, L5

E: E1, E5a, E5b, E5, E6
C: B1I, B2I, B3I

40 measuring stations,
such as CEBR, HOB2

2.2. Carrier-to-Noise Density Ratio Evaluation Model

The carrier-to-noise density ratio (C/N0) values are usually used to indicate the signal
quality of GNSS observed data. In the experiment, the C/N0 values of all epochs correspond-
ing to a certain satellite s at the frequency j were first extracted, and then the corresponding
satellite elevation EL on each epoch was calculated.

EL = arcsin (eu) (1)

where eu is the transformation coordinate value between the earth-centered fixed coordinate
system and the topocentric coordinate system.

Two models with regard to C/N0 were established in the contribution so as to evaluate
the power of different signals in different GNSS systems.

The first model was for comparing the signal power between different satellite types
at the same frequency. In the model, the satellite elevations were used as the basis for
grouping the C/N0 values, and the C/N0 values of a certain satellite at a certain frequency
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point were divided into groups every 10 degrees. Afterward, an average value of C/N0
was calculated within each group. The formula is as follows.

C/N0s
j,ave(k) =

∑n
i=1 C/N0s

j (i)[k·10◦ ,(k+1)·10◦ ]

n
(2)

where k = 0 ∼ 8 denotes the kth elevation group, and n is the number of epochs within the
elevation group of

[
k·10

◦
, (k + 1)·10

◦]
. C/N0s

j,ave(k) is the average C/N0 value of satellite
s at the frequency j within the kth elevation interval.

The second model was for comparing the signal power at different signals. Different
from the first model, the C/N0 values over the same type of satellites at the same frequency
were grouped according to their elevations. Then, C/N0 values in each elevation interval
of 10 degrees were averaged, and STDs of C/N0 were calculated to estimate uncertainties.

C/N0j,ave(k) =
∑m

s=1 ∑n
i=1 C/N0s

j (i)[k·10◦ ,(k+1)·10◦ ]

n
(3)

where m is the number of satellites that are the same type, and C/N0s
j,ave(k) is the average

C/N0 value over a certain type of satellite at the frequency j within the kth elevation
interval. STDs can be expressed as:

C/N0j,STD(k) =

√
∑m

s=1 ∑n
i=1 (C/N0s

j (i)[k·10◦ ,(k+1)·10◦ ] − C/N0j,ave(k))2

n
(4)

2.3. Noise Assessment Model

The BDS, GPS, or Galileo single-system pseudorange and phase-nondifference obser-
vation equations are:

Ps
r,j = ρs

r + (dtr − dts) + Ts
r + β j Is

r,j + (dr,j + ds
,j) + es

r,j (5)

Φs
r,j = ρs

r + (dtr − dts) + Ts
r − β j Is

r,j + εs
r,j + λj(Ns

r,j + br,j + bs
,j) (6)

Ps
r,j −Φs

r,j = 2β j Is
r + (dr,j + ds

,j)− λj(Ns
r,j + br,j + bs

,j) (7)

Δ(Ps
r,j −Φs

r,j) = Δes
r,j (8)

where Ps
r,j is the pseudorange observation, and Φs

r,j is the carrier phase observation. ρs
r is

the geometry term, and dtr and dts are the receiver clock error and satellite clock error.
Ts

r is the tropospheric delay, and Is
r,j is the ionospheric delay. dr,j and ds

,j are the hardware
delays of the receiver and satellite in pseudorange observations, respectively. br,j and bs

,j
represent the initial phase deviation and hardware delay of the receiver and satellite in
the carrier phase observation. Ns

r,j is the ambiguity term in the carrier phase observation.
es

r,j and εs
r,j represent other unmodeled errors, such as observation noise and multipath

effects in pseudorange and carrier phase observations, respectively.
Using the pseudorange minus the carrier, the geometric term can be eliminated, and

then using the inter-epoch difference, the ambiguity and ionospheric term can be eliminated
without circle slips. Apart from this, the phase noise was small and negligible in comparison
to the pseudorange noise; thus, the code noise can be evaluated by the above equation.

2.4. Code Multipath Analysis

A GNSS receiver theoretically receives a direct wave signal from the GNSS satellite,
but in reality, in addition to the direct wave, there are several indirect waves that reach
the receiver’s signal-receiving antenna, including reflected waves from ground or ground
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objects, reflected waves from the satellite, and scattered waves from the atmospheric
propagation medium.

Generally, the code multipath can be evaluated by constructing a combination of
multipaths using the pseudorange and carrier phase observations, which is expressed as
follows.

MPs
j = Ps

r,j −
f 2
j + f 2

i

f 2
j − f 2

i
Φs

r,j +
2 f 2

i
f 2
j − f 2

i
Φs

r,i

= Ps
r,j − (

f 2
j

f 2
j − f 2

i
Φs

r,j −
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The penultimate term of the multipath combination corresponds to the ionosphere-free
combination of the carrier phase so as to eliminate the effect of the first-order ionospheric
delay, while the last term is the geometry-free combination so that the effect of the geometry
term in the combination can be effectively eliminated.

Substituting the observed value equation into the above equation gives the equation:

MPs
j = dMj −

f 2
i + f 2

j

f 2
j − f 2

i
dmj +

2 f 2
i

f 2
j − f 2

i
dmi − B (10)

where the subscripts i and j (i �= j) denote the frequency, and dM and dm stand for the
code multipath error and the carrier phase multipath error. B includes the ambiguity term,
as well as the hardware delay deviation, which can be expressed as

B =
f 2
i + f 2

j

f 2
j − f 2

i
λjNj −

2 f 2
i

f 2
j − f 2

i
λi Ni − dj − ds (11)

Theoretically, the carrier phase multipath error and the systematic errors, such as
phase noise, were small, making them negligible with respect to the code multipath. When
the carrier phase observation does not appear in the cycle slip, the ambiguity parameter can
be treated as a constant. The differential code deviation was also stable in the short term.
Therefore, in the multipath combination, it was possible to smooth the irrelevant items by
taking the average value. Then, the code multipath in a complete arc can be obtained as

MPs
j,var = MPs

j− < MPs
j > (12)

where the operator < · > indicates smoothing in the time domain.
In addition, considering the fact that the code accuracy of some special signals can

reach the centimeter level, it was necessary to try to make the frequency difference between
the two signals as large as possible to minimize the effects of phase multipath and phase
noise when choosing to build the multipath combination. Therefore, the frequency f j and
fi were chosen in the paper, as shown in Table 3.

Table 3. Selection of signals in different multipath combinations.

System Galileo BDS-2 BDS-3 GPS

f j E1 E5a E5b E5 E6 B1I B2I B3I B1I B3I B2a L1 L2 L5

fi E5a E1 E1 E1 E1 B2I B1I B1I B3I B1I B1I L2 L1 L1

Similar to the C/N0 model, the multipath values on all epochs corresponding to each
satellite at the same frequency were grouped according to the satellite elevations, with
each 10◦ elevation as a split. Then, the multipath values within the same elevation interval
were averaged.

MPs
j,ave(k) =

∑n
i=1 MPs

j,var(i))[k·10◦ ,(k+1)·10◦ ]
n

(13)
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where MPs
j,ave(k) denotes the mean multipath value of satellite s at frequency j in the kth

set of elevation intervals.

3. Experiment Results

3.1. Experimental Analysis of Signal Power

Using the model given above, the C/N0 values of BDS-3 satellites at different signals
are analyzed. For ease of presentation, BDS-2 is represented as capital II, the BDS-3
experimental system is represented as capital IIIs, and BDS-3 is represented as III in the
following diagrams.

The average C/N0 values of all satellites for BDS-2, BDS-3s, and BDS-3 at different
signals as a function of elevation are depicted in Figure 1, derived from the first model of
C/N0. The C/N0 values of the same types of satellites are represented by lines of the same
color, indicating that the difference in signal power between satellites of the same type is
very small. In terms of B1I and B3I, the average C/N0 values of BDS-3 MEO satellites are
all about 1–2 dB higher than that of BDS-2 MEO satellites and 3–4 dB higher than that of
BDS-2 GEO and IGSO satellites. The lower signal strength of GEO and IGSO satellites is
due to their high satellite orbit altitude, resulting in greater signal attenuation.

Figure 1. Average C/N0 values against the elevations of all the satellites for BDS B1I/B2I/B3I/B2a
based on observations collected from MGEX stations during DOY 134–140 in 2019. Only the results
of the representative receiver type JAVAD are plotted. (II: BDS-2; IIIs: BDS-3 experimental system;
III: BDS-3).

Due to the small differences between satellites of the same type, the C/N0 values of
satellites of the same type are calculated together according to the second C/N0 model to
further analyze and compare the signal performances of different GNSS systems, which are
shown in Figure 2. In the experiment, it was found that the experimental results obtained
by different types of receivers were basically consistent; therefore, only performances of
the receiver type JAVAD TRE_3 3.7.6 are described in the contribution.
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The left panel of Figure 2 first shows the comparison of signal powers at various
frequency points of BDS-2 and BDS-3. Consistent with the above analysis results, the signal
powers of BDS-3 satellites at B1I and B3I show a higher level than BDS-2 satellites. Among
all the signals of BDS, B2a performs the best, varying from 46 to 60 dB-Hz.

Figure 2. Average C/N0s against the elevations of different signals. The left panel is only for the BDS
signals, while the right panel is for all the signals of BDS-3, Galileo, and GPS.

The right panel of Figure 2 shows the C/N0s comparison of various types of signals
for BDS-2, BDS-3, GPS, and Galileo. Among all the signals, the GPS L5, BDS-3 B2a, and
Galileo E5b perform slightly better than the other signals, and L2 of GPS always has the
lowest signal power.

The average C/N0 values of BDS-2, BDS-3, GPS, and Galileo on different types of
receivers at each signal are shown in Figure 3. There is little difference in signal power on
different types of receivers. Comparing the C/N0 averages on the first seven stations of
JAVAD, which can receive B2a signals, the B2a signal has significantly higher power than
the other signals, regardless of station. Among all the BDS-2 signals, the signal power of
B1I is always smaller than that of B2I and B3I on the same station, while the order of signal
power for GPS is L5 > L1 > L2. For Galileo, the signal power of E5 is the strongest, although
on some stations equipped with LEICA-type receivers, the E5 signal is not the best.

3.2. Experimental Analysis of Pseudorange Noise

Similarly, the experimental data given in Section 2.1 are used to perform the experi-
mental analysis of pseudorange noise according to the Equation (8). CC is represented as
the pseudorange noise.

The time series of CC values of BDS-3 C35 at B2a are given in Figure 4. The gray line
indicates the satellite elevation. There is a certain correlation between the pseudorange
noise and satellite elevation. The higher the satellite elevation, the smaller the noise, and
vice versa. In Figure 5, the time series of CC values of four BDS-3 satellites at different
signals are depicted. The performances of the four satellites are almost the same, and all of
them show elevation-dependent and periodic characteristics. Corresponding to the high
signal power, the B2a signal possesses the lowest noise level among the three signals B1I,
B3I, and B2a.
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(a) (b) 

  
(c) (d) 

Figure 3. Comparison of C/N0 values at different signals for different receiver types. The horizontal
axis in subfigure (a) represents 15 stations with the receiver type JAVAD, while that in subfigure (b)
represents 24 stations with the receiver type LEICA, that in subfigure (c) represents 29 stations with the
receiver type SEPT, and that in subfigure (d) represents 40 stations with the receiver type TRIMBLE.
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Figure 4. Time series of CC values of the BDS-3 C35 satellite at the B2a signal during DOY 134–140 in
2019. The satellite elevation over time is indicated by the gray line.

Figure 5. Time series of CC values of the four selected BDS-3 satellites at B1I/B3I/B2a during DOY
134–140 in 2019.

Similarly, the time series of CC values for BDS-2, Galileo, and GPS satellites are given
in Figure 6. For BDS-2, the GEO and IGSO satellites have larger noise levels than MEO
satellites, which can also be related to their higher orbital altitude. Possessing high signal
power, BDS-2 B3I, GPS L5, and Galileo E5b show smaller noise than other signals. It is
worth noting that although GPS L2 has a low signal power, its noise level is not significantly
greater than the other signals, which indicates that the noise level is not only related to the
signal power.
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Figure 6. Time series of CC values for BDS-2 (C5, C6, and C12), Galileo (E12 and E31), and GPS (G15,
G11, and G24) satellites at different signals during DOY 134–140 in 2019. Legends B1I (light green),
B2I (bright green), and B3I (light blue) are for BDS satellites C5, C6, and C12. Legends E1 (light
blue), E5a (light green), E6 (bright green), and E5b (light yellow) are for Galileo satellites E12 and E31.
Legends L1 (light blue), L2 (light green), L5 (bright green) are for GPS satellites G15, G11 and G24.

Similar to the comparison of C/N0 on each station in Figure 3, STDs of CC values at
different signals on each station are depicted in Figure 7, which are used to reflect the code
noise level. Comparisons of different signals on different stations have almost identical
characteristics, indicating that the pseudorange noise levels of different signals have little
relationship with the receiver type. It is worth noting that the Galileo E5 signal exhibits
optimal performance due to its high signal power.

3.3. Experimental Analysis of Multipath

Corresponding to Figures 5 and 6, comparisons of multipath values are presented in
Figures 8 and 9, respectively. The BDS-3 satellites perform better than BDS-2, and their
multipath values no longer tend to vary with the elevation, which may be related to the
better multipath resistance of their new modulated signals. In addition, the on-satellite
multipath errors that appeared on BDS-2 satellites are no longer present on the BDS-3
satellites. The BDS-3 B2a, GPS L5, and Galileo E5b have significantly smaller multipath
errors than other signals.

In order to more clearly compare the magnitude of multipath values at each signal,
the STD values of multipath combinations for each satellite at different signals are shown
in Figure 10. The accuracies of BDS-3 B2a, BDS-2 B3I, GPS L5, and Galileo E5b are superior
to other signals in their respective systems.
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(a) (b) 

  
(c) (d) 

Figure 7. Comparison of average CC STD values in different stations. The horizontal axis in
subfigure (a) represents 15 stations with receiver type JAVAD, while that in subfigure (b) represents
24 stations with receiver type LEICA, that in subfigure (c) represents 29 stations with receiver
type SEPT, and that in subfigure (d) represents 40 stations with receiver type TRIMBLE. In each
subgraph, the 4 panels are for BDS-3 B1I/B3I/B2a, BDS-2 B1I/B2I/B3I, GPS L1/L2/L5, and Galileo
E1/E5a/E6/E5b/E5, respectively.
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Figure 8. Multipath values against satellite elevation for BDS-3 C19, C21, C23, and C35 satellites
during DOY 134–140 in 2019. MPC stands for Multipath Combination.

Figure 9. Multipath values against satellite elevation for BDS-2 (C5, C21, and C23), Galileo (E12 and
E31), and GPS (G15, G11, and G24) satellites during DOY 134–140 in 2019. Legends B1I (light blue),
B2I (light green) and B3I (bright green) are for BDS satellites C5, C6, and C12. Legends E1 (light
blue), E5a (light green), E6 (bright green), and E5b (light yellow) are for Galileo satellites E12 and
E31. Legends L1 (light blue), L2 (light green) and L5 (bright green) are for GPS satellites G15, G11
and G24.
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Figure 10. STDs of multipath combinations for different satellites. The four panels from top to bottom
are for BDS-3, BDS-2, GPS, and Galileo satellites, respectively.

Similar to the comparison of C/N0 and CC values for each station, the STD values
of the multipath combinations for each type of receiver at different signals are shown in
Figure 11. Similar characteristics can be found, namely that the multipath values have
little relationship with the receiver type. Similarly, the Galileo E5 signal exhibits superior
performance compared to all other signals, regardless of receiver type.
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Figure 11. Comparison of average MPC STD values in different stations. The horizontal axis in
subfigure (a) represents 15 stations with receiver type JAVAD, while that in subfigure (b) represents
24 stations with receiver type LEICA, that in subfigure (c) represents 29 stations with receiver
type SEPT, and that in subfigure (d) represents 40 stations with receiver type TRIMBLE. In each
subgraph, the 4 panels are for BDS-3 B1I/B3I/B2a, BDS-2 B1I/B2I/B3I, GPS L1/L2/L5, and Galileo
E1/E5a/E6/E5b/E5, respectively.

4. Discussion

By using data from different types of receivers and constructing models to evaluate
signal power, code noise, and multipath effects, the satellite and signal performance of BDS
and other systems such as GPS, Galileo were analyzed and compared.
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The receiver type has little influence on C/N0 values. For BDS, signal powers of BDS-3
satellites are approximate 2–3 dB-Hz higher than those of BDS-2 satellites at the same
frequency, which may be related to its advance modulation, and B2a of BDS-3, E5 of Galileo,
and L5 of GPS have stronger signal powers.

The pseudorange noise levels of different signals have little relationship with the
receiver type. It is worth noting that the Galileo E5 signal exhibits optimal performance
due to its high signal power. The observation accuracy of E5 can reach 0.2 m, which is the
highest among all the signals, regardless of receiver types, and next highest are BDS-3 B2a
and GPS L5.

Similar characteristics can be found, namely that the multipath values have little
relationship with the receiver type. Not being affected by the systematic code errors of
BDS-2, the observations of BDS-3 satellites contain smaller multipath errors than that of
BDS-2 satellites. As for the multipath suppression performance, the BDS-3 signal B2a, GPS
L5, and Galileo E5b perform better than the other signals, which may be related to their
wide signal bandwidths. The Galileo E5 signal exhibits superior performance compared to
all other signals, regardless of receiver type.

In conclusion, the signals B2a, E5, and L5 exhibit advantages over the other signals,
which may be attributed to the advanced signal modulation method.

5. Conclusions

A comprehensive evaluation of the signal characteristics of BDS, Galileo, and GPS
was conducted using data from four types of receivers of MGEX stations. The following
conclusion can be drawn.

In terms of signal power, the BDS-3 satellites have better manifestation than the BDS-2
satellites, and the signal B2a is better than B1I and B3I, while E5 of Galileo and L5 of GPS
perform better than the other signals of the respective systems. The pseudorange noise
exhibits characteristics of periodicity and variation with satellite elevation. The BDS-3 B2a
signal possesses smaller noise than the other signals of BDS. The signal L5 performs better
than the other signals of GPS, while the Galileo E5 signal performs best among all the
signals of the three systems, regardless of receiver types. The MP error of BDS-3 is on the
same level as that of GPS and Galileo, which is apparently smaller than that of BDS-2, and
the systematic biases which exist in the pseudorange observations of BDS-2 are absent for
BDS-3. Similar to the characteristics of the CC values, the BDS-3 B2a, GPS L5, and Galileo
E5b have significantly smaller multipath errors than other signals. In general, the C/N0,
CC, and multipath values have little relationship with the receiver type, but they affect
each other.

In this paper, although some preliminary conclusions and research results have been
achieved, there are still the following studies that need to be further deepened and ex-
panded, due to system development and personal conditions, etc. The paper mainly
focuses on the data quality between different types of satellites and different frequency
observations of BDS/Galileo/GPS, but it does not conduct a detailed study of the observa-
tion stochastic model based on this. With the availability of BDS-3 and more Galileo FOC
satellite observations, the establishment of a stochastic model that reflects the differences in
the stochastic characteristics of different observations based on the data quality analysis to
achieve high-precision-combined multi-GNSS navigation and positioning will become the
key of the next research.
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Abstract: A strong motion seismometer is a kind of inertial sensor, and it can record middle- to high-
frequency ground accelerations. The double-integration from acceleration to displacement amplifies
errors caused by tilt, rotation, hysteresis, non-linear instrument response, and noise. This leads to
long-period, non-physical baseline drifts in the integrated displacements. GNSS enables the direct
observation of the ground displacements, with an accuracy of several millimeters to centimeters
and a sample rate of 1 Hz to 50 Hz. Combining GNSS and a strong motion seismometer, one can
obtain an accurate displacement series. Typically, a Kalman filter is adopted to integrate GNSS
displacements and strong motion accelerations, using the empirical values of noise uncertainty.
Considering that there are significantly different errors introduced by the above-mentioned tilt,
rotation, hysteresis, and non-linear instrument response at different stations or at different times at
the same station, it is inappropriate to employ a fixed noise uncertainty for strong motion accelerations.
In this paper, we present a Sage–Husa Kalman filter, where the noise uncertainty of strong motion
acceleration is adaptively estimated, to integrate GNSS and strong motion acceleration for obtaining
the displacement series. The performance of the proposed method was validated by a shake table
simulation experiment and the GNSS/strong motion co-located stations collected during the 2023
Mw 7.8 and Mw 7.6 earthquake doublet in southeast Turkey. The experimental results show that the
proposed method enhances the adaptability to the variation of strong motion accelerometer noise level
and improves the precision of integrated displacement series. The displacement derived from the
proposed method was up to 28% more accurate than those from the Kalman filter in the shake table
test, and the correlation coefficient with respect to the references arrived at 0.99. The application to
the earthquake event shows that the proposed method can capture seismic waveforms at a promotion
of 46% and 23% in the horizontal and vertical directions, respectively, compared with the results of
the Kalman filter.

Keywords: high-rate GNSS; strong motion; Sage–Husa Kalman filter; coseismic displacement

1. Introduction

Traditional seismic wave recording instruments mainly include seismometers and
strong motion seismometers, and both have high sampling rates and a good sensitivity.
However, during strong earthquakes, the velocity records of near-field seismometers are
prone to saturation limits [1]. A strong motion seismometer is a kind of inertial sensor that
can record middle- to high-frequency strong ground motion without saturation. However,
the low-frequency noises introduced by tilt, rotation, hysteresis, non-linear instrument
response, and measurement noise are not easy to solve [2]. These low-frequency noises
are additionally amplified when integrating the acceleration records to velocities and dis-
placements and this leads to non-physical baseline drifts. The drift becomes larger and
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larger with the increase of integration time, especially for the great seismological events [3].
The typical method involves applying high-pass filtering to remove low-frequency errors,
but the trend component is weakened. As a result, it is unable to obtain accurate static dis-
placements, and the maximum ground displacement is also greatly reduced. Alternatively,
some empirical baseline correction schemes have been proposed where the start time and
duration of different stages are usually determined by an empirical acceleration threshold.
By taking the zero velocities before start time and after end time as constraints, corrections
for the baseline shifts are estimated through piece-wise fitting [4–8]. However, the baseline
shift does not always accompany the strongest ground shaking. The threshold-based meth-
ods tend to lead to an over- or underestimation of the true baseline shift. Other correction
schemes, which are performed by manual calibration, rely on subjective determinations for
the choice of correction parameters [9].

The Global Navigation Satellite System (GNSS) enables the direct observation of
ground displacements, with an accuracy of several millimeters to centimeters and a sample
rate of 1 Hz to 50 Hz [10]. Compared with seismic sensors, high-frequency GNSS can
obtain permanent displacement information of the Earth’s surface exempt from measuring
saturations and baseline drifts [11,12]. Initially, the GNSS displacement retrieval methods
depend on relative positioning (RP) [13,14]. However, the RP method only obtained relative
displacements regarding a reference station. For a large earthquake, there are also seismic
waveforms in the reference station [15]. Compared with the RP, precise point positioning
(PPP) can provide absolute seismic waveforms alone [16,17]. Nevertheless, it has limited
accuracy owing to unresolved integer cycle ambiguities. In recent years, precise point posi-
tioning with ambiguity resolution (PPP-AR) has been developed to improve the positioning
accuracy of the PPP method [18,19]. It can provide rival accuracy to that of the RP method
by applying precise ephemeris, uncalibrated phase delay (UPD), or fractional cycle bias
(FCB) products [20]. However, the limitation of PPP-AR is that a (re)convergence period of
tens of minutes is needed. The accuracy of the PPP-derived/PPP-AR-derived coseismic
displacement might be decreased when an earthquake happens, by coincidence, during the
PPP/PPP-AR (re)convergence period [21]. To overcome the (re)convergence of PPP/PPP-
AR, some time-differential algorithms such as the variometric approach (VA) and temporal
point positioning (TPP) have been developed for the retrieval of seismic waves [22–29].
By only applying broadcast ephemeris, the VA method can directly obtain seismic velocity
waveforms based on epoch-differenced phase measurements. But the integration process
from the velocities to the displacements is subject to accumulation errors. The TPP method
adopts temporal-differenced phase measurements between a reference epoch and the cur-
rent epoch, and there is almost no shift in the derived displacement waveforms. It should
be noted that the precise ephemeris must be applied in the TPP method. Regardless of the
method of GNSS displacement retrievals, such as RP, PPP/PPP-AR, VA, and TPP, GNSS is
systematically noisier than seismic sensors mainly due to residual atmosphere interference,
multipath and other errors, and it also has a relatively lower sampling rate [30,31].

The integration of GNSS and strong motion seismometer can harness the inherent
strengths of both GNSS and accelerometer sensor. This fusion enhances their complemen-
tarity, particularly in P-wave arrival distinguishing, rapid magnitude estimation, and earth-
quake early warning, especially for large earthquake events [32,33]. However, the baseline
drifts in the displacements obtained from strong motion records are the main challenge
in the combination of GNSS and strong motion [34]. Emore et al. (2007) developed an
inversion method to simultaneously estimate the baseline shifts and ultimate displacements
with the constraints imposed by GNSS displacements [2]. Wang et al. (2013) modeled the
baseline shifts by a linear function combined with a sinusoidal series. The baseline shifts
were estimated to achieve the best fit with the GNSS displacement and then they could be
eliminated from the strong motion record [35]. Taking the GNSS-derived displacements as
a reference, Tu et al. (2013) extracted the baseline shift in the accelerometer record by em-
ploying a smoother. The smoothing process, akin to a low-pass filter, effectively filters out
high-frequency seismic signals [36]. With the physical constraints derived from high-rate
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GNSS deformations, the peak ground displacement and static permanent displacements
are maximally preserved [37].

Unlike the above-mentioned integration methods at the level of displacements, Smyth
and Wu (2007) proposed a method to combine low-sampling-rate displacements and high-
sampling-rate acceleration records to obtain very broadband waveforms by a multi-rate
Kalman filter [38]. Bock et al. (2011) presented the combination of GNSS RP displacements
and strong motion accelerations to retrieve the broadband coseismic waveforms of the
2010 Mw 7.2 EI Mayor–Cucapah earthquake [39]. Song and Xu (2018) modified the filter
model to reduce the influence of GNSS-colored noise [40]. Shu et al. (2018) also improved
the integrated model to solve the aliasing problem in GNSS-derived waveforms with an
application to the 2016 Mw 7.8 Kaikoura earthquake [41]. In these schemes, strong-motion
acceleration records were regarded as input signals to the state equation, and the baseline
shift of acceleration and the measurement noise of strong motion seismometer were unified
as process noise. Apart from these schemes, Geng et al. (2013) proposed a tight integration
method in which GNSS measurements and strong motion accelerations were directly
integrated into the filter process of PPP-AR [42]. An extra parameter was introduced
to estimate the baseline shift, and it was modeled as a random walk. Li et al. (2013)
demonstrated that precise dynamical information provided by strong motion acceleration
records provides a tight constraint to improve the PPP-AR solution strength [43]. Tu et al.
(2014) refined the tight integration model by utilizing the estimated baseline shift from
the previous epoch to correct the acceleration of the current epoch. This refinement led to
improved integration outcomes [44]. Guo et al. (2021) proposed a loose integration model
that incorporates a virtual acceleration parameter for estimating baseline shift corrections.
This estimation of virtual acceleration was treated as a random walk process [45].

In the aforementioned Kalman filter-based methods, a fixed value is usually used
to account for the strong motion acceleration noise uncertainty, and this value is deter-
mined by computing the variance of pre-event strong motion acceleration records [39–48].
Nevertheless, the rise in noise level due to baseline shifts during the strong motion period
was not accounted for in the estimation of the ambient pre-event acceleration noise. There-
fore, an acceleration variance multiplier is necessary. If the noise level of strong motion
acceleration is too small, it cannot reflect the absorbed baseline shift in the noise of strong
motion acceleration. While the noise level is too large, it is impossible to effectively utilize
the information of the strong motion acceleration. Considering that there are significantly
different errors introduced by the above-mentioned tilt, rotation, hysteresis, and non-linear
instrument response at different stations or at different times at the same station, it is inap-
propriate to employ a fixed noise uncertainty for strong motion accelerations in multi-rate
Kalman filter.

In this contribution, we present a method to integrate high-rate GNSS and strong
motion records based on the Sage–Husa Kalman filter with an adaptive estimation of
strong motion acceleration noise uncertainty. In the proposed method, the noise uncer-
tainty of strong motion acceleration is adaptively determined utilizing the Sage–Husa
sliding-window estimation principle, at the same time the effect of the baseline shift is
accommodated through an adaptive variance inflation. This method significantly improves
the accuracy of the system’s process noise representation and thereby improving filter per-
formance. The paper is organized as follows: At first, the traditional Kalman filter method
is presented. Then, the proposed integration method of high-rate GNSS and strong motion
records based on the Sage–Husa Kalman filter is discussed in detail. Finally, the proposed
method was verified through a shake table simulation experiment and an application to
the 2023 Mw 7.8 and Mw 7.6 earthquake doublet in southeast Turkey.

2. Methodology

2.1. Traditional Kalman Filter Method

As for the estimation of ground displacement at an observing station, we can assume
three-dimensional (3D) motion and formulate the problem independently for each coordi-
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nate direction as a first-order linear differential equation using the continuous state-space
representation following Bock et al. [39]. The system model of 3D motion in the discrete
form is given as follows:

Xk = Φk/k−1Xk−1 + Bk/k−1ak/k−1 + wk (1)

where Xk =
[
dk vk

]T represents the state parameter composed of the 3D displacement

vector dk and the velocity vector vk, Φk/k−1 =

[
I3×3 τaI3×3
03×3 I3×3

]
is the transition matrix from

epoch k− 1 to k, ak/k−1 is the system input vector defined as the raw 3D acceleration record
in this contribution, Bk/k−1 =

[
0.5τ2

a I3×3 τaI3×3
]T is the input control matrix, wk/k−1

is the system noise vector with a Gaussian distribution wk/k−1 ∼ N
(

0, Qwk/k−1

)
, and

Qwk/k−1
=

[ q
3 τ3

a I3×3
q
2 τ2

a I3×3
q
2 τ2

a I3×3 qτaI3×3

]
stands for the covariance matrix of the acceleration process

noise. Here, τa is the sampling interval of the accelerometer, q is the acceleration noise
uncertainty, I3×3 represents the three-row by three-column (3 by 3) unit matrix, and 03×3
stands for the 3 by 3 zero matrix.

The measurement for the GNSS displacement in the local coordinate frame is defined
as follows:

Lk = HkXk + Λk (2)

where Lk is a column vector including the pre-processed GNSS displacement in each
direction, Hk =

[
I3×3 03×3

]
is the design matrix, Λk is the GNSS displacement noise

with a Gaussian distribution Λk ∼ N(0, Rk), and Rk is the covariance matrix of the GNSS
displacement noise. Typically, covariance matrices Rk and Qwk/k−1

, for GNSS displacements
and strong motion acceleration records, are empirically determined by pre-event noise.

The Kalman filter is composed of two steps, the time update for the system model
and the measurement update for the measurement model [49]. The time update can be
expressed as follows:

X−k = Φk/k−1X̂k−1 + Bk/k−1ak/k−1 (3)

P−k = Φk/k−1Pk−1ΦT
k/k−1 + Qwk/k−1

(4)

where X−k is the predicted state with covariance matrix P−k at current epoch k, and X̂k−1 is
the estimated state with the covariance matrix Pk−1 at the previous epoch of k− 1.

The measurement update can be written as follows:

Kk = P−k HT
k

(
HkP−k HT

k + Rk

)−1
(5)

X̂k = (I6×6 −KkHk)X
−
k + KkLk (6)

Pk = (I6×6 −KkHk)P
−
k (7)

where Kk is the gain matrix, X̂k is the estimated state with the covariance matrix Pk, I6×6
stands for the 6 by 6 unit matrix. Due to the varying sampling rates of GNSS displacement
and strong motion acceleration, the time updates of Equations (3) and (4) are performed
upon each accelerometer sampling, while measurement updates of Equations (5)–(7) are
performed at each GNSS sampling [50].

2.2. A Sage–Husa Kalman Filter Method with Adaptive Estimation of Strong Motion Acceleration
Noise Uncertainty

Considering that there are significantly different errors introduced by the above-
mentioned tilt, rotation, hysteresis, and non-linear instrument response at different stations
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or at different times at the same station, it is inappropriate to employ a fixed noise un-
certainty for strong motion accelerations. To address this issue, a Sage–Husa Kalman
filter method with adaptive estimation of strong motion acceleration noise uncertainty is
proposed. In the proposed method, the noise uncertainty is adaptively estimated based on
the Sage–Husa sliding-window estimation principle, at the same time the effect of baseline
shift is accommodated through adaptive variance inflation.

Adaptive estimation of noise uncertainty allows the filter to dynamically adjust to
changes in measurement conditions, making it suitable for applications where traditional
fixed noise uncertainty assumptions may be inadequate. Consideration of baseline shift
allows for a more accurate representation of the system’s process noise, and thereby
enhances the filter performance.

The predicted residual of the state vector after the measurement update reads as
follows:

VX−k
= X̂k −X−k (8)

Utilizing the law of variance–covariance propagation, the covariance matrix of the
predicted residual can be expressed as follows:

QVX−k
= Cov

(
X̂k −X−k

)
= Cov

(
X̂k

)
+ Cov

(
X−k

)− 2Cov
(

X̂k, X−k
)

(9)

where Cov(·) represents the covariance operator. The covariance matrixes of X̂k and X−k ,
and their cross-term can be calculated as follows:⎧⎪⎨⎪⎩

Cov
(
X̂k

)
= Pk

Cov
(
X−k

)
= P−k

Cov
(

X̂k, X−k
)
= P−k −KkHkP−k

(10)

Combining Equation (9) with Equation (10), the covariance of the prediction residual
can be reformulated as follows:

QVX−k
= Pk + P−k − 2

(
P−k −KkHkP−k

)
= P−k − Pk (11)

With Pk = QX̂k
defined, and substituting Equation (4) into Equation (11), the covari-

ance of the prediction residual is calculated as follows:

QVX−k
= Qwk/k−1

+ Φk,k−1QX̂k−1
ΦT

k,k−1 −QX̂k
(12)

Given the expectation E
(

VX−k

)
= 0, the covariance matrix of VX−k

can be approximately
calculated by using historical predicted residuals in the sliding-window [51]:

Q̂VX−k
≈ 1

m

m−1

∑
i=0

VX−k−i
VT

X−k−i
(13)

where m stands for the number of acceleration records in the sliding-window.
When the system model maintains stability and consistency within the sliding window,

the historical predicted residuals encapsulated by this window should accurately mirror
the process noise level of the current state. Consequently, by integrating Equation (13) into
Equation (12), the covariance matrix of process noise can also be approximately calculated
as follows:

Q̂wk/k−1
≈ 1

m

m−1

∑
i=0

VX−k−i
VT

X−k−i
−Φk,k−1QX̂k−1

ΦT
k,k−1 + QX̂k

(14)

Such an estimation encompasses both acceleration measurement noise and the impact
of strong motion acceleration baseline shift. Historical predicted residuals in the recent
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period of time provide a more accurate reference for the noise level of strong motion
acceleration. The Q̂wk/k−1

is introduced to encapsulate characteristics of the acceleration
noise uncertainty, and can be represented as a block matrix:

Q̂wk/k−1
=

[
q̂1 q̂2
q̂3 q̂4

]
(15)

where q̂i(i = 1, 2, 3, 4) are 3 by 3 matrices. The trace of q̂4 is represented by tr(q̂4), which is
a measure scale of the overall noise uncertainty of strong motion accelerations between
two adjacent GNSS observation epochs.

Assuming that there are n acceleration records between two adjacent GNSS obser-
vation epochs and the effect of a baseline shift for each acceleration record between two
adjacent high-rate GNSS observation epochs is approximately uniform, the noise uncer-
tainty of strong motion acceleration can be approximated as follows:

∼
q ≈ 1

3n
tr(q̂4) (16)

The covariance matrix of the process noise for the next epoch is calculated by using
adaptive estimation of noise uncertainty

∼
q , and it can be rewritten as follows:

∼
Qwk/k−1

=

⎡⎣∼
q
3 τ3

a I3×3

∼
q
2 τ2

a I3×3∼
q
2 τ2

a I3×3
∼
qτaI3×3

⎤⎦ (17)

By applying the adaptive estimation
∼
Qwk/k−1

into Equations (4) and (5), the updated
gain matrix is rewritten as follows:

∼
Kk =

∼
P−k HT

k

(
Hk
∼
P−k HT

k + Rk

)−1
(18)

where
∼
P−k is the covariance matrix of predicted state vector based on the adaptive estimation

of process noise. This can be expressed as the following equation:

∼
P−k = Φk/k−1Pk−1ΦT

k/k−1 +
∼
Qwk/k−1

(19)

Combining the updated gain matrix
∼
Kk with Equation (6), the state vector and its

covariance matrix based on the adaptive estimation of strong motion acceleration noise
uncertainty can be estimated by the following equations:

X̂k =

(
I6×6 −

∼
KkHk

)
X−k +

∼
KkLk (20)

Pk =

(
I6×6 −

∼
KkHk

)
P−k (21)

Figure 1 illustrates the process flowchart of the Sage–Husa Kalman filter method with
adaptive estimation of strong motion acceleration noise level. The process unfolds in three
steps:

Step 1. Time Update

The time update provides a prediction for the current state and covariance estimation
ahead of time. The state estimation is determined based on the system’s dynamic model.
The dynamic model incorporates the control input’s strong motion acceleration. And the
covariance matrix is updated to reflect the process noise associated with the acceleration
noise level of the control input.
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Step 2. Measurement Update

The measurement update refines the state and covariance estimations with new GNSS
displacements. The gain matrix is calculated first, and this calculation determines the
influences of new GNSS displacements on the state of estimation. Then the state estimation
is updated by incorporating the GNSS displacements and the gain matrix. The covariance
matrix is also updated to reflect the noise level of the GNSS displacement.

Step 3. Adaptive Estimation of Noise Uncertainty

A sliding-window estimation is employed to compute the noise uncertainty of the
strong motion acceleration. Concurrently, the effect of the baseline shift is accommodated
through adaptive variance inflation. With the adaptive estimation of acceleration noise
uncertainty in place, the covariance of process noise is then calibrated.

After each time update, measurement update, and adaptive estimation of the process
noise level cycle, the process is repeated with the updated state estimation and covariance
serving as the basis for the next time update step.

 

Figure 1. Flowchart of the Sage–Husa Kalman filter method with adaptive noise uncertainty estimation.

3. Experiments, Results and Discussion

3.1. Data Processing Strategy

To evaluate the performance of the proposed Sage–Husa Kalman filter method with
adaptive estimation of strong motion acceleration noise uncertainty, two experiments
including a shake table simulation experiment and an application to Mw 7.8 and Mw 7.6
earthquake doublet were carried out. The data processing strategy of strong motion
acceleration and GNSS displacement before integration are outlined in Table 1.

Table 1. Data processing strategies for GNSS displacement and strong motion acceleration before
integration.

Items Processing Information

Strong motion acceleration De-mean the first 5 s from acceleration records

Covariance matrix of process noise Determined by pre-event acceleration noises

GNSS displacement Retrieved from TPP method

Covariance matrix of displacement noise Determined by pre-event displacement noises
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During the time update step, the acceleration recorded by a strong motion seismometer
before an earthquake is not always zero. Such a phenomenon can be due to factors
like initial adjustment errors or changes in environmental temperature. This non-zero
acceleration value before the earthquake serves as the baseline initial value. If not corrected,
it can lead to significant drifts in displacement waveforms after integration. Therefore,
before integrating the GNSS displacement with the strong motion acceleration, the average
acceleration value of 5 s before the earthquake was calculated as the initial baseline shift
value. This value was deducted from the entire acceleration records to remove the initial
baseline shift. These corrected accelerations served as the control input vectors. At the
same time, the standard deviation of the pre-event acceleration records was calculated
as the measuring noise uncertainty of the strong motion acceleration. The covariance
matrix of the initial process noise was then determined by this measuring noise uncertainty.
Concurrently, the coseismic displacements were recovered by double-integration of these
corrected accelerations.

During the measurement update step, the GNSS-derived displacements were acquired
using the TPP method. The underlying models, conventions, and strategies for the TPP
approach have been detailed in our previous study [29]. The initial covariance matrix of
GNSS displacement is also determined by pre-event noises. To highlight the benefits of
integrating strong motion acceleration with GNSS displacement, the displacement derived
from the GNSS TPP method and strong motion acceleration double-integration method are
labeled as GNSS and Acc in the subsequent analysis.

For comparative purposes, the traditional Kalman filter method with empirically fixed
noise was employed to validate the performance of the proposed method. The noise uncer-
tainty of the traditional Kalman filter method was defined by referring to the multiplier
selection strategy of Bock et al. [39]. The two processing schemes are presented in Table 2.
For the sake of convenience, these two processing schemes are sequentially denoted as KF
and KF + ANUE in the following. The software for the integration of high-rate GNSS and
strong motion records was programmed using the C language, following the methods of
KF and KF + ANUE.

Table 2. Two processing schemes.

Scheme Method Acceleration Noise Uncertainty

KF Traditional Kalman filter method Determined based on the pre-event
noise with a multiplier

KF + ANUE The proposed method Adaptively estimated based on the
Sage–Husa sliding-window estimation

3.2. Result and Discussion
3.2.1. Shake Table Simulation Experiment

To validate the performance of the proposed integration method, we utilized a shake
table dataset open accessed by Wuhan University [52]. In this dataset, a Quanser Shake
Table II was applied to simulate the seismic waveforms of a real earthquake. The shake table
is a middle-size, single-axis earthquake simulator that can generate pre-loaded acceleration
profiles of real earthquakes for seismogeodesy research. Equipped with a high-resolution
encoder, the shake table can measure stage position at a sampling rate of up to 2000 Hz with
a resolution of 3.10 μm. This simulation experiment provided a controlled environment for
testing the proposed method.

During the shake table simulation experiment, the north–south accelerometer record-
ings from the Mianzhu-Qingping station were utilized. This station is located 1 km away
from the epicenter of the 2008 May 12 Mw 7.9 Wenchuan earthquake. The data dura-
tion was about 150 s, with a recorded peak acceleration of about 2 g and a peak-to-peak
displacement of about 12 cm. The records of simulated seismic displacement waveform
(abbreviated as shake table) can be measured by the embedded encoder, serving as the truth
benchmarks of ground movement. GNSS observations were collected at a sampling rate of
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20 Hz using a Trimble NetR9 GNSS receiver with a Zephyr-2 geodetic antenna installed
on the platform. A Leador PPOI-A15 navigation-grade triaxial inertial measurement unit
(IMU) firmly anchored at the platform were used to gather acceleration records at 200 Hz.
Initially, the IMU was aligned to the east, north, and up directions and was utilized as a strong
motion accelerometer. Figure 2 illustrates the equipment setup for the shake table experiment.

Figure 2. The equipment setup for the shake table experiment.

According to the aforementioned processing strategy, the 20 Hz GNSS observations
and 200 Hz acceleration records were used to carry out displacement retrieval. Only the
displacement in the north–south direction was involved in this assessment, in order to
resemble the scene of a real earthquake occurrence more closely. Figure 3a presents the
north–south oriented displacement waveforms after processing, which include Acc-derived,
GNSS-derived, two integration solutions and shake table reference. The low-frequency
noises are amplified in the Acc-derived displacement, and this leads to non-physical
baseline drifts. This drift becomes larger and larger with the increase of integration time.
Due to the mismatch of system model process noise, the filtered signal derived from the
KF method exhibits unsmooth high-frequency oscillations resembling a sawtooth pattern.
Compared to the traditional KF method, the KF + ANUE method exhibits better consistency
with the shake table digital signal references. The effect of high-frequency sawtooth and
baseline drifts is also suppressed.

To verify the characteristics of the proposed method in the frequency domain, the
displacement power spectrum density (PSD) of the KF and KF + ANUE methods were
calculated using the Welch algorithm [53], as shown in Figure 3b. In the low-frequency
region below 1 Hz (Zone-1 and Zone-2), the PSD of KF and KF + ANUE is relatively
consistent with the PSD of GNSS and shake table reference, indicating fewer errors in
these frequency bands. In the frequency region above 1 Hz (Zone-3 and Zone-4), the
displacement PSD of KF + ANUE is smaller than that obtained by the KF method, proving
that the proposed method has a suppressive effect on high-frequency noise in coseismic
displacement signals. The PSDs of the Acc displacement waveforms are larger than those of
the GNSS, the KF + ANUE, and the shake table waveforms at the whole frequency domain,
due to the effect of baseline shift.

The time series and histograms of the errors in computed displacement waveforms
are further presented in Figure 4a,b, indicating the variability of their performance over the
main shake period. The displacement retrieved from the KF + ANUE method exhibits a
more stable and lower error range throughout the main shake period, which is indicative
of its superior performance relative to the KF method. The error range for the KF method
starts at approximately 0.01 cm and increases to around 2.48 cm over the course of 150 s.
The KF + ANUE method maintains a lower error range, with values consistently below
1.23 cm, showcasing enhanced accuracy and stability. There is a visible trend in the KF
method’s error, which suggests a potential systematic increase in error over time, whereas
the KF + ANUE method’s error remains relatively flat, suggesting a robustness against
time-varying effects of the baseline shift implicated in strong motion acceleration.
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Figure 3. (a,b) Displacement time series and PSDs in the shake table experiment. (a) illustrates the
time series of the integrated displacements. (b) showcases the PSDs of the integrated displacements.

 

Figure 4. (a,b) Time series and histograms of the integrated displacement errors. (a) depicts the
time series of the integrated displacement errors. (b) displays the distribution of the integrated
displacement errors.

The root mean square error (RMSE) of the differences between the integrated displace-
ment and the reference was calculated to verify the accuracy of the proposed method in
this study. For a more rigorous analysis, we also computed the cross-correlation coefficient
(CC) of each result related to the reference, as shown in Table 3. When the KF method is
employed, the accuracy of the derived displacement is determined to be 0.45 cm, with the
CC values reaching a level of 0.95. In contrast to the KF method, the displacement derived
from the KF + ANUE method demonstrated superior alignment with the digital signal
references obtained from the shake table. This enhanced consistency is evidenced by its
exceptional CC of 0.99 and an RMSE of 0.32 cm for the displacement derived from the KF +
ANUE method. The KF + ANUE method signifies a substantial improvement of up to 28%
over the KF method in terms of displacement accuracy.

These preliminary validations indicate that the proposed method can provide broad-
band and more accurate displacement waveforms compared with the KF method. The his-
torical predicted residuals in the recent period of time can be applied to provide a more
accurate reference for the noise level of strong motion acceleration. This advancement
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is particularly significant in the context of seismic event analysis, where the fidelity of
displacement retrieval is paramount for precise seismic waveform capture and seismic
rupture propagation.

Table 3. The CC and RMSE for the integrated coseismic displacement.

Scheme CC RMSE (cm)

KF 0.95 0.45
KF + ANUE 0.99 0.32

3.2.2. Application to Mw 7.8 and Mw 7.6 Earthquake Doublet

To further validate the performance of the proposed KF + ANUE method for the
application of real earthquake events, a representative example of a real historical earth-
quake is indispensable. On 6 February 2023, an earthquake doublet with magnitudes of
Mw 7.8 and Mw 7.6 struck the East Anatolian Fault Zone, causing significant damage to
civil and infrastructure throughout southeast Turkey and northwest Syria [54]. The entire
main shaking process was successfully recorded by a dense network of high-rate GNSS
with a sample rate of 1 Hz and strong motion stations operating at a sampling rate of
100 Hz. These data can be obtained from https://www.tusaga-aktif.gov.tr/, accessed on
25 March 2024.

We defined a collection of seismometers positioned within 5 km of each other as
a pair. It is generally observed that seismic waveforms derived from GNSS and strong
motion accelerometers remain consistent with each other for seismometer separations of
less than 15 km [2]. Following this guideline, we identified 15 suitable co-locations in
this contribution, with a separation distance ranging from 0.02 km to 3.37 km. The basic
information about those co-located station pairs is provided in Table 4, and the distribution
of co-located station pairs is shown in Figure 5. Following the processing strategy described
in Section 3.1, the 1 Hz GNSS observations and 100 Hz acceleration records were processed
to retrieve three-direction displacements for the Mw 7.8 and Mw 7.6 earthquake doublet in
southeast Turkey and northwest Syria. The calculation period is set to more than 2 min,
covering the main shake period. The accuracy of the displacements derived from the
proposed method is assessed by taking the results obtained from PRIDE PPP-AR software
ver. 3.0 developed by Wuhan University as references [55].

Table 4. Information on collected high-rate GNSS stations and strong motion seismometer stations.

Station Latitude (◦N) Longitude (◦E)
Dist to Epic 1

(km)
Separation

Distance (km)

ANTE/2703 37.06 37.37 38.74 2.23
MAR1/4617 37.59 36.86 49.92 2.89
MAR1/4620 37.59 36.86 49.92 3.37
ONIY/8003 37.10 36.25 61.95 2.43
TUF1/0129 38.26 36.21 87.30 0.26
FEEK/0127 37.81 35.91 110.51 0.72
KLS1/7901 36.71 37.12 143.17 1.10
SIV1/6303 37.75 39.32 192.57 0.66

ADN2/0123 36.98 35.32 196.85 2.87
POZA/0124 37.40 34.87 210.46 1.63
AKLE/6306 36.71 38.95 214.09 1.97
ERGN/2104 38.27 39.76 230.07 0.58
VIR2/6302 37.22 39.75 244.56 0.98
MRSI/3301 36.78 34.60 262.70 0.02
DIY1/2101 37.95 40.19 266.92 2.32

1 Dist to epic stands for distance from station location to epicenter location.
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Figure 5. Location of the co-located high-rate GNSS and strong motion seismometer stations collected
during the Mw 7.8 and Mw 7.6 earthquake doublet.

The left subgraphs in Figure 6 show the coseismic displacement of a typical station,
SIV1/6303, in the east, north, and up directions during the first Mw 7.8 earthquake, respec-
tively. This station is situated at a distance of 192.57 km from the epicenter of the same
earthquake. The seismic signals recorded at this station are relatively complete. The “0”
value on the horizontal axis signifies the moment the main shock occurred. Before the
seismic waves arrive, the integrated displacements from the KF and KF + ANUE meth-
ods closely align with the GNSS-derived displacement. As the seismic waves propagate
and the station experiences escalating shaking, the displacements derived from KF and
KF + ANUE methods continue to track the general trend observed in the GNSS. In contrast,
the displacements of Acc scheme exhibit non-physical drifts, which can be attributed to the
impact of baseline shifts. The smoothness of the displacement waveforms across the KF and
KF + ANUE methods is notably inconsistent. The high-frequency sawtooth evident in the
displacement of KF and KF + VCE methods is less pronounced in the KF + ANUE scheme.
Among these methods, KF + ANUE demonstrated the highest degree of congruence with
the GNSS-derived displacement at equivalent time intervals, particularly as compared
to the KF method. The baseline drift displayed in the Acc-derived displacement is also
eliminated in the result of KF + ANUE.

To investigate the integration method in the frequency domain, the right subgraphs of
Figure 6 show the PSDs of the GNSS-derived, Acc-derived, and integrated displacements
of SIV1/6303 in the north, east, and up directions, respectively. The PSDs of the waveforms
derived from the KF + ANUE demonstrate a greater alignment with those of the GNSS
waveforms at low frequencies, below 1 Hz (Zone-1 and Zone-2), especially in the north
and up directions. In the frequency band region above 1 Hz (Zone-3 and Zone-4), the
displacement PSD of KF + ANUE is smaller than that obtained by the KF method. It means
the high-frequency noises in coseismic displacement signals are effectively suppressed by
the proposed method due to the adaptive variance inflation, which is similar to the results
displayed in the shake table experiments.
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Figure 6. (a–f) Displacements and PSDs at the co-located station pair SIV1/6303 during the first Mw
7.8 earthquake. (a,c,e) illustrate the displacements of North, East and Up directions, respectively.
(b,d,f) depict the displacement PSDs of North, East and Up directions, respectively.

Coseismic displacement waveforms of KF exhibit their disadvantages as in our previ-
ous analyses. The displacement waveforms derived from the KF + ANUE method can avoid
the drawbacks and preserve the benefits of GNSS and strong motion records, providing
broadband displacements with a high-precision level. To depict seismic rupture propaga-
tion, Figures 7 and 8 present the displacement waveforms derived from the KF + ANUE
method for 11 available station pairs during the Mw 7.8 and Mw 7.6 earthquake doublet,
respectively. Displacements derived solely from GNSS and strong motion seismometers
are also presented for comparison. It should be noticed that the coseismic displacements
of each station are vertically shifted according to the epicentral distance. Displacement
waveforms from GNSS and KF + ANUE remained generally consistent until data transmis-
sions from the MAR1 and AKLE stations were disrupted. However, due to the absence of
subsequent GNSS displacements, the effectiveness of integrated displacement throughout
the earthquake remains undetermined. At station ONIY/8003, located 61.95 km from
the hypocenter, the integrated displacement waveform exhibits two ambiguous phases of
seismic energy release, attributable to permanent ground displacement. The remaining
eight station pairs recorded coseismic displacement waveforms throughout the earthquake,
with no significant systematic deviation observed between GNSS-derived displacements
and those obtained via the KF + ANUE method.
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Similar to the results of the first Mw 7.8 earthquake, Figure 8 displays the KF + ANUE
integrated displacement sequences of 11 available station pairs in the second Mw 7.6 earth-
quake. Due to damage caused by the strong earthquake, four station pairs are different
from those in the first earthquake case. Prior to the seismic wave’s arrival, the integrated
displacement aligns closely with that recorded by strong motion seismometers. Following
the wave’s arrival, the integrated displacement mirrors the result of GNSS, albeit with shake
amplitudes less than those of identical station pairs in the first event, remaining under
40 cm. In general terms, GNSS displacements suffer from low sampling rates and high
noise levels, failing to capture seismic wave signals in detail. Strong motion seismometers,
despite their high sampling rates, exhibit significant drift post-integration. The proposed
method has greater superiority over these two single observing techniques.

Figure 7. Coseismic displacements at 11 station pairs during the first Mw 7.8 earthquake.

Figure 8. Coseismic displacements at 11 station pairs during the second Mw 7.6 earthquake.
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Table 5 provides a quantitative analysis of the KF + ANUE method’s performance
in capturing seismic wave displacements. The mean CC and RMSE for co-located GNSS
and strong motion station pairs during the Mw 7.8 and Mw 7.6 earthquake doublet are
presented. Compared to the KF scheme, displacements derived from the KF + ANUE
method demonstrated superior performance in terms of both accuracy and signal correla-
tion for the Mw 7.8 and Mw 7.6 earthquake doublet. For the Mw 7.8 event, the KF method
achieves accuracies of 2.24 cm, 1.92 cm, and 2.11 cm in their respective directions, with
corresponding CC values of 0.85, 0.87, and 0.86. The CC values for the KF + ANUE method
both exceeded 0.90 in all three directions. Conversely, the KF + ANUE method achieves
displacement extraction accuracies of 1.31 cm, 1.02 cm, and 1.64 cm in the north, east, and
up directions, respectively. This represents an improvement of up to 44% in the horizontal
direction and 22% in the vertical direction over the KF method.

Mirroring its accuracy in the preceding event, the proposed method can retrieve
displacement for the Mw 7.6 event with remarkable precision. It achieved accuracies of
1.33 cm, 1.43 cm, and 1.35 cm in the north, east, and up directions, respectively. The CC
values for the KF + ANUE method average at 0.94 in the horizontal and vertical directions.
In comparison, the KF method’s performance in these directions is marked by accuracies of
1.44 cm, 1.72 cm, and 1.47 cm, respectively. The average CC value for the three directions is
0.92. While there are only minor differences in the accuracies of displacements retrieved
from the KF and KF + ANUE methods in the north and up directions, a significant improve-
ment was observed in the displacements in the east direction during the second Mw 7.6
earthquake. Despite these nuances, the proposed method exhibits an overall improvement
of up to 12% in the horizontal direction and 8% in the vertical direction as compared to the
KF method.

By synthesizing the accuracy of two distinct events, the proposed method significantly
enhances the capture of seismic waveforms, showing improvements of 46% in the hor-
izontal direction and 23% in the vertical direction over the outcomes of the KF method.
The above results show that the proposed method can provide much more precise coseismic
displacement than the KF method. These integrated displacements of the collected GNSS
and strong motion stations are consistent with the reference displacement values processed
by PRIDE PPP-AR software.

Table 5. The mean CC and RMSE (cm) for the retrieved coseismic displacements in the Mw 7.8 and
Mw 7.6 earthquake doublet.

Scheme

The First Mw 7.8 Event The Second Mw 7.6 Event

CC RMSE (cm) CC RMSE (cm)

North East Up North East Up North East Up North East Up

KF 0.85 0.87 0.86 2.24 1.92 2.11 0.93 0.90 0.93 1.44 1.72 1.47
KF + ANUE 0.95 0.98 0.91 1.31 1.02 1.64 0.95 0.93 0.94 1.33 1.43 1.35

In a word, the KF + ANUE method markedly outperforms the KF method by adap-
tively estimating the noise uncertainty of strong motion acceleration utilizing the Sage–
Husa sliding-window estimation principle. In the pre-filtering and mid-filtering stages,
the influences of baseline shift were accommodated through adaptive variance inflation,
thereby eliminating the drift in seismic signals effectively. In the later filtering stages, GNSS-
derived displacements significantly constrained the integration results, enabling accurate
recording of seismic waves’ low-frequency information. Despite being approximately
200 km from the epicenter, stations like POZA/0124 and five others successfully detected
seismic signals. The proposed method combines the strengths of both GNSS and strong
motion seismometers, ensuring comprehensive seismic signal capture without divergence
throughout the earthquake event.

117



Remote Sens. 2024, 16, 2000

4. Conclusions

In this paper, we present a Sage–Husa Kalman filter method, where the noise uncer-
tainty of strong motion acceleration is adaptively estimated to integrate GNSS and strong
motion for obtaining displacement series. The broadband displacement waveforms in a
great earthquake can be achieved by using the proposed method. Compared with the
traditional Kalman filter method, historical predicted residuals in the recent times are ap-
plied to provide a more accurate reference for the noise level of strong motion acceleration.
The noise uncertainty of strong motion acceleration is adaptively determined utilizing
the Sage–Husa sliding-window estimation principle, at the same time the effect of the
baseline shift is accommodated through adaptive variance inflation. This method signif-
icantly improved the accuracy of the system’s process noise representation, and thereby
improved filter performance. The performance of the proposed method was assessed
through a shake table simulation experiment and by analyzing data from GNSS/strong
motion co-located stations during the 2023 Mw 7.8 and Mw 7.6 earthquake doublet in
Southeast Turkey. The results indicate that the method significantly improves adaptability
to variations in strong motion accelerometer noises and enhances accuracy of the integrated
displacement series. Specifically, in the shake table test, the proposed method retrieved the
displacements with an accuracy of 0.32 cm. This represents an improvement of up to 28%
over the traditional Kalman filter method. The displacement waveforms derived from the
proposed method achieved a correlation coefficient of 0.99 with respect to reference values,
outperforming the traditional Kalman filter method by a margin of 0.04. These increases in
the retrieval accuracy and correlation coefficient signify a notably more accurate alignment
with the benchmark signal. When applied to the earthquake event, the proposed method
demonstrated an ability to capture seismic waveforms with an improvement of 46% and
23% in the horizontal and vertical directions, respectively, as compared with the traditional
Kalman filter-based results. This contribution shows that the proposed method can provide
a more accurate estimation of broadband displacement waveforms to support earthquake
early warning and rapid response in a great earthquake.
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Abstract: Advancements in robotics and mapping technology have spotlighted the development
of Simultaneous Localization and Mapping (SLAM) systems as a key research area. However, the
high cost of advanced SLAM systems poses a significant barrier to research and development in the
field, while many low-cost SLAM systems, operating under resource constraints, fail to achieve high-
precision real-time mapping and localization, rendering them unsuitable for practical applications.
This paper introduces a cost-effective SLAM system design that maintains high performance while
significantly reducing costs. Our approach utilizes economical components and efficient algorithms,
addressing the high-cost barrier in the field. First, we developed a robust robotic platform based on a
traditional four-wheeled vehicle structure, enhancing flexibility and load capacity. Then, we adapted
the SLAM algorithm using the LiDAR-inertial Odometry framework coupled with the Fast Iterative
Closest Point (ICP) algorithm to balance accuracy and real-time performance. Finally, we integrated
the 3D multi-goal Rapidly exploring Random Tree (RRT) algorithm with Nonlinear Model Predictive
Control (NMPC) for autonomous exploration in complex environments. Comprehensive experimental
results confirm the system’s capability for real-time, autonomous navigation and mapping in intricate
indoor settings, rivaling more expensive SLAM systems in accuracy and efficiency at a lower cost.
Our research results are published as open access, facilitating greater accessibility and collaboration.

Keywords: cost-effective; SLAM systems; autonomous exploration; LiDAR-inertial odometry

1. Introduction

In the interdisciplinary realm of robotics, computer vision and artificial intelligence,
Simultaneous Localization and Mapping (SLAM) [1] stands out as a hot topic technology
that enables autonomous systems to navigate and understand their surroundings. SLAM’s
principle entails mapping an uncharted environment and concurrently monitoring the
agent’s position within this space [2]. This technology is important for many applications,
including self-driving cars [3–5] and augmented reality [6–8], making SLAM a major focus
in the development of smart, self-guiding machines.

The development of SLAM technology is rapid, driven by continuous advancements
in computational power, algorithmic efficiency, and sensor technology. Over the years,
various SLAM solutions have been developed, each employing distinct methodologies and
technological advancements to address the challenges of mapping and localization. Early
approaches [9–11] relied heavily on expensive and high-precision sensors, like lasers, to
achieve detailed environmental mapping and accurate localization. These systems, while
effective, were often limited by their high costs and substantial computational requirements,
which deviated from the original intention of SLAM technology. Additionally, early SLAM
systems exhibited limited adaptability to dynamic environments and were susceptible
to interference, necessitating high-quality and high-performance LiDAR sensors. This
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indirectly escalated the operational costs of SLAM systems and restricted their widespread
adoption in various application scenarios.

One of the recent advancements in SLAM has seen the integration of visual SLAM
(VSLAM) techniques [12–17], which relies on camera images to perform localization and
mapping tasks. While VSLAM systems reduced the reliance on costly sensors, they intro-
duced new challenges, particularly in terms of real-time processing capabilities. Processing
high-resolution video feeds in real-time requires significant computational power, which
can still lead to high system costs [14]. Furthermore, visual SLAM systems can struggle
in low-light conditions or environments with repetitive textures, leading to decreased
reliability and accuracy, which adversely affects the stability of low-cost SLAM systems.

Recently, solid-state LiDARs have gained prominence as a primary trend in LiDAR
development due to advancements in technology, especially in micro-electro-mechanical
systems (MEMS) [18] and rotating prisms [19]. These LiDARs offer improved reliability
and cost-effectiveness, as they eliminate the need for rotating mechanical parts, resulting
in a more compact design. Their lightweight and high-performance characteristics en-
able solid-state LiDARs to deliver accurate 3D measurements over long ranges, making
them ideal for autonomous vehicles, industrial robots, and drones that require precise
3D mapping in complex or challenging environments. Solid-state LiDARs are becoming
critical for enabling intelligent systems and integrating seamlessly into lightweight, low-
cost SLAM systems. However, due to the high resolution of solid-state LiDAR, its scans
typically contain a significant number of feature points (ranging from thousands to tens
of thousands). Processing the data from the IMU combined with the numerous feature
points can overwhelm low-cost edge computing systems. Furthermore, the scan frequency
often exceeds that of the IMU, resulting in motion distortion, which makes registration
challenging for LiDAR-Inertial Odometry (LIO) based LiDAR SLAM algorithms [20].

Another critical issue facing contemporary SLAM systems is how to incorporate au-
tonomous exploration modules. Autonomous exploration refers to a system’s ability to
independently navigate and collect information from its environment under the guidance of
its own decision-making processes, widely applied in robotic exploration and mapping in
unknown complex environments [21]. Early exploration algorithms, such as Frontier-Based
Exploration [22] and Greedy Search [23], prioritized discovering unexplored regions to
improve map coverage but tended to get trapped in local optima in complex terrains. Addi-
tionally, they faced real-time decision-making challenges due to computational limitations
and an inability to effectively handle dynamic environmental changes.

Recent advances have combined exploration with SLAM, improving how autonomous
systems understand and adapt to their surroundings [21,24,25]. Despite these advance-
ments, a significant limitation remains the traditional focus on 2D exploration strategies,
primarily designed for ground-based robots. This emphasis limits SLAM systems’ abil-
ity to autonomously reconstruct 3D environments in real-world settings [26], which are
intrinsically three-dimensional and complex.

Addressing these challenges, this paper proposes a novel, cost-effective SLAM system
that balances cost, accuracy, and real-time performance. The primary contributions of our
work are threefold:

1. We developed a low-cost mobile robot SLAM system, significantly reducing manu-
facturing costs and enhancing system performance and 3D exploration capabilities
through careful design of the robot’s structure and selection of high-performing yet
affordably priced sensors and components.

2. We successfully deployed an integrated LiDAR and IMU fusion SLAM algorithm
framework with 3D autonomous exploration capabilities on the robot and conducted
targeted optimizations for this algorithm based on our robot, achieving superior
performance on our hardware platform.

3. Our research findings have been made available as open-source, providing a high-
performance solution for SLAM research under budget constraints and facilitating
the wider adoption and application of advanced SLAM technologies.
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The structure of the remaining sections in this paper is delineated as follows: Section 2
delves into the technical background of existing SLAM solutions, highlighting their strengths
and delineating their limitations in terms of cost and real-time performance. Section 3 describes
our methodology for developing a cost-effective SLAM system, focusing on hardware design,
algorithm development and SLAM system optimizations. Section 4 presents our experimental
results, demonstrating the effectiveness of our system in various scenarios. Section 5 discusses
these methods in the broader context of SLAM research, summing up the advantages and
disadvantages of the design. Finally, Section 6 concludes the paper with a summary of our
contributions and outlines directions for further research.

2. Related Work

2.1. SLAM

The framework of SLAM systems generally consists of five parts: sensor data acqui-
sition and processing, front-end odometry (indicated within the dashed red boundary in
Figure 1), back-end optimization (indicated within the dashed blue boundary in Figure 1),
loop closure detection, and map construction. Initially, LiDAR or visual sensors collect
data, which is then roughly estimated for pose transformations between data frames by
the front-end odometry. This is followed by global trajectory optimization through the
back-end optimizer, after which precise poses are used for map construction. During the
operation of SLAM, loop closure detection continuously identifies scenes traversed by the
robot to eliminate cumulative errors.

Figure 1. Pipelines of the traditional SLAM method.

Depending on the type of sensor used, mainstream SLAM systems are typically catego-
rized into single-sensor SLAM, such as LiDAR-based [27–30] and vision-based [12–16], and
multi-sensor fusion SLAM techniques [31–35], integrating various sensors to enhance SLAM
performance. Visual SLAM systems, favored for their rich information acquisition, lightweight
sensors, and low cost, face challenges due to their sensitivity to light, substantial accuracy
variance under varying illumination, and extensive image data processing that compromises
real-time performance.

LiDAR-based SLAM systems, on the other hand, effectively address these issues.
LiDAR can directly measure distances with minimal influence from ambient light, pro-
viding more accurate environmental perception and capturing the spatial location and
shape information of objects while delivering data that is straightforward to process. This
foundation enables LiDAR SLAM systems to be more real-time, stable, and reliable. From
initial 2D mapping techniques to complex 3D modeling methods, LiDAR SLAM has made
significant advancements and has become a hot technology in robotics and autonomous
driving, offering high-resolution, three-dimensional environmental perception and map-
ping capabilities. In 2012, A. Geiger, P. Lenz, and R. Urtasun introduced the KITTI Vision
Benchmark Suite, followed by the release of the KITTI public dataset in 2013, intended for
building and evaluating SLAM algorithms. The KITTI dataset includes real image and
three-dimensional LiDAR data collected from urban, rural, and highway scenes, providing
diverse environmental data for the development of 3D LiDAR SLAM algorithms, thereby
accelerating their advancement.
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Early 3D LiDAR SLAM algorithms heavily relied on The Iterative Closest Point (ICP)
for point cloud matching and map construction. The ICP algorithm was initially proposed
by Besl and McKay in 1992 [36]. It is designed to align two sets of point cloud data in
three-dimensional space. The ICP algorithm seeks the optimal rigid-body transformation
(including rotation and translation) through an iterative process, aligning one point cloud
with another to minimize the distance between points across the two sets. The core
advantage of the ICP algorithm lies in its simplicity and wide applicability, making it a
crucial tool in fields such as 3D scanning and robotic vision. Over time, researchers have
made various enhancements to the ICP algorithm to improve its robustness and efficiency.
For instance, the introduction of a multi-resolution strategy to accelerate the alignment
process [37]. In 2015, Pomerleau, Colas, and Siegwart discussed various ICP algorithms
and their applications across different robotic platforms, environments, and tasks [38].
Although the ICP algorithm has been widely used for registering LIDAR scan data, its
efficiency issues persist. The authors of [39] propose a method to accelerate the obstacle
detection process by directly monitoring outliers detected after ICP matching, incorporating
an improved ICP implementation within the SLAMICP library.

With the growing demand for more complex spatial understanding, the simple ICP
algorithm, due to its high computational load and long processing time, no longer meets
the real-time requirements of SLAM algorithms. The shift towards 3D LiDAR SLAM is
increasingly evident, highlighted by the introduction of pioneering frameworks such as
LOAM (LiDAR Odometry and Mapping) [40] and its variants [29,30], which strike a good
balance between real-time processing and mapping accuracy. Despite these advancements,
LiDAR SLAM still faces challenges, especially in dynamic environments and during ex-
tended operations, where cumulative errors can pose significant obstacles. Moreover, the
typically high expenses associated with LiDAR SLAM systems, along with the significant
computational resource demands of LOAM, present challenges for the broader adoption of
LiDAR SLAM systems.

LiDAR-inertial odometry [20], which incorporates Inertial Measurement Units (IMUs),
bolsters autonomous navigation systems by offering a synergy between LiDAR’s detailed
3D environmental mappings through laser scanning and the IMU’s motion data, including
acceleration and rotational changes. This fusion enhances positioning and mapping with
greater accuracy and robustness, compensating for the inherent limitations of each sen-
sor type. Furthermore, while the prevalent LiDAR Odometry and Mapping (LOAM) [28]
framework somewhat improves 3D LiDAR SLAM capabilities, its reliance on high-precision
LiDAR and susceptibility to dynamic objects and environmental variations poses signifi-
cant challenges.

As sensor technology progresses and hardware capabilities improve, there is a grow-
ing trend in the volume of data that SLAM systems must process. Consequently, there is a
gradual increase in the demand for computational resources by algorithms. In this context,
the challenge of ensuring algorithm performance and system stability while effectively
controlling costs has become a significant concern in the development of SLAM technology.
Faced with increasingly complex application scenarios and expanding data processing
requirements, exploring more cost-effective computational methods and optimizing algo-
rithms to reduce dependence on high-performance hardware holds practical significance
for swiftly adapting to the ongoing evolution in the SLAM domain.

2.2. Autonomous Exploration

Robotic autonomous exploration enables robots to independently navigate unknown
environments without human intervention, relying on their own sensors, algorithms, and
decision-making capabilities. This process involves several steps, including environmental
perception, map construction, path planning, and decision execution. While autonomous
exploration is often considered a distinct research area akin to SLAM, recent years have
seen a growing interest in integrating autonomous exploration into SLAM systems, demon-
strating heightened potential in terms of robotic intelligence and integration [41].
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Common autonomous exploration algorithms employ a breadth-first search [42] strat-
egy to identify the nearest boundary points to the robot, followed by path planning to
navigate toward these points. If a boundary point is reached or deemed unreachable
within a certain period, the algorithm proceeds to the next search cycle, repeating this
process until a complete environmental map is obtained. While effective in many settings,
breadth-first-based autonomous exploration algorithms can lead to frequent changes in the
robot’s movement and an excessive increase in data volume, placing significant strain on
the computational resources of resource-constrained mobile robots.

RRT Exploration [43,44], which is based on the Rapidly exploring Random Tree path
planning algorithm [26], offers significant improvements in search efficiency and adaptabil-
ity to dynamic environments over traditional breadth-first search strategies [45]. It begins
from an initial node and randomly selects points within the exploration area, extending
new nodes towards these points in the absence of obstacles and incorporating them into
the tree. This process enables RRT to quickly cover the entire exploration space, generating
paths from the start to any point. However, both traditional exploration algorithms and
RRT Exploration are generally confined to 2D operations using Scan LiDAR, which limits
their effectiveness in 3D environments.

The 3D RRT algorithm [46], an extension of the traditional RRT, represents a signif-
icant advancement in the field of autonomous exploration in three-dimensional spaces,
specifically tailored for 3D path planning challenges. It employs heuristic strategies to
guide the random selection of target points across the 3D space, expanding nodes across all
three dimensions (x, y, and z). Following the addition of an endpoint, 3D RRT conducts
collision checks to ensure that the path from the nearest node to the new node does not
intersect with any obstacles. Upon passing the collision test, the new node is integrated
into the tree connected to the nearest node by an edge. The 3D RRT framework efficiently
explores and generates paths from the starting point to the endpoint within 3D spaces,
rapidly adapting to complex environments without demanding excessive computational
resources, offering a notable performance advantage over other more costly and complex
autonomous exploration systems. Although the 3D RRT algorithm represents a significant
advancement in enhancing autonomous exploration within three-dimensional spaces, its
wider implementation is constrained by considerations of cost, computational resource al-
location, and practical deployment challenges. Similar autonomous exploration algorithms
like [47] that operate in 3D spaces require high-performance computational capabilities for
constructing three-dimensional maps and planning exploration paths, potentially leading
to increased operational costs, especially for extensive or prolonged tasks.

Furthermore, the resource limitations of mobile robotic platforms often restrict the
extent to which such advanced algorithms can be implemented without compromising
other essential functions. Balancing the requirements of sophisticated autonomous explo-
ration algorithms like 3D RRT with the practicalities of cost and computational efficiency
remains a key challenge, necessitating innovative solutions to render these technologies
more accessible and feasible for broad application.

3. Method

3.1. Cost-Effective Hardware Design

In the hardware design of SLAM systems, prioritizing cost efficiency is paramount, yet
not at the expense of performance and reliability. Currently, there are two main solutions
for ground robots: the first approach utilizes a three-wheeled design [48] consisting of
two active drive wheels and one or more passive support wheels (similar to a robotic
vacuum), facilitating simple steering and navigation in confined spaces. Although this
design simplifies the control system, it also limits dynamic stability and load-bearing capac-
ity. The alternative solution involves a four-wheeled vehicle with Mecanum wheels [49],
which allows for omnidirectional motion. Vehicles equipped with Mecanum wheels offer
enhanced maneuverability and superior load-bearing capabilities. Yet, they are susceptible
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to odometry drift from slippage, and their unique structure and control mechanisms result
in higher maintenance costs.

Addressing the limitations of existing solutions, this paper draws inspiration from
automotive structures, adopting a four-wheeled rubber tire and custom carbon plate chassis
to enhance the vehicle’s stability and load capacity through the superior ground traction of
rubber tires and the high structural integrity of carbon plates. Departing from the traditional
Ackermann steering geometry found in automobiles, this vehicle incorporates four fixed
DC geared motors, a configuration that simplifies the mechanical structure and reduces
component count, thereby significantly lowering manufacturing and maintenance costs
while ensuring agility and stability. The ability to independently control the direction and
speed of each motor endows the system with effective spot-turning capabilities, essential for
meticulous steering and path planning in restricted areas. The base plate’s design features
a 17:11 aspect ratio and a triple-layered structure, expanding sensor installation space while
optimizing body volume and weight to achieve a balance between high performance and
minimized cost and size. The result is shown in Figure 2, and The specific parameters of
the radar sensors used in this SLAM system are shown in Table 1.

 

Figure 2. The results of the hardware design for the system, where (a) shows the vertical structure
diagram of the cart, annotating the structure and items placed on each layer, and (b) depicts an actual
photo of the system.

Benefiting from the recent cost reduction in LiDAR and single-board computers, our
system integrates high-performance sensors within a compact design. The main computing
unit employs the Jetson Nano ($129) paired with the MID-360 ($556.44), forming the core
of our system. This cost-efficient configuration facilitates the deployment of advanced
SLAM capabilities in budget-constrained applications, thereby democratizing sophisticated
navigation and mapping technologies. The total expenses for the hardware system can be
seen in Table 2.
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Table 1. Relevant information about the MID-360 LiDAR scanner used in our system.

Specification Description

Laser Wavelength 905 nm

Detection Range (@ 100 klx) 40 m @ 10% reflectivity
70 m @ 80% reflectivity

Close Proximity Blind Zone 2 0.1 m
Point Rate 200,000 points/s (first return)
Frame Rate 10 Hz (typical)

IMU ICM40609

FOV Horizontal: 360◦
Vertical: −7◦~52◦

Range Precision 3 (1σ) ≤2 cm 4 (@ 10 m)
≤3 cm 5 (@ 0.2 m)

Angular Precision (1σ) <0.15◦
2 Target objects within 0.1 to 0.2 m from Mid-360 can be detected and point cloud data can be recorded. However,
since the detection precision cannot be guaranteed, the data should be taken as a reference only. 3 To detect objects
having different reflectivities within the detection range, the accuracy of point cloud data of very few positions
might decrease slightly. 4 Tested in an environment at a temperature of 25 ◦C (77 ◦F) with a target object that has a
reflectivity of 80% and is 10 m away from Livox Mid-360. 5 Tested in an environment at a temperature of 25 ◦C
(77 ◦F) with a target object that has a reflectivity of 80% and is 0.2 m away from Livox Mid-360. For target objects
within 0.1 to 1 m away from the Mid-360, if they have a low reflectivity or are thin and tiny, the detection effect
cannot be guaranteed. These objects include but are not limited to black foam and the surface of water or objects
that have been polished, have a matte finish, thin lines, etc.

Table 2. Cost breakdown of SLAM system components.

Component Description Quantity Unit Cost ($) Total Cost ($)

Mid-360 3D LiDAR sensor with IMU 1 749 556.44
Jetson nano 4 GB SoC, Data Processing Unit 1 129 129

STM32F407VET6 MCU, ROS base plate
master control 2 23.5 47

carbon plate-A Body structure, porous
rectangles 1 20 20

carbon plate-B LiDAR Support Structure 1 5 5

MG513 motor DC-coded motor, with
rubber wheel 4 6.97 27.89

Battery 4000 mAh-30C and
1200 mAh-45C 45

Others All kinds of wire and
copper column 10

Total Cost 840.33

3.2. LiDAR-Inertial Odometry Using Fast-ICP
3.2.1. SLAM Framework Design

Due to the need for localization in high-dynamic environments, to maintain com-
putational efficiency, and to mitigate sensor noise and data ambiguity, 3D LiDAR SLAM
struggles to ensure real-time performance at low cost, especially traditional odometry
frameworks that are unable to allow robust navigation and mapping. So, we propose an
efficient method to ensure robustness and balance performance with cost-effectiveness.

We adopt the high-performance LiDAR-inertial odometry framework FAST-LIO in [31]
as our foundation to build up our SLAM system. Different from [31], we incorporate an
ICP optimization module into it [36,37] that utilizes KD-trees for fast nearest-neighbor
searches and employs the Gauss–Newton iterative method, as illustrated in Figure 3 (on
the right side). Our approach comprises four main stages. Initially, the system collects
point cloud and IMU data from the Mid-360 LiDAR and preprocesses the LiDAR data.
Subsequently, extracted features are fed into the state estimation module for initial state
estimation and vehicle localization. Following that, the Fast ICP algorithm [37] precisely
aligns the current point cloud frame with the previous one, optimizing state estimation and
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setting the stage for precise mapping. Ultimately, the map is updated using the optimized
state estimates, continuously integrating new point cloud data into the existing map for
real-time maintenance. The overview of our workflow is shown in Figure 3.

Figure 3. An illustrative representation of the Fast-ICP enhanced LiDAR-inertial odometry structure.

3.2.2. State Estimation Based on State Iterated Kalman Filter

State estimation plays a pivotal role in SLAM, involving the determination of an
object’s orientation and position within a given environment. Traditional state estimation
algorithms, which rely on feature extraction and matching, excel in environments with
distinct landmarks but falter in dynamic or feature-sparse areas owing to occlusion risks
and extensive computational demands. Some works directly enhance SLAM with real-
time 3D mapping via LiDAR yet falter in challenging conditions or under computational
constraints due to reliance on high-quality data and intensive processing [28–30].

We choose to employ a tightly coupled iterated Kalman filter [35,50] for enhanced
State estimation within our SLAM system. This filter is particularly adept at handling the
uncertainties and dynamics of real-world environments by cohesively integrating sensor
measurements. This method not only addresses the challenges of occlusions and feature
scarcity but also ensures robust performance despite computational constraints. This
seamless integration of sensor data, particularly from LiDAR and IMU, forms the basis
for our approach to handling the high-frequency data and temporal alignment challenges
inherent in real-time SLAM applications.

Given the original LiDAR’s high sampling rate, processing each point in real-time is
impractical. Therefore, we accumulate these points over a period, and an accumulated
set of points before collective processing is referred to as a scan. Following each scan’s
preprocessing, the data, along with that from the IMU, is input into the Kalman filter
for Forward Propagation. This involves state prediction using the system’s predictive
equations under the assumption of zero noise:

x̂i+1 = x̂i � (Δt f (x̂i, ui, 0)); x̂0 = xk−1. (1)

In this context, x̂i represents the propagated vector at the i-th IMU sample time in a
LiDAR scan, xk is the update vector at the scan-end time of the k-th LiDAR scan, Δt denotes
the time difference between two IMU frames, and f describes the dynamic system model
governing state changes within the paper. Encapsulation operators � defined in article [31]
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can support formulation in rotation matrices as well as manifolds. LetM be the manifold
of dimension 15 in consideration, and they are defined as follows:

M = SO(3)×R
15, dim(M) = 18

x =
[GRT

I
G pT

I
GvT

I bT
ω bT

a
GgT]T ∈ M

u =
[
ωT

m aT
m
]T , w =

[
nT

ω nT
a nT

bω nT
ba

]T

f (xi, ui, wi) =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

ωmi − bωi − nωi
GVIi

GRIi
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nbωi
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03×1
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(2)

where GRT
I , G pT

I are the transposed attitude and position of IMU in the global frame, GgT is
the unknown transposed gravity vector in the global frame, ωT

m and aT
m are the transposed

IMU measurements, nT
ω and nT

a are the transposed white noise of IMU measurements, and
bT

ω and bT
a are the IMU bias modeled as the random walk process with Gaussian noises nT

bω
and nT

ba [31].
Then, the covariance matrix prediction equation is calculated:

P̂i+1 = Fx̃P̂iFT
x̃ + FwQFT

w ; P̂0 = P̂k−1. (3)

Fx̃ and Fw, the system conversion matrix and noise conversion matrices, are computed
by the error state dynamic model, with the detailed calculation process also detailed in the
article’s appendix [31]. Following this step, an initial estimate of the system’s current state
is obtained.

It is important to note that since a consists of many points, these points are clearly
not measured at the same time, making it challenging to perfectly align the time between
the IMU and the LiDAR. To address this issue, we perform backward propagation of
the equations to compensate for the motion errors caused by the time difference from
Equation (1):

x̌j−1 = x̌j �
(−Δt f

(
x̌j, uj, 0

))
. (4)

While the last three lines (acceleration noise) are zero in Equation (2), backward
propagation can be simplified as:

Ik p̌Ij−1
= Ik p̌Ij

− Ik v̌Ij
Δt, s. f . Ik p̌Im

= 0;

Ik v̌Ij−1
= Ik v̌Ij

− Ik ŘIj

(
ami−1 − b̂ak

)
Δt− Ik ĝkΔt,

s. f . Ik v̌Im
= GR̂T

Ik
Gv̂Ik

, Ik ĝk =
GR̂T

Ik
Gĝk;

Ik ŘIj−1
= Ik v̌Ij

Exp
((

b̂ωk −ωmi−1

)
Δt

)
, s. f . Ik RIm

= I.

(5)

Among them, s.f. represents “starting from”, which defines the relative pose of the
point obtained by backward propagation as Ik ŤIj

=
(

Ik ŘIj
, Ik p̌Ij

)
. We should project the

point Lj p fj
to the scan end time tk:

Lk p fj
= I T−1

L
Ik ŤIj

Ik TL
Lj p fj

. (6)

This process adjusts the previous state estimates, compensating for the motion that
occurred between two LiDAR scans, ensuring temporal consistency between the LiDAR
data and the system’s state estimate [31].

After we compensate for the motion distortion of the LiDAR, the received points are
used for residual calculation. Calculating the residuals involves determining the difference
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between the actual observations and the predicted observations based on the current state
estimate and assessing the accuracy of the current state estimate. Based on the results of the
residual calculation, the system iteratively updates the state estimate. When the residuals
are below a specific value, the iteration reaches the termination condition and completes
the state estimation process once.

3.2.3. Fast ICP for Improved State Estimation

IMU drift can become significant over extended periods, potentially impacting out-
comes, as discussed in Section 3.2.2. To further enhance the SLAM system’s mapping preci-
sion and robustness in complex environments, this stage utilizes the Fast ICP algorithm
to refine the current state estimation [37], thereby alleviating point cloud inconsistencies
caused by IMU drift.

Integrating Fast ICP post-initial state estimation, our system introduces a vital refine-
ment phase before the final map synthesis. The process starts by identifying the closest
point correspondences between the latest point cloud and the existing map, leveraging
efficient spatial data structures for rapid nearest-neighbor searches. For each point pi
in P, Fast ICP seeks the closest point mj in M using KD-trees [51], a type of spatial data
structure, resulting in pairs (pi,mj). Once the point correspondences are established, the
alignment error is quantified through a cost function E, typically defined as the sum of
squared distances between paired points:

E(R, t) =
N

∑
i=1
‖ Rpi + t−mj ‖2 (7)

R represents the rotation matrix, while t is used to symbolize the translation vector.
Typically, two sets of point clouds are not identical, hindering the precise determination
of rotation R and translation t matrices. However, by formulating this loss function, we
transform the point cloud registration challenge into an optimization problem [36]. In
order to determine the optimal R and t to minimize E, employing iterative methods like the
Gauss–Newton algorithm: [

ΔR
Δt

]
= −

(
JT J

)−1
JT∇E (8)

where J is the Jacobian matrix of partial derivatives of E with respect to R and t, and
∇E is the gradient of E. In each iteration, the pose parameters are updated based on the
optimization step:

R ← R + ΔR, t ← t + Δt (9)

Iterative enhancements continuously refine the pose, recalibrate point correspon-
dences, and reduce alignment errors until convergence is achieved. This method guar-
antees accurate pose estimation despite significant IMU drift, maintaining map integrity
and continuity.

Each iteration involves processing extensive point cloud data and complex mathemat-
ical operations, requiring multiple iterations to converge on a stable solution. Frequent
optimization using all points in the Fast ICP module for large-scale point cloud data can
significantly consume computational resources and impact the system’s real-time perfor-
mance, and some pairs may be mismatched due to nearest neighbor search errors, point
cloud occlusion or data quality issues, thereby affecting convergence speed and increasing
memory usage. To address this issue, the ICP module performs down-sampling using
normal-space sampling before processing [37]. It first calculates the normal for each point
and maps these normals onto a unit sphere. The sphere is then divided into several regions
(bins), from which points are uniformly selected to ensure an even distribution in the
normal direction. This method effectively reduces the number of points while preserving
the surface’s key geometric features and structures, improving the convergence speed and
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effectiveness of Fast-ICP. Simultaneously, outlier pairs are removed using the standard
deviation method to improve alignment accuracy and algorithm convergence speed.

Additionally, this module does not always run continuously; instead, it flexibly adjusts
whether to perform the Fast ICP module for drift correction based on the point cloud match-
ing error. This approach allows for rapid approximation of optimal drift correction while
reducing resource usage. We set an initial error threshold at the start of the LiDAR-inertial
odometry to assess the combined pose estimation of the odometry and IMU. If the error
exceeds the threshold, the Fast ICP module intervenes to optimize pose estimation, correct
drift, and ensure efficient and accurate alignment. When the error decreases to an acceptable
range and remains stable, the threshold is dynamically adjusted, and iterations are sus-
pended to ensure the Fast ICP module does not significantly increase resource consumption.
This approach intelligently balances pose optimization and computational efficiency.

Pose optimization via Fast ICP effectively counters IMU drift, enhancing accuracy
and resilience during the mapping phase, compensating for sensor errors, and adapting to
environmental dynamics. This achieves localized optimization of existing algorithms
and flexible adaptation to our hardware system without compromising the real-time
performance of the SLAM system.

3.2.4. Map Update

Sections 3.2.2 and 3.2.3 set the stage for 3D map construction. This process involves
projecting each feature point onto the coordinate system of the IMU and then transforming
these points into the real-world coordinate system to facilitate map updates. Upon com-
pletion of this process, the feature points in the global coordinate system are appended
to the existing map, incorporating all feature points from prior stages [31]. The map is
continuously updated by integrating new observational data, thus augmenting the SLAM
system’s ability to construct environmental models.

3.3. 3D Auto-Exploration Using RRT

In the context of SLAM, 3D auto-exploration stands as a pivotal component, partic-
ularly for Unmanned Aerial Vehicles (UAVs) and robotic systems navigating complex
environments. When developing the autonomous exploration algorithm, it is essential to
focus on the algorithm’s real-time performance, efficiency, and robustness to suit our low-
cost SLAM system. This entails real-time updates, environmental map maintenance, and
efficient path planning to navigate uncharted territories with minimal energy expenditure.
The exploration challenge centers on expanding the known spatial domain strategically
selecting unexplored areas to maximize information gain. Path planning, on the other hand,
concentrates on directing the robot or UAV along an optimal path efficiently and safely,
taking into account actual physical constraints and obstacles within the environment. This
is crucial in our low-cost SLAM system to ensure efficient exploration tasks with lower
memory usage.

To obtain the optimal trajectory for autonomous exploration, we have coupled the two
problems into a minimization issue:

Minimize Ja(u) + Jd(x) + Je(v)
subj. to : x ⊂ Vf ree

Je(v) �= 0
(10)

In the equation, Ja(u) denotes the actuation cost, Jd(x) represents the distance cost,
and Je(v) signifies the exploration or information gain cost. The obstacle-free space, Vf ree ⊂
Vmap, indicates the navigable area within the three-dimensional positional space contained
by the current map configuration, Vmap ⊂ R

3. By finding the minimum values, the
optimal trajectory for the exploration task is determined, delicately balancing between
swiftly discovering more space, limiting actuation based on a dynamic system model,
and minimizing effort in movement. For efficient and precise exploration path derivation,
we employ a multi-goal RRT framework, utilizing Nonlinear Model Predictive Control
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(NMPC) [52] to optimize path execution, minimizing energy consumption and ensuring
path feasibility [53]. The exploration framework is shown in the following Figure 4.

 

Figure 4. The 3D multi-goal RRT framework using the NMPC Trajectory Optimizer.

3.3.1. 3D Multi-Goal RRT

The RRT algorithm [26] is a path-planning method that expands branches from a
root node towards unexplored areas, featuring inherent randomness that enables effective
navigation through unpredictable terrains. The advantages of RRT lie in its computational
efficiency and the ability to directly integrate additional functionalities into the core plan-
ning process [54]. However, a limitation is the inability to guarantee the shortest path to
the target within a limited number of iterations. Additionally, autonomous exploration
schemes based on RRT are more prevalent in two-dimensional spaces, with less application
in three-dimensional spaces.

To address this issue, this paper employs a 3D Multi-goal RRT framework. This
framework, grounded in the 3D RRT structure, utilizes multiple random goals to enable
efficient navigation through complex environments by iteratively constructing a space-
filling tree [53]. The multi-goal RRT framework establishes multiple objectives, facilitating
simultaneous expansions in various directions with each iteration, thereby boosting ex-
ploration efficiency and path comprehensiveness. First, define the root node of the RRT
tree based on the current position of the vehicle and generate random target coordinates
through probabilistic sampling. Next, search the existing tree structure to find multiple
nodes that are closest to the random target point, and each node will expand to a new node
in the direction of the target. Then, traversability checks on the path between the new node
and the nearest node are performed parallelly. If there are no obstacles or other hindrances
along the path, add the new node to the tree as a new branch, increasing the RRT tree’s
coverage and node density throughout the search space. Otherwise, abandon the target
point and re-sample randomly, ensuring the tree continues expanding into unexplored
areas. By repeating this process continuously, the RRT tree gradually explores the entire
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space, ultimately covering the target area with a certain resolution and path quality while
meeting predefined exploration termination criteria.

While the multi-goal 3D RRT considers the vertical dimension, our mobile robots
operate only on the ground plane in practice. Therefore, our approach optimizes the 3D RRT
for 2D planar motion by constraining vertical expansion to a specific height range, ensuring
the generated paths align with the robots’ actual mobility. The system confines target point
generation, path planning, and motion control to a plane, implementing a 3D to 2D filtering
prior to the exploration process depicted in Figure 4. Once the exploration path for the
vehicle is determined, it transitions back to three-dimensional space for reconstruction. This
approach not only simplifies the path planning problem but also improves computational
efficiency by reducing the spatial dimensions that the algorithm must account for.

3.3.2. NMPC Trajectory Optimizer

To optimize path execution, ensure feasibility, and minimize energy consumption,
we employ an NMPC strategy [52]. NMPC is an advanced control strategy that utilizes
the dynamic model of the system to predict its behavior over a future time horizon and
calculates control inputs by optimizing this predicted behavior. This method is particularly
suited for dealing with complex, highly nonlinear system dynamics and can accommodate
the constraints of the system.

Building upon a 3D multi-objective RRT framework for path planning, NMPC designs
optimal control strategies for each segment of the planned path. Firstly, based on the robot’s
dynamic model and current state, establish a nonlinear model for it:⎡⎣xi

yi
θi

⎤⎦ =

⎡⎣xi−1 + vitcosθi−1
yi−1 + vitsinθi−1

θi−1 + ωit

⎤⎦ (11)

where xi, yi, and θi represent the initial coordinates (x-coordinate and y-coordinate) and
heading angle of the robot in the global coordinate system, i is the index of the robot’s
movement state, and v and ω denote the robot’s linear and angular velocities, respectively.
From the relationship between the target point and the robot’s position, we can obtain
the error: [

Ectei

Eθi

]
=

[
f (xi)− yi

arctan( f ′(xi))− θi

]
(12)

where Ectei and Eθi represent the linear and angular differences between the robot and the
target point in the global coordinate system, and f (x) is used to fit a smooth curve to the
path. We then define the objective function:

min
U

J =
n
∑

i=1
[q1(Ectei )

2 + q2(Eθi )
2 + q3(vi)

2 + q4
(
v2

i + ω2
i
)

+q5(
(
vi+1 − vi)

2 +
(
ωi+1 −ωi)

2)] (13)

q1, q2, q3, q4, and q5 are weight parameters used to adjust the motion error in the
execution path and the motion feedback control inputs. The q1 and q2 terms represent
the cross-track error and heading error, respectively. The q3 term represents the speed
error, maintaining the target speed. The q4 term is the weight coefficient for linear and
angular velocities, limiting the vehicle’s linear and angular velocities to prevent it from
going too fast or turning too sharply. The q5 term is the weight coefficient for changes in
linear and angular velocities, smoothing the control inputs to avoid sudden speed and
steering changes, thereby improving driving stability. We constructed an NMPC problem
model using the geometric kinematics model of unmanned vehicles. To minimize model
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loss and improve the accuracy and real-time performance of trajectory tracking, we set our
weight parameters as follows:

min
U

J =
n
∑

i=1
[1000(Ectei )

2 + 1000(Eθi )
2 + 100(vi)

2 + 10
(
v2

i + ω2
i
)

+1(
(
vi+1 − vi)

2 +
(
ωi+1 −ωi)

2)] (14)

Larger q1 and q2 ensure precise control of the path and heading, while a moderate q3
ensures speed stability. These parameter settings provide a balance between path-tracking
accuracy, speed stability, control input smoothness, and change smoothness. The NMPC
module solves the predicted error using the objective function to minimize the error, thereby
optimizing the path planned by the RRT and assisting the robot in exploration tasks.

The key advantage of NMPC is its ability to ensure the feasibility of the path while
considering the robot’s motion and operational constraints, proactively avoiding potential
obstacles, and averting unnecessary energy expenditure and potential collision risks. More-
over, through a continuous optimization process, NMPC dynamically adjusts the robot’s
velocity and position, ensuring that the robot travels most economically along the planned
path, thereby significantly enhancing the efficiency and performance of the entire system.

4. Experiment

To illustrate the cost-effectiveness of our SLAM system in comparison to other market
offerings, we provide a detailed price-performance analysis of some mainstream robots on
the market in Table 3 (prices and parameters are from official information as of March 2024).

Table 3. Comparison of SLAM robot models by cost and capabilities.

Model Robot Type
LiDAR SLAM

Dimension
SoC/CPU

Auto
Exploration

Cost ($)

Turtlebot4 Two-wheeled mobile robot 2D LiDAR Raspberry Pi 4B No 2191.44
Hiwonder JetAuto

Pro Omnidirectional mobile robot 2D LiDAR Jetson nano 2D 1399.99

SLAMTEC Hermes Mobile robot with 2-wheel
hub motor 2D LiDAR Unknown No 3061.17

Unitree Go 2 Robot dog 3D LiDAR 8 core CPU Unknown 2588.08
WEILAN

AlphaDog C 2022 Robot dog 3D LiDAR ARM 64 bit Unknown 5134.41

Ours Four-wheeled mobile robot 3D LiDAR Jetson nano 3D 840.33

The table shows that most wheeled robots are only compatible with 2D LiDAR SLAM,
while robots equipped with 3D LiDAR SLAM tend to have more complex motion control
algorithms, primarily seen in quadruped robots. Despite similar CPU performance, SLAM
systems supporting autonomous exploration remain scarce. In contrast, our system, fea-
turing a stable and simple four-wheel mechanical structure, natively supports 3D LiDAR
SLAM and autonomous exploration capabilities at a significantly lower price point com-
pared to various LiDAR SLAM robots available in the market. These comparison results
verify the highly cost-efficient performance of our scheme, underscoring our system’s af-
fordability without sacrificing performance, highlighting our technological advancements
and strategic component selection that contribute to a more economical SLAM solution.

4.1. Dataset Collection

To comprehensively cover complex indoor scenarios and validate the localization
and mapping performance of the SLAM system, we controlled a small vehicle to collect
data along main routes in both indoor and outdoor environments. All experimental data
were collected from Wuhan, China, encompassing simple indoor scenes, complex indoor
scenes, and large-scale mixed indoor-outdoor settings. The vehicle traveled at a speed of
approximately 0.5 m per second through these scenarios, circling around the buildings
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or scenes before returning to the starting point. The LiDAR and IMU were mounted
approximately 20–22 cm above the ground. The scanning rate of the LiDAR was set to
10 Hz, with an average processing time of 25 ms per scan and 20,000 points per scan. The
mixed scenes included terrains at varying altitudes, posing additional challenges for the
SLAM system’s positioning accuracy and three-dimensional reconstruction.

4.2. LiDAR SLAM Experiment

Our robot operates on ROS melodic and Ubuntu 18.04, employing C++ along with PCL
1.9.1 (https://github.com/PointCloudLibrary/pcl (accessed on 23 November 2023)) [55]
and Eigen 3.3.4 (http://eigen.tuxfamily.org/index.php?title=Main_Page (accessed on 24
November 2023)) libraries to construct our LiDAR-Inertial Odometry Using Fast Iterative
Closest Point (LIO-FICP) algorithm, and the data will be processed and stored locally
through our program. The specific experimental environments are detailed in Table 4.

Table 4. Experimental Environment.

Name Version

OS Ubuntu 18.04
SoC NVIDIA Tegra X1

RAM 4 GB
ROM 64 GB

Accelerator Library PCL v1.9.1 + Eigen v3.3.4

4.2.1. State Location Experiment

Evaluating the positioning accuracy of the SLAM system using Absolute Pose Error
(APE) is a common and effective approach. APE evaluates the global consistency of the
entire trajectory as a whole, providing an intuitive understanding of the SLAM system’s
accuracy performance in real-world environments. APE (Absolute Pose Error) can be
calculated using the following formula:

APEtrans,k = ‖ trans(P−1
re f ,kPest,k) ‖ (15)

APErot,k = ‖ rot(P−1
re f ,kPest,k)− I3∗3 ‖F

(16)

where APEtrans,k and APErot,k are the translation and rotation error, Pre f ,k and Pest,k are the
reference and estimated pose matrices at timestamp k.

We conducted experiments on the publicly available KITTI dataset, specifically on
sequences 0–10, using APE as the metric for evaluating the localization accuracy of our
system. Additionally, we calculated the APE for LIO-SAM and FAST-LIO2, comparing
their performance with our method. The results are shown in Figure 5.

As shown in Table 5 and Figure 5, the proposed algorithm demonstrates lower transla-
tion and rotation errors compared to FAST-LIO2, with a reduction in the root mean square
error (RMSE) of translation error by approximately 3.8%. When compared to LIO-SAM,
there is a more noticeable decrease in error metrics, making it less likely for significant
errors to occur. The experimental results suggest that the proposed method is more suitable
for use in terrestrial SLAM systems due to its relatively higher robustness and stability.

Table 5. Comparative results of localization errors in the KITTI.

Algorithm

APE Translation Error (m) Rotation Error (Degrees)

Max Mean Min RMSE Max Mean Min RMSE

Ours 7.104 2.541 0.192 2.872 2.479 2.434 2.346 2.435
FAST-LIO2 9.456 2.643 0.204 2.986 2.502 2.440 2.346 2.440
LIO-SAM 51.892 4.831 0.112 8.323 2.828 2.315 1.481 2.361
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Figure 5. APE of our method in the KITTI dataset: Sequence 9, FAST-LIO, and LIO-SAM.

4.2.2. Loop Closure Experiment

The Loop Closure Experiment in SLAM is crucial in evaluating and enhancing the
system’s accuracy and consistency. Through this experiment, we can test the system’s
cumulative errors over extended operation and its robustness in dynamic environments.

In our indoor state localization experiment, we conducted a loop closure test using
the collected dataset to assess the stability of the SLAM system’s positioning. A robot was
programmed to traverse a predetermined path of 340 m and return to the starting point.
The initial and final positions estimated by the slam system were recorded to calculate
the positioning error upon return, based on the distance between these two points, shown
in Figure 6. To thoroughly assess the robot’s state estimation capabilities, three different
motion strategies were employed along the set route:

1. Motion 1. Linear movement at 0.7 m/s across a flat surface, completing a circuit and
returning to the start.

2. Motion 2. Zigzagging motion with the robot swaying left and right, moving in a
curved path around the room at an average speed of approximately 0.7 m/s before
returning to the starting point.

3. Motion 3. Straight-line movement over uneven terrain, completing a circuit and
returning to the start, maintaining an average speed of 0.7 m/s.

Figure 7 illustrates the experimental setup. Each route featured numerous pedes-
trians walking randomly around the system and doors opening and closing randomly
to alter the experimental environment. This setup was used to test the effectiveness of
the system’s positioning technology under the uncertainty and dynamic conditions of
real-world environments.

Each motion type was repeated three times to mitigate random errors, with the average
results recorded in Table 6.

We also tested the FAST-LIO2 and LIO-SAM systems under the same dataset, with
the results shown in Table 7. The experimental results indicated that the drift of this
experiment is less than 0.07% (the maximum drift of 340 m is less than 0.22 m), which is
nearly identical in accuracy to FAST-LIO2 and represents a significant improvement over
LIO-SAM. On average, each scan identified 1421 valid feature points, enabling the SLAM
system to accurately track the vehicle’s position and trajectory. Even with the presence of
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numerous dynamic obstacles during tests, the system showcased its capability for precise
state localization within complex indoor environments. It retained high accuracy and
robustness against diverse terrains and obstacles.

 

Figure 6. The vehicle’s starting point (coordinate system with thicker axis) and ending point (coordi-
nate system with thinner axis) have been marked in Figure 6. The red, blue, and green axes represent
the X, Y, and Z axes, respectively. We obtain the Drift Distance by comparing the positions of the two
coordinate systems in time and space.

 

Figure 7. Schematic diagrams of the car for the closed-loop test experiment. In the figure, the yellow
line represents the planned scanning route, (a) is motion 1, (b) motion 2, (c) motion 3, and the red
curve represents uneven terrain or dynamic obstacles.

Table 6. Our method’s drift results of the loop closure test experiment.

Motion Strategies
Drift (m)

X Y Z

Linear + Flat 0.016942 0.003476 0.157648
Zigzagging + Flat 0.016289 0.004651 0.173591
Linear + Uneven 0.016075 0.008972 0.210820
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Table 7. The results of the maximum drift loop closure experiment.

Algorithm
Max Drift (m)

Accuracy
X Y Z

LIO-SAM (LoopClosutre Disable) 1.226639 0.295907 1.364643 0.54676%
FAST-LIO2 0.032126 0.016737 0.278591 0.10450%

Ours 0.016075 0.008972 0.210820 0.06235%

4.2.3. 3D Reconstruction Experiment

The most significant advantage of 3D LiDAR is its ability to provide high-precision
three-dimensional spatial data, enabling this SLAM system to accomplish high-precision
mapping and surveying tasks. To verify the capabilities of the LIO-FICP in this regard, we
conducted indoor and outdoor ground vehicle experiments.

Outdoors, we ran our algorithm using the KITTI dataset to generate a reconstructed 3D
road map, as shown in Figure 8. The map distinctly shows vehicles parked along the curb
and permanent buildings, which is highly consistent with the scenes depicted in the RGB
data from the dataset. During the experiment, the vehicle started from the origin and circled
back to the starting point, completing a loop that is visible on the map, demonstrating
the high accuracy of our mapping algorithm. Moreover, despite the presence of many
moving vehicles and pedestrians along the route, dynamic objects were not represented in
the mapping results, reflecting the precision and robustness of our algorithm.

 

Figure 8. These are the mapping results of the outdoor environment. (a) The global map of the
environment; (b) stationary vehicles on both sides of the road.

Based on a pre-constructed grid map, a route was manually planned within a 35 m× 15 m
room; the arrow in Figure 9a. shows the general direction The robot circled the room before
moving towards the center, reconstructing the indoor environment in the process. The room
layout was a flat quadrilateral with a height of approximately 3.5 m, furnished with tables,
chairs, and other irregular items, adding complexity to the mapping task. The vehicle was
deliberately not directed to the room’s corners to evaluate the SLAM system’s comprehensive
3D reconstruction capability with limited path information. Utilizing the Fast-ICP algorithm,
the LiDAR-Inertial Odometry allowed for the creation of a highly detailed room map, as
shown in Figure 9b, capturing fine details like tables and chairs.
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Figure 9. These are figures of the indoor environment, the arrow direction represents the planned
path direction. (a) The real scene of the test room; (b) the 3D reconstruction of the room.

The system was then tested in a mixed indoor-outdoor environment. Compared to
simple indoor rooms, this setting offers more extensive spaces with numerous dynamic
elements, necessitating the system to process more data and exhibit greater robustness.
Due to the increased size of the area, longer mapping durations might lead to IMU drift,
potentially causing overlaps and distortions in the building structure.

A start and end point were designated for the system, with the vehicle initiating its
navigation task indoors before moving outdoors at about 0.7 m/s through the corridor
to reach the predetermined endpoint. The corridor is surrounded by an open outdoor
environment, significantly increasing the computational load. Figure 10 shows the actual
test scenario, with the vehicle’s general direction of movement indicated by arrows.

 

Figure 10. Indoor-outdoor environment: the system starts indoors and passes through a corridor
surrounded by outdoors to reach the destination. The arrow direction represents the planned
path direction.
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Figure 11 displays the system’s mapping results. The results show that LIO-FICP
performs exceptionally well, successfully accomplishing 3D reconstruction of road sections
and enabling the mapping and recognition of distant outdoor landscapes. The details of
the outdoor parts, such as leaves and corridors, can be clearly seen in Figure 12.

 

Figure 11. The mapping result of indoor-outdoor environment, the system starts indoors and passes
through a corridor surrounded by outdoors to reach the destination.

Figure 12. Cont.
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Figure 12. These are figures of the Indoor-outdoor environment. (a) The top-down point cloud map
of the entire environment; (b) shows the details of tree reconstruction, with visible branches and
leaves; (c) shows the reconstruction results of the corridor.

Figure 13 displays more detailed sections of the reconstructed map. Despite the
brief period of point cloud accumulation, delicate structures like floor decorations and
fire extinguisher cabinets are distinctly visible, demonstrating the SLAM system’s high-
precision mapping capability and robustness.

Figure 13. Cont.
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Figure 13. The reconstruction effect of the detail part. (a,c) Physical drawings and point clouds of fire
extinguisher hydrants. (b,d) Physical drawings and point clouds of decorations.

The time taken by the vehicle from departure to the complete preservation of the 3D
model was recorded and compared with the vehicle’s movement time. Our calculations
show that the system ceased reconstruction immediately after the vehicle stopped and ex-
ported the model file within 5 s, confirming the real-time performance of the SLAM system.

4.3. Auto-Exploration Experiment

After completing the localization and mapping experiments with our SLAM system,
we deployed it for RRT Exploration within the same system. We continued to test the
autonomous exploration capabilities of the SLAM system indoors. The overall 3D Auto-
Exploration Using RRT framework was implemented in ROS and C++, under the same
configuration. To more comprehensively assess our system’s autonomous exploration
abilities, we chose an indoor environment designed with a variety of obstacles, different
terrains, and complex spatial layouts for experimentation.

We used the same indoor environment as in Section 4.2.3 to test it. At the start of the
experiment, we manually placed the robot at the center of the map for initialization. After
setting the boundaries of the map, the robot began its autonomous exploration. During
the exploration process, the robot dynamically planned its path using the RRT algorithm
to avoid obstacles and efficiently cover unknown areas. The 3D multi-goal RRT works
as shown in Figure 14; the exploration path is generated on a 2D plane, although the car
will eventually be reconstructed on a 3D map. We paid special attention to the robot’s
responsiveness to sudden obstacles and its navigation and obstacle avoidance efficiency in
complex environments. Multiple experiments ensured the system’s exploration was robust
and continuous.

The experimental results demonstrated that our SLAM system, combined with the
3D RRT exploration framework, was capable of effectively carrying out autonomous
exploration within complex indoor environments, while 2D RRT exploration always failed
to explore this room. The robot was able to update the map information in real time and
dynamically adjust its path based on newly discovered obstacles and unexplored areas.
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When encountering unknown obstacles, the robot was able to react quickly and re-plan its
path, showing good obstacle avoidance capabilities.

 

Figure 14. This is the process of multi-goal RRT growth. The parameter for cell size in the grid is 1,
meaning that each grid cell represents a 1 m × 1 m area.

The 2D RRT exploration fails to perceive the dimensions of obstacles, resulting in
incorrect path planning in front of spatially featured obstacles, and thus fails to explore
a complete map (grid map, not a 3D point cloud), as shown in Figure 15. Additionally,
traditional RRT exploration lacks specific trajectory tracking optimization, leading to
motion deadlocks in some narrow areas from which it cannot escape, culminating in the
failure of RRT Exploration in room exploration.

 

Figure 15. The illustration shows incorrect path planning by 2D RRT Exploration. We converted
three-dimensional LiDAR point clouds into two-dimensional point clouds through filtering, which
fails to detect obstacles above the space. This leads to erroneous path planning and can result in
collisions or even overturning of the robot.
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Figure 16 illustrates the maps explored by the robot after the experiment, indicating
that the robot covered most of the unknown areas and the path selection was highly
optimized. The experimental results demonstrated that our SLAM system, combined
with the RRT exploration framework, was capable of effectively carrying out autonomous
exploration within complex indoor environments. The robot was able to update the
map information in real time and dynamically adjust its path based on newly discovered
obstacles and unexplored areas. When encountering unknown obstacles, the robot was
able to react quickly and re-plan its path, showing good obstacle avoidance capabilities.

 

Figure 16. This is the result of the 3D multi-goal RRT exploration. (a,b) The reconstruction from
different angles of the room.

4.4. Analysis of the Resource Occupancy

SAR and VMstat are two commonly used system performance monitoring tools in
sysstat (https://github.com/sysstat/sysstat (accessed on 20 January 2024)) widely used in
operating systems to monitor system performance and resource usage.

Since this SLAM system primarily utilizes CPU and memory resources, we employed
the ‘SAR’ and ‘VMstat’ tools to monitor the CPU and memory usage in real time on our
hardware platform, thus assessing the resource consumption of our algorithm. All tests
were automatically conducted in a consistent environment using scripts and carried out
on the 4.1 dataset. We also measured the resource utilization of SLAM systems based on
fast-lio2 and lio-sam for comparison. The results are shown in Figure 17.

Data from Figure 17 and Table 8 demonstrate that our method, compared to FAST-
LIO2, has lower CPU resource usage and memory consumption. Although our method
consumes slightly more memory than LIO-SAM, it offers higher positioning accuracy, lower
loop closure errors, improved stability and robustness, and a significant advantage in CPU
utilization. This makes it particularly suitable for cost-conscious SLAM systems. Experi-
ments show that in cost-sensitive application scenarios, our system can achieve efficient
spatial localization and mapping with lower operational costs, not only meeting the perfor-
mance requirements of low-cost SLAM systems but also providing significant advantages
in sustainability and practicality, thus enabling a wide range of real-world applications.

Table 8. The average CPU and memory usage results of the SLAM system during testing.

Algorithm The Average CPU Usage The Average Memory Usage

LIO-SAM 66.75% 47.54%
FAST-LIO2 30.32% 56.73%

Ours 23.66% 52.45%
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Figure 17. This is the results of system resource occupancy testing, conducted simultaneously with
the experiments described in Section 4.2.3.

5. Discussion

We have designed a SLAM system that integrates LiDAR-Inertial Odometry with
RRT Exploration. It is characterized by its low-cost yet efficient pose estimation, map-
ping, and autonomous 3D space exploration. The design encompasses three modules. To
achieve high performance within budget constraints, we developed a stable and adapt-
able vehicle structure utilizing a four-wheel configuration, incorporating cost-effective
sensors. Subsequently, we developed the SLAM algorithm based on the LiDAR-Inertial

145



Remote Sens. 2024, 16, 1979

Odometry framework. We achieved continuous, higher accuracy at a significantly lower
computational load than traditional LOAM algorithms through precise optimization of
point cloud matching and pose estimation with the Fast ICP algorithm. Finally, we adapted
and enhanced the 3D RRT Exploration algorithm, equipping the system with advanced
autonomous exploration functionalities. As UAVs advance in SLAM and three-dimensional
reconstruction fields, this system has the potential to be applied in outdoor Unmanned Air-
craft Systems (UAS) [56], offering prospective applications in data collection and mapping
with small drones [57].

However, three limitations remain:

1. Although the LiDAR-Inertial Odometry framework enhances the efficiency and ac-
curacy of pose estimation, it still heavily relies on the quality of data collected by
sensors. Sensor performance degradation in harsh environments could directly affect
the system’s precision in localization and mapping.

2. While the 3D RRT Exploration algorithm grants the system high-performance au-
tonomous exploration capabilities, its computational complexity substantially esca-
lates in environments with dynamic obstacles, potentially diminishing exploration
efficiency and prolonging reaction times. Additionally, we must conduct more experi-
ments to adjust the NMPC weight parameters to make the system’s motion control
smoother and easier to port.

3. Generating 3D maps offline necessitates extra storage, and activating 3D autonomous explo-
ration and Fast ICP optimization concurrently can result in elevated memory consumption.

6. Conclusions

This paper presents a low-cost SLAM system design that maintains high-performance
SLAM algorithms under budget constraints. First, in terms of hardware, we designed a
small vehicle with a three-layer structure and four rubber wheels, incorporating a control
system that enhances the SLAM system’s stability, adaptability, and load capacity, drawing
inspiration from current mobile robot technologies. Secondly, we developed a founda-
tional SLAM solution based on the LiDAR-Inertial Odometry and Fast ICP algorithm and
melded it with a 3D multi-objective RRT Exploration strategy grounded in NMPC, not only
adapts mainstream SLAM algorithms but also makes localized improvements for enhanced
performance. Then, we designed the experiments that confirm our system’s capability
for accurate localization and mapping in intricate indoor settings, as well as autonomous
reconstruction and surveying. Finally, we open-sourced our work to provide a low-cost
SLAM solution with high performance. Although our approach strikes a good balance
between cost and performance, it still encounters some constraints that must be addressed
in future works focused on developing cost-effective SLAM systems.
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Abstract: The multi-global navigation satellite system (GNSS) undifferenced and uncombined precise
point positioning (UU-PPP), as a high-precision ionospheric observables extraction technology
superior to the traditional carrier-to-code leveling (CCL) method, has received increasing attention.
In previous research, only dual-frequency (DF) or multi-frequency (MF) observations are used to
extract slant ionospheric delay with the UU-PPP. To reduce the cost of ionospheric modeling, the
feasibility of extracting ionospheric observables from the multi-GNSS single-frequency (SF) UU-PPP
was investigated in this study. Meanwhile, the between-satellite single-differenced (SD) method
was applied to remove the effects of the receiver differential code bias (DCB) with short-term time-
varying characteristics in regional ionospheric modeling. In the assessment of the regional real-time
(RT) between-satellite SD ionospheric model, the internal accord accuracy of the SD ionospheric
delay can be better than 0.5 TECU, and its external accord accuracy within 1.0 TECU is significantly
superior to three global RT ionospheric models. With the introduction of the proposed SD ionospheric
model into the multi-GNSS kinematic RT SF-PPP, the initialization speed of vertical positioning
errors can be improved by 21.3% in comparison with the GRAPHIC (GRoup And PHase Ionospheric
Correction) SF-PPP model. After reinitialization, both horizontal and vertical positioning errors of
the SD ionospheric constrained (IC) SF-PPP can be maintained within 0.2 m. This proves that the
proposed SDIC SF-PPP model can enhance the continuity and stability of kinematic positioning
in the case of some GNSS signals missing or blocked. Compared with the GRAPHIC SF-PPP, the
horizontal positioning accuracy of the SDIC SF-PPP in kinematic mode can be improved by 37.9%,
but its vertical positioning accuracy may be decreased. Overall, the 3D positioning accuracy of the
SD ionospheric-constrained RT SF-PPP can be better than 0.3 m.

Keywords: multi-global navigation satellite system (multi-GNSS); precise point positioning (PPP);
ionospheric modeling; real-time (RT); single frequency (SF); between-satellite single-differenced

1. Introduction

As one of the most serious interference factors in radio signals, the ionospheric delay
has a significant negative impact on the global navigation satellite system (GNSS) data
processing, especially in the precise point positioning (PPP) domain [1,2]. If GNSS users
can afford expensive dual-frequency (DF) receivers, ionospheric errors can be eliminated by
over 99% by forming a DF ionosphere-free (IF) combination model. However, the majority
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of smart devices, such as mobile phones and wristwatches, can only be equipped with
single-frequency (SF) GNSS chipsets, making it impossible to adopt the IF model to weaken
ionospheric errors [3,4]. To achieve low-cost and high-precision SF positioning, many kinds
of broadcast or post-processing ionospheric models have been proposed so far. Although
the GPS Klobuchar model, BeiDou global broadcast ionospheric delay correction model
(BDGIM), and Galileo NeQuick model can be applied to real-time (RT) SF positioning,
their ionospheric correction capabilities are limited and no more than 80% [5–8]. The
post-processed global ionospheric map (GIM), as one of the most accurate ionospheric
models, can provide correction accuracy within two total electron content units (TECU),
but it cannot support RT positioning [9]. With the development of the Real-Time Working
Group (RTWG) of the International GNSS Service (IGS), an RT-GIM has been provided by
some IGS real-time ionosphere centers. The accuracy of RT-GIM is slightly lower than that
of post-processed GIM and can reach around 3 TECU [10]. Due to the limited accuracy of
the current RT ionospheric models, it is necessary to establish an RT ionospheric model
with cm-level accuracy using regional reference networks to improve the performance of
RT SF-PPP.

On the premise of not changing the number of regional monitoring stations, there
are two main factors that affect the quality of ionospheric modeling. One is the extraction
accuracy of ionospheric delay observables, and another is the calculation accuracy of
the differential code bias (DCB) for satellite and receiver. The traditional carrier-to-code
leveling (CCL) method has been widely used in ionospheric modeling due to its simple
structure and high computational efficiency. Nevertheless, the accuracy of ionospheric
delay extracted by this method is limited and is susceptible to adverse effects of multipath
errors and code noises [11,12]. Thanks to the preservation of ionospheric parameters in
the undifferenced and uncombined (UU) PPP, a novel method based on carrier phase
observations for extracting ionospheric delays has been proposed [13]. Compared with the
CCL method, the accuracy of slant ionospheric delays derived from the UU-PPP can be
improved at least three times to 0.1 TECU. As expected, the modeling accuracy of regional
ionospheric vertical total electron content (VTEC) using the UU-PPP method is better than
that using the CCL method [14].

Due to the presence of hardware bias in retrieved ionospheric observables, it is neces-
sary to simultaneously estimate both satellite and receiver DCB parameters when modeling
ionospheric VTEC. The satellite DCB has great long-term stability, so its solution accuracy
is high and reliable [15]. Unfortunately, the receiver DCB is easily influenced by vari-
ous factors, such as ambient temperature and hardware alternation. Thus, its apparent
short-term time-varying characteristics can be observed [16,17]. If the receiver DCB as an
additional parameter was estimated in UU-PPP, although pure slant ionospheric delays
can be obtained [18], the increase in estimated parameters reduces the strength and compu-
tational efficiency of the UU-PPP model. Meanwhile, the high-frequency parameterization
of receiver DCB will inevitably increase the burden and cost of data transmission, making
it difficult to apply to RT ionospheric modeling based on dense reference networks.

To completely remove the adverse effects of receiver DCB and meet the requirements of
time-critical in RT ionospheric modeling, a regional RT ionospheric model was established
using the classical between-satellite single-differenced (SD) method [19]. Since the receiver
DCB can be precisely eliminated and high-precision ionospheric observables are derived
from the UU-PPP, the accuracy of the proposed RT ionospheric model is significantly
better than that of the post-processing GIM model. However, the implementation of this
high-quality ionospheric model must be based on the use of GNSS DF observations. Thus,
the hardware cost of the modeling system is very expensive. Considering that the multi-
GNSS SF UU-PPP has the ability to achieve cm-level accuracy at present [20,21], in our
study, the possibility of modeling a regional RT between-satellite SD ionospheric model
based on SF observations was explored and verified. This is extremely important for
low-cost SF positioning users. Different from the literature [19] only using GPS and Galileo
observations, the BDS-3 observations were introduced into multi-GNSS processing in this
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contribution, which can improve the performance of the regional RT between-satellite SD
ionospheric model by increasing the spatial resolution of the ionosphere pierce point (IPP).
In summary, this contribution is to attempt to reduce the hardware cost of ionospheric
modeling and provide an effective solution for building high-precision regional ionospheric
models only using affordable SF devices or chips in the future.

The writing structure of this paper is as follows: first, the extraction method of slant
ionospheric observables using multi-GNSS SF UU-PPP technology, modeling algorithm of
the regional RT between-satellite SD ionospheric delay, and ionospheric-constrained multi-
GNSS SF-PPP model are introduced in detail. Then, the experimental data for the European
region and processing strategies in both ionospheric modeling and positioning domains
are presented. After evaluating the performance of the regional RT between-satellite SD
ionospheric model, its contribution to the multi-GNSS RT SF-PPP is analyzed. In the final
section, some new findings and conclusions are summarized.

2. Methods

Thanks to the advantages of abundant satellite resources and high sampling rates for
the GNSS technology, ionospheric observables with low-cost and high spatial-temporal
resolution can be obtained from the multi-GNSS SF UU-PPP. The modeling method of the
regional RT between-satellite SD ionospheric delay is described in this section. To optimize
the RT kinematic positioning performance of SF users, a novel multi-GNSS RT SF-PPP
model based on the SD ionospheric constraints is proposed.

2.1. Extraction of Slant Ionospheric Observables from Single-Frequency UU-PPP

The GNSS raw code Ps
r,1 and phase Ls

r,1 observations at the first frequency can be
expressed as [14]{

Ps
r,1 = ρs

r + c · (dtr − dts) + Ts
r + Is

1 + Br,1 − Bs
1 + εp1

Ls
r,1 = ρs

r + c · (dtr − dts) + Ts
r − Is

1 + ωs
1 + Ns

r,1 + br,1 − bs
1 + εL1

(1)

where the superscript s and subscript r denote the satellite and GNSS receiver, respectively.
ρs

k is the calculated distance between the satellite and the GNSS receiver. c denotes the speed
of light. dtr and dts denote the clock errors of the satellite and GNSS receiver, respectively.
Ts

r denotes the slant tropospheric delay errors, Is
1 denotes the slant ionospheric errors. ωs

1
denotes the carrier phase wind-up errors. Ns

r,1 denotes the integer ambiguity of carrier
phase. Br,1 denotes the code hardware delays of the GNSS receiver, and Bs

1 denotes the
code hardware delays of the satellite. br,1 denotes the phase hardware delays of the GNSS
receiver, and bs

1 denotes the phase hardware delays of the satellite. εp1 and εL1 denote the
code and phase observation noises, respectively.

In RT SF-PPP, the satellite and receiver clock errors need to be corrected using code
hardware delays because the RT precise satellite clocks provided by the IGS real-time
service (RTS) are obtained from the DF IF observations. Hence, the reparametrized clock
errors of the satellite dts and GNSS receiver dtr at the first frequency can be expressed as{

dts = dts +
ds

IF
c

dtr = dtr +
dr,IF

c

(2)

with ⎧⎪⎨⎪⎩
ds

IF =
( f1)

2·Bs
1−( fi)

2·Bs
i

( f1)
2−( fi)

2

dr,IF =
( f1)

2·Br,1−( fi)
2·Br,i

( f1)
2−( fi)

2

(3)

where ds
IF and dr,IF are the IF code hardware delay of the satellite and GNSS receiver,

respectively. f is the frequency value and i is the i-th frequency. It should be noted that
i = 2 for GPS, GLONASS and Galileo satellites, while for BDS satellites, i= 3. The code
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hardware delay at a specific frequency is usually not directly obtainable, and only DCB
values can be used as follows: {

DCBs = Bs
1 − Bs

i
DCBr = Br,1 − Br,i

(4)

When substituting Equations (2)–(4) into Equation (1), the new code and phase equa-
tions of RT SF-PPP can be expressed as⎧⎨⎩ Ps

r,1 = ρs
r + c · (dtr − dts) + Ts

r + Is
1 − ( fi)

2

( f1)
2−( fi)

2 (DCBr − DCBs) + εp1

Ls
r,1 = ρs

r + c · (dtr − dts) + Ts
r − Is

1 + Ns
r,1 + dr,IF − ds

IF + br,1 − bs
1 + εL1

(5)

Due to the linear correlation between hardware delays and estimated parameters such
as ionosphere and ambiguity, the Equation (5) is rank deficient and multiple unknown
parameters cannot be solved at the same time. The reparametrized ionosphere Is

1 and
ambiguity Ns

r,1 parameters can be expressed as⎧⎪⎨⎪⎩
Is
1 = Is

1 − ( fi)
2

( f1)
2−( fi)

2 (DCBr − DCBs)

Ns
r,1 = Ns

r,1 + dr,IF − ds
IF + br,1 − bs

1 − ( fi)
2

( f1)
2−( fi)

2 (DCBr − DCBs)
(6)

Equation (6) is substituted into Equation (5) and linearize it. Both satellite positions
and clock errors can be corrected using the RT precise products provided by IGS RTS [22].
The dry part of the tropospheric delay is generally corrected using an empirical model,
and its wet part as unknowns to estimate. As for ionospheric delay, the GPS Klobuchar
model is first used to correct it in real time, and then its residual parts can be estimated
as parameter. Hence, the Is

1 represents the sum of ionospheric model values and residual
values, which are the extracted slant ionospheric observables. To sum up, the final GNSS
undifferenced and uncombined observation equations can be expressed as{

Ps
r,1 = es

r · g + c · dtr + M · TZWD + Is
1 + εp1

Ls
r,1 = es

r · g + c · dtr + M · TZWD − Is
1 + Ns

r,1 + εL1

(7)

where es
r is the unit vector of the range between the satellite and GNSS receiver. g is the

vector of the three- dimensional (3D) position errors. TZWD denotes the wet part of tropo-
spheric delay in zenith direction. M denotes the mapping function for tropospheric delay.
The final parameters E that need to be estimated for SF UU-PPP can be summarized as

E = [g, dtr, TZWD, Is
1, Ns

r,1] (8)

2.2. Modeling Algorithm of the Regional Real-Time between-Satellite Single-Differenced
Ionospheric Delay

In the real-time extraction process of slant ionospheric delay, to improve the accuracy
of ionospheric observables, the 3D coordinates of the monitoring stations should be fixed
precisely by using the Solution-Independent Exchange (SINEX) data. The ionospheric delay
in the line-of-sight direction can be expressed as [12]

Is
1 =

40.3× 1016

( f1)
2 · ∇s ·VTECs (9)

with { ∇s = 1/cos(μ)
μ = arcsin( RE ·sin(α·Z)

RE+Hiono
)

(10)
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where ∇s is the mapping function used to convert ionospheric VTEC to slant TEC (STEC).
VTECs is the ionospheric vertical TEC. RE is the mean radius of the earth, which can be set
to 6371 km. α is an empirical constant that can be set to 0.9782. Z is the zenith distance at
the GNSS receiver. Hiono is the assumed height of the single-layer spherical shell, which is
set to 450 km in this contribution.

Substituting Equation (9) into Equation (6), the extracted ionospheric observables Is
1

can be re-written as

Is
1 =

40.3× 1016

( f1)
2 · ∇s ·VTECs − ( fi)

2

( f1)
2 − ( fi)

2 (DCBr − DCBs) (11)

Considering the great long-term stability of satellite DCB within several days, its
estimation accuracy can be better than 0.1 ns [15]. The multi-GNSS experiment (MGEX)
final DCB products are generally used to correct the satellite DCB DCBs in Equation (11).
The receiver DCB DCBr can be removed using the between-satellite SD algorithm. Thus,
we can obtain the SD ionospheric delay ΔIs

1 as follows:

ΔIs
1 = Is

1 − Ire f
1 =

40.3× 1016

( f1)
2 (∇s ·VTECs −∇re f ·VTECre f ) (12)

where re f represents the reference satellite in the between-satellite SD algorithm, which
selects the satellite with the highest elevation from a constellation at each epoch.

To meet the time-critical requirements of RT ionospheric modeling, the polynomial
function with simple structure and high computational efficiency was adopted to model
the regional RT between-satellite SD ionospheric delay as follows:

ΔIs
1 = 40.3×1016

( f1)
2 ∇s ·

[
∑n

i=0 ∑m
j=0 Eij(ϕs − ϕ0)

i(θs − θ0)
j
]

− 40.3×1016

( f1)
2 ∇re f ·

[
∑n

i=0 ∑m
j=0 Eij(ϕre f − ϕ0)

i
(θre f − θ0)

j
] (13)

with

θ − θ0 =
(λ− λ0)

15
+ (t− t0) (14)

where n and m are the orders of the polynomials, both of which are set to 2 in this study. Eij
is the coefficient that needs to be estimated, with a number of 3× 3 = 9. ϕ and ϕ0 denote the
geodetic latitude for the IPP and regional center point, respectively. θ denotes the solar hour
angle at the observation time t. θ0 denotes the reference time of ionospheric modeling t0. λ
and λ0 denote the geodetic longitude for the IPP and regional center point, respectively.

In this contribution, the observation window of the regional RT between-satellite SD
ionospheric modeling was set to 20 min. The reference time was selected as the middle time
of this sliding window. The nine estimated coefficients are fitted by the observations with
the interval of 30 s collected from the past 20 min, and this sliding window of modeling
moves forward for 10 min each time. Thus, all coefficients are updated every 10 min and
broadcast to positioning users in real-time.

2.3. Multi-GNSS Real-Time Single-Frequency PPP Enhanced by Regional between-Satellite
Single-Differenced Ionospheric Model

When the GNSS SF users receive the fitting coefficients of the regional RT between-
satellite SD ionospheric model, the SD ionospheric delay of each available satellite can be
calculated in real-time. Adding it as a virtual observation to the RT SF UU-PPP model, the
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fast and precise solution of positioning parameters can be achieved. The regional between-
satellite SD ionospheric-constrained multi-GNSS RT SF-PPP model can be expressed as⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

PG
r,1 = eG

r · g + c · dtr + M · TZWD + IG
1 + εpG

1

PC
r,1 = eC

r · g + c · dtr + ISBC + M · TZWD + IC
1 + εpC

1

PE
r,1 = eE

r · g + c · dtr + ISBE + M · TZWD + IE
1 + εpE

1

LG
r,1 = eG

r · g + c · dtr + M · TZWD − IG
1 + ωG

1 + NG
r,1 + εLG

1

LC
r,1 = eC

r · g + c · dtr + ISBC + M · TZWD − IC
1 + ωC

1 + NC
r,1 + εLC

1

LE
r,1 = eE

r · g + c · dtr + ISBE + M · TZWD − IE
1 + ωE

1 + NE
r,1 + εLE

1

χG/C/E = ΔIG/C/E
1 + εχG/C/E

(15)

where G, C, and E denote the GPS, BDS-3, and Galileo satellites, respectively. ISB denotes
the inter-system bias (ISB). χ is the virtual observation of the regional between-satellite
SD ionospheric delays. εχ is the noise of virtual observation. It is worth noting that the
coefficient matrix of virtual observation is given by Equation (13) in [19]. The estimable
parameters ∏ of the multi-GNSS RT SF-PPP can be summarized as

∏ = [g, dtr, ISBC/E, TZWD, IG/C/E
1 , NG/C/E

r,1 ] (16)

To achieve fast convergence of RT SF-PPP, the weight of virtual ionospheric observa-
tions needs to be given as accurately as possible. Through extensive testing, an empirical
variance σ2

ΔI1
of the regional between-satellite SD ionospheric delay can be set as

σ2
ΔI1

= (υ2 +
υ2

sin(Ele)
) · β (17)

where υ and β are empirical coefficients, which can be set to 0.5 and 40, respectively. Ele
denotes the satellite elevation.

3. Experiment Datasets and Processing Strategies

Before verifying the feasibility and effectiveness of the novel algorithm proposed in
this study, the datasets and processing strategies of the experiment need to be described
in detail.

3.1. Experiment Datasets

Twenty-two MGEX stations located in Europe were selected to build a regional ref-
erence network. The distribution of these multi-GNSS monitoring stations is shown in
Figure 1. It should be noted that 18 blue stations are used for modeling the regional
RT between-satellite SD ionospheric delays, and 4 red stations are used to carry out the
multi-GNSS RT SF-PPP based on the between-satellite SD ionospheric constraints. The
experimental period was set between DoY (Day of Year) 305 to 314 in 2022. The ionospheric
conditions over these days can be presented in Figure 2. Except for DoY 310 and 314, the
ionosphere is relatively active on all other dates, with over half of the geomagnetic Kp
values exceeding 2. Especially on the DoY 307 and 311, some Kp values may even up to
4–5 and indicating intense ionospheric activity. Corresponding, the relatively high solar
activity can be observed during the testing period since the most F10.7 index more than 20.
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Figure 1. Distribution of the selected 22 MGEX stations in Europe.

Figure 2. Geomagnetic Kp values and F10.7 index during the testing period.

3.2. Processing Strategies

In the processing of multi-GNSS RT SF-PPP, both satellite positions and clocks are fixed
by using broadcast ephemeris and CNES (Centre National d’Etudes Spatiales) state space
representation (SSR) corrections [2,22]. The satellite DCB can be corrected using the code
bias products of CNES SSR in real-time. The weight of observations for different satellites
is set using the elevation-dependent weighting model, and the priori precision of code
and phase observations are set to 0.3 and 0.003 m, respectively [8]. Considering the lower
accuracy of SSR orbits and clocks for BDS-3 inclined geosynchronous orbit (IGSO) satellites
(i.e., C38-40), the weight of IGSO observations needs to be set as 1/2 of other medium
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earth orbit (MEO) satellites [23]. In order to accurately evaluate the positioning accuracy,
the precise coordinates of all selected MGEX stations within accuracy of a few mm can
be obtained from the SINEX file. Table 1 summarizes some key processing strategies and
correction models. In addition, some minor corrections such as relativistic effect and tidal
errors are also considered in the positioning domain [24]. The phase wind-up is corrected
by using the method of literature [25].

Table 1. Processing strategies and correction models of the multi-GNSS RT SF-PPP.

Items Strategies or Models

Observation GPS: L1; Galileo: E1; BDS-3: B1I
Sampling rate 30 s

Elevation cutoff angle 10◦
Antenna correction Corrected by igs14_2233.atx

Dry part of tropospheric delay Corrected by GPT2w + SAAS + VMF models [26]
Wet part of tropospheric delay Estimated as random-walk noise

Ionospheric delay Corrected by GPS Klobuchar model
Residual of ionospheric delay Estimated as random-walk noise [19]

Positioning estimator Kalman filter
Receiver coordinates Estimated as white noise

Receiver clocks Estimated as white noise
ISB Estimated as random-walk noise [27,28]

Phase ambiguities Estimated as float constant

4. Results and Discussion

Before establishing regional RT between-satellite SD ionospheric model, it is necessary
to investigate the current positioning accuracy of the multi-GNSS RT SF UU-PPP that can
be achieved. Next, both internal and external accord accuracies of the regional RT between-
satellite SD ionospheric model need to be evaluated. At last, using the high-precision
GRAPHIC (GRoup And PHase Ionospheric Correction) SF-PPP model as a reference, the
advantages of the SD ionospheric-constrained RT SF-PPP in terms of convergence and
positioning accuracy are analyzed and discussed.

4.1. Performance of the Multi-GNSS Real-Time Single-Frequency UU-PPP in Static Mode

The multi-GNSS observations of 4 red stations shown in Figure 1 for 10 consecutive
days (DoY 305-314, 2022) are selected for conducting the GPS + Galileo + BDS-3 static RT
SF UU-PPP based on the GPS Klobuchar constraints. Figure 3 gives the time series of RMS
positioning errors during the first 3 h, as well as the positioning accuracy in the north (N),
east(E), and up(U) directions after 3 h of convergence. It should be noted that the RMS
positioning errors for each epoch are calculated from the results of 4 red stations over a
period of 10 days. We can see that the vertical (i.e., U direction) RMS positioning error
can converge to 10 cm within about 60 min, while for the horizontal component (i.e., the
combined error of N and E directions), it takes at least 90 min to reach the same level. After
90 min of convergence, the vertical RMS positioning error can be stabled at approximately
8 cm, but there is still a downward trend in the horizontal component. The horizontal
RMS positioning error can be decreased to 6 cm after 180 min of convergence. When
conducting RMS statistics on the positioning errors of 3–24 h for each station in consecutive
10 days, the optimal positioning accuracy can be less than 2 cm in horizontal and 4 cm in
vertical. The average RMS positioning accuracy of all used stations can reach 2.6, 2.6 and
5.8 cm in the N, E, and U directions, respectively. This indicates that multi-GNSS static
RT SF-PPP has the ability to provide reliable cm-level positioning accuracy at present. If
the monitoring station positions are fixed to the SINEX precise coordinates rather than
estimated as unknown parameters, the higher precision ionospheric observables can be
achieved using the multi-GNSS RT SF-PPP technology.
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Figure 3. RMS of positioning errors during the first 3 h and positioning accuracy of each station after
3 h convergence in multi-GNSS static RT SF UU-PPP (DoY 305-314, 2022).

4.2. Internal Accord Accuracy of the Regional Real-Time between-Satellite Single-Differenced
Ionospheric Model

To evaluate the performance of the regional RT between-satellite SD ionospheric model
proposed in this study, its internal accord accuracy as a key indicator needs to be computed.
We first extract the slant ionospheric observables of all visible satellites using SF UU-PPP
method. Then, the between-satellite SD slant ionospheric delays of each satellite can be
obtained after choosing the reference satellite with highest elevation, which are regarded as
reference values. If the between-satellite SD slant ionospheric delays are directly derived from
the regional SD ionospheric model established by 22 monitoring stations, these results are
called model values. The difference between the above reference values and model values can
reflect the internal accord accuracy of the regional RT between-satellite SD ionospheric model.
Figure 4 shows the time series of between-satellite SD slant ionospheric errors for GPS, BDS-3,
and Galileo satellites in DoY 305, 2022. It should be noted that the different colored points
represent the results of different satellites. Considering the slow convergence time of the RT
SF-PPP, only the extracted ionospheric observables after 3 h are used to establish the regional
RT between-satellite SD ionospheric model. It can be seen that the internal accord accuracy
of Galileo satellites is better than that of GPS and BDS-3 satellites for all selected stations, its
more than half of errors can be lower than 0.1 m. However, the majority of between-satellite
SD slant ionospheric errors for both GPS and BDS-3 satellites only maintained within 0.2 m.
The proportion of GPS internal accord accuracy exceeding 0.4 m is larger than that of other
constellations. This is reasonable that the number of available GPS satellites is significantly
more than other constellations, and more results can be displayed in the time series of Figure 4.

Figure 4. Cont.
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Figure 4. Time series of between-satellite SD slant ionospheric errors for different GNSS satellites at
(a) BRUX, (b) GOPE, (c) GRAC, and (d) WARN stations in DoY 305, 2022.

The RMS of between-satellite SD slant ionospheric errors calculated from results of
4 selected stations on 10 days are shown in Figure 5. There is a significant difference
in the internal accord accuracy of different GPS satellites. The RMS of between-satellite
SD slant ionospheric errors for most GPS satellites is lower than 8 cm, while for G05
satellite, its RMS can be up to 15 cm. In contrast, the difference of internal accord accuracy
for Galileo and BDS-3 satellites is not much, its RMS is maintained at around 5 cm for
Galileo satellites and can be lower than 8 cm for BDS-3 satellites. The average RMS of
between-satellite SD slant ionospheric errors for all GPS, Galileo, and BDS-3 satellites are
7.0, 5.1, 7.2 cm, respectively. This proves that the internal accord accuracy of the regional
RT between-satellite SD ionospheric model using multi-GNSS SF observations can be better
than 0.5 TECU (1 TECU ≈ 15.6 cm).
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Figure 5. RMS of between-satellite SD slant ionospheric errors for different GNSS satellites (4 red
stations in DoY 305-314, 2022).

4.3. External Accord Accuracy of the Regional Real-Time between-Satellite Single-Differenced
Ionospheric Model

Although the internal accord accuracy of the regional RT between-satellite SD iono-
spheric model has excellent performance, its true accuracy still needs to be validated by
external accord accuracy. Considering that the differential STEC (dSTEC) derived from
epoch-differenced geometry-free (GF) combinations of phase observations have mm-level
accuracy, the variation of dSTEC can be further obtained from the between-satellite SD
algorithm [29]. This between-satellite SD dSTEC can ebe regarded as reference value. For
the regional RT between-satellite SD ionospheric model, the between-satellite SD slant
ionospheric delay can be directly calculated, and then the model value of dSTEC variation
was obtained using the epoch-differenced method [19]. Similarly, the above model value of
dSTEC variation can be calculated from the GPS Klobuchar, BDGIM, and CNES SSR VTEC
ionospheric models. Therefore, the difference between the model and reference values can
be defined as an indicator of external accord accuracy. Figure 6 shows the differences in
dSTEC variation of 4 red stations using GPS, Galileo, and BDS-3 satellites. It is worthing
that the calculate interval of external accord accuracy was set to 5 min and the results of
elevation exceeding 10 degrees are removed in this assessment. The abbreviation for “GPS-
Klo” and “SD-VTEC” are represented as the GPS Klobuchar model and the regional RT
between-satellite SD ionospheric model, respectively. We can see that the dSTEC variation
differences of different stations have similar distribution, and their values decrease with the
increase of elevation. The dSTEC variation differences of the GPS Klobuchar model have
the maximum range and even exceed ±5 TECU. There is not much difference in external
accord accuracy among the GPS Klobuchar, BDGIM and SSR VTEC models. Compared
with the above three models, the variation range of the regional RT between-satellite SD
ionospheric model in external accord accuracy is mainly concentrated in ±2 TECU and can
be lower than 1 TECU at high elevation. This indicates that the regional RT between-satellite
SD ionospheric model has higher accuracy as expected.
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Figure 6. Differences in dSTEC variation of GPS, Galielo, and BDS-3 satellites at 4 red stations (DoY
305, 2022).

The RMS of dSTEC variation differences for all selected ionospheric models using
4 red stations throughout the entire testing period is given in Figure 7. Except for the
regional RT between-satellite SD ionospheric model with RMS value of below 1.0 TECU,
the RMS of dSTEC variation differences for all other ionospheric models is more than
1.3 TECU and even up to 1.6 TECU. The average RMS values of all stations in external
accord accuracy are 1.60, 1.44, 1.39, and 0.96 TECU for the GPS Klobuchar, BDGIM, SSR
VTEC, and regional RT between-satellite SD ionospheric models, respectively. This result
demonstrates the feasiblilty of modeling the high-precision ionospheric delay using multi-
GNSS SF observations.

Figure 7. RMS of dSTEC variation differences using different ionospheric models at 4 red stations
(DoY 305-314, 2022).
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4.4. Multi-GNSS Real-Time Single-Frequency PPP Based on the Regional between-Satellite
Single-Differenced Ionospheric Constraints

As long as the accuracy of external ionospheric constraints is high enough, the posi-
tioning accuracy and (re-)convergence of the UU-PPP can be improved in theory [30]. In
order to explore the advantages of the SD ionospheric constrained multi-GNSS RT SF-PPP,
the results of high-precision GRAPHIC RT SF-PPP can be used as a reference. Due to
the significant influence of code observation noise on the GRAPHIC model, an RT phase
smoothing code observation method named CNMC (Code Noise and Multipath Correction)
filter was adopted to further improve the performance of the GRAPHIC RT SF-PPP in this
study [31]. Figure 8 shows the daily solutions of the GPS + Galileo + BDS-3 RT SF-PPP in
kinematic mode for 2 red stations on DoY 305, 2022. It should be noted that all available
satellites are reinitialized with the interval of 6 h to simulate GNSS signal interruption
or missing. It is very clear to see that the positioning errors of the GRAPHIC SF-PPP at
reinitialized epoch is significantly larger than that of the SD ionospheric-constrained (SDIC)
SF-PPP and even exceed 1 m. No matter what SF-PPP models, the positioning accuracy
of horizontal component is better than that of vertical component. After convergence,
the horizontal and vertical positioning errors can be stable within around 0.2 and 0.5 m,
respectively. This indicates that both GRAPHIC and SDIC RT SF-PPP models have the
ability to achieve dm-level positioning accuracy in kinematic mode at present.

Figure 8. Kinematic positioning errors of both GRAPHIC and SDIC RT SF-PPP using GPS + Galileo + BDS-3
observations at GOPE and WARN stations (DoY 305, 2022).

The convergecne curve of the GPS + Galileo + BDS-3 RT SF-PPP in kinematic mode
at 68% confidence level is displayed in Figure 9. The absolute positioning errors of 4 red
stations during the whole testing period are sorted from small to large at each epoch, and
the 68th% of absolute positioning errors for each epoch is selected as representative to
measure the convergence performance [20]. We can see that the horizontal positioning
errors of the GRAPHIC and SDIC RT SF-PPP remain consistent in the initialization period,
but the vertical positioning errors of the SDIC RT SF-PPP are always smaller than those of
the GRAPHIC model during the first 50 min. In the case of setting 0.2 m as the convergence
criterion of positioning errors, the convergence time of the SDIC RT SF-PPP with 37 min
is less than that of the GRAPHIC RT SF-PPP with 47 min, and its improvement of con-
vergecne speed can up to 21.3%. In the period of re-convergence, due to the introduction

161



Remote Sens. 2024, 16, 1511

of the regional RT bettween-satellite SD ionospheric model, both horizontal and vertcial
positioning errors of the SDIC RT SF-PPP can be maintained within 0.2 m. Such excellent
positioning performance is significantly superior to the GRAPHIC model, which takes at
least 75 min to converge to 0.2 m. This indicates that the positioning errors of the SDIC RT
SF-PPP model hardly generate fluctuations when some GNSS signals missing or blocked in
the complex kinematic environments.

Figure 9. Convergence curve of GPS + Galileo + BDS-3 RT SF-PPP in kinematic mode at 68%
confidence level during the first 3 h (4 red stations in DoY 305-314, 2022).

Figure 10 shows the RMS of positioning errors of GPS + Galileo + BDS-3 kinematic
RT SF-PPP after convergence of 3 h, and these values are calculated from results of 4 red
stations on 10 days. It can be seen that both N and E positioning accuracies of the SDIC RT
SF-PPP is better than that of the GRAPHIC model, and its corresponding improvements are
17.0% and 45.7% respectively. However, compared with the GRAPHIC model, the vertical
positioning accuracy of the SDIC RT SF-PPP is decreased from 0.21 to 0.26 m, which is
caused by the limited accuracy of the regional RT between-satellite SD ionospheric model.
If the multi-GNSS DF observations rather than SF observations are used to establish this
regional SD ionospheri model, the vertical positioning accuracy of the SDIC RT SF-PPP
can be improved like results of [19]. Therefore, this novel multi-GNSS RT SF-PPP model
proposed in this study is mainly benefit to improving the horizontal positioning accurcy,
with an improvement rate of 37.9%. From the perspective of 3D comprehensive error, the
SDIC RT SF-PPP has slighly better accuracy and can reach within 0.3 m.
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Figure 10. RMS positioning accuracy of GPS + Galileo + BDS-3 RT SF-PPP in kinematic mode after
convergence of 3 h (4 red stations in DoY 305-314, 2022).

5. Conclusions

Due to the limited accuracy of ionospheric observables extracted by the CCL method,
the UU-PPP technology has gradually become an important solution for extracting high-
precision slant ionospheric delays in recent years. Different from the previse research using
GNSS DF or multi-frequency (MF) observations, the multi-GNSS SF UU-PPP was used
to extract the ionospheric observables in this study. To completely remove the negative
effects of receiver DCB with short-term time-varying characteristics, the between-satellite
SD method can be adopted for establishing the regional RT ionospheric model. In this con-
tribution, we evaluate the performance of the regional RT between-satellite SD ionospheric
model and explore its contribution to the multi-GNSS RT SF-PPP.

The internal accord accuracy of the SD slant ionospheric delays derived from the
regional RT between-satellite SD ionospheric model can be better than 0.5 TECU, and its
average RMS of GPS, BDS-3, and Galileo satellites are 7.0, 7.2, and 5.1 cm, respectively.
Using the dSTEC variation calculated from between-satellite SD and epoch-differenced GF
phase observations as a refence, the external accord accuracy of this ionospheric model
proposed in this study is significantly better than that of the GPS Klobuchar, BDGIM, and
CNES SSR VTEC models, and its average RMS of less than 1.0 TECU can be achieved.

With the introduction of the regional RT between-satellite SD ionospheric model
into the multi-GNSS RT SF-PPP in kinematic mode, its initialization speed of vertical
positioning errors can be improved by 21.3% to 37 min in comparison with the CNMC-
smoothed GRAPHIC model. More importantly, both horizontal and vertical positioning
errors of the SDIC SF-PPP after reinitialization can be maintained within 0.2 m. This means
that proposed SDIC SF-PPP model has the ability to enhance the continuity and stability
of kinematic positioning in case of some satellites missing or blocked. After convergence,
the horizontal positioning accuracy of the SDIC SF-PPP can be improved by 37.9% to
0.13 m compared to the GRAPHIC model, but its vertical positioning accuracy may be
decreased. With the increase of the number of monitoring stations in the region or the
improvement of RTS products quality, the spatial-temporal resolution and accuracy of
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extracted ionospheric observables can be improved, and result in higher accuracy of the SD
ionospheric model. As long as the SD ionospheric model is accurate enough, the vertical
positioning accuracy of the SD ionospheric-constrained RT SF-PPP can be improved. In
summary, the 3D positioning accuracy of the SDIC SF-PPP can be better than 0.3 m and is
superior to other widely used SF-PPP models. To verify the effectiveness of the proposed
algorithm on real low-cost SF-PPP users, the truly SF observations collected from the
affordable SF devices or chips need to be used for carrying out RT SF-PPP tests in our
future research.
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Abstract: The inertial navigation system (INS) and global satellite navigation system (GNSS) are
two of the most significant systems for land navigation applications. The inertial measurement unit
(IMU) is a kind of INS sensor that measures three-dimensional acceleration and angular velocity
measurements. IMUs based on micro-electromechanical systems (MEMSs) are widely employed in
vehicular navigation thanks to their low cost and small size, but their magnitude and noisy biases
make navigation errors diverge very fast without external constraint. The zero-velocity update (ZVU)
function is one of the efficient functions that constrain the divergence of IMUs for a stopped vehicle,
and the key of the ZVU is the correct stationary detection for the vehicle. When a land vehicle is
stopped, the idling engine produces a very stable vibration, which allows us to perform frequency
analysis and a comparison based on the fast Fourier transform (FFT) and IMU measurements.
Hence, we propose a stationary detection method based on the FFT for a stopped land vehicle with
an idling engine in this study. An urban vehicular navigation experiment was carried out with
our GNSS/IMU integration platform. Three stops for 10 to 20 min were set to analyze, generate
and evaluate the FFT-based stationary detection method. The FFT spectra showed clearly idling
vibrational peaks during the three stop periods. Through the comparison of FFT spectral features
with decelerating and accelerating periods, the amplitudes of vibrational peaks were put forward as
the key factors of stationary detection. For the consecutive stationary detection in the GNSS/IMU
integration process, a three-second sliding window with a one-second updating rate of the FFT was
applied to check the amplitudes of peaks. For the assessment of the proposed stationary detection
method, GNSS observations were removed to simulate outages during the three stop periods, and
the proposed detection method was conducted together with the ZVU. The results showed that the
proposed method achieved a 99.7% correct detection rate, and the divergence of the positioning error
constrained via the ZVU was within 2 cm for the experimental stop periods, which indicates the
effectiveness of the proposed method.

Keywords: stationary detection; inertial navigation system (INS); micro-electromechanical system
(MEMS); fast Fourier transform (FFT); zero-velocity update (ZVU); integration

1. Introduction

An inertial navigation system (INS) measures specific forces and the angular velocity
of its carrier using accelerometers and gyroscopes [1,2]. The direct dynamic measurements
of the carrier make the INS capable of processing independent navigation and avoiding
external interference for the user. The inertial measurement unit (IMU) is a kind of INS
sensor that generally combines three accelerometers and three gyroscopes to produce
three-dimensional acceleration and angular velocity measurements. Due to comprising
small size, lightweight and low-cost IMUs, micro-electromechanical systems (MEMSs) are
widely applied in vehicular navigation with the global navigation satellite system (GNSS)
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and other sensors [3–5]. Nevertheless, magnitude and noisy biases make MEMSs perform
poorly in solo-IMU processing, as errors of navigation parameters accumulate quickly via
IMU mechanization, i.e., integrating IMU acceleration and angular velocity measurements
to update attitude, velocity and position [6].

To apply the independent observations of an IMU without error accumulation in
navigation applications, the integration between the INS and other positioning sensors,
like the GNSS, camera and lidar, is well studied and practiced [7–9]. In the integrated
processing, the GNSS provides absolute geometric observations to align the INS to the
Earth-centered Earth-fixed (ECEF) frame and assists with the correction of INS errors [10,11].
However, the GNSS signals are usually weakened and blocked for dynamic users in urban
canyons, tunnels or other occluded environments [12–14]. When there is a lack of geometric
constraints from other sensors, like the GNSS, the navigation errors produced via the INS
diverge rapidly and terminate accurate navigation.

One of the solutions for inhibiting the divergence of IMU errors in the outage of the
other sensors is zero-the velocity update (ZVU) constraint [15]. For land vehicles, employ-
ing a ZVU-based GNSS/IMU system was found to benefit both ambiguity resolution and
positioning accuracy with GNSS-observation gaps in urban canyons [15]. Applying a ZVU
and nonholonomic constraint for the land vehicular GNSS/IMU integration system was
able to improve the positioning accuracy by 23.3% and 34.3% with GNSS outages of 30
and 60 s, respectively [6]. For a high-grade IMU, the ZVU could also reduce the velocity
and position errors to 24.2% and 9.2% in a five-hour solo-IMU vehicular experiment with
frequent and short as well as ten-minute stops [16].

The precondition for applying a ZVU constraint is detecting when a vehicle is going to
stop. Many efforts that relied on the velocity, acceleration and angular velocity produced via
a vehicular IMU have been made to detect the stationary condition for vehicles [10]. Both
velocity and angular velocity were suggested to be compared with a specified threshold,
while the standard deviation (STD) was proposed to calculate the vehicle acceleration
in a sliding window and was used to compare it with the threshold deduced from the
stationary data [6,15]. An attitude heading reference system was put forward to detect the
stationary states with acceleration data, which achieved an 87% correction rate in a vehicular
test [17,18]. A neural network was also trained to use velocity and IMU measurements
for stationary detection in GNSS outages [16,19]. A frequency domain method of forward
acceleration was proposed to detect the stationary states, and the frequency in the region
of common vehicular vibration was eliminated from the method [20,21]. These previous
works focus more on the value and STD of the IMU measurements; however, the feature
of the acceleration and angular velocity in the frequency domain has not been considered
enough. For the stationary detection of land vehicles, this work focuses on the vibration of
an idling engine.

The vibrational frequencies of an idling engine have been studied well regarding land
vehicles. The vibration of an idling engine was first taken into account for the optimization
of engine mounting systems within the frequency range from 6 to 20 Hz [22,23]. The
vibrational frequency of an idling engine was found to be mostly determined by the
engine’s revolutions per minute (RPM) and its number of cylinders [24–26]. Generally,
the vibrational frequency of a land vehicle caused by an idling engine ranges from 10 to
50 Hz [24–28]. When the vehicle is in an idling status, the resonant peak at the double
dominant frequency is distinct and considerable [24,25]. It is worth noting that the IMU
data sampling frequency is usually in the range of 100 to 200 Hz; hence, the vibrational
frequency caused by an idling engine can be availably reflected with the IMU [2,6,10].

This paper proposes a novel stationary detection method based on the fast Fourier
transform (FFT) and vibrational features of an idling engine. The algorithm of the FFT is
introduced in the Section 2. To assess the proposed method, an urban vehicular navigation
experiment and the conducted GNSS/IMU integration system are presented in the Experi-
mental Setup. Based on the three stops designed for the vehicular test, the FFT features of
a vehicle in stationary, decelerating and accelerating states are analyzed. The stationary
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detection method is put forward according to the found features and is applied for the
three stop periods together with a three-second sliding window. Finally, the FFT-based
stationary detection for land vehicles is evaluated using the correct rate and positioning
error constrained by the ZVU.

2. Methods

The key of the proposed stationary detection approach is generating the features of
stopped and idling vehicles. For a usual land vehicle, the vibrational frequency of an
idling engine falls in the range of 10 to 50 Hz [24–28]. Thus, with the assistance of IMU
measurements at a high sampling rate, the FFT serves as a powerful algorithm for spectral
analysis in the frequency range of an idling vehicle.

2.1. FFT-Based Vibration Frequency Analysis

Fourier analysis transforms a signal from the original time domain into a represen-
tation in the frequency domain. Natural signals, such as the vibration of an object, are
continuous (i.e., without gaps). Typically, vibrational signals related to acceleration or
angular velocity in each direction of the body frame can be written as the sum of several
sinusoidal functions:

V(t) =
n

∑
j=1

Aj sin(2π f jt + ϕj) =
n

∑
j=1

Vj(t) (1)

where V(t) and Vj(t) denote the total and the jth component of vibration, respectively;
Aj, f j and ϕj represent the amplitude, frequency and initial phase of the single vibration
component, respectively.

However, the signals recorded by sensors like IMUs are discrete. The Discrete Fourier
Transform (DFT) offers a solution for converting a finite sequence of equally spaced samples
into a sequence of complex numbers containing the frequency information [29]. The DFT
for a measurement sequence of length N is defined as follows:

F(k) =
N−1

∑
n=0

e−2πi kn
N M(n), k = 0 ∼ N − 1 (2)

where M(n) denotes the nth measurement in the real sequence, F(k) represents the kth
component of the DFT and i is the imaginary unit.

With the increase in the length of the sequence, the original DFT requires significantly
more resources, as the computation complexity of the DFT is O(N2). To address this, the
FFT is proposed to reduce the computation complexity of the DFT to O(N log N) [30]. The
radix-2 decimation-in-time (DIT) FFT derived from the Cooley–Tukey algorithm is one of
the most commonly used solutions that has been widely applied in many domains [31,32].
The promoted DIT algorithm can be expressed as follows:

F(k) =
N/2−1

∑
n=0

e−2πi kn
N/2 M(2n) +

N/2−1

∑
n=0

e−2πi kn
N/2 M(2n + 1) (3)

F(k +
N
2
) =

N/2−1

∑
n=0

e−2πi kn
N/2 M(2n)−

N/2−1

∑
n=0

e−2πi kn
N/2 M(2n + 1) (4)

In this algorithm, the computation is simplified by dividing the original discrete
sequence into even (2n) and odd (2n + 1) parts, each with a length of N/2.

For the FFT, the maximum frequency that can be analyzed within one consecutive mea-
surement sequence is determined by its sampling rate, while the frequency resolution depends
on the total time span covered by the sequence as expressed in the following equations:

max( fFFT) =
1
2

fmeas (5)
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Δ fFFT =
1

Tmeas
(6)

where fFFT is the frequency sequence obtained via the FFT algorithm; fmeas and Tmeas
represent the sampling rate and the time length covering all the measurements, respectively.

2.2. ZVU Constraint in GNSS/IMU Tight Integration

In the GNSS/IMU integration process, GNSS provides absolute position information
for IMU to correct navigation errors and align to the ECEF frame. In the present contribu-
tion, the kinematic Precise Point Positioning (PPP) is employed for processing multi-GNSS
dual-frequency Ionosphere-Free (IF) observations. The state parameters for multi-GNSS IF
kinematic PPP and the corresponding observation equations within an extended Kalman
filter (EKF) are defined as follows [33–35]:

XT
G,k =

[
δpe

1×3 δcr δISB1×(s−1) δtror δNLC,1×m
]

k (7)

LG,k =

[
ϕG,k
ρG,k

]
= HG,kXG,k −VG,k (8)

HG,k =

[
Hϕ,k
Hρ,k

]
=

[
Hp,k 1 HISB,k Htro,k HN,k
Hp,k 1 HISB,k Htro,k 0

]
k

(9)

where δcr, δISB, δtro and δNLC denote the errors of the receiver clock, intersystem bias
(ISB), tropospheric delay and IF ambiguity, respectively. It is important to note that the italic
symbols denote values or numbers, whereas bold symbols represent vectors or matrices. s
and m represent the number of employed constellations and IF carrier-phase measurements,
respectively; the subscript k denotes the epoch index; LG,k and VG,k represent the multi-
GNSS observation vector and the corresponding residual vector, respectively; ϕG,k and ρG,k
are carrier-phase and pseudo-range measurements minus the modeled terms, respectively;
HG,k is the PPP design matrix; Hϕ,k, Hρ,k, Hp,k, HISB,k, Htro,k and HN,k represent the design
matrices of the corresponding measurement or state parameters in regard to their subscripts.

In the GNSS/IMU integration process, the state parameters of IMU for the EKF are
defined as follows:

XT
I,k =

[
δεe

1×3 δve
1×3 δpe

1×3 δbab
1×3 δbgb

1×3
]

k (10)

where the superscript e stands for the ECEF frame and b stands for the body frame. In this
study, the body frame is defined as the vehicular body Right–Forward–Up (RFU) frame
with the same origin as the IMU center. Finally, δε, δv, δp, δba and δbg represent the error
of attitude, velocity, position, accelerometer bias and gyroscope bias, respectively [10].

For a stopped vehicle, ZVU is a common constraint used to inhibit the divergence of
IMU errors. The observation equation for the ZVU constraint at epoch k, with respect to
the IMU state parameters, is as follows:

LZVUT,k = −ve
imu,k = HZVUT,kXT

I,k −VZVUT,k (11)

HZVUT,k = [03×3 −I3×3 03×3 03×3 03×3] (12)

where LZVUT,k and VZVUT,k represent the observation vector and the corresponding resid-
ual vector, respectively; HZVUT,k denotes the design matrix; ve

imu,k is the velocity in the
ECEF frame as produced by the IMU mechanization; I denotes the identity matrix.

By combining (7) to (12), one can derive the integrated equation for the ZVU constraint-
based GNSS-PPP/IMU tight integration as follows [10]:

XT
k =

[
XT

I,k δcr δISB1×(s−1) δtror δNLC,1×m

]
k

(13)
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Lk =

⎡⎣ ϕG,k
ρG,k
−ve

imu,k

⎤⎦ = HkXk −Vk (14)

Hk =

⎡⎣ HTC,ϕ,k
HTC,ρ,k

HZVUT,k

⎤⎦ =

⎡⎣0 0 Hp,k 0 0 1 HISB,k Htro,k HN,k
0 0 Hp,k 0 0 1 HISB,k Htro,k 0

0 −I 0 0 0 0 0 0 0

⎤⎦ (15)

where HTC,ϕ,k and HTC,ρ,k represent the multi-GNSS design matrix in the GNSS-PPP/IMU
tightly integrated equation, as the position errors are uniform with the IMU.

In the present work, Equations (13)–(15) are adopted to implement the GNSS-PPP/IMU
tight integration when the vehicle is stopped. When the GNSS signals are blocked or simu-
lated to be in outage during the vehicle stop periods, Equations (10)–(12) are employed for
ZVU constraint processing.

3. Experimental Setup

3.1. Hardware Platform

A GNSS/IMU hardware platform was established for testing the land vehicular
navigation. Figure 1 depicts the configuration and equipment of the hardware platform on
the car. The GNSS receiver and IMU fusion instrument, NovAtel PwrPak7-E2, was secured
in the middle of the platform with screws. The GNSS antenna was mounted in front of the
IMU within the vehicular body frame. The entire platform was tightly hinged to the roof of
the car.

 

Figure 1. GNSS/IMU hardware platform and its equipment on the land vehicle.

The IMU integrated in the PwrPak7-E2 receiver is the MEMS EG370N with the spec-
ification parameters listed in Table 1. The magnitude of gyroscope bias is in the order
of hundreds of deg/h with a stability of less than 1 deg/h. The PwrPak7-E2 receiver is
capable of tracking multi-GNSS signals from GPS, GLONASS (GLO), Galileo (GAL) and
BDS. The produced pseudo-range and carrier-phase measurements were used for the tight
integration of the GNSS with the IMU.
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Table 1. Specifications of MEMS IMU in PwrPak7-E2.

PwrPak7-E2 Item Value

Gyroscope Bias Magnitude 360◦/h
Bias Stability 0.8◦/h

Angle Random Walk 0.06◦/
√

h

Accelerometer Bias Magnitude 2 mg
Bias Stability 0.012 mg

Velocity Random Walk 0.06 mg/
√

Hz

3.2. Experimental Strategy

To evaluate the availability of FFT-based stationary detection with an IMU for an
idling car, a vehicular test supported by the GNSS/IMU hardware platform was conducted
on a Toyota Prado 2016 with the engine of 7GR-FKS from the GPS time (GPST) 12 October
2021 01:55:20 to 03:50:45. Figure 2 depicts the test trajectory in the urban area of Weihai
City, China. The car started moving after the turn-on of the hardware platform and moved
forward in a straight line for a while to initialize the yaw angle of the IMU. After aligning
the IMU, the vehicle was stopped with the engine idling for three periods lasting 10 to
20 min each. The time spans of these three stops, along with the associated ten-second
decelerating and accelerating phases, are detailed in Table 2. The IMU measurements of
accelerations and gyroscopes during these three stop periods were used to implement
FFT processing to examine the vibrational features of our stationary idling vehicle. Based
on the experimental evidence, a three-second sliding window FFT was employed for the
stationary detection. To evaluate the proposed detection method, GNSS observations were
removed to simulate a complete GNSS outage during each stop period. Then, the proposed
detection method was implemented together with the ZVU constraint. Finally, the correct
detection rate was calculated, and the positioning errors were compared with the errors of
solo-IMU processing without the ZVU constraint.

 
Figure 2. Urban trajectory (yellow), base station (blue) and three stop points in vehicular test.
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Table 2. Time range of stop, deceleration and acceleration of the three stop periods.

Period State Start End

1
Stop 02:04:07 02:20:13

Decelerating 02:03:56 02:04:06
Accelerating 02:20:14 02:20:24

2
Stop 02:37:31 02:59:32

Decelerating 02:37:20 02:37:30
Accelerating 02:59:33 02:59:43

3
Stop 03:21:42 03:41:54

Decelerating 03:21:31 03:21:41
Accelerating 03:41:55 03:42:05

The EKF-based GNSS-PPP/IMU tight integration was conducted to obtain the nav-
igation solution for the entire trajectory, with the processing strategy detailed in Table 3.
The kinematic PPP was implemented to obtain the multi-GNSS observation equations for
the tight integration with the IMU. The IF combination was utilized to eliminate 99.9% of
the ionospheric delay in GNSS measurements. Positioning errors, receiver clock errors,
tropospheric delay, intersystem bias and carrier-phase ambiguities were set as the filter state
parameters to be estimated. The base station equipped with a Septentrio PolaRx5 receiver
was used to obtain a high-accuracy reference position for the trajectory, by employing
multi-GNSS double-differenced (DD) Real-Time Kinematics (RTK) [33]. The GNSS Doppler
velocity was used to initialize the yaw of the IMU, while the roll and pitch were initialized
based on the direction of gravity [10]. Note that all accelerometer and gyroscope measure-
ments of the IMU were converted from the IMU frame to the vehicular RFU body frame.
Hence, in the present paper, the accelerometer X, Y and Z measurements represent right,
forward and up accelerations, respectively, and the gyroscope X, Y and Z measurements
account for the angular rotational velocity of pitch, roll and yaw, respectively. The sampling
rate of the MEMS IMU is 200 Hz, resulting in the maximum FFT frequency of 100 Hz as
derived from (5).

Table 3. Processing strategy of post-GNSS-PPP/IMU tight integration.

Module Item Strategy

GNSS

Mode Post-kinematic PPP

Observations
IF combination of GPS: C1C-C2W/L1C-L2W; GLO:
C1C-C2P/L1C-L2P; Galileo: C1C-C5Q/L1C-L5Q; BDS:
C2I-C6I/L2I-L6I

Elevation cutoff 15◦
Measurement weight Elevation-dependent weight
Satellite products Multi-GNSS precise orbit and clock products from IGS
Receiver clock offset White noise process
ISB Constant mode
Tropospheric delay Estimate the zenith total delay as a random walk process
Phase windup Corrected for rover
Ambiguity resolution Float

IMU Alignment GNSS Doppler velocity

Integration Solution Tightly coupled

4. Experimental Results and Discussion

This section describes how the DIT FFT algorithm, as introduced previously in the
Methods, was employed to analyze the vibrational features of the idling vehicle. The
consecutive measurements from IMU accelerometers and gyroscopes during the three stop
periods are addressed using the FFT. In order to compare the results, the decelerating
and accelerating periods before and after the three stops are also processed by the FFT
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algorithm. A stationary detection based on a three-second sliding window method is
proposed to extract the FFT features. The present section ends with the artificial removal
of GNSS observations during the three stop periods to simulate a complete GNSS outage.
Then, the three stop periods are re-assessed using the proposed method and constrained by
ZVU. Finally, the correct detection rate is calculated as a reliable indicator of the proposed
method, and the results of the IMU constrained by ZVU are presented in comparison with
the results without constraints for a complete evaluation.

4.1. FFT Features of Acceleration and Angular Velocity for Stationary Idling Vehicle

Figure 3 depicts the FFT spectrum of acceleration amplitude with respect to frequency
for the three stop periods. The IMU acceleration reveals several obvious peaks in all the
three directions during the stationary period. Moreover, the two highest peaks in the ranges
of 10 to 20 Hz and 20 to 30 Hz show significantly greater amplitude compared to the other
frequencies in the forward and up directions. The frequencies of the two peaks correspond to
the general vibration frequency range of 10 to 50 Hz for an idling vehicle [24–28]. Although
the same apparent peak is observed from 10 to 20 Hz in the right direction, there is no peak
within the 20 to 30 Hz range, which is accompanied by more noise than in the other two
directions. In contrast, gyroscope measurements presented opposite features, as depicted
in Figure 4. The angular velocity presents only one distinct peak within the 10 to 20 Hz
range along the X-axis. Even though the gyroscope spectra show the same peaks as the
accelerometers within the 10 to 20 Hz and 20 to 30 Hz ranges along the Y- and Z-axes, too
many strong chaotic peaks mask these two peaks. The opposite behavior in axes between
accelerometers and gyroscopes is caused by the orthogonality of acceleration and angular
velocity vectors in periodic vibrations.

Figure 3. Acceleration FFT spectrum of the Stop 1 (top row), Stop 2 (middle row) and Stop 3 (Bottom

row) in the right (left column), forward (middle column) and up (right column) directions.
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The FFT spectra of accelerometers and gyroscopes clearly delineate the vibrational
peaks within the 10 to 20 Hz and 20 to 30 Hz ranges. To analyze these peaks, the spectra
are segmented into three frequency ranges: 0 to 10 Hz, 10 to 20 Hz and 20 to 30 Hz, with
the statistics of these peaks summarized in Table 4. The result indicates that the frequencies
of the highest peaks within the 10 to 20 Hz and 20 to 30 Hz ranges are 12.495 Hz and
24.991 Hz, respectively. The dominant frequency is 12.495 Hz, which indicates that the
idling speed of the engine of the experimental vehicle is approximately 750 RPM [24,25].
For simplicity, the peaks at 12.495 Hz and 24.991 Hz are designated as Peak-1 and Peak-2,
respectively, with the frequency of the latter being the twice that of the former. These
two frequencies are consistent for both acceleration and angular velocity across the three
stop periods, as the STDs are even less than the FFT frequency interval. Note that the FFT
frequency intervals derived from (6) for the three stop periods are 1 × 10−3, 7 × 10−4 and
8 × 10−4 Hz, respectively, corresponding to the duration of each stop. For the pitch angular
velocity, only Peak-1 is prominent compared to the other frequencies. The highest peaks
within the 0 to 10 Hz range (denoted by Peak-0) exhibit more uncertainty with the STDs
of frequencies ranging from 0.1 Hz to several Hz. Overall, the amplitudes of Peak-1 and
Peak-2 are 7 and 37 times greater than that of Peak-0 for the forward and up acceleration,
respectively, and the amplitude of Peak-1 is 67 times greater than that of Peak-0 for the
pitch angular velocity.

Figure 4. Angular velocity FFT spectrum of Stop 1 (top row), Stop 2 (middle row) and Stop 3 (Bottom

row) in the right (left column), forward (middle column) and up (right column) directions.
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Table 4. Analysis of the forward/up acceleration and pitch angular velocity with respect to the three
frequency ranges (Hz) in the three stops: highest peak, mean value and STD.

Stop
Period

Freq Range
(Hz)

Acce Y Acce Z Gyro X

Freq
(Hz)

Amp
(mg)

Freq
(Hz)

Amp
(mg)

Freq
(Hz)

Amp
(deg/s)

1

0~10 3.071 0.133 3.305 0.105 6.247 0.003

10~20 12.495 3.085 12.495 5.402 12.495 0.395

20~30 24.991 2.124 24.991 3.994 24.991 0.003

2

0~10 0.001 0.890 3.332 0.107 0.100 0.002

10~20 12.496 1.622 12.496 2.839 12.496 0.182

20~30 24.991 4.283 24.991 2.001 24.991 0.005

3

0~10 6.248 0.085 3.573 0.113 6.248 0.002

10~20 12.496 2.821 12.496 4.927 12.496 0.305

20~30 24.991 2.829 24.991 4.782 24.991 0.005

Mean

0~10 3.106 0.369 3.404 0.108 4.198 0.002

10~20 12.495 2.509 12.495 4.389 12.495 0.294

20~30 24.991 3.078 24.991 3.592 24.991 0.004

STD

0~10 2.550 0.369 0.121 0.003 2.898 5 × 10−4

10~20 4 × 10−4 0.637 4 × 10−4 1.113 4 × 10−4 0.087

20~30 2 × 10−4 0.899 2 × 10−4 1.171 2 × 10−4 0.001

4.2. FFT Features of Acceleration and Angular Velocity in Decelerating and Accelerating

For comparison with the features of a stationary idling vehicle, the FFT is also imple-
mented and analyzed for decelerating and accelerating near the three stop periods; the
corresponding periods are exhibited in Table 2. The FFT spectra of forward/up acceleration
during the decelerating and accelerating periods are depicted in Figures 5 and 6. For the
acceleration, Peak-1 and Peak-2 are still observable in the up direction rather than the
forward direction during the decelerating and accelerating period, since the motive force of
the vehicle is almost along the forward direction. However, because Peak-0 becomes more
striking, the vibrational peaks in the forward and up directions are not as prominent as they
are during the stationary period. A similar phenomenon is also observed in the angular
velocity, where the amplitude of Peak-0 is increased to the same magnitude as Peak-1.
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Figure 5. FFT spectrum of forward (left column) and up acceleration (middle column) and pitch
angular velocity (right column) during deceleration 1 (top row), deceleration 2 (middle row) and
deceleration 3 (bottom row).

Comprehensively taking the FFT features of acceleration and angular velocity dur-
ing stationary, decelerating and accelerating periods into account, we propose a method
of FFT-based stationary detection as depicted by red nodes in Figure 7: a three-second
sliding window with a one-second updating rate, i.e., a two-second overlap between the
two adjacent windows, is adopted to perform the FFT processing for the forward/up
acceleration and the pitch angular velocity. The number of measurements to process with
the FFT in a single window is 600 with respect to the 200 Hz sampling rate of the IMU.
Once the FFT window is updated, the frequency and amplitude of Peak-0, Peak-1 and
Peak-2 are calculated and compared. On one hand, a larger window size might cause
the wrong detection of a stationary condition at the start and the end of the vehicle stop,
since the window contains more historical dynamic information. On the other hand, a
smaller window size could make the detection easily affected by random disturbances or
measurement errors. Therefore, a three-second window size is selected as the optimal size
of the sliding window.
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Figure 6. FFT spectrum of forward (left column) and up acceleration (middle column) and pitch
angular velocity (right column) during acceleration 1 (top row), acceleration 2 (middle row) and
acceleration 3 (bottom row).

 
Figure 7. Flow chart of FFT-based stationary detection and ZVU in the GNSS/IMU tight integration.

The entire window period is considered as stationary if the FFT result satisfies three
conditions. First, the vehicular velocity must be below a threshold of 0.5 m/s [6]. Second,
the amplitude of all three peaks of acceleration and angular velocity must be lower than
the threshold of 15 mg and 0.7 deg/s, respectively. Third, both amplitudes of Peak-1 and
Peak-2 of the forward/up acceleration must be higher than the amplitude of Peak-0, and
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the amplitude of Peak-1 of pitch angular velocity is required to be at least 7.0 times greater
than that of Peak-0. In terms of acceleration, the amplitudes of Peak-1 and Peak-2 are
multiplied by an amplification factor of 1.5, as there might be some external disturbances,
e.g., passenger movements while opening or entering/exiting the car, which may randomly
impact the vibration of the vehicle.

The FFT-based stationary detection and ZVU in the GNSS-PPP/IMU tight integration
process is depicted in Figure 7 using different colored modules. At the start of every inte-
gration epoch, dynamic parameters are produced by IMU mechanization and propagated
to other subprocesses in the navigation implementation. For stationary detection, IMU
acceleration ab and angular velocity ωb are adopted to implement the FFT analysis and
frequency detection, while IMU velocity ve is employed for velocity detection. If all detec-
tion nodes return a positive stationary result, a ZVU constraint equation is generated and
propagated to the EKF module. Then, the GNSS module receives IMU position pe for data
preprocessing and outage checking. If no outage is found, GNSS observation equations are
calculated and forwarded to the EKF module. Finally, the EKF module updates all state
parameters and generates tightly integrated observations to update the navigation solution.
The estimated IMU errors are transmitted back to IMU for a closed-loop correction.

4.3. FFT-Based Stationary Detection Results

To assess the performance of the proposed stationary detection method, the GNSS
observations during the three stop periods are artificially removed to simulate a complete
outage of GNSS. The proposed method is conducted together with ZVU constraints for the
IMU navigation processing. The FFT spectra of forward/up acceleration and pitch angular
velocity in regard to three-second sliding windows are exhibited in Figure 8. Sliding
window results in consecutive ten-second intervals of each stop period are selected as
examples. The sliding window FFT result presents consistent features of both acceleration
and angular velocity for each entire stationary period. Note that because of the spectral
leakage caused by the short window size of three seconds [30,36,37], an extra peak can be
seen in Figure 8 besides Peak-1 and Peak-2, especially for Peak-1 of the acceleration in the
up component. Although the extra peak is produced from the real Peak-1, only the peak
closest to the frequency Peak-1, located at 12.333 Hz, is used in the detection processing, as
the extra peak may be contaminated by random noise or unpredictable disturbances.

The statistical results of the FFT-based stationary detection across the three stop periods
are presented in Table 5. The correct detection rate is determined as the ratio of the number
of seconds that are correctly detected as stationary to the total duration of the stop period.
For the three stop periods, all the correct rates exceed 99%, and the aggregated correct
rate is 99.7%. The failed detection of some epochs is caused by passenger movements of
opening and entering/exiting the car. We intentionally added more of these actions for
the second stop period, and Figure 9 shows one case of opening and entering movements
before we drove the car at the end of the second stop period. It clearly depicts the influence
of the passenger actions in the vehicle on the acceleration and angular velocity.

Table 5. Correct rate of FFT stationary detection during the three stop periods.

Stop Period Duration (s) Correct (s) Rate

1 966 965 99.9%
2 1321 1314 99.5%
3 1212 1208 99.7%

Total 3499 3487 99.7%
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Figure 8. Ten-second examples of three-second sliding window FFT spectrum for Stop 1 (top row),
Stop 2 (middle row) and Stop 3 (Bottom row). Each panel contains FTT results of eight consecu-
tive windows.

Figure 9. Raw IMU measurements of acceleration (top row) and angular velocity (bottom row)
during the passenger entry into the vehicle registered in the second stop period.

4.4. ZVU-Constrained Positioning Results

In order to further evaluate the performance of the proposed FFT-based stationary
detection method, the errors of ZVU-constrained positioning results and no-constraint
results were calculated with respect to multi-GNSS DD RTK results as a reference. As
mentioned in Section 4.3, all the GNSS observations were artificially removed, and only the
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IMU was employed for computing the navigation solution during the three stop periods.
The tight GNSS-PPP/IMU integration was implemented individually from the trajectory
start to the end of each stationary phase within the stop periods.

The positioning error series without constraints are depicted in Figure 10. Foreseeably,
the positioning errors attributable to the IMU mechanization diverge rapidly to tens of
kilometers in all directions during the three stop periods. In contrast, Figure 11 presents
the positioning errors produced by the ZVU-constrained IMU mechanization. The green
lines indicate the start time of every stop period. It is clearly seen that the position is
well constrained by the ZVU function, and all the positioning errors are converged within
one decimeter.

Figure 10. Divergence of positioning error in east (left column), north (middle column) and up
(right column) during the three stop periods (in each row) with total GNSS outages.

Table 6 summarizes the position variation from the first stop epoch obtained with
the ZVU in terms of the Root Mean Square (RMS), STD and maximum (Max) deviation.
The RMS, STD and Max of the three stop periods in all the east, north and up directions
are below 3 cm, 1 cm and 4cm, respectively. Moreover, the average RMS, STD and Max
of position variation for the experimental stop periods are 1.12 cm, 0.51 cm and 2.29 cm,
respectively. The statistical results illustrate that the proposed stationary detection method
is efficient in supporting the ZVU in inhibiting the divergence of positioning error.

Table 6. RMS, STD and Max of position variation with respect to the initial position of each stop period.

Stop Period
East (cm) North (cm) Up (cm)

RMS STD Max RMS STD Max RMS STD Max

1 0.99 0.98 2.92 1.39 0.92 3.16 0.31 0.29 0.87
2 1.00 0.44 2.17 0.70 0.42 2.16 2.24 0.21 2.72
3 1.29 0.47 2.45 0.73 0.63 2.12 1.36 0.25 2.08

Average 1.09 0.63 2.51 0.94 0.66 2.48 1.30 0.25 1.89
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Figure 11. ZVU-constrained positioning error in east (left column), north (middle column) and up
(right column) during the three stop periods (in each row) with total GNSS outages. The green line
indicates the start time of the stop period.

5. Conclusions

The MEMS IMU is a significant piece of equipment for vehicles, allowing them to
produce consecutive navigation information in an integrated system with GNSS and other
sensors. MEMS IMU errors are prone to accumulate over time, and the ZVU is recognized
as an efficient method for constraining the divergence of an IMU. The key to implementing
ZVU is detecting the stop of the vehicle correctly. Hence, we propose a method based
on FFT that has been tailored for land vehicles with idling engines. The feasibility of the
proposed method was evaluated by an urban vehicular test with three stops with durations
ranging from 10 to 20 min. The conclusions of our study are as follows:

The frequency peak caused by the vibration of an idling engine can be distinguished in
the FFT spectra of forward/up acceleration and pitch angular velocity when the vehicle is
stopped. In contrast, the vibrational peak is masked by the peaks within the 0 to 10 Hz range
during the decelerating and accelerating periods. Therefore, we propose implementing
FFT based on a three-second sliding window for IMU measurements per second. Then, we
compare the amplitude of the vibrational frequency with the 0 to 10 Hz range frequency
peak to detect if the vehicle is in a stationary condition.

To evaluate the performance of the proposed stationary detection method, we imple-
mented the ZVU constraint under the simulated GNSS outages over three stop periods. As
a result, the proposed detection method achieved an overall correct detection rate of 99.7%
for the experimental stop periods. Based on the stationary detection method, the ZVU
constrains the divergence of positioning error within centimeters. The results demonstrate
the feasibility of the proposed stationary detection based on IMU measurements and the
FFT feature of idling vibration tailored for land vehicles.
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Abstract: Achieving higher accuracy and robustness stands as the central objective in the navigation
field. In complex urban environments, the integrity of GNSS faces huge challenges and the perfor-
mance of integrated navigation systems can be significantly affected. As the proportion of faulty
measurements rises, it can result in both missed alarms and false positives. In this paper, a robust
method based on factor graph is proposed to improve the performance of integrated navigation
systems. We propose a detection method based on multi-conditional analysis to determine whether
GNSS is anomalous or not. Moreover, the optimal weight of GNSS measurement is estimated under
anomalous conditions to mitigate the impact of GNSS outliers. The proposed method is evaluated
through real-world road tests, and the results show the positioning accuracy of the proposed method
is improved by more than 60% and the missed alarm rate is reduced by 80% compared with the
traditional algorithms.

Keywords: integrated navigation system; factor graph; robustness; GNSS outliers

1. Introduction

As the main source of global referenced positioning for Intelligent Transportation Sys-
tems (ITS), the Global Navigation and Positioning System (GNSS) can provide all-weather
position information in outdoor scenarios [1]. Unfortunately, the positioning accuracy of
GNSS is greatly affected by the environment. Interference, spoof, and outage occur fre-
quently due to the multipath effects and non-line-of-sight (NLOS) receptions [2], which limit
positioning accuracy. In contrast, the inertial navigation system (INS) can autonomously
provide position information at a high output frequency with little dependence on the
external environment but the navigation error will accumulate over time. GNSS/INS
integrated navigation systems [3,4] make use of their advantages, which can provide
high-precision and high-frequency navigation results. The popular existing GNSS/INS
integration methods can be divided into filter frameworks and optimization frameworks.

Extended Kalman filter (EKF) based on filtering frameworks has been widely used
to integrate different sensors due to its simple calculations and real-time performance [5].
However, from the mathematical interpretation, EKF can only iterate in a single step based
on the first-order Markov assumption, which does not make full use of the historical
information and is unable to perform correct repeated linearization. To solve this problem,
unscented Kalman filter [6], and cubature Kalman filter [7] are proposed to improve the
adaptability of nonlinear systems through more precise modeling. Furthermore, the iterated
Kalman filter [8] is proposed to achieve multiple iterations, which significantly mitigates the
linearization error. However, all these solutions did not fully utilize historical information.
In addition, adding and removing sensors in filtering frameworks requires reconfiguration
of the system, which increases complexity and time consumption.
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The recently proposed factor graph optimization (FGO) [9] scheme provides a new
view for multi-sensor fusion. Factor graphs have been widely used in Simultaneous
Localization and Mapping (SLAM) to integrate diverse sensor measurements. In recent
years, FGO has attracted much attention in the field of integrated navigation due to the
advantages of multiple iterations, re-linearization, and the use of historical information [10].
The factor-graph-based multi-source fusion algorithms have been validated in simulations
or experiments on several platforms, including aircraft, vehicles, and ships [11–14], which
indicates that the FGO-based method is superior to the EKF-based method.

Although the potential of factor graph algorithms for positioning has been explored,
it has also been shown that improved methods based on FGO are better adapted to the
error distribution of multi-sensor fusion [15]. However, in complex environments, such
as urban canyons, multipath, and NLOS, interference occurs frequently, which creates a
greater impact on the accuracy of integrated navigation systems. A lot of research has
been conducted on how to obtain more reliable and accurate GNSS positioning results,
including detecting cycle slips by Melbourne-Wübbena [16] and geometry-free [17], which
have significantly improved the data quality control. Nevertheless, there are still roughness
and model-free errors in the observation that affect the localization accuracy.

Typically, methods to solve this problem can be classified into two categories: one is
probabilistic statistics-based fault detection and isolation, which usually employ binary
hypothesis tests based on residuals to detect faults then isolate them using the plug-and-
play nature of the factor graph framework. The work described in [18] proposed a GNSS
pseudorange fault detection method, which employs a chi-square test to detect faults and
isolate them directly using factor graph. In [19], an iRAIM method is proposed where
faults are detected in a fixed time window. The study in [20] combines the advantages of
the sliding window and chi-square to allow faults to be estimated repeatedly to improve
GNSS integrity. Similarly, the work in [21] uses the history information within a sliding
window to fit new observations, reducing the effect of coarseness. However, all these
solutions have a certain degree of time delay [22]. The other category is robust model-aided
fault suppression. These strategies usually use a robust weight function to adjust the cost
function to reduce the weight of the fault measurements, including the Huber kernel func-
tion [23], switchable constraints [24], dynamic covariance [25], etc. Wei et al. [26] proposed
an improved factor graph fusion algorithm with enhanced robustness, which achieves the
weight assignment and robust adjustment before the fusion of sensors, effectively reducing
the adverse effect of sensor failures on the navigation results. Unfortunately, the weight
function depends on the confidence distance and is restricted to [0, 1], which is not suitable
for least squares approaches that require a continuous domain [27]. Yi et al. [28] proposed a
robust loss function through parameter learning using a differentiable optimization. They
use an end-to-end approach for learning state estimator modeled as the factor-graph-based
smoother, which has a significant improvement over existing baselines. However, the use
of neural networks for parameter estimation introduces a large computational effort. Nam
et al. [29] built a robust adaptive state estimation framework based on the type-2 fuzzy
inference system, which can learn the uncertainty by using particle swarm optimization,
improving the robustness of the system. However, the increase in robustness usually
implies a loss in accuracy; hence, the obtained solution is not optimal.

To overcome the limitations above, we propose an innovative IMU/GNSS/ODO
loosely coupled integrated navigation framework based on factor graph. Firstly, inspired
by the work in [30,31], to reduce the Inertial Measurement Unit (IMU) drift, an odometer
(ODO) is derived to provide auxiliary measurements into the graph by constructing an
IMU-ODO preintegration factor. Subsequently, we put forward a GNSS anomaly detection
method based on multi-conditional analysis with a weighted fusion algorithm for adaptive
covariance estimation. The original weighting estimate is used when the detection is normal
and the adaptive covariance estimation is used for weighting when the test is anomalous,
reducing the negative influence of faults. In addition, the impact of the delay in parameter

185



Remote Sens. 2024, 16, 562

estimation on the system accuracy is reduced by autonomously switching between the two
weighting modes. The main contributions of the article are as follows:

• An IMU/GNSS/ODO integrated navigation framework based on factor graph is
described. We accommodate the key parameters of each sensor and add ODO into
preintegration to construct the IMU-ODO preintegration factor, which reduces the
drift of IMU.

• To enhance the accuracy and robustness, an adaptive weighting estimation (AWE)
algorithm is proposed, which can estimate the state and covariance simultaneously.
We derive the principle of AWE from the maximum a posteriori (MAP) perspective.

• We put forward a GNSS anomaly detection method based on multi-conditional analy-
sis. Through anomaly detection, the system achieves autonomous switching between
two modes, original weighting estimation or adaptive weighting estimation, sig-
nificantly reducing the missed alarm rate and time delays in fault recovery due to
parameter estimation.

The remainder of this paper is organized as follows. Section 2 introduces the factor
graph algorithm and the formulation in the IMU/GNSS/ODO integrated navigation
system. Section 3 presents a robust factor graph optimization based on adaptive weighting
estimation with multi-conditional analysis. The experiment results and discussion are
presented to validate the effectiveness of the proposed algorithms in Section 4. Finally, the
conclusion of this study is composed.

2. Factor Graph Algorithm and the Formulation in IMU/GNSS/ODO Integrated
Navigation System

2.1. MAP Estimation and Factor Graph Algorithm

Factor graph is a bipartite undirected graphical model based on Bayesian networks [32],
which encodes the links between variable nodes and measurements. The factor graph
model solves the joint probability distribution of multivariate global functions based on
the MAP estimation theory [33] to achieve information fusion.

The location issue can be described as an MAP problem:

X̂ = argmax
X

P(X|Z, u) (1)

where X̂ denotes the optimal estimation of the navigation-state variable and X denotes the
set of all navigation states. Z represents all the measurements received by the system from
the beginning. u is the motion excitation or the output of the motion sensors and uk ∈ u.

Since the inputs uk and measurements zk at each moment are independent of each
other, according to Bayes’ law, the joint probability distribution function in Equation (1)
can be factorized as:

X̂ = argmax
X

∏
k

P(zk|Xk)∏
k

P(Xk|Xk−1, uk) (2)

where zk is the measurements at the time tk. Equation (2) can be expressed as a product
of individual factors. The optimal solution can be obtained by constructing and solving
factor graphs.

A factor graph G=(F,V,ε) [32,34] represents the joint probability distribution function
of random variables where V represents a set of variable nodes encoded by the navigation
state, F is a set of factor nodes, and ε represents a set of all edges connecting nodes. It
consists of nodes and edges; nodes are divided into factor nodes f j ∈ F and variable nodes
Xk ∈ V. The edges connecting the two nodes represent the error function ek,j(·) ∈ ε, and
each edge corresponds to a measurement zk. The factor graph is defined as:

G(X) = ∏
k

fk(Xk) (3)
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Assuming that the measurements are consistent with a Gaussian model [35]:

fk(Xk) ∝ exp
(
−1

2
‖e(Xk, zk)‖2

Σk

)
= exp

(
−1

2
‖hk(Xk)− zk‖2

Σk

)
(4)

where e(·) is the error function, which defines the error between the measurements zk and
the observation hk(·), ‖e‖2

Σk
denotes the Mahalanobis distance, while Σk is the measurement

noise covariance matrix, and hk(·) denotes some known functions about state vectors. Based
on Equations (3) and (4), the MAP estimation can be transformed into a nonlinear least
squares problem:

X̂ = argmin
X

∑
k
‖hk(Xk)− zk‖2

Σk

= argmin
X

∑
k

e(Xk, zk)
TΣk

−1e(Xk, zk)

= argmin
X

g(Xk)

(5)

Up until now, the inference of the factor graph is to find the optimal estimation X̂ by
minimizing the objective function g(Xk) above.

The optimal estimation of X̂ can be solved by Gauss–Newton (G-N), Levenberg–
Marquardt (L-M), dog-leg iteration [36], etc. To solve the least squares problem, we make
the gradient of the objective function decrease by giving initial values and continuously
updating the optimization variables through iterations, which transforms the problem
of solving for a derivative of 0 into a problem of solving for a falling increment ΔX. In
addition, the incremental smoothing algorithm [14,37] is used to reduce the computational
effort. Through the linearization process by nonlinear optimization methods, the corrected
ΔX is obtained based on the initial estimate. According to L-M iteration, the increment ΔX
meets the following equation [38]:

ΔX̂ = argmin
ΔX

∥∥∥J(Xk)
TΔX + e(Xk, zk)

∥∥∥2
, s.t. ‖ DΔX ‖2≤ ρ (6)

where J(Xk) represents the Jacobian matrix, D donates the coefficient matrix and usually
takes the unit matrix I, while ρ is the radius of the trust domain.

Solving and updating ΔX requires upper triangular decomposition of J(Xk) by QR or
Cholesky. Solving for (6) is equivalent to solving the incremental equation [34]:

(JTJ + λI)ΔXk = −J · e(Xk, zk) (7)

where λ is the Lagrange operator. The Jacobi matrix is equivalent to linearizing the factor
graph, and its block structure determines the structure of the factor graph. The sparsity of
the matrix is maintained by determining a specific order of variable elimination [39], and
each update will only compute a small portion of the topology that has changed, effectively
improving the real-time performance of the algorithm.

2.2. Factor Graph Formulation in Integrated Navigation System

From the principle of the factor graph, it can be noted that the selection of system-
state variables and the establishment of error functions are the main factors affecting the
performance of the algorithm. Considering the key parameters of each sensor and adding
ODO into preintegration, the factor formulation for measurement models is deduced.

A. Formulation

During the navigation process, the parameters of each sensor change over time [40].
Accuracy can be improved by expanding the dimension of the state variables and adding
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the key parameters into the optimized estimation. Considering the ODO scale factor error,
the state variables of the integrated INS/GNSS/ODO navigation system are selected as:

X(k) =
[
(pw

wbk
)T (vw

wbk
)T (qw

wbk
)T (εgk

)T (∇ak

)T ck] (8)

where the state X(k) includes the position pw
wbk

, velocity vw
wbk

, and attitude qw
wbk

in the world
frame (w-frame), along with the gyroscope biases εgk

, accelerometer biases ∇ak , and ODO
scale factor ck. bk is the body frame (b-frame) at k.

B. IMU-ODO Preintegration Factor

Odometer information is typically used as the forward speed to provide an aid; how-
ever, in reality, the raw measurement information of an odometer is the mileage, and
obtaining an accurate auxiliary speed relies on accurate motion modeling. The preintegra-
tion method is utilized to convert the odometer mileage into displacement, forming the
IMU-ODO preintegration model instead of the traditional IMU preintegration model.

The MEMS-INS mechanization [41] can be expressed as:

vw
wbk

= vw
wbk−1

+ Cw
bk−1

vbk
bk−1

+ gwΔtk

pw
wbk

= pw
wbk−1

+ vw
wbk−1

Δtk +
1
2 gwΔt2

k +
1
2 Cw

bk−1
vbk

bk−1
Δtk

qw
wbk

= qw
wbk−1

⊗ qbk
bk−1

(9)

where Cw
bk−1

denotes the rotation matrix from the b-frame to the w-frame; gw is the gravity
in the w-frame; vw

wbk−1
and pw

wbk−1
are the velocity and position of the b-frame relative to

the w-frame projected on the w-frame; qw
wbk

is the quaternion; and qbk
bk−1

and vbk
bk−1

are the
increments of attitude and velocity from the k− 1 to the k, respectively:

vbk
bk−1

≈ Δvb
f,k +

1
2 Δθk × Δvb

f,k

qbk
bk−1

≈

⎡⎢⎣ cos
∥∥∥ 1

2 Δθk

∥∥∥
sin‖ 1

2 Δθk‖
‖Δθk‖ Δθk

⎤⎥⎦
Δvb

f,k =
∫ tk

tk−1
(fb −∇ak − na)dk

Δθk =
∫ tk

tk−1

[
ωb − εgk − ng

]
dk

(10)

where fb and ωb are the specific force and angular rate in the b-frame. Δvb
f,k and Δθk are the

velocity and angle of the integration of accelerometer and gyroscope outputs. na and ng
represent the gyroscope and accelerometer white noise, respectively.

When ODO observations are introduced, considering the nonholonomic constraints,
the velocity from the b-frame to the vehicle co-ordinate (v-frame) can be expressed as
follows [30]:

vw
wvk

= vw
wbk

+ Cw
bk

[
ω

bk
wbk
×
]
Ib

odo (11)

where Ib
odo donates the lever arm for the odometer.

The mileage increment derived from velocity is:

sbk
bk−1

≈ Cb
vsvk

vk−1 − Cbk
bk−1

Ib
odo + Ib

odo (12)

where Cb
v is the mounting angle of the IMU, svk

vk−1 is the increment of ODO, denoted as

svk
vk−1 = sv(1+ ck) and sv represents the output of the ODO, and Cbk

bk−1
is the direction cosine

matrix of qbk
bk−1

.
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Therefore, the position can be updated by the IMU and ODO, represented as:

pw
wbk

= pw
wbk−1

+ Cw
bk−1

[Cb
vsvk

vk−1 + (1− Cbk
bk−1

)Ib
odo ] (13)

According to (9) and (13), the IMU-ODO preintegration factor is constructed as:

fIMU−ODO(
Xk+1, Xk, εgk ,∇ak , ck

)
� d

(
Xk+1 − hINS

k
(
Xk, εgk ,∇ak , ck, zk

))
(14)

The equivalent IMU factor [9] updates in the b-frame, which leads to large errors
when the motion changes rapidly. Therefore, the classical INS mechanization [42,43] is
used for updating during the preintegration period, XINS−ODO

k is the estimated value of
the navigation state variable obtained from the IMU-ODO mechanization, and INS-ODO
factor node is:

fINS−ODO(Xk) � d
(

Xk −XINS−ODO
k

)
(15)

Suppose that the bias kk = (εgk ,∇ak , ck), the bias node can be expressed as:

fbias(kk, kk−1) � d(kk − u(kk)) (16)

where u(kk) is the stochastic wandering model with bias parameters.
Since the bias of the inertial navigation system does not change significantly in a short

period, it can be inserted into the factor graph model at a lower frequency, which can
reduce the amount of computation without loss of accuracy.

C. GNSS Positioning Factor

The GNSS positioning results and covariance ΣGNSS
i can be obtained from the GNSS

receiver. Hence, the measurement equation considering the lever-arm effect can be expressed as:

pw
GNSS,k = pw

wbk
+ Rw

bk
lb + nGNSS

k (17)

where pw
GNSS,k is the GNSS position in the w-frame, nGNSS

k is the measurement position

noise, and lb denotes the lever-arm error of GNSS antenna. Rw
bk

is the rotation matrix from
the b-frame to the w-frame. Then, the GNSS factor node can be expressed as:

fGNSS(pw
wbk

) � d
(

pw
wbk

+ Rw
bk

lb − pw
GNSS,k

)
(18)

D. IMU-ODO/GNSS factor graph model

In summary, we derive the IMU-ODO preintegration model and the GNSS measure-
ment model to form the IMU-ODO/GNSS integrated navigation system. When the GNSS
measurement information arrives, the corresponding factor node is connected to the INS
node constructed by IMU-ODO. The factor graph model of the whole navigation system is
shown in Figure 1.

Figure 1. Factor graph model of IMU/GNSS/ODO.
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We minimize the sum of the prior and Mahalanobis distances for all residuals to obtain
the MAP estimate:

min
X

⎧⎪⎪⎨⎪⎪⎩
‖r0 − h0X‖2 + ∑

k∈[1,n]

∥∥∥rIMU−ODO

(
zIMU−ODO

k−1,k , X
)∥∥∥2

ΣIMU−ODO
k−1,k

+ ∑
i∈[0,m]

∥∥rGNSS
(
zGNSS

i , X
)∥∥2

ΣGNSS
i

⎫⎪⎪⎬⎪⎪⎭ (19)

where {r0, h0} represents the priori information and rIMU−ODO and rGNSS are the residual
of the IMU-ODO preintegrating factors and GNSS factors, respectively. m, n are the number
of GNSS and IMU-ODO preintegrating factors, respectively. Ceres solver is used to solve
this problem.

3. Robust Factor Graph Optimization Based on Adaptive Weighting Estimation with
Multi-Conditional Analysis

In this section, we will introduce a novel GNSS anomaly detection method and
an adaptive covariance estimation algorithm to enhance accuracy and robustness. An
overview of the method proposed is shown in Figure 2. The FGO integrates multi-sensor
measurements aided by the weighting from the switching mode options. The whole process
is called switching adaptive weighting estimation factor graph optimization (SAWE-FGO)
in this paper.

Figure 2. Overview of the proposed IMU/GNSS/ODO integration via SAWE-FGO. The light blue
area represents the factor graph optimization part. The green and orange area denotes the adaptive
weighting estimation based on switching modes.

3.1. GNSS Anomaly Detection Based on Multi-Conditional Analysis

Based on Equation (17), the residual of the GNSS factor can be obtained as follows:

rGNSS

(
zGNSS

k , X
)
= pw

wbk
+ Rw

bk
lb − pw

GNSS,k (20)

Assuming that the observation model and the IMU-ODO model do not contain errors,
this yields the following conditional density on the measurement zk:

P(zk|Xk) = N (zk; hk(Xk), Σ0) =
1

(2π)k/2√|Σ0|
exp

{
−1

2
‖hGNSS

k (Xk)− zk‖2
Σ0

}
(21)

If the GNSS equipment fails, the statistical nature of the measurement noise changes
and the mean of the residual rGNSS(k) will no longer be equal to 0, as described below.

According to the binary hypothesis to rGNSS(k), H0 indicates that there are no faults:

E{rGNSS(k)} = 0, E
{

rGNSS(k)rGNSS(k)
T
}
= Σ0 (22)
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H1 indicates a malfunction:

E{rGNSS(k)} = μ, E
{
(rGNSS(k)− μ)(rGNSS(k)− μ)T

}
= Σ0 (23)

Since the residuals have three dimensions, latitude, longitude, and height, the same
judgment criterion can be used in each dimension. The residual criterion in one dimension
is as follows: {

if rGNSS(k) > r1, fault
if rGNSS(k) ≤ r1, nomal

(24)

where r1 is the threshold for the judgment. rGNSS(k) represents the residual between the
measured value and the predicted value; thus, the larger rGNSS(k) is, the less reliable the
measurement information is. The selection of r1 will affect the results of fault detection.
If r1 is too large, it will lead to a high rate of missed alarms. Inversely, if r1 is too small,
it will not be able to meet the statistical characteristics. The threshold value can be set
according to the accuracy and performance of different sensors, but the basic criterion is to
set it between the maximum probability value of the independent variable and the mean of
the chi-square distribution. In this paper, we have chosen the value of r1 to be 0.2.

Using the Mahalanobis distance of residuals, the chi-square test is simple in operation
and small in computation compared to sequential methods with the same number of
samples. However, this approach introduces missed alarms and time delays for slow-
change faults. Therefore, the GNSS and IMU-ODO preintegrated incremental error criterion
is provided to assist the residuals in determining whether there is an anomaly in the
standard deviations (SD) of latitude, longitude, and altitude measurement.

During a GNSS epoch, the IMU-ODO preintegration is recursed in increments, with
mileage increments Sk

k−1. Obtained from the IMU-ODO mechanization, XINS−ODO
k−1 and

XINS−ODO
k are the navigation-state estimates for two neighboring moments without the

GNSS fusion. Lk
k−1 represents displacement increments from the GNSS result of the

previous epoch. Since relative changes are described, to accurately reflect the incremental
changes, we align GNSSk−1 with XINS−ODO

k−1 in position and use vector decomposition in
the b-frame, as shown in Figure 3.

Figure 3. Vector decomposition representation of GNSS and IMU-ODO preintegrated
incremental error.
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The longitudinal and lateral incremental error can be expressed as:

ΔSk
lk−1 = Sk

k−1 − Lk
k−1 cos β

ΔSk
pk−1 = Lk

k−1 sin β
(25)

Thus, the incremental error of IMU-ODO preintegration with GNSS is:

ΔSk
k−1 =

√
(ΔSp

k
k−1)

2
+ (ΔSl

k
k−1)

2 (26)

The incremental error criterion is:{
i f ΔSk

k−1 > s1, fault
i f ΔSk

k−1 ≤ s1, nomal
(27)

Under normal GNSS operation, the displacement increments of GNSS and the mileage
increment of IMU-ODO are in the same trend for a short period and the incremental error
between them is very small. When the GNSS is abnormal, the GNSS increment will be
much larger than the IMU-ODO mileage increment, which generates a large incremental
error. The threshold s1 is set to the maximum possible probability value of the independent
variable; here, we choose 0.45.

The detection method combines residual judgment, SD judgment, GNSS, and IMU-
ODO incremental error judgment. It is specifically divided into four categories as
Table 1 shown.

Table 1. Combined failure diagnosis rule.

Case No. Residual SD Incremental Error Diagnosis Result Mode Judgment Result

1 T T / T T
2 F F / F T
3 T F / F F

4 F T F F F
T T T

In cases 1 or 2, the result is judged to be a normal condition when residual and
SD methods detect it identically. In case 3, the combination of judgments has a lower
probability because false positives are small probability events in navigation systems. In
case 4, which is a priority for us, the SD shows GNSS signals are normal at this moment,
while the residual method displays exceptions, known as missed alarms of SD. The original
SD values become implausible under this condition. Thus, using the original SD values
as covariates will increase the percentage of fault measurement in integrated navigation
systems. Since the residual is more sensitive to faults, extra time is required for the system
to return to normal as faults accumulate. We introduce the incremental displacement errors
of GNSS and IMU-ODO preintegration to assist in determining the end of the failure event.
If the incremental error determines that the system has returned to normal, we choose to
use the original SD from then on.

Therefore, the switchable GNSS factor error function can be written as:

‖ eGNSS
i ‖2=

{
(zi − hGNSS(Xi))

TΣ0(zi − hGNSS(Xi)), mode judgment result = T
(zi − hGNSS(Xi))

TΣi(zi − hGNSS(Xi)), mode judgment result = F
(28)

When the results are judged normal, it means that the edges associated with the
variables are added to the graph entirely and the GNSS covariance is computed using the
original SD; when the results are judged abnormal, the proportion of the edges added to
the graph is decided by the weight obtained from adaptive covariance estimation. The
optimization can be defined on R instead of [0, 1] in existing methods.
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3.2. Adaptive Weighting Estimation

If the results are judged to be abnormal, the GNSS SD at this time can no longer
correctly reflect the degree of data correlation. Therefore, when the result is abnormal, the
factor graph optimization becomes both a state and covariance estimation problem. Then,
the cost function becomes:

J(X, Σ) =
1
2

k

∑
i=1

e(Xi, zi)
TΣi

−1e(Xi, zi) (29)

where Σ = {Σ1, Σ2 · · ·Σk} is the unknown covariance matrix.
The MAP problem can be modified to:{

X̂, Σ̂} = arg min
{X,Σ}

J(X, Σ) = arg min
{X,Σ}

{− ln P(X, Σ|z)} (30)

where Σ̂ is the estimate of the covariance matrix.
The decomposition of the posterior probability can be obtained:

P(X, Σ|z) = P(X|z, Σ)P(Σ) =
k

∏
i=1

P(Xi|zi, Σi)P(Σi) (31)

According to Bayes’ rule, decomposing the posterior probability density P(Xi|zi, Σi)
is obtained:

P(Xi|zi, Σi) =
P(zi|Xi, Σi)P(Xi)

P(zi)
∝ P(zi|Xi, Σi)P(Xi) (32)

where P(Xi) and P(zi) are the a priori probability densities for prediction Xi and measure-
ment zi, respectively. P(zi) has nothing to do with Xi and zi, so it can be ignored. Since there
is no priori covariance, the conditional probability density p(zi|Xi, Σi) is denoted [44]:

P(zi|Xi, Σi) =
1√

(2π)kdet(Σi)
exp

{
−1

2
e(Xi, zi)

T
Σi
−1e(Xi, zi)

}
(33)

where det(Σi) is the determinant of the matrix Σi. However, if there is no a priori knowledge
of the Σi, an accurate estimate of the state Xi is not available in practice. Then, we obtain
only an approximation of the state X̂i and the likelihood probability density will change to:

P(zi|Xi, Σi) =
1√

(2π)kdet(Ri)
exp

{
−1

2
e(X̂i, zi)

TR−1
i e(X̂i, zi)

}
(34)

Combining Equations (30), (32), and (34), the objective function can be written as:

J(X, Σ) ∝
1
2

k

∑
i=1

[e(X̂i, zi)
TR−1

i e(X̂i, zi)− ln(det(R−1
i ))− k ln(2π)] (35)

where Ri denotes the residual covariance matrix after the i observation. Our strategy is
to find the optimal Σi to eliminate it from the expression. Assuming that the covariance
matrices of the same observations are the same. The derivation of Equation (35) with
respect to R−1

i and letting the derivative be 0 yields Ri:

Ri =
1
k

k

∑
i=1

e(X̂i, zi)e(X̂i, zi)
T (36)
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The residual sequence can be approximated as:

e(X̂i) = zi − h(X̂i) ≈ zi −φiX̂i = zi −φi(Xi + δX̂i) = ni −φiδX̂i (37)

where φi is the Jacobian of the measurement function and δX̂i is the estimation error of the
navigation state. ni is the measurement noise.

The propagation process of the covariance is derived below:

Ri= E(ei(
^
Xi)ei(

^
Xi)

T

)

= E[(ni −φiδ
^
Xi)(ni −φiδ

^
Xi)

T

]

= E(nini
T) + φiE(δ

^
Xiδ

^
Xi

T)φi
T − E(φδ

^
Xi)E(ni

T)︸ ︷︷ ︸
0

− E(ni)︸ ︷︷ ︸
0

E(δ
^
Xi

TφT)

= E(nini
T) + φiE(δ

^
Xiδ

^
Xi

T)φi
T

= Σi + φiQ ^
Xi |zi

φi
T

(38)

where QX̂i |zi
is a posteriori covariance matrix updated with the IMU preintegrated error model:

Q^
Xi+1|zi

=QXi+1,i
−QXi+1,zi

Σi
−1Qzi,Xi+1

(39)

⎧⎪⎨⎪⎩
QXi+1,i

= MiQXi
MT

i + NiΣ
aNT

i + FiΣ
gFT

i
QXi+1,zi

= QXi+1,i
HT

i
Qzi,Xi+1

= HkQXi+1,i

(40)

where Mi is the derivation of Equation (9) with respect to position, velocity, and attitude.
Ni and Fi are the derivations of the equations of motion with respect to force and angu-
lar velocity. Σa and Σg are the measurement noise of the accelerometer and gyroscope,
respectively.

Thus, the estimation of the measurement covariance can be obtained:

Σi = Ri −φiQX̂i |zi
φT

i (41)

From the derivation, it can be seen that the estimation Σi requires a priori Ri, where the
a priori value is averaged over the residual covariance of all observations before switching
to adaptive weight estimation.

4. Experiment Results and Discussion

To evaluate the performance of the proposed method, we built the testbed for the
IMU/GNSS/ODO integrated navigation system. The data acquisition vehicle is shown
in Figure 4. The sensors used are all commercial and the specific parameters are shown
in Table 2. The sampling frequency of the MEMS-IMU SCHA634-D03 is set at 100 Hz and
the frequency of the Bynav X1 GNSS receiver is at 5 Hz. We use RTK mode to obtain the
positioning results in the experiments. The ODO is mounted on the rear wheel bearing. In
addition, forward and backward filtering postprocessing is used to provide the ground
truth. We run the algorithms on a desktop computer equipped with an Intel i7-12700 at
2.10 GHz and 32 GB RAM and the size of the sliding window is set to 1 s.

The vehicle-mounted test was conducted on a viaduct in the Daxing district, Beijing,
with an average speed of 16 km/h and a duration of 1190 s. The specific trajectory is shown
in Figure 5a. The experimental environment includes up and down the viaduct and stable
driving. However, in complex urban environments, GNSS signals are highly susceptible
to interference; thus, the SD output from the GNSS board is not completely reliable. We
choose #1 and #2, which have no faults in raw data then add faults manually to simulate
the situation where there are faults in the GNSS signals but the SD judgment is completely
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ineffective. To verify the effectiveness and robustness of the proposed algorithm, three
sections of the trajectory including two typical fault types are selected for verification:

(1) #1 and #2 are selected during the stable driving process in an open environment,
which means that the original data in these segments are error-free. The complete
failure of SD detection, which is the worst-case scenario, can be simulated by adding
errors. To simulate the ramp and step fault of the satellite, we add slow-growth faults
at 400 s to 580 s (#1), lasting 180 s, and step faults at 700 s to 730 s (#2), lasting 30 s, to
the latitude and longitude of the satellite. The GNSS anomaly detection algorithm is
validated using all segments including simulation errors.

(2) #1 and #3 are selected to verify the effectiveness of SAWE-FGO. #3 (from 1153 s to
1162 s) is a winding road where the vehicle passes through the staggered elevation
before the turn, with continuous random jump points in the raw data (from 1138 s to
1152 s).

Table 2. Parameters of relevant navigation sensors.

Sensors Parameter Value

IMU Gyro Bias instability 0.9◦/h
Accelerometer Bias instability 0.01 mg

Accelerometer RMS noise 0.5 mg
Gyro RMS noise 0.007◦/s

GNSS RTK Positional accuracy 1.5 cm + 1 ppm
Odometer Positional accuracy 1% × Distance

Figure 4. Data collection scheme.

(a) (b)

Figure 5. The left figure (a) shows the trajectory in field tests. The right figure (b) shows the GNSS
output trajectory.
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The GNSS output trajectory after adding the faults is shown in Figure 5b, with the
distance information relative to the start point (0 s).

4.1. Validation of the GNSS Anomaly Detection Algorithm

In the simulation, the whole duration is about 180 s in #1 and 30 s in #2; the GNSS
measurements are available during these two periods of time. Slow-growth faults and step
faults are added to the latitude and longitude, respectively. The size of the added faults in
#1 (group A) and #2 (group B) is shown in Figure 6.

Figure 6. GNSS error in group A (left) and group B (right).

We apply the proposed GNSS anomaly detection method to the entire trajectory
segment, which includes both real and simulated faults, for comprehensive evaluation. To
illustrate the specific results of typical failure types, we select two representative segments
of the trajectory (#1 and #2).

The missed alarms and false positives of different methods are demonstrated in
Figure 7a. For the judgment curves, a value of 1 means missed alarms or false positives and
a value of 0 means normal detection. Meanwhile, the failure level by different methods
is shown in Figure 7b. For the judgment curves, a value of 1 signifies that the detection
method detects a perceived fault and a value of 0 denotes no fault.

As Figure 7a illustrates, the SD statistics have a long duration during 400 s to 580 s,
while the residual statistics identify the missed detection. However, a 17 s duration
is required for the residual statistics parameter to fall under the fault alarm shoulder.
Meanwhile, a new fault appears in the raw data at 597 s. As shown in Figure 7b, the residual
detection is unable to distinguish between the two adjacent faults and it is straightforward
to determine that all of them are abnormal from 404 s to 618 s. The proposed method is
composed of an SD test unit, a residual test unit, and an incremental error unit, which
significantly reduces missed alarms. As Table 3 shows, the missed alarm rate of the
combined method is reduced by 81.7% compared with the SD criterion and the false alarm
rate of the combined method is reduced by 85.7% compared with the residual criterion.

Table 3. Statistical results of missed alarms and false positives.

Error Level
SD

Criterion
Residuals
Criterion

Incremental
Error Criterion

Combined
Method

Number of false detections 276 151 69 74
Number of missed alarms 272 38 48 50
Number of false positives 4 113 21 24

Missed alarm rate 0.93 0.13 0.16 0.17
False alarm rate 0.009 0.14 0.02 0.02
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(a)

(b)

Figure 7. (a) Missed alarms and false positives of different methods for the whole trajectory. (b) Fault
detection of different methods for the whole trajectory.

In addition, to represent the performance of the use of the incremental error criterion
to assist the residual criterion in the case of complete failure of SD detection, #1 and #2 are
selected to evaluate the advantages of the proposed method by comparing the detection and
recovery ability for different types of faults, as shown in Figures 8 and 9. Figure 8 shows the
results for group A in ramp failure, while Figure 9 presents the results for group B in step
failure. The statistical curves of residual, incremental error, and combined fault detection
methods are compared in Figures 8a and 9a where the pink line represents the threshold.
Meanwhile, the judgment results of these methods are presented in Figures 8b and 9b. For
the judgment curves, a value of 1 means that the detection method detects a perceived fault
and a value of 0 means normal. The fault detection delays for different detection methods
are listed in Table 4.

Among the results presented in Table 4, the following conclusions can be easily found:
(1) For step faults, all methods are able to detect the start of the fault quickly. For ramp

failure, the combined fault detection method chooses the minimum detection time due to
the sensitivity of the residual method.

(2) The proposed method can recover after the failure termination, with a 92–97% re-
duction in delay compared to the residual method.
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(3) In group A, it is not hard to see original faults appearing after the end of adding
faults. In Figure 8, the residual method cannot distinguish between different faults, which
is not possible for multiple-failure detection. Instead, the proposed method overcomes the
drawback of the residual method in failure recovery, which can detect second faults.

Figure 8. Fault detection results for ramp failure (group A). (a) The statistical curves of different
methods. (b) The judgment results of different methods.

Figure 9. Fault detection results for step failure (group B). (a) The statistical curves of different
methods. (b) The judgment results of different methods.
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Table 4. Delayed time of fault detection and recovery.

Failure Type Group Residuals Criterion Incremental Error Criterion Combined Method

Slope Failure
A detection 4 s 9 s 4 s

A recovery 38 s 1 s 1 s

Step Failure
B detection 1 s 2 s 1 s

B recovery 13 s 0 s 0 s

Fault delay detection and recovery usually adversely affect the parameter estimation,
making the AWE not optimal. Therefore, the proposed detection algorithm is used to solve
this problem in the next part, which can quickly and accurately determine the moment
when the system returns to normal and then switch to the normal weighting mode.

4.2. Comparison of Performance between Different Information Fusion Methods

To verify the effectiveness of the switching adaptive weighting estimation (SAWE),
#1 is selected for verification. We compared our methods with the EKF method, which is
commonly used in engineering applications, and the traditional FGO method. The elapsed
time of all data for the FGO algorithm with the equipped CPU is about 18 s. Figures 10–12
demonstrate the localization results produced by each algorithm.

Figure 10. Positioning trace of different integrated navigation algorithms in #1.

The traces of the different algorithms are shown in Figure 10. It can be seen that, after
the addition of the damp faults, there are obvious fluctuations in EKF. The smoothing
effect of FGO is better than that of the EKF; however, there are still some large errors here.
Instead, there is not a significant decrease in the navigation accuracy of the AWE-FGO and
SAWE-FGO. Figures 11 and 12 show the position errors and velocity errors, respectively.
We can see that the position and velocity errors are remarkably reduced using AWE-FGO
and SAWE-FGO. The position results are shown in Table 5.

For the eastward position, the STD values of FGO and AWE-FGO reach 1.304 m
and 0.509 m, respectively, while EKF reaches 2.155 m. The STD of FGO improved by
39.4% compared to EKF. Similarly, for the northward position, the STD improves by 19.9%.
It can be seen that the positioning accuracy of EKF and FGO is comparable. After applying
AWE to the FGO, the errors reduce noticeably in Table 5, which shows the effectiveness of
the proposed AWE method. Moreover, with the help of SAWE via SAWE-FGO, the position
errors decrease to 0.489 m and 0.208 m, respectively, resulting in a further improvement
in accuracy from AWE-FGO. RMSE can reflect the deviation of the estimated value from
the reference value. The use of RMSE can assess the impact of outliers on navigation and
reflect the navigation accuracy and robustness. It can be seen that the RMSE of AWE-FGO
is significantly smaller than that of EKF and FGO, with reductions of 76.3% and 57.2%
in eastward and northward positions, respectively. When the traditional factor graph
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algorithm is enhanced by SAWE-FGO, the position accuracy improves by 80%. The higher
accuracy and robustness of the proposed method depend on the fact that the SAWE-FGO
can recognize the end time of faults and adjust the corresponding covariance according to
the error changes, which makes the weighting more accurate. In contrast, the traditional
factor graph model does not take into account the exceptions of sensor measurements in
the information fusion process, which leads to a decrease in navigation accuracy.

Figure 11. Position errors of different integrated navigation algorithms in #1.

Figure 12. Velocity errors of different integrated navigation algorithms in #1.

In addition, we interestingly discovered that the fault detection delay has a much
greater effect on the turnaround than the straight line. Therefore, we choose #3 for ad-
ditional validation. It can be seen in Figure 5b that there are random jump points in the
GNSS signals before passing a turnaround section (#3) as the road crosses the viaduct for a
while. As shown in Figure 13, we use the SAWE-FGO method compared with full use of
the AWE-FGO method for the selected trajectory (#3). It can be seen that the AWE-FGO
method causes an error of about 1 m in the northward position, while the SAWE-FGO
method has a maximum of only 0.1 m, which validates the effectiveness of SAWE.

Figure 13. The comparison of trajectory in #3.
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Table 5. STD and RMSE of position and velocity errors for different algorithms in #1.

Error Method STD RMSE

East position error (m)

EKF 2.155 2.248
FGO 1.304 2.396

AWE-FGO 0.509 0.570
SAWE-FGO 0.189 0.489

North position error (m)

EKF 2.051 2.062
FGO 1.642 2.227

AWE-FGO 0.586 0.954
SAWE-FGO 0.206 0.208

East velocity error (m/s)

EKF 0.721 0.720
FGO 0.297 0.410

AFGO 0.174 0.206
SAWE-FGO 0.122 0.132

North velocity error (m/s)

EKF 0.393 0.392
FGO 0.210 0.409

AFGO 0.168 0.206
SAWE-FGO 0.131 0.078

4.3. Experimental Validation Using an Open-Source Dataset

To challenge the performance of the proposed fault detection algorithm and adaptive
weight estimation strategy, we test the proposed algorithms on the open-source dataset
collected in the Odaiba districts of Tokyo Urban Canyons [45], which has denser buildings
and multiple viaducts compared with the experimental environment in which we collected
data. In other words, the selected open-source dataset is collected in a typical urban canyon
environment with a higher percentage of multipath/NLOS effects.

Figure 14 shows the vehicle traveling trajectory provided by the high-precision
INS/RTK positioning results. It can be seen that the road condition is quite complicated,
which not only contains straight lines and turning sections but also passes through dense
buildings and several viaducts.

In order to validate the effectiveness of the proposed algorithm, we performed fault
detection validation and adaptive weight estimation validation on this dataset, respectively.
The missed alarms and false positives of different methods are demonstrated in Figure 15.
For the judgment curves, a value of 1 means missed alarms and false positives and a value
of 0 means normal detection.

Figure 14. The vehicle traveling trajectory.

Figure 15 shows that, in typical urban canyon environments, GNSS signals are signif-
icantly disturbed by multipath/NLOS effects, resulting in frequent anomalies in the SD
values of GNSS outputs.
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Figure 15. Missed alarms and false positives of different methods for the whole trajectory.

As Table 6 shows, the missed alarm rate of the combined method is reduced by 41%
compared with the SD criterion and the false alarm rate of the combined method is reduced
by 62% compared to the residual criterion.

Table 6. Statistical results of missed alarms and false positives.

Error Level SD Criterion Residuals Criterion Incremental Error Criterion Combined Method

Number of false detections 1220 1100 1470 980
Number of missed alarms 1210 430 900 720
Number of false positives 10 670 570 260

Missed alarm rate 0.63 0.22 0.46 0.37
False alarm rate 0.001 0.08 0.07 0.03

A comparison of performance between different information fusion methods is shown
in Figures 16 and 17.

Figure 16. Positioning trace of different integrated navigation algorithms.

The traces of the different algorithms are shown in Figure 16. The three zoomed-in
trajectories (T1, T2, and T3) correspond to three elevated segments. With the AWE method,
the trajectories at the corners are significantly smoother and the corresponding errors are
smaller than those of EKF and FGO. When the system is operating in switchable modes,
there is a further reduction in error at corners, except for section T1, which occurs because
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the fault detection algorithm fails to detect partial faults in the segment, failing to switch
up to AWE mode.

Figure 17. Position errors of different integrated navigation algorithms.

Figure 17 shows the position error. It can be seen that the EKF has a large error and
FGO has a relatively reduced error, while the AWE-FGO significantly reduces the error.
The position results are shown in Table 7.

Table 7. STD and RMSE of position errors for different algorithms.

Error Method STD RMSE

East position error (m)

EKF 3.656 4.115
FGO 1.438 2.057

AWE-FGO 1.108 1.282
SAWE-FGO 0.906 1.805

North position error (m)

EKF 2.320 2.354
FGO 1.858 2.631

AWE-FGO 1.273 1.605
SAWE-FGO 1.088 1.509

For the eastward position, the STD values of AWE-FGO and SAWE-FGO reach 1.108 m
and 0.906 m, respectively. The position accuracy of AWE-FGO improved by 37.7% com-
pared with FGO. Relative to EKF, the AWE-FGO errors are reduced by 68.8%. Similarly, for
the northward position, the position accuracy of AWE-FGO improves by 39.0% compared
with FGO. Compared to EKF, the AWE-FGO errors are reduced by 45.1%. While SAWE-
FGO significantly reduces errors in the northward position, it does not perform as well in
the eastward position due to the failure of fault detection at T1.

In short, the errors are reduced significantly with the help of AWE. Moreover, the
proposed fault detection method based on multi-conditional analysis is also validated on
the challenging dataset. With the aid of fault detection, the SAWE exhibits less positional
error. Since the selection of the threshold values directly affects the effectiveness of fault
detection, we need to continue to improve and explore the criteria for threshold selection
in the future.

5. Conclusions

To improve the accuracy and robustness of the integrated navigation system in com-
plex urban environments, this paper proposes a robust factor graph optimization method
with switchable adaptive weight estimation. Aiming at the shortcomings of the existing
factor graph algorithms, an adaptive covariance estimation factor graph navigation algo-
rithm is proposed, which effectively suppresses the impact of GNSS faults on the accuracy
of the navigation system. In addition, we also propose a GNSS anomaly detection strategy
based on multi-conditional analysis, which improves the system fault detection capability
and effectively improves the robustness of the system. The superiority and robustness of
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the proposed method relative to other methods have been verified in vehicle experiments.
The positioning accuracy of the proposed AWE-FGO method is improved by more than
60% compared to the traditional FGO algorithm. Moreover, the proposed fault detection
method is effective in detecting the end of the fault and greatly reduces the effect of delay on
parameter estimation. Therefore, SAWE-FGO can be used to produce superior navigational
results. Furthermore, we verified the performance of the algorithm on a real urban canyon
dataset and the results show that the proposed method improves the navigation accuracy
by more than 30% compared to the FGO algorithm. In more complex environments, the
threshold selection of faults is more difficult and the improvement of threshold selection
criteria will be one of the focuses of future work.
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Abstract: This work presents a novel RGB-D dynamic Simultaneous Localisation and Mapping
(SLAM) method that improves the precision, stability, and efficiency of localisation while relying on
lightweight deep learning in a dynamic environment compared to the traditional static feature-based
visual SLAM algorithm. Based on ORB-SLAM3, the GCNv2-tiny network instead of the ORB method,
improves the reliability of feature extraction and matching and the accuracy of position estimation;
then, the semantic segmentation thread employs the lightweight YOLOv5s object detection algorithm
based on the GSConv network combined with a depth image to determine potentially dynamic
regions of the image. Finally, to guarantee that the static feature points are used for position estimation,
dynamic probability is employed to determine the true dynamic feature points based on the optical
flow, semantic labels, and the state in last frame. We have performed experiments on the TUM
datasets to verify the feasibility of the algorithm. Compared with the classical dynamic visual SLAM
algorithm, the experimental results demonstrate that the absolute trajectory error is greatly reduced
in dynamic environments, and that the computing efficiency is improved by 31.54% compared with
the real-time dynamic visual SLAM algorithm with close accuracy, demonstrating the superiority of
DLD-SLAM in accuracy, stability, and efficiency.

Keywords: visual SLAM; dynamic environments; GCNv2-tiny feature points; lightweight object
detection; LK optical flow

1. Introduction

Visual Simultaneous Localisation and Mapping (VSLAM) is capable of accurately sens-
ing the environment and obtaining the position of the robot. The extensive implementation
of VSLAM in autonomous vehicles, perception, and robot technology can be attributed to
its cost-effectiveness, improved accuracy, and lack of reliance on specialised sensors [1]. In
recent years, there have been notable advancements in VSLAM algorithms. Examples of
these advancements include ORB-SLAM2 [2], ORB-SLAM3 [3], VINS-Mono [4], SVO [5],
and others. The above open source SLAM algorithms have primarily been designed for
static environments. However, in dynamic environments, especially when the texture
of moving objects is obvious or occupies a large portion of the image, the accuracy and
robustness of the system decrease dramatically. The aforementioned issues have garnered
interest towards the integration of VSLAM with deep learning technology. As environ-
ments with dynamic objects are frequently present in people’s practical application, it is of
great practical significance to further develop VSLAM algorithms with stronger robustness,
adaptability, and practicality in dynamic environments.

In recent years, the emergence of deep learning technology has brought new opportu-
nities for the improvement of VSLAM. Compared with the traditional SLAM algorithms
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based on geometry and feature points, the incorporation of deep learning and VSLAM
can augment their capacity to address some difficulties and challenges in SLAM prob-
lems [6]. There are various factors that may seriously impact the accuracy and reliability of
feature detection. The feature extraction and matching segment at the front end of most
SLAM algorithms is unable to extract reliable and consistent features in complex dynamic
environments, which can lead to problems such as lost feature tracking and positioning
failure. Deep learning methods, such as DeepFeat [7] and LIFT [8], have the ability to
acquire highly discriminative feature points from large amounts of data. These networks
can extract feature points that contain more geometric and semantic information, thus
enhancing the accuracy and robustness of the SLAM system.

Deep learning techniques have demonstrated substantial advancements in the fields of
target detection and semantic segmentation, among others. Deep learning techniques have
been able to achieve high-precision target detection that can identify and locate multiple tar-
gets in complex scenes [9]. Therefore, deep learning techniques can be used to preliminarily
segment the position and semantic information of objects in the dynamic environment
and identify potential dynamic objects, with different techniques detecting objects with
different accuracies. Target detection can generally obtain the detection frame of an object,
while semantic segmentation and instance segmentation can be used to mask the region
of an object, and instance segmentation can distinguish different individuals of the same
category. As the accuracy increases, the deep learning network becomes more complex,
which can impact the real-time performance of the system when applied to the SLAM
system. Therefore, the operational efficiency of the algorithm can be maintained at the
expense of target detection accuracy, and at the same time, the geometric information can
be used to accurately identify the region of dynamic objects and improve detection accuracy.
It is also feasible to improve the efficiency of the algorithm and reduce the unnecessary
computational burden by lightweighting the neural network. After detecting possible
dynamic objects using deep learning techniques, dynamic feature points can be identified
and rejected by geometric methods such as optical flow and motion consistency estimation.

This paper proposes the DLD-SLAM algorithm to solve the positioning problem in
dynamic environments. Based on the below work, our algorithm runs much more efficiently
than open source algorithms with the same accuracy. The main work is as follows:

1. On the basis of the ORB-SLAM3 algorithm, the GCNv2 tiny network replaces the
conventional ORB method to achieve the extraction and matching of feature points,
which improves the efficiency and robustness of the system.

2. The lightweight GSConv [10] module is applied to the YOLOv5s network model,
which reduces the count of parameters in the network to improve the computational
efficiency of the target detection algorithm. Then, the target detection algorithm
combines with the depth information of the RGB-D camera to obtain the mask of
potential dynamic targets, which helps identify areas where dynamic feature points
are located.

3. A novel method for rejecting dynamic feature points was designed based on the
dynamic feature point rejection strategy. We propose the concept of dynamic prob-
ability based on LK (Lucas–Kanade) optical flow, semantic labels, and the state in
the last frame which is added to the tracking thread. Using this method, the real
dynamic feature points are rejected, and the static feature points are retained for
position estimation. This method can effectively solve the problem of interference
with positioning by dynamic objects.

4. Experiments are carried out for the above design: Firstly, feature point detection and
matching are verified to prove the accuracy and robustness of the system; Then, the
training accuracy and detection results of the lightweight target detection network
are analysed. Finally, the performance of position estimation in the dynamic environ-
ment is verified by the TUM dataset, which has been demonstrated to improve the
efficiency of our algorithm and the effectiveness of our approach when dealing with
dynamic objects.
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2. Related Work

2.1. Visual SLAM Based on Deep Learning

Current research has shown the potential of deep learning in several segments of
Simultaneous Localisation and Mapping (SLAM), including front-end feature extraction,
loop detection, and mapping. The following is a detailed review of the integration of visual
SLAM with deep learning.

Traditional front-end feature extraction methods such as Scale-invariant Feature Trans-
form (SIFT) and Speeded-Up Robust Features (SURF) have been widely used in SLAM
systems. However, these methods are not stable enough to meet the application require-
ments in some complex scenes. In recent years, feature extraction methods based on deep
learning have gradually emerged. These methods extract feature points and descriptors
from images using convolutional neural network (CNN). MagicPoint [11] is an end-to-
end position estimation network based on deep learning, but it is only applicable when
partially regular graphics and poor migration capability are acceptable. D2-Net [12] is a
robust CNN-based feature extraction method. It is able to extract stable feature points and
descriptors in different scenarios by designing a CNN architecture based on local stability
and repeatability evaluation. R2D2 [13] is proposed based on the D2-Net network. The
R2D2 algorithm trains both keypoints and descriptors, using part of the detection network
to compute an accuracy score for the feature points. SuperPoint [14] is a lightweight feature
extraction method that employs an end-to-end training approach using a convolutional
neural network for feature point detection and description. This method has low com-
putational complexity while maintaining high performance. GCNv2 [15] is a proposed
algorithm based on the GCN network, which obtains binarised feature points and descrip-
tors through neural networks. Experimental results demonstrate that the above method is
more accurate and stable than traditional feature extraction methods.

Traditional mapping methods frequently rely on point clouds, yet these methods
are difficult to handle for complex scenes. There has been a growing popularity in the
utilisation of deep learning-based methodologies for mapping in recent years. VINet [16]
employs convolutional neural networks to extract the features of keyframes in an image
sequence. Then, it obtains a global map using a convolutional neural network-based
triangulation method.

A number of approaches have also emerged to improve the performance of SLAM
algorithms by improving deep learning networks. Zhang, R [17] used ShuffleNetV2 to
improve the YOLOv5 network. Meanwhile, to achieve semantic extraction in the environ-
ment, the segmentation head of the pyramid scene analysis network is added to the head
of the YOLOv5 network, giving the improved YOLOv5 network both target detection and
semantic segmentation capabilities. The use of YOLOv5 has also emerged as an approach
to the problem of mapping in dynamic scenes [18].

In addition to the above methods, deep learning can be applied to different parts of
the SLAM system. These studies demonstrate that the integration of deep learning and
VSLAM enhanced system performance and offers a diverse array of practical applications.

2.2. Dynamic Visual SLAM

Dynamic visual SLAM can be mainly classified into geometry-based and deep learning-
based approaches.

Among the geometry-based methods, Kim [19] modelled the background in the
environment to eliminate the influence of moving targets and constructed a pixel-level
background likelihood function based on the difference method between depth images.
The image sequence can effectively separate the moving targets from the background
region. It can be embedded into the DVO-SLAM system [20] to achieve real-time results.
Fan [21] solved the problem of dense distribution and the high number of iterations of
the standard RANSAC algorithm when selecting the inner points, as well as the polar
constraints, to effectively filter out the dynamic points in the image. PFD-SLAM [22]
uses a grid-based motion statistics method to ensure accurate matching with RANSAC.
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It computes homography transformations to extract dynamic regions and uses particle
filtering to accurately determine dynamic regions.

Among the deep learning-based approaches, DS-SLAM [23] is based on the ORB-
SLAM2 algorithm. SegNet [24], a semantic segment network, combines with optical flow to
construct semantic octree graph maps, which reduces the impact of dynamic objects. Detect-
SLAM [25] uses SSD networks [26] to achieve semantic segmentation on keyframes and
uses SSD networks on a GPU to solve the time efficiency problem. RDS-SLAM [27] adds a
semantic thread to ORB-SLAM3, which also performs semantic segmentation on keyframes
and updates the motion probability of feature points based on the segmentation results.
DynaSLAM [28] is a visual SLAM system with dynamic object recognition and repair that
uses Mask-RCNN [29] to detect and eliminate a priori dynamic objects and combines multi-
view geometric constraints to locate undetected dynamic objects. However, the system
cannot operate in real time due to the operational efficiency of this instance segmentation
network. DP-SLAM [30] solves the problem of the inaccurate detection of dynamic points
appearing at the boundary edges of the segmentation by determining the probability of
moving points based on the previous frames and Bayes’ law. YOLO-SLAM [31] extends
ORB-SLAM2 with semantic segmentation and dynamic feature selection threads. The
segmentation thread uses YOLOv3 to select known dynamic objects. The dynamic feature
selection thread uses geometric-depth RANSAC to distinguish between dynamic and static
feature points.

Compared with geometry-based dynamic visual SLAM systems, deep learning-based
systems have higher accuracy and stability and can be applied to more complex environ-
ments. However, due to the deep learning network, it tends to reduce the efficiency of the
system. Therefore, there is still ample opportunity for further research in the field of deep
learning-based SLAM. To compensate for these shortcomings, deep learning combined with
geometrically constrained SLAM methods has emerged [32,33]. To solve these problems,
we propose a dynamic SLAM system, DLD-SLAM, based on feature point extraction by
GCNv2-tiny, lightweight YOLOv5s, and a dynamic feature point rejection strategy.

3. Methods

DLD-SLAM is improved based on ORB-SLAM3 for RGB-D cameras, as shown in the
flow chart in Figure 1. In addition to the original three threads of tracking, local mapping,
and loop closing, a semantic segmentation thread is designed to identify dynamic regions.

As depicted in Figure 1, the RGB images and depth images are obtained from the
RGB-D camera. The RGB images are simultaneously passed into the semantic segmentation
thread for target detection and the tracking thread for feature extraction, while the depth
images are only passed into the semantic segmentation thread to achieve the mask of
dynamic objects in combination with target detection. In the semantic segmentation thread,
target detection is performed using the GS-YOLOv5s algorithm. It preliminarily determines
the potential dynamic elements by obtaining the semantic information and combining
the depth images to obtain the mask of the dynamic elements. Different from traditional
semantic segmentation, it refers to the depth information and can achieve the same effect
as the semantic segmentation mask without using complex neural networks. GS-YOLOv5s
is the target detection method as it performs lightweight processing. It improves the
algorithm’s efficiency without affecting its performance.

In the tracking thread, the feature points are extracted and matched using the GCNv2-
tiny network. This method can be a good solution to the problem of difficulty with
feature point extraction in dynamic environments and the difficulty of matching with large
viewpoint changes. Furthermore, the dynamic feature point rejection strategy is designed,
and potential dynamic objects are judged to determine whether they are real dynamic
elements or not, and the dynamic feature points are rejected. The static feature points
are retained for position estimation as well as for back-end optimisation, loop closure,
and mapping. Using the strategies described above, we improve the system’s accuracy,
robustness, and efficiency.
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Figure 1. Overview of DLD-SLAM. The algorithmic framework contains four threads: semantic
segmentation, tracking, local mapping and loop closing. Section 3.1 is shown in blue; Sections 3.2
and 3.3 are shown in green; and Section 3.4 is shown in orange to express the process of dynamic
feature points rejected.

3.1. Feature Extraction and Matching Based on GCNv2-tiny Network

The feature points in the ORB-SLAM3 system are ORB (oriented FAST and rotated
BRIEF) feature points. The method of extracting feature points in each frame is as follows:
Firstly, an image pyramid of decreasing resolution is constructed by down-sampling. Then,
each layer of the image is divided into a 30 × 30 pixel grid, and the feature points are
extracted and homogenised in the grid. Finally, the extraction of ORB feature points is re-
peated for each layer of the image. This method leads to an increase in computation, which
reduces the real-time performance of the system. To improve the real-time performance
of the system, we employ the GCNv2-tiny network to extract image feature points and
descriptors, which replaces the original ORB feature points and is ported to ORB-SLAM3.
Figure 2 depicts the process of extracting feature points using the GCNv2-tiny network.

As depicted in Figure 2, firstly, the original input image is segmented into a 16 × 16 pixel
grid for separate prediction, which ensures that the feature points are evenly distributed
throughout the image. The GCNv2-tiny network shares the convolutional network from
conv1 to conv4 to encode image features. Compared to the GCNv2 network, the GCNv2-
tiny network halves the number of convolution channels in conv3 and after conv3 while
maintaining the same convolution kernel size and step size. This compresses the parameters
to reduce the amount of computation, which helps to improve real-time performance.
Subsequently, the convF convolutional network is employed for decoding. The sub-pixel
convolution is employed to obtain both the position data of the feature points and the
probability distribution graph showing the confidence degree. The decoding process
employs a convolutional network known as convD. The corresponding descriptors are
obtained using the bilinear interpolation method. Finally, the feature points are acquired
using the procedure of Non-maximum Suppression (NMS) followed by the identification
of corresponding descriptors through indexing.
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Figure 2. The procedure of extracting feature points based on GCNv2-tiny network. The number
under the convolutional layer in the figure is the number of channels. The two figures on the right
show the results of feature point extraction and matching.

The GCNv2-tiny network predicts both keypoints and descriptors. The network
outputs a probability graph of the keypoint confidence degree and a dense feature graph
of descriptors. The probability graph of feature points is binary and the points only take
values between 0 and 1. This process becomes a classification problem, which gives better
training results. Moreover, this is the same as the feature extraction in ORB-SLAM3, so it
can be well ported to ORB-SLAM3. The size of a binary feature vector is set to 256 so that
the descriptor has the same bit width as the ORB features and so that the descriptor can be
directly embedded into the existing ORB-based visual SLAM. The purpose of the network
training aims to match the positions of the points with the value of 1 in the probability
graph of the feature points in the final output as closely as possible to the corresponding
real feature points in the training dataset. At the same time, a binary activation layer is
added at the end of the network to obtain binary descriptors.

By introducing the attention mechanism into the feature encoding stage, more specific
feature points can be obtained, which can improve the robustness of feature matching.
The GCNv2-tiny network was trained using the SUN3D [34] dataset, which provides
information about the camera’s motion position. The network uses sample data as well
as a loss function, and it contains not only the true positions of the feature points but also
the true feature matching relationships obtained from the real position. And the position
information in the dataset is the main training base. Therefore, the feature point matching is
more stable when the larger view changes, which is also beneficial to the position estimation
based on feature points.

The feature point extraction and matching used in this paper are conducive to im-
proving the real-time performance of the system, and the extracted feature points are more
suitable for high-precision position estimation. This algorithm is more stable when dealing
with large perspective changes and dynamic object disruptions.

3.2. Lightweight YOLOv5 Target Detection Algorithm

YOLO [35] is a one-stage target detection algorithm that has a simple structure and
superior performance in both detection speed and detection accuracy. YOLOv5 can be
divided into several different architectures depending on the number of convolutional ker-
nels in the network. YOLOv5 contains five architectures: YOLOv5x, YOLOv5l, YOLOv5m,
YOLOv5n, and YOLOv5s. The number of floating point operations and the value of model
parameters decrease for these five models in the given order. In this paper, we choose
YOLOv5s, which has a smaller number of model floating-point operations and model
parametric quantities, because this architecture satisfies the system’s detection accuracy
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with less computation required as well as a faster rate of model training. Based on the
YOLOv5s algorithm, it is lightweighted in this paper.

The YOLOv5s model is mainly composed of Backbone, Neck, and Head, which
includes a large number of convolutional neural network (Conv), spatial pyramid pooling
fast (SPPF), and CSP [36] modules. The role of Neck is to perform multi-scale feature
fusion processing on the feature graph and then to pass the feature graph to the prediction
layer, which requires a large number of parameters and computations. In order to reduce
the computational effort of the model and build a lightweight network, the convolution
network GSConv is added to the CSP2_x module, which is mainly used in the Neck
stage. GSConv replaces the standard convolution network with depthwise convolution
(DWConv), which reduces the number of parameters and computation by about half
compared to the standard convolution. The network improves the efficiency of training
and running the model while maintaining a comparable level of performance.

The original input image should be transformed into a multi-layer feature map in
Backbone and subjected to feature extraction. Different layers of features are fused together
in the Neck module using up-sampling and down-sampling operations. This produces
feature graphs with multi-scale information. During these operations, each spatial com-
pression and channel expansion of the feature graph results in the loss of some detection
information. Dense convolutional maximises the retention of hidden connections between
each channel. Then, a smaller channel is placed in the centre of the GSConv model. This
reduces the amount of additive computation while ensuring that effective detection infor-
mation is delivered. However, due to the deeper layers of the GSConv network model, the
deeper network increases the resistance of the data flow. It is therefore not suitable for use
in all stages of YOLOv5s.

In Neck, the processed feature graphs are maximised in the channel dimension and
minimised in the width and height dimensions. This is a better fit to the structure of the
GSConv model as it does not require any transformation to be performed. There is an
improvement in performance without a reduction in the efficiency of network inference
due to the deepening of the layers. Therefore, a better choice is to use GSConv only at the
Neck stage. As shown in Figure 3, the GSConv network is used in the CSP2_x module in
the YOLOv5s network, and the GSbottleneck module is added based on GSConv. Based on
this, the Neck module is reconstructed, keeping the original structure of the Backbone and
Head modules unchanged. In Neck, the multi-scale fusion feature graphs processed by
GSConv are less redundant and do not need to be compressed. In addition, the attention
module is more effective.

Figure 3. The CSP2_x module structure in GS-YOLOv5s network.

3.3. Dynamic Object Detection Based on Target Detection and Depth Image

The target detection algorithm used in this work is GS-YOLOv5s. This algorithm can
only initially determine the potential dynamic objects by semantic labels and represent the
dynamic objects with a rectangular detection box. However, if the coverage area of the
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detection box is large while the proportion of the area occupied by the dynamic objects
in that detection box is small, it will result in the rejection of too many static points in the
background. This will lead to insufficient static feature points for position estimation and
affect the positioning accuracy of the system. Therefore, we adopt the method of combining
target detection and depth information to further accurately determine the area of dynamic
elements in the image. This is similar to obtaining a mask by semantic segmentation and
maximises the retention of static feature points.

Most dynamic objects have some depth difference from the background. In addition,
dynamic objects tend to occupy the centre of the detection frame. The four corners of the
detection frame basically correspond to the static background points. Figure 4 demonstrates
the positional relationships of dynamic objects in space and the meaning of every element.

dmax = max(dtl , dtr, dbl , dbr), (1)

where dtl , dtr, dbl , and dbr represent the depth values corresponding to the four corner
points of this detection frame. The depth of a pixel is assumed to be represented by d. The
maximum background depth of a dynamic object is dmax. The reason for not selecting the
minimum depth is to avoid feature points near or in front of the dynamic element causing
the dynamic mask detection to fail.

d = dc + ε, dmax − dc > ε, (2)

where dc represents the depth value corresponding to the centre of the detection frame.
The values of dc and dmax is used to determine the threshold d that distinguishes the
foreground dynamic feature points from the background static feature points. d represents
the mask depth threshold. The value of ε is a pre-determined distance based on empirical
values of the frequently occurring positions of dynamic objects in the scene.

 
(a) (b) 

Figure 4. This shows the principle of semantic segmentation. (a) Background represents the static
objects in the background: A is the static background closer to the corresponding dynamic object
in the detection box, and B is the static background further away from the corresponding dynamic
element in the detection frame. Different classes of feature points are represented by different colours.
(b) Description of distance of various elements in Figure (a) in the camera coordinate system along
the z-axis.
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The process of obtaining the mask of dynamic objects is as follows: Firstly, we set
the depth value of a depth image, but not the target detection frame, to 0. We then set a
mask region with the size of the detection frame area where the depth value is d. And
the threshold value ε is to ensure that the depth position of the mask region is between
the dynamic object and the background. Then, the pixel depth value in the detection box
is compared to d. If it is less than d, the feature is considered to be in a dynamic region.
Otherwise, it is considered a static region, and the depth value is set to 0. The result is a
mask that serves the same purpose as semantic segmentation for a more accurate rejection
of dynamic feature points.

As shown in Figure 5, combining the target detection results with the depth informa-
tion from the RGB-D camera can obtain results comparable to that of semantic segmentation.
Due to the complexity of the semantic segmentation neural network, it will be more com-
putationally intensive, leading to an increase in running time. This may affect the real-time
performance of the system. However, our method solves the above problems while ensur-
ing the accuracy of the system.

Figure 5. The result of semantic segmentation based on our method. The red represents the target
detection box; the green represents static feature points in the keyframe. The depth value of white
area is 1, while that of the black area is 0.

The method is used to obtain a semantic segmentation mask with the contour of the
target object and to avoid culling dynamic feature points by over-culling static feature points
in the detection box. Although there are open source semantic segmentation algorithms
with this capability, they often do not run in real time. Our approach, by combining a target
detection algorithm with depth information, makes full use of the sensor information and
also improves the running efficiency of the algorithm.

In a word, the depth information is used to determine the depth in space of all
objects in the detection box. The depth of the dynamic objects, dc, and the depth of
the static background, dmax, are determined. The position of the mask is determined
between the depth values dc and dmax. It can obtain the mask of the object, which separates
dynamic objects in the foreground from static backgrounds by setting the value of ε in the
detection box.

3.4. Dynamic Feature Point Rejection Strategy Based on Optical Flow

Target detection using the GS-YOLOv5s algorithm is combined with RGB-D depth
images to obtain candidate masks of dynamic objects, which are sorted by semantic labels.
The real static, potential, or real dynamic objects are then further sorted by dynamic
probability based on the optical flow and semantic information, and then the feature points
within the dynamic object mask are removed. In real environments, there are different
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kinds of objects; some objects have the ability to move autonomously, such as people,
animals, etc., and they are usually in a state of motion, which is called dynamic objects,
while objects such as tables, sofas, etc., usually do not move and are therefore called static
objects. The potential dynamic objects are mainly objects that have a greater probability of
being moved, such as books and chairs. This method will reduce the false rejection rate
and improve the accuracy of the system in dynamic environments.

The optical flow can compare the motion of pixel points in adjacent frames. When
processing the dynamic objects in a keyframe, the pixel points on the same dynamic object
have the same motion trajectory. Therefore, the motion information of the whole dynamic
object can be obtained by judging the motion of one pixel point in the dynamic object.
In our method, the LK (Lucas–Kanade) optical flow method [37] is used. The LK optical
flow method is a method based on the local lightness change of the image. The LK optical
flow belongs to the sparse optical flow, which can ensure the performance effect while the
computational amount is small.

In real scenes, the motion state of objects often changes. To address these problems,
we design the dynamic probability and update the probability with subsequent data, which
can more accurately distinguish between dynamic and static regions. In order to make the
recognition of dynamic features robust, the dynamic probability is based on the semantic
information, the relative velocity constraints are based on the optical flow, and there are
three ways to update the feature point state in the last frame. The dynamic probability of
the feature point update formula is as follows:

Pj(Xi) = α1Sj(Xi) + α2Mj(Xi) + α3Kj−1(Xi) (3)

where Xi represents a feature point on the j-th frame. Pj(Xi) represents the probability that
the feature point Xi in the current frame is a dynamic feature point. Sj(Xi) represents the
feature points classified by the semantic information which are located in the static, potential
dynamic, and dynamic object masks. Mj(Xi) represents the result of the verification
using the optical flow method. The result that satisfies the threshold takes the value of 1;
otherwise, it is 0. Kj−1(Xi) represents the result of the verification of the feature point that
matches the feature point Xi in the last frame and takes the value of 1 if it has been judged
to be a dynamic feature point in the last frame; Otherwise, it takes the value of 0. The value
is also set to 0 if the matching feature point is not searched. The values of α are weighting
factors and satisfy the constraint that α1 + α2 + α3 = 1 where the values of α1, α2, α3 can be
adjusted according to the specific environment.

The feature points within the mask are identified by the dynamic feature points
waiting to be determined. It is assumed that the set P contains all feature points in the
mask. Set D is the set of dynamic feature points, and it set the value of Sj(Xi) to 1; set H is
the set of feature points within the potential dynamic object mask, and it sets the value of
Sj(Xi) to 0.5; and set S is the set of static feature points, and it sets the value of Sj(Xi) to 1.
Furthermore, set P can be expressed as P = D ∪ H ∪ S.

The results of Mj(Xi) are based on the optical flow method. Each feature point has
coordinate and velocity information, which are calculated using the feature extraction
algorithm and the optical flow method. In a real scene, the motion of dynamic objects will
generate optical flow, and the background will also generate optical flow with the motion
of the camera. Therefore, the average motion velocity of all static feature points in the set S
needs to be calculated first for the accurate rejection of dynamic feature points. The motion
velocity of static feature points is calculated as follows:[

U
V

]
=

1
N ∑n

k=1

[
uk
vk

]
, (4)

where U and V are the average motion velocity of the static feature point along the X-
and Y-axis.
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The motion velocity of the static feature points is used to identify all feature points in
the potential dynamic object masks within set P. The equation for determining the results
of Mj(Xi) can be expressed as√

(uk −U)2 + (vk −V)2 > t, k = 1, 2, · · · n, (5)

where t is a self-adaptive threshold.
If the motion velocity of the feature point is beyond this threshold, the value of Mj(Xi)

is considered to be 1, otherwise the value is 0.
Finally, we determine whether a feature point located in a mask is truly dynamic by

the probability Pj(Xi). The feature point which is determined to be a dynamic feature point
will be rejected and will not be involved in the position estimation. The method used to
reject dynamic feature points is shown in Algorithm 1.

Algorithm 1: Dynamic feature points rejection algorithm.

Input: Current frame’s feature points Xi in the semantic segmentation mask, Xi ∈ P;
Output: The set Sreal including all current frame’s static feature point;
1 Obtain all feature points in the semantic segmentation mask belong to the set P;
2 Classify feature points in the set P according to the mask’s semantic labels, Xdm

i ∈ D, Xhm
i ∈ H,

and Xsm
i ∈ S, and assign semantic labels to every feature point, Sj

(
Xdm

i

)
=1, Sj

(
Xhm

i

)
=0.5, and

Sj
(
Xsm

i
)
=0;

3 for each feature point pi ∈ P do

4 Calculate the mean motion velocity
[

U
V

]
= 1

N ∑n
k=1

[
uk
vk

]
of all the feature points, X

sj

i ,

and calculate the velocity, V(pi)=
√
(ui −U)2 + (vi −V)2;

5 if V(pi) > t then

6 Mj(pi)=1;
7 else Mj(pi)=0;
8 end if

9 Follow the method in step 5~8, judge the state of pi in last frame, and obtain the value of
Kj−1(pi);

10 Calculate the dynamic probability of pi, Pj(pi) = α1Sj(pi) + α2 Mj(pi) + α3Kj−1(pi);
11 if Pj(pi) < ε then

12 Save the feature points pi to the set Sreal ;

13 else reject the feature point pi;
14 end if

15 end for

In step 2, Xdm
i represents the i-th feature point in the m-th dynamic detection box,

Xhm
i represents the i-th feature point in the m-th potential dynamic detection box, and Xsm

i
represents the i-th feature point in the m-th static detection box.

4. Experimental Results

This section presents experimental details to validate the proposed DLD-SLAM system.
In order to evaluate and analyse the proposed DLD-SLAM system, the experiments are
performed on a laptop with the following specifications: Intel Core i9-13800H processor,
16 GB RAM, NVIDIA GEFORCE GTX-4600, and 8 GB graphics memory which installed
on Lenovo ThinkBook 16 computer. And the operation system is Ubuntu 20.04. The
proposed DLD-SLAM algorithm is compared and studied in regards to three aspects:
feature extraction and matching, target detection algorithm, and the positioning accuracy
of the system. Through the experimental comparison, we demonstrate the superiority of
the proposed method.
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4.1. Feature Extraction and Matching

In order to verify the feature point extraction and matching effect of the GCNv2-tiny
network, we selected the v_bird sequences in the HPatches dataset for the experiments
comparing the matching effect of the GCNv2-tiny feature points and ORB feature points.
The HPatches dataset is mostly used in the evaluation of image matching and description
tasks of transformations of scale, view angle, luminance, etc. And each sequence has the
exact corresponding feature points and the truth of the transform parameters. It can be used
for the validation of the effectiveness of feature point extraction and matching methods.

The v_bird sequence within the HPatches dataset has some images from different
viewpoints of the same scene. Figure 6 illustrates the impact of GCNv2-tiny and ORB
feature extraction and matching across various viewing angles. When the viewing angle
is not changed much, ORB has a good matching effect, but when the viewing angle is
changed a lot, ORB has almost no matching effect. The GCNv2-tiny model demonstrates
a robust capacity for matching. Regardless of variations in the viewing angle, the feature
points can be matched. The results are presented in Table 1.

 
(a) (b) 

Figure 6. This figure shows the performance of feature point extraction and matching. From top to
bottom, the scenes shows the different perspectives (1~4). (a) The results of the GCNv2-tiny method;
(b) the results of the ORB method.

In Table 1, correct matches refer to the initial matches after the RANSAC algorithm
has removed the false matches. The rate represents the proportion of correct matches to
the number of initial matches. For small changes in perspective, the GCNv2-tiny feature
point shows a significantly higher correct match rate over ORB. It can be concluded that
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the GCNv2-tiny feature points are more adaptable and robust in complex scenes with large
perspective changes.

Table 1. The results of feature point extraction and matching by different viewing angles by two
methods.

Method Perspective
Initial

Matching
Correct Matching Rate (%)

ORB

1 329 46 13.98
2 374 97 25.94
3 261 17 6.51
4 302 5 1.66

GCNv2-tiny

1 341 124 36.36
2 563 386 68.56
3 367 89 24.25
4 435 92 21.15

The results of each method in this paper are bolded.

4.2. Target Detection Network Training and Performance

To verify the performance of the GS-YOLOv5s dynamic target recognition algorithm
in this paper, the COCO dataset is used for training and validation. The training model
for GS-YOLOv5s is performed first. The parameters of the experiment are set as follows:
the network training batch size is 128, the initial learning rate is 0.01, the weight decay
coefficient is 0.0005, and the total number of training rounds is 200. During the training
process, the dataset is divided into three parts: the training set, the validation set, and the
test set. The role of the training set is to train the model to obtain the parameters to make
the model fit the data, the role of the validation set is to evaluate the performance of the
model and select the best hyperparameters to avoid overfitting the model; and the role
of the test set is to test the model’s ability to generalise and to evaluate its performance
on an unknown dataset. Figure 7 illustrates the progression of loss values throughout the
training process. The accuracy of target detection and classification increases as the loss
value decreases, approaching the true value.

As seen from Figure 7, as the number of training rounds increases, the loss decreases
and tends to stabilise, and the model gradually converges. The target detection effect of the
GS-YOLOv5s model in this paper is comparable than that of YOLOv5s. Combined with the
loss curves of the validation set, it can be seen that the model does not show any overfitting
phenomenon when applied to the validation set. The model is trained to learn effective
features and does not rely too much on the training data.

From Figure 8, the fluctuations in precision and recall gradually decrease and become
stable as the number of training rounds increases. And the precision of the YOLOv5s
model fluctuates more during the training process. This indicates that its training effect
is not as good as the GS-YOLOv5s model in this paper. However, it can be seen from its
precision curve that its prediction effect is slightly higher than that of the model in this
paper. The corresponding mAP performance indices are presented in Table 2 and were
used to evaluate the training results.

Table 2. The comparison of the two models in performance parameters.

YOLOv5s GS-YOLOv5s Promotion Rate (%)

mAP_0.5 94.291 93.473 −0.87
mAP_0.5:0.95 75.689 79.418 4.93

FPS 112 135 20.54
Params (M) 15.2 12.7 16.45
FLOPs (ms) 15.6 13.2 15.38

The results of method in this paper are bolded.
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Figure 7. Plot of training loss variation for GS-YOLOv5s model. The variable box_loss is the bounding
box regression loss; obj_loss is the confidence loss; cls_loss is the classification probability loss. The
variable train represents the loss change in the training set, while val represents the loss change in the
validation set.

Figure 8. Plot of changes in performance metrics for GS-YOLOv5s model. The changes in precision,
recall, and mAP of GS-YOLOv5s model during the training process. The variable mAP_0.5 refers to
a mAP with IoU threshold larger than 0.5; mAP_0.5:0.95 denotes the average mAP at different IoU
thresholds (from 0.5 to 0.95, with a step size of 0.05).
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Table 2 presents a comparison between the two models in terms of performance
parameters. The variable mAP is used to measure the prediction accuracy, and a higher
the value represents a better performance. FPS is used to measure the running efficiency; a
larger value represents a faster rate. Params is used to measure the model size; the smaller
the value, the lighter the model. FLOPs is used to measure the speed of the algorithm;
a smaller value represents a faster speed. It can be seen that GS-YOLOv5s is slightly
inferior to the original algorithm in accuracy, but the running efficiency is significantly
improved over the original algorithm. The proposed methodology demonstrates a 20.54%
enhancement in speed, while accompanied by a 0.87% decrease in accuracy. Therefore, the
algorithm proposed in this paper improves the running speed by reducing the accuracy
slightly to enhance the real-time performance of the system.

The experimental results of the comparison are depicted in Figure 9. The majority of
objects within the environment can be effectively detected, although the level of accuracy
in detection is not as high as that achieved by YOLOv5s. The classification results are also
slightly worse than those of the original algorithm. However, the target detection algorithm
in this paper is used to further identify the dynamic objects and does not require strict
semantic information for classification. The method employed in this study demonstrates a
high level of accuracy in target detection, thereby satisfying the system’s requirements.

 

Figure 9. The comparison of the detection results of the two algorithms on the test samples. The left
and right side show the comparison of target detection results between YOLOv5s and GS-YOLOv5s.
In the last figure, the top is YOLOv5s’s results, and the bottom is GS-YOLOv5s’s.

From Figure 10, the mask of dynamic target objects is obtained. In Figure 10a,b, we
mark the defects of the detection results by the yellow frame. In Figure 10a, this result is
due to the fact that the dynamic object is too close to the neighbouring background, and
the depth values of both are close enough to cause the distinction to fail. In Figure 10b, this
result is due to the fact that the dynamic object is close to the camera. In the results of all
frames, the defects are very rare, and they tend to take up a tiny area of the mask, which
will not affect the performance of the system.
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Figure 10. The mask of dynamic target object obtained by combining GS-YOLOv5s with depth
images. The red box is the detection box; The green points are the feature points by the GVNv2-tiny
method. The yellow box marks the defect of results in the mask. The Figure (a–d) are representative
of a few frames from all results. The yellow boxes of (a,b) in the images represent flaws, while
(c,d) are the results with better performance.

4.3. Trajectory Accuracy Verification Experiment in the Dynamic Environment
4.3.1. Trajectory Accuracy

The main metrics used to evaluate trajectories in Visual SLAM are absolute trajectory
error (ATE) and Relative Pose Error (RPE). The ATE metric is used to measure the difference
between the camera pose estimated by the algorithm and the true camera pose and is used
to calculate the global consistency of the trajectory. The ATE metric is used to measure
drift in the visual odometer system. And the smaller the ATE evaluation metric, the
higher the accuracy. It is assumed that the visual odometry estimate of the position is
denoted as P1, P2, · · · Pn ∈ SE(3). SE(3) is the three-dimensional Euclidean transformation
consisting of rotations and shifts. The true bit positions of the camera are denoted as
Q1, Q2, · · ·Qn ∈ SE(3). These positions represent the camera’s position relative to the
world coordinate system at different times or in different frames. The definition of the ATE
formulation is given below.

The absolute trajectory error at frame i is defined as

Fi = Q−1
i SPi, (6)

The root mean square error (RMSE) formula for ATE is defined as

RMSE(F1:n) =

√
1
m ∑m

i=1 ‖ trans(Fi) ‖2, (7)

where the trans(.) denotes the translational component of the relative trajectory error.
This work focuses on evaluating the trajectory accuracy using ATE.
The TUM_RGBD dataset, an open source dataset provided by the Technical University

of Munich in Germany, is used to validate the robustness of the algorithm and the position-
ing accuracy in dynamic environments. The dataset comprises a total of 39 image sequences
depicting various indoor environments. The contents of the dataset encompass both RGB
images and depth images. The sitting and walking sequences are dynamic environments.
Specifically, the sitting sequence includes two people positioned in front of a table engaging
in small-amplitude movements. On the other hand, the walking sequence involves two
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people performing larger-amplitude movements as they move around a table. Furthermore,
these two dynamic subsequences can be associated with four distinct categories of camera
motion. There are four different camera movements that can be observed: (1) halfsphere:
the camera moves along the hemisphere with a diameter of 1 m; (2) xyz: the camera moves
along the x, y, and z axes; (3) rpy: the camera rotates along the roll, pitch, and yaw axes;
and (4) static: the camera is stationary.

The fr3-walking-xyz, fr3-walking-rpy, fr3-walking-halfsphere, and fr3-walking-static
dataset sequences from the highly dynamic environment in the TUM dataset are chosen
as the test data. And we compare DLD-SLAM with ORB-SLAM3 to demonstrate the
effectiveness of dealing with dynamic interference. Furthermore, the EVO evaluation
tool is employed to measure the absolute trajectory error, which quantifies the difference
between the estimates provided by the SLAM system and the actual values obtained from
the dataset. Figure 10 displays the ATE of the ORB-SLAM3 and DLD-SLAM methods. The
red line indicates the distance between the true value and the estimated value, commonly
referred to as the absolute trajectory error (ATE). The results of localisation in the TUM
dataset are depicted in Figures 11 and 12.

Figure 11. The ATE of the fr3_walking_xyz, fr3_walking_rpy, fr3_walking_halfsphere, and
fr3_walking_static sequences from left to right. (a–d) are the ATE plots of the ORB-SLAM3 algorithm.
(e–h) are the ATE plots of DLD-SLAM.

It is evident that DLD-SLAM has a substantial impact on enhancing the precision of
localisation in visual SLAM systems operating within dynamic indoor environments.

The experimental findings, as presented in Table 3, indicate that DLD-SLAM demon-
strates significantly enhanced accuracy in comparison to ORB-SLAM3; the ATE is greatly
reduced. The RMSE is reduced by 97.29%, 94.71%, 96.89%, and 98.61% for the fr3-walking-
xyz, fr3-walking-rpy, fr3-walking-halfsphere, and fr3-walking-static sequences. And the
robustness of the camera’s various irregular movements performs better when dealing
with different sequences.
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Figure 12. Taking the fr3_walking_xyz sequence as an example, (a,c) show the estimated versus true
values of ORB-SLAM3 and DLD-SLAM on the trajectory as well as the error along the x, y, and z axis
directions, and (b,d) show the ATE of DLD-SLAM with both the change in position and the change
in time.

Table 3. The ATE of ORB-SLAM3 and DLD-SLAM on the TUM dataset (m). RMSE is the root mean
square error, Mean is the mean, Median is the median, and S.D. is the standard deviation.

Sequence
ORB-SLAM3 DLD-SLAM Promotion Rate

of RMSE (%)RMSE Mean Median S.D. RMSE Mean Median S.D.

fr3-w-xyz 0.6847 0.6097 0.6306 0.3116 0.0185 0.0163 0.0147 0.0088 97.29
fr3-w-rpy 0.8003 0.6846 0.6584 0.4145 0.0424 0.0307 0.0229 0.0293 94.71

fr3-w-halfsphere 0.7057 0.6481 0.6041 0.2792 0.0219 0.0186 0.0156 0.0118 96.89
fr3-w-halfsphere 0.4028 0.368 0.3017 0.1638 0.0056 0.0049 0.0043 0.0028 98.61

The results of method in this paper are bolded.

Table 4 presents the absolute trajectory error RMSE of ORB-SLAM3, DS-SLAM, Detect-
SLAM, DynaSLAM, and DLD-SLAM. DS-SLAM and Detect-SLAM are similar to DLD-
SLAM in that they all use different networks for the semantic segmentation of the dynamic
objects and then determine the real dynamic targets for dynamic feature point rejection.
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Their positioning accuracy is not much different from this paper’s method, and the ATE
of DLD-SLAM can be reduced by about 30% at most. In terms of positioning accuracy,
DynaSLAM’s exceeds DLD-SLAM’s. DynaSLAM achieves higher accuracy by leveraging
the MASK-RCNN network for dynamic target segmentation and incorporating geometric
constraints. Nevertheless, the real-time performance of the MASK-RCNN network is
limited by its extended duration.

Table 4. The absolute trajectory RMSE of each traditional algorithm (unit: m).

Sequence ORB-SLAM3 DS-SLAM Detect-SLAM DynaSLAM DLD-SLAM

fr3-w-xyz 0.6847 0.0257 0.0254 0.0156 0.0185
fr3-w-rpy 0.8003 0.4453 0.4559 0.0358 0.0424

fr3-w-halfsphere 0.7057 0.0346 0.2021 0.0179 0.0219
fr3-w-static 0.4028 0.0072 0.0069 0.0011 0.0056

The results of method in this paper are bolded.

The method presented in this paper demonstrates enhanced capabilities in addressing
localisation challenges in the presence of dynamic interference. The results indicate a
notable enhancement in both the accuracy and robustness of the localisation. Moreover, it
improves the localisation accuracy of real-time algorithms compared to classical dynamic
visual SLAM. Although the localisation accuracy is slightly lower than that of DynaSLAM,
DLD-SLAM makes up for the shortcomings of DynaSLAM in operational efficiency.

4.3.2. The Efficiency of the Algorithm

Figure 13 depicts a box plot of the duration taken by this algorithm to process each
frame of the fr3_walking_xyz sequence. After removing abnormal values, the time taken to
process each frame is between 62 and 68 ms, with a mean value of 65.8188 ms.

Figure 13. The average time consumption to process the front end per frame and process each frame
of the fr3_walking_xyz sequence.
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Table 5 provides a comparative analysis of the running efficiency of DLD-SLAM and
various traditional algorithms in the processing of the fr3-walking-xyz sequence. The time
required by each algorithm to process each frame is recorded. One of the considered meth-
ods, ORB-SLAM3, does not address the localisation challenge in dynamic environments
and includes processes for detecting and rejecting dynamic feature points; consequently,
the running time is reduced. DS-SLAM and Detect-SLAM are both examples of dynamic
feature point rejection methods, which are employed in the research paper being discussed.
However, the method in this paper replaces traditional ORB feature point extraction and
matching with a more efficient and stable deep learning method in the front-end session.
The integration of a lightweight network and RGB-D depth information is used in dynamic
feature point detection and rejection, resulting in enhanced operational efficiency and
real-time performance. DynaSLAM cannot run in real-time due to the use of the MASK-
RCNN network for segmentation. Therefore, DLD-SLAM demonstrates great superiority
in running efficiency in the dynamic visual SLAM algorithm.

Table 5. The comparison of average time of fr3_walking_xyz sequence processed by various tradi-
tional algorithms.

Method
Time Consumption (Unit: ms)

Front End Per Frame

ORB-SLAM3 - 46.81
DynaSLAM 310.87 376.36
DS-SLAM 42.61 78.46

Detect-SLAM 57.74 96.14
DLD-SLAM 31.32 65.82

The results of method in this paper are bolded.

5. Discussion

The performance of localisation. The results presented in Figure 6 and Table 1 demon-
strate that the DLD-SLAM system successfully extracts a sufficient number of feature points
during the feature extraction and matching process. Furthermore, these feature points are
matched with greater resilience compared to the conventional ORB features. Figures 7 and 8
demonstrate that our improved target detection method, GS-YOLOv5s, can be effectively
trained and predicted. The target detection results depicted in Figure 9 demonstrate that
they satisfy the algorithm’s requirements and effectively identify the area where dynamic
feature points with semantic labels are situated, when combined with the depth image.
Figures 11 and 12, and Table 3 embody the accuracy comparison between DLD-SLAM and
ORB-SLAM3 in processing the dynamic sequences of the TUM dataset. It can be seen that
the method of this paper can effectively solve the localisation problem of the system in
a dynamic environment. By integrating target detection and depth image, the approach
successfully acquires object mask and semantic information. Additionally, the adoption
of a dynamic feature point rejection strategy further enhances the method’s effectiveness.
This method has also proved to be feasible. Table 4 presents a comparative analysis of the
positioning accuracy achieved by DLD-SLAM and traditional dynamic SLAM methods;
DS-SLAM and Detect-SLAM are the same type of dynamic visual SLAM that can be oper-
ated in real-time as this paper, and the accuracy of DLD-SLAM is more superior. This paper
presents several contributions that enhance the accuracy of feature point extraction and
matching methods. Additionally, it introduces a dynamic feature point rejection method
and strategy. The accuracy performance of DynaSLAM surpasses that of other systems;
however, its network model lacks the capability to operate in real time. Table 4 illustrates
the method’s superior performance in terms of localisation.

The time consumption. Table 2 presents the observed decrease in network parameters
of GS-YOLOv5s in comparison to YOLOv5s, along with the corresponding enhancement in
running speed. This demonstrates the efficacy of our approach in relation to its compact
model size and rapid processing capabilities. Figure 13 demonstrates the running time
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of DLD-SLAM, including the time consumed per front end and the time consumed per
frame. Table 5 embodies the running efficiency comparison between DLD-SLAM and
other classical algorithms. The running times per frame of DS-SLAM, Detect-SLAM, and
DLD-SLAM are similar in removing the front end time. They differ mainly in the front end
time consumed per frame. This reflects our contribution to facilitating the processing of
the YOLOv5s algorithm and obtaining semantic segmentation masks by combining them
with depth images to improve the running efficiency of the algorithm. DynaSLAM requires
more time and does not reach an adequate real-time running performance. In comparison,
it is proved that the method in this paper effectively improves the real-time operation of
the algorithm.

6. Conclusions

In this paper, a deep learning-based RGB-D visual SLAM algorithm is proposed,
which can be applied to dynamic environments and has improved running efficiency. The
GCNv2-tiny deep learning method is employed in the tracking thread of ORB-SLAM3,
replacing the conventional pyramid-based ORB feature point extraction and matching
technique. This method can not only extract enough and uniformly distributed feature
points but also has better performance in terms of running efficiency as well as robustness.
And the semantic segmentation thread for dynamic targets is added to the original three
threads. In this thread, the YOLOv5s target detection network is enhanced through the
incorporation of GSConv convolution, which improves the CSP2_x module, resulting in
a reduction in the parameters of the deep learning network. In order to meet the system
detection accuracy at the same time and improve efficiency, the target detection algorithm
needs to be more lightweight. The dynamic targets derived from the target detection
process are subsequently integrated with the RGB-D depth data in order to acquire the
semantic mask. This approach has the ability to minimise the excessive elimination of
static feature points within the detection frame so as to avoid insufficient feature points for
position estimation. After determining the mask of the potential dynamic target, this paper
adopts the LK optical flow method to judge the relative motion of the feature points in the
detection frame by comparing it with the velocity threshold. And the dynamic probability
is determined by combining the last frame state of the feature point and the semantic labels.
The identification of real dynamic objects is based on the potential dynamic targets. Within
the mask region, the dynamic feature points are excluded to ensure that only static feature
points are considered for position estimation and optimisation.

The verification of the method’s feasibility and performance is conducted on various
sequences from the TUM dataset. In this paper, the algorithm is also evaluated against
the ORB-SLAM3, DS-SLAM, Detect-SLAM, and DynaSLAM algorithms in terms of both
positioning accuracy and running efficiency. The research results demonstrate a substantial
decrease in the absolute trajectory error within dynamic environments. The accuracy of the
system increases by approximately 95% when compared to ORB-SLAM3. In comparison to
real-time dynamic visual SLAM with its high accuracy, there has been a notable increase
of 31.54% in terms of running efficiency. The comprehensive performance of our method
demonstrates its superiority. The efficacy of DLD-SLAM in enhancing positioning accuracy,
operational efficiency, and robustness in dynamic environments has been substantiated.

In the future, improvements will be made in the following aspects: Sensors such
as IMU and LIDAR will be implemented. By broadening the scope of application, it
is possible to enhance the accuracy and robustness of the system. The enhancement
of running efficiency in deep learning networks can be accomplished by implementing
lightweighting techniques such as model pruning. Moreover, it is reasonable to improve
system performance by using faster and more accurate target detection methods, such as
YOLOv7 and so on. Additionally, taking advantage of semantic information can facilitate
the construction of a comprehensive semantic map, which can improve the representation
of information in a more complete scene.
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Abstract: Multipath effects are the most challenging error sources for the Global Navigation Satellite
System receiver, affecting observation quality and positioning accuracy. Due to the non-linear and
time-varying nature, multipath error is difficult to process. Previous studies used a homogeneous
indicator to characterize multipath effects and only revealed the temporal or spatial correlations of the
multipath, resulting in limited correction performance. In this study, we consider the code multipath
to be influenced not only by the elevation and azimuth angle of certain stations to satellites but also
to be related to satellite characteristics such as nadir angle. Hence, azimuth angle, elevation angle,
nadir angle and carrier-to-noise power density ratio are taken as multiple indicators to characterize
the multipath significantly. Then, we propose an Attention-based Convolutional Long Short-Term
Memory (AT-Conv-LSTM) that fully exploits the spatiotemporal correlations of multipath derived
from multiple indicators. The main processing procedures using AT-Conv-LSTM are given. Finally,
the AT-Conv-LSTM is applied to a station for 16 consecutive days to verify the multipath mitigation
effectiveness. Compared with sidereal filtering, multipath hemispherical map (MHM) and trend-
surface analysis-based MHM, the experimental results show that using AT-Conv-LSTM can decrease
the root mean square error and mean absolute error values of the multipath error more than 60%
and 13%, respectively. The proposed method can correct the code multipath to centimeter level,
which is one order of magnitude lower than the uncorrected code multipath. Therefore, the proposed
AT-Conv-LSTM network could be used as a powerful alternative tool to realize multipath reduction
and will be of wide practical value in the fields of standard and high-precision positioning services.

Keywords: BDS; multipath; AT-Conv-LSTM; spatiotemporal domain

1. Introduction

As an essential technology, the Global Navigation Satellite System (GNSS) has been
utilized in various fields, including aviation [1], geodesy [2] and earthquake detection [3]
and climate monitoring [4]. However, in complex environments like urban canyons, GNSS
stations face challenges due to the reflection, diffraction and obstruction of signals by
local obstacles around the antenna [5]. Currently multipath does not have a commonly
accepted method for its correction that introduces meter-scale code observation errors
and centimeter-scale carrier phase observation errors [6]. Hence, it is crucial to develop a
method for mitigating multipaths to enhance the accuracy of standard and high-precision
positioning services.

For certain environments and receivers, there are two distinct multipath mitigation
classifications: hardware enhancement and data handling. The former methods princi-
pally include antenna-based designs [7,8] and receiver-based architectures [9] to mitigate
multipath errors. However, the enhancement has limited effectiveness and are difficult to
implement. The data handling methods eliminated or mitigated multipath errors via code
and phase observations combination [10,11], parameterization [12] or model correction.
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The parameterization category chooses the carrier-to-noise power density ratio (C/N0) and
signal-to-noise ratio (SNR) [13,14], parameterized into the stochastic model to characterize
multipath effects.

One kind of empirical model correction is based on time-domain repeatability of
multipath, such as sidereal filtering (SF) [15]. Genrich and Bock proposed the SF method
and calculated the orbital repeat time (ORT) of GPS satellites to be 23 h, 56 min and 4 s to
establish multipath correction model. Choi et al. regarded the ORT should be calculated
for individual satellite [16], which revealed that the sidereal repeat period deviates from
the widely accepted sidereal recurrence by roughly 9 s. The position-domain SF method
has been introduced to attain multipath mitigation in precise point positioning (PPP) [17].
Ragheb et al. carried out position-domain and observation-domain multipath mitigation
methods for GPS and applied them to the precise point position model [18]. Hung and Rau
improved the multipath corrected efficiency via bandpass filters in the position domain [19].
In addition, Atkins and Ziebart evaluated and compared the effectiveness of observation
domain SF with position domain SF for GPS PPP. Different from the position domain, these
variations of orbital repetition time are slightly different for individual GPS satellites in the
observation domain. And observation-domain multipath mitigation is more advantageous
in the handling of high-frequency components [20]. However, the sidereal filtering requires
the pre-computation of the orbital repetition time, thereby deteriorating the real-time
performance and positioning accuracy of multipath mitigation.

Another approach used in the literatures is based on spatial-domain repeatability.
Considering that the position of GNSS antenna and the environment around the GNSS
stations remain unchanged, the multipath is solely in accordance with the particular
elevation and azimuth angle of station-satellite couple. The emerging methods consist
of multipath spherical harmonic model [21], multipath stacked (MPS) model [22] and
multipath hemispherical diagram (MHM) [23]. The multipath correction value for the
MPS and MHM approaches is the average of all satellite residuals in each grid. These
approaches realize 1◦ × 1◦ high-resolution equal lattice grids on the sky map, which are
easier to produce than for the spherical harmonic model. Multipath hemispherical diagram
based on trend-surface (T-MHM) is proposed to fit the multipath spatial distribution with
trend-surface modeling within the grid [24]. Lu et al. discussed the optimal modeling days,
applied T-MHM to BDS-3 PPP and evaluated the multipath correction effect simultaneously,
and validated the mitigation effect of T-MHM on different grid scales [25,26]. Zhang et al.
evaluated the multipath mitigation effect of MHM in BDS2/BDS3 real-time kinematic
(RTK) [27]. Although this method has a low complexity, it disregards the multipath’s
spatial distribution within the grid. Thus, it is more effective in correcting low frequency
multipath but has limited effectiveness in correcting the high-frequency multipath. It is
clear that averaging residuals could somewhat filter out high-frequency signals in the
grids. This drawback can be resolved by reducing the grid but introduces the new risk of
rendering the model less robust.

The majority of research and studies on BDS-3 multipath mitigation have mainly
been conducted on the different observation model, whereas few have explored BDS-3
multipath mitigation strategy on a undifferenced and uncombined PPP model. When
existing methods are used to mitigate the BDS with hybrid constellation, the multipath
model will be more complex than GPS systems. In current studies, SNR or C/N0 are used
to evaluate the observations and identify the multipath, elevation and azimuth angle, which
are other indicators used to the characterize multipath in the MHM method. However, the
indicator to reflect the characteristics of multipath effects in current studies is comparatively
homogeneous, the multiple joint indicators are critical to guaranteeing the best performance.
In this study, we use the azimuth angle, elevation angle, nadir angle and C/N0 as multiple
indicators to characterize the multipath significance in undifferenced and uncombined PPP
modes.

The modeling and mitigation of the multipath pose significant challenges due to its
complex nonlinear and time-varying nature. In recent years, deep learning has emerged
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as a powerful technique for addressing non-linear problems and has been successfully
employed in various domains, such as ionosphere forecasting [28,29], troposphere tomog-
raphy [30], satellite orbit broadcast [31], satellite clock prediction [32], self-driving [33]
and integrated navigation [34]. Deep learning algorithms such as neural networks are
data-driven models that use large and extensive datasets to obtain correlations without
relying on complex physically based models [35]. Moreover, multiple indicators make it
more difficult to establish the multipath mathematical model. The attention mechanism is
able to focus on the important information from the massive datasets and ignore mostly
dispensable information [36,37]. The attention mechanism can help the network in assign-
ing weights of the TEC time series to forecast ionospheric TEC [38]. The attention-based
Conv-LSTM network is proposed, CNN and LSTM modules are applied to obtain the
spatial feature and the temporal feature, respectively, while the attention mechanism could
emphasize importance level in the dataset [39]. Recently, few researchers have utilized
artificial intelligence in the multipath mitigation field [35]. But existing methods only reveal
the temporal or spatial correlations of multipath, which fail to fully grasp the elaborate char-
acteristics of individual time series and has limited enhancement in mitigation performance.
Therefore, we propose a multipath mitigation using the Attention-based Convolutional
Long Short-Term Memory (AT-Conv-LSTM) to maximize the spatiotemporal repeatability
of multipath with multiple indicators.

In this study, the potential of utilizing AT-Conv-LSTM for mitigating multipath effects
is elaborated. Firstly, we derive the multipath extracting method on the undifferenced and
uncombined PPP model and analyze multiple indicators, including elevation, azimuth,
nadir angle and C/N0 to characterize the multipath spatiotemporal correlation. Secondly,
we propose the multipath mitigation method based on AT-Conv-LSTM network, and the
main pre-processing steps are outlined. Then, the comparative experiment is used to
analyze the multipath discrepancy of SF, MHM, T-MHM and AT-Conv-LSTM. Finally, the
study concludes with a summary and suggestions for future research.

2. Multipath Analysis Method

2.1. Multipath Extraction

The code and carrier observations of the GNSS signal received at the station are:

ps,Q
r,i = us,Q

r ·Rs
r + dts

r − dts,Q + Mw · Zw + γQ
i · Is,Q

1 + bs
r,i − bs,Q

i + ms,Q
r,i + εs,Q

r,i , (1)

ls,Q
r,i = us,Q

r ·Rs
r + dts

r − dts,Q + Mw · Zw − γQ
i · Is,Q

1 + λs
i · Ns,Q

i + Bs
r,i − Bs,Q

i + Ms,Q
r,i + ξs,Q

r,i , (2)

where ps,Q
r,i and ls,Q

r,i indicate the values of “observed minus computed (OMC)” for code
and carrier phase observables, individually; s represents the PRN number, Q represent the
satellite system, r expresses the receiver ID, i expresses the frequency band number; us,Q

r
denotes the line-of-sight (LOS) unit vector; Rs

r is the vector of receiver position increments
relative to the a priori position; dts

r states the receiver clock offsets, dts,Q states the satellite
clock offsets; Zw means the zenith wet delay; Mw means the wet mapping function; Is,Q

1

implies the ionospheric delay on the first frequency band, γQ
i =

(
f s,Q
1

f s,Q
iW

)2
is the multiplier

factor introduced to convert to frequency fi; bs
r,i indicates the receiver uncalibrated code

delay (UCDs) and bs,Q
i indicates the satellite UCDs corresponding to frequency fi; λs

i
denotes the carrier wavelength on ith frequency band; Ns,Q

i denotes the integer phase
ambiguity; Bs

r,i and Bs,Q
i are the receiver and satellite uncalibrated phase delays (UPDs),

which is different on each frequency band; the code and phase multipath error can be
expressed as ms,Q

r,i and Ms,Q
r,i ; and εs,Q

r,i and ξs,Q
r,i represent the code and carrier measurement

noise. The receiver and satellite antenna phase center offsets (PCOs) and variations (PCVs),
phase windup, tidal loadings, LOS hydrostatic delay, relativistic effects and Sagnac effects
should be corrected via empirical models.
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For convenience, the coefficient for the ionosphere-free (IF) combination are defined as:

αQ
mn =

(
f s,Q
m

)2

(
f s,Q
m

)2−
(

f s,Q
n

)2

βQ
mn = −

(
f s,Q
n

)2

(
f s,Q
m

)2−
(

f s,Q
n

)2

(3)

where f s,Q stands for the frequency band (m, n = 1, 2; m �= n) and αQ
nm and βQ

nm are the IF
combination coefficients.

When linearly coupled with the satellite UCD, the satellite clock offset cannot be
separated independently unless excess baseline constraints are incorporated. Currently,
the IGS precise satellite clock products are estimated by utilizing the IF combination
observables. Consequently, the satellite clock offsets containing the IF combination of
satellite UCDs are:

dts
IFs,Q

12
= dts,Q +

(
αQ

12 · bs,T
1 + βQ

12 · bs,Q
2

)
= dts,Q + bs,Q

IF12
,

(4)

with {
DCBs,Q

PmPn
= bs,Q

m − bs,Q
n , DCBs,Q

r,PmPn
= bs,Q

r,m − bs,Q
r,n

bs,Q
IFmn

= αQ
mn · bs,Q

m + βQ
mn · bs,Q

n , bs,Q
r,IFmn

= αQ
mn · bs,Q

r,m + βQ
mn · bs,Q

r,n
, (5)

where DCBs,Q
PmPn

and DCBs,Q
r,PmPn

express satellite and receiver DCB between pseudoranges

ps,Q
r,m and ps,Q

r,n distinctly.
In the dual-frequency undifferenced and uncombined PPP model, it is assumed that

j satellites are simultaneously tracked by the receiver r. Equations (1) and (2) can be
rewritten as:⎡⎢⎢⎢⎢⎢⎢⎢⎣

p1,Q
r,1

l1,Q
r,1
...

pj,Q
r,2

l j,Q
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=

[
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with⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
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where 1 expresses a unit column vector of receiver clock offsets dtQ
r , which has 2× j rows;

K represents the unit column vector of ionospheric parameter I
Q
1 , which the ingredient

assigned to p1,Q
r,1 is 1 and the factor assigned to l1,Q

r,1 is −1; R1 indicates the matrix of

ambiguity parameters N
s,Q
1 , the factor assigned to ps,Q

r,1 is 0 and the factor assigned to ls,Q
r,1 is

1; R2 indicates the matrix of the ambiguity parameters N
s,Q
2 , the factor assigned to ps,Q

r,2 is 0

and the factor assigned to ls,Q
r,2 is 1.
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In this study, we only discuss the code multipath, and the comprehensive data han-
dling strategies are stated in Table 1. The parameters X =

[
dtQ

r , Zw, I
s,Q
1 , N

s,Q
1 , N

s,Q
2

]
that

are estimated with a Kalman filter are substituted into (1) to extract the code multipath as
follows:

E
[
ms,Q

r,i

]
= Ps,Q

r,i − us,Q
r ·Rs

r − dtQ
r −Mw · Zw − γQ

i · Is,Q
1 , (8)

where E[*] is defined as extraction operator and Rs
r is acquired from previous receiver

position. It can be seen that after eliminating other modeled errors, the remaining code
residuals only contain multipath errors and random noise.

Table 1. Data processing strategies.

Items Strategies

Observations BDS: B1/B3
Sampling rate 30 s
Elevation cutoff 7◦
Parameter estimator Kalman filter

Satellite orbits and clocks WHU MGEX precise orbit (5 min interval) and
clock (30 s interval) products

Carrier phase windup Corrected using the external model
Tidal load Corrected using the IERS convention model
Relativity effects, Earth rotation Corrected using the external model
Satellite and receiver antenna Phase center Corrected with igs14.atx

Slant ionospheric delays Estimated as random-walk noise parameters
(0.01m2/s)

Tropospheric delays

The mapping function utilized for line of sight
direction is global mapping function, zenith
hydrostatic delays are corrected using the
Saastamoinen model, zenith wet delays are
estimated as random-walk noises (10−7 m2/s)

Receiver clocks Estimated as white noises
Phase ambiguities Estimated as float constants
Station coordinates Estimated as day constants

Stochastic model
Elevation-dependent weighting (prior variance
as 0.003 and 0.3 m for code and phase
observations)

2.2. Multipath Analysis Method Based on Different Indicators

Multipath means that the satellite signal arrives at the antenna through multiple paths
after being blocked, reflected and refracted by obstacles in the environment surrounding
the receiver. The amplitude and phase of the multipath signal depend on the receiver’s
position as well as the environment. Therefore, existing studies generally argue that the
code multipath can be modeled as a function of the corresponding satellite azimuth and
elevation, unless there are changes in the nearby environment. However, even if the
environment near the antenna remains unchanged in application, multipath errors exhibit
characteristics related to the variations of satellite position. It is indispensable to explore
the correlation between nadir angle with code multipath.

Ruan conducted the detailed modeling of satellite-induced multipath and proposes
that the satellite-induced multipath should be established as functions that are relative
to the nadir angle instead of the elevation angle [40]. In this study, we take the nadir
angle into consideration. The satellite-induced variation of the multipath error can be well
characterized by the nadir angle. This model will be proved next.

As shown in Figure 1, a triangle is formed by satellite S, station A and geocenter O,
the earth is approximated as a sphere, and according to the Law of Sines:

sin(eA + 90◦)
Re + Hs

=
sin(ez)

Re + Ha
(9)
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where indicates eA and Ha are the elevation angle and altitude of station A, respectively; ez
represents the nadir angle of station A; Ha represents the altitude of station A, Re indicates
the earth’s radius and Hs represents the altitude of satellite S.

Figure 1. Geometrical relationship of satellite, earth and station.

For another station B on the LOS vector AS, the similar mathematic relationship can
be formed as follows:

sin(eB + 90◦)
Re + Hs

=
sin(ez)

Re + Hb
(10)

where indicates eB and Hb are the elevation and altitude of station B, respectively.
Substituting (10) into (9), the equation can be expressed as:

sin(eA + 90◦)
Re + Ha

=
sin(eB + 90◦)

Re + Hb
(11)

It is clear that stations at different altitudes observe the same satellite at different
elevation angles. We introduce the nadir angle as an independent variable to jointly model
the satellite-induced multipath with receivers at different altitudes.

As mentioned before, the main parameters for each GNSS satellite include C/N0 to
reflect the characteristics of multipath effects [14]. Different from SNR, C/N0 is irrelevant
to the receiver’s front-end bandwidth and represents the carrier power-to-noise power
ratio that normalized to the unit bandwidth. The multipath signal is a composite signal
formed by the reflection, refraction and diffraction components induced by obstacles in the
surroundings. The multipath effect can modify the signal’s amplitude and phase, causing
the distortion of the original signal. Generally, the composite multipath signals can be
expressed as:

Sm = Adcosϕ + Aicos(ϕ + Δϕ), (12)

where Ad and Ai indicate the amplitudes of direct and indirect signals, individually; ϕ
represents the direct signal phase; and Δϕ represents the phase shift delayed by the indirect
signal.

The C/N0 can reflect the composite signal’s amplitude formed by superposing several
multipath components in accordance with each phase. According to (12), the relationship
is expressed as:

C/N02 = A2
d + A2

i + 2Ad AicosΔϕ, (13)

It is obvious that C/N0 represents the quality of received signal, and the multipath
signal has a notable influence on C/N0. Therefore, it is reasonable to characterize the
multipath signals with C/N0.

In this study, the azimuth angle, elevation angle, nadir angle and C/N0 are taken as
multiple joint indicators to characterize the multipath.
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3. Multipath Characterization with the AT-Conv-LSTM Network

3.1. AT-Conv-LSTM Network

In this study, we propose a multipath error modeling method based on AT-Conv-
LSTM network. The algorithm flowchart is shown in Figure 2: (1) Raw BDS-3 observations
collected from GNSS stations are stored in the database, and then undergo a post-processing
procedure to proceed multipath extraction operations to be used as training data. (2) A
sliding window size is set, and the AT-Conv-LSTM network is updated by incorporating
the earlier model and incoming multipath errors, and the multipath errors are estimated in
the current epoch. (3) The code multipath is corrected at the corresponding epoch based on
the AT-Conv-LSTM network to mitigate the multipath.

Figure 2. Multipath mitigation flowchart.

Since multipath errors are commonly considered to be random and nonlinear, it is
imperative for a robust multipath model to possess the capability to accurately represent
these intricate characteristics. Multipath errors are usually characterized via spatiotemporal
correlation and periodicity. More specifically, the point of interest (POI) region of the
multipath error is not only related to the multipath errors of its neighboring observation
epoch but also its dependence on previous time. Moreover, the multipath errors also
exhibit periodic repetitive patterns. In this paper, the AT-Conv-LSTM network is proposed
to estimate the multipath errors. The proposed model comprises two Conv-LSTM modules
integrated with attention mechanism, which can effectively utilize the spatiotemporal
correlation and mitigate the multipath errors of BDS-3, as depicted in Figure 3.

 

Figure 3. AT-Conv-LSTM network.

As mentioned earlier, the multipath is associated with the station environment, satellite
position and receiver position. The multiple indicators that azimuth angle, elevation angle,
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nadir angle and C/N0 are taken to characterize the multipath significance. The multipath
error can be denoted at ith satellite vary with the multiple indicators as:

ms,Q
r,i = f (azi, elevi, nadiri, fi, CNRi), (14)

where azi, elevi and fi are the azimuth angle, elevation angle and frequency; nadiri repre-
sents the nadir angle; and CNRi represents the C/N0 of ith satellite.

Hence the inputs of the first Conv-LSTM module are elevation angles and azimuth
angles represent the variation related to receiver’s surroundings and position, and the
inputs of the second Conv-LSTM module are nadir angles and azimuth angles represent
the variation related to satellite’s position.

The core component of the proposed network is the Conv-LSTM module, encompass-
ing two convolutional layers and two LSTM layers. The C/N0, nadir angle and azimuth
angle of the mth satellite on the epoch n can be represented as Xm

n = [azm
n , nadirm

n , CNRm
n ].

Subsequently, we aggregate the historical angles from its neighboring locations (total n
epochs) as follows:

Xs
t =

⎡⎢⎢⎢⎣
Xs

1
Xs

2
...

Xs
n

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
X1

1 X1
2

X2
1 X2

2

· · · X1
n

· · · X2
n

...
...

Xm
1 Xm

2

. . .
...

· · · Xm
n

⎤⎥⎥⎥⎦, (15)

where s = 1, 2, . . . , m symbolizes the count of satellites and t = 1, 2, . . . , n symbolizes the
count of epochs.

The matrix Xs
t at each epoch t is subjected to a one-dimensional convolution process

in order to capture the spatial feature. A sliding filter is used to capture the local perceptual
domain using a one-dimensional convolution kernel filter. The following illustration shows
how the convolution kernel filter works:

Ys
t = σ(ws ∗ Xs

t + bs), (16)

where ws represents the filter weights, bs represents the bias, symbol * defined as the con-
volution operation, σ represents the activation function and Ys

t expresses the convolutional
layer output. The network uses the tanh activation function. The aforementioned process
promotes the extraction of the spatial feature from the neighboring observation regions.

To enhance optimize the efficiency of the deep neural network, the most common
approach involves augmenting the model through the addition of layers. By incorporating
multiple LSTM layers into the network, this study enhances the network’s capacity to adapt
the multipath errors. After being extracted through two convolutional layers, the spatial
features are inputted into the stacked LSTM network. Through the stacking of LSTM layers,
each subsequent layer in the stack receives the hidden state served as the input of preceding
layer. The LSTM’s mathematical equation with different cell states is given below:

it = σ
(

wi
[
hs

t−1, X s
t

]
+ bi

)
ft = σ

(
w f

[
hs

t−1, X s
t

]
+ b f

)
∼
C = tanh

(
wc

[
hs

t−1, X s
t

]
+ bc

)
Ct = ft ◦ Ct−1 + it ◦

∼
C

ot = σ
(

wo
[
hs

t−1, X s
t

]
+ bo

)
Hs

t = ot ◦ tanh(Ct)

, (17)

where it represents the input of the LSTM layer on epochs t, it, ft, ot, which indicate the input
gate, the forget gate and output gate at epoch t, respectively; ◦ expresses the Hadamard
product; and w and b represent the weights and biases of the network, respectively. Finally,
we obtain the spatiotemporal feature Hs

t for time step t.
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3.2. Attention Mechanism Considering Multiple Indicators

The introduction of the attention mechanism aims to investigate the intrinsic features
of the sequence and enhance the effectiveness of information handling. It enables models to
assign different weights to different positions within the input sequence, enabling them to
concentrate on the most significant components while processing each sequence element.

After two convolution layers, the spatial feature has been extracted from the input
matrix Xs

t , including the C/N0, nadir and azimuth angles. Gs
t is denoted the convolutional

layer 2 output. As is widely recognized, the multipath also demonstrates temporal correla-
tions in adjacent epochs. LSTM is usually employed to uncover hidden temporal features
in a time series. Therefore, after the processing of spatial information through the two
convolutional layers, the output is subsequently linked to the LSTM network. Thus, we
obtain the spatiotemporal feature Hs

t .
The observation data are not continuous in the time domain due to the limited visibility

time of MEO and GEO satellites for a specific observation station. In order to address this
issue, we introduce an attention mechanism to calculate the important score of each Conv-
LSTM output. Through the attention mechanism, we can obtain the estimated multipath
that automatically assigns a different importance score to each visible epoch.

The Conv-LSTM output at epoch t is calculated by combining the outputs of the CNN
and LSTM module with weighting coefficients, as demonstrated below:

st = vT
s tanh(whGs

t + wl Hs
t )

βk =
exp(sk)

∑n+1
k=1 exp(sk)

Ha
t =

n+1
∑

k=1
βk Hs

t−(k−1),

, (18)

where st, βk, and Ha
t are, respectively, the importance score of each input part, the attention

value and the output at epoch t. w and v are the weights. Ultimately, the spatiotemporal
feature Ha

t for time step t is obtained.
The same structure as the other Conv-LSTM will not be explained here. Subsequently,

all these features are combined into a feature vector, which is then fed into two regression
layers for estimating purposes. The objective function of regression involves a loss function
that calculates the mean squared error of the estimated multipath errors.

3.3. Model Training and Evaluation

Within the proposed model, the optimization of model parameters is achieved by
employing the Adam optimization algorithm, which enables adaptive adjustment with the
learning rate.

In order to provide a quantitative evaluation of the estimated accuracy of, the root
mean square error (RMSE) and mean absolute error (MAE) are selected to calculate the
difference between the real multipath error extracted in Section 2.1 and the estimated value.
The following is the mathematical equation of RMSE and MAE:

RMSE =

√
1
n∑n

t=1(mt − m̂t)
2, (19)

MAE =
1
n∑n

t=1|mt − m̂t|, (20)

where n represents sampling points number, mt represents the extracted multipath in
previous section and m̂t is estimated value of multipath for ith sampling point. Moreover,
as the RMSE and MAE values approach zero, the network’s estimated results become closer
to the actual multipath error, indicating better performance.
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4. Results

4.1. Data Description

The BDS global PNT services consists of the experiment system (BDS-1), the regional
system (BDS-2) and the global system (BDS-3) and reached full operational status on July
31, 2020 [41]. The BDS offers high-precision, real-time services to users worldwide. They
are made up of a constellation of Medium Earth Orbit (MEO) (C19–C30, C32–C37, C41–46),
Inclined Geosynchronous Orbit (IGSO) (C31, C38–C40) and Geosynchronous Earth Orbit
(GEO) (C59, C60) satellites, which is different from GPS, GLONASS and Galileo. In addition
to the antiquated B1l and B3l broadcasts that were carried over from the BDS-2 satellites,
the BDS-3 satellites broadcast a variety of new open service signals. The frequencies,
wavelengths and chip rates of BDS-3 signals are stated in Table 2. In our study, we analyzed
the BDS dual-frequency observations (B1/B3) from the International GNSS Service (IGS)
MGEX station for 16 days from DOY 160-176, 2021. The multi-frequency GNSS station,
namely JFNG, is capable of tracking BDS, as shown in Table 3. The multi-frequency GNSS
station, namely JFNG, is capable of tracking BDS as shown in Figure 4. And the detail
station information is stated in Table 3.

Table 2. BDS-3 signal characteristics.

BDS-3 System B1I B1C B2a B2b B3I

Frequency (MHz) 1561.098 1575.420 1176.450 1207.140 1268.520
Chip Rate (Mcps) 2.046 1.023 10.23 10.23 10.23
Wavelength (cm) 19.20 19.03 25.48 24.83 23.63

Table 3. Station information.

Items Strategies

Station Name JFNG
Localization China

Latitude 30.51557◦
Longitude 114.49102◦
Receiver TRIMBLE ALLOY—6.20

Antenna Type TRM59800.00
Constellations GPS + GLO + GAL + BDS + QZSS + IRNSS + SBAS

 

Figure 4. JFNG station.

4.2. Code Multipath Analysis

The BDS-3 MEO satellite (C22) and IGSO satellite (C38) are selected as examples
for the analysis next, the multipath is extracted using the multipath analysis method
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in equation (8). Figure 5 shows the BDS-3 MEO satellite (C22) and IGSO satellite (C38)
code multipath on B1I and B3I frequency. When the satellite just enters the visible range,
the elevation is small, while the lower elevation angle leads to a lager code multipath
and bias of dual frequency. This phenomenon may be due to the fact that signals from
satellites with low elevation angles have a higher probability of occurrence. Compared with
MEO satellites, the multipath of IGSO satellites with dual frequency show more obvious
differences, and the maximum differences can reach the meter level. The bias of each
code multipath and the difference between the multipath on dual frequency can seriously
affect the accuracy of positioning. The low and high-frequency parts can be found in the
multipath, which definitely reduces the positioning accuracy. Figure 6 shows number
of visible BDS-3 satellites on DOY 176 and the corresponding dilution of precise (DOP).
The number of tracked satellites varied between 6 and 11. The vertical-DOP (VDOP) and
the horizontal-DOP (HDOP) values vary from 0.5 to 3, showing that BDS-3 is capable of
delivering accurate positioning services independently.
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Figure 5. Code multipath at B1I and B3I of station JFNG on DOY 176,2021. (a) Code multipath at
two frequencies of MEO satellite; (b) code multipath at two frequencies of IGSO satellite.
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Figure 6. BDS-3 visible satellites on DOY 176. (a) number of BDS-3 visible satellites (b) HDOP and
VDOP of BDS-3 satellites.

Figure 7 shows the probability density of the code multipath. Most code multipath
range from −2 to 2 m, with almost 95% ranging from −1 to 1 m. The code multipath is
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obviously larger in the low elevation angle region. When the altitude angle is lower than
30◦, the code multipath is generally larger than 1 m and the code multipath of signals in
the high elevation regions are generally smaller than 1 m; therefore, the code multipath
is highly correlated with the elevation angles. The most elevation-dependent effects are
eliminated above 35◦ elevation [42]. This phenomenon occurs because most of the external
effects can be eliminated in the signal accuracy analysis when the satellite altitude is higher
than 35◦. It is noted that there is a constant bias in multipath, actually this is caused by the
unmodeled error (e.g., hardware delay) [14]. Fortunately, the constant bias present in the
multipath will not influence multipath analysis, and it is reasonable to ignore the bias.
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Figure 7. BDS-3 multipath sky map and histogram of code multipath. (a) B1I multipath sky map;
(b) histogram of B1I code multipath; (c) B3I multipath sky map; (d) histogram of B3I code multipath.
The red line in right panels is the envelope of the code multipath distribution.

Figure 8 shows the BDS-3 MEO satellite (C22) and IGSO satellite (C38) C/N0 on the
B1I and B3I frequencies with respect to elevation angle. At lower elevations, the C/N0 is
small, which corresponds to a large code multipath in Figure 5. The C/N0 value decreases
significantly and the code multipath becomes large and divergent, particularly when the
elevation angle is below 10◦. This justifies the rationality of characterizing the variation of
code multipath with C/N0.
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Figure 8. C/N0 of B1I and B3I of MEO satellites (a) and IGSO (b) with respect to elevation angle.

4.3. Correlation Analysis of Nadir Angles and Code Multipath

Figure 9 demonstrates that the variation of the elevation angle of MEO and GEO/IGSO
satellites to the receivers at different elevations with the nadir angle. Along with the growth
in elevation angle, the range of the observable nadir angle increases. The elevation angle
changes with the station altitude for the same nadir angle, and as the nadir angle increases,
the difference in elevation angle at different latitudes becomes more noticeable. For example,
if the nadir is 13.21◦ (H = 0 km, elevation = 0◦), the elevation angles are 3.21◦, 7.15◦, 10.08◦
and 21.99◦ when the station is located at 10 km, 50 km, 100 km and 500 km, respectively. In
conclusion, extra errors will be introduced into multipath error correction using elevation
angle as the feature, according to previous studies.

 
(a) (b) 

Figure 9. Elevations of MEO satellites (a) and GEO/IGSO (b) with respect to receivers at different
altitude as a function of nadir angle.

From Figure 10, when the elevation angle exceeds 30◦, the code multipaths of C22 are
between −0.5 and 0.5 m and those of C38 are between −1 and 1 m, and when the elevation
angle is smaller than 30◦, the code multipaths are obviously increased. It can be concluded
that the smaller the elevation and nadir angles are, the larger the code multipath and the
more discrete distribution are. These results demonstrate the correlation of code multipath
with the elevation and nadir angle. Moreover, the relationship between the elevation angle
and nadir angle exhibits a nonlinearity that can clearly be seen from the code multipath of
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C38, which verifies that the nadir angle rather than the elevation angle should be used as
the independent variable for multipath error modeling.
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Figure 10. (a–d) Variation of BDS satellites multipath and nadir angles with respect to epoch or
elevation angle. The amplified values of nadir angles are used to make the relationship clear.

4.4. Comparison of AT-Conv-LSTM with Other Methods

To assess the effectiveness of the multipath mitigation method based on the AT-Conv-
LSTM network, we used the data from DOY 160–175 of JFNG station 2021 for training
and those from DOY 176 for testing. The left panel in Figure 11 illustrates the uncorrected
code multipaths of MEO (C22) and IGSO (C38) before the multipath correction and the
multipath errors predicted by AT-Conv-LSTM, respectively. The right panel in Figure 11
illustrates the bias of the uncorrected code multipath minus the predicted multipath error.
The MAE of the uncorrected multipath is 0.3322, and the MAE of multipath corrected by
the AT-Conv-LSTM decreases to 0.0681. As can be seen, our method can effectively mitigate
the code multipath, and can essentially correct the fluctuating low-frequency components.
The corrected multipath errors are analogous to the white noise series, signifying that the
AT-Conv-LSTM network is able to mitigate the multipath effectively.
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Figure 11. MEO satellite C22 multipath before (a) and after correction (b); IGSO satellite C38
multipath before (c) and after correction (d).

To confirm the effectiveness of multipath mitigation using the AT-Conv-LSTM network,
we conducted comparative experiments with SF, MHM and T-MHM for comparison. The
surrounding environments of the stations remain unchanged. The ORTs of BDS satellites
are calculated on an individual basis in advance of the SF method. The multipath models
were first established through the code multipath of the corresponding days using low-pass-
filters, then were removed from the code multipath of next day. Figure 12 illustrates that the
multipath errors on DOY 166 and DOY 173 of C12 satellite has a strong temporal correlation,
the correlation coefficient is 0.82 and the multipath error of C38 satellite represents a strong
temporal correlation in three days DOY 171, DOY 172 and DOY 173, the correlation
coefficient is 0.79. Considering the differences between the IGSO and MEO orbits, we
correct the multipath errors of the IGSO and MEO satellites individually. In this study, our
analyses primarily focused on the ORTs of IGSO satellites (such as C38) and MEO satellites
(such as C22). We extract the multipath errors of the IGSO and MEO satellites by using
the data of the previous day and the previous seven days, respectively. The time advances
of different orbital satellites are computed through code multipath correlation, in order
to conduct multipath mitigation experiments in observation domain. As claimed by the
analyses above, the ORT of GEO and IGSO satellites is around 86,165 s, while the ORT of
MEO satellites is around 84,697 s and six days.

244



Remote Sens. 2024, 16, 73

 
(a) (b) 

0 2 4 6 8 10 12 14 16 18 20 22 24
Hour

-3

-2

-1

0

1

2

3

4
doy=169
doy=176C22

0 2 4 6 8 10 12 14 16 18 20 22 24
Hour

-2

-1

0

1

2

3

4

5

6

7
doy=171
doy=172
doy=173

C38

Figure 12. Comparison of the multipath errors for C22 (a) and C38 (b). The vertical 2 m offset was
applied to the code multipath sequences for illustration purposes.

The MHM method for multipath error mitigation involves dividing the multipath
into sky grids of certain sizes determined by the azimuth and elevation angles. Next, the
average multipath from all satellites in the certain grid is used to construct a multipath
error correction value table. We used the DOY 160–175 data to construct the MHM grids,
as shown in Figure 13. The multipath curve obtained from MHM exhibits similarities
to rectangular waves and is characterized by a deficiency in high-frequency information.
Afterwards, T-MHM as an improved method is proposed to describe the multipath spatial
distribution per grid specifically. The multipath code is divided into a grid in the sky,
with dimensions determined by the azimuth and elevation angles. This grid is used to
conduct trend-surface analysis on the multipath within each specific grid. The resulting
trend-surface fitting coefficients are then stored. We filtered and denoised the multipath
data from different satellites in the next experiments and removed the outliers based on the
3-sigma principle, then divided the grid points into sizes 1◦ × 1◦ consistent with the MHM.
Finally, a linear function is adopted to fit the trend surface, and the coefficients are stored
to construct the correction table.

Figure 13. Sky map of the MHM grid.

The DOY 176 satellites data with two types of orbits such as MEO C22 (upper) and
IGSO C38 (bottom) are used for comparison in Figure 14. Compared the estimated mul-
tipath from our proposed method with the uncorrected code multipath and SF, MHM
and T-MHM model in Figure 14. The upper panel illustrates that other methods fit well
for low-frequency fluctuations, but poorly for more obvious high-frequency fluctuations,
especially in C22 satellites. However, our proposed method is most consistent with the
variation trend of the uncorrected code multipath series.
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(a) (b) (c) 

(d) (e) (f) 

Figure 14. The time series of the C22 MEO satellite uncorrected code multipath and the AT-Conv-
LSTM-estimated code multipath compared with MHM (a), T-MHM (b) and SF (c). The time series of
the C38 IGSO satellite uncorrected code multipath and AT-Conv-LSTM-estimated code multipath
compared with MHM (d), T-MHM (e) and SF (f).

The experiment used 16 days of data for MHM modeling. The substandard quality of
observation data on certain days and the limited fitting ability of the linear function within
the grid points can affect the MHM and TMHM modeling. And the inaccurate estimation
of the ORTs of different satellites may affect the performance of the SF. All these reasons
could affect the effect of the other three methods for the multipath correction. As shown
in the comparison results in Table 4, the other methods have some improvements in the
MAE value, but the improvement in the RMSE is not obvious. Our method reduces the
MAE value of code multipath from 0.3322 to 0.0681 for MEO satellite C23 and from 0.0614
to 0.0241 for IGSO satellite C39, and the MAE correction of code multipath is improved
by about 70%. The code multipath can be corrected to a centimeter-level bias near 0. The
corrected code multipath exhibits a reduction in magnitude by one order compared to the
original uncorrected code multipath. And there is a corresponding improvement in RMSE,
which is reduced from 0.5596 to 0.4747 in MEO satellite C23 and from 0.2766 to 0.2386 in
IGSO satellite C39, and the RMSE of the code multipath is improved by about 13%. Due
to space limitations, we will only use the B1I frequency point as an example in the above
performance analysis and calculate the correction enhancement of the code multipath MAE
using AT-Conv-LSTM, respectively. Taking C22, C23, C36, C38 and C39 as examples, the
correction of the code multipath MAE can reach more than 60%.
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Table 4. MAE and RMSE values of code multipath with and without multipath model correction in
Figure 14.

PRN

Uncorrected MHM-Corrected T-MHM-Corrected SF-Corrected
AT-Conv-LSTM-

Corrected

MAE
(m)

RMSE
(m)

MAE
(m)

RMSE
(m)

MAE
(m)

RMSE
(m)

MAE
(m)

RMSE
(m)

MAE
(m)

RMSE
(m)

C22 0.3322 0.5596 0.1581 0.6154 0.0143 0.5731 0.0050 0.6608 0.0681 0.4447
C23 0.3322 0.5596 0.1797 0.6175 0.0143 0.5731 0.0050 0.6608 0.0681 0.4747
C36 0.3620 0.3809 0.1827 0.4225 0.0529 0.2952 0.0587 0.5641 0.0812 0.3615
C38 0.0340 0.3364 0.1106 0.3932 0.0020 0.3588 0.0340 0.3364 0.0480 0.4118
C39 0.0614 0.2766 0.0505 0.3501 0.0191 0.2686 0.0447 0.3514 0.0241 0.2386

5. Discussion

The current multipath analysis methods are limited to a single indicator representation.
However, this cannot fully describe the characteristics of the multipath. First, we analyzed
the strong correlation between code multipath and nadir angles, elevation angles, azimuth
angles and C/N0 in “Section 4.2. Code Multipath Analysis”. In “Section 4.3 Correlation
Analysis of Nadir Angles and Code Multipaths”, we explained the nonlinear relationship
between nadir angles and elevation angles. Our analysis suggests that nadir angles,
elevation angles, azimuth angles and C/N0 should be jointly considered as characteristic
indicators of code multipaths. There is a constant bias in multipaths, caused by the
unmodeled error (e.g., hardware delay), which can be ignored due to its stability. And the
multipath is caused by lots of factors, such as the reflection, diffraction and obstruction
of signals by local obstacles. In the future, we might work on a more accurate multipath
analysis method to adapt different types of multipath.

The AT-Conv-LSTM network spatial features of elevation angles, nadir angles, azimuth
angles and C/N0 through convolutional layers and extracts temporal features from the
output sequence of the convolutional layers through LSTM. An attention mechanism is
introduced to automatically allocate greater weights to the visible periods of satellites.
These modules enable AT-Conv-LSTM to better extract spatiotemporal features. In our
simulation, the sliding window size cannot be set too small. Since the variation of elevation,
azimuth and zenith angles between adjacent epoch elements is inconspicuous, a small
sliding window size will result in the inability to adequately extract the temporal features.
The sliding window size is configured as 120 points for a 1 h observation data with 30 s
sampling intervals in our study. In addition, a dropout layer is added to prevent the
network from overfitting, and the dropout rate is set to 0.6. From Figure 14 and Table 4, it
can also be seen that the multipath correction results of AT-Conv-LSTM network can correct
the code residuals to a deviation of around zero, which is one degree lower than original
uncorrected code residuals and also shows improvement compared to the other three
methods. Furthermore, we aim to characterize the phase multipath error with the elevation
angle, azimuth angle, nadir angle and C/N0 value as multiple indicators. Specifically,
a more suitable deep learning model can be further investigated to mitigate the phase
multipath error effectively.

6. Conclusions

The multipath, which is widely recognized as the most challenging remaining error,
imposes constraints on the accuracy of GNSS positioning. Despite efforts to develop precise
error models, the multipath remains a significant source of error that hinders high-precision
positioning. This study focuses on extracting the multipath error from the raw BDS-3 code
observations using the undifferenced and uncombined PPP model. Firstly, we extracted
the multipath error from the raw BDS-3 code observations based on the undifferenced and
uncombined PPP model. Since the amplitude and phase of multipath signal rely on the
position of satellite and receiver in addition to the environment, the correlation among
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the multipath error and elevation, nadir and azimuth angle is analyzed. Correspondingly,
we analyzed the non-linear relationship between elevation and nadir angles. Therefore,
azimuth angle, elevation angle, nadir angle and C/N0 are taken as multiple indicators
to characterize the multipath significance. Furthermore, an AT-Conv-LSTM network is
proposed to exploit the temporal correction from the multiple indicators’ changing pattern
over time and exploit the spatial correction from the multiple indicators’ changing pattern
over angles. Thus, our method can maximize the temporal and spatial repeatability of the
multipath for real-time multipath mitigation. And the proposed method takes into account
the spatial distribution of multipath without requiring ORTs, which can also correct both
low and high-frequency components of multipath errors. Finally, our method significantly
decreases multipath MAE and RMSE in comparison to SF, MHM and TMHM. Moreover,
it has the capability to correct code multipath with a deviation at the centimeter level.
Therefore, the proposed AT-Conv-LSTM network could mitigate the multipath efficiently
and will be of broad practical value in the fields of standard positioning service and
high-precision positioning.
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Abstract: The latest development of multi-robot collaborative systems has put forward higher re-
quirements for multi-sensor fusion localization. Current position methods mainly focus on the fusion
of the carrier’s own sensor information, and how to fully utilize the information of multiple robots to
achieve high-precision positioning is a major challenge. However, due to the comprehensive impact
of factors such as poor performance, variety, complex calculations, and accumulation of environ-
mental errors used by commercial robots, the difficulty of high-precision collaborative positioning is
further exacerbated. To address this challenge, we propose a low-cost and robust multi-sensor data
fusion scheme for heterogeneous multi-robot collaborative navigation in indoor environments, which
integrates data from inertial measurement units (IMUs), laser rangefinders, cameras, and so on, into
heterogeneous multi-robot navigation. Based on Discrete Kalman Filter (DKF) and Extended Kalman
Filter (EKF) principles, a three-step joint filtering model is used to improve the state estimation
and the visual data are processed using the YOLO deep learning target detection algorithm before
updating the integrated filter. The proposed integration is tested at multiple levels in an open indoor
environment following various formation paths. The results show that the three-dimensional root
mean square error (RMSE) of indoor cooperative localization is 11.3 mm, the maximum error is less
than 21.4 mm, and the motion error in occluded environments is suppressed. The proposed fusion
scheme is able to satisfy the localization accuracy requirements for efficient and coordinated motion
of autonomous mobile robots.

Keywords: multi-robot system; collaborative positioning; sensor integration; EKF; visual inspection

1. Introduction

Multi-robot collaborative positioning technology has found extensive applications
in defense and civil fields—including robot formation combat, unmanned driving, robot
team field exploration, unmanned disaster rescue, and unmanned carrier cooperative
handling—owing to the advancements in artificial intelligence, computer technology, and
automation. The multi-robot system is more than just a combination of robots; it involves
collaboration and cooperation. Each robot is equipped with different sensors to fuse
information based on task requirements. The robots within the group maintain spatial
relationships and achieve collaborative positioning through complex communication and
information exchange processes. This enables support for formation patrol, emergency risk
avoidance, sudden stop, and obstacle avoidance autonomously. Multi-robot cooperative
positioning technology outperforms traditional single-robot positioning technology in
terms of enabling faster global awareness and planning, thus enhancing the robustness and
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autonomous positioning capability of multi-robot systems through capability complemen-
tarity and redundancy increase. Additionally, the use of small robots with a single function
facilitates fault detection and functional upgrades.

Positioning in robot navigation relies on sensors to perceive the surrounding envi-
ronment, serving as the foundation and prerequisite for task execution. Common indoor
robot sensors include inertial measurement units (IMU), odometers, vision sensors, laser
range finders, and sonar detectors. Each sensor has its own advantages and limitations.
Sensors that operate without relying on external signals offer fast sampling speed but suffer
from significant cumulative error. Laser rangefinders exhibit high accuracy but can only
determine object distances directly. Vision sensors excel in perceiving the environment
and capturing rich environmental information. However, vision detection and localization
algorithms necessitate high system computational performance, are influenced by ambient
light and target characteristics [1], and do not provide global positioning information for
the robot. The fusion of the advantageous performance of each sensor is a promising
research area aiming to reduce costs, enhance system robustness and flexibility, and enable
seamless collaborative localization in multi-robot systems through the fusion of multiple
information sources.

Multi-sensor fusion is a well-established algorithm in the field of robotics and con-
trol [2–4]. It aims to integrate multiple sensors to enhance system performance and achieve
precise positioning. Researchers worldwide have extensively investigated the robot lo-
calization problem by leveraging sensor information fusion. For example, Yan Lu and
Joseph Lee et al. [5] fused laser range information and sensor data from monocular vision
to propose a fusion scheme for acquiring position information in GPS-denied environments.
Howard and Gaurav S. fused mutual observation data from two robots [6] and presented a
method to localize members of a mobile robot team using the robots themselves as land-
marks. Other researchers have employed various fusion algorithms, such as the extended
Kalman filter method [7,8], which assumes a Gaussian distribution for systematic error
and effectively addresses the prediction problem of nonlinear systems. Anastasios used an
extended Kalman filter (EKF)-based algorithm for real-time vision-aided inertial navigation,
which improved the fault tolerance performance of the measurement data [9]. There is also
the use of great likelihood estimators to derive relative positions between robots [10,11],
or real-time position estimation of robots using particle filtering [12–14]. I.M. Rekleitis
estimated a larger group of robots that can mutually determine one another’s position (in
2D or 3D) and uncertainty using a sample-based (particle filter) model of uncertainty in a
specific scenario [15]. The application of co-localization results in multi-robot systems is
also becoming a key issue of current interest. Boda Ning et al. were concerned with the
collective behavior of robots beyond the nearest neighbor rule [16]. Brian Shucker proposed
a control and communication scheme for multi-robot systems in long-distance situations
with his team [17].

The limitations of the existing multi-source co-location algorithms include a lack of real-
time comprehensive state estimation from the sensors of different types of robots and the
consideration of calculation burden, cost, and rigorous mathematical models. Most of the
above research belongs to the primary stage; some have provided integration schemes for
single-robot application scenarios. Furthermore, some research has the potential to involve
multi-robot positioning and dynamic performance estimation realized by positioning
each robot independently, but the actual systems are limited by high computation and
maintenance costs. In addition, the state estimation performance degradation is more
serious, partly caused by multistage errors in practical applications and the limitations of
the current algorithm architecture.

As far as we know, there is a lack of research providing insight into the fusion of the
laser rangefinder, camera, and other sensor data in heterogeneous robotic systems with
varying levels of complexity and sensor configurations. This work makes three primary
contributions. First, the co-position process gathers observations from both the robot itself
and other robots, providing increased flexibility and robustness in sensor information
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fusion. Second, by leveraging the advantageous performance of diverse sensors, a variety
of observation and communication tasks can be dynamically assigned to different types
of robots, thereby improving overall task fulfillment and the system’s anti-interference
capabilities. Third, the system can utilize small robots with simple structures and single
functions, simplifying upgrades and maintenance compared to complex, independent
robot systems.

The remainder of the paper is organized as follows. In Section 2, we present a method
for a multi-sensor data fusion co-position scheme applicable to heterogeneous multi-robot
systems and common navigation modes. Section 3 analyzes practical errors and suggests
improvements. Section 4 showcases our experimental results, and Section 5 provides
the conclusions.

2. Methods

2.1. Integration Architecture

Considering the flexibility, practicality, and scalability of the multi-robot system, the
navigation mode chosen is a common Leader–Follower robot swarm. The main structure
of the proposed integration is presented in Figure 1 and consists of three steps.

 

Figure 1. Proposed joint filtering integration scheme.
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The integration involves three sub-filters and one main filter. The first discrete Kalman
filter, DKF_1, fuses the odometer and gyroscope information within the robot to determine
the inertial system’s state equation. The extended Kalman filters, EKF_1 and EKF_2, es-
timate the target localization information using the vision sensor and laser rangefinder,
respectively, with the inertial guidance system as a reference. The vision localization sub-
system employs the improved YOLO deep-learning-based target detection algorithm and
camera calibration algorithm to obtain target localization information. This information is
then used as the observation input to estimate the target localization using the extended
Kalman filter. Similarly, the laser ranging subsystem utilizes the angle between the target’s
horizontal projection and the optical axis of the camera, obtained from the vision sensor,
to obtain positioning information. This positioning information is used as the observa-
tion input to estimate the positioning state of the laser rangefinder using the extended
Kalman filter. The main filter calculates the information allocation factor for each sub-filter
and combines the estimated results using the extended Kalman filter, yielding accurate
target localization.

2.2. Coordinate Frames Definition and Transformation
2.2.1. Definition of Global and Local Coordinate Frames

The positioning solutions provided by different sensors are expressed in different
navigation systems and then integrated into a unified navigation frame for data fusion. In
this paper, we mainly use the definition and transformation of global and local coordinate
systems to describe the positioning of the surrounding environment, targets, and obstacles,
and the corresponding coordinate systems are shown in Figure 2.

  
(a) (b) 

Figure 2. Coordinate system framework for multi-robot systems: (a) global coordinate frame;
(b) local coordinate frame.

The elements in the global coordinate frames are described as follows, where 1 and 2
represent the main robot and member robots, respectively. LMA and LMB are artificial road
signs. N indicates the main robot heading, and DAB is the camera optical axis centerline
direction of the main robot. Hk is the angle between the main robot heading N and the
camera’s optical axis centerline direction. The robot-equipped sensors provide the following
data: D12, DA1, DB1, θ21C, θC1A, and θC1B. D12, DA1, and DB1 can be obtained from the laser
range scanner, while θ21C, θC1A, and θC1B can be read by the vision sensors. DAB and ηK
represent known observation data. Based on the geometric relationships before each robot
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and the road signs, the positions of the member robots in the global coordinate system can
be solved for and expressed in polar coordinates as

DA2 =
√

D12
2 + DB1

2 − 2D12DB1 cos(θ21c + θC1A) (1)

(DA2, θ2AB) =

(
DA2, arccos

(
DA2

2 + DAB
2 − (D12

2 + DB1
2 − 2D12DB1 cos(θ21c + θC1B))

2DA2DAB

))
(2)

Similarly, the position of the master robot in the global coordinate system can be
expressed in polar coordinate form as

(DA1, θ1AB) =

(
DA1, arccos

(
DA1

2 + DAB
2 − DB1

2

2DA1DAB

))
(3)

The heading angle of the main robot at this point can be calculated as follows:

θ = θ1AB + ηk − θC1A (4)

The local coordinate frame is employed to describe the relative positions of individual
robots in a multi-robot queue, including the updated relationships during their travel. In
this coordinate system, the current position of the main robot serves as the origin, and the
current heading represents the positive x-axis. At time t1 in the figure, the position of the
member robot in the x o y coordinate system is (x, y). The heading and position of the main
robot change as it moves. At time t2, the coordinate system is updated to xo′y, and the
position of the member robot is updated to (x′, y′). The time interval (t2 − t1) is defined as
the coordinate system update step, during which the x o y coordinate system is utilized for
both the main robot and the member robots.

2.2.2. Transformation of Visual Coordinate Frames

The purpose of using binocular vision [18,19] is to obtain the distance D between the
target position and the camera by imaging the target in the vision sensor, and the angle θk
between the horizontal 2D spatial projection of the target in 3D space and the centerline of
the camera’s optical axis. In the camera point model, the point [x, y, z, l]T in 3D space is
converted into the 2D spatial projection coordinates [u, v, l]T, which can be described by
the following equation: ⎡⎣u

v
1

⎤⎦ =
1
z

⎡⎣ fcx 0 cx 0
0 fcy cy 0
0 0 0 0

⎤⎦
⎡⎢⎢⎣

x
y
z
1

⎤⎥⎥⎦ (5)

where fcx and fcy are the components of the camera focal length in the x and y direction
respectively, and (cx, cy)T are the coordinates of the main point of the image. Due to daylight
refraction, the imaging lens of the camera produces a certain radial deformation, which
eventually affects the imaging of the target in the camera. Considering the effect of the
mirror deformation factor, the projection coordinates of the point in 3D space in 2D space
can be rewritten as

⎡⎣u
v
1

⎤⎦ =
1
z
∗
⎡⎣ fcx 0 cx 0

0 fcy cy 0
0 0 0 0

⎤⎦
⎡⎢⎢⎣

x
y
z
1

⎤⎥⎥⎦(1 + k1r2 + k2r4 + k3r6
)

(6)

where k1, k2, and k3 are the refraction coefficients of light, r2 = (x/z)2 + (y/z)2. The pa-
rameters fcx, fcy, cx, cy, k1, k2, and k3 can be obtained by the camera calibration algorithm.
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After removing the radial deformation, the coordinates matrix of the target in the imaging
plane are [

uc

vc

]
=

1
(1 + k1r2 + k2r4 + k3r6)

∗
[

u
v

]
(7)

The binocular vision imaging model is shown in Figure 3; vou and v’ou are the image
imaging plane, z and z′ are the central optical axis of the camera, p(up, vp) and p′(up

′, vp
′)

are the target O in the two planes of the imaging point.

 
Figure 3. Binocular vision imaging model.

Then, the angle η between the target O and the two camera’s center optical axes in the
horizontal plane can be expressed as

η = arctan
( |(W/2)− uc|

(W/2)
tan α

)
(8)

where W is the actual physical width of the imaged image and 2α is the horizontal tensor
angle of the camera.

2.3. Model Design

Referring to the joint filtering scheme in Figure 1, the model is designed using Leader–
Follower as the navigation mode. Two types of robots in the swarm are equipped with
different sensors. The main robot is equipped with internal sensors (odometer and gy-
roscope) as well as external sensors (laser range scanner and binocular vision system),
and the member robots are only equipped with odometers, gyroscopes, and sonar arrays
to reduce the cost. During the formation march, each robot performs self-localization
using its internal sensor data. Simultaneously, the main robot utilizes vision and laser
devices to observe the positions of the current member robots. However, due to significant
cumulative errors in the internal sensors and observation errors caused by time delay and
drift in the external sensors, the acquired positioning data deviate considerably from the
actual positions.

2.3.1. Odometer and Gyroscope Integration (Step 1—Self Positioning)

Deducing the robot’s position and heading accuracy solely from the odometer data
leads to relative cumulative errors. To enhance the accuracy, it is necessary to fuse these
data with the gyroscope data. Given the linear system characteristics, this paper employs a
discrete Kalman filter to fuse the data from both sources. Let X = [vL, vR, wg]T represent the
state variables. The state equation of the system can then be expressed as

Xk+1 = Ak+1Xk + wk (9)
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where Ak+1 is the state transfer matrix from k to k + 1 moments and Wk is the Gaussian
white noise with covariance matrix Q. Referring to Deng et al.’s use of the sensor model in
the outdoor mobile robot localization method [20], the transfer matrix is

A =

⎡⎣ 1 0 0
0 1 0

−1/βDRL 1/βDRL 0

⎤⎦ (10)

where β is the odometer correction factor determined down from the actual test data, and
the system observation equation is

Zk = HkXk + vk (11)

where the observations can be read from the odometer and gyroscope and the measurement
matrix Hk is the unit matrix I.

2.3.2. Distributed Data Fusion of Visual Positioning Subsystem and Laser Observation
Subsystem (Step 2—Collaborative Positioning)

1. Inertial navigation system state derivation

Combined with the motion characteristics of the robot, we use the arc model to
describe the motion of heading changes; the corresponding state derivation model is shown
in Figure 4.

Figure 4. State derivation model for INS.

The motion model of the inertial guidance system can be expressed as

Xk+1 = f (Xk, uk) + ωk (12)

f (Xk, uk) =

⎡⎢⎣ xk +
ΔDk
Δθk

(sin(θk + Δθk)− sin θk)

yk − ΔDk
Δθk

(cos(θk + Δθk)− cos θk)

θk + Δθk

⎤⎥⎦, |Δθk| > 0 (13)

where X = [x, y,θ]T , uk = [ΔDk, δθk,]T is the input to the odometer model, Dk is the length
of the arc, and θk is the change in steering angle; the values of the latter two are both
obtained by fusing the odometer and gyroscope data. wk is the Gaussian white noise of the
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system with covariance matrix Q. Then, the gained Jacobi matrix A of the state equation
can be derived from the motion model as

A =
∂ f
∂x

=

⎡⎢⎣1 0 ΔDk
Δθk

(cos(θk + Δθk)− cos θk)

0 1 ΔDk
Δθk

(sin(θk + Δθk)− sin θk)

0 0 1

⎤⎥⎦ (14)

Assuming that its noise is Gaussian white noise, the covariance matrix Pk+1 of the
model can be derived as

Pk+1 =
∂ f
∂x

Pk

(
∂ f
∂x

)T
+ E

[
wkwk

T
]

(15)

2. Visual target detection and localization

The visual localization process involves using a deep-learning-based convolutional
neural network algorithm for target detection. This algorithm detects the visual targets
and extracts their center coordinates. The subsequent steps include camera calibration to
establish the mapping relationship between the camera coordinate system and the world
coordinate system, and correcting lens deformation errors. Finally, the algorithm calculates
the distance from the center point to the camera’s optical axis in the horizontal direction
and the angle of deviation. This process enables accurate target localization. The complete
visual localization algorithm process is depicted in Figure 5.

 
Figure 5. Process of visual localization algorithm.

For robot target detection, we utilize an improved YOLO algorithm based on convolu-
tional neural networks. This algorithm offers significant advantages in terms of precision,
measurement speed, and accuracy [21], making it suitable for multi-robot indoor mobile
scenarios. Unlike traditional two-stage target detection algorithms that rely on candidate re-
gions, the YOLO algorithm treats target detection as a single regression process. It employs
a single convolutional neural network to predict the detection frame and its corresponding
position confidence level. The main architecture of the algorithm, illustrated in Figure 6,
comprises an input layer, a backbone network, and a neck and head network. The specific
working process is as follows:
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Figure 6. YOLO algorithm network architecture.

The input layer completes the pre-processing of the input avatar, scales the input
image to a fixed size, and completes the normalization operation. The network input size
of the YOLO algorithm can be adjusted to meet a multiple of 32. The larger the input image
size is, the more details are retained and the better the detection effect is, but at the same
time, the image detection speed will be reduced. Combined with the image characteristics
of the robot target, the network input size is set to 608 × 608 in this paper.

The backbone network, comprising five Cross Stage Partial (CSP) modules, is utilized
to extract deep semantic information from the image. These modules propagate features
to the CBM (Convolution operation + BN batch normalization + Mish activation function)
convolution module while also sending them to the residual block. The results of these
two convolutions are then combined using the concat splicing unit [22]. This design
reduces computational effort, enables richer gradient combinations, and avoids the problem
of gradient disappearance in excessively deep networks. Each CSPX module contains
5 + 2 × X convolutional layers, resulting in a total of 72 convolutional layers in the backbone
network. When the input image size is 608 × 608, the operations performed by each CSP
module, as well as the head CBM module, and the corresponding output results are
depicted in Figure 4. The feature map changes from 608 to 304, 152, 76, 38, and 19, forming
a three-layer feature map of sizes 76 × 76, 38 × 38, and 19 × 19, which constitute a
feature pyramid.

The neck and head networks are utilized to extract fused features more effectively
and accomplish multi-size target prediction, including the extraction of center coordinates.
To enhance feature extraction and representation, the YOLO algorithm incorporates the
PAN (Path Aggregation Network) structure after the Feature Pyramid Network (FPN) for
feature fusion across different backbone layers. The neck network ultimately produces
three standard-sized feature maps (76 × 76, 38 × 38, and 19 × 19) for multi-scale prediction
by the head network. While this algorithm generally achieves good detection accuracy,
there is a low probability of false detection in low-light environments or when encountering
objects with similar shapes. To address this, we introduce an additional branch with a
downsampling rate of 4 (resulting in a 152 × 152 feature map) to the original YOLO
algorithm, which already includes downsampling rates of 32, 16, and 8 (corresponding
to 19 × 19, 38 × 38, and 76 × 76 feature maps, respectively). This modification enables
finer prediction results, enhances detection performance for smaller objects, improves the
algorithm’s spatial differentiation capability, and effectively reduces the probability of false
detection [23].
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Figure 7 showcases representative detection results achieved by the optimized YOLO
target detection algorithm using the constructed dataset. The optimized algorithm demon-
strates higher confidence in detecting target robots, road signs, and distinctive shape
markers, meeting the accuracy requirements for visual localization.

 
Figure 7. Target detection.

If the distance between the two cameras of the binocular vision sensor is known to be
D, and θ1, θ2 are the angles between the binocular camera line and the camera-to-target
center line, respectively, then the distance from the midpoint of the binocular camera to the
target center can be solved as follows:

DOO′ =
DC1C2

√
2 sin2 θ1 + 2 sin2 θ2 − sin2(π − θ1 − θ2)

2 sin(π − θ1 − θ2)
(16)

If the main robot observes itself at moment k with coordinates (xk, yk), then its distance
observation equation can be derived as

Zd
j = Hd

j Xj + vg
j =

√(
xk − xj

)2
+

(
yk − yj

)2
+ vg

j (17)

where vj
g is Gaussian white noise, and its Jacobi measurement matrix can be deduced as

Hd
j =

∂h
∂x

=

[
(xj−xk)√

(xk−xj)
2
+(yk−yj)

2

(yj−yk)√
(xk−xj)

2
+(yk+yj)

2 0
]

(18)

3. Laser observation and localization

If two colored cylinders are placed in the direction of the member robots’ heading, the
distance difference between the two cylinders is obtained by the visual target detection
method, and the robot heading can be calculated at this moment. The laser rangefinder
positioning heading model is shown in Figure 8.

Figure 8. Laser rangefinder positioning heading model.
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The forward direction of the robot can be determined by using different colored
cylinders. DAB is a known as a fixed distance; then, the robot heading can be deduced as

θ = arccos
(

DAB
2 + DOB

2 − DOA
2

2DABDOB

)
− θBOx (19)

The heading observation equation of the laser rangefinder can be expressed as

Zb
j = Hb

j Xj + vb
j = arccos

(
DAB

2 + DOB
2 − DOA

2

2DABDOB

)
− θ + vb

j (20)

where vj
b is Gaussian white noise.

The real-time distance of the member robot relative to the main robot can be obtained
according to the laser rangefinder model and Equation (8). Let the coordinates of the main
robot itself at the time of observation be (xk, yk); then, the distance equation of the laser
rangefinder is

Zd
j = Hd

j Xj + vg
j =

√(
xk − x f

)2
+

(
yk − yj

)2
+ vg

j (21)

From the above equation, its measurement matrix can be further deduced as

Hj =
∂h
∂x

=

[
Hd

j
Hb

j

]
=

⎡⎣ (xj−xk)√
(xk−xj)

2
+(yk−yj)

2

(yj−yk)√
(xk−xj)

2
+(yk+yj)

2 0

0 0 −1

⎤⎦ (22)

The total observation equation of the laser sub-filter can be obtained as

Zj = HjXj + vj (23)

2.3.3. Joint Filtering Algorithm (Step 3—Joint Filtering)

Referring to the joint filtering model depicted in Figure 1, the process begins with
the discrete Kalman filter performing data fusion of the odometer and gyroscope at the
front end to estimate the real-time state of the inertial guidance system. Then, the visual
sensor extracts the angle information of the target, which is then used to establish laser
distance data, facilitating interaction and cooperation among the subsystems. Finally, the
joint filtering model employs federated filtering to accomplish information fusion within
the distributed sensor network. Specifically, the fusion involves using the extended Kalman
filter to merge the state of the inertial guidance system, serving as the reference state,
with the visual positioning and laser positioning subsystems. The estimation results from
the two extended Kalman sub-filters are subsequently passed to the main filter, enabling
optimal fusion of information and estimation of the system’s global state value X = [x, y,
θ]T. The joint filtering algorithm comprises the following steps:

1. Completing the solution of information allocation factors β1, β2. The information
allocation factor βi satisfies the information conservation principle, which means

n

∑
i=1

βi + βm = 1 (24)

βm represents the information distribution coefficient of the main filter, while the
value of β1, . . ., βn directly impact the performance of joint filtering. Typically, larger
coefficient values are assigned to sensors with higher measurement accuracy. How-
ever, since the external sensor subsystem employed in this study may experience
sudden measurement errors like drift, using a fixed coefficient value is not appropri-
ate. Hence, we employ eigenvalue decomposition based on the true variance Pi to
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calculate the real-time value of βi. Pi can be decomposed by eigenvalues Pi = LΛiLT ,
where Λi = diag{λi1λi2 . . . λiN}; the value of βi can be deduced as

βi =
(trΛi)

−1

N
∑

i=1
(trΛi)

−1 + (trΛm)
−1

(25)

2. Initialize the global state estimate value X̂i0 and the covariance matrix Pi0 and assign
the information to each sub-filter and the main filter in proportion to the information
factor βi:

P−1
i (k) = P−1

g (k)βi (26)

X̂i(k) = X̂g(k) (27)

3. The time correction is applied simultaneously to each sub-filter and the main filter,
and the common noise is allocated to each sub-filter based on the information factor βi:

Q−1
i (k) = Q−1

g (k)βi (28)

then, the filtering time is corrected to

X̂i(k) = X̂g(k) (29)

Pi(k + 1|k) = A(k + 1, k)Pi(k)AT(k + 1, k) + Γ(k)Qi(k)ΓT(k) (30)

where Γ is the system noise matrix and A is the state transfer matrix.
4. Each sub-filter uses a local observation Zi for the observed data correction.

P−1
i (k + 1|k + 1) = P−1

i (k + 1|k) + Hi(k + 1)R−1
i (k + 1)HT

i (k + 1) (31)

P−1
i (k + 1)X̂i(k + 1) = P−1

i (k + 1|k)X̂i(k + 1|k) + Hi(k + 1)R−1
i (k + 1)ZT

i (k + 1) (32)

where Hi is measurement matrix.
5. Main filter completes information fusion [24].

P−1
g (k + 1) =

n

∑
i=1

P−1
i (k + 1) (33)

X̂g(k + 1) = Pg(k + 1)
n

∑
i=1

P−1
i (k + 1)X̂i(k + 1) (34)

where n is the amount of sub-filters.

3. Analysis and Correction of Practical Errors

The theoretical analysis presented above discusses the feasibility of cooperative lo-
calization and outlines its implementation process. However, in practical applications of
multi-robot formation navigation, errors are inevitable. Therefore, it is crucial to analyze
the causes of different types of errors and propose appropriate correction solutions.

3.1. Visual Target Detection Delay

The visual target detection algorithm studied in this paper consists of the following
two main processes:

Firstly, the main robot observes manual road signs for self-positioning in the global
coordinate system. The main robot uses target detection and extracts road signs from the
environment to obtain the relative distance information between the camera and the road
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signs, which is fused with information from its INS to obtain accurate global positioning
information. Secondly, the master robot observes the member robots and positions them for
observation in a relative coordinate system. The main robot uses binocular vision sensors
and laser rangefinders to locate the member robots and sends the position information to the
member robots through the mesh network. The member robots use this information to fuse
with their own inertial guidance systems to obtain accurate relative position information.

The visual target detection information is fused with the information from the inertial
guidance system. However, this fusion process introduces errors due to the delay in target
detection. The error can be managed through two approaches: first, by restoring the motion
of the observed robot to its position prior to the time delay, and second, by reducing the
target detection time to fall within the acceptable error range. Table 1 illustrates the time
delay observed in each stage of the target detection process.

Table 1. Time consumption of each stage of visual target detection.

Sub-Processes Time (ms) Instruction

Camera imaging ≤5 Imaging of the target object, pre-processing, scaling,
and normalization of the input image.

Target detection ≤25, ≥20 Feature-pyramid-based target prediction using a
convolutional-neural-network-trained classifier.

Laser Positioning ≤5 This process can be performed in parallel with the
above process.

The time required for the target detection process can be reduced to less than 15 ms
by significantly reducing the image area to be inspected in indoor scenes. In the fusion
strategy, no action is taken during the first imaging, and the data from the second imaging
are used as observation data for the inertial guidance system. Assuming the robot moves at
a speed of 600 mm/s, the observation error range caused by the target detection algorithm
can be controlled to be below the millisecond level, thus meeting the localization accuracy
requirements once again.

3.2. Network Communication Latency

The master robot transmits the observation and positioning information of the member
robots to them through the mesh network. The member robots then integrate this informa-
tion with their own inertial guidance systems to obtain precise real-time relative position
information. In practical applications, there is a network time delay during communication.
However, since the robots form a dynamic mobile network, the communication time delay
is minimal, and the differences in time delay mainly depend on the real-time network
conditions. To manage these errors, motion recovery is performed on the robots.

Figure 9 illustrates the initial assumption of the robot’s circular motion with a radius
R around the origin O.

In the figure, (x, y) represents the actual position of the robot, while (x′, y′) denotes
the estimated position observed when the member robot reaches the position (xk1, yk1). In
the absence of network time delay Δt, the estimated position is corrected to (xk1′ , yk1′ ) after
filtering. However, due to the presence of time delay Δt, the actual position of the robot
reaches (xk2, yk2) before the observations from the subsystem reach the member robots for
fusion. If these data are fused with the inertial guidance system data, errors will occur.
Assuming the sensors within the inertial guidance system have undergone internal fusion
n times within Δt time, the sequence of state estimates is preserved {X1, X2, . . ., Xm}, where
X = {x, y, θ} and m > n. After receiving the observation from the network, the member robot
calculates the network time delay Δt, retrieves the state estimate from the inertial guidance
system’s state estimation sequence at the corresponding time point for fusion filtering, and
the filtered state estimation point should be (xk1′ , yk1′ ). Then, a state sequence is established,
representing the correlation chain of the robot’s internal sensor adjustment angle. By fitting
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a trajectory that progresses from the point (xk1′ , yk1′ ), the corrected position (xk2′ , yk2′ ) that
the robot should adopt at that moment is obtained.

Figure 9. Communication latency recovery model.

3.3. Observation Masking

Both visual imaging and laser ranging rely on line-of-sight observations. If the camera–
target line is obstructed by other objects, the target cannot be detected and positioning
information cannot be obtained. In multi-robot formation movement, the main robot and
member robots may be occasionally obstructed by other robots or obstacles. Figure 10
illustrates a scenario where the member robots are obscured by each other. In the figure, R1
represents the main robot; R2 and R3 represent the member robots; and N1 and N2 indicate
the headings of R1 and R2, respectively. When all three robots align in a straight line, as
shown in the figure, R1 and R3 are obstructed by R2, rendering R3 unobservable by R1.

 
Figure 10. Robotic observation masking model.

This problem can be addressed by considering two cases. The first case occurs when
R3 moves to its next position R3′, implying that R2′s obstruction of R3 is temporary.
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In this situation, R2 only relies on its own inertial guidance system to track its motion
trajectory during the period of obstruction. Once R2 passes the obscured area, it can then
use observation information from the main robot to make corrections. The second case
occurs when R3 maintains the same heading as R2 and the three robots move in a straight
line for an extended period. In this scenario, R1 is unable to observe R3 for an extended
duration; so, we utilize R3′s own sonar array positioning to make position corrections. The
distance D12 between R1 and R2 in the figure can be measured because R2 is in the heading
direction of R3, and its sonar array emits waves in this direction with a certain level of
accuracy. Additionally, the small angle formed by the heading direction of R3, where R2 is
located, can be determined through the geometric relationship between global positioning,
allowing us to measure D23. Therefore, the distance between R3 and the main robot can be
deduced as

D13 =
√

D2
12 + D2

23 − 2D12D23 cos θ123 (35)

3.4. Requirements of the Filtering Process for the Observed Values

The equation for the observation of the main robot to the member robots in relative
coordinates is

Zd
j = Hd

j Xj + vg
j =

√(
xk − xj

)2
+

(
yk − yj

)2
+ vg

j (36)

The observation equation converted to relative orientation is

ϕ = arctan

(
yj − yk

xj − xk

)
− θj + vϕ (37)

where θj is the current heading of the main robot, and vϕ is the Gaussian white noise with
zero mean and variance of δϕ

2, when

arctan

(
y f − yk

xj − xk

)
→ +

π

2
,

Δy
Δx

=
yj − yk

xj − xk
→ +∞ (38)

arctan

(
yj − yk

xj − xk

)
→ −π

2
,

Δy
Δx

=
yj − yk

xj − xk
→ −∞ (39)

This implies that the Δx between the two robots is very small, and minor measurement
errors can lead to significant deviations in the orientation observation, thereby causing
challenges in filter convergence [25]. Therefore, when the relative orientation is near
±(π/2), the relative orientation observation does not provide useful localization infor-
mation. Hence, prior to the filtering update, the observation is evaluated and selected
based on the 3δϕ law. If the difference between the observation and the expected value
exceeds 3δϕ, the observation is discarded. Subsequently, if the observation satisfies the
condition

∣∣Zj(k + 1)
∣∣ ∈ (

π
2 − θt, π

2 + θt
)
, it is determined to fall within the range of ±(π/2)

and cannot be used for the filtering update. However, the state update of the inertial
guidance system is still employed.

4. Results and Discussion

4.1. Test Platform

To evaluate the performance of the multi-robot cooperative localization algorithm in
an open indoor environment, we designed a multi-robot experimental platform consisting
of a main robot and three smaller robots, as shown in Figure 11a.
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(a) (b) 

Figure 11. Test platform and equipment. (a) Multi-robot system formation scenario. (b) Main robot
and main sensors.

As shown in Figure 11b, the main robot is equipped with an onboard computer that
possesses processing and computing capabilities. It can be connected to a WiFi device
with a USB interface to facilitate communication among the multi-robot systems. The
member robots are equipped with microcontrollers responsible for motion system state
processing. In the actual experimental setup, the multi-robot platform utilizes a SICK laser
range scanner for distance measurement, and member robots are equipped with sonar
arrays as their distance sensors. The main robot is equipped with a rotating binocular
vision sensor, enabling the target image to be positioned as close to the center of the field
of view as possible, thus improving positioning accuracy. All experiments are conducted
and performed on this platform, with different experimental scenarios varying in the
combinations of robots and sensors. The configuration program of the multi-robot system’s
experimental platform equipment is shown in Table 2.

Table 2. Multi-robot experimental platform equipment configuration program.

Serial
Number

Equipment Name
Main Sensors and Information

Processing Units
Robot Function Description

1 Main Robot
(Pioneer 3-AT)

• Integrated Odometer
• Integrated Gyroscope
• SICK Laser Rangefinder
• Binocular Vision Sensor
• In-car Calculator (1.44G main frequency,

4G memory, 64G hard disk)
• WiFi devices

• Maximum movement speed, 3 m/s
• Four-wheel construction with

four motors with encoders

2 Member Robot
(AmigoBot)

• Integrated Odometer
• Integrated Gyroscope
• Integrated Sonar Array (10)
• microcontroller (complete motion

information processing)
• WiFi devices

• Maximum movement speed, 2 m/s
• Maximum weight, 1 kg
• Four-wheel structure—two driving

wheels, two balance wheels

4.2. Test Scenarios

Three field tests were designed and conducted to assess the performance of the
proposed scheme and analyze error characteristics. Test Case 1 aims to evaluate the fusion
of odometry and gyroscope information using discrete Kalman filtering. Test Cases 2 and 3
are implemented in a multi-robot system performing formation marching, as illustrated in

266



Remote Sens. 2023, 15, 5584

Figure 12, where the black circle represents the main robot and the white circles represents
the member robots.

 
Figure 12. Positioning experimental trajectory of Test Cases 2 (the left part) and 3 (the right part).

Test Case 2 examines the performance of the joint filtering localization algorithm
during S-curve motion, where the master robot leads the member robots in formation. Test
Case 3 investigates the actual localization error in the presence of observation occlusion
when the multi-robot system moves in a circular trajectory. The deviation is calculated
by comparing the actual robot motion trajectory with a specified high-precision reference
trajectory.

All robots are equipped with WiFi communication devices that support IEEE802.11 se-
ries protocols, enabling the formation of a dynamic mesh network for data communication
among them. The specific experimental case scenario is presented in Table 3.

Table 3. Summary of the Test Cases.

Test Design Test Case 1 Test Case 2 Test Case 3

Test scenario
description

Circular motion of
single robot

The main robot leads the
members in an S-curve
movement in formation
according to a fixed
relative position

The member robots follow the
main robot in a circular motion
along the same
trajectory formation

Environment Empty indoor environment with member robots moving in formation with the main robot along a
designated trajectory

Fusion domain Positioning domain with open indoor environments
Robot movement speed ≤ 800 mm/s

Total Time
Duration 50 s 120 s 120 s

Competing
Solutions

Odo only
Odo/Gyroscope

Odo/Gyroscope Joint filtering
algorithm (Proposed)

Odo/Gyroscope Joint filtering
algorithm (Proposed, presence of
observation masking)

Reference The reference trajectory in the experiment is obtained from a set of high-precision combined
navigation equipment H Guide N580 and post-processed by Novatel commercial software IE 8.9.

4.3. Test Results and Discussion
4.3.1. Odometer and Gyroscope Information Fusion

Figure 13 illustrates a graph comparing the data fusion positioning (OFP) using both
the odometer and gyroscope with the trajectory deviation of using only the single sensor
odometer in the experimental scenario Test Case 1. The results demonstrate that the fused
trajectory exhibits greater proximity to the real trajectory compared to that when relying
solely on the odometer navigation, resulting in an accuracy improvement of 43.3%.

4.3.2. Joint Filter Positioning

Figure 14 presents the actual experimental results comparing the trajectories of odome-
ter fusion positioning (OFP) and joint filter model fusion positioning (JFV) in Test Case 2.
The figure contains three sets of curves corresponding to the three member robots. In
Figure 14a, the mean deviation of the navigation trajectory using odometer fusion is
11.3 mm. Over time, the deviation of the RI developed trajectory shows a significant
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increasing trend due to cumulative errors in the internal sensors. In contrast, the joint-
filtered navigation profile closely aligns with the reference trajectory without significant
cumulative errors. Figure 14b showcases the trajectory comparison between the main
robot’s odometer fusion localization (OFP) and joint-filtered model fusion localization
(JFV). The JFV curve effectively mitigates the cumulative error observed in OFP.

 
(a) (b) 

Figure 13. Comparison of track deviation before and after odometry fusion. (a) Comparison trajecto-
ries before and after fusion. (b) Calculation of bias before and after fusion.

 

(a) (b) 

Figure 14. Multi-robot system trajectory chart. (a) Trajectory of three member robots. (b) Trajectory
of mail robot.

Figure 15 displays the peak curves derived from the trajectory deviations calculated
during positioning experiments for both the main robot and the member robots. The JFV
trajectory of the main robot exhibits greater accuracy compared with that of the member
robots. This can be attributed to the main robot’s self-positioning in the global coordi-
nate system, which experiences fewer observation errors. On the other hand, the global
positioning of the member robots incorporates the observation errors of the main robot.

Figure 15. Comparison of positioning error in Test Case 2.
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4.3.3. Observation Occlusion Error Handling

The previous experimental procedure considered three error factors: target detection
delay, network delay, and filter requirements for observation orientation. However, no
treatment for masking observation errors has been applied. In this section, we use the
experimental scenario of Test Case 3 to evaluate the masking error in observations. Theorem-
type environments (including propositions, lemmas, corollaries, etc.) can be formatted
as follows:

Figure 16 illustrates a scenario where the robot follows a small arc trajectory. R1
represents the main robot, while R2 and R3 are member robots. Throughout the motion, R3
remains obscured by R2 and cannot be observed by R1. The accuracy of R2, which relies on
vision and laser navigation, is higher compared with that of R3, which relies on sonar array
ranging data.

 

(a) (b) 

Figure 16. Observation occlusion error handling. (a) Observation occlusion scene. (b) Track
error handling.

5. Conclusions

This paper introduces a cooperative localization method based on a joint filtering
model for practical multi-robot formation navigation. The method integrates sensor data
from various sources to achieve precise localization. The model incorporates observation
information from other robots, enhancing localization accuracy through cooperative efforts.
The fusion of a laser rangefinder and vision sensor enables unique laser-ranging-based
positioning by obtaining the target’s horizontal projection and the camera’s optical axis
angle. Using a discrete Kalman filter to merge internal sensor data demonstrates superior
real-time performance. The application of a visual target detection algorithm based on a
convolutional neural network, along with visual and laser localization, employs a joint
filtering model to fuse multiple sensors as a sub-filtering system. The resulting estimated
deviation of robot position has a root mean square value of 22.8 mm in the x direction and
24.6 mm in the y direction, comparable to current research results based on collaborative
autonomous SLAM positioning algorithms for multiple mobile robots that meet high
accuracy requirements [26]. Moreover, it surpasses the co-localization errors of existing
systems with multiple robot clusters in different formations. Lastly, an in-depth analysis of
error sources is conducted in the actual formation application of a multi-robot system [27].
Experimental results demonstrate that the proposed positioning method achieves precise
positioning with a small error range and negligible cumulative errors, making it suitable
for real-world robot formation applications.

In our future work, we will engage in research in four challenging directions, including
the improvement of navigation performance of multi-robot systems, formation control, and
cooperative communication.
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(1) Leveraging current technology [28], we aim to enhance and optimize our scheme. This
involves addressing observation errors arising from the information fusion process
and tackling time-delay errors in diverse formation configurations, varying robot
numbers, and investigating different communication conditions. This challenging
aspect contributes to the refinement of the existing architectural scheme.

(2) We will examine the impact of applying the existing algorithms in height-transformed
environments and develop 3D positioning information fusion schemes accordingly,
which should enable a more accurate estimation of trip energy consumption to support
some advanced future applications.

(3) Based on the accurate position information of member robots and obstacles, the
autonomous mobile robot group formation planning, holding, and control algorithms
will be further investigated in combination with the currently available algorithmic
models [29,30], and the optimal efficiency solution will be proposed based on different
task scenarios.

(4) It is necessary to conduct research on the interaction strategies of multi-robot systems
under specific topologies and to design transmission strategies for the information
in the interaction network, such as sensor data, communication protocols, control
information, and images, which will meet the requirements of formation missions
with high communication performance.
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Abstract: Establishing an ultra-high-precision link for time–frequency comparisons between satellites
and ground stations is critically important. This endeavor is fundamental to the advancement of
pioneering space science exploration and the development of a robust space-based time–frequency
system featuring ultra-high-precision space atomic clocks. In response to the requirements for
assessing the long-term stability of high-precision space atomic clocks, we have designed and
implemented a satellite–ground microwave time–frequency comparison system and method based
on a three-frequency mode. Ground-based experimental results demonstrate that the equipment
layer can achieve a satellite–ground time comparison accuracy better than 0.4 ps (RMS), with the
equipment delay stability (ADEV) for all three frequencies being better than 8 × 10−18 at 86,400. By
leveraging the ground-based experimental results, we constructed a satellite–ground time–frequency
comparison simulation and verification platform. This platform realizes ultra-high-precision satellite–
ground time–frequency comparison based on the China Space Station (CSS). After correcting various
transmission delay errors, the satellite–ground time comparison achieved an accuracy better than
0.8 ps and an ADEV better than 2 × 10−17 at 86,400. This validation of our novel satellite–ground
time–frequency comparison system and method, capable of achieving an 10−17 magnitude stability,
is not only a significant contribution to the field of space time–frequency systems but also paves the
way for future advancements and applications in space science exploration.

Keywords: satellite–ground microwave time–frequency comparison; three-frequency mode; China
Space Station (CSS); transmission delay errors; stability

1. Introduction

Globally, the development of high-precision space atomic clocks is regarded as a vital
direction in the exploration of cutting-edge space science. These sophisticated timekeepers
are capable not only of maintaining precise time on Earth but also of facilitating precise
time–frequency comparisons at any location in space, which is particularly crucial for
fundamental physics research. The capability for spatial time–frequency comparison
enables the detection of spacetime variations in different gravitational fields, playing
a pivotal role in advanced fundamental physical research such as the measurement of
gravitational redshift and the determination of the fine-structure constant. Current GNSS
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systems such as BDS, Galileo, and GPS III achieve 10−14 to 10−15 stability at one day while
offering enhanced time and frequency transfer via commercial services, while the Two-Way
Satellite Time and Frequency Transfer (TWSTFT) method employs two-way satellite signals
to compare terrestrial clocks, achieving stability of the order of 10−15 by leveraging the
symmetry of the two-way transmission to enhance measurement stability. Led by the
European Space Agency, the European Advanced Atomic Clock Program (Atomic Clock
Ensemble in Space, ACES) plans to equip the International Space Station (ISS) with a
combination of cold atomic microwave clocks and active hydrogen maser clocks, and the
ACES MWL system is aimed at achieving a satellite–ground comparison capability with
an uncertainty and daily stability reaching the 10−16 level. Furthermore, this will pave the
way for advanced experiments in cold atomic physics and relativity tests [1]. In comparison
with the ACES initiative, the high-precision time–frequency scientific experiment system
of the China Space Station (CSS) intends to deploy and operate an ultra-high-precision
atomic clock combination, including cold atomic strontium optical clocks, cold atomic
microwave clocks, and active hydrogen maser clocks. Simultaneously, by leveraging both
microwave and laser transmission links, the CSS aspires to achieve ultra-high-precision
comparisons between space- and ground-based clocks, enhancing long-term stability [2].
Additionally, the European Space Agency has laid out its plans for the development of space
optical clocks (SOC). In the project’s second phase, they have realized a space optical clock
prototype with a long-term stability of 5 × 10−17. Plans are in place to install this on the
ISS [3]. Hence, establishing a high-precision satellite–ground time–frequency comparison
link, objectively assessing the performance of space atomic clock groups, and promoting the
application of high-precision time–frequency references are important research directions.

In the realm of scientific experimentation, optical techniques, including frequency
combs and continuous-wave lasers, have shown remarkable progress, and measurement
techniques based on free-space optical frequency comb signal comparisons have garnered
significant attention and development [4–7], with early systems achieving 10−16 instability
in one second and recent advancements pushing this to 3 × 10−18 [8]. Dual-branch comb
designs have yielded Allan deviations of approximately 2 × 10−18 over one second and an
ultimate stability of approximately 5 × 10−21 over 100,000 s after noise reduction [9]. Al-
though lab-based free-space optical frequency comb techniques have shown high accuracy,
their performance is greatly diminished in atmospheric conditions, making long-distance
clock comparisons challenging. Therefore, the laser satellite–ground time–frequency trans-
mission, implemented using the optical frequency comb, inherently exhibits vulnerabilities.
It is severely disrupted by atmospheric conditions that compromise its continuous opera-
tional capability. Moreover, because of the high-speed relative motion between satellites
and the Earth, the simplistic relativistic correction models currently in use substantially
limit the precision of correcting time delay errors caused by relative positional changes
of satellite payloads [10]. Consequently, the application of lasers to achieve space optical
frequency comb signal comparisons in the complex satellite–ground environment may
be constrained. There is the potential that it might not meet the demands for ultra-high
precision in satellite–ground time–frequency comparisons. This underscores the impor-
tance of improving microwave time–frequency comparison methods, which may better
withstand atmospheric disturbances and maintain a stable long-term space–ground link.
Advancements in microwave time–frequency comparison methods may hold the key to
realizing a future global network of ultra-high-precision clock comparisons.

In response to the requirements for evaluating the long-term stability of satellite–
ground time–frequency in the high-precision time–frequency experimental system of the
China Space Station (CSS), this paper focuses on the microwave time–frequency transmis-
sion payload planned to be on board the space station. In collaboration with a ground
station (GS) system, we have constructed a simulated satellite–ground time–frequency
comparison system. Utilizing this system, we validated the design of a terrestrial three-
frequency mode (1 uplink + 2 downlink) for time–frequency comparisons. Through system
architecture, error modeling and correction, and equipment control, we demonstrate the

273



Remote Sens. 2023, 15, 5393

feasibility of achieving ps-level satellite–ground time–frequency comparison. Additionally,
we show that long-term continuous operation can attain stability of the order of 10−17 for
satellite–ground time–frequency comparison.

2. Satellite (CSS)–Ground Time–Frequency Comparison System and Methodology

The CSS is equipped with an array of time–frequency payload equipment, which
includes advanced onboard atomic clocks—such as a hydrogen maser, a microwave clock,
and an optical clock—integral for maintaining the station’s time standards with ultra-high
precision. Alongside these clocks, the CSS hosts external payloads like the microwave
link [11] payload, laser link payload, and precise orbit determination antenna payload.
These payloads, in combination with the ground station equipment, form a comprehensive
satellite–ground time–frequency comparison system [12]. This system, as depicted in
Figure 1, is designed to facilitate ultra-high-precision time–frequency comparisons between
the satellite and ground, enabling critical operations and experiments that require stringent
time synchronization and frequency standards.

Figure 1. Satellite (CSS)–Ground Time–Frequency Comparison System.

In response to the stability assessment requirements of the high-precision time–
frequency system on the CSS, a three-frequency mode has been designed for satellite–
ground time–frequency comparison based on the aforementioned comparison system.
When taking into full consideration the signal path effects, the three-frequency mode
(1 uplink + 2 downlinks) of the satellite–ground microwave two-way link is expected to
achieve ultra-high precision in satellite–ground time–frequency comparison. The uplink
and downlink (f1 and f2) are used to decouple satellite–ground relative clock differences,
while the two downlinks (f1 and f3) are for atmospheric error modeling. The observation
model for this three-frequency-mode satellite–ground time–frequency comparison can be
represented as
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⎧⎨⎩
p1(t, f1) = rS

G(t) + ΔT(t) + HS
G( f1) + τion(t, f1) + τtro(t, f1) + τmov(t, f1) + τrel(t, f1) + εS

G(t, f1)
p2(t, f2) = rG

S (t)− ΔT(t) + HG
S ( f2) + τion(t, f2) + τtro(t, f2) + τmov(t, f2) + τrel(t, f2) + εG

S (t, f2)
p3(t, f3) = rG

S (t)− ΔT(t) + HG
S ( f3) + τion(t, f3) + τtro(t, f3) + τmov(t, f3) + τrel(t, f3) + εG

S (t, f3)
(1)

where f1 ∼ 25 GHz, f2 ∼ 30 GHz, and f3 ∼ 20 GHz represent one uplink signal frequency
and two downlink signal frequencies, respectively. The variable p stands for the carrier
observation value at different frequency points, while r signifies the geometric distance
equivalent time delay between satellite and ground receivers at different moments, and
ΔT(t) is the relative clock offset between satellite and ground at different times. HS

G is
the sum of the ground equipment transmission channel delay and the space equipment
reception channel delay. Conversely, HG

S is the combined delay of the space equipment
transmission channel and the ground equipment reception channel. The variables τion,
τtro, τmov and τrel represent the equivalent time delays for ionospheric error, tropospheric
error, movement error, and relativistic effects, respectively. While some error factors are
fundamentally independent of frequency, frequency is related to the signal path that is
affected by frequency. In our work, frequency serves to differentiate the error factors along
distinct signal paths, thus reflecting the indirect relationship between the two. ε denotes
measurement error.

In two-way time–frequency transmission under satellite–ground conditions, the uplink
and downlink propagation signals have an approximate symmetry in their paths. By
leveraging the difference in ranging values from the uplink and downlink two-way links,
we can decouple the relative clock difference between satellite and ground. Most of the
transmission errors introduced by the propagation path can be either canceled out or
significantly attenuated. The decoupled relative clock difference between the satellite and
the ground is given by

ΔT(t) =
p1(t, f1)− p2(t, f2)

2
+ ΔH f1, f2

hardware + Δε
f1, f2
obs + Δτ

f1, f2
ion + Δτ

f1, f2
tro + Δτ

f1, f2
mov + Δτ

f1, f2
rel (2)

where p1 and p2 represent the ranging values of the uplink and downlink, respectively,
typically obtained through transceiver devices that mutually exchange carrier waves and
pseudocode ranging signals. ΔHhardware denotes the combined delay error intrinsic to the
hardware, usually determined via a self-closed loop calibration. Δτion, Δτtro,Δτmov and
Δτrel signify transmission errors along the link, corresponding respectively to ionospheric,
tropospheric, motion time delay, and relativistic errors, typically estimated through precise
modeling. Δεobs is the measurement error, predominantly determined by the inherent
hardware capabilities of the transmitting and receiving devices.

The precision of equipment measurement errors is the most pivotal factor in determin-
ing the accuracy of satellite–ground time delay measurements. Apart from the errors in
measurement equipment, other error sources such as platform orbiting accuracy and atmo-
spheric transmission conditions also affect the final two-way time comparison results [13].
Hence, the correction of transmission delay errors for distance measurement signals is
vital for achieving high-precision two-way time comparisons. Strategies and methods for
modeling various types of errors are shown in Table 1.

Table 1. Satellite–ground transmission delay errors and correction methods.

Error Error-Handling Method

Time delay caused by motion Corrected by model [14]
Hardware delay Closed-loop self-calibration [15]
Time delay caused by troposphere effect Using microwave radiometer data and model [16]
Time delay caused by ionosphere effect Corrected by dual-downlink model [16]
Time delay caused by relativistic effect Corrected by model [17]
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Assuming the hardware capabilities meet the required standards, to attain an ultra-
high time-transfer link accuracy, it is imperative to thoroughly consider the mentioned
error sources and adopt appropriate methods to precisely counteract these errors to ensure
the stability of the link.

3. Ground-Based Experiment

In high-precision link systems, the inherent measurement errors of the equipment
significantly determine its measurement accuracy. To assess the intrinsic metrics of the link
equipment developed for measurements, a co-source test scenario is contemplated. This
involves using a single time–frequency reference signal for both the satellite-borne and
ground-based terminals, thus eliminating errors introduced by the clock group and assess-
ing the additional noise of the microwave time–frequency transfer link. A ground-based
bidirectional test system is established as shown in Figure 1, simulating both the space
and ground segments. The GNSS receiver is employed to initialize the pulse-per-second
synchronization between the space and ground segments, assisting in the rapid establish-
ment of the satellite–ground link. Subsequently, the local optical-frequency reference signal
maintains the pulse moments for both the satellite-borne and ground-based terminals.

The test system utilizes optical-frequency signal transmission to achieve precise time-
delay control and local oscillator signal synthesis, as shown in the equipment composition in
Figure 2. The frequency signal from the cesium atomic clock is converted to an optical signal
via an optical comb. Using an optical-frequency-signal phase-stable transmission device,
precise time-delay control is achieved during the optical-frequency signal transmission
process. Pulse repetition frequency multiplication is implemented at the optical frequency,
which, after photodetection, filtering, and amplification, is converted into the desired
local oscillator signal. Stable tracking and precise measurement are realized through radio
frequency conversion and baseband signal processing. Furthermore, for the assurance of the
test equipment’s long-term stability, the experimental setup incorporates comprehensive
thermal regulation measures: externally, it utilizes protective radomes and precision air
conditioning to manage the ambient temperature, while internally, a secondary precision
temperature control system, consisting of liquid cooling pipelines, heating films, and
thermoelectric coolers (TECs), meticulously maintains the equipment’s thermal state.

Figure 2. Ground-Based Test Experiment Setup.

The measurement accuracy at the equipment level is a critical factor constraining the
high-precision time–frequency comparison between the satellite and the ground. This
primarily includes random measurement errors of the equipment, equipment time delay
caused by temperature changes, and jitter in the antenna phase center, among others. Based
on the aforementioned ground test system, measurements obtained from satellite-borne
and ground-based transceiver equipment in terrestrial conditions showed time delay mea-
surement results for the transmission links at three frequency points. Figure 3 and Table 2
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display the one-way time delay measurement results for two uplinks and one downlink in
a co-source test scenario. The time deviation (TDEV) values for the three frequency points
were found to be 3.72 × 10−3 ps at 86,400 s, 6.50 × 10−2 ps at 86,400 s, and 1.32 × 10−1 ps
at 86,400 s, respectively. The root mean square (RMS) values of their link measurement
errors are all less than 0.4 ps. The corresponding Allan deviation (ADEV) values were
5.84 × 10−19 at 86,400 s, 2.27 × 10−18 at 86,400 s, and 7.65 × 10−18 at 86,400s, respec-
tively. This shows that the ground-based experiment for the three-frequency microwave
transfer link in near space has high stability, indicating that the currently designed time
delay measurement system possesses the fundamental hardware capability of achieving
satellite–ground time–frequency comparisons at the 10−17 level. This represents nearly a
3-order-of-magnitude improvement over the precision of the BDS-3 satellite–ground time
comparison system [18,19].

Figure 3. Experimental results of ground time–frequency transfer. Left: The TDEV (ps) of
three−requency links. Right: The ADEV of three-frequency links.

Table 2. Statistics on stability of three-frequency links.

Type
Averaging

Interval
CSS Receiving

Link (f1)
GS Receiving

Link (f2)
GS Receiving

Link (f3)

TDEV
300 s 1.50 × 10−14 4.05 × 10−14 9.76 × 10−14

86,400 s 3.72 × 10−14 6.50 × 10−14 1.32 × 10−13

ADEV
300 s 1.74 × 10−16 4.73 × 10−16 1.62 × 10−15

86,400 s 5.84 × 10−19 2.27 × 10−18 7.65 × 10−18

4. Simulation and Verification of Satellite–Ground Time–Frequency Comparison

In conditions where satellite and ground equipment have functional states, the pri-
mary limiting factor of the accuracy of satellite–ground time–frequency comparison is the
correction of transmission delay errors. The design of a three-frequency satellite–ground
time–frequency comparison system requires modeling and correcting transmission delay
errors item by item. Therefore, the orbital products and microwave radiometer monitoring
parameters (pressure P, temperature T, water vapor pressure ew) used for correction are key
factors influencing correction accuracy. Among them, the accuracy of orbital products is
affected by three factors: errors in precise orbit determination (POD), spacecraft attitude
errors, and calibration errors in the conversion process from the tracking antenna phase
center to the microwave antenna phase center. Meanwhile, the primary cause of errors in
atmospheric parameter monitoring values by microwave radiometers is instrument error.
According to current actual ground test results, the aforementioned error factors can gener-
ally be controlled within the index range listed in Table 3. Therefore, the simulation and
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analysis of satellite–ground time–frequency comparison are based on the index capabilities
listed in the table.

Table 3. Error indicator settings.

Attitude error ≤40′′ (3σ)
Phase center calibration error ≤3 mm (3σ)
POD error ≤10 cm (3σ)
Atmospheric parameter error P ≤ 0.5 hPa; T ≤ 0.5 ◦C; ew≤ 0.5 hPa

4.1. Satellite–Ground Simulation and Verification Platform

In order to simulate and validate the satellite–ground time–frequency comparison
system and its related key technologies, this paper constructs a satellite–ground time–
frequency simulation and verification platform. The construction is based on the CSS
orbital parameters provided by the China Manned Space Agency office (http://www.cmse.
gov.cn/gfgg/zgkjzgdcs/ accessed on 16 July 2023) as shown in Table 4, as well as related
parameters obtained from ground-based experiments. Utilizing this simulation platform,
we conducted satellite–ground simulations to validate ultra-high-precision satellite–ground
microwave time–frequency comparison technology. The architecture of the simulation and
verification platform is illustrated in Figure 4.

Table 4. CSS orbital configurations.

Epoch 24 February 2022 00:00:00 (UTC)

Orbital parameters

Semi-major axis: 6759.9132 m, Orbit inclination: 41.4680 (degree)
Eccentricity: 0.0005007, Right ascension of ascending node:
188.6126 (degree)
Argument of perigee: 357.7510 (degree), Mean anomaly:
1.8149 (degree)

Within the framework of the simulation and verification platform, parameters are
strictly set according to the actual conditions of the CSS [20]. In this simulation, we have
comprehensively considered the Earth’s model and the forces acting on the spacecraft and
modeled various error factors, including geometric distance, motion time delay (distance
error and clock error), atmospheric time delay, and relativistic time delay, among others [13].
This process almost accurately replicates the entire procedure of the satellite–ground
time–frequency comparison system achieving two-way measurement. The simulation
generates dual one-way pseudo-range observation data between the CSS and the ground
(with a sampling rate of 1 Hz). Lastly, according to the simulation data, we further
analyze the impact of various error factors under this new method of satellite–ground time
comparison. We also validate the feasibility of achieving time stability for the satellite–
ground comparison, thereby providing technical support for the processing and analysis of
subsequent in-orbit experimental data.

4.2. Analysis of Transmission Delay Errors in Satellite–Ground Time–Frequency Comparison

Utilizing the CSS-to-ground simulation, we replicated the establishment of a CSS-
to-ground measurement link over the course of a single day (0~86,400 s) under realistic
environmental conditions. This simulation provided us with a detailed understanding
of various two-way transmission delay errors in the satellite–ground comparison. As
illustrated in Figure 5, each arc represents one of the successive passes of the CSS, indicating
the periods when the space station is visible from a ground observer’s perspective. Typically,
these visibility arcs last for approximately 4 to 6 min, a time frame that is critical for the
successful establishment and maintenance of a measurement link between the CSS and
ground station.
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Figure 4. Platform architecture of the satellite–ground simulation and verification.
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Figure 5. Two−way transmission delay errors of satellite–ground comparison.

In Figure 5, the x-axis represents time within the day in seconds, outlining the evolution
of two-way time delays throughout the link establishment between the space station and
the ground station. These delays encompass motion-induced delay, relativistic effects,
and atmospheric interferences such as ionospheric and tropospheric delays, which align
with the error terms outlined in Equation (2). Each data point plotted signifies a separate
simulation instance, reflecting the variation in time delays across different runs. Because of
the low Earth orbit and high velocity of the space station, the motion delay error introduced
during signal transmission significantly impacts the satellite–ground time comparison. As
shown, the error can accumulate to tens of nanoseconds in the process of the two-way
decoupling of clock differences, thereby underscoring the necessity of correcting for the
motion delay error. This is typically achieved through the use of precise ephemeris data for
correction. Our simulations indicate that when applying precise ephemeris modeling to
correct for motion delay error on low-Earth-orbit spacecraft, the residual uncertainty in the
error can be reduced to better than picoseconds.

According to the theory of relativity, the simultaneity of spatially separated events
is not absolute. In satellite–ground time–frequency comparison, relativistic errors mainly
arise from the high-speed relative motion between the targets. This includes the effects
of relativity on frequency (nominal frequency offset and periodic relativistic time delay)
and relativistic path effects (Shapiro time delay). The nominal frequency offset caused by
relativity can be precisely calibrated by lowering the frequency of the atomic clocks on
the spacecraft or ground station, and it is generally insufficient to affect the stability of
long-distance time comparisons. The periodic relativistic effects during the space-station-to-
ground time comparison are mainly due to the different speeds and gravitational potentials
of the atomic clocks on the space station and ground station in inertial space. In low
Earth orbit, the spacecraft is subject to complex forces, and the gravitational potential
modeling must consider various perturbing forces (mainly, Earth’s gravity, tides, lunar and
solar gravity, and solar radiation pressure). Gravitational time delay is caused by changes
in the relative positions of the ground station, spacecraft, and Earth’s center during the
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propagation of the satellite–ground ranging signal. As shown in Figure 5, in the high-
precision time–frequency comparison experiment system of the CSS, the time-delay errors
caused by relativity reached several nanoseconds. To achieve accurate estimation and
correction of this part of the error, we consider establishing a high-precision model for the
forces acting on the space station to mitigate the impact of periodic relativistic time-delay
perturbations on time comparison stability.

Atmospheric errors (ionosphere and troposphere) during signal propagation also
significantly limit the achievement of ultra-high-precision microwave satellite–ground
time comparison. In the process of the bi-directional decoupling of clock differences in
three-frequency mode, the error can reach tens of picoseconds, which requires careful
consideration and correction. To address atmospheric errors, we propose a novel approach
that eliminates tropospheric errors by modeling historical data and microwave radiometer
monitoring data. In combination with two downlink links, we accurately calculate the
total electron content of the ionosphere along the same path, thereby correcting the time
delay errors caused by the ionosphere. Utilizing the current design of high-precision
error-correction methods (see Table 1), we corrected various link delay errors in the three-
frequency mode. The residual errors of the two-way time–frequency comparison after
correction are illustrated in Figure 6. After correction, the RMS of the residual error
of the satellite–ground two-way transmission delay errors is no more than 0.8 ps. The
corresponding TDEV can achieve daily stability better than 1.33 × 10−3 ps, and ADEV
can achieve daily stability better than 1.50 × 10−17. It is evident that even after two-way
differencing and correction, the transmission delay errors still have significant impacts on
the stability of the satellite–ground time comparison compared to the equipment delay
stability (Table 2). This makes transmission delay errors one of the main factors affecting
the stability of time–frequency comparison [21]. The handling of transmission delay errors
directly affects the final results of satellite–ground time comparison.

Figure 6. Stability of the residual error after correcting various transmission−delay errors in
two−way time−frequency comparison.

4.3. Analysis of Satellite–Ground Time–Frequency Comparison Results

Based on the current ground experiments, and taking into account the various er-
ror factors in satellite–ground comparison as mentioned above, a semi-physical satellite–
ground time comparison processing platform has been established. The satellite–ground
time comparison results in the three-frequency mode are shown in Figure 7. With the
help of the ultra-high−precision atomic clock on board the space station, we expect to
achieve a satellite–ground time comparison precision of 0.77 ps. The corresponding TDEV
can achieve 2.94 × 10−2 ps at 86,400 s, and ADEV can achieve 1.51 × 10−17 at 86,400.
Therefore, considering this satellite–ground time–frequency comparison system, it is ex-

281



Remote Sens. 2023, 15, 5393

pected to achieve an 10−17 magnitude of stability in the CSS–ground time–frequency
comparison system.

Figure 7. Final stability of the satellite (CSS)−ground time comparison.

5. Conclusions and Future Work

In response to the need for long-term stability assessment of satellite–ground time–
frequency comparison in the CSS, this paper proposes a three-frequency-mode satellite–
ground time difference measurement system and method. According to ground experiment
results, the equipment is capable of achieving a measurement error with the RMS of less
than 0.4 ps, as well as stability better than 8 × 10−18 at 86,400 s. Taking into account the
impact of transmission delay errors and other factors (including link residual errors, hard-
ware measurement inaccuracies, and clock noise, effectively reflecting the total uncertainty
in our measurements), our comprehensive analysis and evaluation indicate that the preci-
sion of satellite–ground time comparison is expected to be better than 0.8 ps, meeting the
requirements of 10−17 magnitude stability for satellite–ground time–frequency comparison.

Our initial use of different frequencies was a strategic choice to maintain signal in-
tegrity while developing these isolation techniques. To further enhance the precision of
satellite–ground time–frequency comparison, future work will focus not only on refining
corrections for atmospheric and relativistic errors but also on addressing the technical
challenges associated with same-frequency uplink and downlink. We plan to optimize the
system and scheme design for same-frequency communications, by implementing effective
isolation measures to mitigate the potential interference of signals in space. This approach
is aimed at ensuring the symmetry of the propagation paths for uplink and downlink
signals, which is expected to inherently cancel out the effects of the space environment on
the signals. At the same time, we will consider the impact of higher-order perturbing forces
in the inertial frame (such as J2 terms and above) on the precision of two-way time compar-
ison. We aim to establish a precision relativistic correction model based on higher-order
terms to correct the satellite–ground time comparison errors caused by signal propagation,
thereby achieving higher precision in satellite–ground time comparison.
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Abstract: Carrier Smoothing Code (CSC), as a low-pass filter, has been widely used in GNSS posi-
tioning processing to reduce pseudorange noise via carrier phases. However, current CSC methods
do not consider the systematic bias between the code and carrier phase observation, also known as
Satellite-induced Code Bias (SICB). SICB has been identified in the BDS-2 and the bias will reduce
the accuracy or reliability of the CSC. To confront bias, an improved CSC algorithm is proposed by
considering SICB for GEO, IGSO, and MEO satellites in BDS constellations. The correction model
of SICB for IGSO/MEO satellites is established by using a 0.1-degree interval piecewise weighted
least squares Third-order Curve Fitting Method (TOCFM). The Variational Mode Decomposition
combined with Wavelet Transform (VMD-WT) is proposed to establish the correction model of SICB
for the GEO satellite. To verify the proposed method, the SICB model was established by collecting
30 Multi-GNSS Experiment (MGEX) BDS stations in different seasons of a year, in which the BDS
data of ALIC, KRGG, KOUR, GCGO, GAMG, and SGOC stations were selected for 11 consecutive
days to verify the effectiveness of the algorithm. The results show that there is obvious SICB in
the BDS-2 Multipath (MP) combination, but the SICB in the BDS-3 MP is smaller and can be ig-
nored. Compared with the modeling in the references, TOCFM is more suitable for IGSO/MEO SICB
modeling, especially for the SICB correction at low elevation angles. After the VMD-WT correction,
the Root Mean Square Error (RMSE) of SICB of B1I, B2I, and B3I in GEO satellites is reduced by
53.35%, 63.50%, and 64.71% respectively. Moreover, we carried out ionosphere-free Single Point
Positioning (IF SPP), Ionosphere-free CSC SPP (IF CSC SPP), CSC single point positioning with
the IGSO/MEO SICB Correction based on the TOCFA Method (IGSO/MEO SICB CSC), and CSC
single point positioning with the IGSO/MEO/GEO SICB correction based on VMD-WT and TOCFA
(IGSO/MEO/GEO SICB CSC), respectively. Compared to IF SPP, the average improvement of the
IGSO/MEO/GEO SICB CSC algorithm in the north, east, and up directions was 24.42%, 27.94%, and
24.98%, respectively, and the average reduction in 3D RMSE is 24.54%. Compared with IF CSC SPP,
the average improvement of IGSO/MEO/GEO SICB CSC is 7.03%, 6.50%, and 10.48% in the north,
east, and up directions, respectively, while the average reduction in 3D RMSE was 9.86%. IGSO/MEO
SICB mainly improves the U direction positioning accuracy, and GEO SICB mainly improves the
E and U direction positioning accuracy. After the IGSO/MEO/GEO SICB correction, the overall
improvement was about 10% and positioning improved to a certain extent.

Keywords: BeiDou navigation satellite system; carrier-smoothing code; satellite-induced code bias;
multipath combination; variational mode decomposition; wavelet transform

1. Introduction

The development of China’s BeiDou Navigation Satellite System (BDS) is divided
into three stages: verification system (BDS-1), regional service system (BDS-2), and global
coverage service system (BDS-3) [1]. By 2020, BDS-3 had 30 satellites (three in Geostationary
Orbit (GEO), three in Inclined Geosynchronous Orbit (IGSO), and 24 in Medium Earth
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Orbit (MEO)) to expand the coverage of the BDS from regional to global [2]. According to
the development plan, BDS-2 and BDS-3 will continue to provide services in the coming
years. Therefore, joint processing of BDS-2/BDS-3 data is crucial.

Currently, Single Point Positioning (SPP) and Differential Global Navigation Satellite
Systems (DGNSS) are widely employed in navigation and positioning applications, provid-
ing accuracy at the meter and sub-meter levels [3]. Compared to carrier phase observation,
the integer ambiguity is not solved in pseudorange observation; however, the noise of
pseudorange observation and cycle slips limit the positioning accuracy and reliability.
Carrier Smoothing Code (CSC) combines the advantages of pseudorange and carrier phase
observations to improve the positioning accuracy.

CSC, also known as Hatch filtering, reduces the noise in the pseudorange without
resolving the ambiguities [4]. In fact, it uses the delta range to obtain a predicted pseudor-
ange value, which is then weighted by the average of the predicted value and the original
pseudorange observation [5–7]. The delta range is derived from the carrier observations
of consecutive epochs. However, Hatch filtering has problems such as ionospheric delay
accumulation. For this reason, many scholars have proposed improved Hatch algorithms.
Overall, these improvement strategies can broadly be categorized into two types: optimal
smoothing windows and ionospheric delay compensation. To solve the problem that the
ionospheric delay cannot be obtained via a single frequency receiver, Park [8,9] calcu-
lates the optimal smoothing window by introducing the Klobuchar model or the external
ionospheric delay information combined with the noise model based on the elevation
angle. Zhang et al. [10] used a Satellite-based Augmentation System (SBAS) technique
with an ionospheric grid model combined with satellite elevation angle adaptation to
determine the optimal smoothing window. Based on the theory of optimal parameter esti-
mation, Guo et al. [11] proposed an optimal dual-frequency carrier smoothing algorithm.
The results indicate that the optimal CSC algorithm outperforms traditional algorithms.
Doppler observations can be computed in the delta range and are not affected by cycle
slips. Liu et al. [12] proposed an optimal CSC algorithm that considers both satellite signal
strength and ionospheric delay with the assistance of Doppler. Zhou and Li [13] designed
pure and continuous Doppler smoothing based on the principle of minimum variance.
Through experimental verification, they demonstrated their effectiveness and efficiency.
Another strategy involved compensating for ionospheric delay. Zhang et al. [14] proposed
an ionospheric delay self-modeling compensation single-frequency CSC algorithm specif-
ically for single-frequency users. The effectiveness of the algorithm was validated via
ship model experiments and trolley experiments. Mcgraw [5] summarized mainstream
non-divergent CSC algorithms, among which dual-frequency users can compensate for
ionospheric delay using dual-frequency data. In essence, the pseudorange in the CSC algo-
rithm has correlation to solve this problem. Chen et al. [15] proposed a real-time dynamic
ionospheric delay model for CSC considering colored noise based on the Kalman filter and
least squares theory. This algorithm can adapt to various situations including different
sampling intervals and ionospheric anomalies. Tang et al. [16] proposed a dual-frequency
non-divergent BDS CSC differential positioning method. The results showed that as the
baseline length increased, the positioning accuracy of B3I decreased at a higher rate than
B1I. And, the Hatch algorithm was optimized for challenging environments [17,18]. Most
of the research above is based on the establishment of CSC algorithms using GNSS data.
Due to the unique constellation and development strategy of BDS, there has been relatively
less research on CSC specifically focused on BDS.

CSC can mitigate multipath and noise, but is subject to systematic bias in pseudo-range
and carrier phase observations, which means that systematic errors need to be eliminated
in advance. This systematic bias has been found in BDS-2, known as Satellite-Induced Code
Bias (SICB). The SICB of BDS can be divided into two categories: the first category is SICB,
which varies with elevation angles for IGSO/MEO satellites, and the other category is SICB
for GEO satellites. These biases have significant impacts on single point positioning and
wide/narrow-lane ambiguity resolution [19]. Hauschild et al. [20] pointed out that BDS-2
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IGSO/MEO satellites have SICB that result in code phase divergence exceeding 1.0 m. This
error is referred to as SCIB. Based on two years of data, Gou et al. [21] developed a model
for SCIB and provided correction values and accuracy indicators. This model helps refine
the random model of observation. The experiments indicate that the correction model
is more suitable for BDS-2. For accurate modeling of SICB, Pan et al. [22] modeled each
satellite individually, while also considering the impact of inconsistent single-difference
ambiguity parameters and hardware delay for Multipath (MP) mitigation. Additionally,
a one-degree elevation node was used to accurately describe SICB. Their experiments
demonstrated centimeter-level variations in SCIB for BDS-3 satellites. For the SICB model
of the GEO satellite, Wu et al. [23] proposed the code noise and multipath correction
algorithm and the results showed a 42% reduction in the standard deviation of the MP
time series for GEO satellites. Ning et al. [24] analyzed GEO satellites using correlation
analysis, Fourier transformation, and wavelet decomposition. The results showed that
the error characteristics of C01, C02, and C04 differed from those of C03 and C05. The
error sequences of C01, C02, and C04 exhibited high-frequency variations. Hu [25] et al.
used the characteristic of BDS-3 frequency homogeneity to realize a one-step modeling of
SICB considering the correlation. Chen [26] used EMD-WT to model GEO satellites. B1/B2
IF-PPP verified the effectiveness of the algorithm. The aforementioned model can improve
the SPP accuracy. However, challenges such as insufficient data volume and the unique
nature of GEO satellite orbits make it difficult to obtain high-precision models.

In the above literature, the CSC algorithm does not consider the SICB correction of
BeiDou IGSO/MEO/GEO, where the SICB modeling data is less and there is less research
on the characteristics of GEO SICB. In this contribution, we briefly review the basic model
and error analysis of CSC. To address the ionosphere delay, we employ the ionosphere-free
combination. Furthermore, we conducted extensive analysis and modeling of the SICB
of the IGSO/MEO/GEO satellite based on data from 30 global Multi-GNSS Experiment
(MGEX). This modeling is accomplished using the piecewise weighted least squares Third-
order Curve Fitting Method (TOCFM), yielding accurate correction models. To effectively
model GEO SICB, we introduce the Variational Mode Decomposition-Wavelet Transform
(VMD-WT) model. This method considers the accurate characterization and correction
of GEO SICB. Finally, the experimental results are analyzed and a meaningful conclusion
is drawn.

2. Methods

2.1. Mathematical Model of Carrier-Smoothed Code

CSC can improve pseudorange accuracy, also known as Hatch filtering. The Hatch
filter is a recursive filter that uses the current measurement and previous estimates without
requiring any dynamic models or additional information and can be implemented for
real-time operation in low-cost single-frequency GNSS receivers. The equation for the
Hatch filter is as follows:{

PCSC (k) = αP(k) + (1− α)
(

PCSC (k− 1) + λ(φ(k)− φ(k− 1))
)

PCSC (1) = P(1)
(1)

where P(k) represents the raw pseudorange of epoch k. PCSC (k) and PCSC (k− 1) represent
the smoothed pseudorange of epoch k, k− 1, where the unit is a meter. φ(k) and φ(k− 1)
represent carrier phase observations of epoch k, k− 1, where the unit is a cycle; α represents
the smoothing factor; and λ is the wavelength. It can be clearly seen that the essence of
Hatch filtering is a weighted averaging method. The precision of smoothing pseudorange
is improved continuously with the epoch iteration, and the filter must be reset when cycle
slips occur.

287



Remote Sens. 2023, 15, 5253

The effect of ionospheric delay on the pseudorange and carrier phase is equal and
opposite. The Hatch filter is divergent due to the influence of the ionosphere. Assuming
carrier compensation for ionospheric delay, we can obtain a non-divergent Hatch filter.

Φ(k) = ϕ(k) + 2I(k) (2)

PCSC(k) = αP(k) + (1− α)
(

PCSC (k− 1) + λ(Φ(k)−Φ(k− 1)
)

= αP(k) + (1− α)
(

PCSC (k− 1) + λ(ϕ(k)− ϕ(k− 1) + 2ΔI(k)
) (3)

where I(k) represents the variation in ionospheric delay of epoch k, and ΔI(k) = I(k)− I(k− 1)
represents the ionospheric delay variation from epoch k − 1 to epoch k. In this paper,
ionospheric delay is eliminated by using ionosphere-free combinations:⎧⎪⎪⎨⎪⎪⎩

PIF =
Pi f 2

i
f 2
i − f 2

j
− Pj f 2

j

f 2
i − f 2

j

ϕIF =
ϕi f 2

i
f 2
i − f 2

j
− ϕj f 2

j

f 2
i − f 2

j

(4)

Replace the P, Φ in Equation (4) with the ionosphere-free combination:

PIF,CSC(k) = αPIF(k) + (1− α)
(

PIF,CSC(k− 1) + λ(φIF(k)− φIF(k− 1)
)

(5)

where (·)IF represents the ionosphere-free combination; f are the frequencies; and the
subscripts i, j are used to denote different frequencies.

The ionosphere-free combination requires Timing Group Delay (TGD) correction [27],⎧⎪⎪⎨⎪⎪⎩
P12 = ρ− α

α−1 TGD1 +
1

α−1 TGD2 + T + ε12

P13 = ρ− β
β−1 TGD1 + T + ε13

P23 = ρ− k
k−1 TGD2 + T + ε23

(6)

where Pij(i, j = 1, 2, 3) is the ionosphere-free pseudorange observable in meters; ρ is the
true geometric distance between the satellite and receiver; T is the slant troposphere delay;
α, β, and k are constant frequency-dependent multiplier factors (α = f 2

1 / f 2
2 , β = f 2

1 / f 2
3 ,

k = f 2
2 / f 2

3 ); and εij (i, j = 1, 2, 3) are the ionosphere-free noise. Note that the TGD
parameter is provided in the broadcast ephemeris.

2.2. Error Analysis

We assume that the observation variances in the ionosphere-free combination carrier
phase and the pseudorange are QP and Qφ. The observed values are mutually uncorrelated.
Continuous epoch data can be obtained according to Equation (5),

⎛⎜⎜⎜⎜⎜⎝
PIF,CSC(1)
PIF,CSC(2)

...
PIF,CSC(k− 1)
PIF,CSC(k− 1)

⎞⎟⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 · · · · · · 0 0
1
2 − λ

2
1
2

λ
2 0 · · · 0 0

...
...

...
...

. . . · · · ...
...

1
k−1 − λ

k−1 · · · · · · 1
k−1 − (k−2)λ

k−1 0 0
1
k − λ

k · · · · · · 1
k − λ

k
1
k

(k−1)λ
k

⎞⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

PIF(1)
φIF(1)
PIF(2)
φIF(2)

...
PIF(k− 1)
φIF(k− 1)

PIF(k)
φIF(k)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(7)
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According to the error covariance propagation law, we can derive the variance matrix
of the smoothed pseudorange.

QIF,CSC =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

QP
QP
2 · · · QP

k−1
QP
k

QP
2

QP
2

...
...

...
...

. . .
...

...
QP
k−1

QP
k−1 · · · QP

k−1
QP
k

QP
k

QP
k · · · QP

k
QP
k

⎞⎟⎟⎟⎟⎟⎟⎟⎠
+

⎛⎜⎜⎜⎜⎜⎜⎝

0 0
λ2Qφ

2

λ2(k−2)Qφ

k−1

0 λ2(k−1)Qφ

k

⎞⎟⎟⎟⎟⎟⎟⎠ (8)

From the above equation, it is apparent that there is a correlation between the epochs
of the smoothed pseudorange. As the epochs increase, the variance in the smoothed
pseudorange approaches QP

k , signifying a continuous enhancement in accuracy.

2.3. Analysis of the SICB of the Satellite

The multipath combination is a special linear combination of single-frequency code
and dual-frequency phase measurements which has been widely used to analyze the
SICB [22,26,27]. The following formula shows the MP combination observation value at the
frequency i. It should be noted that in practical applications, the carrier phase observation
value usually adopts the same frequency as the pseudorange observation; that is, i = j or
i = q:

MPi = Pi − (mijq − 1) · ϕj −mijq · ϕq

= Ne,ijq + Bi
(9)

with ⎧⎪⎨⎪⎩
mijq = (λ2

i + λ2
j )/(λ

2
i − λ2

q)

Ne,ijq = (mijq − 1)Nj −mijq ∗ Nq

Bi = MI + ε I + (mijq − 1)(mj + δj)−mijq(mj + δj)

(10)

where i, j, q denotes the carrier frequencies, mijq denotes the linear factor, MP is the
MP combination, Ne,ijq refers to carrier phase ambiguity involving constant satellite and
receiver-dependent hardware delays, and B is in respect to the sum of the multipath and
measurement noise.

The above model eliminates first-order ionospheric delay and geometric distance.
In addition, the carrier phase multipath can be ignored because it is smaller than the
pseudorange. Therefore, Equation (10) is suitable for establishing SICB characteristics.
Since the carrier ambiguity and hardware delay remain relatively constant in the absence
of cycle slips, the ambiguity and hardware delay in the multipath can be weakened by
subtracting the average value of a time series.

MPi = MPi −
i

∑
n

MPi

n
(11)

where i represents the epoch count, and n represents the length of the time series without
cycle slips.

Figure 1 shows the MP time series of BDS2/3 for 7 June 2023 from Figure 1a–f.
Figure 1 shows the MP time series of BDS-3 is more dispersed due to the large obser-

vation noise when the elevation angle is small. In the MP time series of IGSO and MEO
satellites, the systematic bias of BDS-2 satellite is actually SICB, which increases with the
increase in elevation angle, especially at B1I and B2I frequencies.
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(a) BDS-2 C06 (b) BDS-2 C11 (c) BDS-2 C01 

   
(d) BDS-3 C39 (e) BDS-3 C25 (f) BDS-3 C60 

Figure 1. MP time series and elevation angle (black line) at different frequencies of the BDS2/3: (a) C06
satellite of BDS-2, (b) C11 satellite of BDS-2, (c) C01 satellite of BDS-2, (d) C39 satellite of BDS-3,
(e) C25 satellite of BDS-3, and (f) C60 satellite of BDS-3.

3. Results and Discussion

3.1. Data Analysis and Model Establishment

In order to analyze the characteristics of BDS SICB, the BDS observation data of more
than 30 Multi-GNSS Experiment (MGEX) stations from the International GNSS Service (IGS)
in different seasons were selected uniformly, as shown in Table 1. The stations’ observation
environment is ideal with minimal multipath effects. Only the stations located in East
Asia and Australia can obtain complete and high quality IGSO satellite observation data.
Therefore, when analyzing IGSO satellites, only the stations in East Asia and Australia
are used. The distribution of the stations is shown in Figure 2. The red dots represent
IGSO modeling stations, where all stations are used for MEO satellite modeling, and the
outbound stations are labeled as subsequent algorithm verification stations.

Table 1. Observation data period.

SICB Data Period

Modeling Datasets 2022: Day of Year (DOY) 251–257, DOY 315–312,
2023: DOY 001–007, DOY 158–164,

Validation Dataset 2023: DOY 200–210

In order to explore the relationship between SICB and stations, seasons and satellites,
we compare the MP and elevation angle of different satellites of same station, the MP
and elevation angle of different stations, and the satellite elevation angle and MP of same
station in different periods. Figure 3 shows the relationship between MP and the elevation
of different satellites from the PPTG station. Figure 4 shows the relationship between MP
and the elevation angle of the ALIC, PTGG, CUSV, and ULAB stations at the same time.
Figure 5 shows the relationship between MP and the elevation angle of PTGG stations at
different dates (DOY001, 158, 251, and 315). SICB shows the same trend at different stations,
with different satellites and times; however, it clearly differs at different frequencies. It
is concluded that SICB is not related to the seasons, stations, and satellites, but is related
to frequency.

290



Remote Sens. 2023, 15, 5253

Figure 2. Stations distribution (The blue and red dots represent the 30 stations, of which the blue plus
red dots model the MEO satellite, the red dots model the IGSO satellite, and the dots marked with
the name are the verification stations).

  
IGSO B1I IGSO B2I IGSO B3I 

  
MEO B1I MEO B2I MEO B3I 

Figure 3. The relationship between MP and elevation angle of different satellites at PPTG stations.

To further investigate the correlation between the SICB and elevation angle, the
Pearson correlation coefficient is calculated for all selected IGSO/MEO satellites at the
chosen stations. The formula for the calculation is as follows:

Person =
∑ MP · El − ∑ MP∑ El

N√
(∑ MP2 − (∑ MP)2

N (∑ El2 − (∑ El)2

N )

(12)

where El and N represent the elevation angle and the length of data, and Person repre-
sents the correlation coefficient, with a range from −1 to 1. The larger the absolute value,
the stronger the correlation. Coefficients between 0.2 and 0.4 indicate weak correlation,
0.4–0.6 indicate moderate correlation, 0.6–0.8 indicate strong correlation, and values greater
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than 0.8 indicate extremely strong correlation. The correlation coefficients are shown in
Table 2.

  
IGSO B1I IGSO B2I IGSO B3I 

  
MEO B1I MEO B2I MEO B3I 

Figure 4. The relationship between MP and elevation angle at different stations.

  
IGSO B1I IGSO B2I IGSO B3I 

  
MEO B1I MEO B2I MEO B3I 

Figure 5. The relationship between MP and elevation angle of PPTG stations at different periods.

Table 2. Statistical table of elevation angle and MP correlation coefficient.

System
IGSO MEO

B1I B2I/B2a B3I B1I B2I/B2a B3I

BDS-2 −0.2312 −0.3518 −0.2998 −0.3428 −0.3932 −0.2733
BDS-3 −0.0240 0.0143 0.0512 −0.0103 0.0422 −0.0181

The MP of BDS-2 IGSO/MEO is weakly negatively correlated with the elevation angle
of the satellite. The MP of B2I is slightly higher than that of B1I and B3I. The MP between
B1I, B2a, and B3I in BDS-3 is not correlated, indicating that the SICB of BDS-3 can be
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ignored. Therefore, this paper models and corrects the observation quantity of the BDS-2
satellite according to the IGSO/MEO satellite type.

This paper classifies satellite data based on IGSO/MEO, using an interval of 0.1 de-
grees, and takes the average value of MP that does not exceed 0.1 degrees. The Piecewise
Third-Order Curve Fitting Method (TOCFM) with 30-degree nodes is used to fit the MP
sequence, while also ensuring the global continuity of the nodes.

y = a0 + a1 · El + a2 · El2 (13)

where y is the MP, El is the elevation angle, and a0, a1, a2 are the three fitting coefficients.
When the n epochs are observed, the MP value and elevation angle corresponding to each
epoch can be obtained. The parameters (a0, a1, a2) can be solved by using the least square
method. The global fitting needs to satisfy the continuity of the boundary point. The
minimum variance and the formula is as follows:⎧⎨⎩

m−1
∑
k

nk
∑
l

Wk,l · (yk,l −MPk,l)
2 = min

yk(Elk)− yk+1(Elk) = 0
(14)

where k represents the segment point, l represents the data epoch of the segment, and m
and n represent the number of segments and the length of each segment, respectively.

The BDS MP time series shows significant noise at a low elevation. Considering the
different accuracy of MP under different elevation angles, different weights are set for MP
observations corresponding to different elevation angles in the fitting process. The weight
design scheme is as follows:

Wk,l = a2 +
a2

sin2(Elk,l)
(15)

where a is usually 0.3, which is the pseudorange variance of the BDS observation, and Elk,l
represents the elevation angle corresponding to point l in piecewise k.

Figure 6 and Table 3 show that the fitting curve of BDS-3 is obviously close to 0,
indicating that the BDS-3 SICB is small and negligible. The fitting curve of BDS-2 has
different trends. Piecewise fitting can refine the SICB modeling at low elevation angles.

  
IGSO B1I IGSO B2I IGSO B3I 

  
MEO B1I MEO B2  MEO B3I 

Figure 6. Partial BDS 2/3 SICB fitting results (blue represents raw data, red represents redefined data,
and green represents third-order fitting curve).
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Table 3. Correction coefficients for SICB related to elevation angle.

Segmentation (◦) Parameter
IGSO MEO

B1I B2I B3I B1I B2I B3I

5–30
a0 0.0510 0.0883 0.0705 0.0434 0.0673 −0.0036
a1 0.0050 0.0074 0.0044 0.0024 0.0086 0.0137
a2 −6.14 × 10−5 −1.94 × 10−4 −1.54 × 10−4 −8.21 × 10−5 −2.69 × 10−4 −2.89 × 10−4

30–60
a0 0.5297 0.5374 0.1706 −0.0233 0.0273 0.1153
a1 −0.0148 −0.0157 −0.0031 0.0059 0.0082 0.0201
a2 6.60 × 10−5 7.71 × 10−5 −1.79 × 10−5 −1.23 × 10−4 −2.10 × 10−4 −3.80 × 10−4

60–90
a0 1.7007 0.7604 0.6366 0.9484 1.6042 2.7324
a1 −0.0513 −0.0219 −0.0188 −0.0252 −0.0423 −0.0702
a2 3.50 × 10−4 1.19 × 10−4 1.15 × 10−4 1.25 × 10−4 1.93 × 10−4 3.34 × 10−4

Figure 7 shows the comparison between the modeling results of a single station and
multiple stations. The modeling trend of the single station and multi-station is the same,
but there is a certain deviation in the value. The MP of B1I, B2I, and B3I have the same
code bias trend and the value is slightly different.

IGSO B1I IGSO B2I IGSO B3I 

MEO B1I MEO B2I MEO B3I 

Figure 7. Comparison of single- and multi-station modeling (red represents the modeling results of a
single station, and blue represents the modeling results of all stations).

Table 3 shows correction coefficients related to the MP time series and the elevation
angle calculated by Equation (13) based on all observation data of the 30 stations around
the world.
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3.2. Analysis of the IGSO/MEO SICB Model Results

MP was corrected according to the correction coefficients of SICB calculated in Table 3.
In order to verify the validity of the model, the correction coefficient of the reference [28]
was compared (the model in the reference was named GPSS). Figures 8 and 9 show the
comparison of the correction effect between TOCFM and GPSS. The correction effect of
TOCFM was better than that of GPSS at different elevation angles due to TOCFM adopting
0.1-degree interval piecewise fitting. Different correction effects indicate that different
modeling data will produce different modeling coefficients.

B1I B2I B3I 

Figure 8. MP and elevation series before and after the correction of C16 SICB.

B1I B2I B3I 

Figure 9. MP and elevation series before and after the correction of C11 SICB.

In Figures 3–9, it is evident that the MP of B1I exhibits the largest bias. B2I follows
and B3I shows the smallest bias. After the correction, the SICB of IGSO/MEO satellites
was effectively improved. Additionally, it can be observed that under the piecewise fitting
method, the SICB at low elevation angles is mitigated to some extent.

3.3. SICB Correction Model of GEO Satellites

SICB modeling methods for GEO satellites, such as wavelet transform, regularization
and machine learning methods. Variational Mode Decomposition (VMD) is a signal decom-
position method that decomposes nonlinear non-stationary signals into a discrete number
of modes. Compared to the widely used Empirical Mode Decomposition (EMD) method, it
has the following advantages:

(1) Through rigorous mathematical derivation, the theory is rigorous.
(2) It overcomes the problem of modal aliasing in EMD.
(3) It overcomes the breakpoint effect in EMD.
(4) It has good noise and sampling robustness.

For detailed theory, please refer to [29].
In this paper, we used the VMD-WT model to analyze and correct GEO SICB. It

decomposes the original signal using VMD. Since each Intrinsic Mode Function (IMF)
component has a different center frequency, different wavelet threshold functions are
needed to improve the denoising effect. Therefore, different wavelet threshold functions
are used for different IMF components.
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The wavelet coefficients of the soft threshold function and adaptive threshold function
are expressed as:

ω̂A
j,k =

⎧⎨⎩sgn(ωA
j,k)(

∣∣∣ωA
j,k

∣∣∣− μA
j ),

∣∣∣ωA
j,k
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j

0,
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j

(16)

ω̂B
j,k =

⎧⎪⎪⎨⎪⎪⎩
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(17)

where sgn(·) is the sign function, ω̂A
j,k, ω̂B

j,k are the k-th wavelet coefficients of the j-th layer
after the DWT, and J is the total number of wavelet reconstruction layers. In addition, the
threshold μA

j and threshold μB
j are calculated from:

⎧⎨⎩ μA
j = σj

√
2 ln(Nj)

μB
j = σj

√
2 ln(Nj)/ ln(j + 1)

(18)

where the current number of reconstruction layers is j, the noise standard deviation is
σj = median(

∣∣∣ωj,k

∣∣∣)/0.6745, and Nj is expressed as the length of the current reconstruction
layer.

The principle of VMD-WT is to maximize the noise reduction performance while main-
taining the local characteristics of the original signal. Soft thresholding can reduce signal
loss in high-frequency signals. The adaptive threshold function is used to remove noise
components in the MP time series. It can also avoid the constant bias of soft thresholding
and the discontinuity of hard thresholding. The recommended frequency is 50 mHZ under
good observation conditions. This particular setup is the best choice for obtaining precise
results in this situation. The data processing flow is shown in Figure 10.

Aω Bω

 

Figure 10. VMD-WT coupled model noise reduction flow chart.
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3.4. Analysis of the GEO Correction Results

Figure 11 shows the MP result of C01, C04, C59, and C60 processed by VMD-WT with
ALIC at DOY 200. The left side shows the original MP and the denoised MP. The right
side shows the residual histogram of MP. The corrected residuals approximate normal
distribution and are very close to white noise. Table 4 provides the detailed improvement
ratio before and after the correction. The Root Mean Square Error (RMSE) of the modified
MP time series decreased significantly and the RMSE of B1I, B2I, and B3I decreased by 53.35%,
63.50%, and 64.71%, respectively. Figure 12 shows the uncorrected and corrected MP RMSE of
six GEO satellites at all stations (C05 was not corrected due to missing data at some stations).

 
BDS-2 B1I C01 BDS-2 B3I C01 

 
BDS-2 B1I C04 BDS-2 B3I C04 

 
BDS-3 B1I C59 BDS-3 B3I C59 

 
BDS-3 B1I C60  BDS-3 B3I C60 

Figure 11. MP time series and residual histogram (ALIC DOY 200).
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Table 4. Reduction percentage of the MP (%).

Frequency C01 C02 C03 C04 C05 C59 C60 C61 Average

B1I 60.6 50.6 28.9 65.9 47.9 66.0 50.7 56.2 53.35
B2I 69.0 57.8 51.8 71.9 67.0 63.50
B3I 69.9 64.5 62.5 79.5 65.0 70.5 64.7 41.1 64.71

B1I B2I B3I 

Figure 12. Comparison of the RMSE of the MP after uncorrected and corrected GEO satellites.

Figures 11 and 12 show that VMD-WT can perform better noise reduction on GEO
satellites and the residual error after the correction is basically in a normal distribution,
with an average increase of about 60%. At the same time, it was found that the multipath
of the BDS-3 satellite was different from that of the BDS-2 satellite.

3.5. Correction of the SICB to Improve the CSC of the BDS

To verify the effectiveness of the algorithm, different time periods from the SICB
modeling data were selected. The experiment was conducted based on the experimental
data from 6 stations, ALIC, KRGG, KOUR, GCGO, GAMG, and SGOC, from 19 July 2023 to
29 July 2023. Four strategies were used for BDS SPP: Scheme 1: Ionosphere-free single point
positioning (IF SPP), Scheme 2: ionosphere-free CSC single point positioning (IF CSC SPP),
Scheme 3: CSC single point positioning with the IGSO/MEO SICB Correction based on the
TOCFA Method (IGSO/MEO SICB CSC), and Scheme 4: CSC single point positioning with
the IGSO/MEO/GEO SICB correction based on VMD-WT and TOCFA (IGSO/MEO/GEO
SICB CSC). The processing strategy is shown in Table 5.

Table 5. Processing strategies of the SPP for the BDS.

Parameters Models

Observations Raw observations
Signal BDS B1I/B3I

Sampling rate 30 s
Cycle slip detection GF and MW

Smooth window 20 (min)
Smoothing factor 20
Elevation cutoff 10◦

Relativistic effect Corrected
Ionospheric delay Ionosphere-free combination

Tropospheric delay Saastamoinen
Estimator Weighted least squares
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The E, N, and U direction residuals, the number of available satellites, Horizontal
Dilution of Precision (HDOP), and Vertical Dilution of Precision (VDOP) of the three
stations are shown in Figure 13. The weekly solution document coordinates were used as
reference values. The satellite elevation angle and pseudorange residuals are shown in
Figure 14. Table 6 shows the RMSE in the E, N, and U directions of four different schemes
for 11 consecutive days and the improvement ratio of the current scheme compared to the
previous scheme.

  

  
ALIC SGOC GCGO 

Figure 13. The residual of the three stations in the E, N, and U directions and the number of available
satellites, HDOP, and VDOP on 19 July 2023 (number of satellites in blue, VDOP in red, HSOP in green).

Figures 13 and 14 and Table 6 show that the positioning accuracy gradually improves
with the addition of the IGSO/MEO/GEO SICB correction. The improvement effect was
evident in the U direction. At the same time, SICB negatively impacts the accuracy of the E
direction because SICB greatly impacts on the U direction more than the E direction, which
is consistent with the characteristics of SICB in previous studies.

In the case of only adding the IGSO/MEO SICB correction, the positioning accuracy
of the ALIC and SGOC stations has the best improvement. Figure 14 shows that the
elevation angles of the satellites of the two stations are generally higher, so the pseudorange
was greatly affected by SICB. The effect of the SICB correction is remarkable. Due to
the difference in elevation of IGSO/MEO satellites at the KOUR and GCGO stations, the
improvement effect was also different. The 3D RMSE of the two stations was reduced to
7.824% and 8.516%, respectively.

After adding the GEO SICB correction, the positioning accuracy of the E and U
directions was improved. The highest improvement was the ALIC station and the E, N, and
U directions were improved by 14.762%, 6.765%, and 6.880%, respectively, due to the fact
that the ALIC station observes more GEO satellites. The improvement effect of the KRGG
station was the worst, with an increase of 14.762%, 6.765%, and 6.880% in the E, N, and
U directions, respectively. This is due to the lack of available GEO satellites at the KRGG
station. Since KOUR and GCGO stations are not located in Asia or Australia, GEO satellites
cannot be observed or are below the cut-off satellite elevation angle, so Scheme 4 has no
change compared with Scheme 3. The SICB correction of GEO satellites was significant
when multiple GEO satellites are observed.
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ALIC SGOC GCGO 

Figure 14. Satellite elevation angle of the three stations on 19 July 2023 and pseudo-range residuals
of Scheme 1, Scheme 2, and Scheme 4 (since the residual values of Scheme 3 and Scheme 4 are close,
the result of Scheme 3 is not shown).

Table 6. Positioning errors for the BDS SPP with four different strategies.

Station
RMSE Improvement Rate#-Previous (%)

E N U 3D E N U 3D

ALIC

Scheme 1 0.939 0.770 2.210 2.521
Scheme 2 0.784 0.579 1.751 2.004 16.414 24.774 20.749 20.498
Scheme 3 0.807 0.570 1.569 1.854 −2.893 1.623 10.406 7.496
Scheme 4 0.688 0.531 1.461 1.700 14.762 6.765 6.880 8.310

KRGG

Scheme 1 0.579 0.877 1.508 1.838
Scheme 2 0.502 0.786 1.346 1.637 13.381 10.333 10.776 10.930
Scheme 3 0.491 0.772 1.207 1.515 2.228 1.812 10.264 7.478
Scheme 4 0.486 0.791 1.199 1.507 0.866 −2.511 0.681 0.522

KOUR

Scheme 1 1.210 0.896 2.871 3.242
Scheme 2 1.043 0.733 2.547 2.849 13.741 18.239 11.275 12.129
Scheme 3 1.032 0.723 2.501 2.800 1.132 1.330 1.836 1.707
Scheme 4 1.032 0.723 2.501 2.800 0.000 0.000 0.000 0.000

GCGO

Scheme 1 1.019 1.312 3.083 3.502
Scheme 2 0.764 0.714 2.133 2.375 25.041 45.591 30.826 32.179
Scheme 3 0.777 0.691 1.927 2.189 −1.721 3.235 9.657 7.824
Scheme 4 0.777 0.691 1.927 2.189 0.000 0.000 0.000 0.000

GAMG

Scheme 1 0.735 0.706 2.324 2.538
Scheme 2 0.609 0.558 2.087 2.245 17.044 20.992 10.189 11.538
Scheme 3 0.635 0.563 1.870 2.054 −4.207 −1.010 10.411 8.516
Scheme 4 0.593 0.500 1.820 1.978 6.579 11.186 2.682 3.664
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Table 6. Cont.

Station
RMSE Improvement Rate#-Previous (%)

E N U 3D E N U 3D

SGOC

Scheme 1 0.964 0.789 3.242 3.473
Scheme 2 0.714 0.495 2.819 2.949 25.980 37.247 13.064 15.084
Scheme 3 0.679 0.468 2.515 2.647 4.857 5.553 10.762 10.255
Scheme 4 0.620 0.459 2.468 2.585 8.731 1.983 1.885 2.324

In the case of the IGSO/MEO/GEO satellite SICB correction, the average improvement
rate between Scheme 4 and Scheme 2 in the E, N, and U directions was 7.03%, 6.49%, and
10.48%, respectively. The IGSO/MEO/GEO CSC algorithm can improve the positioning
accuracy by 9%~10% compared to the traditional IF SPP CSC algorithm.

In summary, the improvement effect of SICB is related to the elevation angle of the
satellite and indirectly to the station’s position. Under normal circumstances, the accuracy
after the IGSO/MEO SICB correction can be increased by 7% to 10% and the accuracy after
the GEO SICB correction can be increased by 2% to 8%.

In particular, we also analyze the effect of SICB on the BDS B1/B3 ionosphere-free
combination PPP model and find that the impact was not significant. Therefore, the
calculation process and results are not given in this paper.

4. Conclusions

This paper reviews the basic principles of CSC and performs error analysis. Through
the correlation analysis between MP and elevation angle, the MP of BDS-2 IGSO/MEO
has a weak negative correlation with the elevation angle of the satellite, which indirectly
indicates that there was a systematic bias between the pseudorange observation and the
carrier observation of the BDS 2 IGSO/MEO satellite; that is, SICB. The proposed TOCFM is
slightly better than the methods in reference [28]. The IGSO/MEO piecewise weighted least
squares TOCFM SICB correction model was established by acquiring the MP time series
from 30 stations worldwide. For GEO satellite SICB, a variational mode decomposition
combined with the wavelet transform (VMD-WT) method is proposed. The MP time series
RMSE of GEO B1I, B2I, and B3I are reduced by 53.35%, 63.50%, and 64.71%, respectively.
Based on the above, we propose the CSC algorithm, considering that IGSO/MEO/GEO
SICB is proposed in this paper.

In order to verify the effectiveness of the SICB correction, the effects on IF SPP CSC
before and after the SICB correction were analyzed and compared. The results show that
the SICB correction model effectively weakens the SICB and improves the positioning
accuracy of CSC SPP. The accuracy after the IGSO/MEO SICB correction can be increased
by 7%~10%, and the accuracy after the GEO SICB correction can be increased by 2%~8%.
Therefore, The SICB plays an important role in improving the positioning accuracy. The
SICB correction algorithm applies to all smooth pseudorange algorithms and only the
dual-frequency IF-CSC algorithm is computed in this paper.

However, there are some shortcomings. It should be noted that the accuracy im-
provement may be limited in challenging environments due to the influence of cycle slips.
Additionally, the model of IGSO/MEO SICB has yet to be modeled for each satellite, leaving
room for further improvement in the positioning accuracy. Based on previous research, the
characteristics of the different GEO satellite SICB is different and the effect of the different
denoising strategy is not the same. Therefore, the Doppler smoothing pseudorange and
IGSO/MEO SICB accurate modeling will be the focus of further research. Also, since
CCL/CSC is widely used in GNSS ionospheric modeling, we will focus on evaluating the
application performance of these two methods in the future.
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Abstract: Large-scale engineering structures deform and vibrate under the influence of external
forces. Obtaining displacement and vibration is crucial for structural health monitoring (SHM).
Global navigation satellite system (GNSS) and inertial measurement unit (IMU) are complementary
and widely used in SHM. In this paper, we propose an SHM scheme where IMU and multi-antenna
GNSS are tightly integrated. The phase centers of multiple GNSS antennas are transformed into the
IMU center, which increases the observation redundancy and strengthens the positioning model.
To evaluate the performance of tight integration of IMU and multiple GNSS antennas, high-rate
vibrational signals are simulated using a shaking table, and the errors of horizontal displacement
of different positioning schemes are analyzed using recordings of a high-precision ranging laser
as the reference. The results demonstrate that applying triple-antenna GNSS/IMU integration for
measuring the displacement can achieve an accuracy of 2.6 mm, which is about 33.0% and 30.3%
superior than the accuracy achieved by the conventional single-antenna GNSS-only and GNSS/IMU
solutions, respectively.

Keywords: multi-antenna GNSS; GNSS/IMU; tight integration; structural health monitoring

1. Introduction

For large-scale structures, serious structural damage may occur when vibrating defor-
mation induced by external loads (such as traffic and winds) exceeds the designed bearing
capacity. Accurate deformation information is a prerequisite for timely alerts to prevent
unnecessary casualties and losses. SHM is a technology for obtaining deformation informa-
tion and estimating the health condition and the structural characteristics of civil structures
and infrastructures [1,2]. On this basis, an SHM strategy first intends to measure responses
such as displacements over time, and then obtain insightful information about the current
or unknown condition of a civil structure by computational techniques either in time do-
main or in frequency domain [3,4]. Various types of sensor devices such as linear variable
differential transformers, optical fiber sensors, smartphones, vision cameras, and radars are
used in SHM to measure the displacement responses, but dynamic deformation monitoring
widely adopts GNSS and accelerometers for SHM non-stop or with high periodicity but
not requiring gluing/embedding sensors into the structure [5–8]. The RTK-GNSS can
achieve a subcentimeter-level measurement accuracy, and it is often selected for structural
displacement estimation of large-scale structures such as long-span bridges and high-rise
buildings, which usually have at least centimeter-level displacements [9–11]. However, the
accuracy of GNSS positioning is typically limited due to environmental perturbations such
as occlusion, diffraction, and reflection. In addition, the GNSS-based monitoring method is
insensitive to high-frequency vibration signals because the measurement noise is relatively
large [12]. The accelerometer method can obtain high-accuracy dynamical displacements
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over short time periods through the double integration of acceleration measurements.
However, significant cumulative errors are ultimately present when the accelerometer is
applied to monitor long-period quasi-static displacements [13].

GNSS and accelerometers are complementary and therefore have been commonly
integrated in monitoring applications. For example, Meng et al. [14] successfully identi-
fied a peak vibration frequency of 10.05 Hz of Nottingham Wilford Bridge by using an
GNSS/accelerometer integrated system. Kim et al. [15] combined GPS RTK with an ac-
celerometer in monitoring Yeongjong Grand Bridge and achieved a displacement accuracy
of 2 mm in the vertical direction. Xin et al. [16] integrated a strong motion accelerometer
with GNSS PPP for seismic deformation monitoring. The root-mean-square error (RMSE)
of the difference with respect to the reference was 2 mm, with a cross-correlation coefficient
of 0.99. Although GNSS/accelerometer integration has been widely validated in previous
studies, the tilt of the accelerometer can cause baseline errors and distort the captured peak
amplitude of the displacement signal [14,16].

In addition to displacement, rotational deformation is another critical piece of infor-
mation for structural health monitoring. Although the accelerometer can measure the
rotational deformation by sensing changes in gravitational acceleration [17], the accuracy of
accelerometer-derived rotation is typically limited because accelerometers measure specific
forces that involve gravitational and vibrational acceleration. To separate the different
types of acceleration and finally determine the rotational deformation, it is necessary to use
gyroscopes [18]. Rossi et al. [19] corrected the impact of rotation on GNSS/accelerometer
monitoring results using rotation information recorded using an inertial measurement
unit (IMU). The RMSE of the corrected displacement monitoring results was reduced by
half to about 1–2 mm. de Alteriis et al. [20] designed a low-cost and real-time monitoring
device that integrated GNSS and Micro Electro Mechanical System (MEMS) IMU. Experi-
mental results showed that the system was able to estimate position and attitude under
high-frequency vibrations, and the monitoring results were in good agreement with the
fiber-optic sensors. Geng et al. [21] implemented a seismic monitoring system with six
degrees of freedom by integrating an accelerometer, gyroscope, and GNSS. In a waveform
simulation experiment of the 2010 MW 7.2 EI Mayor-Cucapah earthquake, the displacement
obtained using the proposed method achieved an accuracy 68% higher than that obtained
from the traditional accelerometer/GNSS integration.

Most previous studies of integrated GNSS/IMU deformation monitoring are based on
single-antenna GNSS. Although improved accuracy and robustness have been reported,
there are still some obvious limitations of single-antenna GNSS/IMU. For example, the
GNSS signal environment in deformation monitoring is typically complex, which worsens
the GNSS signal quality and ultimately the positioning accuracy. Moreover, the motion
of the monitored structures is generally limited, resulting in a low attitude observability,
especially in the heading direction [22,23]. The accumulation of attitude errors eventually
affects the monitoring accuracy, especially when low-cost IMUs are used [24]. Multi-
antenna GNSS offers a solution to this problem. Double-difference carrier phases are formed
between multiple GNSS antennas to estimate inter-antenna baselines. When carrier phase
ambiguities are fixed, the baselines can be accurately inverted to attitude information [25].
Zhang et al. [26] evaluated the positioning performance of the traditional single-antenna
and dual-antenna GNSS/IMU. They reported that the dual-antenna GNSS/IMU achieved
mm level positioning accuracy, which was about 50% higher than the single-antenna
GNSS/IMU. Li et al. [27] applied the length constraints of lever arms in multi-antenna
GNSS/IMU for monitoring the settlement of high-speed railway, and achieved a positioning
accuracy of 1–2 mm. However, multi-antenna GNSS/IMU integration has been rarely
studied in structural deformation monitoring.

In this paper, we propose a tight integration of multi-antenna GNSS and IMU for
vibration monitoring. The GNSS observations are tightly coupled to the IMU by trans-
forming their phase centers to the IMU center. Thus, the integration reduces the number
of unknown parameters, enhances the geometric strength of the model, and increases the
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observability of attitude errors. To evaluate the performance of the proposed method, differ-
ent types of vibrational signals are simulated using a shaking table and a laser rangefinder
recording as a reference. Section 2 presents the mathematical model of the tight integration
of multi-antenna GNSS and IMU, including the measurement model and the system model.
In Section 3, the experimental configuration, results, and analysis are described. Section 4
concludes this work.

2. Methods

2.1. Multi-Antenna GNSS/IMU Tight Integration Measurement Model

The measurement model of GNSS/IMU tight integration can be expressed as:

δz = Hδx + ε , ε ∼ N(0, R) (1)

where δ{·} indicates the correction for a variable; δz denotes the measurement correction
vector that is the difference between GNSS observations (including carrier phases and
pseudorange rates) and those derived from IMU; H is the design matrix; δx is the state
correction vector; ε represents the observation noise vector; and R corresponds to the
covariance matrix of observations. The state vector x is:

x =
[
rT vT ψT ba

T bg
T nT

]T
(2)

where r is the three-dimensional position vector, taking the IMU reference center as the
reference point of the platform; v and ψ, respectively, indicate the velocity and attitude of
the platform; ba and bg denote the biases of accelerometer and gyroscope, respectively; and
n corresponds to the ambiguities of double-difference carrier phases.

When composing the measurement model for the multi-antenna GNSS and IMU tight
integration system, one rover antenna is chosen as the primary antenna and the others are
used as auxiliary antennas. The double-difference observation equation is formed between
the primary antenna and the reference station, which introduces an absolute position for
the whole system. At the same time, the double-difference observation equations are also
formed between the primary antenna and the auxiliary antennas to adequately exploit the
redundant observations from multiple antennas. The double-difference carrier phase zij
and pseudorange rate

.
zij between antenna i and antenna j can be written as:{

zij = Airi −Ajrj + Λijn + εij.
zij = Aivi −Ajvj +

.
εij

(3)

where ri and vi are, respectively, the position and velocity of antenna i; Ai stands for
an m × 3 line-of-sight matrix of between-satellite single-difference at antenna i, where
m is the difference between the total number of satellites observed and the number of
satellite systems employed; Λij is a diagonal matrix with non-zero elements being the
carrier phase wavelengths of the corresponding satellites; and εij denotes the double-
difference observation noise. The position vector ri and velocity vector vi of antenna i can
be transformed to the platform position vector r and velocity vector v at the IMU center
through the lever-arm vector and rotation matrix [28]:

ri = r + Cli (4)

vi = v + C(Ωωli) + ΩeCli, Ωω = [ω×] (5)

where C is the direction cosine matrix, i.e., the rotation matrix; li stands for the lever-
arm vector of antenna i; Ωω indicates the skew-symmetric matrix of three-dimensional
angular rate obtained by IMU, i.e., [ω×]; [·×] represents a skew-symmetric operator; and
Ωe denotes the skew-symmetric matrix of earth angle rotation speed vector. Inserting (4)
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and (5) into (3) yields the double-difference carrier phase and pseudorange rate equations
expressed by the position vector and velocity vector of the IMU center:{

zij = Aijr + AiCli −AjClj + Λijn + εij.
zij = Aijv + Ai(CΩωli + ΩeCli)−Aj

(
CΩωlj + ΩeClj

)
+

.
εij

(6)

where Aij is the difference of Ai and Aj, i.e., Aij = Ai −Aj. Given that

δ(Cli) = [(Cli)×]δψ (7)

δ(CΩωli + ΩeCli) = [(CΩωli −ΩeCli)×]δψ (8)

the design matrix of (1) can be expressed in terms of submatrix as:

Hij =

[
Aij 0m×3 Hrψ 0m×3 0m×3 Λij

0m×3 Aij Hvψ 0m×3 Hvb 0m×n

]
(9)

where 0m×n stands for an m× n matrix with zero elements. The specific expressions of Hrψ,
Hvψ, Hvb are:

Hrψ = Ai[(Cli)×]−Aj
[(

Clj
)×]

(10)

Hvψ = Ai[(CΩωli −ΩeCli)×]−Aj
[(

CΩωlj −ΩeClj
)×]

(11)

Hvb = AiC[li×]−AjC
[
lj×

]
(12)

Note that Aj = 0 when j indicates an external base station with known coordinates.

2.2. Multi-Antenna GNSS/IMU Tight Integration System Model

The system model of the integration system of GNSS and IMU can be expressed as:

δ
.
x(t) = F(t)δx(t) + G(t)w(t) (13)

where F(t) is the transition matrix of state vector; G(t) stands for the process noise mapping
matrix; and w(t) indicates the process noise vector. The reference coordinate frame adopted
in this paper is the Earth-Centered Earth-Fixed (ECEF). The sensor bias errors of the
accelerometer and gyroscope are modeled as first-order Gauss–Markov stochastic processes.
After the discretization of (13) with update interval τ, the state propagation equation can
be rewritten as:

δx−k+1 = Φkδxk + wk (14)

where x−k+1 is a prediction of state vector of time tk+1 based on the one of time tk, i.e., xk,
and the “−” indicates a quantity has not been updated using the latest observation; and Φk
and wk are the transition matrix of state vector and the process noise matrix from time tk to
time tk+1, respectively. The first order approximation of Φk can be obtained as follows:

Φ ≈

⎡⎢⎢⎢⎢⎢⎢⎣
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Fvp = −2γrT

res|r| (16)
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⎧⎨⎩Fba = diag
(

e−τ/Tc, ba
)

Fbg = diag
(

e−τ/Tc, bg
) (17)

where res is the geocentric radius on the Earth surface; γ indicates the gravity vector; and
Tc, ba and Tc, bg are the correlation time of accelerometer and gyroscope, respectively, which
can be obtained using Allan variance analysis.

Figure 1 shows the flowchart of the tight integration of multi-antenna GNSS and IMU.
First, raw observations from multiple antennas are processed, with one primary antenna
and the others auxiliary. The double-difference observation equations are formed between
the antennas and the reference station (equally, between a selected primary antenna and
the reference station, as well as the auxiliary antennas). Relative positioning is performed
based on the double-difference observations to obtain the position, velocity, and attitude
information of the integrated system. The GNSS-derived information can be used for the
initial alignment of the IMU when the ambiguities are fixed. The attitude initialization
can also be done using INS self-alignment, with the accelerometer leveling to calculate
pitch and roll angles, and gyro-compass to calculate heading angles. The position, velocity,
and attitude information of the integrated system can then be updated based on the IMU
output. The angular rate of the gyro output is first used to update the attitude, based on
which the specific force output from the accelerometer is transformed, and then the velocity
and position information are updated. Finally, the equations of state and measurements
of the integrated system are formulated, and the Kalman filter is applied to estimate the
position, velocity, and attitude of the IMU center at each epoch, together with feedback
corrections for sensor errors.

Figure 1. Flowchart of the tight integration of multi-antenna GNSS and IMU.

3. Experiments and Analysis

To assess the performance of the tight integration of multi-antenna GNSS and IMU for
vibration deformation monitoring, a simulation vibration test was conducted on 13 Novem-
ber 2023 on a half-open platform on the 6th floor of Hong Kong Polytechnic University.
Figure 2a illustrates the environment of the experimental site. The monitoring accuracy
of integration schemes of different antennas and IMU were analyzed, and the vibration
displacement information recorded using a laser rangefinder with a ranging accuracy of
0.01 mm, and a sampling rate of 20 Hz was used as the reference. Figure 2b shows the
instrument deployment for the vibration experiment. A shaking table was fixed on a tripod.
A rigid triangular platform with one IMU and four GNSS antennas was mounted on the
table, and the length of inter-antenna baselines was 1 m. In deformation monitoring, the
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observability of attitude errors is typically low because of the limited dynamics (including
rotation and acceleration) of the deforming objects. The three-dimensional attitude can
be determined using at least three non-collinear antennas. Therefore, this study adopts
the triple-antenna triangle configuration to strengthen the GNSS/IMU positioning model
so that the estimation of parameters such as attitude and IMU biases can be enhanced. A
Leica GR25 GNSS geodetic receiver was attached to antenna 2, two Trimble R12 GNSS
geodetic receivers were placed for rover antennas 1 and 3, respectively, and a Trimble
Net R9 geodetic receiver was used for the base station. We use the configuration of the
three non-collinear antennas to enhance the three-dimensional attitude determination,
considering that the observability of attitude is typically low due to the limited dynamics
of the deforming objects. The base station was located on the roof of the building at a
distance of about 50 m. The GNSS sampling rate was 20 Hz. The IMU adopted was iXBLUE
ATLANS-C, which has triple-axis accelerometers and gyroscopes, and a self-contained
GNSS receiver for time synchronization (the corresponding antenna was installed at the
center of the triangular platform). The error characteristics of IMU were estimated using
Allan variance analysis [29], as shown in Table 1.

  
a  b  

Figure 2. Experiment setup. (a) Environment of experimental site; (b) setup of experimental equipment.

Table 1. Error characteristics of IMU.

Error Characteristics Accelerometer Gyroscope

Bias instability 0.0241 mg 0.0084 deg/h
Correlation time 477 s 2957 s

Random walk 0.046 mg/sqrt (Hz) 0.0035 deg/sqrt (h)

A suite of C++ libraries was developed for the data processing, where IMU records are
tightly integrated with GNSS observations in double-difference relative kinematic position-
ing. The double-difference observation equations are formed between the primary antenna
and the reference station, as well as the auxiliary antennas. GPS and BDS observations
were used for positioning in the experiments. In short baselines, the frequency-dependent
ionospheric delays are considerably canceled, and therefore only single-frequency (L1/B1)
observations were used in the experiment to reduce the computation of high-rate data. The
cut-off angle was set to 10 degrees, and observations were weighted using an elevation-
based cosine function.

Figure 3 shows the sky distribution of the observed GPS and BDS satellites, where
G denotes the GPS satellite and C the BDS satellite. It can be seen that during the test,
about 8–9 GPS satellites and 16–17 BDS satellites were observed by Antennas 1, 3, and the
base station. Satellite signals from the southeast direction with low elevation angles (below
30 degrees) were not received due to the blocking of nearby buildings (Figure 2). Note that
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Antenna 2 could observe 9 GPS satellites but only 8 BDS-2 satellites because the firmware
of the receiver was outdated.

  
a  b  

  
c  d  

Figure 3. Sky map of GPS and BDS satellites observed by different antennas. (a) Antenna 1; (b) Antenna
2; (c) Antenna 3; and (d) antenna of base station.

Table 2 lists eleven positioning schemes that were tested in our experiment, including
three single-antenna GNSS-only schemes, one triple-antenna GNSS-only scheme (using
the average of the three single-antenna GNSS-only solutions), and seven GNSS/IMU
integration schemes with different antennas.

Figure 4 shows the 2D horizontal displacement time series recorded with the laser
rangefinder, and the horizontal displacements derived by relative positioning using schemes
G1, G2, and G3. As shown in Figure 4a, the shaking table was first kept stationary for
about 10 min, which was referred to as Period 1, then generated two 1 min horizontal
vibrations with frequencies of 0.50 Hz and 0.67 Hz and amplitudes of 19 mm and 17 mm,
respectively. After that, a vibration with a mixed frequency of 0.11 Hz and 0.34 Hz was
loaded to the shaking table for about 4 min. Then the shaking table generated a vibra-
tion with a frequency of 0.80 Hz and an amplitude of 15 mm. At last, the shaking table
returned to the original position in 4 min and then repeated the vibration process. The
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whole vibration process was named Period 2. We can see that all eight vibration events
were successfully captured by the three single-antenna GNSS-only schemes. In both Period
1 and Period 2, the G2 solution was slightly nosier than those of G1 and G3, mainly because
of the relatively fewer satellites tracked by Antenna 2 (see also Figure 3).

Table 2. Experimental positioning schemes.

Positioning Scheme Antennas Integrated with IMU

G1 Antenna 1 No
G2 Antenna 2 No
G3 Antenna 3 No

G123 Antenna 1, 2, and 3 No
GI1 Antenna 1 Yes
GI2 Antenna 2 Yes
GI3 Antenna 3 Yes

GI12 Antenna 1 and 2 Yes
GI13 Antenna 1 and 3 Yes
GI23 Antenna 2 and 3 Yes
GI123 Antenna 1, 2, and 3 Yes
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Figure 4. Horizontal displacement time series of the (a) ranging laser and (b–d) single-antenna
GNSS-only positioning schemes.

Figure 5 shows the errors of the horizontal displacement of different positioning
schemes. We can see from Figure 5a that during Period 1, the positioning errors of single-
antenna GNSS-only schemes (i.e., G1, G2, and G3) fluctuate within about 10 mm, and the
fluctuations become larger (within 20 mm) in Period 2, maybe due to the coupling of GNSS
systematic errors and vibrations. The results of G2 are nosier than those of G1 and G3;
for instance, large deviations are present in G2 during 123,400–123,600 s, perhaps due to
relatively weaker geometry and undetected outliers. Integrating IMU with single-antenna
GNSS data significantly reduces the positioning errors, which become obviously smaller
and smoother. However, many low-frequency fluctuations remain visible in the error time
series. This implies that the dominant influence is highly correlated with the single-antenna
GNSS-only solution errors (Figure 5a). The benefit of multiple antennas, as can be seen
in GI12, GI13, GI23, and GI123 solutions, is evident when observations from more GNSS
antennas are gradually integrated (Figure 5b–d). Low-frequency systematic errors are
mitigated and many error peaks are reduced (see, e.g., the period of 123,400–123,600 s).
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This demonstrates that the integration of multiple antennas can enhance the geometry of
positioning. Typically, scheme G123, that is based on the average of three corresponding
single-antenna GNSS-only solutions (Figure 5d), can achieve similar performance with
dual-antenna GNSS/IMU integration (Figure 5c). And the triple-antenna GNSS/IMU
solution GI123 further reduces the positioning errors compared with G123 by adding IMU
(Figure 5d).
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Figure 5. Horizontal displacement errors derived from (a) single-antenna GNSS-only, (b) single-antenna
GNSS/IMU, (c) dual-antenna GNSS/IMU, and (d) triple-antenna GNSS-only and GNSS/IMU schemes.

Figure 6 shows the histograms of the displacement errors of different positioning
schemes. For simplicity, only four typical schemes are shown (including G1, GI1, GI12, and
GI123). We can see that the range of positioning errors of G1 is [−18.18, 10.59] mm, which
is reduced to [−14.25, 12.79] mm when GNSS/IMU integration is adopted (i.e., GI1). When
dual-antenna GNSS/IMU is used (i.e., GI12), the error range is further reduced to [−12.73,
8.38] mm. The triple-antenna GNSS/IMU solution achieves the best results, with the error
range of [−8.24, 11.31] mm, and more errors are close to zero.

Table 3 presents the statistics of coordinate standard deviation errors (STDE) for all
eleven positioning schemes. For the whole experiment period (including the static period
and vibration period), the single-antenna GNSS-only positioning STDE is about 3.88 mm
on average, with the STDEs of G1, G2, and G3 being 3.87, 4.21, and 3.57 mm, respectively.
When the single-antenna GNSS is tightly integrated with IMU, the corresponding STDE
only slightly declines to 3.73 mm (with the STDEs of GI1, GI2, and GI3 being 3.66, 4.12,
and 3.41 mm respectively). We can find that the GNSS/IMU positioning performance is
related to the positioning quality of the corresponding GNSS antenna used. This effect is
less obvious when additional GNSS antennas are used in the integration. The positioning
STDE is reduced to about 2.79–3.21 mm by applying dual-antenna GNSS/IMU integration,
corresponding to an average accuracy improvement of 21.9% relative to the single-antenna
GNSS-only solutions. The triple-antenna GNSS/IMU solution further increases the im-
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provement rate to 33.0% by reducing the STDE to 2.60 mm. Moreover, we notice that the
G123 solution is 10.6–24.2% more accurate than the single-antenna solutions (G1, G2, and
G3) by means of averaging, and GI123 further reduces the STDE, which is 18.5% smaller
than that of G123. This confirms that the use of both IMU and multiple antennas contributes
to the improvement in accuracy. As for the statistical results of Period 1 and Period 2, they
are similar with those based on the whole data period, while the STDEs of Period 2 increase
by about 0.6–1.5 mm compared with those of Period 1, mainly because of the influence
of vibrations.
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Figure 6. Histograms of displacement errors derived from four typical positioning schemes.

Table 3. Statistical results of 2D horizontal displacement errors of different positioning schemes.

Scheme
Period 1 and 2 Period 1 Period 2

STDE/mm STDE/mm STDE/mm

G1 3.87 3.18 4.10
G2 4.21 3.75 4.36
G3 3.57 2.48 3.92

Mean 3.88 3.14 4.13

GI1 3.66 2.93 3.89
GI2 4.12 3.54 4.22
GI3 3.41 2.24 3.77

Mean 3.73 2.90 3.96

GI12 2.79 2.23 2.98
GI13 3.10 2.31 3.37
GI23 3.21 2.58 3.42
Mean 3.03 2.37 3.26

G123 3.19 2.75 3.35
GI123 2.60 2.08 2.73

Power spectral density (PSD) is calculated to analyze the spectrum of the displacement
error sequences from the laser rangefinder and positioning schemes G1, GI1, GI12, and
GI123 in the first four vibrations. The results of other positioning schemes, and other
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vibrations are similar, and thus, for brevity, they are not presented. As can be seen in
Figure 7, all positioning schemes can successfully identify the main frequencies of the
simulated vibrations, with numerically identical peak-frequency values with respect to
those based on laser records. Despite this, compared to the PSD of laser records, the
GNSS-only solution G1 is obviously noisier in the high-frequency band (e.g., >1 Hz). The
GNSS/IMU solutions exhibit lower noise levels compared to G1, and integrating more
GNSS antennas gradually enhances such improvement. This benefits the monitoring of
vibrations with high frequencies and small amplitudes, which need further study. As for
vibration amplitudes, we applied Fast Fourier Transform to estimate them. Figure 8 shows
the errors of amplitudes estimated based on different positioning schemes: they are similar
and mostly smaller than 3 mm; those of GI12 present the largest errors among the selected
four schemes, perhaps due to the relatively poor data quality of Antenna 2.
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Figure 7. Power spectral density of displacements derived from different positioning schemes.
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4. Conclusions

In SHM, GNSS can be limited due to signal interference and the accelerometers being
subject to rotation-induced baseline errors. Traditional single-antenna GNSS/IMU inte-
grations generally have low observation redundancy and model geometry strength. We
propose a tightly integrated multi-antenna GNSS/IMU scheme for structural health moni-
toring. Vibration signals were simulated with a shaking table to validate the monitoring
accuracy of the proposed method, using the laser rangefinder recordings as the reference.

Experimental results show that the STDEs of single-antenna GNSS-only solutions
G1, G2, and G3 were 3.87, 4.21, and 3.57 mm, respectively. Compared to the results of
single-antenna GNSS-only solutions, the single-antenna GNSS/IMU solutions are affected
by the GNSS antenna used; thus, the positioning STDE was only slightly reduced from
about 3.88 mm to 3.73 mm on average. Specifically, the STDEs of G1, G2, and G3 were
3.66, 4.12, and 3.41 mm, respectively. Adding more GNSS antennas can effectively increase
the improvements. The dual-antenna GNSS/IMU integration reduces the STDE to a level
of about 3.03 mm with the STDEs of GI12, GI13, and GI23 being 2.79, 3.10, and 3.21 mm,
respectively, and positioning results with an STDE of 2.60 mm were finally obtained by
triple-antenna GNSS/IMU integration, which is about 32.99%, 30.29%, and 14.19% more
accurate than the single-antenna GNSS-only, single-antenna GNSS/IMU, and dual-antenna
GNSS/IMU solutions, respectively. The power spectral density analysis demonstrates
that vibration frequencies identified based on the displacements from different positioning
schemes are nearly identical. Through Fast Fourier Transform analysis, we found that the
benefit of integrating multi-antenna GNSS and IMU in estimating the vibration amplitudes
is not obvious. This is perhaps because of the use of poor GNSS data from some antennas.

This study validates the effectiveness of the multi-antenna GNSS/IMU integrated
model, and indicates the potential of multi-antenna GNSS/IMU integration for SHM. Fur-
ther study may apply the proposed method in real SHM environments where more serious
signal interference, such as occlusion, multipath, and diffraction errors, is generally present.
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