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Editorial

Computational Algebra, Coding Theory, and Cryptography:
Theory and Applications
Hashem Bordbar

Centre for Information Technologies and Applied Mathematics, University of Nova Gorica,
5000 Nova Gorica, Slovenia; hashem.bordbar@ung.si

1. Introduction

The primary aim of this Special Issue is to explore innovative encoding and decoding
procedures that leverage various algebraic structures to enhance error-control coding tech-
niques. By examining the application of algebraic structures in error-correction codes, this
Special Issue highlights the development of new algorithms designed to improve both the
error-correction capacity and the efficiency of encoding and decoding processes. The alge-
braic structures covered include commutative algebras, computational algebras, ordered
algebras, and hypercompositional algebras, with an emphasis on combinatorial aspects
drawn from lattice theory, category theory, graph theory, and mathematical modeling.

This Special Issue contains 10 papers published in the journal Axioms. These papers
explore various aspects of algebraic structures in the context of error-control coding, cryp-
tography, and related fields. They present new theoretical developments and practical
applications aimed at improving encoding and decoding processes. We hope that this issue
will inspire further research and innovation at the intersections of algebraic structures,
coding theory, and cryptography.

2. Overview of the Published Papers

Contribution 1 introduces Ω-ideals in Ω-algebras, linking them to Ω-congruences and
Ω-homomorphisms, while exploring equation-solving in Ω-rings and Ω-fields. Ω-algebras,
defined by lattice-valued Ω-equality, fulfill identities as lattice formulas.

Contribution 2 presents relative versions of Brauer’s, Robinson’s, and Olsson’s con-
jectures on finite group direct products, proving that the anchor group of an irreducible
character of a finite simple group with an odd prime degree is trivial.

Contribution 3 characterizes Sheffer stroke and Hilbert algebras using ideals and
stabilizers, investigating their properties and minimal ideals, and defining stabilizers
within these algebras, with illustrative examples provided.

Contribution 4 proves that sequences defined by prime and composite number conditions
are bounded and periodic under certain conditions on the set K and the real number τ.

Contribution 5 classifies four-dimensional 3-Hom–Lie algebras with a nilpotent twist-
ing map, analyzing their solvability and nilpotency and providing a classification up to
Hom algebra isomorphism.

Contribution 6 explores coding results over Frobenius local rings, focusing on linear
codes over Zp4 [u]/(u2 − p3β, pu), and examining generator matrices and MacWilliams
relations in error-correction.

Contribution 7 studies p-numerical semigroups of triples (Wi, Wi+2, Wi+k), defining
the p-Frobenius number and p-genus, and exploring the structure of these semigroups.

Investigating the relationship between ring commutativity and multiplicative gen-
eralized derivations, Contribution 8 provides insights into semiprime ideals and their
structural implications for rings.

Axioms 2024, 13, 784. https://doi.org/10.3390/axioms13110784 https://www.mdpi.com/journal/axioms1
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Contribution 9 presents an algebraic and geometric technique for constructing topo-
logical quantum codes using quotient lattices and geometric projections, including the
introduction of new surface and color codes.

Contribution 10 introduces two-term differential Leib∞-conformal algebras, classifies
certain subclasses, and explores non-Abelian extensions and the inducibility of automor-
phisms, deriving Wells exact sequences for differential Leibniz conformal algebras.
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Article

Crossed Modules and Non-Abelian Extensions of Differential
Leibniz Conformal Algebras
Hui Wu 1, Shuangjian Guo 2 and Xiaohui Zhang 1,*
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Abstract: In this paper, we introduce two-term differential Leib∞-conformal algebras and give
characterizations of some particular classes of such two-term differential Leib∞-conformal algebras.
Furthermore, we discuss the classification of the non-Abelian extensions in terms of non-Abelian
cohomology groups. Finally, we explore the inducibility of pairs of automorphisms and derive the
analog Wells exact sequences under the circumstance of differential Leibniz conformal algebras.

Keywords: differential Leibniz conformal algebra; cohomology; crossed module; non-Abelian extension;
Wells exact sequences

MSC: 17B10; 17B38; 17B56; 18G45

1. Introduction

Kac in [1] has proposed Lie conformal algebras, usually considered as an axiomatic
description of the singular part of the operator product expansion of chiral fields in con-
formal field theory. The past few years have witnessed considerable scholarly attention
to this algebraic structure in the past few years because they are closely related to vertex
algebras [2]. Many more properties and structures of Lie conformal algebras have been
developed; see [3–7] and references cited therein.

Leibniz conformal algebras were introduced in [8], which are closely related to field
algebras [9] and vertex algebras. Later, the author further elaborated upon and elucidated
the concept of a conformal representation of a Leibniz algebra in [10]. After that, Zhang
introduced the cohomology of Leibniz conformal algebras in [11] and Wu articulated the
notion of a Leibniz pseudoalgebra, which is a multivariable generalization of the concept
of Leibniz conformal algebras in [12]. Recently, Feng and Chen studied O-operators, also
known as relative Rota–Baxter operators on Leibniz conformal algebras with respect to
representations in [13]. Subsequently, the first author and Wang investigated some prop-
erties of relative Rota–Baxter operators on Leibniz conformal algebras with respect to
representations and their connections with Leibniz dendriform conformal algebras in [14].
For further details on Leibniz conformal algebras, see [15,16]. Recently, the authors [17]
introduced Leib∞-conformal algebras where the Leibniz conformal identity holds up to
homotopy. Additionally, they presented equivalent descriptions of Leib∞-conformal alge-
bras and identified certain characteristics of some particular classes of Leib∞-conformal
algebras in terms of the cohomology of Leibniz conformal algebras and crossed modules
of Leibniz conformal algebras as a generalization of [18]. This study would introduce
two-term differential Leib∞-conformal algebra and generalize the common characteristics
of some particular classes of such homotopy differential Leibniz conformal algebras, which
constitute the major academic focus of this paper.

The extension problem has persisted and incurred scholarly dispute. Non-Abelian
extensions were first developed in [19], which induces cohomology to the low dimensional

Axioms 2024, 13, 685. https://doi.org/10.3390/axioms13100685 https://www.mdpi.com/journal/axioms3
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non-Abelian group. The authors examined non-Abelian extensions of Leibniz algebras
in [20]. See [21] and references cited therein. Naturally, we look into non-Abelian exten-
sions of a differential Leibniz conformal algebra by another differential Leibniz conformal
algebras. Another interesting study linked to extensions of algebraic structures is given by
the inducibility of a pair of automorphisms, which, after all, is intimately connected with
extensions of algebras. Such a study was first initiated by Wells in extensions of abstract
groups in [22]. Later, the authors investigated extending automorphism in [23]. In [24], the
authors studied the inducibility of a pair of automorphisms about a non-Abelian extension
of Lie algebras. The results of [20,24] have been extended to Rota–Baxter Leibniz algebras
in [25]. Naturally, we study the inducibility of a pair of differential Leibniz conformal
algebra automorphisms and characterize them by equivalent conditions. This forms the
second research focus of this paper.

The paper is organized as follows. In Section 2, we recall some basic definitions
of differential Leibniz conformal algebras. In Section 3, we introduce homotopy differ-
ential operators on two-term Leib∞-conformal algebras. A two-term Leib∞-conformal
algebra equipped with a homotopy differential operators is called a two-term differential
Leib∞-conformal algebra, and we give characterizations of some particular classes of such
two-term differential Leib∞-conformal algebras. In Section 4, we introduce non-Abelian
cohomology groups and classify the non-Abelian extensions in terms of non-Abelian co-
homology groups. In Section 5, we explore the inducibility of pairs of automorphisms
and derive the analog Wells exact sequences under the circumstance of differential Leibniz
conformal algebras.

2. Preliminaries

Throughout the paper, all algebraic systems are supposed to be over a field C. We
denote by Z the set of all integers and Z+ the set of all nonnegative integers. We now recall
some useful definitions in [8,11,26].

Definition 1. A Leibniz conformal algebra is a C[∂]-module R endowed with a λ-bracket [·λ·]R,
which defines a C-bilinear map from R⊗R to R[λ] = C[λ]⊗R such that the following axioms hold:

[∂xλy]R = −λ[xλy]R, [xλ∂y]R = (∂ + λ)[xλy]R, (conformal sesquilinearity)

[xλ[yµz]R]R = [[xλy]Rλ+µz]R + [yµ[xλz]R]R, (Jacobi identity)

for any x, y, z ∈ R.

Definition 2. A representation of a Leibniz conformal algebra R is a C[∂]-module R endowed with
left and right λ-actions, which are two C-linear maps

·λ : R⊗V → V[λ], λ· : V ⊗ R→ V[λ]

that satisfy the following conditions:

(∂x)λu = −λxλu, xλ(∂u) = (∂ + λ)xλu,

(∂u)λx = −λuλx, uλ(∂x) = (∂ + λ)uλx,

uλ[xµy] = (uλx)λ+µy + xµ(uλy),

xµ(uλy) = (xµu)λ+µy + uλ[xµy]R,

xλ(yµu) = [xλy]Rλ+µu + yµ(xλu),

for any x, y ∈ R and u ∈ V.

It follows that any Leibniz conformal algebra R is a representation of itself with

x ·λ y = (Lx)λ(y) = [xλy]R and y ·λ x = (Rx)λ(y) = [yλx], for x, y ∈ R.

4
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Here, Lx and Rx denote the left and right λ-bracket on R by x, respectively. This is called
the regular representation.

Let R be a Leibniz conformal algebra and V a representation of R. For n ≥ 1, an
n-λ-bracket on R with coefficients in V is a C-linear map fλ1,··· ,λn−1 : R⊗n → V[λ1, ..., λn−1]
denoted by

x1 ⊗ · · · ⊗ xn 7→ fλ1,··· ,λn−1(x1, · · · , xn),

satisfying the following sesquilinearity conditions:

fλ1,··· ,λn−1(x1, · · · , ∂xi, · · · xn) = −λi fλ1,··· ,λn−1(x1, · · · , xn), 1 ≤ i < n,

fλ1,··· ,λn−1(x1, · · · , ∂xn) = (λ1 + · · ·+ λn−1 + ∂) fλ1,··· ,λn−1(x1, · · · , xn).

Let C0
LeibC = V/∂V. For n ≥ 1, let Cn

LeibC = Cn
LeibC(R, V) be the space of all n-λ-brackets

on R with coefficients in V. Define C∗LeibC = ⊕n∈NCn
LeibC as the space of all poly λ-brackets.

For n ≥ 1, f ∈ Cn
LeibC, define

(∂LeibC f )λ1,··· ,λn(x1, · · · , xn+1)

=
n

∑
i=1

(−1)i+1aiλi
fλ1,··· ,λn(x1, · · · , xn+1) + (−1)n+1 fλ1,··· ,λn−1(x1, · · · , xn)λ1+···+λn xn+1

+ ∑
1≤i<j≤n+1

(−1)i fλ1,··· ,λi+λj ,··· ,λn(x1, · · · , [xiλi xj]R, · · · , xn+1).

The cohomology of this complex denoted by H∗LeibC(R, V) is called the cohomology of the
Leibniz conformal algebra R with coefficients in a representation V.

Let R be a Leibniz conformal algebra. Recall that a C[∂]-linear map dR : R → R is
called a differential operator such that

dR([xλy]) = [dR(x)λy] + [xλdR(y)] + α[dR(x)λdR(y)], ∀x, y ∈ R. (1)

One denotes by Der(R) the set of differential operators of the Leibniz conformal
algebra R.

Definition 3. A differential Leibniz conformal algebra is a Leibniz conformal algebra R with a
differential operator dR ∈ Der(R). One denotes it by (R, dR).

Definition 4. Given two differential Leibniz conformal algebras (R, dR), (Q, dQ), a homomor-
phism of differential Leibniz conformal algebras from (R, dR) to (Q, dQ) is a Leibniz conformal
algebra homomorphism ϕ : R→ Q such that ϕ ◦ dR = dQ ◦ ϕ.

Definition 5. Let (R, dR) be a differential Leibniz conformal algebra.

(i) A representation over the differential Leibniz conformal algebra (R, dR) is a pair (V, dV),
where dV ∈ Cend(V), and V is a representation over the Leibniz conformal algebra R, such
that for all x ∈ R, u ∈ V, the following equalities hold:

dV(x ·λ u) = dR(x) ·λ u + x ·λ dV(u) + αdR(x) ·λ dV(u),

dV(u ·λ x) = u ·λ dR(x) + dV(u) ·λ x + αdV(u) ·λ dR(x).

(ii) Given two representations (U, dU), (V, dV) over (R, dR), a conformal linear map f : U → V
is called a homomorphism of representations, if f ◦ dU = dV ◦ f and

f (x ·λ u) = x ·λ f (u), f (u ·λ x) = f (u) ·λ x, ∀x ∈ R, u ∈ V.

5
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Define the set of n-cochains by

Cn
DLeibC(R, V) :=





Cn
LeibC(R, V)⊕ Cn−1

LeibC(R, V), n ≥ 2,
C1

LeibC(R, V) = Hom(R, V), n = 1,
C0

LeibC(R, V) = V, n = 0.

For n ≥ 1, we define a linear map δ : Cn
LeibC(R, V)→ Cn

LeibC(R, V) by

δ fλ1,··· ,λn(x1, . . . , xn) :

=
n

∑
k=1

αk−1 ∑
1≤i1<···<ik≤n

fλ1,··· ,λn(x1, . . . , dR(xi1), . . . , dR(xik ), . . . , xn)− dV fλ1,··· ,λn(x1, . . . , xn),

for any f ∈ Cn
LeibC(R, V) and

δv = −dV(v), ∀v ∈ C0
LeibC(R, V) = V/∂V.

Define ∂DLeibC : C1
LeibC(R, V)→ C2

LeibC(R, V) by

∂DLeibC( f ) = (∂LieC( f ),−δ f ), ∀ f ∈ Hom(R, V).

Then, for n ≥ 2, we define ∂DLeibC : Cn
LeibC(R, V)→ Cn+1

LeibC(R, V) by

∂DLeibC( fn, gn−1) = (∂LeibC( fn), ∂LeibC(gn−1) + (−1)nδ fn),

for any fn ∈ Cn
LeibC(R, V) and gn−1 ∈ Cn−1

LeibC(R, V). The cohomology of the cochain
complex (C∗DLeibC(R, V), ∂DLeibC), denoted by H∗DLeibC(R, V), is called the cohomology of
the differential Leibniz conformal algebra (R, dR) with coefficients in the representation
(V, dV).

3. Crossed Modules and Two-Term Differential Leib∞-Conformal Algebras

In this section, we introduce homotopy differential operators on two-term Leib∞-
conformal algebras. A two-term Leib∞-conformal algebra equipped with a homotopy
differential operator is called a two-term differential Leib∞-conformal algebra. We show that
skeletal two-term differential Leib∞-conformal algebras correspond to the third cocycles of
differential Leibniz conformal algebras. Next, we introduce crossed modules of differential
Leibniz conformal algebras and show that crossed modules of differential Leibniz conformal
algebras correspond to strict two-term differential Leib∞-conformal algebras.

Definition 6 ([17]). A two-term Leib∞-conformal algebra is a triple (R1
π−→ R0, ρ2, ρ3) consist-

ing of a complex R1
π−→ R0 of C[∂]-modules equipped with

• a C-linear conformal sesquilinear map ρ2 : Ri ⊗ Rj → Ri+j[λ], for 0 ≤ i, j, i + j ≤ 1,
• a C-linear conformal sesquilinear map ρ3 : R0 ⊗ R0 ⊗ R0 → R1[λ, µ]

that satisfy the following set of identities: for all x, y, z, w ∈ R0 and u, v ∈ R1,

6
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(Leib1) (ρ2)λ(u, v) = 0,

(Leib2) π((ρ2)λ(x, u)) = (ρ2)λ(x, πu),

(Leib3) π((ρ2)λ(u, x)) = (ρ2)λ(πu, x),

(Leib4) (ρ2)λ(πu, v) = (ρ2)λ(u, πv),

(Leib5) π
(

ρ3)λ,µ(x, y, z)
)
= (ρ2)λ(x, (ρ2)µ(y, z))− (ρ2)λ+µ((ρ2)λ(x, y), z)− (ρ2)µ(y, (ρ2)λ(x, z)),

(Leib6) (ρ3)λ,µ(x, y, πv) = (ρ2)λ(x, (ρ2)µ(y, v))− (ρ2)λ+µ((ρ2)λ(x, y), v)− (ρ2)µ(y, (ρ2)λ(x, v)),

(Leib7) (ρ3)λ,µ(x, πv, y) = (ρ2)λ(x, (ρ2)µ(v, y))− (ρ2)λ+µ((ρ2)λ(x, v), y)− (ρ2)µ(v, (ρ2)λ(x, y)),

(Leib8) (ρ3)λ,µ(πv, x, y) = (ρ2)λ(v, (ρ2)µ(x, y))− (ρ2)λ+µ((ρ2)λ(v, x), y)− (ρ2)µ(x, (ρ2)λ(v, y)),

(Leib9) (ρ2)λ

(
x, (ρ3)µ,ν(y, z, w)

)
− (ρ2)µ

(
y, (ρ3)λ,ν(x, z, w)

)
+ (ρ2)ν

(
z, (ρ3)λ,µ(x, y, w)

)

+ (ρ2)λ+µ+ν

(
(ρ3)λ,µ(x, y, z), w

)
− (ρ3)λ+µ,ν

(
(ρ2)λ(x, y), z, w

)
− (ρ3)µ,λ+ν

(
y, (ρ2)λ(x, z), w

)

− (ρ3)µ,ν

(
y, z, (ρ2)λ(x, w)

)
+ (ρ3)λ,µ+ν

(
x, (ρ2)µ(y, z), w

)
+ (ρ3)λ,ν

(
x, z, (ρ2)µ(y, w)

)

− (ρ3)λ,µ

(
x, y, (ρ2)ν(z, w)

)
= 0.

Definition 7. Let R = (R1
π−→ R0, ρ2, ρ3) be a two-term Leib∞-conformal algebra. A triple

d = (d0, d1, d2), where d0 : R0 → R0 and d1 : R1 → R1 are conformal linear maps and
d2 : ∧2R0 → R1[λ] is a conformal bilinear map, is called a homotopy differential operator on R,
i f π ◦ d1 = d0 ◦ π, and for all x, y, z ∈ R0 and u ∈ R1,

(D1) π((d2)λ(x, y)) = d0((ρ2)λ(x, y))− (ρ2)λ(d0(x), y)− (ρ2)λ(x, d0(y))− α(ρ2)λ(d0(x), d0(y)),

(D2) (d2)λ(x, πu) = d1((ρ2)λ(x, u))− (ρ2)λ(d0(x), u)− (ρ2)λ(x, d1(u))− α(ρ2)λ(d0(x), d1(u)),

(D3) (d2)λ(πu, x) = d1((ρ2)λ(u, x))− (ρ2)λ(u, d0(x))− (ρ2)λ(d1(u), x)− α(ρ2)λ(d1(u), d0(x)),

(D4) (ρ3)λ,µ(d0(x), y, z) + α(ρ3)λ,µ(x, d0(y), z) + α2(ρ3)λ,µ(x, y, d0(z))− d1(ρ3)λ,µ(x, y, z)

= (ρ2)λ+µ((d2)λ(x, y), z)− (ρ2)λ+ν((d2)λ(x, z), y)− (ρ2)λ(x, (d2)µ(y, z)) + (d2)λ+µ((ρ2)λ(x, y), z)

−(d2)λ+ν((ρ2)λ(x, z), y)− (d2)λ(x, (ρ2)µ(y, z)).

A two-term differential Leib∞-conformal algebra is a two-term Leib∞-conformal algebra
R = (R1

π−→ R0, ρ2, ρ3) equipped with a homotopy differential operator d = (d0, d1, d2).
We denote a two-term differential Leib∞-conformal algebra by (R1

π−→ R0, ρ2, ρ3, d0, d1, d2)
or simply by (R, d).

Definition 8. Let (R, d) be a two-term differential Leib∞-conformal algebra. It is said to be

(i) Skeletal if π = 0,
(ii) Strict if ρ3 = 0 and d2 = 0.

Theorem 1. There is a one-to-one correspondence between skeletal two-term differential Leib∞-
conformal algebras and triples of the form (RT, VS, ( f , θ)), where (R, dR) is a differential Leibniz
conformal algebra, (V, dV) is a representation and ( f , θ) ∈ C3

DLeibC(R, V) is a 3-cocycle.

Proof. Let (R1
π−→ R0, ρ2, ρ3, d0, d1, d2) be a skeletal two-term differential Leib∞-conformal

algebra. Then, according to (Leib5) and (D1), we obtain (R0, ρ2) and operator d0 is a
differential Leibniz conformal algebra. On the other hand, by conditions (Leib6), (Leib7),

7
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(Leib8), (D2) and (D3), we obtain that (R1, d1) is a representation of the differential Leibniz
conformal algebra (R0, d0) with the left and right λ-actions

·λ : R0 ⊗ R1 → R1[λ], x ·λ u = (ρ2)λ(x, u),

λ· : R1 ⊗ R0 → R1[λ], u ·λ x = (ρ2)λ(u, x), ∀x ∈ R0, u ∈ R1.

The conditions (Leib9) and (D4) are, respectively, equivalent to

δ3
DLeibC(ρ3,−d2) = (∂LeibC(ρ3),−∂LeibC(d2)− δρ3) = 0.

Thus, (ρ3,−d2) ∈ C3
DLeibC(R, V) is a 3-cocycle.

Conversely, given a triple ((R, dR), (V, dV), (ρ3, d2)) as in the statement, define confor-
mal bilinear maps ρ2 by

l2
λ(x, y) = [xλy]R, (ρ2)λ(x, u) = x ·λ u, (ρ2)λ(u, x) = u ·λ x,

for x, y ∈ R, u ∈ V. Then, (V 0−→ R, ρ2, f , dR, dV ,−d2) is a skeletal two-term differential
Leib∞-conformal algebra.

Next, we introduce crossed modules of differential Leibniz-conformal algebras and
characterize strict two-term differential Leib∞-conformal algebras.

Definition 9. A crossed module of differential Leibniz conformal algebras consists of ((R0, d0), (R1, d1),
π, ρL, ρR), where (R0, d0) and (R1, d1) are differential Leibniz conformal algebras, π : (R1, d1)→
(R0, d0) is a differential Leibniz conformal algebra homomorphism , and ρL : R0 ⊗ R1 → R1[λ],
ρR : R1 ⊗ R0 → R1[λ] , and make (R1, d1) into a representation of the differential Leibniz
conformal algebra (R0, d0) satisfying

(Ca) π(ρL(x)λ(u)) = [xλπ(u)]R0 , π(ρR(x)λ(u)) = [π(u)λx]R0 ,

(Cb) ρL(π(u))λ(v) = [uλv]R1 , ρR(π(u))λ(v) = [vλu]R1 ,

for any x ∈ R0, u, v ∈ R1.

Proposition 1. Let ((R0, d0), (R1, d1), π, ρL, ρR) be a crossed module of differential Leibniz con-
formal algebras. Then, (R0 ⊕ R1, d0 ⊕ d1) is a differential Leibniz conformal algebra, where the
bracket is

[(x, u)λ(y, v)] = ([xλy]R0 , ρL(x)λv + ρR(y)λu + [uλv]R1)

for any x, y ∈ R0, u, v ∈ R1.

Proof. Since R0, R1 are both Leibniz conformal algebras and (R1, ρL, ρR) is a representation
of R0, then we have that R0 ⊕ R1 is a Leibniz conformal algebra. Moreover, for any
(x, u), (y, v) ∈ R0 ⊕ R1, we have

(d0 ⊕ d1)[(x, u)λ(y, v)]

= (d0 ⊕ d1)([xλy]R0 , ρL(x)λv + ρR(y)λu + [uλv]R1)

= (d0([xλy]R0), d1(ρ
L(x)λv) + d1(ρ

R(y)λu) + d1([uλv]R1))

= ([d0(x)λy]R0 + [xλd0(y)]R0 + α[d0(x)λd0(y)]R0 , ρL(x)λd1(v) + ρL(d0(x))λv

+αρL(d0(x))λd1(v) + ρR(y)λd1(u) + ρR(d0(y))λu + αρR(d0(y))λd1(u)

+[d1(u)λv]R1 + [uλd1(v)]R1 + α[d1(u)λd1(v)]R1)

= [(d0 ⊕ d1)(x, u)λ(y, v)] + [(x, u)λ(d0 ⊕ d1)(y, v)] + α[(d0 ⊕ d1)(x, u)λ(d0 ⊕ d1)(y, v)].

8
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This shows that the map d0 ⊕ d1 : R0 ⊕ R1 → R0 ⊕ R1 is a differential operator. And the
proof is finished.

Theorem 2. There is a one-to-one correspondence between strict two-term differential Leib∞-
conformal algebras and crossed modules of differential Leibniz conformal algebras.

Proof. Let (R1
π−→ R0, ρ2, l3 = 0, d0, d1, d2 = 0) be a strict two-term differential Leib∞-

conformal algebra. Then, according to (Leib5) and (D1), we obtain (R0, ρ2), and operator
d0 is a differential Leibniz conformal algebra. Next, we define [·λ·]R1 : R1 ⊗ R1 → R1[λ] by
[uλv]R1 = (ρ2)λ(πu, v) = (ρ2)λ(u, πv), for any u, v ∈ R1. By conditions (Leib6) and (D3),
we obtain that (R1, d1) is a differential Leibniz conformal algebra. On the other hand, the
condition (Leib2) implies that π : (R1, d1) → (R0, d0) is a differential Leibniz conformal
algebra morphism. Finally, we define

ρL : R0 → R1 → R1[λ], ρL(x)λu = (ρ2)λ(x, u),

ρR : R1 → R0 → R1[λ], ρR(x)λu = (ρ2)λ(u, x), ∀ ∈ R0, u ∈ R1.

Then, we obtain that ((R1, d1), ρL, ρR) is a representation of the differential Leibniz confor-
mal algebra (R0, d0); by the conditions (Leib9) and (D4), we also have

π(ρL(x)λu) = π(ρ2)λ(x, u) = (ρ2)λ(x, πu), π(ρR(x)λu) = π(ρ2)λ(u, x) = (ρ2)λ(πu, x),

ρL(πu)λv = π(ρ2)λ(πu, v) = [uλv]R1 , ρR(πu)λv = π(ρ2)λ(v, πu) = [vλu]R1 ,

for any x ∈ R0, u, v ∈ R1. Thus, ((R0, d0), (R1, d1), π, ρL, ρR) is a crossed module of differ-
ential Leibniz conformal algebras.

Conversely, let ((R0, d0), (R1, d1), π, ρL, ρR) be a crossed module of differential Leibniz
conformal algebras. Define conformal bilinear maps ρ2 : Ri × Rj → Ri+j[λ], i + j ≤ 1 by

(ρ2)λ(x, y) = [xλy]R0 , (ρ2)λ(x, u) = ρL(x)λu,

(ρ2)λ(u, x) = ρR(x)λu, (ρ2)λ(u, v) = 0,

for x, y ∈ R0, u, v ∈ R1. Hence, (R1
π−→ R0, ρ2, ρ3 = 0, d0, d1, d2 = 0) is a strict two-term

differential Leib∞-conformal algebra.

Combining Proposition 1 and Theorem 2, we obtain the following result.

Proposition 2. Let (R, d) be a strict two-term differential Leib∞-conformal algebra. Then, (R0 ⊕
R1, d0 ⊕ d1) is a differential Leibniz conformal algebra, where the bracket is

[(x, u)λ(y, v)] = ((ρ2)λ(x, y), (ρ2)λ(x, v) + (ρ2)λ(u, y) + (ρ2)λ(u, v)),

for any (x, u), (y, v) ∈ R0 ⊕ R1.

Example 1. Let (R0, d0) be a differential Leibniz conformal algebra. Then, ((R0, d0), (R0, d0), id, Lx,
Rx) is a crossed module of differential Leibniz conformal algebras. Therefore, it follows that

(R0
id−→ R0, [·, ·]R0 , ρ3 = 0, d0, d0, d2 = 0)

is a strict two-term differential Leib∞-conformal algebra.

Example 2. Let (R0, d0) and (R1, d1) be a differential Leibniz conformal algebras, let f : (R0, d0)→
(R1, d1) be a differential Leibniz conformal algebra morphism and let i : R1 → R0 be the inclusion
map. Then, (Ker f , R0, i, Lx, Rx) is a crossed module of differential Leibniz conformal algebras.

9
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4. Non-Abelian Extension of Differential Leibniz Conformal Algebras

In this section, we study non-Abelian extensions of a differential Leibniz conformal
algebra by another differential Leibniz conformal algebra.

Definition 10. Let (R, dR) and (Q, dQ) be two differential Leibniz conformal algebras. A non-
Abelian extension of (R, dR) by (Q, dQ) is a differential Leibniz conformal algebra (E, dE) equipped
with a short exact sequence of differential Leibniz conformal algebras

0→ (Q, dQ)
i→ (E, dE)

p→ (R, dR)→ 0. (2)

Definition 11. Let (E, dE) and (E′, dE′) be two non-Abelian extensions of (R, dR) by (Q, dQ).
They are said to be equivalent if there is a morphism τ : (E, dE)→ (E′, dE′) of differential Leibniz
conformal algebras making the following diagram commutative:

0 −−→ (Q, dQ)
i1−−−→ (E, dE)

p1−−−→ (R, dR) −−→ 0

−−−→id

−−−→τ

−−−→id

0 −−→ (Q, dQ)
i2−−−→ (E′, dE′)

p2−−−→ (R, dR) −−→ 0.

(3)

The set of all equivalence classes of non-Abelian extensions of (R, dR) by (Q, dQ) is
denoted by Extnab((R, dR), (Q, dQ)).

Example 3. Let ((R0, d0), (R1, d1), π, ρL, ρR) be a crossed module of differential Leibniz conformal
algebras. Then, the exact sequence

0→ (R1, d1)
i→ (R0 ⊕ R1, d0 ⊕ d1)

p→ (R0, d0)→ 0,

is a non-Abelian extension of (R0, dR0) by (R1, dR1).

We denote the set of equivalence classes of non-Abelian 2-cocycles by H2
nab((R, dR), (Q, dQ)).

Let (E, dE) be a non-Abelian extension of the differential Leibniz conformal algebra
(R, dR) by (Q, dQ) as of (2). A section of p is a linear map s : R→ E that satisfies p ◦ s = idR.
We define conformal maps ω : ∧2R → Q[λ], ·λ : R⊗ Q → Q[λ],λ · : Q⊗ R → Q[λ] and
Ω : R→ Q by

ωλ(x, y) = [s(x)λs(y)]E − s([xλy]R),

x ·λ p = [s(x)λ p]E,

p ·λ x = [pλs(x)]E,

Ω(x) := dE(s(x))− s(dR(x)), ∀x, y ∈ R, p ∈ Q.

Further, we define R⊕Q by the bracket

[(x, p)λ(y, q)] := ([xλy]R, x ·λ q + p ·λ y + ωλ(x, y) + [pλq]Q),

with the conformal linear map

dΩ(x, p) = (dR(x), dQ(p) + Ω(x)).

Lemma 1. With the above notations, R⊕Q is a Leibniz conformal algebra if and only if ω, ·λ,λ ·
satisfy the following conditions:

10
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[xλy]R ·λ+µ p = x ·λ (y ·µ p)− y ·µ (x ·λ p)− [ωλ(x, y)λ+µ p]Q, (4)

p ·µ [xλy]R = x ·λ (p ·µ y)− (x ·λ p) ·λ+µ y− [pµωλ(x, y)]Q, (5)

p ·µ [xλy]R = (p ·µ x) ·λ+µ y + x ·λ (p ·µ y)− [pµωλ(x, y)]Q, (6)

x ·λ [pµq]Q = [(x ·λ p)λ+µq]Q + [pµ(x ·λ q)]Q, (7)

x ·λ [pµq]Q = [pµ(x ·λ q)]Q − [(p ·µ x)λ+µq]Q, (8)

[pλq]Q ·λ+µ x = [pλ(q ·µ x)]Q − [qµ(p ·λ x)]Q, (9)

x ·λ ωµ(y, z)− y ·µ ωλ(x, z)−ωλ(x, y) ·ν z = ωλ+µ([xλy]R, z)−ωλ(x, [yµz]R) + ωµ(y, [xλz]R). (10)

Proof. For any x, y, z ∈ R, p, q ∈ Q, we have

[∂(x + p)λ(y + q)] = [(∂x + ∂p)λ(y + q)]

= ([∂xλy]R, (∂x ·λ q) + (∂p ·λ y) + ωλ(∂x, y) + [∂pλq]Q)

= (−λ[xλy]R,−λ(x ·λ q)− λ(p ·λ y)− λωλ(x, y)− λ[pλq]Q)

= −λ[(x + p)λ(y + q)].

Similar, we have

[(x + p)λ∂(y + q)] = (∂ + λ)[(x + p)λ(y + q)].

Further, assume that R⊕Q is a Leibniz conformal algebra. By

[xλ[yµ p]] = [[xλy]Rλ+µ p] + [yµ[xλ p]],

we deduce that (4) holds. By

[xλ[pµy]] = [[xλ p]λ+µy] + [pµ[xλy]R],

we deduce that (5) holds. Similar to deduce that (6) holds. By

[xλ[pµq]Q] = [[xλ p]λ+µq] + [pµ[xλq]],

we deduce that (7) holds. Similarly, we deduce that (8)–(9) hold. By

[xλ[yµz]R]R = [[xλy]Rλ+µz]R + [yµ[xλz]R]R,

we deduce that (10) holds.
Conversely, if (4)–(10) hold, it is straightforward to see that R⊕Q is a Leibniz confor-

mal algebra. The proof is finished.

Lemma 2. The maps ω, ·λ,λ ·, Ω defined above satisfy the following compatible conditions: for all
x, y ∈ R and p ∈ Q,

dQωλ(x, y) + Ω([xλy]R) = Ω(x) ·λ y + ωλ(dR(x), y) + x ·λ Ω(y) + ωλ(x, dR(y))

+ αdR(x) ·λ Ω(y) + αΩ(x) ·λ dR(y) + αωλ(dR(x), dR(y)) + α[Ω(x)λΩ(y)]E, (11)

[Ω(x)λ p]E + αdR(x) ·λ dQ(p) + α[Ω(x)λdQ(p)]E − dQ(x ·λ p) + dR(x) ·λ p + x ·λ dQ(p) = 0, (12)

[pλΩ(x)]E + αdQ(p) ·λ dR(x) + α[dQ(p)λΩ(x)]E − dQ(p ·λ x) + dQ(p) ·λ x + p ·λ dR(x) = 0. (13)

Proof. For any x, y ∈ R, we have

11
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Ω(x) ·λ y + ωλ(dR(x), y) + x ·λ Ω(y) + ωλ(x, dR(y))− dQωλ(x, y)−Ω([xλy]R)

+ αdR(x) ·λ Ω(y) + αΩ(x) ·λ dR(y) + αωλ(dR(x), dR(y)) + α[Ω(x)λΩ(y)]E
= [dE(s(x))λs(y)]E︸ ︷︷ ︸

2A

− [s(dR(x))λs(y)]E︸ ︷︷ ︸
1D

+ [s(dR(x))λs(y)]E︸ ︷︷ ︸
1D

− s([dR(x)λy]R)︸ ︷︷ ︸
2B

+ [s(x)λdE(s(y))]E︸ ︷︷ ︸
2A

− [s(x)λs(dR(y))]E︸ ︷︷ ︸
1C

+ [s(x)λs(dR(y))]E︸ ︷︷ ︸
1C

− s([xλdR(y)]R)︸ ︷︷ ︸
2B

− dQ[s(x)λs(y)]E︸ ︷︷ ︸
2A

+ dQs([xλy]R)︸ ︷︷ ︸
1B

− dE(s([xλy]R))︸ ︷︷ ︸
1B

+ s(dR([xλy]R))︸ ︷︷ ︸
2B

+ α[s(dR(x))λdE(s(y))]E︸ ︷︷ ︸
1E

− α[s(dR(x))λs(dR(y))]E︸ ︷︷ ︸
1A

+ α[dE(s(x))λs(dR(y))]E︸ ︷︷ ︸
1F

− α[s(dR(x))λs(dR(y))]E︸ ︷︷ ︸
1E

+ α[s(dR(x))λs(dR(y))]E︸ ︷︷ ︸
1E

− αs([dR(x)λdR(y)]R)︸ ︷︷ ︸
2B

+ α[dE(s(x))λdE(s(y))]E︸ ︷︷ ︸
2A

− α[dE(s(x))λs(dR(y))]E︸ ︷︷ ︸
1F

− α[s(dR(x))λdE(s(y))]E︸ ︷︷ ︸
1E

+ α[s(dR(x))λs(dR(y))]E︸ ︷︷ ︸
1A

= 0,

and we deduce that (11) holds. Further, for any x ∈ R and p ∈ Q, we have

[Ω(x)λ p]E + αdR(x) ·λ dQ(p) + α[Ω(x)λdQ(p)]E − dQ(x ·λ p) + dR(x) ·λ p + x ·λ dQ(p)

= [dE(s(x))λ p]E − [sdR((x))λ p]E︸ ︷︷ ︸
A

+ α[s(dR(x))λdQ(p)]E︸ ︷︷ ︸
B

+α[dE(s(x))λdQ(p)]E−α[s(dR(x))λdQ(p)]E︸ ︷︷ ︸
B

− dQ[s(x)λ p]E + [s(dR(x))λ p]E︸ ︷︷ ︸
A

+[s(x)λdQ(p)]E

= [dE(s(x))λ p]E + [s(x)λdQ(p)]E + α[dE(s(x))λdQ(p)]E − dQ[s(x)λ p]E
= 0.

This means Equation (12) is satisfied. Similarly, one can check that Equation (13) holds.

Definition 12.

(i) Let (R, dR) and (Q, dQ) be two differential Leibniz conformal algebras. A non-Abelian 2-
cocycle of (R, dR) with values in (Q, dQ) is a quadruple (ω, ·λ,λ ·, Ω) of conformal linear
maps ω : ∧2R → Q[λ], ·λ : R ⊗ Q → Q[λ],λ · : Q ⊗ R → Q[λ] and Ω : R → Q
satisfying the conditions (4)-(13).

(ii) Let (ω, ·λ,λ ·, Ω) and (ω′, ·′λ,λ ·′, Ω′) be two non-Abelian 2-cocycles of (R, dR) with values
in (Q, dQ). They are said to be equivalent if there exists a conformal linear map η : R→ Q
that satisfies

ωλ(x, y)−ω′λ(x, y) = x ·′λ η(y) + η(x) ·′λ y− η[xλy]R + [η(x)λη(y)]Q, (14)

x ·λ p− x ·′λ p = [η(x)λ p]E, (15)

p ·λ x− p ·′λ x = [pλη(x)]E, (16)

Ω(x)−Ω′(x) = dQ(η(x))− η(dR(x)), ∀x, y ∈ R, p ∈ Q. (17)

We denote the set of equivalence classes of non-Abelian 2-cocycles by H2
nab((R, dR), (Q, dQ)).

With the above notations, we obtain the following result.

12
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Theorem 3. Let (R, dR) and (Q, dQ) be two differential Leibniz conformal algebras. Then,
the set of equivalence classes of non-Abelian extensions of (R, dR) by (Q, dQ) is classified by
H2

nab((R, dR), (Q, dQ)). In other words,

Extnab((R, dR), (Q, dQ)) ∼= H2
nab((R, dR), (Q, dQ)).

Proof. Let (E, dE) and (E′, dE′) be two equivalent extensions of (R, dR) by (Q, dQ). If
s : R → E is a section of the map p, then it is easy to observe that the map s′ := η ◦ s is a
section of the map p′. Let (ω′, ·′λ,λ ·′, Ω′) be the non-Abelian 2-cocycle corresponding to the
non-Abelian extension (E′, dE′) with section s′, for any x, y ∈ R, q ∈ Q, we have

ω′λ(x, y) = [s′(x)λs′(y)]E − s′[xλy]R
= [η ◦ s(x)λη ◦ s(y)]E − η ◦ s[xλy]R
= η([s(x)λs(y)]E − s[xλy]R)

= ωλ(x, y).

Similarly, x ·λ q = x ·′λ q, q ·λ x = q ·′λ x and Ω(x) = Ω′(x). This shows that (ω′, ·′λ,λ ·′, Ω′) =
(ω, ·λ,λ ·, Ω). Hence they give rise to the same element in H2

nab((R, dR), (Q, dQ)). Therefore,
there is a well-defined map Π : Extnab((R, dR), (Q, dQ))→ H2

nab((R, dR), (Q, dQ)).
Conversely, let (ω, ·λ,λ ·, Ω) be a non-Abelian 2-cocycle on (R, dR) with values in

(Q, dQ). Define E := R⊕Q with the bracket

[(x, p)λ(y, q)] := ([xλy]R, x ·λ q + p ·λ y + ωλ(x, y) + [pλq]Q).

and the conformal linear map

dΩ
E (x, p) = (dR(x), dQ(p) + Ω(x)).

According to the conditions (4)-(10), it can be easily verified that E is a Leibniz conformal
algebra. Moreover, we observe that

dΩ
E ([(x, p)λ(y, q)])

= dΩ
E ([xλy]R, x ·λ q + p ·λ y + ωλ(x, y) + [pλq]Q)

= (dR([xλy]R), dQ(x ·λ q) + dQ(p ·λ y) + dQ(ωλ(x, y)) + dQ([pλq]Q) + Ω([xλy]R))

= ([dR(x)λy]R + [xλdR(y)]R + α[dR(x)λdR(y)]R, dQ(x ·λ q) + dQ(p ·λ y) + Ω([xλy]R)

+ dQ(ωλ(x, y)) + [dQ(p)λq]Q + [pλdQ(q)]Q + α[dQ(p)λdQ(q)]Q)

= ([dR(x)λy]R︸ ︷︷ ︸
A

+ [xλdR(y)]R︸ ︷︷ ︸
B

+ α[dR(x)λdR(y)]R︸ ︷︷ ︸
C

, Ω(x) ·λ y︸ ︷︷ ︸
A

+ωλ(dR(x), y)︸ ︷︷ ︸
A

+ x ·λ Ω(y)︸ ︷︷ ︸
B

+ ωλ(x, dR(y))︸ ︷︷ ︸
B

+ αdR(x) ·λ Ω(y) + αΩ(x) ·λ dR(y) + αωλ(dR(x), dR(y)) + α[Ω(x)λΩ(y)]E︸ ︷︷ ︸
C

+ [Ω(x)λq]E︸ ︷︷ ︸
A

+ αdR(x) ·λ dQ(q) + α[Ω(x)λdQ(q)]E︸ ︷︷ ︸
C

+ dR(x) ·λ q︸ ︷︷ ︸
A

+ x ·λ dQ(q)︸ ︷︷ ︸
B

+ αdR(x) ·λ dQ(q)︸ ︷︷ ︸
C

+ [pλΩ(y)]E︸ ︷︷ ︸
B

+ αdQ(p) ·λ dR(y) + α[dQ(p)λΩ(y)]E︸ ︷︷ ︸
C

+ dQ(p) ·λ y︸ ︷︷ ︸
A

+p ·λ dR(y) + αdQ(p) ·λ dR(y)︸ ︷︷ ︸
C

13



Axioms 2024, 13, 685

+ [dQ(p)λq]Q︸ ︷︷ ︸
A

+ [pλdQ(q)]Q︸ ︷︷ ︸
B

+ α[dQ(p)λdQ(q)]Q︸ ︷︷ ︸
C

)

= [(dR(x), dQ(p) + Ω(x))λ(y, q)]︸ ︷︷ ︸
A

+ [(x, p)λ(dR(y), dQ(q) + Ω(y))]︸ ︷︷ ︸
B

+ α[(dR(x), dQ(p) + Ω(x))λ(dR(y), dQ(q) + Ω(y))]︸ ︷︷ ︸
C

= [dΩ
E (x, p)λ(y, q)] + [(x, p)λdΩ

E (y, q)] + α[dΩ
E (x, p)λdΩ

E (y, q)].

This shows that dΩ
E is a differential operator on the Leibniz conformal algebra E. In other

words, (E, dΩ
E ) is a differential Leibniz conformal algebra. Further, it is easy to see that

0→ (Q, dQ)
i→ (E, dΩ

E )
p→ (R, dR)→ 0

is a non-Abelian extension of the differential Leibniz conformal algebra (R, dR) by (Q, dQ).
Let (ω′, ·′λ,λ ·′, Ω′) and (ω, ·λ,λ ·, Ω) be two equivalent 2-cocycles. Thus, there exists a

conformal linear map η : R → Q such that the identities (14)–(17) hold. Let (E, dΩ
E ) be a

differential Leibniz conformal algebra induced by the 2-cocycle (ω′, ·′λ,λ ·′, Ω′). We define a
map τ : R⊕Q→ R⊕Q by τ(x, p) = (x, p + η(x)) for all (x, p) ∈ R⊕Q. Then, we have

τ([(x, p)λ(y, q)]E)

= τ([xλy]R, x ·λ q + p ·λ y + ωλ(x, y) + [pλq]Q)

= ([xλy]R, x ·λ q + p ·λ y + ωλ(x, y) + [pλq]Q + η([xλy]R))

= ([xλy]R, x ·′λ q + [η(x)λq]E + p ·′λ y + [pλη(y)]E + ω′λ(x, y) + x ·′λ η(y)

+ η(x) ·′λ y− η[xλy]R + [η(x)λη(y)]Q + [pλq]Q + η([xλy]R)

= ([xλy]R, x ·′λ q + x ·′λ η(y) + p ·′λ y + η(x) ·′λ y + ω′λ(x, y) + [(p + η(x))λ(q + η(y))]Q
= [(x, p + η(x))λ(y, q + η(y))]E′
= [τ(x, p)λτ(y, q)]E.

This is similar to checking that τ ◦ dΩ
E = dΩ′

E′ ◦ τ. Hence, the map τ : (E, dΩ
E ) → (E′, dΩ′

E′ )
defines an equivalence between two non-Abelian extensions. Therefore, we obtain a well-
defined map Γ : H2

nab((R, dR), (Q, dQ)) → Extnab((R, dR), (Q, dQ)). Finally, it is straight-
forward to verify that the maps Π and Γ are inverse to each to each other. This completes
the proof.

5. Automorphisms of Differential Leibniz Conformal Algebras and the Wells Map

In this section, we study the inducibility of a pair of differential Leibniz conformal
algebra automorphisms and characterize them by equivalent conditions.

Let (R, dR) and (Q, dQ) be two differential Leibniz conformal algebras, and let

0 −→ (Q, dQ)
i−→ (E, dE)

p−→ (R, dR) −→ 0,

be a non-Abelian extension of (R, dR) by (Q, dQ). Let AutQ(E) be the set of all differ-
ential automorphisms Υ ∈ Aut(E, dE) that satisfy Υ|Q ⊂ Q. For any automorphism
Υ ∈ AutQ(E, dE), then Υ|Q ∈ Aut(Q, dQ). We define a conformal linear map Ῡ : R −→ R by

Ῡ(x) = pΥs(x), ∀ x ∈ R.

Assume that s1 and s2 are two distinct sections of E, since ps1(x) − ps2(x) = 0,
s1(x)− s2(x) ∈ Kerp ∼= Q, it follows that Υ(s1(x)− s2(x)) ∈ Q. Thus, pΥs1(x) = pΥs2(x),
which indicates that Ῡ is independent of the choice of a section.

14
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For all x, y ∈ R, we have

Ῡ([xλy]R) = pΥ(s[xλy]R)

= pΥ([s(x)λs(y)]E −ω(x, y))

= pΥ([s(x)λs(y)]E)

= [pΥs(x)λ pΥs(y)]R
= [Ῡ(x)λῩ(y)]R.

Further,

(dRΥ− ΥdR)(x) = (dR pΥs− pΥsdR)(x)

= (pdEΥs− pΥsdR)(x)

= pΥ(dEs− sdR)(x)

= 0,

which yields that Ῡ is a homomorphism of differential Leibni- conformal algebras. It is
easy to check that Ῡ is bijective. Thus, Ῡ ∈ Aut(R, dR). Then, we can define a group
homomorphism

Λ : AutQ(E, dE) −→ Aut(R, dR)×Aut(Q, dQ), Λ(Υ) = (Ῡ, Υ|Q).

Definition 13. A pair (Φ, Ψ) ∈ Aut(R, dR)×Aut(Q, dQ) is said to be inducible if (Φ, Ψ) is an
image of Λ.

Below, we investigate when a pair (Φ, Ψ) is inducible.

Let 0 −→ (Q, dQ)
i−→ (E, dE)

p−→ (R, dR) −→ 0 be a non-Abelian extension of (R, dR)
by (Q, dQ) and (ω, ·λ,λ ·, Ω) be the corresponding non-Abelian 2-cocycle induced by a
section s of E. Given any pair (Φ, Ψ) ∈ Aut(R, dR)×Aut(Q, dQ). Define conformal maps
ωΦ,Ψ : R× R −→ Q[λ], ·Φ,Ψ

λ : R⊗ Q −→ Q[λ], λ·Φ,Ψ : Q⊗ R −→ Q[λ], ΩΦ,Ψ : R −→ Q
respectively, by

ωΦ,Ψ
λ (x, y) = Ψωλ(Φ−1(x), Φ−1(y)), (18)

x ·Φ,Ψ
λ q = Ψ(Φ−1(x) ·λ Ψ−1(q)), (19)

q ·Φ,Ψ
λ x = Ψ(Ψ−1(q) ·λ Φ−1(x)), (20)

ΩΦ,Ψ(x) = ΨΩ(Φ−1(x)), (21)

for all x, y ∈ R, q ∈ Q.

Proposition 3. With the above notations, (ωΦ,Ψ, ·Φ,Ψ
λ ,λ ·Φ,Ψ, ΩΦ,Ψ) is a non-Abelian 2-cocycle.

Proof. Using (18)–(21), we obtain

x ·Φ,Ψ
λ (y ·Φ,Ψ

µ q)− y ·Φ,Ψ
µ (x ·Φ,Ψ

λ q)− ([xλy]R) ·Φ,Ψ
λ+µ q

= Ψ(Φ−1(x) ·λ (Φ−1(y)µΨ−1q))−Ψ(Φ−1(y)µ(Φ−1(x)λΨ−1q))−Ψ([Φ−1(x)λΦ−1(y)]RΨ−1(q))

= Ψ
(
Φ−1(x)λ(Φ−1(y)µΨ−1(q))−Φ−1(y)µ(Φ−1(x)λΨ−1(q))− [Φ−1(x)λΦ−1(y)]RΨ−1(q)

)

= Ψ[ωλ(Φ−1(x), Φ−1(y))λ+µΨ−1(q)]Q

= [ΨωλΦ−1(x), Φ−1(y))λ+µq]Q

= [ωΦ,Ψ
λ (x, y)λ+µq]Q,

15
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which implies that (5) holds. Similarly, (6)-(13) hold. The proof is finished.

Let 0 −→ (Q, dQ)
i−→ (E, dE)

p−→ (R, dR) −→ 0 be a non-Abelian extension of (R, dR)
by (Q, dQ) . Suppose that (ω, ·λ,λ ·, Ω) is the corresponding non-Abelian 2-cocycle induced by
a section s. Define a linear map W : Aut(R, dR)× Aut(Q, dQ)→ H2

nab((R, dR), (Q, dQ)) by

W(Φ, Ψ) = [(ωΦ,Ψ, ·Φ,Ψ
λ ,λ ·Φ,Ψ, ΩΦ,Ψ)− (ω, ·λ,λ ·, Ω)].

It is remarkable that the map W is not a group homomorphism in general. The map W is
also said to be the Wells map.

Theorem 4. Let 0 −→ (Q, dQ)
i−→ (E, dE)

p−→ (R, dR) −→ 0 be a non-Abelian extension of
(R, dR) by (Q, dQ) and let (ω, ·λ,λ ·, Ω) be the corresponding non-Abelian 2-cocycle induced by a
section s. A pair (Φ, Ψ) ∈ Aut(R, dR)×Aut(Q, dQ) is inducible if and only if W(Φ, Ψ) = 0.

Proof. Suppose that (Φ, Ψ) ∈ Aut(R, dR) × Aut(Q, dQ) is inducible; then, there is an
automorphism Υ ∈ AutQ(E, dE) such that Υ|Q = Ψ and pΥs = Φ. For all x ∈ R, since s is a
section of p, that is, ps = id,

p(ΥsΦ−1 − s)(x) = x− x = 0,

which implies that (ΥsΦ−1 − s)(x) ∈ kerp ∼= Q. So we can define a conformal linear map
η : R −→ Q by

η(x) = (ΥsΦ−1 − s)(x), ∀ x ∈ R.

For x ∈ R, q ∈ Q, we have

x ·Φ,Ψ
λ q− x ·λ q

= Ψ(Φ−1(x) ·λ Ψ−1(q))− x ·λ q

= Ψ([s(Φ−1(x))λΨ−1(q)]E)− [s(x)λq]E
= [Υs(Φ−1(x))λΥ(Ψ−1(q))]E − [s(x)λq]E
= [Υs(Φ−1(x))λq]E − [s(x)λq]E
= [η(x)λq]Q.

Hence, we obtain (15). Similarly, by direct calculations, we observe that (14), (16), (17) hold.
It follows from the above observation that the non-Abelian 2-cocycles (ωΦ,Ψ, ·Φ,Ψ

λ ,λ ·Φ,Ψ, ΩΦ,Ψ)
and (ω, ·λ,λ ·, Ω) are equivalent via the conformal linear map η : R −→ Q. Hence, we have

W(Φ, Ψ) = [(ωΦ,Ψ, ·Φ,Ψ
λ ,λ ·Φ,Ψ, ΩΦ,Ψ)− (ω, ·λ,λ ·, Ω)] = 0.

Conversely, suppose that (Φ, Ψ) ∈ Aut(R, dR) × Aut(Q, dQ), Since W(Φ, Ψ) = 0,
it follows that the non-Abelian 2-cocycles (ωΦ,Ψ, ·Φ,Ψ

λ ,λ ·Φ,Ψ, ΩΦ,Ψ) and (ω, ·λ,λ ·, Ω) are
equivalent, there is a conformal linear map η : R −→ Q satisfying (14)–(17). Due to s being
a section of p, then for all e ∈ E can be written as e = q + s(x) for some q ∈ Q, x ∈ R. Define
a conformal linear map Υ : E −→ E by

Υ(e) = Υ(q + s(x)) = Ψ(q) + ηΦ(x) + sΦ(x).

If Υ(e) = 0, then sΦ(x) = 0 and Ψ(q) + ηΦ(x) = 0. In view of s and Φ being injective, we
obtain x = 0; it follows that q = 0. Thus, e = q + s(x) = 0; that is, Υ is injective. For any
e = q + s(x) ∈ E,

Υ(Ψ−1(q)−Ψ−1η(x) + sΦ−1(x)) = q + s(x) = e,

which yields that Υ is surjective. In all, Υ is bijective.
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Next, we show that Υ is a homomorphism of differential Leibniz conformal algebras.
In fact, for all ei = qi + s(xi) ∈ E (i = 1, 2),

[Υ(e1)λΥ(e2)]E

= [(Ψ(q1) + ηΦ(x1) + sΦ(x1))λ(Ψ(q2) + ηΦ(x2) + sΦ(x2))]E

= [Ψ(q1)λΨ(q2)]E + [Ψ(q1)ληΦ(x2)]E + [Ψ(q1)λsΦ(x2)]E + [ηΦ(x1)λΨ(q2)]E

+ [ηΦ(x1)ληΦ(x2)]E + [ηΦ(x1)λsΦ(x2)]E + [sΦ(x1)λΨ(q2)]E + [sΦ(x1)ληΦ(x2)]E + [sΦ(x1)λsΦ(x2)]E

= [Ψ(q1)λΨ(q2)]E + Ψ((q1) ·λ x2)−Ψ(q1) ·λ Φ(x2) + Ψ(q1) ·λ Φ(x2)︸ ︷︷ ︸+Ψ((x1) ·λ q2)

−Φ(x1) ·λ Ψ(q2)︸ ︷︷ ︸
D

+Ψ(ωλ(x1, x2))−ωλ(Φ(x1), Φ(x2))︸ ︷︷ ︸
B

−Φ(x1) ·λ ηΦ(x2)︸ ︷︷ ︸
A

−ηΦ(x1) ·λ Φ(x2)︸ ︷︷ ︸
C

+ ηΦ([(x1)λx2]R) + ηΦ(x1) ·λ Φ(x2)︸ ︷︷ ︸
C

+Φ(x1) ·λ Ψ(q2)︸ ︷︷ ︸
D

+Φ(x1) ·λ ηΦ(x2)︸ ︷︷ ︸
A

+ωλ(Φ(x1), Φ(x2))︸ ︷︷ ︸
B

+ s[Φ(x1)λΦ(x2)]R

= Ψ([q1λq2]E + (q1) ·λ x2 + (x1) ·λ q2 + ωλ(x1, x2)) + ηΦ([x1λx2]R) + s[Φ(x1)λΦ(x2)]R

= Ψ([q1λq2]E + [(q1)λs(x2)]E + [s(x1)λq2]E + ωλ(x1, x2)) + ηΦ([x1λx2]R) + sΦ[x1λx2]R

= Υ([q1λq2]E + [q1λs(x2)]E + [s(x1)λq2]E + [s(x1)λs(x2)]R)

= Υ([(q1 + s(x1))λ(q2 + s(x2))]E) = Υ([e1λe2]E).

Similarly, one can check that Υ ◦ dE = dE ◦ Υ. This proves that Υ is an automorphism of
differential Leibniz-conformal algebras. Thus, Υ ∈ AutQ(E, dE). Finally, we show that
Υ|Q = Ψ and pΥs = Φ. In fact,

Υ(q) = Υ(q + s(0)) = Ψ(q), ∀ q ∈ Q

and

(pΥs)(x) = pΥ(0 + s(x)) = p(χ(x) + sΦ(x)) = psΦ(x) = Φ(x), ∀ x ∈ R.

Therefore, Υ|Q = Ψ and pΥs = Φ. Thus, (Φ, Ψ) ∈ Aut(R, dR) × Aut(Q, dQ) is in-
ducible.

Theorem 5. Let 0 −→ (Q, dQ)
i−→ (E, dE)

p−→ (R, dR) −→ 0 be a non-Abelian extension of
(R, dR) by (Q, dQ). Then there is an exact sequence

1 −→ AutQ,R
Q (E, dE)

ι−→ Aut(E, dE)
Λ−→ Aut(R, dR)×Aut(QS)

W−→ H2
nab((R, dR), (Q, dQ)),

where AutQ,R
Q (E, dE) = {γ ∈ Aut(E,dE) | Λ(Υ) = (idR, idQ)}.

Proof. Obviously, KerΛ = Imι and ι is injective. By Theorem 6.3, one can easily check that
KerW = ImΛ. This completes the proof.

More generally, if we define

AutQ
Q(E, dE) = {Υ ∈ AutQ(E, dE) | Υ|Q = idQ)},

AutR
Q(E, dE) = {γ ∈ AutQ(E, dE) | Υ := pΥs = idR},
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we obtain two morphisms of groups ΛR : AutQ
Q(E, dE) → Aut(R, dR), Υ 7→ Υ and ΛQ :

AutR
Q(E, dE)→ Aut(Q, dQ), Υ 7→ Υ|Q. Define the maps WQ : Aut(Q, dQ)→ H2

nab((R, dR), (Q, dQ))

and WR : Aut(R, dR)→ H2
nab((R, dR), (Q, dQ)) by

WR(Φ) = [(ωΦ,id, ·Φ,id
λ ,λ ·Φ,id, ΩΦ,id)− (ω, ·λ,λ ·, Ω)],

WQ(Ψ) = [(ωid,Ψ, ·id,Ψ
λ ,λ ·id,Ψ, Ωid,Ψ)− (ω, ·λ,λ ·Ω)].

Proposition 4. Let 0 −→ (Q, dQ)
i−→ (E, dE)

p−→ (R, dR) −→ 0 be a non-Abelian extension
of (R, dR) by (Q, dQ). Then, there are two exact sequences of groups

1 −→ AutQ,R
Q (E, dE)

ι−→ AutQ
Q(E, dE)

ΛR−→ Aut(R, dR)
WR−→ H2

nab((R, dR), (Q, dQ)),

1 −→ AutQ,R
Q (E, dE)

ι−→ AutR
Q(E, dE)

ΛQ−→ Aut(Q, dQ)
WQ−→ H2

nab((R, dR), (Q, dQ)).
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Abstract: This manuscript aims to provide a new characterization of Sheffer stroke Hilbert algebras
due to their ideals and proposes stabilizers. In the setup of the main results, we construct particular
subsets of Sheffer stroke Hilbert algebras and we propose important properties of these subsets by
investigating whether these sets are ideals or not. Furthermore, we investigate whether the introduced
subsets of Sheffer stroke Hilbert algebras are minimal ideals. Afterwards, we define stabilizers in a
Sheffer stroke Hilbert algebra and obtain their set theoretical properties. As an implementation of the
theoretical findings, we present numerous examples and illustrative remarks to guide readers.

Keywords: (Sheffer stroke) Hilbert algebra; Sheffer operation; ideal; stabilizer
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1. Introduction

Sheffer stroke is a binary operation which was introduced by H. M. Sheffer in his
landmark paper [1]. This notion enables mathematicians to reduce and unify the number
of axioms and notations in algebraic structures, and it provides compact representations.
In the last three decades, Sheffer stroke has attracted remarkable interest from researchers
and is extensively applied to algebraic structures. In addition to the theoretical point of view,
Sheffer stroke has been utilized in numerous crucial research projects in the engineering
sciences. Conducting a quick literature review, one may easily find important applications
of Sheffer stroke in the design of chips. We refer readers to the interesting projects found
in references [2–6]. Motivated by the application potential of Sheffer stroke, scholars have
applied this binary operation in implicational algebras, ortholattices and Boolean algebras.
Undoubtedly, there is a vast wealth of literature on this topic and we refer to [7–9] as
particularly interesting papers.

As an algebraic counterpart of Hilbert’s positive implicative propositional calculus [10],
Hilbert algebras were proposed by Henkin and Skolem in [11] and employed in research
based on various types of logic. Hilbert algebras have been brought into the spotlight in
many papers and their main properties have been investigated. In a recent paper [12],
the authors studied the Sheffer stroke operation and Sheffer stroke basic algebra. They
presented the Sheffer stroke basic algebra on a given interval, named interval Sheffer stroke
basic algebra, and gave some features of an interval Sheffer stroke basic algebra, while,
in [13], Hilbert algebras and the relationship between Sheffer stroke and Hilbert algebras
was introduced. Subsequently, Sheffer stroke Hilbert algebras are being studied in brand-
new papers ([14–16]) due to fuzzy filters, fuzzy ideals with t-conorms and neutrosophic
structures. We shall highlight that establishing stabilizers for algebraic structures has
always been an interesting but gruelling task in theoretical mathematics. This objective has
been achieved in many papers regarding residuated lattices and BL-algebras (see [17–20]).
To the best of our knowledge, stabilizers of Hilbert algebras have not been handled so far.
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Thus, the main objective of this manuscript is to fill this gap by proposing Sheffer stroke
stabilizers of Hilbert algebras and improving the ongoing theory on this subject.

The organization of the manuscript is as follows: in the next section, we provide
background material on Sheffer stroke Hilbert algebras and ideals. In Section 3, we rep-
resent characterizations of Sheffer stroke Hilbert algebras due to ideals. We present the
main outcomes of the manuscript and propose stabilizers of Sheffer stroke Hilbert algebras
in Section 4.

2. Preliminaries

In this section, we give basic definitions and notions about Sheffer stroke Hilbert
algebras and ideals.

Definition 1 ([8]). Let = = (T, ◦) be a groupoid. The operation ◦ is said to be a Sheffer stroke if
it satisfies the following conditions for all x, y, z ∈ T.

(S1) x ◦ y = y ◦ x,
(S2) (x ◦ x) ◦ (x ◦ y) = x,
(S3) x ◦ ((y ◦ z) ◦ (y ◦ z)) = ((x ◦ y) ◦ (x ◦ y)) ◦ z,
(S4) (x ◦ ((x ◦ x) ◦ (y ◦ y))) ◦ (x ◦ ((x ◦ x) ◦ (y ◦ y))) = x.

In Definition 1, a groupoid can be determined as a group with a partial function which
especially states a binary operation in category theory and homotopy theory.

Definition 2 ([13]). A Sheffer stroke Hilbert algebra is a structure (T, ◦) of type (2), in which T is
a nonempty set and ◦ is Sheffer stroke on T, such that the following identities are satisfied for all
x, y, z ∈ T:

(SHa1) (x ◦ ((y ◦ (z ◦ z)) ◦ (y ◦ (z ◦ z)))) ◦ (((x ◦ (y ◦ y)) ◦ ((x ◦ (z ◦ z)) ◦ (x ◦ (z ◦ z))))◦
((x ◦ (y ◦ y)) ◦ ((x ◦ (z ◦ z)) ◦ (x ◦ (z ◦ z))))) = x ◦ (x ◦ x)

(SHa2) If x ◦ (y ◦ y) = x ◦ (x ◦ x) = y ◦ (x ◦ x), then x = y.

Lemma 1 ([13]). Let (T, ◦) be a Sheffer stroke Hilbert algebra. Then, there exists a unique 1 ∈ T,
such that the following identities hold for all x ∈ T:

1. x ◦ (x ◦ x) = 1,
2. x ◦ (1 ◦ 1) = 1,
3. 1 ◦ (x ◦ x) = 1.

Lemma 2 ([13]). Let (T, ◦) be a Sheffer stroke Hilbert algebra. Then, the relation x 4 y if and
only if x ◦ (y ◦ y) = 1 is a partial order on T. Moreover, 1 is the greatest element of T.

Lemma 3 ([13]). Let (T, ◦) be a Sheffer stroke Hilbert algebra. Then, the following hold for all
x, y, z ∈ T:

(Shb1) x 4 y ◦ (x ◦ x),
(Shb2) x ◦ ((y ◦ (z ◦ z)) ◦ (y ◦ (z ◦ z))) = (x ◦ (y ◦ y)) ◦ ((x ◦ (z ◦ z)) ◦ (x ◦ (z ◦ z))),
(Shb3) (x ◦ (y ◦ y)) ◦ (y ◦ y) = (y ◦ (x ◦ x)) ◦ (x ◦ x),
(Shb4) x ◦ ((y ◦ (z ◦ z)) ◦ (y ◦ (z ◦ z))) = y ◦ ((x ◦ (z ◦ z)) ◦ (y ◦ (z ◦ z))),
(Shb5) x 4 (x ◦ (y ◦ y)) ◦ (y ◦ y),
(Shb6) ((x ◦ (y ◦ y)) ◦ (y ◦ y)) ◦ (y ◦ y) = x ◦ (y ◦ y),
(Shb7) x ◦ (y ◦ y) 4 (y ◦ (z ◦ z)) ◦ ((x ◦ (z ◦ z)) ◦ (x ◦ (z ◦ z))), and
(Shb8) if x 4 y, then z ◦ (x ◦ x) 4 z ◦ (y ◦ y) and y ◦ (z ◦ z) 4 x ◦ (z ◦ z).

Lemma 4 ([13]). Let (T, ◦) be a Sheffer stroke Hilbert algebra with the least element 0, the greatest
element 1, and a unary operation ∗ on T be defined by x∗ = x ◦ (0 ◦ 0) for all x ∈ T. Then, the
followings hold, for all x ∈ T:

1. 0 ◦ 0 = 1 and 1 ◦ 1 = 0,

21



Axioms 2024, 13, 97

2. 0∗ = 1 and 1∗ = 0,
3. x ◦ 1 = x ◦ x,
4. x∗ = x ◦ x,
5. x ◦ 0 = 1,
6. (x∗)∗ = x, and
7. x ◦ x∗ = 1.

Lemma 5 ([13]). Let (T, ◦) be a Sheffer stroke Hilbert algebra and 4 be a natural ordering
induced by this algebra. Then, (T,4) is a join-semilattice with the greatest element 1, where
x ∨ y = (x ◦ (y ◦ y)) ◦ (y ◦ y), for all x, y ∈ T. If (T, ◦) is a Sheffer stroke Hilbert algebra with
the least element 0, then (T,4) is a meet-semilattice, and x ∧ y = ((x ◦ x) ∨ (y ◦ y)) ◦ ((x ◦ x) ∨
(y ◦ y)), for all x, y ∈ T.

Definition 3 ([13]). A nonempty subset ` of a Sheffer stroke Hilbert algebra (T, ◦) is called an
ideal if

(SSHI1) 0 ∈ `,
(SSHI2) (x ◦ (y ◦ y)) ◦ (x ◦ (y ◦ y)) ∈ ` and y ∈ ` imply x ∈ `, for all x, y ∈ T.

Theorem 1 ([13]). Let ` be a subset of a Sheffer stroke Hilbert algebra (T, ◦) such that 0 ∈ `. Then,
` is an ideal of T if and only if x 4 y and y ∈ ` imply x ∈ `, for all x, y ∈ T.

3. Characterizations by Ideals

In this section, we characterize Sheffer stroke Hilbert algebras by ideals. Unless oth-
erwise specified, T denotes a Sheffer stroke Hilbert algebra, and←→xy := (x ◦ (y ◦ y)) ◦ (x ◦
(y ◦ y)) is briefly written.

Define a subset Tx,y of a Sheffer stroke Hilbert algebra T by

Tx,y = {z ∈ T :←→zy 4 x},

for any x, y ∈ T.

Lemma 6. Let S be a nonempty subset of T. Then, the following conditions are equivalent:

1. S is an ideal of T.
2. S ⊇ TX,Y, for all x, y ∈ S.
3. ←→zx ◦ (y ◦ y) = 1 implies z ∈ S, for all x, y ∈ S and z ∈ T.

Proof.

(1)⇒(2) Let S be an ideal of T and x, y ∈ S. Suppose that z ∈ Tx,y. Then, ←→zy 4 x.
By Theorem 1,←→zy ∈ S. Thence, z ∈ S from (SSHI2).

(2)⇒(3) Let S ⊇ Tx,y and←→zx ◦ (y ◦ y) = 1, for any x, y ∈ S. Then,←→zx 4 y⇔←→zy ◦ (x ◦ x) =
1⇔←→zy 4 x from Lemma 2, (S1) and (Shb4). Thus, z ∈ Tx,y, and so, z ∈ S.

(3)⇒(1) Let S be a nonempty subset of T such that←→zx ◦ (y ◦ y) = 1 implies z ∈ S, for any

x, y ∈ S and z ∈ T. Since (
←→
0x ) ◦ (y ◦ y) = 1 from (S1) and Lemma 4 (5), it is

obtained that 0 ∈ S. Assume that←→xy ∈ S and y ∈ S. Since←→xx ◦ (y ◦ y) = 1 from
(S1) and Lemma 1 (1) and (2), it follows that x ∈ S.

Lemma 7. Let T be a Sheffer stroke Hilbert algebra. Then,

1. Tx,y = Ty,x,
2. Tx,1 = T1,x = T,
3. Tx,0 = T0,x = {z ∈ T : z 4 x},
4. T1,1 = T,
5. T0,0 = {0},
6. 0 ∈ Tx,y,
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7. if x 4 y, then

(i) Tu,x ⊆ Tu,y,
(ii) Tx,u ⊆ Ty,u

for all u, x, y ∈ T.

Proof.

1. Since z ∈ Tx,y ⇔ ←→zy 4 x ⇔ ←→zx 4 y ⇔ z ∈ Ty,x from Lemma 2, (S1) and (Shb4), we
have Tx,y = Ty,x.

2. Since
←→
z1 = 1 ◦ 1 = 0 4 x and←→zx 4 1 from Lemma 4 (1) and Lemma 2, respectively, it

is obtained from (1) that Tx,1 = T1,x = T, for all x ∈ T.
3. Since z =

←→
z0 4 x from (S2), Lemma 4 (1) and (3), it follows from (1) that Tx,0 = T0,x =

{z ∈ T : z 4 x}, for all x ∈ T.
4. T1,1 = {z ∈ T :

←→
z1 = 1 ◦ 1 = 0 4 1} = T from Lemma 2 and Lemma 4 (1).

5. T0,0 = {z ∈ T : z =
←→
z0 4 0} = {0}, from (S2), Lemma 4 (1) and (3).

6. Since 0 = 1 ◦ 1 =
←→
0y 4 x from (S1), Lemma 4 (1) and (5), we establish that 0 ∈ Tx,y,

for any x, y ∈ T.
7. Let x 4 y.

(i) Then, z ◦ (x ◦ x) 4 z ◦ (y ◦ y) from (Shb8), and

((z ◦ (y ◦ y)) ◦ (z ◦ (y ◦ y))) ◦ (((z ◦ (x ◦ x))◦
(z ◦ (x ◦ x))) ◦ ((z ◦ (x ◦ x)) ◦ (z ◦ (x ◦ x))))
= (z ◦ (x ◦ x)) ◦ ((z ◦ (y ◦ y)) ◦ (z ◦ (y ◦ y)))
= 1

from (S1) and (S2). It is obtained from Lemma 2 that←→zy 4←→zx , for all x, y ∈ T.
Thus, z ∈ Tu,x ⇒ ←→zx 4 u ⇒ ←→zy 4 ←→zx 4 u ⇒ z ∈ Tu,y, and so, Tu,x ⊆ Tu,y,
for any z ∈ T.

(ii) Ty,u 4 Tx,u is proved from (1) and (7) (i).

Lemma 8. Let T be a Sheffer stroke Hilbert algebra. Then, Tx∨y,u ⊇ Tx,u ∪ Ty,u, for all u, x, y ∈ T.

Proof. Since x 4 x ∨ y and y 4 x ∨ y, for all x, y ∈ T, we arrive at Tx,u ⊆ Tx∨y,u and
Ty,u ⊆ Tx∨y,u from Lemma 7 (ii). Therefore, Tx,u ∪ Ty,u ⊆ Tx∨y,u, for all u, x, y ∈ T.

Example 1 ([13]). Consider a Sheffer stroke Hilbert algebra (T, ◦) in which a set T = {0, a, b, c, d, e, f , 1}
has the Hasse diagram in Figure 1 and the Sheffer operation ◦ has the Cayley table in Table 1:

Then,
Ta∨ f ,e = T1,e = T ⊇ {0, b} = {0} ∪ {0, b} = Ta,e ∪ Tf ,e.

Figure 1. Hasse diagram of T in Example 1.
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Table 1. Cayley table of ◦ on T in Example 1.

◦ 0 a b c d e f 1

0 1 1 1 1 1 1 1 1
a 1 f 1 1 f f 1 f
b 1 1 e 1 e 1 e e
c 1 1 1 d 1 d d d
d 1 f e 1 c f e c
e 1 f 1 d f b d b
f 1 1 e d e d a a
1 1 f e d c b a 0

Lemma 9. Let T be a Sheffer stroke Hilbert algebra. Then, Tx∧y,u = Tx,u ∩ Ty,u, for all u, x, y ∈ T.

Proof. Let z ∈ Tx,u ∩ Ty,u. Since z ∈ Tx,u and z ∈ Ty,u, we obtain ←→zu 4 x and ←→zu 4 y,
and so, ←→zu 4 x ∧ y. Thus, z ∈ Tx∧y,u. Thence, Tx,u ∩ Ty,u ⊆ Tx∧y,u, for all u, x, y ∈ T.
Moreover, Tx∧y,u ⊆ Tx,u and Tx∧y,u ⊆ Ty,u from Lemma 7 (ii). So, Tx∧y,u ⊆ Tx,u ∩ Ty,u,
for all u, x, y ∈ T.

Lemma 10. Let ` be a nonempty subset of T. Then, ` is an ideal of T if and only if for all x, y ∈ T,
(SSHI3) x, y ∈ ` implies x ∨ y ∈ `, and
(SSHI4) x 4 y and y ∈ ` imply x ∈ `.

Proof. Let ` be an ideal of T and x, y ∈ `. Since
←→←→xy x =

←→←→xx y =
←−−−−→
(y ◦ y) ◦ 1 = 1 ◦ 1 = 0 ∈ `

from (S1), (Shb4), Lemma 1 (1), Lemma 4 (1) and (SSHI1), it follows from (SSHI2) that
←→xy ∈ `, for any x, y ∈ T. Since

←−−−→
(x ∨ y)y =←→xy ∈ ` from Lemma 5 and (Shb6), we have from

(SSHI2) that x ∨ y ∈ `, for any x, y ∈ T. Also, (SSHI4) is obvious from Theorem 1.
Conversely, let ` be a nonempty subset of T satisfying (SSHI3) and (SSHI4). Since

0 is the least element of T, it is obtained from (SSHI4) that 0 ∈ `. Let←→xy ∈ ` and y ∈ `,
for any x, y ∈ T. Then, x ∨ y =←→xy ∨ y ∈ ` from Lemma 5, (S2) and (S3) and (SSHI3). Since
x 4 x ∨ y, for any x, y ∈ T, we obtain from (SSHI4) that x ∈ `, for any x, y ∈ T.

Lemma 11. Let T be a Sheffer stroke Hilbert algebra. Then, Tx◦y,u ⊇ Tx◦x,u ∪ Ty◦y,u and Tx◦y,u ⊇
Tx◦x,u ∩ Ty◦y,u, for all u, x, y ∈ T.

Proof. Since x ◦ x 4 x ◦ y and y ◦ y 4 x ◦ y from (S1), (S2) and (Shb1), it follows from
Lemma 7 (ii) that Tx◦x,u ⊆ Tx◦y,u and Ty◦y,u ⊆ Tx◦y,u, and so, Tx◦y,u ⊇ Tx◦x,u ∪ Ty◦y,u and
Tx◦y,u ⊇ Tx◦x,u ∩ Ty◦y,u, for all u, x, y ∈ T.

Example 2. Consider the Sheffer stroke Hilbert algebra (T, ◦) in Example 1. Then, Tb◦c,a = T1,a =
T ⊇ {0, a, b, c, d, e} = {0, a, c, e} ∪ {0, a, b, d} = Te,a ∪ Td,a and Tb◦c,a = T1,a = T ⊇ {0, a} =
{0, a, c, e} ∩ {0, a, b, d} = Te,a ∩ Td,a.

Lemma 12. Let ` be a nonempty subset of T. Then, ` is an ideal of T if and only if `u = {z ∈ T :←→zu ∈ `} is an ideal of T, for all u ∈ T.

Proof. Let ` be an ideal of T, and `u = {z ∈ T : ←→zu ∈ `} be a subset of T, for any u ∈ T.

Since
←→
0u =

←−−−→
(u ◦ u)1 = 1 ◦ 1 = 0 ∈ ` from Lemma 1 (2), Lemma 4 (1) and (5), (S1) and

(SSHI1), it is concluded that 0 ∈ `u. Assume that←→xy ∈ `u and y ∈ `u. Then,
←→←→xy u ∈ ` and

←→yu ∈ `. Since
←−−−−−→
(←→xu )(←→yu ) =

←−−−−−−−−−−−−−−−→
(y ◦ (u ◦ u))(x ◦ (u ◦ u)) =

←→←→xy u ∈ ` from (S1), (S2) and (Shb2),
we obtain←→xu ∈ `. Thus, x ∈ `u. Hence, `u is an ideal of T.

Conversely, let `u be an ideal of T such that ` be a nonempty subset of T, for any

u ∈ T. Since 0 ∈ `u, for any u ∈ T, it follows that 0 = 1 ◦ 1 =
←−−−→
(u ◦ u)1 =

←→
0u ∈ ` from

Lemma 1 (2), Lemma 4 (1) and (5), (S1) and (SSHI1). Suppose that ←→ps ∈ ` and s ∈ `.
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Then, there exist←→xy ∈ `u and y ∈ `u, such that←→ps =
←→←→xy u and s = ←→yu . Since x ∈ `u and←−−−−−→

(←→xu )(←→yu ) =
←−−−−−−−−−−−−−−−→
(y ◦ (u ◦ u))(x ◦ (u ◦ u)) =

←→←→xy u =←→ps ∈ ` from (SSHI2), (S1), (S2) and (Shb2),
we obtain p =←→xu ∈ `, for any x ∈ T. Therefore, ` is an ideal of T.

Example 3. Consider the Sheffer stroke Hilbert algebra (T, ◦) in Example 1. For the ideal
` = {0, c} of T, ` f = {0, b, c, f } is an ideal of T.

Theorem 2. Let ` be an ideal of T. Then, `u is the minimal ideal of T containing ` and u, for any
u ∈ T.

Proof. Let ` be an ideal of T. By Lemma 12, `u is an ideal of T. Assume that z ∈ `. Since←→zu ◦ (z ◦ z) =←→zz ◦ (u ◦ u) = (u ◦ u) ◦ (1 ◦ 1) = 1 from (S1), (Shb4) and Lemma 1 (2), it is
obtained from Lemma 2 that←→zu 4 z. Then,←→zu ∈ ` which means z ∈ `u. So, ` ⊆ `u, for any
u ∈ T. Since←→uu = 1 ◦ 1 = 0 ∈ ` from Lemma 1 (1), Lemma 4 (1) and (SSHI1), we have
u ∈ `u, for any u ∈ T. Let k be an ideal of T containing ` and u. Thus,←→zu ∈ ` ⊆ k, for any
z ∈ `u. Since←→zu ∈ k and u ∈ k, it follows from (SSHI2) that z ∈ k. Thence, `u ⊆ k, for any
u ∈ ξ.

Remark 1. Let `1 and `2 be two ideals of a Sheffer stroke Hilbert algebra (T, ◦). Then, `1 ∩ `2 is
always an ideal of T. However, `1 ∪ `2 is generally not an ideal of T. If T = {0, 1}, then `1 ∪ `2 is
an ideal of T.

Example 4. Consider the Sheffer stroke Hilbert algebra T in Example 1. For the ideals {0, a, b, d}
and {0, a, c, e} of T, {0, a, b, d}∩{0, a, c, e} = {0, a} is an ideal of T but {0, a, b, d}∪{0, a, c, e} =
{0, a, b, c, d, e} is not an ideal of T since f /∈ {0, a, b, c, d, e} when

←→
f e ∈ {0, a, b, c, d, e} and

e ∈ {0, a, b, c, d, e}.

Lemma 13. Let ` be a nonempty subset of T. Then, ` is an ideal of T if and only if

(SSHI5) 0 ∈ ` and
(SSHI6) ←→xy ∈ ` and←→yz ∈ ` imply←→xz ∈ `, for all x, y, z ∈ T.

Proof. Let ` be an ideal of T. Then, 0 ∈ ` is obvious from (SSHI1). Assume that←→xy ∈ `

and←→yz ∈ `, for any x, y, z ∈ `. Since
←−−→←→xz←→yz =

←−−−−−−−−−−−−−−→
(y ◦ (z ◦ z))(x ◦ (z ◦ z)) 4←→xy , from (Shb7),

(S1), (S2) and Lemma 2, it follows from (SSHI4) that
←−−→←→xz←→yz ∈ `. Thus,←→xz ∈ ` from (SSHI2).

Conversely, let ` be a nonempty subset of T satisfying (SSHI5) and (SSHI6). Suppose
that x 4 y and y ∈ `, for any x, y ∈ T. So, ←→xy = 1 ◦ 1 = 0 ∈ ` and

←→
y0 = (y ◦ 1) ◦

(y ◦ 1) = (y ◦ y) ◦ (y ◦ y) = y ∈ ` from Lemma 2, (SSHI5), Lemma 4 (1) and (3). Hence,
x = (x ◦ x) ◦ (x ◦ x) = (x ◦ 1) ◦ (x ◦ 1) =

←→
x0 ∈ ` from (SSHI6), Lemma 4 (1) and (3).

Thereby, ` is an ideal of T.

Theorem 3. Let ` and k be two ideals of of T. Then,

1. `u = ` if and only if u ∈ `,
2. u 4 v implies `u ⊆ `v,
3. ` ⊆ k implies `u ⊆ ku,
4. (` ∩ k)u = `u ∩ ku,
5. `(u◦u)◦(v◦v) = (`u)v,
6. (`u)v = (`v)u,
7. (`u)u = `u,
8. `u ∪ `v ⊆ `u∨v and `u∧v ⊆ `u ∩ `v,
9. `0 = ` and `1 = T,

for any u, v ∈ T.
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Proof.

1. Let `u = `. Since←→uu = 1 ◦ 1 = 0 ∈ ` from Lemma 1 (1), Lemma 4 (1) and (SSHI1),
we get u ∈ `u = `. Conversely, let u ∈ `. Since ←→zu ◦ (z ◦ z) = (u ◦ u) ◦ ←→zz =
(u ◦ u) ◦ (1 ◦ 1) = 1 from (S1), (Shb4) and Lemma 1 (1) and (2), it is obtained from
Lemma 2 that←→zu 4 z, for any z ∈ `. Then,←→zu ∈ ` from (SSHI2), and so, z ∈ `u. Thus,
` ⊆ `u. Since←→zu ∈ `, for all z ∈ `u, and u ∈ `, it follows from (SSHI2) that z ∈ `,
and so, `u ⊆ `. Hence, `u = `, for any u ∈ T.

2. Let u 4 v and z ∈ `u. Then, ←→zu ∈ `. Since ←→zv 4 ←→zu from (Shb8), (S1), (S2) and
Lemma 2, we have from (SSHI4) that←→zv ∈ ` which implies z ∈ `v. Thence, `u ⊆ `v.

3. Let ` ⊆ k, and z ∈ `u. Then,←→zu ∈ ` ⊆ k. Thus, z ∈ ku, and so, `u ⊆ ku.
4. Since ` ∩ k ⊆ ` and ` ∩ k ⊆ k, it follows from (3) that (` ∩ k)u ⊆ `u and (` ∩ k)u ⊆ ku.

Then, (`∩k)u ⊆ `u ∩ku. Let z ∈ `u ∩ku. Thus, z ∈ `u and z ∈ ku which imply←→zu ∈ `
and←→zu ∈ k. Since←→zu ∈ ` ∩ k, we obtain z ∈ (` ∩ k)u. Hence, `u ∩ ku ⊆ (` ∩ k)u,
and so, (` ∩ k)u = `u ∩ ku.

5. Since

z ∈ `(u◦u)◦(v◦v) ⇔ ←−−−−−−−−−−→
z((u ◦ u) ◦ (v ◦ v)) ∈ `

⇔
←−−→
(←→zv )u =

←−−−−−−−−−−→
z((u ◦ u) ◦ (v ◦ v)) ∈ `

⇔ ←→zv ∈ `u

⇔ z ∈ (`u)v

from (S1) and (S3), it follows that `(u◦u)◦(v◦v) = (`u)v.
6. (`u)v = `(u◦u)◦(v◦v) = `(v◦v)◦(u◦u) = (`v)u from (5) and (S1).
7. By substituting [v := u] in (5), it is obtained from (S2) that (`u)u = `(u◦u)◦(u◦u) = `u.
8. They are proved from (2).

9. `0 = {z ∈ T : z = (z ◦ z) ◦ (z ◦ z) = (z ◦ 1) ◦ (z ◦ 1) =
←→
z0 ∈ `} = ` and `1 = {z ∈ T :

0 = 1 ◦ 1 =
←→
z1 ∈ `} = T from Lemma 4 (1) and (3), (S2) and Lemma 1 (2).

However, `u ⊆ `v does not imply u 4 v, and `u ⊆ ku does not satisfy ` ⊆ k.

Example 5. Consider the Sheffer stroke Hilbert algebra T in Example 1. Then, a � c when
`c = {0, c} ⊆ `a = {0, a, c, e}, for an ideal ` = {0, c} of T. Also,  = {0, a} * k = {0, b, c, f }
when a = {0, a} ⊆ T = ka.

Corollary 1. Let ` be an ideal of T. Then,

1.
⋂

u∈T `u = ` and
2.

⋃
u∈T `u = T ,

for any u ∈ T.

Lemma 14. Let T be a Sheffer stroke Hilbert algebra. Then f(u) = {z ∈ T : z 4 u} is an ideal
of T.

Proof. Since 0 is the least element of T, we have 0 ∈ f(u). Let←→xy ∈ f(u) and y ∈ f(u),
for any x, y ∈ T. Then,←→xy 4 u and y 4 u. Since

x ◦ (u ◦ u) = 1 ◦←→xu
= (y ◦ (u ◦ u)) ◦ ((x ◦ (u ◦ u)) ◦ (x ◦ (u ◦ u)))
= (u ◦ u) ◦←→xy
= (u ◦ u) ◦ (1 ◦ 1)
= 1

from Lemma 1 (2) and (3), (S1) and (S2), Lemma 2 and (Shb2), it follows from Lemma 2 that
x 4 u, and so, x ∈ f(u). Thus, f(u) is an ideal of T.
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Lemma 15. Let T be a Sheffer stroke Hilbert algebra. Then,

1. f(0) = {0} and f(1) = T,
2. u 4 v if and only if f(u) ⊆ f(v),
3. f((u ◦ v) ◦ (u ◦ v)) = f(u) ∩f(v),

Proof.

1. Since 0 is the least element and 1 is the greatest element in T, it is clear thatf(0) = {0}
and f(1) = ξ.

2. Let u 4 v and z ∈ f(u). Since z 4 u 4 v, it is obtained that z ∈ f(v). Then,
f(u) ⊆ f(v). Conversely, let f(u) ⊆ f(v). Since u 4 u, for all u ∈ T, we deduce that
u ∈ f(u). Since u ∈ f(u) ⊆ f(v), it follows that u 4 v.

3. Since (u ◦ v) ◦ (u ◦ v) 4 u and (u ◦ v) ◦ (u ◦ v) 4 v from (S1), (S3) and from (1)
and (2) from Lemma 1, it is obtained from (2) that f((u ◦ v) ◦ (u ◦ v)) ⊆ f(u) and
f((u ◦ v) ◦ (u ◦ v)) ⊆ f(v). After all,f((u ◦ v) ◦ (u ◦ v)) ⊆ f(u)∩f(v), for any u, v ∈
T. Assume that z ∈ f(u) ∩f(v). Then, z 4 u and z 4 v. Since u ◦ v 4 z ◦ v 4 z ◦ z
from (S1) and (Shb8), it follows from (S1), (S2) and Lemma 2 that z 4 (u ◦ v) ◦ (u ◦ v).
Thus, z ∈ f((u ◦ v) ◦ (u ◦ v)). Hence, f(u) ∩ f(v) ⊆ f((u ◦ v) ◦ (u ◦ v)), for any
u, v ∈ T. Therefore, f((u ◦ v) ◦ (u ◦ v)) = f(u) ∩f(v), for any u, v ∈ T.

Theorem 4. Let T be a Sheffer stroke Hilbert algebra. Then,

1. f(u ∧ v) = f(ŭ) ∩f(v̆),
2. f(u) ∪f(v) ⊆ f(u ∨ v),

for any u, v ∈ T.

Proof.

1. It is obvious from Lemma 15 (2) that f(u ∧ v) ⊆ f(u) ∩f(v), for any u, v ∈ T. Let
z ∈ f(u) ∩f(v). Then, z 4 u and z 4 v, and so, z 4 u ∧ v. Thus, z ∈ f(u ∧ v), which
implies f(u) ∩f(v) ⊆ f(u ∧ v), for any u, v ∈ T. Thence, f(u ∧ v) = f(u) ∩f(v),
for any u, v ∈ T.

2. It is clear from Lemma 15 (2) that f(u) ∪f(v) ⊆ f(u ∨ v), for any u, v ∈ T.

Example 6. Consider the Sheffer stroke Hilbert algebra T in Example 1. Then, f(d) ∪f( f ) =
{0, a, b, d} ∪ {0, b, c, f } = {0, a, b, c, d, f } ⊆ T = f(1) = f(d ∨ f ).

4. Stabilizers

In this section, we introduce stabilizers in a Sheffer stroke Hilbert algebra.

Definition 4. Let T be a Sheffer stroke Hilbert algebra and W be a nonempty subset of T. Then, a
stabilizer of W is defined as follows:

︷︸︸︷
W = {u ∈ T :←→xu = x (or←→ux = u), ∀x ∈W}.

Example 7. Consider the Sheffer stroke Hilbert algebra T in Example 1. For the subsets

W1 = {a, d} and W2 = {0, b} of T, the stabilizer of W1 is
︷︸︸︷
W1 = {0, b, c, f } and the stabi-

lizer of W2 is
︷︸︸︷
W2 = T, respectively.

Lemma 16. Let W, X and Wi (i ∈ I) be nonempty subsets of T. Then,

1. W ⊆ X implies
︷︸︸︷

X ⊆
︷︸︸︷
W ,

2.
︷︸︸︷

T = {0} and
︷︸︸︷
{0} = T,
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3.
︷︸︸︷
W =

⋂{
︷︸︸︷
{x} : x ∈W},

4.
⋂

i∈I

︷︸︸︷
Wi =

︷ ︸︸ ︷⋂

i∈I
Wi and

⋃
i∈I

︷︸︸︷
Wi =

︷ ︸︸ ︷⋃

i∈I
Wi.

Proof.

1. Let W ⊆ X and u ∈
︷︸︸︷

X . Then,←→xu = x, for all x ∈ X. Since W ⊆ X, we have←→yu = y,

for all y ∈W. Thence, u ∈
︷︸︸︷
W , and so,

︷︸︸︷
X ⊆

︷︸︸︷
W .

2. Since we have from (S2), Lemma 4 (1) and (3) that
←→
x0 = (x ◦ 1) ◦ (x ◦ 1) = (x ◦ x) ◦

(x ◦ x) = x, for all x ∈ T, it is concluded that 0 ∈
︷︸︸︷

T , which implies {0} ⊆
︷︸︸︷

T .

Let u ∈
︷︸︸︷

T . Then, ←→xu = x, for all x ∈ T. Thus, 0 = 1 ◦ 1 = ←→uu = u from

Lemma 1 (1) and Lemma 4 (1), and so, u ∈ {0}. Hence,
︷︸︸︷

T ⊆ {0}. Thereby,
︷︸︸︷

T = {0}. Also, it follows from (S1) and (S2), Lemma 1 (2) and Lemma 4 (1) that
︷︸︸︷
{0} = {u ∈ T :

←→
0u =

←−−−→
(u ◦ u)1 = 1 ◦ 1} = T, for all u ∈ T.

3. Since {x} ⊆ W, for all x ∈ W, it is obtained from (1) that
︷︸︸︷
W ⊆

︷︸︸︷
{x} , for all x ∈ W,

and so,
︷︸︸︷
W ⊆ ⋂{

︷︸︸︷
{x̆} : x̆ ∈ W}. Assume that u ∈ ⋂{

︷︸︸︷
{x} : x ∈ W}. Then,

u ∈
︷︸︸︷
{x} , for all x ∈ W. So, ←→xu = x, for all x ∈ W, which implies u ∈

︷︸︸︷
W . Thus,

⋂{
︷︸︸︷
{x} : x ∈W} ⊆

︷︸︸︷
W . Therefore,

︷︸︸︷
W =

⋂{
︷︸︸︷
{x} : x ∈W}.

4. Since
⋂

i∈I Wi ⊆ Wi and Wi ⊆ ⋃
i∈I Wi, for all i ∈ I, we ascertain from (1) that

︷︸︸︷
Wi ⊆

︷ ︸︸ ︷⋂

i∈I
Wi and

︷ ︸︸ ︷⋃

i∈I
Wi ⊆

︷︸︸︷
Wi , and so,

⋂
i∈I

︷︸︸︷
Wi ⊆

︷ ︸︸ ︷⋂

i∈I
Wi and

︷ ︸︸ ︷⋃

i∈I
Wi ⊆ ⋃

i∈I

︷︸︸︷
Wi ,

for all i ∈ I. Suppose that u ∈
︷ ︸︸ ︷⋂

i∈I
Wi, for any u ∈ T. Then,←→xu = x, for all x ∈ ⋂i∈I Wi.

Since←→xu = x, for all x ∈ Wi and i ∈ I, it means that u ∈
︷︸︸︷
Wi , for all i ∈ I, and so,

u ∈ ⋂i∈I

︷︸︸︷
Wi . Thus,

︷ ︸︸ ︷⋂

i∈I
Wi ⊆ ⋂i∈I

︷︸︸︷
Wi . Hence,

⋂
i∈I

︷︸︸︷
Wi =

︷ ︸︸ ︷⋂

i∈I
Wi. Let v ∈ ⋃i∈I

︷︸︸︷
Wi .

So, v ∈
︷︸︸︷
Wi∗ , for some i∗ ∈ I. Since←→xv = x, for all x ∈ Wi∗ , it is clear that←→xv = x,

for all x ∈ ⋃i∈I Wi. Then, v ∈
︷ ︸︸ ︷⋃

i∈I
Wi, which implies that

⋃
i∈I

︷︸︸︷
Wi ⊆

︷ ︸︸ ︷⋃

i∈I
Wi. Thence,

⋃
i∈I

︷︸︸︷
Wi =

︷ ︸︸ ︷⋃

i∈I
Wi.

Theorem 5. Let T be a Sheffer stroke Hilbert algebra and W be a nonempty subset of T. Then,
︷︸︸︷
W is an ideal of T.

Proof. Since we obtain from (S2), Lemma 4 (1) and (3) that
←→
x0 = (x ◦ 1) ◦ (x ◦ 1) =

(x ◦ x) ◦ (x ◦ x) = x, for all x ∈ W, it follows that 0 ∈
︷︸︸︷
W . Assume that←→uv ∈

︷︸︸︷
W and

v ∈
︷︸︸︷
W . Then,

←−−→
x(←→uv ) = x and←→xv = x, for all x ∈W. Since

←→xu =
←→←→xv u =

←−−−−−−−−−−−→
(v ◦ v)(x ◦ (u ◦ u)) =

←−−−−−−−−−−−−−−→
(u ◦ (v ◦ v))(x ◦ (v ◦ v)) =

←−−→
x(←→uv ) = x

from (S1), (S2), (Shb2) and (Shb4), it is obtained that u ∈
︷︸︸︷
W . Hence,

︷︸︸︷
W is an ideal of T.
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However, W is usually not an ideal of T when
︷︸︸︷
W is an ideal of T.

Example 8. Consider the Sheffer stroke Hilbert algebra T in Example 1. Then,
︷ ︸︸ ︷
{c, e} = {0, a, b, d}

is an ideal of T, yet {c, e} is not an ideal of T.

Corollary 2. Let T be a Sheffer stroke Hilbert algebra. Then,

1.
︷︸︸︷
{1} = {0} and

2.
︷︸︸︷
{1} ⊆ `, for all ideals ` of T.

Proof. It is obtained from Lemma 1 (1) and (3), Lemma 4 (1) and Theorem 5.

Definition 5. Let T be a Sheffer stroke Hilbert algebra, W and X be nonempty subsets of T. Then,
a stabilizer of W with respect to X is defined as follows:

︷ ︸︸ ︷
(W, X) = {u ∈ T : x ∧ u ∈ X, f or all x ∈W}.

Example 9. Consider the Sheffer stroke Hilbert algebra T in Example 1. Then,
︷ ︸︸ ︷
(W, X) =

{a, c, d, f }, for the subsets W = {b, e} and X = {a, c} of T.

Theorem 6. Let W, X, Wi and Xi be nonempty subsets and ` be an ideal of T, for all i ∈ I. Then,

1.
︷ ︸︸ ︷
(W, X) = T implies W ⊆ X,

2.
︷ ︸︸ ︷
(`, X) = T if and only if ` ⊆ X,

3.
︷ ︸︸ ︷
(`, `) = T,

4.
︷︸︸︷
W ⊆

︷ ︸︸ ︷
(W, `),

5. Wi1 ⊆ Xi1 and Wi2 ⊆ Xi2 imply
︷ ︸︸ ︷
(Xi1 , Wi2) ⊆

︷ ︸︸ ︷
(Wi1 , Xi2),

6.
︷ ︸︸ ︷
(W, {0}) =

︷︸︸︷
W ,

7.
︷ ︸︸ ︷
({0}, {0}) = T,

8.
︷ ︸︸ ︷
(W,

⋂

i∈I
Xi) =

⋂
i∈I

︷ ︸︸ ︷
(W, Xi),

9.
︷ ︸︸ ︷
(W,

⋃

i∈I
Xi) =

⋃
i∈I

︷ ︸︸ ︷
(W, Xi),

10.
︷ ︸︸ ︷
({1}, X) = X,

11.
︷ ︸︸ ︷
({1}, {1}) = {1}.

Proof.

1. Let
︷ ︸︸ ︷
(W, X) = T. Since u = u ∧ u ∈ X, for all u ∈W, we obtain W ⊆ X.

2. If
︷ ︸︸ ︷
(`, X) = T, then ` ⊆ X from (1). Conversely, let ` be an ideal of T, such that ` ⊆ X,

and u ∈ T. Since x ∧ u 4 x, for all x ∈ `, it follows from (SSHI4) that x ∧ u ∈ `. Then,

x ∧ u ∈ X, for all x ∈ `, which implies u ∈
︷ ︸︸ ︷
(`, X). Thus,

︷ ︸︸ ︷
(`, X) = T.

3. It is proved from (2).

4. Let u ∈
︷︸︸︷
W , for any u ∈ T. Then, ←→xu = x, for all x ∈ W. Since x ∧ u =

←→
x←→xu =←→xx = 1 ◦ 1 = 0 ∈ ` from Lemma 4 (1), Lemma 5, (S2) and (SSHI1), it is obtained that

u ∈
︷ ︸︸ ︷
(W, `), and this means

︷︸︸︷
W ⊆

︷ ︸︸ ︷
(W, `).
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5. Let Wi1 ⊆ Xi1 , Wi2 ⊆ Xi2 and u ∈
︷ ︸︸ ︷
(Xi1 , Wi2), for any u ∈ T. Since x ∧ u ∈Wi2 , for all

x ∈ Xi1 , it is concluded that x ∧ u ∈ Xi2 , for all x ∈Wi1 . Hence, u ∈
︷ ︸︸ ︷
(Wi1 , Xi2), and so,

︷ ︸︸ ︷
(Xi1 , Wi2) ⊆

︷ ︸︸ ︷
(Wi1 , Xi2).

6. Since {0} is an ideal of T, we ascertain from (4) that
︷︸︸︷
W ⊆

︷ ︸︸ ︷
(W, {0}). Assume that

u ∈
︷ ︸︸ ︷
(W, {0}), for any u ∈ T. Then, x ∧ u = 0, for all x ∈ W. Thus, it follows from

(Shb1), Lemma 4 (1), Lemma 5, (S1) and (S2) that ←→xu = x, for all x ∈ W, and so,

u ∈
︷︸︸︷
W . Hence,

︷ ︸︸ ︷
(W, {0}) ⊆

︷︸︸︷
W . Therefore,

︷ ︸︸ ︷
(W, {0}) =

︷︸︸︷
W .

7.
︷ ︸︸ ︷
({0}, {0}) =

︷︸︸︷
{0} = T from (6) and Lemma 16 (2).

8. Let u ∈
︷ ︸︸ ︷
(W,

⋂

i∈I
Xi). Then, x ∧ u ∈ ⋂i∈I Xi, for all x ∈W. Since x ∧ u ∈ Xi, for all i ∈ I

and x ∈W, we obtain that u ∈
︷ ︸︸ ︷
(W, Xi), for all i ∈ I, which implies u ∈ ⋂i∈I

︷ ︸︸ ︷
(W, Xi).

Thus,
︷ ︸︸ ︷
(W,

⋂

i∈I
Xi) ⊆ ⋂i∈I

︷ ︸︸ ︷
(W, Xi). Conversely, let u ∈ ⋂i∈I

︷ ︸︸ ︷
(W, Xi). Since u ∈

︷ ︸︸ ︷
(W, Xi),

for all i ∈ I, it follows that x ∧ u ∈ Xi, for all i ∈ I and x ∈ W, which means x ∧ u ∈
⋂

i∈I Xi, for all x ∈ W. Thence, u ∈
︷ ︸︸ ︷
(W,

⋂

i∈I
Xi), and so,

⋂
i∈I

︷ ︸︸ ︷
(W, Xi) ⊆

︷ ︸︸ ︷
(W,

⋂

i∈I
Xi).

Consequently,
︷ ︸︸ ︷
(W,

⋂

i∈I
Xi) =

⋂
i∈I

︷ ︸︸ ︷
(W, Xi).

9. Let u ∈
︷ ︸︸ ︷
(W,

⋃

i∈I
Xi). Then, x ∧ u ∈ ⋃i∈I Xi, for all x ∈ W. Since x ∧ u ∈ Xi0 , for some

i0 ∈ I and x ∈ W, we have u ∈
︷ ︸︸ ︷
(W, Xi0), for some i0 ∈ I, and so, u ∈ ⋃i∈I

︷ ︸︸ ︷
(W, Xi).

Hence,
︷ ︸︸ ︷
(W,

⋃

i∈I
Xi) ⊆ ⋃

i∈I

︷ ︸︸ ︷
(W, Xi). Conversely, let u ∈ ⋃

i∈I

︷ ︸︸ ︷
(W, Xi). Since u ∈

︷ ︸︸ ︷
(W, Xi∗), for some i∗ ∈ I, it is concluded that x ∧ u ∈ Xi∗ , for some i∗ ∈ I and

x ∈ W, which follows x ∧ u ∈ ⋃i∈I Xi, for all x ∈ W. Thereby, u ∈
︷ ︸︸ ︷
(W,

⋃

i∈I
Xi). So,

⋃
i∈I

︷ ︸︸ ︷
(W, Xi) ⊆

︷ ︸︸ ︷
(W,

⋃

i∈I
Xi). Thereby,

︷ ︸︸ ︷
(W,

⋃

i∈I
Xi) =

⋃
i∈I

︷ ︸︸ ︷
(W, Xi).

10.
︷ ︸︸ ︷
({1}, X) = {u ∈ T : u = 1∧ u ∈ X} = X from Lemma 5, (S2), Lemma 4 (1) and (3).

11.
︷ ︸︸ ︷
({1}, {1}) = {1} from (10).

Theorem 7. Let X, W1 and W2 be nonempty subsets of T. Then, W1 ⊆ W2 implies
︷ ︸︸ ︷
(W2, X) ⊆

︷ ︸︸ ︷
(W1, X).

Proof. Let W1 ⊆ W2, and u ∈
︷ ︸︸ ︷
(W2, X). Since x ∧ u ∈ X, for all x ∈ W2, it follows that

y ∧ u ∈ X, for all y ∈W1, which means u ∈
︷ ︸︸ ︷
(W1, X). Then,

︷ ︸︸ ︷
(W2, X) ⊆

︷ ︸︸ ︷
(W1, X).

The following example illustrates that the converse of Theorem 7 is not usually satisfied.
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Example 10. Consider the Sheffer stroke Hilbert algebra T in Example 1. Then,
︷ ︸︸ ︷
(W2, X) = ∅ ⊆

{d, f } =
︷ ︸︸ ︷
(W1, X) but W1 * W2, for the subsets X = {d, f }, W1 = {a, b, c, 1} and W2 = {e}

of T.

Theorem 8. Let ` be a nonempty subset and k be an ideal of T. Then,
︷ ︸︸ ︷
(`,k) is an ideal of T.

Proof. Let ` and k be two ideals of T. Since we have from Lemma 1 (1), Lemma 4 (1) and (3),

Lemma 5, (S2) and (SSHI1) that x ∧ 0 =
←→
x
←→
x0 =←→xx = 1 ◦ 1 = 0 ∈ k, for all x ∈ `, it follows

that 0 ∈
︷ ︸︸ ︷
(`,k). Assume that←→uv ∈

︷ ︸︸ ︷
(`,k) and v ∈

︷ ︸︸ ︷
(`,k), for any u, v ∈ T. Then, x ∧←→uv ∈ k

and x ∧ v ∈ k, for all x ∈ `. Since

x ∧ (u ∨ v) = x ∧ ((u ◦ (v ◦ v)) ◦ (v ◦ v))
= x ∧ ((←→uv ◦ (v ◦ v)) ◦ (v ◦ v))
= x ∧ (←→uv ∨ v)
= (x ∧←→uv ) ∨ (x ∧ v) ∈ k

from Lemma 5 and (S3), and x ∧ u 4 x ∧ (u ∨ v), it is obtained from (SSHI4) that x ∧ u ∈ k,

for all x ∈ `. Thus, u ∈
︷ ︸︸ ︷
(`,k). Hence,

︷ ︸︸ ︷
(`,k) is an ideal of T.

The following example shows that the converse of Theorem 8 does not hold in general.

Example 11. Consider the Sheffer stroke Hilbert algebra T in Example 1. Then,
︷ ︸︸ ︷
({d}, {0, a, 1}) =

{0, a, c, e} is an ideal of T but {0, a, 1} is not since b /∈ {0, a, 1} when
←→
b1 = 0 ∈ {0, a, 1} and

1 ∈ {0, a, 1}.

5. Concluding Remarks

This manuscript concentrates on Sheffer stroke Hilbert algebras and their main charac-
teristics. The main goal of this study is two-fold: as the first target, a new characterization
of Sheffer stroke Hilbert algebras is presented in light of the ideals. In this task, proper
subsets of Sheffer stroke Hilbert algebras are introduced, and it is shown that the proposed
subsets possess the relationship between lattice and set-theoretical operators. Secondly,
we define stabilizers of Sheffer stroke Hilbert algebras for their nonempty subsets and
underline their crucial properties. We enhance the theoretical results of the manuscripts
with many examples and elaborative discussions.

Regarding future work, we aspire to define various ideals of Sheffer stroke Hilbert
algebras by employing more compact and trivial subsets. In this vein, we will be able
to construct a comparative approach between different algebraic structures, and this will
result in the emergence of new aspects of Hilbert algebras.
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Abstract: Current work provides an algebraic and geometric technique for building topological
quantum codes. From the lattice partition derived of quotient lattices Λ′/Λ of index m combined
with geometric technique of the projections of vector basis Λ′ over vector basis Λ, we reproduce
surface codes found in the literature with parameter [[2m, 2, |a| + |b|]] for the case Λ = Z2 and
m = a2 + b2, where a and b are integers that are not null, simultaneously. We also obtain a new class
of surface code with parameters [[2m, 2, |a|+ |b|]] from the Λ = A2-lattice when m can be expressed
as m = a2 + ab + b2, where a and b are integer values. Finally, we will show how this technique can
be extended to the construction of color codes with parameters [[18m, 4, 6(|a|+ |b|)]] by considering
honeycomb lattices partition A2/Λ′ of index m = 9(a2 + ab + b2) where a and b are not null integers.

Keywords: surface codes; color codes; flat torus; lattice

MSC: 81P70; 52C07; 81Q35

1. Introduction

Quantum coding theory made a significant advance with the discovery of CSS
codes [1,2], leading to the development of the richer structure known as stabilizer quantum
codes [3]. Since the superposition of states is essential for quantum information process-
ing, interactions with the environment can easily destroy these superpositions, making
quantum systems extremely fragile. Stabilizer codes, acting locally, can offer an alternative
solution to this problem.

Kitaev [4] proposed a class of stabilizer codes associated with a square lattice, i.e.,
sublattices of Z2 with squares as fundamental regions. These codes depend on the topology
of a surface and belong to the general class of topological quantum codes. Such codes
are used to store quantum information in the non-local degrees of freedom of strongly
correlated quantum systems with topological order. Because they are encoded non-locally,
these quantum states are resistant to local noise that does not alter the system’s overall
topology. This construction relies on an intrinsic physical mechanism that enables the topo-
logical system to self-correct local errors, which is remarkable because it does not require
external detection and correction of quantum errors, unlike traditional non-topological
codes. The system’s physical properties provide the mechanism for protecting the encoded
quantum states. Interactions described by a Hamiltonian in certain lattices or on surfaces

Axioms 2024, 13, 676. https://doi.org/10.3390/axioms13100676 https://www.mdpi.com/journal/axioms33
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with non-trivial topology control this mechanism. The ground state of these Hamiltonians
exhibits topological order, characterized by a robust type of ground state degeneracy that is
resilient to local disturbances. This robustness is due to an energy gap in the Hamiltonian
spectrum separating the ground state from excited states. Moreover, this degeneracy de-
pends on the topology of the network where the strongly correlated system’s Hamiltonian
is defined. Intuitively, topological order is a form of long-range entanglement in the ground
and excited states of a quantum system. Topology may further enhance protection in
ordinary-circuit quantum computing. For example, combining topological distribution and
dynamical decoupling can improve error correction capabilities [5,6].

To build topological quantum codes, we can consider a tiling (tessellation) of the flat
torus surface. The most significant classes of topological quantum codes are surface codes
and color codes. We obtain surface codes on a flat torus by associating Pauli operators X
and Z with the vertices and faces of the polygons that tessellate the torus. The encoded
qubits correspond to the homologically non-trivial cycles on the torus surface.

Bombin and Martin-Delgado introduced the color codes [7]. They constructed these
codes on three-valent tessellations with three-colorable faces, allowing for the coloring of
each face using three different colors, resulting in distinct colors for neighboring faces. Each
face of the tessellation has two Pauli operators attached, allowing for encoding twice as
many qubits as surface codes, as proved in [8].

Sarvepalli and Raussendorf [9] proposed color codes with parameters [[18.4s, 4, 2s+2]]
on the flat torus obtained from honeycomb lattices, i.e., sublattices ofA2, where the Voronoi
regions are regular hexagons, which give rise to a three-valent tessellation. The qubits
are attached to each vertex of the regular hexagons that tessellate the torus. In [10], the
procedure for constructing color codes with parameters [[18m2, 4, 4m]] was expanded to
any positive integer value of m, not only for the case where m is expressed as m = 2s, as
obtained in [9].

Kitaev [4] proposed surface codes with parameters [[2m2, 2, m]] derived from the
Zm × Zm tessellation of the flat torus by m2 squares (where each square represents a
fundamental region of the Z2 lattice). In contrast to the proposal in [4], the authors in [7]
introduced new classes of surface codes with parameters [[m, 2, d]]. The way this structure
is made is based on how the torus surface can be tiled with m polyominoes [11]. Each region
is a match for a Lee sphere with radius r that is part of the Z2 lattice. The centers of these
polyominoes are codewords of classic perfect codes C that have associated an algebraic
structure of a cyclic additive group. This class of surface codes has been constructed only
in cases where m can be simultaneously expressed in the forms m = 2r2 + 2r + 1 and
m = a2 + b2 for some positive integer r and at least one pair of non-zero integers a and b.

In [12], the geometric method for making surface codes from Z2-lattices using poly-
ominoes, which was first suggested in [7], was expanded to all situations where m can be
written as m = a2 + b2. Similar to the work in [7], the centers C of the regions that cover the
Zm ×Zm tessellation also have associated the algebraic structure of a cyclic group.

Recently, the study of surface codes derived from honeycomb lattices has also gained
attention. These lattices were initially studied by Kitaev in [13]. The honeycomb lattice has
a fundamaental role, since it is a topologically ordered system involving only two-body
interactions [14], and it is also used to build new quantum memories [15].

The main goal of this work is to extend the procedure for building topological codes
via square lattices Z2 to honeycomb lattices A2. If we consider the question about the
construction of topological codes derived from lattices from an algebraic and geometric
point of view, the following questions appear in this context:

1. Is it possible to obtain surface codes with the same parameters [[2m2, 2, m]] of Kitaev
construction [4] from honeycomb lattices partition of index m2?

2. Is it possible to get surface codes from the tessellations of the torus that have regions
congruent to Lee spheres with radius r and centers on the codewords of the classic
perfect code C, which come from the A2-lattices?
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3. Is it possible to get color codes from the tessellations of the torus that have regions
congruent to Lee spheres with radius r and centers on the codewords of the classic
perfect code C, which come from the A2-lattices?

The goal is to develop fundamental tools from lattice theory to answer these questions.
We can obtain the flat torus geometrically by identifying the opposite sides of the parallelo-
gram. If the parallelogram is the fundamental region of a lattice Λ, we will denote the flat
torus by T = R2/Λ.

For instance, if we choose β = {(1, 0), (0, 1)} as the lattice basis associated with Z2-
lattice, we find a unit area square as the fundamental region associated with Z2-lattices.
Because of this, considering this lattice basis gives us a parallelogram P , and a Voronoi V
partition that are the same up to a translation [10,16].

These partitions produce tessellations that are self-dual. Therefore, we can perform
the analysis of the minimum distance of surface codes using either the parallelogram or
Voronoi partition. From there, several works [4,12,17] have proposed families of surface
codes derived from Z2 lattices.

If we choose β = {(1, 0), ( 1
2 ,
√

3
2 )} as the lattice basis for A2, on the other hand, we get

a parallelogram whose sides are parallel to the vectors e1 = (1, 0) and e2 = ( 1
2 ,
√

3
2 ). This

is the fundamental region for the A2-lattices. As a result of choosing this lattice basis, we
obtain parallelogram P and Voronoi V partitions that are not equal to a translation one each
other. However, P and Voronoi V are congruent partitions on the flat torus [10,16]. As a
result, in [10], new classes of surface codes and color codes were proposed, with parameters
[[3m2, 2, m]] and [[18m2, 4, 4m]], respectively.

We look at an algebraic and geometric alternative way to build topological codes on
the flat torus that is related to the Z2 and A2 lattices in this work. For this purpose, we
consider as the lattice basis γ of sublattices Λ of index m = a2 + b2 in Z2:

γ = {(a, b), (−b, a)}. (1)

We will get the same surface codes as in [4,7,12] by using the algebraic technique of
lattice partition and the geometric technique of projecting a vector from the basis γ of Λ,
which is shown by Equation (1), onto the vectors e1 = (1, 0) and e2 = (0, 1) in Z2.

Classic perfect codes C are obtained from the A2-lattice. They are based on how the
honeycomb lattice partition (Zm ×Zm) can also be tiled by m regions, where each region is
congruent to a Lee sphere of radius r. This class of classic perfect codes has been constructed
only in cases where m can be simultaneously expressed in the forms m = 3r2 + 3r + 1 and
m = a2 + ab + b2 for some positive integer r and at least one pair of non-zero integers
a and b (for more details, see [18]). The centers of these m regions, which recover the
Zm ×Zm-tessellation, also form a cyclic code C.

We consider the lattice basis γ of sublattices Λ of index m = a2 + ab + b2 in A2:

γ = {(a, b), (−b, a + b)}. (2)

Thus, generalizing these ideas, using lattice partition concepts and the geometric
technique of projecting vectors u = (a, b) and v = (−b, a + b) onto vectors (1, 0) and
( 1

2 ,
√

3
2 ), respectively, we obtain new classes of surface codes with parameters [[2m2, 2, m]]

and [[2m, 2, |a|+ |b|]] on the flat torus T = R2/Λ, where {u, v} is the lattice basis associated
with the sublattice Λ of index m = a2 + ab + b2 in A2. This answers questions (1) and (2).

Finally, we consider sublattices Λ′′ with basis β′′ = {3a, 3b), (3a, 3a− 3b)} and index
9m on honeycomb lattices A2, where m = 1 or m = a2 + ab + b2 for at least one pair of
non-zero integers a and b. We prove that A2 induces a Z3m ×Z3m-tessellation on each flat
torus T, which is tiled by 9m regular hexagons. Because of this algebraic and geometric
description of T = R2/Λ′′, we get a more general process to obtain color codes with
parameters [[18m, 4, 6(|a|2 + |b|2)]], for m = 9(a2 + ab + b2). This answers question (3).
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2. Lattices in Rn

A lattice is a subset of Rn isomorphic to the additive group Zn. We can analyze
subgroups (sublattices) and partitions (coset decompositions) induced by subgroups thanks
to this algebraic structure. The Euclidean metric and volume notion of the space in which
the underlying lattice is embedded are passed down to it.

Formally speaking, a lattice Λ is a set of points Λ = {x ∈ Rn : x = ∑m
i=1 λiui and λi ∈

Z}, where {u1, u2, . . . , um} is a set of linearly independent vectors in Rn. This set of points
is known as the lattice basis. We define Λ as a lattice in Rn with rank m. The lattice is said
to have complete rank in Rn if m = n. We solely take into account full-rank lattices in our
current work.

If Λ is a n-dimensional lattice with basis {u1, u2, . . . , un}, its generator matrix is
given by

M =




u11 u12 · · · u1n
u21 u22 · · · u2n

...
...

. . .
...

un1 un2 · · · unn


,

where ui = (ui1, ui2, . . . , uin), for i = 1, 2, . . . , n. If its generator matrix has full rank, the
lattice has full rank. The matrix G = MMT is called the Gram matrix of the lattice Λ, where
MT is the transpose of M. An equivalent definition is Λ = {x = λM | λ ∈ Zn}. The
determinant of the lattice Λ is defined by Det(Λ) = Det(G).

What follows are important examples of full rank lattices in R2.

Example 1. Let β = {e1, e2} be a basis in R2.

1. Considering e1 = (1, 0) and e2 = (0, 1), we get the lattice Z2, and the generator matrix is

M =

(
1 0
0 1

)
.

2. Considering e1 = (1, 0) and e2 = ( 1
2 ,
√

3
2 ), we get the honeycomb latticeA2, and the generator

matrix is given by

M =

(
1 0
1
2

√
3

2

)
.

Given a lattice Λ, a subset Λ′ ⊂ Λ is a sublattice if Λ′ itself is a lattice, i.e., Λ′ is an
additive subgroup of Λ. The sublattice Λ′ can also be characterized as

Λ′ = {x = λBM | λ ∈ Zn}, (3)

where M is the generator matrix associated to the lattice Λ, and B is a square matrix of
integers.

Example 2. Consider the lattice Z2 with basis β = {e1, e2} and generating matrix M of item (1)
in the Example 1

1. We get a family of sublattices Λ′ = mZ2 in Z2, generated by the integer basis β′ =
{mu1, mu2} and generating matrix M′ = BM, where

B =

(
m 0
0 m

)
.

2. Give a positive integer m that can be expressed as m = a2 + b2, where a and b are integer
values. We can also obtain a family of sublattices Λ′′ of index m in Z2 generated by the integer
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basis α = {u, v}, where u = (a, b) and v = (−b, a). The generating matrix is given by
M′′ = B′M, with,

B′ =
(

a b
−b a

)
.

Example 3. Consider the honeycomb lattice A2 with basis β = {e1, e2} and generating matrix M
from item (2) of Example 1.

1. For the integer basis β′ = {mu1, mu2} and generating matrix M′ = BM, we obtain a family
of sublattices Λ = mA2 of index m2 in A2,

B =

(
m 0
0 m

)
.

2. Give a positive integer m that can be expressed as m = a2 + ab + b2, where a and b are
integer values. We can also obtain a family of sublattices Λ′′ of index m in A2 generated by
the integer basis γ = {u, v}, where u = (a, b) and v = (−b, a + b). The generating matrix
is given by M′′ = B′M, with,

B′ =
(

a b
−b a + b

)
.

3. Give a positive integer m that can be expressed as m = 9(a2 + ab + b2), where a and b are
integer values. We can also obtain a family of sublattices Λ′′ of index m in A2 generated by
the integer basis β′′ = {u, v}, where u = (3a, 3b) and v = (−3b, 3(a + b)). The generating
matrix is given by M′′′ = BM, with

B =

(
3a 3b
−3b 3(a + b)

)
.

2.1. Quotient Groups and Quotient Lattices

Let Λ be an n-dimensional lattice with basis {u1, . . . , un}. The fundamental paral-
lelepiped of Λ is made up of all the points in Rn that are linear combinations of the basis
vectors with coefficients that are between 0 and 1.

P = {x =
n

∑
i=1

αiui; 0 < α1, . . . , αn < 1} .

The Figures 1 and 2 illustrate the fundamental regions of the sublattices Λ′′ of index 5
and 7 in Z2 and A2, respectively.

Figure 1. Fundamental region of the sublattice Λ′ with index 5 in Z2 is generated by the basis
γ = {u, v}, where u = (2, 1) and v = (−1, 2).
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Figure 2. Fundamental region of the sublattice Λ′ with index 7 in A2 is generated by the basis
γ = {u, v}, where u = (2, 1) and v = (−1, 3).

Let Λ′ be a sublattice of Λ, and suppose that the generator matrices are M and
M′ = BM, respectively. We can prove that

|Λ/Λ′| = volume(P′)
volume(P)

= |det(B)|, (4)

where volume(P′) and volume(P) are the volume of the fundamental parallelepiped P′,
which is associated to the sublattice Λ′, and the volume of the parallelepiped P, associated
to the lattice Λ, respectively. The Equation (4) gives that the fundamental region of the
lattice Λ induces a partition of the fundamental region of the Λ′ sublattice. The meaning is
that the fundamental region of Λ′ can be covered by l copies of the fundamental region of
Λ, where l is the index of the sublattice Λ′ in Λ, and is given by Equation (5).

The sublattice Λ′ induces a partition of Λ into cosets, and they have a structure of an
additive group, denoted by Λ/Λ′, and the cardinality is given by the Equation (5):

l = |Λ/Λ′| = |det(B)|. (5)

We also say that Λ′ has index l in Λ.

Example 4. Let Λ = Z2 be the lattice given by item (1) of Example 1.

1. The family of sublattices Λ′ = mZ2 in Z2 given by the item (1) of Example 2 has index
l = det(B) = m2, i.e., the quotient group Λ/Λ′ has cardinality m2.

2. The family of sublattices Λ′ in Z2 given by the item (2) of Example 2 has index m = det(B) =
a2 + b2, i.e., the quotient group Λ/Λ′ has cardinality m = a2 + b2.

Example 5. Let Λ be a honeycomb sublattice of A2 of Example 2.

1. The family of sublattices Λ′ = mA2 in A2 given by the item (1) of Example 3 has index
det(B) = m2, i.e., the quotient group Λ/Λ′ has cardinality m2.

2. The family of sublattices Λ′ in A2 given by the item (2) of Example 3 has index det(B) =
m = a2 + ab + b2, i.e., the quotient group Λ/Λ′ has cardinality m = a2 + ab + b2.

3. The family of sublattices Λ′ in A2 given by the item (3) of Example 3 has index det(B) = 9m,
i.e., the quotient group Λ/Λ′ has cardinality 9m, where m = 1 or m = a2 + ab + b2 for some
0 6= a, b ∈ Z

Remark 1.

1. If you translate the lattice Λ of Example 2 by the vector ( 1
2 , 1

2 ), you get a set of points τ(Λ) in
R2 that have the same shape and arrangement as Λ. The action of translation Λ can result in
0 6∈ τ(Λ). Therefore, τ(Λ) does not have a lattice structure (see Figure 3).

2. This set of points τ(Λ) in R2 has the same shape and arrangement as Λ. It was made by

translating Λ of Example 3 by the vector ( 1
2 ,
√

3
2 ). The action of translation Λ can result in

0 6∈ τ(Λ) (see Figure 4). Therefore, τ(Λ) does not have a lattice structure. However, it will be
very useful in this work to construct new classes of surface codes from the honeycomb lattice.
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Figure 3. In blue, we have the fundamental region P of the lattice 6Z2 covered by 36 squares, and in
red, the square of the fundamental region P translated by the vector (1/2, 1/2) covered by 36 squares.

Figure 4. In blue, we have the fundamental region P of the lattice 6A2 covered by 36 parallelograms,
and in red, the fundamental region P of the lattice 6A2 translated by the vector (1/2,

√
3/4) covered

by 36 parallelograms.

2.2. Lattice Partitions

Parallelepiped partitions and Voronoi partitions derived from lattices Λ in Euclidean
spaces are of importance to us in our work.

Definition 1. For a lattice Λ, a fundamental region P0 is a bounded set such that it produces a
partition P = {Pλ : λ ∈ Λ} from Rn when translated by points of the lattice Λ. Consequently,

1. each region Pλ is obtained by translating P0 by a lattice point λ, that is,

Pλ = P0 + λ = {x : (x− λ) ∈ P0} .

2. the regions do not intersect, that is, P◦λ ∩ P◦λ′ 6= ∅ for all λ 6= λ′ ∈ Λ, where A◦ denotes the
interior of a set A ⊂ Rn.

3. the union of all regions covers the whole space Rn, i.e, ∪λ∈ΛPλ = Rn.

All regions belonging to the parallelogram partition Pλ are congruent, which is an
important geometric property.

From Definition 1, each point x ∈ Rn can be written uniquely as

x = λ + xe where λ ∈ Λ and xe ∈ P0. (6)

An approximation xe of x ∈ Rn satisfying (6) is found for each point λ ∈ Λ. The points
xe ∈ P0 that satisfy (6) can be seen as the error in the approximation made by a lattice point
λ ∈ Λ to each point x ∈ Rn. This approximation is indicated by λ = QΛ(x). We refer to
the quantization of x as QΛ(x).

Using the nearest-neighbor rule, the Voronoi partition is another important partition
of the space. The Euclidean norm on Rn is denoted by ‖.‖. The distance of a point x in Rn

from Λ is given by
‖x−Λ‖ = min

λ∈Λ
‖x− λ‖ .

The nearest-neighbor quantizer QN
Λ maps x to its closest lattice point:

QN
Λ (x) = arg min

λ∈Λ
‖x− λ‖ .
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Then, we define:

Definition 2. The set Vλ = {x ∈ Rn : QN
Λ (x) = λ} of all points that are quantized to λ, is the

Voronoi region associated with a n-dimensional lattice point λ ∈ Λ.

According to the definition of QN
Λ , the resulting Voronoi regions are congruent. For

each lattice Λ, let V0 be the Voronoi region associated with the lattice point 0 ∈ Λ. If we
translate V0 by lattice points λ ∈ Λ, we obtain a partition V = {Vλ : λ ∈ Λ} of Rn. The
union of all these regions give a covering of the whole space Rn, where Vλ = V0 + λ =
{x ∈ Rn : (x− λ) ∈ V0}. All Voroni regions belonging to the Voronoi partition {Vλ, λ ∈ Λ}
are congruent.

In R2, parallelepipeds are given by parallelograms, which is the case of interest in this
work. Therefore, we will refer to them as partitions of parallelograms.

Proposition 1 ([10,16]). The parallelogram partition and Voronoi partition of the honeycomb
lattice Λ are equivalent.

3. Tessellations of the Flat Torus

For this work, we are interested in the Euclidean space R2. Here, we provide defini-
tions and general results for the flat torus.

Definition 3. Let G be a discrete set of isometries acting on a metric space X. If a closed set F ⊂ X,
with a non-empty interior F◦, satisfies the following conditions, it is a fundamental region for G:

1. ∪T∈GT(F) = X;
2. F◦ ∩ T(F)◦ = ∅, for every, T ∈ G − {Id}. The family {T(F) : T ∈ G} is called a

tessellation of X.

A covering of X by copies of F under the action of a group of isometries G is called a
G-tessellation, or tessellation of X associated to G.

In each of these cases, the region F in Definition 3 can be seen as the closure of the
fundamental regions of the two partitions that are examined in Examples 2–4 with respect
to the Euclidean norm.

The parallelogram partitions P of the sublattice Λ with index m2 in Z2 are also shown
in Example 2. These are shown by squares, with lattice points at their points.

We can get the parallelogram partitioning P by translating the sublattice Λ of index
m2 in Z2, as shown in Example 3, by a vector with coordinates ( 1

2 , 1
2 ) in R2. This gives us

another parallelogram partitioning P ′ by m2 square. The tessellations obtained from the
parallelogram partitioning P and P ′ are dual tessellation (illustrated by Figure 3).

The parallelogram partitioning P of the sublattice Λ of index m2 in A2, in Example 3,
is given by parallelograms, where the vertices of the parallelograms are also lattice points.

The parallelogram partitioning P is linked to the sublattice Λ of index m2 in A2

in item (1) of Example 3 by a vector of coordinates ( 1
2 ,
√

3
4 ) in R2, and we get P ′ by m2

parallelograms. The tessellations obtained from the parallelogram partitioning P and P ′
are dual tessellations (illustrated by Figure 4).

The construction of the topological codes that we will propose on the flat torus essen-
tially depends on covering a parallelogram P′ with (smaller) congruent parallelograms. The
parallelogram P′ to be considered will be the fundamental region of a sublattice Λ = Z2

or A2. The smaller parallelogram P to be considered will be the fundamental region of a
sublattice Λ′ of Λ, in both cases of Λ = Z2 and Λ = A2.

The geometric arrangement of a fundamental region of a lattice depends on the choice
of the lattice basis, which is not unique. To distinguish which basis was chosen to generate
the lattice Λ, we will use the notation Λγ when we fix γ as the chosen basis.
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Remark 2. Different lattice basis of the same lattices in R2 reproduce different parallelogram
partitions in R2.

Given an n-dimensional lattice Λβ and an n-dimensional sublattice Λγ of Λβ and
a basis β = {u1, . . . , un} of that lattice, the flat torus Tγ is defined as the quotient space
Rn/Λγ. In the quotient, we define the map µ : Rn → Rn defined as µγ(x) = x mod Λ =
x−∑n

i=1[xi]ui, where x = ∑n
i=1 xiui and [xi] denotes the greatest integer less than or equal

to x. Therefore, x, y ∈ Rn belongs to the same coset in Tγ if and only if µγ(x) = µγ(y), i.e.,
x− y = ∑n

i=1 miui, mi ∈ Z. The flat torus Tγ can be seen as the quotient of the Euclidean
space Rn by a group of translations.

For a torus Tγ generated by the basis γ, we define the quotient map µγ : Rn → Tγ

using the fundamental region P in Rn, given by the basis γ.
The Euclidean distance d in Rn induces a distance dγ on the flat torus Tγ. The distance

measure on the flat torus between two cosets a and b ∈ Λβ/Λγ with a, b ∈ Rn, is (see
Figure 5)

dγ(ā, b̄) = min{d(z, y) = ‖z− y‖; z ∈ ā, y ∈ b̄} .

For R2, the flat torus Tγ can be constructed from a parallelogram P, a fundamental
region of the l parallelogram partition associated to Λγ, sublattice either from Λ = Z2 or
from Λ = A2 generated by the basis γ = {u, v}, since we identify the opposite sides (see
Figure 6).

Figure 5. The distance dγ on the flat torus is viewed as the Euclidean distance d in R2; dγ(ā, b̄) =
d(a, b) but dγ(ā′, c̄) = d(a′, c).

Figure 6. Edge identification to obtain the torus (sides of the parallelogram identified by vector u1

and u2).

With some conditions, the next result from [18] shows that it is possible to get tes-
sellations on the flat torus Tγ generated by the tessellation associated with the lattice Λβ

in Rn.

Proposition 2. Let the bases of the lattices Λγ and Λβ be γ = {u1, . . . , un} and β = {v1, . . . , vn},
respectively. Let Λβ be the tessellation of Rn, with the polytope P supported on γ serving as its
fundamental region. If Λγ is a sublattice of Λβ, and µγ is the quotient map on the flat torus, we
have that Λβ induces a G-tessellation on the flat torus Tγ = Rn/Λγ with fundamental region
µγ(P), where G = Λβ/Λγ.
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We will use Proposition 3 to find families of Zm × Zm-tessellations that come from
Λ = Z2-lattices based on Proposition 2. On each flat torus Tγ, we also obtain families of
Zm ×Zm-tessellations.

Proposition 3 ([10]). Assume that Λβ is any lattice of Rn with basis β = {u1, u2, . . . , un}.
Let Λγ be a sublattice of index mn (m > 1) with Λγ having basis γ = {mu1, mu2, . . . , mun}.
Thus, in each flat torus Tγ ' Rn/Λ′, the lattice Λβ generates a Zmn -tessellation, where we have
Λβ/Λγ ' Zmn to the quotient lattice.

Corollary 1 ([10]). By Proposition 3, we have that:

1. For the family of sublattices with basis γ and index m2 in the lattice Λβ = Z2, as illustrated
in item (1) of the Example 3, Λβ = Z2 induces a Zm × Zm-tessellation in each flat torus
Tγ ' R2/Λγ.

2. As stated in item (1) of Example 4, the lattice Λβ = A2 induces a Zm ×Zm-tessellation in
each flat torus Tγ ' R2/Λγ of the sublattice family with basis γ and index m2 in the lattice
A2.

Corollary 2. By Proposition 3, we have that:

1. As described in item (1) of the Example 3, the lattice Λβ = Z2 induces a Zm-tessellation
in each flat torus Tγ ' R2/Λγ of sublattice family with basis γ and index m in the lattice
Λβ = Z2.

2. As described in item (2) of the Example 3, the lattice Λβ = A2 induces a Zm-tessellation
in each flat torus Tγ ' R2/Λγ of sublattice family with basis γ and index m in the lattice
Λβ = A2.

3. As described in item (3) of the Example 3, the lattice Λβ = A2 induces a Z9m-tessellation
in each flat torus Tγ ' R2/Λγ of sublattice family with basis γ and index 9m in the lattice
Λβ = A2, where m = 1 or m = a2 + ab + b2 for some 0 6= a, b ∈ Z.

4. Surface Codes Derived from Z2 and A2 Lattices

Kitaev [4] proposed surface codes obtained from Zm×Zm-tessellations of the flat torus
Tγ = R2/Λγ, where Λγ = mZ2. The lattice Z2 creates a Zm × Zm tessellation in the flat
torus Tγ that is made up of m2 squares, as shown in item (1) of Corollary 1.

The partition of parallelograms (squares) yields this tessellation. Geometrically, the
dual tessellation that goes with it is made by translating a fundamental P parallelogram
partition, and it is covered by m2 squares.

The qubits are in a biunivocal correspondence with the edges of the m2 squares
covering the flat torus Tγ in the building of surface codes. The parameters for this class of
codes are [[2m2, 2, m]], where the code length is determined by the number of edges in the
squares that tile the Zm ×Zm-tessellation. The genus of the orientable surface g determines
how many information qubits there are; since g = 1 in the flat torus, k = 2g = 2 qubits are
encoded. The distance can be found by calculating the minimal distance between edges in
the smallest homologically non-trivial cycle of the flat torus’s Zm ×Zm-tessellation. From
the parallelogram partition or the translated parallelogram partition in R2, we have 2m2

squares. A homologically non-trivial cycle is the path taken by the edges that cannot be
contracted on a face.

We now consider the lattice points Q0 = (0, 0), Q1 = (m, 0), Q2 = (0, m), and Q3 =
(m, m) ∈ Λγ. The sides of the fundamental region P0 (parallelogram) are characterized
by the line segments Q0Q1 and Q0Q3. We also consider the vectors u and v of the basis γ,
which are parallel to the line segments Q0Q1 and Q0Q3, respectively. Notice that in the flat
torus Tγ, the point Q0 is identified with both points Q1 and Q3.

When we fix β = {e1, e2} as the lattice basis of Z2, where e1 = (1, 0) and e2 = (0, 1),
we find that the shortest of these two paths corresponds to the minimal number of edges
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belonging to orthogonal axes in the Zm ×Zm tessellations. These edges are parallel to the
lattice basis vectors e1 and e2, respectively. Therefore, we conclude that d = m.

In [10], the authors obtained the surface codes [[3m2, 2, m]] as a consequence of two
equivalent ways of covering the fundamental region of sublattice Λγ = mA2 with index
m2 in A2: with parallelograms or regular hexagons. However, as shown in item (2) of
Corollary 1, the lattice A2 creates a Zm × Zm tessellation in the flat torus Tγ. This means
that Tγ is tiled by a m2 parallelogram. This tessellation originates from the partition of
parallelograms. Geometrically, its dual tessellation is obtained by translation of the m2

parallelograms by the vector ( 1
2 ,
√

3
2 ). Each parallelogram is congruent to fundamental

region P of honeycomb lattices A2 when we set the lattice basis β = {(1, 0), ( 1
2 ,
√

3
2 )}.

We then created a new class of surface codes where the qubits are in biunivocal
correspondence with the edges of the m2 parallelogram that tile the flat torus Tγ. The
length of this code is given by the number of edges in the Zm ×Zm-tessellation, which is
2m2, since each edge is shared by the vertices.

We can now look at the lattice points Q0 = (0, 0), Q1 = (m, 0), Q2 = (0, m), and
Q3 = (m, m) ∈ Λγ. The sides of the fundamental region P0 (parallelogram) are made up
of the line segments Q0Q1 and Q0Q3. We also consider the vectors u and v of the basis γ,
which are parallel to the line segments Q0Q1 and Q0Q3, respectively. Notice that in the flat
torus Tγ, the point Q0 is associated with both points Q1 and Q3. When we fix β = {e1, e2}
as the lattice basis of A2, where e1 = (1, 0) and e2 = ( 1

2 ,
√

3
2 ), we also find that the shortest

of these two paths corresponds to the minimal number of edges on the line parallel to the
vectors e1 = (1, 0) and e2 = ( 1

2 ,
√

3
2 ), respectively. Thus, we conclude that d = m.

After these conclusions and results, we present Proposition 4.

Proposition 4. Let M be the collection of all the families of Zm × Zm-tessellations of the flat
torus Tγ = R2/Λγ given by the m2 parallelogram that are congruent to fundamental region of the
A2-lattice described by item (2) of Corollary 1. We then obtain a new class of codes with parameters
[[2m2, 2, m]].

This answers the question (1) that we asked in the introduction.

Surface Codes from Zm-Tessellation of the Flat Torus Obtained from Z2-Lattices

In [7], the proposed surface codes were based on the Lee sphere with radius r that
recover the Zm ×Zm-tessellation of the flat torus Tγ = R2/Λγ. Here, Λγ was the sublattice
with index m2 in Z2 and was created by the basis γ = {u, v}, where u = (m, 0) and
v = (0, m) and m was a positive integer. The minimum distance of the code is the least
number of edges to be transversed between two Lee spheres of the Zm ×Zm-tessellation.
The basic Lee sphere with radius r can be used to recover the Zm ×Zm-tessellation of the
flat torus Tγ = R2/Λγ. This is possible since there are non-null r, a and b ∈ Z such that
m = 2r2 + 2r + 1 and m = a2 + b2.

In [12], the authors used this method to get surface codes from the Z2-lattice by picking
regions that recover the Zm ×Zm-tessellation of the flat torus Tγ = R2/Λγ, which includes
cases where there is no integer solution for the equation m = 2r2 + 2r + 1. From there, the
authors obtained surface codes with parameters [[2m, 2, d]] for the cases m = a2 + b2, where
d = |a|+ |b|.

Now, we begin reproducing the surface codes with parameters [[2m, 2, d]] for the cases
m = a2 + b2, where d = |a| + |b|. We consider β = {e1, e2} as lattice basis of Z2 and
γ = {(a, b), (−b, a)} as lattice basis of sublattice Λγ of index m in Z2, where e1 = (1, 0) and
e2 = (0, 1), respectively. This class of codes is also found by Zm × Zm-tessellation of the
flat torus Tγ = R2/Λγ. This is because of the lattice partition Z2/Λγ and the geometric
technique of projecting the lattice basis γ onto e1 and e2.
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Proposition 5. LetM be the set of all families of Zm-tessellation of the flat torus Tγ = R2/Λγ

tiled by m squares. Then, there are 2m qubits attached at the edges of these m squares.

Proof. The qubits are identified with the edges of the squares of the Zm-tessellation of the
flat torus Tγ = R2/Λγ. Since each square has four edges that are common to two squares,
the number of qubits is given by 4m

2 = 2m.
Similarly, we relate the Zm-tessellation of the flat torus to the qubits on the square’s

edges. The number of qubits is also given by 4m
2 = 2m.

We also know that the homological group associated with the flat torus is isomorphic
to the group Z2 ×Z2. From the elementary results of group theory, we conclude that the
homology group has two generators. Therefore, we obtain that each code C, constructed
from each flat torus Tγ, encodes k = 2 qubits. Based on Proposition 5, we obtain an algebraic
procedure for obtaining surface codes from families of the flat torus Tγ in Proposition 6.

Additionally, we are aware that the group Z2 ×Z2 is isomorphic to the homological
group connected to the flat torus. From the basic group theory results, we deduce that
the homology group has two generators. As a result, we derive that k = 2 qubits are
encoded by each code C that is built from each flat torus Tγ. We derive an algebraic process
for obtaining surface codes from families of the flat torus Tγ in Proposition 6, based on
Proposition 5.

Proposition 6. From the flat torus, Tγ = R2/Λγ, where Λγ is the sublattice of index m in Z2,
generated by basis {(−b, a), (a, b)} with a2 + b2 = m, we obtain a surface code with parameters
[[2m, 2, d]], where d = |a|+ |b|.

Proof. We obtain the code parameters for each flat torus Tγ from Proposition 5. Then,
we only need to calculate the code’s distance. The weight of the Pauli operator with the
minimum weight, which preserves the code subspace and acts non-trivially on it, is by
definition the minimum distance of a stabilizer code. We can see this distance as a function
of the homology of the surface since we are dealing with a special kind of homological code.
Accordingly, the fewest number of qubits in the support of a homologically non-trivial
cycle between the tessellation and dual tessellation associated to the flat torus Tγ is the
minimum distance.

The homologically non-trivial cycles, which are generated from the Zm tessellation
given by m squares, are the paths determined by the edges that cannot be contracted into a
face with respect to the covering of the flat torus Tγ. Note that nontrivial cycles on the flat
torus are characterized by the possibilities of combinations of paths along the edges of the
m squares with edges parallel to the vectors of the basis β = {e1, e2}, where e1 = (1, 0) and
e2 = (0, 1).

In order to obtain these minimal paths, we use the fact that the fundamental region
P′ of the lattice Λγ (square) with sides of length |a|+ |b| parallel to the vectors u and v, is
circumscribed in a square with sides parallel to the vectors e1 and e2 (see Figure 7). In fact,
the side of length l parallel to the vector e1 can be seen as the sum of the lengths of the
projections of the vectors u and v onto e1, given by (−b, 0) and (a, 0), respectively, that is,
l = |a|+ |b|. Similarly, the side of length l parallel to the vector e2 can be seen as the length
of the projection of the vector sum u + v = (a− b, a + b) onto e2, given by (0, a + b), that is,
l = a + b. Therefore, d = a + b.

We now extend the method to get surface codes though Zm-tessellation of the flat
torus-derived sublattices of A2 as consequence of lattice partition A2/Λγ, where Λγ is
a sublattice of index m in A2 and generate by basis γ = {(a, b), (−b, a + b)}, such that,
m = a2 + ab + b2.
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Figure 7. Projection of vector basis Λγ over vector basis of Z2-lattice.

Proposition 7. LetM be the set of all families of Zm-tessellation of the flat torus Tγ = R2/Λγ

with m parallelograms, that are congruent to fundamental region of A2-lattice, described by
Corollary 2. Then, there are 2m qubits attached at edege derived from m polygons.

Proof. The qubits are associated with the edges of the Zm-tessellation of the parallelogram
which gives origen to flat torus Tγ = R2/Λγ. Since the edges of each parallelogram are
shared between two parallelograms, the number of qubits is given by 4m

2 = 2m.
Similarly, on the edges of the translated parallelogram of Zm-tessellation of the flat

torus we associate the qubits. The number of qubits is also given by 4m
2 = 2m.

Since the homological group associated with the flat torus is isomorphic to the group
Z2 ×Z2, from results of group theory, we obtain that the homology group has two genera-
tors. Thus, the code C constructed from each flat torus Tγ, encodes k = 2 qubits because
there are two stabilizer operators in each hexagonal face. From Proposition 5, we get
an algebraic procedure for obtaining surface codes from families of the flat torus Tγ in
Proposition 8.

Proposition 8. From each flat torus Tγ = R2/Λγ, where Λγ is the sublattice of index m in A2
generated by basis {(a, b), (−b, a + b)} with a2 + ab + b2 = m, we obtain a surface code with
parameters [[2m, 2, d]], where d = |a|+ |b|.

Proof. By Proposition 7, we get the parameters of the code on each flat torus Tγ. We need
only obtain the distance of the code.

To find nontrivial cycles on the flat torus, we can look at the different ways that the
edges of the m parallelograms can be put together. These edges must be parallel to the
vectors of the basis β = {e1, e2}, where e1 = (1, 0) and e2 = ( 1

2 ,
√

3
2 ).

We use the fact that the basic region P0 of the lattice Λγ (parallelogram) has sides
that are |a|+ |b| long and |a|+ 2|b| wide, and they are parallel to the vectors u and v. This
region is surrounded by a larger parallelogram whose sides are parallel to the vectors e1
and e2 (see Figure 8). In fact, we can see the side of length l parallel to the vector e1 as the
sum of the lengths of the projections of the vectors u and v onto e1, represented by (−b, 0)
and (a, 0), respectively, meaning l = a + b.

Meanwhile, the side of length l′ parallel to the vector e2 can be seen as the length of
the projection of the vector sum u + v = (a− b, a + 2b) onto e2, given by (0, a + 2b), that is,
l′ = a + 2b. Thus, d = min l, l′ = a + b.
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Figure 8. Projection of vector basis Λγ over vector basis of A2-lattice.

This answers question (2) that we raseid in introduction .

5. Color Codes from Honeycomb Lattices

To build color codes from the flat torus, we require a three-valent tessellation with
three colorable faces. These properties are presented by Z9m-tessellation of the flat torus
Tβ′′ , where m = a2 + ab + b2. Therefore, we provide an algebraic/geometric method in
this section to construct quantum color codes with parameters [[18m, 4, 6(|a|+ |b)]] from
tessellations Z9m on the flat torus T

β
′′ .

The tessellation by regular hexagons (the lattice’s fundamental region) is depicted in
Figure 9, where the lattice’s points are the hexagons’ barycentres. On the left, we observe
that a parallelogram (a fundamental region of the lattice) is obtained from a regular hexagon
by means of rearrangements. On the other hand, as the image on the right illustrates, the
parallelogram in the bigger region is the fundamental region of the sublattice, while the
smallest parallelogram represents a fundamental region of the lattice. The number of
parallelograms that cover the larger one (or, conversely, the number of hexagons in the
larger parallelogram) is given by the lattice’s sublattice’s index. Each smallest parallelogram
has two vertices of a hexagon-based tessellation, which indexes the qubits, as seen in the
right figure. The following statement, where m = a2 + ab + b2, grants control over the faces
in the Z9m-tessellations.

Figure 9. Equivalence between Voronoi and fundamental region associated to the honeycomb lattice.

Proposition 9. IfM is the set of coverings of the flat torus Tβ′′ with 9m regular hexagons in each
covering, then we have 18m qubits linked with the edges of these regular polygons.

Proof. The basis vectors β′′ and the basis vectors of the family of sublattices Λ′′ of the
hexagonal lattice Λ are parallel, according to Proposition 8. The Z9m-tessellation is 3-
colorable because the length of the vectors in β′′ is three times the length of the vectors in
basis β.

Because of the topology of the quotient group A2/Λ′′, there are 9m coset representa-
tives on each flat torus Tβ′′ . As can be seen in Figure 9, in each parallelogram covering the
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flat torus T, there are two vertices of regular hexagons that also cover the flat torus. As
a result, we conclude that each coset representative has two qubits. Thus, there are 18m
qubits linked on each flat torus Tβ′′ .

As can be seen in Figure 9, there are two vertices of the regular hexagons that cover
the flat torus T in each parallelogram that covers it. As so, we deduce that every coset
representative has two qubits on it. Consequently, each flat torus Tβ′′ has 18m qubits on
it.

We have that the homological group associated with the flat torus is isomorphic to the
group Z2 ×Z2. According to group theory results, we conclude that the homology group
has two generators. We obtain that each code C, which is made up of each flat torus Tβ′′ ,
encodes k = 4 qubits since each hexagonal face has two stabilizer operators.

Propositions 11 and 10, which are based on Proposition 9, provide an algebraic method
for deriving color codes from families of the flat torus Tβ′′ = R2/Λ′′.

Proposition 10. The flat torus Tβ′′ = R2/Λ′′ gives origen to a color code with parameters
[[18, 4, 6]], where Λ′′ is sublattice of A2 generated by basis β′′ = {(3,−3), (3, 0)}.

Proof. From Figure 10, we have that the code distance is d = 6.

Figure 10. Color code with distance 4 from Z9-tessellation of flat torus Tβ′′ .

Proposition 11. Each flat torus Tβ′′′ = R2/Λ′′′ gives origen to a color code with parameters
[[18m, 4, 6(|a| + |b|)]], where Λ′′′ is the sublattice of A2 generated by basis
β′′′ = {(3a, 3b), (−3a, 3(a + b))}.

Proof. We obtain the code’s parameters on each flat torus Tβ′′′ , where β′′′ = (3a, 3b),−3a +
(3a + 3b)) is the lattice basis associated with Λ′′′ as it was done before. Then, we only need
to calculate the distance of the code.

Observe that the minimum path given by the number of edges passing through lattice
points in the fundamental region of the lattice generated by the basis β′′ = (3,−3), (3, 0)
and parallel to the vectors e1 = (1, 0) and e2 = ( 1

2 ,
√

3
2 ) is given by d′ = 6. Thuw, the

minimum distance of the color code obtained from the equivalent tessellation of the flat
torus Tβ′′ = R2/Λ′′ by hexagons, from Proposition 10, is given by d9 = 4.

Similarly, we observe that the minimum number of edges passing through lattice
points in the fundamental region of the lattice generated by (3a, 3b), (−3a, 3(a + b)) and
parallel to the vectors e1 = (1, 0) and e2 = ( 1

2 ,
√

3
2 ) is given by d9m = 6(a + b).

In the lattice Λ′′′, when traversing the minimum path d9m = |a|+ |b| edges in the
covering of the flat torus Tβ′′′ parallel to the vectors of the basis e1 = (1, 0) and e2 = ( 1

2 ,
√

3
2 ),

47



Axioms 2024, 13, 676

to find the distance d of the color code in the equivalent covering of Tβ′′′ by hexagons, we

will use the solution to the relation d′
6 = d

3(a+b) , that is, d = 6(|a|+ |b|).

This answers question (3) that we raised in the introduction.
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Abstract: This paper investigates the relationship between the commutativity of rings and the
properties of their multiplicative generalized derivations. Let F be a ring with a semiprime ideal
Π. A map φ : F → F is classified as a multiplicative generalized derivation if there exists a map
σ : F → F such that φ(xy) = φ(x)y + xσ(y) for all x, y ∈ F . This study focuses on semiprime ideals
Π that admit multiplicative generalized derivations φ and G that satisfy certain differential identities
within F . By examining these conditions, the paper aims to provide new insights into the structural
aspects of rings, particularly their commutativity in relation to the behavior of such derivations.

Keywords: semiprime ring ideal; generalized derivation; multiplicative generalized derivation
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1. Introduction

Let F be an associative ring with center Z. A proper ideal Π of F is termed prime if
for any elements ϑ1, ϑ2 ∈ F , the inclusion ϑ1Fϑ2 ⊆ Π implies that either ϑ1 ∈ Π or ϑ2 ∈ Π.
Equivalently, the ring F is said to be prime if (0), the zero ideal, is a prime ideal. This is to
say, F is prime if ϑ1Fϑ2 = 0 implies ϑ1 = 0 or ϑ2 = 0.

In addition to prime ideals, the concept of semiprime ideals is also fundamental in ring
theory. A proper ideal Π is semiprime if for any ϑ1 ∈ F , the condition ϑ1Fϑ1 ⊆ Π implies
ϑ1 ∈ Π. The ring F is semiprime if (0) is a semiprime ideal. While every prime ideal is
semiprime, the converse is not generally true. Therefore, it is important to investigate the
structure and properties of semiprime ideals, particularly when considering multiplicative
generalized semiderivations. For any ϑ1, ϑ2 ∈ F , the symbol [ϑ1, ϑ2] stands for the com-
mutator ϑ1ϑ2 − ϑ2ϑ1, and the symbol ϑ1 ◦ ϑ2 denotes the anti-commutator ϑ1ϑ2 + ϑ2ϑ1. For
any ϑ1, ϑ2 ∈ F it is expressed as [ϑ1, ϑ2]0 = ϑ1, [ϑ1, ϑ2]1 = [ϑ1, ϑ2] = ϑ1ϑ2 − ϑ2ϑ1, and for
k > 1, it is expressed as [ϑ1, ϑ2]k = [[ϑ1, ϑ2](k−1), ϑ2].

The study of derivations in rings has a rich history, originating with Posner’s seminal
work in 1957 [1]. A derivation σ on F is an additive map satisfying

σ(ϑ1ϑ2) = σ(ϑ1)ϑ2 + ϑ1σ(ϑ2) for all ϑ1, ϑ2 ∈ F .

Derivations are critical in understanding the internal structure of rings, particularly in the
context of prime rings, where they can impose strong commutativity conditions.

Building on Posner’s work, Brešar [2], introduced the concept of generalized deriva-
tions. A map φ : F → F is called a generalized derivation if there exists a derivation
σ : F → F such that

φ(ϑ1ϑ2) = φ(ϑ1)ϑ2 + ϑ1σ(ϑ2) for all ϑ1, ϑ2 ∈ F .

Axioms 2024, 13, 669. https://doi.org/10.3390/axioms13100669 https://www.mdpi.com/journal/axioms49
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Familiar examples of generalized derivations are derivations and generalized inner deriva-
tions, and the latter include left multipliers and right multipliers (i.e., φ(ϑ1ϑ2) = φ(ϑ1)ϑ1
for all ϑ1, ϑ2 ∈ F ).

The commutativity of prime or semiprime rings with derivation was initiated by
Posner in [1]. Thereafter, several authors have proved commutativity theorems of prime
or semiprime rings with derivations. In [3], the notion of multiplicative derivation was
introduced by Daif motivated by Martindale in [4]. Daif [3] introduced this concept and
explored its implications in prime and semiprime rings. A multiplicative derivation σ
satisfies the condition

σ(ϑ1ϑ2) = σ(ϑ1)ϑ2 + ϑ1σ(ϑ2) for all ϑ1, ϑ2 ∈ F ,

but unlike a traditional derivation, σ may not be additive. In [5], Goldman and Semrl gave
the complete description of these maps. We have F = C[0, 1], the ring of all continuous
(real or complex valued) functions, and define a map σ : F → F such as

σ(φ)(ϑ1) =

{
φ(ϑ1) log|φ(ϑ1)|, φ(ϑ1) 6= 0

0, otherwise

}
.

It is clear that σ is a multiplicative derivation, but σ is not additive. Inspired by the
definition multiplicative derivation, the notion of multiplicative generalized derivation
was extended by Daif and Tamman El-Sayiad in [6] as follows: φ : F → F is called a
multiplicative generalized derivation if there exists a derivation σ : F → F such that
φ(ϑ1ϑ2) = φ(ϑ1)ϑ2 + ϑ1σ(ϑ2) for all ϑ1, ϑ2 ∈ F .

Dhara and Ali [7] provided a slight generalization of this definition by allowing σ to
be any map, not necessarily an additive map or derivation. It is worth noting that if F is
a semiprime ring, then in this case σ must be a multiplicative derivation, because for any
ϑ1, ϑ2, ϑ3 ∈ F ,

φ((ϑ1ϑ2)ϑ3) = φ(ϑ1(ϑ2ϑ3))

φ(ϑ1ϑ2)ϑ3 + ϑ1ϑ2σ(ϑ3) = φ(ϑ1)ϑ2ϑ3 + ϑ1σ(ϑ2ϑ3),

φ(ϑ1)ϑ2ϑ3 + ϑ1σ(ϑ2)ϑ3 + ϑ1ϑ2σ(ϑ3) = φ(ϑ1)ϑ2ϑ3 + ϑ1σ(ϑ2ϑ3).

This implies that F (σ(ϑ2ϑ3)− σ(ϑ2)ϑ3 − ϑ2σ(ϑ3)) = {0}. This gives that σ is a multiplica-
tive derivation. Further, every generalized derivation is a multiplicative generalized deriva-
tion. But the converse is not true in general (see example ([7], Example 1.1)). Hence, one may
observe that the concept of multiplicative generalized derivations includes the concepts of
derivations, multiplicative derivation, and the left multipliers. So, it should be interesting
to extend some results concerning these notions to multiplicative generalized derivations.

A functional identity is an identity relation in an algebra involving arbitrary elements,
similar to a polynomial identity, but also incorporating functions that are treated as un-
knowns (see [8]). In [9], Ashraf and Rehman showed that a prime ring F with a nonzero
ideal I must be commutative if it admits a derivation σ satisfying either of the properties
σ(ϑ1ϑ2) + ϑ1ϑ2 ∈ Z or σ(ϑ1ϑ2)− ϑ1ϑ2 ∈ Z for all ϑ1, ϑ2 ∈ F . In [10], the authors explored
the commutativity of prime ringF , which satisfies any one of the properties when φ is a gen-
eralized derivation. In [11], studied the commutativity of such a prime ring if anyone of the
following is hold: G(ϑ1ϑ2) + φ(ϑ1)φ(ϑ2)± ϑ1ϑ2 = 0 or G(ϑ1ϑ2) + φ(ϑ1)φ(ϑ2)± ϑ2ϑ1 = 0
where φ and G are generalized derivations.

Let S be a nonempty subset of F . A mapping φ from F to F is called centralizing
on S if [φ(ϑ1), ϑ1] ∈ Z for all ϑ1 ∈ S and is called commuting on S if [φ(ϑ1), ϑ1] = 0 for all
ϑ1] ∈ S. This definition has been generalized as: a map φ : F → F is called a π-commuting
map on S if [φ(ϑ1), ϑ1] ∈ π for all ϑ1 ∈ S and some π ⊆ F . In particular, if π = 0, then
φ is called a commuting map on S. Note that every commuting map is a π-commuting
map. But the converse is not true in general. Take π some a set of F has no zero such that
[φ(ϑ1), ϑ1] ∈ π; then φ is a π-commuting map but it is not a commuting map.
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The significance of these derivations, especially in the context of commutativity, has
been widely studied. A mapping φ from F to F is said to be commutativity-preserving
on a subset S ⊆ F if [ϑ1, ϑ2] = 0 implies [φ(ϑ1), φ(ϑ2)] = 0 for all ϑ1, ϑ2 ∈ S. The concept
of strong commutativity-preserving (SCP) maps, where [ϑ1, ϑ2] = [φ(ϑ1), φ(ϑ2)] for all
ϑ1, ϑ2 ∈ S, has also been extensively explored. There is a growing body of literature on
strong commutativity-preserving (SCP) maps and derivations. In [12], Bell and Daif were
the first to investigate the derivation of SCP maps on the ideal of a semiprime ring. Ma
and Xu extended this study to generalized derivations in [13]. There are some recent
articles that studied identities with multiplicative generalized derivations (see [7,14–17]).
In [17], Gölbaşi Additionally, Koç and Gölbaşi generalized these results to multiplicative
generalized derivations on semiprime rings in [18]. In [19], Samman demonstrated that an
epimorphism of a semiprime ring is strong commutativity-preserving if and only if it is
centralizing. Researchers have extensively explored derivations and SCP mappings within
the framework of operator algebras, as well as in prime and semiprime rings.

This paper investigates the commutativity conditions in rings that admit multiplicative
generalized derivations, particularly in the context of semiprime ideals. By extending exist-
ing results and introducing new findings, this study contributes to a deeper understanding
of the interplay between derivations, semiprime ideals, and commutativity in ring theory.

2. Main Results

We will make some extensive use of the basic commutator identities:

[ϑ1, ϑ2ϑ3] = ϑ2[ϑ1, ϑ3] + [ϑ1, ϑ2]ϑ3

[ϑ1ϑ2, ϑ3] = [ϑ1, ϑ3]ϑ2 + ϑ1[ϑ2, ϑ3]

ϑ1o(ϑ2ϑ3) = (ϑ1oϑ2)ϑ3 − ϑ2[ϑ1, ϑ3] = ϑ2(ϑ1oϑ3) + [ϑ1, ϑ2]ϑ3

(ϑ1ϑ2)oϑ3 = ϑ1(ϑ2oϑ3)− [ϑ1, ϑ3]ϑ2 = (ϑ1oϑ3)ϑ2 + ϑ1[ϑ2, ϑ3].

Theorem 1. Let F be a ring with Π as a semiprime ideal of R. Suppose that F admits a multiplica-
tive generalized derivation φ associated with a nonzero map σ. If any of the following conditions is
satisfied for all ϑ1, ϑ2 ∈ F :

(i) σ(ϑ1) ◦ φ(ϑ2)∓ (ϑ1 ◦ ϑ2) ∈ Π,
(ii) [σ(ϑ1), φ(ϑ2)]∓ [ϑ1, ϑ2] ∈ Π,
(iii) σ(ϑ1) ◦ φ(ϑ2)∓ [ϑ1, ϑ2] ∈ Π,
(iv) [σ(ϑ1), φ(ϑ2)]∓ (ϑ1 ◦ ϑ2) ∈ Π,

then [ϑ1, σ(ϑ1)]2 ∈ Π for all ϑ1 ∈ F .

Proof. (i) By the hypothesis, we have

σ(ϑ1) ◦ φ(ϑ2)∓ (ϑ1 ◦ ϑ2) ∈ Π for all ϑ1, ϑ2 ∈ F .

That is,
σ(ϑ1)φ(ϑ2) + φ(ϑ2)σ(ϑ1)∓ (ϑ1ϑ2 + ϑ2ϑ1) ∈ Π. (1)

Replacing ϑ2 by ϑ2ϑ1 in this expression, we have

σ(ϑ1)φ(ϑ2ϑ1) + φ(ϑ2ϑ1)σ(ϑ1)∓ (ϑ1ϑ2ϑ1 + ϑ2ϑ1ϑ1) ∈ Π

and so

σ(ϑ1){φ(ϑ2)ϑ1 + ϑ2σ(ϑ1)}+ {φ(ϑ2)ϑ1 + ϑ2σ(ϑ1)}σ(ϑ1)∓ (ϑ1ϑ2 + ϑ2ϑ1)ϑ1 ∈ Π. (2)

Right multiplying by ϑ1 the expression (1), we see that

σ(ϑ1)φ(ϑ2)ϑ1 + φ(ϑ2)σ(ϑ1)ϑ1 ∓ (ϑ1ϑ2 + ϑ2ϑ1)ϑ1 ∈ Π. (3)
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Subtracting (2) from (3), we arrive at

σ(ϑ1)ϑ2σ(ϑ1) + φ(ϑ2)[ϑ1, σ(ϑ1)] + ϑ2(σ(ϑ1))
2 ∈ Π. (4)

Replacing ϑ2 by ϑ2[ϑ1, σ(ϑ1)] in the last expression, we have

σ(ϑ1)ϑ2[ϑ1, σ(ϑ1)]σ(ϑ1) + φ(ϑ2)[ϑ1, σ(ϑ1)]
2

+ϑ2σ([ϑ1, σ(ϑ1)])[ϑ1, σ(ϑ1)] + ϑ2[ϑ1, σ(ϑ1)]σ(ϑ1)
2 ∈ Π.

(5)

Right multiplying by [ϑ1, σ(ϑ1)] the expression (4), we get

σ(ϑ1)ϑ2σ(ϑ1)[ϑ1, σ(ϑ1)] + φ(ϑ2)[ϑ1, σ(ϑ1)]
2 + ϑ2σ(ϑ1)

2[ϑ1, σ(ϑ1)] ∈ Π. (6)

Subtracting (5) from (6), we arrive at

σ(ϑ1)ϑ2[[ϑ1, σ(ϑ1)], σ(ϑ1)] + ϑ2σ([ϑ1, σ(ϑ1)])[ϑ1, σ(ϑ1)] + ϑ2[[ϑ1, σ(ϑ1)], σ(ϑ1)
2] ∈ Π. (7)

Writing ϑ2 by ϑ1ϑ2 in (7), we obtain that

σ(ϑ1)ϑ1ϑ2[[ϑ1, σ(ϑ1)], σ(ϑ1)] + ϑ1ϑ2σ([ϑ1, σ(ϑ1)])[ϑ1, σ(ϑ1)]

+ϑ1ϑ2[[ϑ1, σ(ϑ1)], σ(ϑ1)
2] ∈ Π.

(8)

Right multiplying by ϑ1 the expression (7), we get

ϑ1σ(ϑ1)ϑ2[[ϑ1, σ(ϑ1)], σ(ϑ1)] + ϑ1ϑ2σ([ϑ1, σ(ϑ1)])[ϑ1, σ(ϑ1)]

+ϑ1ϑ2[[ϑ1, σ(ϑ1)], σ(ϑ1)
2] ∈ Π.

(9)

Subtracting (8) from (9), we arrive at

[ϑ1, σ(ϑ1)]ϑ2[[ϑ1, σ(ϑ1)], σ(ϑ1)] ∈ Π. (10)

Writing ϑ2 by σ(ϑ1)ϑ2 in (7), we obtain that

[ϑ1, σ(ϑ1)]σ(ϑ1)ϑ2[[ϑ1, σ(ϑ1)], σ(ϑ1)] ∈ Π. (11)

Left multiplying by σ(ϑ1) the expression (10), we have

σ(ϑ1)[σ(ϑ1), ϑ1]ϑ2[[ϑ1, σ(ϑ1)], σ(ϑ1)] ∈ Π. (12)

Subtracting (11) from (12), we arrive at

[[ϑ1, σ(ϑ1)], σ(ϑ1)]ϑ2[[ϑ1, σ(ϑ1)], σ(ϑ1)] ∈ Π for all ϑ1, ϑ2 ∈ F .

Since π is a semiprime ideal, we obtain that

[[ϑ1, σ(ϑ1)], σ(ϑ1)] ∈ Π for all ϑ1 ∈ F .

Thus, [ϑ1, σ(ϑ1)]2 ∈ Π for all ϑ1 ∈ F .

(ii) By the hypothesis, we have

[σ(ϑ1), φ(ϑ2)]∓ [ϑ1, ϑ2] ∈ Π for all ϑ1, ϑ2 ∈ F . (13)

Replacing ϑ2 by ϑ2ϑ1 in (13), we have

[σ(ϑ1), φ(ϑ2)]ϑ1 + φ(ϑ2)[σ(ϑ1), ϑ1] + [σ(ϑ1), ϑ2]σ(ϑ1)∓ [ϑ1, ϑ2]ϑ1 ∈ Π.
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Right multiplying by ϑ1 the expression (13), we have

[σ(ϑ1), φ(ϑ2)]ϑ1 ∓ [ϑ1, ϑ2]ϑ1 ∈ Π.

If the last two expressions are used, the following is found

φ(ϑ2)[σ(ϑ1), ϑ1] + [σ(ϑ1), ϑ2]σ(ϑ1) ∈ Π. (14)

That is,
σ(ϑ1)ϑ2σ(ϑ1) + φ(ϑ2)[σ(ϑ1), ϑ1]− ϑ2σ(ϑ1)

2 ∈ Π. (15)

Writing ϑ2 by ϑ2[σ(ϑ1), ϑ1] in the last expression, we have

σ(ϑ1)ϑ2[σ(ϑ1), ϑ1]σ(ϑ1) + φ(ϑ2)[σ(ϑ1), ϑ1]
2

+ϑ2σ([σ(ϑ1), ϑ1])[σ(ϑ1), ϑ1]− ϑ2[σ(ϑ1), ϑ1]σ(ϑ1)
2 ∈ Π.

Right multiplying by [σ(ϑ1), ϑ1] the expression (15), we have

σ(ϑ1)ϑ2σ(ϑ1)[σ(ϑ1), ϑ1] + φ(ϑ2)[σ(ϑ1), ϑ1]
2 − ϑ2σ(ϑ1)

2[σ(ϑ1), ϑ1] ∈ Π.

If the last two expressions are used, the following is found

σ(ϑ1)ϑ2[[σ(ϑ1), ϑ1], σ(ϑ1)] + ϑ2σ([σ(ϑ1), ϑ1])[σ(ϑ1), ϑ1] + ϑ2[[σ(ϑ1), ϑ1], σ(ϑ1)
2] ∈ Π.

This expression is the same as expression (7). Using the same techniques, we get the
required result.
(iii) By the hypothesis, we have

σ(ϑ1) ◦ φ(ϑ2)∓ [ϑ1, ϑ2] ∈ Π for all ϑ1, ϑ2 ∈ F .

That is,
σ(ϑ1)φ(ϑ2) + φ(ϑ2)σ(ϑ1)∓ (ϑ1ϑ2 − ϑ2ϑ1) ∈ Π. (16)

Replacing ϑ2 by ϑ2ϑ1 in this expression, we have

σ(ϑ1)φ(ϑ2ϑ1) + φ(ϑ2ϑ1)σ(ϑ1)∓ (ϑ1ϑ2ϑ1 − ϑ2ϑ1ϑ1) ∈ Π,

and so

σ(ϑ1){φ(ϑ2)ϑ1 + ϑ2σ(ϑ1)}+ {φ(ϑ2)ϑ1 + ϑ2σ(ϑ1)}σ(ϑ1)∓ (ϑ1ϑ2 − ϑ2ϑ1)ϑ1 ∈ Π. (17)

Right multiplying by ϑ1 the expression (16), we see that

σ(ϑ1)φ(ϑ2)ϑ1 + φ(ϑ2)σ(ϑ1)ϑ1 ∓ (ϑ1ϑ2 − ϑ2ϑ1)ϑ1 ∈ Π. (18)

Subtracting (17) from (18), we arrive at

σ(ϑ1)ϑ2σ(ϑ1) + φ(ϑ2)[ϑ1, σ(ϑ1)] + ϑ2(σ(ϑ1))
2 ∈ Π.

This expression is the same as expression (4), and hence applying the same lines, we
complete the proof.
(iv) By the hypothesis, we have

[σ(ϑ1), φ(ϑ2)]∓ (ϑ1 ◦ ϑ2) ∈ Π for all ϑ1, ϑ2 ∈ F . (19)

Replacing ϑ2 by ϑ2ϑ1 in (19), we have

[σ(ϑ1), φ(ϑ2)]ϑ1 + φ(ϑ2)[σ(ϑ1), ϑ1] + [σ(ϑ1), ϑ2]σ(ϑ1)∓ (ϑ1 ◦ ϑ2)ϑ1 ∈ Π.
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Right multiplying by ϑ1 the expression (19), we have

[σ(ϑ1), φ(ϑ2)]ϑ1 ∓ (ϑ1 ◦ ϑ2)ϑ1 ∈ Π.

If the last two expressions are used, the following is found

φ(ϑ2)[σ(ϑ1), ϑ1] + [σ(ϑ1), ϑ2]σ(ϑ1) ∈ Π.

This expression is the same as expression (14). By the same techniques, we obtain the
required result.

Theorem 2. Let F be a 2-torsion-free ring with Π as a semiprime ideal of F . Suppose that F
admits a multiplicative generalized derivation φ associated with a nonzero multiplicative derivation
σ. If φ([ϑ1, ϑ2])− (φ(ϑ1) ◦ ϑ2)− [σ(ϑ2), ϑ1] ∈ Π for all ϑ1, ϑ2 ∈ F , then σ is a Π-commuting
map on F .

Proof. By the hypothesis, we have

φ([ϑ1, ϑ2])− (φ(ϑ1) ◦ ϑ2)− [σ(ϑ2), ϑ1] ∈ Π.

Replacing ϑ2 by ϑ2ϑ3, ϑ3 ∈ F in the last expression, we have

φ([ϑ1, ϑ2ϑ3])− (φ(ϑ1) ◦ ϑ2ϑ3)− [σ(ϑ2ϑ3), ϑ1] ∈ Π.

That is,
φ([ϑ1, ϑ2])ϑ3 + [ϑ1, ϑ2]σ(ϑ3) + φ(ϑ2)[ϑ1, ϑ3] + ϑ2σ([ϑ1, ϑ3])
−(φ(ϑ1) ◦ ϑ2)ϑ3 + ϑ2[φ(ϑ1), ϑ3]− [σ(ϑ2), ϑ1]ϑ3 − σ(ϑ2)[ϑ3, ϑ1]
−[ϑ2, ϑ1]σ(ϑ3)− ϑ2[σ(ϑ3), ϑ1] ∈ Π

,

and so

(φ([ϑ1, ϑ2])− φ(ϑ1) ◦ ϑ2 − [σ(ϑ2), ϑ1])ϑ3
+[ϑ1, ϑ2]σ(ϑ3) + φ(ϑ2)[ϑ1, ϑ3] + ϑ2σ([ϑ1, ϑ3])
+[ϑ1, ϑ2]σ(ϑ3) + ϑ2[φ(ϑ1), ϑ3]− σ(ϑ2)[ϑ3, ϑ1]− ϑ2[σ(ϑ3), ϑ1] ∈ Π.

By the hypothesis, we have

[ϑ1, ϑ2]σ(ϑ3) + φ(ϑ2)[ϑ1, ϑ3] + ϑ2σ([ϑ1, ϑ3]) + [ϑ1, ϑ2]σ(ϑ3)
+ϑ2[φ(ϑ1), ϑ3]− σ(ϑ2)[ϑ3, ϑ1]− ϑ2[σ(ϑ3), ϑ1] ∈ Π

.

Replacing ϑ3 by ϑ1 in this expression, we have

2[ϑ1, ϑ2]σ(ϑ1) + ϑ2[φ(ϑ1), ϑ1]− ϑ2[σ(ϑ1), ϑ1] ∈ Π. (20)

Writing ϑ2 by ϑ2ϑ3 in (20), we have

2[ϑ1, ϑ2]ϑ3σ(ϑ1) + 2ϑ2[ϑ1, ϑ3]σ(ϑ1) + ϑ2ϑ3[φ(ϑ1), ϑ1]− ϑ2ϑ3[σ(ϑ1), ϑ1] ∈ Π.

Using expression (20), we obtain that

[ϑ1, ϑ2]ϑ3σ(ϑ1) ∈ Π. (21)

Replacing ϑ2 by σ(ϑ1) in (21) this expression, we have

[ϑ1, σ(ϑ1)]ϑ3σ(ϑ1) ∈ Π. (22)

Writing ϑ2 by ϑ1σ(ϑ1) in , we get

[ϑ1, σ(ϑ1)]ϑ3ϑ1σ(ϑ1) ∈ Π. (23)

54



Axioms 2024, 13, 669

Left multiplying (22) by ϑ1, we get

[ϑ1, σ(ϑ1)]ϑ3σ(ϑ1)ϑ1 ∈ Π. (24)

Subtracting (23) from (24), we get

[ϑ1, σ(ϑ1)]ϑ3[ϑ1, σ(ϑ1)] ∈ Π.

Since Π is a semiprime ideal of F , we conclude that

[ϑ1, σ(ϑ1)] ∈ Π for all ϑ1 ∈ F

and so σ is Π-commuting map on F .

Theorem 3. Let F be a ring with Π a semiprime ideal of R. Suppose that F admits multiplicative
generalized derivations φ, G associated with the multiplicative derivation σ, and any nonzero map
h, respectively. If any of the following conditions is satisfied for all ϑ1, ϑ2 ∈ F
(i) G(ϑ1ϑ2) + σ(ϑ1)φ(ϑ2)± ϑ1ϑ2 ∈ Π,
(ii) G(ϑ1ϑ2) + σ(ϑ1)φ(ϑ2)± ϑ2ϑ1 ∈ Π,
(iii) G(ϑ1ϑ2) + σ(ϑ1)φ(ϑ2)± ϑ1 ◦ ϑ2 ∈ Π,
(iv) G(ϑ1ϑ2) + σ(ϑ1)φ(ϑ2)± [ϑ1, ϑ2] ∈ Π,

then σ is Π-commuting map on F .

Proof. (i) By the hypothesis, we have

G(ϑ1ϑ2) + σ(ϑ1)φ(ϑ2)± ϑ1ϑ2 ∈ Π.

Replacing ϑ2 by ϑ2ϑ3, ϑ3 ∈ F in the above expression, we have

G(ϑ1ϑ2)ϑ3 + ϑ1ϑ2h(ϑ3) + σ(ϑ1)φ(ϑ2)ϑ3 + σ(ϑ1)ϑ2σ(ϑ3)± ϑ1ϑ2ϑ3 ∈ Π.

Using the hypothesis, we find that

ϑ1ϑ2h(ϑ3) + σ(ϑ1)ϑ2σ(ϑ3) ∈ Π. (25)

Taking ϑ1 by ϑ3t, t ∈ F in (25), we get

ϑ3tϑ2h(ϑ3) + σ(ϑ3)tϑ2σ(ϑ3) + ϑ3σ(t)ϑ2σ(ϑ3) ∈ Π.

Using (25), we have
σ(ϑ3)tϑ2σ(ϑ3) ∈ Π.

Multiplying the last expression on the right by t, we have

σ(ϑ3)tϑ2σ(ϑ3)t ∈ Π.

That is,
σ(ϑ3)tFσ(ϑ3)t ⊆ Π.

Since Π is semiprime ideal, we get

σ(ϑ3)t ∈ Π for all ϑ3, t ∈ F .

Multiplying the last expression on the right by σ(ϑ3), we have

σ(ϑ3)tσ(ϑ3) ∈ Π for all ϑ3, t ∈ F .
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Since Π is semiprime ideal, we get σ(ϑ3) ∈ Π for all ϑ3 ∈ F . That is, [ϑ3, σ(ϑ3)] ∈ Π for all
ϑ3 ∈ F . Hence, σ is Π-commuting on F .
(ii) By the hypothesis, we have

G(ϑ1ϑ2) + σ(ϑ1)φ(ϑ2) + ϑ2ϑ1 ∈ Π.

Replacing ϑ2 by ϑ2ϑ3 in the hypothesis, we obtain

G(ϑ1ϑ2)ϑ3 + ϑ1ϑ2h(ϑ3) + σ(ϑ1)φ(ϑ2)ϑ3 + σ(ϑ1)ϑ2σ(ϑ3) + ϑ2ϑ3ϑ1 ∈ Π.

Using hypothesis, we have

ϑ1ϑ2h(ϑ3) + σ(ϑ1)ϑ2σ(ϑ3) + ϑ2ϑ3ϑ1 − ϑ2ϑ1ϑ3 ∈ Π,

and so
ϑ1ϑ2h(ϑ3) + σ(ϑ1)ϑ2σ(ϑ3) + ϑ2[ϑ3, ϑ1] ∈ Π. (26)

Taking ϑ1 by ϑ1ϑ3 in (26), we have

ϑ1ϑ3ϑ2h(ϑ3) + σ(ϑ1)ϑ3ϑ2σ(ϑ3) + ϑ1σ(ϑ3)ϑ2σ(ϑ3) + ϑ2[ϑ3, ϑ1]ϑ3 ∈ Π. (27)

Replacing ϑ2 by ϑ3ϑ2 in (26), we get

ϑ1ϑ3ϑ2h(ϑ3) + σ(ϑ1)ϑ3ϑ2σ(ϑ3) + ϑ3ϑ2[ϑ3, ϑ1] ∈ Π.

Subtracting the above expression from (27), we find

ϑ1σ(ϑ3)ϑ2σ(ϑ3) + ϑ2[ϑ3, ϑ1]ϑ3 − ϑ3ϑ2[ϑ3, ϑ1] ∈ Π.

That is
ϑ1σ(ϑ3)ϑ2σ(ϑ3) + [ϑ2[ϑ3, ϑ1], ϑ3] ∈ Π. (28)

Replacing ϑ3 by ϑ1 in this expression, we get

ϑ1σ(ϑ1)ϑ2σ(ϑ1) ∈ Π.

Taking ϑ2 by ϑ2ϑ1 in the last expression, we have

ϑ1σ(ϑ1)ϑ2ϑ1σ(ϑ1) ∈ Π.

Since Π is semiprime ideal, we get

ϑ1σ(ϑ1) ∈ Π for all ϑ1 ∈ F . (29)

On the other hand, replacing ϑ1 by ϑ1ϑ3 in (28), we get

ϑ1ϑ3σ(ϑ3)ϑ2σ(ϑ3) + [ϑ2[ϑ3, ϑ1], ϑ3]ϑ3 ∈ Π. (30)

Right multiplying by ϑ3 in (28), we have

ϑ1σ(ϑ3)ϑ2σ(ϑ3)ϑ3 + [ϑ2[ϑ3, ϑ1], ϑ3]ϑ3 ∈ Π.

Subtracting the above expression from (30), we find

ϑ1ϑ3σ(ϑ3)ϑ2σ(ϑ3)− ϑ1σ(ϑ3)ϑ2σ(ϑ3)ϑ3 ∈ Π.

That is,
ϑ1[σ(ϑ3)ϑ2σ(ϑ3), ϑ3] ∈ Π.
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Replacing ϑ1 by [σ(ϑ3)ϑ2σ(ϑ3), ϑ3] in this expression, we get

[σ(ϑ3)ϑ2σ(ϑ3), ϑ3]ϑ1[σ(ϑ3)ϑ2σ(ϑ3), ϑ3] ∈ Π for all ϑ1, ϑ2, ϑ3 ∈ F .

Since Π is semiprime ideal, we have

[σ(ϑ3)ϑ2σ(ϑ3), ϑ3] ∈ Π for all ϑ3, ϑ2 ∈ F .

and so
σ(ϑ3)ϑ2σ(ϑ3)ϑ3 − ϑ3σ(ϑ3)ϑ2σ(ϑ3) ∈ Π.

Using ϑ1σ(ϑ1) ∈ Π for all ϑ1 ∈ F , we get

σ(ϑ3)ϑ2σ(ϑ3)ϑ3 ∈ Π.

Replacing ϑ2 by ϑ3σ(ϑ3) in the last expression, we obtain

σ(ϑ3)ϑ3ϑ2σ(ϑ3)ϑ3 ∈ Π.

Since Π is semiprime ideal, we have

σ(ϑ3)ϑ3 ∈ Π for all ϑ3 ∈ F . (31)

Subtracting (29) from (31), we arrive at [ϑ3, σ(ϑ3)] ∈ Π for all ϑ3 ∈ F . Hence, σ is Π-
commuting. This completes the proof.

It is proved analogously using G(ϑ1ϑ2) + σ(ϑ1)φ(ϑ2)− ϑ2ϑ1 ∈ Π for all ϑ1, ϑ2 ∈ F .
(iii) By the hypothesis, we have

G(ϑ1ϑ2) + σ(ϑ1)φ(ϑ2)± ϑ1 ◦ ϑ2 ∈ Π.

Replacing ϑ2 by ϑ2ϑ3, ϑ3 ∈ F in the above expression, we have

G(ϑ1ϑ2)ϑ3 + ϑ1ϑ2h(ϑ3) + σ(ϑ1)φ(ϑ2)ϑ3 + σ(ϑ1)ϑ2σ(ϑ3)± (ϑ1oϑ2)ϑ3 ∓ ϑ2[ϑ1, ϑ3] ∈ Π.

Using the hypothesis, we have

ϑ1ϑ2h(ϑ3) + σ(ϑ1)ϑ2σ(ϑ3)∓ ϑ2[ϑ1, ϑ3] ∈ Π. (32)

Taking ϑ1 by ϑ3t in (32), we get

ϑ3tϑ2h(ϑ3) + σ(ϑ3)tϑ2σ(ϑ3) + ϑ3σ(t)ϑ2σ(ϑ3)∓ ϑ2ϑ3[t, ϑ3]± ϑ3ϑ2[t, ϑ3]∓ ϑ3ϑ2[t, ϑ3] ∈ Π.

Using (32), we have

σ(ϑ3)tϑ2σ(ϑ3)∓ ϑ2ϑ3[t, ϑ3]± ϑ3ϑ2[t, ϑ3] ∈ Π.

Replacing t by ϑ3 in this expression, we get

σ(ϑ3)ϑ3ϑ2σ(ϑ3) ∈ Π.

Right multiplying by ϑ3 in this expression, we have

σ(ϑ3)ϑ3ϑ2σ(ϑ3)ϑ3 ∈ Π for all ϑ3 ∈ F .

Since Π is semiprime ideal, we have σ(ϑ3)ϑ3 ∈ Π for all ϑ3 ∈ F .
On the other hand, taking ϑ1 by ϑ1ϑ3 in (32), we have

ϑ1ϑ3ϑ2h(ϑ3) + σ(ϑ1)ϑ3ϑ2σ(ϑ3) + ϑ1σ(ϑ3)ϑ2σ(ϑ3)∓ ϑ2[ϑ1, ϑ3]ϑ3 ∈ Π. (33)
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Replacing ϑ3 by ϑ3ϑ2 in (32), we have

ϑ1ϑ3ϑ2h(ϑ3) + σ(ϑ1)ϑ3ϑ2σ(ϑ3)∓ ϑ3ϑ2[ϑ1, ϑ3] ∈ Π. (34)

Subtracting (33) from (34), we arrive at

ϑ1σ(ϑ3)ϑ2σ(ϑ3)∓ ϑ2[ϑ1, ϑ3]ϑ3 ∓ ϑ3ϑ2[ϑ1, ϑ3] ∈ Π.

Writing ϑ1 by ϑ3 in the last expression, we have

ϑ3σ(ϑ3)ϑ2σ(ϑ3) ∈ Π.

Replacing ϑ2 by ϑ2ϑ3 in the above expression, we have

ϑ3σ(ϑ3)ϑ2ϑ3σ(ϑ3) ∈ Π for all ϑ3 ∈ F .

Since Π is semiprime ideal, we have ϑ3σ(ϑ3) ∈ Π for all ϑ3 ∈ F . Hence, we conclude that
[ϑ3, σ(ϑ3)] ∈ Π for all ϑ3 ∈ F , and so σ is Π-commuting.
(iv) By the hypothesis, we have

G(ϑ1ϑ2) + σ(ϑ1)φ(ϑ2)± [ϑ1, ϑ2] ∈ Π.

Replacing ϑ2 by ϑ2ϑ3, ϑ3 ∈ F in the above expression, we have

G(ϑ1ϑ2)ϑ3 + ϑ1ϑ2h(ϑ3) + σ(ϑ1)φ(ϑ2)ϑ3 + σ(ϑ1)ϑ2σ(ϑ3)± [ϑ1, ϑ2]ϑ3 ± ϑ2[ϑ1, ϑ3] ∈ Π.

Using the hypothesis, we have

ϑ1ϑ2h(ϑ3) + σ(ϑ1)ϑ2σ(ϑ3)± ϑ2[ϑ1, ϑ3] ∈ Π.

This expression is the same as (32) in (iii). Applying the same lines, we find that σ is
Π-commuting. This completes the proof.

Definition 1. An additive mapping φ : F → F is called a multiplicative right generalized
derivation if there exists a map σ : F → F such that

φ(ϑ1ϑ2) = φ(ϑ1)ϑ2 + ϑ1σ(ϑ2) for all ϑ1, ϑ2 ∈ F

and φ is called a multiplicative left generalized derivation if there exists a map σ : F → F such that

φ(ϑ1ϑ2) = σ(ϑ1)ϑ2 + ϑ1φ(ϑ2) for all ϑ1, ϑ2 ∈ F .

φ is said to be a multiplicative generalized derivation with associated map σ if it is both a multiplica-
tive left and right generalized derivation with associated derivation σ.

Theorem 4. Let F be a ring with Π a prime ideal of R. Suppose that F admits a multiplicative
left generalized derivation φ associated with a nonzero map σ. If any of the following conditions is
satisfied for all ϑ1, ϑ2 ∈ F
(i) [ϑ1, ϑ2]− [φ(ϑ1), φ(ϑ2)] ∈ Π,
(ii) ϑ1 ◦ ϑ2 − φ(ϑ1) ◦ φ(ϑ2) ∈ Π,
(iii) [ϑ1, ϑ2]− φ(ϑ1) ◦ φ(ϑ2) ∈ Π,
(iv) ϑ1 ◦ ϑ2 − [φ(ϑ1), φ(ϑ2)] ∈ Π,

then φ is Π-commuting map on F .

Proof. (i) By the hypothesis, we get

[ϑ1, ϑ2]− [φ(ϑ1), φ(ϑ2)] ∈ Π for all ϑ1, ϑ2 ∈ F .
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Replacing ϑ2 by ϑ1ϑ2 in this expression, we obtain

ϑ1[ϑ1, ϑ2]− [φ(ϑ1), σ(ϑ1)ϑ2 + ϑ1φ(ϑ2)] ∈ Π.

and so,

ϑ1[ϑ1, ϑ2]− [φ(ϑ1), σ(ϑ1)]ϑ2 − σ(ϑ1)[φ(ϑ1), ϑ2]− [φ(ϑ1), ϑ1]φ(ϑ2)− ϑ1[φ(ϑ1), φ(ϑ2)] ∈ Π.

Using the hypothesis, we get

[φ(ϑ1), σ(ϑ1)]ϑ2 + σ(ϑ1)[φ(ϑ1), ϑ2] + [φ(ϑ1), ϑ1]φ(ϑ2) ∈ Π.

Taking ϑ2 by ϑ2ϑ3, ϑ3 ∈ F in the above expression and using this expression, we have

σ(ϑ1)ϑ2[φ(ϑ1), ϑ3] + [φ(ϑ1), ϑ1]ϑ2σ(ϑ3) ∈ Π. (35)

Replacing ϑ3 by φ(ϑ1) in (35), we have

[φ(ϑ1), ϑ1]ϑ2σ(φ(ϑ1)) ∈ Π for all ϑ1, ϑ2 ∈ F .

Since Π is prime ideal, we get

[φ(ϑ1), ϑ1] ∈ Π or σ(φ(ϑ1)) ∈ Π.

Assume that there exists ϑ1 ∈ F such that [φ(ϑ1), ϑ1] /∈ Π. Then σ(φ(ϑ1)) ∈ Π. By the
hypothesis, we have for all ϑ2 ∈ F ,

[ϑ1, ϑ2φ(ϑ1)]− [φ(ϑ1), φ(ϑ2φ(ϑ1))]

= [ϑ1, ϑ2]φ(ϑ1) + ϑ2[ϑ1, φ(ϑ1)]− [φ(ϑ1), φ(ϑ2)φ(ϑ1) + ϑ2σ(φ(ϑ1))]

= [ϑ1, ϑ2]φ(ϑ1) + ϑ2[ϑ1, φ(ϑ1)]− [φ(ϑ1), φ(ϑ2)]φ(ϑ1) + [φ(ϑ1), ϑ2σ(φ(ϑ1))]

= [ϑ1, ϑ2]φ(ϑ1) + ϑ2[ϑ1, φ(ϑ1)]− ([ϑ1, ϑ2] + Π)φ(ϑ1) + [φ(ϑ1), ϑ2σ(φ(ϑ1))] ∈ Π.

That is
ϑ2[ϑ1, φ(ϑ1)]− [φ(ϑ1), ϑ2σ(φ(ϑ1))] ∈ Π.

Using σ(φ(ϑ1)) ∈ Π, we have ϑ2[ϑ1, φ(ϑ1)] ∈ Π. Since F is prime, we obtain that
[ϑ1, φ(ϑ1)] ∈ Π, which is a contradiction. In both cases, [ϑ1, φ(ϑ1)] ∈ Π for all ϑ1 ∈ F
is obtained.
(ii) Assume that

ϑ1 ◦ ϑ2 − φ(ϑ1) ◦ φ(ϑ2) ∈ Π for all ϑ1, ϑ2 ∈ F .

Replacing ϑ2 by ϑ1ϑ2 in the above expression, we get

ϑ1(ϑ1 ◦ ϑ2)− φ(ϑ1) ◦ (σ(ϑ1)ϑ2 + ϑ1φ(ϑ2)) ∈ Π

and so,

ϑ1(ϑ1 ◦ ϑ2)− (φ(ϑ1) ◦ σ(ϑ1))ϑ2 − σ(ϑ1)[ϑ2, φ(ϑ1)]

−ϑ1(φ(ϑ1) ◦ φ(ϑ2))− [φ(ϑ1), ϑ1]φ(ϑ2) ∈ Π.

Using the hypothesis, we get

(φ(ϑ1) ◦ σ(ϑ1))ϑ2 + σ(ϑ1)[ϑ2, φ(ϑ1)] + [φ(ϑ1), ϑ1]φ(ϑ2) ∈ Π.

Taking ϑ2 by ϑ2ϑ3, ϑ3 ∈ F in the above expression and this expression, we have

(φ(ϑ1) ◦ σ(ϑ1))ϑ2ϑ3 + σ(ϑ1)[ϑ2, φ(ϑ1)]ϑ3 + σ(ϑ1)ϑ2[F , φ(ϑ1)]

+[φ(ϑ1), ϑ1]φ(ϑ2)ϑ3 + [φ(ϑ1), ϑ1]ϑ2σ(ϑ3) ∈ Π,
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and so
σ(ϑ1)ϑ2[ϑ3, φ(ϑ1)] + [φ(ϑ1), ϑ1]ϑ2σ(ϑ3) ∈ Π for all ϑ1, ϑ2, ϑ3 ∈ F .

This expression is the same as (35) in the proof of (i). Using the same arguments there, we
get the required result.
(iii) By the hypothesis, we have

[ϑ1, ϑ2]− φ(ϑ1) ◦ φ(ϑ2) ∈ Π for all ϑ1, ϑ2 ∈ F .

Replacing ϑ2 by ϑ1ϑ2 in the above expression, we get

ϑ1[ϑ1, ϑ2]− φ(ϑ1) ◦ (σ(ϑ1)ϑ2 + ϑ1φ(ϑ2)) ∈ Π

and so,

ϑ1[ϑ1, ϑ2]− (φ(ϑ1) ◦ σ(ϑ1))ϑ2 − σ(ϑ1)[ϑ2, φ(ϑ1)]

−ϑ1(φ(ϑ1) ◦ φ(ϑ2))− [φ(ϑ1), ϑ1]φ(ϑ2) ∈ Π.

Using the hypothesis, we get

(φ(ϑ1) ◦ σ(ϑ1))ϑ2 + σ(ϑ1)[ϑ2, φ(ϑ1)] + [φ(ϑ1), ϑ1]φ(ϑ2) ∈ Π.

Taking ϑ2 by ϑ2ϑ2, ϑ3 ∈ F in the above expression and this expression, we have

(φ(ϑ1) ◦ σ(ϑ1))ϑ2ϑ3 + σ(ϑ1)[ϑ2, φ(ϑ1)]ϑ3 + σ(ϑ1)ϑ2[ϑ3, φ(ϑ1)]

+[φ(ϑ1), ϑ1]φ(ϑ2)ϑ3 + [φ(ϑ1), ϑ1]ϑ2σ(ϑ3) ∈ Π,

and so
σ(ϑ1)ϑ2[ϑ3, φ(ϑ1)] + [φ(ϑ1), ϑ1]ϑ2σ(ϑ3) ∈ Π for all ϑ1, ϑ2, ϑ3 ∈ F .

This expression is the same as (35) in the proof of (i). By the same techniques, we get
the required result.
(iv) By the hypothesis, we get

(ϑ1 ◦ ϑ2)− [φ(ϑ1), φ(ϑ2)] ∈ Π for all ϑ1, ϑ2 ∈ F .

Replacing ϑ2 by ϑ1ϑ2 in this expression, we obtain

ϑ1(ϑ1 ◦ ϑ2)− [φ(ϑ1), σ(ϑ1)ϑ2 + ϑ1φ(ϑ2)] ∈ Π.

and so,

ϑ1(ϑ1 ◦ϑ2)− [φ(ϑ1), σ(ϑ1)]ϑ2 − σ(ϑ1)[φ(ϑ1), ϑ2]− [φ(ϑ1), ϑ1]φ(ϑ2)−ϑ1[φ(ϑ1), φ(ϑ2)] ∈ Π.

Using the hypothesis, we get

[φ(ϑ1), σ(ϑ1)]ϑ2 + σ(ϑ1)[φ(ϑ1), ϑ2] + [φ(ϑ1), ϑ1]φ(ϑ2) ∈ Π.

Taking ϑ2 by ϑ2ϑ3, ϑ3 ∈ F in the above expression and using this expression, we have

σ(ϑ1)ϑ2[φ(ϑ1), ϑ3] + [φ(ϑ1), ϑ1]ϑ2σ(ϑ3) ∈ Π.

This expression is the same as (35) in the proof of (i). Using the same arguments in there,
we obtained the required result.
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3. Conclusions

In this paper, we explored the structure and commutativity of semiprime rings under
the action of multiplicative generalized derivations. Our investigation extends previous
results in the literature by establishing new conditions under which a semiprime ring
becomes commutative when admitting a multiplicative generalized derivation. These
findings contribute to a deeper understanding of the interaction between multiplicative
generalized derivations and the structural properties of rings. Moreover, our work broadens
existing commutativity theorems and opens new avenues for further research in ring
theory, particularly regarding the broader class of multiplicative generalized derivations
and their impact on algebraic structures. These results lay the groundwork for future
studies, with potential applications in operator algebras, noncommutative geometry, and
other mathematical fields where ring structures play a central role.
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Abstract: Many people, including Horadam, have studied the numbers Wn, satisfying the recurrence
relation Wn = uWn−1 + vWn−2 (n ≥ 2) with W0 = 0 and W1 = 1. In this paper, we study the p-
numerical semigroups of the triple (Wi, Wi+2, Wi+k) for integers i, k(≥ 3). For a nonnegative integer
p, the p-numerical semigroup Sp is defined as the set of integers whose nonnegative integral linear
combinations of given positive integers a1, a2, . . . , aκ with gcd(a1, a2, . . . , aκ) = 1 are expressed in
more than p ways. When p = 0, S = S0 is the original numerical semigroup. The largest element and
the cardinality of N0\Sp are called the p-Frobenius number and the p-genus, respectively.

Keywords: Frobenius problem; Frobenius numbers; Horadam numbers; Apéry set; recurrence

MSC: 11D07; 20M14; 05A17; 05A19; 11D04; 11B68; 11P81

1. Introduction

We consider the sequence {Wn}∞
n=0, satisfying:

Wn = uWn−1 + vWn−2 (n ≥ 2) W0 = 0, W1 = 1 , (1)

where u and v are positive integers with gcd(u, v) = 1. The values of Wn = Wn(u, v)
depend on the values of u and v. If u = v = 1, Fn = Wn(1, 1) is the n-th Fibonacci
number [1]. If u = 1 and v = 2, Jn = Wn(1, 2) is the n-th Jacobsthal number [2,3]. If u = 2
and v = 1, Pn = Wn(2, 1) is the n-th Pell number [4]. However, for simplicity, if we do not
specify the values of u or v, we will simply write Wn for Wn(u, v).

This type of number sequence has been well known to many people by Horadam’s
series of studies ([5–9]) in the 1960s. Because of this fact, this sequence is sometimes called
the Horadam sequence. Horadam himself used the recurrence relation Wn = uWn−1 −
vWn−2. However, recently more people (see, e.g., [10,11]) have used the recurrence relation
Wn = uWn−1 + vWn−2 and such works are still due to Horadam. In general, the initial
values are arbitrary, but because of some simplifications, we set W0 = 0 and W1 = 1.
According to [6], this sequence has long exercised interest, as seen in, for instance, Bessel-
Hagen [12], Lucas [13], and Tagiuri [14], and, for historical details, Dickson [15]. However, it
is deplorable that quite a few papers are publishing results that have already been obtained
by these authors as new results, either because they are unaware of their or the following
important results, or even if they are ignoring them.

Given the set of positive integers A := {a1, a2, . . . , aκ} (κ ≥ 2), for a nonnegative
integer p, let Sp be the set of integers whose nonnegative integral linear combinations
of given positive integers a1, a2, . . . , aκ are expressed in more than p ways. For a set of
nonnegative integers N0, the set N0\Sp is finite if and only if gcd(a1, a2, . . . , aκ) = 1. Then,
there exists the largest integer gp(A) := g(Sp) in N0\Sp, called the p-Frobenius number.
The cardinality of N0\Sp is called the p-genus and is denoted by np(A) := n(Sp). The sum
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of the elements in N0\Sp is called the p-Sylvester sum and is denoted by sp(A) := s(Sp).
This kind of concept is a generalization of the famous Diophantine problem of Frobenius
since p = 0 is the case when the original Frobenius number g(A) = g0(A), the genus
n(A) = n0(A) and the Sylvester sum s(A) = s0(A) are recovered. We can call Sp the
p-numerical semigroup. Strictly speaking, when p ≥ 1, Sp does not include 0 since the
integer 0 has only one representation, so it satisfies simple additivity, and the set Sp ∪ {0}
becomes a numerical semigroup. For numerical semigroups, we refer to [16–18]. For the
p-numerical semigroup, we refer to [19]. The recent study of the number of representation
(denumerant), denoted by p in this paper, can be seen in [20–22]. In particular, in [23],
an algorithm that computes the denumerant is shown. In [24], three simple reduction
formulas for the denumerant are obtaine using the Bernoulli–Barnes polynomials. In [25],
this algorithm is shown to avoid plenty of repeated computations and is, hence, faster.

We are interested in finding any closed or explicit form of the p-Frobenius number,
which is even more difficult when p > 0. For three or more variables, no concrete example
had been found. Most recently, we have finally succeeded in giving the p-Frobenius number
as closed-form expressions for the triangular number triplet ([26]), for repunits ([27,28]).

In this paper, we study the p-numerical semigroups of the triple (Wi, Wi+2, Wi+k) for
integers i, k(≥3). We give explicit closed formulas of p-Frobenius numbers and p-genus of
this triple. Note that the special cases for Fibonacci [1], Pell [4], and Jacobsthal triples [2,3]
have already been studied.

The outline of this paper is as follows. In the next section, we introduce the concept of
the p-Apéry set and show how it is used to obtain the p-Frobenius number, the p-genus and
the p-Sylvester sum. In Section 3, we show the result for p = 0. The structure is different for
odd k and even k. In Section 4, we show the result for p ≥ 1, which is yielded from that for
p = 0. In Section 5, we give an explicit form of the p-genus. The figures in Sections 3 and 4
are helpful to find the calculation of the p-genus. In Section 6, we hint at some comments
on a simple modification of the recurrence relation.

2. Preliminaries

We introduce the Apéry set (see [29]) below in order to obtain the formulas for gp(A),
np(A), and sp(A) technically. Without loss of generality, we assume that a1 = min(A).

Definition 1. Let p be a nonnegative integer. For a set of positive integers A = {a1, a2, . . . , aκ}
with gcd(A) = 1 and a1 = min(A) we denote by:

App(A) = App(a1, a2, . . . , aκ) = {m(p)
0 , m(p)

1 , . . . , m(p)
a1−1} ,

the p-Apéry set of A, where each positive integer m(p)
i (0 ≤ i ≤ a1 − 1) satisfies the conditions:

(i)m(p)
i ≡ i (mod a1), (ii)m(p)

i ∈ Sp(A), (iii)m(p)
i − a1 6∈ Sp(A) .

Note that m(0)
0 is defined to be 0.

It follows that for each p:

App(A) ≡ {0, 1, . . . , a1 − 1} (mod a1) .

Even though it is hard to find any explicit form of gp(A) as well as np(A) and sp(A)
k ≥ 3, by using convenient formulas established in [30,31], we can obtain such values
for some special sequences (a1, a2, . . . , aκ) after finding any regular structure of m(p)

j . One
convenient formula is on the power sum:
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s(µ)p (A) := ∑
n∈N0\Sp(A)

nµ

by using Bernoulli numbers Bn defined by the generating function:

x
ex − 1

=
∞

∑
n=0

Bn
xn

n!
,

and another convenient formula is on the weighted power sum ([32,33]):

s(µ)λ,p(A) := ∑
n∈N0\Sp(A)

λnnµ

by using Eulerian numbers
〈 n

m
〉

appearing in the generating function:

∞

∑
k=0

knxk =
1

(1− x)n+1

n−1

∑
m=0

〈 n
m

〉
xm+1 (n ≥ 1)

with 00 = 1 and
〈

0
0

〉
= 1. Here, µ is a nonnegative integer and λ 6= 1. Some generaliza-

tion of Bernulli numbers in connection with summation are devied in [34]. From these
convenient formulas, many useful expressions are yielded as special cases. Some useful
ones are given as follows. The Formulas (3) and (4) are entailed from s(0)λ,p(A) and s(1)λ,p(A),
respectively. The proof of this lemma is given in [31] as a more general case.

Lemma 1. Let κ, p, and µ be integers with κ ≥ 2 and p ≥ 0. Assume that gcd(a1, a2, . . . , aκ) = 1.
We have:

gp(a1, a2, . . . , aκ) =

(
max

0≤j≤a1−1
m(p)

j

)
− a1 , (2)

np(a1, a2, . . . , aκ) =
1
a1

a1−1

∑
j=0

m(p)
j −

a1 − 1
2

, (3)

sp(a1, a2, . . . , aκ) =
1

2a1

a1−1

∑
j=0

(
m(p)

j
)2 − 1

2

a1−1

∑
j=0

m(p)
j +

a2
1 − 1
12

. (4)

Remark 1. When p = 0, the Formulas (2)–(4) reduce to the formulas by Brauer and Shockley [35]
[Lemma 3], Selmer [36] [Theorem], and Tripathi [37] [Lemma 1] (the latter reference contained a
typo, which was corrected in [38]), respectively:

g(a1, a2, . . . , aκ) =

(
max

0≤j≤a1−1
mj

)
− a1 ,

n(a1, a2, . . . , aκ) =
1
a1

a1−1

∑
j=0

mj −
a1 − 1

2
,

s(a1, a2, . . . , aκ) =
1

2a1

a1−1

∑
j=0

(mj)
2 − 1

2

a1−1

∑
j=0

mj +
a2

1 − 1
12

,

where mj = m(0)
j (1 ≤ j ≤ a1 − 1) with m0 = m(0)

0 = 0.

3. The Case Where p = 0

We use the following properties repeatedly. The proof is trivial and omitted.
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Lemma 2. For i, k ≥ 1, we have:

Wk|Wi ⇔ k|i , (5)

gcd(Wi, Wi+2) =

{
u if i is even;
1 if i is odd,

(6)

Wi+k = Wi+1Wk + vWiWk−1 , (7)

Wn ≡
{

0 (mod u) if n is even;

v
n−1

2 (mod u) if n is odd .
(8)

First of all, if i is odd and 3 ≤ i ≤ k− 1, then by (1) and (7):

Wi+k − g0(Wi, Wi+2) ≥W2i+1 −WiWi+2 + Wi + Wi+2

= Wi+1Wi−1 + Wi+2 + Wi > 0 .

Hence, g0(Wi, Wi+2, Wi+k) = g0(Wi, Wi+2). Therefore, from now on, we consider the case
only when i is even and k is odd, or when i is odd, with i ≥ k ≥ 3.

3.1. The Case Where k Is Odd

When k is odd, we choose nonnegative integers q and r as:

Wi = qWk + ru, 0 ≤ r < Wk , (9)

where q = Wi/Wk if k|i due to (5); otherwise q is the largest integer, satisfying:

q ≤ Wi
Wk

and q ≡
{

0 (mod u) if i is even;

v
i−k

2 (mod u) if i is odd.
(10)

More directly, when i is even (and k is odd):

q = u
⌊

1
u

⌊
Wi
Wk

⌋⌋
. (11)

When i is odd (and k is odd):

q = u
⌊

1
u

(⌊
Wi
Wk

⌋
− v

i−k
2

)⌋
+ v

i−k
2 . (12)

Note that if u = 1 ([2]), then always q = bWi/Wkc.
In particular, if i is even and:

u >
Wi
Wk

, then q = 0, so r = Wi/u .

If k|i, then by (5) Wk|Wi. So, when i is even, by (8) u|Wi. Thus, we get:

q =
Wi
Wk

, so r = 0 .

When k|i and i is odd, by Wi ≡ v
i−1

2 and Wk ≡ v
k−1

2 , there exists an integer h such that
v

i−1
2 ≡ hv

k−1
2 (mod u). By gcd(u, v) = 1, h ≡ v

i−k
2 (mod u). Thus:

u
∣∣∣∣
(

Wi
Wk
− v

i−k
2

)
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Thus, we get:

q =
Wi
Wk

, so r = 0 .

We use the following identity.

Lemma 3. For i, v ≥ 3, we have:

rWi+2 + qWi+k =
(
Wi+1 + v(qWk−1 + r)

)
Wi .

Proof. By (1) and (7) together with (9), we get:

LHS− RHS = r(u2 + v)Wi + ruvs.Wi−1 + q(Wi+1Wk + vWiWk−1)

− (uWi + vWi−1)Wi − rvs.Wi − qvs.WiWk−1

= 0 .

Assume that k - i (the case k | i is discussed later). Then, the elements of the (0-)Apéry
set are given in Figure 1. Here, we consider the expression:

ty,z := yWi+2 + zWi+k (y, z ≥ 0)

or simply the position (y, z).

(0, 0) (1, 0) · · · · · · (Wk − 1, 0)
(0, 1) (1, 1) · · · · · · (Wk − 1, 1)

...
...

...
(0, q− 1) (1, q− 1) · · · · · · (Wk − 1, q− 1)
(0, q) · · · (r− 1, q)

...
...

(0, q+ u− 1) · · · (r− 1, q+ u− 1)

Figure 1. Ap0(Wi, Wi+2, Wi+k) for odd k.

We shall show that all the elements in Figure 1 constitute the sequence{`Wi+2 (mod Wi)}Wi−1
`=0

in the vertical y direction. However, if i is odd and i is even, the situation of this sequence
is different. In short, if i is odd, the sequence appears continuously, but if i is even, the se-
quence is divided into u subsequences.

First, let i be odd. Then, by gcd(Wi, Wi+2) = 1, we have:

{`Wi+2 (mod Wi)}Wi−1
`=0 = {` (mod Wi)}Wi−1

`=0 .

By (7), we get:
Wi+2Wk − uWi+k = v2WiWk−2 (13)

Hence:
Wi+2Wk ≡ uWi+k (mod Wi) and Wi+2Wk > uWi+k. (14)

Thus, the element at (Wk, j) (0 ≤ j ≤ q− 1) cannot be an element of Ap0(A) but (0, u + j)
as the same residue modulo Wi, where A = {Wi, Wi+2, Wi+k}. Next, by Lemma 3, we have:

rWi+2 + qWi+k ≡ 0 (mod Wi) and rWi+2 + qWi+k > 0 .

Thus, the element at (r, q+ j) (0 ≤ j ≤ u− 1) cannot be an element of Ap0(A) but
(0, j).
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Therefore, the sequence {`Wi+2 (mod Wi)}Wi−1
`=0 is divided into the longer parts with

length Wk and the shorter parts with length r. Namely, the longer part is of the subsequence:

(0, j), (1, j), . . . , (Wk − 1, j) (j = 0, 1, . . . , q− 1)

with the next element at (0, u + j). The shorter part is of the subsequence

(0, q+ j), (1, q+ j), . . . , (r− 1, q+ j) (j = 0, 1, . . . , u− 1)

with the next element at (0, j). Since gcd(Wi+2, Wi+k) = 1, all elements in {`Wi+2 (mod Wi)}Wi−1
`=0

are different modulo Wi.
Next, let i be even. Then by gcd(Wi, Wi+2) = u, we have:

{`Wi+2 (mod Wi)}Wi/u−1
`=0 = {` (mod Wi/u)}Wi/u−1

`=0 .

Hence:
{` (mod Wi)}Wi−1

`=0 = ∪u−1
κ=0{`Wi+2 + κWi+k (mod Wi)}Wi/u−1

`=0

with {`Wi+2 + κ1Wi+k (mod Wi)}Wi/u−1
`=0 ∩ {`Wi+2 + κ2Wi+k (mod Wi)}Wi/u−1

`=0 = ∅
(κ1 6= κ2). By the determination of q in (11), we see that u|q. So, we use the relation
(14). Thus, each subsequence is given as the following points. For z = 0, 1, . . . , u− 1:

(0, z), (1, z), . . . , (Wk − 1, z), (0, u + z), (1, u + z), . . . , (Wk − 1, u + z),

(0, 2u + z), (1, 2u + z), . . . , (Wk − 1, 2u + z), . . . . . . ,

(0, q− u + z), (1, q− u + z), . . . , (Wk − 1, q− u + z),

(0, q+ z), (1, q+ z), . . . , (r− 1, q+ z)

with next element is at (0, z), coming back to the first one, because of Lemma 3. In addition,
by (8), all terms of the above subsequence are:

yWi+2 + zWi+k ≡ zv
i+k−1

2 (mod u) .

Since gcd(u, v) = 1, this is equivalent to z (mod u) (z = 0, 1, . . . , u− 1). Therefore, there is
no overlapped element among all subsequences. By (9), the total number of terms in each
subsequence is:

q

u
Wk + r =

Wi
u

as expected.

By Figure 1, the candidates of the largest element of Ap0(A) are at (r− 1, q+ u− 1)
or at (Wk − 1, q− 1). Since (r− 1)Wi+2 + (q+ u− 1)Wi+k > (Wk − 1)Wi+2 + (q− 1)Wi+k
is equivalent to rWi+2 > v2WiWk−2, by Lemma 1 (2), if rWi+2 ≥ v2WiWk−2, then:

g0(Wi, Wi+2, Wi+k) = (r− 1)Wi+2 + (q+ u− 1)Wi+k −Wi .

If rWi+2 ≤ v2WiWk−2, then:

g0(Wi, Wi+2, Wi+k) = (Wk − 1)Wi+2 + (q− 1)Wi+k −Wi .

• The case k is odd with k|i
When k is odd and k|i, we get q = Wi/Wk and r = 0. Hence, the elements of the

(0-)Apéry set are given in Figure 2.
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(0, 0) (1, 0) · · · · · · (Wk − 1, 0)
(0, 1) (1, 1) · · · · · · (Wk − 1, 1)

...
... · · · · · · ...

(0, Wi/Wk − 1) (1, Wi/Wk − 1) · · · · · · (Wk − 1, Wi/Wk − 1)

Figure 2. Ap0
(
Wi, Wi+2, Wi+k

)
when k|i.

Similarly to the case k - i, when i is odd, so uWk - Wi, the sequence {`Wi+2 (mod Wi)}Wi−1
`=0

simply becomes one sequence by combining all the subsequences with length Wk and with
length r. When i is even, so uWk | Wi, the sequence {`Wi+2 (mod Wi)}Wi−1

`=0 consists of u
subsequences with the same length Wi/u.

By Figure 2, the largest element of Ap0(A) is at (Wk − 1, Wi/Wk − 1). Hence:

g0(Wi, Wi+2, Wi+k) = (Wk − 1)Wi+2 +

(
Wi
Wk
− 1
)

Wi+k −Wi .

In fact, this is included in the case where k - i and rWi+2 ≤ v2WiWi−2.

3.2. The Case Where k Is Even

When k is even (so i is odd), we choose nonnegative integers q and r as:

Wi = q
Wk
u

+ r, 0 ≤ r <
Wk
u

, (15)

where q = buWi/Wkc. Note that Wk/u is an integer for even k. Note that k - i because
otherwise i is also even. Then, the elements of the (0-)Apéry set are given in Figure 3.

(0, 0) (1, 0) · · · · · · (Wk/u− 1, 0)
(0, 1) (1, 1) · · · · · · (Wk/u− 1, 1)

...
...

...
(0, q− 1) (1, q− 1) · · · · · · (Wk/u− 1, q− 1)
(0, q) · · · (r− 1, q)

Figure 3. Ap0
(

P2i+1(u), P2i+3(u), P2i+k+1(u)
)

for even k.

Similarly to the case where k is odd in (14), we have:

Wi+2
Wk
u
≡Wi+k (mod Wi) and Wi+2

Wk
u

> Wi+k.

Thus, the element at (Wk/u, j) (0 ≤ j ≤ q− 1) cannot be an element of Ap0(A) but (0, j + 1)
as the same residue modulo Wi. The sequence {`Wi+2 (mod Wi)}Wi−1

`=0 is divided into the
longer parts with length Wk/u and one shorter part with length r. Namely, the longer part
is of the subsequence:

(0, j), (1, j), . . . , (Wk/u− 1, j) (j = 0, 1, . . . , q− 1)

with the next element at (0, j + 1). One shorter part is of the subsequence:

(0, q), (1, q), . . . , (r− 1, q)

with the next element at (0, 0). Notice that similarly to Lemma 3, we have:

rWi+2 + qWi+k ≡ 0 (mod Wi) .
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Since gcd(Wi+2, Wi+k) = 1, all elements in {`Wi+2 (mod Wi)}Wi−1
`=0 are different mod-

ulo Wi. Then by gcd(Wi, Wi+2) = 1, we have:

{`Wi+2 (mod Wi)}Wi−1
`=0 = {` (mod Wi)}Wi−1

`=0 .

By Figure 3, the candidates of the largest element of Ap0(A) are at (r − 1, q) or at
(Wk/u− 1, q− 1). Since (r− 1)Wi+2 + qWi+k > (Wk/u− 1)Wi+2 + (q− 1)Wi+k is equiva-
lent to ruWi+2 > v2WiWk−2, by Lemma 1 (2), if ruWi+2 ≥ v2WiWk−2, then:

g0(Wi, Wi+2, Wi+k) = (r− 1)Wi+2 + qWi+k −Wi .

If ruWi+2 ≤ v2WiWk−2, then:

g0(Wi, Wi+2, Wi+k) =

(
Wk
u
− 1
)

Wi+2 + (q− 1)Wi+k −Wi .

Notice that ruWi+2 = v2WiWk−2 may occur in some cases. For example, (i, k, u, v) =
(9, 2, 6, 133). In this case, both of the two formulas are valid, yielding the Frobenius number
g0(A) = 5949962315313983.

4. The Case Where p > 0

It is important to see that the elements of App(A) are determined from those of App−1(A).

4.1. When k Is Odd

•When p = 1
The corresponding relations from Ap0(A) to Ap1(A) are as follows, see Figure 4.

[The first u rows]

(y, z)→ (y + r, z + q) (0 ≤ y ≤Wk − r− 1, 0 ≤ z ≤ u− 1) ,

(y, z)→ (y−Wk + r, z + q+ u) (Wk − r ≤ y ≤Wk − 1, 0 ≤ z ≤ u− 1)

by Lemma 3 and

(−Wk + r)Wi+2 + (q+ u)Wi+k = (Wi+1 + v(qWk−1 + r)− v2Wk−2)Wi(
Lemma 3 and (13)

)
,

respectively. Note that when r = 0, the second corresponding relation does not exist.
This also implies that all the elements at (y + r, z + q) and (y−Wk + r, z + q+ u) can be
expressed in terms of (Wi, Wi+2, Wi+k) in at least two ways.
[Others]

(y, z)→ (y + Wk, z− u) (0 ≤ y ≤Wk − 1, u ≤ z ≤ q− 1;

0 ≤ y ≤ r− 1, q ≤ z ≤ q+ u− 1)

by the identity (13). This also implies that all the elements at (y + Wk, z − u) can be
expressed in at least two ways.

By Figure 4, there are four candidates to take the largest value of Ap1(A). Namely,
the values at:

(r− 1, q+ 2u− 1), (Wk − 1, q+ u− 1),

(Wk + r− 1, q− 1), (2Wk − 1, q− u− 1).
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If 2uWi+k > WkWi+2, one of the elements at (r− 1, q+ 2u− 1) and at (Wk − 1, q+ u− 1) is
the largest. In this case, if rWi+2 ≥ v2WiWk−2, then:

g1(Wi, Wi+2, Wi+k) = (r− 1)Wi+2 + (q+ 2u− 1)Wi+k −Wi .

If rWi+2 ≤ v2WiWk−2, then:

g1(Wi, Wi+2, Wi+k) = (Wk − 1)Wi+2 + (q+ u− 1)Wi+k −Wi .

If 2uWi+k < WkWi+2, one of the elements at (Wk + r− 1, q− 1) and at (2Wk − 1, q− u− 1)
is the largest. In this case, if rWi+2 ≥ v2WiWk−2, then:

g1(Wi, Wi+2, Wi+k) = (Wk + r− 1)Wi+2 + (q− 1)Wi+k −Wi .

If rWi+2 ≤ v2WiWk−2, then:

g1(Wi, Wi+2, Wi+k) = (2Wk − 1)Wi+2 + (q− u− 1)Wi+k −Wi .

(0, 0) (1, 0) · · · · · · Wk − 1, 0) (Wk, 0) (Wk + 1, 0) · · · · · · (2Wk − 1, 0)
(0, 1) (1, 1) · · · · · · (Wk − 1, 1) (Wk, 1) (Wk + 1, 1) · · · · · · (2Wk − 1, 1)

...
...

...
...

...
...

(0, q− u− 1) (1, q− u− 1) · · · · · · (Wk − 1, q− u− 1) (Wk, q− u− 1) (Wk + 1, q− u− 1) · · · · · · (2Wk − 1, q− u− 1)
(0, q− u) (1, q− u) · · · · · · (Wk − 1, q− u) (Wk, q− u) · · · (Wk + r− 1, q− u)

...
...

...
...

...
(0, q− 1) (1, q− 1) · · · · · · (Wk − 1, q− 1) (Wk, q− 1) · · · (Wk + r− 1, q− 1)
(0, q) · · · (r− 1, q) · · · (Wk − 1, q)

...
...

...
(0, q+ u− 1) · · · (r− 1, q+ u− 1) · · · (Wk − 1, q+ u− 1)
(0, q+ u) · · · (r− 1, q+ u)

...
...

(0, q+ 2u− 1) · · · (r− 1, q+ 2u− 1)

Figure 4. App(Wi, Wi+2, Wi+k) (p = 0, 1) for odd k.

Example 1. When (i, k, u, v) = (5, 3, 4, 3), the first identity is applied:

g1(W5, W7, W8) = g1(409, 8827, 41008)

= 11W7 + 26W8 −W5 = 1162896 .

Indeed, there are two representations in terms of W5, W7, W8 as:

11W7 + 26W8 = 2155W5 + 18W7 + 3W8 ,

which is the largest element of Ap1(W5, W7, W8). In fact, the second, the third and the fourth
identities yield the smaller values:

1060653 = 18W7 + 22W8 −W5(= 2164W5 + 6W7 + 3W8 −W5) ,

1002545 = 30W7 + 18W8 −W5(= 9W5 + 11W7 + 22W8 −W5) ,

900302 = 37W7 + 14W8 −W5(= 9W5 + 18W7 + 18W8 −W5) ,

respectively.
When (i, k, u, v) = (5, 3, 2, 7), the second identity is applied:

g1(W5, W7, W8) = g1(149, 2143, 8136)

= 10W7 + 14W8 −W5(= 753W5 + 7W7 + W8 −W5) = 135185 .

In fact, the first, the third, and the fourth identities yield the smaller values:

134313, 125342, 126214 ,

respectively.
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When (i, k, u, v) = (5, 3, 1, 4), the third identity is applied:

g1(W5, W7, W8) = g1(29, 181, 441)

= 8W7 + 4W8 −W5(= 16W5 + 3W7 + 5W8 −W5) = 3183 .

In fact, the first, the second, and the fourth identities yield the smaller values:

3160, 2900, 2923 ,

respectively.
When (i, k, u, v) = (5, 3, 3, 35), the fourth identity is applied:

g1(W5, W7, W8) = g1(2251, 123929, 898467)

= 87W7 + 46W8 −W5(= 1225W5 + 43W7 + 49W8 −W5) = 521090543 .

In fact, the first, the second, and the third identities yield the smaller values:

51396298, 52046980, 51458372 ,

respectively.

•When p ≥ 2
The similar corresponding relations to the case p = 1 are also applied for p ≥ 2. When

p = 2, the elements of the first u rows of the main area (the second block from the left)
correspond to fill the gap below the left-most block:

(y, z)→ (y−Wk + r, z + q+ u) (Wk ≤ y ≤ 2Wk − r− 1, 0 ≤ z ≤ u− 1) ,

(y, z)→ (y− 2Wk + r, z + q+ 2u) (2Wk − r ≤ y ≤ 2Wk − 1, 0 ≤ z ≤ u− 1)

The other elements of the main area correspond to those in the block immediately to the
right to go up the u row:

(y, z)→ (y + Wk, z− u) (Wk ≤ y ≤ 2Wk − 1, u ≤ z ≤ q− u− 1;

Wk ≤ y ≤Wk + r− 1, q− u ≤ z ≤ q− 1) .

The elements of the stair areas correspond to those in the block immediately to the right in
the form as it is to go up the 2u row:

(y, z)→ (y + Wk, z− 2u) (r ≤ y ≤Wk − 1, q+ u ≤ z ≤ q+ 2u− 1;

0 ≤ y ≤ r− 1, q+ 2u ≤ z ≤ q+ 3u− 1) .

Figure 5 shows the areas in which the elements of p-Apéry set exist for p = 0, 1, 2. The
outermost lower right area is the area where the elements of the 2-Apéry set exist. We can
also show that all the elements of the 2-Apéry set have at least three distinct representations
in terms of Wi, Wi+2, Wi+k.

From Figure 5, there are six candidates to take the largest element of Ap2(A). These
elements are indicated as follows:

2a© : (r− 1, q+ 3u− 1) 2b© : (Wk − 1, q+ 2u− 1)
2c© : (Wk + r− 1, q+ u− 1) 2d© : (2Wk − 1, q− 1)
2e© : (2Wk + r− 1, q− u− 1) 2 f© : (3Wk − 1, q− 2u− 1) .

If uWi+k > (Wk − r)Wi+2 (or rWi+2 ≥ v2WiWk−2), one of those at 2a©, 2c©, and 2e© is the
largest. Otherwise, one of those at 2b©, 2d©, and 2 f© is the largest. However, it is clear that one
of the values at 2a© or 2e© (respectively, 2b© or 2 f©) is larger than at 2c© (respectively, 2d©). Hence,
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if 2uWi+k > WkWi+2, then the element at 2a© (respectively, 2b©) is the largest. Otherwise,
the element at 2e© (respectively, 2 f©) is the largest.

· · · 2 f©

· · · 2e©

· · · 2d©

· · · 2c©

· · · 2b©

· · · 2a©

Figure 5. App
(
Wi, Wi+2, Wi+k

)
(p = 0, 1, 2) for odd k.

In conclusion, if 2uWi+k > WkWi+2 and rWi+2 ≥ v2WiWk−2, then:

g2(Wi, Wi+2, Wi+k) = (r− 1)Wi+2 + (q+ 3u− 1)Wi+k −Wi .

If 2uWi+k > WkWi+2 and rWi+2 ≤ v2WiWk−2, then:

g2(Wi, Wi+2, Wi+k) = (Wk − 1)Wi+2 + (q+ 2u− 1)Wi+k −Wi .

If 2uWi+k < WkWi+2 and rWi+2 ≥ v2WiWk−2, then:

g2(Wi, Wi+2, Wi+k) = (2Wk + r− 1)Wi+2 + (q− u− 1)Wi+k −Wi .

If 2uWi+k < WkWi+2 and rWi+2 ≤ v2WiWk−2, then:

g2(Wi, Wi+2, Wi+k) = (3Wk − 1)Wi+2 + (q− 2u− 1)Wi+k −Wi .

In general, for an integer p > 0, it is sufficient to compare two elements at both ends,
see Figure 6. If 2uWi+k > WkWi+2 and rWi+2 ≥ v2WiWk−2, then:

gp(Wi, Wi+2, Wi+k) = (r− 1)Wi+2 +
(
q+ (p + 1)u− 1

)
Wi+k −Wi .

If 2uWi+k > WkWi+2 and rWi+2 ≤ v2WiWk−2, then:

gp(Wi, Wi+2, Wi+k) = (Wk − 1)Wi+2 + (q+ pu− 1)Wi+k −Wi .

If 2uWi+k < WkWi+2 and rWi+2 ≥ v2WiWk−2, then:

gp(Wi, Wi+2, Wi+k) = (pWk + r− 1)Wi+2 +
(
q− (p− 1)u− 1

)
Wi+k −Wi .

If 2uWi+k < WkWi+2 and rWi+2 ≤ v2WiWk−2, then:

gp(Wi, Wi+2, Wi+k) =
(
(p + 1)Wk − 1

)
Wi+2 + (q− pu− 1)Wi+k −Wi .

The positions of the elements of App(A) below the left-most block and the positions
of App(A) in the right-most block are arranged as shown in Figure 6.

This situation is continued as long as z = q− pu ≥ 0. However, when p > q/u− 1,
the shape of the block on the right side collapses. Thus, the regularity of taking the
maximum value of App(A) is broken. Hence, the fourth case holds until p ≤ bq/uc − 1
and other cases hold for p ≤ bq/uc.
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· · · ((p + 1)Wk − 1, q− pu− 1)

· · · · · · · · · (pWk + r− 1, q− (p− 1)u− 1)

. . .

... · · · (Wk − 1, q+ pu− 1)

· · · (r− 1, q+ (p + 1)u− 1)

Figure 6. App
(
Wi, Wi+2, Wi+k

)
for odd k.

In conclusion, when k is odd, the p-Frobenius number is given as follows.

Theorem 1. Let i be an integer and k be odd with 3 ≤ k ≤ i. Let q and r be determined as (9) and
(10). For 0 ≤ p ≤ q/u, if 2uWi+k > WkWi+2 and rWi+2 ≥ v2WiWk−2, then:

gp(Wi, Wi+2, Wi+k) = (r− 1)Wi+2 +
(
q+ (p + 1)u− 1

)
Wi+k −Wi .

If 2uWi+k > WkWi+2 and rWi+2 ≤ v2WiWk−2, then:

gp(Wi, Wi+2, Wi+k) = (Wk − 1)Wi+2 + (q+ pu− 1)Wi+k −Wi .

If 2uWi+k < WkWi+2 and rWi+2 ≥ v2WiWk−2, then:

gp(Wi, Wi+2, Wi+k) = (pWk + r− 1)Wi+2 +
(
q− (p− 1)u− 1

)
Wi+k −Wi .

If 2uWi+k < WkWi+2 and rWi+2 ≤ v2WiWk−2, then for p ≤ q/u− 1:

gp(Wi, Wi+2, Wi+k) =
(
(p + 1)Wk − 1

)
Wi+2 + (q− pu− 1)Wi+k −Wi .

Example 2. When (i, k, u, v) = (5, 3, 3, 7), the first identity is applied. Since q = 19 and r = 5, for
0 ≤ p ≤ b19/3c = 6 we have:

{gp(W5, W7, W8)}6
p=0 = {gp(319, 6553, 29739)}6

p=0

= 650412, 739629, 828846, 918063, 1007280, 1096497, 1185714.

Namely, the corresponding element for each integer is at (4, 3p + 21) (p = 0, 1, . . . , 6).
However, for p ≥ 7, the p-Frobenius numbers can be computed neither by the above formula nor by
any other closed formulas. Namely, the real value is g7(A) = 1218479, corresponding to (9, 39),
though the formula gives 1274931, corresponding to (4, 42).

4.2. When k Is Even

•When p = 1
Similarly to the odd case where k is odd, the elements of App(A) can be determined

from those of App−1(A). When p = 1, there are corresponding relations as follows.
[The first row z = 0]

(y, 0)→ (y + r, z + q) (0 ≤ y ≤Wk/u− r− 1) ,

(y, 0)→ (y−Wk/u + r, z + q + 1) (Wk/u− r ≤ y ≤Wk/u− 1)

with

rWi+2 + qWi+k = (Wi+1 + v(qWk−1 + r))Wi

due to (15). Note that when r = 0 the second corresponding relation does not exist. This
also implies that all the elements at (y + r, z + q) and (y −Wk/u + r, z + q + 1) can be
expressed in terms of (Wi, Wi+2, Wi+k) in at least two ways.
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[Others]

(y, z)→ (y + Wk/u, z− 1) (0 ≤ y ≤Wk/u− 1, 1 ≤ z ≤ q− 1;

0 ≤ y ≤ r− 1, z = q)

by the identity (13). This also implies that all the elements at (y + Wk/u, z − 1) can be
expressed in at least two ways.

By Figure 7, there are four candidates to take the largest value of Ap1(A). Namely,
the values at:

(r− 1, q + 1), (Wk/u− 1, q),

(Wk/u + r− 1, q− 1), (2Wk/u− 1, q− 2).

If 2uWi+k > WkWi+2, one of the elements at (r− 1, q + 1) and at (Wk/u− 1, q) is the
largest. In this case, if ruWi+2 ≥ v2WiWk−2, then:

g1(Wi, Wi+2, Wi+k) = (r− 1)Wi+2 + (q + 1)Wi+k −Wi .

If ruWi+2 ≤ v2WiWk−2, then

g1(Wi, Wi+2, Wi+k) =

(
Wk
u
− 1
)

Wi+2 + qWi+k −Wi .

If 2uWi+k < WkWi+2, one of the elements at (Wk/u + r− 1, q− 1) and at (2Wk/u− 1, q− 2)
is the largest. In this case, if ruWi+2 ≥ v2WiWk−2, then:

g1(Wi, Wi+2, Wi+k) =

(
Wk
u

+ r− 1
)

Wi+2 + (q− 1)Wi+k −Wi .

If ruWi+2 ≤ v2WiWk−2, then:

g1(Wi, Wi+2, Wi+k) =

(
2Wk

u
− 1
)

Wi+2 + (q− 2)Wi+k −Wi .

•When p ≥ 2

(0, 0) (1, 0) · · · · · · (Wk/u− 1, 0) (Wk/u, 0) (Wk/u + 1, 0) · · · · · · (2Wk/u− 1, 0)
(0, 1) (1, 1) · · · · · · (Wk/u− 1, 1) (Wk/u, 1) (Wk/u + 1, 1) · · · · · · (2Wk/u− 1, 1)

...
...

...
...

...
...

(0, q− 2) (1, q− 2) · · · · · · (Wk/u− 1, q− 2) (Wk/u, q− 2) (Wk/u + 1, q− 2) · · · · · · (2Wk/u− 1, q− 2)
(0, q− 1) (1, q− 1) · · · · · · (Wk/u− 1, q− 1) (Wk/u, q− 1) · · · (Wk/u + r− 1, q− 1)
(0, q) · · · (r− 1, q) · · · (Wk/u− 1, q)

(0, q + 1) · · · (r− 1, q + 1)

Figure 7. App(Wi, Wi+2, Wi+k) (p = 0, 1) for even k.

The situation is similar for p ≥ 2. From Figure 8, there are six candidates to take the
largest element of Ap2(A). These elements are indicated as follows:

2a© : (r− 1, q + 2) 2b© : (Wk/u− 1, q + 1)
2c© : (Wk/u + r− 1, q) 2d© : (2Wk/u− 1, q− 1)
2e© : (2Wk/u + r− 1, q− 2) 2 f© : (3Wk/u− 1, q− 3) .

Similarly to the case where k is odd, middle element at 2c© and at 2d© cannot take the
largest value. Hence, if 2uWi+k > WkWi+2, then the element at 2a© (respectively, 2b©) is the
largest. Otherwise, the element at 2e© (respectively, 2 f©) is the largest.
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· · · 2 f©
· · · 2e©

· · · 2d©
· · · 2c©

· · · 2b©
· · · 2a©

Figure 8. App(Wi, Wi+2, Wi+k) (p = 0, 1, 2) for even k.

In conclusion, if 2uWi+k > WkWi+2 and ruWi+2 ≥ v2WiWk−2, then:

g2(Wi, Wi+2, Wi+k) = (r− 1)Wi+2 + (q + 2)Wi+k −Wi .

If 2uWi+k > WkWi+2 and ruWi+2 ≤ v2WiWk−2, then:

g2(Wi, Wi+2, Wi+k) =

(
Wk
u
− 1
)

Wi+2 + (q + 1)Wi+k −Wi .

If 2uWi+k < WkWi+2 and ruWi+2 ≥ v2WiWk−2, then:

g2(Wi, Wi+2, Wi+k) =

(
2Wk

u
+ r− 1

)
Wi+2 + (q− 2)Wi+k −Wi .

If 2uWi+k < WkWi+2 and ruWi+2 ≤ v2WiWk−2, then:

g2(Wi, Wi+2, Wi+k) =

(
3Wk

u
− 1
)

Wi+2 + (q− 3)Wi+k −Wi .

In general, for an integer p > 0, it is sufficient to compare two elements at both ends,
see Figure 9. If 2uWi+k > WkWi+2 and ruWi+2 ≥ v2WiWk−2, then:

gp(Wi, Wi+2, Wi+k) = (r− 1)Wi+2 + (q + p)Wi+k −Wi .

If 2uWi+k > WkWi+2 and ruWi+2 ≤ v2WiWk−2, then:

gp(Wi, Wi+2, Wi+k) =

(
Wk
u
− 1
)

Wi+2 + (q + p− 1)Wi+k −Wi .

If 2uWi+k < WkWi+2 and ruWi+2 ≥ v2WiWk−2, then:

gp(Wi, Wi+2, Wi+k) =

(
pWk

u
+ r− 1

)
Wi+2 + (q− p)Wi+k −Wi .

If 2uWi+k < WkWi+2 and ruWi+2 ≤ v2WiWk−2, then:

gp(Wi, Wi+2, Wi+k) =

(
(p + 1)Wk

u
− 1
)

Wi+2 + (q− p− 1)Wi+k −Wi .

The positions of the elements of App(A) below the left-most block and the positions
of App(A) in the right-most block are arranged as shown in Figure 6.

This situation is continued as long as z = q − p − 1 ≥ 0. However, when p = q,
the shape of the block on the right side collapses. Namely, we cannot take the value at(
(p + 1)Wk/u− 1, q− p− 1

)
. Thus, the regularity of taking the maximum value of App(A)

is broken. Hence, the fourth case holds until p ≤ q− 1, and other cases hold for p ≤ q.

· · · ((p + 1)Wk/u− 1, q− p− 1)
· · · · · · · · · (pWk/u + r− 1, q− p)

. . .

... · · · (Wk/u− 1, q + p− 1)
· · · (r− 1, q + p)

Figure 9. App(Wi, Wi+2, Wi+k) for even k.
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In conclusion, when k is even, the p-Frobenius number is given as follows.

Theorem 2. Let i be an integer and k be even with 3 ≤ k ≤ i. Let q and r be determined as (15).
For 0 ≤ p ≤ q, if 2uWi+k > WkWi+2 and ruWi+2 ≥ v2WiWk−2, then:

gp(Wi, Wi+2, Wi+k) = (r− 1)Wi+2 + (q + p)Wi+k −Wi .

If 2uWi+k > WkWi+2 and ruWi+2 ≤ v2WiWk−2, then:

gp(Wi, Wi+2, Wi+k) =

(
Wk
u
− 1
)

Wi+2 + (q + p− 1)Wi+k −Wi .

If 2uWi+k < WkWi+2 and ruWi+2 ≥ v2WiWk−2, then:

gp(Wi, Wi+2, Wi+k) =

(
pWk

u
+ r− 1

)
Wi+2 + (q− p)Wi+k −Wi .

If 2uWi+k < WkWi+2 and ruWi+2 ≤ v2WiWk−2, then for 0 ≤ p ≤ q− 1:

gp(Wi, Wi+2, Wi+k) =

(
(p + 1)Wk

u
− 1
)

Wi+2 + (q− p− 1)Wi+k −Wi .

Example 3. When (i, k, u, v) = (5, 4, 2, 3), we have q = 6 and r = 1. So, the elements of
Ap6(W5, W7, W9), where (W5, W7, W9) = (61, 547, 4921), are given as in Figure 10. The largest
element is at (Wk/u− 1, q + p− 1) = (9, 11), which comes from the second identity. Thus:

g6(W5, W7, W9) = 9W7 + 11W9 −W5 = 58993 .

Notice that the right-most element is at (pWk/u + r− 1, q− p) = (60, 0) and the block of
the right side is empty. Therefore, the formula does not hold for p = 7. In fact, g7(A) = 59542,
corresponding to (19, 10), though the formula gives 63,914, corresponding to (9, 12).

(60, 0)
(51, 1) . . . (59, 1)

(50, 2)
(41, 3) . . . (49, 3)

(40, 4)
(31, 5) . . . (39, 5)

(30, 6)
(21, 7) . . . (29, 7)

(20, 8)
(11, 9) . . . (19, 9)

(10, 10)
(1, 11) . . . (9, 11)

(0, 12)

Figure 10. Ap6(W5, W7, W9) for (u, v) = (2, 3).

5. p-Genus
5.1. The Case Where k Is Odd

Let k be odd. For a nonnegative integer p, the areas of the p-Apéry set can be divided
into three parts: the stairs part (left), the stairs part (right), and the main part. By referring
to Figure 6 (with Figures 4 and 5), we can compute:

∑
w∈App(A)

w

=
p

∑
l=0

q+(p−2l+1)u−1

∑
z=q+(p−2l)u

lWk+r−1

∑
y=lWk

(yWi+2 + zWi+k)
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+
p

∑
l=0

q+(p−2l)u−1

∑
z=q+(p−2l−1)u

(l+1)Wk−1

∑
y=lWk+r

(yWi+2 + zWi+k)

+
q−pu−1

∑
z=0

pWk+r−1

∑
y=pWk

(yWi+2 + zWi+k) +
q−(p+1)u−1

∑
z=0

(p+1)Wk−1

∑
y=pWk+r

(yWi+2 + zWi+k)

=
Wi
2u
(
(Wi − u)Wi+2 + u(u− 1)Wi+k − qv2(2Wi − uWk)Wk−2

+ q2v2WkWk−2
)

+
pWi

2
Wk(2Wi+2 − uv2Wk−2)−

p2Wi
2

uv2WkWk−2 .

Here, we used the relation (9) to simplify the expression. In addition, by qvs.Wk−2 ≡
qWk ≡Wi (mod u), we have:

(Wi − u)Wi+2 + u(u− 1)Wi+k − qv2(2Wi − uWk)Wk−2 + q2v2WkWk−2

≡ vs.W2
i − 2vs.W2

i + vW2
i ≡ 0 (mod u).

By Lemma 1 (3), we have:

np(Wi, Wi+2, Wi+k)

=
1

2u
(
(Wi − u)Wi+2 + u(u− 1)Wi+k − qv2(2Wi − uWk)Wk−2

+ q2v2WkWk−2
)

+
p
2

Wk(2Wi+2 − uv2Wk−2)−
p2

2
uv2WkWk−2 −

Wi − 1
2

=
1

2u
(
(Wi − u)(Wi+2 − u) + u(u− 1)(Wi+k − 1)− qv2(2Wi − uWk)Wk−2

+ q2v2WkWk−2
)

+
p
2

Wk(2Wi+2 − uv2Wk−2)−
p2

2
uv2WkWk−2 .

Since the z value of the right-most side must be nonnegative, q− pu− 1 ≥ 0. Namely,
the above formula is valid for p ≤ (q− 1)/u.

Example 4. When (i, k, u, v) = (5, 3, 3, 7), by:

q = 3
⌊

1
3

(⌊
319
16

⌋
− 7

5−3
2

)⌋
+ 7

5−3
2 = 19 ,

for 0 ≤ p ≤ (q− 1)/u = 6 we have for 0 ≤ p ≤ bq/uc = 6

{np(W5, W7, W8)}6
p=0 = {np(319, 6553, 29739)6

p=0

= 330327, 432823, 532967, 630759, 726199, 819287, 910023.

However, for p ≥ 7, the p-genus cannot be obtained by the above formula. The real values are
given by:

{np(W5, W7, W8)}9
p=7 = 965215, 1021448, 1067956,

though the formula gives:
998407, 1084439, 1168119.
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5.2. The Case Where k Is Even

Similarly to the case for k is odd, when k is even, by referring to Figure 9 (with
Figures 7 and 8), we can compute:

∑
w∈App(A)

w

=
p

∑
l=0

lWk/u+r−1

∑
y=lWk/u

(
yWi+2 + (q + p− 2l)Wi+k

)

+
p

∑
l=0

(l+1)Wk/u−1

∑
y=lWk/u+r

(yWi+2 + (q + p− 2l − 1)Wi+k)

+
q−p−1

∑
z=0

pWk/u+r−1

∑
y=pWk/u

(yWi+2 + zWi+k) +
q−p−2

∑
z=0

(p+1)Wk/u−1

∑
y=pWk/u+r

(yWi+2 + zWi+k)

(When p = q− 1, the fourth term is empty, and

when p = q, the third and the fourth terms are empty.)

=
1

2u2 Wi
(
u2Wi+2(Wi − 1)− qv2Wk−2(2uWi −Wk)

+ q2v2WkWk−2
)

+
p

2u2 WiWk(2uWi+2 − v2Wk−2)−
p2

2u2 v2WiWkWk−2 .

Here, we used the relation (15) to simplify the expression. In addition:

Wk−2(2uWi −Wk)

u2 =
Wk−2

u

(
2Wi −

Wk
u

)
,

v2WkWk−2

u2 = v2 Wk
u

Wk−2
u

,

Wk(2uWi+2 − v2Wk−2)

u2 =
Wk
u

(
2Wi+2 − v2 Wk−2

u

)
,

v2WiWkWk−2

u2 = v2Wi
Wk
u

Wk−2
u

are all positive integers. By Lemma 1 (3), we have:

np(Wi, Wi+2, Wi+k)

=
1

2u2

(
u2Wi+2(Wi − 1)− qv2Wk−2(2uWi −Wk)

+ q2v2WkWk−2
)

+
p

2u2 Wk(2uWi+2 − v2Wk−2)−
p2

2u2 v2WkWk−2 −
Wi − 1

2

=
1

2u2

(
u2(Wi − 1)(Wi+2 − 1)− qv2Wk−2(2uWi −Wk)

+ q2v2WkWk−2
)

+
p

2u2 Wk(2uWi+2 − v2Wk−2)−
p2

2u2 v2WkWk−2 .

In conclusion, the p-genus is explicitly given as follows.
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Theorem 3. Let i and k be integers with gcd(i, k) = 1 and i ≥ k ≥ 3. When k is odd, for
0 ≤ p ≤ q/u we have:

np(Wi, Wi+2, Wi+k)

=
1

2u
(
(Wi − u)(Wi+2 − u) + u(u− 1)(Wi+k − 1)− qv2(2Wi − uWk)Wk−2

+ q2v2WkWk−2
)

+
p
2

Wk(2Wi+2 − uv2Wk−2)−
p2

2
uv2WkWk−2 ,

where q and r are given in (9). When k is even (and i is odd), for 0 ≤ p ≤ q we have:

np(Wi, Wi+2, Wi+k)

=
1

2u2

(
u2(Wi − 1)(Wi+2 − 1)− qv2Wk−2(2uWi −Wk)

+ q2v2WkWk−2
)

+
p

2u2 Wk(2uWi+2 − v2Wk−2)−
p2

2u2 v2WkWk−2 ,

where q and r are given in (15).

Example 5. Let (i, k, u, v) = (5, 4, 2, 3). So, q = b2W5/W4c = b2 · 61/20c = 6. Then, for
0 ≤ p ≤ 6 by the formula we have:

{np(W5, W7, W9)}6
p=0 = {np(61, 547, 4921)}6

p=0

= 14976, 20356, 25646, 30846, 35956, 40976, 45906 .

However, contrary to the fact that n7(W5, W7, W9) = 46885, the formula gives 50746.

6. Final Comments

The original numbers studied by Horadam satisfy the recurrence relation Wn =
uWn−1 − vWn−2. From this point of view, almost all the above identities hold by replacing
v by −v, though the condition u > |v| is necessary. For example, the identities of (7) and (8)
are replaced by:

Wi+k = Wi+1Wk − vWiWk−1 ,

Wn ≡
{

0 (mod u) if n is even;

(−v)
n−1

2 (mod u) if n is odd .

respectively. For example, when (i, k, u, v) = (8, 5, 4,−3), by q = 24 for 0 ≤ p ≤ 6 = 24/4
by the first identity of Theorem 1, we have:

{gp(W5, W7, W9)}6
p=0 = 24265799, 27454443, 30643087,

33831731, 37020375, 40209019, 43397663 .

When (i, k, u, v) = (5, 4, 3,−2), by q = 6 for 0 ≤ p ≤ 6 by the first identity of
Theorem 2, we have:

{gp(W5, W7, W9)}6
p=0 = 3035, 3546, 4057, 4568, 5079, 5590, 6101 .

7. Conclusions

In this paper, we give explicit formulas of the p-Frobenius number and the p-genus
of triplet (Wi, Wi+2, Wi+k) for integers i, k(≥3), where Wn’s are the so-called Horadam
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numbers, satisfying the recurrence relation Wn = uWn−1 + vWn−2 (n ≥ 2) with W0 = 0
and W1 = 1. We give explicit closed formulas of p-Frobenius numbers and p-genus of this
triple. When u = v = 1, v = 1 or u = 1, the results for Fibonacci, Pell, and Jacobsthal triples
are recovered.

Horadam also studied the number Wn with arbitrary initial values W0 and W1. How-
ever, with arbitrary initial values, many identities (e.g., (7)) do not hold as they are. Hence,
the situation becomes too complicated. An approach to get some recurrences to a wide
class of polynomials in [39] may be useful for future works.
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Abstract: Suppose that R = Zp4 [u] with u2 = p3β and pu = 0, where p is a prime and β is a unit in R.
Then, R is a local non-chain ring of order p5 with a unique maximal ideal J = (p, u) and a residue
field of order p. A linear code C of length N over R is an R-submodule of RN . The purpose of this
article is to examine MacWilliams identities and generator matrices for linear codes of length N over
R. We first prove that when p 6= 2, there are precisely two distinct rings with these properties up to
isomorphism. However, for p = 2, only a single such ring is found. Furthermore, we fully describe
the lattice of ideals of R and their orders. We then calculate the generator matrices and MacWilliams
relations for the linear codes C over R, illustrated with numerical examples. It is important to address
that there are challenges associated with working with linear codes over non-chain rings, as such
rings are not principal ideal rings.

Keywords: MacWilliams identities; coding over rings; local rings; generator matrices

MSC: 16L30; 94B05; 16P20; 94B60

1. Introduction

Linear codes of length N over a finite ring R are R-submodules of RN . These codes
have been traditionally studied over finite fields; however, many significant codes over
fields have been related to those over finite rings by Gray maps [1–4]. In this article, all of
the alphabet rings involved are finite, commutative, and have an identity. A ring R is called
local if it has a unique maximal ideal, denoted by J (Jacobson radical). When all ideals of R
are principal, R is then called the principal ideal ring (PIR). A chain ring is a principal local
ring, and thus many conclusions obtained for coding over chain rings also hold over PIRs.
One of the main reasons that Frobenius rings, defined later, are considered the appropriate
class to describe codes is because they satisfy both MacWilliams theorems. Furthermore,
Frobenius local rings can be decomposed into their component parts and this enables us
to find their generating characters. To fully understand codes over Frobenius rings, it is
therefore necessary, despite the challenges, to consider local non-chain rings [5–7]. For
more information on the subject, please refer to [5,8–11] and the references therein.

In this work, the main purpose is to obtain significant coding results over Frobenius
local rings. In particular, linear codes of length N over the ring Zp4 [u]/(u2 − p3β, pu), are
the focus of this paper. Prior work on these rings was presented in [12], emphasizing their
applicability to coding theory, and their close connection to Zpn and linear binary codes [3].
Our attention is also on exploring the roles of generator matrices and MacWilliams relations
in error-correction theory, particularly in their role to weight enumerators of a code and its
dual code. The authors of [6] considered these approaches for Frobenius local rings of order
16. While in [7], generator matrices and the MacWilliams relations were described for codes
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over rings of order 32. This work makes an effort to build on the previous findings and
provides access to more general rings with higher orders. Let R = Zp4 [u], with u2 = βp3

and pu = 0 as conditions, where β ∈ U(R), the unite group of R. Initially, we provide a
formula for a generating character χ associated with R, through which we can calculate
the MacWilliams relations as matrices of specific sizes for a code C over R. For codes over
non-chains, it is more challenging to build a generator matrix G than for codes over chains.
Although a simple set of generators can still be found, this type of generator matrix may
not provide straightforward information about the code size. In this research, we introduce
multiple numerical examples that show the code size might not always determined directly
from such a generator matrix. Additionally, the generator matrix G of a code C is completely
determined through the algorithm described in Theorem 8.

In Section 3, the classification of rings of the form Zpn [u]/(u2 − pn−1β, pu), with
invariants p, n, 1, 1, n− 1 is described, after the initial definitions and results in Section 2.
Particular attention is given to providing all the details necessary to characterize rings of
order p5 and to outline the lattice of their ideals. Section 4 provides the general procedure
for generating characters for Zp4 [u]/(u2 − p3β, pu). Additionally, the symmetrized weight
enumerator’s corresponding to the matrix is acquired, and MacWilliams relations are
derived. In Section 5, the findings regarding matrices that produce linear codes over such
rings are presented.

2. Preliminaries

The notations and basic information that will be used later in our discussion are
introduced in this section. Let R be a local ring of identity, and let J be its maximal ideal.
For the results mentioned in this section, we refer readers to [4,12–16].

The order of J is p(m−1)r provided Jm = 0, and the size of R, is |R| = pmr with
R/J ∼= GF(pr) = F. In R, the characteristic takes the form pn, and 1 ≤ n ≤ m. Additionally,
R has a subring R0, of the form GR(pn, r), called a Galois ring with p, n, r. Moreover, there
is u ∈ J, and R = R0 + uR0,

J = pR0 + uR0.
(1)

If J is principal, then R is chain, and particularly when J = (p), we have n = m and

R = Zpn [α] ∼= Zpn [x]/(g(x)),

where α is a root of a specific polynomial g(x) ∈ Zpn [x]. Let

Γ(r) = (α) ∪ {0} = {0, 1, α, α2, . . . , αpr−2};
Γ∗(r) = (α) = {1, α, α2, . . . , αpr−2}.

Suppose γ ∈ R, so

γ = α1 + pα1 + p2α2 + · · ·+ pn−1αn−2 (p-adic expression). (2)

where αi ∈ Γ(r). Furthermore, assume that t is the smallest number with condition of
ptu = 0. We label p, n, r and t as the parameter (invariants) of R.

In our later discussion, we use r = 1 and t = 1. This implies that R0 = Zpn and pu = 0.
In addition, we consider g(x) as

g(x) = x2 − p(n−1)β, (3)

where β ∈ Γ∗(1). From [12],

R = Zpn [u]/(u2 − p(n−1)β, pu),

where (p, n, r, t, d) = (p, n, 1, 1, n− 1).
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The total sum of all minimal ideals in R is what we define as the socle of R, also known
as soc(R). As R is commutative, thus

soc(R) = {v ∈ R : v ∈ ann(J)},
ann(J) = {a ∈ R : ay = 0, for all y ∈ J}.

We will highlight the definition of Frobenius rings that is most pertinent to our analysis.
In [14], R is called Frobenius if

R/J ∼= soc(R).

Let HomZ(R,C∗) denote the character group of (R,+), then elements of HomZ(R,C∗)
are called characters χ of (R,+). If kerχ has no non-trivial ideals of R, then χ is named a
generating character.

Theorem 1 (Honold [14]). Let R be a finite ring. Then, soc(R) is cyclic, if and only if R is a
Frobenius ring.

A code C of length N over R is a subset of RN ; it is called a linear code if C is a
submodule [4]. Furthermore, by including the inner-product (·) in RN , we can define the
dual code C⊥ of C as follows

C⊥ = {u : c · u = 0, c ∈ C}. (4)

3. On the Ring Zpn [u]/(u2− p(n−1)β, pu)

In this section, we prove some results on the ring R = Zpn [u]/(u2 − p(n−1)β, pu)
which is a finite ring of order pn+1 and with residue field F = Zp. These results help us in
the subsequent discussion.

Theorem 2. The ring R = Zpn [u]/(u2 − pn−1β, pu) is a Frobenius local ring.

Proof. As each element of R is uniquely written a + bu, where a ∈ Zpn and b ∈ Γ(1). Also,
as J = (p, u), then R is a local ring of order pn+1 and Jn = 0. In fact, R is a local ring with a
singleton basis and p, n, 1, 1. We now prove that R is Frobenius. Because elements of soc(R)
annihilates J = (p, u), particularly pu = 0, pn−1 p = 0, then pn−1 J = 0. Thus, pn−1 ∈
soc(R). Suppose x ∈ soc(R) and x 6= 0. Then, xJ = 0; in particular, xu = 0. This implies
that x ∈ (p), but as xp = 0 will also lead to x ∈ (pn−1). Hence,

soc(R) = (pn−1).

Using Theorem 1, R is Frobenius.

Corollary 1. As J = (p, u), then R is a non-chain singleton ring.

Remark 1. For any Frobenius local ring R with invariants p, n, r and t = 1, then

soc(R) = (pn−1).

3.1. Determination of Rings of Order pn+1 with p, n, 1, 1, n− 1

An exhaustive characterization of all rings with p, n, 1, 1, n− 1 is given by Theorem 3,
which is essential for our upcoming discussion.

Theorem 3. Assume that R is a ring and that (p, n, r, t, d) = (p, n, 1, 1, n− 1) is its invariant.
Then, among the rings given in Table 1, R is isomorphic to one particular ring.

85



Axioms 2024, 13, 552

Table 1. Rings of order pn+1 with p, n, 1, 1, n− 1.

p 6= 2 p = 2

R1 = Zp4n[u]/(u
2 − pn−1β, pu)

R2 = Zpn [u]/(u2 − pn−1, pu) R3 = Z2n [u]/(u2 − 2n−1, 2u)

Proof. Every element of R is uniquely expressed as a + bu, where a ∈ Zpn and b ∈ Γ(1). As
pu = 0, then the associated polynomial is of the form g(x) = x2 − pn−1β, where β ∈ Γ∗(1).
Suppose that p = 2. As Γ∗(1) = {1}, hence there exists precisely one class represented by

R3 = Z2n [u]/(u2 − 2n−1, 2u).

From now, we assume that p 6= 2. Consider the usual partition on Γ∗(1).

A = {β ∈ Γ∗(1) : β /∈ Γ∗(1)2};
B = {β ∈ Γ∗(1) : β ∈ Γ∗(1)2}.

It is worth noting that | A |= p−1
2 =| B | . We next proceed the proof with two cases.

Case a. We show that R1 and R2 are not isomorphic, that is, they are not in the same
class when β ∈ A. In contrast, suppose that R1

∼= R2, and define the isomorphism as φ.
Assuming J(R2) = (p, v), for some β′ ∈ Γ∗(1), φ(u) = β′v. Consequently, we note

(φ(u))2 = φ(u2)

(β′v)2 = φ(pn−1β)

β′2v2 = pn−1φ(β)

β′2(pn−1) = pn−1φ(β)

pn−1β′2 = pn−1φ(β)

β′2 = φ(β).

We have φ(β) = β, because φ restricted to Γ(1) is a fixed isomorphism. Furthermore,
because p 6= 2, this contradicts the assumption about β, and thus β 6= β′2. Therefore,
R1 � R2.
Case b. When β ∈ B. In such a case, there exists β1 ∈ Γ∗(1) such that β = β2

1. Note that

g(x) = x2 − pn−1β

= x2 − pn−1β2
1

= β2
1[(β2

1)
−1x2 − pn−1]

= β2
1[(β−1

1 x)2 − pn−1].

As u is a root of g(x), then g(u) = 0, and hence u2 − pn−1β = 0. This implies that, from the
above argument, β2

1[(β−1
1 u)2 − pn−1] = 0. Thus, (β−1

1 u)2 − pn−1 = 0. This suggests that
g(x) for R1 can be taken as g(x) = x2 − pn−1, which is identical to that of R2. As a result,
R1
∼= R2. To sum up, we have two classes of such rings that are not isomorphic

Ω1 : All rings with associated polynomials g(x) = x2 − pn−1β, where β ∈ A;

Ω2 : All rings with associated polynomials g(x) = x2 − pn−1β, where β ∈ B.

The first class is represented by

R1 = Zpn [u]/(u2 − pn−1β, pu),
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where β is any element in A. While the second class is represented by

R2 = Zpn [u]/(u2 − pn−1, pu).

Corollary 2. Let N(p, 4, 1, 1, 3) be the number rings with (p, 4, 1, 1, 3). Then,

N(p, 4, 1, 1, 3) =

{
1, if p = 2;
2, if p 6= 2.

Proof. The proof is direct from the proof of Theorem 3 with n = 4 and d = n− 1.

3.2. Lattice of Ideals of R

Theorem 4. The ideals of R is given by the following lattice (see Figure 1).

(1)=R

(p, u) = J

Ip =(p) I0 =(u)I1 =(u + p)I2 =(p2, u). . .In−2 =(pn−2, u)

I′n−2 =(u + pn−2) . . . I′2 =(u + p2) J2 =(p2)

J3 =(p3)

...

J(n−1) =(pn−1)

Jn = (0)

Figure 1. Lattice of ideals of R = Zpn [u]/(u2 − pn−1β, pu).

Proof. Consider a proper ideal of R, I. As R is local, J represents the only maximal ideal
of R; hence, I ⊆ J. This indicates that I is generated by a combination of p and u and
their powers. Given that pu = 0 and u2 = βpn−1, we have (pi + u2) = (pi, u2) = (pj),
where j = min{i, n− 1}. Thus, we only consider ideals generated by pi and u and their
combinations. In other words, without raising J to a power, there are only n choices for
I, namely

(1), (pi), (vpi + u), (pi, u),
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where v ∈ U(R) and i = 1, 2, . . . , n. First, note that (vpi + u) = (pi + w), where w = v−1u.
It is clear that (pi + u) ⊂ (pi, u) and (pi, u) ⊂ (pj, u), and, moreover, (pi + u) ⊂ (pj + u),
where i > j. Thus, if Ii = (pi, u) and I′i = (pi + u),

In−2 ⊂ In−3 ⊂ · · · ⊂ I2 ⊂ I1;

I′n−2 ⊂ I′n−3 ⊂ · · · ⊂ I′2 ⊂ I′1;

I′i ⊂ Ii.

As u2 = βpn−1, thus In−1 = (pn−1, u) = (pn−1 + u) = (u) = I0. Finally, we justify that
Ji = (pi), where i > 1. As pu = 0, then Ji = (pi, ui). If i = 2, then J2 = p2(1, pn−3β) = (p2.)
Now, if i > 2, then ui = 0, and hence Ji = (pi). Therefore, the results follow.

Corollary 3. Suppose R as in Theorem 4. Then, for i = 1, 2, . . . , n,

| I |=





pn+1, if I = R;
pn, if I = J;
pn−1, if I = Ip;
p2, if I = I0;
(p− 1)pn−i, if I = Ii;
pn−i−1 if I = I′i ;
pn−i if I = Ji.

Remark 2. Two non-isomorphic rings can have the same ideal lattice.

Remark 3. Theorem 4 states that every ideal of R contains soc(R).

Example 1. The ring Z34 [u]/(32 − 27, 3u) is a Frobenius local non-chain ring. Because d = 3,
t = 1, the assumption of Theorem 2. Note that soc(R) = (33) and | soc(R) |=| F |.

3.3. Units of R = Zpn [u]/(u2 − pn−1β, pu)

The form of the units of R will be established in this subsection, which will be useful
in the following section. The elements in R \ J are the units of R, as R is local. Furthermore,
because J = (p, u), if α ∈ R \ J,

α = a + bu, (5)

where a ∈ Zpn , (a, p) = 1 and b ∈ R. The elements of Zpn can be written as

a = α1 + pα2 + p2α3 + · · ·+ pn−1αn,

where α1 ∈ Γ(1)∗ and αi ∈ Γ(1), for i = 2, 3, . . . , n. Thus, α ∈ U(R) can be expressed as

α = β + wx, (6)

where β ∈ Γ(1)∗, w ∈ R and x ∈ J. In other words,

α = βh, (7)

where h = 1+wβ−1x ∈ H = 1+ J. Moreover, observe that Γ(1)∗ ∩H = 1, as (p− 1, pn) = 1.
Consequently, the following theorem is established.

Theorem 5. Every element v of U(R) is of the form v = x or v = x + αu, where (x, p) = 1 and
α ∈ Γ(1)∗. Moreover, U(R) is of order (p− 1)pn and

U(R) = (α)× H. (8)
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Example 2. If R = Z24 [u]/(u2 − 23β, 2u), then the units of R are of the form

U(R) = {1, 3, 5, 7, 9, 11, 13, 15, 1 + u, 3 + u, 5 + u, 7 + u, 9 + u, 11 + u, 13 + u, 15 + u}.

4. MacWilliams Identities

With p, n, 1, 1 as invariants and g(x) = x2 − pn−1β, let R be a Frobenius local ring.
Theorem 6 outlines a method to produce a generating character χ for any such ring. Suppose
γi is a pni -root of unity and ai ≤ mr for each i.

Theorem 6 ([7]). Let R be a ring with p, n, r, t, d. There is q ∈ Z, such that q ≥ 1, and

χ(ω) = γa1
1 γa2

2 . . . γ
aq
q , (9)

is a generating character of R, 1 ≤ i ≤ q.

The formulas of χ for R are shown in the following Table 2, where γ, δ, and ζ are the
pnth, pth, and 2nth roots of unity, respectively.

Table 2. χ for the ring R.

Ring (R,+) χ

Z2n [u]/(u2 − 2n−1, 2u) Z24 ×Z2 χ(a + bu) = ζa(−1)b

Zpn [u]/(u2 − pn−1, pu) Zpn ×Zp χ(a + bu) = γaδb

The MacWilliams identities for various version of R are now computed. Actually, the
class of all Frobenius rings is a broader class of finite rings to which these relationships
can be extended. These identities are fundamental to the study of coding theory because
they introduce a crucial link between a code’s dual and weight enumerator. Assume the
following: The elements in R = {a1, a2, a3, . . . ap(n+1)} are in that order. Suppose C is a
linear code over R with length N. Let us assume that ni(c) is the number of instances of ai
in c ∈ C. The complete weight enumerator is then denoted as

CWE(C) = ∑
c∈

∏
i

ani(c)
i . (10)

CWEC(xa1 , . . . , xa
p(n+1) ) =

1
| C⊥ |CWEC⊥(A · xa1 , . . . , xa

p(n+1) ), (11)

where A = (aij), and aij = χ(aiaj). We define wt(c) =| {i : ci 6= 0} | . The Hamming
weight (HW) enumerator and its MacWilliams identity are given by

HWC(a, b) = ∑
c∈C

aN−wt(c)bwt(c), (12)

HWC(a, b) =
1
| C⊥ |HWC⊥(a + (p(n+1) − 1)b, a− b). (13)

Suppose that ∼ is defined on R by x ∼ y when there is ω ∈ U(R), such that x = ωy. It
is evident that this relation is equivalent. Let b̂1, . . . , b̂q be the equivalence classes and let
n′i(c) calculate the number of elements of b̂i that occurred in the codeword c. Hence, SWE
is defined as follows

SWEC(xb̂1
, . . . , xb̂q

) = ∑
c∈C

∏
i

xb̂i

n′i(c). (symmetrized weight enumerator) (14)

We introduce the MacWilliams equation for SWE as

SWEC(xb̂1
, . . . , xb̂q

) =
1
| C⊥ |SWEC⊥(S · (xb̂1

, . . . , xb̂q
)), (15)
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where S = (bij) and
bij = ∑

a∈b̂j

χ(aia).

As we can notice, once χ is obtained, it is straightforward to obtain the matrix A in
Equation (11). Nonetheless, S in Equation (15) necessitates the determination of the classes
b̂i. While it takes more work, this procedure is essential for building S. If we look at the
broader case for n, that is, Zpn [u]/(u2 − pn−1β, pu). Note that J = (p, u) in this ring, of
order (p− 1)p4, with l = 4, as its index of nilpotency, and soc(R) = (p3). Then, one can
obtain the set of b̂i as follows.





b̂1 = {0},
b̂2 = U(R) = {i, i + ju : (i, p) = 1, j = 1, 2, . . . , p− 1},
b̂3 = (p) \ (p2),
b̂4 = (u) \ soc(R),
b̂5 = (u + p) \ (p2),
b̂6 = (u + p2) \ (p3),
b̂7 = (p2) \ (p3),
b̂8 = (u + p3) \ (p4),
b̂9 = (p3) \ (p4),
...
b̂j = (u + pi) \ (pi+1),
b̂j′ = (pi) \ (pi+1),
...
b̂n−1 = soc(R) \ {0} = Jn−1 \ {0} = (pn−1).

For a more general case, we have a detailed scheme for finding bij in the following lemma.

Lemma 1. Let R = Zpn [u]/(u2 − pn−1, pu). Then,

bij =





| b̂j |, if ai b̂j = {0};
0, if pn−1 /∈ ai b̂j;
(−1) 1

p−1 | b̂j |, if pn−1 ∈ ai b̂j.

Proof. Suppose that ai b̂j = {0}, then bij = ∑b∈b̂j
χaib = ∑b∈b̂j

0 =| b̂j |. For the other

cases, assume that ai b̂j 6= {0}. First, let pn−1 ∈ ai b̂j. As soc(R) = (pn−1), then pn−1 = αy,
where α ∈ Γ∗(1) and y ∈ b̂j are a representative of b̂j. Now, also suppose that x ∈ ai b̂j, then
x = aiy′ for some y′ in b̂j. It follows that x = γpn−1, where γ ∈ Γ∗(1). This means that all
elements of ai b̂j are of the form αpn−1, which can be interpreted as the set ai b̂j is just copies
of soc(R). Thus,

bij = N0 ∑
α∈Γ∗(1)

e
(2πi)α

p .

However, we have the following formula for complex numbers,

1 +
p−1

∑
j=1

e
(2πi)j

p = 0. (16)
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The positive N0 reflects the number of copies of soc(R), which is precisely N0 = 1
p−1 | b̂j |

Therefore,

bij = (−1)
1

p− 1
| b̂j | .

The last case of the proof can be achieved similarly by noting that every element of ai b̂j can
be expressed as x + αpn−1, where α ∈ Γ(1). In such a case,

bij = ∑
x

χ(x) ∑
α∈Γ(1)

χ(αpn−1).

Hence, by Equation (16), we conclude the results.

Theorem 7. The S matrix for R = Zp4 [u]/(u2 − p3, pu) is given as

S(p, 4, 1, 1, 3) =




1 (p− 1)p4 (p− 1)p2 (p− 1)p (p− 1)p2 (p− 1)p (p− 1)p (p− 1)

1 0 0 0 0 0 0 −1

1 0 0 (p− 1)p 0 −p −p (p− 1)

1 0 (p− 1)p2 −p −p2 −p p(p− 1) (p− 1)

1 0 0 −p 0 −p −p (p− 1)

1 0 −p2 p(p− 1) −p2 p p(p− 1) (p− 1)

1 0 −p2 (p− 1)p −p2 (p− 1)p (p− 1)p (p− 1)

1 −p4 (p− 1)p2 (p− 1)p (p− 1)p2 (p− 1)p (p− 1)p (p− 1)




.

Proof. Let us assume that the elements of R are ordered as follows: if i, j ∈ Zp4 , then
i comes before j if i < j as an integer, and i + u comes before j + u if i precedes j. The
equivalency classes are therefore





b̂1 = {0},
b̂2 = U(R) = {i, i + ju : (i, p) = 1},
b̂3 = (p) \ (p2),
b̂4 = (u) \ soc(R),
b̂5 = (u + p) \ (p2),
b̂6 = (u + p2) \ soc(R),
b̂7 = (p2) \ soc(R),
b̂8 = soc(R) \ {0} = J3 \ {0} = (p3).

Thus, by using Lemma 16 and after making the necessary computations, the results are
obtained.

Remark 4. The matrix S can be obtained for R when n > 4, but the computations will be tedious.

We then move on to a numerical demonstration of these computations and their steps
for examples of rings with 35. We will first concentrate on comprehending b̂i under ∼
before building S.

Example 3. Suppose that R = Z34 [u]/(u2 − 33, 3u). Assuming the order for the elements of R
as:

a1 = 0, a2 = 1, a3 = 3, a4 = u, a5 = u + 3, a6 = u + 9, a7 = 9, a8 = 27.
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We then compute S, which requires a large number of calculations. The b̂i for R that we must obtain
are listed as 




b̂1 = {0},
b̂2 = U(R) = {i, i + ju : (i, 3) = 1, j = 1, 2},
b̂3 = (3) \ (9),
b̂4 = (u) \ soc(R),
b̂5 = (u + 3) \ (9),
b̂6 = (u + 9) \ soc(R),
b̂7 = (9) \ soc(R),
b̂8 = soc(R) \ {0} = J3 \ {0} = (27).

Therefore, by Theorem 7, we obtain

S(3, 4, 1, 1, 3) =




1 162 18 6 18 6 6 2

1 0 0 0 0 0 0 −1

1 0 0 6 0 −3 −3 2

1 0 18 −3 −9 −3 6 2

1 0 0 −3 0 −3 −3 2

1 0 −9 6 −9 3 6 2

1 0 −9 6 −9 6 6 2

1 −81 18 6 18 6 6 2




As a summary, we introduce Table 3 to present S and b̂i.

Table 3. S and b̂i for Zp4 [u]/(u2 − p3, pu).

Ring S b̂i

Zp4 [u]/(u2 − p3β, pu) S(p, 4, 1, 1, 3) {0}, U(R), (p) \ (p2), (u) \ soc(R),(u + p) \ (p2),(u + p2) \ (p3), (p2) \ (p3), (p3) \ {0}
Zp4 [u]/(u2 − p3, pu) S(p, 4, 1, 1, 3)
Z24 [u]/(u2 − 23, 2u) S(2, 4, 1, 1, 3) {0}, U(R), (2) \ (4), (u) \ soc(R),(u + 2) \ (4),(u + 4) \ (8), (4) \ (8), (8) \ {0}

Remark 5. From the above discussion, S is an equivalent matrix for every ring that is examined in
this article.

5. Generator Matrices

The remaining content of the article is devoted to Frobenius local rings of order p5,

R = Zp4 [u]/(u2 − p3β, pu). (17)

Definition 1. If the vectors with coefficients from J cannot be combined linearly in a nontrivial
way to equal the zero vector, we refer to the vectors v1, . . . , ve as modularly independent. When the
rows of G independently produce the code C, then G is a generator matrix over the ring R.

Remark 6. Every linear code C over R has a generator matrix G and this matrix is unique up to
raw equivalency.

This section finds matrices G that produce linear codes over R. Building a generator
matrix G for codes over non-chains is more difficult than for those over chains. This kind
of generator matrix might not provide straightforward information about the code size or
number of codewords, even though one can still locate a basic set of generators.
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Figure 2 above illustrates ideals of R. As | J |= p4, | (p) |=| (u) |=| (u + p) |=|
(p2, u) |= p3, | (u + p2) |=| (p2) |= p2 and | (p3) = soc(R) |= p. Therefore, the goal of
this section is to produce a collection of independent modular elements that function as a
code’s generator matrix’s rows. A complete description of the structure of G is given by the
following theorem.

(1)=R

(3, u) = J

Ip =(3) I0 =(u)I1 =(u + 3)I2 =(32, u)

I′2 =(32 + u) J2 =(32)

J3 =(33)

J4=(0)

Figure 2. Lattice of ideals of R = Z34 [u]/(u2 − 33β, 3u).

Theorem 8. Assume C is a linear code with N over R = Zp4 [u]/(u2 − p3β, pu). Thus, for any
C, any G is raw equivalent to

G =




Ie0 A12 A13 A14 A15 A16 A17 A18 A19

ine 0 pIe1 A23 A24 A25 A26 A27 A28 A29

0 uIe1

ine 0 0 uIe2 0 0 0 A37

0 0 0 (u + p2)Ie3 0 0

0 0 0 0 pIe4 0 0 A48 A49

0 0 0 0 0 (p + u)Ie5 0

0 0 0 0 0 0 p2 Ie6

ine 0 0 0 0 0 0 0 p3 Ie7 A99




where Aij are matrices of various sizes.

Proof. Let G be a matrix such that the rows ri’s of the matrix produce C as an R-module.
Every column containing a unit is moved to the left of G. We obtain a matrix of the form by
row reduction on those columns,

G =

(
Ie0 ∗
0 A

)
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Now, not every element in A is a unit. To transform the matrix into the next form, we shift
all columns containing elements of J = (2, π) to the left once more and apply the primary
row operations.

G =




Ie0 ∗ ∗
0 p ∗
0 u ∗
0 0 A1




We continue with this algorithm, making sure that the matrix A1 is created by putting
elements in columns such that they form a pair (p, u). We keep doing this until the matrix
takes on the form that we want.




Ie0 ∗ ∗
ine 0 pIe1 ∗

0 uIe1

ine 0 0 A2




where only one of (p), (u), (p + u), and (p2 + u) is represented by the elements of the
matrix A2’s columns. We will now move over to the matrix A2. The four ideals are (u),
(p2 + u), (p), and (p + u). We choose a particular ordering for each ideal for the sake of
producing a one expression of the matrix. The matrix will be constructed using this selected
order consistently. Assuming v is a unit of R, we proceed as follows: columns with entries
of the form uv, columns with elements of the form (u + p2)v, and finally columns with
elements of the form (p)v. Lastly, we address columns that take the form (u + p)v. We carry
out row reduction in the standard way in each step. Observe that both (p) and (u + p)
contain the ideal (p2). Consequently, we redo similar a process with (p2) as the remaining
column entries will come from (p2).




uIe2 0 0 0 ∗
0 (u + p2)Ie3 0 0

0 0 pIe4 0 0 ∗
0 0 0 (p + u)Ie5 0

0 0 0 0 p2 Ie6

ine 0 0 0 0 0 A3




.

Finally, every component of A3 originates from the ideal that p3 generates. We obtain a
matrix that precisely corresponds to the desired form by removing any rows that contain
only zeros and completing one last row reduction round.

Proposition 1. If v ∈ RN , and M = (v) is a R-submodule. Then, | M |∈ {p5, p4, p3, p2, p, 0}.

Proof. Let I be an ideal created by the vector v’s coordinates. Also, let T = annl(I). Then,

| M |= | R |
| T | =| I | .

By Figure 2, | I |∈ {p5, p4, p3, p2, p, 0}.
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Theorem 9. Let M = (w, v) be R-submodule, where the coordinates of w,v are not units of
R. Thus,

| M |∈ {p8, p7, p6, p5, p4, p3, p2}.

Proof. From Proposition 1, we have | M |≤ p8. As | (p3) |= p, then p2 ≤| M | .

Example 4. To have a code C over R = Zp4 [u]/(u2 − p3, pu) of order p4, set N = 1 with
C = (p, u). Then, | C |= p4. Meanwhile, to construct C with size p5, suppose C = (w, v) with
N = 2, w = (p, u) and v = (u, p). This implies | C |= p5. Take N = 4, w = (p, 0, u, p) and
v = (u, p, 0, 0). Hence, | C |= p8. Therefore,

C ∼= (w)⊕ (v).

Example 5 shows a minimal set of generators may not exist for C over a (non-chain)
Frobenius local, which makes the code more complex. Stated differently, it highlights the
differences in coding over chain rings and that over non-chain rings.

Example 5. Let G be a generator matrix of the code C over Zp4 [u]/(u2 − p3, 2u) of the form



p u

u 0

0 p


.

Assuming that M1 represents the R-submodule produced by r1 and r2 of G, and M2 the R-submodule
produced by r3 G,

M1 ∩M2 6= φ.

This indicates that the module C cannot be reduced.

6. Conclusions

We conclude that, up to isomorphism, all rings of the form R = Zpn [u] with u2 = pn−1β
and pu = 0 have been successfully classified in terms of p, n, 1, 1, n− 1. Furthermore, gen-
erator matrices and MacWilliams relations for linear codes over such rings have been
discovered. These are popular and effective tools for encoding data over chain rings; codes
over local non-chain rings may not be able to achieve such a case. The challenge is in
identifying a smallest number of generators and counting the code size because non-chain
local rings are not PIRs. This restriction suggests that in order to effectively handle such an
issue, different approaches or strategies are needed.
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Abstract: The aim of this work is to investigate the properties and classification of an interesting
class of 4-dimensional 3-Hom-Lie algebras with a nilpotent twisting map α and eight structure
constants as parameters. Derived series and central descending series are studied for all algebras
in this class and are used to divide it into five non-isomorphic subclasses. The levels of solvability
and nilpotency of the 3-Hom-Lie algebras in these five classes are obtained. Building upon that,
all algebras of this class are classified up to Hom-algebra isomorphism. Necessary and sufficient
conditions for multiplicativity of general (n + 1)-dimensional n-Hom-Lie algebras, as well as for
algebras in the considered class, are obtained in terms of the structure constants and the twisting
map. Furthermore, for some algebras in this class, it is determined whether the terms of the derived
and central descending series are weak subalgebras, Hom-subalgebras, weak ideals, or Hom-ideals.

Keywords: Hom-algebra; n-Hom-Lie algebra; classification

MSC: 17B61; 17A40; 17A42; 17B30

1. Introduction

Hom-Lie algebras and more general quasi-Hom-Lie algebras were introduced first
by Hartwig, Larsson, and Silvestrov in [1], where the general quasi-deformations and
discretizations of Lie algebras of vector fields using more general σ-derivations (twisted
derivations) and a general method for construction of deformations of Witt- and Virasoro-
type algebras based on twisted derivations was developed, motivated by the q-deformed
Jacobi identities observed for q-deformed algebras in physics, q-deformed versions of homo-
logical algebra, and discrete modifications of differential calculi [2–15]. The general abstract
quasi-Lie algebras and the subclasses of quasi-Hom-Lie algebras and Hom-Lie algebras
as well as their general colored (graded) counterparts have been introduced in [1,16–19].
Subsequently, various classes of Hom-Lie-admissible algebras have been considered in [20].
In particular, in [20], the Hom-associative algebras have been introduced and shown to
be Hom-Lie-admissible, that is, leading to Hom-Lie algebras using commutator map as
new product, and in this sense constituting a natural generalization of associative algebras,
as Lie-admissible algebras leading to Lie algebras via commutator map as new product.
In [20], moreover, several other interesting classes of Hom-Lie-admissible algebras general-
izing some classes of non-associative algebras, as well as examples of finite-dimensional
Hom-Lie algebras, have been described. Hom-algebra structures are very useful since
Hom-algebra structures of a given type include their classical counterparts and open more
possibilities for deformations, extensions of cohomological structures, and representations.
Since these pioneering works [1,16–18,20,21], Hom-algebra structures have developed into
a popular broad area, with an increasing number of publications in various directions (see,
for example, [16,22–34] and references therein).
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Ternary Lie algebras appeared first in a generalization of Hamiltonian mechanics by
Nambu [35]. In addition to Nambu mechanics, n-Lie algebras have been revealed to have
many applications in physics. The mathematical algebraic foundations of Nambu me-
chanics were developed by Takhtajan in [36]. Filippov, in [37], independently introduced
and studied the structure of n-Lie algebras and Kasymov [38] investigated their proper-
ties. The properties of n-ary algebras, including solvability and nilpotency, were studied
in [38–40]. Kasymov [38] pointed out that n-ary multiplication allows for several different
definitions of solvability and nilpotency in n-Lie algebras, and studied their properties.
Further properties, classification, and connections of n-ary algebras to other structures such
as bialgebras, the Yang–Baxter equation, and Manin triples for 3-Lie algebras were studied
in [38,41–50]. The structure of 3-Lie algebras induced by Lie algebras, classification of 3-Lie
algebras, and application to constructions of B.R.S. algebras were considered in [51–53].
Interesting constructions of ternary Lie superalgebras in connection to superspace extension
of the Nambu–Hamilton equation is considered in [54]. In [55], Leibniz n-algebras were
studied. The general cohomology theory for n-Lie algebras and Leibniz n-algebras was
established in [56–58]. The structure and classification of finite-dimensional n-Lie algebras
were considered in [37,47,59], and many other authors. For more details of the theory and
applications of n-Lie algebras, see [60] and references therein.

Classifications of n-ary or Hom generalizations of Lie algebras have been considered,
either in very special cases or in low dimensions. The classification of n-Lie algebras
of dimension up to n + 1 over a field of characteristic p 6= 2 has been completed by
Filippov [37] using the specific properties of (n + 1)-dimensional n-Lie algebras that make
it possible to represent their bracket by a square matrix in a similar way as bilinear forms;
the number of cases obtained depends on the properties of the base field; the list is ordered
by ascending dimension of the derived ideal, and among them, one nilpotent algebra,
and a class of simple algebras, which are all isomorphic in the case of an algebraically
closed field, the remaining algebras are k-solvable for some 2 ≤ k ≤ n depending on
the algebra. These simple algebras were proved to be the only simple finite-dimensional
n-Lie algebras in [59]. The classification of (n + 1)-dimensional n-Lie algebras over a
field of characteristic 2 was achieved by Bai, Wang, Xiao, and An [48] by finding and
using a similar result in characteristic 2. Bai, Song, and Zhang [47] classified the (n + 2)-
dimensional n-Lie algebras over an algebraically closed field of characteristic 0 using the
fact that an (n + 2)-dimensional n-Lie algebra has a subalgebra of codimension 1 if the
dimension of its derived ideal is not 3, thus constructing most of the cases as extensions
of the (n + 1)-dimensional n-Lie algebras listed by Filippov. In [61], Cantarini and Kac
classified all simple linearly compact n-Lie superalgebras, which turned out to be n-Lie
algebras, by finding a bijective correspondence between said algebras and a special class of
transitive Z-graded Lie superalgebras; the list they obtained consists of four representatives:
one of them is the (n + 1)-dimensional vector product n-Lie algebra, and the remaining
three are infinite-dimensional n-Lie algebras.

Classifications of n-Lie algebras in higher dimensions have only been studied in par-
ticular cases. Metric n-Lie algebras, that is, n-Lie algebras equipped with a non-degenerate
compatible bilinear form, have been considered and classified, first in dimension n + 2 by
Ren, Chen, and Liang [62] and dimension n + 3 by Geng, Ren, and Chen [63], and then, in
dimensions n + k for 2 ≤ k ≤ n + 1 by Bai, Wu, and Chen [64]. The classification is based
on the study of the Levi decomposition, the center, and the isotropic ideals and properties
around them. Another case that has been studied is the case of nilpotent n-Lie algebras,
more specifically, nilpotent n-Lie algebras of class 2. Eshrati, Saeedi, and Darabi [65] clas-
sify (n + 3)-dimensional nilpotent n-Lie algebras and (n + 4)-dimensional nilpotent n-Lie
algebras of class 2 using properties introduced in [66,67], and also consider capable n-Lie
algebras and the classification of a subclass of nilpotent n-Lie algebras in [68]. Similarly
Hoseini, Saeedi, and Darabi [69] classify (n + 5)-dimensional nilpotent n-Lie algebras of
class 2. In [70], Jamshidi, Saeedi, and Darabi classify (n + 6)-dimensional nilpotent n-Lie
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algebras of class 2 using the fact that such algebras factored by the span of a central element
give (n + 5)-dimensional nilpotent n-Lie algebras of class 2, which were classified before.

Classifications of Hom-Lie algebras and other Hom-Lie types have also been consid-
ered in either low dimensions or special cases. Multiplicative 3-dimensional multiplicative
Hom-Lie algebras have been classified in [71], more specifically, Hom-Lie algebras which
are not Lie algebras. In [72], the special cases of nilpotent and filiform Hom-Lie algebras
are studied and classified up to dimension 7. In [73], the algebraic varieties of Hom-Lie
algebras over the complex numbers are considered; it is shown that all 3-dimensional skew-
symmetric algebras can be Hom-Lie algebras, but this is not true for the 4-dimensional case.
Some more properties of the algebraic varieties of Hom-Lie algebras are studied. In [74],
the authors consider also the algebraic varieties over the complex numbers of Hom-Lie
algebras, they classify Hom-Lie structures with nilpotent twisting maps, as well as the
classification of their orbit closures. In [75], Hom-Lie structures on complex Lie algebras of
dimension 4 are studied and described. In [76], classification of 3-dimensional Hom-Lie al-
gebras is considered. The approach here is to first classify skew-symmetric multiplications,
while indicating which ones define Lie algebras, then classify the twisting maps over each
skew-symmetric algebra. In [77,78], the classification of 3-dimensional Hom-Lie algebra
is achieved using a different approach. A system of polynomial equations is obtained
from the defining identities, the properties of the spaces of all linear endomorphisms that
form a Hom-Lie algebra together with a given skew-symmetric multiplication are studied.
A classification of 3-dimensional Hom-Lie algebras for nilpotent twisting maps is achieved
by separating non-similar twisting maps, then classifying the multiplications up to isomor-
phisms of Hom-Lie algebras, that is, linear maps that intertwine both multiplications and
twisting maps.

Classification of other related structures have been considered. In [79], multiplicative
Hom-Lie superalgebras of dimension up to 3 are classified. Hom-Lie superalgebras with
trivial grading, which are Hom-Lie algebras, are omitted and Hom-Lie superalgebras that
are also Lie superalgebras are indicated. In [80], Hom-Lie triple systems, which differ
from 3-Hom-Lie algebras by the skew-symmetry condition, are studied and classified in
dimension 2 and for a multiplicative twisting map in dimension 3. Lie triple systems (when
the twisting map is the identity map) are omitted.

There has been a study of the classification of 3-dimensional 3-Hom-Lie algebras with
diagonal twisting maps by Ataguema, Makhlouf, and Silvestrov in [81].

Hom-type generalization of n-ary algebras, such as n-Hom-Lie algebras and other
n-ary Hom algebras of Lie type and associative type, were introduced in [81], by twisting
the defining identities by a set of linear maps. The particular case where all these maps
are equal and are algebra morphisms was considered and a way to generate examples
of n-ary Hom-algebras from n-ary algebras of the same type was described. Further
properties, construction methods, examples, representations, cohomology, and central
extensions of n-ary Hom-algebras were considered in [82–87]. These generalizations include
n-ary Hom-algebra structures generalizing the n-ary algebras of Lie type including n-ary
Nambu algebras, n-ary Nambu-Lie algebras and n-ary Lie algebras, and n-ary algebras of
associative type, including n-ary totally associative and n-ary partially associative algebras.
In [88], constructions of n-ary generalizations of BiHom-Lie algebras and BiHom-associative
algebras were considered. Generalized derivations of n-BiHom-Lie algebras were studied
in [89]. Generalized derivations of multiplicative n-ary Hom-Ω color algebras were studied
in [90]. Cohomology of Hom-Leibniz and n-ary Hom-Nambu-Lie superalgebras was
considered in [91] Generalized derivations and Rota–Baxter operators of n-ary Hom-
Nambu superalgebras were considered in [92]. A construction of 3-Hom-Lie algebras
based on σ-derivation and involution was studied in [93]. Multiplicative n-Hom-Lie color
algebras were considered in [94].

In [95], Awata, Li, Minic, and Yoneya introduced a construction of (n + 1)-Lie algebras
induced by n-Lie algebras using a combination of bracket multiplication with a trace in
their work on quantization of the Nambu brackets. Further properties of this construction,
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including solvability and nilpotency, were studied in [43,96,97]. In [83,84], this construction
was generalized using the brackets of general Hom-Lie algebra or n-Hom-Lie and trace-
like linear forms, satisfying conditions depending on the twisting linear maps defining
the Hom-Lie or n-Hom-Lie algebras. In [98], a method was demonstrated of how to
construct n-ary multiplications from the binary multiplication of a Hom-Lie algebra and
an (n − 2)-linear function satisfying certain compatibility conditions. Solvability and
nilpotency for n-Hom-Lie algebras and (n + 1)-Hom-Lie algebras induced by n-Hom-Lie
algebras were considered in [99]. In [100], the properties and classification of n-Hom-Lie
algebras in dimension n + 1 were considered, and 4-dimensional 3-Hom-Lie algebras for
various special cases of the twisting map were computed in terms of structure constants as
parameters and listed in classes, in this way emphasizing the number of free parameters in
each class.

The n-Hom-Lie algebras are fundamentally different from the n-Lie algebras, especially
when the twisting maps are not invertible or not diagonalizable. When the twisting maps
are not invertible, the Hom-Nambu–Filippov identity becomes less restrictive, since when
elements of the kernel of the twisting maps are used, several terms or even the whole
identity might vanish. Isomorphisms of Hom-algebras are also different from isomorphisms
of algebras since they need to intertwine not only the multiplications but also the twisting
maps. All of this makes the classification problem different, interesting, rich, and not simply
following from the case of n-Lie algebras. In this work, we consider n-Hom-Lie algebras
with a nilpotent twisting map α, which means in particular that α is not invertible.

To our knowledge, the classification of 4-dimensional 3-Hom-Lie algebras up to
Hom-algebras isomorphism has not been achieved previously in the literature. The aim
of this work is to investigate the properties and classification of an interesting class of
4-dimensional 3-Hom-Lie algebras with a nilpotent twisting map α and eight structure
constants as parameters, namely, 43,N(2),6, given in [100]. All 3-dimensional 3-Hom-Lie
algebras with diagonal twisting maps have been listed as unclassified in [81]. The algebras
considered in our article are 4-dimensional, and the twisting maps are of a different type,
namely, nilpotent. Nilpotent linear maps are neither invertible nor diagonalizable, which
makes the object of our study fundamentally different from the case of n-Hom-Lie algebras
with diagonal twisting maps in the sense that when the twisting maps are not invertible,
the Hom-Nambu–Filippov identity becomes less restrictive, since when elements of the
kernel of the twisting maps are used in the identity, several terms or even the whole
identity might vanish, and when the twisting maps are not diagonalizable, the change
induced by introducing them in the identity is more significant. In this work, we achieved
a complete classification up to isomorphism of Hom-algebras of the considered class
of 4-dimensional 3-Hom-Lie algebras with a nilpotent twisting map, computed derived
series and central descending series for all of the 3-Hom-Lie algebras of this class, studied
solvability and nilpotency, characterized the multiplicative 3-Hom-Lie algebras among
them, and studied the ideal properties of the terms of derived series and central descending
series of some chosen examples of the Hom-algebras from the classification. These results
improve understanding of the rich structure of n-ary Hom-algebras and in particular the
important class of n-Hom-Lie algebras. It is also a step towards the complete classification of
4-dimensional 3-Hom-Lie algebras and in general (n+ 1)-dimensional n-Hom-Lie algebras.
Moreover, our results contribute to the in-depth study of the structure and important
properties and subclasses of n-Hom-Lie algebras.

In Section 2, definitions and properties of n-Hom-Lie algebras that are used in the study
are recalled, and new results characterizing nilpotency as well as necessary and sufficient
conditions for multiplicativity of general (n + 1)-dimensional n-Hom-Lie algebras and
for algebras in the considered class are obtained in terms of the structure constants and
the twisting map. In Section 4, derived series and central descending series are studied
for all algebras in this class and are used to divide it into five non-isomorphic subclasses.
The levels of solvability and nilpotency of the 3-Hom-Lie algebras in these five classes are
obtained. In Section 5, building upon the previous sections, all algebras of this class are

100



Axioms 2024, 13, 373

classified up to Hom-algebra isomorphism. In Section 6, for some algebras in this class, it
is determined whether the terms of the derived and central descending series are weak
subalgebras, Hom-subalgebras, weak ideals, or Hom-ideals.

2. Definitions and Properties of n-Hom-Lie Algebras

In this section, we present the basic definitions and properties of n-Hom-Lie algebras
needed for our study. Throughout this article, it is assumed that all linear spaces are over
a field K of characteristic 0, and for any subset S of a linear space, 〈S〉 denotes the linear
span of S. The arity of all the considered algebras is assumed to be greater than or equal to
2. Hom-Lie algebras are a generalization of Lie algebras introduced in [1] while studying
σ-derivations. The n-ary case was introduced in [81].

Definition 1 ([1,20]). A Hom-Lie algebra (A, [·, ·], α) is a linear space A together with a bilinear
map [·, ·] : A× A→ A and a linear map α : A→ A satisfying, for all x, y, z ∈ A,

[x, y] = −[y, x], Skew-symmetry

∑
	(x,y,z)

[α(x), [y, z]] = [α(x), [y, z]] + [α(y), [z, x]] + [α(z), [x, y]] = 0.
Hom-Jacobi

identity
(cyclic form)

In Hom-Lie algebras, by skew-symmetry, the Hom-Jacobi identity is equivalent to

[α(x), [y, z]] = [[x, y], α(z)] + [α(y), [x, z]] Hom-Jacobi identity
(Hom-derivation form)

(1)

Hom-algebras satisfying just the Hom-algebra identity (1), without requiring the skew-
symmetry identity, are called Hom-Leibniz algebras [17,20]. Thus, Hom-Lie algebras are
skew-symmetric Hom-Leibniz algebras. There are many Hom-Leibniz algebras which
are not skew-symmetric, and thus, not Hom-Lie algebras. When the twisting map is the
identity map α = IdA on A, Hom-Leibniz algebras become (left) Leibniz algebras, and Hom-
Lie algebras become Lie algebras. A Hom-Leibniz algebra is also a Leibniz algebra, or a
Hom-Lie algebra is also a Lie algebra if and only if the map IdA belongs to the set of all
linear maps α for which the identity (1) holds. Whether the map IdA belongs to the set of
all linear maps α for which the identity (1) holds or not depends on the underlying algebra.
The Hom-algebra identity (1) is linear with respect to α in the linear space of all linear maps
on the algebra, and hence, the set of all such α for which the identity (1) holds is a linear
subspace of the linear space of all linear maps on the algebra. There are many Hom-Leibniz
algebra which are not Leibniz algebras, or Hom-Lie algebras which are not Lie algebras.

Definition 2 ([1,16]). Hom-Lie algebra morphisms from Hom-Lie algebra A = (A, [·, ·]A, α) to
Hom-Lie algebra B = (B, [·, ·]B , β) are linear maps f : A→ B satisfying, for all x, y ∈ A,

f ([x, y]A) = [ f (x), f (y)]B , (2)

f ◦ α = β ◦ f . (3)

Linear maps f : A→ B satisfying only condition (2) are called weak morphisms of Hom-Lie algebras.

Definition 3 ([20,23]). A Hom-Lie algebra (A, [·, ·], α) is said to be multiplicative if α is an algebra
morphism, and it is said to be regular if α is an isomorphism.

Definition 4. An n-ary Hom-algebra (A, [·, . . . , ·], {αi}1≤i≤n−1) is a linear space A together with
an n-ary operation, that is, an n-linear map [·, . . . , ·] : An = A× · · · × A︸ ︷︷ ︸

n

→ A and linear maps
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αi : A → A, 1 ≤ i ≤ n− 1. An n-ary Hom-algebra is said to be skew-symmetric if its n-ary
operation is skew-symmetric, that is, satisfying, for all x1, . . . , xn−1, y1, . . . , yn ∈ A,

[xσ(1), . . . , xσ(n)] = sgn(σ)[x1, . . . , xn]. Skew-symmetry (4)

The n-Hom-Lie algebras are an n-ary generalization of Hom-Lie algebras to n-ary
algebras satisfying a generalization of the Hom-algebra identity (1) involving the n-ary
product and n− 1 linear maps.

Definition 5 ([81]). An n-Hom-Lie algebra (A, [·, . . . , ·], {αi}1≤i≤n−1) is a skew-symmetric n-ary
Hom-algebra satisfying, for all x1, . . . , xn−1, y1, . . . , yn ∈ A,

Hom-Nambu–Filippov identity

[α1(x1), . . . , αn−1(xn−1), [y1, . . . , yn]] =
n

∑
i=1

[α1(y1), . . . , αi−1(yi−1), [x1, . . . , xn−1, yi], αi(yi+1), . . . , αn−1(yn)].

(5)

Remark 1. If αi = IdA for all 1 ≤ i ≤ n− 1, then one obtains an n-Lie algebra [37]. There-
fore, the class of n-Lie algebras is included in the class of n-Hom-Lie algebras. For any linear
space A, if [x1, . . . , xn]0 = 0 for all x1, . . . , xn ∈ A and any linear maps α1, . . . , αn−1, then
(A, [·, . . . , ·]0, α1, . . . , αn−1) is an n-Hom-Lie algebra.

Example 1. Let A be a 4-dimensional linear space, and {ei}1≤i≤4 be a basis of A. Consider the

linear map α : A → A given by its matrix in the basis {ei}1≤i≤4, [α] =




1 1 −1 −1
0 2 −1 1
0 0 1 −2
0 0 0 −1


 ,

and the trilinear skew-symmetric map [·, ·, ·] defined by

[e1, e2, e3] = −e1 + e3,

[e1, e2, e4] = 2e1 − e3 + e4,

[e1, e3, e4] = −
1
2

e1 + e2 −
1
2

e4,

[e2, e3, e4] =
3
2

e1 + e2 + 2e3 −
1
2

e4.

Then, (A, [·, ·, ·], α) is a 3-Hom-Lie algebra by [100], (Proposition 19.12).

Consider the linear map α1 : A → A defined by its matrix [α1] =




0 0 0 0
0 0 1 0
0 0 0 1
0 0 0 0


 in the

basis {ei}1≤i≤4, and the trilinear skew-symmetric map [·, ·, ·] defined by

[e1, e2, e3]1 = 0

[e1, e2, e4]1 = e4

[e1, e3, e4]1 = −e2 + e4

[e2, e3, e4]1 = 0.

Then (A, [·, ·, ·]1, α1) is also a 3-Hom-Lie algebra by [100], (proposition 19.16).

Definition 6 ([81,87]). The n-Hom-Lie algebra morphisms of n-Hom-Lie algebras

A = (A, [·, . . . , ·]A, {αi}1≤i≤n−1), B = (B, [·, . . . , ·]B , {βi}1≤i≤n−1)
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are linear maps f : A 7→ B satisfying, for all x1, . . . , xn ∈ A and all 1 ≤ i ≤ n− 1,

f ([x1, . . . , xn]A) = [ f (x1), . . . , f (xn)]B , (6)

f ◦ αi = βi ◦ f (7)

Linear maps satisfying only condition (6) are called weak morphisms of n-Hom-Lie algebras.

The n-Hom-Lie algebras (A, [·, . . . , ·], {αi}1≤i≤n−1) with α1 = · · · = αn−1 = α will be
denoted by (A, [·, . . . , ·], α).

Definition 7 ([87]). An n-Hom-Lie algebra (A, [·, . . . , ·], α) is called multiplicative if α is an
algebra morphism, and regular if α is an algebra isomorphism.

The following proposition, providing a way to construct an n-Hom-Lie algebra from
an n-Lie algebra and an algebra morphism, was first introduced in the case of Lie algebras,
and then, generalized to the n-ary case in [81]. A more general version of this theorem,
given in [87], states that the category of n-Hom-Lie algebras is closed under twisting by
weak morphisms.

Proposition 1 ([81,87]). Let β : A → A be a weak morphism of n-Hom-Lie algebra A =
(A, [·, . . . , ·], {αi}1≤i≤n−1), and multiplication [·, . . . , ·]β is defined by

[x1, . . . , xn]β = β([x1, . . . , xn]).

Then,
(

A, [·, . . . , ·]β, {β ◦ αi}1≤i≤n−1

)
is an n-Hom-Lie algebra. Moreover, if (A, [·, . . . , ·], α) is

multiplicative and β ◦ α = α ◦ β, then
(

A, [·, . . . , ·]β, β ◦ α
)

is multiplicative.

The following particular case of Proposition 1 is obtained if α = IdA.

Corollary 1. Let (A, [·, . . . , ·]) be an n-Lie algebra, β : A→ A an algebra morphism, and [·, . . . , ·]β
is defined by [x1, . . . , xn]β = β([x1, . . . , xn]). Then,

(
A, [·, . . . , ·]β, β

)
is a multiplicative n-Hom-

Lie algebra.

The following definition is a specialization of the standard definition of a subalgebra
in general algebraic structures to the case of n-Hom-Lie algebras and n-ary skew-symmetric
Hom-algebras considered in this paper.

Definition 8. A Hom-subalgebra B = (B, [·, . . . , ·]B , β1, . . . , βn−1) of an n-Hom-Lie algebra,
or more generally, of an n-ary skew-symmetric Hom-algebra A = (A, [·, . . . , ·]A, α1, . . . , αn−1) is
an n-ary Hom-algebra consisting of a subspace B of A satisfying, for all x1, . . . , xn ∈ B,

1. αi(B) ⊆ B for all 1 ≤ i ≤ n− 1,

2. [x1, . . . , xn]A ∈ B,

with the restricted from A multiplication [·, . . . , ·]B = [·, . . . , ·]A and linear maps βi = αi,
1 ≤ i ≤ n− 1 on B.

The following definition is a direct extension of the corresponding definition in [20,23,87]
to arbitrary n-ary skew-symmetric Hom-algebras.

Definition 9. An ideal of an n-Hom-Lie algebra or more generally of an n-ary skew-symmetric
Hom-algebra (A, [·, . . . , ·], α1, . . . , αn−1) is a subspace I of A satisfying, for all x1, . . . , xn−1 ∈ A,
y ∈ I:
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1. αi(I) ⊆ I for all 1 ≤ i ≤ n− 1.

2. [x1, . . . , xn−1, y] ∈ I (or equivalently [y, x1, . . . , xn−1] ∈ I).

The following definitions are a direct extension of the corresponding definitions in [99]
to arbitrary n-ary skew-symmetric Hom-algebras.

Definition 10. Let (A, [·, . . . , ·], α1, . . . , αn−1) be an n-Hom-Lie algebra or more generally an
n-ary skew-symmetric Hom-algebra, and let I be an ideal of A. For 2 ≤ k ≤ n and p ∈ N, we
define the k-derived series of the ideal I by

D0
k(I) = I and Dp+1

k = 〈
[
Dp

k (I), . . . , Dp
k (I)

︸ ︷︷ ︸
k

, A, . . . , A︸ ︷︷ ︸
n−k

]
〉.

We define the k-central descending series of I by

C0
k (I) = I and Cp+1

k (I) = 〈
[
Cp

k (I), I, . . . , I︸ ︷︷ ︸
k−1

, A, . . . , A︸ ︷︷ ︸
n−k

]
〉.

Definition 11. Let (A, [·, . . . , ·], α1, . . . , αn−1) be an n-Hom-Lie algebra, or more generally an
n-ary skew-symmetric Hom-algebra, and let I be an ideal of A. For 2 ≤ k ≤ n, the ideal I is said to
be k-solvable (resp. k-nilpotent) if there exists r ∈ N such that Dr

k(I) = {0} (resp. Cr
k(I) = {0}),

and the smallest r ∈ N satisfying this condition is called the class of k-solvability (resp. the class of
nilpotency) of I.

The following direct extension of the corresponding result in [99] to arbitrary n-ary
skew-symmetric Hom-algebras is proved in the same way as in [99] since the proof does
not involve the Hom-Nambu–Filippov identity.

Lemma 1. Let A = (A, [·, . . . , ·]A, (αi)1≤i≤n) and B = (B, [·, . . . , ·]B, (βi)1≤i≤n) be two n-ary
skew-symmetric Hom-algebras, f : A → B be a surjective n-Hom-Lie algebras morphism and I an
ideal of A. Then, for all r ∈ N and 2 ≤ k ≤ n:

f (Dr
k(I)) = Dr

k( f (I)) and f (Cr
k(I)) = Cr

k( f (I)).

This lemma also implies that if two n-Hom-Lie algebras are isomorphic, they would
also have isomorphic terms of the derived series and central descending series, which also
means that if two n-Hom-Lie algebras have a significant difference in the derived series or
the central descending series, for example, different dimensions of given corresponding
terms, then they cannot be isomorphic.

Lemma 2 ([100]). Let A be a linear space, let [·, . . . , ·] be an n-linear skew-symmetric map (n ≥ 2),
and let α1, . . . , αn−1 be linear maps on A. If the (n− 1)-linear map

(x1, . . . , xn−1) 7→ [α1(x1), . . . , αn−1(xn−1), d]

is skew-symmetric for all d ∈ [A, . . . , A], then the (2n− 1)-linear map H defined by

H(x1, . . . , xn−1, y1, . . . , yn) = [α1(x1), . . . , αn−1(xn−1), [y1, . . . , yn]]

−
n

∑
k=1

[α1(y1), . . . , αk−1(yk−1), [x1, . . . , xn−1, yk], αk(yk+1), . . . , αn−1(yn)],

for all x1, . . . , xn−1, y1, . . . , yn ∈ A, is skew-symmetric in its first n− 1 arguments and in its last
n arguments.
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Proposition 2 ([100]). Let A be an n-dimensional linear space (n ≥ 2), and {ei}1≤i≤n be a basis of
A. Any skew-symmetric n-linear map [·, . . . , ·] on A is fully defined by giving [e1, . . . , en] = d ∈ A.
Let α1, . . . , αn−1 be linear maps on A. If the (n− 1)-linear map

(x1, . . . , xn−1) 7→ [α1(x1), . . . , αn−1(xn−1), d]

is skew-symmetric, then (A, [·, . . . , ·], α1, . . . , αn−1) is an n-Hom-Lie algebra.

Corollary 2 ([100]). Let A be an n-dimensional linear space (n ≥ 2), and {ei}1≤i≤n a basis of A.
Any skew-symmetric n-linear map [·, . . . , ·] on A is fully defined by giving [e1, . . . , en] = d ∈ A.
For any linear map α on A, (A, [·, . . . , ·], α) is an n-Hom-Lie algebra.

Let (A, [·, . . . , ·], α) be an n-ary skew-symmetric algebra of dimension n + 1 with a
linear map α. Given a basis {ei}1≤i≤n+1 of A as linear space, the linear map α is fully
determined by its matrix determined by action of α on the basis, and a skew-symmetric
n-ary multi-linear operation (bracket) is fully determined by [e1, . . . , êi, . . . , en+1] for all
1 ≤ i ≤ n + 1, represented by a matrix B = (b(i, j))1≤i,j≤n+1, as follows:

[e1, . . . , êi, . . . , en+1] = (−1)n+1+iwi, (8)

wi =
n+1

∑
p=1

b(p, i)ep, (w1, . . . , wn+1) = (e1, . . . , en+1)B.

Proposition 3 ([100]). LetA1 = (A, [·, . . . , ·]1, α1) andA2 = (A, [·, . . . , ·]2, α2) be two (n + 1)-
dimensional n-ary skew-symmetric Hom-algebras represented by matrices [α1], B1 and [α2], B2,
respectively. The Hom-algebras A1 and A2 are isomorphic if and only if there exists an invertible
matrix T satisfying the following conditions:

B2 = det(T)−1TB1TT , [α2] = T[α1]T−1.

Example 2. Consider the 3-Hom-Lie algebra (A, [·, ·, ·], α) defined in Example 1. The multiplica-

tion [·, ·, ·] is determined in the basis {ei}1≤i≤4, as in (8), by B =




− 3
2 − 1

2 −2 −1
−1 1 0 0
2 0 1 1
1
2 − 1

2 −1 0


. Let

α2 : A→ A be a linear map and [·, ·, ·]2 : A× A× A→ A be a trilinear map defined in the basis
{ei}1≤i≤4 by

[α2] =




1 0 0 0
0 2 0 0
0 0 1 0
0 0 0 −1


 and B2 =




2 − 3
2 1 0

−3 3
2 −1 −1

1 − 1
2 1 1

0 1
2 −1 0


.

For T =




1 −1 1 −2
0 1 −1 1
0 0 1 −1
0 0 0 1


, we have that B2 = 1

det(T)TBTT and [α2] = T[α]T−1. This

means that (A, [·, ·, ·]2, α2) is a 3-Hom-Lie algebra isomorphic to (A, [·, ·, ·], α).

Proposition 4 ([100]). Let {ei}1≤i≤n+1 be a basis of a linear space A, let σ be a permutation of
the set {1, . . . , n + 1} of n + 1 elements, and let B = (bi,j)1≤i,j≤n+1 be a matrix representing a
skew-symmetric n-ary bracket in this basis, then the matrix representing the same bracket in the
basis {eσ(i)}1≤i≤n+1 is given by the matrix sgn(σ)(bσ−1(i),σ−1(j))1≤i,j≤n+1.
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Remark 2 ([100]). Let (A, [·, . . . , ·], α) be an (n + 1)-dimensional n-Hom-Lie algebra and let B be
the matrix representing its bracket. D1

n(A) = [A, . . . , A] is generated by {w1, . . . , wn+1}, which
means that Rank(B) = dim D1

n(A).
If Rank(B) ≤ n or equivalently det(B) = 0, then D1

n(A) has dimension at most n, which
means that D2

n(A) has dimension at most 1, and then, D3
n(A) = 0.

Remark 3 ([100]). For the whole algebra A, all the k-central descending series, for all 2 ≤ k ≤ n,
are equal. Therefore, all the notions of k-nilpotency, for all 2 ≤ k ≤ n, are equivalent, and we denote
Cp

k (A) for any 2 ≤ k ≤ n by Cp(A).

Definition 12. Let (A, [·, . . . , ·], α1, . . . , αn−1) be an n-Hom-Lie algebra or more generally an
n-ary skew-symmetric Hom-algebra. Define Z(A), the center of A, by

Z(A) = {z ∈ A : [x1, . . . , xn−1, z] = 0, ∀x1, . . . , xn−1 ∈ A}.

Lemma 3 ([100]). Let (A, [·, . . . , ·], α) be an n-Hom-Lie algebra with A 6= {0}. If A is k-nilpotent,
for any 2 ≤ k ≤ n, then the center Z(A) of A is not trivial (Z(A) 6= {0}).

Lemma 4. Let A = (A, [·, . . . , ·], (αi)1≤i≤n−1) be an n-ary skew-symmetric Hom-algebra with
A 6= {0}.

(i) If A, is nilpotent, then Z(A) is not trivial (Z(A) 6= {0}).

(ii) If dim A = n + 1, then dim Z(A) = 0 or dim Z(A) = 1 or Z(A) = A.

Proof.
(i) The first statement is a generalization of Lemma 3 to the case of n-ary skew-symmetric
Hom-algebras, and is proved in the same way, since the original proof does not use the
Hom-Nambu–Filippov identity.
(ii) Suppose that dim A = n + 1 and that dim Z(A) > 1. Let {ei}1≤i≤n+1 be a basis of A
such that e1, e2 ∈ Z(A, then [e1, . . . , êi, . . . , en+1] = 0 for all 1 ≤ i ≤ n + 1, which means that
[x1, . . . , xn] = 0 for all x1, . . . , xn ∈ A.

The following direct extension of the corresponding result in [100] to arbitrary n-ary
skew-symmetric Hom-algebras is proved in the same way as in [100] since the proof does
not involve the Hom-Nambu–Filippov identity.

Proposition 5. Let A = (A, [·, . . . , ·], {αi}1≤i≤n−1) be an (n + 1)-dimensional n-ary skew-
symmetric algebra. The algebra A is nilpotent and non-abelian if and only if dim Z(A) = 1 and
[A, . . . , A] = Z(A).

Proposition 6. Let A = (A, [·, . . . , ·], {αi}1≤i≤n−1) be an n-Hom-Lie algebra, or more generally
an n-ary skew-symmetric Hom-algebra with A 6= {0}. A is nilpotent of class p if and only if
{0} ( Cp−1(A) ⊆ Z(A).

Proof. The statement holds, since A is nilpotent of class p if and only if Cp(A) = {0} and
Cp−1(A) 6= {0}, and

Cp(A) = {0} ⇐⇒
[
Cp−1(A), A, . . . , A

]
= {0}

⇐⇒ ∀ c ∈ Cp−1(A), ∀ x1, . . . , xn−1 ∈ A, [c, x1, . . . , xn−1] = 0

⇐⇒ ∀ c ∈ Cp−1(A), c ∈ Z(A) ⇐⇒ Cp−1(A) ⊆ Z(A).
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Proposition 7. Let A = (A, [·, . . . , ·]A, α) and B = (B, [·, . . . , ·]B , β) be n-ary Hom-algebras.
Let f : A → B be an n-ary Hom-algebra homomorphism, then if A is multiplicative then B
is multiplicative. Moreover, if f is an isomorphism, then A is multiplicative if and only if B
is multiplicative.

Proof. Let f : A → B be a surjective homomorphism, then for all y1, . . . , yn ∈ B there
exists x1, . . . , xn ∈ A such that f (xi) = yi for 1 ≤ i ≤ n, and β ◦ f = f ◦ α. Suppose that A
is multiplicative, then we have

β([y1, . . . , yn]B) = β([ f (x1), . . . , f (xn)]B) = β ◦ f ([x1, . . . , xn]A) = f ◦ α([x1, . . . , xn]A)

= [ f ◦ α(x1), . . . , f ◦ α(xn)]B = [β ◦ f (x1), . . . , β ◦ f (xn)]B = [β(y1), . . . , β(yn)]B .

If f is an isomorphism, then the converse can be proved by applying the same argument
using f−1 instead of f .

Proposition 8 ([100]). Let (A, [·, . . . , ·], α) be an n-ary Hom-algebra with dim A = n + 1,
[·, . . . , ·] skew-symmetric, α nilpotent, dim ker α = 2, and the bracket is represented by the matrix
B = (bi,j) as in (8), in a basis where α is in Jordan normal form. The bracket [·, . . . , ·] satisfies the
Hom-Nambu–Filippov identity if and only if

bi0−1,jbp,n+1 − bn+1,jbp,i0−1 = 0, ∀1 ≤ j, p ≤ n + 1, j 6= 1, j 6= i0,

where i0 is such that ker α = 〈e1, ei0〉.

Remark 4. Let us compare the polynomial equations obtained from the Nambu–Filippov identity
and the Hom-Nambu–Filippov identity in dimension n + 1 with various types of twisting maps:
Diagonalizable and invertible with eigenvalues λi, 1 ≤ i ≤ n + 1:

(λibj,i − λjbi,j)bp,k + (λkbi,k − λibk,i)bp,j + (λjbk,j − λkbj,k)bp,i = 0, (9)

∀ 1 ≤ i, j, k, p ≤ n + 1; i < j < k;

Diagonalizable with dim ker α = 1 with eigenvalues λi, 1 ≤ i ≤ n + 1:

λkb1,kwj − λkbj,kw1 − λjb1,jwk + λjbk,jw1 = 0, ∀ 1 < j < k ≤ n + 1; (10)

Diagonalizable with dim ker α = 2 with eigenvalues λi, 1 ≤ i ≤ n + 1:

b1,kw2 − b2,kw1 = 0, ∀ 3 ≤ k ≤ n + 1; (11)

Nilpotent with dim ker α = 1:

(bk−1,i − bi−1,k)bp,n+1 − bn+1,ibp,k−1 + bn+1,kbp,i−1 = 0, (12)

∀ 1 ≤ i, k, p ≤ n + 1, i < k;

Nilpotent with dim ker α = 2:

bi0−1,jbp,n+1 − bn+1,jbp,i0−1 = 0, ∀ 1 ≤ j, p ≤ n + 1, j 6= 1, j 6= i0. (13)

These different cases are separate from each other, and the case of n-Lie algebras is the special case of
(9) where all the λi are equal. Notice that the higher the dimension of ker α, the less equation we
have and the less terms we have in each equation; that is, in these cases, the Hom-Nambu–Filippov
identity is considerably less restrictive. Another difference from the case of n-Lie algebras is that the
isomorphisms in Hom-algebras intertwine the multiplications and the twisting maps, which leads to
different, more restrictive isomorphism conditions and, in general, more isomorphism classes.
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Lemma 5. Let (A, [·, . . . , ·], α) be an n-ary Hom-algebra with dim A = n + 1, [·, . . . , ·] skew-
symmetric and α nilpotent. Let {ei}1≤i≤n+1 be a basis of A where α is in its Jordan form, and con-
sider [·, . . . , ·] defined as in (8).

(i) If dim ker α ≥ 2, then (A, [·, . . . , ·], α) is multiplicative if and only if [A, . . . , A] ⊆ ker α.

(ii) If dim ker α = 1, then (A, [·, . . . , ·], α) is multiplicative if and only if α(w1) = (−1)nwn+1
and wi ∈ ker α, ∀ 2 ≤ i ≤ n + 1, where (wi) is defined in (8).

Proof. Suppose that dim ker α ≥ 2, then for all 1 ≤ i ≤ n + 1,

α(wi) = (−1)n+1+iα([e1, . . . , êi, . . . , en+1])

= (−1)n+1+i
[
α(e1), . . . , α̂(ei), . . . , α(en+1)

]
= 0,

since ei ∈ ker α for at least two different indices i, that is, at least one of the elements

α(e1), . . . , α̂(ei), . . . , α(en+1)

is zero. Thus, [A, . . . , A] = 〈w1, . . . , wn+1〉 ⊆ ker α.
Suppose now that dim ker α = 1, then we have α(e1) = 0 and α(ei) = ei−1 for

2 ≤ i ≤ n + 1. We obtain

α(w1) = (−1)n+1+1α([e2, . . . , en+1]) = (−1)n[α(e2), . . . , α(en+1)]

= (−1)n[e1, . . . , en] = (−1)n(−1)n+1+n+1wn+1 = (−1)nwn+1.

For i 6= 1 we have

α(wi) = (−1)n+1+iα([e1, . . . , êi, . . . , en+1])

= (−1)n+1+i
[
α(e1), . . . , α̂(ei), . . . , α(en+1)

]

= (−1)n+1+i[0, e1, . . . , êi−1, . . . , en] = 0,

that is, α(wi) = 0 for i 6= 1.

Proposition 9. Let A = (A, [·, . . . , ·], α) be an (n + 1)-dimensional n-Hom-Lie algebra. If
dim ker α ≥ 2, then A is multiplicative if and only if [α]B = 0, where [α] and B are the matrices
representing the twisting map α and the bracket in any given basis.

Proof. Let {ei}1≤i≤n+1 be a basis of A containing a basis of ker α. Then, A is multiplicative
if and only if

α([e1, . . . , êi, . . . , en+1]) =
[
α(e1), . . . , α̂(ei), . . . , α(en+1)

]
for all 1 ≤ i ≤ n + 1.

On the other hand,
[
α(e1), . . . , α̂(ei), . . . , α(en+1)

]
= 0 since at least one of the elements

e1, . . . , ei−1, ei+1, . . . , en+1 is in ker α. Moreover, [α]B is the matrix whose columns are the
coordinates of (−1)n+i+1α([e1, . . . , êi, . . . , en+1]). Thus, α is an algebra morphism if and
only if [α]B = 0.

Let now [α]2 and B2 be the matrices representing α and [·, . . . , ·] in another ba-
sis {e′i}1≤i≤n+1, then there exists an invertible matrix P such that [α]2 = P[α]P−1 and
B2 = (det P)−1PBPT , and we obtain

[α]2B2 = (P[α]P−1)((det P)−1PBPT) = (det P)−1(P[α]P−1PBPT) = (det P)−1(P[α]BPT).

Therefore, [α]2B2 = 0 if and only if [α]B = 0, since P is invertible.
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Corollary 3. Let (A, [·, . . . , ·], α) be an n-ary Hom-algebra with dim A = n + 1, [·, . . . , ·] skew-
symmetric and α nilpotent. Let {ei}1≤i≤n+1 be a basis of A where α is in its Jordan form, and

consider [·, . . . , ·] defined by its structure constants in this basis,
[
ei1 , . . . , ein

]
=

dim A
∑

k=1
ck

i1,...,in ek.

If dim ker α ≥ 2, then (A, [·, . . . , ·], α) is multiplicative if and only if ck
i1,...,in = 0, for all

1 ≤ i1, . . . , in ≤ dim A and k such that ek /∈ ker α.

Remark 5. Note that when dim A = n + 1, it is sufficient to define the bracket by its structure

constants as [e1, . . . , êi, . . . , en+1] =
dim A

∑
k=1

ck
1,...,i−1,i+1,...,n+1ek. The parameters b(p, i) in (8) are

b(p, i) = (−1)n+1+icp
1,...,i−1,i+1,...,n+1.

3. Class 43,N(2),6 of 4-dimensional 3-Hom-Lie Algebras

An interesting class of 4-dimensional 3-Hom-Lie algebras 43,N(2),6 = (A, [·, . . . , ·], α) is
defined according to (8) on the basis {ei}1≤i≤4 by

[α] =




0 0 0 0
0 0 1 0
0 0 0 1
0 0 0 0


, B =




0 c(1, 3, 4, 1) −c(1, 2, 4, 1) 0
0 c(1, 3, 4, 2) −c(1, 2, 4, 2) 0
0 c(1, 3, 4, 3) −c(1, 2, 4, 3) 0
0 c(1, 3, 4, 4) −c(1, 2, 4, 4) 0


,

[e1, e2, e3] = 0

[e1, e2, e4] = c(1, 2, 4, 1)e1 + c(1, 2, 4, 2)e2 + c(1, 2, 4, 3)e3 + c(1, 2, 4, 4)e4

[e1, e3, e4] = c(1, 3, 4, 1)e1 + c(1, 3, 4, 2)e2 + c(1, 3, 4, 3)e3 + c(1, 3, 4, 4)e4

[e2, e3, e4] = 0,

where c(i1, . . . , in, k) = ck
i1,...,in are the structure constants according to

[
ei1 , . . . , ein

]
=

dim A

∑
k=1

ck
i1,...,in ek =

dim A

∑
k=1

c(i1, . . . , in, k)ek.

Applying Lemma 5 to the class of 3-Hom-Lie algebras 43,N(2),6, we obtain the following
result describing all multiplicative 3-Hom-Lie algebras in the class 43,N(2),6.

Corollary 4. The 3-Hom-Lie algebra from 43,N(2),6 is multiplicative if and only if

c(1, 2, 4, 3) = 0, c(1, 2, 4, 4) = 0, c(1, 3, 4, 3) = 0, c(1, 3, 4, 4) = 0.

Proof. By Lemma 5, the 3-Hom-Lie algebra 43,N(2),6 is multiplicative if and only if

[e1, e2, e4], [e1, e3, e4] ∈ ker α

which is 〈{e1, e2}〉, and this is the case if and only if c(1, 2, 4, 3) = 0, c(1, 2, 4, 4) = 0,
c(1, 3, 4, 3) = 0, and c(1, 3, 4, 4) = 0.

So, the 3-Hom-Lie algebra from 43,N(2),6 is in the subclass 43,N(2),6,M of multiplicative
3-Hom-Lie algebras if and only if the multiplication (bracket) is defined by

[e1, e2, e3] = 0,

[e1, e2, e4] = c(1, 2, 4, 1)e1 + c(1, 2, 4, 2)e2,

[e1, e3, e4] = c(1, 3, 4, 1)e1 + c(1, 3, 4, 2)e2,

[e2, e3, e4] = 0.
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4. Derived Series and Central Descending Series for 43,N(2),6

A consequence of Lemma 1 is that the derived series and the central descending
series of an n-Hom-Lie algebra are algebraic invariants. Here, we divide the considered
class of 3-Hom-Lie algebras into five subclasses following their derived series and central
descending series. Two 3-Hom-Lie algebras in two different subclasses will necessarily be
non-isomorphic, and we use this as an intermediate step towards the full classification up
to isomorphism of the 3-Hom-Lie algebras in this class.

In the case of n-Hom-Lie algebras, the terms of the derived series and the central
descending series are in general not ideals as in the case of n-Lie algebras. In the most
general case, they are weak subalgebras, and they can be subalgebras or ideals if the
twisting maps are algebra morphisms or surjective algebra morphisms, respectively, as has
been shown in [99]. For the case of 43,N(2),6,M, we have the following result.

Theorem 1. Consider A = (A, [·, ·, ·], α) = 43,N(2),6. Suppose that B 6= 0 and define d(p, q) =
c(1, 2, 4, p)c(1, 3, 4, q) − c(1, 2, 4, q)c(1, 3, 4, p) with 1 ≤ p, q ≤ 4, that is, d(p, q) are all the
potentially non-zero 2× 2 subdeterminants of the matrix B defining the bracket of A. Then, A is
3-solvable of class 2.

A is 2-solvable if and only if d(1, 4) = 0, this implies moreover that there exists (λ, λ′) ∈
K2 \ {(0, 0)} such that λd(2, 4) + λ′d(1, 2) = 0 and λd(3, 4) + λ′d(1, 3) = 0, or equivalently

that Rank
(

d(2, 4) d(3, 4)
d(1, 2) d(1, 3)

)
< 2 which is equivalent to

∣∣∣∣
d(2, 4) d(3, 4)
d(1, 2) d(1, 3)

∣∣∣∣ = 0.

If RankB = 2, or equivalently, there exists 1 ≤ p < q ≤ 4 such that d(p, q) 6= 0, then

(1) Z(A) = {0}. This also means that 43,N(2),6 is not nilpotent.

(2) If A is 2-solvable, then

(2.a) If
(

d(2, 4) d(3, 4)
d(1, 2) d(1, 3)

)
6= 0, then A is 2-solvable of class 3.

(2.b) If
(

d(2, 4) d(3, 4)
d(1, 2) d(1, 3)

)
= 0, then A is 2-solvable of class 2.

If RankB = 1, or equivalently d(p, q) = 0, for all 1 ≤ p < q ≤ 4, then 43,N(2),6 is 2-solvable of
class 2, and also dim Z(A) = 1, and

Z(A) = 〈{c(1, 3, 4, p)e2 − c(1, 2, 4, p)e3}〉,

where c(1, 2, 4, p) 6= 0 or c(1, 3, 4, p) 6= 0. Moreover, the 3-Hom-Lie algebra is nilpotent if and
only if Z(A) = [A, A, A], or equivalently if and only if

c(1, 2, 4, 1) = c(1, 2, 4, 4) = c(1, 3, 4, 1) = c(1, 3, 4, 4) = 0,

c(1, 3, 4, p)c(1, 2, 4, 3) + c(1, 2, 4, p)c(1, 2, 4, 2) = 0,

c(1, 3, 4, p)c(1, 3, 4, 3) + c(1, 2, 4, p)c(1, 3, 4, 2) = 0.

Proof. By Remark 2, we know that 43,N(2),6 is 3-solvable. The derived series of A are

D1
3(A) = 〈{c(1, 2, 4, 1)e1 + c(1, 2, 4, 2)e2 + c(1, 2, 4, 3)e3 + c(1, 2, 4, 4)e4,

c(1, 2, 4, 1)e1 + c(1, 2, 4, 2)e2 + c(1, 2, 4, 3)e3 + c(1, 2, 4, 4)e4}〉,

and D2
3(A) =

[
D1

3(A), D1
3(A), D1

3(A)
]
= {0} by skew-symmetry, since dim D1

3(A) is less
than 3 (the arity). We compute now the 2-derived series:

D1
2(A) = 〈{c(1, 2, 4, 1)e1 + c(1, 2, 4, 2)e2 + c(1, 2, 4, 3)e3 + c(1, 2, 4, 4)e4,

c(1, 3, 4, 1)e1 + c(1, 3, 4, 2)e2 + c(1, 3, 4, 3)e3 + c(1, 3, 4, 4)e4}〉
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We have 0 ≤ dim D1
2(A) ≤ 2. If dim D1

2(A) = 2, then

D2
2(A) = 〈{[e1, w2, w3], [e2, w2, w3], [e3, w2, w3], [e4, w2, w3]}〉 (14)

= 〈{(c(1, 3, 4, 2)c(1, 2, 4, 4)− c(1, 3, 4, 4)c(1, 2, 4, 2))w3

− (c(1, 3, 4, 3)c(1, 2, 4, 4)− c(1, 3, 4, 4)c(1, 2, 4, 3))w2,

− (c(1, 3, 4, 1)c(1, 2, 4, 4)− c(1, 3, 4, 4)c(1, 2, 4, 1))w3,

− (c(1, 3, 4, 1)c(1, 2, 4, 4)− c(1, 3, 4, 4)c(1, 2, 4, 1))w2,

(c(1, 3, 4, 1)c(1, 2, 4, 2)− c(1, 3, 4, 2)c(1, 2, 4, 1))w3

− (c(1, 3, 4, 1)c(1, 2, 4, 3)− c(1, 3, 4, 3)c(1, 2, 4, 1))w2}〉.

If dim D2
2(A) = 2, then D2

2(A) = D1
2(A) since D2

2(A) ⊆ D1
2(A) and has the same dimen-

sion. We conclude in this case that A is not 2-solvable.
If dim D2

2(A) = 1, then D2
2(A) = 〈{v}〉 with v ∈ A, v 6= 0. In this case,

D3
2(A) = 〈{[ei, v, v], 1 ≤ i ≤ 4}〉, that is, D3

2(A) = {0} and A is 2-solvable of class 3.
This occurs if and only if the rank of the family of generators of D2

2(A) listed in (14) is 1,
that is, if and only if, for some λ, λ′ ∈ K,

(c(1, 3, 4, 1)c(1, 2, 4, 4)− c(1, 3, 4, 4)c(1, 2, 4, 1)) = 0,

λ(c(1, 3, 4, 2)c(1, 2, 4, 4)− c(1, 3, 4, 4)c(1, 2, 4, 2))

+ λ′(c(1, 3, 4, 1)c(1, 2, 4, 2)− c(1, 3, 4, 2)c(1, 2, 4, 1)) = 0,

λ(c(1, 3, 4, 3)c(1, 2, 4, 4)− c(1, 3, 4, 4)c(1, 2, 4, 3))

+ λ′(c(1, 3, 4, 1)c(1, 2, 4, 3)− c(1, 3, 4, 3)c(1, 2, 4, 1)) = 0.

On the other hand, we have that

det
(

d(2, 4) d(3, 4)
d(1, 2) d(1, 3)

)
= (c(1, 2, 4, 3)c(1, 3, 4, 2)− c(1, 2, 4, 2)c(1, 3, 4, 3))×

× (c(1, 2, 4, 4)c(1, 3, 4, 1)− c(1, 2, 4, 1)c(1, 3, 4, 4)

= d(2, 3)d(1, 4),

which means that det
(

d(2, 4) d(3, 4)
d(1, 2) d(1, 3)

)
= 0 if and only if d(2, 3) = 0 or d(1, 4) = 0. This

means also that the condition det
(

d(2, 4) d(3, 4)
d(1, 2) d(1, 3)

)
= 0 and d(1, 4) = 0 is equivalent to

only saying that d(1, 4) = 0.
The coefficients appearing in the generators of D2

2(A) in (14) are the entries of the

matrix
(

d(2, 4) d(3, 4)
d(1, 2) d(1, 3)

)
, that is, D2

2(A) = {0} if and only if
(

d(2, 4) d(3, 4)
d(1, 2) d(1, 3)

)
= 0.

If dim D1
2(A) = 1, then all the coefficients appearing in the generators of D2

2(A) are
zero, since they are 2× 2 subdeterminants of the matrix B which is of rank 1. This means
that D2

2(A) = {0} and A is 2-solvable of class 2.
We know that an (n + 1)-dimensional n-Hom-Lie algebra is nilpotent and non-abelian

if and only if [A, . . . , A] = Z(A) and dim Z(A) = 1 (see [100], proposition 9). Therefore,
if dim[A, . . . , A] = 2, A cannot be nilpotent. In this case, Cr

k(A) = 〈{w2, w3}〉 for all r ≥ 1.
Consider now the center of A,

Z(A) = {z =
4

∑
k=1

zkek | ∀ x, y ∈ A, [x, y, z] = 0}

= {z =
4

∑
k=1

zkek | ∀ 1 ≤ i < j ≤ 4,
[
ei, ej, z

]
= 0}
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and we obtain the following system of equations:

c(1, 2, 4, 1)z1 = 0, c(1, 2, 4, 2)z1 = 0, c(1, 2, 4, 3)z1 = 0, c(1, 2, 4, 4)z1 = 0,

c(1, 3, 4, 1)z1 = 0, c(1, 3, 4, 2)z1 = 0, c(1, 3, 4, 3)z1 = 0, c(1, 3, 4, 4)z1 = 0,

c(1, 2, 4, 1)z2 + c(1, 3, 4, 1)z3 = 0, c(1, 2, 4, 2)z2 + c(1, 3, 4, 2)z3 = 0,

c(1, 2, 4, 3)z2 + c(1, 3, 4, 3)z3 = 0, c(1, 2, 4, 4)z2 + c(1, 3, 4, 4)z3 = 0,

c(1, 2, 4, 1)z4 = 0, c(1, 2, 4, 2)z4 = 0, c(1, 2, 4, 3)z4 = 0, c(1, 2, 4, 4)z4 = 0,

c(1, 3, 4, 1)z4 = 0, c(1, 3, 4, 2)z4 = 0, c(1, 3, 4, 3)z4 = 0, c(1, 3, 4, 4)z4 = 0.

Then, we obtain, z1 6= 0 or z4 6= 0 if and only if the 3-Hom-Lie algebra is abelian, that
is, c(1, 2, 4, i) = c(1, 3, 4, i) = 0, for all 1 ≤ i ≤ 4. Excluding this case, we obtain the
following system:

c(1, 2, 4, 1)z2 + c(1, 3, 4, 1)z3 = 0; c(1, 2, 4, 2)z2 + c(1, 3, 4, 2)z3 = 0,

c(1, 2, 4, 3)z2 + c(1, 3, 4, 3)z3 = 0; c(1, 2, 4, 4)z2 + c(1, 3, 4, 4)z3 = 0.

which is equivalent to z2w3 + z3w2 = 0. Therefore, dim Z(A) = 1 if and only if
RankB = dim〈{w2, w3}〉 = 1. In this case,

Z(A) = {z =
4

∑
k=1

zkek ∈ A : z1 = z4 = 0 and c(1, 2, 4, p)z2 + c(1, 3, 4, p)z3 = 0}

= {z2e2 −
z2c(1, 2, 4, p)
c(1, 3, 4, p)

e3 : z2 ∈ K}

= {z2(c(1, 3, 4, p)e2 − c(1, 2, 4, p)e3) : z2 ∈ K}

if there exists 1 ≤ p ≤ 4 such that c(1, 3, 4, p) 6= 0, and

Z(A) = {z =
4

∑
k=1

zkek ∈ A : z1 = z4 = 0 and c(1, 2, 4, p)z2 + c(1, 3, 4, p)z3 = 0}

= {−z3
c(1, 3, 4, p)
c(1, 2, 4, p)

e2 + z3e3 : z3 ∈ K}

= {z3(c(1, 3, 4, p)e2 − c(1, 2, 4, p)e3) : z3 ∈ K}
= {z3e3 : z3 ∈ K}

otherwise. By Proposition 5, A is nilpotent if and only if Z(A) = [A, A, A], as
dim Z(A) = 1. Now, we prove that this is equivalent to

c(1, 2, 4, 1) = c(1, 2, 4, 4) = c(1, 3, 4, 1) = c(1, 3, 4, 4) = 0,

c(1, 3, 4, p)c(1, 2, 4, 3) + c(1, 2, 4, p)c(1, 2, 4, 2) = 0, (15)

c(1, 3, 4, p)c(1, 3, 4, 3) + c(1, 2, 4, p)c(1, 3, 4, 2) = 0.

Z(A) = [A, A, A] if and only if dim〈{w2, w3, c(1, 3, 4, p)e2 − c(1, 2, 4, p)e3}〉 = 1, which

is equivalent to Rank




c(1, 3, 4, 1) −c(1, 2, 4, 1) 0
c(1, 3, 4, 2) −c(1, 2, 4, 2) c(1, 3, 4, p)
c(1, 3, 4, 3) −c(1, 2, 4, 3) −c(1, 2, 4, p)
c(1, 3, 4, 4) −c(1, 2, 4, 4) 0


 = 1, that is, all the 2× 2

minors of this matrix are zero, which gives the system (15).

Corollary 5. The class of 3-Hom-Lie algebras 43,N(2),6 with B 6= 0 can be split into five non-
isomorphic subclasses:
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(1) 3-solvable of class 2, non-2-solvable, non-nilpotent, with trivial center:

[e1, e2, e3] = 0

[e1, e2, e4] = c(1, 2, 4, 1)e1 + c(1, 2, 4, 2)e2 + c(1, 2, 4, 3)e3 + c(1, 2, 4, 4)e4

[e1, e3, e4] = c(1, 3, 4, 1)e1 + c(1, 3, 4, 2)e2 + c(1, 3, 4, 3)e3 + c(1, 3, 4, 4)e4

[e2, e3, e4] = 0

with d(1, 4) 6= 0, in that case we have Rank
(

d(2, 4) d(3, 4)
d(1, 2) d(1, 3)

)
= 2.

(2) 3-solvable of class 2, 2-solvable of class 3, non-nilpotent, with trivial center:

[e1, e2, e3] = 0

[e1, e2, e4] = c(1, 2, 4, 1)e1 + c(1, 2, 4, 2)e2 + c(1, 2, 4, 3)e3 + c(1, 2, 4, 4)e4

[e1, e3, e4] = λc(1, 2, 4, 1)e1 + c(1, 3, 4, 2)e2 + c(1, 3, 4, 3)e3 + λc(1, 2, 4, 4)e4

[e2, e3, e4] = 0

with (c(1, 2, 4, 1), c(1, 2, 4, 4)) 6= (0, 0) or

[e1, e2, e3] = 0

[e1, e2, e4] = c(1, 2, 4, 2)e2 + c(1, 2, 4, 3)e3

[e1, e3, e4] = c(1, 3, 4, 1)e1 + c(1, 3, 4, 2)e2 + c(1, 3, 4, 3)e3 + c(1, 3, 4, 4)e4

[e2, e3, e4] = 0

such that Rank
(

d(2, 4) d(3, 4)
d(1, 2) d(1, 3)

)
= 1.

(3) 3-solvable of class 2, 2-solvable of class 2, non-nilpotent, with trivial center:

[e1, e2, e3] = 0
[e1, e2, e4] = c(1, 2, 4, 2)e2 + c(1, 2, 4, 3)e3
[e1, e3, e4] = c(1, 3, 4, 2)e2 + c(1, 3, 4, 3)e3
[e2, e3, e4] = 0

, with d(2, 3) 6= 0.

(4) 3-solvable of class 2, 2-solvable of class 2, non-nilpotent, with 1-dimensional center:

[e1, e2, e3] = 0

[e1, e2, e4] = c(1, 2, 4, 1)e1 + c(1, 2, 4, 2)e2 + c(1, 2, 4, 3)e3 + c(1, 2, 4, 4)e4

[e1, e3, e4] = λc(1, 2, 4, 1)e1 + λc(1, 2, 4, 2)e2 + λc(1, 2, 4, 3)e3

+ λc(1, 2, 4, 4)e4

[e2, e3, e4] = 0

with [e1, e2, e4] 6= 0 (that is, not all c(1, 2, 4, 1), c(1, 2, 4, 2), c(1, 2, 4, 3), c(1, 2, 4, 4) are zero),
or

[e1, e2, e3] = 0

[e1, e2, e4] = 0

[e1, e3, e4] = c(1, 3, 4, 1)e1 + c(1, 3, 4, 2)e2 + c(1, 3, 4, 3)e3 + c(1, 3, 4, 4)e4

[e2, e3, e4] = 0
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(5) 3-solvable of class 2, 2-solvable of class 2, nilpotent of class 2, with 1-dimensional center:

[e1, e2, e3] = 0
[e1, e2, e4] = c(1, 2, 4, 2)e2 + c(1, 2, 4, 3)e3

[e1, e3, e4] = −c(1,2,4,2)2

c(1,2,4,3) e2 − c(1, 2, 4, 2)e3

[e2, e3, e4] = 0

, c(1, 2, 4, 3) 6= 0

or

[e1, e2, e3] = 0

[e1, e2, e4] = c(1, 2, 4, 2)e2 +
−c(1,2,4,2)2

c(1,3,4,2) e3

[e1, e3, e4] = c(1, 3, 4, 2)e2 − c(1, 2, 4, 2)e3
[e2, e3, e4] = 0

, c(1, 3, 4, 2) 6= 0

Remark 6. In the last case above, either c(1, 3, 4, 2) 6= 0 or c(1, 2, 4, 3) 6= 0, if both are zero, then
the bracket is zero.

Corollary 6. In the subclasses presented in Corollary 5, cases 1 and 3 cannot be multiplicative. All
the multiplicative 3-Hom-Lie algebras in the considered class are contained in the remaining subclasses:

(2m) 3-solvable of class 2, 2-solvable of class 3, non-nilpotent, with trivial center:

[e1, e2, e3] = 0

[e1, e2, e4] = c(1, 2, 4, 1)e1 + c(1, 2, 4, 2)e2

[e1, e3, e4] = c(1, 3, 4, 1)e1 + c(1, 3, 4, 2)e2

[e2, e3, e4] = 0

with d(1, 2) = c(1, 2, 4, 1)c(1, 3, 4, 2)− c(1, 2, 4, 2)c(1, 3, 4, 1) 6= 0.

(4m) 3-solvable of class 2, 2-solvable of class 2, non-nilpotent, with 1-dimensional center:

[e1, e2, e3] = 0

[e1, e2, e4] = c(1, 2, 4, 1)e1 + c(1, 2, 4, 2)e2

[e1, e3, e4] = λc(1, 2, 4, 1)e1 + λc(1, 2, 4, 2)e2

[e2, e3, e4] = 0

(5m) 3-solvable of class 2, 2-solvable of class 2, nilpotent of class 2, with 1-dimensional center:

[e1, e2, e3] = 0
[e1, e2, e4] = 0
[e1, e3, e4] = c(1, 3, 4, 2)e2
[e2, e3, e4] = 0

, c(1, 3, 4, 2) 6= 0.

5. Isomorphism Classes for 43,N(2),6

The following theorem gives the classification up to isomorphism of the class of
3-Hom-Lie algebras 43,N(2),6. Note that isomorphisms are considered in the sense of Hom-
algebras, that is, they are required to intertwine not only the multiplications, but also the
twisting maps.

Theorem 2. Any 3-Hom-Lie algebra A in the class of 3-Hom-Lie algebras 43,N(2),6 with B 6= 0 is
isomorphic to one of the non-isomorphic 3-Hom-Lie algebras, as described in Tables 1–5. Each one of
the five tables corresponds to the case with the same number in Corollary 5.

Proof. Let A = (A, [·, . . . , ·], α) be a 3-Hom-Lie algebra in one of the classes presented in
Corollary 5 and consider the matrix B defining its bracket in a basis {ei}, where α is in
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its Jordan normal form. Any 3-Hom-Lie algebra isomorphic to A has its bracket given
by a matrix B′ = 1

det(P)PBPT , where P is an invertible matrix that commutes with [α],
the matrix representing α in the basis (ei). A matrix P = (p(i, j))1≤i,j≤4 commutes with

[α] =




0 0 0 0
0 0 1 0
0 0 0 1
0 0 0 0


 if and only if it is of the form P =




p(1, 1) 0 0 p(1, 4)
p(2, 1) p(3, 3) p(2, 3) p(2, 4)

0 0 p(3, 3) p(2, 3)
0 0 0 p(3, 3)


,

with det(P) 6= 0, that is, p(1, 1)p(3, 3)3 6= 0, which is equivalent to p(1, 1) 6= 0 and
p(3, 3) 6= 0. We denote by c′(i, j, k, p) the structure constants of the bracket after the
transformation by P.

In the following, in the matrix B′ there appear structure constants of the form
c′(i, j, k, l) = c(i,j,k,l)

p(1,1)p(3,3) or c(i,j,k,l)
p(3,3)2 . Note that since p(1, 1) 6= 0 and p(3, 3) 6= 0,

c(i, j, k, l)
p(1, 1)p(3, 3)

= 0 or
c(i, j, k, l)
p(3, 3)2 = 0 ⇐⇒ c(i, j, k, l) = 0, (16)

and thus, in such a case the 3-Hom-Lie algebras given by the bracket with c(i, j, k, l) = 0
and the bracket with c(i, j, k, l) 6= 0 cannot be isomorphic.

(1) dim D1
3(A) = 2, non-2-solvable, non-nilpotent, with trivial center, that is,

B =




0 c(1, 3, 4, 1) −c(1, 2, 4, 1) 0
0 c(1, 3, 4, 2) −c(1, 2, 4, 2) 0
0 c(1, 3, 4, 3) −c(1, 2, 4, 3) 0
0 c(1, 3, 4, 4) −c(1, 2, 4, 4) 0


,

with d(1, 4) = c(1, 2, 4, 1)c(1, 3, 4, 4)− c(1, 2, 4, 4)c(1, 3, 4, 1) 6= 0.

B′ =
1

det(P)
PBPT =




0 b′(1, 2) −c(1,2,4,1)p(1,1)−c(1,2,4,4)p(1,4)
p(1,1)p(3,3)2 0

0 b′(2, 2) b′(2, 3) 0
0 b′(3, 2) −c(1,2,4,4)p(2,3)−c(1,2,4,3)p(3,3)

p(1,1)p(3,3)2 0

0 c(1,3,4,4)p(3,3)2−c(1,2,4,4)p(2,3)p(3,3)
p(1,1)p(3,3)3 − c(1,2,4,4)

p(1,1)p(3,3) 0




,

b′(1, 2) = c′(1, 3, 4, 1) =
p(2, 3)(−c(1, 2, 4, 1)p(1, 1)− c(1, 2, 4, 4)p(1, 4))

p(1, 1)p(3, 3)3

+
p(3, 3)(c(1, 3, 4, 1)p(1, 1) + c(1, 3, 4, 4)p(1, 4))

p(1, 1)p(3, 3)3 ,

b′(2, 2) = c′(1, 3, 4, 2)

=
p(2, 3)(−c(1, 2, 4, 1)p(2, 1)− c(1, 2, 4, 3)p(2, 3)− c(1, 2, 4, 4)p(2, 4)− c(1, 2, 4, 2)p(3, 3))

p(1, 1)p(3, 3)3

+
p(3, 3)(c(1, 3, 4, 1)p(2, 1) + c(1, 3, 4, 3)p(2, 3) + c(1, 3, 4, 4)p(2, 4) + c(1, 3, 4, 2)p(3, 3))

p(1, 1)p(3, 3)3 ,

b′(2, 3) = −c′(1, 2, 4, 2) =
−c(1, 2, 4, 1)p(2, 1)− c(1, 2, 4, 3)p(2, 3)

p(1, 1)p(3, 3)2

+
−c(1, 2, 4, 4)p(2, 4)− c(1, 2, 4, 2)p(3, 3)

p(1, 1)p(3, 3)2 ,

b′(3, 2) = c′(1, 3, 4, 3) =
p(2, 3)(−c(1, 2, 4, 4)p(2, 3)− c(1, 2, 4, 3)p(3, 3))

p(1, 1)p(3, 3)3

+
p(3, 3)(c(1, 3, 4, 4)p(2, 3) + c(1, 3, 4, 3)p(3, 3))

p(1, 1)p(3, 3)3 .
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and notice that c(1,2,4,4)
p(1,1)p(3,3) = 0 if and only if c(1, 2, 4, 4) = 0; therefore, a bracket with

c(1, 2, 4, 4) = 0 and a bracket with c(1, 2, 4, 4) 6= 0 cannot define isomorphic 3-Hom-Lie
algebras. If c(1, 2, 4, 4) 6= 0, then choosing

P = P1,1 =



c(1,2,4,4)
p(3,3) 0 0 − c(1,2,4,1)

p(3,3)

p(2, 1) p(3, 3) − c(1,2,4,3)p(3,3)
c(1,2,4,4) p(2, 4)

0 0 p(3, 3) − c(1,2,4,3)p(3,3)
c(1,2,4,4)

0 0 0 p(3, 3)




p(2, 1) = − (−c(1, 2, 4, 4)c(1, 3, 4, 3)c(1, 2, 4, 3) + c(1, 3, 4, 4)c(1, 2, 4, 3)2)p(3, 3)
−c(1, 2, 4, 4)d(1, 4)

+
(c(1, 2, 4, 4)2c(1, 3, 4, 2)− c(1, 2, 4, 2)c(1, 2, 4, 4)c(1, 3, 4, 4))p(3, 3)

−c(1, 2, 4, 4)d(1, 4)

p(2, 4) =

(
c(1, 2, 4, 1)c(1, 2, 4, 4)c(1, 3, 4, 2)− c(1, 2, 4, 1)c(1, 3, 4, 3)c(1, 2, 4, 3)

)
p(3, 3)

−c(1, 2, 4, 4)d(1, 4)

+

(
− c(1, 2, 4, 2)c(1, 2, 4, 4)c(1, 3, 4, 1) + c(1, 3, 4, 1)c(1, 2, 4, 3)2

)
p(3, 3)

−c(1, 2, 4, 4)d(1, 4)

we obtain B′ =




0 c(1,2,4,4)c(1,3,4,1)−c(1,2,4,1)c(1,3,4,4)
c(1,2,4,4)p(3,3)2 0 0

0 0 0 0
0 c(1,2,4,4)c(1,3,4,3)−c(1,2,4,3)c(1,3,4,4)

c(1,2,4,4)2 0 0

0 c(1,2,4,3)+c(1,3,4,4)
c(1,2,4,4) −1 0




. If c(1, 2, 4, 4) = 0, then

B′ =




0 b′(1, 2) − c(1,2,4,1)
p(3,3)2 0

0 b′(2, 2) b′(2, 3) 0
0 b′(3, 2) − c(1,2,4,3)

p(1,1)p(3,3) 0

0 c(1,3,4,4)
p(1,1)p(3,3) 0 0




b′(1, 2) = c′(1, 3, 4, 1) =
p(3, 3)(c(1, 3, 4, 1)p(1, 1) + c(1, 3, 4, 4)p(1, 4))− c(1, 2, 4, 1)p(1, 1)p(2, 3)

p(1, 1)p(3, 3)3

b′(2, 2) = c′(1, 3, 4, 2) =
p(2, 3)(−c(1, 2, 4, 1)p(2, 1)− c(1, 2, 4, 3)p(2, 3)− c(1, 2, 4, 2)p(3, 3))

p(1, 1)p(3, 3)3

+
p(3, 3)(c(1, 3, 4, 1)p(2, 1) + c(1, 3, 4, 3)p(2, 3) + c(1, 3, 4, 4)p(2, 4) + c(1, 3, 4, 2)p(3, 3))

p(1, 1)p(3, 3)3

b′(2, 3) = −c′(1, 2, 4, 2) =
−c(1, 2, 4, 1)p(2, 1)− c(1, 2, 4, 3)p(2, 3)− c(1, 2, 4, 2)p(3, 3)

p(1, 1)p(3, 3)2

b′(3, 2) = c′(1, 3, 4, 3) =
p(3, 3)(c(1, 3, 4, 4)p(2, 3) + c(1, 3, 4, 3)p(3, 3))− c(1, 2, 4, 3)p(2, 3)p(3, 3)

p(1, 1)p(3, 3)3 .

Using the same argument, consider the cases where each of the structure constants
c(1, 3, 4, 4), c(1, 2, 4, 3), and c(1, 2, 4, 1) are zero or non-zero.

If c(1, 3, 4, 4) = 0, then d(1, 4) = 0 and

(
d(2, 4) d(3, 4)
d(1, 2) d(1, 3)

)
=
(

0, 0
c(1, 2, 4, 1)c(1, 3, 4, 2)− c(1, 2, 4, 2)c(1, 3, 4, 1), c(1, 2, 4, 1)c(1, 3, 4, 3)− c(1, 2, 4, 3)c(1, 3, 4, 1)

)

has rank less than or equal to 1, which means that the 3-Hom-Lie algebra is 2-solvable.

If c(1, 2, 4, 1) = 0, then d(1, 4) = 0 and
(

d(2, 4) d(3, 4)
d(1, 2) d(1, 3)

)
=
(

c(1, 2, 4, 2)c(1, 3, 4, 4), c(1, 2, 4, 3)c(1, 3, 4, 4)
−c(1, 2, 4, 2)c(1, 3, 4, 1), −c(1, 2, 4, 3)c(1, 3, 4, 1)

)
,
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also has rank less than or equal to 1, which means that the 3-Hom-Lie algebra is 2-solvable.

If c(1, 2, 4, 3) = 0, c(1, 3, 4, 4) 6= 0 and c(1, 2, 4, 1) 6= 0, then d(1, 4) 6= 0 and
(

d(2, 4) d(3, 4)
d(1, 2) d(1, 3)

)
=
(

c(1, 2, 4, 2)c(1, 3, 4, 4), 0
c(1, 2, 4, 1)c(1, 3, 4, 2)− c(1, 2, 4, 2)c(1, 3, 4, 1), c(1, 2, 4, 1)c(1, 3, 4, 3)

)

has rank 2 if and only if determinant c(1, 2, 4, 1)c(1, 2, 4, 2)c(1, 3, 4, 3)c(1, 3, 4, 4) 6= 0, that is,
if and only if c(1, 2, 4, 2) 6= 0 and c(1, 3, 4, 3) 6= 0.

If c(1, 2, 4, 4) = 0, c(1, 2, 4, 1) 6= 0, c(1, 3, 4, 4) 6= 0, c(1, 2, 4, 3) 6= 0, c(1, 2, 4, 3) 6=
c(1, 3, 4, 4), then choosing

P = P1,2 =



c(1,2,4,3)
p(3,3) 0 0 p(1, 4)

p(2, 1) p(3, 3) c(1,3,4,3)p(3,3)
c(1,2,4,3)−c(1,3,4,4) p(2, 4)

0 0 p(3, 3) c(1,3,4,3)p(3,3)
c(1,2,4,3)−c(1,3,4,4)

0 0 0 p(3, 3)




p(1, 4) = − c(1, 2, 4, 3)
(
c(1, 2, 4, 3)c(1, 3, 4, 1)− c(1, 3, 4, 4)c(1, 3, 4, 1)− c(1, 2, 4, 1)c(1, 3, 4, 3)

)

(c(1, 2, 4, 3)− c(1, 3, 4, 4))c(1, 3, 4, 4)p(3, 3)

p(2, 1) = − (c(1, 2, 4, 2)c(1, 2, 4, 3) + c(1, 3, 4, 3)c(1, 2, 4, 3)− c(1, 2, 4, 2)c(1, 3, 4, 4))p(3, 3)
c(1, 2, 4, 1)(c(1, 2, 4, 3)− c(1, 3, 4, 4))

p(2, 4) =

(
− c(1, 2, 4, 1)c(1, 3, 4, 3)2 + c(1, 2, 4, 3)c(1, 3, 4, 1)c(1, 3, 4, 3) + c(1, 2, 4, 2)c(1, 2, 4, 3)c(1, 3, 4, 1)

)
p(3, 3)

c(1, 2, 4, 1)(c(1, 2, 4, 3)− c(1, 3, 4, 4))c(1, 3, 4, 4)

+

(
− c(1, 2, 4, 1)c(1, 2, 4, 3)c(1, 3, 4, 2)− c(1, 2, 4, 2)c(1, 3, 4, 1)c(1, 3, 4, 4) + c(1, 2, 4, 1)c(1, 3, 4, 2)c(1, 3, 4, 4)

)
p(3, 3)

c(1, 2, 4, 1)(c(1, 2, 4, 3)− c(1, 3, 4, 4))c(1, 3, 4, 4)

we obtain B′ =




0 0 − c(1,2,4,1)
p(3,3)2 0

0 0 0 0
0 0 −1 0
0 c(1,3,4,4)

c(1,2,4,3) 0 0




.

If c(1, 2, 4, 4) = 0, c(1, 2, 4, 1) 6= 0, c(1, 3, 4, 4) 6= 0, c(1, 2, 4, 3) 6= 0, c(1, 2, 4, 3) =
c(1, 3, 4, 4), then choosing

P = P1,3 =



c(1,3,4,4)
p(3,3) 0 0 c(1,2,4,1)p(2,3)−c(1,3,4,1)p(3,3)

p(3,3)2

−c(1,3,4,4)p(2,3)−c(1,2,4,2)p(3,3)
c(1,2,4,1) p(3, 3) p(2, 3) p(2, 4)

0 0 p(3, 3) p(2, 3)
0 0 0 p(3, 3)




p(2, 4) =
−c(1, 2, 4, 1)c(1, 3, 4, 3)p(2, 3) + c(1, 3, 4, 1)c(1, 3, 4, 4)p(2, 3)

c(1, 2, 4, 1)c(1, 3, 4, 4)

+
c(1, 2, 4, 2)c(1, 3, 4, 1)p(3, 3)− c(1, 2, 4, 1)c(1, 3, 4, 2)p(3, 3)

c(1, 2, 4, 1)c(1, 3, 4, 4)

we obtain B′ =




0 0 − c(1,2,4,1)
p(3,3)2 0

0 0 0 0
0 c(1,3,4,3)

c(1,3,4,4) −1 0
0 1 0 0




.

If c(1, 2, 4, 4) = 0, c(1, 2, 4, 1) 6= 0, c(1, 3, 4, 4) 6= 0 and c(1, 2, 4, 3) = 0, then choosing

P = P1,4 =
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


c(1,3,4,4)
p(3,3) 0 0 −c(1,2,4,1)c(1,3,4,3)−c(1,3,4,1)c(1,3,4,4)

c(1,3,4,4)p(3,3)

− c(1,2,4,2)p(3,3)
c(1,2,4,1) p(3, 3) − c(1,3,4,3)p(3,3)

c(1,3,4,4) p(2, 4)

0 0 p(3, 3) − c(1,3,4,3)p(3,3)
c(1,3,4,4)

0 0 0 p(3, 3)




p(2, 4) = −
(
− c(1, 2, 4, 1)c(1, 3, 4, 3)2 − c(1, 2, 4, 2)c(1, 3, 4, 1)c(1, 3, 4, 4) + c(1, 2, 4, 1)c(1, 3, 4, 2)c(1, 3, 4, 4)

)
p(3, 3)

c(1, 2, 4, 1)c(1, 3, 4, 4)2

we obtain B′ =




0 0 − c(1,2,4,1)
p(3,3)2 0

0 0 0 0
0 0 0 0
0 1 0 0




(2) dim D1
3(A) = 2, 2-solvable of class 3, non-nilpotent, with trivial center, which is

equivalent to d(1, 4) = 0 and
(

d(2, 4) d(3, 4)
d(1, 2) d(1, 3)

)
6= 0, thus B takes the form

B =




0 λc(1, 2, 4, 1) −c(1, 2, 4, 1) 0
0 c(1, 3, 4, 2) −c(1, 2, 4, 2) 0
0 c(1, 3, 4, 3) −c(1, 2, 4, 3) 0
0 λc(1, 2, 4, 4) −c(1, 2, 4, 4) 0


 if (c(1, 2, 4, 1), c(1, 2, 4, 4)) 6= (0, 0), or

B =




0 c(1, 3, 4, 1) 0 0
0 c(1, 3, 4, 2) −c(1, 2, 4, 2) 0
0 c(1, 3, 4, 3) −c(1, 2, 4, 3) 0
0 c(1, 3, 4, 4) 0 0


 if (c(1, 2, 4, 1), c(1, 2, 4, 4)) = (0, 0).

Consider first the case where (c(1, 2, 4, 1), c(1, 2, 4, 4)) 6= (0, 0), then

B′ =




0 b′(1, 2) − c(1,2,4,1)p(1,1)+c(1,2,4,4)p(1,4)
p(1,1)p(3,3)2 0

0 b′(2, 2) b′(2, 3) 0
0 b′(3, 2) − c(1,2,4,4)p(2,3)+c(1,2,4,3)p(3,3)

p(1,1)p(3,3)2 0

0 c(1,2,4,4)(λp(3,3)−p(2,3))
p(1,1)p(3,3)2 − c(1,2,4,4)

p(1,1)p(3,3) 0




b′(1, 2) = c′(1, 3, 4, 1) =
(c(1, 2, 4, 1)p(1, 1) + c(1, 2, 4, 4)p(1, 4))(λp(3, 3)− p(2, 3))

p(1, 1)p(3, 3)3 ,

b′(2, 2) = c′(1, 3, 4, 2)

=
p(3, 3)

(
λc(1, 2, 4, 1)p(2, 1) + λc(1, 2, 4, 4)p(2, 4) + c(1, 3, 4, 3)p(2, 3) + c(1, 3, 4, 2)p(3, 3)

)

p(1, 1)p(3, 3)3

+
−p(2, 3)

(
c(1, 2, 4, 1)p(2, 1) + c(1, 2, 4, 3)p(2, 3) + c(1, 2, 4, 4)p(2, 4) + c(1, 2, 4, 2)p(3, 3)

)

p(1, 1)p(3, 3)3 ,

b′(3, 2) = c′(1, 3, 4, 3)

=
c(1, 2, 4, 4)p(2, 3)(λp(3, 3)− p(2, 3)) + p(3, 3)(c(1, 3, 4, 3)p(3, 3)− c(1, 2, 4, 3)p(2, 3))

p(1, 1)p(3, 3)3 ,

b′(2, 3) = −c′(1, 2, 4, 2)

= − c(1, 2, 4, 1)p(2, 1) + c(1, 2, 4, 3)p(2, 3) + c(1, 2, 4, 4)p(2, 4) + c(1, 2, 4, 2)p(3, 3)
p(1, 1)p(3, 3)2 .
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If c(1, 2, 4, 4) 6= 0, then choosing

P = P2,1 =




c(1,2,4,4)
p(3,3) 0 0 − c(1,2,4,1)

p(3,3)

p(2, 1) p(3, 3) − c(1,2,4,3)p(3,3)
c(1,2,4,4)

c(1, 2, 4, 3)2 p(3, 3)
−c(1, 2, 4, 1)c(1, 2, 4, 4)p(2, 1)
−c(1, 2, 4, 2)c(1, 2, 4, 4)p(3, 3)

c(1,2,4,4)2

0 0 p(3, 3) − c(1,2,4,3)p(3,3)
c(1,2,4,4)

0 0 0 p(3, 3)




we obtain B′ =




0 0 0 0

0
λc(1, 2, 4, 3)2 − λc(1, 2, 4, 2)c(1, 2, 4, 4)

−c(1, 3, 4, 3)c(1, 2, 4, 3) + c(1, 2, 4, 4)c(1, 3, 4, 2)
c(1,2,4,4)2 0 0

0 c(1,3,4,3)−λc(1,2,4,3)
c(1,2,4,4) 0 0

0 λc(1,2,4,4)+c(1,2,4,3)
c(1,2,4,4) −1 0




If c(1, 2, 4, 4) = 0 and c(1, 2, 4, 3) 6= 0, then

B′ =




0 c(1,3,4,1)p(1,1)+c(1,3,4,4)p(1,4)
p(1,1)p(3,3)2 0 0

0
c(1, 3, 4, 1)p(2, 1)− c(1, 2, 4, 2)p(2, 3) + c(1, 3, 4, 3)p(2, 3)

+c(1, 3, 4, 4)p(2, 4) + c(1, 3, 4, 2)p(3, 3)
p(1,1)p(3,3)2 − c(1,2,4,2)

p(1,1)p(3,3) 0

0 c(1,3,4,4)p(2,3)+c(1,3,4,3)p(3,3)
p(1,1)p(3,3)2 0 0

0 c(1,3,4,4)
p(1,1)p(3,3) 0 0




By choosing

P = P2,2 =




c(1,2,4,3)
p(3,3) 0 0 p(1, 4)

− (c(1,2,4,2)+c(1,3,4,3))p(3,3)
c(1,2,4,1) p(3, 3) c(1,3,4,3)p(3,3)

c(1,2,4,3) p(2, 4)

0 0 p(3, 3) c(1,3,4,3)p(3,3)
c(1,2,4,3)

0 0 0 p(3, 3)




,

we obtain

B′ =




0 c(1,2,4,1)(λc(1,2,4,3)−c(1,3,4,3))
c(1,2,4,3)p(3,3)2 − c(1,2,4,1)

p(3,3)2 0

0
−λc(1, 2, 4, 3)c(1, 3, 4, 3)− λc(1, 2, 4, 2)c(1, 2, 4, 3)

+c(1, 3, 4, 3)2 + c(1, 2, 4, 3)c(1, 3, 4, 2)
c(1,2,4,3)2 0 0

0 0 −1 0
0 0 0 0




.

If c(1, 2, 4, 4) = 0, in which case c(1, 2, 4, 1) 6= 0 (else the 3-Hom-Lie algebra would
be 2-solvable of class 2 by Theorem 1). We consider c(1, 2, 4, 3) = 0 and c(1, 3, 4, 3) 6= 0.
We have

B′ =




0 c(1,2,4,1)(λp(3,3)−p(2,3))
p(3,3)3 − c(1,2,4,1)

p(3,3)2 0

0

p(3, 3)
(
λc(1, 2, 4, 1)p(2, 1) + c(1, 3, 4, 3)p(2, 3)
+c(1, 3, 4, 2)p(3, 3)

)
− p(2, 3)×

×(c(1, 2, 4, 1)p(2, 1) + c(1, 2, 4, 2)p(3, 3))
p(1,1)p(3,3)3 − c(1,2,4,1)p(2,1)+c(1,2,4,2)p(3,3)

p(1,1)p(3,3)2 0

0 c(1,3,4,3)
p(1,1)p(3,3) 0 0

0 0 0 0




,

choosing

P = P2,3
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=




c(1,3,4,3)
p(3,3) 0 0 p(1, 4)

− c(1,2,4,2)p(3,3)
c(1,2,4,1) p(3, 3) p(3,3)(λc(1,2,4,2)−c(1,3,4,2))

c(1,3,4,3) p(2, 4)

0 0 p(3, 3) p(3,3)(λc(1,2,4,2)−c(1,3,4,2))
c(1,3,4,3)

0 0 0 p(3, 3)




we obtain B′ =




0 c(1,2,4,1)(−λc(1,2,4,2)+λc(1,3,4,3)+c(1,3,4,2))
c(1,3,4,3)p(3,3)2 − c(1,2,4,1)

p(3,3)2 0
0 0 0 0
0 1 0 0
0 0 0 0


.

Consider now (c(1, 2, 4, 1), c(1, 2, 4, 4)) 6= (0, 0) and c(1, 2, 4, 4) = 0, that is, c(1, 2, 4, 1) 6= 0.
Suppose also that c(1, 2, 4, 3) = 0 and c(1, 3, 4, 3) = 0. Then,

B′ =




0 c(1,3,4,1)p(1,1)p(3,3)−c(1,2,4,1)p(1,1)p(2,3)
p(1,1)p(3,3)3 − c(1,2,4,1)

p(3,3)2 0

0
p(3, 3)(c(1, 3, 4, 1)p(2, 1) + c(1, 3, 4, 2)p(3, 3))

+p(2, 3)(−c(1, 2, 4, 1)p(2, 1)− c(1, 2, 4, 2)p(3, 3))
p(1,1)p(3,3)3

−c(1,2,4,1)p(2,1)−c(1,2,4,2)p(3,3)
p(1,1)p(3,3)2 0

0 0 0 0
0 0 0 0




P = P2,4 =




c(1,2,4,1)c(1,3,4,2)−c(1,2,4,2)c(1,3,4,1)
c(1,2,4,1)p(3,3) 0 0 p(1, 4)

− c(1,2,4,2)p(3,3)
c(1,2,4,1) p(3, 3) c(1,3,4,1)p(3,3)

c(1,2,4,1) p(2, 4)

0 0 p(3, 3) c(1,3,4,1)p(3,3)
c(1,2,4,1)

0 0 0 p(3, 3)




B′ =




0 0 − c(1,2,4,1)
p(3,3)2 0

0 1 0 0
0 0 0 0
0 0 0 0


.

In this case, the 3-Hom-Lie algebra is multiplicative by Corollary 4.

If (c(1, 2, 4, 1), c(1, 2, 4, 4)) = (0, 0) and (c(1, 3, 4, 1), c(1, 3, 4, 4)) 6= (0, 0), then

B′ =




0 c(1,3,4,1)p(1,1)+c(1,3,4,4)p(1,4)
p(1,1)p(3,3)2 0 0

0

p(3, 3)(c(1, 3, 4, 1)p(2, 1)− c(1, 2, 4, 2)p(2, 3)
+c(1, 3, 4, 3)p(2, 3) + c(1, 3, 4, 4)p(2, 4)
+c(1, 3, 4, 2)p(3, 3))− c(1, 2, 4, 3)p(2, 3)2

p(1,1)p(3,3)3 − c(1,2,4,3)p(2,3)+c(1,2,4,2)p(3,3)
p(1,1)p(3,3)2 0

0
−c(1, 2, 4, 3)p(2, 3) + c(1, 3, 4, 4)p(2, 3)

+c(1, 3, 4, 3)p(3, 3)
p(1,1)p(3,3)2 − c(1,2,4,3)

p(1,1)p(3,3) 0

0 c(1,3,4,4)
p(1,1)p(3,3) 0 0




.

If c(1, 2, 4, 3) 6= 0, choosing

P = P2,5 =




c(1,2,4,3)
p(3,3) 0 0 − c(1,2,4,3)c(1,3,4,1)

c(1,3,4,4)p(3,3)

p(2, 1) p(3, 3) − c(1,2,4,2)p(3,3)
c(1,2,4,3)

−c(1, 2, 4, 3)c(1, 3, 4, 1)p(2, 1)
−c(1, 2, 4, 3)c(1, 3, 4, 2)p(3, 3)
+c(1, 2, 4, 2)c(1, 3, 4, 3)p(3, 3)

c(1,2,4,3)c(1,3,4,4)

0 0 p(3, 3) − c(1,2,4,2)p(3,3)
c(1,2,4,3)

0 0 0 p(3, 3)




,
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we obtain B′ =




0 0 0 0
0 0 0 0
0 c(1,2,4,3)c(1,3,4,3)+c(1,2,4,2)(c(1,2,4,3)−c(1,3,4,4))

c(1,2,4,3)2 −1 0

0 c(1,3,4,4)
c(1,2,4,3) 0 0




.

If c(1, 2, 4, 3) = 0, then

B′ =




0 c(1,3,4,1)p(1,1)+c(1,3,4,4)p(1,4)
p(1,1)p(3,3)2 0 0

0
c(1, 3, 4, 1)p(2, 1)− c(1, 2, 4, 2)p(2, 3)

+c(1, 3, 4, 3)p(2, 3) + c(1, 3, 4, 4)p(2, 4) + c(1, 3, 4, 2)p(3, 3)
p(1,1)p(3,3)2 − c(1,2,4,2)

p(1,1)p(3,3) 0

0 c(1,3,4,4)p(2,3)+c(1,3,4,3)p(3,3)
p(1,1)p(3,3)2 0 0

0 c(1,3,4,4)
p(1,1)p(3,3) 0 0




.

If c(1, 3, 4, 4) 6= 0, choosing

P = P2,6 =




c(1,3,4,4)
p(3,3) 0 0 − c(1,3,4,1)

p(3,3)

p(2, 1) p(3, 3) − c(1,3,4,3)p(3,3)
c(1,3,4,4)

c(1, 3, 4, 3)2 p(3, 3)
−c(1, 2, 4, 2)c(1, 3, 4, 3)p(3, 3)
−c(1, 3, 4, 1)c(1, 3, 4, 4)p(2, 1)
−c(1, 3, 4, 2)c(1, 3, 4, 4)p(3, 3)

c(1,3,4,4)2

0 0 p(3, 3) − c(1,3,4,3)p(3,3)
c(1,3,4,4)

0 0 0 p(3, 3)




,

we obtain B′ =




0 0 0 0
0 0 − c(1,2,4,2)

c(1,3,4,4) 0
0 0 0 0
0 1 0 0


.

If c(1, 3, 4, 4) = 0, since (c(1, 3, 4, 1), c(1, 3, 4, 4)) 6= (0, 0), then c(1, 3, 4, 1) 6= 0,

B′ =




0 c(1,3,4,1)
p(3,3)2 0 0

0
c(1, 3, 4, 1)p(2, 1)− c(1, 2, 4, 2)p(2, 3)
+c(1, 3, 4, 3)p(2, 3) + c(1, 3, 4, 2)p(3, 3)

p(1,1)p(3,3)2 − c(1,2,4,2)
p(1,1)p(3,3) 0

0 c(1,3,4,3)
p(1,1)p(3,3) 0 0

0 0 0 0




.

If c(1, 3, 4, 3) 6= 0, then taking

P = P2,7 =




c(1,3,4,3)
p(3,3) 0 0 p(1, 4)

c(1, 2, 4, 2)p(2, 3)− c(1, 3, 4, 3)p(2, 3)
−c(1, 3, 4, 2)p(3, 3)

c(1,3,4,1) p(3, 3) p(2, 3) p(2, 4)
0 0 p(3, 3) p(2, 3)
0 0 0 p(3, 3)




,

we obtain B′ =




0 c(1,3,4,1)
p(3,3)2 0 0

0 0 − c(1,2,4,2)
c(1,3,4,3) 0

0 1 0 0
0 0 0 0




.
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If c(1, 3, 4, 3) = 0, then the 3-Hom-Lie algebra is now multiplicative, and we have

B′ =




0 c(1,3,4,1)
p(3,3)2 0 0

0 p(3,3)(c(1,3,4,1)p(2,1)+c(1,3,4,2)p(3,3))−c(1,2,4,2)p(2,3)p(3,3)
p(1,1)p(3,3)3 − c(1,2,4,2)

p(1,1)p(3,3) 0
0 0 0 0
0 0 0 0




.

As in the previous case, c(1, 3, 4, 1 6= 0, moreover c(1, 2, 4, 2) 6= 0 because otherwise we
would have dim D1

3(A) = 1. Choosing

P = P2,8

=




c(1,2,4,2)
p(3,3) 0 0 p(1, 4)

p(2, 1) p(3, 3) c(1,3,4,1)p(2,1)+c(1,3,4,2)p(3,3)
c(1,2,4,2) p(2, 4)

0 0 p(3, 3) c(1,3,4,1)p(2,1)+c(1,3,4,2)p(3,3)
c(1,2,4,2)

0 0 0 p(3, 3)




,

we obtain B′ =




0 c(1,3,4,1)
p(3,3)2 0 0

0 0 −1 0
0 0 0 0
0 0 0 0


.

(3) dim D1
3(A) = 2, 2-solvable of class 2, non-nilpotent, with trivial center. In this case,

the matrix defining the bracket is given by

B =




0 0 0 0
0 c(1, 3, 4, 2) −c(1, 2, 4, 2) 0
0 c(1, 3, 4, 3) −c(1, 2, 4, 3) 0
0 0 0 0


,

B′ =




0 0 0 0

0
p(2, 3)(−c(1, 2, 4, 3)p(2, 3)− c(1, 2, 4, 2)p(3, 3))
+p(3, 3)(c(1, 3, 4, 3)p(2, 3) + c(1, 3, 4, 2)p(3, 3))

p(1,1)p(3,3)3
−c(1,2,4,3)p(2,3)−c(1,2,4,2)p(3,3)

p(1,1)p(3,3)2 0

0 c(1,3,4,3)p(3,3)2−c(1,2,4,3)p(2,3)p(3,3)
p(1,1)p(3,3)3 − c(1,2,4,3)

p(1,1)p(3,3) 0
0 0 0 0




.

Note that c′(1, 2, 4, 3) = 0 if and only if c(1, 2, 4, 3) = 0. Thus, the cases where c(1, 2, 4, 3) = 0
and c(1, 2, 4, 3) 6= 0 cannot be isomorphic.

(3.a) If c(1, 2, 4, 3) 6= 0, then taking

P = P3,1 =




c(1,2,4,3)
p(3,3) 0 0 p(1, 4)

p(2, 1) p(3, 3) c(1,3,4,3)p(3,3)
c(1,2,4,3) p(2, 4)

0 0 p(3, 3) c(1,3,4,3)p(3,3)
c(1,2,4,3)

0 0 0 p(3, 3)




,

for arbitrary p(2, 1), p(1, 4), p(2, 4), and p(3, 3) 6= 0, gives the following matrix defining
the bracket

B′ =




0 0 0 0
0 c′(1, 3, 4, 2) −c′(1, 2, 4, 2) 0
0 0 −1 0
0 0 0 0


,
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c′(1, 3, 4, 2) =
c(1, 2, 4, 3)c(1, 3, 4, 2)− c(1, 2, 4, 2)c(1, 3, 4, 3)

c(1, 2, 4, 3)2 ,

c′(1, 2, 4, 2) =
−c(1, 2, 4, 2)− c(1, 3, 4, 3)

c(1, 2, 4, 3)
.

(3.b) If c(1, 2, 4, 3) = 0, then consider c(1, 3, 4, 3) 6= 0 and c(1, 2, 4, 2) 6= 0, since otherwise
the center of the algebra would become non-zero (Theorem 1):

B′ =




0 0 0 0
0 (c(1,3,4,3)−c(1,2,4,2))p(2,3)+c(1,3,4,2)p(3,3)

p(1,1)p(3,3)2 − c(1,2,4,2)
p(1,1)p(3,3) 0

0 c(1,3,4,3)
p(1,1)p(3,3) 0 0

0 0 0 0




.

Taking

P = P3,2 =



c(1,3,4,3)
p(3,3) 0 0 p(1, 4)

p(2, 1) p(3, 3) − (c(1,3,4,3)−c(1,3,4,2))p(3,3)
c(1,2,4,2)−c(1,3,4,3) p(2, 4)

0 0 p(3, 3) − (c(1,3,4,3)−c(1,3,4,2))p(3,3)
c(1,2,4,2)−c(1,3,4,3)

0 0 0 p(3, 3)




for arbitrary p(2, 1), p(1, 4), p(2, 4), and p(3, 3) 6= 0 and for c(1, 3, 4, 3) 6= c(1, 2, 4, 2),

gives the following matrix defining the bracket B′ =




0 0 0 0
0 1 −c′(1, 2, 4, 2) 0
0 1 0 0
0 0 0 0


, with

c′(1, 2, 4, 2) = c(1,2,4,2)
c(1,3,4,3) .

Consider now two such 3-Hom-Lie algebras with different parameters c′(1, 2, 4, 2) = a
and c′′(1, 2, 4, 2) = b, and denote the matrices defining the brackets by B′1 and B′2, respec-
tively. Those 3-Hom-Lie algebras are isomorphic if and only if

1
det(P)

PB′1PT − B′2 =




0 0 0 0
0 (a+1)p(2,3)

p(1,1)p(3,3)2
a

p(1,1)p(3,3) − b 0

0 1
p(1,1)p(3,3) − 1 0 0

0 0 0 0


 = 0.

(3.c) If (c(1, 3, 4, 3) = c(1, 2, 4, 2), then B′ =




0 0 0 0
0 c(1,3,4,2)

p(1,1)p(3,3) − c(1,2,4,2)
p(1,1)p(3,3) 0

0 c(1,2,4,2)
p(1,1)p(3,3) 0 0

0 0 0 0




.

Taking P = P3,3 =




p(1, 1) 0 0 p(1, 4)
p(2, 1) c(1,3,4,3)

p(1,1) p(2, 3) p(2, 4)

0 0 c(1,3,4,3)
p(1,1) p(2, 3)

0 0 0 c(1,3,4,3)
p(1,1)




gives

B′ =




0 0 0 0
0 c(1,3,4,2)

c(1,3,4,3) −1 0
0 1 0 0
0 0 0 0


.
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(4) dim D1
3(A) = 1, A is 2-solvable of class 2, non-nilpotent, with 1-dimensional center.

In this case, w2 and w3 are linearly dependent.

If w3 6= 0, w2 = λw3, λ ∈ K, then B =




0 λc(1, 2, 4, 1) −c(1, 2, 4, 1) 0
0 λc(1, 2, 4, 2) −c(1, 2, 4, 2) 0
0 λc(1, 2, 4, 3) −c(1, 2, 4, 3) 0
0 λc(1, 2, 4, 4) −c(1, 2, 4, 4) 0


.

If w3 = 0 and w2 6= 0, then B =




0 c(1, 3, 4, 1) 0 0
0 c(1, 3, 4, 2) 0 0
0 c(1, 3, 4, 3) 0 0
0 c(1, 3, 4, 4) 0 0


.

(4.a) We consider first the case when w3 6= 0 and w2 = λw3, where λ ∈ K, then

B′ =




0
(λp(3, 3)− p(2, 3))(c(1, 2, 4, 1)p(1, 1)

+c(1, 2, 4, 4)p(1, 4))
p(1,1)p(3,3)3 − c(1,2,4,1)p(1,1)+c(1,2,4,4)p(1,4)

p(1,1)p(3,3)2 0

0

(λp(3, 3)− p(2, 3))
(
c(1, 2, 4, 1)p(2, 1)

+c(1, 2, 4, 3)p(2, 3) + c(1, 2, 4, 4)p(2, 4)
+c(1, 2, 4, 2)p(3, 3)

)

p(1,1)p(3,3)3 −
c(1, 2, 4, 1)p(2, 1) + c(1, 2, 4, 3)p(2, 3)
+c(1, 2, 4, 4)p(2, 4) + c(1, 2, 4, 2)p(3, 3)

p(1,1)p(3,3)2 0

0
(λp(3, 3)− p(2, 3))(c(1, 2, 4, 4)p(2, 3)

+c(1, 2, 4, 3)p(3, 3))
p(1,1)p(3,3)3 − c(1,2,4,4)p(2,3)+c(1,2,4,3)p(3,3)

p(1,1)p(3,3)2 0

0 c(1,2,4,4)(λp(3,3)−p(2,3))
p(1,1)p(3,3)2 − c(1,2,4,4)

p(1,1)p(3,3) 0




.

If c(1, 2, 4, 4) 6= 0, then taking

P = P4,1 =




c(1,2,4,4)
p(3,3) 0 0 − c(1,2,4,1)

p(3,3)

p(2, 1) p(3, 3) − c(1,2,4,3)p(3,3)
c(1,2,4,4)

c(1, 2, 4, 3)2 p(3, 3)−
c(1, 2, 4, 1)c(1, 2, 4, 4)p(2, 1)−
c(1, 2, 4, 2)c(1, 2, 4, 4)p(3, 3)

c(1,2,4,4)2

0 0 p(3, 3) − c(1,2,4,3)p(3,3)
c(1,2,4,4)

0 0 0 p(3, 3)




we obtain B′ =




0 0 0 0
0 0 0 0
0 0 0 0
0 c(1,2,4,3)

c(1,2,4,4) + λ −1 0




(4.b) If c(1, 2, 4, 4) = 0, then

B′ =




0 c(1,2,4,1)(λp(3,3)−p(2,3))
p(3,3)3 − c(1,2,4,1)

p(3,3)2 0

0
(λp(3, 3)− p(2, 3))

(
c(1, 2, 4, 1)p(2, 1)

+c(1, 2, 4, 3)p(2, 3) + c(1, 2, 4, 2)p(3, 3)
)

p(1,1)p(3,3)3 −
c(1, 2, 4, 1)p(2, 1) + c(1, 2, 4, 3)p(2, 3)

+c(1, 2, 4, 2)p(3, 3)
p(1,1)p(3,3)2 0

0 c(1,2,4,3)(λp(3,3)−p(2,3))
p(1,1)p(3,3)2 − c(1,2,4,3)

p(1,1)p(3,3) 0
0 0 0 0




.

If c(1, 2, 4, 3) 6= 0 and c(1, 2, 4, 1) 6= 0, taking

P = P4,2 =




c(1,2,4,3)
p(3,3) 0 0 p(1, 4)

−λc(1,2,4,3)p(3,3)−c(1,2,4,2)p(3,3)
c(1,2,4,1) p(3, 3) λp(3, 3) p(2, 4)

0 0 p(3, 3) λp(3, 3)
0 0 0 p(3, 3)




,
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we obtain B′ =




0 0 − c(1,2,4,1)
p(3,3)2 0

0 0 0 0
0 0 −1 0
0 0 0 0


.

(4.c) If c(1, 2, 4, 3) = 0 and c(1, 2, 4, 1) 6= 0, then

B′ =




0 c(1,2,4,1)(λp(3,3)−p(2,3))
p(3,3)3 − c(1,2,4,1)

p(3,3)2 0

0
(λp(3, 3)− p(2, 3))×

×(c(1, 2, 4, 1)p(2, 1) + c(1, 2, 4, 2)p(3, 3))
p(1,1)p(3,3)3 − c(1,2,4,1)p(2,1)+c(1,2,4,2)p(3,3)

p(1,1)p(3,3)2 0
0 0 0 0
0 0 0 0




,

P = P4,3 =




p(1, 1) 0 0 p(1, 4)
− c(1,2,4,2)p(3,3)

c(1,2,4,1) p(3, 3) λp(3, 3) p(2, 4)
0 0 p(3, 3) λp(3, 3)
0 0 0 p(3, 3)


,

B′ =




0 0 − c(1,2,4,1)
p(3,3)2 0

0 0 0 0
0 0 0 0
0 0 0 0


.

(4.d) If c(1, 2, 4, 3) 6= 0 and c(1, 2, 4, 1) = 0, then

B′ =




0 0 0 0

0
(λp(3, 3)− p(2, 3))×

×(c(1, 2, 4, 3)p(2, 3) + c(1, 2, 4, 2)p(3, 3))
p(1,1)p(3,3)3 −

c(1, 2, 4, 3)p(2, 3)
+c(1, 2, 4, 2)p(3, 3)

p(1,1)p(3,3)2 0

0 c(1,2,4,3)(λp(3,3)−p(2,3))
p(1,1)p(3,3)2 − c(1,2,4,3)

p(1,1)p(3,3) 0
0 0 0 0




,

P = P4,4 =




c(1,2,4,3)
p(3,3) 0 0 p(1, 4)

p(2, 1) p(3, 3) − c(1,2,4,2)p(3,3)
c(1,2,4,3) p(2, 4)

0 0 p(3, 3) − c(1,2,4,2)p(3,3)
c(1,2,4,3)

0 0 0 p(3, 3)




,

B′ =




0 0 0 0
0 0 0 0
0 c(1,2,4,2)

c(1,2,4,3) + λ −1 0
0 0 0 0


.

(4.e) If c(1, 2, 4, 3) = 0 and c(1, 2, 4, 1) = 0, then

B′ =




0 0 0 0
0 c(1,2,4,2)(λp(3,3)−p(2,3))

p(1,1)p(3,3)2 − c(1,2,4,2)
p(1,1)p(3,3) 0

0 0 0 0
0 0 0 0


,

P4,5 =




c(1,2,4,2)
p(3,3) 0 0 p(1, 4)

p(2, 1) p(3, 3) λp(3, 3) p(2, 4)
0 0 p(3, 3) λp(3, 3)
0 0 0 p(3, 3)


,
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B′ =




0 0 0 0
0 0 −1 0
0 0 0 0
0 0 0 0


.

(4.f) Now, we consider the case where w3 = 0 and w2 6= 0, we have

B′ =




0 c(1,3,4,1)p(1,1)+c(1,3,4,4)p(1,4)
p(1,1)p(3,3)2 0 0

0
c(1, 3, 4, 1)p(2, 1) + c(1, 3, 4, 3)p(2, 3)
+c(1, 3, 4, 4)p(2, 4) + c(1, 3, 4, 2)p(3, 3)

p(1,1)p(3,3)2 0 0

0 c(1,3,4,4)p(2,3)+c(1,3,4,3)p(3,3)
p(1,1)p(3,3)2 0 0

0 c(1,3,4,4)
p(1,1)p(3,3) 0 0




.

If c(1, 3, 4, 4) 6= 0, then choosing

P = P4,6 =




c(1,3,4,4)
p(3,3) 0 0 − c(1,3,4,1)

p(3,3)

p(2, 1) p(3, 3) − c(1,3,4,3)p(3,3)
c(1,3,4,4)

c(1, 3, 4, 3)2 p(3, 3)
−c(1, 3, 4, 1)c(1, 3, 4, 4)p(2, 1)
−c(1, 3, 4, 2)c(1, 3, 4, 4)p(3, 3)

c(1,3,4,4)2

0 0 p(3, 3) − c(1,3,4,3)p(3,3)
c(1,3,4,4)

0 0 0 p(3, 3)




we obtain B′ =




0 0 0 0
0 0 0 0
0 0 0 0
0 1 0 0


.

(4.g) If c(1, 3, 4, 4) = 0, then

B′ =




0 c(1,3,4,1)
p(3,3)2 0 0

0 c(1,3,4,1)p(2,1)+c(1,3,4,3)p(2,3)+c(1,3,4,2)p(3,3)
p(1,1)p(3,3)2 0 0

0 c(1,3,4,3)
p(1,1)p(3,3) 0 0

0 0 0 0




.

If c(1, 3, 4, 3) 6= 0, then choosing

P4,7 =




c(1,3,4,3)
p(3,3) 0 0 p(1, 4)

p(2, 1) p(3, 3) −c(1,3,4,1)p(2,1)−c(1,3,4,2)p(3,3)
c(1,3,4,3) p(2, 4)

0 0 p(3, 3) −c(1,3,4,1)p(2,1)−c(1,3,4,2)p(3,3)
c(1,3,4,3)

0 0 0 p(3, 3)


,

we obtain

B′ =




0 c(1,3,4,1)
p(3,3)2 0 0

0 0 0 0
0 1 0 0
0 0 0 0


.
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(4.h) If c(1, 3, 4, 3) = 0, then

B′ =




0 c(1,3,4,1)
p(3,3)2 0 0

0 c(1,3,4,1)p(2,1)+c(1,3,4,2)p(3,3)
p(1,1)p(3,3)2 0 0

0 0 0 0
0 0 0 0




.

If c(1, 3, 4, 1) 6= 0, then choosing

P4,9 =




p(1, 1) 0 0 p(1, 4)
− c(1,3,4,2)p(3,3)

c(1,3,4,1) p(3, 3) p(2, 3) p(2, 4)
0 0 p(3, 3) p(2, 3)
0 0 0 p(3, 3)




gives

B′ =




0 c(1,3,4,1)
p(3,3)2 0 0

0 0 0 0
0 0 0 0
0 0 0 0


.

If c(1, 3, 4, 1) = 0, then the 3-Hom-Lie algebra becomes nilpotent.

(5) dim D1
3(A) = 1, 2-solvable of class 2, nilpotent of class 2, with 1-dimensional center.

In this case, the matrix defining the bracket of A takes the following form:

B5,1 =




0 0 0 0

0 −c(1,2,4,2)2

c(1,2,4,3) −c(1, 2, 4, 2) 0
0 −c(1, 2, 4, 2) −c(1, 2, 4, 3) 0
0 0 0 0


, where c(1, 2, 4, 3) 6= 0, or

B5,2 =




0 0 0 0
0 c(1, 3, 4, 2) −c(1, 2, 4, 2) 0

0 −c(1, 2, 4, 2) −−c(1,2,4,2)2

c(1,3,4,2) 0
0 0 0 0


, where c(1, 3, 4, 2) 6= 0.

Consider the first form, then

B′ =
1

det(P)
PB5,1PT =




0, 0, 0, 0

0, − c(1,2,4,2)2

c(1,2,4,3)p(1,1)p(3,3) −
2c(1,2,4,2)p(2,3)

p(1,1)p(3,3)2 − c(1,2,4,3)p(2,3)2

p(1,1)p(3,3)3 , − c(1,2,4,2)
p(1,1)p(3,3) −

c(1,2,4,3)p(2,3)
p(1,1)p(3,3)2 , 0

0, − c(1,2,4,2)
p(1,1)p(3,3) −

c(1,2,4,3)p(2,3)
p(1,1)p(3,3)2 , − c(1,2,4,3)

p(1,1)p(3,3) , 0
0, 0, 0, 0




where c(1, 2, 4, 3) 6= 0. Taking

P = P5,1 =




c(1,2,4,3)
p(3,3) 0 0 p(1, 4)

p(2, 1) p(3, 3) − c(1,2,4,2)p(3,3)
c(1,2,4,3) p(2, 4)

0 0 p(3, 3) − c(1,2,4,2)p(3,3)
c(1,2,4,3)

0 0 0 p(3, 3)




we obtain B′ =




0 0 0 0
0 0 0 0
0 0 −1 0
0 0 0 0


.
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For the second form, we have

B′ =
1

det(P)
PB5,2PT =




0 0 0 0

0 c(1,2,4,2)2 p(2,3)2

c(1,3,4,2)p(1,1)p(3,3)3 − 2c(1,2,4,2)p(2,3)
p(1,1)p(3,3)2 + c(1,3,4,2)

p(1,1)p(3,3)
c(1,2,4,2)2 p(2,3)

c(1,3,4,2)p(1,1)p(3,3)2 − c(1,2,4,2)
p(1,1)p(3,3) 0

0 c(1,2,4,2)2 p(2,3)
c(1,3,4,2)p(1,1)p(3,3)2 − c(1,2,4,2)

p(1,1)p(3,3)
c(1,2,4,2)2

c(1,3,4,2)p(1,1)p(3,3) 0
0 0 0 0


,

where c(1, 3, 4, 2) 6= 0. If c(1, 2, 4, 2) 6= 0, then by taking

P = P5,2 =




− c(1,2,4,2)2

c(1,3,4,2)p(3,3) 0 0 p(1, 4)

p(2, 1) p(3, 3) c(1,3,4,2)p(3,3)
c(1,2,4,2) p(2, 4)

0 0 p(3, 3) c(1,3,4,2)p(3,3)
c(1,2,4,2)

0 0 0 p(3, 3)




we obtain B′ =




0 0 0 0
0 0 0 0
0 0 −1 0
0 0 0 0


.

If c(1, 2, 4, 2) = 0, then B′ =




0 0 0 0
0 c(1,3,4,2)

p(1,1)p(3,3) 0 0
0 0 0 0
0 0 0 0


, and by choosing

P = P5,3 =




c(1,3,4,2)
p(3,3) 0 0 p(1, 4)

p(2, 1) p(3, 3) p(2, 3) p(2, 4)
0 0 p(3, 3) p(2, 3)
0 0 0 p(3, 3)




we obtain B′ =




0 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0


.

Table 1. List of representatives of all isomorphism classes in 43,N(2),6, Corollary 5: case 1.

dim D1
3(A) = 2, non-2-solvable, non-nilpotent, with trivial center:

1.a c(1, 2, 4, 4) 6= 0.
[e1, e2, e3] = 0
[e1, e2, e4] = e4
[e1, e3, e4] = c′(1, 3, 4, 1)e1 + c′(1, 3, 4, 3)e3 + c′(1, 3, 4, 4)e4
[e2, e3, e4] = 0,

c′(1, 3, 4, 1) = −d(1,4)
c(1,2,4,4) 6= 0, c′(1, 3, 4, 3) = −d(3,4)

c(1,2,4,4)2 ,

c′(1, 3, 4, 4) = c(1,2,4,3)+c(1,3,4,4)
c(1,2,4,4) .

Two such 3-Hom-Lie algebras, given by the structure constants (c′(i, j, k, p))
and (c′′(i, j, k, p)), respectively, are isomorphic if and only if
c′(1, 3, 4, 3) = c′′(1, 3, 4, 3) and c′(1, 3, 4, 4) = c′′(1, 3, 4, 4)
and c′(1,3,4,1)

c′′(1,3,4,1) is a square in K. Thus, this family of 3-Hom-Lie algebras up

to isomorphism is parametrized by K∗
(K∗)2 ×K×K, where K∗

(K∗)2 is the factor
group of K∗ by (K∗)2 = {x2|x ∈ K∗}.
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Table 1. Cont.

1.b c(1, 2, 4, 4) = 0, c(1, 2, 4, 3) 6= 0 and c(1, 2, 4, 3) 6= c(1, 3, 4, 4). In this case
c(1, 2, 4, 1) and c(1, 3, 4, 4) are non-zero since d(1, 4) 6= 0.

[e1, e2, e3] = 0
[e1, e2, e4] = c′(1, 2, 4, 1)e1 + e3
[e1, e3, e4] = c′(1, 3, 4, 4)e4
[e2, e3, e4] = 0,

,
c′(1, 2, 4, 1) = c(1, 2, 4, 1) 6= 0,
c′(1, 3, 4, 4) = c(1,3,4,4)

c(1,2,4,3) 6= 0.

Two such 3-Hom-Lie algebras, given by the structure constants (c′(i, j, k, p))
and (c′′(i, j, k, p)), respectively, are isomorphic if and only if
c′(1,2,4,1)
c′′(1,2,4,1) is a square in K.

1.c c(1, 2, 4, 4) = 0, c(1, 2, 4, 3) 6= 0 and c(1, 2, 4, 3) = c(1, 3, 4, 4).
In this case, also c(1, 2, 4, 1) and c(1, 3, 4, 4) are non-zero since d(1, 4) 6= 0.

[e1, e2, e3] = 0
[e1, e2, e4] = c′(1, 3, 4, 3)e3 + e4
[e1, e3, e4] = c′(1, 2, 4, 1)e1 + e3
[e2, e3, e4] = 0,

, c′(1, 3, 4, 3) = c(1,3,4,4)
c(1,2,4,3) 6= 0,

c′(1, 2, 4, 1) = c(1, 2, 4, 1) 6= 0.

Two such 3-Hom-Lie algebras, given by the structure constants (c′(i, j, k, p))
and (c′′(i, j, k, p)), respectively, are isomorphic if and only if c′(1,2,4,1)

c′′(1,2,4,1)
is a square in K.

1.d c(1, 2, 4, 4) = 0 and c(1, 2, 4, 3) = 0. Similarly, in this case
c(1, 2, 4, 1) and c(1, 3, 4, 4) are non-zero since d(1, 4) 6= 0.

[e1, e2, e3] = 0
[e1, e2, e4] = c′(1, 2, 4, 1)e1
[e1, e3, e4] = e4
[e2, e3, e4] = 0,

, c′(1, 2, 4, 1) = c(1, 2, 4, 1).

Two such 3-Hom-Lie algebras given by the structure constants (c′(i, j, k, p))
and (c′′(i, j, k, p)) are isomorphic if and only if c′(1,2,4,1)

c′′(1,2,4,1) is a square
in K. In particular, if c(1, 2, 4, 1) is a square in K, we obtain the following brackets:
[e1, e2, e3] = 0
[e1, e2, e4] = e1
[e1, e3, e4] = e4
[e2, e3, e4] = 0.

Table 2. List of representatives of all isomorphism classes in 43,N(2),6, Corollary 5: case 2.

dim D1
3(A) = 2, 2-solvable of class 3, non-nilpotent, with trivial center, that is,

d(1, 4) = 0,
(

d(2, 4) d(3, 4)
d(1, 2) d(1, 3)

)
6= 0, equivalent to (c(1, 2, 4, 1), c(1, 2, 4, 4)) 6= (0, 0)

and (c(1, 3, 4, 1), c(1, 3, 4, 4)) = λ(c(1, 2, 4, 1), c(1, 2, 4, 4)) for some λ ∈ K
or (c(1, 2, 4, 1), c(1, 2, 4, 4)) = (0, 0) and (c(1, 3, 4, 1), c(1, 3, 4, 4)) 6= (0, 0):

2.a c(1, 2, 4, 4) 6= 0, hence (c(1, 2, 4, 1), c(1, 2, 4, 4)) 6= (0, 0)
[e1, e2, e3] = 0
[e1, e2, e4] = e4
[e1, e3, e4] = c′(1, 3, 4, 2)e2 + c′(1, 3, 4, 3)e3 + c′(1, 3, 4, 4)e4
[e2, e3, e4] = 0,

c′(1, 3, 4, 2) = λc(1,2,4,3)2−λc(1,2,4,2)c(1,2,4,4)
c(1,2,4,4)2

+−c(1,3,4,3)c(1,2,4,3)+c(1,2,4,4)c(1,3,4,2)
c(1,2,4,4)2 ,

c′(1, 3, 4, 3) = c(1,3,4,3)−λc(1,2,4,3)
c(1,2,4,4) ,

c′(1, 3, 4, 4) = λc(1,2,4,4)+c(1,2,4,3)
c(1,2,4,4) .

Any two different brackets of this form give non-isomorphic 3-Hom-Lie algebras.
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2.b (c(1, 2, 4, 1), c(1, 2, 4, 4)) 6= (0, 0) and c(1, 2, 4, 4) = 0, which means that
c(1, 2, 4, 1) 6= 0 (else the 3-Hom-Lie algebra would be 2-solvable of class 2).
For c(1, 2, 4, 3) 6= 0,

[e1, e2, e3] = 0
[e1, e2, e4] = c′(1, 2, 4, 1)e1 + e3
[e1, e3, e4] = λ′c′(1, 2, 4, 1)e1 + c′(1, 3, 4, 2)e2
[e2, e3, e4] = 0,

c′(1, 2, 4, 1) = c(1, 2, 4, 1) 6= 0, λ′ = λc(1,2,4,3)−c(1,3,4,3)
c(1,2,4,3) ,

c′(1, 3, 4, 2) = −λc(1,2,4,3)c(1,3,4,3)−λc(1,2,4,2)c(1,2,4,3)
c(1,2,4,3)2

+ c(1,3,4,3)2+c(1,2,4,3)c(1,3,4,2)
c(1,2,4,3)2 .

Two such brackets given by the structure constants (c′(i, j, k, p)) and (c′′(i, j, k, p))
define isomorphic 3-Hom-Lie algebras if and only if c′(1,2,4,1)

c′′(1,2,4,1) is a square in K.

2.c (c(1, 2, 4, 1), c(1, 2, 4, 4)) 6= (0, 0) and c(1, 2, 4, 4) = 0, which means that
c(1, 2, 4, 1) 6= 0 (else the 3-Hom-Lie algebra would be 2-solvable of class 2).
For c(1, 2, 4, 3) = 0 and c(1, 3, 4, 3) 6= 0,

[e1, e2, e3] = 0
[e1, e2, e4] = c′(1, 2, 4, 1)e1
[e1, e3, e4] = λ′c′(1, 2, 4, 1)e1 + e3
[e2, e3, e4] = 0,

λ′ = −λc(1,2,4,2)+λc(1,3,4,3)+c(1,3,4,2)
c(1,3,4,3) ,

c′(1, 2, 4, 1) = c(1, 2, 4, 1).
Two such brackets given by the structure constants (c′(i, j, k, p)) and (c′′(i, j, k, p))
are isomorphic if and only if c′(1,2,4,1)

c′′(1,2,4,1) is a square in K.

2.d (c(1, 2, 4, 1), c(1, 2, 4, 4)) 6= (0, 0) and c(1, 2, 4, 4) = 0, which means that
c(1, 2, 4, 1) 6= 0 (else the 3-Hom-Lie algebra would be 2-solvable of class 2).
For c(1, 2, 4, 3) = 0 and c(1, 3, 4, 3) = 0, the 3-Hom-Lie algebra
is multiplicative.

[e1, e2, e3] = 0
[e1, e2, e4] = c′(1, 2, 4, 1)e1
[e1, e3, e4] = e2
[e2, e3, e4] = 0,

, c′(1, 2, 4, 1) = c(1, 2, 4, 1) 6= 0.

2.e Two such brackets given by the structure constants (c′(i, j, k, p)) and (c′′(i, j, k, p))
define isomorphic 3-Hom-Lie algebras if and only if c′(1,2,4,1)

c′′(1,2,4,1) is a square in K.

(c(1, 2, 4, 1), c(1, 2, 4, 4)) = (0, 0) and (c(1, 3, 4, 1), c(1, 3, 4, 4)) 6= (0, 0),
c(1, 2, 4, 3) 6= 0

[e1, e2, e3] = 0
[e1, e2, e4] = e3
[e1, e3, e4] = c′(1, 3, 4, 3)e3 + c′(1, 3, 4, 4)e4
[e2, e3, e4] = 0,

c′(1, 3, 4, 3) = c(1,2,4,2)c(1,2,4,3)+c(1,3,4,3)c(1,2,4,3)
c(1,2,4,3)2 − c(1,2,4,2)c(1,3,4,4)

c(1,2,4,3)2 ,

c′(1, 3, 4, 4) = c(1,3,4,4)
c(1,2,4,3) .

Any two different brackets of this form give non-isomorphic 3-Hom-Lie algebras.

2.f (c(1, 2, 4, 1), c(1, 2, 4, 4)) = (0, 0) and (c(1, 3, 4, 1), c(1, 3, 4, 4)) 6= (0, 0),
c(1, 2, 4, 3) = 0, c(1, 3, 4, 4) 6= 0

[e1, e2, e3] = 0
[e1, e2, e4] = c′(1, 2, 4, 2)e2
[e1, e3, e4] = e4
[e2, e3, e4] = 0,

, c′(1, 2, 4, 2) = c(1,2,4,2)
c(1,3,4,4) .
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2.g (c(1, 2, 4, 1), c(1, 2, 4, 4)) = (0, 0) and (c(1, 3, 4, 1), c(1, 3, 4, 4)) 6= (0, 0),
c(1, 2, 4, 3) = 0, c(1, 3, 4, 4) = 0 and c(1, 3, 4, 3) 6= 0

[e1, e2, e3] = 0
[e1, e2, e4] = c′(1, 2, 4, 2)e2
[e1, e3, e4] = c′(1, 3, 4, 1)e1 + e3
[e2, e3, e4] = 0,

, c′(1, 2, 4, 2) = c(1,2,4,2)
c(1,3,4,3) ,

c′(1, 3, 4, 1) = c(1, 3, 4, 1).

Two such brackets given by the structure constants (c′(i, j, k, p)) and (c′′(i, j, k, p))
define isomorphic 3-Hom-Lie algebras if and only if c′(1, 2, 4, 2) = c′′(1, 2, 4, 2)
and c′(1,3,4,1)

c′′(1,3,4,1) is a square in K.

2.h (c(1, 2, 4, 1), c(1, 2, 4, 4)) = (0, 0) and (c(1, 3, 4, 1), c(1, 3, 4, 4)) 6= (0, 0),
c(1, 2, 4, 3) = 0, c(1, 3, 4, 4) = 0 and c(1, 3, 4, 3) = 0.
This 3-Hom-Lie algebra is multiplicative,

[e1, e2, e3] = 0
[e1, e2, e4] = e2
[e1, e3, e4] = c′(1, 3, 4, 1)e1
[e2, e3, e4] = 0

, c′(1, 3, 4, 1) = c(1, 3, 4, 1) 6= 0.

Two such brackets given by the structure constants (c′(i, j, k, p)) and (c′′(i, j, k, p))
define isomorphic 3-Hom-Lie algebras if and only if c′(1,3,4,1)

c′′(1,3,4,1) is a square in K.

Table 3. List of representatives of all isomorphism classes in 43,N(2),6, Corollary 5: case 3.

dim D1
3(A) = 2, 2-solvable of class 2, non-nilpotent, with trivial center:

3.a c(1, 2, 4, 3) 6= 0
[e1, e2, e3] = 0
[e1, e2, e4] = c′(1, 2, 4, 2)e2 + e3
[e1, e3, e4] = c′(1, 3, 4, 2)e2
[e2, e3, e4] = 0,
c′(1, 3, 4, 2) = c(1,2,4,3)c(1,3,4,2)−c(1,2,4,2)c(1,3,4,3)

c(1,2,4,3)2 ,

c′(1, 2, 4, 2) = −c(1,2,4,2)−c(1,3,4,3)
c(1,2,4,3) .

3.b c(1, 2, 4, 3) = 0, c(1, 3, 4, 3) 6= 0 and c(1, 3, 4, 3) 6= c(1, 2, 4, 2)
[e1, e2, e3] = 0
[e1, e2, e4] = c′(1, 2, 4, 2)e2
[e1, e3, e4] = e3
[e2, e3, e4] = 0

, c′(1, 2, 4, 2) = c(1,2,4,2)
c(1,3,4,3) .

3.c c(1, 2, 4, 3) = 0, c(1, 3, 4, 3) 6= 0 and c(1, 3, 4, 3) = c(1, 2, 4, 2)
[e1, e2, e3] = 0
[e1, e2, e4] = e2
[e1, e3, e4] = c′(1, 3, 4, 2)e2 + e3
[e2, e3, e4] = 0

, c′(1, 3, 4, 2) = c(1,3,4,2)
c(1,3,4,3) .

Table 4. List of representatives of all isomorphism classes in 43,N(2),6, Corollary 5: case 4.

dim D1
3(A) = 1, 2-solvable of class 2, non-nilpotent, with 1-dimensional center:

w3 6= 0, w2 = λw3 with λ ∈ K and c(1, 2, 4, 4) 6= 0

4.a

[e1, e2, e3] = 0
[e1, e2, e4] = e4
[e1, e3, e4] = λ′ e4
[e2, e3, e4] = 0

,

λ′ = c(1,2,4,3)
c(1,2,4,4) + λ.

Two such brackets with parameters λ′ and λ′′ define isomorphic 3-Hom-Lie
algebras if and only if λ′ = λ′′.
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4.b w3 6= 0, w2 = λw3 with λ ∈ K and c(1, 2, 4, 4) = 0, c(1, 2, 4, 3) 6= 0, c(1, 2, 4, 1) 6= 0
[e1, e2, e3] = 0
[e1, e2, e4] = e1 + c′(1, 2, 4, 3)e3
[e1, e3, e4] = 0
[e2, e3, e4] = 0

, c′(1, 2, 4, 3) = c(1, 2, 4, 3) 6= 0.

Two such brackets given by the structure constants (c′(i, j, k, p)) and (c′′(i, j, k, p))
define isomorphic 3-Hom-Lie algebras if and only if c′(1,2,4,3)

c′′(1,2,4,3) is a square in K.

4.c w3 6= 0, w2 = λw3 with λ ∈ K and c(1, 2, 4, 4) = 0, c(1, 2, 4, 3) 6= 0, c(1, 2, 4, 1) = 0
[e1, e2, e3] = 0
[e1, e2, e4] = e3
[e1, e3, e4] = λ′ e3
[e2, e3, e4] = 0,

4.d w3 6= 0, w2 = λw3 with λ ∈ K and c(1, 2, 4, 4) = 0, c(1, 2, 4, 3) = 0, c(1, 2, 4, 1) 6= 0
[e1, e2, e3] = 0
[e1, e2, e4] = c′(1, 2, 4, 1)e1
[e1, e3, e4] = 0
[e2, e3, e4] = 0,

4.e w3 6= 0, w2 = λw3 with λ ∈ K and c(1, 2, 4, 4) = 0, c(1, 2, 4, 3) = 0, c(1, 2, 4, 1) = 0,
c(1, 2, 4, 2) 6= 0
[e1, e2, e3] = 0
[e1, e2, e4] = e2
[e1, e3, e4] = 0
[e2, e3, e4] = 0,

4.f w3 = 0, c(1, 3, 4, 4) 6= 0
[e1, e2, e3] = 0
[e1, e2, e4] = 0
[e1, e3, e4] = e4
[e2, e3, e4] = 0,

4.g w3 = 0, c(1, 3, 4, 4) = 0, c(1, 3, 4, 1) 6= 0, c(1, 3, 4, 3) 6= 0
[e1, e2, e3] = 0
[e1, e2, e4] = 0
[e1, e3, e4] = c′(1, 3, 4, 1)e1 + e3
[e2, e3, e4] = 0

, c′(1, 3, 4, 1) = c(1, 3, 4, 1).

Two such brackets given by the structure constants (c′(i, j, k, p)) and (c′′(i, j, k, p))
define isomorphic 3-Hom-Lie algebras if and only if c′(1,3,4,1)

c′′(1,3,4,1) is a square in K.

4.h w3 = 0, c(1, 3, 4, 4) = 0, c(1, 3, 4, 1) 6= 0, c(1, 3, 4, 3) = 0
[e1, e2, e3] = 0
[e1, e2, e4] =
[e1, e3, e4] = c′(1, 3, 4, 1)e1
[e2, e3, e4] = 0

, c′(1, 3, 4, 1) = c(1, 3, 4, 1)

Two such brackets given by the structure constants (c′(i, j, k, p)) and (c′′(i, j, k, p))
define isomorphic 3-Hom-Lie algebras if and only if c′(1,3,4,1)

c′′(1,3,4,1) is a square in K.
This bracket defines a multiplicative 3-Hom-Lie algebra.

Table 5. List of representatives of all isomorphism classes in 43,N(2),6, Corollary 5: case 5.

dim D1
3(A) = 1, 2-solvable of class 2, nilpotent of class 2, with 1-dimensional center:

5.a [e1, e2, e3] = 0
[e1, e2, e4] = 0
[e1, e3, e4] = e2
[e2, e3, e4] = 0

5.b [e1, e2, e3] = 0
[e1, e2, e4] = e3
[e1, e3, e4] = 0
[e2, e3, e4] = 0
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The classification presented in Theorem 2 and Tables 1–5 is valid over any field of char-
acteristic 0. Some of the families of isomorphism classes are parametrized by K∗

(K∗)2 ×Kd for
a given d ∈ N. In the case where K is algebraically closed (in particular if K = C), we have
K∗

(K∗)2
∼= {1}, and the parameter whose range is K∗

(K∗)2 can be taken to be equal to 1. If K = R,

then K∗
(K∗)2

∼= {−1, 1}, and we obtain two non-isomorphic cases, one where the parameter

whose range is K∗
(K∗)2 is equal to 1 and one where it is equal to −1. A very different case

is when K = Q. In this case, K∗
(K∗)2 is infinite (for example, all prime natural numbers are

in different equivalence classes). This means that there is infinitely many isomorphism
classes parametrized by K∗

(K∗)2 and an infinite number of 3-Hom-Lie algebras in each iso-
morphism class. For example, in the case 1.a in Table 1, the 3-Hom-Lie algebras given by
c′(1, 3, 4, 1) = 1

2 , c′(1, 3, 4, 3) = −1, c′(1, 3, 4, 4) = 2 and c′′(1, 3, 4, 1) = 1
8 , c′′(1, 3, 4, 3) = −1,

c′′(1, 3, 4, 4) = 2 are isomorphic since c′(1, 3, 4, 3) = c′′(1, 3, 4, 3), c′(1, 3, 4, 4) = c′′(1, 3, 4, 4)
and c′(1,3,4,1)

c′′(1,3,4,1) = 4 which is a square in Q. On the other hand, the 3-Hom-Lie algebras

given by c′(1, 3, 4, 1) = 1
2 , c′(1, 3, 4, 3) = −1, c′(1, 3, 4, 4) = 3 and c′′(1, 3, 4, 1) = 1

3 ,

c′′(1, 3, 4, 3) = −1, c′′(1, 3, 4, 4) = 3 are not isomorphic because c′(1,3,4,1)
c′′(1,3,4,1) = 3

2 , which
is not a square in Q.

6. Examples and Remarks

In this section, we consider some examples that show specific properties not following
from the results proved above, and that may lead to further investigations of the properties
of n-Hom-Lie algebras. The following result is a consequence of [[85], lemma 6.2].

Proposition 10. Let A = (A, [·, . . . , ·], (αi)1≤i≤n−1) be an n-Hom-Lie algebra and let I be an
ideal of A. Then, for all p ∈ N, 2 ≤ k ≤ n, Dp+1

k (I) is a weak ideal of Dp
k (I) and Cp+1

k (I) is a
weak ideal of Cp

k (I). In particular, D1
k(A) and C1

k (A) are weak ideals of A. Moreover, if all the

αi, 1 ≤ i ≤ n− 1 are Hom-algebra morphisms, then Dp+1
k (I) is an ideal of Dp

k (I) and Cp+1
k (I) is

an ideal of Cp
k (I).

A consequence of this is that all the multiplicative algebras in the above classification
are not simple since they have at least one non-trivial ideal (D1

3(A)).
The elements of the derived series and central descending series of A for the above

algebras are given by

D1
3(A) = 〈{c(1, 2, 4, 1)e1 + c(1, 2, 4, 2)e2 + c(1, 2, 4, 3)e3 + c(1, 2, 4, 4)e4,

c(1, 3, 4, 1)e1 + c(1, 3, 4, 2)e2 + c(1, 3, 4, 3)e3 + c(1, 3, 4, 4)e4}〉,
D1

2(A) = 〈{c(1, 2, 4, 1)e1 + c(1, 2, 4, 2)e2 + c(1, 2, 4, 3)e3 + c(1, 2, 4, 4)e4,

c(1, 3, 4, 1)e1 + c(1, 3, 4, 2)e2 + c(1, 3, 4, 3)e3 + c(1, 3, 4, 4)e4}〉.

For the cases 1.a (see Table 1) and 2.a (see Table 2), D1
3(A) is not invariant under α,

that is, it is not an ideal.
Case 2.a (Table 2) In this case,

D2
2(A) = 〈{(c′(1, 3, 4, 2)c′(1, 2, 4, 4)− c′(1, 3, 4, 4)c′(1, 2, 4, 2))w3−

− (c′(1, 3, 4, 3)c′(1, 2, 4, 4)− c′(1, 3, 4, 4)c′(1, 2, 4, 3))w2,

− (c′(1, 3, 4, 1)c′(1, 2, 4, 4)− c′(1, 3, 4, 4)c′(1, 2, 4, 1))w3,

− (c′(1, 3, 4, 1)c′(1, 2, 4, 4)− c′(1, 3, 4, 4)c′(1, 2, 4, 1))w2,

(c′(1, 3, 4, 1)c′(1, 2, 4, 2)− c′(1, 3, 4, 2)c′(1, 2, 4, 1))w3−
− (c′(1, 3, 4, 1)c′(1, 2, 4, 3)− c′(1, 3, 4, 3)c′(1, 2, 4, 1))w2}〉

= 〈{c′(1, 3, 4, 2)w3 − c′(1, 3, 4, 3)w2}〉 6= {0}

133



Axioms 2024, 13, 373

since in case 2 (Table 2) dim D1
3(A) = 2. Denote by v the generator of D2

2(A):

v = c′(1, 3, 4, 2)w3 − c′(1, 3, 4, 3)w2

= −c′(1, 3, 4, 2)e4 − c′(1, 3, 4, 3)(c′(1, 3, 4, 2)e2 + c′(1, 3, 4, 3)e3 + c′(1, 3, 4, 4)e4)

= −c′(1, 3, 4, 2)e4 − c′(1, 3, 4, 3)c′(1, 3, 4, 2)e2 − c′(1, 3, 4, 3)2 e3

− c′(1, 3, 4, 3)c′(1, 3, 4, 4)e4

= −c′(1, 3, 4, 3)c′(1, 3, 4, 2)e2 − c′(1, 3, 4, 3)2e3 − (c′(1, 3, 4, 3)c′(1, 3, 4, 4)

+ c′(1, 3, 4, 2))e4.

In general, D2
2(A) is a weak subalgebra of A. We study whether D2

2(A) can be a Hom-
subalgebra in this class. To this end, we calculate the image by α of D2

2(A):

α(v) = α(−c′(1, 3, 4, 3)c′(1, 3, 4, 2)e2 − c′(1, 3, 4, 3)2 e3

− (c′(1, 3, 4, 3)c′(1, 3, 4, 4) + c′(1, 3, 4, 2))e4)

= −α(c′(1, 3, 4, 3)c′(1, 3, 4, 2)e2)− α(c′(1, 3, 4, 3)2e3)

− α((c′(1, 3, 4, 3)c′(1, 3, 4, 4) + c′(1, 3, 4, 2))e4)

= −c′(1, 3, 4, 3)c′(1, 3, 4, 2)α(e2)− c′(1, 3, 4, 3)2α(e3)

− (c′(1, 3, 4, 3)c′(1, 3, 4, 4) + c′(1, 3, 4, 2))α(e4)

= −c′(1, 3, 4, 3)2e2 − (c′(1, 3, 4, 3)c′(1, 3, 4, 4) + c′(1, 3, 4, 2))e3.

In the case when (c′(1, 3, 4, 3)c′(1, 3, 4, 4)+ c′(1, 3, 4, 2)) 6= 0, the elements α(c′(1, 3, 4, 2)w3−
c′(1, 3, 4, 3)w2) and c′(1, 3, 4, 2)w3 − c′(1, 3, 4, 3)w2 are linearly independent, which means
that D2

2(A) is not invariant under α, and thus, D2
2(A) is a weak subalgebra but not a

Hom-subalgebra of A.
If (c′(1, 3, 4, 3)c′(1, 3, 4, 4) + c′(1, 3, 4, 2)) = 0, then

c′(1, 3, 4, 2) = −c′(1, 3, 4, 3)c′(1, 3, 4, 4),

α(v) = −c′(1, 3, 4, 3)2e2,

v = −c′(1, 3, 4, 3)c′(1, 3, 4, 2)e2 − c′(1, 3, 4, 3)2 e3

− (c′(1, 3, 4, 3)c′(1, 3, 4, 4) + c′(1, 3, 4, 2))e4

= −c′(1, 3, 4, 3)c′(1, 3, 4, 2)e2 − c′(1, 3, 4, 3)2 e3

= +c′(1, 3, 4, 3)2c′(1, 3, 4, 4)e2 − c′(1, 3, 4, 3)2 e3

= c′(1, 3, 4, 3)2(c′(1, 3, 4, 4)e2 − e3)

If c′(1, 3, 4, 4) 6= 0, then in this case c′(1, 3, 4, 3) 6= 0 because otherwise c′(1, 3, 4, 2) = 0 too,
which contradicts the assumption dim D1

3(A) = 2. If c′(1, 3, 4, 4) = 0, then c′(1, 3, 4, 2) = 0,
and thus, c′(1, 3, 4, 3) 6= 0 because otherwise dim D3

1(A) 6= 2. Thus, these elements are
linearly independent since e2 and e3 are linearly independent. Thus, in the case (2.a),
D2

2(A) cannot be invariant under α, and hence, D2
2(A) is a weak subalgebra but not a

Hom-subalgebra of A.
Since D2

2(A) is not a Hom-subalgebra of A, it is not a Hom-ideal either. Let us study
now whether D2

2(A) is a weak ideal of A. We have

[e1, e2, v] =
[
e1, e2,−c′(1, 3, 4, 3)c′(1, 3, 4, 2)e2 − c′(1, 3, 4, 3)2e3

−(c′(1, 3, 4, 3)c′(1, 3, 4, 4) + c′(1, 3, 4, 2))e4
]

= −c′(1, 3, 4, 3)c′(1, 3, 4, 2)[e1, e2, e2]− c′(1, 3, 4, 3)2[e1, e2, e3]

− (c′(1, 3, 4, 3)c′(1, 3, 4, 4) + c′(1, 3, 4, 2))[e1, e2, e4]
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= −c′(1, 3, 4, 3)c′(1, 3, 4, 2)0− c′(1, 3, 4, 3)2 0

− (c′(1, 3, 4, 3)c′(1, 3, 4, 4) + c′(1, 3, 4, 2))e4

= −(c′(1, 3, 4, 3)c′(1, 3, 4, 4) + c′(1, 3, 4, 2))e4.

If (c′(1, 3, 4, 3)c′(1, 3, 4, 4) + c′(1, 3, 4, 2)) 6= 0, when c′(1, 3, 4, 3) 6= 0, [e1, e2, v] and v
are linearly independent. Thus, D2

2(A) is a weak subalgebra, but not a weak ideal of A. If
c′(1, 3, 4, 3) = 0, then c′(1, 3, 4, 2) 6= 0, since dim D1

3(A) 6= 2 otherwise, which contradicts
the assumptions of the case 2.a). We obtain

[e1, e3, v] =
[
e1, e3,−(c′(1, 3, 4, 3)c′(1, 3, 4, 4) + c′(1, 3, 4, 2))e4

]

= −(c′(1, 3, 4, 3)c′(1, 3, 4, 4) + c′(1, 3, 4, 2))[e1, e3, e4]

= −(c′(1, 3, 4, 3)c′(1, 3, 4, 4) + c′(1, 3, 4, 2))(c′(1, 3, 4, 2)e2 + c′(1, 3, 4, 4)e4).

This element is linearly independent from v, and hence, it is not in D2
2(A). Thus, D2

2(A) is
not a weak ideal of A.

If (c′(1, 3, 4, 3)c′(1, 3, 4, 4)+ c′(1, 3, 4, 2)) = 0, then v = c′(1, 3, 4, 3)2(c′(1, 3, 4, 4)e2− e3).
In this case,

[
ej, ek, v

]
6= 0 if and only if (j, k) = (1, 4) or (j, k) = (4, 1). Therefore, we

compute only [e1, e4, v],

[e1, e4, v] =
[
e1, e4, c′(1, 3, 4, 3)2(c′(1, 3, 4, 4)e2 − e3)

]

= c′(1, 3, 4, 3)2(
[
e1, e4, c′(1, 3, 4, 4)e2

]
− [e1, e4, e3])

= c′(1, 3, 4, 3)2(−c′(1, 3, 4, 4)[e1, e2, e4] + [e1, e3, e4])

= c′(1, 3, 4, 3)2
(
− c′(1, 3, 4, 4)e4 + c′(1, 3, 4, 2)e2

+ c′(1, 3, 4, 3)e3 + c′(1, 3, 4, 4)e4

)

= −c′(1, 3, 4, 3)2(−c′(1, 3, 4, 3)c′(1, 3, 4, 4)e2 + c′(1, 3, 4, 3)e3)

= c′(1, 3, 4, 3)3(c′(1, 3, 4, 4)e2 − e3)

= c′(1, 3, 4, 3)v.

Therefore, D2
2(A) is a weak ideal of A. In this case, the bracket of A is given by

[e1, e2, e3] = 0

[e1, e2, e4] = e4

[e1, e3, e4] = −c′(1, 3, 4, 3)c′(1, 3, 4, 4)e2 + c′(1, 3, 4, 3)e3 + c′(1, 3, 4, 4)e4

[e2, e3, e4] = 0,

where c′(1, 3, 4, 3) 6= 0. Note that one cannot conclude this from the general statements
in [99].

Example 3. If we take K = C, c(1, 3, 4, 4) = ±i and c(1, 3, 4, 3) = −2, then we obtain the
following two examples where D2

2(A) is a weak ideal of A:

[e1, e2, e3] = 0
[e1, e2, e4] = e4
[e1, e3, e4] = 2ie2 − 2e3 + i e4
[e2, e3, e4] = 0

or

[e1, e2, e3] = 0
[e1, e2, e4] = e4
[e1, e3, e4] = −2ie2 − 2e3 − i e4
[e2, e3, e4] = 0.

7. Discussion

This work provides a complete classification of a class of 4-dimensional 3-Hom-Lie
algebras with a nilpotent twisting map, up to isomorphism of Hom-algebras, as well as
important properties of the classified algebras.
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One of the main differences with previous work in the classification of n-Lie algebras is
that isomorphisms of Hom-algebras are different from isomorphisms of algebras since they
need to intertwine not only the multiplications but also the twisting maps. Isomorphisms of
Hom-algebras are more restrictive, and thus, give rise to many more isomorphism classes
of Hom-algebras than isomorphism classes of algebras.

The n-Hom-Lie algebras are fundamentally different from the n-Lie algebras especially
when the twisting maps are not invertible or not diagonalizable. When the twisting maps
are not invertible, the Hom-Nambu–Filippov identity becomes less restrictive, since when
elements of the kernel of the twisting maps are used several terms or even the whole
identity might vanish. In this work, we consider n-Hom-Lie algebras with a nilpotent
twisting map α, which means in particular that α is neither invertible nor diagonalizable.
All of this makes the classification problem different, interesting, rich, and not simply
following from the case of n-Lie algebras.

In our work, we achieved a complete classification up to isomorphism of Hom-algebras
of the considered class of 4-dimensional 3-Hom-Lie algebras with a nilpotent twisting
map, computed derived series and central descending series for all of the 3-Hom-Lie
algebras of this class, studied solvability and nilpotency, characterized the multiplicative
3-Hom-Lie algebras among them, and studied the ideal properties of the terms of derived
series and central descending series of some chosen examples of the Hom-algebras from
the classification.

Theorem 1 gives a full study on solvability, nilpotency, and center of the considered
class of algebras; Corollary 5 uses it to divide the considered class of algebras into five
non-isomorphic subclasses. Differences with n-Lie algebras can be seen, for example, in the
fact that 2-solvable 3-Lie algebras with dim D1

3(A) = 2 (cases 2 and 3) do not appear,
for n = 3, in the case of n-Lie algebras in dimension n + 1 in [37], where all n-Lie algebras
of dimension n + 1 are classified.

In Theorem 2, a complete classification up to isomorphism of Hom-algebras of the type
43,N(2),6 is given. The theorem is not simply a list of representatives of each isomorphism
class that is given, it gives conditions defining each isomorphism class and, in the proof,
the isomorphisms to transform a given 3-Hom-Lie algebra of the type 43,N(2),6 into the
chosen representative are provided. That way, for any choice of 3-Hom-Lie algebra of
the type 43,N(2),6, one can easily determine which isomorphism class it belongs to and the
isomorphisms between it and the chosen representative of that isomorphism class.

Lemma 5, Proposition 9, and Corollary 3 give necessary and sufficient conditions
for (n + 1)-dimensional n-Hom-Lie algebras to be multiplicative, given extra conditions
on the dimension of the kernel of the twisting map. An application of these statements
applied to the class of algebras that we classify in this work is given by Corollary 4.
A characterization of nilpotency both in dimension n + 1 and in general is established in
Lemma 4, and Propositions 5 and 6.

In Section 6, we study more properties of some particular examples from the afore-
mentioned classification, and show that members of derived series and central descending
series can satisfy more properties than are given by the general statements in [99].

Part of this work was performed using the computer algebra software Wolfram Math-
ematica 13. Namely, the computation of terms of the derived series and central descending
series, as well as the center in the proof of Theorem 1, was performed using Mathemat-
ica. In Theorem 2, at each step, the matrix B′ = 1

det(P)PBPT , as well as the isomorphism
matrix P, were computed using Mathematica, while splitting the cases and choosing the
representative of each isomorphism class were not automated.

Perspectives on further research based on this work include completing the classifi-
cation of 4-dimensional 3-Hom-Lie algebras for the chosen twisting map, and then, for
different twisting maps; or, for the considered class in this work, study further properties
such as possibilities of deformations and extensions, together with the corresponding
cohomology complexes.
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Rančić, M., Eds.; Springer Proceedings in Mathematics and Statistics; Springer: Cham, Switzerland, 2020; Volume 317, pp. 1–12,
(arXiv 2018, arXiv:1802.05576).

53. Abramov, V.; Lätt, P. Classification of low dimensional 3-Lie superalgebras. In Engineering Mathematics II; Silvestrov, S., Rančić, M.,
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Applications; Silvestrov, S., Malyarenko, A., Rančić, M., Eds.; Springer Proceedings in Mathematics and Statistics; Springer: Cham,
Switzerland, 2020; Volume 317, pp. 47–80.

55. Casas, J.M.; Loday, J.-L.; Pirashvili, T. Leibniz n-algebras. Forum Math. 2002, 14, 189–207. [CrossRef]
56. Daletskii, Y.L.; Takhtajan, L.A. Leibniz and Lie algebra structures for Nambu algebra. Lett. Math. Phys. 1997, 39, 127–141.

[CrossRef]
57. Rotkiewicz, M. Cohomology ring of n-Lie algebras. Extr. Math. 2005, 20, 219–232.
58. Takhtajan, L.A. Higher order analog of Chevalley-Eilenberg complex and deformation theory of n-gebras. St. Petersburg Math. J.

1995, 6, 429–438.
59. Ling, W.X. On the Structure of n-Lie Algebras. Ph.D. Thesis, University-GHS-Siegen, Siegen, Germany, 1993.
60. De Azcárraga, J.A.; Izquierdo, J.M. n-Ary algebras: A review with applications. J. Phys. A Math. Theor. 2010, 43, 293001. [CrossRef]

138



Axioms 2024, 13, 373

61. Cantarini, N.; Kac, V.G. Classification of simple linearly compact n-Lie superalgebras. Comm. Math. Phys. 2010, 298, 833–853.
[CrossRef]

62. Ren, M.; Chen, Z.; Liang, K. Classification of (n + 2)-dimensional metric n-Lie algebras. J. Nonlinear Math. Phys. 2010, 17, 243–249.
[CrossRef]

63. Geng, Q.; Ren, M.; Chen, Z. Classification of (n + 3)-dimensional metric n-Lie algebras. J. Math. Phys. 2010, 51, 103507. [CrossRef]
64. Bai, R.; Wu, W.; Chen, Z. Classifications of (n + k)-dimensional metric n-Lie algebras. J. Phys. A 2013, 46, 145202. [CrossRef]
65. Eshrati, M.; Saeedi, F.; Darabi, H. Low dimensional nilpotent n-Lie algebras. arXiv 2018, arXiv:1810.03782.
66. Darabi, H.; Saeedi, F.; Eshrati, M. A characterization of finite dimensional nilpotent Fillipov algebras. J. Geom. Phys. 2016, 101,

100–107. [CrossRef]
67. Eshrati, M.; Saeedi, F.; Darabi, H. On the multiplier of nilpotent n-Lie algebras. J. Algebra 2016, 450, 162–172. [CrossRef]
68. Darabi, H.; Saeedi, F.; Eshrati, M. Capable n-Lie algebras and the classification of nilpotent n-Lie algebras with s(A) = 3. J. Geom.

Phys. 2016, 110, 25–29. [CrossRef]
69. Hoseini, Z.; Saeedi, F.; Darabi, H. On classification of (n + 5)-dimensional nilpotent n-Lie algebras of class two. Bull. Iranian Math.

Soc. 2019, 45, 939–949. [CrossRef]
70. Jamshidi, M.; Saeedi, F.; Darabi, H. On classification of (n + 6)-dimensional nilpotent n-Lie algebras of class 2 with n ≥ 4. Arab J.

Math. Sci. 2021, 27, 139–150. [CrossRef]
71. Li, X.; Li, Y. Classification of 3-dimensional multiplicative Hom-Lie algebras. J. Xinyang Norm. Univ. 2012, 455, 427–430.
72. Makhlouf, A.; Mehidi, M. On classification of filiform Hom-Lie algebras. In Algebraic Structures and Applications; Silvestrov, S.,
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Abstract: In this note, we show that, for any real number τ ∈ [ 1
2 , 1), any finite set of positive integers

K and any integer s1 ≥ 2, the sequence of integers s1, s2, s3, . . . satisfying si+1 − si ∈ K if si is a prime
number, and 2 ≤ si+1 ≤ τsi if si is a composite number, is bounded from above. The bound is given
in terms of an explicit constant depending on τ, s1 and the maximal element of K only. In particular, if
K is a singleton set and for each composite si the integer si+1 in the interval [2, τsi] is chosen by some
prescribed rule, e.g., si+1 is the largest prime divisor of si, then the sequence s1, s2, s3, . . . is periodic.
In general, we show that the sequences satisfying the above conditions are all periodic if and only if
either K = {1} and τ ∈ [ 1

2 , 3
4 ) or K = {2} and τ ∈ [ 1

2 , 5
9 ).

Keywords: sequences; prime and composite numbers; periodicity

MSC: 11B83; 11K31; 11N05; 11A41

1. Introduction

Throughout, we denote by P(n) the largest prime divisor of an integer n ≥ 2. In [1],
for k ∈ N, the sequence of integers a1, a2, a3, . . ., where a1 ≥ 2 and, for each i = 1, 2, 3, . . .,

ai+1 =

{
ai + k, if ai is a prime number;
P(ai), if ai is a composite number

(1)

has been considered. For example, in the case when a1 = 2 and k = 12, this sequence
(ai)

∞
i=1 is

2, 14, 7, 19, 31, 43, 55, 11, 23, 35, 7, 19, 31, 43, 55, 11, 23, 35, . . . . (2)

Evidently, no two consecutive terms of the sequence (ai)
∞
i=1 defined in (1) can be a com-

posite. Deleting all the composite terms and leaving only those elements of (ai)
∞
i=1 that are

primes, we will obtain a sequence of prime numbers p1, p2, p3, . . ., where p1 = a1 if a1 is a
prime number and p1 = a2 if a1 is a composite number, satisfying

pi+1 = P(pi + k) (3)

for each i = 1, 2, 3, . . .. Accordingly, removing the composite terms from (2), we obtain the
following sequence of primes (pi)

∞
i=1 satisfying (3) with the first term p1 = 2 and k = 12:

2, 7, 19, 31, 43, 11, 23, 7, 19, 31, 43, 11, 23, . . . .

The sequences (1) and (3) are both iterative sequences of integers

x, f (x), f ( f (x)), f ( f ( f (x))), . . . ,

where f is a map from the set N to itself. The most known sequence of this type is the
Collatz sequence defined by f (x) = 3x + 1 for x odd and f (x) = x/2 for x even; see [2] and
some recent papers [3–6] on the original Collatz problem and its variations. The results are
very far from the conjecture asserting that the Collatz sequence starting from an arbitrary
positive integer is ultimately periodic with the period 1, 4, 2. Some other versions of iterative
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integer sequences have been considered in [7] (where f (x) = bαx + βc) and subsequently
in [8,9].

In [1], it was shown that the sequence (1) is periodic for any k ∈ N and any initial
choice of a1 ≥ 2. Now, we will give a different proof of this fact by deriving an explicit
upper bound on the largest element of this sequence in terms of a1 and k. Of course, this
immediately implies the periodicity of (ai)

∞
i=1, because, by (1), for each i ∈ N, the element

ai+1 is uniquely determined by its predecessor ai.
To present our result, we will use the following notation. For a given k ∈ N, by N(k)

we denote the smallest prime number that does not divide k. For odd k, it is clear that

N(k) = 2.

Here are the first 15 values of N(k) for k even.

k 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
N(k) 3 3 5 3 3 5 3 3 5 3 3 5 3 3 7

By the definition of N(k), it follows that

N(k) ≤ k + 1 (4)

for each k ∈ N with equality if and only if k ∈ {1, 2}. For large k, the upper bound for
N(k) is much better than that in (4). Indeed, let q = N(k) be the least prime number not
dividing k > 2. Then, all the primes smaller than q must divide k. Thus, their product
∏p<q p divides k and hence

∑
p<q

log p ≤ log k.

Using the asymptotical formula ∑p<x log p ∼ x as x → ∞, we deduce that for any ε > 0
there is a constant k(ε) > 0 such that

N(k) ≤ (1 + ε) log k for each k ≥ k(ε). (5)

In fact, by [10] (Theorem 4), the lower bound

∑
p<q

log p = ∑
p≤q−1

log p > (q− 1)
(

1− 1
2 log(q− 1)

)

holds for q ≥ 564, so an explicit k(ε) in (5) in terms of ε can be determined.
With this notation, we can state our first result:

Theorem 1. All the elements of the sequence (1) are smaller than or equal to

max{a1, N(k)k}+ N(k)k, (6)

while all the elements of the sequence (3) are smaller than or equal to

max{p1, N(k)k}+ (N(k)− 1)k, (7)

In particular, the sequences (1) and (3) are both periodic.

For k = 1 and a1 = 2, the sequence (1) is 2, 3, 4, 2, 3, 4, . . ., while the right-hand side
of (6) is max{2, 2} + 2 = 4. For k = 1 and p1 = 2, the sequence (3) is 2, 3, 2, 3, 2, 3, . . .,
whereas the right-hand side of (7) is 3. So, formally, the inequalities (6) and (7) are the best
possible. For k ≥ 2, these bounds can be improved, but we will not go into the details.

More generally, for a fixed real number τ satisfying 1
2 ≤ τ < 1 and a finite set

K = {k1, . . . , km} ⊂ N,

with
k = max

kj∈K
k j, (8)
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we will consider a class of integer sequences S(τ, K) consisting of all sequences {s1, s2, s3, . . .}
satisfying s1 ≥ 2 and, for each i = 1, 2, 3, . . .,

si+1 − si ∈ K if si is a prime number; (9)

2 ≤ si+1 ≤ τsi if si is a composite number. (10)

Note that the smallest composite number in N \ {1} is 4, so some integer si+1 satisfying (10)
can always be chosen due to τ ≥ 1

2 and si ≥ 4.
In particular, if K = {k} is a singleton set (this notation is consistent with (8)), then,

by (9) and (10), for each i = 1, 2, 3, . . .,

si+1 =

{
si + k, if si is a prime number;
any integer in the interval [2, τsi], if si is a composite number.

It is clear that
S(τ, K) ⊆ S(τ′, K) if τ < τ′

and
S(τ, K) ⊆ S(τ, K′) if K ⊂ K′.

For each S ∈ S(τ, K), we will show the following:

Theorem 2. Assume that τ ∈ [ 1
2 , 1) and that K = {k1, . . . , km} ⊂ N has the largest element k.

Then, the elements of the sequence {s1, s2, s3, . . .} ∈ S(τ, K) (as defined in (9) and (10)) are all
smaller than

max{s1, τe2k/(1− τ)}+ e2k. (11)

Furthermore, in a particular case, when K = {k}, all the elements of S = {s1, s2, s3, . . .} ∈
S(τ, K) are smaller than or equal to

max{s1, τN(k)k/(1− τ)}+ N(k)k, (12)

while all the prime elements of S do not exceed

max{p1, τN(k)k/(1− τ)}+ (N(k)− 1)k, (13)

where p1 is the first prime element of the sequence S.

Note that parts (12) and (13) of Theorem 2 imply Theorem 1. Indeed, the sequence (1)
belongs to the class S(τ, K), where K = {k} is singleton set and τ = 1

2 . (The largest prime
factor of a composite integer n ≥ 4 does not exceed n/2.) Thus, the upper bound (6)
follows from (12) with τ = 1

2 , whereas (7) follows from (13). If i < j is the pair of positive
integers with the smallest index i and the smallest difference j− i satisfying ai = aj, then
the sequence (1) is ultimately periodic with period ai, ai+1, . . . , aj−1. (The same is true for
the sequence (3) and the first pair of primes in it satisfying pi = pj.)

Of course, the sequences in S(τ, K), although bounded, are not necessarily all periodic.
All the cases when they are all periodic are described by the next theorem:

Theorem 3. Assume that τ ∈ [ 1
2 , 1) and K = {k1, . . . , km} ⊂ N. Then, the sequences in S(τ, K)

are all periodic if and only if one of the following holds:

(i) K = {1} and 1
2 ≤ τ < 3

4 ;
(ii) K = {2} and 1

2 ≤ τ < 5
9 .

In all other cases, the class S(τ, K) contains infinitely many nonperiodic sequences.

In the next section, we will give three auxiliary lemmas. Then, in Sections 3 and 4,
we will prove Theorems 2 and 3, respectively. (As we already observed above, Theorem 2
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implies Theorem 1.) In the last section, we will show that the class S(K, τ) always contains
nonperiodic sequences in the case when K ⊂ N is infinite.

2. Auxiliary Lemmas

Lemma 1. For any integers a, k ≥ 2, the arithmetic progression

a, a + k, . . . , a + (N(k)− 1)k, a + N(k)k (14)

contains a composite number. Moreover, if a 6= N(k), then the arithmetic progression

a, a + k, . . . , a + (N(k)− 1)k (15)

contains a composite number.

For example, for k = 210, we have N(k) = 11. Selecting a = 199, we see that the first
10 numbers in (15)

199, 409, 619, 829, 1039, 1249, 1459, 1669, 1879, 2089

are all primes, while the eleventh number

a + (N(k)− 1)k = 199 + 10 · 210 = 2299 = 112 · 19

is a composite. This shows that for k = 210, the list (15) cannot be replaced by the shorter
list a, a + k, . . . , a + (N(k)− 2)k. See the Wikipediaarticle (https://en.wikipedia.org/wiki/
Primes_in_arithmetic_progression) (accessed on 2 January 2024) for some further nontrivial
examples of primes that form long (in terms of k) arithmetic progressions with the difference k.

Proof. Consider the list of integers (15) modulo q = N(k). If for some integers i, j satisfying
0 ≤ i < j ≤ q− 1 the numbers a + ik and a + jk were equal modulo q, then q | (j− i)k.
Because q is a prime and 1 ≤ j − i ≤ q − 1, this forces q | k, which is not the case by
the definition of q = N(k). Therefore, the integers (15) are all distinct modulo q, which
means that exactly one of them, say a + `k, 0 ≤ ` ≤ q− 1, is divisible by q. This number is
composite, unless a + `k = q. Note that for ` ≥ 1, we have

N(k) = q = a + `k ≥ a + k ≥ k + 2,

which is impossible using (4). Hence, the equality a + `k = q occurs only for ` = 0 and
a = q. This proves the second assertion, because then a 6= q. Of course, for a 6= q, this also
proves the first assertion. On the other hand, if a = q = N(k), then the last number in the
list (14), namely, a + N(k)k = N(k)(1 + k), is composite. This completes the proof of the
first assertion of the lemma.

The next lemma is (1.12) from [11].

Lemma 2. For any real numbers x > 0 and y > 1, the interval (x, x + y] contains at most
2y/ log y prime numbers.

This result of Montgomery and Vaughan is related to the famous Hardy–Littlewood
conjecture, which asserts that for the prime-counting function π(x) = #{p ≤ x} the inequality

π(x + y) ≤ π(x) + π(y)

holds for any integers x, y ≥ 2, see [12] (p. 54). This inequality has been proved only under
some assumptions on x and y; roughly, when x and y are of similar size, see, e.g., [13–16].
More references can be found in [17]. However, in our situation, y can be small compared
to x, so the bound with an extra factor 2 as given in Lemma 2 seems to be the best available
known result for our purposes. In fact, as a result of Hensley and Richards [18], the
conjecture of Hardy and Littlewood is incompatible with the so-called prime k-tuples
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conjecture, which is widely believed to be true. In view of this, it is not clear at all if the
constant 2 in Lemma 2 can be replaced by a constant arbitrarily close to 1.

To state our next lemma, we need the following definition. We say that a finite string
of positive integers

C = s1, s2, . . . , st

is an s-cycle in the class S(τ, K) if s1 = s, sj 6= s for j = 2, . . . , t and the purely periodic sequence

C∞ = s1, s2, . . . , st, s1, s2, . . . , st, . . .

belongs to the class S(τ, K). This means that the elements of the sequence C∞ are all in
N \ {1} and satisfy (9) and (10). (Of course, it is sufficient to verify this for i = 1, . . . , t,
because st+1 = s1 = s and the sequence C∞ is periodic.)

For example, consider the case τ = 1
2 and K = {4}. Note that if si = 15, then, by (10),

as si+1 we can select, for instance, 3 or 6. Hence, C = 3, 7, 11, 15 and C′ = 3, 7, 11, 15, 6 are
both 3-cycles in the class S( 1

2 , {4}). (Their first element is 3, and 3 is the only element in
both strings C, C′.)

Lemma 3. Assume that for some integer s ≥ 2, the class S(τ, K) has at least two distinct s-cycles.
Then, S(τ, K) contains infinitely many nonperiodic sequences.

Proof. Let C and C′ be two distinct s-cycles in S(τ, K). Take any nonperiodic sequence
with two letters of the alphabet {C, C′}. Then, replace C, C′ in it with their corresponding
strings of integers, say, s, s2, . . . , st and s, s′2, . . . , s′m. We claim that the resulting sequence
S ∈ S(τ, K) is nonperiodic.

Assume that S is periodic. Then, without the loss of generality, we may assume that
some period in it starts with s and ends at a certain integer s′ 6= s. The next element of S
must be s again; so, in the period, we can replace the strings back to the letters C and C′.
Because S is periodic, this means that a nonperiodic sequence on {C, C′} from a certain
place is also represented by a periodic sequence on the same two letters. Consequently,
at some stage, say from the gth element, we must have the cycles C and C′ both starting
from the same element sg = s. As C 6= C′, the cycles C and C′ cannot be of the same
length. Indeed, otherwise, the sequence of C, C′, starting from the element sg, is uniquely
determined, and a nonperiodic sequence on these two letters cannot be represented by a
periodic one.

Assume that C has more elements than C′, i.e., t > m. Recall that the cycles C and
C′ both start from sg = s. But then, as after C′ we have C or C′, the element sg+m of the
sequence S must be s, which is not allowed by the definition of C (s is only the first element
of C). The case t < m can be treated with the same argument.

Therefore, the sequence S obtained as a nonperiodic combination of two s-cycles C, C′

and then replacing them with their corresponding strings of numbers in N \ {1} is indeed
nonperiodic.

Finally, observe that, by taking any composite integer s0 greater than 2s and adding it
to the beginning of the above constructed nonperiodic sequence

S = {s1 = s, s2, s3, . . .} ∈ S(τ, K),

we will obtain a new nonperiodic sequence s0, s1, s2, s3, . . . in S(τ, K); see the property (10).
This completes the proof of the lemma, because there are infinitely many choices of such
integers s0.

3. Proof of Theorem 2

Let S = {s1, s2, s3, . . .} be a sequence from the class S(τ, K). For the simplicity of
exposition, we present this sequence in a binary alphabet {p, c}, where the letter p stands for
si if si is prime, and the letter c stands for si if si is composite. For example, the sequence (2) is

p, c, p, p, p, p, c, p, p, c, p, p, p, p, c, p, p, c, . . . .
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We clearly have si < si+1 if the letter p stands for si, and si > si+1 if the letter c stands for si.
Let {p1, p2, p3, . . .} be a subsequence of S obtained from S by deleting its composite

elements, so pi simply enumerate the letters p. If the sequence {p1, p2, p3, . . .} were finite,
then we would have si+1 ∈ [2, τsi] for each sufficiently large i, say, for i ≥ n0. But then, for
each i ≥ n0 from si+1 ≤ τsi < si, we deduce that sn0 > sn0+1 > sn0+2 > . . . is a decreasing
sequence of integers. This is impossible, because sj ≥ 2 for all sj ∈ S. Consequently,
the sequence {p1, p2, p3, . . .} is infinite. In the notation with p and c, this means that the
sequence S contains infinitely many letters p.

Next, we consider a subsequence {q1, q2, q2, . . .} of {p1, p2, p3, . . .} obtained by re-
moving from {p1, p2, p3, . . .} the primes from consecutive patterns p, p, . . . , p of all primes
except for the first one. In particular, we will have q1 = p1, while for each qi, i ≥ 2, between
qi−1 and qi, first there are possibly a few prime elements of S and then there must be one of
several composite elements of S.

Now, we will prove (13). (Recall that K = {k}.) We claim that

qi ≤ M := max{p1, τN(k)k/(1− τ)} (16)

for each i ∈ N.
We will use the induction on i. Of course, (16) trivially holds for i = 1 because then

q1 = p1. Assume that (16) is true for some qi−1, where i ≥ 2. Suppose that between qi−1
and qi there are ` ≥ 0 primes (letters p) and then l ≥ 1 composite elements of S (letters c).
By Lemma 1, we have

` ≤ N(k)− 1. (17)

Thus, the first composite element is smaller than or equal to qi−1 + N(k)k. The lth composite
element (the one that appears just before qi, say, sj) is therefore at most τl−1(qi−1 + N(k)k).
Hence,

qi ≤ τsj ≤ τl(qi−1 + N(k)k) ≤ τ(qi−1 + N(k)k).

Now, by our inductive assumption qi−1 ≤ M, it remains to verify the inequality

τ(M + N(k)k) ≤ M.

However, the latter inequality is equivalent to τN(k)k/(1− τ) ≤ M, which is true by the
definition of M in (16). This completes the proof of (16).

Next, note that each pj is of the form qi + uk with some integers i ≥ 1 and u ≥ 0.
Furthermore, we must have u ∈ {0, 1, . . . , N(k)− 1} by Lemma 1. Hence, by (16), each pi,
i ∈ N, is smaller than or equal to M + (N(k)− 1)k. This completes the proof of (13).

In order to prove (12), we first observe that, by Lemma 1 and the definition of (qi)
∞
i=0,

each element of the sequence S is smaller than or equal to

max{s1, max{q1, q2, q3, . . .}+ N(k)k} ≤ max{s1, M + N(k)k}.

Hence, by the definition of M in (16), all the elements of S do not exceed

max{s1, max{p1, τN(k)k/(1− τ)}+ N(k)k}. (18)

Because p1 ≤ s1, (18) does not exceed the right-hand side of (12).
It remains to prove (11) for the set K = {k1, . . . , km} with the largest element k. This

time, we claim that
qi ≤ M′ := max{p1, τe2k/(1− τ)} (19)

for each i ≥ 1.
It is clear that (19) is true for i = 1. Assume that (19) is true for qi−1 with i ≥ 2. As

above, suppose that between qi−1 and qi first there are ` ≥ 0 prime elements and then l ≥ 1
composite elements of S. We will show that

` <
e2k

k
− 1. (20)
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By 7k < e2k, it is clear that (20) holds for ` ≤ 6, so assume that ` ≥ 7. The inequality (20)
also holds for K being a singleton set by (4) and (17) because k(k + 1) < e2k. Thus, we can
assume that m = |K| ≥ 2. The `+ 1 consecutive elements of S

qi−1, qi−1 + ki1 , qi−1 + ki1 + ki2 , . . . , qi−1 + ki1 + ki2 + . . . + ki` , (21)

where ki1 , ki2 , . . . , ki` ∈ K, are all prime, and the first composite element of S following
them is

qi−1 + ki1 + ki2 + . . . + ki` + ki`+1
, ki`+1

∈ K.

If l > 1, there are also other composite elements between this element and qi, but they all
appear in descending order. This means that

qi ≤ τ(qi−1 + ki1 + ki2 + . . . + ki` + ki`+1
). (22)

Also, the interval

(x, x + y] = (qi−1 − 1/2, qi−1 + ki1 + ki2 + . . . + ki` ]

contains at least `+ 1 prime numbers, for example, `+ 1 distinct primes that are listed
in (21). Here, x = qi−1 − 1/2 and

y = ki1 + ki2 + . . . + ki` + 1/2.

Therefore, using ` ≥ 7 and (8), we obtain

8 ≤ `+ 1 ≤ y ≤ `k + 1/2 < (`+ 1)k.

Hence, by Lemma 2, it follows that

`+ 1 ≤ 2y
log y

<
2(`+ 1)k

log((`+ 1)k)
, (23)

because the function y
log y is increasing for y ≥ e. Inequality (23) implies log((`+ 1)k) < 2k,

which yields (20).
Next, by (20) and (22), we obtain

qi ≤ τ(qi−1 + ki1 + ki2 + . . . + ki` + ki`+1
) ≤ τ(qi−1 + (`+ 1)k) < τ(qi−1 + e2k). (24)

Using the inductive assumption qi−1 ≤ M′, from (24) we deduce that qi < τ(M′ + e2k),
which is less than or equal to M′ by the definition of M′ in (19). Hence, qi < M′. This
concludes the proof of (19) for each i ∈ N.

Because the bound on ` in (20) is independent of i, the largest prime element of S does
not exceed

M′ + `k < M′ +
( e2k

k
− 1
)

k = M′ + e2k − k. (25)

Consider the subsequence {su, su+1, su+2, . . .} of (si)
∞
i=1, where su = p1 and u is the smallest

integer with this property. By (25), the largest element of this subsequence is less than

(M′ + e2k − k) + k = M′ + e2k = max{p1, τe2k/(1− τ)}+ e2k.

This proves (11) in the case when u = 1. Assume that u > 1. Then, the largest element of
S = {s1, s2, s3, . . .} is either less than M′ + e2k (if it is among {su, su+1, su+2, . . .}) or is equal
to max{s1, . . . , su−1} = s1. Because s1 > p1, M′ + e2k does not exceed the right-hand side
of (11). On the other hand, the element s1 is also strictly smaller than the right-hand side of
(11). Consequently, all the elements of S are smaller than max{s1, τe2k/(1− τ)}+ e2k. This
finishes the proof of the theorem.

4. Proof of Theorem 3

Consider the case (i). Let S = s1, s2, s3, . . . be a sequence in the class S(τ, {1}), where
1
2 ≤ τ < 3

4 . If s1 ∈ {2, 3, 4}, then, by (9) and (10), S is a purely periodic sequence with period
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2, 3, 4 or 3, 4, 2 or 4, 2, 3. We will show that any S ∈ S(τ, {1}) is ultimately periodic with
one of those three periods. The proof is by induction on s1 = s. Assume that s ≥ 5 and that
we already established the periodicity of the sequence S in case it has an element at most
s− 1. For s ≥ 5, at least one of the numbers s, s + 1 is composite and the next element of S is
smaller than 3

4 · (s + 1) < s. The periodicity now follows due to our inductive assumption.
Now, consider the case (ii). Let S = s1, s2, s3, . . . be a sequence in S(τ, {2}), where

1
2 ≤ τ < 5

9 . We will show that each S is ultimately periodic with one of the possible periods,
2, 4 or 4, 2 or 3, 5, 7, 9 or 5, 7, 9, 3 or 7, 9, 3, 5 or 9, 3, 7, 5. If s1 ∈ {2, 4}, then, by (9) and (10),
S is purely periodic with period 2, 4 or 4, 2. If s1 ∈ {3, 5, 7, 9}, then after several steps we
reach su = 9 (possibly u = 1), so the next element su+1 is less than 5

9 · 9 = 5. If su+1 is 2
or 4, then the sequence becomes ultimately periodic with period 2, 4 or 4, 2. Otherwise,
su+1 = 3. If it is always 3, namely, su+1+4m = 3 for every m ≥ 0, then the sequence is purely
periodic with period 3, 5, 7, 9 or 5, 7, 9, 3 or 7, 9, 3, 5 or 9, 3, 5, 7. If otherwise su+1+4m ∈ {2, 4}
for some m ≥ 0, then it is ultimately periodic with period 2, 4 or 4, 2. For s1 = s ≥ 6, one of
the integers s, s + 2, s + 4 is composite, so the next element of S is less than 5

9 · (s + 4) < s.
Hence, it is at most s− 1, which concludes the proof by induction on s.

Assume that τ and K are such that neither (i) nor (ii) is satisfied. We first consider the
case when the set K contains an element k satisfying k ≥ 3. In view of S( 1

2 , {k}) ⊆ S(τ, K),
it is sufficient to show that S( 1

2 , {k}) contains infinitely many nonperiodic sequences.
Suppose first that k ≥ 6 is even. Then, 2 + k is composite. Thus, 2, 2 + k is a 2-cycle

of S( 1
2 , {k}). Moreover, if 1 + k/2 is a composite number, then 2, 2 + k, 1 + k/2 is also a

2-cycle of S( 1
2 , {k}). On the other hand, if 1 + k/2 is a prime number, then k 6= 6 and k/2

is not a prime. In that case, 2, 2 + k, k/2 is a 2-cycle of S( 1
2 , {k}). Therefore, in both cases,

for even k ≥ 6, the class S( 1
2 , {k}) contains at least two distinct 2-cycles. Consequently, by

Lemma 3, it contains infinitely many nonperiodic sequences.
Likewise, for k ≥ 9 odd, 3, 3 + k and 3, 3 + k, (3 + k)/2, where (3 + k)/2 is composite,

are both 3-cycles of S( 1
2 , {k}), so the result follows by Lemma 3. If (3+ k)/2 is a prime, then

k 6= 9 and 3, 3 + k, (1 + k)/2 is a 3-cycle, because (1 + k)/2 = (3 + k)/2− 1 is composite
and greater than or equal to 6. The result again follows by Lemma 3.

In the remaining cases k = 3, 4, 5, 7, we will explicitly present the corresponding
2-cycles in S( 1

2 , {k}). For k = 7, in S( 1
2 , {k}) there are two distinct 2-cycles, 2, 9 and 2, 9, 4.

For k = 5, there are two distinct 2-cycles, 2, 7, 12 and 2, 7, 12, 6. For k = 4, there are two
distinct 2-cycles, 2, 6 and 2, 6, 3, 7, 11, 15. Finally, for k = 3, in S( 1

2 , {k}) there are two
distinct 2-cycles, 2, 5, 8 and 2, 5, 8, 4. In all the above cases, the required result follows from
Lemma 3.

Now, it remains to consider the case K ⊆ {1, 2}. Suppose first that K = {1, 2}. Then,
the class S(τ, K) contains two distinct 2-cycles, 2, 4 and 2, 3, 4, so the proof is concluded
by Lemma 3. Because the cases (i) and (ii) are already considered, we are left with two
possibilities K = {1}, τ ≥ 3

4 and K = {2}, τ ≥ 5
9 . If K = {1} and τ ≥ 3

4 , then in S(τ, {1})
there are the following two distinct 2-cycles: 2, 3, 4 and 2, 3, 4, 3, 4. Finally, if K = {2} and
τ ≥ 5

9 , then the class S(τ, {2}) also contains two distinct 3-cycles, for instance, 3, 5, 7, 9 and
3, 5, 7, 9, 5, 8. In both cases, the proof is concluded by Lemma 3 as before.

5. Concluding Remarks

The main result of this paper’s Theorem 2 shows that the sequences of the class S(K, τ)
are all bounded. More precisely, the largest element of S = {s1, s2, s3, . . .} ∈ S(K, τ) is
bounded from above in terms of s1, τ and the maximal element of K no matter how large
the finite set K is.

What about the case when the set K ⊂ N is infinite, which is possibly a very sparse
set? We will show that then no result similar to Theorem 2 is possible, because the class
S(K, τ) always contains unbounded sequences for any infinite K ⊂ N and any τ ∈ (0, 1).

Indeed, let us start the construction of such S = {s1, s2, s3, . . .} ∈ S(K, τ) from any
prime number s1 = p. Because K is infinite, we can choose k ∈ K so large that

148



Axioms 2024, 13, 107

( 2
τ
− 1
)

p < k. (26)

Take the least positive integer j for which the number p + jk is composite. By Lemma 1,
this j does not exceed N(k). Then, by the rule (9), because p, p + k, . . . , p + (j− 1)k are all
primes, the numbers

s2 = p + k, . . . , sj+1 = p + jk

can be chosen as the consecutive elements of S. Because sj+1 is composite, by the rule (10),
as the next element sj+2 of S we can choose any integer from the interval

[τ

2
(p + k), τ(p + jk)

]
. (27)

This is indeed possible, because the right endpoint of the interval (27) is τsj+1, while its left
endpoint is

τ

2
(p + k) >

τ

2
· 2p

τ
= p ≥ 2

due to (26).
Note that the interval (27) is of the form [u, 2u], with u ≥ 2. Therefore, by Bertrand’s

postulate, it contains a prime number, say, p′. Let us choose sj+2 = p′. Because sj+2 = p′

belongs to the interval (27), using (26), we deduce

sj+2 = p′ ≥ τ

2
(p + k) >

τ

2
· 2p

τ
= p,

so p′ > p.
Now, arguing with sj+2 = p′ > p as before, namely, choosing k′ ∈ K so large that

( 2
τ
− 1
)

p′ < k′,

we will construct another prime element p′′ of S satisfying p′′ > p′. Continuing this process,
we will obtain a sequence S ∈ S(K, τ) containing an infinite subsequence of primes

p < p′ < p′′ < p′′′ < . . . .

The latter sequence of primes is unbounded, so S ∈ S(K, τ) is unbounded too.
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Abstract: In this paper, we focus on Brauer’s height zero conjecture, Robinson’s conjecture, and
Olsson’s conjecture regarding the direct product of finite groups and give relative versions of these
conjectures by restricting them to the algebraic concept of the anchor group of an irreducible character.
Consider G to be a finite simple group. We prove that the anchor group of the irreducible character
of G with degree p is the trivial group, where p is an odd prime. Additionally, we introduce the
relative version of the Green correspondence theorem with respect to this group. We then apply the
relative versions of these conjectures to suitable examples of simple groups. Classical and standard
theories on the direct product of finite groups, block theory, and character theory are used to achieve
these results.

Keywords: finite group; group algebra; character; block; defect group; direct product

MSC: 20C20

1. Introduction

Let G be a finite group and p be a prime divisor of |G|. Let B be a p-block of group
G with defect group D. We consider the triple (k,R, F) to be a p-modular system [1–3].
This system comprises a complete discrete valuation ring R with a field of fractions k of
characteristic 0, where k contains all the primitive |G|th roots of unity. We denote υp as a
valuation on the field k such that υp(p) = 1. Next, there is the residual field F = R/J(R)
of characteristic p, where J(R) is the Jacobson radical of ringR. We can use the field k as a
splitting field and F as an algebraically closed field. Let Irr(G) be the set of all ordinary
irreducible characters of G, which corresponds to the set of all simple kG-modules. LetM
be a simple kG-module, affording the irreducible character ψ of G. Then, there exists an
RG-lattice L such that k⊗R L =M, but L is not uniquely determined up to isomorphism
(see [1,4]). In this case, L is said to be a fullRG-lattice inM, and, according to ([1], Chapter
2, Exercise 16.7), L is an indecomposable RG-lattice. Recall that an RG-lattice L is a left
RG-module that has a finite R-basis. Let K(B) be the number of ordinary irreducible
characters of B and IBr(G) be the set of all irreducible Brauer characters of G. We use ψ0

to denote the restriction of the ordinary irreducible character ψ to the set of all p-regular
elements (p does not divide the order of the elements) of G. Let L(B) be the number of
irreducible Brauer characters of B. We define BL(G) as the set of all p-blocks of G. We use
=G to refer to equivalence up to G-conjugacy.

Consider the order of the finite group G to be |G| = pαm such that g.c.d.(p, m) = 1,
α, m ∈ Z+ for a fixed prime number p. Let ψ ∈ Irr(G). As is well-known, the degree of ψ
divides the order of G, as demonstrated in ([5], Theorem 2.4) and ([6], Theorem 3.11). If
pn =

|G|p
ψ(1)p

, where xp denotes the p-part of a natural number x, then n is the highest power

of p such that pn divides |G|
ψ(1) . The non-negative number n is called the p-defect of ψ. We
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can also define the p-defect of ψ as de f (ψ) := υp(
|G|

ψ(1) ). Let Irr(B) be the set of all ordinary
irreducible characters of G that belong to a p-block B of G. The defect number of B refers to
the maximum p-defect of irreducible characters belonging to the p-block B, and we write

de f (B) := Max{de f (ψ); ψ ∈ Irr(B)}.

The height of ψ can be written as h(ψ) = de f (B)− de f (ψ). If de f (ψ) = α, we can say that
ψ is of height zero or the full defect, and we write K0(B) = {ψ ∈ Irr(B)|h(ψ) = 0}. On the
other hand, if de f (ψ) = 0, then we say that ψ is of defect zero, and we have ψ(1)p = |G|p
(see [3,5,6]). The work in this paper relies on these numerical invariants of the p-block B of
the finite group G. Many questions and conjectures exist in this area of research. We are
concerned with Brauer’s height zero conjecture (BHZC), Robinson’s conjecture (RC), and
Olsson’s conjecture (OC) (see Sections 1.1–1.3 below).

Consider RG to be an interior G-algebra over R. Let eB be a p-block idempotent of
RG; that is, e2

B = eB, and eB is in the center of RG. Then, there exists a p-subgroup D of
G in which D is a minimal p-subgroup of G, such that eB ∈ trG

D((RG)D). Here, trG
D is the

relative trace map, and (RG)D is the set of D-fixed elements of RG (see ([4], Chapter 2,
Section 11)). A defect group of a p-block B is of order pde f (B). We refer the reader to ([7],
Definition 4j), ([8], p. 71), ([5], Chapter 5, Theorem 1.2), and ([9], Chapter 7, Definition
(57.10)) for further theory on defect groups.

The remainder of this paper is organized as follows. This section contains five subsec-
tions: a literature review of BHZC, a literature review of RC, a literature review of OC, the
anchor group of irreducible characters, and a description of our methods for solving and
dealing with these problems. Section 2 provides preliminaries of classical and standard
theories regarding the direct product of finite groups. We offer some of the characteristics
of ordinary irreducible characters. In Section 3, we present the main results; in particular,
we prove that RC holds for the direct product H1 × H2 of two finite groups H1 and H2 if
and only if it holds for each of them. We prove that the same conclusion holds for Brauer’s
height zero and Olsson’s conjectures. In Section 3, we give the conjectures MARC, MHZC,
and MAOC related to the algebraic concept of “the anchor group of an irreducible charac-
ter”. These conjectures are the relative versions of RC, BHZC, and OC, respectively. We
prove the relative version of Robinson’s conjecture MARC in some cases. Let G be a finite
simple group that contains the irreducible character ψ of degree p, where p is an odd prime.
We prove that the anchor group of ψ is the trivial group. We also introduce the relative
version of the Green correspondence theorem for this group and give suitable examples
of this type of theory. Finally, we include a discussion and conclusions that support our
results and arguments.

1.1. Literature Review of Brauer’s Height Zero Conjecture

In 1955, R. Brauer [10] conjectured that “the defect groups of a p-block B are abelian
if and only if all irreducible characters in B have height zero.” This conjecture is called
Brauer’s height zero conjecture (BHZC) and is considered to be one of the most challenging
and fundamental conjectures in the representation theory of finite groups, having a signifi-
cant impact on group theory research. Over the past few decades, several authors have
contributed to proving the “only if” implication of BHZC. First, in 1961, P. Fong [11] proved
the “only if” implication of BHZC for principle blocks. He also proved the “if” implication
of BHZC for the p-solvable group. Later, in [12], he proved the “only if” implication of
BHZC for the solvable groups, where the prime number is the largest divisor of the group
order. Then, the proof of BHZC was completed for solvable groups in [13,14]. In 1984, D.
Gluck and T. R. Wolf [15] proved the “only if” implication of BHZC for the p-solvable group.
More recently, in 2012, G. Navarro and P. H. Tiep [16] proved the “only if” implication of
BHZC for a 2-block B with a Sylow 2-subgroup as a defect group of B. In 2013, R. Kessar
and G. Malle [17] proved the “if” implication of BHZC for all finite groups after decades of
other contributions on the subject. The next year, B. Sambale [18] investigated BHZC in
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the case of p-blocks of finite groups with metacyclic defect groups. He proved that BHZC
holds for all 2-blocks with defect groups of order 16 at most. Very recently, in 2021, G. Malle
and G. Navarro [19] proved the “only if” implication of BHZC for the principle p-block for
all prime numbers. After that, the proof of BHZC was completed by proving the “only if”
implication of BHZC for any odd prime (see [20]).

1.2. Literature Review of Robinson’s Conjecture

In 1996, G. Robinson [21] submitted a proposal for the expansion of BHZC, comparing
the order of the center of a defect group of a p-block and the p-part of characters’ degrees
that belong to the p-block of a finite group G:

Robinson’s conjecture. Suppose G is a finite group. Let χ ∈ Irr(G), which belongs
to a p-block B of G with a defect group D. Then, pde f (χ) ≥ |Z(D)|. Moreover, the equality
holds if and only if D is abelian.

The other form of RC comes from the relation between the p-defect of the irreducible
character χ and the height of χ:

ph(χ) = pde f (B)−de f (χ), (1)

=
pde f (B)

pde f (χ)
, (2)

≤ |D|
|Z(D)| = [D : Z(D)]. (3)

The equality in RC holds if and only if D is abelian. If D is abelian, then D = Z(D)
according to ([22], Section 2.2, Example (1)), which implies that all irreducible characters in
B have height zero from (3). Then, we obtain the “if” implication of BHZC; hence, RC is
an expansion for this implication of BHZC. In 1998, M. Murai [23] introduced a reduction
of RC to p-blocks of the covering groups for all primes p ≥ 3. In 2014, B. Sambale [18]
investigated RC in the case of p-blocks of finite groups with metacyclic defect groups. He
proved that RC holds for all 2-blocks with a defect group of order 16 at most. Recently, in
2018, Z. Feng, C. Li, Y. Liu, G. Malle, and J. Zhang [24] proved that RC holds for all primes
p ≥ 3 for all finite groups using Murai’s reduction of RC. Later, they proved [25] that RC
holds using Murai’s reduction in the case p = 2 of finite quasi-simple classical groups.
Thus, to complete the proof of RC, it only remains to investigate the so-called isolated
2-blocks of the covering groups of exceptional Lie type in the case of an odd characteristic.

1.3. Literature Review of Olsson’s Conjecture

In [26], J. B. Olsson conjectured that “K0(B) ≤ [DB : D́B]”, where DB is the defect
group of the p-block B of G and D́B denotes the commutator subgroup of D, called Olsson’s
conjecture (OC). The definition of the commutator subgroup can be found in [22,27,28].
This conjecture has been proven under certain conditions, but it remains open in general.
For instance, in [29], B. Külshammer showed that OC for the p-block B can be derived from
the Alperin–Mckay conjecture for B. The same result appeared in [30,31]. We remind the
reader that the Alperin–Mckay conjecture states that K0(b) = K0(B), where b is the Brauer
correspondent of the p-block B inRNG(DB). The meaning of the Brauer correspondent of
the p-block can be found in [2,5,32,33]. However, OC is satisfied for p-solvable, alternating,
or symmetric groups in [34–36]. If DB is the abelian group, then the commutator D́B
is the trivial subgroup {1D}. Thus, OC leads to Brauer’s K(B) conjecture. Recall that
Brauer’s K(B) conjecture predicts that K(B) ≤ |DB|; see [37]. In particular, OC holds if DB
is metacyclic (see [38,39]) or if DB is minimal non-abelian and p = 2 (see [40]). In [41,42], S.
Hendren proved OC for some p-block with a defect group that is an extraspecial p-group
of order p3 and exponents p and p2. Recently, the authors of [43] proved that OC is fulfilled
for controlled blocks with certain defect groups. Furthermore, in the same paper [43], they
used the classification of a finite simple group to verify OC for defect groups of p-rank 2
and cases where p > 3 for a minimal non-abelian defect group.
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The following example appeared in [37]:

Example 1. Let G = S4 be the symmetric group of degree four. The number of irreducible characters
|Irr(S4)| = 5.
For the case p = 2
We have that the Klein four V4 is a normal 2-subgroup of S4 and the centralizer CS4(V4) = V4.
From ([32], Chapter V, Corollary 3.11), there is only one 2-block B0 of S4 with de f (B0) = 3. For
the defect group of B0, D(B0) ∼= D8, the dihedral group of order 8 is a non-abelian 2-group. Note
that there exists χ3 ∈ Irr(B0) with non-zero height. The center Z(D8) ∼= C2, which is the cyclic
group of order 2. We have

pde f (χ) > |Z(D)| = 2, f or all χ ∈ Irr(B0).

The commutator of D(B0) is isomorphic to C2. We have K0(B0) = 4 = [D8 : C2].

For the case p = 3

We have the principal 3-block B0 = {χ1, χ2, χ3}, with de f (B0) = 1. For the defect group of B0,
D(B0) ∼= C3, which is the cyclic group of order 3. Note that all χ ∈ Irr(B0) are of height zero and
satisfy pde f (χ) = |Z(D)| = 3. As D(B0) is an abelian group, the commutator D́(B0) = {1D(B0)

}
and K0(B0) = 3 = |C3|.

1.4. Anchor Group of Irreducible Characters

Let ψ ∈ Irr(G). Then, ψ may be extended to an algebra map in a unique way with
ψ : kG → k. We consider the element

eψ =
ψ(1)
|G| ∑

x∈G
ψ(x−1)x;

which is the unique central primitive idempotent in kG such that ψ(eψ) 6= 0 (see ([44],
Theorem 3.3.1)). As the center Z(RGeψ) is a subring of the center Z(kGeψ), the algebra
RGeψ is a primitive G-interiorR-algebra (see [4]).

The anchor group of an irreducible character appeared for the first time in [45], defined
as the defect group of the primitive G-interiorR-algebraRGeψ for any irreducible character
ψ of G. As the anchor group of an irreducible character is a defect group, it is a p-subgroup
of G (see [46]).

Let us present the most important characteristics of the anchor group of irreducible
characters that we use in this paper. The following theorem appears in ([45], Theorems 1.2
and 1.3).

Theorem 1. Consider B to be a p-block of a finite group G with a defect group D. Let ψ ∈ Irr(B)
with anchor group Aψ. Suppose L is anRG-lattice affording ψ. The following holds:

1. The anchor group of ψ is a subgroup of the defect group D (up to G-conjugacy) of B.
2. The anchor group of ψ contains a vertex of L.
3. If the defect group D is abelian, then D is an anchor group of ψ.
4. If ψ has a full defect (height zero), then Aψ is the defect group of B.
5. If ψ0 ∈ IBr(G), then L is unique up to isomorphism and Aψ is a vertex of L.

Theorem 2 ([47]). Let G be a finite group and B be a p-block of G with a defect group DB. Suppose
ψ ∈ Irr(B) such that ψ0 ∈ IBr(B). Then, the anchor group Aψ of ψ is cyclic if and only if the
defect group DB is cyclic. In particular, if Aψ is cyclic, then it is the defect group of B.

Lemma 1 ([46]). Let G be a finite group. If ψ ∈ Irr(G) with a degree prime to p, then the anchor
group of ψ is a Sylow p-subgroup of G.
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1.5. Methodology

Our main methods are based on classical and standard theories on the direct product
of finite groups [22,27], block theory [5,32,48], and character theory [6,49]. In addition,
the Green correspondence theorem is key for studying block theory and calculating the
anchor groups of irreducible characters. In fact, given a p-subgroup P of a finite group G,
let NG(P) be the normalizer of P in G, Ind(RG|P) be the set of all isomorphism classes
of the indecomposable RG-lattices with vertex P, and Ind(RNG(P)|P) be the set of all
isomorphism classes of the indecomposableRNG(P)-lattices with vertex P. The following
is the Green correspondence theorem, which appears in [1–5,37,50].

Theorem 3. Consider the hypotheses in the above paragraph. There is a bijection between
Ind(RG|P) and Ind(RNG(P)|P). We say that the lattice L ∈ Ind(RG|P) corresponds to
the lattice Ĺ ∈ Ind(RNG(P)|P) if and only if Ĺ is the unique (up to isomorphism) direct summand
of the restriction ResG

NG(P)(L) with vertex P or L is the unique (up to isomorphism) direct summand

of the induction IndG
NG(P)(Ĺ) with vertex P.

We recall that the vertex of an indecomposable RG-lattice L is a unique (up to G-
conjugacy) minimal p-subgroup P of G, such that L is P-projective of G. Consequently, L is
a direct summand of the induced IndG

P (N) for someRP-lattice N.

2. Preliminaries

In this section, we present the classical and standard theories regarding the direct prod-
uct of finite groups. We detail some characteristics of the ordinary irreducible characters
used throughout the paper.

The following propositions are crucial for the representation of direct products of finite
groups.

Proposition 1. Let G be a direct product of the finite groups H1 and H2. Let B be a p-block of G
with defect group DB. If bi is a p-block of Hi with defect group Dbi

, i = 1, 2, then the following
holds:

(a) b1 ⊗ b2 is a p-block of G and BL(G) is of the form {bi ⊗ bj|bi ∈ BL(H1), bj ∈ BL(H2)}.
(b) K(B) = K(b1)K(b2) and L(B) = L(b1)L(b2).

(c) DB =G Db1 × Db2 .

Proof. See ([48], Propositions 2.3, 2.4, and 2.6).

We offer the classical and standard theories of the direct product of finite groups in
the following result.

Proposition 2. Let G be a direct product of the finite groups H1 and H2. Then, the following holds:

(a) G is abelian if and only if each of H1 and H2 are abelian.

(b) The center Z(G) = Z(H1)× Z(H2).

(c) The commutator Ǵ = H́1 × H́2.

Proof. For (a), see ([27], Chapter 9, Exercise 7). For (b), see ([22], Section 5.1, Exercise 1).
For (c), see ([28], Chapter 3, Exercise 165).

Theorem 4. Let G = H1 × H2 be a direct product of the finite groups H1 and H2. Then,

Irr(G) = {ψ⊗ φ|ψ ∈ Irr(H1), φ ∈ Irr(H2)}.

Proof. We write ψ⊗ φ := ψ.φ. See ([6], Chapter 4, Theorem 4.21).
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Now, we mention some properties of the ordinary irreducible characters (see ([6],
Chapter 2)). The ordinary irreducible character is a homomorphism if it is only linear (i.e.,
of degree one). Furthermore, the ordinary irreducible character has a kernel. It also has a
center, although it is not a group.

Definition 1. Consider G to be a finite group and ψ ∈ Irr(G).

• The kernel of ψ is defined as ker(ψ) := {x ∈ G : ψ(x) = ψ(1)}. It can easily be proven
that ker(ψ) is a normal subgroup of G. If ker(ψ) = {1G}, then we say that ψ is a faithful
character.

• The center of ψ is a subgroup of G, defined as Z(ψ) := {x ∈ G : |ψ(x)| = ψ(1)}.

Lemma 2. The group G is abelian if and only if every irreducible character of G is of degree one.

Lemma 3. Consider G to be a finite group and ψ be a character of G with ψ = ∑ njψj for
ψj ∈ Irr(G). Then, ker(ψ) =

⋂{ker(ψj)|nj > 0}.

Lemma 4. Let G be a finite group with a commutator subgroup Ǵ. Then,

Ǵ =
⋂
{ker(γ)|γ ∈ Irr(G), γ(1) = 1}.

Lemma 5. Let G be a finite group. Then, Z(G) =
⋂{Z(ψ)|ψ ∈ Irr(G)}.

Theorem 5. Let G be a finite group with an abelian Sylow p-subgroup. Suppose G has a faithful
irreducible character ψ of degree ψ(1) = pa. Then, ψ(1) is the exact power of p which divides
[G : Z(G)].

Proof. See ([6], Theorem 3.13).

3. Some Conjectures on Direct Products

In this section, we deal with BHCZ, RC, and OC. We prove that the direct product
H1 × H2 of the finite groups H1 and H2 satisfies these conjectures if and only if H1 and H2
satisfy these conjectures.

Proposition 3. Let G be a direct product of the finite groups H1 and H2. Then, G satisfies RC if
and only if H1 and H2 satisfy RC.

Proof. Suppose Hi, i = 1, 2, are finite groups that satisfy RC. If χi ∈ Irr(Hi), which
belongs to a p-block bi of Hi with a defect group Di for i = 1, 2, then pde f (χi) ≥| Z(Di) |.
Moreover, the equality holds if and only if Di is abelian for i = 1, 2. We need to show that
pde f (χ1⊗χ2) ≥| Z(D1 × D2) |, where equality holds if and only if D1 × D2 is abelian. From
Proposition 1(a), (c), b1 ⊗ b2 is the p-block of the direct product H1 × H2 and has a defect
group that is equal up to G-conjugacy to D1 × D2. Per Proposition 2(b), the center of a
direct product of groups is the direct product of their centers. Now, from the definition of
the defect number of irreducible characters and Theorem 4, we have

de f (χ1 ⊗ χ2) = υp

( |H1 × H2|
χ1 ⊗ χ2(1)

)
,

= υp

( |H1| · |H2|
χ1(1) · χ2(1)

)
,

= υp(|H1| · |H2|)− υp(χ1(1) · χ2(1)),

= υp
(
|H1|) + υp(|H2|)− υp(χ1(1))− υp(χ2(1)

)
,

= υp

( |H1|
χ1(1)

)
+ υp

( |H2|
χ2(1)

)
.
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Hence,
de f (χ1 ⊗ χ2) = de f (χ1) + de f (χ2). (4)

Therefore,

pde f (χ1⊗χ2) = pde f (χ1).pde f (χ2) ≥ |Z(D1)| · |Z(D2)| = |Z(D1 × D2)|.

As Proposition 2(a) states, the direct product of finite groups is abelian if and only if each
of them is abelian; thus, the equality holds. The other direction is easily achieved through
the same steps and citations.

Remark 1. Let B be a p-block of the finite group H1 × H2 with a defect group D. Then, from
Proposition 1(a), (c), there exists a p-block bi of Hi with a defect group Di for i = 1, 2 such that
B = b1 ⊗ b2 is the p-block of H1 × H2 with defect group D =G D1 × D2. We have

pde f (B) = pde f (b1⊗b2) = |D1 × D2| = |D1| · |D2| = pde f (b1) · pde f (b2).

Hence,
de f (b1 ⊗ b2) = de f (b1) + de f (b2). (5)

Now, from Equations (4) and (5), the height of the irreducible character χ1 ⊗ χ2 can be calculated
as follows:

h(χ1 ⊗ χ2) = h(χ1) + h(χ2). (6)

Proposition 4. Let G be a direct product of the finite groups H1 and H2. Then, G satisfies BHZC
if and only if H1 and H2 satisfy BHZC.

Proof. Suppose Hi, i = 1, 2, are finite groups that satisfy BHZC. Let Di be a defect group
of a p-block bi of Hi for i = 1, 2. Suppose the defect group D of a p-block b1 ⊗ b2 of
a finite group H1 × H2 is abelian. Then, D =G D1 × D2 and, per Proposition 2(a), the
direct product of groups is abelian if and only if each of them is abelian. Thus, the defect
group Di of a p-block bi of Hi is abelian for i = 1, 2. As H1 and H2 satisfy BHZC, for all
χi ∈ Irr(bi), we have h(χi) = 0, i = 1, 2. Then, from Equation (6), we obtain the height of all
irreducible characters in the p-block b1 ⊗ b2 as zero. For the converse implication, suppose
all irreducible characters χ1 ⊗ χ2 in the p-block b1 ⊗ b2 of H1 × H2 have height zero. From
Equation (6) and the fact that the height of an irreducible character is a non-negative integer
by definition, we find that all irreducible characters in a p-block bi of Hi for i = 1, 2 have
height zero. Hence, per BHZC, the defect group Di of a p-block bi of Hi is abelian for
i = 1, 2. Now, also per Proposition 2(a), the defect group D1 × D2 of the p-block b1 ⊗ b2 of
H1 × H2 is abelian. The same steps and citations can also be used to obtain the result in the
other direction.

Proposition 5. Let G be a direct product of the finite groups H1 and H2. Then, G satisfies OC if
and only if H1 and H2 satisfy OC.

Proof. Suppose B ∈ BL(G) with defect group DB. From Proposition 1(a), (c), there exists
a p-block bi of Hi with a defect group Dbi

, i = 1, 2, such that B = b1 ⊗ b2 is the p-block
of H1 × H2 with defect group DB =G Db1 × Db2 . First, we need to show that K0(B) =
K0(b1)K0(b2). Let χ ∈ Irr(G), which belongs to the p-block B of G. From Theorem 4,
χ = ψ ⊗ φ, where ψ ∈ Irr(H1) and φ ∈ Irr(H2). As B = b1 ⊗ b2, ψ ∈ Irr(b1) and
φ ∈ Irr(b2). Suppose χ has height zero. From Equation (6) and the fact that the height of
an irreducible character is a non-negative integer by definition, the irreducible characters ψ
and φ have height zero. From Proposition 1(b), we can infer that

K0(B) = K0(b1)K0(b2).
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Now, suppose G satisfies OC. Then, K0(B) ≤ [DB : D́B]. Hence, per Propositions 1(c) and
2(c), this is equivalent to

⇔ K0(B) ≤ [DB : D́B],

⇔ K0(b1)K0(b2) ≤ [Db1 × Db2 : D́b1 × D́b2 ],

⇔ K0(b1)K0(b2) ≤ [Db1 : D́b1 ][Db2 : D́b2 ].

Hence, K0(bi) ≤ [Dbi
: D́bi

] for i = 1, 2. Thus, H1 and H2 satisfy OC. The other direction is
proven similarly.

4. Relative Versions of Conjectures and the Green Correspondence Theorem

In this section, we give the conjectures MARC, MHZC, and MAOC, which are related
to the algebraic concept of “the anchor group of an irreducible character,” which are the
relative versions of RC, BHZC, and OC, respectively. By restricting these conjectures to the
anchor group instead of the defect group, we prove MARC in some cases. We introduce
the relative version of the Green correspondence theorem for a finite simple group G that
contains the irreducible character of G with degree p, where p is an odd prime. We give
suitable examples of this type of theory.

First, we give the relative version of RC.
MARC: Suppose G is a finite group. Let χ ∈ Irr(G) with anchor group Aχ. Then, pde f (χ) ≥
|Z(Aχ)|, and equality holds if and only if Aχ is abelian.

In the following results, we verify MARC in special cases.

Proposition 6. Consider G to be a finite group. Let χ ∈ Irr(G) with anchor group Aχ such that
the order |Z(Aχ)| = p. Then, MARC holds for χ.

Proof. Suppose χ ∈ Irr(G), which belongs to the p-block B of G with defect group D. If
the defect group D is abelian or the irreducible character χ is of height zero, then the anchor
group of χ is D, per Theorem 1(4), (5). Thus, the result holds by ([24], Lemma 3.1). If χ
has defect zero, then it is lying in a p-block B = {χ} with abelian defect group D = {1G}
per ([5], Theorem 6.29) (see also ([3], Theorem 2.3.2)). Thus,

pde f (χ) = p0 = |Z(Aχ)| = 1.

If χ has defect n, n ≥ 1. Thus,

pde f (χ) = pn ≥ |Z(Aχ)| = p.

Assume G = G/Q and Q is a normal subgroup of G. Let ψ ∈ Irr(G); we say that
the character ψ is the lift of ψ to G if it satisfies ψ(g) = ψ(gQ), where g ∈ G. From ([49],
Theorem 17.3), ψ ∈ Irr(G) if and only if ψ ∈ Irr(G) and ker(ψ) contains Q. So, we have
Irr(G) ⊆ Irr(G). From ([33], p. 137), there exists a unique p-block B of G that contains the
p-block B of G, and we write Irr(B) ⊇ Irr(B).

Proposition 7. Using the same hypotheses as above, let Q be a normal ṕ-subgroup of G and
ψ ∈ Irr(G). Suppose ψ ∈ Irr(G) is the lift of ψ to G. Let ψ0 ∈ IBr(G) with a cyclic anchor group.
If ψ satisfies MARC, then so does ψ.

Proof. Suppose B is a p-block of G that contains ψ and B is a p-block of G that contains ψ.
From the details above, Irr(B) ⊆ Irr(B). From ([33], Theorem 9.9(c)), the defect groups of
B and B are isomorphic. Since the anchor group of ψ is cyclic, it is the defect group of B per
Theorem 2. Hence, the anchor groups of ψ and ψ are isomorphic.
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If we restrict BHZC to the anchor group instead of the defect group, then the statement
is not true. In particular, the “if” implication is not true.

Example 2. Let p = 2, G = S4 be the symmetric group of degree four. From Example 1, there is
only one 2-block B0 of S4. From ([45], Example 5.8. (2)), there exists χ ∈ Irr(S4) of degree two
with anchor group V4, which is an abelian group, but the height of χ is not zero.

The relative version of BHZC is as follows:
MHZC: If every irreducible character in a p-block has height zero, then their anchor group
is abelian.

Furthermore, we can reduce OC to the anchor group of the irreducible character
(MAOC) as follows:
MAOC: Let χ ∈ Irr(G) with an anchor group Aχ. Suppose χ belongs to the p-block B of G.
Then,

K0(B) ≤ [Aχ : Áχ],

where Áχ is the commutator subgroup of Aχ.

Remark 2. Let D be an abelian defect group of the p-block B. We know that OC leads to Brauer’s
K(B) conjecture, which states that K(B) ≤ |DB|. However, this statement is not true in the case of
the anchor group of irreducible characters; that is, for any χ ∈ Irr(B), K(B) ≤ |Aχ| is not true
in general. From Examples 1 and 2, there is only one 2-block B0 of S4 that contains the irreducible
character χ of degree two with anchor group V4. We have K(B0) = 5 > |Aχ|.

We focus on a simple finite group that contains the irreducible character with degree
p, where p is an odd prime.

Theorem 6. Let G be a simple finite group. Let ψ ∈ Irr(G) with degree ψ(1) = p, where p is an
odd prime number. Then, the anchor group of ψ is the trivial group.

Proof. We have the degree ψ(1) = p, which divides the order of G, per ([5], Theorem
2.4) and ([6], Theorem 3.11). Thus, G has a non-trivial Sylow p-subgroup P of G. As
G is a simple group, either ker(ψ) = G or ker(ψ) = 1G. If ker(ψ) = G, then ψ is the
trivial character of G, which is not the case. Thus, ψ is a faithful irreducible character of
G. Furthermore, from Lemma 2, the group G is non-abelian. If P is non-abelian, then the
commutator Ṕ 6= {1P} and the center Z(P) 6= {1G}. Consider ResG

P (ψ) = ∑χi∈Irr(P) diχi

for a positive integer di. Since ψ(1) = p = ResG
P (ψ)(1), then 1 ≤ χi(1) ≤ ψ(1). As χi(1)

divides the order of P, the degree of χi; χi(1) is a power of p. We conclude that either
ResG

P (ψ) is the sum of the linear characters of P or ResG
P (ψ) is the irreducible character

of P. Let ResG
P (ψ) = di1 χi1 + di2 χi2 + . . . + dit χit , where diK > 0 and χiK (1) = 1. As is

well-known, ker(ResG
P (ψ)) ⊆ ker(ψ). Hence, per Lemma 3, ker(ResG

P (ψ)) =
⋂

1≤j≤t kerχij .
Therefore, via Lemma 4,

{1P} 6= Ṕ ⊆
⋂

1≤j≤t
ker(χij) ⊆ kerψ.

This contradicts the fact that ψ is faithful. Thus, ResG
P (ψ) is an irreducible character of P.

From Lemma 5, we have

{1G} 6= Z(P) =
⋂

χ∈Irr(P)

Z(χ) ⊆ Z(ResG
P (ψ)) ⊆ Z(ψ).

Hence, Z(ψ) 6= {1G}. Since G is simple, Z(ψ) = G and G is abelian. This leads us to another
contradiction. Thus, P is abelian, G is a non-abelian simple group, and Z(G) = {1G}.
Hence, from Theorem 5, p is the exact power of p which divides [G : Z(G)] = |G|. We can
infer that a Sylow p-subgroup of G is cyclic of order p. Now, the defect of ψ is defined
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as pde f (ψ) =
|G|p

ψ(1)p
= 1 and de f (ψ) = 0. Hence, per ([3], Theorem 2.3.2), ψ belongs to the

singleton p-block, and the defect group of the singleton p-block is the trivial group {1G}.
Then, the result is obtained from Theorem 1 (1).

Remark 3. In Theorem 6, we exclude p = 2, as no simple group exists with an irreducible character
of degree 2, as in ([49], Corollary 22.13).

The following corollary immediately follows from Theorem 6.

Corollary 1. Let G be a simple finite group that has an irreducible character of degree p, where p is
an odd prime. If χ ∈ Irr(G) with χ(1)p = p, then the anchor group of χ is the trivial group.

We introduce the relative version of the Green correspondence theorem (Theorem 3) in
a simple finite group G, which contains the irreducible character ψ of degree p, where p is
an odd prime. Let B be a p-block of G. We define Ind(B|A) to be the set of all isomorphism
classes of the indecomposableRG-lattices with vertex A, which belong to B. We write

Irr(B|A) := {χ ∈ Irr(B)|χ0 ∈ IBr(B) and A is the anchor group o f χ}.

Lemma 6. Per the same hypotheses as above, let χ ∈ Irr(G) with the non-trivial anchor group A
and χ0 ∈ IBr(G). We write N = NG(A) to be the normalizer of A in G. Let θ ∈ Irr(N) with
θ0 ∈ IBr(N) such that θ lies under ψ; that is, 〈ResG

N(ψ), θ〉 6= 0. Then, the irreducible characters
χ and θ have the same anchor group. However, if χ belongs to the p-block B of G and θ belongs to
the p-block b of N, then |Irr(B|A)| = |Irr(b|A)|.

Proof. Assume that L is the indecomposableRG-lattice affording χ and Ĺ is the indecom-
posableRN-lattice affording θ. Then, from Theorem 1 (5), L is unique up to isomorphism
and A is a vertex of L. Per Theorem 6, G possesses a cyclic Sylow p-subgroup that contains
all p-subgroups of G. Hence, the vertex of L is equal to the anchor group of an irreducible
character χ, which is equal to the defect group of the p-block B (see ([47], proof of Theorem
5)). Hence, a one-to-one correspondence exists between Irr(B|A) and Ind(B|A). Like-
wise, there is a one-to-one correspondence between Irr(b|A) and Ind(b|A). The condition
〈ResG

N(ψ), θ〉 6= 0, is equivalent to Ĺ being a direct summand of the restriction ResG
N(L) with

vertex A. Per the Green correspondence theorem [1], Ĺ has a vertex A. Thus, Ĺ ∈ Ind(b|A).
Therefore, the irreducible character θ has anchor group A, and |Irr(B|A)| = |Irr(b|A)|.

We extracted the Brauer character tables for the following examples from ([2], Ap-
pendix B). These tables can also be obtained for some examples (but not all) from GAP [51].
One can also extract the degree of the irreducible characters, the structure of the defect
group of a p-block of G, and its normalizer in the group G from GAP [51].

Example 3. Consider G to be a simple group GL(3, 2), the general linear group of order 168 =
23 · 3 · 7. The number of irreducible characters is |Irr(GL(3, 2))| = 6.
In the case of p = 3
We have four 3-blocks of G. The principal 3-block B0 of GL(3, 2) has defect 1 and contains three
irreducible characters, all of degree prime to 3. Hence, the anchor group Aχ of each irreducible
character χ in B0 is a Sylow 3-subgroup of GL(3, 2) per Lemma 1. The Sylow 3-subgroup of
GL(3, 2) is isomorphic to C3, a cyclic group of order 3. The two irreducible characters of GL(3, 2)
are of degree three, and their anchor groups are the trivial group {1GL(3,2)} per Theorem 6. The
irreducible character ψ of GL(3, 2) with ψp(1) = 3 has the trivial anchor group per Corollary
1. The normalizer of Aχ in GL(3, 2) is NGL(3,2)(Aχ) = S3, the symmetric group of degree three.
We have that C3 is a normal 3-subgroup of S3 and the centralizer CS3(C3) = C3. From ([32],
Chapter V, Corollary 3.11), there is only one 3-block b0 of S3 with de f (b0) = 1 that contains
the irreducible character θ lying under χ. Note that |Irr(B0|Aχ)| = 2 = |Irr(b0|Aχ)|. The
application of the relative versions of the conjectures is detailed in the following: the center of Aχ
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is isomorphic to C3, a cyclic group of order 3. Thus, for each χ ∈ Irr(GL(3, 2)), MARC holds
because of Proposition 6. As all irreducible characters in the principal 3-block B0 have height zero,
the defect group of B0 is abelian because of BHZC. Hence, their anchor groups are abelian based on
Theorem 1(3). Thus, MHZC holds. As Aχ

∼= C3 is an abelian group, the commutator Áχ = {1C3}.
We have K0(B0) = 3 = [C3 : {1C3}], so MAOC holds.
In the case of p = 7
We have two 7-blocks of G. The principal 7-block B0 of GL(3, 2) has defect 1 and contains five
irreducible characters, all of degree prime to 7. Hence, the anchor group Aχ of each irreducible
character χ in B0 is a Sylow 7-subgroup of GL(3, 2), which is isomorphic to C7, a cyclic group of
order 7. The singleton 7-block with the trivial defect group {1GL(3,2)}. The normalizer of Aχ in
GL(3, 2) is NGL(3,2)(Aχ) ∼= (C7 : C3), the non-abelian group of order 21. Let b0 be the principal
7-block of (C7 : C3) which contains θ lying under χ. Note that |Irr(B0|Aχ)| = 3 = |Irr(b0|Aχ)|.
The application of the relative versions of the conjectures is detailed in the following: for each
χ ∈ Irr(B0), the center of Aχ is isomorphic to C7. Then, per Proposition 6, MARC holds. We have
that all irreducible characters in the principal 7-block B0 have height zero. Hence, their anchor groups
are abelian, and MHZC holds. As Aχ

∼= C7 is an abelian group, the commutator Áχ = {1C7}. We
have K0(B0) = 5 < [C7 : {1C7}] = 7 , so MAOC holds.

Example 4. Consider G to be a simple group A5, the alternating group of degree five of order
60 = 22 · 3 · 5. The number of irreducible characters is |Irr(A5)| = 5.
In the case of p = 3
We have three 3-blocks of A5. The principal 3-block B0 of A5 has defect 1 and contains three
irreducible characters, all of the degree prime to 3. Hence, the anchor group Aχ of each irreducible
character χ in B0 is a Sylow 3-subgroup of A5, which is isomorphic to C3, a cyclic group of order 3.
As the two irreducible characters of A5 are of degree three, their anchor groups are the trivial group
{1A5} per Theorem 6. The normalizer of Aχ in A5 is NA5(Aχ) = S3, the symmetric group of degree
three. As in the previous example, there is only one 3-block b0 of S3, which contains the irreducible
character θ lying under χ. We have |Irr(B0|Aχ)| = 2 = |Irr(b0|Aχ)|. The application of the
relative versions of the conjectures is as follows: the center of Aχ is isomorphic to C3, a cyclic group
of order 3. Thus, for each χ ∈ Irr(A5), MARC holds. Note that all irreducible characters in the
principal 3-block B0 have height zero. Hence, their anchor groups are abelian, and MHZC holds. As
Aχ
∼= C3 is an abelian group, the commutator Áχ = {1C3}. We have K0(B0) = 3 = [C3 : {1C3}],

and MAOC holds.
In the case of p = 5
We have two 5-blocks of A5. The principal 5-block B0 of A5 has defect 1 and contains four irreducible
characters, all of degree prime to 5. Hence, the anchor group Aχ of each irreducible character χ
in B0 is a Sylow 5-subgroup of A5 per Lemma 1. The Sylow 5-subgroup of A5 is isomorphic to
C5, a cyclic group of order 5. The normalizer of Aχ in A5 is NA5(Aχ) ∼= D10, the dihedral group
of order 10. We have that C5 is a normal 5-subgroup of D10 and the centralizer CD10(C5) = C5.
From ([32], Chapter V, Corollary 3.11), there is only one 5-block b0 of D10 with de f (b0) = 1. Let
θ ∈ Irr(b0) lies under χ. Then, we have |Irr(B0|C5)| = 2 = |Irr(b0|C5)|. The application of the
relative versions of the conjectures is as follows: the center of Aχ is isomorphic to C5. Thus, for each
χ ∈ Irr(A5), MARC holds. Note that all irreducible characters in the principal 5-block B0 have
height zero. Hence, their anchor groups are abelian, and MHZC holds. As Aχ

∼= C5 is an abelian
group, the commutator Áχ = {1C5}. We have that K0(B0) = 4 < [C5 : {1C5}] = 5, and MAOC
holds.

Remark 4. If the simple group G does not satisfy the condition stated in Theorem 6, then there
is no cyclic Sylow p-subgroup of G, and it does not satisfy Lemma 6, as shown in the following
example.

For the following example, we used the Magma computational algebra system [52] to
find the Brauer irreducible characters for the group SL(3, 3).
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Example 5. Let p = 3, G = SL(3, 3) be the special linear group of order 5616. The degrees of the
irreducible characters of SL(3, 3) are

ψi ψ1 ψ2 ψ3 ψ4 ψ5 ψ6 ψ7 ψ8 ψ9 ψ10 ψ11 ψ12

ψi(1) 1 12 13 16 16 16 16 26 26 26 27 39

Note that |Irr(SL(3, 3))| = 12, which belong in two 3-blocks. The principal 3-block B0
has defect 3 and contains 11 irreducible characters, 9 of which are of degree prime to 3 and two
of which are of degree 12 and 39, namely, ψ2 and ψ12, respectively. The defect group D of B0
is the extraspecial 3-group (C3 × C3 : C3) of order 27, which is a Sylow 3-subgroup P of G.
Thus, from Lemma 1, the anchor group of each irreducible character with degree prime to 3 is
a Sylow 3-subgroup. It remains to calculate the anchor groups of ψ2 and ψ12. We have that
N := NG(P) = (C3 × C3 : C3) : (C2 × C2) is the normalizer of P in G, which is the group of
order 108. We can see that ResG

N(ψ2) = 2φ1 + φ6 + φ8 + φ11, where φ1, φ6, φ8, φ11 ∈ Irr(N),
as follows:

1a 3a 2a 6a 3b 3c 3d 2b 2c 6b 6c
ResG

N(ψ2) 12 3 4 1 3 3 0 4 4 1 1
φ1 1 1 1 1 1 1 1 1 1 1 1
φ6 2 −1 2 −1 2 2 −1 0 0 0 0
φ8 2 2 0 0 2 −1 −1 0 2 0 −1
φ11 6 0 0 0 −3 0 0 2 0 −1 0

The notation in the first row above is as provided in the Atlas of Finite Groups [53]. Let L be the
indecomposableRG-lattice affording ψ2. Let M1, M6, M8, and M11 be theRN-lattices that afford
φ1, φ6, φ8, and φ11, respectively. Hence, ResG

N(L) = M1 ⊕M6 ⊕M8 ⊕M11. We can see that M1
is the direct summand of ResG

N(L). Then, per the Green correspondence Theorem 3, the two lattices
M1 and L have the same vertex. We have that the reduction M1 is the trivial FG-module. Then,
per ([54], Corollary 1), M1 has a Sylow 3-subgroup of N as a vertex. Thus, the Sylow 3-subgroup
of N is a vertex of the indecomposableRN-lattice M1 per ([2], Chapter 11, Exercise 21). It follows
that the Sylow 3-subgroup of N is a vertex of L. We know that the Sylow 3-subgroup of N is equal
to the Sylow 3-subgroup P of G in this example. Per Theorem 1(2), the vertex of L is contained in
an anchor group of ψ2. Therefore, the anchor group of ψ2 is a Sylow 3-subgroup P of G. To calculate
the anchor group of ψ12, we use the fact that ψ3 ∈ Irr(G) is of degree 13. Suppose Ĺ, ´́L are the
indecomposableRG-lattices that afford ψ12, ψ3, respectively. Consider θ ∈ Irr(N) to be of degree
1, such that IndG

N(θ) = ψ12 + ψ3, as follows:

1a 3a 2a 6a 3b 3c 3d 2b 2c 6b 6c
θ 1 1 1 1 1 1 1 −1 −1 −1 −1

1a 3a 3b 13a 13b 13c 13d 2a 6a 8a 8b 4b
IndG

N(θ) 52 7 1 0 0 0 0 −4 −1 0 0 0
ψ3 13 4 1 0 0 0 0 −3 0 −1 −1 1
ψ12 39 3 0 0 0 0 0 −1 −1 1 1 −1

Suppose M is the indecomposableRN-lattice that affords θ. Hence, IndG
N(M) = Ĺ⊕, ´́L and

the two lattices M and Ĺ correspond to each other. Per the Green correspondence theorem, they have
the same vertex. As the reduction M of M has dimension prime to 3, the vertex of M is a Sylow
p-subgroup of N. As shown in the case of ψ2, we conclude that the anchor group of ψ12 is a Sylow p-
subgroup P of G. There is only one 3-block b0 of N. Note that 1 = |Irr(B0|P)| 6= |Irr(b0|P)| = 4,
which does not satisfy Lemma 6. The application of the relative versions of the conjectures is
as follows: the center of the extraspecial 3-group is isomorphic to C3, a cyclic group of order
3. Thus, for any χ ∈ Irr(SL(3, 3)), MARC holds. Note that the defect group of B0 is non-
abelian group and there exist ψ2, ψ12 ∈ Irr(B0), which are not of height zero. Thus, MHZC
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holds. The commutator subgroup of the extraspecial 3-group P is isomorphic to C3. We have that
K0(B0) = 9 = [(C3 × C3 : C3) : C3], and MAOC holds.

5. Discussion

In this paper, we consider the application of RC, BHZC, and OC to a direct product of
finite groups. We use classical and standard theories for the direct product of finite groups,
block theory, and character theory to accomplish these results. In fact, Propositions 2.3 and
2.6 in [48] are crucial in block theory for a direct product of finite groups. We also discuss
the restriction of these conjectures to anchor groups of irreducible characters instead of
defect groups. As the anchor group of an irreducible character ψ of a finite group G is a
defect group of the primitive G-interiorR-algebraRGeψ, the previous conclusion is logical.
We give suitable examples of this reduction.

The review of these conjectures in Sections 1.1–1.3 can be compared to our results in a
simple finite group. Our discussion revolves around the anchor groups of the irreducible
character with degree p, where p is an odd prime. In [50], J. A. Green proved the Green
correspondence theorem. In this work, we introduce the relative version of the Green
correspondence theorem in a simple finite group G that contains the irreducible character
ψ of degree p, where p is an odd prime. To achieve this result, we use Theorem 1 (5):
if ψ ∈ Irr(G) such that ψ0 ∈ IBr(G) with anchor group Aψ, then there is a unique (up
to isomorphism) RG-lattice L affording ψ and Aψ is a vertex of L. The outcomes of this
paper are important for the modular representation theory of a direct product of finite
groups, including an attempt to develop reductions of the RC, BHZC, and OC to the
algebraic concept “anchor group of irreducible characters”, as well as a relative version
of the Green correspondence theorem. We plan to study more conjectures regarding the
modular representation of a direct product of finite groups, including an assessment of
how reductions can be formed for these conjectures in an attempt to solve them.

6. Conclusions

This work focuses on BHZC [10], RC [21], and OC [26] (see Sections 1.1–1.3). We prove
that the direct product H1 × H2 of two finite groups H1 and H2 satisfies these conjectures if
and only if H1 and H2 both satisfy these conjectures. We provide relative versions of RC
(MARC), BHZC (MHZC), and OC (MAOC) with respect to the algebraic concept of “the
anchor group of an irreducible character.” We prove the relative version of RC (MARC)
in the case of the center of the anchor group of χ, Aχ with order |Z(Aχ)| = p and for
ψ ∈ Irr(G) with some conditions. Consider G to be a simple finite group. We prove that the
anchor group of the irreducible character with degree p is the trivial group, where p is an
odd prime. Finally, we present suitable examples of these conjectures and theories in simple
finite groups. Many questions and conjectures remain in modular representation theory.
We will study more conjectures related to the modular representation of a direct product of
finite groups and attempt to develop reductions for these conjectures to solve them.
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Abstract: Omega rings (Ω-rings) (and other related structures) are lattice-valued structures (with Ω
being the codomain lattice) defined on crisp algebras of the same type, with lattice-valued equality
replacing the classical one. In this paper, Ω-ideals are introduced, and natural connections with
Ω-congruences and homomorphisms are established. As an application, a framework of approximate
solutions of systems of linear equations over Ω-fields is developed.
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1. Introduction

An algebraic structure of a ring in the framework of Ω-structures, where Ω is a com-
plete lattice, is introduced in [1]. Therein some basic properties of Ω-rings are investigated
and some related structures are introduced and investigated as well.

In the present paper, we develop this study further, introducing Ω-ideals, connect-
ing them with Ω-congruences and Ω-homomorphisms and continuing our investigation
towards the theory of solving systems of equations on Ω-rings, in particular on Ω-fields.

Ω-algebras are classical algebras characterized by a particular lattice-valued relation,
so-called Ω-equality, which replaces the ordinary one; according to this generalized equality,
Ω-algebras fulfill identities as lattice formulas.

Since Ω-equality is a lattice-valued function, Ω-algebras are objects in the lattice-
valued fuzzy framework. Fuzzy algebraic structures are one of the most established topics
in the theoretical research of fuzziness. Almost all aspects of classical algebraic structures
are “fuzzified”. Besides fuzzy groups, which were studied by hundreds of investigators
(e.g., [2–6]), various aspects of fuzzy rings are also investigated (e.g., [7–11]).

The classical framework of fuzzy algebraic structures is based on classical algebras
of the corresponding types (e.g., fuzzy groups are constructed by groups, similarly fuzzy
rings, etc).

Our framework is different in several aspects. First, we use a lattice as a codomain
of functions representing fuzzy sets; therefore, we say that they are lattice-valued [12,13].
Further, Ω-algebras by definition can use wider classes of classical algebras of the cor-
responding type. Moreover, in the present research, we use Ω-valued equality which
does not necessarily fulfill the separability property [1,14]. This enables us to extend our
framework more, using full classes of underlying algebras of the given type, as proved in
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our previous study [1]. However, in general, our study follows the others with various
types of Ω-algebras with separability [15,16].

Historically, we have to mention that this type of lattice-valued equality was first
introduced by Fourman and Scott [17] for investigations in logic and set theory and later by
Höhle [17–20] in the theoretical development of fuzziness; this framework also contained a
separability condition and it was based on a complete Heyting algebra. Demirci, Bělohlávek
and Vychodil also conducted research on algebraic structures that were equipped with a
concept of similar fuzzy equality (see e.g., [21–29]). In this approach, traditional algebras
are utilized, but instead of employing strict equality, fuzzy equality compatible with the
algebra’s fundamental operations is employed.

To sum up, let us clearly underline the motivating reasons for dealing with Ω-algebraic
structures. The first is the usage of generalized, Ω-valued equality instead of the classical
“being equal” relation.. Indeed, in many real-life situations, data are corrupted, or they
are missing, or simply there is noise in the communication. Then, being equal is often
replaced by equal to some extent, and an appropriate many-valued equality can establish a
connection among similar objects. In addition, the level of equality of an object to itself is
understood as the belonging of this object to a domain with non-sharp boundaries. Finally,
in reality, a set of equality levels for different objects need not be linearly ordered, which
leads to a complete lattice as a codomain. This points to the second reason for introducing
Ω-algebras. They are constructed on classical basic algebras, which are equipped with an
Ω-equality. Depending on the identities that they satisfy with respect to this generalized
equality, they may be, e.g., Ω-groups, Ω-quasigroups, Ω-rings, etc. Still, the mentioned
basic algebras need not be groups, quasigroups, rings, etc. However, an essential property
of Ω-algebras is that particular quotient structures of level subalgebras over the levels
of Ω-equality are classical algebras fulfilling the mentioned equalities! In other words,
classical groups, quasigroups, rings, etc., are hidden as quotient algebras of Ω-groups,
Ω-quasigroups, Ω-rings, etc., respectively. Therefore, when dealing with a generalized
Ω-structure obtained from a real situation, we can use many suitable features of the
corresponding classical structure, which is present in the form of quotients.

2. Preliminaries
2.1. Some Basic Notions from Ordered and Algebraic Structures

In our approach, we mostly deal with functions whose codomain is a complete lattice,
which is a partially ordered set (Ω,6) in which there are infima (the greatest lower bounds
meet) and suprema (the lowest upper bounds join) for all subsets (denoted by ∧ and ∨,
respectively) ([30]). The greatest (top) element is denoted by 1 and the lowest (bottom)
element by 0.

In the following, we recall some well-known algebraic notions.
We consider a ring to be an algebraic structure of the type (R,+, · ,−, o), where R is a

nonempty set, + and · are binary operations, − is a unary operation and o is a constant
(nullary operation), such that (R,+,−, o) is a commutative group and (R, ·) is a semigroup
and the second binary operation, · , is distributive with respect to the first, + .

We also consider algebras (R,+, · ,−, o) where (+, · ,−, o) are operations of the same
type (as for rings) without special properties.

A homomorphism of two algebras of the same type (R,+, · ,−, o) and (T,+ , · ,−, o)
is a mapping f : S→ T, such that for all x, y ∈ R,

f (x + y) = f (x) + f (y), f (x · y) = f (x) · f (y), f (−x) = − f (x) and f (o) = o.
(Although the operations on S and T are different, for simplicity we use the same

symbol for the corresponding operations.)
A kernel of the homomorphism is a relation ker f on R, such that (x, y) ∈ ker f if and

only if f (x) = f (y).
A congruence on R is an equivalence relation, ρ on R, which is compatible with all

operations:
For x, y, z, t ∈ R, if xρy and zρt, then (x + z)ρ(y + t), (x · z)ρ(y · t) and (−x)ρ(−y).
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The congruence class of a is defined by [a]ρ := {x ∈ R | (a, x) ∈ ρ} as usual. The
quotient ringR/ρ is the ring on the set of all congruence classes, where the operations are
naturally defined by representatives.

A kernel of a homomorphism is a congruence relation on the domain algebra.
We formulate here the Second Isomorphism Theorem for rings [31]. Since we require

it for certain proofs, it is necessary to mention it.

Theorem 1. If φ and θ are congruences on a ringR and θ ⊆ φ, then φ/θ is a congruence onR/θ.

2.2. Ω-Valued Sets and Relations

As mentioned, the main objects of this research are functions from various sets in a
lattice, named in several ways throughout the literature: fuzzy sets and fuzzy relations
(if the domain is a square of a set); also lattice-valued sets and relations; finally, Ω-valued
sets and Ω-valued relations, if the codomain lattice is denoted by Ω. In order to unify
the notation, throughout the text we use the last version of these, sometimes replacing
Ω-valued with lattice valued, for the most general notions. Moreover, for several notions,
we use only the prefix Ω (without the word “valued”).

An Ω-valued set µ on a nonempty set A is a function µ : A → Ω, where (Ω,6) is a
complete lattice.

If µ and ν are Ω-valued sets, then µ is an Ω-valued subset of ν (denoted by µ ⊆ ν),
if for every x ∈ A, µ(x) 6 ν(x).

For p ∈ Ω, a cut set (p-cut) of µ : A→ Ω is defined by

µp = {x ∈ A | µ(x) > p}.

Example 1. Let Ω be a lattice in Figure 1, and let A = {a, b, c, d} be a set. Then, µ : A → Ω
defined by

x a b c d
µ(x) p 1 r r

is an Ω-valued set on A.
The cut sets of µ are µ1 = {b}, µp = µq = {a, b} and µr = µ0 = {a, b, c, d}.
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We formulate here the Second Isomorphism Theorem for rings [7]. Since we require it
for certain proofs, it is necessary to mention it.

Theorem 1. If φ and θ are congruences on a ringR and θ ⊆ φ, then φ/θ is a congruence onR/θ.

2.2. Ω-valued sets and relations

As mentioned, the main objects of this research are functions from various sets to a
lattice, named in several ways throughout the literature: fuzzy sets and fuzzy relations (if the
domain is a square of a set); then also lattice valued sets and relations; finally Ω-valued sets and
Ω-valued relations, if the codomain lattice is denoted by Ω. In order to unify the notation,
throughout the text we use the last version of these, sometimes replacing Ω-valued by lattice
valued, for the most general notions. Moreover, for several notions, we use only the prefix
Ω (without the word "valued").

An Ω-valued set µ on a nonempty set A, is a function µ : A → Ω, where (Ω,6) is a
complete lattice.

If µ and ν are Ω-valued sets, then µ is an Ω-valued subset of ν (denoted by µ ⊆ ν), if
for every x ∈ A, µ(x) 6 ν(x).

For p ∈ Ω, a cut set ( p-cut) of µ : A→ Ω is defined by:

µp = {x ∈ A | µ(x) > p}.

Example 1.
Let Ω be a lattice in Figure 1, and let A = {a, b, c, d} be a set. Then µ : A→ Ω defined

by:

x a b c d
µ(x) p 1 r r

is an Ω-valued set on A.
Cut sets of µ are: µ1 = {b}, µp = µq = {a, b}, µr = µ0 = {a, b, c, d}.

u
u
u
u
u1

r

q

p

0

Figure 1: Lattice Ω

2

An Ω-valued relation ρ on A is an Ω-valued set on A2.
As usual, ρ is symmetric if ρ(x, y) = ρ(y, x) and ρ is transitive if (x, z) ∧ ρ(z, y) 6

ρ(x, y) for all x, y, z ∈ A.
A symmetric and transitive Ω-valued relation ρ on A is called an Ω-valued equality

on A.
Let µ : A→ Ω be an Ω-valued set and ρ : A2 → Ω an Ω-valued relation on A. If for

x, y ∈ A, ρ and µ satisfy
ρ(x, y) 6 µ(x) ∧ µ(y), (1)

Figure 1. Lattice Ω.
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An Ω-valued relation ρ on A is an Ω-valued set on A2.
As usual, ρ is symmetric if ρ(x, y) = ρ(y, x) and ρ is transitive if (x, z) ∧ ρ(z, y) 6

ρ(x, y) for all x, y, z ∈ A.
A symmetric and transitive Ω-valued relation ρ on A is called an Ω-valued equality

on A.
Let µ : A→ Ω be an Ω-valued set and ρ : A2 → Ω an Ω-valued relation on A. If for

x, y ∈ A, ρ and µ satisfy
ρ(x, y) 6 µ(x) ∧ µ(y), (1)

then we say that ρ is an Ω-valued relation on µ (see, e.g., [32]).
The Ω-valued relation ρ is reflexive on µ if

ρ(x, x) = µ(x) for every x ∈ A. (2)

Example 2. Let Ω be a lattice in Figure 1, and let A = {a, b, c, d} as in Example 1. Let E : A2 →
Ω be an Ω-valued relation defined in Table 1.

Table 1. Ω-valued equality on A.

E a b c d

a p q 0 0
b q 1 0 0
c 0 0 r r
d 0 0 r r

One can easily check that E is an Ω-valued equality on A. It is also a reflexive Ω-valued
relation on the Ω-valued set µ from Example 1.

Let ν : A → Ω be a nonempty Ω-valued subset of an Ω-valued set µ : A → Ω, R an
Ω-valued relation on µ and S : A2 → Ω an Ω-valued relation on A. Then, S is a restriction
of R to ν if

S(x, y) = R(x, y) ∧ ν(x) ∧ ν(y). (3)

In the following, we introduce the (known) concept of lattice-valued compatibility.
If Ω is a complete lattice andR = (R, F) is an algebra, then the function µ : R→ Ω is

said to be compatible with the operations in F if for any f ∈ F, f : Rn → R, n ∈ N, for all
a1, . . . , an ∈ R and for a nullary operation o ∈ F,

n∧

i=1

µ(ai) 6 µ( f (a1, . . . , an)), µ(o) = 1. (4)

Analogously, an Ω-valued relation E : R2 → Ω onR is compatible with the operations
in F if the following holds: for every n-ary operation f ∈ F, for all a1, . . . , an, b1, . . . , bn ∈ R,
and for constant o ∈ F,

n∧

i=1

E(ai, bi) 6 E( f (a1, . . . , an), f (b1, . . . , bn)); E(o, o) = 1. (5)

Throughout the text, we relate some algebraic properties of lattice-valued objects with
their cuts, as follows: a property P of an Ω-valued structure A is said to be cutworthy if
the analog crisp property holds for every cut-structure Ap, p ∈ Ω.
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2.3. Ω-Rings

An Ω-set is an ordered pair (R, E), where R is a nonempty set and E an Ω-valued
equality on A [17].

Remark 1. There is a difference between an Ω-valued set defined in the previous section and an
Ω-set as defined here. The former is only a function from a set on a lattice Ω and the latter is a pair
consisting of a set and a particular lattice-valued relation on this set.

If (R, E) is an Ω-set, the related Ω-valued set on R, denoted by µ, is defined by

µ(x) := E(x, x). (6)

E is an Ω-valued reflexive relation on µ, as defined by (1) (to be more precise, E is an
Ω-valued equality on µ.

IfR = (R, F) is an algebra and E : R2 → Ω an Ω-valued equality on R compatible with
the operations in F, thenR = (R, E) is an Ω-algebra. AlgebraR is called the underlying,
basic algebra ofR.

Let (R, E) be an Ω-algebra and t1(x1, . . . , xn) ≈ t2(x1, . . . , xn), and briefly let t1 ≈ t2
be an identity in the type ofR. Then, we can state that (R, E) satisfies identity t1 ≈ t2 if

n∧

i=1

µ(bi) 6 E(t1(b1, . . . , bn), t2(b1, . . . , bn)), (7)

for all b1, . . . , bn ∈ A and the term operations on R corresponding to terms t1 and t2,
respectively.

We continue with the main structure of the present research. An Ω-ring is an Ω-algebra
R = (R, E), where R = (R,+, · ,−, o) is an algebra with two binary operations ( · ,+),
a unary operation (−) and a constant (o), so that the following identities hold in the sense
of (7):

u + (v + w) ≈ (u + v) + w

u + o ≈ u, o + u ≈ u

u + (−u) ≈ o, (−u) + u ≈ o

u + v ≈ v + u

u · (v · w) ≈ (u · v) · w

u · (v + w) ≈ (u · v) + (u · w)

(v + w) · u ≈ (v · u) + (w · u).
We have E(o, o) = µ(o) = 1.
Next, we present some cut properties of Ω-rings. These also hold for Ω-groups and

generally for all Ω-algebras as well [14].

Theorem 2. Let R = (R, E) be an Ω-algebra of the type (+, · ,−, o). Then, R is an Ω-ring if
and only if for every p ∈ Ω the quotient structure µp/Ep is a ring.
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Example 3. Let A = {a, b, c, d}, operations + and · be as presented in Table 2 and the unary
operation − defined by −x := x, and let b be a constant (nullary operation). Let E : A2 → Ω be
the Ω-relation defined in Example 2 (Table 1), where Ω is a lattice in Figure 1. µ is Ω-set from
Example 2 and E is symmetric, transitive and reflexive on µ.

Table 2. (a) Binary operation + on A. (b) Binary operation · on A.

(a)

+ a b c d

a b a d c
b a b d d
c c d b b
d d c a a

(b)

· a b c d

a a b a b
b b b b a
c a a d c
d b b c d

The Ω-relation E is compatible since all the cuts are congruence relations on cuts of µ.
All the factor cuts are rings. Indeed, µ1/E1 is a one-element ring, isomorphic to {b}, µp/Ep

is a two-element ring isomorphic to subring {a, b}. µq/Eq is also a one-element ring. µr/Er is
a two-element ring {{a, b}, {c, d}}. Finally, µ0/E0 is also a one-element ring with one element
being the class {a, b, c, d}.

Hence, the structure (A, E) is an Ω-ring by Theorem 2.

We mention some basic properties of Ω-rings (proved in [1]) that we shall need in
some proofs.

Proposition 1 ([1]). LetR = (R, E) be an Ω-ring whereR = (R,+, · ,−, o).
Then, the following hold in the sense of (7):

(i) u · o ≈ o, o · u ≈ o;
(ii) u · (−v) ≈ −(v · u);
(iii) (−u) · v ≈ −(v · u).

An Ω-ring is commutative if u · v ≈ v · u.
If Rι = (R,+, · ,−, o, ι) is an algebra with two binary, one unary and two nullary

operations o and ι, then (Rι, E) is an Ω-ring with identity if ((R,+, · ,−, o), E) is an
Ω-ring and if u · ι ≈ u, ι · u ≈ u. An Ω-ring with identity is called an Ω-field if
Ro = (R \ {o}, · ,−1 , ι) (where −1 is a unary operation) is an Ω-group, where Eo is the
restriction of E to R \ {o}.

The following proposition is proved in [1].

Proposition 2 ([1]). An Ω-ring with identityRι = ((R,+, · ,−, o, ι), E) is an Ω-field if and only
if for every p ∈ Ω, the factor µp/Ep is a field.

IfR = (R, E) andR1 = (R, Eµ1) are Ω-rings, we say thatR1 is an Ω-subring of the
Ω-ringR if Eµ1 is a restriction of E to the Ω-valued function µ1 ofR, determined by Eµ1 .

Hence, Eµ1(x, y) = E(x, y) ∧ µ1(x) ∧ µ1(y) for all x, y ∈ R.

Theorem 3 ([1]). Let R = (R, E) be an Ω-ring and S = (R, Eν) an Ω-subring of R. Then,
for every p ∈ Ω, the ring νp/Eν

p is, up to an isomorphism, a subring of the ring µp/Ep.
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3. Results
3.1. Ω-Congruences and Ω-Ideals

LetR = (R, Eµ) be an Ω-ring. Knowing the well-known connection between congru-
ences and ideals in crisp algebras, first we define Ω-congruences and then Ω-ideals using
this notion.

An Ω-valued congruence on R is an Ω-valued relation Θ : R2 → Ω on R, which is
µ-reflexive (for every x ∈ R, Θ(x, x) = Eµ(x, x)), symmetric, transitive and compatible
with the operations inR, and for all x, y ∈ R fulfills Θ(x, y) > Eµ(x, y).

The following proposition yields directly from the definition.

Proposition 3. Let Θ be an Ω-valued congruence on an Ω-ringR. Then, for every p ∈ Ω, such
that µp 6= ∅, Θp is a congruence relation on µp, and the algebra µp/Θp is a ring.

If Θ is a congruence on an Ω-ringR = (R, Eµ), we define ν : R→ Ω by

ν(x) := Θ(o, x), (8)

where o is a nullary operation inR. Next, we define Eν : R2 → Ω by

Eν(x, y) := Eµ(x, y) ∧ ν(x) ∧ ν(y). (9)

Analyzing the Ω-valued set ν, we can see that it "measures" the grade to which an
element is equal to the constant o. Taking into account the definition of crisp two-sided
ideals in the ring, it corresponds to a congruence on the ring and it consists of all elements
which are congruent with o. Hence, we introduce a notion of the Ω-two-sided ideal in
Ω-ring, as follows.

If Θ : R2 → Ω on R is an Ω-valued congruence on an Ω-ring R, then P = (R, Eν),
where ν(x) := Θ(o, x) is an Ω-valued two-sided ideal on an Ω-ring (or Ω-valued ideal).

There is the smallest and the greatest congruence on every Ω-ring, and the related
Ω-ideals P = (R, Eν) are described in the sequel.

The smallest congruence on an Ω-ring is Θ(x, y) = Eµ(x, y). Then, ν(x) := Eµ(o, x)
and Eν(x, y) := Eµ(x, y) ∧ Eµ(o, x) ∧ Eµ(o, y).

The greatest congruence is Θ(x, y) = 1, for all x, y ∈ R. Then, ν(x) = 1 for all x ∈ R
and Eν(x, y) := Eµ(x, y).

In the following part, we prove that the Ω-valued ideal is an Ω-subring ofR.

Proposition 4. If R = (R, Eµ) is an Ω-ring, then the Ω-valued ideal P = (R, Eν) is an
Ω-subring ofR.

Proof. First, we have to prove that ν : R→ Ω is compatible with the nullary, unary and two
binary operations.

That is, ν(x + y) > ν(x) ∧ ν(y), ν(x · y) > ν(x) ∧ ν(y), ν(−x) > ν(x) and ν(o) = 1.

ν(o) = Θ(o, o) = µ(o) = 1.

By Θ being an Ω-congruence, we have that Θ(x, o) 6 Θ(−x,−o).
By Proposition 1, we have that µ(x) ∧ µ(o) 6 Eµ(−(x · o), (−x) · o), µ(x) ∧ µ(o) 6

Eµ(−(x · o), x · (−o)) and µ(x) 6 Eµ(x · o, o).
Hence, we have the following:

µ(x) 6 E(x · o, o) 6 E(−(x · o),−o)

µ(x) 6 µ(−x) 6 E((−x) · o, o)
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µ(x) 6 µ(−x) 6 E(−(x · o), (−x) · o).
Using transitivity from the previous three formulas, we have
µ(x) 6 E(o,−o). Since it is valid for every x, it is also valid for o, so we have that

E(o,−o) = 1.

Since

E 6 Θ,

we have that

Θ(o,−o) = 1

Now,

Θ(x, o) 6 Θ(−x,−o) ∧Θ(−o, o) 6 Θ(−x, o).

Hence,

ν(x) 6 ν(−x).

Further, by Proposition 1, we have that E(o · o, o) = 1 and hence Θ(o · o, o) = 1.
Therefore,

ν(x) ∧ ν(y) = Θ(x, o) ∧Θ(y, o) 6 Θ(x · y, o · o) ∧ 1 = Θ(x · y, o · o) ∧Θ(o · o, o) 6 Θ(x · y, o) = ν(x · y).

Finally, by 1 = E(o + o, o) 6 Θ(o + o, o), we have that

ν(x) ∧ ν(y) = Θ(x, o) ∧Θ(y, o) 6 Θ(x + y, o + o) ∧Θ(o + o, o) 6 Θ(x + y, o) = ν(x + y).

Finally, the condition that Eν(x, y) is a restriction to Eµ(x, y) is fulfilled:

Eν(x, y) = Eµ(x, y) ∧ Eν(x, x) ∧ Eν(y, y),

by the definition of Eν, since Eν(x, x) = Eµ(x, x) ∧ Θ(o, x) = Θ(o, x), and similarly for
Eν(y, y).

Therefore, P is an Ω-subring ofR.

Remark 2. Note that in the case of classical (crisp) rings, an Ω-ideal gives a characteristic function
of an ideal. Indeed, since in a crisp case Ω is the chain {0, 1}, Θ is a weak-congruence relation
(weakly reflexive, symmetric, transitive and compatible with operations). In this case, an ideal is
a characteristic function with values 1 in case an element is in relation with o under Θ, which
characterizes an ideal.

Since we first defined Ω-ideals independently of the notion of Ω-subrings and later
proved that every Ω-ideal is an Ω-subring, in the following we give a necessary and
sufficient condition for an Ω-subring to be an Ω-ideal.

Proposition 5. LetR = (R, Eµ) be an Ω-ring and I = (R, Eν) an Ω-subring ofR. Then, the
necessary and sufficient condition that I is an Ω-ideal ofR is that there is an Ω-valued congruence
Θ onR, such that for all x, y ∈ R,

Eν(x, y) = Eµ(x, y) ∧Θ(o, x) ∧Θ(o, y). (10)

Proof. The proof is obvious by the definition of an Ω-ideal.
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In the following, we prove that the notion of the Ω-ideal introduced above is cutworthy,
in the sense that Ω-ring is an Ω-ideal if and only if all cut sets over related cut equalities
are ideals of the corresponding cut-factor ring.

Theorem 4. An Ω-subring I = (R, Eν) of an Ω-ring R = (R, Eµ) is an Ω-ideal of R if and
only if for every p ∈ Ω, νp/Eν

p is an ideal of the ring µp/Eµ
p .

Proof. If I = (R, Eν) is an Ω-ideal of an Ω-ringR = (R, Eµ), then by the definition there
is an Ω-valued congruence Θ onR, such that for all x, y ∈ R, Eµ(x, y) 6 Θ(x, y) and

Eν(x, y) = Eµ(x, y) ∧Θ(o, x) ∧Θ(o, y).

By the cutworthy properties of Ω-congruences, the cut Θp for p ∈ Ω is a congruence
on the subalgebra µp ofR, by µ-reflexivity and the fact that Eµ

p ⊆ Θp.
The relation Θp/Eµ

p , naturally defined on classes by

([x]Eµ
p
, [y]Eµ

p
) ∈ Θp/Eµ

p if and only if (x, y) ∈ Θp, (11)

is a congruence on µp/Eµ
p .

By Theorem 1,
µp/Eµ

p /Θp/Eµ
p ∼= µp/Θp,

where µp/Eµ
p is a ring and Θp/Eµ

p is a congruence on it; hence, µp/Θp is a ring as well.
By the definition of ν, ν(x) = Θ(o, x) for all x ∈ R, and looking at the cuts, for p ∈ Ω,

x ∈ νp if and only if Θ(o, x) > p.
It is already proved in Theorem 3 that νp/Eν

p is a subring of µp/Eµ
p .

Now we show that νp/Eν
p is an ideal of µp/Eµ

p . By the definition, we should prove
that νp/Eν

p is a class of a congruence on µp/Eµ
p , containing o.

We have that Θp/Eµ
p is a congruence on µp/Eµ

p and the class of this congruence
containing o is exactly νp/Eν

p (since o ∈ νp for every p).
To prove the converse, let P = (P , Eν) be an Ω-subring of an Ω-ring R = (R, Eµ).

Now, we have the assumption on cuts, and we have to prove that P is an ideal onR.
Since for every p ∈ Ω, νp/Eν

p is an ideal of µp/Eµ
p , elements in νp/Eν

p are exactly some
classes of µp/Eµ

p . Now we can look at the related congruences. For every p ∈ Ω, Θp on
µp/Eµ

p is defined by

[x]Eµ
p
Θp[y]Eµ

p
if and only if [x]Eµ

p
+ (−[y]Eµ

p
) ∈ νp/Eν

p.

Since νp/Eν
p is an ideal, Θp is a congruence on µp/Eµ

p .

[x]Eµ
p
+ (−[y]Eµ

p
) ∈ νp/Eν

p

if and only if

[x + (−y)]Eµ
p
∈ νp/Eν

p,

if and only if

x + (−y) ∈ νp,

if and only if

ν(x + (−y)) > p.

Starting from a family of congruences {Θi | i ∈ I ⊆ Ω},
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[x]Eµ
i
Θi[y]Eµ

i

if and only if
ν(x + (−y)) > i.

Further,
[x]Eµ

i
Θi[y]Eµ

i

if and only if

ν(x + (−y)) >
∨

i∈I
i,

for every i ∈ I if and only if

[x]Eµ
i
Θ∨

i∈I i[y]Eµ
i
.

The family {Θi | i ∈ Ω} is closed under intersections, since
⋂

i∈I
Θi = Θ∨

i∈I i.

Next, by the synthesis of this family, we define a relation Θ : R2 → Ω by

Θ(x, y) :=
∨
{p | ([x]Eµ

p
, [y]Eµ

p
) ∈ Θp}.

The supremum of ∅ in the complete lattice Ω is 0; hence, in the case that (x, y) does
not belong to any Θp for p ∈ Ω, we have that Θ(x, y) = 0

Now, Θ is a symmetric, transitive and compatible Ω-valued relation on R (being a
synthesis of the family of the relations of analogous crisp properties). It is also µ-reflexive:
for x ∈ R,

Θ(x, x) =
∨
{p | ([x]Eµ

p
, [x]Eµ

p
) ∈ Θp} =

∨
{p | x ∈ µp} = µ(x) = Eµ(x, x),

since µ(x) is one of the values over which the supremum runs.
Finally, we prove the condition that Eµ(x, y) 6 Θ(x, y) for all x, y ∈ R, as follows.

If Eµ(x, y) = p, then (x, y) ∈ Ep and hence [x]eµ
p
= [y]eµ

p
. Since Θp is a congruence on

µp/Eµ
p , we have that ([x]eµ

p
, [y]eµ

p
) ∈ Θp and Θ(x, y) > p.

Hence, Θ is an Ω-valued congruence onR, and by the construction Θ(x, o) = ν(x) =
Eν(x, x). Therefore, I is an Ω-ideal ofR.

Remark 3. If I = (R, Eν) is an Ω-ideal of an Ω-ring R = (R, Eµ), then the congruence Θ
related to the ideal I is unique. This follows from the proof of the previous theorem. Indeed, if θ
is an Ω-congruence, then the unique Ω-ideal is obtained by the definition. On the other hand,
if I = (R, Eν) is an Ω-ideal, then the congruences obtained on all cuts p ∈ Ω, Θp on µp/Eµ

p ,
defined by

[x]Eµ
p
Θp[y]Eµ

p
if and only if [x]Eµ

p
+ (−[y]Eµ

p
) ∈ νp/Eν

p

are unique (due to the fact that ideals and congruences are in 1-1 correspondence in rings). Now the
Ω-congruence θ is uniquely obtained from the family of cuts on µp/Eµ

p , as in the proof of Theorem 4.

By the previous remark, the Ω-ideals and Ω-congruences are in 1-1 correspondence in
Ω-rings.

Now, adapting the definition of Ω-homomorphisms in algebras from [33], we for-
mulate the definition of Ω-homomorphisms and introduce the relationship among the
Ω-ideals, Ω-congruences and Ω-homomorphisms in Ω-rings.
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LetR = (R,+, · ,−, o) and S = (S,+, · ,−, o) be two algebras, andR = (R, Eµ) and
S = (S , Eν) two Ω-rings.

A function ϕ : R → S is an Ω-homomorphism from R to S if for all a, b ∈ R, and
the following conditions hold:

Eµ(a, b) 6 Eν(ϕ(a), ϕ(b)),

Eµ(a, a) = Eν(ϕ(a), ϕ(a));

µ(a) ∧ µ(b) 6 Eν(ϕ(a + b), ϕ(a) + ϕ(b));

µ(a) ∧ µ(b) 6 Eν(ϕ(a · b), ϕ(a) · ϕ(b))
µ(a) 6 Eν(ϕ(−a),−ϕ(a));

µ(o) 6 Eν(ϕ(o), o)

ϕ(a) + ϕ(b) ∈ ϕ(R); ϕ(a) · ϕ(b) ∈ ϕ(R) and− ϕ(a) ∈ ϕ(R).

By the general result about Ω-algebras (Theorem 8 in [33]), we have the following
cutworthy property of Ω-homomorphisms.

Proposition 6. If the function ϕ : R → S from an Ω-ring (R, Eµ) to an Ω-ring (S , Eν) is an
Ω-homomorphism, then the mapping ϕ : µE

p /Ep → µG
p /Gp, such that ϕ([x]Ep) := [ϕ(x)]Gp is a

classical homomorphism.

Let ϕ be an Ω-homomorphism from (R, Eµ) to (S, Eν). Then, an Ω-valued relation
kerΩ ϕ : R2 → Ω defined by

kerΩ ϕ(a, b) = Eν(ϕ(a), ϕ(b)) ∧ µ(a) ∧ µ(b), for all a, b ∈ R, (12)

is called an Ω-valued kernel of ϕ.
The following proposition are here formulated for rings and follow directly from the

analogous result in general algebras that are proved in [33].

Proposition 7. Let ϕ be an Ω-homomorphism from Ω-ring (R, Eµ) to Ω-ring (S, Eν). Then, the
Ω-valued kernel kerΩ ϕ : R2 → Ω of ϕ is an Ω-valued congruence on the Ω-ring (R, Eµ).

3.2. Structure of Ω-Ideals

Now we look at the family of all Ω-ideals on an Ω-ring and we prove that it is a
complete lattice.

We define a natural ordering 6 on the family of all Ω-ideals:
Given two Ω-ideals ν1 and ν2,
ν1 6 ν2 if and only if for every x ∈ R, ν1(x) 6 ν2(x).

Proposition 8. The family of all idealsF on an Ω-ringR = (R, Eµ) is a complete lattice under 6.

Proof. Let R = (R, Eµ) be an Ω-ring. We can note that that the relation Θ : R2 7→ Ω,
defined by Θ(x, y) = 1 for all x, y ∈ R, is an Ω-congruence. Hence, the mapping ν(x) =
Θ(x, o) = 1 for all x ∈ R is an Ω-ideal, and the family of all ideals on any Ω-ring is
nonempty. Moreover, it is obvious that ν(x) = 1 is the greatest of all ideals under the
ordering 6.
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Now we have to prove that the infimum of every family of Ω-ideals on the Ω-ring is
again an ideal.

Let {νi | i ∈ I} be a family of Ω-ideals on the Ω-ring. Now, we prove that the
intersection of fuzzy sets ∩i∈Iνi is an Ω-ideal and it is the infimum of the family {νi | i ∈ I}.
Indeed, it is easy to check that ∩i∈Iνi(x) = ∩i∈IΘi(x, o) for every x ∈ R where for every
i ∈ I, Θi is the corresponding congruence to νi. Since ∩i∈IΘi is also an Ω-congruence on
(R, Eµ), we have that ∩i∈Iνi is an Ω-ideal.

Hence, the family of all Ω-ideals on (R, Eµ) is a complete lattice.

It is easy to check that for two congruences Θ1 and Θ2, such that Θ1 > Eµ and Θ2 > Eµ,
and Θ1 6 Θ2, and for two corresponding functions ν1 and ν2 and relations determining
Ω-ideals Eν1 6 Eν2 , respectively,

Θ1 6 Θ2 if and only if ν1 6 ν2 if and only if Eν1 6 Eν2 .
Keeping this in mind, and the fact that Eµ(o, x) ∧ Eµ(o, y) 6 Eµ(x, y), we have the

following corollary.

Corollary 1. The smallest element of the family of all ideals F on an Ω-ringR = (R, Eµ) is the
ideal E0 : R2 → Ω defined by

E0(x, y) = Eµ(o, x) ∧ Eµ(o, y) (13)

In the following, we prove that an Ω-valued congruence Θ on an Ω-ring (R, Eµ), such
that Θ > Eµ, can be regarded as an Ω-valued equality, and can generate another Ω-ring.

Theorem 5. Let Θ : R2 → Ω be an Ω-valued congruence on an Ω-ring (R, Eµ), such that
Θ ≥ Eµ. Then, (R, Θ) is an Ω-ring as well. Moreover, for every p ∈ Ω, the mapping f :
µp/Eµ

p → µp/Θp, defined by f ([x]Eµ
p
) = [x]Θp , is a surjective ring homomorphism.

Proof. We prove that the ring identities in the sense of the Ω-ring are fulfilled. For instance,
to prove the distributivity on R, using µ(x) = Θ(x, x) and Eµ ≤ Θ, we have

µ(x) ∧ µ(y) ∧ µ(z) 6 Eµ(x · (y + z), (x · y) + (x · z)) 6 Θ(x · (y + z), (x · y) + (x · z)).

Analogously, we check all other Ω-ring identities.
To prove that for p ∈ Ω, f : µp/Eµ

p → µp/Θp, defined by f ([x]Eµ
p
) = [x]Θp , is a

homomorphism, let x, y ∈ µp. Then,

f ([x + y]Eµ
p
) = [x + y]Θp = [x]Θp + [y]Θp = f ([x]Eµ

p
) + f ([y]Eµ

p
).

Analogously, we check that f is compatible with all other operations. The homomorphism
is surjective, since every class [x]Θp is the image of [x]Eµ

p
under f .

Example 4. Let (R, Eµ) be a commutative Ω-ring from [1], with lattice Ω given in Figure 2,
where R = (R,+, ·,−, o) is an algebra with R = {o, a, b, c}, operations + and · presented in
Table 3 and a unary operation − defined by −x := x. The Ω-valued equality Eµ is given in Table 4.
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Table 3. (a) Binary operation + on R. (b) Binary operation · on R.

(a)

+ o a b c

o o a c c
a a o b c
b c b o a
c c c a o

(b)

· o a b c

o o o a o
a o o o a
b a a c b
c o o b c
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Table 4. Ω-valued equality on R.

Eµ o a b c

o 1 r 0 s
a r p 0 0
b 0 0 u u
c s 0 u q

The function µ : R→ Ω is determined by Eµ: µ(x) = Eµ(x, x).

x o a b c
µ(x) 1 p u q

We give a construction of an Ω-ideal starting from an Ω-valued congruence Θ on R in
Table 5.

Table 5. Ω-valued congruence on R.

Θ o a b c

o 1 p 0 s
a p p 0 0
b 0 0 u u
c s 0 u q

One could easily check that θ is an Ω-valued congruence on R satisfying Θ(x, y) >
Eµ(x, y) for all x, y ∈ R.

Now we define an Ω-ideal on R, by Eν(x, y) := Eµ(x, y) ∧Θ(o, x) ∧Θ(o, y).
In the following, we give the table for Eν:

Table 6. The equality relation determining Ω-valued ideal.

Eν o a b c

o 1 r 0 s
a r p 0 0
b 0 0 0 0
c s 0 0 s

Figure 2. Lattice Ω.

Table 4. Ω-valued equality on R.

Eµ o a b c

o 1 r 0 s
a r p 0 0
b 0 0 u u
c s 0 u q

The function µ : R→ Ω is determined by Eµ: µ(x) = Eµ(x, x).

x o a b c
µ(x) 1 p u q

We give a construction of an Ω-ideal starting from an Ω-valued congruence Θ on R in Table 5.
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Table 5. Ω-valued congruence on R.

Θ o a b c

o 1 p 0 s
a p p 0 0
b 0 0 u u
c s 0 u q

One could easily check that θ is an Ω-valued congruence on R satisfying Θ(x, y) > Eµ(x, y)
for all x, y ∈ R.

Now, we define an Ω-ideal on R, by Eν(x, y) := Eµ(x, y) ∧Θ(o, x) ∧Θ(o, y).
In the following, we give the table for Eν (Table 6).

Table 6. The equality relation determining Ω-valued ideal.

Eν o a b c

o 1 r 0 s
a r p 0 0
b 0 0 0 0
c s 0 0 s

Now, (R, Eν) is an Ω-valued ideal.
The cuts of ν and Eν are as follows:

ν0 = {o, a, b, c}; Eν
0 = {(o, o), (o, a), (o, b), (o, c), (a, o), (a, a), (a, b), (a, c), (b, o), (b, a), (b, b), (b, c), (c, o), (c, a), (c, b), (c, c)}.

νu = νt = νr = {o, a};

Eν
u = Eν

t = Eν
r = {(o, o), (o, a), (a, o), (a, a)}.

νs = {o, c}; Eν
s = {(o, o), (o, c), (c, o), (c, c)}.

νp = {o, a}; Eν
p = {(o, o), (a, a)}.

ν1 = νq = {o}; Eν
1 = Eν

q = {(o, o)}.
Now we can check the results of Theorem 4, and we obtain that for every p ∈ Ω, νp/Eν

p is an
ideal of the ring µp/Eµ

p .

4. Systems of Linear Equations over Ω-Fields

Systems of linear equations with several unknowns are usually considered and solved
over fields. Here, we show that Ω-fields can be used to deal with solutions of such systems
over algebraic structures which are not necessarily fields. The technique we present in
this section has the potential to expand the application of systems of linear equations to
situations where specific data are organized in structures sharing the same type as a field.
For this purpose, we use the following proposition, as a straightforward and obvious
consequence of Proposition 2.

179



Axioms 2023, 12, 757

Proposition 9. An Ω-algebra with identityRi = ((R,+, · ,−, o, ι), E) is an Ω-field if and only
if for every p ∈ Ω the factor µp/Ep is a field.

Let Rι = (Rι, E) be an Ω-field, where Rι = (R,+, · ,−, o, ι) is the basic algebra as
defined in Section 2.3. Also let

a1x1 + a2x2 + . . . + anxn = b, a1, . . . , an, b ∈ R (14)

be a linear equation with n unknowns overRι. We say that an n-tuple (c1, . . . , cn) ∈ Rn is
a solution of Equation (14) overRι if

n∧

i=1

µ(ai) ∧ µ(b) 6
n∧

i=1

µ(ci) ∧ E(a1c1 + . . . + ancn, b). (15)

Theorem 6. Let Rι be an Ω-field. Then, (c1, . . . , cn) is a solution of a linear equation a1x1 +
a2x2 + . . . + anxn = b overRι with p =

∧n
i=1 µ(ai) ∧ µ(b), if and only if ([c1]Ep , . . . , [cn]Ep) is

a classical solution of the linear equation [a1]Ep x1 + [a2]Ep x2 + . . . + [an]Ep xn = [b]Ep over the
cut-quotient field µp/Ep, where ci, i = 1, . . . , n is an arbitrary representative of the class replacing
the unknown xi.

Proof. Suppose that (c1, . . . , cn) is a solution of a linear equation a1x1 + a2x2 + . . .+ anxn =
b over the Ω-field Rι. Then, the formula (15) holds, i.e., for

∧n
i=1 µ(ai) ∧ µ(b) = p,∧n

i=1 µ(c1) ∧ E(a1c1 + . . . + ancn, b) > p. Hence, a1, . . . , an, b, c1, . . . , cn ∈ µp. The cut
µp is a subalgebra of Rι and Ep is a congruence on µp. By Proposition 9, µp/Ep is an
Ω-field. Since E(a1c1 + . . . + ancn, b) > p, we have (a1c1 + . . . + ancn, b) ∈ Ep. Hence,
[a1c1 + . . . + ancn]Ep = [b]Ep , i.e., [a1]Ep [c1]Ep + . . . + [an]Ep [cn]Ep = [b]Ep , which proves that
([c1]Ep , . . . , [cn]Ep) is a solution of the corresponding linear equation [a1]Ep x1 + [a2]Ep x2 +
. . . + [an]Ep xn = [b]Ep over the cut-quotient field µp/Ep.

Conversely, assume that for a linear equation a1x1 + a2x2 + . . . + anxn = b, the n-tuple
([c1]Ep , . . . , [cn]Ep) of classes is a solution of the corresponding equation [a1]Ep x1 + [a2]Ep x2 +
. . . + [an]Ep xn = [b]Ep over the cut-quotient field µp/Ep, where p =

∧n
i=1 µ(ai) ∧ µ(b); ci,

i = 1, . . . , n is an arbitrary representative of the class replacing the unknown xi. This
means that [a1]Ep [c1]Ep + . . . + [an]Ep [cn]Ep = [b]Ep , i.e., [a1c1 + . . . + ancn]Ep = [b]Ep . Then,
(a1c1 + . . . + ancn, b) ∈ Ep, i.e., E(a1c1 + . . . + ancn, b) > p. Since ci ∈ [ci]Ep , we have that
µ(ci) > p, and hence the formula (15) holds. This proves that every n-tuple (c1, . . . , cn)
of elements from the corresponding classes forming a solution over the field µp/Ep is a
solution in the sense of (15).

Analogously, as for the single equation, we can deal with solutions of the system of
linear equations over an Ω-fieldRι. The system is given by

a11x1 + a12x2 + . . . + a1nxn = b1
a21x1 + a22x2 + . . . + a2nxn = b2

. . . . . . . . . . . . . . .
am1x1 + am2x2 + . . . + amnxn = bm

, (16)

where aij, bk ∈ R. We say that an n-tuple (c1, . . . , cn) ∈ Rn is a solution of the system (16) if
for every i = 1, . . . , m,

n∧

j=1

µ(aij) ∧ µ(bi) 6
n∧

j=1

µ(cj) ∧ E(ai1c1 + . . . + aincn, bi). (17)

Dealing with systems of linear equations over an Ω-field, we formulate the result
analogously to the one presented in Theorem 6 (for one linear equation). We omit the proof,
since it is very similar to the one of the mentioned theorem.
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Theorem 7. Let Rι be an Ω-field. The n-tuple (c1, . . . , cn) is a solution of a system of linear
equations (16) over Rι, where for i = 1, . . . , m, pi =

∧n
j=1 µ(aij) ∧ µ(bi) if and only if for

i ∈ {1, . . . , m}, ([c1]Epi
, . . . , [cn]Epi

) is a classical solution of the linear equation

[ai1]Epi
x1 + [ai2]Epi

x2 + · · ·+ [ain]Epi
xn = [bi]Epi

over the cut-quotient field µpi /Epi .

Remark 4. Observe that the procedure presented in this section is a particular way of obtaining
approximate solutions for systems of linear equations. Indeed, in real situations, data (numbers)
often do not belong to the field of real or complex numbers, nor to some finite field. Such a structure
may be a ring, or more generally, another algebraic structure of the same type. In these situations,
a lattice Ω and the corresponding Ω-equality obtained from the properties of these data allow the
construction of an Ω-field, as presented here. Then, we can obtain solutions of (systems of) linear
equations. These solutions are approximate since the classical equality is replaced with an Ω-valued
one. And this equality respects similarities in a collection of data.

Example 5. Let (Z,+, ·,−, 0, 1) be the ring of integers considered as an algebra with two binary,
one unary and two nullary operations, and let Ω be a lattice in Figure 3. Let E : Z× Z → Ω be
defined as follows:

E(x, y) =





1 if x = y = 0
p if 10|x & 10|y & x ≡ y(mod3)
q if 2|x & 2|y & 5 6 |x & 5 6 |y & x ≡ y(mod3)
r if 5|x & 5|y &2 6 |x & 2 6 |y & x ≡ y(mod3)
0 otherwise

One can easily check that E is an Ω-valued equality on Z.
The related Ω-set µ is defined as follows

µ(x) =





1 if x = 0
p if 10|x
q if 2|x & 5 6 |x
r if 5|x &2 6 |x
0 otherwise
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Now, we look at the cuts:
µ1/E1 is a trivial, one-element algebra. µp/Ep, µq/Eq, µr/Er consists of three classes

and it is isomorphic with a three-element field. µ0/E0 is also a trivial one-element algebra.
Now, lets look at a system of equations on (Z,+.·,−, 0, 1):

4x +10y = 22
10x +12y = 26

.

It does not have solutions in (Z,+.·,−, 0, 1). However, we can find approximate
solutions, by solving it in the cut structure.

We see that value of function µ of all coefficients is either p, or q, so we can look at the
solution in p ∧ q-cut ( the q-cut), which is a three-element field.

In this field, considering the congruence relation modulo 3, the system is transformed
to:

[1][x] +[1][y] = [1] .
[1][x] +[0][y] = [2] .

This system of equations has the following solution in the three-element field:
[x] = [2], [y] = [2].
So, in this way, we obtain an approximate solution and we can take any element from

these classes, so the solution can be e.g. approximately x = 2 and y = 2.

5. Conclusions

Continuing our research of Ω-rings, we have here presented Ω-ideals and their con-
nection to homomorphisms. We have also shown that systems of linear equations could be
solved with data (numbers) which do not necessarily form a field, constructing an Ω-field
over a basic structure which may be a ring, or some other structure of the same type.

Ω-structures turn out to be suitable for applications of known algebraic structures
(groups, rings, fields,...) in real problems, when not all properties of these structures are
fulfilled. As shown in our research, particular quotient structures of Ω-algebras remain
classical structures. Therefore, these quotients can be used as a tool for solving problems
with corrupted or missing data. We shall continue our investigations in this direction,
dealing particularly with real problems which could be solved in the framework of special
Ω-rings and polynomials over finite Ω-fields.

Figure 3. A lattice Ω.
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Now, we look at the cuts:
µ1/E1 is a trivial, one-element algebra. µp/Ep, µq/Eq, µr/Er consists of three classes and it

is isomorphic with a three-element field. µ0/E0 is also a trivial one-element algebra.
Now, lets look at a system of equations on (Z,+, ·,−, 0, 1):

4x +10y = 22
10x +12y = 26.

It does not have solutions in (Z,+, ·,−, 0, 1). However, we can find approximate solutions
by solving it in the cut structure.

We see that the value of a function µ of all coefficients is either p or q, so we can look at the
solution in p ∧ q-cut (the q-cut), which is a three-element field.

In this field, considering the congruence relation module 3, the system is transformed to

[1][x] + [1][y] = [1].

[1][x] + [0][y] = [2].

This system of equations has the following solution in the three-element field:

[x] = [2], [y] = [2].

So, in this way, we obtain an approximate solution and we can take any element from these
classes, so the solution can be, e.g., approximately x = 2 and y = 2.

5. Conclusions

Continuing our research of Ω-rings, here we have presented Ω-ideals and their con-
nection to homomorphisms. We have also shown that systems of linear equations could be
solved with data (numbers) which do not necessarily form a field, constructing an Ω-field
over a basic structure which may be a ring, or some other structure of the same type.

Ω-structures turn out to be suitable for applications of known algebraic structures
(groups, rings, fields. . .) in real problems, when not all properties of these structures are
fulfilled. As shown in our research, particular quotient structures of Ω-algebras remain
classical structures. Therefore, these quotients can be used as a tool for solving problems
with corrupted or missing data. We shall continue our investigations in this direction,
dealing particularly with real problems which could be solved in the framework of special
Ω-rings and polynomials over finite Ω-fields.
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