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Preface

Dear Colleagues,

To reduce greenhouse gas emissions and enhance energy security, the role of renewable energy

in the global energy structure is becoming increasingly significant. Within this context, marine clean

energy holds an important position, encompassing tidal energy, wind energy, solar energy, and

combustible ice found in the ocean. To achieve the extraction and utilization of these energy sources,

the development of marine engineering research has become one of the areas of growing interest. In

the field of marine engineering, it is crucial to thoroughly understand the engineering characteristics

of marine soils, foundation systems, and offshore structures to better guide the work during the

design, construction, and maintenance phases. Professors Dong Youkou from China University of

Geosciences (Wuhan), Fu Dengfeng from Ocean University of China, and Feng Xiaowei from Dalian

University of Technology selected 15 cutting-edge papers in the field of marine engineering to inform

our colleagues about the current state of research in this area and to inspire their research endeavors,

thereby advancing progress in the field. Among these, six papers focus on foundation treatment and

foundation engineering properties, five papers are related to offshore engineering foundations, two

papers address the inspection and maintenance of offshore structures, and two papers pertain to the

exploitation of marine resources.

As a Guest Editor for this Special Issue on “Engineering Characteristics of Marine Soil and

Offshore Foundations”, I would like to express my heartfelt gratitude to all the authors who

contributed their valuable work, as their contributions have been instrumental to the success of this

Special Issue.

Youkou Dong, Dengfeng Fu, and Xiaowei Feng

Guest Editors
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Editorial

Engineering Properties of Marine Soils and Offshore Foundations
Youkou Dong 1, Dengfeng Fu 2 and Xiaowei Feng 3,*
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China; dongyk@cug.edu.cn
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Qingdao 266100, China; dengfeng.fu@ouc.edu.cn

3 State Key Laboratory of Costal and Offshore Engineering, Dalian University of Technology, Dalian 116024,
China
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To reduce greenhouse gas emissions and enhance energy security, the role of renewable
energy in the global energy structure is becoming increasingly significant. Within this
context, marine clean energy holds an important position, encompassing tidal energy, wind
energy, solar energy and combustible ice found in the ocean. To achieve the extraction and
utilization of these energy sources, the development of marine engineering research has
become one of the areas of growing interest.

In the field of marine engineering, it is crucial to thoroughly understand the engineer-
ing characteristics of marine soils, foundation systems and offshore structures to better
guide the work during design, construction, and maintenance phases. This Special Issue
includes a total of 15 relevant papers to facilitate a broader understanding of the latest
advancements in this research area and to promote its development. Among these, six
papers focus on foundation treatment and foundation engineering properties, five pa-
pers are related to offshore engineering foundations, two papers address the inspection
and maintenance of offshore structures, and two papers pertain to the exploitation of
marine resources.

In offshore engineering, subsea pipelines are particularly vulnerable to fatigue cracks
due to the intricacies of their manufacturing processes and the harsh operating environ-
ments they endure under prolonged cyclic loads. A comprehensive and high-precision
detection method for subsea pipeline damage can effectively mitigate the potential safety
hazards. Peng et al. [1] proposed a three-dimensional ultrasonic imaging detection method
modified for cylindrical coordinates, which adeptly addresses the complex three-dimensional
wave fields involved in the inspection of subsea cylindrical pipelines. The study generalizes
the three-dimensional staggered-grid finite-difference method from Cartesian coordinates
to cylindrical ones and simulates the full wave field in the three-dimensional space of the
pipeline. After processing the ultrasonic recording signals, the method utilizes reverse time
migration and cross-correlation imaging conditions to achieve three-dimensional reverse
time migration imaging of defects in subsea pipelines.

Accurate surveying is essential for coastal engineering. However, conventional seis-
mic exploration methods have become inadequate due to the challenges posed by seismic
waves traversing weathered zones and reaching the necessary depths. To address the
limitations of existing cross-well imaging technologies, Peng et al. [2] investigated the
application of three-dimensional (3D) cross-well elastic reverse time migration (RTM)
imaging, utilizing multi-wave and multi-component techniques in coastal engineering
surveys. They achieved precise decomposition of vector compressional waves (P-waves)
and shear waves (S-waves) through two wavefield decoupling algorithms, without any
amplitude or phase distortion. Furthermore, the pressure component of the compressional
wave was extracted, enabling subsequent independent imaging. This method effectively
leverages the elastic properties of the soil media through multi-wave and multi-component
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elastic wave RTM imaging technology, providing valuable insights into subsurface rock
layers, interfaces, and other structural distributions for coastal engineering projects without
incurring additional costs. During the construction and operation of nearshore engineer-
ing structures, numerous engineering challenges emerge that necessitate resolution. This
Special Issue comprises papers addressing the pile driving in calcareous sand foundations,
the influence of structures on siliceous sands, studies on the permeability of back fill ma-
terials with a high clay content, research on the improvement and reuse of marine mud
and coral sand, and methods for ground improvement. Among these contributions, Gao
et al. [3] employed model experiments in conjunction with pressure sensors and close-
range photogrammetry techniques to investigate the mechanical response and deformation
characteristics of calcareous sands during pile driving and installation. Various types of
piles were analyzed, including pipe piles, square piles, and partially closed ended steel
pipe piles. The experimental results revealed that during pile driving, the tip resistance
of the different piles increased with penetration depth; however, significant fluctuations
in tip resistance were also observed due to particle breakage and energy dissipation in
the calcareous sand. The extent of particle breakage and the variations in internal stress
differed among the pile types, subsequently influencing the tip resistance. Chen et al. [4]
examined the particle breakage characteristics of marine siliceous sand under high-pressure
conditions. A series of conventional triaxial tests were conducted on siliceous sand sub-
jected to confining pressures ranging from 2 MPa to 8 MPa. The results demonstrated
that as the particle breakage index increased, the fractal dimension exhibited an upward
convex hyperbolic trend. The boundary radius at which siliceous sand particles displayed
fractal characteristics was determined to be approximately 0.4 mm. These experimental
findings provide reference and supplementary data for analyzing particle breakage in
sandy soils. Shan et al. [5] utilized a stepwise vacuum preloading method in the laboratory
to reinforce back fill materials with a high clay content derived from dredging vessels.
They assessed the pore structure and permeability characteristics of the dredged fill under
varying vacuum pressures. Correlation analysis indicated a strong relationship between a
large pore content and the permeability coefficient, which can be employed to describe the
permeability characteristics of the soil. The findings of this study offer valuable insights
for enhancing reinforcement methods and evaluating the effectiveness of dredged fill in
engineering practice. Han et al. [6] proposed a method that integrates flocculation solidifi-
cation with high-pressure filtration for the effective disposal of marine mud, demonstrating
advantages in dewatering performance, material savings, and the shear strength of the
treated mud. Yao et al. [7] explored the effects of vibration flotation and impact compaction
on the densification and load-carrying capacity of coral sand foundations. Field tests
were conducted in four different areas, encompassing plate load tests, California Bearing
Ratio (CBR) tests, density measurements, dynamic penetration tests (DPT), and settle-
ment monitoring. The results indicated that coral sand possesses favorable characteristics
for foundation construction. The seepage and self-weight consolidation following land
reclamation significantly enhanced the compaction of the coral sand, thereby meeting the
requirements for areas with lower load-carrying capacities. Both vibration flotation and
impact compaction techniques can substantially improve the load-carrying capacity of the
foundation, with minimal differences between the two methods. Due to its simplicity and
rapid construction speed, the impact compaction method is regarded as the most effective
approach for improving coral sands. The DPT results suggested that the reinforcement
effects of both vibration flotation and impact compaction methods are less pronounced
in deeper foundations compared to surface layers. This study provides valuable insights
for optimizing foundation treatment in coral reef reclamation projects. Based on the life
cycle assessment (LCA) method, Yu et al. [8] developed an ontological framework for the
sustainable assessment of sustainable cementitious systems (SCSs) and evaluated the effects
of fineness, carbonation degree, and substitution rate of steel slag on the sustainability of
SCS. The results indicated that, compared to pure cement stabilized soil (S-C), using 10%
and 20% finely ground steel slag carbonated for 18 h (FSS-C-18h) as a cement substitute
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can significantly reduce carbon emissions and costs while achieving strength performance
comparable to that of S-C. This demonstrates the feasibility of utilizing steel slag as a
sustainable supplementary cementitious material for stabilizing soft soils.

In offshore structures, the stability of the foundation is a critical determinant of the
overall structural integrity. This Special Issue encompasses studies on anchor rod founda-
tions and bucket foundations. Notably, Yuan et al. [9] and Li et al. [10] investigated anchor
rod foundations. Yuan et al. [9] proposed a novel unified method for estimating the uplift
capacity of both deep single- and multi-helix anchors, based on the investigation of failure
mechanisms. This method utilizes a modified Mohr–Coulomb model that incorporates
strain softening in sand, alongside Euler–Lagrange coupling techniques for finite element
analysis to ascertain deep failure modes. A simplified rupture surface was introduced,
and an equation for estimating uplift capacity was derived using the limit equilibrium
method. Two critical factors were examined including the lateral earth pressure coefficient
and the average internal friction angle. The validity of this method was confirmed through
comparisons with the results of centrifuge tests. In contrast, Li et al. [10] conducted model
tests on torpedo anchors to investigate the effects of the uplift angle and bearing plate
radius on the load-carrying behavior of T-type, EN3-type, EN4-type, and EC-type torpedo
anchors. Research by Jiang et al. [11], Wang et al. [12], and Lian et al. [13] has concen-
trated on bucket foundations. Jiang et al. [11] conducted centrifuge tests to investigate
the response of a single bucket foundation subjected to monotonic and symmetric cyclic
loads in over-consolidated clay. The results indicated that the discrepancy between the
monotonic vertical bearing capacity measured from the centrifuge tests and that obtained
from the finite element results was less than 6%. This study examined the effects of the
cyclic load amplitude (ranging from 37% to 64% of the vertical bearing capacity) and the
number of cycles on the accumulation of vertical displacement and the evolution of stiffness.
Simplified methods were proposed for predicting both dimensional and non-dimensional
stiffness evolution. Wang et al. [12] explored the load-carrying behavior of tripod-bucket
foundations through a series of physical modelling tests and numerical simulations. They
observed that the center of rotation of the foundation diminished as the aspect ratio (L/D)
decreased, leading to the transition of the failure mechanism from rotation to uplift. The
impact of soil pressure on the bucket was studied through finite element analysis and model
testing, which elucidated the failure mechanisms of tripod-bucket foundations with varying
L/D ratios. A revised method is proposed to estimate the moment bearing capacity of the
tripod bucket foundation under horizontal and moment loads. This method is thought
to be more convenient and applicable in practice. Lian et al. [13] investigated composite
bucket foundations (CBFs) with significant transition sections, initially developing a finite
element method (FEM) to characterize the rigid deformation performance of these transi-
tion components. To clarify the impact of the transition section on wind turbines equipped
with CBFs, the transition section was simplified as a rigid body, and a three-DOF theoretical
model was established. This model accounted for horizontal and rotational foundation
stiffness to illustrate the constraint effects below the mud line. A sensitivity analysis was
conducted on the parameters of the transition section, including mass, moment of inertia,
and center of mass height. Furthermore, the vibration characteristics of the CBF structure
under various operational load conditions were compared between the theoretical model
and field data. The results indicated that the relative error between the theoretical model
and finite element model ranged from 3.78% to 5.03%, meeting accuracy requirements.
The parameters of the transition section significantly influenced the natural frequency,
foundation stiffness, and vibration response of wind turbines with CBF. Compared to wind
loads and 1P loads, the effect of 3P loads was more pronounced when the 3P frequency
approached the natural frequency of the wind turbine. This Special Issue also encompasses
research focused on maintaining the safety and stability of offshore structures and resource
extraction. Dong et al. [14] examined submarine pipelines subjected to the impacts of giant
waves generated by natural disasters, such as hurricanes and tsunamis. The influence
of various factors, including insulation layer configuration, pipeline structure, and ma-

3



J. Mar. Sci. Eng. 2024, 12, 2077

rine environment, were investigated on the protective performance of the insulation layer.
Wei et al. [15], utilizing critical state theory, proposed a predictive model for the drained
shear strength of hydrate-bearing fine-grained sediments. They conducted multiple con-
solidated undrained triaxial tests on hydrate-bearing fine samples from the Shen hu area
of the South China Sea, and analyzed the influence of effective consolidation stress and
hydrate saturation on the drained shear strength.

In summary, the articles published in this Special Issue encompass a wide range
of research topics related to the engineering characteristics of marine soils and offshore
foundations. All articles are open access, aiming to provide readers with a comprehensive
understanding of the advancements in marine engineering research. Furthermore, it is
hoped that this foundation will inspire readers to pursue more in-depth research and
thereby advance the development of this field.

Acknowledgments: As a Guest Editor of the Special Issue “Engineering Properties of Marine
Soils and Offshore Foundations”, I would like to express my deep appreciation to all the authors
whose valuable work was published under this Special Issue and thus contributed to the success of
the edition.

Conflicts of Interest: The authors declare no conflicts of interest.
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Abstract: Precise surveys are indispensable in coastal engineering projects. The extensive presence of
sand in the coastal area leads to significant attenuation of seismic waves within unsaturated loose
sediments. As a result, it becomes challenging for seismic waves to penetrate the weathered zone
and reach the desired depth with significant amount of energy. In this study, the application of
three-dimensional (3D) cross-well elastic reverse time migration (RTM) imaging based on multi-
wave and multi-component techniques in coastal engineering exploration is explored. Accurate
decomposition of vector compressional (P) and shear (S) waves is achieved through two wavefield
decoupling algorithms without any amplitude and phase distortion. Additionally, compressional
wave pressure components are obtained, which facilitates subsequent independent imaging. This
study discusses and analyzes the imaging results of four imaging strategies under cross-correlation
imaging conditions in RTM imaging. The analysis leads to the conclusion that scalarizing vector
wavefields imaging yields superior imaging of P- and S-waves. Furthermore, the imaging results
obtained through this approach are of great physical significance. In order to validate the efficacy
of this method in 3D geological structure imaging in coastal areas, RTM imaging experiments were
performed on two representative models. The results indicate that the proposed 3D elastic wave
imaging method effectively generates accurate 3D cross-well imaging of P- and S-waves. This method
utilizes the multi-wave and multi-component elastic wave RTM imaging technique to effectively
leverage the Earth’s elastic medium without increasing costs. It provides valuable information about
the distribution of subsurface rock layers, interfaces, and other structures in coastal engineering
projects. Importantly, this can be achieved without resorting to extensive excavation or drilling
operations. This method addresses the limitations of current cross-well imaging techniques, thereby
providing abundant and accurate geological and geophysical information for the analysis and
interpretation of 3D geological structures in coastal engineering projects. It has important theoretical
and practical significance in real-world production, as well as for the study of geological structures in
coastal engineering.

Keywords: coastal engineering exploration; multi-wave and multi-component; cross-well seismic
exploration; 3D reverse time migration imaging; elastic wave decomposition
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1. Introduction

During coastal engineering projects, extensive surveys and investigations are cru-
cial for gathering information on geological structures, sediment distribution, and soil
properties in coastal areas. These investigations involve analyses by drilling, sampling,
and geophysical exploration to evaluate the geological formations, soil types, lithology,
and groundwater levels [1–3]. Among the numerous geophysical exploration methods,
seismic exploration is widely employed due to its ability to provide superior subsurface
resolution [4]. However, the extensive presence of sand in the coastal area leads to a signif-
icant attenuation of seismic waves within unsaturated loose sediments. Surface seismic
methods are highly susceptible to variations in near-surface conditions and encountering
difficulties in transmitting a significant amount of energy through the weathered zone
to reach the targeted depths [5–7]. Compared to surface seismic reflection or refraction
surveys, cross-well seismic acquisition methods emerge as an optimal choice for effectively
targeting specific coastal areas [8,9].

Cross-well seismic can be applied to various aspects of oil and gas exploration, in-
cluding detailed imaging of structures and precise characterization of reservoirs [10–12].
Furthermore, cross-well seismic has also been rapidly developed in the field of engineer-
ing [13,14] and has been applied in diverse areas, such as geological engineering [15–17], hy-
drogeological surveys [18–20], and quality inspections in civil engineering projects [21–23].
Currently, most cross-well seismic studies focus on two-dimensional (2D) tomographic
imaging between adjacent wells [24,25]. It requires data collection and travel-time inversion
between two wells to acquire subsurface structural profiles. Nevertheless, this imaging
approach has certain limitations. For example, in 2D computed tomography (CT) imaging,
only adjacent wells can be imaged, and information from multiple wells distributed in 3D
space cannot be effectively utilized [26]. As a result, the utilization rate of spatial well loca-
tions remain relatively low. Furthermore, the 2D cross-well CT imaging technique can only
provide information on the geological structure of the profile between the two wells, failing
to capture the lateral structure information of the profile [27]. As a result, the imaging
provides poor lateral continuity, hindering the evaluation of 3D geological structures.

Additionally, there are issues associated with imaging steep-dip interfaces (interfaces
with dip angles exceeding 45◦) [28]. In recent years, the rapidly developing RTM method
follows the full-wave wave equation during wavefield extrapolation and is not limited
by angles [29–31]. Among various pre-stack migration methods, RTM is considered the
most accurate imaging technique. However, current studies on cross-well RTM imaging
are limited to 2D space or 3D P-waves RTMs [32,33]. With the advancement of seismic
exploration technology, the challenges have become increasingly complex. Conventional
compressional wave exploration can no longer satisfy the needs of engineering projects [34].
Improvements need to be made in two key aspects: First, it is necessary to image areas
with weak compressional wave reflection energy or no compressional wave reflection
signals to provide reliable structural imaging information. Second, it is necessary to
provide imaging information for elastic multi-wave analysis, thus establishing a reliable
foundation for subsequent elastic wave amplitude analysis and rock physics parameter
inversion. Conventional seismic exploration techniques commonly employ compressional
wave sources. To address the limitations of compressional wave reflection energy, the shear
waves generated through compressional wave conversion need to be imaged [35,36]. This
approach aims to fully utilize the Earth’s elastic media to construct comprehensive imaging
information of subsurface structures without increasing costs. Simultaneously, the imaging
results must include multi-wave imaging results for subsequent amplitude variation with
angle (AVA) analysis and the inversion of rock physics parameters [37,38]. Compared with
the conventional compressional wave exploration techniques, the theoretical assumptions
of multi-wave and multi-component seismic exploration technology are more consistent
with the actual characteristics of subsurface media, offering significant advantages in
addressing practical challenges.
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To effectively address the above issues, it is essential to fully utilize the distinctive
features of multi-wave and multi-component seismic data acquired between wells. There-
fore, this paper investigates the application of 3D cross-well elastic wavefield RTM imaging
in coastal engineering exploration based on multi-wave and multi-component data. By
applying multi-wave and multi-component elastic wave RTM imaging techniques, pre-
cise 3D geological structures between wells can be obtained, laying the foundation for
subsequent lithological analysis and inversion. This approach addresses the limitations
of current cross-well imaging techniques, thus providing rich geological and geophysical
information for analyzing and interpreting 3D geological structures in coastal regions. It
has important theoretical and practical significance in actual production, as well as for the
investigation of geological structures in coastal engineering.

2. Methodology

To study the application of 3D cross-well seismic exploration in coastal engineering,
it is essential to first conduct research on the numerical simulation of elastic waves. Nu-
merical simulations encompass the simulation of the propagation characteristics of elastic
waves in various media through mathematical methods based on the known physical
parameters of the detection model, combined with elastic wave propagation theory [39].
Numerical simulations can be divided into three categories: wave equation numerical
methods, integral methods, and ray tracing methods. Among these, wave equation numer-
ical methods primarily include the finite difference method (FDM) [40], pseudo spectral
method (PSM) [41], finite element method (FEM) [42], spectral element method (SEM) [43],
and boundary element method (BEM) [44]. FDM is extensively employed in numerical
simulations of elastic waves due to its advantageous features, including fast computation
speed and high accuracy.

In this section, we begin by discussing the 3D elastic wave equations of motion and grid
discretization in cylindrical coordinates. Then, we utilize two different methods for elastic
wave decomposition. Following this, we introduce the principles of RTM imaging and
provide detailed explanations of four different cross-correlation imaging conditions. Lastly,
we propose the Poynting vector and Laplace filtering to attenuate RTM imaging artifacts.

2.1. 3D Elastic Wave Equations of Motion and Grid Discretization

The basic laws governing the propagation of elastic waves are described by the wave
equation of elastic waves. Based on the equations of motion, Cauchy equations, and
physical equations in a three-dimensional Cartesian coordinate system, the first-order
velocity-stress equation in an isotropic medium in cylindrical coordinates can be expressed
as follows [45]: 




ρ ∂vx
∂t = ∂τxx

∂x +
∂τxy
∂y + ∂τxz

∂z + fx

ρ
∂vy
∂t =

∂τxy
∂x +

∂τyy
∂y +

∂τyz
∂z + fy

ρ ∂vz
∂t = ∂τxz

∂x +
∂τyz
∂y + ∂τzz

∂z + fz

(1)





∂τxx
∂t = (λ + 2µ) ∂vx

∂x + λ
(

∂vy
∂y + ∂vz

∂z

)
+ gxx

∂τyy
∂t = (λ + 2µ)

∂vy
∂y + λ

(
∂vx
∂x + ∂vz

∂z

)
+ gyy

∂τzz
∂t = (λ + 2µ) ∂vz

∂z + λ
(

∂vy
∂y + ∂vx

∂x

)
+ gzz

∂τxy
∂t = µ( ∂vx

∂y +
∂vy
∂x ) + gxy

∂τyz
∂t = µ(

∂vy
∂z + ∂vz

∂y ) + gxz
∂τxz
∂t = µ( ∂vz

∂x + ∂vx
∂z ) + gyz

(2)

where v =
[
vx, vy, vz

]T denotes the velocity; τ =
[
τxx, τyy, τzz, τxy, τyz, τxz

]T denotes the

stress vectors; f =
[

fx, fy, fz
]T represents the point force source; g =

[
gxx, gyy, gzz, gxy, , gxz, gyz

]T

represents the coupling; ρ is the density; λ and µ refer to the Lamé constants.
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2.2. Elastic Wave Decomposition

For elastic wave RTM, the key to obtaining multi-wave and multi-component mi-
gration results is the decoupling of P- and S-waves. The elastic wavefields are separated
during the reconstruction of the source and receiver wavefields to obtain pure P-wave and
S-wave wavefields [46]. The following two methods are employed in this study.

2.2.1. Wave Equation Decoupling Method

Based on the homogeneous isotropic media and the first-order velocity-stress equa-
tions, the velocities of separated P- and S-waves in 3D space can be expressed as follows [47]:





vx = vpx + vsx
vy = vpy + vsy
vz = vpz + vsz
∂vpx

∂t = λ+2µ
ρ(3λ+2µ)

(
σxx
∂x +

σyy
∂x + σzz

∂x

)

∂vpy
∂t = λ+2µ

ρ(3λ+2µ)

(
σxx
∂y +

σyy
∂y + σzz

∂y

)

∂vpz
∂t = λ+2µ

ρ(3λ+2µ)

(
σxx
∂y +

σyy
∂y + σzz

∂y

)

∂vsx
∂t = 1

ρ

(
σxy
∂y + σxz

∂z

)
+ 1

ρ(3λ+2µ)

[
(λ + 2µ)

(
σyy
∂x + σzz

∂x

)
− 2λ σxx

∂x

]

∂vsy
∂t = 1

ρ

(
σxy
∂x +

σyz
∂z

)
+ 1

ρ(3λ+2µ)

[
(λ + 2µ)

(
σxx
∂y + σzz

∂y

)
− 2λ

σyy
∂y

]

∂vsz
∂t = 1

ρ

(
σxz
∂x +

σyz
∂z

)
+ 1

ρ(3λ+2µ)

[
(λ + 2µ)

(
σxx
∂z +

σyy
∂z

)
− 2λ σzz

∂z

]

(3)

In Equation (3), vpx and vsx represent the P- and S-wave components in the x-direction,
respectively. Similarly, vpy and vsy represent the P- and S-wave components in the y-
direction, and vpz and vsz represent the P- and S-wave components in the z-direction,
respectively. By solving Equation (3), the wavefields of pure P- and S-waves can be
obtained. With this method, the amplitude and phase information of the P- and S-waves
can be better retained.

2.2.2. Auxiliary Variables Method

In addition to the six velocity component equations incorporated in the equation for
conventional elastic wave, the method of auxiliary variables introduces an additional com-
ponent to achieve the vector decomposition of P- and S-waves, which is the compressional
wave pressure component equation [48,49]. The expression of this equation is as follows:





∂τp
∂t = (λ + 2µ)

(
∂vx
∂x +

∂vy
∂y + ∂vz

∂z

)

∂vpx
∂t = 1

ρ
∂τp
∂x vsx = vx − vpx

∂vpy
∂t = 1

ρ
∂τp
∂y vsy = vy − vpy

∂vpz
∂t = 1

ρ
∂τp
∂z vsz = vz − vpz

(4)

In the method of auxiliary variables, the introduction of the τp component allows for
additional wavefield information to be obtained. The τp component is analogous to the
acoustic pressure component in the acoustic wave equation. In the context of elastic waves,
it represents the pressure component of the P-wave [50].

2.3. Cross-Correlation Imaging Condition

The RTM algorithm, with its significant impact on imaging accuracy, relies heavily
on the imaging condition [51,52]. Different imaging conditions employed in the imaging
process can lead to different imaging results. The following sections introduce four cross-
correlation imaging conditions used in elastic RTM.
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2.3.1. Imaging by Vector Velocity Fields

In conventional elastic RTM imaging, the complete wavefield is employed for the
imaging process. For multi-component seismic data, the velocity wavefields of the source
(vS(x,t)) and the receiver (vR(x,t)) in the subsurface at each position x can be obtained
through forward modeling and wavefield extrapolation. The imaging condition utilizing
the three-component velocity wavefields can be expressed as follows:

Iij(x) =
∫ Tmax

0
vS

i (x, t) · vR
j (x, t)dt (5)

where S and R represent the velocity wavefields of the source and receiver, respectively;
i and j correspond to the three Cartesian components: x, y, and z; and Iij represents the
imaging structure generated by cross-correlating the i-component of the source wavefield
with the j-component of the receiver wavefield. Tmax is the maximum time of the seismic
records. This method can introduce crosstalk between P- and S-waves in both the source
wavefield and the receiver wavefield.

2.3.2. Imaging by Scalar and Vector Potentials

Under the elastic RTM imaging condition, the second imaging method is implemented.
It utilizes the Helmholtz decomposition during the extrapolation of the wavefield, effec-
tively separating the source wavefield and receiver wavefield into pure P- and S-wave
wavefields. The expression of the imaging condition is as follows:

Iij(x) =
∫ Tmax

0
mS

i (x, t) ·mR
j (x, t)dt (6)

where S and R represent the velocity wavefields of the source and receiver, respectively;
i and j correspond to different wave modes, specifically the P- and S-waves. Tmax is the
maximum time of the seismic records. This method modifies the phase and amplitude
characteristics of the original wavefield when employing the Helmholtz decomposition.

2.3.3. Imaging by Pure Vector P- and S-Waves

Using the separation method described in Equation (3), pure P- and S-wave wave-
fields in various directions can be obtained. Afterward, during the process of wavefield
extrapolation, these separated wavefields are utilized as boundary conditions. The imaging
results of the P- and S-wave vector components can be acquired through correlating the
source wavefield with the receiver wavefield. Figure 1 illustrates the imaging process for
this method.
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The following expression represents the imaging condition for elastic wave RTM using
vector P- and S-wave velocity wavefields:

Iij(x) =
∫ Tmax

0
mS

i (x, t) ·mR
j (x, t)dt (7)

where i represents the direction of the source wavefield and receiver wavefield (x, y, z); j
represents the wavefield type of the source wavefield and receiver wavefield (P for P-wave,
S for S-wave). Tmax is the maximum time of the seismic records. Since the decoupled
velocity–stress equations are used in the calculation of P- and S-waves and the input
wavefields are either pure P-wave or pure S-wave, the utilization of the imaging condition
described in Equation (7) leads to minimized interference in the obtained imaging results.

2.3.4. Imaging by Scalarizing Vector Wavefields

Both the pure P- and S-wave wavefields obtained through decoupling are vector
fields. However, the results obtained through RTM imaging are not align with the expected
reflection coefficients depicted in the imaging profile, lacking clear physical interpretation.
To overcome this issue, a scalarization imaging condition is proposed. It converts the
vector wavefields obtained from wavefield separation into scalar quantities before cross-
correlation imaging. Figure 2 describes the detailed imaging process of this method.
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Figure 2. The flowchart illustrating the imaging process using scalarizing vector wavefields.

The following expression represents the imaging condition:





IPP(ξ) =
∫ T

0 SP(ξ, T − t) ·RP(ξ, T − t)dt
IPS(ξ) =

∫ T
0 SP(ξ, T − t) ·RS(ξ, T − t)dt

ISP(ξ) =
∫ T

0 SS(ξ, T − t) ·RP(ξ, T − t)dt
ISS(ξ) =

∫ T
0 SS(ξ, T − t) ·RS(ξ, T − t)dt

(8)

where IPP, IPS, ISP, and ISS denote PP, PS, SP, and SS images, respectively; SP and SS

denote P- and S-wave vector velocity fields at the source side, respectively; and RP and RS

denote P- and S-wave vector velocity fields at the receiver side, respectively.

2.4. Denoising of the RTM Imaging Results

Although RTM is effective in imaging complex structures, low-frequency artifacts can
occur when applying imaging conditions [53,54]. On this basis, the Poynting vector and
Laplace filtering are proposed to attenuate RTM imaging artifacts. In elastic wavefields, the
Poynting vector can be calculated by considering the stress and velocity components of the
particles, as follows: 




Ex = −(τxxvx + τxyvy + τxzvz)
Ey = −(τyxvx + τyyvy + τyzvz)
Ez = −(τzxvx + τzyvy + τzzvz)

(9)

In the equations, τij (i, j = x, y, z) and vi (i = x, y, z) represent the stress and velocity
components, respectively. Ex, Ey, and Ez represent the vectors of energy flux density in
the x, y, and z directions, respectively. A positive value of Ei (i = x, y, z) indicates that
the propagation of the wavefield in the positive direction along the corresponding axis.
Conversely, a negative value of Ei (i = x, y, z) indicates that the propagation of the wavefield
in the negative direction along the corresponding axis. In the 3D case, the Laplace operator
can be expressed as follows:

∇2 FFT−−−−→= −(k2
x + k2

y + k2
z) = −

4ω2 cos2 θ

V2 (10)

where∇2 denotes the Laplace operator; kx, ky, and kz represent the wave numbers along the
coordinate axes; θ represents the incident angle; V denotes the medium’s velocity; and ω is
the angular frequency. Following Laplace filtering, the imaging noise is entirely eliminated
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within the imaging profile when the incident angle is θ = 90◦. When θ < 90◦, the imaging
noise is partially suppressed to a certain extent.

3. Verifications and Discussion

In the following section, we start by discussing the vector decoupling for elastic wave
separation. We then validate and discuss the imaging results under four different imaging
conditions. Lastly, we verify and discuss the noise suppression methods for RTM imaging.

3.1. Discussion on Vector Decoupling for Elastic Wave Separation

A cross-well seismic model was designed to evaluate the effectiveness of the elastic
wave separation algorithm in cross-well seismic exploration, as depicted in Figure 3. The
effective computational domain of the model is 100.0 m × 100.0 m × 150.0 m. The physical
properties of the three-layered medium, arranged from top to bottom, are as follows: the
P-wave velocities are 2200.0 m/s, 2600.0 m/s, and 3300.0 m/s, respectively; the S-wave
velocities are 1200.0 m/s, 1450.0 m/s, and 1850.0 m/s, respectively; the densities of the
medium are 1800.0 kg/m3, 2000.0 kg/m3, and 2500.0 kg/m3, respectively; and the layer
thicknesses are 60.0 m, 60.0 m, and 30.0 m, respectively. A sixth-order finite difference
algorithm with a spatial grid size of 1.0 m in each dimension was used for the forward
modeling simulations. The seismic source employed in the study utilized a Gaussian first
derivative wavelet with a dominant frequency of 120.0 Hz. The seismic source type was an
explosive source located at coordinates (50.0 m, 50.0 m, 3.0 m). The horizontal position of
the receiving well was (20.0 m, 0.0 m), covering the entire well range. The interline spacing
between receivers was set at 2.0 m, resulting in a total of 75 receiver points. The recording
length was set to 200.0 ms.

The three-component wavefield recordings are depicted in Figure 4. Figure 4a–c repre-
sent the vx component, while Figure 4d–f represent the vy component, and Figure 4g–i rep-
resent the vz component. Figure 4a illustrates the undecomposed vx component recording,
Figure 4d illustrates the undecomposed vy component recording, and Figure 4g illustrates
the undecomposed vz component recording. In these wavefields, all three components
contain information about both P- and S-waves. However, Figure 4b,e,h display the wave-
field recordings of the P-wave in the three components, exclusively capturing P-wave
information. Similarly, Figure 4c,f,i show the wavefield recordings of the S-wave in the
three components, exclusively containing shear wave information.
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Due to the use of an explosive seismic source, the recorded direct wave includes a
compressional P-wave. Records obtained within the well are more complex than surface
records. They encompass transmitted compressional waves TP1 and TP2 through interfaces
and reflected compressional waves RPP1 and RPP2 originating from two interfaces. Fur-
thermore, transmitted converted shear waves TPS1 and TPS2 and reflected converted shear
waves RPS1 and RPS2 are also obtained, accompanied by interbed multiple conversions. In
the wavefield recordings of the P-wave (Figure 4b,e,h), it is evident that the main energy
is occupied by P-waves (TP, RPP). However, in the wavefield recordings of the S-wave
(Figure 4c,f,i), the energy of P-waves is greatly attenuated, and the S-waves (TPS, RPS)
are the predominant component in the wavefield. The wavefield recordings are compre-
hensive, offering valuable information for understanding the wave propagation process.
This observation strongly illustrate that the method employed in this study effectively on
vector decoupling for elastic wave separation in the three-component cross-well recorded
wavefield. It demonstrates the effectiveness and feasibility of the proposed method.

A single seismic trace was extracted from the inter-well Vz component, Vpz component,
and Vsz component at a depth of 30.0 m for comparison. The comparison results are
presented in Figure 5. It can be seen that for cross-well seismic recordings, the intermediate
variable method successfully decomposes the data into the horizontal P-wave component
Vpz, which exclusively contains all the P-wave information of the Vz component. The
amplitudes and phase characteristics of the P-wavefields in the Vpz recordings precisely
match those of the Vz component. Similarly, the decomposed S-wave component Vsz
closely matches the S-wave information in the Vz component. The above results suggest
that the method is effective in separating P- and S-waves from the elastic wavefield in a 3D
cross-well environment. Notably, amplitude preservation is realized during decomposition,
allowing for the isolation of P- and S- waves without interference. This characteristic
enables the calculation of cross-well seismic source wavefield propagation directions and
improves the accuracy of imaging results during subsequent RTM processes.
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Figure 5. The seismic trace comparison between the cross-well Vz component and the Vpz and
Vsz components.

In order to quantitively analyze the two wavefield separation methods, single-trace
records extracted from the Vz component were normalized and compared. The comparison
of the single-trace records is illustrated in Figure 6a. It can be seen that the characteristics of
both methods are consistent after normalizing the amplitudes. However, the key difference
is that the intermediate variable method generates an independent record of the auxiliary
variables τp, as illustrated in Figure 6b.
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3.2. Discussion on the Imaging Results under Various Imaging Conditions

The model depicted in Figure 7 was established to analyze the validity of each imaging
result. It comprises a two-layer model with a computational domain of 100.0 m× 100.0 m× 80.0 m.
The physical properties of the two layers from top to bottom are P-wave velocities of 2200.0
m/s and 2600.0 m/s, S-wave velocities of 1200.0 m/s and 1450.0 m/s, densities of 1800.0
kg/m3 and 2000.0 kg/m3, respectively. The interface depth is 60.0 m. The parameters used
for the forward modeling and RTM image are consistent with those described in Section 3.1.
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Figure 7. Schematic representation of a layered model and an observational system. The small red
rectangle represents the position of the wells. The blue asterisk represents the location of the source.

3.2.1. Imaging Results Obtained Utilizing Vector Velocity Fields

Numerical simulation and imaging were conducted using the observational system
described above, and the results obtained with the imaging strategy in Section 2.3.1 are
shown in Figure 8. Due to the implementation of single-shot recordings, the completeness
of the in-well 3D imaging results and the visual depiction of the structure may not be as
good as conventional surface-based imaging. However, an interface can be observed at a
depth of 60.0 m despite relatively low continuity. This limitation is due to the constraints
imposed by the cross-well observation system. Ixx and Iyy exhibit a significant similarity,
differing only by 90 degrees in orientation, which aligns with the expected theoretical
results. These two components rely heavily on the vx and vy components, highlighting
the imaging results of PS-waves. However, since the seismic source is centered at XOY
plane and the receiving well is located at the outer boundary, the central region of the
model lacks crucial wavefield information, making it unsuitable for imaging. As a result,
imaging can only be performed in the boundary region. The imaging results for Izz are
mainly dependent on the vz component, thus primarily representing the imaging results of
PP-waves. Similarly, imaging in the central region of the model is not feasible due to the
absence of wavefield information. Furthermore, high levels of noise can be observed in
the imaging results. This noise originates from the direct correlation imaging of velocity
components, leading to interference among different wave modes and a large number of
noise artifacts. As a result, the quality of the imaging results is compromised. The lack of a
clear physical interpretation of the offset imaging results, represented by the horizontal
and vertical components, hinders subsequent tasks such as interpretation and inversion.
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3.2.2. Imaging Results Obtained Utilizing Scalar and Vector Potentials

Figure 9 illustrates the imaging results obtained using the imaging strategy described
in Section 2.3.2. It can be seen that due to the implementation of single-shot recordings
and the constraints of the cross-well observation system, the 3D imaging results within
the well have relatively poor interface continuity. The imaging results of the PP-waves are
close to the source well area, while those of the PS-waves are close to the receiver well area,
consistent with the actual situation. Due to the interferences among different mode waves,
the imaging results of PS-waves exhibit significantly higher noise levels compared to those
of PP-waves. In 3D space, both the imaging interfaces of PP- and PS-waves exhibit polarity
reversals. This phenomenon poses challenges for the stacking of multiple shots.
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3.2.3. Imaging Results Obtained Using Pure Vector P- and S-Wave

The P-wave components (IxP, IyP, and IzP) were imaged in various directions and
modes using the imaging strategy outlined in Section 2.3.3. The results are presented in
Figure 10a–c. Additionally, the imaging results for the S-wave components (IxS, IyS, and
IzS) are depicted in Figure 10d–e. It can be observed that the imaging results of the six
components in Figure 10 are relatively similar to those in Figure 8. The imaging results of the
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two horizontal components also exhibit a 90◦ rotation, and the central region of the model
still lacks wavefield information. It can be clearly observed that employing the separated
wave equations and utilizing either pure compressional or shear waves as boundary
conditions results in images with significantly reduced noise levels compared to Figure 8.
The separated wave equations and the input of single-mode waves effectively reduce
interferences in imaging, significantly increasing the signal-to-noise ratio of the imaging
results. However, different directions and modes produce more images, and the physical
significance of the offset imaging results expressed by the two horizontal components
and the vertical component is unclear, which is inconducive to the superimposition of the
imaging results.
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3.2.4. Imaging Results Obtained Using Scalarizing Vector Wavefields

In order to achieve easier stacking of multiple shots and clearer physical interpretation
of the imaging results, the imaging strategy described in Section 2.3.4 was implemented.
This strategy involved converting the vectorial P-waves and vectorial S-waves into scalar
quantities. The scalarized imaging results for PP-waves and PS-waves are illustrated in
Figure 11. It is evident from Figure 11a,b that the scalarized imaging results of PP-waves
and PS-waves are relatively continuous and have no directionality. This characteristic
facilitates the stacking of multiple shots after imaging. In addition, the τp component
can be extracted from the wavefield using the auxiliary variables method, which is also
applicable for imaging purposes. The imaging results obtained using this component
are illustrated in Figure 11c. The imaging results for the τp component are similar to the
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imaging results of PP-waves, with an improved signal-to-noise ratio and continuity. These
results can be effectively employed in subsequent applications.
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According to the four different imaging results mentioned above, firstly, the imaging
results by vector velocity fields exhibit significant noise, resulting in low-quality images.
Furthermore, the imaging results lack clear physical meaning, which hinders subsequent
interpretation and inversion tasks. Secondly, the imaging by scalar and vector potentials
show relatively poor interface continuity, with polarity reversals observed on both the
imaging interfaces of PP waves and PS waves. Moreover, the imaging results by pure
vector P- and S-waves exhibit a high-quality representation with minimal noise interference.
However, the physical significance of the imaging results is also unclear. Finally, the
imaging results by scalarizing vector wavefields exhibit a high degree of continuity and lack
directional bias. This characteristic makes them more suitable for superposition, enabling
easier overlaying of multiple images and facilitating a clearer physical interpretation of the
imaging results.

3.3. RTM Imaging Artifacts Attenuation

Figure 12 compares the pre- and post-denoised imaging profiles of single-shot PP-
waves. It can be seen that without noise suppression, the imaging profiles exhibit a large
amount of low-frequency noise with high energy. This noise is mainly distributed above the
interfaces, significantly interfering with the imaging quality of the interfaces. By employing
the Poynting vector to suppress the reflected waves and applying Laplace filtering, the
low-frequency noise is effectively eliminated. Consequently, the imaging effect is improved,
and the actual position and tilt angle of the interface are more accurately reflected.
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Figure 12. Pre- and post-denoised imaging profiles of single-shot PP-waves: (a) image results before
denoising; (b) image results after denoising.

4. Multiple Sensors Cross-Well 3D RTM Image Results and Analysis

In this section, we first discuss the sensor settings and design of the observation system
for 3D cross-well seismic exploration. Subsequently, using the observation system, we
conduct 3D imaging of layered media model and high-velocity ellipsoidal boulder models.
Meanwhile, a comprehensive and detailed analysis of the imaging results is provided.

4.1. Sensor Settings and Observation System

The cross-well seismic observation system distinguishes itself from the surface-based
3D seismic methods by enabling the large-scale and high-density deployment of seismic
acquisition lines. However, the cross-well seismic observation system is influenced by the
actual well layout. Based on practical engineering considerations, this paper discusses the
layout of the 3D multi-sensors cross-well observation system in commonly encountered
square exploration areas, as depicted in Figure 13. Within a 50.0 m × 50.0 m square plane,
a total of 20 well locations were arranged for the analysis. The specific coordinates of each
well in the XOY plane can be found in Table 1. The data acquisition was performed in the
following steps: Initially, the source was subjected to an explosion in Well-1, while the other
19 were used to receive seismic signals. Then, the source was sequentially moved to the
next well, and the remaining 19 wells continued to receive the seismic signals. This process
lasted until Well-20 was reached.
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Table 1. The well locations within the square area in the XOY plane.

No. Well-1 Well-2 Well-3 Well-4 Well-5 Well-6 Well-7 Well-8 Well-9 Well-10

X 0.0 10.0 20.0 30.0 40.0 50.0 0.0 10.0 20.0 30.0
Y 0.0 0.0 0.0 0.0 0.0 0.0 50.0 50.0 50.0 50.0

No. Well-11 Well-12 Well-13 Well-14 Well-15 Well-16 Well-17 Well-18 Well-19 Well-20

X 40.0 50.0 0.0 0.0 0.0 0.0 50.0 50.0 50.0 50.0
Y 50.0 50.0 10.0 20.0 30.0 40.0 10.0 20.0 30.0 40.0

4.2. Layered Medium Model

Figure 14a illustrates a 3D layered medium model. The physical parameters of the two
layers from top to bottom are as follows: P-wave velocities of 2200.0 m/s and 2600.0 m/s, S-
wave velocities of 1200.0 m/s and 1450.0 m/s, densities of 1800.0 kg/m3 and 2000.0 kg/m3,
and an interface depth of 60.0 m. After removing the direct waves from the recordings,
the decoupled 3D elastic wave equation RTM can be used to image the layered medium
in 3D across walls. The corresponding imaging results are presented in Figure 14b–d.
Among them, Figure 14b depicts the imaging results for PP-waves, Figure 14c illustrates
the imaging results for PS-waves, and Figure 14d shows the imaging results for τp. The
wavefield energy is precisely concentrated at the actual interface, which is very similar to
the real model. This observation result indicates that using cross-well elastic wave data and
sensors can ensure accurate imaging of the 3D cross-well layered medium, encompassing
both P- and S-waves. The accurate imaging results demonstrate the feasibility of the
proposed method. Notably, the source locations are all positioned above the interface,
and the imaging results successfully reveal the structural characteristics of the underlying
interface. Compared to the traditional first-arrival travel-time imaging method, the RTM
imaging method based on reflected waves has a wider exploration range. It eliminates the
depth limitation of traditional observing systems for exploration.

4.3. High-Velocity Ellipsoid Boulder Model

Figure 15 displays the high-velocity ellipsoid boulder model. The physical parameters
of the two layers from top to bottom are as follows: P-wave velocities of 2200.0 m/s and
2600.0 m/s, S-wave velocities of 1200.0 m/s and 1450.0 m/s, densities of 1800.0 kg/m3 and
2000.0 kg/m3, and an interface depth of 60.0 m. The high-speed ellipsoidal boulder has
three axis radii: a = b = 5.0 m, c = 10.0 m. The ellipsoidal body is centered at (25.0 m, 25.0 m,
30.0 m). The physical properties of the ellipsoidal body match those of the second-layer
medium. After eliminating the direct waves from the recorded data, the cross-well 3D
elastic wave imaging results for the high-velocity ellipsoid boulder can be obtained using
the decoupled 3D elastic wave RTM equation. These results are illustrated in Figure 15b–d.
Specifically, Figure 15b depicts the imaging result of the PP-wave, Figure 15c illustrates the
imaging result of the PS-wave, and Figure 15d shows the imaging result of τp. It can be seen
that the wavefield energy is concentrated at the interfaces and the position of the ellipsoid
boulder in the center. The locations of the interfaces align with those of the coherent events,
demonstrating a high consistency with the actual model. Based on this result, it can be
concluded that the 3D cross-well elastic wave RTM imaging method with multiple wells
and sensors can capture the P- and S-wave structures of localized heterogeneous bodies
and perform 3D imaging. In addition to horizontal interfaces, the geological structures of
lateral media are effectively revealed, and variations in lateral structures are accurately
characterized. Moreover, the limitations of traditional 2D imaging methods in imaging
lateral media are successfully addressed. In conclusion, the proposed method provides
a fundamental basis for extracting dynamic parameters and facilitates the acquisition of
comprehensive geological and geophysical information about 3D geological structures.
Therefore, this method can be used as a theoretical reference and a solid foundation for
detecting the geological formations of high-velocity ellipsoid boulders, especially in the
field of engineering exploration.
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5. Conclusions

In coastal engineering, a large amount of unsaturated loose sediments (plentiful sand)
in the coastal zone leads to a strong attenuation of seismic waves. It poses significant
challenges for ground seismic methods to transmit sufficient energy through the weathered
zone to reach the desired depth. Compared to surface seismic reflection or refraction
surveys, cross-well seismic acquisition methods emerge as an optimal choice for effectively
targeting specific coastal areas. However, current studies on cross-well RTM imaging are
limited to 2D space or 3D P-wave RTMs. To address the limitations of current studies,
this study proposed the 3D cross-well elastic RTM imaging based on a multi-wave and
multi-component technique in coastal engineering exploration. The practical benefit of this
method is the utilization of the Earth’s elastic medium without increasing costs, which is
used to obtain information about the distribution of subsurface rock layers, interfaces, and
other structures in coastal engineering projects. Importantly, this can be achieved without
resorting to extensive excavation or drilling operations.

Firstly, based on the vector decoupled elastic wave equation, this study compares and
analyzes the amplitude-preserving separation algorithms for P- and S-waves implemented
using the direct decomposition method and the auxiliary variable method. The wavefield
decoupling algorithm achieves accurate separation of vector P- and S-waves without
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introducing any distortions in amplitude and phase. This feature facilitates accurate
imaging of P- and S-waves in subsequent stages. Moreover, the algorithm incorporating
intermediate variables integrates the P-wave pressure equation into the traditional elastic
wave equations, offering significant advantages for independent imaging in the later stages.
Then, this study focuses on analyzing four imaging methods under cross-correlation
imaging conditions in RTM. The imaging performances of these four types of imaging
strategies are compared and analyzed using experimental models. The results indicate
that well-defined P- and S-wave imaging profiles can be obtained using scalarizing vector
wavefield imaging conditions, and the imaging results have unique physical significance.
Finally, the layer model and high-velocity ellipsoid boulder model were subjected to
an RTM imaging experiment. The results indicate that the proposed 3D elastic wave
imaging method can effectively generate accurate 3D cross-well profiles of P- and S-waves,
thus accurately describing the geological structure. The implementation of multi-wave
and multi-component RTM imaging significantly improves the utilization of wavefield
information during the imaging process, thereby providing novel insights for cross-well
seismic exploration. Moreover, abundant geological and geophysical information can be
obtained for analyzing and interpreting 3D geological structures in coastal areas. The
findings of this study have crucial theoretical significance and practical implications for
exploration and development in real-world production, as well as for the investigation of
geological structures in coastal engineering projects.
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Glossary

Seismic waves Seismic waves refer to the propagating vibrations
generated during an earthquake. Seismic waves can be
classified into two main types: body waves and surface
waves. Body waves are the waves that propagate through
the Earth’s interior and include compressional waves
(P-waves) and shear waves (S-waves).

P-waves Compressional waves, also known as P-waves or primary
waves, are longitudinal waves that cause particles in
the material to move in the same direction as
the wave propagation.

S-waves Shear waves, also known as S-waves or secondary waves,
are transverse waves that cause particles to move
perpendicular to the direction of wave propagation.

Reverse time migration (RTM) RTM is a seismic imaging technique used to generate
high-resolution subsurface images in geophysics and
exploration geology.

Cross-well seismic exploration Cross-well seismic exploration is a geophysical technique
used to obtain detailed subsurface information
between two or more wells.

Imaging conditions In seismic imaging, imaging conditions refer to the
mathematical relationships and criteria used to convert
seismic data into subsurface images.

Elastic wave decomposition Elastic wave decomposition is a technique used in seismic
data processing to separate the recorded seismic data into
its constituent wave modes. It aims to isolate and analyze
the individual components of the seismic wavefield,
such as compressional (P) waves and shear (S) waves.

Amplitude variation with angle (AVA) AVA is a phenomenon observed in seismic data where
the amplitude of reflected seismic waves changes as a
function of the angle of incidence and reflection at
interfaces within the subsurface. It is an important
attribute used in seismic analysis to infer properties of
subsurface rock formations and fluid content.

Sensor settings In seismic exploration Sensor settings refer to the settings
of the geophone. A geophone is a type of sensor used in
seismic exploration and monitoring to detect and measure
ground vibrations caused by seismic waves. It is a critical
component in seismic data acquisition systems and plays
a fundamental role in studying the Earth’s subsurface.
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Abstract: The mechanical response and deformation characteristics in calcareous sand foundations
during pile driving and setup were studied using model tests combined with the technical methods
of tactile pressure sensors and close-range photogrammetry. Different types of piles were considered,
including a pipe pile, square pile and semi-closed steel pipe pile. The test results show that during
pile driving, the pile tip resistance of different piles increases with an increase in the pile insertion
depth, and an obvious fluctuation is also obtained due to the particle breakage of the calcareous sand
and energy dissipation. Different degrees of particle breakage generated by different type piles make
the internal stress variations different, as with the pile tip resistance. The pile tip resistance of model
pile A, which simulates a pipe pile, is the highest, followed by model pile B, the simulated square
pile. Model pile C, which simulates a semi-closed steel pipe pile, has the smallest pile tip resistance
because its particle breakage is the most obvious and the pile tip energy cannot be continuously
accumulated. The induced deformation such as sag or uplift on the surface and the associated
influence range for the calcareous sand foundation are the smallest for model pile C, followed by
model pile B and then model pile A. Model pile A has the most obvious pile driving effect. During
the pile setup process after piling, the increase in the total internal stress of model pile B is the largest,
and the improvement of the potential bearing capacity is the most obvious, followed by model pile A
and model pile C. During the pile setup, the induced uplift deformation in pile driving is recovered
and the potential bearing capacity increases due the redistribution and uniformity of the vertical
and radial stress distributions in the calcareous sand foundation. Considering the potential bearing
capacity of different model piles, the influence range of pile driving, foundation deformation and the
pile setup effect, it is suggested to use a pointed square pile corresponding to model pile B in pile
engineering in calcareous sand foundations.

Keywords: pile foundation; pile tip resistance; stress distributions; particle breakage

1. Introduction

Calcareous sand is widely distributed between 30 degrees south latitude and 30 de-
grees north latitude, covering many countries and regions [1], especially the South China
Sea Islands, most of which are coral reefs covered with thick layers of calcareous sand [2,3].
These islands and their surrounding areas are rich in marine mineral resources and also
have an important strategic position in the social economy, national defense and scien-
tific research. With an increase in the scale and quantity of island and reef engineering,
engineering problems are becoming more and more prominent [4].

Calcareous sand is different from siliceous sand and characterized by a high porosity
ratio [5,6], prominent edges [7,8] and easy breakage [9,10]. Its engineering mechanical
properties are so complex and special that the research results of and engineering experi-
ence with traditional soil materials cannot be directly applied to calcareous sand [11–19].
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As one of the most common foundation forms, it is of great significance to study the
application of pile foundations to calcareous sand, especially to explore the effect of pile
driving and engineering mechanical properties in calcareous sand foundations. Up to
now, previous studies have mostly focused on the macroscopic mechanical properties of
pile foundations in calcareous sand [20–24], and have mainly considered the effects of the
calcareous sand particle size distribution [25], cementation degree, pile length [26,27] and
load conditions [28–32] on the bearing characteristics of piles. McDowell et al. [33], using
small-size model tests on the bearing characteristics of a single pile, pointed out that the
peek resistance of a single pile is a strong function of the initial particle size distribution, and
the peak resistance in well-graded calcareous sand is greater than that in uniformly graded
calcareous sand. In terms of the influence of the cementation degree, Houlsby et al. [34]
proposed a functional relationship between the ratio of the cemented layer thickness to
the pile diameter and the ultimate bearing capacity. Wang et al. [35], using a model test
of jacked piles, pointed out that the jacking pile pressure increases nonlinearly with the
increase in pile length, in which the radial stress of the piles gradually converges with
passive Earth pressure with the increase in the pile length. By analyzing the datasets of
over 37 real projects on super-large and long piles, Thien et al. [36] pointed out that pile
length has a certain influence on the pile tip resistance, and they are positively correlated.

As for the influence of the load conditions, Al-Douri et al. [37] pointed out that
under cyclic axial loads with the same amplitude, the total displacement increased with
an increase in load level and the number of cycles. Among them, Roozbeh et al. [38]
believe that asymmetric two-way loading is the most destructive type of cyclic loading. The
research by Wang et al. [39] showed that the shaft resistance gradually decreased during
dynamic loading, and the ultimate pile tip resistance decreased with an increase in the
dynamic load ratio; furthermore, the strength of the pile–sand interface was weakened
under dynamic loading, and the calcareous sand particles were broken seriously, resulting
in shear shrinkage.

Considering the distribution of the pile foundation and whether the pile ends are
closed or not, Jiang [40,41] and Yang et al. [42] conducted experimental studies on the single
pile and pile group effects of open-ended and closed-ended piles in calcareous sand, and the
results showed that the pile group effect in calcareous sand was significantly different from
that in quartz sand. The bearing capacity of these piles was mainly provided by the pile tip
resistance, and the mechanism of pile tip resistance and shaft resistance was also analyzed;
however, they did not take a deep dive into the bearing characteristics of different pile types
in calcareous sand foundations. Wan et al. [43,44] constructed experimental studies on the
axial and horizontal bearing capacity of post-grouting piles in calcareous sand, pointing
out that the bearing capacity of a single pile after grouting is improved, and, due to the
influence of particle breakage in calcareous sand, the increase ratio of the bearing capacity
after grouting in calcareous sand is higher than that of siliceous sand. Yu et al. [45], using a
model test of cast-in-place concrete X-section and circular section pile groups, pointed out
that under the same section area, the bearing capacity of X-section piles is much greater
than that of circular section piles.

Some researchers have also analyzed the breakage of calcareous sand particles in the
process of pile driving using simulations based on the discrete element method (DEM), so as
to explore the mechanical response of calcareous sand and its mechanism [46,47]. However,
the existing experimental studies have not revealed the mechanical characteristics and
mechanism of different pile types in calcareous sand foundations. Therefore, this paper
carried out pile model tests of different pile types in calcareous sand, combined with the
use of the technical methods of tactile pressure sensors and close-range photogrammetry,
to explore the pile driving and setup of different pile types in calcareous sand foundations,
and reveal the mechanical characteristics of the whole process of pile driving.
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2. Experimental Details
2.1. Model Piles

According to three traditional pile end shapes of precast piles, a prestressed pipe pile
with a side length of Φ600 mm, a precast reinforced concrete square pile with a side length
of 600 mm and a semi-closed-end steel pipe pile with a side length Φ600 mm were selected
as prototypes, and reduced to small-size models with a ratio of 40:1. In the process of pile
driving using a static load, whether the pile is hollow or not and whether the pile is open-
ended or close-ended, there is little influence on the bearing characteristics [48]. Therefore,
model piles with a solid structure are adopted to ensure the small-size model piles are
rigid enough. The geometric shape and size of different model piles are shown in Figure 1.
Among them, model pile A simulates the prestressed pipe pile, model pile B simulates the
precast reinforced concrete square pile and model C simulates the semi-closed-end steel
pipe pile.
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Figure 1. Schematic diagram of the model piles with different shapes and sizes.

2.2. Model Box and Test Material

The model box is cubic and made of acrylic plates with a thickness of 10 mm, which
have the advantage of transparency and visibility under the premise of meeting the rigidity
requirements. The refraction effect of acrylic plates in different model tests is relatively
consistent, which makes sure there are only small measurement errors in the comparison
of particle breakage under different tests. Considering the requirements of the particle size
effect, boundary effect and pile distance from the bottom of the box [49,50], the interior
dimensions of the model box are designed to be 200 mm long, 120 mm wide and 220 mm
high. A reduced model would affect the magnitude of the displacement and stress, which
may be different from large-scale prototypes, while the underlying mechanics will not be
changed.

The calcareous sand used in this paper is from an island in the South China Sea and
comprises unconsolidated and loose particles. The main component of calcareous sand
is calcium carbonate with a content of more than 90%. Due to its sedimentary origin and
limited geological transportation, the shape of calcareous sand particles exhibits a high
degree of irregularity, characterized by various shapes including flakes, blocks, strips,
dendrites and others. According to the similarity theory, the influence of the particle size
effect on the test results should be reduced as much as possible. Therefore, dry calcareous
sand with a particle size of 2–5 mm is used as the foundation soil material for the model test,
and its maximum and minimum dry densities are 1290 kg/m3 and 1180 kg/m3, respectively.
The calcareous sand was divided into eight layers and laid layer by layer to the designed
height of 200 mm in the model box, in which the relative density of the calcareous sand
was controlled to be 0.60, and the corresponding dry density was 1240 kg/m3.
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2.3. Testing Design

In order to explore the characteristics of calcareous sand foundations during pile
driving and setup, tactile pressure sensors (mode PFS5051, Tekscan Inc., Norwood, MA,
USA) with a measuring range of 334.74 kPa are utilized, as shown in Figure 2a. The sensing
area of the sensors is 56 mm × 56 mm, and 1936 measuring points are distributed in a
matrix of 44 rows and 44 columns, among which the area of a single measuring point is
only 1.62 mm2. To obtain the vertical and radial stress distribution during pile driving
in calcareous sand foundations, two tactile pressure sensors are deployed in the vertical
and horizontal directions, as shown in Figure 2b. The horizontal tactile pressure sensor is
buried 10 mm below the pile end at the maximum driving depth, that is, 110 mm away
from the bottom of the model box. The circumferential tactile pressure sensor is buried
around the center of the pile, about 15 mm away from the pile shaft, and the bottom of the
sensor is buried 15 mm above the horizontal tactile pressure sensor, that is, 125 mm away
from the bottom of the model box.
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Figure 2. Measurement system of tactile pressure sensors and arrangement: (a) measurement system
of tactile pressure sensors; (b) the arrangement of tactile pressure sensors.

In order to simulate pile driving using a static load, the MTS electromechanical testing
system (Exceed, model E45) is used to apply loading at a constant speed of 0.02 mm/s
until the pile driving depth reaches 80 mm, and the stress distribution calcareous sand
foundation is measured every 5 mm using the tactile pressure sensor. After the pile driving
is completed, the external force on the model pile is removed, and the depth of the pile
is kept at 80 mm to enter the static process, i.e., the pile setup process. The pile setup
is retained for 24 h, and the stress distribution calcareous sand foundation is measured
at 5 min intervals within the first hour, and then measured and photographed at time
points of 90 min, 120 min, 240 min, 420 min, 540 min, 1020 min, 1260 min and 1440 min,
respectively. Fixed-point photogrammetry is also carried out in front of the model box to
observe the deformation and particle crushing of the calcareous sand foundation during
the pile driving and setup processes.

3. Results
3.1. Pile Tip Resistance during Pile Driving

In the process of pile driving, the pile tip resistance and pile tip displacement are
measured and recorded using the MTS system, and the results of different model piles
are shown in Figure 3. It is readily seen that with the increase in pile depth, the pile tip
resistance of different model piles continuously increases, but it also fluctuates obviously.
The reason for this is that the calcareous sand particles break during the process of pile
driving and dissipate energy, which makes the pile tip resistance decrease slightly; with the
deepening of pile driving, the pile tip resistance increases, which induces a higher degree
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of particle breakage and the more obvious fluctuation in pile tip resistance. The pile tip
resistance of different pile types is different. In general, the pile tip resistance of model
pile A, which simulates the shape of a pipe pile, is the largest during pile driving, and the
influence of particle breakage on it is the least significant, which also leads to the small
fluctuation in pile tip resistance. The pile tip resistance of model pile B, which simulates
the shape of a pointed square pile, is the second greatest. Model pile C, which simulates
a semi-closed steel pipe pile, has the least pile tip resistance, experiencing the greatest
influence of particle breakage and the biggest fluctuation in pile tip resistance. Even after a
certain pile depth (>40 mm), the increase in the pile tip resistance is small and tends to be
stable. These macroscopic mechanical changes can be explained by the particle breakage
and the contact force variation between particles corresponding to the micro-evidence.
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3.2. Particle Breakage during Pile Driving

In terms of the particle breakage, using fixed-point photogrammetry, the changes in
the calcareous sand foundation with different model piles under different pile depths are
obtained, as shown in Figure 4. Representative in clearly showing the particle variation
during pile driving, the changes in the calcareous sand particles near model pile A and
on the surface at different pile depths are extracted, as shown in Figure 5. It can be found
that with the increase in pile depth, the calcareous sand particles at the bottom of the
pile tip undergo a cyclic process from thinning to densification and from a large particle
size to a small particle size. When the pile depth is small (0~20 mm), the calcareous sand
particles under the pile tip are continuously compacted, and the bearing capacity increases.
After reaching a certain stress limit (pile depth at 20–40 mm), the calcareous sand particles
under the pile tip are broken, resulting in more fine particles and a sparse arrangement.
The energy dissipation and foundation bearing capacity decrease, which provides micro-
evidence supporting the slight decline in the pile tip resistance of model pile A when the
pile depth is 30–45 mm. When the pile depth is around 40–50 mm, with the re-compaction,
the calcareous sand at the bottom of the pile tip reaches a much denser state, and the final
bearing capacity increases. The position of the calcareous sand particles at the bottom of
the pile tip changed significantly with a pile depth at 50~80 mm, and the flat calcareous
sand particles on both sides of the pile gradually filled the gap between the pile shaft and
the wall of the model box, resulting in the particle breakage not being obvious.
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Figure 5. Changes in calcareous sand particles of model pile A under different pile depths.

Likewise, similar change rules can also be found in model pile B and model pile C, but
the corresponding particle breakage and energy accumulation of the different model piles
are different, resulting in differences in the value and change points of pile tip resistance.

3.3. Deformation Characteristics during Pile Driving

Based on the image obtained using fixed-point photography in front of the model box,
Figure 6 shows the surface deformation of the calcareous sand foundation obtained using
tracing and extraction in the process of pile driving with different model piles. With the
continuous driving of model pile A (Figure 6a), a funnel-shaped groove is gradually formed
on the surface of the calcareous sand foundation within the range of one pile diameter
from the pile shaft, while the calcareous sand outside the funnel-shaped groove produces a
slight extrusion uplift. Until a distance of five times the pile diameter from the pile shaft,
the driving of the model pile hardly caused deformation on the surface of the calcareous
sand foundation. However, model pile B is different from model pile A (Figure 6b). When
the pile depth is relatively small (0~40 mm), the surface of the calcareous sand foundation
near the pile produces an extrusion uplift; meanwhile, when the pile depth is relatively
large (50–80 mm), the uplifts close to both sides of the pile body gradually move outward,
and a small funnel-shaped groove is formed within one of the pile diameter from the pile
shaft, but the groove depth does not change significantly with the pile depth. The surface
displacement of model pile C (Figure 6c) is also similar to that of model pile A, but the
depth of the funnel-shaped groove is the smallest among the different model piles.
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Figure 6. Surface deformation of calcareous sand foundation in the process of pile driving: (a) model
pile A; (b) model pile B; (c) model pile C.
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By comparing the changes in the surface deformation of the calcareous sand founda-
tion with different model piles, it can be found that model pile C has the smallest induced
vertical deformation and influence range on the surface of the calcareous sand foundation,
followed by model pile B, while model pile A has the most obvious pile driving effect
and the most significant effect on the deformation and destruction of the calcareous sand
around the pile.

3.4. Internal Stress Evolution in Calcareous Sand Foundation during Pile Driving
3.4.1. Vertical Stress Distribution

In terms of the contact force between particles, the vertical stress distribution in the
calcareous sand foundation at 10 mm below the pile tip at the maximum driving depth is
measured using the tactile pressure sensor. The distributions of and changes in the vertical
stress generated by different model piles in the calcareous sand foundation during the
driving process are shown in Figure 7. It can be seen that during pile driving, the stress
distribution in the calcareous sand foundation is not uniform, whereas the influence range
of pile driving is limited, and, further, the stress concentration is mainly generated in the
range of about double the pile diameter around the pile. When the pile depth reaches
60 mm, an obvious stress concentration zone is formed in the calcareous sand foundation
under the center of the pile. The vertical stress distribution of model pile B and model
pile C at different pile depths is more uniform than that of model pile A, and their stress
concentration zone is relatively less obvious.
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3.4.2. Radial Stress Distribution in a Calcareous Sand Foundation during Pile Driving

The radial stress distribution and the variation generated by different model piles in a
calcareous sand foundation during pile driving are obtained. Among them, the original
results of the radial stress distribution of model pile A measured using a tactile pressure are
representatively shown in Table 1. It can be seen that with the increase in the pile depth, the
radial stress around model pile A in the calcareous sand foundation first increases until it
reaches a peak at a pile depth of 30 mm, and then decreases, which reflects the influence of
the pile driving and the relative position in the foundation. As the pile depth increases, the
pile tip gradually approaches, passes through and finally moves away from the position of
the circumferential tactile pressure sensor. The radial stresses of model pile B and model
pile C also have the same change trend during the process of pile driving in the calcareous
sand foundation.

Table 1. Radial stress distribution of model pile A at different pile depths.

Pile Depth 0 mm Pile Depth 30 mm Pile Depth 80 mm Stress (kPa)
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By comparing the surface deformation of the calcareous sand foundation with differ-
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By comparing the surface deformation of the calcareous sand foundation with differ-

ent model piles before and after the pile setup (Table 2), it can be seen that after 24 h, the 
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3.5. Deformation during Pile Setup 
By comparing the surface deformation of the calcareous sand foundation with differ-

ent model piles before and after the pile setup (Table 2), it can be seen that after 24 h, the 
uplift on the surface of the calcareous sand foundation basically is recovered and becomes 
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3.5. Deformation during Pile Setup 
By comparing the surface deformation of the calcareous sand foundation with differ-

ent model piles before and after the pile setup (Table 2), it can be seen that after 24 h, the 
uplift on the surface of the calcareous sand foundation basically is recovered and becomes 
flat, and the calcareous sand particles near the piles are consolidated under the self-
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3.5. Deformation during Pile Setup 
By comparing the surface deformation of the calcareous sand foundation with differ-

ent model piles before and after the pile setup (Table 2), it can be seen that after 24 h, the 
uplift on the surface of the calcareous sand foundation basically is recovered and becomes 
flat, and the calcareous sand particles near the piles are consolidated under the self-
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3.5. Deformation during Pile Setup 
By comparing the surface deformation of the calcareous sand foundation with differ-

ent model piles before and after the pile setup (Table 2), it can be seen that after 24 h, the 
uplift on the surface of the calcareous sand foundation basically is recovered and becomes 
flat, and the calcareous sand particles near the piles are consolidated under the self-

3.5. Deformation during Pile Setup

By comparing the surface deformation of the calcareous sand foundation with different
model piles before and after the pile setup (Table 2), it can be seen that after 24 h, the uplift
on the surface of the calcareous sand foundation basically is recovered and becomes flat,
and the calcareous sand particles near the piles are consolidated under the self-weight.
However, the range and degree of compaction for different model piles are different, which
corresponds to the change in vertical and radial stress. Given the above, during the pile
setup, the deformation of the foundation and the settlement of the piles themselves is small
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and negligible, but with the extension in time, the internal forces in the calcareous sand
foundation is redistributed, and both the vertical and radial stresses in the foundation
increase. In other words, when there is no obvious particle breakage in the calcareous sand
foundation, the pile tip resistance and shaft resistance increase.

Table 2. Changes in calcareous sand foundation for different model piles under different conditions.
The soil around the pile is also enlarged as show in the marked box.

Model Pile After Pile Driving Before Pile Setup After Pile Setup

Model plie A
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4. Discussion 
The macro-behavior is highly related to the micro-information. The underlying 

mechanism of different pile type effects in the calcareous sand foundation can be explored 
according to the internal stress obtained using the tactile pressure sensors. The mean stress 
and coefficient of variation in stress are used to characterize the stress distribution, in 
which the coefficient of variation is the ratio of standard deviation to the mean value, 
ranging from 0 to 1. The smaller the coefficient of variation, the smaller the dispersion 
degree of the data and the more concentrated it is in a smaller range. And the data pro-
cessing method of normalization is used: the data before the test (i.e., the pile depth is 0 
mm) are taken as the initial value, then the normalized data are the ratio between the data 
and the initial value.  

J. Mar. Sci. Eng. 2024, 12, x FOR PEER REVIEW 10 of 17 
 

 

weight. However, the range and degree of compaction for different model piles are differ-
ent, which corresponds to the change in vertical and radial stress. Given the above, during 
the pile setup, the deformation of the foundation and the settlement of the piles them-
selves is small and negligible, but with the extension in time, the internal forces in the 
calcareous sand foundation is redistributed, and both the vertical and radial stresses in 
the foundation increase. In other words, when there is no obvious particle breakage in the 
calcareous sand foundation, the pile tip resistance and shaft resistance increase. 

Table 2. Changes in calcareous sand foundation for different model piles under different condi-
tions. The soil around the pile is also enlarged as show in the marked box. 

Model Pile After Pile Driving Before Pile Setup After Pile Setup 

Model plie A 

   

Model plie B 

   

Model plie C 

   

4. Discussion 
The macro-behavior is highly related to the micro-information. The underlying 

mechanism of different pile type effects in the calcareous sand foundation can be explored 
according to the internal stress obtained using the tactile pressure sensors. The mean stress 
and coefficient of variation in stress are used to characterize the stress distribution, in 
which the coefficient of variation is the ratio of standard deviation to the mean value, 
ranging from 0 to 1. The smaller the coefficient of variation, the smaller the dispersion 
degree of the data and the more concentrated it is in a smaller range. And the data pro-
cessing method of normalization is used: the data before the test (i.e., the pile depth is 0 
mm) are taken as the initial value, then the normalized data are the ratio between the data 
and the initial value.  

J. Mar. Sci. Eng. 2024, 12, x FOR PEER REVIEW 10 of 17 
 

 

weight. However, the range and degree of compaction for different model piles are differ-
ent, which corresponds to the change in vertical and radial stress. Given the above, during 
the pile setup, the deformation of the foundation and the settlement of the piles them-
selves is small and negligible, but with the extension in time, the internal forces in the 
calcareous sand foundation is redistributed, and both the vertical and radial stresses in 
the foundation increase. In other words, when there is no obvious particle breakage in the 
calcareous sand foundation, the pile tip resistance and shaft resistance increase. 

Table 2. Changes in calcareous sand foundation for different model piles under different condi-
tions. The soil around the pile is also enlarged as show in the marked box. 

Model Pile After Pile Driving Before Pile Setup After Pile Setup 

Model plie A 

   

Model plie B 

   

Model plie C 

   

4. Discussion 
The macro-behavior is highly related to the micro-information. The underlying 

mechanism of different pile type effects in the calcareous sand foundation can be explored 
according to the internal stress obtained using the tactile pressure sensors. The mean stress 
and coefficient of variation in stress are used to characterize the stress distribution, in 
which the coefficient of variation is the ratio of standard deviation to the mean value, 
ranging from 0 to 1. The smaller the coefficient of variation, the smaller the dispersion 
degree of the data and the more concentrated it is in a smaller range. And the data pro-
cessing method of normalization is used: the data before the test (i.e., the pile depth is 0 
mm) are taken as the initial value, then the normalized data are the ratio between the data 
and the initial value.  

Model plie B

J. Mar. Sci. Eng. 2024, 12, x FOR PEER REVIEW 10 of 17 
 

 

weight. However, the range and degree of compaction for different model piles are differ-
ent, which corresponds to the change in vertical and radial stress. Given the above, during 
the pile setup, the deformation of the foundation and the settlement of the piles them-
selves is small and negligible, but with the extension in time, the internal forces in the 
calcareous sand foundation is redistributed, and both the vertical and radial stresses in 
the foundation increase. In other words, when there is no obvious particle breakage in the 
calcareous sand foundation, the pile tip resistance and shaft resistance increase. 

Table 2. Changes in calcareous sand foundation for different model piles under different condi-
tions. The soil around the pile is also enlarged as show in the marked box. 

Model Pile After Pile Driving Before Pile Setup After Pile Setup 

Model plie A 

   

Model plie B 

   

Model plie C 

   

4. Discussion 
The macro-behavior is highly related to the micro-information. The underlying 

mechanism of different pile type effects in the calcareous sand foundation can be explored 
according to the internal stress obtained using the tactile pressure sensors. The mean stress 
and coefficient of variation in stress are used to characterize the stress distribution, in 
which the coefficient of variation is the ratio of standard deviation to the mean value, 
ranging from 0 to 1. The smaller the coefficient of variation, the smaller the dispersion 
degree of the data and the more concentrated it is in a smaller range. And the data pro-
cessing method of normalization is used: the data before the test (i.e., the pile depth is 0 
mm) are taken as the initial value, then the normalized data are the ratio between the data 
and the initial value.  

J. Mar. Sci. Eng. 2024, 12, x FOR PEER REVIEW 10 of 17 
 

 

weight. However, the range and degree of compaction for different model piles are differ-
ent, which corresponds to the change in vertical and radial stress. Given the above, during 
the pile setup, the deformation of the foundation and the settlement of the piles them-
selves is small and negligible, but with the extension in time, the internal forces in the 
calcareous sand foundation is redistributed, and both the vertical and radial stresses in 
the foundation increase. In other words, when there is no obvious particle breakage in the 
calcareous sand foundation, the pile tip resistance and shaft resistance increase. 

Table 2. Changes in calcareous sand foundation for different model piles under different condi-
tions. The soil around the pile is also enlarged as show in the marked box. 

Model Pile After Pile Driving Before Pile Setup After Pile Setup 

Model plie A 

   

Model plie B 

   

Model plie C 

   

4. Discussion 
The macro-behavior is highly related to the micro-information. The underlying 

mechanism of different pile type effects in the calcareous sand foundation can be explored 
according to the internal stress obtained using the tactile pressure sensors. The mean stress 
and coefficient of variation in stress are used to characterize the stress distribution, in 
which the coefficient of variation is the ratio of standard deviation to the mean value, 
ranging from 0 to 1. The smaller the coefficient of variation, the smaller the dispersion 
degree of the data and the more concentrated it is in a smaller range. And the data pro-
cessing method of normalization is used: the data before the test (i.e., the pile depth is 0 
mm) are taken as the initial value, then the normalized data are the ratio between the data 
and the initial value.  

J. Mar. Sci. Eng. 2024, 12, x FOR PEER REVIEW 10 of 17 
 

 

weight. However, the range and degree of compaction for different model piles are differ-
ent, which corresponds to the change in vertical and radial stress. Given the above, during 
the pile setup, the deformation of the foundation and the settlement of the piles them-
selves is small and negligible, but with the extension in time, the internal forces in the 
calcareous sand foundation is redistributed, and both the vertical and radial stresses in 
the foundation increase. In other words, when there is no obvious particle breakage in the 
calcareous sand foundation, the pile tip resistance and shaft resistance increase. 

Table 2. Changes in calcareous sand foundation for different model piles under different condi-
tions. The soil around the pile is also enlarged as show in the marked box. 

Model Pile After Pile Driving Before Pile Setup After Pile Setup 

Model plie A 

   

Model plie B 

   

Model plie C 

   

4. Discussion 
The macro-behavior is highly related to the micro-information. The underlying 

mechanism of different pile type effects in the calcareous sand foundation can be explored 
according to the internal stress obtained using the tactile pressure sensors. The mean stress 
and coefficient of variation in stress are used to characterize the stress distribution, in 
which the coefficient of variation is the ratio of standard deviation to the mean value, 
ranging from 0 to 1. The smaller the coefficient of variation, the smaller the dispersion 
degree of the data and the more concentrated it is in a smaller range. And the data pro-
cessing method of normalization is used: the data before the test (i.e., the pile depth is 0 
mm) are taken as the initial value, then the normalized data are the ratio between the data 
and the initial value.  

Model plie C

J. Mar. Sci. Eng. 2024, 12, x FOR PEER REVIEW 10 of 17 
 

 

weight. However, the range and degree of compaction for different model piles are differ-
ent, which corresponds to the change in vertical and radial stress. Given the above, during 
the pile setup, the deformation of the foundation and the settlement of the piles them-
selves is small and negligible, but with the extension in time, the internal forces in the 
calcareous sand foundation is redistributed, and both the vertical and radial stresses in 
the foundation increase. In other words, when there is no obvious particle breakage in the 
calcareous sand foundation, the pile tip resistance and shaft resistance increase. 

Table 2. Changes in calcareous sand foundation for different model piles under different condi-
tions. The soil around the pile is also enlarged as show in the marked box. 

Model Pile After Pile Driving Before Pile Setup After Pile Setup 

Model plie A 

   

Model plie B 

   

Model plie C 

   

4. Discussion 
The macro-behavior is highly related to the micro-information. The underlying 

mechanism of different pile type effects in the calcareous sand foundation can be explored 
according to the internal stress obtained using the tactile pressure sensors. The mean stress 
and coefficient of variation in stress are used to characterize the stress distribution, in 
which the coefficient of variation is the ratio of standard deviation to the mean value, 
ranging from 0 to 1. The smaller the coefficient of variation, the smaller the dispersion 
degree of the data and the more concentrated it is in a smaller range. And the data pro-
cessing method of normalization is used: the data before the test (i.e., the pile depth is 0 
mm) are taken as the initial value, then the normalized data are the ratio between the data 
and the initial value.  

J. Mar. Sci. Eng. 2024, 12, x FOR PEER REVIEW 10 of 17 
 

 

weight. However, the range and degree of compaction for different model piles are differ-
ent, which corresponds to the change in vertical and radial stress. Given the above, during 
the pile setup, the deformation of the foundation and the settlement of the piles them-
selves is small and negligible, but with the extension in time, the internal forces in the 
calcareous sand foundation is redistributed, and both the vertical and radial stresses in 
the foundation increase. In other words, when there is no obvious particle breakage in the 
calcareous sand foundation, the pile tip resistance and shaft resistance increase. 

Table 2. Changes in calcareous sand foundation for different model piles under different condi-
tions. The soil around the pile is also enlarged as show in the marked box. 

Model Pile After Pile Driving Before Pile Setup After Pile Setup 

Model plie A 

   

Model plie B 

   

Model plie C 

   

4. Discussion 
The macro-behavior is highly related to the micro-information. The underlying 

mechanism of different pile type effects in the calcareous sand foundation can be explored 
according to the internal stress obtained using the tactile pressure sensors. The mean stress 
and coefficient of variation in stress are used to characterize the stress distribution, in 
which the coefficient of variation is the ratio of standard deviation to the mean value, 
ranging from 0 to 1. The smaller the coefficient of variation, the smaller the dispersion 
degree of the data and the more concentrated it is in a smaller range. And the data pro-
cessing method of normalization is used: the data before the test (i.e., the pile depth is 0 
mm) are taken as the initial value, then the normalized data are the ratio between the data 
and the initial value.  

J. Mar. Sci. Eng. 2024, 12, x FOR PEER REVIEW 10 of 17 
 

 

weight. However, the range and degree of compaction for different model piles are differ-
ent, which corresponds to the change in vertical and radial stress. Given the above, during 
the pile setup, the deformation of the foundation and the settlement of the piles them-
selves is small and negligible, but with the extension in time, the internal forces in the 
calcareous sand foundation is redistributed, and both the vertical and radial stresses in 
the foundation increase. In other words, when there is no obvious particle breakage in the 
calcareous sand foundation, the pile tip resistance and shaft resistance increase. 

Table 2. Changes in calcareous sand foundation for different model piles under different condi-
tions. The soil around the pile is also enlarged as show in the marked box. 

Model Pile After Pile Driving Before Pile Setup After Pile Setup 

Model plie A 

   

Model plie B 

   

Model plie C 

   

4. Discussion 
The macro-behavior is highly related to the micro-information. The underlying 

mechanism of different pile type effects in the calcareous sand foundation can be explored 
according to the internal stress obtained using the tactile pressure sensors. The mean stress 
and coefficient of variation in stress are used to characterize the stress distribution, in 
which the coefficient of variation is the ratio of standard deviation to the mean value, 
ranging from 0 to 1. The smaller the coefficient of variation, the smaller the dispersion 
degree of the data and the more concentrated it is in a smaller range. And the data pro-
cessing method of normalization is used: the data before the test (i.e., the pile depth is 0 
mm) are taken as the initial value, then the normalized data are the ratio between the data 
and the initial value.  

4. Discussion

The macro-behavior is highly related to the micro-information. The underlying mech-
anism of different pile type effects in the calcareous sand foundation can be explored
according to the internal stress obtained using the tactile pressure sensors. The mean stress
and coefficient of variation in stress are used to characterize the stress distribution, in which
the coefficient of variation is the ratio of standard deviation to the mean value, ranging
from 0 to 1. The smaller the coefficient of variation, the smaller the dispersion degree of the
data and the more concentrated it is in a smaller range. And the data processing method of
normalization is used: the data before the test (i.e., the pile depth is 0 mm) are taken as the
initial value, then the normalized data are the ratio between the data and the initial value.

4.1. During Pile Driving

By comparing the vertical stress at the bottom of the pile tip in the calcareous sand
foundation across different model piles (Figure 8), the results show that the vertical stress
increases with the increase in the pile depth, among which model pile A has the largest
increment, suggesting the highest potential vertical bearing capacity. Since the pile tip
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area of model pile B and model pile C is small, the interparticle stress can be easily highly
concentrated, which induces more particle breakage and energy dissipation and, in turn,
decreases the interparticle stress. This is why their corresponding vertical stress increases
are relatively small, and the related bearing capacity provided by the pile tip is also limited.
The vertical stress of model pile C tends to be constant at a certain depth with the largest
relative particle breakage, which is consistent with the change in the pile tip resistance in
Figure 3 and the conclusion reached by Gao et al. [46] using DEM numerical simulation.
The coefficient of variation in vertical stress decreases with the increase in the pile depth,
that is, the stress distribution tends to be uniform.
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The changes in the normalized radial mean stress and coefficient of variation of
different model piles with pile depth are shown in Figure 9. It can be found that with an
increasing depth of pile driving, the coefficient of variation is slightly changed compared
with that for vertical stress. It decreases first (indicating that the stress tends to be uniform)
and then increases (indicating that the stress is more concentrated). Model pile C needs a
larger pile depth to reach the maximum radial stress, reflecting a higher particle breakage
degree, and it is difficult for model pile C to accumulate energy compared with other model
piles, which is consistent with the above analysis. According to the increment in the mean
radial stresses of different model piles, it is considered that model pile A has the largest
influence range on the lateral force in the calcareous sand foundation, while model pile B
has the smallest influence, which is due to the difference in the pile end shape.
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4.2. During Pile Setup

In the actual pile foundation, after pile driving is completed, the piles are left in
place without external forces until monitoring is deemed satisfactory, or the next phase of
construction commences. Consequently, compared to previous studies [43,45,51], this paper
presents a more comprehensive analysis of the pile setup in a calcareous sand foundation,
thereby revealing a deeper understanding of the underlying mechanism within real-world
pile foundation engineering.

After the pile was driven to the target depth, the external force on the model pile was
removed. That is, the buried depth of the model pile was kept at the designed pile depth of
80 mm for 24 h to develop the setup process, and the change in the stress distribution in the
calcareous sand foundation was monitored. It is found that the global stress distribution
changes a little with some local changes. The clear variations in the normalized vertical
mean stress and coefficient of variation for different model piles along with increasing time
are shown in Figure 10. It can be seen that the coefficient of variation in vertical stress
decreases and the vertical mean stress increases after 24 h only under gravity. In other
words, stress redistribution occurs in the calcareous sand foundation over time, and it tends
to be more uniform, which induces a slight increase in its bearing capacity.
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The radial stress distribution of different model piles before and after the pile setup
shows little global change but some local changes. The much clearer changes in the
normalized radial mean stress and the coefficient of variation in radial stress for different
model piles over time are shown in Figure 11. It is found that the radial mean stress in the
calcareous sand foundation with model pile A and model pile B increases with time, and
the coefficient of variation decreases, although the decrease in the coefficient of variation is
not as large as that of the vertical stress. The decreasing coefficient of variation indicates a
more uniform stress distribution, which can give a more stable internal structure. But for
model pile C, the corresponding radial stress has no obvious change after a certain time.
Based on the changes in vertical and radial stress, it is concluded that model pile B has the
largest increase in total stress and the most obvious increase in potential bearing capacity,
followed by model pile A, and model pile C has the smallest increase.
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5. Conclusions

In this study, three different model piles were designed based on three common pile
shapes, which were pipe piles, pointed square piles and semi-closed steel pipe piles. Using
the model tests of pile driving and pile setup in a calcareous sand foundation, the pile
driving and time effect and mechanical properties in calcareous sand foundations for
different pile types were explored, and the main conclusions are as follows.

(1) In the process of pile driving, with an increase in pile depth, the pile tip resistance
of different pile models increases in general, while there are fluctuations caused by the
particle breakage of the calcareous sand and energy dissipation. As the pile is driven
deeper, the fluctuation in the pile tip resistance becomes more pronounced. The pile tip
resistance for model pile A simulating a pipe pile is the highest, followed by model pile B
simulating a pointed square pile and model pile C simulating a semi-closed steel pipe pile
has the least. It is considered that, at the completion of pile driving, the potential bearing
capacity of model pile A is the highest, followed by model pile B, and model pile C has the
smallest potential bearing capacity.

(2) The results on the interparticle stress distributions in the calcareous sand foundation
during pile driving are well in agreement with the global pile tip resistance behavior. The
vertical stress concentration is mainly generated in the range of double the pile diameter
around the pile in calcareous sand foundations. The radial stress is increased by the pile
passing through. With an increasing pile depth, the stress distribution tends to be uniform,
which is characterized by the reducing coefficient of variation in interparticle stresses; the
mean vertical stress for model pile A has the largest increase, followed by model pile B and
model pile C, which can explain the change in pile tip resistance.

(3) During pile driving, the calcareous sand foundation surface gradually forms a
funnel-shaped groove, and a slight extrusion uplift occurs outside the groove. Model pile
C has the smallest deformation and impact range on the surface of the calcareous sand
foundation, followed by model pile B. Model pile A has the most obvious pile driving
effect with the most significant deformation and influence range on the calcareous sand
foundation around the pile.

(4) With a certain duration of pile setup, the vertical and radial stresses in the calcareous
sand foundation with different pile models also tend to be redistributed and become
uniform, and the average vertical and radial stresses increase. This indicates that the total
potential bearing capacity increases after a certain time. The increased magnitude in reverse
order from large to small spans model pile B, A, then C. The uplift deformation of the
ground surface is also recovered.

(5) Considering the potential bearing capacity of different model piles, the influence
range of pile driving, foundation deformation and pile setup, model pile B has a good
bearing capacity potential and a small deformation and damage effect on calcareous sand
foundations. It is suggested to use a pointed square pile corresponding to model pile B in
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pile foundation engineering for calcareous sand foundations. Large-scale prototype tests
are also recommended for further identification in the future.
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Abstract: A composite bucket foundation (CBF) is a new type of supporting structure in offshore wind
engineering. Its huge transition part is the key difference compared to other offshore foundations.
Firstly, the vibration measurement system of a wind turbine with the CBF is introduced. A finite
element method (FEM) was developed, and the rigid deformation performance of the transition part
was characterized. Then, to clarify the influence of the transition part brings to wind turbines with
CBFs, a three-DOF theoretical model was established by simplifying the transition part as a rigid
body. Horizontal and rotational foundation stiffness were considered to present the constraint effect
below the mudline. Sensitivity studies were conducted on the parameters (including mass, moment
of inertia and mass center height) of the transition part. Further, the vibration properties of the CBF
structures under different operation load conditions were compared through the theoretical model
and the in situ data. The results show that the relative errors between the theoretical model and FEM
model are 3.78% to 5.03%, satisfying the accuracy requirements. The parameters of the transition
part have varying degrees of influence on the natural frequency, foundation stiffness and vibration
response of the wind turbines with CBFs. Compared to wind and 1P loads, the 3P load has a greater
influence if the 3P frequency is close to the natural frequency of the wind turbine.

Keywords: composite bucket foundation; transition part; theoretical model; measurement;
operation load

1. Introduction

The current global energy structure still primarily relies on non-renewable fossil fuels,
and the issues of the energy crisis and environmental pollution are becoming increasingly
prominent. Developing renewable energy is an important way to ensure sustainable devel-
opment for humanity. Wind energy is one of the most widely used and rapidly developing
renewable energy sources, including onshore and offshore wind energy. Offshore wind
energy has become a global focus due to its abundant reserves, minimal land use, proximity
to load centers and suitability for large-scale development. According to the Global Wind
Energy Council (GWEC) statistics, the global offshore market grew on average by 21%
each year in the past decade, bringing total installations to 64.3 GW at the end of 2022, and
GWEC Market Intelligence expects more than 380 GW of new offshore wind capacity to be
added over the next decade [1].

The foundation types of offshore wind structures have shown a diversified develop-
ment trend in the efficient development and utilization of offshore wind energy. Several
types of offshore foundations have been applied and developed to different extents, such
as the mono-pile foundation [2], multi-pile foundation [3], jacket foundation [4] and bucket
foundation [5]. The bucket foundation is mainly composed of a bucket inserted into the
soil and a transition part above the mudline. Compared to other foundations, it has several
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advantages, such as easy construction and installation, good resistance to overturning and
steel material savings. In recent years, the bucket foundations have occupied a certain
market share as some designs have successfully been applied in engineering, including the
mono-bucket foundation (MBF) [6], bucket jacket foundation (BJF) [7] and composite bucket
foundation (CBF) [8], as shown in Figure 1. The MBF consists of a single suction bucket
and a single steel column transition part. The BJF is composed of the suction bucket(s) and
jacket-type transition part. The CBF is proposed by China’s Tianjin University. It consists of
a single suction bucket and a curved reinforced concrete transition part, making it suitable
for the widely distributed weak coastal soils in China.
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Studying the dynamic characteristics of the bucket foundation structure is of great
significance for its design and the operation safety of wind turbines. Houlsby et al. [9,10]
conducted model tests of the MBF and tetrapod foundation under cyclic load conditions
and observed the variation in the foundation stiffness. Nielsen SD et al. [11] studied the
behavior of an MBF in situ after a half year of measurement. In [12], Wang B et al. compared
the dynamic performance of a monopile and an MBF in conjunction with the geological
conditions of the East China Sea; it is recommended to use bucket foundations in the deep
sea. Zhang PY et al. [13] conducted shaking table tests for the MBF and CBF and compared
their responses under seismic load conditions. The results show that CBFs are safer than
MBFs during earthquakes. Yu TS et al. [14,15] studied the dynamic response characteristics
of the CBF, considering the combination of wave and current loads. Liu GW et al. [16]
conducted a three-dimensional numerical simulation to calculate the wave forces on the
CBF and suggest the selection of the Morison equation or diffraction theory using the
relative diameter of the CBF. Ding HY et al. [17,18] carried out extensive tests on three- and
four-bucket BJFs and compared their dynamic performance under seismic load conditions;
the results prove the inhibition effects of the three-bucket BJFs on the seismic responses of
soils. Jalbi et al. [19] developed analytical solutions to predict the natural frequencies of the
BJF wind turbines, which may impact the choice of foundations for jackets.

It is clear that many studies have been conducted on the dynamic characteristics
of the bucket foundations, but there is still a lack of studies in some respects. On the
one hand, the studies are based on the whole bucket foundation structure, there are few
studies focusing on the transition part and there is a lack of suitable model to describe
the CBF and its transition part. On the other hand, the dynamic analyses in the tests
and numerical simulations are mainly conducted under seismic, wind and wave load
conditions, and there are few studies focusing on operation loads. Hence, the main scope of
this work was to study the dynamic characteristics of the CBF transition part at a theoretical
level and to compare the vibration properties of different operation loads. For calculation
convenience, the transition part should be simplified, and the finite element method (FEM)
is necessary to demonstrate the simplification. To build a rational FEM model of the CBF
structure, a practical CBF structure is needed. Therefore, this paper mainly consists of four
parts. Firstly, Section 2 introduces the main information of a CBF wind turbine and the
structural vibration monitoring system. The FEM was used to study the deformation of
the CBF transition part, as outlined in Section 3. The establishment and verification of the
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theoretical model of the CBF structure is presented in Section 4. Thirdly, Section 5 contains
the detailed analyses of the influence of the transition part parameters (mass, moment
of inertia and mass center height) on the CBF structure (natural frequency, foundation
stiffness and vibration properties). Finally, the vibration performance of the operation loads
(1P/3P/wind load) is compared in Section 6.

2. In Situ Measurement of a Composite Bucket Foundation Structure
2.1. Structure and Measurement System

The study site is a wind farm in Xiangshui, Jiangsu, China. Its center is about 10 km
offshore, and the water depth is from 8 m to 12 m [20], as shown in Figure 2a. The farm has
a total capacity of 202 MW, consisting of 55 wind turbines. The world’s first commercially
applied CBF was installed in this wind farm to support a 3.0 MW turbine, as shown in
Figure 2b. The CBF was towed from factory to the installation location for 112 h and
290 nautical miles, and the installation work took 8 h, with a horizontal accuracy of 0.03%.
The main parameters of the whole CBF structure are listed in Table 1.
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Figure 2. Information of the CBF structure: (a) Xiangshui wind farm location; (b) the CBF structure;
(c) vibration displacement sensor and acquisition equipment; (d) displacement sensor real-time curve.

Table 1. Main parameters of the CBF structure.

Parameter Value Parameter Value

Turbine
head mass (t) 190

Suction bucket
height (m) 10

rotation frequency range (RPM 1) 7.5~13.5 diameter (m) 30

Tower

mass (t) 207

Transition part

mass (t) 1949
height (m) 73.59 height (m) 23

diameter (m) 3.2~4.3 mass center height (m) 5.5

thickness (mm) 14~48
thickness (mm) 600

diameter (m) 4.3~20.6
1 RPM = revolutions per minute.
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To determine the vibration properties of the structure, a monitoring system was
equipped in the wind turbine. Low-frequency vibration displacement sensors have been
installed at the tower top to obtain its dynamic movement with the lowest frequency of
0.1 Hz [21], and acquisition equipment is located at the entrance platform with the sampling
frequency of 300 Hz, as shown in Figure 2c. Figure 2d shows the sensors’ real-time curve of
measured displacement.

Based on the modal analysis method SSI (stochastic subspace identification) [22],
Table 2 lists the first three orders of natural frequency results of the in situ measurement of
the CBF structure. Detailed analysis of the displacement may be found in [21].

Table 2. The first three orders of natural frequency results of the in situ measurement of the
CBF structure.

First Order (Hz) Second Order (Hz) Third Order (Hz)

0.350 2.501 5.010

2.2. Operation and Environmental Measurement

The structure has been tested in situ for a long period after installation. During vibra-
tion testing, operation and environmental information (such as wind speed, rotation speed,
power and pitch angle) were also recorded simultaneously by the supervisory control and
data acquisition (SCADA) system of the wind turbine. Figure 3 shows the history of wind
and rotation speed and their relationship from 2 November 2017 to 8 November 2017. The
value of a single point is the mean value of every 100 s. The wind speed range during the
test period is from 0 to 15.57 m·s−1, and the rotation speed changes from 0 to 13.5 RPM,
including all turbine working conditions from park to rated generation. From Figure 3c,
the operation strategy is clear: With the increase in wind speed, the wind turbine changes
from park condition to generation state, the cut-in rotation speed is 7.5 RPM. Then, when
the wind speed grows from 4.5 m·s−1 to 8 m·s−1, the rotation speed grows until it reaches
the rated rotation speed of 13.5 RPM. Subsequently, the rotor works stably at the rated
speed, though wind speed may continually grow.

1 
 

   
(a) (b) (c) 
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Figure 3. The history of wind and rotation speed and their relationship: (a) wind history; (b) rotation
speed history; (c) relationship between wind and rotation speed.

3. Finite Element Modeling

Taking the above mentioned CBF structure as the research object, an ABAQUS model
was established using the finite element method, as shown in Figure 4a. The head of the
wind turbine was simplified as a mass point placed at the top of the tower. The tower
material is Q345E steel, and the transition part is prestressed concrete structure, with C60
concrete and Q235 steel. The steel materials have a density of 7850 kg·m−3, elastic modulus
of 206 GPa and Poisson’s ratio of 0.3, and the concrete has a density of 2500 kg·m−3, elastic
modulus of 36 GPa and Poisson’s ratio of 0.25. Rayleigh damping was used for structural
damping, with a damping ratio of 2%. An elastic constitutive model was adopted for the
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whole CBF structure, and the soil was simulated using the Mohr–Coulomb constitutive
model. A tie connection was adopted between the tower and foundation, while surface-
to-surface contact was used to simulate the interaction between the CBF and soil. Hard
contact was applied in the normal direction, and the friction coefficient was set to 0.3 in the
tangent direction [23]. The tower and CBF were simulated using 3D shell elements (S4R);
the transition part and soil were simulated using 3D solid elements (C3D8), and the grid
meshing was performed using the sweep technique. In order to ensure the computational
efficiency and numerical accuracy, the local area involved in contact interaction of the model
was refined, and mesh density sensitivity analysis was performed. The total number of
meshes was about 100,000, and the minimum element size was 0.005Ds (Ds is the diameter
of the foundation skirt). To eliminate boundary effects, the radius of the soil was taken as
4Ds, and the depth was taken as 6Hs (Hs is the height of the foundation skirt). The bottom
boundary of the foundation was fixed, and the lateral boundary only allowed vertical
displacement. The soil parameters are listed in Table 3.
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Table 3. The soil parameters of the CBF structure.

Layer Soil Type Thickness (m) Submerged Unit
Weight (kN·m−3)

Compression
Modulus (MPa)

Friction Angle
(◦) Cohesion (kPa)

1 Sandy clay 2.1 9.7 4.0 33.8 5.0
2 Silty clay 9.5 8.7 4.8 11.9 22.0
3 Silt 6.6 8.9 6.4 29.3 8.4
4 Sandy clay 11.6 8.7 6.4 12.7 23.9
5 Silt 15.4 8.9 6.4 29.3 8.4
6 Fine sand 11.8 8.7 12.6 12.0 25.0

At the equivalent points on the top of the transition part, horizontal forces and bending
moments were applied in the horizontal and rotational directions, respectively, as shown
in Figure 4b. The displacements of four reference points (RPs) were observed. The four
RPs are key nodes of the transition part, and the heights are 1.20 m, 7.34 m, 11.98 m and
17.00 m from the mudline, respectively, as shown in Figure 4b.

The displacements at four RPs under horizontal force conditions of 50 kN, 100 kN,
250 kN, 500 kN and 1000 kN are shown in Figure 5a. It can be observed that the displace-
ments at different points under the same force conditions are linearly related. There is no
relative distortion between the top and bottom of the transition part, indicating that the
CBF transition part has linear deformation under horizontal force conditions.
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Figure 5. The deformation of the CBF transition part: (a) under horizontal force conditions; (b) under
bending moment conditions.

When applying bending moments, with values of 10 MN·m, 50 MN·m, 100 MN·m,
150 MN·m and 200 MN·m, the displacements at four RPs are shown in Figure 5b. Similarly,
when the bending moment does not exceed 100 MN·m, the displacements at the four RPs
still show a linear relationship. Only when the moment reaches 150 MN·m does turning
occur in the line, but the trend is not significant. So, it can still be approximately considered
that the CBF transition part has linear deformation under bending moment conditions.

Therefore, the transition part of the CBF can be simplified as a rigid body and trans-
formed into a mass point with mass mf and moment of inertia If placed at the mass
center height.

4. Establishing the Dynamic Model of the CBF Structure

The load of a practical wind structure is complicated; the FEM has a complex model-
ing process and a time-consuming calculation process, so neither method is suitable for
structural dynamic analysis. To make clear how the transition part influences the CBF
structure, it is better to establish a theoretical model so that the factors can be quantitatively
analyzed one-by-one.

4.1. Motion Equation

The theoretical model of the CBF structure was established in the xz plane, as shown
in Figure 6. The head of the wind turbine (including impeller, hub and nacelle, etc.) was
simplified to a centralized mass point m with a rigid connection to the tower, ignoring the
mass overhang. The tower was simplified to an elastic beam, with length h and bending
stiffness kt. Based on the analysis in Section 3, the transition part (height H) is regarded
as a mass point, with mass mf and moment of inertia If. The distance from the mass point
to the mud surface is the mass center height hf. The constraint effect of the CBF below
the mudline to the wind turbine is equivalent to the horizontal stiffness kL and rotational
stiffness kR.

As can be seen, the theoretical model vibrates in the xz plane and has three degrees
of freedom (DOFs), q1 represents the tower-top relative deformation with respect to the
foundation and q2 and q3 donate the horizontal displacement and rotation angle of the
foundation, respectively.

The Lagrange motion Equation (1) is used to derive the motion equation of the CBF
structure [24]:

d
dt

(
∂T
∂q′k

)
− ∂T

∂qk
+

∂V
∂qk

+
∂D
∂q′k

= Fk, k = 1, 2, · · · , n (1)

where T is the kinetic energy of the entire vibration system; V is the potential energy of
the entire vibration system; D is the system energy dissipation function, which is defined
as the work carried out by the damping force of the system during the vibration process;
qk (k = 1, 2, · · · , n) are generalized coordinates; Fk is the generalized force corresponding
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to the k-th generalized coordinate; and n is the number of DOFs of the system, n is 3 for
this model.
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From Figure 6, the absolute displacement of the head (uh), tower (ut) and foundation
(uf) of the structure can be expressed as:

uh = q1 + q2 + L tan(q3) ≈ q1 + q2 + Lq3 (2)

ut = q1 ϕ1t + q2 + z tan(q3) ≈ q1 ϕ1t + q2 + zq3 (3)

u f = q1 ϕ1t,h f
+ q2 + h f tan(q3) ≈ q1 ϕ1t,h f

+ q2 + h f q3 (4)

where L = h + H, ϕ1t is the vibration mode of the tower, and ϕ1t,h f
refers to the value of

vibration mode at the height of transition part mass center (z = hf).
The total kinetic energy T of the CBF structure can be obtained with the following

equation:

T =
1
2

mu′h
2
+

1
2

∫ L

H
m̃u′t

2dz +
1
2

m f u′f
2
+

1
2

I f q′3
2 (5)

where m̃ is the mass per unit length of the tower.
The total potential energy V of the whole system is:

V = 1
2 ktq2

1 +
1
2 kLq2

2 +
1
2 kRq2

3

kt =
∫ L

H EI(z)(ϕ
′′
1t)

2dz
(6)

where kt is the stiffness of the tower [25].
System energy dissipation function D [26] is defined as:

D =
1
2

chu′h
2
+

1
2

cLq′2
2
+

1
2

cRq′3
2 (7)

where ch is the damping at the head, and cL and cR refer to the horizontal and rotational
damping of the foundation, respectively.
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Introducing Formulas (5)–(7) into Formula (1), the motion equation of the CBF struc-
ture can be obtained as follows:

Mq′′ + Cq′ + Kq = F(t) (8)

where

M =




m + M1t m + M2t mL + M3t

m + M2t m + m̃h + m f mL + 1
2 m̃
(

L2 − H2)+ m f h f

mL + M3t mL + 1
2 m̃
(

L2 − H2)+ m f h f mL2 + 1
3 m̃
(

L3 − H3)+ m f h f
2 + I f


 (9)

M1t = m̃
∫ L

H
ϕ2

1tdz + m f ϕ2
1t,h f

, M2t = m̃
∫ L

H
ϕ1tdz + m f ϕ1t,h f

, M3t = m̃
∫ L

H
ϕ1tzdz + m f h f ϕ1t,h f

(10)

C =




ch 0 0
0 cL 0
0 0 cR


 (11)

K =




kt 0 0
0 kL 0
0 0 kR


 (12)

For such a low damping structure like the wind turbine structure, the coupling effect
caused by the non-diagonal elements in matrix C is negligible compared with that of
diagonal elements, so only the diagonal elements are retained [27]. The damping ratios in
this study were all set to 2% Rayleigh damping [28].

4.2. Foundation Stiffness

A genetic algorithm (GA) is a random search algorithm that borrows from the nat-
ural selection and genetic mechanisms in the biological world. Starting from any initial
population, it continuously reproduces and evolves generation-by-generation through
random selection, crossover and mutation operation and finally converges to a group of
individuals which is the most fitted to the environment to find the optimal solution to
problems [29]. The GA has high parallel computing capabilities and good scalability and
has widely used in wind engineering to optimize wind farm layout, power production
and structural design [30–32]. Before solving the motion Equation (9), the foundation
stiffness kL and kR are obtained by the GA to ensure that the natural frequency results
of the CBF structure meet the requirements. The target function is defined as the sum of
percentage difference between the natural frequency results and the natural frequency
targets, as shown in Equation (13). The smaller the sum, the more accurate the result is.
The calculation process of GA to solve the foundation stiffness is shown in Figure 7, and
the GA parameters used are shown in Table 4.

min target =
N

∑
i=1

∣∣∣f− fnp

∣∣∣
fnp

× 100% (13)

where min represents minimum of the sum; N is the order of the natural frequencies,
specifically, N = 3 in this study; f is the natural frequency results simulated by the GA; and
fnp is the natural frequency target.

4.3. Loading

Compared with other types of tall structures, operation loads are additional loads for
wind turbines due to rotation of the rotor. Operation loads mainly include the fluctuating
wind load, 1P load and 3P load [33]. The 1P/3P loads are derived from the 1P/3P vibration
generated by the rotation of the rotor. Their load frequencies are equal to the rotor rotation
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frequency (1P frequency) and the blade passing frequency (3P frequency), respectively.
In recent studies, there is a lack of understanding of the influence of each operation load.
Therefore, this study investigated the dynamic characteristics of the CBF structure by
separately considering the effects of the 1P load, 3P load and wind load.
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Figure 7. Flowchart of foundation stiffness calculation by the GA.

Table 4. The GA parameters for solving foundation stiffness.

Initial
Population

Maximum Genetic
Generation

Selection
Type

Crossover
Rate

Mutation
Rate

300 100 roulette 0.6 0.05

In practical engineering, the 1P/3P load can be quite complex. For simplicity of
calculation, sinusoidal functions were adopted in this study to simplify the 1P/3P load.

F1P =
√

2 f1P sin(2πωt)
F3P =

√
2 f3P sin(6πωt)

(14)

where F1P and F3P are the 1P load and 3P load, respectively; f 1P, f 3P are the root mean
square (RMS) value of the loads; and ω is the wind turbine rotation frequency.

The characteristic parameters reflecting the properties of fluctuating wind include
turbulence intensity, turbulence integral length and pulsating wind speed power spectrum.
The Det Norske Veritas (DNV) specification [34] recommends using the Kaimal spectrum
to obtain the required wind speed, and the wind speed spectrum can be written as follows:

SU( f ) =
4I2U10Lk

(1 + 6 f Lk/U10)
5/3 (15)

where f represents the frequency, U10 is the average wind speed in 10 min, I is the turbu-
lence intensity, and Lk is the turbulence integral length, which can be determined by the
following formula:

Lk =

{
5.67z z < 60 m
340.2 z ≥ 60 m

(16)
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where z is the height above sea level.
Figure 8 shows the time history of 100 s of fluctuating wind, where the turbulence

intensity is 0.1, and the sampling frequency is 100 Hz. In the actual calculation, the wind
speed is multiplied by a certain coefficient to obtain the required value of wind load.
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4.4. Verification of the Model

The rationality of the theoretical model was verified by comparing its dynamic response
with the FEM model. To reduce the diversity of the two models, the mode shape of the theo-
retical model is an approximate fitting of the FEM model, considering the linear deformation
properties of the transition part. In this article, only the first-order mode is considered, and
the mode shape is formulated with Equation (17). It can be seen from Figure 9 that the two
mode shapes are proximal, and the mode shape defied by Equation (17) is rational.

c =
{

c1 c2 c3 c4 c5 c6
}T

=
{
−0.3114 −0.3755 0.1777 0.3902 0.0652 0.0004

}T

λ1 = 1.54922; λ2 = 1.49869

ϕ1t

(
h
)
=

{
c1 sin

(
λ1h

)
+ c2 cos

(
λ1h

)
+ c3sinh

(
λ2h

)
+ c4 cosh

(
λ2h

)
H
L < h ≤ 1

c5h + c6 0 ≤ h ≤ H
L

(17)
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Figure 9. The mode shape of the tower.

Based on the fluctuating wind in Figure 9, the wind load of the root mean square
(RMS) value 10 kN was generated and added to the tower top of the FEM model and the
theoretical model, respectively. The absolute displacements of the head and foundation
were extracted, as shown in Figure 10. As can be seen from the figure, the displacement
time history of both models is basically the same; only the gap around 50 s is obvious. The
RMS and maximum displacement values of the two models were calculated, as listed in
Table 5. The head displacements of the theoretical model are 2.80 mm and 6.80 mm, and the
foundation displacements of the theoretical model are 0.66 mm and 1.67 mm. The relative
errors of the two models are from 3.78% to 5.03%, indicating that the theoretical model in
this paper meets the accuracy requirement and is reasonable.
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Table 5. The displacements and errors.

Displacement FEM (mm) Theoretical Model (mm) Error (%)

Head
RMS 2.91 2.80 3.78

maximum 7.13 6.80 4.63

Foundation
RMS 0.69 0.66 4.28

maximum 1.76 1.67 5.03
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Figure 10. The displacement time history of the two models: (a) tower top; (b) foundation.

5. Analysis of the Influence of the Transition Part Parameters on the CBF Structure

First, a CBF structure model was built. The tower length was h = 75 m, the diameter
was D = 4 m, the wall thickness was 30 mm and the section bending stiffness EI was
290 GPa. The head mass was set to 100 t. The height of the transition part H = 25 m, total
mass mf = 7.34 × 104 kg, moment of initial is If = 1.54 × 107 kg·m2 and mass center height
hf = 12.5 m. The original natural frequency targets were f np = [0.3 2.3 7.8] Hz, and the
foundation stiffness obtained by GA was 1.92 × 107 N·m−1, 3.62 × 1010 N·m·rad−1. The
influence of transition part parameters (mf, If, hf) was analyzed with the theoretical model
based on the above values.

5.1. Influence on the Natural Frequencies of the Structure

Figure 11 shows the influence of transition part mass on the first three orders of natural
frequencies of the CBF structure. The value of the right axis is the ratio of each point to
the initial value. The mass ranges from 7.34 × 104 kg to 1.0 × 106 kg. It can be seen that
the increase in the transition part mass causes the decrease in the natural frequencies, in
which the first order shows a linear trend, and the second and third order show a gradually
slowing trend. Comparing the ratios, the first and third order decrease by about 6%, but the
second order decreases by 60%, indicating that the transition part mass mainly influences
the second-order natural frequency.

Figure 12 shows the influence of the transition part moment of inertia on the first
three orders of natural frequencies of the CBF structure. The moment of inertia ranges
from 1.54 × 107 kg·m2 to 3.0 × 107 kg·m2. It can be seen that the increase in the moment
of inertia causes the decrease in the third natural frequency by 23%, but the first- and
second-order frequencies stay unchanged, indicating that the transition part moment of
inertia has no effect on the first two natural frequencies; it only causes the third-order
frequency reduction.

Figure 13 shows the influence of the transition part mass center height on the first three
orders of natural frequencies of the CBF structure. The height ranges from 0 m (transition
part bottom) to 25 m (transition part top). It can be seen that the increase in the mass center
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height causes the decrease in the first-order frequency by 0.7% and causes the increase in
the second and third-order frequencies by about 8%, indicating that the transition part
mass center height has a slight influence on the natural frequencies of the CBF structure.

5.2. Influence on the Foundation Stiffness

When the transition parameters change, the foundation stiffness provided below the
CBF mudline should also be changed to meet the natural frequency design requirements
of the wind turbine. In the following comparisons, the natural frequencies [0.3 2.3 7.8] Hz
remain unchanged.

Figure 14 shows the influence of the transition part mass on the foundation stiffness of
the CBF structure. As can be seen, the mass grows from 7.34 × 104 kg to 1.0 × 106 kg, the
horizontal stiffness increases linearly by 6.97 times and the increase in rotational stiffness
gradually slows down, with an increase rate of 11.14%, indicating that the transition part
mass mainly affects the horizontal stiffness.

Figure 15 shows the influence of the transition part moment of inertia on the foun-
dation stiffness of the CBF structure. As can be seen, the moment of inertia grows from
1.54 × 107 kg·m2 to 3.0 × 107 kg·m2, and the horizontal stiffness maximally increases by
only 0.06%, while the rotational stiffness increases linearly by 96%. Therefore, it can be
considered that the transition part moment of inertia mainly affects the rotational stiffness
and has no effect on the horizontal stiffness.

Figure 16 shows the influence of the transition part mass center height on the foun-
dation stiffness of the CBF structure. It can be seen that the two stiffnesses show a similar
linear decrease as the mass center height rises from 0 m to 25 m. The change rate compared
with the original height is about 17%, indicating that the height change in the mass center
has the same influence on the two stiffnesses.
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Figure 11. The influence of the transition part mass on the natural frequencies: (a) first order;
(b) second order; (c) third order.
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Figure 12. The influence of the transition part moment of inertia on the natural frequencies: (a) first
order; (b) second order; (c) third order.
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Figure 13. The influence of the transition part mass center height on the natural frequencies: (a) first
order; (b) second order; (c) third order.
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Figure 14. The influence of the transition part mass on the foundation stiffness: (a) horizontal stiffness;
(b) rotational stiffness.
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Figure 15. The influence of the transition part moment of inertia on the foundation stiffness: (a) hori-
zontal stiffness; (b) rotational stiffness.
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5.3. Influence on the Vibration Properties

When analyzing the influence of transition part parameters on the vibration properties
of the CBF structure, the input load is also the fluctuating wind load of the RMS, 10 kN,
and the calculation time is 100 s. The head displacement RMS value of the wind turbine
was taken to represent the vibration response. The results are shown in Figure 17.

Figure 17a is the influence of the transition part mass on the vibration properties.
It can be seen that the displacement increases first and then decreases with the mass of
the transition part, and the peak 3.67 mm appears at 2.20 × 105 kg. It was found that
the displacement is largest when the transition part mass is equal to the tower mass; if
the transition part mass is different from the tower mass, the displacement is rapidly
reduced. Generally, the CBF has a huge transition part, whose mass is much greater than
the tower mass. Accordingly, enlarging the transition part mass can reduce the vibration of
the structure.
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Figure 17. The influence of transition part parameters on the vibration properties: (a) mass; (b) mo-
ment of inertia; (c) height of mass center.

Figure 17b shows the influence of the transition part moment of inertia on the vibration
properties. It can be seen that with the increase in the moment of inertia, the displacement
gradually decreases from 3.16 mm to 2.24 mm, which may be caused by the increased
utilization of wind energy for the rotation of the CBF. So, enlarging the transition part
moment of inertia can also reduce the vibration of the structure.

Figure 17c shows the influence of the transition part mass center height on the vibration
properties. It can be seen that the displacement presents the “V”-type with the elevation of
the mass center height, and the minimum value 3.16 mm appears when the mass center
height is 15 m. According to the analysis, the mass center height deviation from the mudline
produces an additional moment of inertia m f h2

f ; when it is equal to the original moment of

inertia If, the displacement is the minimum, so the deviation is
√

I f /m f = 14.48 m, which
is consistent with the figure. Therefore, it is better for the transition part mass center height
to be designed near the deviation

√
I f /m f to reduce the vibration.

6. Vibration Properties under Different Operation Loading Conditions

Also, the load RMS value was set to 10 kN. Figure 18 shows the tower-top displace-
ments under the 1P/wind/3P load conditions of the theoretical model. It can be seen that
the 1P/3P displacements are positively and negatively correlated with rotation frequency.
When rotation frequency nears 0.1 Hz, the 3P frequency is close to 0.3 Hz (the natural
frequency of the model), so 3P resonance [33] occurs. The 3P displacement is obviously
higher than 1P and wind displacements. Therefore, close scrutiny is required when the 3P
frequency is close to the natural frequency of the structure.

57



J. Mar. Sci. Eng. 2024, 12, 106

J. Mar. Sci. Eng. 2024, 12, x FOR PEER REVIEW 16 of 19 
 

 

   

(a) (b) (c) 

Figure 17. The influence of transition part parameters on the vibration properties: (a) mass; (b) mo-
ment of inertia; (c) height of mass center. 

6. Vibration Properties under Different Operation Loading Conditions 
Also, the load RMS value was set to 10 kN. Figure 18 shows the tower-top displace-

ments under the 1P/wind/3P load conditions of the theoretical model. It can be seen that 
the 1P/3P displacements are positively and negatively correlated with rotation frequency. 
When rotation frequency nears 0.1 Hz, the 3P frequency is close to 0.3 Hz (the natural 
frequency of the model), so 3P resonance [33] occurs. The 3P displacement is obviously 
higher than 1P and wind displacements. Therefore, close scrutiny is required when the 3P 
frequency is close to the natural frequency of the structure. 

 
Figure 18. The displacements under different load conditions. 

For the CBF structure mentioned in Section 2, the main frequencies of all 100 s data 
were extracted using the spectral analysis method and combined with the corresponding 
operation status, The distribution of the main frequency with rotation speed is presented 
in Figure 19. 

  
(a) (b) 

Figure 19. The distribution of the main frequency with rotation speed: (a) scatter; (b) histogram. 

0.0 0.2 0.4 0.6 0.8 1.0

3.2

3.4

3.6

H
ea

d 
di

sp
la

ce
m

en
t (

m
m

)

Mass (×106 kg)
1.5 2.0 2.5 3.0

2.1

2.4

2.7

3.0

3.3

H
ea

d 
di

sp
la

ce
m

en
t (

m
m

)

Moment of inertia (×107 kg∙m2)
0 5 10 15 20 25

3.0

3.3

3.6

3.9

4.2

H
ea

d 
di

sp
la

ce
m

en
t (

m
m

)

Mass center height (m)

0 2 4 6 8 10 12 14
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

M
ai

n 
fre

qu
en

cy
 (H

z)

Rotation speed (RPM)
8 9 10 11 12 13

0.0

0.2

0.4

0.6

0.8

1.0

Pr
op

or
tio

n

Roatation speed (RPM)

 1P
 Wind
 3P

Figure 18. The displacements under different load conditions.

For the CBF structure mentioned in Section 2, the main frequencies of all 100 s data
were extracted using the spectral analysis method and combined with the corresponding
operation status, The distribution of the main frequency with rotation speed is presented in
Figure 19.
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As shown in Figure 19a, the main frequency is concentrated in the first-order natural
frequency of the wind turbine if rotation speed is less than 7.5 RPM. When rotation speed
is higher than 7.5 RPM, the 1P/3P and natural frequencies are all reflected in the main
frequency. The 3P frequency aggregates at the rotation interval near 7.5 RPM, which
results from the 3P resonance caused by the 3P frequency 0.375 Hz approaching the natural
frequency 0.35 Hz of the structure.

The occurrence frequencies of the main frequencies were recorded according to the
speed range, and their proportion was calculated and plotted as shown in Figure 19b. It can
be seen that the proportion of the 1P frequency increases, and the 3P proportion decreases
gradually with respect to the increase in rotational speed. The natural frequency increases
first and then decreases with the rotational speed. The 3P frequency is the most prominent
main frequency at rotation intervals of less than 9 RPM, indicating that the 3P load has
an important influence on this structure. Furthermore, the 1P load is less remarkable
compared with 3P and wind loads. Dong XF et al. [35] tested the first full-scale CBF model
and found that the 3P load has nearly no effect on the structure, which is quite different
from the conclusion in this article. Therefore, the 3P load should not be ignored; it must be
taken into account, lest excessive vibration or damage occurs.

7. Conclusions

A CBF prototype and monitoring system is introduced. By simplifying the CBF
and whole wind turbine structure, a theoretical model was established and verified, the
influence of the transition part parameters on the dynamic characteristics of the structure
was studied and the vibration responses of operation loads were compared. The main
conclusions are as follows:
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(1) The transition part of the CBF can be regarded as a rigid body. Based on this
simplification, the theoretical model of the CBF structure is accurate and reliable, and the
errors of the displacement RMS and maximum values compared to the FEM results are
3.78% to 5.03%.

(2) The transition part mass mainly has a negative effect on the second-order natural
frequency of the CBF structure, and the transition part moment of inertia only causes the
third-order frequency reduction, while the mass center height has a slight influence on the
natural frequencies.

(3) The transition part mass and moment of inertia mainly affect the horizontal and
rotational stiffness of the CBF structure, respectively, with linear positive trends. In contrast,
the influence of mass center height on the two stiffness of the foundation is consistent
but limited.

(4) Enlarging both the transition part mass and moment of inertia can reduce the
vibration of the CBF structure. The mass center shows a ”V”-type trend for the vibration
response, and the extreme value appears at the height of

√
I f /m f .

(5) From the theoretical analysis and the in situ measurement results, the 3P load has a
great influence on the wind turbine if the 3P frequency is close to the natural frequency,
and it should not be ignored.

With this work, the influence of transition part parameters on the CBF structure is
clear and helpful for CBF design, and new knowledge on the vibration response difference
between operation loads can guide the operation strategy optimization for wind turbines
to reduce structural vibration.
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Abstract: Mega land reclamation projects have been carried out on the coral reefs in the South
China Sea. Coral sand was used as a backfill material through hydraulic filling, with fill heights
ranging from 6 to 10 m. To enhance foundation stability, vibro-flotation and impact rolling have been
employed. However, the uneven distribution of coral sand, irregular particle shape, lower single-
particle strength, and paucity of engineering cases for reference have posed challenges in evaluating
the effectiveness of these foundation treatments. In this study, the effectiveness of vibro-flotation
and impact rolling on the densification and bearing capacity of coral sand foundations has been
investigated. In situ tests, including the plate load test, California Bearing Ratio (CBR) test, density
measurements, dynamic penetration test (DPT), and settlement monitoring, were conducted at four
distinct zones: an untreated zone, a vibro-flotation zone at a 5 m depth, a vibro-flotation zone at a
10 m depth, and an impact rolling zone. The findings suggest that coral sand exhibits promising
characteristics for foundation construction. Seepage and self-weight consolidation following land
reclamation formation significantly enhance the compaction degree of the coral sand foundation,
thereby meeting the requirements for areas with lower bearing capacity demands. Both vibro-flotation
and impact rolling techniques could significantly enhance the foundation-bearing capacity, with
marginal differences between them. Since the machinery is simple and construction speed is quick,
the impact rolling method is considered to be the most efficient for the treatment of coral sand
foundation. The DPT results suggest that the reinforcement effect of both vibro-flotation and impact
rolling on the deep foundation is not as substantial as the surface layers. This study provides valuable
insights into optimizing foundation treatments for land reclamation projects on the coral reefs.

Keywords: land reclamation; hydraulic filling; coral sand; foundation treatment; vibro-flotation;
impact rolling

1. Introduction

Coral reefs are predominantly distributed in tropical oceans between N 30◦ and S 30◦

and are formed by Scleractinia, algae, and various marine organisms through biological
processes [1]. In response to the growing demand for space and resources, extensive land
reclamation projects have been undertaken on the coral reefs of the South China Sea. This
involves excavating coral sand and debris from lagoons and reef flats using cutter suction
dredgers, followed by the pumping of these materials through the pipeline onto the reef
flat [2]. Through this method, the construction cost can be reduced and the construction
period can be shortened significantly [3,4].

Coral sand is primarily composed of calcium carbonate, with distinct differences from
terrigenous sediments formed through physical, biochemical, and chemical processes [5].
It has been observed that coral sands exhibit rich intra-particle pores, irregular particle
shapes, and high susceptibility to breakage [6–8]. However, they possess higher peak and
critical state friction angles, along with higher liquefaction resistance compared to quartz
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sand [9–13]. The authors of the Hydraulic Fill Manual for Dredging and Reclamation Works [14]
designated coral sand as a specialized filling material, emphasizing its advantageous
engineering performance and the potential for enhanced strength and stiffness over time
due to particle bonding.

Traditionally, hydraulic-filled marine soils are characterized by their low-density and
high-water content, as well as their void ratio, rendering them unsuitable as backfill mate-
rial due to their low bearing capacity, high compressibility, and prolonged consolidation
time [15,16]. Foundation treatment becomes imperative to enhance the bearing capacity of
hydraulic-filled soils. However, there is currently no consensus on reinforcement methods
for coral sand foundations. In the land reclamation areas within coral reefs, the filling
layer is typically thicker than 5 m [4,17]. The vibro-flotation method has traditionally been
employed to densify deeply buried hydraulic filling materials due to its commendable
reinforcement effects; however, it is time-consuming and economically inefficient. Sand
foundations are also commonly reinforced via impact rolling [18], which combines im-
pact and rolling functions, providing a fast construction speed and cost-effectiveness [19].
Nevertheless, it falls short of meeting the requirements for deep subgrade reinforcement.
Dynamic compaction, which utilizes instantaneous impact loads, has been utilized to
compact soil, reduce soil compressibility, and enhance soil strength [20,21]. However,
Ke et al. [22] declared that a coral sand foundation treated using dynamic compaction
remains susceptible to liquefaction and that the reinforcement effect of dynamic compaction
on the subgrade below the groundwater is minimal. Following on-site observation, it was
found that the compaction degree of hydraulic-filled coral sand foundations nearly meets
the criteria for use as the foundation for airports or other engineering structures with a
straightforward foundation treatment [17].

In the case of quality control for a hydraulic-filled coral sand foundation, Van Impe et al. [23]
highlighted that both the discharge methods of the dredgers, i.e., rainbowing or tilting, and
ground improvement techniques, including dynamic compaction, rolling compaction, or
vibro-compaction, can induce different initial stress an-isotropy and stress histories in coral
sand. Therefore, in practical applications reinforcing hydraulic-filled coral sand founda-
tion, relying solely on the tip resistance-relative density (qc-Dr) relationship is insufficient
and should be abandoned. Giretti et al. [24] also pointed out that empirical correlations
developed with silica sands cannot be applied in the presence of crushable materials such
as carbonate sands. Furthermore, Giretti et al. [25] performed a cone penetration test (CPT)
calibration using a centrifuge model with supplementary large-scale calibration chamber
tests, and a relationship between the qc of CPT and state parameter was established, which
serves as a pivotal benchmark for evaluating the reinforcement efficacy., Wang et al. [17]
emphasized that the hydraulic-filled coral soils, in the land reclamation projects on the
coral reefs in the South China Sea, exhibited uneven particle size distributions, ranging
from silt-sized particles to blocks. Notably, the CPT sensors often faced damage when
encountering these blocks, leading to test failures and inaccurate results. Consequently, the
more resilient and cost-effective approach of utilizing the dynamic penetration test (DPT)
was chosen to assess the density and bearing capacity of the coral soil foundation. Wang
et al. [17] also found that there is an approximately linear relationship between the bearing
capacity of the coral soil foundation and the blow count of DPT (N63.5). Based on the above
considerations, the DPT was also adopted for evaluating the performance of the current
hydraulic-filled coral sand foundation.

In this study, the reclaimed foundation has a thick layer of hydraulic-filled coral sand,
typically ranging from 6 to 10 m. It is crucial to carry out in situ experimental research
on the treatment effectiveness of the coral sand foundation as it helps in exploring the
optimal treatment scheme and technical construction parameters of coral sand foundations,
allowing us to determine the quality control standard of foundation treatments and ensure
the quality of the subsequent construction. The reclamation of reef islands in the South
China Sea is mainly for the construction of airports. The requirement for an airport
foundation bearing capacity is around 200 kPa [26], and a shallow foundation is normally
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enough to bear the overlying structures. Since previous experiences were limited and
the construction time was short, two common methods of treating inland foundations,
vibro-flotation and impact rolling, were employed to treat the hydraulic-filled coral sand
foundation. After treatment, the plate load test, California Bearing Ratio (CBR) test, density
measuring, and settlement monitoring were performed to evaluate the compaction degree,
bearing capacity, and settlement of the surface layer, which is the main bearing layer;
moreover, dynamic penetration test (DPT) was adopted for assessing the bearing capacity
and compactness of deeper foundation soils.

2. Site Conditions

The study area is on a reef island in the South China Sea (Figure 1a), and the stratigra-
phy of the studied reef island, as depicted in Figure 1b, comprises six distinct layers. The
uppermost layer represents the hydraulic filling layer, primarily consisting of uncemented
coral soils with particle sizes ranging from silt to blocks. The second layer is the original
reef flat, which is covered by a layer of beach rocks that extend to approximately 2 m in
thickness, cemented by algae and laying about 1–2 m below sea level. Below the reef flat,
the third to fifth layers consist of lightly cemented coral debris, predominantly composed
of coral soil, shell remnants, and reef blocks. The sixth layer comprises the cemented reef
limestone stratum. Comprehensive topographical and subsurface information about the
reef island can be found in Sun et al. [27]. Figure 2 shows the hydraulic filling process
for creating foundations for the construction of infrastructures, mainly including airport
runways, drainage works, pipe gallery construction, oil tanks, and associated buildings. In
this method, sedimentary coral sands near the reef platform are dredged by a large-scale
cutter suction dredger and pumped through pipelines along with seawater onto the reef
platform. Through the self-weight consolidation of the coral sand, excess water drains
away, and a certain stable elevation is achieved.
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The hydraulic-filled coral sand is mainly formed through the accumulation of the
skeletal remains of marine organisms like shells and corals. The soil particles often exhibit
irregular branching, spindle-like, flaky, and blocky shapes, among others, with a higher
content of branching and spindle-like particles. Coarser particles often show more irregular
shapes with numerous intra-particle pores, while the finer particles have relatively regular
shapes but still contain a significant number of intra and surface pores, as shown in Figure 3,
which is also observed in Yao and Li [12]. Sieving tests were performed on five sets of
coral sand samples collected from the surface of the hydraulic fill, where particles coarser
than 4.75 mm (about 2–4%) were removed. The grading curves of the coral sand samples
are presented in Figure 4. It can be seen that the particles with sizes ranging from 0.3 to
0.6 mm have the highest content, accounting for approximately 28.8% of the total mass.
The median particle size (d50) is around 0.44 to 0.68 mm, the coefficient of uniformity (Cu)
falls within the range from 4.00 to 5.62, and the coefficient of curvature (Cc) is in the range
from 0.85 to 1.05. According to the ASTM [28] D2487, among the five samples, 1, 4, and 5
are well graded, while 2 and 3 are poorly graded, indicating that there is a certain degree
of variability in the distribution of soil materials at the site. The fundamental physical
properties of the coral sands are listed in Table 1. The minimum dry density of the coral
sand samples was determined according to ASTM [29] D4254. In the case of measuring
the maximum dry density, the vibration hammering method was used to avoid significant
particle damage [30]. Three parallel tests were performed for each measurement to obtain
an average value.
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Table 1. Fundamental physical properties of the calcareous soils.

Gs emax emin wi (%) ρdi (g/cm3) ρd,max (g/cm3) ρd,min (g/cm3)

2.8 1.31 0.69 16.3–21.2 1.43–1.48 1.66 1.21
Note: Gs, specific gravity; emax, maximum void ratio; emin, minimum void ratio; wi, water content after self-weight
consolidation; ρdi, dry density after self-weight consolidation; ρd,max, maximum dry density; ρd,min, minimum
dry density.

3. Foundation Treatment Schemes

The study area was divided into four experimental zones, including one zone (A1)
without post-filling treatment, two zones (A2 and A3) with vibro-flotation treatment, and
one zone (A4) with impact rolling treatment. The purpose was to assess the treatment
effects of coral sand foundations under different treatment techniques. The thickness of the
hydraulic-filled coral sand layer in each experimental zone was approximately 7 to 8 m,
and the depth of groundwater was around 2 m. The specific dimensions and layout of each
zone are shown in Figure 5.
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During on-site implementation, hydraulic filling was first performed to create the
initial onshore foundation. After the filling was completed, the site was left for one month
to allow seepage and drainage. Once the seepage and drainage processes were stable and
met the conditions for foundation treatment, the on-site foundation treatment was initiated.
The treatment methods for each experimental zone were as follows:

(1) Untreated Zone A1: After the formation of the coral sand foundation through hy-
draulic filling, no further foundation treatment was conducted. The improvement of
the foundation relied solely on self-weight consolidation.

(2) Vibro-flotation Zones A2 and A3: A 180 kW dynamic vibrator was used for the
foundation treatment. The zones were divided into A2 and A3 based on different
treatment depths, with compaction depths of 5 m and 10 m, respectively. The vibro-
flotation points were arranged in an equilateral triangle and the distance between two
treatment points was 3.5 m. According to in situ observation, it was found that the
effective vibration zone of the 180 kW dynamic vibrator has a diameter of about 4 m,
beyond which the soil density was almost unaffected. The layouts of the treatment
points as well as the construction sequence can be observed in Figure 5.

(3) Impact Rolling Zone A4: A 25 kJ triangular roller was used to impact and roll the sur-
face layer of the hydraulic-filled coral sand. In total, 20 rolling passes were performed
for the treatment.
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During the treatment, to prevent the mutual interference of seepage effects in different
experimental zones after foundation treatment and to expedite the drainage and self-weight
consolidation process, a 2 m deep drainage trench was excavated around each experimental
zone after the completion of filling. Additionally, a 5 m wide untreated platform was left
around each experimental zone during the treatment process.

4. On-Site Evaluation Tests

After the foundation treatment was completed, a series of evaluation tests were con-
ducted on site, including a plate load test, California Bearing Ratio (CBR) test, soil density
measurement, and dynamic penetration test (DPT), to identify the extent of the increase in
the foundation density and bearing capacity, assess the deformation characteristics, and
analyze the reinforcement depth. Finally, the monitoring data of the on-site settlement of
the hydraulic-filled coral sand foundation were discussed.

4.1. Normal Shallow Plate Load Test

The shallow plate load test is a direct means of measuring the bearing capacity and
deformation modulus of the foundation and typically involves recording the foundation
settlement under incremental loading, which could reflect the foundation’s resistance to
deformation [31]. The maximum load applied is generally twice the design load of the
foundation. In this study, the maximum design load is 300 kPa; therefore, a maximum load
of 600 kPa was employed. A square steel plate with sides of 1000 mm and a thickness of
50 mm was used as the loading plate. Counterweights in conjunction with a high-pressure
hydraulic pump were employed to apply the load incrementally, and the displacement
of the load plate at various time points and under different pressures was recorded using
a dial gauge. A curve illustrating displacement as a function of pressure was plotted,
i.e., the p–s curve. According to GB 50007-2011 [31], when there is a proportional limit
on the p–s curve, the load value corresponding to the proportional limit is taken as the
characteristic value of the bearing capacity; however, when the ultimate load is less than
the load value of the corresponding proportional limit, half of the ultimate load should
be taken as the characteristic value of the bearing capacity. The deformation modulus is
calculated according to the following equation [32]:

E = I0

(
1 − µ2

) pb
s

(1)

where E represents the deformation modulus of the foundation; p denotes the vertical stress
in the linear segment of the p–s curve; s corresponds to the settlement associated with p;
b is the side length or diameter of the bearing plate; I0 stands for the shape factor of the
bearing plate (0.886 for a square plate); µ is the Poisson’s ratio, and 0.3 is adopted for coral
sands according to He et al. [33]. The shallow plate load tests were performed immediately
after completing the foundation treatment and leveling the surface. For each experimental
zone, three points near the center were randomly tested.

4.2. Plate Load Test for Determining the Modulus of the Subgrade Reaction

As a design parameter for pavement structures, the modulus of the subgrade reaction
is typically used to determine the strength of the airport pavement foundation, reflecting
the foundation’s resistance to deformation. The modulus of the subgrade reaction can be
determined by a specialized plate load test. In this test, an increasing load was applied to a
bearing plate with a diameter of 760 mm. Deformation values under varying loads were
measured to obtain a p–s curve. Based on Winkler’s model, the modulus of the subgrade
reaction can be calculated using the following equation [34]:

Ku =
pB

0.00127
(2)
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where Ku represents the modulus of the subgrade reaction and pB denotes the vertical
stress corresponding to a settlement of 1.27 mm. After the treatment, plate load tests were
conducted at three random points on the leveled surface in each experimental zone.

4.3. CBR Test

The CBR test is mainly for determining the stiffness of road subgrades. A penetration
rod with a 50 mm metal cylinder was pressed into the subgrade at a rate of 1 mm/min.
The pressure at a specific depth (usually 2.5 mm) was compared to the standard pressure
for that penetration depth, which gave the measured CBR value for the subgrade [35]. The
formula for calculating the CBR value is as shown below:

CBR =
P1

P0
× 100% (3)

where P1 is the measured vertical stress at the corresponding penetration depth and P0 is
the standard pressure for a 2.5 mm penetration depth (7 MPa). Similar to the plate load
tests, in situ CBR tests were carried out at three randomly chosen locations within each
experimental zone.

4.4. Soil Density Measurement

The compaction degree is one of the most important indicators for the quality control
of the soil foundation, which refers to the ratio of the dry density of the compacted material
to its maximum dry density. Only through adequate compaction of the foundation can
the safety and stability of the upper structure construction be ensured. The density of
coral sand was determined using the sand-filling method [35]. In each experimental zone,
the density of the surface layer of the coral sand foundation (0–1.0 m) was assessed at
8 randomly chosen positions.

4.5. Dynamic Penetration Test

The dynamic penetration (DPT) test is a quick and cost-effective method for indirectly
assessing the bearing capacity and compactness of deeper foundation soils. In this study, a
heavy dynamic penetration test was employed using a 63.5 kg heavy hammer dropped
freely from a fixed height of 76 cm to drive the probe rod into the soil. The number of blows
required for the probe rod to penetrate 10 cm was recorded as N63.5, thus obtaining DPT
values at different depths [36]. The DPT tests were performed at nine randomly selected
positions within each experimental zone after the foundation treatment. Considering the
hydraulic filling depth on the reef island ranging from 5 to 10 m, the DPT examination
depth was set as 6 m, with N63.5 values recorded every 10 cm of penetration, commencing
at a depth of 0.5 m.

4.6. Settlement Monitoring

The elevation of each experimental zone was measured before and after the treatment
to calculate the construction settlement. After the treatment, three surface settlement
markers were buried in each zone to observe the post-construction settlement. For the
untreated zone, settlement markers were set just after the reclaimed land formation.

5. Results and Discussion
5.1. Bearing Capacity and Deformation Modulus

The representative p–s curves of the four experimental zones are shown in Figure 6a.
It can be observed that, except for the A1 zone, there are no obvious inflection points on
the p–s curves for the other zones. While on the site, it was found that, even when the tests
reached their maximum loading of 600 kPa, there was no significant lateral extrusion of
coral sand or a sudden increase in the settlement around the bearing plate for the A2, A3,
and A4 zones. This suggests that the characteristic value of the bearing capacity must be
at least 300 kPa for the three zones. Analyzing the p–s curve of the A1 zone, an inflection
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point appears at a load of 375 kPa, and a significant lateral extrusion of coral sand occurred
when the load reached 450 kPa, indicating the onset of soil failure. This might be related
to the particle breakage of the coral sand. Therefore, the load just before failure, 375 kPa,
is taken as the ultimate load, and half of the ultimate load, 187.5 kPa, is considered the
characteristic value of the bearing capacity of the A1 zone.
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Figure 6. Shallow plate load testing results: (a) p–s curve; (b) deformation modulus.

It can be seen that the untreated coral sand foundation already has a relatively high
bearing capacity that can meet the requirements of some light buildings and structures. At
the same time, according to the p–s curves of the A2 and A3 zones, their differences are
minimal, with the foundation bearing capacity and deformation modulus varying within
the same range, indicating that there is no need to further extend the treatment depth to
10 m in vibro-flotation. The p–s curve of the A4 zone lies only slightly below those of A2
and A3, which suggests that surface impact rolling could effectively improve the bearing
capacity of the coral sand foundation.

The deformation moduli of the four experimental zones, with three testing data for
each zone, are shown in Figure 6b. It can be seen that the deformation modulus of the A1
zone is around 20 MPa, which is higher than common untreated terrestrial sands [37,38].
For the A4 zone, after the impact rolling treatment, the deformation modulus increases to
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about 40 MPa, essentially double that of the untreated zone. Firstly, this is because the soil
particles rearrange and the void ratio reduces under the impact. Secondly, the impact force
causes significant particle breakage, especially in the surface layer, further filling voids and
increasing the degree of compaction. In contrast, although the deformation modulus of
the A2 and A3 zones increases further under the vibro-flotation compaction treatment, the
increase is marginal in comparison to the A2 zone.

5.2. Modulus of Subgrade Reaction

The representative p–s curves of the four experimental zones for measuring the
modulus of the subgrade reaction are shown in Figure 7a. It can be observed that, for the
A1 zone without treatment, the vertical stress when the bearing plate settlement reaches
1.27 mm is 56 kPa. Therefore, the modulus of the subgrade reaction for the A1 zone is
determined to be 44.0 MN/m3. The value is relatively high and can essentially meet
the design requirements for the clay and silt subgrades of an airport runway [34]. This
indicates that seepage consolidation has a certain compaction effect on the coral sand
foundation. Similarly, the modulus of the subgrade reaction for the A2, A3, and A4
zones after vibro-flotation and impact rolling treatments are found to be 91.8 MN/m3,
97.2 MN/m3, and 78.5 MN/m3, respectively. The modulus of subgrade reaction after
impact rolling increases by nearly a factor of two compared to the untreated state. The
foundation capacity essentially meets the design requirements for the coarse-grained soil
subgrades of an airport runway [34].
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The moduli of the subgrade reaction of the four experimental zones, with three testing
data for each zone, are shown in Figure 7b. The average modulus of subgrade reaction for
the A1, A2, A3, and A4 zones was found to be 42.6 MN/m3, 94.0 MN/m3, 99.8 MN/m3,
and 78 MN/m3, respectively, indicating that the overall trend remains consistent with those
described above.

5.3. CBR Value

The p–s curves from the representative location of each experimental zone are pre-
sented in Figure 8a. For the untreated A1 zone, the vertical stress at a penetration depth of
2.5 mm was 1092 kPa, and the corresponding CBR value was 15.6%. In accordance with
AASHTO [39] T 193, a CBR value of 16% suggests that the soil may have a moderate-to-fair
bearing capacity. The CBR values for the three treated zones are 66.5%, 66.0%, and 53.8%, re-
spectively, indicating a significant improvement in the bearing capacity after vibro-flotation
or impact rolling. Although the CBRs of the vibro-flotation-treated zones surpass those of
impact rolling, considering the soil variability, both treatment methods are considered to
be efficient.

J. Mar. Sci. Eng. 2023, 11, x FOR PEER REVIEW 13 of 19 
 

 

 
(a) 

 
(b) 

Figure 8. CBR testing results: (a) p–s curve; (b) CBR value. 

5.4. Soil Compactness 

In each area, eight positions were randomly selected for the density measurement. 

The compaction degree of the hydraulic filling coral soils before and after treatment was 

determined by comparing the field-measured dry density, obtained through the sand re-

placement method, with the maximum dry unit weight of the coral sand achieved using 
the vibration hammering method (1.66 g/cm3). The corresponding compaction degree for 

each point is summarized in Figure 9. The results show that the compaction degree within 

the A1 zone, which did not undergo any treatment, ranged from 86% to 90%, with a mean 

value of approximately 88% after hydraulic filling and self-weight consolidation. This sug-

gests that the compaction degree of the hydraulic-filled coral sand foundation complies 

with the design requirements for areas with lower bearing capacity demands [34]. Follow-

ing vibro-flotation and impact rolling treatment, due to the breakage of coarser coral sand 

particles, the voids are further filled. As a result, the compaction degree in the treated 

0

2

4

6

8

0 2000 4000 6000 8000

s
 (

m
m

)

p (kPa)

A1 A2 A3 A4

0

20

40

60

80

100

0 1 2 3 4 5 6 7 8 9 10 11 12

C
B

R
 (

%
)

Test number

A1

A2

A3

A4

Figure 8. CBR testing results: (a) p–s curve; (b) CBR value.

72



J. Mar. Sci. Eng. 2023, 11, 2288

A more detailed analysis of the CBR values for different experimental zones is shown
in Figure 8b, where slightly scattered results could be observed within each experimental
zone. Notably, the CBRs for the three tested positions within the untreated zone A1
consistently exceed 15%, with one reaching as high as 20%. This signifies that the stiffness
of the hydraulic-filled coral sand foundation is already high enough for airport runway
construction. Much higher CBR values are observed in the treated areas, which can be
attributed to the substantial impact of both the vibro-flotation and impact rolling treatments
on particle rearrangement and breakage, resulting in a much denser structure [4].

5.4. Soil Compactness

In each area, eight positions were randomly selected for the density measurement.
The compaction degree of the hydraulic filling coral soils before and after treatment was
determined by comparing the field-measured dry density, obtained through the sand
replacement method, with the maximum dry unit weight of the coral sand achieved using
the vibration hammering method (1.66 g/cm3). The corresponding compaction degree
for each point is summarized in Figure 9. The results show that the compaction degree
within the A1 zone, which did not undergo any treatment, ranged from 86% to 90%, with
a mean value of approximately 88% after hydraulic filling and self-weight consolidation.
This suggests that the compaction degree of the hydraulic-filled coral sand foundation
complies with the design requirements for areas with lower bearing capacity demands [34].
Following vibro-flotation and impact rolling treatment, due to the breakage of coarser
coral sand particles, the voids are further filled. As a result, the compaction degree in
the treated areas increases from 93% to 96%, essentially meeting the design requirements
for airport construction [34]. The difference in enhancement between vibro-flotation and
impact rolling, as seen in the comparison of the compaction degree, is negligible, with the
difference in average values being less than 1%.
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Figure 9. Compaction degree of the surface coral sand in each experimental zone.

Additionally, a comprehensive examination of the compaction degree was conducted
at different depths and time intervals in a specific location within the A1 zone. This
investigation aimed to understand the effects of seepage and self-weight consolidation on
the densification of the coral sand. The evaluation spanned time periods of 1 week, 2 weeks,
and 2 months following the reclaimed land formation. Figure 10 illustrates the compaction
degree at this specific site. The data reveal a notable enhancement in the density of the
coral sand ground after increased time following hydraulic filling, particularly during
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the first week. Subsequently, it stabilizes at around 14 days. Notably, one month later,
the compaction degree within the top 1.0 m of the soil reaches 88.6%, aligning with the
data shown in Figure 9. A comparison of the soil compaction degree at different depths
indicates that the compactness improves with increasing burial depth, reaching as high as
90% within the 2.0–3.0 m range, and, in some instances, increasing up to 94%. This meets
the essential requirement for airport subgrade quality. Self-weight consolidation plays a
significant role in the densification of hydraulic-filled materials. Additionally, the relatively
faster seepage velocity and the facilitated movement of finer particles within inter-particle
voids are a consequence of the irregular particle shape of coral sand [40,41]. Both factors
contribute to the densification of the coral sand.
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Figure 10. Compaction degree of the coral sand in the untreated zone at different depths and
time intervals.

5.5. DPT Result

The test data for the four representative positions within each experimental zone in
terms of the N63.5 against depth are displayed in Figure 11. In the untreated A1 zone, the
N63.5 ranges from 5 to 12 within a 6 m depth. The scatteredness is mainly due to the uneven
structure of the coral sand caused by the hydraulic filling process [42], with the maximum
value having been found at a depth of 1.5–2.0 m. Beyond a depth of 3 m, the N63.5 decreases
due to the influence of groundwater. After foundation treatment, N63.5 is generally greater
than 10, with a maximum value of 23, indicating a significant improvement in foundation
compactness. The most pronounced increase in N63.5 occurs after vibro-flotation at a
depth of 1–3 m. However, for foundation depths exceeding 3 m, the increase in N63.5
is considerably less, suggesting that the reinforcement effect of both vibro-flotation and
impact rolling on the deep foundation is not as substantial as the surface layers.

In each area, nine positions were randomly selected for the DPT evaluation. Figure 12
presents the average N63.5 along the foundation depth for each test position. In the untreated
area, the mean values of the N63.5 range from approximately 7 to 11. After vibro-flotation
treatments at depths of 5 m and 10 m, the N63.5 values increase significantly, falling within
the range from 14 to 24. However, the difference between the two tested zones within the
depth of 6 m is not significant. In the impact rolling zone, the mean N63.5 values increase
to a range from 12 to 20. According to Wang et al. [17], when the N63.5 of the coral sand
foundation exceeds 10, it indicates a compaction degree higher than 85% and a bearing
capacity greater than 500 kPa. In summary, the effectiveness of impact rolling meets the
requirement for infrastructure construction.
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Figure 11. N63.5 against depths of representative positions within each experimental zone.
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Figure 12. Average N63.5 along the foundation depth for each test position.

5.6. Settlement Analysis

The settlement of the untreated A1 zone over time is shown in Figure 13. It is evident
that the coral sand foundation experiences significant settlement over time, and the set-
tlement rate initially increases rapidly. As the drainage process continues, the settlement
gradually stabilizes, reaching a relatively stable state after one month, with a maximum
settlement of approximately 30 cm. As pointed out by Wang et al. [41], the coral sand
particles are porous and have an angular shape, resulting in higher permeability than
common terrigenous sand and rapid self-weight consolidation characteristics.
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Figure 13. Settlement of the untreated A1 zone over time.

The additional construction and post-construction settlements of the A2, A3, and
A4 zones are shown in Table 2. It can be observed that the surface coral sand undergoes
further compression and consolidation because of particle breakage and rearrangement
after the vibro-flotation and impact rolling treatments. Specifically, the settlement ranges
from 21.0 to 24.1 cm for the vibro-flotation treatment and from 19.5 to 21.6 cm for the
impact rolling treatment. In conjunction with the post-treatment settlement analysis, it is
found that the post-vibro-flotation treatment settlement after 30 days ranges from 3.5 to
5.1 mm, and the post-impact rolling treatment settlement ranges from 5.2 to 6.8 mm. Both
treatments result in a very low post-treatment settlement, indicating a more stable state;
moreover, those values are much lower than the allowable post-construction settlement for
an airport runway, which is 0.2–0.3 m [34]. The results also coincide with the findings by
Wang et al. [4] that the ground settlement of the hydraulic filling coral sand treated using
vibroflotation tends to be stable after 21 days, and the average settlement is 4.3 mm after
61 days. This might be due to the relatively low compressibility of coral sand compared to
quartz sand at low stress levels [12].

Table 2. Settlement observation results of each test point.

Experimental
Zone

Construction Settlement
(cm)

Post-Construction Settlement
after 30 Days (mm)

Point 1 Point 2 Point 3 Point 1 Point 2 Point 3

A2 23.7 21.2 21.0 5.1 4.7 4.2
A3 23.6 22.9 24.1 3.5 4.3 3.6
A4 19.5 20.3 21.6 5.2 6.8 5.5

6. Conclusions

Through a series of on-site evaluation tests, this study examined the reinforcement
effectiveness of various foundation treatment processes on a reclaimed coral sand founda-
tion, considering aspects including the bearing capacity, deformation modulus, modulus of
the subgrade reaction, CBR, DPT value, and settlement. The main findings are as follows:

(1) The untreated hydraulic-filled coral sand foundation exhibits a bearing capacity
exceeding 150 kPa and a deformation modulus of 20 MPa. This high-bearing capacity
and deformation modulus could satisfy the requirements of some light buildings and
structures. After impact rolling treatment, the bearing capacity increases to larger
than 300 kPa, and the deformation modulus reaches 40 MPa. Vibro-flotation could
result in a slightly higher bearing capacity and deformation modulus than when using
the impact rolling treatment. Since both treatment methods could make the bearing
capacity of the foundation meet the maximum requirement of design load (300 kPa),

76



J. Mar. Sci. Eng. 2023, 11, 2288

impact rolling is considered to be the most efficient in this study because of the simple
machinery and quick construction speed;

(2) Comparing the modulus of the subgrade reaction and CBR values of the coral sand
foundation before and after the impact rolling treatment, the untreated foundation
exhibits a modulus reaction of 40 MN/m3 and CBR values exceeding 15%. These
values are relatively higher compared to common terrestrial fill soils, indicating the
beneficial effect of seepage densification in increasing the foundation’s strength. After
the impact rolling treatment, the modulus of the reaction and CBR values further
increased. Impact rolling caused particle breakage and rearrangement in the surface
layer of the coral sand, enhancing compaction and deformation resistance. The finer
particles filling the voids result in a greater interlocking effect, improving the strength
and stability of the foundation to meet airport engineering design standards. Vibro-
flotation could result in a slightly higher modulus of reaction and CBR values than
the impact rolling treatment;

(3) Due to the high permeability resulting in rapid self-weight consolidation, the un-
treated coral sand foundation exhibits a relatively high degree of compaction. After
impact rolling or vibro-flotation treatment, coral sand particles undergo breakage and
rearrangement, leading to denser structures. The compaction degrees after treatment
essentially meet the technical requirements for airport runways;

(4) The N63.5 obtained from the DPT of the untreated coral sand foundation ranges from
5 to 12 within 6 m of depth, with the maximum value found at a depth of 1.5–2.0 m.
After impact rolling or vibro-flotation treatment, the N63.5 increases markedly. The
most pronounced increase in N63.5 occurs after vibro-flotation at a depth of 1–3 m.
However, for foundation depths exceeding 3 m, the increase in N63.5 is considerably
less, suggesting that the reinforcement effect of both vibro-flotation and impact rolling
on the deep foundation is not as substantial as in the surface layers;

(5) The untreated coral sand foundation, due to the effects of seepage densification and
self-weight consolidation, experiences settlement during the drainage process. The
consolidation occurs rapidly, with the foundation essentially stabilizing after one
month, resulting in total settlements ranging from 27.5 to 32.8 cm. After impact
rolling or vibro-flotation treatment, the foundation is further densified, with post-
construction settlements ranging from 3.5 to 6.8 mm, indicating a more stable state.
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Abstract: For the massive quantities and negative impacts of dredged mud slurry, its disposal and
utilization have become one of the most noticeable issues in the world. In this paper, the flocculation-
solidification-high pressure filtration combined method is proposed to effectively dispose of marine
mud slurries. The advantages of this method are demonstrated herein in the following three aspects:
dewatering performance, material savings, and the shear strength of the treated marine mud slurry.
Then, the effects of the anionic polyacrylamide (APAM) dose, composite solidification agent dose,
initial water content of marine mud slurries, and initial thickness of geo-bags on the mechanical
properties of the marine mud slurry treated by the flocculation-solidification-high pressure filtration
combined method are studied. Experimental results show that with increasing doses of APAM, the
structures of mud slurries become more stable, and the optimal dose of APAM is determined as
0.16%. Moreover, the increase in the composite solidification agent dose and initial water content of
the marine mud slurry, and the decrease in the initial thickness of geo-bags both contribute to the
increase in the shear strength of the marine mud slurry treated by the flocculation-solidification-high
pressure filtration combined method.

Keywords: marine mud slurry; flocculation; composite solidification agent; high-pressure filtration;
shear strength

1. Introduction

In the projects of navigation construction, enormous amounts of marine mud slurry
(MS) are hydraulically dredged from ports, harbors, and channels around the world [1].
Globally, several hundred million cubic meters of marine mud slurries with poor engineer-
ing characteristics are inevitably produced. For the massive quantities and negative impacts
of dredged mud slurry, its disposal and utilization have become one of the most noticeable
issues in the world [2–7]. Traditional solutions, such as inland deposits and ocean dumping,
are increasingly unpopular for their deleterious influence on surroundings [8]. Considering
the shortage of construction materials in civil engineering, a practically feasible solution is
to convert large volumes of marine mud slurry into construction materials for reuse, such
as embankment [9], subbase materials [10,11] and brick production [12]. Therefore, it is of
great significance to investigate the efficient treatment and utilization of dredged marine
mud slurry.

Scholars have demonstrated that the vacuum preloading method can significantly
improve the mechanical properties of slurries [13–17]. The vacuum preloading method is
used in the treatment of soft clays for the advantages of simple construction technology
and low cost. However, the slurry has a high fine particle content and low permeability,
and can easily block the drainage board. The vacuum preloading method has low drainage
efficiency and long drainage times for slurry with high water content [18]. Furthermore,
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the limited vacuum load inevitably results in the treated soil still belonging to soft soil, and
can not directly convert marine mud slurry into filling material.

It has been widely accepted that the stabilization/solidification (S/S) techniques
play a significant role in dredging sediments [19–22]. By adding a solidification agent,
such as ordinary Portland cement (OPC), ground granulated blast furnace slag (GGBS) or
metakaolin, the strength of slurries can be significantly increased [23]. Previous studies
have gained a general understanding on the mechanism of sediment solidification [24]. It
should be noted that the treatment efficiency of solidification agents on slurries is related
to the water content. With the increase in water content, the curing efficiency of the
solidification agent significantly decreases [25–27]. For marine mud slurry with high
water content, the solidification treatment is either ineffective or extremely costly. The
technique of flocculation and pressure of flocculated sediments is used in dewatering
treatment of slurries. Flocculants have the function of promoting the dewatering rate
of treated slurries [28,29]. Pressure filtration is a process of solid–liquid separation [30].
The mechanical properties of slurries treated by flocculation and pressure filtration will
deteriorate after encountering water, making it difficult to reuse them.

In recent years, the combined physical and chemical method that integrates physical
dewatering and chemical solidification has been proposed. This method can transform
marine mud slurry into construction materials and apply them in reclamation, coastal
embankment filling, and coastal slope protection [31]. However, as a new method, its fun-
damental principles and influencing factors are not well-understood. During the treatment
process, the effects of the process parameters on the mechanical properties of the marine
mud slurry are still unclear. This paper focuses on the flocculation-solidification-high
pressure filtration combined method (FSHCM) to effectively process marine mud slurry.
The effects of flocculant dose, composite solidification agent dose, initial water content and
initial thickness of geo-bags on the mechanical properties of treated marine mud slurry are
studied through laboratory experiments.

2. Laboratory Experiments
2.1. Materials

The materials employed in the experiments consisted of marine mud, solidification
agent, and flocculants. The mud sample belonged to a marine deposit collected from an
actual construction site located in Wenzhou, China. The basic physical and engineering
properties of the mud sample are listed in Table 1.

Table 1. Basic properties of the marine mud slurries used in laboratory experiments.

Specific
Density Gs

Liquid
Limit wL

Plastic
Limit wP

Plasticity
Index

Organic Content
(Ignition Loss) mo

Sand Fraction
(0.075–2 mm)

Silt Fraction
(0.002–075 mm)

Clay and Colloid
Fraction

(<0.002 mm)

2.69 56.1% 26.7% 29.4 4.41% 14.9% 79.5% 5.6%

The particle size of the mud was determined using a laser particle size analyzer,
and the particle size distribution curve is shown in Figure 1. Based on the Unified Soil
Classification System [32], the mud could be categorized as fat clay (CH). Additionally, the
mud composition was analyzed using the 09 Empyrean X-ray diffractometer. This mud
was composed of quartz, kaolinite, illite, smectite and mica. The composite solidification
agents chosen for this experiment were the 425# OPC and GGBS. The flocculants used in
the experiments were AN926SH anionic polyacrylamide (APAM) solution and Ca(OH)2.
APAM is a widely employed substance in various industrial fields like water treatment,
sludge dewatering, and the paper industry [33–35]. In this experiment, the APAM solution
was prepared at a concentration of 1:500 (mass ratio of dry APAM powder to water). The
APAM dose was defined as the dry weight ratio of APAM powder to the dry soil particles.
Ca(OH)2 can be consumed by GGBS; the hydration products improve the solidification
effect [36].
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Figure 1. Particle size distribution curve for the mud sample.

2.2. Testing Procedures

The procedures of two types of tests, i.e., sedimentation tests and pressure filtration
tests, are illustrated.

(1) Sedimentation tests

Many scholars use settlement tests to investigate the sedimentation behavior of mud
slurries [37–39], which provided a reference for our experiments. The detailed procedures
for the sedimentation tests are listed below.

(a) Set the initial dry weight of the mud sample (300 g) and the initial water content of the
marine mud slurry (300%), and calculate the amount of experimental materials required.

(b) Sequentially add water and Ca(OH)2 to the marine mud slurry, and mix them at a
constant speed using a multi-function mixer for 5 min. Then, manually stir the slurry
for half a minute (to avoid insufficient mechanical mixing) to obtain a homogeneous
slurry mixture.

(c) Add the APAM solution to the slurry mixture and stir thoroughly to obtain a compos-
ite flocculant mixture.

(d) Pour the composite flocculant mixture evenly into a 1.5 L capacity graduated cylinder,
ensuring consistent initial liquid level height. In the initial stage of the experiment,
record the sludge–water interface separation value every hour, and later, record it
every 2 h until the value remains constant.

(2) Pressure filtration tests

(a) Use an electric agitator to uniformly mix the original marine mud slurry and take a
sample to obtain its natural water content. Based on the natural water content of the
mud slurry and the predetermined mix ratio, calculate the required masses of water,
Ca(OH)2, OPC, and GGBS for the experiment.

(b) Based on the calculation results from step (a), add the required amounts of water,
Ca(OH)2, OPC, and GGBS sequentially to the slurry. Use a multifunctional mixer
to thoroughly stir the slurry to obtain the mixture. The mixing process includes
5 min machine mixing in the beginning, 1 min hand mixing in the middle, and 3 min
machine mixing in the end.

(c) Add APAM solution to the slurry and use a stirring machine to mix it evenly. Slow
down the stirring speed when agglomerates begin to form. Stop stirring when the
supernatant liquid separates from the mixed slurry.

(d) A specially developed device is used, as shown in Figure 2. This device is similar to
a piston, through which the mud slurry can be dewatered, as demonstrated in the
relevant standard [40]. Pour the mixed slurry into a geo-bag using a funnel and close
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the zipper. Then, place the geo-bag in trough I and secure the cover plate on top of
the pressure chamber using high-strength bolts. The material chosen for the geo-bags
in this test was polypropylene fiber, which effectively prevents the seepage of mud
particles and exhibits good permeability. The geo-bags had a planar dimension of
30 cm × 30 cm, and the maximum thickness was 20 cm. The aperture diameter of the
geo-bags was 48 um.

(e) A hydraulic jack is used to apply pressure to the geo-bag and maintain the hydraulic
pressure gauge reading at 15 MPa for 12 min. Observe the pressure gauge readings
and control the pressure level accordingly.

(f) Mud cake is obtained after the pressurization is completed. To ensure uniform initial
water content for each sample, when taking samples with a ring cutter, avoid the edge
of the mud cake. The samples are cylindrical, 61.8 mm in diameter and 20 mm in
height. Place the sample into sealed bags and conduct the curing process. The curing
temperature of the water bath incubator is 20 ± 3 ◦C, and the curing ages are 7 days,
14 days, 21 days, and 28 days, respectively. After the samples reach the curing age,
conduct water content tests and direct shear tests [41,42].
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Figure 2. Pressure filtration tests.

2.3. Testing Program

The laboratory experiments included a total of 5 groups and 32 tests. Table 2 provides
an overview of the mix proportions for all of these groups and tests. The curing conditions
of samples for each group were the same. The curing temperature of the water bath
incubator was 20 ± 3 ◦C, and the curing ages were 7 days, 14 days, 21 days, and 28 days.
The definitions of the symbols given in the table are as follows: wei represents the equivalent
initial water content, defined as the ratio of the sum of the mass of water contained in the
slurry itself and in the APAM solution to the mass of solids; M represents the dry weight of
the slurry; C represents the dose of composite solidification agent (mass fraction).
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Table 2. Program for the laboratory experiments.

Group Test wei (%) M (kg) C (%) APAM (%) Ca(OH)2 (%)

A
A1 200 2.5 6 0.16 1.5
A2 200 0.3 0 0.16 1.5
A3 200 2.5 20 0.16 1.5

B

B1 300 0.3 - 0 1.5
B2 300 0.3 - 0.04 1.5
B3 300 0.3 - 0.08 1.5
B4 300 0.3 - 0.12 1.5
B5 300 0.3 - 0.16 1.5
B6 300 0.3 - 0.20 1.5
B7 300 0.3 - 0.24 1.5
B8 300 0.3 - 0.28 1.5
B9 200 2.5 - 0 1.5

B10 200 2.5 - 0.16 1.5
B11 200 2.5 - 0.20 1.5
B12 200 2.5 - 0.24 1.5
B13 200 2.5 - 0.28 1.5

C

C1 200 2.5 3 0.16 1.5
C2 200 2.5 5 0.16 1.5
C3 200 2.5 7 0.16 1.5
C4 200 2.5 9 0.16 1.5

D

D1 100 2.5 6 0.12 1.5
D2 200 2.5 6 0.12 1.5
D3 300 2.5 6 0.12 1.5
D4 400 2.5 6 0.12 1.5
D5 500 2.5 6 0.12 1.5
D6 600 2.5 6 0.12 1.5

E

E1 200 2.5 6 0.16 1.5
E2 200 3.0 6 0.16 1.5
E3 200 3.5 6 0.16 1.5
E4 200 4.0 6 0.16 1.5
E5 200 4.5 6 0.16 1.5
E6 200 5.0 6 0.16 1.5

Group A consisted of a feasibility exploration test for the FSHCM. This group included
three tests (A1, A2 and A3) that adopted the FSHCM, flocculation-high pressure filtration
combined method (FHCM), and flocculation-solidification combined method (FSCM),
respectively. The feasibility of the FSHCM was verified by laboratory experiments. The
strength of samples was obtained through direct shear tests. For each test, four samples
were sheared under normal consolidation stresses of 50 kPa, 100 kPa, 150 kPa, and 200 kPa,
respectively. The samples were cylindrical, 61.8 mm in diameter and 20 mm in height. The
horizontal shear rate was set at 0.8 mm/min. In the three tests, the values of C were 0%,
6%, and 20%, respectively. A pressure filtration device was used in tests A1 and A2, with a
pressure of 0.35 MPa and an action time of 12 min.

Group B included 13 tests with fixed wei (B1~B8: 300%; B9~B13: 200%), M (0.3 kg), and
Ca(OH)2 dose (1.5%) but different APAM doses, varying from 0 to 0.28% (mass fraction).
Sedimentation tests (B1~B8) and pressure filtration tests (B9~B13) were used to explore the
effects of the APAM dose on the dewatering efficiency of FSHCM. The pressure and action
time of the pressure filtration tests were the same as those of Group A.

The Group C tests explored the effects of the composite solidification agent dose on
the shear characteristics of mud cake. The initial water content of the marine mud slurry
was 200%, and the mass of dry soil was 2.5 kg. The doses (mass fraction) of Ca(OH)2 and
APAM were 1.5% and 0.16%, respectively. In the four tests in this group, the composite
solidification agent doses were s 3%, 5%, 7%, and 9% of the dry soil mass, respectively.
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Group D included six tests, i.e., D1~D6, aiming to investigate the effects of initial water
content on the shear characteristics of mud cake. The initial water contents of samples were
100%, 200%, 300%, 400%, 500%, and 600%, respectively.

Group E tests were conducted to study the effects of the initial thickness of geo-bags on
the shear characteristics of mud cake. The initial thickness of geo-bags refers to the thickness
of geo-bags when they were filled with mud slurries and placed in the pressure filtration
device. The initial thickness of geo-bags included the thickness of the mud inserted in a
geo-bag and the thickness of the geo-bag itself. This group involved five tests with different
initial thicknesses of geo-bags (66 mm, 79 mm, 92 mm, 106 mm, 119 mm, and 132 mm).

3. Results and Discussion
3.1. Feasibility Exploration Tests for the FSHCM

The experimental results of Group A are illustrated in this section to demonstrate the
feasibility of FSHCM. Figure 3 depicts the relationship between water content and curing
age for the mud samples treated using FSHCM, FHCM, and FSCM, respectively. When
the curing age was less than 1 day, FSHCM had the best effect of dewatering, with the
lowest sample water content. FHCM yielded a slightly higher water content compared
to the former. FSCM, on the other hand, had the poorest effect of dewatering, with water
contents significantly higher than those of the first two methods. FSHCM-MS, FHCM-MS,
and FSCM-MS represent mud slurries treated by flocculation-solidification-high pressure
filtration combined method, flocculation-high pressure filtration combined method, and
flocculation-solidification combined method, respectively. When the curing age was longer
than 1 day, the water content of FSHCM-MS decreased slowly. FHCM-MS showed almost
no change in water content, while FSCM-MS exhibited a faster decrease in water content.
The higher the dose of composite solidification agent, the more pore water was consumed
by chemical reactions, resulting in a more significant decrease in the water content of the
samples. FSHCM can reduce the water content of the marine mud slurry to a relatively
low level through flocculation and high-pressure filtration. During the curing process, the
water content of marine mud slurry is further decreased by the consumption of pore water.
FSHCM has advantages both in terms of dewatering and material savings.
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Figure 3. Relationship between water contents of mud samples and curing age.

Figure 4 illustrates the representative strength envelopes of samples treated by the
three methods. It should be noted that the solid lines represent FSCM and the dashed lines
represent FHCM in Figure 4b. With the increasing curing age, the shear strength envelopes
of FSHCM-MS and FSCM-MS moved upward, indicating an increase in shear strength.
Additionally, the shear strength envelope of FHCM-MS remained unchanged with curing
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age. The shear strength envelope of FSHCM-MS at 7 days was located above the shear
strength envelope of FSCM-MS at 28 days, indicating that FSHCM-MS achieved greater
shear strength in a shorter time. Compared to FSCM, FSHCM needed less composite
solidification agent, and FSHCM-MS achieved higher shear strength, demonstrating the
efficiency of FSHCM.
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Figure 4. Strength envelopes of samples.

Figure 5 illustrates the effects of curing age on the cohesion and friction angle of
samples treated by the three methods. It can be observed from Figure 5a that FHCM-MS
exhibited no cohesion at 7 days, 14 days, 21 days, and 28 days of curing. This was attributed
to the higher water content in FHCM-MS, which did not allow effective bonding between
soil particles. FSCM-MS exhibited no cohesion at 7 days and 14 days of curing age, and it
showed minimal cohesion at 21 days, which gradually increases with the curing period.
After flocculation and dewatering treatment, there were still numerous pores between
soil particles in the slurries. Under the influence of the composite solidification agent,
it was challenging to establish effective bonds between soil particles in a short period.
The cohesion of FSHCM-MS increased with curing age. Compared to FHCM-MS, the
cohesion of FSHCM-MS increased by 104.89 kPa after 28 days of curing. Compared to
FSCM-MS, FSHCM-MS saved 14% of the composite solidification agent dose and increased
the cohesion by 94.59 kPa after 28 days of curing. From Figure 5b, it can be observed that
the friction angle values for FSHCM-MS ranged from 20◦ to 38.5◦, presenting significant
advantages.
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Figure 5. Effects of curing age on the cohesion and friction angle of samples.
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3.2. Effects of APAM Dose on the Dewatering Performance of FSHCM-MS

In sedimentation tests, the mixed slurry was poured into a 1.5 L capacity graduated
cylinder, and the supernatant liquid height, HS, was recorded every 1 or 2 h. Figure 6 shows
variation curves of HS against time at various APAM doses. The same dose of Ca(OH)2,
1.5%, was adopted for all tests. As can be seen in Figure 6a, when the APAM content
was 0%, 0.04%, 0.08% and 0.12%, the value of Hs increased significantly with time within
2000 min. The reason for this phenomenon is that the APAM dose was too small to form an
effective flocculation structure between the clay particles. The mixed mud slurry was still
a suspension.
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Figure 6. Variation curves of HS against time at various APAM doses.

When the APAM dose was 0.16%, the value of Hs increased evidently, and the slope
of the curve was larger within 200 min. Then, the curve entered a flatter state, and HS
approached a constant value after 2000 min, as shown in Figure 6b. As the APAM dose
increases (0.20%, 0.24% and 0.28%), the HS value gradually decreased, and the less time
it took for the curve to reach a relatively stable state. The reason for this phenomenon is
that with increasing APAM doses, the flocculation structure became larger, and the mixed
slurry quickly approached a stable state. Therefore, a stable flocculation structure could be
formed in the mud slurry when the APAM dose was 0.16%. As the APAM dose continued
to increase, the flocculation structure became larger, the mixed slurry reached a stable state
quickly, and the value of Hs changed less with time.

To investigate the effects of the APAM dose on the dewatering performance of FSHCM-
MS, representative APAM doses (0%, 0.16%, 0.20%, 0.24%, and 0.28%) were selected for
the analysis of the dewatering performance of the marine mud slurry. As shown in
Figures 7 and 8, the mud cake without the addition of APAM was fragmented, and the
filtrate was turbid. When APAM was added, the mud formed into a cake shape, and the
filtrate was clear.

Figure 9 shows the effects of the APAM dose on the water content of the mud cake.
When the APAM dose was 0.16%, the water content of the mud cake was only 65.56%.
When APAM was not added, the water content of the mud cake was 150.6%, which
was 2.3 times that of the mud cake without APAM, and the dewatering efficiency was
significantly improved. Moreover, as the APAM dose increased, the water content of the
mud cake decreased, but the rate became smaller.
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Figure 9. Effects of APAM dose on the water content and evaluation indicators.

The beneficial value of water consumption, η, was defined as shown in Equation (1).
A smaller η value indicates a more significant wastage of water resources:

η =
ω1 − ω2

ω2
× 100% (1)

where w1 represents the mass of drainage during the filtration process, and w2 represents
the mass of water required to prepare the corresponding flocculant solution.

Additionally, mechanical stirring time was considered as another evaluation indicator.
The mechanical stirring time was the mixing time of the agitator after adding the APAM
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solution to the mud slurries. The shorter the mechanical stirring time, the greater the mud
volume that could be processed per unit time. The effects of APAM dose on evaluation
indicators are shown in Figure 9b. It can be observed that with an increase in APAM dose,
the value of η exhibited a generally linear decrease, while the mechanical stirring time (tm),
showed an exponential increase. The results indicate that as the APAM dose increased, the
investment cost of FSHCM increased. Therefore, this study recommends an optimal APAM
dose of 0.16%.

3.3. Effects of Composite Solidification Agent on the Shear Characteristics of FSHCM-MS

Figure 10 illustrates the effects of composite solidification agent dose on the water
content of the mud cake. As seen in Figure 10a, the initial water content of the mud cake
showed relatively small variations with changes in the dose of the composite solidification
agent, and the dose of the composite solidification agent had little effect on the dewatering
efficiency of the FSHCM. Figure 10b shows that with an increasing curing age, a higher
solidification agent dose resulted in a faster decrease in the water content of the mud cake.
For example, when the solidification agent dose was 3%, 5%, 7%, and 9%, the 28-day water
content of the mud cake was 63.15%, 59.47%, 56.28%, and 52.84%, respectively.
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Figure 10. Effects of composite solidification agent dose on the water content of the mud cake.

Figure 11 illustrates the effects of the dose of the composite solidification agent on
the shear strength of mud cakes. It can be observed from Figure 11a that samples with
a higher dose of composite solidification agent had shear strength envelopes positioned
above those with a lower dose. Under the same normal stress conditions, they exhibited
greater shear strength.
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Figure 11. Cont.
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Figure 11. Shear strength envelopes.

Additionally, it is evident that with an increase in the dose of composite solidification
agent, the spacing between the shear strength envelopes gradually increased. The spacing
between the envelopes was notably larger for samples with a dose between 7% and 9%,
suggesting that a higher dose of composite solidification agent leads to a greater increase
in shear strength of the samples.

It can be observed from Figure 11 that the shear strength of the samples increased
with the curing age. Using the experimental results with a normal force of 200 kPa as
an example, when the samples were cured from 7 days to 28 days, the shear strength of
the samples increased by 30.2 kPa, 64.12 kPa, 76.13 kPa, and 104.45 kPa, respectively, for
composite solidification agent doses of 3%, 5%, 7%, and 9%. The higher the dose of the
composite solidification agent, the faster the increase in the shear strength of the samples
with curing age, and the greater the ultimate shear strength.

The Mohr–Coulomb criterion can be used in direct shear tests. Figure 12 illustrates the
effects of the dose of the composite solidification agent on the cohesion and friction angle
of the samples. As shown in Figure 12a, the cohesion of samples increased with curing age,
and a higher dose of composite solidification agent resulted in a more pronounced increase
in cohesion. For the same curing age, samples exhibited greater cohesion with a higher
dose of composite solidification agent. As can be seen from Figure 12b, the values of the
friction angle ranged between 20◦ and 35◦.
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Figure 12. Effects of the dose of composite solidification agent on the cohesion and friction angle
of samples.

3.4. Effects of Initial Water Content on the Shear Characteristics of FSHCM-MS

Figure 13 illustrates the effects of the initial water content of the marine mud slurry
on the water content of the mud cake. As can be seen in Figure 13a, changing the initial
water content of the marine mud slurry had a significant effect on the water content of
the mud cake. As the initial water content of the marine mud slurry increased, the water
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content of the mud cake decreased, and the rate of decrease became progressively smaller.
When the initial water content of the marine mud slurry increased from 100% to 400%,
the water content of the mud cake decreased by 19.6%. However, when the initial water
content increased from 400% to 600%, the water content of the mud cake only decreased by
2.39%. During the experiment, it was observed that the higher the initial water content of
the marine mud slurry, the larger the flocs formed by the flocculant, resulting in a faster
sedimentation rate.
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Figure 13. Effects of the initial water content of marine mud slurries on the initial water content of
the mud cake.

It can be observed from Figure 13b that for a given dose of composite solidification
agent, the higher the initial water content of the marine mud slurry, the lower the 28-day
water content of the mud cake. Specifically, when the initial water content of the marine
mud slurry was 100%, 200%, 300%, and 400%, the 28-day water content of the mud cake
was 61.0%, 53.8%, 49.5%, and 48.7%, respectively. The reasons for this phenomenon include
the following two points. The main reason is that as the initial water content of the marine
mud slurry increased, there were fewer solid particles per unit volume, resulting in a higher
initial porosity. This led to shorter drainage paths and higher drainage rates. Another
possible reason is that the chosen APAM dose for this experiment (0.12%) was optimal
for mud with high water content. At this dose, the dewatering performance was better in
high-water-content samples compared to low-water-content samples.

Figure 14 illustrates the effects of the initial water content of the marine mud slurry
on the shear strength of the mud cake. As can be seen from Figure 14a, it is evident
that the shear strength envelope of the samples with a higher initial water content was
positioned above that of the samples with a lower initial water content. This indicates that
a higher initial water content of the marine mud slurry leads to greater shear strength of
the filter-pressed mud cake under the same normal stress conditions.
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Figure 14. Cont.
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Figure 14. Shear strength envelopes.

Furthermore, the shear strength of the samples increased with curing age. Taking
the normal stress of 200 kPa as an example, for samples cured from 7 days to 28 days,
the shear strength increased as follows for the marine mud slurry with the initial water
content of 100%, 200%, 300%, and 400%: 79.67 kPa, 117.77 kPa, 123.2 kPa, and 130.75 kPa,
respectively. The higher the initial water content of the marine mud slurry, the faster the
rate of increase in shear strength of the samples with curing age, resulting in a higher final
shear strength value.

Figure 15 shows the effects of the initial water content of marine mud slurry on the
cohesion and friction angle of mud cake. For slurries with the same initial water content,
their cohesion increased with curing age. For mud cake cured from 7 days to 28 days, the
cohesion of the samples increased as follows for the marine mud slurries with initial water
contents of 100%, 200%, 300%, and 400%: 49.76 kPa, 60.58 kPa, 67.69 kPa, and 86.90 kPa,
respectively. Moreover, a higher initial water content in the marine mud slurry led to
greater cohesion of the samples. Figure 15b illustrates the curve of the friction angle of the
samples with curing age. The values of the friction angle ranged between 20◦ and 35◦.
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Figure 15. Effects of initial water content of marine mud slurries on the cohesion and friction angle
of mud cake.

3.5. Effects of the Initial Thickness of Geo-Bags on the Shear Characteristics of FSHCM-MS

Figure 16 illustrates the effects of the initial thickness of the geo-bags on the initial
water content of the mud cake. It can be observed from Figure 16a that as the initial
thickness of the geo-bags increased, the initial water content of the mud cake remained
relatively constant at first and then gradually increased. Specifically, the water content of
the mud cake rose by 14.8% due to the increase in the initial thickness of the geo-bags from
92 mm to 132 mm, while it remained almost unchanged from 66 mm to 92 mm. Figure 16b
illustrates the effects of the curing age on the water content of mud cake. When the same
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dose of composite solidification agent was used, a smaller initial thickness of geo-bags
resulted in a lower 28-day water content of the mud cake, mainly because the former led to
shorter pore channels and better dewatering efficiency in the FSHCM.
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Figure 16. Effects of the initial thickness of geo-bags on the water content of the mud cake.

Figure 17 illustrates the effects of the initial thickness of geo-bags on the shear strength
of the mud cake. It is obvious that the shear stress of the mud cake increases with increasing
normal stress. Additionally, as shown in Figure 17a, the envelope of shear strength for mud
cake with lower initial thickness of geo-bags was situated above that for mud cake with
higher geo-bag thickness. This indicates that under the same normal stress conditions and
curing age, a smaller initial thickness of geo-bags results in a larger shear strength of the
mud cake. Taking a normal stress of 200 kPa as an example, the 7-day shear strength of
the mud cake was 123.97 kPa, 118.59 kPa, 115.59 kPa, and 100.14 kPa for the thickness of
92 mm, 106 mm, 119 mm, and 132 mm, respectively.
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Figure 17. Shear strength envelopes.
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Furthermore, with the increase in the curing age, the shear strength envelope gradually
shifted upward, indicating that the shear strength of the mud cake increased with the curing
age. Taking the normal stress of 200 kPa as an example, as the curing period increased from
7 days to 28 days, the shear strength of the samples increased by 114.48 kPa, 109.35 kPa,
92.2 kPa, and 74.86 kPa under the geo-bag thickness of 92 mm, 106 mm, 119 mm, and
132 mm, respectively. The results show that under the same normal force, the greater the
initial thickness of the geo-bags, the smaller the increase in shear strength of mud cake with
the change in curing period.

Figure 18 illustrates the effects of the initial thickness of the geo-bags on the cohesion
and friction angle of the samples. As seen in Figure 18a, under the same curing age, a
smaller thickness resulted in greater cohesion of the mud cake. Under the same geo-bag
thickness, the cohesion of the mud cake increased with the increase in curing time. When
the curing period increased from 7 days to 28 days, the cohesion of samples increased
by 62.05 kPa, 51.79 kPa, 46.91 kPa, and 36.38 kPa under the geo-bag thickness of 92 mm,
106 mm, 119 mm, and 132 mm, respectively. Figure 18b depicts the variation in the friction
angle. Under the same geo-bag thickness, the friction angle increased with the increase in
curing age. The maximum value of the friction angle was 35◦, and the minimum value
was 20◦.
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Figure 18. Effects of the initial thickness of geo-bags on the cohesion and friction angle of the samples.

4. Conclusions

In this study, a series of laboratory experiments were conducted to investigate the
feasibility of FSHCM in marine mud slurries and the effects of APAM dose, composite
solidification agent dose, the initial water content of marine mud slurries and the initial
thickness of geo-bags on the mechanical properties of FSHCM-MS. The main conclusions
are as follows:

1. Compared to the FHCM, the cohesion of the samples treated by the FSHCM decreased
by 104.89 kPa at 28 days. Compared with FSCM, the FSHCM saved 14% of the
composite solidification agent and increased cohesion by 94.59 kPa at 28 days. By
comparing the water content and cohesion of mud cake treated by three methods, it
was found that the FSHCM is more efficient.

2. When the APAM dose was 0.16%, FSHCM-MS exhibited a noticeable flocculation
effect. As the APAM dose increased, the dewatering efficiency of FSHCM-MS im-
proved. However, the water use efficiency value η decreased, and mechanical mixing
time increased. Considering all factors, the optimal dose of APAM was determined
as 0.16%.

3. The composite solidification agent dose had little effect on the dewatering efficiency
of the FSHCM. The initial water content of the marine mud slurry had a significant
effect on the dewatering efficiency of the combined method when it varied between
100% and 400%. Higher initial water content in the mud led to better dewatering
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results. As the initial thickness of geo-bags increased, the initial water content of the
mud cake remained constant at first, and then gradually increased.

4. An increase in composite solidification agent dose led to a higher rate of increase
in the shear strength and cohesion of mud cake. As the initial water content of the
marine mud slurry rose, the shear strength and cohesion of the mud cake increased.
Moreover, an increase in the initial thickness of the geo-bags led to a decrease in the
shear strength and cohesion of the mud cake.
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Abstract: Bucket foundations, especially multi-bucket foundations, have become an alternative for
large offshore wind turbines. Vertical responses of a single bucket are critical for the serviceability
design of tripod or tetrapod bucket foundations. Centrifuge tests are conducted to investigate the
responses of a single bucket under monotonic and symmetric cyclic loading in over-consolidated
clay. The strength of clay is obtained by cone penetration tests. The monotonic vertical capacity
measured in the centrifuge tests are compared with the finite element results, with errors less than 6%.
The effects of the ratio of cyclic loading amplitude to vertical capacity (ranging between 0.37 and
0.64) and the number of cycles on the accumulation of vertical displacement and evolution of
stiffness are explored. Simplified functions are proposed to predict the evolutions of dimensional and
dimensionless stiffness.

Keywords: vertical capacity; cyclic loading; bucket foundations; clay; offshore wind turbine;
centrifuge testing

1. Introduction

With the expansion of offshore wind energy, bucket foundations have been developed
and considered as an economic option to support wind turbines [1,2]. Compared to
conventional piles or large diameter mono-piles, the bucket foundations are with smaller
aspect ratios and can be installed conveniently into the seabed by jacking and assisted
suction [3,4]. The bucket foundations used in the practical applications can be categorized
as the mono-bucket and multi-bucket. The latter is usually composed of three or four
buckets, designed to resist large overturning moments caused by the horizontal loading
applied on the wind turbine and supporting structure [5,6]. The interactions between single
buckets may be neglected given that the bucket spaces are sufficiently large [7,8], then the
overturning moment is resisted by the compression of buckets downwind and tension of
buckets upwind, as Figure 1 shows [9,10]. The responses of a single bucket under monotonic
and cyclic vertical forces are critical for the design of multi-bucket foundations [11,12].
The geotechnical conditions at several sites of offshore wind farms (e.g., Houhu in China
and Dogger Bank in England) are mainly clay over sand layers, while the clay layers are
dominant over the depth between the mudline and the bucket tip [13,14]. The concern of
this paper is the single bucket of the multi-bucket foundation in clay.

For the bucket foundations in clay, the monotonic compressive and tensile capacities
have been studied through finite element (FE) simulations [15,16] and model tests [11,17,18].
The monotonic vertical capacity factors depended on the aspect ratio of the bucket, the
soil non-homogeneity, and the bucket–soil adhesion factor [16,19]. Unlike the end-bearing
mechanism for the compressive capacity as Figure 2a shows, the soil failure mechanism
caused by the tension load became complicated due to suction developed at the base of
the bucket foundation. As Figure 2b–d show, the mechanisms observed in the tensile
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loading tests included the reverse end-bearing, pull-out of bucket, and pull-out of bucket
and soil plug inside [3]. The tensile capacities were usually assumed to be lower than the
compressive ones, for example, by 20% for sealed buckets and by even up to 30% for the
unsealed [18].
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The magnitude and direction of vertical cyclic loading affected the displacement
and stiffness of the bucket, and were quantified by ζb, the ratio of the maximum loading
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Vmax to the monotonic vertical capacity V0, and ζc, and the ratio of the minimum loading
Vmin to Vmax, as Figure 3 shows [20]. Figure 3 also demonstrates the definitions of the
loading amplitude Vc and average loading Va. The displacements caused were defined,
respectively, as the maximum wmax, the minimum wmin, and the average wa, and the
displacement amplitude was wc. The studies on the vertical cyclic response of the bucket
in clay were relatively limited, compared to those in sand and sand over clay [6,21–25].
For the bucket in sand, purely compressive loading (ζc ≥ 0) and cycles with sufficiently
large Va on the compressive side leaded to downwards residual displacement which was
approximately equal to wa [24,26,27]. The load–displacement response became stiffer with
N due to the soil hardening for one-way compressive loading, and the enhancement of
stiffness is more obvious at higher Va [6]. In contrast, upwards wa occurred under zero and
tensile average loading, independent of the Vc value [24]. The decrease in stiffness with
N was more severe under zero average loading (ζc = −1) than that under one-way tensile
loading [6,28], indicating loading with ζc = −1 may be more dangerous. For the bucket
in sand over clay, the direction of wa was also governed by Va [25]. As for the bucket in
clay, a few conventional [11,29] and centrifuge [30,31] model tests have been conducted.
Given that the bucket was displaced under undrained conditions, the direction of wa and
the failure mechanism were a function of the direction of Va: zero and tensile Va leaded
to upwards wa, while compressive Va larger than a small level, for example, 9% of the
monotonic vertical capacity, may always generate downward wa [31]. These phenomena of
displacements were related to the positive excess pore pressure under compressive average
loading and negative excess pore pressure under zero average loading [11]. At higher
loading magnitudes, the accumulation of displacement was larger due to the more severe
disturbance on soil. However, for loading magnitudes below a certain threshold, the bucket
may be at a stable state without obvious residual displacement [31,32]. The displacement
accumulated was observed under force-controlled loading, while the vertical resistance was
degraded by about 35% in the first ~10 cycles and became stable at ~20 cycles if one-way
cyclic loading with a small amplitude of ~0.009D was applied [33]. The stiffness was lower
at higher Vc under purely compressive loading with ζc = 0 and a logarithmic function
was used to describe the relationship between stiffness and the number of cycles [29]. For
the bucket in clay subjected to cyclic loading, most existing studies were focused on the
responses under horizontal cyclic loading [34–37]. The bucket under cyclic vertical loading
was concerned in a limited number of recent studies only, such as by [29,33], however,
their model tests were conducted at 1 g. Since the stress levels of soil are much lower than
those in practical applications, the centrifuge test is preferred to provide more reliable data,
especially for the loading with larger Vc.
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In this paper, the load–displacement responses of the single bucket in clay under
monotonic and symmetric cyclic vertical loading (ζc = −1) are investigated by centrifuge
tests. The vertical capacities under monotonic loading are measured, validated by com-
parison with the finite element analyses. Then the accumulation of vertical displacement
and the evolution of stiffness of the bucket are explored against various loading ampli-

99



J. Mar. Sci. Eng. 2023, 11, 2044

tudes. As a result, simplified functions are proposed to predict the stiffness of the bucket
under different loading amplitudes and number of cycles. Figure 4 shows the process of
the methodology.
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2. Experimental Equipment and Soil Preparation
2.1. Experimental Equipment and Model Bucket

The tests were performed in a drum centrifuge with 1.4 m diameter at the Dalian
University of Technology, China. Monotonic or cyclic vertical loads were applied on a
bucket in over-consolidated kaolin clay. As Figure 5a,b show, the model bucket was made of
aluminum alloy, with a diameter D of 40 mm, skirt length L of 40 mm, and skirt thickness ts
of 1 mm. Then the sizes in prototype were D = 4 m, L = 4 m, and ts = 0.1 m at an acceleration
of 100 g. The skirt thickness ratio ts/D of the model bucket was 0.025 which was larger than
0.005–0.008 in practice [38] to avoid buckling during installation in centrifuge. A vent was
set on the bucket cap with a thickness of 3 mm. A load cell with a measurement range of
300 N and a laser displacement sensor with a precision of 0.01 mm, were used to measure
the load and the vertical displacement of the bucket, as Figure 5c shows.

2.2. Sample Preparation and Strength Profile

To prepare the soil sample, dry clay powder was mixed with water in a vacuum tank
for at least 4 h to form a slurry at a moisture content of twice the liquid limit. Table 1
demonstrates the properties of the clay. The slurry was then poured into a strongbox
of 310 mm × 290 mm × 230 mm, followed by one-dimensional compression under 1 g
conditions. The final pressure σv

′ was 90 kPa for Samples 1–3 and 60 kPa for Sample 4,
with the compressions lasting about 38 and 36 d, respectively. The sensitivities, St, of clay
samples in each strongbox were measured by vane shear tests with a range of 2.0–2.3 and
an average value of 2.1. After consolidation, the samples were maintained wet throughout
the tests by spraying water on the sample surfaces.
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Table 1. Properties of kaolin clay.

Parameters Values

Specific gravity, Gs 2.70
Effective unit weight, γ′ (kN/m3) 6.97

Liquid limit (%) 42.8
Plastic limit (%) 20.8

Sensitivity, St 2.1
Vertical coefficient of consolidation, cv (mm2/s) (σv

′ = 60 kPa) 0.11
Vertical coefficient of consolidation, cv (mm2/s) (σv

′ = 90 kPa) 0.14

To characterize the strength profile of clay, cone penetrometer tests (CPTs) were
conducted prior to installation of the strongbox into the centrifuge, using a probe with a
diameter d of 10 mm. The distances between the cone penetrometer and the strongbox
boundaries or the circumferences of buckets were at least 6d, to avoid the boundary
effect. The penetration velocity v of cone was 4 mm/s, leading to dimensionless velocity
V = vd/cv = 363.6 or 285.7 for σv

′ = 60 or 90 kPa, respectively, where cv is the vertical
coefficient of consolidation. Refs. [39–41] suggested that undrained responses occurred at
V > 30. With the cone resistance profiles measured during the CPTs, the undrained shear
strength su was calculated as:

su = (qt − σv0)/Nkt, (1)

where qt is the cone resistance; σv0 the total overburden pressure; and Nkt the cone factor,
which ranged between 9 and 18 for typical clays [42–44]. Nkt was taken as 15 in this study.
Figure 6 demonstrates the strength profiles recorded during the CPTs at 1 g condition (solid
lines) and the corresponding fitting curves (dash lines). The strength of the soil sample was
typically increased with soil depth [45,46] and can be described as su = sum + kz, where sum
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is the undrained shear strength at clay surface and k is the gradient of strength with soil
depth z. The soil depth z at 1 g condition was multiplied by 100 (as centrifuge tests at an
acceleration of 100 g) to obtain strength profiles in the prototype scale. As a result, su (in
the unit of kPa) in centrifuge was determined as 6.5 + 0.55z, 11.6, 9.0 + 0.4z, and 6.0 + 0.18z
for Samples 1–4, where z was in the unit of m.

J. Mar. Sci. Eng. 2023, 11, x FOR PEER REVIEW 6 of 19 
 

 

boundaries or the circumferences of buckets were at least 6d, to avoid the boundary effect. 
The penetration velocity v of cone was 4 mm/s, leading to dimensionless velocity V = vd/cv 
= 363.6 or 285.7 for σv′ = 60 or 90 kPa, respectively, where cv is the vertical coefficient of 
consolidation. Refs. [39–41] suggested that undrained responses occurred at V > 30. With 
the cone resistance profiles measured during the CPTs, the undrained shear strength su 
was calculated as: 

su = (qt − σv0)/Nkt, (1) 

where qt is the cone resistance; σv0 the total overburden pressure; and Nkt the cone factor, 
which ranged between 9 and 18 for typical clays [42–44]. Nkt was taken as 15 in this study. 
Figure 6 demonstrates the strength profiles recorded during the CPTs at 1 g condition 
(solid lines) and the corresponding fitting curves (dash lines). The strength of the soil sam-
ple was typically increased with soil depth [45,46] and can be described as su = sum + kz, 
where sum is the undrained shear strength at clay surface and k is the gradient of strength 
with soil depth z. The soil depth z at 1 g condition was multiplied by 100 (as centrifuge 
tests at an acceleration of 100 g) to obtain strength profiles in the prototype scale. As a 
result, su (in the unit of kPa) in centrifuge was determined as 6.5 + 0.55z, 11.6, 9.0 + 0.4z, 
and 6.0 + 0.18z for Samples 1–4, where z was in the unit of m. 

 
Figure 6. Strength profiles of the clay samples (the fitting curves of the strength profiles are shown 
as the dotted lines, Nkt = 15, model scale). 

3. Experimental Arrangements 
The model bucket was subjected to monotonic or cyclic loading after installation. For 

each strongbox, three locations were designed with one monotonic test and two cyclic 
tests. The distances between the bucket skirts and the strongbox sides were at least 1.75D, 
while the distance from one skirt of a bucket to another was at least 1.95D.  

After the centrifuge was spun up to an acceleration level of 100 g, the bucket was 
jacked into soil at a velocity v of 1 mm/s. As the soil sample was consolidated at 60 or 90 
kPa, the corresponding normalized velocity was V = vD/cv = 363.6 or 285.7. The undrained 
response during installation was guaranteed since V was larger than 30. The vent on the 

Figure 6. Strength profiles of the clay samples (the fitting curves of the strength profiles are shown as
the dotted lines, Nkt = 15, model scale).

3. Experimental Arrangements

The model bucket was subjected to monotonic or cyclic loading after installation. For
each strongbox, three locations were designed with one monotonic test and two cyclic tests.
The distances between the bucket skirts and the strongbox sides were at least 1.75D, while
the distance from one skirt of a bucket to another was at least 1.95D.

After the centrifuge was spun up to an acceleration level of 100 g, the bucket was jacked
into soil at a velocity v of 1 mm/s. As the soil sample was consolidated at 60 or 90 kPa,
the corresponding normalized velocity was V = vD/cv = 363.6 or 285.7. The undrained
response during installation was guaranteed since V was larger than 30. The vent on the
cap of the bucket was open during installation, allowing the air/water inside the bucket
to be expelled. When the bucket cap reached the soil surface, the penetration resistance
increased quickly, indicating that the installation was completed. Then the centrifuge was
stopped and the vent was sealed manually. This was to maintain the potential suction
developed inside as the bucket was subjected to cyclic loading, which was similar to the
operation in most practical applications. The centrifuge was spun up again to 100 g for the
subsequent loading process.

In the monotonic loading tests, the bucket was penetrated at v = 1 mm/s until the
displacement reached a relatively large value of 10 mm (0.25L), where the corresponding
penetration resistance was defined as the monotonic capacity V0.

In the cyclic loading tests, the loading amplitude Vc of the sinusoidal cyclic load was
selected as a specified percentage of V0, as Table 2 shows. Tests 2-3 and 4-3 were not
presented here due to the unqualified precision of loading control. Only 6 cyclic loading
tests were reported, with the ratios of loading amplitude to monotonic capacity, Vc/V0,
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ranging between 0.37 and 0.64. It was expected to apply symmetric two-way cyclic loading
since this was the most dangerous type of cyclic loading [3,47]. However, the average
loading ratio, Va/V0, obtained were in the range of 0.01–0.05 due to limitations of the
controlling system. The frequencies were controlled in the range of 0.5–0.84 Hz. When the
frequency was 0.5 Hz, the corresponding dimensionless time factor T = cvt/D2 over one
cycle was 1.4 × 10−4 and 1.8 × 10−4 at cv = 0.11 and 0.14 mm2/s, respectively. T became
reduced with the frequency larger than 0.5 Hz. The response of clay over one cycle might
be undrained given that T < 1.3 × 10−3, suggested by [48]. However, partial drainage may
occur over dozens or hundreds of cycles, since T = 1.0 was suggested to be associated with
at least 90% consolidation [49,50]. Partial drainage was accompanied by an increase in the
shear strength of soil. The cyclic tests were shut down after at least 650 cycles, or, when the
maximum vertical displacement reached 0.25L. Note that the compressive vertical loads
and downward vertical displacements were taken positive in the following discussions.

Table 2. Experimental arrangements involving monotonic and cyclic tests.

Test No. Load Type V0 (N) Va/V0 Vc/V0

1-1 Monotonic 129.3
1-2 Cyclic 0.02 0.42
1-3 Cyclic 0.03 0.53

2-1 Monotonic 168.0
2-2 Cyclic 0.01 0.58

3-1 Monotonic 160.6
3-2 Cyclic 0.01 0.37
3-3 Cyclic 0.01 0.51

4-1 Monotonic 107.8
4-2 Cyclic 0.05 0.64

4. Installation

During installation, the penetration resistance is increased slowly prior to displacement
of ~35 mm and then is enhanced rapidly, as Figure 7 shows. The abrupt change in the
penetration resistance indicates the touchdown of the bucket cap. At the touchdown
moments (solid points in Figure 7), the penetration resistance is changed from the sum
of the friction resistances along both sides of the bucket skirt and the tip resistance to the
sum of the friction resistance along the outside of the bucket and the end resistance. If
the penetration resistance Qtot at the touchdown moment is calculated as the sum of the
friction resistance along both sides of the bucket skirt and the tip-bearing resistance, then
Qtot = zαsuaπ(D + Di) + (γ′z + sutipNc)Atip [51], where α is the adhesion factor; Di is the
internal diameter of bucket; and sua and sutip are the average undrained shear strength
along the bucket skirt and the undrained shear strength at the bucket tip, respectively; Nc
is the bearing factor, usually taken as 7.5; Atip is the cross-sectional area of the bucket tip.
Figure 7a–d show Qtot as 39.0, 58.1, 47.3, and 33.0 N, respectively, agreeing well with the
results by [51] of 32.0, 50.4, 41.6, and 27.3 N with errors less than 18%. The depths of the
touchdown points are slightly less than 37 mm (the bucket length minus the thickness
of bucket cap), which is due to the soil plug formed during installation. The penetration
resistance curves measured in each strongbox are close to each other, indicating that the
prepared soil samples were uniform.
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5. Monotonic Loading

Under monotonic vertical loading, the bucket is penetrated to around 10 mm (0.25L)
deeper than the touchdown point to obtain the vertical capacities V0; Figure 8 shows
them as hollowed points. V0 measured at four strongboxes are 129.3, 168.0, 160.6, and
107.8 N, respectively.

To testify the reliability of the centrifuge tests, the vertical capacity is determined using
the commercial FE package Plaxis 3D CE V20 [52], in which the bucket is assumed to be
wished-in-place, i.e., the bucket is at the touchdown position (Figure 8). The effect caused
by installation on the following monotonic loading is considered by reducing the shear
stress along the skirt–soil interface. Only half of the bucket and corresponding soil are
simulated due to the symmetry of the foundation. To avoid a boundary effect, the soil
bottom is 4L away from the bucket tip and the soil sides are 3.4D away from the bucket
skirt, as Figure 9 shows. The bucket and soil are discretized with ten-node wedge elements
with full integration and the bucket–soil interfaces are composed of twelve-node interface
elements. To satisfy the numerical convergence and accuracy, the coarseness factors of
mesh are chosen as 1 for the far-field soil, 0.3 for the soil near the bucket (0.5D horizontally
and L vertically away from the bucket), and 0.1 for the bucket and soil inside the bucket.
Clay is regarded as a Tresca material under undrained conditions. The parameters of
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undrained shear strength su in each of the monotonic loading tests, including sum and k, are
deduced from CPTs, as Section 2.2 and Figure 6 describe. Specifically, su = 6.5 + 0.55z, 11.6,
9.0 + 0.4z, and 6.0 + 0.18z for Test 1-1 to 4-1, where z is in the unit of m. The installation
effect is considered by reducing the shear stress along the skirt–soil interfaces to αsu, where
the adhesion factor α is taken as 1/St [8,19]. The value of the adhesion factor is taken as
α = 0.5 since the values of St in each strongbox are averaged as 2.1. The typical Young’s
modulus of clay is ranged between (200 and 800)su, with 400su adopted. The effective unit
weight of clay is 6.97 kN/m3 (see Table 1) and Poisson’s ratio is 0.495 to the approximate
constant volume under undrained conditions. The bucket is simplified as a rigid body
since the stiffness of the bucket is much higher than that of soil. The center of the bucket
top at the mudline level is taken as a reference point, while the load/displacement at the
reference point represents that of the whole bucket. The vertical displacement is applied at
the reference point, such that the corresponding vertical reaction force of the bucket can be
obtained. Similar to that in the tests, V0 is the reaction force when the vertical displacement
reaches 0.25L.
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Figure 10 presents the monotonic vertical reaction force–displacement curves
(V − w/L curves) by FE. Since the bucket is wished in place in the FE simulation, w in
Figure 10 represents the displacement from the touchdown point. Figure 10 also plots the
experimental curves recorded in the tests. The FE values of V0 at four strongboxes are
132.1, 170.7, 159.8, and 100.8 N, respectively, agreeing well with centrifuge tests with
errors less than 6%. The vertical capacity factor of bucket Ncv can be calculated as
(V0 − απLDsuav)/Asutip, where A is the cross-sectional area of the bucket. The corre-
sponding Ncv in four tests are 10.1, 9.5, 10.2, and 10.9, respectively. The errors between Ncv
in this study and Ncv = 10.3 calculated by the equation proposed by [53] were less than 7%,
indicating the reliability of monotonic loading results by centrifuge.
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6. Cyclic Loading
6.1. Evolution of Vertical Displacement

Figure 11 shows the relationships between the normalized vertical displacement w/L
and the number of cycles N. In Test 3-2 (Vc/V0 = 0.37, Va/V0 = 0.01), the peak data points
near N = 300, 650, and 900 are not recorded due to signal loss, causing missing parts in
the load curves, as Figure 11a shows. The minimum displacements wmin are accumu-
lated upwards under Va/V0 = 0.01 in Figure 11a but are accumulated downwards under
Va/V0 = 0.02–0.05 in Figure 11b. A possible reason is that the evolution of displacements
depends on Va/V0, although Va/V0 is limited to less than 0.05. The small increase in
Va/V0 may cause a relatively larger average displacement towards the compression side
at the beginning of the tests, affecting the accumulations of average displacements and
displacement amplitudes. At the end of the tests, normalized average displacements wa/L
are between−0.024 and−0.109. The negative wa represents the uplift of the bucket. Similar
phenomena were reported by [11].

The negative wa under symmetric loading represents that the residual tensile displace-
ments are larger than the compressive ones. The reason is that the tensile capacity of the
bucket is lower than the compressive. When cyclic loading into compression is applied,
the resistance is composed of the friction along the outside skirt and the end bearing, as
Figure 2a shows. The friction along the inside skirt is not mobilized since the soil plug is
moved along with the bucket. However, when the cyclic loading into tension is applied,
there are three potential failure mechanisms as Figure 2b–d show. In centrifuge tests,
the vent of the bucket is sealed after installation, so the negative excess pore pressure is
generated inside the bucket, which may prevent the relative movements between the soil
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plug and bucket skirt. As a result, the reverse end-bearing mechanism which Figure 2b
shows, composed of external friction and reverse end-bearing resistance, occurs.
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The external friction of the bucket under compressive and tensile loading are similar to
each other, since the soil along the outside of the skirt is roughly under a direct simple shear
and the shear stress mobilized is not affected by the loading direction. The contributions
of the end-bearing resistance and reverse end-bearing resistance are corresponding to the
states of triaxial compression and triaxial tension, respectively. The former is usually larger
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due to higher soil strength at the triaxial compression state, i.e., the compressive capacity
of the bucket is higher than the tensile. The residual upward displacement of the bucket is
thus accumulated gradually even as the symmetrical vertical cyclic loading is applied.

The reverse end-bearing mechanism as Figure 2b shows is proofed further by the soil
plug inside the bucket and the shallow pit left on the soil surface after the bucket is pulled
out (Figure 12). Under cyclic loading into tension, the soil plug and the soil beneath the
bucket tip are mobilized and move upwards along with the bucket due to the negative
pressure. Ref. [11] proved the existence of suction by measuring negative excess pore
pressure under the bucket lid.
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The accumulation rates of wa and wc are larger under higher Vc/V0, as Figure 11
shows. For example, normalized average displacement wa/L reaches−0.11 and normalized
displacement amplitude wc/L reaches 0.148 over 35 cycles under Vc/V0 = 0.58. As the
opposite, wa/L is only −0.024 and wc/L is 0.056 with 996 cycles of Vc/V0 = 0.37. The
reason may be that the pore pressure is accumulated more under higher Vc/V0, causing
lower effective stress. So the soil strength is lower under higher Vc/V0, leading to larger
displacements for the same number of cycles.

Figure 13 shows the hysteresis loop, the relationship between the normalized cyclic
loading, and the normalized vertical displacement. To demonstrate the changes of hys-
teresis loops clearly, Figure 13 demonstrates only the hysteresis loops at typical loading
stages, and hysteresis loops without peak data in Test 3-2 (Vc/V0 = 0.37, Va/V0 = 0.01)
are removed. At relatively higher Vc/V0, the maximum displacement wmax of the bucket
reaches 0.25L over 20–40 cycles, as Figure 13c,f show. At relatively lower Vc/V0, wmax can-
not reach 0.25L even under 600–800 cycles, as Figure 13a,d show. Although not measured
in this study, the pore pressure may be accumulated much more slowly given that Vc/V0
is below a threshold, then wmax becomes unchanged with cycles over long-term loading.

For the maximum displacement wmax, the accumulation rate is affected significantly
by Vc and the number of cycles in the tests. At low Vc/V0 as Figure 13a,d show, the
accumulation rate of wmax over 10 cycles is relatively uniform. However, at high Vc/V0 as
Figure 13b,c show, the accumulation rate of wmax over 10 cycles is decreased with N. The
phenomena may be related to the differences in the accumulation rates of pore pressure.
At low Vc/V0, the pore pressure is accumulated in a relatively uniform rate, while at high
Vc/V0, the accumulation rate of pore pressure is changed from high to low. Compared
to wmax, the accumulation rate of the minimum displacement wmin is always lower. The
above phenomena are due to the compressive capacity of the bucket being higher than
the tensile one. Compared to the compression, the soil is disturbed more seriously by the
tension, and then the strength softening becomes more significant on the tension side.
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Figure 13. Normalized cyclic vertical loading and displacement relationship: (a) Vc/V0 = 0.37,
Va/V0 = 0.01; (b) Vc/V0 = 0.51, Va/V0 = 0.01; (c) Vc/V0 = 0.58, Va/V0 = 0.01; (d) Vc/V0 = 0.42,
Va/V0 = 0.02; (e) Vc/V0 = 0.53, Va/V0 = 0.03; (f) Vc/V0 = 0.64, Va/V0 = 0.05.

6.2. Evolution of Secant Stiffness

The secant stiffness KN of the Nth hysteresis loop of bucket is defined as the slope of
the line connecting the highest and lowest points of the hysteresis loop, as Figure 14 shows.
It can be calculated as KN = (Vmax – Vmin)/(wmax – wmin) for the Nth cycle.
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Figure 14. Secant stiffness of hysteresis loop.

Figure 15 shows the relationships between secant stiffness of hysteresis loops and
the number of cycles. In general, KN is decreased with the increase in Vc/V0 and N. The
reason may be that high Vc/V0 or large N results in the accumulation of excess pore
pressures in the soil. At Vc/V0 = 0.51 and 0.53, KN are close to each other since the
loading amplitudes are similar. In Figure 15, the variations of KN with N become gentle at
Vc/V0 = 0.37 and 0.42. It might be due to the fact that the soil around the bucket undergoes
partial consolidation after a long-term loading. For example, the loading time is as large
as 137 d in the prototype after 996 cycles with Vc/V0 = 0.37. Also, the corresponding
dimensionless time factor T after 996 cycles is at least 0.18, exceeding T < 1.3 × 10−3 for
undrained clay as mentioned in Section 3. Therefore, partial drainage may occur in clay
and cause an increase in shear strength.
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Figure 15. Relationship between secant stiffness of hysteresis loops and cyclic numbers (proto-
type scale).

By referring to the logarithmic function proposed by [20,54], the relationship between
secant stiffness KN and the number of cycles N is expressed as:

KN = K1 + AklnN, (2)

where K1 is the secant stiffness of the first cycle and AK is the fitting parameter. K1 and
AK depend on ζb (=Vmax/V0), as Figure 16a,b show. Figure 15 also demonstrates the
predictions of KN by Equation (2).
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Figure 16. Fitting curves between K1 and Ak with ζb (prototype scale): (a) K1 with ζb; (b) Ak with ζb.

To describe the stiffness independent of ζb, the dimensionless variation in vertical
displacement within one cycle (wmax − wmin)/L and the dimensionless secant stiffness
K* = KN/(V0/L) are adopted by referring to [11]. As Figure 17 shows, K* is gradually
decreased with the increase in (wmax − wmin)/L and K* is scattered in a relatively narrow
range under the different loading amplitude ratio Vc/V0. At the same (wmax − wmin)/L,
K* is slightly increased with Vc/V0. The evolution of K* with (wmax − wmin)/L can be
fitted as:

K* = 1.5[(wmax − wmin)/L]−0.8, (3)
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Figure 17. Relationship between dimensionless secant stiffness K* and dimensionless variation in
vertical displacement within one cycle (the error ranges between results by Equation (3) and tests are
shown as dotted lines).

Figure 17 shows the fitting results of Equation (3) as the black dash line. The error
between the fitting curve and the test results is within ±20%.

7. Conclusions

The monotonic vertical capacity and cyclic responses of a single bucket under sym-
metric vertical loading have been studied through centrifuge tests. The loading amplitude
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ratio Vc/V0 is varied between 0.37 and 0.64 to investigate its effects on displacement and
stiffness of the bucket. The main conclusions are as follows:

(1) The vertical capacities by centrifuge tests and numerical simulations are with errors
less than 6%. The vertical capacity factors are in the range of 9.5–10.9.

(2) Under symmetric vertical loading, the normalized average displacements of the
bucket, varied between −0.024 and −0.109 in six tests, are on the tensile side due
to the tensile capacity being lower than the compressive. The accumulation rates of
average displacement and displacement amplitude of the bucket are larger under
higher Vc/V0 due to the lower effective stress.

(3) The secant stiffness of the bucket is decreased with Vc/V0 and N. Partial drainage
may occur over 996 cycles with Vc/V0 = 0.37, due to the loading time in the prototype
of 137 d and the dimensionless time factor T > 0.18. Based on the experimental results,
two simplified equations are proposed to describe the evolution of the secant stiffness
of the bucket.
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Abstract: Submarine pipelines are widely adopted around the world for transporting oil and gas from
offshore fields. They tend to be severely ruined by the extreme waves induced by the natural disaster,
such as hurricanes and tsunamis. To maintain the safety and function integrity of the pipelines,
porous media have been used to wrap them from the external loads by the submarine environment.
The functions of the porous wrappers under the hydrodynamic impact remain to be uncovered before
they are widely accepted by the industry. In this study, a numerical wave tank is established with the
immersed boundary method as one of the computational fluid dynamics. The submarine pipelines
and their porous wrappers are two-way-coupled in terms of displacement and pressure at their
interfaces. The impact from the solitary waves, which approximately represent the extreme waves in
the reality, on the pipelines with different configurations of the porous wrapper is investigated. The
results present significant protective functions of the wrappers on the internal pipelines, transferring
the impact forces from the pipelines to the wrappers. The protective effects tend to be enhanced by
the porosity and thickness of the wrappers. The influence of the pipeline configurations and the
marine environment are then analysed. As for the front pipeline, an increase in the gap leads to a
slight increase in the horizontal forces on both the wrapper and the pipeline, but a significant increase
in the vertical forces. As for the rear pipeline, because of the shield function of the front pipeline, the
velocity within the gap space and the forces on the pipes are decreased with the decrease in the gap
size. The complex flow fields around the pipelines with wrappers are also illuminated, implying that
the protection function of the wrapper is enhanced by the wave height reduction.

Keywords: extreme wave; submarine pipeline; external wrapper; coupling analysis; computational
fluid dynamics

1. Introduction

Pipelines that are laid on or below the seabed and continuously transport large
amounts of oil (or gas) are collectively referred to as submarine pipelines. They constitute
the main transporting structures and currently they are the most economical and reliable
selections in the design of transportation tools. Pipelines are usually installed within the
seabed sediments under the protection of rock berms [1]. However, the sediments around
the pipelines may be scoured by contour currents and internal waves, which expose the
pipelines to the threat of complex marine environments [2]. The scour mechanism and its
evolution process around the in-position pipelines were investigated by many scholars,
such as Reference [3]. Occasionally, segments of a pipeline may be suspended between high
points through continental slopes due to an uneven seabed profile. For example, suspended
pipelines were widely used in the Ormen Lange projects, with massive depressions and
landslide blocks scattered along the 120-km-long route [4].
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Natural disaster, such as hurricanes and tsunamis, may induce extreme waves that
generate enormous impact loads on the pipelines and may cause serious ruins to the
whole production and transportation system [5–7]. Tsunamis, one of the major marine
disasters caused by earthquakes and submarine landslides [8,9], send surges of water
with extremely long waves that are not especially steep [10]. The tsunami triggered by
a 9.0-Mw earthquake in 2011 extensively destroyed 70% of the total 200,000 structures
along the Miyagi coastline, including submarine pipelines, seawalls, and coastal bridges. A
tsunami is typically composed of several transient waves with varying amplitudes, wave-
lengths, and wave periods during propagation. Solitary waves were proposed to simulate
the tsunami waves by decomposing them into N-waves through the Korteweg-de Vries
equation [11–14]. Since then, the run-up process of the tsunami waves along the shoreline
was investigated with the depth-averaged smooth particle hydrodynamics method [15,16].
References [17,18] quantified the impact loads over cylinders from a tsunami wave.

To protect the marine structures from potential damages due to extreme marine condi-
tions, engineers have developed outer protections in terms of wrappers made of porous
media. A porous medium enhances the buffering performance of the structures and dis-
sipates part of the incoming wave energy [19]. For example, the turbulent intensities on
a permeable breakwater were significantly attenuated in the numerical analysis by Refer-
ences [20–22]. Naturally, porous media are expected to be protective to submarine pipelines
under extreme marine conditions, although thermal insulation and erosion prevention were
mainly considered in designing pipeline coatings in the industry [23,24]. Reference [25]
quantified the wave forces on pipelines buried in an impermeable bed with coverings
of porous media. References [26,27] evaluated the protective performance of a porous
polymer coating on subsea pipelines under sudden impacts. The drag reduction function
of the porous coatings over cylinders were then quantified by Reference [28]. Two factors
were considered to influence the stabilization effect of the porous coatings on pipelines:
the production of an entrainment layer through the coating and the triggering of turbulent
transition of the detaching shear layers. In engineering practice, applications of porous
coatings on submarine pipelines are limited. Concrete wrappers, mainly designed to coun-
teract the buoyancy forces of pipelines, can be considered as one kind of porous wrapper
with medium permeability. In addition, porous wrappers made with woven carbon-fiber
materials or polyurethane foam may be designed in future for pipeline protection.

The above literature review revealed that few studies were performed to examine the
protective effect by the porous media on submarine pipelines, which is the main aim of
this study. The porous wrapper and the submarine pipeline modules are simulated in a
numerical wave tank (NWT) with the immersed boundary (IB) method. The numerical
methods and equations will be provided in Section 2. Verification of the numerical model
is provided in Section 3. The parametric simulations are in Section 4, in which the effects of
different waves on various pipelines with porous wrappers are analysed. The conclusions
are given in Section 5.

2. Numerical Methods

For simulating the interactions between pipelines and waves, the finite volume meth-
ods have been widely used. In this study, the commercial finite volume package FLOW-3D®

(version 11.1.0; 2014; https://www.flow3d.com (accessed on 10 December 2022); Flow
Science, Inc., Santa Fe, NM, USA). Flow-3D aims to solve the transient response of fluids
under interactions with structures, internal and external loads and multi-physical processes.
It features some advantages in terms of a high level of accuracy in solving the Navier-Stokes
equation with the volume of fluid (VOF) method, efficient meshing techniques for complex
geometries, and high efficiency level for large-scale problems. Also, Flow-3D provides the
flexibility and utility for flowing through porous media. A two-dimensional numerical
wave tank was constructed by using the immersed boundary (IB) method and an in-house
subroutine termed as IFS_IB. A submarine pipeline and porous medium were two-way
coupled at the interface described by the individual volume fractions [29]. The pipeline
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was wrapped with a layer of a porous medium. A solitary wave was generated at the inlet
boundary of the tank to simulate an approaching tsunami. Non-slip wall conditions were
assigned at the bottom of the tank and the pipe surface, which was also specified with a
roughness coefficient. The top boundary was defined as a free boundary and configured
with the atmospheric pressure. A Neumann-type absorbing boundary condition, a stable,
local, and absorbing numerical boundary condition for discretized transport equations [30],
was imposed on the outlet boundary to attenuate the reflections of the outgoing waves. A
transition zone is set within a certain range from the boundary to reduce the horizontal
gradient force of the elements near the boundary and suppress the calculation wave caused
by this boundary condition. Through the relaxation coefficient, the predicted value on
the inner boundary of the transition zone and the initial value on the outer boundary are
continuously transitioned to achieve the purpose of reducing the reflection of propagating
waves. The CUSTOMIZATION function of the software FLOW-3D was utilised to impose
the Neumann-type absorbing boundary condition. The FLOW-3D distribution includes
a variety of FORTRAN source subroutines that allow the user to customize FLOW-3D to
meet their requirements. The FORTRAN subroutines provided allow the user to customize
boundary conditions, include their own material property correlations, specify custom fluid
forces (i.e., electromagnetic forces), add physical models to FLOW-3D, and have additional
benefits. Several “dummy” variables have been provided in the input file namelists that
users may use for custom options. A user definable namelist has also been provided for
customization. Makefiles are provided for Linux and Windows distributions and Visual
Studio solution files are provided for Windows distributions to allow users to recompile
the FLOW-3D code with their customizations.

2.1. Governing Equations

The governing equations involved include the continuity equations and Reynolds-
averaged Navier-Stokes equations. The mass and momentum are conserved in a two-
dimensional zone [31]:

∂ρ

∂t
+∇ · (ρU) = 0 (1)

∂(ρU)

∂t
+∇ · (ρUU) = −∇P + g · X∇ρ + µ∇2 ·U + σκ∇α (2)

where U is the velocity vector, X is the Cartesian position vector, g denotes the gravitational
acceleration vector, and ρ represents the weighted averaged density. The term µ is the
viscosity. σκ∇α identifies the surface tension effects with σ as the surface tension and α as
the fluid volume fraction. Each cell in the fluid domain has a water volume fraction (α)
ranging between 0 and 1, where 1 represents cells that are fully occupied with water, while
0 represents cells that fully occupied with air. Values between 1 and 0 represent free surface
between air and water. The free surface elevation is defined by using the volume of fluid
(VOF) function:

∂F
∂t

+
1

VF

[
∂

∂x
(αAxu) + R

∂

∂y
(
αAyv

)
+

∂

∂z
(αAzw) + ε

FAxu
x

]
= FDIF + FSOR (3)

where VF is the volume of fluid fraction, FSOR is the source function, FDIF is the diffusion
function; Ax, Ay, and Az represent the fractional areas; and u, v, and w are the velocity
components in the x, y, and z directions.

2.2. Porous Media Module

In FLOW-3D, the porous medium’s flow resistance is modelled by the inclusion of a
drag term in the momentum equations (Equation (2)). Coarse granular material is used
in most coastal engineering applications, in which case the Forchheimer model is suitable.
Using this model, a drag term Fdui is added to the righthand-side of Equation (2):
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FdU = −g
(

anU + bn2|U|U
)

(4)

where |U| is the norm of the velocity vector, n the porosity, and a and b are the factors.

2.3. Solitary Wave Boundary

The solitary wave is generated in terms of variations of the surface elevation η and
velocities u and v by following McCowan’s theory [32]:

η = Qh (5)

u = c0E
1 + cos
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where h is the still water depth; Q is the reference value

Q =
E
M

sin[M(1 + Q)]

cos[M(1 + Q)] + cosh(+X/h)
(7)

E =
2
3

sin2[M(1 +
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)] M = E
h
H

tan[
1
2

M(1 +
H
h
)] (8)

where X = x − c0t; c0 = g
√

H + h; H is the wave height; and t is the elapsed time.

3. Validation
3.1. Propagation over a Porous Breakwater

An experimental test on the propagation process of a solitary wave over a permeable
breakwater was performed by Reference [20], which was simulated in this study to validate
the adopted two-way coupling model (Figure 1a). The length, width, and depth of the
flume tank were 25, 0.5, and 0.6 m, respectively. A permeable breakwater was mounted at
the bottom of the flume, which had dimensions of 13 cm and 6.5 cm in the length and height,
respectively. The porous breakwater with an average porosity of 0.52 was configured by
glass beads with a constant diameter of 1.5 cm. Two wave gauges were fixed before (WG1)
and behind (WG2) the breakwater, respectively. The initial still water depth h was assumed
to be 10.6 cm. Height of the solitary wave H was considered to be 4.77 cm. In the numerical
model, the calculation zone had dimensions of 5 m in length and 0.25 m in height. The
second order quadrilateral mesh elements were adopted. The grid around the breakwater
was the finest of 0.001 m. The adopted time step size was 0.05 s. The numerical predictions
of the water elevations at the locations WG1 and WG2 by the adopted numerical tool
FLOW-3D are close to both the experimental measurements and the numerical predictions
from another CFD FLUENT version 14.0.1 [33] (Figure 1). Figure 1b,c show the comparison
of monitored water levels at the two water level monitoring points in Figure 1a. It can
be seen that the experimental results of the two monitoring points are consistent with
the numerical simulation results, indicating that the propagating solitary wave energy is
basically completely dissipated and then flows out. If the propagating wave energy is not
dissipated, the phenomenon of wave reflection will occur. The waves monitored at the two
monitoring points will appear superposition of propagating waves and reflected waves.
The numerical simulation results do not agree with the physical experiment results. The
fluctuations of the water surface elevation after the bypass of the incoming wave are due to
its residual reflection at the right absorbing boundary condition, which arrives at WG2 at
an earlier time than WG1. Evolution of the wave surfaces was also compared between the
experimental and the numerical models (Figure 2), which demonstrates that the numerical
tool is sufficiently reliable. The velocity of the wave is reduced by the porous medium as it
partially infiltrates into the breakwater, which is shown as in Figure 3 by comparing the
horizontal velocity distributions between the experimental and numerical results at times
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of 1.5 s and 2 s. The numerical predictions of the flow velocities have slight discrepancies
with the experimental measurements, which are attributed to the material assumptions
made in the numerical model for the glass beads in the experimental setup.

 

 

 

(a) 

 

(b) WG 1 (c) WG 2 

Fig. 1. The diagrammatic sketch of the numerical setup (non-scaled) (a) and the temporal 

evolution comparison of water surface between experimental and numerical results (b) and 

(c). 

  

Figure 1. The diagrammatic sketch of the numerical setup (non–scaled) (a) and the temporal evolution
comparison of water surface between experimental and numerical results (b,c).

 

 

 

(a) t = 1.45 s (b) t = 1.65 s 

 

(c) t = 2.05 s (d) t = 2.25 s 

Fig. 2. Water surface comparison between experimental and numerical results.  

  

Figure 2. Water surface comparison between experimental and numerical results.
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(a) t = 1.5 s 

 

(b) t = 2 s 

Fig. 3. Comparison of horizontal velocity distributions between experimental and 

numerical results. 

  

Figure 3. Comparison of horizontal velocity distribution between experimental and numerical results.

3.2. Forces on Pipeline

Another experimental test of a solitary wave impacting a pipeline was performed
by Reference [34], which was also reproduced in this study for validation purposes. The
calculation zone had dimensions of 40 m in length and 0.6 m in height. The solitary wave
had a height of 0.0555 m with the initial water depth of 0.192 m. The pipe had a diameter
of 0.048 m, which had a distance of 0.136 m over the bottom boundary of the model. A
dense mesh consisting of 413,411 cells was employed with a mesh size of 0.1 mm around
the pipe, which proved to be sufficiently fine through convergence studies. History of
the horizontal and vertical forces, normalized by ρgL(πD2/4) with L as the unit length
of 1 m, is compared between the experimental and numerical results (Figure 4). Both the
peak values and the transient variations of the forces predicted by the numerical analysis
converge to the measured values in the experimental test. The slight discrepancy between
the numerical and experimental results at 2.5 s and 3.1 s, which may be induced by
the error of the numerical model simulating the complicated turbulence behaviour, is
acceptable in relation to the requirements of this study as our concern is mainly the peak
values of forces.

Therefore, the adopted numerical tool is sufficiently reliable to simulate the interactions
between solitary waves and the permeable structure through the above validation cases.
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Fig. 4. Force comparison between the experimental and numerical results. 

  

Figure 4. Force comparison between the experimental and numerical results.

4. Results and Discussion

Influence of the solitary waves on the performance of wrapped pipelines was investi-
gated by considering different wave heights (H) and thicknesses (T) and wrapper porosities
(n). The still water depth (h) was taken to be 6 m (Figure 5). The diameter of the porous
medium was assumed to be 0.05 m. The pipeline diameter D was set at 1 m. In Figure 5
the variable G represents the gap between the permeable wrapper and the seabed. The
scouring process had been completed before the simulation; therefore, the seabed boundary
was taken as a rigid wall. The tandem pipelines had a distance of S between each other.
The whole model had dimensions of 400 m in length and 12 m in height. The finest mesh
around the pipeline was configured as 0.0025 m, which was verified to be sufficiently fine
through trial calculations with finer meshes.

 

 

 

Fig. 5. Layout for solitary wave impinging on the submarine pipeline encased in porous 

media. 

  

Figure 5. Layout for solitary wave impinging on the submarine pipeline encased in porous media.

4.1. Effect of Porous Wrapper
4.1.1. Wrapper Porosity

The pipeline was put on the seabed. The gap (G) between the wrapper and the seabed
was considered to be zero. The height (H) of the solitary wave was considered to be
2 m. The porosity (n) was taken to be 0.0, 0.4, 0.6, and 1.0. Note that n = 0.0 indicates
the impervious condition, while n = 1.0 corresponds to the non-wrapping condition. The
thickness of the permeable wrapper remained at 0.5 m. In calculation, the wave approaches
the pipe at around 6.3 s and departs from it at 10.2 s. When the wave approaches, the
kinematic performance over the pipe is enhanced (Figure 6). Due to the wave disturbance,
a number of small vortices are generated around the pipe (Figure 7). At the departure
of the wave, the disturbance to the flow field seems to be more intense than that at its
arrival, which further generates vortices around the pipeline. Without a wrapper, the pipe
is fully exposed to the disturbance of the incoming wave, which maximises the velocity
and vorticity values around the pipe. When the pipeline is wrapped by a porous medium,
some water seeps into the wrapper, and the velocity in the wrapper is reduced to a very low
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value, which implies that the porous medium is capable of absorbing the dynamic energy of
the flowing fluid. With an external coverage (n < 1.0), the disturbance is generated mainly
at the outer surface of the wrapper. As the wrapper porosity increases, the domain of the
low-speed flow underneath the pipeline expands.

 

 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

Fig. 6. The velocity contours of the flow fields under different porosities; (a) n = 0.0; (b) n = 

0.4; (c) n = 0.6; (d) n = 1.0; Left to right: arrival, departure. 

  

Figure 6. The velocity contours of the flow fields under different porosities; (a) n = 0.0; (b) n = 0.4;
(c) n = 0.6; (d) n = 1.0; left to right: arrival, departure.
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(a) 

 

(b) 

 

(c) 

 

(d) 

Fig. 7. The vorticity contours of the flow fields under different porosities; (a) n = 0.0; (b) n = 

0.4; (c) n = 0.6; (d) n = 1.0; Left to right: arrival, departure. 

  

Figure 7. The vorticity contours of the flow fields under different porosities; (a) n = 0.0; (b) n = 0.4;
(c) n = 0.6; (d) n = 1.0; left to right: arrival, departure.

The peak velocity around the pipeline without a wrapper (1.9 m/s) is larger than
that with a wrapper (1.6 m/s) (Figure 8). For pipes with wrappers, the peak velocities
around them are similar to one another. In contrast, the velocity profiles at x = 23 m are
quite different. When the pipeline has no wrapper (i.e., n = 1.0), the change in velocity is
fairly moderate. When the pipeline has a wrapper, the porous wrapper causes a secondary
fluctuation in the rear water body after the primary fluctuation due to the peak of the wave

123



J. Mar. Sci. Eng. 2023, 11, 1872

passing through the pipeline. This generates a series of velocity peaks. The secondary
velocity peaks for a porosity coefficient of 0.4 are higher than those for a porosity coefficient
of 0.6. Accordingly, the turbulent kinetic energy (TKE) also changes with the porosities, as
shown in Figure 9. The TKE is expressed as

TKE =
∫ 1

2
ρ(|u|2 + |v|2)dVf (9)

 

 

 

Fig. 8. Comparison of horizontal and vertical velocities at front and rear of pipeline under 

different porosities. 

  

Figure 8. Comparison of horizontal and vertical velocities at front and rear of pipeline under
different porosities.

 

 

 

Fig. 9. Comparison of turbulent kinetic energy at front and rear of wrapper under different 

porosities. 

  

Figure 9. Comparison of turbulent kinetic energy at front and rear of wrapper under differ-
ent porosities.

With the propagation of the wave, the TKE increases gradually in front of the pipeline.
The TKE value under the pipeline without a wrapper (n = 1.0) (0.0008 kJ) is nearly half of
that with a wrapper (0.0015 kJ). In comparison, the TKE values for the wrapped pipelines
(n < 1.0) are very close to each other. After the wave leaves the pipeline, the TKE in front
of the pipeline decreases for around 50%. Then, the TKE in the rear of the pipeline with
a porous wrapper increases intensively because the porous media perturb the flow field.
Compared with the pipeline without the wrapper, the interaction between the wrapped
pipeline with the flow field is more severe. Furthermore, the solid wrapper can cause a
strong disturbance to the flow, but the interference of the solid wrapper (n = 0.0) in the rear
flow is still weaker than the wrapper with the porosity of 0.4.

The hydrodynamic forces (F), including the pressure and shear stress, are normalized
by ρgL(πD2/4) (Figure 10). With a fully solid (i.e., n = 0.0) wrapper, the pipeline tends to
be unaffected by the external flow. Hence, the hydrodynamic forces are zero while the
forces on the wrapper reach their maximum. With porous wrappers, water seeps into the
wrapper, buffering the impact of the incoming waves on the pipe. As the porosity coefficient
increases, the induced forces on the pipeline increase while those on the wrapper decrease.
When the porosity coefficient is 0.4, the forces on the external wrapper become higher than
that on the internal pipeline. Therefore, the porous wrapper is capable of protecting the
pipeline. The smaller the porosity coefficient the better protection the wrapper provides to
the pipeline. The pressure gradient and shear stress forces are also shown in Figure 11.
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Fig. 10. Comparisons of the maximum horizontal and vertical hydrodynamic forces on the 

pipeline and wrapper.  

  

Figure 10. Comparisons of the maximum hydrodynamic forces on the pipeline and wrapper.

 

 

 

(a) (b) 

Fig. 11. Decomposed pressure gradient force (a) and shear stress (b) force on the pipeline. 

  

Figure 11. Decomposed pressure gradient force (a) and shear stress (b) force on the pipeline.

4.1.2. Thickness of Wrapper

Seven wrapper thicknesses are considered: T = 0.2, 0.25, 0.3, 0.35, 0.4, 0.45, and 0.5 m.
The porosity coefficient is taken to be 0.6. At the moment that the wave goes through the
pipe, the transient evolution of the vorticity contours around the pipeline with a wrapper
thickness of 0.25 m is depicted in Figure 12. A couple of vortices emerge on the upper and
lower vertices of the pipeline as the wave approaches the pipeline. As the wave propagates,
many vortices flow along the wrapper and then shed off. Compared with the top vortices,
the bottom vortices are shed off faster for two reasons. Firstly, as the friction at the seabed
is small, the bottom flow velocity is higher than that on the top. Secondly, when the wave
peak departs from the pipeline, a strong disturbance by the water body occurs behind the
pipeline, followed by the irregular swing and fall off of the vortices. After the wave travels
far away, the water flow near the pipeline becomes weak, and the vortices are scattered
around the pipeline.

Figure 13 shows a comparison of flow field stream traces and the velocity contours.
When the fluid penetrates the wrapper, the streamline starts to diverge, which indicates
that the free flow is hindered. Therefore, the flow becomes slower and the flow direction
becomes non-uniform. For the fluid flows out of the wrapper, the stream traces are quite
complex and chaotic. The reason is that the seeping fluid mixes with the bypass flows and
causes strong interference in the water body behind the pipeline. The streamlines passing
through the wrapper indicates frequent water exchange at the wrapper surface. Along with
the small-attached vortices on the wrapper surface, more fluid passes over the wrapper
and causes a large vortex behind the wrapper.
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(a) t = 6.0 s                      (b) t = 6.6 s                     (c) t = 7.2 s 

 

(d) t = 7.8 s                      (e) t = 8.1 s                     (f) t = 8.7 s 

 

(g) t = 9.0 s                      (h) t = 10.2 s                     (i) t = 12.6 s 

Fig. 12. Temporal evolutions of vorticity contours around pipeline with wrapper 

thickness of 0.25 m. 

  

Figure 12. Temporal evolutions of vorticity contours around pipeline with wrapper thickness of
0.25 m (a) 6.0 s (b) 6.6 s (c) 7.2 s (d) 7.8 s (e) 8.1 s (f) 8.7 s (g) 9.0 s (h) 10.2 s (i) 12.6 s.

 

 

 

 

(a) (b) 

 

(c) (d) 

Fig. 13. Comparisons of flow field streamtraces and velocity contours under different 

wrapper thicknesses; (a) T = 0.2 m; (b) T = 0.3 m; (c) T = 0.4 m; (d) T = 0.5 m. 

  

Figure 13. Comparisons of flow field streamtraces and velocity contours under different wrapper
thicknesses; (a) T = 0.2 m; (b) T = 0.3 m; (c) T = 0.4 m; (d) T = 0.5 m.
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The highest free surface elevations and velocities at the front and at the rear of the
pipeline with different wrapper thicknesses are depicted in Figure 14. As the wrapper
thickness increases, the highest elevation at the front of the pipeline seems to be quite
stable, although the peak velocity increases by around 6%. At the moment that the wave
bypasses the pipeline, the maximum elevation reduces with an increase in the wrapper
thickness. This is because the pipeline blocks the wave propagation. However, due to the
strong mixing effect of the seepage and bypass water, the maximum velocity rises to be
higher than that in front of the pipe. The maximum forces on the wrapper and the pipeline
for different wrapper thicknesses are shown in Figure 15. With an increase in the wrapper
thickness from 0.2 to 0.5 m, the normalized forces on the wrapper are doubled as a larger
interaction area is involved. In contrast, the vertical forces on the pipeline decrease by
12.5%. Therefore, the larger the thickness of the wrapper the safer the pipeline.

 

 

 

(a) (b) 

Fig. 14. Comparisons of the maximum elevations and velocities in front and rear of the 

pipelines with different wrapper thicknesses; (a) free surface elevation (note: original water 

depth is 6 m); (b) velocity. 

  

Figure 14. Comparisons of the maximum elevations and velocities in front and rear of the pipelines
with different wrapper thicknesses; (a) free surface elevation (note: original water depth is 6 m);
(b) velocity.

 

 

 

 

Fig. 15. Comparisons of the maximum horizontal and vertical hydrodynamic forces on the 

pipeline and wrapper. 

  

Figure 15. Hydrodynamic forces on the pipeline and wrapper.

4.2. Effect of Pipeline Structure

The in-situ pipelines may be under various suspended conditions since the seabed
topography is often uneven. Some pipelines are also laid in tandem for the sake of the
transportation efficiency. In order to examine the effects of porous wrappers on pipelines
under different conditions, a study was carried out considering two scenarios, namely,
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suspended pipelines and pipelines in tandem. In the numerical models, the porosity
coefficient (n) remained at 0.6, the thickness (T) of the wrapper was kept at 0.5 m, and the
wave height (H) was assumed to be 2.0 m.

4.2.1. Suspended Pipelines

Six gaps (G) between the wrapper and the seabed (0.0, 0.2, 0.4, 0.6, 0.8, and 1.0 m)
were considered [35–37]. The representative flow field at three points in time (6.3, 7.2, and
10.2 s) are shown in Figure 16. At the arrival of the wave at the pipeline (at 6.3 s), the flow
is accelerated and the velocities over and beneath the pipe reach the maximum values due
to the bypass effect of the fluid. At the moment that the wave peak is above the pipe (at
7.2 s), all the velocities around the pipe reach their highest values. After the wave passes
over the pipe (at 10.2 s), the velocity decreases and several vortices are formed behind the
pipeline. With a tiny wrapper-seabed gap, the velocity within the gap is very high while
the flux is relatively small. An increase in the gap will result in an increase in the flux and a
decrease in the velocity. A symmetric velocity distribution similar to a fisheye is observed
behind the pipeline, which becomes more obvious when the gap increases (Figure 16c).

 

 

 

(a) 

 

(b) 

 

(c) 

Fig. 16. The velocity contours of the flow fields under different gaps; (a) G = 0.2 m; (b) G = 

0.6 m; (c) G = 1.0 m. Left to right: 6.3 s, 7.2 s and 10.2 s. Left to right: arrival, retain, 

departure. 

  

Figure 16. The velocity contours of the flow fields under different gaps; (a) G = 0.2 m; (b) G = 0.6 m;
(c) G = 1.0 m. Left to right: 6.3 s, 7.2 s, and 10.2 s. Left to right: arrival, stay, departure.

With the bypass of the wave, the vortices generated around the pipeline become larger.
The vorticity contours and the streamlines of the flow field are shown in Figure 17. As the
solitary wave approaches, a pair of whirlpools shed off from the wrapper with a gap of
0.2 m. With an increase in the gap, the two whirlpools gradually disappear and are replaced
with two smaller vortices. Due to the internal pores within the wrapper, the streamlines in
the wrapper are dispersed, and it is hard for a vortex to be generated. With an increase in
the gap, two anti-symmetric vortices shed off from the wrapper. Besides, some tiny vortices
remain adhered to the wrapper due to the interaction by the seepage and the external flow.
When the gap is very small, a few small vortices are generated between the wrapper and
the seabed. In contrast to the interface of vortex from the flow around a solid cylinder,
the vortex interface at the wrapper is not fully smooth. Because of the strong interactions
of fluid over the wrapper surface, several small vortices mingle with the large shedding
vortices. The flow direction also varies greatly according to the streamline mobilisation.
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(c) 

Fig. 17. The vorticity contours of the flow fields under different gaps; (a) G = 0.2 m; (b) G = 

0.6 m; (c) G = 1.0 m. Left to right: 6.3 s, 7.2 s and 10.2 s. 

  

Figure 17. The vorticity contours of the flow fields under different gaps; (a) G = 0.2 m; (b) G = 0.6 m;
(c) G = 1.0 m. Left to right: 6.3 s, 7.2 s and 10.2 s.

The gap is normalized by the pipeline diameter as β = G/D. With a small gap (β < 0.2),
the horizontal forces on both the wrapper and the pipeline are slightly smaller than those
on the wrapper and pipeline without a gap (Figure 18). With a further rise of the gap width,
the horizontal forces are accordingly enlarged due to higher velocity around the pipeline
as shown in Figure 16.

 

 

 

Fig. 18. Comparisons of the maximum horizontal and vertical hydrodynamic forces on 

the pipeline and wrapper under different gaps. 

  

Figure 18. Comparisons of the maximum horizontal and vertical hydrodynamic forces on the pipeline
and wrapper under different gaps.
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In contrast, an increase in the gap width may inversely cause the reduction of vertical
forces on both the wrapper and the pipeline. The vertical forces can be considered to consist
of two parts. One is caused by the weight of the water body at the bypass of the wave from
the pipeline, while the other can be caused by the velocity difference between the flow
above and below the pipeline after the flow passes over. In summary, as the gap increases,
the flow velocity within the gap initially increases when β < 0.2 and then decreases when
β > 0.2. In contrast, the vertical forces caused by the wave’s weight always decrease with
an increase in the gap.

4.2.2. Pipelines in Tandem

The hydrodynamic forces on pipelines in tandem are investigated considering five
different distances (S) between the two pipeline centres (2.5, 3.0, 3.5, 4.0, and 4.5 m). The
velocity and vorticity fields at 6.3, 7.2, and 10.2 s around the tandem pipelines with distances
of 2.5, 3.5, and 4.5 m are depicted (Figures 19 and 20). As the wave approaches the pipeline,
the velocity within the pipeline gap is very small due to the blockage effect of the pipeline
in front. As the distance increases, the velocity field within gap space is enhanced as more
water flow is allowed. The velocity above the pipeline has its maximum value, and part of
the high-speed fluid flows into the gap through the space underneath the pipeline. With a
small distance, the vortices shedding off from the front pipeline impinge directly on the rear
pipeline without any stretching. When the distance is increased, noticeable vortex shedding
emerges in the middle space (Figure 20c). Similar vortex shedding behind the rear pipeline
is observed for different distances. After the wave bypasses the pipeline, the increase in
the distance between the pipelines will cause an increase in the velocity magnitudes in the
space among the pipelines. As the distance increases, the flow becomes more chaotic due
to the seepage from the wrapper and the limited flow space. In summary, influence of the
distance between the pipelines over the whole kinematic field is not significant, although
the local flow field around the pipelines is severely affected. When the wave bypasses the
tandem pipelines, the largest forces on structures (i.e., the pipelines and wrappers) are
shown in Figure 21, in which the distance ratio (θ) is calculated as θ = S/D.

 

 

 

(a) 

 

(b) 

 

(c) 

Fig. 19. The velocity contours of the flow fields under different spacings; (a) S = 2.5 m; (b) S 

= 3.5 m; (c) S = 4.5 m. Left to right: 6.3 s, 7.2 s and 10.2 s. 

  

Figure 19. The velocity contours of the flow fields under different spacings; (a) S = 2.5 m; (b) S = 3.5 m;
(c) S = 4.5 m. Left to right: 6.3 s, 7.2 s and 10.2 s.
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(c) 

Fig. 20. The vorticity contours of the flow fields under different porosities; (a) S = 2.5 m; (b) 

S = 3.5 m; (c) S = 4.5 m. Left to right: 6.3 s, 7.2 s and 10.2 s. 

  

Figure 20. The vorticity contours of the flow fields under different porosities; (a) S = 2.5 m;
(b) S = 3.5 m; (c) S = 4.5 m. Left to right: 6.3 s, 7.2 s and 10.2 s.

 

 

 

Fig. 21. Comparisons of the maximum horizontal and vertical hydrodynamic forces on the 

pipeline and wrapper under different distances. 

  

Figure 21. The maximum forces on the pipeline and wrapper under different distances.

As for the pipeline in front, as the distance ratio increases, the horizontal loads on the
wrapper and pipeline increase slightly, while the vertical forces are almost doubled. As for
the rear pipeline, as the distance reduces, the velocity in the gap becomes smaller and the
forces on the pipelines and wrappers are also reduced, which is mainly attributed to the
shield effect from the front pipeline. With an increase in the distance, the forces increase
due to the increase in the turbulence energy in the gap.

Different ratios of the forces on the front and rear pipelines are depicted in Figure 22.
The difference ratio is defined as ∆Fn = (ff,max−fr,max)/ff,max, where ff,max and fr,max are the
maximum forces on the pipeline or wrapper. It is found that the horizontal loads on the
rear pipe and wrapper tend to be always higher than their counterparts on the front pipe.
This means that a turbulent flow in the horizontal direction on rear pipe is more intense
than that on the front pipe. For different distances, deviations for the forces on the pipelines
and wrappers are also different. The deviation is found to be maximized at a distance of
1 m and this indicates that the pipeline is not well protected and needs to be avoided in
engineering practice.
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Fig. 22. The deviation of the forces on the front and rear pipelines and wrappers under 

different distances. 

  

Figure 22. The deviation of the forces on the front and rear pipelines and wrappers under differ-
ent distances.

4.3. Effect of Wave Height

Six groups of wave heights (H), i.e., 1.6, 1.8, 2.0, 2.2, 2.4, and 2.6 m, are selected to
consider different marine environment. After bypassing the pipeline, the height of the
wave decreases because of the blockage effect of the pipeline and the dissipation of the
flow energy (Figure 23a). The deviation ratio of the wave heights before and after the wave
passes over the pipeline is shown in Figure 23b and is defined as δ = (Hf,max −Hr,max)/Hf,max.
The wave height attenuation becomes more significant as the wave height increases. This
means that waves with larger heights are more easily affected by the pipelines.

 

 

 

(a) (b) 

Fig. 23. The waves with different wave heights; (a) temporal evolutions; (b) attenuation 

deviation.  

  

Figure 23. Waves with different wave heights; (a) temporal evolutions; (b) attenuation deviation.

At the bypass of the wave through the pipe, the loads are increased until they reach the
maximum values at the moment that the wave peak appears above pipeline (Figure 24). The
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forces gradually decrease as the wave propagates. Because of some reflux after the wave
bypasses the pipeline, the flow is in the opposite direction to that of the wave propagation,
resulting in a negative force. The vibration of the water body by the wave propagation
induces oscillations of the forces on the pipeline and wrapper. When the wave height is
larger, the force oscillation becomes fiercer and the maximum loads on the pipeline and the
wrapper increase (Figure 25). The vertical forces on the pipeline are the largest compared
with other forces under the same conditions. Besides, as the wave height increases, the
increased amplitude of vertical forces on the pipeline is the most significant change since
the weight of the water above the pipeline increases. Therefore, given that the wave height
is very high, the protective function of wrapper on the pipeline tends to be weakened
compared with that of the wrapper for a low wave height.

 

 

 

(a) (b) 

 

(c) (d) 

Fig. 24. The temporal evolutions of forces on the pipeline and wrapper. 

  

Figure 24. The temporal evolutions of forces on the pipeline and wrapper; (a) Horizontal maximum
force on pipeline; (b) Vertical maximum force on pipeline; (c) Horizontal maximum force on wrapper;
(d) Vertical maximum force on wrapper.

 

 

 

Fig. 25. Comparisons of the maximum horizontal and vertical hydrodynamic forces on 

the pipeline and wrapper under different distances. 

 

Figure 25. Variation of hydrodynamic forces on the pipeline and wrapper under different distances.
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5. Conclusions

The effect of porous media on the dynamic performance of submarine pipelines under
solitary waves was investigated. The porosity of the wrapper, the seabed topography,
the structure of the pipeline, and the marine environment were considered. The study
had a limitation of the model sizes due to the limited computational resource and the
simplification of the solitary wave due to its mathematical complication, which will be
tackled in future works. The following main conclusions have been made.

(1) When a pipe is wrapped by a porous medium, the velocity in the wrapper is relatively
small because the porous medium can consume the water energy and weaken the
flow. With an increase in the porosity, the range of the low-speed flow at the bottom
of the pipeline expands. This indicates that the porous wrapper can slow down the
flow and affect a wider region of the surrounding water. After the bypass of the wave
through the pipe, the number and volume of the vortices behind the porous wrapper
are larger than those for a pipeline with a solid wrapper or without a wrapper. As the
porosity coefficient increases, the impact forces on the pipe increase, while those on
the wrapper decrease. This implies that the porous wrapper is capable of protecting
the pipeline.

With an increase in the wrapper’s thickness, the hydrodynamic forces on the wrapper
tend to increase. In particular, the horizontal forces on the pipeline decrease with an
increase in the thickness due to the protection of the wrapper, while the vertical forces are
increased because of variations in the fluid’s stagnation point.

(2) For a wave bypassing a pipe with different heights, a symmetric speed change similar
to a fisheye appears behind the pipeline, along with two antisymmetric vortices
shedding off from the wrapper.

As the internal seepage interacts with the external fluid flow, several small vortices are
still attached to the wrapper. The hydrodynamic vertical forces on both the wrapper and
the pipeline decrease with the pipeline distance. With an increase in the suspension of the
pipe, the velocity and TKE within the gap space increase and both the vortex intensity and
the number of vortices increase. Therefore, the flow pattern appears to be chaotic. As for
the front pipeline, an increase in the gap leads to a slight increase in the horizontal forces
on both the wrapper and the pipeline, but a significant increase in the vertical forces. As
for the rear pipeline, because of the shield function of the front pipeline, the velocity within
the gap space and the forces on the pipes decrease with a decrease in the gap size.

(3) When the waves with different heights pass over the pipeline, the height of the wave
is reduced because of the blockage function from the pipeline and the dissipation
characteristic of the flow energy. When the wave height is increased, the velocity
around the pipeline increases, inducing an increase in the TKE. As the wave height
increases, all the maximum forces on the pipeline and wrapper also increase. Note
that an increase in the vertical forces on the pipeline is the most significant change
because the weight of the water above the pipeline increases, which implies that the
protection function of the wrapper is enhanced by the reduction in the wave height.

From the above investigation, the mechanism of load transfer from the pipeline to the
external wrapper has been presented. This encourages industrial experts and academic
scholars to arrange more investigations of the functions and cost-efficiency of porous
wrappers, which could form a new branch of the pipeline design practice.
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Abstract: There is often obvious particle breakage for silica sand under high-stress, which will lead
to the bearing capacity reduction and excessive settlement of the foundation. This paper focuses on
the particle breakage characteristics of marine silica sand from the East China Sea under high-stress
conditions. A series of conventional triaxial tests for silica sand, including consolidated drained (CD)
and consolidated undrained (CU) shear tests, were conducted under the confining pressures in the
range of 2–8 MPa to investigate the breakage rule during the shearing process. The developments
of particle breakage index Br with axial strain ε1 and volumetric strain εv present hyperbolic and
linear trends, respectively. A hyperbolic model was adopted to describe the relationship of Br and
ε1 and the corresponding model parameters were obtained. The particle breakage index also has a
good correlation with the input work per unit volume under various average stresses, regardless
of the stress history. Furthermore, the relationship between the fractal dimension and the particle
breakage was studied based on the particle size distribution curve. It is concluded that the fractal
dimension increases in an up–convex hyperbolic trend with the increase of particle breakage index.
The dividing radius for whether the silica sand particles exhibit the fractal features is determined
as approximately 0.4 mm. This is anticipated to provide reference and supplementary test data for
analyzing sand constitutive models/environments regarding particle crushing.

Keywords: marine silica sand; mechanical characteristics; particle breakage; fractal distribution;
evolution

1. Introduction

Silica sand is widely distributed in the offshore area of the East China Sea and is
the main engineering material for offshore foundations. It is commonly believed that
particle breakage often occurs when silica sands are subjected to high stress [1–8]. The
soil at the tip of a deep pile foundation in an offshore oil drilling platform or at the
bottom of rockfill dams may bear a high load, with the stress level sometimes reaching
approximately 10 MPa [9]. Due to changes in the initial stress state or the groundwater
pressure, the earth pressure and water pressure generated by these large loads will cause
more particle breakage in silica sand [10,11]. Moreover, continuous particle breakage causes
the gradation of silica sand in offshore foundations to change continuously [12,13], affecting
its compressibility [14], dilatancy [15], critical state [16], and other mechanical properties,
thus significantly changing the engineering characteristics of foundations, and ultimately
directly affecting the design scheme of offshore foundation engineering and the safety of
the project [17,18].
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In the past few decades, various laboratory tests have been conducted to study the me-
chanical properties of silica sand and the evolution process of particle breakage, including
ring shear tests [19,20], direct shear tests [21,22], one-dimensional compression tests [23,24],
isotropic compression tests [25–27], conventional triaxial tests [28], true triaxial tests [29],
cyclic tests [30–32], and creep tests [33]. Several studies have investigated the effect of
particle breakage on the mechanical properties of sand. Kikumoto et al. [34] found that in
the e–lgp′ plane, the critical-state line moved downward with an increase in the particle
breakage index. Through triaxial tests, Carrera et al. [35] found that an increase in particle
breakage may lead to an upward movement of the critical-state line. Bandini et al. [36]
found that particle breakage in the triaxial shear process led to translation and rotation of
the critical-state line; however, the critical-state friction angle did not change. Yu et al. [37]
conducted a triaxial test on pre-crushed silica sand and found that particle breakage caused
the critical-state line on the e–lgp′ plane to shift downward and rotate counterclockwise,
while on the q–p′ plane, all the critical-state points were on the initial critical-state line;
however, the critical-state points varied with particle breakage under different drainage
conditions. Silica sand particle breakage is related to factors such as the particle mineral
composition, particle shape, effective stress path, and pore water pressure [38,39], and the
characteristics of particle breakage can be typically explained by the fractal theory [40,41]
and energy theory [42]. Afshar et al. [43] conducted several compression tests using X-ray
and scanning electron microscopy and found that in the process of particle breakage, the
sphericity and aspect ratio of fine silica sand decreased continuously, and the fractal con-
dition of large granular silica sand ceased. Zhao et al. [44] found that when the particle
size of Leighton Buzzard sand is lower than a certain value, regardless of the assumed
shape, the characteristic dimension is proportional to the corresponding particle size, and
the fractal dimension of the sand remains constant. In offshore foundation engineering
applications, stress is a key parameter when considering particle breakage. However,
most of the above studies analyzed the amount of particle breakage when the sample was
loaded to the failure or critical state and rarely discussed the intermediate development
process of particle breakage along specific stress paths [45]; that is, the influence of particle
breakage on the strength parameters of the loading process (such as the peak strength of the
softened material) could not be truly reflected. Hence, it is necessary to study the evolution
of the particle-crushing process and its correlation with the mechanical properties of the
silica sand.

Currently, research on particle breakage during the shear process of silica sand is
limited. Existing studies have generally focused on the evolution process of the particle
breakage of calcareous sand [46] and rockfill [47] under general stress conditions. Whether
the crushing theory based on the above materials under general stress conditions can be
applied to describe the particle-crushing evolution process of silica sand under high-stress
conditions requires further verification. Owing to the strict conditions of high-stress triaxial
tests, experiments on the evolution of the particle breakage of silica sand under high-stress
conditions are lacking, thus, limited theoretical research on the evolution model of the
particle breakage of quartz sand under high-stress conditions. In addition, the fractal
characteristics of silica sand under different drainage conditions, particularly high stresses,
have not been thoroughly studied.

In this study, a GDS high-stress triaxial test system was used to conduct shear tests on
consolidated drained (CD) and consolidated undrained (CU) silica sand specimens at high
stresses to investigate the effects of stress level, axial strain, and drainage conditions on
the degree of particle breakage. The evolution law of the particle breakage of silica sand
during shearing was analyzed, and the parameters of the particle breakage model of silica
sand were obtained. The evolution of the fractal dimension in the particle-breaking process
was discussed, and the relationship between the volume deformation, fractal dimension,
input work, and particle breaking was studied.
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2. Materials and Methods
2.1. Triaxial Test Equipment

A British GDS high-stress environment triaxial test system (HPETTS) was used, as
shown in Figure 1. The test system was mainly composed of GDSLAB data acquisition soft-
ware (GDSLab v2.5.4.42), a channel data acquisition board, a pressure/volume controller, a
500 kN VIS load frame, and a three-axis pressure chamber. The three-axis pressure chamber
comprised an upper shaft pressure chamber and a lower confining pressure chamber, and
the maximum bearing capacity can reach 32 MPa. In addition to the test chamber, the
high-stress triaxial test system was equipped with control and data acquisition systems.
The control system includes an axial pressure controller, a confining pressure controller,
and a reverse pressure controller. Both systems can apply pressures of up to 32 MPa with
an accuracy of 0.001%. The stress and volume changes were recorded every second using
the data acquisition system. The measuring range of the confining pressure and reverse
pressure volume controller was 0–16 MPa, and the measuring range of the axial pressure
volume controller was 0–32 MPa. The sensor and data conversion device of the high-stress
triaxial test system automatically collected the test data for the deviatoric stress q, effective
axial pressure, effective confining pressure, pore pressure u, volume change, and axial
strain ε1.
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2.2. Test Material and Condition

Sand samples were obtained from Pingtan, Fujian province, near the East China Sea,
and the geographic location is shown in Figure 2. The main component of the Fujian sand is
quartz. An image of the silica sand sample is shown in Figure 3a. Silica sand has a uniform
shape and smooth surface, similar to the characteristics of Leighton Buzzard sand [38,44],
Ottawa sand, and Toyoura sand. Figure 3b shows the initial particle size distribution (PSD)
curve of the silica sand. Fujian sand was sieved into five-grain groups: d1 (0.5–0.6 mm),
d2 (0.6–0.7 mm), d3 (0.7–0.8 mm), d4 (0.8–0.9 mm), and d5 (0.9–1 mm). Silica sand was
then prepared according to the principle of equal proportion. This ensured that the initial
particle composition of each sample was identical. Table 1 lists the physical characteristics
of the silica sand.
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initial condition.

Table 1. Properties of silica sand.

Property Value

Specific gravity, Gs 2.65
Average grain size d50: mm 0.75
Coefficient of uniformity, Cu 1.45

Curvature coefficient, Cc 0.96
Maximum void ratio, emax 0.78
Minimum void ratio, emin 0.55

Particle size range, mm 0.5–1.0

2.3. Test Program

Triaxial compression tests under two different drainage conditions (CD and CU tests)
were conducted to study the influence of drainage conditions on the mechanical properties
and particle breakage of silica sand. A sample with an initial relative density of 75% (dense
sand) was prepared using the drop sand method (a reconstruction method that simulates
the free-falling behavior of natural objects). The mass of the sand was predetermined,
and all the samples prepared had a diameter of 50 mm and a height of 100 mm. Before
the triaxial compression test, to ensure that the sand sample was fully saturated, it was
subjected to ventilation saturation for 3 h and water head saturation for 10 h. A reverse
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pressure was applied step-by-step to 500 kPa in increments of 50 kPa for reverse pressure
saturation, ensuring that Skempton’s B value after the saturation test was greater than 0.97.
To prevent the rubber film from being punctured by the corners of silica sand samples
under high-pressure conditions, a rubber film with a thickness of 1 mm was adopted.
The application of this method to a structural sample can be referred to in [8]. A total of
32 high-pressure triaxial shear tests were conducted, as listed in Table 2 (εv is the volumetric
strain, D is the fractal dimension, and W is the input work per unit volume), R2 is the
correlation coefficient, and the larger the R2, the higher the degree of coincidence. To
quantify particle breakage after compression, all the tests were performed in increments
of 2, 4, 6, and 8 MPa when the specified average effective stress range was 2–8 MPa, and
the strain shear rate in the test was 0.05%/min. To analyze the change in the particle
breakage during the shearing process, parallel tests with axial strains of 5%, 10%, 15%, and
20% were conducted in each confining pressure test, and the corresponding PSD curves
were obtained by performing a sieving analysis.

Table 2. Test program and results of high-stress triaxial tests.

Test (No.) Type of Shear Termination
Axial Strain (%)

σ3
(MPa) Br W (MJ/m3) D R2

TCD-1 CD 5 2 0.040 0.160 0.170 0.940
TCD-2 CD 10 2 0.065 0.319 0.390 0.975
TCD-3 CD 15 2 0.079 0.480 0.550 0.981
TCD-4 CD 20 2 0.097 0.584 0.667 0.970
TCD-5 CD 5 4 0.070 0.367 0.302 0.983
TCD-6 CD 10 4 0.109 0.707 0.691 0.988
TCD-7 CD 15 4 0.130 1.074 0.895 0.981
TCD-8 CD 20 4 0.160 1.323 1.142 0.976
TCD-9 CD 5 6 0.077 0.577 0.519 0.989

TCD-10 CD 10 6 0.013 1.116 0.916 0.988
TCD-11 CD 15 6 0.175 1.713 1.244 0.986
TCD-12 CD 20 6 0.208 2.129 1.387 0.976
TCD-13 CD 5 8 0.099 0.776 0.763 0.975
TCD-14 CD 10 8 0.015 1.538 1.239 0.994
TCD-15 CD 15 8 0.206 2.384 1.514 0.990
TCD-16 CD 20 8 0.248 2.987 1.928 0.980
TCU-1 CU 5 2 0.057 0.176 0.197 0.923
TCU-2 CU 10 2 0.062 0.234 0.319 0.964
TCU-3 CU 15 2 0.067 0.290 0.611 0.978
TCU-4 CU 20 2 0.071 0.341 0.917 0.987
TCU-5 CU 5 4 0.073 0.413 0.143 0.959
TCU-6 CU 10 4 0.084 0.518 0.517 0.973
TCU-7 CU 15 4 0.091 0.617 0.839 0.982
TCU-8 CU 20 4 0.099 0.734 0.967 0.983
TCU-9 CU 5 6 0.093 0.651 0.287 0.960

TCU-10 CU 10 6 0.105 0.798 0.727 0.960
TCU-11 CU 15 6 0.114 0.935 0.964 0.973
TCU-12 CU 20 6 0.119 1.121 1.144 0.971
TCU-13 CU 5 8 0.103 0.879 0.477 0.962
TCU-14 CU 10 8 0.119 1.061 0.865 0.971
TCU-15 CU 15 8 0.123 1.234 1.048 0.972
TCU-16 CU 20 8 0.129 1.484 1.158 0.976

3. Results and Analysis

To study the influence of the stress level, drainage condition, strain termination
point, and other factors on the particle crushing characteristics of silica sand, several high-
pressure triaxial tests were conducted under CD and CU conditions. After the tests, the
corresponding particle size distribution curves were obtained through the sieving analysis.
Considering the high workload involved in the tests, the initial relative compactness was
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set to Dr = 75%, with four pressure levels of 2, 4, 6, and 8 MPa. Two drainage conditions
were set for each stress level. To measure the amount of particle breakage during shearing,
corresponding parallel tests were performed under different stress levels. The test was
stopped at the termination strain point ε1 = 5%, 10%, 15%, and 20%, and the particle
breakage index at the termination strain points was calculated. Table 2 presents the detailed
test data.

3.1. Examining Similarity of Parallel Specimens

The degree of particle breakage can be reflected by the change in the particle scale.
However, due to the lack of a method for monitoring the change in the particle scale during
the test process, the method of testing the parallel sample was used to study the evolution
of particle crushing with loading. Several samples with the same initial state were loaded
to different axial strains along the same stress path, and then the grading curves under
the corresponding axial strains were obtained through indoor screening. By comparing
the changes in the grading, the specific particle breakage was obtained under the current
axial strain. Figure 4 shows the ratio of the deviatoric stress to the average effective stress
under confining pressure q/p′–axial strain ε1 relationship curve. The graph shows that
the difference of q/p′–ε1 curves under a CD test for different termination strains is small,
except when σ3 = 2 MPa and 8 MPa, axial strain of ε1 = 5% corresponding to the extreme
difference for q/p′ of 13.4% and 14.7%, respectively, and the extreme differences for other
confining pressures and strains are between 3% and 9%. The reason for this difference
is that in the triaxial drained tests, a small difference in the volumetric strain can lead to
a large difference in the effective confining pressure, resulting in a large deviation in the
stress–strain curves. Therefore, the stress–strain difference of the parallel specimens in
the CD test is acceptable. Overall, the extreme differences of q/p′ for the parallel tests are
all less than 15%, indicating that the repeatability of the CD test is good at different axial
strain termination points under different confining pressures. For the CU test, the four
curves under σ3 = 4 MPa have the largest extreme difference of 9.2% when ε1 = 5%, and the
range of the other conditions is 1.2–7.2%, indicating that the CU test with different strain
termination points under different confining pressures has good repeatability.
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Figure 4. Relationships between q/p′ and ε1 with various confining pressures. (a) CD tests,
(b) CU tests.

Figure 5 shows the effective stress paths under different confining pressures during
the CD and CU tests. The hollow circles in the figure represent the points at which the axial
strains were 5%, 10%, 15%, and 20%. The peak strength points under different confining
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pressures are between the particle breakage measurement points and close to the axial
strain when the test was stopped.
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Figure 5. Stress paths under various confining pressures. (a) CD tests, (b) CU tests.

3.2. Mechanical Properties of Silica Sand

Figure 6a shows the deviatoric stress–axial strain relationship curves of silica sand.
The deviatoric stress and initial modulus increase with an increase in the confining pressure.
When σ3 = 2 MPa, the q – ε1 curve shows a softening characteristic, and the deviatoric
stress reaches a peak value at ε1 of 6%, then gradually decreases, but still does not reach
a stable critical state even at ε1 = 20%. When σ3 ≥ 4 MPa, the q – ε1 curves of the sand
showed different degrees of strain hardening; that is, the deviatoric stresses increase with
the increase in the axial strain. The greater the confining pressure, the more evident the
hardening feature for the stress–strain curve. Figure 6b shows the deviatoric stress–axial
strain relationship curves obtained from the CU tests. The deviatoric stress increases with
the increase in the confining pressure, and the strain at the peak point gradually advances.
With the increase in the axial strain, the deviatoric stress curves under different confining
pressures all show a strain-softening behavior.
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Figure 6. Relationships between q and ε1 under various confining pressures. (a) CD tests, (b) CU tests.

Figure 7a shows the volumetric strain–axial strain (εv − ε1) relationship curves for
different confining pressures; shear contraction is positive, and shear expansion is negative.
As shown, the sample undergoes a second phase change at σ3 = 2 MPa, in which the sample
presents reduced volume first, followed by shear expansion. With the increase in the axial
strain, the sample again exhibits shear contraction. The corresponding axial strains of the
two phase-change points in the diagram are 2.5% and 15.9%, respectively. When σ3 > 2 Mpa,
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the sand sample was subjected to shear contraction with an increase in the axial strain;
the greater the confining pressure, the more significant the shear contraction. Figure 7b
shows the pore pressure in the CU test and axial strain relationship curve. From the graph,
when σ3 = 2 Mpa, the pore pressure is positive initially, and it reached a maximum at
ε1 = 1%, and then began to decrease, gradually decreasing to a negative value, reaching a
minimum at ε1 = 12.8% and then increasing. Similar to the CD test, two-phase transitions
can be observed in the test process, indicated by black circles. When σ3 > 2 Mpa, with an
increase in the axial strain, the pore pressure increases rapidly in the early stage and is
always positive in the shear process; the greater the confining pressure, the higher the pore
pressure. Under different confining pressures, the pore pressure, after reaching the peak
deviatoric stress, gradually tended to be flat but continued to increase gradually.
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Figure 7. Relationships of εv − ε1 and u − ε1 with various confining pressures. (a) CD tests,
(b) CU tests.

Figure 8 shows the relationship between the void ratio e of silica sand samples and the
effective mean stress p′ under different confining pressures. It can be seen that the void
ratio gradually decreases with the increase of mean effective stress during the consolidation
compression process, and a steep drop does not occur. The decrease in void ratio is
commonly due to compaction and particle breakage, and particle breakage is the main
factor leading to a sharp drop in the e–lgp′ curve [37,48]. Therefore, it is inferred from the
curve’s characteristics that the particle breakage during consolidation is extremely small
and can be ignored.
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Figure 8. Void ratio versus mean effective stress during consolidation.
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The relationship between the void ratio e and the mean effective stress p′ is expressed
in Equation (1):

e = 0.579− 0.015× ln(
p′ + 0.187
1 + 0.187

) (1)

3.3. Evolution of PSD Curves with Axial Strain

Figure 9 shows the distribution of the particle size before and after the test under dif-
ferent confining pressures. Under the high-pressure conditions, the fine particles produced
by the crushing of each sample increased significantly. With the increase in the axial strain,
the content of large particles decreased while that of the small particles increased, and the
greater the axial strain or confining pressure, the more significant this phenomenon was.
The grading of the samples changed to a wide particle size distribution.
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Figure 9. Particle size distribution curves after triaxial tests. (a) CU test under σ3 = 2 MPa, (b) CU
test under σ3 = 4 MPa, (c) CU test under σ3 = 6 MPa, (d) CU test under σ3 = 8 MPa, (e) CD test
under σ3 = 2 MPa, (f) CD test under σ3 = 4 MPa, (g) CD test under σ3 = 6 MPa, and (h) CD test under
σ3 = 8 MPa.

To quantify the particle breakage degree of silica sand under high stresses, this study
adopted the particle breakage index theory proposed by Hardin [42], as shown in Figure 10.
The particle breakage index, Br is given by Equation (2):

Br =
Bt

Bp
=

S<ABCD>

S<ABCF>
(2)

where Bt is the area enclosed by the initial and shear grading curves, and Bp is the area
enclosed by the initial grading curve and a straight line with a particle size of 0.074 mm.
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Figure 10. Particle breakage index definition proposed by Hardin [42].

Based on the definition of the particle breakage index Br proposed by Hardin, that is,
Equation (2), the relationship curves between the Br and the axial strain ε1 of silica sand in
the CD and CU tests were plotted, as shown in Figure 11. The particle breakage index Br
increases with increasing axial strain. The particle breakage index Br of the CU test under
each confining pressure is between the range of the values of Br for σ3 = 2–4 MPa under the
CD test. When σ3 = 2 MPa, the difference in particle breakage index in the shear process of
the CD and CU tests is small. The difference in the particle breakage index between the
CD and CU tests increases with the axial strain and confining pressure when σ3 > 2 MPa,
that is, the particle breakage index of the CD test is significantly higher than that of the CU
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test. This is mainly because the positive pore pressure produced in the CU test reduces the
effective stress, thereby inhibiting particle breakage. The higher the confining pressure, the
greater the positive pore pressure, and the greater the difference in the particle breakage
under different drainage conditions.
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Figure 11. Relationship between Br and ε1 under various confining pressures applied in the CD and
CU tests. (a) CD test (b) CU test.

3.4. Correlations between Relative Breakage and Input Work and Volumetric Strain

Particle breakage in the shearing process of silica sand is due to the continuous work
of the external forces on the material, and this process is irreversible; therefore, there is
a good correspondence between the particle breakage index and input work. The total
input work was mainly converted into the work consumed by particle breakage, frictional,
and particle rearrangement. In this study, the input work W per unit volume is defined as
follows [49]:

W =
∫

(p′dεv + qdε1) (3)

where p′ is the effective mean stress, εv is the volumetric strain increment, q is deviatoric
stress, and ε1 is the axial strain.

Figure 12 shows the relationship between the particle breakage index of all the samples
and the input work per unit volume. Without considering the influences of the stress level,
stress path, and end-strain point, the particle breakage index shows a hyperbolic nonlinear
increase with increasing input work. The relationship between the particle breakage index
Br and input work W per unit volume is given by Equation (4):

Br =
W

χw + ζwW
(4)

where W is the unit volume input work (MJ/m3 or MPa). The method of input work is like
Equation (3).

The particle breakage index Br is the derivative of the unit volume of input work,
which is the initial tangent modulus of W = 0, that is kBr0 .

1
χW

=
dBr

dW
= lim

W→0

1
χW + ζWW

, kBr0 (5)

When W approaches infinity, the maximum particle crushing rate can be obtained
using the limit of Br, that is kBru :

1
ζW

= lim
W→∞

W
χW + ζWW

, kBru (6)
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Figure 12. Relationship between the particle breakage index and input energy.

In the equation, the material parameters χW and ζW are 5.19 and 2.73, respectively,
kBr0 is the reciprocal of χW , and kBru is the reciprocal of ζW .

Figure 13 shows the relationship between the particle breakage index and the volu-
metric strain of silica sand. Regardless of the stress level, stress path, and end-strain point,
the particle breakage index increased linearly with the increase in the volumetric strain.
This relationship has also been observed in triaxial tests on rockfills under drainage con-
ditions [46], calcareous sand drainage triaxial tests [45], and silica sand compression tests
with different stress paths [38]. The slope of the fitted curve in this study was greater than
the value (0.018) adopted by Wu et al. [8] for dense specimens. This is because the particle
coordination number (the number of accessible particles around the particle) increases with
relative compactness, and this effect reduces the average contact force on the silica sand
particles. The relationship between the particle breakage index and the volumetric strain of
silica sand can be expressed as follows:

Br = 0.038 + 2.0εv (7)
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3.5. Evolution Law of Particle Breakage of Silica Sand

The particle breakage evolution law of geotechnical materials is nonlinear, with an
increase in the axial strain during soil shearing. The particle breakage evolution law
proposed by several researchers can be applied to the analysis of rockfills [47] and calcareous
sands [46]. However, whether it can be applied to silica sand, how to select the relevant
model parameters, and whether the fracture evolution process of silica sand under high
pressures can be reasonably described remains to be verified. Therefore, based on the test
results of all the samples in this study, we found that the particle breakage and the axial
strain of the silica sand soil exhibited a good hyperbolic relationship. The relationship
between the particle breakage index and the axial strain of silica sand soil can be expressed
as follows:

Br =
εa

1/RB0 + εa/Br
(8)

Here, εα is the axial strain, Br is the maximum particle breakage index produced
under the current confining pressure, and RB0 represents the initial growth rate of particle
breakage when εα = 0. The expressions for these two physical quantities are as follows:

RB0 = c1
(

p′/pa
)c2 (9)

Br =
p′

Apa + p′
Br (10)

Here, c1 and c2 are the material parameters; Pa is the standard atmospheric pressure;
A is a dimensionless parameter; and Br is the final particle breakage index, representing
the final degree of particle breakage that can be produced under extremely high confining
pressure and continuous loading conditions. For the Hardin particle breakage index, it
is believed that when sand is subjected to sufficient pressure, particles of any size will
eventually break into particles with a size lower than 0.075 mm, which means that Br = 1.

Figure 14 shows the fitting effect of the particle breakage model. In both the CD and
CU tests, the particle breakage model results are in good agreement with the test results,
indicating that the model can accurately describe the particle breakage change process of
silica sand at high stresses under CD and CU conditions. The model parameters c1, c2, and
A of silica sand soil were 0.43, 0.38, and 96.8, respectively, as listed in Table 3.
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Table 3. Parameters of the particle breakage model.

c1 c2 A Br R2

0.43 0.38 96.8 1 0.997

3.6. Effect of Particle Breakage on Fractal Dimension

The compaction and crushing of the silica sand particles can be considered an energy-
dissipation process with self-similar characteristics [50]. Therefore, the fractal theory was
applied to describe the particle size distribution of the silica sand after compaction. Based
on the associated particle number and the characteristic scale [51], the basic definition of a
fractal can be obtained as follows:

Md(x < d)
MT

= (
d

dmax
)

3−D
(11)

where D is the fractal dimension, Md is the particle mass with a radius less than r, MT is the
total mass, and dmax is the dimension of the largest particle.

Figure 15 shows the fractal distribution of the silica sand samples under different
stress levels. Table 2 presents the fractal dimensions. The fractal dimension in each graph
increases with an increase in the fine particle content, and the fractal characteristics become
more evident with an increase in the termination strain. For silica sand grains, the PSD
curves show self-similarity at high stresses owing to particle breakage.

Figure 16 shows the fractal distribution of silica sand samples under different effective
mean stresses. Under the same effective confining pressure conditions, the fractal degree of
the CD tests is obviously greater than that of the CU tests for the cases of σ3 > 2 MPa. This
is because the confining pressures in the CD tests for σ3 > 2 MPa are higher, causing the
fractal dimension to extend in a larger direction.

Figure 17 shows the curve of the particle breakage index and fractal dimensions
of silica sand samples under different stress ratios. As shown in the figure, the fractal
dimension gradually increases with an increase in the relative particle crushing amount,
exhibiting hyperbolic characteristics consistent with the results of the one-dimensional
compression test of the silica sand. The crushing strength of particles depends on their size
and coordination number, and the dominance of the coordination number on the particle
size makes silica sand particles exhibit fractal characteristics in essence and have real
fractal dimensions [44]. The force distribution of the large particles with high coordination
numbers is uniform, and the probability of breakage is significantly lower than that of
small particles with low coordination numbers. Therefore, particle breakage is dominant
in smaller particles, satisfying the fractal condition and continuously protecting larger
particles [43]. In the shearing process, with an increase in the axial strain, the increase in
the relative fractal dimension of the particles decreases to zero (i.e., the limiting fractal
dimension). The relationship between the particle breakage index and the fractal dimension
is expressed as follows:

D =
Br

0.192Br + 0.056
− 0.606 (12)

Figure 18 shows the particle size distribution of silica sand under different stress levels.
As shown, with an increase in the stress level, the particle size distribution of the silica sand
changes from a uniform distribution to a uniform gradient distribution. The higher the
stress level, the greater the shift in the particle size distribution curve toward the direction
of a greater uniform gradient.
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Figure 15. Relationship between lg[M(δ < d)/MT] and lg(d/dmax) at different axial strains. (a) CD
test under σ3 = 2 MPa, (b) CU test under σ3 = 2 MPa, (c) CD test under σ3 = 4 MPa, (d) CU test
under σ3 = 4 MPa, (e) CD test under σ3 = 6 MPa, (f) CU test under σ3 = 6 MPa, (g) CD test under
σ3 = 8 MPa, and (h) CU test under σ3 = 8 MPa.
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Figure 16. Relationship curves of lg[M(δ < d)/MT] and lg(d/dmax) with various confining pressures.
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Figure 18. Particle size distributions of silica sand under different stress levels.

The fractal dimension was measured using the relationship between the number of
particles and their sizes. The particle radius r is equivalent to the radius of a sphere with
the same particle volume, and N is the number of particles. The relationship in logarithmic
coordinates is expressed as follows:

3lg(r) + lgN(> r) ∝ (3− D)lg(r) (13)

Figure 19 shows the fractal distribution of the particle sizes of silica sand at different
stress levels. The line with a 3D slope in the figure represents the fractal case of a particle.
The silica sand particles exhibited self-similarity under different drainage conditions, and
the fractal dimension increased with an increase in the particle breakage index. Some large
particles with limited fragmentation terminated the particle fractal condition, and it was
determined that the dividing line between silica sand particles with fractal characteristics
and those without fractal characteristics was approximately 0.4 mm, similar to the results
of the 1D compression test of Leighton Buzzard sand (LBS) reported by Zhao et al. [38].
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Figure 20 shows a histogram of the particle content of silica sand particles with a
radius of no more than 0.4 mm (r ≤ 0.4 mm) obtained from the high-stress triaxial test of
CD and CU. Clearly, the content w of a particle with a radius r ≤ 0.4 mm increases with the
increase of the confining pressure σ3 when the drainage conditions are the same. When the
confining pressure is σ3 = 2 MPa, the difference of sand particle content w with r ≤ 0.4 mm
between the CD test and the CU test is small; they are 11.95% and 14.52%, respectively.
With the increase of confining pressure, the sand particle content w with r ≤ 0.4 mm in the
CD test obviously increases, while the content w in the CU test gradually increases. This is
attributed to the different effective stresses generated under different drainage conditions.
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Figure 21 shows the relationship between the fractal dimensions of the particles with
a radius less than 0.4 mm and the fine particle content. Clearly, the fractal dimension
increases with the increase in the silica sand particle content (ω ≤ 0.4), the slope of the
curve is linear, and the linear growth form is independent of the stress path and stress level.
The fitting line is expressed as follows:

D = 0.477 + 0.041ω≤0.4 (14)

Figure 21. Relationship between the fractal dimension and the fine particle content (r < 0.4 mm).
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4. Conclusions

In this study, high-stress triaxial shear tests were conducted on silica sand, and the
evolution law of particle breakage during shearing under different drainage conditions
was obtained. The relationship between the particle breakage and fractal dimension during
shearing was studied. The conclusions obtained from the tests are as follows:

• In the CD and CU tests, the particle breakage index Br of silica sand increased with
increasing confining pressure and axial strain. However, the particle breakage index in
the CD test was more evidently affected by the confining pressure and shearing process,
whereas that in the CU test exhibited relatively small changes and was generally lower
than that in the CD test, mainly because the pore water pressure generated in the
CU test reduced the effective stress, thus significantly inhibiting the influence of the
confining pressure on particle breakage.

• In the high-stress shearing process, the particle breakage of silica sand increased with
an increase in the axial strain in a hyperbolic form, and a mathematical model was
developed to describe the change in the particle breakage index of silica sand under
CD and CU conditions. A hyperbolic model was proposed to describe the relationship
between the particle breakage index amount and the input work per unit volume
under different drainage conditions.

• An up-convex hyperbolic model was proposed to correlate all the test results of the
fractal dimension and relative fragmentation. The fractal feature terminated at the
radius of the particles that were broken to a certain extent. The dividing line between
silica sand particles with the fractal features and those without the fractal features was
approximately 0.4 mm. For particles with radii less than or equal to 0.4 mm, the fractal
dimension increased linearly with increasing particle content.
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Abstract: In this study, the step vacuum preloading method was used to reinforce high clay content
dredger fill in the laboratory. The pore structures and permeability characteristics of dredger fill
under different vacuum pressures were tested. The correlation between the pore structure parameters
and permeability coefficient was analyzed using the grey T’s correlation analysis method. The
research results indicate that the pore ratio, large pore (the diameter with a range of 4–40 µm) content,
and permeability coefficient of dredger fill decreased with the increase in vacuum pressures, but
the decrease rates of the pore ratio were different at various sampling locations. The contents of
micropores (the diameter with a range of <0.04 µm) and small pores (the diameter with a range of
0.04–0.4 µm) increased with the increase in vacuum pressure. The results of the correlation analysis
showed that a large pore content had a strong correlation with the permeability coefficient and could
be used to describe the permeability characteristics of soil. The research results can provide reference
for the improvement of the reinforcement method and for the evaluation of the reinforcement effect
of dredger fill in engineering practice.

Keywords: step vacuum preloading; high-clay content dredger fill; pore distribution; permeability;
correlation analysis

1. Introduction

When the traditional vacuum preloading method is used to consolidate high clay
content dredger fill, the drainage capacity of the prefabricated vertical drain (PVD) will
be weakened [1–3] due to the blockage caused by fine particles. Based on the vacuum
preloading method, the step vacuum preloading (SVP) is applied to solve the problem [4–8].
Before the application of vacuum pressure, the dredger fill to be treated is characterized by
a higher moisture content, higher porosity, and lower strength. After being reinforced, the
soil will have a certain bearing capacity and its permeability will be changed greatly [9].
The permeability coefficient is an important parameter to evaluate the consolidation effects
and the property of soil [10,11].

With the rapid development of reclamation engineering, the permeability features
of soil treated by the vacuum preloading method have been studied extensively in recent
years [12–18]. The influence of permeability on settlement has been discussed for the
accurate prediction of settlement and proper evaluation of the reinforcement effect of the
soil. Based on field data, Zhuang et al. [10] established a numerical model to analyze the
relationship between the settlement and the permeability coefficient of a stabilized soft soil
site. Wu et al. [9] discussed the change in permeability coefficient with depths and locations
from the PVD after the dredger fill was treated by the laboratory vacuum preloading
method. Li et al. [19] adopted a five-level (10, 20, 40, 60, and 80 kPa) vacuum preloading
plan on a dredger fill in the laboratory. During the test, the permeability coefficients, pore
ratio, settlement, and pore water pressure of the soil were measured. The results proved that
the SVP was effective at reinforcing dredger fill with high clay content. The permeability
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of soil is controlled by its pore characteristics [20–23], and the flow of fluid in soil is
determined by the geometric spatial characteristics of the pores. Porosity is the primary
factor affecting the permeability of soil, and pore size distribution plays an important role
in fluid flow in soil [24–27]. During the process of SVP, the characteristics of pores change
significantly, causing the permeability of the dredger fill to change accordingly. So, it is
necessary to analyze the permeability of soil from the aspect of pore characteristics. At
present, many scholars have investigated the pore characteristics of soil treated by vacuum
preloading, and have discussed the changes of porosity [28,29], pore size distribution [30],
and pore directionality [31] during reinforcement. However, the study on the dynamic
change of permeability coefficient during vacuum preloading process from the aspect of
pore features is limited, the correlations between the pore parameters and permeability
during the SVP process have seldom been studied. Therefore, it is necessary to study the
evolution mechanism of permeability characteristics for dredger fill treated by the SVP
method, so as to provide a reference for the improvement of the SVP method and for the
evaluation of the consolidation efficiency of dredger fill.

In this study, SVP was used to treat high clay content dredger fill in the laboratory.
During the consolidation process, the pore features changed all the time. Correspondingly,
the permeability characteristics of the dredger fill changed. To clarify the variation of
pore parameters and permeability with time and space during the SVP process, a mercury
intrusion porosimetry test (MIP) and permeability test were conducted on samples obtained
at different times and from the different locations of the test bucket. Then, the relationship
between pore parameters and permeability coefficient of the soil was analyzed.

2. Materials and Methods
2.1. Sample Properties

The studied soil was obtained from Nangang Industrial Zone, Binhai New Area in
Tianjin (Figure 1). The site was filled in 2016 and not subjected to any reinforcement process.
The dredger fill had a thickness of 8–9 m in the sampling location, and its properties were
relatively uniform. During sampling, the surface hard layer was removed first, and the
soils with original moisture content of 30–80% were dug and put into a bag. The sampling
depth was 1 m.
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The soluble salt content of the soil is listed in Table 1. The total soluble salt content was
1.756%, and the main ions were Na+ and Cl−. The basic properties of the soil are showed in
Table 2. The content of clay particles was more than 50%, so the soil belonged to high-clay
content dredger fill. According to the ASTM D2487-17, the soil was classified as lean clay.
The mineral compositions of the soil were measured by X-ray diffraction analysis, and the
results are shown in Figure 2. Quartz had the highest content of 36.1%, followed by the
illite-smectite mixed layer (I/S).
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Table 1. Soluble salt content of the soil.

Component Total K+ Na+ Cl− Ca2+ Mg2+ SO2−
4 CO2−

3 HCO−3
Percentage

(%) 1.756 0.029 0.525 0.951 0.016 0.022 0.156 0.000 0.025

Method Water bath
evaporation

Flame
photometer

Silver nitrate
titration EDTA complex titration Neutralisation

titration

Table 2. Basic properties of the soil.

Granulometric Composition Physical Properties

Size Fraction (mm) Percentage Density Liquid Limit Plastic Limit Plastic Index

>0.075 0.005–0.075 <0.005 ρS
(
kg/m3) wL (%) wP (%) IP (%)

0.09% 47.91% 52.06% 2740 44.62 26.38 18.24
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2.2. SVP Model Test

The equipment used for the SVP test was a self-designed bucket. Figure 3 shows its
schematic diagram. Two pore water pressure gauges were arranged at different positions
of the bucket bottom. In the inner wall of the bucket, the settlement gauge was installed
to monitor the settlement of the soil surface. A vacuum gauge was installed at the center
of PVD to determine the vacuum pressure of the SVP test. Water collection devices were
used to measure the displacement. The testing soil was sealed by a sealing film, and the
vacuum pump, sealing film, and soil−water separator worked together to control the
levels of vacuum pressure (through Valve 3 of the soil−water separator). The test has been
described in detail by Shan et al. [8] and Li et al. [19].
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The original soil underwent a natural sedimentation process in which some of the
water was discharged. So, the moisture content of the soil was uneven. According to the
study of Yuan et al. [4,28], the moisture content of the sample used in the SVP test was
controlled as 120%. The SVP test lasted for 117 days. The corresponding time nodes of each
experimental stage are shown in Figure 4a. There were two stages in the SVP test, namely,
self-weight consolidation (SWC) stage and step vacuum pressure loading stage. The SWC
stage included soil−water separation and self-weight sedimentation processes [32]. During
the step vacuum pressure loading stage, five-level vacuum pressures (10, 20, 40, 60, and
80 kPa) were applied to consolidate the dredger fill.

SWC stage: As shown in Figure 4b, the soil sample was in a mud state at the beginning
of the test. The initial height of the mud was 25.67 cm. At this stage, no water was drained,
and the total weight of the mud remained unchanged. As time went on, the water and soil
began to separate (Figure 4c), and this stage finished when the positions of water and soil
surface and the readings of pore water pressure gauges were unchanged. After opening
Valve 1, water was discharged through the PVD under gravity, and the stage of self-weight
sedimentation started (Figure 4d). The ending criterion of this stage was the same as the
soil−water separation stage. As the SWC stage finished, soil samples for the MIP test were
taken from the UC, US, LC, and LS, as shown in Figure 3c.

Step vacuum pressure loading stage: five-level vacuum pressures (10 kPa to 20 kPa
to 40 kPa to 60 kPa to 80 kPa) were applied to treat the dredger fill. Under a certain level
of vacuum pressure, when the settlement of soil was stable and the pore water pressure
changed from a stable state to a gradual increase, the vacuum pressure was then increased
to the next level.
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The sampling plan for the MIP test and permeability test are shown in Figures 3c and 4e.
It was difficult to collect samples for permeability test when the soil had a high moisture
content. So, sampling was carried out from UC and US after the application of vacuum
pressures of 20, 40, 60, and 80 kPa. The test stages and sampling plan are illustrated in
Figure 4.

2.3. MIP Test

When the moisture content of the soil was high, it was difficult to prepare undisturbed
specimens for the MIP test using traditional sampling methods. A self-designed and tried-
and-tested sampler was used to prepare the specimens for the MIP test. Yuan et al. [28]
demonstrated that the sampler could obtain the undisturbed soil samples with a high
moisture content. We cut the samples into cylinders about 10 mm long with steel knives
soaked in liquid nitrogen, and then frozen them in liquid nitrogen for 2 h. After being
completely dried by a vacuum dryer, the samples were trimmed into cubes with a length
of 10 mm, as shown in Figure 5b.

The MIP tests were carried out with an AutoPore IV 9500 Porosimeter (manufactured
by Micromeritics Instrument Corporation, Norcross, GA, USA) (Figure 5a). Under different
pressures, mercury entered the pores with different diameters. The volumes of injection
mercury under each increment of pressure were recorded, and the pore diameters were
calculated through Equation (1).

P =
4γ cos θ

d
(1)

162



J. Mar. Sci. Eng. 2023, 11, 1714

where d is the diameter of the pore, γ is the surface tension of mercury, θ is the contact
angle between the particle and mercury, and P is the pressure.

J. Mar. Sci. Eng. 2023, 11, x FOR PEER REVIEW 6 of 16 
 

 

being completely dried by a vacuum dryer, the samples were trimmed into cubes with a 
length of 10 mm, as shown in Figure 5b. 

 
Figure 5. Instrument and sample for MIP and SEM test: (a) AutoPore IV 9500 Porosimeter; (b) the 
sample for the MIP test. 

The MIP tests were carried out with an AutoPore IV 9500 Porosimeter (manufactured 
by Micromeritics Instrument Corporation, Norcross, GA, USA) (Figure 5a). Under differ-
ent pressures, mercury entered the pores with different diameters. The volumes of injec-
tion mercury under each increment of pressure were recorded, and the pore diameters 
were calculated through Equation (1). 𝑃 = 4𝛾 cos 𝜃𝑑  (1)

where d is the diameter of the pore, γ is the surface tension of mercury, θ is the contact 
angle between the particle and mercury, and P is the pressure. 

2.4. Method of Correlation Analysis 
The correlation analysis between the pore characteristics and permeability coefficient 

was carried out using Grey T’s correlation analysis method. The basic idea of this method 
was to calculate the correlation level (r) according to the proximity of the relative change 
trend of the time series curves of factors, where the relative change trend refers to the ratio 
of the slope of curves of reference series and comparison series in the adjacent time period 
[33]. The positive or negative values of r did not indicate the magnitude, but only indicate 
whether the change trend of the comparison sequence and the reference sequence was 
consistent over time. 

The method is described as follows: 

𝜉൫𝑋௜(𝑘)൯ = ቐ𝑠𝑔𝑛(∆𝑦ଵ(𝑘) ∙ ∆𝑦ଶ(𝑘)) ∙ min (|∆𝑦ଵ(𝑘)|, |∆𝑦ଶ(𝑘)|)max(|∆𝑦ଵ(𝑘)|, |∆𝑦ଶ(𝑘)|)0(∆𝑦ଵ(𝑘) ∙ ∆𝑦ଶ(𝑘) = 0) ቑ (2) 

Figure 5. Instrument and sample for MIP and SEM test: (a) AutoPore IV 9500 Porosimeter; (b) the
sample for the MIP test.

2.4. Method of Correlation Analysis

The correlation analysis between the pore characteristics and permeability coefficient
was carried out using Grey T’s correlation analysis method. The basic idea of this method
was to calculate the correlation level (r) according to the proximity of the relative change
trend of the time series curves of factors, where the relative change trend refers to the
ratio of the slope of curves of reference series and comparison series in the adjacent time
period [33]. The positive or negative values of r did not indicate the magnitude, but only
indicate whether the change trend of the comparison sequence and the reference sequence
was consistent over time.

The method is described as follows:

ξ(Xi(k)) =

{
sgn(∆y1(k)·∆y2(k))·min(|∆y1(k)|,|∆y2(k)|)

max(|∆y1(k)|,|∆y2(k)|)
0(∆y1(k)·∆y2(k) = 0)

}
(2)

r(X1, X2) =
1

n− 1

n

∑
k=2

ξ(Xi(k)) k = 2, 3, · · · , n , i = 1, 2 (3)

In Equation (2),

∆yi = {∆yi(k) = yi(k)− yi(k− 1), k = 2, 3, · · · , n}, i = 1, 2 (4)

yi = {(Xi(k)− Xi(k− 1))/Di, k = 1, 2, · · · , n}, i = 1, 2 (5)

Di =
n

∑
k=2
|Xi(k)− Xi(k− 1)|/(n− 1), i = 1, 2; k = 2, 3, 4, · · · , n (6)
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where X is the study sequence. y is the sequence after standardization. ∆y is the increment
sequence. ξ is the correlation coefficient between sequences. r is the correlation level
between the reference sequence and comparison sequence.

3. Results
3.1. Permeability Characteristics of Dredger Fill under Step Vacuum Pressures

The TST-55 permeameter (Nanjing Soil Instrument Factory Co., Ltd., Nanjing City,
Jiangsu Province, China) was used for the permeability test. The permeability coefficient is
calculated using Equation (7).

k =
QL
Aht

(7)

where k is permeability coefficient, Q is the amount of seepage within time t, L is the length
of seepage path, A is the cross-section area of the tested sample, and h is the height of
the sample.

Figure 6 illustrates the permeability coefficients of the samples obtained from the soil
under different SVP stages. It shows that the permeability coefficients present a decreasing
tendency with the increase in vacuum pressure. At the end of 20 kPa vacuum pressure, the
permeability coefficients of the UC and US samples were 5.46 × 10−8 and 8.12 × 10−8 m/s,
respectively. When the vacuum pressure was 40 kPa, the permeability coefficients of UC
and US both decreased significantly. With the vacuum pressure increased to 60 and 80 kPa,
the permeability coefficients decreased slowly. During the SVP test, the permeability
coefficient of the central soil sample was lower than that of the soil sample at the edge of
test bucket. At the end of 80 kPa vacuum pressure, the permeability coefficients of the UC
and US samples were 4.33 × 10−11 m/s and 1.88 × 10−10 m/s, respectively.
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Under vacuum pressure, the soil near the PVD was consolidated first. Because of
the long seepage path and hysteresis of vacuum pressure transmission, the soil near the
side wall was consolidated slowly, resulting in a larger permeability coefficient for the
US sample. During the SVP course, there was little difference in permeability coefficient
between UC and US, indicating that the drainage capacity of the soil was almost the same.

3.2. Pore Ratio and Pore Size Distribution Analysis

Pore characteristics have an influence on the permeability of soil [25,26,34,35]. In the
study, the pore features of the treated soil were analyzed from the aspects of pore ratio and
pore size distribution.

3.2.1. Pore Ratio

According to the results of the MIP tests, the porosity (n) of the testing sample could be
directly obtained, and its value was the percentage of the pore volume to the total volume
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of the testing sample. In engineering practice, pore ratio (e), the volume ratio of all the
pores in the soil to the skeleton particles, is often used to describe the pore characteristics of
soil. Figure 7 illustrates the pore ratio of the different samples. It decreased with time. At a
certain time, the pore ratio of UC was the smallest, and the pore ratio of LS was the largest.
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As the vacuum pressure increased from 0 to 40 kPa, the pore ratio of UC, LC, and US
decreases rapidly. With the continuous increase in vacuum pressure, the pore ratio of the
three sampling locations began to decrease at a lower rate. The pore ratio of LS decreased
generally, and its decrease rate under the vacuum pressure of 60 and 80 kPa was the fasted,
compared with the data of the other three sampling locations. When the stage of 80 kPa
vacuum pressure ended, the pore ratio of the four sampling locations was almost the same,
which was about 0.55, indicating that the SVP had a good consolidation effect on the high
clay content dredger fill.

In the SVP test, the PVD was not only the seepage channel for water, but also the
transmission channel for vacuum pressure. During the stage of SWC, the separated water
on the upper soil discharged quickly through the PVD, leading to a small pore ratio of UC,
which had been found and studied by Walker and Indraratna [36]. When the separated
water was discharged completely, the vacuum pressure was loaded on the upper soil
through the PVD. With the application of step vacuum pressure, the soil near the PVD
consolidated first, causing the pore ratio of LC and UC to be small. Additionally, the upper
soil was in contact with the sealing film, and the soil of US underwent vacuum pressure
earlier than the soil of LS, leading to a smaller pore ratio of US than LS.

During a certain test stage, the consolidation degree of LS was the lowest among the
four sampling locations. At the stage of SWC, the small hydraulic gradient in the soil at the
bottom near the bucket wall led to a high pore ratio of LS. And under the vacuum pressure
condition, the pore ratio of LS was large because it would take more time for the vacuum
pressure to reach this part.

3.2.2. Pore Size Distribution

To describe the pores, the pore size needed to be defined. Here, the Expert Method
(EM) was used to classify pores, and pore diameters of <0.04 µm, 0.04–0.4 µm, 0.4–4 µm,
4–40 µm, and >40 µm in the dredger fill were named the micropore, small pore, mesopore,
large pore, and macropores, respectively [37]. Yuan et al. [30] used EM to describe the pore
size change of the dredger fill during the SVP test, and proved its rationality in describing
the pore size distribution of the dredger fill. The cumulative pore size distributions could
be obtained based on the cumulative amount of mercury injection (Figure 8), and then the
percentage of various types of pores could be determined (Figure 9).
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Figure 9. The percentage of pores with different diameters and its variation trend: (a) the percentage
of pores with different diameters of UC; (b) the percentage of pores with different diameters of US;
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The curves in Figure 8 indicate that the pore size became small with the increase in
vacuum pressure. In Figure 8a, with the vacuum pressure increasing from 10 kPa to 80 kPa,
the largest diameter of pore decreased from 91 µm to 0.8 µm. Figure 9 shows that the
content of large pores decreased with the increase in vacuum pressure, while the contents
of the small pores and micropores increased. The percentage of mesopores first increased
and then decreased. The change in various types of pores implied that the large pores were
mainly compressed into mesopores, small pores, and micropores during the consolidation
of soil. When the vacuum pressure was 40 kPa, the mesopores’ content reached the peak
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value. When the vacuum pressure was 60 kPa and 80 kPa, the content of small pores and
micropores increased, but the mesopores content decreased. So, under a high vacuum
pressure, the mesopores were compressed into small pores and micropores.

In the early testing stages, the percentage of large pores in the UC sample was the
lowest, and it was the highest for the LS sample. At the end of the experiment, the
percentages of large pores at the four sampling locations were almost the same, with a
value of 0.75. The change in large pore content of samples from different positions showed
a similar trend; it dropped rapidly under the first three levels of vacuum pressures, then
decreased slowly under a vacuum pressure of 60 kPa and 80 kPa.

3.3. Correlation Analysis

The pore ratio, percentage of large pore, mesopores, small pores, and micropores
were selected as the comparison sequence, and the permeability coefficient of the soil was
selected as the reference sequence. The selection of comparison sequence is consistent
with permeability coefficient in terms of sampling location and testing stage. Table 3 lists
the original data of the comparison sequence and reference sequence. Figure 10 lists the
relationship between the pore parameters and the permeability coefficients.

Table 3. Original data: Reference sequence and comparison sequence.

Testing Stage:
The Vacuum

Pressure Value

Sampling
Locations

Reference
Sequence Comparison Sequence

Permeability
Coefficient (m/s)

Pore Ratio
(-)

Micropore
(%)

Small Pore
(%)

Mesopore
(%)

Large Pore
(%)

20 kPa
UC 5.46 × 10−8 1.08 5.67 19.59 55.78 15.93
US 8.12 × 10−8 1.19 5.39 20.14 40.49 31.58

40 kPa
UC 1.50 × 10−9 0.76 8.60 28.20 57.78 3.07
US 8.34 × 10−9 0.87 8.51 24.65 59.75 3.26

60 kPa
UC 3.80 × 10−10 0.61 12.28 33.54 50.23 2.37
US 5.71 × 10−10 0.76 8.64 33.79 54.39 0.96

80 kPa
UC 4.33 × 10−11 0.54 14.27 41.10 42.81 0.7
US 1.88 × 10−10 0.54 13.56 39.18 44.19 0.744

In Figure 10, the negative value of the correlation degree with an underline indicates
that the permeability coefficient is negatively related to the comparison sequences. The
larger the absolute value of the correlation degree, the stronger the correlation between the
permeability coefficient and the comparison sequence. As shown in Figure 10a, the large
pore content, pore ratio of soil samples in US and UC, and the mesopore content of soils in
US exhibited a positive correlation with the permeability coefficient. The large pore content
of the soil samples from US demonstrated the highest r value among these relationships.
However, the content of small pores and micropores in the soil samples from US and UC,
as well as the mesopore content of the soil samples from UC were negatively related to the
permeability coefficient.

At different sampling locations, the r values between the permeability coefficient and
the pore ratio were lower than that between the permeability coefficient and the large pore
content. In the soil, the pore ratio represented the total volume of pore water that could
exist, so the value of r between the pore ratio and permeability coefficient was slightly high.
The large pore was the main seepage channel for water, and its percentage had the most
direct influence on the permeability of the soil. Therefore, the value of r between the large
pore content and the permeability coefficient was the highest.
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Figure 10. The relationship between pore parameters and permeability coefficients: (a) the correlation
degrees between pore parameters and permeability coefficients; (b) the relationship curves between
the permeability coefficient and large pore percentage of the soil samples.

As shown in Figure 10b, the permeability coefficients decreased with the decrease
in large pore contents. According to the analysis of pore size distributions, the large
pore content was high after the SWC stage. Under the vacuum pressure, the large pores
facilitated the drainage of pore water. So, the soil was compressed and consolidated. As
shown in Figure 11, taking scanning electron microscope (SEM) photos of the soil samples
at UC under different vacuum pressures as an example, the large pores were transformed
into mesopores, small pores, and micropores during the application of vacuum pressure.
With the decrease in large pore content, the size of the seepage channels for water became
small, the permeability of the soil decreased under the increasing vacuum pressure, and
the drainage capacity of the soil decreased. The large pore content decreased significantly
under pressures of 10, 20, and 40 kPa, as did the permeability coefficient. So, the strongest
correlation was between the permeability coefficient and the large pore content.

The r between the large pore content of US and the permeability coefficient was greater
than that of UC. The large pores of UC were compressed into mesopores, small pores, and
micropores in the earlier stage of the SVP test. The large pore content of UC decreased from
15.93% to 0.7%. Meanwhile, the large pore content of US reduced quickly from 31.58% to
0.74%. The variation in large pore content of US was more significant than that of UC. So
the large pore content of US had the largest correlation level.

The mesopore content of UC was negatively correlated with the permeability coeffi-
cient, but that of US presented a positive correlation. The correlation level was the sum
of the proximity of the slope ratio between the comparison sequence and the reference
sequence in the adjacent time. The mesopore content presented different trends before and
after 40 kPa, while the permeability coefficient declined throughout the test, indicating that
the mesopore content had a negative or positive correlation with the permeability coeffi-
cient at different testing stages. When the sum of the absolute value of the negative results
was larger than the sum of the positive ones, r was negative; otherwise, r was positive.
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4. Discussion

According to the above analysis, the percentage of large pores has a strong correlation
with the characteristics of soil permeability. In this section, we use it to discuss the change
in permeability coefficient of soil during the SVP test.

Figure 12 shows the variation in large pore content of soil samples with time and
location. The large pore content of the samples at different locations decreases with the
increasing vacuum pressure.

At the beginning of SWC, due to the differences in size and mineral composition
of particles, the flocculation and sedimentation of particles in the stage of soil−water
separation caused the following sorting: sand and silt concentrated at the bottom, and
clay fraction filled in the space among large particles or was distributed in the upper part
of the soil. The separated water connected with the permeable part of the PVD. When
Valve 1 was opened, the separated water in the upper soil discharged rapidly though PVD
under gravity, and the fine particles migrated to the vicinity of the PVD by the flow of
water. Therefore, the large pore content of UC was the lowest because of the pore filling
effect of the fine particles. So, the permeability of soil at UC was poor. In general, the
large pore content was high at the end of the SWC stage at all four sampling locations,
and the presence of large pores was beneficial for the discharge of pore water under the
vacuum pressure.

Under a vacuum pressure of 10 kPa, the change in large pore content of UC was
smaller compared with the change at the testing stage of 20 kPa and 40 kPa. This is because
the vacuum pressure of 10 kPa was too small to cause an obvious change in large pores.
Therefore, the permeability of the UC sample decreased slowly at the initial stage of vacuum
preloading, which was conducive to the drainage of pore water far from the center. The
large pore contents in the LC and US samples decreased more rapidly compared with that
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in the LS samples. This discrepancy arose because it took time for vacuum pressure to
transfer to the lower and marginal part of the soil, causing gradual consolidation of the
deep soil far from the center. In contrast with the traditional vacuum preloading method,
the SVP method utilizes a lower initial vacuum pressure when reinforcing dredger fill.
These smaller pressures promote soil consolidation by restraining the migration of fine
particles and preventing the blockage of PVD. This strategy is conducive to the discharge
of pore water when higher vacuum pressures are subsequently applied, thereby improving
the efficiency of soil consolidation.
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When the vacuum pressure was 20 kPa, the change in large pore content of the four
sampling locations increased. When the vacuum pressure was 40 kPa, the change decreased
in the UC sample compared with that under the vacuum pressure of 20 kPa; but it increased
in the US, LC, and LS samples. For the UC sample, at the end of SWC stage, it had the
lowest large pore content compared with the samples from other three sampling locations,
so after the reduction in large pore content under 10 kPa and 20 kPa vacuum pressures, it
was difficult for the larger pore content of the UC sample to decrease continuously under
40 kPa vacuum pressure. During this stage, the mesopores content of the soil was the
highest, and the large pore content was in the range of 2.40~3.60%. When the vacuum
pressure was 60 kPa and 80 kPa, the change in large pore content was about 1%, but the
contents of mesopores decreased quickly. The mesopores were transformed into small
pores and micropores under high-level vacuum pressures of 60 kPa and 80 kPa. Due to the
high vacuum pressure, the particle position constantly adjusted, resulting in the compact
structure and low permeability coefficient of the soil.
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The temporal and spatial variation of the pore characteristics and permeability coeffi-
cient showed the effectiveness of the SVP method in the reinforcement of high clay content
dredger fill, and can provide a reference for the improvement of the reinforcement method.

5. Conclusions

The SVP test was conducted to consolidate dredger fill with a high clay content in the
laboratory. Based on data obtained through MIP and permeability tests, the correlation
between the pore parameters and permeability coefficient of soil was analyzed. The
conclusions are as follows:

At the early stage of the SVP test, the permeability coefficient of soil samples decreased
rapidly, followed by a slower decline as the pressure levels increased. The pore ratio of
the samples from different locations decreased with the vacuum pressure. The pore ratio
of the UC sample was the smallest, and it was the largest in the LS sample. Under a
low vacuum pressure, the pore ratio decreased rapidly in the UC, US, and LC sampling
locations. However, it became slow when the dredger fill was consolidated under vacuum
pressure of 60 and 80 kPa. The pore ratio of the LS sample decreased with the vacuum
pressure at a certain rate during the SVP test.

During the application of vacuum pressure, the large pores in the dredger fill gradually
transformed into mesopores, small pores, and micropores. As the vacuum pressure increased
to 60 kPa and 80 kPa, the mesopores were compressed into small pores and micropores.

The results of the correlation analysis indicate that among the various pore structure
parameters, the large pore content demonstrated a strong correlation with the permeability
coefficient of the soil. Therefore, the variation in large pore content with vacuum pressure
could be used to describe the characteristics of soil permeability under vacuum pressure.

When acquiring soil samples for permeability tests becomes challenging, the perme-
ability characteristics of the soil can be evaluated by analyzing the pore structure character-
istics. The research results provide novel concepts for the establishment of permeability
models, which could more accurately evaluate the settlement and stability of the soil during
drainage consolidation.
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Abstract: Based on a series of physical model tests and numerical simulations, the bearing character-
istics of a tripod-bucket foundation are investigated. It is found that with the decrease in aspect ratio
(L/D), the rotation center of the foundation will decrease, and the displacement model change from
rotation to uplift. Characteristics of earth pressure on the buckets from both finite element analysis
and model tests are studied, which is used to explain the failure mechanism for tripod-bucket foun-
dations with different L/D. A revised method is proposed to estimate the moment bearing capacity
of the tripod bucket foundation under horizontal and moment load. This method is thought to be
more convenient and applicable in the practice.

Keywords: tripod bucket foundation; bearing capacity; failure mechanism; model test; finite element
analysis

1. Introduction

Offshore wind energy has been developing rapidly in recent years as a clean and
sustainable energy resource [1,2]. However, the construction expense, especially the cost
of the foundation, negatively affects the cost-effectiveness of offshore wind farms. The
bucket foundation, which is installed by self-weight and suction pressure, is a good option
for the offshore wind turbine foundation nowadays [3]. It is thought to be a cost-effective
foundation type due to the speed of installation and reduction in material costs compared
with other commonly used foundations. At present, tetrapod, tripod and single buckets
are common types of bucket foundations. The tripod bucket foundation is made of three
single buckets placed in a triangular shape and is thought to be more suitable for coastal
areas with water depths greater than 20 m [4].

In the offshore environment, wind turbine foundations are subject to horizontal load
(H) and the moment load (M) generated by wind, waves and currents [5–8]. Compared
with offshore oil and gas platforms, the vertical load (V) from a wind turbine is relatively
low [9]. Therefore, the combined H–M loads are critical for the foundation of offshore wind
turbines [10,11]. To ensure safe operation and good serviceability of the wind turbines, the
bearing characteristics of the tripod bucket foundation under combined horizontal load
and moment load should be studied comprehensively.

A number of investigations into bearing capacity focusing on single bucket founda-
tions [12–18] have been conducted. However, group effects on the bearing capacity of
multiple foundations in sand are still not enough. Martin and Hazell [19] investigated the
group effect of strip foundations in non-homogeneous clays and found that the interaction
of the footings was beneficial for improving the vertical bearing capacity coefficient. Gour-
venec and Jensen [20] conducted an in-depth analysis of the effect of barrel spacing (S) on
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the bearing capacity of the foundation, and the group effect of two pile group systems with
an aspect ratio L/D (L is the embedment depth and D is the diameter) of 0.5 in uniform
clay was explored. It is found that with the increase in foundation spacing and embedding
depth, the combined bearing capacity of H–M loads increased significantly.

Bang et al. [21] conducted a series of centrifuge model tests. A three-dimensional
analytical solution to evaluate the effect of the loading depth on the ultimate horizontal
bearing capacity of suction piles was proposed. The results show that the location of the
applied load influenced the modes of movement. When the loading depth increases, the
ultimate horizontal bearing capacity of the suction piles would increase.

There are also some empirical formulae of bearing capacity proposed by theoretical
analysis or numerical simulation. Based on the upper limit theory, Zhao et al. [22] found
three critical positions S1, S2 and S3 which have significant effects on the horizontal bearing
capacity of the quadruple bucket foundation. Considering the influence of the load direction
on the bearing capacity, the empirical formula of the relationship between the distance
among piles, the load direction, and the horizontal bearing capacity was established. Kim
and Oh [23] studied the group effect of a tripod bucket foundation in cohesive soil with
a three-dimensional finite element method, and the efficiency coefficient was proposed.
The results show that the group efficiency factor had little effect on the vertical bearing
capacity with S/D > 1.5, whereas the factor of the horizontal and the moment capacity of
the tripod bucket foundation tended to be larger. Compared with previous studies, Hung
and Kim [24] proposed new equations to evaluate the vertical-, horizontal- and moment-
bearing capacities of the bucket foundation considering the effects of the non-homogeneity
of clay and embedment depth. The capacity envelopes under general combined loads were
defined. Based on the finite element method, He et al. [25] simulated the bucket penetration
in clay by reducing the friction factor between the bucket wall and the surrounding soil. The
results indicated that the spacing between buckets was a key factor affecting the bearing
capacity of the tripod bucket foundation, but its bearing capacity envelope was similar to
the monopod bucket foundation.

Previous studies have shown that the bearing characteristics of foundations are signif-
icantly influenced by aspect ratios L/D [15], load location [21], load direction [22], spacing
ratios S/D and group effects [19,23]. Additionally, most of the work focuses on the me-
chanical properties of the single bucket foundation or the mechanical properties of the
bucket foundation in clay. However, the research on the mechanical properties of the tripod
bucket foundation in sandy soil is not enough. There is little comparison and analysis
between numerical simulation results and experimental results now. This study aims to
analyze the effect of bucket spacing and aspect ratios on the bearing capacity of the tripod
bucket foundation under the combined load of H–M based on a physical model test and
three-dimensional finite element analysis.

2. Materials and Methods
2.1. Physical Model Test

A series of model tests were performed. Common sand was used in this study. Particle
size distribution tests were conducted which showed it to be medium sand. Based on
the relative porosity ratio measured on site, the relative density of the sand used in this
experiment was 0.59, which was classified as medium-dense sand. The physical properties
of the sand used in the model test are shown in Table 1. The tests were conducted in a
model box with size of 1 m × 1 m × 1.2 m (length × width × height). Single-side drainage
was adopted and pebbles, drainage pipe network and geotextile were laid at the bottom
of the model box. The sandy soil was laid in the model box layer by layer and manual
compaction was adopted to meet the test requirements. After the sand was laid, it was
filled with water and allowed to stand for 3 days for consolidation. Q235 steel pipe was
used as the bucket model because the deformation of the foundation was ignored in the
test. The parameters of steel piles are shown in Table 1. To ensure the same model bucket
weight and meet the requirements for eliminating the boundary effect of the model box [26],
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model sizes are calculated as shown in Table 2. The final distribution of the outer diameter
of the bucket is 102 mm, 120 mm, 133 mm and the bucket length is 164.7 mm, 134 mm, and
112.6 mm, respectively, which is consistent with the range of aspect ratio of suction bucket
foundation in practical engineering. Lifting lugs were set every 90 mm from the bottom of
the tripod to apply horizontal load to the model as shown in Figure 1.

Table 1. Physical properties of sand and steel pipe.

Sand

Saturated
Density γsat

(kN/m3)

Natural Density
γnat (kN/m3)

Friction Angel ϕ
(◦) Poisson’s Ratio v

19.6 15.9 35 0.26

Steel pipe
Modulus of elasticity Es (Mpa) Unit weight

γsteel (kN/m3) Poisson’s Ratio v

2.06 × 105 78.5 0.31

Table 2. Bucket model size in test and numerical simulations.

Model Diameter
(mm)

Length
(mm)

Aspect Ratio
L/D

Wall Thickness
(mm)

1 102 164.7 1.61 3
2 120 134 1.12 3
3 133 112.6 0.85 3
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Table 2. Bucket model size in test and numerical simulations. 

Model 
Diameter 

(mm) 

Length 

(mm) 

Aspect Ratio 

L/D 

Wall Thickness 

(mm) 

1 102 164.7 1.61 3 

2 120 134 1.12 3 

3 133 112.6 0.85 3 

Figure 1. Schematic diagram of the model test.

Two bolt holes were set at the top of a single bucket model. One was used to connect
with the tripod at the top of the model, and the other was used as an exhaust hole to
facilitate the penetration and extraction of the bucket model. Earth pressure cells were
placed symmetrically at 1/3 L and 2/3 L from the foundation top at the outside, as shown
in Figure 2.
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When loading, ten steps were used with a load level difference of 1/10 of the estimated
bearing capacity by adding weight blocks. Each level of loading was maintained for
at least 5 min until the displacement remained almost stable. Both the earth pressure
and displacement were measured and recorded to analyze the failure phenomenon and
mechanism of the tripod bucket foundation in sand.

2.2. Numerical Simulation

The 3D Finite Element (FE) analyses were conducted with an elasto-plastic model and
Mohr–Coulomb failure criterion. In practical engineering, the stiffness of the bucket is much
higher than that of the soil, and it can be considered as a rigid foundation. This test does not
consider the deformation of the bucket body under load but only considers the deformation
between the bucket and the soil and the soil failure. The bucket foundation in the numerical
simulation was modeled as a rigid body, and the parameters of the bucket foundation
were shown in Table 2. The normally consolidated sand under drained conditions was
modeled with the basic parameter same with the physical model test shown in Table 1.
Brinkgreve et al. [27] confirmed that setting a small cohesion force and dilatancy angle
was beneficial to improve the accuracy of the calculation. Young’s modulus Es of the sand
was set as 38.6 Mpa. The interface coefficient between the bucket and soil was set at 0.68,
with the aim of increasing the flexibility of finite element mesh, reducing the sharp angle of
strength reduction and avoiding non-physical stress results.

Figure 3 shows the arrangement of the tripod bucket foundation and boundary ex-
tensions adopted in this study. The size of the soil elements gradually increased from the
bucket to the domain boundary. The soil was divided by a dense grid within a horizontal
range of 3 S (three times the spacing between buckets) and a vertical range of 2 L (two times
the length of the bucket) boundary, and the roughness coefficient is 0.35. The remaining
parts of the soil were adaptively divided by software. The boundary with horizontal bound-
ary extents of the bucket foundation model was 10 S and the vertical was 5 L, respectively,
which was thought to be able to eliminate the boundary effects.

The connection between the individual bucket foundations as jacket structure in
practice was numerically and rigidly simulated by using a Load Reference Point (LRP) at
the top center of the triangle cross in this study [20,24,28]. The load was applied to LRP
using the load-controlled method, which increased 1/10 of the estimated ultimate bearing
capacity at every step. When the load-controlled method is used in the physical model
experiment, the long interval between each stage of loading belongs to slow-loading. The
sand has good permeability and sufficient time for drainage, so it is defined as drainage
behavior. The ultimate bearing capacity was estimated according to the load-displacement
curve. The bearing capacity was determined by the tangent intersection method or the
phenomenon of pulling out [29].

177



J. Mar. Sci. Eng. 2023, 11, 1631

J. Mar. Sci. Eng. 2023, 11, x FOR PEER REVIEW 4 of 17 
 

 

 

Figure 2. Arrangement of earth pressures in the model test. 

2.2. Numerical Simulation 

The 3D Finite Element (FE) analyses were conducted with an elasto-plastic model 

and Mohr–Coulomb failure criterion. In practical engineering, the stiffness of the bucket 

is much higher than that of the soil, and it can be considered as a rigid foundation. This 

test does not consider the deformation of the bucket body under load but only considers 

the deformation between the bucket and the soil and the soil failure. The bucket founda-

tion in the numerical simulation was modeled as a rigid body, and the parameters of the 

bucket foundation were shown in Table 2. The normally consolidated sand under drained 

conditions was modeled with the basic parameter same with the physical model test 

shown in Table 1. Brinkgreve et al. [27] confirmed that setting a small cohesion force and 

dilatancy angle was beneficial to improve the accuracy of the calculation. Young’s modu-

lus Es of the sand was set as 38.6 Mpa. The interface coefficient between the bucket and 

soil was set at 0.68, with the aim of increasing the flexibility of finite element mesh, reduc-

ing the sharp angle of strength reduction and avoiding non-physical stress results. 

Figure 3 shows the arrangement of the tripod bucket foundation and boundary ex-

tensions adopted in this study. The size of the soil elements gradually increased from the 

bucket to the domain boundary. The soil was divided by a dense grid within a horizontal 

range of 3 S (three times the spacing between buckets) and a vertical range of 2 L (two 

times the length of the bucket) boundary, and the roughness coefficient is 0.35. The re-

maining parts of the soil were adaptively divided by software. The boundary with hori-

zontal boundary extents of the bucket foundation model was 10 S and the vertical was 5 

L, respectively, which was thought to be able to eliminate the boundary effects. 

 

Figure 3. Geometry of the tripod bucket foundation and the load and displacement conventions. 

The connection between the individual bucket foundations as jacket structure in 

practice was numerically and rigidly simulated by using a Load Reference Point (LRP) at 

the top center of the triangle cross in this study [20,24,28]. The load was applied to LRP 

using the load-controlled method, which increased 1/10 of the estimated ultimate bearing 

capacity at every step. When the load-controlled method is used in the physical model 

experiment, the long interval between each stage of loading belongs to slow-loading. The 

Figure 3. Geometry of the tripod bucket foundation and the load and displacement conventions.

2.3. Validation of Numerical Modeling

The numerical modeling adopted in this study was validated by the results from the
physical model tests. Figure 4 shows comparisons of the horizontal bearing capacities
from model tests and FE analysis with S/D = 3 and L/D = 1.61, 1.12 and 0.85, respectively.
The maximum error may be caused by the longer load interval. Based on this validation,
the numerical modeling adopted in this study was thought to be reliable to evaluate the
bearing capacity of the tripod bucket foundation in sand.
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3. Results
3.1. Failure Mechanism under H–M Loadings

According to the model tests, the failure process of the tripod bucket foundation can
be divided into three stages, the initial stage, the intermediate stage and the failure stage.

In the initial stage, the horizontal displacement was very small and the soil around the
bucket may be in the elastic state. Only micro-cracks behind the tension bucket could be
observed. At this time, there was almost no obvious deformation around the compression
bucket as shown in Figure 5a. As the load increased, the soil around the bucket gradually
came to the plastic state. The cracks behind the tension bucket gradually expanded to a
larger region at the rear side, and soil rise could be observed at the front side of the tension
bucket. At this time, the tension bucket tended to pull up and rotate in the loading direction.
Also, the cracks and soil deformation around the compression bucket were smaller than
those around the tension bucket as seen in Figure 5b.
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When the load increased to a certain value, the horizontal displacement of the bucket
foundation started to increase dramatically. The soil in front of the compression bucket
gradually rose to form a passive failure wedge. The foundation came to the state of
complete instability, as shown in Figure 5c. The plastic failure area of the compression
bucket had a wider scope, so the earth pressure in front of the compression bucket may
provide greater horizontal resistance of the tripod bucket foundation. When the tension
bucket was pulled up, it was observed that the soil plug fell off, as seen in Figure 5d, and
the plastic failure area of the soil at the front and rear sides of the tension bucket was found
to be limited to the layer close to the soil surface. It could be thought that the horizontal
resistance provided by the tension bucket mainly came from the friction between the bucket
wall and the sand.

According to the displacement vector diagram from FE analysis (Figure 6), with the
decrease in L/D, the vertical uplift movement of the tension bucket was more obvious.
This was consistent with the phenomenon observed in the model test that the soil layer of
plastic failure was thinner; meanwhile, with the increase in the L/D (L/D = 1.61 compared
to L/D = 1.12 and L/D = 0.85), the rotation trend of the compression bucket was more
obvious and the tension bucket was also accompanied by the forward tilt rotation in the
process of pulling up as shown in Figure 6.

In addition, according to the displacement analyses, the rotation center of the tripod
bucket foundation was not located at the central axis of the compression bucket but deviated
to the horizontal force direction. The specific results are shown in Table 3. It shows that
with the decrease in L/D, the distance between the rotation center and axis changes only
a little and the vertical position of the rotation center became deeper. This phenomenon
may well explain that the main displacement of the tripod bucket foundation with a large
aspect ratio was rotation and that with a small aspect ratio was horizontal displacement.

Table 3. Position of the rotating center of the foundation in the compression bucket.

L/D Diameter
(mm)

Deviation from
the Axis (mm)

Ratio of Deviation
Distance to Bucket

Diameter (%)

Depth of the
Rotation Center

1.61 102 14.4 14.1 0.86 L
1.12 120 16 13.3 0.97 L
0.85 133 14 10.5 >1 L
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3.2. Earth Pressure Analysis

In the model tests, the horizontal earth pressure was measured by the earth pressure
cell placed in the contact surface between the outer side of the bucket model and the sand
as shown in Figure 2. Figures 7–9 show the comparison results of soil pressure by model
tests and FE analysis under the condition of L/D = 1.61, 0.85 and 1.12. According to the
analyses of earth pressure, the failure mechanism of the tripod bucket foundation in the
sand under the action of the horizontal and the bending moment can be further clarified.
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Figure 7. Distribution of earth pressure under the condition of S/D = 3 and L/D = 1.61. (a) Earth 

pressure in front of the compression bucket; (b) earth pressure behind the compression bucket; (c) 

earth pressure in front of the tension bucket; (d) earth pressure behind the tension bucket. 

Figure 7a shows that the earth pressure in front of the compression bucket at 1/3 L 

from the top of the bucket increased continuously with the increase in the horizontal load, 

while the earth pressure at 2/3 L increased in the initial stage and decreased in the later 

stage. The reason was that the tripod bucket foundation would overturn and rotate under 

H–M and the rotation center was below 2/3 L from the top of the bucket as shown in Table 

3. Therefore, the soil at 1/3 L and 2/3 L in the front of the bucket was squeezed which 

Figure 7. Distribution of earth pressure under the condition of S/D = 3 and L/D = 1.61. (a) Earth
pressure in front of the compression bucket; (b) earth pressure behind the compression bucket;
(c) earth pressure in front of the tension bucket; (d) earth pressure behind the tension bucket.

Figure 7a shows that the earth pressure in front of the compression bucket at 1/3 L
from the top of the bucket increased continuously with the increase in the horizontal load,
while the earth pressure at 2/3 L increased in the initial stage and decreased in the later
stage. The reason was that the tripod bucket foundation would overturn and rotate under
H–M and the rotation center was below 2/3 L from the top of the bucket as shown in
Table 3. Therefore, the soil at 1/3 L and 2/3 L in the front of the bucket was squeezed which
resulted in the passive earth pressure. As the load increased, the rotation trend was more
obvious, so the earth pressure caused by the squeezing effect increased. However, when
the applied load increased to a certain value, the earth pressure at 2/3 L began to decrease,
which may be explained by the following two reasons. First, with the increase in load and
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deformation, the soil in front of the compression bucket changed from an elastic state to a
plastic state due to the squeezing effect. Consequently, the earth pressure was cut down
when the soil failed. Secondly, when the compression bucket is rotated, a void or loosen
zone may be formed at the toe in front of the bucket. And the soil above (nearly 2/3 L) may
fall down, which may cause the decrease in earth pressure.

Figure 7b shows the earth pressure distribution behind the compression bucket. Except
for the model test at 2/3 L, the results show that the earth pressure behind the compression
bucket was almost constant and small as the load increased. This indicated that the active
earth pressure was sustained. When the load increased to about 0.7 of the ultimate capacity
at 2/3 L in the model test, the earth pressure reduction may be caused by the separation
between the earth pressure cell and soil due to the crack propagation behind the bucket.

Figure 7c shows the earth pressure results in front of the tension bucket. It can be seen
that the earth pressure at 1/3 L increased first and then decreased, while the earth pressure
at 2/3 L kept almost constant with slight fluctuations during the final steps. The tension
bucket would rotate under H–M. The upper part of the bucket (about 1/3 L) tilted forward
and the lower part (about 2/3 L) tilted back away from the soil. As a result, the soil at 2/3 L
was in an active earth pressure zone and earth pressure kept a smaller value. It may slip
slightly after being disturbed, resulting in the final decrease in earth pressure. The soil at
1/3 L was in a passive earth pressure area. With increasing loading, the earth pressure
increased gradually until shear failure finally occurred.

It was noticeable that the results from model tests dropped more sharply, which
may be caused by the existence of an earth pressure cell. The earth pressure cell was
close to the model bucket occupying a certain volume, so the measured values were more
vulnerable to cracks with increasing displacement compared with the results from the
numerical simulation.

Figure 7d shows the earth pressure results behind the tension bucket. The earth
pressure at 1/3 L tended to be constant and the values were smaller, which corresponded
with the explanation in Figure 7c that soil at 1/3 L was in the active earth pressure zone
and soil at 2/3 L was in the passive earth pressure zone. There was no shear failure of soil
in the passive area, so earth pressure continued to increase as the load increased.
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In comparison with Figure 7a, earth pressure in front of the compression bucket at
2/3 L kept increasing as shown in Figure 8a. This was mainly affected by the displacement
behaviors. For the bucket foundation with a smaller L/D under H–M, its failure model can
be compared with that of a wide shallow bucket foundation [30]. Horizontal displacement
was dominant and the rotation center was located under the bottom of the bucket as shown
in Table 3. The soil in front of the compression bucket was squeezed by the approximate
translational motion of the bucket, which was difficult to cause sand leakage and local
plastic failure.

The results in Figure 8b–d are similar to the earth pressure recorded in the test of
S/D = 3 and L/D = 1.61. However, the results at 1/3 L and 2/3 L were closer, because the
soil was more evenly squeezed. At the same time, the dominant horizontal displacement
of the foundation was more likely to cause the separation between the earth pressure cell
and soil, and so the earth pressure dropped dramatically.

Figure 9 shows the results of the earth pressure in the test of S/D = 3 and L/D = 1.12.
Compared with the results in the test of S/D = 3 and L/D = 1.61, the horizontal displacement
trend was more obvious. Compared with that of S/D = 3 and L/D = 0.85, the rotation
trend was more obvious. The results in Figure 9a indicate that the bucket is subjected to
passive earth pressure without obvious plastic failure. At the end of loading, there is a
“steep change” in the earth pressure. In the model experiments, it is observed that the
bucket maintains a small displacement until reaching the ultimate bearing capacity. At this
moment, the tripod foundation loses stability suddenly and is pulled out. The difference
between the earth pressure behind the compression bucket and the other two sets of tests is
that the pressure decreases first and then increases when the loading comes to 0.6 times
the ultimate capacity. The reason may be that there is a slight sliding of the soil behind the
bucket. This results in a slight pressure decrease. In addition, the soil continues to compact
in the later stage, thereby increasing the earth pressure. The distribution of earth pressure
in front of the tension bucket is similar. However, the results behind the tension bucket are
different. The earth pressure at 2/3 L from the top of the bucket begins to decrease in the
later stage of loading, indicating that when the horizontal displacement is relatively large,
there is a gap between the bucket wall and the soil behind it.

The size of the model used in the test was small and the volume occupied by the
earth pressure cell cannot be ignored, so there were errors between the model tests and FE
analysis. In fact, the bucket wall is circular arc-shaped, while the earth pressure measuring
device is flat. The relatively bigger area of the measuring device may result in excessive
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and larger horizontal earth pressure measured. In numerical simulation, the measurement
points did not take into account the size effect. So, the earth pressure measured by the
big pressure measuring devices may be greater than that from the numerical simulation.
If the size of the pressure measuring device can be reduced, it can be expected that the
measurement results will be closer to the actual state. Basically, the trend of earth pressure
distribution is the same. According to the results, the errors are acceptable.

Under H–M loadings, the instability mode of the tripod bucket foundation is mani-
fested as follows. In the early stage, the foundation has a trend of translation and rotation.
The rotation trend of the foundation with a large aspect ratio is more obvious. And for
a small aspect ratio, the translation trend is more obvious. However, the final form is
manifested as overturning failure. The specific failure mode is manifested as one bucket
under compression and the other two under tension. The rotation center of the tripod
bucket foundation is located near the axis of the compression bucket, and as the aspect
ratio decreases, the position of the rotation center will be lower. Due to the center of
rotation being located near the compression bucket, the deformation of the soil around the
compression bucket is more obvious, and the earth pressure near the compression bucket
is significantly higher than in other areas.

3.3. Moment Bearing Capacity of Tripod Bucket Foundation under M-H

Based on the experimental and numerical results, the failure mechanism of the tripod
bucket foundation under M-H was actually in the form of one bucket under compression
and the other two buckets under tension. According to the study of the failure mechanism,
the tension bucket was pulled up with a certain forward inclination mode, and the compres-
sion bucket was compressed with a rotation mode. It was difficult to calculate the moment
capacity directly. Hung and Kim [24] proposed a formula to calculate moment capacity
based on the vertical capacity of the single bucket foundation, the length of the moment arm
and a correction factor. The correction factor was determined as 1.1 by back-calculation.

In this paper, another formula was proposed to calculate moment capacity M as shown
in Equation (1):

M0(T) = 2 fM ×V0(S) ×
√

3
2

S (1)

where fM is the correction factor; S is the bucket spacing as shown in Figure 10; V0(S) is the
uplift bearing capacity of a single tension bucket which can be calculated according to code
API (American Petroleum Institute), as shown in Equations (2) and (3):

V0(S) = f × AS (2)

f = K× p0 × tan δ (3)

where f is the unit surface friction; AS is the side surface of the bucket; K is the coefficient
of lateral earth pressure and p0 is the effective earth pressure.

Regarding the correction factor fM, it was obtained by the back-calculation after
applying horizontal force at 360 mm with L/D = 0.5, 0.85, 1.1, 1.5, 1.61, and S/D = 2, 2.5, 3.
Finally, the parameter fM was fitted according to Equation (4):

fM = 0.47 ln
(

L
D

)
+ 1.41 fM (4)

The formula proposed in this paper was more convenient to calculate the moment
capacity of the tripod bucket foundation in practice.

Table 4 shows the moment capacity of the tripod bucket foundation calculated by
FE analysis and Equation (1), in which M0_FE is the moment capacity from FE analyses,
and M0_cal is the calculated moment capacity using Equation (1) proposed in this study.
According to the comparison results, the error was within 10%. The correction factor
increased with the increase in L/D, instead of a constant value. The rotational trend of
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the foundation becomes apparent, accompanied by the complexity of the loading state,
resulting in a more significant increase in bearing capacity. The bucket foundation with
larger L/D tended to rotate under M-H, which was consistent with the phenomenon
observed in the model test.
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Table 4. Comparison of FE results and calculated values for tripod bucket foundation with S/D = 3.

Test D (mm) V0(S) (N) fM
M0_FE
(N·cm)

M0_cal
(N·cm) Error (%)

1 102 235.8 1.63 19,960 20,371 2.06
2 120 182.7 1.45 17,570 16,518 6.37
3 133 144 1.33 12,810 13,235 3.22

4. Discussion

In this study, physical model tests and numerical simulations were conducted to inves-
tigate the behaviors of the tripod bucket foundation in sand under horizontal and moment
load. Failure mechanism and earth pressure characteristics were analyzed. Methods of
estimating the moment bearing capacity were studied.

It should be noted that the results of this paper are based on a small scale model test,
which may have a scaling effect. Further research on the bucket foundation of in situ tests
under composite loading will be meaningful. In addition, the bearing characteristics of the
tripod bucket foundation studied in this paper are in sandy soil conditions. In reality, the
engineering geology where the wind farm is located may be clay soil, layered conditions or
more comprehensive conditions. The bearing characteristics and behaviors of the tripod
bucket foundation may be different in different conditions. It can be speculated that in clay,
the ultimate failure mode of the tripod bucket foundation may still be one bucket under
compression and the other two buckets under tension, but the overturning process may
develop slowly rather than being directly pulled out in sand. In silty soil, considering the
effect of accumulation of pore water pressure, the overall bearing capacity of the bucket
foundation may decrease [18]. Bearing characteristics of tripod bucket foundations under
layered soil conditions forms the ongoing work of the authors.

5. Conclusions

In this paper, bearing characteristics of tripod bucket foundation under horizontal
and moment load in sand are investigated by physical model experiments and numerical
simulations. Some main conclusions are as follows.

188



J. Mar. Sci. Eng. 2023, 11, 1631

The failure process of the tripod bucket foundation under H–M can be divided into the
initial stage, the intermediate stage and the failure stage. As L/D decreased, the rotation
center lowered and the displacement mode varied from rotation to uplift.

Earth pressure measured by FE analysis and model tests were used to explore the
failure mechanism of the tripod bucket foundation. It was found that the aspect ratio has a
significant effect on the displacement mode and earth pressure characteristics. This was
used to explain the failure mechanism for tripod bucket foundation.

An equation to calculate the moment capacity was proposed according to the uplift
bearing capacity, the length of the moment arm and the correction factor. The correction
factor was a function of L/D. It is thought to be a more convenient and practical method to
estimate the moment capacity of the tripod bucket foundation.
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Abstract: Changes in undrained shear strength are important to the stability analysis of hydrate reser-
voirs during natural gas hydrate production. This study proposes a prediction model of undrained
shear strength of hydrate-bearing fine-grained sediments based on the critical state theory. Several
consolidated undrained triaxial shear tests are conducted on hydrate-bearing fine-grained samples
from the Shenhu area of the South China Sea. The effects of effective consolidation stresses and
hydrate saturations on the undrained shear strength are investigated. The results show that the
undrained shear strength increases linearly with increasing effective consolidation stress. When
the hydrate saturation is greater than the effective hydrate saturation, the undrained shear strength
significantly increases with increasing hydrate saturation. The undrained shear strength of hydrate-
bearing fine-grained sediments is a two-parameter function of effective hydrate saturation and a void
ratio. The instability risk of the hydrate reservoir under undrained conditions is greater than that
of under-drained or partially drained conditions. Furthermore, low-porosity reservoirs face more
shear strength loss from hydrate decomposition yet lower risk than high-porosity ones. These results
can improve the understanding of mechanical properties of hydrate-bearing fine-grained sediments
under undrained conditions. This study also has implications for the design of marine structures in
areas with hydrate-bearing sediment.

Keywords: natural gas hydrate; fine-grained sediment; critical state theory; effective hydrate saturation;
stability analysis

1. Introduction

Natural gas hydrates (NGHs) have been treated as a potential energy resource for
decades because of their vast reserve and wide distribution in nature [1–3]. In recent years,
several countries have carried out a series of production tests in the field to evaluate the
possibility of different methods for the commercial production of NGHs [4–8]. The results
clearly indicate that depressurization is a method with the highest production efficiency
and the maximum probability of being commercialized [9–14]. The application effect
of depressurization to marine NGHs is largely controlled by the hydraulic permeability
of hydrate-bearing sediments which is highly stress dependent [15–19]. The stress of
hydrate-bearing sediments generally increases during depressurization, and mechanical
properties of hydrate-bearing sediments weaken due to NGHs dissociation [20–22]. In
addition, NGHs dissociation can also be driven by climatic, oceanic, and geologic pro-
cesses [23–27], and ultimately has a great potential to cause shear failures and trigger
various geohazards [28–31]. In particular, for hydrate deposits in the Shenhu area of the
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South China Sea [32,33], the fine-grained hydrate-bearing sediments are of low hydraulic
permeabilities, and this implies that pore water and gas produced by NGHs dissociation
due to underlying warm oil extraction and global warming can hardly flow out of pores
in a short period, corresponding to an undrained condition [15,34–36]. Undrained shear
properties of hydrate-bearing fine-grained sediments are of great significance to the stability
of marine sediments and overburden structures.

Mechanical properties (e.g., shear strength, stiffness, and dilatancy) of hydrate-bearing
sediments are largely dependent on hydrate saturation (i.e., a ratio of hydrate volume to the
total pore volume) and hydrate pore habits [37–39]. With regard to mechanical properties,
the hydrate pore habits mainly include pore-filling, load-bearing, and grain-cementing [40].
Debonding and/or crushing of NGHs within pores of coarse-grained sediments will occur
during shearing [41]. However, the failure mechanism of hydrate-bearing fine-grained
sediments has not been well understood since whether the cementation between clay and
silt particles by NGHs exists or not remains elusive [42,43]. There is no doubt that NGHs
behave as a solid filler of host sediments to reduce the effective void ratio (i.e., a ratio of
fluid-occupied pore volume to the solid volume) of hydrate-bearing sediments [44–46],
and the alteration of the effective void ratio affects the undrained shear strength of hydrate-
bearing fine-grained sediments. For example, Yoneda et al. [47] found that there is a
linear relationship between the undrained shear strength and the void ratio of fine-grained
natural cores. Yun et al. [48] reported that the undrained shear strength of saturated
natural cores acquired from the Gulf of Mexico is a function of water saturation. The
enhancement effect to the effective void ratio due to NGHs dissociation is coupled with
a reduction effect by compression deformation because of the increasing effective stress
during depressurization. This makes it very challenging to predict the undrained shear
strength of hydrate-bearing fine-grained sediments. Several prediction models have been
proposed based on the Mohr-Coulomb criterion [49,50], and the models can give acceptable
results in certain circumstances.

Critical state soil mechanics provides a theoretical framework to predict the undrained
shear strength of saturated hydrate-free sediments with different void ratios [51]. The
enhanced undrained shear strength of hydrate-bearing sediments can be captured by using
an extended yield surface [52]. The extended yield surface in p′–q space is shown as a
thick line in Figure 1, and the extension is an explicit product of multiple effects caused
by the presence of NGHs. For details, Effect I represents that hydrate-free sediments can
reach point A under an effective mean normal stress p′0, indicating the yield surface of
hydrate-free sediments shown as a thin solid line. The extension expressed as Effect II in
the figure represents the observed strength enhancement due to the presence of NGHs
within pores of marine sediments [53]. Since NGHs within pores have the potential to
hinder volumetric deformation during consolidation [54], the void ratio of host sediments
is generally larger than that of hydrate-free sediments when the effective mean normal
stress is the same. This indicates that the yield surface of host sediments shown as a thin
dashed line in Figure 1 is smaller than that of hydrate-free sediments, corresponding to
the weakening effect (i.e., Effect III) of NGHs on the host sediments [55]. From this point
of view, the intrinsic strength enhancement due to the presence of NGHs expressed as
Effect IV in the figure is larger than the observed strength enhancement. For prediction
model developments for mechanical properties (e.g., the undrained shear strength) of
hydrate-bearing sediments, the intrinsic void ratio and shear strength enhancements due
to the presence of NGHs within pores should be jointly considered.

To investigate the effects of effective consolidation stresses and hydrate saturations
on the undrained shear strength on hydrate-bearing fine-grained sediments, this study
performs undrained triaxial shear tests, and the experimental results are further used to
validate a prediction model proposed based on the critical state theory in this study. The
host sediments for hydrate formation are remodeled by using natural sediments acquired
from the Shenhu area of the South China Sea, and the joint effect of hydrate is considered
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in the prediction model. This study has great potential to facilitate geotechnical designs of
marine and submarine structures overlying hydrate-bearing sediments in nature.
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2. Experimental Program
2.1. Experimental Apparatus and Materials

The experimental apparatus used in this study for undrained triaxial shear tests on
hydrate-bearing sediments is upgraded from a commercialized triaxial shear test system
manufactured by the Jiangsu Yongchang Science and Education Instrument Limited Com-
pany. A high-pressure test cell, resisting inner pressure up to 25 MPa, is applied instead
of classic clear acrylic chambers, and an air bath is added to lower the temperature for
hydrate formation. The load frame for triaxial shearing has a capacity of 250 kN, and
the strain rate can be well controlled at a selected value ranging from 0.001 mm/min to
3 mm/min. A linear variable differential transformer (LVDT) produced by the Shanghai
Tianmu Company is applied to measure the axial displacement, and the comprehensive
accuracy is 0.1% of full scale (F.S). The axial force during triaxial shearing is measured by
using a stress sensor with a comprehensive accuracy of 0.2% F.S. For more details about the
apparatus, please refer to Dong et al. [56].

Clayey and silty sediments acquired from the Shenhu area in South China Sea are used
to remodel host sediments for hydrate formation in this study. The grain size ranges from
~1 µm to 200 µm, and the median grain size is 13.9 µm. For more information about physical
properties of marine sediments, please refer to Wei et al. [57]. Since methane hydrate
formation within pores of fine-grained sediments is technically difficult and extremely
time-consuming, tetrahydrofuran (THF) is selected as an analog of methane gas to form
hydrate with pore water. Previous studies have shown that physical and mechanical
properties of hydrate-bearing sediments are mostly dependent on hydrate occurrence
characteristics [38,39,58]. The pore habit of THF hydrate is generally consistent with that
of NGHs in nature [59]. Therefore, this analog is widely adopted in the gas hydrate
community for experimental studies on mechanical properties of hydrate-bearing fine-
grained sediments [60–62].

2.2. Procedure for Host Sediment Preparation

The procedure for host sediment preparation in this study is briefly summarized
as follows: (i) The natural sediments are air-dried and then well mixed with some THF
solution to acquire an initial solution content of 15% by weight; (ii) the moist sediments are
sealed in a bag to distribute the solution for 12 h; (iii) the moist sediments are remodeled
to form a cylindrical specimen with a diameter of 38 mm and a height of 76 mm as host
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sediments for hydrate formation; (iv) the vacuum method is applied to fully saturate the
host sediments, and the saturation time is longer than 24 h. THF solutions with different
mass ratios of THF and water are used to control hydrate saturation, and a void ratio of the
host sediments is selected according to the porosity logging data.

2.3. Procedure for Hydrate Formation and Triaxial Shearing

In this study, consolidation is conducted before hydrate formation to avoid the hinder-
ing effect of pore hydrate on compression deformation. During the consolidation, the pore
pressure is kept at the atmospheric pressure, and the confining pressure is enhanced by
a rate of 100 kPa/min until a selected effective confining pressure is reached. The whole
period of consolidation is generally longer than 24 h. After full consolidation, saturated host
sediments are cooled, and the temperature is controlled at around 0 ◦C for 4 days to form
THF hydrate. Then, the temperature is adjusted to 3 ◦C higher and kept for 2 days to elimi-
nate potential ice within pores of hydrate-bearing sediments. For hydrate-free sediments,
the consolidation and freezing procedures are also applied, but using pure water instead of
a THF solution. Undrained triaxial shearing with a constant rate of 0.04%/min is performed
on hydrate-bearing sediments, and the shearing is stopped when the axial strain reaches
15%. According to ASTM D2216 [63], the water content determined after triaxial shearing
can be used to calculate the effective and intrinsic void ratios of hydrate-bearing sediments.

2.4. Test Design

To simulate the real case in the Shenhu area of the South China Sea [64,65], values of
the initial porosity of host sediments are controlled as 0.525, 0.500, and 0.482, corresponding
to the initial void ratios of 1.105, 1.000, and 0.932. To avoid over-consolidation, values of
the effective confining pressure are set as 1.0 MPa, 2.0 MPa, and 3.0 MPa based on the void
ratio vs. the consolidation stress curve [57]. Values of hydrate saturation are selected as 0%,
30%, and 50%, corresponding to the THF vs. water mass ratios of 0, 0.060, and 0.104 [15].

3. Results
3.1. Effects of Effective Consolidation Stress on the Undrained Shear Strength

Stress–strain curves under different conditions of the effective consolidation stress (i.e.,
confining pressure) are shown in Figure 2. It is obvious that all the curves are strain harden-
ing, in which the generalized shear stress q (i.e., the deviatoric stress for triaxial shear tests)
constantly increases with increasing axial strain εa. Values of the peak deviatoric stress q f
(i.e., two times the undrained shear strength Su) under different conditions are summarized
in Table 1, and the q f -value increases with increasing effective consolidation stress. Values
of the intrinsic void ratio e after triaxial shearing are also listed in Table 1. It is generally
accepted that e-value decreases with increasing effective consolidation stress, leading to
higher q f -value of hydrate-bearing sediments. Figure 3 shows how the undrained shear
strength of hydrate-free and hydrate-bearing sediments evolves with effective consolida-
tion stress (i.e., confining pressure) and hydrate saturation. It is obvious that the undrained
shear strength Su linearly increases with increasing effective consolidation stress p′0, and
the fitted slope is 0.57, 0.78, and 1.67 for Sh = 0%, 30%, and 50%, respectively.

Table 1. Key information of undrained triaxial shear tests on hydrate-free and hydrate-bearing
sediments in this study. (Note e0 for the intrinsic void ratio of host sediments before consolidation,
p′0 for the effective consolidation stress, Sh for the hydrate saturation, q f for the peak strength in
stress–strain curves, and e for the intrinsic void ratio of sediments after triaxial shearing.).

e0 p’
0 (MPa) Sh (%) qf (MPa) e

1.105 1
0 1.16 1.063

30 1.86 1.120
50 7.64 1.051
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Table 1. Cont.

e0 p’
0 (MPa) Sh (%) qf (MPa) e

1 2
0 2.32 0.993

30 3.72 0.898
50 11.30 0.924

0.932 3
0 3.42 0.917

30 4.98 0.854
50 14.32 0.890
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Figure 3. The undrained shear strength Su of hydrate-free and hydrate-bearing sediments under
different effective consolidation stresses p′0.

3.2. Effects of Hydrate Saturation on the Undrained Shear Strength

Figure 4 shows the stress–strain curves of marine sediments with different hydrate
saturations Sh. It is obvious that the q f value increases with increasing Sh when the
effective consolidation stress p′0 is the same. For example, q f = 2.32 MPa for Sh = 0% when
p′0 = 2.0 MPa, q f = 3.72 MPa for Sh = 30%, and q f = 11.3 MPa for Sh = 50%. The increasing
hydrate saturation Sh reduces the effective void ratio of hydrate-bearing sediments, leading
to increasing q f . This is consistent with the results of Yang et al. [20]. In addition, the
stress–strain curves for hydrate saturation equaling 50% are significantly higher than those
for lower hydrate saturations. This indicates that the increasing hydrate saturation Sh
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has a stronger effect on the elevating q f of hydrate-bearing sediments than the increasing
effective consolidation stress p′0. Figure 5 shows the undrained shear strength Su under
different hydrate saturations Sh. It is clearly shown that the increase is nonlinear, and the
increment of Su for Sh increasing from 0% to 30% is significantly smaller than that for Sh
increasing from 30% to 50%. This implies that there is a critical hydrate saturation She
beyond which the undrained shear strength enhancement becomes much more obvious.
The critical hydrate saturation is lower than 30%, and this is consistent with the results of
De La Fuente et al. [66].

J. Mar. Sci. Eng. 2023, 11, x FOR PEER REVIEW 6 of 15 
 

 

3.2. Effects of Hydrate Saturation on the Undrained Shear Strength 
Figure 4 shows the stress–strain curves of marine sediments with different hydrate 

saturations 𝑆௛. It is obvious that the 𝑞௙ value increases with increasing 𝑆௛ when the ef-
fective consolidation stress 𝑝଴ᇱ  is the same. For example, 𝑞௙ = 2.32 MPa for 𝑆௛= 0% when 𝑝଴ᇱ  = 2.0 MPa, 𝑞௙ = 3.72 MPa for 𝑆௛ = 30%, and 𝑞௙ = 11.3 MPa for 𝑆௛ = 50%. The increas-
ing hydrate saturation 𝑆௛ reduces the effective void ratio of hydrate-bearing sediments, 
leading to increasing 𝑞௙. This is consistent with the results of Yang et al. [20]. In addition, 
the stress–strain curves for hydrate saturation equaling 50% are significantly higher than 
those for lower hydrate saturations. This indicates that the increasing hydrate saturation 𝑆௛  has a stronger effect on the elevating 𝑞௙  of hydrate-bearing sediments than the in-
creasing effective consolidation stress 𝑝଴ᇱ . Figure 5 shows the undrained shear strength 𝑆௨ 
under different hydrate saturations 𝑆௛. It is clearly shown that the increase is nonlinear, 
and the increment of 𝑆௨ for 𝑆௛ increasing from 0% to 30% is significantly smaller than 
that for 𝑆௛ increasing from 30% to 50%. This implies that there is a critical hydrate satu-
ration 𝑆௛௘ beyond which the undrained shear strength enhancement becomes much more 
obvious. The critical hydrate saturation is lower than 30%, and this is consistent with the 
results of De La Fuente et al. [66]. 

 
Figure 4. Stress–strain curves of marine sediments with different hydrate saturations 𝑆௛. 𝑝଴ᇱ  = 1.0 
MPa (a), 2.0 MPa (b), and 3.0 MPa (c). 

 
Figure 5. The undrained shear strength 𝑆௨ of hydrate-free and hydrate-bearing sediments with dif-
ferent hydrate saturations 𝑆௛. 

Figure 4. Stress–strain curves of marine sediments with different hydrate saturations Sh. p′0 = 1.0 MPa
(a), 2.0 MPa (b), and 3.0 MPa (c).

J. Mar. Sci. Eng. 2023, 11, x FOR PEER REVIEW 6 of 15 
 

 

3.2. Effects of Hydrate Saturation on the Undrained Shear Strength 
Figure 4 shows the stress–strain curves of marine sediments with different hydrate 

saturations 𝑆௛. It is obvious that the 𝑞௙ value increases with increasing 𝑆௛ when the ef-
fective consolidation stress 𝑝଴ᇱ  is the same. For example, 𝑞௙ = 2.32 MPa for 𝑆௛= 0% when 𝑝଴ᇱ  = 2.0 MPa, 𝑞௙ = 3.72 MPa for 𝑆௛ = 30%, and 𝑞௙ = 11.3 MPa for 𝑆௛ = 50%. The increas-
ing hydrate saturation 𝑆௛ reduces the effective void ratio of hydrate-bearing sediments, 
leading to increasing 𝑞௙. This is consistent with the results of Yang et al. [20]. In addition, 
the stress–strain curves for hydrate saturation equaling 50% are significantly higher than 
those for lower hydrate saturations. This indicates that the increasing hydrate saturation 𝑆௛  has a stronger effect on the elevating 𝑞௙  of hydrate-bearing sediments than the in-
creasing effective consolidation stress 𝑝଴ᇱ . Figure 5 shows the undrained shear strength 𝑆௨ 
under different hydrate saturations 𝑆௛. It is clearly shown that the increase is nonlinear, 
and the increment of 𝑆௨ for 𝑆௛ increasing from 0% to 30% is significantly smaller than 
that for 𝑆௛ increasing from 30% to 50%. This implies that there is a critical hydrate satu-
ration 𝑆௛௘ beyond which the undrained shear strength enhancement becomes much more 
obvious. The critical hydrate saturation is lower than 30%, and this is consistent with the 
results of De La Fuente et al. [66]. 

 
Figure 4. Stress–strain curves of marine sediments with different hydrate saturations 𝑆௛. 𝑝଴ᇱ  = 1.0 
MPa (a), 2.0 MPa (b), and 3.0 MPa (c). 

 
Figure 5. The undrained shear strength 𝑆௨ of hydrate-free and hydrate-bearing sediments with dif-
ferent hydrate saturations 𝑆௛. 
Figure 5. The undrained shear strength Su of hydrate-free and hydrate-bearing sediments with
different hydrate saturations Sh.

4. Development and Validation of a Theoretical Model for Predicting the Undrained
Shear Strength
4.1. Development of the Prediction Model

According to critical state soil mechanics [51], the undrained shear strength Su of
saturated hydrate-free sediments can be predicted by:

Su =
M
2

exp
(

Γ− ν

λ

)
(1)

where M is stress ratio at the critical state; Γ is the specific volume intercept of the critical
state line, and λ is the slope of the critical state line; ν represents specific volume and equals
to 1 + e. In addition, M, Γ, λ, and ν are dimensionless parameters.
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Equation (1) represents that the undrained shear strength of saturated hydrate-free
sediments depends on the void ratio regardless of the consolidation history. For saturated
hydrate-bearing sediments, solid hydrate occupies the pore space and reduces the effective
specific volume. However, not all the pore hydrate has obvious effects on mechanical
properties of hydrate-bearing sediments, and an effective hydrate saturation She is adopted.
Yan et al. [67] propose a simple equation to determine She as follows:

She = 〈Sh − ξShc〉 (2)

where 〈 〉 is the Macaulay bracket. When value of Sh − ξShc is larger than zero, the value
of She is equal to that of Sh − ξShc, while the value of She is equal to zero when the value of
Sh − ξShc is lower than zero. Values of critical hydrate saturation Shc are within a range
from 25% to 40% [43], and Shc = 25% in this study. Parameter ξ represents different effects
of different hydrate pore habits, and ξ = 0 for cementing the hydrate while ξ = 1 for
non-cementing (e.g., pore-filling and load-bearing) hydrate.

By treating pore hydrate as part of the solid skeleton, the effective void ratio of
hydrate-bearing sediments eh is calculated as e · (1− She)/(1 + e · She). Therefore, the
effective specific volume νh of hydrate-bearing sediments is expressed as:

νh =
1 + e

1 + e · She
(3)

Combining Equations (1)–(3), a prediction model for the undrained shear strength of
hydrate-bearing fine-grained sediments is proposed as:





Shu = M
2 exp

(
Γ−νh

λ

)
= M

2 exp
(

Γ− 1+e
1+e·She
λ

)

She = 〈Sh − ξShc〉
(4)

Based on the critical state soil mechanics, when sediments reach the critical state,
all the properties of structure within the sediments would be destroyed [51]. Therefore,
parameters M, Γ, and λ are constant corresponding to the host sediments regardless of
hydrate saturation [68,69]. Values of ξ and Shc are related to hydrate pore habits [70]. Since
it is difficult to form fully cementing hydrate within fine-grained sediments [43], ξ is equal
to 1 in this study. Values of hydrate saturation Sh and effective void ratio e are measured
during triaxial shear tests.

4.2. Validation of the Prediction Model

A series of consolidated undrained shear tests on hydrate-free sediments have been
performed [57], and the results are used to fit for parameter value extraction (Figure 6). It
is obvious that M = 1.28, Γ = 3.25, and λ = 0.175. These values are applied in this study,
and the predicted results for hydrate-bearing sediments are shown in Figure 7. It is clearly
shown that the predicted values are well consistent with measured values when the hydrate
saturation is no larger than 30%. However, the predicted results are significantly higher
than the test results for the specimen with a hydrate saturation of 50%. There are two
possible reasons for this discrepancy: (i) the specimen with Sh = 50% has a relatively high
density, and shear failure may occur before specimens reach the critical state; (ii) possible
error in the critical hydrate saturation Shc will lead to uncertainties in the calculated results
of the effective hydrate saturation She.
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Figure 7. Predicted and measured values of the undrained shear strength Shu of hydrate-bearing
sediments in this study. The model used in this figure is Equation (4).

To further explain the effect of Shc on the accuracy of the prediction model, values of
the undrained shear strength with different critical hydrate saturations are calculated by
using the prediction model, and the variation curves are shown in Figure 8. Mean void
ratios of 1.078, 0.933, and 0.887 corresponding to p′0 = 1.0 MPa, 2.0 MPa, and 3 MPa are used
for calculation, and the arrows represent the overall increasing trend of Shc. It is shown
that the undrained shear strength decreases with increasing critical hydrate saturation. The
test results with a hydrate saturation of 30% are on the curve with Shc = 0.25, while the test
results with a hydrate saturation of 50% are near the curve with Shc = 0.30. Therefore, it
can be inferred that the difference in prediction accuracy depends on the value of critical
hydrate saturation Shc. The results also indicate that mechanical properties of hydrate-
bearing sediments are dependent on hydrate pore habits. For pore-filling hydrate, its effect
only occurs when hydrate saturation Sh exceeds its effective hydrate saturation She [66]. The
magnitude of effective hydrate saturation She is controlled by the critical hydrate saturation
Shc according to the proposed model in this study. Therefore, the value of critical hydrate
saturation is crucial for the accuracy of model prediction results. Based on the comparison
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between the experimental data and theoretical calculation results shown in Figure 8, an
empirical model is proposed to correct the effective hydrate saturation She:

She = 〈Sh − ξ(Sh + a) · Shc〉 (5)

where a is an empirical parameter, and a = 0.7 in this study.
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Thus, the modified prediction model is expressed as:




Shu = M
2 exp

(
Γ− 1+e

1+e·She
λ

)

She = 〈Sh − (Sh + a)Shc〉
(6)

The prediction results calculated by using the modified prediction model are compared
with the experimental data (Figure 9). It is shown that the corrected prediction results agree
well with the experimental results. It is concluded that the undrained shear strength of
hydrate-bearing fine-grained sediments is jointly affected by the effective hydrate saturation
She and the effective void ratio e. The accuracy of the effective hydrate saturation She is
dependent on value of the critical hydrate saturation Shc.
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5. Implications to the Production of NGHs in Nature

Values of Su with different hydrate saturations and porosities are calculated by using
the modified prediction model, and the variation curves are shown in Figure 10. It is shown
that hydrate dissociation obviously leads to a reduction in the undrained shear strength
of hydrate-bearing sediments. However, if consolidation of the sediments is allowed, the
increasing undrained shear strength due to the reduction in porosity would compensate for
the loss in the undrained shear strength caused by hydrate decomposition. For sediments
with an initial hydrate saturation of 0.5 and an initial porosity of 0.525, if the hydrate is
completely decomposed and undergoes consolidated deformation with a final porosity of
0.425. The undrained shear strength before and after hydrate decomposition is almost the
same. However, the equilibrium of undrained shear strength variation is not achieved for
all conditions. For example, for sediments with an initial porosity of 0.475, and all other
conditions being unchanged, the undrained shear strength would not exceed the initial
state even if the consolidation is completed. Although the stability of the reservoirs benefits
from the decrease in porosity, it will in turn greatly reduce the permeability limiting the
extraction efficiency [71]. Therefore, further research is needed to explore the balance of
stability and efficiency.

J. Mar. Sci. Eng. 2023, 11, x FOR PEER REVIEW 10 of 15 
 

 

 
Figure 9. Predicted and measured values of the undrained shear strength of hydrate-bearing sedi-
ments 𝑆௛௨ in this study. The model used in this figure is Equation (6). 

5. Implications to the Production of NGHs in Nature 
Values of 𝑆௨ with different hydrate saturations and porosities are calculated by us-

ing the modified prediction model, and the variation curves are shown in Figure 10. It is 
shown that hydrate dissociation obviously leads to a reduction in the undrained shear 
strength of hydrate-bearing sediments. However, if consolidation of the sediments is al-
lowed, the increasing undrained shear strength due to the reduction in porosity would 
compensate for the loss in the undrained shear strength caused by hydrate decomposition. 
For sediments with an initial hydrate saturation of 0.5 and an initial porosity of 0.525, if 
the hydrate is completely decomposed and undergoes consolidated deformation with a 
final porosity of 0.425. The undrained shear strength before and after hydrate decompo-
sition is almost the same. However, the equilibrium of undrained shear strength variation 
is not achieved for all conditions. For example, for sediments with an initial porosity of 
0.475, and all other conditions being unchanged, the undrained shear strength would not 
exceed the initial state even if the consolidation is completed. Although the stability of the 
reservoirs benefits from the decrease in porosity, it will in turn greatly reduce the perme-
ability limiting the extraction efficiency [71]. Therefore, further research is needed to ex-
plore the balance of stability and efficiency. 

 
Figure 10. Calculated values of the undrained shear strength of hydrate-bearing sediments Shu under
different conditions of hydrate saturation (a) and porosity (b). Colored dashed lines are acquired by
using Equation (6).

Under the condition that the porosity remains constant with hydrate saturation de-
creasing, the lower the porosity, the more obvious the effect of hydrate decomposition on
its undrained shear strength (Figure 10b). Furthermore, the continued decrease in hydrate
saturation does not cause a further decrease in the undrained shear strength when the
hydrate saturation is lower than 0.233. The hydrate decomposition leads to a decrease in
the density of sediments and thus its undrained shear strength. There is a lower limit of
the undrained shear strength. This lower limit is related to the intrinsic porosity of host
sediments. The magnitude of the lower limit of sediments with low porosity is greater
than that of sediments with high porosity. Therefore, although the loss of undrained shear
strength of reservoirs with low porosity is greater than that of reservoirs with high porosity
during hydrate decomposition, the former has a lower instability risk than the latter.

To summarize, the results are of great potential to the stability analysis of hydrate reser-
voirs in marine and cold environments, and the design of structures for production [72,73].
The instability risk of the hydrate reservoir under undrained conditions is greater than
that of under-drained or partially drained conditions. This is because there is a strength
compensation caused by consolidated deformation although hydrate decomposition causes
a decrease in the shear strength of reservoirs. For example, hydrate reservoirs in the South
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China Sea are mainly composed of fine-grained sediments [33,74]. Since the fine-grained
sediments are of low hydraulic permeabilities, the excess pore pressure caused by changes
in stress states tends to be accumulated within the reservoirs during NGH production. This,
in turn, leads to decreasing effective stress which promotes the possibility of submarine
slope instability.

6. Conclusions

A prediction model of undrained shear strength of hydrate-bearing fine-grained sed-
iments is developed based on the critical state theory. Several consolidated undrained
triaxial shear tests are conducted on remodeled specimens. The effects of effective consoli-
dation stresses and hydrate saturations on the undrained shear strength are investigated.
The prediction model is validated using the test results, and reasonably corrected. The
main conclusions are as follows:

(1) Values of q f increase with increasing effective consolidation stress and hydrate satura-
tion. There is a linear relationship between undrained shear strength and effective
consolidation stress, while when the hydrate saturation is greater than the effective hy-
drate saturation, the undrained shear strength significantly increases with increasing
hydrate saturation.

(2) The undrained shear strength of hydrate-bearing fine-grained sediments is a two-
parameter function of effective hydrate saturation and void ratio.

(3) The instability risk of the hydrate reservoir under undrained conditions is greater
than that of under-drained or partially drained conditions. This is because of that
although hydrate decomposition causes a decrease in the shear strength of reservoirs,
there is a strength compensation caused by consolidated deformation.

(4) The decrease in the undrained shear strength caused by the hydrate decomposition
has a lower limit. This lower limit is related to the own porosity of host sediments.
Low porosity reservoirs face more shear strength loss from hydrate decomposition
yet lower risk than high porosity ones.

Admittedly, there are uncertainties in the effect of hydrate occurrences on parameters
ξ and Shc. Especially, since all the hydrate-bearing specimens undergo consolidation before
hydrate generation in the test procedure, the effect of consolidation stress on hydrate
occurrences is not considered. In addition, the validation of hydrate saturations ranged
from 0 to 0.5. The higher hydrate saturation is needed to be further verified. Therefore, it is
necessary to carry out more consolidated undrained triaxial shear tests on hydrate-bearing
fine-grained sediments to improve the prediction model.
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Abbreviations

CSL critical state line
CU consolidated undrained
e void ratio
ν specific volume, equals to 1 + e
νh specific volume of hydrate-bearing sediments
M stress ratio at the critical state
NC normally consolidated
NGHs natural gas hydrates
OC over consolidated
p′0 effective confining pressure
p′ mean effective stress, equal to

(
σ′1 + 2σ′3

)
/3

q deviatoric stress, equal to σ1 − σ3
q f deviatoric stress at failure
SCS South China Sea
Sh hydrate saturation
Shc critical hydrate saturation
She effective hydrate saturation
Su undrained shear strength, equal to q f /2
Shu undrained shear strength of hydrate-bearing sediments
w water content
εa axial strain
Γ specific volume intercept of the critical state line
λ slope of the critical state line
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Abstract: The uplift capacity of helical anchors is generally taken as the control condition for design
in different applications, including transmission tower foundations and offshore structures. However,
it is difficult to identify the failure surface for a deep helical anchor, which may result in an incorrect
assessment of uplift capability. This research proposes a new unified method to estimate the uplift
capacity of deep single-helix and multi-helix anchors based on the investigation of failure mechanisms.
The deep failure mode was identified by FEM analysis using a modified Mohr–Coulomb model
considering the strain softening of sand, along with the coupled Eulerian–Lagrangian technique.
Thereby, a simplified rupture surface is proposed, and the equations estimating the uplift capacity
are presented by the limit equilibrium method. Two important factors—the lateral earth pressure
coefficient and the average internal friction angle included in the equations—are discussed and
determined. The comparisons with centrifugal tests verify the reasonability of the proposed method.

Keywords: helical anchor; CEL analysis; deep failure mode; uplift capacity

1. Introduction

A helical anchor, consisting of one or more helical plates welded to a steel shaft, is
a deep foundation system used to support or resist any load or application. Due to their
rapid installation and immediate service, relatively large bearing capacity, and lack of
environmental damage, they have been extensively employed as a foundation system for
structures such as transmission towers, offshore platforms, and wind turbines [1,2]. In
recent years, this type of foundation has been suggested as a potential alternative to driven
piles in offshore renewable energy structures.

There are three failure modes for single-helix anchors as the embedment depth ratio
(H/D) increases, where D is the helix diameter. Figure 1 shows the shallow failure mode [3–12],
deep failure mode [11,13–16], and transition failure mode [4,13] of circular plate anchors or
single-helix anchors, which have been observed in most investigations. The rupture surface
extends continuously to the ground at a shallow plate depth, defined as general shear
failure or the shallow failure mode. With the increase in plate depth, the transition failure
mode is observed, often referred to as the shallow failure mode [4,13]. The shallow rupture
surface has been assumed to be a cylinder [3], an inverted cone [7,8,13], or a log-spiral
surface [5,10,17]. Only a few small-scale model tests showed a closed bulb (or balloon-
shaped) rupture surface [13–16,18]. The rupture surface is limited under the ground at a
deep depth, defined as local shear failure or the deep failure mode. Recently, a centrifuge
test with H/D = 7 observed the deep rupture surface in medium dense sand [19]. Although
it provided intuitive observation, there could be a discrepancy between the results of the
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interaction from the internal friction of sand.

J. Mar. Sci. Eng. 2023, 11, 1547 2 of 22 
 

 

dense sand [19]. Although it provided intuitive observation, there could be a discrepancy 
between the results of the half-anchor model and the full-anchor model due to the differ-
ence in sand–strongbox interaction from the internal friction of sand. 

 
Figure 1. The failure mode of a single-helix or plate anchor. (a) Shallow and transition failure mode. 
(b) Deep failure mode. 

It is generally believed that there are two failure modes for multi-helix anchors con-
trolled by the helical plate space ratio (S/D)—that is, the cylindrical shear [4,20–22] and 
the individual bearing failure mode [23,24], as shown in Figure 2. The cylindrical shear 
failure mode means that the cylindrical rupture surface extends to the uppermost plate 
and then follows the single-helix anchor failure mode. The individual bearing failure 
mode means that each helical plate behaves independently of the others. The transition 
helix spacing between the two methods is usually regarded as 3D in some engineering 
manuals [23,25,26]. 

 
Figure 2. The failure mode of a multi-helix or plate anchor. (a) Cylindrical shear mode. (b) Individ-
ual bearing mode. 

There are two issues that need further discussion for deep helical anchors in sand: 
(1) The direct observations of rupture surfaces are limited, especially for the multi-helix 

anchors. Some observations on the rupture surface of single-helix or circular plate 
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Figure 1. The failure mode of a single-helix or plate anchor. (a) Shallow and transition failure mode.
(b) Deep failure mode.

It is generally believed that there are two failure modes for multi-helix anchors con-
trolled by the helical plate space ratio (S/D)—that is, the cylindrical shear [4,20–22] and
the individual bearing failure mode [23,24], as shown in Figure 2. The cylindrical shear
failure mode means that the cylindrical rupture surface extends to the uppermost plate
and then follows the single-helix anchor failure mode. The individual bearing failure
mode means that each helical plate behaves independently of the others. The transition
helix spacing between the two methods is usually regarded as 3D in some engineering
manuals [23,25,26].
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bearing mode.

There are two issues that need further discussion for deep helical anchors in sand:

(1) The direct observations of rupture surfaces are limited, especially for the multi-helix
anchors. Some observations on the rupture surface of single-helix or circular plate
anchors in sand have been reported, but they mostly came from 1 g small-scale model
tests. This may produce differences between the observed rupture surface and the
actual state due to the low stress level, especially for deep anchors. Therefore, it is
necessary to further study the failure mode of deep helical anchors, which is essential
for the estimation of the uplift capacity.

(2) The estimation of uplift capacity for multi-helix anchors with transition helix spacing
based on the two recognized failure modes (Figure 2) is inconsistent. That is, when
the helix spacing is transition spacing, the uplift capacity calculated by the individual
bearing method is higher than that calculated by the cylindrical shear method.

Numerical simulation is an effective option to analyze the failure mechanisms and
bearing capacity of foundations. The finite element method has been used in previous
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studies [27–40]. Large deformation and mesh distortion are challenges for the FEM anal-
ysis of deep anchors, especially in sand. Hakeem et al. used the arbitrary Lagrangian–
Eulerian (ALE) method to simulate a circular plate anchor subjected to centric loading with
H/D = 1~20 [11]. For deep anchors, the load–displacement curve was approximately a
straight line with a 0.4D maximum displacement, and the 25%D criterion was adopted to
determine the ultimate uplift capacity; the authors proposed that this criterion is somewhat
arbitrary.

Konkol et al. proposed that the ALE method is suitable for issues where soil dis-
placement values are important, but the coupled Eulerian–Lagrangian (CEL) method
is suitable for issues where mainly Lagrangian elements (piles, anchors, etc.) are ana-
lyzed [41]. Qiu et al. proposed that the CEL method can deal with large mesh distortions
and contact problems [42]. It has proven successful in geotechnical problems such as a
strip footing problem, installing a pile into the subsoil, and a ship running aground at an
embankment [43,44]. In those studies, different constitutive models were used, such as
the Mohr–Coulomb constitutive model, hardening soil model, and Drucker–Prager model.
However, strain softening is important to incorporate into constitutive models of sand’s
behavior [45], so consideration of softening and shear swelling for large deformations may
be more suitable for sand. Numerical results based on elastic–perfectly plastic or hardening
soil models will overestimate the capacities of helical or circular anchors, especially in
dense sand. Moreover, this method is widely used to study the load-bearing characteristics
of plate or helical anchors in clay [42,44,46,47]. However, this method is very rarely used to
study helical anchors in sand.

To solve the above issues, a numerical analysis was conducted, considering the impacts
of embedment depths, helical plate spaces, and helical plate numbers. In this study, the
coupled Eulerian–Lagrangian (CEL) approach in Abaqus/Explicit was employed for the
large deformation analysis, combined with a modified Mohr–Coulomb model considering
soil’s strain softening and shear swelling, and the numerical model was validated by
the centrifugal tests of the helical anchors (Section 2). Then, the deep failure model was
presented according to the rupture surface observed via FEM (Section 3). Finally, an
estimation of the uplift capacity was proposed by the limit equilibrium method, and the
parameter sensitivity was studied (Section 4).

2. FEM Model and Validation

In the present study, the CEL approach in Abaqus was used to simulate the uplift
behavior of helical anchors in sand, including the effects of density (Dr = 30%, 60%, and
100%), embedment ratio (H/D = 8~12), helix spacing ratio (S/D = 1.5~6), and helical plate
number (n = 1~4).

2.1. FEM Model

The FEM models were constructed as illustrated in Figure 3. Helical plates were
replaced with circular plates based on previous findings that the plates’ geometrical shape
has little influence on the uplift capacity [6,12], and this analysis does not focus on the
stress of the anchor body. Only one-quarter of the anchor and soil domain was considered
in this study in terms of axisymmetry. Boundary conditions were imposed on the two
planes of symmetry by prescribing zero flow velocity as normal to these planes. The bottom
of the computational domain was constrained against the flow in the vertical direction.
The single-helix anchors had an embedment ratio of 8~12. The lowermost plate of the
multi-helix anchors had the same embedment ratio of 12, varied spacing ratios of 1.5~6.0,
and varied plate numbers of 2~4.

For comparison with the results of the centrifugal test in dense sand [12], the helix
diameter D, the helix thickness t, and the shaft diameter of anchor d were 400 mm, 0.05D,
and 0.235D, respectively. The anchor was modeled as a discrete rigid solid part meshed
with the eight-node linear brick, reducing the integration element C3D8R. A reference
point was set on the top of the anchor, with constrained horizontal displacement and axial
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rotation. The soil domain consisted of the eight-node reduced integration Eulerian element
EC3D8R. A void layer with a 5D vertical distance above the ground was defined to allow
the soil to heave and flow into the empty Eulerian elements during subsequent analysis.
The computational domain size was 10D × 2H (where H is the embedment depth of the
anchor), which is sufficiently large to ignore the far-field boundary effects [43]. The mesh
was densified in the zone around the anchor, from 5D above the uppermost plate to 5D
below the lowermost plate vertically, and 4D from the shaft centerline horizontally. The
minimum element size ∆B was in the vicinity of the plate. The contact between the anchor
and the soil was automatically identified. A general contact was adopted, with “hard
contact” for the normal contact and a penalty contact method for tangential contact.
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Previously, the sand was represented using an elastoplastic Mohr–Coulomb consti-
tutive model, which has limitations [48], and the sand softening was not reflected by the
Mohr–Coulomb model in Abaqus. A modified Mohr–Coulomb model was used to consider
the strain softening of sand, as shown in Figure 4.
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The strength parameters, including the internal friction angle ϕ and dilatancy angle
ψ, were simplified to increase linearly to the peak values and then decrease linearly to
the critical state values with the increase in equivalent plastic strain εd, as shown in
Equations (1) and (2), where the equivalent plastic strain can be calculated according to
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The initial internal friction angle ϕ0 is assumed to be the same as the critical internal
friction angle ϕcr. The parameters contained in the model are Young’s modulus E, Poisson’s
ratio v, the initial lateral pressure coefficient K0, the peak internal friction angle ϕp, the
peak dilatancy angle ψp, the critical internal friction angle ϕcr, the peak equivalent plastic
strain ε

p
d, and the critical equivalent plastic strain εr

d.
The values of the modulus, peak friction angle, and dilatancy angle depend on confin-

ing pressure at the lowermost plate. For dense sand (Dr = 100%) used in the centrifugal
test [12], Young’s modulus E and the peak internal friction angle ϕp are taken from the
literature [49] after being obtained from triaxial tests; that is, E = 658 pa (σ3/pa)0.469 and
ϕp = 40.9–7.8l g (σ3/pa), where pa is the standard atmospheric pressure (101.3 kPa) and
σ3 is the confining pressure and takes the value of gravity stress γ’H, kPa. The values of
ϕp herein are relatively close to those for dense uwa sand in the recent literature [50,51],
and their difference is 1~2◦. The values of E and ϕp for loose sand (Dr = 30%) and medium
dense sand (Dr = 60%) were calculated proportionally based on the literature [52]. The
densities of different compactness were 1.61 g/cm3, 1.66 g/cm3, and 1.75 g/cm3, respec-
tively. There was no groundwater influence, so the soil’s effective unit weight γ’ was
15.8 kN/m3, 16.3 kN/m3, and 17.2 kN/m3, respectively. The peak dilatancy angle ψp was
estimated by the equation ϕp = 0.5ψp + ϕcr proposed by Bolton [53]. The validity of the
loose sand and medium dense sand parameters was determined by comparison with the
triaxial test results in reference [49]. The soil parameters for different embedment ratios are
summarized in Table 1. Other parameters were determined based on reference [49]—that
is, ϕcr = 31◦, v = 0.3, K0 = 1 − sinϕcr = 0.485, ε

p
d = 2%, and εr

d = 20%.

Table 1. Soil parameters.

Dr 30% 60% 100%

H/D E (MPa) ϕp (◦) ψp (◦) E (MPa) ϕp (◦) ψp (◦) E (MPa) ϕp (◦) ψp (◦)

8 24.27 34.77 7.54 35.47 38.31 12.26 50.4 42.9 23.8
9 25.64 34.65 7.3 37.48 38.07 11.86 53.26 42.5 23

10 26.94 34.54 7.08 39.38 37.86 11.5 55.96 42.14 22.28
10.5 27.57 34.49 6.98 40.29 37.76 11.34 57.25 41.98 21.95
12 29.35 34.36 6.71 42.89 37.49 10.89 60.95 41.52 21.05

2.2. Influence of Pullout Rate and Mesh Density

The pullout process of a plate anchor is essentially quasi-static in nature, while the
Eulerian analysis is formulated in the framework of a dynamic explicit solution scheme
instead of a static implicit framework [43]. To achieve a balance between matching the
quasi-static state as closely as possible and reducing the computational time, a parametric
study was carried out to investigate the effect of the pullout rate. Three pullout rates of
0.025 D/s, 0.05 D/s, and 0.1 D/s were considered, with a minimum element size ∆B = 0.1D.
Also, a mesh convergence study was performed to identify a suitable mesh density that
gives sufficiently accurate results. Both studies were performed in the case of a single-helix
anchor with H/D = 9 in dense sand.

The load–displacement curves of different pullout rates are illustrated in Figure 5a,
with the minimum element size ∆B = 0.1D. The pullout rate V has little influence on the
uplift process. When the displacement is up to 0.5D, the computational time of V1 and

210



J. Mar. Sci. Eng. 2023, 11, 1547

V2 is about 12 times and 2 times that of V3, respectively. Hence, considering the time
consumption and stability, the pullout rate V2 was adopted for all subsequent analyses.

J. Mar. Sci. Eng. 2023, 11, 1547 6 of 22 
 

 

quasi-static state as closely as possible and reducing the computational time, a parametric 
study was carried out to investigate the effect of the pullout rate. Three pullout rates of 
0.025 D/s, 0.05 D/s, and 0.1 D/s were considered, with a minimum element size ΔB = 0.1D. 
Also, a mesh convergence study was performed to identify a suitable mesh density that 
gives sufficiently accurate results. Both studies were performed in the case of a single-
helix anchor with H/D = 9 in dense sand. 

The load–displacement curves of different pullout rates are illustrated in Figure 5a, 
with the minimum element size ΔB = 0.1D. The pullout rate V has little influence on the 
uplift process. When the displacement is up to 0.5D, the computational time of V1 and V2 
is about 12 times and 2 times that of V3, respectively. Hence, considering the time con-
sumption and stability, the pullout rate V2 was adopted for all subsequent analyses. 

  
(a) (b) 

Figure 5. The curves of uplift resistance and displacement for the convergence study. (a) Pullout 
rate study. (b) Mesh convergence study. 

Three finite element meshes with minimum element sizes ΔB near the anchor of 
0.05D, 0.1D, and 0.2D were compared, and the element numbers were 613130, 280864, and 
125856, respectively, where the pullout rate V = 0.05 D/s. The load–displacement curves of 
different mesh densities are illustrated in Figure 5b. It can be seen that a finer mesh tends 
to give a smaller uplift capacity, and that the mesh with the minimum size ΔB = 0.1D is 
preferable because a further decrease in mesh size does not change the result. Therefore, 
meshing with a minimum element size of 0.1D was considered sufficient in terms of accu-
racy and was adopted for all subsequent analyses. 

2.3. Determination and Verification of Uplift Capacity 
The relationship between load and displacement of single-helix anchors (H/D = 8~12) 

in sand with different densities is presented in Figure 6. The relationship between load 
and displacement of multi-helix anchors in dense sand is shown in Figure 7. The charac-
teristics of these curves can be divided into two types: those with an obvious peak point, 
and those without an obvious peak point. The peak values of the curves were undoubtedly 
taken as the ultimate uplift capacities, and the uplift capacities for the curves without ob-
vious peak points were determined according to the curve development. The develop-
ment of these curves presents three stages: the fast-rising straight-line stage, the curved 
stage, and a prolonged rising or stable stage (approximately a straight line). The starting 
point of the latter stationary section was regarded as the ultimate uplift capacity, Qu, and 
the corresponding displacement is called failure displacement, uf. The points of Qu are 
represented by circles in Figures 6 and 7. 

Figure 5. The curves of uplift resistance and displacement for the convergence study. (a) Pullout rate
study. (b) Mesh convergence study.

Three finite element meshes with minimum element sizes ∆B near the anchor of 0.05D,
0.1D, and 0.2D were compared, and the element numbers were 613130, 280864, and 125856,
respectively, where the pullout rate V = 0.05 D/s. The load–displacement curves of different
mesh densities are illustrated in Figure 5b. It can be seen that a finer mesh tends to give a
smaller uplift capacity, and that the mesh with the minimum size ∆B = 0.1D is preferable
because a further decrease in mesh size does not change the result. Therefore, meshing
with a minimum element size of 0.1D was considered sufficient in terms of accuracy and
was adopted for all subsequent analyses.

2.3. Determination and Verification of Uplift Capacity

The relationship between load and displacement of single-helix anchors (H/D = 8~12)
in sand with different densities is presented in Figure 6. The relationship between load and
displacement of multi-helix anchors in dense sand is shown in Figure 7. The characteristics
of these curves can be divided into two types: those with an obvious peak point, and those
without an obvious peak point. The peak values of the curves were undoubtedly taken as
the ultimate uplift capacities, and the uplift capacities for the curves without obvious peak
points were determined according to the curve development. The development of these
curves presents three stages: the fast-rising straight-line stage, the curved stage, and a pro-
longed rising or stable stage (approximately a straight line). The starting point of the latter
stationary section was regarded as the ultimate uplift capacity, Qu, and the corresponding
displacement is called failure displacement, uf. The points of Qu are represented by circles
in Figures 6 and 7.

The uplift capacity is normalized as the uplift capacity factor Nγ, as in Equation (3):

Nγ = Qu/γ′AH (3)

where γ′ is the soil’s effective unit weight, and A is the plate area, expressed as A = πD2/4.
The uplift capacity factors Nγ for single-helix anchors from the FEM and centrifugal

tests are plotted in Figure 8a, which shows that the uplift capacity factors of single-helix
anchors are roughly constant as the embedment ratio H/D increases in loose sand, medium
dense sand, and dense sand with H/D > 9. This feature is related to the failure mode,
which will be explained later. The uplift capacity factors from the centrifugal test with
Dr = 85.4~96.2% are encompassed between the numerical results of medium and dense
sand. This result verifies the reliability of the FEM model. However, the FEM results
overestimated the uplift capacities of helical anchors. This difference may be caused by
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the dilatancy angle determined by Bolton’s equation [53], which is larger than the actual
situation.
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3. Uplift Failure Mode

The effect of strain softening was incorporated into numerical analysis by utilizing
the modified Mohr–Coulomb model described in Section 2, which allows for the variation
of soil strength with strain and stress level and can show the subsequent soil strength
mobilization and progressive failure. The failure surface was identified based on the
contour of equivalent plastic strain at failure displacement, and the design method of the
deep helical anchor is further proposed based on the visible deep failure mode in Section 4.

3.1. Process of Soil Strength Mobilization

Figure 9 shows the process of soil strength being mobilized while pulling the anchors,
where uf is the displacement corresponding to the ultimate uplift capacity defined above.
The red zone corresponds to the peak internal friction angle, and the blue zone corresponds
to the initial internal friction angle or the critical internal friction angle. The soil inside
the red zone is undergoing softening, and the soil outside the red zone is experiencing
hardening. The soil strength near the anchor plate is mobilized first and reaches its peak
state. Then, the strength of this part of the soil reduces with the increase in the displacement
or strain and reaches a critical state. The peak state boundary expands successively, and all
of the soil within this boundary undergoes a softening process. This reflects the process of
progressive failure of the foundation.

The local failure mode is present for different densities. As the displacement u in-
creases, the influence range of the interaction between the anchor plate and soil expands
gradually, and the soil strength of the partial zone around the plate is mobilized. The
mobilized zone still expands outward gradually after the failure displacement uf. Although
a larger range of soil strength is mobilized, the soil strength near the plate decreases after
peak strength. Hence, the overall uplift capacity shows a trend of slow increase, which
corresponds to the load–displacement curve shown in Figure 6. The shapes of the mobi-
lized zone in the deep underground area at failure displacement for different densities are
similar, but the range becomes larger with the higher density. The very shallow soil near
the ground surface is also mobilized due to shaft friction and low overburden pressure,
which are not features of failure mode recognition.
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3.2. Deep Failure Behavior of Single-Helix Anchors

The equivalent plastic strain contours of the single-helix anchors at failure, with
different embedment ratios H/D and relative densities, are shown in Figure 10. The white
zone corresponds to the immobilized zone; the black zone corresponds to the softening zone,
with an equivalent plastic strain greater than 2%; and the other zone corresponds to the
hardening zone. The plastic zone surrounding the plate is limited below the ground surface
and displays a closed bulb, which is the deep failure mode. However, the failure mode for
the anchor with an embedment ratio of eight in dense sand displays the transitional mode,
which will not be discussed in the following text.

For the deep failure mode, the influence of density on the mobilized zone range is
greater than that of the embedment ratio. The boundary of the mobilized zone increases
gradually with the increase in soil density. Its vertical height is 5D, 6D, and 7D, and the
horizontal breadth is 2D, 2.5D, and 3D, in the loose, medium, and dense sand, respectively.
However, the scope of the softening zone is hardly affected by density and embedment
ratio. Its vertical height is approximately 2D, and the horizontal breadth is approximately
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1.5D for different densities and embedment ratios. Due to the similarity of the failure
modes, the dimensionless uplift capacities of deep single-helix anchors are approximately
constant.
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For the convenience of calculation, Ghaly [13] assumed the deep failure mode as
an inverted cone with a certain height. This assumption is similar to the experimental
results observed by Motamedinia [18] and Salehzadeh [19]. The overburden pressure was
simplified as a uniform load acting on the top of the inverted cone. Because the top of the
inverted cone has a larger surface area than the potential region for load, this assumption
can lead to excessive earth pressure. Liu [54] and Shi [55] proposed that the rupture surface
can be determined by the points of maximum strain at varied depths based on the contour
of plastic shear strain. This numerical analysis adopts the rule to identify the rupture
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surfaces of deep single-helix and multi-helix anchors. The deep rupture surface of the
single-helix anchor can be simplified as two straight lines, as shown by the solid red line in
Figure 10. From the plate edge to the boundary of the softening zone, there is an inverted
truncated cone. The vertical distance between them is within (2~3)D. The inclination in the
vertical direction rises from 15◦ to 20◦. Then, an erected truncated cone extends from the
boundary to the shaft. The vertical distance between them is within (4~6)D. The inclination
in the vertical direction rises from 4◦ to 10◦.

3.3. Deep Failure Behavior of Multi-Helix Anchors

Figure 11 shows the equivalent plastic strain at failure of multi-helix anchors buried
in dense sand with an embedment ratio of 12D and various spacing ratios S/D and plate
numbers n. It can be seen that the embedment depth of the uppermost plate controls the
failure mode of the multi-helix anchor. Although the lowermost plate of all of these anchors
is deeply embedded (12D), the mobilized zone of soil around the anchors extends to the
ground, except for the double-helix anchors with S/D = 1.5~3 and the triple-helix anchor
with S/D = 1.5. The softening zones are interconnected when the plate spacing is smaller
than 6D. This failure mode is similar to the one assumed by the cylindrical shear method.
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Compared with the failure mode of the single-helix anchor shown in Figure 11, it is
worth noting that the helix spacing has little influence on the equivalent plastic strain range
induced by each helical plate. For example, the soil mobilized zone of the double-helix
anchor with S/D = 2 is just like a superposition of two single-helix anchors with H/D = 12
and H/D = 9. The upper plate experiences a transitional failure mode when the S/D = 4
for a double-helix anchor. When the S/D = 6 for the double-helix anchor, it is evident that
the boundary of the soil mobilized zone caused by the lower plate bends towards the shaft.
For multi-helix anchors, if more than one plate is at a shallow depth, the soil mobilized
zone caused by the lowermost shallow plate will cover the mobilized zone of the other
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shallow plates, as with the quadruple-helix anchor shown in Figure 11b. The numerical
observation confirms the conclusion from the centrifugal test that additional helices do
not provide additional capacity if they are located within the region of soil mobilized by
a lower helix [12]. As a result, the uplift resistance of the multi-helix anchor should be
provided by the lowest shallow plate and each deep plate. The range of the soil plastic zone
caused by each plate is only tied to the plate’s embedment depth. The rupture surface of
the multi-helix anchor can be regarded as the superposition of each helical plate’s rupture
surface when the above rule is adopted to identify the rupture surfaces [54,55], as shown
by the solid red line in Figure 11.

4. Estimation of Uplift Capacity

It was possible to establish the link between the rupture surface and soil parameters,
because varied soil characteristics were used. A simplified rupture surface was put forward
according to the failure mode (Section 3). A unified calculation method using the limit
equilibrium method (LEM) was proposed, including the lateral earth pressure coefficient,
average internal friction angle, exponential decrease rate, and other parameters. The
meanings of each symbol can be found in the Appendix A.

4.1. Simplified Rupture Surfaces

According to the failure mode determined from the above numerical results, the
shallow and transition rupture surfaces of a single-helix anchor can be represented by one
inverted truncated cone (inclined at ψp to the vertical), as illustrated in Figure 12a, which is
the same as in previous experimental investigations [14,18,56,57]. The deep rupture surface
of the single-helix anchor can be represented by one erected and one inverted truncated
cone, as illustrated in Figure 12b. The inverted cone emerges from the plate edge with a
vertical height of 2D and an inclination to the vertical of ϕp/2, and connected to the erected
cone with a vertical height of 4D and an inclination to the vertical of ψp/2.
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The double-helix anchor is taken as an example. The deep rupture surface can be
represented by two erected and two inverted truncated cones. If the rupture surface of the
adjacent plate does not intersect, each plate can be calculated individually, as shown in
Figure 13a. If the rupture surface of an adjacent plate intersects, its outermost contour is
taken as the rupture surface, as shown in Figure 13b. Figure 13a,b cover the possible shallow
and deep failure modes of the top helical plate simultaneously. The same simplification
method can be applied to the multi-helix anchor. Thus, the rupture surface can be divided
into several erected and inverted truncated cones. It is worth noting that the additional
helical plates do not provide additional capacity if they are located within the region of soil
mobilized by a lower plate.
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4.2. A Unified Calculation Method

According to the limit equilibrium method, the ultimate uplift capacity of a single-
helix anchor Qu equals the sum of the vertical component of shearing resistance along each
truncated cone and the soil weight, as shown in Equation (4):

Qu = ∑(Qui + Wi) (4)

where Qui is the uplift capacity of the ith truncated cone, as calculated using Equation (5):

Qui =
∫

A

(
τf cos αi + (−1)iσn sin αi

)
dA (5)

where σn is the normal stress on the rupture surface, σn = Kuγ’(H − z), Ku is the lateral earth
pressure coefficient, z is the vertical distance from the lowermost plate, H is the embedment
depth of the plate, τf is the resisting shear stress on the rupture surface, τf = σntanϕ*

A,
and ϕ*

A is the average internal friction angle. Ku and ϕ*
A are determined as shown in the

following section. The inclination angle to the vertical αi for the deep plate is ϕp/2 when i
is an odd number, and αi = ψp/2 when i is an even number. The shallow plate is assumed
to be the inverted truncated cone, whose inclination angle is ψp.

Wi is the soil weight in the ith rupture surface of the truncated cone, as calculated
using Equation (6):

Wi =
π

3
γ′li
(

r2
it + r2

ib + ritrib

)
(6)

where li is the vertical height of the ith rupture surface, and its bottom and top radii are rib
and rit, respectively. These parameters can be determined by geometry.

The above equations are also applied to the multi-helix anchor, since its failure mode
is the superposition of the failure modes of each helical plate. Because the multi-helix
anchor’s failure mode is the superposition of each helical plate’s failure mode, only the
lateral earth pressure coefficient and the average internal friction angle of the single-helix
anchor will be discussed.

4.3. Lateral Earth Pressure Coefficient

The effect of soil deformation will change the stress field around the plate, which is
the significant difference between FEM and limit analysis. The stress distribution along
the rupture surface of shallow circular anchors in sand was reflected by Cerfontaine [8]
using FEM based on the hardening soil constitutive model, which can be described by a
linearly increasing and then exponentially decreasing mathematical function. However,
the stress analysis of deep anchors in sand is still unclear. This study investigated the stress
distribution along the rupture surface of a deep anchor based on a modified Mohr–Coulomb
model that incorporates the mobilized process of soil strength with plastic strain.
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According to the Mohr–Coulomb limit equilibrium condition, the normal stress σn can
be calculated by the maximum and minimum principal stresses and the internal friction
angle of each element along the rupture surface. Then, the lateral earth pressure coefficient
of deep anchor Ku along the rupture surface can be calculated by Equation (7):

Ku = σn/γ′(H − z) (7)

where z is the vertical distance from the lowermost plate.
For shallow single-helix anchors, the lateral earth pressure coefficient Kn was proposed

by Hao et al. [12], based on the assumption that the normal stress on the rupture surface
remains in its initial state during pullout, as shown in Equation (8):

Kn = 1− sin ϕcr
(
1 + cos 2ψp

)

2
(8)

Then, Ku was standardized with Kn, and the distributions of Ku/Kn for different
densities are shown in Figure 14.
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It can be seen from Figure 14 that the value of Ku increases linearly to the peak
value Ku,peak rapidly, and then it slowly decreases to close to the value of Ku. The trend
of stress distribution is similar to the stress investigation around helical piles using the
photoelasticity technique reported by Schiavon [16]. It is worth noting that the density has
a more significant effect on the peak Ku,peak instead of the embedment depth.

Considering the trend of Ku, two-stage functions are used to express the variation of
Ku, as shown in Figure 15. Linear fitting is adopted before the peak value, which starts
from the initial lateral pressure coefficient Kn to the peak lateral pressure coefficient Ku,peak.
Then, exponential fitting is adopted after the peak value, which starts from the initial lateral
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pressure coefficient Ku,peak to the lateral earth pressure coefficient proposed Hao [12] Kn,
as shown in Equation (9):

Ku =





Kn +
(

Ku,peak − Kn

)
/zp · z

Kn +
(

Ku,peak − Kn

)
e−κ(z−zp)

z ≤ zp
z > zp

(9)

where zp is the vertical distance of the peak value point from the plate, and κ is the
exponential decrease rate. The position of zp is always within 0.33D and has little relation to
the relative density and embedment depth. Thus, zp can be taken as 0.33D in Equation (9).
The value of Ku,peak in loose, medium, and dense sand is 3.5, 5, and 6.5, respectively.
The value of κ is fitted to be 1.8.

Figure 15. Simplified lateral earth pressure coefficient Ku. (a) Loose sand. (b) Medium dense sand.
(c) Dense sand.

To simplify Equation (9), zp can be taken as 0, because the value of zp is small. The
exponential fitting is adopted to express the variation of Ku, as shown in Equation (10).
This part will be discussed in Section 4.5.

Ku = Kn +
(

Ku,peak − Kn

)
e−κz (10)

4.4. Average Internal Friction Angle

According to the modified Mohr–Coulomb model, the internal friction angle is related
to the equivalent plastic strain. Its distribution along the rupture surface is shown in
Figure 16. The peak value point is vertically located 2D away from the plate, which
corresponds to the boundary of the softening zone and is different from the position of the
peak lateral earth pressure coefficient.
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The internal friction angle near the plate equals the critical friction angle. As the
distance from the plate increases, it begins to rise until it reaches the peak, and then it
gradually decreases. This tendency makes the analysis more complex and realistic than
FEM based on the HS small model [8]. The shear stress along the failure surface varies not
only with the effective normal stress but also with the mobilization level of soil strength,
which depends on plastic strain. Drescher [58] pointed out that numerical solutions to the
bearing capacity problem at ψ < ϕ predict a limit load higher than the estimates presented
for Prandtl’s failure mechanism. Davis [59–61] proposed Equation (11) to convert a non-
associated plastic MC model into an equivalent associated plastic MC model [61]:

tan ϕ∗ =
sin ϕp cos ψp

1− sin ϕp sin ψp
(11)

where ϕ* is the internal friction angle of the equivalent associated plastic MC model.
For the convenience of calculation and application in LEM, an average internal friction

angle ϕ*
A was proposed. The internal friction angle along the rupture surface was extracted,

and the average value was calculated. The comparison of ϕ*
A from FEM with ϕ* from

Equation (11) [59] is shown in Figure 17. It can be seen that both values are similar for loose
and medium dense sand, and the value of ϕ* is 3◦ greater than that of ϕ*

A for dense sand.
For simplification and safety, the average friction angle can be estimated by Equation (11)
directly for loose and medium dense sand, and by reducing the results of Equation (11) by
3◦ for dense sand.
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4.5. Comparison with Results

In Sections 4.1–4.4, the simplified rupture surfaces and the unified calculation method
for helical anchors were discussed, and two important parameters were studied. So, the
ultimate uplift capacity of a helical anchor can be estimated using Equations (4)–(11).

(1) Comparison with the FEM results

To verify the feasibility of the simplified rupture surface, the calculation results were
compared with the finite element results, and the soil pressure coefficient was calculated
using Equation (9). When the top anchor plate is a shallow embedment plate for multi-helix
anchors, the lateral earth pressure coefficient is determined using Equation (8) without
considering its changes. The comparison results are shown in Figure 18. The uplift capacity
predicted by this method is about 5% lower on average than that of the finite element
results. But for single helical anchors, the result with the largest deviation is found for
H/D = 9 in loose sand, which is underestimated by up to 8.3%. For double-helix anchors,
although it corresponds nicely when the spacing is bigger, it is 16.1% underestimated when
the spacing is 3D. As a result, this demonstrates that it is possible to calculate the uplift
capacity of helical anchors using the simplified rupture mode presented in Section 4.1.
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(2) Comparison between Equations (9) and (10)

To verify the feasibility of the simplified calculation method, the uplift capacity of
single-helix anchors was calculated using Equations (9) and (10) as the lateral earth pressure
coefficient. The results are shown in Figure 19. It can be seen that the simplified calculation
results using Equation (10) will reduce the estimated uplift capacity. The values of Nγ for
loose sand, medium dense sand, and dense sand are reduced by an average of 7.5%, 9.3%,
and 10.5%, respectively. However, for safety reasons, Equation (10) can be used instead of
Equation (9) for calculation.
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(3) Comparison with the test results

To verify the unified calculation method, the calculation results were compared
with the centrifuge test results [12]. The soil characteristics were based on the values
in Section 2.1, and the lateral earth pressure coefficient was calculated using Equation (10).
When the top anchor plate is a shallow embedment plate for multi-helix anchors, the lateral
earth pressure coefficient is determined using Equation (8) without considering its changes.
The results of this theoretical method were compared with the test results, as shown in
Figure 20. It can be seen that for single-helix anchors in dense sand, this theoretical method
underestimates by up to 10.9% and overestimates by up to 6.7%. For multi-helix anchors in
dense sand, this method underestimates by up to 17.0% and overestimates by up to 21.7%.
Therefore, this method may be used to estimate the uplift capacity of helical anchors.
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5. Conclusions

The failure mechanism of deep anchors in sand is not well understood. The existing
design methods of deep helical anchors in sand seldom consider the deep rupture surface.
This study shows the possibility of simulating the pullout process of deep helical anchors
in sand. Considering the strain softening of soil can help to more accurately simulate the
uplift characteristics of deep helical anchors in sand, which can reflect the progressive
failure process of deep anchors. In this process, the boundary of the plastic zone is a closed
bulb and expands rapidly before the failure displacement and slowly after the failure
displacement. A two-truncated-cone failure mode was identified based on the locus of
maximum value of plastic strain at various depths for deep single-helix anchors, and on
this basis, the analytical method of estimation for the ultimate uplift capacity of deep helical
anchors is proposed.

The helix spacing has little influence on the equivalent plastic strain range induced
by each helical plate. The boundary of the plastic zone for multi-helix anchors is a super-
position of each helical plate. The distributions of the lateral earth pressure coefficient Ku
can be simplified by a linearly increasing and then exponentially decreasing mathematical
function. The peak value of Ku and the exponential decrease rate κ are almost independent
of the embedment ratio of deep anchors, but they are related to the sand’s compactness.
The value of the average internal friction angle can be determined by the Davis formula.

This study proposes a unified calculation method for helical anchors in sand, and
the parameters in this method were determined according to the results of numerical
analysis. This innovative method can be suitable for single-helix or multi-helix anchors,
as well as shallow- or deep-embedment helix anchors. It may be helpful in the design of
helical anchors. These findings could improve the current design method of helical anchors,
especially deep-embedment helical anchors.

223



J. Mar. Sci. Eng. 2023, 11, 1547

Author Contributions: Conceptualization, formal analysis, and writing—review and editing, D.H.
and C.Y.; investigation and writing—original draft preparation, C.Y. and N.Z.; investigation and data
curation, C.Y. and R.C. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the National Natural Science Foundation of China (grant
number 52078108).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Due to the nature of this research, participants of this study did not
agree for their data to be shared publicly, so supporting data is not available.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

Table A1. Parameters in the paper.

Parameters Definition

D Helix diameter
t Helix thickness
H Embedment
S Helix spacing

∆B Minimum element size
Dr Density
ϕ0 Initial internal friction angle
ϕcr Critical internal friction angle
ϕp Peak internal friction angle
ψp Peak dilatancy angle
σ3 Confining pressure
εr

d Critical equivalent plastic strain
ε
p
d Peak equivalent plastic strain

E Young’s modulus
v Poisson’s ratio

Nγ Uplift capacity factors
γ’ Soil effective unit weight
A Plate area

Qu Ultimate uplift capacity
uf Failure displacement
z Vertical distance from the lowermost plate

zp Vertical distance of the peak value point from the plate
α Inclination between the simplified rupture plane and the vertical direction

σn Normal stress
K0 Initial lateral pressure coefficient
Ku Lateral earth pressure coefficient
Kn Lateral earth pressure coefficient proposed by Hao [12]

Ku,peak Peak lateral earth pressure coefficient
ϕ* Internal friction angle of the equivalent associated plastic MC model

ϕ*
A Average internal friction angle

W Soil weight
li Vertical height of the ith rupture surface

rib, rit Bottom and top radii, respectively
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Abstract: As a new type of deep-sea anchoring foundation, thetorpedo anchor has the characteristics
of simple installation, low cost, and high bearing capacity. Compared with the torpedo anchor
without an anchor wing, the end-bearing torpedo anchor forms pile end resistance using a bearing
plate, thus further improving its uplift bearing capacity. By conducting the pullout model test of
torpedo anchors, we have compared and analyzed the effects of the pullout angle and bearing-plate
radius on the bearing characteristics of T, EN3, EN4, and EC types of torpedo anchors. Based on
the model test results, we established the V-H envelope of torpedo-anchor bearing capacity using
the regression analysis method. The results show that when the displacement is small, the load-
displacement curve of the torpedo anchor increases in an approximately linear mode, and the curve
fluctuates and gradually entersa stable state with the gradual increase of the displacement. With
the increasing pullout angle, the bearing capacity of the torpedo anchor increases first and then
decreases. When the pullout angle is 45◦, the torpedo anchor has the maximum bearing capacity.
When the pullout angle is constant, the order of bearing capacity generated by different types of
torpedo anchors is as follows: EC > EN4 > EN3 > T, and the bearing capacity rises with the increasing
bearing-plate area. Through regression analysis, it is concluded that for the torpedo anchors of T,
EN3, EN4, and EC types, the V-H envelope of bearing capacity shows an outward convex trend, and
the determination coefficient reaches 0.930, indicating that the established V-H envelope is suitable
for predicting the bearing capacity of torpedo anchors.

Keywords: end-bearing; torpedo anchor; bearing capacity; pullout angle; cohesive soil

1. Introduction

With the exhaustion of offshore oil and gas resources, the exploitation of oil and gas has
gradually advanced from offshore areas to the deep sea, and the traditional mooring system
cannot meet the needs therefrom [1–9]. As a new type of deep-sea anchoring foundation,
the torpedo anchor takes the shape of the cylinder as a whole; the conical anchor tip is
30◦, the interior is filled with concrete or scrap metal, and its weight is about 100 t. During
installation, the torpedo anchor falls freely to obtain kinetic energy and then penetrates the
seabed at the water depth of 30 to 150 m, thereby ensuring a sufficient penetration depth
and obtaining a higher bearing capacity. The torpedo anchor has the advantages of simple
installation, low cost, and high bearing capacity. Therefore, this type of anchor has attracted
great attention fromacademia and the engineering industry [10]. Yu et al. [11,12] concluded
that the uplift bearing capacity of the torpedo anchor with four anchor wings is 1.9 times
greater than that of the torpedo anchor without an anchor wing, and the uplift bearing
capacity is larger when the pullout-load angle is between 30◦ and 45◦. When the anchor
wing has the same lateral area, increasing the width of the anchor wing can effectively
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improve the bearing capacity. When the length of the anchor wing is greater than 1/2 of
the anchor length, the bearing capacity obtained by increasing the anchor wing width is
higher than that obtained by increasing the anchor wing length. The research findings can
provide a reference for the optimization design of torpedo anchors. Based on the sediment
rheological properties, Yu et al. [13] proposed a dynamic torpedo-anchor technology. This
technology mainly uses high-frequency mechanical vibrations to fluidize the sediment
near the anchor body, thereby reducing the resistance between the outer wall of the anchor
body and the surrounding soil so that the anchor body can automatically and quickly
penetrate the seabed. When the anchor body penetrates the preset depth, the vibration unit
is shut down and the installation is completed. The dynamic torpedo anchor has a large
tensile-strength ratio and can withstand the vertical pullout force. It is characterized by fast
anchor placement and easy recovery. Raaj et al. [14] stated that soil properties and shear
strength affected the pullout capacity and penetration depth. Chen et al. [15] reported that
the pullout capacity and penetration depth of the torpedo anchor with vibrational shearing
was not restrained by water depth and drop height. Based on the embedment depth, net
weight, geometry, and soil properties, Wang et al. [16] proposed a model to predict the
undrained monotonic holding capacity of the torpedo anchor, and the predicted results
coincided well with the experimental results. With increasing fin length, Ads et al. [17]
concluded that the penetration depth decreased and the maximum extraction resistance
increased. Kim and Hossain [18] stated that the inclined pullout capacity of torpedo
anchors depended on the anchor weight and anchor-soil contact area; thereby, the pullout
capacity increased with increasing fin number. Chen et al. [19] stated that the maximum
vertical pullout capacity increased exponentially with increasing embedment depth under
no vibrations, whereas the pullout capacity increased linearly with increasing embedment
depth under 200 Hz vibrations. Hossain et al. [20,21] reported that the pullout capacity
of the torpedo anchors increased with increasing consolidation time, embedment depth,
and undrained shear strength, and the rectangular fin and conical tip were more effective
to improve the pullout capacity. Based on the centrifuge model test results, an analytical
model to calculate the pullout capacity of the torpedo anchor was established according to
the reverse end-bearing and frictional resistance. Based on the nonlinear regression analysis
of the test results, Wang et al. [22] established a model to predict the maximum inclined
force of torpedo anchor penetration into cohesive beds when the loading angle changed
from 20◦ to 90◦. With increasing embedment depth, relative density, and area of the bearing
plate, Li et al. [23] reported that the bearing capacity of the end-bearing torpedo anchor
remarkably improved, and the pullout capacity of the end-bearing anchor was significantly
higher than that of the traditional anchor. Yi et al. [24] found that the failure envelope was
mainly influenced by anchor incline and soil strength gradient, and a simple procedure
was developed to predict the ultimate pullout capacity of the torpedo anchor. Raie and
Tassoulas [25] noted that the dissipation of excess pore water pressure and the recovery of
soil strength were essential factors to predict the pullout capacity of the torpedo anchor.

Compared with the torpedo anchor without an anchor wing, the end-bearing torpedo
anchor forms pile end resistance using a bearing plate, thus further improving its bearing
capacity. However, there are fewer studies on the bearing capacity of end-bearing torpedo
anchors. In this paper, we conduct the pullout model test of torpedo anchors without
anchor wings and end-bearing torpedo anchors and analyze the bearing characteristics
of both types of torpedo anchors under vertical and inclined pullout loads. Based on the
test results, we establish the V-H envelope of the torpedo-anchor bearing capacity using
the regression analysis method. The research findings can provide a reference for the
optimization design and bearing-capacity prediction of torpedo anchors.

2. Materials and Methods
2.1. Test Materials

The test soil waswashed kaolin, purchased from Jiashuo Building Materials Processing
Co., Ltd., Lingshou County, Shijiazhuang City, Hebei Province, China. According to the
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standard for the geotechnical testing method (G/BT 50123-2019) [26], its basic physical
properties are shown in Table 1.

Table 1. Main physical properties of kaolin.

Gs ρ (g/cm3) wL (%) wP (%) IP Su (kPa) E (MPa)

2.60 1.60 42.3 21.3 21.0 1.63 0.82

The T-98 torpedo anchor wasselected as the model anchor. It is made of high-speed
steel material, and its Young modulus and Poisson ratio was 200 GPa and 0.3, respectively.
The anchor rod is 9.7 cm long, the anchor tip is 2.5 cm long, the anchor rod diameter (D)
is 2 cm, and the anchor weighs 281.5 g. The anchor tip and the anchor rod are designed
as two separate components, and the bearing plate can be assembled after detachment.
A total of 12 types of bearing plates with a thickness of 2 mm were arranged for the test.
The torpedo anchor without anchor wings (T type) is shown in Figure 1a, and the EN3
type torpedo-anchor bearing plate consists of 3 rectangular bearing plates with an angle of
120◦ for the center line, as shown in Figure 1b. The EN4-type torpedo-anchor bearing plate
consists of 4 rectangular bearing plates with an angle of 90◦ for the center line, as shown
in Figure 1c. The EC-type torpedo-anchor bearing plate was designed with a circular ring
to ensure that the inner diameter of the bearing plate is the same as the outer diameter of
the anchor rod and prevent the assembled bearing plate from any translation, as shown in
Figure 1d. Table 2 lists the parameters of the torpedo-anchor bearing plate. As shown in
the table, the size and weight of the rectangular bearing plate gradually increase with the
increasing torpedo anchor number (1~4) when the type of bearing plate is fixed.

Figure 1. Torpedo anchor and bearing plate: (a) torpedo anchor; (b) EN3 type; (c) EN4 Type; (d) EC type.
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Table 2. Parameters of torpedo-anchor bearing plate.

Label
EN3 Type

Dimensions
(mm)

EN3 Type
Mass (g)

EN4 Type
Dimensions

(mm)

EN4 Type
Mass (g)

EC Type
Diameter

(mm)

EC Type
Mass (g)

a 3 × 5 × 5 5.59 4 × 5 × 5 6.50 30 12.96
b 3 × 5 × 10 7.61 4 × 5 × 10 8.67 40 25.10
c 3 × 5 × 15 9.22 4 × 5 × 15 10.81 50 40.74
d 3 × 5 × 20 10.76 4 × 5 × 20 12.92 60 59.59

2.2. Test Equipment

The pullout test device is made of a rigid frame, as shown in Figure 2. It mainly
consists of a fixed pulley, motor, tension sensor, signal amplifier, signal acquisition box, and
computer. The steel strand connected to the motor side passes through the pulley fixed
at the beam, the other end is connected to the top of the torpedo anchor, and the middle
of the steel strand is connected to the type-S tension sensor. The sensor is connected to
the signal amplifier through a data cable and outputs the signal to the TWD information
acquisition box. The measuring range of the tension sensor is ±10 kg, the motor speed is
1 cm/s, and the acquisition frequency of the TWD information acquisition box is 200 Hz.
The test model box is made of plexiglass, as shown in Figure 3. The height of the model box
is 75 cm, the outer diameter is 45 cm, and the wall thickness is 2 cm. There are 6 holes in
the outer wall of the model box. The lines connecting the center of the model box with the
center of each hole form an angle of 0◦, 15◦, 30◦, 45◦, 60◦, and 75◦ with the horizontal line,
respectively, so that the torpedo can be pulled in multiple directions. When the soil sample
is still and saturated, each hole is blocked with a rubber plug to prevent water leakage.

Figure 2. Schematic diagram of the model test device.

Figure 3. Flow chart of torpedo anchor installation: (a) installation; (b) vertically; (c) vibrating.

2.3. Test Methods

An amount of kaolin isslowly added into a proper amount of water, and we keep
stirring to prevent kaolin from agglomerating and reduce bubble residues. Then, the model
box is sealed with a plastic film to reduce soil moisture evaporation [23,26]. A steel strand
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hole is reserved at the tail of the torpedo anchor in the test, two steel strands are inserted
into the hole, and the steel strand and the torpedo anchor can be firmly connected by
tightening the limit screw. The diameter of the steel strands is 2 mm, and the lengths are
44 cm and 137 cm, respectively. The steel strand with a constant length of 44 cm is used
to ensure the same embedded depth of the torpedo anchor and the same height, with
the pullout hole at 0◦ with the outer wall of the model box. A PVC pipe with a length of
37 cm, a wall thickness of 3 mm, and the same outer diameter as the outer diameter of the
torpedo anchor is used as the conduit. Pass the steel strand through the conduit and press
the conduit down to ensure that the bottom of the conduit fits the top of the anchor rod.
Slowly press the torpedo anchor into the soil using the conduit. In this process, the torpedo
moves down at a low constant speed to reduce the disturbance to the surrounding soil. See
Figure 3 for the installation process. When the torpedo anchor reaches the embedded depth,
a steel rod is placed on the surface of the model box to limit the downward movement of
the torpedo anchor so that the anchor is successfully placed. Then, withdraw the conduit
vertically and slowly to reduce the disturbance to the soil above and the impact on the
torpedo anchor. Vibrate the soil around the hole wall at a high frequency but low amplitude
to accelerate the soil body flow and complete the collapse of the soil above the anchor top.
In the process of vibration, make sure that vibration points are symmetrical and far away
from the hole locations to reduce the impact on the anchor position. When the torpedo
anchor is installed, keep it still for 12 h to improve the soil strength, and set a thin water
level on the soil surface in this process to prevent the soil from cracking. Then, remove the
suspended steel rod and connect the steel strand with a length of 137 cm to the tension
sensor and the motor. Adjust the fixed pulley position of the model box to make the steel
strand pass through the middle of the hole, and apply Vaseline around the hole to reduce
the test error. When performing the vertical pullout test, make sure that the steel strand
above the top of the torpedo anchor is vertically upward. When performing the oblique
pullout test, make sure that the steel strand is laid through the hole center by adjusting the
fixed pulley at the outer wall so that the pullout angle of the steel strand meets the test
requirements. Start the motor and stop the test when the load reaches the peak strength or
the anchor body is fully pulled out. During the test, the data acquisition system is used to
record the value and time of the tension sensor, and the load-displacement curve can be
obtained after conversion according to the uniform speed pulling of the motor.

3. Results and Discussion
3.1. Results and Analysis of Vertical Pullout Test of Torpedo Anchor

Under the action of vertical pullout load, the bearing capacity of the torpedo anchor
without an anchor wing is mainly provided by the side frictional resistance of the anchor
rod, and the bearing plate of the end-bearing torpedo anchor has a significant effect on the
bearing capacity improvement of the torpedo anchor. To study the effect of the bearing-
plate length on the bearing capacity of an end-bearing torpedo anchor, Figure 4 shows
the load-displacement relation curve of the EN3-type torpedo anchor. The figure shows
that when the displacement is small, the load-displacement curve of the torpedo anchor
increases in an approximately linear mode, and the curve fluctuates and tends to be stable
with the increase of the displacement. As for the primary cause, it is believed that the
soil around the anchor is in the stage of elastic deformation when the curve increases
linearly and the soil enters the stage of plastic deformation at the inflection point of the
curve. During the upward movement of the torpedo anchor affected by the pullout load,
the upward movement of the anchor tip leads to the formation of a cavity in the original
position and the generation of suction, so the load is reduced. Through the release of
active soil pressure, the soil on the cavity side moves towards the cavity and the cavity
is gradually filled, thus gradually reducing the suction and increasing the pullout load.
The torpedo anchor moves upward at a constant speed. Therefore, cavities appear and
are filled now and then, so the load-displacement curve fluctuates. Under the action of
the vertical pullout load, the bearing plate has a significant effect on the bearing capacity

231



J. Mar. Sci. Eng. 2023, 11, 1548

improvement of the torpedo anchor in comparison with the torpedo anchor without an
anchor wing, and the bearing capacity rises with the increasing length of the bearing plate.
When the length of the bearing plate is equal to the diameter of the anchor rod, the bearing
capacity is increased by 0.78 times. When the length of the bearing plate is equal to the
radius of the anchor rod, the bearing plate comes from the inside of the anchor rod more
easily. Under such circumstances, the bearing capacity of the EN3-type torpedo anchor
reaches 1.38 times that of the T-type torpedo anchor.

Figure 4. Relation curve between load and displacement of EN3-type torpedo anchor under vertical
pullout load: (a) load-displacement curve; (b) bearing capacity–bearing-plate diameter curve.

Figure 5 shows the relation curve between the load and displacement of the EN4-type
torpedo anchor. As shown in the figure, the findings are consistent with the previous study
results. In detail, the bearing capacity of the torpedo anchor rises with the increasing length
of the bearing plate and reaches the maximum value of 31.91 N when the length of the
bearing plate is equal to the diameter of the torpedo anchor rod. The bearing capacity of
the torpedo anchor is 24.59 N when the length of the bearing plate is equal to the radius
of the torpedo anchor rod. In most cases, a longer bearing plate will provide a stronger
bearing capacity. If the bearing plate is too long, it is difficult to install such a torpedo
through structural design. Therefore, the length of the bearing plate involved in the test
is limited to the range of 0.5 to 2 times the radius of the anchor rod. At the initial stage
of pullout load for the torpedo anchor, the load increases linearly with the displacement.
Under such circumstances, the soil is squeezed into the stage of elastic deformation by the
anchor rod and the bearing plate, and the soil on the anchor side enters the stage of elastic
deformation under the action of friction. However, the time nodes of entry into the stage
of plastic deformation are not consistent. This finding is consistent with the conclusion of
Richardson et al. [27].

Figure 5. Relation curve between load and displacement of EN4-type torpedo anchor under vertical
pullout load: (a) load-displacement curve; (b) bearing capacity–bearing-plate diameter curve.
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In order to study the effect of the circular bearing-plate length on the bearing capacity
of thetorpedo anchor, Figure 6 shows the load-displacement relation curve of the EC type
of torpedo anchor. As shown in the figure, the bearing capacity of the torpedo anchor rises
with the increasing radius of the bearing plate. When the radius of the bearing plate is equal
to the diameter of the anchor rod, the bearing capacity of the end-bearing torpedo anchor is
increased by 1.55 times compared with that of the torpedo anchor without the anchor wing.
Figure 6b shows the relation curve between the bearing capacity and bearing plate radius
of the EC torpedo anchor. As shown in the figure, a trend of approximate linear increase
exists between the bearing capacity and the bearing-plate radius of the EC-type torpedo
anchor, which is consistent with the above conclusion. When the bearing-plate radius is
20 mm, the bearing capacity of the torpedo anchor reaches 78.81 N, which ishigher than
that of the T-type torpedo anchor. For the end-bearing torpedo anchor, the circular bearing
plate forms a closed surface, which prevents the soil from flowing out of the bearing plate
so that the bearing plate acts on the soil as a whole, further improving the bearing capacity.
However, the circular bearing plate is an ideal type. In actual engineering practice, it is
difficult for such a bearing plate to fully come from the anchor rod, while the EN3 and EN4
types of torpedo anchors can be constructed and installed more easily.

Figure 6. Relation curve between load and displacement of EC type torpedo anchor under vertical
pullout load: (a) load-displacement curve; (b) bearing capacity–bearing-plate radius curve.

Figure 7 sums up the relation curves between the load and displacement of torpedo
anchors with different types of bearing plates under vertical pullout load. As shown in
the figure, the EC-type torpedo anchor can provide a greater bearing capacity than the
EN3 and EN4 types of torpedo anchors, and the bearing-capacity difference gradually
increases with the increasing length and diameter of the bearing plate. As for the primary
cause, the EN3 and EN4 types of torpedo anchors have poor overall integrity with the
increasing diameter of the bearing plate. Their bearing-capacity curve has a smaller slope
than that of the EC-type torpedo anchors. The bearing plates of the EN3 and EN4 types
oftorpedo anchors have the same effect on the bearing capacity of torpedo anchors, and the
slope of the bearing-capacity curve of the EN4-type torpedo anchor is 1.23 times that of the
EN3-type torpedo anchor, indicating that increasing the number and area of bearing plates
can further improve the bearing capacity of torpedo anchors.

3.2. Results and Analysis of Inclined Pullout Test of Torpedo Anchor

Figure 8 shows the relation curve between the load, displacement, and pullout angle
of a torpedo anchor without an anchor wing under an inclined pullout load. As shown
in the figure, the bearing capacity of the torpedo anchor under an inclined pullout load
is significantly increased compared with the bearing capacity under a vertical pullout
load. The bearing capacity of the torpedo anchor without an anchor wing under different
pullout angles is in the range of 18.25 N to 27.77 N and reaches the peak when the pullout
angle is 45◦. Based on comparisons, we discovered that the horizontal bearing capacity
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of the torpedo anchor without an anchor wing is approximately 1.18 times the vertical
bearing capacity.

Figure 7. Relation curve between load and displacement of torpedo anchors with different types of
bearing plates under vertical pullout load.

Figure 8. Relation curve between load, displacement, and pullout angle of T-type torpedo anchor
under inclined pullout load: (a) load-displacement curve; (b) bearing capacity–pullout angle curve.

Figure 9 shows the relation curve between the load, displacement, and pullout angle
of the EN3-type torpedo anchor under an inclined pullout load. As shown in the figure,
the load-displacement curve of the torpedo anchor is approximately linear when there is a
small displacement. Under such circumstances, it is believed that the soil around the anchor
is in the stage of elastic deformation. When the pullout angle is in the range of 45◦ to 90◦,
the slope of the load-displacement curve is relatively large. When the pullout angle is 90◦,
the slope is the largest. Under the same test conditions, the horizontal bearing capacity of
the EN3 torpedo anchor is 23.72 N, while the vertical bearing capacity is 21.86 N, indicating
that the horizontal bearing capacity is 1.09 times the vertical bearing capacity. This fact is
consistent with the research conclusion of O’Beirne [28]. For EN3-type torpedo anchors, the
optimum pullout angle is 45◦, and the corresponding bearing capacity is 28.03 N, which is
about 1.28 times the vertical bearing capacity.

Figure 10 shows the relation curve between the load, displacement, and pullout angle
of the EN4 torpedo anchor under an inclined pullout load. As shown in the figure, the
load-displacement curve of the torpedo anchor under an inclined pullout load shows a
trend of increasing first and then stabilizing. In the initial stage of load application, the
curve increases in an approximately linear mode, and then the rate of increase gradually
decreases and tends to be stable. When the torpedo anchor is subjected to vertical pullout,
the anchor body moves from deep burial to shallow burial and then is gradually pulled
out. Under such circumstances, the soil at the anchor top develops from local failure to
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structural failure, and the resistance of the soil at the anchor top towards the torpedo anchor
decreases gradually. The bearing capacity of the EN4-type torpedo anchor also shows
the trend of increasing first and then decreasing with the increasing pullout angle, and
the optimum pullout angle is 45◦. Under such circumstances, the corresponding bearing
capacity reaches the maximum value of 30.08 N.

Figure 9. Relation curve between load, displacement, and pullout angle of EN3-type torpedo anchor
under inclined pullout load: (a) load-displacement curve; (b) bearing capacity–pullout angle curve.

Figure 10. Relation curve between load, displacement, and pullout angle of EN4-type torpedo anchor
under inclined pullout load: (a) load-displacement curve; (b) bearing capacity–pullout angle curve.

Figure 11 shows the relation curve between the load, displacement, and pullout angle
of the EC-type torpedo anchor under an inclined pullout load. As shown in the figure, the
torpedo anchor has the smallest bearing capacity under the vertical load. When the pullout
angle is 45◦, the bearing capacity reaches the peak. Under the vertical pullout load, the
corresponding displacement is only 1 D when the bearing capacity reaches the peak. As
for the primary cause, the bearing plate, anchor top, and soil around the anchor enter the
stage of elastic deformation when the torpedo anchor is under vertical pullout. With the
gradual increase of displacement, the soil evolves from the elastic stage to the critical plastic
stage, and then the bearing capacity reaches the peak. When the displacement continues to
increase, the bearing capacity will not increase. However, the soil deformation continues,
which corresponds to the second half of the load-displacement curve, and the bearing
capacity reaches a stable trend or gradual downward trend. When the torpedo anchor is
subjected to a horizontal pullout load, a large displacement is required to make the bearing
capacity reach the peak load. The torpedo anchor starts to rotate from the vertical position.
When it reaches a certain angle, the torpedo anchor provides the maximum bearing capacity
at thattime. In other words, the maximum bearing-capacity equivalent to that of horizontal
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pullout is equivalent to the bearing capacity at a certain pullout angle. However, the peak
horizontal bearing capacity is smaller than the peak bearing capacity at a specific angle
mainly because the plastic deformation of the anchor top and anchor tip is the largest,
and the plastic zone around the anchor expands with the rotation of the torpedo anchor
when the torpedo anchor starts to rotate from the vertical position. When the torpedo
anchor rotates to a certain angle, the soil around the anchor partially enters the stage of
plastic deformation. Under such circumstances, the strength that the soil can provide is no
longer the peak strength and maybe the residual strength. As shown in Figure 11, when the
pullout angle changes from the vertical status to 45◦, the bearing capacity of the torpedo
anchor increases by 22.72% from 41.77 N to 51.26 N, indicating that the optimum pullout
angle is 45◦.

Figure 11. Relation curve between load, displacement, and pullout angle of EC-type torpedo anchor
under inclined pullout load: (a) load-displacement curve; (b) bearing capacity–pullout angle curve.

Figure 12 sums up the relation curves between the bearing capacities of the T, EN3,
EN4, and EC types of torpedo anchors and pullout angles. As shown in the figure, the
bearing capacity of the torpedo anchors increases first and then decreases with the in-
creasing pullout angle. When the pullout angle is 45◦, the bearing capacity of all types of
torpedo anchors reaches the peak. When the pullout angle is fixed, the bearing capacity of
the T-typetorpedo anchor is the lowest, while the EC-type torpedo anchor has the largest
bearing capacity, followed by the EN4-type torpedo anchor, indicating that the bearing
capacity of the end-bearing torpedo anchor is significantly greater than that of the torpedo
anchor without an anchor wing, and the bearing capacity of torpedo anchors rises with the
increasing bearing-plate area.

Figure 12. Relation curve between bearing capacity and pullout angle of torpedo anchor.
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3.3. V-H Envelope Establishment

When studying the bearing capacity of torpedo anchors, the V-H bearing-capacity
envelope is usually used to study the relations between the various components of bearing
capacity [11]. The normalized V-H envelope is expressed as follows:

(
PH

PHmax

)A
+

(
PV

PVmax

)B
= 1 (1)

where PH is the horizontal component of the bearing capacity of the torpedo anchor; PV
is the vertical component of the bearing capacity of the torpedo anchor; PHmax is the
maximum horizontal bearing capacity, also the bearing capacity during horizontal pullout;
PVmax is the maximum vertical bearing capacity, also the bearing capacity during vertical
pullout; and A and B are the envelope coefficients.

Based on the model test results and fitting analysis, we obtained the V-H failure
envelope diagram of the bearing capacities generated by different types of torpedo anchors.
See Figure 13 for details. Table 3 lists the bearing-capacity envelope coefficients of the
torpedo anchors. As shown in the table, the determination coefficients of the EN3, EN4,
and EC types of torpedo anchors are higher than 0.990, indicating a good correlation. In
order to simplify the prediction of torpedo anchor bearing capacity, the unified regression
analysis wascarried out on the test results of different types of torpedo anchors; the values
of envelope coefficients A and B are 2.753 and 4.522, respectively, and the determination
coefficient reaches 0.930, indicating that the formula is suitable for predicting the bearing
capacity of different types of torpedo anchors. Different from classic elliptic stresses
yield function [29,30], the V-H failure envelope was generated by the bearing capacities
of different types of torpedo anchors. Due to the determination coefficients of the T-
type torpedo anchor being only 0.553, the V-H failure envelope with hyperelliptic shape
was formed.

Figure 13. Bearing capacity V-H envelope.

Table 3. V-H envelope coefficient of bearing capacity.

Type A B R2

T 3.386 18.210 0.553
EN3 5.484 4.410 0.999
EN4 4.332 1.688 0.996
EC 10.484 1.090 0.995

Total 2.753 4.522 0.930

4. Conclusions

By conducting the pullout model test of torpedo anchors, we have studied the bearing
characteristics of the T, EN3, EN4, and EC types of torpedo anchors under vertical loads and
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inclined loads and compared and analyzed the effect of the pullout angle and bearing-plate
radius on the bearing capacity of torpedo anchors. Based on the model test results, we
established the V-H envelope of bearing capacity for different types of torpedo anchors.
The findings of this study are of certain reference value for predicting the bearing capacity
of torpedo anchors in engineering practice. The main conclusions are as follows:

(1) When the displacement is small under a vertical pullout load, the load-displacement
curve of torpedo anchors shows the trend of approximately linear increase. The curve
fluctuates and tends to be stable with the increase of the displacement. Compared with
the torpedo anchor without an anchor wing, the bearing capacity of the end-bearing
torpedo anchor is increased significantly and rises with the increasing bearing plate
length. The EC-type torpedo anchor provides a greater bearing capacity than the EN3
and EN4 types of torpedo anchors.

(2) When the pullout angle is in the range of 0◦ to 45◦ under an inclined pullout load, the
slope of the load-displacement curve of torpedo anchors is smaller. When the pullout
angle is in the range of 45◦ to 90◦, the slope of the load-displacement curve is larger.
When the pullout angle is 90◦, the curve has the largest slope.

(3) With anincreasing pullout angle, the bearing capacity of the torpedo anchor increases
first and then decreases. When the pullout angle is 45◦, the bearing capacity of all
types of torpedo anchors reaches the peak. When the pullout angle is fixed, the
bearing capacity of the T-type torpedo anchor is the lowest, while the EC-type torpedo
anchor has the largest bearing capacity, indicating that the bearing capacity of an
end-bearing torpedo anchor is significantly greater than that of a torpedo anchor
without an anchor wing, and the bearing capacity of torpedo anchors rises steadily
with the increasing bearing-plate radius or area.

(4) Based on the bearing capacity model test results of torpedo anchors, we established
the V-H envelope of torpedo-anchor bearing capacity. Through regression analysis, it
is concluded that for the torpedo anchors of T, EN3, EN4, and EC types, the envelope
coefficients A and B of bearing capacity are 2.753 and 4.522 respectively, and the
determination coefficient reaches 0.930, indicating that the established V-H envelope
formula is suitable for predicting the bearing capacity of torpedo anchors.
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Abstract: Submarine pipelines are a safe and energy-efficient mode of gas transport. However,
due to the complex manufacturing process and harsh operating environment, submarine pipelines
are subject to fatigue cracks under long-term cyclic loading. A comprehensive and high-precision
characterization strategy for submarine pipelines can effectively prevent potential safety hazards
and have significant economic and social repercussions. As a matter of fact, pipeline defects cannot
be reliably detected with current traditional 2D methods. On the other hand, in ultrasonic testing,
cylindrical geometry increases the complexity of the 3D wave field in the submarine pipeline space
and significantly influences the accuracy of the detection results. In this paper, we put forward a
novel method for 3D ultrasonic image testing that is suitable for cylindrical coordinates. In order to
accurately simulate the ultrasonic signal received from pipelines, we generalize the 3D staggered-grid
finite-difference method from Cartesian coordinates to cylindrical ones and simulate the full wave
field in the 3D pipeline space. Then, signal processing is performed on the ultrasound simulation
records, and 3D reverse-time migration imaging of submarine pipeline defects can be effectively
achieved using the reverse-time migration method and cross-correlation imaging conditions. The
results obtained from simulations and real field data show that the proposed method provides
high-quality 3D imaging of defects in pipelines, taking into account multiple scattering and mode
conversion information at the bottom of the defects.

Keywords: submarine pipelines; nondestructive testing; 3D ultrasonic imaging; reverse-time migration;
cylindrical coordinates

1. Introduction

Submarine pipelines can connect subsea oil and gas resources with the entire on-
shore oil and gas production management system by the fastest, safest, and most econom-
ical route, which is called the “lifeline” of offshore oil and gas engineering [1]. However,
due to the complex manufacturing processes and severe service environments [2], sub-
marine pipelines are prone to crack voids, inclusions, and other defects, which greatly
affects their mechanical properties and results in their premature failure. In real engi-
neering applications, the initial imperfection is always introduced onto the pipes during
the manufacture and installation procedures [3]. Submarine pipelines are subjected to
fatigue loading in the harsh environment of the seabed operation conditions [4]. When
the pipes are subjected to external pressure, failure first occurs in the cross-section with
the most severe initial defects [5]. Additionally, once a crack develops, corrosion may
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promote its propagation, resulting in the cracking of the submarine pipeline [6]. When
the pipeline is damaged and leakage occurs, it will not only cause economic losses, but
also may bring about safety problems, endangering the safety of both people and the
marine environment [7]. Therefore, before the submarine pipelines are put into service,
a comprehensive high-precision inspection of them, including the rapid and accurate
detection of defects, may effectively prevent safety hazards, which would guarantee a
beneficial economic and social effect [8].

Several methods are available to inspect pipelines, including magnetic particle testing [9],
magnetic flux leakage testing [10], acoustic wave testing [11], and penetration testing [12].
Ultrasonic testing may be used to detect the structure and shape of internal defects in subma-
rine pipelines due to its high sensitivity, light equipment, and because it poses no harm to
humans or the environment [13]. Ultrasonic testing can effectively detect the flaw size, the
crack location [14], the elastic properties of materials [15], and the layup stacking sequence of
composite materials [16,17] through the propagation of surface waves, guided waves, and
body waves [18]. Then, by using ultrasonic imaging methods, defects in submarine pipelines
can be visualized in an intuitive way [19–21]. The traditional ultrasonic methods of pipeline
inspection include the synthetic aperture focusing technique (SAFT) [22–24], time-of-flight
diffraction (TOFD) [25–27], and the total focusing method (TFM) [28,29]. Those methods
have their own advantages and disadvantages. The SAFT is able to quickly provide media
images; however, it has limitations in detecting vertical interfaces, lower boundaries of defects,
and structures involving high-impedance contrasts. Additionally, there may be artifacts in
SAFT-generated images due to surface waves, multiple reflections, and the mode conversions
of the wave field originating at interfaces, resulting in wrong conclusions about the defect’s
location [30]. The TFM, on the other hand, only considers the direct ray path of ultrasound,
without considering the mode conversions and multiple scattering arising from the interaction
of ultrasonic waves with defects, which reduces the accuracy of the image [31,32]. Moreover,
multiple wave reflections from the pipeline’s lower side make the signals more complicated
to analyze and lower the signal-to-noise ratio, often leading to artifacts in the reconstruction.
As a consequence, it is difficult to image structures with vertical boundaries or complex ge-
ometry [33,34]. In order to circumvent such difficulties, modern ultrasonic testing techniques
often involve full acoustic or elastic wave-equation modeling. In this paper, we address the
3D ultrasonic imaging of a pipeline using the reverse-time migration (RTM) technique, which
has received much attention in the field of geophysics [35–39]. In recent years, RTM methods,
originating from seismic imaging, have gained popularity in ultrasonic nondestructive testing
applications [40–43]. The RTM method is a pre-stack imaging technique based on full-wave
extrapolation. It does not suffer from the presence of oblique structures and offers a high reso-
lution for the imaging of complex structures. In contrast to ray-based methods, RTM includes
the effects of multiple scattering and mode conversions, as well as multiple wave reflections
from the defect’s lower side [33]. This allows one to gain more information, enabling the
imaging of vertical interfaces and boundaries and providing higher quality images of interior
defects [41,42]. However, most RTM studies on submarine pipelines are conducted using
Cartesian coordinates [41,44], whereas, in any realistic case, the pipeline has an irregular cavity
shape. In particular, for cylindrical structures, the pipeline’s walls should be approximated
as a staircase boundary using 3D Cartesian coordinates. Thus, it cannot accurately delineate
the pipeline cavity, and the resulting grid scattering and dispersion analysis is affected by
artifacts that reduce the imaging accuracy. To avoid those unwanted effects, we use cylindrical
coordinates to model submarine pipelines in ultrasonic testing, which are more suitable for
discretizing grids, and thus ensure higher accuracy [45]. In particular, using cylindrical coor-
dinates makes the subdivision grids suitable to accurately represent the submarine pipeline
cavity structure [46–48].

To address the shortcomings of traditional 2D methods and improve the accuracy of the
ultrasonic characterization of submarine pipelines, we propose a 3D ultrasonic simulation and
RTM imaging of submarine pipelines based on cylindrical coordinates. In our approach, the
simulation of the 3D ultrasonic wave field and the wave field characteristic analysis of the sub-
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marine pipeline is performed by setting up a double free-surface and absorption boundary. Then,
the ultrasonic RTM method is used to achieve high-quality 3D imaging of defects in pipelines.
Numerical examples and real field data are used to prove the reliability and effectiveness of our
method, paving the way for potential applications in practical ultrasonic testing.

2. Methodology

To perform accurate numerical simulations of ultrasonic waves in a 3D pipeline,
we have developed a variable staggered-grid time-domain finite-difference numerical
simulation method (FDM) in cylindrical coordinates. In the following paragraphs, we
provide a brief description of the elastic wave equation, grid discretization, and boundary
conditions in cylindrical coordinates.

2.1. Equations of Motion and Grid Discretization in Cylindrical Coordinates

For isotropic media, the first-order velocity-stress equation in the cylindrical coordi-
nates (r, θ, z) can be expressed as follows [49]:
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where fi(i = r, θ, z) denotes the point force source, gij(i, j = r, θ, z) represents the coupling,
ρ represents the density, λ and µ are the Lame constants, vi(i = r, θ, z) denotes the particle
velocity in the i direction, σii(i = r, θ, z) is the normal stress, and τij(i, j = r, θ, z) denotes
the shear stress. Simulations of the wave field in time-domain FDM may be implemented
by discretizing Equations (1) and (2) using a central differencing scheme with a staggered
grid both in spatial and temporal domains [50]. As shown in Figure 1, within cell (i, j,
k), the normal stresses σii(i = r, θ, z) are located on the nodes (i, j, k), the shear stresses
τij(i, j = r, θ, z) are located on the half nodes (i + 1/2, j, k + 1/2), (i, j + 1/2, k + 1/2), and
(i + 1/2, j + 1/2, k), and the velocity components vi(i = r, θ, z) are located on the half nodes
(i + 1/2, j, k), (i, j + 1/2, k), and (i, j, k + 1/2). Then, according to the staggered grid with
discretized points of velocity and stress components in Figure 1, Equations (1) and (2) are
dissected in a finite-difference staggered-grid scheme. More details of the 3D time-domain
FDM can be found in Liu et al. [49] for cylindrical coordinates.

2.2. Boundary Conditions

In finite-difference forward modeling of submarine pipelines, the boundary condi-
tions are particularly important to properly simulate the propagation of ultrasonic waves.
Figure 2 illustrates a schematic diagram of the implementation of boundary conditions.
The absorbing boundary is placed along the R- and Z-direction of the model area, while
the double free-surface boundary is along the inner and outer θ-direction of the pipeline.
In our study, for the sake of computational efficiency, we introduce an improved vacuum
formulation [51] into the cylindrical coordinates to set the double free-surface boundary
condition in the θ-direction. At variance with the acoustic-elastic boundary method, which
requires setting the free-surface boundary condition individually for each case, the im-
proved vacuum formulation (IVF) is adaptable to an irregular free-surface. In order to
eliminate interference from the region outside of the model, an absorbing boundary condi-
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tion is assumed on the exterior of the model. We employ the split-field perfectly matched
layer (S-PML) [52] to optimize absorption and minimize computational costs. As shown in
Figure 2, the S-PML is placed in the R-direction and Z-direction of the pipe to absorb the
body waves propagating toward the model boundary. The attenuation factor d(xi) of the
absorbing boundaries is given by the following expression:

d(xi) = log
(

1
R

)
3Vmax

p

2L

( xi
L

)2
(i = r, z) (3)

where R is the theoretical reflection coefficient, L is the thickness of the absorbing boundary,
and xi is the distance between grid points and model boundaries in the i direction.
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Figure 1. Staggered grid with discretized points of velocity and stress components. The σrr, σθθ , σzz

denote the normal stresses, vr, vθ , vz are the particle velocity components, and τrθ , τrz, τθz represent
the shear stresses. The normal stresses are placed at the corner points around the staggered-grid cell,
the particle velocity components are located at the cell edges, and the shear stresses are sampled at
the center of the cell faces.
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The absorbing boundary (S-PML) is placed along the R- and Z-direction of the model region, and the
double free-surface boundary (IVF) is along the inner and outer θ-direction of the model region.
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2.3. Reverse-Time Migration Method

Reverse-time migration (RTM), originally proposed by Whitemore, is based on the
two-way wave equation, on which reverse-time extrapolation is performed on the time
axis [35]. RTM was first applied to the field of seismic imaging, providing higher imaging
accuracy than previous methods. Besides accuracy, RTM has no inclination limitation and
may be applied to arbitrary complex velocity models [36,37]. The RTM algorithm consists
of the following three steps: 1. forward propagation of the source wave fields; 2. backward
propagation of the receiving wave fields; and 3. imaging using imaging conditions. In this
study, we used cross-correlation imaging conditions, followed by source normalization,
ultimately leading to the following expression [53]:

I(r, θ, z) =

T
∑

t=0
S(r, θ, z, t)R(r, θ, z, t)

T
∑

t=0
S2(r, θ, z, t)

(4)

where I(r, θ, z) represents the image result, S(r, θ, z, t) denotes the source field, and R(r, θ, z, t)
is the field at the receiver. After that, the Laplace filtering method is employed to eliminate
the low-frequency artifacts caused by the imaging conditions [54].

2.4. Signal Processing

The wavefields obtained from pipeline ultrasound inspection records are characterized
by complex features, such that the preprocessing of records is required before imaging
to enhance RTM accuracy. In this study, wavelet extraction and dynamic balance in the
channel are employed. Wavelet extraction methods may be classified into two categories:
deterministic [55] and statistical [56]. In this study, the statistical wavelet extraction method
is employed to extract wavelets from reflected waves. To this aim, we have to first select the
reference trace, and then search for wavelets of other tracks within the travel time range of
the reflected wave using this reference track as a guide. Finally, we normalize the wavelets
of all traces, and then stack all traces in the record.

2.5. Implementations

Figure 3 illustrates the steps of the proposed method. The first step is to construct
a geophysical 3D submarine pipeline model and implement the staggered-grid finite-
difference method in cylindrical coordinates. Then, the SPML-absorbing and the IVF
double free-surface boundary conditions are implemented in cylindrical coordinates and
a 3D ultrasonic wave field simulation of the submarine pipeline is performed. RTM
calculations represent the third and final step. RTM itself involves three steps, i.e., the
forward propagation of source wave fields, the backward propagation of receiver wave
fields, and the imaging step using the imaging condition. The procedure is carried out as
follows: At first, a source wavelet is placed on the pipeline surface and used to excite the
propagation of ultrasonic waves. The source wave fields during the forward propagation
from T = 0 to T = max are calculated. Then, the recorded signal at the boundaries is time-
reversed and simultaneously propagated back into the simulation domain to obtain the
source wave fields from T = max to T = 0. Then, signal processing is performed and used
as a signal at the receiver position. The receiver wave fields are then calculated using the
FDM. Finally, the source wave fields are cross correlated with the receiver wave fields at
each time step to construct the image. The final ultrasonic 3D RTM imaging is obtained
using Laplace filtering [54].
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3. Numerical Simulation Results
3.1. Modeling and Survey Layout
3.1.1. Survey Layout

Our 3D cylindrical model of a submarine pipeline is shown in Figure 4. It includes a
total of six survey lines arranged in the model region. Geophones are placed at the bottom,
middle, and top of the pipeline’s outer wall. The geophones are piezoelectric ceramic
ultrasonic probes. Three survey lines are circumferentially placed (red lines in Figure 4),
with a geophone spacing of 1.0 mm (Line-θ1, Line-θ2, and Line-θ3) and three are placed
axially (blue lines in Figure 4), with a geophone spacing of 1.0 mm (Line-Z1, Line-Z2, and
Line-Z3). The source is located at the center of the pipeline’s outer wall.
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3.1.2. Modeling

To analyze the propagation characteristics of the 3D wave field during the ultrasonic testing
of pipelines, and to study the wave field characteristics resulting from different defects, we have
designed three models (see Figure 5). Model-1 is a combined model of horizontal slag inclusion
and hole defects, where the thickness of the slag is 2.0 mm, the width is 51.45 mm, the diameter
of the hole is 2.4 mm, and the distance between the hole and the slag is 40 mm. Model-2 is
a vertical slag inclusion model with a vertical thickness of 1.0 mm, a width of 51.45 mm, and
a length of 60.0 mm. Model-3 describes another vertical slag inclusion with a slag width of
1.0 mm and a length of 60.0 mm. The model parameters are listed in Table 1.

Table 1. Parameters of the three models.

No. vp(m/s) ρ
(
kg/m3)

(1) Slag inclusion 1866.0 2466.0
(2) Hole 1400.0 1850.0

(3) Submarine pipeline 5600.0 7400.0
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model of a horizontal slag inclusion and a hole; (b) Vertical slag inclusion Model 1; and (c) Vertical
slag inclusion 2. All parameters (1)–(3) in the figure are shown in Table 1.

3.2. Forward Modeling Results

In this study, we employ a spatial fourth-order and temporal second-order variable
staggered-grid FDM. In our 3D cylindrical submarine pipeline model, the wall thickness is
45.0 mm, the inner diameter is 250.0 mm, the arc length is 102.97 mm (with a 20◦ rounding
angle), and the axial length is 120.0 mm. The model size in the R-, θ-, and Z-directions
is 45.0 mm × 102.97 mm (20◦) × 120.0 mm. The radial step in the R-direction and the
axial step in the Z-direction are ∆r = ∆z = 0.2 mm. The azimuthal step in the θ-direction
is ∆θ = 0.046◦. The corresponding arc length increases with the increase in wall thickness
(0.2 mm at the inner wall and 0.236 mm at the outer wall). The time step of ∆t = 0.01 µs.
To ensure the consistency with the actual ultrasonic source, we assume a point-like force
source. As shown in Figure 6, the source wavelet is a ricker wavelet with a frequency of
0.7 Mhz, a signal width of 0.33–1.16 Mhz, and a wavelet delay of 1.71 µs.
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Figure 6. (a) Ricker wavelet waveform diagram and (b) Ricker wavelet spectrogram.

In order to visually analyze the propagation of the wavefields in Model-1, we consider
the 3D wavefield snapshots at T = 12 µs, and the 2D wavefield snapshot profiles from three
slice directions at T = 6, 12, and 18 µs. Figure 7a shows the 3D wavefield snapshot, where
the yellow color indicates the defect’s location; Figure 7b shows a slice diagram, where
green indicates a ROZ slice located at the midpoint position in the θ-direction, purple
denotes a ROθ slice located at the midpoint in the Z-direction, and orange indicates a θOZ

247



J. Mar. Sci. Eng. 2023, 11, 1459

slice located at the pipeline’s outer wall; and Figure 7c shows snapshots of the 2D wavefield
in three slices.
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Figure 7. The radial component wave field snapshot (the yellow color indicates the defects location).
(a) Show 3D snapshot at time T = 12 µs; (b) Slice diagram; and (c) Show 2D snapshot at time T = 6, 12,
and 18 µs.
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In Figure 7, at 6 µs, we only see the direct wave P, because the wavefront has not yet
encountered the defect. At 12 µs, since the Fresnel condition is not satisfied, the diffraction
wave Php is generated when the P wave passes through the hole. The diffraction wave
Pap1 is produced when the P wave passes through the upper interface of the slag inclusion.
At 18 µs, we see the reflection wave Pp1, which is generated when the P wave reaches the
free-surface boundary of the pipeline’s outer wall. When the reflected wave Pp1 reaches the
slag inclusion defect, it generates a reflected diffracted wave Ppap. Overall, the kinematics
and dynamics of each wave item are consistent with the wave field law, which confirms
the accuracy of the wave field simulations.

3.2.1. Model-1

Based on the observation system in Figure 4, we were able to generate the wave field
records of the two sets of survey lines through forward modeling. The simulation record of
Model-1 is illustrated in Figure 8. Trace refers to the number of geophones in the survey
line. As can be seen from the plots, the direct wave P, the reflected wave Pp1, the multiple
Pp2, the diffraction wave Php, and the diffraction wave Pap1 carry most of the energy.
Nevertheless, the diffraction waves Ppap generated by the Pp1 are also evident. According
to the simulations, the arrival time of the direct wave P is 9.19 µs and the arrival times of
the diffraction waves Pap1 and Php are 13.51 µs and 15.41 µs, respectively. The arrival time
of the reflected wave Pp1 is 18.52 µs and the Ppap is 22.06 µs. This result confirms that the
simulation results are accurate.
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Figure 8. Synthetic R-component records of Model-1 (a) Line-θ1~θ3 and (b) Line-Z1~Z3.

3.2.2. Model-2

The results from Model-2 are consistent with those from Model-1. In particular, we see
in Figure 9 that increasing the propagation length of the P wave leads to a reduced energy
of the wave field and a corresponding reduction in the energy received by the geophone
on both sides of the pipeline. Nevertheless, both the primary reflection waves Pmp and
secondary reflection waves Pmp2 resulting from the vertical slag inclusion defect and the
reflected waves Pmm reflected from the inner wall of the pipeline have high energy, which
can be precisely identified. In addition, the diffraction waves PmD1 and PmD2 from the
vertical slag defect endpoints are also clearly visible.
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Figure 9. Synthetic R-component records of Model-2 (a) Line-θ1~θ3 and (b) Line-Z1~Z3.

3.2.3. Model-3

In addition, the results of Model-3 are consistent with those of Model-1. We see in
Figure 10 that the direct wave P and the reflected wave Pap from the vertical slag inclusion
are weak in Line-θ1 and Line-θ3, while the reflected wave Pp1 and the reflected wave Ppap
from the inner wall of the pipeline through the vertical slag are stronger. Nevertheless,
the direct and reflected waves are clearly visible along Line-θ2, with energy decreasing
with distance.
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and contains many artifacts, which makes it impossible to identify the slag inclusion de-

fect accurately. From Figure 12b, we can see that removing the direct wave allows us to 
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3.3. RTM Results
3.3.1. Signal Processing Results

The signal processing of wavefield records is one of the key steps in RTM imaging,
and it ultimately determines the overall quality of the imaging. Here, we present the results
from the signal processing of the original recordings of Model-3. Looking at Figure 10a,
we can see that there is a large amount of information in the unprocessed original record,
which interferes with the defect reflection wave. We thus start with removing the direct
wave P (see Figure 11) and then proceed with the wavelet extraction method to suppress
the free-surface boundary reflection wave. Finally, the dynamic balance in the track is used
to obtain the final record, which is characterized by an improved signal-to-noise ratio.
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Figure 11. Signal processing results. (a) Record after direct wave removal; (b) Record after reflected
wave suppression; and (c) Record after dynamic balance within the track.

3.3.2. Imaging Results

Figure 12 illustrates the results of RTM imaging for Model-2 after signal processing.
As shown in Figure 12a, the unprocessed RTM image has a very low signal-to-noise ratio
and contains many artifacts, which makes it impossible to identify the slag inclusion
defect accurately. From Figure 12b, we can see that removing the direct wave allows us
to eliminate the yellow-dashed-frame artifact on the outer wall of the pipeline. After the
suppression of the free-surface boundary reflection wave, we obtain the image shown
in Figure 12c, where the red-dotted-frame artifact has also been removed. Finally, using
dynamic balance within the track, we improve the signal-to-noise ratio and obtain the final
image of Figure 12d. When compared with the initial model in Figure 12a, it is evident that
the position and shape of the vertical slag inclusion defect are essentially the same, and no
other artifacts are present.

Figure 13 shows the three-dimensional ultrasonic RTM images obtained in cylindrical
coordinates denoised with a Laplace filter and with the noise of the receiver point removed.
The results for a hole defect are shown in Figure 13a, where the location and shape are
clearly visible. The same is true for the boundaries and the position of the slag inclusion
interface, as shown in Figure 13b. Figure 13c shows that, for a vertical slag inclusion defect,
the upper and lower boundaries can be well imaged, as well as its bottom boundary. The
position of the boundaries corresponds to those of the real model, and, although the lack
of reflection point removes the information in the central region, the four boundaries are
sufficient for determining the location of the slag inclusions.
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Figure 13. Three-dimensional ultrasonic RTM imaging results: (a) Hole defect; (b) Lamination defect;
and (c) Slag inclusion.

4. Laboratory Experiment and Results
4.1. Experimental Setup and Observing System

Ultrasonic seismic physics simulation laboratory equipment is used to collect the actual
data underwater for pipelines with defects. Figure 14 illustrates the major components
of the data acquisition equipment. The ultrasonic data acquisition system consists of
a computer, an ultrasonic pulse transmitter, a water pool, high-speed data-acquisition,
and a probe-motion double-3D-coordinate automatic positioning control system. The
experimental procedure is as follows: The computer sets the parameters for the sampling
points, the starting and ending position of the receiver probe, and so on. Then, the 3D
positioning device moves between the sampling start and end points. Once the ultrasonic
receiving transducer reaches a sampling point, the ultrasonic pulse generator transmits a
fixed-length synchronous signal. Finally, the ultrasonic signal received by the ultrasonic
receiving transducer is sent to the computer for processing.

The experimental specimen is shown in Figure 14c. The submarine pipeline length
is 550 mm, the outside diameter is 219 mm, and the wall thickness is 45 mm. In order to
simulate slag inclusions in actual an ultrasonic testing, cement is injected into the crack to
simulate a low velocity body. The slag inclusion on the outer wall of the pipeline measures
60 mm in arc length, 3 mm in width, and 22.5 mm in depth. As shown in Figure 14d, for
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this slag entrapment model, we designed an observation system on the outer wall of the
pipeline, with a total of seven lines. The spacing between each line is 1 cm, the length of
each line is 150 mm, the channel spacing is 1 mm, and the sampling time is 60 µs. The
source is located at the end point, and the offset distance is 2 cm. The ultrasonic pulse
generation receiver frequency is 0.5 MHz.
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Figure 14. Ultrasonic experimental setup and observing system. (a) Three-dimensional positioning
instrument mechanism; (b) Ultrasonic pulse generator; (c) Specimen; and (d) Observing system.

4.2. Results

Figure 15 illustrates the actual filtered data. The direct wave P can be clearly seen, as
well as the surface wave R, and slag inclusions diffraction wave Pap. Since water is used as
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a coupling agent, the ultrasonic excitation propagates in the pipeline, and also in the water,
thus producing a direct wave Pw, whose speed is much slower than the propagation in the
steel pipe (medium speed), but with greater energy.
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Figure 15. Ultrasonic test data. (a–d) Line-1~Line-4.

We have also constructed a pipeline model with the same slag inclusion defect, match-
ing the size and physical parameters of the test. The simulation data (Figure 16a) are
compared to the experimental data (Figure 16b). The figure illustrates that the diffracted
wave Pap position of the defect is basically the same. In the experimental data, we can
see the effects of t noise and absorption by the water layer, resulting in a low excitation
frequency, incomplete wave field separation, and R energy covering part of the effective
wave field. However, the diffraction wave Pap of the slag inclusions can still be identi-
fied, thereby confirming the reliability of our cylindrical FDM simulations in providing
theoretical guidance for the ultrasonic nondestructive testing of pipeline defects.
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Figure 16. Comparison of test and simulation records. (a) Simulation record and (b) Test record.

Based on the actual ultrasound Line-1~Line-7 data, cross-correlation imaging con-
ditions are used for RTM imaging after data processing. The imaging results after noise
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processing are shown in Figure 17b. The image clearly shows the lower interface and
vertical boundaries of the defect, and the wave field energy is concentrated at the real
cement-filled defects. The results confirm the reliability of the method proposed in this
paper, and that ultrasonic testing of submarine pipelines is feasible.
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Figure 17. The test results of 3D ultrasonic RTM imaging. (a) Test Model and (b) 3D ultrasonic
RTM imaging.

5. Conclusions

In this study, we have proposed a staggered-grid FDM in cylindrical coordinates
to match the natural cylindrical symmetry of submarine pipeline cavities. A realistic
pipeline model has been designed by including a double free-surface boundary and an
absorbing boundary. Using this scheme, we have simulated the ultrasonic wave fields
resulting from three types of defects in pipelines, i.e., a hole, a vertical slag inclusion defect,
and a horizontal slag inclusion. Numerical and experimental examples are provided to
verify the reliability and accuracy of the method. Signal processing has been performed
using the ultrasonic information at hand. In particular, by using cross-correlation imaging
conditions, 3D RTM imaging of a pipeline’s space in cylindrical coordinates has been
realized. Compared to traditional 2D ultrasonic testing methods, our scheme is capable
of providing accurate, high-quality 3D imaging of pipeline defects with high resolution
and accuracy. The improvement in accuracy comes from taking into account the converted
wave on the inner wall of the pipelines and the information coming from the multiple
waves reflection at the bottom of the defects. Numerical and experimental results indicate
that the method is effective, and that it may be potentially applied to the practical ultrasonic
nondestructive testing of submarine pipelines.
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Abstract: Steel slag has become a promising supplementary cementitious material for soft soil
stabilization. However, there is a lack of research on the integrated assessment of cement–steel-slag-
stabilized soft soils (SCSs) from the performance, environmental, and economic perspectives. In
this study, an ontology framework for the sustainable evaluation of SCSs was developed based on
the life cycle assessment (LCA) approach, which combined a knowledge base with semantic web
rules to achieve an automated decision design for soft soil stabilization, considering comprehensive
benefits. The ontology framework was applied to a marine soft soil stabilization case to verify its
scientificity and practicability and to evaluate the influence of the fineness, carbonation degree, and
substitution ratio of steel slag on the sustainability of SCSs. The results show that, when compared to
pure-cement-stabilized soil (S-C), using 10% and 20% of fine steel slag carbonated for 18 h (FSS-C-18h)
as cement substitutes can significantly reduce carbon emissions and costs while achieving a similar
strength performance as S-C, demonstrating the feasibility of steel slag as a sustainable supplementary
cementitious material for soft soil stabilization.

Keywords: ontology; steel slag; stabilized soils; foundation; LCA; sustainability evaluation

1. Introduction

Soft soils are widely distributed in coastal areas and are characterized by a high
natural water content, low bearing capacity, and high compressibility, and cannot be used
directly in engineering [1]. However, the treatment of the soft soil foundation is a very
challenging task, which requires certain methods such as preloading, chemical stabilization,
and electro-osmosis [2,3]. The chemical stabilization method is widely used to achieve
the stabilization of soft soil by mixing some cementitious materials (such as cement, lime,
water glass, ion-exchange-class, and polymer-class stabilized materials, etc.) into the soft
soil [4–6].

Cement is widely used in the field of soft soil stabilization due to its wide range
of sources and stable properties. However, cement has problems such as high energy
consumption, high carbon emission, consumption of non-renewable resources, and envi-
ronmental pollution [7,8]. Replacing cement with low-carbon supplementary cementitious
materials (SCMs) such as steel slag, fly ash, and silica fume is considered as the most
promising strategy for sustainable soft soil stabilization design [9–11].

Steel slag is the solid waste the metallurgical industry produces, accounting for about
12–15% of steel output [12,13]. Steel slag is a potential SCM due to its similar composition to
cement [14,15]. The low reactivity and poor volume stability of steel slag can be improved
by grinding and carbonation [16,17]. Most of the existing studies on the partial replacement
of cement by steel slag for soft soil stabilization have focused on the effect of steel slag on
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the mechanical properties of stabilized soil [18,19]. However, there is a lack of scientific
quantitative research on the environmental and economic impact of cement–steel-slag-
stabilized soils (SCSs).

Life cycle assessment (LCA) is a scientific method to qualitatively and quantitatively
assess the potential environmental impact of a product or process during its life cycle [20,21],
and LCA is considered one of the essential tools for sustainability assessment. Ghasemi
et al. [22] performed the LCA study to compare the environmental impact using slurry and
wet carbonation processes for converter slag and found that the net avoided global warming
potential (GWP) of the slurry and wet routes were 525.56 and 426.67 kgCO2eq/MWh,
respectively. Li et al. [23] evaluated the environmental impact of steel slag aggregates and
steel slag blocks. The GWP results showed that steel slag blocks could achieve negative
carbon emissions. However, LCA involves complex logical relationships between products,
activities, and the environment, the results of which are often difficult to understand and to
use to share inventory information between different disciplines [24].

Ontology can standardize concepts, terms, and their relationships, provide method-
ologies for building knowledge frameworks, and is widely used for information retrieval,
integration, decision making, and knowledge sharing between different domains by com-
bining knowledge terms and predefined rules [25,26]. Zhang et al. [27] proposed an
ontology-based semantic representation method for the product life cycle, which imple-
mented a formalized and shared product life cycle design. Hou et al. [28] developed the
concrete structures design ontology with embodied energy and carbon as sustainable evalu-
ation indices. Meng et al. [29] proposed a multi-objective design method for an energy pile
system based on ontology from the perspective of technology, economy, and sustainability.
Based on the Monte Carlo simulation approach, Cui et al. [30] established a comprehensive
seismic risk assessment ontology framework for the subway station. Ontology has obvi-
ous advantages in solving multi-domain, multi-objective problems due to its shareability,
interoperability, and reusability. However, little research has been carried out to develop
ontology frameworks for soft soil stabilization.

This study intends to propose a sustainable evaluation framework for SCSs based
on LCA and ontology. The framework takes unconfined compressive strength (UCS),
GWP, and cost as indicators, and conducts a multi-objective decision-making study on
stabilized soils by combining a knowledge base with semantic web rules, with a view to
obtaining a design method for soft soil stabilization with optimal overall benefits. This
paper is organized as follows: In Section 2, the LCA method is applied to quantify the
GWP and costs at each stage of the life cycle and to propose sustainable environmental and
economic indicators. Section 3 presents the development of the ontology framework for
the evaluation of stabilized soils (OntoESS). Section 4 conducts a case study of marine soft
soil stabilization to verify the practicality of the OntoESS framework and to investigate the
effects of steel slag fineness, carbonation degree, and substitution ratio on the sustainability
of stabilized soils and to compare it with the sustainability of pure-cement-stabilized soils
(S-C). The main conclusions and next steps of this study are presented in Section 5.

2. Life Cycle Assessment Methodology
2.1. Goal and Scope Definition

The goal of the life cycle assessment (LCA) in this study is to assess the potential envi-
ronmental and economic impacts of SCSs and compare them with pure-cement-stabilized
soil (S-C). The global warming potential (GWP, measured in terms of carbon dioxide equiv-
alent), which is most important to industries, is selected as the life cycle environmental
indicator [31]. The GWP is the mass of CO2 for whom the greenhouse effect of various
greenhouse gases corresponds to the same effect in a 100-year time frame. CO2 is used as
the reference gas because it has the greatest impact on global warming [32].

The functional unit is defined as “the cement–steel slag stabilizer required to stabilize
1 m3 soft soils”. The system research boundary belongs to the “cradle to gate” as shown in
Figure 1, including the production of raw materials, the transportation of raw materials
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to the factory, and the stabilizer preparation process (grinding and carbonation), without
considering the transportation of stabilizers to the construction site and the compaction
process with soft soil, as the carbon emissions of SCSs and S-C at these stages can be
considered to be similar. The input of the LCA includes energy (diesel, coal, and electricity)
and raw materials (cement and steel slag). The output of the LCA only considers greenhouse
gases represented by CO2.
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Figure 1. System boundary for cement–steel slag stabilizer production (cradle to gate).

2.2. Life Cycle Inventory

To assess carbon emissions at all stages within the system boundary, it is necessary to
collect all input inventory data. In this study, the raw materials required and the measured
energy consumption are used as the basis for the life cycle inventory analysis, and the
carbon emission factors are taken from the inventory of carbon and energy (ICE) and from
relevant literature [33,34].

Steel slag is mostly disposed of in landfills as a waste product from the metallurgical
industry [35], and, in most cases, is considered as unintended residual waste. Therefore,
according to the recommendations of ISO 14040 [36], the environmental impact of steel slag
production is not allocated. The electricity consumption in the preparation of the stabilizer
comes from the grinding of the steel slag, which generates carbon emissions that should
be converted using the average carbon emission factors for China’s regional power grids
published by the National Development and Reform Commission [34]. The carbonation of
steel slag is a self-heating reaction without an external heat source, so there is no energy
consumption. The carbon emission factors of cement production, electricity consumption,
and heavy diesel truck transportation are shown in Table 1.
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Table 1. Carbon emission factors of materials, transportation, and electricity.

Cement Production (CO2-mf ) Electricity (CO2-ef ) Transportation (CO2-tf )

(kgCO2-eq/t) (kgCO2-eq/kWh) (kgCO2-eq/t-km)

735 0.7769 0.162

2.3. Life Cycle Environmental Impact Assessment

According to the system boundary, carbon emissions during the life cycle include
the three stages of raw material production, raw material transportation, and stabilizer
preparation. Moreover, the resource utilization of steel slag can avoid carbon emissions
caused by landfills, herein referred to as the transportation of steel slag to landfills. Total
carbon emissions can be calculated based on Equation (1):

CO2 = CO2−m + CO2−t + CO2−p − CO2−a (1)

where CO2−m is the carbon emissions of the raw material production process (kgCO2-eq),
CO2−t is the carbon emissions of the raw material transportation process, CO2−p is the
carbon emissions of the stabilizer preparation process, and CO2−a is the carbon emissions
of avoiding landfill.

Carbon emissions from material production only consider cement, calculated by
Equation (2):

CO2−m = Wc × CO2−mf (2)

where Wc is the weight of cement (t), and CO2−mf is the carbon emission factor for cement
production (kgCO2-eq/t); see Table 1 for details.

CO2 emissions from material transportation can be obtained by Equation (3):

CO2−t = Wc × Dc × CO2−t f + Ws × Ds × CO2−t f (3)

where Dc and Ds represent the distance from the cement and steel slag to the plant (km),
respectively. CO2−tf represents the carbon emissions of fuel consumed when transporting
each unit of the ith material in 1 km (kgCO2-eq/t-km); see Table 1 for details.

Carbon emissions from the stabilizer preparation include the electricity consumption
for the grinding of the steel slag, and the CO2 uptake during carbonation, as shown in
Equation (4):

CO2−p = Eg × CO2−ef − Ws × CO2 uptake × 1000 (4)

where Eg is the electricity consumption per hour (kWh) for the grinding processes, and
CO2−ef is the electricity carbon emission factor (kgCO2-eq/kWh); see Table 1 for details.
Ws is the weight of the steel slag (t). CO2 uptake (%) represents the ratio of CO2 absorption
to the amount of steel slag, measured by the rate of mass weight gain of the steel slag after
carbonation. CO2 uptake can be calculated by Equation (5):

CO2 uptake =
ms−carbonated − ms−initial

ms−initial
× 100% (5)

where ms-initial is the weight of the dried steel slag before the carbonation reaction, and
ms-carbonated is the weight of the dried carbonated steel slag.

Carbon emissions of steel slag from avoiding landfill can be calculated based on
Equation (6):

CO2−a = Ws × Da × CO2−t f (6)

where Da represent the distance from the steel slag to the landfill (km).

2.4. Life Cycle Economic Impact Assessment

The production cost within the system boundary is used as the life cycle economic
indicator, including raw material, transportation, stabilizer preparation, and avoiding
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landfill costs, which are converted into US dollars based on market prices and exchange
rates during the study period [37]. (In January 2023, the median exchange rate of the
Chinese RMB in the interbank foreign exchange market was US $1 to RMB 6.7626.) Raw
material costs include the purchase of cement and steel slag. Transportation costs include
the transportation of cement and steel slag to the plant. The cost of stabilizer preparation
is the electricity consumption for the steel-slag-grinding process. The cost of avoiding
landfill only considers the transportation of steel slag to the landfill. Unit prices of materials,
transportation, and electricity are shown in Table 2. Labor and mechanical costs are not
considered in this study.

Table 2. The unit price of materials, transportation, and electricity.

Cement (Costmc) Steel Slag (Costms) Transportation
(Costtf)

Electricity (Costef)

(USD/t) (USD/t) (USD/t-km) (USD/kWh)

67.8 10 0.14 0.145

The total cost can be obtained by Equation (7):

Cost = Costm + t + Costp − Costa (7)

where Costm is the cost of raw materials, Costp is the cost of stabilizer preparation, Costt is
the cost of material transportation, and Costa is the cost of avoiding landfill.

The raw material cost can be expressed as Equation (8):

Costm = Wc × Costmc + Ws × Costms (8)

where Wc and Wc represent the weight of the cement and steel slag (t), respectively. Costmc
and Costms are the price per ton of cement and steel slag (USD/t), respectively; see Table 2
for details.

The material transportation cost is calculated by Equation (9):

Costt = Wc × Dc × Costtf + Ws × Ds × Costt f (9)

where Dc and Ds represent the distance from the cement and steel slag to the plant (km),
respectively. Costtf represents the cost of fuel consumed when transporting each unit of the
ith material in 1 km (USD/t-km); see Table 2 for details.

The stabilizer preparation cost is calculated by Equation (10):

Costp = Eg × Costef (10)

where Eg is the electricity consumption (kWh) for the grinding processes, and Costef refers
to the unit price of electricity (USD/kWh); see Table 2 for details.

The cost of avoiding landfill for steel slag is calculated according to Equation (11):

Costa = Ws × Da × Costt f (11)

where Da represents the distance from the steel slag to the landfill (km).

2.5. Sustainability Index

In order to realize the wide application of steel slag partially replacing cement in soft
soil stabilization, the sustainability efficiency of SCSs needs to be studied, considering
their mechanical properties, carbon emission, and cost. Damineli et al. [38] proposed
the carbon emissions required to achieve a strength of 1 MPa as an indicator for mate-
rial evaluation. Based on this method, the SCS sustainability indices are obtained by
Equations (12) and (13). The unconfined compressive strength (UCS) of SCSs and the CO2
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and cost calculated from Equations (1) and (7) are normalized using S-C as the basis, as
shown in Equations (14)–(16). Obviously, a lower index indicates better sustainability of
SCSs. Taking S-C with a sustainability index of 1 as the benchmark, if both sustainability
indices of an SCS scheme are less than 1, it indicates that the scheme has better sustainability
than S-C and can be used as a preliminary screening design scheme to provide a decision
reference for designers.

SUIenvironment =
NCO2

NUCS
(12)

SUIeconomic =
NCost
NUCS

(13)

NCO2 =
CO2

RCO2

(14)

NCost =
Cost
RCost

(15)

NUCS =
UCS
RUCS

(16)

where SUIenvironment is the sustainability environment index of SCSs, and SUIeconomic is the
sustainability economic index of SCSs. NCO2 , NCost, and NUCS are the normalized values of
CO2, cost, and UCS based on S-C. RCO2 , RCost, and RUCS are the CO2, cost, and UCS of the
reference stabilized soil S-C.

3. Design and Development of Ontology Framework
3.1. System Framework

The open-source software Protégé is used to develop the ontology framework for the
evaluation of stabilized soils (OntoESS). The OntoESS framework consists of the database
layer, the knowledge base layer, and the user layer, as illustrated in Figure 2. The database
layer contains knowledge content such as the stabilizer production process, material prop-
erties, energy information, etc., which can be obtained through books and literature, the
life cycle inventory (LCI) database, stabilized soil tests, etc. The knowledge base layer is
the core of the ontology framework. Domain knowledge is transformed into the ontology
model and semantic web rule language (SWRL) through the rule editor, and stored in the
knowledge base in the form of the OWL file [39,40]. The predetermined rules can reason
new facts through the reasoner. In the user layer, engineers can define semantic query
web rule language (SQWRL) query reasoning results based on design requirements to
obtain design schemes and optimization directions that meet the requirements [41]. In
order to ensure the correctness of the ontology logic construction, knowledge reasoning
and consistency checking are realized by the Pellet inference engine.

3.2. The Development of OntoESS

Before the establishment of the ontology model, domain terms need to be collected
to form knowledge items, such as involving the steel slag preparation process, including
“carbonation, CO2 captured, etc.”. Furthermore, there are complicated semantic relation-
ships among products, activities, and environments in life cycle analysis. To provide an
explicit description, life cycle semantics is used in the construction of ontology models,
such as the introduction of the terms “process and flow” in ISO 14040. The key concepts
and relationships in OntoESS are established using the Unified Modeling Language (UML),
as illustrated in Figure 3.
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3.2.1. Define Hierarchy and Classes

The ontology model based on life cycle semantics is shown in Figure 4. The top-level
classes involving stabilizer production mainly include the elementary flow, process, and
product flow classes. The elementary flow class has two subclasses, the resource and
emission classes. Resources are energy (diesel, coal, etc.) and raw materials (cement,
steel slag) that enter the production system from the natural environment. Emissions are
substances released from the production system to the air, water, or soil, such as CO2.
The process is used to describe various activities in the product life cycle, including the
production process, transportation process, etc. The product flow represents the output of
a process or production system, e.g., stabilizers.
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3.2.2. Define Properties of Classes

Properties of ontology include object properties and data properties. The object
properties are used to define the relationships between different classes; for example, the
relationship between cement and production is defined as “has _ Production _ Process”.
The property “has _ Input _ Flow” is set between the process and the material or product
entering the process. “has _ Output _ Flow” is placed between the process and the material
or product leaving the process. “has _ Intermediate _ Flow” represents the relationship
between adjacent processes in the production system. Data properties are used to qualita-
tively or quantitatively describe the instance properties, such as material weight, strength,
carbon emission, etc.

3.2.3. Define SWRL Rules

To enable a comprehensive decision analysis of SCSs, the ontology framework needs to
have strong reasoning and computational capabilities. Therefore, SWRL rules are used for
function strengthening to calculate carbon emissions, production costs, and sustainability
indicators for SCSs. SWRL rules can be combined with the elements defined in the ontology.
Generally, SWRL rules consist of class atoms, individual property atoms, data-valued
property atoms, and built-in atoms. The atoms are connected by ‘ˆ’, the reasoning and the
result are connected by ‘->’, and ‘?’ is used to represent variables. For example, the SWRL
rules for calculating the total carbon emissions of SCSs are shown in Table 3, and the SWRL
rules for Equations (1)–(16) are shown in Tables S1–S3.

Table 3. The SWRL rules of calculating the total CO2 emission.

Rule 1

Calculating total carbon emission of SCSs:
CO2 = CO2−m + CO2−t + CO2−p − CO2−a

Stabilized_Soil(?SS)ˆCO2_Cement(?SS,?CO2C)ˆCO2_Stabilizer(?SS,
?CO2S)ˆCO2_Transportation(?SS,?CO2T)ˆ

CO2_Avoided_Landfilling(?SS,?CO2a)ˆswrlb:add(?x, ?CO2C, ?CO2S,
?CO2T)ˆswrlb:subtract(?total_CO2, ?x,
?CO2a) -> Total_CO2 (?SS, ?total_CO2)

3.2.4. Define SQWRL Rules

SQWRL is an ontology rule query language based on the SWRL extension. After
SWRL rule reasoning, engineers can query the relevant information of SCSs according to
the design requirements, such as the cost and sustainability indices of each scheme. See
Tables S1–S3 for details of the SQWRL rules.

4. Case Study
4.1. Case Study Description

A case study was conducted to demonstrate the practicality of OntoESS in the sus-
tainable evaluation of stabilized soils. The soft soils in this case were sampled from a
marine soft soil foundation in Dalian, Liaoning Province, China. The raw materials of the
stabilizer were 42.5R Portland cement and steel slag (type for basic oxygen furnace slag).
The physical properties of soft soils are shown in Table 4 [18]. According to the unified soil
classification system ASTM-2487, the soil was classified as low plasticity clay (CL). Table 5
shows the chemical composition of soft soil, cement, and steel slag [18]. The transportation
distances of the raw materials are listed in Table 6.
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Table 4. Basic physical properties of soft soil.

Parameter Value

Initial water content (%) 61.12
Liquid limit (%) 38.2
Plastic limit (%) 19.2
Plasticity index 18.7

Clay fraction (%) <0.002 mm 5.1
Silt fraction (%) 0.002–0.075 mm 55.2

Sand fraction (%) 0.075–2 mm 39.7
Optimum water content (%) 11.7

Maximum dry density
(g/cm3) 1.92

Table 5. Chemical compositions of soft soil, cement, and steel slag (w/w%).

Sample CaO SiO2 Fe2O3 Al2O3 MgO MnO TiO2 Others

Soft soil 5.6 43.8 8.65 22.50 6.41 - - 10
Cement 61.12 21.46 2.88 5.25 2.08 - - 2.5

Steel slag 39.02 14.45 23.42 3.83 7.27 7.31 1.35 1.1

Table 6. Material transportation information.

Material
Transport Distance (km)

Plant Landfill

Cement 21 -
Steel slag 58 35

To investigate the influence of the steel slag fineness, carbonation degree, and substi-
tution rate on the sustainability of SCSs, four kinds of steel slag were prepared, as shown
in Figure 5. A ball mill with a capacity of 20−25 t/h and a power of 1500 kW was used
for steel slag grinding. The specific surface area of coarse steel slag (CSS) increased from
117.3 m2/kg to 747.2 m2/kg after grinding with a ball mill for 1 h, consuming about
75 kwh/t of electrical energy. Only fine steel slag (FSS) was used for carbonation as the
finer particle size was found to be more conducive to the carbonation reaction [42]. The FSS
mixed with a certain amount of water was uniformly placed in the carbonation chamber
and carbonated by a concentration of 99.9% CO2 under a room temperature and pressure
environment (temperature 25 ◦C, pressure 0.2 MPa). According to the measured weight
gain rate of the steel slag after carbonation, the CO2 uptake for fine steel slag carbonated for
2 h (FSS-C-2h) and 18 h (FSS-C-18h) was 5% and 9%, respectively.

Four types of steel slag were mixed with cement at different substitution ratios to
form the composite stabilized material, with S-C as the control group, to investigate the
effect of steel slag on the strength of the stabilized soil. The total amount of stabilizer
(mcement+steel slag/mdry soil) was controlled to be 15%, and the proportion of steel slag replacing
cement was 10%, 20%, 30%, and 50%, respectively. Based on the deep mixing method
widely used for foundation treatment [43,44], the water content of the specimen preparation
was set at 1.5 times the liquid limit, i.e., 57.2%, to ensure the fluidity of the stabilized soil.
The specimens were maintained at room temperature for 60 days after demoulding. Design
parameters and UCS60d of SCSs and S-C are given in Table 7.
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Table 7. Design parameters and UCS60d of SCSs and S-C.

Designated
Name

Steel Slag
Substitution

Ratio (%)

Binder Mixtures (kg)
UCS60d (kPa)

Cement Steel Slag

S-C 0 288 0 2070.2

S-CSS

10 259.2 28.8 1919.92
20 230.4 57.6 1727.86
30 204.6 86.4 1331.41
50 144 144 793.66

S-FSS

10 259.2 28.8 2032.2
20 230.4 57.6 1681.93
30 204.6 86.4 1214.95
50 144 144 988.44

S-FSS-C-2h

10 259.2 28.8 1949.23
20 230.4 57.6 1651.62
30 204.6 86.4 1404.69
50 144 144 916.29

S-FSS-C-18h

10 259.2 28.8 2267.32
20 230.4 57.6 1975.27
30 204.6 86.4 1345.3
50 144 144 842.16

From the strength results in Table 7, with the increase in substitution ratio, the strength
generally shows a downward trend. The strength of S-FSS-C-18h with 50% steel slag
substitution (S-FSS-C-18h-50) is only 40.7% of that of S-C. Previous studies have found that
there is an interaction between steel slag and cement, which can stimulate each other’s
activity under a certain ratio; however, excess steel slag can hinder the hydration of the
cement [45,46]. It is noteworthy that low-content carbonated steel slag can significantly
improve the strength of stabilized soil; the strength of S-FSS-C-18h-10 reaches 110% of S-C.
This is probably due to the formation of CaCO3 dispersed in the cement paste after carbon-
ation of the steel slag to form additional nucleation sites, which promote the hydration of
the cement [47].

4.2. The Application of OntoESS
4.2.1. Impact Analysis of Steel Slag Preparation

According to the specimen design in Table 7, individuals of stabilized soil are created
in the ontology model. Information such as material amounts, transport distance, and
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power consumption are input into each individual as data attributes. The calculation rules
of Equations (1)–(16) were invoked via the SWRL Tab plug-in and the reasoner is run to
perform the rule inference. After the system runs, the individual’s carbon emissions and
cost results at each stage are automatically generated, as shown in Figure 6.
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To compare the environmental impacts of the four steel slag preparation processes,
S-CSS-20, S-FSS-20, S-FSS-C-2h-20, and S-FSS-C-18h-20 were used as examples; according to
the above method, the carbon emissions of the four equivalent steel slags during transport,
grinding, carbonation, and avoided landfilling were queried, and the results are shown
in Table 8. Electricity consumption during the grinding process is the main contributor to
the GWP of steel slag; FSS has the highest GWP of the four kinds of steel slag, reaching
3.56 kgCO2-eq. Carbonated fine steel slag (FSS-C-2h, FSS-C-18h) can reduce GWP due
to the absorption of a certain amount of CO2, of which FSS-C-18h achieved a negative
GWP −1.62 kgCO2-eq due to the longer carbonation time. Fuel consumption from the
transportation process and avoided landfilling has little contribution to GWP, which is
mainly related to transport distance. From the environmental impact perspective, the
adverse effects of the steel slag transportation and preparation process can be almost offset
by the CO2 uptake and avoided landfilling.

Table 8. GWP of the four types of steel slag (kgCO2-eq).

Types Transportation Avoided Landfilling Grinding CO2 Uptake Total

CSS 0.54 −0.3265 - - 0.2135
FSS 0.54 −0.3265 3.35 - 3.5635

FSS-C-2h 0.54 −0.3265 3.35 −2.88 0.6835
FSS-C-18h 0.54 −0.3265 3.35 −5.814 −1.6205
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4.2.2. Impact Analysis of SCSs

Engineers can also use the SQWRL plug-in to query the specified results according to
the design requirements. The carbon emissions, costs, and sustainability indices of each
scheme are shown in Figures 7–9.
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Figure 8 presents the GWP and cost of the S-C and SCSs. The difference in GWP from
the steel slag preparation is not evident in the stabilized soil, because more than 90% of the
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Figure 9 shows the UCS60d and sustainability indices of each scheme. Steel slag as an
SCM can effectively reduce the GWP and production cost of the stabilized soil by partially
replacing cement. However, cement is the main source of its strength [48], and excess steel
slag can cause insufficient strength of the stabilized soil, thus leading to a high sustainability
index of the stabilized soil, which is not conducive to engineering applications. We set
the strength of the stabilized soil to meet the strength grade 1.0 as required by GJ/T 526-
2018 [49], which means that the strength of the specimen should be greater than 1 MPa
and, therefore, the steel slag substitution ratio should not exceed 50%. The schemes with
both SUIEnvironment and SUIEconomic of less than 1 can be preliminarily selected by running
the SQWRL rule. The results are shown in Figure 10. The stabilized soil with low-content
steel slag has better sustainability than S-C, and the strength is not less than 90% of S-C.
Among them, S-FSS-C-18h-10 and S-FSS-C-18h-20 have the best sustainability with a GWP
reduction of 10.4% and 20.4% compared to S-C, respectively.
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4.2.3. Sensitivity Analysis

While this case demonstrates the viability of steel slag as a soft soil stabilizer, the fuel
consumption for material transportation can also significantly affect the sustainability of
the stabilized soil. Improper selection of steel slag suppliers may be contrary to the design
intention to reduce the carbon footprint and cost. Therefore, a sensitivity analysis of steel
slag transportation for S-FSS-C-18h-10 and S-FSS-C-18h-20 is selected to determine the
maximum transport distance that meets sustainable design requirements and inform the
designer’s selection of suppliers.

The pure cement stabilizer production (21 km transport distance from the cement pro-
duction site to the stabilizer plant) is taken as the base scenario to assess the environmental
and cost impacts of increasing the transport distance from the steel slag production site
to the stabilizer plant. The transport distance to achieve the GWP and production cost of
a pure cement stabilizer is used as the maximum transport distance for steel slag (Dsmax),
calculated according to Equations (17) and (18). The SWRL calculation rules are shown
in Tables S1–S3. The results are shown in Figure 11. Arriving at the same GWP as S-C,
the steel slag transport distances (Dsmax-GWP) for S-FSS-C-18h-10 and S-FSS-C-18h-20 are
4794.55 km and 4791.55 km, respectively, indicating that the effect of steel slag transport on
the GWP is not significant and that considerable environmental benefits can be achieved
even over long distances. The effect of steel slag transport distance on the cost of stabilizer
production cannot be ignored. To achieve lower costs than S-C, it is recommended that
the transport distance of steel slag (Dsmax-Cost) for S-FSS-C-18h-10 and S-FSS-C-18h-20 is
controlled to within 379 km.

Dsmax−GWP =
212.66 − (CO2 − CO2−ts)

Ws × 0.162
(17)

Dsmax−Cost =
18.85 − (Cost − Costts)

Ws × 0.14
(18)

where Dsmax−GWP is the maximum transport distance of steel slag to reach the benchmark
scenario GWP, and Dsmax−Cost is the maximum transport distance of steel slag to reach the
benchmark scenario cost. CO2 and Cost are the carbon emission and cost of SCSs in the
initial scenario, respectively. CO2−ts and Costts are the carbon emission and cost of steel
slag transportation in the initial scenario, respectively.
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5. Discussion

Cement is the most commonly used soft soil stabilization material for foundation
treatment in coastal engineering, but the environmental problems caused by the high
carbon emission of its production have gradually attracted the attention of all countries.
The use of steel slag to partially replace cement to stabilize soft soil has caused widespread
concern among researchers. The ontology framework proposed in this study fills the gap in
the research on the sustainability evaluation of cement–steel-slag-stabilized soils, because
most of the current evaluation studies on stabilized soils only focus on one or two aspects
of engineering performance, the environment, and the economy [50,51], failing to integrate
the indicators from the perspective of sustainability, and the results of their evaluations are
difficult to use for providing references for designers.

From the study results, the steel slag treated by grinding and carbonation can obtain
better sustainability than S-C by replacing the cement to stabilize soft soil with a lower
content, demonstrating the feasibility of steel slag for soft soil stabilization. However, long
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transport distances for steel slag should be avoided so that the cost advantages of SCSs
are not masked. It should be noted that the preparation of stabilizers in this study was
carried out at the laboratory scale. In the future, the influence of the equipment and labor
factors required for the mass production and on-site construction of stabilizers should be
considered. In addition, durability is also a focus of future research on the sustainability
of stabilized soils. Based on the flexibility and reusability of the ontology framework, it
can be improved and extended according to new materials and processes, and tools with
unified interfaces can be developed for different projects and phases, so as to realize the
efficient and collaborative design, operation, and maintenance management of stabilized
soils in the whole life cycle.

6. Conclusions

In this study, an ontology framework was developed to evaluate the sustainability
of stabilized soil with a cement–steel slag blend (SCSs). Firstly, a quantitative approach
for sustainability evaluation indicators of SCSs based on LCA was proposed. Then, an
SCS ontology model was developed, and related domain knowledge and basic data are
integrated into the knowledge base. According to the semantic web rules, the reasoning
and query of evaluation indices were further realized. The ontology framework proposed
in this study can clearly describe the logical relationship between production activities
and the environment during the life cycle of SCSs, which helps designers to clarify the
influence of materials and processes on the sustainability of stabilized soils, and then obtain
the optimal design and optimization direction from a macro perspective.

The practicability of the proposed ontology framework was verified by a case of
marine soft soil stabilization. The case study found that the four types of steel slag can
achieve better sustainability than pure-cement-stabilized soil (S-C) at a lower content. The
stabilization of soft soils with FSS-C-18h with 10% and 20% substitution rates represented
the best stabilization scheme, achieving similar strengths to S-C while significantly reducing
carbon emissions and costs. From the sensitivity analysis of the transport distance of steel
slag, even if the transport distance of steel slag is significant, SCSs are still favorable to the
environment. However, the transport distance of steel slag greatly affects the cost, which
must be considered when selecting suppliers.
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//www.mdpi.com/article/10.3390/jmse11071418/s1, Table S1: The SWRL rules of calculating CO2
emission; Table S2: The SWRL rules of calculating cost; Table S3: The SWRL rules of calculating
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