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1. Introduction

As global urbanization accelerates and climate change intensifies, issues related to
land use and management have increasingly garnered attention within the international
academic community. In response to these pressing concerns, we organized a Special Issue
on “Spatial Optimization and Sustainable Development of Land Use“. The call for papers
for this Special Issue began in March 2023, and as of 28 October 2024, we have received
a total of 38 submissions from various countries and regions. Following a rigorous peer
review process, 13 research papers were ultimately selected for publication. The papers
included in the Special Issue exhibit several noteworthy characteristics. First, the research
perspectives are diverse, encompassing both macro-scale studies of regional development
and micro-level case analyses. Second, the employed research methods are advanced,
achieving innovative breakthroughs while building upon traditional approaches. Third,
the findings process significant practical implications, providing scientific evidence and
policy recommendations that contribute to regional sustainable development. These studies
collectively promote theoretical innovation and methodological renewal in land science,
offering new ideas and solutions to current global land management challenges.

This Special Issue is particularly timely, as it not only aligns with the United Nations
Sustainable Development Goals (SDGs) concerning sustainable land use but also offers
important theoretical support and practical guidance for coordinated regional development
in the post-pandemic era. The research findings presented herein will serve as a crucial
reference for academics, policymakers, and practitioners, fostering further exploration in
land science and enhancing sustainable development practices.

2. Articles

This Special Issue encompasses four primary research domains: (1) the interactions be-
tween land policies and ecosystem services, (2) methodological innovations in the dynamic
simulation and spatial analysis of land use, (3) the optimization of regional sustainable
development and land management, and (4) studies on land use efficiency and the transfer
of factors. The contributed papers demonstrate significant methodological innovations
through the application of sophisticated analytical techniques, including nonlinear analysis,
spatiotemporal modeling, and geographically weighted regression, while also highlighting
the importance of cross-disciplinary integration.

2.1. Research on the Interaction Between Land Policies and Ecosystem Services

The interaction between land policies and ecosystem services is a pivotal research
area addressed in this Special Issue. The article titled “The Gains and Losses of Cultivated
Land Requisition–Compensation Balance: Analysis of the Spatiotemporal Trade-Offs and
Synergies in Ecosystem Services Using Hubei Province as a Case Study” offers an in-depth
examination of the spatiotemporal trade-offs and synergies in ecosystem services that arise
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from the cultivated land requisition-compensation balance policy, using Hubei Province,
China, as a case study (Contributions 1). Another study conducted in Xinjiang, China, titled
“Nonlinear Effects of Land Use Conflicts in Xinjiang: Critical Thresholds and Implications
for Optimal Zoning” innovatively investigates the nonlinear characteristics of land use
conflicts and proposes optimization methods for land use zoning based on ecological
thresholds, identified through the delineation of critical threshold values (Contributions 2).
Collectively, these studies underscore the significant impact of land policies on ecosystem
services, providing essential scientific evidence for informed policy-making.

2.2. Innovations in Land Use Dynamic Simulation and Spatial Analysis Methods

In the realm of methodological innovation, several studies have concentrated on en-
hancing the simulation accuracy and analytical depth of land use changes. The article
“Dynamics of the Oasis–Desert–Impervious Surface System and Its Mechanisms in the
Northern Region of Egypt” employs innovative modeling techniques to analyze the inter-
action mechanisms within the oasis-desert-impervious surface system in northern Egypt
(Contributions 3). Additionally, the study “Incorporation of Spatially Heterogeneous Area
Partitioning into Vector-Based Cellular Automata for Simulating Urban Land Use Changes”
introduces the concept of spatial heterogeneity zoning into vector-based cellular automata,
significantly improving the accuracy of urban land use change simulations (Contributions
4). Furthermore, the article “Spatial–Temporal Characteristics and Influencing Factors of
Land Use Carbon Emissions: An Empirical Analysis Based on the GTWR Model” conducts
an in-depth analysis of the spatiotemporal characteristics and influencing factors of land
use carbon emissions using the geographically and temporally weighted regression model
(Contributions 5). These methodological innovations provide novel technical approaches
and analytical frameworks that advance the field of land use research.

2.3. Regional Sustainable Development and Land Management Optimization

Researchers have proposed several innovative solutions to address land management
challenges related to regional sustainable development. The article “Territorial Spatial
Resilience Assessment and Its Optimization Path: A Case Study of the Yangtze River Eco-
nomic Belt, China” pioneers a systematic assessment of regional territorial spatial resilience
within the Yangtze River Economic Belt, establishing a comprehensive evaluation index
system (Contributions 6). Another study, “Dynamic Matching and Spatial Optimization of
Land Use and Resource-Environment Constraints in Typical Regions of the Yellow River
Basin in China”, introduces a dynamic matching framework that aligns land use with
resource-environmental constraints in typical regions of the Yellow River Basin (Contri-
butions 7). Additionally, the paper “The Impact of Urban Renewal on Spatial–Temporal
Changes in the Human Settlement Environment in the Yangtze River Delta, China” system-
atically evaluates the multidimensional impacts of urban renewal on the human settlement
environment in the Yangtze River Delta region (Contributions 8). The article “Research on
the Manifestation and Formation Mechanism of New Characteristics of Land Disputes: Evi-
dence from the Yangtze River Economic Belt, China” examined the emerging characteristics
and formation mechanisms of land disputes in the Yangtze River Economic Belt (Contribu-
tions 9). Finally, the study “Temporal and Spatial Effects of Heavy Metal-Contaminated
Cultivated Land Treatment on Agricultural Development Resilience” analyzes the spa-
tiotemporal effects of remediation efforts on heavy metal-contaminated farmland and their
impact on agricultural development resilience (Contributions 10). Collectively, these stud-
ies contribute to establishing a theoretical framework for regional sustainable development
in land management, providing scientific guidance for practical applications.

2.4. Research on Land Use Efficiency and Factor Transfer

This Special Issue also emphasizes issues on land use efficiency and factor transfer.
The article “Impacts of Rural–Urban Labor Transfer and Land Transfer on Land Efficiency
in China: An Analysis of Mediating Effects” innovatively explores the mechanisms by
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which rural labor migration and land transfer influence land use efficiency (Contributions
11). Another study, “A Multi-Attribute Approach for Low-Carbon and Intensive Land
Use of Jinan, China”, employs a gray fuzzy integral multi-attribute evaluation model to
systematically assess the efficiency and factor transfer of low-carbon intensive land use
in Jinan from 2010 to 2017, revealing a dynamic transition in land use patterns from high
consumption and emissions to low consumption, low emissions, and high efficiency (Con-
tributions 12). The paper “Expanded Residential Lands and Reduced Populations in China,
2000–2020: Patch-Scale Observations of Rural Settlements” highlights the contradiction
between the expansion of rural residential land and the decline in population in China from
2000 to 2020, exposing issues of low land use efficiency and resource waste (Contributions
13). These studies examine the relationship between factor mobility and land use efficiency
from different perspectives, providing important references for policy-making.

3. Conclusions and Perspectives

The thirteen studies included in this Special Issue provide substantial theoretical contri-
butions and practical insights into sustainable land management and regional coordinated
development. They have advanced understandings in several key areas: the interaction
between land policies and ecosystem services, innovations in spatial analysis methods,
optimization of regional sustainable development, and improvements in land use efficiency.
Methodologically, the research has evolved from traditional linear analysis to nonlinear
approaches, transitioning from single-perspective evaluations to multi-dimensional, com-
prehensive assessments, thereby showcasing significant methodological innovations within
land science.

These studies also highlight critical issues in regional development, providing scientific
evidence that can inform policy-making. However, as global climate change intensifies,
digital technologies rapidly evolve, and profound adjustments patterns undergo profound
adjustments, land science research faces new challenges and opportunities. Future research
needs to focus on several key areas:

1. Digital Technology Integration: There is a pressing need to enhance research on the
application of digital technologies in land monitoring and management, particularly
the integration of advanced technologies such as artificial intelligence and big data
with traditional land science methodologies.

2. Vulnerability and Adaptability: Increased emphasis should be placed on studying
land system vulnerability and adaptability in the context of climate change.

3. Cross-Regional Coordination Mechanisms: Research on the mechanisms for cross-
regional coordination in land management should be strengthened, especially
concerning the balance between key ecological function areas and economic devel-
opment zones.

4. Policy Evaluation Methods: There is a need for further exploration of methods to
evaluate the effectiveness of land policy implementation, aimed at providing more
precise scientific support for policy optimization.

In light of these considerations, we are pleased to announce the launch of the second
volume of this Special Issue available at https://www.mdpi.com/journal/land/special_
issues/FN3NW08B0A (accessed on 10 November 2024). We warmly invite scholars from
around the world to engage in further research on related topics. We look forward to
collaborating with the global academic community to advance knowledge in land science
and provide more theoretical guidance and practical references for promoting regional
sustainable development. This new Special Issue will continue to uphold rigorous aca-
demic standards, offering a high-quality platform for scholarly exchange that fosters the
deepening of land science research.

Funding: This work was funded by the National Natural Science Foundation of China (ID. 42371424
and 72073100) and Independent Innovation Fund for Young Teachers of Huazhong University of
Science and Technology (ID. 2022WKFZZX025).
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Using Hubei Province as a Case Study
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Abstract: The cultivated land requisition–compensation balance (CLRCB) policy is an important
policy implemented by China to address the reduction in cultivated land and ensure food security.
Although this policy has alleviated the loss of cultivated land quantity, it has had complex and diverse
impacts on ecosystem services. Taking Hubei Province as the study area, this research explores the
impact of the implementation of the CLRCB on ecosystem services and simulates the changes in
ecosystem services in the study area in 2030 and the impact of CLRCB on the interactions among
various services. The results show the following: (1) from 2000 to 2020, Hubei Province achieved a
balance in the quantity of cultivated land through excessive compensation but failed to reach the
goals of balancing cultivated land yield and productivity. (2) During the requisition–compensation
process, habitat quality decreased by 501,862, and carbon storage lost 1.3 × 107 t, indicating negative
ecological impacts; soil conservation services increased by 184.2 × 106 t, and water production
increased by 21.29 × 108 m3. Within the cultivated land requisition–compensation area, habitat
quality and carbon storage, as well as soil conservation and water production, exhibited synergistic
relationships, while the remaining pairs of ecosystem services showed trade-off relationships. (3) The
simulation of ecosystem services in 2030 indicates that soil conservation and water production are
highest under the natural development scenario, while habitat quality and carbon storage are highest
under the ecological protection scenario, both of which are superior to the urban development
scenario. Under the natural development scenario, the trade-off and synergistic relationships among
various ecosystem services in the cultivated land requisition–compensation area remain unchanged,
while these relationships change significantly under the other two scenarios. This study emphasizes
that future CLRCB should not only focus on maintaining the quantity of cultivated land but also
consider the comprehensive benefits of ecosystem services, in order to achieve sustainable land-use
management and ecological conservation.

Keywords: cultivated land requisition–compensation balance; ecosystem services; trade-offs and
synergies; InVEST model; future scenario simulation

1. Introduction

China has experienced rapid urbanization and industrialization over the past few
decades, leading to the occupation of a large amount of cultivated land [1,2]. According
to statistics, from 1957 to 1996, China’s net annual reduction in cultivated land exceeded
6 million mu (1 mu = 666.66 m2); from 1996 to 2008, the net annual reduction exceeded
10 million mu; from 2009 to 2019, the net annual reduction exceeded 11 million mu. About
80% of the lost cultivated land was occupied by construction land, driven by population
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growth and the expansion of built-up areas [3]. Cultivated land is the foundation of grain
production and a cornerstone for ensuring national food security as well as economic
and social stability. China is the world’s largest producer and consumer of grain, and
food security has long been a critical issue of high concern for both the government and
society. The reduction in arable land leads to a decline in food production potential and
increases dependence on external supplies, posing a long-term threat to national food
security. In recent decades, climate disasters such as droughts and floods have resulted in
decreased food production, causing uncertainty and price volatility in global food markets.
In the context of globalization and climate change, the protection of cultivated land is
of significant practical importance for enhancing agricultural sustainability, mitigating
the impacts of extreme weather on crops, and ensuring the stability of the food supply.
To address the conflict between urban expansion and cultivated land protection, and to
ensure national food security, the Chinese government began implementing the cultivated
land requisition–compensation balance policy in 1997 [4]. This policy requires that when
cultivated land is occupied by construction projects, an equivalent area and quality of
cultivated land must be added through reclamation, rehabilitation, or improvement to
maintain the dynamic balance of the total amount of cultivated land [5,6]. The core concept
of the CLRCB policy is “occupy one, supplement one”, meaning that for every mu of
cultivated land occupied, one mu of cultivated land must be supplemented [7]. In the
early stages of policy implementation, the balance was mainly achieved by increasing the
area of cultivated land in agriculturally suitable regions. As the policy advanced, more
places began to supplement cultivated land through land consolidation and reclamation
projects. Despite the CLRCB achieving some success in maintaining the total amount of
cultivated land, it has also gradually revealed some shortcomings. For instance, both the
government and farmers show limited enthusiasm for enhancing the productivity of newly
compensated land; newly added cultivated land often suffers from severe soil pollution
and a relative decline in biodiversity; the use of ecological land to compensate for cultivated
land has led to the degradation of ecosystem services.

Ecosystem services refer to the various direct or indirect benefits provided to humans
by ecosystems and their components, including food provision, water regulation, soil
conservation, and biodiversity maintenance [8]. Westman published a paper in Science
entitled ‘How Much Are Nature’s Services Worth?’, marking the modern historical origin of
the concept of ESs [9]. In 1997, Daily proposed that ecosystem services refer to the conditions
and processes provided by natural ecosystems and their species to supply and maintain
human existence, as well as the products or services directly or indirectly obtained by the
functions of ecosystems, and classified ecosystem services into 13 categories, including food
production, biodiversity, and climate regulation [10]. In 2005, the Millennium Ecosystem
Assessment reported that 15 out of 24 ecosystem services, or about 60 percent, were in
decline [11]. Research shows that changes in land-use patterns have caused the degradation
or disappearance of ecosystem services worldwide [12,13]. In Austria, the intensification of
agricultural land use and urban sprawl have primarily led to declining ecosystem services
in the lowlands [14]. In the Upper Blue Nile Basin, the transformation of bare land, cropland,
and grassland to forest and shrubland improved habitat quality, carbon storage, and soil
conservation, but decreased water yield [15]. Land-use change is considered one of the
major drivers of changes in ecosystem services [16,17]. The conversion between different
land-use types can significantly alter ecosystem structure and processes, thereby affecting
the supply of ecosystem services [18]. Cultivated land, as an important component of
land use, significantly impacts regional ecosystem services through its quantity and spatial
distribution changes [19].

Since the implementation of the CLRCB, China has maintained a dynamic balance in
its cultivated land reserves. However, while compensatory cultivated land improves the
reserve of cultivated land resources, it also has a series of impacts on the ecological envi-
ronment [20,21]. During the policy implementation, because the supplementary cultivated
land is often located in marginal or ecologically fragile areas, it may lead to the weakening
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or loss of ecosystem service functions [22]. According to previous studies, the CLRCB
may lead to a weakening of water regulation functions. The occupied cultivated land is
usually located in plains and lowlands rich in water resources, while the supplementary
cultivated land is often in marginal or arid and semi-arid regions, which have poorer water
supply capacity. This regional disparity leads to uneven water resource utilization, further
exacerbating water shortage problems [23,24]. Secondly, soil conservation functions may
also be affected [25]. Extensive land consolidation activities, such as leveling land and con-
structing terraces, often destroy the original soil structure, increasing the risk of soil erosion.
Especially in sloped and mountainous areas, excessive development and consolidation can
easily trigger soil and water loss, leading to soil degradation and reduced productivity [26].
During the reclamation and occupation of cultivated land, a large amount of vegetation is
cleared, and soil organic matter is destroyed, leading to a reduction in carbon storage and
increased greenhouse gas emissions, which is detrimental to climate change mitigation [27].
Studies have shown that under the scenario of cultivated land requisition-compensation
balance, the carbon storage loss caused by cultivated land expansion is almost equal to
that caused by urban expansion. The main reason for carbon storage loss due to cultivated
land expansion is the massive loss of forests and wetlands [28]. Furthermore, the CLRCB
also significantly impacts biodiversity [29–31]. Many occupied cultivated lands are located
in ecologically sensitive areas with high biodiversity, while newly reclaimed or rehabil-
itated cultivated lands often lack diverse vegetation cover. This loss of biodiversity not
only affects the stability of ecosystems but also has long-term negative impacts on local
agricultural production and the ecological environment [22].

A significant amount of research has explored the impact of the cultivated land
requisition–compensation balance policy on ecosystem services [5,32,33]. The coordination
and conflict between cultivated land protection and ecosystem services have been a focal
point of study, revealing complex trade-offs and synergies among ecosystem services.
This means that enhancing one type of service function may come at the expense of
another, or multiple service functions may improve simultaneously [34,35]. For instance,
there is often a trade-off between food production and carbon sequestration services,
as farmland expansion leads to a reduction in natural vegetation, thereby decreasing
regional carbon sequestration capacity [36]. Conversely, there is a synergy between water
source conservation and biodiversity protection; increasing forest cover promotes soil
and water conservation and maintains biodiversity [37]. However, most studies have
focused on the assessment of single ecosystem services, lacking an in-depth analysis of
the comprehensive trade-offs and synergies among multiple ecosystem services [38,39].
Additionally, existing research often employs static analysis methods, lacking systematic
evaluation of the dynamic changes and long-term effects during the implementation of the
CLRCB. The impact of this policy on ecosystem services is complex and multidimensional.
As China is currently in a critical period of ecological civilization construction, scientifically
evaluating the impact of the CLRCB on ecosystem services is crucial for guiding policy
adjustments, reforms, and innovations.

Given the aforementioned issues, this study aims to systematically evaluate the impact
of the CLRCB on ecosystem services in Hubei Province. Located in central China, Hubei is
an important agricultural production and ecological function area, making the implemen-
tation of its cultivated land requisition–compensation balance policy both representative
and typical. This study will employ remote sensing image analysis and ecosystem service
assessment models to investigate the changes in the area and quality of cultivated land in
Hubei Province before and after the policy implementation, and the specific impacts of
these changes on ecosystem services (habitat quality, carbon storage, soil conservation, and
water yield). The main objectives of this study include the following: (1) Analyzing the
spatiotemporal changes in the quantity and quality of cultivated land during the implemen-
tation of the cultivated land requisition–compensation balance policy in Hubei Province.
(2) Assessing the impact of these changes on ecosystem service functions. (3) Conducting a
spatiotemporal quantitative evaluation of the trade-off and synergy strength of ecosystem
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services in the requisition–compensation areas. (4) Evaluating the changes and interactions
of ecosystem services under future climate scenarios in the study area and identifying issues
in the policy implementation. It is hoped that this study will provide valuable references
for policymakers, promote the coordinated development of cultivated land protection and
ecological environment protection, and drive regional sustainable development.

2. Study Area

Hubei Province is located in the central heartland of China, in the middle reaches of
the Yangtze River. The province’s terrain is generally mountainous to the east, west, and
north, with low plains in the middle, forming an incomplete basin that opens slightly to
the south (as shown in Figure 1a). Of the province’s total area, mountains account for 56%,
hills for 24%, and plains and lake areas for 20%. Surrounding the central plains are the
Dabie Mountains, Qinba Mountains, Wuling Mountains, and Mufu Mountains. The central
plains have fertile cultivated land and diverse resources, with a dense network of rivers
and lakes.

Figure 1. Land use and elevation map of Hubei Province.

Hubei Province is predominantly covered by forest land and cultivated land, with
significant areas of urban and rural construction land and water bodies. According to the
third national land survey of Hubei Province, the province has 4.7686 million hectares
of cultivated land, mainly distributed in the plain and low hill areas. Forest land covers
9.2801 million hectares, grassland covers 0.0894 million hectares, urban and rural land
and industrial and mining land covers 1.4115 million hectares, and water bodies and
water conservancy facilities cover 1.9837 million hectares (spatial distribution is shown in
Figure 1b). The overall land-use pattern of the province can be summarized as “five parts
forest land, three parts farmland, one part urban and rural, and one part water”.

3. Methods and Data

3.1. Research Framework

Figure 2 illustrates the technical route of this study. The research is divided into several
key sections:

Implementation effects analysis: The initial phase involves analyzing the effects of the
CLRCB by overlaying land-use maps from 2000, 2010, and 2020, the land-use transfer matrix
is calculated to determine the quantity and spatial distribution of cultivated land requisition
and compensation for the periods 2000–2010, 2010–2020, and 2000–2020. Subsequently,
the cultivated land production potential model is utilized to assess the quality changes in
requisitioned and compensated cultivated land.
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Figure 2. Technology roadmap. HQ—habitat quality; CS—carbon storage; SR—soil retention;
WY—water yield.
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Impact on ecosystem services: this phrase evaluates the policy’s impact on ecosystem
services and the trade-offs and synergies between various services. The InVEST model’s
habitat quality, carbon storage, soil retention, and water yield modules are employed to
assess the quantity changes and spatial distribution of four ecosystem services in the study
area [40,41]. Changes in ecosystem services on the requisitioned and compensated culti-
vated land plots are extracted and visualized spatially at the county level. The Spearman
correlation coefficients among the ecosystem services in the requisition–compensation
areas are calculated to analyze their trade-off and synergy strength. Bivariate spatial au-
tocorrelation is used to calculate the spatial distribution of ecosystem service trade-offs
and synergies.

Land-use scenario simulation: the following section simulates the land-use scenarios in
the study area for 2030. Three scenarios are set: natural development, ecological protection,
and urban development. The Markov model is applied to calculate future land-use demand,
and the PLUS model is employed to simulate the spatial distribution of land use [42].

Future impact assessment: the final phase calculates the changes in ecosystem services
under future land-use and climate scenarios, along with the changes in trade-offs and
synergies in the cultivated land requisition–compensation areas.

3.2. Methods
3.2.1. Measurement of Cultivated Land Requisition and Compensation Quantity and Quality

1. Measurement of cultivated land quantity.

Land-use type maps of the study area from different periods are intersected to obtain
the land-use transfer matrix. This matrix reveals the changes in the quantity of cultivated
land requisition and compensation in Hubei Province for the periods 2000–2010, 2010–2020,
and 2000–2020. The balance of cultivated land quantity is measured by calculating the
cultivated land quantity balance index, using the following formula:

QC =
Asup

Aocc
(1)

where QC is the cultivated land quantity balance index, Asup is the amount of compensated
cultivated land, representing the area of forest land, grassland, water bodies, construction
land, and unused land converted to cultivated land during the study period; and Aocc is the
amount of requisitioned cultivated land, representing the area of cultivated land occupied
by urban construction land during the study period. If QC ≥ 1, it indicates that the study
area has achieved a balance in the quantity of cultivated land requisition and compensation;
otherwise, it has not achieved quantity balance.

2. Measurement of cultivated land quality.

The quality of cultivated land directly relates to its production potential, which refers
to the biological yield or harvestable yield per unit area determined by natural factors
such as light, temperature, water, soil, and nutrients. This study represents the quality
change in requisitioned and compensated cultivated land by calculating the changes in their
production potential. To minimize the impact of climate change, the average production
potential over four years is used to focus on the impact of changes in requisition and
compensation on the total productivity of cultivated land. The formula is as follows:

APi =
∑ Pj,i

m
(2)

Rw =
PAw

PBw
(3)

RUw =
UAw

UBw
(4)
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where APi(kg/hm2) represents the average production potential of grid cell i, Pj,i(kg/hm2)
represents the farmland production potential of grid cell i in the years j. The data are
sourced from the Crop Potential Yield dataset of the Resource and Environment Science
and Data Center, Chinese Academy of Sciences. PAw(kg) and PBw(kg) represent the
total productivity of compensated and requisitioned cultivated land during period w,
respectively, obtained by multiplying the area of compensated or requisitioned land plots
by the farmland production potential of those plots. UAw(kg/hm2) and UBw(kg/hm2)
represent the average potential yield of compensated and requisitioned cultivated land
during period w, respectively. Rw and RUw can be used to represent the cultivated land
productivity balance index and the potential yield balance index for a specific period. If
Rw ≥ 1, it indicates that the productivity balance of CLRCB is achieved; otherwise, it is not
met. If RUw ≥ 1, it indicates that the yield balance of CLRCB is achieved; otherwise, the
yield balance is not met.

3.2.2. Measurement of Ecosystem Services before and after Cultivated Land Requisition
and Compensation

There are numerous types of ecosystem services. Based on the specific conditions
of Hubei Province, this study focuses on ecosystem services related to cultivated land,
including habitat quality, carbon storage, soil retention, and water yield. The values of
these ecosystem services are calculated using four corresponding modules of the InVEST
model [43,44].

1. Habitat quality (HQ).

The InVEST habitat quality module estimates habitat quality by comprehensively
considering factors such as the impact distance and intensity of threats and the sensitivity of
different habitat types to these threats. This estimation reflects the state of biodiversity and
the potential of the ecosystem to provide conditions for species survival and reproduction.
The formula for calculating habitat quality is as follows:

HQxj = Hj ×
[

1 −
Dz

xj

Dz
xj + kz

]
(5)

where HQxj is the habitat quality of grid cell x with land-use type j, ranging from [0,1];
higher values indicate better habitat quality. Hj is the habitat suitability of land-use type
j. Dz

xj is the habitat stress level of grid cell x. k is the half-saturation constant. z is the
scale constant.

2. Carbon storage (CS).

The basic assumption for calculating carbon storage in the InVEST model is that
each land cover type corresponds to a total carbon density composed of belowground
biomass carbon density, aboveground biomass carbon density, dead organic matter carbon
density, and soil organic matter carbon density. Belowground biomass carbon density
and aboveground biomass carbon density are collectively referred to as biomass carbon
density. Due to the relative insignificance and difficulty of measuring dead organic matter
carbon density, this form of carbon density is not considered in this study. The formula for
calculating carbon storage is as follows:

Ci = Ciabove + Cibelow + Cisoil (6)

Citotal = Ci × Ai (7)

where Ci is the total carbon density of land cover type i (t/hm2). Ciabove
is the aboveground

biomass carbon density of land cover type i (t/hm2). Cibelow
is the belowground biomass

carbon density of land cover type i (t/hm2). Cisoil
is the soil organic matter carbon density

of land cover type i (t/hm2). Citotal
is the total carbon storage of land cover type i (t). Ai
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is the area of land cover type i (hm2). The carbon density values in this study are defined
based on the referenced literature [31,45].

3. Soil retention (SR).

Soil retention (SR) describes the ability of different ecosystems to control soil erosion
and prevent soil loss. The soil retention module in the InVEST model is based on the
Universal Soil Loss Equation (USLE). It calculates the soil retention amount by determining
the difference between potential and actual soil erosion, which reflects the amount of soil
erosion increased or decreased due to vegetation cover or soil conservation measures. The
calculation formulas are as follows:

RKLSi = Ri × Ki × LSi (8)

ULSEi = Ri × Ki × LSi × Ci × Pi (9)

where RKLSi represents the potential soil erosion amount of the i-th grid cell (t). ULSEi
represents the actual soil erosion amount of the i-th grid cell (t). Ri, Ki, LSi, Ci, and Pi are
the rainfall erosivity factor (MJ mm hm−2 h−1 a−1), soil erodibility factor (t h MJ−1 mm−1),
slope length and steepness factor, vegetation cover factor, and support practice factor of
the i-th grid cell, respectively. The Ki factor is calculated using the method from the EPIC
model, and the biophysical attribute table refers to Wang et al., 2020 [46].

4. Water yield (WY).

The calculation of water yield in the InVEST model is based on a simplified hydrologi-
cal cycle model that uses a water balance approach. The water yield for each grid cell is
calculated as the amount of rainfall minus the actual evapotranspiration. The more water
yield, the greater the water provisioning service. The annual water yield Y(x) for different
land-use type grid cells is calculated as follows:

Y(x) =
(

1 − AET(x)
P(x)

)
× P(x) (10)

where Y(x) is the annual water yield of grid cell x (mm). AET(x) is the annual actual
evapotranspiration of grid cell x (mm). P(x) is the annual precipitation of grid cell x (mm).
Model parameters are referenced from the InVEST user guide.

3.2.3. Identification of Ecosystem Service Trade-Offs and Synergies

Trade-offs and synergies represent the interactions between different ecosystem ser-
vices. Trade-offs occur when there is an inverse relationship between services, while
synergies occur when services change in the same direction. If there is no apparent re-
sponse relationship, the services are considered uncorrelated. This study uses the Spearman
correlation coefficient method in SPSS 27 software to identify the trade-offs and synergies
between ecosystem services resulting from CLRCB on a regional scale. Using a 5 × 5 km
grid as the unit, the correlation coefficients of changes in ecosystem services caused by
CLRCB during 2000–2010, 2010–2020, and 2000–2020 are calculated, followed by signifi-
cance testing. If the correlation coefficient between two ecosystem services is negative and
passes the significance test at the 0.05 confidence level, a significant trade-off relationship is
considered to exist. Conversely, if the correlation is positive and significant, a significant
synergy relationship is considered to exist. Bivariate spatial autocorrelation analysis is
used to characterize the spatial clustering and differentiation of ecosystem services. The
bivariate local Moran’s I index is used to analyze the spatial distribution of trade-offs and
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synergies between pairs of ecosystem services at the county scale [47–50]. The bivariate
local Moran’s I index is calculated as follows:

IMN
i =

XM
i − XM

σM

n

∑
j=1

[
Wij

XN
i − XN

σN

]
(11)

where IMN
i is the bivariate local Moran’s I index. XM

i is the value of ecosystem service M in
unit i. XN

i is the value of ecosystem service N in unit j. XM and XN and σM and σN are the
average and standard deviation of ecosystem service M and N. n is the number of units in
the study area. Wij is the weight matrix. The local spatial association patterns were divided
into 5 types, including a high–high synergistic zone, low–low synergistic zone, high–low
trade-offs zone, low–high trade-offs zone, and no significant zone (p < 0.05).

3.2.4. Simulation of Ecosystem Services under Future Climate Change Scenarios

This study simulates changes in ecosystem services in Hubei Province under different
climate scenarios for the year 2030. Land-use types are categorized into seven types: culti-
vated land, forest land, grassland, water bodies, urban construction land, rural construction
land, and unused land. First, the land-use changes for 2020 are simulated and validated for
accuracy. Following this, the land-use changes and ecosystem services for Hubei Province
in 2030 are simulated.

The sixth phase of the Coupled Model Intercomparison Project (CMIP6) provides richer
global climate model data for climate change assessment. CMIP6 scenarios emphasize
the impact of different socio-economic development patterns on climate change. This
study selects three climate change scenarios from CMIP6 (SSP119, SSP245, and SSP585)
to simulate future ecosystem services. SSP119 represents a sustainable development path
with low greenhouse gas emissions; SSP245 represents a middle-path socio-economic
development with moderate emissions; SSP585 represents a high-speed development path
with extensive fossil fuel use and high emissions.

Three scenarios are set for this study: baseline development, ecological protection,
and urban development.

Baseline development scenario: assumes land-use change is not influenced by human
policies and evolves according to historical land-use transition characteristics, with no
restrictions in the simulation. Climate data follow the SSP245 pathway.

Ecological protection scenario: emphasizes the protection of ecological land, assuming
a 20% reduction in the probability of conversion from forest land, grassland, and water
bodies to other land types and a 10% increase in the probability of conversion from culti-
vated land, rural construction land, and unused land to forest land, grassland, and water
bodies. Climate data follow the SSP119 pathway.

Urban development scenario: assumes a 20% increase in the probability of converting
cultivated land, forest land, grassland, and water bodies to construction land, and a 30%
decrease in the probability of converting construction land to other land types. Climate
data follow the SSP585 pathway.

Land-use demand is simulated using the Markov model, and the spatial distribution
of land use is simulated using the PLUS model [51]. After simulating the land-use quantity
and layout for 2030, the InVEST model is used to calculate changes in ecosystem services
in Hubei Province under different future scenarios.

3.3. Data Sources

The data required for this study primarily include land-use data, soil data, meteo-
rological data, watershed data, remote sensing data, and socio-economic data. Detailed
information on data sources is provided in Table 1. The original land-use data are classified
into 6 primary categories and 25 secondary categories. In this study, the definition of culti-
vated land requisition is the expansion of urban construction land occupying cultivated
land. Therefore, for ease of data processing, construction land is subdivided into urban
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construction land and rural construction land. Thus, the land-use data are categorized into
seven major types: cultivated land, forest land, grassland, water bodies, urban construction
land, rural construction land, and unused land.

Table 1. Data source for this study.

Data Type Description Resolution Source

Land-use data Land-use data for the years 2000, 2010,
and 2020 30 m

Data Center for Resources and Environmental
Sciences, Chinese Academy of Sciences

(https://www.resdc.cn/)

Soil data

Depth-to-bedrock

1 km

https://doi.org/10.1038/s41597-019-0345-6

Soil texture
World Soil Database

(https://www.fao.org/soils-portal/en/,
accessed on 29 September 2023)

Soil type
Data Center for Resources and Environmental

Sciences, Chinese Academy of Sciences
(https://www.resdc.cn/)

Meteorological data

Monthly potential evapotranspiration for
2000, 2010, and 2020

1 km National Tibetan Plateau Data Center
(https://data.tpdc.ac.cn/)

Monthly precipitation for 2000, 2010, and
2020

Precipitation and evapotranspiration of
future climate scenario

Watershed data Watershed and river network data
extracted from DEM /

Data Center for Resources and Environmental
Sciences, Chinese Academy of Sciences

(https://www.resdc.cn/)

Topographic data
DEM data

30 m

Geospatial Data Cloud
(https://www.gscloud.cn/)

Slope data Generated from elevation

Socio-economic data
GDP, population, roads, county

government /
Data Center for Resources and Environmental

Sciences, Chinese Academy of Sciences
(https://www.resdc.cn/)Farmland Production Potential

4. Results and Analysis

4.1. Spatial and Temporal Patterns of Cultivated Land Requisition and Compensation in Hubei
Province

From 2000 to 2010, the amount of cultivated land requisitioned and supplemented
in Hubei Province was basically balanced, with the amount of supplemented cultivated
land slightly higher than the requisitioned land. The cultivated land balance index was
1.09. From 2010 to 2020, the amount of requisitioned cultivated land increased compared
to the previous period, but the amount of supplemented cultivated land increased even
more, resulting in a balance index of 2.97 (Table 2). Overall, from 2000 to 2020, urban
construction land requisitioned 1553.87 km2 of cultivated land, accounting for 33.13% of
the total cultivated land loss, with 62.89% of new construction land coming from cultivated
land. The area of supplemented cultivated land was 1971.86 km2, with 67.93% of it coming
from forest land, leading to a balance index of 1.27. In terms of quantity, the requisition
and supplementation of cultivated land were balanced in all three periods, with forest land
being the primary source of supplemented land, followed by water bodies and reclaimed
construction land.

Table 2. Area of CLRCB and quantity–quality balance index in Hubei Province (2000–2020).

Period
Requisitioned

Cultivated Land
Area (km2)

Supplemented
Cultivated Land

Area (km2)

Quantity Balance
Index

Potential Yield
Balance
Index

Productivity
Balance Index

2000–2010 1209.06 1112.41 1.09 0.87 0.95
2010–2020 4540.30 1526.48 2.97 0.47 1.58
2000–2020 1971.86 1553.87 1.27 0.57 0.66
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The potential yield balance index for cultivated land was less than 1 in the periods
2000–2010, 2010–2020, and 2000–2020, indicating that the potential yield of supplemented
cultivated land was lower than that of the requisitioned land, reflecting a phenomenon
of “replacing high-quality land with lower-quality land” in Hubei Province. However,
the productivity balance index for 2010–2020 was greater than 1, due to the excess com-
pensation of cultivated land (i.e., the balance index being greater than 1), which drove
up the productivity balance index. This explains why the productivity balance index for
2010–2020 was lower than the corresponding quantity balance index. In contrast, for the
periods 2000–2010 and 2000–2020, although the quantity balance index was greater than 1,
it did not offset the yield losses caused by the quality differences between requisitioned
and supplemented land, resulting in an imbalance in productivity.

Spatially, cultivated land in Hubei Province is mainly concentrated in the Jianghan
Plain, Northern Hubei Hills, and Southeastern Hubei River Plains, with a high degree
of concentration. However, these areas face high non-agricultural and non-grain risks
due to flat terrain, dense population, and rapid economic development, leading to high
demand for urban construction land. From 2000 to 2020, cultivated land requisition mainly
occurred in the central and southern Jianghan Plain, particularly around Wuhan, Xiantao,
and Ezhou, as well as along the Yangtze and Han Rivers, where social and economic
development is rapid. Supplemented cultivated land was more dispersed, found in both
the western mountainous areas and the central and eastern plain and hilly areas (as shown
in Figure 3a). At the city level, from 2000 to 2020, 11 out of 17 cities in Hubei Province
achieved a balance in the quantity of requisitioned and supplemented cultivated land.
However, southeastern cities like Wuhan and Ezhou did not achieve this balance, with
Wuhan having the lowest balance index of 0.24. Five cities reached a balance in potential
yield of requisitioned and supplemented land, located in the western part of the province
and central cities like Xiantao and Tianmen, where forest land or wetlands were used to
supplement cultivated land, resulting in a higher potential yield for supplemented land.
Only Tianmen achieved a balance in both the quantity, potential yield, and productivity of
requisitioned and supplemented cultivated land (as shown in Figure 3b).

Figure 3. Spatial distribution of CLRCB in Hubei Province (2000–2020). (a) shows the spatial
distribution of cultivated land occupation and compensation in Hubei Province, while (b) illustrates
the distribution of cultivated land occupation and compensation area, quantity–quality balance index
across various cities in Hubei Province.

4.2. Impact of CLRCB on Ecosystem Services

The balance policy of CLRCB has driven land-use changes, thereby impacting ecosys-
tem services. The changes in four ecosystem services—habitat quality, carbon storage,
soil retention, and water yield were—calculated for the balance areas, as well as their
proportions of the total changes in the study area.

As shown in Figures 4 and 5, the balance of CLRCB negatively affected habitat quality.
Habitat quality decreased in all three periods within the balance areas, with the most signif-
icant decline occurring from 2000 to 2010, reaching 60.66%. During this period, the change
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in habitat quality accounted for 123.74% of the total change in the study area, indicating the
significant impact of CLRCB on habitat quality. In the subsequent two periods, the impact
of habitat quality changes due to cultivated land requisition and compensation on the
overall habitat quality of the study area gradually diminished. The balance of cultivated
land requisition and compensation also negatively impacted carbon storage. From 2000
to 2020, carbon storage in the balance areas decreased by 31.19%, the most significant
reduction among the three periods. The change in carbon storage accounted for between
39.16% and 63.77% of the total change in the study area. Soil retention in the balance areas
slightly decreased from 2000 to 2010 but increased in both 2010–2020 and 2000–2020. The
proportions of soil retention changes in the balance areas relative to the total changes in the
study area were low in all three periods, indicating limited impact of CLRCB on the soil
retention function of the study area. Water yield increased due to CLRCB, with an increase
of 99.80% from 2000 to 2020. However, the proportion of water yield changes in the balance
areas relative to the total changes in the study area was not as significant as that of habitat
quality and carbon storage, ranging from 5.01% to 14.88%.

Figure 4. Changes in various ecosystem services due to CLRCB. HQ—habitat quality; CS—carbon
storage; SR—soil retention; WY—water yield.
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Figure 5. Proportion of ecosystem service changes in CLRCB areas relative to total changes in the
study area. HQ—habitat quality; CS—carbon storage; SR—soil retention; WY—water yield.

4.3. Trade-Off/Synergy Relationships of Ecosystem Services in Cultivated Land Requisition and
Compensation Areas

Using the administrative divisions of Hubei Province as a basis, a 5 km × 5 km grid
dataset was established in ArcGIS 10.8. Spatial statistical tools were then used to calculate
the changes in ecosystem services caused by cultivated land requisition and compensation
for each grid over different time periods. The number of grids obtained was 5718 for the
period from 2000 to 2010 and 7721 for the periods from 2010 to 2020 and from 2000 to 2020.

Using SPSS 27 software, a Spearman correlation analysis was conducted on the changes
in four ecosystem services—habitat quality, carbon storage, soil retention, and water yield
at the grid level. The correlations between these ecosystem services are shown in Figure 6.
For the periods 2000–2010, 2010–2020, and 2000–2020, all ecosystem services passed the
significance test at the 0.05 level, indicating varying degrees of correlation between them.
From 2000 to 2010, habitat quality and carbon storage had a positive correlation coefficient,
indicating a significant strong synergy. Habitat quality and water yield had a negative
correlation coefficient, showing a significant strong trade-off, while habitat quality and
soil retention had a significant weak trade-off relationship. Carbon storage and water
yield exhibited a significant trade-off relationship, and carbon storage and soil retention
had a significant weak trade-off relationship. Water yield and soil retention showed a
significant synergy. From 2010 to 2020, the trade-off and synergy relationships between
ecosystem services did not change. However, the synergy between habitat quality and
carbon storage and the trade-off between habitat quality and water yield both weakened,
while the trade-off relationships between soil retention and both carbon storage and habitat
quality strengthened. Over the entire period from 2000 to 2020, the synergy between habitat
quality and carbon storage and the trade-off relationships between water yield and both
carbon storage and habitat quality were all strong. The trade-off relationship between soil
retention and carbon storage, as well as the synergy between soil retention and water yield,
were moderately strong, while the trade-off relationship between soil retention and habitat
quality was relatively weak.
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Figure 6. Correlation analysis of ecosystem service changes in CLRCB areas. HQ—habitat quality;
CS—carbon storage; SR—soil retention; WY—water yield.

To understand the spatial trade-offs and synergies of various ecosystem services
due to the CLRCB policy, this research used bivariate spatial autocorrelation to examine
the spatial clustering and differentiation of these services. This research calculated the
changes in ecosystem services from 2000 to 2020 for each county and city in Hubei Province
using GeoDa 1.20 software and produced maps using bivariate Moran’s I. High–high
and low–low clusters indicate synergies, while high–low and low–high clusters indicate
trade-offs.

As shown in Figure 7, between 2000 and 2020, the synergy between carbon storage and
habitat quality was primarily found in the western Enshi Prefecture, eastern Yichang City,
northern Xianning City, Wuhan City, and the Shennongjia Forest District. Trade-offs were
mainly located in Xianfeng County, Enshi City, Yiling District of Yichang, Hannan District of
Wuhan, and Liangzihu District of Ezhou, with other areas showing non-significant patterns.
The synergy between carbon storage and soil retention appeared in central and southern
Huanggang City, most of Shiyan City excluding Maojian and Zhangwan Districts, western
Yichang City, and eastern Enshi Prefecture. Trade-offs were observed in the western and
eastern parts of Enshi Prefecture and the Maojian and Zhangwan Districts of Shiyan City.
Synergy between carbon storage and water yield was noted in Fang County of Shiyan
City, Yiling District of Yichang City, Xiangzhou and Fancheng Districts of Xiangyang
City, and parts of northeastern and southern Huanggang City. Trade-offs were evident in
northern Xianning City, central Wuhan City, and Hong’an County. The synergy between
habitat quality and soil retention was prevalent in southwestern Hubei, including Enshi
Prefecture, western Yichang City, Yunyang District of Shiyan City, and parts of northeastern
and southern Huanggang City. Trade-offs were found in most of Shiyan City, excluding
Yunyang District, and in Xishui County. The spatial distribution of trade-offs and synergies
between habitat quality and water yield was similar to that of carbon storage and water
yield, but Fang County of Shiyan City and Yiling District of Yichang City shifted from
synergy to trade-off. Finally, the synergy between water yield and soil retention was
observed in most of Enshi Prefecture except for Laifeng and Hefeng Counties, northern
and western Shiyan City, and central Huanggang City. Trade-offs were evident in Fang and
Zhushan Counties of Shiyan City, Zigui, Xingshan, and Wufeng Counties of Yichang City,
Laifeng and Hefeng Counties of Enshi Prefecture, and Tuanfeng County and Wuxue City
of Huanggang City.
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Figure 7. Spatial distribution of trade-offs and synergies of ecosystem services due to cultivated land
requisition and compensation at the county level (2000–2020). HQ—habitat quality; CS—carbon
storage; SR—soil retention; WY—water yield.

4.4. Simulation of Ecosystem Services and Trade-Offs/Synergies under Future Climate Scenarios in
Hubei Province

Based on the land-use data from 2000, this research simulated the land-use changes
for 2020. Comparing the simulated data with the actual data for 2020, the model showed
an overall accuracy of 0.94 and a Kappa coefficient of 0.90, which is greater than 0.75. This
indicates that the model’s simulation performance is good and can be used to simulate
land-use changes for 2030. Table 3 presents the simulated results of land-use changes in
Hubei Province. In 2020, the primary land-use type in Hubei Province was forest land,
covering 49.61% of the total area, followed by cultivated land (36.02%) and water bodies
(6.26%). Under all three future scenarios, forest land remains the dominant land-use type.

Table 3. Simulated land use change results for Hubei Province.

Land-Use Scenario
Cultivated

Land
Forest
Land Grassland

Water
Bodies

Urban
Construction

Land

Rural
Construction

Land

Unused
Land

Actual Scenario
in 2020

Area 669.78 922.43 70.15 116.45 39.08 37.76 3.82
Percentage 36.02% 49.61% 3.77% 6.26% 2.10% 2.03% 0.21%

Natural
Development

Area 666.78 918.06 70.17 117.65 44.55 38.44 3.82
Percentage 35.86% 49.37% 3.77% 6.33% 2.40% 2.07% 0.21%

Ecological
Protection

Area 665.87 922.76 70.30 116.34 42.42 38.13 3.66
Percentage 35.81% 49.62% 3.78% 6.26% 2.28% 2.05% 0.20%

Urban
Development

Area 666.85 916.35 70.23 111.58 52.66 37.91 3.89
Percentage 35.86% 49.28% 3.78% 6.00% 2.83% 2.04% 0.21%

Natural development scenario: both forest land and cultivated land slightly decrease,
while water bodies and construction land increase. Grassland and unused land remain
relatively stable, with minor changes. The majority of the increased construction land
comes from converted cultivated land, followed by forest land.

Ecological protection scenario: there is a slight increase in forest land and grassland
areas, along with an increase in construction land, though to the smallest extent among the
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three scenarios. Water body areas remain virtually unchanged. Cultivated land decreases
the most in this scenario, with the converted land primarily becoming forest land, followed
by urban construction land.

Urban development scenario: urban construction land sees the largest increase, while
cultivated land, forest land, and water bodies decrease. Other land types show little change.
The reduction in cultivated land primarily converts to urban construction land, and the
reduction in forest land and water bodies is mainly used to supplement cultivated land.

Forest land and cultivated land are the most important land-use types in the study area.
Changes in their areas directly affect the structure and function of ecosystem services. As
population growth and economic development continue, urban construction land expands,
often at the expense of cultivated land. This change not only reduces agricultural space but
also leads to a decline in ecosystem services. Under three different future scenarios, the
area changes for various land types differ, and varying climate conditions result in different
trends in ecosystem services. The quantities and spatial distributions of four ecosystem
service functions were calculated, as shown in Table 4 and Figure 8.

Table 4. Ecosystem services in Hubei Province under different scenarios.

Ecosystem Service Actual
Scenario by 2020

Natural
Development

Scenario by 2030

Ecological
Protection

Scenario by 2030

Urban
Development

Scenario by 2030

Habitat quality 0.552 0.542 0.543 0.534
Carbon storage (1 × 109 t) 2.308 2.302 2.306 2.298
Soil retention (1 × 1011 t) 1.471 1.521 1.253 1.274
Water yield (1 × 1011 m3) 1.342 1.454 0.905 1.061

Each ecosystem service demonstrates different trends under various scenarios. Habitat
quality and carbon storage show minimal changes, while soil retention and water yield
experience significant variations. Habitat quality and carbon storage both decline in 2030
across all three scenarios, with the lowest values under the urban development scenario,
followed by the natural development scenario, and the highest values under the ecological
protection scenario. In the ecological protection scenario, although the areas of forest land
and grassland increase compared to 2020, urban construction land also expands by 334 km2,
which is more than the combined increase in forest and grassland areas (47 km2). This
expansion of construction land negatively impacts habitat quality and carbon storage,
causing them to decline even in the ecological protection scenario. Soil retention services
increase by 3.39% under the natural development scenario but decrease by 14.82% under the
ecological protection scenario and by 13.41% under the urban development scenario. Water
yield increases by 8.39% under the natural development scenario but decreases by 32.58%
under the ecological protection scenario and by 20.90% under the urban development
scenario. Soil retention and water yield services are significantly influenced by climate
conditions. In 2020, the annual precipitation in Hubei Province was 1439 mm. For 2030,
under the natural development scenario using SSP245 climate data, the annual precipitation
is projected to be 1547 mm. The ecological protection scenario, using SSP119 climate data,
projects an annual precipitation of 1293 mm, while the urban development scenario, using
SSP585 climate data, projects an annual precipitation of 1323 mm. These differences in
precipitation under different climate pathways lead to corresponding increases or decreases
in ecosystem service quantities.
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Figure 8. Spatial distribution of ecosystem services in Hubei Province under three future scenarios.
HQ—habitat quality; CS—carbon storage; SR—soil retention; WY—water yield.

Figure 8 shows the spatial distribution of four future ecosystem services, each exhibit-
ing different spatial patterns. Under future scenarios, the distribution of habitat quality
and carbon storage is mainly influenced by land-use changes, with both showing lower
values in the central region and higher values in the eastern and western regions. This
pattern is related to the topography of Hubei Province, where the mountainous areas in
the east and west are dominated by forests and grasslands, while the central plains are
dominated by cultivated and construction land. Mountainous regions usually have higher
ecosystem service values and biodiversity, whereas plains are more suitable for agricultural
development. Agricultural activities and urban construction cause environmental pollu-
tion, which directly threatens habitat quality and carbon storage. For example, discharging
wastewater into rivers can exceed a threshold, leading to eutrophication and a decline in
aquatic species richness, thus threatening water ecological safety. The spatial distribution
of soil retention services is relatively uniform, generally showing higher values in the west
and lower values in the east. Under the natural development scenario in 2030, soil retention
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services increase in most areas except for the junction of Yichang, Xiangyang, and Shen-
nongjia Forest District, where a decline is observed. In the ecological protection scenario,
soil retention services decrease in most areas except for the northwestern parts of Shiyan
City and Enshi Prefecture. Under the urban development scenario, soil retention services
decrease in most areas except for the northern part of Shiyan City and the southwestern
part of Jingzhou City. The spatial distribution of water yield contrasts with the other three
ecosystem services, showing higher values in the central region and lower values around
the periphery. Under the natural development scenario, water yield increases in most areas
except for the junction of Yichang, Xiangyang, Jingmen, and Shennongjia Forest District,
as well as central Suizhou. In the ecological protection scenario, water yield decreases in
most areas except for the northwestern part of Shiyan City. Under the urban development
scenario, water yield increases in the northern part of Shiyan City, southern Jingzhou City,
and central Wuhan City, while it decreases in other regions.

The changes in ecosystem services in the cultivated land requisition and compensation
areas under three future scenarios for 2030 were extracted, and correlation coefficients were
further calculated to analyze the trade-offs and synergies of ecosystem services under dif-
ferent climate scenarios. The results are shown in Figure 9. Under the natural development
scenario, the trade-offs and synergies of ecosystem services remained unchanged compared
to the period from 2000 to 2020, and all passed the significance test at the 0.05 level. The
synergy between habitat quality and carbon storage weakened, while the trade-offs be-
tween habitat quality and both soil retention and water yield strengthened. The trade-offs
between carbon storage and both soil retention and water yield weakened, and the synergy
between soil retention and water yield also weakened. In the ecological protection scenario,
there were significant changes in the trade-offs and synergies of ecosystem services. The
synergy between habitat quality and carbon storage significantly strengthened, increasing
from 0.63 to 0.86. The trade-off between habitat quality and water yield weakened from
−0.7 to −0.16, and the relationship between habitat quality and soil retention changed
from a significant weak trade-off to a significant strong synergy. The relationship between
carbon storage and soil retention changed from a trade-off to a synergy, and the relationship
between carbon storage and water yield changed from a significant strong trade-off to an in-
significant weak synergy. The relationship between soil retention and water yield changed
from a synergy to a trade-off. Under the urban development scenario, the synergy between
habitat quality and carbon storage weakened, as did the trade-off between habitat quality
and water yield. The relationship between habitat quality and soil retention changed from
a trade-off to a synergy. The relationship between carbon storage and soil retention also
changed from a trade-off to a synergy, and the relationship between carbon storage and
water yield changed from a significant strong trade-off to a significant weak synergy. The
relationship between soil retention and water yield changed from a synergy to a trade-off.

Figure 9. Trade-offs and synergies of ecosystem services due to cultivated land requisition and
compensation under three future scenarios. HQ—habitat quality; CS—carbon storage; SR—soil
retention; WY—water yield.
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5. Discussion

5.1. Validation of Ecosystem Service

In this study, ecosystem services are composed of four aspects. This research recognizes
that the accuracy of model parameters is crucial for the credibility of the calculation
results. Due to the large geographic scope of Hubei Province, it is challenging to verify
the calculation results through field surveys, and the ecosystem services calculated via the
InVEST model are based on empirical values. Therefore, this research chose to validate soil
retention and water yield because existing datasets or observational values are available
for these services (Figure 10). However, there are no calculated data available for habitat
quality and carbon storage for validation.

Figure 10. Validation of simulation accuracy for soil retention (a) and water yield (b).

To validate the soil retention data, this study employed a comparative analysis method,
comparing the results with the “China Soil Erosion Conservation Dataset.” This research
established a 20 km fishnet in ArcGIS and used the “Extract Multi Values to Points” tool
to extract grid values from both models for linear fitting. The results showed an R2 of
0.85, indicating that the study results are reliable. To verify the accuracy of the water yield
assessment, this study used the total water resources of each prefecture-level city in the
“Hubei Water Resources Bulletin” as a reference, compared with the water yield calculated
via the InVEST model, and calculated the coefficient of determination and the slope of
the fitted least-squares regression line to evaluate the goodness of fit between the study
results and the observational data. The results showed a high correlation, with an R2 of
0.82, indicating that the simulation results can be used for water yield service analysis.

Through the above validation process, this research can conclude that the soil retention
and water yield data calculated using the InVEST model in this study are reliable and
accurate and can be used for further ecosystem service analysis and evaluation.

5.2. Impact of CLRCB on Ecosystem Services and Contribution

The average values of various ecosystem services for different land-use types in
2000, 2010, and 2020 were calculated, as shown in Figure 11. The changes in ecosystem
services caused by the requisition and compensation of cultivated land were then calculated
separately, as shown in Figure 12.
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Figure 11. Average values of ecosystem services for different land-use types. HQ—habitat quality;
CS—carbon storage; SR—soil retention; WY—water yield.

From Figure 11, it is evident that habitat quality is highest in forest land and grassland,
followed by water bodies and cultivated land, with the lowest values in unused land and
construction land. Forest land, grassland, and water bodies have complete ecosystems,
making them ideal habitats for plant and animal communities, thus resulting in higher
habitat quality [52]. In contrast, cultivated and construction lands have poorer habitat
quality. Cultivated land, due to prolonged farming and fertilizer use, not only reduces
soil quality but also causes agricultural non-point source pollution. Construction land,
on the other hand, is threatened by production and domestic sewage discharge, resulting
in lower habitat quality. Changes in the proportion, structure, and intensity of land use
fundamentally alter the composition and configuration of ecosystems, ultimately affecting
energy flow and material cycling between habitat patches [53]. Land-use changes can
have positive or negative impacts on habitat quality. Generally, the outward conversion
of forest land, grassland, and water bodies negatively impacts habitat quality, while the
outward conversion of cultivated and construction land positively impacts habitat quality.
This is consistent with the results of previous studies [15,33]. In the context of land-use
changes due to cultivated land requisition and compensation, only the supplementation
of cultivated land with construction and unused land positively impacts habitat quality,
increasing it by 2851 and 3263 units from 2000 to 2020. However, due to the small area of
these land-use changes, they are insufficient to offset the degradation in habitat quality
caused by the conversion of other land types, leading to an overall decline in habitat quality
in the study area by 501,862 units.
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Figure 12. Changes in ecosystem services due to cultivated land requisition and compensation.
Nos. 1–7 represent cultivated land, forest land, grassland, water bodies, urban construction land,
construction land, and unused land, respectively. Code 1–2 represents cultivated land converted
to forest land, and the other codes follow the same rule. HQ—habitat quality; CS—carbon storage;
SR—soil retention; WY—water yield.

From Figure 11, it is also clear that carbon storage is highest in forest land and
grassland, followed by cultivated land and water bodies, with the lowest values in unused
land and construction land. Land-use changes have a profound impact on carbon storage in
terrestrial ecosystems by altering the carbon sequestration capacity of soil and vegetation,
affecting regional carbon budgets [27]. This study indicates that urban expansion into
cultivated land is a major cause of carbon storage decline. To achieve a balance in cultivated
land requisition and compensation, the supplementation of cultivated land with forest
land, grassland, and other ecological lands further reduces carbon storage. Although the
supplementation of cultivated land with water bodies, construction land, and unused land
mitigates some carbon storage loss, the overall effect of the balance policy from 2000 to 2020
results in a loss of 13 million tons (1.3 × 107 t) of carbon storage in Hubei Province. This is
consistent with the research results of some scholars. Tang et al. showed that cultivated
land expansion in Hubei Province from 2000 to 2010 resulted in 1.76 Tg of carbon loss, and
the loss of carbon storage caused by encroachment of forest land accounted for 81% of
the total loss of cultivated land expansion [28]. Gao et al. showed that the loss of carbon
storage in the compensation of cultivated land from 2010 to 2015 was mainly due to the
inappropriate way of supplementing cultivated land with forest land. Although the area
of supplementing cultivated land with forest land only accounted for 19.4% of the total
amount of cultivated land, the resulting carbon storage loss even exceeded the carbon
storage loss of cultivated land occupied by construction land [54].

Figure 11 shows that soil retention capacity is strongest in grassland and forest land,
followed by cultivated land and water bodies, with the lowest values in construction land
and unused land. Vegetation cover on grassland can reduce the impact of rainfall on
the ground, slow down runoff, and decrease the likelihood of soil particles being carried
away by water [55]. Forest land, with its complex vegetation structure and rich litter
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layer, can improve soil structure and increase soil porosity, thereby enhancing soil water
retention capacity [56]. Unused land, with poorer soil physical and chemical properties
and high surface runoff coefficients, is prone to soil erosion during heavy rainfall, resulting
in the lowest soil retention capacity. Theoretically, without considering other factors, the
outward conversion of grassland and forest land and the occupation of cultivated land
by construction land would lead to a decrease in regional soil retention capacity [57].For
example, converting forest to cropland could change the distribution of soil properties and
compact deep soils, further resulting in a reduction in water infiltration and increases in
surface runoff and the risk of soil erosion in top soils [58,59]. However, previous studies
have shown that soil retention function is more sensitive to precipitation than to land-use
types, with changes in soil retention function being more strongly controlled by climate
change [60]. The study of Li et al. showed that the spatial and temporal variation of
rainfall erosivity was basically consistent with the variation of soil erosion rate in western
Hubei Province, and rainfall was the main factor leading to soil loss in western Hubei
Province [61]. Therefore, the soil retention function within the cultivated land requisition
and compensation areas in Hubei Province from 2000 to 2020 do not strictly follow the
above change patterns. The average soil retention values for Hubei Province in 2000, 2010,
and 2020 were 6778 t/hm2, 6616 t/hm2, and 8154 t/hm2, respectively, showing a trend of
initial decrease followed by an increase. This is consistent with the results of Li et al. [62,63].
Therefore, the soil retention function in the cultivated land requisition and compensation
areas are affected by the combined effects of climate change and land-use changes, which
are consistent with the overall change trend of Hubei Province.

Figure 11 also indicates significant differences in water yield across different land-
use types, with the highest water yield in construction land, followed by grassland and
cultivated land, then unused land, and the lowest in forest land and water bodies. The
surfaces of construction land, typically composed of concrete, asphalt, and cement, form
impermeable surfaces with almost zero infiltration, resulting in rainfall easily forming
runoff and reducing soil water content, thus resulting in the highest water yield [64]. Grass-
land and cultivated land, with shallower root systems, have weaker rainfall interception
capabilities, and crop growth on cultivated land consumes water, resulting in lower water
yields compared to construction land [65]. Forest land, with deeper root systems, can
absorb water from deep soil layers and has strong rainfall interception capabilities, while
its dense canopy has significant transpiration [66]. Water bodies, being the most prone to
runoff formation, have the lowest water yield when rainfall reaches the water surface, as
evaporation directly forms runoff. Under unchanged climate conditions, the conversion
of cultivated land to construction land, and the conversion of forest land, water bodies,
and unused land to cultivated land increase water yield, while the conversion of grassland
and construction land to cultivated land decreases water yield. However, previous studies
have shown that climate change can significantly impact water yield by directly altering
surface runoff, with precipitation having a more pronounced effect on regional water yield
than land-use changes [63]. The average precipitation in Hubei Province was 1199.1 mm
in 2000, 1279.3 mm in 2010, and 1439.6 mm in 2020. The increasing precipitation trend
led to higher average water yields in cultivated land in 2020 compared to construction
land in 2000 and 2010. Therefore, the conversion of construction land to cultivated land
increased water yield from 2010 to 2020 and from 2000 to 2020. Similarly, due to the impact
of precipitation, the average water yield in cultivated land in 2010 and 2020 was higher than
that in grassland in 2000 and 2010, resulting in increased water yield from the conversion of
grassland to cultivated land over the three time periods. Overall, the areas of construction
land occupying cultivated land and forest land and water bodies supplementing cultivated
land far exceed the changes in other land-use types. Since these three land type changes all
lead to increased water yield, the cultivated land requisition and compensation balance
policy results in an overall increase in regional water yield.
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5.3. Trade-Off/Synergy Relationships of Ecosystem Services in Cultivated Land Requisition and
Compensation Areas

This study investigates how ecosystem services—including habitat quality, carbon stor-
age, soil retention, and water yield—have evolved over time in response to the trade-offs and
synergies caused by land-use changes driven by cultivated land compensation policies. By
employing Spearman correlation analysis across multiple time periods (2000–2010, 2010–2020,
and 2000–2020), we identified significant correlations among these ESs, highlighting the
intricate relationships between different ecosystem functions.

This research demonstrates that between 2000 and 2010, the relationship between
habitat quality and carbon storage was strongly synergistic, suggesting that improvements
in habitat conditions were closely linked to increases in carbon sequestration. This synergy
aligns with prior research [67], which emphasizes that land-use practices promoting biodi-
versity conservation often enhance carbon storage due to increased vegetative cover and
biomass. However, habitat quality exhibited a strong trade-off with water yield. This may
be due to the increased reforestation or land restoration efforts enhancing habitat quality
while reducing runoff, thus lowering water yield [68]. The weak trade-off between habitat
quality and soil retention indicates that while some conservation actions may improve
habitat conditions, they may not always benefit soil preservation. Carbon storage and water
yield also displayed a notable trade-off, mirroring patterns observed in other studies where
carbon sequestration efforts, such as reforestation, can lead to reduced water availability
due to higher evapotranspiration rates [69]. A weak trade-off was also observed between
carbon storage and soil retention, indicating that while these services can conflict, the inter-
action is not as significant as with water yield. Interestingly, water yield and soil retention
were found to be strongly synergistic, suggesting that strategies promoting soil conserva-
tion, such as terracing or cover cropping, also enhance water regulation, corroborating
findings from previous studies [70].

During the period 2010–2020, the fundamental trade-offs and synergies among ecosys-
tem services remained consistent, but the intensity of these relationships shifted. The
synergy between habitat quality and carbon storage weakened, as did the trade-off be-
tween habitat quality and water yield. This could be attributed to adjustments in land-use
policies or changes in ecosystem management practices, where the marginal benefits of
enhancing carbon storage or biodiversity may have decreased. On the other hand, the
trade-offs between soil retention and both carbon storage and habitat quality became more
pronounced, suggesting that in recent years, the actions taken to preserve soil may have
come at a greater cost to biodiversity and carbon sequestration.

Looking at the entire period from 2000 to 2020, the strong synergy between habitat
quality and carbon storage persisted, while the trade-off between carbon storage and
water yield, as well as habitat quality and water yield, remained robust. These enduring
patterns suggest that long-term land-use changes, such as forest expansion or changes in
agricultural practices, consistently drive these ES dynamics. Moderate correlations between
soil retention and other services—especially its trade-off with carbon storage and synergy
with water yield—underscore the multifunctionality of land-use strategies that seek to
balance soil conservation with other ESs. The relatively weak trade-off between habitat
quality and soil retention also reflects the nuanced interactions among ESs that are shaped
by localized environmental and policy contexts.

The results show that the effects of CLRCB on ecosystem services are complex and
diverse, and multiple objectives need to be balanced in land management. For example,
while enhancing biodiversity and carbon storage can reinforce each other, they may affect
water availability. Weakening synergies and changing trade-offs over time suggest that
policy needs to be flexible to avoid long-term negative effects. In future land-use planning,
it is necessary to comprehensively consider water resources, soil conservation, and other
factors to achieve balanced development of multiple services.
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5.4. Limitations and Uncertainties

This study examines the effects of the cultivated land requisition–compensation bal-
ance (CLRCB) policy on ecosystem services in Hubei Province and projects future changes
under different land-use scenarios for 2030. Despite its valuable insights, this study has
several limitations and uncertainties that warrant attention.

First, the InVEST model, though widely used, simplifies complex ecological dynam-
ics [71]. For instance, its habitat quality model assumes uniform distribution of threats,
ignoring local variations in land-use intensity, while the carbon storage module overlooks
nuanced impacts of land-use changes on soil and vegetation carbon fluxes. These sim-
plifications may lead to inaccurate estimations of ecosystem services [72]. Additionally,
the dynamic interactions among ecosystem services, such as trade-offs and synergies, are
context dependent and could shift due to external factors like climate change or policy ad-
justments [37]. For example, while synergies between soil conservation and water produc-
tion were observed, future climate extremes or policy shifts could alter these relationships,
highlighting the need for continuous monitoring and adaptive management. The future
land-use simulations, based on the Markov and PLUS models, also face uncertainties [51].
These models assume future patterns follow historical trends, which may not account for
rapid urbanization or unanticipated changes. Moreover, the climate data used may not
fully capture extreme events, complicating predictions of ecosystem service outcomes.

To address these limitations, future research should focus on improving modeling
accuracy by integrating more advanced tools. For instance, combining InVEST with other
models like SWAT could offer more detailed assessments, especially for hydrological ser-
vices [73]. Incorporating more comprehensive climate change scenarios, including extreme
events, would provide better insights into potential ecosystem responses [74]. Furthermore,
future studies should explore the socio-economic dimensions of CLRCB, as land-use deci-
sions driven by policy or economic incentives significantly influence ecosystem services
outcomes. In conclusion, while this study offers important findings on the ecological
impacts of CLRCB, significant uncertainties remain. Advancing modeling techniques,
integrating climate projections, and addressing socio-economic drivers will be crucial for
balancing food security with sustainable ecosystem management.

6. Conclusions

This study, focusing on Hubei Province, explored the impact of the cultivated land
requisition and compensation policy on ecosystem services and simulated the changes in
ecosystem services and their interactions for the year 2030. The findings indicate that from
2000 to 2020, the policy achieved a balance in cultivated land quantity through the excessive
supplementation of cultivated land, with a balance index of 1.27. However, the prevalent
issue of replacing high-quality land with lower-quality land resulted in suboptimal policy
implementation, failing to achieve balance in land productivity and yield.

The balance policy negatively impacted habitat quality and carbon storage, leading to
a decline in habitat quality by 501,862 and a loss of 13 million tons (1.3 × 107 t) of carbon
storage during the study period. On the other hand, soil retention and water yield were
more influenced by climate than by land use. The policy led to an increase in water yield
by 2.129 billion cubic meters (21.29 × 108 m3) and an increase in soil retention services by
184.2 million tons (184.2 × 106 t). Spatially, the policy caused the most significant decline in
habitat quality in the eastern part of Hubei Province and the greatest decrease in carbon
storage in the northern part. Soil retention service changes were highest in the southwest
and northeast while lowest in the central region. Water yield changes showed a high
east and low northwest distribution pattern. Within the cultivated land requisition and
compensation areas, habitat quality and carbon storage, as well as soil retention and water
yield, exhibited synergistic relationships, whereas trade-offs existed between the other
pairs of ecosystem services.

The 2030 ecosystem service simulations indicate that soil retention and water yield are
highest under the natural development scenario, while habitat quality and carbon storage
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are highest under the ecological protection scenario. Both scenarios perform better than the
urban development scenario. When formulating policies, trade-off analyses can optimize
land resources to maximize the comprehensive benefits of different ecosystem services.

The analysis reveals that while the cultivated land requisition and compensation policy
has positive implications for food security, it also poses ecological risks and challenges
that need to be addressed and improved in policy design. Future research should further
investigate the specific impacts of different cultivated land supplementation models and
technical measures on ecosystem services to find more balanced and sustainable solutions.
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Abstract: Land-use conflicts (LUCs) are pivotal in assessing human–land interaction, reflecting the
intricate interplay between natural and anthropogenic drivers. However, existing studies often
overlook nuanced non-linear responses and critical threshold recognition, focusing solely on linear
correlations between isolated factors and LUCs. This study, situated in Xinjiang, China’s arid and
semiarid region, introduces a novel analytical framework and threshold application model for
LUCs. Integrating land-use and socioeconomic data, we quantified LUCs using Fragstats, correlation
analysis, and restricted cubic spline (RCS) regression. Exploring non-linear dynamics between LUCs
and 14 potential drivers, including natural and anthropogenic factors, we identified critical thresholds.
LUC zones were delineated using a four-quadrant method, allowing tailored mitigation strategies.
Our findings reveal Xinjiang’s distinct LUC spatial pattern, with intense conflicts surrounding
mountainous areas and milder conflicts in basin regions, showing marked diminishment from 2000
to 2020. RCS effectively identifies LUC thresholds, indicating persisting severity pre- or post-specific
thresholds. Xinjiang’s LUCs are categorized into key control areas, urgent regulation zones, elastic
development territories, and moderate optimization regions, each with significant regional disparities.
Tailored optimization suggestions mitigate linear analysis limitations, providing a fresh perspective
on land zoning optimization. This research supports comprehensive land management and planning
in Xinjiang, China.

Keywords: land-use conflicts; natural and anthropogenic driver; restricted cubic spline; critical
threshold; land zoning

1. Introduction

In the context of societal advancement and progress, the ever-growing human aspira-
tion for wealth accumulation and the pressing need for development exert considerable
pressure on finite land resources. This escalation intensifies tensions within the human–
land interaction, exacerbating conflicts between humanity and the land. Since the Industrial
Revolution, these contradictions and conflicts have rapidly transcended local boundaries
to a global scale. Common challenges such as climate change, energy crises, and food
shortages underscore the imbalance in the human–land system. Land-use conflicts (LUCs),
arising from disparities in interests and needs among different stakeholders, epitomize
the concentrated manifestation of these contradictions. Defined as spatial disputes and
rights conflicts among stakeholders engaged in land resource utilization, LUCs encompass
disputes arising from differences in land-use modes and the natural environment [1]. As a
scarce resource integrating economic, social, and ecological values, land becomes a focal
point of conflicts when stakeholders, driven by diverse value orientations and interest
demands, engage in the land utilization process. These conflicts manifest as economic
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disputes among land-use subjects and as conflicts between economic interests, ecologi-
cal protection, and social development [2]. LUC is a complex process characterized by
the “land–land” conflict (imbalance between land-use quantity and function), with the
“man–land” conflict (mismatch between land-use subject and function) at its core, and
the “man–man” conflict (mismatch between land-use subject and spatial benefit distri-
bution) as its essence. The “man–land” conflict originates from the evolution of regional
human–land relationships influenced by external factors such as systems and markets.
Throughout this evolution, the spatial interest game among various stakeholders forms a
“man–man” conflict, aiming to achieve coordinated human–land relationships. However,
constrained by external policies, systems, and internal economic and social factors, the
evolution often falls short of achieving coordinated human–land relationships, resulting
in a “land–land” conflict. This cyclic process persists. In essence, the root cause of LUC
lies in the imbalance of the human–land relationship, a consequence of the structural and
inherent spatial competition stemming from the ever-growing demand for limited land.
This demand arises from the interplay between human activities, various land-use modes,
and natural ecological processes [3]. Consequently, implementing appropriate control
measures becomes imperative to effectively mitigate LUC [4]. Exploring the complex mech-
anisms influencing LUC, such as urbanization–ecological environment interactions [5], the
economy–environment relationship [6], and the population–land–industry interplay [7],
along with coordinating multiple land-use functions [8], optimizing and controlling the
spatial pattern of the national territory [9,10], are essential measures that can contribute to
the alleviation of LUC.

LUCs stand as a sensitive indicator of the intricate interaction between humans and
the land. The continual escalation of human activities amplifies the conflict between
economic growth and the natural environment, resulting in heightened competition and
LUCs across diverse regions [11]. These conflicts manifest through the conversion of
ecological land into cultivated or construction areas and the frequent mismatch and overlap
between agricultural or industrial zones and ecological conservation spaces [12,13]. These
competitions and contradictions represent complex disputes that, if not addressed promptly,
often give rise to challenging environmental and social problems, potentially diminishing
economic, ecological, or social benefits [14]. Furthermore, they pose a substantial hazard
to sustainable development [15]. The occurrence and development of LUCs result from
multi-dimensional internal and external factors, encompassing the natural environment,
economy, society, and policy system. This intricate interplay shapes a complex mechanism
driving the development and evolution of LUCs. As natural and human factors jointly exert
their influence, the scope and intensity of LUCs gradually expand and intensify [16]. Firstly,
as LUCs stem from the scarcity and multiple suitability of resources, natural environmental
conditions significantly impact conflicts by determining the scarcity and multiple suitability
of land resources. Hence, natural conditions serve as long-term factors influencing the
formation of conflicts [17,18]. Secondly, LUCs are closely linked to economic and social
factors. In the realm of socioeconomics, the burgeoning population and its demands act
as primary catalysts for conflict development [19]. The overlapping interests of land-
use subjects, shaped by human personality characteristics and group behavior, and the
ensuing contradictions in land-use objectives are commonly regarded as the root causes of
conflicts [20,21]. Thirdly, the noteworthy influence of policy and institutional environments
on LUC is indirect and reliant. Essentially, it primarily exerts its influence indirectly by
regulating the process of regional economic and social development [22,23]. This holds
great significance for a thorough scientific exploration and effective comprehension of the
role played by policy and institutional factors in LUC. To mitigate LUC more effectively
and prevent its negative effects from spreading further, a clear understanding of the impact
of natural and anthropogenic drivers on LUC is essential.

Certain studies have emphasized that LUC can be construed as the outcome of the
interplay between economic driving forces, policy and institutional influences, and social
and cultural factors [24]. Consequently, both natural and human factors exert an influence

34



Land 2024, 13, 612

on LUC [19,21]. Typically, the intensity of regional LUC hinges on local background condi-
tions and the extent of human development and land resource utilization in subsequent
stages. The level of urbanization among dynamic drivers and terrain constraints among
static factors have been identified as significant drivers affecting LUC [25]. Specifically, a
high degree of coupling and coordination has been observed between the level of urbaniza-
tion, terrain relief, and LUC. Notably, the intensity of LUC undergoes changes when the
urbanization level and topographic relief index reach a certain threshold [26]. This implies
that natural and anthropogenic drivers affecting LUC exhibit non-linearity, suggesting
the potential for a threshold effect between LUC and these drivers. In recent decades, the
proliferation of studies related to LUC has been evident with current research focusing
on understanding conflicts between different subjects of interest through participatory
surveys [27,28]. Quantitative identification of the effects of regional urbanization levels,
population density, and topographic conditions on LUC has also been a key aspect of
contemporary research [26,29]. In conclusion, existing studies have primarily centered on
examining the effect of a single driver on LUC, lacking the analysis of the integrated impact
of multiple factors on LUC. Moreover, there is a dearth of studies considering the nonlinear
effects of different drivers on LUC intensity and the potential existence of thresholds, and
where these thresholds might be applied. The diversity and complexity inherent in LUC
are often overlooked since they result from a combination of anthropogenic activities [25],
potentially leading to a lack of specificity in proposing control measures to mitigate LUC.
Restricted cubic splines (RCS) have proven effective for modeling nonlinear relationships
between explanatory variables and outcomes [30]. However, limited research has been
conducted on the application of RCS in the environmental field, with most existing stud-
ies focused on other areas, such as virology research and family business science [31,32].
Consequently, more research is warranted to explore the potential application of RCS in
other studies.

To effectively bridge this research gap, we applied RCS to the study of LUC and
investigated their nonlinear relationship in Xinjiang. Positioned in the heartland of the
Asia-Europe continent and located within the arid zone of northwestern China, this region
represents a distinctive natural geographic unit. It features interspersed mountain ranges
and basins, with coexisting oases and deserts that together form a unique mountain-oasis-
desert ecosystem. The region contends with harsh natural conditions and relatively fragile
ecosystems, influenced by climatic and hydrological factors. Xinjiang faces substantial
challenges related to water resources and ecology, acting as impediments to economic
development and posing threats to ecological health [33,34]. Furthermore, uncertainties
such as rising temperatures and soil erosion impact the regional ecosystem [35]. In con-
junction with these challenges, the rapid expansion of the Silk Road Economic Belt has
escalated the demand for land resources in the region [36]. Consequently, human activities’
impact on the environment has intensified gradually, accentuating the conflict between the
scarcity of land resources and unrefined land-use practices. This paradoxical relationship
between people and the land emerges as a critical constraint on the regional ecosystem
and sustainable societal development [37], further exacerbating LUC [38]. Regional land
construction and development have become primary concerns [39]. However, current
research on LUC in Xinjiang primarily focuses on specific oasis areas, such as Urumqi city
and the Ili River Valley [3], with less attention paid to LUC on the overall Xinjiang scale.
Therefore, investigating the drivers of LUC in arid and semi-arid regions and zoning of
land-use patterns hold significant importance. This research aims to support the rational
development and utilization of land resources, protection of the ecological environment,
optimization of the spatial pattern of the national territory, harmonization of human–land
relations, and achievement of sustainable development. In this article, we quantitatively
measured the intensity of LUC in Xinjiang from 2000 to 2020, analyzed its spatial and
temporal pattern characteristics, conducted a correlation analysis of 14 typical natural and
anthropogenic driving factors on LUC, and, based on threshold recognition results, classi-
fied the land-use pattern in Xinjiang into four types using an LUC pattern optimization
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model. Suggestions were then presented. In summary, the scientific issues addressed in
this study include the following:

(1) Do different natural and anthropogenic drivers exhibit thresholds that influence LUC
in Xinjiang?

(2) If thresholds exist, how can we effectively identify them?
(3) How can the defined thresholds be used practically for land management zoning?

2. Theoretical Framework

2.1. Threshold Analysis of Drivers of Land-Use Conflicts (LUCs)

From a general understanding, assuming no human intervention, nature will form
an orderly natural pattern and maintain the relative stability of the ecosystem [38]. When
human development is taken into account, the initial natural pattern often fails to meet
human demand for production and living space, and human beings are bound to carry out
long-term and cyclical management and governance activities on land in accordance with
a certain pursuit of interests and development goals, forming land-use behavior [40]. With
the concentration of population and industry in a given area, the entire layout of natural
ecosystems is often disrupted by the intrusion of human activities, including the expansion
of land for construction and agriculture and a reduction in ecological land. Furthermore,
the increasing frequency of land development intensifies the conflict in land utilization.
It has been found that human activities have both positive and negative impacts on land
resources [41,42]. Since the 1980s, the concept of sustainable development has gradually
spread globally, and people have begun to take action to protect the ecological environ-
ment. Consequently, by considering their available resources and development objectives,
LUCs are continuously mitigated, ultimately giving rise to a spatial arrangement of land
utilization that aligns with the local natural resources and socio-economic conditions.

The emergence and progression of LUCs stem from the interplay of multidimensional
endogenous and exogenous factors, with the natural environment and human activities
as primary components [24]. On one hand, land resources, influenced by their inherent
conditions such as topography, distinct spatial characteristics (e.g., parcel geometry, etc.),
and their own physical conditions (soil texture, etc.), as well as unexpected changes in
LUCs due to sea level fluctuations triggered by climate change and natural disasters like
heavy rainfall and drought disrupt the harmony of the LUC structure, consequently incit-
ing and intensifying LUCs [43,44]. On the other hand, LUCs are closely linked to human
factors. Previous research indicates that population growth and associated demands are
primary drivers of conflict development [11,13,19,45]. Conflicts often arise from overlap-
ping interests among land-use stakeholders due to individual and collective behavior traits,
resulting in land-use goal conflicts [20,21]. Cultural differences, diverse political viewpoints
within communities, and variations in education levels may also exacerbate LUCs [46].
Urbanization, as a core process in contemporary socioeconomic development, profoundly
influences LUCs. Disorderly urban expansion, accelerated reduction in agricultural land,
and deterioration of land ecological environments contribute to a decrease in arable land
quantity and quality, land degradation, sudden changes in land use, and increased like-
lihood of conflict occurrence. In summary, the root cause of LUC lies in the imbalance
between human–land relationships, resulting from the escalating demand for limited land
resources, structural and elemental contradictions formed by spatial competition, and
interactions among natural ecological processes, human activities, and different land-use
practices [47]. Natural conditions determine the bottom line of LUC intensity, and human
factors determine the upper limit of conflict intensity [24]. Based on this, we make an
assumption that there are thresholds for the drivers of LUC, and the thresholds of natural
drivers are called natural thresholds, and the thresholds of anthropogenic drivers are called
anthropogenic thresholds. When the natural threshold and the anthropogenic threshold
intersect at a certain point, there will be a turning point in the evolution of LUC; this pivotal
moment marks a shift in the impact of human activities on land use, with a transition from
negative to positive impacts. In addition, land-use patterns have experienced a shift from

36



Land 2024, 13, 612

structural imbalance to pattern optimization [18]. Simultaneously, the dynamic between
individuals and the land experiences a transition from a state characterized by LUC to a
state of coordination (Figure 1a).

Figure 1. Theoretical analysis and the four-quadrant diagram approach. (a) Macroscopic evolution of
temporal dimension; (b) types of optimized zoning in the spatial dimension.

2.2. Threshold Application of Drivers of LUC

The evolution of LUC is a dynamic process, and the overall parabola shows an
inverted “U-shape”, which is in line with the characteristics of the conflict curve model [48]
(Figure 1a). With the passage of time, when the conflict breaks through the critical value of
the controllable level, the invisible conflict will be transformed into an open conflict, and all
kinds of conflict problems are becoming more and more prominent, and the controllability
level of the conflict can be categorized into four levels, namely, stable and controllable,
basically controllable, basically out of control, and seriously out of control [49]. In the stable
and controllable stage, regional development will not suffer from LUC. With the gradual
escalation of the conflict, the intensity of its role is increasing, and it begins to gradually
affect the sustainable coordination of the region, and the conflict is upgraded to the basic
controllable level, but its negative effects are not yet obvious, and this stage is the most
critical period for the regulation of the conflict. When the conflict breaks through the critical
value of the controllable level, the stability of the region begins to be broken, the conflict
develops to the basic uncontrolled level, and the impact effect of the conflict tends to be
unstable, with all kinds of conflict problems becoming more and more prominent. If the
conflict further deteriorates, the negative effects of the conflict will have a great impact
on regional development, and if favorable measures are not taken to curb the conflict at
this time, the critical value of the regional crisis will be broken, and regional development
will be imbalanced, and the conflict will rise to the level of serious out of control, and the
conflict will completely break out [25]. After the outbreak of the conflict, all stakeholders
will be harmed to different degrees, and all kinds of compulsory regulatory measures begin
to intervene to curb the adverse effects of spatial conflict, and then gradually resolve the
conflict, so that the regional development is able to restore stability [3,10,11]. From the
analysis of the conflict curve model, different conflict control strategies should be adopted
at different stages of conflict development, and the latent stage is an important stage of
spatial conflict control, where efforts should be made to maintain the level of spatial conflict
at a controllable level in order to avoid regional imbalance.

In view of this, in order to identify the inflection point of the dynamic evolution of
LUC under the influence of anthropogenic and natural factors on the inverted “U” curve in
a specific region, and the role of this inflection point in the regulation of LUC, we drew a
four-quadrant map using the identified critical threshold as the origin, natural conditions
as the horizontal coordinates, and anthropogenic influences as the vertical coordinates.
We drew a four-quadrant diagram from the perspective of the dynamic evolution of

37



Land 2024, 13, 612

LUC, taking the identified critical threshold as the origin, the natural conditions as the
horizontal coordinate, and the anthropogenic influences as the vertical coordinate. Since
the background conditions of the natural environment are the result of the long-term and
stable formation of nature, while the anthropogenic factors can be changed through policy
guidance and human behavior, the anthropogenic factors are more controllable than the
natural conditions. Combining the identification results of natural and anthropogenic
thresholds, the land-use pattern can be classified into four categories based on the four-
quadrant method, and corresponding regulatory measures can be taken (Figure 1b).

(Natural threshold, Anthropogenic threshold)

=

⎧⎪⎪⎨
⎪⎪⎩
(+,+), first quadrant, key control area
(−,+), second quadrant, urgent remediation area
(−,−), third quadrant, elastic development zone
(+,−), fourth quadrant, moderate optimization zone

Quadrant I is the area that exceeds the natural and anthropogenic thresholds, where
the risk of conflict is serious and timely intervention is needed to contain the adverse effects
of the conflict, which is defined as the key control area. Quadrant II is the area that does not
exceed the natural thresholds, but exceeds the anthropogenic thresholds, where favorable
measures are needed to contain the conflict, which is defined as the urgent remediation area.
Quadrant III is an area that has not exceeded the natural and anthropogenic thresholds, and
the land pattern remains stable, and is defined as elastic development zone. Quadrant IV is
an area that has exceeded the natural thresholds but has not exceeded the anthropogenic
thresholds, and the conflict has escalated to a basically controllable level due to the restricted
natural conditions of the region’s background, but its negative effects are not yet obvious,
and can be appropriately controlled. Negative effects are not yet obvious, and human
development activities can be moderately optimized. This stage is the most critical period
for conflict regulation, and this zone is defined as the moderate optimization zone (Note:
When spatial overlap occurs, the higher the risk, the more attention should be paid to the
overlapping area, and the overlapping area is defined as the priority control area, such
as the moderate optimization zone and urgent remediation zone overlapping with the
urgent remediation zone, thus the overlapping zone is preferentially defined as the urgent
remediation zone). Here, Quadrant III and Quadrant IV are considered sustainable, while
Quadrant I and Quadrant II are unsustainable and need to be controlled and optimized
in time.

3. Materials and Methods

3.1. Study Area

Xinjiang (73◦40′ E–96◦23′ E, 34◦25′ N–49◦10′ N) is located on China’s northwestern
border and shares borders with China’s provinces, namely Tibet, Qinghai, and Gansu, in
addition to eight neighboring countries: Russia, India, Kazakhstan, Mongolia, Tajikistan,
Pakistan, Afghanistan, and Kyrgyzstan. This vast province covers an expansive area of
approximately 166.49 × 104 square kilometers, which represents about one-sixth of China’s
total land area. Consequently, Xinjiang stands as the largest province in China, character-
ized by its extensive land borders and its diverse range of neighboring countries (Figure 2).
Xinjiang boasts a distinctive mountain and basin landscape, characterized by what can
be described as a three mountain peaks and two basins’ topography. This geographic
configuration includes the Altai Mountains, Junggar Basin, Tianshan Mountains, Tarim
Basin, and Kunlun Mountains, listed in descending order of prominence. Xinjiang’s geo-
graphical location, distant from the sea and surrounded by mountains, poses a challenge
for oceanic air currents to reach the region. This results in an average annual precipitation
of merely 130 mm, while annual evaporation surpasses 1000 mm [50]. This climatic condi-
tion characterizes Xinjiang as a typical arid and semi-arid region, fraught with ecological
and environmental issues, including drought, soil erosion, and land desertification. Over
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the past two decades, Xinjiang has witnessed significant changes in Land Use and Land
Cover (LULC) due to the intensification of human activities [51,52]. The ecological environ-
ment can face significant pressure due to the unsustainable development of land [53]. As
Xinjiang experiences rapid urbanization, there is a rapid expansion of construction land,
accompanied by a gradual decline in grassland area [54]. The expanding built-up area and
the increasing conflicts between various land-use types introduce substantial stress and
challenges to regional land use, ultimately posing a severe threat to the sustainable develop-
ment of socio-economic elements in the region. In addition, Xinjiang, an autonomous region
of the People’s Republic of China, has historically been a multi-ethnic region with unique
strategic significance and challenges. Previous studies have indicated that such borderland
regions, due to facing multiple “border exclusion” predicaments [55], exhibit relatively
complex land-use conflict issues, making them focal areas of spatial governance disorder
and spatial contradictions [56]. Therefore, conducting research on land-use conflicts in
Xinjiang is of paramount importance for comprehensive regional land management.

Figure 2. Study area. (a) Geographical location of Xinjiang in China; (b) elevation distribution;
(c) land-use types in 2020.

3.2. Research Framework

This study mainly includes four main steps in Figure 3: (1) Diagnosing LUC intensity.
Constructing LUC measurements by utilizing the risk source–risk receptor–risk effect theory.
(2) Correlation analysis. Correlation analysis and curve fitting are utilized to identify the
main drivers and drivers with nonlinear relationships. (3) Threshold identification. Natural
factor thresholds and human factor thresholds affecting LUC are identified separately by
RCS regression. (4) Threshold application. The intersection area identified by the natural
and anthropogenic threshold conditions is delineated as potential high-risk areas of land
use and is discussed in relation to zoning of land-use patterns.
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Figure 3. The research framework.

3.3. Data Processing

In terms of their mode and intensity of influence, natural factors represent long-term
influencing factors in the formation of LUCs [17,47], whereas human factors exhibit a
more pronounced impact on regional land-use conflicts in the short term and at large
spatial scales [53,57], with the policy and institutional environment demonstrating indi-
rect and dependent characteristics in its influence on LUCs [22,23]. Drawing on relevant
studies [11,19,25,29,44,54], and based on the theoretical framework outlined in Section 2
and data availability, a total of seven natural drivers and seven anthropogenic drivers
were selected, all of which are theoretically and empirically known to influence LUCs [24].
Natural drivers include elevation (abbreviated as ELE), slope (abbreviated as SLO), temper-
ature (abbreviated as TEM), precipitation (abbreviated as PRE), evaporation (abbreviated
as EVA), soil erosion (abbreviated as SE), and distance from water systems (abbreviated
as Water). Anthropogenic drivers included human influence index (abbreviated as HII),
human footprint (abbreviated as HF), GDP, population (abbreviated as POP), distance from
roads (abbreviated as Road), distance from railroads (abbreviated as Rail), and distance
from residents (abbreviated as Resident). The specifics of the data are outlined in Table 1.
All data underwent rigorous preprocessing, with spatialization conducted for metrics such
as GDP and POP using ArcGIS software.

Table 1. Overview of the data, resolution, and data source.

Date Resolution Source

Xinjiang administrative
boundaries -

China National Geographic Information
Directory Service

http://www.webmap.cn
(accessed on 1 September 2023)

Road network - https://www.openstreetmap.org
(accessed on 1 September 2023)water -
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Table 1. Cont.

Date Resolution Source

Land-use data 30 m

Resource and Environmental Science Data
Center of the Chinese Academy of Sciences

http://www.resdc.cn
(accessed on 1 September 2023)

Precipitation 1 km
Evaporation 1 km
Temperature 1 km
Soil erosion 1 km

Population data 1 km
GDP data 1 km
DEM data 1 km

Human influence index 1 km Socio-economic data and application center
https://sedac.ciesin.columbia.edu

(accessed on 1 September 2023)
Human footprint 1 km

3.4. Evaluation Model for LUC

In accordance with the theory of human–land relationship, the issue of LUC emerges
as a spatial competition and a clash of rights and interests between people and land. The
resulting imbalance in land-use pattern and spatial relationship is a crucial reflection
of the level of coordination within the human–land system [18]. Although the essence
of the conflict lies in the interest game of many subjects, it is an objective geographical
phenomenon manifested by conflicting elements (the contradiction between the quantity of
land-use allocation and the allocation structure). In this paper, an ecological risk evaluation
model was established to measure the LUC. This model is grounded in the conceptual
framework of ecological risk assessment and incorporates key principles from landscape
ecology [19,49]. The complexity index, vulnerability index, and fragmentation index of
the landscape were used as three indicators reflecting the risk sources, risk receptors, and
risk effects in ecological risk, respectively, and thus diagnosing the intensity of LUC. We
chose to select this model because it treats land use as a complex system including natural
geosystems and socioeconomics, which allows us to analyze the causal relationships among
the elements affecting the system [58], while the results of this study can be presented in
more detail at the grid scale.

3.4.1. Risk Sources

Landscape complexity is a vital risk source (S) indicator, gauging the extent of neigh-
boring landscapes to the target landscape unit. It is defined by the area-weighted average
patch fractal index, expressed by the following formula:

S = CI =
m

∑
i=1

n

∑
j=1

[
2ln
(
0.25pij

)
ln
(
aij
) ( aij

A

)]
(1)

where CI is the complex index; pij signifies the patch perimeter; aij represents the patch
area; and A stands for the total landscape area. This index has been shown to be effec-
tive in describing the degree of anthropogenic disturbance in the context of landscape
pattern complexity [59]. The index has proved to be effective to describe the complex-
ity of landscape pattern under human disturbances [36]. A larger value often indicates
more complex landscape patterns, and more intense land-use conflict interfered by human
activities [10,48].

3.4.2. Risk Receptors

The landscape vulnerability reflects the risk receptors (R), and is used to describe the
capability of land system to external disturbances. It is often intricately linked to land use.
Based on prior research and data [60], the vulnerability of land-use types was determined
by considering the natural characteristics and diversion rates in Xinjiang from 2000 to 2020.
Specifically, the diversion rates of cropland, woodland, grassland, water, construction land,
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and unused land during the study period were 0.52%, 0.28%, 0.01%, 0.33%, 1.07%, and
0.02%, respectively. The vulnerability scores order of landscape types in this study, from
weak to strong, was as follows: grassland, unused land, woodland, water, cropland, and
construction land. Then, we calculated the landscape vulnerability using the following
formula [10,11]:

R = VI =
n

∑
i=1

Fi × ai
S

(2)

where VI is the vulnerability index, Fi represents the vulnerability score of land-use type
i, ai stands for the area of land-use type i, and S indicates the total area. In our research,
a high vulnerability score of an assessment unit indicated the weaker ability of land-use
structure to resist human disturbances, and then LUC tends to be more intense.

3.4.3. Risk Effects

The landscape fragmentation, an indicator of the risk response (E), reflects how spatial
units react to disturbances such as urbanization and land reclamation. The more fragmented
landscape suggests high competition among different land-use stakeholders and intense
LUC. Here we characterized landscape fragmentation with patch density which was
calculated as shown below:

E = FI =
ni
Ai

(3)

where FI is the fragmentation index, ni stands for the number of patches in landscape unit
i, and A represents the area of the landscape unit. The higher the index value, the more
fragmented the landscape. The fragmented land-use structure often indicates the lack of
land-use stability, which tends to increase land-use conflict.

3.4.4. Land-Use Conflict Index

The intensity of the LUC is characterized using the land-use conflict index (LUCI),
which is calculated by summing the risk source, risk receptor, and risk response using the
following formula:

LUCI = S + R + E (4)

Considering the scale of the study area and data accessibility, by comparing the
scale effects of 6 km, 8 km, and 10 km, conflict effects were most fully and effectively
demonstrated at the 8 km scale. Therefore, we finally selected the 8 km fishing net as
the basic spatial analysis unit, and set the image size of all raster data to 8 km × 8 km,
resulting in a division of the study area into a total of 26,062 grids. In addition, all three
indicators and the final calculated LUC were normalized to the range of 0 to 1 in order to
allow aggregation of the indicators. Larger index indicates more intense LUC.

3.5. Correlation Analysis of Drivers

The strength of the correlation between LUC and drivers was tested by the Pearson
correlation coefficient (r). To determine whether there is a threshold between the response
variable (LUC) and the independent variable (driver) and what the threshold is, we con-
structed a correlation analysis between the response variable and the independent variable
based on a scattered point cloud. To minimize the effect of outliers [61], we applied a local
density-based approach to detect and eliminate them [62]. Subsequently, the potential
relationship between LUC and drivers was analyzed by performing curve fitting, focusing
on optimizing the regression model’s performance (p < 0.05). Curve-fitting analysis is a
powerful tool for representing the nonlinear relationship of variables and gaining insights
into their intrinsic links [63].

3.6. Threshold Recognition and Detection

In addressing the non-linear association between independent and dependent vari-
ables, we employ restricted cubic spline (RCS) for the purpose of characterizing this intricate
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relationship and ascertaining potential thresholds [64,65]. To maintain a smooth curve,
these splines, resembling segmented polynomials, must be continuous and exhibit second-
order differentiability at each threshold point [66]. The conditions under which splines are
applicable include the following: (1) the relationship between the data x and y does not
satisfy the linear or generalized linear premise; (2) the data multivariate regression R2 is
low; and (3) the trend changes significantly before and after a knot. RCS conforms to the
spline function, RCS (X), which renders a smooth curve of a continuous variable, X, over
the entire range of values by choosing the location and number of nodes. When visualizing
curvilinear relationships using RCS, it is essential to set the number and position of the
spline function nodes. Typically, the placement of nodes exerts minimal influence on the fit
of the restricted cubic spline, whereas the number of nodes determines the curve’s shape
and quantity [67]. In our study, we determined the number of nodes for variable X after
evaluating different options. We performed RCS regression analysis using R software,
version 4.2.2, along with the use of rms package [68] and MSTATA software.

3.7. Four-Quadrant Method

The four-quadrant method, also known as the two-dimensional quadrant method,
is a time management theory proposed by Stephen R. Covey, an American management
scientist. In the process of analysis, the evaluation unit is analyzed and weighed by two
attributes, and then the evaluation unit is filled into each quadrant box one by one, and
finally the four quadrants are sorted according to different goal orientation.

3.8. Threshold Application

Thresholds were determined by constructing an RCS between the drivers and LUC.
Most of the drivers can cause the LUC maximally within specific ranges. LUC intensity
remained consistently high within these threshold limits. Drawing upon the results of
threshold identification for both LUC and driver factors, the four-quadrant method was
used to combine the threshold values to determine the partition of LUC.

4. Results

4.1. Spatial-Temporal Patterns of LUC

From 2000 to 2020, landscape complexity in Xinjiang shows a trend of first decreasing
and then increasing, with CI having increased by 0.1353% overall (Table 2). The spatial CI
distribution of different regions in 2000 shows that high-value areas are near the northern
slope of Tianshan Mountain city cluster, the southern Xinjiang city cluster, and the core
urban areas of various cities. Conversely, the low-value CI areas are distributed in the Tarim
Basin in the south of Xinjiang, the Junggar Basin in the north of Xinjiang, and the eastern
region, which includes the three major deserts of Xinjiang, namely Gurbantunggut Desert,
Taklamakan Desert, and Kumutage Desert (Figure 4a1). In 2020, the distribution pattern
of CI high-value areas is basically the same as that in 2000, and they are concentrated
in the central region of Xinjiang, with dense distribution of construction land and large
population, industry, and human disturbance (Figure 4a3). Analyzing the trends over
the past two decades, counties experiencing increased CI value are mainly located in the
built-up areas around the three mountains, the areas with decreased CI value are mainly
scattered in the areas with increased CI value, and the CI value remains unchanged in the
desert areas near the Tarim Basin and Junge Basin. In general, the spatial complexity of
Xinjiang in the past two decades shows the characteristics of higher spatial pattern around
three mountains and lower spatial pattern around two basins.
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Table 2. Index value of land-use conflicts (LUCs) in Xinjiang from 2000 to 2020.

Year Risk Sources (S)
Risk Receptors

(R)
Risk Effects (E)

Land-Use Conflicts
Index (LUCI)

2000 1.0344 0.3537 0.9793 2.3673

2010 1.0352 0.3142 0.9782 2.3276

2020 1.0358 0.3178 0.9779 2.3315

2000–2020 0.1353% ↑ 0.1498% ↓ 0.1430% ↑ 1.5123% ↓
(Note: “↑ “represents increases, “↓ “represents decreases).

Figure 4. The spatial distribution of land-use conflicts (LUCs) from 2000 to 2020. (a1–a3) Risk sources
(S); (b1–b3) risk receptors (R); (c1–c3) risk effects (E); (d1–d3) land-use conflicts index (LUCI).

From 2000 to 2020, landscape vulnerability in Xinjiang also shows a trend of first
decreasing and then increasing, with VI having been down 0.1498% overall (Table 2).
The spatial distribution of the fragility of the land system shows that the distribution of
vulnerability in the recent 20 years has exhibited a consistent pattern, characterized by
higher values in the northwest and lower values in the southeast. The VI high-value
areas in both 2000 and 2020 are concentrated in the centers of cities in various states,
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and the vulnerability in 2020 is significantly higher than in 2000. Low-value areas of VI
were distributed in Hami City, Turpan City, and Bayingol Mongol Autonomous Prefecture
(Figure 4b1–b3). From the trend change in the past 20 years, we have noted increased VI in
many districts and counties across Xinjiang, mainly situated along the urban development
axis, such as the Urumqi–Altai development axis, the Lanzhou–Xin Line development
axis, the southern Xinjiang railway development axis, and the Kashi–Hotan–Ruoqiang
development axis. As a result, production and living space encroachment on ecological
space and agricultural space leads to a gradual increase in the landscape vulnerability.

The spatial distribution of landscape fragmentation reveals a consistent pattern over
the past two decades, with the high-value and low-value regions exhibiting an inverse
relationship to spatial stability. High FI value areas were primarily situated in urban
development areas in central, northern, and southern Xinjiang (Figure 4c1), while areas with
low FI value were predominantly found in Tarim Basin in southern Xinjiang, Junggar Basin
in northern Xinjiang, and desert areas in eastern Xinjiang (Figure 4c3). The FI value was
related to the fragmentation degree of landscape patches, and increased human activities
tend to elevate this fragmentation degree, leading to a decrease in stability. According to
the trend of change in the past two decades, counties witnessing an increase in FI values
primarily clustered around the three mountains, exhibiting a trend analogous to the changes
observed in CI values. Meanwhile, landscape fragmentation remained relatively constant
in the desert areas near the Tarim Basin and the Junge Basin.

From 2000 to 2020, the spatial distribution patterns of landscape complexity and frag-
mentation in Xinjiang were basically consistent (Figure 4a1–a3,c1–c3). Regions with higher
levels of human activity exhibited greater patch fragmentation consistent with previous
spatial analysis. High-value areas of LUC are distributed on a certain scale in the northern,
central, and southern parts of Xinjiang, mainly in the oasis areas near the Altai Mountains,
Tian Shan, and Kunlun Mountains. In contrast, low-value regions are primarily found near
the Junggar Basin and Tarim Basin, resulting in a clear spatial distribution pattern that
extends from northwest to southeast. The distribution of landscape vulnerability followed
a similar pattern, with high-value regions clustering near the urban agglomeration in the
northern slope of the Tianshan Mountain and the northern and southern Tarim Basin, while
the low-value regions were scattered around the three mountains (Figure 4b1–b3).

The assessment of LUC in Xinjiang was conducted through a comprehensive approach
involving the integration of complexity, vulnerability, and landscape fragmentation indices.
By applying the natural break point method, supported by ArcGIS, the study area was
categorized into mild conflicts area, moderate conflicts area, intense conflicts area, and
severe conflicts area. The average LUC values of Xinjiang in 2000, 2010, and 2020 were
2.3673, 2.3276, and 2.3315, respectively, reflecting an overarching declining trend, with LUCI
as a whole down 1.5123% (Table 2). The area of mild conflicts increased from 13.58% in 2000
to 14.35% in 2020, and the area of intense and above conflict areas decreased from 70.59%
in 2000 to 69.74% in 2020, indicating that Xinjiang has embarked on addressing the issue
of LUC over the past two decades, implementing effective mitigation measures. Severe
conflict areas in Xinjiang were primarily distributed in the oasis areas along the northern
foothills of the Tianshan Mountains and at the northern edge of the Tarim Basin during the
study period. In contrast, intense conflict areas were prevalent in the vicinity of the Junggar
Basin, Tarim Basin, and Tuha Basin, attributed to their relative landscape vulnerability
despite lower levels of anthropogenic impact. Meanwhile, mild and moderate conflict
areas were dispersed across regions marked by high-covered grasslands and woodlands
surrounding the three mountains (Figure 4d1–d3). In general, from 2000 to 2020, the LUC
in Xinjiang presented a spatial pattern of “strong conflicts around the three mountains and
weak conflicts around the two basins”, which was the result of the comprehensive impact
of the regional geographic environment and human activities on the ecosystem.
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4.2. Relationship between LUC and Key Drivers

By employing the Spearman correlation coefficient, we delved into the connection
between LUCs and their driving factors, as illustrated in Figure 5a. As a whole, the
correlation between LUCs and anthropogenic driving factors was stronger than that of
natural driving factors. Notably, significant positive correlations were observed with
POP, HII, HF, and GDP, while there were marked negative correlations with ELE and
SLO. To further examine the degree of fit between LUCs and the drivers, we conducted a
curve-fitting analysis through the mean values of LUCs and the key drivers for 2000, 2010,
and 2020 (Figure 5b1–c7), and the results of the fitted curves showed a potential pattern
between LUCs and the key drivers (p < 0.01). The correlation between LUCs and EVP, ERO,
Water, Rail, Road, and Resident drivers showed a linear monotonic trend. However, not
all relationships between LUCs and other factors were linear and the best-fit curve was
significantly quadratic (p < 0.05). The fitted curves had significant Inverted U or U-shaped
trends alongside monotonic relationships. In the study area, the fitted curves of LUCs
with ELE, SLO, TEM, PRE, HII, and HF all exhibited a U-shaped pattern, whereas the
fitted curves with GDP and POP were an Inverted U. This further indicates a nonlinear
relationship between LUCs and natural and anthropogenic drivers.

Figure 5. Cont.
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Figure 5. (a) Correlation analysis of LUC and its driving factors in Xinjiang from 2000 to 2020;
(b) scatter plots of LUC versus different key drivers (b1–c7). The data used for curve fitting are
averages for 2000, 2010, and 2020.

4.3. Thresholds of LUC
4.3.1. The Natural Key Drivers and Their Thresholds

The combination of LUC and natural driver correlation analysis and curve fitting
showed that LUC had strong correlation with ELE and SLO, some correlation with TEM,
PRE, and EVA climatic factors, and no correlation with distance from water. Figure 4
clearly illustrates that some driving factors have relatively small R2 values, such as
distance to water, distance to rail, and distance to resident (R2 < 0.01). In our study,
considering the suitability of RCS curves for polynomial regression with low R2 values in
the data [67,68], we ultimately selected natural drivers with relatively good fit (R2 > 0.1)
for RCS curve analysis to identify thresholds. The results show that the intensity of LUC
varies greatly due to different elevations and slopes (Figure 5b1–b7). The smaller the
slope and the flatter the terrain, the more severe the LUC intensity, i.e., low elevation
and low slope areas are the key areas for LUC occurrence. Concerning the specific values
of thresholds, in Xinjiang, areas with ELE < 2845 m and slope < 9◦ tend to have higher
LUC (Figure 6a,b), and the trend of LUC change gradually slows down when ELE and
slope exceed the thresholds.
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Figure 6. Restricted cubic splines for predicted LUC according to driving factors. (a) Elevation;
(b) slope; (c) human impact index; (d) human footprint; (e) GDP; (f) population density.

4.3.2. The Anthropogenic Key Drivers and Their Thresholds

The combination of LUC and anthropogenic driver correlation analysis and curve
fitting unveiled that LUC was positively correlated (albeit somewhat negatively correlated
within the threshold range) with all anthropogenic drivers as a whole (Figure 5c1–c7).
Among them, the highest correlation with LUC is with HII and HF, followed by POP and
GDP, and weakly correlated with the distance to rail, road, and resident. LUC increases
with the intensity of human activities and land-use intensity (Figure 6c–6f). Regarding
the specific values of thresholds, LUC intensity gradually increases when HII exceeds 6
(Figure 6c). The LUC intensity gradually increases when HF exceeds 8 (Figure 6d).The ef-
fects of GDP and POP on the LUC are generally consistent. With the economic development
and population growth, the LUC rises sharply. When GDP exceeds CNY 3482 million/km2,
the intensity of LUC gradually increases (Figure 6e). Although the R2 >0.1 between LUC
and POP, the two did not show a nonlinear relationship, i.e., the P for non-linear was 0.065
(Figure 6f), so the threshold was not significant.

In conclusion, the LUC in Xinjiang shows an environmental gradient effect, and the
analysis of the RCS curve shows that the LUC and the driving factors such as ELE, SLO,
HII, and HF show a “U-shaped” trend. With the increase in the driving altitude, the trend
is decreasing and then increasing, but when the ELE exceeds 2845 m and the slope reaches
about 9◦, the increasing trend gradually slows down. From the relationship between LUC
and HII and HF, LUC increases slowly at the beginning, but when HII exceeds 6 and HF
exceeds 8, the increase speed is gradually accelerated. The LUC and GDP are in “L-shape”,
and when GDP exceeds CNY 3482 million/km2, the LUC rises sharply.

4.4. Zoning of Land-Use Patterns Identified by Thresholds

Utilizing the identified thresholds, areas characterized by ELE ≤ 2845 m, Slope ≤ 9◦,
HII ≥ 6, HF ≥ 8, and GDP ≥ CNY 3482 million/km2 were identified as potentially high-risk
areas of land use (Table 3). Figure 7a,b show the spatial distribution of areas in Xinjiang
that exceed the natural and anthropogenic thresholds for LUC, respectively. The natural
thresholds for LUC are exceeded in most regions of Xinjiang, except for the central and
southern fringe regions, which account for about 70% of the area of Xinjiang. The area
exceeding the anthropogenic threshold for LUC accounts for about 12% of the area of
Xinjiang, mainly distributed in the built-up areas of the four prefectures in the center and
south. According to the four-quadrant diagram of Figure 1b, these threshold combina-
tions were classified, and the resulting land-optimization zoning is shown in Figure 7c.
Quantitatively (Figure 7d), the area ratio of moderate optimization zone is the largest,
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followed by elastic development zone, and the area ratio of urgent remediation area is the
smallest; the key control area is the one that exceeds both the natural threshold and the
anthropogenic threshold determined by the intersection area, with a cumulative area of
172,800 km2, equivalent to about 10% of Xinjiang. In terms of spatial distribution, the key
control area is mainly distributed in urban agglomeration in the northern slope of Tian-
shan Mountains and the agricultural development belt on the southern slope of Tianshan
Mountain, including Urumqi metropolitan area, Kashgar urban area, Ili River Valley, Aksu
Prefecture, etc., which are densely populated areas in Xinjiang where economic and social
development are more centralized, these areas are all densely populated areas with more
concentrated economic and social development in Xinjiang. The urgent remediation area
is mainly distributed in the central cities of Xinjiang, such as Urumqi City, Khorgos City,
Hami City, Kuqa county, etc. And the elastic development zone is mainly distributed in the
fringe areas in the central and southern parts of Xinjiang, including the Altai Mountains,
Tian Shan mountains, and Kunlun mountains, which are the three main areas of Xinjiang.
The elastic development area is mainly distributed in the edge area of central and southern
Xinjiang, including the Altai Mountains, Tian Shan mountains, and Kunlun mountains.
The moderate optimization zone is mainly distributed around Junggar Basin, Turpan-Hami
Basin, and Tarim Basin.

Table 3. Natural and anthropogenic thresholds used for identifying areas with potential high land-
use risk.

Type Drivers Used Thresholds

Natural
Elevation (m) ≤-2845

Slope (◦) ≤9

Anthropogenic
Human influence index ≥6

Human footprint ≥8
GDP (million yuan/km2) ≥3482

Figure 7. The potential LUC areas that are identified by threshold and pattern zoning. (a) Natural
threshold; (b) anthropogenic threshold; (c) zoning of LUC pattern; (d) area and proportion.
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5. Discussion

5.1. Critical Thresholds between LUC and Drivers

Our study provided a comprehensive analysis of the threshold identification of natural
and anthropogenic drivers on the LUCs in Xinjiang, China. Overall, among the selected
14 drivers, factors such as elevation, human influence index, and human footprint were
found to have significant impacts on LUCs, while factors like distance to water, resident,
and rail had relatively smaller impacts. However, due to the regional variability of LUC,
the influence of these drivers may vary across different areas [48,58]. This study shows that
by considering these factors and using RCS, it is possible to determine thresholds between
the various drivers of LUCs, substantiating the validity of the hypothesis proposed in
Section 2.1. Within our investigation, we found the presence of pivotal impact thresholds
among these drivers. Notably, the RCS spline function plot shows that, in terms of natural
drivers, LUCs exhibit a decline as terrain slope increases, with the acceleration of LUCs
subsiding when the ELE exceeds 2845 m and the slope reaches about 9◦ above; the increase
in LUCs gradually slows down. This phenomenon may be explained by the fact that
the oasis plain in the center concentrates most of the cropland and construction land
in the study area, which is characterized by flatter terrain and relatively abundant water
resources. The high coverage rate of cultivated land and the rapid expansion of construction
land in this area inevitably contribute to a higher likelihood of LUCs. Consequently,
the distinctive geomorphological characteristics of the study area play a crucial role in
shaping the spatial pattern of LUCs, aligning with previous findings that highlight the
significant negative influence of ELE on LUCs, with higher elevations corresponding to
reduced intensity [19]. The preference for lower, flatter locales for urban development,
industrial expansion, and agricultural utilization amplifies the demand for diverse land-use
types, thereby compounding the challenges posed by LUCs in these areas [69]. Regarding
anthropogenic drivers, LUCs increase with the increase in human influence, and gradually
rise when HII exceeds 6, HF exceeds 8, and GDP exceeds CNY 3482 million/km2. These
findings are consistent with prior research demonstrating the positive correlation between
population density and LUCs [70]. Furthermore, they support that social advancement
contributes to the encroachment of land-use types [71]. Regions exhibiting high land-use
change correspond to areas of intensified LUCs, a consequence of elevated human activities
that induce significant fragmentation of landscape patches and pattern instability. These
outcomes align with the conclusions of previous studies [9]. We also found that the risk of
LUC is more pronounced in northern Xinjiang than in its southern counterpart. This is likely
due to the substantial growth in regional economic co-operation over the past two decades,
predominantly concentrated in the northern areas [72]. The rapid economic growth in
the north has led to an increase in population and land for construction, accelerating
the urbanization process. This, in turn, has resulted in the appropriation of the regional
ecological land, thus exacerbating LUCs. In contrast, southern Xinjiang, characterized by
challenging natural conditions and slower economic development, exhibits a relatively
lower risk of LUCs. Once again, it shows that the spatial pattern of LUC is the result of a
combination of natural and socio-economic factors, consistent with previous research [73].
Therefore, there is an imperative need to comprehensively consider the combination of
multiple thresholds when delineating potential conflicts areas of land use. Therefore, we
use RCS to explore the nonlinear characteristics of LUC in this paper, which can better
reflect its nonlinear relationship and provide a new perspective for the previous research
on the driving factors of LUC.

5.2. Optimal Zoning of Land-Use Pattern

In this study, a threshold detection method was employed to identify potential high-
risk areas of land-use conflicts (LUCs), where changes in LUC intensity occur only when
driving factors reach specific thresholds. Our threshold identification method, incorpo-
rating multiple natural and anthropogenic thresholds, effectively captures the dynamic
processes of natural and anthropogenic drivers on LUC. To further validate the effective-
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ness of applying LUC thresholds, we compared the optimized land-use pattern zoning
map (Figure 6d) with Xinjiang Uygur Autonomous Region Territorial Spatial Planning
(2021–2035). As a guideline for national spatial development and a blueprint for sustainable
development, the land spatial planning strictly adheres to the principles of the “Three zones
and Three lines” (Three Zones represent ecological space, agricultural space, and urban
space; Three Lines represent ecological conservation redline, permanent capital farmland,
and urban development boundary) [53], aiming to rationalize land resource allocation, meet
diverse human needs, and mitigate land-use conflicts. The comparison results demonstrate
a high degree of consistency between the land-use pattern delineated by conflict thresholds
and the land spatial development and protection pattern and “Three zones and Three
lines.” On one hand, the zoning pattern aligns closely with the overall pattern of “two belts,
two rings, and three barriers”. For instance, the “two belts” (agricultural development
belts on the northern and southern slopes of the Tianshan Mountains) correspond to Key
Control Areas, the “two rings” (two oasis ecological rings distributed along the Tarim
Basin and Junggar Basin) correspond to Moderate Optimization Zones, and the “three
barriers “ (ecological barriers formed by the Altai Mountains, Tianshan Mountains, and
Kunlun Mountains–Alataw Mountains) correspond to Elastic Development Zones. Addi-
tionally, Urgent Remediation Areas are primarily located within the planned urban centers,
such as the central city of Urumqi and the sub-central city of Yining. On the other hand,
overlaying the “three control lines” on the optimized land-use zoning map (Figure 6d)
reveals extensive permanent basic farmland in Key Control Areas, where land-use conflicts
primarily stem from competition between residential and agricultural land uses. Urgent
Remediation Areas encompass most urban development boundaries, highlighting the
conflict between human land demand and baseline constraints, necessitating urgent recti-
fication. Elastic Development Zones contain large areas of ecological protection redlines,
with concentrated distribution of woodland, grassland, and other ecological lands, posing
relatively low risks of land-use conflicts and thus conducive to flexible development. In
summary, the comparison with existing planning demonstrates the scientific validity of the
land-use pattern optimization zoning based on thresholds. Moreover, this zoning approach
complements planning schemes, particularly facilitating the validation or optimization of
delineation outcomes.

5.3. Recommendations for Mitigating LUC through Pattern Zoning

Identifying potential high-risk areas becomes crucial for effectively warning against
LUC and enabling decision makers to preemptively address risks. However, the geographi-
cal variations in the extent of LUC necessitate the implementation of differentiated policies
and measures for land-use planning and management in Xinjiang. This targeted approach
aims to address conflicts effectively and promote sustainable regional development. Based
on the outcomes of the four types of zoning for land-use pattern optimization (Figure 8) and
in alignment with current regional planning, the following recommendations are proposed:

(1) Key control area. The optimization suggestion for this region is a focus on con-
trol, emphasizing the need to reasonably manage city scale, promote the consolidation of
inefficient construction land, enhance construction land-use efficiency, and optimize the
spatial layout within the national territory. Taking the urban agglomeration in the northern
slope of Tianshan Mountains as an example (Figure 8a), this area plays a pivotal role in
supporting Xinjiang’s economic growth. Policy and financial support should prioritize re-
vitalizing existing land, strictly controlling construction land expansion, and implementing
measures such as renovating the old city and optimizing land layouts in built-up areas.
Simultaneously, strict protection of arable land and permanent basic farmland is crucial to
maintain both quantity and quality.

(2) Urgent regulation area. The optimization suggestion for this region emphasizes the
need for urgent regulation, vigilance against urban sprawl, and rational adjustment of land-
use patterns for living, production, and ecology. Taking the Ili River Valley as an example
(Figure 8b), with the implementation of the “Two Ho and Two yi” integration development
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strategy, the regional population has increased, and the demand for land resources has
increased, especially in Yining City and Horgos City as the two core cities in the region. The
influence of human factors on land-use changes has deepened gradually, and the built-up
areas of the cities will continue to spread outward, encroaching on the agricultural and
ecological land in the vicinity of them. The urban built-up areas will continue to spread and
expand outward, encroaching upon nearby agricultural and ecological land. Consequently,
it becomes imperative to strictly enforce the restriction known as the “Three Zones and
Three Lines” policy, which pertains to ecological, agricultural, and urban functions. The
“three lines” consist of the permanent basic farmland, urban development boundary line,
and ecological protection red line [53], to coordinate the arrangement of the three spaces,
control the scale of urban expansion, reduce the load pressure on the land and ecological
environment caused by overpopulation and overgathering, alleviate the pressure on the
bearing of land resources, and promote the optimal matching of population size, economic
development, and land resources in the region. Simultaneously, it becomes essential to
control the direction of urban expansion and preserve the continuity and integrity of the
remaining natural land. By doing so, the degradation of the ecosystem can be mitigated to
some extent, facilitating sustainable socio-economic development.

(3) Elastic development zone. The optimization proposal for this region is elastic
development, acting as a “blank zone” for transferring excess land-use demand to ensure
regional land space security and stability. Mainly located near ecological barriers such as
the Altai Mountains, Tianshan Mountains, and Kunlun Mountains, this region requires
a stringent ecological protection system. Illustrated by Kashgar Prefecture (Figure 8c),
strengthening ecological construction, protection, and conversion of farmland to forests
can alleviate ecological pressures. This approach supports the development of cities, towns,
and agriculture, maximizing ecological benefits for social and economic advancement.

(4) Moderate optimization zone. The optimization proposal for the land-use pattern
in this region is to moderately optimize, coordinate, and harmonize agricultural land use,
and control and slow down land sanding. This type of zone is predominantly distributed
around Xinjiang’s basins. Taking Bortala Mongol Autonomous Prefecture as an example
(Figure 8d), the region is mainly a large homogeneous territory of arable land and waters,
which can strengthen the development and transformation of barren and unutilized land,
improve the utilization of land resources, and gradually change the land-use mode from
rough to fine. At the same time, the region is an ecological protection zone, so it is necessary
to reasonably avoid permanent basic farmland and the ecological protection red line,
strengthen ecological monitoring, protect and repair ecological corridors, and reduce the
crowding out of ecological and agricultural land by human development activities.

Figure 8. Land-use spatial optimization zone and typical cases in Xinjiang.

52



Land 2024, 13, 612

5.4. Limitations and Future Research Directions

While our study provides novel insights, we acknowledge several limitations that
warrant consideration. Firstly, we evaluated the LUCs using a landscape ecological model,
and although this method is currently a common method for LUC evaluation [25,48,49] and
its effectiveness has been demonstrated by relevant studies [73], the method still has some
limitations. For example, in addition to altering landscape patterns, LUC leads to the gener-
ation of social, economic, and ecological negative effects [3], and it is necessary to consider
multiple dimensions in the assessment of LUCs. Secondly, our focus on constructing corre-
lations between LUCs and the identified 14 drivers, while informative, may not capture
the full array of influences contributing to LUCs. Land suitability, resource scarcity [17],
and socio-economic elements such as urban expansion, policies, and institutions [23] play
crucial roles in shaping LUCs. In Xinjiang, where water resources are intricately linked
to land-use patterns [73], coupled with the region’s developmental complexity and strate-
gic importance, our study, regrettably, did not delve into the impact of water resources,
policies, and historical factors. Additionally, while all driving factors may exhibit linear
relationships with LUCs [26,73], our consideration was limited to nonlinear impacts, which
could potentially affect the research outcomes. Future research endeavors should strive
for a more comprehensive inclusion of these factors, ensuring a holistic understanding
of the key drivers of LUCs in Xinjiang. Moreover, our study, while providing a valuable
perspective on delineating potential LUC areas, does not prescribe specific development
and protection strategies for these identified conflict zones. Addressing this gap requires
refining and expanding our recommendations in future research endeavors. In forthcoming
studies, we plan to explore the nonlinear relationships of additional factors, including
policies, history, and institutions, on LUCs. Our intention is to integrate the thresholds
of both natural and anthropogenic drivers into land-use monitoring practices. By doing
so, we aim to enhance the precision of our control suggestions for potential conflict zones,
contributing to effective mitigation strategies for regional LUCs.

6. Conclusions

In conclusion, this study employed a comprehensive LUC analysis framework and a
threshold application model to quantitatively assess LUCs in Xinjiang, China, spanning
the period from 2000 to 2020. Spatial and temporal patterns of LUCs were analyzed,
and correlation analyses and RCS curves were employed to identify key natural and
anthropogenic drivers as well as critical thresholds affecting LUCs. Incorporating the results
of conflicts threshold recognition, this study applied a four-quadrant method to partition the
LUC pattern. Differentiated land comprehensive regulation strategies were subsequently
proposed based on this partitioning. This study revealed a distinct spatial pattern of
LUCs in Xinjiang, characterized by “strong conflicts around the three mountains and weak
conflicts around the two basins.” Significantly, the extent of LUCs exhibited a noticeable
mitigation trend from 2000 to 2020. The application of RCS proved effective in capturing
the nonlinear effects of both natural and anthropogenic drivers on LUCs, unveiling critical
thresholds such as ELE (2845 m), slope (9◦), human influence index (6), human footprint (8),
and Gross Domestic Product (CNY 3482 million/ km2). Furthermore, based on threshold
recognition results, the land-use pattern in Xinjiang was categorized into key control areas,
urgent remediation areas, elastic development zones, and moderate optimization zones.
Notably, key control areas were predominantly situated in urban agglomeration in the
northern slope of Tianshan Mountains and the south slope of the Tianshan agricultural
development belt, constituting approximately 10% of Xinjiang’s total area. This study
introduces an innovative and pragmatic framework for identifying potential LUC areas,
particularly in response to evolving natural and anthropogenic conditions. The identified
potential LUCs serve as early warning indicators for land-use planning, contribute valuable
information for spatial development initiatives, and guide the comprehensive integration
and zoning of land use in Xinjiang, China.
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Abstract: Arid oasis ecosystems are susceptible and fragile ecosystems on Earth. Studying the
interaction between deserts, oases, and impervious surfaces is an essential breakthrough for the
harmonious and sustainable development of people and land in drylands. Based on gridded data
such as land use and NDVI, this article analyzes the interaction characteristics between oases,
deserts, and impervious surfaces in northern Egypt and examines their dynamics using modeling
and geographic information mapping methods. The results show the following: In terms of the
interaction between deserts and oases, the primary manifestation was the expansion of oases and
the reduction of deserts. During the study period, the oases in the Nile Delta and Fayoum District
increased significantly, with the area of oases in 2020 being 1.19 times the area in 2000, which shows a
clear trend of advance of people and retreat of sand. The interaction between oases and impervious
surfaces was mainly observed in the form of the spread of impervious surfaces on arable land into
oases. During the study period, the area of impervious surfaces increased 2.32 times. The impervious
surface expanded over 1903.70 km2 of arable land, accounting for 66.67% of the expanded area. The
central phenomenon between the impervious surface and the desert was the encroachment of the
covered area of the impervious surface into the desert, especially around the city of Cairo. Population
growth and urbanization are the two central drivers between northern Egypt’s oases, deserts, and
impervious surfaces. The need for increased food production due to population growth has forced
oases to move deeper into the desert, and occupation of arable land due to urbanization has led to
increasing pressure on arable land, creating a pressure-conducting dynamic mechanism. Finally,
countermeasures for sustainable regional development are suggested.

Keywords: desert; oasis; northern Egypt; interaction characterization; dynamical mechanisms

1. Introduction

Oases are natural geographical landscapes found in dry areas around the world. On
a global scale, oases are mainly distributed in the middle and low latitudes controlled
by subtropical high pressure, where there is little rainfall, the climate is dry, and the
habitat is fragile, and it is the world’s leading distribution area of deserts. Since the
1970s, environment and development have become two significant issues of concern to
the international community, and the interrelationship between population, environment,
and development in drylands has received considerable attention [1]. Oasis formation and
desertification are the two most fundamental geographical processes in dryland zones [2].
With a deeper understanding of global terrestrial ecosystems and sustainable development,
land use, and terrestrial desertification in dry areas, the development of oases has received
significant attention from scientists at home and abroad [3]. Oases are mainly the result
of a combination of anthropogenic factors in dry areas disturbed by human activities and
natural factors aimed at increasing the productivity of the land [4]. Oasis formation directly
manifests environmental change in drylands and positively stabilizes oases, preventing
desertification and maintaining ecological stability [5]. Among other things, Sun et al. [6]
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investigated the spatial and temporal patterns, structural changes, and their causes of oases
in the Shule River Basin from 1975 to 2020, based on Landsat series data and a combination
of object-oriented random forests and visual interpretation methods. Sun et al. [7] analyzed
the relationship between the expansion of arable land and the ability of vegetation to
sequester carbon within the oasis, using the Weiku Oasis in Xinjiang as the study area. Liu
et al. [8] used a coupled deep learning model to simulate the value of ecological services in
the Wuwei arid oasis in the next ten years and analyzed the driving factors. The process of
mutual transformation between oasis and desert has essential functions, such as preventing
the spread of deserts, maintaining the ecological security of oases, and occupying a special
status in the dry zone [9,10]. For oases, desertification is characterized by poor water quality,
severe soil salinization, the destruction of vegetation cover, and limitations on ecosystem
productivity [11]. In particular, in the last hundred years, due to the unique water, soil,
and gas conversion processes and the intervention of human activities on the oasis in the
dry zone, the changes in the transition zone between the oasis and the desert have been
particularly highlighted [12]. At the same time, the oasis is the most critical activity site for
human production and life in the dry zone, and human activities disrupt the development
of the oasis to some extent. Some scientists have also conducted extensive research on this
topic, including Yin et al. [13], who analyzed the expansion of construction land in Urumqi,
an oasis city in Li, based on three Landsat remote sensing images from 2000, 2010, and 2018.
Zhang et al. [14] used dynamic change, focal point, and coordination analysis to examine the
relationship between urban expansion and people–land coordination in 13 cities in Xinjiang,
China. Pai et al. [15] selected two typical oasis cities, Urumqi and Kashgar, and studied the
changes between the development of oasis cities and the ecological environment. However,
few scientists have studied the small-scale interaction in typical oasis–desert–impervious
surface systems and their pressure-transmitting dynamic mechanism.

The delta region is a vital oasis ecosystem that provides an essential source of fresh
water and food for a growing population [16]. The Nile Delta and Fayoum District are
typical dry-zone oases that occupy an important position in global oasis research, and
the rich water resources and fertile sediments of the Nile Delta, as well as the favorable
transportation conditions, have had a significant impact on Egypt’s agriculture, economy,
culture and religion [17]. The Nile Delta accounts for only 3% of Egypt’s land area but is
home to more than 90% of Egypt’s population, living in the fertile lands along the Nile and
the Nile Delta, the birthplace of ancient Egyptian civilization [18]. The Nile Delta accounts
for about two-thirds of Egypt’s total arable land, and it is the center of Egypt’s agricultural
production and an area that has been subject to very significant changes due to human
activities [19]. With this in mind, this article analyzes the interaction characteristics of the
oasis–desert–impervious surface system in northern Egypt. It examines the dynamics and
mechanisms using the modeling and geomorphological information mapping methods to
provide a basis for optimizing human–land relationships in drylands and the sustainable
development of the region. The purpose of this study was to (1) characterize the spatial
and temporal evolution of deserts, oases, and impervious surfaces in northern Egypt from
2000 to 2020; (2) analyze the characteristics of deserts, oases, and impervious surfaces
in the northern region of Egypt from 2000 to 2020 using geomorphological information
mapping; and (3) explore the dynamics of oasis–desert–impervious surface interaction in
northern Egypt.

2. Methods and Data

2.1. Study Area

The northern part of Egypt was selected as the study area, which is located between
28◦51′~33◦7′ E longitude and 28◦27′~31◦35′ N latitude (Figure 1). The northern region of
Egypt is mainly dominated by the Nile Delta, characterized by solid sunlight; abundant
water; flat terrain; fertile land; and a Mediterranean climate with hot, dry summers and
mild, rainy winters. Cairo is located in the delta, which has one of Egypt’s highest popula-
tion densities and numbers. The spread of agriculture has not only impacted the Egyptian
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desert, but the eastward expansion of Cairo’s cities has further exacerbated environmental
problems. Many of the Egyptian government’s desert restoration programs have been
implemented over the past 50 years in response to increasing food shortages and urban
population density [20].

Figure 1. Scope of the study area (produced based on the base map of a standard map with the
Remote Sensing and Geographic Information Cloud Service Platform website. (https://engine.piesat.
cn/dataset-list (accessed on 5 December 2023)). No modifications were made to the base map, the
same for maps at the bottom.

2.2. Methodology
2.2.1. Model Analysis Method

(a) Single land use dynamics: Single land use dynamics is the frequency of changes in
land types over time, quantified using land use dynamics [21,22]. The formula is as follows:

N =
Ub − Ua

Ua
× 1

T
× 100%

In the above formula, N is the annual rate of change of a land use type in the study
area, and Ua and Ub are the areas of land use types at the beginning and the end of the
study period; the larger the N is, the more the land type is converted out, and the greater
the relative degree of change is. T is the study period tb − ta in years.

(b) Comprehensive land use dynamics: Comprehensive land use dynamics are used
to reflect changes in the overall land use in the study area [23]. The formula is as follows:

LC =

n
∑

i=1
ΔLUi−k

2
n
∑

i=1
LUi

× 1
T
× 100%

In the above formula, LC is the combined land use dynamics; ΔLUi-j is the absolute
value of the area of land use type I that was converted to land use type j during the study
period; LUi is the area of land use type I in the initial period; T is the study period tb − ta
in years.
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(c) Land use transfer matrix: Land use transfer matrices can not only quantify the
transformation between different land use types but also reveal the rate of transfer between
different land use types [24]. The formula is as follows:

K =

⎡
⎢⎢⎣

S11 S12 · · · S1n
S21 S22 · · · S2n
· · · · · · · · · · · ·
Sn1 Sn2 · · · Snn

⎤
⎥⎥⎦

In the above formula, K is the area of the initial land use type converted to the terminal
land use type; n is the number of land use types; in the transfer matrix, the rows are the
initial land use types, and the columns are the terminal land use types.

2.2.2. Methods for Analyzing Geographical Information Mapping

Geographic information mapping is a geospatial–temporal composite analysis method
that can simultaneously express spatial structural features and practice dynamic changes [25].
The map has the dual nature of graph and spectrum; graphrepresents the spatial location
characteristics, and spectrumrepresents the process change information; the combination
of map and spectrum and analysis can solve the complex problem of spatial and process
integration research. The mapping unit is the basic unit of the geological information
map, which contains information about the spatial variability of geographical units and
phenomena, as well as information about the temporal changes of geographical processes,
and it represents a combination of geographical and temporal units with internal homo-
geneous characteristics [26]. Based on raster data, geographic information system (GIS),
and spatial analysis methods, impervious surfaces and arable land areas in the study area
were extracted, and change information on impervious surfaces and arable land areas
was determined.

2.3. Data Source

The primary data sources used were land use/cover data, digital elevation model
(DEM) data, roads, water systems, etc. (Table 1), and some vector data were obtained
by vectorization based on the literature. Among others, the land use data were derived
from the Global 30 m Land Cover Change Dataset from 1985 to 2020 (GLC_FCS30D) [27],
developed by Liu Liangyun’s group, which has an overall accuracy of 80.88% for land
cover types. Land use types were categorized into arable land, impervious land, sand,
and other land use types based on ArcGIS 10.8 software, which is the version released
in 2020 by ESRI Corporation of United States (Redlands, CA, USA). The space reference
was GCS_WGS_1984.

Table 1. Information about the different types of data used in this study.

Data Name Source Resolution

Land-use/cover change raster data for
2000 and 2020

https://essd.copernicus.org/articles/16/1353/2024/ [27]
(accessed on 28 December 2023) 90 m

Digital elevation model data https://download.gebco.net
(accessed on 31 December 2022) 30 m

Water systems and global continental
boundary data

https://gaohr.win/site/blogs/2017/2017-04-18-GIS-basic-
data-of-China.html

(accessed on 15 April 2024)
1:1,000,000

Normalized difference vegetation index https:/www.earthdata.nasa.gov
(accessed on 16 July 2024) 250 m

Vector data https://engine.piesat.cn/dataset-list
(accessed on 5 December 2023) 1:1,000,000
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3. Results

3.1. Characterization of Oasis–Desert–Impervious Surface Interaction Dynamics in
Northern Egypt
3.1.1. Oasis–Desert–Impervious Surface Mass Structure Change

Significant changes were found in land types in northern Egypt from 2000 to 2020. The
largest area is sand, which accounts for about 50 percent of the total study area, followed by
more extensive arable land and a smaller proportion of impervious surfaces. The northern
region of Egypt is flat and fertile, and long-term stable water sources provide unique
conditions for agriculture. In 2010, the arable land reached a maximum of 28,900 km2,
and then, with the strong population growth, which puts pressure on arable land and
natural resources, the arable land decreased, and the overall arable land growth in the
northern part of the Egyptian region was reduced to 2.5 percent. Egypt is a typical arid
zone with many sand areas and scarce water resources, and the area of sand has decreased
from 53,400 km2 to 50,500 km2, indicating a decrease of 2900 km2, which corresponds to
5.34%. Impervious surfaces have expanded with the increase in population, and the area
has increased by 2900 km2, up to 2.3 times (Figure 2).

Figure 2. Statistical map of changes in the area of arable land–impervious surface–sand in the
northern region of Egypt from 2000 to 2020.

3.1.2. Basic Characteristics of the Oasis–Desert–Impervious Surface Dynamics

Significant differences were observed in the dynamics of individual land use between
categories in the northern region of Egypt from 2000 to 2020. The single land use dynamics
values for impervious surfaces were highest between 2010 and 2015, reaching 9.47 percent,
indicating a dramatic expansion of impervious surfaces. The single land use dynamic for
sand has been shrinking; arable land had the most significant single dynamic of 0.42% from
2000 to 2005, which reduced to 0.28% from 2010 to 2015. Arable land, sand, and impervious
surfaces combined with the land use dynamic exhibited positive values from 2010 to 2015.
The combined dynamic was the largest, amounting to 0.003%, indicating that the changes
in arable land, sand, and impervious surface were drastic from 2000 to 2010. The smallest
combined dynamic was from 2015 to 2020, amounting to 0.0017%, indicating that the trend
of change in the land, sand, and impervious surface from 2005 to 2010 was relatively stable
(Figure 3).
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Figure 3. Dynamic map of single and integrated land use in the northern region of Egypt from 2000
to 2020.

3.1.3. The Transfer Flow Characteristics of the Oasis–Desert–Impervious
Surface Interaction

Land use transfer flow is one of the proposed methods by Ma Caihong et al. for
tracking land use changes [28,29]. It was found that there are significant phase differences
in the transformation of arable land, sand, and impervious surface interactions in the
northern part of Egypt. From 2000 to 2005, the most extensive arable land was converted
to impervious surfaces, with 0.76% of the total area transferred. The largest area of sand
was converted to arable land, with 1.34% of the total area transferred, indicating a more
significant demand for arable land and a more drastic trend of change from arable land
to sand. From 2005 to 2010, the sand area was converted into arable land. The land area
was 665.8 km2, with the transferred area accounting for 1.27% of the total area, while the
area of arable land converted into impervious areas was 210.2 km2, with the transferred
area accounting for 0.74% of the total area. From 2010 to 2015, the arable land converted to
impervious areas accounted for 3.49% of the total area, indicating that human activities
were more disruptive to the land during this study period. From 2015 to 2020, the area of
arable land converted into impervious areas was 499.42 km2, and the sand area converted
into arable land was 564.1 km2. Impervious areas continued to increase throughout the
study period without any shifts across land types (Figure 4).

3.2. Spatial Characterization of Oasis–Desert–Impervious Surface Interactions in Northern Egypt
3.2.1. Spatial Characterization of Oasis and Desert Change

Vegetation cover in northern Egypt generally improved from 2000 to 2020, but there
were significant spatial differences (Figure 5). Every five years, the mean spectrogram of
NDVI was calculated. The results indicate that as the Nile flows through the delta area,
which is well irrigated and suitable for plant growth, the mean NDVI value is in the high-
value range [0.4, 1). The NDVI value in the transition zone increased from [0.003, 0.2) to
[0.4, 0.8], mainly due to the disturbance of human activities, which resulted in significantly
increased NDVI. At each 5-year interval, the difference spectrogram of NDVI was calculated,
and it was found that the NDVI differences in the Nile Delta and Fayoum District from
2000 to 2005 and from 2015 to 2020 were mainly in the range of [0.02, 0.11), indicating that
the condition of the vegetation cover in the Nile Delta is gradually improving.
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Figure 4. Arable land–impervious surface–sand-other transfer flow chords in northern Egypt from
2000 to 2020.

Figure 5. Spatial distribution of normalized vegetation index (NDVI) in northern Egypt from 2000
to 2020.

From 2000 to 2020, land use types in the Nile Delta and Fayoum District were dom-
inated by arable land (Figure 6). The large expanses of water in the Nile Delta are more
suitable for agricultural land. The arable land in 2020 was estimated to be 1.19 times larger
than that in 2000, with the most significant expansion occurring in the southwestern part of
the Nile Delta.

Figure 6. Changes in arable land in northern Egypt from 2000 to 2020.
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3.2.2. Characterization of Spatial Variation in Impervious Surfaces

From 2000 to 2020, the impervious surfaces and arable lands in the northern region of
Egypt changed significantly due to rapid economic development, generally showing a trend
of rapid expansion of impervious surface encroachments on arable land towards the delta
region and an increase in arable encroachment on sand in the west(Figure 7). The population
proliferated over the study period, with population growth in 2020 being 0.98 times that
in 2000. The demand for population growth drives the expansion of the impervious
area, with the impervious area in 2020 being 2.32 times the area in 2000, representing a
discrepancy between both growth rates and suggesting weak population intensification in
northern Egypt. The nighttime light index is an index that reflects the degree of change in
human activities. The nighttime light index from 2000 to 2020 indicates that people mainly
concentrated in Cairo and then expanded to the Nile Delta and Fayoum District, which is
consistent with the general characteristics of urbanization development [30].

Figure 7. Map of impervious surface and nighttime light index in northern Egypt from 2000 to 2020:
(a) change in impervious surface; (b) genealogy of nighttime light index; (c) change in nighttime
light index.

3.3. Study of Drivers of Oasis–Desert–Impervious Surface Interaction Evolution
3.3.1. Characteristics of Spatial Changes in Oasis–Desert Interaction Lines

The northern region of Egypt is a typical agricultural desert oasis area. To investigate
the extension of the oasis in the southwest direction, we calculated the center of the Nile
Delta in 2000 and 2020. Measured in the direction of 207.5◦ from the center, the distances
from the center to the edge of the oasis were 51 km and 120.54 km, and the oasis penetrated
a total of 69.54 km into the desert, mainly through encroachment on cultivated land into the
sand. The extension of the Nile Delta, mainly in the southwest direction, is evident because
the southwest direction is topographically located in a low-lying area with abundant water
resources, which makes it more suitable for human activities and exchanges. Impervious
surfaces expanded over 1903.70 km2 of arable land, accounting for 66.67% of the expansion
area, and it was most significant near Cairo (Figure 8).

3.3.2. Dynamic Mechanisms of Oasis–Desert–Impervious Surface Interaction Evolution

The analysis reveals that human activities were the key driving force that changed
Egypt’s arable land, sand, and impervious surfaces through land use changes during the
study period. The process of interactive evolution between oasis, desert, and impenetrable
surface results from a spatial game between the three. The power factor of the develop-
ment of things includes internal power and external power; internal power is inherent in
things, whereas external power is the external conditions for the development of things,
and internal and external power interact to form a power mechanism and jointly promote
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the development of things. Therefore, a result layer was created with the interactive de-
velopment of oases, deserts, and impervious surfaces, and a response layer was created
with the transfer flow between oases, deserts, impervious surfaces, and other land uses. A
power layer was proposed with economic development, population size, food demand,
and scientific and technological progress considered external drivers, and water scarcity
and national policies considered the internal drivers, to form the power–response–outcome
driving mechanism (Figure 9). The drivers are interdependent and limited. First, rapid
economic development triggers urbanization, expanding impervious areas and resulting in
population growth. Second, population growth accelerates the demand for food, encour-
aging the development of oasis agriculture. Technological progress in oasis agriculture
results in the transformation of a large area of sand, inevitably leading to water shortages
and forcing the state to take appropriate measures to promote economic development.
Therefore, the changes that occur in the dynamic factors are correlated in space and time.

  

Figure 8. Map of NDVI change lines and land use change lines in the northern region of Egypt from
2000 to 2020.

Figure 9. Schematic diagram of the dynamic mechanism of oasis–desert–impervious surface interac-
tion evolution (image by the authors).

4. Discussion and Conclusions

4.1. Discussion

The harmonious development of oases and deserts, oases and impervious surfaces
is a global problem. Land use interactions occur in the northern part of Egypt, where
improvement in environmental quality is accompanied by degradation [31]. The rapid
spread of impervious surfaces influenced by human activities has led to a dramatic process
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of ossification and desertification. With the construction of the Aswan Dam in 1970, a large
amount of arable land was reclaimed, totaling more than 10 million hectares of reclaimed
land. During the same period, Egypt lost almost as much agricultural land to industrial and
urban development [32]. Recognizing the need to protect and increase the area of arable
land, the Egyptian government began to encourage the establishment of new settlements
in desert areas and the cultivation of large areas of sand. This has led to a continuous
advance of the oasis line in the delta area towards the desert, which is more pronounced
in the southwest and southeast directions of the oasis. The oasis extends nearly 69.54 km
to the southwest, and the land use type is dominated by agricultural land, which has the
apparent characteristic of oasis advance and sand retreat. This significantly reduces the risk
of exposure of oasis ecosystems to wind and sand, prevents the country’s desertification,
and protects the development of agricultural oasis areas [33].

At the same time, Egypt’s population growth led to a massive expansion of impervious
surfaces. Spatially, the expansion was most pronounced to the west and northeast, showing
a clear pattern of population growth driving the decline of the oases. This reflects the
contradiction between human–land relationships and the laws of natural evolution. The
northern region of Egypt is in the oasis development phase, and by revealing the oasis–
desert impervious surface interactions over two decades, it has been found that oases
and impervious surfaces in the northern region of Egypt have expanded significantly, and
deserts have shrunk, a finding consistent with the global trend of land use change [34].
The expansion of oases in the northern region of Egypt needs to be improved in two
ways: Firstly, the proximity of the northern region of Egypt to the Mediterranean Sea and
the lack of natural drainage for wastewater treatment in remote areas for long periods,
coupled with the excessive use of irrigation water and inadequate drainage systems, have
led to the shallow evaporation of groundwater and gradual salinization of soils [35],
which in turn affects the sustainable development of agriculture and the stability of the
ecosystem as a whole. Subsequently, soil properties can be restored through rice cultivation,
underground drainage system installation, and land improvement programs to promote
oasis development. Second, the expansion of impervious surfaces affects oases and forces
them to expand, requiring large amounts of water recharge. Due to the scarcity of water
resources in the northern region of Egypt, it is crucial to rationalize the use of these
oases. Water resources provided by the Nile in Egypt should be exploited to promote the
development of oases in the northern region of Egypt. In contrast, China has achieved some
success in conserving and intensively using water resources [36]. The protective measures
taken include regulating the balance between the supply and demand of water resources
through market mechanisms and actively promoting advanced water-saving irrigation
technologies (sprinklers, micro-irrigation, and drip irrigation), the rational adjustment of
planting structure, promoting the use of treated water, etc. China’s water conservation
measures can be used as a reference for the northern region of Egypt to improve the use of
water resources and promote the development of oases.

4.2. Conclusions

This article analyzes the interaction characteristics between oases, deserts, and imper-
vious surfaces in northern Egypt based on gridded data such as land use and NDVI and
examines their dynamics using modeling and geographic information mapping methods.
The main conclusions are as follows:

1. Considering the interaction between deserts and oases, the primary manifestation
is the expansion of oases and the reduction of deserts. During the study period, the
oases in the Nile Delta and Fayoum District increased significantly, with the area of
oases in 2020 being 1.19 times the area in 2000, which shows a clear trend of advance
of people and retreat of sand.

2. The interaction between oases and impervious surfaces was mainly observed in the
form of the spread of impervious surfaces on arable land into oases. During the
study period, the area of impervious surfaces increased 2.32 times. The impervious
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surface expanded over 1903.70 km2 of arable land, accounting for 66.67% of the
expanded area.

3. Regarding the interaction between the impervious surface and the desert, the central
phenomenon is the encroachment of the covered area of the impervious surface into
the desert, especially around the city of Cairo.

4. The need for increased food production due to population growth has forced oases to
move deeper into the desert, and the occupation of arable land due to urbanization
has led to increasing pressure on arable land, creating a pressure-conducting dynamic
mechanism. It is recommended that the intensification of impervious surfaces in land
use be mitigated to reduce pressure on arable land.
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Abstract: In cellular automata (CA) modeling, spatial heterogeneity can be delineated by geograph-
ical area partitioning. The dual constrained space clustering method is a prevalent approach for
providing an objective and effective representation of differences within urban regions. However,
previous studies faced issues by ignoring spatial heterogeneity, which could lead to an over- or
under-estimation of the simulation results. Accordingly, this study attempts to incorporate spatially
heterogeneous area partitioning into vector-based cellular automata (VCA), producing more accurate
and reliable simulations of urban land-use change. First, an area partition strategy with DSC algo-
rithm was employed to generate multiple relatively homogeneous sub-regions, which can effectively
capture the spatial heterogeneity in the distribution of land-use change factors. Second, UrbanVCA,
a brand-new VCA-based framework, was utilized for simulating land-use changes in distinct urban
partitions. Finally, the constructed partitioned VCA model was applied to simulate rapid urban
development in Jiangyin city from 2012 to 2017. The results indicated that the combination of DSC
clustering and UrbanVCA model could obtain satisfying results as the average FoM values for the
partitions and the entire study area exceeded 0.22. Furthermore, a comparative analysis of results
from traditional area-partitioned CA models revealed that the proposed area partitioning approach
had the potential to yield more accurate simulation outcomes as the FoM values were higher and
SHDI and LSI metrics were closer to real-world observations, indicating its good performance in
simulating fragmented urban landscapes.

Keywords: urban land-use change simulation; area partitioning; spatial heterogeneity; vector-based
cellular automata (VCA); Jiangyin city

1. Introduction

Urban growth is a complex and dynamic process, which is influenced by various
factors, including natural, social, and economic factors [1]. “Spatial heterogeneity” refers
to the non-uniform and complex distribution of land-use patterns. Rapid urban growth,
in turn, leads to increasingly fragmented landscapes characterized by heightened spatial
heterogeneity [2]. Cellular automata (CA) have emerged as effective tools for describ-
ing historical land-use transformations and forecasting prospective land scenarios, thus
enhancing our comprehension of land-use dynamics [3,4]. Accordingly, it is crucial to
integrate spatial heterogeneity into the CA model to yield accurate land-use simulation
and prediction results.
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According to the difference in the cells’ design, CA can be generally divided into two
groups: raster cellular automaton and vector cellular automaton. In a raster urban CA
model, geographic space can be described with regular units (often square) in a raster
structure, which can facilitate subsequent computations by harnessing the extensive raster
analysis functions available in GIS [5,6]. The unavoidable loss of detail induced by the
raster data format motivated researchers to employ some irregular-shaped frameworks
(e.g., land parcels) as the minimum space description modules, hereafter referred to as
vector-based CA (VCA) [7,8]. Due to the inherent morphological advantage of vector cells,
available VCA models have illustrated their considerable potential in simulating fine-scale
urban growth, helping produce the model output more realistically [9,10].

Early VCA models were built using graph theory, which included Voronoi poly-
gons [11] and Delaunay triangulation [12]. Nevertheless, VCA models rooted in graph
theory may not entirely encompass real-world geographical objects due to their automated
generation. As an enhancement to this spatial representation, the urban area was subdi-
vided into various spatial units, such as land-use parcels, census blocks, and planning
zones, which enhanced the model’s realism by establishing connections between land use
and socioeconomic information. Among the different VCA models, those built upon land
or cadastral parcels play a vital role in urban planning and provide a more realistic represen-
tation of ground objects. In brief, VCA models exhibit a substantial advantage in modeling
land-use changes at a very fine scale [13]. Nevertheless, several issues in VCA models
remain to be addressed. Firstly, the complexity increases due to the diversity of polygon
shapes, leading to varying connections between neighboring cells. The neighborhood
definitions in VCA models can be roughly classified into two categories: topology-based
neighborhood and buffer-based neighborhood [10]. Dahal and Chow [14] defined 30 neigh-
borhood configurations to evaluate parameter sensitivity in simulation results, revealing
that VCA models with center-buffer neighborhoods can achieved the highest simulation
accuracy. Additionally, urban land-use change is frequently characterized as an incremental
and fragmented process, rather than an abrupt conversion of an entire land parcel from
one land-use type to another within a short period [15]. Yao [8] introduced the dynamic
land parcel subdivision-based vector cellular automaton (DLPS-VCA) framework. This
framework efficiently simulates urban expansion, land parcel fragmentation, and land-use
type transitions during urban development. Despite its advantages in urban simulation,
the complex vector subdivision mechanism has limited the widespread use of DLPS-VCA.

In CA modeling, the concept of spatial heterogeneity can be captured by locally
varying transition rules, spatially heterogeneous neighborhoods, and geographical area
partitioning. To account for the spatially heterogeneous impacts of drivers on land-use
change, researchers have employed local spatial statistical models, such as the spatial
autoregressive (SAR) model and geographically weighted regression (GWR) [16], to derive
the transition rules of the CA model by assigning weights to regression coefficients based on
local proximity. Other studies adopted a hybrid modeling approach, such as GWANN [17]
and ART-P-MAP [18], to describe a comprehensive exploration of the spatially heteroge-
neous driving forces influencing urban sprawl by coupling the spatial statistical model with
the intelligent model. The neighborhood, as a critical internal component of the CA model,
is notably influenced by spatial heterogeneity [19,20]. The most common types of neigh-
borhood definitions are typically referred to as Von Neumann, Moore neighborhoods, and
topology-based, buffer-based neighborhoods, where the size and shape of neighborhood is
equivalent. This assumption obviously violates the spatial heterogeneity in reality, even
with a well analysis of size sensitivity in related studies [21,22]. Recently, there have been
some studies taking the distance–decay, multi-layer, and orientation weighted into account
to investigate the influence of heterogeneous neighborhoods on individual cells [23,24].
These studies on heterogeneous neighborhoods have significantly contributed to the ex-
pansion of our knowledge regarding spatially varying interactions among adjacent cells.

Area partitioning in geographic space is another common strategy to address spatial
heterogeneity in CA modelling [25,26]. By adopting a partitioning-based approach to
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acquire cell transition rules, the model’s ability to capture the similar patterns of land-use
change evolution within each partition is notably improved, thereby leading to more pre-
cise and realistic representations of land-use dynamics. Area partitioning can be achieved
through two primary methods: the administrative-based approach and the dual spatial clus-
tering method. The former usually refers to administrative division such as administrative
districts [27], planning zones [28], urban spatial structure [29], and other custom-defined
units [30]. Although the administrative-based approach was simple and practical, these
partitioning strategies mainly relied on empirical evidence, resulting in subjective outcomes
and growing complexity with an increasing number of driving factors [31]. Furthermore,
they may face challenges in capturing the inherent similarity characteristics of land-use
changes, as they tend to overlook the spatial variations at micro scales [32]. Using the dual
spatial clustering method, the entire cell space was segmented into several homogeneous
regions considering both spatial proximity and attribute similarity, and then transforma-
tion rules were obtained for each partition individually. This process entails partitioning
the cellular space based on the spatial heterogeneity characteristics of land-use change.
They aimed to comprehensively account for the similarity in both spatial and attribute
relations of land-use change. Therefore, they employed a clustering method to achieve
the partitioning of the cellular space. As such, the conversion rules for each partition can
effectively express the driving mechanism behind land-use changes. The existing dual
spatial clustering algorithms, such as MK-means [33], SOM (self-organizing map) [26], and
KDE (kernel density function) [29], were utilized for partitioning, providing an objective
and effective representation of urban area differences with minimal human interference.
Incorporating the non-uniform distribution of driving factors during the partitioning pro-
cess, several limitations of these algorithms can be highlighted. First, land parcels are
nonuniformly distributed with varying concentrations or dispersion [8]; the existing parti-
tioning algorithms have difficulties in detecting clusters of irregular shapes and varying
densities. Additionally, the results of these algorithms’ clustering can often be sensitive to
noise. Second, attribute similarity measurements in these algorithms primarily relies on a
binary predicate that utilizes Euclidean distance as the fundamental metric. However, in
the face of uneven distributions in the attribute space, their inherent transitivity could lead
to the continuous propagation and accumulation of differences between attribute values
during the clustering process. As a result, the clustering results may fail to accurately
reflect the transitional nature of geographical features in spatial distributions, eventually
leading to over- or under-simulation results [34,35]. One dual spatial clustering algorithm,
denoted as DSC, can handle both spatial proximity and attribute similarity in the presence
of heterogeneity and noise [36]. The detection of these clusters is valuable for gaining
insights into the localized patterns of geographical phenomena, and it has been successfully
used for urban element identification and urban spatial structure analysis [37,38].

In view of the problems described above, this study attempts to incorporate spatially
heterogeneous area partitioning into vector-based cellular automata (VCA), facilitating
more accurate modeling of urban dynamics. First, an area partition strategy with DSC
algorithm was employed to generate multiple relatively homogeneous sub-regions, which
could effectively capture the geographic heterogeneity in the distribution of land-use
change factors. Second, UrbanVCA, a brand-new vector CA-based framework to simulate
the urban land-use change at the land parcel level, was adopted for the study [8,39]. By
employing a set of pre-defined rules driving urban land-use changes, the UrbanVCA model
can not only simulate the process of land fragmentation but also support a variety of
machine learning algorithms to mine the probability of urban land-use changes. Finally, the
constructed partitioned VCA model was applied to simulate rapid urban development in
Jiangyin city, China, from 2012 to 2017. In addition, a comparison and analysis of traditional
partitioned CA models were performed to validate the effectiveness of the proposed
partitioned CA model using accuracy statistics and vector-based landscape indexes.
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2. Study Area and Datasets

Jiangyin is located in the Jiangsu Province of China, situated at the northern end of
the Yangtze River Delta (Figure 1). It is comprised of five districts: Central, Chengdong,
Chengxi, Chengnan, and Chengdongnan, with a nearly 1.775 million residential population
and a total area of 987.5 km2. In 2020, Jiangyin achieved a notable GDP of 411.375 billion
yuan, affirming its standing as the second-ranked county-level city on the Chinese mainland
(http://www.jiangyin.gov.cn/, accessed on 31 December 2020). Jiangyin city has experienced
fast urbanization in the last two decades because the city has attracted significant direct foreign
investment since the 1990s, leading to industrial development and an enhanced foundation. It
is appropriate for a detailed analysis of neighborhood features due to its complex, fragmented
land-use parcels, as well as its ongoing urban expansion and its size.

Figure 1. Location of the study area.

The cadastral parcel data of Jiangyin was acquired from planning bureaus between the
years 2012 and 2017. Each land-use pattern map was further recategorized into eight groups
based on the land-use/cover features in Jiangyin, including commercial (C), residential (R),
industrial (I), public service (P), transportation (T), farm (F), village construction (V), and
other lands (O). During the period from 2012 to 2017, there was a rapid occurrence of land-
use changes in Jiangyin, with the number of land parcels increasing by 31.5% from 18,327
to 24,101. This observation suggests a noticeable fragmentation trend in the landscape.

In the wake of the early studies in CA modeling [27,29,40], several driving factors were
introduced to provide a quantitative measure of the suitability for the occurrence of different
land types, including topographical and geographical conditions, transportation factors,
location factors, economic and population factors, some POI information, and government
planning policy. Specially, the distance variables indicate accessibility to transportation
and location factors using the “Euclidean Distance” tool within ARCGIS. The density of
POI information was computed through the kernel density estimation (KDE) method. The
primary data sets employed in this study were derived from Jiangyin urban master plan
(2011–2030) (http://www.jiangyin.gov.cn/, accessed on 24 October 2012), Open Street
Map (https://www.openstreetmap.org), Geospatial Data Cloud (http://www.gscloud.cn),
and Resource and Environment Data Cloud Platform (http://www.resdc. cn, accessed on
25 December 2012) (see Supplementary Table S1). A stratified random sampling approach
was employed to acquire 20% of the samples from the spatial variables for the determination
of transition rules. As part of the data processing, all datasets underwent normalization,
which standardized them within a common range from 0 to 1. Moreover, to ensure spatial
consistency, all data were resampled to a uniform spatial resolution of 30 m (Figure 2).
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Figure 2. Maps of driving factors in this study.

3. Methodology

The proposed model contains three main parts (Figure 3): (1) input data; (2) area parti-
tioning by DSC method; (3) UrbanVCA simulation. Firstly, the land parcels used for the
DSC runs were abstracted into a Delaunay triangulation (DT) representation, where each
parcel was represented by a node (i.e., centroid), and their neighboring relationships were
defined through edges, establishing connections between pairs of centroids. DT containing
two-level edge-length restrictions considering irregular distributions was adopted to estab-
lish spatial proximity relationships among land parcels. On this basis, an iterative clustering
strategy utilizing information entropy (IE) was then employed. This strategy employed
breadth-first search (BFS) to sequentially traverse kth-order neighbors for each land parcel,
enabling the precise identification of clusters with similar attributes (i.e., driving factors of
land-use change listed in Figure 2), while accounting for heterogeneity and noise. Secondly,
a collection of urban development factors was gathered to train the transition potential
map through UrbanVCA for each partitioned zone to simulate the urban land-use changes
of Jiangyin, and various assessment metrics were employed to evaluate and compare the
performance of different area partitioning models.
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Figure 3. Flowchart of the partitioned VCA model for simulating urban land-use changes.

3.1. Spatially Heterogeneous Area Partitioning by DSC Method

DSC aims to address the challenges of heterogeneity and noise by incorporating both
spatial proximity and attribute similarity [36]. In real-world scenarios, spatially adjacent
clusters usually exist in a spatial dataset where the difference of observations in attribute
distribution is homogeneous within each cluster but inhomogeneous between clusters.
However, in the face of uneven distributions in the attribute space, attribute similarity
measurements in these algorithms primarily relied on a binary predicate that utilizes
Euclidean distance as the fundamental metric; their inherent transitivity could lead to
the continuous propagation and accumulation of differences between attribute values
during the clustering process. As a result, the clustering results may fail to accurately
reflect the transitional nature of geographical features in spatial distributions, eventually
leading to over- or under-simulation results (the validation of this point was demonstrated
using both simulated and real-world data in [36]). The DSC algorithm primarily addresses
the challenge of discovering homogeneous spatially adjacent clusters while dealing with
between-cluster inhomogeneity and noise where those spatial points are described in the
attribute domain. The detection of these clusters is valuable for gaining insights into the
localized patterns of geographical phenomena. DSC methodology is initiated through the
application of DT with edge-length constraints. This approach considers diverse geometric
shapes, varying land parcel densities, and spatial noise to effectively establish spatial
proximity relationships among the land parcels. Subsequently, an IE clustering strategy is
devised to identify clusters that exhibit similar attributes. This approach enables adaptive
and precise cluster detection while taking into account the existence of heterogeneity
and noise.

3.1.1. Clustering Constrained by Spatial Proximity

Following the construction of the DT of the points (parcel centroids), the DSC algo-
rithm proceeded to utilize global and local proximity criteria to partition the points into
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multiple spatial clusters. Through the application of global criteria, the long edges will be
removed at the global level. This process can be expressed as follows:

Global_LongEdges(p) = {ei|ei〉GlobalMean + GlobalSD ∗ GlobalMean
PartialMean(p)

} (1)

where Global_LongEdges(p) represents the set of long edges that need to be deleted at point
p. GlobalMean refers to the average length of all edges in DT, PartialMean(p) denotes the
average length of the edges directly connected to point p, and GlobalSD denotes the standard
deviation of edge lengths in DT.

Subsequently, the local proximity constraint is applied to eliminate any remaining
lengthy edges. The local process follows the following criteria:

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

F(p) = Local−SD(p)/Local−Mean−Length(p)

Local−Mean−Length(p) = 1
d(p)

d(p)
∑

i=1
|ei|

Local−SD(p) =

√√√√ d(p)
∑

i=1
(Local−Mean−Length(p)−|ei |)2

d(p)

(2)

where Local_Mean_Length(p) represents the mean length of edges in N(p), and Local−SD(p)
is the standard deviation of the lengths of edges in N(p). d(p) denotes the number of edges
incident to p, and |ei| is the length of edges in N(p). The final spatial proximity comprises
all connected mutation points for which F(p) ≤ γ.

3.1.2. Clustering Constrained by Attribute Similarity

DSC utilizes an attribute clustering method that relies on IE to classify the clustering
results according to the attributes of the points (i.e., driving factors of land-use change
listed in Figure 2). The attribute entropy represents the degree of similarity between the
central point and the neighboring points within the first-order neighborhood. It can be
computed using the following formula, where a higher value indicates a smaller difference
between the central point and the connected points:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

DAEnei(O) = Eoc
n+1

Eoc = − n+1
∑

i=1
pi ln pi

pi =
vi

∑n+1
j=1 vj

(3)

where DAEnei(O) represents the attribute entropy of point O, and Eoc represents the
attribute similarity between point O and clustering cluster C. The clustering cluster C
consists of n points {C1, C2, C3, . . . , Cn}, where point O represents the central point and
cluster C is the set of points within the first-order neighborhood of point O. The driving
factor values of each point in the cluster are denoted as {v1, v2, v3, . . . , vn}, and the driving
factor values of the central mutation point O is represented as vn+1.

After calculating the attribute entropy for each point, the point with the highest at-
tribute entropy is selected as the starting point. Using Equation (3), the starting point
is considered as the central point O, and each neighboring point is treated as a separate
clustering cluster C. The attribute similarity Eoc between the central point and each sur-
rounding point is computed. The initial clustering cluster is formed by combining the
mutation point O with the highest attribute entropy and the point with the maximum
attribute similarity Eoc among its surroundings. The candidate points are determined as
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the points within the first-order neighborhood of the initial clustering cluster. Equation (4)
is employed to compute the Eoc between each candidate point and the initial cluster:{

θ = Eoc
Eocmax

Eocmax = ln(n + 1)
(4)

where θ is the standardized variable; the maximum information entropy between mutation
point O and the temporal cluster C, denoted as Eocmax , is obtained by the hypothesis that
the attribute values of the mutation points within temporal cluster C are equal. When θ
is greater than the threshold, the mutation point O will be added into cluster C. If this
exceeded the threshold, we allowed the mutation point O to be added to temporal cluster
C. By choosing an appropriate value for θ, the PBM index is employed to achieve favorable
outcomes. Achieving a high score for the PBM index confirms the acceptability of the result
in terms of the attribute entropy measurement [41].

The cluster was iteratively expanded by repeating the steps of candidate selection until
the first-order neighborhood of the cluster no longer contained similar points. Subsequently,
the remaining points in the initial cluster were evaluated based on their DAEnei(O) values,
and the point with the highest DAEnei(O) value was selected as the starting point for the
second cluster. The aforementioned steps were repeated to group all points into different
sub-clusters.

3.2. Urban Land-Use Change Simulation by UrbanVCA Model

UrbanVCA starts by utilizing a subdivision approach to establish the fundamental
cellular unit as the minimum vector land parcel. In the context of this model, the segmented
land-use parcels were characterized by the averages of spatial variables, denoted as X.
These spatial variables served as the basis for defining probabilities of transformed land-
use types, represented as Y. Subsequently, a model denoted as Y = f (X) is formulated.
Ultimately, the probability of the segmented parcel transitioning into the specific land-use
type in the initial year, denoted as Yi, served as the comprehensive suitability measure for
land-use transformation when utilizing a VCA model (Figure 4).

Figure 4. The UrbanVCA framework.
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3.2.1. Deriving the Minimum Vector Land Parcels

The use of raw land parcels as the primary simulation units poses a challenge due to
their coarse granularity, which ultimately results in a significant reduction in simulation
precision [39]. Thus, an appropriate land subdivision tool must be employed. The DLPS
tool, which was developed by Yao [8], can divide land parcels into finer layouts according to
the initial plots’ shape, size, and direction. The iterative and subdivision process continues
until the area of each plot becomes smaller than the average area of the initial input
plots (For more detailed information about data processing and execution, please refer to:
https://www.urbancomp.net/archives/urbanvca-v2, accessed on 26 May 2022).

3.2.2. Mining the Urban Development Probability

After the subdivision of parcels through the DLPS module, the parcels were treated as
fundamental units for simulation based on a VCA model. The urban developmental proba-
bility (P) of each cell was mainly determined by four factors: the land-use suitability (Pg),
constraint factor (Pc), neighborhood effect (Ω), and random factor (RA). The probability of
the i-th land parcel transitioning into the k-th type of land use at time t can be determined
through the following calculation:

Pk,t
i = Pgk,t

i × Ωt
i,j × Pct

i × RA (5)

The calibration of land-use suitability (Pg) as defined in Equation (5) was carried out by
employing a selection of geospatial variables outlined in Figure 2. The UrbanVCA provided
a selection of three machine learning algorithms to obtain the overall suitability: logistic
regression (LR), neural network (NN), and random forest (RF). Here, we employed the RF-
based model to perform the calibration and estimation of land-use suitability. Compared
with LR, it proves highly effective in addressing the issue of multicollinearity among spatial
variables, rendering it highly efficient when dealing with tasks that involve fitting in high-
dimensional spaces. In addition, the RF-based model is better suited for extracting a variety
of transformation rules in different regions compared with NN. Therefore, the land-use
suitability of the i-th land parcel transitioning into the k-th land-use type at time t can be
expressed as follows:

Pgk,t
i =

∑M
n−1 I(hn(x) == Yk)

M
(6)

where i serves as an indicator for the ensemble of decision trees, with M representing
the total number of decision trees. The vector x encompasses auxiliary spatial variables
that are linked to the specific land parcel, and hn(x) indicates the predicted type of the
n-th decision tree for vector x. The determination of the optimal number of decision
trees involved iterative parameter adjustments, with comparison of the corresponding
simulation accuracy results.

The fundamental units of VCA are irregular parcels, making it impossible to obtain
the homogeneous neighborhoods commonly found in patch-based or raster-based CAs.
Consequently, defining rules for VCA neighborhoods is both intricate and sensitive. In
UrbanVCA, a centroid-based buffering rule was employed, which considered parcel area
as a weight, facilitating the capture of actual parcel neighborhood effects (Ω), and thereby
enhancing the accuracy of simulating diverse land-use types. Assuming that the j-th parcel
is located within a buffer zone centered on the i-th parcel with a buffer range of d, and there
are no physical barriers between the i-th and j-th parcels, the formula for the neighborhood
effect of the j-th parcel on the i-th parcel at time t is as follows:

Ωt
i,j = e−di,j/d ∗ Sj/Si

Smax/Smin
(7)

where e represents an exponential constant, while di,j indicates the central distance between
the i-th and j-th parcels. The variables Si and Sj, respectively, represent the areas of the i-th
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and j-th parcels. Additionally, Smax and Smin denote the maximum and minimum parcel
areas within the study area. Consequently, the formula expressing the neighborhood effect
of the k-th land-use type on the i-th parcel at time t is as follows:

Ωk,t
i = ∑

j
Ωk,t

i,j
(
i f disi,j ≤ bu f f er_d and No River between i and j

)
(8)

Constraint factor (Pc) refers to a specific land-use type that remains unchanged during
the simulation process and does not transition into other land-use types. In this study,
water area factor and ecological redline zones were considered as development-restricted
areas. The constraint factor for the i-th parcel can be computed based on the following
formula, where Si represents the suitability status of the parcel for development:

Pct
i =

{
0{ Si = restriction development area}

1 {Si = suitable development area} (9)

Taking into account the uncertainty inherent in the land-use change process, the random
factor RA = 1 + (− ln y)α was introduced, where α is a parameter ranging within (1, 10),
and y represents a stochastic variable with values that falls within the range of 0 to 1.

By calculating the probabilities for the conversion of each land parcel into different
land-use types, the conversions that exceeded the development thresholds and had the
highest probabilities were chosen for execution. For specific land-use classes in this study,
the development thresholds were determined by computing the average probabilities of
transition from all non-built-up land parcels to these particular land-use classes.

3.3. Model Performance Assessment

In this study, the figure-of-merit (FoM) method was employed to assess the accuracy of
the simulation results [42]. FoM serves as a valuable indicator used to gauge the consistency
between the actual transition pattern and the simulated transition pattern, calculated as
the ratio between the intersection and union of the actual change and simulated change
as follows:

FoM = B/(A + B + C + D) (10)

where A denotes the area undergoing change, which remains constant during the sim-
ulations. B represents the common area of change shared between the actual and the
simulation results. C corresponds to the area where changes are observed in both the actual
and simulated maps, even though the specific land-use change types may differ between
them. D represents the area that remains constant in the actual map but experiences changes
throughout the simulations.

According to previous studies [26,43,44], several landscape indices, including PD
(patch density), LPI (largest patch index), LSI (landscape shape index), and SHDI (Shan-
non’s diversity index), were employed to assess how closely the patterns of the simulated
results matched those of the actual scenario. PD plays a crucial role in describing landscape
fragmentation. The higher the PD value, the more pronounced the landscape fragmentation
becomes. LPI is determined by calculating the ratio between the area of the largest patch
and the total landscape area, which quantifies the level of aggregation within the simulated
landscape. A higher LPI value indicates a higher degree of aggregation within the simu-
lated urban landscape. LSI provides a measure of the shape complexity of the landscape
by quantifying the extent to which the shape of the simulated landscape deviates from
that of a square with an equivalent area. The complexity of the shape of simulated urban
patches increases with a higher LSI value. The SHDI is a metric that gauges the complexity
and heterogeneity of various types of patches within a landscape. As SHDI increases, it
tends to be a more uniform distribution of different patch types throughout the landscape.
The landscape indices calculation process was performed using VecLI v3.0.0 software:
https://www.urbancomp.net/archives/vecliv300, accessed on 18 September 2022.
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4. Results and Discussions

4.1. Area Partitioning Implementation

To partition the research area, we employed the DSC algorithm. The land parcels are
represented using DT, revealing an uneven dispersion of points that densely cover the
entire city (Figure 5a). In such instances where spatial datasets are irregularly distributed,
the natural neighbors distinguished through DT are imperfect with varying densities.
The constrained DT is firstly employed to model the spatially heterogeneous adjacency
relationships among these points (Figure 5b). It entails the use of varying search radii, with
larger radii applied to low-density regions and smaller radii to high-density regions. As
a result, every node and edge can retain the essential data required for model execution,
such as parcel land-use type, neighboring parcels, and parcel development factors. On
this basis, high-order extension strategy is iteratively implemented to traverse kth-order
neighbors for each parcel based on IE-based attribute similarity, enhancing the capability of
DSC to handling multidimensional data into a number of clusters. In Figure 5c, the points
of the same color indicate that they belong to the same clusters. Finally, a Delaunay-based
shape reconstruction method, as outlined by Peethambaran and Muthuganapathy [45],
was utilized to accurately identify the boundaries of 17 different zones (Figure 5d).

Figure 5. The area partitioning by DSC: (a) DT of land parcel centroids; (b) spatial proximity
construction by DSC; (c) attribute similarity clustering by DSC; (d) 17 sub-regions.

4.2. Spatial Stratified Heterogeneity Measurement

In this study, we employed Geodetector [46] to quantify the degree of spatial stratified
heterogeneity using various area partitioning strategies. Spatial stratified heterogeneity
(SH) is represented by the q value: a higher q value indicates greater SH, signifying
the need to divide the entire sample into stratified samples for modeling. The q value
falls within the range of (0, 1), where 0 indicates insignificant spatial stratification of
heterogeneity, and 1 signifies a perfect spatial stratification of heterogeneity. Under different
area partitioning strategies in this study, Mk-means-based zoning indicates a q value of
0.327 and administrative-based zoning indicates a q value of 0.241. DSC-based zoning has
the largest q value of 0.748. This means that DSC-based zoning helps to divide the whole
urban space into more homogeneous sub-region areas (Figure 6).
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Figure 6. SH in three area partitioning strategies, ***: p < 0.01.

4.3. Urban Land-Use Changes Simulation

As described in the previous section, the transition rules were independently calcu-
lated with UrbanVCA in each partition. By using the DLPS tool, the initial 18,327 and
24,101 parcels from 2012 and 2017 have been respectively subdivided into 23,204 and
27,839 individual parcels. In the training of the RF model, we conducted a random se-
lection of 60% of the data for training the model, reserving the remaining portion for
cross-validation, to evaluate the model’s accuracy. Specially, we established 90 decision
trees with a 30% utilization of OOB data. Cross-validation was carried out through boosted
random sampling over 100 epochs to calculate the average accuracy, thereby ensuring the
utmost reliability of the outcome. Through the configuration of the RF, we can derive the
land-use transition probability for each parcel by integrating the spatial variables listed
in Table 1 within the partitioned study area. Additionally, the optimal value of Ω was
determined by the best simulation result according to the FoM metric. For the purpose of
determining the optimal radius value, we established the search step as 100 m in the range
(200, 900) to conduct simulation. In this study, the neighborhood distance was adjusted to
700 m, resulting in the highest simulation accuracy being achieved (Figure 7).

Table 1. The FoM of different sub-regions and whole study area by administrative-based zoning.

Comparison Method Sub-Region FoM

Administrative-based zoning

Chengdong 0.192221
Chengxi 0.239187

Chengnan 0.215116
Chengdongnan 0.192636

Central 0.256496
Jiangyin 0.221000

Transition rules for the partitioned CA model were determined by incorporating con-
straint factors, neighborhood effects, random factors, and land-use transition probabilities.
Subsequently, the partitioned CA model was executed to simulate the evolution of urban
land use in Jiangyin from 2012 to 2017, where the urban growth pattern in Jiangyin in
2017 was simulated. Figure 8 displays the FoM values of the simulation results in differ-
ent partitions. The accuracy of each area was relatively high and the FoM of the whole
study area was significantly larger than 0.22. Especially, the average FoM values for the
partitions exceeded 0.22, except for partitions 11 and 16. The main reason for this is the
significantly small number of land parcels in these two subzones, coupled with the ab-
sence of comprehensive land-use types. Among the numerous subzones, they constituted
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only a tiny fraction, leading to their notable low accuracy (0.098 and 0.039, respectively).
These results indicated two key points: (1) The partition VCA model, which relies on DSC
clustering and RF-based rule mining, is capable of achieving a high degree of accuracy
in simulating land-use patterns for both individual subzones and the entire study area;
(2) The DSC algorithm is well-suited for identifying clusters within datasets characterized
by an uneven distribution of non-spatial attributes. Nevertheless, it has the potential to
lead to an over-segmentation of urban space into numerous smaller areas, thereby affecting
the accuracy of partition simulation.

Figure 7. The FoM of different neighborhood radii (unit: meters) via RF model.

Figure 8. The FoM of different sub-regions and whole study area by proposed model.

Additionally, we conducted a comparison between the simulated results and the
actual urban land use, as illustrated in Figure 9. This comparison specifically focuses on
landscape indices within the study area. It can be observed in Figure 10 that the proposed
framework can obtain acceptable results as the PD, LPI, LSI, and SHDI metrics are similar
to the actual case. In a more detailed analysis, the PD values obtained in simulation results
were typically higher than the actual values, leading to a significantly greater degree of
land fragmentation, coupled with lower LPI values. This could be due to the increased
landscape fragmentation caused by parcel subdivision, as well as an over-segmentation
of the zoning scheme. Notably, the SHDI obtained from DSC clustering is higher than the
actual land-use situation. This observation suggests that, when applying DSC, there is a
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tendency for different patch types to exhibit a balanced distribution within the landscape.
This capability effectively illustrates landscape heterogeneity, particularly in capturing the
non-uniform distribution of various patch types within the landscape.

Figure 9. The simulation results of different sub-regions by the proposed framework.
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Figure 10. Landscape indices of the simulated results via the proposed model in the study area.

4.4. Model Comparison and Assessment
4.4.1. Comparison of Simulation Using Administrative-Based Zoning

As described in the previous section, Jiangyin city was divided into five administrative
districts: Chengdong, Chengxi, Chengnan, Chengdongnan, and the Central Zones. The Ur-
banVCA model was then employed to simulate each partition, and the simulation accuracy
is presented in Table 1. Overall, the administrative-based approach demonstrated accept-
able simulation performance. There remain differences between the proposed approach and
the two models. As Figure 11 demonstrates, the results of the proposed area partitioning
approach tend to be more fragmented than that achieved through administrative-based
zoning, as characterized by both the PD and LPI metrics showing a great difference from
the actual scenario. Nevertheless, the proposed area partitioning approach, taking spatial
heterogeneity into account, has the potential to generate more accurate simulation results,
as FoM values are higher and SHDI and LSI metrics are closer to real-world observations.
Through details in Part 1, Part 2, and Part 3 (Figure 12), it is evident that the administrative-
based zoning scheme displays cases of misclassifying agricultural land as residential land
and rural construction land. In comparison, the simulation results obtained using DSC
clustering came closest to representing the actual land-use situation. Furthermore, when
considering the shapes of individual land parcels, they also closely resemble the real land
use. These findings suggest that the administrative-based zoning scheme results in a
higher degree of urban landscape aggregation and lower shape complexity, highlighting its
effectiveness in simulating regular urban landscapes [47,48].
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Figure 11. Comparison of the simulated results by the DSC-based vs. administrative-based zoning.

Figure 12. Details of actual and simulated (DSC-based and administrative-based zoning) land-
use changes.

4.4.2. Comparison of Simulation Using Traditional Dual Spatial Clustering Zoning

For comparative purposes, we also introduced two typical dual spatial strategies:
modified k-means (MK-means) [49] and DBSC [50]. The K-means method calculates the
spatial distance of the clustering targets, while the MK-means algorithm not only focuses
on the spatial clustering of the targets but also takes into account their attribute distance.
Therefore, the MK-means algorithm uses a generalized Euclidean distance as the clustering
metric, replacing the spatial distance used in the K-means method. The generalized
Euclidean distance is defined as follows:

D
(

pi, pj
)
=
√

w1DS
(

pi, pj
)
+ w2DA

(
pi, pj

)
(11)

In this equation, D(pi,pj) between pi and pj is calculated as the weighted sum of the
normalized spatial distance DS(pi,pj) and non-spatial distance DA(pi,pj). The default values
for the weights, w1 and w2, are both set to 0.5 [51].

The DBSC algorithm is a clustering method that identifies spatial clusters by modelling
the spatial proximity and attribute similarity relationships among spatial objects with the
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help of constrained Delaunay triangulation (for more details, refer to [50]). The DBSC
algorithm has proven to be efficient and applicable in detecting clusters characterized by
irregular shapes and varying densities.

For the first experiment, the optimal value of K was also determined by the best
simulation result according to the FoM metric. We conducted the clustering for five
different values of k: 3, 4, 5, 6, and 7, and the k value was adjusted to 4, resulting in
the highest simulation accuracy being achieved (i.e., FoM = 0.223). Figure 13 visually
represents the partitioning results obtained through Mk-means, dividing the area into four
sub-regions. Interestingly, these sub-regions exhibit a resemblance to the administrative
divisions. This is primarily due to the challenge of the MK-means method in detecting
clusters of arbitrary shapes and different densities. Moreover, the sensitive to noise parcels
in the partition results could lead to systematic bias of simulated results [29]. Similar to the
outcomes observed with the administrative zoning scheme, the MK-means method also
presented instances of misclassification. It is detailed in Part 1, Part 2, and Part 3 (Figure 14)
that while the MK-means zoning scheme effectively simulates the agricultural and public
service land within the specified area, it still encounters instances of misclassifying certain
agricultural land as other land-use types. Figure 15 displays the landscape metrics of the
urban landscape, which were simulated using the three zoning schemes. The landscape
metrics of the simulation results of MK-means are all positioned at a moderate level in
comparison with that of the other two models. This suggests that the simulation accuracy of
spatially heterogeneous area partitioning by different methods is DSC-based > Mk-means-
based > administrative-based zoning.

Figure 13. The area partitioning result by Mk-means.

  
Figure 14. Comparison of the simulated results by the DSC-based vs. Mk-means-based zoning.
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Figure 15. Details of actual and simulated (DSC-based and Mk-means-based zoning) land-use change.

For the second experiment, DBSC algorithm had difficulties in obtaining satisfactory
results, where urban space was over-segmented into 2750 clusters (see Supplementary
Figure S1). This is mainly attributed to the fact that the attribute similarity measurements
in DBSC is treated as the Euclidean distance. Existing research has indicated that clustering
methods developed for Euclidean scenarios can introduce systematic bias, leading to
either an overestimation or underestimation of the clustering tendency [35]. Through the
utilization of the information entropy clustering strategy, the DSC algorithm is able to
identify appropriate indivisible clusters and mitigate the challenges associated with both
over- and under-segmentation phenomena. The outcome demonstrates that the DBSC
algorithm is unsuitable for datasets characterized by uneven attribute distributions.

5. Conclusions

Spatial planning in China not only encompasses individual regions but also requires
the consideration of synergistic effects among different regions, resulting in distinctive
interactive characteristics during the land evolution process [52]. Spatially heterogeneous
area partitioning refers to the distribution and variations in various geographical features,
conditions, and resources. These differences serve as the medium for interactions between
different regions, influencing land-use decisions. By effectively utilizing information from
spatial heterogeneity, planners can gain a more profound understanding of the structured
development patterns in different regions. This aids in making spatial planning adjustments
more effectively to promote balanced development across various regions, preventing
excessive concentration or unreasonable dispersion of land use. These considerations hold
significant practical importance for optimizing spatial planning at the urban level.

In CA modeling, spatial heterogeneity can be effectively characterized through geo-
graphical area partitioning. DSC is regarded as a suitable method to enhance the partition
VCA model, as it can efficiently capture the spatial heterogeneity in the distribution of
land-use change factors. We adopted the DSC clustering to produce multiple relatively
homogeneous sub-regions, thereby strengthening the transition rules of the UrbanVCA
model and accurately simulating the urban growth of Jiangyin city. Three comparisons
of traditional partitioned models (i.e., administrative-based, Mk-means-based, and DBSC-
based zoning) were conducted to validate the effectiveness and merits of the proposed
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partitioned CA model using FoM accuracy metric and several vector-based landscape
indexes. The primary conclusions can be summarized as follows:

For spatial stratified heterogeneity assessment: In order to demonstrate the effec-
tiveness and superiority of the DSC algorithm, we assessed this spatial heterogeneity by
applying the q-statistic to the distribution of land-use change factors of the DSC zones.

Under different division strategies in this study, Mk-means-based zoning indicates a q
value of 0.327 and administrative-based zoning indicates a q value of 0.241. DSC-based
zoning has the largest q value of 0.748. This means that DSC-based zoning helps to divide
the whole urban space into more homogeneous sub-region areas.

For accuracy assessment: The proposed DSC-based area partitioning approach can
obtain satisfying results as the average FoM values for the partitions exceed 0.22. Despite
the fact that the DSC method may result in an excessive subdivision of the study area into
several small areas, the tiny size of these areas does not compromise the model’s ability
to achieve the highest simulation accuracy. The administrative-based and MK-means-
based zoning models demonstrated acceptable simulation performance. The MK-means
algorithm faces challenges in accurately identifying the clusters of non-convex shapes and
varying densities, resulting in partitioning results that visually resemble the administrative
divisions. While both the DSC and DBSC methods tend to lead to an over-segmentation
of urban space, the DBSC method, as opposed to DSC, utilizes a binary relation strategy
for attribute clustering. This leads to an excessive over-segmentation of urban space,
generating a considerable number of clusters and consequently causing systematic bias in
simulation outcomes.

For landscape assessment: The fragmentation (i.e., PD index), aggregation (i.e., LPI
index), shape complexity (i.e., LSI), and land heterogeneity (i.e., SHDI) of simulated urban
landscape were conducted for the study region to evaluate the performance of different
models. The results of the DSC-based area partitioning approach tend to be more frag-
mented compared with other models. The administrative-based zoning scheme results in
the highest degree of urban landscape aggregation and lowest shape complexity, indicating
its good performance in simulating regular urban landscapes. Meanwhile, the landscape
metrics derived from the simulation results obtained using the MK-means approach are
situated at a moderate level. Notably, the SHDI obtained from DSC clustering is closer
to the actual land-use situation. This suggests that the DSC-based model can effectively
portray landscape heterogeneity, particularly in capturing the non-uniform distribution of
various patch types within the landscape.

In general, the simulation performance of spatially heterogeneous area partitioning
by different methods is DSC-based > Mk-means-based > administrative-based zoning.
DSC-based zoning indicates the largest q value, highlighting its effectiveness in capturing
the spatial heterogeneity in the distribution of land-use change factors. MK-means-based
and administrative-based zoning have advantages in capturing regular urban landscapes
of urban growth. However, when considering the degree of spatial stratified heterogeneity,
they fall short in comparison with DSC with lower q-values.

There remain certain limitations that require further attention and resolution. First,
the DSC algorithm was utilized for partitioning, and the outcome indicated that the com-
bination of DSC clustering and RF-based rule mining was appropriate. Future research
concerning partitioned vector CA models should focus on their capacity to recognize and
effectively model land-use patterns, dynamics, and sensitivity to spatial heterogeneity. For
example, how to measure the landscape heterogeneity from different aspects to improve
the performance of partitioned transition rules. Second, the state-of-the-art convolutional
neural network (CNN)-VCA model has achieved remarkable simulation performance at
the land parcel level, representing a substantial advancement within the domain of VCA
models [40]. Future research can apply the combination of DSC and CNN-VCA to the
urban growth modeling to further validate its advantages and potential benefits. Finally,
it is crucial to note that our study focused on testing the applicability within a specific
city. Currently, our recommendation is for researchers to utilize the GeoDetector tool
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(http://www.geodetector.cn/, accessed on 3 October 2023) to measure the degree of spatial
stratified heterogeneity (SH) by different division strategies. This approach has already
gained recognition among scholars from diverse fields as a quantitative foundation for
partitioning decisions. Future research could expand the proposed model to other cities to
further validate the findings of this study.
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factors of land use change.
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Abstract: An in-depth comprehension of the spatial–temporal characteristics of land-use carbon
emissions (LUCE), along with their potential influencing factors, is of high scientific significance for
the realization of low-carbon land use and sustainable urban development. Academic investigations
pertaining to LUCE predominantly encompass three key dimensions: assessment, optimization, and
characterization research. This study aimed to investigate the spatial and temporal variations in
LUCE within Zhejiang Province by analyzing data from 11 cities and identifying the key factors
influencing these emissions. This research work employed the geographically and temporally
weighted regression (GTWR) model to explore the patterns of variation in these factors across each
city. The results reveal that (1) the temporal changes in LUCE display two predominant trends, while
the spatial distribution exhibits a distinct “high in the northeast and low in the southwest” divergence;
(2) the average intensity of each factor follows the order of economic level > government intervention
> urban compactness > public facilities level > urban greening level > industrial structure > population
density; (3) and the influencing factors exhibit significant spatial and temporal heterogeneity, with
varying direction and intensity of effects for different cities at different stages of development. This
study integrated the dimensions of time and space, systematically examining the evolutionary trends
of influencing factors on LUCE within each region. Consequently, it contributes to the comprehension
of the spatiotemporal effects associated with the driving mechanisms of LUCE. Moreover, it offers a
foundation for formulating customized patterns and strategies to mitigate such emissions, taking
into account specific local contexts.

Keywords: land-use carbon emissions; spatial–temporal characteristics; influencing factors;
geographically and temporally weighted regression; Zhejiang Province

1. Introduction

China’s land financial model has yielded expeditious economic growth; however, it
has concurrently fostered incautious land utilization and extensive urban sprawl, culmi-
nating in a discernible upsurge in carbon emissions. This, in turn, has instigated grave
climate issues and the occurrence of extreme weather events, which substantively en-
croach upon the productivity and well-being of the population [1,2]. Global climate change
poses new requirements and challenges for energy efficiency and low-carbon sustainable
development in cities. Land-use changes and their associated land cover modifications
represent the second most prominent factor contributing to the escalation of environmental
issues, particularly the surge in carbon emissions, behind the combustion of fossil fuels [3].
Land-use changes exert influences not only on the urbanization process [4] and energy
consumption [5,6] but also assume a crucial role within the complex interplay between
carbon emissions and carbon sequestration. Furthermore, they directly or indirectly impact
the mechanisms of carbon emission and sequestration at the interface of the terrestrial
ecosystem and the atmosphere [7]. These influences are primarily manifested through
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modifications in land-use type, function, and structure [8–10]. Currently, due to inefficient
land urbanization in China, leading to urban sprawl and generating large amount of carbon
emissions [11,12], establishing how to coordinate the relationship between urban land and
carbon emissions is a major issue to be solved [13]. Studying the spatial and temporal
characteristics of land-use carbon emissions (LUCE), as well as the underlying influencing
factors, holds paramount practical significance in achieving low-carbon land utilization
and fostering a sustainable economy with a reduced carbon footprint.

The investigation of LUCE has garnered significant attention in recent academic
research endeavors. In terms of the research scope, scholars have extensively investigated
LUCE across various scales, encompassing national [10,14], regional [2,15], provincial [16],
municipal [17], and county levels [18]. Furthermore, considering diverse research objectives,
scholars commonly adopt a comprehensive approach by integrating spatial research scales
and land-use types into a research matrix. For instance, some scholars focus on examining
the spatial and temporal characteristics of carbon emissions within the same land type
but across different regions, such as analyzing carbon emissions from industrial land in
various cities [19]. Conversely, others concentrate on analyzing different land types within
a specific region [20] or conducting detailed studies on a singular land type within the same
region [21]. Additionally, comprehensive research and analysis encompassing various
land types across different regions have been conducted to align with distinct emission
reduction objectives aimed at fostering differentiation and coordination [22].

In terms of research content, the current scholarly investigations pertaining to LUCE
can be broadly categorized into three primary aspects.

Firstly, there is a focus on assessing the effectiveness, efficiency, and carbon emission
intensity of different land uses. LUCE should be considered in a comprehensive manner
for economic and social benefits as well as ecological benefits [23]. Furthermore, certain
scholars have developed an evaluation index system to assess the level of land-intensive
use [24], focusing on land-use efficiency as a key perspective. This evolution is evident in
the transition from single-index measurements to the adoption of multi-index measurement
systems [25]. The research scope encompasses individual cities and urban agglomerations,
enabling a more comprehensive analysis [26]. The evaluation methodologies employed
have advanced from descriptive models to encompass regression models, data envelopment
models, and panel data models [27].

The second aspect of current research on LUCE involves investigating the optimization
of land-use structures and patterns. Human activities can significantly influence regional
carbon emissions by altering land-use patterns [28], subsequently impacting energy con-
sumption patterns and ultimately influencing the quantity of carbon emissions. Given that
the configuration and distribution of land use profoundly shape the spatial arrangement
of the built environment and associated human activities, particular emphasis is placed
on the spatial layout of urban land use as a pivotal factor with a significant impact on
carbon emissions [29]. It is essential to explore the relationship between land-use patterns
and overall carbon emissions, analyze the carbon emission effects resulting from land-use
changes, and propose viable and effective approaches for land managers and policymakers
to consider for reducing carbon emissions [28]. Notably, optimization studies employ opti-
mization models where varying constraints represent the values associated with adopting
different optimization strategies. When optimizing the spatial distribution of land use
with the constraint of minimizing carbon emissions, scholars incorporate additional factors
such as population carrying capacity [30], economic development [31], and the ecological
environment [32] to account for various considerations.

The third aspect encompasses the examination and analysis of LUCE mechanisms from
the perspective of mixed land use and compact cities. Achieving effective mixed land use
in urban areas necessitates moving beyond the traditional approach of functional zoning
in urban planning [33]. Instead, it requires the rational integration of work, living, and
recreational spaces at the community level. Mixed land use exerts both direct and indirect
effects on carbon dioxide emissions. The direct effect involves the carbon source and
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carbon sink dynamics of the land, while the indirect effect primarily stems from enhanced
production efficiency, increased public transport utilization, and reduced traffic congestion.
Existing research indicates a positive U-shaped correlation between mixed land use and
carbon dioxide emissions [34], suggesting that a certain degree of mixed land use can
contribute to carbon dioxide reduction. The term “compact” embodies three key aspects:
functional compactness, scale compactness, and morphological compactness [35]. The
realization of spatially compact cities can substantially alleviate road traffic, particularly the
reliance on private vehicles, thereby mitigating traffic congestion, reducing oil consumption,
preserving resources, and curbing air pollution [33]. Emphasis is placed on optimizing the
internal structure of urban areas, renewing inefficient land use within built-up areas, and
fostering polycentric urban configurations within the framework of compact development.

The academic research on LUCE and their influencing factors has experienced con-
tinuous improvement and expansion and yielded fruitful outcomes. These studies have
utilized various models selected at appropriate scales to investigate significant issues. For
instance, researchers have employed the Future Land Use Simulation (FLUS) model to
predict optimal spatial land-use configurations [32,36], utilized Cellular Automaton (CA)
to simulate natural processes of land-use changes [37], and more recently, adopted machine
learning methods like the Back Propagation Neural Network (BPNN) to forecast urban
LUCE [18]. Nevertheless, these studies are not without limitations. Primarily, geographic
models predominantly focus on investigating the spatial distribution characteristics of
carbon sources and sinks, as well as the spatial correlation of LUCE from a spatial ge-
ography perspective. However, only a few studies have effectively integrated both time
series and spatial geographic dimensions to analyze LUCE comprehensively. Furthermore,
previous studies have often utilized factor decomposition methods such as the Logarithmic
Mean Divisia Index (LMDI) model to rank influencing factors and generalize the factors
contributing to LUCE [38,39], neglecting the diverse development stages of cities and
failing to provide policy recommendations tailored to specific developmental phases. The
geographically and temporally weighted regression (GTWR) model has been extensively
employed in carbon emissions research [40–42] and is applicable to the realm of LUCE.
Therefore, the primary aim of this study is to conduct a comprehensive analysis of the spa-
tial and temporal differentiation characteristics of LUCE, utilizing an extended time series
in conjunction with the GTWR model. Additionally, it seeks to investigate the patterns
and trends of crucial influencing factors associated with LUCE across various stages of
urban development.

2. Overview of the Study Area and Data Source

2.1. Study Area

Zhejiang Province is situated on the southeast coast of China and represents the
southernmost part of the Yangtze River Delta (118◦01′~123◦10′ E, 27◦02′~31◦11′ N). It is
bordered by the East China Sea to the east, Fujian Province to the south, Shanghai and
Jiangsu Province to the north, and Anhui Province and Jiangxi Province to the west. The
province spans approximately 450 km in both the north–south and east–west directions
(Figure 1). Since the implementation of China’s reform and opening-up policy, Zhejiang
Province has strategically capitalized on its coastal location, yielding notable advancements
in economic development. Concurrently, this progress has engendered substantial modifi-
cations in land-use patterns and carbon emissions [43]. Additionally, as the birthplace of the
“Two Mountains Theory”, an innovative framework for ecological civilization construction,
Zhejiang Province demonstrates commendable ingenuity in the realm of low-carbon sus-
tainable development practices. Analyzing the LUCE can provide a distinctive standpoint
for comprehensively understanding the developmental trajectory of the province from
diverse perspectives.

This study focused on the correlation between land-use change and carbon emissions
at the city scale within Zhejiang Province. The research encompassed 11 prefecture-level
cities that fall under the administrative division of the province, namely, Hangzhou, Ningbo,
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Wenzhou, Jiaxing, Huzhou, Shaoxing, Jinhua, Quzhou, Zhoushan, Taizhou, and Lishui.
The inclusion of diverse cities within the same province as the research subjects served
to mitigate the impact of macro policies on carbon emissions across different provinces.
Moreover, it facilitated a comparative analysis across cities in distinct stages of urbanization
and varying levels of development.

Figure 1. Location of the study area.

2.2. Data Sources

The present study utilized a comprehensive database to conduct a case study on
preprocessing and further analysis. The database included the following components:

(1) Land-use data obtained for the interval of one year (10 years in total) from 2001 to 2019
were acquired. The relevant data were obtained from a widely utilized dataset [44]
(https://zenodo.org/record/5816591, accessed on 10 May 2023), which has been
widely used as the basic data for LUCE research [45,46]. The dataset was subjected
to preprocessing, and ArcGIS 10.8 software was employed to extract information on
construction land. Subsequently, the construction land patches within each city of
Zhejiang Province were obtained through mask extraction operations. Patches with an
area smaller than 0.01 km2 and those exhibiting scattered distribution were excluded
and manually corrected, resulting in the acquisition of construction land patches for
the 11 cities in Zhejiang Province for each year;

(2) Socioeconomic data, including population, GDP, industrial structure, government
revenue, general public budget expenditure, fixed asset investment, and livestock
population, were retrieved from the Zhejiang Statistical Yearbook. Additionally, data
on the completed area’s green-covered area were obtained from the China Urban
Statistical Yearbook. The accuracy and consistency of all of the aforementioned data
were cross-referenced and verified against the statistical yearbooks of each city;

(3) Carbon emission data for the 11 cities in Zhejiang Province from 2001 to 2019 were
obtained. These data represent estimated carbon emissions resulting from the primary
energy consumption in each city. These data serve as a partial estimation of carbon
emissions from construction land in the present article. The data were sourced from
the Carbon Emission Accounts and Datasets (https://www.ceads.net.cn/, accessed
on 10 May 2023), which comprise carbon emission inventories for 290 Chinese cities
over the years under investigation. Previous studies have confirmed the comprehen-
siveness and effectiveness of these datasets [47,48].
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It is worth noting that this study covered a substantial time period, and as a result,
data for certain cities may have been missing for specific years. To address this issue, a
limited number of missing data were supplemented using data from adjacent years or
compensated for using the linear interpolation method. Moreover, all data were normalized
before calculation.

3. Methodology

3.1. Calculation of LUCE

The present study classified land types into seven distinct categories, namely, cropland,
forestland, shrubland, grassland, water bodies, construction land, and other lands. These
land-use categories within Zhejiang Province can be further classified into two overarching
types: “carbon sources” and “carbon sinks”. In order to estimate carbon sinks and car-
bon emissions, calculations were performed based on established research findings and
guidelines outlined by the Intergovernmental Panel on Climate Change (IPCC).

3.1.1. Accounting for Total Carbon Sinks

Carbon sinks primarily arise from the sequestration of carbon within terrestrial ecosys-
tems, including forestland, shrubland, grasslands, water bodies, and other land categories.
These specific land types can be directly quantified. Table 1 presents the carbon emission
coefficients for different land-use types, which were derived from previous research find-
ings. The total volume of carbon sinks (CS) in a natural ecosystem is calculated using the
following formula:

CS = ∑ CSi = ∑(Ai × θi) (1)

where CSi is the carbon sink amount of each land type; Ai is the area of each carbon sink
land type; and θi is the carbon sink coefficient per unit area of each carbon sink land type.

Table 1. Carbon emissions and sink coefficients.

Notation Carbon Emission Component Coefficient Units Source

θ1 Forestland −0.586 t/(hm2·yr) [15]
θ2 Shrubland −0.161 t/(hm2·yr) [49,50]
θ3 Grassland −0.021 t/(hm2·yr) [15,51]
θ4 Water bodies −0.253 t/(hm2·yr) [22,51]
θ5 Other lands −0.005 t/(hm2·yr) [15]
θc Cropland 0.497 t/(hm2·yr) [15]
δ1 Human respiration 0.079 t C/(person·yr) [50,52]
δ2 Pig respiration 0.082 t C/(head·yr) [50,53]
δ3 Cattle respiration 0.374 t C/(head·yr) [50,53]

3.1.2. Accounting for Total Carbon Emissions

Construction land and cropland function as significant sources of carbon emissions,
with construction land facilitating various economic and social activities encompassing
human habitation and production. Notably, the primary factors under consideration pertain
to energy consumption and respiratory emissions originating from both human activities
and livestock. Specifically, the main livestock species taken into account are pigs and cattle.
The following formula is utilized:

CE = Cu + Cc = Ce + Cp + Cc = Ce + ∑(pi × δi) + Ac × θc (2)

where Cu and Cc represent the emissions from construction land and cropland, respectively;
Ce represents the carbon emissions of apparent energy consumption; Cp represents the
carbon emissions of human and livestock respiration; Pi is the number of humans and
livestock in a city; δi indicates the annual carbon emissions per person (head); Ac is the
area of cropland; and θc is the carbon emission coefficient of cropland.
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3.2. Net Land-Use Carbon Emissions

Net land-use carbon emissions (NLUCE) are the sum of carbon sources and sinks in a
region and are calculated as follows:

C = CS + CE (3)

where C is the NLUCE; CS is the total volume of carbon sinks; and CE is the total carbon emissions.

3.3. Influencing Factors

Drawing on relevant studies, this study focuses on the following influencing factors
based on three aspects—socioeconomic aspects, urban form aspects, and urban environ-
ment aspects:

• Socioeconomic aspects

(1) Population density, represented by the number of people per unit area;
(2) Economic level, represented by GDP per capita to measure economic level;
(3) Industrial structure, represented by the ratio of secondary industry to GDP;
(4) Government intervention, represented by the ratio of general budget expenditure

to total financial revenue;
(5) Public facilities level, represented by the ratio of investment in fixed assets to GDP.

• Urban form aspects

(6) The compactness of the peripheral profile form in urban areas holds significant
importance as an indicator of urban spatial structure. In general, during the phase of
rapid urban expansion, the compactness tends to decrease, whereas it tends to increase
when cities transition toward internal filling and transformative development stages. The
cyclical expansion of cities is intricately linked to the cyclical nature of urban economic
development, and investigating the changes in the compactness of urban form allows for
the identification of such cyclic patterns in urban expansion.

Enhancing the urban compactness index contributes to reducing the distance between
various parts within the city, thereby improving the efficiency of urban infrastructure and
optimizing the utilization of developed land. The compactness index CI is calculated by
means of the following formula [54]:

CI =
2
√

πA
P

(4)

where A is the area of the built-up area, and P is the perimeter of the built-up area of the
city. A higher value of the compactness index indicates a more compact shape of the city;

• Urban environment aspects

(7) Urban greening level, represented by the proportion of green covered area to the
built-up area.

3.4. GTWR Models

Compared with previous research models, this study incorporates the GTWR model
into the investigation of LUCE. It focuses on comprehensively examining the dynamic
evolution of influential factors contributing to LUCE during various stages of develop-
ment within each city. Consequently, this approach enhances the ability to elucidate the
spatiotemporal effects of the driving mechanisms behind LUCE in a scientifically robust
manner. The conventional geographically weighted regression (GWR) model is subject to
certain limitations when applied in specific contexts, primarily due to the restricted sample
size of cross-sectional data. One prominent drawback is that the explanatory stability is
constrained by the sample size, thereby impeding the accurate estimation of model param-
eters. In an effort to address this issue, researchers [55] introduced the temporal dimension
to the GWR model, thereby incorporating the combined influence of spatiotemporal factors.
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This advancement has led to the proposal of the geographically and temporally weighted
regression model, known as GTWR. The GTWR model effectively extends the GWR frame-
work by integrating temporal and spatial information, thus enhancing the weighting matrix
and resolving the challenge of spatial and temporal nonsmoothness. Consequently, the
estimation process is significantly improved. The specific equation for the GTWR model
can be represented as follows:

Yi = β0(ui, vi, ti) +
p

∑
k=1

βk(ui, vi, ti)Xik + εi (5)

where Y and X represent the dependent and explanatory variables, respectively. The vari-
able i represents the sample region, while u and v represent the geographical coordinates
of the sample region. Additionally, the variable t represents time. The term β0(ui, vi, ti)
corresponds to the intercept term, and βk(ui, vi, ti) signifies the estimated coefficient for
the explanatory variables. A positive value of β indicates a positive correlation between
the explanatory and dependent variables, while a negative value indicates a negative
correlation. The term εi represents the random disturbance term.

4. Results and Discussion

4.1. Land-Use Changes

As urbanization progresses, cities in Zhejiang Province require the ongoing expansion
of construction land to facilitate their developmental needs. Consequently, urban construc-
tion land areas have expanded outward, resulting in substantial alterations to land-use
patterns. The observed increase in construction land area across each city between 2001 and
2019 was approximately twice the original area. Notably, Hangzhou and Ningbo exhibited
the most significant increments in construction land expansion, measuring 831.92 km2

and 879.01 km2, respectively. Furthermore, Jiaxing experienced substantial growth in con-
struction land from 248.03 km2 to 778.33 km2, exceeding three times its initial size. Table 2
reveals that the augmentation of construction land predominantly occurred through the
conversion of three land-use types: cropland, forestland, and water bodies. Five distinct
land-use transformation patterns can be identified: first, the primary conversion involved
cropland transforming into construction land, exemplified by Jiaxing. Second, there were
instances of forestland being converted into both construction land and cropland, as ob-
served in Wenzhou, Quzhou, and Lishui. Third, the most prevalent land-use change pattern
entailed the conversion of cropland and forestland into urban construction land, evident in
Hangzhou, Huzhou, Shaoxing, Jinhua, and Taizhou. Fourth, the conversion of cropland
and water bodies into construction land was evident in the island city of Zhoushan. Finally,
the city of Ningbo demonstrated the conversion of cropland, forestland, and water bodies
into construction land. Irrespective of the specific conversion mode, whether involving a
single land type such as cropland or forestland, or the combined conversion of cropland,
forestland, and water bodies to facilitate construction, all these processes result in dimin-
ished carbon sinks and increased carbon sources. Therefore, it is imperative to conduct
further investigations to explore the spatial and temporal differentiation of LUCE and their
underlying influencing factors.

97



Land 2023, 12, 1506

Table 2. Major land-use changes in Zhejiang’s cities from 2001 to 2019.

Cities Land-Use Types 2001 (km2) 2011 (km2) 2019 (km2) 2001–2019 (km2)

Hangzhou

Cropland 3205.45 2553.36 2686.83 −518.63
Construction land 636.69 1167.11 1468.61 831.92

Forestland 12,201.59 12,280.22 11,930.67 −270.92
Water bodies 836.67 879.03 794.27 −42.40

Ningbo

Cropland 3253.42 2901.97 2850.59 −402.84
Construction land 698.29 1303.45 1577.30 879.01

Forestland 4521.21 4348.68 4266.27 −254.94
Water bodies 755.51 674.04 534.61 −221.10

Wenzhou

Cropland 2047.19 1801.55 2109.13 61.94
Construction land 441.43 680.23 814.82 373.39

Forestland 8698.51 8716.95 8313.80 −384.70
Water bodies 242.19 232.49 194.81 −47.38

Jiaxing

Cropland 3591.53 3321.43 3117.16 −474.38
Construction land 248.03 550.66 778.33 530.30

Forestland 25.39 22.80 23.68 −1.71
Water bodies 1049.84 1019.25 995.61 −54.23

Huzhou

Cropland 2849.06 2646.92 2589.38 −259.68
Construction land 210.68 424.66 603.73 393.05

Forestland 2523.62 2389.94 2284.23 −239.39
Water bodies 240.64 361.76 346.64 106.00

Shaoxing

Cropland 2557.55 2265.12 2363.91 −193.64
Construction land 423.85 710.55 867.12 443.27

Forestland 4925.04 4911.33 4715.85 −209.19
Water bodies 372.05 391.05 331.94 −40.11

Jinhua

Cropland 3118.94 2651.72 2817.73 −301.21
Construction land 426.40 790.21 983.04 556.65

Forestland 7276.66 7326.01 6993.81 −282.84
Water bodies 138.41 191.90 166.06 27.65

Quzhou

Cropland 2046.61 1944.41 2079.32 32.72
Construction land 218.11 322.73 409.76 191.64

Forestland 6519.36 6479.76 6262.37 −256.99
Water bodies 90.66 127.88 123.64 32.97

Zhoushan

Cropland 420.34 403.46 360.30 −60.04
Construction land 95.48 168.92 214.31 118.83

Forestland 568.12 531.55 559.48 −8.64
Water bodies 95.01 74.96 44.89 −50.12

Taizhou

Cropland 2508.14 2280.38 2300.04 −208.10
Construction land 416.91 714.22 860.08 443.18

Forestland 6258.94 6182.98 6050.61 −208.33
Water bodies 257.26 263.93 231.44 −25.82

Lishui

Cropland 870.00 731.62 1075.23 205.23
Construction land 123.89 188.09 257.07 133.18

Forestland 16,234.14 16,278.26 15,866.92 −367.82
Water bodies 75.97 107.25 107.05 31.08
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4.2. Spatial and Temporal Variation Characteristics of LUCE
4.2.1. Temporal Evolution Characteristics

Between 2001 and 2019, the total LUCE in Zhejiang Province exhibited a pattern of
rapid growth followed by a period of stability. The emissions increased from
153.90 million tons in 2001 to 446.56 million tons in 2011, representing a substantial increase
of 292.66 million tons. By 2019, LUCE reached 453.43 million tons, signifying an additional
increase of 6.87 million tons compared to 2011. These data indicate a significant slowdown
in the growth rate of carbon emissions, suggesting that Zhejiang Province is gradually
exploring a sustainable development path characterized by a green economy, resulting in
more effective carbon reduction outcomes.

Specifically, when examining LUCE at the city level, two distinct trends emerge
(Figure 2). The first trend is exemplified by Ningbo, Wenzhou, Jiaxing, Quzhou, Zhoushan,
and Lishui, where carbon emissions have consistently risen over the past two decades.
Among these cities, Ningbo exhibits the highest annual average LUCE of 90.21 million tons,
making it the city with the greatest annual emissions in Zhejiang Province. The second
trend entails a phased rise and subsequent stabilization of LUCE. Hangzhou, Huzhou,
Shaoxing, Jinhua, and Taizhou exemplify this pattern. Notably, Taizhou achieved the largest
reduction in carbon emissions between 2011 and 2019, with a decrease of 17.92 million tons
in LUCE compared to 2011. Overall, the cities in Zhejiang Province possess significant
potential for carbon emission reduction. Whether following a trend of continuous growth
or a phased rise followed by stabilization, the carbon emission increment index displays a
general slowdown, indicating a shift away from the initial stage of crude carbon emission
control and management. Instead, cities in Zhejiang Province are gradually embracing
strategies and initiatives for green and low-carbon urban development.

Figure 2. Trends in the evolution of LUCE of cities in Zhejiang Province.

99



Land 2023, 12, 1506

4.2.2. Spatial Distribution Characteristics

The spatial distribution of carbon emissions resulting from land-use activities in Zhe-
jiang Province exhibits a distinct “high in the northeast and low in the southwest” pattern
(Figure 3). Examining regional agglomeration, in 2001, the areas with elevated LUCE were
primarily concentrated in the northern part of Zhejiang Province, with Hangzhou and
Ningbo, the two central cities of the metropolitan area, accounting for the highest emis-
sions. Huzhou, Jiaxing, and Shaoxing followed closely in the second gradient. Between
2001 and 2007, the northern region of Zhejiang Province maintained consistently high
carbon emissions, while Hangzhou and Huzhou gradually decelerated their emission rates.
From 2007 to 2017, there was a shift in the spatial distribution of the dual-center cities,
with Ningbo emerging as the sole city with the highest carbon emissions. This shift in
spatial dynamics indicated a transition in the center of carbon emission aggregation from
the northern part of Zhejiang Province to the eastern coastal region. Moreover, a trend
of carbon emission concentration and a circular spatial distribution pattern emerged. In
2019, Ningbo remained the largest urban area in terms of carbon emissions, with most
cities experiencing a reduction in emissions compared to the previous period. The center
of carbon emissions shifted from the east to the northeast, and the spatial distribution
transformed from a scattered pattern to a more concentrated circular configuration. At the
city level, Ningbo in the northeast consistently ranked highest regarding carbon emissions,
exerting significant influence on the overall spatial distribution of carbon emissions in
Zhejiang Province. Conversely, Lishui and Wenzhou in the southern part of the province
maintained a relatively steady state in terms of total carbon emissions.

Figure 3. Spatial distribution of LUCE by cities in Zhejiang Province. Note: HGZ, Hangzhou City;
NB, Ningbo City; WZ, Wenzhou City; JX, Jiaxing City; HUZ, Huzhou City; SX, Shaoxing City; JH,
Jinhua City; QZ, Quzhou City; ZS, Zhoushan City; TZ, Taizhou City; LS, Lishui City. The same
abbreviations are used for the following figures.

4.3. Spatial and Temporal Variation Characteristics of LUCE Influencing Factors
4.3.1. GTWR Empirical Results

Moran’s I was employed to examine the global autocorrelation of the seven influencing
factors, and the corresponding results are presented in Table 3. It was observed that
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each influencing factor demonstrated a positive Moran’s index, with all global spatial
autocorrelation coefficients being significantly greater than 0 at the 1% significance level.
These findings indicate the presence of positive spatial correlation among the factors,
implying a spatial clustering characteristic.

To investigate the localized correlation between different factors and LUCE, the GTWR
model was used to analyze the spatial heterogeneity considering the influence of the “First
Law of Geography”. The obtained results are presented in Table 4, where both the R2 and
the adjusted R2 surpass the threshold of 0.95. This indicates a high level of model fit and
suggests that the regression model possesses substantial explanatory power. Consequently,
the model outcomes can effectively illuminate the spatial heterogeneity of the influence.

Table 3. Statistical tests of spatial autocorrelation using Moran’s I.

Influencing Factors Moran’s Index Z-Score p-Value Confidence Interval

Population density (PD) 0.3238 17.1222 <0.01 99%
Economic level (EL) 0.0863 4.8947 <0.01 99%

Industrial structure (IS) 0.2749 14.5810 <0.01 99%
Government intervention (GI) 0.3584 18.9851 <0.01 99%

Public facilities level (PF) 0.1717 9.4052 <0.01 99%
Urban compactness (UC) 0.6188 32.3278 <0.01 99%

Urban greening level (UG) 0.0732 4.2427 <0.01 99%

Note: The contents in parentheses represent the respective abbreviations of the influencing factors.

Table 4. Index of model evaluation.

Bandwidth Sigma Residual Squares AICc R2 Adjusted R2

0.1575 0.0342 0.1288 −208.1290 0.9697 0.9677

4.3.2. Spatial and Temporal Heterogeneity of LUCE Influencing Factors

Through statistical analysis of the regression coefficients (Table 5), it was determined
that the average intensity ranking order of each influencing factor is as follows: economic
level > government intervention > urban compactness > public facilities level > urban
greening level > industrial structure > population density. Among the top three factors,
the median regression coefficient of economic level is 0.3417, and the mean value is 0.4171;
the median regression coefficient of government intervention is −0.3115, and the mean
value is −0.3962; and the median regression coefficient of urban compactness is −0.2977,
and the mean value is −0.2850. Their median and mean values exhibit consistent changes
in the same direction and are relatively close to each other. Moreover, by examining the
range between the minimum and maximum values, it becomes apparent that both positive
and negative correlations exist between all seven factors and LUCE. For instance, when
considering urban compactness, the minimum compactness value is −0.7052, while the
maximum value is 0.4190. The positive and negative effects of urban compactness exhibit
variations across different cities, indicating that the general understanding, which posits
that higher compactness results in lower carbon emissions from land use and advocates
for continuous improvement in compactness in urban development, fails to account for
the divergent developmental stages among cities. Therefore, when pursuing low-carbon
development, cities need to adopt an adaptive and stratified approach that takes into
consideration the specific characteristics of each locality.

Figures 4–10 depict the spatial distribution of the regression coefficients for the seven
influencing factors derived from the GTWR model. The figures visually demonstrate the
spatial heterogeneity in the impact of various factors on carbon emissions across different
time periods.
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Table 5. Descriptive statistics of regression coefficients of influencing factors.

Influencing Factors Mean S.D. Min. Median Max.

Population density (PD) −0.0248 0.2895 −1.2100 0.0260 0.4001
Economic level (EL) 0.4171 0.3597 −1.0195 0.3417 1.1011

Industrial structure (IS) −0.0733 0.2862 −0.7208 −0.0080 0.4078
Government intervention (GI) −0.3962 0.4375 −1.7426 −0.3115 0.6037

Public facilities level (PF) −0.1018 0.2595 −1.0618 −0.0122 0.3481
Urban compactness (UC) −0.2850 0.2438 −0.7052 −0.2977 0.4190

Urban greening level (UG) −0.0967 0.2556 −1.2192 −0.0201 0.1961

Note: The contents in parentheses represent the respective abbreviations of the influencing factors.

• Socioeconomic Aspects

(1) Spatial and temporal heterogeneity of the influence of the population density factor
on LUCE (Figure 4).

In terms of the temporal evolution of influence, population density has the greatest
influence on LUCE in Quzhou and Shaoxing. In Quzhou, population density exhibits
a negative correlation with LUCE, with the strength of this influence diminishing over
time. Conversely, population density in Shaoxing shows a positive correlation with LUCE,
and its impact remains relatively stable. In a broader context, the effect of population
density on LUCE in each city undergoes a transition from initially negative to ultimately
positive. The clustering of the population facilitates the spatial concentration of economic
activities and production factors, as well as the sharing of social infrastructure [6,56]. This
can result in reduced fixed investment costs, management costs, and improved energy
and resource utilization efficiency, thereby lowering carbon emissions. However, excessive
population density can lead to heightened energy consumption, hence displaying a positive
correlation. The impact of population density on LUCE, while generally modest, should
not be disregarded. It is imperative to judiciously manage the influx of migrants, endeavor
to enhance demographic conditions, and encourage reasonable growth of the resident
population [38].

Concerning the spatial distribution of influence, the impact of population density on
LUCE is more significant in inland cities located in western Zhejiang Province compared to
their counterparts in the eastern coastal areas.

Figure 4. Spatial distribution of population density regression coefficients in Zhejiang’s cities from
2001 to 2019.
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(2) Spatial and temporal heterogeneity of the influence of the economic level factor on
LUCE (Figure 5).

In terms of the temporal evolution of the degree of influence, a positive correlation
is observed between the economic level and LUCE in the cities of Zhejiang. Moreover,
this influence maintains a consistent stability. These findings align with prior research
outcomes [2,39], underscoring the imperative of exploring strategies that foster an optimal
equilibrium between economic advancement and LUCE. The economic level exhibits the
strongest degree of influence on LUCE in two cities, namely, Ningbo and Taizhou, con-
sistently maintaining a high level of influence. Notably, a negative correlation emerges
between the economic level and LUCE in Wenzhou and Lishui after 2015, with the de-
gree of influence steadily increasing. The negative effect of economic development on
LUCE is similarly verified within the examination of the Chang–Zhu–Tan urban agglomer-
ation [57]. This trend aligns with the advancement of economic development, optimization
of the economic development model, and the implementation of low-carbon economic
strategies, including the establishment of carbon emission reduction targets. These mea-
sures effectively regulate LUCE resulting from economic development, thereby fostering
the emergence of a low-carbon economic development model as a potential catalyst for
coordinated economic, social, and environmental development [58].

Regarding the spatial distribution of the degree of influence, the impact of the eco-
nomic level on LUCE is more pronounced in the eastern coastal cities of Zhejiang Province
compared to the western cities. This spatial pattern exhibits a trend characterized by higher
influence in the eastern cities and lower influence in the western cities, commonly referred
to as a “high in the east and low in the west” distribution. Specifically, Ningbo, Taizhou,
Zhoushan, and Jiaxing, situated in the eastern region of Zhejiang Province, consistently
experience the significant influence of a high economic level on LUCE. Conversely, Quzhou
and Jinhua, located in the western region, demonstrate a lower level of economic influence
on their LUCE.

Figure 5. Spatial distribution of economic level regression coefficients in Zhejiang’s cities from 2001
to 2019.
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(3) Spatial and temporal heterogeneity of the influence of the industrial structure factor
on LUCE (Figure 6).

From a temporal perspective, the relationship between industrial structure and LUCE
in Hangzhou and Quzhou consistently exhibits a positive association, with a stable degree
of influence. This implies that higher proportions of secondary industry in these cities
lead to elevated levels of LUCE. To effectively mitigate total LUCE, cities can appropriately
reduce the proportion of secondary industry and prioritize the development of tertiary in-
dustry by modifying their industrial structure [2,17]. The impact of the industrial structure
on LUCE in most cities shifted from a negative to a positive effect after 2009. A possi-
ble explanation is the inadequate transformation and upgrading of industrial structures
during the initial stages of urban development. The mismatch between the industrial
pattern and the high demand for industries like steel and cement in urban construction
results in reduced carbon emissions from the reduced share of secondary industry, which is
outweighed by the increased energy consumption associated with urbanization, thereby
establishing a negative correlation between the two variables.

The influence of industrial structure on LUCE exhibits significant spatial heterogeneity
in Zhejiang Province. Analyzing the dynamic evolution of the influence degree reveals a
decreasing influence on cities in northeastern Zhejiang, represented by Ningbo, while cities
in southwestern Zhejiang, such as Quzhou and Lishui, experience an increasing influence
from the industrial structure.

Figure 6. Spatial distribution of industrial structure regression coefficients in Zhejiang’s cities from
2001 to 2019.

(4) Spatial and temporal heterogeneity of the influence of the government intervention
factor on LUCE (Figure 7).

From a temporal perspective, the relationship between government intervention and
LUCE in Zhejiang’s cities exhibits a predominantly negative association. Notably, the city
of Ningbo experiences the greatest influence; however, the strength of this influence has
been gradually diminishing over time. Conversely, the impact of government intervention
on LUCE in Jiaxing displays a consistent year-on-year increase. Furthermore, in Shaoxing,
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there exists a positive correlation between government intervention and LUCE, with the
degree of influence showing a progressive rise after 2011. Among the extant studies, the
identification of a robust positive relationship between the government intervention factor
and LUCE represents an innovative contribution.

In terms of spatial distribution, the influence of government intervention on LUCE
in Zhejiang Province shows a spatial heterogeneity of “high in the northeast and low in
the southwest”. The northeastern region, encompassing cities like Ningbo and Taizhou,
experiences the most profound impact of government intervention on LUCE. In particular,
the relationship between government intervention and LUCE in Shaoxing shifts from
negative to positive, with the degree of influence continuing to grow. Conversely, in the
southwestern region of Zhejiang Province, represented by cities such as Quzhou, Jinhua,
and Lishui, the influence of government intervention on LUCE is comparatively weaker.

Figure 7. Spatial distribution of government intervention regression coefficients in Zhejiang’s cities
from 2001 to 2019.

(5) Spatial and temporal heterogeneity of the influence of the public facilities level
factor on LUCE (Figure 8).

In terms of the temporal evolution of the influence degree, a positive correlation is
observed between the level of public facilities and LUCE in Quzhou and Lishui, with a
consistently stable degree of influence. Conversely, a negative relationship persists, albeit
with a diminishing degree of influence, on LUCE in Zhoushan. Furthermore, the impact
of the public facilities level on LUCE in Ningbo and Shaoxing has transitioned from a
negative effect in the initial stages to a positive effect, and the magnitude of this influence
has been progressively increasing over the years. Shaoxing, in particular, has consistently
exhibited the highest influence degree since 2009. Local governments ought to enhance
the criteria for approving high-emission and high-consumption projects, while expediting
the implementation of a “carbon assessment” and regulatory framework for fixed-asset
investments [56].

Regarding the spatial distribution of the influence degree, the relationship between
the public facilities level and carbon emissions in cities across Zhejiang Province displays a
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three-tiered pattern. The northeast region exhibits the highest level of influence, followed
by the southwest region, while the middle belt demonstrates the lowest level. Specifically,
the cities in the northeast, such as Ningbo and Shaoxing, experience a significant influence
from the public facilities level indicator, which has undergone a dynamic evolution of
continuous enhancement. On the other hand, the cities in the southwest, represented by
Quzhou and Lishui, as well as the cities in the middle belt, including Huzhou, Hangzhou,
and Wenzhou, exhibit a weaker influence degree from the public facilities level indicator.

Figure 8. Spatial distribution of public facilities level regression coefficients in Zhejiang’s cities from
2001 to 2019.

• Urban Form Aspects

(6) Spatial and temporal heterogeneity of the influence of the urban compactness factor
on LUCE (Figure 9).

There exists a predominantly negative correlation between urban compactness and
LUCE in cities across Zhejiang Province. This implies that compact urban construction
land contributes to the reduction in urban carbon emissions, underscoring the importance
for these cities, at their stage of development, to continually optimize and enhance their
land-use layout. They should pursue a path of compact and intelligent development while
continuously harnessing the effectiveness of urban land use. The impact of urban com-
pactness on LUCE in Quzhou is substantial; however, its influence has been diminishing
since 2013. Conversely, in Hangzhou and Huzhou cities, the impact has been deepening
over time. Taizhou, on the other hand, consistently maintains a low level of influence.
The relationship between urban compactness and LUCE in Jiaxing is particularly unique.
Prior to 2013, a negative correlation was observed, with the degree of influence decreasing.
Subsequently, a positive correlation emerged, and the degree of influence increased. This
suggests that landscape pattern characteristics such as connectivity, complexity, and ag-
glomeration of urban patches need to be taken into account in compact and low-carbon
urban development [59]. To achieve this, urban management should exercise control over
the peripheral areas of urban growth and redirect development efforts toward optimiz-
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ing the internal structure of the city and revitalizing underutilized land within built-up
areas [60].

Regarding the spatial distribution of the influence degree, the impact of urban com-
pactness on LUCE in cities across Zhejiang Province exhibits a distinct pattern characterized
by divergence, with higher levels of influence observed at both ends and lower levels in
the middle. The cities that experience a high degree of influence are primarily concentrated
in the northern and southern regions of Zhejiang Province, exemplified by Hangzhou,
Huzhou, and Wenzhou. Conversely, the cities located in the middle belt, namely, Jinhua
and Taizhou, demonstrate a relatively weaker driving force of urban compactness on
their LUCE;

Figure 9. Spatial distribution of urban compactness regression coefficients in Zhejiang’s cities from
2001 to 2019.

• Urban Environment Aspects

(7) Spatial and temporal heterogeneity of the influence of the urban greening level
factor on LUCE (Figure 10).

From a temporal perspective, the degree of influence of the urban greening level on
LUCE in Zhejiang’s cities can be classified into three distinct types. Firstly, a consistent
positive correlation is observed between urban greening level and the cities of Wenzhou
and Lishui. Wenzhou experiences an increasing degree of influence over time, while Lishui
demonstrates a fluctuating pattern with an initial decrease followed by an increase in its
degree of influence. Secondly, there is a persistent negative correlation between urban
greening level and Zhoushan, with the degree of influence continuously increasing. Thirdly,
starting in 2007, a notable trend emerged whereby the influence of the urban greening level
on LUCE in most cities undergoes a transition from a weakening positive effect in the early
stages to a growing negative effect. This effect is most pronounced in Ningbo and Shaoxing,
with Ningbo witnessing an increasing degree of influence, while Shaoxing tends to stabilize.
This evolutionary trend indicates that promoting the enhancement of green cover facilitates
carbon storage and contributes to the reduction in carbon emissions in urban land uses.
Furthermore, the implementation of green space construction in built-up areas, coupled
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with dedicated endeavors to establish robust green infrastructure systems [61], can offer
individuals a range of ecological service functions, thereby contributing to the enhancement
of the residential living environment [62].

In terms of the spatial distribution of the influence degree, the impact of urban greening
level on LUCE in each city of Zhejiang Province exhibits a spatial divergence characteristic,
with higher levels of influence observed in the northern regions and lower levels in the
southern regions. The northern cities of Ningbo, Shaoxing, and Zhoushan display a
consistent increase and stability in the influence of this indicator on LUCE. Conversely,
the southern cities of Lishui and Wenzhou exhibit a relatively lower level of influence in
this regard.

Figure 10. Spatial distribution of urban greening level regression coefficients in Zhejiang’s cities from
2001 to 2019.

Based on the spatial and temporal distribution of regression coefficients concerning
the influencing factors on LUCE within each city in Zhejiang Province, it is possible to
delineate the principal determinants of such emissions in each city. The dominant drivers
primarily hinge on the varying degrees of impact exhibited by individual influencing
factors on LUCE across different cities (evident through the comparison of the absolute
values of regression coefficients during different developmental stages within the same
city). Certain cities are predominantly influenced by a single factor, whereas others are
subject to the combined effects of multiple factors.

In Hangzhou, LUCE are mainly influenced by both urban compactness and urban
greening level. The effect of urban compactness initially increases and then decreases, while
urban greening level has exhibited a negative effect since 2007 and continues to increase. In
Ningbo, LUCE are influenced by the economic level, government investment interventions,
and urban greening level. The influence of the economic level remains stable, that of
government investment shows an increasing and then decreasing trend, and the influence
of urban greening level continues to increase. Wenzhou is influenced by the economic
level, industrial structure, and urban greening level, with the economic level displaying a
negative effect since 2013, while the influence of the latter two factors has been increasing
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since the same year. Jiaxing is primarily influenced by the economic level and government
investment interventions, and the driving force of both factors has been increasing year
by year. In Huzhou, LUCE are influenced by government investment interventions and
urban compactness, with both drivers initially increasing and then stabilizing. In Shaoxing,
LUCE are primarily influenced by a combination of the economic level, social infrastructure
investment, and urban greening level, with all three drivers showing a continuous increase
in influence. In Jinhua, LUCE are mainly influenced by the consistently stable economic
level. In Quzhou, population density and urban greening level are the main drivers,
with the influence of population density gradually weakening and the influence of urban
greening level remaining stable. In Zhoushan, LUCE are influenced by the economic level
and government investment interventions, with the former having a consistent and steady
impact, while the influence of the latter initially increases and then gradually decreases.
Taizhou’s LUCE are mainly influenced by the economic level and government intervention,
displaying a continuous and steady effect. In Lishui, LUCE are mainly influenced by the
economic level and urban compactness, with the former transitioning to a negative effect
since 2011, accompanied by an increasing degree of influence, while the influence of urban
compactness continues to rise year by year. This analysis and trend assessment of the main
driving forces in each city, based on the regression coefficients of the influencing factors,
can provide a scientific basis for cities to explore low-carbon economic transition models
and achieve differentiated and coordinated emission reduction.

5. Conclusions

This study employed GIS and RS technologies to extract seven types of land-use
patches from 11 prefecture-level cities in Zhejiang Province. These patches were used
to quantitatively assess the LUCE of each city and examine their spatial and temporal
variations. Additionally, a GTWR model was employed to investigate the spatiotemporal
characteristics of factors influencing LUCE in each city of Zhejiang Province. The main
findings of this study are as follows:

(1) Over a period of nearly 20 years, from 2001 to 2019, the total LUCE in Zhejiang
Province exhibited a pattern of rapid growth followed by stability. The change in
LUCE in each city demonstrated two primary trends: a continuous increase over
time, as observed in Ningbo, and a pattern of stabilization, exemplified by Hangzhou,
where emissions initially increased and then decreased in phases. Furthermore, there
was a noticeable spatial variation in LUCE among Zhejiang’s cities, with higher
emissions observed in the northeast region and lower emissions in the southwest;

(2) The influence of the seven indicators on LUCE exhibited significant heterogeneity in
both the temporal and spatial dimensions. The statistical analysis of the regression co-
efficients for the influencing factors revealed that their average intensities were ranked
as follows: economic level > government intervention > urban compactness > public
facilities level > urban greening level > industrial structure > population density;

(3) The impact of population density on LUCE varied across cities, transitioning from
a negative effect in the early stages to a positive effect. Inland cities in western
Zhejiang Province exhibited a greater influence on LUCE compared to eastern coastal
cities. The relationship between economic level and LUCE in Zhejiang’s cities was
generally positive and stable, with a spatial distribution characterized by higher
levels in the east and lower levels in the west. The association between industrial
structure and LUCE remained positive and stable in Hangzhou and Quzhou, while
it decreased in northeastern Zhejiang’s cities represented by Ningbo and increased
in southwestern Zhejiang’s cities represented by Quzhou and Lishui. Government
intervention exhibited a negative correlation with LUCE in Zhejiang’s cities, with a
spatial distribution indicating higher levels in the northeast and lower levels in the
southwest. The spatial distribution of the influence of public facilities level on carbon
emissions in Zhejiang’s cities demonstrated a three-tiered hierarchical pattern, with
higher levels in the northeast, intermediate levels in the southwest, and lower levels
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in the middle. Urban compactness exhibited a negative correlation with LUCE in each
city of Zhejiang Province, and its impact displayed a spatial distribution characterized
by higher levels at both ends and lower levels in the middle. The influence of urban
greening level on LUCE varied among cities and exhibited a spatial divergence, with
higher levels in the north and lower levels in the south;

(4) The LUCE in different cities are influenced to varying degrees by cities’ respective
stages of development. For instance, cities such as Ningbo, Wenzhou, Jiaxing, Shaox-
ing, Jinhua, Zhoushan, Taizhou, and Lishui are all influenced by their economic levels,
albeit with variations in the extent and dynamic evolution of these influences. There-
fore, when formulating differentiated low-carbon economic development strategies
for different cities, careful consideration should be given to their specific developmen-
tal stages and the processes of dynamic evolution they are undergoing.

This study employs the GTWR model to examine the evolving patterns of factors in-
fluencing LUCE. This approach offers valuable insights into scientifically characterizing the
spatiotemporal effects of the mechanisms driving LUCE. Consequently, it facilitates a more
rigorous assessment of the developmental trajectories associated with LUCE. Moreover, the
findings serve as a fundamental basis for establishing differentiated models and strategies
for land-use carbon reduction, tailored to specific local contexts.

Disparities in urban development stages are not only evident within the 11 cities in
Zhejiang Province but also extend to other regions worldwide. This study demonstrates a
thorough recognition of the multifaceted nature, systematicity, dynamics, and variability
inherent in the driving mechanisms of LUCE. Accordingly, leveraging an extensive time
series, this research systematically identified seven pivotal influencing factors derived from
the socioeconomic, urban form, and urban environment aspects. These factors were then
utilized to investigate the dynamic evolution of the driving mechanism governing LUCE
during distinct stages of urban development. The research methodology employed and the
resulting findings hold significant potential for generalization and application in studies
conducted in diverse regions worldwide.

The current study has certain limitations that need to be acknowledged. Firstly, the
classification of land-use types in this study into seven categories may have overlooked
the carbon emission variations that could be observed with a more detailed classification.
Secondly, this study primarily focused on the city scale due to the availability of basic data.
However, counties, being the fundamental administrative units in China, play a crucial
role in implementing and enforcing low-carbon policies. Future studies should consider
conducting more granular investigations at the county level to analyze the spatial and
temporal characteristics of LUCE and their influencing factors.
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Abstract: Along with the rapid development of urbanization and industrialization, the carrying
capacity of territorial space has been confronted with a serious crisis. Faced with many uncertain
risks and unknown disruptions, it is important to proactively address the uncertainty of future
developments in planning and to improve territorial spatial resilience (TSR). Based on the connotation
of TSR, we build an assessment framework for TSR containing urban, agricultural and ecological
space from three dimensions, including element, structure and function. Using a variety of methods
such as the source-sink landscape index, land suitability assessment, and cropland pressure index, we
assessed the TSR of the Yangtze River Economic Belt (YREB) from 2000 to 2020 and comprehensively
analysed its spatial and temporal evolutionary characteristics. Through data analysis, we observe that
the urban spatial resilience (RU) decreases and then increases, while the agricultural spatial resilience
(RA) and the ecological spatial resilience (RE) show an increasing trend. The spatial clustering in
TSR is apparent, and the distribution of hot and cold spots in RA and RE is reversed in the east–west
direction. The changes in TSR are influenced by a combination of RU, RA and RE, which show unique
geographical characteristics. Based on the average level and overall evolution of TSR, we divided the
study area into five type zones and proposed development strategies for each of them.

Keywords: territorial spatial resilience; urban–agricultural–ecological space; optimisation path;
Yangtze River Economic Belt

1. Introduction

Territorial space is the spatial carrier of human activities. Rational development of
territorial space is a prerequisite for the sustainable development of a country or region [1].
Under the background of global environmental change, China’s territorial spatial pattern,
which has experienced rapid urbanisation and industrialisation, has changed dramatically.
The disorderly exploitation of urban, agricultural and ecological space by human beings
has triggered problems such as environmental pollution, resource shortage and ecological
damage [2]. Moreover, the imbalance within the territorial space and the different require-
ments of urban development for the functioning of the territorial space limits its sustainable
development. Therefore, upgrading the functions of the territorial spatial system and
enhancing its resilience has become a consensus for development in many countries [3,4].

To address these problems, western countries carried out extensive spatial planning
practices after the 20th century and established a relatively comprehensive spatial planning
system, intending to improve the territorial space use efficiency and promote coordinated
regional development [5,6]. In this process, the concept of resilience was introduced into
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ecology by Holling [7], and has gradually been widely used in various fields such as
disaster and public safety, agricultural management, community building, urban planning
and economic management [8–10]. Building resilient territorial space is significant to
sustainable economic and social development. TSR is a new attempt to combine resilience
planning with territorial spatial research. China has made territorial spatial planning the
primary basis for all types of development, protection and construction activities, as well
as a spatial blueprint for sustainable development [11]. In particular, ‘enhancing the spatial
resilience of the national territory’ is one of the guiding requirements in the code of practice
for territorial and spatial planning at the provincial level. The 14th Five-Year Plan of China
proposed the construction of ‘resilient cities’ for the first time, emphasising the prominence
of ecology and safety in urban construction. Under the background of territorial spatial
planning, linking urban economic development with the protection of arable land and
ecological environment restoration to give targeted guidance in the process of planning
practice is an important research topic.

Previous studies related to TSR have focused on its conceptual and theoretical explo-
ration, quality assessment, evolutionary process and planning practice. Specifically, TSR
is the capacity of the territorial space to absorb the impact generated by endogenous and
exogenous factors and move towards a new dynamic equilibrium [12]. In risky societies,
endogenous complexity and external uncertainty exacerbate the vulnerability of territorial
space and may contribute to regional or urban–rural development imbalances [13]. At
the same time, territorial space can adapt and recover from natural disasters and human
activity disturbances. Many studies measure the magnitude of this capacity using the com-
posite index method [14], principal component analysis [15] and semi-structured expert
interviews [16] to evaluate the resilience of territorial space in a given region quantitatively
or qualitatively. For example, Assumma et al. (2024) [17] assess TSR in the Champagne-
Ardenne region of France in terms of social, technological, environmental, economic, and
regional development capacities. Some studies tend to systematically analyse TSR from the
perspective of spatial structure and landscape morphology [18,19]. On this basis, research
on the functions, security, vulnerability and ecological restoration of territorial space has
become increasingly rich [20–23]. Moreover, scholars continue to explore directions for
incorporating resilience concepts into territorial spatial planning [24,25]. For example,
spatial planning in Poland aims at increasing the resilience of spatial structures to natu-
ral and socio-economic threats [26]; and the Netherlands emphasises the importance of
proactively addressing risks in spatial planning decisions, in particular concerning climate
perturbations and flood risks [27]. Exploring ecological protection and restoration methods
for territorial space under the resilience perspective, especially in countries that have ex-
perienced large-scale urban expansion, can provide new feasible paths for promoting the
high-quality development of territorial space [28]. At present, international research on
spatial resilience evaluation methods has matured, involving economic [29], ecological [30],
infrastructure [31] and agricultural system resilience [32]; diversified community resilience
evaluation and enhancement research have also been enriched [33]. However, most of the
existing studies tend to focus on the resilience of a single subsystem of territorial space,
which may be unable to capture the complex evolutionary characteristics of TSR under the
influence of human activities. Therefore, based on the need to optimise the structure and en-
hance the function of territorial space, a comprehensive exploration of the spatio-temporal
correlation and enhancement path of TSR is urgently needed.

As a development belt coordinating east, middle and west China, the YREB has ex-
perienced rapid urbanisation in recent decades, accompanied by a large number of land
use changes and landscape transformations. Therefore, we take the YREB as a case study
to investigate the spatial heterogeneity and evolutionary law of TSR and try to explore a
reasonable optimisation path. Our specific research objectives are to (1) quantify TSR in
different years and clarify its spatial evolution trend; (2) reveal the clustering characteristics
and combination types of multi-dimensional TSR; and (3) propose optimisation paths for
different types of TSR. The main contributions of this study are as follows. Firstly, we
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constructed a TSR assessment framework that included urban, agricultural and ecological
space. The spatiotemporal heterogeneity characteristics of TSR in the YREB were explored
using the three dimensions of elements, structure and function. It is a comprehensive
view that highlights the integrity and interactivity of TSR. Compared with the common
unidimensional indicators in previous studies, the framework can reflect the TSR char-
acteristics more effectively and show the problems of territorial space more accurately.
These provide empirical insights for prefecture-level city-scale TSR research. Secondly, we
divided the study area into functional zones based on the combination of TSR and dynamic
changes. Few previous studies have carried out functional zoning of a territorial space
from a resilience perspective. Functional zoning can accurately identify the strengths and
weaknesses of regional TSR and provide theoretical support and a practical reference for
territorial spatial planning zoning. Thirdly, we examined the response history of TSR at
different stages, based on which we explored the optimisation path of TSR under different
combination modes. Previous studies have paid less attention to the coordination between
TSR dimensions and lacked the dissection of the co-evolutionary process, which is insuffi-
cient to propose a comprehensive optimisation strategy. Our study will provide valuable
theoretical references for promoting resilient territorial space construction.

2. Theoretical Framework

2.1. The Connotations of TSR

Territorial space is a complex formed by coupling natural ecosystems and human
social systems; it is characterized by nested scales, coupled elements, spatial and tempo-
ral correlations and functional composites [34]. Resilience was introduced to ecology by
Holling [7]; it pertains to the ability of an ecosystem to maintain its organisation and return
to a stable state after a major disturbance. Territorial spatial resilience (TSR) is the ability
of territorial space to maintain stability when disturbed by multiple risks, recover from
damage and adapt to co-evolution with the environment [35]. The realisation of TSR relies
on the stability and adaptability of the territorial spatial system’s elements, structures and
functions (Figure 1a). Driven by exogenous factors such as globalisation, industrialisation,
urbanisation and informatisation, the territorial spatial system is affected and disturbed by
various factors such as business enterprises, citizens and farmers, government departments
and social organisations. By relying on specific location conditions, natural resources,
economic base and cultural characteristics, the territorial spatial system is guided and
constrained by development policies, land use regulation, remediation projects and market
regulation [36]. In this process, the scale and attributes of the elements of the territorial
spatial system change and the spatial structure and form transform, affecting the output
and supply of its various functions and leading to the continuous evolution of the ter-
ritorial spatial system. Territorial space is divided into three categories, namely, urban,
agricultural and ecological space, according to the attributes of spatial elements and main
functions [37]. Urban space mainly carries urban economic, social, political and cultural
functions, agricultural space mainly carries agricultural production and rural life functions,
and ecological space mostly provides ecological services or products. The territorial space
system is a structured spatial organisation of three types of elements, namely, urban space,
agricultural space and ecological space, forming various types of territorial functions [38].
TSR is realised in the functioning of the three types of spaces and their optimal coordination
with each other [39].

TSR is embodied in the process of transformation of the three types of spatial elements,
structural transformation and functional transformation, exhibiting characteristics such as
robustness, restorability, redundancy and adaptability (Figure 1b). It is jointly influenced
by economic resilience and social resilience and simultaneously provides support for the
realisation of economic and social resilience. Specifically, TSR is characterised by the ability
to withstand the specific pressures generated by the production and living activities of
the actors under the action of exogenous drivers [40]. It can rely on the combined action
of guiding constraints and supporting elements to maintain its main functions and adapt
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to changes in response to external socio-economic development to satisfy human needs
continually [41]. Moreover, TSR evolution has obvious externalities, generates complex
economic, social, ecological and environmental effects and has a decisive impact on food
security, resource security, ecological security and livelihood security.

 

Figure 1. The connotations of TSR.

2.2. Technical Framework for TSR Assessment

The assessment of TSR should focus on the elements’ scale, attributes and spatial
structure characteristics of the territorial spatial system, as well as the realisation of the
dominant functions. For urban space, scale is measured by built-up area, structure is
evaluated by spatial form, and function is assessed by economic and population carrying
density [42]. For agricultural space, element is measured by arable land quality, structure is
assessed by arable land quality, and function is evaluated by arable land utilisation. For
ecological space, the element is assessed by vitality, the structure is assessed by landscape
pattern and ecological services assess the function (Figure 2).

As urban, agricultural and ecological spaces influence and constrain each other, the in-
teraction of the three makes the TSR evolution characterised by multidimensional linkages.
If urban space expands unchecked, the encroachment of neighbouring arable land and eco-
logical landscapes will lessen the connectivity of the city’s blue–green infrastructure, and
their carbon sink benefits and ability to withstand construction disturbances will be weak-
ened [43], leading to a decrease in urban spatial resilience (RU). At different spatial scales
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and environmental gradients, the quality of arable land shows differentiated characteristics,
while population growth and economic development have continuously aggravated the
pressure on arable land and triggered land degradation of varying degrees [44]. In this con-
text, areas with low agricultural spatial resilience (RA) are vulnerable to strong shocks due
to external impacts, such as natural disasters and the hollowing out of rural populations,
which can threaten food security and social stability. Ecological space has self-regulating
stability, which is mainly reflected in the integrity and sustainability of ecosystems, the
fulfilment of ecological functions and the provision of ecological services [45]. In the context
of global change, urban expansion and agricultural pollution have caused problems such
as damage to ecological space, over-consumption of natural resources and fragmentation
of ecological landscapes, decreasing ecological spatial resilience (RE) [46]. On the contrary,
if targeted interventions are taken for territorial spatial governance, then highly resilient
urban, agricultural and ecological space will form an interconnected positive feedback
adjustment mechanism to promote positive interactions among systems of mountains,
rivers, forests, fields, lakes, grasses and sands [47].

 

Figure 2. Technical framework of TSR assessment.

We built a model to measure the level of each dimension of TSR. Taking RU as an
example, the origin represents the initial state of undeveloped urban space. The three axes
represent element, structure and function, and the points representing the state of the re-
gional RU system fall on the axes. The length of the straight line between the origin and the
coordinate points is the standardised value of the indicator. The area formed by the three
indicator values is the RU. With this model, we can obtain single-space resilience. Under
the constraints of territorial spatial planning, urban space, agricultural space and ecological
spatial resilience will gradually form their respective areas of strength [48]. A territorial
spatial system that satisfies the maximisation of social, ecological and economic benefits
will achieve functional optimisation and regional coordination [49]. High RU can promote
urban economic development, provide funds and technology for agricultural development,
improve the efficiency of arable land use, and thus improve RA. The improvement of RA
reduces the encroachment of human activities on ecological space and is conducive to the
improvement of RE. At the same time, high RE can provide ecological products for urban
space, meet residents’ demand for a high-quality environment, and promote the improve-
ment of RU. The territorial space with multi-dimensional high resilience characteristics can
lead to the synergistic progress of the regional TSR as a whole.
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This study attempts to combine resilience theory with the dynamic process of coordi-
nated development of territorial space, comprehensively consider the interactive influence
characteristics of urban, agricultural and ecological spaces, and construct a technical frame-
work for the assessment of TSR.

3. Materials and Methodology

3.1. Study Area

The YREB covers 11 provinces and municipalities (Figure 3), with a total area of
2,052,300 km2. The YREB’s gross domestic product (GDP) reached 56 trillion yuan in 2022,
accounting for 45% of the country’s total. Owing to its favourable climate and varied
topography, the YREB is rich in agricultural resources and supports national food security
as an important commodity grain base in China [50]. Moreover, ecological restoration is a
prerequisite for the high-quality development of the YREB. According to the concept of
‘ecological priority, green development’, the shortage of resources, loss of arable land and
environmental pollution that accompany urban expansion must be solved urgently [51].
The level of TSR has a direct impact on the region’s capacity for sustainable development.
The optimisation of territorial spatial patterns and resilience enhancement in YREB should
be promoted to achieve coordinated development of the economy, society and ecology.

Figure 3. Location of the study area.

3.2. Data Source

We used multiple sources of spatial data and statistics in our study. (1) Land use
raster data and normalised difference vegetation index (NDVI) data for 2000, 2010 and 2020
were obtained from the Resource and Environment Data Centre of the Chinese Academy of
Sciences, with a spatial resolution of 30 m and 1 km, respectively (https://www.resdc.cn/,
accessed on 22 October 2022). The DEM data used are SRTM1 elevation data derived from
the USGS with a spatial resolution of 30 m. (2) The spatial data on administrative division
boundaries, road networks and water systems were extracted from the standard map
service of the National Geographic Information Public Service Platform of the Ministry of
Natural Resources (https://www.tianditu.gov.cn/, accessed on 8 January 2023). (3) Socioe-
conomic data such as resident population and GDP of prefecture-level cities were obtained
from the China Urban Statistical Yearbook. We obtained data on arable land and sown
area from provincial and municipal statistical yearbooks, and some missing values were
supplemented based on data from the National Agricultural Census. (4) Meteorological
data used for the study were analysed and processed using daily precipitation products
from the China Meteorological Administration. Soil quality data were downloaded from
the World Soil Database at a resolution of 1 km.
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3.3. Methods
3.3.1. Measurement of TSR

Based on the theoretical framework, according to the classification of urban, agricul-
tural and ecological, we have systematically summarised the TSR measurement methods,
as shown in Table 1.

Table 1. Quantitative measurement models for RU, RA and RE.

Name Index Formula Explanation

RU

Size
(RUS) RUS = LS

Ld

where RUS is the size resilience index of urban space, LS is the area
of land suitable for building and Ld is the area of existing
building land.

Density
(RUD)

ED = GDP/TS
PD = GDP/TP
RUD = (ED + PD)/2

where ED is the city’s economic density, PD is the city’s population
density, GDP is gross domestic product, TS and TP refers to the
area and the resident population of the city, respectively.

Morphology
(RUM)

Ld = ∑m
i=1 min(di)

m
RUM = L/Ld

where RUM is the morphological density index of urban space,
min (di) is the minimum cost distance from source raster i to the
nearest sink, m is the number of source raster in the study area, and
L is the average distance index value for the source–sink landscape
across the YREB.

RA

Quantity (RAA)
Smin = β Gr

p×q×k
RAA = Smin/S

where RAA is cropland pressure index, Smin and S are the
minimum per capita cropland area and the actual per capita
cropland area (hm2/person), respectively, β is food self-sufficiency
rate (%), p is the grain yield per unit area (kg/hm2), q is the
proportion of area sown to grain to total sown area (%), k is the
replanting index, and Gr is the per capita food requirement
(kg/person). With RAA = 1 as the early warning line, the greater
the value of RAA, the greater the pressure on cropland protection
and the lower the level of agricultural spatial security. With
reference to international food security standards and actual food
production, the per capita food requirements for 2000, 2010 and
2020 were set at 400, 420 and 440 kg, respectively. Since more than
half of the provinces in the YREB are major food-producing areas,
the food self-sufficiency rate is taken to be 100%.

Quality (RAQ) RAQ =
∑n

j Aj×ASj

TA

where RAQ is the average arable land suitability, TA is the total
area of agricultural space in the study unit, Aj is the area of image
element j in agricultural land in the study area and ASj is the
agricultural suitability of image element j in agricultural land.

Utilisation (RAU) RAU = AP/FA AP is the value of agricultural production in the study area and FA
is the area of agricultural land.

RE

Function
(REF)

ESpi = Ai × ESc × (100+SNc)
100

REF = ∑ ESp

where REF is the functional resilience of ecological space, ESpi is
the ecosystem service value of raster i, Ai is the area of raster i, ESc
is the service coefficient of the ecosystem value for the land use
type corresponding to raster i and SNc are the spatial
neighbourhood coefficients.

Vitality
(REV) RAU = NIR−R

NIR+R = NDVI

where NIR is the near-infrared band reflectance value, and R is the
red band reflectance value. NDVI can reflect the state of vegetation
cover, with a range of values from −1 to 1. NDVI < 0 indicates
that the ground cover is water, snow, ice or clouds; NDVI > 0
indicates that there is vegetation growing on the surface, and the
higher the value, the better the grade of vegetation cover.

Organisation
(REO)

REO = 0.3 × SHDI + 0.2 ×
FRAC + 0.3 × PD + 0.2 ×
CONTAG

where REO is the organisational resilience of the ecological space,
SHDI is the Shannon diversity index, FRAC is the fractal
dimensionality index, PD is the patch density and CONTAG is the
landscape contagion index. This calculation was run using
Fragstats 4.2.
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(1) Measuring RU. With reference to the urban resilience assessment framework
proposed by existing studies [52,53], we construct a resilience assessment system for urban
space from the three dimensions of size, density and morphology.

We used a size resilience index to describe the relationship between the scale of ur-
ban construction and the appropriate scale. Ecological infrastructure (EI) indicates the
enduring capacity of the natural landscape to support the city and can be used as a con-
straint to maintain RU. When the built-up area of a city spreads unchecked and minimum
ecological infrastructure is not guaranteed, the city’s ability to develop sustainably is
compromised [54]. Thus, we measure the magnitude of the city’s level of scale resilience
through the relationship between the suitable built-up land boundary under EI constraints
and the current state of built-up land. After taking into account the restrictive impacts of
ecological functional areas such as mountains, forests and wetlands, spatial superimposi-
tion of elements, such as topography, slope, water system, road network, extent of built-up
area, and land use type, the suitable construction land boundary that meets the minimum
level of ecological safety needs to be obtained. When the built-up area of a city exceeds
the area suitable for construction, it signifies that the resources of urban construction space
have been exhausted.

Density resilience indicates the RU level in terms of construction density and intensity
of human activity. Appropriate urban density is conducive to sustainable urban develop-
ment, while excessively extreme urban density can lead to development problems. Thus,
the combined value of GDP per capita and population density is used to characterise urban
density resilience.

According to the source–sink theory of landscape ecology, the negative impacts of
built-up land can be reduced by ecological land [55]. A well-mixed and balanced distri-
bution of built-up and ecological land can improve urban resilience in terms of form. The
accessibility of built-up land to ecological space was measured by extracting two landscape
types, namely, sources and sinks, where sources include built-up land and sinks include
woodlands, grasslands and watersheds. We calculated the minimum cost distance from
each source raster to the nearest sink and averaged all the minimum cost distances in a
prefecture-level city to obtain the average distance index. Finally, we compare it with the
average value of the whole study area to obtain the morphological resilience index.

(2) Measuring RA. Agricultural spatial resilience is an important support for achieving
stable agricultural production functions and sustainable use of arable land resources [56].
At present, the reduction in the area of arable land, the decline in the quality of arable land,
the degradation of farming conditions and the uneven distribution of agricultural resources
are seriously affecting the sustainable development of agricultural space [57]. Based on
the above, we constructed an assessment system for agricultural spatial resilience in three
dimensions: quantity, quality and utilisation.

We used the cropland pressure index to reflect the quantitative characteristics of
agricultural space. We used the average agricultural suitability to reflect the qualitative
characteristics and production conditions of the agricultural space. The study used the
average land value of production to reflect the degree of intensification of agricultural
space. In general, farmland with mechanised operations, good management techniques
and marketable produce have a high average value of production.

(3) Measuring RE. Maintaining healthy ecosystems is essential to achieving sustainable
development of territorial space. Strong ecosystem services, sustained dynamism and stable
organisational structures characterise resilient ecological spaces. Based on the evaluation
framework of ecosystem health [58], we constructed an assessment system of ecological
spatial resilience from the three dimensions of function, vitality and organisation.

We used ecosystem service values to measure the functional characteristics of ecologi-
cal space [59]. To measure the interactions between different ecosystems objectively, we
consider the role of spatial proximity of various land use types. The ecosystem services of
the raster are determined by a combination of its land use type and the land use types of
its four neighbours. Ultimately, the functional resilience of each city’s ecological space is
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quantified as the sum of ecosystem service values. The NDVI characterised the ecological
space’s vitality level. The organisation of the ecological space was quantitatively assessed
using the integrated landscape pattern index.

(4) Measuring dimensions of TSR. This study applies the polygon method to measure
TSR in each dimension. The length of the straight line between the origin and the vertex of
the polygon is the standardised value of the indicator, and the area of the polygon is the
value of the spatial resilience sub-dimension of the territorial space.

Ri =
1
6

sinα(Aa × Ab + Ab × Ac + Ac × Aa)

where Ri is the TSR index in each dimension, Aa~Ac are the standardised values of the
indicators and α is the angle between the indicators.

3.3.2. Standard Deviation Ellipse

We used the standard deviation ellipse (SDE) to reveal the overall characteristics of the
spatial distribution and the spatio-temporal evolution process of TSR. The centre of the SDE
is the mean centre of the spatial distribution of geographic elements, its azimuth reflects the
overall trend of the distribution of the elements, and the long and short semi-axes indicate
the direction and extent of the distribution of the elements, respectively. The calculation
formulas are as follows:

SDEx =
∑n

i=1 wixi

∑n
i=1 wi

SDEy =
∑n

i=1 wiyi

∑n
i=1 wi

σx =

√
∑n

i=1(wixicosθ − wiyisinθ)

∑n
i=1 w2

i

σy =

√
∑n

i=1(wixisinθ − wiyicosθ)

∑n
i=1 w2

i

where
(
SDEx, SDEy

)
is the centre of SDE, n is the total number of cities in the study area,

σx and σy represent the standard deviation of the two axes, θ is the azimuth of the ellipse,
(xi, yi) represents the coordinates of the spatial location of each element and wi is the
weight.

3.3.3. Getis-Ord Gi* Statistics

Getis-Ord Gi* statistics was used to identify spatial clustering characteristics of TSR.
The formula is defined as follows:

G∗
i =

(
∑n

j=1 WijXj

)
/
(
∑n

j=1 Xj

)

Z(G∗
i ) =

∑n
j=1 WijXj − ∑n

j=1 Wij

S

√[
n∑n

j=1 Wij
2−
(

∑n
j=1 Wij

)2
]

n−1

where Wij is the spatial weight, Xj is the magnitude of variable X at city j, x is the sample
mean and S is the sample variance. For positive z-scores that are statistically significant,
the higher the z-score, the tighter the clustering of hot spots. Conversely, the lower the
z-score, the tighter the clustering of cold spots.
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4. Results

4.1. Spatiotemporal Analysis of TSR

The distribution of RU at different stages shows differentiated characteristics (Figure 4).
Low-level districts are mainly located near provincial capitals or large cities that are the
first to urbanise, while high-level districts are mostly located at provincial borders. Specif-
ically, in 2000, the high level of RU was concentrated in the borders of five provinces
and municipalities, Hubei, Hunan, Chongqing, Sichuan and Guizhou. The low level was
mainly in the plains of the middle and lower reaches of the Yangtze River, central and
western Sichuan and the northern part of Yunnan Province. Influenced by the national
regional development policy, urbanisation and industrialisation in the lower reaches of the
Yangtze River are earlier than in the middle and upper reaches of the Yangtze River, so
areas with a relatively lagging urbanisation process and suitable location for development
show great potential for development; that is, they have higher RU. In 2010, along with
the implementation of the strategy of the rise of central China and the development of
western China, the construction of cities in the middle reaches of the Yangtze River and the
Chengdu–Chongqing region accelerated, so RU declined. Meanwhile, the Yangtze River
Delta (YRD) region gradually transformed towards optimising the structure of economic
growth and improving the comprehensive carrying capacity of cities. The development
patterns of the YRD, the middle reaches of the Yangtze River and the Chengdu–Chongqing
urban agglomeration in 2020 have been relatively stable, while the provincial border ar-
eas of Hunan, Guizhou and Yunnan have a low intensity of urban space utilisation and
sufficient developable reserve land resources.

Figure 4. Temporal and spatial evolution of TSR in the YREB.

The RA of the YREB has experienced a gradual upward change process, showing a
distribution of low in the west and high in the east. Given the strict constraints of natural
conditions, agricultural suitability has obvious regional characteristics. Although the
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pressure on arable land increases in most cities as the population grows, the comprehensive
agricultural production capacity also rises, resulting in an overall upward trend in RA.
From 2000 to 2020, RA in the middle and lower reaches of the Yangtze River is consistently
dominated by a high level, with its scope expanding over time. In contrast, RA in the upper
reaches of the Yangtze River, bounded by the western part of Hunan province in Hubei, is
predominantly a low-level area. Significant changes are reflected in the decrease in RA in
Zhejiang Province mainly because Zhejiang Province is one of the main grain marketing
areas in China and the pressure on its arable land increases with urban development.

RE exhibits a pattern of spatial differentiation between the high west and the low east,
which has been strengthening over time, creating an apparent spatial mismatch with RA.
Areas in the upper reaches of the Yangtze River with high RE tend to have low RA, while
the middle and lower reaches of the Yangtze River, where high values of RA are dense, are
prone to have low values of RE. In 2020, a significant decline in RE was observed in the YRD
region, with most of the remaining regions experiencing increases. The differences between
regions are gradually expanding, forming a distribution characteristic of the highest in
the west, the second highest in the centre and the lowest in the east. The middle and
lower reaches of the Yangtze River need to be given more consideration in the future to
achieve coordinated development of the ecological environment, the economy and society
to improve the TSR.

4.2. Spatial Clustering Characteristics of TSR

The results of the SDE analysis are shown in Figure 5. From 2000 to 2020, the centre
of the RU in the YREB moved first to the northeast and then to the southwest, and its
azimuth first increased and then decreased, changing from 70.01◦ to 68.57◦. The centre
of RA has shifted slightly to the southwest. Given that RA primarily depends on the
endowment differences in natural conditions, although RA has increased or decreased
in some areas, these changes have not been deemed significant in the whole study area.
The centre of RE gradually shifted to the south–west direction from 2000 to 2020. The
standard deviation of the short axis gradually increases, indicating that the RE distribution
tends to be discrete in the south–north direction. The standard deviation of the long axis
gradually decreases, indicating that the RE distribution tends to contract in the southeast–
northwest direction. This decrease is mainly due to the accelerated development of the
urban agglomeration in the middle reaches of the Yangtze River, which poses a certain
threat to the ecological environment.

Figure 5. SDE of the TSR in the YREB.

We further reveal the spatial clustering characteristics of the TSR of the YREB through
Getis-Ord Gi* statistics (Figure 6). The 2000 RU hot spot areas are concentrated along the
borders of Chongqing, Guizhou and Hunan provinces, where urbanisation is lagging. Cold
spot areas are concentrated in Anhui and eastern Hubei provinces, where construction land
is concentrated and population density is high. In 2010, two main hot spot distribution
areas were formed. In addition to Chongqing and its neighbouring areas, where hot spot
distribution was formed earlier, the hot spot cluster in the YRD region was formed with
Shanghai as the core to drive the quality of urbanisation in the surrounding areas. In 2020,
hot spot areas were mainly clustered in western Hunan, eastern Guizhou and southern
Yunnan, with a distinct cold spot area forming within the junction of Hubei, Hunan
and Jiangxi. In recent years, the integrated development of the urban agglomerations

124



Land 2024, 13, 1395

in the middle reaches of the Yangtze River has contributed to the spread of urban space,
causing territorial space to carry higher pressure for economic activities. There is ample
suitable land for building in the traditional agricultural areas of the Midwest Junction, but
urban economic and population growth is weak, so the hotspot clustering effect of the RU
has diminished.

Figure 6. Distribution of hot and cold spots of the TSR in the YREB.

During the study period, the number of hot spots of RA gradually increased, and
two centralised distribution areas centred on Anhui–Suzhou and Hunan–Jiangxi gradually
formed, indicating a positive mutual reinforcement of RA among prefecture-level cities.
The cold spot areas of RA were mainly concentrated in the mountainous areas of Sichuan
and Yunnan Provinces, with the number increasing and then decreasing over time. Poor
agricultural growing conditions and frequent geological disasters are the main reasons
restricting the growth of RA. The clustering trend of RA low in the west and high in the
east is intensifying, mainly because of topography and climate. The middle and eastern
parts of the YREB have flat topography and abundant precipitation, so the agricultural
economy is well developed. In contrast, the western region is mostly mountainous, with
fragmented arable land, which is not conducive to agricultural production, so RA is low.

In contrast to the RA, the RE hotspot areas continue to concentrate in areas with little
disturbance from human activities, such as Sichuan and Yunnan. Cold spot areas were
scattered in southern Guizhou, Hunan Province and northwestern Anhui Province in 2000
and then clustered towards Shanghai and the surrounding areas. Despite the government’s
increased demand for ecological protection in the YREB, the eastern coastal cities are
facing increasing population pressure, and the conflict between economic development
and ecological protection is significant, showing a growing concentration of cold spots. A
mismatch is identified between economic development and ecological construction in the
YRD region, and the protection and control of the quality of the ecological environment
should be strengthened in the development of territorial space.
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4.3. Functional Classification of TSR in the YREB

We analysed the combining forms of the three types of resilience. Taking the average
of the whole YREB as a judgement criterion (Table 2), we define each spatial resilience
greater than the average as high resilience and the rest as low resilience. We levelled the city
according to the combination of the dimensions, setting areas with high values in all three
dimensions RU, RA and RE as excellent, areas with high values in any two dimensions as
good, areas with high values in only one dimension as fair and the rest as poor.

Table 2. Mean value of each dimension of TSR in the YREB.

Name
RU RA RE

2000 2010 2020 2000 2010 2020 2000 2010 2020

YREB 0.234 0.147 0.231 0.256 0.263 0.266 0.169 0.194 0.201

As shown in Figure 7, only seven cities in the YREB in 2000 had an excellent combina-
tion of TSR. They are mainly located in the north of Zhejiang Province and the south of
Anhui Province, which have strong resilience and high development potential in territorial
space. Approximately 52.8% of the cities have a good TSR combination, with the most
notable development of RA and RE in harmony. A prosperous agricultural economy and
stable ecological landscape structure are important reasons for their grouped layout. A
total of 62 cities have fair TSR combinations. Cities with high RU are mainly located
in the Yunnan–Guizhou region and the Hubei–Hunan border. Cities with high RA are
the most widely distributed, and those with high RE are mainly located in the western
part of Sichuan Province and the central part of Hubei Province. The number of regions
with excellent and good TSR combinations increased in 2010, and the types with excellent
combinations were scattered in Jiangsu and Anhui provinces. The total number of fair
combination areas decreased to 54, the concentrated RU–RA combination areas of high-
value in southern Hunan Province were transformed into single RA high-value areas, and
some cities in central and western Yunnan Province were transformed from RU high-value
areas to RE high-value areas. The phenomena are all related to the massive expansion
of urban construction land from 2000 to 2010. In implementing new-type urbanisation
and ecological civilisation, a marked improvement is found in the TSR combination in the
YREB. Approximately 60.8% of TSR combinations were excellent or good in 2020. The
RU–RE combination is concentrated in Yunnan, Guizhou and Sichuan, and the RU–RA
combination is grouped in Jiangsu and Anhui. The type of poor combination in this period
is mainly found in cities with a high level of economic development.

Figure 7. Combined classification based on RU, RA and RE in the YREB.

Taking the mean values of RU, RA and RE from 2000 to 2020 as the classification
basis, we applied the K-means function to divide spatial units with high similarity into
the same interval for TSR functional classification. When the value of k is 5, the sum of
squares within the group is characterised by a strong inflexion point. Thus, the study area
is divided into five functional types, including three dominant types of RU, RA and RE
and two combined lagging types of RU–RA and RU–RE (Figure 8). The clustering results
passed the significance test.
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Figure 8. Functional zoning of TSR in the YREB.

RU dominant regions are cities with sufficient land for suitable construction and main-
tain a medium level of RA and RE, which can be properly strengthened with infrastructure
to stimulate urban vitality. The RA dominant regions are concentrated in the middle and
lower plains of the Yangtze River, which have the strongest agricultural suitability, medium
level of RU and the lowest level of RE. Such cities should accelerate the resolution of
agricultural productivity inefficiencies to alleviate the pressure on ever-increasing arable
land. At the same time, they should focus on building green infrastructure to enhance the
carrying capacity of the ecological environment. The RE dominant region is concentrated
in the predominantly mountainous western area, which has the highest level of RE, higher
level of RU and lower level of RA. These areas should continue to strengthen the synergistic
restoration of ecological corridors and ecological functional areas, enhance the ability of
mountains to withstand soil erosion and stabilise the ecological service functions of forest,
grass and water systems. The RU–RA lagging areas are distributed in a more dispersed
chain, with RU and RA at low-to-medium levels and RE at high-to-medium levels. Such
cities should focus on development strategies that optimise urban form. Simultaneously,
they should promote the development of traditional agriculture towards the integration of
agro-tourism, modern urban agriculture, agro-entertainment and other industries. RU–RE
lag zones have the potential for agricultural development, but their ecological regulation
capacity is weakened with excessive urban development. Improving the quality of urban
agglomeration development is the main direction for the optimal development of this
category of cities.

5. Discussion

5.1. Response of TSR to Urban–Agricultural–Ecological Space in Different Stages

The changes in TSR are caused by the combined effect of RU, RA and RE. This effect is
phased and spatially varied, driving a spiralling trend in TSR.

During the period of rapid economic and social development (2000–2010), when cities
were in a state of expansion, the evolution of TSR in the YREB was mainly dominated by
RU, with relatively little change in RA and RE. Although territorial spatial management
began to explore structural optimisation in that period, irrational urban space development
and unsound policy systems still led to a series of problems. Moreover, regional economic
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development and natural environment differences exacerbate structural differences in the
evolution of TSR patterns. Strongly influenced by human activities, the RU in the YREB
has experienced a process of decreasing and then increasing, which can be corroborated
by the results of existing studies [60]. It has been shown that rapid urbanisation and
industrialisation are the main factors leading to changes in TSR during this period [61].
Given its economic and policy advantages, Zhejiang Province has increased its urban
development during this period, making its RU lower than the average level of the YREB.
However, the combination of TSR in most cities in Zhejiang Province is generally in poor
condition in the later period due to the shrinkage of agricultural and ecological space
triggered by early urban spatial expansion. Although the implementation of the strategy of
western development and the rise of central China has promoted the urbanisation of the
central and western provinces, there are still shortcomings such as a weak industrial base
and a lack of prominent location advantages, so the RU has declined. The phenomenon
suggests a correlation between functional areas. A low level of resilience in a single space
has an impact on the resilience of other spaces.

During the period of coordinated economic and social development (2011 to the
present), urbanisation has transitioned from rapid growth to a focus on high-quality
development. Concurrently, the TSR of the YREB has shifted from being RU-dominant to
the development to a mode emphasizing the protection mode of the simultaneous rise of
RA–RE. The spatial resilience of 36.2% of the cities in the YREB is on an upward trend, with
the number of cities with a good combination increasing from 46.2% to 60.8%, but the causes
of the improvement vary from place to place. Wu et al. (2023) [62] found a gradual rise in
RUs in the LRD after 2013. Ye et al. (2022) [63] provided similar evidence for the YREB.
This is influenced by a number of factors, including nature, economics and policy. Natural
geographic features have laid the foundation for RA and RE, and improved agricultural
technology and stronger ecological protection have contributed to higher RA and RE. The
upward trend in the Yunnan–Guizhou region is the most significant, as evidenced by
the significant increase in RE. The high ecological vulnerability of the Yunnan–Guizhou
region is a major factor limiting its development, and the long-term implementation of
ecological restoration projects has improved the natural environment and increased the
level of RE. Even if the expansion of urban and agricultural space is limited, its TSR has
continued to develop to a high level. Moreover, the implementation of strict arable land
protection policies in the middle and lower reaches of the Yangtze River has contributed
to the intensification of urban and agricultural spaces. In addition, policy factors play an
important role. The development plan of the city in that period called for strengthening
the composite use of various types of land space, so the combination of RU and RA or RU
and RE became better. The interaction of RU, RA and RE is critical in influencing changes
in TSR. Significant evidence for this view can be found in the study on homestead space
utilisation by Qu et al. (2023) [11]. Thus, in the process of rationally optimising the spatial
layout of the territory, the crux of the problem that hinders the enhancement of TSR must
be identified to promote the enhancement of RU and RA under the premise of guaranteeing
ecological function.

5.2. Pathways to Optimise TSR in the YREB

According to the evaluation results of the TSR level of the YREB, to achieve the opti-
misation goals of high efficiency of urban space, improvement of the quality of agricultural
space and conservation of ecological space, differentiated countermeasures should be taken
to address different development problems. From the systematic and holistic features of
the territorial space, the production function, ecological function and living function of the
region should be comprehensively enhanced (Figure 9).
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Figure 9. Comprehensive governance system of TSR.

(1) Promoting institutional innovation and policy implementation. Although many land
use policies have been put forward in China, these policies need continuous im-
provement and vigorous pursuit. We should gradually establish and improve the
management mechanism of the three land-management “red lines”, i.e., urban growth
boundaries (UGBs), ecological protection redlines (EPRs), and basic farmland protec-
tion zones (BFPZs) to alleviate the risks of territorial space development. Therefore, it
is necessary to continue to promote the improvement of the ecosystem and to imple-
ment the main functional area strategy. Optimising requisition-compensation balance
of farmland policy is necessary to achieve a dynamic balance of the total amount
of arable land. Particular attention should be paid to the over-occupation of arable
land by urban construction, agricultural restructuring and pollution of arable land.
To achieve efficient use of the stock of construction land and optimise the layout, it
is necessary to strengthen the three-dimensional composite development of space
and guide the flexible adjustment of land use and composite use. The government
should continue to innovate mechanisms for preventing, controlling and regulating
ecological risks; implement strict use control in areas of the middle reaches of the
Yangtze River where ecological space is vulnerable to urban spatial encroachment;
accelerate the construction of water system restoration; and regulate the order of
resource development.

(2) Strengthening the construction of infrastructure systems. We should strengthen
infrastructure development including public services, transportation infrastructure,
water conservancy facilities, energy facilities and emergency facilities. For example,
Shanghai, as a mega-city, should focus on optimising the overall layout of public
service facilities, municipal infrastructures and disaster prevention and evacuation
facilities in the compilation of territorial spatial planning, so as to improve its adaptive
capacity to cope with various types of disturbances. In traditional agricultural areas,
the Government should strengthen agricultural infrastructure to increase the scale
and efficiency of agriculture through modern plants, mechanised farming patterns
and intelligent cultivation techniques in order to strengthen the monitoring and repair
of nature reserves in RE dominant areas, build biodiversity protection networks and
ecological corridors, and give full play to the supporting role of ecological functions
in the improvement of RU and RA.

(3) Optimising the structure of territorial space enhances the spatial structure of urban
agglomerations in line with the requirements of urban renewal, urban–rural integra-
tion and regional coordination and to improve the comprehensive carrying capacity
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of urban space. This approach includes accelerating the restructuring of the industrial
structure, transforming traditional industries and building a green and ecological
economic system. In response to the widespread fragmentation of arable land and
the high degree of intertwining of towns and farmland in the Yangtze River Basin,
it is imperative to rationally configure the structure of arable land use. For example,
arable land and cities, forests and grasslands, rivers and lakes and wetlands should
be regarded as interrelated wholes, the ecological environment of farmland should be
improved, and the production potential of agricultural space should be fully tapped.
In addition, efforts should centre on integrating and optimising the protection and
restoration patterns of mountains, water, forests, fields, lakes, grasses and sands
and improving the quality and resilience of ecosystems using zonal diagnosis and
precise restoration.

5.3. Shortcomings and Prospect

Our research still has deficiencies. Firstly, we have not sufficiently analysed the ter-
ritorial spatial system’s scale effect characteristics and element coupling characteristics.
Moreover, the driving modes of TSR changes vary considerably in different regions, and
conducting in-depth studies in the various areas is necessary, especially in those regions
where TSR changes are relatively rapid. In subsequent research, we will further study the
process and mechanism of TSR differentiation and transformation in different areas to reg-
ulate optimally the development and protection behaviour of land space more scientifically
and effectively and to achieve sustainable use of the territorial space.

6. Conclusions

This study assessed TSR from three types of urban, agricultural and ecological space,
and three dimensions of elements, structure and function, and a comprehensive judgement
is made through the combined state of the three. We have developed a comprehensive
system of indicators to accurately quantify TSR, which emphasises the coordination of
urban, agricultural and ecological spaces.

The main conclusions are as follows: (1) There is a complex dynamic evolutionary
process of TSR. From 2000 to 2020, the RU of the YREB declined first and then rose, with
the low-value areas mainly distributed around the big cities and the high-value areas
primarily located at the provincial borders. RA has an upward trend, and the equilibrium
between the regions is enhanced, with the characteristics of the pattern of high in the
west and low in the east becoming more and more significant. RE values continued
to rise, but the differences between regions are widening, creating a spatial mismatch
with RA. (2) The spatial clustering phenomenon of TSR is evident. The TSR combination
of the YREB improved during the study period, with the widest distribution of single
high RA. In the context of promoting high-quality development, the combination of RU–
RA and RU–RE presents developmental advantages. According to the TSR evolution
characteristics, the YREB is divided into three spatial resilience advantage areas of urban,
agriculture, and ecology, as well as two combined spatial resilience lagging areas of RU–RA
and RU–RE. (3) The evolution of TSR is generated by the joint action of the three spatial
categories of RU–RA–RE and is dominated by the RU changes, which affect the RA and
RE responses. The key to regulation is to mitigate internal conflicts in the territorial space
through policy innovation. The support system for TSR is further strengthened. The
focus is on optimising the multifunctional structure of the territorial space to facilitate the
continuous improvement of TSR.
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Abstract: Accurately identifying the matching relationships between territorial space evolution and
the resources and environment carrying capacity will directly guide the sustainable use of territorial
space. Based on the evaluation of the territorial space dynamics of the lower Yellow River, this
paper evaluates the suitability of territorial space development by focusing on ecological protection,
agricultural development, and urban construction. Specifically, the resources and environment
carrying capacity is estimated by identifying and mediating potential conflicts in the development
of territorial space. The matching relationship between the evolution of territorial space and the
resources and environment carrying capacity is identified using the matching degree model. The
results demonstrated that: (1) Between 2000 and 2020, the agricultural space of the lower Yellow
River was relatively stable, while the ecological space was generally shrinking, and the urban space
continued to increase; (2) The characteristics of suitability for the agricultural development and urban
construction of the lower Yellow River are characterized by landform and land-sea differentiation.
The carrying scale of resources and the environment is based on agricultural space and is increasing
yearly, followed by ecological space, which is gradually decreasing, and urban space, which first
increased and then decreased; (3) Between 2000 and 2020, the matching index of the ecological and
agricultural space evolution and the resource and environmental carrying capacity in the lower
Yellow River exhibited a downward trend, while the regional difference increased. Furthermore, the
matching index of urban space and the resources and environment carrying capacity indicated an
upward trend, while the regional difference decreased.

Keywords: territorial space; potential conflict; resources and environment carrying capacity;
matching; regulation; Yellow River

1. Introduction

At present, China is in the stage of accelerated urbanization and industrialization. The
increasing intensity of territorial space development and utilization and the imbalance
in social-ecological systems has challenged the sustainable use of territorial space [1].
Several Opinions on Establishing a Land Spatial Planning System and Supervising Its
Implementation proposed that “we should scientifically and orderly co-ordinate the layout
of ecological, agricultural, urban and other functional spaces based on suitability evaluation
and resources and environment carrying capacity of territorial space development (referred
to as “dual evaluation”)”. In practice, “dual evaluation” provides important technical
support for the zoning of territorial functions [2] and the optimal regulation of territorial
space [3,4], and it also contributes to promoting the compilation of regional territorial space
planning and the construction of an ecological civilization [5].
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The “dual evaluation” refers to the evaluation of the carrying capacity of the environ-
ment and the evaluation of the suitability of the spatial development of territorial space.
The suitability evaluation can be traced back to the land ecological suitability evaluation
method [6]. The evaluation object is from the initial agricultural land to the construction
land, and then to the entire territorial space [7,8]. The carrying capacity has gradually
expanded to include the ecological carrying capacity, resource carrying capacity, and en-
vironmental carrying capacity [9–11]. The resources and environment carrying capacity
is the standard for measuring whether social and economic activities are overloaded. It
has multiple attributes, such as objectivity [12], and is an important research topic in the
field of international sustainable development [13]. From a theoretical perspective, many
theories, such as the Growth Limit Theory [14–16], serve as the theoretical bases for un-
derstanding the resources and environment carrying capacity, and finally form a diverse,
multi-scale, and multi-objective-oriented research paradigm [17]. From the perspective
of research methods, massive methods, such as the Pressure State Response Model, have
attracted much attention [18–21], and finally form the framework of the resource and envi-
ronmental carrying capacity represented by the Driver-Pressure-State-Impact-Response
(DPSIR) framework [22]. Furthermore, the process of resource and environmental car-
rying capacity deduction is centered on building an indicator evaluation system based
on the resource carrying capacity, environment carrying capacity, and ecological carrying
capacity [23,24]. From the perspective of achievements application, it covers extensive
fields, such as spatial layout optimization, industrial layout and planning, and post-disaster
reconstruction [25–29]. The achievements application emphasizes the fundamental support
of the resource and environmental carrying capacity and its core lies in the interaction
between human activities and the resource environment.

The compilation of land spatial planning requires the notion of “dual evaluation”.
Many scholars have focused on the logical relationship between the resources and envi-
ronment carrying capacity and the suitability of territorial space development in the “dual
evaluation” [30–32]. They have proposed the correlation logic that “suitability determines
the space for development and carrying capacity identifies the scale of development” [33].
Specifically, the resources and environment carrying capacity is regarded as having the
potential to better guide territorial space planning and sustainable utilization. More im-
portantly, the resources and environment carrying capacity emphasizes the balance and
decomposition of the resources and environment carrying capacity among the ecological
protection, agricultural production, and urban construction functions in the same adminis-
trative unit. In addition, in the current context of increasingly significant territorial space
changes, how and whether the matching relationship between the evolution of territorial
space and the resources and environment carrying capacity breaks through the bottom line
of resource and environment constraints is crucial [34]. Despite exploring resources and
environment carrying capacities that possess theoretical and practical implications, limited
empirical attention has been paid to it.

This paper selects cities in the Yellow River basin of Shandong Province as the study
area for the following reasons. (1) Compared with the entire Yellow River basin, it has
complex geomorphological differences. The plateau, hills, and plains are distributed in
steps, and the natural conditions are complex. (2) At the same time, the Yellow River basin is
one of the regions with the highest level of socio–economic development and urbanization
in China. This area covers 77 counties. Therefore, the representativeness of the research
area selected in this paper lies in its obvious differentiation characteristics in terms of its
natural geographical environment and social economic pattern, which can be regarded as
the epitome of the Yellow River basin. Specifically, Shandong Province, the only province
located entirely in the lower reaches of the Yellow River, spans across nine cities in western
Shandong and covers an area of 83 × 104 km2. Thus, there are significant differences in
the upper, middle, and lower sections of the region. Specifically, the upper section is an
important grain producing area, the middle section is the provincial capital economic circle,
and the lower section is an ecologically fragile area that is important for the ecosystem
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services dominated by the Yellow River Delta. The Yellow River basin in Shandong Province
thus conforms to the overall pattern of ecological protection, agricultural production, and
urban construction in the Yellow River basin. Therefore, this paper takes the Yellow
River basin in Shandong Province as the research object. Firstly, the spatial evolution
and the resources and environment carrying capacity are incorporated into the coupling
framework of the social economy and the resources and environment to reveal the spatial
evolution of the territory. Secondly, this paper establishes an evaluation system for the
suitability of territorial space development and identifies the resources and environment
carrying capacity through potential conflict mediation. The goal is to uncover the matching
relationship between the evolution of territorial space development and the resources
and environment carrying capacity. The findings could provide a path for optimizing
territorial space.

This paper makes five contributions. Firstly, this paper proposes a framework for
determining the alignment between the territorial space and the resource and environ-
mental carrying capacity, as well as realizing the resource and environmental carrying
capacity. The framework provides a theoretical basis for understanding the sustainable use
of territorial space. Secondly, this paper introduces technical guidelines for assessing the
resource and environmental carrying capacity. It emphasizes the importance of identify-
ing and mediating potential conflicts in land and space, thus aiding in the identification
of the resource and environmental carrying capacity of regional multi-functional areas.
Thirdly, this paper provides a supporting framework for optimizing land structure and
pattern reconfiguration. The researchers have conducted an in-depth empirical study in
an important ecological region of the Yellow River basin, thus providing a concrete and
practical reference for the sustainable development of territorial space. Fourthly, as one of
the significant ecological regions in the Yellow River basin, our research area plays a crucial
role in supporting the conservation and development of the inlet area and other important
ecological regions within the basin. This is achieved through the analysis of the spatial
evolution, the matching relationship of resource and environmental carrying capacity, and
the ecology-agriculture-urban space. Fifthly, our database on territorial space, resources,
and the environment in typical areas of the lower reaches of the Yellow River provides a
foundation for the formulation and implementation of the relevant government policies.

2. Theoretical Framework

2.1. A Framework for Matching Territorial Space and Resources and Environment
Carrying Capacity

The matching relationship between the evolution of territorial space and the resources
and environment carrying capacity is a representation of the interaction between humans
and environmental systems. This relationship impacts the optimization and sustainable
use of the territorial spatial pattern. Territorial space is the home for people’s survival and
development and the material basis for the sustainable development of eco-social systems
and natural geographic systems [3]. At the same time, territorial space is also an advanced
manifestation of the spatialization of land use [35]. According to the Growth Limit Theory,
there are limits to both socio–economic development and the resource environment. When
this limit is exceeded, it will hinder and curb sustainable development [14]. The two major
systems of social economy, represented by territorial space utilization, and natural objects,
represented by the resources and environment, constitute the resources and environment
carrying capacity; it has to be noted that there is a highly coupled relationship between
these two systems [12] (Figure 1). The environmental carrying capacity is a comprehensive
and scientifically based evaluation method that serves as a crucial indicator for assessing
the long-term sustainability of ecosystems [36]. The impact of socio–economic development
on the resources and environment is increasing. In other words, urban space is expanding
while ecological space is shrinking, and the utilization of territory reaches the bottom line of
resource and environmental constraints. As a result, the matching relationship between the
evolution of territorial space and the carrying capacity of the resources and environment has
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shifted to a mismatched one. To achieve the sustainable utilization of space, differentiated
regulation plans should be adopted according to the matching relationship between the
evolution of territorial space and the carrying capacity of the resources and environment.
Specifically, mismatched areas should be limited to expand the territorial space, near-
mismatched areas should be reasonably allocated to ensure that it does not exceed the
bottom line of resource and environmental constraints, and well-matched areas should
improve the utilization quality of the territorial space. Finally, meeting the resource and
environmental constraints in utilizing all types of territorial space would be achieved.
Therefore, clarifying the trend of change in the relation between the evolution of territorial
space and the carrying capacity of the resources and environment plays an important role
in the sustainable use of territorial space.

Figure 1. Theoretical basis.

2.2. The Process of Implementing Resource and Environmental Carrying Capacity

At present, there are two commonly used methods for evaluating the resources and
environment carrying capacity. The first is to select socio–economic and resource environ-
ment indicators for evaluation [37,38]. This method is able to uncover the difference in
the carrying capacities of different regions. The second method is used to calculate the
carrying capacity based on the results of an agricultural production and urban construction
suitability evaluation. This method emphasizes the background conditions, in accordance
with the “Technical Guidelines for Evaluating the Carrying Capacity of Resources and
Environment and the Suitability of Land and Space Development (Trial)”. As the territorial
spatial planning system was established, the latter approach received increasing atten-
tion. However, most existing studies emphasize suitability, while weakening the carrying
capacity, thus leading to many problems. For instance, the calculated resource and environ-
mental carrying capacity in the results is too large. Furthermore, there are difficulties in
determining the resources and environmental carrying capacity in cases where different
areas are considered suitable at the same time. There is also a lack of consideration for the
decomposition of territorial space with different functional spatial orientations and the
support for the optimization of the territory spatial structure and pattern reconstruction is
relatively weak. Identifying and regulating potential conflicts contributes to pinpointing
regions with multiple suitabilities and reconstructing the regional spatial pattern. More-
over, this process also has a bridging role as it identifies the resources and environmental
carrying capacity. This paper adopts the method of “dual evaluation” to carry out the
study, and the specific research process is shown in Figure 2. Firstly, a system of indicators
for ecological protection, agricultural production, and urban construction is established
around land and water resources, and environment and ecological factors are established
in order to conduct a suitability evaluation of the spatial development. Secondly, we con-
struct a territorial spatial potential conflict model that includes no potential conflicts, mild
potential conflicts, moderate potential conflicts, and severe potential conflicts. Land use
planning requirements act as a binding bottom line to regulate potential conflicts through
rigid effects. The remaining areas employ the current status of land use to achieve elastic
adjustment. Finally, the paper obtains the scale of the resource and environmental carrying
capacity centered around ecology, agriculture, and urban space.
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Figure 2. The realization process of resources and environment carrying capacity.

However, there are certain limitations to the current “dual evaluation”. Firstly, the
“dual evaluation” is based on the simultaneous adaptation of different spaces in the ter-
ritorial space, and there is still in-depth research to be conducted on the corresponding
resource and environmental carrying categories and their capacities. Secondly, there is a
clear lack of consideration of the overall planning of multifunctional territorial spaces and
the mutual support and constraint relationships between natural background elements and
humans, i.e., there is still a lack of corresponding practical research.

3. Research Methods and Data Sources

3.1. Research Methods
3.1.1. Measuring the Spatial Evolution of the Territory

The degree of territorial spatial dynamics is a quantitative evaluation of the rate of
change of territorial spatial types. It is divided into a single degree of territorial spatial
dynamics and an integrated degree of territorial spatial dynamics.

The degree of spatial dynamics of a country is used to express the degree of evolution
of the spatial pattern of the national territory over a period of time. The equation for this,
Equation (1), is as follows:

K =
Uy − Ux

Ux·T × 100% (1)

where K represents the degree of evolution of the spatial pattern of a country in a certain
time period. Ux, Uy denote the area of the initial and final territorial space type, respectively.
Moreover, T represents the length of the study period.
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The degree of integrated territorial spatial dynamics characterizes the degree of overall
territorial spatial evolution over a certain time period. The equation for this, Equation (2),
is as follows:

C =

[
∑n

i=1 ΔUi−j

2∑n
i=1 Ui

]
× 1

T
× 100% (2)

where C represents the extent of the overall spatial evolution of a country over a certain
time period, while Ui denotes the area of the initial category i land space type. ΔUi−j
represents the absolute value of the area of spatial type i converted to other spatial types
during the study period. Lastly, n represents the number of territorial space types.

3.1.2. Identifying the Carrying Capacity of the Resource Environment

1. Assessment of the suitability of territorial spatial development

According to the Technical Guidelines for the Evaluation of the Suitability of Resource
and Environmental carrying capacity and Territorial Spatial Development (for Trial Im-
plementation), an ecological protection evaluation is primarily focused on identifying
areas with regional ecosystem service functions and a high degree of ecological fragility
(shown in Table 1). At the same time, with reference to the relevant research results [39–42],
this evaluation accounts for two key aspects: ecosystem service functions and ecologi-
cal sensitivity. Specifically, it emphasizes the presence of factors related to sanding and
salinization sensitivity.

Table 1. Evaluation index system of ecological protection importance.

Target Aspects Factors Formulations

Ecological protection (Fe)

Ecosystem service functions

Biodiversity conservation (e1)
e1 = NPPmean × Fpre × Ftemp ×
(1 − Fait)

Water conservation (e2)

e2 = NPPmean × Fsic × Fpre ×(
1 − Fslp

)

Soil and water conservation (e3)
e3 = NPPmean × (1 − K)×(

1 − Fslp

)
Windbreak and sand-fixation (e4) e4 = NPPmean × K × Fq × D

Ecological sensitivity
Soil erosion sensitivity (e5) e5 = 4

√
R × K × LS × C

Desertification sensitivity (e6) e6 = 4
√

I × W × K × C
Salinization sensitivity (e7) e7 = 4

√
I × M × D × K

Note: NPPmean is net primary productivity of vegetation; Fpre is perennial average rainfall; Ftemp is the perennial
average temperature; Falt is the altitude factor; Fsic is the soil seepage factor; Fslp is the slope factor; K is the soil
erodibility factor; Fq is the perennial average climate erodibility factor; D is the surface roughness factor; R is the
rainfall erosivity factor; LS is the topographic relief factor; C is the vegetation cover factor; I is the dryness index;
W is the number of sand-blowing days greater than 6 m/s in winter and spring; M is the groundwater salinity;
and D is the groundwater burial depth. The normalized threshold of each factor is between 0 and 1.

The evaluation of the suitability of agricultural production and urban construction
reflects the suitability of the national land space for agricultural production and the needs
of urban residents, in terms of land, water, environment, meteorology, and disasters, and
is focused on the resources and environment. The suitability of agricultural production
emphasizes the influence of factors such as precipitation, light and heat conditions, soil
environmental capacity, and meteorological hazards (shown in Table 2). On the other hand,
the suitability of urban construction highlights the influence of factors such as climate
comfort, water and air environmental capacity, and geological hazards (shown in Table 3).
The evaluation system variables and grade classification used in this study are based
on the Guidelines for the Evaluation of the Carrying Capacity and Suitability of the Resource
Environment [43,44].
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Table 2. Evaluation index system of agricultural production suitability.

Target Aspects Factors
Grade and Scores Weight

0 1 3 5 7

Agricultural
production

(Fa)

Land slope/(◦) (a1) ≥25 15~25 6~15 2~6 <2 0.15
silt content/% (a2) ≥80 60~80 40~60 20~40 <20 0.12

Water precipitation/mm (a3) <200 200~400 400~800 800~1200 ≥1200 0.16
total water

resources/10,000 m3 (a4) <3 3~8 8~13 13~25 ≥25 0.14

Climate light and heat
conditions/◦C (a5) <1500 1500~4000 4000~5800 5800~7600 ≥7600 0.15

Environment soil environmental
capacity (a6)

Greater
than 150%
of the risk

control
value

100~150% of
the risk

control value

The risk
screening
value is 70

to 100%

Greater than
the risk

screening
value but

less than or
equal to 70%

of the risk
control value

Below or
equal to
the risk

screening
value

0.14

Disaster
frequency of

meteorological
disasters/%(a7)

>80 60~80 40~60 20~40 ≤20 0.14

Note: The soil environmental capacity classification standard is based on the “Soil Environmental Quality
Agricultural Land Soil Pollution Risk Control Standard (Trial) (GB 15618-2018)”.

Table 3. Evaluation index system of urban construction suitability.

Target Aspects Factors
Grade and Scores

Weight
0 1 3 5 7

Urban con-
struction

(Fc)

Land
slope/(◦) (c1) >25 15~25 8~15 3~8 ≤3 0.17

altitude/m (c2) >50 30~50 20~30 10~20 ≤10 0.13

Water total water resources/
(m3/km2) (c3) <50,000 50,000~

100,000
100,000~
200,000

200,000~
500,000 ≥500,000 0.17

Climate Thermal
Comfort/(THI) (c4)

<32 or
>90

32~41 or
82~90

41~51 or
73~82

51~60 or
65~73 60~65 0.12

Environment

atmospheric
environmental

capacity index (c5)
≤0.2 0.2~0.4 0.4~0.6 0.6~0.8 >0.8 0.09

water environmental
capacity/(t/km2) (c6)

<0.04 0.04~0.14 0.14~0.39 0.39~0.96 ≥0.96
0.10<0.8 0.8~2.9 2.9~7.8 7.8~19.2 ≥19.6

Disaster

distance from fault
zone/m (c7) <30 30~100 100~200 200~400 >400 0.08

peak ground
acceleration/g (c8) ≥0.30 0.20 0.15 0.10 ≤0.05 0.07

cumulative land
subsidence/mm (c9) >2400 1600~2400 800~1600 200~800 <200 0.06

Note: 1©The comfort degree is represented by the temperature and humidity index, THI = T − 0.55 × (1 − f) × (T − 58).
THI is the temperature-humidity index; T is the monthly average temperature (in Fahrenheit); and f is the monthly
average relative humidity of the air. 2© the water environmental capacity is controlled by COD and NH3-N.

The ecological protection importance is categorized into three levels using the natural
breakpoint method and the stepwise correction method (Equation (3)). The three levels are
classified as extremely important, important, and generally important.

Fe = max(E1, E2, E3, E4, E5, E6, E7) (3)

where Fe represents the ecological protection importance level. E1, E2, E3, E4, E5, E6, and E7
denote biodiversity maintenance, water conservation, soil conservation, wind and sand
control, erosion sensitivity, sand sensitivity, and salinity sensitivity, respectively.

The evaluation of the suitability of agricultural production and town construction
is conducted using the factor assignment-restrictive integrated evaluation method. This
builds upon the deductions made for ecological protection. The weights of the factors are
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determined using the expert assessment method, and are assigned in a hierarchical manner
using the corresponding specifications:

Fi=

⎧⎨
⎩

0
(

fij = 0
)

n
∑

i=1
wij × fij

(
fij �= 0

) (4)

where Fi denotes the suitability level of the i evaluation unit, while wij represents the index
weight of factor j in the i-th evaluation unit. Furthermore, fij denotes the index score of
factor j in the i-th evaluation unit. When Fi = 0, it is considered unsuitable. Conversely,
when Fi �= 0, it is classified as generally suitable and suitable according to the natural
breakpoint method.

2. Identification of the resources and environment carrying capacity based on potential
conflict mediation.

The three-step process of identifying potential conflicts in land and space, reconciling
them, and identifying the resource and environmental carrying capacity is used to establish
the scale of the resource and environmental carrying capacity for ecological, agricultural,
and urban spaces.

Step 1: Ecologically critical areas are potentially conflict-free. Mild potential conflict
is present when at least two of the three suitability evaluations result in the lowest rating.
Furthermore, a potential conflict is considered moderate when the assessment of the
ecological importance is generally important and the assessment of the suitability for
agricultural production and urban construction is generally suitable or higher. It is also
moderate when the assessment of the ecological importance is important and at least one
of the assessments of the suitability for agricultural production and urban construction
is generally suitable or higher. Finally, a potential conflict is considered heavy when the
assessment of the ecological importance is categorized as important, and the suitability for
agricultural production and urban construction is considered suitable [45,46].

Step 2: The “three red lines” (the ecological protection red line, permanent basic
agricultural land protection red line, and urban development boundary) are adopted as
a constraint and guidance mechanism for potential conflict mediation. Firstly, the “three
red lines” are divided into three categories of national land space. Then, the existing
land types are maintained for areas without potential conflicts. According to the current
land use status, identify and reconcile land classes with mismatched suitability classes
in mild and severe potential conflict areas. The current ecological land is not subject to
mediation. According to the highest level of suitability, achieve potential conflict mediation
by achieving one-way or two-way conversion between ecological land, agricultural land,
and construction land for moderate potential conflict areas. While ecological land is
maintained in its current state, construction land and agricultural land in ecologically
important areas are adjusted to ecological space. Moreover, construction land in areas
suitable for agricultural production is adjusted to agricultural space, while agricultural
land in areas suitable for urban construction is adjusted to urban space.

Step 3: In order to co-ordinate the decomposition and balance of the resource and
environmental carrying capacity within different administrative regions, it is measured
according to the ecological, agricultural, and urban space scales. It is based on the results
of the reconciliation of potential conflicts within the national territory.

3.1.3. Matching Relationship between Spatial Evolution of Territories and Resource and
Environmental Carrying Capacity and Optimal Zoning

Based on the matching relationship between the evolution of territorial space and the
resources and environmental carrying capacity, this paper explores whether the evolution
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of territorial space exceeded the threshold of the resources and environment, as well as the
degree of stress borne by the resources and environment (Equation (5)).

D =

{
Dz/Dx
Dy/Dz

(5)

where D represents the matching index between the evolution of territorial space and
the carrying capacity of the resources and environment. DZ denotes the resource and
environmental carrying capacity, while Dx represents the current scale of ecological space,
and Dy denotes the scale of agriculture and urban space. In short, the existing scale
is compared with the carrying scale. As ecological conservation is given priority, the
more scales other than the carrying scale for ecological space exist, the better; therefore, for
ecological space accounting, use Dz/Dx. For agricultural and urban spaces, the fewer scales
other than the carrying scale exist, the better; therefore, use Dy/Dz. When D < 1, the spatial
evolution of territory does not exceed the threshold of the resources and environment and
there is a matching relationship between the two. Conversely, when D > 1, the spatial
evolution of territory exceeds the threshold of the resources and environment, and there
is a mismatch. According to the existing studies [47], this paper classifies the matching
relationships into seven distinct categories (Table 4).

Table 4. Matching relationship between territorial space evolution and resources and environment.

Matching
index

interval
[0, 0.2) [0.2, 0.4) [0.4, 0.6) [0.6, 0.8) [0.8, 1) [1, 1.2) [1.2, +∞)

Matching
degree

Severe
match

High
match

Mild
match

Low
match

Critical
match

Mild
mismatch

Severe
mismatch

To identify single and combined types of territorial space in different regulatory areas
and propose regulatory strategies, this paper complies with the following requirements:
(1) It refers to the matching index of ecological, agricultural, and urban space and the
carrying capacity of the resources and environment of each administrative unit in 2022;
(2) Following the principle of “Mismatch first, low degree matching second, and high
degree matching third”, this paper identifies severe mismatch and mild mismatch units
as priority regulation areas. Critical match and low degree match units are identified as
key regulatory areas, while moderate and above match units are considered as moderate
regulatory areas.

3.2. Data Source and Processing

The land use status and planning data in this paper are taken from the Resource
and Environmental Science and Data Center of the Chinese Academy of Sciences and
the General Land Use Planning of Shandong Province (2006–2020), respectively. The
digital elevation product SRTMDEMUTM is derived from the Geospatial Data Cloud
(http://gscloud.cn/) with a resolution of 90 m. The water resource data from long time
series precipitation observations of meteorological stations in and adjacent to the study
area in 2020 are obtained from the Resource and Environment Science and Data Centre
of the Chinese Academy of Sciences (http://www.resdc.cn). The soil data are taken from
the investigation of soil pollution status in and around the research area in 2020. The
climate data are sourced from the accumulated temperature and wind speed of the annual
average daily temperature ≥ 0 ◦C at the meteorological stations within the research area
in 2020. Finally, the Normalized Difference Vegetation Index (NDVI) is obtained from
the resource and environment data cloud platform of the Chinese Academy of Sciences
(https://www.resdc.cn/), with a resolution of 1 km. Using the ArcGIS operation platform,
the resource, environment, and spatial zoning data were extracted to construct a database
of the land space and resource environment in typical areas of the lower reaches of the
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Yellow River, in which precipitation, temperature, and other meteorological data were
processed using the Kriging interpolation method of the ArcGIS software (ArcGIS 10.8.2).
The types of land space were classified into ecological space, agricultural space, and urban
space based on the existing literature [45].

4. Results

4.1. Spatial Evolutionary Characteristics of the Territory

The degree of territorial spatial dynamics exhibited a slight decrease, followed by a
sharp increase, resulting in significant changes in the spatial structure, as shown in Figure 3.
The percentages for the periods of 2000–2005, 2005–2010, 2010–2015, and 2015–2020 were
0.167%, 0.091%, 0.079%, and 1.707%, respectively. Specifically, the expansion of ecological
space is centered in the outer-side of the Yellow River Delta, the mountainous parts of
Central Lu, and around the South Four Lakes. Conversely, the reduction areas are con-
centrated in the landward extension of the Yellow River Delta. The extension regions of
agricultural space are located in the Yellow River Delta, while a decrease is observed around
the towns of the administrative regions. Finally, regarding the urban space, the majority of
the increments are distributed in the periphery of the central city, with a minimal reduction.

Figure 3. Evolution of territorial space in the Shandong section of the Yellow River basin from 2000
to 2020.

The extent to which the ecological spatial dynamics are affected is characterized by
fluctuations between 2000 and 2020. Except for a small number of areas that experienced
increases between 2000 and 2005 and between 2010 and 2015, the research period is dom-
inated by a reduction in ecological space. The spatial dynamics of agriculture remained
stable between 2000 and 2020, with a trend of shrinking agricultural space in each adminis-
trative region. However, the rate of shrinkage was relatively low. The spatial dynamics of
towns and cities in all boroughs exhibited growth between 2000 and 2020.

4.2. Resource and Environmental Carrying Capacity Status
4.2.1. Suitability of Land for Spatial Development

The importance of ecological protection (Figure 4a) exhibits a gradient distribution
along the rivers, coast, and mountains, and extends inland. Approximately 12.82% of
the extremely important ecological protection areas are primarily concentrated in the
mountainous areas of central Lu and in ecological reserves along the rivers, lakes, and
coastline. The suitability of agricultural production (Figure 4b) demonstrates an overall
decrease from inland to coastal and mountainous areas. Nearly 86.96% of the agricultural
production areas are suitable or above, and these areas are mainly restricted by the slope
of the central terrain and the soil texture. The overall spatial characteristics of the urban
construction suitability (Figure 4c) exhibit a decrease from the periphery to the center.
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Nearly 86.06% of the urban construction areas are suitable or above, and these areas are
mainly constrained by the slope of the terrain and the risk of geological hazards.

Figure 4. Suitability and potential conflict of territorial space development.

4.2.2. Potential Conflicts in Territorial Space

The intensity of potential conflicts in typical areas of the lower Yellow River is charac-
terized by moderate potential conflicts (Figure 4d). The area share of each potential conflict
intensity, in descending order, is as follows: light potential conflict (0.58%), heavy poten-
tial conflict (9.13%), no potential conflict area (13.08%), and moderate potential conflict
(77.21%). The potential conflict intensity decreases from the plains to the mountains, with
some regional variations.

4.2.3. Resource and Environmental Carrying Capacity

The ecological, agricultural, and urban space orientation of the carrying capacity
of the resources and environment reflects the dynamic evolution of human activities
and resources towards sustainable development. In quantitative terms, the scale of the
resource and environmental carrying capacity in the lower reaches of the Yellow River
between 2000 and 2020 is dominated by agricultural space, followed by ecological space,
and finally urban space, which has the lowest proportion. Specifically, the ecological
space decreased from 15,344.82 km2 to 10,498.27 km2, showing a decreasing trend year by
year. Conversely, the agricultural space increased from 60,316.11 km2 to 65,959.59 km2,
showing an increasing trend year by year. The spatial scale of the urban areas changed from
8144.92 km2 to 7345.11 km2, showing an upward and then downward trend. The ecological
spaces are mainly distributed in the Yellow River Delta, the Luzhong mountainous area,
and the Weishan Lake area, with ecosystem service functions such as water connotation
and soil conservation (Figure 5). Lastly, the agricultural spaces are distributed over the
majority of western and southwestern Lu. The towns are distributed in patches within the
administrative districts.

Figure 5. The carrying scale of resources and environment directed by ecological-agriculture-
urban space.

4.3. Matching Relationship Analysis
4.3.1. Overall Matching Relationship

Between 2000 and 2020, the index reflecting the alignment between the evolution of
ecological space and the carrying capacity of the resources and environment had a decreas-
ing trend. Even though the stress level on ecological space caused by human activities
significantly decreased, the coefficient of variation has slightly increased. Furthermore,
despite this overall improvement, local areas still faced threats to their ecological space.
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Between 2000 and 2020, the match index between the spatial evolution of agriculture and
the carrying capacity of the resources and environment exhibited a decreasing trend. This
indicates a decrease in the degree of stress that agricultural space imposes on environmental
resources. However, the regional disparities in the match relationship have widened over
time. Namely, the spatial evolution of towns and cities, as well as the matching index of
the carrying capacity of the resources and environment, exhibited an upward trend from
2000 to 2020. The coefficient of variation consistently decreased, thus indicating a reduction
in the variability of the matching index across different regions. In addition, the spatial
impact of towns and cities on the resources and environment gradually increased, as shown
in Table 5.

Table 5. Mathematical statistics on the matching relationship between the evolution of territorial
space and the carrying capacity of resources and environment.

Year
Ecological Space Agricultural Space Urban Space

Mean SD COV Mean SD COV Mean SD COV

2000 1.09 0.36 0.33 1.15 0.15 0.13 0.20 0.13 0.65
2005 0.92 0.32 0.34 1.11 0.14 0.13 0.26 0.15 0.58
2010 0.91 0.32 0.35 1.10 0.14 0.13 0.32 0.16 0.49
2015 0.90 0.32 0.36 1.09 0.14 0.13 0.37 0.17 0.47
2020 0.73 0.32 0.43 1.01 0.16 0.15 0.77 0.34 0.44

4.3.2. Partial Matching Relationship

Between 2000 and 2020, the relationship between the evolution of the ecological
spatial patterns and the matching of the resource and environmental carrying capacity
exhibited a spatial divergence. Namely, it transitioned from a south–north pattern to a
center-periphery ring (Figure 6a–e). At the early research stage, Binzhou and Dezhou
exhibited a severe mismatch in their respective resource and environmental carrying
capacities. Furthermore, Liaocheng, as well as the eastern parts of Tai’an and Jinan, were
predominantly characterized by low and critical matches. In the final research stage, a low
match area formed around the provincial capital of Jinan, while a mismatch was observed
in the Yellow River Delta and in localized areas of Heze and Liaocheng. The main reason
for these changes is attributed to the influence of topography. In the early research stage,
the unused plains in the north and northwest were reclaimed as arable land, resulting in
the shrinkage of ecological space. In contrast, the southeastern region, which is part of the
TaiShan Mountains, has a relatively intact ecological base. Additionally, ecological space in
the provincial capital increased in later years due to the construction of the forest city of
Jinan in 2010. However, ecological protection source areas, such as the Yellow River Delta,
have still been significantly disturbed by human activities.

During the research period, the relationship between the spatial evolution of agricul-
ture and the matching of the resource and environmental carrying capacity exhibited a
spatial divergence characterized by a northwest–southeast gradient (Figure 6f–j). At the
beginning of the study—with the exception of Tai’an and Zibo, which exhibited a locally
critical matching relationship—all of the other areas demonstrated a mismatching relation-
ship. In particular, Dongying experienced a severe mismatching relationship. The mismatch
improved towards the end of the research period, even though northwestern areas, such as
Dezhou, still exhibited a more pronounced mismatch. The main reason for this is that the
northwestern region features a plain terrain with abundant resources that are favorable for
agricultural production, leading to over-exploitation. In contrast, the southeastern region
has a more undulating terrain, which is not conducive to agricultural farming.

The relationship between the spatial evolution of towns and cities and the matching
of the carrying capacity of the resources and environment between 2000 and 2020 is
characterized by a spatial divergence in the form of a center-periphery ring (Figure 6k–o).
At the beginning of the research period, the entire region exhibited a matching relationship,
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with the exception of Jinan, which had a critical matching relationship. Towards the end
of the study, the non-municipal areas showed a serious mismatch, while the remaining
parts were predominantly characterized by a matching relationship. The main reason
for this is the slow pace of urbanization in the early years. In later years, even though
industrialization and urbanization motivated the expansion of urban space, the scale of the
resource and environmental carrying capacity was insufficient to support the intensified
human activities. This was particularly evident in the pressure exerted on the resources
and environment due to the construction of small towns.

 

Figure 6. The matching relationship between territorial space evolution and resources and environment.

5. Discussion

5.1. Research Contribution

Our paper found that the urban space in the lower reaches of the Yellow River con-
tinued to expand and the ecological space shrank during the specific study period. In
this paper, we concluded that the expansion of urban space squeezes the ecological space
and leads to the shrinkage of ecological space. Tang et al. concluded that urban expan-
sion is increasingly interfering with the ecological environment, which is in line with our
study [42]. Global urban spatial expansion has the same effect on agricultural space, which
is the same as the research result of Talema and Nigusie [43]. After that, the resource
and environmental carrying scale derived from the evaluation of the national land space
suitability and the conflict and regulation of space use in this study has been confirmed to
be reasonable by Qu et al. and Wang et al. [35,44]. There is already a foundation of related
research on which we developed the framework used in this study. The inherent factors
in the construction of the framework have a co-ordinated relationship, and our aim is to
change the disordered pattern to establish an orderly and sustainable pattern. Moreover,
the results of this research can be applied to the practice of territorial spatial planning,
and similar studies are as follows [48,49]. The effectiveness of spatial planning strategies
in curbing urban sprawl and environmental protection has been proven in countries and
regions [50]. The research pattern helps to provide a basis for decision-making.

This paper proposes a framework for determining the alignment between territorial
space and the resource and environmental carrying capacity, as well as realizing the
resource and environmental carrying capacity. The framework provides a theoretical
basis for understanding the sustainable use of territorial space. Specifically, the matching
relationship between the spatial evolution of national land and the carrying capacity of the
resources and environment serves as a representation of the interaction between human-
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environment systems, with implications for the optimization and sustainable management
of spatial patterns. By elucidating the changing trends in the relationship between the
spatial evolution and carrying capacity of the resources and the environment, differentiated
control paths can be developed. In areas with a mismatch relationship, restrictions should
be placed on the expansion of territorial space. Furthermore, in areas with a small mismatch,
territorial space should be reasonably allocated to ensure that the bottom line of resource
and environmental constraints is not breached. Finally, in matched areas, the quality of
territorial space use should be improved, aligning the use of various types of territorial
space with the resource and environmental constraints.

This paper introduces technical guidelines for assessing the resource and environmen-
tal carrying capacity. It emphasizes the importance of identifying and mediating potential
conflicts in land and space, thus aiding in the identification of the resource and environmen-
tal carrying capacity of regional multi-functional areas. The paper provides a supporting
framework for optimizing land structure and pattern reconfiguration.

The authors of this research have conducted an in-depth empirical study in an impor-
tant ecological region of the Yellow River basin, thus providing a concrete and practical
reference for the sustainable development of territorial space. Lastly, as one of the signifi-
cant ecological regions in the Yellow River basin, our research area plays a crucial role in
supporting the conservation and development of the inlet area and other important ecolog-
ical regions within the basin. This is achieved through the analysis of the spatial evolution,
the matching relationship of the resource and environmental carrying capacity, and the
ecology-agriculture-urban space. Moreover, our database on territorial space, resources,
and the environment in typical areas of the lower reaches of the Yellow River provides a
foundation for the formulation and implementation of the relevant government policies.

5.2. Territorial Spatial Optimization and Regulation Strategies

The spatial optimization zoning of typical areas in the lower reaches of the Yellow
River is determined by the alignment of the regional control objectives and the variations in
the control targets over a specific period. A “three zones and seven categories” spatial opti-
mization pattern facilitates the implementation of tailored control measures, highlighting
the urgency of distinct regional control strategies (Figure 7).

Figure 7. Territorial spatial optimization pattern in typical areas of the lower Yellow River.

The priority control zone encompasses four types of control: ecology-led (I), agriculture-
led (II), urban-led (III), and ecology-agriculture synergy (IV). The objective is to address the
mismatch between territorial space, on one hand, and the resources and environment, on
the other, in order to ensure that the land use aligns with the resource and environmental
constraints. This category comprises six administrative regions, primarily located in the
Yellow River Delta. This paper recommends establishing an interconnected ecological secu-
rity pattern of “source-sink-corridor” based on the ecological protection red line. Category
II comprises 25 administrative districts, primarily located in northwest and southwest Lu.
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Although these regions have a rich agricultural history, they are faced with challenges
in terms of water resources availability. We recommend actively implementing fallow
rotations on arable land to maintain soil fertility and alleviate water pressure. Category
III encompasses 12 administrative districts, all characterized by the expansion of urban
construction land. This paper suggests strict control over the expansion of urban land,
based on the delineation of urban development boundaries. Emphasis should be placed on
pursuing a path of intensive urbanization development by using the potential of existing
urban stock. Category IV comprises nine administrative districts, primarily situated in
western Lu, where the ecological and agricultural space faces significant challenges. To
address them, this paper suggests prioritizing the establishment of ecological corridors.
In addition, it is crucial to promote agricultural intensification and large-scale operations
through the utilization of modern agricultural machinery. This approach will contribute
to the development of a synergistic mechanism for the co-ordinated development of both
ecological and agricultural space.

The key control zone encompasses three types of control: ecological town synergy
(V), agricultural town synergy (VI), and ecological-agricultural town synergy (VII). The
objective is to ensure the rational allocation and use of national space, while also ensuring
that it remains within the limits of the resource and environmental carrying capacity.
Category V comprises four administrative districts, located in the central part of Lu. All of
these districts are influenced by topographical conditions. In urban planning, this paper
suggests prioritizing the shaping of ecological space within built-up areas. In addition,
there should be a strong emphasis on promoting the construction of landscape and forest
cities. Category VI comprises two administrative regions situated in southwest Lu. These
regions exhibit high suitability levels for agricultural production and town construction.
This paper recommends undertaking a rational planning of the spatial layout and scale of
the agriculture and towns. Furthermore, it is important to establish a spatial symbiosis of
agriculture and towns based on urban development. Finally, category VII encompasses
12 administrative districts, located in the Dawen River basin. The focus in this category
is on the sustainable use of territorial space. This is accomplished by emphasizing the
strategic leadership of territorial space planning and recognizing the role of resources and
the environment in controlling the use of territorial space.

The moderate control zone comprises the ecological-agricultural-town synergy type
(VII), which aims to ensure the stability of spatial utilization. Firstly, it is essential to
ensure ecological spatial integrity and connectivity, as this enhances the quality of the
living environment and facilitates industrial transformation. Secondly, it is recommended
to actively use agricultural development models, such as special agriculture, sightseeing
agriculture and picking agriculture, while focusing on exploring the mechanisms required
to achieve agricultural ecology. Finally, it is important to prioritize ecological security
while focusing on utilizing the existing stock of construction land. This can be achieved
by promoting the intensive use of construction land and striving for the co-ordinated
development of national land.

5.3. Limitations and Future Research Direction

There are certain shortcomings to this paper, which need to be addressed. Firstly, the
research area is rather limited as it is restricted to the typical areas in the lower reaches
of the Yellow River. It thus fails to cover the entire Yellow River basin. To provide more
comprehensive coverage, future studies should expand the research scope and cover
the entire Yellow River basin, thus exploring the spatial evolution patterns of ecology,
agriculture, and towns in different areas, as well as the matching relationship between the
carrying capacity of the resources and environment.

Furthermore, due to the limitations of data availability and precision, this paper
requires further refinement with regards to the relationship of ecological-agricultural-urban
space. The delineation criteria can be further improved by drawing on other relevant
theories and experiences. In addition, this paper only considers the bearing scale from the
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perspective of resource background and natural endowment, thus failing to account for
the socio–economic factors related to the spatial development and use of territory. This
limitation impacts the accurate identification of the carrying scale. In order to assess the
carrying capacity in a more comprehensive manner, future studies should incorporate
socio–economic indicators, such as population density, the economic development level,
and infrastructure development. Such a comprehensive analysis will help to better guide
the sustainable development and rational use of territorial space.

Finally, the territorial spatial planning system contains five levels of planning: national,
provincial, city, county, and township level. Therefore, exploring the multi-dimensional
decomposition and transmission of the territorial spatial pattern from the perspective of
multi-scale correlation will aid in understanding and planning the sustainable development
of territorial space.

6. Conclusions

This paper structures the role of potential conflict identification and mediation be-
tween the suitability of territorial space development and the carrying capacity of the
resources and environment. It further identifies the problems of territorial space utilization
in typical areas of the lower reaches of the Yellow River by investigating the matching
relationship between the evolution of territorial space and the carrying capacity of the
resources and environment.

Firstly, the rate of change to the territorial space in 2000–2005, 2005–2010, 2010–2015,
and 2015–2020 period is 0.167%, 0.091%, 0.079%, and 1.707%, respectively. These data
show the fluctuating shrinkage of ecological space, a relatively stable agricultural space, a
continuous increase in urban space, and significant changes in the territorial space structure.

Secondly, the spatial development suitability of the land in typical areas of the lower
reaches of the Yellow River exhibits topographic and land-sea divisions. Namely, the
intensity of potential conflicts is dominated by moderate potential conflicts. Furthermore,
the spatially directed resource and environmental carrying capacity of the ecology, agricul-
ture, and towns reflects the dynamic evolutionary processes of human activities and the
resources and environment, which tend towards sustainable development.

Thirdly, between 2000 and 2020, the index of matching the ecological and agricultural
spatial evolution with the resource and environmental carrying capacity experienced a
decreasing trend, with expanding regional differences. Conversely, the index of matching
urban space and the resource and environmental carrying capacity showed an increasing
trend, leading to smaller regional differences. The development of “three zones and seven
categories” of national spatial optimization and the control strategy to achieve them can
help in the sustainable use of national spatial areas by adopting differentiated control paths.

Finally, this paper proposes strategies for the optimal regulation and control of the
use of sustainable territories. This paper only explores the matching relationship between
the territorial spatial evolution and the bearing capacity of resources and the environment
from the perspective of scale. The research on matching human activities and the resources
and environment under the perspective of multi-dimensional coupling requires further
corroboration. In addition, it is important to note that this paper solely focuses on the
matching analysis between the spatial evolution of national land and the carrying capacity
of the resources and environment at the present stage. However, the typical areas in the
lower reaches of the Yellow River are currently undergoing a critical period of transition.
Therefore, the spatial evolution of national land in this area is of significant importance and
requires further investigation.

The priority control zone encompasses four types of control: ecology-led (I), agriculture-
led (II), urban-led (III), and ecology-agriculture synergy (IV). This paper suggests prior-
itizing the establishment of ecological corridors. In addition, it is crucial to promote
agricultural intensification and large-scale operations through the utilization of modern
agricultural machinery. The key control zone encompasses three types of control: ecolog-
ical town synergy (V), agricultural town synergy (VI), and ecological-agricultural town
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synergy (VII). In urban planning, this paper suggests prioritizing the shaping of ecological
space within built-up areas. In addition, there should be a strong emphasis on promoting
the construction of landscape and forest cities. The moderate control zone comprises the
ecological-agricultural-town synergy type (VII). Firstly, it is essential to ensure ecological
spatial integrity and connectivity, as this enhances the quality of the living environment
and facilitates industrial transformation. Secondly, it is recommended to actively use
agricultural development models, such as special agriculture, sightseeing agriculture, and
picking agriculture.
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Abstract: China’s rapid urbanization drive, marked by extensive urban renewal projects, necessitates
a meticulous examination of their transformational impact on the human settlement environment
(HSE) across urban landscapes. This study investigates the impact of China’s urban renewal progress
on the spatial–temporal changes in the HSE from 2009 to 2019, using data from 40 prefecture-level
cities in the Yangtze River Delta. Our findings reveal an overall positive relationship between the
spatio–temporal evolution of urban renewal and the HSE, suggesting that urban renewal projects
have had a beneficial impact, particularly following the announcement of China’s New Urbanization
policy in 2014. However, the extent of this positive impact varied among different areas, with more
significant improvements observed in core cities and economically developed areas. Additionally,
our study uncovered significant variations in how urban renewal influenced the HSE over time. We
found that the primary influencing factor shifted from material renewal to industrial renewal. These
findings offer valuable insights for improving the HSE during urban renewal processes, both in China
and other regions undergoing rapid urbanization.

Keywords: urban renewal; spatial–temporal evolution; human settlement environment; the Yangtze
River Delta

1. Introduction

The human settlement environment (HSE) is a multidimensional construct, embodying
the physical, socio-economic, and ecological facets of inhabited spaces across urban,
suburban, and rural landscapes, where individuals dwell, engage in economic activities,
and foster social connections. Since the United Nations’ establishment of the Human
Settlements Programme (UN-Habitat) in 1978, the HSE concept has risen to prominence on
the international stage. It has emerged as a focal point for urban strategists, researchers,
and policymakers worldwide, with leading regions like North America and Europe, among
others, integrating HSE enhancement at the core of their urban planning frameworks [1].
China has also acknowledged the escalating importance of nurturing a healthy human
settlement environment, prompting a strategic pivot in land management policy from
a strategy of ‘enclosure’ to one of ‘destocking’ [2], echoing a global commitment to
sustainable urban development and a people-centric approach to urbanization. This
paradigm shift underscores the nation’s recognition of the HSE as a cornerstone in its drive
towards balanced and equitable urban–rural development, aligning with international
efforts towards sustainable living environments for all inhabitants.

Urban renewal is viewed as a critical initiative for rejuvenating and enhancing urban
areas facing decay or decline, and it stands as a key component of China’s ‘destocking’
land use policy [3]. Globally, this policy intervention is esteemed for its ambitions to
elevate residents’ living standards, stimulate economic prosperity, and nurture sustainable,
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lively communities. Achieving these ends often entails initiatives such as infrastructure
modernization, public space enhancements, housing restoration, investment stimulation,
and the fostering of cultural and recreational facilities. Amid the surging prominence of
urban renewal on municipal agendas worldwide, academic inquiry has intensified, either
delving into the intricacies of urban renewal’s scientific and rational foundations [4,5] or
adopting urban renewal as a prism to explore its multifarious societal implications through
sociological, urban planning, and rural planning perspectives, among other lenses [6–8].
This body of research collectively paints a detailed tapestry of the theoretical and applied
facets of urban renewal, guiding prospective policy formulation and implementation.
Nonetheless, while the linkage between urban renewal and enhancements to the HSE seems
evident, concrete empirical evidence substantiating this association remains scant. This
paucity of research is particularly pressing in the Chinese context, given its unparalleled
pace and scale of urbanization, coupled with marked evolutions in urban renewal strategies.

In comparison to developed nations, China’s urban renewal strategy is intimately
intertwined with the objective of fostering urban-led economic progress. The unique dual
land system in the country empowers local governments with extraordinary leverage
for developmental land utilization. Since the 1990s, in a bid to ignite regional economic
expansion, administrations have executed “strategic land allocation” tactics, marshaling
resources to optimize fiscal revenues. A plethora of studies attest to local governments’
monopoly over land provision, with officials leaning on high GDP performance to ascend the
ranks under the nation’s cadre promotion system [9]. Empirical evidence solidifies the notion
that land allocation bolsters the local economy positively [10]. Consequently, residential
and commercial plots are frequently auctioned publicly to capitalize on earnings [11],
whereas industrial terrain is customarily negotiated to entice investments and invigorate
the local economic landscape [12,13]. Amidst this epoch, urban rejuvenation endeavors
in Chinese metropolises were predominantly fueled by rental discrepancies, culminating
in the proliferation of gated micro-district communities [14]. Simultaneously, ad hoc
demolition and reconstruction efforts have posed formidable obstacles to the cityscape‘s
human habitat, exacerbating disparities in urban maturation [15]. Thus, urban renewal
initiatives in the initial years of the new millennium prioritized less the amelioration of the
human settlement environment.

Since crossing the 50% urbanization threshold in 2010 and steadily advancing towards
the 80% benchmark characteristic of developed nations, China’s swift urban growth trajectory
has ignited concerns surrounding sprawl, land resource depletion, and environmental
deterioration [16]. In response, the government’s strategy has pivoted from a predominantly
market-led model to a more directive approach in urban renewal policy. This shift
was marked by the State Council’s introduction of “ten measures to stimulate domestic
demand” in 2008, which spotlighted shantytown renovation as a pivotal livelihood and
development endeavor. The launch of the “National New Urbanization Plan (2014–2020)”
further underscored a focus on enhancing urbanization quality, transforming development
paradigms, and advocating people-oriented urbanization principles. Complementing these,
the “Opinions of the State Council on Deepening New Urbanization Construction” in
2016 accentuated the urgency of revamping shantytowns, urban villages, and substandard
housing. The 20th National Congress in 2021 reinforced this commitment, advocating for
megacity development model reforms and urban renewal strategies, outlining a roadmap
for people-centered urbanization in the contemporary era. Nowadays, Chinese cities are
transitioning from expansive growth to a phase of optimized land use, with the revitalization
of three olds—shantytowns, micro-renewal projects, and minor transformations—emerging
as key catalysts for urban evolution. These interventions, targeting enhanced human
settlement environments and enriched urban functionality, signify a strategic pivot towards
sustainable and quality-focused urban development.

In light of the government’s assertive stance on urban renewal, a critical evaluation is
warranted to ascertain the efficacy of China’s recent endeavors in achieving the intended
improvements to the HSE. Unpacking the fundamental drivers of these outcomes is
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equally vital. Given the protracted timeline and expansive scope of urban renewal projects,
discerning potential spatial heterogeneities in the impact on HSEs across diverse urban
locales emerges as a pivotal research avenue. Moreover, elucidating the temporal and
spatial dynamics of urban renewal’s influence on the HSE is paramount. Attending to
these inquiries holds significant implications for capitalizing on urban renewal strategies
to augment the HSE and nurture environmentally sustainable and socially equitable
urban progress.

This research endeavors to scrutinize the transformations in the HSE instigated
by China’s urban renewal ventures within the Yangtze River Delta from 2009 to 2019,
harnessing data from a cohort of 40 municipalities. The outcomes suggest an overarching
trend of amelioration in the region, albeit with a deceleration in the pace of improvement
over time. Urban renewal endeavors emerge as pivotal in this narrative, facilitating
infrastructural advancements, catalyzing industrial expansion, and driving urban sprawl.
This study contributes to our understanding in several ways: it firstly forges a nationwide
connection between urban renewal and the enhancement of the HSE; secondly, it impartially
gauges the repercussions of urban renewal by homing in on individual cities and scrutinizing
the fallout of large-scale interventions such as shantytown rehabilitation programs; and
thirdly, it acknowledges the differential impact of urban renewal strategies across cities and
temporal epochs, thereby furnishing insights for tailored policy formulation reflective of
local contexts.

In the next section, we explore the theoretical framework for assessing the HSE and
the relationship between urban renewal and the HSE in China. Section 3 outlines the
methods and empirical strategy employed in this study. The presentation of the results and
discussion follows in Section 4. Finally, we conclude the paper in Section 5.

2. Theoretical Framework

2.1. Assessing the Human Settlement Environment

Scholarly investigations into the HSE are bifurcated into two principal categories, each
defined by the focal point of inquiry. The first category is centered on rural contexts, with
an emphasis on understanding and elevating living conditions through a sociological lens.
Researchers like Wang et al. have employed rigorous methodologies, such as structural
equation modeling, to underscore the critical role of government support in spurring rural
households to participate in environmental improvement initiatives [17]. This stream
of research has evolved to encompass analyses of governance structures, advocating for
more participatory, multi-stakeholder approaches in rural settings [18], alongside efforts
to establish comprehensive evaluation frameworks for measuring sustainability in rural
human settlements [19,20].

Conversely, the second category of research fixates on the complexities of urban
habitats, encompassing several focal points. Chen’s work, for instance, underscores the
vulnerabilities within urban clusters and identifies the determinants of urban settlement
patterns, emphasizing the centrality of regional economic strength [21,22]. Complementary
to this, Zhou’s research develops a resilience assessment model for urban settlements in
China, elucidating the factors that bolster urban resilience [23]. Further, studies akin to
Stal et al.’s transatlantic comparison highlight the socioeconomic benefits of strategic urban
renewal plans, particularly in addressing urban poverty by tailoring interventions to the
needs of disadvantaged groups [24].

These dual strands of inquiry collectively enrich our understanding of the multifaceted
dynamics characterizing both rural and urban human settlements. Drawing on preceding
scholarly work, the HSE is interpreted as a composite concept intimately tied to wellbeing
and happiness. A superior HSE is paramount to fulfilling the escalating aspirations of
populations for enhanced living standards. To facilitate analytical clarity, we parse the
HSE into two discernible components: the economic environment and the ecological
environment. An appraisal framework for the HSE is consequently erected upon these dual
pillars (depicted in Table 1) to systematically gauge the conditions of the HSE of each city.
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Table 1. Indicator system for evaluating the HSE.

Dimension Indicator Description

Economic
environment

Income distribution Theil’s index; measures income disparities between urban and
rural population.

Per capita consumption expenditure Per capita spending, indicative of living standards

Engel’s coefficient Proportion of income spent on food; lower values signal higher living
standards.

Ecological
environment

Waste management efficiency The annual volume of industrial wastewater discharged per city;
measures the waste disposal practices for environmental sustainability.

Green area of parks Ratio of parks and gardens to urban area for improved wellbeing.

Greening coverage in built-up areas Measures the vegetative layer that exists amidst buildings, roads, and
other concrete structures, serving as a vital element of urban ecology.

Note: the entropy weight method [25] is employed to objectively assign weights to these indicators based on their
variability and significance in the dataset, enhancing the assessment’s accuracy and robustness.

Specifically, the “economic environment” dimension encompasses metrics such as
the Theil index of rural–urban income disparity, per capita consumption expenditure, and
Engel’s coefficient—a gauge of food expenditure as a share of total household income.
Conversely, the “ecological environment” is characterized by indicators including the
waste management efficiency, park green areas, and the extent of greening coverage within
built-up locales. This strategy endeavors to distill complexity while retaining the essence of
what constitutes a high-caliber HSE, pivotal to addressing the escalating desires for a more
fulfilling existence among urban dwellers.

2.2. Theoretical Nexus of Urban Renewal and the HSE

The intricate nexus between urban renewal and the HSE stands as a subject of
profound interest transcending disciplinary boundaries, engaging scholars in economics,
urban planning, environmental science, and sociology alike. Studies have dissected the
multifaceted impacts of urban renewal through varied theoretical lenses, encompassing
the restructuring of urban functions [26], metabolic efficiency enhancements [27], land
policies [28], and human structures [29,30]. As the “people-oriented” development paradigm
gains ascendancy, scholarly pursuits must prioritize examining how urban renewal efforts
enhance the living environment in targeted renewal zones and, more broadly, the entire
urban human settlement context. This focal shift aligns with the cardinal aspiration of
urban renewal initiatives, viz., elevating the general urban environmental quality and
fostering superior living standards.

A synthesis of the existing literature reveals a myriad of theoretical frameworks
explicating the HSE, coupled with in-depth explorations of governance rationales tailored
to distinct contextual milieus. These inquiries have shed light on key determinants and
operative mechanisms influencing the rural HSE, charting pathways for improvement and
their real-world implementations [31]. Notwithstanding these advances, a conspicuous
imbalance in research focus prevails, with the urban HSE receiving relatively scant attention.
Moreover, a gap persists in our understanding of the intricate, reciprocal interactions
between processes of urban renewal and the evolution of the urban HSE. In view of the
ubiquitous implementation of urban renewal interventions across cities worldwide since
the dawn of the 21st century, their transformative impact on the urban habitat is undeniable.

Therefore, there arises an urgent need to systematically probe the evolutionary
mechanisms driving changes in the urban HSE against the backdrop of ongoing urban
renewal efforts. Such an endeavor promises to unravel the nuanced interdependencies and
reciprocal feedback mechanisms that mold urban landscapes, informing the formulation of
more efficacious and environmentally sustainable strategies for urban renewal. Our study
adopts a comprehensive framework, designed to systematically evaluate the repercussions
of urban renewal on the human settlement environment. As depicted in Figure 1, the
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theoretical intersection of urban renewal and the HSE manifests in multifarious ways,
underscoring the transformative potential of renewal initiatives on infrastructural, industrial,
and urban construction fronts.

Figure 1. Theoretical nexus of urban renewal and the HSE.

Firstly, urban renewal plays a pivotal role in enriching infrastructure development,
which, in turn, significantly bolsters the HSE. This encompasses large-scale projects aimed at
modernizing urban infrastructure, congruent with national smart and sponge city agendas.
Activities ranging from the rehabilitation of dilapidated housing to the revitalization of
obsolete industrial zones and road network enhancements engender economic vibrancy
by generating employment and boosting resident incomes. Moreover, improvements
to public service amenities [32], commercial zones, and consumer experiences elevate
living standards, stimulate economic expansion, and foster an optimized economic milieu.
Investments in eco-friendly infrastructure, such as advanced drainage systems and waste
management facilities, contribute to environmental amelioration and augment the city’s
ecological resilience.

Secondly, the impact of urban renewal on the HSE is discernible through its capacity
to optimize industrial layouts and recalibrate industrial structures. Historically, haphazard
urban growth has resulted in inefficient land use patterns and hindered urban vitality.
By strategically integrating renewal efforts with industrial strategies, cities can invigorate
their economies. Theoretical frameworks posit a directional shift toward higher-value-added
sectors, facilitating the migration of lower-efficiency industries and spatial rearrangement [33].
This transition, aligned with China’s push for high-quality economic development, rationalizes
industrial structures, fostering knowledge-intensive industries [34] and realizing harmonious
city–industry integration. Concurrently, the phase-out of polluting industries through
renewal activities promotes environmental sustainability, transforming former industrial
sites into green spaces that augment the ecological environment.

Lastly, urban renewal exercises a profound influence on the HSE by comprehensively
transforming the physical fabric of urban construction through extensive improvements.
This multidimensional process intertwines demographic shifts, social dynamics, economic
transformations, and governance strategies, necessitating a multidisciplinary approach
grounded in urban planning, economics, sociology, and engineering sciences. In the
Chinese context, urban renewal constitutes a strategic governmental endeavor. Local
governments actively participate by financing public infrastructure improvements, issuing
policy incentives to attract investments, and orchestrating spatial planning guided by high
standards and digital technologies. These measures not only expedite urban construction
but also catalyze industrial clusters, steer population migrations toward favorable urban
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nodes, exploit agglomeration economies, and heighten the appeal of human settlement
environments. Collectively, these dimensions of urban renewal coalesce to forge a more
resilient, prosperous, and sustainable HSE.

3. Materials and Methods

3.1. Study Area and Data

In the realm of urban renewal studies, cities constitute the epicenter of implementation,
with the Yangtze River Delta region, nestled along China’s eastern seaboard, exemplifying
a prime locale for such endeavors. Endowed with exceptional advantages, the region boasts
well-developed transportation infrastructure and a wealth of ecological assets, furnishing
a sturdy groundwork for the execution of urban renewal ventures. Characterized by
brisk economic progress, the Yangtze River Delta harbors a constellation of large- and
medium-sized cities, vibrant economic development zones, and robust intercity economic
linkages, concurrently serving as a magnet for significant population influx. Premised on
its heightened urbanization pace and pioneering role in initiating expansive urban renewal
schemes, the region has cultivated a rich academic terrain for investigation. Consequently,
this study envelops cities falling under the administrative ambit of three provinces within
the Yangtze River Delta—Jiangsu, Zhejiang, and Anhui (Figure 2). This encompasses
a total of 40 cities at the prefecture level or above, notable among them being Nanjing,
Hangzhou, and Hefei. Notably, Shanghai, due to its uniquely vast economic scale and
distinct development trajectory, was excluded from our study area.

Figure 2. Study area.

To empirically ground our analysis, data spanning from 2009 to 2019 were compiled.
These data were meticulously sourced from the China City Statistical Yearbook and provincial
statistical yearbooks of Jiangsu, Zhejiang, and Anhui. Deliberately capping the data at 2019
aligns with our study’s focus on policy dynamics related to shantytown transformation,
revitalization of old industrial zones, and urban village renovations, which were piloted
in the Yangtze River Delta and largely concluded pre-2020, marking the advent of fresh
developmental epochs. Observations suggest that comparable renewal endeavors are
currently unfolding in less economically mature regions, thereby underscoring the broader
relevance of our findings.
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3.2. Baseline Model

In accordance with the methodologies established by prior scholars in [35–37], we
adopted a rigorous two-way fixed-effects model to rigorously assess the influence of urban
renewal on the human settlement environment. The analytical framework we employed
is delineated below, echoing the precedent set by these seminal works to ensure both
methodological soundness and the comparability of our findings.

HSEit = α0 +
8

∑
j=1

αjURit + α2Policyit +
4

∑
k=1

β jXit + μi + λi + εit (1)

where i and t represent cities and years, respectively. The dependent variable (HSEit)
signifies the index measuring the quality of the urban human settlement environment
for city i in year t. The explanatory variables central to our analysis encompass URit,
an indicator quantifying the extent of urban renewal activities in a given city and year;
and Policyit, a binary policy dummy variable marking the onset of urban renewal policy
initiatives aligned with the National New Urbanization Plan in each city. This variable
assumes a value of 0 preceding the policy’s execution and flips to 1 post-implementation,
thereby capturing the temporal shift in policy influence. Additionally, a suite of control
variables, collectively represented as Xit, is included to account for potential confounding
factors. To isolate the unique impacts of our variables of interest, we incorporate individual
(μi) and time (λi) fixed effects, mitigating any unobserved heterogeneity tied to specific
cities or time periods. Lastly, εit symbolizes the stochastic error term encapsulating residual
variability not explained by the model’s predictors, ensuring the integrity of our estimations.
This comprehensive model specification thereby facilitates a nuanced understanding of
the dynamic interplay between urban renewal initiatives and the evolution of human
settlement environments across varying spatial and temporal contexts.

3.3. The Geographically and Temporally Weighted Regression (GTWR) Model

Following the method outlined by [38], we employed the geographically and
temporally weighted regression (GTWR) model to delve deeper into the spatial and
temporal heterogeneities in the influence exerted by diverse urban renewal endeavors
on the HSE. The basic formulation of the GTWR model is delineated as follows:

HSEit = β0(ui, vi, ti) +
8

∑
j=1

β j(ui, vi, ti)URit + β2(ui, vi, ti)Policyit +
4

∑
k=1

βk(ui, vi, ti)Xik + εi (2)

where the tuple (ui, vi, ti) symbolizes the spatio–temporal coordinates for city i, with ui
representing the longitude and latitude, respectively, and ti denoting the chronological
marker. The term β0(ui, vi, ti) signifies the location and time-specific intercept for city i. The
coefficients β j(ui, vi, ti) and β2(ui, vi, ti) denote the geospatially and temporally varying
regression weights associated with the independent variables, reflecting the differential
impacts of various urban renewal projects (URit) and policy interventions (Policyit) across
space and time. Similarly, βk(ui, vi, ti) embodies the adaptable coefficients for the control
variables (Xik), capturing their contextual influence. All remaining variables retain their
meanings consistent with those defined in Equation (1). This sophisticated modeling
approach permits nuanced insights into how the effects of urban renewal strategies
dynamically interact with geographical context and evolve over time.

3.4. Variables
3.4.1. Dependent Variable

The focal point of inquiry in Equations (1) and (2) rests on the HSE, a construct
meticulously delineated by the evaluative framework presented in Table 1. Acknowledging
the plausible implications of migratory dynamics and ancillary impacts instigated by urban
renewal processes, it becomes imperative to scrutinize the presence of spatial correlation
within the HSE, a premise supported by preceding scholarly endeavors. To ascertain this
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spatial interdependence, we employed Moran’s I index, a statistical measure that elucidates
spatial autocorrelation patterns. The mathematical expression for calculating Moran’s I is
thereby formulated as follows:

Moran′s I =
∑n

i=1 ∑n
j=1 Wij

(
Yi − Y

)(
Yj − Y

)
S2∑n

i=1 ∑n
j=1 Wij

(3)

where i and j represent region i and region j, S2 is the sample variance, Y is the sample mean,
and Wij is the spatial weight matrix representing the spatial relationships between regions,
including the adjacency matrix, geographic matrix, economic–geographic matrix, etc.
The value of Moran’s I typically ranges from −1 to 1, where a larger absolute value
indicates a stronger correlation. Specifically, if the Moran’s I value is positive, it indicates
positive spatial correlation. If the Moran’s I value is zero, it indicates no spatial correlation.
If the Moran’s I value is negative, it indicates a negative spatial correlation. Due to
the strong economic characteristics of the human settlement environment, constructing
a weight matrix based solely on geographical distance cannot objectively reflect its economic
associations. Therefore, this study selected an economic–geographic weight matrix [39]
(W1) and an economic–geographic nested weight matrix [40] (W2) to measure the spatial
relationships. W1 is constructed by taking the reciprocal of the distance between city i
and city j multiplied by the product of the ratio of the average per capita GDP of city i to
the average per capita GDP of all cities. W2(ψ) = (1 − ψ)wG

n + ψwE
n , where WG

n and WE
n

represent the geographic distance weight matrix and the economic distance weight matrix,
respectively. In this study, the geographic matrix and the economic matrix were considered
to have equal weights, with ψ set to 0.5.

3.4.2. Key Independent Variable

In our research, the pivotal independent variable revolves around the degree of
urban renewal undertaken in a given city at a specific temporal juncture. Urban renewal,
recognized as a multidimensional phenomenon, not only entails the physical revitalization
of spaces but also embraces advancements in the intangible facets of urbanity. To measure
the intensity of urban renewal, we adopted a suite of indicators that collectively encapsulate
the breadth and depth of urban transformation. These indicators are structured under
three principal categories: urban infrastructure development, industrial development,
and urban construction. Firstly, urban infrastructure development (Infra) is assessed
through metrics such as the total completed fixed asset investments in municipal public
facilities (Invest), the length of urban drainage pipeline networks (Pipe), and the per capita
availability of the road surface area (Road). Secondly, the industrial development (Industry)
is gauged by examining the shares of the secondary (Second) and tertiary sectors (Third)
in the city’s Gross Domestic Product (GDP), highlighting structural shifts and economic
diversification. Lastly, urban construction (Urban) encompasses fiscal health and spatial
expansion, measured via the local government’s general public budget revenue (Income),
the area designated for residential land use (Floor), and the allocation for industrial land
(Industrial). This ensemble of indicators furnishes a comprehensive perspective on the
multifaceted dimensions of urban renewal efforts in the studied cities.

3.4.3. Control Variable

Given the presence of various factors that can influence the urban human settlement
environment, this study focused on representative variables from four key aspects: population
density, external investment, employment situation, and human capital level.

(1) Population density (Pop): The rapid urbanization process has resulted in a significant
influx of rural population into cities. High population density can exert considerable
pressure on urban transportation, the ecological environment, and living conditions,
leading to frequent urban challenges. To measure population density, this study used
the number of people per square kilometer.
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(2) External investment (Foreign): As comprehensive national strength grows, capital
investments from foreign countries or regions play a crucial role in driving urban
development and improving the living standards of urban residents. To represent
the intensity of external investment, this study employed the number of contracted
projects for foreign direct investment.

(3) Unemployment (Unemployed): Unemployment directly affects household income
and consumption levels for the majority of the urban population, consequently
impacting the urban economic environment. To evaluate the level of unemployment,
this study utilized the number of registered unemployed individuals in the city.

(4) Human capital (Education): The level of human capital in cities directly reflects the
quality of the urban economic environment. Enhanced human capital can increase
individual employment opportunities, elevate income levels, and subsequently influence
urban consumption levels. To measure the level of human capital in cities, this study
considered the proportion of higher education students to the registered population.

4. Result and Discussion

4.1. Mapping the Spatial Variability and Temporal Trajectories of the HSE

Figure 3 graphically represents the city-level distribution of the HSE scores for the
years 2009, 2014, and 2019, employing the natural breaks classification methodology. The
visual depiction reveals stark spatial heterogeneity in the HSE, with a conspicuous trend of
elevated scores clustering along the eastern coastal belt relative to the more inland, western
territories. Over the decade under scrutiny, a pervasive trend of improvement in HSE is
evident across the Jiangsu, Zhejiang, and Anhui provinces. Initially, in 2009, the aggregate
mean HSE score for the 40 surveyed cities stood at roughly 0.3. By the conclusion of the
study period in 2019, this mean had ascended appreciably to approach 0.4. This temporal
evolution is further underscored by a broad-based enhancement across all score categories,
evidenced by the lowest recorded HSE value escalating from 0.107 in 2009 to a peak of
0.919 in 2019. Collectively, these observations attest to a salutary shift in the HSE landscape
throughout the timeframe investigated, underscoring the efficacy of urban renewal and
development strategies in fostering more livable and sustainable human settlements.

Figure 3. Geospatial depiction of HSE scores across cities, 2009–2019.

To further unravel the intricate spatio–temporal dynamics of the HSE, we computed
Moran’s I index for every city within the tri-provincial domain encompassing Jiangsu,
Zhejiang, and Anhui from 2009 through 2019 (detailed in Table 2). Focusing on the
landmark years 2009, 2014, and 2019 as illustrative instances, the HSE scores were classified
into four quadrants—high–high, low–high, low–low, and high–low—reflecting varying
combinations of spatial autocorrelation. These classifications facilitate the understanding
of the clustering of high or low HSE scores in geographical proximity. To visualize these
patterns explicitly, Local Indicators of Spatial Association (LISA) scatterplots (Figure 4)
were constructed, offering a graphical interpretation of the HSE’s specific distributional
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characteristics across time and space. These visual analyses provide critical insights
into the geographic concentrations of HSE performance and potential drivers behind
the observed trends.

 
(A) (B) 

 
(C) (D) 

 
(E) (F) 

Figure 4. Spatial distribution of cities based on HSE using W1 and W2, 2009–2019. (A) Scatterplot
distribution for W1 2009. (B) Scatterplot distribution for W2 2009. (C) Scatterplot distribution for W1

2014. (D) Scatterplot distribution for W2 2014. (E) Scatterplot distribution for W1 2019. (F) Scatterplot
distribution for W2 2019.
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Table 2. Global Moran’s I index for the HSE in Jiangsu, Zhejiang, and Anhui (2009–2019).

Year 2009 2010 2011 2012 2013 2014

Moran′s I
(W1)

0.715 *** 0.757 *** 0.777 *** 0.77 *** 0.76 *** 0.77 ***
(0.101) (0.103) (0.102) (0.101) (0.1) (0.101)

Moran′s I
(W2)

0.632 *** 0.684 *** 0.708 *** 0.696 *** 0.677 *** 0.699 ***
(0.092) (0.094) (0.093) (0.092) (0.092) (0.092)

Year 2015 2016 2017 2018 2019

Moran′s I
(W1)

0.725 *** 0.767 *** 0.714 *** 0.735 *** 0.721 ***
(0.101) (0.102) (0.102) (0.102) (0.102)

Moran′s I
(W2)

0.661 *** 0.703 *** 0.672 *** 0.684 *** 0.669 ***
(0.093) (0.093) (0.093) (0.093) (0.093)

Note: *** p < 0.01, ** p < 0.05, * p < 0.1, t-statistics in parentheses.

Drawing upon the evidentiary base provided in Table 2, it emerges that both the
economic–geographical weight matrix and the nested variant thereof yield positively
valued Moran’s I indices for the HSE. Importantly, these indices consistently surpassed
the 1% significance threshold, affirming the robustness of our findings. This collectively
underscores that the distribution of the HSE across the cities was not arbitrary; rather, it
manifested a pronounced level of spatial dependence, implying that the HSE of a city is
intricately tied to that of its spatial neighbors. Consequently, these results emphasize the
pivotal role of spatial elements in shaping the HSE dynamics amidst the backdrop of urban
renewal initiatives. It becomes imperative, therefore, to incorporate spatial correlation
in assessments of urban renewal’s repercussions on the human settlement environment,
acknowledging that HSE outcomes are not solely a function of local factors but are also
influenced by the broader spatial context. Inspection of the LISA scatterplots further
illuminate this narrative, revealing a concentration of cities in the third quadrant, indicative
of a scenario where cities with high (low) HSE scores tend to be surrounded by similarly
high (low) scoring neighbors. This clustering pattern reinforces the notion that spatial
contiguity significantly modulates HSE distributions and accentuates the necessity of
adopting a spatially explicit analytical lens when deciphering the complexities of urban
renewal’s impact on the HSE.

4.2. The Impact of Urban Renewal on the HSE: Benchmark Findings

Based on Equation (1), we probed the relationship between urban renewal activities
and their repercussions on the HSE, with the resultant findings tabulated in Table 3. In this
structured analysis, Model 1 initiates the exploration by concentrating on the direct impacts
of the primary explanatory variables on the HSE without additional controls. Expanding
upon this, Model 2 integrates supplementary control measures such as population density
and external investment into the mix, alongside the variables retained from Model 1, thereby
enhancing the complexity and robustness of the model. Acknowledging the longitudinal
nature of the dataset and to further refine our estimates, Model 3 adopts a two-way
fixed-effects model, informed by the outcomes of the Hausman test and the inclusion
of policy-specific dummy variables. This model rigorously assesses the temporal and
cross-sectional dynamics influencing the connection between urban renewal and the HSE.

Notably, the reported R-squared statistics for the trio of models—0.763 for Model 1,
0.689 for Model 2, and 0.975 for Model 3—reveal the escalating explanatory power, with
Model 3 demonstrating the highest capacity to account for the variance in HSE outcomes.
These values signify the degree to which our models captured the variability in the HSE,
with Model 3 achieving an especially high explanatory adequacy. Crucially, all three
models attained statistical significance at the stringent 1% confidence level, attesting to the
robust and credible nature of the observed associations between the explanatory variables
and the HSE. This statistical significance reinforces our conviction in the reliability of the
findings, underscoring that the dynamics of urban renewal indeed exert a quantifiable and
substantial influence on shaping the human settlement environment.
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Table 3. Benchmark results on the impact of urban renewal on HSE.

Variable Model 1 Model 2 Model 3

Policy 0.256 *** 0.25 *** 0.004
(4.67) (4.52) (0.68)

Invest
0.01 * 0.102 ** 0.013 ***
(1.92) (2.02) (2.91)

Pipe 0.005 0.003 −0.001
(0.43) (0.24) (−0.11)

Road
−0.005 −0.005 −0.007
(−1.07) (−1.07) (−1.52)

Second
0.038 *** 0.035 *** 0.025 ***

(4.8) (4.22) (3.3)

Third
0.044 *** 0.043 *** 0.024 **

(5.15) (4.84) (2.49)

Income
0.025 *** 0.028 *** 0.021 **

(2.78) (3.05) (2.44)

Floor
−0.028 ** −0.033 ** −0.03 **
(−2.18) (−2.56) (−2.5)

Industrial
0.014 ** 0.014 ** 0.013 **
(2.03) (2.11) (2.19)

Pop −0.005 −0.003
(−0.8) (−0.68)

Foreign 0.000 0.000
(0.34) (0.08)

Unemployed 0.000 0.002
(0.07) (1.23)

Education
0.024 ** 0.03 ***

(2.2) (3.03)
Note: *** p < 0.01, ** p < 0.05, * p < 0.1, t-statistics in parentheses.

The outcomes of the regression analyses for Models 1 and 2 affirmatively highlight
a substantial, positive association between urban renewal endeavors and enhancements
in the HSE. Progressing to Model 3, which employs a sophisticated two-way fixed-effects
methodology, a more nuanced dissection of the underlying mechanisms was conducted.
Specifically, this model delves into the roles of urban infrastructure advancements and
shifts in industrial composition. Of note is the fact that Model 3 discloses that completed
fixed asset investments channeled into urban municipal public facilities exert a profound,
beneficial effect on the human settlement environment, evidenced by a statistically significant
coefficient of 0.013 at the 0.01 significance level. This finding underscores the paramount
importance of robust infrastructure development in fostering improved living environments.
Furthermore, the coefficients pertaining to the contributions of the secondary (0.025) and
tertiary (0.024) industries to the GDP, both statistically significant at the 5% level, attest to
the transformative power of industrial restructuring and upgradation in augmenting the
environmental quality for human habitation. This implies that urban renewal’s facilitation
of industrial transitions towards higher value-added and service sectors is instrumental in
elevating the HSE.

Regarding the multifaceted impact of urban construction, the results are twofold.
A positive contribution arises from enhancements in local general public budget revenue,
reflected in a coefficient of 0.021, and an expansion in industrial land area, with a coefficient
of 0.013, both of which significantly boost the human settlement environment. Conversely,
an unexpected negative coefficient (−0.03) was attached to residential land area, intimating
that while expanding residential areas might intuitively benefit the environment, it
inadvertently introduces countervailing pressures. This paradox could stem from a complex
interplay between residential expansion and its dual implications for economic development
and ecological sustainability, necessitating careful calibration in urban planning.
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Moreover, the control variables conformed to anticipated patterns. Higher human
capital was positively correlated with better human settlement environments, as more
educated urban residents typically see improved job prospects, heightened incomes, greater
consumption, accelerated economic growth, and a more favorable living environment.
Conversely, population density, foreign investment counts, and unemployment figures
showed no substantial bearing on the urban HSE. This may be due to China’s rapid
urbanization, marked by uniformly high population densities across cities, especially
in the Yangtze River Delta region of Jiangsu, Zhejiang, and Anhui. Hence, additional
population density has marginal relevance to the HSE. Amidst the progress towards
high-quality economic growth, foreign investments, though contributory, hold lesser sway
than domestic investments, particularly from local firms. With minimal foreign capital
involvement and a stable economic trajectory averaging a 7.8% annual GDP growth from
2009 to 2019, alongside low unemployment rates, the effect of unemployment on the HSE
is negligible.

4.3. The Impact of Urban Renewal on the HSE: Mechanisms

The results from our GTWR analysis, summarized in Table 4, delve into the intricate
web of relationships that exist between the dynamic changes in the HSE and a multitude of
urban renewal indicators over space and time. This advanced modeling approach yielded
notably high R-squared and adjusted R-squared values, both surpassing 0.95, which affirm
the model’s exceptional fitness and its prowess in accurately explicating the complex
interplay between the independent variables and the HSE. These statistical measures
assure us of the model’s capability to provide a robust and nuanced understanding of the
underlying mechanisms driving the impact of urban renewal on shaping and enhancing
the human settlement environment across diverse spatial–temporal contexts.

Table 4. GTWR parameter estimates.

Parameter Bandwidth
Residual
Squares

Sigma AICc R2 R2

Adjusted
Spatio-Temporal
Distance Ratio

Value 0.11006 0.346914 0.028079 −1485.41 0.9733 0.972526 2.2447

Figures 5–8 visually depict the geographic disparities in how various factors influence
the HSE over distinct chronological intervals. Notably, the analysis accounts for a policy
intervention—the State Council’s 2013 directive on shantytown rehabilitation. Acknowledging
a latency in policy execution, our study demarcates 2014 as the inception year of national
policy enforcement, thereby defining 2009–2013 as the pre-policy epoch and 2015–2019 as
the post-policy era.

Overall, the temporal dynamics reveal evolving HSE factor impacts. Post-2009, the
urban renewal policies’ HSE enhancement weakened, with local budgets and residential
land dominating until 2013, joined by the tertiary sector’s GDP share. However, post-2014,
the tertiary and secondary sectors’ GDP shares emerged as prime influencers, signaling
industrial transformation’s ascendancy in sculpting the human settlement environment.
The key observations include the following:

(1) Policy Dimension (Figure 5): Local policy interventions are largely conducive to the HSE
enhancement, with their potency escalating over time following their implementation.
Pivoting around the 2014 national policy milestone, the 2009–2013 phase saw Jiangsu
and Zhejiang provinces bask in the zenith of positive policy impact. Conversely,
from 2015 to 2019, Anhui and Jiangsu emerged as new focal points, albeit with some
southern Zhejiang cities, prominently Wenzhou, encountering adverse effects.
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Figure 5. Spatio-temporal dynamics of policy effects in urban renewal’s influence on the HSE.

Figure 6. Spatio-temporal dynamics of infrastructure investment effects in urban renewal’s influence
on the HSE.
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(2) Infrastructure Investment Dynamics (Figure 6): The trajectory of fixed asset investments
in municipal public facilities’ influence on HSE transitioned from adverse to favorable.
Until 2013, all cities registered detrimental regression coefficients. Post-2014, however,
a reversal in the coefficient polarity became prevalent across many cities, implying
a strengthening constructive influence. This transformation aligns with the advent of
the “Lucid Waters and Lush Mountains” green development philosophy, highlighting
infrastructure investments’ escalating role in bolstering the HSE. Meanwhile, the
contribution of urban drainage pipeline length to HSE improvement was generally
positive but stabilizing. Between 2009 and 2013, regions in Zhejiang and southern
Jiangsu reaped the lion’s share of benefits from extended drainage systems. Post-2014,
the ameliorative effect dropped off, potentially due to rapid urbanization and mature
infrastructure in these locales, diminishing the incremental advantage of further
pipeline extensions on the HSE.

(3) Industrial Progress (Figure 7): The progress of industrial structure exerts a substantial
effect on the HSE, with the secondary industry’s GDP contribution displaying a stable,
primarily positive impact. Between 2009 and 2013, the regression coefficients for
40 cities consistently hovered within a [0.04, 0.07] band. While Wenzhou and Taizhou
momentarily showed a 2014 decline, the period from 2015 to 2019 witnessed a stronger,
predominantly positive influence across the cities, particularly in Jiangsu and northern
Anhui. The tertiary industry’s GDP share had a more substantial bearing, with
cities like Yancheng, Huai’an, Taizhou, Nanjing, Hangzhou, and Hefei consistently
benefitting. Moreover, the Yangtze River cities registered significantly higher coefficients
compared to their southern Zhejiang coastal counterparts, highlighting the tertiary
sector’s enhanced HSE impact in the Yangtze region.

Figure 7. Spatio-temporal dynamics of industrial progress effects in urban renewal’s influence on
the HSE.
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(4) Material Renewal (Figure 8): The physical revitalization of spaces significantly shapes
the HSE landscape through multiple avenues. Local general public budget revenue,
despite being generally positive, waned in influence over the timeline. The northern
Anhui cities initially saw the most positive impact, yet post-2014 policy implementation,
the southern Zhejiang cities exhibited a positive surge, except for Lianyungang’s
marginal negative coefficient. Residential land area generally fostered a positive HSE
environment, yet with notable fluctuations, transitioning from negative dominance
in northern Anhui and Jiangsu (2009–2013) to a positive swing favoring Zhejiang
post-2014. Industrial land area mostly positively influenced the HSE, with initial
mixed signals at provincial borders evolving into a more definitive positive trend
concentrated in cities like Lu’an, Hefei, and Huai’an from 2015 to 2019, while southern
Zhejiang cities experienced negative effects.

Figure 8. Spatio-temporal dynamics of material renewal effects in urban renewal’s influence on
the HSE.
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5. Conclusions

This investigation employed an extensive analytical framework utilizing panel data
spanning from 2009 to 2019, leveraging ordinary panel regression and fixed-effects
models to scrutinize the determinants and pathways through which urban renewal shapes
the HSE. To unravel the geographical and chronological nuances, a geographically and
temporally weighted regression model was adopted, shedding light on the spatial–temporal
heterogeneities in urban renewal’s environmental impact. Our findings reveal a general
upward trend in HSE quality across the cities since 2009, with progression rates diverging
across various phases. Metropolises such as Nanjing, Hangzhou, Hefei, and Suzhou,
characterized by advanced economies, have outpaced less prosperous zones in northern
Jiangsu and Anhui in environmental quality. The spatial clustering analyses underscored
the existence of high–high and low–low agglomerations, reflecting areas with consistently
superior or inferior human settlement conditions, respectively.

A salient discovery entails the affirmation of a positive correlation between urban
renewal endeavors and HSE improvement, suggesting that renewal projects yield favorable
outcomes. Nonetheless, these enhancements exhibited spatial disparities, with Yangtze River
Delta hubs and economically vibrant territories witnessing more dramatic enhancements.
Moreover, our work underscores the multifaceted influence of urban renewal on the HSE
through infrastructural enhancements, industrial stimulation, and construction activities.
Initial potent policy effects have attenuated over time amidst intricate interplays among
impacting variables, while the roles of population density, external investment, and urban
unemployment remain inconclusive in our present study. The spatial–temporal dynamics
also unveiled variable importance shifts among influencing factors, pivoting from an urban
construction magnitude to an industrial development emphasis, underlining the centrality
of industrial restructuring and modernization for HSE enhancement.

Our study innovatively contributes to the discourse by establishing an HSE assessment
framework and deploying sophisticated modeling techniques to explore the causal mechanisms
and spatio–temporal dynamics of urban renewal’s HSE impact. We affirm the pivotal role
of industrial evolution in shaping the HSE and advocate for urban renewal strategies
harmonized with local industrial contexts, emphasizing tailored policies that prioritize
structural adjustments in urban industries. Such an approach paves the way for human-
centric urbanization and HSE augmentation.

While offering empirical insights into HSE uplift via urban renewal and bridging
a research gap by integrating urban renewal with HSE considerations, we acknowledge
limitations. Data constraints necessitated focusing on shantytown renovation as a proxy
for broader urban renewal and limiting the scope to prefectural cities, bypassing granular
analysis at the county level. Future inquiries should aspire to broaden the purview of
urban renewal activities under examination and delve deeper into county-level impacts for
a holistic comprehension of HSE transformations.
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Abstract: Land disputes have significantly disrupted legal order, production, and social harmony,
and has been regarded as a quintessential challenge in public governance, attracting worldwide
attentions from scholars. As an emblematic feature of China’s latest reform and opening-up strategy,
the Yangtze River Economic Belt (YREB) in China has experienced rapid development after entering
the new era (2012–2021) alongside substantial risks and challenges, particularly regarding land
disputes. Better understanding of the manifestation and formation mechanism of new characteristics
of land disputes is beneficial for contemporary public governance and for achieving a high-quality
development of the YREB, whose Gross Domestic Product (GDP) accounted for 46.3% of the national
GDP in 2023. A total of 325,105 land dispute cases in 11 provinces or municipalities of the YREB
from 2012 to 2021 were collected and analyzed. On this basis, an evaluation index system of the
new characteristics of land disputes, named the overall land dispute (OLD) index, was constructed
according to measurement theory by coupling the interactions of quantity, claim amounts, duration
periods, and the appeal rate of land dispute. Then, the OLD index was evaluated by descriptive
statistical methods, a geographic information system (GIS) spatial analysis, a center of gravity model,
kernel density estimation, and Theil index methods, to reveal the new characteristics and formation
mechanisms of land disputes in the YREB from 2012 to 2021. The results indicated that: (1) The OLD
index exhibited a trend of an initial increase followed by a decline, indicating that land disputes in
the YREB showed signs of alleviation. (2) The government’s capacity for resolving land disputes was
significantly improved, as evidenced by the decline in the OLD index from 0.59 in 2018 to 0.51 in
2021. This improvement could be attributed to the effectiveness of enhanced governmental working
mechanisms, regulatory standards, and the integration of digital technologies. (3) The analysis of
the center of gravity model indicated that the focus of land disputes shifted westward, propelled by
national policy support for upstream regions of the YREB and the need for land ecological protection.
(4) The analysis of kernel density estimation indicated that regional disparities in land disputes within
the YREB had declined, driven by a positive trend toward balanced regional development and rural
governance. This study provides scientific insights into the new characteristics of land disputes in
the YREB and guidance for policy decision making on effective land dispute management.

Keywords: land disputes; characteristics; manifestation; formation mechanism; Yangtze River
Economic Belt

1. Introduction

Land disputes have significantly disrupted legal order, production, and social har-
mony and was regarded as a quintessential challenge in public governance, attracting
worldwide attention from scholars [1]. As an emblematic feature of China’s latest reform
and opening-up strategy, the Yangtze River Economic Belt (YREB) in China has experienced
rapid development after entering the new era (2012–2021), but also alongside substantial
risks and challenges, particularly regarding land disputes [2]. According to statistics from
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the Ministry of Land and Resources of the People’s Republic of China, rural mass incidents
caused by land have accounted for more than 65% of all rural mass incidents, and mass
incidents of land disputes have become a prominent problem affecting social stability [3].
After 2012, China entered into a new era, as China was at the inflection point, shifting
from high-speed development to high-quality development [4]. Such a new era typically
accompanies intricate social structures and urbanization processes, the evolution of land
use and environmental issues, the widespread application of digitization and technological
advancements, shifting cultural and societal values, as well as adjustments in laws and
policies. The Chinese government unveiled the “Outline of the Yangtze River Economic
Belt Development” in October 2016, reflecting the region as possessing the greatest de-
velopmental potential within China [5]. A better understanding of the manifestation and
formation mechanism of new characteristics of land disputes in this new era is beneficial
for contemporary public governance and for achieving a high-quality development of the
YREB, whose GDP accounted for 46.3% of the national GDP in 2023.

The land issue is one of the most controversial issues [6], which has attracted consider-
able worldwide attention. The concept of land disputes was a subject of considerable debate
among scholars. Campbell et al. (2000) defined land disputes as conflicts that arise during
the process of land resource utilization [7]. Alston et al. (2000) described land disputes
as conflicts or property infringements occurring between farmers, the government, and
other stakeholders over land ownership and usage rights [8]. Wehrmann (2008) believed
that land dispute was a social fact involving at least two parties [9]. In fact, scholars have
not established a clear conceptual distinction between land disputes and land conflicts.
However, compared with land conflicts, which are often framed in socio-political terms,
land disputes are typically characterized by more legalistic language [10]. Although there
is no universally accepted definition of land disputes, the academic consensus is that they
fundamentally involve the contestation of land-related interests [11]. Current studies on
the characteristics of land disputes often involve theoretical discussions based on regional
investigations. For example, Kansanga et al. (2019) examined three case studies in the
Upper West Region of Ghana and found that customary land boundary conflicts between
communities were intensifying [12]. Mugizi and Matsumoto (2021) conducted household
surveys in post-war Northern Uganda and concluded that land conflicts negatively im-
pacted agricultural productivity [13]. Bekele et al. (2022) used cross-sectional household
surveys of 870 households in Ethiopia and discovered that land conflicts increased with
land investment [14]. Recently, the widespread application of quantitative modeling meth-
ods has inspired academic research on the spatiotemporal evolution of land disputes. For
instance, Lin et al. (2018) utilized exploratory spatial data analysis to reveal the spatiotem-
poral characteristics of land expropriation conflicts in China from 2006 to 2016 [15]. Tan
et al. (2021) employed descriptive statistics, a GIS spatial analysis, and Markov chains to
uncover the spatiotemporal evolution of land contract disputes in the YREB from 2016 to
2021 [16]. However, these studies typically summarized the characteristics of land disputes
through theoretical discussions or quantitative analyses of the number of land disputes,
neglecting the fact that land disputes are an abstract concept encompassing various at-
tributes such as quantity, claim amounts, and duration periods. It is difficult to establish a
comprehensive and objective overall understanding of the characteristics of land disputes
and their underlying dynamics from a single dimension measure.

Currently, quantitative modeling of social conflict risk has become a standard ap-
proach in social conflict research [17], e.g., the Global Conflict Risk Index [18], the Financial
Risk Culture Intensity Index [19], and the Internal Armed Conflict Risk Index [20]. These
studies provided valuable insights for the quantitative modeling of land disputes, but
few were devoted to constructing the quantity index for land disputes when considering
multi-dimensional factors and applying the index for further study. In this study, a total
of 325,105 land dispute cases in 11 provinces or municipalities of the YREB from 2012 to
2021 were collected and analyzed. The case numbers, claim amounts, and duration were
extracted from the case repository to construct an extensive and substantial database of
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land dispute cases. On this basis, an evaluation index system of the new characteristics of
land disputes, named the overall land dispute (OLD) index, was constructed according to
measurement theory by coupling the interactions of quantity, claim amounts, duration pe-
riods, and appeal rate of land disputes. Then, the OLD index was evaluated by descriptive
statistical methods, a GIS spatial analysis, a center of gravity model, kernel density estima-
tion, and Theil index methods to reveal the new characteristics and formation mechanisms
of land disputes in the YREB from 2012 to 2021. As an important branch of social conflict
and dispute studies, the novel research approaches and methodologies proposed in this
study on land dispute characteristics provide valuable reference paradigms and research
experiences for the investigation of other social conflicts and disputes.

2. Study Area, Data, and Methods

2.1. Study Area

The Yangtze River, renowned as the third longest river globally and the lengthiest
within China, holds historical significance as the cradle of Chinese civilization and is
often referred to as the “golden waterway”. The Yangtze River Economic Belt (YREB) is
located alongside the Yangtze River, covering nine provinces—Jiangsu, Zhejiang, Anhui,
Jiangxi, Hubei, Hunan, Sichuan, Yunnan, and Guizhou—and two cities—Shanghai and
Chongqing—as shown in Figure 1. The YREB spans approximately 2.05 million square
kilometers, constituting 21% of China’s territory [21]. In 2022, the YREB’s GDP surged
to CNY 56 trillion, contributing to 46.5% of the national economy, with a per capita GDP
exceeding the national average by CNY 7541, totaling CNY 93,239. Moreover, the YREB
is home to approximately 599 million inhabitants, representing 42.9% of China’s total
population [22].

Figure 1. Cont.
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Figure 1. Study area.

In recent years, China has promulgated a series of policy directives to propel the
development of the YREB, including the “Guiding Opinions on Leveraging the Golden
Waterway to Promote the Development of the Yangtze River Economic Belt” (2014) and the
“Outline of the Development Plan for the Yangtze River Economic Belt” (2016). As part of
China’s new wave of reform and opening up, coupled with the high-quality development
strategies, the YREB has been treated as a pivotal area for national strategic development.
Nevertheless, with the rapid economic growth in the accelerated urbanization process, the
prominence of land disputes has arisen with the appreciating land values. Thus, a better
understanding of the manifestation and formation mechanism of new characteristics of land
disputes is beneficial for contemporary public governance and for achieving high-quality
development of the YREB.

2.2. Data

The land dispute case dataset utilized in this paper was obtained from China Judgment
Online (https://wenshu.court.gov.cn, accessed on 1 March 2023). The data acquisition
process involved keyword searches for essential case documents using terms such as “land
dispute”, “land contract management”, “land contract agreement”, “land transfer”, “land
expropriation”, and “distribution of land expropriation compensation”. Subsequently,
regular expressions were employed to parse and extract requisite information for the study,
including case causes, trial periods, judicial reasoning, and verdicts. This paper adopted
the provincial level within the Yangtze River Economic Belt (YREB) as its research scale,
encompassing a total of 11 provinces or municipalities. The temporal scope was restricted
to the years 2012 to 2021, resulting in the accumulation of 325,105 land dispute cases.

The socio-economic data utilized in this paper of formation mechanisms were sourced
from a variety of official statistical publications, including the China Rural Operation and
Management Statistical Yearbook (2012–2018), China Rural Policy Reform Statistical Yearbook
(2019–2021), China Statistical Yearbook (2013–2022), China Environmental Statistical Yearbook
(2013–2022), China Natural Resources Statistical Yearbook (2013–2022), China Population and
Employment Statistical Yearbook (2013–2022), China Urban Statistical Yearbook (2013–2022),
China Urban Construction Statistical Yearbook (2013–2022), and China Science and Technology
Statistical Yearbook (2013–2022). Additionally, data from the official statistical yearbooks
of the 11 provinces (or cities) within the Yangtze River Economic Belt (YREB), as well as
publicly available data from the judicial department websites of the corresponding years,
were incorporated. Due to discrepancies in statistical methodologies and data availability,
obtaining complete datasets for certain provinces and municipalities posed challenges. In
such instances, interpolation methods were employed to address missing data points.
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2.3. Methods
2.3.1. Calculation of the Land Dispute Index

To evaluate the new characteristics of land disputes in the YREB comprehensively and
quantitively, this paper utilizes the comprehensive index method to establish a new charac-
teristic evaluation index system based on the textual information from the constructed land
dispute case database and the current status of the YREB [23]. Four indicators, including
the land dispute quantity, claim amounts, duration, and appeal rate, are coupled for the
calculation of the land dispute index as follows:

LDLij =
∫ (

LDCij, LDMij, LDTij, LDRij
)

(1)

where LDLij represents the land dispute index for province (or city) j in year i. LDCij,
LDMij, LDTij, and LDRij denote the quantity and claim amounts, duration, and plaintiff’s
appeal rate in province (or city) j in year i, respectively.

As the quantity of land disputes, claim amounts, duration, and appeal rate increase,
the magnitude of land disputes also grows. Following the principle of multiplying similar
factors and adding dissimilar ones, this study defines the expression for the land dispute
index as:

LDLij = λ ∗ α ln LDCij ∗ β ln LDMij ∗ γLDTij ∗ δLDRij (2)

where α, β, γ, and δ represent the weights of the quantity, claim amounts, duration,
and plaintiff’s appeal rate, respectively. Adopting the analytic hierarchy process (AHP)
method [24], the weights of the aforementioned four indicators are calculated as 50.54%,
39.29%, 4.35%, and 5.82%, respectively. λ serves as the standardized adjustment coefficient.
The variable LDLij ranges between 0 and 1.

This paper calculated the land dispute index of various provinces (or cities) in the
YREB from 2012 to 2021 based on Equation (2). Subsequently, the spatiotemporal evolution
of the land dispute index was calculated for analyzing the new characteristics of land
disputes in the YREB.

2.3.2. The Center of Gravity Model

The center of gravity model was employed for the examination of the spatial move-
ment and evolutionary processes of the specific elements within a defined geographical
area [25]. This paper employed ArcGIS10.2 software to achieve a spatial visualization
and quantitative analysis of the evolution patterns of land dispute centroids in the YREB.
Assuming each province (or city) within the YREB constitutes a uniformly textured plane,
geographic positions of provinces (or cities) were represented by latitude and longitude.
Utilizing the center of gravity model, the centroids of land dispute indices for various
provinces (or cities) within the YREB were computed over the years, thereby deriving
the spatiotemporal evolution of land dispute centroids. The center of gravity model is
calculated by:

Xt = ∑ Ptixi/ ∑ Pti (3)

Yt = ∑ Ptiyi/ ∑ Pti (4)

where Xt and Yt represent the longitude and latitude coordinates, respectively, of the
centroid of land disputes in the tth year; Pti denotes the land dispute index of province (or
city) i. xi and yi denote the longitude and latitude coordinates of the geometric center of
province (or city) i, respectively.

2.3.3. Kernel Density Estimation

Kernel density estimation (KDE) is a non-parametric method used for estimating
probability density curves, and it is capable of describing the distributional shape of
random variables with continuous density curves [26]. It is widely employed in studying
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the dynamic evolution characteristics of sample data [27,28]. The equation of the kernel
density function for the land dispute index is:

f (x) =
1

Nh ∑N
i=1 K

(
Xi − x

h

)
(5)

where f (x) represents the density function of the land dispute index. x denotes the mean
and N represents the number of observations; Xi signifies independently and identically
distributed observations; K(·) stands for the kernel function, and h denotes the band-
width. Additionally, the kernel function must satisfy conditions lim

x→∞
K(x)·x = 0, K(x) ≥ 0,∫ +∞

−∞ K(x)dx = 1, K(x) < +∞. The Gaussian kernel function, adopting a random variable
x following a normal distribution, was employed in this study. The expression for the
Gaussian kernel function is:

K(x) =
1√
2π

exp
(
− x2

2

)
(6)

In this paper, the regional disparities in land disputes in the YREB was evaluated based
on the distribution analysis of the kernel density curve of the land dispute index. Within
the overall shape of the variable distribution, the height and width of peaks indicate the
magnitude of disparities, while the number of peaks reflects polarization phenomena [29].

2.3.4. Theil Index

The Theil index, proposed by the economist Theil in the 1960s, is an important metric
for measuring income disparities among individuals or regions [30]. It is widely used in
various fields, such as land use efficiency or the distribution of social resources [31,32]. This
paper calculated the Theil index for economic development, rural governance level, and
land dispute index by

T =
1
n

n

∑
q=1

(
Sq

S
× ln

Sq

S

)
(7)

where T represents the overall Theil index for the economic development level, rural
governance level, and land dispute index within the YREB, T ∈ [0, 1]. A higher value
of T indicates greater overall disparity, while a lower value suggests lesser disparity. Sq

denotes the specific values of these indicators for each province or municipality, S signifies
the average value of these indicators, and n represents the number of provinces (or cities)
within the YREB.

3. Results

3.1. Spatiotemporal Evolution of the Land Dispute Index
3.1.1. Temporal Evolution

The overall land dispute (OLD) was classified into three categories in this study,
including disputes of requisited land remuneration (DRLR), disputes of land ownership
(DLO), and disputes of land contract (DLC) [11]. The temporal evolution of the land dispute
index (LDI) for the YREB from 2012 to 2021 is presented in Figure 2, including the indicators
of the overall land dispute and the categorical indicators of DRLR, DLO, and DLC. The
results indicated that the OLD index of the YREB increased from 0.198 in 2012 to 0.590
in 2018, which was also the peak value during the research period, and then decreased
to 0.510 at the end of 2021. The value of the OLD index increased by 2.58 times, which
increased from 2012 to 2018 at the beginning and then decreased from 2018 to 2021. The
polynomial relationship model for the OLD index was fitted as follows:

y = −0.011x2 + 0.151x + 0.055 (8)
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where y is the OLD index and x refers to the year. The R2 of the fitted equation is 0.992,
showing a reliable matching. It is worth noting that although the OLD index has begun to
decline in the new era; its absolute value was still above 0.510 and remained relatively high.

Figure 2. The indices of OLD, DRLR, DLO, and DLC in the Yangtze River Economic Belt from 2012
to 2021.

Specifically, the DRLR index fluctuated upward from 0.090 in 2012 to 0.311 in 2018
and then downward to 0.233 in 2021; the DLO index increased from 0.105 in 2012 to 0.412
in 2018 and then decreased to 0.235 in 2021; the DLC index increased from 0.152 in 2012 to
0.519 in 2018 and then decreased to 0.403 in 2021. The index value of DLCs was the largest,
followed by that of DRLR and DLO, all of which show the same tendency as the OLD index
from 2012 to 2021. However, it should be noted that the conflicts caused by the DLCs were
more serious and, which suggests that they require more attention.

3.1.2. Spatial Evolution

The focus of the OLD index in the YREB from 2012 to 2021 was evaluated by a center
of gravity approach and illustrated on the provincial (city) map, as shown in Figure 3.
And the focus evolution of longitude and latitude was presented in Figure 4. The results
indicated that the focus of the OLD index in the YREB moved from Jiangxia district, Wuhan,
Hubei Province, in 2012 to Gong’an County, Jingzhou, Hubei Province, China, in 2016. The
moving trajectory covered a distance of 167.4 km along the southwest direction during this
period, and the largest moving distance per year occurred in 2013–2014. From 2016 to 2018,
the focus of the OLD index in the YREB moved from Gong’an County, Jingzhou, Hubei
Province, to Linli County, Changde, Hunan Province. Since then, the focus of the OLD
index in the YREB moved back to Gong’an County, Jingzhou, Hubei Province, China. The
moving trajectory covered a distance of 24.18 km along the northwest direction initially and
then the southwest direction during this period. The moving trajectory initially covered a
distance of 41.63 km along the northeast direction and then the southeast direction during
this period. Generally speaking, during the period from 2012 to 2021, the focus of the OLD
index in the YREB moved westward significantly with a slightly southward tendency.
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Figure 3. The migration trajectory of the focus of the OLD index in the Yangtze River Economic Belt
from 2012 to 2021.

Figure 4. Details of the migration trajectory of the focal point of land disputes in the Yangtze River
Economic Belt from 2012 to 2021.

The kernel density estimation of the OLD index in the YREB from 2012 to 2021 was
calculated and presented in Figure 5. The center of the kernel density distribution moved
to the right over time during 2012–2018, and then to the left during 2018–2021, indicating
that the OLD index initially increased and then decreased during the research period.
Overall, the peak value of the kernel density estimation showed a fluctuating upward
tendency, which rapidly increased during 2012–2018 and gradually decreased during
2018–2021, rebounding during 2020–2021. The fluctuating tendency indicated that the
regional disparity of the OLD index initially decreased, then increased, and then decreased
again. In addition, only one peak was presented in the curve of the kernel density estimation
in the early stage of the research period, but there were two peaks, including one main
peak and one secondary peak, after 2017. During the research period, there was an unclear
polarization phenomenon in land disputes within the YREB. Generally speaking, during the
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period from 2012 to 2021, there was an unclear polarization phenomenon in land disputes
within the YREB, but regional disparities have been generally decreased.

Figure 5. Kernel density estimation of the OLD index in the YREB from 2012 to 2021.

3.2. Analysis of New Characteristics and Formation Mechanisms
3.2.1. Land Disputes Have Been Alleviated

For a long time, land disputes have shown an increasing trend in terms of quantity,
scale, and degree, exerting increasingly significant impacts on social and political stabil-
ity [33], which were prone to incite collective events, posing as the foremost challenge to
rural social stability and development [34]. However, the temporal evolution analysis on
the spatiotemporal evolution of the land dispute index of the YREB showed a significant
decline in the land dispute index in the new era. The results could be concluded as a new
characteristic that the land disputes have been alleviated in the new era. The formation
of this new characteristic is attributed to the coupled effects of the continuous optimiza-
tion of land utilization structure, gradual improvement of land utilization systems, and
ongoing enhancement of public legal awareness in the transition of the YREB towards
high-quality development.

(1) The optimization of land utilization structure has led to the alleviation of conflicts
arising from land disputes. The stakeholder theory posited that the fundamental reason
of conflicts lays in the divergent interests of various parties and the local government’s
need to balance the needs of all stakeholders through rational resource allocation and
management [35]. The strategically planned land use and optimizing land utilization
structure were beneficial for balancing the land utilization needs of all stakeholders, includ-
ing local governments, residents, developers, farmers, and so on [36], thereby reducing
potential risks of land disputes. In the new era, various local governments of the YREB
continuously optimized the land structure within administrative boundaries through new
policy implementation including, adjusting land use planning, activating idle land, and ad-
dressing land pollution. For example, the Government of Zaoyang City in Hubei Province
issued the “Management Measures for the Change of Use of State-Owned Construction
Land in Zaoyang City”; the Natural Resources and Planning Bureau of Huai’an City in
Jiangsu Province exceeded its targets for revitalizing and disposing of idle land, and fifteen
departments in Mianyang City, Sichuan Province, jointly released the “14th Five-Year Plan
for Soil Pollution Prevention and Control in Mianyang City” [37]. According to the index
system proposed by Zhu et al. (2021) [38], the average efficiency of land utilization structure
in the YREB during the period of 2018–2021, when the land dispute index declined, is
calculated and presented in Figure 6. It was evident that the average efficiency values of
land utilization structure in the YREB increased with time and was negatively correlated
with the OLD index. The results indicated that the land utilization structure in the YREB
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was becoming more reasonable and the land use demands of various industries were better
balanced, thereby alleviating land disputes.

Figure 6. Land use structure efficiency and OLD index in the YREB from 2018 to 2021.

(2) The improvement of land utilization systems led to the alleviation of land disputes.
According to institutional change theory, institutional change begins with society’s per-
ception of problems. When existing institutional frameworks fail to effectively address
or adapt to new social issues, the reduction of social conflicts can be achieved through
adjustments and improvements to the institutions [39]. The continuous adaptation of land
utilization systems to the changes in social economy, technology, and culture can effectively
advance the smooth operation of the land market and thereby lead to the alleviation of
land disputes. Previous studies have pointed out that the deficiencies in land regulations,
e.g., the deficiencies in the land acquisition system, the ambiguity in agricultural land own-
ership, the incomplete contracting rights of agricultural land, the ambiguous delineation of
collective member entitlements, the deficiencies in land conflict mediation systems, etc.,
were important causes of land disputes in the past [40]. After entering the new era, the uti-
lization system in China was improved continuously, including establishing the separation
system of ownership, contracting rights, and management rights for rural land; extending
the second round of land contracting for another thirty years upon expiration; promot-
ing the market entry of collectively owned commercial construction land and reforming
the homestead system; improving the rural land property rights transfer and transaction
system; and so on [41]. Furthermore, the percentage of villages in the YREB that have
completed property rights system reforms was adopted in this study as a measuring index
of perfection in land utilization systems, which is calculated and presented in Figure 7. The
perfection of land utilization systems in the YREB has been significantly improved, with an
increase of 187.7% over the four-year period, while the land dispute index was continuously
decreased by about 13.50%. The results indicate that as the land utilization systems in the
YREB was improved contentiously, more flexible, fair, and sustainable solutions to land
utilization have been achieved, thereby alleviating land disputes in the YREB.

(3) Enhancing public legal awareness facilitated the alleviation of land disputes. The
legal sociology theory by Max Weber posited that enhancing public legal awareness allowed
individuals to a deeper understanding that the law was not merely a transcendent set of
rules but rather a product of collective social organization. This awareness was helpful
for understanding the legitimacy and authority of law, thereby urging them to abide by
regulations and restrain their own unlawful behaviors [42]. In land utilization activities, en-
hancing public legal awareness could assist individuals in better understanding the societal
background and purposes of the land regulations, which could strengthen the normative
cognition of lawful land utilization activities, thus alleviating land disputes. Inspired by the
new era’s rural revitalization strategy, various local governments in the YREB were eager
to enhance farmers’ legal awareness. For instance, in Pengxi County, Sichuan Province,
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the “Rule of Law Services for Rural Revitalization” tour has been launched to provide a
common show on a popularization performance with vivid and simple language. Addi-
tionally, six departments in Yunnan Province jointly formulated the “Three-Year Action
Plan for Legal Propaganda and Education to Support Rural Revitalization”, providing
legal guarantees for rural revitalization. Meanwhile, the Department of Agriculture and
Rural Affairs of Jiangxi Province has launched the “Rural Revitalization, Legal Primacy”
for popularizing law, which ignited the public enthusiasm of legal learning throughout the
province’s rural areas. According to Silbey (2005) [43], the number of practicing lawyers
was adopted as the index of public legal awareness and was calculated. As shown in
Figure 8, the public legal awareness in the YREB increased with time in 2018–2021, show-
ing a negative correlation with the OLD index. The results indicated that as public legal
awareness improved, the land utilization activities of the farmers were further regulated,
which significantly alleviated land disputes.

Figure 7. Land use system perfection and OLD index in the YREB from 2018 to 2021.

Figure 8. The public legal awareness and OLD index in the YREB from 2018 to 2021.

3.2.2. The Capacity for Resolving Land Disputes Has Been Enhanced

The temporal evolution of the land dispute index from 2012 to 2021 in Section 3.1.1
showed a significant decline during the new era, which could be concluded as the gov-
ernmental capacity for resolving land disputes having been enhanced. The reason for
this new characteristic in the new era lay in the continuous refinement of governmental
operation, the gradual application of digital technologies into governance practices, and
the enhancement of governmental regulatory standards.

(1) Strengthening institutional development enhanced the capacity for resolving land
disputes. The new institutionalism theory holds that institutions play a normative role.
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Through the reinforcement of institutional development, governments could improve their
internal structures and operations to enhance governance efficacy and better fulfill their
responsibilities [44]. In the operation of the land market, the governments could establish
clearer and more comprehensive rules and procedures for dispute resolution in order to
resolve or prevent land disputes by diversified approaches. It was helpful in the prompt
and accurate coordination among relevant departments in resolving land disputes [45],
resulting in the promotion of the governmental efficiency of land affairs governance and
facilitating the fulfillment of its responsibilities in social governance. Entering the new era,
General Secretary Xi Jinping has repeatedly emphasized the importance of adhering to
and developing the “Fengqiao Experience”, providing guidance for the construction of the
diversified prevention and resolution mechanism for land disputes for local governments
in the YREB. This study adopted the number of arbitration committee members as the
intensity measure of the dispute resolution institutional development, according to Tan
and Zou (2022) [46]. As shown in Figure 9, the overall intensity of dispute resolution
institutional development among provinces (or cities) in the YREB exhibited an upward
trend. The results indicate that with the enhancement of the dispute resolution institu-
tional development in the YREB, as well as the diversified mechanisms for the prevention
and resolution of land dispute, the government’s capacity for resolving land disputes
was enhanced.

 

Figure 9. The intensity of dispute resolution institutional development and OLD index in the YREB
from 2018 to 2021.

(2) Utilizing digital technology enhanced land dispute resolution capability. The theory
of new public services posited that public service providers were supposed to continuously
enhance the quality and efficiency of services using new technologies. The application of
digital technology was believed to offer a more intelligent, efficient, and service-oriented
governance approach, which contributed to the improvement of public service capabil-
ities [43]. In contemporary society, governments serve as public service providers. By
integrating digital technologies such as artificial intelligence and big data analytics into
land management, governments could not only facilitate the efficient management and
sharing of land information [47] but also provide intelligent decision support systems for
resolving land disputes [48], which prompted the governmental capacities in land dispute
resolution. Entering the new era, General Secretary Xi Jinping proposed that “We must
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utilize big data to enhance the modernization of national governance, and establish sound
operations for big data-assisted scientific decision-making and social governance”. Various
local governments in the YREB have acted on the national call. For instance, Xiaoshan Dis-
trict in Zhejiang Province has implemented a new digitalized grassroots social governance
model. The Shanghai courts have embedded “digital court” applications into case handling
systems to provide decision-making references for judicial trials. Additionally, Xuzhou
in Jiangsu Province has embraced a new model of social governance, combining big data
analytics and artificial intelligence applications. This paper adopted the annual counts of
patent applications in high-tech industries as a metric for measuring the innovative output
of digital technology. As in Figure 10, there was a significant increase in the innovation
output of digital technology in the YREB during the periods when the land dispute index
declined. The results indicated that the application of digital technology was beneficial in
resolving conflicts and disputes, with land disputes serving as a representative example.

Figure 10. The innovation output of digital technology and OLD index in the YREB from 2018 to 2021.

(3) Strengthening government oversight enhanced the land dispute resolution capa-
bility. According to the theory of agency, agents might not always act in accordance with
the rule of maximizing the principal’s interests, which require government oversight or
incentive operations to address agency problems [49]. In the governance of land disputes
specifically, agents (the government) might not fully fulfill the expectations of the princi-
pal (the public) due to their own interests. In this case, government oversight could be
considered an effective supervisory mechanism, which enables the public to effectively
access, assess, and rectify the information asymmetries in government behaviors [50]. This
was helpful in enhancing the government’s capability to resolve land disputes. Entering
the new era, local governments in the YREB were continuously strengthening government
oversight and vigorously combating land-related illegal activities in order to promote the
modernization of the land dispute governance system and governance capabilities. In this
study, the annual quantity of land violation disposals was used as a measure of the intensity
of government oversight. As in Figure 11, the intensity of the government oversight in
land management in the YREB was continuously strengthened during the periods when
the land dispute index declined, resulting in a significant enhancement in land dispute
resolution capability.
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Figure 11. The intensity of government oversight and OLD index in the YREB from 2018 to 2021.

3.2.3. The Focus of Land Disputes Moved to the West in the YREB

Previous studies indicated that the land disputes were severe in the developed coastal
areas in the east during periods of rapid economic development in China [51]. However,
the spatial analysis of land dispute index in the YREB from 2012 to 2021 highlighted a new
characteristic of land disputes where the focus of land disputes in the YREB moved to the
west. This new characteristic was attributed to the influence of national policies supporting
the upstream regions of the YREB. These regions were entrusted with more significant tasks
related to land ecological protection as the economic developed rapidly, which resulted in
more conflicts when compromising the balance between economic development and land
ecological conservation compared with other regions.

(1) Urgent requirements for the increased demand for land led to the focus of land
disputes towards the west. According to the theory of supply and demand, land was one
of the factors of production under market economy conditions, which was influenced by
supply and demand dynamics [52]. When the increasing demand for land resources in
the market exceeded its supply, land prices increased and competition for land and its
associated benefits intensified accordingly [53]. In the new era, the center of the regional
development in the YREB exhibited accelerated westward migration characteristics [54].
Economic development served as the primary driver of urban expansion. Local govern-
ments in the upstream regions of the YREB were eager to promote urban expansion to
accelerate regional economic development. In this study, the annual area of the requisi-
tioned collective land was used as a metric for land demand. As in Figure 12, the focus
of the land demand in the YREB showed a trajectory of “northeast-southwest-northeast-
southwest”. Overall, there was a westward trend, consistent with the OLD index. The
results indicate that as urban expansion accelerated in the upstream regions of the YREB,
the focus of land demand moved westward, leading to an increase in land disputes and a
westward shift in the focus of land disputes.

(2) Urgent requirements for land ecological protection caused the focus and disputes
to move to the west. Spatial conflict theory suggested that spatial conflicts arise from the
opposition and competition among stakeholders for resources (assets) [55] or from the
overlapping of spatial utilization in an irrational manner [56]. The limited land space
and the increasing diverse land demands led to conflicts. In the new era, General Secre-
tary Xi Jinping emphasized the development principle of the YREB as “pursuing green
development and rejecting large-scale unsustainable development”. Located in Western
China, the upstream area of the YREB serves as a crucial ecological barrier zone for the
Yangtze River basin and even the whole nation, where the restricted ecological area by the
government is 804.3 km2, accounting for 67.7% of the total restricted ecological area of the
YREB [57]. While promoting economic development, local governments in the upstream
YREB have also strengthened the protection and restoration of land resources. In this study,
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the annual area of forestland converted from cropland in 2012–2021 was treated as a metric
to measure the intensity of land ecological protection, and that of the upstream, midstream,
and downstream areas of the YREB is calculated and presented in Figure 13. The intensity
of land ecological protection in the upstream area of the YREB has consistently remained
the highest in 2012–2020 with an average of 80%, followed by the midstream area at 18%
and the downstream area at 1%. Consequently, with the implementation of measures such
as restricting land use, restoring polluted land, and converting cropland to forest, more
land space was required for land ecological protection, resulting in land utilization conflicts
and a tendency of the focus of land disputes to move westward.

Figure 12. The migration trajectory of the focus of land demand in the Yangtze River Economic Belt
from 2012 to 2021.

Figure 13. The land ecological protection intensity and its proportion in the upstream, midstream,
and downstream regions of the YREB from 2012 to 2021.
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3.2.4. Regional Disparities in Land Disputes Have Declined

According to research conducted by the groups at the Chinese Academy of Agricul-
tural Sciences, the land dispute occurrence rates across different regions in China have
shown significant disparities since 2005 [58]. However, the spatial evolution analysis of
the OLD index in the YREB revealed a new characteristic: the regional disparity in land
disputes has declined. This new characteristic was attributed to the regional disparity of
both land disputes and the governance level being decreased as a result of reduced regional
disparities in economic development and inputs into rural governance in the accelerated
pace of integrated development in the YREB in the new era.

(1) The decline in the regional disparity of the economic development led to a decrease
in the regional disparity of land disputes. The theory of growth poles posits that as the initial
growth pole regions developed, their diffusion effects in economic activities, including
technology diffusion, talent migration, and the expansion of industrial chains, would
reduce regional development disparities [59]. Many research studies have revealed the
significant correlation between economic growth and land disputes [60,61]. As economic
activities in growth pole regions spread, the reduction in regional development disparities
also led to a decrease in regional disparities in land disputes and their spread. A previous
study indicated that the disparities in high-quality economic development in the YREB have
been continuously diminishing and the imbalances within urban agglomerations gradually
decreased, and the disparities in the development capabilities among cities decreased
as well [62]. In this study, the per capita GDP was employed as a measure of economic
development level, while its Theil index calculation was used for the measure of the internal
economic development disparities within the YREB, both of which showed a declining
trend from 2012 to 2021, as in Figure 14. The Theil index of the YREB decreased from 0.119
in 2012 to 0.075 in 2021. The results indicated that the internal economic development
disparities within the YREB decreased consistently, aligning with the trend observed in
the Theil index of OLD index. Thus, the decline in the regional disparity of the economic
development led to a decrease in the regional disparity of land disputes.

Figure 14. The Theil index of economic development level and land disputes within the YREB from
2012 to 2021.

(2) The decline in the regional disparity of the rural governance level led to a decrease
in the regional disparity of land disputes. The theory of public governance suggests that
improving the government public services could promote the governance capacity and
reduce the uncertainty and probability of conflicts [63]. Previous studies have stated
that the modernization level of rural governance in East China was higher than that in
West China. However, the regional disparities in governance level have been gradually
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diminishing [64], which consequently led to a reduction in the regional disparity of land
conflicts. In the new era, local governments in the YREB are continuously enhancing
governance capacity, especially rural governance capacity. This study adopted the success
rate of dispute mediation in the rural governance capacity evaluation index, proposed by
Gao et al. (2024) [65], as a quantitative indicator of the rural governance level. The Theil
index of the rural governance level within the YREB from 2012 to 2021 is calculated and
shown in Figure 15, as well as the Theil index of land disputes. The Theil index of rural
governance level within the YREB decreased from 0.212 in 2012 to 0.076 in 2021, showing a
downward trend on the whole, which was consistent with the trend in the Theil index of
the OLD index. Thus, the decline in the regional disparity of the rural governance level led
to a decrease in the regional disparity of land disputes.

Figure 15. The Theil index of the rural governance level and land disputes in the YREB from 2012
to 2021.

4. Discussion

This study aims to provide a tool for characterizing and analyzing land disputes in the
YREB in China, which is beneficial for contemporary public governance and for achieving
a high-quality development of the YREB. Some meaningful and new achievements have
been acquired. For example, this study found that the number of land acquisition conflicts
in the YREB first increased and then decreased over time, which was similar to the result
in previous studies [15,46]. Meanwhile, a previous study also revealed that the number
of land disputes in western regions surpassed that in eastern regions [16], which also
corroborated the observation that the focus of land disputes has shifted westward in this
study, as evidenced in our research from one aspect. However, this study also indicated that
these disparities declined over time, although there were significant regional disparities
in current land disputes. This positive progress indicated an overall improvement in land
disputes in the YREB. Furthermore, an evaluation index system of the new characteristics
of land disputes, named the overall land dispute (OLD) index, was constructed according
to measurement theory by coupling the interactions of quantity, claim amounts, duration
periods, and the appeal rate of land disputes. The OLD index was evaluated by descriptive
statistical methods, a GIS spatial analysis, a center of gravity model, kernel density estima-
tion, and Theil index methods. Then, the new characteristics of the land disputes in the
YREB were acquired through quantitative analysis.

Faced with land disputes accompanying economic growth in the new era, government
intervention played an important role in land dispute resolution [66]. A set of land dispute
resolution mechanisms including legislation, propaganda, negotiations, mediation, litiga-
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tion, arbitration, administrative reconsideration, and petitions have been established [44,45].
These mechanisms have led to the emergence of new characteristics in the YREB, such as
the alleviation of land disputes and the enhancement of dispute resolution capabilities,
indicating that the overall situation regarding land disputes in the YREB shows improve-
ment. However, due to the increasing cross-border, interconnected, and complex nature of
land dispute issues [67], the absolute level of land disputes in the YREB remains relatively
high, and the focus of land disputes has shifted westward. Thus, some policy implications
are recommended in the prevention and resolution of land disputes, as follows:

(1) The land disputes remain at a high level in both complexity and quantity, which
requires the government to construct a multi-level and multi-faceted dispute resolution
mechanism, not just solve cases using the judicial system. Considering that the judicial
system was overwhelmed by a high volume of cases and small-scale disputes [68], the
optimized dispute resolution system should offer multiple remedies for the parties, fully
utilize various dispute resolution methods, and strive to resolve disputes quickly and
properly.

(2) The government should pay attention to the shifting focus of land disputes towards
the west in recent years. The western region of the YREB was at a relatively low economic
development level, where the government heavily relied on land-based fiscal income due
to a lack of diversified revenue sources, and it had also been assigned a crucial role in
national ecological protection [69]. The local governments are suggested to vigorously
support the development of innovative economies in this region and reduce reliance on
land finance. At the same time, the land protection and governance should be strengthened
to promote the sustainable development of land resources and reduce the possibility of
potential land disputes as well.

(3) Currently, as a positive tendency, the regional disparities in land disputes are
declining. The establishment of a unified information sharing platform is essential for
further decreasing the regional disparities [70]. In this case, the platform not only enables
the effective sharing of resources relevant to land dispute governance but also facilitates
the expeditious resolution of inter-provincial and inter-municipal land dispute cases. It is
instrumental in proactively preventing and mitigating the adverse consequences that may
arise from land disputes.

(4) The overall capacity for resolving land disputes has been constantly improved.
Nowadays, artificial intelligence and big data provide new tools for local governments in
the YREB to monitor and manage the land dispute information [71]. It would facilitate
the integration and management of collected land dispute information, enabling real-time
updates and queries. And the assisted decision-making system using AI and big data
would be recommended for highlighting and solving the higher levels of dispute and
prominent issues noted by public feedback.

It should be noted that more details, such as the number of individuals involved in the
disputes, the area of disputed land, whether legal representation was sought, or whether
the disputes constituted collective events, were difficult to extract from court judgments,
which were omitted by the current technologies. Furthermore, future research should
focus on enhancing the evaluation system of land disputes comprehensively by coupling
augmented discussions on relevant land dispute cases in representative regions.

5. Conclusions

A better understanding of the manifestation and formation mechanism of new charac-
teristics of land disputes is beneficial for contemporary public governance and for achiev-
ing a high-quality development of the YREB. A total of 325,105 land dispute cases in
11 provinces or municipalities of the YREB from 2012 to 2021 were collected and analyzed.
On this basis, an evaluation index system of the new characteristics of land disputes, named
the overall land dispute (OLD) index, was constructed according to measurement theory by
coupling the interactions of quantity, claim amounts, duration periods, and the appeal rate
of land disputes. Then, the OLD index was evaluated by descriptive statistical methods, a
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GIS spatial analysis, a center of gravity model, a kernel density estimation, and Theil index
methods, to reveal the new characteristics and formation mechanisms of land disputes in
the YREB from 2012 to 2021. The main conclusions of this study are as follows:

(1) Land disputes have been alleviated, as evidenced by the trends of the OLD, DRLR,
DLO, and DLC indices, all of which initially increased but have subsequently declined in the
new era. However, the OLD index remained above 0.510, indicating a relatively high level,
with conflicts stemming from DLCs appearing to be more severe compared with other types
of disputes. The alleviation of land disputes in the YREB could be attributed to the collective
effects of the region transitioning into a phase of high-quality development, characterized
by the continuous optimization of land utilization structure, gradual improvement of land
utilization systems, and the ongoing enhancement of public legal awareness.

(2) The capacity for resolving land disputes has been enhanced. The OLD index
exhibited a significant decline, decreasing from 0.59 in 2018 to 0.51 in 2021, reflecting a
notable promotion in the government’s land dispute resolution capabilities. This promotion
was attributed to the continuous improvement of governmental working mechanisms, the
gradual integration of digital technologies into governance, and the steady enhancement of
governmental regulatory standards.

(3) The focus of land disputes moved to the west in the YREB. Based on the analysis
of the spatial evolution of the OLD index from 2012 to 2021, the focus of the index in
the YREB exhibited a significant westward shift along with a slight southward tendency.
Urgent requirements for land ecological protection led to more severe conflicts between
economic development and land ecological preservation compared with other regions due
to the national policy support for the upstream regions of the YREB.

(4) Regional disparities in land disputes have declined. According to the kernel
density estimation of the OLD index, the overall rise in the peak of the kernel density curve
indicated the new characteristic of reduced regional disparities in land disputes within the
YREB. This characteristic was attributed to the reduction in regional disparities in both
land disputes and governance levels. The reduction was a result of the decreased regional
disparities in economic development and investments in rural governance, driven by the
accelerated pace of integrated development in the YREB in the new era.

Author Contributions: Conceptualization, S.Z. and S.T.; methodology, Y.Z.; validation, S.Z. and S.T.;
formal analysis, S.Z.; investigation, Q.H.; resources, M.Z.; data curation, S.Z.; writing—original draft
preparation, S.Z.; writing—review and editing, S.T.; visualization, S.Z.; supervision, S.T.; project
administration, S.T.; funding acquisition, S.T.; All authors have read and agreed to the published
version of the manuscript.

Funding: This research was funded by the National Social Science Fund of China (Grant Number
20BZZ099).

Data Availability Statement: The original contributions presented in the study are included in the
article, further inquiries can be directed to the corresponding author.

Conflicts of Interest: The authors declare no conflicts of interest.

References

1. Gong, X. Non-traditional security cooperation between China and south-east Asia: Implications for Indo-Pacific geopolitics. Int.
Aff. 2020, 96, 29–48. [CrossRef]

2. Rose, L. The Politics of Harmony: Land Dispute Strategies in Swaziland; Cambridge University Press: Cambridge, UK, 1992.
3. Yang, S.; Wen, T. The Economic Fluctuations, the Change in Taxation Institution, and the Capitalization of Land Resources: A

Case Study on the Problems with “The Three Times of Enclosing Land” since China’s Reform. Manag. World 2010, 4, 32–41+187.
4. Pan, W.; Wang, J.; Lu, Z.; Liu, Y.; Li, Y. High-quality development in China: Measurement system, spatial pattern, and

improvement paths. Habitat Int. 2021, 118, 102458. [CrossRef]
5. Sun, C.; Chen, L.; Tian, Y. Study on the urban state carrying capacity for unbalanced sustainable development regions: Evidence

from the Yangtze River Economic Belt. Ecol. Indic. 2018, 89, 150–158. [CrossRef]
6. Platteau, J. The evolutionary theory of land rights as applied to sub-Saharan Africa: A critical assessment. Dev. Change 1996, 27,

29–86. [CrossRef]

190



Land 2024, 13, 1002

7. Campbell, D.; Gichohi, H.; Mwangi, A.; Chege, L. Land use conflict in Kajiado district, Kenya. Land Use Policy 2000, 17, 337–348.
[CrossRef]

8. Alston, L.; Libecap, G.; Mueller, B. Land reform policies, the sources of violent conflict, and implications for deforestation in the
Brazilian Amazon. J. Environ. Econ. Manag. 2000, 39, 162–188. [CrossRef]

9. Wehrmann, B. Land Conflicts: A Practical Guide to Dealing with Land Disputes; GTZ: Eschborn, Germany, 2008.
10. Zhao, X. Power and Justice: Dispute Resolution and Pluralistic Authority in Rural Society; Tianjin Ancient Books Publishing House:

Tianjin, China, 2003.
11. Zhou, Y. Types, causes and solutions of rural land disputes. Academics 2008, 1, 171–176.
12. Kansanga, M.; Arku, G.; Luginaah, I. Powers of exclusion and counter-exclusion: The political ecology of ethno-territorial

customary land boundary conflicts in Ghana. Land Use Policy 2019, 86, 12–22. [CrossRef]
13. Mugizi, F.M.; Matsumoto, T. From conflict to conflicts: War-induced displacement, land conflicts, and agricultural productivity in

post-war Northern Uganda. Land Use Policy 2021, 101, 105149. [CrossRef]
14. Bekele, A.E.; Drabik, D.; Dries, L.; Heijman, W. Large-scale land investments and land-use conflicts in the agro-pastoral areas of

Ethiopia. Land Use Policy 2022, 119, 106166. [CrossRef]
15. Lin, Q.; Tan, S.; Zhang, L.; Wang, S.; Wei, C.; Li, Y. Conflicts of land expropriation in China during 2006–2016: An overview and

its spatio-temporal characteristics. Land Use Policy 2018, 76, 246–251. [CrossRef]
16. Tan, S.; Tong, B.; Zhang, J. How Did the Land Contract Disputes Evolve? Evidence from the Yangtze River Economic Belt, China.

Land 2023, 12, 1334. [CrossRef]
17. Halkia, M.; Ferri, S.; Schellens, M.; Papazoglou, M.; Thomakos, D. The Global Conflict Risk Index: A quantitative tool for policy

support on conflict prevention. Prog. Disaster Sci. 2020, 6, 100069. [CrossRef]
18. Zhao, J.; Cao, Y.; Yu, L.; Liu, X.; Yang, R.; Gong, P. Future global conflict risk hotspots between biodiversity conservation and food

security: 10 countries and 7 Biodiversity Hotspots. Glob. Ecol. Conserv. 2022, 34, e02036. [CrossRef]
19. Richter, C. Development of a risk culture intensity index to evaluate the financial market in Germany. In Proceedings of the

FIKUSZ’14 Symposium for Young Researcher, Budapest, Hungary, 2014; pp. 237–248.
20. Burnley, C.; Buda, D.; Kayitakire, F. Quantifying the Risk of Armed Conflict at Country Level—A Way Forward. In Proceedings

of the 3 Treaty Monitoring Based on Geographic Information Systems and Remote Sensing, Bonn, Germany, 2008; p. 38.
21. Gong, G.; Zhao, Y. Ecology versus economic development: Effects of China’s Yangtze River Economic Belt strategy. Int. Stud.

Econ. 2024. [CrossRef]
22. Feng, Y.; Sun, M.; Pan, Y.; Zhang, C. Fostering inclusive green growth in China: Identifying the impact of the regional integration

strategy of Yangtze River Economic Belt. J. Environ. Manag. 2024, 358, 120952. [CrossRef] [PubMed]
23. Ting, H.; Liangen, Z.; Yan, Z.; Chuanying, Z.; Jing, L. Water quality comprehensive index method of Eltrix River in Xin Jiang

Province using SPSS. Procedia Earth Planet. Sci. 2012, 5, 314–321. [CrossRef]
24. Sutadian, A.; Muttil, N.; Yilmaz, A.; Perera, B. Using the Analytic Hierarchy Process to identify parameter weights for developing

a water quality index. Ecol. Indic. 2017, 75, 220–233. [CrossRef]
25. Zhang, Y.; Zhang, J.; Yang, Z.; Li, J. Analysis of the distribution and evolution of energy supply and demand centers of gravity in

China. Energy Policy 2012, 49, 695–706. [CrossRef]
26. Luo, X.; Ao, X.; Zhang, Z.; Wan, Q.; Liu, X. Spatiotemporal variations of cultivated land use efficiency in the Yangtze River

Economic Belt based on carbon emission constraints. J. Geogr. Sci. 2020, 30, 535–552. [CrossRef]
27. Zhang, S.; Liu, J.; Song, C.; Chan, C.-S.; Pei, T.; Wenting, Y.; Xin, Z. Spatial-temporal distribution characteristics and evolution

mechanism of urban parks in Beijing, China. Urban For. Urban Green. 2021, 64, 127265. [CrossRef]
28. Flores, J.; Calvo, B.; Perez, A. Supervised non-parametric discretization based on Kernel density estimation. Pattern Recognit. Lett.

2019, 128, 496–504. [CrossRef]
29. Tan, S.; Hu, B.; Kuang, B.; Zhou, M. Regional differences and dynamic evolution of urban land green use efficiency within the

Yangtze River Delta, China. Land Use Policy 2021, 106, 105449. [CrossRef]
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Abstract: Heavy metal-contaminated cultivated land treatment (HMCLT) plays an essential role in
the realization of sustainable utilization of cultivated land resources and sustainable agricultural
development. Evaluating this policy’s impact on agricultural development resilience (ADR) has great
practical significance. This paper reveals the impact HMCLT has on ADR from the perspectives of
time and space, utilizing data from Hunan province between 2007 and 2019. The synthetic control
method (SCM) and spatial Durbin model (SDM) are employed for investigating the temporal and
spatial effects HMCLT has on ADR. The results demonstrate that the HMCLT policy has effectively
improved the pilot cities’ ADR and can enhance ADR in adjacent areas from a spatial perspective. In
addition to HMCLT policy, financial support for agriculture, farmers’ per capita disposable income,
and rural population density are key factors affecting ADR. However, they all have a crowding-out
effect on the ADR in neighboring areas. Due to these circumstances, while the governments make
efforts in promoting the policy design and improvement of HMCLT, increasing the disposable income
of farmers, narrowing regional differences in government financial support and human capital, and
promoting regional interactions are essential to enhance ADR. This study formulates valuable insights
for policymakers and researchers in the field of sustainable agricultural development.

Keywords: cultivated land use; agricultural high-quality development; impact mechanism;
spatio-temporal effect

1. Introduction

Agricultural development resilience (ADR) refers to the ability of the agricultural
system to maintain its original structure, essential functions, and basic services following
the absorption and resolution of external interference [1]. ADR improvement can result in
many benefits, such as tackling inevitable shocks, ensuring food security, cultivating the
endogenous forces that drive agricultural economic growth, and creating a modernized agri-
cultural system [2,3]. In 2022, the Chinese “Central No.1” document noted the importance
of actively responding to a variety of risks and challenges both domestically and abroad,
stabilizing the essential agricultural market, maintaining and promoting agricultural pro-
duction, and enhancing the stable and sustainable development of both the economy and
society, thereby affirming the state and position of agriculture and the importance of ADR
enhancement. Cultivated land is the fundamental resource of social and economic activities
and can be regarded as the agricultural “input-output” system, in addition to playing a
crucial role in ADR enhancement. However, as urbanization and industrialization progress
rapidly, the ecological costs resulting from population growth and food production will
keep increasing significantly. Agriculture faces imminent challenges, including heavy
metal-contaminated cultivated land and groundwater over-extraction [4–6]. As reported,
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more than one-fifth of cultivated land has been polluted by heavy metals in China, resulting
in the problems of grain production reduction and food pollutants exceeding limits [7].
This has become an issue of great concern for both central and local governments.

To promote the circulation of cultivated land while also alleviating the negative impact
environmental pollution has on regional agricultural production and sustainable agri-
cultural development, China implemented the pilot policy of heavy metal-contaminated
cultivated land treatment (HMCLT) in 2014. For example, promoting collaboration to
the enhancement of technological innovation and conducting research on the restoration
of cultivated land. Meanwhile, much investment has been put into this field. Around
150 billion to 200 billion yuan can be invested annually; moreover, as predicted, the total
investment is expected to exceed 5.7 trillion yuan in the long run. In practice, 1.7 million
mu (a Chinese unit of area, equal to around 1133 km2) area of cultivated land in the
Changsha-Zhuzhou-Xiangtan urban agglomeration of Hunan province was chosen as the
pilot area, which is a significant pilot project in eliminating the heavy metal-contaminated
pollution. Numerous measures were taken according to the condition of the heavy metal-
contaminated cultivated land. Alternative crop planting or fallow methods were employed
for cultivated land with less pollution. Meanwhile, advanced agricultural technologies
(e.g., removing chemical materials) were utilized for cultivated land with more pollution to
achieve HMCLT. Anticipated outcomes were achieved after the implementation of HM-
CLT, with the average cadmium reduction rate of the pilot area reaching approximately
60%, as this triggered the additional policy design and practice. In addition, along with
the improvement of top-down policy design and bottom-up practice exploration of HM-
CLT, the implementation of HMCLT has gradually been expanded. Some reports have
revealed that the coordination between agricultural production and ecology in the pilot
areas has exhibited gradual improvement because of the adoption of this policy. At the
same time, agricultural production is becoming increasingly stable because it can cope with
the negative impacts of natural disasters and cumulative energy shortages [8]. HMCLT
has long been seen as a driving force for green agricultural development that can continu-
ously optimize the agriculture system through resource reallocation and spillover effects,
thereby enhancing ADR. In practice, since Hunan province was chosen as the pilot area,
the ecological and economic effects of HMCLT have arisen; however, its output growth
and structural changes in agriculture have remained rigid, and agricultural production,
distribution, and consumption continue to be relatively low. Therefore, further optimizing
the policymaking of HMCLT is necessary as a means of enhancing its sustained role in
agricultural development.

Relatively few studies have investigated the relationship between heavy metal-contaminated
cultivated land management strategies and ADR. Previous literature has mainly focused
on the role played by heavy metal-contaminated cultivated land technologies in the sus-
tainable use of cultivated land and ecological restoration, including improving sustainable
agricultural development potential through the green chemical material of soil [9], utiliz-
ing the biological methods to remove heavy metals in soil [10], and planting wind-proof,
sand-fixing, water-conservation plants [11]. With an increasing number of insights into
cultivated land loss, degradation, and ecological pollution, numerous scholars have fo-
cused on the impact management strategies have on agricultural financing [12], agricultural
productivity stability [13], and sustainable agricultural development [14]. Meanwhile, they
focused on agricultural production, ecological changes, and the farmers’ income after the
implementation of HMCLT policies [15–18]. In addition, a small number of scholars have
explored the green development effects of HMCLT [19], reflecting the indirect influence
HMCLT has on ADR.

These studies provided great practical value for enhancing the effects of HMCLT on
ADR. However, they could not reveal the influencing mechanism of the effects HMCLT
has on ADR. Previous research has mainly employed qualitative analysis, biochemical
experiments, or detection, but ignored the characteristics and effects of HMCLT policy
at the macro level. At the same time, heavy metal-contaminated cultivated land has the
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characteristics of peripheral aggregation, meaning that heavy metal-contaminated culti-
vated land close to the pilot area may have a higher risk of being polluted [20]. However, a
small number of papers have comprehensively studied the spatial effects of HMCLT on
ADR, providing tailor-made policy advice for the regional joint prevention and treatment
of heavy metal-contaminated cultivated land. Therefore, this paper theoretically reveals
the internal mechanism of the effects HMCLT has on ADR. This study uses the HMCLT
pilot policy in Hunan province in a quasi-natural experiment. Synthetic control method
(SCM) and spatial econometric models are employed for empirically testing and analyz-
ing the temporal and spatial effects HMCLT has on ADR. This paper also makes several
contributions, providing tailor-made suggestions for the promotion of HMCLT and the
achievement of green and sustainable agricultural development, while providing policy
references for HMCLT policy enhancement in similar regions.

2. Analysis of the Spatio-Temporal Mechanism

HMCLT is a complex issue that aims to adjust interactions between ecological envi-
ronment services and human activities to realize sustainable agricultural production. With
the dynamics of HMCLT, a series of policy changes, capital support, and technological
innovation took place that can impact ADR. Specifically, HMCLT can positively affect ADR
from both temporal and spatial perspectives (Figure 1).

 

Figure 1. Temporal and spatial influence mechanism of HMCLT on ADR.

2.1. Temporal Mechanism of HMCLT on ADR

Firstly, central and local governments and their departments continuously issue poli-
cies and regulations as a means of effectively intervening and regulating the scale and
impact of HMCLT policy. In the case of adjusting the industrial structure and layout
of HMCLT, stakeholders (including governments, enterprises, and farmers) are able to
realize the sharing of interests and risks with their involvement in HMCLT [19], thereby
helping the farmers recover from the external shock and improve the overall ADR. At
the same time, implementing policies, such as the vigorous promotion of high-standard
farmland construction and comprehensively transforming agricultural land in key areas,
can effectively improve cultivated land quality and productivity in pilot areas, optimize
the production, storage, and transportation of agricultural products, and assist the regions
in responding to the potential risks in the agricultural production chain [21,22]. In addition,
the bottom-up policy supervision provides feedback on farmers’ actual expectations and
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attitudes towards HMCLT from a demand perspective, which contributes to forming a pro-
duction elasticity “guidance-feedback” loop [23–25]. This serves to balance the relationship
between agricultural production and consumption while improving ADR.

Secondly, massive investment in special funds for HMCLT, in addition to exploring
and establishing diversified fund-raising channels, provides a solid foundation for ADR
enhancement in HMCLT [26]. This massive investment will swiftly promote the HMCLT
to become comprehensive and centralized, which forms a scale effect and accumulation
effect that can help the agricultural system tackle the changing issues [27,28], thereby
affecting ADR. Meanwhile, the farmers can promote the labor resources in agricultural
development [22], and higher labor productivity is conducive to ADR enhancement. In
addition, diversified social capital into HMCLT can help stabilize and ensure sufficient fund
resources, stimulating agricultural production and output, and reducing the sensitivity of
agricultural risks [26].

2.2. Spatial Mechanism of HMCLT on ADR

HMCLT is an effective tool for promoting the sustainable utilization of cultivated
land resources, in addition to the penetration and sharing of new-generation information
technology into agriculture (e.g., the Internet of Things, cloud computing, and big data),
which will inevitably result in spatial spillover effects. The effects are mainly manifested
in the following aspects. Firstly, the cultivated land system must adapt to the dynamic
changes and changing environment, advanced technologies, and novel products that are
commonly used for achieving HMCLT. The combination of technologies, knowledge, and
information can be regarded as a “technology pool” that can promote the absorption of
diversified knowledge in agriculture [29,30]. In this regard, a regional knowledge network
of agricultural production can be formed to promote HMCLT and enhance ADR spillover
effects. Secondly, the cross-fusion of HMCLT technologies can generate breakthrough
innovations, which can change resource allocation and reduce the dependency on agri-
cultural production on labor [19]. At the same time, the effects can have an impact on
the surrounding areas while mutually promoting ADR between regions. Finally, the pilot
area of HMCLT in a specific region can result in the enhancement of the ADR level of
the surrounding regions through information sharing and resource transfer. Ultimately,
the endogenous momentum of coordinated ADR promotion can be strengthened from
economic, production, and ecological perspectives.

3. Material and Methods

This paper adopts the synthetic control method (SCM) and spatial econometrics model
for studying the spatio-temporal effects of ADR affected by HMCLT for the following
two considerations. Firstly, as a non-parametric estimation method, SCM can be used for
evaluating the treatment effects in comparative studies. The basic principle of the approach
is to assign a total weight of 1 to a non-negative weighted synthesis of an optimal control
group that is consistent with the trend of treatment group unit changes. On this basis,
policy effects can be evaluated by calculating the difference between the treatment group
and the synthetic group before and after policy implementation. In comparison to the
difference-in-differences (DID) method, this method eliminates endogenous and control
group selection bias and can be applied for assessing policy effects in small samples [31].
Therefore, this method performs an HMCLT experiment and constructs a “synthetic group”
of a “counterfactual state” using data weighting and linear fitting for other regions. This
means that differences in ADR between the implementation (treatment group) and the non-
implementation (synthetic group) can be compared as a means of evaluating the net effect
of the policy from a temporal dimension. Secondly, based on the theoretical framework of
the impact HMCLT has on ADR, the existence of spatial spillover effects of HMCLT can
be confirmed. If such effects are neglected, the effects and mechanisms obtained will be
biased. Therefore, spatial econometrics models are used for studying the effects of HMCLT
on ADR.
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3.1. Measurement and Index Selection of ADR

ADR is the ability of the agricultural system to resist external shocks, recover from
shocks, and transform to other paths as a means of achieving adaptive development, which
is composed of the three interrelated capabilities of resistance, recovery, and regeneration.
The pressure-state-response (PSR) model is commonly used for assessing environmental
quality [32–36]. Due to its advantages in revealing the interactions of multiple factors, the
PSR model is widely used in the field of eco-environmental quality [32], regional ecological
change [33], and ecosystem health [34]. With this model, the pressure (P) represents the
damage and disturbance of external pressure to the system, the state (S) is the current state
of the system under pressure, and the response (R) is the response measures that are taken
in situations where the system faces external pressure.

ADR is a complex process that involves the “input-transformation-output” cycle [37,38],
where the output is heavily reliant on the adaptation and adjustment of the input. From this
perspective, the PSR model is adequately used for mapping the realization of ADR. There-
fore, based on existing conclusions regarding the definition and connotation of resilience,
together with the PSR model, the comprehensive measurement index system of ADR is
constructed from the three dimensions of resistance (P), recovery (S), and regeneration
(R). More specifically, resistance is the ability of the agricultural system to reduce external
shocks under uncertainty, which has a close relationship with the state of cultivated land,
its water conservancy infrastructure conditions, and machinery input density. Therefore,
the proportion of the effective irrigation area of cultivated land (the area of effective irriga-
tion/the area of cultivated land), agricultural machinery usage intensity (total power of
agricultural machinery/the area of cultivated land), and the proportion of the disaster area
of cultivated land to the total area of cultivated land are chosen as indicators for measuring
resistance. In addition, recovery is the ability of the agricultural system to recover from
the impact of pressure, as reflected in terms of the agricultural economy, society, and stake-
holders before and after the external shocks. Therefore, the average agricultural output
value (agricultural output value/agricultural population), rural road network accessibility,
and the expenditure of farmers are chosen as indicators for measuring recovery. Finally,
regeneration emphasizes the agricultural system’s self-adjustment and adaptation before
and after the external shocks, including remedial measures that the government takes or
farmers for repairing and enhancing the agricultural system. Therefore, investment in
agricultural infrastructure, the pure amount of agricultural fertilizer application per unit
sown area, the amount of agricultural plastic film use per unit sown area, and rural electric-
ity consumption are chosen as regeneration indicators. On this basis, the entropy weight
method [39,40] is used for calculating ADR following the standardization of each indicator.

3.2. Research Object and Model Specification

The majority of heavy metal-contaminated cultivated land in China is distributed in
14 provinces (municipalities and autonomous regions), including Hebei, Jiangsu, Guang-
dong, Shanxi, Hunan, and Henan, which accounts for approximately one-fifth of the total
cultivated land area, thus the implementation of HMCLT is of great importance. The
Chinese government started piloting and promoting the HMCLT policy in 2014 in several
regions. Compared to other pilot areas, Hunan province is an area that is rich in nonferrous
metals and non-metallic minerals, and its cultivated land has been contaminated, and it is in
a severe condition. However, the planting area and yield of Changsha ranked first in China.
As a result, governments and scholars have given extensive attention to the pilot policy of
HMCLT. Investigating the effects of HMCLT on ADR in Hunan province is conducive to the
promotion of HMCLT and has significant value for sustainable agricultural development
in other regions of China and even the world.

The SCM was used in this study for investigating the time effect of HMCLT on ADR in
Hunan province. It is assumed that the total sample is the relevant data of J + 1 regions in
t ∈ [1, T], and only the first region (i = 1) implements the HMCLT policy during the period
t = T0, so that the region is the treatment group, and the dependable variable is Resiliencei,t.
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The remaining J regions are the control city groups without the implementation of the
pilot policy. Under the SCM, Resiliencei,t = Resilience′ i,t + Ditηit (where Resiliencei,t and
Resilience′ i,t represent ADR in one city in the treatment group and the control group, Dit
indicates whether it is a dummy variable of the HMCLT pilot, while ηit represents the net
effect of the policy). As it is possible to directly observe Resiliencei,t, but not Resilience′ i,t,
in order to obtain the estimated parameter value ηit, the “counterfactual” method must be
used to construct the variable Resilience′ i,t as follows:

Resilience′ i,t = αi + δtZi + λtμi + εit (1)

Zi is the control variable of this paper; δt is the estimation coefficient vector; λt is the
unobservable factor vector; μi is the individual fixed effect; and ε is the random error term.
This study fitted the characteristics of the cities in the treatment group where no policies
have been implemented by weighting the cities in the alternative control group. Therefore,
Formula (1) is converted into:

J+1

∑
j=2

vjwit = αt+βt

J+1

∑
j=2

vjZj + λt

J+1

∑
j=2

vjμi +
J+1

∑
j=2

vjεit (2)

vj(j = 2, 3, · · ·, J + 1) can constitute J + 1-dimensional multiple vector group
V = (v, · · ·, vJ+1). For those ∀J that meet the conditions of VJ ≥ 0 and v2 + · · ·+ vJ+1 = 1,

it is further assumed that there is a vector group V∗ =
(

v∗2, · · ·, v∗J+1

)′
, which meets the

conditions of
J+1
∑

j=2
v∗j wjt = w11, · · ·,

J+1
∑

j=2
v∗j wjT0 = w1T0 and

J+1
∑

j=2
v∗j Zj = Z1. If

T0
∑

i=1
λ′

tλt is full

rank, it can be concluded that:

Resilience′ i,t −
J+1

∑
j=2

v∗j wjt =
j+1

∑
j=2

v∗j
T0

∑
s=1

λt

(
T0

∑
i=1

λ′
tλt

)−1

λ′
s
(
ε js − εis

)− J+1

∑
j=2

v∗j
(
ε js − εis

)
(3)

According to Abadie et al. [41], T0 < t ≤ T,
J+1
∑

j=2
v∗j wjt is regarded as an unbiased

estimation of Resilience′ i,t. At this timepoint, the core parameter estimator is obtained via

regression analysis using Formula (1) η1t = wit −
J+1
∑

j=2
v∗j wjt.

The pilot policy of HMCLT in Hunan province was implemented in 2014, thus 2014
is the time point of policy impact for this study. The three aforementioned cities (i.e.,
Changsha, Zhuzhou, and Xiangtan) are taken as the treatment group for the empirical
study, while the remaining cities in Hunan province (excluding Tujia and Miao Autonomous
Prefecture in Xiangxi) are taken as the control group. The research period for this paper is
2007–2019.

In addition, the theoretical analysis framework of this paper indicates an apparent
spatial dependence between HMCLT and ADR. Spatial econometric models have been
employed in numerous fields, such as eco-environmental quality [42], cultivated land
protection policy [43], cultivated land use efficiency [44], and land supply [45], indicating
that these spatial models are suitable for this paper. Therefore, the following spatial Durbin
model (SDM) is constructed in this paper for investigating the spatial effects of HMCLT on
ADR in Hunan province, and the spatial autoregressive model (SAR) results are compared.

Resilienceit = c0 + ρ
n

∑
j=1

WResilienceit + c1Policyit + c2Policyit + κ1Xit + κ2Xit + μi + λt + εit (4)

Resilienceit = h + ρ
n

∑
j

WResilienceit+h1Policyit + ρ
n

∑
j

WPolicyit+Xitθ3 + ϕi + pi + ςit (5)
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Formula (4) is the SDM model, Formula (5) is the SAR model, i and t represent year
and city, and Policy is the core explanatory variable. Xit refers to control variables. W is the
nested spatial weight matrix, μi and ϕi represent the individual effect, λt and p represent
the time effect, and εit and ςit represent the random error term.

3.3. Data Sources

The original data used in this paper is obtained from the Hunan Provincial Statistical
Yearbook, Hunan Rural Statistical Yearbook, Cities and Prefectures Local Statistical Year-
book in Hunan province, and the national economic and social development statistical
bulletin for each city. Missing values for some years or regions are filled using neighboring
values or the linear fitting method. However, due to the data unavailability in Xiangxi
Tujia and Miao Autonomous Prefecture, this region was not included in this paper. Table 1
provides descriptions of variables and indicators used in this analysis.

Table 1. Summary statistics of the variables.

Variables Unit Descriptions

Nature Hectare The area of cropland [46,47]

Modernization % The ratio of the added value of the service industry to that of
agriculture, forestry, animal husbandry, and fishery [48]

Finance % The proportion of agricultural and forestry financial
expenditure in total financial expenditure [49]

Income Yuan Per capita disposable income of farmers [50]

Information Person The total workload of all full-time employees and the number
of full-time equivalent part-time employees [51]

Labor Person/km2 Rural population density [52]
Intensive _ Location quotient [53]

4. Results

4.1. Temporal Effect of HMCLT on ADR
4.1.1. Descriptive Analysis of ADR

The ADR values of all cities in Hunan province from 2007 to 2019 were calculated
based on the entropy weight method. The natural fracture point method was then applied
to map the spatial pattern of ADR in Hunan province (Figure 2). From a time dimension,
the evolution of ADR in Hunan province is divided into two stages: slow rise (2007–2013)
and steady rise (2014–2019), with significant phased characteristics. In 2007, the ADR value
in Hunan province was 0.128, and it fluctuated to 0.238 in 2013 before proliferating to 0.520
in 2019. Shaoyang, Yueyang, Yongzhou, and Changde first experienced falling and then
rising, the ADR level of Zhangjiajie, Yiyang, Hengyang, and Chenzhou showed a feature of
first rising and then fluctuating, while Huaihua demonstrated a downward trend. At the
same time, the ADR level of Changsha, Zhuzhou, and Xiangtan fluctuated and rose. From a
spatial dimension, the intra-provincial differentiation of ADR in Hunan province exhibited
a widening trend, with higher-value cities moving from the initial concentration in Yueyang,
Changde, and Yiyang to Changsha-Zhuzhou-Xiangtan, while the range of lower-value
cities decreased in circles. The spatial pattern shows “ridge” distribution characteristics
along the southwest line, with Changsha-Zhuzhou-Xiangtan urban agglomeration at the
core and extending toward the northeast.

4.1.2. Weight Setting of Synthetic Pilot Cities

This study used data from 2007 to 2019 and employed Stata 15 software for fitting and
synthesizing virtual control cities in 10 control city groups. Table 2 shows a comparison
of dependent variables between pilot cities and synthetic pilot cities and demonstrates
that ADR levels in Changsha, Zhuzhou, and Xiangtan were similar prior to HMCLT policy
implementation. Regarding the difference in independent variables, the difference between
Informatization in Changsha and Nature in Zhuzhou and Xiangtan was relatively high.
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Figure 2. Evolution of ADR in Hunan province from 2007 to 2019.

Table 2. Independent variables of pilot cities and synthetic pilot cities.

Independent
Variables

Changsha Zhuzhou Xiangtan
Synthetic Real Difference Synthetic Real Difference Synthetic Real Difference

Nature 6.772 6.450 0.323 6.759 5.919 0.840 6.643 5.716 0.927
Modernization 0.072 0.023 0.050 0.108 −0.091 0.199 0.184 0.040 0.144
Finance 0.122 0.250 0.128 0.150 0.301 0.151 0.120 0.009 0.111
Income 8.568 9.331 0.763 8.739 8.976 0.237 8.586 9.000 0.414
Information 2.634 5.496 2.861 2.571 2.076 0.495 2.414 2.193 0.221
Labor 7.000 7.256 0.256 7.896 8.148 0.253 7.032 7.776 0.744
Intensive 0.771 0.977 0.206 1.109 1.124 0.015 0.837 1.328 0.491

The weight combinations selected when three HMCLT pilot sites in Changsha, Zhuzhou,
and Xiangtan were chosen as the composite areas can be seen in Table 3. Yongzhou is the
city that constructed and synthesized Changsha, and its weight is 1. At the same time,
cities with positive contributions to Zhuzhou are Hengyang, Yongzhou, Chenzhou, and
Changde. Yongzhou and Chenzhou can be forged to synthesize Xiangtan, and the ADR
level of these two cities can be summed up by the respective weights of 0.683 and 0.317 for
ADR level simulation.

Table 3. Weights of control groups in each synthetic control area.

Region Synthetic Area (Weight) RMSPE

Changsha Yongzhou (1), Others (0) 0.0285

Zhuzhou Hengyang (0.467), Yongzhou (0.331), Chenzhou (0.118),
Changde (0.084), Others (0) 0.0114

Xiangtan Yongzhou (0.683), Chenzhou (0.317), Others (0) 0.0211
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4.1.3. SCM Results

The evolution of the ADR of pilot cities and their synthetic cities for HMCLT can be
seen in Figure 3, which shows that prior to HMCLT policy implementation, the ADR levels
of Zhuzhou and Xiangtan were closer to their synthetic ADR level, which indicates that the
synthetic pilot can fit the real pilot. It is notable that some differences in ADR exist between
Changsha and its synthetic pilot area because Changsha is the economic and political center
of the Changsha-Zhuzhou-Tanzhou urban agglomeration. Green agricultural technology,
modern agricultural development, and agricultural labor input are at leading levels, thus
the independent variables of other cities cannot fit the trends of ADR in Changsha.

  

 

Figure 3. ADR trends in real and synthetic pilot cities.

According to the fitting degree after the implementation of the HMCLT policy, ADR
levels in Changsha, Zhuzhou, and Xiangtan improved. Among them, the standards of
Changsha improved most significantly, followed by Zhuzhou and Xiangtan. In addition,
the impact of the HMCLT pilot policy on ADR was found not to be significant in 2014.
One possible reason is that R&D activities can be delayed due to the inducement of the
HMCLT policy, thereby inhibiting the policy’s effects on ADR that year. The pilot policy
of HMCLT should be further explored in this stage. The policy effect will be weakened
by the constraints of social capital, the ineffectiveness of management strategies, and the
imperfect guidance from the government.

4.2. Spatial Effect of HMCLT on ADR

The effects the pilot policy has on ADR have been investigated. Does the HMCLT
policy also lead to ADR improvement in neighboring cities through spillover effects? This
section investigates the spatial impact of HMCLT on ADR.
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4.2.1. Spatial Correlation Analysis

Before spatial regression, the spatial autocorrelation of ADR was tested using Moran’s
I index (shown in Table 4). ADR was significant in the research period, with the exception
of 2010, which indicates an obvious spatial dependence between ADR in various regions,
and the SDM is a reasonable means for analyzing spatial effects.

Table 4. Moran’s I test results.

Year Moran’s I Z Year Moran’s I Z

2007 0.017 ** 2.120 2014 0.025 *** 2.484
2008 0.004 ** 1.910 2015 0.045 *** 2.848
2009 0.000 ** 1.855 2016 0.054 *** 3.005
2010 −0.075 1.255 2017 0.054 *** 2.971
2011 −0.021 * 1.398 2018 0.048 *** 2.838
2012 −0.003 ** 1.980 2019 0.054 *** 2.977
2013 0.040 *** 2.781

Note: *, **, and *** represent 10%, 5%, and 1% statistical levels, respectively.

4.2.2. Spatial Effect Estimation Results

In order to avoid the bias and error of the model setting on the model estimation, the
maximum likelihood estimation method was used in this study, and the Wald test and LR
test were employed to verify the effectiveness of the SDM model. The results found that the
Wald test and LR test rejected the original hypothesis at the 5% confidence level, while the
results of the Hausman test showed the effectiveness of the fixed effect model. Therefore,
the SDM model based on individual fixed effects was chosen for studying the spatial effects
of HMCLT on ADR. The results of the SAR model were also provided for comparison.
The coefficient of Policy was found to be significantly positive at the 1% level in these
two models, which indicates that HMCLT can improve ADR, further verifying the results’
robustness, as shown in Table 5. The W * Policy coefficient was 0.093 and it was significant,
which suggests that HMCLT has spillover effects on ADR in neighboring areas. Under the
dual pressure of local government performance improvement and agricultural economic
growth, a “bottom-by-bottom competition” phenomenon exists in HMCLT policy, thus the
spatial effects of the policy were significantly enhanced. At the same time, to realize high-
quality agricultural development, HMCLT can further promote agricultural production
development and technological innovation in the pilot areas. Specifically, the ADR in
neighboring cities can be affected through economic interaction, industrial cooperation,
and technological communication. Therefore, establishing the policy governance system
and information-sharing mechanism based on regional cooperation, and realizing the
exchange and sharing of agricultural resources between regions are effective means for
improving the future policymaking of HMCLT.

4.2.3. Decomposition and Estimation Results of Spatial Effects

Based on the work of LeSage and Pace [54], the spatial effects of HMCLT on ADR
were further characterized into direct, indirect, and total effects to avoid estimation result
bias. As Table 6 demonstrates, the coefficient of direct effects of HMCLT on ADR is 0.138,
which indicates ADR can be significantly improved by the HMCLT policy. The coefficient
of indirect effects of HMCLT on ADR is 0.106, which suggests that the HMCLT policy had
significant spatial effects on ADR in adjacent areas. This is consistent with the estimated
results in Section 4.2. In addition, it should be noted that although HMCLT promotes the
formation of an inter-regional governance network, it also produces various transaction
costs, thereby weakening the spillover effects HMCLT has on ADR. From the perspective of
control variables, the direct and indirect effects of Finance, Income, and Labor were significant
at the 5% level, and the direct and indirect effects of Finance and Labor were significantly
negative. It can be inferred that the financial support from the local government for
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agriculture and the scale of human capital in agriculture is currently relatively low, which
inhibits ADR improvement in the local region and surrounding areas.

Table 5. The results of the spatial effect of the driving forces on the ADR.

SDM SAR

Policy 0.137 ***
(7.41)

0.151 ***
(7.72)

Nature 0.002
(0.02)

−0.084
(1.24)

Modernization −0.001
(0.22)

−0.002
(0.44)

Finance −0.402 **
(2.43)

−0.061
(0.38)

Income 0.118 *
(1.80)

0.061 **
(2.42)

Information −0.012
(1.44)

−0.009
(1.06)

Labor −0.142 ***
(3.85)

−0.091 **
(2.53)

Intensive −0.0001
(0.21)

0.0004
(0.58)

W * Policy 0.093 *
(1.83)

W * Nature −0.251 *
(1.74)

W * Modernization 0.002
(0.12)

W * Finance −3.370 ***
(3.77)

W * Income −0.223 ***
(2.79)

W * Information −0.039 **
(2.06)

W * Labor −0.684 ***
(4.73)

W * Intensive −0.007 **
(2.19)

ρ
0.027
(0.14)

0.464 ***
(5.30)

σ2 0.002 ***
(9.19)

0.003 ***
(9.13)

R-squared 0.257 0.423
Log-L 286.095 257.971

N 169 169
Note: *, **, and *** represent 10%, 5%, and 1% statistical levels, respectively. The numbers in the brackets are the
standard error of the coefficients. The same is true for the table below.

Table 6. Decomposition results of spatial effects.

Direct Effects Indirect Effects Total Effects

Policy 0.138 ***
(7.17)

0.106 **
(2.21)

0.244 ***
(4.99)

Nature −0.003
(0.03)

−0.250 *
(1.78)

−0.252 ***
(2.58)

Modernization −0.0004
(0.11)

0.002
(0.14)

0.002
(0.11)

Finance −0.427 **
(2.28)

−3.591 ***
(2.60)

−4.018 ***
(2.68)

Income 0.118 *
(1.84)

−0.236 ***
(2.70)

−0.118 *
(1.81)

Information −0.011
(1.41)

−0.040*
(1.95)

−0.051 **
(2.49)

Labor −0.144 ***
(3.95)

−0.717 ***
(6.39)

−0.860 ***
(6.98)

Intensive −0.0002
(0.34)

−0.008 *
(1.88)

−0.008 *
(1.82)

Note: *, **, and *** represent 10%, 5%, and 1% statistical levels, respectively.
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5. Discussion

5.1. Direct Associations

An increasing amount of attention is paid to environmental protection and agricultural
production. The central government has made numerous efforts to improve the agricul-
tural environment, especially in the field of heavy metal-contaminated cultivated land. To
investigate the effectiveness of the HMCLT policy issued in 2014, SCM was employed to
explore this effect, which can provide implications for the central and local governments to
take tailor-made actions to address similar issues. The outcomes of this paper demonstrate
that the HMCLT can significantly improve ADR in the pilot areas (i.e., Changsha, Zhuzhou,
and Xiangtan). Therefore, it can be inferred that the top-down policies are conducive
to enhancing ADR to serve agricultural production and protect the environment. Gov-
ernments need to design additional policies to tackle similar challenges. Moreover, the
results of SCM in Changsha show a different trend compared to other cities before the pilot
policy. A possible reason for this situation is that the research was conducted in Hunan
province, and Changsha maintains a leading and unique role in the research area [55]. The
situation in Changsha was hard to synthesize in other Hunan province cities. Therefore, as
an increasing number of policies are implemented in different regions, more studies can be
conducted to verify the outcomes obtained in this research.

5.2. Spillover Effects

According to the influence mechanism of this paper and Moran’ I index, spatial
dependence exists in Hunan province’s ADR. To explore the spatial effects of the HMCLT
policy on ADR, SDM and SAR models were utilized. The results showed that the direct
effects and spatial effects of the HMCLT policy on ADR were significant at the 5% level,
indicating that the pilot policy cannot only affect its local region but also impact the ADR of
its neighboring regions. This contributes to the overall improvement of ADR in all regions.
The region’s financial expenditure and population density were also significant in the
relationship between HMCLT and ADR, but the coefficients were negative. On the one hand,
“urban-biased” development causes the proportion of rural and agricultural spending
sourced from central finance revenue to decrease. Moreover, there is no strictly spatial
match between financial spending and agricultural and rural development needs. On the
other hand, a larger number of rural populations commonly make the local government
focus on addressing the problem of insufficient agricultural production capacity, and ignore
the environmental benefits, thus inhibiting the enhancement of ADR.

In addition, following Liu et al. [56], the policy of HMCLT can be promoted due to
its positive and significant effect. However, spatial heterogeneity should be paid special
attention to. On the one hand, the market-based mechanism can play a crucial role in
improving ADR, leading to competition with governments and weakening the policy
effects [56–58]. On the other hand, the economic, environmental, and social conditions can
vary significantly in different regions, thus requiring tailor-made actions and policies in
various regions [59].

5.3. Theoretical Implications

This paper generated several contributions to the literature on the effects of HMCLT
on ADR. Firstly, this paper constructed the ADR index system, enriching the agricultural
development literature. This index system can provide references for researchers and poli-
cymakers to consider numerous aspects of agriculture to achieve sustainable development.
Secondly, this paper integrated the SCM and spatial models into a holistic framework and
investigated the HMCLT policy effects on ADR from the time and space perspectives, as
this generates fresh insights into enhancing ADR. To our knowledge, this is the first paper
to explore the impact of HMCLT policy on ADR, which can extend the boundaries of policy
studies and provide implications for the central and local governments.
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5.4. Policy Implications

HMCLT has the potential to drive rural revitalization and agricultural high-quality
development. Moreover, this policy can result in ADR improvement in terms of eco-
nomic, social, and ecological aspects through policy support, capital investment, and
spillover effects. It is suggested that further strengthening the support of HMCLT on
ADR and achieving agricultural modernization and rural revitalization are possible in the
following aspects.

On the one hand, considering the practical role HMCLT policy plays in ADR im-
provement, it is essential to strengthen the policy design and framework from a top-down
approach, advance agricultural technologies, and establish a green agricultural system
in China. These measures will facilitate the adjustment of the agricultural production
supply chain and improve the governance of agricultural ecology, which are conducive
to HMCLT achievement. At the same time, strengthening the role of the government and
introducing new business entities through the market-based mechanism will ensure policy
implementation and its effectiveness.

On the other hand, due to the practical need for strengthening the spillover effects
the HMCLT policy has on ADR, focusing on areas with strict resource constraints and
heavy ecological pressure, and addressing imminent issues (e.g., water consumption,
soil pollution, land degradation, and supply and demand imbalance) are essential. In
addition, the priority of the policy implementation areas should be determined based on
their situation. In addition, an information-sharing mechanism should also be built to
facilitate collaboration among governments to improve ADR. These measures can enable
the full utilization of the spillover effects of HMCLT.

6. Conclusions

The literature on agricultural development and sustainability has been extensive.
However, the means to realize agricultural development and promote the resilience of agri-
cultural development has been unclear. This paper has investigated the impact HMCLT has
on ADR from the dimensions of time and space, using sample data from Hunan province
between 2007 and 2019. The SCM and spatial Durbin model were comprehensively em-
ployed for studying the spatio-temporal effects of HMCLT on ADR. It was found that
the HMCLT policy has effectively improved ADR in the pilot cities, while also enhancing
ADR in the neighboring cities. In addition, financial support for agriculture, agricultural
disposable income, and rural population density are also essential factors for ADR. How-
ever, these factors will have a crowding-out effect on the ADR of neighboring cities. This
paper enriches the literature on the agricultural system and agricultural development
theoretically and provides important implications for the central and local governments to
improve ADR.
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Abstract: In the midst of China’s ongoing rural–urban integration and development, a pivotal trans-
formation involving the realignment of labour dynamics and land utilisation is underway. This
paradigm shift has substantial implications for rural land use and agricultural productivity. Draw-
ing from the field survey conducted in Zhejiang Province in 2019, this study puts non-agricultural
employment, land transfer, and land efficiency into one econometric model and establishes a com-
prehensive framework to explain the mechanisms. Unlike existing research, this paper delves into
the impact of different land-transfer behaviours, namely inflow and outflow, on land efficiency. The
findings indicate that non-agricultural employment has no significant impact on land efficiency. Rural
households acquiring land significantly enhance land efficiency, whereas relinquishing land shows
no significance, thus addressing the gap in existing literature regarding the study of different transfer
behaviours. Furthermore, to explore the underlying mechanisms, we investigate the mediating
effect of land inflows on land efficiency, finding that it operates through plot size. In light of this,
we propose that, in guiding land inflows, more emphasis should be placed on the integration and
reorganisation of fragmented land rather than simply expanding the total land area, aiming to create
large, well-managed areas of arable land by achieving concentrated and contiguous transferable
land parcels.

Keywords: land transfer; mediating effect; land efficiency; heterogeneity

1. Introduction

In the late 1970s, China initiated the implementation of the household rural system
(HRS), which aims at enhancing farmers’ motivation, has yielded significant results. Never-
theless, critical issues, including land fragmentation and irrational land use, have surfaced
as the reform evolves and the situation changes. Consequently, the land efficiency and agri-
cultural productivity face declining challenges. At the same time, the rapid urbanisation
which accelerates China’s rural hollowing worsened the situation. Developing countries
like Ethiopia share similar situations and perceptions with China, particularly rural–urban
labour transfer. Ethiopia and China have experienced significant rural–urban migration
due to economic pressures and land-management issues, although the specific historical
and policy contexts differ. For example, China’s economic reforms and rapid urbanisation
have led to a massive rural labour movement to urban centres, driven by industrialisation
and the search for better living standards. In Ethiopia, similar migration patterns have been
observed, though often within different policy frameworks and economic contexts, such as
the need for agricultural reforms and addressing landlessness (Central Statistical Authority,
2003 [1]; Zewdu and Malek, 2010 [2]). It is noteworthy that the migration of rural labour to
urban areas and non-agricultural employment has brought opportunities for the transfer of
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rural land, with the area of land-use rights transfers reaching approximately 532 million mu
(equivalent to about 35 million hectares) in 2022 (Xu et al., 2022) [3] in China. Land transfer
is expected to significantly impact agricultural production methods and land-use efficiency,
while the mechanisms explaining this process remain a subject of debate and controversy
in the academic community. Therefore, there is an urgent need for further research and
analysis to uncover the complex dynamics of this crucial aspect of rural development.

2. Literature Review

Numerous studies have investigated the intricate relationship between non-agricultural
employment and regional development. A prevailing perspective, characterised by opti-
mism, asserts that rural–urban migration catalyses local development. This assertion is
primarily based on the premise that migrant workers contribute to local economies through
remittances, which are seen as sources of enhanced productive investments, ultimately fos-
tering economic development within these rural areas. Furthermore, this positive perspec-
tive highlights the transfer of expertise and the introduction of technological advancements
by returning migrants as additional drivers of local economic progress (Penninx, 1982) [4].
Complementing this view, Wang et al. (2020) [5] utilised data from the Chinese Household
Income Project 2013 to analyse how non-agricultural employment impacts rural land cir-
culation in China. Their findings indicate that stability in non-agricultural employment,
primarily through non-agricultural assets, significantly influences land-transfer decisions,
with notable variations between China’s Central and Western regions. This suggests a
nuanced need for region-specific policies to promote efficient land use and support rural
economic development.

Conversely, a more pessimistic viewpoint suggests that migration exacerbates labour
shortages in rural villages, triggering adverse social and cultural consequences within these
communities. Furthermore, this perspective argues that remittances often serve as short-
term coping mechanisms rather than as investments in agricultural production. Instead,
these financial resources are frequently allocated towards immediate consumption needs
such as constructing new houses, supporting elderly family members, and covering educa-
tional expenses. Empirical evidence from Ethiopia and Nepal indicates that out-migration
has led to shifts towards less labour-intensive agriculture and altered land-use patterns
without necessarily enhancing local development (Kharel et al., 2023) [6]. Moreover, studies
in sparsely populated areas reveal that urban-centric growth often fails to produce ben-
eficial spillovers for rural hinterlands, instead exacerbating disconnects and deepening
regional inequalities (Cristina, 2012 [7]; Chen and Hanori, 2009 [8]; Carson et al., 2022 [9]).

This ongoing debate within scholarly literature underscores the multifaceted nature of
rural–urban migration’s impact on regional development. The divergence in viewpoints
highlights the need for comprehensive empirical analyses and nuanced investigations to
better understand the complex dynamics involved in the interplay between migration,
remittances, and their consequences for rural communities. Such research endeavours are
essential for crafting effective policies that can harness the potential benefits of migration
while addressing its challenges in the context of regional development.

Much research has explored the intricate correlation between non-agricultural em-
ployment and land efficiency. However, there has yet to be a consensus regarding this
relationship’s outcomes, with findings exhibiting considerable variation. Some empirical
investigations suggest that non-agricultural employment negatively influences land produc-
tivity. For instance, Li et al. (2020) [10], drawing on survey data from the Loess Plateau in
China, identified a significant increase in household income attributable to non-agricultural
employment but also observed a notable decrease in agricultural labour productivity and
land output associated with this form of employment. Similarly, Jiang et al. (2022) [11]
corroborated these findings by demonstrating that non-agricultural employment poses
constraints on agricultural production, particularly for smallholder households with fewer
than three labourers, thereby hindering improvements in production efficiency.
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In contrast, some studies posit a positive correlation between non-agricultural em-
ployment and the enhancement of land productivity. For example, Seoge and Zahonogo
(2023) [12], analysing nationally representative data from Burkina Faso, identified non-
agricultural activities as a significant determinant in elevating land production efficiency.
Additionally, Nguyen et al. (2019) [13], examining non-agricultural employment behaviours
in Vietnamese rural households, reported increased land productivity among rural house-
holds engaged in non-agricultural employment and receiving remittances.

Moreover, certain studies indicate that non-agricultural employment may not neces-
sarily induce significant changes in land productivity. For instance, Sun’s study (2021) [14]
on land efficiency at the county level in China revealed that non-agricultural employment
did not have a discernible impact on land efficiency in western Chinese counties.

The existing body of research presents conflicting views regarding land transfer and
its relationship with land efficiency. Land transfer can contribute to improvements in land
productivity. For instance, Ricker-Gilbert (2018) [15] identified significant positive effects
of land transfer on household land productivity. Similarly, based on data from Ethiopia,
Gottlieb and Grobovsek (2019) [16] found that land transfer could release surplus labour
from agriculture, leading to increased rural–urban migration and ultimately resulting in
improved agricultural productivity. Additionally, Kijima and Tabetando (2020) [17] found
that land rental markets in Uganda and Kenya exhibited high efficiency, transitioning
land from lower-capacity farming households to higher agricultural productivity, thereby
enhancing overall agricultural production efficiency.

However, various pieces of literature have demonstrated negative relationships be-
tween land transfer and productivity. For instance, Pender and Fafchamps (2006) [18]
compared land productivity between Africa’s self-owned and rented land, revealing that
the latter was less productive than the former. Chen et al. (2011) [19] used the DEA
method to calculate the impact of land transfer on household productivity in Beijing, Shang-
hai, and Guangdong provinces. The results showed that land transfer could decrease
land productivity.

In addition, there are also findings suggesting that land transfer does not necessarily
lead to increased land efficiency (Gollin & Udry, 2021) [20]. Gai et al. (2020) [21], drawing
upon data collected from established observation points in rural China, conducted a study
illuminating how land transfers from households to corporations and cooperatives often
find application in ‘non-agricultural’ and ‘non-grain’ ventures. Even with the overall rise
in farmers’ income after the transfer, there may be an equal enhancement in agricultural
productivity. Similarly, Zhang et al. (2017) [22], utilising data from four counties in Jiangsu
Province, ascertained that autonomously instigated household land transfers typically
encompass relatively modest land scales and abbreviated transfer durations. This prevail-
ing scenario militates against the facilitation of economies of scale and the realisation of
enduring investments in production.

Consequently, impromptu land transfers might not exert a pronounced impact on
agricultural productivity. The diverse findings in these studies underscore the complexity
of the relationship between land transfer and land efficiency. Further research and nuanced
analysis are needed to elucidate the underlying mechanisms and contextual factors con-
tributing to the observed outcome variations. Such endeavours are crucial for informing
policies and interventions to optimise land use and agricultural productivity in diverse
regional contexts.

The existing literature on non-agricultural employment, land transfer, and land effi-
ciency offers valuable insights but also presents several limitations that this study aims to
address. Generally, research has predominantly focused on the economic outcomes of land
transfer, such as income changes, often neglecting the broader concept of land efficiency,
which encompasses the output value per unit of land area and sustainable land-use prac-
tices. Moreover, while previous studies have explored the direct effects of non-agricultural
employment on rural economies, more comprehensive models that integrate these em-
ployment shifts with land-transfer behaviours and land-efficiency outcomes need to be
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developed. This gap hinders a holistic understanding of how labour shifts away from
agriculture influence land management and efficiency in the long term. Additionally, much
of the existing research needs to sufficiently account for regional variations and the nuanced
ways in which local policies, such as China’s Three Rights Separation Reform, reshape land
tenure and labour migration. Our study addresses these shortcomings by incorporating
a nuanced econometric analysis that considers various forms of land transfer and their
impacts on land efficiency. It provides a more detailed and context-sensitive understanding
of these complex relationships.

This study contributes to existing literature in three aspects. Firstly, the paper focuses
on the modes of land transfer and its impact on land efficiency after the Three Rights
Separation Reform (TRSR) in China. Following the household responsibility system (HRS),
the Chinese government introduced a key institutional innovation called the “Three Rights
Separation Reform” in 2014. The TRSR, while retaining farmers’ land contract rights,
allows them to transfer management rights through land leasing, mortgage loans, or equity
investment (Liu et al., 2017) [23]. This reform fundamentally reshapes land-tenure security,
land-transfer modes, and labour migration. However, research on whether and how the
TRSR triggers rural land transfer and utilisation is still limited. Our paper addresses this
gap by carefully examining the interactions between non-agricultural employment, land
transfer, and land efficiency four years after the implementation of the TRSR, filling the
void in existing research.

Secondly, this study focuses on the key variable of land efficiency. Previous litera-
ture primarily explores the impact of non-agricultural employment and land transfer on
agricultural production and yield, with limited attention to the variable of land efficiency.
Land efficiency is crucial for national agricultural capacity and food self-sufficiency, and
our study uniquely addresses this gap.

Thirdly, this study thoroughly explores the complex connections and mediating mech-
anisms between non-agricultural employment, land transfer, and land efficiency. Based
on survey data collected in China, we incorporate non-agricultural employment, land
transfer, and land efficiency into one econometric model and further explore land transfer
by distinguishing between inflow and outflow modes. In addition to the baseline model,
we investigate the mediating mechanisms through which land transfer affects land effi-
ciency. Furthermore, we examine the heterogeneous effects among different groups based
on factors such as age, gender, and technical guidance. As a result, our study provides a
comprehensive empirical analysis of the intricate relationships between non-agricultural
employment, land transfer, and land efficiency. This research offers policymakers in China
and similar development environments valuable insights.

Section 2 above examines essential theoretical frameworks and the upcoming sec-
tions are arranged as follows. Section 3 provides background information and data
details. Section 4 discusses empirical methodologies. Section 5 demonstrates this research’s
empirical results, and Section 6 discusses the findings and policy implications; finally,
Section 7 provides concluding remarks.

3. Theoretical Analysis

Agricultural productivity is a multidimensional and comprehensive concept, en-
compassing land efficiency, labour productivity, cost–profit ratio, total factor productiv-
ity, and technological efficiency, among others (Fuglie, 2018) [24]. Given the relevance
of land efficiency to agricultural production and food self-sufficiency, this paper em-
ploys land efficiency as a measure of agricultural productivity and presents the following
theoretical framework.

H1. Non-agricultural employment has a negative impact on land efficiency.

Drawing on the existing literature, non-agricultural employment influences land
efficiency through at least three pathways (Figure 1):
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Figure 1. Theoretical mechanism for non-agricultural employment affecting land efficiency.

Firstly, non-agricultural employment can diminish land efficiency through the effect of
labour lost. China’s agriculture has long been characterised by a state of “overpopulation”
and serves as a quintessential example of “involutionary” agriculture (Zongzhi Huang,
2020) [25]. To sustain their livelihoods, rural households often rely on investing more labour
to increase output, often disregarding the opportunity costs of labour inputs. With the
rapid economic development in China and the increasing availability of non-agricultural
employment opportunities, a continually increasing number of surplus rural labourers
have migrated to urban areas over the past four decades, leading to a reduction of nearly
300 million agricultural labourers. This excessive loss of agricultural labour can result in
improper land cultivation due to labour shortages, leading to decreased land efficiency
(Gathala et al., 2021) [26].

Secondly, non-agricultural employment can reduce land efficiency by diminishing
the significance of agriculture in rural household economies. As the importance of agri-
culture diminishes, households may decrease their inputs into agricultural production.
Non-agricultural income could gradually shift towards diversification or even part-time
engagement in agriculture (Bai et al., 2022) [27]. Additionally, the rise in non-agricultural
income could potentially decrease the labour effort of family members left behind by
elevating the reservation wage and lowering the opportunity cost of leisure (Naiditch &
Vranceanu, 2009) [28].

Thirdly, non-agricultural employment reduces land productivity by altering the com-
position of the left-behind agricultural labour force. In agricultural production, the land
efficiency of the young and middle-aged population is relatively higher. The challenges
related to “ageing” and the impacts associated with a more excellent representation of
women in the labour force due to workforce outflows influence agricultural productiv-
ity outcomes (Roth et al., 2022) [29]. Elderly individuals, due to health conditions and
declining physical strength, as well as limitations in their cultural qualifications, tend to
reduce human capital and restrain agricultural scale management and technology progress
(Zhang et. al., 2023) [30]. The feminisation of agriculture can reduce agricultural productiv-
ity due to the lack of resources (Yan et. al., 2022) [31] and opportunities available to women
farmers (Kelkar, 2009) [32].

H2. Land transfer positively affects land productivity.
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Land is a crucial element in agricultural production. Land transfer influences house-
hold land efficiency through the following pathways (Figure 2).

Figure 2. Theoretical mechanism for land transfer affecting land productivity.

Land transfer enhances land efficiency through optimised resource allocation. Some
studies suggest that the establishment of land markets and the unrestricted flow of land
transfers can lead to a “levelling effect” by reallocating land from less efficient producers
to more efficient ones, thereby equalising the marginal output among households (Carter
and Yao, 2002) [33] and consequently increasing land efficiency. Scholars also point out
that the transfer of rural land contractual management rights can accelerate the process
of agricultural land scaling and intensification (Deng et al., 2022) [34], facilitating the
redistribution of capital and labour resources and ultimately enhancing productivity (Cao
et al., 2007) [35].

Land transfer enhances land efficiency through the operational scale. Multiple research
findings indicate that land transfer results in an expansion of the land operating scale. Most
studies confirm a ‘positive relationship’ between land transfer and land productivity, em-
phasising the enlargement of the land operating scale (Alfaro et al., 2008 [36]; Adamopoulos
and Restuccia, 2014 [37]). The primary mechanism is that the development of agricultural
scale is a prerequisite for achieving agglomeration effects within agricultural industries,
thereby positively impacting transaction efficiency and production efficiency. Additionally,
compared to small-scale farmers, large-scale farmers possess a greater resilience against
natural disasters, further contributing to an increase in efficiency (Zhou et al., 2020) [38].
The transfer of land might achieve the concentration of agricultural (Neguyen 1996) [39]
and enable producers to adjust the production scale to achieve a certain scale effect, thereby
improving the economies of scale.

H3. Land plot size plays a mediating role in the effect of land inflow on land efficiency.

H3a. Land inflow has a positive impact on land plot size.

H3b. Land plot size has a positive impact on land efficiency.

Land transfer improves land efficiency by alleviating land fragmentation. Land frag-
mentation, determined by the number of plots and the amount of land, can be detrimental
in agricultural production (Hartvigsen, 2014) [40]. Land transfer, especially land inflow, is
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expected to increase the average plot size and reduce land fragmentation, thereby enhanc-
ing land efficiency. Firstly, larger plot sizes enable farmers to distribute fixed costs (such as
purchasing and maintaining machinery) more effectively (MacDonald, Korb and Hoppe,
2013) [41]. This reduces the cost per unit of output, thereby increasing the production
efficiency (Roesch-McNally et al., 2017) [42]. Secondly, the increase in plot size allows
farmers to utilise advanced agricultural machinery and techniques, which are often uneco-
nomical or impracticable in small-scale production. Mechanisation significantly improves
operational efficiency and precision, reduces the demand for labour, and enhances land
output (Goyal and Singh, 2020 [43]; Javaid et al., 2022) [44]. Thirdly, larger plot sizes
enable farmers to implement crop rotation and planting strategies more effectively; this
can therefore improve soil quality, reduces pest and disease incidence, and thus enhances
long-term land efficiency (Shah et al., 2021) [45]. Lastly, farmers can organise labour more
efficiently on larger parcels, reducing the time and cost associated with transferring labour
between parcels, thereby increasing productivity (Roesch-McNally et al., 2017) [42].

4. Data Description

China is experiencing the most significant rural–urban labour migration in its history,
with an annual growth rate of 1% over the past four decades. This ongoing labour out-
migration phenomenon has exerted profound and far-reaching influences on land utilisa-
tion patterns and rural communities in China, offering a valuable opportunity to investigate
the implications of non-agricultural employment and land transfers on land efficiency.

The survey took place in 2019 in Zhejiang Province, China. Zhejiang Province is
located in the south-eastern coastal area of China and is part of the renowned “Yangtze
River Delta.” The province has a land area of 105,500 square kilometres. As of 2023, the
province’s population is 66.27 million, with the service industry dominating the econ-
omy. The per capita GDP is 125,000 CNY/person, ranking fourth in China. We select
Zhejiang Province as the research area for several reasons. Firstly, the province’s level of
agricultural modernisation ranks among the top in China. Secondly, rural–urban labour
transfer is widespread here. Thirdly, there is a diversity of land-transfer behaviours and
active innovation in land-management methods. Specifically, in terms of agricultural ma-
chinery and equipment, the comprehensive mechanisation level of crop cultivation and
harvesting reached 74.9% in the province in 2021, ranking at the forefront nationwide.
Regarding labour force transfer, Zhejiang Province has a high level of urbanisation, with
an urbanisation rate reaching 73.4% in 2022, far exceeding the national average of 65.22%.
The labour force transfer is active, and employment forms are diverse. In terms of land
transfer, Zhejiang Province has a developed land-transfer market, with a large area of land
under transfer and diverse transfer entities and forms. As of June 2020, the area of land
transferred through leasing, shareholding cooperation, and other means in the province
reached 11.2 million mu, with a land-transfer rate of 61.4%. In terms of innovation in
land-management methods, Zhejiang is a pilot area for professional cooperatives. The
number of new agricultural entities such as various agricultural enterprises, shareholding
cooperatives, and family farms has rapidly increased.

The subjects of the survey were agricultural practitioners and migrant workers re-
siding in rural areas. Agricultural practitioners include not only small-scale farmers
but also individuals from larger farms, cooperative members, and employees of agricul-
tural enterprises. We employed a stratified random sampling method for the selection
of both the study area and interview participants. Initially, we categorised the regions
into northern, central, and southern areas, considering the distribution of the agricultural
population. Subsequently, we selected five counties—Yuyao, Yinzhou, Xiangshan, Ninghai,
and Cixi—to represent these different geographical regions within the three areas, each
of which possesses unique characteristics in agricultural development. Within these se-
lected counties, we employed random sampling to choose 2 villages from each, resulting
in 10 villages. Finally, we randomly selected 30 rural households from each village for our
questionnaire-based interviews.
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The questionnaire survey was carried out through face-to-face interviews and encom-
passed various aspects. It collected information of four parts: First, personal and family
basic information, including family composition, age, education level, family income struc-
ture, expenditure, and employment details. Second, the land management and transfer of
the subjects’ households, including crop varieties, area, output value, production costs such
as machinery, labour, land, fertilisers, pesticides, and hired labour, as well as land-transfer
behaviour, area, method, amount, parties involved, and conflicts of interest. Third, social
aspects of the subjects’ lives, including housing, healthcare, network, employment, training,
etc. Fourth, the terrain, location, and economic development of the surveyed villages. The
questionnaire includes fill-in-the-blank, single-choice, multiple-choice, and scale questions.
The Likert scale method is used for subjective judgment questions. A total of 300 ques-
tionnaires were collected. After carefully reviewing and eliminating questionnaires with
incomplete or missing data, 274 valid questionnaires were retained (Table 1), resulting in a
questionnaire validity rate of 91.3%.

Table 1. Distribution of survey areas.

Province/City City/County
No. of

Townships
No. of Valid Questionnaires

Zhejiang Province
Ningbo City

Yuyao City 2 54
Yinzhou District 2 56

Xiangshan County 2 55
Ninghai County 2 54

Cixi City 2 55

Total 5 10 274

5. Empirical Strategy

5.1. Econometric Specification

Following the empirical methods of Li et al. (2010) [46] and Feng et al. (2010) [47], this
paper establishes the baseline model as follows:

Y = Ci + α1N + α2Ti + α3To + ∑ δiXi + εi (1)

Furthermore, we draw upon the approach of Jiang (2022) [48] and construct the follow-
ing model to test the mediating mechanism by which land transfer affects land efficiency:

Midi = β0 + β1Ti + β2Xi + Ci + εi (2)

Y = ϕ0 +ϕ1Ti +ϕ2Midi +ϕ3Xi + Ci + εi (3)

where Y represents the land efficiency; N represents the non-agricultural employment of
the households; Ti and To denote land inflow and land outflow, respectively; Xi represents
a set of control variables (as indicated in Table 2); Midi represents the mediating variable,
that is, the average land plot size; and εi is the error term.

Following the theoretical model presented in the second section of this paper and
drawing on relevant existing literature, the following variables are introduced:

The variable Y represents land efficiency, measured as RMB per mu of agricultural
profit in 2018. Land efficiency holds substantial significance in the context of agricul-
tural capacity and, by extension, plays a crucial role in influencing food self-sufficiency
within China (Qian and Hong, 2016) [49]. However, exploring its relationship with non-
agricultural employment and land transfer has been relatively underexplored in the existing
literature. Land efficiency, as quantified here, is calculated as the annual profit per unit of
land area (mu). It is calculated by deducting the cultivation costs, encompassing expenses
like seed costs, applied fertilisers, and land rent, from the total market value of the produce
categorised by crop type.
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Non-agricultural employment, represented by the variable N is the proportion of non-
agricultural labour to the total household labour force. This definition is drawn from Kung’s
research conducted in 2002 (Kung, 2002) [50]. Non-agricultural labour refers to individuals
who migrate to urban regions and participate in non-agricultural industries for six months.
This variable provides a means to quantify the extent to which households allocate their
labour resources between agricultural and non-agricultural sectors, a dimension that
holds relevance in understanding the dynamics of land efficiency and its association with
workforce migration and land transfer.

Table 2. Descriptive statistics (N = 274).

Variable Definition Mean
Std.
Dev.

Min.
Level

Max.
Level

Land efficiency Annual profit per mu of land in 2018 (yuan per mu,
log value) 3.34 0.33 2.68 4.40

Non-agricultural
employment

The ratio of non-agricultural labour to total
household labour (%) 49.85 31.59 0 100

Ti Land transfer—in, dummy variable (1 = The
household transfer-in land) 0.25 0.43 0 1

To Land transfer—out, dummy variable (1 = The
household transfer-out land) 0.20 0.40 0 1

Labour input
The ratio of the number of agricultural laborers to

actual cultivated land scale (person per mu,
log value).

−0.44 0.55 −2.66 0.78

Plot size The ratio of the total land scale at the end of the year
per household to the total numbers of plots (mu) 11.31 65.44 0.20 926.00

Machinery Annual expenditure on machinery (CNY, log value) 2.43 1.34 0 5.62
Gender of household head Gender of the household head (1 = male) 0.86 0.34 0 1

Age of household head Age of the household head 55.28 10.35 31 61
Education of

household head Schooling years of the household head 7.87 2.30 5 14.5

Agricultural training Count of family members who received the
agricultural training 1.71 0.46 0 3

Family average age Average age of the family 46.82 11.25 22.25 64.50
Proportion of female adults

in the household Share of female adults in household (%) 0.49 0.14 0 1

Family education Average years of schooling for family members 8.52 1.98 5.00 18.10
Village economy Annual income of the village (10,000 CNY) 4.04 0.20 3.66 4.65

Village transportation The time it takes to drive to the county centre (hour) 0.81 0.30 0.25 1.40

Ti and TO estimate the variable of land transfer. However, the analysis of land-transfer
behaviour cannot focus solely on whether households are engaged in land transfer; it also
necessitates examining whether farmers participate in land inflow or outflow. This study
employs dummy variables such as ‘participation in land outflow’ (To) or ‘participation in
land inflow’ (Ti) to provide a more precise measurement of their land-transfer behaviours
(Feng et al., 2010) [47].

Plot size is quantified by the ratio of the total land scale at the end of the year per
household to the total numbers of plots, which reflects the extent of land fragmentation.
Land fragmentation can be attributed to China’s resource endowment of high population
density and limited land resources, with the per capita arable land area being only about
one-third of the world average (Wu et al., 2015) [51]. It affects land efficiency by influencing
the allocation of other agricultural inputs. Land fragmentation refers to a household’s land
resources being divided into multiple spatially separated plots (Mcpherson, 1983) [52].

Xi incorporates a comprehensive set of control variables at the individual, household,
and village levels to elucidate the determinants of land efficiency. These variables encom-
pass various agricultural production factors, including labour input and machinery. By
accounting for these multifaceted characteristics and factors, the analysis aims to provide a
more robust and nuanced understanding of the factors influencing land efficiency within
the study context. Following existing literature, machinery input is represented by the cost
of renting agricultural machinery or the annual depreciation cost of owned agricultural
machinery for households (log value).
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Moreover, one anticipates that the gender, age, and educational attainment of the
household head, along with the demographic attributes and educational backgrounds of
other family members, are likely to influence this context.

Household Head Characteristics. The household head typically plays a pivotal role in
agricultural production decisions. This study defines the ‘household head’ as the ‘person
responsible for managing agricultural accounts.’ The gender, age, and educational years
of the household head influence agricultural production. A substantial body of literature
demonstrates that education and other forms of human capital yield significant benefits
in crop production (Jamison and Lau, 1983 [53]; Taylor and Martin, 2001 [54]). In the
model, we incorporate three variables for control: Gender of the household head, age of
the household head, and educational level of the household head.

Family Characteristics. Household decisions in agriculture often involve joint deci-
sions at the family level (Stark, 1991) [55]. Therefore, the human capital characteristics
of the household significantly impact decision-making processes. When assessing the
influence of non-agricultural employment on labour loss in agricultural production, it
becomes imperative to gauge the productivity of the remaining population. The ‘ageing’
effect resulting from labour outflow and the ‘feminisation’ effect may contribute to shaping
agricultural productivity (Szabo et al., 2021 [56]; Shweta, 2023 [57]).

Consequently, we consider four variables as indicators of household human capital
characteristics: Family education (average education level of family members), family
average age, proportion of female adults within the household, and number of individuals
receiving agricultural skills training (agricultural training). In alignment with the method-
ology utilised by the National Bureau of Statistics, family education is calculated using the
following formula: Family education = (P1 × 6 + P2 × 9 + P3 × 12 + P4 × 16)/P. Here,
Pi represents the number of family members with educational attainment at the primary,
middle, high school, or university and above levels. At the same time, P denotes the total
count of family members aged six years and older.

Village Characteristics. Previous studies in relevant contexts have seldom considered
the influence of village-level factors. However, village characteristics are likely to impact
household land efficiency. Therefore, this study incorporates the village’s economy and
transportation conditions as control variables. The village’s economy is assessed using the
operational income (in 10k Chinese yuan renminbi/CNY) of the village in 2018. Village
transportation is measured by the time (in hours) required to drive to the nearest county
centre from the village.

County. Substantial variations in land efficiency exist across diverse regions. The study
incorporates county dummy variables (county) to account for this factor. Explanations and
descriptive statistics are presented in Table 2.

5.2. Endogeneity

Endogeneity issues may exist among non-agricultural employment, land transfer,
and land efficiency. Firstly, non-agricultural employment could influence land transfer.
The higher the proportion of non-agricultural employment among household labour, the
more likely farmers are to engage in land transfer. Numerous studies confirm that non-
agricultural employment effectively stimulates the development of the land-transfer market
(Kung, 2002) [50]. Secondly, land transfer can also affect household labour allocation deci-
sions. Farm households involved in land transfer are more likely to have more agricultural
labour, potentially leading to a relatively smaller proportion of non-agricultural employ-
ment. Simultaneously, if the local land-transfer market is conducive to farmers transferring
out the land, the willingness for non-agricultural employment in that region might be
higher. Thirdly, potential sample selection bias and reverse causality issues should be con-
sidered. To elaborate, households with non-agricultural workers may exhibit a greater land
efficiency than those without such workers, as individuals with the highest agricultural
efficiency may transition to non-agricultural sectors to access higher income opportu-
nities. Conversely, there may be a counteracting bias suggesting that households with
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non-agricultural workers are inherently less productive. Therefore, we can only better
analyse the impact of non-agricultural employment and land transfer on household land
efficiency by effectively addressing endogeneity issues.

6. Research Results

The regression results are presented in Table 3. The effect of non-agricultural em-
ployment on land efficiency is positive, although not statistically significant. This implies
that the mechanism and direction of the effect of non-agricultural employment on land
efficiency are intricate. Amidst the interplay of negative and positive impacts, distinct
circumstances can result in diverse effects on land efficiency.

Table 3. Regression results for land efficiency (N = 274).

Land Efficiency

(1) (2) (3) (4)

Non-agricultural employment 0.000122 7.70 × 10−5 0.000104 0.000106
(0.000369) (0.000394) (0.000411) (0.000401)

Ti 0.155 *** 0.148 *** 0.151 *** 0.100 **
(0.0451) (0.0475) (0.0489) (0.0427)

To −0.00392 −0.00453 −0.00304 −0.00851
(0.0341) (0.0349) (0.0350) (0.0331)

Labour input 0.184 *** 0.185 *** 0.184 *** 0.204 ***
(0.0374) (0.0376) (0.0393) (0.0351)

Machinery −0.000535 −0.00121 −0.00149
(0.00143) (0.00143) (0.00140)

Gender of household head 0.00336 −0.000591 −0.000411
(0.00513) (0.00573) (0.00521)

Age of household head −0.0118 −0.0104 −0.00725
(0.0270) (0.0276) (0.0268)

Education of household head 0.00177 0.00185
(0.00134) (0.00136)

Agricultural training 0.0109 0.0466
(0.0906) (0.0886)

Family average age 0.00828 0.00634
(0.00784) (0.00718)

Proportion of female adults in
the household 0.381 ***

(0.0791)
Family education 0.134

(0.0886)
Village economy 3.291 *** 3.312 *** 3.213 *** 1.626 ***

(0.0355) (0.118) (0.158) (0.362)
Village transportation 0.000122 7.70 × 10−5 0.000104 0.000106

(0.000369) (0.000394) (0.000411) (0.000401)
County 0.155 *** 0.148 *** 0.151 *** 0.100 **

Constant (0.0451) (0.0475) (0.0489) (0.0427)
−0.00392 −0.00453 −0.00304 −0.00851

Note: *** and ** show significance levels at 1% and 5%.

The negative impact of non-agricultural employment on agricultural production is
discernibly manifested in what can be termed the “labour loss effect.” This effect reflects the
outcome of non-agricultural employment, contributing to negligence in agricultural produc-
tion and a reduction in family labour input, thereby adversely influencing land productivity
(Maharjan et al., 2013) [58]. Non-agricultural employment often results in migrating edu-
cated and technically skilled young adults from rural agricultural labour to non-agricultural
sectors (Uprety, 2019) [59]. Consequently, this migration reduces the profitability of agricul-
tural land production, ultimately resulting in a decline in land productivity.
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Simultaneously, as an indirect investment, non-agricultural employment serves as
a source of income for rural households while mitigating agricultural production risks
(Stark, 1982) [60]. Firstly, non-agricultural employment generates a positive compensatory
effect. The increase in non-agricultural income for rural households alleviates financial and
credit constraints that might impede their engagement in agricultural production activities
(Kirimi and Kirimi, 2006) [61]. It also stimulates rural households to invest in agricultural
productive assets, technology, and agricultural social services (Li et al., 2013 [62]; Jiang,
2022 [11]), thereby enhancing land productivity. Secondly, non-agricultural employment
enhances land productivity through risk-reduction mechanisms. By diversifying income
sources, non-agricultural income acts as an informal insurance system, enabling rural
households to self-finance their agricultural production endeavours and providing a safety
net against potential income risks (Lucas, 1987 [63]; Stark, 1982 [60]). In a more specific
context, non-agricultural income functions as a mechanism for rural households to manage
fluctuations in agricultural product prices and production. This, in turn, enables the transi-
tion to agricultural production patterns that support heightened land productivity (Damon,
2010) [64]. Furthermore, non-agricultural employment enhances rural households’ capacity
to access information. It improves their risk preferences, encouraging risk-averse rural
households to participate in high-yield but uncertain investments (Wouterse, 2010) [65].

In summary, the impact of non-agricultural employment on land productivity is
multifaceted, with both negative and positive dimensions. While the “labour loss effect”
is a notable negative consequence, the positive effects include the compensatory and risk-
reducing mechanisms associated with non-agricultural income, which can lead to increased
land productivity. The intricate interplay between these factors underscores the complexity
of the relationship between non-agricultural employment and land efficiency, necessitating
further research and analysis to discern the contextual nuances and policy implications.

Land inflow significantly and positively affects land efficiency, whereas the influence
of land outflow on land efficiency does not demonstrate statistical significance. The inflow
of land significantly contributes to the enhancement of land efficiency, which aligns with
the findings of Hongzhong Fan and Qiliang Zhou (2014) [66]. It is possibly attributed
to the allocation of land to the households with a comparative advantage in agricultural
production. Upon acquiring land, these households can make more investments on a
more concentrated scale; this, in turn, leads to a heightened production technology and
management proficiency, optimisation of land-utilisation methods, and the realisation of
economies of scale, thus resulting in an elevation in land efficiency (Wang et al., 2011 [67];
Qian et al., 2014 [49]).

Conversely, the impact of land outflow did not yield statistically significant results,
implying that land outflow has a limited influence on land efficiency; this could be at-
tributed to the fact that transferring out their land, farmers do not necessarily employ more
advanced agricultural machinery and equipment, while the land and labour quality remain
the same. Consequently, the configuration and quality of production factors remain akin
to the pre-transfer state, thereby causing the lack of a notable influence on land efficiency
following land outflow (Chen et al., 2011 [19]). Concerning the control variables, notable
factors include three variables: labour input, machinery, and the village economy.

More specifically, the labour input exhibits a positive influence on the land efficiency,
in line with the prevailing consensus in the literature (Cheng et al., 2019) [68] that a
heightened agricultural labour input can bolster land efficiency. This also indicates that
Chinese households are typical small-scale producers who rationally increase labour input
per unit of land to boost land efficiency, even though this is achieved at the cost of sacrificing
labour productivity (Huang, 2020) [25].

Machinery demonstrates a significant effect on land efficiency. The literature consis-
tently demonstrates a positive impact of machinery on land efficiency, underscoring the
pivotal role of mechanisation in augmenting land productivity (Bekchanov et al., 2021) [69].
Agricultural mechanisation brings several noteworthy advantages, including reducing
labour-intensive tasks, alleviating labour shortages, and improving productivity and timeli-
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ness in various agricultural operations. As mechanisation continues to advance, it leads to
the intensified substitution of capital and new technology for labour (Olasehinde-Williams
et al., 2020 [70]; Mdoda et al., 2022 [71]). This transition underscores the growing impor-
tance of machinery in agricultural processes, particularly in mitigating the dependence on
labour-intensive practices. Moreover, adopting advanced machinery further contributes to
the augmentation of land productivity (Damba et al., 2020 [72]). This outcome underscores
the transformative impact that modern agricultural machinery can have on agricultural
practices, ultimately resulting in increased efficiency and productivity in land use (Ignatov
et al., 2020) [73].

The village’s economy significantly and positively influences the land efficiency, un-
derscoring that the economic prowess of villages and collective economy entities positively
impacts land efficiency. In locales characterised by heightened village economic develop-
ment and a robust economic basis, collective economic organisations possess an increased
capacity to construct rural public infrastructure and provide public services. Such areas
typically boast well-established, advanced infrastructure, including robust road networks
and water facilities. When coupled, irrigation systems and rural roads demonstrate com-
plementary effects on labour while offering substitutive effects on fixed capital. This
infrastructure can effectively curtail agricultural production costs, significantly enhancing
land productivity (Shamdasani, 2021) [74].

This study further tests the land plot size’s mediating role in the effect of land inflow
on land efficiency. Column (1) of Table 4 shows that the coefficient for Ti is significantly
positive, indicating that land transfer can significantly increase the average land plot size
for farmers, allowing for improved rational planting decisions. Column (2) shows that the
Ti and plot size coefficients are significantly positive, suggesting that land transfer enhances
land efficiency by increasing the average plot size. Thus, it demonstrates the mediating
effect of the average land plot size, supporting Hypothesis H3.

Table 4. Test results of the mediating effect.

Variables
Plot Size

(1)
Land Efficiency

(2)

Ti 5.295 * 0.0916 **
(3.098) (0.0427)

Land scale 0.00161 *
(0.000975)

Controls ALL ALL
County fixed YES YES

Constant −49.23 1.705 ***
(55.81) (0.329)

Note: ***, **, and * show the significance level at 1%, 5%, and 10%.

6.1. Heterogeneity Analysis

After testifying to the positive impact of land transfer on land efficiency, this study
proceeds to conduct a heterogeneity analysis to identify the groups of farmers who benefit
the most and the least from land transfer. This section will examine the heterogeneous
impacts of land transfer on land efficiency across farmer groups, categorised by age, gender,
and technical guidance. It aims to provide a reliable basis for implementing policies to
enhance land efficiency and farmers’ welfare.

6.2. Heterogeneity across Age Groups

There are significant differences in the education and intentions embraced by farmers
of different ages, leading to variations in decisions related to cultivation and technology
adoption and ultimately affecting land efficiency. Therefore, this study further examines
the differences in land efficiency among farmers in different age groups after transferring
in land. Based on the three age categories of the sampled farmers, they are classified as the
new-generation farmers (below 51 years old), middle-generation farmers (51–60 years old),
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and the older-generation farmers (60 years and above). The study analyses the similarities
and differences in the regression coefficients of each group.

Table 5 presents the heterogeneous impact on land efficiency after transferring in land
for different age groups, as indicated by Columns (1), (2), and (3). The regression results
indicate a significantly positive effect of transferring in land on land efficiency for both the
new-generation and middle-generation farmers, with a larger impact on the land efficiency
of the middle-generation farmers. However, there is no significant impact on the land
efficiency of the older-generation farmers. The new-generation and middle-generation
farmers tend to have higher levels of education, making them more willing and able to
adopt and apply new agricultural technologies, cultivation methods, or market information.
This contributes to an improvement in land efficiency and crop quality. On the other hand,
the older-generation farmers are often accustomed to traditional agricultural production
methods and technologies, exhibiting lower levels of acceptance and application of new
technologies and methods, thereby limiting the improvement of land efficiency.

Table 5. Heterogeneity analysis.

Variables

Age Group Gender Group Technical Guidance Group

New
Generation

(1)

Middle
Generation

(2)

Older
Generation

(3)

Male
(4)

Female
(5)

Provided
(6)

Not
Provided

(7)

Ti 0.102 * 0.202 * 0.0402 0.0736 * 0.310 0.158 * 0.0659
(0.0577) (0.108) (0.0670) (0.0444) (0.240) (0.0797) (0.0487)

Controls ALL ALL ALL ALL ALL ALL ALL
County fixed YES YES YES YES YES YES YES

Constant 1.573 ** 1.572 * 1.760 *** 1.604 *** 2.190 ** 3.489 *** 1.063 ***
(0.596) (0.832) (0.507) (0.393) (1.005) (0.726) (0.396)

Observations 96 74 104 236 38 76 198
R2 0.629 0.856 0.828 0.791 0.872 0.579 0.815

Note: ***, **, and * show the significance level at 1%, 5%, and 10%.

6.3. Heterogeneity across Gender Groups

Different gendered farmers bear distinct social and family role expectations, facing
varied avenues of resource acquisition, development capabilities, and decision-making en-
vironments, thereby influencing land efficiency. Consequently, this study further examines
the differences in land efficiency among farmers of different genders after transferring in
land. Based on the gender characteristics of the household head, farmers are categorised as
male or female, and the similarities and differences in the regression coefficients of different
gender characteristics are analysed.

In Table 5, Columns (4) and (5) report the heterogeneous impact on land efficiency
after transferring in land for different gendered farmers. The regression results indicate that
transferring in land has a significantly positive impact on land efficiency for male farmers,
while it does not have a significant impact for female farmers. In traditional Chinese
rural society, male farmers are typically regarded as the primary economic backbone of
the family, more easily accessing new agricultural technologies, cultivation methods, and
agricultural training. This contributes to the improvement of their production skills and
land-management capabilities, ultimately enhancing land efficiency. Female farmers, due to
certain levels of gender discrimination or traditional customs, may simultaneously bear the
dual responsibilities of agricultural production and household care. This limits their time
and energy investment in agricultural production, with fewer opportunities for agricultural
training, ultimately restricting the improvement of land efficiency.

6.4. Heterogeneity across Technical Guidance Groups

After farmers transfer in land, whether they receive technical guidance plays a crucial
role in enhancing land efficiency. Therefore, this study further examines the differences
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in land efficiency based on whether farmers receive technical guidance after transitioning
to agriculture. This is defined based on the questionnaire question “Have you received
technical guidance or field guidance during production?”. Specifically, receiving technical
guidance or field guidance is assigned a value of 1, while not receiving it is assigned a
value of 0. The study further analyses the similarities and differences in the regression
coefficients of different technical guidance characteristics.

In Table 5, Columns (6) and (7) report the heterogeneous impact on land efficiency
after farmers transfer in land based on whether technical guidance is provided. The regres-
sion results indicate that providing technical guidance or field guidance to farmers after
transitioning to agriculture has a significantly positive impact on land efficiency, while
not providing technical guidance does not have a significant impact. The government
and agricultural-related departments mainly provide technical guidance to farmers who
transfer in land. On the one hand, this can offer knowledge and skills in areas such as
the latest agricultural practices, crop management, soil conservation, and water resource
management, using more advanced scientific methods to improve land output. On the
other hand, it can provide farmers with advice on aspects like market analysis and crop se-
lection, helping them to plant crops that are marketable and in demand, thereby increasing
land efficiency.

6.5. Robustness Test

The consideration of endogeneity in this study encompasses the potential issues
of omitted variable bias and collinearity. Firstly, in terms of omitted variable bias, the
model presented here incorporates variables such as labour input, machinery, household
head characteristics, family characteristics, village characteristics, and county-level factors
through a stepwise approach. As these variables are progressively included, the coeffi-
cients and significance of the crucial variables in the model remain relatively stable. This
observation underscores the robustness of the regression results derived in this study and
validates the rationality of the empirical specification. For future research, incorporating
instrumental variables could further enrich the scope of the investigation.

To address collinearity concerns, this study computes the variance inflation factor
(VIF) post-regression, as illustrated in Table 6. The highest VIF recorded is 3.33, notably
below the threshold of 10. This finding signifies the absence of multicollinearity concerns
among land transfer, non-farm employment, and the other primary variables.

Table 6. Variance inflation factor (VIF) values in the model.

Variable VIF 1/VIF

Non-agricultural employment 1.37 0.73
Ti 2.41 0.42
To 1.43 0.70

Labour input 3.15 0.32
Land scale 3.33 0.30
Plot size 2.58 0.39

Machinery 1.53 0.66
Gender of household head 1.15 0.87

Age of household head 1.76 0.57
Education of household head 1.90 0.53

Agricultural training 1.25 0.80
Family average age 1.97 0.51

Proportion of female adults in
the household 1.09 0.92

Family education 1.99 0.50
Village economy 1.48 0.67

Village transportation 2.50 0.40

Mean VIF 2.00
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7. Discussion

7.1. Main Findings

Firstly, the impact of non-farm employment on land efficiency in rural households is
not statistically significant. This result is inconsistent with the findings of Nguyen et al.
(2021) [75]. This inconsistency may be due to the complex mechanisms through which
non-agricultural employment affects land efficiency, involving both negative and positive
impacts. The negative impact primarily arises from the labour-loss effect generated by
rural–urban labour transfer, leading toa neglect of agricultural production, reduction in
household labour, and decline in labour quality, ultimately resulting in a decrease in land ef-
ficiency. The positive impact mainly comes from the compensatory effect of non-agricultural
income and risk-reduction effect (Uprety, 2019) [59]. Specifically, non-agricultural income
in rural households can alleviate the credit constraints faced by agricultural production.
Additionally, by diversifying their sources of income, it enhances the resilience of rural
households against risks, facilitating them to make scientific and reasonable planting de-
cisions, thereby improving land productivity (Damon, 2010 [64]). The intricate interplay
between these negative and positive factors underscores the complexity of the relationship
between non-agricultural employment and land efficiency, necessitating further research
and analysis to discern the contextual nuances and policy implications.

Secondly, unlike previous studies, this paper subdivides land-transfer behaviour into
land outflow and inflow. The empirical results indicate that land inflow can significantly
increase land efficiency, while land outflow does not have a significant impact. Land inflow
shows a significant positive effect on land efficiency, consistent with the findings of Chavas
et al. (2022) [76]. This may be attributed to reallocating land to households with relative
advantages in agricultural production. These households, after acquiring land, can operate
at a moderate scale, which helps to improve production techniques and management skills,
achieve economies of scale, and ultimately enhance land efficiency (Daymard, 2022) [77].
Conversely, land outflow does not significantly affect land productivity, possibly because
farmers, after transferring land out, do not use more advanced agricultural machinery and
equipment. Additionally, the land and labour quality remain unchanged, meaning that the
configuration and quality of production factors remain similar to before the transfer, thus
not significantly increasing land efficiency.

Thirdly, this paper employs a mediation model to empirically examine the mechanism
through which land inflow affects land efficiency. The study finds that land inflow enhances
land efficiency by reducing the degree of land fragmentation and increasing the average
size of land plots. The plausible rationale behind this phenomenon is rooted in the fact
that agricultural production necessitates labour input and the significant utilisation of
machinery, chemical applications, biotechnological inputs, and the like. Farmers with
smaller plots often experience the loss of agricultural inputs. Specifically, small plots reduce
fixed asset efficiency and constrain the construction of farmland infrastructure, which is
indivisible in agriculture. Due to increased boundaries and ridges between small and
dispersed plots, irrigation efficiency falls. Agricultural operation time is wasted, leading
to poor field management (Lu et al., 2018) [78]. Furthermore, the presence of small and
dispersed land plots has a notable impact on the adoption of machinery and modern
agricultural technologies, necessitating farmers to allocate additional resources in terms of
labour, time, and psychological efforts (Wei, 2015) [79]. Conversely, following the inflow of
land, the fragmentation level of land diminishes, increasing the plot size. This enlargement,
in turn, stimulates the utilisation of production factors such as labour, technology, and
machinery (Foster and Rosenzweig, 2022 [80]), reduces overall production costs, and
improves technical efficiency (Orea et al., 2019 [81]).

7.2. Policy Implications

Firstly, the impact of non-farm employment on land efficiency in rural households
remains uncertain. Given the substantial disparities in factors such as land endowment,
industrialisation, and urbanisation across various rural areas in China, it becomes impera-
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tive to continue promoting agricultural labour migration while concurrently enhancing
supporting measures. This approach will allow capable and motivated professional farmers
to leverage their positive influence fully. Additionally, careful consideration must be given
to the potential adverse effects of excessive labour migration on land utilisation. Employing
flexible strategies like demonstration and guidance can encourage resident farmers to adopt
new agricultural machinery and production techniques, thereby enhancing land efficiency.

Secondly, as land transfer becomes more prevalent, the land efficiency of households
who transfer out land remains mainly unaffected, while land inflow positively impacts
increasing land output. Therefore, to enhance land efficiency, efforts should be focused on
facilitating smooth land transfers, promoting the development and prosperity of rural land
markets, and guiding land transfer towards new forms of agricultural operators, such as
skilled farmers, family farms, and agricultural cooperatives. Measures must be taken to
encourage land transfer and enhance allocative efficiency by equitably distributing land
and labour resources among farmers with varying land–labour endowments.

Thirdly, land inflow contributes to the enhancement of land efficiency through the
mediating mechanism of increased land plot sizes and reduced fragmentation. Therefore,
while guiding the expansion of land scales, a greater emphasis should be placed on consoli-
dating and reorganising fragmented land, creating substantial and well-managed parcels
of arable land. This entails achieving concentrated and contiguous transferable land blocks,
ensuring level plots and providing adequate supporting facilities. Simultaneously, proac-
tive efforts should be undertaken to advance the construction of high-standard farmland,
creating a favourable environmental foundation for intensive agricultural management
and promoting the transformation and development of agriculture.

8. Conclusions

Rural–urban migration and land transfer play a crucial role in land utilisation and
agricultural production in China. This study, based on data from 274 on-site surveys in
Zhejiang Province, examines the impact mechanisms of non-agricultural employment and
land transfer on land efficiency and provides a profound explanation of the underlying
mechanisms. In contrast to previous research, our approach integrates non-agricultural
employment and land transfer into one econometric model to comprehensively investigate
their combined effects on land efficiency. Additionally, we carefully examine the diverse
impacts under different land-transfer modes. The results indicate that the impact of non-
agricultural employment on land efficiency is not significant, contrary to existing research
findings. This complex outcome arises from the dual nature of its impact mechanisms,
namely the negative effect of labour loss and the positive effect of remittances. The inflow
of land significantly enhances land efficiency, while the outflow of land has an insignificant
impact. Furthermore, this study demonstrates the mediating effect of land plot size in the
impact of land inflow on land efficiency, providing additional insights into the mechanism.
Moreover, we investigates the heterogeneous effects among different groups such as age,
gender, and technical guidance in this process. Based on the conclusions, the following
policy measures are explored.

Although our study offers insights into the effects and mediating mechanism of rural–
urban labour transfer and land transfer on land efficiency, it has limitations that need to be
addressed. Firstly, when rural–urban migrant workers find employment in other places,
they no longer consume food at home. This may serve as another significant impetus
for rural–urban labour transfer among impoverished rural households (Van der Geest,
2010) [82], directly impacting the agricultural productivity of the household (Shi et al.,
2011) [83], but it is not included in the theoretical framework. Due to the lack of data
on individual food consumption, we are unable to study this factor separately. Secondly,
the empirical outcomes of this research indicate that non-agricultural employment has
not demonstrated a statistically significant influence on land efficiency. This divergence
from the findings of Taylor et al. (2003) [84] and Shi (2018) [85] highlights a potential
inconsistency. It is plausible that this incongruity could stem from the study’s omission of
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a differentiated and individualised examination of the diverse modes within the realm of
non-agricultural employment. This paper provides a preliminary explanation of this issue
but does not delve into detailed empirical analysis.

To address the above issues, future research should focus on detailed classification of
non-agricultural employment, distinguishing between seasonal and long-term transitions.
Through this approach, it is feasible to meticulously investigate the distinct pathways and
orientations through which various migration modes impact land efficiency. To navigate
this intricate landscape, prospective research endeavours may find merit in deconstructing
the facet of non-agricultural employment into discrete categories of seasonal and long-term
transitions. This nuanced approach could facilitate a meticulous examination of their
divergent trajectories and the diverse impacts they impart on the intricate tapestry of
land efficiency.
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Abstract: This paper establishes an evaluation system based on the low-carbon intensive land use in
Jinan city from 2010 to 2017 and uses a multi-attribute approach named grey fuzzy integral to build
the evaluation model. In this model, based on the Mobius transformation coefficient of subjective
and objective weights of index factors and the interaction degree between index factors, 2-additive
fuzzy measures can be obtained; therefore, evaluation of low-carbon and intensive land use in Jinan
city is processed by combining the grey correlation degree and Choquet fuzzy integral. The results
show that in the study period, land input intensity, land use degree, land output benefit and land
sustainability in Jinan city all show a good upward trend, but the low-carbon land use level of has
been in a declining state. Although there is a good development trend of low-carbon and intensive
land use in Jinan, the state is not stable. A Low-carbon and intensive land use pattern will not be
achieved completely overnight, and it is bound to be a dynamic game process.

Keywords: the grey fuzzy integral; low-carbon; intensity; land use

1. Introduction

Science has allowed us to find new sources of energy, new raw materials, better
machinery and new methods of production. Nanotechnology, genetic engineering and
artificial intelligence can redefine “production” and resource shortages may be overcome,
but the real enemy of the modern economy is ecological collapse. Ecological collapse
would lead to economic collapse, political instability and a decline in living standards
that could threaten the very existence of human civilization [1]. One of the causes for
ecological collapse is greenhouse gas emission, especially carbon emission, which causes
global warming. Most scholars and a growing number of politicians have begun to realize
the reality and extent of the danger of global warming. There is extensive discussion
about global warming, but when it comes to reality, humans are unwilling to make real
economic, social or political sacrifices to stop the scourge. Instead of reducing greenhouse
gas emissions from 2000 to 2010, it grew at an annual rate of 2.2%, whereas, during
1970–2000, its annual growth rate was only 1.3% [2]. The Kyoto Protocol, a 1997 agreement
to reduce greenhouse gases, aims only to slow rather than stop global warming, but the
US, the world’s largest polluter, refuses to sign up and makes no attempt to significantly
reduce greenhouse gas emissions for fear of hindering its economic growth [3,4]. The
Paris Agreement on global climate governance, which entered into force on 4 November
2016 and had been signed by 195 countries and ratified by 190 countries on January 2021,
is no less than a binding and universal agreement. This agreement is designed to limit
greenhouse gas emissions to levels that would prevent global temperatures from increasing
more than 2 ◦C (3.6 ◦F) above the temperature benchmark, which is set before the beginning
of the Industrial Revolution, but the measures necessary to achieve this goal have been
put off until 2030, or even the second half of the 21st century [5]. So far, neither comments
nor related seminars, summits nor agreements on global warming have been able to curb
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global emissions of greenhouse gases. The Emission Database for Global Atmospheric
Research (EDGAR) [6] shows that emissions fell only during periods of economic crisis
and stagnation. The small and obvious decline in greenhouse gas emissions between 2008
and 2009 was caused by the global financial crisis and not the Copenhagen Accord, which
was proclaimed in December, 2019. A viewpoint is that the only sure way to stop global
warming is to stop economic growth; however, no government would want to do that at the
expense of people’s material well-being [1]. Therefore, finding ways to sustain economic
growth and at the same time mitigating greenhouse gas emissions is particularly important
and rewarding.

Since human behaviors on land and the maintenance and transformation of land use
are the main sources of terrestrial carbon emissions [7], and regional land use change has a
great impact on the carbon emissions from land use [8,9], analyzing the change of carbon
emissions caused by land use from the perspectives of “low carbon” and “intensity” is
conducive to optimizing the allocation of land resources and controlling regional carbon
emissions to a certain extent. Additionally, there has been a growing consensus in the litera-
ture that climate change mitigation efforts should be location-based, especially in the midst
of urbanization since there are no universal strategies that are guaranteed to be effective
in all settings as local geography, demography, resources, cultural values, etc. [10,11]. At
the same time, feedbacks among the aspects of sustainability, for example, the Sustainable
Development Goals (SDGs), adopted by the United Nations as part of its 2030 Agenda,
have to be considered in policymaking and implementation [12–14].

As for the researches on mitigating carbon emission, there are several aspects, such as
investments and stocks, carbon strategy, carbon trade, low-carbon transition, low-carbon
land usage and other aspects.

From the aspect of investments and stocks, Choi D, Gao Z and Jiang W [15] proposed
that in financial markets, stocks of carbon-intensive firms underperform firms with low
carbon emissions in abnormally warm weather. Monasterolo I and De Angelis L [16]
indicated that stock market investors have started to consider low-carbon assets as an
appealing investment opportunity after the Paris Agreement but have not yet penalized
carbon-intensive assets. Schoenmaker D [17] found that a low carbon allocation can be done
without undue interference to the transmission mechanism of a monetary policy. Liu P and
Qiao H [18] studied carbon asset stranding risks under climate policy. Benz L, Paulus S,
Scherer J, et al. [19] examined the exposure to and management of carbon risks of different
investor types. Cheng S and Qi S [20] assessed the potential of carbon-intensive sectors and
non-carbon-intensive sectors in attracting China’s Foreign Direct Investment to identify
the major determinants of investment, as well as to inform China’s investment policy, and
render positive contributions to the Green Belt and Road Initiative based on location and
sector information. Sun X, Fang W, Gao X, et al. [21] indicated that the carbon market is
an important mechanism to promote carbon reduction, and the document announcing the
formal launch of China’s carbon trading system prompted the dominant market of their
causality shifting from carbon market to stock markets.

Some researchers discuss low-carbon from the perspective of companies’ behav-
iors on carbon strategy and voluntary carbon disclosure (VCD). Moussa T, Allam A,
Elbanna S, et al. [22] provided evidence of the mediating effect of carbon strategy on the
relationship between board environmental orientation (BEO) and carbon performance.
Abd Rahman NR, Rasid SZA, and Basiruddin R [23] investigated the quality of VCD in
the annual report of publicly listed Malaysian companies operating in carbon-intensive
industries and suggested that VCD practices of these public listed companies are more
symbolic rather than, and to have carbon disclosure regulated and independently assured
is necessary. Lu W, Zhu N and Zhang J [24] investigated the impact of carbon disclosure on
financial performance and put forward policy recommendations for the construction of
China’s carbon disclosure system.

Some research has been conducted on the aspect of carbon trade. Hotak S, Islam M,
Kakinaka M, et al. [25] addressed how carbon trade balances relate to carbon emissions
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under a globalized world with fragmented production. Sun C, Chen L, and Zhang F [26]
explored the embodied CO2 emission effect by measuring the marginal net trading em-
bodied CO2 emissions and decomposing the exporting embodied CO2 emissions from the
international division perspective. Ji C-J, Hu Y-J, Tang B-J, et al. [27] discussed the price
drivers in Chinese carbon emissions trading scheme pilots and provided policy implications
for the development of pilots and the national carbon market. Ma N, Yin G, Li H et al. [28]
investigated the economic and environmental effects of four possible industrial carbon
tax rate models under carbon intensity constraints from 2021 to 2030 by a dynamic input–
output optimization model to calculate the optimal industrial carbon tax for China, which
is subject to certain constraints.

Progress in and methods of low-carbon energy transition and energy technology inno-
vation are still discussed popularly. Wang J, Hu M, Tukker A, et al. [29] aimed to investigate
the potential contribution of regional convergence in energy-intensive industries to CO2
emissions reduction and to meeting China’s emissions goals. Du W and Li M [30] analyzed
the influences of environmental regulation on the low-carbon transformation of China’
foreign trade from the perspective of export enterprises’ dual margin and pointed out that
government departments in China should improve and develop environmental policies
and further strengthen environmental monitoring capabilities to achieve the structural
adjustment and low-carbon transformation of China’s foreign trade. Rosenloom D and
Rinscheid A [31] structured the fragmented strands of research engaging with the pur-
posive decline of carbon-intensive systems and their components (e.g., technologies and
practices), interrogating the role it may play in decarburization. Considering that energy-
intensive industries are the primary sectors of energy and resources consumption and
carbon emissions, and exploring the temporospatial pattern and influencing factors of car-
bon emission efficiency (CEE) of energy-intensive industries helps discover the contribution
of energy-intensive industries to regional carbon emissions and formulate different regional
low-carbon industry development strategies, Zhu R, Zhao R, Sun J et al. [32] estimated the
CEE of the energy-intensive industries of China from the provincial level using a three-stage
data envelopment analysis (DEA) model and analyzed the temporospatial distribution and
influencing factors of CEE by spatial autocorrelation analysis and Tobit model. Dong K, Ren
X, and Zhao J [33] found that low-carbon energy transition shows significant bidirectional
causality with energy poverty alleviation and provided an important reference for the
government to formulate relevant policies that promote the alleviation of energy poverty.
In the context of achieving carbon neutrality, Zhao D and Zhou H [34] quantitatively ex-
plored the relationships among livelihoods, technological property constraints, and the
selection of low-carbon technologies by farmers to promote agricultural modernization and
carbon neutrality in the agricultural sector of China. Wang X, Liang S, Wang H et al. [35]
analyzed the impact of fossil fuel price distortions on low-carbon transitions. The level
of price distortions in coal, gasoline and diesel was evaluated based on which of the CO2
mitigation potentials in China’s Energy intensive industries (EIIs) were estimated and
revealed that there is still much room for improvement in China’s fossil fuel market reform.
Through constructing the embodied carbon emission networks through industrial linkages
and identifying the key nodes and paths of carbon risk transmission under low-carbon
transition, Han M, Liu W, and Yang M [36] provided practical quantified supports and
policy implications for the sustainable low-carbon transition and potential risk prediction
related to China’s energy-intensive industries. Xin L, Sun H, Xia X, et al. [37] examined
the mechanism, spatial spillover effects, regional boundaries, and industry heterogeneity
of renewable energy technology innovation (RETI) on manufacturing carbon intensity
(MCI) using the spatial Durbin model and the findings provide empirical evidence for
formulating targeted and differentiated policy in manufacturing low-carbon development.

Some researchers focus on the low-carbon land usage. Since the development of
low-carbon agriculture is promising for mitigating climate change, Wang Z-b, Zhang J-z,
Zhang L-f [38] used adjustments to the planting structure in Zhangbei County, China, as
an example to evaluate whether the carbon footprint per unit of economic benefit is a
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suitable indicator of low-carbon agriculture and to determine if low-carbon agriculture is
not necessarily low-input non-intensive agriculture. Wang J, Xue D, Ma B and Song Y [39]
investigated and analyzed the intensive and agricultural carbon emission levels and their
coupling coordinated development types of five provinces in Northwestern China by
setting up the index system of intensive use of arable land and the agricultural carbon
emission, and using the coupling coordination model and ArcGIS spatial analysis method.

Carbon neutrality is such popular an issue that a wide range of relevant aspects are
discussed. For instance, since the decarbonization of energy-intensive systems (e.g., heat
and power generation, iron, and steel production, petrochemical processes, cement pro-
duction, etc.) is an important task for the development of a low-carbon economy, Cormos
A-M, Dragan S, Petrescu L et al. [40] calculated, compared, and discussed the most signifi-
cant technoeconomic and environmental performance indicators of various fossil-based
industrial applications that have been decarbonized by two reactive gas–liquid (chemical
scrubbing) and gas–solid CO2 capture systems. Nurdiawati A and Urban F [41] analyzed
various technological trajectories and key policies for decarbonizing energy-intensive
industries and concluded that it may be technically feasible to strongly decarbonize energy-
intensive industries by 2045, given financial and political support. At the same time, carbon
storage by plants is explored, for example, Roman M, de los Santos CB, Roman S et al. [42]
researched sea grass carbon stocks and influence factors.

In conclusion, research on mitigating carbon emission is prosperous, and the research
on land use is otherwise relatively absent internationally. Therefore, the research on
evaluating land use pattern and providing some recommendations for low-carbon land
usage could contribute to the endeavors of mitigating carbon emission and, at the same
time, enriching the relevant research area.

Since China, as a populous country, has been undergoing a rapid and extensive
urbanization process, which is in parallel with economic growth and rising material living
standards, how to use the valuable land resources in a way that could mitigate carbon
emissions is now an urgent issue. Since the intensive land use could attribute to carbon
emission mitigation, this research picks out the intensity of land use as a parallel dimension
together with the dimension of low-carbon. This paper uses Jinan city in Shandong
Province as a case study to provide empirical evidence of land use on the two dimensions
of low-carbon and intensity to forecast the healthy land use prospects and possibilities of
mitigating carbon emission.

In the multi-attribute comprehensive evaluation area, the grey comprehensive eval-
uation method is one of the conventional approaches, which integrates grey correlation
numbers by using linear weighted average operator. Its advantages are that the analytical
logic is clear, the loss caused by data asymmetry can be reduced to a large extent, and the
requirements for sample data and distributions are low, therefore, this approach can greatly
reduce the workload, whereas it assumes that the attributes of the object to be evaluated
are independent from each other, which is difficult to exist in real life.

However, in the fuzzy integral based on fuzzy measures, the Choquet integral of
the nonlinear integration operator can fully consider the interaction between attributes;
therefore, the grey comprehensive evaluation method, fuzzy measure and fuzzy integral
are organically combined in this research to establish a complete, scientific and reasonable
evaluation system, named the grey fuzzy integral evaluation model, to apply to multi-
attribute decision-making.

This multi-attribute approach is adopted to build the low-carbon and intensive land
use evaluation model. This approach of combining advantages of grey relational degree and
fuzzy integral, provides a new method of evaluation with a tolerance for the inconsistency
of indicators. The results show that although there is a good development trend of low-
carbon and intensive land use in Jinan, the state is still dynamic. The transformation of
land use pattern from the extensive “high consumption and high emissions” one to the
intensive “low consumption, low emission, high benefit” one would not be accomplished
completely overnight, and it is bound to be a dynamic game process.
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On the basis of the results of the study, this article puts forward the corresponding
policy recommendations for low-carbon and intensive land utilization of Jinan. Since global
society gradually adopts a new perspective of quality of life and sufficiency standards of
service under a number of complex social, climate, disaster and unpredictable risks [43],
this theoretical approach can be used by other cities, regions or nations for reference.

2. Materials and Methods

2.1. Study Area

Jinan is located in the mid-west of Shandong Province, bordering Mount Tai in the
south and the Yellow River in the north. Since the Ming Dynasty in China’s history, Jinan
has always been the capital of Shandong Province, which is a big economic province in
the east coast of China. After the founding of the People’s Republic of China, besides
being the capital of Shandong Province, Jinan has also become one of the 15 subprovincial
cities of China; the central city in the south of Bohai Rim region; the political, economic,
cultural, educational, transportation and science and technology center of the province; and
the core city of the Shandong Peninsula city group and Jinan metropolitan circle. Besides
being a provincial capital city with political status and so on, Jinan is also a historical and
cultural city with a splendid civilization. It is one of the famous historical and cultural
cities in China, with its beautiful natural scenery and numerous scenic spots. According to
historians, there have been traces of human activity since as early as 45 centuries BC, and
the city is also the birthplace of prehistoric Longshan culture. Even more distinct about
Jinan is its unique geological structure, which makes it a spring enrichment zone with the
most famous Spouting Spring group; therefore, Jinan is also known as the Spring City.
Since the ancient city of Jinan is built on the spring group, spring water is not only used for
living, but also for city defense and other functions. The moat surrounding the old city of
Jinan is the only river formed by the confluence of spring water in China. In addition to the
unique rich spring group, there are three major water systems: Yellow River and Xiao Qing
River together with the famous Da Ming Lake. Besides water resources, Jinan is also rich in
mineral, forest, planting and breeding resources, which has laid a solid material foundation
for Jinan’s economic development and urban and rural construction [44].

At the same time, Jinan is also one of the important cities for the emergence and
development of modern industries in China. It occupies a pivotal position in the whole
country and has a very rich industrial heritage. It is also required by the planning and
layout of traditional industry to be classified as an industrial zone [45].

As a city with the mixed statuses of politics, economies, historical culture, natural
landscape, transportation, etc., the land use of Jinan confronts the complex conflicts of
different expectations; therefore, it is a typical example for the research in the urbanization
process of China.

Figure 1 illustrates the geographical location of Jinan in Shandong Province together
with the rough land use categories. Unlike the previous statistical caliber, since 2010, the
relative standards of classification for statistics of land use in Jinan have been divided
into eight categories, including cultivated land, garden, forest, grass, urban village and
industrial and mining land, transportation land, land for water and facilities as well as other
land, which is roughly consistent with the first-level standard of Land Use Classification [46]
edited by Ministry of Land and Resources and jointly issued by General Administration
of Quality Supervision, Inspection and Quarantine of the People’s Republic of China and
Standardization Administration in 2007; therefore, to ensure the uniformity of data, the
starting year of this study was set as 2010.
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Figure 1. Land use plan of Jinan (2006–2020) by Jinan Urban Design Institute.
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In 2017, the Shandong provincial government issued the Development Plan for Shan-
dong Peninsula Urban Agglomeration (2016–2030), which clearly aims to make the Jinan
metropolitan circle and Qingdao metropolitan circle better and stronger, supports Jinan
and Qingdao in building national central cities, and includes Laiwu city into the Jinan
metropolitan circle [47]. After that, on 26 December 2018, the state council approved the
adjustment of Laiwu’s administrative division in Shandong Province, abolishing Laiwu
city and putting the area under the jurisdiction of Jinan city [48]; therefore, the relevant
introduction of the study area in this paper is limited to the area before the zoning adjust-
ment of Jinan city, and the termination year is set as 2017; the data is up to the statistical
results in the 2018 edition of relevant yearbooks.

2.2. Data Sources and Processing
2.2.1. Changing Trend of Land Use Categories in Jinan

The socio-economic data of this study are mainly from the China Statistical Yearbook
(2011–2018), Shandong Statistical Yearbook (2011–2018) and Jinan Statistical Yearbook
(2011–2018). The relevant data are calculated according to the definition of index factors.
Additionally, the weights and measures used in the yearbook are all international standard
units of measurement, and the statistical caliber includes Jinan urban area, Pingyin County,
Jiyang County and Shanghe County.

The data of land use type area change from 2010 to 2017 were collected from the Jinan
Statistical Yearbook from 2011 to 2018. After analyzing the data obtained (Table 1), it can
be seen that from 2010 to 2017, the value of cultivated land area in Jinan City showed a
downward trend on the whole and only picked up a little in 2013; however, it returned
to a continuous decline in 2014, with the largest decline in 2014–2015. From 2015 to 2016,
the total area of cultivated land continued to decline, but slightly slowed down. During
2016–2017, the decline increased again. In addition, the area of garden land, forest land and
grassland also showed a sharp downward trend year by year, especially during 2012–2013.
After the growth period of 2010–2011, the land area of water and water conservancy facilities
also entered a state of decline year by year. At the same time, the overall area of urban and
village land, industrial and mining land, and transportation land showed an increasing
trend year by year. The area of urban, village, industrial and mining land was the inflection
point in 2014, and there was a trend of slowing growth before 2014. After 2014, there was a
significant increase, especially during 2014–2015 and 2016–2017. Transportation land also
only changed during 2012–2013 and recovered with a large increase after a relatively small
reduction. After a sharp decrease year by year, the area of other land gradually rose in
2013 as the inflection point and the sharpest rising happened during 2013–2014, then the
rise slowed down. After that, there was an inflection point in 2016, and a decreased trend
happened significantly again during 2016–2017.

Table 1. Area change of land use categories in Jinan 2010–2017 (Unit: Hectare).

Year

Category
Cultivation Garden Forest Grass UIM Transportation Water and Its

Facilities
Others

2010 362,303 26,790 86,663 58,894 135,194 28,190 51,195 50,612

2011 361,251 26,632 86,070 58,404 137,306 28,459 51,324 50,395

2012 360,279 26,485 85,682 58,193 139,087 28,742 51,246 50,127

2013 361,012 26,233 85,100 57,520 140,218 28,740 51,155 49,863

2014 360,241 26,180 84,963 57,430 140,772 29,068 51,039 50,150

2015 358,568 26,054 84,676 57,250 142,969 29,135 50,962 50,227

2016 357,601 25,957 84,484 57,151 144,219 29,319 50,875 50,236

2017 355,659 25,801 84,175 57,018 146,819 29,617 50,696 50,055

Note: UIM—Urban village, Industrial and Mining land as one category. Transportation land refers to land used
for the purpose of transportation, including roads and railways.
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There are many reasons for these changes, mainly due to the acceleration of urban-
ization and industrialization in Jinan under the general trend of national urbanization.
Although the cultivated land increased a little in 2013 through ways of land reclamation
and other measures, the general trend is that a large number of cultivated land, garden
land, forest land and grassland are transformed into urban and village land, industrial and
mining land or transportation land to meet the needs of economic construction.

2.2.2. Energy Consumption Situation in Jinan

The energy consumption data used in this paper are from the Jinan Statistical Yearbook
(2011–2018). Since energy consumption mainly comes from the industrial sector, the data of
energy consumption of industries above a designated size in Jinan City was selected as the
energy consumption index. According to the availability of data and the actual situation of
energy consumption in Jinan City, six energy sources, including coal, gasoline, kerosene,
diesel, fuel oil and electricity, were selected for carbon emission calculation. Data of land
use change from 2010 to 2017 were also taken from the Jinan Statistical Yearbook from 2011
to 2018.

Carbon dioxide emissions from fossil fuel consumption are calculated using the fol-
lowing formula, based on the baseline methodology provided by the Department of Energy
Section of the IPCC Guidelines for National Greenhouse Gas Inventories 2006 [7]:

Carbon dioxide emissions = fossil fuel consumption × carbon dioxide emission coefficient

Carbon dioxide emission coefficient = low calorific value × carbon emission factor × carbon oxidation rate
× carbon conversion coefficient

As the above coefficients refer to the empirical values of foreign countries, they are
not necessarily consistent with the actual conditions of China; therefore, the Department of
Resource Conservation and Environmental Protection of the National Development and
Reform Commission and the first Industrial Standard of the Standardization Administration
have put forward the new General Principles for Calculation of Total Production Energy
Consumption (GB/T2589-2008) [49]. This standard specifies the definition and calculation
method of comprehensive energy consumption, which is applicable to the calculation
and management of the indicators of energy consumption per unit of energy use. It
provides the average low calorific value of fossil fuels and the conversion coefficient of
standard coal [49].

To further strengthen the capacity of provincial greenhouse gas inventories, the De-
partment of Climate Change of the National Development and Reform Commission or-
ganized experts from the Institute of Energy Research of the National Development and
Reform Commission, Tsinghua University, Institute of Atmospheric Sciences of the Chi-
nese Academy of Sciences, Institute of Environmental Protection and Development of
the Chinese Academy of Agricultural Sciences, Institute of Environmental Protection and
Environmental Protection of the Chinese Academy of Forestry, Climate Center of the Chi-
nese Academy of Environmental Protection and other units to compile the Guide for the
Compilation of Provincial Greenhouse Gas Inventories (Trial) with the support of national
key basic research and development programs.

The guidelines specify CO2 emission coefficients for major fossil fuels: raw coal,
1.9003 kg-CO2/kg; fuel oil, 3.1705 kg-CO2/kg; gasoline, 2.9251 kg-CO2/kg; kerosene,
3.0179 kg-CO2/kg; diesel oil, 3.0959 kg-CO2/kg; etc. This also includes the average carbon
dioxide emission coefficient of power supply per unit of Chinese regional power grid [50].

To sum up, the calculation formula of carbon emissions of energy consumption is
as follows:

C = ∑ Ci= ∑ MiEi (1)

where C is the total carbon emission, Ci is the total carbon emission of the i-th energy
consumption, Mi is the i-th energy consumption, and Ei is the carbon emission coefficient
of the i-th energy.
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Although carbon emissions related to living consumption of Chinese residents show
an increasing trend year by year [51], the proportion is still relatively small, and energy
consumption mainly comes from the industrial sector, so the energy consumption data
of Jinan industrial subsectors are selected as the energy consumption index. According
to the availability of data and the actual situation of energy consumption in Jinan City,
six kinds of energy sources, including coal, gasoline, kerosene, diesel, fuel oil and electricity
were selected for carbon emission calculation. Although heat consumption was included in
the original data, it was not included in the calculation because carbon emissions of heat
mainly came from fossil energy, such as raw coal. According to Formula (1) and relevant
data, the total carbon emission, carbon emission intensity and carbon emission per capita
of Jinan City can be obtained, where carbon emission intensity is the carbon emission per
unit of GDP, as shown in Table 2.

Table 2. Total carbon emission, carbon emission intensity and per capita carbon emission in Jinan
2010–2017.

Year

EC Total Carbon
Emission

Carbon
Intensity

Carbon Emissions
per Capita

2010 39,246,241,462.00 10,036,041.52 64,968,615.85

2011 41,981,465,515.00 9,527,621.99 69,203,259.78

2012 37,081,527,865.00 7,719,416.17 60,868,219.28

2013 35,144,037,816.00 6,719,457.19 57,307,848.05

2014 37,308,803,330.00 6,465,324.81 60,019,631.81

2015 36,184,060,122.00 5,931,589.48 57,826,954.31

2016 37,004,399,194.00 5,661,523.84 58,474,470.54

2017 33,924,190,968.00 4,710,410.91 52,708,416.41
Notes: EC—energy consumption; carbon emissions per capita—kg/10 thousand people. Unit of total carbon
emission—kg; unit of carbon intensity—kg/100 million yuan.

2.3. Methodology

At present, there are many methods for analyzing and synthesizing various linear and
nonlinear systems, but the methods for systems that are too complex to be analyzed accu-
rately are still quite lacking. Such complex systems, pervasive in philosophy, economics,
psychology, and the social sciences, preclude the possibility of classical mathematical
analysis. The main reason why classical mathematical methods are difficult to deal with
complex system problems is that they cannot describe fuzzy things effectively. By fuzzy, we
mean uncertainty arising not from randomness but from lack of clarity from one member
to another. The concept of fuzzy sets was proposed by Zadeh L.A. in 1965 [52]. Fuzzy
set theory and research has formed a complete system since its concept was proposed,
and fuzzy technology has been deeply applied in pattern recognition, image processing,
decision support, automatic control and other fields. As a branch of fuzzy set theory, fuzzy
measure and fuzzy integral were first formed in the 1970s, focusing on the non-additive
case, which is the extension of classical measure and integral. This branch of research
enriches nonlinear mathematical theory because measure additivity is only an ideal state
and practical problems are usually non-additivity. Thus, it is widely used to describe
non-additive and nonlinear systems, such as decision analysis and subjective evaluation, in
the mathematical model [53–58]. Japanese scholar M. Sugeno proposed the concept of fuzzy
measure for the first time in 1974, and defined the integral of measurable function with
respect to fuzzy measure accordingly [59]. Its most classical characteristic is non-additivity,
so fuzzy measure is usually called non-additivity measure [60]. In the multi-attribute
evaluation, the candidate set represents the evaluation item, and the fuzzy measure is not
only the weight value of the evaluation item but also the degree to which the object to be
tested belongs to the candidate set [56].
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In multi-attribute evaluation, different attributes not only have different importance
but also have interactions with other attributes. For an evaluation index system, the
relationship between the two groups of attributes can be divided into three situations:
repeated or negative cooperation; complementary or active cooperation; or independence.
In general, the three situations in an attribute set often exist simultaneously, and the
2-additive fuzzy measure can describe them at the same time [61].

The grey comprehensive evaluation method is a comprehensive evaluation method
based on expert evaluation and guided by grey relational analysis theory. It uses the
known information to generate and develop the unknown information of the system. Yet,
the traditional comprehensive evaluation method is based on the assumption that index
factors are independent of each other, but in practical application, there is usually a certain
degree of interaction between index factors. In order to solve this problem, combining the
respective advantages of grey relational degree and fuzzy integral, this paper designs a
grey fuzzy integral multi-attribute evaluation model for data analysis. In the designed
model, the Mobius transformation coefficient is determined based on the subjective and
objective weights of index factors and the degree of interaction between index factors,
and the 2-additive fuzzy measure was obtained by calculation. Then, the grey correlation
degree and Choquet fuzzy integral are combined to evaluate the low-carbon intensive use
of land. The specific steps of grey fuzzy integral multi-attribute evaluation method are
as follows.

2.3.1. Establishment of Index System

Assuming that there are m evaluated objects, a systematic, scientific and practical
evaluation index system is established by taking the characteristics of the evaluated objects
and the purpose preference of decision-makers as the reference basis. The evaluation
system is divided into b levels, and the evaluation of each level can be subdivided under
some secondary indexes, with each independently belonging to the same index level, and
at the same time, there is only one kind of relationship between every two secondary
indexes under the same level, which could be repeatable, complementary, or independent.
In addition, the degrees of interaction between indexes are obtained by expert scoring.

2.3.2. Indicator System Description

The evaluation system of intensive land use based on low-carbon goal needs to
integrate the three characteristics of intensive, low carbon and ecological, as well as the
natural, economic, social, energy and environmental aspects in an orderly manner. In order
to guarantee the relative objectivity and rationality of the evaluation process and results,
this study follows the principles of systematicity, scientificity, consistency, flexibility and
practicability with reference to the Procedures for Evaluating the Potential of Intensive
Use of Urban Land (Trial) [62] and the literature on low-carbon intensive land use and
low-carbon economy research during the process of index system construction. Based on
the status quo of land resources, the regional environment and the social and economic
development of Jinan and fully considered the availability of data and expert advice, index
factors are selected from five aspects: Land input intensity, Land use degree, Land output
efficiency, Land low-carbon level and Land sustainability. On this basis, an evaluation
index system of low-carbon intensive land use is established as shown in Table 3, including
target layer, criterion layer and index factor layer, and the index layer contains 21 factors.
The margin of index definition or calculation formula indicates that the data are directly
from the statistical data.
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(1) Land input density. The ideal state of land intensive use is that the marginal cost
of land use input is equal to the marginal revenue, and the land use benefit reaches the
maximum ideal value, while the land input density reflects the input level of land-use-
related factors. In the index factors of land input density, Fixed asset investment per hectare,
Average Employment, Energy consumption per unit GDP and Transportation land area
per 10,000 people correspond to the capital input, the human labor input, the energy input
and the infrastructure input, respectively. In the existing studies, the factor of land average
energy consumption is mostly adopted to correspond to the environmental input index
since the factor of land average energy consumption reflects the energy input in the land
use process and mainly reflects the development degree of the city, while the amount of
land average energy consumption in developed areas is higher than that in areas with a
low degree of development. The calculation method of the factor is the ratio of the total
energy consumption of various industries in a region to the total regional area, which can
reflect the degree of carbon emission in the process of land input, The energy consumption
per unit GDP can reflect not only the energy input in the land use process but also help
to reflect the connotation of low-carbon intensive land utilization as a result of its nature
itself that is associated with the gross national product, which strengthens the constraint
of the factor in low carbon [63]. The calculation method of the factor is the ratio of energy
consumption in the region to the GDP.

(2) Land use degree. The degree of land use can reflect the current situation of land
use. Generally, the greater the population density is within the land area, the higher
the intensity of land use becomes. Construction land area per 10,000 people reflects the
reasonable degree on a regional scale. In the existing land use structure, urban, village,
industrial and mining land and other carbon-source land are the inevitable results of
economic and social development, which can reflect the degree of effective land use to a
certain extent and have an important impact on the intensity of urban land use.

(3) Land output efficiency. The total benefit of land use is reflected by the land output
efficiency, which mainly involves the economic efficiency, the social efficiency and the
ecological efficiency in the process of land use. GDP per hectare, Retail sales of social
consumer goods per capita and Fiscal revenue per hectare correspond to the economic
and social efficiency in the process of land use, among which Fiscal revenue per hectare
of local finance is an important indicator to measure the disposable financial resources
of a local government; the fiscal revenue adopts the amount of general public budget
income. The ecological benefit index chooses to consider the discharge of the industrial
“three wastes”, which are the main pollution sources: the discharge of local waste gas, local
waste water and local solid waste; however, the statistical data show that the solid waste is
treated completely after the processes of comprehensive utilization, storage or disposal,
and finally achieves zero emission; therefore, it is not included in the index system. Due to
the variation of statistical caliber and statistical types during the study period, the indicator
of waste gas emission on the average ground level was abandoned since the data is hard to
be unified. In view of the continuity and availability of data, this study adopted Wastewater
discharge amount per hectare as an ecological efficiency indicator.

(4) Land low-carbon level. The low-carbon level of land is mainly evaluated from the
perspective of low carbon by means of two indexes, i.e., Carbon emissions per hectare and
Percentage of greenbelt coverage which is the proportion of forest, grassland and garden
plots, as well as Energy consumption elasticity coefficient, Fertilizer and pesticide usage
per unit cultivated area, Operating vehicles per 10,000 people and PM10 annual mean
concentration in terms of carbon sources. The calculation formula of Energy consump-
tion elasticity coefficient is: Energy consumption elasticity coefficient = Δ Total energy
consumption/ΔGDP. The operating vehicles include buses, trolleybuses and taxis. The use
of chemical fertilizers and pesticides is not only easy to cause environmental pollution but
also deteriorates the physical properties of the soil, disperses the soil colloids, destroys the
soil structure and causes land consolidation, which not only affects the yield and quality of
crops, but also destroys the carbon storage capacity of the soil and releases the carbon in
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the soil into the atmosphere. In addition, a significant amount of nitrogen fertilizer either
evaporates directly from the soil surface or is converted by microorganisms into nitrogen
and nitrogen oxides and enters the atmosphere. In consideration of the above causes, the
fertilizer and pesticide usage per unit of cultivated land area is included in the criterion
layer of land low-carbon level.

(5) Land sustainability. The impact of urban land use structure layout on natural
resources and ecological environment is mainly reflected by land sustainability. Because
the cultivated land, water area and land for water conservancy facilities play a certain role
in alleviating the traffic congestion, ground hardening and crowds gathering in order to
mitigate the pollution of the environment, the two index factors, Percentage of water and
its conservancy facilities area and Cultivated land area per capita, together with Green
coverage rate of built district are incorporated into the system to reflect the sustainability
of land use from the aspect of carbon mitigation. Centralized sewage treatment rate
reflects the sewage treatment capacity and efficiency of the study area, and also reflects
the environmental protection effort and environmental sustainability of the study area to a
certain extent. The above four index factors reflect the requirements of utilization of natural
resources and ecological environment protection in the land use process.

2.3.3. The calculation Process

(1) Acquisition of Initial Evaluation Data

In this paper, the index data of the criterion layer are all quantitative indexes, and the
scoring of quantitative indexes can be obtained by statistical means. The socio-economic
data in this paper are mainly from the China Statistical Yearbook (2011–2018), Shandong
Statistical Yearbook (2011–2018) and Jinan Statistical Yearbook (2011–2018).

The sample data come from 10 experts in related research fields in Jinan, Qingdao,
Wuhan, Chongqing and other places. By means of questionnaire survey, experts were
invited to score the index factors screened out in the indicator system and determine the
values of the interaction degree of index factors. In this part, consistency of scoring is
not necessary due to the characteristics of this approach, because some fuzzy measures
between evaluation indexes are super additive, and some are sub-additive, or even zero
additive. By using the weight score set by experts as fuzzy measures, we can better use the
fuzzy measures to deal with the correlation among indexes, and enhance the correctness
and acceptability of the comprehensive evaluation result of fuzzy integrals.

(2) Determine the single weight of index factors

Calculate the subjective weight of each indicator. The subjective weight value of each
indicator can be obtained by expert scoring method. At first, the relevant experts give the
weight value of each indicator after comprehensively considering the actual situation and
the goal preference of decision-makers, among other factors, and then take the average
value of the weight values given by each expert. After that, add the weight values of each
indicator to get the sum of the weights, and finally, the ratio of the weight values of each
indicator to the sum of the weights is the final weight value of the indicator. The scoring
criteria for subjective weight of index factors are shown in Table 4.

Table 4. Scoring criteria of index factors’ subjective weight.

Degree of
Importance

Very
Unimportant

Less Important Unimportant Important
More

Important
Very Important

Scoring
standard 0 0.20 0.40 0.60 0.80 1

Calculate the objective weight of each indicator. The decision matrix A1 is obtained
by reordering the index factors according to their importance of attributes from large to
small. Calculate the mean value and standard deviation of each column of sample matrix
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A1 and obtain the normalized matrix S. Matrix V is obtained by Schmidt orthogonal to
the normalized matrix S. Then, normalize matrix V to obtain the Mahalanobis distance
matrix D. The SNR (signal noise ratio) is calculated according to the Mahalanobis distance
matrix D, and the objective weight of an indicator, which belongs to a single attribute index,
is obtained.

The comprehensive weight of a single attribute index is obtained by integrating the
subjective and objective weights.

(3) Determine the interaction degree between index factors

The existing multi-attribute decision making methods assume that there is no in-
teraction between various influencing factors or index factors, and grey comprehensive
evaluation method is no exception; however, this assumption does not exist in real life,
so the interaction relationship and interaction degree between attributes should be taken
into account. According to the experience of experts, problems about whether there is an
interactive relationship between two index factors in the evaluation level and the degree
of interaction between them can be determined. If two index factors have no interaction
relationship and are completely independent of each other, then the interaction degree of
the two index factors is 0. If there is a certain degree of complementarity between the two
index factors and a more accurate evaluation can be obtained by the combination of the
two index factors, then the interaction degree of the two index factors is greater than 0, and
the larger the value of the interaction degree, the stronger the complementarity between
the two index factors. If repeatability exists between two index factors, the interaction
degree is less than 0, and the smaller the value of the interaction degree, the stronger the
repeatability between the two index factors. The scoring criteria for the interaction degree
between two index factors are shown in Table 5 [64].

(4) Calculate Mobius transformation coefficients of index factors

To calculate the grey fuzzy integral relational degree, the fuzzy measure should be
determined firstly, and the 2-additive fuzzy measures can be calculated by defining the
Mobius transformation coefficients mn and mnj. Suppose b1 = {b11, b12, . . . , b1i} is the
attribute set under the evaluation level of b1; the weight sets of b1 can be expressed as
W1 = {w11, w12, . . . , w1i}, then the Mobius transformation coefficients of the single attributes
b1n(n ≤ i) and two-attributes

{
b1n, bij

}
(n, j ≤ i, n �= j) are shown as follows, respectively:

mn =
w1n
P

(2)

mnj =
ξnjw1nw1j

P
(3)

The interaction degree between b1n and b1j is ξnj, the value range is [–1, 1]; P is
the sum of importance of all the single attributes b1n(n ≤ i) and the two-attributes{

b1n, bij
}
(n, j ≤ i, n �= j), and it is expressed as P = ∑

n∈b1

w1n + ∑
n,j⊂b1

ξnjw1nw1j.

(5) Calculation 2-additive fuzzy measures

The 2-additive fuzzy measure can solve the contradiction between precision and com-
plexity because their parameter values can measure the interaction factors and importance
factors in the interaction. The 2-additive fuzzy measure is further defined by the k-additive
fuzzy measure based on the pseudo Boolean function and the Mobius transformation,
so by using the Mobius transform coefficients of the single attributes mn and the two-
attributes mnj and according to Formula (3), the 2-additive fuzzy measure of the attribute
can be calculated:

g(K) = ∑
n∈K

mn + ∑
{n,j}∈K

mnj, ∀K ⊆ X (4)
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In the formula, mn is the Mobius transform coefficient of the single attribute xn, and
mnj is the interaction degree between attributes xn and xj as well as the Mobius transform
coefficient of the two-attribute {xn, xj}.

(6) Calculate grey correlation coefficients

The optimal index and grey correlation coefficient matrix are calculated as follows:

ξi(m) =

⎡
⎢⎢⎣

ξ1(1) ξ1(2) . . . ξ1(m)
ξ2(1) ξ2(2) . . . ξ2(m)

. . . . . . . . . . . .
ξi(1) ξi(2) . . . ξi(m)

⎤
⎥⎥⎦ (5)

ξi(m) is the grey correlation coefficient of indicator i in scheme m.

(7) Grey fuzzy integral correlation degree of each decision scheme

Based on the theory of fuzzy measure, Choquet fuzzy integral represents a nonlinear
function. To define the grey fuzzy integral correlation degree on the basis of Choquet fuzzy
integral could make the grey relational degree be used for decision making, and at the same
time, the interaction between attributes can be fully considered.

Suppose that a row of vector expression of evaluation matrix C is Ci =
{

Ci(m)
}

, which
is called the comparison sequence of system referring to the evaluation vector of indicator i,
which is on the evaluation level b1 of object m, and C0 =

{
C0(m)

}
is the reference sequence,

then the grey fuzzy integral correlation degree of Cn and C0 could be given by the formula:

∫
γ(Cn, C0)dg =

i

∑
n=i

[γ0n(x(m))− γ0n(x(m−1))]g(X(m)) (6)

In the formula, (m) is the subscript after sorting according to γ0n(x(1)) ≤ γ0n(x(2)) ≤
. . . ≤ γ0n(x(i)), X(m) =

{
x(m), x(m+1), . . . , x(i)

}
, γ0n(x(0)) = 0. The final decision result can

be determined by sorting the grey fuzzy integral correlation degree [65].

3. Empirical Results and Analyses

Due to the limitation of space, this paper gives merely the empirical results as shown
in Tables 6 and 7, and the analyses.

Table 6. The 2-additive fuzzy integral comprehensive evaluation values (B1–B5) of 2010–2017.

Evaluation Value

Year
2010 2011 2012 2013 2014 2015 2016 2017

Grey fuzzy Choquet integral
evaluation value (B1) 0.6078 0.5965 0.5758 0.4725 0.4729 0.4658 0.5069 0.6304

Grey fuzzy Choquet integral
evaluation value (B2) 0.3330 0.3554 0.3792 0.4350 0.4760 0.5316 0.7361 1.0000

Grey fuzzy Choquet integral
evaluation value (B3) 0.3333 0.3668 0.4247 0.5716 0.6485 0.7471 0.7166 0.9015

Grey fuzzy Choquet integral
evaluation value (B4) 0.6510 0.6977 0.5537 0.5625 0.5308 0.4963 0.4715 0.4601

Grey fuzzy Choquet integral
evaluation value (B5) 0.3333 0.3654 0.4273 0.5856 0.6601 0.7542 0.6849 0.8518
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Table 7. Comprehensive evaluation values of Jinan low-carbon intensive land use of 2010–2017.

Evaluation Value

Year
2010 2011 2012 2013 2014 2015 2016 2017

Grey fuzzy Choquet Integral
evaluation value 0.5235 0.5877 0.4295 0.4105 0.4213 0.4461 0.4765 0.7991

Line B1 represents the change in the trend of land input intensity in the criterion layer;
it experienced a slow decline and then a rising process during 2010–2017 was observed,
which can be divided into two stages: The first is the decline stage from 2010 to 2015, in
which the decline degree from 2012 to 2013 is the most obvious. The evaluation value
from 2013 to 2015 is generally low, and the lowest value occurred in 2015. The second
is the period of rapid improvement from 2015 to 2017. For the study period as a whole,
the assessment value in 2017 was only 0.0226 higher than that in 2010, with an overall
growth rate of about 3.72%; however, during the upgrading period from 2015 to 2017, the
land input intensity increased by 35.34%, with an average annual growth rate of 17.67%,
showing an obvious trend of rapid improvement. All in all, the results show that during
the study period, the land input intensity in Jinan city gradually shows a relatively positive
increase trend after the idle period of decline and slow increase.

Line B2 represents the change trend of the degree of land use in the criterion layer; it
is in an overall rising stage from 2010 to 2017, and is divided into two stages with 2015 as
the turning point: one is a slow rising stage from 2010 to 2015; the second is the period
of rapid improvement from 2015 to 2017. In terms of the study period as a whole, the
annual average growth rate of evaluation value in 2017 compared with 2010 is about 28.57%.
The degree of land use can only reflect the degree of intensive urban land use during the
upgrading period from 2015 to 2017, and the average annual growth rate of its assessed
value is 44.06%, showing an obvious trend of rapid improvement, indicating that the degree
of intensive land use in Jinan is getting higher and higher during the study period.

Line B3 represents the change trend of the land output efficiency in the criterion
layer, and it is in an overall rising stage during 2010–2017, only slightly declining during
2015–2016, and rapidly rising after 2016 with a growth rate of 25.80%. For the study period
as a whole, the average annual growth rate in 2017 compared to 2010 is about 24.35%. The
results show that the overall situation of land output efficiency in Jinan is good during the
study period.

Line B4 represents the low-carbon land level in the criterion layer, and it is in an
overall decline stage during 2010–2017: after the increase in 2010–2011, it enters an obvious
decline stage during 2011–2012. After the non-significant increase during 2012–2013, it
enters the stage of gradual annual decline during 2013–2017. For the study period as a
whole, the average annual decline in 2017 compared to 2010 is about 4.19%. Although
the annual decline rate of low-carbon land assessment value is small, the overall trend of
decline is very obvious. This shows that the situation of low-carbon land use in Jinan is
still relatively grim.

Line B5 represents the land sustainability in the criterion layer; it is in an overall rising
stage from 2010 to 2017 and only in a declining stage from 2015 to 2016. For the study
period as a whole, the average annual growth rate in 2017 compared to 2010 is about 22.22%.
Although the overall upward trend of land sustainability evaluation value is obvious, the
fluctuation of the values between 2015 and 2017 is also obvious. Considering that the land
low-carbon level of in criterion layer B4 in Figure 2 has been declining significantly in recent
studies and that the indexes of criterion layer B4 and B5 are repeatable, this indicates that
the situation of land use sustainability in Jinan is not stable and still needs close attention.
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Figure 2. Change trend diagrams of criteria level and purpose level.

In conclusion, during the study period, the low-carbon land use level in Jinan has been
declining, and the situation is severe. Although the change trends of land input intensity
fluctuated slightly, the land input intensity, the land use degree, the land output efficiency
and the land sustainability show a good upward trend on the whole.

Line A represents the change trend of comprehensive evaluation of low-carbon in-
tensive land use. It can be seen from Figure 2 that the comprehensive evaluation results
of low-carbon and intensive land use in Jinan fluctuate on the whole from 2010 to 2017.
After the rise in 2010–2011, the evaluation value decreases sharply in 2011–2012, even lower
than that in the beginning of the study. After the insignificant downward trend during
2012–2013, it enters the slow upward stage during 2013–2016 with 2013 as the turning
point. At the end of the study period from 2016 to 2017, it shows a rapid upward trend.
For the study period as a whole, the average annual growth rate in 2017 compared to
2010 is about 7.52%; however, the numerical fluctuation during the study period is very
obvious, indicating that although the low-carbon intensive land use in Jinan has a good
development trend, the state is not stable.

All in all, after a period of extensive development focused solely on economic benefits,
China’s 12th Five Year Plan and 13th Five Year Plan have promised to limit carbon emis-
sions, emphasized the in-depth implementation of the scientific outlook on development,
and accelerated the construction of a “resource-conserving and environmentally friendly”
society. In the process of rapid urbanization, Jinan has actively responded to the call of the
central government and formulated the corresponding low-carbon industrial upgrading,
low-carbon energy transformation and other supporting carbon-reduction systems and
measures. The transformation from the “high consumption and high emission” extensive
land use pattern to the of “low consumption, low emission and high benefit” low-carbon
intensive land use pattern will not be accomplished overnight, and it must be a dynamic
game process. This is also reflected in the evaluation results of each criterion level, and the
whole index system of land low-carbon and intensive use. The low-carbon and intensive
land use in Jinan still needs to be paid enough attention. This paper will put forward
suggestions on the path and guarantee mechanism of low-carbon and intensive land use in
Jinan in order to promote the sustainable and healthy development of land use.

4. Policy Recommendations

Based on the dynamic mechanism and the main factors affecting the evolution of urban
space environment of modern urban development, this paper proposes the guaranteed
mechanism of low-carbon and intensive land use in Jinan from five perspectives:

248



Land 2023, 12, 1197

(1) Perspective of policy system. The land use control mode in China is a comprehen-
sive land use control mode which is oriented by planning, and the direct guidance and basis
function are land use planning and urban planning. On the basis of the evaluation results
of low-carbon and intensive land use, Jinan city needs to formulate land use planning that
integrates urban and rural regions to ensure the coordination and unity of urban planning
and land use planning. Since land use planning and urban planning are important statutory
plannings for local governments to implement land space management, the integration of
the two regulations is conducive to unified management by the government.

(2) Perspective of science and technology. On the one hand, scientific and technological
revolution and innovation can produce new technological industries and accelerate the
upgrading of traditional industries, thus optimizing the industrial structure of the whole
society and promote social development. On the other hand, speeding up the construction
of carbon emission trading system will also rely on market-oriented means to promote
enterprises to actively improve industrial technology level and accelerate scientific and tech-
nological innovation so as to make the enterprises achieve the goals of energy conservation
and mitigation of carbon emission.

(3) Perspective of society and culture. Establishing the concept of “green and low-
carbon development”, changing the environmental protection mode of “pollution first,
treatment later”, correctly guiding people’s consumption concept, advocating moderate
consumption, eliminating luxury and waste phenomena, controlling the discharge of
pollutants and reducing the use of pesticides and fertilizers, and promoting the use of green
energy as well as forming a social and cultural atmosphere for sustainable development
could guarantee and promote the low-carbon and intensive land use in Jinan to should be
emphasized to a certain extent.

(4) Perspective of resources and environment. Under the guidance of sustainable
development concept, the coexistence of natural resources development and protection,
the pursuit of natural environment protection and other sustainable development modes
are given priority from various aspects of concept, consciousness and measures, which will
certainly help to provide a powerful guarantee for the low-carbon and intensive land use
in Jinan.

(5) Perspective of regional integration. When Jinan meets the challenge of regional
development, it should also find the following opportunities: firstly, it could take advantage
of the status of the core city to strengthen the connection with the surrounding areas in
economy, transportation, ecology and other aspects, and complement each other while
realizing resource sharing. secondly, carrying out actively intensive, coordinated and group-
developed urbanization within each region, together with scientific and technological
innovation, optimizing the layout of land use structure, transforming enterprises with
serious pollution and backward technology, and developing high-tech industries according
to local conditions of the characteristics of cities at all levels in Shandong province should
be focused. It not only closely links with the surrounding areas for the coordinated
development, but also strengthens Jinan’s driving ability both in Shandong and in relevant
economic regions, such as Bohai Rim, and actively guides and implements the low-carbon
and intensive land use in a wider geographical range.

5. Conclusions

This paper establishes an evaluation system based on the low-carbon intensive land use
in Jinan city from 2010 to 2017, and uses the grey fuzzy integral multi-attribute evaluation
model, which is the integration of respective advantages of grey relational degree, and fuzzy
integral for data analysis in view of the large amount of interaction between index factors.
In this model, based on the Mobius transformation coefficient of subjective and objective
weights of index factors and the interaction degree between index factors, 2-additive fuzzy
measures can be obtained; therefore, evaluation of low-carbon intensive land use in Jinan
city is processed by combining the grey correlation degree and Choquet fuzzy integral.
The results show that in the study period, land input intensity, land use degree, land
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output benefit and land sustainability in Jinan city all show a good upward trend, but
the low-carbon land use level of has been in a declining state. Although there is a good
development trend of low-carbon intensive land use of Jinan, the state is not stable, and the
transformation of land use from the “high consumption and high emissions” extensive land
use pattern to the “low consumption, low emission, high benefit” low-carbon and intensive
land use pattern will not be accomplished overnight, and it is bound to be a dynamic
game process; therefore, this paper puts forward the corresponding recommendations for
low-carbon intensive land use in Jinan city.

With the adjustment of the zoning scope at the end of 2018 and the beginning of 2019,
the relevant statistical data of Jinan city will inevitably change accordingly. The current
research data and results are applicable before the adjustment of administrative division,
which can provide a reference for future refinement and in-depth research; however, for
data processing after the adjustment, the influence brought by it, needs to be considered.
Although the research scopes or research objects, for instance, target city or target region,
could be different, the research method is still worth being used for reference.

Although there could be a common goal of humankind or international treaties to
mitigate the carbon emission to make the global environment suitable for the survival
of humankind, there are always conflicts of interest between countries in political and
economic aspects, and once the balance of various forces is broken, it is easy to cause
friction; therefore, when conflicts or wars break out, all carbon mitigation targets and
measures together with international collaborations would be abandoned. In conflicts,
energy could also become a bargaining chip between countries. When the international
environment for energy cooperation is damaged, the priority of the countries concerned is
the survival and livelihood of their citizens, rather than the mitigation of carbon emissions.
This would undoubtedly shift the global climatic environment, which has been greatly
affected by the increase in carbon emissions, from bad to worse. It is more fundamental
and significant to seek an international environment of peace, friendship, and common
development and prosperity for humankind so as to adopt appropriate policies, measures
and technological means to mitigate carbon emissions.
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Abstract: The spatiotemporal transformations of rural residential lands and populations reflect
changes in rural human–land relations. This study uses high-precision rural residential land patches
and population distribution data to detect the area, population density, and spatial heterogene-
ity of newly added rural residential land (NARRL) in China from 2000 to 2020 through spatial
local clustering and geographically weighted regression. The patch results were summarized into
county-level units for regional comparison, spatial clustering identification, and policy recommen-
dations. The main conclusions are as follows: (1) The total rural residential area increased by
13.86% between 2000 and 2020. The average population density of NARRL (APDNARRL) at patch
scale is 701.64 person/km2, significantly exceeding the 507.23 person/km2 of the remaining patches.
(2) There are obvious spatial differences in the distribution of APDNARRL as per county-level statis-
tics. There are significant differences in APDNARRL on both sides of the Hu Huanyong Line; the
APDNARRL on the left is significantly lower than that on the right. (3) Spatial heterogeneity was
found to be among the driving factors of APDNARRL. This study also detected the number and loca-
tion of hollowing counties; it is significant for monitoring dynamic changes in rural residential lands,
revealing their spatial distribution patterns and driving factors, thus improving the optimization of
rural land resources.

Keywords: rural residential land; population density; patch scale; geographically weighted regression;
spatial local clustering; China

1. Introduction

Rural residential areas, which constitute an important type of land-use category in ru-
ral areas, are also spatial carriers of rural development [1,2]. After reform and opening-up,
with rapid regional socioeconomic development, China embarked on an accelerated urban-
ization process unprecedented in global history, leading to sharp changes in urban–rural
land-use patterns, particularly in regard to two aspects. First, because of the consistently in-
creasing urbanization levels, urban construction land has rapidly expanded and spread [3,4].
Second, a large share of the rural labor force has transferred to cities, but the scale of rural
residential areas has increased instead of decreasing [5]. This has led to continuing changes
in the spatial layout and morphological characteristics of rural residential areas [6–8].

The changes to China’s urban–rural land-use patterns are driven by transformations in
social structures, as can be clearly seen in the rapid increase in the population’s urbanization
rate, from 19.72% in 1978 to 65.22% in 2022. This shows that China’s traditional agricultural
social structure has been giving way to a predominantly urban society [9] over the course
of just 40 years. While the social and structural development of cities in China has been
much researched globally, the country’s rural areas have received far less attention from
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scholars. For example, in the Web of Science database, there are only 901 articles with the
keywords “rural residential land, China” from 1978 to 2023, which is much lower than the
22,719 records retrieved with the keywords “urban land, China”. The key topics in the few
existing rural studies include the spatial patterns of rural residential land [6,7], its spatial
and temporal evolution [1,10,11], analyses of the driving mechanisms of change [8,12], its
consolidation and optimization [13–15], and the dynamics of human–land relations [16,17].

This study focuses on the area and population density of rural residential land. Schol-
ars have found that the area of rural residential land in China has been expanding, by
using GIS, remote sensing, and other methods. For example, based on the data interpreted
from remote sensing images, from 1990 to 2000 the rural residential area increased by
7.88 × 105 ha [18], and from 2009 to 2016 the rural residential area increased at an average
annual rate of 0.55%, which are significantly higher than the average annual growth rate
of 0.10% between 1996 and 2008 [1] and 0.09% between 2000 and 2005 [5]. Most of the
new rural residential land is used for cultivation [19,20], which poses a potential threat
to the regional ecological environments [21]. Although the size of residential areas has
been expanding, the rural population has continued to decline. China’s rural population
decreased at an average annual rate of 2.07% from 2009 to 2016. A similar change was noted
in the Yellow River Basin, for example, from 2010 to 2016 [17]. The average annual decline
in the rural population has been 2.57% [22]. The urbanization rate of China’s permanent
population reached 65.22% in 2022. However, most of those who live in cities and towns
all year round but have a rural registered residence continue to choose to return to their
registered residences to build housing. This peculiar phenomenon of a fall in population
without a fall in settled land has led to the increased use of rural residential land in many
rural areas, although there is a trend of consistently high housing vacancy rates [23]. The
consequent problems of population loss and the hollowing out of villages, and scattered
and disordered village construction, places enormous pressure on resources and the en-
vironment; the destruction of rural landscapes, as well as urban villages, is increasingly
prominent [24], resulting in a clear imbalance in rural human–land relations [25].

Relative to the previous extensive analysis of the decoupling relationships between
rural residential land and the resident population at the national, regional, and individual
city levels, based on statistical yearbook data at the administrative district level [22], there
has been limited research on the relationship between rural residential land changes and
population changes at the micro-patch scale. Because of the fragmented and scattered
distribution of rural residential areas, patch-scale analysis can be used to detect additional
spatial details, such as the spatial clustering and differentiation that are characteristic
of human–land relationships within a region, relative to an administrative-district-scale
analysis. Therefore, this study uses vector polygons (patches) of rural residential land, in-
terpreted from 30 × 30 m remote sensing images, and a 1 × 1 km grid LandScan population
distribution produced by Oak Ridge National Laboratory, United States, as the basic data
to explore human–land changes in China’s rural areas from 2000 to 2020. We attempted
to answer the following questions: what is the state of the average population density
of the newly added rural residential land (APDNARRL) in China? Are there obvious
agglomeration and differentiation characteristics across space, and what drives them? To
the best of our knowledge, this study is the first to determine APDNARRL on a fine-patch
scale across China, and by using the same data over time, it supports the possibility of
cross-regional comparisons.

2. Study Area and Data

Mainland China, excluding Taiwan, Hong Kong, and Macau, was selected as the
research area, covering a total of 2877 county-level administrative regions (Figure 1). While
there are many forms of county-level administrative units in China, the main types are
municipal districts, counties under the jurisdiction of cities, and county-level cities. A
prominent feature of a municipal district is that the urban built-up area is a core component,
with urban residents constituting its main population, and the urbanization of this core
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is generally at a high level. However, counties that are under the jurisdiction of cities
are usually dominated by rural populations that have low urbanization rates. County-
level cities are usually county-level units adjusted after their economic development level,
population urbanization rate, total population, and other indicators meet certain conditions,
which were set at the beginning of China’s reform and opening-up. County-level cities have
more authority in terms of economic management and urban construction than counties
under the jurisdiction of cities.

 

Figure 1. Study area.

China’s rapid urbanization has been widely studied globally. As a result of this process,
a large number of farmers are leaving rural areas and moving to cities each year. Statistics
show that the rural population has decreased year after year from 2000 to 2020, from 63.91%
in 2000 to 36.11% in 2020, showing an average annual decline of 1.39 percentage points.
However, the area of rural residential land in China has not declined with this massive loss
of population; rather, it has shown a trend of increasing year after year, resulting in a huge
waste of rural land resources. For example, according to the 2017 China Rural Development
Report, published by the Rural Development Institute of the Chinese Academy of Social
Sciences, between 2000 and 2010, the annual increase in rural idle housing caused by
rural population transfer reached 594 million m2, equivalent to a market value of about
400 billion yuan. The population leaving rural areas and the large number of empty houses
left behind have resulted in significant rural hollowing out.

This study mainly examines three types of data: land-use data, the spatial distribution
of the population, and basic auxiliary data (geographic maps and socioeconomic statistical
data). The land-use data with 30 × 30 m spatial resolution are from the National Land
Use/Cover Database of China (NLUD-C), released by the Resource and Environmental
Science and Data Center of the Chinese Academy of Sciences. They were produced using
Landsat TM/ETM and China Brazil Earth Resources Satellite as the main sources of in-
formation through image correction, visual interpretation, supervised classification, and
field investigation. It was found that the NLUD-C classification accuracy reached over
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90% [26], enabling it to be considered accurate and reliable. This database includes multiple
periods of land use over the years. This study selected the data between 2000 and 2020, and
extracted the land class with code 52 as the analytical source for subsequent rural residential
area patches. Figure 2 shows the spatial distribution of the area of rural residential land in
each county-level unit in 2000 and 2020.

 

Figure 2. Spatial distribution of the area of rural residential land in each county-level unit in 2000
and 2020.

Because this study’s aim was to calculate population density at the patch scale, it
was not possible to use the population data based on administrative units for calculation,
so we used the spatial distribution population program LandScan (Oak Ridge National
Laboratory, Oak Ridge, TN, USA) with a high spatial resolution (about 1 × 1 km). LandScan
uses the best available census data, which is recognized as authoritative and as providing
accurate spatial population data, and is widely used in population research [27]. A weighted
model based on geographic information systems and partition density models has been
established to better reflect the spatial distribution of the population (https://landscan.
ornl.gov, accessed on 5 July 2022). To improve the accuracy of the data, they were manually
corrected and modified.

Other data, including geographic information data (including on roads, rivers, admin-
istrative boundaries, and government locations), were taken from the National Earth Sys-
tems Science Data Center of the Institute of Geography, Chinese Academy of Sciences (www.
geodata.cn). The socioeconomic data (GDP, value added of primary/secondary/tertiary in-
dustries) are from statistical yearbooks and the social and economic development bulletins
of various districts and counties.

3. Methodology

3.1. Research Framework

We designed the method framework diagram shown in Figure 3 based on the issues
we sought to understand. Using the land-use vector-map patch data interpreted from
remote sensing images, we detected the spatiotemporal changes of rural residential land
in China between 2000 and 2020. During this period, China’s economy grew rapidly,
and the rural landscape underwent tremendous changes due to rapid urbanization and
industrialization. Supported by high-precision data on the spatial distribution of the
population, the population density of each newly added or retained patch was detected,
and a county-scale summary analysis was conducted. Then, the spatial characteristics
of the changes in the quantity, pattern, and density of the population of rural residential
land were analyzed at the county scale, and the driving factors and differences in spatial
heterogeneity between the changes in population density were detected. Conventional

256



Land 2023, 12, 1368

spatial analysis methods, such as spatial overlay, spatial statistics, vector to raster, raster
to point, and summary statistics, which can be directly implemented in ArcMap software,
have not been described in detail. We focus on the calculation of APDNARRL, spatial
autocorrelation t-test, and geographically weighted regression (GWR) modeling in the
following text.

Figure 3. Diagram of overall method framework.

3.2. Calculation of APDNARRL

By employing the “erase” tool in ArcMap, the newly added rural residential patches
during 2000–2020 were extracted from the two years of rural residential patches in 2000
and 2020. To determine the population density of each patch, the newly added patches (in
vector format) were superimposed on the population distribution data (landscan in raster
format). However, due to the irregularities and size differences of the residential patches,
direct overlaying did not yield accurate average population density values. Consequently,
an additional step was taken to convert the vector form into a grid form, with a resolution
of 30 m × 30 m, using the “Raster to Point” tool in ArcMap. Subsequently, the grid
was transformed into vector points, and these points were overlaid once again with the
gridded population distribution layer. This process ensured that each patch contained
multiple points, denoted as ‘m’. By employing the “Extract values to points” function
in ArcMap, the grid values (i.e., population density) corresponding to each point could
be extracted. Ultimately, the population density of each patch was calculated using the
following equation:

APDNARRLpatch_i =
∑m

j=1 pj

m
(1)

where APDNARRLi represents the population density of the i-th patch, pj is the population
density of the j-th point under the patch, and m represents the number of all points covered
under the patch.

257



Land 2023, 12, 1368

Further, we obtained the APDNARRL for each county unit by summing the population
density of all the new patches weighted by area.

APDNARRLcounty_p = ∑ f
e=1 APDNARRLpatch_e ×

Areapatch_e

A
(2)

where APDNARRLcounty_p represents the population density of the p-th county,
APDNARRLpatch_e and Areapatch_e are the population density and patch area of the e-th
patch in the county, respectively, f is the total number of patches, and A is the total area of
all patches.

3.3. Spatial Autocorrelation Detection

Spatial autocorrelation refers to the interdependence of variables on a spatial scale,
which can be used to judge whether there is aggregation or outliers in the research areas.
This study indicates the local similarities between the areas of newly added rural residential
land (ANARR) and APDNARRL for the county-level units in China using the LISA cluster
diagram [28].

Ii =
n(xi − x)∑n

j=1 wij
(

xj − x
)

∑n
i=1(xi − x)2 (3)

In this equation, n refers to the number of county-level units and xi and xj are the
values for x for the i-th and j-th counties, where x is the average value of xi and wij is
the spatial weight matrix. Ii represents the local Morans’ I value of the i-th county, and
Ii > 0 indicates that there is a small spatial difference in the variable values between
adjacent regions, which is either high-high clustering or low-low clustering. Ii < 0 indicates
significant spatial differences in the variable values between adjacent regions, classified as
high-low clustering or low-high clustering. The specific implementation can be achieved
through the Cluster and Outlier Analysis (Anselin Local Morans’I) toolkit of the ArcMap
10.6 software.

3.4. t-Test

In this article, we aim to employ the t-test to examine potential significant differences in
key indicators between the two distinct groups of samples. The groups under investigation
were formed based on a comparison between APDNARRL and the average population
density of the remaining rural patches (APDRRP) for all county-level units across the
entire country. Specifically, one group comprises units where APDNARRL > APDRRP,
while the other group consists of units where APDNARRL < APDRRP. Our objective
is to assess whether significant differences exist in some key socio-economic indicators
between these two groups of county-level units. The t-test process involves several steps,
including assessing whether the distribution of data in each group conforms to the normal
distribution, conducting hypothesis tests to determine the equality of average indicator
values in the two sample groups (homogeneity test of variance), calculating t-values and
significance levels, and performing other necessary operations. To facilitate these analyses,
we utilized SPSS 25 software.

3.5. Spatial Heterogeneity of the Driving Forces of APDNARRL

GWR was used to detect the driving factors and spatial heterogeneity of APDNARRL.
GWR is an improvement to an ordinary linear regression model. Its principle is to compare
and analyze the data for a certain variable to other variables in the adjacent area, and the
calculated values of the change in the model relative to changes in geographical location,
thereby identifying the differences in various spaces according to heterogeneity [29]. The
general expression for the GWR model is as follows:

yi = β0(μi, vi) + ∑k
j=1 βk(μi, vi)xij + εi; i = 1, 2, . . . , n (4)
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In the above equation, (μi, vi) is the geographical spatial coordinate of the i-th sample
and βk(μi, vi) is the i-th regression coefficient of the i-th sample. Positive or negative values
of βk(μi, vi) represent the pushing or inhibitory effect of xij on yi. εi is the random error.
The difference between the explanatory variable, yi, and the observed value, y, in the model
is the residual. The smaller the value here, the better the fit between the GWR model and
the observed data.

Based on the research case of this study and with reference to previous literature,
11 factors were selected from 4 dimensions: convenience of life/production, urban radia-
tion, construction cost, and socioeconomic development level (Table 1). The factors of the
first three dimensions were directly calculated based on the spatial location of the newly
added patches, and then they were summarized by county. The socioeconomic factors were
calculated from the regional statistical yearbook.

Table 1. Selected driving factors used in geographically weighted regression.

Dimension Factors Descriptions Reasons References

Convenience of
life/production

Dis_TR Distance to town-level road

Residential houses located alongside roads enhance
accessibility to schools, hospitals, shopping centers, and
various destinations via the road network. Conversely,

buildings situated adjacent to rivers facilitate activities such as
water collection and farm irrigation, thus supporting

agricultural practices. [14,30–35]
Dis_CR Distance to county-level road
Dis_R Distance to river

Construction cost AE Average elevation
The higher elevation entails potential topographical intricacies

that can escalate the expenses associated with foundation
filling and reinforcement of buildings.

Urban radiation
Dis_CC Distance to county center Generally, the closer to the county center and city, the more

convenient life is and the more services there are for residents.Dis_EU Distance to existing urban land

Socioeconomic
development level

IGDP Increasing rate of GDP

The level and pace of social and economic development
positively influence farmers’ inclination to enhance housing

conditions and encourage the establishment of new residential
areas. The dynamics of the industrial structure mirror the
transformations occurring in agriculture, industry, and the

service sector. The primary industry’s added value is directly
linked to farmers’ income levels, whereas the expansion of the
secondary industry necessitates the occupation of rural land

and the absorption of rural populations. Furthermore, the
development of a tertiary industry also contributes to

employment opportunities for rural and non-rural
populations, exerting direct or indirect effects on rural

residential patterns.

[24,31,36–40]
IAPE Increasing rate of added value of

the primary sector

IASE Increasing rate of added value of
the secondary sector

IATE Increasing rate of added value of
the tertiary sector

CRP Change rate of resident population

4. Results and Analysis

Rural residential land exhibited rapid growth between 2000 and 2020, with the total
number of patches growing from 782,052 to 812,382—increasing by 3.878%. The total area
grew from 1.269 × 105 km2 to 1.445 × 105 km2, increasing by 13.86%. After taking the
residential population into account, we found that the total rural population was reduced
from 8.073 × 108 to 5.098 × 108, decreasing by 36.86%, meaning that the average population
of each residential patch decreased from 1032.40 persons to 627.52 persons; the increasing
inefficiency in the use of residential land is clear.

4.1. Area Change of Rural Residential Land

The average increase in the rural residential area of the 2877 county-level units covered
in this study is 6.234 km2, with 2307 county-level units increasing in area, accounting for
80.18% of the total county-level units. Then, 580 county-level units decreased in area,
accounting for only 19.82% of the total county-level units, indicating that the vast majority
of county-level units in China are experiencing increases in rural residential area. The
county-level unit with the largest increase in area was Xinmi City, which is close to the
urban area of Zhengzhou and the national airport economic comprehensive experimental
zone, with an increase of 148.461 km2. The potential driving force behind this is that
farmers obtain huge economic benefits from the demolition of their rural houses to make
way for urban construction, which is linked to the area of the houses to be demolished,
thus enabling them to build new rural homesteads. Dongguan, known as the world’s
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factory, saw the biggest decline in rural residential area, reaching 345.74 km2, reflecting the
encroachment of industrialized and urbanized land on rural areas.

Local clustering detection (Figure 4) shows that increasing the area presents three
typical regions, namely, the northeast (Heilongjiang and Jilin, marked 1) and the vast
southwest (marked 3), forming a low-value clustering area. Significant differences can
be seen between the terrains of the two regions; while the former constitutes largely
plains, the latter is made up of plateaus and hills. In recent years, population loss in
Northeast China has received widespread attention, and because of weak economic growth
in the region, the proportion of those who have left and then returned is the lowest
in this area. There is little motivation to expand rural residential areas, and cities also
appear to be shrinking. The latter (marked 3) is the main export destination for migrant
workers who support the prosperity of factories and the construction of infrastructure in
the developed regions of China, such as Guangzhou and Shenzhen in the Pearl River Delta
region, Shanghai, Hangzhou, and Suzhou in the Yangtze River Delta region, and Sichuan
Province, Chongqing City, Guizhou Province, and others. The proportion of migrant
workers who choose to live in cities has significantly increased, and more elderly people
seem to have been left behind to live in rural houses. High-value areas are concentrated
in the plains of North China and the Middle and Lower Yangtze Valley Plain (marked 2
in Figure 3). These areas have a high urbanization rate, including the Jing-Jin-Ji and the
Yangtze River Delta Urban Agglomeration. The proportion of the rural population is lower,
and the urban–rural income gap is likewise low. The enabling of the marketization of rural
housing transactions has stimulated the construction of a large number of rural houses,
thus forming a high-value cluster area.

 

Figure 4. Local clustering distribution of the area of newly added rural residential land in
county-level units.

4.2. Population Density of Newly Added Rural Residential Areas

The detection of population density per patch shows that the APDNARRL in 2000–2020
was 701.6446 persons/km2. The distribution of APDNARRL is characterized by the eastern
parts (782 persons/km2) being greater than the central regions (634.31 persons/km2), which
are greater than the western parts (552.48 persons/km2) of the country; a similar pattern
to the basic overall pattern of population distribution and economic development level in
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China. We first counted the APDNARRL for all provinces (Figure 5). Among the 11 eastern
provinces, 7 are among the top 10 APDNARRL values. Shanghai, Guangdong, Fujian,
Zhejiang, and Beijing have APDNARRL values that exceed 1000 persons/km2. Shanghai, in
particular, has the highest APDNARRL, 2507 persons/km2, reflecting its role as the leading
city in China’s economy. High-density populations also directly promote the new residen-
tial density of rural residential land to meet the living needs of the employed population
in suburban areas. Tibet, located in the west of China, has the lowest APDNARRL, with
only 134.87 persons/km2, far below the national average. This is related to the topographic
conditions of Tibet, which is located on the Tibetan Plateau, often referred to as the Roof
of the World, having the lowest population density in China because of its poor living
environment. Further, we also found that Chongqing and Sichuan Province, in western
China, have relatively high APDNARRL values, with 1410 and 883.6 persons/km2, respec-
tively. In particular, Chongqing ranks third in terms of APDNARRL. This is related to the
rapid development of the twin-city economic circle between Chengdu (capital of Sichuan
Province) and Chongqing (Chongqing), which exists across the two regions. Located at the
intersection of the Belt and Road and the Yangtze River Economic Belt, they are the initia-
tion points of the land and sea passages in the west, and they also rank among the most
attractive cities in China all year round. Chengdu, in particular, tops the list of China’s new
first-tier cities (Shanghai, Beijing, Guangzhou, and Shenzhen are considered the traditional
first-tier cities), and population inflows are also driving the increase in APDNARRL.

 

Figure 5. Provincial APDNARRL in descending order.

Figure 6 presents the spatial distribution of APDNARRL and local clusters in relation to
county-level statistics. There is an obvious gap between the two sides of the Hu Huanyong
Line, the famous dividing line for population density distribution in China; the APDNARRL
on the left side is clearly lower than that on the right. In particular, the eastern and
southern coastal areas (marked 1) and Chongqing and Sichuan Province (marked 2) form
obvious high-concentration areas, confirming the conclusion we reached above using
provincial statistics. Correspondingly, low-value accumulation areas can be seen in the three
northeastern provinces (marked 3) and almost the entire left side of the Hu Huanyong Line.
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Figure 6. Spatial distribution and the local clusters of APDNARRL by county-level units.

4.3. Spatial Non-Stationarity of the Relationship between APDNARRL and Driving Factors

China is a vast country having tremendous differences in terms of social and economic
development levels and natural conditions among its regions. As the geographical location
varies, the relationship or structure of variables also changes. Using GWR, we found that
the relationship between the selected associated factors and APDNARRL shows significant
spatial heterogeneity (see Figure 7). This heterogeneity may have a guiding significance
for regions as they develop targeted policy recommendations. We discuss the regions that
have passed the significance test and several frequently occurring provinces as the objects
of analysis, including Sichuan and Yunnan in the west and Guangdong in the east. Other
significant regions are presented in Table 2. Among these, the APDNARRL of Sichuan
Province shows a positive correlation with Dis_TR, CRP, and IAPE, whereas it shows a
negative correlation with AE, Dis_CC, and IGDP. Thus, the newly added populations in
the rural areas of Sichuan Province have mainly accumulated near county towns rather
than along rural roads; there is a tendency to establish residential land in areas with low
terrain and small surface undulations, leading to lower construction costs. The primary
sector’s development can be driven by the efficient improvement of labor. The transfer of
the rural surplus labor to support urban development may not only improve the scale effect
and production efficiency of the primary sector (which can be improved with agricultural
machinery and technology) but also improve overall GDP growth. This is usually because
the efficiency of the urban production sector is greater than that of the rural sector, but
these require the transfer and supplementing of rural labor. Therefore, this will reduce
APDNARRL. In Yunnan Province, APDNARRL is positively correlated with Dis_EU and
IATE, and it is negatively correlated with Dis_TR, Dis_CR, CRP, and IGDP changes, indi-
cating that the province is dominated by tourism (i.e., the tertiary sector). The distance
from cities and along village and county roads can promote APDNARRL because they can
minimize the impact of urbanization and maintain natural beauty in and among tourist
attractions. However, increases in GDP and POP inhibit APDNARRL, suggesting that the
new population is moving to cities, and the increase in urban productivity then further
attracts people from the surrounding countryside. Guangdong Province, in the east, has
the largest manufacturing sector in China, and it has the highest GDP. It likewise hosts a
large number of migrant workers. We found that Dis_EU, CRP, IAPE, and SecondAdd are
all negatively correlated with APDNARRL. On the one hand, industry (i.e., the secondary
sector) has a huge demand for labor, which greatly promotes the transfer of rural labor
and prompts rural populations to leave the countryside to work in cities. Simultaneously,
it provides an opportunity for the primary sector to improve production efficiency and
promote output value. On the other hand, the accumulation of a large number of workers
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in the industrial sector in cities has also promoted a boom in the rural housing rental market
in suburban areas because rents are cheaper than in urban areas. The closer a rural area is
to an urban center, the more attractive it is to workers looking for rental residences.

Figure 7. Areas where the relationship between driving factors and APDNARRL is significant.

Table 2. Main regions with a significant relationship between driving factors and APDNARRL.

Factors
Main Distribution Area/Coefficient Range

(Positive Correlation)
Main Distribution Area/Coefficient Range

(Negative Correlation)

Dis_TR Sichuan/(0,19.45] Yunnan, Hubei, and Hunan/[−11.43,0)
Dis_CR Guizhou, border between Ningxia and Gansu/(0,45.53] Yunnan/[−23.48,0)

Dis_CC Chongqing/(0,18.59] Guizhou, Sichuan, Shanxi, and
Guangdong/[−33.79,0)

Dis_R None Gansu, Guangxi, and Hubei/[−21.56,−7.94)

Dis_EU Junction of Guangxi, Yunnan, and Guizhou
provinces/(0,45.38]

Zhejiang, Guangdong, Fujian, Chongqing, Hubei,
Jiangxi, and western Yunnan/[−99.63,0)

AE Western Hubei, western Guangxi, and southern
Guizhou/(0,0.65]

Southeast coastal provinces, Qinghai, Sichuan,
Gansu, and Shanxi/[−2.04,0)

CRP Gansu, Sichuan, Chongqing, Guizhou, and northern
Hebei/(0,5.93] Yunnan, eastern Guangdong/[−7.63,0)

IGDP Hunan/(0,0.76] Western Yunnan and Western Sichuan/[−0.82,0)
IAPE Western Yunnan and Sichuan/(0,0.79] Guangdong and Jiangsu/[−1.82,0)
IASE None Guangdong and Hunan/[−0.45,−0.05)
IATE Yunnan/(0,0.21] Zhejiang, Fujian, and Chongqing/[−0.33,0)
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5. Discussion

5.1. Comparison of Population Density between New and Remaining Rural Residential Lands

In comparing the APDNARRL with the average population density of the remaining
rural patches (APDRRP), the remaining rural patches means patches of rural settlements
that existed in both 2000 and 2020. It was found that, overall, APDNARRL significantly
exceeds APDRRP, which is 507.22946 persons/km2, indicating that the hollowing out of
original residential areas is pronounced and should be a focus of future village renovations.
However, not all counties have an APDNARRL exceeding the APDRRP. We found that the
APDNARRL of 1239 counties in China (accounting for about 42.91% of the total number)
is lower than the APDRRP, and the APDNARRL of the other 1628 counties exceeds the
APDRRP. The spatial distribution of these counties is shown in Figure 8. It can be observed
that the Qinghai Tibet Plateau and the eastern coastal and eastern inland regions, as well as
the southern Guangdong and Hainan provinces, form low-value clustering areas, while
high-value clustering areas have formed in the regions of Xinjiang and Northeast China.

 
Figure 8. Spatial distribution of the two groups (note: the red group indicates districts with
APDNARRL > APDRRP, and the green group indicates APDNARRL < APDRRP; the darker the color,
the greater the difference).

Further, to identify whether there are significant differences in the socioeconomic
indicators of the two groups of cities shown in Figure 7, we conducted a t-test on some of
the important socioeconomic indicators for the two groups of county-level units (Table 3).
A significant difference in the GDP growth rate and the change rate of added value in
the tertiary sector can be observed (sig. (2-tailed) <0.05). The mean of the red group (i.e.,
APDNARRL > APDRRP) is significantly higher than that of the green group (Sig. (1-tailed)
<0.05). We also found no significant differences between the two groups of cities in terms
of the rate of change of the total population and the rate of change of the added value of
the primary and secondary sectors. This potentially indicates that the GDP growth is faster
and the employed population (not the total population) brought by the rapid growth of
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the service industry could promote population density in new rural residential land. This
may be related to the fact that the tertiary industry can further attract employed people.
According to the survey, the proportion of the employed population in China’s tertiary
sector significantly exceeds that of the primary and secondary sectors. For example, in
China in 2021, the proportions of employed people in the primary, secondary, and tertiary
sectors were 22.9%, 29.1%, and 48.0%, respectively (https://www.gov.cn/xinwen/2022
-06/08/content_5694541.htm, accessed on 6 June 2023). The rapid growth of the service
sector generated further employment in the sector; however, workers could not afford to
purchase commercial housing in cities and chose cheaper suburban and rural newly built
small property houses (also a type of rural construction land), thus driving the increase
in APDNARRL.

Table 3. t-test for socioeconomic indicators among counties where APDNARRL > APDRRP and
where APDNARRL < APDRRP.

Indicators Group Average Value
Equal Variances

Assumed
Sig. (2-Tailed) Sig. (1-Tailed)

IGDP
Red Group 1111.140 Equal variances assumed 0.048 0.028Green Group 1052.363

CRP
Red Group −2.265 Equal variances assumed 0.604 0.302Green Group 0.476

IAPE
Red Group 498.216 Equal variances assumed 0.179 0.090Green Group 478.313

IASE
Red Group 1434.415 Equal variances assumed 0.272 0.136Green Group 1303.976

IATE
Red Group 1765.351 Equal variances assumed 0.005 0.003Green Group 1616.987

We also found that among the three main types of county-level administrative regions
in China, that is, municipal districts, county-level cities, and counties under the jurisdiction
of cities, the APDNARRL is lower than the APDRRP by 62.78%, 59.70%, and 57.53%,
respectively. This indicates a trend that the higher an area’s urbanization rate, the lower the
population density of the newly added rural residential patches relative to the original rural
residential patches. This could be because areas that have higher levels of urbanization tend
to have a higher level of economic development. The driving force of land expropriation is
stronger in urban development, which makes the function of new rural residential areas for
direct residence weaker, showing economic strength or seeking greater compensation for
demolition and other purposes, resulting in, to a certain extent, a decline in the utilization
rate of new residential areas.

5.2. Policy Suggestions

Comparing the population densities of the remaining rural residential land between
2000 and 2020 revealed that the population density of 688 county-level units (24.00% of the
total) features a declining trend (as shown in Figure 9 for spatial distribution); that is, there
is a trend of hollowing out. In particular, Sichuan, Anhui, and Guizhou provinces have
the largest number of such districts and counties, with 77, 61, and 59 counties, respectively,
reflecting the phenomenon of the hollowing out of the remaining rural residential land.
These three provinces also happen to have the largest number of migrant workers in China,
and it is clear that the large number of farmers who are going to cities for work is the
direct cause of this phenomenon. Therefore, we believe that in areas facing a hollowing
out of their population, policy should focus on narrowing the income gap between urban
and rural areas, and encouraging labor to return to their home areas of residence for
employment. At present, the reason for farmers leaving the countryside and not intending
to return is that the gap between urban and rural economic development is too large.
The focus of policy should be on guiding rural areas to actively develop secondary and
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tertiary industries, increase the added value of their industries, promote the development
of township enterprises, develop characteristic aspects of village collective economies, such
as “one village, one product,” provide a large number of employment opportunities for
young and middle-aged people, and reduce the gap between urban and rural per capita
disposable income. The government should actively attract college students to return to
their hometowns for construction and strongly support this policy by providing funding
and land.

 
Figure 9. Spatial distribution of county-level units with a declining trend of population density in
remaining rural patches.

An extensive and inefficient NARRL is mainly found in Hainan Province, eastern
inland areas, and in southern Guangdong Province. In these areas, the unapproved
construction of new houses and the development of arable land should be strictly prohibited.
The “three rights separation” of ownership, qualification rights, and use rights should
be explored for existing residential land, providing guidance and a policy basis for the
circulation of rural households’ idle rural residential land, to improve the utilization
efficiency of rural residential land, and effectively revitalize rural idle assets to demonstrate
the resource and asset values of rural residential land.

In view of the large population density of the remaining rural residential land (with
densities of more than 2000 persons/km2), there is indeed a new demand for rural residen-
tial land; these areas are mainly concentrated on the eastern coast, where populations are
dense and a township industry has developed. In these areas, policies may be considered to
encourage centralized construction, prevent scattered construction, and develop large areas
of residential land. At the same time, planned reserved villages (usually central villages)
with potential can be sorted out and developed, together with carrying out centralized
reconstruction in accordance with the standards of rural communities, thus encouraging the
construction of multi-story housing, the building of multi-family rows according to local
conditions, strictly controlling single family housing and single courtyards, and gradually
realizing the coexistence of population aggregation with intensive land use.
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6. Conclusions

As China’s economy develops and urbanization advances, the rural population is
constantly migrating to cities, and the permanent population in rural areas is decreasing.
This trend is increasing year after year, leading to idle houses, low land-use efficiency, and
a large amount of land resources being wasted in rural areas. In this context, this study
breaks the traditional limitations of statistical data based on administrative units. At the
patch scale, high-precision rural residential patches and population distribution data are
used to detect ANARR areas in China from 2000 to 2020, as well as the spatial heterogeneity
of APDNARRL’s driving mechanisms. Regional comparisons, local spatial clustering, and
policy recommendations are summarized and analyzed for units at the county level. The
main conclusions of this study include the following three points:

(1) The total area of rural residential land in China grew rapidly between 2000 and 2020,
from 1.269 × 105 km2 to 1.445 × 105 km2. In more than 80% of counties, the area
of rural residential land has increased. In terms of spatial distribution, low-value
clusters, in terms of ANARR, have formed in the northeast and the vast southwest,
while high-value clusters have formed in the North China plain area and the Middle
and Lower Yangtze Valley plain area.

(2) The APDNARRL of the new patches was 701.64 person/km2 for 2000–2020, signif-
icantly exceeding the average of 507.23 person/km2 of the remaining patches. The
GDP growth rate and the rate of change of added value in the tertiary sector are
important indicators for distinguishing the difference in density between the new and
remaining patches. Overall, the APDNARRL in the eastern parts (782 person/km2) is
greater than in the middle regions (552.48 person per km2), which is greater than in
the western parts (634.31 person per km2) of the country. In particular, the population
densities on the two sides of the Hu Huanyong Line are significantly different; the
APDNARRL on the left is significantly lower than that of the right.

(3) The spatial heterogeneity of the driving factors of APDNARRL was analyzed using
Sichuan and Yunnan provinces in the west and Guangdong province in the east as
examples. Of these, the APDNARRL of Sichuan Province is positively correlated with
toVillage, POPChange, and FirstAdd; the APDNARRL of Guangdong Province is
negatively correlated with toUrban, POPChange, FirstAdd, and SecondAdd. The
APDNARRL of Yunnan Province is positively correlated with toUrban and Third,
and the APDNARRL of Guangdong Province is negatively correlated with changes
in toVillage, toCountryR, POP, and GDP. The spatial heterogeneity of the above
provinces reflects the migration logic of populations that have been left behind by the
improvement of agricultural efficiency (the primary sector), the development of the
processing and manufacturing industry (the secondary sector), and the development
of a new eco-tourism industry (the tertiary sector).

It should be acknowledged that we analyzed the two main indicators (ANARR and
APDNARRL) relatively independently, but we have not investigated any coupling rela-
tionship between them or their correlation with other socioeconomic indicators. This is
partly because our research scale is patchy, and socioeconomic indicators are difficult to
calculate. Second, the calculation indicators of coupling relationships are usually based
on multiple time series; however, our study was limited because of the limited acquisition
of data, which were only obtained for one time period (2000–2020) and did not form a
multi-period sequence. These deficiencies are data-level constraints. In the future, as more
research data sharing and open-access technologies are developed, these deficiencies are
expected to be resolved.
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