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Preface

This is the printed edition of a Special Issue that was published in the journal Algorithms. The

Special Issue is based on selected best papers at the IFAC conference MIM 2022 in the track on

planning and scheduling in relation to sustainability and resilience issues. In addition to the Editorial,

this reprint contains eleven research papers focusing on optimization models and algorithms of

production systems from sustainability and resilience perspectives. Among the subjects addressed

in this reprint, one can mention advanced models and algorithms to optimize energy consumption,

environmental benefits, and resilience; demonstrations of how to reduce the cost of installing

photovoltaic systems; and investigations of how to organize sustainable inventory management.

Finally, we extend our gratitude to all the people who have contributed to the success of this

Special Issue, including, but not limited to, the authors from nine different countries, numerous

reviewers from all over the world, and the staff of Algorithms. We hope that the readers of this Special

Issue find many stimulating ideas for their own future research in this challenging field of scheduling

and planning algorithms in relation to sustainable manufacturing, which plays an important role in

daily life.

Alexandre Dolgui, David Lemoine, Marı́a I. Restrepo, and Frank Werner

Guest Editors
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Editorial

Special Issue on Scheduling Theory and Algorithms for
Sustainable Manufacturing
Alexandre Dolgui 1,* , David Lemoine 1, María I. Restrepo 1 and Frank Werner 2

1 IMT Atlantique, LS2N-CNRS, 44307 Nantes, France; david.lemoine@imt-atlantique.fr (D.L.);
maria-isabel.restrepo-ruiz@imt-atlantique.fr (M.I.R.)

2 Faculty of Mathematics, Otto-von-Guericke-University, 309106 Magdeburg, Germany;
frank.werner@mathematik.uni-magdeburg.de

* Correspondence: alexandre.dolgui@imt-atlantique.fr

The following Special Issue was initiated at the 10th IFAC triennial conference MIM
2022 (https://hub.imt-atlantique.fr/mim2022/ accessed on 24 December 2024) on Man-
ufacturing Modelling, Management and Control, held in Nantes, France. The authors of
the most outstanding papers on the topics of decision aid, combinatorial optimization,
and scheduling from the corresponding sessions of the conference were invited to submit
extended versions to the present Special Issue. A special focus was placed on how the
scheduling theory and algorithms can help to solve complex combinatorial optimization
problems in manufacturing from sustainability and related perspectives.

Following their presentation at the conference and selection by the session chairs
and members of the program committee, as mentioned above, a select group of authors
were invited to submit an extended and improved version of their work to this Special
Issue. However, the Special Issue was also open to papers that were not presented at the
conference if they fell within the scope of the issue and were in relation or complementary
to the papers selected at the conference.

The motivation of this Special Issue was to present state-of-the art mathematical
models and algorithms providing efficient solutions for practical planning and scheduling
issues in digital, sustainable, and human-centric manufacturing and logistics [1]. At present,
the production and logistics systems for goods and services are faced with both production
cost optimization and scarcity of resources, including energy [2]; such systems are becoming
increasingly digitalized [3]. Scheduling and algorithms play a central role and offer the
possibility to reduce production waste, manage efficiently, and limit the consumption of
material resources and energy [4].

An increasing number of scholars are focussing their efforts on applying sustainability
criteria when solving planning and scheduling problems in modern digital production
environments [5,6]. Artificial intelligence techniques are often used, taking into account a
large amount of available data and the complexity of the problem that needs to be solved.
To address this issue, multi-objective optimization approaches have been developed.

The majority of studies on the planning and scheduling of production systems and
their logistics from sustainability perspectives focus on economic issues and the mini-
mization of electricity consumption and/or carbon emissions. These factors represent the
economic and environmental parts of sustainability. Some researchers also integrate social
responsibility issues into their work [6].

Various models and algorithms have been developed for planning and scheduling
sustainable production systems, with various parameters, objective functions, constraints,
model types, and optimization methods employed. Energy consumption and greenhouse

Algorithms 2025, 18, 15 https://doi.org/10.3390/a18010015
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gas emissions are the most studied factors of sustainability in the current planning and
scheduling approaches [7].

The objective of this Special Issue was to complement the existing literature with
the most recent research findings and to extend the scope of possible applications and
techniques used in the planning and scheduling of production systems and logistics in the
digital and AI era.

After a rigorous peer review process in accordance with the high standards of the
journal, the following two reviews and nine research papers were selected for publication
in this Special Issue:

“A Review on Reinforcement Learning in Production Scheduling: An Inferential
Perspective” by Vladimir Modrak, Ranjitharamasamy Sudhakarapandian, Arunmozhi
Balamurugan, and Zuzana Soltysova presents a systematic review of production scheduling
based on reinforcement learning techniques covering the period between 1996 and 2024.
This review provides new insights into the use of reinforcement learning in production
scheduling and outlines future challenges to be addressed by practitioners and members of
the academic community.

In the review “Unlocking the Potential of Remanufacturing Through Machine Learning
and Data-Driven Models—A Survey” by Yong Han Kim, Wei Ye, Ritbik Kumar, Finn
Bail, Julia Dvorak, Yanchao Tan, Marvin Carl May, Qing Chang, Ragu Athinarayanan,
Gisela Lanza, John W. Sutherland, Xingyu Li and Chandra Nath, the authors examine the
integration of artificial intelligence and data-driven and machine learning technologies
into remanufacturing processes to improve both operational efficiency and sustainability.
A comprehensive review of existing knowledge and algorithms is presented and the
possibilities to use these techniques in the circular economy are discussed.

“Reducing Nervousness in Master Production Planning: A Systematic Approach
Incorporating Product-Driven Strategies”, presented by Patricio Sáez, Carlos Herrera, and
Victor Parada, addresses the widely recognized issue of nervousness in master production
schedules. Taking into account variations in demand, production schedules change and
create instability in the system. The findings presented in this article suggest a product-
driven system to complement master production scheduling techniques with intelligent
agents to reduce nervousness without significantly increasing production costs.

Manli Dai and Zhongyi Jiang, in their article “Multiprocessor Fair Scheduling Based
on an Improved Slime Mold Algorithm”, propose an improvement to the “Slime Mold Al-
gorithm” optimization method along three axes: the definition of a better initial population
(based on reverse learning of Bernoulli mapping), an improved mutation strategy, and an
optimized boundary-check mechanism. This enhancement allows for faster convergence
of the algorithm. Experiments on test functions are conducted to demonstrate the perfor-
mance and robustness of the approach, which is then applied to the multiprocessor fair
scheduling problem to reduce the average execution time on each processor.

In the article “Mitigating Co-Activity Conflicts and Resource Overallocation in Con-
struction Projects: A Modular Heuristic Scheduling Approach with Primavera P6 EPPM
Integration” by Khwansiri Ninpan, Shuzhang Huang, Francesco Vitillo, Mohamad Ali
Assaad, Lies Benmiloud Bechet and Robert Plana, a heuristic approach for managing com-
plex construction projects is presented, integrating Primavera P6 EPPM and Synchro 4D.
The approach enables proactive conflict detection and the resolution of spatial conflicts
during concurrent tasks, in addition to resource verification prior to task initiation, thereby
ensuring the generation of feasible and conflict-free construction schedules. This approach
integrates seamlessly with existing industry tools.

In the article “Towards Sustainable Inventory Management: A Many-Objective Ap-
proach to Stock Optimization in Multi-Storage Supply Chains” by João A. M. Santos, Miguel
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S. E. Martins, Rui M. Pinto, and Susana M. Vieira, the authors consider the issue of sustain-
able supply chain management consisting of the optimization of inventory levels in storage
facilities, minimizing holding costs, energy consumption, and shortage risk concurrently
and thus integrating sustainability considerations into inventory management.

The next article, “Multi-Criteria Decision Support System for Automatically Selecting
Photovoltaic Sets to Maximise Micro Solar Generation”, by Guilherme Zanlorenzi, Ander-
son Luis Szejka, and Osiris Canciglieri Junior takes into account technological advance-
ments that have made solar energy more accessible. The authors propose a multi-criteria
decision support system to select the most suitable photovoltaic systems for microgrids,
using the AHP and TOPSIS methods. When tested in real-world conditions, the system
provided solutions with efficient yields and high internal rates of return. The authors of
this article establish a methodological framework and a practical decision tool to enhance
the feasibility of solar projects and improve their accessibility.

Vladimir Kats and Eugene Levner, in their article “Maximizing the Average Environ-
mental Benefit of a Fleet of Drones under a Periodic Schedule of Tasks”, present a new,
environmentally oriented problem aimed at determining the optimal number of vehicles
that maximizes the average profit of a fleet of drones. The authors model the problem as an
infinite periodic graph and reduce it to a special type of parametric assignment problem.
They develop a method that allows the problem to be solved to optimality for larger fleets
of drones than any previously known exact algorithm.

In the article “The Parallel Machine Scheduling Problem with Different Speeds and
Release Times in the Ore Hauling Operation” by Luis Tarazona-Torres, Ciro Amaya, Alvaro
Paipilla, Camilo Gomez, and David Alvarez-Martinez, the authors present an approach to
determine the minimum amount of hauling equipment required to meet an ore transport
target. The authors model the problem as a parallel machine scheduling problem with
different speeds and release times, with the objective of minimizing both the completion
time and the costs associated with the equipment used. The approach helps decision-
makers ensure that loading and hauling equipment are utilized to their fullest potential
while adhering to budgetary constraints and operational schedules.

Yumin He, Alexandre Dolgui, and Milton Smith in their article “An Algorithm for Part
Input Sequencing of Flexible Manufacturing Systems with Machine Disruption” explore
the management of disruptions in flexible manufacturing systems (FMSs), with a particular
emphasis on part input sequencing. Disruptions, such as machine breakdowns, are unpre-
dictable and can significantly impact supply chains and production processes. An efficient
algorithm is proposed to make part input sequencing in an FMS under machine failure
conditions and is subsequently tested through simulations. Lastly, managerial implications
and further research directions are provided.

In the paper “Minimum-Energy Scheduling of Flexible Job-Shop Through Optimiza-
tion and Comprehensive Heuristic” by Oludolapo Akanni Olanrewaju, Fabio Luiz Peres
Krykhtine, and Felix Mora-Camino, the authors consider a flexible job-shop scheduling
problem in high energy-consuming flexible production plants. The primary objective
of the study is to generate energy-efficient schedules with acceptable production delays
for each job. The authors develop an ad hoc heuristic as the computational complex-
ity of the problem increases with the requirement to generate efficient schedules in a
dynamic environment.

It is our hope that this carefully curated selection of papers will be of interest to readers
of the journal Algorithms and useful for all members of our community.

Conflicts of Interest: The guest editors declare no conflict of interest.
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Abstract: In this study, a systematic review on production scheduling based on reinforcement learning
(RL) techniques using especially bibliometric analysis has been carried out. The aim of this work is,
among other things, to point out the growing interest in this domain and to outline the influence
of RL as a type of machine learning on production scheduling. To achieve this, the paper explores
production scheduling using RL by investigating the descriptive metadata of pertinent publications
contained in Scopus, ScienceDirect, and Google Scholar databases. The study focuses on a wide
spectrum of publications spanning the years between 1996 and 2024. The findings of this study can
serve as new insights for future research endeavors in the realm of production scheduling using
RL techniques.

Keywords: bibliometric analysis; production scheduling; reinforcement learning

1. Introduction

Production scheduling is considered as one of the most critical elements of manufac-
turing management in aligning production activities with business objectives, in ensuring a
smooth flow of goods resources, and in supporting company’s ability to remain competitive
in the marketplace. Scheduling algorithms play an important role in enhancing production
efficiency and effectiveness, and therefore have long been a subject of extensive research in
various interdisciplinary domains, such as industrial engineering, automation, and manage-
ment science [1]. The production scheduling tasks can be solved using three main types of
step-by-step procedures such as exact algorithms, heuristic algorithms, and meta-heuristic
algorithms [2,3]. Although an exact algorithm can theoretically guarantee the optimum
solution, the NP-hardness of major problems makes them impossible to address effectively
and efficiently [4]. Heuristics use a set of rules to create scheduling solutions quickly and
effectively without consideration of global optimization. Furthermore, the creation of rules
is heavily reliant on a thorough comprehension of the particulars of the situation [5–8].
Whereas meta-heuristics can produce good scheduling solutions in a reasonable amount of
computing time, the way search operators create them significantly depends on the specific
situation at hand [9–13]. In addition, the iterative search process poses challenges in terms
of time consumption and applicability in real-time scenarios when dealing with large-scale
problems. Scheduling approaches based on reinforcement learning (RL) have proven to
be a useful tool in this regard. Reinforcement learning is a subfield within the broader
domain of machine learning. RL is considered one of the most perspective approaches
for robust cooperative scheduling, which allows production managers to interact with a
complex manufacturing environment, learn from previous experience, and select optimal
decisions. It involves the process of an agent autonomously selecting and executing actions
to accomplish a given task. The agent learns via experience and aims to maximize the

Algorithms 2024, 17, 343. https://doi.org/10.3390/a17080343 https://www.mdpi.com/journal/algorithms5
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rewards it receives in certain scenarios. The primary goal of RL is to optimize the cumula-
tive reward obtained by an agent through the evaluation and selection of actions within a
dynamic environment [14–20]. The most current development in artificial intelligence tech-
nology has allowed successful application of RL in sequential decision-making problems
with multiple objectives which are usable for robot scheduling and control [21,22]. The
research on production scheduling using RL since 1998 has been evolving as advancing
optimization techniques compared to metaheuristics. RL significantly improves the com-
putational efficiency of addressing scheduling problems. Numerous research articles of RL
on production scheduling have been undertaken since its inception in 1996, establishing a
substantial and valuable foundation (see few of them, e.g., [23–27]), but only two recent
review papers [28,29] paid attention to this subject. However, both the papers published
in 2021 were focused on different perspectives of RL-based scheduling algorithms than
presented in this paper. In other words, the content of the proposed paper is in a disjunctive
and complementary relation to the two mentioned studies.

The research question of this paper is multi-faceted including multiple features of this
domain that require separate answers. The main features that this paper will address are:
What are the main emerging research areas in the field? Which related topics are being
covered in production scheduling based on RL? What are typical implementation domains
within RL applied to production scheduling?

Its novelty lies in providing the additional analyses and assessments regarding RL
in production scheduling. It encompasses, e.g., the citation trend for RL on production
scheduling, the most influential authors in this domain, the most relevant sources in the
field, comparison of deterministic types of scheduling methods and uncertain types of
scheduling methods.

2. Materials and Methods

The bibliometric approach employed here, as the main research method, presents a
quantitative instrument for monitoring and representing scientific progress by examining
and visualizing scientific information. The growing acceptance of bibliometric methods
in several academic disciplines indicates that their use brings expected effects [30–33].
The present investigation of RL-based production scheduling is conducted utilizing the
procedure comprising of five coherent phases, as depicted in Figure 1.

Moreover, this research follows an inferential approach, where the sample of popula-
tion is explored to determine its characteristics [34,35]. Moreover, the inferential concept of
scientific representation proposed by Suárez [36] was applied here to formulate research
outputs. Its essence is to employ alternative reasoning to reach results that differ from the
isomorphic view of scientific representation in the sense that empirical knowledge plays an
important role in inductive reasoning [37,38].
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3. The Quintessence of Reinforcement Learning

Artificial Intelligence (AI) has become an integral and significant aspect of our daily
life as we approach the conclusion of this decade. Artificial Intelligence has been present
for the past seven decades but has gained significant momentum in the recent three
decades, leading to extensive research in this field [39]. AI refers to various techniques
that allow computers to acquire knowledge and make choices by analyzing data. Out of
these techniques, machine learning (ML) has made significant advancements in the past
two decades, transitioning from a mere curiosity in laboratories to a widely used practical
technology in commercial applications. In AI, ML has become the preferred approach for
creating functional software in areas such as computer vision, natural language processing,
speech recognition, robot control, and various other applications [40].

Many AI developers now acknowledge that, in several cases, it is more convenient
to train a system by demonstrating ideal input-output behavior rather than manually
programming it to anticipate the desired response for every potential input. ML has
significantly impacted various areas of computer science and sectors that deal with data-
driven problems. It includes consumer services, diagnosing defects in intricate systems, and
managing logistics chains. ML approaches have had diverse effects on several empirical
sciences, such as biology, cosmology, and social science. These approaches have been used
creatively to examine vast experimental data [41].
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Three major ML paradigms are supervised learning, unsupervised learning, and rein-
forcement learning [15]. Supervised learning entails the process of training a model using a
dataset that has been labeled, meaning that each input is associated with its corresponding
accurate output. The objective is to acquire knowledge about a transformation from given
inputs to corresponding outputs, which can then be utilized to make accurate forecasts on
novel, unobserved data. Unsupervised learning involves the identification of concealed pat-
terns or inherent structures in unlabeled input data. The model aims to acquire knowledge
about the fundamental distribution or grouping of the data without explicit instructions
on the desired outcome [28]. RL is centered around teaching an agent to make numerous
choices by engaging with an environment and receiving rewards or punishments as feed-
back. The agent acquires the ability to optimize its activities to maximize the total rewards
it receives over a period [42].

Due to its dynamic and adaptive methodology, RL is highly effective for addressing
problems in the manufacturing systems and robotics research domain [22,28]. RL is distinct
from supervised learning, where a model is trained on a predetermined dataset, and
unsupervised learning, where the model discovers concealed patterns within data. In
reinforcement learning, an agent is educated to make a series of decisions by engaging with
an environment. The agent’s objective is to acquire a strategy, sometimes known as a policy,
that optimizes the total rewards obtained over time [43].

RL is a decision-making process influenced by behavioral psychology. It involves an
agent learning to achieve a goal by acting and receiving feedback from the environment
through rewards or penalties. This trial-and-error method is akin to how humans and
animals learn from their environment. The critical components of RL are the agent, the
environment, actions, states, and rewards. The agent observes the environment, takes
actions, and receives rewards, which are used to guide future actions [14]. RL is particularly
effective in tasks with uncertain outcomes, such as playing games, controlling robots, and
managing resources. In these situations, the agent must balance exploration (trying new
actions) and exploitation (using established actions that lead to significant rewards) to
develop an optimal policy efficiently [42].

The mathematical framework of RL is commonly represented using Markov Deci-
sion Processes (MDPs), which offer a systematic approach to modeling decision-making
problems, including both random and agent-controlled outcomes. Solving an MDP entails
determining a policy that prescribes the optimal action to be taken in each stage, aiming to
maximize the predicted cumulative rewards in the future. The recent progress in deep learn-
ing has dramatically improved the capacities of RL [15,16]. The combination of deep neural
networks and RL algorithms has resulted in the emergence of deep reinforcement learning
(DRL), which has demonstrated exceptional achievements in intricate situations. Prominent
instances include AlphaGo, developed by Google, which triumphed over human champi-
ons in the game of Go, as well as diverse implementations in autonomous driving, where
DRL algorithms acquire the ability to navigate intricate and ever-changing surroundings
successfully. Reinforcement learning remains a dynamic and swiftly advancing domain in
machine learning, where ongoing research constantly pushes the limits of what artificial
agents can accomplish. As we delve into the complexities of RL, we discover fresh oppor-
tunities for intelligent systems that possess the ability to acquire knowledge and adjust
their behavior in real-time. RL paves the way for a future where computers can seamlessly
cooperate with people and function autonomously in more advanced manners [42].

4. Taxonomy of Reinforcement Learning Algorithms

Sutton and Barto [42] emphasize the crucial role of the three essential components in
the RL process:

• A policy determines the actions to be taken in each environmental state.
• A reward signal categorizes these actions as beneficial or detrimental based on the

immediate outcome of transitioning between states.
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• A value function assesses the long-term effectiveness of actions by considering not
only a state’s immediate reward but also the anticipated future rewards.

The primary objective of the agent is to optimize the cumulative reward. Consequently,
the reward signal is the foundation for modifying the policy and the value function. In
specific RL systems, an additional component known as a model of the environment exists,
which is optional. It replicates the behaviour of the climate or enables more comprehensive
assumptions about the behaviour of the environment. Models are utilized for strategic
planning, which involves making decisions based on anticipation of future scenarios before
their actual occurrence [24]. Model-based methods are used to handle reinforcement
learning problems by utilizing models and planning, in contrast to more straightforward
model-free methods. They exhibit apparent trial-and-error learning behaviour and are
considered the reverse of planning [26,27]. RL processes can be represented and analysed
using a mathematical framework called MDP. The stochastic mathematical model can be
formalized using a 5-tuple (s, a, p, r, γ), in which the first symbol ‘s’ represents the finite
collection of all possible environment states, while st—is the state at a specific time ‘t’. Letter
‘a’ represents the set of all possible actions, while the action taken at time ‘t’ is marked as
at. Symbol ‘p’ refers to the transition probabilities matrix, which defines the conditional
probability of transitioning to a new state ‘s’, with a reward ‘r’, given the current state ‘s’,
and action ‘a’ (for all states and actions) [44]. Figure 2 shows the RL of the production
scheduling cycle.
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The learning methodologies of RL algorithms or agents can be classified into two
distinct categories, model-based and model free. Model-based RL is often known as
indirect learning. The agent uses a predictive model to learn the control policy from the
environment through a limited number of interactions. The agent then applies this model
to subsequent episodes to obtain rewards [15]. Model-free RL, or direct learning, refers to
learning where an agent learns to make decisions without explicitly building a model of
the environment. The agent acquires knowledge of the control policy through experiential
learning from the environment, employing trial and error methods to optimize rewards
without relying on any pre-existing model. This approach showcases the adaptability of
RL algorithms, allowing them to learn and evolve in dynamic environments [45].

As there are many different RL algorithms, it is sensible to understand the difference
among them. For this purpose, classification systems have been established to categorize
them by different criteria. For instance, ALMahamid and Grolinger [46] proposed to
categorize RL algorithms based on the environment type. RL algorithms can also be
classified from the perspective of policy: on-policy vs. off-policy learning [47,48]. RL are
mostly classified according to their learning approaches [15,45]. With this regard, updated
classification of RL algorithms from the perspective of learning approaches used is provided
in Figure 3.
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5. State of the Art of Reinforcement Learning in Production Scheduling

Deterministic scheduling encompasses organizing and planning tasks under fixed pa-
rameters and known constraints. Its goal is to optimize production efficiency and minimize
turnaround times. A comprehensive work [49] explores fundamental principles and ad-
vanced techniques in deterministic scheduling, providing insights into various algorithms
and their applications. Pinedo’s work [50] thoroughly reviews deterministic scheduling
theory, algorithms, and practical systems, highlighting their significance in manufacturing
and service operations. Flowshop scheduling involves sequencing operations on multiple
machines in a fixed order to minimize makespan or total completion time. Allahverdi [51]
discusses various flowshop scheduling problems, including setups, and reviews algorithms
and approaches to address them. Panwalkar and Smith [52] provide a seminal survey
of classic and contemporary research on flowshop scheduling, covering both exact and
heuristic methods.

Reinforcement learning (RL) techniques have gained popularity, affirming the in-
terest in agent-based models. Previous studies have primarily focused on using RL to
solve job-shop scheduling challenges. The manufacturing sector faces challenges such
as customer satisfaction, system degradation, sustainability, inventory, and efficiency, im-
pacting plant sustainability and profitability. Industry 4.0 and smart manufacturing offer
solutions for optimized operations and high quality products. Paraschos et al. [53] inte-
grate RL with lean green manufacturing to create a sustainable production environment,
reducing environmental impact through minimized material consumption and lifecycle
extension via pull production, predictive maintenance, and circular economy practices.
Rigorous experimental analysis validates its effectiveness in enhancing sustainability and
material reuse.

Recently, significant progress has been made in using RL to tackle several combinato-
rial optimization problems, including production scheduling, Vehicle Routing Problem, and
Traveling Salesman Problem [54–59]. In RL, a production scheduling task can be viewed as
an environment in which an agent operates, developing a policy through offline training by
interacting with this environment. This approach offers a novel way to address scheduling
challenges, requiring stringent real time constraints, such as dynamic job shop scheduling
problems [22,60–64].
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In production scheduling problems, value based RL algorithms are commonly used,
including Q-learning, temporal difference TD(λ) algorithm, SARSA, ARL, informed Q-
learning, dual Q-learning, approximate Q-learning, gradient descent TD(λ) algorithm,
revenue sharing, Q-III learning, relational RL, relaxed SMART, and TD(λ)-learning. In Deep
Reinforcement Learning (DRL), many value-based approaches are employed, such as DQN
(Deep Q-Learning Networks), loosely-coupled DRL, multiclass DQN, and the Q-network
algorithm [43,44,65–73].

Qu et al. [25] applied multi-agent approximation Q-learning, demonstrating its effec-
tiveness through numerical experiments in static and dynamic environments and various
flow shop scenarios. The goal was to create and implement an efficient manufacturing
schedule considering realistic interactions between labor skills and adaptive machinery.
Luo [74] uses the DRL method to address dynamic flexible job shop scheduling, focus-
ing on scenarios to reduce tardiness. Luo et al. [75] first employed ‘hierarchical multi-
agent proximal policy optimization’ (HMAPPO) for the constantly changing partial-no-
wait multi-objective flexible job shop problem (MOFJSP) with new job insertions and
machine breakdowns.

Machine deterioration during production, increases operational expenses and causes
workflow disruptions, necessitating costly corrective maintenance. Preventive maintenance
prolongs machine life but entails downtime and costs. The study [76] addresses these
challenges by optimizing production and maintenance schedules in multi-machine systems,
introducing knowledge enhanced Reinforcement Learning to enhance RL effectiveness in
guiding production decisions and fostering machine collaboration. Comparative evalua-
tions in deterministic and stochastic scenarios highlight the algorithm’s ability to maximize
business rewards and prevent failures.

According to Wang et al. [54], the production scheduling process involves manufactur-
ing various items using a hybrid production pattern incorporating the multi-agent Deep
Reinforcement Learning (MADRL) model. Popper et al. [60] proposed MADRL to optimize
flexible production plants considering factors like efficiency and environmental targets.
Du et al. [77] used the Deep Q-Network (DQN) method to address the flexible task shop
scheduling problem (FJSP) amid changing processing rates, setup time, idle time, and
task transportation. This approach integrates state indicators and actions to enhance the
DQN component’s efficiency. Additionally, it includes a problem driven exploratory data
analysis (EDA) component to improve data exploration.

Li et al. [78] used a Deep Reinforcement Learning (DRL) method to solve the dis-
crete flexible job shop problem with inter tool reusability (DFJSP-ITR), addressing the
multi-objective optimization problem of minimizing combined makespan and total energy
consumption. The proposed solution includes few generic state characteristics, a genetic
programming based action space, and a reward function. Zhou et al. [79] proposed using
online scheduling strategies based on RL with composite reward functions to improve
industrial systems effectiveness and robustness. The work [18] utilized an advanced DRL
algorithm to optimize production scheduling in complex job shops, highlighting benefits
like enhanced adaptability, global visibility, and optimization. Some authors have focused
on developing various DRL algorithms capable of formulating complex strategies for pro-
duction scheduling. For instance, Luo et al. [26] created an online rescheduling framework
for the dynamic multi-objective flexible job shop scheduling problem, enabling minimiza-
tion of total tardiness or maximization of machine usage rate. Zhou et al. [27] used the deep
Q-learning technique to address dynamic scheduling in intelligent manufacturing. Another
dynamic scheduling method using deep RL is proposed in [80], employing proximal policy
optimization to determine the ideal scheduling policy. Wang and Usher [81] examined
using the reinforcement Q-learning algorithm for agent based production scheduling. The
integration of RL with production scheduling signifies a major advancement in optimizing
manufacturing processes. As research and technology continue to evolve, it promises
even greater efficiency and adaptability in the industry. Delving into bibliometric data can

11



Algorithms 2024, 17, 343

provide valuable insights into research trends, influential works, and key contributors in
this rapidly developing field.

Industry 4.0 and Smart Industry lead contemporary manufacturing and production.
Industry 4.0 integrates advanced technologies like the Internet of Things (IoT), Artificial
Intelligence (AI), Big Data, and Cyber-Physical Systems to create highly automated and
networked production environments. The concept of intelligent industry emphasizes
real-time data analytics, predictive maintenance, and adaptable manufacturing processes
to improve efficiency, flexibility, and production [27]. Implementing RL algorithms is
crucial in these paradigms, facilitating machine learning and future prediction through
interactions in the production environment. This enhances scheduling, resource allocation,
and quality control, enabling firms to achieve high automation and precision in decision-
making, leading to more resilient and responsive modern manufacturing [54]. Table 1
illustrates the contribution of RL algorithms to production scheduling

Table 1. Contributions of reinforcement learning on production scheduling.

Category: Environment

Scheduling Type Reward Contribution

Complex Job Shop [18] Penalties
Advanced DRL algorithm optimizing production
scheduling, highlighting adaptability, visibility, and
optimization.

Flow Shop [25] Finished order vs. overdue penalty Efficient manufacturing schedule considering labour skills
and adaptive machinery.

Flexible Job Shop [74] Tardiness/machine utilization rate;
energy cost; late products

Online rescheduling minimizing tardiness or maximizing
machine usage. MARL method optimizing for efficiency
and environmental targets.

Job Shop [54] Penalties
DQN technique for minimizing task completion time in
dynamic scheduling. MADRL optimizing system-level
performance considering workpiece interactions.

Category: Method

Complex Job Shop [18] Penalties DRL algorithm for optimizing scheduling, improving
adaptability, visibility, and optimization.

Flow Shop [25] Finished order vs. overdue penalty Efficient schedule considering labour skills and machinery
interactions.

Flexible Job Shop [24] Tardiness/machine utilization rate;
energy cost; late products

Reinforcement learning minimizing completion times in
dynamic job scheduling.

Category: Reward

Complex Job Shop [62] Penalties Job scheduling with multi agent in resource pre-emption
learning

Flow Shop [60] Finished order vs. overdue penalty;
energy cost; late products

Optimizing production plants for efficiency and
sustainability.

Flexible Job Shop [19] Tardiness/machine utilization rate;
energy cost; late products

Addressing reinforcement algorithm in scheduling,
aiming at decision making in Flexible Job Shop.

6. Bibliometric Analysis of Studies on RL in Production Scheduling

The bibliometric analysis of RL in the context of production scheduling is focusing
here on its theoretical foundations and practical implications, between the years 1996 and
2024. The first two phases involve the collection of bibliographic data, which was gathered
via Scopus database. The search was restricted to this database due to its prominence as a
comprehensive repository of scientific literature and its frequent utilization in academic
assessments. The inclusion criteria for the purpose of analysis presented in Sections 6.1–6.4
encompassed publications that contained the terms “reinforcement learning” and ‘produc-
tion’ and ‘scheduling’. Besides that, the terms “reinforcement learning” and “deterministic
scheduling” or “reinforcement learning” and “uncertain scheduling” were used for analysis
carried out in Section 6.5. In the next two phases of the data sorting and presentation, the
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Microsoft Excel and VOSviewer software 1.6.20 were employed to extract the necessary
information, such as the annual scientific outputs, most relevant sources, most cited author,
and keyword co-occurrence.

The process of selected studies for mentioned research methodology is synthetized in
Figure 4, according to PRISMA guidelines.
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Figure 4. PRISMA 2020 flow diagram for updated systematic reviews which included searches
of databases.

Using the above-specified keywords and search criteria (for Sections 6.1–6.4 n = 634
publications and for Section 6.5 n = 734 publications), together 1368 co-authored articles
were found until 27 May 2024, when all document types were included in review analysis
(new studies n = 1154 and studies included in previous version of review n = 214).

Review analysis of Sections 6.1–6.4 included 634 co-authored articles searched within
“Article title, Abstract and Keywords”. The primary research areas that receive significant
attention in the articles include Computer Science, Engineering, Mathematics, Decision
Sciences, Business, Management and Counting, Energy, Chemical Engineering, Material
Science, and other topics. The 634 publications in our sample were categorized into
19 distinct research topics. The eight primary research areas, along with their article
distribution are displayed in Table 2.
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Table 2. Associated research disciplines.

Research Areas Number of
Publications Percentage

Computer Science 429 32.7%
Engineering 402 30.6%
Mathematics 159 12%
Decision Sciences 85 6.5%
Business, Management and Counting 49 3.7%
Energy 44 3.4%
Chemical Engineering 34 2.6%
Materials Science 25 2%
Others 85 6.5%

6.1. Trends of Publications and Citations

Numbers of published articles and their citations usually provide sufficiently reliable
information to anticipate further development of examined research domain. Considering
the numbers of publications and citations in the field of production planning using learning
algorithms keeping around 29 years of data, the trend analysis graph has been derived. For
this purpose, the same search terms and keywords were applied as in case of identification
of major research categories, but the types of documents were extended to all the types.
The reason of changing document types was to find out the initial research initiatives in this
domain. The same search conditions were applied in the rest of the paper to include the
larger sample of publications for the purpose of the investigation. The annual distribution
of publications (out of the total 634 items) and their citations from the same database during
the period from 1996 to 2024 is illustrated in Figure 5.
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An examination of the yearly scientific outputs between 1996 and 2018 amply demon-
strated a relatively stable low number of articles published annually. Throughout these
two decenniums, the need for RL in production scheduling in real conditions apparently
did not appear. During the 2019–2023 era, there was a noticeable rise in the number of
publications that were registered in the most recognized database for peer reviewed content.
This phenomenon can be primarily attributed to the advancements in artificial intelligence.
It is noteworthy to emphasize that if this exponential trend of increasing the number of
publications continues as can be seen in year 2024, then one can anticipate that during the
next decade the importance of RL in manufacturing scheduling will significantly increase.

6.2. Most Relevant Sources

An identification of the most relevant publications from an initial dataset presents
common approach in bibliometric research since such sources usually publish influen-
tial research that attracts widespread interest. As a rule, the most productive journals
have the greatest influence on the development of science in a particular field since they
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publish more articles and generate more citations [77–79]. As for as the relevancy of lit-
erature in the explored field, the top ten journals that have published the most articles,
are identified here. Also, the top ten most cited scientific journals are mentioned in this
Sub-section. Figures 6 and 7 categorize journals according to these two criteria to show that
they represent documents that exhibit the utmost relevance to RL in production scheduling.
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The Lecture Notes in Computer Science, Procedia CIRP and Computers and Industrial
Engineering along with the twelve other journals are considered the most relevant scientific
publications in this field. It can also be noted that all fifteen journals listed in Figures 6 and 7,
regardless of the results of the metrics used, can be empirically ranked as widely recognized
for disseminating advanced research on reinforcement learning applied to production
scheduling. In addition, their scientific rigor is also indicated by the fact that out of the
fifteen identified journals, eight met high standards for quality as they are indexed for
Current Content Connect journals with a verifiable impact on steering research practices
and behaviors [80,81].

6.3. Most Cited Authors

Since the 1996s, many authors have made significant contributions to the development
of this field. In this Sub-section, the intention is to present some of those authors who made
significant intellectual contributions to the research. The analysis of the most cited authors
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was performed using data from Scopus database. In addition, co-citation analysis was
carried out for each publication source (out of the total 634 items) to reveal the network
between the studies. For this purpose, VOSviewer software [82] has been used. To obtain
relevant information and clear graphic representation of complex relations, the following
filters were employed. Filter 1: Maximum number of authors per document—15; Filter 2:
Minimum number of documents of an author—3; Filter 3: Minimum number of citations
of an author—10. Moreover, the full counting method has been applied meaning that the
publications that have co-authors from multiple countries are counted as a full publication
for each of those countries. The co-citation network of the selected sample of scholars using
these settings is visualized in Figure 8.
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ment of this field from 1996 to 2024.

This co-citation network map shows, among other things, scholars that have received
the highest number of citations in the last 29 years. Of the 1376 cited authors, 138 meet the
above-mentioned criteria. Each scholar from each included publication is represented by a
node in this network. The size of each node indicates frequency of citation of the subject’s
scholarly works. An edge is drawn between two nodes if the two scholars were cited by a
common document. To rank influential scholars in the given domain based on their citation
rates, the ten most cited authors were selected. Those ten authors are listed in Table 3.
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Table 3. Most influential authors.

Name Number of
Citations Country Name Number of

Citations Country

Waschenck, B. 386 Germany Wang, Y. C. 265 Taiwan

Wang, L. 375 China Wang, H. 224 China

Wang, J. 354 China Lin, C.C. 216 Taiwan

Bauernhansl, T. 342 Germany Li, S. 209 China

Usher, J.M. 265 USA Beldjilali, B. 207 Algeria

6.4. Identification of the Related Research Areas

The goal of this part of the article is to identify areas of research in which the issue of
production scheduling based on RL is of interest. For this purpose, the keyword analysis
application has been employed to help separate important research themes which has
received a high interest of researchers from less important ones. To obtain relevant and
representative categories not including less significant ones, the following setting has been
used: Minimum number of occurrence of keywords—14. Based on this restriction, 88
keywords meet the threshold from the total 3767 keywords. Those main keywords that
were produced automatically from the titles in the papers on production scheduling based
on RL along with their occurrence are shown in Figure 9.

As can be seen, topics can be divided into five clusters based on a computer algorithm,
while each cluster has a different color as shown in Figure 9. The keywords co-occurrence
map highlights these clusters where the darker the color, the greater the density value is.
It allows to identify relevant research topics and their mutual relationships. Based on the
obtained bibliometric results extracted from VOSviewer, ten related topics that are very
close to the explored research domain were identified as shown in Table 4.

The results from Table 4 point to their consistency with practical reality and operation
research goals. For example, in recent years, there has been evidently increased interest
in using reinforcement learning for optimization of real-time job scheduling tasks [76–86].
This fact can be correlated with the continuing trend of mass customization in the pro-
duction of consumer goods [87,88]. As known, for mass customization is characteristic to
meet dynamically changing user requirements in time, while customized products need
to be completed by different deadlines. Accordingly, efficient real-time job-scheduling
algorithms based on DRL become essential. The next important method that is ranked
among the top 10 co-occurrences keywords is production control. It uses different control
techniques to meet production targets regarding production schedules and quality (see,
e.g., [89–92]). The next important co-occurred keyword in Table 3—multi agent systems.
In general, incorporating multi-agent systems into reinforcement learning for production
scheduling offers numerous advantages in terms of flexibility, scalability, and adaptabil-
ity [93–95]. By enabling decentralized decision-making and continuous learning, these
systems can effectively handle the complexities and dynamics of modern production en-
vironments leading to more efficient and resilient scheduling solutions [96]. Among the
co-occurrences keywords it is possible to highlight also ‘smart manufacturing’ that rep-
resents the implementation domain of production scheduling based on RL. Even though
smart manufacturing has also become a buzzword, which also has its drawbacks, this
conception is gradually being established as the new manufacturing paradigm. On the
other hand, complexity of smart manufacturing network infrastructures becomes higher
and higher, and the uncertainty of such manufacturing environment becomes a serious
problem [25]. These facts lead to the necessity of applying advanced dynamic planning so-
lutions that also includes production scheduling using RL. This paragraph simultaneously
answers to the main research question formulated in Section 1.

Further, application of RL in production scheduling will be here analyzed through
bibliometric means from a viewpoint of different scheduling problems.
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Table 4. Most related methodologies and implementation areas of production scheduling based
on RL.

Related Research Areas Number of Co-Occurrence Related Terms/Topics Number of Co-Occurrence

Reinforcement learning 526 Production control 161
Scheduling 220 Deep reinforcement learning 148
Deep learning 215 Learning systems 134
Learning algorithms 178 Decision making 99
Job shop scheduling 168 Multi agent systems 86

6.5. Comparison of Applications of RL in Different Scheduling Problems

In general, scheduling methods are categorized based on time at which decision is
taken into dynamic and static ones. Dynamic scheduling is related to real-time systems that
require responding to changing demand requirements, while static scheduling is off-line
and focuses on short-term time horizon by setting a fixed timeline for process completion.
It has been found by Wang et al. [28] that production scheduling based on RL approaches
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are largely adopted to solve dynamic scheduling problems. Scheduling problems can also
be categorized by the nature of scheduling environment as deterministic, when processing
parameters are known and invariable, and non-deterministic, when input parameters
are uncertain [97]. Production scheduling problems under this second criterion can be
classified as shown in Figure 10.
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Understanding differences among specific scheduling problems is crucial for selec-
tion of the appropriate optimization and scheduling techniques with the aim to improve
efficiency and productivity in various industries. The main difference among scheduling
problems can be seen, e.g., in routing flexibility and complexity. For instance, job-shop
problems have a high routing flexibility and complexity, while for flow-shop and single
machine problems is typical low flexibility, and parallel machine problem has moderate
routing flexibility and complexity [98,99]. Their differences also lie in nature of application
domains for which they are intended. For example, for a customized manufacturing is
typical job-shop scheduling [100,101], for assembly lines is mostly considered flow-shop
scheduling problems [102,103], and open job shop scheduling is frequently applicable in
healthcare [104,105].

The classification is further used to explore an application frequency of RL in the
identified categories of the scheduling problems. First, deterministic versus uncertain
scheduling is compared according to this view. For this purpose, the search terms were
defined by combining the following keywords: “Reinforcement Learning” along with
“Deterministic scheduling” or “Uncertain scheduling”, respectively. Data together with
inclusion criteria were collated by searching: (i) ScienceDirect database—All fields, All
years, and All document types; (ii) Scopus database—All fields, All years, All document
types, and (iii) Google Scholar database—All years and All document types. Together
734 publications were analyzed. Web of Science was not used in this procedure due to
the low occurrence of scientific works on the subjects. The obtained data in this way are
provided in Table 5.

Table 5. Comparison of deterministic and uncertain scheduling methods based on RL.

Search Terms Used Science Direct
Database

Scopus
Database

Google Scholar
Database

“Deterministic scheduling” and
“reinforcement learning” 53 68 474

“Uncertain scheduling” and
“reinforcement learning” 12 24 103

From Table 5 is clear that deterministic scheduling based on RL is in a dominant
position against uncertain scheduling using RL. Therefore, to identify the most promising
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area(s) of production scheduling in the context of RL, deterministic scheduling and uncer-
tain scheduling approaches has been examined in the following. Key words used for that
purpose were:

(a) Scheduling AND “reinforcement learning” AND specific deterministic scheduling
problems (“job shop”, “flow shop”, “open shop”, “single machine”, and “parallel
machines”).

(b) “Reinforcement learning” AND specific uncertain scheduling problems (“fuzzy schedul-
ing” and “stochastic scheduling”).

Data were retrieved from ScienceDirect database using filters ‘Research articles’, and
‘All years’; Scopus database using filter ‘Article titles’, ‘Abstracts’, ‘Keywords’, All years,
and All document types, and Google Scholar database—All years and All document types.
Obtained results are graphically presented and compared in percentage with each other in
Figure 11.
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Figure 11. Comparison of (a) deterministic scheduling methods and (b) uncertain scheduling methods
from their occurrences in literature.

One can see from Figure 11a that RL-based scheduling algorithms are mostly used
to solve job shop scheduling problems [106], while flow shop production environment is
the second most important type of scheduling problems, where RL is applied. Obviously,
RL-based algorithms found application in other types of scheduling problems. As the most
noticeable of them, it is possible to mention energy efficiency scheduling, multi-objective
scheduling, and distributive scheduling. The last-mentioned scheduling problem is ex-
ploited especially in intelligent manufacturing systems [107]. Analyzing the results from
Figure 11b, it is observed that RL is predominantly used in stochastic scheduling methods
comparing with its application in fuzzy scheduling methods. Moreover, the effectiveness
of stochastic scheduling using RL has been also demonstrated through benchmarking
studies [29,108,109]. Although the application of RL in fuzzy scheduling is promising, it
remains less common due to additional complexities involved in integrating fuzzy logic
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with RL methods [110,111]. However, the results of this quantitative approach for compari-
son of application of RL in different scheduling problems provide some useful managerial
insights into scheduling practice. Nevertheless, further exploration and research on qualita-
tive aspects of RL-based scheduling, particularly in the context of smart manufacturing,
is required.

7. Comparison of the Presented Research and Previous Review Articles

As was already mentioned in introduction, this review paper continues the work of the
two earlier articles [28,29] by analyzing some new relevant aspects of production scheduling
methods using RL and provides some updated information regarding recent developments
in the field. The purpose of this section is to provide a clear view on differences and
similarities of the three works in terms of their subject matters. The following Table 6
contains a summary comparison of investigation areas included in the mentioned works.

Table 6. The comparison of the review papers on RL in Production Scheduling.

The Focus of Investigation
The Compared Review Papers

Wang et al., 2021 [28] Kayhan and Yildiz, 2021 [29] Offered Research

The citation trend for RL in production
scheduling from 1996 to 2024 3

The most relevant publications in the field 3 3

The most influential authors in the field 3

The comparison of deterministic and uncertain
scheduling methods based on RL 3

The comparison of stochastic and fuzzy
scheduling methods based on RL 3

The publication trend for RL in production
scheduling 3 3 3

The most relevant sources published research on
RL in production scheduling 3

The comparison of the most frequent
deterministic scheduling methods based on RL 3 3 3

The comparison of the value-based and
policy-based scheduling methods based on RL 3

The comparison of static and dynamic
scheduling methods based on RL 3

The categorization of the literature on RL in
production scheduling according to multiple
aspects

3

The publication trend for RL in production
scheduling according to manufacturing
environment

3

The comparison of different types of RL
algorithms for production scheduling 3

The comparison of stochastic and deterministic
scheduling methods based on RL 3

From this table it can be see that the compared papers are mostly complementary to
each other.
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8. Conclusions

The existing body of research on production scheduling primarily consists of studies
conducted within the domains of Computer Science, Engineering, Mathematics, Decision
Sciences, Business, Management and Counting, Energy, Chemical Engineering, and Ma-
terial Science. These scientific disciplines, notably ‘Engineering’ and ‘Computer Science’
have exerted significant influence on development of production scheduling based on RL.

The examination of bibliometric findings frequently indicates that an increase in the
quantity of published articles is associated with recognition of progressive trends in the
subject. Also, for this reason, a bibliometric analysis is becoming more and more beneficial
in a variety of academic fields since it makes mapping scientific information and analyzing
research development objective and repeatable. The use of this method enables us to
identify the networks of scientific collaboration, to establish connections between novel
study themes and research streams, as well as show the connections between citations,
co-citations and published productivity in the field.

The main contribution of this article can be summarized by two steps:

(i) This review brings additional insights into RL in production scheduling by providing
the following new features:

• The citation trend for RL on production scheduling field from 1996 to 2024 (see
Figure 5) has been carried out that shows that increasing trend starting from 2019
to present rapidly continues in noticeable rise in their number.

• The analysis of the most relevant sources from the viewpoint of number of their
citations (see Figure 7) has been performed to identify the most impacted sources
where the latest knowledge in this field is available.

• The most influential authors in this domain were identified (see Table 3) for the
determination of the cutting-edge state in RL-based production scheduling.

• The quantitative comparison of deterministic and uncertain scheduling methods
based on RL has been conducted (see in Table 5). It showed that determinis-
tic scheduling methods using RL is in a dominant position against RL-based
uncertain scheduling techniques.

• The quantitative comparison of stochastic and fuzzy scheduling methods has
been given in Figure 11b. From the comparison, it has been observed that RL
is predominantly used in stochastic scheduling methods comparing with its
application in fuzzy scheduling methods.

(ii) The contribution of this paper can be also seen in the following activities and resulting
statements:

• The publication trend for RL in production scheduling field has been updated
by mapping period from 1996 to 2024 (see Figure 5). It showed that exponential
growth of the publications starting from 2019 [28] rapidly continues in noticeable
rise in their number.

• The updated list of the most relevant sources published research on RL in pro-
duction scheduling was compiled in Figure 6. It has been found that five of ten
sources identified until 2021 belong among top ten sources identified until 2024.
It means that due to the growing interest about this research field, at the same
time, the number of journals covering this topic is increasing.

• Actualization of the quantitative comparison of the most frequent deterministic
scheduling methods based on RL was provided in Figure 11a. In this context, the
previously identified trend has been confirmed that RL-based scheduling algo-
rithms are mostly used to solve job shop scheduling problems, while flow shop
production presents the second most important type of scheduling problems.

• The updated categorization of newly developed RL algorithms has been elabo-
rated and presented in Figure 3 that can provide better implementation support
for decision making in real-world problems.
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• The updated classification of scheduling methods is provided in Figure 10. In
principle, it can be used for easier selection of the scheduling techniques to solve
specific types of problems.

In addition to the above-mentioned findings, it would be needed to focus on other chal-
lenges to be considered in the future such manufacturing process planning with integrated
support for knowledge sharing, increasing demand for improvements in ubiquitous “smart-
ness” in manufacturing processes including designing and implementing smart algorithms,
and the need for robust scheduling tools for agile collaborative manufacturing systems.
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Abstract: As a key strategy for achieving a circular economy, remanufacturing involves bringing
end-of-use (EoU) products or cores back to a ‘like new’ condition, providing more affordable and
sustainable alternatives to new products. Despite the potential for substantial resources and energy
savings, the industry faces operational challenges. These challenges arise from uncertainties sur-
rounding core quality and functionality, return times, process variation required to meet product
specifications, and the end-of-use (EoU) product values, as well as their new life expectancy after
extended use as a ‘market product’. While remanufacturing holds immense promise, its full potential
can only be realized through concerted efforts towards resolving the inherent complexities and
obstacles that impede its operations. Machine learning (ML) and data-driven models emerge as trans-
formative tools to mitigate numerous challenges encountered by manufacturing industry. Recently,
the integration of cutting-edge technologies, such as sensor-based product data acquisition and stor-
age, data analytics, machine health management, artificial intelligence (AI)-driven scheduling, and
human–robot collaboration (HRC), in remanufacturing procedures has received significant attention
from remanufacturers and the circular economy community. These advanced computational tech-
nologies help remanufacturers to implement flexible operation scheduling, enhance quality control,
and streamline workflows for EoU products. This study embarks on a comprehensive review and
in-depth analysis of state-of-the-art algorithms across various facets of remanufacturing processes
and operations. Additionally, it identifies key challenges to advancing remanufacturing practices
through data-driven and ML methods and uncovers research opportunities in synergy with smart
manufacturing techniques. The study aims to offer guidelines for stakeholders and to reinforce the
industry’s pivotal role in circular economy initiatives.

Keywords: remanufacturing; circular economy; machine learning; data-driven models; sustainability

1. Introduction

Remanufacturing is one of the key elements in a circular economy, aiming to restore
full or partial value of end-of-use (EoU) products to a ’like new’ or refurbished condition
through processes such as disassembly, cleaning, repair, component replacement, and re-
assembly [1,2]. As depicted in Figure 1, through extending the life cycles of products
by restoring their values to a near-new condition and keeping the resources in a closed
loop as long as possible, remanufacturing conserves valuable resources and reduces the
environmental footprint associated with the extraction, processing, and transportation
of raw materials for creating brand new products, thereby enhancing sustainability [3,4].
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The benefits of remanufacturing are substantial, in terms of resource preservation [5,6], re-
duced energy intensity [7], lower environmental impact [8], and notable economic gains [9],
owing to significant reduction in the use of new materials, water, and other energy sources
required for traditional manufacturing processes [10–13].

Figure 1. Value recovery over time in a product’s life cycle (adapted from [14]).

Among several strategic decisions, in terms of reuse, remanufacturing, recycling,
or disposal, as shown in Figure 1, remanufacturing is crucial for enhancing manufacturing
sustainability, preserving the value of products, and fostering techno-economic benefits.
However, the conceptualization and implementation of remanufacturing involves several
significant challenges. First, the inherent uncertainty in product condition and mechanical
functionality arises from the duration and environment of the product’s use, as well as
the consumer’s independent decision to return it. Guide et al. highlighted that uncer-
tainties regarding the timing, quantity, and condition of materials recovered from cores
are critical factors complicating decision-making in remanufacturing [15]. Factors such
as component condition, disassembly sequence, and market values are crucial in trading
off between sustainability and profitability [16]. Additionally, the remanufacturing pro-
cess necessitates an effective reverse logistics system to facilitate the acquisition of cores
from the market. The complexity of adapting to customer behaviors and incentives for
participating in reverse logistics further complicates the coordination of various stages.
This necessitates enhanced data visibility in areas such as product quality, material flow,
energy flow, shopfloor operations, and inventory management [17,18]. Therefore, efficient
tracking of products and usage information across the life cycle are vital for optimizing
remanufacturing efforts [12,19].

The heterogeneous quality conditions of returned products require customized produc-
tion and planning strategies during remanufacturing and associated procedures. Variability
in core conditions leads to fluctuating processing times, different reconditioning paths,
variable inventory control and resource allocation, and complex re-entrant routings [20,21],
creating a dynamic and challenging operational environment [20]. Accordingly, these
variations demand extensive manual operation [22], involving core assessment, operation
sequencing, and selection of disassembly and reconditioning techniques. The complexity of
planning the remanufacturing process requires a deep knowledge of product design, failure
modes, and production capabilities [23]. A study on the remanufacturing procedure of EoU
returned products indicated that grading cores into different quality classes by involving
humans can enhance profitability by only up to 4% [24]. To address the above-mentioned
challenges, thereby improving remanufacturing efficiency and overall plant profits, re-

29



Algorithms 2024, 17, 562

cent advancements have introduced automation and HRC technologies that facilitate the
adaptation of processes to varying core conditions. This includes incorporating advanced
in-line/in situ inspection technologies, collaborative robots, decision support systems,
and automated disassembly planning tools [1].

The advent of Industry 4.0 and advanced computational methods, such as ML and
data-driven analysis, offer promising solutions to address the challenges faced by the
remanufacturing industry [25]. Technologies such as the Industrial Internet of Things
(IIoT) [26], Digital Twins [27], Cobot [28], Virtual Reality (VR), and Augmented Reality
(AR) [29,30] could help fast and accurate data acquisition, real-time data access, and support
improving efficiency during remanufacturing activities in different ways [31]. Data-driven
and ML methods are poised to improve remanufacturing by enabling more precise pre-
diction and classification of product conditions [32], thereby improving quality control
and waste management [21]. Additionally, these advanced techniques can optimize in-
ventory management and operational scheduling [1,33], leading to further cost reductions,
improved operational efficiency, and resource utilization. Despite the potential alignment,
research on developing ML and data-driven methods for remanufacturing systems is still
in its early stages [34], indicating that a comprehensive baseline and critical discussion of
existing research opportunities and gaps is critically required.

This review study systematically explores the synergistic impacts of advanced com-
putational technologies on remanufacturing activities. Our approach makes a three-fold
contribution to the existing research as follows: (i) a systematic review of the existing
literature on remanufacturing to understand current trends, major topics, and potential
synergies with advanced computational methods (refer to Section 2); (ii) the development of
a conceptual framework that integrates data-driven and ML methods into remanufacturing
processes, advancing theoretical understanding of their interactions and impacts (Section 3);
and (iii) the identification of research gaps and opportunities related to the implementation
of smart technologies and advanced computing methods in remanufacturing procedure in
industry (Section 4). Section 5 presents our findings and outlooks in the context of smart
manufacturing, followed by concluding remarks in Section 6.

2. Remanufacturing Literature Topic Analysis

A topic model is utilized to understand the underlying topics in remanufacturing re-
lated research. This approach enables us to understand the current state, underlying topics,
and trend of remanufacturing-related research. By mapping out the existing knowledge
base, we can better assess how advanced computational methods intersect with remanufac-
turing practices and pinpoint areas for further investigation and development. To ensure
a comprehensive and technically relevant literature review, we deliberately focused on
high-impact journals and peer-reviewed conference papers sourced from the Web of Science,
prioritizing sources that contribute to the understanding and development of remanufac-
turing systems. Our query, executed on 10 June 2024, utilized the keyword “remanufactur*”
(Topic), resulting in a collection of approximately 6000 articles related to remanufacturing.

Figure 2 illustrates the upward trend in remanufacturing-related publications over the
past 50 years, with a notably steeper increase since 2008. This surge indicates a significant
rise in scholarly interest and activity in the remanufacturing field, likely driven by advance-
ments in smart manufacturing technologies and an increasing emphasis on manufacturing
sustainability and global decarbonization goals. Since 2014, propelled by advancements in
information and communication technologies, there has been a clear, sustained increase in
the application of data-driven and AI/ML methods in remanufacturing research, with a
growth rate exceeding 30% annually, underscoring the field’s growing attention to and
methodological alignment in tackling remanufacturing challenges.
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Figure 2. Annual publication trends in remanufacturing (blue bars) and in AI/ML and data-driven
methods applied to remanufacturing (black solid line) over the past 60 years (as of July 2024).
Projected 2024 values for remanufacturing publications and AI/ML data-driven publications are
shown by grey bars and a dashed line, respectively. Source: Web of Science—Remanufacturing—
https://www.webofscience.com/wos/woscc/basic-research accessed on 10 July 2024.

To uncover the latent topics and their distributions within the collected remanufactur-
ing literature, we employed the Latent Dirichlet Allocation model [35], a widely recognized
technique for topic modeling, to the abstracts of all collected articles. Given the limited body
of literature specifically addressing AI/ML and data-driven methods in remanufacturing,
the topic model may have limitations in identifying themes within this smaller subset. Our
analysis seeks to clarify the dominating topics of remanufacturing-related research and
reveal potential avenues for understanding the synergistic effects of integrating ML and
data-driven methods with remanufacturing practices. Table 1 presents the results of the
model, which identified nine distinct topics across the collected 6000 articles. Each topic
was named based on the most frequently occurring terms in the associated articles to aid in
interpreting the thematic content. For instance, ‘Topic 0’ prominently features words such
as ‘closed_loop’ and ‘closed_loop supply chain’, leading to the topic name ‘Closed-Loop Supply
Chain’.

Table 1. Overview of identified remanufacturing topics based on their frequent keywords.

Index Topic Names Frequent Words

0 Closed-Loop Supply Chain ‘closed_loop’, ‘closed_loop supply chain’
1 Reverse Logistics ‘reverse’, ‘logistics’
2 Carbon Emission ‘carbon’, ‘emission’, ‘reduction’
3 Life Cycle Management ‘life_cycle’, ‘circular_economy’, ‘reuse’
4 Inventory Policy ‘inventory’, ‘policy’, ‘return’
5 Collaborative Business Models ‘retailer’, ‘third-party’, ‘manufacturer’
6 Process Optimization ‘disassembly’, ‘assembly’, ‘planning’
7 Repair Technologies ‘laser’, ‘cladding’, ‘coating’
8 Techno-Economic Assessment ‘economic’, ‘sustainable’, ‘company’

To further analyze the topics and their interrelationships, we used the t-distributed
Stochastic Neighbor Embedding (or t-SNE), which is a nonlinear dimensionality reduction
technique that can visualize high-dimensional data in a low-dimensional space. Figure 3
presents the topic distributions in a two-dimensional space to help understand the rela-
tionships in the data. The x- and y-axes of the plot represent new abstract coordinates
derived by the t-SNE algorithm. These 2-dimensional (2D) coordinates are not tied to any
specific features or values from the original data. Instead, they are designed to visualize
the high-dimensional topic labels in a lower-dimensional space. Each dot in the scatter
data represents an article, with the color of the dot indicating the corresponding topic
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category. The distance between dots reflects the similarity of topics; dots of the same color
are typically located in close topic proximity, while the spatial arrangement of different
clusters indicates the degree of similarity among various topics.

Figure 3. Articles clustered by topics visualized in the 2D space across the collected 6000 articles.

By visualizing the topics and their interrelationships using the Latent Dirichlet Allocation
model, we identified key themes and areas of focus within the field and pinpointed where
advanced computational technologies may have the most impact, particularly in topics such
as closed-loop supply chain, reverse logistics, carbon emission, life cycle management, inventory
policy and process optimization. Additionally, the identified individual articles’ thematic
alignments, and how these themes interact and overlap within themselves underscore the
potential for collective advancements across various facets of remanufacturing through the
application of ML and data-driven methods.

3. ML and Data-Driven Models for Remanufacturing

ML and data-driven models leverage algorithms and statistical techniques to analyze
and interpret complex and high-volume data in many fields including manufacturing [36–39].
In remanufacturing, these technologies offer significant potential to enhance various aspects,
such as the automated sorting of a wide range of products, improving asset management,
facilitating real-time decision-making, and optimizing the entire product life cycle. These
technologies can deliver innovative solutions for sequence optimization, quality control,
and predictive analysis throughout remanufacturing processes. In this section, we present
a detailed summary of key ML and data-driven methods, including explanations of their
potential benefits for remanufacturing.

IIoT: By connecting industrial machinery and devices to data collection systems, cloud
platforms, and the internet, the Industrial Internet of Things (IIoT) supports extensive data
acquisition and real-time analysis across the manufacturing ecosystem [31,40,41]. For re-
manufacturing, IIoT facilitates fast and accurate asset tracking and inventory management
by providing detailed core histories and spare parts availability. Emerging sensing tech-
nologies allow accessibility by installing sensors on the inner structure of machines to
better understand the machine’s operational statuses [42] and support automation by al-
lowing machines to communicate and coordinate with each other [43], resulting in coherent
remanufacturing processes.
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Traceability: Traceability systems, such as digital product passports (DPP), track the
history, location, and status of products throughout their life cycle [44]. For the purpose of
remanufacturing, these tools provide detailed histories of cores, ensuring remanufactur-
ers can access all relevant information about previous repairs, modifications, and usage
conditions [45]. These data help in assessing the condition of returned EoU products and
determining the best remanufacturing approach. The systems also ensure compliance with
regulatory standards and build consumer confidence by offering transparency about the
origins of materials and processes involved in remanufactured products [46].

ML models: Supervised and unsupervised learning and reinforcement learning (RL)
technologies can analyze vast amounts of data to make informed decisions, optimize
processes, and predict future outcomes [47,48]. In remanufacturing, these technologies
enable predictive analytics to evaluate which parts will need remanufacturing, provide
dynamic planning for the timely streamlining of workflows, and support quality assurance
to ensure that remanufactured products meet stringent standards [49,50]. AI can also help
in designing and facilitating efficient remanufacturing processes by learning from historical
data and continuously improving process quality [42] and equipment healthiness [51]. Key
ML models applied in remanufacturing include neural networks, deep learning models,
and reinforcement learning algorithms as follows: (i) Neural Networks and Deep Learning
Models, such as Convolutional Neural Networks (CNNs) and Long Short-Term Memory
(LSTM) networks, have found significant applications in remanufacturing. CNNs excel
in visual inspection tasks, enabling automated defect detection and quality control in
remanufactured products [52]. LSTM networks, with their ability to process sequential
data, are particularly useful for predicting equipment health and product life cycles, crucial
for optimizing maintenance schedules and remanufacturing timing [53,54]; (ii) RL models,
including Q-Learning, Deep Q-Network (DQN), and Proximal Policy Optimization (PPO),
have emerged as powerful tools for dynamic decision-making in remanufacturing processes.
These algorithms can optimize workflows, resource allocation, and adaptive quality control
processes, learning from continuous feedback to improve remanufacturing strategies over
time [55–57].

Data-Driven and Optimization Models: Data-driven and optimization models utilize
quantitative algorithms to enhance decision-making. These models include: (i) Graph-
based models, such as AND/OR Graphs [58,59] and Petri Nets [60], which provide a
framework for modeling complex remanufacturing systems and processes, especially in
HRC. These models are particularly effective in optimizing disassembly sequences, model-
ing production workflows, and task allocation within humans and robots; (ii) Mathematical
Programming Models, including Convex Optimization [61], Linear Programming (LP) [62]
and Nonlinear Integer Programming (NLIP) [63,64], offer robust solutions for complex
planning and scheduling problems; (iii) Meta-Heuristics are optimization methods de-
signed to generate or select heuristics that provide sufficiently good solutions to complex
optimization problems [65,66]. In remanufacturing, meta-heuristics, such as the Genetic
Algorithm (GA), Bees Algorithm (BA), and Particle Swarm Optimization (PSO), can be
used to solve intricate problems related to scheduling, resource allocation, and process
optimization [67]. These techniques are particularly useful when dealing with multiple
objectives [68] and dynamic remanufacturing environments [69]; (iv) Probabilistic Models,
including Monte Carlo simulation [70] and Markov chains [71], play a crucial role in model-
ing uncertainty and stochastic processes inherent in remanufacturing. These models assist
in assessing risks, and optimizing decision-making under uncertainty, which is essential
given the variable nature of returned products in remanufacturing.

It is important to highlight advanced manufacturing technologies that can provide
additional opportunities that could be synergized with the aforementioned algorithms to
further enhance remanufacturing processes. Immersive technologies like VR and AR could
enhance remanufacturing by providing real-time, detailed visualization and simulation,
thereby improving training, design, and troubleshooting processes. VR simulates complex
scenarios, while AR assists in assembly, disassembly, and maintenance activities by over-
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laying digital information onto the physical world, thus enhancing accuracy and reducing
training time [72]. Cobots work alongside humans to increase productivity, precision,
and safety by handling automated disassembly, cleaning, and reassembly tasks. Cobots
are versatile and can be programmed for various tasks, thereby reducing injury risk and
ensuring consistent quality in remanufacturing operations [73].

4. Literature Review

In this section, we aim to gain a comprehensive understanding of the field and identify
research gaps and opportunities by providing a literature review on the synergies between
data-driven and ML methods in remanufacturing. We systematically sorted the literature
by matching identified remanufacturing topics in Table 1 with advanced computational
methods, as summarized in Table 2. First, we examined the application and associated
impacts of the IIoT on life cycle management and closed-loop supply models, emphasiz-
ing how these technologies facilitate data-driven decision-making in support of circular
economy initiatives (Topics 0–4 in Figure 2). Next, we discuss the potential of optimization
and ML techniques to enhance dynamic scheduling and HRC within remanufacturing
processes (Topic 6), enabling optimized decision-making amidst uncertainties. Finally, we
present our review work on utilizing ML models to understand and manage the quality of
remanufacturing processes and products, addressing Topics 6–7.

Figure 4 provides a comprehensive overview of the interactions between machine
learning (ML) and data-driven models within remanufacturing tasks, highlighting their
connections to life cycle management, scheduling and planning, quality control, and HRC.
These areas are supported by a variety of ML and data-driven models, ranging from neural
networks to probabilistic approaches. Each model is associated with specific tasks in
remanufacturing research, as identified in our literature review.

Figure 4. Machine learning and data-driven models and their role in remanufacturing. Abbreviations:
CNN—Convolutional Neural Network, LSTM—Long Short-Term Memory, DQN—Deep Q-Network,
PPO—Proximal Policy Optimization, LP—Linear Programming, NLIP—Nonlinear Integer Program-
ming, GA—Genetic Algorithms, BA—Bees Algorithm.
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Table 2. Applications of machine learning and data-driven models in key remanufacturing topics.

Topics Applications Algorithms Key Findings

Life cycle
management

Cylinder heads [44], Energy
labeling [46], Aerospace
blades [74], E-waste [75],
Battery [76,77], Automated
vehicle [78], Engine [79]

IIoT [74], Life cycle assessment
(LCA) [80], Cobot [77], Digital
Twin [78,79], Digital
Passport [44–46,75,76]

• Real-time monitoring systems with IIoT and
DT enhance the precision, efficiency and
success rates of recovering high-value
components and materials, thereby
contributing to extending product life cycles.

• Digital twins and predictive analytics can
help forecast EoL scenarios, support
proactive maintenance, and ensure that
products are effectively remanufactured
or recycled.

Reverse logistics

Manufacturers [45],
Engine [81], Tactical
decisions [82], Solid
waste [83], Laptop [84]

Digital passport [45], Digital
Twin [81,82], IIoT [81,83,84]

• Digital tools like RFID and cloud-based
systems enhance traceability in reverse
logistics, minimizing uncertainties in
product returns and waste collection.

• The integration of advanced technologies
supports dynamic management of stochastic
demand and material flows, leading to more
efficient reverse logistics.

Carbon emission Food supply chain [85,86],
Wind turbine [87]

IIoT [85–87], LCA [80,86],
Blockchain [80]

• Integrating LCA with emerging technologies
such as IIoT and Blockchain enables accurate
real-time monitoring.

• IIoT, smart sensors and Blockchain can
reduce carbon emissions by optimizing
resource utilization, but the energy required
for their production and disposal might
introduce additional emissions, necessitating
a balance in these trade-offs.

Closed-loop supply
chain

Manufacturers [45], Food
supply chain [85,86], Wind
turbine [87], A manufacturing
facility [80], Information
technology [88],
Smartphone [89], Battery [90],
Trade-in policy [91]

Digital passport [45], IIoT [85–92],
LCA [80,86], Blockchain [88,91]

• Digital integration in the supply chain
facilitates better tracking of product returns
and efficient materials management,
contributing to the overall sustainability of
the supply chain.

• Successful closed-loop supply chains require
improved collaboration among stakeholders,
which could be supported by digital
platforms that enable data sharing
and coordination.

Process optimization

Acquisition
strategy [61–64,93–96], Price
optimization [97], Process
planning [98], Sequence
planning [70,99,100], Job shop
scheduling [55,101], Carbon
footprint [102], System
control [56,57,103,104]

Convex Optimization [61],
Nonlinear programming [63,64],
Linear programming [62], Monte
Carlo simulation [70], GA [101],
BA [28,100], Deep
Q-learning [55,57], PPO [56,103],
Root cause analysis [105], Deep
belief networks [106]

• Data drive models and ML can help
optimize remanufacturing processes through
integrating production, planning,
and process control mechanisms.

• Smart technologies reduce human errors,
eliminate individual subjectivity and
contribute towards efficient
resource utilization.

Repair technology Process control [107–109],
Sorting [105]

RL [32], CNN [105], Transfer
learning [106], Gaussian process
regression model [107]

• Advanced computational algorithms help
devise efficient inspection strategies that
play a key part in remanufacturing.

• ML assists in continuous improvement and
enhances quality assurance through
establishing and maintaining product and
process key characteristics.

HRC

Assembly [59,60,71,110–112],
Quality inspection [58,113],
Disassembly [28,70,99,114–121],
Remanufacturing [95,100]

AND/OR graphs [58,59],
Fuzzification [70], BA [28,99,100],
PSO [118],
Optimization [115–117,120,122],
Transfer learning [121],
RNN [111,113], Markov
Chains [71], Petri Nets [60],
RL [112]

• Balancing of different objectives is essential
in HRC

• The selection of algorithms varies based on
the specific problem types and
remanufacturing applications.
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4.1. Life Cycle Management

Digital technologies, such as the IIoT, digital twins, and cyber-physical systems, are cru-
cial for implementing data-driven and ML models and for optimizing various facets of the
remanufacturing, including process quality control, operational efficiency, LCA, and supply
chain management. IIoT techniques facilitate data collection, storage, and analysis, and real-
time monitoring, thereby enhancing the visibility and management of the remanufacturing
process and the entire life cycle [81]. One study found that integrating machine vision
systems and IIoT techniques into aerospace remanufacturing significantly enhances the
process by enabling intelligent sensing, real-time data acquisition, and advanced mon-
itoring systems, resulting in higher repair yields, reduced human error, and improved
operational safety [74]. Adopting data-driven decision-making in remanufacturing reduces
costs, optimizes operations, and enhances quality through real-time insights and predictive
analytics [77].

Cyber-physical systems and digital twins create real-time, digital replicas of physical
processes, aiming to strengthen synchronization, efficiency, and predictive capabilities
across the entire remanufacturing system [123]. A proposed control mechanism based
on big data analysis, incorporating cyber-physical systems and digital twin techniques,
aims to mitigate uncertainty in remanufacturing using real-time perception and predictive
optimization [78]. Moreover, a digital twin model enhanced with a neural network and
the Bees Algorithm (BA) for real-time data-driven decisions was presented to optimize
remanufacturing planning [79]. Figure 5 presents a proposed conceptual framework to
integrate data across the various stages of life cycle management [124].

Figure 5. Conceptual framework for integrating big data into product life cycle management (taken
from [124]).
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The framework includes four major components: data sensing and acquisition, data
processing and storage, model development and data mining, and big data application for
product life cycle management. The data sensing and acquisition phase gathers information
from various life cycle stages through product-embedded devices such as Radio Frequency
Identification (RFID) tags and smart sensors, enabling real-time tracking of the status of
products, materials and machines. The data processing and storage phase handles the
collected data using distributed systems such as Hadoop and Storm, allowing for real-time
and non-real-time data analysis and storage. The model development and data mining
phase creates models to extract knowledge from big data, including both general models
(such as classification, clustering and prediction) and specific models tailored to tasks like
enhancing product development and optimizing manufacturing processes. The big data
application for product life cycle management phase utilizes the analyzed data to support
real-time decision-making, enabling efficient production, logistics and maintenance [124].

Figure 6 illustrates a conceptual model from [125] that integrates IIoT concepts into
remanufacturing, establishing a framework for real-time information capture and integra-
tion, aiming to facilitate the implementation of data-driven production scheduling on the
shop floor [125]. Digital technologies have contributed significantly to LCA methodolo-
gies and environmental impact evaluations. LCA is an effective method for measuring
the environmental impacts of a system throughout its entire life span [126]. The envi-
ronmental benefits of smart sensors in reducing food loss were assessed using an LCA
model, which highlighted the need to manage potential environmental burdens from sen-
sor manufacturing and disposal for overall sustainability [85]. Zhu et al. introduced a
novel four-layer LCA framework integrating IIoT technology to improve real-time data
collection and monitoring, demonstrated through a wind turbine case study [87]. Addi-
tionally, Zhang et al. developed a new LCA model incorporating blockchain, IIoT, and big
data analytics to enhance the efficiency and reliability of LCA, improving data integrity
and decision-making [80]. Figure 7 illustrates a multi-level blockchain-based LCA system
designed in [80] that connects the manufacturing infrastructures and activities at different
stages with a diverse range of applications and users. Moreover, an open-source LCA
tool utilizing IIoT to track food quality and assess environmental impacts across multiple
stages of the food supply chain was also introduced [86]. Digital technologies have been
applied to waste management, playing a critical role in improving product design for
remanufacturing. Waste streams of automotive products were analyzed to support product
design that facilitates remanufacturing [127] and to determine factors that impede the reuse
of parts [128]. Wang et al. introduced WRCloud, a novel service-oriented remanufacturing
platform based on cloud manufacturing principles, designed to improve interoperability,
intelligence, and adaptability in managing waste electrical and electronic equipment [129].

IIoT is crucial for advancing data acquisition and sharing throughout various closed-
loop supply chain stages and remanufacturing processes [130]. AI and blockchain tech-
nologies can strengthen supply chain resilience and sustainability by facilitating operations
such as just-in-time manufacturing, streamlined automation, and remanufacturing [88].
Additionally, Pan and Miao presented a model for assessing risks in closed-loop supply
chains for remanufacturing using neural networks to improve risk assessment accuracy
and supply chain management [92]. Yu proposed a novel mathematical model to assist
decision-making in reverse logistics for remanufacturing and discussed the impacts of
IIoT technology on remanufacturing companies [82]. Innovative approaches in closed-
loop supply chain management leverage digital technologies to enhance efficiency and
sustainability. For instance, a closed-loop supply chain model utilizing IIoT data has been
proposed to optimize the life cycle of products, focusing on EoL recovery processes, includ-
ing cost and demand for remanufacturing [89]. Similarly, Tavana et al. designed a circular
supply chain network for handling electric vehicle lithium-ion batteries, leveraging IIoT
and big data technologies to address uncertainties and enhance overall management effi-
ciency [90]. The integration of IIoT with a kanban system has enabled real-time monitoring
and dynamic scheduling in reverse logistics, improving waste collection and recycling pro-
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cesses [83]. Additionally, Tozanlı et al. investigated trade-in strategies within closed-loop
supply chains, optimizing disassembly decisions through simulations integrated with IIoT
and blockchain technologies [91]. The use of embedded IIoT devices to evaluate product
designs for EoL recovery helps determine the most effective designs for remanufacturing,
increasing profitability and reducing waste [84].

Figure 6. IIoT-integrated scheduling model for engine remanufacturing (adopted from [125]).

The acquisition and collection of cores depend not only on customers and usage
history as identical products can be different in quality [131]. A DPP can enhance the
acquisition and collection of cores by providing detailed, real-time data on product history
and condition, which improves the predictability of recovery processes and differentiates
between varying quality levels [132]. Plociennik et al. introduced a Digital Life Cycle
Passport, utilizing a cloud-based platform and the Asset Administration Shell, which
enabled comprehensive data sharing across the product life cycle, as described in Figure 8.
This was exemplified by an e-waste sorting case study that showcased its potential to
automate and optimize sorting decisions [75]. Adisorn et al. also explored the role of
DPPs as a policy tool for supporting a circular economy, emphasizing their capacity to
provide critical product-related information to stakeholders throughout the product life
cycle [46]. Additionally, Berger et al. identified key information requirements for Digital
Battery Passports, including specifications, diagnostics, and maintenance data, which
were essential for managing and making decisions throughout the electric vehicle battery
life cycle [76]. Jensen et al. further detailed the data needs for DPPs to enhance circular
supply chain management, identifying seven crucial data clusters through a mechatronics
case study [45]. Szaller et al. investigated the impact of DPPs on information sharing in
remanufacturing processes, demonstrating that increased information availability through
DPPs reduced production uncertainties, lowered non-productive time, and improved the
remanufacturing ratio [44].
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Figure 7. LCA system utilizing blockchain technology (taken from [80]).

Figure 8. Data management via the digital life cycle passport (DLCP) (modified from [75]).
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4.2. Scheduling and Planning

Effective scheduling and planning are essential for remanufacturing management as
they ensure optimal resource allocation, minimize downtime, and enhance overall opera-
tional efficiency. To address the challenges of process complexity and demand uncertainties,
data-driven optimization and RL models have been developed. Various types of uncertain-
ties impact the scheduling and planning of the remanufacturing process. The most studied
uncertainty is the quality of returned cores [55,61,62,93–95,97,98,103], which significantly
impacts the remanufacturing process requirements, resource needed, and cost estimates.
Another crucial uncertainty is the disassembly time [70,99,101,102], which affects process
planning and resource management. Additionally, uncertainties related to the cores and
demands [93,94,96] affect production planning and inventory management, with variations
arising from differences in core return timing and quality [61,63]. Furthermore, reman-
ufacturing failure rates [55,101,102] are crucial for robust process planning and quality
assurance. While these uncertainties are well documented, others like the resources needed
for remanufacturing [63], are less discussed.

ML and data-driven models are powerful tools to address the challenges in scheduling
and planning, particularly through meta-heuristic, mathematical optimization, and RL
techniques. Mathematical optimization techniques are utilized to maximize profit and
minimize costs in scheduling and planning in remanufacturing. These methods typically
target optimizing acquisition qualities and quantities, remanufacturing decisions, and re-
source allocation. For instance, Yang et al. formulated a convex optimization, an extended
multi-product Newsvendor Problem, to maximize overall profit [62]. Similarly, a nonlinear
integer programming (NLIP) model was developed to minimize the total cost of acquisition,
remanufacturing, and scrapping of cores [63]. Other data-driven approaches integrate with
linear programming to maximize total profit [62], applying nonlinear programming models
considering carbon emissions [64]. The objectives of these models are often costs, revenue,
and environmental benefits. Meta-heuristic techniques address complex, multi-objective
optimization problems in scheduling and planning. Examples include a modified discrete
BA for disassembly sequence planning [100], and an improved discrete BA for workstation
optimization [28]. Zheng et al. proposed a GA combined with an improved random
forest classifier to intelligently select the optimal rescheduling method based on system
status, as shown in Figure 9. The system status is characterized by factors such as machine
utilization, job processing times, and the total time required for reworked operations [101].

RL has proven to be effective in handling uncertainties in remanufacturing, such as
the quality of returned products, machine failures, and varying initial states. Bai et al. used
Q-learning and DQN algorithms to minimize total production time, continuously adapting
to dynamic conditions [55]. Wurster et al. dynamically controlled a hybrid disassembly
system, consisting of various types of stations, using DQN to minimize labor costs, idling
costs, makespan, and failures [57]. Paschko et al. dealt with the control of job release in a
hybrid disassembly line, minimizing work in progress and maximizing throughput using
PPO [56]. Peng et al. employed PPO to optimize disassembly scheduling and minimize
makespan, utilizing the strength of RL to adapt to various uncertainties and improve
decision-making over time [103].

Hybrid approaches that combine multiple algorithms have also demonstrated effec-
tiveness. For example, one study integrated fuzzy dynamic modeling and Monte Carlo
simulations with RL for robotic disassembly optimization [70]. The combination of different
techniques holds significant potential for developing robust and adaptive systems capable
of navigating the dynamic landscape of remanufacturing scheduling and planning. Future
research could focus on further integrating these approaches to leverage their respective
strengths and address increasingly complex challenges in remanufacturing.
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Figure 9. Flowchart of adaptive (re)scheduling strategy (taken from [101]).

4.3. Quality Control

Quality control in remanufacturing involves assessing and validating the condition of
returned components or remanufactured products to ensure they meet specified standards
before reprocessing or market release. Remanufacturing models in the literature often
assume quality to be homogeneous; however, it has wide variations due to customer
usage, usage length, and special product characteristics [133]. These variations make
inspection processes in remanufacturing labor-intensive and time-consuming. Advanced
computational methods, such as object detection and defect identification, can aid in
evaluating the condition, reusability, and quality grade of returned cores, addressing the
high uncertainty and subjective bias associated with manual assessments [134]. In this
section, we review and categorize the literature on the use of data-driven and ML methods
for automating remanufacturing quality control. These technologies help overcome issues
related to individual subjectivity, time constraints, and high labor costs by excelling in
learning complex geometries and patterns [135].

Kaiser et al. highlighted the challenges of high uncertainty in the inspection pro-
cess related to cores and addressed these by utilizing RL models to capture cores, and an
unsupervised learning model for anomaly detection [32], as demonstrated in Figure 10.
The figure demonstrates the model capability of handling uncertainty in remanufacturing
through its adaptable architecture. As shown in the figure, the model starts with process-
ing, comparing the core’s expected and inspected conditions. Deviations are flagged for
review. Sensors capture data during the perception stage, which the quality controller
analyzes for defects. Finally, during decision-making, the system decides if the core is
reusable or should be rejected, automating the entire inspection process. Few-shot learning
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techniques were employed to categorize anomalies and to precisely assess the core’s quality
grade [32]. Nwankpa et al. presented a novel inspection process with a deep convolution
neural network for mild steel plates to detect eight fault conditions and their combina-
tions [105]. The high accuracy of the model on a small dataset demonstrated its robustness
and efficiency, making it an ideal solution for smart inspection strategy in remanufacturing.

Islam et al. presented an automated sorting system utilizing a smart conveyor with
multiple cameras, reflective sensors, and a PC running Python applications. It leverages
inception transfer learning for image classification and the YOLO model for object detection,
ensuring robust and high-accuracy identification and sorting of remanufacturing parts
through the combination of classifiers [106]. Mongan et al. used a Gaussian process regres-
sion model to predict the performance of ultrasonically welded joints and unanticipated
process variation based on the process inputs and feedback (integrated sensor data) [107].
The proposed method, capable of detecting process variations and anomalies, has proven
effective in both manufacturing and remanufacturing environments. It enhances quality
control by identifying anomalies throughout operations and enabling informed decisions
regarding the reusability and remanufacturability of cores and parts.

Figure 10. A scheme of core condition assessment through image and point cloud analysis, detecting
quality deviations like corrosion or missing parts, which are then compared to expected conditions to
determine reusability and quality grade (recreated from [32]).

In addition to implementing an effective inspection strategy for cores and reman-
ufactured products, it is crucial to monitor various processes within remanufacturing
operations. Statistical process control is a valuable tool for achieving process stability and
reducing variability [136]. It facilitates continuous improvement and enhances quality
assurance throughout the operations [137], which can be significantly augmented by ML
models. ML excels in pattern recognition, allowing control charts to detect complex pat-
terns, automate root cause analysis, and examine relationships between process data [108].
The integration of AI and ML into remanufacturing process control ensures adherence to
high quality and standards. Moreover, the remanufacturing time of the equipment also
influences quality standards and the economic effectiveness of remanufacturing decisions.
Wang. et al. proposed a deep belief networks model to predict the optimal remanufac-
turing time by analyzing the historical equipment multi-life cycle and cost composition
data [109]. The integrated automated inspection, condition monitoring and optimized plan-
ning and production can make the remanufacturing and maintenance plan more efficient
and cost-effective [138].

In remanufacturing, it is necessary to define an optimal inspection plan following the
identification of critical-to-quality parameters—key product characteristics (KPCs) and
key control characteristics (KCCs) [139]. Product characteristics may be categorized into
standard and key product characteristics. KPCs dictate quality parameters that could be
determined through quality engineering tools and techniques such as Quality Function
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Deployment, Failure Mode and Effects Analysis, Design for Manufacture and Assem-
bly [140]. KCCs are established to precisely control them within specified limits to check
variability within the processes to maintain both the process and KPC target values [141].
The remanufacturing scenario presents a complex challenge regarding the efficiency and
effectiveness of inspection owing to the products designed and manufactured by some
third-party enterprises and the high variability in the core inputs [142]. ML and data-driven
models offer significant potential to improve parameter evaluation and maintain inspection
efficiency in complex and variable remanufacturing scenarios [143].

4.4. HRC

HRC in remanufacturing enhances productivity and precision by merging human
dexterity and decision-making capabilities with the consistency and strength of robots. This
synergy not only boosts efficiency and adaptability to uncertainties but also holds promise
for effectively managing process complexities and uncertainties in product disassembly,
component inspection, and reassembly through the strategic allocation of tasks between
humans and robots/cobots. This synergy forms effective teams with unique capabilities
in operational tasks, information perception, and learning [144]. HRC enhances precision
and adaptability in assembly [110], integrates human expertise with robotic sensing in
inspection [58], and addresses the unpredictable challenges of disassembly. While full
automation is often impractical, HRC enables efficient task distribution between humans
and robots [114]. This approach addresses the unpredictable nature of returned products
while balancing workload and economic outcomes. However, implementing HRC in
remanufacturing systems faces challenges ranging from technological integration to worker
adaptation and process changes [114].

In HRC for remanufacturing, process planning objectives include human-related fac-
tors alongside traditional profit-oriented goals like minimizing disassembly time, cost,
and workstation numbers [28,59,70,95,99,100,115–118,122]. While efficiency remains cru-
cial, its definition shifts in HRC scenarios. Instead of focusing solely on throughput and
resource utilization, efficiency in HRC emphasizes optimal task allocation between humans
and robots [28,59,100,115–118,122]. This addresses the challenges of workload distribution
in manual and automated operations, as noted by [114]. Unique to HRC are objectives re-
lated to worker well-being, including human fatigue, safety, and workload [59,115–117,122].
These human-centric considerations are crucial in HRC scenarios, recognizing the impor-
tance of worker well-being and safety in the remanufacturing process. Environmental
factors such as energy consumption are sometimes considered [59], further expanding the
multifaceted nature of HRC in remanufacturing planning and scheduling. Balancing these
diverse objectives makes optimal task allocation between humans and robots a central
research question in HRC for remanufacturing.

ML and data-driven methods drive the utilization of HRC to enhance the efficiency
and quality of remanufacturing processes. For example, Belhadj et al. conducted an
extensive product analysis based on a CAD file to customize suitable operations for each
returned core [119]. This has been extended to access the properties, complexity of parts and
tool requirements [120]. Connecting elements are often of particular interest because their
detachment affects the complexity and forces required for a remanufacturing operation,
which, in turn, influences whether a task is best performed by a human or a robot [121].
To effectively allocate tasks in inspection, Karami et al. propose an AND/OR graph-based
approach, improving efficiency by enabling parallel operations like simultaneous retrieval
and inspection, allowing human intervention for issue management [58]. Another study
implemented a voice-controlled collaborative inspection system where robots performed
AI-powered visual inspections of predefined areas while humans provided oversight
and performed parallel tasks, reducing the cycle time by 33.4% compared to manual
inspection [113].

While the remanufacturing literature rarely focuses specifically on reassembly, re-
search on general assembly has identified various ML and data-driven approaches for task
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allocation in HRC. Traditional methods such as Markov chains [71] and Petri nets [60] have
been successfully applied, showing significant improvements in efficiency and cycle times.
Figure 11 shows an exemplary workflow of HRC for disassembly designed to flexibly and
efficiently complete the disassembly process in remanufacturing [100]. The disassembly
process begins with establishing a model to define the disassembly precedence of products,
allowing the generation of feasible disassembly sequences. Disassembly tasks are then clas-
sified, and the disassembly sequence for the robot and operator is optimized and evaluated
based on time, cost, and difficulty [100]. Specifically, a prediction mechanism is employed
to infer the human’s current activity and anticipate their next assembly steps. The results
from this algorithm are then fed into a scheduling algorithm, enabling the robot to deter-
mine its actions in a way that is both assistive and productive. Deep learning techniques
like LSTM have been employed for multimodal recognition of subtasks in collaborative
human–robot tasks [111]. Additionally, RL approaches have shown promise in adaptive
task scheduling for interactive HRC assembly processes [112].

Figure 11. The workflow of HRC for disassembly (taken from [100]).

5. Discussion

The literature analysis reveals that integrating data-driven and ML models advances
remanufacturing systems by enabling real-time monitoring, enhancing quality control,
and facilitating dynamic scheduling, thereby supporting circular economy initiatives.
Leveraging advanced sensors and connectivity, the IIoT and DPP enable comprehensive
data collection and analysis across various stages of the remanufacturing process. Data-
driven models derived from IIoT data play a vital role in supporting LCA and closed-
loop supply chain management. They provide a thorough evaluation of environmental
impacts throughout the product life cycle and aid in making informed decisions to promote
sustainability. This capability provides critical insights into operational performance and
product life cycle management. It is particularly effective in addressing uncertainties
associated with the timing, quality, and quantity of returned parts, which significantly
impact inventory control, product design, and production planning for remanufactured
products [145].

Advanced ML techniques, such as deep learning and RL, further refine this process by
enabling precise defect detection, anomaly management, and dynamic scheduling, thereby
addressing uncertainties and improving operational effectiveness. For example, CNNs and
YOLO models can be used in automated quality inspection systems to analyze images of
remanufactured components, detecting defects with high accuracy, reducing inspection
time, and ensuring consistent adherence to quality specifications. Predictive analytics can
forecast potential failures, allowing for preemptive interventions that minimize operational
disruptions and associated costs. RL optimizes dynamic scheduling and operational
strategies to address uncertainties effectively. These advanced techniques not only improve
operational effectiveness but also ensure that remanufactured products meet high standards
of quality and reliability.

From the literature review, it is understood that, despite their advantages, the imple-
mentation of data-driven and ML methods in remanufacturing presents several challenges
and may require the comprehensive adoption of smart manufacturing technologies. Smart
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manufacturing technologies utilize cutting-edge solutions, such as the IIoT, AI, ML algo-
rithms, advanced sensor networks, and cyber-physical systems, to create digital simulations
of production processes, manage computer-controlled equipment, and track and report real-
time production data [146]. ML and data-driven models, as part of smart manufacturing
techniques, support predictive maintenance, and analytics, enabling more accurate control
and optimization of manufacturing processes [147]. Existing studies have discussed smart
manufacturing in support of environmental sustainability. Huang et al. reviewed the litera-
ture on Industry 4.0, emphasizing its potential to enhance manufacturing sustainability
through interconnected, smart technologies. The review examines how internet-connected
machines and sensors improve productivity, energy efficiency, and environmental impact
by optimizing processes and reducing waste [37]. Sutherland et al. reviewed recent re-
search on the environmental impacts of industrial activities, focusing on work from the
past 10–20 years, organizing their findings around the product life cycle and key topics in
environmental impact [148]. Their review also systematically summarizes challenges in
design, process improvement, and material efficiency within the framework of a circular
economy, all within the context of Industry 4.0 advancements [148]. Kara et al. reviewed the
evolution of emerging information and communication technologies to enhance material
efficiency and environmental sustainability, adopting a holistic approach that redefines
human–nature relations within planetary boundaries [149]. In this study, we further investi-
gate the opportunities offered by smart manufacturing in remanufacturing, as illustrated in
Figure 12, emphasizing how the integration of data-driven and ML methods with advanced
manufacturing technologies can significantly enhance remanufacturing practices.

Figure 12. Future research directions in using smart manufacturing technologies for remanufacturing.

Developing smart manufacturing methodologies for dynamic LCA is essential for
providing real-time feedback on the environmental impacts of remanufacturing processes.
Identifying effective methods for measuring and reducing carbon emissions, as well as cre-
ating new LCA frameworks that capture the long-term benefits of remanufacturing across
multiple life cycles, is crucial. Digital manufacturing technologies significantly enhance
remanufacturing processes by enabling dynamic LCA that provides real-time feedback
on environmental impacts, allowing for immediate adjustments to improve sustainability.
These technologies also support the development of multi-cycle LCA frameworks, which
accurately capture the long-term benefits of remanufacturing across multiple product life
cycles. Additionally, life-cycle data-driven scheduling and management optimize pro-
cesses by leveraging detailed insights into product histories to improve efficiency and
decision-making. Moreover, digital tools play a crucial role in reducing carbon emissions
by identifying and mitigating inefficiencies in processes and logistics, contributing to more
environmentally responsible remanufacturing practices.

For remanufacturing system automation, it is important to balance conflicting objec-
tives, such as profit maximization, cost reduction, environmental benefits, and adaptability
to real-time changes and uncertainties. Furthermore, enabling robots to effectively learn
from human operators and developing adaptive robotic support systems tailored to indi-
vidual worker’s skills, work styles, and ergonomic needs are critical. Additionally, using AI
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and ML in remanufacturing presents several significant challenges. One key challenge is the
curation of data. Unlike in other manufacturing applications where data are often assumed
to be complete due to the continuous monitoring and collecting from mass production lines,
remanufacturing deals with highly heterogeneous data spanning a wide range of temporal
scales, core specifications, and process requirements. This diversity makes it extremely
difficult to align and fuse data to build the necessary context for effective AI analysis.

The explainability of results is another critical issue, as many AI models, particularly
complex ones, operate as “black boxes”, making it difficult to interpret their decisions and
ensure they align with industry standards and expectations. The environmental impact
of training is also a concern, as training sophisticated AI models can require substan-
tial computational resources, leading to significant energy consumption, substantial data
computing/storage costs, and a larger carbon footprint. Finally, model customization
for returned products and processes poses a challenge. AI systems need to be tailored
to handle the variability and complexity of returned items and diverse remanufacturing
processes, which can vary greatly in terms of quality and characteristics. Addressing these
challenges is essential for effectively integrating AI and ML into remanufacturing. To ad-
dress remanufacturing challenges, cohesive models should integrate automated inspection,
production planning, and time prediction, with a focus on low data storage and computa-
tional efficiency to support enterprises in different scales. Research may also target effective
predictive maintenance methods, anomaly detection algorithms, and model architecture
design and optimization to customize models for diverse products and processes.

Applying digital technologies to remanufacturing could focus on exploring innovative
business models that enhance economic competitiveness while offering societal benefits.
These models might leverage the circular economy by promoting closed-loop manufac-
turing practices, helping to reduce waste, conserve resources, and create sustainable jobs.
Additionally, research could aim to optimize reverse logistics through digital solutions,
potentially improving the efficiency of handling returned products by refining inventory
management, reducing transportation costs, and enhancing product quality control. Such
efforts could be important for demonstrating the economic and environmental benefits of
closed-loop manufacturing, thereby increasing its attractiveness and encouraging broader
industry adoption. Moreover, future studies could consider using life cycle data to further
refine process optimization and emphasize economic advantages, while also considering
the broader economic, environmental, and social benefits of closed-loop supply chains
in remanufacturing.

The potential of integrating data-driven and ML methods into remanufacturing ex-
tends well beyond the computational techniques examined within the smart manufacturing
framework. The advent of emerging advanced manufacturing technologies, when cou-
pled with these data-driven and ML methods, unveils opportunities that remain largely
untapped. Additive manufacturing (e.g., 3D-printing) offers significant benefits for reman-
ufacturing by enabling the rapid repair of damaged components and the production of
custom parts on demand [150,151]. This technology allows for precise material deposition
and can create complex geometries that traditional manufacturing methods cannot easily
achieve, potentially reducing lead times and lowering costs. Laser cladding, another ad-
vanced technology, provides a method for adding material to worn or damaged surfaces
with high precision, restoring parts to their original dimensions and enhancing their per-
formance [152]. Significant challenges involve addressing material compatibility issues
in advanced manufacturing processes, overcoming barriers to fully automating reman-
ufacturing systems. Data-driven models enhance this process by accurately predicting
material properties and optimizing process parameters, while ML supports the customiza-
tion and personalization of parts and improves quality control through real-time defect
detection [153]. Together, these integrated approaches hold great promise for advancing
the efficiency and sustainability of remanufacturing processes.
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6. Conclusions

In this study, we investigated the integration of data-driven and ML technologies
into remanufacturing processes to improve both operational efficiency and sustainability.
Our findings highlighted how technologies such as the IIoT and DPP facilitate real-time
monitoring, thereby supporting real-time LCA and closed-loop supply chain manage-
ment. We further explored advanced ML techniques for precise defect detection, anomaly
management, and process optimization. Additionally, we evaluated the impact of dy-
namic scheduling and HRC on mitigating uncertainties in remanufacturing. This research
review effort not only identifies key gaps and challenges but also uncovers opportuni-
ties for advancing remanufacturing practices through advanced computational methods
and smart manufacturing technologies, emphasizing their potential to deliver economic,
environmental, and societal benefits.

Future work should focus on providing clearer categorizations of the challenges and
pros and cons of ML and data-driven methods in remanufacturing, along with guidelines
for selecting the most effective AI techniques for specific problems. Additionally, sum-
marizing and comparing various AI applications in remanufacturing, providing practical
examples of AI adoption in remanufacturing, would also be valuable for industry practition-
ers and researchers. Furthermore, future research should also explore the human-centric
benefits of advanced computational algorithms and smart manufacturing technologies, con-
sidering not only personal well-being but also higher-level human needs, such as personal
growth and self-actualization. This approach will ensure that advanced computational
algorithms contribute positively to the workforce and create broader societal benefits.
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Abstract: Manufacturing companies face a significant challenge when developing their master produc-
tion schedule, navigating unforeseen disruptions during daily operations. Moreover, fluctuations in
demand pose a substantial risk to scheduling and are the main cause of instability and uncertainty in
the system. To address these challenges, employing flexible systems to mitigate uncertainty without
incurring additional costs and generate sustainable responses in industrial applications is crucial. This
paper proposes a product-driven system to complement the master production plan generated by a
mathematical model. This system incorporates intelligent agents that make production decisions with a
function capable of reducing uncertainty without significantly increasing production costs. The agents
modify or determine the forecasted production quantities for each cycle or period. In the case study
conducted, a master production plan was established for 12 products over a one-year time horizon.
The proposed solution achieved an 11.42% reduction in uncertainty, albeit with a 2.39% cost increase.

Keywords: product-driven; nervousness; schedule; planning; intelligent product; agent-based model;
holonic manufacturing system

1. Introduction

Conventional manufacturing management is constantly evolving due to the incorpo-
ration of new technologies. These technologies make it possible to reduce the problems
caused by fluctuations in market demand and operational disturbances. As a result, con-
ventional production planning and control models have been transformed into new flexible
models that react dynamically during the production period. These models react dy-
namically to changes in scheduling, including disturbances arising from various factors
such as operating machinery, production expansion, processes, products, and production
volumes [1–4].

When developing their master production plan, which serves as the basis for strategic
decision making, manufacturing companies often consider flexibility in their production
systems. This plan outlines the production quantities of each product based on market
demands and requirements. Manufacturing companies typically develop the master pro-
duction plan using optimization models that may not consider the operational details,
leading to potential feasibility issues and production challenges. To mitigate these issues,
companies often modify their operations, which can destabilize the system and lead to
production plan nervousness [5].

Production plan nervousness can make achieving stable production systems challeng-
ing, resulting in a need for constant supervision and distrust in planning [6]. Incorporating
demand fluctuations, the leading cause of production plan nervousness, into a model is
complex [7]. Nevertheless, advancements in technology, including artificial intelligence
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tools and new manufacturing systems, have made it possible to mitigate the effects of
nervousness [8].

The literature has given limited attention to the impact of production plan nervousness
on production stability. Conversely, instability is also a cause of nervousness because as
nervousness increases, production plan instability increases [9,10]. Hence, it is reasonable
to consider both concepts as interdependent [11,12]. The most common approach to reduce
nervousness and instability is automatic reprogramming, allowing the system to respond
to exceptional conditions [13]. However, conventional routines are inflexible in practice,
making it impossible to reprogram jobs.

Experimental studies and quantitative modeling have recently addressed nervousness
in production systems [14]. However, the literature lacks clarity on the most effective
approach to mitigate nervousness. Some studies have suggested frequent rescheduling for
better responsiveness to demand fluctuations, while others have recommended avoiding
frequent schedule changes [11]. In addition, considering the cost of production has shown
that improved stability does not necessarily significantly increase the total cost [15]. To
better understand the performance of a specific model, computational simulations of the
proposed approach are necessary for more clarity.

Product-driven production systems (PDSs) are models that naturally allow for the
inclusion of the nervousness phenomenon. A PDS regards the products as intelligent
and artificial entities that execute and coordinate the control process. Thus, in a PDS,
products function as controllers of resources and adapt to disturbances in an interoperable
system [16–18]. Therefore, products enable the dynamic reconfiguration of resources to
provide agility in the face of production changes generated by nervousness. The imple-
mentation of a PDS is achieved through the concept of a holonic system (HMS) using a
multiagent system (MAS). A holonic system (HMS) is used within a multiagent system
(MAS) to implement a PDS. A MAS is a development approach based on the distribution,
autonomy, and cooperation of virtual entities known as agents [19]. In an HMS, machines,
robots, or workers are modeled as holons consisting of physical and virtual components
capable of autonomous self-organization and blending the physical and virtual worlds [16].
However, there is no clarity on the effect of including these issues on the computational
performance of a PDS.

Measuring and analyzing the concept of nervousness can be complex because, unlike
other objective measures such as productivity or efficiency, nervousness lacks a direct
quantitative measure. Additionally, nervousness can vary widely depending on the pro-
duction environment, with factors such as market dynamics, task complexity, and labor
relations (human resources) influencing it. These contextual differences make comparing
and generalizing nervousness levels across production situations difficult.

This paper presents a PDS that considers the nervousness management of a production
planning system. The PDS considers intelligent products as functional units and makes
autonomous production decisions to manage nervousness in an environment under real-
istic conditions. A decrease in system nervousness occurs due to decentralized decision
making based on information from intelligent products. We evaluated the computational
performance of the proposed PDS by applying it to a production planning scenario that
involves 12 products over a one-year planning horizon. This proposal generates flexible
production planning that can reduce the nervousness of the system, produce more stable
plans, and mitigate production cost increases.

The proposed PDS offers efficient solutions for practical production planning problems
in sustainable manufacturing environments, spanning various manufacturing industries,
especially those producing different products with fluctuating demand. By employing
intelligent agents to make production decisions and adjust production quantities, the
system has the potential to assist companies in creating a more flexible and adaptable
master production schedule.

This study contributes to production planning research by integrating moving horizon
planning with dynamic planning, resulting in improved stability and reduced instability
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in the production process. Thus, the primary objective of this study is to evaluate the
cost and nervousness of the system using synthetic data. By analyzing these factors,
the aim is to understand the integrated approach’s effectiveness and performance. In
addition, this study contributes to developing an effective PDS that addresses nervousness
in production planning. The PDS incorporates intelligent products as functional units,
enabling decentralized decision making and autonomous adjustments in production to
mitigate nervousness under realistic conditions. Including intelligent agents empowers
companies to create a flexible and adaptable master production schedule that ensures stable
production plans and reduced costs.

This paper is organized as follows: Section 2 reviews the literature and explains
the essential terms, such as master production plan, nervousness, PDSs, and intelligent
products. Section 3 outlines the proposed PDS and is followed by Section 4, which presents
the results. Section 5 discusses the results and Section 6 concludes the paper.

2. Related Work

Production planning involves determining a product’s quantity, timing, and produc-
tion stage location, often represented by a mathematical model that optimizes decision
making to minimize costs or maximize profits. The model determines the production
quantity for each period within a finite horizon while meeting future demand and not
exceeding the system’s capacity. Lot sizing is a commonly used modeling technique for
production planning [20].

Several studies in the literature have addressed time-based production planning using
moving horizon planning for different production processes [21–24]. However, although
it is a widely used approach in the industry, the impact of combining moving horizon
planning with artificial intelligence tools on the stability of the production process still
lacks clarity in the literature [25]. A real-world data study was conducted in the automotive
industry, considering multiple impact assessment tests to meet plant requirements [23].

In modern industry, it is crucial for production planning to respond effectively to
dynamic market conditions and mitigate the adverse effects of production instability, com-
monly referred to as nervousness. The objectives of production planning include reducing
lead times, enhancing process agility, improving product quality, and reducing manu-
facturing costs [26]. However, achieving these objectives requires a series of operational
reconfigurations that result in permanent modifications to the established schedule, leading
to instability and increased production nervousness [27].

Several studies have presented methodologies and tools for measuring, detecting, and
eliminating production instability [28]. The concepts of instability and nervousness have
been studied interchangeably in some cases [11,12], while other works have considered
instability as a consequence of system nervousness [9,10]. Tunc et al. [29] provided a higher
level of specificity by identifying two types of nervousness that occur due to the quantities
involved or the configurations made.

Several studies have considered the mitigation of nervousness based on the quantity
of production, inventory, or safety stock [12,30,31]. Other proposals for nervousness
mitigation have focused on the planning horizon and the amount of production or storage.
In the former, planning horizon freezing has been used [7,23,32,33]. Additionally, the
rolling horizon method [34–37] and increases in the forecast horizon [38,39] have been
studied. Other authors have considered the dynamic lot-sizing model [40,41] and control
rules [42].

The concept of an intelligent product is a fundamental component in the design of
a PDS, and it has been defined in various ways in the existing literature [43–47]. We
have adopted Wong et al.’s [43] definition of an intelligent product in our proposal. Their
definition stipulates that an intelligent product must possess five essential characteristics: a
unique identity, the ability to communicate effectively with its environment, the capability
to retain or store data, the ability to participate in decision making relevant to its destiny,
and a communication language to express its characteristics. Thus, including intelligent
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products in the PDS facilitates the synchronization of material and information flows in a
specific direction.

The characteristics of intelligent products provide the basis for the product-controlled
production approach. They are entities that take the initiative during the execution of
the production plan by reacting appropriately to disturbances that might occur [15]. This
approach facilitates the design, distribution, and operation phases of production. The
consequence is improved product quality and performance resulting from self-learning,
self-diagnosis, self-adaptation, and self-optimization [48].

A PDS is a distributed control system to support operational decision making, the
design of which is facilitated by including the holonic paradigm, which specifies that each
product is represented by physical and virtual components [49]. The virtual component
is interpreted as an agent, making a PDS a multiagent system. Agent-based models have
autonomous roles, originating actions without direct human intervention. Herrera et al. [50]
conducted a simulation to coordinate different decision levels in a production system with
intelligent product characteristics. They observed that coordination among active batches
was more effective at distributed levels than traditional approaches. In another study,
Campos et al. [8] proposed a solution to a dynamic scheduling problem by dividing the
process into three stages and assigning specific roles to different agents. However, their
approach did not directly include a master scheduling model.

Integrating a PDS with a holonic system and its implementation through a multiagent
system could generate computational times that do not allow for real-time production con-
trol. Decentralized decision making in these systems could provide feasible solutions that
minimize nervousness for a given period but with higher production costs. Additionally,
the industry has adopted static production modeling as a practical solution, which could be
initially integrated into a PDS and subsequently adjusted with individual decisions made
by intelligent products. However, the production planning literature has given limited
attention to these topics, and the computational performance of a PDS with such features is
not yet clear.

Despite the significance of integrating a DPS with a holonic system and its imple-
mentation through a multi-agent system, there is a need for more research that addresses
this approach. This lack of information hinders a comprehensive understanding of the
computational performance associated with a DPS and its distinctive characteristics. Hence,
the conducted study generates novel insights in this field, maximizing the potential of these
systems and achieving more efficient and adaptable production planning.

3. Proposed PDS

The proposed PDS implements a master plan for a production system that operates
with production cycles and periods, considering the presence of nervousness. The master
production plan is obtained by solving an optimization problem and determining the
optimal quantity for each product in each cycle and period. Each product is represented
by a virtual agent that translates the information into valuable data for decision making,
resulting in a highly distributed architecture. Furthermore, each agent incorporates an
intelligence function that assesses individual and collective performance. Nervousness is
the variance between the planned quantity for each product in a given cycle and period. The
optimization model is presented in Section 3.1, the nervousness evaluation in Section 3.2,
and the PDS architecture in Section 3.3.

3.1. The Optimization Problem

The mathematical model that produces the master production plan considers mini-
mizing the production cost subject to the quantity to be produced at a given time. This
formulation extends the formulation presented in the literature for lot-sizing problems
by including production costs, inventory, setup, and backorder costs [20,51]. Our specific
model uses the following variables, all of which depend on the period ‘t’ and product
‘i’: production quantity (x it), inventory level (sit), backlog quantity (rit), and setup (yit).
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Additionally, we provide the model with the following initial parameters: demand (dit),
production cost (pit), inventory holding cost (hit), backorder cost (bit), setup cost (qit), and
system capacity (Ct). We define all these parameters for specific periods ‘t’ and product ‘i’.
Let the following decision variables be defined as follows:

xit = Quantity o f product i in period t.
sit = Quantity o f inventory product i in period t.
rit = Backlog o f product i in period t.
yit = Setup o f product i in period t (yit = 1
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min f k =
n

∑
i=1

t′

∑
t=k

(pitxit + hitsit + bitrit + qityit) (1)

subject to:
xit ≤ Myit, i ∈ [1, . . . , n], t ∈

[
k, . . . , t′

]
(2)

n

∑
i

xit ≤ Ct, t ∈
[
k, . . . , t′

]
(3)

s0
i0 = s0

ini, r0
i0 = r0

ini, i ∈ [1, . . . , n] (4)

si(t−1) − ri(t−1) + xit = dit + sit − rit, i ∈ [1, . . . , n], t ∈
[
k, . . . , t′

]
(5)

Equations (1)–(5) enable us to compute the production schedule that minimizes costs
for each cycle. Specifically, Equation (1) addresses the total cost of the current planning
(considering individual costs and production quantities). Meanwhile, Equations (2)–(5)
provide us with information related to production and its development, starting from
the establishment of the initial parameters (s0

ini and r0
ini) up to the production dynamics

(capacity evolution in each period and production balance per cycle and period).
In greater detail, we have the following: the objective function of model f k in Equation (1)

corresponds to the minimization of the production cost in the intervals of time horizon sliding
[k, . . . , t′]. In this way, k and t′ = k + n − 1 are the first and last periods of the mobile planning
horizon of length n in each cycle k. Constraint (2) relates production and the corresponding
setup, where setup = 1 when there is production and 0 otherwise. Constraint (3) restricts
production according to the capacity. Constraints (4) and (5) set the initial inventory conditions,
backorders, and the balance between the two. The problem covers each cycle k concerning
schedules of precedent cycles. In this problem, the objective function (1) minimizes the value
between the production quantity of product i in period t in cycle k (Qk

it) related to the cycle
k− 1.

3.2. Measurement of System Nervousness

Nervousness measures the difference in the quantity of product i to be produced
in period t during production cycle k compared to the previous cycle and period. The
calculation is based on two parameters (the magnitude of change and the frequency of
changes), so significant changes or a high frequency of changes in production imply high
values of nervousness. Two metrics express the nervousness per cycle and period. Let Cki
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be the number of schedule changes of product i in cycle k and Cti be the number of schedule
changes of product i in period t. Furthermore, let Qk

it be the production quantity for product
i in period t in cycle k. Then, in Equation (6), Ncki is the nervousness in cycle k for product i,
and in Equation (7), Npti is the nervousness in period t for product i. Equation (8) presents
the measure of nervousness N.

Ncki = Cki ∗
{
∑n−1

t=0 |Q
k
i(t+1)−Qk

it|
}

, ∀k, ∀i (6)

Npti = Cti ∗
{
∑n

t=0 |Q
(k+1)
it −Qk

it|
}

, ∀t, ∀i (7)

N = Ncki + Npti (8)

Thus, Qk
it represents the quantity of production for product i in period t in cycle k. For

the example in Table 1, in period 5, nervousness is measured between Q2
i2, Q2

i3, Q2
i4, and

Q2
i5 for Ncki and Q2

i5, Q3
i5, Q4

i5, and Q5
i5 or Npti.

Table 1. Example of production scheduling with a rolling horizon.

k/t 1 2 3 4 5 6 7 8

1 Q1
i1 Q1

i2 Q1
i3 Q1

i4

2 Q2
i2 Q2

i3 Q2
i4 Q2

i5

3 Q3
i3 Q3

i4 Q3
i5 Q3

i6

4 Q4
i4 Q4

i5 Q4
i6 Q4

i7

5 Q5
i5 Q5

i6 Q5
i7 Q5

i8

The parameter Φk quantifies the ratio between cost and nervousness for each cycle k.
In cycle k, c(k) represents the cost and N(k) represents the nervousness. This parameter
identifies the magnitude of the change in each cycle by calculating the area under the curve
of cost and nervousness. In addition, let c = [c1, . . . , ck] and N= [N1, . . . , Nk] be two vectors
to update Φk; thus, Φk, k = 1, 2, . . . , 60 is given by Equation (9).

Φk =

∣∣∣∣∣
∑k

k=1 c(k)

∑k
k=1 N(k)

∣∣∣∣∣, ∀k ∈ {k = 1, . . . , k = 60} (9)

The following numerical example for k = 10 illustrates the updating of Equation (9).
Considers values for c and N as follows:

c = [12.1, 12.44, 12.85, 13.34, 13.97, 14.6, 15.39, 16.3, 17.12, 18.05],
N = [1.79, −3.47, −8.63, −14.07, −19.13, −24.43, −29.74, −34.54, −38.87, −43.37].
Such values indicate that a program costing 12.1 monetary units has a nervousness of

1.79 for k = 0. Thus, the calculations of Φ are exemplified below for the vectors c and N.

Φ = [

∣∣∣∣
12.1
1.79

∣∣∣∣ = 6.76,
∣∣∣∣

24.54
−1.68

∣∣∣∣ = 14.61,
∣∣∣∣

37.39
−10.3

∣∣∣∣ = 3.63, . . . ,
∣∣∣∣

128.1
−171.1

∣∣∣∣ = 0.75,
∣∣∣∣

146.2
−214.5

∣∣∣∣ = 0.68]

3.3. PDS Architecture

The system architecture contains physical and virtual layers, each with three levels
(configuration, interactions, and results), as shown in Figure 1. An agent represents each
product in the virtual layer, transforming the information into valuable data for decision
making. The configuration of the virtual layer represents the results generated by the
optimization model as data for communication and decision making by each agent. Thus,
the physical layer of the system interacts with other physical entities, and its virtual layer
interacts with the environment for production control and management. Decision making
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and communication among agents are distributed on the same hierarchical scale. The
intelligence function of the agents considers decision rules for obtaining a global objective
considering all of the system’s entities. Such decision rules are known and applied by
all of the agents of the system through internal and inter-agent communication. This
information is processed and stored in the physical part of the components. At the results
level, the model outputs correspond to the production planning, virtually and physically
representing the planning.
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The virtual layer in Figure 1 contemplates an intelligence function that evaluates
individual and collective performance, looking for system stability with a sustained cost
increase. To this end, the intelligence function measures the nervousness of each agent
using Equation (8). Each agent complies with the characteristics of an intelligent product
defined by Wong et al. [43], i.e., they have a unique identifier and can communicate with
the surrounding agents of the same product type.

Agent communication occurs within the system’s virtual layer, where each product cor-
responds to an individual agent (Figure 1). This communication converts information into
data. Each agent collects and processes data on its current state, production requirements,
and resource needs. Interaction between agents occurs through a question-and-answer
system. In addition, communication between agents eventually involves transferring
data through the system optimization model, including results derived from production
planning, capacity, and constraint information and recommendations to support decision
making.

Figure 2 depicts the communication process among agents representing various prod-
uct types within the system. These agents engage in virtual interactions, inquiring about
the required production quantity for each period and cycle. Furthermore, when the daily
production capacity is exceeded, agents reach out to agents representing other product
types. Such interactions constitute internal communication among agents of the same type
and external communication between agents of different types. For instance, an agent
positioned in the production plan’s second cycle and second period would query the pro-
duction quantities for future periods pertaining to the product it represents. Additionally,
this agent would refer to the quantities produced in previous cycles to ensure production
stability. This continuous communication facilitates the coordination of production activi-
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ties and enables informed decision making that aligns with each product’s specific needs
and capacities.
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Figure 3 shows the sequence of actions of the proposed architecture. First, the algo-
rithm solves the mathematical model and generates the optimal production. Then, the
agents evaluate the nervousness and the planning cost to determine the required produc-
tion that minimizes the increase in production cost. The objective function of the lot-sizing
model (Equation (1)) is the basis of such calculation. Finally, agents communicate with
other agents of the same product type in the corresponding cycle and period to evaluate the
production quantity. Simultaneously, agents communicate with agents of another product
family to avoid exceeding the system’s production capacity and to satisfy each product’s
demand (see Figure 4). Then, the possibilities of decreasing nervousness are evaluated
by modifying the production quantities and calculating the costs associated with such
modifications. When a production quantity modification occurs that improves the value of
nervousness, the agents store the production values. This communication architecture and
these agent interactions respond to a perturbation of the system because of the permanent
evaluation of quantities.

The production plan considers 12 products and a production horizon of 52 periods.
The planning horizon is n = 8 with an interval between periods of ∆t = 1. The demand for
each product obeys a normal distribution dk

it ∼ η(µ, ρ) = η(120, 12), ∀i, ∀t, ∀k to simulate
different variations. The first stage outputs a master production plan for each product
in the active period and a demand projection for subsequent periods. The complete
simulation is set up with parameters that resemble a real industrial case, allowing a realistic
evaluation of the model’s performance. Version 6.2 of the NetLogo simulation platform
simulates the scenario providing a suitable environment for testing and monitoring model
performance [52].

Figure 5 shows a class diagram to provide a reference model. The system contains a
main class called “System”, which has two attributes: “PhysicalLayer” and “VirtualLayer”.
The physical layer (“PhysicalLayer”) has a list of physical entities (“PhysicalEntity”) and
a results attribute (“Results”). In addition, the virtual layer (“VirtualLayer”) has a list
of agents (“Agent”) and a configuration (“Configuration”). Each physical entity and
agent has its specific attributes and methods. The physical entities interact through the
“Interaction” class, which registers the source and target physical entity. Agents make
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decisions and communicate with each other using the “Information” class to share valuable
data. The “Results” class stores the production planning (“ProductionPlanning”), which
has information about the period and production quantities for each product (“Product”)
in the form of “ProductionQuantity” objects. In addition, the “CommunicationData” class
manages the necessary communication data in the virtual layer.
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4. Results

The PDS presents an initial phase of significant variation in cost and nervousness until
it reaches a steady state. This phenomenon emerges from a simulation with three control
variables: per period, per cycle, and per period cycle. In period control, intelligent products
monitor production quantities during each period and modify the production plan to
reduce nervousness. In cycle control, intelligent products control production quantities
over the planning horizon. In period–cycle control, intelligent products look for period and
cycle stability by considering consecutive periods of the planning horizon. In each type of
control, Equations (6)–(8) update the nervousness.

Table 2 shows the results of analyzing the percentage increase in production costs
up to 10%. Our model, with a 1% cost increase, reduces nervousness by 1.78%, 42.41%,
and 14.31% in terms of cycle control, period control, and cycle–period control, respectively.
This reduction in nervousness is consistent across the studied percentage increases, with
period control being the most effective until a 6% cost increase. For cost increases exceed-
ing 7%, cycle–period control becomes more effective, resulting in a 98.61% reduction in
accumulative nervousness.

Table 2. Analysis of percentage increase in the cost of the master production plan.

Increase in Production Plan Cost

1% 2% 3% 4% 5% 6% 7% 8% 9% 10%

%
R

ed
uc

ti
on

in
ne

rv
ou

sn
es

s Cycle control 1.78 7.43 10.12 12.83 14.72 16.85 18.99 21.86 23.86 25.93

Period control 42.41 51.71 56.98 61.89 63.8 67.08 68.63 69.72 71.7 72.97

Cycle and
period control 14.31 24.59 34.44 43.25 55.92 64.18 88.74 95.3 98.5 98.61

However, it is necessary to analyze the three types of control, evaluating the number of
cycles required to reduce nervousness expressed in Table 2. Figure 6 shows the results of the
cost and nervousness variations for each control type. The decrease in nervousness occurs
with the consequent increase in cost concerning the initial values. For example, considering
control by period (Figure 6a), there is an increase in cost of 11.21% and a reduction in
nervousness of 14.72% in the eighth cycle. In control by cycle (Figure 6b), an increase in
cost of 2.39% and a reduction in nervousness of 18.27% are observed. Figure 6c shows the
behavior of the PDS according to the period–cycle control. A more significant decrease in
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nervousness is observed than with the two types of controls. In the same programming
cycle, an increase in cost of 11.27% and a reduction in nervousness of 34.44% are observed.
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5. Discussion

The PDS results indicate an uneven relationship between decreased nervousness and
increased costs. The more significant the decrease in nervousness, the smaller the increase
in the cost of the production plan. This system-generated dynamic is consistent with the
plan modification that minimizes the cost. In other words, any change in the production
plan calculated through the mathematical model generates an increase in cost. However,
the benefit of such a modification implies more stable plans. As the production cycles
proceed, both cost and nervousness reach an equilibrium because modifying production
quantities is no longer possible. Figure 7a–c show that the main results of decreasing
nervousness and increasing cost occur before production cycle 10. In Figure 7, we observe
the results for different values of Φk, which compare the initial cost increase with the
benefits of nervousness reduction. The behavior is similar in the three types of control
applied, obtaining a more noticeable change when using the cycle–period control, which
optimizes in a balanced way between cycle and product.
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In all types of control, cost increases with decreasing nervousness are observed in the
first cycles of the simulation. However, after this initialization stage, a period of stability is
reached during which there are no substantial differences in the magnitude of the changes
associated with costs and nervousness. The computational results suggest that using a
PDS is promising in reducing nervousness without substantial increases in production
costs. Thus, a PDS can improve the master production plan by minimizing nervousness
and adapting to changing environments.

The proposed system reduced uncertainty by 11.42% for the case study conducted.
This is a promising result since uncertainty can be detrimental to production planning.
However, a 2.39% increase in production costs was observed. In this case, the increase
in production costs could be considered relatively low, especially considering the benefit
of more accurate and stable planning. It is essential to consider that cost-effectiveness
analysis may vary according to each production system’s context and specific priorities.
Some companies may accept a slight cost increase if it implies stability in production and
a significant reduction in uncertainty. Other companies may prioritize cost minimization
and be less willing to accept additional increases. Thus, the precise assessment of cost-
effectiveness depends on each company’s specific objectives and priorities.

6. Conclusions

This work proposes a production planning system that addresses nervousness man-
agement in production systems. The system utilizes intelligent products and starts from
an initial production plan for the planning period generated through a mathematical cost
minimization model. The numerical evaluation of the proposed system using a 12-product
production system and a one-year planning period shows that it effectively reduces ner-
vousness without significantly increasing production costs. For example, using cycle
control, a modest increase in cost of 2.39% results in a significant reduction in nervousness
of up to 11.42%.

The developed system includes a mathematical model, a metric for measuring un-
certainty, and a definition of intelligent products. It is worth noting that there are several
options and variants in the literature for each component, allowing for customization based
on the specific needs of different industries. Future research could further explore these
combinations of possibilities to develop production planning control systems tailored to
industry-specific requirements.
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It is relevant to emphasize that the proposed system generates flexible solutions with-
out requiring multiple executions of a mathematical model, thus avoiding the resolution
of computationally slow problems. This approach enables improved decision making in
the modern industry by leveraging real-time process data that feed algorithms optimizing
resource utilization. In turn, this fosters the development of a more sustainable indus-
try, contributing to the innovation of new perspectives for uncertainty management in
production planning.

Integrating new technologies into conventional manufacturing management is revolu-
tionizing the industry, primarily to address challenges arising from demand fluctuations
and operational disruptions. Product-driven production systems emerge as a promising
solution by incorporating intelligent products capable of autonomous decision making and
adaptation to disruptions. This approach enables more flexible planning, reduces nervous-
ness, and mitigates increases in production costs. By implementing these approaches based
on artificial intelligence and holonic systems, efficient solutions for production planning
can be achieved across various industries. This integration enhances adaptability and
optimizes resource allocation in sustainable manufacturing environments.

Overall, the findings of this study demonstrate the potential of using a production
planning system to manage uncertainty in production planning, resulting in enhanced
system performance in terms of reducing uncertainty and optimizing production costs. This
work contributes to the existing literature on production planning and lays the groundwork
for future research in this field.

As a future research direction, we propose exploring novel forms of embedded in-
telligence to improve response times and outcomes. These new forms would align with
heuristics or machine learning techniques. In addition, it is possible to consider dynamism
in the agent decision making, including functionalities that allow selecting the best decision
at each moment according to different optimization criteria. Further study would deter-
mine the level of dynamism that does not exceed a certain threshold of computational time.
Furthermore, expanding our study and considering real-world industrial cases is recom-
mended. This would provide a more comprehensive understanding of the applicability
and effectiveness of the proposed approach in diverse production environments.
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Abstract: An improved slime mold algorithm (IMSMA) is presented in this paper for a multiproces-
sor multitask fair scheduling problem, which aims to reduce the average processing time. An initial
population strategy based on Bernoulli mapping reverse learning is proposed for the slime mold
algorithm. A Cauchy mutation strategy is employed to escape local optima, and the boundary-check
mechanism of the slime mold swarm is optimized. The boundary conditions of the slime mold popu-
lation are transformed into nonlinear, dynamically changing boundaries. This adjustment strengthens
the slime mold algorithm’s global search capabilities in early iterations and strengthens its local search
capability in later iterations, which accelerates the algorithm’s convergence speed. Two unimodal and
two multimodal test functions from the CEC2019 benchmark are chosen for comparative experiments.
The experiment results show the algorithm’s robust convergence and its capacity to escape local
optima. The improved slime mold algorithm is applied to the multiprocessor fair scheduling problem
to reduce the average execution time on each processor. Numerical experiments showed that the
IMSMA performs better than other algorithms in terms of precision and convergence effectiveness.

Keywords: slime mold algorithm; fair scheduling; Bernoulli mapping; reverse learning;
Cauchy mutation

1. Introduction

Multiprocessor systems are widely used in various fields, including medical systems,
smartphones, aerospace, and more [1]. With the increasing demand for high performance
and low power consumption in today’s society, the use of multiprocessor systems has
been greatly promoted [2], leading to extensive research on task scheduling problems on
multiprocessors. This paper investigates the problem of fair scheduling on multiprocessors,
aiming to achieve a balanced average processing time across the processors when executing
multiple independent nonpreemptive tasks. The motivation for this problem stems from a
factory scenario, where there is a desire to allocate tasks to transportation vehicles in such a
way that the average mileage for each vehicle is balanced. This model is also applicable to
the fair scheduling problem of taxis, ensuring that the average distance covered by each
taxi for deliveries is the same.

The fairness problem in scheduling was initially introduced by Fagin and Williams [3],
who abstracted it as the carpool problem for their study. Subsequently, fairness scheduling
problems started to emerge in the context of online machine scheduling. The goal of
the scheduling problems is to minimize the maximum sum of processing time of the
machines. In recent years, there has been an increasing focus on fairness in scheduling,
particularly in the context of optimal real-time multiprocessor scheduling algorithms [4].
Research on proportionate fairness scheduling has long been conducted in the fields of
operating systems, computer networks, and real-time systems [5]. The scheduling strategies
for proportionate fairness are largely based on the concept of maintaining proportional
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progress rates among all tasks [6]. Due to its ability to balance system throughput and
fairness, proportionate fairness scheduling has gained widespread adoption in practice [7].

Ensuring a fair allocation of resources can significantly impact the performance of
scheduling algorithms. While various fair scheduling algorithms have been emerging
rapidly, research on fair scheduling on multiprocessors is relatively limited. It has been
established that the job scheduling problem for processors is NP-hard, and ensuring
fairness in scheduling can improve the utilization of processor resources to some extent.
The typical objective of fairness scheduling problems is usually to minimize the maximum
total processing time on machines. This paper, however, sets the fairness scheduling
objective as minimizing the average execution time on each processor.

Scheduling problems with the objective of minimizing the maximum average process-
ing time can be applied to tasks such as taxi and courier dispatch, which require handling a
large number of scheduling tasks in a short time, necessitating algorithms that are efficient
and have short processing times. The fair scheduling issue for multiprocessor multitasking
is addressed in this research using a modified slime mold method.

Swarm intelligence algorithms are mainly inspired by the evolution of organisms in the
natural environment and the hunting, foraging, and survival processes of
populations [8]. Some common swarm intelligence algorithms include particle swarm
optimization (PSO) [9], the whale optimization algorithm (WOA) [10], the sparrow search
algorithm (SSA) [11], the butterfly optimization algorithm (BOA) [12], and so on. These
swarm intelligence algorithms have been studied and used extensively in a variety of fields,
such as photovoltaic maximum power point tracking [13], multiobjective optimization
problems [14], and COVID-19 infection prediction [15]. They have demonstrated good
performance in solving problems in specific domains. A recently developed metaheuristic
algorithm called the slime mold algorithm (SMA), which was introduced by Li et al. [16] in
2020, simulates the behavior and morphological changes of slime molds during natural
foraging. Compared with other intelligent optimization algorithms, slime mold algorithm
has the advantages of a simple principle, few adjustment parameters, a strong optimization
ability, and an easy implementation.

The slime mold algorithm has been successfully applied in many fields, especially in
engineering optimization. Premkumar et al. [14] proposed a multiobjective slime mold
algorithm based on elite undominated ranking. They applied the slime mold algorithms to
solving multiobjective optimization problems and proved that the proposed algorithm was
effective in solving complex multiobjective problems. Gong et al. [17] proposed a hybrid
algorithm based on a state-adaptive slime mold model and fractional order ant system
(SSMFAS) to solve the traveling salesman problem (TSP). Experimental results showed
that the algorithm had the competitiveness to find better solutions on TSP instances. By
integrating chaos mapping and differing evolution strategies for overall optimization,
Chen et al. [18] devised an enhanced slime mold algorithm, which was applied to engi-
neering optimization problems. The whale optimization algorithm and the slime mold
algorithm were combined by Abdel-Basset et al. [19] to tackle a chest X-ray separation
of images issue. Gush et al. [20] used slime mold algorithms to optimize the optimal
intelligent inverter control system of photovoltaic and energy storage systems to improve
the photovoltaic carrying capacity of the distribution network.

In this paper, an improved slime mold algorithm is considered to study the fair
scheduling of multiprocessor and multitasking. Through in-depth research on slime mold
algorithms, it was found that there were still certain limitations. For example, the pop-
ulation diversity is not rich enough, the convergence speed is slow, and it is easy to fall
into a local optimal solution. In the standard iteration process of the SMA, the random
initialization of the slime mold swarm reduces the potential for population diversity. It
also lacks effective solutions when addressing population converged to local optima. The
fixed boundary check strategy in the standard SMA makes it difficult to return to the
better positions when slime molds exceed the boundaries. This paper makes multistrategy
improvements to the standard slime mold algorithm.
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The main contributions of this paper are as follows:

1. A reverse learning initialization population strategy based on Bernoulli chaotic map-
ping is introduced to increase the diversity of populations.

2. Cauchy mutations are introduced to help slime mold populations jump out of a local
optimal solution.

3. A nonlinear dynamic boundary improvement strategy is introduced to accelerate the
convergence rate of the population.

4. The IMSMA is applied to solving the fair scheduling problem on multiprocessors to
minimize the average processing time on each processor.

The article organization is as follows. Section 1 introduces the research about fair
scheduling problems and the slime mold algorithm. Section 2 describes some relevant
literature on fair scheduling. The conventional slime mold algorithm is presented in
Section 3. Section 4 provides detailed improvement strategies for the improved slime mold
algorithm (IMSMA). The simulation tests are presented in Section 5. Section 6 models the
fair scheduling problem on multiprocessors and applies the IMSMA to solve it. Section 7
provides numerical experiments for fair scheduling on multiple processors. Conclusions
are given in Section 8.

2. Related Work

Guaranteeing the fair distribution of resources can have a notable influence on
the effectiveness of scheduling algorithms. In the realm of scheduling problems, fair-
ness can be defined in various ways. There exists a wealth of literature dedicated to
defining fairness concepts and designing efficient algorithms with fair constraints [21].
Zhong et al. [22] addressed the fair scheduling problem of multicloud workflow tasks and
proposed a reinforcement learning-based algorithm. In response to cache contention issues
in on-chip multiprocessors, a thread cooperative scheduling technique considering fairness
was proposed by Xiao et al. [23]. It was based on non-cooperative game theory. They
wanted to ensure equitable thread scheduling in order to improve the performance of the en-
tire system. On heterogeneous processors with multiple cores, Salami et al. [24] suggested
an energy-efficient framework for addressing fairness-aware schedules. This framework
simultaneously addressed fairness and efficiency issues in multicore processors. For mul-
tiprocess contexts, Mohtasham et al. [25] developed a fair resource distribution method
that aimed to maximize the overall system utility and fairness. This technique enabled
the concurrent execution of multiple scalable processes even under CPU load constraints.
Jung et al. [26] presented a multiprocessor-system fair scheduling algorithm based on
task satisfaction metrics, which achieved a high proportion of fairness even under highly
skewed weight distributions. Their algorithm quantified and evaluated fairness using
service-time errors. A review of pertinent research on fair scheduling is given in Table 1.

Table 1. Research on fair scheduling in the relevant literature.

Zhong et al.
[22]

To optimize the scheduling
order for multiple workflow

tasks, they designed a
reinforcement learning-based
fair scheduling algorithm for

multiworkflow tasks.

The authors created an evolving priority-driven method
to avoid service level agreement violations through

dynamic scheduling. Additionally, they implemented
load balancing between virtual machines using a

reinforcement learning algorithm.

Xiao et al.
[23]

They proposed a fairness-aware
thread collaborative scheduling

algorithm based on
uncooperative game theory, and

the on-chip multiprocessor
cache congestion problem

was addressed.

The authors aimed to enhance the overall system
performance by fairly scheduling threads. They employed
an uncooperative game approach to address the thread

collaborative schedule problem and introduced an
iterative algorithm for finding the Nash equilibrium in
non-cooperative games. This allowed them to obtain a

collaborative scheduling solution for all threads.
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Table 1. Cont.

Salami et al.
[24]

Specifically addressing the
different multicore

processors’ fair
energy-effective schedule

dilemma, they proposed an
energy-efficient framework

that took into account
fairness in a

heterogeneous context.

Dynamic voltage and frequency scaling was used in
the authors’ suggested energy-effective framework
with a heterogeneous fairness awareness in order to

satisfy fairness restrictions and offer an efficient
energy-effective schedule. In comparison to the
Linux regular scheduler, experimental results

showed a significant improvement in both
efficiency of energy and fairness.

Mohtasham
et al. [25]

The authors proposed a fair
distribution of resources

method for a multiprocess
context aimed at

maximizing overall system
utility and fairness.

The allocation of resources issue was first
formalized as an NP-hard issue. Then, in
pseudo-polynomial time, they employed
approximation strategies and the convex

optimization theory to identify the best answer to
the posed problem. This fair resource allocation
technique could run multiple scalable processes

under CPU load constraints.

Jung et al.
[26]

They proposed a
multiprocessor-system fair

scheduling algorithm based
on task satisfaction metrics.

Their algorithm quantified and evaluated fairness
using service time errors. It achieved a high

proportion of fairness even under highly skewed
weight distributions.

3. Standard Slime Mold Algorithm (SMA)

The slime mold algorithm was inspired by the foraging behavior of multicephalic
velvet fungus, and the corresponding mathematical model was established. There are
three phases: approaching food, surrounding food, and grabbing food [16]. In the stage
of approaching food, the slime mold is spontaneously approaching food according to the
smell in the environment. The expansion law can be expressed by the formula:

X(t + 1) =
{

Xb(t) + vb× (W × XA(t)− XB(t)), r1 < p
vc× X(t), r1 ≥ p

(1)

where X(t + 1) and X(t) indicate the position of slime molds at the (t + 1)th and tth
iterations, respectively. The operation "×" represents multiplication. Xb(t) represents the
fittest location of the slime molds in terms of fitness from the beginning to the current
iteration. XA(t) and XB(t) stand for two random positions of the slime mold in the
population chosen randomly. r1 is a random number between zero and one. vb is an
arbitrary quantity within [−a, a], where the variation of vb simulates the slime mold’s
choice between approaching food or continuing the search. vc is the oscillation vector of
the slime mold, which modifies its search trajectory. It ranges linearly from one to zero.
The parameter a and the selection probability p are determined as follows:

a = arctan h(1− t/T) (2)

p = tan h(|S(i)− DF|) (3)

The population size of slime molds is expressed by the number i = 1, 2, . . . , N. t
embodies the current iteration number, and T is the maximum number of iterations. S(i)
symbolizes the fitness score of the ith slime mold, and DF stands for the best fitness score
obtained throughout all iterations.

The following is the weight W’s updating formula:

W(IndexSorted(i))

{
1 + r2 × log bF−S(i)

bF−wF + 1, i = condition
1− r2 × log bF−S(i)

bF−wF + 1, i = others
(4)
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IndexSorted = sort(S) (5)

where condition represents slime mold individuals with the top half of fitness values; and
others represents the remaining individuals. r1 is a random number between zero and one.
bF and wF represent the best and worst fitness scores of the present iteration, respectively.
The operation "×" represents multiplication. The logarithm function is applied in the
formula to slow down the rate of numerical changes caused by the contraction of the slime
mold, stabilizing the frequency of contraction. Condition simulates the process where the
slime mold alters its location based on the quantity of food, with higher food concentrations
leading to higher weights for slime molds in the vicinity. The sorted list of fitness values is
expressed by IndexSorted.

During the course of looking for food, slime mold individuals separate a portion of
the population to discover new territory and attempt to discover better quality solutions.
This increases the possibilities of solution. The position update formula for the slime mold
algorithm is expressed by:

X(t + 1) =





rand× (ub− lb) + lb, rand < z
Xb(t) + vb× (W × XA(t)− XB(t)), rand ≥ z, r1 < p
vc× X(t), rand ≥ z, r1 ≥ p

(6)

where rand represents a random number between zero and one; ub and lb represent
the lower and upper boundaries of the searching area. The operation "×" represents
multiplication, and z represents the probability of slime mold individuals separating from
the population to search for alternative food sources. Typically, z is set to 0.03.

4. Improved Slime Mold Algorithm (IMSMA)
4.1. Population Initialization Strategy Based on Bernoulli Mapping and Reverse Learning

The effectiveness of an algorithm is greatly influenced by the population initializa-
tion. Chaotic mapping methods possess the characteristics of traversing and randomness,
which are appropriate for early-stage exploration of possible regions and can increase the
algorithm’s variety [18]. Common chaotic mapping models include tent mapping [27]
and logistics mapping [28]. Compared to them, Bernoulli mapping [29] exhibits a more
uniform distribution. Therefore, this study incorporated Bernoulli chaotic mapping into
the population’s initialization method in of the slime mold algorithm. The equation is

yk+1 =

{
yk/(1− λ), yk ∈ (0, 1− λ]
(yk − 1 + λ)/λ, yk ∈ (1− λ, 1)

(7)

X = lb + (ub− lb)× y. (8)

In Equation (7), k stands for the times of chaotic iterations, and λ is the chaotic
mapping’s parameter, typically set to 0.4. The generated chaotic sequence y is mapped
to the search space of solutions, as shown in Equation (8). Here, X represents the value
mapped within the solution interval lb and ub are the slime mold’s boundaries. The
operation "×" represents multiplication.

In addition, the opposite learning approach adopts the idea of obtaining reverse
solutions from the initial population. By adding reverse solutions, it is possible to further
boost population variety [30], enhancing the search capability of the algorithm. Therefore,
in this study, after applying the Bernoulli mapping to the population, the opposite learning
approach was employed. The opposite learning approach is an improvement approach
proposed by Tizhoosh in the field of swarm intelligence in 2005 [31]. Its concept is to
generate a reverse solution based on the current solution in the course of the optimization
procedure. In order to choose the best solution for the subsequent iteration, the objective
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function values of the present solution and the opposite solution are compared. The
following is the formula for producing the opposite solution:

X∗ = lb + ub− X. (9)

In Equation (9), X∗ denotes the reverse solution of the slime mold population, lb
and ub are the highest and lowest boundaries of the searching space for the slime mold
population, and X represents the current solution of the slime mold population. The ob-
tained reverse solution is then merged with the original solution to form a new population
X = (X∗ ∪ X). According to their objective function values, the new population’s fitness
values are computed. Subsequently, the fitness values are sorted, and the first half of the
population is selected as the initial population.

4.2. Cauchy Mutation Strategy for Escaping Local Optima

The Cauchy distribution is where the Cauchy mutation comes from [32]. The following
describes the standard Cauchy distribution’s probability density function:

f (x) =
1
π
· 1

1 + x2 , x ∈ (−∞, ∞). (10)

Figure 1 illustrates the probability density function curved lines of the standard
Gaussian distribution, the standard Cauchy distribution, and the standard t-distribution.
Through an analysis of the curves, it can be observed that comparing the Gaussian and
t-distributions to the Cauchy distribution reveals that it is broader and flatter, and it ap-
proaches zero more slowly. Additionally, in comparison to the Gaussian and t-distributions,
the Cauchy distribution’s origin peak is smaller. This smaller peak guides individuals to
use a lesser time trying to find the optimal position [33]. Therefore, the Cauchy mutation ex-
hibits a stronger perturbation and is more conducive to helping the slime mold population
escape local optima.

Figure 1. Probability density functions for t-distribution, Gaussian distribution, and Cauchy distribution.

The update strategy for the current best solution is as follows:

Xnew
ij = Xij + cauchy(0, 1) · Xij. (11)

In Equation (11), cauchy(0, 1) represents the common Cauchy distribution. The Cauchy
distribution’s randomly generating function is written as η = tan(π · (ξ − 0.5)), where
ξ indicates a randomly vector ranging from 0 to 1. xij symbolizes the location of the ith
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individual at the jth dimension, and xnew
ij stands for the fresh location of the ith individual

at the jth dimension after undergoing a Cauchy mutation.
If the population’s global best solution has not been updated for more than 5 iterations

throughout the iterative updating procedure of the slime mold algorithm, it is considered
that the population may be stuck in its local optimum. In order to boost the likelihood of
escape the regional optimal, a Cauchy mutation is applied. The condition for defining that
the population’s global best value was not updated is that the absolute difference between
the fitness value f t

best obtained from the current iteration’s best position and the global best
value fGbest is less than ∆, as shown in the following equation:

∆ ≥
∣∣ f t

best − fGbest
∣∣ (12)

where t is the current iteration number, and by definition, when ∆ = 0.001, the algorithm is
stuck at a local optimum. In this instance, the slime mold population utilizes the Cauchy
mutation to assist it in eluding the local optimum.

4.3. Nonlinear Dynamic Boundary Conditions

The traditional SMA often experiences the issue of slime mold positions exceeding
the boundaries during the early iterations. The typical approach for handling boundary
conditions is to set the value of individuals exceeding the top edge to the top border
value, and set the value of individuals exceeding the lower border to the lower border
value. However, this boundary condition handling method is not conducive to algorithm
convergence [13]. In this study, we propose a nonlinear dynamic boundary condition, as
shown in the following equation:

Xij(t) =





Xrand
ij (t) + c1 · k

(
ub− Xrand

ij (t)
)

, Xij(t) > ub

Xrand
ij (t)− c2 · k

(
Xrand

ij (t)− lb
)

, Xij(t) ≤ lb
(13)

k = k1

(
T − t

T

)k2
t
T

(14)

where Xrand
ij (t) represents a random slime mold position; c1 and c2 are two random numbers

between 0 and 1; k1 and k2 are amplitude adjustment coefficients that control the magnitude
of parameter k, with k1 and k2 set to 1.5 and 5, respectively. During the early iterations
when the slime mold positions are far from the global optimum, the value of k decreases
slowly. Slime molds that exceed the position range are greatly influenced by the coefficient
k, enhancing the slime mold algorithm’s capability to search globally. During the later
iterations, the slime mold positions are less affected by the value of k and more influenced
by the best position, leading to a stronger local search capability and quicker algorithm
convergence rate.

4.4. IMSMA Flowchart and Pseudocode

The flowchart of the improved slime mold algorithm (IMSMA) is shown in Figure 2.
First, the initialization of the slime mold population is performed using the direction

learning strategy based on the Bernoulli map. Subsequently, the weights (W) of the slime
molds and the value of parameter a are calculated. Random number r is compared to
parameter z. If r is less than z, the slime mold positions are updated using the first equation
in Equation (6). If r is greater than or equal to z, the values of parameters p, vb, and vc
are updated, and then r is compared to p. If r is less than p, the slime mold positions are
updated using the second equation in Equation (6). If r is greater than or equal to p, the
slime mold positions are updated using the third equation in Equation (6). Next, nonlinear
boundary conditions are applied to modify the positions of the slime molds. The fitness
values of the slime molds are calculated, and the global optimal value is updated. It is then
checked whether the global optimal value has not been updated for more than five times.
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If it has, it is considered that the algorithm has converged to a global optimal value. In
this case, the Cauchy mutation strategy is applied to update the positions, and the global
optimal value is recalculated and updated. If the global optimal value has changed at least
once within a continuous span of 5 times, it is checked whether the termination condition
is met. If the condition is not met, the iteration continues. If the condition is met, the
algorithm terminates, and the optimal solution and the optimal fitness value are outputted.

Begin

Initialization; Initializing the slime mold population 

based on the Bernoulli mapping and reverse learning 

strategy; Calculating the fitness values.

Calculating the weights W 

and parameter a.

r < z ?

Updating the slime mold 

positions according to the first 

equation in Equation (6).

Update p, vb, vc.

Y N

r < p ?

Updating the slime mold positions 

according to the second equation 

in Equation (6).

Updating the slime mold positions 

according to the third equation in 

Equation (6).

Y N

Modifying the slime mold 

positions based on the nonlinear 

boundary conditions.

Calculating the fitness 

value; Updating the 

global best solution.

Number of times the global best 

solution has not been updated >5?

Perform Cauchy 

mutation.

Satisfies the termination condition?

Output the best 

solution and its 

fitness value.

End

YN

Y

N

Figure 2. IMSMA Flowchart.

The pseudocode for the improved slime mold algorithm (IMSMA) is as follows:

Step 1. Initialization: T, Dim, slime mold population N, z, lb, ub.
Step 2. Based on the Bernoulli mapping reverse learning strategy, initialize the posi-
tions of the slime mold population. Do the fitness calculations and rank them in order
to find the best fitness value bF and the poorest fitness value wF.
Step 3. Calculate the values of the weight W and the parameter a.
Step 4. If rand < z: on the basis of the first equation in Equation (6), adjust the locations
of the slime molds; go to step 6.

Else: update p, vb, vc; go to step 5.
Step 5. If r < p: on the basis of the second equation in Equation (6), adjust the locations
of the slime molds; go to step 6.

Else: on the basis of the third equation in Equation (6), adjust the locations of the
slime molds; go to step 6.
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Step 6. Revise the locations of the slime molds based on the nonlinear dynamic bound-
ary conditions. Update the global optimal solution after calculating the fitness values.
Step 7. If the global best solution has not changed more than five times, perform a
Cauchy mutation on the positions of the slime molds; go to step 6.
Step 8. If the termination condition is not satisfied, go to step 3.

Else: generate the best answer and its fitness value, and terminate the program.

5. Performance Testing and Analysis of the Improved Slime Mold Algorithm

To test the performance of the improved slime mold algorithm, simulation experiments
were conducted. The experimental environment utilized an 11th Gen Intel® CoreTM i5-
11400H CPU with a clock speed of 2.70 GHz (Intel Corporation, Santa Clara, CA, USA),
16 GB of RAM, and a 64-bit Windows 11 operating system. The programming language
used was Python, version 3.6. Four test functions, namely F1 to F4, were selected for
the experiments. F1 and F2 are unimodal functions, while F3 and F4 are multimodal
functions from the CEC2019 benchmark test functions. Detailed information about these
four benchmark test functions is provided in Table 2.

Table 2. Benchmark test functions details.

Function Function Expressions Number of Peaks Variable Range

F1 f1(x) = ∑n
i=1 |xi |+ ∏n

i=1 |xi | Unimodal [−10, 10]

F2 f2(x) = ∑n
i=1

(
∑i

j=1 xj

)2
Unimodal [−100, 100]

F3 f3(x) = 1
4000 ∑n

i=1 x2
i −∏n

i=1 cos
(

xi√
i

)
+ 1 Multimodal [−600, 600]

F4 f4 = ∑n
i=1
(

x2
i − 10 cos(2πxi) + 10

)
Multimodal [−5.12, 5.12]

The algorithm’s performance was assessed using the four chosen test functions, and a
comparison was made among the WOA, BOA, SSA, SMA, and the IMSMA proposed in this
paper. To ensure fairness in the experiments, the testing environment and algorithm parame-
ters were set to the same values. The swarm size was fixed at 30 for all intelligent algorithms,
with a dimension of 30 and a maximum iteration of 500. The convergence curved lines of the
five algorithms are displayed in Figure 3 after each benchmark function was executed
30 times.

(a) Curves of F1 convergence. (b) Curves of F2 convergence.

(c) Curves of F3 convergence. (d) Curves of F4 convergence.

Figure 3. Curves of the test functions’ convergence.
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The specific test results of the five algorithms are shown in Table 3.

Table 3. Comparison table of algorithms’ test results.

Function Algorithms Average Fitness Value Standard Deviation Best Value Worst Value

F1

WOA 8.5850 × 100 5.3670 × 100 1.3076 × 100 2.2033 × 101

BOA 1.2247 × 10−6 4.0456 × 10−7 3.7431 × 10−7 2.1905 × 10−6

SSA 4.1472 × 10−5 0.0002 × 100 1.5931 × 10−96 0.0010 × 100

SMA 3.2471 × 10−138 1.7486 × 10−137 2.9324 × 10−278 9.7413 × 10−137

IMSMA 1.1214 × 10−295 0.0000 × 100 0.0000 × 100 3.3642 × 10−294

F2

WOA 9.2021 × 104 2.6686 × 104 4.9993 × 104 1.4113 × 105

BOA 5.5098 × 10−10 3.9426 × 10−11 4.7340 × 10−10 6.3100 × 10−10

SSA 8.0274 × 10−8 3.2021 × 10−7 0.0000 × 100 1.7711 × 10−6

SMA 5.3711 × 10−241 0.0000 × 100 0.0000 × 100 1.6113 × 10−239

IMSMA 0.0000 × 100 0.0000 × 100 0.0000 × 100 0.0000 × 100

F3

WOA 2.5141 × 101 2.5713 × 101 1.5288 × 100 1.0146 × 102

BOA 1.2962 × 10−9 2.4117 × 10−10 9.6035 × 10−10 2.0675 × 10−9

SSA 4.2729 × 10−10 1.5760 × 10−10 0.0000 × 100 7.3477 × 10−9

SMA 0.0000 × 100 0.0000 × 100 0.0000 × 100 0.0000 × 100

IMSMA 0.0000 × 100 0.0000 × 100 0.0000 × 100 0.0000 × 100

F4

WOA 2.4084 × 102 8.0646 × 101 6.5122 × 101 3.4340 × 102

BOA 1.1291 × 102 8.6531 × 101 8.1465 × 10−9 2.0361 × 102

SSA 5.8915 × 10−7 2.5701 × 10−6 0.0000 × 100 1.4265 × 10−5

SMA 0.0000 × 100 0.0000 × 100 0.0000 × 100 0.0000 × 100

IMSMA 0.0000 × 100 0.0000 × 100 0.0000 × 100 0.0000 × 100

Analyzing the experimental results and the convergence curves of algorithms, for func-
tion F1, from its convergence curve, it can be observed that the IMSMA starts to converge
around 260 iterations, while SMA starts to converge around 280 iterations. The IMSMA
exhibits a slightly faster convergence speed. From the final results of 30 experiments, the
IMSMA achieves an average fitness value of 1.1214 × 10−295, as can be observed, which
is even closer to the theoretical optimum value of 0. For function F2, the IMSMA starts to
converge around 300 iterations, and it exhibits the fastest convergence speed. From Table 3,
it is evident that the IMSMA obtains a fitness value of zero on average, indicating that it
can find the optimal result. For function F3, the convergence curve plot shows that the SSA
and BOA have better convergence performance than the IMSMA in the first 300 iterations.
However, after 300 iterations, the SSA gets trapped in local optima and struggles to escape,
while BOA’s convergence curve becomes flatter, resulting in a slower convergence speed.
On the other hand, the IMSMA and SMA quickly converge and find the optimal value
around 300 iterations. Comparing the IMSMA and SMA individually, it can be observed
that the IMSMA rapidly converges at around 270 iterations and finds the optimal value
of zero, while SMA converges faster at around 330 iterations. Table 3 also shows that the
IMSMA has an average fitness value, best value, and worst value of zero, indicating that the
IMSMA outperforms the SMA. For function F4, the early versions of the SSA provide the
best convergence performance, as can be seen from the graphic of the convergence curves.
However, in subsequent iterations, its convergence speed becomes significantly slower.
On the other hand, the IMSMA shows a good ability to escape local optima between the
200th and 300th iterations, and it reaches the ideal value after only 300 iterations. The SMA
converges to the optimal value at around 410 iterations. Through testing the algorithms
on the four functions, it can be concluded that the WOA performs the worst and exhibits
a convergence stagnation. The IMSMA achieves the best performance with the fastest
convergence speed and a good ability to escape local optima.
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6. Solving Multiprocessor Fair Scheduling Problem with IMSMA
6.1. Establishment of the Multiprocessor Fair Scheduling Problem Model

The task scheduling problem on multiprocessors has been proven to be an NP-hard
problem. Ensuring fairness in scheduling can improve the utilization of processor resources
to some extent. Depending on different application scenarios, the definition of fairness
may vary. To accomplish fair scheduling, we focused on the average process time on each
processor and aimed to minimize the maximum average execution time on each processor
to achieve fair scheduling. We established a model for the multiprocessor fair scheduling
problem based on this objective. Assuming n jobs and m processors, let Pij represent the
time required for job i to be executed on processor j. We introduce a binary variable xij to
indicate whether job i is run on processor j or not. The formulation is as follows:

xij =

{
1, condition
0, other

. (15)

The condition represents the case where job i is run on processor j, and other represents
all other cases. One processor can handle only one task at a time, so the constraint conditions
are as follows:

m

∑
j=1

xij = 1, i = 1 · · · n. (16)

Assuming the total execution time on each processor is P, we have the following
constraint:

Pj =
n

∑
i=1

Pijxij, j = 1 · · ·m. (17)

The average execution time on each processor Pavg
j is represented as follows:

Pavg
j =

Pj

∑n
i=1 xij

, j = 1 · · ·m. (18)

The following is a representation of the objective function:

F(x) = min
(

max
{

Pavg
1 , Pavg

2 , Pavg
3 , · · · , Pavg

m

})
(19)

s.t. =





(15)
(16)
(17)
(18)

(20)

The objective function is constrained by Equations (15)–(18). To facilitate solving the
equation, let us consider the continuous approximation of the discrete objective function:

F(x) = min
(

Pavg
1 + Pavg

2 + · · ·+ Pavg
m

)
+ µ1

n

∑
i=1

(xi1 + xi2 + · · ·+ xim − 1) + µ2

n

∑
i=1

m

∑
j=1

(
xij − x2

ij

)
. (21)

In the equation, µ1 and µ2 are two random numbers between zero and one. The two
additional terms added afterwards are introduced to represent that xij is a binary variable.

6.2. Description of Multiprocessor Fair Scheduling Algorithm Based on IMSMA

Suppose a system with n tasks and m processors. When initializing the slime mold
population, it is important to set the dimension of the slime mold swarm size to n×m. The
description of the IMSMA for multiprocessor fair scheduling is as follows:

Step 1. Initialization: T, Dim, slime mold population N, z, lb, ub, n, m.
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Step 2. Based on the Bernoulli mapping reverse learning strategy, initialize the posi-
tions of the slime mold population.
Step 3. Input the objective function for multiprocessor fair scheduling. Calculate the
fitness values and sort them to obtain the greatest fitness value bF and the poorest
fitness value wF.
Step 4. Calculate the values of the weight W and the parameter a.
Step 5. If rand < z: on the basis of the first equation in Equation (6), adjust the locations
of the slime molds; go to step 7.

Else: update p, vb, vc; go to step 6.
Step 6. If r < p: on the basis of the second equation in Equation (6), adjust the locations
of the slime molds; go to step 7.

Else: determine the location of the slime molds using the third equation in
Equation (6); go to step 7.

Step 7. Revise the locations of the slime molds based on the nonlinear dynamic bound-
ary conditions. Update the global optimal solution after calculating the fitness values.
Step 8. If the global best solution has not been changed more than five times, perform
Cauchy mutation on the positions of the slime molds; go to step 7.
Step 9. If the termination condition is not satisfied, go to step 4;

Else: generate the best answer and its fitness value, and terminate the program.

7. Numerical Experiment

We performed simulation experiments on the multiprocessor fair scheduling problem,
with the same experimental environment as the performance testing of the improved
slime mold algorithm. Assuming there were 1000 tasks and 10 processors with varying
efficiencies, we randomly initialized a matrix Pij with dimensions 1000 rows by 10 columns.
The elements of the matrix were set to values between 1 and 1000. The value at the ith row
and jth column corresponded to the execution time of the ith task when executed on the
jth processor. We used the IMSMA to solve the multiprocessor fair scheduling problem.
The swarm size of the slime mold was fixed to 30, and the dimension was fixed to n×m,
which corresponded to the size of matrix Pij.

Experiments were carried out on a range of problem sizes with a 100-iteration setting.
The results for the objective values obtained by each algorithm are presented in Table 4.

Table 4. Comparison of objective values obtained by different algorithms for various problem sizes.

Number of Experiments n m IMSMA SMA WOA BOA SSA

Experiment 1 500 10 3378 3434 3534 4639 4293
Experiment 2 500 20 6544 6797 6854 9352 8753
Experiment 3 500 30 9915 10,409 10,173 13,966 13,155
Experiment 4 1000 10 3761 3953 3935 4804 4679
Experiment 5 1000 20 7593 7932 7925 9483 9428
Experiment 6 1000 30 11,634 11,709 11,858 14,483 13,878
Experiment 7 1500 10 4070 4092 4114 4788 4746
Experiment 8 1500 20 8092 8145 8235 9713 9519
Experiment 9 1500 30 12,038 12,205 12,152 14,321 14,398

The convergence curves of various algorithms for solving problems of different scales
are shown in Figure 4.
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(a) Convergence curves of experiment 1. (b) Convergence curves of experiment 2. (c) Convergence curves of experiment 3.

(d) Convergence curves of experiment 4. (e) Convergence curves of experiment 5. (f) Convergence curves of experiment 6.

(g) Convergence curves of experiment 7. (h) Convergence curves of experiment 8. (i) Convergence curves of experiment 9.

Figure 4. Curves of test functions’ convergence.

Based on the data shown in Figure 4 and Table 4, it can be concluded that the IMSMA
achieves the lowest objective function values and performs the best in solving the fair
scheduling problem on multiple processors. The IMSMA effectively enhances the efficiency
of solving the fair scheduling problem on multiple processors.

8. Conclusions

This paper investigated the fair scheduling problem on multiprocessors and proposed
a new improved slime mold algorithm (IMSMA) built upon the original slime mold algo-
rithm. The IMSMA introduces a population initialization strategy based on the Bernoulli
mapping and reverse learning to enhance the population’s diversity of slime mold. It
employs a Cauchy mutation strategy to facilitate escaping from local optima when the
algorithm gets trapped. Furthermore, the boundary conditions of the slime mold algorithm
were modified to nonlinear dynamic boundary conditions to improve the convergence
efficiency and accuracy. Simulation experiments were conducted using two unimodal
functions and two multimodal test functions to examine the algorithm’s effectiveness. The
results demonstrated that the IMSMA exhibited a good convergence efficiency and the
ability to escape local optima. Then, the paper modeled the fair scheduling problem on
multiple processors, with the objective function set to minimize the average execution time
on each processor. Finally, the IMSMA was utilized to solve the fair scheduling problem
on multiple processors, and the outcomes were assessed against those of other algorithms.
The comparison revealed that IMSMA achieved the best objective value and exhibited
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superior convergence performance compared to the other algorithms. The IMSMA can
be applied not only to solve the fair scheduling problem on multiprocessors but also in
various scenarios such as taxi dispatch systems and courier scheduling.
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Abstract: This paper proposes a heuristic approach for managing complex construction projects.
The tool incorporates Primavera P6 EPPM and Synchro 4D, enabling proactive clash detection and
resolution of spatial conflicts during concurrent tasks. Additionally, it performs resource verification
for sufficient allocation before task initiation. This integrated approach facilitates the generation of
conflict-free and feasible construction schedules. By adhering to project constraints and seamlessly
integrating with existing industry tools, the proposed solution offers a comprehensive and robust
approach to construction project management. This constitutes, to our knowledge, the first dynamic
digital twin for the delivery of a complex project.

Keywords: heuristics; scheduling algorithms; constraint satisfaction problems; resource allocation;
co-activity conflict mitigation

1. Introduction

The successful delivery of large-scale industrial construction projects often necessi-
tates the development of requisite venues and infrastructural facilities. This undertaking
presents a significant industrial project with complex logistical challenges. A central chal-
lenge lies in formulating a cohesive construction schedule, which can be categorized as a
resource-constrained project scheduling problem (RCPSP). The RCPSP is a well-studied
problem in the field of project management, where the objective is to determine the optimal
sequence and timing of activities. This paradigm addresses the intricate interplay of various
resources such as workspace, machinery, and manpower, all of which are subject to inher-
ent limitations and constraints, alongside a network of tasks characterized by precedence
relations and resource requisitions [1–4]. The implementation of the RCPSP in construction
projects can potentially minimize project duration, ultimately translating into lower overall
project costs [2,5,6]. Additionally, the RCPSP offers a multi-scenario simulation framework,
providing valuable insights into the potential outcomes and trade-offs of different schedul-
ing strategies [7–10]. This comprehensive analysis empowers project managers to make
informed decisions that enhance both project efficiency and resource utilization.

However, basic RCPSP models may not capture all the complexities of construction
projects. While traditional RCPSP models assume deterministic activity durations and
resource availabilities, construction projects are inherently stochastic, with unforeseen
delays and resource availability fluctuations [11]. In the context of complex construction
projects, as exemplified in this study, the RCPSP is further complicated by the need to
address spatial conflicts and ensure efficient resource utilization. Spatial conflicts arise when
the physical locations of concurrent construction activities overlap, leading to potential
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clashes and disruptions. Efficient resource utilization is crucial to minimizing delays and
optimizing project costs. Addressing these challenges is essential for the successful and
timely completion of a project.

Another limitation to consider when applying the RCPSP in construction projects
is the complexity involved in solving large-scale instances. Optimizing schedules for
extensive construction projects with numerous activities and resource constraints often
necessitates the use of specialized scheduling software, which may not be readily accessible
or user-friendly for all construction professionals. Diverse solutions have been offered to
mitigate the complexities inherent in project scheduling. Notably, Primavera P6 is a pre-
eminent project management tool developed by Oracle [12]. With over three decades of
development and widespread adoption across industries, Primavera P6 has established
itself as a leader in project management software. It offers robust functionality for both
local deployment (P6 PPM) and scalable service provision (P6 EPPM), seamlessly integrat-
ing with Oracle databases and supporting external data import. It excels at addressing
scheduling constraints such as workspace clashes, enabling the formulation of optimized
schedules [13]. However, its multifaceted functionalities require comprehensive training
for proficiency.

While Primavera P6 provides advanced features for project scheduling, it lacks
the inherent functionality to detect potential spatial conflicts that may arise during the
construction-planning phase. Traditionally, this verification has been conducted as a sepa-
rate and disconnected process, often requiring the use of specialized 4D simulation software,
such as Synchro4D [14] (chap. 6). Through integration with project scheduling tools, such
as Primavera P6, Synchro 4D can import the project plan and link it to a corresponding
3D building information model (BIM). This BIM serves as a digital representation of the
construction plan, enabling Synchro 4D to simulate and visualize the construction sequence
over time. This capability allows for the proactive identification of potential spatial conflicts
between construction elements. Early detection of such clashes is crucial for managing
complex projects where coordinating concurrent activities and resources is paramount.
However, while Synchro is effective at spatial conflict detection, it has limitations in fully
resolving these conflicts. The tool does not possess advanced functionalities for automati-
cally adjusting the construction schedule or resource allocation to eliminate the identified
conflicts. Consequently, project managers may need to manually manipulate the schedule
or resource plans within Primavera P6 to sequence activities differently and find a feasible,
conflict-free solution.

This paper presents Optimizio [8–10], a heuristic scheduling tool enhanced with func-
tionalities that address the limitations associated with conventional resource leveling and
conflict resolution processes. Optimizio automates the entire workflow, offering significant
advantages for project management, including the ability to tackle complex scheduling
problems, flexibility, and ease of use, which eliminates the need for additional training.
The proposed approach offers seamless integration from Primavera P6’s project planning
data to spatial conflict reports from Synchro 4D. This facilitates the streamlined execution of
resource leveling and clash resolution while adhering to all predefined project constraints.
The resulting feasible schedule is generated in a format that is directly compatible with
Primavera P6, enabling efficient workflows for industry professionals. Through rigor-
ous validation by domain experts, the solution demonstrates its promise for addressing
real-world challenges in industrial applications.

The proposed Optimizio approach and its implementation details are thoroughly
discussed in this paper. The organization of the paper is as follows: Section 2 presents
the materials and methods, providing a detailed description of the problem, a benchmark
instance utilized for evaluation purposes, and the overall methodology employed by
Optimizio. Section 3 showcases the results of the proposed algorithms. Finally, the major
findings, implications, and future research directions are explored in Section 4.
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2. Materials and Methods
2.1. Statement of the Problem

This study addresses a real-world construction scheduling challenge that extends
beyond the core RCPSP formulation. While the RCPSP provides a solid foundation for
scheduling activities under logical dependencies and resource constraints, the use case in
this study introduces additional complexities, which are given below.

2.1.1. Data Exchange and Software Integration

One such complexity involves establishing seamless data exchange between existing
project management software. Construction projects typically involve a multitude of stake-
holders and software platforms, each with its own data formats and workflows. Facilitating
efficient data exchange and integration among these tools is crucial for leveraging existing
project data and enabling streamlined workflows.

In this study, the initial project plan was obtained from the Oracle Primavera P6
Enterprise Project Portfolio Management (EPPM) cloud solution in an extensible markup
language (XML) format, which is suitable for automated data parsing. Subsequently,
the analysis of spatial conflicts commenced with the generation of a 3D BIM representing
the digital construction plan. The model elements were then spatially mapped to their
corresponding activities within the Primavera P6 schedule. This integrated data allowed
Synchro 4D to simulate and visualize the construction sequence over time, enabling a
four-dimensional (4D) representation. This 4D simulation facilitated the identification of
potential spatial conflicts, defined as situations where two or more BIM elements occupy
the same physical space concurrently.

These spatial incompatibilities need to be resolved to generate a new, conflict-free
schedule. However, merging the identified spatial conflicts with the updated Primavera
schedule is not a straightforward task. The integration of the spatial conflict informa-
tion with the revised scheduling approach presents a significant challenge that must be
overcome to ensure the successful and efficient execution of the construction project.

2.1.2. Spatial Conflicts and Contractor Coordination

In the construction projects considered here, the work areas are managed by different
contractors, necessitating coordination to mitigate spatial incompatibilities and ensure
efficient execution. Inappropriately addressed conflicts can lead to suboptimal schedules,
rework, and potential project delays.

Resolving spatial conflicts through conventional manual approaches is frequently
a time-intensive and resource-demanding process. While techniques such as adjusting
activity dates in Primavera P6 or modifying component positions within 3D models can
address certain conflicts, the process is inherently iterative. Teams must repeatedly review
and update the 4D simulation, which combines scheduling data with 3D models, until an
acceptable solution is achieved. This iterative cycle can be time-consuming and inefficient,
particularly for complex projects with intricate spatial constraints. In addition, they are
prone to errors, as the manual analysis and coordination processes may overlook intricate
interdependencies between activities, resource allocations, and spatial constraints. This
necessitates the development of automated and optimized solutions to facilitate seamless
coordination among contractors and enhance project execution efficiency.

2.1.3. Suboptimal Resource Allocation

Effective resource management is another critical aspect of successful project execution.
Project managers must meticulously assess resource needs, availability, and potential
limitations to create a comprehensive resource plan aligned with project goals and timelines.

In this study, instances of suboptimal resource allocation in the initial planning stages
were identified. Resources were frequently requested in excess of their available units,
potentially leading to a bottleneck during project execution, jeopardizing timely completion,
and impacting project delivery performance.
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While Primavera P6’s resource leveling tool is a valuable asset for resource manage-
ment, it has limitations when dealing with resource allocation within individual activities.
The tool is designed to resolve resource conflicts between activities that compete for the
same resources, but it cannot address situations where a single activity is overloaded with
resource requirements. Additionally, the leveling tool may encounter challenges when han-
dling activities that involve a mix of labor and non-labor resources, potentially leading to
inaccurate or incomplete leveling results. Consequently, the leveled schedule may require
manual adjustments to ensure it aligns with practical constraints and project execution
plans. To address this challenge, a robust methodology that seamlessly integrates resource
management considerations into the project planning process is crucial for overall project
efficiency and optimal results.

2.2. Problem Instance

This problem instance is an original contribution of this research and has not been
previously reported in the existing literature. This study evaluates the proposed solution’s
effectiveness in handling complex project scheduling scenarios with diverse activity types,
resource constraints, and project-specific limitations.

A benchmark instance comprises 24 logically linked activities categorized into two
distinct types: level of effort (LoE) and task dependent. These categories exhibit distinct
characteristics regarding resource demand, calendar utilization, and workload computation
based on duration. The planning process involves the management of three types of resources:
Resources A, B, and C. The initial planning revealed an overallocation of Resource A, indicating
that the requirement for this resource exceeded its available capacity. Additionally, Resources
B and C exhibit incompatibility, precluding their simultaneous utilization.

The objective of this instance is to generate a feasible schedule that adheres to all activity
precedence relationships, resource availability constraints, and project-specific limitations.

2.3. Proposed Solution

To address the complex project scheduling problem, we propose Optimizio [8–10],
an approach to model and solve complex scheduling problems. Optimizio leverages a
greedy heuristic algorithm that dynamically assigns scores to unscheduled tasks at each
decision point. These scores are calculated using a cost function that incorporates relevant
scheduling criteria [8]. Based on these calculations and the satisfaction of constraints, our
tool schedules as many feasible tasks as possible at each time step, ultimately yielding a
feasible and relatively optimal schedule. The efficacity of Optimizio has been validated
through extensive testing on large-scale industrial scheduling problems encompassing
diverse domains [9], including nuclear, defense, and construction industries.

Optimizio is built upon an object-oriented programming (OOP) solution that encapsu-
lates key components of the RCPSP model through three fundamental classes:

• Project class: This class encapsulates the overall project information, including the
decision time step for recalculating the cost function, definition of calendars used in
the planning, start and end dates of the project, etc. It also serves as a container for
tasks and resources and manages the interactions between them.

• Task class: Instances of this class represent individual tasks within the project. Each
task object captures task-specific attributes, such as duration, precedence relationships,
and resource requirements.

• Resource class: This class represents available resources within the project. These
resources can include personnel, equipment, materials, or any other assets that are
required to complete the project tasks.

The core Optimizio platform was extended through the integration of additional
modules to address specific project scheduling challenges encountered in this use case.
These extensions are given below.
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2.3.1. Connector Module

This module offers user-configurable parameters for Primavera P6 data input. This
functionality enables users to define the specific Primavera version used for the project
schedule. Additionally, users can specify XML tags to be excluded or included during the
parsing process. This granular control ensures that the extraction of relevant data points is
tailored to the specific project requirements. Following the user configuration and project
data upload, a dedicated data preprocessing step is initiated. This step extracts informa-
tion from the uploaded project data encompassing comprehensive information about the
scheduled activities, including the activity name, unique identification code, duration,
start and finish dates, predecessor and successor relationships, resource assignments, and
user-defined parameters specified during the configuration phase. The extracted data
are then transformed into instances of the Optimizio–RCPSP classes. This transformation
process essentially converts the raw project data into a structured format that is specifically
designed for subsequent analysis within the Optimizio application framework.

This module extends its functionality by facilitating the import of a clash report
generated by Synchro4D in an Excel format. This report contains pre-identified pairs of
locations that are deemed incompatible due to potential spatial conflicts arising during
the 4D simulation process. The imported clash report data undergo a transformation
process to integrate them with the Optimizio model. Each resource identified in the clash
report is converted into a corresponding resource class instance containing an additional
attribute that stores information regarding all incompatible resources associated with that
particular resource. This process creates a mapping between resources and their associated
incompatibility constraints, effectively capturing the spatial conflict information within the
model. By incorporating this information, the model accounts for potential spatial conflicts
that may arise during the construction-planning phase. The verification of these resource
incompatibilities will be addressed in the subsequent section, the resource incompatibility
verification module.

In addition to facilitating the retrieval of input data, this module is responsible for
exporting the output of the Optimizio solver to Primavera P6, enabling further analysis
and integration with downstream processes. The module generates an XML representation
of the feasible schedule produced by the Optimizio solver. This output adheres to the Pri-
mavera P6 EPPM data format, ensuring seamless interoperability and enhancing usability
for project managers and their teams.

2.3.2. Resource Incompatibility Verification Module

To prevent resource conflicts during project execution, this extension verifies the com-
patibility of resources assigned to concurrent tasks. It checks for predefined incompatibility
constraints within the resource class before task execution. These constraints act as rules
specifying which resources cannot be used together on overlapping tasks. If incoming
tasks require resources incompatible with those used by ongoing tasks, the incoming task is
automatically delayed. They will remain in a waiting state until all incompatible resources
are freed by completing ongoing tasks. This proactive approach guarantees the feasibility
of the project plan by eliminating the risk of resource conflicts.

2.3.3. Resource Availability Verification Module

This module simulates resource unit availability throughout the project schedule. It
tracks assigned resource units for each task, considering factors like resource quantities,
work calendars, and potential constraints. This ensures resource assignments align with
actual availability before tasks begin. By factoring in resource availability alongside other
scheduling constraints, Optimizio could generate more realistic and achievable schedules,
ultimately increasing the project’s success rate.

The integration of the Optimizio algorithm with the latter two modules is shown in
Algorithm 1.
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Algorithm 1 Heuristic-Based Project Scheduling with Co-Activity and Resource Considerations

1: Set empty list PT for planned tasks
2: while PT 6= J do
3: for each time step t do
4: for activities Ji do
5: if predecessor relationships are respected then
6: if required resources are available then
7: if required resources have no conflict with resources already allocated

to other concurrently scheduled activities then
8: if required resources possess sufficient capacity to accommodate

the task launch then
9: Calculate objective score

10: end if
11: end if
12: end if
13: end if
14: end for
15: Sort activities to be scheduled
16: Execute activities based on sorted list
17: Append finished activities to the list PT
18: end for
19: end while
20: return PT

3. Results

The entire benchmark execution achieved a runtime of approximately 0.5 s on an eight-
core CPU. This process encompassed data retrieval from Primavera P6 EPPM and Synchro
4D to obtain the initial project plan and resource conflict information. The extracted data
were then preprocessed to facilitate the generation of an RCPSP model that captured project
requirements and constraints. Subsequently, a heuristic-based scheduling algorithm was
employed to simulate and generate feasible project schedules. The quality and feasibility of
the generated schedules were then assessed using user-defined key performance indicators
(KPIs). Finally, the optimized schedule was exported in an XML format compatible with
Primavera P6 EPPM project management software, enabling further analysis and decision-
making within the familiar project management environment.

The resource overallocation identified in the initial project plan, as shown in Figure 1a,
could lead to various challenges during project execution, such as delays, conflicts, and in-
efficient resource utilization. By incorporating the Optimizio algorithm integrated with the
resource availability verification module, the output schedule exported to Primavera P6
EPPM showed no more resource overallocation issues, demonstrating the effectiveness of
the integrated scheduling optimization approach, as demonstrated in Figure 1b.

The baseline project schedule demonstrated the occurrence of spatial conflict. This
conflict is visualized in Figure 2 for a comprehensive understanding, showcasing two
distinct perspectives: a 3D representation (a) and a top-down view (b). To address this in-
compatibility, the proposed approach offered useful insights into the scheduling simulation
process. The tool generated KPIs that quantified resource occupancy, illustrating the time
periods when resources were utilized throughout the simulated project schedule. Figure 2c
revealed the overlapping usage of incompatible resources, Resource B and Resource C,
in the initial plan. In contrast, the output from Optimizio, as illustrated in Figure 2d,
showcased the successful elimination of overlapping occupancy for these two resources.
Furthermore, the tool possesses the capability to generate a report of identified spatial
conflicts during the simulation (Figure 2e). This report details the resources involved and
time frames of the clashes as well as the total duration of the conflicts. These detailed KPIs
serve as a valuable tool for project managers, enabling them to anticipate and address
co-activity conflicts before they disrupt the project’s execution.
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(a) (b)

Figure 1. Resource allocation verification. Resource overallocation in the initial project plan, indicat-
ing potential issues during project execution (a). The schedule generated by Optimizio, demonstrating
improved resource allocation for a more efficient and feasible execution plan (b).

(a) (b)

(c)

(d)

(e)

Figure 2. Analysis of co-activity conflicts. The initial project schedule reveals overlapping workspace
requirements when visualized from multiple viewpoints, including a three-dimensional represen-
tation (a), a top-down perspective (b), and the aspect reflected by Optimizio’s KPI (c). (d) The
updated schedule generated by Optimizio, highlighting conflict resolution. (e) List of identified
spatial conflicts, including resources involved, start/end times, and total duration of the conflict.
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4. Discussion

This work proposes algorithms that bridge the information gap between industrial
tools and proactively address scheduling issues caused by resource incompatibility and
overallocation. The integration of these approaches into the project management workflow
enhances the ability to plan, execute, and monitor projects with greater precision and
confidence. Ultimately, this leads to improved project outcomes by minimizing disruptions
and delays caused by unforeseen circumstances.

The use case highlights the strategic integration of three key modules. The first module
facilitates seamless integration between project management softwares, resulting in the
comprehensive consideration of all project perspectives. This integration enables the tool
to read input directly from Primavera, along with information on spatial conflicts from
Synchro4D. Limited research on Primavera–Synchro4D integration suggests our proposed
solution is among the first attempts to bridge the gap between the separate functionalities
of these tools. The unified data stream ensures the proposed solution leverages the most
accurate project constraints and scheduling information for optimal results. Furthermore,
the tool’s outputs, which include feasible schedules, can be directly exported back to
Primavera P6 EPPM. This bidirectional data flow allows project managers to leverage the
capabilities of the proposed tool while maintaining the familiarity and functionality of the
Primavera platform.

Additionally, the proposed solution expands its connector capabilities beyond those
covered in this publication. Construction projects often face a data integration challenge
due to the involvement of multiple stakeholders with distinct project management software
preferences. To accommodate this heterogeneity, an additional module was developed
to facilitate the transformation of schedules from Microsoft Project, another widely used
project planning platform [15], into a format readily interpretable by Primavera. This
functionality addresses potential inconsistencies that may arise when utilizing Primavera’s
built-in conversion features, ensuring seamless data exchange and fostering improved
project collaboration.

To further maximize the connector capabilities, the tool offers an additional module
that leverages Oracle Web Services to directly interact with project schedules within Pri-
mavera. This eliminates the need for manual data exchange through XML files. Users can
simply provide their Primavera Oracle account credentials and identify the target project
using elements like project object ID, ID, name, or other user-defined identifiers. This
streamlines the connection process and facilitates real-time data access.

Acknowledging the widespread use of Primavera P6 EPPM as a leading project
management software, one of Optimizio research goals is to facilitate seamless adoption for
Primavera users. The ideal approach would involve integrating the proposed tool directly
within the Primavera platform as a third-party add-on. This direct integration would
streamline the user experience and enhance the accessibility of our constraints engine for
the vast user base of Primavera P6 EPPM.

While seamless data integration streamlines processes, real-world project management
remains susceptible to unforeseen circumstances. One of the major challenges lies in
managing resource overallocation, which occurs when the demands placed on a resource
exceed its available capacity. This situation can arise due to various factors, such as
improper resource planning, inefficient coordination among stakeholders and contractors,
or unexpected changes in project scope. One widely adopted approach is the resource
leveling technique, which creates a balanced workload by reallocating resources [16,17].
Primavera’s built-in resource leveling features provide effective workload analysis across
multiple activities. These features enable project managers to identify instances where
a resource is overbooked or assigned to different tasks during the same period, leading
to potential overallocation [18]. However, the methods lack the capability to handle
situations where a single activity is overloaded or where the requirements are of mixed
heterogeneous types.
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Construction sites are inherently dynamic environments where numerous activities
compete for limited space. By proactively identifying, preventing, and resolving spatial
conflicts in construction planning, projects can achieve improved efficiency, enhanced
safety, and, ultimately, greater project success. Various optimization methods have been
explored to resolve spatial conflicts in construction projects, such as genetic algorithms
(GAs) [19,20], particle swarm optimization (PSO) [21], and the building displacement
operation (BDGSA) [22]. Alongside optimization approaches, leveraging discrete event
simulation (DES) and Unity-based path planning offers a promising automated solution
for identifying and resolving potential time–space conflicts [23]. However, the necessity
of integrating these algorithms with project planning processes remains a challenge that
needs to be addressed.

Several studies propose integrating 4D/5D planning with advanced tools for conflict
management in construction projects. One such example is the nD Planning System, which
integrates workspace management with critical path method (CPM) scheduling and build-
ing information modeling (BIM) data [24]. It provides analytical capabilities for conflict
resolution, including adjusting activity schedules, modifying workspace sizes and locations,
and exploring alternative construction methods. Nevertheless, a potential limitation of this
approach lies in its iterative conflict resolution process, where conflicts are tackled one by
one, which may not be optimal for highly complex projects with intricate dependencies.

Our proposed approach addresses limitations in existing methods by incorporating
two additional modules that enhance resource management in a practical and efficient
way. These modules focus on proactive conflict identification and real-time resource
availability verification before tasks commence. While this combined approach may extend
the overall project duration, it represents a strategic trade-off. A marginally prolonged
yet demonstrably more feasible and executable schedule is a prudent compromise, as it
mitigates the risks associated with unforeseen delays, rework, or safety incidents that could
potentially arise due to resource incompatibility or unavailability issues.

In this study, the identified spatial overlaps and resource overallocation necessitate
delaying the upcoming task’s initiation to adhere to stakeholder requirements. Beyond this
primary function, the tool offers additional features successfully employed in other sce-
narios that could be adapted here. Notably, it can compare task priorities and recommend
pausing the ongoing task if it has lower priority than the upcoming one. Alternatively,
a user-defined rule-based algorithm could be implemented to highlight the tool’s versatility.

While the proposed solution offers significant advantages, it is essential to acknowl-
edge its current limitations and outline potential future research directions. At present,
Optimizio lacks a cloud-based solution, restricting its usage to local machines. This limita-
tion hinders the ability to directly link team member information to simulations, potentially
impacting collaboration and accessibility. To address this limitation, future developments
should focus on creating a cloud-based solution for Optimizio. By transitioning to a cloud-
based platform, users would gain the ability to access and run Optimizio simulations from
anywhere with an internet connection. This enhancement would significantly improve
accessibility and facilitate seamless collaboration among geographically dispersed teams.

Despite this current limitation, the scheduling approach presented in this paper offers a
comprehensive solution to the complex problem of industrial project scheduling by address-
ing the key challenges of compatibility with existing tools, flexibility, and domain-specific
validation. The successful implementation and evaluation of this approach demonstrate
its potential to improve resource utilization, reduce delays, and enhance the overall effi-
ciency of industrial projects. By ensuring data continuity and transparency, this dynamic
rule-based engine enriches the capabilities of project management and BIM 4D platforms,
ultimately creating a digital twin of the project delivery process.
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Abstract: Within the framework of sustainable supply chain management and logistics, this work
tackles the complex challenge of optimizing inventory levels across varied storage facilities. It in-
troduces a comprehensive many-objective optimization model designed to minimize holding costs,
energy consumption, and shortage risk concurrently, thereby integrating sustainability considera-
tions into inventory management. The model incorporates the distinct energy consumption profiles
associated with various storage types and evaluates the influence of stock levels on energy usage.
Through an examination of a 60-day production schedule, the dynamic relationship between inven-
tory levels and operational objectives is investigated, revealing a well-defined set of optimal solutions
that highlight the trade-off between energy savings and shortage risk. Employing a 30-day rolling
forward analysis with daily optimization provides insights into the evolving nature of inventory
optimization. Additionally, the model is extended to encompass a five-objective optimization by
decomposing shortage risk, offering a nuanced comprehension of inventory risks. The outcomes
of this research provide a range of optimal solutions, empowering supply chain managers to make
informed decisions that strike a balance among cost, energy efficiency, and supply chain resilience.

Keywords: many-objective optimization; ideal stock optimization; sustainable supply chain; stock
management; cost-effective logistics

1. Introduction

Supply chain management is a topic of great relevance in today’s industrial environ-
ment, and a widely researched topic in academia [1]. Resilience of the supply chain (SC)
to external unpredictable factors is greatly sought after by companies, and the current
data-heavy industrial scene allows the leverage of computational techniques in order to
minimize disruptions [2]. Resilience to these SC disruptions has become of paramount
importance as industries become more globalized and disruptions more frequent, stem-
ming from natural disasters to geo-political conflicts [3] or global pandemics, such as the
COVID-19 pandemic [4]. One of the final stages of the upstream supply chain is the storage
of raw materials in companies’ warehouses. This is a very complex problem on its own,
as keeping, e.g., large amounts of stock can help companies reduce the risk of having a
shortage of materials in unpredictable supply chain events, but it comes at a hefty cost,
since holding stock has inherent costs—the longer and the greater the quantities of stock
being held, the larger the costs.

At the same time, environmental conscience has risen significantly in the last few
years. Increasingly, more companies start to take environmental aspects into considera-
tions in their decision-making processes, diverging from purely profit-focused approaches.
Nevertheless, it is very commonplace for sustainable solutions to also reduce costs—a solu-
tion that is focused on reducing energy consumption will invariably reduce energy costs.
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In the supply chain literature this sustainability trend has also been verified, with many
publications on green (or sustainable) supply chains [5–10]. Indeed, according to Khan
et al. [11], publications on sustainable supply chains have been steadily increasing, es-
pecially after 2013, where the yearly number of publications increased from 21 in 2013
to 66 in 2018. More recent publications on the subject show that this trend has contin-
ued, with Hmouda et al. [12] showing a continuing increase up until 2021 (note that the
publication was submitted in 2022).

The concept of safety stock determination and optimization has been widely re-
searched for decades [13], as establishing the minimum amount of stock necessary for
companies to be resilient to most unpredictable phenomena is paramount. Different ap-
proaches towards the problem are found throughout the literature. Some researchers
use statistical methods for the determination of the safety stock [14]; some tackle the
safety stock placement of multi-stage supply chains using optimization and decomposition
techniques [15], the combination of base stock and base backlog in a make-to-stock set-
ting [16], and others deal with inventory control in conjunction with pricing and production
rates [17,18].

A less researched and more complex problem is the optimization of the ideal stock
levels. In contrast to determining safety stock, ideal stock optimization is not static in
time and depends on many factors, some fixed, like warehouse capacity, and some highly
changeable, like the production schedule and consequent stock requirements. While being
a less researched topic than safety stock optimization, several publications are available
on this topic. Daniel and Rajendran [19] deal with the problem of determining installation
base-stock levels in a serial supply chain, using heuristics to expedite the convergence of
the optimization algorithms used. The problem is formulated as a single-objective problem,
focused on minimizing the total supply chain cost, comprised of the total holding cost and
the total shortage cost; the problem is also solved as a bi-objective problem, considering as
objectives the two costs separately. Haijema and Minner [20] analyse hybrid base-stock and
constant order policies. The authors address the issue as a simulation-based optimization.
Király et al. [21] use simulation to address the issue of inventory control of multi-echelon
supply chains. The sustainability in supply chains is also considered as the distance
travelled between nodes of the supply chains is also taken into account.

Multiobjective optimization is an optimization area focused on optimizing more than
one objective. This means that when the problem has conflicting objectives, multiple
non-dominated solutions can be found. This approach has been applied on a plethora
of problems in industrial settings, namely, on a multi-effect desalination unit integrated
with a fuel cell-based trigeneration system [22] or on data-driven soft sensors for a cleaner
papermaking process [23]. Many-objective optimization is a subset of multiobjective
optimization that regards optimization problems with three or more objectives. This
allows more flexibility in modelling the problem but also comes at the cost—and with
the opportunity—of substantially increasing the number of non-dominated solutions.
This type of optimization has been applied in, e.g., semiconductor manufacturing [24] or
pharmaceutical supply chains [25].

1.1. State-of-the-Art Review

Given the identified research gaps and the context of Industry 5.0, the research question
for this study is the following: In a dynamic production environment with heterogeneous
storage, how can data-driven inventory management strategies and decision-making
frameworks be designed to simultaneously mitigate shortage risk, minimize holding
costs, and promote sustainability? This research questions can be separated into three
components of inventory management: sustainable inventory management; data-driven
inventory management; multiobjective inventory management.

Recent advancements in inventory management have underscored the importance
of incorporating components of sustainability and environment impact. Becerra et al. [26]
provide a review on sustainable inventory management. The authors show that the majority
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of the articles analysed have their environmental focus on reducing, mostly resorting to
approaches of either simulation or exact programming methods. Lv and Sun [27] propose
a bi-objective robust optimization focused on carbon emissions and total system cost,
by changing routing decisions. Vu and Ko [28] optimize a single-objective problem, which
weighs different costs, including greenhouse gas emissions, and considers cold storage on a
trans-shipment problem. Zhou et al. [29] minimize a single objective comprised of weighed
factors that include CO2 emissions and holding costs, by optimizing a set of binary routing
variables and order quantities. Mishra et al. [30] present an optimal replenishment strategy,
focused on a single-objective optimization with environmental emissions reduction and
holding cost as components of their objective.

With the surge of big data, an increasing number of optimization strategies with
a data-driven component have appeared. This trend has also been seen in inventory
management. Beutel and Minner [31] focus their work on safety stock under causal
demand forecast. A single objective is optimized which includes holding and shortage
costs, by balancing inventory levels and satisfied demands. The aforementioned work
by Lv and Sun [27] is focused on robust optimization, which captures the multi-period
uncertain production demand.

Many publications on inventory management consider multiple objectives. To simplify
the designation, as the definition is not consensual, in this work, an optimization with two
objectives is classified as bi-objective optimization; three or more objectives are considered
many-objective optimization—the main difference being that representation of the Pareto
front is possible (with sufficient clarity) for only two objectives. The previously stated
work by Lv and Sun [27] is an example of a bi-objective optimization approach, but there
are additional instances. Sarwar et al. [32] present a bi-objective inventory control system,
focused on minimizing the cost of inventory and carbon emissions. Tsai and Chen [33]
present a many-objective approach to inventory optimization, considering three objectives,
total inventory cost, average inventory level, frequency of inventory shortage, by changing
the reorder point and order quantity.

Besides the publications described here, additional state-of-the-art research was consid-
ered. Table 1 shows the classification of all articles considered in terms of how many objectives
there were, what the decision variables were, what the objectives were, what storage types
were considered and whether or not the work featured any data-driven components. These
publications are compared with the proposed approach in the following subsection.

1.2. Proposed Approach

This article sets out to answer the previously introduced research question through
the optimization of the ideal stock at the warehouse of a company, considered a multi-
layered warehouse system with regular warehousing, storage tanks, and cold storage.
It brings novelty as the under-researched topic of ideal stock is addressed through a
many-objective optimization problem, considering the risk of shortage, holding costs,
and sustainability, through energy consumption. This combination was not found in
any published research. In contrast to safety stock-based strategies, the optimization
of the ideal stock offers a more resilient alternative, with the capacity of being focused
on the overarching goal of optimizing output, instead of purely offering a safety level.
Furthermore, different storage locations are considered for the stocks to be optimized,
each with their respective energy consumption. This strategy and the energy consumption
modelling is also novel. It is modelled uniquely for each type of storage location, heavily
influenced by the works conducted by Sabegh and Bingham [34], Zavvar Sabegh and
Bingham [35], Wolisz et al. [36], Lewczuk et al. [37]. Finally, the shortage risk is modelled
through a novel, dimensionless approach, comprised of three components—a risk of
immediate shortage, shortage considering one standard deviation from the suppliers’ lead
time, and a general measure of capacity to fulfil material requirements.
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The research is focused on many-objective optimization due to its role in the industry,
where decision-makers are not substituted, but rather, their work is facilitated. This comes
from the fact that the optimization does not output a single solution but rather a series
of optimal solutions. Sustainability can also have a bigger role, as profit does not have to
be the only objective any longer—while profit tends to be the biggest focus of companies,
adding a sustainability objective in a problem may skew the decision-making process, if the
results show that some solutions may have considerable improvements in sustainability at
a small cost in profit. Bringing forward these scenarios and effectively improving decision-
makers’ visibility into possible decision strategies has extensive advantages. Not only
are they cost-effective analyses, as cost is always an objective, but they also contribute to
smart planning, energy efficiency, and overall environmentally friendly logistics systems.
Furthermore, this approach contributes to energy management in manufacturing execution
systems (MES), as stock management is a central aspect of it.

Table 1. Classification of inventory management state-of-the-art research regarding the type of opti-
mization used, the decision variables considered, whether or not holding, shortage, and sustainability
are considered objectives; whether or not cold storage, general warehousing, or tanks are addressed
and modelled; and whether or not the approach has any data-driven component. Publications are
ordered according to publication date (older publications first). Publications classified as single-
objective approaches but with multiple objectives simply mean that those objectives are considered
in the objective function, e.g., by adding holding and shortage costs.

Article Optimization Decision Objective Storage Type Data-
Type Variables Holding Shortage Sustainability Cold Storage Warehouse Tanks Driven

Daniel and Rajendran [19] Bi Installation base-stock levels X X X
Tsou [38] Many Order size and safety factor X X X

Liao et al. [39] Many Order quantities X X

Beutel and Minner [31] Single Inventory levels, satisfied
demands X X X X

Bouchery et al. [40] Bi Batch quantity and binary
decision X X X

Tsai and Chen [33] Many Reorder point and order
quantity X X X

Mishra et al. [30] Single

Cycle time, selling price,
preservation and environmental
emission cost, ordering cost per

cycle and per order

X X X

Sarwar et al. [32] Bi Order quantity X X X X

Singh et al. [41] Single Cycle length, credit period,
production rate X X X

Sepehri et al. [42] Single
Production run time, selling
price, and two investment

components
X X X

Lv and Sun [27] Bi Binary routing decisions X X X X
Vu and Ko [28] Single Routing decisions X X

Zhou et al. [29] Single Routing decisions and order
quantities X X X

Proposed Approach Many Stored quantities X X X X X X X

The results from Table 1 show that the proposed approach tackles a not very explored
problem. Regarding the optimization type, six works considered a single objective, four
considered two objectives, and three considered more than two (specifically, they all con-
sidered three objectives). The proposed approach is initially formulated as a three-objective
problem but is relaxed into a five-objective optimization problem. The advantages of many-
objective optimization problems have been addressed. Regarding the objectives considered,
it can be seen that only a single publication simultaneously addresses holding, shortage,
and sustainability. Unsurprisingly for inventory management problems, all publications
consider the holding cost, and many (8 out of 13) consider a sustainability component—
interestingly, only the older publication disregards sustainability. Only five publications
consider shortage costs, with most not allowing for shortage. The least explored component
in inventory management regards storage type. Indeed, most publications simply disregard
this component—in these cases, articles were classified as regarding general warehouses.
The proposed approach gives a considerable focus on the storage type and considers three
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different types, as the implication in terms of energy consumptions changes drastically.
Finally, not many publications have data-driven considerations—however, with the advent
of big data, it becomes easier and more necessary to include data as a driving aspect of
optimization problems.

This work is also within the scope of the advent Industry 5.0, as the pillars of this
new evolution of industrial technology are based on sustainability, human centricity, and
resilience [43]. To this end, this research is greatly centred on the pillars of Industry
5.0: human-centric, as the solution outputted by the many-objective optimization model
requires a human decision-maker with field expertise; sustainable, as one of the objectives
is the reduction in energy consumption; resilient, as the risk of shortage is also minimized,
and the optimization is data-driven, based on the production schedule of the company.

This study was inspired by the pharmaceutical industry. However, the methodology
detailed ahead is perfectly applicable to any other industries with dynamic production
schedules, as the balancing act of storing raw materials is a complex process that has
to take into account many considerations. In this problem, a single warehouse, a single
cold storage, and multiple tanks were considered; other industries may feature a different
configuration of storage locations. Some may not require, e.g., cold storage, depending on
the industry. These changes should be easily implemented as there is large flexibility to
adapt to different companies.

2. Mathematical Formulation

As stated in the introduction, the objectives used for the optimization problem were
the energy consumption, holding cost, and risk of shortage. These objectives were selected
based on previous work on the topic (namely, the components of total holding cost and
total shortage cost presented in [19]), and sustainability considerations required by the
pillars of Industry 5.0. The specific objectives considered are shown below.

• E ≡ energy consumption : total daily consumption of energy derived from acclimatiz-
ing the raw materials.

• CHold ≡ holding cost: total daily cost of holding the stocks at the different storage locations.
• RSh ≡ risk of shortage: measure of risk of not having sufficient raw materials for pro-

duction, given the suppliers’ lead time and the near-future raw material requirements.

While the holding costs are linearly dependant on the occupation degree of each
storage location, the formulation of the energy consumption and risk of shortage are more
complex and requires novel implementations with the specific conditions of the problem in
mind. The main rationale for these changes stems from the opportunities provided by a
many-objective formulation—as the objectives are independent of each other, they do not
have to be in the same units, nor be weighed to evaluate their impact on a single solution.
This justifies, for instance, why the risk of shortage is directly measured in lead times of the
materials and their standard deviations.

2.1. Theoretical Background

To correctly formulate the objectives of the problem, a series of theorems supported
by the existing literature can be used. Out of the three objectives, modelling the energy
consumption is the most complex component. Each type of storage location has a different
model for the energy consumption, as it varies in magnitude and dynamics. The en-
ergy consumed in the cold storage is the more nuanced component. Theorem 1 and
its corresponding proof define the energy consumption dynamics of a refrigerator unit,
with changing degrees of fullness and hysteresis bands.

Theorem 1. The energy consumption of a refrigerator varies depending on its degree of fullness
and the allowed hysteresis band.

Proof of Theorem 1. According to Sabegh and Bingham [34] and Zavvar Sabegh and
Bingham [35], a refrigerator filled with products has a higher specific heat capacity than
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a empty one. The authors present experimental data showing that an empty refrigerator
increases its energy consumption with the increase in the hysteresis band, while one at 40%
useful capacity reduces its energy consumption with the increase in the hysteresis band.

Consider Theorems 2 and 3. These theorems regard the energy consumption in
the warehouse.

Theorem 2. The total energy consumption of a warehouse is calculated as the sum of the energy
consumptions for the transportation of equipment, building heating and cooling, ventilation, lighting,
IT networks, and other energy consumptions.

Proof of Theorem 2. According to the practical case study by Lewczuk et al. [37], the to-
tal energy consumption is the combination of the stated components, regardless of the
warehouse technology and level of automation.

Theorem 3. When subjected to heating at the same power output, an empty room increases its
temperature faster than a furnished one but also cools down faster.

Proof of Theorem 3. The emptier a warehouse is, the larger the ratio of air in it; the fuller
a warehouse is, the more solid materials there are, and the ratio of air to contents decreases.
The mechanisms of heat transfer to the air and to solid objects are different, and their
capacity to retain and emit heat also differs. The thermal conductivity of air is smaller than
most solid and liquid materials, meaning that it has a lower capacity to exchange heat from
and to the environment. According to the experimental work by Wolisz et al. [36], an empty
room subjected to the same heating power of a furnished one increases the temperature
faster than a furnished one. The authors performed a test on an empty and furnished room,
where the room was heated for 4 h (starting at 21 ◦C), and then allowed to cool for 4 more
hours. The empty room increased to 23.3 ◦C and then reduced to 20.4 ◦C; the furnished room
increased to 22.7 ◦C and then reduced to 20.7 ◦C. This experiment proves Theorem 3.

Finally, a theorem regarding how the holding costs are modelled according to the
storage degree of fullness can be seen in Theorem 4.

Theorem 4. The holding costs of a warehouse are proportional to its degree of fullness.

Proof of Theorem 4. As stated by Harrison et al. [44], “holding costs are continuously incurred
at a rate proportional to the storage level”.

To mathematically formulate each of the objectives, additional notation must be
introduced and defined. Table 2 presents the variables required for this problem.

Table 2. Required variables for the problem formulation. All units are presented within square
brackets. Variables without unit are dimensionless.

Variable Description

General Variables
Xi Total stock of product i, [IU] [ni × 1]
Ai,k Binary matrix of association of product i to storage location k [ni × nk]
Sk Total quantities in storage location k, [IU].
Limk Limits for storage location k, [IU].
Hk Holding cost at storage k, per inventory unit of product, [CU/IU].
ni Total number of products.
nk Total number of storage locations.
nkt Total number of tanks.
nt Total number of days considered for the future material requirements.
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Table 2. Cont.

Variable Description

Cold Storage Variables
ETcold Correspondence of which storage location k is a cold storage [nk × 1]
Scold Total stock at the cold storage location, [IU] [1× 1]
α1 Individual freezer unit capacity, [IU]
α2 Ratio of energy consumption increase in freezer units, with degree of fullness
α3 Nominal daily energy consumption of each freezer unit, [EU]
α4 Mid-point of the sigmoid energy consumption increase
α5 Width of the sigmoid energy consumption increase
Warehouse Variables
ETwarehouse Correspondence of which storage location k is a warehouse [nk × 1]
Swarehouse Total stock in the warehouse, [IU] [1× 1]
FCwarehouse Fixed energy consumption in the warehouse, [EU] [1× 1]
β1 Energy consumption per unit of material in the warehouse, consumed by transportation of stock, [EU/IU] [1× 1]
β2 Base energy consumed by HVAC in the warehouse, considering an empty warehouse, [EU] [1× 1]
β3 Linear decay rate of HVAC energy consumption in the warehouse, per unit of material, [EU/IU] [1× 1]
Tank Variables
ETtank Correspondence of which storage location k is a tank, with multiple tanks allowed [nk × nkt]
Stank Total stock in each tank, [IU] [1× nkt]
γ Energy consumption per tank, considering the tank at full capacity, [EU] [nkt × 1]
Stock Shortage Calculation Variables
Li Average lead time of purchasing product i, [day].
σi Standard deviation of the lead time of purchasing product i, [day].
Ni,t Requirements of material i for the t-th day after the problem, [IU].
Bi,t Stock of material i on day t after consumption has been subtracted and without stock replenishment. The values only

contain the sign of the quantities, i.e., whether they are negative, null, or positive quantities.
ShDi Day when the base stock is exhausted. Takes the value nk + 1 for materials whose base stock is never exhausted.
Sh1i Shortage value of type 1 for each material.
Sh2i Shortage value of type 2 for each material.
Sh3i Shortage value of type 3 for each material.
SW1 Weight of shortage type 1.
SW2 Weight of shortage type 2.
SW3 Weight of shortage type 3.

The decision variables for this problem are the total stocks of each product, i.e., Xi.
These establish the ideal stocks for a given day, based on the near future conditions. Index
i corresponds to the material, ranging from 1 to ni; index k corresponds to the storage
location, ranging from 1 to nk; index t corresponds to the day, ranging from 1 to nt. ni,cold,
ni,warehouse, and ni,tanks correspond to the number of products in the cold storage, warehouse,
and tanks, respectively, verifying the condition ni,cold + ni,warehouse + ni,tanks = ni.

2.2. Assumptions

A number of assumptions were considered for this problem’s formulation.

• Three types of storage location were considered: warehouse, cold storage, and tanks.
Each type could be in different locations and had different holding costs.

• The formulation considered a single warehouse and cold storage, but multiple tanks
were allowed.

• Lead time for transportation of stock between storage locations was considered to
be negligible.

• Holding cost was assumed to be linear with the amount of stock.
• While there was only one cold storage location, it contained multiple freezer units.
• For the calculation of the risk of shortage, a horizon of 60 days was considered.
• Filling a storage location more than its maximum capacity was not allowed.
• The problem was considered deterministic.
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• All quantities were considered to be in generic units. Materials were in inventory
units, [IU], costs were in cost units, [CU], and energy were in energy units, [EU].

• The total energy consumption of a tank was linearly proportional to the rate of fullness
of the tank.

Additionally, a few assumptions related to the proposed theorems can be presented.

• The energy consumption dynamics with the degree of fullness and allowed hystere-
sis band were assumed to be identical for industrial freezers as the ones proposed
in [34,35] and presented in Theorem 1.

• The considered industrial freezers could automatically (or manually) adapt their
hysteresis band according to the usage level, with a maximum allowed hysteresis of
2 ◦C—this means that according to Theorem 1, by changing the hysteresis band, the
energy consumption could be kept the same with increasing occupation.

• The maximum allowed hysteresis of 2 ◦C allowed a constant energy consumption up
to a utilization of 40%—after that, the energy consumption started to increase from
nominal values. This increase stagnated after a certain capacity was reached.

• The increase in energy consumption was modelled as a sigmoid function, approxi-
mately constant at lower values, then increasing when the maximum hysteresis band
was reached, and returning to constant values.

• The warehouse energy consumption components of transportation of equipment,
building heating and cooling, and ventilation were considered to be dependent on
the degree of fullness of the warehouse. The remaining components of lighting, IT
networks, and other energy consumptions were considered to be fixed values.

• The energy consumption of the warehouse from the transportation of equipment was
modelled linearly with the degree of fullness of the warehouse—more occupation
required more movement of stock.

• Considering that a warehouse is required to be kept at a specific temperature, and ig-
noring the transient period required to increase the warehouse contents’ inner tem-
perature up to the environment temperature, the greater the ratio of fullness of the
warehouse, the lower its non-transient energy consumption, as proved in Theorem 3.
This means that the warehouse’s energy consumption elements of heating, cooling,
and ventilation were modelled as inversely proportional to its degree of fullness.

2.3. Objectives Formulation

The calculation of the energy consumption was performed separately for each type of
storage location, cold storage, warehouse, or tank. The general formulation is as shown in
Equation (1).

E = Ecold + Ewarehouse + Etank [EU] (1)

2.3.1. Energy Consumption

The energy consumption of freezer units followed Theorem 1 and the assumptions
previously identified. Figure 1 shows an example of the evolution of the energy consump-
tion with the amount of stock. The example considered 3 individual freezer units, and the
second freezer was only used after the first was completely full.

The energy consumption of the cold storage Ecold can then be formulated as shown
in Equation (2). Note that the square brackets with no upper horizontal segments corre-
spond to the floor operator, while the square brackets with no lower horizontal segments
correspond to the ceiling operator.

Ecold =




α2

1 + exp
(
−
(

Scold − 1
α1

−
⌊

Scold − 1
α1

⌋)
· α5

α4
+ α5

) +

⌈
Scold
α1

⌉

 · α3 [EU] (2)
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Figure 1. Example of energy consumption evolution with the stock.

Variable Scold, the total stock in the cold storage, can be calculated as shown in
Equation (3).

Scold =
(

X[ni×1]
)T
·
(

A[ni×nk ] · ET[nk×1]
cold

)
[IU] (3)

Regarding the energy consumption of the warehouse, Ewarehouse, Theorems 2 and 3
were considered, along with the assumptions provided. The formulation of the energy
consumption of the warehouse is shown in expressions (4) and (5).

Ewarehouse = FCwarehouse + EWHtransport + EWHHVAC [EU] (4)

{
EWHtransport = Swarehouse · β1 [EU]

EWHHVAC = β2 − Swarehouse · β3 [EU]
(5)

Variable Swarehouse, the total stock in the warehouse, can be calculated as shown in
Equation (6).

Swarehouse =
(

X[ni×1]
)T
·
(

A[ni×nk ] · ET[nk×1]
warehouse

)
[IU] (6)

Tanks are generally simpler in terms of their energy consumption. For these reasons,
the total energy consumption of the tanks is linearly proportional to the rate of fullness of
the tank.

Etank =
nkt

∑
kt=1

γkt · Stankkt

Limkt
[EU] (7)

The stock on each tank can be calculated as shown in expression (8). Contrarily to the
stocks in the warehouse and cold storage, Stank has a size of [1× nkt], that is, a stock for
each tank.

Stank =
(

X[ni×1]
)T
·
(

A[ni×nk ] · ET[nk×nkt ]
tank

)
[IU] (8)

2.3.2. Holding Cost

The calculation of the holding costs required the holding costs per inventory unit for
each storage location (Hk) and the conclusion from Theorem 4 showing that the holding
costs are proportional to storage level. This calculation was performed as shown in expres-
sion (9). Note that the cost per unit of material in each storage location does not necessarily
have to have a monetary value. If, e.g., storage location 1 has a cost per unit of 1 and storage
location 2 has a cost of 0.9, this means that storage location 2 has 90% of the cost of storage
location 1. Since this optimization was conducted in a many-objective way, the different
objective values did not have to be comparable in absolute terms. For a correct analysis,
the total stock in each storage location, Sk, was divided by the limit of each storage location,
to convert the value into a percentage of fill of each storage location.

CHold =
nk

∑
k=1

(
Sk · Hk
Limk

)
[CU] (9)
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The total stock in each storage location was calculated as shown in expression (10)

Sk =
ni

∑
i=1

(Xi · Aik) [IU] (10)

While it may seem that the holding costs and the energy consumption objectives may
be similar and evolve in a similar way, it does not necessarily take place that way, e.g., a tank
without substantial energy consumption per inventory unit of stock may have a very high
holding cost, for business-related reasons, such as concurrency with other raw materials.

2.3.3. Risk of Shortage

One of the major advantages of many-objective optimization is that objectives do not
have to match their units, as they are compared separately. This means that there is no
effort to obtain a monetary cost for shortage, and the risk of shortage can be calculated
directly based on the lead time from the suppliers and given the production schedule of
how soon a given material is completely consumed.

The final objective evaluated the risk of the optimized stocks not satisfying the pro-
duction requirements. This considered the daily material requirements for an horizon of
60 days (Ni,t), the average lead time of the suppliers of each material (Li), and the standard
deviation of the lead time of the materials (σi). The first step was the calculation of the
evolution of the daily stocks Bi,t, based on the optimized stocks Xi and on the daily material
requirements Ni,t. This is shown in expression (11).

Bi, t =

{
Xi − Ni, t t = 1
Bi, t−1 − Ni, t t > 1

(11)

This expression simply establishes whether the stock of a material on a given day
is positive or negative. The next stage was the calculation of the shortage day of each
material ShDi, as shown in expression (12). The function sign was used to collapse the
value from Bi,t into either 1 or −1. For consistency of the expression, if a value of Bi,t was
0, the function sign returned the value 1, while the original sign function would return
the value 0; this was to ensure that the expression below worked properly if such a case
took place.

ShDi = nt −
[

nt

2
−
(

nt

∑
t=1

sign(Bi,t)

2

)
− 1

]
(12)

After obtaining on which days the stock of each material was exhausted, the calculation
of the risk was performed. Three types of risk were considered:

• The first and gravest type occurred when the shortage day was closer to the day of the
optimization than the materials’ mean lead time. This means that in average conditions,
the stock would not be able to be replenished and there would be material shortage.

• The second type of shortage took place when the shortage day was closer to the day
of the optimization than the materials’ average lead time with one standard deviation.

• The third type of shortage was inversely proportional to the shortage day of each mate-
rial without restocking; the further away the day when a material ran out, the smaller
the risk.

If a material had a shortage of the first type, the other two shortages were null; if the
material had the second shortage type, the third type was null. This means that for each
material, only the gravest type of shortage was considered. The calculation of the 3 types
of shortage is shown in expressions (13)–(15).

Sh1i = max(Li − ShDi, 0) (13)
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Sh2i =

{
0, Sh1i > 0
max(Li + σi − ShDi, 0), Sh1i = 0

(14)

Sh3i =

{
0, Sh1i > 0∨ Sh2i > 0∨ ShDi = nt + 1
[−max(−(Li + σi − ShDi), 0) + nt], otherwise

(15)

Finally, the shortage risk was calculated. This calculation weighed the types of risk
differently. Generally speaking, the first type of risk should be weighted larger than the
second, and the second larger than the third, to prioritize their reduction in the optimization.
The calculation of the shortage risk was performed has shown in expression (16).

RSh =
ni

∑
i=1

(Sh1i · SW1 + Sh2i · SW2 + Sh3i · SW3) (16)

2.4. Constraints

The only constraint applied to this problem, besides the non-negativity constraint of
the decision variables, was the total stock per storage location not exceeding its capacity.
This is the formulation shown in Equation (17).

Sk ≤ Limk [IU], ∀k∈{1,··· ,nk} (17)

The complete formulation of the problem is as shown in expression (18).

min
X

F1 = E [EU]

F2 = CHold [CU]
F3 = RSh

s.t. X ≥ 0
Sk ≤ Limk [IU], ∀k∈{1,··· ,nk}

(18)

3. Optimization Approach

The formulated problem is a nonlinear, convex, constrained, many-objective problem.
This is a very complex problem that requires the usage of metaheuristic optimization algo-
rithms. Considering this, the algorithm used for the optimization was the non-dominated
sorting genetic algorithm NSGA-III [45]. This algorithm is an evolutionary algorithm
suited to many-objective problems. While the NSGA-II algorithm could also be applied to
many-objective problems, some researchers have shown the advantages of using NSGA-III.
Ishibuchi et al. [46] presented a plethora of benchmarks tested on both algorithms; NSGA-
III outperformed NSGA-II on all problems except knapsack ones. Ciro et al. [47] showed
that NSGA-III obtained better results on an open shop-scheduling problem with resource
constraints. While there are many ways of dealing with constraints, the implementation
used for this approach was a simple feasibility-first approach that did not compute the
objective values for unfeasible solutions but rather assigned them the value of the worst
objective value out of the entire population plus the constraint violation [48]. Furthermore,
all variables and solutions were encoded as real numbers, and box constraints were in
place on all variables to disable negative quantities and exploding quantities. To this end,
the box constraints required decision variables to be greater or equal to 0 and smaller than
the capacity of their storage location (e.g., a product in cold storage was allowed to have
values as high as the capacity of the entire cold storage). The formulation described was
implemented in Python, specifically using the Pymoo library [49].

Table 3 shows the values selected for each parameter used for the results’ analysis.
Refer back to Table 2 for a further description of the parameters.
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Table 3. Values used for the aforementioned formulation. Check the parameters’ descriptions in
Table 2. The column value shows either the value of the parameter or a range of values. Parameters
Lim1 and H1 regard cold storage; Lim2 and H2 regard the warehouse; Lim3:nk and H3:nk regard
the tanks.

Parameter Value

ni,cold 50
ni,warehouse 250

ni,tanks 24
nt 60
α1 50,000 [IU]
α2 40%
α3 135 [EU]
α4 0.7
α5 8

FCwarehouse 100 [EU]
β1 0.0004 [EU/IU]
β2 250 [EU]
β3 0.00003 [EU/IU]
γ [30, 90] [EU]

SW1 100
SW2 10
SW3 0.1
Lim1 2.5 × 106 [IU]
Lim2 1.25 × 107 [IU]

Lim3:nk [50, 150] [IU]
H1 1 [CU/IU]
H2 0.5 [CU/IU]

H3:nk [0.3, 0.7] [CU/IU]
Li [5, 20] [day]
σi [1, 20] [day]

Table 4 shows the parameters used for the three components that control the optimiza-
tion algorithm: the determination of the reference directions; the NSGA-III algorithm’s
parameters themselves, and the parameters of the termination criterion.

Table 4. Parameters used for the determination of the reference directions, NSGA-III algorithm,
and termination criterion. Duplicate individuals are eliminated.

Parameter Value

Reference direction method Das–Dennis
Reference direction dimensions 3

Reference direction number of partitions 12
Population size 200
Initial sampling Random

Selection method Tournament selection
Selection pressure 2
Crossover method Simulated binary crossover

Crossover Eta 30
Number of offspring 2

Mutation method Polynomial mutation
Mutation Eta 20

Termination tolerance 0.1
Generation window 30

Termination criterion calculation generation
period 10

Maximum number of generations 2000
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After obtaining the results from the optimization, if the number of solutions was suffi-
ciently large that the advantages and trade-offs of each solution were not easily analysed,
a filter was applied for each objective. The algorithm design is shown in Algorithm 1,
which details in pseudocode the proposed optimization process, considering the NSGA-III
optimization algorithm and the parameters found in Table 4.

Algorithm 1 Ideal stock many-objective optimization

1: procedure IDEAL STOCK PROBLEM(X, Pars)
2: Calculate Scold (X) . Equation (3)
3: Calculate Swarehouse (X) . Equation (6)
4: Calculate Stank (X) . Equation (8)
5: Calculate Ecold, Ewarehouse, and Etank . Equations (2), (4) and (7)
6: Calculate E . Equation (1)
7: Calculate S (X) . Equation (10)
8: Calculate Chold . Equation (9)
9: Calculate B (X) . Equation (11)

10: Calculate ShD . Equation (12)
11: Calculate Sh1, Sh2, and Sh3 . Equations (13)–(15)
12: Calculate RSh . Equation (16)
13: Calculate constraint violation Sk − Limk . Equation (17)
14: Introduce the parameters of the formulation problem into the ideal stock problem

function (Table 3)
15: Obtain the reference direction using the Das–Dennis method. Consider the number of

dimensions of the problem and an adequate number of partitions
16: Define the optimization’s termination criteria
17: while Termination criteria not met do
18: Run the optimization
19: while Number of solutions is large do
20: Apply a filter to objective i
21: Store the non-dominant solutions that adhere to the filter

4. Results’ Analysis

The optimization was run for the specified conditions. For consistency, this optimiza-
tion was repeated 10 times. Regarding the algorithm analysis, the 10 optimizations took
an average of 114.2 s, varying from 78.7 s to 128.9 s. As previously mentioned, duplicate
individuals were eliminated, meaning that each of the 10 optimizations achieved a different
final population; this varied from 19 to 30 members, with an average size of 26.7. While
the optimization was run for a maximum of 2000 iterations, the implemented termination
criterion caused the optimization to end beforehand. The optimization took between 1370
and 2000 iterations, with an average of 1874 iterations.

Figure 2 shows a parallel plot of the optimization solutions for the first test run.
Additionally, Figure 3 shows the Pareto fronts between the three objectives. To reduce the
clutter, only 3 out of the 10 optimization results are shown, randomly selected.

The first conclusion that can be drawn from the plots is the nicely shaped Pareto
front between the energy consumption and the risk, which can also be seen by the inverse
behaviour of the results seen in the parallel plot. This simply means that generally, a
reduction in energy consumption (caused by a reduction in the stock kept) leads to a higher
shortage risk. The slope of the Pareto front between these two objectives also indicates
that a small relative increase in energy consumption leads to a substantial reduction in
shortage risk.
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Energy [EU] Holding [CU] Risk

Figure 2. Parallel plot of the many-objective optimization solutions. Each line corresponds to an
optimal solution. The colour scale supplied regards the first objective, the energy consumption,
simply to aid in identifying the solutions across the remaining objectives.
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Figure 3. Pareto fronts between each objective for 3 distinct optimization results, out of the
10 repetitions.

The holding costs had a slightly different relation to the two other objectives. They
had an approximate proportionality with the energy consumption. This is an expected
behaviour, as both objectives were directly proportional to the amount of stock in the
storage locations. However, the relation between the two was not always direct, since the
holding costs per storage location were not necessarily proportional to the energy costs
per storage location. This simply means that a storage location may have a large energy
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consumption but a small holding cost, as is the case with the cold storage in this setting.
From Figure 2, the general rule is that the more similar the slope between the energy
consumption and holding costs between two optimization solutions, the more proportional
the stocks considered. Solutions with contrasting slopes tended to have non-proportional
stocks of each type of storage location. An example of this can be seen in the two solutions
shown in Figure 2 as the grey lines. For clarity, these solutions were indexed as solution 4
(the one with the largest holding cost) and solution 14.

Table 5 shows that the stock mix was indeed very different between the two solutions,
even though these shared similar energy consumption and shortage risk values. The overar-
ching conclusion that can be drawn from this comparison is that for a small reduction in the
shortage risk, without substantially changing the level of energy consumption, the stocks
would have to be increased, especially in the tanks, which tripled from scenario 14 to 4.

Table 5. Total inventory units at each storage location (tanks’ inventory levels are aggregated) for
each of the optimal solutions tested.

Storage Solution Index
Location 4 14

Cold 7.67 × 105 7.55 × 105

Tanks 6.93 × 101 2.19 × 101

Warehouse 7.37 × 106 7.03 × 106

4.1. Results’ Evolution

As previously stated, the daily product requirements were collected for 90 days, while
the optimization only considered 60. This means that the ideal stocks could be calculated
for 30 days to observe the temporal evolution of the ideal stocks. The optimizations ran for
each of the rolling forward periods and were run 10 times each. Figure 4 shows the 30 Pareto
fronts of risk against energy. It is important to mention that for each day, only one version
is shown: the one whose median values of the three objectives had the smallest Euclidean
distance to the origin. Note that the Pareto curves shown are smoothed approximations
to reduce the visual clutter and allow an easier analysis.
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Figure 4. Approximated Pareto fronts for the optimizations with the lowest median objectives of each
day of the rolling-forward schedule. The Pareto front’s lines are smoothed for easier comprehension.
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The figure shows that the Pareto fronts at the initial days tended to be slightly worst
than the average (in regards to their distance to the origin), worsening their values until the
10th day. The Pareto fronts then moved closer to the origin, with the closest results around
the 20th day. Finally, the fronts degraded slightly, ending on the 30th day slightly closer to
the origin than on the first day. The distance to the origin broadly indicated the material
requirements—Pareto fronts closer to the origin tended to regard production schedules
with larger material requirements.

While there were some variations along the month, the stocks did not change exten-
sively. This was a desirable behaviour, as the changes in the stock requirements from one
day to the next were not very substantial—there were only changes in one day out of the
60 days considered, since when t changed to t + 1, the material requirements changed from
Ni,t:t+60 to Ni,t+1:t+61. Nevertheless, the figure shows that the Pareto fronts were further
from the origin in the initial days, then improved until around t = 20 and ended at a
reasonable distance. A smaller distance of one front to the origin meant that both objectives
had better values than the one farther from the origin—this means that the problem’s
conditions changed sufficiently between those two scenarios, and the stock requirements
in the front farther from the original were larger than the ones from the closer front.

4.2. Shortage Risk Segregation

The final analysis focused on separating the shortage risk formulation into its three
components and using them independently when running the optimization. The formula-
tion of this problem became as shown in expression (19). In terms of algorithm, the only
change required in Algorithm 1 was to disregard row 12.

min
X

F1 = E [EU]

F2 = CHold [CU]
F3 = ∑ Sh1i
F4 = ∑ Sh2i
F5 = ∑ Sh3i

s.t. X ≥ 0
Sk ≤ Limk [IU], ∀k∈{1,··· ,nk}

(19)

The only alterations to the parameters presented in Table 4 were an increase in the
number of reference direction dimensions from three to five and an increase in the popu-
lation size from 200 to 2000. The optimization was then run 10 times to allow for a better
representation of the solution space. As for the algorithm analysis, the average execution
time was 453.4 s (358.5 s–524.4 s), the average final population size was 453.5 (410–514), and
the average total number of iterations was 329 (270–390). The parallel plot of the complete
solution space (including the unique solutions from the 10 optimization runs) is shown in
Figure 5.

The parallel plot is a very complex display of information, showing an aggregation
of many varied optimal solutions, each prioritizing a different set of objectives. Since the
colour coding simply scales the energy consumption of the solution it regards, so as to
allow for better tracking of solution along the other objectives, it can be seen that the first
component of the risk is the one which is most closely related to the energy consumption,
in an inverse proportion. This means that the higher the energy consumption, the lower
the risk of type 1—since the larger the total stock the higher the energy consumption.

A many-objective optimization such as the one presented can be extremely useful
for decision-makers to make their decision in a more informed way. A decision could
determine that only solutions with a type 1 risk smaller than 400 would be acceptable.
The result to this requirement would be the solutions shown in Figure 6.

111



Algorithms 2024, 17, 271

Figure 5. Parallel plot of the separated risk optimization for the complete solution space.

Figure 6. Parallel plot of the separated risk optimization for the complete solution space, only
considering solutions with a risk of type 1 smaller than 400.

After obtaining this subset of parallel plots, the decision-maker could specify that only
solutions with a holding cost higher than 4.8 are acceptable. The results would be as shown
in Figure 7.

As can be seen, sequentially combining different requirements for the objectives allows the
decision-makers to arrive at a restricted set of solutions that best fit the company’s requirements.

112



Algorithms 2024, 17, 271

Figure 7. Parallel plot of the separated risk optimization for the complete solution space, only
considering solutions with a risk of type 1 smaller than 400 and a holding cost larger than 4.8.

5. Conclusions

This research tackled a very important issue—stock management—using a methodol-
ogy that complemented the decision-making process of stakeholders, rather than substitut-
ing it, with greater focus on the energy consumption of the solutions, in line with current
environmental awareness.

The study revealed a diverse array of promising solutions, effectively balancing energy
consumption, holding costs, and shortage risk. This many-objective optimization approach
highlighted an inherent trade-off: minimizing one objective inevitably led to increases in
others. This places the decision-maker in a pivotal role, tasked with selecting the solution
that best aligns with the company’s broader strategic goals. These findings also echo the
concept of Pareto optimality, a state where it is impossible to improve one objective without
compromising another. In a business context, this often translates into making strategic
choices regarding resource allocation—for instance, optimizing energy consumption might
necessitate higher holding costs. While this study’s unique modelling and objectives
preclude a direct comparison with the existing literature, it underscores the importance
of Pareto efficient solutions in navigating complex, multi-faceted challenges like energy
management and inventory control. The absence of a one-size-fits-all answer reinforces the
need for bespoke strategies that reflect individual company priorities and risk tolerance.

The inclusion of energy consumption in the decision-making process can at first glance
worsen the results—more energy efficient solutions tend to have a larger risk of shortage.
However, brining awareness into this dimension can be useful in several ways. First of
all, in scenarios were an improvement in energy consumption is achieved at a small cost
to the other objectives, it provides a justification for decision-makers to select the said
solution. Secondly, while choosing low-energy-consumption strategies may lead to larger
risk of shortage, and consequently larger costs to the company, a focus on sustainability
can provide marketing opportunities, as some industries benefit greatly from a stronger
adherence to sustainability principles. According to Unal and Tascioglu [50], sustainability
initiatives “help companies establish a strong relationship with consumers, [. . . ] which in turn
creates a higher level of purchase intent and reduced sensitivity to price premiums”.
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Logistics systems are pivotal components in companies and are often overlooked
when it comes to the application of optimization and artificial intelligence algorithms,
often applied solely to the shop-floor operations. However, the application of energy-
efficient and environmentally friendly planning strategies in logistics systems, such as
the present optimization of the ideal stock at storage locations, can improve visibility
into the objectives considered and provide better results than fixed stock strategies, while
being cost-effective analyses. Additionally, manufacturing execution systems (MES) often
overlook the dimension of energy management; the proposed approach tackles both issues:
a central issue of MES—stock optimization—with energy consumption considerations.

While this study demonstrates the effectiveness of many-objective optimization in
balancing competing objectives in warehouse stock management, the model’s focus on a
single warehouse with specific storage types limits its generalizability to more complex
supply chain configurations. Furthermore, the abundance of Pareto optimal solutions
generated by the many-objective optimization model poses a challenge for decision-makers
in selecting the most suitable option, as evidenced in Figure 5. Future research should
prioritize extending the model to encompass multiple warehouses and diverse storage
configurations, while also developing decision support tools or frameworks to facilitate the
interpretation and selection of optimal solutions within a vast solution space. Additionally,
strategies to reduce the number of quasi-redundant solutions and to prioritize those aligned
with specific company strategies could significantly enhance the practicality and decision-
making efficiency of the proposed approach. Finally, additional objectives may be added to
the problem, taking into consideration, e.g., the actual costs of delivering products after
their due date, or buying raw materials from low-lead-time suppliers at a premium.
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Abstract: Technological advancements have improved solar energy generation and reduced the
cost of installing photovoltaic (PV) systems. However, challenges such as low energy-conversion
efficiency and the unpredictability of electricity generation due to shading or climate conditions
persist. Despite decreasing costs, access to solar energy generation technologies remains limited. This
paper proposes a multi-criteria decision support system (MCDSS) for selecting the most suitable
PV set (comprising PV modules, inverters, and batteries) for microgrid installations. The MCDSS
employs two multi-criteria decision-making methods (MCDM) for analysis and decision-making:
AHP and TOPSIS. The system was tested in two case studies: Barreiras, with a global efficiency of
14.4% and an internal rate of return (IRR) of 56.0%, and Curitiba, with a worldwide efficiency of 14.8%
and an IRR of 52.0%. The research provided a framework for assessing and selecting PV sets based on
efficiency, cost, and return on investment. Methodologically, it integrates multiple MCDM techniques,
demonstrating their applicability in renewable energy. Managerially, it offers a practical tool for
decision-makers in the energy sector to enhance the feasibility and attractiveness of microgeneration
projects. This research highlights the potential of MCDSS to improve the efficiency and accessibility
of solar energy generation.

Keywords: photovoltaic sets; multi-criteria decision making; micro solar generation; generation
optimisation

1. Introduction

Solar generation has seen significant development since 2010 and has become a low-
cost source of energy [1]. Solar energy usage has increased mainly because of the drop in
investment costs [2,3]. In this way, the microgeneration market has expanded and grad-
ually attracted more attention, according to the database of the U.S. Energy Information
Administration (EIA), due to the gradual reduction in the cost of photovoltaic (PV) mod-
ules [4]. However, some issues persist with the low efficiency of energy conversion and the
uncertainty of electricity generation due to the adverse effects on the modules when they
are partially or totally shaded [5]. Despite the reduction in the costs of PV equipment, solar
energy generation technologies are not accessible to everyone [1,6].

Recent related works, such as [7–12], have been carried out to increase the energy
efficiency of PV components, such as cooling systems, PV cell materials, PV modules and
inverters. Identifying a low efficiency or total inefficiency in some microgeneration is
possible. This fact occurs when the low-power photovoltaic set is acquired without prior
analysis by a specialist to assess the user’s consumption, the installation location of the
PV set, and the energy generation potential [13]. In addition, some related works [14–16]
explore different methods for real-time statistical analysis and forecasting of factors that
impact end users’ energy and economic performance. However, these studies do not focus
on maximising the performance of PV systems based on detailed data and information
about installation requirements and constraints.
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Although it exists everywhere in the world, solar irradiation has particularities that
vary according to geographical position, such as the average amount of irradiation that
reaches the Earth in one year, cloudiness index, clearness index, temperature, and so on [17].
This gap highlights the need for a more comprehensive approach considering specific
installation conditions to optimise PV system efficiency and effectiveness. Therefore,
multiple variables (climatic and geographical data, technical specifications, economic
factors, regulatory and policy frameworks) must be simultaneously considered while
defining the most suitable PV set (PV modules, inverter and batteries) [18].

This article proposes a multi-criteria decision support system to identify the most
suitable PV set (PV modules, inverter, and batteries) for a microgrid installation, considering
the maximum potential energy generation and global efficiency system as well as minimum
acquisition and installation costs. The main expected contributions of the research presented
in this paper are as follows:

• It improves the PV set selection and application to extract the maximum installed
energy potential and the maximum efficiency of technologies available based on
specific implementation requirements.

• It encourages the use of renewable energy sources, since this tool analyses the available
budget versus implementation costs and energy generation capacity.

• It supports the decision of specialists or not in the PV set selection according to the
implementation requirements.

• The remainder of the paper is structured as follows: Section 2 presents the materials
and methods of the research, including (i) a review to improve the understanding of PV
set definition requirements, (ii) MCDM methods available to support this research and
(iii) the conceptualising of a multi-criteria decision support system for a solar microgener-
ation installation. Section 3 discusses the results of applying the system in two specific
experimental cases. Section 4 discusses the research’s conclusion, main advantages and
limitations, and finally, Section 5 presents the future perspectives for this research.

2. Material and Methods
2.1. Photovoltaic (PV) Set Definitions

A photovoltaic (PV) set comprises multiple devices: PV modules, inverter, batteries, ca-
bling, hardware, and protection devices. From these devices, two are the main components
for the generation of photovoltaic energy: PV modules and inverters.

PV modules convert the solar radiation focused on its surface into heat and electrical
energy [19]. When PV modules are exposed to irradiation, they produce changes in electri-
cal properties, generating a potential difference between their terminals and, consequently,
electrical current when applied to a circuit [20].

Many types of PV modules are made mainly from crystalline or amorphous materials.
The crystalline ones are commonly more expensive than the amorphous ones, but they have
higher efficiencies, especially those of monocrystalline materials [21]. Efficiency mainly
reflects the percentage of electrical power over the total photon power received from the
incident irradiation [22]. Table 1 explores an efficiency comparison among multiple PV cell
types, focusing on composition characteristics such as thin film, rigid film, organic sell, etc.,
and PV efficiency. With commercial cells, there are three different types: monocrystalline
silicon, polycrystalline silicon and thin film.

The solar inverter is the second most crucial piece of equipment for solar energy generation.
Solar inverters or PV inverters are responsible for converting the DC output of a PV solar panel
into a DC or AC that can be fed into a commercial electrical grid (on-grid) or used by a local
electrical network (off-grid). There are two solar inverters: (i) central and (ii) micro-inverter.

• The central inverter is the most common commercially, and its name is derived from
the installation method since it needs two or more PV modules to work correctly. It is
a central and standard part of all modules of the PV system.
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• The micro-inverter is integrated with PV modules due to its small size. Typically, the
PV panels + inverter set is named the AC module. This equipment has two types of
converters in operation to supply energy to the electric network: a CC-DC and a CC-AC.

Table 2 compares inverters based on the technologies used and their respective efficiencies.

Table 1. Comparison of PV cells: technology vs. efficiency.

PV Material Status Efficiency Characteristics

CdTe (Cadmium Telluride) Commercial 7% Thin film on rigid substrates
a-Se:H (Amorphous Silicon) Commercial 5–10% Thin film on rigid substrates
Mono-Si (Monocrystalline Silicon) Commercial 12–18% Rigid cell
Multi-Si (Polycrystalline Silicon) Commercial 11–15% Rigid cell
Ti3C2Tx Research 17% Organic cell
c-Si Special 20% Rigid cell
In2O3:SnO2 Research 24–26% Thin film on rigid substrates
GaAs (Gallium Arsenite) Special 24–28% Thin film on rigid substrates
Multi-junction PV Cell Special 39–46% Thin film on flexible substrates

Source: Based on [23,24].

Table 2. Comparison of solar inverters: technology vs. efficiency.

Author Characteristics Efficiency Specification

SASIDHARAN and
SINGH [25]

Full-bridge inverter
Single-stage inverter

CC-CA isolated
Micro-inverter

90.0%

Converter: CC-CA
Input: 80 Vdc
Output: 220 Vac
Potency: 500 W
Switching: 4 kHz

WU and CHOU [26]
Multistage inverter (7 stages)

Non-isolated
Micro-inverter

94.9%

Converter: CC-CA
Input: 70 Vdc
Output: 110 Vac
Potency: 500 W
Switching: 15.3 kHz

XUEWEI et al. [27]
Full-bridge inverter

Isolated
Micro-inverter

95.0%

Converter: DC-DC
Input: 21–41 Vdc
Output: 200 Vdc
Potency: 200 W
Switching: 100 kHz

WU et al. [28]
Buck–boost converter

Non-isolated
Central inverter

95.5%

Converter: DC-DC
Input: 0–600 Vdc
Output: 380 Vdc
Potency: 5000 W
Switching: 25 kHz

CHOI e LEE [29]
Fly back
Isolated

Micro-inverter
96.0%

Converter: DC-DC
Input: 24 Vdc
Output: 380 Vdc
Potency: 180 W
Switching: 50 kHz

ARSHADI et al. [30]
Half-bridge inverter

Non-isolated
Micro-inverter

96.2%

Converter: DC-AC
Input: 700 Vdc
Output: 220 Vac
Potency: 149.5 W
Switching: 20 kHz

ZHAO et al. [31]
Half-bridge inverter

Non-isolated
Micro-inverter

96.5%

Converter: DC-DC
Input: 48 Vdc
Output: 800 Vdc
Potency: 500 W
Switching: 100 kHz

CHA et al. [32]
Resonator converter

Isolated
Micro-inverter

97.5%

Converter: DC-DC
Input: 40–80 Vdc
Output: 350 Vdc
Potency: 370 W
Switching: 50 kHz

ARSHADI et al. [30]
Half-bridge inverter

Non-isolated
Micro-inverter

96.2%

Converter: DC-AC
Input: 700 Vdc
Output: 220 Vac
Potency: 149.5 W
Switching: 20 kHz

According to [33], several factors negatively influence the generation of PV energy.
Among the identified factors, it is possible to divide them into three categories: (i) geo-
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graphic, (ii) constructive parameter and installation mistakes. Table 3 presents the impact
of each factor on power generation.

Table 3. Impact of external issues in PV.

Category External Issue Impact on Power Generation

Geographic position

Temperature 1–10%
Dust Deposition 0–15%

Snow Determined by the Local Installation
Shading Determined by the Local Installation

Spectral distribution 0–5%

Constructive Parameters
Lifetime 0–5%

Uncertainty of construction parameters 0–5%

Installations Mistakes
Cabling 0–3%

Installation angle 1–5%

Source: Based on [33].

These factors are relevant for selecting the most suitable set of PV panels, inverters,
and other devices for a solar microgrid. Additionally, it is essential to establish how this
system will be installed and the maintenance guidelines to be provided to the end user to
extract the maximum performance throughout the entire life cycle of the PV system.

2.2. Multi-Criteria Decision-Making: Foundations

Multi-criteria decision-making (MCDM) techniques have emerged to aid decision-
making processes involving numerous variables that cannot be easily considered simulta-
neously to find the optimal solution [34]. These techniques standardise decision-making
through mathematical modelling, facilitating the resolution of problems with multiple
objectives. Some notable MCDM techniques include PROMETHEE [35], ELECTRE [36],
TOPSIS [37], and AHP [38].

• PROMETHEE (Preference Ranking Organization Method for Enrichment
Evaluation)—This aids in identifying the most suitable solution when decision-makers
have predetermined criteria and alternatives [39]. It prioritises alternatives based on
pre-established criteria, providing decision-makers with a comprehensive view of the
business and enabling multifunctional decision-making strategies. However, it may
encounter ranking issues.

• ELECTRE—This method constructs an over-classification relationship based on decision-
makers’ preferences towards available alternatives [40]. ELECTRE uses a binary over
classification relationship to classify alternatives, employing either a pessimistic or
optimistic approach.

• TOPSIS (Technique for Order of Preference by Similarity)—This method is primarily
used to rank alternatives based on preference [41]. It selects alternatives closest to the
ideal positive solution and farthest from the ideal negative solution, formed using
the best and worst values achieved by alternatives across evaluation criteria. Its
advantages lie in its simplicity, ability to compare ideal and undesirable scenarios, and
quick identification of the best alternative [37].

• AHP (Analytic Hierarchy Process)—This structured decision-making tool helps in-
dividuals and organisations solve complex problems by breaking them down into
simpler, more manageable components [42]. AHP is especially valuable in scenarios
where decisions involve multiple criteria, both qualitative and quantitative. AHP has
been extensively utilised across different domains. Studies [43,44] have applied AHP
to develop collaborative supplier performance indices, select cleaning systems for
parts, choose IoT platforms, assess disaster-response management systems, analyse
interoperability, and prioritise software risks [45].
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According to [41], the AHP and the TOPSIS are recognised as two of the most effec-
tive multi-criteria decision-making (MCDM) methods [46]. Both methods offer unique
advantages that make them well-suited for complex decision-making scenarios involving
multiple criteria and alternatives.

In this context, AHP enables using qualitative or quantitative data for criterion analysis
in various health, industrial, technical, and strategic applications [47,48]. The first step
of AHP involves decomposing the decision problem into a hierarchy with several levels,
starting from the overall goal at the top, followed by criteria and sub-criteria, and finally,
the alternatives at the bottom [38]. This hierarchical structure allows decision makers to
focus on smaller, related sets of decision elements, simplifying the analysis.

The core of AHP lies in making pairwise comparisons between elements at each level
of the hierarchy. Decision- makers compare the relative importance of criteria, sub-criteria,
or alternatives two at a time, using a scale of 1 to 9, where 1 indicates equal significance
and 9 indicates extreme importance of one element over the other [49]. These comparisons
are used to construct a comparison matrix for each level of the hierarchy. A priority vector
is calculated from these matrices, representing each element’s relative weight. Additionally,
AHP includes a consistency check to ensure that the judgments made in the pairwise
comparisons are logically consistent. A consistency index (CI) is calculated, and if the
value is less than 0.1, the consistency is considered acceptable; otherwise, the judgments
should be reviewed and adjusted. Finally, the priority weights are combined to calculate the
overall score for each alternative, helping to identify the best option based on the defined
criteria [38].

In parallel, TOPSIS operates on the principle that the chosen alternative should have
the shortest distance from the positive ideal solution (PIS), which represents the best possi-
ble scenario, and the farthest distance from the negative ideal solution (NIS), representing
the worst possible scenario [41]. This dual consideration of the ideal and anti-ideal solu-
tions makes TOPSIS particularly effective in handling trade-offs among multiple conflicting
criteria, providing a balanced evaluation of each alternative. The method is straightforward
and intuitive, normalising data, calculating distance measures, and ranking other options
based on their relative closeness to the ideal solution.

The calculation process of TOPSIS involves different steps, according to [37,50]. First,
the decision matrix lists all alternatives and their performance scores across various criteria.
Each criterion’s values are then normalised to transform them into dimensionless numbers,
facilitating comparison. This normalisation is typically performed using the Euclidean
distance formula. Next, the weighted normalised decision matrix is formed by multiplying
the normalised values by their corresponding criterion weights, reflecting each criterion’s
relative importance. The positive ideal solution (PIS) and negative ideal solution (NIS)
are then determined. The PIS consists of the best values for each criterion (maximum for
benefits and minimum for costs), while the NIS consists of the worst values (minimum for
benefits and maximum for costs). The Euclidean distances to the PIS and NIS are calculated
for each alternative. Finally, the relative closeness of each alternative to the ideal solution is
computed, and the other options are ranked accordingly. The alternative with the highest
relative closeness to the PIS is considered the best choice.

Therefore, the MCDSS for identifying the most suitable PV sets employs both AHP
and TOPSIS methods in parallel to enhance the overall reliability and effectiveness of the
decision-making process. Utilising these methods simultaneously allows for a comprehen-
sive evaluation of their performance, helping to identify which method best determines the
optimal photovoltaic system according to the criteria specified by the user. The following
section explores the steps in developing and implementing this decision support system.

2.3. Multi-Criteria Decision Support System (MCDSS) for Photovoltaic Set Identification

For the correct functioning of the method to be developed, specific data must be
inputted as the calculation basis for determining the customised photovoltaic plant for the
installation site. Calculating the energy potential estimate of a region requires integrating
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solar irradiation factors and temperature factors to assess system losses. Since tempera-
ture interference varies throughout the day, it is necessary to calculate the behaviour of
the photovoltaic system hour by hour for a year to apply temperature losses accurately.
Therefore, the system’s response will be more precise if the information is more detailed.
In addition, monthly averages of solar irradiation data provide better detail than just an
annual average.

Based on this context, the multi-criteria decision support system (MCDSS) for pho-
tovoltaic set definition was structured in (i) mapped input data, (ii) data pre-processing,
(iii) MCDM application, and (iv) output data. Figure 1 presents the MCDSS for photovoltaic
set definition architecture.
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Figure 1. MCDSS for photovoltaic set definition architecture.

• Mapped Input Data (Detail A of Figure 1)—In this section, input data are mapped and
collected. These data include crucial information such as climate conditions, installa-
tion requirements, and a photovoltaic database. Climate conditions provide insights
into solar irradiation patterns and temperature, while installation requirements encom-
pass practical considerations such as available physical space and ideal orientation of
solar panels. The photovoltaic database contains details on products and technologies
available in the market, essential for comparison and proper equipment selection.

• Data Pre-Processing (Detail B of Figure 1)—Data pre-processing plays a fundamental
role in treating and preparing the mapped input data for analysis. This process is
divided into sub-steps, including the analysis of available photovoltaic potential,
calculation of demanded photovoltaic potential, and evaluation of the feasibility of
photovoltaic system installation. These steps help determine the maximum amount of
solar energy that can be generated, the system’s required capacity to meet electricity
demand, and whether installation is viable in each location.

• MCMD Application (Detail C of Figure 1)—The application of multi-criteria decision
methods (MCMD) is the heart of the system, where processed data are analysed
and used to make decisions. AHP and TOPSIS are applied to determine the best
photovoltaic set configuration. Evaluated criteria typically include system efficiency,
installation cost, and return on investment time.

• Output Data (Detail D of Figure 1)—The system produces outputs that include specific
recommendations for PV sets based on defined criteria. These criteria may include
selecting photovoltaic module models, inverters, and other relevant considerations.
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These results are presented clearly and comprehensively, providing users with essential
information for making informed decisions about implementing photovoltaic systems.

2.3.1. Mapped Input Data

The mapped input data consist of three essential components: (i) climate conditions,
(ii) installation requirements, and (iii) PV database. These elements provide information
to support the next steps of the MCDSS, allowing the selection and sizing of photovoltaic
systems in different contexts and locations.

The first essential component is Climate Conditions, which offer definitions of geo-
graphic coordinates, cloudiness index, clearness index, solar irradiation patterns, ambient
temperature, and other relevant environmental factors. These data are fundamental for
calculating the energy generation capacity of photovoltaic systems at different times of
the year and under various weather conditions. The geographic coordinates are obtained
directly from the global positioning system (GPS), which provides precise information
about the specific location of a given place. These data are essential for analysing and
planning photovoltaic systems, as they help determine solar exposure and the ideal angle of
solar panels. Information about cloudiness, clarity, and temperature indices is also obtained
from reliable meteorological sources, such as national weather websites. In the case of
Brazil, for example, these data can be extracted from the National Institute of Meteorology
(INMET) [51]. These indices provide valuable insights into local weather conditions, in-
cluding cloud presence, atmospheric transparency, and temperature variations throughout
the day and seasons.

Solar irradiance, measured in units of W/m2 (watt per square metre), represents the
instantaneous amount of energy received from the Sun in a specific region. Accurately
sizing a photovoltaic (PV) system for electricity generation requires calculating the maxi-
mum, minimum, and average annual solar irradiance throughout the day and the average
annual solar irradiance during peak hours. This assessment is crucial for optimising system
performance, since these factors collectively impact the availability and intensity of solar
energy, highlighting the importance of comprehensive analysis and consideration during
system design and implementation.

The amount of solar irradiance reaching the Earth’s surface is influenced by various
factors, including geographical features, cloud cover, clearness index, temperature, and
other atmospheric conditions. Therefore, Equation (1) estimates the irradiation received at
the top of the atmosphere in a specific region in each period [52].

I∆t =
W0

r2

{
(t2 − t1)·sinδ·sinφ +

12
π
· cosδ· cosφ·[sin(τ2)− sin(τ1)]

}
, (1)

where I∆t is the average intensity of local irradiation during the interval (∆t), which
is measured in W/m2 (watt per square metre); W0 is a solar constant whose value is
1380 W/m2; r is the ratio between the current distance of the Sun in relation to Earth and
the average distance from the Sun to Earth; t1 and t2 are the beginning and end times of
the interval ∆t; δ is the Sun’s declination; φ is the latitude of the studied location and τ is
the hourly angle of the Sun; τ1 is the hourly angle of the Sun corresponding to t1 and τ2 is
the hourly angle of the Sun corresponding to t2. Equation (2) simplifies Equation (1) for a
given period, keeping the variable δ and φ.

I0 =
W0

r2 ·sinα, (2)

where I0 is the instantaneous intensity of irradiation at the location, α is the solar elevation
angle, and r is the ratio of the current distance from the Sun to the Earth. r is determined
by Equation (3), and α is determined by Equation (4).

r = 1.0 + 0.017·cos
[

2π

365
·(186− D)

]
(3)
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sinα = sinδ· sinφ + cosδ·cosφ·cosτ (4)

where D is the Julian day in sequential count; α is the solar elevation angle; δ is the Sun’s
declination; φ is the latitude of the studied location, and τ is the hourly angle of the Sun.
Based on the equations above, it is possible to estimate the solar irradiance at the top of the
atmosphere for any location on planet Earth.

It is important to calculate the maximum, minimum, and average annual solar irradi-
ance throughout the day and the average solar yearly irradiance during peak hours to size
the PV set correctly for electricity generation. The amount of solar irradiance received from
the Sun on the Earth’s surface is directly impacted by multiple factors such as geographical
factors, cloudiness and clearness index, temperature, and so on.

The second element is Installation Requirements, which encompass a variety of prac-
tical considerations, including the availability of physical space, optimal orientation and
angle of solar panels, safety requirements, and local regulations. These data help deter-
mine the feasibility and logistics of installing photovoltaic systems in different locations
and environments.

Additionally, residential or industrial energy consumption data are fundamental
variables across the process to determine the optimal configuration of the photovoltaic
system. This information provides crucial insights into energy consumption patterns
over time, enabling a precise analysis of the site’s energy needs. Additionally, these data
help identify peak consumption times, which are essential for properly sizing the system
and determining the required energy storage capacity, such as batteries. Therefore, the
information needed is the average consumption, the amount charged by the concessionaire
for the kW consumed, the installation type, the annual tariff adjustment amount and the
available roof surface.

The values entered in the installation requirements are used to calculate the potential
to be installed, the investment payback time, and the possibility of installation according to
the value entered for the available area. If the area is insufficient, the system will not find
any option for a PV module that meets the power required to meet the user’s demand.

The last essential component is Photovoltaic Database, which contains detailed infor-
mation about a wide range of products and technologies available in the market. These
data include technical specifications of solar panels, inverters, and other components and
performance and efficiency data. This information is essential for comparing and selecting
the most suitable equipment to meet the specific needs of each photovoltaic project. Table 4
shows an example of the PV database variables.

Table 4. Example of the data for a PV database.

Brand Model Area (m2) Weight (kg) Voc (V) Isc (A) Vmp (V) Imp (A) Power
(W)

Eff
(%)

Price
(USD)

RENESOLA [53] RS6535ME3 2.58 29.0 49.5 13.78 41.5 12.90 535 21 116.20

UP SOLAR [54] UPM375MH 1.82 19.0 41.5 11.57 34.6 10.93 375 21 128.77

UP SOLAR [54] UPB450P 2.17 28.0 49.5 11.60 41.3 10.88 450 22 115.28

CANADIAN [55] CS6W535MS 2.56 27.6 49.0 13.85 41.1 13.02 535 21 125.27

CANADIAN [55] CS6W550MS 2.56 27.6 49.6 14.00 41.7 13.20 550 21 127.28

CANADIAN [55] CS6W560MS 2.56 27.6 50.0 14.10 42.1 13.31 560 22 128.78

SCHUTEN [56] STM365/120 1.81 20.5 41.2 11.29 33.9 10.75 365 20 127.27

SCHUTEN [56] STM395/120 1.81 20.5 42.0 11.65 35.6 11.05 395 22 137.57

2.3.2. Data Pre-Processing

Data pre-processing handles the mapped input data and supports the multi-criteria
decision-making models with structured information. Data pre-processing is divided
into sub-steps, which are (i) analysis of available photovoltaic potential, (ii) calculation of
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demanded photovoltaic potential, and (iii) assessment of the feasibility of photovoltaic
system installation.

The analysis of installed photovoltaic potential is the first step of data pre-processing.
It focuses on two fundamental analyses for determining the best photovoltaic set, which are
(i) defining solar irradiation at the location on the ground where the photovoltaic system
will be installed and (ii) determining the average temperature at the location where the
photovoltaic system will be installed. The definition of solar irradiation at the location on
the ground where the photovoltaic system will be installed is based on Equations (1)–(4),
which are available on different platforms such as Weather Spark [57] and Solar Electricity
Handbook [58]. Figure 2 demonstrates the potential solar irradiation on the inclined plane
of the São Paulo region, Brazil, throughout April 2024. For this report, the geographical
coordinates of São Paulo are −23.548 degrees latitude, −46.636 degrees longitude, and
2523 ft elevation.
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Figure 2. The average daily shortwave solar energy reaches the ground per square metre (orange
line), with 25th to 75th and 10th to 90th percentile bands. Source: [57].

With the determination of the irradiation potential, it is necessary to obtain the av-
erage temperature of the region. The temperature of the area where the system will be
installed strongly influences photovoltaic energy generation, so it must be calculated before
estimating the photovoltaic potential of the region. In addition to ambient temperature,
it is necessary to assess the temperature of the photovoltaic module, as the higher the
temperature of the solar system, the lower its efficiency. The average temperature can be
obtained from the Weather Spark and Fabhabs platforms, and the photovoltaic module
temperature can be obtained from Equation (5). Figure 3 shows the average temperature of
the São Paulo region, Brazil, throughout April 2024.

Tcel = Ta +

(
TNOCT − 20

0.8

)
· I% (5)

where Tcel is the operating temperature of the photovoltaic cell, Tα is the ambient tempera-
ture, TNOCT is the value of the operating temperature of the photovoltaic cell provided by
the module datasheets, and I% is the percentage obtained from the behaviour of irradiation
at the top of the atmosphere relative to its maximum value. After estimating the operating
temperature of the modules, it is possible to calculate the percentage of losses due to
temperature, which has a value of −0.40% in power for each ◦C above 25 ◦C. Therefore,
the photovoltaic potential of the region is given by Equation (6).

PPV = I∆t · TL% (6)

where PPV is the available photovoltaic potential; I∆t is the irradiance reaching the ground;
TL% is the temperature loss expressed as a percentage relative to energy production, which
can be directly applied to the value of the irradiance reaching the ground.
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Figure 3. The daily average high (red line) and low (blue line) temperature, with 25th to 75th and 10th
to 90th percentile bands. The thin dotted lines are the corresponding average perceived temperatures.
Source: [57].

After the analysis of the available photovoltaic potential (Stage 1), which determines
the maximum amount of solar energy that the photovoltaic system can generate at a given
location, it is necessary to calculate the installed potential (Stage 2) for the photovoltaic
system. To calculate the installed photovoltaic potential, it is necessary to consider (i) the
historical energy consumption of the residence or industry and (ii) the availability of usable
area for the installation of the photovoltaic system.

The local energy consumption history analysis considers consumption patterns over
time, seasonality, and daily variations. These data are essential to estimate the amount of
electrical energy the photovoltaic system will need to generate to meet consumer demand.
On the other hand, the availability of roof area for the installation of solar panels involves
evaluating the usable area of the roof, its orientation and tilt relative to the Sun, the
presence of shading from nearby trees or buildings, and other possible physical constraints.
Based on this information, it is possible to calculate the demanded photovoltaic potential,
determining the necessary capacity of the photovoltaic system to meet the electrical energy
demand of the location. This calculation is essential to properly size the photovoltaic
system and ensure it can efficiently and economically meet the consumer’s energy needs.
If the available area is insufficient, the user will be informed of the maximum capacity to
be installed.

Finally, the feasibility of installing the photovoltaic system is assessed, considering
various factors such as installation costs, return on investment, government incentives, reg-
ulatory and environmental restrictions, and technical feasibility. This assessment is crucial
to determine whether the photovoltaic system installation is viable and economical at a
given location. These data pre-processing steps provide a solid foundation for successful
planning and implementation of photovoltaic systems, ensuring that they are correctly
sized, optimised for maximum utilisation of available solar energy, and economically viable
for the customer.

2.3.3. MCDM Application and Output Data

The equipment selection will be carried out using multi-criteria decision support
methods, AHP and TOPSIS, to provide a customised installation proposal for each region,
as well as the energy demand and specific requirements the user demands. Therefore,
combining methods will assist users interested in generating their own energy, aiming to
minimise installation costs and reduce energy demand so that only installation availability
costs are charged.

The methods allow and provide for the inclusion of qualitative parameters to indicate
the preference of one criterion over another. Therefore, the user will be asked to determine
the weights for the criteria evaluated by the decision methods, which must meet the
consistency index. The criteria assessed by the multi-criteria decision support methods
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will be (i) system efficiency, (ii) installation cost, and (iii) payback period. All criteria
have a direct relationship; for example, the most efficient system may have a higher initial
investment, while a cheaper system may not guarantee a shorter payback period for the
installed photovoltaic system.

• System efficiency evaluation criterion—the method will indicate the equipment with
the best energy utilisation. Priority will be given to photovoltaic modules that can
obtain higher electrical power for a certain amount of solar irradiation.

• Installation cost evaluation criterion—the decision will be to select equipment with
the lowest cost.

• Financial analysis and evaluation criteria will lead the method to prioritise a balanced
installation, aiming to reduce the investment payback time. To conduct an economic
analysis of the photovoltaic system to be installed, factors such as payback period, net
present value (NPV), and internal rate of return (IRR) will be evaluated. To achieve
this, it is necessary to verify the kilowatt-hour rate charged by the local utility company
where the equipment will be installed.

Due to the many alternatives, decision support methods will facilitate the decision-
making process regarding which photovoltaic module and inverter model will be installed
according to the user’s needs regarding the evaluated criteria. Therefore, the first recom-
mendation will be the quantity and model of photovoltaic modules that best match the
user-entered criteria. Based on the power generated by the photovoltaic modules, the
method will exclude some inverter models to avoid errors during selection. Inverters will
be excluded if the energy generated by the selected modules is less than 80% of the nominal
inverter power or 20% higher. This result prevents an improper choice by the method, such
as recommending an oversized inverter based on the “cost” criterion when actual values
are input.

For the selection of a photovoltaic module alternative, various factors will be analysed,
such as open-circuit voltage (Voc), maximum power (PMax), maximum power current
(IMax), area (a), efficiency (η), and cost (C), which will be compared to determine the best
alternative. The exact process will be carried out to determine the best inverter alternative,
where the analysed factors will include maximum power (PMax), efficiency (η), maximum
DC voltage (Vdc), and cost (C). The PV equipment selected by each decision support
method will be presented and compared to verify if the chosen alternatives correspond to
the trends provided by the user. Two comparisons will be made: first, the photovoltaic
modules and inverters will be separately compared, and finally, the components will be
integrated to generate the complete system for the final comparison.

Each evaluated criterion’s maximum and minimum values will be used for these
comparisons, generating a range of values. Subsequently, the value of the respective
analysed criterion for the selected alternative will correspond to a percentage within this
previously established range, providing a better visualisation of the selected alternative. For
example, assuming the global maximum and minimum values for the efficiency criterion
of the modules are, respectively, 15% and 18%, and the alternative selected by the multi-
criteria decision support method has an efficiency of 17.5%, according to the previous
values, the selected module corresponds to 83.33% of the value range of the alternatives. By
checking this result, it is possible to observe that there are more efficient modules among
the options, but they were not selected due to some other criterion, which could be the
high cost. After verifying the comparisons of the alternatives selected by each multi-criteria
decision support method, it will be up to the user to choose the most suitable option.

Finally, the method will present which photovoltaic module model and quantity
are necessary for the installation to have an average annual capacity equivalent to that
established by the user when determining the energy demand of the location where the
system will be installed, according to the photovoltaic module models entered in the
method’s database. The same will be performed with the inverters, but considering the
equipment’s construction factors, especially the maximum photovoltaic voltage, which
could damage the equipment if it exceeds the manufacturer’s specification.
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3. Results and Discussion

The MCDSS-PV was applied in two scenarios with different locations: (i) Curitiba,
Brazil, and (ii) Barreiras, Brazil. Table 5 presents monthly irradiation and temperatures for
these regions.

Table 5. Monthly averages of irradiation and temperatures for the cities of Curitiba and Barreiras.

Mapped
Data

January
2023

February
2023

March
2023

April
2023

May
2023

June
2023

July
2023

August
2023

September
2023

October
2023

November
2023

December
2023

Curitiba

I∆t (W/m2) 6400 6000 5800 4900 3900 3400 3600 4400 5400 5900 6600 6800

Tmax (◦C) 28 28 28 23 21 20 19 21 21 23 25 25

Tmin (◦C) 16 16 15 13 10 8 8 9 11 13 14 15

Barreiras

I∆t (W/m2) 6000 6000 5800 5700 5500 5400 5800 6400 6800 6500 6000 6000

Tmax (◦C) 30 31 31 31 33 32 32 34 36 35 32 31

Tmin (◦C) 21 21 21 21 20 19 18 19 22 23 22 21

Source: [57].

For the study of this scenario, a demand of 350 kWh/month will be considered in a
three-phase installation, with an available power to be deducted of 100 kWh/month. In
other words, the installed capacity must supply 3000 kWh/year, which the PV installation
must supply.

3.1. Case Study of Barreiras City, Brazil

Barreiras’ City of Bahia state in Brazil, according to [57], is the region with the highest
irradiation potential in the northeast of the country, reaching daily average values of
5995 Wh/m2, as shown in Table 5. This city is located at the following coordinates: latitude:
−12.142939, longitude: −45.0089385, altitude: 454 m, and GMT −3. Figure 4 presents the
annual irradiance map of northeast Brazil and highlights Barreiras’ City in Bahia. Figure 5
demonstrates the average high and low temperatures.
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Figure 4. Average annual irradiation in Barreiras’ City, Brazil. Source: [57].
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Figure 5. The average temperature highs and lows in Barreiras City. Source: [57].

After verifying the geographical conditions of the region of Barreiras City, it was de-
fined that for this installation, the evaluation criterion to be maximised was the installation
cost. Therefore, both decision support methods should select alternatives with lower fees.
The other criteria were determined considering the coherence ratio, whose value must be
less than 10%. Therefore, if the weight for the installation cost is 100, the other criteria have
weights of 75. When applying the expert method for determining the PV set, a proposal
was obtained, as shown in Figures 6 and 7.
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After examining the proposals generated by both methods, it became evident that the
selected photovoltaic equipment was identical. As anticipated, both methods prioritised
equipment with the lowest cost, aligning with the user’s requirements. Given these case
study findings, it is impossible to determine the method that demonstrates the most suitable
performance because both methods choose the same PV set for a micro-generation.

3.2. Case Study of Curitiba City, Brazil

The second city to be analysed is Curitiba of Paraná state in Brazil. According to Pereira
et al. (2017), the estimated average daily irradiation for the country’s Southern region is
4.53 kWh/m2·day. The Southern region presents an average daily irradiation 17.48% lower
than the Northeast region. Curitiba has the following coordinates: latitude: −25.401;
longitude: −49.249; altitude: 935 m; and GMT −3. Figure 8 presents the annual irradiance
map of Brazil’s south and highlights Curitiba city in Parana. Figure 9 demonstrates the
average high and low temperatures.

Due to the first case study prioritising installation cost, the weight of the investment
payback time was maximised for the case study in Curitiba. Therefore, the MCDSS for
photovoltaic set definition tended to have a balanced value between efficiency and cost for
determining the system to be installed. The weight assigned to “payback time” was 100%,
and for the other criteria, the weight was 75%. The proposal generated by the MCDSS can
be seen in Figures 10 and 11.
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Figure 9. Average high and low temperature in Curitiba city, Brazil. Source: [57].

As observed in Figures 10 and 11, the methods selected divergent alternatives. For
the selection of photovoltaic modules, the AHP method sought the equipment with the
shortest payback time among the options, as desired by the user. This photovoltaic module
model had the lowest cost among the possible options. On the other hand, the TOPSIS
method selected a photovoltaic module model that was quite similar but had slightly
higher efficiency than the one AHP selected. The methods used to determine inverters had
completely divergent responses. The AHP method selected an inverter model with the
shortest payback time possible, like when choosing photovoltaic modules. However, the
TOPSIS method selected the most efficient inverter model among the available options,
ignoring models with shorter payback times and lower costs. Upon analysing the system, it
was possible to verify that the photovoltaic system selected by the AHP method minimised
the investment payback time and selected the cheapest possible system within the range
offered by the alternatives. The TOPSIS method determined a slightly more efficient system
than the proposal provided by AHP. Still, it did not achieve a satisfactory result for the
payback time criterion as required by the user.
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Upon analysing the systems proposed by the decision methods, it is possible to verify
that despite the evaluation graphs of the selected alternatives being completely different,
the photovoltaic systems determined by AHP and TOPSIS are similar due to the restricted
range of options for choosing the inverters. The annual power generated by the systems is
3036 kWh/year for the installation selected by the AHP method and 3056 kWh/year for the
system chosen by the TOPSIS method, generating a positive energy balance of 36.0 kWh
and 56.0 kWh, respectively. For the analysis of the maximised criterion, the investment
payback time, the AHP method selected a system with a payback time value of 2.76 years.
On the other hand, the TOPSIS method selected photovoltaic component alternatives so
that the payback time was 2.95 years. When analysing the different criteria for efficiency,
the TOPSIS method selected alternatives whose overall efficiency was higher than the
proposal of the AHP method, reaching a global efficiency value of 14.8% compared to the
14.4% chosen by the AHP method. For the installation cost criterion, the AHP method
selected an installation that was 6.1% cheaper than the system proposed by the TOPSIS
method, whose total cost was USD 1284.49.

When analysing the economic viability, the system proposed by the AHP method
obtained a better IRR value, reaching 52.0%. The NPV value was also higher for the system
determined by the AHP method, which was USD 9336.15. Analysing the amount saved
on electricity at the end of the photovoltaic system’s life, the installation proposed by
the TOPSIS method presented a higher value compared to the system proposed by the
AHP method, where the resulting value was USD 26,021.92, 0.7% higher than the value
determined by the photovoltaic installation by the AHP method.

132



Algorithms 2024, 17, 274

Algorithms 2024, 17, 274 16 of 22 
 

 
Figure 10. Comparison of the alternatives selected by the MCDSS for photovoltaic set definition 
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Figure 11. Analysis of the alternatives selected by the MCDSS for photovoltaic set definition of
Curitiba City.

4. Conclusions

This research presents a multi-criteria decision support system (MCDSS) designed to
optimise the selection of photovoltaic (PV) sets for microgrid installations. By integrating
two robust multi-criteria decision-making (MCDM) methods, AHP and TOPSIS, the MCDSS
provides a comprehensive framework for evaluating PV sets based on efficiency, cost, and
return on investment. Applying this system in case studies from Barreiras and Curitiba
demonstrates its effectiveness, yielding global efficiencies of 14.4% and 14.8% and internal
rates of return (IRR) of 56.0% and 52.0%, respectively.

The findings highlight significant analytical, methodological, and managerial contri-
butions. Analytically, the study offers a detailed assessment model for PV set selection,
addressing the critical factors impacting energy generation. Methodologically, it showcases
the integration of AHP and TOPSIS in renewable energy applications, enhancing decision-
making processes. Managerially, the MCDSS serves as a practical tool for decision-makers,
improving the feasibility and attractiveness of microgeneration projects.

Challenges like low energy conversion efficiency and shading effects remain despite
technological advancements and reduced costs. The proposed MCDSS addresses these
issues, facilitating more efficient and accessible solar energy generation. This research
underscores the potential of MCDSSs to support the broader adoption of renewable energy
sources, contributing to a sustainable energy future.

Implementing this system can reduce the complexity of selecting the most appropriate
PV components, making it easier for experts and non-experts to make informed decisions.
The MCDSS ensures that the selected PV sets are tailored to maximise energy output and
economic viability by considering various factors such as climatic conditions, geographic
location, and specific installation requirements. Additionally, the research highlights the
importance of considering local environmental factors and specific installation conditions
in the selection process. By incorporating these variables into the MCDSS, the system can
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provide more accurate and context-sensitive recommendations, ultimately leading to better
performance and higher satisfaction for end-users.

Therefore, the MCDSS is a method for assessing and selecting PV sets based on effi-
ciency, cost, and return on investment. Methodologically, it integrates multiple MCDM
techniques, demonstrating their applicability in renewable energy. Managerially, it offers a
practical tool for decision-makers in the energy sector to enhance the feasibility and attrac-
tiveness of microgeneration projects. The MCDSS can potentially improve the efficiency
and accessibility of solar energy generation, promoting the adoption of renewable energy
sources and supporting a transition to a sustainable energy infrastructure.

5. Future Works

Future research could expand the applicability of the MCDSS to other renewable
energy sources, such as wind or hydropower, and explore the integration of additional
decision-making criteria. Further validation of the system in diverse geographical locations
and varying climatic conditions would also strengthen its utility and robustness. Moreover,
incorporating real-time data and advanced forecasting techniques could enhance the sys-
tem’s predictive capabilities, providing even more precise and dynamic recommendations.
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Abstract: Unmanned aerial vehicles (UAVs, drones) are not just a technological achievement based on
modern ideas of artificial intelligence; they also provide a sustainable solution for green technologies
in logistics, transport, and material handling. In particular, using battery-powered UAVs to transport
products can significantly decrease energy and fuel expenses, reduce environmental pollution, and
improve the efficiency of clean technologies through improved energy-saving efficiency. We consider
the problem of maximizing the average environmental benefit of a fleet of drones given a periodic
schedule of tasks performed by the fleet of vehicles. To solve the problem efficiently, we formulate it
as an optimization problem on an infinite periodic graph and reduce it to a special type of parametric
assignment problem. We exactly solve the problem under consideration in O(n3) time, where n is the
number of flights performed by UAVs.

Keywords: sustainable scheduling; fleet of drones; maximizing the environmental benefit; polynomial-time
algorithm

1. Introduction

Transport by road and air is one of the largest contributors to the highest greenhouse
gas emissions and fuel consumption in the logistics industry. In recent years, due to
rising carbon dioxide emissions and fuel costs, the issue of sustainable daily scheduling of
transport operations aimed at reducing environmental pollution has attracted increasing
interest and concern from large logistics companies. In such a situation, unmanned aerial
vehicles (UAVs, drones) are not just a technological advancement based on modern ideas
of artificial intelligence but actually provide a sustainable solution to green technologies
in logistics, transport, and material handling. In this light, the ability of UAVs to carry
out sustainable autonomous deliveries efficiently and effectively has been researched and
explored by large logistics companies (e.g., DHL Express, UPS), e-commerce retailers, and
companies (e.g., Walmart, Google) [1,2].

The environmental benefits of UAVs are universal and intertwined with economic and
social benefits; their environmental friendliness has systematically improved in recent years
as drone delivery technologies (e.g., batteries, autonomous navigation, obstacle avoidance,
and detection algorithms) have been greatly improved. Because drones are much smaller
than trucks and airplanes, drones generally cost less and consume less energy and fuel per
unit distance traveled. Furthermore, most delivery drones consume electricity, which can
be generated from clean energy sources such as solar or wind, so they emit fewer harmful
emissions per unit of energy consumed compared to traditional trucks and airplanes while
also increasing the efficiency of clean technologies.

We observe that the environmental benefits of UAVs are mainly driven by the overall
benefits and profits of modern digital and artificial intelligence-based technologies. They
were comprehensively studied and classified by Dolgui and Ivanov [3,4]. Here, we select
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and highlight three main factors that directly lead to environmental benefits and economic
profits:

• Using battery-powered UAVs in the air instead of trucks on the road can significantly
reduce energy and fuel expenses;

• It reduces environmental pollution, carbon dioxide emissions, and other negative
impacts of transport processes on the environment;

• It improves the efficiency of clean technologies by increasing energy-saving efficiency.

A broader and more detailed categorization of the relevant environmental benefits of
UAVs is beyond the scope of this article. The interested reader is referred to the available
comprehensive surveys and studies in this area cited therein [1,2,5–7].

It is known that scheduling and routing of vehicles subject to external, in particular,
environmental constraints, is a complex combinatorial problem that, generally, is NP-hard,
meaning it cannot be solved optimally for large instance sizes in reasonable (polynomial)
computational time [8,9]. In this regard, a practical alternative would be either to obtain
efficient exact algorithms for practically important special cases of the problem or to develop
fast and sufficiently effective approximation algorithms. Increased theoretical and practical
interest in this problem and its applications has been noted, for example, in a number of
reviews [1,2,5–7]. For a detailed description of various problem formulations, models, and
corresponding algorithms for the general drone fleet assignment problem, we refer the
interested reader to the surveys [10–15], which provide excellent reviews of work in this
area.

In what follows, we limit our attention to graph models for maximizing the average
UAV fleet profit and solve this optimization problem in strongly polynomial time, reducing
it to a special type of parametric assignment problem. In addition to the results presented
in the above-mentioned reviews and the works cited there, the main contributions of this
paper are as follows:

(i) We present and explore a new, environmentally oriented problem of finding the
optimal number of vehicles that maximizes the average profit of a UAV fleet; (ii) the
maximum-profit problem for a UAV fleet is formulated as a graph-theoretic problem
and reduced to a parametric assignment problem; (iii) a new efficient algorithm for the
parametric assignment problem has been developed, which continues and extends the
well-known polynomial algorithms of Ford and Fulkerson, Karzanov and Livshits, and
Orlin for robotics and aircraft flight scheduling; (iv) the parametric assignment problem
under study is exactly solved in strongly polynomial time using a Newton-type algorithm;
and finally; (v) a method is introduced to speed up the Newton-type algorithm by a factor
of n, which exactly solves the original UAV fleet scheduling problem in O(n3) time, where
n is the given number of flights.

The rest of the article is organized as follows: In the next section, we describe previous
work. In Section 3, we describe the problem under study. In Section 4, we reformulate it as
a graph-theoretic problem of maximizing the average total weight of a chain cover on an
infinite graph; then we re-construct the infinite graph into an equivalent finite graph; as a
result, the problem under consideration is reduced to the problem of covering the nodes
of the last graph with a set of cycles that maximizes the average total weight. Section 5
reformulates the cycle-covering problem as a bi-matrix assignment problem and reduces
the latter problem to a particular type of fractional assignment problem (FAP). Section 6
reduces FAP to a parametric assignment problem, and Section 7 solves it using Newton’s
method. Section 8 improves the complexity of the latter algorithm. Section 9 concludes the
paper.

2. Previous Work

Since we realize that the general problem under study is very complex (NP-hard in
fact) and large in size, making it difficult to solve exactly, the challenge is to decompose it
into smaller and simpler sub-problems that can be solved efficiently and thus provide the
“building blocks” for solving the overall problem. We are interested in finding a special
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case that, on the one hand, makes the problem solvable and, on the other hand, gives good
upper/lower bounds on the objective functions of the general optimization problem.

The special case studied in this paper is an extension of the problem of minimizing the
number of vehicles (airplanes, drones, robots, cars, etc.) needed to meet a fixed, periodically
repeating schedule of tasks. This optimization problem has a long history in operations
research. A non-periodic, finite-horizon version of the problem, concerned with minimizing
the number of tankers to meet a fixed schedule, was solved in 1954 by Dantzig and Fulker-
son [16]. A few years later, Ford and Fulkerson [17] reduced that problem to finding a chain
cover of minimum cardinality for finitely partially ordered sets. Using an infinite periodic
graph model and a chain covering, Karzanov and Livshits [18] elegantly reduced the peri-
odic minimum-size vehicle problem to an assignment problem solvable in polynomial time.
Kats [19] has modified and slightly simplified the Karzanov–Livshits algorithm. Orlin [20]
proposed a chain-covering algorithm for the periodic case, where a finite number of tasks
must be executed periodically over an infinite horizon to efficiently solve the problem as a
finite network flow problem. Kats and Levner [21,22] proposed a periodic graph model that
solved a similar scheduling problem with non-Euclidean distances. Orlin [23] has solved the
more general problem of minimizing the average fleet cost per day of flying subject to a fixed
number of aircraft; however, this optimization problem is different from the problem in this
study, and besides this, it involves a solution technique induced from dynamic minimum-cost
network flows that is substantially different from the technique presented here. Campbell and
Hardin [24] considered the problem of minimizing the number of vehicles required to make
periodic deliveries to a set of customers under the assumption that each delivery requires the
use of a vehicle for a full day; they thoroughly examined the problem structure, evaluated its
complexity, and presented an algorithm that optimally solved the problem for some special
cases. Extensive reviews of UAV fleet size optimization techniques and industrial applications
are presented, for example, in [12–15].

In this paper, we present and explore a more general case of the vehicle scheduling
problem; namely, our goal is to find the optimal number of vehicles that maximizes the
average environmental fleet benefit per vehicle and, thereby, the UAV fleet’s environmental
efficiency. This problem is a continuation and extension of the models studied in [16–23].
Note that the optimal number of vehicles in the latter problem may be strictly greater than
the minimum number of vehicles required to meet a given periodic schedule. We propose
a new fast algorithm, the logic and main stages of which are presented in Figure 1.

Figure 1. Schematic diagram of the proposed fast algorithm.

3. Description of the Problem

Let J1, . . ., Jn be a set of n tasks (e.g., flights) that must be carried out periodically
by a fleet of drones, and let p denote a given period length. Associated with task Ji are
non-negative real numbers ai and bi such that ai < p and bi < p, where ai and bi are the start
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and finish times of task Ji in the time interval [0, p), respectively. If ai < bi, then the kth
iteration (or instance) of task Ji is executed in the time interval [ai + kp, bi + kp). If ai > bi,
then the kth iteration of task Ji is performed in the time interval [ai + kp, bi + (k + 1)p), for
k = 0, 1, 2, . . .. Thus, the times ai, bi, i = 1, . . ., n, define a predetermined periodic schedule
for all tasks.

Any task can be conducted by any autonomous vehicle, and any vehicle can carry out
any task. We use this assumption to simplify the presentation of our algorithm, though,
in fact, the proposed general graph approach can be extended to handle multiple aircraft
types and efficiently solve other combinatorial problems. There is a known setup time rij
between the sequential processing of instances of task Ji and task Jj by the same vehicle.
The setup time rij is the required delay between the arrival of flight Ji and the departure of
flight Jj, assuming the same aircraft is used for both flights. It is allowed that the arrival site
s for flight Ji may differ from the departure site t for flight Jj; in this case, the setup time rij
will include the deadhead time from s to t.

Unlike the known models mentioned above, this study takes into account not only the
size of the fleet but also the environmental benefit (profit) accrued from using the UAV fleet,
which depends on the fleet size and the assignment of tasks performed by the vehicles.
Suppose that profit eij is accrued from the use of a UAV when performing task Jj following
task Ji; this quantity is known in advance, while the number of vehicles and the assignment
of tasks to vehicles are the decision variables that need to be found.

Let K be the (unknown) number of vehicles required to meet a periodic fixed schedule,
and let E be the total environmental profit obtained by all vehicles over period p. Then our
problem to be solved is the following:

Problem 1. Assign tasks to vehicles so as to maximize the ratio.

E/K =
Total environmental bene f it accrued f rom the use o f the UAV f leet over period p

Number o f vehicles required to meet a f ixed schedule o f tasks
,

That is, to maximize the average benefit obtained by the fleet of vehicles over the period for a given
task schedule, which is defined by the known times {ai, bi, i = 1,. . .. n}.

Remark 1. In the verbal formulation of Problem 1 above, we do not reveal the explicit dependence
of the total environmental benefit on the distribution of vehicles among tasks. This will be explained
and formalized below in Problems 4 and FAP in the following sections.

Remark 2. The reader may notice that the problem under consideration in its current formulation
resembles the well-known vehicle allocation problem. The latter problem, in its various forms, is
known to be NP-hard (see, for example, [8,20,25,26]). However, in this paper, we will prove that the
problem under study can be solved in polynomial time; this is because this problem has a special
structure that greatly reduces the problem’s complexity.

4. Reduction to Graph Problems

Consider an infinite weighted periodic graph G∞, which is constructed as follows:
G∞ = (N∞, A∞), where N∞ is an infinite set of nodes and A∞ is an infinite set of arcs. In this
graph, node ik ∈ N∞ represents the kth iteration of task Ji. A directed arc (ik, jl) ∈ A∞ leads
from node ik to node jl if the vehicle is able to carry out the lth iteration of task Jj after it has
completed the kth iteration of task Ji. The weight of the arc (ik, jl) represents the profit eij
collected by the vehicle from serving the task Jj following the task Ji. Let us formulate all
profits eij in the form of the n × n matrix E = ‖eij‖.

Consider a periodic directed chain in graph G∞. Note that the period of such a chain
can span several periods, p, as defined in the previous section. The chain determines the
schedule of an individual vehicle visiting a sequence of tasks, and the sum of its arc weights
eij determines the profit earned by that vehicle during that period. The set of directed chains
in G∞ covering all nodes determines the total number of required vehicles, their schedule,
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and the total environmental benefit obtained. Thus, the original allocation Problem 1 is
reduced to the following graph-theoretic problem on the infinite graph G∞:

Problem 2. Find a periodic infinite chain cover of graph G∞ that maximizes the following average
environmental benefit (profit) obtained by the UAV fleet:

E/K =
Total environmental pro f it obtained by the UAV f leet in period p

Number o f vehicles required
=

Sum o f arc weights eij in chain cover in period p
Number o f directed chains covering nodes

The next step is to transform the infinite graph G∞ into an equivalent finite graph. Due
to the periodicity of the graph G∞, we can roll it up into the so-called finite generating graph,
Ggen = (Ngen, Agen), defined as follows: node i ∈Ngen represents all periodic implementations
of task Ji; in other words, all nodes ik ∈ N∞, 0≤ k < ∞, of the infinite graph G∞ are “packed”
into one node i of the graph Ggen. Similarly, all arcs (ik, jl) ∈ A∞ are “packed” into one arc (i, j)
∈ Agen. Thus, every infinite, periodically repeated arc chain in graph G∞ can be transformed
into a corresponding directed cycle in graph Ggen. Knowing the generating graph Ggen, we
can transform Problem 2 of covering graph G∞ with chains into the following Problem 3 of
covering the nodes of the graph Ggen with cycles. Let c denote a set of such cycles.

Problem 3. Find a covering of the nodes of the graph Ggen with a set of cycles c so as to maximize
the ratio.

E/K =
∑(i,j)∈c eij

Number o f required vehicles

Next, we associate two weights with each arc (i, j) ∈ Agen. The first weight is the profit
eij introduced above. The second weight, denoted kij, is needed to calculate the required
number of vehicles. It is defined similarly to the model in [20]; namely, kij is the number of
periods p that must exist between an arbitrary departure iteration k(i) of a flight Ji and the
departure iteration l(j) of the flight Jj that is closest to Ji in the graph G∞, provided that the
two flights are operated by the same aircraft; it is possible that j = i. Then,

kij = l(j) − k(i). (1)

For the reader’s convenience, consider the definition of the weight kij in more detail.
Let k(i) be an arbitrary integer, and the symbol k(i) denotes that the flight Ji occurs during the
k(i)-th period. Further, suppose that in graph G∞, there are arcs from the node representing
the flight Ji to all other nodes representing iterations (repetitions) of the flight Jj; it is clear
that then, in our notation, the numbers {k(j)} will denote the numbers showing in which
periods those repetitions of Jj occur. Among these numbers, k(j), choose the minimum
one—this number is denoted as l(j). Then, as stated above, kij = l(j) − k(i). In other words,
after completing the k(i)th iteration of task Ji, the vehicle does not have enough time to
arrive and carry out the (l(j) − 1)th iteration of task Jj but has time to successfully perform
the l(j)th iteration of task Jj.

Remark 3. Since the process under consideration is periodic, the values kij are valid for all task
iterations. As we will show shortly, the sum of kij over all cycles in any cycle covered in the graph
Ggen is equal to the number of vehicles required to meet a given schedule.

Remark 4. Formally, the main property of the parameter l(j) can be presented as follows: Let di
denote the duration of the flight, Ji, that is,

di = bi − ai, if ai < bi and
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di = bi + p − ai, if ai > bi.

Then, the following inequalities hold:

aj + (l(j) − 1)·p < ai + k(i)·p + di + rij ≤ aj + l(j)·p.

Thus, we introduce the n × n matrix K = ‖kij‖ with the entries kij just described. If the arc (i,
j) does not exist in the graph Ggen, then we set eij = 0 and kij = ∞. To obtain this matrix, we need
O(n2) time.

Consider a small example to illustrate the above definition of kij in Equation (1).
Assume that we have three tasks: J1, J2, J3; p = 10, a(J1) = a1 = 5, b(J1) = b1 = 8; a(J2) = a2 = 9,
b(J2) = b2 = 2; a(J3) = a3 = 4, b(J3) = b3 = 9; r12 = 2, r13 = 1, r21 = 1, r23 = 3. Let us consider, for
example, the 12th iteration of these tasks, i.e., set k(1) = 12, k(2) = 12, and k(3) = 12; then the
task J1 will be executed in the time interval [125, 128], the task J2—in the time interval [129,
132], and the task J3 in the time interval [124, 129]. Therefore, the nearest iteration of task J2
that can be performed by the same vehicle, which has performed the 12th iteration of J1,
will be the 13th iteration. Therefore, the nearest iteration of task J3, which can be performed
by the same vehicle following the 12th iteration of J1, will also be the 13th iteration. Hence,
k12 = k13 = 13 − 12 = 1. Similarly, we obtain that k23 = 14 − 12 = 2; k21 = 1.

At this point, let us recall a remarkable property of the weights kij in the periodic
minimum-size vehicle problem, discovered by Karzanov and Livshits [18] in 1978 and
independently by Orlin [20] in 1982, that establishes a direct connection between the
minimum number of vehicles required and the minimum-weight cycle cover of the graph
Ggen, the arc weights of which are the weights kij defined by Equation (1). Denote by c an
arbitrary cycle cover of the generating graph Ggen, and S the set of all possible cycle covers
of the graph Ggen.

The Karzanov–Livshits–Orlin Theorem. A minimum-weight cycle cover, having the
total weight minc∈S ∑(i,j)∈c kij, provides the minimum number of vehicles Kmin required to
perform a given task schedule: Kmin = minc∈S ∑(i,j)∈c kij.

For our further analysis, we need to extend the above claim to formulate it for the
bi-matrix optimization Problem 3:

Proposition 1. Let c be an arbitrary cycle cover of the generating graph Ggen with two arc weights,
eij and kij, where kij is the weight defined by Equation (1). Then, the total weight ∑(i,j)∈c kij
of the cycle cover is equal to the number of vehicles K required to carry out all the tasks in the
considered cycle cover c in Problem 3: K = ∑(i,j)∈c kij.

Proof. Let σ be a simple cycle entering the cycle cover c of the generating graph Ggen with
two arc weights, and let s = ∑(i,j)∈σ kij. Consider the periodic graph G∞ that corresponds to
the initial Problem 2, which has generated the generating graph Ggen. Recall that each node
i ∈ σ corresponds to an infinite number of nodes ik in graph G∞, 0 ≤ k < ∞. As proven
in [20], a cycle σ can be unpacked into exactly s chains in graph G∞ such that no node in
one chain is linked to a node in another chain. From the description of Problem 2 and
the definition of the cycle weight, it follows that each chain corresponds to one vehicle
performing the tasks of the chain, and then the value ∑(i,j)∈σ kij is equal to the number of
vehicles required to carry out all the tasks of the cycle σ. To complete the proof, it suffices
to notice that the graph Ggen can be partitioned into a set c composed of a finite number
of simple cycles, and therefore, the total number of chains ∑(i,j)∈c kij corresponding to all
simple cycles in partition c is equal to the number of vehicles required, which proves the
claim.

From Proposition 1, it follows that Problem 3 reduces to the following Problem 4. �
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Problem 4. Find a cycle cover of the graph Ggen with a set of cycles c, so as to maximize the ratio
E/K = ∑(i,j)∈c eij/∑(i,j)∈c kij.

The question remains: how to efficiently solve the resulting cycle-covering problem
for the graph Ggen? We will answer this question in the following sections:

The illustrative example. For the reader’s convenience, consider a numerical example.
It is adapted from the work of Orlin [20], who studied the problem of minimizing the
number of aircraft to operate a fixed daily repeating set of flights; we generalize Orlin’s
example for the problem of maximizing the average fleet profit. While the latter numerical
example was used in [20] to schedule daily aircraft flights, it is extended here to also serve
to illustrate all the steps of the proposed algorithm for maximizing the average benefit of a
drone fleet.

4.1. Model of the Fixed Daily Repeating Set of Drone Flights

Three daily flights are shown in Table 1.

Table 1. Daily required flights.

Flight No. Departure Arrival

1 Honolulu, 1:00 p.m. Washington, DC, 11:00 p.m.
2 New York, 3:00 p.m. Tokyo, 4:00 a.m.
3 London, 1:00 p.m. Paris, 2:00 p.m.

It is also necessary to take into account the “deadhead” time, that is, the time that a
given aircraft takes after completing a flight to reach the departure location of the next
scheduled flight. The deadhead times are given in Table 2.

Table 2. The deadhead flight times are in hours.

From
To

Honolulu London New York

Paris 15 1 7

Tokyo 8 12 13

Washington 10 7 1

In the notation introduced above, the input data from Tables 1 and 2 are given in
Table 3. Tasks J1, J2, and J3 represent flights 1, 2, and 3, respectively.

Table 3. Input data.

Flight No. Departure Arrival Setup Times rij

i ai bi i
j

1 2 3

1 13 23 1 10 1 7

2 15 4 2 8 13 12

3 13 14 3 15 7 1

We consider a daily repeating schedule of flights; therefore, the period length p is 24 h.

4.2. Reduction to a Problem on a Periodic Graph

Let the profits be given by the following matrix E:

E =




300 900 600
600 600 1200
900 300 300
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Using the flight schedule given in Table 3, it is possible to plot graph G∞. A fragment
of graph G∞ drawn for three consecutive periods, starting with period 1, is presented in
Figure 2.

Figure 2. A 3-period fragment of the graph G∞.

The nodes in Figure 2 depict the daily flights denoted 1, 2, 3 and repeated for three
sequential periods indexed by 1, 2, and 3; node ik depicts flight i (i = 1, 2, 3) during period
k (k = 1, 2, 3). For simplicity of notation, Figure 2 shows only the arcs (ik, jl) between the
nearest iterations k and l of tasks Ji and Jj. Each arc (ik, jl) in G∞ has the associated weight
e(i, j). However, the weights are not shown in Figure 2 in order not to overload it. At this
point, our initial fleet assignment problem is equivalent to finding the optimal number of
infinite periodic disjoint paths covering all nodes and having a maximum average profit
per path per period.

4.3. Construction of the Generating Graph

According to the above description, the finite graph Ggen can be portrayed as follows
(see Figure 3):

Figure 3. Generating graph Ggen.

Each arc is double-weighted, and the weight of arc (i, j) has the form (eij, kij), where
the number kij is determined by arc (ik, jl) in Figure 2, kij = l − k (i, j = 1, 2, 3). Note that
the generating network for the airplane scheduling example presented in [20] is different
from the graph Ggen; namely, the arcs of the graph Ggen are double-weighted, whereas in
the Orlin graph, the weights on arcs (i, j) are specified by a single number.

4.4. Calculation of the Second Weight kij

According to the definition of the second weight kij and the data in Table 1, we see that
flights 1 and 3 can be repeated every period (every day) by the same aircraft (the arc from
node 11 to node 12 and the arc from node 31 to node 32 in Figure 2); therefore, k11 = k33 = 1.
Flight 2 can be repeated by the same vehicle every two days; therefore, k22 = 2. Further, if
an aircraft starts its flight no. 2 at 15:00 in the first period (node 21 in Figure 2), then it can
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start the nearest flight no. 3 only after 13 + 12 = 25 h, i.e., on the third day at 13:00 (node
33 in Figure 2); hence, k23 = 3 − 1 = 2. Similarly, we compute all other values kij shown in
Figure 3 and the following matrix K:

K =




1 1 1
1 2 2
1 1 1




The illustrative numerical example will be continued and completed in Section 7.

5. Reduction to the Fractional Assignment Problem

In this section, we reformulate Problem 4 as a fractional assignment problem. Recall
that an assignment can be stated in the form of an n × n matrix A whose entries, denoted aij,
are 0 or 1, and aij = 1 occurs in each row and each column of the matrix A exactly once.

Consider Problem 4, defined in the previous section, and the corresponding cycle
cover of the graph Ggen.

Proposition 2. The set of all cycles in the cycle cover c = (C1, C2, . . ., Cq) of the graph Ggen, where
q is the number of cycles in c, can be considered as an n × n assignment A in the matrix form
defined as follows:

aij = 1 if and only if the arc (i,j) from Ggen belongs to c, and aij = 0 otherwise. (2)

Indeed, from the definition of the cycle cover, it follows that the matrix A contains n
rows and n columns, its elements are 1 or 0, and each aij = 1 occurs exactly once for each
row i and each column j (i, j = 1,. . ., n), which proves the claim.

Given a profit matrix E, a weight matrix K, and an arbitrary assignment matrix A, the
profit and weight values corresponding to the assignment A are defined, respectively, as
follows:

E(A) = ∑(i,j)∈A eijaij and K(A) = ∑(i,j)∈A kijaij.

In the above expression and wherever necessary, the notation (i, j) ∈ A denotes all
pairs of indices i, j corresponding to entries aij = 1 of the assignment matrix A. For ease
of notation, in the expressions E(A) and K(A) below, we will omit the symbol aij. In what
follows, in accordance with (2), instead of maximizing P = ∑(i,j)∈c eij/∑(i,j)∈c kij over all cycle
covers of the graph Ggen (Problem 4), we will focus on finding the optimal assignment that
maximizes P = E(A)/K(A) = ∑(i,j)∈A eij/∑(i,j)∈A kij.

Let us denote by C the set of all assignments A in the form of n × n matrices. Now
Problem 4 in Section 2 reduces to the following fractional assignment Problem 5 (FAP):

Problem 5 (FAP). Given two n × n matrices E and K, find the optimal assignment A*, com-
mon to the matrices E and K, that is, the one that maximizes the average fleet profit per vehicle
P = E(A)/K(A):

P* = E(A*)/K(A*) = maxA∈C E(A)/K(A) = max A∈C ∑(i,j)∈A eij/∑(i,j)∈A kij.

The following statement shows that the elements of matrix K in the considered problem
are the small positive integers not exceeding 3; in fact, this is an important property that
reduces the complexity of the problem by a factor of n.

Proposition 3. If the arc (i, j) ∈ Ggen, then, for any element kij of matrix K, it holds that kij ≤ 3.
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Proof. Consider the k(i)th iteration of task Ji that starts at time ai + k(i)·p, and let l(j) be the
nearest iteration of task Jj that the vehicle can perform after the k(i)th iteration of task Ji.
Consider two cases: ai < bi and ai > bi.

(i) ai < bi.

In this case, the k(i)th iteration of task Ji ends at time bi + k(i)·p. Then, the nearest
iteration of task Jj satisfies the following inequalities:

aj + [l(j) − 1]·p < bi + k(i)·p + rij ≤ aj + l(j)·p,

or
aj + [l(j) − k(i) − 1]·p < bi + rij ≤ aj + [l(j) − k(i)]·p.

(ii) ai > bi.

In this case, the k(i)th iteration of task Ji ends at time bi + [k(i) + 1]·p. Then, the nearest
iteration of task Jj satisfies the following inequalities:

aj + [l(j) − 1]·p < bi + [k(i) + 1]·p + rij ≤ aj + l(j)·p,

or
aj + [l(j) − k(i) − 1]·p < bi + p + rij ≤ aj + [l(j) − k(i)]·p.

From the definition of kij = l(j) − k(i) in Section 2, it immediately follows that each
element kij is an integer satisfying the following relations:

aj + (kij − 1)·p < bi + rij ≤ aj + kij·p, if ai < bi

and
aj + (kij − 1)·p < bi + p + rij ≤ aj + kij·p, if ai > bi.

This means that, due to the given time constraints, the element kij is equal to the
minimum number of periods p that the vehicle must skip before it can start task Jj after it
has started task Ji. Since each task (flight) Jj is to be executed in every period p, the vehicle
must skip kij instances of task Jj in the skipped periods.

It is natural to assume that all the setup times are rij < p; then, from the definition of kij,
we derive that the largest value of kij can appear only in the following inequalities:

aj + (kij − 1)·p < bi + p + rij ≤ aj + kij·p. (3)

Suppose that bi > aj and p > rij > p − (bi − aj). Then, on the one hand, we have that

bi + p + rij > bi + p + p − (bi − aj) = aj + 2p, (4)

and, on the other hand, bi < aj + p; then we have that

bi + p + rij ≤ (aj + p) + p + p = aj + 3p. (5)

Comparing inequalities (3)–(5), we find that, in this case, kij = 3. Q.E.D. �

6. Reduction to the Parametric Assignment Problem

In this section, we reduce the fractional assignment problem FAP with the objective
function P defined above to a parametric assignment problem. Let us introduce a parameter
λ that, for each assignment A from the set C of all assignments, satisfies the following
inequality:

∑(i,j)∈A eij/∑(i,j)∈A kij ≤ λ, for all A ∈ C. (6)
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Since the sum ∑(i,j)∈A kij is positive in any assignment A, inequalities (6) can be
rewritten as follows:

∑(i,j)∈A eij ≤ λ ∑(i,j)∈A kij

or
0 ≤ λ ∑(i,j)∈A kij −∑(i,j)∈A eij

and, finally,
0 ≤∑(i,j)∈A (λ kij − eij) for all A ∈ C. (7)

Thus, problem FAP of finding the maximum average profit P* presented in the previ-
ous section takes the following form:

To find the minimum λ that satisfies (6), or, equivalently, to find the minimum λ that
satisfies (7).

Consider the matrix W(λ) = λ·K − E with entries wij = (λ·kij − eij), called arc costs, or
simply costs. Consider some fixed value of λ. Let A*(λ) denote the assignment with the
minimum cost across all the assignments A ∈ C, defined as follows:

∑(i,j)∈A*(λ) (λ·kij − eij) = minA∈C ∑(i,j)∈A (λ·kij − eij), (8)

and denote the latter function, called the minimum-cost function, by L(λ):

L(λ) = ∑ (i,j)∈A*(λ) (λ·kij − eij). (9)

Proposition 4 below states that the assignment problem of finding the maximum
average fleet profit P*, defined in problem FAP, can be reduced to the following parametric
minimum-cost assignment problem PAP:

Problem 6 (PAP). Find the value of the parameter λ = λ* for which the minimum-cost function
L(λ) is equal to zero:

L(λ) = ∑ (i,j)∈A*(λ) (λ·kij − eij) = 0, (10)

and, further, together with the optimal value of the parameter λ*, find the corresponding minimum-
cost assignment A*(λ*) for the matrix W(λ*); for the simplicity of notation, we denote the latter
assignment by Φ*: Φ* = A*(λ*).

Proposition 4. Let λ* be the optimal solution to the problem PAP, and Φ* = A*(λ*) be the
corresponding minimum-cost assignment for the matrix W(λ*). Then,

λ* = P* = ∑(i,j)∈A* eij/∑(i,j)∈A* kij = maxA∈C∑(i,j)∈A eij/∑(i,j)∈A kij,

and Φ* = A*,

that is, in meaningful terms, (i) the value of λ = λ* defined by expression (10) is equal to the optimal
profit value P*, which we are looking for, and (ii) the assignment Φ*, which is optimal for the problem
PAP, coincides with the optimal assignment A* for the maximum average fleet profit in the problem
FAP.

Proof. From Equation (10), we have:

L(λ*) = ∑ (i,j)∈A*(λ*) (λ*·kij − eij) = 0. (11)

In addition, from (8), we have:

∑(i,j)∈A*(λ*) (λ*·kij − eij) = minA∈C ∑(i,j)∈A (λ*·kij − eij).

Then,
∑(i,j)∈A (λ*·kij − eij) ≥ 0 for all A ∈ C. (12)
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Thus, from (11), we obtain that

λ* = ∑(i,j)∈A*(λ*) eij/∑(i,j)∈A*(λ*) kij,

and from (12), we have

λ* ≥∑(i,j)∈A eij/∑(i,j)∈A kij for all A ∈ C,

that is, λ* = P* and Φ* = A*, which completes the proof. �

The following claim is an extension of Proposition 4 that formulates a way of how we
can optimally and efficiently solve the optimization problem PAP:

Corollary 1. Let λ* be the optimal parameter value, i.e., one such that

L(λ*) = ∑ (i,j)∈A*(λ) (λ·kij − eij) = 0.

Then, the parameter λ* represents the maximum average profit per vehicle in the problem
under study, and K(A*) = ∑(i,j)∈A* kij is equal to the optimal number of required vehicles, where
A* = A*(λ*).

In the following sections, we propose two strongly polynomial time algorithms for the
parametric assignment problem under consideration, which in turn optimally solve the
problem of maximizing the average profit of a fleet of identical vehicles.

7. A Newton-Type Algorithm for the Parametric Assignment Problem

Consider the cost value w(A, λ) = ∑(i,j)∈A (λ·kij − eij) of an arbitrary assignment A,
whose costs are the elements of the matrix W(λ). This value is a linear function w(A, λ) = (dA
λ − fA) of the parameter λ, where dA = ∑(i,j)∈A kij is the slope and fA = ∑(i,j)∈A eij. In the
UAV model considered, each kij ≤ 3, so dA ≤ 3n. Let A be a collection of q cycles—A = (C1,
C2, . . ., Cq). Consider an arbitrary cycle C ∈ (C1, C2, . . ., Cq). The sum of the elements kij
over the cycle C is not less than one; ∑(i,j)∈C kij ≥ 1. Indeed, if C = {i1, i2 = j(i1), i3 = j(i2), . . .,
is = j(is−1), i1 = j(is)}, then after task Ji1, the vehicle performs task Ji2, and after task Jis, the
vehicle again performs task Ji1, but not at the same iteration as at the previous one. Two
iterations of task Ji1, carried out by the same vehicle, are separated by a time interval equal
to ∑(i,j)∈C kij ≥ 1 period. Therefore, 1 ≤ dA ≤ 3n.

There is a set of linear functions corresponding to different assignments A of the matrix
W(λ), each of which has the form:

∑(i,j)∈A (λ·kij − eij), A ∈ C.

According to (8) and (9), L(λ) is a lower bound for the costs of all assignments A ∈ C; it
is an increasing concave piecewise linear function of the parameter λ with slope ∑(i,j)∈A*(λ)
kij. Since 1 ≤ ∑(i,j)∈A*(λ) kij ≤ 3n, the number of pieces in L(λ) does not exceed 3n.

Let us select some arbitrary value, λ = λ′. Determine the corresponding minimum-cost
assignment A′ = A*(λ′) and the corresponding cost as follows:

L(λ′) = ∑(i,j)∈A′ (λ′kij − eij). (13)

Consider the function dA′ λ − fA′ = ∑(i,j)∈A′ (λ·kij − eij). Let us select a starting value λ′

such that it is so small that L(λ′) < 0, then λ′ < ∑(i,j)∈A′ eij/∑(i,j)∈A′ kij≤ λ*. The first inequality
follows from (13); the second inequality follows from (12). Now we can set a new value of λ′

that is equal to ∑(i,j)∈A′ eij/∑(i,j)∈A′ kij. Then, determine the minimum-cost assignment for the
updated λ = λ′. This procedure must be continued until the optimal solution λ* of the problem
PAP is found. The following Algorithm 1 implements the described idea.
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Algorithm 1. Implementation of the described idea.

Initialization
Step 1. Solve the standard assignment problem for the known matrix K (using a standard
assignment algorithm). Denote by I the obtained optimal (minimum-cost) assignment for this
matrix.
Step 2. Calculate the average profit λ0 received for the obtained assignment I:

λ0 = ∑ (i,j)∈I eij/∑(i,j)∈I kij.
(Note that at this stage, λ0 ≤ λ*, where λ* is the maximum average profit that we are looking for).
Step 3. Set i = 0.
Iterative procedure
Step 4. Find the minimum-cost assignment A*(λi) for the matrix W(λi).
Step 5. Calculate the average profit λi+1 of the assignment A*(λi):

λi+1 = ∑(i,j)∈A*(λi) eij/∑ (i,j)∈A*(λi) kij.
Step 6. If λi+1 > λi then {set i = i + 1; go to Step 4},
else go to step 7.
Solution
Step 7. Set the maximum average profit per vehicle: P* = λ* = λi.
Set the optimal assignment Φ* = A*(λi)
Determine the optimal number of vehicles needed to meet the obtained schedule:

K = ∑(i,j)∈Φ* kij.
End.

The proposed algorithm is a discrete version of Newton’s optimization method
adapted to solving Equation (10).

7.1. Complexity of Algorithm 1

In Algorithm 1, in the iterative procedure (Steps 4–6 above), the slope of the minimum-
cost function L(λ) in (9), ∑ (i,j)∈A*(λi) kij, decreases, i.e.,

∑ (i,j)∈A*(λi) kij > ∑ (i,j)∈A*(λi+1) kij.

Therefore, steps 4–6 return at most O(n) times. Each pass of the iterative procedure
solves the assignment problem once. The complexity of solving the assignment problem is
O(n3), which is repeated at most O(n) times. Thus, the overall complexity of Algorithm 1 is
O(n4).

7.2. The Illustrative Example (Continued)
7.2.1. Reduction to the Fractional FAP and Parametric PAP Problems

Problem FAP. Given two n × n matrices E and K, defined in the previous step, find
the optimal assignment A*, common to the matrices E and K, that is, the one that maximizes
the average fleet profit per vehicle P = E(A)/K(A):

P* = E(A*)/K(A*) = maxA∈C E(A)/K(A) = max A∈C ∑(i,j)∈A eij/∑(i,j)∈A kij.

To solve this problem, we reduce it to the following parametric assignment problem:
Problem PAP. Find the value of the parameter λ = λ* for which the minimum-cost

function L(λ) is equal to zero: L(λ) = ∑ (i,j)∈A*(λ) (λ·kij − eij) = 0, and find the corresponding
minimum-cost assignment A*(λ*) for the matrix W(λ*).

7.2.2. Solution of the Parametric Assignment Problem by the Newton-Type Algorithm

Let us solve the standard minimum-weight assignment problem with the matrix K.
We can see that assignment I = {C1 = [(1, 2), (2, 1)]; C2 = (3, 3)} is optimal for this standard
single-matrix problem, ∑(i,j)∈I kij = k1,2 + k2,1 + k3,3 = 3. This is the minimum number of
vehicles required to meet the given flight schedule.

149



Algorithms 2024, 17, 283

Calculate the average profit received with the assignment I:

λ0 = (900 + 600 + 300)/(1 + 1 + 1) = 600.

The value λ0 can be taken as the lower bound of the desired maximum average profit
P*, 600 ≤ P*.

Consider the following matrix W(λ0 = 600):

W(600) =




600·1− 300 600·1− 900 600·1− 600
600·1− 600 600·2− 600 600·2− 1200
600·1− 900 600·1− 300 600·1− 300


 =




300 −300 0
0 600 0
−300 300 300




The optimal assignment A*(λ0 = 600) of the matrix W(λ0 = 600) is as follows:

A*(λ0 = 600) = {C = [(1, 2), (2, 3), (3, 1)]}.

The cost of the assignment A*(λ0 = 600) at point λ0 = 600 is negative; w(A*, λ0) = −300
+ 0 + (−300) = −600. Therefore, λ0 = 600 is not an optimal solution to the PAP problem
considered. This means that the average profit λ1 obtained with the assignment A*(λ0) is
greater than λ0: λ1 = (900 + 1200 + 900)/(1 + 2 + 1) = 750.

Now, in a similar way, consider the following matrix W(λ1 = 750):

W(750) =




750·1− 300 750·1− 900 750·1− 600
750·1− 600 750·2− 600 750·2− 1200
750·1− 900 750·1− 300 750·1− 300


 =




450 −150 150
150 900 300
−150 450 450




The optimal assignment A*(λ1 = 750) of the matrix W(λ1 = 750) is the same as
A*(λ0 = 600). The cost of the assignment A*(λ1 = 750) at the point λ1 = 750 is zero;
w(A*, λ1) = −150 + 300 + (−150) = 0. Thus, λ* = λ1 = 750 is the optimal solution to
our PAP problem, and according to Proposition 4, the maximum average profit per aircraft
is P* = λ* = 750.

7.2.3. Solution of the Original Vehicle Fleet Optimization Problem

The optimal assignment A*(λ1 = 750) consists of only one cycle C = [(1, 2), (2, 3), (3, 1)].
It corresponds to the following optimal sequence of flights:

Flight 1 from Honolulu to Washington, DC, then deadheading flight to New York,
then

Flight 2 from New York to Tokyo, then a deadheading flight to London,
Flight 3 from London to Paris, then a deadheading flight to Honolulu.
The considered circular route C takes four days; ∑(i,j)∈c kij = k1,2 + k2,3 + k3,1 = 4. This

schedule requires four aircraft, each repeating the same sequence of flights as the previous
one, lagging behind it in time by a day. This is the optimal number of aircraft in the
considered example. Note that in this illustrative example, the optimal number of vehicles
is four, and the minimum number of vehicles required to meet a given flight schedule is
three; the optimal average fuel efficiency obtained in this example (i.e., for four vehicles)
is 20% better than the corresponding fuel efficiency for the minimum number of vehicles
required; (750 − 600)/750 = 0.2.

7.2.4. Discussion

The Newton-type algorithm proposed in this section is relatively simple and easy to
program. The question arises whether an algorithm of similar or even better complexity can
be obtained for the problem under study if one exploits the existing polynomial algorithms
for the general fractional assignment problem. However, all polynomial algorithms for the
general fractional assignment problem known to us (see, e.g., [26–30]) have a total running
time similar to or worse than O(n4), even in the case where the coefficients of the linear
function in the denominator of the fractional objective are restricted to the values {0, 1}.
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However, unlike these studies, we found another way to speed up the solution time of
the Newton-type algorithm. In the next section, we present an improved algorithm that
can solve the parametric assignment problem under study in O(n3) time and, hence, can
optimally solve the original max-benefit UAV fleet problem in O(n3) time.

8. A Faster Parametric Assignment Algorithm
8.1. Comparison of Two Parametric Assignment Problems

Reducing the original aircraft profit maximization Problem 1 to the special-type para-
metric assignment problem PAP formulated in Section 6 opens an opportunity to exploit
another solution algorithm that is faster than the Newton-type algorithm proposed in
the previous section. For this purpose, we adapt and use, after appropriate adaptation, a
fast and elegant parametric assignment algorithm developed more than a decade ago by
Elizabeth Gassner and Bettina Klinz [31].

Although the parametric assignment problem solved by Gassner and Klinz is similar
to the assignment problem described above and denoted PAP, the two problems are quite
different and cannot be solved by simply changing the sign of the objective function.
Actually, we should make the necessary changes to the Gassner–Klinz algorithm (GKA) to
make the adapted version of GKA applicable to solve the PAP in question. We begin by
comparing two related parametric assignment problems, focusing on their differences (see
Table 4). Note that the significant difference between the two studies is that the present
work is motivated and focused on the practical aircraft fleet assignment problem, while the
problem in [31] is rooted in and limited to an application in the max-plus algebra.

Table 4. Comparison of two assignment problems.

Gassner and Klinz [31] Problem PAP in This Paper

Problem formulation

Given a bipartite graph G and parametric arc costs
cλ(i, j) = (cij − λ·bij), find the minimum of objective
function z(λ) = {∑(i,j)∈A cλ(i, j): A is an assignment
in G}, for all λ ∈ R together with the corresponding
optimal assignments.

Given a matrix W with parametric entry costs wλ(i,
j) = (λ·kij − eij) and the minimum cost function
L(λ) = ∑ (i,j)∈A*(λ) (λ·kij − eij),
find a parameter value λ = λ* for which the L(λ) = 0
and the optimal assignment A*(λ*) (see Figure 4)

Parametric arc costs cλ(i, j) = (cijj − λ·bij), where bij = 0, 1 wλ(i, j) = (λ·kij − eij), where kij = 0, 1, 2, 3

Decision to be found To solve the problem for all λ in (−∞, +∞) and to
find all the assignments.

To find a single value λ* and a single assignment,
for which L(λ) = 0

Practical application
To solve the problem of computing the
characteristic max-polynomial of a matrix in the
max-plus algebra.

To solve the problem of maximizing the average
profit for a fleet of vehicles.

Figure 4. Graph of two objective functions, z(λ) of the Gassner–Klinz problem and L(λ) of the average
fleet profit maximization problem.
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8.2. A Brief Review of the Gassner–Klinz Algorithm and Its Adaptation

The GKA algorithm aims to solve the parametric assignment problem described in
Table 4 for all possible values of parameter λ; its worst-case complexity is O(n3). That is,
the same as that for the standard (non-parametric) linear assignment problem. In contrast
to the Newton-type Algorithm 1, the GKA does not solve each of the O(n) assignment
problems appearing at critical points but rather solves an assignment problem only once
and then transforms the obtained assignment into a new one with certain local operations
so that the minimum-cost assignments for all the values of λ are found in O(nm + n2 log
n) time, where m and n are the number of arcs and the number of nodes, respectively, in
an underlying bipartite graph described below. We will follow the same idea of the GKA
and adapt it, adding necessary changes, in order to take into account that the objective
functions in the two problems are different (see Table 4).

Since the two optimization problems in Table 4 are very close, it suffices to replace cλ(i,
j) = (cij − λ·bij) in the Gassner–Klinz problem by c′λ(i, j) = (c′ij − λ·b′ij) = (−eij − λ·(−kij))
and then use the existing algorithm GKA. In this case, the slope of the parametric objective
function in the derived problem (which, obviously, in this case, will be our PAP) will be
positive and will decrease with the growth of parameter λ until L(λ) becomes zero, whereas
the slope of the objective function in the original Gassner–Klinz problem is negative and its
absolute value increases when the parameter increases to infinity (see Figure 4). Another
observation is that in the original Gassner–Klinz problem, bij ∈ {0, 1}, whereas b′ij are to be
{0, −1, −2, −3}; however, this difference can be easily overcome, and it does not influence
the algorithm complexity. Finally, the starting point and the stopping rule are different in
the GKA and in the modified algorithm. Indeed, when solving the PAP problem, one does
not need to solve the assignment problems at all the critical points for all possible λ ∈ (−∞,
+∞); rather, the modified algorithm starts with a known lower bound of the parameter and
stops as soon as the cost L(λ) of a current assignment becomes zero.

Below, for the reader’s convenience, we review the proposed modification of the GKA
and, in order to give a more complete picture, describe the steps of the adapted algorithm.
For easier comparison, in this subsection, we borrow graph-theoretic terminology from [31]
to describe the modified algorithm.

Consider the parametric assignment problem as a minimum-cost matching problem
in a bipartite graph G = (U, V, W), where the vertices U and V correspond, respectively, to
the rows and columns of the matrix W(λ), |U| = |V| = n, |W| = m. Arc (i, j) ∈W only if
arc (i, j) exists in the graph Ggen. Arcs lead from set U to set V. The parametric cost of arcs (i,
j) ∈W is w(i, j) = (λ·kij − eij), where i ∈ U and j ∈ V, i.e., the element of the matrix wij ∈
W(λ) is equal to the cost of the arc (i, j), w(i, j) = wij.

Let A*(λ′) be a minimum-cost assignment in graph G for λ = λ′. Exactly as in [31],
we associate with the graph G and assignment A = A*(λ′) a residual graph N(A) = (U, V,
W*) constructed as follows: All the arcs (i, j) ∈ A, where i ∈ U and j ∈ V, are replaced by
backward arcs (j, i) of cost w(j, i) = − w(i, j) = (−λ·kij + eij).

Note that it is at this point that we make changes that need to be made because
the coefficients kij in our objective function have the opposite sign compared with the
corresponding bij in the GKA.

The remaining arcs, called forward arcs, as well as their costs, remain the same as
in graph G. Graph N(A) has no cycles with a negative cost for λ = λ′. Let us increase
parameter λ and let λc be the minimum value of λ such that in the residual graph N(A),
there is a cycle C with zero cost, w(C, λc) = 0, and w(C, λ) < 0 when λ > λc. Value λc and
cycle C are the critical point and critical cycle, respectively. The assignment A remains a
minimum-cost assignment in the interval λ ∈ [λ′, λc]. Then, in the interval λ ∈ [λc, λ′c],
where λ′c is a critical point next to the critical point λc, the minimum-cost assignment
changes to A′ = (A\C′) ∪ (C′\A), where C′ is a subset of the arcs obtained from the C by
replacing all the backward arcs with the corresponding forward arcs; the cost of A′ changes
to w(A′, λ) = w(A, λ) + w(C, λ). It is worth noticing at this stage that the following essential
property is valid: when the parameter λ increases, the objective function of our problem
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also increases, while the objective function in the Gassner–Klinz problem decreases (see
Figure 4). At point λ = λc, the costs of assignments A and A′ are equal; w(A, λc) = w(A′,
λc). By changing the cost and the direction of all the arcs in cycle C to opposite ones in the
residual graph N(A), one obtains the residual graph N(A′).

The following question is crucial: Starting with the minimum-weight assignment A
for λ = λ′, how can one determine the critical point λc? Recall that in the residual graph
N(A), for λ = λ′, there are no cycles with a negative cost, and that when the parameter λ
increases, some cycle C with a zero cost appears only at the point λ = λc, w(C, λc) = 0. To
determine this cycle, we follow the approach proposed in [31] and also use the parametric
shortest path algorithm of Karp and Orlin [32] and its improved version in [33].

Let us take some vertex s as the source vertex in the graph N(A) and build a shortest
path tree T(λ) = T(λ′) for λ = λ′. As λ increases from λ′ to λc, the tree T(λ) is transformed;
namely, some arcs are replaced by others. The values of λ at which the tree changes are
called breakpoints. Let us denote these breakpoints in ascending order as µ1, µ2, and µl.
Denote Tr = T(λ), λ ∈ [µr, µr+1], where r = 0, 1, 2, . . ., l − 1. Tree Tl−1 = T(λ), where λ ∈
[µl−1, µl], is the last constructed tree. Since in our problem of fleet assignment µl 6= ∞, it
follows that a zero-weight cycle C appears in N(M) at λ = µl, and at λ > µl, the weight of
the cycle C becomes negative. This means that µl is a critical point, and λc = µl. At each
breakpoint, the slope of any path can only decrease. Since at each breakpoint, at least one
path to a vertex changes, the number of breakpoints is limited to O(n2). Thus, it turns out
that transforming the current assignment into a new one at a critical point is simpler than
solving the assignment problem anew.

The steps of the modified GKA adapted for solving our PAP problem are the following
Algorithm 2:

Algorithm 2. The modified GKA adapted for solving our PAP problem.

Step 1. Initialization
1.1. Solve the initial standard assignment problem for the known matrix K. Denote by I the obtained optimal
(minimum-cost) assignment.
1.2. Calculate the average profit λ0 achieved with the obtained assignment I:

λ0 = ∑ (i,j)∈I eij/∑(i,j)∈I kij.
//This step is different from the corresponding initialization step in the original GKA.
1.3. Find the minimum-cost assignment A = A*(λ0) in the graph G for λ = λ0.
1.4. Construct the residual graph N(A).
Step 2. Finding the nearest critical point.
//In this step, we take into account that in the objective function, the term b′ ij = −kij is of the opposite sign
compared to the Gassner–Klinz assignment problem.
2.1. Apply the parametric shortest path algorithm to find the nearest critical point λc and the critical cycle C
for which w(C, λc) = 0.
2.2. Calculate the cost of the assignment A at the point λ = λc:

w(A, λc) = λc ∑(i,j)∈A kij − ∑(i,j)∈A eij.
//When we increase the values of parameter λ from one critical point to the next, we stop and go to Step 3.1 at
the moment when we find (for the first time) a current assignment A such that w(A, λc) ≥ 0. According to
Proposition 4 in Section 4, this assignment A maximizes the average fleet profit per vehicle.
2.3. If w(A, λc) ≥ 0, go to Step 3.
2.4. Create the new minimum-cost assignment A′ = (A\C′) ∪ (C′\A).
//C′ is a subset of arcs obtained from C by replacing all the backward arcs with the corresponding forward
arcs.
2.5. Convert graph N(A) to graph N(A′); set N(A) := N(A′) and A := A′.
2.6. Return to Step 2.1.
Step 3. Solution of the vehicle scheduling problem
//This step is absent in the GKA because the max-benefit UAV fleet problem was not a subject studied by
Gassner and Klinz.
//Let us denote by A* the optimal assignment, which maximizes the average fleet profit per vehicle; ∑(i,j)∈A*
kij expresses the corresponding optimal number of the required vehicles.
3.1. Set the assignment that maximizes the average fleet profit per vehicle: A* = A.
Calculate the maximal average profit P* = λ* = ∑(i,j)∈A* eij/∑(i,j)∈A* kij.
3.2. Calculate the optimal number of vehicles, which is ∑(i,j)∈A* kij, to meet the given vehicle schedule.
End.
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Evidently, the adapted version of GKA has the same complexity as the original GKA,
and hence, the original max-benefit UAV fleet problem is solved in O(n3) time.

9. Conclusions

In this article, we consider the problem of scheduling/assigning periodically repeated
flights performed by a fleet of UAVs/drones. We extend the known scheduling/assignment
problem for minimizing the number of aircraft to a more general problem of maximizing
the average drone fleet profit per vehicle.

The main contribution of the present study is two-fold. First, we formulate and
optimally solve a new bi-matrix average fleet profit maximization model using profit
and capacity matrices, which is a special case of airline fleet assignment problems widely
used in the airline industry. Secondly, the aircraft fleet profit optimization problem is
reduced to a special type of parametric assignment problem. Moreover, we find a way
to speed up the solution time of a Newton-type algorithm and provide an improved
algorithm that solves the initial aircraft assignment problem in question in O(n3) time. Such
a noticeable improvement in the worst-case algorithm complexity (by a factor of n) allows
us to optimally solve the profit maximization problem for significantly larger fleets of UAVs
than any previously known exact algorithm.

In addition to the above, the special case problem solved in this study clearly not
only has its own merits but can also serve as a “building block” for solving more complex
problems. For example, it can be used as a “warm start” for solving a mathematical
programming-based model using branch-and-bound strategies.

A challenging open question for further research is to find other solvable cases of the
general max-profit fleet assignment/scheduling problem. We believe that the proposed
graph approach to problem analysis and algorithm design can be extended and applied to
efficiently solve other combinatorial periodic assignment/scheduling problems, such as
minimizing fuel consumption and CO2 emissions, planning periodic maintenance checks
and recovery operations for unexpected disruptions, dynamic scheduling of periodic and
sporadic tasks in real time for large-size fleets, and others.
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Abstract: Ore hauling operations are crucial within the mining industry as they supply essential min-
erals to production plants. Conducted with sophisticated and high-cost operational equipment, these
operations demand meticulous planning to ensure that production targets are met while optimizing
equipment utilization. In this study, we present an algorithm to determine the minimum amount of
hauling equipment required to meet the ore transport target. To achieve this, a mathematical model
has been developed, considering it as a parallel machine scheduling problem with different speeds
and release times, focusing on minimizing both the completion time and the costs associated with
equipment use. Additionally, another algorithm was developed to allow the tactical evaluation of
these two variables. These procedures and the model contribute significantly to decision-makers by
providing a systematic approach to resource allocation, ensuring that loading and hauling equip-
ment are utilized to their fullest potentials while adhering to budgetary constraints and operational
schedules. This approach optimizes resource usage and improves operational efficiency, facilitating
continuous improvement in mining operations.

Keywords: parallel machine scheduling problem; ore hauling equipment; mathematical model;
mining industry

1. Introduction

One of the most essential activities in mining operations is ore hauling; this pro-
cess involves moving fragmented rock from the blasting site using loading and hauling
equipment [1]. The ore rocks are then transported to the crushing process to reduce their
size before being sent to the recovery plant, where valuable metals such as copper, gold,
molybdenum, and aluminum, among others, are extracted [2–4]. Figure 1 illustrates the
schematic of the described process. Poor planning of ore hauling operations can decrease
productivity levels, affect the achievement of production targets within the established
timelines, and consequently impact operational costs. Several factors must be considered
to effectively plan ore hauling operations, such as the amount of available loading and
hauling equipment and their scheduled maintenance [5]. It is also essential to account for
the established production targets, working hours, and topographic levels. Other important
aspects include the ore grade, the number of available loading ramps for loading operations,
and the environmental impact [6].

Mining companies have a defined amount of loading and hauling equipment allocated
based on the production targets set for a specific period. It is crucial to determine the
necessary amount of this equipment to efficiently transport ore rocks to control associated
costs, which can be substantial depending on the time required to meet these targets [7].
Knowing the minimum amount of equipment needed optimizes operations and facilitates
tactical analysis. This analysis enables better decision-making in the face of contingencies,
ensuring the achievement of production targets at the lowest possible cost.
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Algorithms 2024, 17, 348

Figure 1. Schematic of the ore hauling operation.

As shown in Figure 1, the ore hauling process involves assigning hauling equipment
to loading equipment. These do not necessarily operate at the same loading speed because
some equipment have different loading capacities. The loading is performed simultaneously,
and is described as a system of parallel machines with different speeds. Since the number
of hauling equipment is finite, they are used as many times as necessary to meet the
production target. However, they are unavailable while transporting the ore to the crushing
process, having a “release time” before they are available again to be reloaded. Thus,
this scenario can be adapted to a problem of parallel machines with different speeds and
release times.

The novelty of this work lies in incorporating different speeds and release times into
the mathematical model for parallel machine scheduling in mineral hauling operations
(PMSPOHO). These features allow for a more realistic and accurate representation of
operational conditions in the mining environment. The speed of the loading equipment
plays a crucial role in this model. Variations in loading speeds can significantly impact the
efficiency of the ore hauling operation. By considering different loading speeds, the model
can more precisely allocate resources to match the dynamic nature of mining operations.
This ensures that faster-loading equipment is utilized to its maximum potential while slower
equipment is assigned tasks that better suit its capabilities, optimizing the overall workflow.

Incorporating the speed of the loading equipment into the scheduling algorithm maxi-
mizes equipment use and minimizes idle time for the hauling equipment. This enhances
operational efficiency by reducing delays and ensuring a continuous flow of materials.
The developed mathematical model addresses these critical variables, optimizing the allo-
cation of hauling equipment, maximizing their use, and reducing idle time. This approach
ensures greater operational efficiency by aligning equipment capabilities with the demands
of the mining process. The strategic allocation of resources, guided by the speed and
availability of each loading machine, contributes to a more streamlined and cost-effective
operation, highlighting the importance of these variables in achieving optimal performance.

The mathematical model contributes significantly to several vital aspects. It facilitates
more efficient planning and scheduling of hauling operations, allowing for dynamic ad-
justments based on changing conditions. Additionally, it enables a comparative analysis
between costs and completion times, optimizing economic and productivity decisions.
By reducing downtime and improving resource utilization, the model effectively addresses
the logistical and financial challenges in mining operations and adapts to various opera-
tional scenarios, increasing its applicability and relevance in the sector. The remainder of
this paper is structured as follows: Section 2 presents the related work. Section 3 details the
methodology. Computational experiments and results analysis are discussed in Section 4.
Finally, conclusions drawn from the study are presented in Section 5.

2. Related Works

Table 1 presents an overview of related works addressing the problem. It details the
characteristics considered in our area of interest, such as release times (ri) and different
speeds (Qm). The objective functions used are also analyzed, such as completion time (Cmax)
and costs (k), among others. Additionally, the solution methods employed are examined
and categorized as exact or approximate, along with the number of machines utilized and
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the approaches adopted in each instance. This comparison allows for a visualization of the
various methodologies and techniques implemented in the literature, highlighting their
differences and similarities concerning the current analysis.

The characteristic ri has yet to be sufficiently explored, particularly in mining research
where the availability of hauling equipment is crucial, as shown by [8,9]. In contrast,
studying Qm has garnered more academic attention, though the focus largely remains on
identical machines. Regarding the objective function, studies have generally centered on
minimizing variables such as k and Cmax in isolation. Meza [2] exemplifies a more complex
integration, which incorporates a time and cost analysis of loading and hauling equipment
through a simulation model. Hong and Lin [10] focused on minimizing maximum lateness
(Lmax), while Koryagin and Voronov [11] and Oliskevych et al. [12] considered meeting P
as essential for maintaining operational continuity in production plants.

In comparison, our work significantly expands the level of analysis by including both
Qm and ri, allowing us to model the production environments more realistically, especially
in ore hauling operations. This is particularly relevant in configurations where the number
of machines exceeds five, a scenario in which many studies prefer approximate methods due
to their computational efficiency. Additionally, our approach includes an iterative study that
enables tactical-level analysis to define the optimal utilization of equipment, complemented
by robust analytical support for decision-making to maximize operational effectiveness.
Our approach also incorporates a complexity analysis that has yet to be explored [10,13,14].
Thus, our work addresses a significant gap in the literature and provides critical insights that
facilitate strategic decisions and enhance operational effectiveness in the mining industry.

Table 1. Related works on the parallel machine scheduling problem.

Characteristics Objective Function Methods Num. Machines

Reference Qm ri Cmax k Other Exact Approximate m ≤ 5 m ≥ 6 Complexity
Analysis Approaches

[2] x x x x x FIFO simulation model

[15] x x x Branch-and-price algorithm with
single server

[16] x x x x x
MIP formulation and hybrid

heuristic algorithm with
single server

[17] x x x x MIP formulation and Tabu-Search
with single server

[18] x x x MIP formulation with non-identical
job sizes

[19] x x x x MIP formulation

[20] x x x x MILP formulation

[21] x x x x x x MILP formulation and Insertion
Heuristic under time-of-use tariffs

[22] x x x x MILP formulation under
time-of-use tariffs

[8] x x x x x x MILP formulation and
GA algorithm

[11] x P x x Heuristic algorithm

[23] x x x MIP formulation with setup time
and single server

[10] x Lmax x x x Dynamic constructive algorithms

[24] x x x
Constraint programming model

under unavailabilityconstraints and
modify LPT

[13] x x x x x MIP formulation and Tabu-Search
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Table 1. Cont.

Characteristics Objective Function Methods Num. Machines

Reference Qm ri Cmax k Other Exact Approximate m ≤ 5 m ≥ 6 Complexity
Analysis Approaches

[25] x x x MIP formulation

[14] x x x x x MIP formulation with
independent jobs

[26] x x x x MIP formulation with
function constrain

[12] x P x x MIP formulation

[27] x x x Monte Carlo simulation model

[9] x x x x VNS and ACO algorithms

[28] x x x x x MIP and TSP algorithm

[29] x x x Constraint programming model

[30] x x x x MIP formulation and
MOBSO algorithm

[31] x x x x x MILP formulation with time-of-use
and SPT, MDPC, MDEC

[32] x x x x x MIP formulation and GA–GWO
hybrid algorithm

Our paper x x x x x x x x Iterative MIP formulation

Considering related studies on the optimization of the ore hauling operation, it was
found that Meza [2] developed a model for the application of simulation concepts of a
surface mining operation loading and hauling system, considering the type of loading
and hauling equipment, arrival time, waiting time, positioning time, loading time, going
time, setting time, unloading time, and return time, in addition to the number of trips as a
production target, and considering a FIFO system for loading and unloading. On the other
hand, Vasquez et al. [3] performed an integer programming model to minimize the total
working time of a low-profile loader fleet in an underground mine, in addition to devel-
oping a polynomial time optimal algorithm integrated into the decision-making process,
obtaining results quite close to the optimal total time. Eivazy and Askari-Nasab [33] devel-
oped a multi-destination mixed integer linear programming (MILP) model to minimize
operations costs in surface mining; in the model, they considered stockpiles and mix-
ing piles in addition to horizontal direction loading systems and ramp decision-making.
Anjomshoa et al. [34] developed a simulation and mixed integer programming model
(MIP) to optimize overtaking bays, sizing, and scheduling hauling equipment fleet in
underground mining.

Moreover, Gligoric [35] developed an investigation on the overtaking bays for hauling
equipment in underground mining, in which they sought to optimize the necessary amount
of bays and the optimal location to minimize waiting times. Gonen et al. [36] conducted a
study for underground mining where they evaluated annual production capacities with
different hauling systems, considering unit hauling costs and mine depth. Eivazy and
Askari-Nasab [37] presented a methodology based on production scheduling hierarchies
for surface mining for the medium term, developing an MILP to minimize operating costs;
the scheduling included stockpiles, processing plants, and dumps, as well as a selection
of routes and ramps. Tom-Socarras [38] generated a tool for cost management based on a
decision tree for material transportation in surface mining. Uribe [39] developed a study
that analyzed the functionality and performance of semi-automatic operation in loading
and hauling equipment used in underground mining. Więcek [40] proposed a suitable
method for controlling the loading and transporting of ore in a mine with a piles and
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chambers system. Wiest [41] developed a scheduling model for surface mining, focusing
on cost reduction.

Solomon [42] modeled ore loading and hauling systems in surface mining, developing
a model that considered the excavation face, routes, equipment, and ore destinations.
Gaspar and Jhasmin [43] analyzed utilization and availability indicators for ore hauling
cost optimization. Li et al. [44], in their research for underground mining, developed a
bee swarm algorithm to maximize the total revenue during a planning period; in addition,
they created a genetic algorithm for the planning for hauling equipment dispatching to
minimize the waiting time of this equipment. Elijah [45] developed a mathematical model
for calculating the arrival and service rate of different amounts of hauling equipment
involved in material transportation. Huisa [46] improved the use of loading and hauling
equipment to reduce the cost of these operations.

Choi et al. [47] developed an intelligent non-supervisory system to predict the perfor-
mance of the hauling equipment system in surface mining using a combination of different
optimization models. Li et al. [48] focused on a mathematical model for rescheduling
operations considering the requirements of production spaces, operating environment,
and production equipment wear, while seeking to obtain the maximum planning com-
pletion rate and the lowest ore grade fluctuation. Abolghasemian et al. [49] presented a
multi-objective optimization in the surface mine system, seeking the maximum amount
of extraction and minimizing the transportation time, considering the storage capacity,
transportation equipment, and budget. Shamsi et al. [50] performed an IP with operational
restrictions to schedule the transportation system in surface mining, considering the best
net present value as an objective. Parichehreh et al. [51] addressed the energy-efficient
unrelated parallel machine scheduling problem, incorporating job deterioration and the
learning effects of operators, providing valuable insights into multi-objective optimization
for complex production environments.

Our study introduces a novel and significant approach to optimizing ore loading and
hauling operations by modeling a tactical problem using a scheduling model typically em-
ployed for operational decisions. This model accounts for parallel machines with different
speeds, adding greater realism. Specifically, the nature of the problem is reflected in the
dynamic availability of loading equipment, represented through dynamic release times,
where jobs are not known in advance but are revealed as they are executed. This approach
allows for deeper and more detailed analyses that are better suited to the complexities
of mining production environments. Implementing this model can be integrated into
tactical and operational strategies to make them more efficient and effective, supporting
decision-making in mining companies by significantly improving operational efficiency,
reducing costs, and increasing productivity. Furthermore, this study will contribute to
both theoretical development and practical application in mining engineering, enhancing
essential operations in the sector.

3. Methodology

This section outlines the methodology employed in this study. It is structured as
follows: Section 3.1 defines the problem and sets the context for the research. Section 3.2 de-
tails the modeling assumptions and presents the mathematical formulation of the problem,
including the objective functions and constraints. Section 3.3 describes the algorithms used
for determining and evaluating the optimal amount of ore hauling equipment. This in-
cludes the procedure for determining the minimum amount of hauling equipment and the
evaluation of the cost–time trade-offs. The following subsections systematically address the
research objectives and provide a comprehensive understanding of the applied methods.

3.1. Problem Definition

Due to the critical importance of ore hauling for production, this research aims to
determine the minimum amount of hauling equipment necessary to minimize both the
costs associated with equipment usage and the completion time of the production target
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within a defined time horizon. Ore hauling operations are pivotal for continuously sup-
plying essential minerals to production plants. However, technical decisions regarding
the required equipment are often made based on experience and under time pressure.
While these decisions may be quick, they might only sometimes be optimal, potentially
leading to increased costs or delays that impact plant production.

This research addresses the inefficiency and potential sub-optimality of traditional
decision-making processes in determining the minimum amount of hauling equipment
needed to realize the production target. This can result in either overestimating or un-
derestimating hauling equipment, leading to unnecessary expenses or bottlenecks during
ore transport. By developing a mathematical model that considers the parallel machine
scheduling problem with different speeds and release times, we aim to provide a systematic
and data-driven approach to optimizing equipment allocation.

A detailed analysis of how costs relate to completion time could reveal valuable sce-
narios, enabling more informed and appropriate decisions in the event of any contingency
in the transportation operation. This model will allow decision-makers to balance the trade-
offs between equipment costs and operational efficiency, ensuring that the right amount of
equipment is deployed to meet production targets without incurring unnecessary expenses.

The problem can be conceptualized as a parallel machine scheduling problem with dif-
ferent speeds and release times. While the primary focus is a tactical decision to determine
the minimum amount of hauling equipment and analyze costs related to completion time,
an adaptation to this scheduling problem under an integer programming model is executed.
According to the notation established by Graham [52], an operations scheduling problem
is defined by three fields (α|β|γ): α represents the system configuration, β the constraints
and characteristics of the system, and γ the objective function. Using this framework and
following the nomenclature described by Pinedo and Hadavi [53], the system configuration
corresponds to parallel machines with different speeds (Qm), where these machines are
the loading equipment with varying processing times. A significant system characteristic
includes the release times (ri) incorporated within the hauling time. The objective function
aims to minimize both costs and completion time. Figure 2 illustrates the schedule of the
ore hauling operation conceptualized as the problem previously mentioned.

Figure 2. Schedule considering ore hauling operation.

3.2. Modeling

Model assumptions. The assumptions of the model are as follows, based on the work
presented by Meza [2]:

• Only one ore unloading point was considered.
• The refueling time is negligible.
• The loading and hauling equipment is available at all times.
• The ore unloading waiting time is insignificant.
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Notation. Table 2 provides the notation for the model proposed, showing the type
and definition, respectively.

Table 2. Notation for the model proposed.

Var Type Definition

M Set Set of loading equipmentM = {1, 2, . . . , m} .
V Set Set of hauling equipment V = {1, 2, . . . , v}.
T Set Set of units of time: T = {1, 2, . . . , h}.
pl

j Parameter Loading time for loading equipment j.
ph

i Parameter Hauling time for hauling equipment i.
P Parameter The production target is the total amount of trips to be made.
h Parameter Time horizon to complete the production target.
kl

j Parameter Cost associated with use loading equipment.
kh

i Parameter Cost associated with use hauling equipment.
xijt Variable Principal decision variable, takes the value of 1 if the hauling equipment i

is using the loading equipment j at time t, 0 otherwise.
yjt Variable The auxiliary decision variable takes the value of 1 if loading equipment j

is using at time t, 0, otherwise.
zit Variable The auxiliary decision variable takes the value of 1 if hauling equipment i

is using at time t, 0, otherwise.
Cmax Variable Completion time of the production target
k Variable Costs associated with equipment usage

Objective function. The first objective function (Equation (1)) seeks to minimize k
associated to use equipment. The second objective function (Equation (2)) seeks to minimize
Cmax of all trips.

min k (1)

min Cmax (2)

Constraints. With respect to constraints, the set of constraints in Equation (3) ensures
the assignment of only one hauling vehicle i to one loading vehicle j at time t. The set of
constraints in Equation (4) ensures only one loading equipment j per hauling equipment i
at time t.

∑
i∈V

xijt ≤ 1 ∀j ∈ M, t ∈ T (3)

∑
j∈M

xijt ≤ 1 ∀i ∈ V , t ∈ T (4)

The set of constraints in Equations (5) and (6) ensures that the loading and hauling
equipment are used for the required duration when assigned.

t+pl
j

∑
τ=t+1

yjτ ≥ (pl
j − 1) · xijt ∀i ∈ V , j ∈ M, t ∈ T \ (t ≤ h− pl

j) (5)

t+pl
j+pj

i

∑
τ=t+1

ziτ ≥ (ph
i + pl

j − 1) · xijt ∀i ∈ V , j ∈ M, t ∈ T \ (t ≤ h− ph
i − pl

j) (6)

The set of constraints in Equations (7) and (8) ensures that loading and hauling
equipment are not double-booked and are used only when available.

xijt ≤ 1− yjt ∀i ∈ V , j ∈ M, t ∈ T (7)

xijt ≤ 1− zit ∀i ∈ V , j ∈ M, t ∈ T (8)
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The set of constraints in Equation (9) ensures Cmax.

Cmax ≥ t · xijt + ph
i + pl

j ∀i ∈ V , j ∈ M, t ∈ T (9)

The set of constraints in Equation (10) ensures that P is met.

V

∑
i

M

∑
j

T

∑
t

xijt ≥ P ∀i ∈ V , j ∈ M, t ∈ T (10)

Equation (11) calculates k.

k =
V

∑
i

T

∑
t

kh
i · zit +

M

∑
j

T

∑
t

kl
j · yjt ∀i ∈ V , j ∈ M, t ∈ T (11)

The set of constraints in Equations (12) and (13) ensures the nature of the variables.

xijt, yjt, zit ∈ {0, 1} ∀i ∈ V , j ∈ M, t ∈ T (12)

Cmax, k ≥ 0 (13)

The proposed model can be used in tactical and operational decision-making processes,
as it accurately specifies both decisions. However, the complexity of this mixed-integer
linear programming model in terms of the amount of integer variables is i·j·t + j·t + i·j, and it
has two more continuous variables. If we analyze the number of constraints, we find a total
of 7·i·j·t + j·t + i·j. The fact that the model relies on binary vectors (to indicate truck start
times and activity periods) inherently increases complexity but also opens the possibility
for (i) the inclusion of valid inequalities to discard solutions that do not fit the structure of
the problem or (ii) decomposition techniques, such as using combinatorial Benders’ cuts,
or adopting a rolling horizon framework [54], to leverage divide and conquer strategies;
these are both part of ongoing research. One could consider reducing the periods, but this
would prevent using these models in control schemes such as those provided by a digital
twin, a technique widespread in mining operations management [55].

3.3. Algorithms for Determining and Evaluating the Optimal Amount of Ore Hauling Equipment

To incorporate the dual objectives of the model of minimizing both the completion
time and cost, an iterative approach was utilized in which models are created using only
one objective function. As shown in Algorithms 1 and 2, the iterative process allows for the
exploration of the trade-off between completion time and costs, providing a set of solutions
that balance both objectives.

Considering the tactical-level analysis, the following procedure was proposed to deter-
mine the optimal amount of hauling equipment, as detailed in Algorithm 1. The algorithm
starts by defining the input data, which includeM, V , T , ph

i , pl
j, h, and P. Then, defining

the output data, which include the minimum number of hauling equipment (vopt), and the
hauling equipment’ assignment to loading equipment (Schedule) including Cmax.

Then, assign v to the magnitude of V , the total number of hauling equipment available
(line 1). The variable Continue is set to true to initiate the loop (line 2). As long as it
remains true, a model is created (considering Equations (2)–(13) of PMSPOHO model,
input data and v), and a Result that minimizes the Cmax is obtained (lines 3–5). A feasibility
evaluation is conducted, where if the Result is feasible, v is reduced by one unit (attempting
to solve the problem with fewer hauling equipment) (lines 6–8). If it is not feasible, vopt is
increased by one unit, and the loop terminates (lines 9–13). This algorithm returns vopt and
Schedule (line 14).
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Algorithm 1 Optimal hauling equipment determinator.

Input:M, V , T , ph
i , pl

j, h, P;
Output: vopt: minimum hauling equipment, Schedule: hauling equipment’ assignment
to loading equipment including the Cmax.

1: v← |V|
2: Continue← true
3: while Continue do
4: model ← Createmodel(Equations(2)–(13), Input, v)
5: Result← Solve(model, Minimize)
6: if IsFeasible(Result) then
7: v← v− 1
8: Result, Schedule
9: else

10: vopt ← v + 1
11: Continue← false
12: end if
13: end while
14: return vopt, Schedule

The following procedure was proposed for an analysis of the relationship between k
and Cmax, detailed in Algorithm 2. This pseudocode allows for observing the behavior of k
as Cmax is incremented. The algorithm starts by defining the input data, which includes
the same factors as in Algorithm 1: kh

i , kl
j, and v. Then, defining the output data includes a

list of costs and a list of termination times (Cmax). Define v (line 1). The modellb is created
(considering Equations (2)–(13) of PMSPOHO model and input data) (line 2), and a Resultlb
from the minimization of Cmaxlb is obtained (line 3), extracting this result (line 4). A modelub
is created (considering Equations (1), (3)–(13) of PMSPOHO model and input data) (line 5),
and a Resultub from the minimization of k is obtained (line 6), extracting Cmaxub for this
result (line 7).

Algorithm 2 Progressive cost–time evaluator

Input:M, V , T , ph
i , pl

j, kh
i , kl

j, h, P, and v;
Output: ListPair(Cmax, k): List of cost respect to Cmax.

1: Define v
2: modellb ← Createmodel(Equations(2)–(13), Input)
3: Resultlb ← Solve(modellb, Minimize)
4: Cmaxlb ← ExtractCmax(Resultlb)
5: modelub ← Createmodel(Equations (1), (3)–(13), Input)
6: Resultub ← Solve(modelub, Minimize)
7: Cmaxub ← ExtractCmax(Resultub)
8: for Cmaxre f in Cmaxlb to Cmaxub do
9: modelre f ← Createmodel(Equations (1), (3)–(8), (10)–(13), Input)

10: Resultre f ← Solve(modelre f , Minimize)
11: Cost← ExtractCost(Resultre f )
12: ListPair(Cmax, k)← AddToList(Cmaxre f , Cost)
13: end for
14: return Cmax, k

A progressive evaluation is carried out that iterates Cmaxre f by 1 from Cmaxlb to
Cmaxub (line 8). For each value, a modelre f is created (considering Equations (1), (3)–(8),
and (10)–(13) of PMSPOHO model and input data) (line 9). Resultre f is obtained by mini-
mizing k for each iteration (line 10); k is extracted and added to a list (Cost) for each corre-
sponding Cmaxre f (lines 11–12). This algorithm returns the list of pairs (Cmaxre f ,k) (lines 14),
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providing a detailed evaluation of how k varies about changes in Cmaxre f . In the algorithm,
Cmaxre f serves as an intermediate reference value to iteratively evaluate the trade-off be-
tween minimizing Cmax and k. This iterative evaluation provides insights into the cost–time
trade-offs in the model.

4. Computational Experiments and Results Analysis

This section presents the computational experiments to evaluate the performance of
the proposed PMSPOHO model and algorithms. All experiments were conducted on a
computer with a Windows 11 operating system, 12th Gen Intel(R) Core(TM) i5-12450H,
2.50 GHz processor, and 8 GB RAM. The Python 3.11 programming language was used for
the development. The Gurobi 10.0.1 commercial optimizer and CBC free optimizer were
used with a search time limit of 3600 s and a GAP of 0.01.

Based on actual data provided in the studies by Meza [2], Vásquez [3], and Anchiraico
and Rojas [4], which include the numbers of loading and hauling equipment, loading
times, hauling times, time horizons, and production targets, 34 experimental instances were
generated. These instances are designed to simulate real-world scenarios, enabling a robust
evaluation of our proposed methodologies under various conditions. This approach ensures
that our experimental setup is based on realistic operational parameters, enhancing the
applicability and relevance of our findings. It is important to note that a direct comparison
with the authors’ studies above was not conducted, as their research methodologies differ
significantly from our proposed approach.

4.1. Tuning the Values for the Optimizer Parameters

Gurobi Optimizer version 10.0.1 features an extensive range of parameters designed
to fine-tune the optimizer performance. Given the vast array of options among possible
configurations, identifying the optimal combination of parameters that enhance the overall
model performance poses a significant challenge. The TuningAPI from Gurobi offers a
valuable tool for exploring various parameter settings that can improve model performance
in specific cases [56].

Considering the procedure indicated by Cuellar-Usaquén et al. [57], a sample of seven
instances was created to identify the appropriate parameter settings for our model using
TuningAPI. This sample includes those instances where the computation time obtained by
the PMSPOHO model using the default parameters (PMSPOHO-D) exceeds the meantime
of its respective class by two standard deviations.

Table 3 shows the results of Gurobi parameter tuning across seven different problem in-
stances. Each table row represents an instance, with columns indicating the specific Gurobi
parameters adjusted for that instance. The parameters include Symmetry, DegenMove,
Heuristics, GomoryPasses, PreDepRow, MIPFocus, Method, CutPasses, and BranchDir.

Table 3. Parameters configurations found for the mathematical model.

Summary Value Parameters

Inst v m P Symmetry DegenMoves Heuristics GomoryPasses PreDepRow MIPFocus Method CutPasses BranchDir Tc-D Tc-T Variation

1 3 2 20 2 0.8 0.79 1.25%
2 6 2 20 2 1.22 1.15 5.74%
3 8 4 81 0 1 1 69.59 55.03 20.92%
4 12 4 81 2 46.54 44.4 4.60%
5 15 4 81 0 32.53 31.64 2.74%
6 8 4 90 1 1 139.22 120.68 13.32%
7 20 4 100 1 81.62 79.9 2.11%

The third instance stands out significantly because it shows the highest variation
(20.92%) between the default computational time (Tc-D) and the tuned computational
time (Tc-T), indicating a significant improvement in performance with the adjusted pa-
rameters. In this instance, the parameters Heuristics, GomoryPasses, and PreDepRow
were adjusted, resulting in a substantial reduction in computation time from 69.59 to
55.03 time units. This adjustment reduced the overall calculation time and optimized the
use of computational resources, making the process more efficient and effective. The con-
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siderable difference between Tc-D and Tc-T underscores the importance of customization
and fine-tuning model parameters to achieve maximum efficiency in solving complex
mathematical problems.

In this instance, the adjusted parameter Heuristics emerges as a key player in acceler-
ating the solving process. By increasing the use of heuristic methods, which are solving
strategies that employ simple and fast rules to generate satisfactory solutions quickly, the
model explored and evaluated potential solutions more efficiently. This approach signifi-
cantly reduced the time required to reach a feasible solution, demonstrating its practicality
and effectiveness. Applying heuristics is a valuable tool, particularly in scenarios where
speed is critical and some precision can be sacrificed for improved resolution speed.

GomoryPasses, another adjusted parameter, controls the amount of Gomory cut passes.
These passes are optimization techniques that strengthen the model linear relaxation,
leading to faster convergence. Adjusting the amount of these passes can significantly impact
the solution efficiency, balancing the need to improve the solution with the additional time
required for each cut. PreDepRow, which handles the preprocessing of dependent rows,
also fundamentally improved efficiency by reducing problem size and enhancing numerical
stability. Effective preprocessing can simplify the model by eliminating redundancies and
reducing overall complexity. In the third instance, adjusting PreDepRow significantly
reduced computational time, noting the importance of proper model management. These
adjustments underscore the importance of tuning parameters to enhance the efficiency
solver, enabling faster and more accurate results.

4.2. Benchmarking Results for Optimizers

Table 4 presents the benchmarking results of optimizers across 34 instances. The in-
stances were organized considering the production target, as an increase in computational
time (Tc) was noted as this target increased. The results were compared between the default
model (PMSPOHO-D), the tuned model (PMSPOHO-T), and the model with the free opti-
mizer (PMSPOHO-CBC). The critical parameters for comparison were Tc and GAP, which
measure the complexity model and the efficiency solver. In this study, the GAP value is
provided directly by the Gurobi optimizer as part of its solution output.

The tuned model (PMSPOHO-T) consistently handles lower computational times than
the other models. This indicates that parameter tuning has significantly improved the
solver efficiency. The GAP, which is the difference between the best-known solution and the
best lower bound found by the solver, is 0.00% for both PMSPOHO-D and PMSPOHO-T,
indicating that the solutions found are optimal. However, PMSPOHO-CBC shows a higher
GAP in several instances, reflecting lower precision and highlighting the limitations of a
commercial optimizer.

PMSPOHO-T stands out with the best results in terms of Tc, solving instances faster
while maintaining solution precision. This starkly contrasts with the model with the free
optimizer (PMSPOHO-CBC), which shows a higher GAP in many cases, thereby highlight-
ing its limitations. It also demonstrates that the problem’s complexity is NP-Hard, meaning
that as instances increase, optimal results could be obtained after significantly longer times,
making a free optimizer an inefficient option for field applications.

Figure 3 compares the computational time (Tc) and Cmax for the PMSPOHO-D, PMSPOHO-
T, and PMSPOHO-CBC optimizers for instance 34. PMSPOHO-D and PMSPOHO-T achieve
the same Cmax of 183, but PMSPOHO-T is more efficient in terms of computational time,
with 671.8 compared to 798.8 for PMSPOHO-D. On the other hand, PMSPOHO-CBC shows
the worst performance, with a Cmax of 229 and a computational time of 3600. This indicates
that PMSPOHO-T is the most efficient among the three evaluated optimizers, achieving a
good balance between computational time and Cmax.
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Table 4. Benchmarking results for optimizers per instances.

PMSPOHO-D PMSPOHO-T PMSPOHO-CBC

Instance P v m Cmax Tc GAP Cmax Tc GAP Cmax Tc GAP

1 20 20 2 29 14.52 0.00% 29 9.73 0.00% 30 3600 4.58%
2 20 16 2 29 9.51 0.00% 29 5.92 0.00% 30 3600 4.64%
3 20 10 2 29 3.82 0.00% 29 2.91 0.00% 31 3600 5.21%
4 20 8 2 29 2.51 0.00% 29 1.85 0.00% 30 3600 4.82%
5 20 6 2 31 1.6 0.00% 31 1.58 0.00% 32 3600 3.77%
6 20 5 2 34 1.41 0.00% 34 1.03 0.00% 35 3600 2.36%
7 20 4 2 40 1.13 0.00% 40 1.01 0.00% 41 3600 2.56%
8 20 3 2 51 0.9 0.00% 51 1.82 0.00% 51 1846 0.00%
9 81 20 4 55 28.25 0.00% 55 26.74 0.00% 60 3600 8.52%

10 81 16 4 55 18.34 0.00% 55 18.61 0.00% 60 3600 8.20%
11 81 10 4 64 49.23 0.00% 64 46.08 0.00% 68 3600 6.45%
12 81 8 4 78 69.59 0.00% 78 50.86 0.00% 82 3600 5.50%
13 81 6 4 100 66.54 0.00% 100 63.01 0.00% 106 3600 5.72%
14 81 4 4 147 76.29 0.00% 147 59.78 0.00% 152 3600 3.27%
15 81 20 6 38 42.12 0.00% 38 42.26 0.00% 42 3600 10.25%
16 81 16 6 42 318.67 0.00% 42 130.11 0.00% 46 3600 9.86%
17 81 10 6 63 94.3 0.00% 63 76.82 0.00% 70 3600 10.52%
18 81 8 6 77 100.46 0.00% 77 100.13 0.00% 85 3600 10.73%
19 81 6 6 98 145.77 0.00% 98 90.32 0.00% 110 3600 12.72%
20 90 5 3 130 42.98 0.00% 130 26.41 0.00% 163 3600 25.32%
21 90 4 3 161 83.77 0.00% 161 40.36 0.00% 202 3600 25.47%
22 90 3 3 212 44.52 0.00% 212 30.78 0.00% 259 3600 22.23%
23 200 19 4 125 1784.21 0.00% 125 1627.21 0.00% 161 3600 29.03%
24 200 18 4 125 1693.64 0.00% 125 1437.64 0.00% 161 3600 28.53%
25 200 17 4 125 1634.63 0.00% 125 1463.63 0.00% 161 3600 28.93%
26 200 16 4 125 1640.24 0.00% 125 1400.24 0.00% 161 3600 28.73%
27 200 15 4 125 1584.04 0.00% 125 1437.04 0.00% 164 3600 31.45%
28 200 14 4 125 1554.43 0.00% 125 1291.43 0.00% 159 3600 27.32%
29 200 13 4 125 1532.23 0.00% 125 1349.23 0.00% 161 3600 29.05%
30 200 12 4 151 1524.64 0.00% 151 1372.64 0.00% 194 3600 28.63%
31 200 11 4 151 1279.45 0.00% 151 1019.45 0.00% 189 3600 25.43%
32 200 10 4 151 1017.6 0.00% 151 746.6 0.00% 186 3600 23.23%
33 200 9 4 166 865.6 0.00% 166 615.6 0.00% 203 3600 22.01%
34 200 8 4 183 798.8 0.00% 183 671.8 0.00% 229 3600 24.93%

Figure 3. Comparison of computational time and Cmax for instance 34.

4.3. Tactical Approach Insights

Table 5 shows the efficiency of the applied algorithms. Algorithm 1 calculates the
minimum number of hauling equipment, resulting in eight equipment. On the other
hand, Algorithm 2 performs a k-Cmax evaluation, allowing for a more appropriate analysis
between these two variables. This improves tactical decision-making by showing how
varying Cmax impacts k and vice-versa. Minimizing Cmax results in significantly reduced
values (between 33 and 49), although an increase in k enables planners to balance temporal
efficiency and operational costs. Algorithm 2 provides a more comprehensive and balanced
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perspective for tactical decision-making and is supported by Algorithm 1, which defines
the number of resources needed to meet the production target.

Table 5. Results of optimizing the proposed algorithms.

Minimize k Minimize Cmax

v m P Cmaxub k Tc Cmaxlb k Tc

19 4 200 51 2350 151.46 33 6998 54.97
18 4 200 51 2350 219.68 33 6648 46.31
17 4 200 51 2350 117.08 33 6298 38.57
16 4 200 51 2350 99.44 33 5948 33.81
15 4 200 51 2350 125.16 33 5598 31.16
14 4 200 51 2350 162.80 33 5248 26.78
13 4 200 51 2350 75.34 34 4898 24.63
12 4 200 51 2350 58.55 35 4548 20.73
11 4 200 51 2350 111.22 37 4198 21.40
10 4 200 51 2350 103.30 40 3848 32.76
9 4 200 50 2350 44.62 44 3498 19.40
8 4 200 51 2350 76.94 49 3148 15.93

As completion times shorten, costs rise disproportionately, indicating a trade-off be-
tween time and cost efficiency in ore hauling operations. The steeper curves at lower
completion times imply significant cost increases for faster operations, while the flatter
slopes at higher times suggest a minimum cost threshold. The broader range of comple-
tion times with more hauling equipment means that, although additional equipment can
speed up operations, it also incurs higher costs, highlighting the importance of balancing
budgetary limitations with operational urgency in scheduling mining operations.

Figure 4 shows the relationship between costs and completion time for different
numbers of hauling equipment. There is a marked cost decrease with only a slight increase
in completion time. A tactical approach to determining the minimum amount of hauling
equipment needed to meet production targets should consider not only cost and completion
time but also the slope of each line, which supports the application of the algorithms
proposed in this paper. For instance, moving from nine to eight hauling units marginally
increases completion time while significantly reducing cost. This suggests that operating
with eight hauling units could be an effective tactical decision if the additional time does
not compromise other priorities of the ore hauling operation.

Figure 4. Costs k vs. completion time Cmax for the instances proposed in Table 5.
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Decision-makers must weigh the cost increase associated with using more equipment
against reducing hauling time. Beyond a certain point, adding more hauling units di-
minishes the benefit of lowering completion time but incurs substantially higher costs.
Pinpointing the moment when the additional cost no longer justifies the decrease in hauling
time is critical for optimizing operations and managing resources efficiently.

4.4. Operational Approach Insights

Figure 5 shows the schedule, for instance 34, which considers eight hauling and four
loading equipment. This visualizes the ore loading program for a mining operation during
the first 50 trips of the production target. It is interesting to see how the allocation is
organized to ensure that the minimum necessary amount of hauling equipment is kept in
constant motion, indicating a careful assessment of loading times and intervals between
tasks. This strategy ensures that no loading equipment remains idle and that the hauling
equipment is effectively distributed to meet the production target.

By minimizing the amount of hauling equipment, the operation can become more
cost-effective and improve logistics by reducing congestion and potential bottlenecks in
the ore hauling operation. This balanced approach between efficiency and effectiveness
in scheduling is crucial for a successful operation that adapts to the dynamic and often
unpredictable demands of mining.

Figure 5. Schedule for instance 34 considering minimize completion time Cmax.

Table 6 provides a detailed distribution of loading and hauling equipment utilization
in a mining operation, highlighting the allocation and usage of these resources in pro-
duction. It is observed that loading equipment two and three are the most utilized, with
utilization percentages of 32% and 30%, respectively, indicating high demand and frequent
use. In contrast, loading vehicle four is the least utilized, operating at only 12% utilization.
This suggests that resources are not being fully optimized, particularly considering that
loading vehicle four might be the most costly to operate, as less frequently used equip-
ment typically requires regular maintenance and occupies valuable space that could be
better utilized.

The under-utilization of the costly loading equipment fourraises significant cost man-
agement and operational efficiency considerations. The high cost of this equipment may
be due to specialized features that necessitate more sophisticated maintenance or a higher
initial investment. However, its sub-optimal utilization implies that this investment needs
to yield the expected returns, which is critical in operations aiming to maximize efficiency
and profitability. This situation underscores the urgent need to reassess task distribution
and resource allocation to ensure that all loading equipment are utilized in a manner
that justifies their cost, thereby optimizing the entire operation and reducing potential
resource wastage.

The results demonstrate that the proposed model is efficient in terms of computational
time and that the proposed algorithms are useful tactical tools for more effective decision-
making regarding the allocation of hauling equipment necessary to achieve the targets set
in ore transport operations. However, it is essential to acknowledge that analyzing more
significant instances as a mathematical model could complicate the time required to obtain
results, even with the optimizer parameters finely tuned. Therefore, it will be essential
to extend the solution search periods and develop approximate methods to reduce these
times and attain practical and executable solutions.
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Table 6. Loading and hauling equipment utilization.

Loading Equipment

Hauling Equipment 1 2 3 4 Total Utilization

0 3 2 1 0 6 12%
1 3 2 1 1 7 14%
2 1 1 3 0 5 10%
3 1 1 2 2 6 12%
4 1 4 2 0 7 14%
5 2 2 3 0 7 14%
6 1 1 2 2 6 12%
7 1 3 1 1 6 12%

Total 13 16 15 6 50

Utilization 26% 32% 30% 12%

5. Conclusions

The proposed model demonstrates significant efficiency in terms of computational
time, effectively balancing cost and completion time in ore hauling operations. Applying
the two algorithms provided tactical tools that enhance decision-making regarding the
allocation of hauling equipment. The model efficiency is evident in the computational
results, showing that parameter tuning can significantly improve solver performance.
The tuned model consistently handled lower computational times than default settings,
highlighting the importance of careful parameter adjustments. Furthermore, incorporating
dynamic release times and different speeds of hauling equipment in the model adds a layer
of realism, ensuring that the scheduling reflects actual operational conditions. This aspect
further optimizes the allocation process, making the model computationally robust.

Despite the results, the model has limitations. A primary limitation is its scalability.
As the size of the instances increases, the time required to obtain results can become
prohibitive, even with optimized parameters. This issue is inherent in mathematical models
dealing with complex, NP-hard problems. Additionally, the reliance of the model on exact
optimization methods may only sometimes be practical for real-time decision-making in
dynamic environments where quick responses are essential.

Future work should focus on extending solution search periods and developing ap-
proximate methods to address these limitations. These methods, including heuristic or
metaheuristic approaches, can reduce computational times and provide near-optimal prac-
tical and executable solutions in real-world scenarios. Additionally, integrating machine
learning techniques to predict and dynamically adjust parameters could enhance the
model’s performance and adaptability [58].
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Abstract: Because disruption happens unpredictably and generates serious impact in supply chain
and production environments in the real world, it is important to develop approaches to handle
disruption. This paper investigates disruption handling in part input sequencing of flexible manufac-
turing systems (FMSs). An algorithm is proposed for FMS part input sequencing to handle machine
breakage. Evaluation is performed for the proposed algorithm by simulation experiments and result
analyses. Finally, conclusions are summarized with managerial implications discussed and further
research works suggested.

Keywords: disruption handling; machine breakage; part input sequencing; FMS scheduling; dynamic
scheduling; reactive scheduling

1. Introduction

Disruption events occur unpredictably in supply chain (SC) and production environ-
ments. Unexpected events in real-world manufacturing environments include resource-
related events and operation-related events [1]. Disruption happens in various fields in
supply chain and production environments. Supply disruption, production disruption,
and transportation disruption are examples of disruption forms [2]. With the increase in SC
activities and global business activities, the impact of disruption could be substantial [3].
Because of the uncertainty in disruption event occurrence and the seriousness of disruption
impact, disruption handling is an important issue. Manufacturing systems should be
flexible so as to absorb disturbance on a short horizon [1].

Flexible manufacturing systems (FMSs) produce a middle volume and a wide variety
of part types [4,5]. The systems aim to achieve efficiency of mass production systems
and flexibility of job shops. FMSs possess not only computer numerical control machines
but also automated material handling devices. These devices include automated guided
vehicles, rail-guided vehicles, robots, and so forth. Researchers categorize different types
of FMSs mainly as flexible flow systems and general flexible machining systems [6]. It is
very complicated to manage FMS production. An FMS with capacity constraint may not
produce orders in time, resulting in some parts having to be sent to a job shop [7].

Supply chain engineering is a very important issue in the area of production research.
Because of the serious impact of disruption in supply chains and in production systems,
research efforts are placed on disruption handling in supply chains and in production
systems. The mitigation of disruption risk can be made proactive or reactive. Therefore,
there are two types of disruption handling approaches for production scheduling, that is,
proactive scheduling and reactive scheduling [8]. Proactive scheduling takes into account
unexpected disruption to build protection when schedules are generated. Reactive schedul-
ing adjusts schedules when unexpected disruption events happen. Dynamic systems can
be managed by applying advanced information technology such as Radio Frequency Iden-
tification (RFID). Therefore, the application of advanced information technology makes
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it possible to obtain and process information to handle disruption reactively. This paper
applies reactive scheduling to handle machine disruption in FMS part input sequencing.
The paper proposes an algorithm to provide a solution for part input sequencing of FMSs
with machine breakage.

The remainder of the paper is described in the following. Section 2 presents related
works. In Section 3, an algorithm for part input sequencing of FMSs to handle machine
breakage is proposed. Evaluation with the analyses of the results of the proposed algorithm
is described in Section 4. Conclusions, managerial implications, and further works are
summarized finally in Section 5.

2. Related Works

Disruption handling in supply chain environments has been investigated by re-
searchers. For example, selection of part suppliers and schedule of customer orders over
a planning horizon were studied under disruption risk in supply chains with a solu-
tion approach proposed to optimize the expected cost and customer service level [9]. A
mixed-integer programming (MIP)-based approach was developed for decision- making to
simultaneously select part suppliers and schedule production and delivery in an SC with
disruption risk [10]. The adjustment in order activity in a four-echelon SC for recovery from
disruption was investigated with dynamic order-up-to policies developed to obtain the
benefits of the dynamic policies incorporated by a metaheuristic parameter search [3]. A
two-period modeling approach and a multi-period modeling approach with mixed-integer
programming were developed with supply chain disruption risk, requiring a very short
computational time to obtain proven optimal solutions for reasonably sized problems [11].
Production ordering dynamics in the situation of disruption were suggested after studying
production ordering behavior in a supply chain under disruption risk [12]. Integration of lot
sizing and supplier selection under disruption risk with lead time uncertainty was studied
with reliability and the price of suppliers considered and polyhedral-budgeted uncertainty
sets applied to obtain a lot size for minimizing total cost [13]. A novel quantitative approach
was developed for SC viability under ripple effect with the two conflicting objectives of
cost and customer service level considered to obtain very high computation efficiency [14].

Disruption handling in production systems has been studied. For example, the lot-
sizing and sequencing problem was investigated for production lines considering random
machine breakage with an optimal approach developed based on the decomposition
of the problem [15]. A model and a solution approach were developed for production
inventory management in an imperfect production environment with numerical examples
demonstrated for real-time disruption recovery [16]. The continuous flow problem with
processing capacity disruption was studied with schedule robustness considered and a
method developed for schedule robustness analysis based on attainable sets [8]. A flexible
production inventory model was proposed to manage production and inventory with the
consideration of disruptions of demand and production, for a manufacturer to decrease
losses [17]. A model was formulated by applying genetic algorithm as well as pattern
search to handle production disruption for an imperfect production inventory system with
multiple products and a single stage [18]. A heuristic-based column generation approach
was proposed for production planning to mitigate disruption from demand uncertainty for
flexible manufacturing systems with good numerical results [19].

Scheduling in flexible manufacturing environments with disruption has been investi-
gated by researchers. The following provides a brief summary. In particular, flexible job
shop (FJS) scheduling considering machine disruption is summarized. In early research,
reactive scheduling policies were proposed, such as when-to-schedule, how-to-schedule,
and so forth, for handling machine breakage and processing time variation in a flexible
manufacturing system [20]. A genetic hybrid control architecture ORCA was proposed
for an FMS, which could provide the ability to switch between a hierarchy and heterarchy
architecture when an unexpected event occurs [21]. A game model was developed for the
flexible job shop scheduling problem subject to machine breakdown with two objectives of
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robustness and stability considered in their game procedure in rescheduling [22]. Evolu-
tionary algorithms were applied to the FJS scheduling problem for improving makespan
and stability with a comparison of the two proposed algorithms on example problems [23].
A hybrid approach was proposed for the FJS scheduling problem in dynamic environ-
ments for scheduling and rescheduling in disruption and experiments were performed for
evaluation with the result of the competitiveness of the approach obtained [24]. Schedul-
ing/rescheduling of flexible job shops were considered for machine recovery with an
improved Jaya algorithm developed to minimize makespan in scheduling and to minimize
both instability and makespan in rescheduling, generating the improved Jaya algorithm
better than NSGAII and ISFLA in the non-dominated results [25]. Production scheduling
and maintenance planning were considered in a flexible job shop in the situation of ma-
chine deterioration and a real-time system was proposed, which used a hybrid GA, an
integrated model, and hybrid rescheduling policies [26]. A hybrid deep Q-network was
built for dynamic FJS scheduling and for training to face disruption and experiments were
performed to compare the method to scheduling rules, demonstrating the superiority of
the proposed method [27]. A hierarchical-based deep reinforcement learning method was
proposed for FJS scheduling and rescheduling and comparisons were made between the
method and scheduling rules and other dynamic methods, demonstrating the superiority
of the proposed method [28]. A flexible job shop scheduling method was proposed to
consider machine breakdown and other dynamic events and to apply their dynamic event
response strategy and their multi-objective model and to apply a multi-objective particle
swam arithmetic optimization [29]. Even though disruption handling in FJS scheduling
and in FMS scheduling has been investigated by researchers, the investigation of disruption
handling in FMS part input sequencing is not seen. This paper investigates disruption
handling in FMS part input sequencing. An algorithm for part input sequencing of FMSs
with machine breakage is proposed.

3. Proposed Algorithm

The application of segment set functions to FMS scheduling problems has been con-
ducted. For example, the functions have been utilized for developing the simultaneous part
input sequencing and robot scheduling algorithm to simultaneously sequence and input
parts and to schedule a robot in FMSs [5]. The functions are utilized here in developing
the proposed algorithm. The functions are described by discrete mathematics. Discrete
mathematics involves algorithm, logic, Boolean algebras, and so forth [30].

Segment set functions include the concepts of sets, domains, ranges, parts, and so
forth. The functions consist of pair-wise elements of domains and ranges. For a simple set
function, the 1st element of the function is a part in a set. The 2nd element of the function
is an integer number representing the range of the function. For a transform function, the
1st element of the function is also a part in a set. The 2nd element of the function is the
range of the function. The domain of the function is in multiple regions. The range of the
function has segment values corresponding to different sets of parts. For a weight function,
the 1st element of the function is similarly a part in a set. The 2nd element of the function is
the range of the function. Different weights are assigned to the function to correspond to
different sets of parts. For an overall function, the 1st element of the function is similarly a
part in a set. The 2nd element of the function is similarly the range of the function. The
range of the function has segment values corresponding to different sets.

A set of parts in the preprocess area of an FMS at time t are denoted as Ax(t), Ax(t) ={
bhi
∣∣gbhix(t) = 1

}
, where x is a part set indicator, bhi is part h of order i, i is an order index,

i = 1, 2, · · · , h is an part index, h = 1, 2, · · · ri, ri is the production requirement for order

i; gbhix(t) is the part set status, gbhix(t) =

{
1, part bhi is in set Ax(t);
0, otherwise.

.
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Ax(t) is classified as the other two sets of Aa(t) and Ab(t). Subset Aa(t) is a balanced
set. Subset Ab(t) is an unbalanced set.

Aa(t) =
{

bhi
∣∣bhi ∈ Ax(t) ∧ gbhia(t) = 1∧Mbhi1 = ĵ

}
, (1)

Ab(t) =
{

bhi
∣∣bhi ∈ Ax(t) ∧ gbhib(t) = 1∧Mbhi1 6= ĵ

}
, (2)

Aa(t) and Ab(t) are classified as other four sets, Au(t), Av(t), Am(t), and An(t).
Among those, Au(t) and Av(t) are subsets of Aa(t).

Au(t) =
{

bhi
∣∣bhi ∈ Aa(t) ∧ gbhiu(t) = 1∧Mbhi1 = ĵ ∧Mbhi2 = j̃

}
, (3)

Av(t) =
{

bhi
∣∣bhi ∈ Aa(t) ∧ gbhiv(t) = 1∧Mbhi1 = ĵ ∧Mbhi2 6= j̃

}
, (4)

Am(t) and An(t) are subsets of Ab(t).

Am(t) =
{

bhi
∣∣bhi ∈ Ab(t) ∧ gbhim(t) = 1∧Mbhi1 6= ĵ ∧Mbhi1 = j̃

}
. (5)

An(t) =
{

bhi
∣∣bhi ∈ Ab(t) ∧ gbhin(t) = 1∧Mbhi1 6= ĵ ∧Mbhi1 6= j̃

}
. (6)

The symbols in the above equations are explained in the following. gbhiq(t) indicates

the status of a part set, gbhiq(t) =

{
1, part bhi is in set Aq(t);
0, otherwise.

Mbhik expresses the

machine for k of part bhi, k is an operation index. ĵ expresses the machine that has the
minimum of ηj(t). j̃ expresses the machine that has the second minimum of ηj(t). j is
a machine indicator. ηj(t) expresses the workload of machine j. For the above sets, the
segment set functions can be obtained. A detailed description of these segment set functions
is provided in [5].

An algorithm is proposed by applying the segment set functions to part input sequenc-
ing of FMSs for handling machine breakage. The proposed algorithm is segment set-based.
It also applies the earliest due date scheduling rule for machine scheduling. Its aim is to
achieve part input sequencing of FMSs to handle a machine breakage. It is simply called
the machine disruption handling algorithm (MDH Algorithm, Algorithm 1). The proposed
algorithm is depicted as follows. Additional symbols utilized in the algorithm are listed in
Table 1.

Algorithm 1: Machine Disruption Handling Algorithm

Step 1. Initialize t = t0, ρ(t) = 0, δ(t) = 0, mr(t) = 0, mj(t) = 1, j ∈ J.
Step 2. Check the current t, If t ≥ T, Stop.
Step 3. Check the current status of part bhi. If part bhi finishes processing, δ(t) = 1, then t = chi.

If δ(t) = 0, go to Step 10.
Step 4. Obtain machine status. mj(t), j ∈ J. If ∀j ∈ J, mj(t) ∨mr(t) = 0, then identify and

remove broken machine. Remove parts from broken machine.

BM(t) =
{

j
∣∣j ∈ J ∨mj(t) = 0

}
, t = tp, mr(t) = 1.

Step 5. Place parts in preprocess area in Ax(t), Ax(t) =
{

bhi
∣∣gbhi x(t) = 1

}
. Update parts at

BM(t) in set Ae(t), Ae(t) =
{

bhi
∣∣gbhie(t) = 1

}
. Update parts in Ax(t) for not processing at BM(t)

in set Ao(t), Ao(t) =
{

bhi
∣∣bhi ∈ Ax(t) ∧ gbhio(t) = 1

}
. Update parts in set Ax(t) for processing at

BM(t) in set Ac(t), Ac(t) =
{

bhi
∣∣bhi ∈ Ax(t) ∧ gbhic(t) = 1

}
.

Step 6. If (mr(t) 6= 0) ∧ (Ao(t) 6= φ), then Ay(t) =
{

bhi
∣∣bhi ∈ Ao(t)

}
, go to Step 7, else if

(mr(t) = 0) ∧ (Ae(t) 6= φ), then Ay(t) =
{

bhi
∣∣bhi ∈ Ae(t)

}
, go to Step 7, else if

(mr(t) = 0) ∧ (Ac(t) 6= φ) ∨ (mr(t) = 0) ∧ (Ao(t) 6= φ), then
Ay(t) =

{
bhi
∣∣{bhi ∈ Ac(t)

}
∪
{

bhi ∈ Ao(t)
}}

.
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Step 7. Obtain workload in the FMS at time t. Obtain the least workload machine,

j̃ =
{

j
∣∣j ∈ J ∧ ηj(t) = min

j∈J
ηj(t)

}
. Also, obtain the 2nd least workload machine

j̃ =

{
j
∣∣j ∈ J ∧ ηj(t) = min

j∈J,j 6= ĵ
ηj(t)

}
. Ax(t) = Ay(t). Apply Equation (1) to (6) to obtain subsets

Aq(t) for q = a, b, also for q = u, v, m, n. gbhiq(t) = 1, for q = x, a, b, also for q = u, v, m, n.
Step 8. Obtain segment set functions by equations in [5]. Obtain the simple set functions λq of

set set Aq(t) by Equation (13) for q = x, a, b, also for q = u, v, m, n. Obtain the transform function
λ by Equations (14) and (19). Assign weights ξq for q = u, v, m, n. ξu = −5K for Au(t), ξv = −3K
for Av(t), ξm = −K for Am(t), ξn = 0 for An(t). K = 0.5S. Obtain the weight function λ̃ applying
Equations (15) and (18). Obtain the overall function λ̂ by Equations (16), (17) and (20).

Step 9. Obtain the minimal value of λ̂, λ̂(t) = min
bhi∈Ax(t)

{
λ̂q(t, bhi), q = u, v, m, n

}
. Obtain the

input part

b∗ =
{

bhi|bhi ∈ Ax(t) ∧ ahi = min
bhi∈Ax(t)

{
ahi|λ̂q(t, bhi) = λ̂(t), q = u, v, m, n

}}
, δ(t) = 0. u(t) =

mhi1 + t, t = u(t).
Step 10. If ρ(t) = 1, u(t) = fbhik(t), t = u.(t). Obtain mbhik(t), g = mbhik(t), ρ(t) = 0, Obtain

machine queue set Ag(t) =
{

bhi
∣∣gbhi g(t) = 1

}
, else go to Step 2.

Step 11. Identify the part to be processed in the following.

p∗ =

{
bhi|bhi ∈ Ag(t) ∧ ahi = min

bhi∈A\g(t)

{
ahi
∣∣dhi = min

bhi∈Ag(t)
dhi

}}
, gbhi g(t) = 0, go to Step 2.

Table 1. Additional symbols utilized in Algorithm 1.

Notation Explanation

Indices and Sets
g Machine queue set indicator
J Machine set, J = {1,2,· · · ,M}
q Part set indicator

Parameters
ahi Arrival time of bhi
dhi Due date of bhi
K Constant
M Number of machines

mhik Robot move time for k of bhi
S Size of preprocess area
T Production cycle
t0 Initial time
ξq Weight of Aq(t)

Variables
Ac(t) Part set for processing at BM(t)
Ae(t) Part set needs repairing at t
Ag(t) Machine queue set g at t
Ao(t) Part set for not processing at BM(t)
Aq(t) Part set q at t
Ay(t) Part set y at t

b∗ Part for inputting
BM(t) Broken machine at t

chi Completion time of bhi
fbhik(t) Completion time of k of bhi at t
gbhi g(t) gbhi g(t) =

{
1, bhi is in Ag(t);
0, otherwise.

gbhiq(t) gbhiq(t) =
{

1, bhi is in Aq(t);
0, otherwise.

mbhik(t) Machine finishing k of bhi at t
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Notation Explanation

mj(t)
Machine operating status if it is available at t

mj(t) =

{
1, machine j is available at t;
0, otherwise.

mr(t)
Machine repair status if a broken machine is repairing at t

mr(t) =

{
1, a brokrn machine is repairing at t;
0, otherwise.

p∗ Part for processing
tp Machine broken time

δ(t)
Part processing status when a part finishes its processing at t

δ(t) =

{
1, a part finishes its processing at t;
0, otherwise.

λ Transform function
λ̃ Weight function
λ̂ Overall function
λq Simple set function for Aq(t)

λ̂(t) Minimal value of λ̂

λ̂(t, bhi) Range of λ̂ for bhi at t
µ(t) Temporary completion time

ρ(t)
Part operation status when a part finishes an operation at t

ρ(t) =

{
1, a part finishs an operation at t;
0, otherwise.

The proposed MDH Algorithm (Algorithm 1) is a dynamic algorithm. It utilizes the
information of the dynamic workload to make an input decision. The dynamic workload
is described in [5]. When a part completes operations, Algorithm 1 then inputs a part
dynamically. The proposed algorithm identifies a broken machine on an FMS shop floor.
It also identifies part processing at a broken machine. The algorithm handles machine
breakage according to a different part processing status at a broken machine to identify
parts for inputting. Advanced information technology like RFID can be applied for the
implementation of a shop floor monitoring system. The shop floor monitoring system
collects and processes dynamic information on an FMS shop floor. The proposed algorithm
runs with the shop floor monitoring system that applies RFID to identify and handle
machine breakage.

4. Evaluation with Result Analyses

The evaluation of the proposed algorithm is based on a simulation. It is difficult to
simulate machine breakage and repair in flexible manufacturing systems in real-world
production environments. Therefore, the proposed Algorithm 1 is evaluated by simulation
experiments and statistical analyses in the situation with no machine breakage. The
proposed algorithm is compared to an FMS part input sequencing algorithm, the state-
dependent part input algorithm (SPI algorithm) in the literature [31]. The compared
algorithm, the SPI algorithm (Algorithm A1), is provided in Appendix A.

The simulation model of the FMS and the simulation experiment settings are the
same as those in [5,31]. One of the FMS scenarios in the numerical study in [31] does
not obtain the best or the worst results among the four scenarios studied. This scenario
was used for numerical study in [5]. This scenario is also utilized here for evaluating the
proposed algorithm. The data used for evaluation are provided in Appendix B. Due dates
for parts are dhi = 7500 + U(0, 6500). The adjustable constant is 7500 s. The uniformly
distributed random variable is in the range of 0 to 6500 s. The parameters are set according
to preliminary experiments so that the FMS generates approximately thirty percent of
tardy parts.
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Two approaches are compared using common random number technique for each pair
of approaches so as to decrease variance. Ten independent simulation runs are performed
with terminating simulation used. The simulation time per run for each approach is
200,000 s or 3333 min. There are more than 1000 parts produced during this simulation
time. The system is in a steady state.

The performance measures used for evaluating the proposed algorithm include TP,
MF, and RU. TP represents total parts produced, that is, the total number of parts produced
in a production cycle. MF represents mean flowtime, that is, the total flowtime divided by
the total parts produced. RU represents robot utilization, that is, the sum of the total time
of robot moves divided by a production cycle.

The simulation data of TP, MF, and RU are analyzed. Averages of the performance mea-
sures TP, MF, and RU of Algorithm 1 from 10 independent simulation runs are displayed in
Table 2. Averages of the performance measures TP, MF, and RU of Algorithm A1 from 10
independent simulation runs are also displayed in Table 2. The absolute improvement of
Algorithm 1 versus Algorithm A1 is computed. The relative improvement of Algorithm 1
versus Algorithm A1 is also computed. The following equations are utilized for computing
the absolute improvement and the relative improvement.

ω =
(
∑10

r=1(ψr − ϕr)
)

/10, (7)

v =
(
∑10

r=1(ψr − ϕr)/ϕr

)
∗ 10, (8)

where ω is absolute improvement. v is relative improvement (%). r is simulation run index.
ψr is the performance measure of approach ψ in simulation run r. ϕr is the performance
measure of approach ϕ in simulation run r. The absolute improvement and relative im-
provement of Algorithm 1 versus Algorithm A1 for all performance measures TP, MF, and
RU are also in Table 2.

Table 2. Comparison of Algorithm 1 to Algorithm A1.

Measure TP
(Parts)

MF
(Minutes)

RU
(%)

Algorithm 1 1254.9 86.38 71.03
Algorithm A1 1251.8 87.36 70.87

ω 3.1 0.98 0.16
v (%) 0.25 1.12 0.23

Test statistic 1.4 * 2.44 * 1.17
Note: A bold number indicates the improvement of a performance measure. * indicates significant improvement
of a performance measure.

It can be seen from the table that the averages of TP, MF, and RU by the proposed
Algorithm 1 are 1254.9 parts, 86.4 min, and 71.03%, respectively. The averages of TP,
MF, and RU by the comparative Algorithm A1 are 1251.8 parts, 87.4 min, and 70.87%,
respectively. Algorithm 1 has better performance than Algorithm A1 for all performance
measures of TP, MF, and RU as shown in the table. In the table, the absolute improvements
ω of TP, MF, and RU by Algorithm 1 versus Algorithm A1 are 3.1 parts, 0.98 min, and
0.16%, respectively. The relative improvements v of TP, MF, and RU for Algorithm 1 versus
Algorithm A1 are 0.25 parts, 1.12 min, and 0.23%, respectively. The absolute and relative
improvements in the table display the improvements of all the performance measures: TP,
MF, and RU. The values in the table display that all performance measures obtained by
Algorithm 1 are better than those obtained by Algorithm A1.

Significance tests are applied. The paired t-tests are conducted. The significance level
is 0.1. The t-test statistic has the critical value of 1.37 at a significance level of 0.1. The test
statistics obtained for the relative improvements by Algorithm 1 are 1.4, 2.44, and 1.17 for
TP, MF, and RU, respectively, as illustrated in Table 2. The results show that TP and MF are
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improved significantly. Because MF improves, parts are produced faster with more parts
produced. That TP and MF are significantly improved indicates a significant production
increase. The results indicate that production is significantly increased by Algorithm 1 in
comparison to Algorithm A1.

In summary, the comparative results show significant production increase by Algo-
rithm 1 compared to Algorithm A1. All performance measures of TP, MF, and RU obtained
by Algorithm 1 show improvements in comparison to the comparative Algorithm A1. The
comparative results indicate that the performance of Algorithm 1 is improved compared to
Algorithm A1. That is, Algorithm 1 is superior to Algorithm A1 from the literature in the
situation with no machine breakage.

5. Conclusions and Future Work

Disruption happens in the real world in supply chain and production environments.
This paper studies disruption handling of machine breakage in FMS part input sequencing.
The MDH Algorithm is proposed for part input sequencing of FMSs with machine breakage.
The proposed algorithm is based on reactive scheduling. Because of the difficulty in
simulating FMS machine breakage and repair in real-world production environments, the
proposed algorithm is evaluated in a situation with no machine breakage. The proposed
algorithm is compared to an existing FMS part input sequencing algorithm from the
literature, the state-dependent part input algorithm. The comparative results indicate that
the proposed MDH Algorithm improves the performance significantly, generating the
significant increase in total parts produced and mean flowtime decrease in the situation
with no machine breakage. The evaluation results indicate the superiority of the MDH
Algorithm in comparison to the state-dependent part input algorithm in terms of total parts
produced, mean flowtime, and robot utilization in the situation with no machine breakage.

This paper contributes an applicable and effective algorithm for part input sequencing
of FMSs to handle machine breakage. Managerial implications include the following. The
proposed algorithm provides an applicable approach to the managers of FMSs to make
FMS part input sequencing decisions for handling machine breakage. Disruption usually
happens unpredictably in the real world. Real-time decision making applying advanced
information technology such as RFID makes it possible to detect and handle disruption
reactively and quickly. The proposed algorithm makes it possible to realize real-time
decision making for part input sequencing of FMSs with machine breakage.

There are more random factors that affect FMS part input sequencing such as high-tech
devices added on an FMS shop floor and rushed orders arriving at an FMS. Suggestions for
future research could be to develop more effective algorithms to handle more situations
of disruption in FMS part input sequencing. Additional suggestions for future research
could be the development of decision support systems for part input sequencing of FMSs
to handle machine disruption.
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Appendix A

Algorithm A1: State-Dependent Part Input Algorithm

Step 1. Form part set M(t) from waiting parts in the preprocess area of an FMS at time t.
Step 2. Partition the parts in M(t) into subsets of balanced set X(t) and unbalanced set

Y(t). X(t) possesses the parts having their first operation at the least loaded machine to help
balance workload. Y(t) possesses the parts not having the first operation at the least loaded
machine. X(t) and Y(t) are further divided into another two subsets individually so that
M(t) = ∪qGq(t), q = β, γ, µ, ν. X(t) = Gβ(t) ∪ Gγ(t). Y(t) = Gµ(t) ∪ Gν(t).

Step 3. Obtain the following simple set functions, λe for M(t), λs for balanced set, and λp for
unbalanced set,
λe : M(t)→ I. λe =

{(
αi, λe(t, αi)

)
| αi ∈ M(t), λe(t, αi) ∈ I

}
. λs : X(t)→ I. λs ={(

αi, λs(t, αi)
)
| αi ∈ X(t), λs(t, αi) ∈ I

}
. λp : Y(t)→ I. λp ={(

αi, λp(t, αi)
)
| αi ∈ Y(t), λp(t, αi) ∈ I

}
. Obtain the simple set functions λq, q = β, γ, µ, ν for the

subsets of balanced and unbalanced sets Gq(t), q = β, γ, µ, ν. λβ : Gβ(t)→ I. λβ ={(
αi, λβ(t, αi)

)
| αi ∈ Gβ(t), λβ(t, αi) ∈ I

}
. λγ : Gγ(t)→ I. λγ =

{(
αi, λγ(t, αi)

)
| αi ∈ Gγ(t), λγ(t, αi) ∈ I

}
. λµ : Gµ(t)→ I. λµ ={(

αi, λµ(t, αi)
)
| αi ∈ Gu(t), λµ(t, αi) ∈ I

}
. λν : Gν(t)→ I. λν ={(

αi, λν(t, αi)
)
| αi ∈ Gν(t), λν(t, αi) ∈ I

}
.

Step 4. Obtain the segment set function, λ′: M(t)→I.
λ′ =

{{(
αi, λq(t, αi)

)
| αi ∈ Gq(t), λq(t, αi) ∈ I

}
, q = β, γ, µ, ν

}
. Obtain the transform function

that is also a segment set function, λ : M(t)→ I. λ ={{(
αi, λq(t, αi)

)
| αi ∈ Gq(t), λq(t, αi) ∈ I

}
, q = β, γ, µ, ν

}
. λβ(t, αi) = λs(t, αi) + λβ(t, αi), αi ∈

Gβ(t); λγ(t, αi) = λs(t, αi), αi ∈ Gγ(t); λµ(t, αi) = λµ(t, αi), αi ∈ Gµ(t); λν(t, αi) = 0, αi ∈ Gν(t).
Step 5. Assign weights ξq, q = β, γ, µ, ν, ξβ = −5K for Gβ(t), ξγ = −3K for Gγ(t), ξµ = −K

for Gµ(t), ξν = 0 for Gν(t). K = 0.5S. λ̂s(t, αi) < λ̂p(t, αi) is satisfied as explained in [31].
Step 6. Obtain the weight function,

λ̃ : M(t)→ I. λ̃ =
{{(

αi, λ̃q(t, αi)
)
| αi ∈ Gq(t), λ̃q(t, αi) ∈ I

}
, q = β, γ, µ, ν

}
. λ̃q(t, αi) =

λq(t, αi) + ξq, q = β, γ, µ, ν. Obtain the overall function,
λ̂ : M(t)→ I. λ̂ =

{{(
αi, λ̂q(t, αi)

)
| αi ∈ Gq(t), λ̂q(t, αi) ∈ I

}
, q = β, γ, µ, ν

}
. λ̂β(t, αi) =

λe(t, αi) + λs(t, αi) + λβ(t, αi) + ξβ, αi ∈ Gβ(t); λ̂γ(t, αi) = λe(t, αi) + λs(t, αi) + ξγ, αi ∈
Gγ(t); λ̂µ(t, αi) = λe(t, αi) + λµ(t, αi) + ξµ, αi ∈ Gµ(t); λ̂ν(t, αi) = λe(t, αi) + ξν, αi ∈ Gν(t).

Step 7. Identify the minimal value of λ̂, λ̂(t) = min
αi∈M(t)

{
λ̂q(t, αi), q = β, γ, µ, ν

}
. Then, input the

part corresponding to the minimal element in the range of the overall function and arriving the
earliest.

Table A1. Symbols in state-dependent part input algorithm.

Notation Explanation

Indices
αi Part in order i, i = 1, 2, · · ·
q Part set indicator

Parameters
K Constant
S Size of preprocess area
ξq Weight of Gq(t)

Variables
Gq(t) Part set q at t
M(t) Set of parts in preprocess area at t
X(t) Balanced set of parts at t
Y(t) Unbalanced set of parts at t
λe Simple set function for M(t)
λp Simple set function for Y(t)
λq Simple set function for Gq(t)
λs Simple set function for X(t)
λ′ Segment set function
λ Transform function
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Table A1. Cont.

Notation Explanation

λ̃ Weight function
λ̂ Overall function

λ̂(t) Minimal value of λ̂
λe(t, αi) Range of λe for M(t) at t
λp(t, αi) Range of λp for Y(t) at t
λq(t, αi) Range of λq for Gq(t) at t
λq(t, αi) Range of λ for Gq(t) at t
λ̃q(t, αi) Range of λ̃ for Gq(t) at t
λ̂q(t, αi) Range of λ̂ for Gq(t) at t
λs(t, αi) Range of λs for X(t) at t

Appendix B Data Used in Evaluation

Table A2. Production information.

Part
Type

Prod.
Req.

Part
Type

Prod.
Req.

Part
Type

Prod.
Req.

1 6% 10 8% 19 6%
2 2% 11 2% 20 4%
3 2% 12 6% 21 4%
4 2% 13 2% 22 6%
5 10% 14 4% 23 4%
6 2% 15 6% 24 2%
7 6% 16 4% 25 4%
8 2% 17 2%
9 2% 18 2%

Table A3. Processing times and part routes.

Type Route Processing Time (Seconds)

1 1 6 3 8 115 165 135 285
2 6 8 9 4 7 1 2 5 3 165 185 195 145 175 115 125 155 135
3 4 1 2 5 6 45 15 25 55 65
4 5 1 4 2 6 8 155 115 145 125 165 185
5 4 2 6 8 1 245 225 265 185 15
6 3 1 8 35 15 85
7 6 7 4 5 1 3 2 65 175 45 155 115 135 125
8 8 4 2 185 345 325
9 2 5 6 3 1 4 225 255 165 135 115 245
10 9 1 7 8 195 115 175 185
11 4 5 3 1 9 7 2 8 6 245 255 35 115 295 275 225 185 165
12 8 5 6 3 9 1 7 185 155 65 135 195 15 175
13 3 2 6 7 5 135 125 165 175 155
14 5 1 4 7 6 2 450 110 440 470 160 420
15 7 1 3 5 70 210 130 250
16 6 4 1 8 2 160 140 110 180 120
17 3 5 2 8 1 130 350 320 180 110
18 6 3 1 8 4 60 30 10 80 40
19 1 7 6 8 2 4 3 110 470 160 180 420 440 130
20 9 6 5 1 8 4 2 195 165 155 15 185 145 125
21 2 7 5 3 225 275 255 135
22 7 5 6 2 3 1 170 150 160 120 130 110
23 4 1 7 2 5 145 115 175 125 155
24 7 4 1 9 75 45 15 95
25 8 3 5 2 6 4 1 9 85 235 255 225 165 245 115 295
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Abstract: This study considers a flexible job-shop scheduling problem where energy cost savings
are the primary objective and where the classical objective of the minimization of the make-span is
replaced by the satisfaction of due times for each job. An original two-level mixed-integer formulation
of this optimization problem is proposed, where the processed flows of material and their timing are
explicitly considered. Its exact solution is discussed, and, considering its computational complexity,
a comprehensive heuristic, balancing energy performance and due time constraint satisfaction, is
developed to provide acceptable solutions in polynomial time to the minimum-energy flexible job-
shop scheduling problem, even when considering its dynamic environment. The proposed approach
is illustrated through a small-scale example.

Keywords: flexible job shop; scheduling; energy savings; make-span; two-level MILP; heuristics

1. Introduction

The improvement in energy efficiency has not played an explicitly relevant role in
the operation of many manufacturing systems in the past since minimizing the make-
span has often been the priority. Today, with the increasing prices of energy and the
new environmental protection regulations, the energy-saving issue in workshops has
become an important research field for universities backed by industrial organizations
in advanced countries. The relation between industrial management styles, in particular
Lean Management (LM) and its variants, and energy savings has been of recent concern [1],
while new formulations of the job-shop scheduling problem, including the issue of energy,
have been proposed. Further, authors such as those in [2–4] discussed the possibility of
noticeably reducing energy consumption in manufacturing spaces with limited capital
investment by rearranging the production process for a given demand through adequate
machine selection and operation sequences. Also, in [5], it was shown that, by adjusting
the power for each operation in a job-shop environment, relevant energy savings can be
obtained. In the case of flexible job shops where machines can competitively perform
different operations with differentiated energy costs [6], it is expected that energy-saving
opportunities can be made more effective through appropriate machine allocation and the
sequencing of operations in the job shop.

1.1. Literature Review

Before introducing the minimum-energy flexible job-shop scheduling problem with
the due times considered in this study, an overview of previous instances of job-shop
scheduling problems is presented here. The flexible job-shop scheduling problem, at
first considered as a mere extension of the job-shop scheduling problem, where it is also
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necessary to assign machines to the operations of different jobs, has turned out to be, by
its added complexity and its adequacy with current industrial practice (Industry 4.0), “a
job shop scheduling problem of its own” [7]. In recent years, different reviews covering
assumptions, models, and solution techniques for the flexible job-shop scheduling problem
have been published [7–11]. Most of the formulations adopted have resulted in Mixed-
Integer Linear Programming (MILP) optimization problems with sizes and complexity that
often limit the use of exact methods. This has led to the proliferation of heuristics and
meta-heuristics, notably nature-inspired ones, which proved rather effective [6,12].

In many studies, the exercise carried out when solving the scheduling problem boils
down to delivering a mathematical solution without considering the conditions of its
implementation. However, some authors have considered the real-life issues of their
implementation by integrating them into the formulation of the scheduling problem to
have more effective scheduling: the maintenance of machine condition [13], the avail-
ability of machines during production [14], and processing time uncertainties [15] are
some of the covered topics. The real environment of production systems is dynamic and
is subject to unexpected events such as sudden machine breakdowns, power outages,
shortages of materials, the unavailability of operators, and unusual activity durations.
Dynamic job-shop scheduling techniques were developed to cope with this reality [16,17].
These techniques are based on three different scheduling policies: predictive, reactive, and
predictive–reactive [18]. Predictive approaches build a schedule that is maintained during
execution, but when disturbances may appear, the maintenance of its feasibility has a time
cost (slack times incorporated into the duration of the operations to absorb delays) and an
equipment cost (spare machines to face breakdowns). The scheduling is recomputed with
purely reactive approaches after each notable disturbance. Predictive–reactive approaches
are a mix of the two previous approaches, where a pre-existent schedule is adapted online
during its execution. These techniques increasingly involve tools from artificial intelligence
(AI) [19].

When considering energy consumption in a job shop, it is composed of the processing
energy consumed by machines; of the transfer energy of raw, semi-finished, or finished
products within and around the job shop; of the idle energy consumed by machines during
the time intervals between consecutive operations; of the set-up energy of machines to
enable the processing of operations; and of the common energy consumed for maintaining
acceptable operating conditions in the workshop (lighting, air conditioning, and heating).
In flexible job shops, the energy-saving opportunities are not limited to those of job shops,
i.e., turning off idle machines, slowing down machine speed, and producing during off-
peak periods [20]; they also include the allocation of operations to more energy-efficient
machines and the choice of energy-efficient means of transport between machines. This
newer and more specialized area of the flexible job shop has been the subject of far fewer
survey articles [4,21], even though articles on this subject are published regularly. In these
studies, the classical concern has been about minimizing the make-span shifts toward the
minimization of energy. Some articles consider a multi-criteria optimization problem with
energy and make-span as equal objectives [22–26]; others adopt a single criterion, which can
be the weighted sum of energy and make-span [27], the total energy with the make-span
as a constraint [28], or the total energy and the make-span as a consequence [3]. Some
publications have already addressed the problem of minimum-energy dynamic scheduling
in flexible job shops using the predictive reactive approach [23,29].

1.2. The Adopted Approach to Tackle a New Instance of a Job-Shop Scheduling Problem

Considering this literature review and the adopted assumptions of the current study
in Section 2, the scheduling problem treated in this study characterizes a sub-class of
minimum-energy flexible job-shop scheduling problems for which, to our knowledge, until
today, no specific study has been published. The specific characteristics of this problem
include the following:

187



Algorithms 2024, 17, 520

• Release and due time constraints are considered for each job instead of the make-span,
which is an objective to be minimized. This differentiates the current problem from,
for example, [3,22–28].

• Contrary to all the references consulted, the structures of the jobs are not limited
to a mere sequence of activities and allow us to consider complex assembly and
de-assembly operations.

• The delays and energy consumption resulting from product transfers between ma-
chines are considered. The only reference that considers transfer delays is [26]. How-
ever, transfer energy is not considered there.

• The adopted mono-criterion objective function. All the references cited in our literature
review for flexible job shop scheduling consider the energy issue, except [3,28], which
formulate a multi-criteria optimization problem.

The field of scheduling in industrial production workshops is all the more varied as
numerous constraints specific to each realistic situation lead to problems for which different
and often new resolution methods and associated algorithms must be developed. The
philosophy adopted in this study to deal with a new scheduling problem, as is the case
here, is the following:

• First, precisely mathematically formulate the optimization problem and analyze the
feasibility of its resolution as a MILP problem using exact standard methods.

• Second, analyze the conditions for implementing a scheduling solution in a dynamic
environment. This generally leads to considering the use of approximate resolution
methods. At this stage, the generation of a heuristic appears interesting for several
reasons: it allows us to obtain, at reduced computational cost, a feasible solution,
and it supposes the identification and understanding of relatively simple decision-
making mechanisms that can produce acceptable solutions. Heuristics that have been
developed for scheduling problems with some common characteristics can be a source
of inspiration for its design, and the resolution of their blocking points can be a start
for the new heuristic. Once the heuristic has been developed, its performance must be
compared with those obtained using exact methods and basic scheduling rules such
as priority rules.

• Finally, in the case where it looks interesting to go beyond the performance of the
solutions provided by the heuristic, in general by considering the use of metaheuristics
(which are much more computation intensive in time and memory than heuristics),
the generated heuristic method can be useful. It can provide a starting solution for an
available metaheuristic. When a new metaheuristic has to be developed, the heuristic
can also give directions for the design of new search mechanisms in the construction
of more efficient solutions, or it can even be embedded in the metaheuristics.

1.3. The Objective of the Study

The objective of this study is to contribute to energy efficiency in the manufacturing in-
dustry, more particularly in high-energy-consuming integrated, flexible production plants,
by developing a new approach to generate energy-efficient schedules with acceptable
production delays for flexible job-shop scheduling problems. This study considers the main
energy consumption sources in a flexible job shop, machine processing, and transfer of
materials. Energy consumed by idle machines is not contemplated. Effectively, if idle times
are small, the energy consumed by an idle machine may be negligible, while if idle times
are large, the corresponding machines will certainly be shut off.

In this study, jobs are composed of a finite set of operations linked together by
precedence–succession constraints without cycling, and due times are assigned to them.
Flexibility here refers to the ability to assign the processing of certain operations to different
machines. One important element of the solution is the concurrent assignment of the ma-
chines to the operations of the different jobs. As early as 1993, Brandimarte [30] considered
a two-level approach with the decomposition of the flexible job-shop scheduling problem
into routing and job-shop sub-problems to minimize the make-span of a given production
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plan. His work has received over 400 citations, mainly for his flexible job shop scheduling
benchmark and its early use of Taboo Search [31] to solve the two sub-problems than for
the proposed decomposition.

In this study, this dual view of the flexible job-shop problem is first adopted to achieve
minimum energy schedules by considering the machine assignment of all the operations of
a job as a decision variable. The non-consideration of the energy consumed by idle machines
means that the energy consumption associated with a production program only depends
on the allocation of the operations of each job to the different machines of the job shop
and not the timing adopted for their execution. This leads to a formulation of a two-level
optimization problem where energy costs and job shop dynamics are separated, opening
the way to use exact or approximate solution approaches for this class of mathematical
programming problem. This will provide nominal solutions to production plans over a
finite period. However, the objectives of this study go well beyond this result. The goal is
to propose a scheduling scheme that can adapt easily to cope efficiently with the following:

- Planned (scheduled maintenance, for example) or unplanned disturbances (machine
or conveyor breakdown between machines, for example);

- The fast generation of energy-efficient schedules to cope with the arrival of new jobs,
allowing permanent operation with the efficient energy performance of the job shop.

This goal has led to the development, in a second step of the study, an ad hoc heuristic able
to produce promptly after any significant perturbation or event, an updated solution consistent
with the current operational state of the job shop for this original scheduling problem.

The rest of this paper is organized as follows: first, the characteristics of the considered
job shop and the adopted notations are displayed in section two; section three presents a
separable formulation of a nominal minimum-energy flexible job-shop problem is introduced
to ease the search for its exact solution; a heuristic based on the earliest processing time with
minimum energy is introduced to generate an open-loop solution to the scheduling problem
in the fourth section. Then, the extensions of this heuristic to enable it to cope with disruptions
and new jobs are discussed, and the application to a small illustrative case is displayed. Finally,
in the Conclusion section, additional research directions are pointed out.

2. The Considered Class of Flexible Job Shops and Their Representation

The considered class of production systems is composed of flexible machines that
operate in parallel. There, different products are processed through a subset of production
stages in which a machine is assigned to perform a specific operation on a given product.
The final products are obtained at the end of the sequences of operations.

2.1. Basic Assumptions

The basic assumptions characterizing the considered flexible job-shop scheduling
problem are introduced.

2.1.1. The Plant

The plant is composed of a set of machines, some of which may perform the same
tasks. Machines have a fixed position in the workshop, and physical connections exist
between some of these machines to allow the transfer of semi-processed products from one
machine to the next. The transfer operations are supposedly independent of each other,
and it is assumed that there is no traffic congestion in the plant. Then, for each job, the
transfer times and energies are constant parameters whose values depend on the position
and characteristics of the assigned machines.

2.1.2. The Production Plan

The production plan is composed of independent jobs that can be identical or different;
this production plan is known in advance. Each job consists of a set of operations performed
on different machines. A directed acyclical graph can represent the precedence/succession
constraints between these operations. The introduction of this graph allows one to handle
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parallel operations within the same job. This does not prevent the repeated use of the same
machine for different operations of the same job but assumes that the operations are only
executed once per job. This last limitation can be easily overcome by renaming an operation
each time, which must be repeated a given number of times within a job. The subset of
machines that can carry out each job operation in the workshop is known. For each job of
the production plan, a release time and a due time are attached. It is supposed that there
are global schedules satisfying the resulting time constraints. Contrary to the Just-In-time
scheduling problem, tardiness is not allowed here.

2.1.3. The Operations

The common working period starts at time 0, and its maximum time span is noted as
T. All considered jobs have a known release time and a preferred due time. Machines are
available for operations since time 0; in the first stage, it is assumed that no breakdowns
and maintenance operations occur until time T. Non-dummy operations need only one
machine to be performed, machines can only execute one operation at a given time, and
pre-emption of machines by other operations is not allowed. A machine can be used more
than once by a given job but in different operations. The set-up times of the machines
are integrated into the processing times, which, with the transportation times between
machines, are considered in this study. Some jobs may have a declared due time that
induces a time constraint, which, depending on the context, may be considered hard or
soft; the other jobs use T as the due time.

2.1.4. The Objectives

The main objective of this study is to propose a method to minimize the total energy
needed to perform a given production plan while satisfying due time constraints for each
job. The energy of interest is composed of the processing energy of the different operations
on their assigned machines and of the internal logistics energy spent to transport materials
from one machine to the next. Here, it is assumed implicitly that there is a unique source of
energy, electricity, but this hypothesis could easily be revised.

2.2. Adopted Notations and Representation for Work Plans

The main indexes used to identify the different elements of the sets of interest are
as follows:

- i: index of jobs, i ∈ {1, . . ., n} with n = |J|, where J is the set of jobs to be processed.
- k, h: index of operations, k, h ∈ {1, . . ., Si} with Si = |Oi|, where Oi =

{
Oi1, . . . , OSi

}
is

the set of operations of job i.
- l: index of machines, l ∈ {1, . . ., m} with m = |M|, where M is the set of machines.

To each job i, a directed a-cyclical graph (DAG) is attached, which represents the
precedence and succession constraints between its operations. The operations of each job
are performed to start and finish with dummy operations of zero duration on the same
dummy machines. The operations of a job i are ordered by their increasing rank in Gi.
Let Γ−1

ik and Γik be, respectively, the set of predecessor and successor operations of Oik.
The depth of the DAG associated with job i has a depth dri, where rank 1 corresponds to
the dummy starting operation and rank dri corresponds to the dummy closing operation.
GLir is the subset of operations of job i at rank r and Oi = ⊕r=dri

r=1 GLir. Let rti and dti be,
respectively, the release time and the due time of job i, i = 1 to n, where these due times
are supposed to be inferior or equal to T. Mik is the subset of machines that can perform
operation Oik, δikl is the processing time of Oik with its lth machine, and τill′ is the transfer
time between machine l and machine l

′
for job i. The nominal transfer time is, in general,

the transportation time of the product from one machine to the next, but it can also include
other side operations (drying delays, set-up times, and inspection delays). Let peikl be
the energy necessary for machine l, l ⊂ Mik, to perform Oik, and let teill′ be the energy
necessary to transfer product i from machine l to machine l′ and other necessary inputs to
perform Oik on machine l′.
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Figure 1 introduces the DAGs associated with a production plan composed of three
jobs. Table 1 shows the machines that can perform the operations of these three jobs, and
Figure 2 represents the different possible transfers between successive machines according
to the different jobs.
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Figure 1. Graphical representation of a production plan.

Table 1. Machines available for operations in production plan.

Oik O11 O12 O13 O14 O15 O16 O17 O21 O22 O23 O24 O25 O26 O31 O32 O33 O34

Mik ∅ {m1,m2} {m1,m2} {m3,m4} {m3,m4} {m5} ∅ ∅ {m6,m7} {m2} {m3,m4,m5} {m3,m4,m5} ∅ ∅ {m1,m2} {m6,m7} ∅
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The assignment of machines to the successive operations of a job build a unique path
between its entry and exit nodes in the directed graph of Figure 2.

The material flow of product under transformation is supposed to be mainly composed
of original products to which additional inputs can be aggregated at the level of the
operations and from which waste can be retrieved. These aggregations or removals induce
costs which, beyond the physical characteristics of the operations, can be related to the
position of the machines into the plant. In this study, the different flows of material under
processing are taken into consideration. A physical interdependence between the different
jobs results from the way the set of machines is shared during the period of operation.

3. Two-Level Formulation of the Minimal-Energy Flexible Job-Shop
Scheduling Problem

The flexibility of the job shop presents an additional dimension to the scheduling
problem: the assignment of machines to the operations of each job. Technical and functional
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considerations mean that this choice is limited and multiplies with the number of operations
comprising the jobs and with the presence of several machines capable of carrying out
the same operations. Here, the assignment of machines to the operations of each job is
identified by a decision variable, leading to a two-level formulation of the considered
scheduling problem. To accomplish this, additional notations must be introduced.

3.1. Adopted Notations and Representation

Here, A is the set of possible assignments of machines to the operations of all the jobs
to be processed, A =

{
Aj, j = 1, . . . , |A|

}
, and Aij is the projection of the jth assignment

on the operations of job i. Ai = ⊕|A|j=1 Aij is the set of all possible machine assignments for
job i. The overall knowledge of the allocation of machines to the different jobs is necessary
to treat the case of a specific job since these jobs may use subsets of machines concurrently.
The index of the machine attached to the processing of Oik in the jth machine assignment is
written as likj.

The maximum number of different assignments of machines for a job i is given by

nA
i = |Ai| = ∏Si−1

k=2 |Mik| (1)

and the maximum number of different machine assignments for the whole production plan
is given by

nA = |A| = ∏n
i=1 nA

i (2)

These numbers can be significantly reduced considering the layout of the plant, the
existing transfer system, and the operational state of the machines. In the illustrative
case of Section 2.2, we have the following: nA

1 = 16, nA
2 = 18 and nA

3 = 4, leading
to nA = 1152, which is a rather large number. But if adopting the rule that, when two
successive operations of the same job can be processed by the same machine, there is no
change of machine from the first to the second operation, then the number of accepted
machine assignments decreases to 96. In fact, this rule allows one to melt down these pairs
of operations into a single one, reducing the size of the scheduling problem.

Let us introduce the processing and transfer times for a given machine assignment:
dikj is the processing duration of Oik by machine likj, i = 1 to n, k = 1 to Si, and j = 1 to nA;
and Tihkj is the nominal transfer time of product (i,h) from machine lihj to machine likj, i = 1
to n, h = 1 to Si, k ∈ Γih, and j = 1 to nA.

When, for machine assignment j, a destination machine lihj of operation Oik is busy
with another operation, it is supposed that the semi-processed material of job i can wait
without using energy until machine lihj becomes available.

3.2. Absolute Time Bounds

In this subsection, lower bounds for the earliest start times and upper bounds for
the latest start times of the operations of each job for a given machine assignment j
are introduced:

• estikj is the earliest start time of operation Oik with machine assignment Aij when the
release time is respected.

• lstkjk is the latest start time of operation Oik with machine assignment Aij when the
due time is respected.

We have the following for job i with machine assignment Aij:

esti1j = rti and estikj = estik−1j + max
h∈Γ−1

ik

{
estihj + dihj + Tihkj

}
, k = 2 to Si (3)

lstiSi j= dti − diSi and lstikj = min
h∈Γik

{
lstihj − Tikhj

}
− dikj, k = Si − 1 to 1 (4)

where rti and dti are, respectively, the release time and the due time of job i.
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It can be observed that these earliest and latest start times do not consider the possible
concurrent use of the machines by different jobs and the resulting additional delays, so
they are, respectively, a lower bound for the earliest start time and an upper bound of the
latest start times. Consistency conditions for the time data are

estikj ≤ lstikj, i = 1 to n, k = 1 to Si, j = 1 to |Ai| (5)

lsti1j − di1j ≥ rti and estiSi j + diSi j ≤ dti i = 1 to n, j = 1 to |Ai| (6)

If a machine assignment j for job i does not satisfy fully relations (5) and (6), it must be
eliminated from Ai.

It is also possible to compute the absolute earliest start time for each operation of each job:

Estik = min
j∈Ai

{
estikj

}
i = 1 to n, k = 1 to Si (7)

It can be observed here that the release time and the due times are not, in general, of
the same nature: the release times are independent of the considered process and result
from upstream logistics; the due times result from downstream logistics. Then, here, release
times are hard constraints, while due times can be a production objective that may not
be completely achieved. Thus, the latest starting times and due times constraints can be
violated, and the resulting delays characterize a deficit in the production capacity of the job
shop to process a given production plan.

3.3. Total Energy Consumed

Here, for a given machine assignment j, the energy consumption is considered com-
posed of the energy PEikj necessary to process operations with machines likj and the energy
TEiklihj j to transport processed products from a machine likj to the successor machines lihj
with h in Γik. Then, the energy used in processing job i within machine assignment j can be
written as

Eij = ∑Si
k=1 PEikj + ∑Si

k=0 ∑h∈Γik
TEiklihj j i = 1 to n, j = 1 to |A| (8)

This expression does not consider the energy consumed by idling machines. Depend-
ing on the machine and the durations of its idling periods, it may be interesting to save
energy to turn them off when they are not in use rather than leaving them on. Restarting a
machine can not only result in a temporary overconsumption of energy but also in a delay
of its availability. In this study, it is assumed, since it is generally the case in industrial
workshops, that the energy consumption of the idling machines is negligible compared
to the processing and transfer energies. So, it does not seem necessary to explicitly intro-
duce this component of the energy spent in a mathematical formulation of the scheduling
problem, especially since this would lead to increased complexity resulting from the new
variables and constraints to be introduced. What can be achieved—once a solution to the
overall scheduling problem has been obtained that minimizes the main components of the
consumed energy, whether this solution is exact or approximate—is, in a second step, to
evaluate the idle periods of each machine and decide whether to turn them off or keep them
on until their next use. This is the kind of problem that could be solved by an expert system
using artificial intelligence techniques to exploit both the characteristics of the scheduling
solution and the energy performance of each machine.

3.4. The Two-Level Minimum-Energy Scheduling Problem

The minimum-energy flexible job-shop scheduling problem formulated as an opti-
mization problem by using the machine assignment variables xij, the precedence variables
ziji′ j′kk′ and the timing variables tijk is the following:

xij = 1 if machine assignment j is chosen to perform job i, and xij = 0 otherwise;
tikj: the starting time of operation Oik at machine likj;
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ziji′ j′kk′ = 1 if operation Oik with machine likj is decided to be realized before operation
Oi’k’ using the same machine (likj = li ′k′j′ ), and ziji′ j′kk′ = 0 otherwise.

The problem is formulated as a mono-criterion optimization problem, avoiding the
introduction of relative weights between criteria or the exploration of a Pareto frontier
involving energy and make-span. The global criterion to be minimized is expressed as

min
x,t,z

ET = ∑n
i=1 ∑|Ai |

j=1 xij·Eij (9)

The considered constraints are

∑j∈Ai
xij = 1 i = 1 to n (10)

and for ij , such as xij = 1:
esti1j ≤ ti1j i = 1 to n (11)

max
h∈Γ−1

ik

{
tihj + dihj + Tihj

}
≤ tikj i = 1 to n, k = 2 to Si (12)

tiSi j + diSi j ≤ dti i = 1 to n (13)

For ij and i′j′, such as xij = xi′ j′ = 1:

∀i ̸= i′, ∀j, j′, ∀k, k′ with likj = li′k′ j′ : ziji′ j′kk′ + zi′ j′k′k = 1 (14)

∀i ̸= i′, ∀j, j′, ∀k, k′ with likj ̸= li′k′ j′ : ziji′ j′kk′ = zi′ j′k′k = 0 (15)

and ∀i ̸= i′, ∀j, j′, ∀k, k′ with likj = li′k′ j′ :

tikj + dikj ≤ ti′k′ j′ + V
(

1− ziji′ j′kk′
)

and tikj + dikj + V·ziji′ j′kk′ ≥ ti′k′ j′ (16)

The significance of the different constraints are as follows: constraint (10): the choice
of a unique path for each job; constraint (11): feasibility bounds for the starting time of the
first operation of job i with machine assignment j; constraint (12): starting time succession
constraints along a path; constraint (13): due time constraints for the different jobs, where
tiSi j + diSi j is the completion time of job i along path j; constraints (14), (15), and (16):
non-overlapping of operations of chosen paths on the same machine, where V is a very
large number. However, in situations in which the feasible time intervals for processing on
a same machine (likj = li ′k′j′ ) do not intersect, the value of the z variable is already fixed:

lstikj + dikj ≤ esti′k′ j′ : ziji′ j′kk′ = 1 (17)

estikj ≥ lsti′k′ j′ + di′k′ j′ : ziji′ j′kk′ = 0 (18)

Problem (9)–(16) is a two-level optimization problem, where the machine assignment
problem, with the objective of minimizing total energy consumption, is considered at the
upper level (relations (9) and (10), with only decision variable xij), while at the lower level,
the satisfaction of dynamic constraints (11)–(16) lead to a feasible scheduling. Different
approaches appear of interest to generate solutions for instances of this problem, which is
expected to be of the NP-Complete complexity class [32]. The transformation of formula-
tion (9)–(16) into an MILP-type formulation greatly increases the number of variables and
constraints, making its exact numerical resolution difficult. In [33], a greedy heuristic was
developed to provide, within the adopted formalism, a feasible sub-optimal solution for a
simplified version of this problem: there, the DAGs of the jobs reduced to single chains,
which were selected repeatedly according to their energy performance until the due dates
were satisfied. To design exact solution algorithms, Branch and Bound strategies appear
here to be of direct interest. Also, Benders decomposition-based algorithms, developed to
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solve general two-level optimization problems, could be particularized to this problem [34].
The above problem can also be seen as a simplified case of a bi-level MILP problem. In that
last field, many exact [35,36] and approximate [37,38] methods have been proposed in the
recent literature. Relevant work could improve the computational efficiency of some of
these methods when applied to problems (9)–(16).

3.5. Evaluation of Solution Performance

The solution of the above problem produces the make-span:

MS = max
∀i,∀j∈Ai

{(
tiSi j + diSi j

∣∣xij = 1
)}
− min
∀i,∀j∈Ai

{(
ti1j
∣∣xij = 1

)}
(19)

In Equations (14)–(16), the decision variables xij are absent; then, by choosing for each
tijk with xij = 0, their earlier starting time, constraints (14)–(16) are satisfied by these tijk
variables. Then, in the case in which all the release time are to zero, (19) can be rewritten
more simply:

MS = max
∀i,∀j∈Ai

{
tiSi j + diSi j

}
(20)

In the general case, the make-span for machine l is given by

MSl = max
i,k,j

{
tikj

∣∣∣xij = 1 and likj = l
}
− min

i,k,j

{
tikj

∣∣∣xij = 1 and likj = l
}

(21)

and the total processing time of machine l is given by

PTl = ∑n
i=1 ∑j∈Ai

xij ∑k∈{1,...,Si}, likj=l dikj (22)

Assuming that the machines once started are shut down only when their last operation
is completed, their idle time where a residual amount of energy is used is given by

ITl = MSl − PTl (23)

It can be observed that the resolution of problem (9)–(16) will provide a scheduling
of minimum total energy without considering the consequences for its make-span. If the
jobs had no due times and the working period [0, T] was sufficiently large, the solution of
problem (9)–(16) will consist of selecting each job's machine assignment of minimum energy
Eij. A way to introduce the make-span minimization objective can be obtained by setting, at
smaller values, the due times of the different jobs or their global maximum value max

i
{dti}

according to the production context. Successive resolutions of the problem with decreasing
due times will make it possible to highlight the influence of the make-span on the energy
performance of the workshop for a given production plan J. This influence should be
analyzed to enable the identification of characteristic patterns within some families of
production plans, which will allow, once again by using artificial intelligence techniques
such as Machine Learning [39,40], to guess correctly the feasibility of the adopted due times
before embarking on the numerical resolution of the optimization problem.

4. Minimum-Energy Scheduling Heuristic with Due Times

The previous section considered a deterministic situation, and the solution of the
minimum-energy flexible job-shop will provide the best schedule to follow during nominal
conditions. The analysis of optimal solutions makes it possible to evaluate the performance of
the job shop and identify its blocking points, eventually leading to its redesign or resizing.
Then, different configurations of the job shop can be assessed through the optimal solution
of the scheduling problem by considering a set of typical production plans. However, when
considering the very common situation in which the workshop is subject to disturbances
(delays, malfunctioning or breakdowns of machines, and unavailability of operators), to
postponement of jobs, or to the arrival of new jobs to be processed in the same period, the
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optimal schedule is no more completely feasible. Until a new stabilized situation is established
in the job shop and a new optimal schedule is established, short-term local decisions should
be taken to keep the job shop in operation. In the case in which perturbations occur frequently,
it will be necessary to establish a much more responsive system. Also, when the job shop is
working full time, the segmentation of production into finite production plans should lead to
sub-optimal schedules. Considering the limitations of this approach, an open-loop heuristic
to cope, on a reactive basis with the minimum-energy flexible job-shop scheduling problem, is
introduced in this section. In the first stage, the heuristic is developed to cope with a given
production plan where jobs have release and due times; then, it is shown how to extend its
application to the dynamic environment of workshops.

4.1. Adopted Principles to Design the Heuristic

Here, the main idea is to develop, on a moving time front line, the allocation of
machines and time schedules at the earliest start time of operations in ascending rank in
any of the active jobs. This greedy scheme will promptly produce a solution promoting
energy savings that is feasible for the current situation of the job shop. This will allow a
reactive approach to reschedule the current production plan as many times as necessary.
The solution must face the dilemma of having to choose between short job processing
times and minimizing the necessary energy. This is achieved as follows: on the one side,
the earliest assignment of a machine to a new operation is performed, but on the other
side, the choice between the available machines is limited to the more energy efficient
ones. The decision to assign a machine and to schedule the starting time for an operation
will be based, on one side, on the processing delays and transfer delays from its directly
preceding operations and, on the other side, on the transfer energy from the preceding
operations and on the processing energy of the candidate machine. The driving dimension
in the heuristic is time, since this will yield feasible solutions constructed step by step in
the timeline according to the earliest feasible starting time for the operations. To assess,
according to energy, the transitions from one operation to a successor one, new parameters
must be defined. For operations Oih and Oik such that Oik ∈ Γih, the energy cost of deciding
that Oik will be processed by machine l′, while Oih is performed by machine lh, is the sum of
the transfer energy and of the process energy tpeihkll′ given by tpeihkll′=∑h∈Γ−1

ik
teilh l′ + peikl′

(see Figure 3).
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Consider now the sets of machines MMih = Mih ×∪k∈Γ−1
ih

Mik, h = 1 to Si and their
associated energy costs. In large job shops, several machines may be identical, with almost
equal transport time and energy between some pairs of machines. Pairs (l, l′) with the
same total transfer energy costs can be grouped into the same subset, and these subsets
can be ranked by increasing energy costs. Let MMw

ih be these sets, with wi = 1 to Wi,
where MMih = ⊕wi=Wi

wi=1 MMw
ih. Here, MM1

ih is the subset of pairs with the minimum total

(transportation and processing) energy costs, while MMWi
ih is the subset of pairs with the

highest energy cost.
It is important to note that the operations that can be candidates to be assigned a

machine are those for which all their predecessor operations have already been assigned
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and scheduled. Then, the operations of each job are addressed by increasing rank in the
corresponding DAG. The scheduling approach is a greedy one, so idle periods of machines
may happen, but on the other side, decisions about machines will only consider their next
free time up to the end of the working period, which is much easier to treat. It is important
to also observe that, contrary to the approach presented in the previous section, in this case,
the machine assignment to operations is performed step by step in the timeline.

4.2. Algorithm of the Scheduling Heuristic

The algorithm is composed of three stages: The first stage initializes the values of the
different variables and sets, and the second stage assigns a machine and a time schedule to
the earliest possible operation of any job. This stage is repeated until all the operations of
all the jobs have been assigned a machine and scheduled a processing time. In the third
stage, the feasibility of the obtained solution is assessed to conclude the assignment or to
widen the set of machines to perform critical operations.

Adopted notations for varying quantities and sets used by the algorithm in the solution-
building process include the following:

ΓU
ik : the set of predecessors of operation k in job i, which have not been used to process

Oik. ΓD
ih : the set of successor operations of operation Oih in job i, which have not been

processed. GLir is the subset of operations of job i at rank r. GUiu: the set of operations of
job i at rank u in DAGi, which have unprocessed successor operations. GDiu: the set of
operations of job i at rank u in DAGi, which are not completely processed. nft(l): the next
free time of machine l until the end of the working period. Ja: the set of active jobs, i.e., jobs
whose activities have not been completely processed.

Figure 4 shows a flowchart of the proposed heuristic, which is described in detail
afterward in Algorithm 1.
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Algorithm 1: Proposed Scheduling Algorithm

(0) Initialization of the solution process.
i = 1
While i ≤ n do

k = 1, tik = rti, δik = 0, wi = 1, ui = 1, u = 1, l = 1;
While u ≤ dri

GUiu = GLiu and GDiu = GUiu
End While u

While k ≤ Si
tik = Estik and ΓD

ik = Γik and ΓU
ik = ΓD

ik
End While k

End While i
While l ≤ m do

nft(l) = 0
End While l

Ja = {1, 2, . . . , n} is the set of active jobs.
End of initialization

(1) Inner loop: Iteration on the schedule of the next operation and selection of machine to
process it.

While Ja ̸= ∅ do
Shift of rank in the DAGs:

∀i ∈ Ja : if GDiui = ∅, increment ui: ui = ui + 1.
Select the next job, operation to be processed and machine on the time line:

Choose (i∗, h∗, k∗, l∗) such as:

(i∗, h∗, k∗, l∗) = argmin
i∈Ja , Oih∈GUiv , 1≤v<ui ,Oik∈ GDiui

{
max

(lih ,l)∈MMwi
ik

{
tih + δihlih

+ τilih l , n f l(l)
}
}

(24)

Update the subsets of active operations:
ΓD

i∗h∗ = ΓD
i∗h∗ − {Oi∗k∗} and if ΓD

i∗h∗ = ∅ : GUiui∗−1 = GUiui∗−1 − {Oi∗h∗}
ΓU

i∗k∗ = ΓU
i∗k∗ − {Oi∗h∗} and if ΓU

i∗k∗ = ∅ : GDiui∗ = GDiui∗ − {Oi∗k∗}
Machine assignment and start time update:

The machine assigned to Oi∗k∗ is li∗k∗ = l∗ and its earliest start time is updated to:

ti∗k∗ = max
{

ti∗k∗ , max
{

ti∗h∗ + δi∗h∗ li∗h∗ + τi∗ li∗h∗ l , n f l(l∗)
} }

(25)

Update next free time of machine li∗k∗ :

n f t(li∗k∗ ) = ti∗k∗ + δi∗k∗ li∗k∗ (26)

Closing job i:
If ki∗ = Si∗ and ΓU

i∗k∗ = ∅, job i is completed, then: Ja = Ja − {i∗}
End While Ja

For a given production plan, the finite number of iterations is upper-bounded by the
sum of the number of operations in the different DAGs, and the finite number of operations
inside an iteration is majored by n·S2·µ, where S = max

i=1 to n
Si and µ = max

i,k

∣∣MMwi
ik

∣∣ which

is upper-bounded by m2. Then, the time complexity of this heuristic is polynomial (P). This
heuristic can therefore claim to provide, within a reduced computational time, a feasible
solution, aimed at energy savings, to production plans with large dimensions (the number
of jobs, the number of operations per job, and the number of machines).
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4.3. Illustration of the Assignment and Scheduling Process of the Proposed Heuristic

To illustrate the core of the new assignment process represented by relation (24),
Figure 5 represents a situation after seven machine assignments and scheduling of the
operations of the jobs considered in Section 2.2. For the eighth iteration of the inner loop
of the algorithm, the active rank of job 1 is 4, with candidate activity O15 for machine
assignment and scheduling; for job 2, the active rank is also 4, with candidate activities O24
and O25; and finally, for job 3, the active rank is 3, with candidate activity O33.
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Here, only numerical values necessary to understand the selection process of Equa-
tion (24) are introduced. Table 2 gives the next free times for the seven machines; Table 3
gives the end time of already scheduled and assigned operations, and Table 4 gives the
added delays and energies resulting from a machine assignment to each candidate opera-
tion in the active rank of each job.

Table 2. Current next free times for the machines in the job shop.

Machine l 1 2 3 4 5 6 7

nft (l) 0+12 0+14 0+17 0 0 0+7 0
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Table 3. End time of assigned parent operations.

Operations O15 O24 O25 O33

O13 17 ------ ------ ------

O14 5 ------ ------ ------

O23 ------ 12 12 ------

O32 ------ ------ ------ 7

Table 4. Added delays/energies with machine assignment.

O15 O24 O25 O33

m3 8/100 12/80 10/120 ------

m4 10/80 8/140 10/100 ------

m5 ------ 10/100 6/140 ------

m6 ------ ------ ------ 14/60

m7 ------ ------ ------ 12/90

Now, assuming that the sets MMik for the candidate operations are subdivided in two
subsets according to the spent energy and are given by MM1

15 = {m4}, MM2
15 = {m3},

MM1
24 = {m3, m5}, MM2

24 = {m4}, MM1
33 = {m6}, and MM2

33 = {m7}, the earliest start
time for O15 is max{0, 17 + 10}; for O24, it is min{max{14, 12 + 8}, max{14, 12 + 10}}; and for O33,
it is max{0, 7 + 14}. Then, at this stage, relation (24) produces i* = 3, k* = 3, h* = 2, and l* = 3, i.e.,
at this stage, operation O33 is scheduled at t33 = 20, and machine m3 is assigned to process it.

The local decision rule of this heuristic, which first addresses the temporal constraints
by considering the most quickly available machines to perform an operation, before making
a choice based on energy consumption, seems adapted to the situation of flexible workshops
where different machines can perform the same operations.

4.4. The Resulting Solution, Assessment, and Adaptation (Outer Loop of Algorithm)

The solution (written without the asterisk symbol) provides, for each job, the starting
time and the assigned machine for each operation: tik and lik for k = 2 to Si − 1, i = 1 to n.

The completion time of job i is cti = tiSi + δiSi lSi
and the energy necessary to perform

the jobs is given by

E = ∑n
i=1 Ei = ∑n

i=1 ∑Si−1
k=2 epiklik + ∑Si−1

h=1 ∑k∈Γih
teilih l′ ik (27)

If the following conditions are satisfied,

cti ≤ dti i = 1 to n (28)

the proposed solution composed of the selected machines and schedules is feasible.
When one or more conditions (28) are not satisfied, it means that some jobs are over-

delayed in queues at machines corresponding to minimum-energy steps, and a new feasible
solution must be found. For that, let us widen the search process to less energy-efficient
machines to process critical jobs in the current solution. These critical jobs include

Ic =
{

i ∈ I with ctij > dti
}

(29)

Considering the succession of restrictions in the process of a job and the competition
for energy efficient machines, the difference tik-Estik is expected to increase with k for a
given job i. However, a large variation of this difference from an operation to the next
can be interpreted as the presence of a queue to use machine lik. Then, for the operation
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Oik, the search for an energy-efficient machine will be relaxed by increasing the index wi
and searching in sets MMwi

ik of relation (24). To avoid a large degradation in the energy
performance, this will be performed for the most critical operation kic of each critical job,
where kic is given by

kic = argmax
k,2≤k≤Si−1

{(tik+1 − Estik+1)− (tik − Estik)} i ∈ Ic (30)

and the search for the next free machine to perform operation Oikic
will be performed now

over the sets
MMw′i

ikic
with w′i = wi + 1 i ∈ Ic (31)

Another solution could be, when the machines have different regimes of operation,
to choose faster regimes of operation in the critical sets MMwi

ikic
. The search process must

be restarted until conditions (28) are met. If, after many iterations of this process, condi-
tions (28) are not met and no progress is achieved with respect to the completion times, the
current solution, which is a feasible one with respect to all the other constraints, should be
adopted, and the current completion times should be considered as new due times.

4.5. Dynamic Scheduling with Heuristic

What can be accomplished to face a dynamic workshop environment with the objective
of preserving the energy efficiency of the computed schedule depends on the nature and
the magnitude of the disruption:

4.5.1. Small Delays

To cope with small delays that are observed or expected in the processing of operations,
once a scheduling solution is obtained, it should be of interest to compute from it the current
time margins (total, free, and certain margins) and to check if the delay can be absorbed by
the margin of interest. If this is not sufficient, some machines operating, or operating a late
operation, may be speed up, but in general, at an increase of energy cost.

4.5.2. Programmed Unavailability of Machines

To cope with programmed unavailability of machines (maintenance of condition, for
example), the production plan can include a dummy job whose unique activity is the
maintenance of the machine with release and due times corresponding to the planned
maintenance period.

4.5.3. Sudden Breakdown of Machines

To cope with a sudden breakdown of a machine that is or is not in operation, first
estimates of its reparability and, if repairable, its repair time, must be performed. Then, if
the resulting delay until repair cannot be absorbed by time margins and, if other machines
able to perform the directly impacted operations are not available, a complete rescheduling
must be computed with the new expected situation during the work period.

4.5.4. Modification of the Production Plan

To cope with a new arriving order with jobs during the current working period, one
option could be to use the idle slots of the machines in the current schedule, but with
the risk of choosing the less energy efficient ones that have been bypassed by the current
optimal schedule. Another option, often the only feasible one, is to compute a new solution
for problem (9)–(16) where the current state of the jobs is updated to their current state
of completion: the remaining operations of jobs partially processed, the release times
of operations currently under processing, and the next free time for a machine under
operation or under maintenance or repair. The rationale of the proposed heuristic is that the
scheduling up to the release date of the new jobs remains unchanged, avoiding disruptions
in the job shop operations. In the case of a continuum of new job arrivals, the rationale of
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the proposed heuristic, the earliest start time, should limit the accumulation of late jobs.
The responsiveness of this last solution will depend not only on the calculation time of the
new schedule but mostly on the time necessary to update the input data of the problem.

5. Evaluation of the Proposed Scheduling Heuristic

The purpose of this section is to comprehensively assess the behavior of the proposed
heuristic by comparing it with priority rules for flexible job shop problems. The operation
of the proposed heuristic was described in detail in Section 4.3 through an example. Several
benchmarks are available in the literature [41] to compare heuristics for flexible job-shop
problems, particularly minimizing the make-span of production plans. However, in these
benchmarks, due times for jobs, as well as costs and delays associated with transfers
between machines, are not considered in general. Since the operation of the proposed
heuristic is totally deterministic, it seemed to us that instead of carrying out a cumbersome
statistical evaluation, as should be performed with complex metaheuristic involving ran-
dom processes, it seemed more judicious to us to explain why this heuristic produces better
results than priority rules of the same class, i.e., greedy deterministic constructive ones,
where the schedule solution is constructed step by step from scratch through deterministic
processes according to a local evaluation of a criterion [42].

5.1. Priority Rules for Flexible Job Shop Scheduling

Simple priority rules were developed first for jobs processed by a single machine and
then for jobs composed of a string of operations to be processed on given machines in a job
shop; a survey classifying tens of them is given in [43]. When the objective is to minimize
the make-span of a production plan, one of the more intuitive priority rules is the Shortest
Processing Time (SPT) algorithm, which prioritizes operations based on their processing
times, with the shortest operations being handled first. Since the focus in this study is
on minimizing total energy, a new basic rule, a counterpart of SPT, can be introduced:
the Smaller Processing Energy (SPE), whose algorithm prioritizes tasks based on their
processing energy, with the more energy-efficient tasks being selected first. However, when
considering flexible job shop scheduling, this is not sufficient, since some operations can
be processed concurrently on different machines. Then, in this case, a priority rule must
address two sub problems [44]: machine assignment and job sequencing. In the schedule
of a flexible job shop, when an operation of a job is planned to finish to be processed on a
machine at some scheduled time, the schedule must provide two pieces of information:

- Which machine will process the next operation of that job?
- What will be the next operation of a job processed by that machine?

The successive answers to the first question can describe the processing of the jobs
according to the schedule. In contrast, the successive answers to the second question can
describe the load plan of each machine according to this same schedule. The answer to
the second question results from the choice of an operation among the ones waiting at that
machine. If the queue of operations at that time is empty, the machine becomes idle until new
operations are assigned to it. Simple priority rules will tackle these two decision problems in
sequence and not simultaneously, contrarily with what is achieved in the heuristic proposed
in this study with relation to (24). Then, in the case of a flexible job shop, a priority rule
will have first to assign, for each operation, a machine, and then schedule each operation on
its assigned machine. It is important to observe that assigning each operation a priori to a
machine according to its processing time or processing energy for this operation would result
in priority rules that are much simpler to implement, but this could generate additional delays
since it would be necessary to wait for the machine previously assigned to an operation to
become free, while other machines may be available earlier. Then, two on-line priority rules,
which can be seen as extensions of SPT and SPE to the flexible case of job shop scheduling, are
considered for comparison with the proposed heuristic:
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- One focusing on processing time, named TTE (indicating Time–Time–Energy accord-
ing to the nature of the criterion considered at each stage of the priority rule), where
the machine is able to process earlier that operation is assigned to it and where the
operation to be next processed among the waiting operations of a machine is chosen
according to SPT. When different machines have the same fastest processing time for
an operation, the one with the smallest processing energy will be assigned to it, and
in case of equal energy performance, a random choice will be made among them. If
different queuing operations at the same machine have the same processing time, the
FIFO rule is applied.

- One focusing on processing energy, named ETT (for Energy–Time–Time), where a
machine is able to process with the minimum energy that operation is assigned to it,
while the operation to be next processed among the waiting operations of a machine
is also chosen according to SPT. In the case of machines with equal processing energy
performance, the one with the shortest processing time will be assigned to it, and
in the case of an equal processing time, a random choice will be made among these
waiting operations. If different queuing operations at the same machine have the same
processing time, the FIFO rule is also applied.

5.2. Comparison of Performances Between the Heuristic and the Priority Rules

Figure 6 displays a local situation where several operations, represented by black dots,
are candidates to be assigned to different machines according to the proposed heuristic
(called HET), the ETT, and the TTE heuristics. There, the abscissa and the ordinate inform,
respectively, for each candidate solution, its additional energy cost (δe) and resulting delay
(δd). According to the description of the three different decision processes, the heuristic
selects a local solution that has intermediate performance in terms of additional energy and
delay (δeETT ≤ δeH ≤ δeTTE and δdTTE ≤ δdH ≤ δdETT).
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To illustrate the propagation of this property, let us consider a small flexible job shop,
displayed in Figure 7, with three machines (m1, m2, and m3) with two jobs (J1 and J2),
composed of two operations (O11 and O12) and (O21 and O22). The operations O11 and
O21 can be performed either with machine m1 or with machine m2, while operations O12
and O22 are performed with machine m3. The processing and transfer costs (delays and
energies) are given by d/e in the figure.
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The application of the heuristic and the two priority rules leads to the schedules
displayed in Figure 8, with the performances displayed in Table 5.
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Table 5. Comparison of performances between heuristic and priority rules.

Heuristic TTE ETT HET

Make-span 38 43 42

Energy 48 35 40

Given the above, it appears that the proposed heuristic produces performances that are
midway between minimizing the make-span and minimizing the processing and transfer of
energy. This result appears to be favored by two conditions: on the one hand, the existence
of an inverse relationship between time and energy required on two machines capable of
carrying out the same operation (the faster machine expending more energy), and, on the
other hand, if the structure of the production plan induces between the machines of the job
shop, a rank in accordance with the solution building process of the heuristic.

5.3. Illustration of Resulting Scheduling in a Flexible Job Shop

The number of jobs n and the number of machines m are equal to 7, and the job shop
is organized into three rows of machines to process raw material (job 1 and job 2), semi-raw
material (job 3, job 4, and job 5), and semi-finished products (job 6 and job 7). The machines
of the job shop and the possible connections between them are represented in Figure 9.
There, jobs 1 and 2 have three operations; jobs 3, 4, and 5 have two operations; and jobs
6 and 7 have one operation. To these operations, a dummy initial and a dummy final
operation are added for each job. For job 1, operation O12 can be performed by machines
1 and 2, operation O13 can be performed by machines 3 or 4, and operation O14 can be
performed by machine 6. For job 2, operation O22 can be performed by machines 1 and 2,
operation O23 can be performed by machines 3 or 4, and operation O24 can be performed by
machine 7. For job 3, operation O32 can be performed by machine 4, and operation O33 can
be performed by machines 6 or 7. For job 4, operation O42 can be performed by machine 3,
and operation O43 can be performed by machines 6 or 7. For job 5, operation O52 can be
performed by machine 5, and operation O53 can be performed by machine 6 or 7. For job 6,
operation O62 can be performed by machine 6. For job 7, operation O72 can be performed
by machine 7. This shows that there is flexibility in the assignment of machines to some
operations of each job.
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The following tables provide data on the operations' processing times and energy per
machine (Table 6), the transportation delays and energy between machines (Table 7), and
finally, the release and due times (Table 8).

Table 6. Processing delays/energy per jobs and machines.

Machines m1 m2 m3 m4 m5 m6 m7

Job 1 8/50 12/40 15/70 15/60 --- 10/50 ---

Job 2 10/55 7/40 --- 15/70 15/55 --- 8/60

Job 3 --- --- --- 8/30 --- 15/30 15/25

Job 4 --- --- 15/50 --- --- 10/40 8/45

Job 5 --- --- --- --- 10/60 6/60 10/50

Job 6 --- --- --- --- --- 12/50 ---

Job 7 --- --- --- --- --- --- 15/55

Table 7. Transportation delays and energy.

Delay/Energy m1 m2 m3 m4 m5 m6 m7

m1 --- --- 5/5 5/5 8/10 --- ---

m2 --- --- 8/10 5/5 5/5 --- ---

m3 --- --- --- --- --- 5/15 8/10

m4 --- --- --- --- --- 5/5 5/5

m5 --- --- --- --- --- 8/10 5/5

m6, m7 --- --- --- --- --- --- ---

Table 8. Release and due times per jobs.

Jobs Job 1 Job 2 Job 3 Job 4 Job 5 Job 6 Job 7

Release time 0 15 10 0 10 15 20

Due time 65 65 55 55 55 45 45
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Here, only the delays and energy consumption resulting from the transfer of products
between machines are considered; they are also supposed to be independent of the type of
product that is transported.

The due times were chosen so that the jobs requiring only final machining (jobs 6 and 7)
are cleared first to free up space in the job shop for the remaining activities of the other jobs.
This is repeated with jobs 3, 4, and 5 concerning jobs 1 and 2.

5.4. Comparison of Results of the Heuristic Concerning the Priority Rules

The results obtained with the proposed heuristic in Section 4 are compared with the
results of the priority rules TTE and ETT. When due times are not considered, the range of
values for the necessary energy is [725, 785]. The heuristic presented in Section 4 provides
a solution after 18 iterations; the obtained scheduling is displayed in Figure 10.
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This solution has a total energy cost of 725 with a make-span of 65, while the due times
are respected for each job.

Figures 11 and 12 present the corresponding Gantt diagrams, and Table 9 presents a
comparison of their performances.
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Table 9. Performances of heuristic HET and priority rules TTE and ETT.

Energy Cost Make-Span

HET 725 65

TTE 745 62

ETT 725 70

In the considered case study, the proposed heuristic reaches the optimal performance
concerning total energy, while due time constraints are satisfied for all the jobs. The TTE
priority rule reduces the make-span of the considered production plan (from 65 to 62), but
this is achieved at the expense of an increase in the energy cost, which is 33.3% of the total
energy variation range [785,725]. Finally, the ETT priority rule achieves the same energy
performance as the heuristic, but the two jobs do not comply with their due dates.

6. Conclusions

This study addressed the problem of minimizing the energy spent in a flexible produc-
tion workshop with the operation of its machines and its internal logistics. The hypotheses
retained led to the formulation of a particular scheduling problem that fits well with opera-
tional practice in this field. There, the operation of the flexible job shop is considered not
as a mere juxtaposition of tasks but as a set of coordinated production flows that can be
assigned to different machines. The field of application of this study goes well beyond the
scheduling in industrial job shops and, among others, can also cover the operation of inter-
modal transport terminals. This is particularly important in the case of airport operations
when considering the ground handling activities for aircraft at arrival and departure. There,
due time constraints have an essential role in guaranteeing the punctuality of departure
flights, while the energy consumption and the emissions of the numerous ground handling
vehicles must be minimized as much as possible [45].

The optimization problem considered in this study was formulated as a mono-criterion
optimization problem, avoiding the introduction of relative weights or the exploration of
a Pareto frontier involving energy and make-span. At the same time, the consideration
of release and due times allows the integration of a flexible job shop into more global
processes of Industry 4.0. Its two-level structure is the result of having adopted as decision
variables, besides the scheduling variables of the operations, the assignment of machines
to the different operations of the jobs. This two-level structure offers opportunities to use
known optimization approaches to obtain exact solutions for real-size instances of this
problem. However, considering its computational complexity and the requirements to
generate efficient schedules in the dynamic environment of flexible job shops, an ad hoc
heuristic was designed.

With this heuristic, the machine assignments to operations are not generated a priori
for each job but are constructed step by step according to the information available about
the downstream operational state of the job shop. The solution generated by this heuristic
derives from a permanent trade-off between energy and delays, where the subsets of
candidate machines to perform an operation can be enlarged to include less energy-efficient
machines that operate faster, satisfying the due time constraints for each job. This heuristic
was applied with success to a small-size case study, where it outperformed two basic
scheduling rules. Given the results obtained so far, it seems interesting to evaluate the
performance of this heuristic when applied to higher-dimensional problems targeting other
application domains.

The present research can be completed following different directions:

- Enlarging the scope of the problem by considering other sources of energy consump-
tion (idle machines, for example).
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- Enhancing the efficiency of the heuristic—for example, by integrating priority rules,
such as the critical ratio (between the time remaining until the due date and the work
time remaining), to better cope with the due date constraints [46].

To further examine the quality of the solutions provided to the minimum-energy
flexible job-shop scheduling problem, this study can be a basis for the development of
metaheuristics, such as those described in [47,48]. This will allow the use of artificial
intelligence techniques to cope more globally with the search for an efficient solution.
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