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Preface

Controlling carbon emissions has become an important way to realize regional sustainable

development. This Reprint aims to encourage scholars to share their theories, methods and results on

carbon emissions and carbon neutrality pathways. The Reprint focuses on carbon peak and carbon

neutrality, belonging to environmental science, and is suitable for anyone who cares about climate

change and carbon neutrality, including scholars, administrators, students, etc. It can be used as a

textbook, extracurricular reading, case library, etc. This Reprint effectively summarizes the research

progress about carbon emissions, fills the corresponding research gap, and provides the scientific

basis for the realization pathways and strategy formulation of the carbon neutrality target.

This Reprint includes 13 articles covering the entire cascade framework from spatiotemporal

variations to policy recommendations. There are three papers focusing on carbon emission

accounting and spatial distribution characteristics, two papers considering carbon sequestration and

carbon balance analysis, three papers exploring the complex relationships between carbon emission

and the nature–social–economic system, one paper especially carrying out scenario analysis, and four

papers contributing to policy recommendation. The contents include literature reviews, theoretical

innovations, case analyses, policy refinements, and so on.

As the editors of the Reprint, we thank the editors of journal Land for the publication platform

and the editing and publishing work. We thank all the authors of the 13 articles published in the

Special Issue. All the authors provide their novel findings and perspectives in the direction of carbon

neutrality pathways.

This Reprint and Special Issue was funded by the National Natural Science Foundation of China

(Grant No. 72304192).

Chao Wang, Jinyan Zhan, and Xueting Zeng

Guest Editors

vii





Citation: Wang, C.; Zhan, J.; Zeng, X.

Regional Sustainable Management

Pathways to Carbon Neutrality. Land

2024, 13, 1611. https://doi.org/

10.3390/land13101611

Received: 19 September 2024

Revised: 24 September 2024

Accepted: 30 September 2024

Published: 3 October 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

land

Editorial

Regional Sustainable Management Pathways to
Carbon Neutrality
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* Correspondence: zhanjy@bnu.edu.cn

With the background of global climate change and rapid economic growth, there are
increasing problems threatening regional sustainable development [1]. Many global climate
actions have been implemented. Carbon neutrality is gradually becoming a common
development goal all over the world. Achieving carbon neutrality requires carbon reduction
and a carbon sink increase. Carbon reduction is directly closed to the socioeconomic system,
involving industrial structure, productive technology, energy consumption, and so on [2].
While carbon sequestration enhancement should improve carbon sink from the perspective
of a natural ecosystem, many studies have been carried out centered on carbon emissions.
Carbon emission accounting is basic work. Assessing carbon sinks and analyzing carbon
balance states can help judge whether ecological objectives can be achieved. Clarifying
the relationship between carbon emissions and socioeconomic systems and assessing the
socioeconomic impacts of carbon reduction are crucial for upgrading industrial structures,
optimizing energy consumption structures, and so on. Carbon emission prediction is the
key to exploring the future realization path to carbon neutrality, such as target planning
scenario analysis. Comprehensive management plans and frameworks need to be further
and supplemented and improved, including promoting nature-based solutions, establishing
ecological product realization mechanisms, standardizing carbon trading markets, and
improving negotiation and compensation mechanisms.

This Special Issue, entitled “Regional Sustainable Management Pathways to Carbon
Neutrality”, presents 13 high-quality original research papers, covering the cascade frame-
work of “spatiotemporal variations–balance analysis–socioeconomic impacts–scenario
analysis–policy recommendations” centered on carbon emissions.

Carbon emissions accounting can be based on sector classification or administrative
boundaries. Yang and Yan (2024) assessed and analyzed the characteristics of transporta-
tion CO2 emissions and revealed their influencing factors. They classified thirty Chinese
provinces into six characteristic types (Types I to VI) and proposed priority control di-
rections and indicators for carbon reduction as well as typological strategies and key
performance indicators (KPIs) for each type. The periodic development characteristics of
carbon emissions were further explored. Lu et al. (2023) revealed the carbon emission
development stage of three urban agglomerations in the Yangtze River Economic Belt. At
the same time, the impacts of influencing factors were analyzed. Moreover, the preparation
method of carbon emission spatial data was also innovated and developed [3]. Liu et al.
(2023) established a carbon emission assessment model based on the “NPP–VIIRS–like”
nighttime light data. The spatiotemporal variation of carbon emissions at three different
levels and the spatial correlation at the county level were analyzed in the nine provinces
along the Yellow River.

Carbon sequestration, as a typical regulation service that can absorb CO2 and release
O2, becomes a key element in exploring how natural ecosystems contribute to carbon

Land 2024, 13, 1611. https://doi.org/10.3390/land13101611 https://www.mdpi.com/journal/land1
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neutrality. Yang et al. (2024) used the carbon absorption coefficient method to estimate the
carbon sink in the Beijing–Tianjin–Hebei Region and explored the carbon sink enhancement
potential based on different land use scenarios. They found that the expansion and opti-
mization of arable land, garden land, and forest can effectively enhance carbon sinks. Based
on the assessment of carbon source and carbon sink, carbon balance analysis can help with
spatial zoning and optimization management. Fan et al. (2024) estimated the grid-scale net
ecosystem productivity (NEP), explored the spatiotemporal evolution of carbon budgets,
and conducted carbon balance zoning for the 31 cities in the middle reaches of the Yangtze
River urban agglomerations (MRYRUA). They found that carbon sink functional zones
were distributed in areas with rich ecological resources and proposed specific regional
collaborative reduction policies.

The generation of carbon emissions is closely related to socioeconomic system. Most
processes of economic production are accompanied by the generation of carbon emissions
and pollutants. Many representative indexes have been established to assess environmen-
tal performance. Wang et al. (2024) assessed the carbon emission efficiency (CEE) and
identified the main influence factors in the Beijing–Tianjin–Hebei Urban Agglomeration
(BTHUA). They found that the input-related factors (carbon emissions per capita, employ-
ment per ten thousand people, total assets per capita, and energy intensity) had a negative
effect on CEE, DP per capita, urbanization level, and proportion of the tertiary sector’s
GDP had positive impacts on CEE. Xue et al. (2023) considered various environmental
pollutants into eco-efficiency (EE) assessment and established an index system to evaluate
urbanization efficiency, aiming at analyzing the correlation between EE and urbanization
efficiency in the 64 cities in China. Besides efficiency assessment, the impacts of carbon
neutrality on land use were also investigated. Yang et al. (2023) analyzed the characteristics
and driving mechanism of urban construction land under rapid urbanization and carbon
neutrality targets.

The forecast of carbon emission trends can be used as an effective reference for policy-
making. Meng et al. (2023) employed an extended STIRPAT model and ridge regression to
simulate the projections of carbon peaks under different development scenarios. Moreover,
Yang et al. (2024) also used scenario analysis to explore the carbon sink enhancement potential.

As the ultimate export of scientific research, this Special Issue published several papers
on policy recommendations. Aligning with the Kunming-Montreal Global Biodiversity
Framework (GBF) and other frameworks that support nature-based solutions, the policies
and strategies should conform to the correct laws of nature, have a certain priority, and
pay attention to harmony between nature and the socio-economy. The articles include
carbon compensation zoning, carbon emission trading, ecological products, and synergis-
tic carbon reduction policies. Chen et al. (2023) constructed a more comprehensive per
capita carbon compensation zoning model, divided Chinese counties into per capita carbon
compensation-type zones, and put forward the suggestions for optimizing low-carbon
development. Li and Liu (2023) used a difference-in-differences model and verified that
China’s carbon emissions trading policy and the horizontal mobility experience of the
provincial governors exert a significant positive effect on carbon emission reduction. More-
over, they identified the correlation between political factors and carbon emissions and
provided specific suggestions for carbon reduction policy formulation. Wang et al. (2023)
focused on the realization mechanism of ecological products and considered conversion
efficiency as a convincing method to present the transformation degree of ecological pro-
duction into economic benefits and the degree of eco–economic synergy. Forest Ecological
Products (FEPs) value was evaluated to analyze the conversion efficiency in the Pearl River
Delta (PRD). Chen et al. (2023) integrated the game model and general spatial equilibrium
model, revealing the formation of regional comparative advantages in emission reductions
and their impacts on synergistic emission reductions. Moreover, a form of synergy was
proposed to provide trade, industry, and economic growth policies, which complement
emission reduction policies.
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An Inquiry into the Characteristics of Carbon Emissions in
Inter-Provincial Transportation in China: Aiming to Typological
Strategies for Carbon Reduction in Regional Transportation

Yuhao Yang and Fengying Yan *

School of Architecture, Tianjin University, Tianjin 300072, China; yangyuhao@tju.edu.cn
* Correspondence: fengying@tju.edu.cn

Abstract: The low-carbon development of the transportation sector is crucial for China to achieve its
national goals of carbon peaking and carbon neutrality. Since China is a vast country with unbalanced
regional development, there are considerable differences in the levels of carbon dioxide emissions
from the transportation sector across regions. Therefore, revealing the influencing factors that shape
the characteristics of transportation carbon dioxide emissions (TCO2) can inform tailored sub-national
carbon reduction strategies based on local conditions, which is an important technical approach for
achieving national goals. Based on an extended Kaya identity, we derived indicators of the impacts
on provincial TCO2 from factors such as economic development, population density, energy structure,
transportation efficiency, technology research and development (R&D), infrastructure construction,
transportation operation conditions, and residents’ transportation behavior. Using a multi-indicator
joint characterization method, we explored the characteristics of provincial TCO2 in China in 2019.
By applying Ward’s method to hierarchical clustering, the thirty provinces of China were classified
into six characteristic types (Types I to VI). Based on the total TCO2 (TC), the intensity of TCO2 (TI),
and the per capita TCO2 (TP) calculated for each province in 2019, the priority control directions
and indicators for carbon reduction in each type were obtained through relative relationships with
provincial averages and correlation analysis with the indicators. Specifically, Type I and Type IV
can be categorized as TP-controlled, Type II and Type III as TC-controlled, and Type V and Type VI
as TI-controlled. Finally, we provided typological strategies and key performance indicators (KPIs)
relevant to local governments to better achieve carbon reduction goals in each provincial type. It can
promote cooperative development and collaborative governance in carbon reduction across regions
and the unified implementation of China’s dual-carbon goals.

Keywords: transportation carbon dioxide emissions; extended kaya identity; carbon emissions
characteristics; inter-provincial difference; low-carbon development; influencing factors; typological
strategies

1. Introduction

Practicing low-carbon development to mitigate increasingly severe global climate change
has become an important international consensus. The transportation sector is a major con-
tributor to global CO2 emissions. In 2021, CO2 emissions from the transportation sector
reached 7.7 billion metric tons, which accounted for 25% of the total global CO2 emissions [1].
Therefore, the transportation sector is a key industry for achieving global carbon reduction
goals [2–5]. As the world’s largest greenhouse gas emitting country [5–7], China’s transporta-
tion carbon dioxide emissions (TCO2) rank third nationally across all sectors [7–10]. According
to International Energy Agency predictions, China’s TCO2 is predicted to account for more
than one-third of global transportation emissions by 2035 [11]. Meanwhile, as the largest
developing country, China’s TCO2 is expected to continue growing rapidly, making it a key
sector for achieving the goals of carbon peaking and carbon neutrality [5,7].

Land 2024, 13, 15. https://doi.org/10.3390/land13010015 https://www.mdpi.com/journal/land5
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As subordinate units tasked with achieving China’s national low-carbon goals, provin-
cial administrations play an overarching institutional role in planning and coordination.
China’s vast geographic expanse has resulted in significant objective differences across
provinces in factors like economic development, population distribution, resource endow-
ments, and urbanization levels. This has led to considerable variability in CO2 emission
levels across provincial transportation sectors [12]. Therefore, an in-depth analysis of
inter-provincial differences in the transportation sector, using scientific and rational meth-
ods to reveal characteristics of provincial TCO2, followed by tailored carbon reduction
strategies for different characteristic regions, is the basic premise and important guarantee
for effectively achieving low-carbon transportation development goals.

The provincial TCO2 characteristics described in this study refer to the combination of
multiple influencing factors affecting the direct quantity of TCO2, including influencing factors
affecting the total TCO2 (TC), the intensity of TCO2 (TI), the per capita TCO2 (TP), etc., which
can effectively reflect the systematic characteristics of inter-provincial transportation sectors
in aspects such as economy, energy, efficiency, technology, infrastructure, operation, and so
on. Due to the necessity and urgency of understanding inter-provincial TCO2 characteristics,
scholars have conducted extensive research on this topic in recent years, which can be sum-
marized into three aspects: direct quantity characteristics, correlated quantity characteristics,
and influencing factor characteristics. (1) Direct quantity characteristics refer to revealing
spatial distribution characteristics of the direct quantity of TCO2 [13–15], spatial correlation
characteristics [16], and their evolutionary patterns [17], based on provincial TCO2 accounting.
(2) Correlated quantity characteristics refer to characteristics reflecting specific aspects that
influence the direct quantity of TCO2, such as transportation CO2 emission efficiency [18–21],
TCO2 reduction potential [7], inter-provincial intelligent transportation characteristics [22],
and carbon reduction effects of transportation structure adjustments [23]. (3) Influencing factor
characteristics involve a more comprehensive and detailed description of inter-provincial
TCO2 characteristics by exploring the factors that influence the direct quantity of TCO2. Exist-
ing studies mainly adopt econometric models like multivariate regression, panel data models,
and extended models based on factors such as Kaya identity, IPAT, and STIRPAT to reveal the
influencing factors of the direct quantity of TCO2. Furthermore, factor decomposition models
(e.g., Laspeyres index decomposition, Divisia index decomposition, LMDI, generalized fisher
index decomposition) are also applied to study the impacts of influencing factors on the direct
quantity of TCO2.

Existing studies have explored the macro-level influencing factors of TCO2 charac-
teristics, including economic development level, population size, transportation energy
intensity, transportation energy structure, transportation intensity, and industrial struc-
ture [5,24–26]. Additionally, studies have examined the impacts of transportation infrastruc-
ture development, such as urbanization rate, fixed asset investment in the transportation
industry [27,28], length of road network [29–31], level of public transportation develop-
ment [32,33], per capita private car ownership, passenger and freight turnover [34,35],
average transportation distance [36], logistics scale, and express delivery industry develop-
ment [37,38]. Furthermore, the impacts of transportation technology level and new energy
industry planning have been investigated, such as R&D investment [39,40], level of digital
innovation [41], and new energy vehicle industry [42], etc.

In summary, although existing studies on inter-provincial TCO2 characteristics have
gradually become more comprehensive in coverage, more detailed in evaluation indica-
tors, and clearer in understanding the relationships, this study of CO2 emissions in the
transportation sector is a complex system with numerous influencing factors. The selec-
tion of evaluation indicators needs to balance comprehensiveness and feasibility, and the
classification of characteristics needs to assist in coordinating the advantages and disad-
vantages of provinces in low-carbon transportation development. Otherwise, only broad
and general conclusions can be drawn, which is not conducive to the implementation of
carbon reduction actions by provinces or regional cooperation and coordinated governance.
Moreover, macro-level indicators used in existing research, in order to have a strong mathe-
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matical relationship with TCO2, tend to be broader and more general in terms of coverage
(i.e., evaluation indicators have macroscopic and comprehensive characteristics), which
correspondingly may sacrifice the coverage of indicator content and the directedness of
regulatory mechanisms.

Compared to existing research, this study makes the following contributions: (1) A
multi-indicator joint characterization method is proposed to reveal provincial TCO2 charac-
teristics comprehensively. (2) The coverage of provincial TCO2 characteristics is expanded
by adding indicators for urban and county population density levels (UPL), transportation
operation pressure (TOP), and resident living consumption levels (RLC). (3) The hierarchi-
cal clustering categorization effectively reveals provincial advantages and disadvantages
in TCO2 characteristics, which facilitates cooperation and coordinated governance across
Chinese regions. (4) Characteristic indicators have an important integrating function,
combining to reflect the inter-provincial TCO2 characteristics, the evaluation criteria for
the classification of characteristic types, and directly corresponding to typological carbon
reduction measures and key performance indicators (KPIs).

2. Materials and Methods

This study proposes a multi-indicator joint characterization method to construct eval-
uation indicators and typological categorization of inter-provincial TCO2 characteristics in
China, aiming to establish carbon reduction strategies supporting provincial differentiation
and regional collaboration. The methods used in this study can be divided into five steps:
(1) a multi-indicator joint characterization method; (2) hierarchical cluster analysis follow-
ing Ward’s method; (3) analysis of provincial type characteristics; (4) TCO2 accounting
and their correlation analysis with indicators; (5) carbon reduction strategies and KPIs for
provincial types. Figure 1 illustrates the procedures, methods, and contents for achieving
the research objectives. The overall research framework adopted this approach to measure
sub-national TCO2 characteristics, categorize types, and formulate carbon reduction strate-
gies, which is applicable to studies of other countries and regions with similar needs and
data sources for carbon reduction.

2.1. Data Sources

As China was affected by the COVID pandemic, the data from 2020 to 2022 are
expected to be less representative, so this study uses the data from 2019 for the calculation
of the indicators. Among them, TES, TEE, and RDL are from the China Transport Statistical
Yearbook 2019 and China Energy Statistical Yearbook 2020. The other six indicators are from
the China Statistical Yearbook 2020. Due to missing energy data or statistical calibration
differences, Tibet, Hong Kong, Macau, and Taiwan are excluded from the study sample.

It is worth noting that in China, the transportation, storage, and postal sectors are
commonly perceived as a unified industrial entity due to historical continuity, functional
interconnections, management efficiency, and industry characteristics. This integration is
aimed at enhancing regulatory oversight and operational coordination. Therefore, in this
study, when referring to the transportation sector, we specifically denote transportation,
storage, and postal services. This approach is adopted to comprehensively consider the
impact and role of these sectors in carbon emissions.
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Figure 1. Framework of the research process workflow.

2.2. Multi-Indicator Joint Characterization Method for Provincial TCO2 Characteristics
2.2.1. Construction Process of Characteristic Indicators

The Kaya identity establishes mathematical relationships among factors like popula-
tion, energy, economy, and CO2 emissions [43]. Due to its simple structure and convenient
operation, it can fully decompose CO2 emissions structurally and is often used to build re-
lationships between CO2 emissions and influencing factors. The equation can be expressed
as follows:

C =
C

PE
× PE

GDP
× GDP

P
× P (1)

where C represents total CO2 emissions, PE represents total energy consumption, GDP
represents gross domestic product, and P represents total population. In this study, CO2
emissions from transportation sector energy consumption are determined by extending the
Kaya equation to identify influencing factors. Then Formula (1) can be expanded as:

Ci =
n

∑
k=1

Cik
Eik

× Eik
Ei

× Ei
GDPi

× GDPi
TSi

× TSi
SBi

× SBi
Wi

× Wi
Pi

× Pi (2)

where i represents the thirty provinces in China, k represents the n types of energy con-
sumed in the transportation sector, Cik represents the CO2 emissions of energy type k in
province i, Eik represents the consumption of energy type k in province i, Cik/Eik represents
the CO2 emission coefficient of energy type k, Ei represents the total energy consumption of
the transportation sector in province i, Eik/Ei represents the energy structure of the trans-
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portation sector in province i, GDPi represents the added value of transportation, storage
and post in province i, Ei/GDPi represents the energy consumption per unit added value of
the transportation sector in province i (i.e., transportation energy intensity), TSi represents
the area of transportation infrastructure in province i, GDPi/TSi represents the economic
returns per unit area of transportation infrastructure (i.e., transportation economic output
intensity), SBi represents the built-up area in province i, TSi/SBi is the proportion of
transportation infrastructure area to built-up area, representing the level of transportation
infrastructure construction in province i, Wi represents the total transportation pollutants
in province i, SBi/Wi is the reciprocal of built-up area per unit transportation pollutants,
with the ratio relationship reflecting transportation pollution intensity in province i, and Pi
represents the year-end population in province i, Wi/Pi represents per capita transporta-
tion pollutants, indicating the pollution intensity of resident transportation behaviors in
province i.

2.2.2. Definition of Characteristic Indicators

Based on the identified influencing factors of TCO2 described above and referring to
evaluation indicators corresponding to influencing factors in existing studies [5,9,17,24–27,32,33,
39,44,45], this study adopts a multi-indicator joint characterization method and constructs nine
characteristic indicators to reveal provincial TCO2 characteristics (Table 1).

Table 1. Expressions and parameter definitions of characteristic indicators.

Influence Factors
Indicator Name

and Abbreviation
Indicator Description

Indicator Expression and
Parameter Definition

Transportation economic
output intensity

Transportation economic
structure (TEC)

Reflects the level of economic
structure share of the

transportation sec tor in province i
compared to the

provincial average.

TEC = ECi/GDPi
TEC′

ECi is the added value of the
transportation sector in province i,

GDPi is the gross domestic product of
province i, TEC′ is the provincial
average value of the numerator.

Transportation energy structure Transportation energy structure
(TES)

Reflects the level of clean energy
structure share in the
transportation energy

consumption of province i
compared to the

provincial average.

TES = REi/TEi+HEi
TES′

REi is the consumption of clean
energies such as electricity and

natural gas in the transportation
sector of province i, TEi is the total

energy consumption of transportation
in province i, HEi is the consumption

of “gasoline” and “diesel oil” in
“residential life” of province i, TES′ is

the provincial average value of
the numerator.

transportation energy intensity

Transportation energy
consumption efficiency (TEE)

Reflects the level of energy
consumption per unit of

transportation turnover in
province i compared to the

provincial average.

TEF =
(TE i+HEi)/TTi

TEF′
TTi is the total transportation turnover

(including passenger and
freight turnover), TEF′ is the
provincial average value of

the numerator.

R&D level of transportation
technology (RDL)

Reflects the level of
technological R&D capability in

the transportation sec tor of
province i compared to the

provincial average.

RDL = RDi/POi
RDL′

RDi is the internal expenditure on
R&D funds for the transportation

sector in province i, POi is the
year-end population of province i,

RDL′ is the provincial average value
of the numerator.

Population factor Urban population density level
(UPL)

Reflects the level of the gap
between the population density of

urban and county in province i
compared to the provincial

average (lower values indicate
higher urban population density).

UPL = CPi/UPi
UPL′

CPi is the county population density
of province i, UPi is the urban

population density of province i,
UPL′ is the provincial average value

of the numerator.

9



Land 2024, 13, 15

Table 1. Cont.

Influence Factors
Indicator Name

and Abbreviation
Indicator Description

Indicator Expression and
Parameter Definition

Transportation infrastructure
construction

Road construction level (RCL)

Reflects the level of intensity
of urban road and highway
construction in province i

compared to the
provincial average.

RCL = 0.5 × URi/UPi
R1′ + 0.5 × HMi/POi

R2′
URi is the actual urban road length by

year-end of province i, UPi is the
urban population by year-end of
province i, HMi is the highway

mileage of province i, R1′ and R2′ are
the provincial average values of

each numerator.

Public transportation
construction level (PTL)

Reflects the level of intensity of
urban public transportation
construction in province i

compared to the
provincial average.

PTL = 0.5 × BTi/UPi
P1′ + 0.3 × RTi/UPi

P2′ +

0.2 × TXi/UPi
P3′

BTi is the number of operating buses
and trolley buses in cities of province

i, RTi is the number of rail transit
vehicles assigned in province i, TXi is
the number of taxis in province i, P1′,

P2′, and P3′ are the provincial
average values of each numerator.

Transportation pollution
intensity Traffic operation pressure (TOP)

Reflects the level of potential and
current pressure from road

traffic operation in province i
compared to the

provincial average.

TOP = 0.5 × PCi/POi
T1′ + 0.5 × TCi

T2′
PCi is the private car ownership in
province i, TCi is the sum of road

traffic congestion in province i. T1′,
and T2′ are the provincial average

values of each numerator.

Pollution intensity of resident
transportation behaviors

Residents’ living consumption
level (RLC)

Reflects the level of consumption
and travel frequency of residents

in province i compared to the
provincial average.

RLC = 0.5 × TRi/POi
C1′ + 0.5 × TPi/POi

C2′
TRi is the total resident consumption
expenditure of province i, TPi is the
passenger volume of province i. C1′,
and C2′ are the provincial average

values of each numerator.

Note: (1) The indicators are dimensionless, and no unit description is provided. (2) The total transportation
turnover in the TEE indicator includes both passenger turnover and freight turnover. Following existing research
[46], passenger turnover was converted to freight turnover using a conversion coefficient of 1 t·km = 7.1 person·km,
and then summed up. (3) For UPL, since Beijing, Shanghai, and Tianjin are cities in the later stages of urbanization,
county population statistics are not available (values are 0) in the China Statistical Yearbook 2020. Therefore, county
population was used as the numerator for calculation.

To eliminate unfairness caused by inter-provincial differences as well as dimensional
and quantitative differences among indicators, indicator values are quantified by the
ratio of provincial value to provincial average. Indicator values less than or equal to
1 indicate the provincial characteristic is below or equal to the national average, and vice
versa. This method of index construction enables the monitoring of current deficiencies
in governmental low-carbon actions and the identification of existing measures with poor
implementation effectiveness.

For indicators involving multiple sub-contents, weights are assigned for definition.
The two sub-contents of RCL, TOP, and RLC are assigned equal importance weights of 0.5.
For the three sub-contents of PTL, weights are assigned based on generality and relative
importance (Table 1).

2.3. Hierarchical Cluster Analysis following Ward’s Method

Cluster analysis provides means of data dimensionality reduction and visualization,
representative sample screening, and enables scientific classification and grouping of data,
thus revealing similarities and differences among provinces and promoting cooperation
and coordinated governance across regions. Before cluster analysis, this study standardized
the indicators. The value range of the constructed characteristic indicators is [0, ∞]. To
eliminate the negative effects of excessive outliers and facilitate effective interpretation
of indicator meanings, this study assigned a value of 2 to all indicators greater than 2.
Thus, the indicator value range is [0, 2]. An indicator value of 2 indicates the provincial
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characteristic is far above the provincial average level. Based on validation with our existing
study [47], the maximum value control approach has good effects on the stability of type
division and eliminates potential unfairness in inter-provincial policy allocation.

Hierarchical clustering is the most widely used clustering method [48]. Each sample
starts as its own cluster, and at each iteration of the algorithm, clusters with high similarity
are merged. This process repeats until a preset number of clusters is reached or only one
cluster remains. Since this method does not require pre-classification, it is suitable for
classification decisions combining subjective and objective factors. In hierarchical cluster
analysis, Ward’s method [49] uses squared Euclidean distance as the distance between
categories, emphasizing smaller internal differences within the same category and greater
differences between different categories. Therefore, this study applies Ward’s method to
the nine characteristic indicators across thirty Chinese provinces, which can effectively
reveal similarities and differences in provincial TCO2 characteristics.

2.4. Transportation CO2 Emissions Calculation Methods

To ensure the convenience and accuracy of calculations, this study is based on the
IPCC guidelines [50] and the research of Shan et al. [51] for TCO2 calculations. TC from the
transportation sector is the sum of direct CO2 emissions from fossil energy consumption in
the transportation sector (not including indirect emissions from electricity consumption)
and CO2 emissions from gasoline and diesel consumption related to residential life. TI is
the ratio of TC to the value-added of the transportation sector. TP is the ratio of TC to the
year-end population of the province.

Total CO2 emissions from the transportation sector are calculated as follows:

C = CFtr + CFli (3)

where C represents total CO2 emissions from the transportation sector, CFtr represents CO2
emissions from fossil fuel consumption in the transportation sector, and CFli represents
CO2 emissions from fossil fuel consumption in transportation activities in residential life.

The CO2 emissions from fossil energy consumption in the transportation sector are
calculated as follows:

CF =
n

∑
j

Ej × NCVj × CCj × Oj (4)

In the CFtr CO2 emission calculations, Ej represents the total consumption of fossil
fuel type j, involving raw coal, cleaned coal, other washed coal, briquettes, coke oven gas,
gasoline, kerosene, diesel oil, fuel oil, lubricants, liquefied petroleum gas, natural gas, and
other energy sources. NCVj represents the net calorific value of different energy types, i.e.,
the heat value generated per physical unit of fuel combusted. CCj (carbon content) is the
CO2 emissions per unit of net calorific value generated by fuel j. Oj represents the oxidation
rate during fuel combustion. For CFli, only CO2 emissions from transportation-related
gasoline and diesel oil consumption are calculated for urban and rural residents.

2.5. Correlation Analysis between Characterization Indicators and the Direct Quantity of TCO2

Correlation analysis is a commonly used method for discovering associations between
things. Among them, the Pearson correlation coefficient method [52] can examine the
linear correlation between variables, measured on a scale from −1 to +1. It reflects both
the directionality of the co-variation between two variables as well as the extent of it. A
value of 0 indicates no correlation; positive values denote positive correlation; and negative
values mean negative correlation. The larger the absolute value, the stronger the correlation.
This method has been widely applied across numerous fields and disciplines. In this study,
the Pearson correlation coefficient method was used to analyze the correlations between
the direct quantity of TCO2 (TI and TP) in thirty provinces of China and the original values
of nine selected feature indicators (i.e., values greater than two were retained). The aim
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was to determine the degree of correlation between variables and provide more accurate
references for implementing carbon reduction measures.

3. Results and Discussion

3.1. Results of Characteristic Indicator Calculation and Cluster Analysis

After calculating the nine characteristic indicators across thirty Chinese provinces
in 2019, this study conducted standardization processing on the indicator values (i.e.,
defining maximum indicator values), so the value range of the characteristic indicators is
[0, 2]. See Appendix A, Table A1. This study performed hierarchical cluster analysis with
Ward’s method on the characteristic indicators across thirty provinces using SPSS Statistics
25 software to obtain the classification dendrogram of provinces and divided the thirty
Chinese provinces into six types by the vertical line segmentation method (Figure 2).

Figure 2. Type division based on hierarchical cluster analysis with Ward’s method.

3.2. Analysis of Provincial Type Characteristics

The geographic distribution and TCO2 characteristics of the six types and their member
provinces are shown in Figure 3. Except for a few individual provinces, the member
provinces of each type generally have distinct geographical adjacencies. The average value
of each indicator across the member provinces in each type was used as the characteristic
indicator for types I to VI (Table 2). Comparing with the provincial average (i.e., average
value of 1) helps identify the advantageous and disadvantageous characteristics of each
type for more effective indicator feature analysis.
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Figure 3. The geographic distribution and TCO2 characteristics of types I–VI.

Table 2. Numerical values of characteristic indicators for Types I–VI.

Type TEC TES TEE RDL UPL RCL PTL TOP RLC

Type I 0.91 0.65 0.99 1.87 0.00 0.54 2.00 1.39 1.73
Type II 0.91 0.68 0.55 0.35 0.97 0.88 0.80 1.08 0.72
Type III 0.96 1.29 0.86 2.00 1.11 1.05 0.85 0.82 0.92
Type IV 1.51 1.77 0.45 0.21 0.94 1.05 0.59 1.10 0.53
Type V 0.96 0.78 1.77 0.34 1.06 1.08 0.64 0.81 0.76
Type VI 0.98 1.38 0.86 0.18 1.47 1.30 0.86 0.87 1.50

For indicator value interpretation, this study divided the [0, 2] interval of the indicator
range into different levels: [0, 0.5] indicates a low level, (0.5, 0.95) indicates a relatively
low level, [0.95, 1.05] indicates reaching the provincial average level, (1.05, 1.5) indicates a
relatively high level, [1.5, 2) indicates a high level, and 2 represents far above the provincial
average and is the maximum value in the indicators. What is worth noting is that due to
the special construction of the UPL, its values exhibit the opposite levels, i.e., lower values
indicate higher urban population density. The TES is similar, with higher values indicating
lighter energy structures characterized by degrees of light and heavy.

(1) Type I includes Beijing, Tianjin, and Shanghai, which are municipalities directly
under the central government in China. They have high levels of economic development
and urbanization, comprehensive infrastructure construction, and are the most densely
populated areas in China. As shown in Figure 4, the advantageous characteristics of Type
I are as follows: a high level of transportation technology R&D (RDL), which ranks the
second highest among all types; the highest level of public transportation construction (PTL)
among all types; and transportation energy consumption efficiency (TEE) reaching the
provincial average. The disadvantageous characteristics are as follows: a relatively heavy
transportation energy structure (TES), characterized by a lower share of clean transportation
energy (ranked lowest among all types); high urban population density level (UPL), which
is the highest among all types; high traffic operation pressure (TOP), which refers to the
number of private cars and the degree of road congestion (ranked the highest among the
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types); high residents’ living consumption level (RLC), which is the highest among the
types; relatively low road construction level (RCL), which is the lowest among the types;
and low transportation economic structure (TEC), which ranks lowest among the types.

Figure 4. Radar chart of characteristic indicators for Type I.

(2) Type II includes Liaoning, Jiangsu, Zhejiang, Anhui, Fujian, Jiangxi, Shandong,
Henan, Guangdong, and Guangxi, mostly located in economically vibrant eastern coastal
regions and adjacent coastal provinces in central China, with good geographical adjacency,
high economic development, high urbanization levels, high population density, and com-
plex and developed transportation networks. As shown in Figure 5, the advantageous
characteristics are as follows: relatively low TEE indicator (2nd lowest among the types),
UPL indicator reaching provincial average, and relatively low RLC indicator (2nd lowest
among the types). The disadvantageous characteristics are as follows: low RDL indicator,
relatively heavy TES indicator (2nd highest among the types), relatively low PTL indicator,
high TOP indicator, relatively low RCL indicator (2nd lowest among the types), and the
lowest TEC indicator among the types.

Figure 5. Radar chart of characteristic indicators for Type II.

(3) Type III includes Hubei and Shaanxi, adjacent provinces in central China with
medium levels of economic development and urbanization. They are important industrial
bases with relatively complete industrial systems and also play important transportation
hub roles in their regions. As shown in Figure 6, the advantageous characteristics are as
follows: relatively low UPL and TOP indicators (2nd lowest among the types), relatively
low TEE and RLC indicators, relatively light TES indicators, and the highest RDL indicators
among the types. Additionally, the RCL indicator and TEC indicators reach provincial
averages. The disadvantageous characteristic is the relatively low PTL indicator. Type III is
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the type with the most advantages for low-carbon transportation development among the
six types.

Figure 6. Radar chart of characteristic indicators for Type III.

(4) Type IV includes Hebei, Shanxi, and Inner Mongolia, all located in northern China
with good geographical adjacency. They are focused on heavy industry and energy produc-
tion, have relatively lower economic development, abundant natural mineral resources,
and are important coal production bases in China. As shown in Figure 7, the advantageous
characteristics are as follows: the highest TEC indicator, the lightest TES indicator, and the
lowest TEE indicator among the types. Additionally, there is a relatively low RLC indicator
(ranked 1st among the types), and the RCL indicator reaches the provincial average. The
disadvantageous characteristics are as follows: relatively low PTL indicator (ranked the
lowest among the types), low RDL indicator (2nd lowest among the types), relatively high
TOP and UPL indicators (2nd highest among the types).

Figure 7. Radar chart of characteristic indicators for Type IV.

(5) Type V includes Heilongjiang, Hunan, Sichuan, Guizhou, Yunnan, and Xinjiang,
mainly located in northern and southwestern China. Their economic development levels
vary, but they are overall relatively low. They are undergoing rapid urbanization, possess
abundant natural resources, and are important energy bases in China, with vast territories
and complex terrains. As shown in Figure 8, the advantageous characteristics are as follows:
relatively high RCL indicator (2nd highest among the types), relatively low RLC and UPL
indicators, relatively light TES indicator, TEC indicator reaching provincial average, and
the lowest TOP indicator among the types. The disadvantageous characteristics are as
follows: the highest TEE indicator among the types, a low RDL indicator, and a relatively
low PTL indicator (2nd lowest among the types).
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Figure 8. Radar chart of characteristic indicators for Type V.

(6) Type VI includes Jilin, Hainan, Chongqing, Gansu, Qinghai, and Ningxia, primarily
located in the western region of China, with the inclusion of provinces situated in specific
geographical locations in the northeastern region (e.g., Jilin) and the eastern region (e.g.,
Hainan). These provinces have a large spatial span and poor geographical adjacency,
varying levels of economic development and urbanization, relatively low economic output
and growth rate, and are in the stage of actively promoting new urbanization. They possess
abundant natural and cultural tourism resources, with Gansu and Qinghai being important
new energy bases in China. As shown in Figure 9, the advantageous characteristics are as
follows: the highest RCL indicator and the lowest UPL indicators among the types; the TEC
indicator reaches the provincial average, ranking as the second highest among the types.
Additionally, it exhibits a relatively light TES indicator, which is also the second highest
among the types. Moreover, this type shows relatively low TEE and TOP indicators. The
disadvantageous characteristics are as follows: the lowest RDL indicator among the types,
a relatively low PTL indicator, and a high RLC indicator (2nd highest among the types).

Figure 9. Radar chart of characteristic indicators for Type VI.

3.3. Calculation Results of Provincial TCO2

By applying Formulas (3) and (4) to calculate the TCO2 for each province, TC, TI, and
TP for each province and Types I–VI are obtained, as shown in Appendix A, Table A2.
For the TC of provinces in China, regions with relatively high TC (≥24.29 Mt, where
Mt represents 106 tons), excepting Jiangxi Province, are mainly eastern coastal provinces
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and adjacent provinces, while western regions are mainly the two adjacent provinces
of Sichuan and Yunnan. The provinces with the highest TC are Guangdong (93.34 Mt),
Jiangsu (60.4 Mt), Shanghai (58.56 Mt), and Shandong (56.77 Mt), all located in eastern
coastal regions. Furthermore, provinces with relatively low TC (<24.8 Mt) exhibit an
approximately “Y-shaped” spatial distribution pattern. For the TI of provinces in China,
regions with relatively high TI (≥2.44 t/104 CNY) are mainly clustered in western regions,
with sporadic distributions in central, eastern, and northeastern regions. The provinces
with the highest TI are Qinghai (4.56 t/104 CNY), Heilongjiang (3.82 t/104 CNY), Beijing
(3.69 t/104 CNY), Liaoning (3.62 t/104 CNY), and Shanghai (3.55 t/104 CNY). For the TP of
provinces in China, areas with relatively high TP (≥0.65 t/person) mainly exhibit sporadic
spatial distributions, with Shanghai (2.41 t/person) and Beijing (1.76 t/person) having the
highest values. See Figures 10 and 11, and Table 3 for details.

Table 3. Numerical values of TC, TI, and TP for Types I–VI.

Type TC (Mt) TI (t/104 CNY) TP (t/Person)

Type I 37.15 3.05 1.71
Type II 43.47 2.07 0.63
Type III 33.06 1.91 0.64
Type IV 22.41 1.53 0.56
Type V 29.89 2.88 0.63
Type VI 10.49 2.76 0.64

Provincial average 30.73 2.40 0.73

Figure 10. The geographic distribution of TC, TI, and TP across Chinese provinces.

For TC of the types, Type I accounted for 37.15 Mt, Type II accounted for 43.47 Mt,
Type III accounted for 33.06 Mt, Type IV accounted for 22.41 Mt, Type V accounted for
29.89 Mt, and Type VI accounted for 10.49 Mt, with a provincial average of 30.73 Mt. For TI
of the types, Type I accounted for 3.05 t/104 CNY, Type II accounted for 2.07 t/104 CNY,
Type III accounted for 1.91 t/104 CNY, Type IV accounted for 1.53 t/104 CNY, Type V
accounted for 2.88 t/104 CNY, and Type VI accounted for 2.76 t/104 CNY, with a provincial
average of 2.41 t/104 CNY. For TP of the types, Type I accounted for 1.71 t/person, Type
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II accounted for 0.63 t/person, Type III accounted for 0.64 t/person, Type IV accounted
for 0.56 t/person, Type V accounted for 0.63 t/person, and Type VI accounted for 0.64
t/person, with a provincial average of 0.73 t/person. See Figures 10 and 11 and Table 3
for details.

Figure 11. Comparison of the numerical values of TC, TI, and TP among the six feature types.

We further determined the priority control directions for carbon reduction in each type
based on the ratio relationships of TC, TI, and TP with provincial averages (Table 4). Types
I and VI were determined as per capita transportation CO2 control (i.e., TP control). Types
II and III were determined as total transportation CO2 control (i.e., TC control). Types V
and VI were determined as transportation CO2 intensity control (i.e., TI control).

Table 4. The ratios of TC, TI, and TP values to their averages and directions of priority control for
carbon reduction for Types I–VI.

Province
TC/TC

Average
TI/TI Average TP/TP Average

Priority Control
Directions for

Carbon Reduction

Type I 1.21 1.27 2.33 TP control
Type II 1.41 0.86 0.86 TC control
Type III 1.08 0.79 0.87 TC control
Type IV 0.73 0.63 0.77 TP control
Type V 0.97 1.20 0.85 TI control
Type VI 0.34 1.15 0.87 TI control

3.4. Correlation Analysis Results of Characterization Indicators with the per Capita TCO2 and the
Intensity of TCO2

To identify priority control indicators for carbon reduction in the six types, this study
further conducted correlation analysis between TI and TP and the original values of the
nine characteristic indicators. Since the nine characteristic indicators are derived from TC
through the extended Kaya identity, we believe these indicators can indirectly reflect the
impacts on TC. Further correlation analysis with TC may cause redundant information or
repeated analysis. Therefore, TC id not included in the correlation analysis.

3.4.1. The Correlation Analysis Results between TP and Characteristic Indicators

The correlation analysis results between TP and characteristic indicators show that TP
is extremely strongly correlated with RDL (r = 0.857) and PTL (r = 0.842), moderately nega-
tively correlated with UPL (r = −0.567), and moderately positively correlated with RLC
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(r = 0.498) and TOP (r = 0.485) at the 1% significant level (Table 5). Among them, the im-
pacts of road congestion in TOP and travel frequency in RLC on generating TC are obvious
conclusions. (1) The number of private cars corresponding to TOP and the consumption
level of residents (which can also reflect income level to some extent) corresponding to RLC
can directly or indirectly generate additional TCO2 through resident behaviors, which is
consistent with the research conclusions [24,25,34,35,53]. (2) The extremely strong corre-
lation between PTL and TP indicates that improving public transportation construction
can attract more resident trips, thus causing more TCO2. However, Yang et al. (2015,
2019) [30,53] found PTL has significantly negative impacts on TP, suggesting a non-linear
relationship between the two. This is consistent with the “inverted U-shaped” relation-
ship between public transportation and CO2 emissions [32,33]. Public transportation can
increase TCO2 during initial construction, but complete systems can reduce TCO2 in the
long run. Moreover, it should be noted that the carbon reduction effect of public transporta-
tion infrastructure reaches a certain threshold level, beyond which its impact gradually
decreases [33]. (3) The moderately negative correlation between the UPL (lower values
indicate higher urban population density) and TP shows that higher urban population
density significantly increases TCO2 [5,24,26,34,54,55]. However, Kenworthy and Laube
(1996) [56], Ewing (1997) [57], and Newman (2006) [58] proposed that TCO2 is negatively
correlated with population density and that compact, high-density urban forms result
in lower TCO2. This again suggests a non-linear relationship between UPL and TCO2.
Since urban population density in China is already very high, overly high density may not
effectively decrease TCO2 [30,53,59]. Therefore, population scales should be reasonably
controlled for different cities based on specific urbanization conditions.

Table 5. Correlation analysis results of TP with RDL, UPL, PTL, TOP, and RLC.

RDL UPL PTL TOP RLC

TP
Pearson correlation 0.857 ** −0.567 ** 0.842 ** 0.485 ** 0.498 **

Sig. (2-tailed) 0.000 0.001 0.000 0.007 0.005
N 30 30 30 30 30

Note: ** indicates a significant level of correlation of 1%.

(4) Technological progress can effectively reduce transportation energy consump-
tion efficiency through indigenous innovation and technology spillover, thus reducing
TCO2 [27,44,60]. Typically, RDL should show a negative correlation with TP; however, our
results show an extremely strong positive correlation, consistent with Shao et al. (2021) [4]
and Yang et al. (2021) [39]. This indicates that RDL and TP do not exhibit a simple lin-
ear relationship, with RDL having both positive and negative externalities [40]. Shi et al.
(2021) [27] pointed out an “inverted U-shaped” relationship between RDL and TCO2,
suggesting long-term research investment is needed to overcome the slow initial impact
of transportation technology development on TCO2 [61] or introduce advanced energy
conservation and carbon reduction technologies [62]. Further analysis in Table 6 shows
RDL has an extremely strong positive correlation between PTL (r = 0.880), moderately
positive correlation with TOP (r = 0.498), and moderately negative correlation with UPL
(r = −0.569) at the 1% significant level, and moderately positive correlation with RLC
(r = 0.437) at the 5% significant level. This indicates that the R&D direction of transportation
technology may primarily revolve around the planning and construction of transportation
infrastructure. There is a certain degree of inadequacy in the development of carbon reduc-
tion technologies, as well as shortcomings in practical application and technology transfer
in the transformation of scientific achievements in transportation technology. Furthermore,
RDL mainly reflects the potential magnitude of technological carbon reduction rather than
its practical implementation. Based on the above analysis, RDL, PTL, UPL, RLC, and TOP
are important indicators for priority control of TP.
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Table 6. Correlation analysis results of RDL with UPL, PTL, TOP, and RLC.

UPL PTL TOP RLC

RDL
Pearson correlation −0.569 ** 0.880 ** 0.498 ** 0.437 *

Sig. (2-tailed) 0.001 0.000 0.005 0.016
N 30 30 30 30

Note: ** indicates a significant level of correlation of 1%, and * indicates a significant level of correlation of 5%.

3.4.2. The Correlation Analysis Results between TI and Characteristic Indicators

The correlation analysis results between TI and characteristic indicators reveal that
TI has a moderately positive correlation with TEE (r = 0.528) and RLC (r = 0.501) at the
1% significant level, a moderately negative correlation with TEC (r = −0.415), and a slight
positive correlation with PTL (r = 0.386) at the 5% significant level (Table 7). Among them,
the quantity and efficiency of passenger and freight turnover corresponding to TEE are key
factors causing TCO2, consistent with previous studies [24,34,35]. Furthermore, Xie et al.
(2017) [54], Yang et al. (2019) [30], and Wang (2021) [29] also found RLC promotes both TC
and TI. The moderately negative correlation between TEC and TI indicates that increasing
transportation economic share in provincial GDP facilitates accelerated commodity and
population flow, improving transportation efficiency, and thus reducing TI. With regard to
the slight positive correlation between PTL and TI, as mentioned previously, PTL exhibits a
non-linear relationship with TCO2 and TP. Further correlation analysis reveals that PTL has
a moderately negative correlation between UPL (r = −0.625) and positive correlations with
TOP (r = 0.607) and RLC (r = 0.573) at the 1% significant level. Additionally, PTL exhibits
a moderately positive correlation with TEE (r = 0.439) and a slight negative correlation
with RCL (r = −0.384) at the 5% significant level (Table 8). These findings highlight the
existence of certain negative impacts associated with public transportation construction,
including increased energy consumption in transportation efficiency, exacerbated road
congestion, and an increased frequency of resident travel. Moreover, these results validate
the threshold effect and negative consequences of PTL and TCO2 [33]. This suggests that
in densely populated areas, excessive allocation of public transportation resources can, to
some extent, increase residents’ frequency of consumption and travel, exacerbate traffic
congestion pressure, and lead to an unreasonable growth in TI. Based on the above analysis,
TEE, RLC, TEC, and PTL can be identified as important indicators for prioritizing TI control.

Table 7. Correlation analysis results of TI with TEC, TEE, PTL, and RLC.

TEC TEE PTL RLC

TI
Pearson correlation −0.415 * 0.528 ** 0.386 * 0.501 **

Sig. (2-tailed) 0.023 0.003 0.035 0.005
N 30 30 30 30

Note: ** indicates a significant level of correlation of 1%, and * indicates a significant level of correlation of 5%.

Table 8. Correlation analysis results of PTL with TEE, UPL, RCL, TOP, and RLC.

TEE UPL RCL TOP RLC

PTL
Pearson correlation 0.439 * −0.625 ** −0.384 * 0.607 ** 0.573 **

Sig. (2-tailed) 0.015 0.000 0.036 0.000 0.001
N 30 30 30 30 30

Note: ** indicates a significant level of correlation of 1%, and * indicates a significant level of correlation of 5%.

3.5. Carbon Reduction Strategies and KPIs for Provincial Types
3.5.1. Carbon Reduction Strategies for Provincial Types

(1) Types I and IV are the TP control and the direction for carbon reduction. Based
on the above analysis, the strategies for Type I should focus on: strengthening R&D in-
vestment and application of technological achievements in carbon reductions; strictly
controlling urban population scales and effectively guiding spatial layout adjustments
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for over-concentrated urban areas; paying attention to the problem of excessive configu-
ration of urban public transportation; effectively alleviating road congestion and strictly
controlling the number of fuel-powered private vehicles; significantly promoting effective
guidance of low-carbon residents’ behaviors, including consumption and travel. Secondary
focus should be placed on: rationally increasing the share of transportation economy and
promoting low-carbon transformation of transportation economic structure; significantly
increasing the utilization of renewable energy in transportation energy structure, such as
strictly requiring motor vehicle emission standards, promoting new energy transportation
tools, and rationally deploying new energy transportation infrastructure; further reduc-
ing transportation energy consumption efficiency by promoting combined transportation
modes and intelligent transportation to improve efficiency; significantly improving road
construction by promoting sustainable urban-rural planning to optimize existing road
networks and expanding high-quality highways and rapid urban road systems.

Strategies for Type IV should be focused on: strengthening R&D investment in car-
bon reductions and introducing advanced energy conservation and carbon reduction
technologies; promoting urban-rural integrated development to prevent excessive urban
concentration; significantly improving public transportation service level and quality; ef-
fectively alleviating road congestion; and strictly controlling the number of fuel-powered
private vehicles. A secondary focus should be placed on maintaining the level of renewable
energy utilization in the transportation sector.

(2) Type II and Type III use TC control as the direction for carbon reduction. Based
on the above analysis, strategies for Type II should focus on: leveraging locational and
industrial advantages to drive economic development in surrounding provinces, thus pro-
moting low-carbon transformation of the transportation economic structure; significantly
increasing renewable energy utilization in the transportation energy structure (same mea-
sures as Type I); maintaining transportation energy consumption efficiency; strengthening
R&D investment in carbon reductions and introducing advanced energy conservation and
carbon reduction technologies; promoting urban-rural integrated development and reason-
ably controlling urban population scales; effectively improving road construction (same
measures as Type I); reasonably improving the level and quality of public transportation
services; effectively alleviating road congestion and reasonably controlling the number of
fuel-powered private vehicles.

Strategies for Type III should be focused on: maintaining the utilization of renewable
energy; effectively reducing transportation energy consumption efficiency; strengthen-
ing R&D investment and application of technological achievements in carbon reduction;
reasonably improving the level and quality of public transportation services; effectively
guiding low-carbon residents’ behaviors, including consumption and travel.

(3) Type V and Type VI are TI-controlled in the direction of carbon reduction. Based on
the above analysis, strategies for Type V should focus on: maintaining the transportation
economic structure and further promoting its low-carbon transformation; significantly
reducing transportation energy consumption efficiency; further improving road construc-
tion effectively; and significantly improving public transportation service level and quality.
Secondary focus should be placed on: significantly increasing renewable energy utilization
in the transportation energy structure (same measures as Type I); strengthening R&D in-
vestment in carbon reductions; and introducing advanced energy conservation and carbon
reduction technologies.

Strategies for Type VI should be focused on: maintaining the transportation economic
structure and further promoting its low-carbon transformation; reasonably improving the
level and quality of public transportation services. Secondary focus should be placed on:
maintaining the utilization of renewable energy; strengthening R&D investment in carbon
reductions and introducing advanced energy conservation and carbon reduction technolo-
gies; and significantly promoting effective guidance of low-carbon residents’ behaviors,
including consumption and travel.
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3.5.2. Carbon Reduction KPIs for Provincial Types

Based on the above-proposed carbon reduction measures for each type, this study
further developed different KPIs related to local government for better achieving carbon
reduction goals in each of the six types, aiming to promote effective implementation and
supervision of the carbon reduction measures.

Figure 12 provides the corresponding KPIs for each type, respectively. Specifically,
(1) For Type I, the primary focus should be on: increasing the TEC indicator, greatly
increasing the TES indicator, decreasing the TEE indicator, maintaining the UPL indicator,
and greatly decreasing both the TOP and RLC indicators. (2) For Type II, particular attention
needs to be paid to: increasing the TEC, RCL, and PTL indicators, greatly increasing the
TES and RDL indicators, maintaining the TEE and UPL indicators, and decreasing the TOP
indicator. (3) For Type III, the primary focus should be on maintaining the TES indicator,
decreasing the TEE and RLC indicators, and increasing the PTL indicator. (4) For Type
IV, particular attention needs to be paid to: maintaining the TES and UPL indicators,
greatly increasing the RDL and PTL indicators, greatly decreasing the TOP indicator, and
decreasing the RLC indicator. (5) In the context of Type V, emphasis should be placed
on increasing the TEC and RCL indicators, greatly increasing the TES, RDL, and PTL
indicators, and greatly decreasing the TEE indicator. (6) Lastly, for Type VI, the primary
focus should be on increasing the TEC and PTL indicators, maintaining the TES indicator,
greatly increasing the RDL indicator, and greatly decreasing the RLC indicator.

Figure 12. KPIs related to the local government’s efforts to reduce TCO2 in six types of China.

4. Conclusions and Policy Implications

The exploration of similarities and differences in provincial TCO2 characteristics in
China using the multi-indicator joint characterization method and type categorization
through clustering analysis is novel in our research. Firstly, influencing factors such as
economic development, population density, energy structure, transportation efficiency,
R&D, infrastructure construction, transportation operation conditions, and residents’ trans-
portation behavior were derived by effectively extending the Kaya identity, based on which
a joint characterization method using nine evaluation indicators (TEC, TES, TEE, RDL,
UPL, RCL, PTL, TOP, and RLC) was constructed. Secondly, Ward’s method was used in the
hierarchical clustering of the characteristic indicators to categorize thirty Chinese provinces
in 2019 into six types (types I to VI). Thirdly, based on the calculation of TC, TI, and TP
for each province, the priority control directions and indicators for carbon reduction were
obtained through relative relationships with provincial averages and correlation analysis
with the indicators, i.e., Type I and Type IV can be categorized as TP-controlled, Type
II and Type III as TC-controlled, and Type V and Type VI as TI-controlled. The priority
control indicators were RDL, PTL, UPL, RLC, and TOP for TP, and TEE, RCL, TEC, and
PTL for TI. Furthermore, UPL, RDL, and PTL have non-linear effects and threshold effects
on TP, and PTL exhibits threshold effects and a certain degree of negative impacts on
TCO2. Finally, typological carbon reduction strategies and KPIs related to carbon reduction
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efforts by local governments were provided for each provincial type. When it comes to
carbon emission reduction measures, special attention should be given to the importance
of R&D in transportation technologies, transitioning from the planning and construction
of transportation infrastructure to the development of carbon reduction technologies. Ad-
ditionally, in densely populated cities, it is crucial to address issues related to excessive
population density and overallocation of public transportation resources in order to curb
the unreasonable increase in transportation carbon emissions.

Policy makers should pay special attention to:

(1) Optimizing traffic congestion, controlling the number of fuel-powered private ve-
hicles, and advocating low-carbon residents’ behaviors are important measures to
effectively control the direct quantity of TCO2 (TC, TI, and TP). Provinces categorized
as Type I, Type II, and Type IV should primarily optimize urban vehicle restriction
policies and conduct reasonable adjustments in urban spatial planning (such as indus-
trial layout, development of industrial parks, establishment of employment centers,
educational layout, and planning multifunctional community areas) to fundamentally
address urban traffic congestion issues. Provinces identified as Type IV and Type V
should enhance the coverage and service efficiency of public transportation systems
(such as bus rapid transit and dedicated bus lanes). Provinces classified as Type I and
Type II, benefiting from comprehensive road monitoring facilities, need to reinforce
the sharing of information on road traffic operations to alleviate traffic congestion.
Provinces in China should continue to strengthen promotion efforts and policy sup-
port for new energy vehicles, expanding the deployment of new energy transportation
infrastructure (e.g., charging stations, wireless charging, etc.). They should encour-
age low-carbon lifestyles, advocate for energy conservation and emissions reduction
through various channels, and incentivize the use of public transportation and shared
mobility practices (particularly among Type I, Type III, and Type IV provinces).

(2) Improving transportation energy efficiency and reducing passenger and freight
turnover energy consumption through technology are necessary to reduce TC, TI, and
TP. The government should fully recognize the initial slow impacts of carbon reduc-
tion technologies and persist in long-term support for domestic industry-academia-
research cooperation in R&D and promotion of technologies related to carbon reduc-
tion in transportation, as well as introducing advanced international technologies.
Provinces categorized as Type I and Type III should shift transportation R&D focus
from infrastructure construction to carbon reduction technologies. The other types
of provinces should increase investments in carbon reduction technologies for trans-
portation or introduce advanced carbon reduction technologies. Provinces in China
should promote transportation electrification and combined transportation modes to
improve efficiency and achieve the goal of low-carbon development in transportation.

(3) For provinces with high levels of urbanization (such as Type I and Type II), attention
should be given to the issues of excessive population density and over-configuration
of public transportation in urban areas to curb the unreasonable increase in TCO2.
In contrast, for provinces with lower levels of urbanization (such as Types III to VI),
the population aggregation effect should be fully utilized. It is important to focus on
constructing intensive and efficient urban spatial patterns, improving the utilization
and sharing rates of public transportation, and scientifically expanding urban road
infrastructure to achieve long-term carbon reduction.

(4) Since provinces have different advantages and disadvantages in their TCO2 char-
acteristics for low-carbon development, the Chinese government should promote
cooperative development and collaborative governance mechanisms across regions to
achieve win-win carbon reduction and economic growth in provincial transportation
sectors. Regarding regional energy-economy cooperation, resource-rich provinces
(such as Type V and Type VI) can provide clean energy like natural gas and elec-
tricity to provinces with energy-intensification structures through national projects
like “West-to-East Gas Transmission” and “West-to-East Power Transmission”, trans-
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forming regional resource advantages into economic benefits while also promoting
low-carbon transitions in these energy-intensification provinces (such as Type I and
Type II). For collaborative development of advanced technologies across regions, de-
veloped provinces (like eastern coastal type I and type II) should give full play to their
advantages in transportation technology R&D funding, talent pool, and exemplary
leadership, strengthening interactive exchanges of technological and economic ties
across regions through spillover and learning effects, to achieve collaborative regional
carbon reductions through technology. For collaborative governance across regions,
differentiated carbon reduction policies and measures should be implemented with
a collaborative assessment system incorporating rewards and punishments estab-
lished to reinforce the responsibilities and consciousness of all parties, thus achieving
collaborative governance on carbon reduction in provincial transportation sectors.
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Appendix A

Table A1. Characteristic indicator values of provinces in each type.

Type Province TEC TES TEE RDL UPL RCL PTL TOP RLC

I

Beijing 0.62 0.63 2.00 2.00 0.00 0.55 2.00 1.47 2.00
Tianjin 1.19 1.07 0.73 1.62 0.00 0.77 2.00 1.25 1.74

Shanghai 0.92 0.24 0.23 2.00 0.00 0.31 2.00 1.45 1.45
Type

average 0.91 0.65 0.99 1.87 0.00 0.54 2.00 1.39 1.73

II

Liaoning 1.13 0.62 0.65 0.39 1.11 0.97 1.20 0.98 0.97
Jiangsu 0.68 1.03 0.75 0.49 1.15 1.05 1.14 1.27 0.80

Zhejiang 0.67 0.49 0.34 0.54 0.54 0.84 1.09 1.52 1.04
Anhui 1.14 0.75 0.36 0.08 0.80 0.85 0.53 0.95 0.56
Fujian 0.75 0.45 0.44 0.14 0.94 0.83 0.78 0.80 0.86
Jiangxi 0.93 0.47 0.70 0.20 1.49 0.96 0.38 0.69 0.74

Shandong 1.09 0.72 0.69 0.39 1.00 1.07 0.82 1.36 0.40
Henan 1.17 0.89 0.57 0.24 0.68 0.63 0.50 1.00 0.56

Guangdong 0.69 0.36 0.41 0.74 0.51 0.80 1.16 1.31 0.65
Guangxi 0.91 1.03 0.62 0.28 1.53 0.79 0.39 0.90 0.59

Type
average 0.91 0.68 0.55 0.35 0.97 0.88 0.80 1.08 0.72

III

Hubei 1.04 0.59 0.95 2.00 1.31 1.16 0.87 0.86 0.82
Shaanxi 0.88 2.00 0.76 2.00 0.91 0.94 0.83 0.79 1.01

Type
average 0.96 1.29 0.86 2.00 1.11 1.05 0.85 0.82 0.92
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Table A1. Cont.

Type Province TEC TES TEE RDL UPL RCL PTL TOP RLC

IV

Hebei 1.77 1.73 0.27 0.11 1.11 0.70 0.51 1.25 0.39
Shanxi 1.26 1.77 0.48 0.25 1.10 0.86 0.52 1.07 0.51
Inner

Mongolia 1.49 1.81 0.59 0.26 0.61 1.58 0.75 0.98 0.71

Type
average 1.51 1.77 0.45 0.21 0.94 1.05 0.59 1.10 0.53

V

Heilongjiang 0.84 0.76 1.57 0.27 0.63 1.10 0.90 0.67 0.62
Hunan 0.84 0.46 1.94 0.35 1.30 0.73 0.55 0.82 0.77
Sichuan 0.67 0.99 2.00 0.78 0.45 0.92 0.76 0.98 0.58
Guizhou 0.90 0.92 1.60 0.38 1.28 0.97 0.43 0.82 1.29
Yunnan 1.02 0.28 2.00 0.18 1.63 0.97 0.45 0.74 0.52
Xinjiang 1.50 1.28 1.52 0.06 1.08 1.79 0.73 0.85 0.76

Type
average 0.96 0.78 1.77 0.34 1.06 1.08 0.64 0.81 0.76

VI

Jilin 1.05 1.52 0.86 0.07 1.75 1.05 1.16 0.81 0.89
Hainan 0.99 0.52 0.51 0.00 1.51 1.26 0.64 0.91 1.90

Chongqing 0.88 1.04 0.78 0.49 1.69 1.13 1.19 0.87 1.19
Gansu 1.07 1.69 0.61 0.08 1.83 1.10 0.55 0.78 1.01

Qinghai 0.89 1.53 1.68 0.21 0.79 2.00 0.74 0.87 2.00
Ningxia 1.02 2.00 0.73 0.23 1.27 1.24 0.87 0.97 1.99

Type
average 0.98 1.38 0.86 0.18 1.47 1.30 0.86 0.87 1.50

Table A2. The total TCO2 (TC), the intensity of TCO2 (TI) and the per capita TCO2 (TP) of the
provinces in each type.

Type Province
TC

(Mt)
TI

(t/104 CNY)
TP

(t/person)

I

Beijing 37.84 3.69 1.76
Tianjin 15.06 1.91 0.96

Shanghai 58.56 3.55 2.41
Type average 37.15 3.05 1.71

II

Liaoning 47.57 3.62 1.09
Jiangsu 60.40 1.91 0.75

Zhejiang 33.40 1.70 0.57
Anhui 30.68 1.55 0.48
Fujian 29.85 2.01 0.75
Jiangxi 22.49 2.08 0.48

Shandong 56.77 1.56 0.56
Henan 40.15 1.35 0.42

Guangdong 93.34 2.69 0.81
Guangxi 20.07 2.22 0.40

Type average 43.47 2.07 0.63

III
Hubei 48.77 2.18 0.82

Shaanxi 17.36 1.64 0.45
Type average 33.06 1.91 0.64

IV

Hebei 27.20 0.93 0.36
Shanxi 19.37 1.92 0.52

Inner Mongolia 20.66 1.72 0.81
Type average 22.41 1.53 0.56
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Table A2. Cont.

Type Province
TC

(Mt)
TI

(t/104 CNY)
TP

(t/person)

V

Heilongjiang 20.38 3.82 0.54
Hunan 43.06 2.77 0.62
Sichuan 43.27 2.95 0.52
Guizhou 17.24 2.43 0.48
Yunnan 31.12 2.80 0.64
Xinjiang 24.28 2.55 0.96

Type average 29.89 2.88 0.63

VI

Jilin 11.95 2.08 0.44
Hainan 6.97 2.82 0.74

Chongqing 23.11 2.37 0.74
Gansu 11.50 2.62 0.43

Qinghai 5.62 4.56 0.92
Ningxia 3.78 2.12 0.54

Type average 10.49 2.76 0.64

Provincial average 30.73 2.40 0.73
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Abstract: As the world’s largest developing country, China has played an important role in the
achievement of the global CO2 emissions mitigation goal. The monitoring and analysis of CO2

emissions in the Yangtze River Economic Belt (YREB) urban agglomerations is strategic to the
carbon peak and carbon neutrality in China. In this paper, we revealed the spatial and temporal
variations of CO2 emissions in Cheng-Yu urban agglomeration (CY-UA), Yangtze River Middle-
Reach urban agglomeration (YRMR-UA), and Yangtze River Delta urban agglomeration (YRD-UA)
in YREB and investigated the carbon emission development stage of YREB urban agglomerations.
Particularly, a carbon emission development stage framework that considered the relationship
between economic growth and carbon emissions was built based on Environmental Kuznets Curves
(EKCs). Meanwhile, multiscale geographically weighted regression (MGWR) was used to analyze
the impact of different influencing factors, including population (POP), GDP per capita (GDPPC),
the proportion of secondary industry (SI), carbon emission intensity (CI), and urbanization (UR),
on the CO2 emissions of three urban agglomerations. The results illustrate the following: (1) The
CO2 emissions of YREB urban agglomerations decreased, with YRD-UA having the highest CO2

emissions among the three urban agglomerations and contributing 41.87% of YREB CO2 emissions in
2017. (2) CY-UA, YRMR-UA, and YRD-UA reached the CO2 emissions peak in 2012, 2011, and 2020,
respectively, all of which are at the low-carbon stage. (3) POP and GDPPC show the greatest impact
on the CO2 emissions of the three YREB urban agglomerations.

Keywords: carbon emission; Yangtze River Economic Belt; urban agglomeration; influencing factor;
multiscale geographically weighted regression

1. Introduction

The 21st century is the fastest-growing period of CO2 emissions in human history [1].
CO2 accounts for more than 70% of greenhouse gases, which enhance the trend of global
warming [2]. The current global temperature has increased by 0.86 ◦C compared to the
average temperature of the 20th century, which was 13.9 ◦C [3]. According to the Inter-
governmental Panel on Climate Change (IPCC) projections, CO2 emissions in 2030 will
be 30% higher than those in 2010 [4]. Global sustainable development will be threatened
by increasing temperatures and unstable climate change. Global warming has become an
important environmental issue around the world [5], which has caused widespread and
rapid changes in human society. Over the past decades, the international community has
signed the United Nations Framework Convention on Climate Change, the Kyoto Protocol,
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the Copenhagen Accord, the Glasgow Climate Agreement, etc., to enable global sustainable
development [6]. Nowadays, more than 130 countries have proposed carbon neutrality
targets, which is one of the most important issues in the world [7].

To achieve the carbon neutrality target, it is necessary to monitor and analyze the spa-
tial distribution and temporal patterns of CO2 emissions. In recent years, numerous studies
have been proposed to investigate the spatiotemporal variation of CO2 emissions as well
as the influencing factors. Xiao et al. examined the spatiotemporal characteristics of carbon
emission efficiency in 136 countries and analyzed the influencing factors of carbon emission
efficiency using the Tobit model [8]. Andreoni et al. conducted a decomposition analysis of
energy-related CO2 emissions in 33 countries worldwide using the index decomposition
method in order to explore the drivers of CO2 emissions variation [9]. Grodzicki et al.
assessed the impact of renewable energy usage and urbanization levels on CO2 emissions
in Europe from 1995 to 2018 using a spatiotemporal approach [10]. Namahoro et al. an-
alyzed the long-term impacts of energy intensity, renewable energy consumption, and
economic growth on CO2 emissions across regions and income levels in over 50 African
countries [11]. Fragkias examined the relationship between urban scale and CO2 emissions
for metropolitan and micropolitan areas in the United States [12]. Wen and Shao used a
nonparametric additive regression approach to explore the spatial and temporal variations
of CO2 emissions in China and analyze the main influencing factors [13].

As a developing country, China has set a goal and committed to achieving a carbon
peak in 2030 and carbon neutrality in 2060 [14,15]. The Chinese government has allocated
emission reduction targets to different regions [16]. YREB in China is a globally influential
inland economic region and a pioneering demonstration belt for the construction of ecolog-
ical civilization [17]. Together with the Belt and Road and the coordinated development of
the Beijing–Tianjin–Hebei region, YREB is one of China’s major regional economic develop-
ment strategies [18]. With the rapid economic growth of cities in YREB, a large number of
major projects have been concentrated, which are the main sources of CO2 emissions [19].
In 2017, YREB contributed 40.8% of China’s GDP and 43.6% of China’s CO2 emissions [20].
Specifically, there are three national urban agglomerations in YREB, namely, the Cheng-
Yu urban agglomeration (CY-UA), the Yangtze River Middle-Reach urban agglomeration
(YRMR-UA), and the Yangtze River Delta urban agglomeration (YRD-UA). Urban agglom-
eration is the manifestation of urban spatial clustering [21], and its development is always
guided by regional integration policies [22]. As an important part of the national economy
as well as the most concentrated areas of industrialization and urbanization [23], urban
agglomerations are important areas for achieving carbon neutrality in China [24]. In the
YREB urban agglomerations, a lot of heavy industrial projects are concentrated, and the
massive consumption of fossil energy contributed to the high CO2 emissions [25]. In 2017,
the three urban agglomerations contributed 65.31% of the GDP as well as 78.39% of the
CO2 emissions of YREB. Particularly, the resource endowment and economic development
of the upper, middle, and lower reaches of YREB are unbalanced where the cities show
different CO2 emissions patterns [26].

As a pivotal economic region, YREB plays an important role in implementing a carbon
neutrality strategy. Hence, studying the CO2 emissions of YREB urban agglomerations is
conducive to revealing the interaction between economic development and carbon emis-
sions, which provides insights for urban planning and regional sustainable development.
The goal of this study was to explore the spatiotemporal variation and development stage
of CO2 emissions in YREB urban agglomerations. Specifically, this study focused on the
CO2 emissions patterns of urban agglomerations in YREB, China, and developed a carbon
emission development stage framework that takes economic development and carbon
emissions into account. The main contributions are summarized as follows: (1) The spatial
and temporal variations of CO2 emissions in urban agglomerations in YREB were revealed.
(2) The carbon emission development stages of CY-UA, YRMR-UA, and YRD-UA were
analyzed on the basis of EKCs. (3) The influencing factors of CO2 emissions in three ur-
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ban agglomerations were discussed using the multiscale geographic weighted regression
(MGWR) model.

The rest of this paper is as follows: In Section 2, the datasets and methods are intro-
duced. Section 3 shows the results. In Section 4, the discussions are presented. In Section 5,
the conclusion is presented.

2. Datasets and Methods

2.1. Study Area

YREB covers an area of about 205.23 × 104 km2 with 11 provinces and municipalities,
with the population and GDP accounting for over 40% of China [27]. Since the release of the
Outline of the Yangtze River Economic Belt Development Plan in September 2016, YREB has
formed a development pattern of “one axis, two wings, three poles, and multiple points”.
As shown in Figure 1, CY-UA, YRMR-UA, and YRD-UA are the three poles of YREB. The
administrative boundary data were obtained from the Resource and Environment Science
and Data Center (https://www.resdc.cn/, accessed on 2 January 2023). Table 1 lists the
cities contained in three urban agglomerations.

Figure 1. Locations of (a) YREB, (b) CY-UA, (c) YRMR-UA, and (d) YRD-UA.

Table 1. Cities in three YREB urban agglomerations.

Cities

CY-UA
Chongqing, Chengdu, Dazhou, Deyang, Guangan, Leshan,

Luzhou, Meishan, Mianyang, Nanchong, Neijiang, Suining, Yaan,
Yibin, Ziyang, Zigong

YRMR-UA

Wuhan, Changsha, Nanchang, Changde, Ezhou, Fuzhou,
Hengyang, Huanggang, Huangshi, Ji’an, Jingdezhen, Jingmen,

Jingzhou, Jiujiang, Loudi, Pingxiang, Qianjiang, Shangrao,
Tianmen, Xiantao, Xianning, Xiangtan, Xiangyang, Xiaogan,
Xinyu, Yichang, Yichun, Yingtan, Yiyang, Yueyang, Zhuzhou

YRD-UA

Shanghai, Nanjing, Hangzhou, Anqing, Changzhou, Chizhou,
Chuzhou, Hefei, Huzhou, Jiaxing, Jinhua, Ma’anshan, Nantong,
Ningbo, Shaoxing, Suzhou, Taizhou, Taizhou, Tongling, Wuhu,
Wuxi, Xuancheng, Yancheng, Yangzhou, Zhenjiang, Zhoushan

2.2. Datasets
2.2.1. CO2 Emissions Data

CO2 emissions data were obtained from the Multi-resolution Emission Inventory
model for Climate and air pollution research (MEIC), which is a bottom-up multi-scale
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emission inventory model developed by Tsinghua University [28,29]. MEIC aims to build
a high-resolution global-scale, multi-scale anthropogenic source greenhouse gas and air
pollutant emission inventory model. The MEIC CO2 emissions data at a 0.25-degree grid
resolution contains industry sources, power sources, residential sources, and transportation
sources (http://meicmodel.org.cn/, accessed on 29 May 2023). Based on China’s measured
emission factors, MEIC is more suitable than the IPCC method for the assessment of China’s
CO2 emissions [30]. Meanwhile, MEIC has the advantages of objectivity, stability, high
precision, and wide coverage and provides multi-year, different spatial scales, dynamic,
and continuous CO2 emissions monitoring information.

2.2.2. Socio-Economic Data

Based on numerous previous studies on CO2 emissions from urban agglomerations [31–33],
population (POP), GDP per capita (GDPPC), the proportion of secondary industry (SI), car-
bon emission intensity (CI), and urbanization (UR) were selected as the influencing factors of
CO2 emissions in this study. All data were derived from the China City Statistical Yearbook
(2009–2018 editions).

Table 2 reports the influencing factors used in this study. POP represents the size of the
population. GDPPC is the ratio of GDP to total population, which represents the regional
economic development level. SI is the ratio of the value added of the secondary industry’s
GDP to total GDP, which represents the industrial structure. The resource endowments in
the upper, middle, and lower reaches of YREB are unbalanced, and the industrial structure
differs greatly [34]. CI is the ratio of total CO2 emissions to GDP, which represents the
technology level. UR represents the urbanization level.

Table 2. Brief description of influencing factors.

Factor Abbreviation Description Unit

CO2 emissions CE Total anthropogenic CO2 emissions 104 tons
Population POP Total resident population person

GDP per capita GDPPC GDP/Population 104 yuan/person
Proportion of secondary industry SI Added value of the secondary industry/GDP %

Carbon emission intensity CI CO2 emissions/GDP ton/104 yuan
Urbanization UR Non-agricultural population/Population %

POP, GDPPC, SI, CI, and UR were used to construct the MGWR model to analyze the
influencing factors of CO2 emissions in YREB urban agglomerations. Moreover, GDPPC
was used in EKCs to depict economic growth.

2.3. Spatial Autocorrelation
2.3.1. Global Autocorrelation

Global Moran’s I is a typical spatial autocorrelation index that measures the degree of
spatial autocorrelation of CO2 emissions in each urban agglomeration [35]. It determines
whether the geographic phenomenon is aggregated. The calculation formula is as follows:

I =
n∑n

i=1 ∑n
j=1 Wij(xi − y)

(
xj − x

)(
∑n

i=1 ∑n
j=1 Wij

)
∑n

j=1(xi − x)2
(1)

where n is the number of units in each urban agglomeration, xi and xj denote the CO2
emissions of spatial units i and j, respectively, x denotes the average CO2 emissions of each
urban agglomeration, and Wij denotes the spatial weight matrix.

The value of I ranges from −1 to 1. I > 0 indicates positive spatial autocorrelation,
and the observations tend to be spatially clustered. The closer I is to 1, the stronger the
aggregation. I < 0 indicates negative spatial autocorrelation, and the observations tend to
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be dispersed. The closer I is to −1, the more dispersed it is. I = 0 indicates that there is no
spatial autocorrelation, and the observations are randomly distributed.

2.3.2. Local Autocorrelation

The local indicators of spatial association (LISA) are used to describe the correlation
between a spatial unit and its neighboring unit [36], and the formula is as follows:

Ii =
(xi − x)

S2

m

∑
j=1

Wij
(
xj − x

)
, S2 =

1
n

n

∑
i=1

(xi − xi)
2 (2)

where xi and xj denote the CO2 emissions of spatial units i and j, respectively, x denotes
the average CO2 emissions of the urban agglomeration, S2 denotes the variance of CO2
emissions of spatial units, Wij denotes the spatial weight matrix, n denotes the number of
spatial units in the urban agglomeration, and m denotes the number of neighboring units
of unit i.

Ii > 0 means that the observations of this spatial unit and its neighboring units show a
positive correlation, as high values are surrounded by high values (H-H), or low values
are surrounded by low values (L-L). Ii < 0 shows a negative correlation, as high values are
surrounded by low values (H-L), or low values are surrounded by high values (L-H).

2.4. Carbon Emission Development Stage
2.4.1. Environmental Kuznets Curve (EKC)

EKC depicts the inverted U-shaped relationship between economic growth and carbon
emissions [37]. In this paper, CI, CO2 emissions per capita (CEPC), and CE are selected
as indicators of carbon emissions. Meanwhile, GDPPC is used as an economic growth
indicator. In this study, the quadratic polynomial is used to represent EKC, and if the
coefficients of the cubic term were not significant, the quadratic polynomial is used to
represent EKC [38].

ln(E) = β0 + β1(ln G) + β2(ln G)2 + β3(ln G)3 + ε (3)

where E denotes carbon emission index, β0 is a constant term, ln G denotes the natural
logarithm of GDPPC, β1, β2, and β3 are the primary, secondary, and tertiary coefficients,
respectively, and ε is the error term.

2.4.2. Carbon Emission Development Stage Division Based on EKCs

Urban agglomerations exhibit different carbon emission characteristics at different
stages of economic development. It is necessary to consider the development stage of
carbon emissions with the state of economic development. As shown in Figure 2, there are
three types of EKCs that present a relationship between carbon emissions and economic
growth [39]: (1) EKC with CI, where GDPPC is the independent variable and CI is the
dependent variable; (2) EKC with CE, where GDPPC is the independent variable and CE is
the dependent variable; and (3) EKC with CEPC, where GDPPC is the independent variable
and CEPC is the dependent variable. There is a turning point for each curve, namely TP1,
TP2, and TP3. The development stage of carbon emissions can be divided into four stages
based on the three TPs of the EKCs. S1 is the rapid growth stage, where the carbon emission
index increases rapidly with economic growth; S2 is the pre-peak stage, where the carbon
emission index continues to grow but at a slower rate and decreases until it reaches the
peak; and S3 is the over-peak stage, in which the carbon emission index starts to decrease.
S4 is the low-carbon stage, in which the carbon emission index gradually decreases to a
lower level.
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Figure 2. Carbon emission development stage based on EKCs.

2.5. MGWR Model

MGWR is an extension of geographic weighted regression (GWR) and has been widely
used in the analysis of spatial relationships of explanatory variables. GWR is a model for
geographic analysis that allows the model parameters to be verified based on a specific
location [40]. The GWR model is formulated as follows:

yi = β0(ui, vi) +

n

∑
j=1

β j(ui, vi)xij + εi (4)

where i represents the i-th unit, (ui, vi) are the latitude and longitude coordinates of city i,
yi is the CO2 emissions of unit i, β0(ui, vi) is the intercept at i, β j(ui, vi) is the regression
coefficient of the j-th variable of unit i, j denotes the uniform bandwidth of the regression
coefficient, xij is the j-th influencing factor for unit i, and ε is the error term of i. When
β j(ui, vi) is a constant, GWR is equal to the ordinary least squares (OLS) model.

However, the bandwidth of GWR is constant, and it cannot explain the phenomena,
which involve numerous spatial processes with various [41]. Therefore, Fotheringham
et al. (2017) proposed a multiscale geographically weighted regression (MGWR) model [42].
MGWR allows an optimal bandwidth for the explanatory variables based on local regres-
sion. MGWR is formulated as follows:

yi = βbw0(ui, vi) +

n

∑
j=1

βbwj(ui, vi)xij + εi (5)

where bw0 denotes the bandwidth used for the regression coefficient of the global variable,
bwj denotes the bandwidth used for the regression coefficient of the j-th variable, and the
other variables have the same meaning as in the GWR model.
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3. Results

3.1. Spatiotemporal Variation of CO2 Emissions
3.1.1. Temporal Variation of CO2 Emissions

Figure 3 shows the CO2 emissions of three urban agglomerations in YREB during
2008–2017. The CO2 emissions of three urban agglomerations reached their peak around
2012–2013 and then began to decrease, with the lowest emissions of the three urban agglom-
erations in 2017. Moreover, the CO2 emissions of YRD-UA were much higher than those of
CY-UA and YRMR-UA, where 41.87% of the CO2 emissions in YREB were contributed by
YRD-UA. YRD-UA had entered the middle and late stages of urban agglomeration develop-
ment with a higher level of regional integration and stronger comprehensive strength [43].
The CO2 emissions of CY-UA were the lowest among the urban agglomerations since CY-
UA was at the initial stage of urban agglomeration development with fewer megacities [44].

Figure 3. The CO2 emissions of the three urban agglomerations from 2008 to 2017.

Since 2013, the CO2 emissions of three YREB urban agglomerations have shown a
decreasing trend; CY-UA reached its peak around 2012, while YRMR-UA and YRD-UA
reached their peaks around 2013. Specifically, the CO2 emissions in YRMR-UA declined
most significantly, while the CO2 emissions decline in YRD-UA was relatively stable. In
2016, a symposium on comprehensively advancing the development of the sustainable
development of YREB was held for the first time, highlighting the importance of ecological
conservation and environmental management [45]. The significant reduction of CO2
emissions in 2017 illustrated the effectiveness of government policies.

3.1.2. Spatial Variation of CO2 Emissions

Figure 4 shows the CO2 emissions in 2008 and 2017. The 10-year average CO2 emis-
sions of CY-UA was 49,553 × 104 tons, with the low-value area distributed in the western
mountainous area and northern mountainous areas, and the high-value area distributed
in the urban areas around Chongqing and Chengdu. The 10-year average CO2 emissions
of YRMR-UA was 74,461 × 104 tons, with the low-value area distributed in the southern
mountainous area and the border of Jiangxi and Hubei provinces, and the high-value area
distributed in Wuhan, Changsha, and Nanchang. For YRD-UA, the 10-year average CO2
emissions was 127,413 × 104 tons, with the low-value areas distributed in the southwestern
mountains and western and northern plains, and the high-value areas distributed in Shang-
hai, Hangzhou, Nanjing, and the surrounding areas. Notably, the CO2 emissions of several
large cities, such as Chengdu in the CY-UA and Wuhan in the YRMR-UA, decreased in
2017 compared to 2008.
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Figure 4. Spatial variation of CO2 emissions in the three urban agglomerations in 2008 and 2017.

3.1.3. Spatial Aggregation of CO2 Emissions

Table 3 shows the global autocorrelation performance. The Z score is a multiple
of the standard deviation, and the p value indicates probability. Z is correlated with p,
where p < 0.05 indicates that the confidence level is greater than 95% [46]. CY-UA and
YRD-UA presented significant spatial aggregation characteristics. The Moran’s I of CY-UA
in 2008 and 2017 were 0.146 and 0.173, respectively, where the spatial autocorrelation of
CO2 emissions increased. The Moran’s I of YRMR-UA in 2008 and 2017 was 0.034 and
0.045, respectively. As for YRD-UA, the Moran’s I was 0.180 and 0.135 in 2008 and 2017,
respectively.

Table 3. Global spatial autocorrelation of CO2 emissions in three urban agglomerations.

2008 CY-UA YRMR-UA YRD-UA 2017 CY-UA YRMR-UA YRD-UA

Moran’s I 0.146 0.034 0.180 Moran’s I 0.173 0.045 0.135
Z score 4.260 0.969 3.257 Z score 5.463 1.105 2.427
p value 0.000 0.333 0.001 p value 0.000 0.269 0.015

Figure 5 shows the spatial aggregation characteristics of the CO2 emissions of three
urban agglomerations. For CY-UA, the H-H clusters and L-H clusters were distributed
around Chongqing and Chengdu, and the L-L clusters were distributed in the western
mountainous areas and scattered in the south and east. The cluster pattern of CO2 emissions
in CY-UA can be described as high in the middle and low around, and the overall pattern
has not changed in the decade. For YRMR-UA, the H-H clusters mainly appeared in the
north area, the L-H clusters mainly appeared around Wuhan, Changsha, and Nanchang,
and the L-L clusters appeared in the southeast area. The cluster pattern of CO2 emissions in
YRMR-UA was high in the north and low in the south. For YRD-UA, the H-H clusters and
L-H clusters were mainly distributed in the eastern coastal area, including Shanghai and
Nanjing, while the L-L clusters were scattered in the south and southwest areas. The cluster
pattern of CO2 emissions in YRD-UA was high along the coast and low in the southwest.
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Figure 5. Spatial autocorrelation of CO2 emissions in the three urban agglomerations.

3.2. Carbon Emission Development Stage Analysis

Figure 6 shows the relationship between carbon emissions and GDPPC for CY-UA.
The carbon emission development stage of CY-UA could be divided into three stages: S1
(–2005), S2 (2005–2012), and S4 (2012–). S3 and S4 of CY-UA largely overlapped and could
be combined into one stage. The peak time of CO2 emissions in CY-UA was around 2011,
and CY-UA is at the low-carbon stage.

Figure 7 shows the relationship between carbon emissions and GDPPC for YRMR-UA.
Similar to CY-UA, the S3 and S4 stages of YRMR-UA were combined. The YRMR-UA CO2
emissions could be divided into three stages: S1 (–2008), S2 (2008–2011), and S4 (2011–).
The peak time of CO2 emissions in YRMR-UA was around 2011, and YRMR-UA is at the
low-carbon stage.
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Figure 6. Carbon emission development stage of CY-UA.
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Figure 7. Carbon emission development stage of YRMR-UA.

Figure 8 shows the relationship between carbon emissions and GDPPC for YRD-UA.
The emissions of YRD-UA could be divided into four stages: S1 (–2005), S2 (2005–2020), S3
(2020–2022), and S4 (2022–). The CO2 emissions of YRD-UA reached the peak around 2020,
and YRD-UA was at S4 stage. Obviously, the actual CO2 emissions peaked earlier than the
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carbon emission development stage. It could be concluded that the Yangtze River Delta
integration policy strongly deepened the industrial division of labor and industrial transfer
among cities, which contribute to the reduction of CO2 emissions.

 

−

− −

−

Figure 8. Carbon emission development stage of YRD-UA.

3.3. Model Comparison
3.3.1. Comparison of Model Performance

Table 4 shows the statistical results of OLS, GWR, and MGWR. R2 is the coefficient of
determination. Adjusted R2 excludes the effect of the number of independent variables on
R2. AICc denotes the corrected Akaike information criterion, which is a relative measure
of the goodness of fit [47]. RSS is the sum of squared errors. The effective number of
parties (ENP) is a trade-off between the variance of the fitted values and the deviation of
the coefficient estimates to measure the value of the equilibrium point.

Table 4. Comparison of OLS, GWR, and MGWR indicators from 2008–2017.

Year Model R2 Adjusted R2 AICc RSS ENP

2008 MGWR 0.96 0.95 5.38 2.85 11.42
GWR 0.96 0.95 7.40 2.80 12.52
OLS 0.93 0.92 1159.39 / /

2011 MGWR 0.95 0.94 13.24 3.33 10.42
GWR 0.95 0.94 17.48 3.81 8.61
OLS 0.93 0.92 1177.63 / /

2014 MGWR 0.95 0.94 12.45 3.35 10.01
GWR 0.95 0.94 13.92 3.59 8.83
OLS 0.93 0.93 1165.29 / /

2017 MGWR 0.88 0.87 74.08 8.12 9.88
GWR 0.87 0.86 75.64 8.80 8.43
OLS 0.86 0.85 1204.20 / /
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As shown in Table 4, compared to GWR and OLS, MGWR gave higher R2, adjusted
R2, and ENP, with lower AICc and RSS, indicating that MGWR had a better local fit and
less information loss. Meanwhile, the spatial distribution of R2 for GWR and MGWR is
presented in Figure 9. CY-UA shows a higher R2 than the other urban agglomerations.

Figure 9. Distribution of the local R2 for (a) GWR and (b) MGWR in 2017.

3.3.2. Comparison of Model Bandwidth

Table 5 presents the bandwidths of each influencing factor for GWR and MGWR in
different years. In GWR, the factors shared the same bandwidth, while they were assigned
to different bandwidths in MGWR. The different values of bandwidth demonstrated the
spatial heterogeneity of factors, by which the diversity of influencing factors can be better
represented [48].

Table 5. Bandwidths of different influencing factors in MGWR and GWR.

Factors
2008 2011 2014 2017

MGWR GWR MGWR GWR MGWR GWR MGWR GWR

POP 66 51 68 67 68 66 68 69
GDPPC 48 51 59 67 53 66 68 69

SI 68 51 68 67 68 66 68 69
CI 44 51 48 67 68 66 52 69
UR 46 51 46 67 46 66 44 69

3.4. Influencing Factors for CO2 Emissions

Table 6 shows the descriptive statistics of the regression coefficients of influencing
factors in MGWR. It can be seen that the rank of the generated regression coefficients was
POP > GDPPC > CI > UR > SI. Obviously, POP and GDPPC presented the highest regression
coefficients. The coefficient of POP is positive, indicating that the rise of population will
promote the CO2 emissions of urban agglomerations in YREB. GDPPC presented the
second highest regression coefficient, indicating that GDPPC had a facilitating effect on
CO2 emissions. The coefficients of UR and SI were much lower, and their impact on CO2
emissions was not significant.
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Table 6. Statistics of regression coefficients for different influencing factors in MGWR.

Factors Year Min Median Max Mean STD

POP 2008 0.637 0.818 0.992 0.814 0.134
2011 0.664 0.814 0.89 0.79 0.089
2014 0.705 0.805 0.961 0.821 0.102
2017 0.719 0.732 0.743 0.733 0.007

GDPPC 2008 0.594 0.659 0.678 0.647 0.03
2011 0.591 0.63 0.647 0.625 0.019
2014 0.635 0.647 0.66 0.65 0.007
2017 0.183 0.192 0.234 0.201 0.018

SI 2008 −0.034 −0.017 0.106 0.011 0.052
2011 −0.035 −0.027 0.011 −0.019 0.017
2014 0.016 0.022 0.047 0.028 0.012
2017 0.037 0.065 0.083 0.063 0.015

CI 2008 0.098 0.184 0.285 0.202 0.066
2011 0.105 0.171 0.3 0.195 0.066
2014 0.082 0.16 0.269 0.177 0.063
2017 0.157 0.236 0.509 0.262 0.091

UR 2008 −0.068 0.075 0.161 0.041 0.07
2011 −0.038 0.038 0.111 0.027 0.038
2014 −0.048 −0.044 −0.004 −0.033 0.017
2017 0.132 0.214 0.408 0.255 0.108

Figure 10 shows the spatial distribution of the regression coefficients of POP. There
was a significant positive correlation between POP and CE, where an increase in population
will increase energy consumption and thus produce more CO2 emissions [49]. The impact
of POP on CE was significant in YRD-UA. YRD-UA was an important economic center in
China, which provided sufficient jobs and attracted a large number of migrants [50]. Traffic
congestion caused by population concentration was not conducive to adequate combustion
of fuels [51], leading to an increase in transportation CO2 emissions. The transportation
CO2 emissions in YRD-UA amounted to 9971.78 × 104 tons in 2017, which is approximately
equal to the sum of CY-UA and YRMR-UA.

Figure 10. Spatial distribution of regression coefficients of POP.
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Figure 11 shows the spatial distribution of regression coefficients for GDPPC. The
positive correlation between GDPPC and CE indicates that the growth of GDPPC pro-
moted CO2 emissions in YREB urban agglomerations. The influence of GDPPC on CE
was significant in YRD-UA, and the regression coefficient decreased from east to west
in 2008, 2011, and 2014. Economically developed regions responded better to the policy.
The government improves local competitiveness in response to economic conditions [52].
More attention should be paid to the change in people’s awareness and environmental
management caused by the economic improvement.

Figure 12 shows the spatial distribution of the regression coefficients of CI. The positive
correlation between CI and CE indicates that the adoption of technological innovations and
the improvement of energy use efficiency reduced CO2 emissions [53]. The impact of CI
on CE was significant in YRD-UA. Technological advances promoted the harmonization
of economic and environmental development [54]. Companies were more inclined to use
environmentally friendly technologies [55].

Figure 13 shows the spatial distribution of regression coefficients for UR. The impact
of UR on CE was insignificant, and the value of the regression coefficient varied between
−0.07 and 0.41. The reason was that urbanization led to an increase in people’s demand
for employment, housing, transportation, commodities, and energy dependence [56], and
urban construction increased society’s demand for high-emitting industries such as steel
and cement [57].

Figure 14 shows the spatial distribution of regression coefficients for SI. SI presented a
negative correlation with CE in 2008 and 2011, while SI positively correlated with CE in 2014
and 2017. The reason may be that some cities in YREB were at the stage of industrial start-up
and development. YRD-UA was dominated by light industry and high-tech industry with
low CO2 emissions [58]. YRMR-UA was at the initial stage of the Rise of Central China
Plan, and CY-UA was vital to China’s western development [59]. The industrial layout and
energy structure of YREB are gradually maturing.

Figure 11. Spatial distribution of regression coefficients of GDPPC.
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Figure 12. Spatial distribution of regression coefficients of CI.

Figure 13. Spatial distribution of regression coefficients of UR.
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Figure 14. Spatial distribution of regression coefficients of SI.

It is noteworthy that the spatial distribution of five influencing factors changed signifi-
cantly in 2017. The spatial heterogeneity of POP decreased, the impact of GDPPC decreased,
the spatial heterogeneity of CI increased, and the spatial heterogeneity of UR increased.
It may be due to the convening of the symposium on comprehensively advancing the
development of sustainable development in YREB held in 2016. The difference in the
sensitivities of inland and coastal cities to policies resulted in changes in the regression
coefficients of the influencing factors in 2017.

4. Discussion

4.1. Insights into the CO2 Emissions of YREB Urban Agglomerations

As a pioneer demonstration belt for the construction of ecological civilization in China,
YREB is of great significance to China and the world in achieving emission reduction and
sustainable development. Different urban agglomerations present different carbon emission
characteristics at different stages of economic development, making it important to develop
targeted emission reduction measures. China is in the process of rapid urbanization and
industrialization [60]. In 2017, the proportion of tertiary industry in YRD-UA was 2.84%
higher than the proportion of secondary industry [53]. Several cities in the southeast coastal
region had already crossed the industrialization stage and entered the post-industrialization
period [61], which was confirmed by the low proportion of industrial CO2 emissions in
YRD-UA and the significant growth of electricity CO2 emissions. However, most cities
in central and western China were in the process of industrialization, and the proportion
of tertiary industry was lower than the proportion of secondary industry [62], which led
to a higher proportion of industrial CO2 emissions in CY-UA and YRMR-UA than that in
YRD-UA.

The optimization and upgrading of industrial structures could promote carbon miti-
gation in CY-UA and YRMR-UA. Specifically, attention can be paid to industries such as
electronic information, engineering machinery, rail transportation equipment, automobiles,
aerospace, biomedicine, and new materials. In addition, CY-UA and YRMR-UA could
undertake the transfer of high-tech industries from the developed coastal regions. With the
deepening of the 14th Five-Year Plan and the vigorous development of wind, hydro, and
photovoltaic power generation [63], renewable energy will be the mainstream of the future
energy structure in YREB. The west-east gas pipeline project has provided cleaner energy
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and reduced fossil fuel consumption [64]. More attention should be paid to taking measures
to reduce CO2 emissions from production and life while increasing the share of the service
industry in the regional economy. Meanwhile, YRD-UA should focus on reducing the
facilitating effects of population on CO2 emissions by considering human capital agglomer-
ation in the process of urbanization [65]. The investigation of spatiotemporal variations
in CO2 emissions contributes to timely policy adjustments for carbon emission mitigation
in YREB urban agglomerations. Meanwhile, EKCs revealed the relationship between CO2
emissions and economic development, providing a strategy that can be applied to analyze
the carbon emission development stage of more regions. Furthermore, the importance of
different influencing factors for CO2 emissions was generated and discussed, which can be
conducive to promoting regional sustainable development.

4.2. Limitations

This study investigated the CO2 emissions of YREB urban agglomerations, but there is
still room for further research. The MEIC CO2 emissions data is from 2008 to 2017, and the
spatiotemporal patterns of CO2 emissions after 2017 were not explored in this study. There-
fore, expanded CO2 emissions datasets with more recent years will be considered in the
future. Meanwhile, five influencing factors that reveal economic and social characteristics
were selected in this study, and future studies will focus on the selection of representative
and comprehensive influencing factors of CO2 emissions in urban agglomerations.

5. Conclusions

This paper revealed the spatial and temporal variations of CO2 emissions in three
urban agglomerations in YREB. Meanwhile, the carbon emission development stage of the
YREB urban agglomerations was explored based on EKCs that take economic growth and
carbon emissions into account. In addition, the influencing factors of CO2 emissions were
analyzed using MGWR. The main conclusions are as follows:

(1) The CO2 emissions in the three urban agglomerations first increased and then de-
creased from 2008 to 2017. YRD-UA contributed 41.87% of the CO2 emissions of YREB,
with the highest CO2 emissions among the three urban agglomerations. A sympo-
sium on comprehensively advancing the development of the sustainable development
of YREB was held in 2016, and the CO2 emissions in three urban agglomerations
decreased significantly in 2017.

(2) The carbon emission development stage of urban agglomeration was analyzed based
on the relationship between carbon emissions and economic growth. According to the
EKCs, CY-UA, YRMR-UA, and YRD-UA reached the CO2 emissions peaks around
2012, 2011, and 2020, respectively. Nowadays, the urban agglomerations in YREB are
at the low-carbon stage.

(3) The CO2 emissions of YREB urban agglomerations were significantly affected by
POP and GDPPC, while the impacts of UR and SI were not significant. The spatial
distribution of influencing factors changed significantly in 2017. To reduce CO2
emissions, human capital agglomeration and clean energy should be considered in
the process of urbanization.

Moreover, future work will focus on the long-term carbon emission development stage
analysis of typical urban agglomerations, where more comprehensive CO2 emissions data
and influencing factors will be taken into account.
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Abstract: Monitoring carbon emissions is crucial for assessing and addressing economic development
and climate change, particularly in regions like the nine provinces along the Yellow River in China,
which experiences significant urbanization and development. However, to the best of our knowledge,
existing studies mainly focus on national and provincial scales, with fewer studies on municipal
and county scales. To address this issue, we established a carbon emission assessment model based
on the “NPP-VIIRS-like” nighttime light data, aiming to analyze the spatiotemporal variation of
carbon emissions in three different levels of nine provinces along the Yellow River since the 21st
century. Further, the spatial correlation of carbon emissions at the county level was explored using
the Moran’s I spatial analysis method. Results show that, from 2000 to 2021, carbon emissions in this
region continued to rise, but the growth rate declined, showing an overall convergence trend. Per
capita carbon emission intensity showed an overall upward trend, while carbon emission intensity
per unit of GDP showed an overall downward trend. Its spatial distribution generally showed
high carbon emissions in the eastern region and low carbon emissions in the western region. The
carbon emissions of each city mainly showed a trend of “several”; that is, the urban area around the
Yellow River has higher carbon emissions. Meanwhile, there is a trend of higher carbon emissions in
provincial capitals. Moran’s I showed a trend of decreasing first and then increasing and gradually
tended to a stable state in the later stage, and the pattern of spatial agglomeration was relatively
fixed. “High–High” and “Low–Low” were the main types of local spatial autocorrelation, and the
number of counties with “High–High” agglomeration increased significantly, while the number of
counties with “Low–Low” agglomeration gradually decreased. The findings of this study provide
valuable insights into the carbon emission trends of the study area, as well as the references that help
to achieve carbon peaking and carbon neutrality goals proposed by China.

Keywords: carbon emissions; nighttime lights; spatiotemporal variation; spatial correlation; nine
provinces along the Yellow River

1. Introduction

Since the Industrial Revolution, increasing carbon emissions from human activities
have become a major contributor to global climate change. As a result, climate change has
become a pressing global issue, garnering attention from the international community [1–3].
To develop and implement climate change mitigation and adaptation policies and plans,
there is an urgent need for accurate, reliable, and real-time carbon emission data [4,5].
Consequently, monitoring and evaluating carbon emissions has become a critical priority
and research hotspot, which helps ecological environment protection and prompts high-
quality development.
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In recent years, a growing amount of research has been conducted on studying the
spatiotemporal characteristics, and monitoring and evaluation of carbon emissions [6–9].
Researchers have investigated various factors that influence carbon emissions in different
regions and proposed predictive models to forecast carbon emissions in specific areas. For
instance, Huang et al. [10] analyzed the carbon peak and carbon emission information of
the Yangtze River Economic Belt, and proposed a support vector regression (SVR) machine
prediction model to predict the carbon emission information in the region. Du et al. [11]
established a China Carbon Watch (CCW) system, enabling the monthly calculation of
carbon emissions from provincial-level urban and rural households between January and
May 2020. Liu et al. [12] used the Lasso regression model to screen out eight significant
factors affecting carbon emissions based on the data of Jiangsu province from 2001 to 2018
and used the BP neural network model to predict the carbon emissions of Jiangsu province
from 2019 to 2030. Ning et al. [13] established a prediction model for carbon emissions
in four representative provinces and cities in Beijing, Henan, Guangdong, and Zhejiang
from 1997 to 2017. However, the abovementioned research lacks the capability of achieving
small-scale refined monitoring, such as at the county level, and cannot provide real-time
monitoring and assessment of carbon emissions. Therefore, new methods and technologies
are highly needed to enable more granular, comprehensive, and real-time monitoring and
assessment of carbon emissions.

Nighttime light remote sensing is an optical remote sensing technology that detects
and obtains information on nighttime lights, providing a quick, accurate, and objective
view of the surface and human activities [14–16]. Unlike daytime remote sensing, nighttime
light remote sensing can reveal information that is not visible during the day [17,18].
Since most of the stable light at night comes from artificial sources in urban areas, remote
sensing images of nighttime lights can more intuitively reflect differences in human activity
at night [19–22]. Nighttime light data has become a new monitoring method with the
advantages of large coverage, fast timeliness, and convenient access, making it suitable for
multi-scale and long-term research on urban issues [23]. Nighttime light data has been used
in many studies related to disaster monitoring, urban sprawl, and human activity [24–28].
For instance, Fan et al. [29] used NPP-VIIRS nighttime light data to monitor recovery after
earthquakes and quickly assess earthquake damage. Li et al. [30] researched the variation
of nighttime illumination in different seismic regions and the influence of human activities
on nighttime illumination. Liu et al. [31] used NPP-VIIRS nighttime light data to explore
the resilience and post-disaster recovery of Zhengzhou City, using the extremely heavy
rainstorm in Zhengzhou City on July 20, 2021 as an example. Chen et al. [32] constructed
a new nighttime light landscape indicator, taking various townships in Fujian Province
as examples to reveal rural and urban economic development, and their differences and
economic expansion from multiple perspectives.

Nighttime light data has also been used to explore carbon emissions [33–37]. Doll et al. [38]
produced the world’s first 1 × 1 resolution carbon emission distribution map, revealing
the difference in carbon emission levels of countries at different stages of development
based on the correlation between DMSP-OLS nighttime light data and carbon emissions.
Sun et al. [39] monitored the variation in China’s city-level carbon emissions from 2000
to 2017 based on nighttime light data, and found that low-carbon cities are concentrated
in western and central China, while high-carbon-emission cities are mainly distributed
in the Beijing–Tianjin–Hebei and Yangtze River Delta regions. Yang et al. [40] established
a regional Chinese building carbon emission calculation model based on the nighttime
light data and building carbon emission data in the eastern, central, and western regions
of China. Guo et al. [41] analyzed the spatiotemporal variation patterns, correlations, and
heterogeneity of carbon emissions of three different administrative units from 2012 to
2019 based on nighttime light data and normalized difference vegetation index. Overall,
nighttime light remote sensing is an effective tool for monitoring human activity and
carbon emissions, providing valuable information for urban and environmental studies,

50



Land 2023, 12, 1469

and has the potential to contribute significantly to the development of urban planning and
environmental management policies.

Located in the central and western regions of China, the nine provinces along the
Yellow River are important areas for achieving coordinated regional development. This
region is China’s main energy and heavy chemical industry base, containing high-carbon
industries such as coal, oil, steel, and chemicals, resulting in the issues of carbon emissions
of this region being more prominent [42–44]. The development of this region can promote
the economic development of the western region, narrow the development gap between the
eastern and western regions, and achieve a balanced and coordinated national economy. In
addition, the development of this region also has a significant impact on the development
of the global economy, which can promote the vitality of global trade and investment. To
achieve the coordinated development of economic development and environmental protec-
tion, the Chinese government has adopted a series of policies and measures to promote the
construction of ecological civilization and energy conservation, and emission reduction,
and strive to achieve the goals of carbon peak and carbon neutrality. However, to the best
of our knowledge, existing studies mainly focus on the national and provincial scales and
fewer studies are conducted at the municipal and county scales. This inevitably ignores
the development stage and regional differences, which is not conducive to the national
level and all levels of government developing practical carbon reduction and pollution
reduction programs based on local conditions while improving the quality of economic
development and steadily promoting the urbanization process. Therefore, the monitoring
and analysis of carbon emissions at the municipal and county levels in the region will help
the government adjust its policies on time, optimize the industrial and energy structures,
accelerate green and low-carbon development, promote economic transformation and
upgrading, and achieve sustainable economic development.

This study aims to investigate the spatiotemporal variation, per capita carbon emission
intensity, and carbon emission intensity per unit of GDP in the nine provinces along the
Yellow River since the 21st century. We first build a fitting model for carbon emission
monitoring and evaluation using “NPP-VIIRS-like” nighttime light data and other multi-
source data. The spatiotemporal evolution characteristics of carbon emissions at municipal
and county levels are monitored and assessed. Furthermore, Moran’s I is employed to
investigate the spatial correlations of carbon emissions at county levels in the region.
This study provides important reference information for decision-making departments to
formulate more reasonable and effective carbon emission reduction policies to optimize the
industrial structure of this region and reduce carbon emissions.

This study has the following three main objectives:

1. Construct a fitting model of the nighttime lighting index and carbon emissions for the
timely and accurate prediction of carbon emissions;

2. Investigate the spatiotemporal characteristics and trends of carbon emissions in the
nine provinces along the Yellow River of China since the 21st century;

3. Explore the spatial correlation of carbon emissions at the county level using Moran’s I
statistical method.

The rest of this study is organized as follows: Section 2 describes the study area
and data. Section 3 introduces the calculation method of carbon emissions, the processing
method of nighttime lighting data, the fitting model construction, and the spatial correlation
analysis method. Section 4 introduces the spatiotemporal variation of carbon emissions
and the fitting model of the nine provinces along the Yellow River. The discussion and
conclusion are presented in Sections 5 and 6, respectively.

2. Study Area and Data

2.1. Study Area

The Yellow River is considered the “mother river” of China. This massive river, one
of the longest in the world and the second longest in China, is located in the northern
part of the country. The Yellow River basin encompasses a vast area that includes nine
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provinces: Shanxi, Inner Mongolia, Shandong, Henan, Sichuan, Shaanxi, Gansu, Qinghai,
and Ningxia, as depicted in Figure 1. This region covers a staggering 3,569,000 km2, which
constitutes around 37.2% of China’s entire territory. As of 2022, the population of this
region is approximately 420 million people, accounting for 29.8% of China’s total population.
Additionally, the GDP of this region is estimated at 28.7 trillion yuan, which is equivalent to
25.1% of China’s overall GDP. The Yellow River basin is a crucial area for China’s economy
and culture, with a rich history and a vibrant present. Moreover, this region is rich in
biodiversity and ecosystems, including wetlands, forests, grasslands, and rivers. These
ecosystems are vital to maintaining the ecological balance of the region, protecting rare
species, and preserving natural ecological functions. Protecting the ecosystems along the
nine Yellow Provinces will help maintain the stability of the global ecosystem.

 

Figure 1. Geographical location of the study area.

2.2. Data

To conduct a comprehensive analysis of carbon emissions in the study area, various
energy data, including raw coal, coke, crude oil, gasoline, kerosene, diesel, fuel oil, natural
gas, heat, and electricity, were selected. The energy statistics were obtained from the Statis-
tical Yearbook, China Energy Statistical Yearbook, and Urban Greenhouse Gas Inventory
Research of nine provinces and cities from 2000 to 2021. To estimate carbon emissions in the
study area, “NPP-VIIRS-like” nighttime light data from 2000 to 2021 were obtained from
the AI-Earth Earth Science Cloud Platform (https://engine-aiearth.aliyun.com, accessed
on 15 March 2023). The spatial resolution of this data is 500 m, which has the advantages of
high spatial resolution, global coverage, long-term continuous observation, and strong data
consistency and comparability, and provides a powerful tool for researchers to analyze
and understand the distribution and changes of nighttime lights on the Earth’s surface,
and can be used to construct a reliable model for monitoring and evaluating carbon emis-
sions [45–47]. Population and GDP data were also collected from the Statistical Yearbooks
of nine provinces and cities from 2000 to 2021. Table 1 shows the data-related information,
including data name, time range, and sources of data.
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Table 1. Data sources in this study.

Data Time Range Data Sources

Energy statistics 2000–2021

Statistical Yearbook,
China Energy Statistical Yearbook,

Urban Greenhouse Gas Inventory Research of
nine provinces and cities

“NPP-VIIRS-like” nighttime
light data 2000–2021 AI-Earth Earth Science Cloud Platform

(https://engine-aiearth.aliyun.com)

Population and GDP data 2000–2021 Statistical Yearbooks of nine provinces and cities

3. Methodology

In this study, we focused on assessing the spatiotemporal variation of the carbon
emissions in the nine provinces along the Yellow River since the 21st century based on
nighttime light remote sensing and multisource data. The overall workflow of this study is
presented in Figure 2.

Figure 2. The workflow of this study.

3.1. Calculation of Carbon Emissions

To estimate the carbon emissions of each province in the study area, this study uses
the 2006 Greenhouse Gas Emissions Inventory published by the IPCC (Intergovernmental
Panel on Climate Change) [48]. The carbon emissions are calculated using the following
equation:

CO2 =
44
12

×
10

∑
i=1

KiEi (1)

where i is 10 energy types; Ei is the consumption of energy i in terms of standard coal
(10,000 tons); and Ki is the carbon emission factor of energy i (10,000 carbon)/(10,000 stan-
dard coal), from the default value of IPCC carbon emission calculation guidelines, where the
original data unit is J. To be consistent with the statistical data unit, it is converted into stan-
dard coal with a conversion factor of 1 × 104 tons of standard coal equal to 2.93 × 105 GJ.
The carbon emission factors for each type of energy are presented in Table 2 [49].
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Table 2. Energy carbon emission factors.

Energy Type Raw Coal Coke Crude Oil Gasoline Kerosene Diesel Fuel Oil Natural Gas Heat Electricity

Converted to standard coal
(tons of standard coal/ton) 0.7143 0.9714 1.4286 1.4714 1.4714 1.4751 1.4286 1.33 34.12 0.345

Carbon emission factor
(104 tons carbon/104 tons

standard coal)
0.7559 0.855 0.5857 0.5538 0.5714 0.5921 0.6185 0.4483 0.67 0.272

3.2. Per Capita Carbon Emission Intensity and Carbon Emission Intensity Per Unit of GDP

To obtain a comprehensive understanding of carbon emission patterns and mecha-
nisms, this study integrates the demographic and economic statistics of each province. The
aim is to investigate the spatiotemporal distribution characteristics and influence factors of
per capita carbon emission intensity and carbon emission intensity per unit of GDP in each
province, with the following equations:

Per capita carbon emission intensity = CO2/p (2)

Carbon emission intensity per unit of GDP = CO2/GDP (3)

where CO2 is total carbon emissions (10,000 tons); p is the year-end resident population
data (10,000 people); and GDP is gross regional product (10,000 yuan).

3.3. Nighttime Light Index Calculation

For this study, the total nighttime light index (TNLI) is selected as the index for
calculation and analysis. TNLI is calculated as the sum of the light digital number (DN)
values of administrative units, as presented by the following equation:

TNLI =
n

∑
i=1

DNi (4)

where n is the number of rasters and DNi is the radiation value of the image element
corresponding to each raster.

3.4. Establishing the Fitting Model

Given the significant correlation between TNLI and carbon emissions, we used a
linear regression model to fit the TNLI and total carbon emissions of the study area. In this
model, the intercept was set to 0, reflecting the absence of energy-related carbon emissions
in unlit regions. The equation for the linear regression model is as follows:

CO2 = a × TNLI (5)

where CO2 is the total carbon emission, TNLI is the total nighttime light index, and a is the
fitting factor.

From 2000 to 2021, the TNLI and carbon emissions of nine provinces showed an
approximate linear growth in the early years, and then reached the inflection point and
gradually slowed down. Moreover, carbon emissions were affected by the phased emission
reduction targets and tasks proposed by China’s government in 2009 and 2015, and the
growth rate had shown a rapid downward trend. Therefore, considering the inherent
attributes of the data in conjunction with the temporal milestones associated with carbon
emission mitigation policies, it has been delineated into seven distinct temporal intervals
to conduct a comprehensive fitting analysis. The outcomes of this analysis are presented
in Table 3, where a denotes the fitting coefficient of carbon emissions and TNLI, and R2

denotes the correlation coefficient of carbon emissions and TNLI: the larger this value, the
stronger the correlation.
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Table 3. Parameters of the quadratic polynomial model of carbon emissions from 2000 to 2021.

Year a R2

2000–2004 0.1465 0.9208
2005–2008 0.1763 0.9483
2009–2012 0.2079 0.9602
2013–2014 0.1410 0.9016
2015–2016 0.1439 0.9007
2017–2018 0.1059 0.8485
2019–2021 0.0858 0.7813

3.5. Spatial Correlation

To investigate the spatiotemporal dynamics of carbon emissions, we employ global
Moran’s I and local indicators of spatial association (LISA). Global Moran’s I is calculated
using Equation (6), with values ranging from −1 to 1. Values closer to 1 indicate a stronger
positive correlation, while values closer to −1 indicate a stronger negative correlation.
Values close to 0 indicate a lack of significant correlation. Local Moran’s I is calculated
using Equation (7). LISA analysis is used to describe the correlation of spatial units
based on five attributes: “High–High”, “Low–Low”, “High–Low”, “Low–High”, and “Not
Significant”.

I =
∑n

i=1 ∑n
j=1 ωij(xi − x)

(
xj − x

)
1
n ∑n

i=1(xi − x)2·∑n
i=1 ∑n

j=1 ωij
(6)

Ii =
xi − x

1
n ∑n

i=1(xi − x)2

n

∑
j=1,j �=i

ωij
(
xj − x

)
(7)

where n is the number of regions, xi is the carbon emissions of the ith region, the upper
horizontal line represents the mean value, and ωij is the spatial symmetric weight.

4. Results

4.1. Temporal Characteristics of Provincial-Level Carbon Emissions

The carbon emissions of the study area from 2000 to 2021 are presented in Figure 3.
Since the 21st century, the total carbon emissions of this region have continued to rise,
but the growth rate has gradually decreased, showing an overall trend of convergence.
It is worth noting that, despite this convergence, the region has not yet reached peak
carbon. In 2000, the total carbon emissions were 890.849 million tons; in 2012, they reached
3440.83 million tons; and, in 2021, they increased to 3787.586 million tons. The total carbon
emissions continued to rise, but the average annual growth rate showed a downward trend:
the average annual growth rate of carbon emissions from 2000 to 2012 was 12.01%, and
it fell rapidly to 1.10% from 2012 to 2021. This demonstrates that the emission reduction
targets and tasks established by China at the Copenhagen Conference in 2009 and the
75th session of the United Nations General Assembly in 2020 [50] have an important
impact on carbon emission reduction in the Yellow River Basin. Figure 4 shows the share
of carbon emissions upstream of the Yellow River (including Qinghai, Inner Mongolia,
Sichuan, Gansu, and Ningxia), the midstream (including Shaanxi and Shanxi), and the
downstream (including Henan and Shandong). From 2000 to 2021, the difference between
upstream and downstream carbon emission levels was small, accounting for about 80%
of the carbon emissions of the nine Yellow River provinces, while the midstream carbon
emissions accounted for a relatively small amount, about 20%. The proportion of upstream
and midstream carbon emissions has gradually increased, from 31.41% in 2001 to 41.07% in
2021, and from 20.96% in 2005 to 22.14% in 2021. The upstream and midstream have been in
pursuit of rapid economic development, and the resulting energy consumption has led to
an increase in carbon emissions. The proportion of downstream carbon emissions showed
a trend of first rising and then decreasing, rising from 43.88% in 2001 to 48.75% in 2005 and
36.79% in 2021. This is closely related to the shift of the focus of its economic development
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from the early pursuit of rapid economic development to improving the high-quality and
efficiency of economic development and optimizing the economic structure.

 
Figure 3. Temporal characteristics of provincial-level carbon emissions in the study area from 2000 to
2021.

Figure 4. Percentage of carbon emissions in the study area from 2000 to 2021.

4.2. Spatial Characteristics of Provincial-Level Carbon Emissions

The spatial trends of carbon emissions of the study area from 2000 to 2021 are displayed
in Figure 5. To investigate the spatial variation of carbon emissions across different regions
and years, we employed the natural interruption point method to categorize the carbon
emission data. Overall, carbon emissions from the nine Yellow River provinces show a
trend of high in the east and low in the west. Specifically, the total carbon emissions of nine
provinces along the Yellow River in 2001 were relatively low. In 2005, carbon emissions from
Shandong, Shanxi, Henan, Inner Mongolia, Sichuan, and Gansu increased significantly,
with Shandong’s emissions exceeding 50 million tons. In 2013, carbon emissions in all four
eastern provinces were at high levels. Shanxi’s carbon emissions fell in 2017. This reduction
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can be attributed to the successful implementation of an innovative initiative in Taiyuan,
the provincial capital, wherein all taxis were electrified in 2016. However, carbon emissions
in Shanxi and Shaanxi gradually increased in 2021, while those in Henan declined. This
divergence can be attributed to the implementation of the “Notice on the Implementation of
the Three-Year Action Plan for Energy Conservation and Carbon Reduction Transformation
of Key Energy-using Units” by Henan province in 2021. The notice pointed out that, by
2023, key energy-using units will achieve an energy-saving capacity of more than 6 million
tons of standard coal/year, and achieve maximum improvement in energy efficiency.

  

  

  

Figure 5. Spatial characteristics of provincial-level carbon emissions in the study area from 2000
to 2021.
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4.3. Temporal Characteristics of Per Capita Carbon Emission Intensity and Carbon Emission
Intensity Per Unit of GDP

The per capita carbon emission intensity is a crucial indicator of carbon emission
levels and is the central critical issue in climate negotiations. It is important for developing
effective carbon reduction strategies and for ensuring a sustainable future. The temporal
characteristics of per capita carbon emission intensity in the study area from 2000 to 2021
are presented in Figure 6. From 2000 to 2021, the per capita carbon emission intensity of
nine provinces along the Yellow River showed an overall upward trend. Among them,
Inner Mongolia has the highest per capita carbon emission intensity, reaching 34.7 tons
in 2021. Its growth trend is the largest, with an average annual growth rate of 10.94%.
This is mainly due to its development mode of “relying on energy and relying on heavy
energy”, the characteristics of heavy industrial structure and high carbonization of energy
structure, large stock and a high proportion of energy and raw material industries, and
high energy consumption and high emission industries; renewable energy has become the
main basic energy still to be developed, and the role of carbon emission reduction is not
sufficient. Moreover, Ningxia’s per capita carbon emission intensity is just below Inner
Mongolia’s, with a faster growth rate. Shanxi’s per capita carbon emission intensity is in
the middle of the range until it exceeds 15 tons in 2021. In contrast, Sichuan has the lowest
per capita carbon emission intensity, at 3.4 tons. Its growth trend is also the smallest, with
an average annual growth rate of 5.04%. This may be related to Sichuan’s relatively clean
industrial structure and relatively diversified energy structure, while Sichuan’s vigorous
development of renewable energy, such as hydropower and wind power, has also played a
positive role in reducing carbon emissions. The per capita carbon emission intensity of the
other provinces varies little, and they are all relatively low, located below 10 tons.

 
Figure 6. Temporal characteristics of per capita carbon emission intensity in the study area from 2000
to 2021.

The carbon emission intensity per unit of GDP is an internationally recognized indica-
tor for measuring the effectiveness of emission reduction. The temporal characteristics of
the carbon emission intensity per unit of GDP in the study area from 2000 to 2021 are pre-
sented in Figure 7. From 2000 to 2021, the carbon emission intensity per unit of GDP in the
study area showed an overall downward trend. Ningxia has the highest carbon emission
intensity per unit of GDP, reaching 4.9 tons/10,000 yuan in 2021. This is mainly because
the energy structure of Ningxia is mainly based on coal, which accounts for a relatively
high proportion of energy consumption. Moreover, Ningxia is a relatively underdeveloped
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economic region, and, to catch up with the development speed of other regions, it may
have neglected the importance of environmental protection in the process of economic
development. There may be some lag in the utilization of resources and transformation of
industrial structure, resulting in a high carbon emission intensity per unit GDP. Sichuan,
on the other hand, has the smallest carbon emission intensity per unit of GDP, as low as
0.5 tons/10,000 yuan in 2021. This is due to Sichuan’s active development of other new
energy sources, and the utilization of these clean energy sources has helped to reduce
its dependence on traditional high-carbon energy sources, further reducing the carbon
emission intensity per unit of GDP. Moreover, Sichuan’s economic structure is relatively
lightweight. Lightweight industries usually have a relatively low energy demand, thus
reducing the carbon emission intensity per unit of GDP. Henan has been actively restruc-
turing and transforming its energy mix over the past few years. Consequently, Henan has
the largest downward trend in carbon emission intensity per unit of GDP, with an average
annual reduction rate of 6.97%. By contrast, due to Ningxia’s relatively homogenous energy
structure, the energy transition and emission reduction efforts face greater challenges.
Consequently, Ningxia has the smallest downward trend in carbon emission intensity per
unit of GDP, with an average annual reduction rate of 1.48%.

Figure 7. Temporal characteristics of carbon emission intensity per unit GDP in the study area from
2000 to 2021.

4.4. Spatial Characteristics of Municipal-Level Carbon Emissions

Based on the fitting model proposed above and the nighttime light index at the
municipal scale, the inversion obtained the spatial characteristics of municipal-level carbon
emissions in the study area from 2000 to 2021 (as presented in Figure 8). From 2000 to 2021,
the carbon emissions of this region mainly showed a trend of “several”; that is, the carbon
emissions of urban areas around the Yellow River were higher, and the carbon emissions of
provincial capitals were higher. From 2000 to 2009, carbon emissions increased rapidly, and
the proportion of cities with high carbon emissions increased from 4.35% in 2001 to 32.17%
in 2021. In 2001, only Jinan, Qingdao, Yantai, Zhengzhou, and Taiyuan had high levels of
carbon emissions. In 2021, only the eastern and northern cities had faster carbon emission
growth, while the southwestern cities had a slower growth rate. Shandong is a province
with a large population and rapid economic development, accounting for about 9% of the
country’s carbon emissions in 2020, making it the largest carbon emitter province in China.
Moreover, Shandong is also the largest coal power province in China, accounting for 9.5%
of the country’s installed capacity. More than 99% of its heat demand is met by coal, with
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the rest coming from oil and gas. Therefore, in 2021, only Rizhao in Shandong had carbon
emissions of less than 30 million tons.

Figure 8. Spatial characteristics of municipal-level carbon emissions in the study area from 2000
to 2021.

4.5. Spatial Characteristics of County-Level Carbon Emissions

The spatial characteristics of county-level carbon emissions in the study area from 2000
to 2021 are presented in Figure 9. From 2000 to 2021, the carbon emissions of all districts and
counties along this region increased significantly, showing a spatial distribution pattern of
“southeast high and northwest low”. Among them, counties in Shandong and Henan have
higher carbon emissions, accounting for 91.97% and 81.65% of the high-carbon-emission
counties in the two provinces in 2021. The growth rate of carbon emissions in each county
and district showed a trend of “first urgent and then slow”, with 2009 as the cut-off point.
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The proportion of counties with high carbon emissions increased from 12.72% in 2001 to
40.56% in 2009 and 55.68% in 2021.

Figure 9. Spatial characteristics of county-level carbon emissions in the study area from 2000 to 2021.

5. Discussion

5.1. Global Spatial Correlation

GeoDa software was utilized to establish the spatial weights, and the global spatial
correlation index (Moran’s I) of county-level carbon emissions in the study area from 2000
to 2021 was calculated. The results are presented in Table 4. All the Moran’s I of this
region is positive, and the p-values are all zero, indicating a significant spatial correlation
of county-level carbon emissions in the region. Moran’s I shows a trend of decreasing first
and then increasing and gradually tends to a stable state in the later stage, and the pattern
of spatial agglomeration is relatively fixed. Before 2013, there was an overall downward
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trend, from 0.314 in 2001 to 0.223 in 2013, indicating that counties with similar carbon
emissions are more likely to be dispersed. This is because, since the beginning of the 21st
century, all regions have made great efforts to build and develop, but the development has
been uneven, resulting in different carbon emission levels. After 2013, the overall trend
increased, from 0.223 in 2013 to 0.287 in 2021, and eventually stabilized, indicating that
counties with similar carbon emissions are more inclined to agglomerate.

Table 4. Moran’s I of county-level carbon emissions in the study area from 2000 to 2021.

Year Moran’s I p

2001 0.314 0
2005 0.351 0
2009 0.313 0
2013 0.223 0
2017 0.270 0
2021 0.287 0

5.2. Local Spatial Correlation

The LISA clustering maps of county-level carbon emissions in the study area are
presented in Figure 10. In general, the spatial agglomeration mode of county-level carbon
emissions was relatively fixed, “High–High” and “Low–Low” were the main types of
local spatial autocorrelation, and the number of counties and districts where “High–High”
agglomeration increased significantly, while the number of counties and districts where
“Low–Low” agglomeration gradually decreased. From 2000 to 2013, the “High–High”
and “Low–High” types of counties and districts were mainly distributed along the Yellow
River, and the number of “Low–High” types of districts and counties gradually increased,
mainly because the counties along the Yellow River developed rapidly, but, due to uneven
development caused by regional differences, most of the counties and districts along the
coast had a “radiation effect” on surrounding cities, and carbon emissions formed the
“High–High” type. Meanwhile, some counties and districts have a “siphon effect” on
surrounding cities, and carbon emissions with a “Low–High” type. The “Low–Low” type
is mainly distributed in Sichuan, which is because Sichuan’s clean energy accounts for more
than 80% to 90%, which is much higher than the national level, and the carbon emissions of
each county are low. From 2013 to 2021, Shanxi’s “High–High” and “Low–Low” gradually
disappeared. The Sichuan Basin gradually formed the “High–High” type centered on
Chengdu, and the number gradually increased. The “Low–Low” type in eastern Inner
Mongolia and Yan’an and Linfen in Shaanxi is gradually increasing.

5.3. Possible Strategies

To prompt the ecological protection and high-quality development of the Yellow River
Basin, the following strategies may be implemented:

(1) The upstream of the Yellow River should develop clean energy. The upstream
of the Yellow River is rich in hydropower and wind energy resources, and vigor-
ously develops hydropower and wind power to reduce the use of fossil energy and
carbon emissions.

(2) The midstream of the Yellow River should promote industrial transformation and
upgrading. The midstream of the Yellow River has a high degree of industrialization
and should promote industrial transformation and upgrading, promote clean produc-
tion technologies and circular economy models, reduce the use of fossil fuels, and
reduce carbon emissions.

(3) The downstream of the Yellow River should promote green development. The down-
stream of the Yellow River comprises China’s economic centers and urban agglomera-
tions and should promote green development, encourage low-carbon consumption
and lifestyles, and promote renewable energy and clean transportation.
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Figure 10. LISA map of county-level carbon emissions in the study area from 2000 to 2021.

6. Conclusions

This study establishes a carbon emission assessment model based on the “NPP-VIIRS-
like” nighttime light data, investigating the spatiotemporal characteristics and trends of
carbon emissions, per capita carbon emission intensity, and carbon emission intensity
per unit of GDP in the study area since the 21st century. Further, the spatial correlation
of carbon emissions at the county level is explored using the Moran’s I spatial analysis
method. This comprehensive method overcomes the limitations of incomplete traditional
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statistics and differing statistical calibers, providing a reliable new tool for monitoring
carbon emissions. The main conclusions drawn from this study are as follows:

(1) TNLI and carbon emission models of the study area were constructed according
to different years. The model exhibited high accuracy with an average correlation
coefficient R2 of 0.8945. The model has proven effective in estimating carbon emissions
at the city and county levels, enabling the timely monitoring and assessment of carbon
emissions in small-scale areas.

(2) In terms of temporal variation, from 2000 to 2021, carbon emissions in the study
area continued to rise but the growth rate declined, showing an overall convergence
trend, but not yet reaching a carbon peak. The proportion of upstream and midstream
carbon emissions has gradually increased, while the proportion of downstream carbon
emissions has gradually decreased. Per capita carbon emission intensity is generally
on the rise, with Inner Mongolia having the largest per capita carbon intensity and
Sichuan having the smallest. The carbon emission intensity per unit of GDP is
generally declining. Ningxia has the highest carbon intensity per unit of GDP, while
Sichuan has the lowest carbon intensity per unit of GDP.

(3) In terms of spatial variation, the carbon emissions of the study area generally show
high carbon emissions in the eastern region and low carbon emissions in the western
region. The carbon emissions of each city mainly show a trend of “several”; that is, the
urban area around the Yellow River has higher carbon emissions. Meanwhile, there
is a trend of higher carbon emissions in provincial capitals. The proportion of cities
with high carbon emissions increased from 4.35% in 2001 to 32.17% in 2021. Counties
in Shandong and Henan have higher carbon emissions, accounting for 91.97% and
81.65% of the two provinces in 2021, respectively.

(4) In terms of spatial relationship, Moran’s I shows a trend of first decreasing and then
increasing and gradually tends to a stable state in the later stage, and the pattern of
spatial agglomeration is relatively fixed. “High–High” and “Low–Low” are the main
types of local spatial autocorrelation, and the number of counties with “High–High”
agglomeration increases significantly, while the number of counties with “Low–Low”
agglomeration gradually decreases. From 2000 to 2013, counties of the “High–High”
and “Low–High” types were mainly distributed along the Yellow River, and the “Low–
Low” type was mainly distributed in Sichuan. From 2013 to 2021, Shanxi’s “High–
High” and “Low–Low” gradually disappeared. The Sichuan Basin gradually formed
the “High–High” type centered on Chengdu, and the number gradually increased.

The spatial and temporal variations in carbon emissions show a converging trend of
decreasing growth rates. While emissions continue to rise, the declining rate of growth
suggests potential improvements in emission management and control measures. The rise
in the per capita carbon emission intensity indicates the need for more sustainable and
efficient use of resources. The decline in carbon emission intensity per unit of GDP indicates
progress in decoupling economic growth from carbon emissions. Spatial differences in
carbon emissions can be attributed to changes in economic activity, population density,
and energy sources. Understanding these spatial differences can help target emission
reduction strategies where they are most needed. Understanding the spatial relationships
and patterns of carbon emissions can help policymakers to identify areas where targeted
interventions are needed and to work together towards effective mitigation strategies.
Taken together, these findings can guide policymakers in developing strategies and policies
to mitigate carbon emissions, promote sustainable development, and achieve emission
reduction targets.

This study presents a unique perspective on carbon emissions monitoring, provid-
ing valuable data references and decision-making support for governmental entities and
businesses aiming to advance sustainable economic development and foster the estab-
lishment of ecological civilization. In our future research endeavors, we intend to delve
deeper into the analysis of influencing factors and mechanisms associated with carbon
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emissions, while also exploring effective monitoring technologies for carbon emissions
based on heterogeneous data from multiple sources.
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Abstract: Carbon sink enhancement is of great significance to achieving carbon peak and carbon
neutrality. This study firstly estimated the carbon sink in the Beijing–Tianjin–Hebei Region using
the carbon absorption coefficient method. Then, this study explored the differentiation of carbon
sink enhancement potential with a carbon sink–economic carrying capacity index matrix based
on carbon sink carrying capacity and economic carrying capacity under the baseline scenario and
target scenario of land use. The results suggested there was a remarkable differentiation in total
carbon sink in the study area, reaching 2,056,400 and 1,528,300 tons in Chengde and Zhangjiakou
and being below 500,000 tons in Langfang and Hengshui, while carbon sink per unit land area
reached 0.66 ton/ha in Qinhuangdao and only 0.28 t/ha in Tianjin under the baseline scenario.
Increasing area and optimizing spatial distribution of arable land, garden land, and forest, which
made the greatest contribution to total carbon sinks, is an important way of enhancing regional carbon
sinks. A hypothetical benchmark city can be constructed according to Qinhuangdao and Beijing, in
comparison with which there is potential for carbon sink enhancement by improving carbon sink
capacity in Beijing, promoting economic carrying capacity in Qinhuangdao, and improving both in
the other cities in the study area.

Keywords: Beijing–Tianjin–Hebei; carbon sink; arable land; land use; carbon sink–economic
carrying capacity

1. Introduction

The drastic increase in carbon emitted into the atmosphere since the industrial revo-
lution has made a great contribution to climate change, and enhancing carbon sink while
promoting economic growth is an important way to achieve the strategic goals of carbon
peak by 2030 and carbon neutrality by 2060 for alleviating climate change [1]. Carbon
sink refers to the natural or anthropogenic banks of greenhouse gases, including soils,
plants and oceans, which can reduce the greenhouse gas concentration in the atmosphere
through vegetation restoration and so on [2]. Specifically, land carbon stocks primarily
include vegetation and soil carbon stocks in the forest, grassland, deserts, arable land, and
wetland [3]. Terrestrial vegetation and soils have currently absorbed approximately 40% of
CO2 emissions from human activities, and there is considerable potential to further increase
their uptake and storage of CO2 and increase carbon sinks with various management
policies and measures [2] The Kyoto Protocol (1997), Copenhagen Accord (2009), and the
Glasgow Climate Convention (2021) also suggested that carbon sink enhancement of the
terrestrial ecosystem is the most economical and effective technological pathway to im-
proving carbon sinks [3]. The “carbon sink–economic carrying capacity”, as an integration
of carbon sink and economic carrying capacity, generally refers to the maximum amount
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of carbon emissions that an economic system can absorb or offset without causing detri-
mental environmental impacts [4,5]. Research on carbon sink–economic carrying capacity
can provide a valuable reference for understanding and managing the balance between
economic growth and sustainable development in different regions of the world, especially
in the context of climate change [6–8].

Carbon sinks are generally estimated with the land area and carbon emission coef-
ficient, since the carbon sequestration rates and status quo carbon sink capacities vary
significantly among different land carbon sinks [9]. For example, the spatial and tem-
poral differentiation patterns of carbon emission and compensation in China have been
revealed at the provincial scale with the carbon emission coefficient method [10]. In fact,
construction land, e.g., urban villages, industrial and mining land, transportation land, and
water conservancy land, may serve as both a carbon source and sink, but its carbon source
intensity is generally much higher than its carbon sink intensity [2]. By contrast, arable
land, garden land, forest land, grassland, wetland, and watershed are both carbon sinks
and carbon sources, but their carbon sink intensity is generally much higher than their
carbon source intensity [11].

The core of carbon sink enhancement is to improve the carbon sequestration capacity of
terrestrial ecosystems through “optimal ecosystem layout, species allocation and ecosystem
management” [12], and territorial spatial planning is widely recognized as an effective way
of controlling greenhouse gas emissions from the macro perspective [2,13]. For example,
the central government of China has issued the National Outline of Territorial Spatial
Planning (2021–2035), which provides an important basis for guiding the planning of
national carbon sink function areas and lays an important foundation for macro decision
making on the upgrading of ecological carbon sinks [14]. The central government of China
has also proposed to implement this planning by adhering to planning and coordination,
focusing on constructing a spatial pattern of ecological protection and restoration, with the
goal of constructing a national ecological security barrier system [14,15]. However, land
and urban–rural planning in the past has primarily focused more on carbon reduction by
balancing ecological, agricultural, and urban spaces, rather than the enhancement of carbon
sinks by improving land management [16]. Carbon sequestration and sink enhancement
have been mentioned in a lot of local planning from the perspective of current territorial
planning, but generally with only some ideas and entries [17]. In particular, the current
technical framework of territorial spatial planning lacks both clear quantitative coupling
methods for carbon emissions and sinks and carbon sink target constraints on the whole [18].
Nevertheless, previous studies have indicated that there is a finite size and duration for
carbon sink enhancement potential through changes in land management practices, and
it is necessary to explore the potential role of land management and other measures in
increasing the global land carbon sink [19].

China has made considerable efforts to enhance land carbon sinks, as deforestation
as well as grassland and lake reclamation have been effectively curbed [5]. In fact, China
has sequestered approximately 600 million tons of carbon annually through ecosystem
management in recent decades [20,21]. In particular, the continuous improvement from
main function zoning to integrated ecological protection and restoration, to the realization
of Beautiful China has not only led to an increase in carbon sinks but also provided
outstanding ecological benefits [20]. In particular, the panel data of carbon emission
and sequestration of prefecture-level and above cities in China provided an important
foundation for the relevant research of carbon sink enhancement and policy formulation
for improving carbon sinks [22,23]. However, the constraints of human activities such
as accelerated urbanization have greatly affected vegetation carbon sequestration and
resulted in significant uncertainties in understanding future land carbon sink enhancement
potential [24].
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The Beijing–Tianjin–Hebei Region is an important ecosystem sink project region with
high carbon sink potential in China, which is also an important zone for ecological con-
servation [2]. This region falls under the planning scope of ecological protection and
restoration in the northern sand-proof belt and the coastal zone in the “Three Zones and
Four Belts” project under the “Overall Planning for The National Important Ecosystem
Protection and Restoration “ and the “Two Screens and Three Belts” project under the
“National Main Functional Areas Planning” [25]. The continuous improvement from main
function zoning to integrated ecological protection and restoration to the realization of a
beautiful China not only means that the Beijing–Tianjin–Hebei Region plays an outstand-
ing role in providing ecological benefits, but has also significantly increased the regional
carbon sinks [26]. However, there is a significant spatial imbalance of carbon sinks in the
Beijing–Tianjin–Hebei Region, and there is still an urgent need for a large amount of spatial
resource inputs to improve the carbon sinks and meet economic and social development in
this region in the future according to the Beijing–Tianjin–Hebei Synergistic Development
Plan Outline [27,28]. It is necessary to reveal the current spatial patterns of carbon sink
distribution within the Beijing–Tianjin–Hebei Region. Meanwhile, there is an urgent need
to explore the contributions of different ecosystems within this region to the regional carbon
sink and their potentials for enhancing the regional carbon sink. This study has therefore
aimed to estimate the regional carbon sinks and reveal the differentiation in the carbon
sink enhancement potential of the Beijing–Tianjin–Hebei Region for identifying strategies
to enhance regional carbon sinks and thereby promote ecological civilization construction
and synergistic development in this region.

2. Materials and Methods

2.1. Study Area

The Beijing–Tianjin–Hebei Region consists of Beijing City, Tianjin City, and 11 mu-
nicipalities in Hebei Province (113◦05′–119◦50′ E, 36◦05′–42◦39′ N), covering an area of
218,000 km2 (Figure 1). It is one of the three major urban agglomerations in China, which
has undergone the most rapid urbanization in northern China. It is also one of the most
densely populated urban agglomerations in China, with a total resident population of
113.07 million by the end of 2019, among which 21.54 million, 15.62 million, and 75.92 mil-
lion lived in Beijing, Tianjin, and Hebei Province, respectively. The Beijing–Tianjin–Hebei
Region as a whole achieved a gross regional Gross Domestic Product (GDP) of CNY 8458 bil-
lion, accounting for 8.53% of the national total GDP in 2020 [29]. Meanwhile, it is one of the
agglomeration areas of energy consumption and carbon emissions in China, accounting
for approximately 11% of the national total carbon emissions, where the carbon emission
intensity is about 40% higher than the national average level, making it a key area for
carbon emission control and carbon sink enhancement in 2020 [30]. The large amount
of carbon dioxide emissions in the Beijing–Tianjin–Hebei Region primarily result from
the energy structure, which is dominated by coal, and the industrial structure, which is
dominated by high-energy-consuming industries [31]. It is notable that different parts of
the Beijing–Tianjin–Hebei Region are at different stages of development and face different
challenges of carbon sink enhancement. Although the energy consumption per unit of
GDP in Hebei Province has continuously declined during 2013–2020, it is still 1.2 times the
national average level. Nevertheless, the Beijing–Tianjin–Hebei Region has continuously
enhanced synergistic linkages since the implementation of the Beijing–Tianjin–Hebei Coop-
erative Development Strategy in 2014, and carbon peak and carbon neutrality policies have
been put into practice step by step.
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Figure 1. Location of the Beijing–Tianjin–Hebei Region.

2.2. Data Sources and Processing

The data used in this study mainly include the socio-economic data, land use data,
and other data (Table 1). Specifically, the socio-economic data such as the Gross Domestic
Product (GDP) were mainly derived from the China Urban Statistical Yearbook (2001–2020),
Hebei Economic Yearbook (2001–2020), and Statistical Yearbook of Municipalities (2001–
2020). The land use data were all derived from the dataset of the Third National Land
Survey, which was carried out during 2017–2020, with 31 December 2019 as the standard
time point for summarizing data. In addition, the administrative boundary data and Digital
Elevation Model (DEM) were downloaded from the Resources and Environmental Science
Data Center, Chinese Academy of Sciences (https://www.resdc.cn/, accessed on 20 May
2022). All these data were processed with ArcGIS 10.8.1.

Table 1. Socio-economic data and land area of the Beijing–Tianjin–Hebei Region in 2019.

Cities
GDP

(CNY 100 Million)
Land Area

(Ten Thousand Hectares)
GDP/LD

(CNY Ten Thousand Per Hectare)

Beijing 35,371.3 162.96 217.06
Tianjin 14,104.3 117.73 119.80

Shijiazhuang 3546.6 138.2 25.66
Tangshan 3552.6 140.03 25.37

Qinhuangdao 772.7 76.81 10.06
Handan 1435.0 119 12.06
Xingtai 379.6 122.96 3.09
Baoding 1490.3 219.02 6.80

Zhangjiakou 760.0 364.74 2.08
Chengde 383.0 390.11 0.98

Cangzhou 984.7 141.27 6.97
Langfang 726.5 63.78 11.39
Hengshui 514.3 87.75 5.86
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The land types were classified into arable land; garden land; forest land; grassland;
wetland; land for towns, villages, industry, and mines; land for transportation; and land
for watersheds and water conservancy facilities in this study. It is notable that the land
use data in rural areas were comprehensively retrieved with remote sensing images with
a resolution higher than 1 m from satellites such as Gaofen-2 and Beijing-2, WorldView-1
and WorldView-2, while the land data within towns and villages were retrieved with aerial
remote sensing data with a resolution higher than 0.2 m. The Third National Land Survey
widely used new technologies and strict quality control throughout the entire process,
providing an important data basis for grasping a detailed and accurate view of the current
situation of land use and changes in natural resources in the Beijing–Tianjin–Hebei Region
and the whole country.

2.3. Methods

This study firstly analyzed the carbon source and sink process and then estimated
the carbon sink in the study area using the carbon absorption coefficient method. This
study thereafter constructed the carbon sink–economic carrying capacity index matrix
based on the carbon sink carrying capacity and the economic carrying capacity under the
baseline scenario and target scenario of land use to reveal the differentiation of carbon sink
enhancement potential in the study area.

(1) Estimation of carbon sinks. Carbon sinks mainly originate from arable land, garden
land, forest land, grassland, wetland, and waters (except land for water conservancy
facilities), which was calculated using the carbon absorption coefficient method as follows.

Ci = Gi × fi (1)

where Ci and Gi and are the carbon sink and the area of the ith land type, respectively; and
fi is the carbon sink coefficient of the ith land type, the data of which were mainly extracted
from previous studies (Table 2) [2,28,29].

Table 2. Carbon sink coefficients of different land use types.

Land Use Types Carbon Sink Coefficients (ton/ha·a)

Arable land 0.422–1.16
Wetland 0.67–2.36

Garden land 2.10
Forest 0.58–0.87

Grassland 0.02
Water bodies 0.30–0.67

(2) Exploration of differentiation of carbon sink enhancement potential. This study
explored the differentiation in carbon sink enhancement potential based on the carbon sink
carrying capacity and the economic carrying capacity under the baseline scenario and target
scenario of land use. This study established the baseline scenario and target scenario of
land use according to the specific situation of the study area. The baseline scenario refers to
the conditions in which the land use mode and management measures maintain the current
development trend and do not aim for a high carbon sink trend in the Beijing–Tianjin–
Hebei Region, which can reveal the lower limit of carbon sink under the existing policies.
Specifically, the existing economic development and ecological conservation policies will
continue as usual under the baseline scenario, without additional measures for improving
carbon sink. The target scenario indicates that more positive policies will be carried out to
promote the coordination of economic development and ecological conservation, which can
more effectively improve carbon sink. Under the target scenario, the carbon sink capacity
and soil carbon sequestration capacity will be further effectively improved with various
measures such as carbon sink space optimization and governance and integrated protection
and ecological restoration projects for mountains, water, forests, arable land, lakes, grasses,
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and sand land. The carbon sink coefficients under the baseline scenario and target scenario
of land use were set as the lower and higher limits of the carbon sink coefficient in Table 2,
respectively. For example, the carbon sink coefficients of arable land under the target
scenario and the baseline scenario are 1.16 and 0.422, respectively.

The carbon sink carrying capacity (CAn/LD) reflects the carbon sink capacity per unit
land area, and the economic carrying capacity (GDP/LD) is the ratio of GDP per unit land
area. The carbon sink–economic carrying capacity index is the ratio of carbon sink carrying
capacity to the economic carrying capacity, which was estimated as follows:

THD =
CAn/LD
GDP/LD

= CAn/GDP (2)

where THD is the carbon sink–economic carrying capacity index, and CAn, GDP, and LD
refer to the carbon sink, gross domestic product, and land area of the nth city of the study
area, respectively.

This study constructed the carbon sink–economic carrying capacity index matrix,
using CAn/GDP and GDP/LD as the horizontal and vertical coordinate axes, respectively,
and their deviation values formed the quadrant diagram. The four quadrants represent
“high carbon sink–high GDP”, “low carbon sink–high GDP”, “high carbon sink–low GDP”,
and “low carbon sink–low GDP”, respectively, which were used to judge the matching
degree of the land carbon sink and economic carrying degree of each city in the study area.
Specifically, the “high carbon sink–high GDP” quadrant belongs to the “high matching
degree” scenario, the “low carbon sink–low GDP” quadrant belongs to the “low matching
degree” scenario, and the other conditions belong to the “poor matching degree” scenario,
according to which the differentiation in carbon sink enhancement potential was explored.

3. Results and Discussion

3.1. Carbon Sink Carrying Capacity
3.1.1. Total Carbon Sink

There was remarkable differentiation of total carbon sink (CAn) among different cities
under the baseline scenario (Figure 2). Specifically, the total carbon sinks exceeded one
million tons in only two cities under the baseline scenario, i.e., Chengde and Zhangjiakou,
reaching 2,056,400 and 1,528,300 tons, respectively. It is notable that Chengde and Zhangji-
akou had the largest carbon sinks under the baseline scenario, accounting for 38% of the
total carbon sink of the study area, while this ranged between 500,000 and 1,000,000 tons
in seven cities under the baseline scenario, i.e., Baoding, Beijing, Shijiazhuang, Tangshan,
Xingtai, Cangzhou, and Qinhuangdao, reaching 895,400, 870,000, 672,500, 661,900, 594,700,
547,000, and 504,200 tons, respectively. Meanwhile, it was below 500,000 tons in four cities,
reaching only 458,900, 367,100, 331,500, and 248,900 tons in Handan, Hengshui, Tianjin, and
Langfang, respectively, and the latter two cities had the smallest carbon sinks, accounting
for only 7% of the total carbon sink of the study area.

The carbon sink under the target scenario differed significantly from that under the
baseline scenario (Figure 2). Specifically, the carbon sink exceeded one million tons in eight
cities under the target scenario, i.e., Chengde, Zhangjiakou, Baoding, Beijing, Cangzhou,
Tangshan, Shijiazhuang, and Xingtai, reaching 3.216, 2.794, 1.6615, 1.260, 1.2563, 1.228,
1.1806, and 1.1354 million tons, respectively. Meanwhile, it exceeded 500,000 tons in all
other cities, reaching 9,960,000 tons, 824,000, 816,100, 736,100, and 507,200 tons in Handan,
Hengshui, Tianjin, Qinhuangdao, and Langfang, respectively. In particular, Chengde and
Zhangjiakou had the largest amount of carbon sink, accounting for 33.7% of the total
regional carbon sink of the study area, which is consistent with that under the baseline
scenario, while Langfang and Qinhuangdao had the smallest amount of carbon sink,
accounting for only 7% of the total carbon sink of the study area, which is slightly different
from that under the baseline scenario.

73



Land 2024, 13, 375

Figure 2. Total carbon sink under the baseline scenario and target scenario (tons).

3.1.2. Carbon Sink Per Unit Land Area (CAn/LD)

There was remarkable differentiation in the carbon sink per unit land area under the
baseline scenario and target scenario (Figure 3). The carbon sink per unit land area was the
highest in Qinhuangdao under the baseline scenario, reaching 0.66 ton/ha, and it reached
0.53 tons/ha in Beijing and Chengde. Meanwhile, it ranged between 0.40 and 0.50 ton/ha in
six cities, including Shijiazhuang, Xingtai, Tangshan, Zhangjiakou, Hengshui, and Baoding.
In particular, it reached 0.39 t/ha in Handan, Langfang, and Cangzhou; however, it was
the least in Tianjin, reaching only 0.28 t/ha. By contrast, the carbon sink per unit land
area under the target scenario was still the highest in Qinhuangdao, reaching 1.61 ton/ha.
Meanwhile, it reached between 1.2 and 1.5 tons/ha in eight cities, including Xingtai,
Hengshui, Shijiazhuang, Tangshan, Chengde, Beijing, Cangzhou, and Handan. The carbon
sink per unit land in Cangzhou and Hengshui improved significantly under the target
scenario compared to that under the baseline scenario. In particular, it was between 1 and
1.2 tons/ha in Langfang, Baoding, and Zhangjiakou, and it remained the least in Tianjin,
reaching only 0.97 tons/ha.
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Figure 3. Carbon sink per unit land area under the baseline scenario and target scenario (tons/ha).

3.1.3. Carbon Sink Component

There was a very significant differentiation in the major components of land carbon
sink among cities in the study area under the baseline and target scenarios. The major
components of land carbon sink consisted of forest in Beijing, Baoding, Zhangjiakou, and
Chengde, while it primarily included arable land and garden land in Shijiazhuang and
Tangshan, and it mainly included arable land in Tianjin, Handan, Xingtai, Cangzhou,
Langfang, and Hengshui. The carbon sink in the study area was therefore dominated
by three land use types, namely forest, arable land, and garden land, which accounted
for 94.2% and 98% of the total carbon sink of the study area under the baseline scenario
and target scenario, respectively. There was also remarkable differentiation in the land
use types that made major contributions to the upgrading process of the carbon sink per
unit land area from the baseline scenario to the target scenario among these cities in the
study area. Specifically, the main contributors were arable land, water bodies, wetland, and
forest in most parts of the study area, including Tianjin, Qinhuangdao, Xingtai, Baoding,
Chengde, Tangshan, and Cangzhou, while the main contributors in Qinhuangdao, Handan,
and Hengshui were arable land, forest, and water bodies, respectively. Meanwhile, the
main contributors were primarily arable land, water bodies, and wetland in Shijiazhuang
and forest and arable land in Beijing.
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3.2. Carbon Sink–Economic Carrying Capacity Index

There was remarkable differentiation in the carbon sink–economic carrying capacity
index under the baseline scenario (Figure 4). The origin was (0.45, 34.4) and the quadrant
positions of all other cities were determined according to their deviation from the origin.
There was significant differentiation in the carbon sink–economic carrying capacity of
these 13 cities in the study area, which were unevenly distributed in four quadrants. The
results suggested most cities were distributed in the “III-low carbon sink-high GDP” zone,
including Shijiazhuang, Tangshan, Chengde, Zhangjiakou, Qinhuangdao, and Xingtai,
while only Beijing (0.53, 217.06) was distributed in the “I-high carbon sink-high GDP” zone,
and only Tianjin (0.28, 119.8) was distributed in the “II-low carbon sink-high GDP” zone.
By contrast, other cities were in the “IV-low carbon sink-low GDP” zone, including Handan,
Langfang, Cangzhou, and Hengshui.

 

Figure 4. Carbon sink–economic carrying capacity index under the baseline scenario: the horizontal
coordinate is the carbon sink carrying capacity (CAn/LD) (unit: tons/ha), and the vertical coordinate
is the economic carrying capacity (GDP/LD) (unit: ten thousand CNY/ha).

There was also remarkable differentiation in the carbon sink–economic carrying capac-
ity under the target scenario (Figure 5), where the origin was (1.29, 34.4), and the results
suggested the 13 cities in the study area were still distributed in the four quadrants un-
der the target scenario. Specifically, most cities were also still distributed in the “III-high
carbon sink-low GDP” zone, including Shijiazhuang, Tangshan, Chengde, Zhangjiakou,
Qinhuangdao, Xingtai, and Hengshui. Beijing (1.31, 217.06) was still distributed in the
“I-high carbon sink-high GDP” zone, and Tianjin (0.97, 119.06) was still distributed in the
“II-low carbon sink-high GDP” zone, while Handan, Langfang, and Cangzhou were in
the “IV-low carbon sink-low GDP” zone. It is notable that Hengshui was upgraded from
the IV zone to the III zone under the target scenario compared to that under the baseline
scenario, while the other zones remained in the same zone. The improvement of the carbon
sink–economic carrying capacity in Hengshui primarily resulted from the enhancement of
the carbon sink carrying capacity, while the latter was mainly due to the increase in the
carbon sink of arable land.
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Figure 5. Carbon sink–economic carrying capacity index under the target scenario: the horizontal
coordinate is the carbon sink carrying capacity (CAn/LD) (unit: ton/ha), and the vertical coordinate
is the economic carrying capacity (GDP/LD) (unit: ten thousand CNY/ha).

The results suggested various enhancement potentials for the carbon sink per unit
land area in most cities of the study area, with Qinhuangdao serving as the benchmark
city (1.61 ton/ha) (Table 3). The carbon sink per unit area of these cities can be enhanced
in approximately two steps. Specifically, the first step is to upgrade from the carbon sink
under the baseline scenario to that under the target scenario, and the second step is to
upgrade from the latter to the level of the benchmark city. For example, the first step for
Beijing is to upgrade the carbon sink per unit land area from 0.53 ton/ha under the baseline
scenario to 1.31 ton/ha under the target scenario, and the second step is to further upgrade
it to the level of the benchmark city, i.e., 1.61 ton/ha.

Table 3. Carbon sink per unit land area of each city under the baseline scenario and target scenario in
2019 (unit: ton/ha).

Cities
Carbon Sink per Unit
Land Area under the

Baseline Scenario

Carbon Sink per Unit
Land Area under the

Target Scenario

Difference between
the Baseline Scenario
and Target Scenario

Difference from the
Level of the

Benchmark City

Beijing 0.53 1.31 0.78 0.30
Tianjin 0.28 0.97 0.69 0.64

Shijiazhuang 0.49 1.34 0.85 0.27
Tangshan 0.47 1.35 0.88 0.26

Qinhuangdao 0.66 1.61 0.95 0.00
Handan 0.39 1.22 0.83 0.39
Xingtai 0.48 1.41 0.93 0.20
Baoding 0.41 1.17 0.76 0.44

Zhangjiakou 0.42 1.16 0.74 0.45
Chengde 0.53 1.35 0.82 0.26

Cangzhou 0.39 1.28 0.89 0.33
Langfang 0.39 1.19 0.80 0.42
Hengshui 0.42 1.36 0.94 0.25

A hypothetical benchmark city of the carbon sink–economic carrying capacity in the
study area can be established by taking the carbon sink per unit land area of Qinhuangdao as
the horizontal coordinate and the GDP per unit land area of Beijing as the vertical coordinate
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under the baseline scenario (0.66, 217.06) and the target scenario (1.61, 217.06). Aiming at
this hypothetical benchmark city, it is necessary to further improve the carbon sink capacity
in Beijing and further improve the economic carrying capacity in Qinhuangdao, while it is
necessary to further improve both the carbon sink capacity and economic carrying capacity
in other cities.

3.3. Discussion

The land carbon sink estimated in this study is generally consistent with that in previ-
ous studies. For example, the carbon sink per unit land area in Chengde and Qinhuangdao
with widespread forest under the baseline scenario reached 0.53 and 0.66 ton/ha, respec-
tively, which is approximately consistent with the results of previous studies in China
and around the world (e.g., 0.3–0.8 and 0.66 ton/ha) [32,33]. Additionally, the spatial
distribution of the total carbon sink in this study is also generally consistent with the results
in previous studies [34,35]. Specifically, the total carbon sink was higher in the northern and
northwest parts of the study area and lower in the middle and southern parts of the study
area, showing remarkable spatial differentiation. In fact, there is generally widespread
forest and grassland with high vegetation coverage and higher carbon sink per unit land
area in these mountainous areas, with complex terrain in the northern and northwest parts
of the study area, e.g., the Bashang Plateau, the Northern Hebei Mountains, and the Taihang
Mountains in Zangjiakou and Chengde [34], while there is widespread arable land with
relatively lower carbon sink per unit land area in the middle and southern parts of the study
area [34]. In particular, there is widespread construction land in these areas, such as Beijing,
Tianjin, and coastal areas, the carbon emission per unit land area of which is far higher than
the carbon sink per unit land area of the arable land, leading to a core–periphery spatial
pattern of carbon emission centering in Beijing–Tianjin–Tangshan [35,36].

There are also some differences between the results of this study and previous studies,
which may be primarily due to the differences in the data sources and parameter settings.
For example, most previous studies generally used land use data with a spatial resolution of
1 km, which were generally provided by the Data Center for Resources and Environmental
Sciences (http://www.resdc.cn, accessed on 28 May 2023) [2,34,36]. By contrast, this study
used the land use data derived from the dataset of the Third National Land Survey, with
the spatial resolutions of 1 m and even 0.2 m, which are much higher than that of previous
studies. Additionally, there are also some differences in the carbon sink settings of the
same land use types between this study and some previous studies. For example, some
previous study considered arable land as a carbon source [36], while this study took arable
land as a carbon sink, which is consistent with the fact that arable land is generally a
weak carbon sink [24,37]. Meanwhile, this study took water bodies into account, which
were not involved in some previous studies [36]. In addition, this study used the carbon
absorption coefficient method, which is consistent with most previous studies, but there is
inevitably some limitation of this method. For example, the carbon sink coefficients were
set across different land use types, without consideration of the difference of the carbon
sink intensity within the same land use types with different vegetation composition [34].
In fact, it is notable that the carbon sink coefficients of the same land use type may vary
greatly in different regions, and it is necessary to carry out relevant research on the carbon
sink coefficients according to the specific conditions of different regions [38]. Meanwhile,
this study also ignored the variations in the carbon sink per unit land area across time,
which can generally remain approximately stable during a long-term period but may vary
greatly in a short-term period during some short-term disturbances, e.g., extreme climate
change [39]. In fact, there was a risk of instability in the land carbon sink due to the
impacts of climate change in a number of regions in the world, e.g., eastern Africa, India,
and Southeast Asia [40]. In particular, there is strong wind and frequent drought in the
spring in the northwest and northern parts of the study area, which can severely limit
vegetation growth and consequently lead to the instability of the land carbon sinks [41].
Additionally, the carbon sink per unit land area of the forest varied along with the change
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in the age of stand [42], which was not considered in this study. In particular, there is
a large amount of planted or secondary forest with considerable carbon sink potential
after decades of reforestation in the northwest and northern parts of the study area [43,44],
but there has been limited research on the carbon sink potential concerning tree growth
relationships at fine spatial scales [45]. It is therefore necessary to carry out more in-depth
research on changes in carbon sink per unit land area over time based on dynamic carbon
sink coefficients and accurate vegetation types by integrating the data of vegetation types,
crop types, and forest growth data so as to provide a better understanding of carbon sink
enhancement potential in the future [34].

3.4. Management Implications

The urgency of increasing carbon sink varied among different cities in the study area,
and proper measures should be taken according to the specific situation to increase carbon
sink and ease the pressure of emission reductions so as to realize the strategic goal of
“carbon neutrality”.

(1) There is a more urgent need for increasing the carbon sinks in Tianjin and Beijing,
which may be met in three ways. First, carbon sinks can be increased through optimizing
their structure and spatial layout. For example, it is helpful to increase carbon sinks by
increasing the area proportion of garden land, forest, and wetland and controlling the
expansion of construction land. The government should strengthen the spatial planning
and use control of the national territory, and strictly abide by the red line of ecological
protection, strictly control the occupation of ecological space, and stabilize the role of
carbon sequestration in existing forest, grassland, wetland, soils, and so on [46]. Second,
improving the carbon sink capacity can make some contributions to increasing the carbon
sink. For example, adjustment of the planting structure and the multiple cropping index
can effectively enhance the carbon sink coefficient of arable land and subsequently increase
carbon sinks. Third, ecological restoration projects also provide an important way to
increase carbon sinks, and expansion of the green space in urban construction land can play
an important role in increasing carbon sinks. For example, the carbon sink coefficients of
various land types can be increased through carrying out ecological restoration, thereafter
leading to the increase in the total carbon sink.

(2) Some cities, including Shijiazhuang, Tangshan, Chengde, Qinhuangdao, and Xing-
tai in Hebei Province, should enhance their economic development without reducing their
carbon sinks. These cities may achieve proper economic development and meanwhile en-
hance the carbon sink by optimizing the land carbon sink space and improving the carbon
sink capacity. For example, although the carbon sink capacity of forest is higher than that of
arable land, the latter lays an important foundation for guaranteeing food security, which is
of great significance to the sustainable development of the whole study area. For example,
arable land is the main source of carbon sinks for these cities in Hebei Province, which
is conducive to realizing the goal of arable land protection. Only by steadily expanding
agricultural production space and making every effort to improve the quality of arable
land can the study area improve food production and increase carbon sinks at the same
time. Additionally, these cities can also improve fruit production and forestry output value
by combining the carbon sink improvement with the supply of ecosystem services such
as soil and water conservation, headwater conservation, pollution purification. This can
contribute to realizing the win–win situation of the carbon sink and ecosystem service
development and subsequently improving the economic carrying capacity per unit land.

(3) Other cities, including Handan, Langfang, Cangzhou, Hengshui, Baoding, and
Zhangjiakou in Hebei Province, can synchronize their carbon sink improvement with their
economic development by improving their carbon sink capacity. In addition to improving
the carbon sink capacity and economic output per unit land area, these cities should further
improve the economic output capacity per unit land area in the existing construction land.
In particular, Zhangjiakou is an essential ecological barrier of the Beijing–Tianjin–Hebei
Region, and the government should further implement major ecological protection and
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restoration projects for the integrated protection and restoration of mountain, water, forest,
field, lake, grassland, and sand land [46,47]. The government should also implement forest
quality improvement projects to continuously increase the area and volume of forests, and
carry out arable land quality improvement actions to enhance the carbon sinks of ecological
agriculture [48].

4. Conclusions

There is an urgent need for revealing the differentiation of carbon sink enhancement
potential in the Beijing–Tianjin–Hebei Region, which is an important ecosystem sink project
region in China. This study has focused on estimating the regional carbon sink and
revealing the differentiation of carbon sink enhancement potential in this region based
on the carbon sink–economic carrying capacity index matrix. The results of this study
can lay a firm foundation for enhancing regional carbon sink and promoting ecological
civilization construction and synergistic development of this region. The major conclusions
of this study were as follows: (1) There was significant differentiation in the carbon sinks
of different cities in the Beijing–Tianjin–Hebei Region. Chengde and Zhangjiakou had the
highest total carbon sinks under the baseline scenario, reaching 2,056,400 and 1,528,300 tons,
respectively, while Langfang and Hengshui had the least, which were below 500,000 tons.
The largest contributions to carbon sinks in the study area were mainly from arable land,
garden land, and forest, accounting for 94.2% and 98% of the total carbon sink of the
study area under the baseline scenario and target scenario, respectively. (2) There was also
remarkable differentiation in the carbon sink per unit land area among different cities in
the study area. Qinhuangdao had the highest carbon sink per unit land area, reaching
0.66 ton/ha under the baseline scenario, while Tianjin had the lowest one, reaching only
0.28 t/ha. Optimizing the spatial distribution of land carbon sink is an important way
to improve regional carbon sink. (3) A hypothetical benchmark city of the carbon sink–
economic carrying capacity can be constructed according to the carbon sink per unit land
area of Qinhuangdao and the GDP per unit land area of Beijing. In comparison with this
benchmark city, there is potential for carbon sink enhancement by improving the carbon
sink capacity in Beijing, promoting the economic carrying capacity in Qinhuangdao, and
improving both their carbon sink capacity and their economic carrying capacity in the other
cities of the study area.
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Abstract: Analysis of the spatial variation characteristics of regional carbon sources/sinks is a
prerequisite for clarifying the position of carbon balance zones and formulating measures to reduce
emissions and increase sinks. Studies of carbon sinks have often used the coefficient method, which
is limited by sample size, measurement error, and low spatial resolution. In this study, 31 cities
in the middle reaches of the Yangtze River urban agglomerations (MRYRUA) were studied with
the improved CASA (Carnegie Ames Stanford Approach) model to estimate the grid-scale net
ecosystem productivity (NEP) and explore the spatial-temporal evolution of carbon budgets from
2005 to 2020. By calculating the carbon balance index (CBI), economic contribution coefficient (ECC),
and ecological support coefficient (ESC), carbon balance zoning was conducted. Corresponding
suggestions are based on the carbon balance zoning results. From 2005 to 2020, carbon budgets
increased and were high in the north-central region and low in the south. In addition, carbon sink
functional zones were distributed in cities with rich ecological resources. Low-carbon economic
zones shifted from the Poyang Lake Urban Agglomeration to the Wuhan City Circle; low-carbon
optimization zones occurred from the Wuhan City Circle to the Poyang Lake Urban Agglomeration.
Carbon intensity control and high-carbon optimization zones were distributed in cities with rapid
economic development. Our results support the MRYRUA in achieving “double carbon” targets and
formulating regional collaborative emissions reduction policies.

Keywords: CASA (Carnegie Ames Stanford Approach); NEP; carbon budgets; carbon balance zoning;
middle reaches of the Yangtze River urban agglomerations (MRYRUA)

1. Introduction

Since the industrial revolution, humans have produced carbon emissions from the use
of fossil fuels [1], leading to the greenhouse effect and gradual warming of the climate [2].
Recently, the 28th Conference of the Parties to the United Nations Framework Convention
on Climate Change (UNFCCC) upheld the objectives, principles, and institutional arrange-
ments of the UNFCCC and the Paris Agreement, demonstrating that climate change is a
global challenge that requires concerted international cooperation. As the world’s largest
carbon emitter and energy consumer [3], China has taken the international responsibility
of addressing climate change and made unremitting efforts to promote domestic energy
conservation, emissions reduction, and ecological civilization [4–6]. However, achieving a
carbon balance and further “carbon neutrality” is still a serious challenge for China.

Cities account for only 2% of the global land area but generate approximately 75%
of global carbon emissions [7]. Urban agglomerations are important population and eco-
nomic centers in China [8] and are strategic spaces that drive overall improvements in
the national economy and support high-quality development [9]. Huge urban agglomer-
ations have become areas of high energy consumption and carbon emissions. In China,
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urban agglomerations (mega metropolitan areas) contribute nearly 70% of carbon emis-
sions [10]. Coordinated regional development [11] and collaborative emissions reduction
by urban agglomerations are key areas for energy conservation and emissions reduction
in China. Therefore, there is an urgent need to analyze the spatial-temporal changes in
the carbon budgets of urban agglomerations and promote synergistic transitions. At the
same time, the division of functional zones according to different carbon balances and the
creation of carbon balance zoning are critical to low-carbon development in each func-
tional zone and in promoting the synergistic management of the environment in urban
agglomerations [12].

Achieving carbon neutrality requires the comprehensive consideration of “emission
reduction” and “sequestration enhancement”. Accurately estimating carbon emissions
and improving carbon sequestration calculations and spatial location accuracy will help
clarify regional carbon emission reduction pressures and the carbon sequestration potential.
Currently, the methods for estimating carbon emissions include field surveys [13], empirical
modeling [14], and the IPCC inventory method [15,16]. For example, Shan et al. developed
a methodology for constructing CO2 emission inventories for Chinese cities based on
energy balance sheets [17]. To date, most studies have estimated carbon emissions based
on these methods at the national [18], provincial [19], and municipal scales [20] using
statistical data, but there is often uncertainty in the results from areas with a lack of
information or poor data. Moreover, most scholars focus on carbon emissions. There has
been less research on carbon sequestration, which must be improved to realize “carbon
neutrality” [21,22].

Methods for calculating carbon sequestration include the sample plot inventory
method, the IPCC parameter method, and the model simulation method. The sample
plot inventory method can obtain point source data with higher accuracy [23], but it relies
on sampling methods for overall accuracy and is time consuming, has a large error, and is
generally used as a method for estimating carbon sequestration in small-scale regions [24].
The IPCC parameter method is commonly used for direct accounting of carbon seques-
tration [25]. Mohareb et al. calculated carbon sequestration for Toronto for 2005, using
the IPCC parameter method (for direct sequestration) and peer-reviewed literature (for
implicit sequestration), as a direct sequestration of 317,000 tons and an implicit seques-
tration of 234,000 tons [26]. However, the parameters of the IPCC coefficient method
lack specific regional characteristics and are prone to errors. El Mderssio et al. compared
the results of the direct field survey with results obtained using the IPCC parameters for
the Central Atlas region and found that the directly calculated amount of carbon was
858,387 tons of dry matter, whereas the IPCC parameters estimated 1,201,789 tons [27].
Moreover, integrating carbon sequestration calculations into economic assessments and
investigating the economic significance of carbon sequestration can aid in attaining re-
gional carbon neutrality. Luo et al. investigated how local communities perceived the
overall effects of carbon capture, utilization, and storage (CCUS) projects and quantified
the influence of proximity to CCUS projects on neighboring housing prices [28]. Kazak
et al. considered carbon sequestration in the valuation of forest properties using the income
approach [29].

The development of Remote Sensing and Geographic Information System technology
has provided basic support for carbon sequestration accounting and monitoring [30].
Net ecosystem productivity (NEP) is a key indicator that directly describes the carbon
sources/sequestration capacity of terrestrial ecosystems [21,31,32] and is widely used in
regional carbon sequestration assessments [33,34]. The CASA (Carnegie Ames Stanford
Approach) model is a representative model based on light use efficiency [35], and it can
effectively support accounting for long time periods and a large regional NEP because
of its data availability, its ability to reflect the distribution of carbon sequestration in
large-scale regions, and the ease with which it can be used for long-term monitoring and
estimation of carbon sequestration. The CASA method accounts for the mechanism of the
carbon cycle, which makes simulation results more accurate and reliable [36,37], and it
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requires a small number of physical parameters, which makes the error correspondingly
small [35,38–40].

Carbon balance analysis and zoning has become an important research field in the
context of global climate warming [41] and China’s “double carbon” targets [42]. Most
studies rely on indicators affecting the regional carbon balance to establish functional
zoning and make low-carbon policy recommendations [43,44]. Vaccari et al. conducted a
carbon balance study for the city of Florence and found that green spaces offset 6.2% of
direct carbon emissions, which informed subsequent development planning in the city [45].
Ainsworth et al. analyzed the carbon balance of European grassland ecosystems and found
that reducing the intensity of grassland management increased grassland ecosystem carbon
sequestration [46]. Zamolodchikov et al. investigated the carbon balance of the Russian
tundra using seasonal and geographical extrapolations and mathematical simulations [47].
Scholars have also started to study China’s carbon balance and carbon sequestration
potential. Zhang et al. took Suzhou as an example and used the spatial pattern of carbon
emissions to construct a carbon balance zoning method and achieved carbon balance zoning
at a micro-scale in the city [48]. Li et al. re-examined the carbon balance of China’s terrestrial
ecosystems under land use and climate change to guide low-carbon spatial planning
policies in various regions [32]. Zhao et al. divided the Central Plains Economic Zone into
a carbon intensity control zone, carbon balance zone, carbon sequestration functional zone,
total carbon control zone, and low-carbon optimization zone based on the carbon balance
zoning theory [49]. However, at the level of carbon balance analysis, the existing indicator
system is difficult to implement and lacks accurate and practical standards for evaluating
carbon functional zoning. Most studies have focused on provincial and county areas,
ignoring the significance of urban agglomerations in China’s carbon balance. Therefore,
it is necessary to study the differences in ecological and carbon sequestration resource
endowment and socio-economic development within urban agglomerations, analyze the
spatial-temporal characteristics of carbon balance, and explore carbon balance zoning in
urban agglomerations.

As the largest inter-regional urban agglomeration in China by land area, the middle
reaches of the Yangtze River urban agglomerations (MRYRUA) is important in China’s
economic and social development. The MRYRUA is dominated by heavy industries, which
requires high energy consumption and has caused rapid growth in carbon emissions
in the region. At the same time, the MRYRUA has a large, heavily aggregated popula-
tion with a correspondingly large demand for energy, and there is pressure to reduce
emissions. Therefore, from the perspectives of industrial development and ecological
improvement, the zoning of carbon balance is of great significance for realizing the “double
carbon” goal.

In this study, we used 31 cities to analyze the spatial-temporal changes in the carbon
balance in the MRYRUA from 2005 to 2020, based on carbon emission data from the Carbon
Emission Accounts and Datasets (CEADs) and carbon sequestration data estimated with the
CASA model. We adopted the carbon balance index (CBI), economic contribution coefficient
(ECC), and ecological support coefficient (ESC) to carry out carbon balance zoning that
enabled us to assess differences in the regional carbon balance, put forward corresponding
strategies for reducing emissions, and formulate carbon-neutral development strategies in
line with the actual development strategies for the MRYRUA (Figure 1).
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Figure 1. Research framework diagram.

2. Study Area and Data Sources

2.1. Study Area

The MRYRUA is located at 26◦03′–32◦38′ N, 110◦45′–118◦21′ E in the middle part of
the Yangtze River Basin and covers an area of approximately 326,100 km2. The MRYRUA
is centered on Wuhan and dominated by the Wuhan City Circle in Hubei province, the
Chang-Zhu-Tan Urban Agglomeration in Hunan province, and the Poyang Lake Urban
Agglomeration in Jiangxi province. The MRYRUA spans Hubei, Hunan, and Jiangxi
provinces (Figure 2). The MRYRUA has a subtropical monsoon climate, with an average
annual precipitation of 800–1943 mm. The terrain is dominated by plains, with a small
number of hills and mountains, and has an average altitude of 20–3105 m. The MRYRUA
has a favorable natural geographic location and is bounded on the east and the west and
connected to the south and the north.

By the end of 2020, the region had a resident population of 130 million, with an ur-
banization rate of 63.3%. The gross domestic product (GDP) of the MRYRUA in 2020 was
11.1 trillion yuan, of which primary industry accounted for 8.75%, secondary industry ac-
counted for 40.81%, and tertiary industry accounted for 50.44%. From 2005 to 2020, the GDP
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of the MRYRUA grew from 4.2 trillion yuan to 11.1 trillion yuan, with an average annual
growth rate of 11.0%, demonstrating great potential for development in the MRYRUA.

 

Figure 2. (a) The geographical location of the MRYRUA in China. (b) The location of the Wuhan City
Circle, the Chang-Zhu-Tan Urban Agglomeration, and the Poyang Lake Urban Agglomeration in the
MRYRUA. (c) Land use data for the MRYRUA in 2020.

2.2. Data Sources

The data in this study include land use data, carbon emission data, and GDP data.
The CASA model also requires temperature data, precipitation data, normalized difference
vegetation index (NDVI), and surface solar radiation data (Table 1).

Table 1. Data used in this study.

Data Name Data Type Year Source

Land use data 30 m × 30 m
Raster data

2005, 2010,
2015, 2020

Resource and Environmental Science Data Center of the
Chinese Academy of Sciences

(https://www.resdc.cn/ accessed on 8 August 2023)

Carbon emission data Text data 2005, 2010,
2015, 2020 *

Carbon Emission Accounts and Datasets (CEADs)
(https://www.ceads.net.cn accessed on 12 August 2023)

Gross domestic product Text data 2005, 2010,
2015, 2020

Statistical yearbook of CNKI
(https://data.cnki.net/Yearbook accessed on 6 August 2023)

Temperature data 1 km × 1 km
Raster data

2005, 2010,
2015, 2020

Resource and Environmental Science Data Center of the
Chinese Academy of Sciences

(https://www.resdc.cn/ accessed on 10 August 2023)

Precipitation data 1 km × 1 km
Raster data

2005, 2010,
2015, 2020

Resource and Environmental Science Data Center of the
Chinese Academy of Sciences

(https://www.resdc.cn/ accessed on 11 August 2023)

Normalized difference
vegetation index

1 km × 1 km
Raster data

2005, 2010,
2015, 2020

National Aeronautics and Space Administration
(https://ladsweb.modaps.eosdis.nasa.gov/search/

accessed on 12 August 2023)
Surface solar

radiation data
10 km × 10 km

Raster data
2005, 2010,

2015, 2020 *
National Tibetan Plateau Data Center (https://data.tpdc.ac.cn

accessed on 9 August 2023)

*: As the county-level data from CEADs are only available up to 2017, the carbon emission data from 2018
to 2020 were estimated using the Autoregressive Integrated Moving Average (ARIMA) model utilizing these
existing county-level data from CEADs [50]. Additionally, the surface solar radiation data for 2020 were spatially
interpolated using site data obtained from the Climatic Data Center, National Meteorological Information Center,
and China Meteorological Administration (https://data.cma.cn accessed on 10 August 2023).
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3. Methods

3.1. NEP Estimation by CASA Model

In this paper, NEP is an important contributor to regional carbon balance estimation
and is often used as a measure of carbon sequestration. Without considering the influence
of other natural and anthropogenic conditions, the net ecosystem productivity (NEP)
of vegetation is expressed as the difference between net primary productivity (NPP) of
vegetation in the ecosystem and carbon emission from heterotrophic respiration (RH). The
specific formula is as follows:

NEP = NPP − RH (1)

where NEP is net ecosystem productivity of vegetation, NPP is net primary productivity of
vegetation, and RH is heterotrophic respiration.

(1) NPP estimation

An improved CASA model [51] was used to estimate NPP in the MRYRUA, which
combined with heterotrophic respiration can be used to derive the amount of carbon
sequestered by vegetation in the urban agglomerations. The main parameters of the CASA
model are absorbed photosynthetic active radiation (APAR), which can be absorbed by the
plants, and actual light use efficiency (ε). The specific formula is as follows:

NPP(x, t) = APAR(x, t)× ε(x, t) (2)

where APAR(x,t) represents absorbed photosynthetic active radiation (g C·m−2·month−1)
by image element x in month t, and ε(x,t) represents light use efficiency (g C·MJ−1) of image
x in month t.

APAR represents the absorbed photosynthetic active radiation that directly irradiates
the vegetation canopy, and the light use efficiency (ε) represents the efficiency of the
conversion of APAR into organic carbon. We followed “Sense-by-Sense Estimation of Net
Primary Productivity of Terrestrial Vegetation in China” and calculated APAR and ε by
using solar radiation, precipitation, temperature, vegetation type, and MODIS data, using
the following formulas:

APAR(x, t) = SOL(x, t)× FRAR(x, t)× 0.5 (3)

FPAR(x, t) = αFPARNDVI + (1 − α)FPARSR (4)

FPARNDVI =
(NDVI(x,t) − NDVI(i,min))

(NDVI(i,max) − NDVI(i,min))
× (FPARmax − FPARmin) + FPARmin (5)

FPARSR =
(SR(x,t) − SR(i,min))

(SR(i,max) − SR(i,min))
× (FPARmax − FPARmin) + FPARmin (6)

SR(x, t) =
(1 + NDVI(x,t))

(1 − NDVI(x,t))
(7)

ε(x, t) = Tε1(x, t)× Tε2(x, t)× Wε(x, t)× εmax (8)

where SOL(x,t) denotes total solar radiation at image element x in month t (MJ·m−2·month−1),
FPAR is the fraction of photosynthetically active radiation absorbed by the canopy, and
0.5 is the ratio of the effective radiation of the sun utilized by the vegetation relative to total
radiation. NDVI(i,max) and NDVI(i,min) represent, respectively, the maximum and minimum
NDVI in plant type i. FPARmin and FPARmax are 0.001 and 0.95, respectively. SR(i,min) and
SR(i,max) correspond to the 5% and 95% percentile of NDVI in plant type i, respectively, and
a value of 0.5 was used for α. Tε1(x,t) and Tε2(x,t) are the stress effects of low and high
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temperatures on the light use efficiency. Wε(x,t) is the coefficient of water stress, and εmax is
the maximum light use efficiency.
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(2) Heterotrophic respiration estimation

Based on previous studies, we used the model for heterotrophic respiration established
by Zhuang et al. based on measured data [52]. Zhuang et al. investigated the relationship
between carbon emissions and environmental factors and established a regression equa-
tion between temperature, precipitation, and carbon emissions to estimate heterotrophic
respiration. The specific formula is as follows:

RH = 0.22 × (Exp(0.0913T) + Ln(0.3145R + 1))× 30 × 46.5% (9)

where RH denotes heterotrophic respiration (g C·m−2·a−1), T is temperature (◦C), and R is
precipitation (mm).

3.2. Carbon Budgets

The carbon budgets is a measure of the relationship between carbon emissions and
carbon sequestration caused by natural factors and human activities in a certain area. It is
specifically expressed as the difference between carbon emissions and carbon sequestration
in the following formula:

CBi = CEi − NEPi (10)

where CBi is the carbon budgets (t) of city cluster i in the MRYRUA, CEi is the carbon
emissions (t) of city cluster i in the MRYRUA, and NEPi is the carbon sequestration (t) of
city cluster i in the MRYRUA (Table 2).

Table 2. Regional carbon budget conditions.

Condition
of CEi

Condition
of NEPi

Relationship
between CEi and

NEPi

Result of CBi

Balance point CEi ≥ 0 NEPi ≥ 0 |CEi| = |NEPi| CBi = 0
Carbon surplus CEi ≥ 0 NEPi > 0 |CEi| < |NEPi| CBi < 0

Carbon deficit
CEi ≥ 0 NEPi > 0 |CEi| > |NEPi| CBi > 0
CEi ≥ 0 NEPi < 0 |CEi| > |NEPi| CBi > 0

3.3. CBI

Vegetation can effectively absorb CO2 emissions from fossil fuel combustion through
photosynthesis, thus maintaining the stability of carbon and oxygen in the biosphere and
slowing the greenhouse effect. We quantified the relationship between energy carbon
emissions and vegetation carbon sequestration based on the CBI, which reflects the impact
of regional carbon emissions on ecological stress [53]. The formula is as follows:

CBI = CEi/CSi (11)

where CBI is the carbon balance index, CEi is the carbon emissions (t) in a given year in
city region i, and CSi is the carbon sequestration (t) in a given year in city area i, which
represents NEPi.

3.4. ECC

The ECC of carbon emissions is a measure of the variability of regional carbon emis-
sions from the perspective of economic efficiency [54], which reflects the magnitude of
regional carbon productivity and the degree of matching between regional carbon emissions
and their economic contribution. The formula is as follows:

ECC =
Gi
G

/
CEi
CE

(12)
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where ECC is the economic contribution coefficient of carbon emission; Gi is the GDP (yuan)
of city unit i in the MRYRUA; CEi is the carbon emissions (t) of city unit i; and CE is the
total carbon emissions (t) of the MRYRUA.

3.5. ESC

The ESC is the quotient of the ratio of carbon absorption of a certain unit to carbon
absorption of the whole region and the ratio of carbon emission of the unit to carbon
emission of the whole region [44]. It reflects the strength of regional carbon sequestration
capacity from the perspective of carbon balance. The formula is as follows:

ESC =
CSi
CS

/
CEi
CE

(13)

where ESC is the ecological support coefficient of carbon sequestration; CSi is the carbon
sequestration (t) of city unit i; CS is the total carbon sequestration (t) in the MRYRUA;
CEi is the carbon emissions (t) of city unit i; and CE is the total carbon emissions (t) in
the MRYRUA.

3.6. Carbon Balance Zoning

To alleviate the imbalance between “carbon emission and carbon sequestration” in the
MRYRUA, which is caused by regional economic development, energy consumption, and
land use, we based our study on the perspective of carbon budget balance and regional
low-carbon coordinated development, using the CBI, ECC, and ESC as the basis for carbon
balance zoning. When the CBI is greater than 1, an area is a carbon source, and when
the CBI is less than 1, an area is a carbon sink. A zoning threshold of 1 was used for the
CBI. When the ECC is greater than 1, regional energy utilization efficiency is high; on the
contrary, this implies that the regional carbon productivity is relatively low. To reflect
the energy utilization efficiency and carbon productivity of the region, 1 was used as the
zoning threshold for the ECC. When the ESC is greater than 1, a region has higher carbon
sequestration capacity; When the ESC is less than 1, this means that the carbon sequestration
capacity is weak. Therefore, 1 was used as the zoning threshold for the ESC [48,55]. Based
on previous research [56], we divided the urban units of the MRYRUA into five functional
zones: carbon sink functional zones, low-carbon economic zones, low-carbon optimization
zones, carbon intensity control zones, and high-carbon optimization zones (Table 3). Zoning
provides a basis for carbon emission reduction policies, development targets for achieving
carbon neutrality, and regional development in the MRYRUA.

Table 3. Basis for carbon balance zoning.

Zoning Basis Features

Carbon sink functional zones CSi > CEi, ESC > 1
Carbon sequestration is higher than carbon emissions, with
a higher ecological support coefficient, overall carbon sink

function, and strong carbon sequestration capacity

Low-carbon economic zones CSi < CEi, ESC > 1, ECC > 1

Carbon sequestration is lower than carbon emissions, but
the ecological support coefficient and economic contribution

coefficient are higher, and total net carbon emissions is
slightly lower

Low-carbon optimization zones CSi < CEi, ESC > 1, ECC < 1
Carbon sequestration is lower than carbon emissions, and
the ecological support coefficient is high, but the economic

contribution coefficient is low

Carbon intensity control zones CSi < CEi, ESC < 1, ECC > 1

Carbon sequestration is lower than carbon emissions;
ecological support coefficient is low, but the economic

contribution coefficient is high, and net carbon emissions
is high

High-carbon optimization zones CSi < CEi, ESC < 1, ECC < 1
Total net carbon emissions is high and both ecological

support coefficient and economic contribution coefficient
are low
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4. Results

4.1. Spatial-Temporal Variation of Carbon Budgets
4.1.1. Temporal Trends of Carbon Budgets

Based on estimated carbon emissions and carbon sequestration, carbon budgets were
analyzed in the MRYRUA (Wuhan City Circle, Chang-Zhu-Tan Urban Agglomeration, and
Poyang Lake Urban Agglomeration around Poyang Lake) from 2005 to 2020 (Figure 3).

  

Figure 3. (a) Changes in carbon emissions, carbon sequestration, and carbon budgets in the MRYRUA
from 2005 to 2020. (b) Changes in carbon emissions, carbon sequestration, and carbon budgets in
three urban agglomerations from 2005 to 2020. Note: CE denotes carbon emissions, CS denotes
carbon sequestration, CB denotes carbon budgets.

From 2005 to 2020, total carbon emissions in the MRYRUA exceeded total carbon se-
questration, and carbon budgets increased. Carbon emissions increased by 113.08%, carbon
sequestration increased by 10.16%, and carbon budgets increased by 310.25%. Changes
in the carbon budgets were reflected by changes in carbon emissions, potentially due to
the expansion in urban construction and the acceleration of the industrial process. Many
factories and enterprises went into production, resulting in an increase in energy consump-
tion and carbon emissions. From 2005 to 2010, carbon budgets increased by 149.91%. From
2010 to 2015, carbon budgets increased by 17.27%. During the “12th Five-Year Plan” period,
environmental pollution and consumption of resources attracted national attention. From
2015 to 2020, carbon budgets increased by 39.98%. The MRYRUA have achieved certain
results and actively responded to the national emissions reduction strategies and policies.
However, energy conservation and emissions reduction remain challenges.

From 2005 to 2020, carbon emissions, carbon sequestration, and carbon budgets of the
Wuhan City Circle, the Chang-Zhu-Tan Urban Agglomeration, and the Poyang Lake Urban
Agglomeration generally increased. The Wuhan City Circle had the largest proportion of
carbon emissions in the MRYRUA. The Poyang Lake Urban Agglomeration had the most
carbon sequestration in the MRYRUA. Growth in carbon emissions, carbon sequestration,
and carbon budgets in the Wuhan City Circle was similar to that in the MRYRUA, because
Wuhan is an important industrial base and science and education base in the country. It
carries the carbon emission activities of various cities and accounts for an important position
in carbon emissions of the Wuhan City Circle and the MRYRUA. Over the past fifteen
years, carbon sequestration of the Chang-Zhu-Tan Urban Agglomeration has increased.
Following ecological restoration in this area, the carbon sequestration capacity of vegetation
improved and excessive growth of carbon budgets was avoided. Carbon sequestration by
the Poyang Lake Urban Agglomeration was highest among the three urban agglomerations
and carbon budgets were the smallest, because this area has rich vegetation that functions
as a carbon sink.

4.1.2. Spatial Evolution of Carbon Budgets

The spatial evolution of carbon emissions, carbon sequestration, and carbon budget
patterns was analyzed in different cities (Figure 4). Overall, from 2005 to 2020, carbon
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emissions from the MRYRUA were high in the north-central region and low in the south.
From 2005 to 2020, Wuhan experienced rapid economic development and was a high-value
area of carbon emissions, followed by Changsha. Changsha transformed from the previous
second-highest value area to a high-value area. Nanchang also changed from a middle-
value area to the second-highest value area. The high-value areas of carbon emissions
in the MRYRUA mainly increased along the periphery of provincial capital cities, which
was reflected between 2010 and 2015 and became more obvious after 2015. These changes
between 2010 and 2015 reflect the “13th Five-Year Plan”, which implemented the overall
regional development strategy and promoted common development among regions. The
rapid development of inter-regional economies has led to an increase in carbon emissions.

 

Figure 4. (a) Spatial-temporal evolution of carbon emissions in the MRYRUA from 2005 to 2020.
(b) Spatial-temporal evolution of carbon sequestration in the MRYRUA from 2005 to 2020. (c) Spatial-
temporal evolution of carbon budgets in the MRYRUA from 2005 to 2020.

Carbon sequestration in the MRYRUA was high on the periphery and low in the center.
From 2005 to 2020, carbon sequestration was almost stable, reflecting the small impact of
carbon sequestration on changes in carbon budgets. The spatial pattern of carbon budgets
was similar to that of carbon emissions and was high in the central region, followed by the
north, and lowest in the south. Carbon budgets increased the most from 2005 to 2010, and
there was a trend in carbon budgets moving from low-value areas to high-value areas. From
2010 to 2015, carbon budgets moved from low-value areas to high-value areas in the Poyang
Lake Urban Agglomeration. From 2015 to 2020, the highest value carbon budgets were
in Wuhan and Changsha. Carbon budgets of the surrounding areas centered on Wuhan,
Changsha, and Nanchang were relatively high. These cities are the economic centers of
their respective urban agglomerations and have experienced rapid urban development and
high carbon emissions. Generally, carbon emissions in the MRYRUA have exceeded carbon
sequestration, and the pressure to reduce emissions is still high.

4.2. Carbon Balance Analysis
4.2.1. CBI

Based on the CBI, the relationship between carbon emissions and carbon sequestration
in the MRYRUA can be further explored (Figure 5). The CBI of the MRYRUA increased
93.42% from 2005 to 2020. The CBI of Wuhan, Ezhou, and Nanchang increased, mainly
due to an increase in urban population and energy consumption by industrial enterprises.
From 2010 to 2015, the CBI of Wuhan, Ezhou, Xiaogan, Tianmen, and Xiangyang decreased.
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From 2015 to 2020, the CBI of Xiangyang, Jingmen, and Tianmen decreased. This is because
regions attach great importance to ecological and environmental protection and promote
low-carbon, green, and sustainable urban development, which has inhibited the growth of
the CBI.

 

Figure 5. CBI, ECC, and ESC of the MRYRUA from 2005 to 2020.

The spatial patterns of the CBI in the MRYRUA from 2005 to 2020 are shown in
Figure 6a. The CBI was high in the center and low in the periphery. The low-value areas of
the CBI were in the southeastern Poyang Lake Urban Agglomeration and the northwest
of the Chang-Zhu-Tan Urban Agglomeration. From 2005 to 2020, areas with a high CBI
gradually shifted from Wuhan to the three provincial capitals. From 2010 to 2015, high-
value areas of the CBI spread around Wuhan and Changsha. It may be due to rapid
economic development that carbon emissions in construction areas have increased rapidly,
while carbon sequestration has changed to a small extent, and the energy transition in some
areas is slow. From 2015 to 2020, the CBI of the Chang-Zhu-Tan Urban Agglomeration was
still lower than that of the other two urban agglomerations.

 
Figure 6. (a) Spatial distribution pattern of the CBI in the MRYRUA from 2005 to 2020. (b) Spatial
distribution pattern of the ECC in the MRYRUA from 2005 to 2020. (c) Spatial distribution pattern of
the ESC in the MRYRUA from 2005 to 2020.
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4.2.2. ECC

From 2005 to 2020 (Figure 5), the ECC of the MRYRUA showed an overall decrease and
the differences in the ECC of different cities gradually decreased. The ECC of the Wuhan
City Circle and the Chang-Zhu-Tan Urban Agglomeration increased annually, while the
ECC of the Poyang Lake Urban Agglomeration decreased. From 2005 to 2020, the ECC
declined overall, indicating that the economic efficiency of carbon emissions decreased. In
2005, the ECC in the Wuhan City Circle and the Chang-Zhu-Tan Urban Agglomeration was
smaller, ranging from 0.20 to 0.56. In 2015 and 2020, the ECC was mostly between 0.5 and
1.5, indicating that the ECC in each city was relatively balanced and regional differences
were not obvious.

The ECC of the MRYRUA was low in the north-central location and high in the
periphery (Figure 6b). From 2005 to 2020, the high-value area of the ECC changed from the
Poyang Lake Urban Agglomeration to the other agglomerations. In 2005, the low-value
areas of the ECC were distributed in Huanggang, Ezhou, and Xianning. They were affected
by Wuhan’s highly polluting industries and local economic development through extensive
energy consumption. In 2015, the ECC in Fuzhou, Ji’an, and Yingtan was less than 1,
indicating that the contribution rate of carbon emissions was greater than the economic
contribution rate. Compared with 2015, change in the ECC was small. The ECC of the cities
around Wuhan, Changsha, and Nanchang was larger than that of other regions. Overall,
the economic efficiency of carbon emissions is relatively low.

4.2.3. ESC

From 2005 to 2020, the ESC of the MRYRUA decreased (Figure 5). The ESC in the
Wuhan City Circle increased, while the ESC of most cities in the other two urban agglomer-
ations decreased. Perhaps because of the concept that “Clear waters and green mountains
are as valuable as mountains of gold and silver”, China’s ecological construction has ac-
celerated, and regional carbon sink capabilities have become more significant. From 2005
to 2010, the maximum value of the ESC was 6.72% lower than in 2005. From 2010 to 2015,
the ESC of the Wuhan City Circle increased, while the ESC of the Chang-Zhu-Tan Urban
Agglomeration and the Poyang Lake Urban Agglomeration decreased. For fifteen years,
Wuhan’s ESC has been the smallest. Wuhan’s extensive energy consumption creates more
carbon emissions. At the same time, rapid industrialization and urbanization occupy more
ecological space and reduce carbon sequestration levels. Thus, Wuhan has formulated total
carbon emission control targets.

The spatial pattern of the ESC is similar to that of the ECC and is low in the center
and high in the periphery of the MRYRUA (Figure 6c). From 2005 to 2020, the ESC in the
central and northern regions was low, while the ESC in the southeastern and northeastern
regions was high, with obvious differences between regions. From 2005 to 2010, the
change was not significant in cities. From 2010 to 2015, the ESC of Yichang and Jingmen
increased, indicating that this region had gradually attached importance to the protection
of the environment. In the past fifteen years, the MRYRUA have vigorously promoted
clean energy by balancing the relationship between economic development and ecological
protection, reducing dependence on traditional energy sources, and improving energy
utilization efficiency.

4.3. Carbon Balance Zoning

This study coupled the CBI, ECC, and ESC to divide the MRYRUA into five functional
zones: carbon sink functional zones, low-carbon economic zones, low-carbon optimization
zones, carbon intensity control zones, and high-carbon optimization zones (Figure 7). From
2005 to 2020, the number of carbon sink functional zones in the MRYRUA decreased
significantly and were mainly distributed in the southern part of the Poyang Lake Urban
Agglomeration. The number of low-carbon economic zones generally increased and the
spatial distribution shifted from the Poyang Lake Urban Agglomeration to the Wuhan City
Circle. The spatial distribution of low-carbon optimization zones shifted from the western
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region to the eastern region. The number of carbon intensity control zones increased,
mainly in the middle of the MRYRUA. The spatial distribution of high-carbon optimization
zones demonstrated little change.

 

Figure 7. Carbon balance zoning in the MRYRUA from 2005 to 2020.

Carbon sink functional zones are mainly distributed in areas rich in ecological re-
sources, such as woodland and grassland in the MRYRUA. Their spatial distribution is
similar to areas with high carbon sequestration. From 2005 to 2020, the number of carbon
sink functional zones decreased. In 2005, carbon sink functional zones accounted for 38.62%
of the MRYRUA, accounting for the largest area. In 2010 and 2015, carbon sink functional
zones accounted for 12.60% of the MRYRUA. In 2020, the area of carbon sink functional
zones had decreased. The economic development of carbon sink functional zones is rela-
tively low, carbon sequestration is higher than carbon emissions, environmental quality is
high, and the carbon sequestration capacity is strong, all of which have a significant impact
on ecological security. In the future, we should continue to improve the environment in
this area, maintain the carbon sink function of the ecosystem, and develop the area while
protecting regional ecological functions.

The spatial distribution of low-carbon economic zones changed significantly from 2005
to 2020, gradually moving from scattered distribution to agglomeration, and the number
of low-carbon economic zones increased significantly. Low-carbon optimization zones
were converted into low-carbon economic zones. In 2005 and 2010, low-carbon economic
zones accounted for 3.62% and 15.46% of the MRYRUA, respectively. In 2015 and 2020, the
area of low-carbon economic zones had increased, and they were mainly distributed in the
Wuhan City Circle and the Chang-Zhu-Tan Urban Agglomeration. Carbon sequestration in
these cities is less than carbon emissions, but the carbon sink capacity is also strong. Along
with economic development, it is also necessary to control carbon emissions, prioritize
ecological and environmental protection, avoid ecological degradation, and maintain
regional carbon-balanced development. In the future, it will be necessary to stabilize
the carbon sequestration capacity of regional vegetation, develop low-carbon industries,
improve carbon emission efficiency, balance economic development and the environment,
and pursue sustainable development.

96



Land 2024, 13, 297

From 2005 to 2020, low-carbon optimization zones gradually shifted from the Wuhan
City Circle and the Chang-Zhu-Tan Urban Agglomeration to the Poyang Lake Urban
Agglomeration. Some carbon sink functional zones were converted into low-carbon op-
timization zones. In 2005, compared with the other three years, the area accounted for
the smallest proportion; in 2010 and 2015, low-carbon optimization zones were mainly
distributed in the Wuhan City Circle and the Poyang Lake Urban Agglomeration. Low-
carbon optimization zones clearly moved to the Poyang Lake Urban Agglomeration. In
2020, the low-carbon optimization zones were distributed in the central and eastern part
of the MRYRUA. The economic development of these cities is average, and their carbon
sink capacity is weak. Regional carbon emissions will affect the development of other
surrounding areas. In the future, it will be necessary to protect the environment, pro-
mote green, low-carbon, and sustainable cities, and appropriately accelerate high-quality
urban development.

Carbon intensity control zones were mainly distributed in urban areas with rapid
economic development. From 2005 to 2020, the number of carbon intensity control zones
gradually increased and distributed along and around the provincial capital center. Low-
carbon optimization zones shifted to carbon intensity control zones. In 2005, the carbon
intensity control zones accounted for 0.90% of the MRYRUA; in 2015, the area of the carbon
intensity control zones was 13.76% and, in 2020, the area was 10.80%, mainly in Wuhan,
Changsha, and Yueyang. Carbon sequestration in this region is less than carbon emissions.
Wuhan, Changsha, and Nanchang have rapid economic development, high urbanization,
increased carbon emissions, and a reduction in the amount of ecological land, and the
carbon sequestration capacity of the ecosystem has weakened. In the future, this part of
the region can reduce regional carbon emissions, develop low-carbon industries, improve
technological innovation, and strengthen its cooperation with surrounding low-carbon
areas to achieve a “win-win”.

High-carbon optimization zones were spatially distributed in blocks and were rela-
tively scattered. Some low-carbon optimization zones shifted to high-carbon optimization
zones. In 2005 and 2010, high-carbon optimization zones accounted for 27.65% and 22.01%
of the MRYRUA, respectively, and were mainly distributed in Ezhou and Huangshi. In 2015,
high-carbon optimization zones accounted for 14.42% of the MRYRUA and were mainly
distributed in Ezhou, Huangshi, and Xiaogan. In 2020, high-carbon optimization zones
accounted for 19.85% of the MRYRUA. Carbon sequestration in this region is lower than
carbon emissions, which is not conducive to the realization of regional carbon neutrality,
and there is room for improvement between the economic development and environmental
protection. In the future, it will be necessary to increase carbon sinks, implement ecological
restoration projects, carry out integrated protection and management of natural resources
(mountains, rivers, forests, fields, lakes, grass, and sand), enhance the carbon sequestration
capacity of ecosystems, and strengthen the coupling and coordination capabilities between
economic development and ecological protection.

5. Discussion

Our study differed from previous studies on land use carbon emissions and land use
carbon balance zoning [57] by using the CASA model to calculate carbon sequestration on
a more accurate grid scale [58], analyzing the spatial-temporal pattern of carbon budgets,
and exploring carbon balance zoning. Compared with Zhang’s analysis of the impact
of carbon emissions from the cities of Wuhan, Changsha, and Nanchang, we analyzed
spatial-temporal changes in 31 cities [59]. We found that carbon sequestration in the
MRYRUA from 2005 to 2010 was slightly different from the results of previous studies.
Carbon sequestration in 2005 and 2010 was smaller than previously determined, while
carbon sequestration in 2015 and 2020 was closer to previous research results. This may be
explained by our use of the CASA model to calculate the carbon sink of grid cells to obtain
carbon sequestration for each city. These results are more accurate, while previous studies
used cultivated land, grassland, water bodies, and unused areas. Carbon sequestration
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is calculated based on individual plots as units, where each plot represents only one
value. However, particular areas may exhibit uneven vegetation distribution. Using grid
unit statistics helps minimize the error in estimating carbon sequestration, resulting in a
closer approximation to the actual values. Compared with other urban agglomerations,
the Wuhan City Circle had the largest carbon emissions from 2005 to 2020, potentially
because the Wuhan City Circle is the economic center of the MRYRUA. Wuhan’s economic
development relies on industry, which results in extensive industrial carbon emissions.
However, with adjustments to the industrial structure, carbon emissions in the Wuhan City
Circle have moderated [60]. Carbon emissions in the Chang-Zhu-Tan Urban Agglomeration
are relatively low. This may be because the development of heavy industry in the Chang-
Zhu-Tan Urban Agglomeration has been relatively slow. The development of tertiary
industry reduces energy consumption, and carbon emissions are relatively low. As carbon
emissions increase in the Poyang Lake Urban Agglomeration, carbon sequestration is the
highest in the MRYRUA. While the Poyang Lake Urban Agglomeration is developing, this
area is also focused on improving carbon sinks.

Our results demonstrate that the degree of change in carbon emissions, carbon se-
questration, and carbon budgets is different in the MRYRUA. The Wuhan City Circle plays
an important role in the carbon budgets of the MRYRUA. Within fifteen years, due to
expansion, carbon budgets within the Wuhan City Circle have increased from northwest
to southeast. Carbon budgets of the Chang-Zhu-Tan Urban Agglomeration have also
increased. This may be explained by the influence of "two-oriented" social construction
and energy conservation and emissions reduction policies proposed by the country. The
agglomeration continues to strengthen awareness of environmental protection and energy
conservation. Compared with other urban agglomerations, the carbon budgets of the
Poyang Lake Urban Agglomeration are smaller. Ji’an and Fuzhou have strong carbon
sequestration capabilities, rich forest resources, and diverse ecosystems. However, cities in
the northern part of the Poyang Lake Urban Agglomeration have experienced increased
carbon emissions and larger carbon budgets. Perhaps due to the impact of the industrial
transfer of Wuhan and Nanchang, industries may choose to set up their production bases
in cities such as Jiujiang. From 2005 to 2020, growth in carbon emissions in the MRYRUA
was obvious, but a goal of achieving carbon neutrality remains [61,62]. Therefore, measures
to reduce emissions and increase sinks still require attention.

Based on the spatial-temporal dynamics of carbon budgets, the CBI, ECC, and ESC
were calculated, and carbon balance zoning was conducted. Carbon sequestration re-
mained relatively stable, and an increase in carbon emissions was the main reason for
the increase in the CBI, which is consistent with Chen’s calculation of the global CBI [63].
Although carbon balance zoning in this study was similar to that of Xiong’s, it differed in
the selection of zoning indicators. Xiong used the carbon productivity to measure regional
carbon emissions from the perspective of economic benefits, while we used the ECC to
characterize regional carbon productivity [44]. This indicator is more consistent with the
energy utilization rate among cities within the MRYRUA. Compared with Wen’s study on
China’s carbon balance zoning, our comparison of regional carbon emissions and carbon
sequestration is conducive to the analysis of carbon balance characteristics and also makes
the zoning results more detailed and reliable [55]. From 2005 to 2020, the number of carbon
sink functional zones decreased, and most carbon sink functional zones were converted
into low-carbon optimization zones. This may be because urbanization and industrializa-
tion were affected by the economic development of surrounding cities. As a result, land
was used for industrial construction, causing the original carbon sink functional zones
to be gradually occupied or destroyed. The carbon sequestration capacity of cities in the
MRYRUA is inadequate to offset the total carbon emissions from energy consumption fully.
Some low-carbon optimization zones shifted to carbon intensity control zones and high-
carbon optimization zones. Limited land resources have caused construction to encroach
on ecological land, resulting in an increase in carbon emissions and a reduction in carbon
sequestration, which is consistent with Chuai’s research on construction expansion and
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carbon emissions [64]. Carbon intensity control zones and high-carbon optimization zones
are important sources of carbon emissions. Limiting the massive expansion of construction
is of great significance to regional carbon emissions reduction. In the future, it will be nec-
essary to accelerate technological innovation, promote the transformation of high-carbon
industries into low-carbon industries, optimize the energy structure, and improve energy
utilization efficiency to achieve low-carbon development [65–67].

Our study has certain limitations. The smallest research unit was a city, and carbon
balance policies do not take the county into consideration, which is not conducive to differ-
entiation within a city. In the future, counties should be used as research units to achieve
regional carbon balance goals and low-carbon development. Spatial elements were also
ignored in carbon balance zoning, and spatial correlation was not analyzed. In the future,
by building a spatial correlation network of carbon emissions and carbon sequestration
between regions, using the CBI, ECC, and ESC, network spatial correlation characteristics
and indicators related to economic development can be added to provide more accurate,
multi-perspective zoning results and reference values for the formulation of low-carbon
policies in different regions. In addition, the theory of comparative advantage can be
introduced in the quantification of carbon balance zoning indicators, and regional carbon
balance zoning can be carried out by calculating the standard comparative advantage index.

6. Conclusions and Policy Implications

6.1. Conclusions

In this study, we calculated carbon budgets and expenditures of 31 cities in the
MRYRUA from 2005 to 2020, analyzed the spatial-temporal pattern of carbon budgets, and
formulated carbon balance zoning. The main results are summarized below.

(1) From 2005 to 2020, carbon emissions and carbon budgets increased, the increase
in carbon sequestration was relatively small, and changes in carbon budgets were
reflected by changes in carbon emissions. Carbon emissions from the Wuhan City
Circle accounted for the largest total carbon emissions in the MRYRUA. Carbon
emissions and carbon sequestration by the Chang-Zhu-Tan Urban Agglomeration
increased. The Poyang Lake Urban Agglomeration had the most carbon sequestration
in the MRYRUA. Carbon emissions in the MRYRUA were high in the north-central
region and low in the south. Carbon sequestration was high in the periphery and low
in the center. Carbon budgets were high in the central region, followed by the north,
and lowest in the south.

(2) From 2005 to 2020, the CBI of the MRYRUA increased. From 2005 to 2020, the CBI
increased by 93.42% and was high in the center and low in the periphery. The low-
value areas of carbon balance were distributed in the southeastern area of the Poyang
Lake Urban Agglomeration and the northwest area of the Chang-Zhu-Tan Urban
Agglomeration. The ECC decreased overall, and differences in the ECC of different
cities gradually decreased. The ECC of each city of the Wuhan City Circle and the
Chang-Zhu-Tan Urban Agglomeration increased annually. The ECC was low in the
north-central region and high in the periphery. The area with a high ECC gradually
shifted from the Poyang Lake Urban Agglomeration to the Wuhan City Circle. The
ESC of all cities in the Wuhan City Circle increased, while the ESC of most cities in the
other two urban agglomerations decreased. The spatial pattern of the ESC was similar
to that of the ECC and was low in the center and high in the periphery. Obvious
differences in the ESC occurred between regions.

(3) From 2005 to 2020, the number of carbon sink functional zones significantly decreased.
These zones were distributed in areas with rich ecological resources. The number of
low-carbon economic zones generally increased. The spatial distribution gradually
shifted from the Poyang Lake Urban Agglomeration to the Wuhan City Circle, and the
number of low-carbon optimization zones fluctuated greatly, mainly from the Wuhan
City Circle and the Chang-Zhu-Tan Urban Agglomeration to the Poyang Lake Urban
Agglomeration. The number of carbon intensity control zones increased and these
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zones were mainly distributed in the provincial capital center and its surrounding
cities. High-carbon optimization zones were spatially distributed in blocks and were
relatively scattered.

6.2. Policy Implications

The spatial pattern of carbon budgets in the MRYRUA is unbalanced, and there are
differences in the ECC and the ESC between cities. Based on a spatial-temporal analysis of
carbon budgets and the results of carbon balance zoning, we put forward the following
suggestions:

(1) Build a regional carbon balance adjustment mechanism oriented toward the goal of
carbon neutrality. Based on the CBI, ECC, ESC, and carbon balance zoning results,
carbon emissions reduction targets can be set. For Wuhan, Changsha, Nanchang, and
surrounding cities, targets should formulate a carbon emission quota and monitoring
system and set carbon emission caps for various industries. In addition, carbon se-
questration in the southern part of the Poyang Lake Urban Agglomeration is relatively
large. We should continue to strengthen carbon sink management, increase the carbon
sequestration capacity, alleviate carbon emissions, and coordinate carbon emissions
and carbon sequestration in the MRYRUA.

(2) Develop differentiated carbon emission reduction and carbon sink enhancement
strategies based on regional characteristics. Carbon sink functional zones rich in
ecological resources should continue to be maintained, ecological protection and
restoration should be strengthened, carbon sink resources (such as forests, grasslands,
and wetlands) should be increased, vegetation coverage should be increased, and
the carbon sequestration capacity of the regional ecosystem should be improved.
Carbon intensity control zones and high-carbon optimization zones should focus
on carbon emissions reduction and continue to move toward low-carbon economic
zones and low-carbon optimization zones. In addition, we should control the speed
of urban expansion, guide regional development in a low-carbon direction, ensure
the coordination of carbon balance and economic development, and improve regional
economic-ecological-social benefits.

(3) Facilitate the exchange of technology among different regions. Urban agglomerations
consistently promote collaborative efforts to reduce emissions. Carbon sink functional
zones, carbon intensity control zones, and high-carbon optimization zones should
enhance the dissemination of technologies. Carbon intensity control and high-carbon
optimization zones experiencing rapid economic development can offer technical
support to carbon sink functional zones. Similarly, carbon sink functional zones can
mitigate carbon emissions generated by carbon intensity control and high-carbon
optimization zones. Strengthening inter-regional cooperation and coordination can
establish a carbon equilibrium mechanism that balances economic development with
ecological protection.
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Abstract: Optimizing resource efficiency and mitigating climate change have become consensuses
of human society. However, there is still a gap in assessing the carbon emission efficiency (CEE)
and identifying the influence of various factors, especially in rapid urbanizing regions. In this
paper, we built a stochastic frontier analysis model to assess CEE and conducted a case study in the
Beijing–Tianjin–Hebei Urban Agglomeration (BTHUA), a typical area of collaborative development
in China. A comprehensive influencing factor index was constructed to analyze and identify the key
influencing factors of CEE. The results revealed that the average CEE among the 13 cities increased
in volatility from 2000 to 2019. The average CEE in Langfang was lowest, while that in Tangshan
was highest. The input-related factors had a negative effect on CEE, including carbon emissions per
capita, employment per ten thousand people, total assets per capita, and energy intensity. GDP per
capita, the urbanization level, and the proportion of the tertiary sector’s GDP had positive impacts
on CEE. Future policy formulation should focus on the transition from labor- and material-intensive
industries to knowledge- and technology-intensive industries. All the results can contribute to
achieving high-quality development and dual-carbon target of rapid-urbanizing areas.

Keywords: carbon emission efficiency; carbon reduction; influencing factor; stochastic frontier
analysis; urban agglomeration; Beijing–Tianjin–Hebei

1. Introduction

Since the 20th century, global warming has made profound impacts on human society
and has attracted increasing attention from all countries in the world. The IPCC report
indicated that approximately 95% of the warming could be attributed to greenhouse gas
(GHG) emissions over the past 50 years [1]. CO2 is an important GHG causing the green-
house effect. China is currently the global largest energy consumer and CO2 emitter [2].
China’s economic growth is predominantly driven by traditional industries, causing a large
amount of fossil fuel consumption and infrastructure construction, which exert tremendous
pressure on CO2 emissions and climate change [3]. In order to control the carbon emis-
sions and mitigate climate change, China pledged to peak carbon emissions by 2030 and
achieve carbon neutrality by 2060, aiming to decouple economic development from carbon
emissions. However, China’s economic development and urbanization process continues
to rapidly improve. Therefore, how to achieve greater economic development with fewer
carbon emissions has become a problem that needs to be solved [4]. The concepts of high-
quality and low-carbon developments have emerged to serve sustainable development.
The key to achieving high-quality development lies in understanding the relationship
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between economic development and the ecological environment. Improving ecological
efficiency is key and urgent for regional development, in line with the requirement of green
supply chain management (GSCM) [5]. The concept of carbon emission efficiency (CEE)
has gained significant attention alongside the emergence of a low-carbon economy [6–8].
CEE serves as a crucial indicator that visually represents the relationship between regional
economic development and carbon emissions, and it is essential for the estimation and
monitoring of the ecological performance of a regional supply chain. Reducing carbon
emissions and improving CEE have become global consensuses for the development of a
low-carbon economy [9]. CEE assessments and analysis of its determinants have become
research hot-spots.

The Beijing–Tianjin–Hebei Urban Agglomeration (BTHUA) is the largest economic
zone in northern China and a vital part of China’s supply chain, which has undergone
rapid urbanization and industrialization. With the rapid development process, a greater
number of problems have come into view and have attracted widespread attention, includ-
ing those associated with the environment, population, resource utilization, and industrial
structure. The burden of carbon emission reduction is huge for the BTHUA [10]. Mean-
while, the BTHUA is pursuing coordinated development and exploring valid pathways to
optimize the energy structure and update and upgrade the industrial structure. Industrial
restructuring and energy-structure optimization are urgent when pursuing sustainable and
high-quality development [11]. Using the BTHUA as a representative study area when
researching carbon emission reduction provides valuable insights for the formulation of
carbon reduction strategies in other urban agglomerations with similar characteristics.

The purpose of this study was to evaluate the CEE of cities in the BTHUA and identify
key influencing factors, supporting low-carbon and economic goals. The main objectives of
this study were as follows: (1) to incorporate carbon emissions into traditional production
functions and use the stochastic frontier function (SFA) method to build CEE estimation
models; (2) to clarify the quantitative relationships between input and output factors
and evaluate the CEE of prefecture-level cities in the BTHUA; (3) to construct an index
system of the influencing factors of CEE and use the quantitative regression function to
identify the key influencing factors of CEE and their characteristics; and (4) to propose
specific policies to improve CEE, pursuing carbon emissions and economic development.
All the findings contribute to the related policy formulation of industrial restructures,
low-carbon transformations, and high-quality development for the BTHUA and other
rapid-urbanizing areas.

2. Literature Review

In 1992, the United Nations Conference on Environment and Development introduced
the concept of ecological efficiency, which represents the extent to which human needs
are met per unit of resource used when using a unit of resource. Ecological efficiency can
describe the input–output process of production activities, where inputs are the energy
consumption or environmental losses of economic units and outputs are the products or
services they provide [12]. Currently, ecological efficiency integrates the economy and
ecosystems, becoming an increasingly crucial metric for policymakers and managers. In
general, ecological efficiency focuses more on the relationship between macro-energy,
macro-resources, and economic development but does not incorporate the role of carbon
emissions in efficiency.

As sustainable development and decarbonization goals gain prominence, carbon
emissions have gradually become an integral part of ecological efficiency research. Carbon
emissions are the main GHG causing global warming. Enkvist et al. (2008) mentioned the
concept of carbon productivity, also known as carbon intensity of GDP, which combines
two expected goals in economic development, i.e., GDP growth and carbon emission
control [13]. The concept of CEE has gradually become an important index to represent
the greenness of a production process. At present, there is no clear and unified definition
of CEE [14]. Most scholars define CEE as achieving higher economic growth with lower
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carbon emissions. It is generally believed that when economic growth is certain, the fewer
the carbon emissions and the higher the efficiency [15]. CEE combines economy, energy,
and CO2 in the production process, and can be expressed as a single-factor indicator such
as carbon emissions per unit of GDP [16,17]. Similarly, energy efficiency was defined as
the output per unit of energy consumption based on Pareto efficiency, considering energy
to be an indispensable input factor in production processes [18]. Using this definition,
metrics such as energy consumption or carbon emissions per unit of product or building
area also can be developed. However, these single-factor indicators can only reflect certain
aspects of ecological efficiency and overlook input factors and input–output relationships
in production processes [19]. Energy efficiency represents the relationship between energy
inputs and GDP outputs but does not consider carbon emissions and other input factors.
Carbon productivity emphasizes the relationship between carbon emissions and economic
added value but overlooks the influences of energy and other inputs.

Taking into account the input–output variables in the production process, more inte-
grated models were developed. Total-factor productivity was also integrated into ecological
efficiency. The total-factor carbon emission efficiency index can be defined as the ratio of
target carbon emissions to actual carbon emissions [20]. Consequently, more comprehensive
indicators and evaluation methods for CEE have been developed [21]. The methods widely
used mainly include parametric methods (namely, data envelopment analysis (DEA)) and
non-parametric methods (namely, SFA) [22,23]. Zhou et al. (2010) used DEA to evaluate
the total-factor CEE of 18 high-carbon-emitting countries worldwide and found a 24%
improvement in CEE from 1997 to 2004, suggesting that technology progress played a
significant role in the improvement of CEE [24]. Meng et al. (2016) used DEA-type models
to assess the energy efficiency and CEE of 30 Chinese provinces/regions during 2006–2015
and found that the east area had relative high efficiency values, while the central area
had lower efficiency values [25]. Zhou et al. (2019) combined super-efficiency DEA and
the global vector autoregressive (GVAR) model and discovered that there was a gradual
decrease in the CEE of China’s construction industry and that technology advancements
and energy-structure adjustments were efficacious avenues for improvement [26]. DEA
models have also been used to evaluate efficiency in various contexts such as technical
efficiency [27], ecological efficiency in cities [28], environmental efficiency in industrial
sectors [29], green economic growth levels [30], performance analyses of finance compa-
nies [31], and forestry efficiency [32]. In contrast, SFA is a parameterized method that
provides a specific function to represent the relationship between input and output factors.
Lin and Wang (2015) estimated the total-factor CEE of the steel industry in various Chinese
provinces using the SFA method and further evaluated the carbon emission reduction
potential [33]. Bai et al. (2017) quantitatively measured the environmental performance
and carbon emission reduction potential of 39 industrial sectors in China using SFA [34].
Sun et al. (2019) evaluated the GHG emission efficiency of 26 industry sectors in China
and analyzed the impacts of the determinants based on the SFA method [35]. Additionally,
SFA has been employed to assess other forms of efficiency such as land use efficiency [36],
energy efficiency [37], and agricultural production efficiency [38]. Therefore, both DEA and
SFA can be used to assess the CEE of various decision units.

In contrast, SFA, as a parameter-based method to evaluate efficiency, employs fun-
damental theories like production functions and directional distance functions to assess
efficiency. It precisely represents the functional relationship between input and output
factors, with efficiency results ranging from 0 to 1, thereby addressing some of the limi-
tations of DEA. Therefore, SFA was used to construct the CEE estimation model in this
study. Furthermore, current research primarily focuses on the assessment of CEE, and
there is a need for the further analysis of regional CEE and the development of a compre-
hensive indicator system for influencing factors to provide scientific guidance for regional
productivity improvements.
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3. Study Area and Data Sources

3.1. Study Area

The BTHUA includes Beijing (the capital of China), Tianjin (a municipality), and Hebei
(a province) and is located on the North China Plain in the east of China (Figure 1). The
elevation is high in the northwest and low in the southeast. There are thirteen prefecture-
level cities in the BTHUA, including Beijing, Tianjin, Baoding, Shijiazhuang, Cangzhou,
Chengde, Handan, Hengshui, Langfang, Qinhuangdao, Tangshan, Xingtai, and Zhangji-
akou. The BTHUA is a highly representative region in China as well as globally, with
typical characteristics of rapid economic development, urbanization, industrialization,
and coordinated development. The GDP increased from CNY 9.4977 × 1012 in 2000 to
CNY 8.4479 × 1013 in 2019. However, with the background of climate change and the
requirements of SDGs and high-quality development, the BTHUA is urgently required to
deal with the decoupling of carbon emissions and economic growth, contributing to the
achievements of sustainable development and the dual-carbon target [39,40]. Therefore,
taking the BTHUA as the study area, investigating the temporal and spatial characteristics
of CEE and identifying its determinants are significant for the regional policy formulation
of carbon reduction and economic regulations.

Figure 1. Location of the Beijing–Tianjin–Hebei Urban Agglomeration (BTHUA).

3.2. Data Sources

The original data used in this study mainly included carbon emission data and socio-
economic data. Carbon emission data were calculated using the carbon emission factor
method. We included energy-based carbon emissions, industrial-process-related carbon
emissions, and other carbon emissions within the accounting scope of the carbon emis-
sions [11]. The energy-based carbon emissions accounted for 17 types of energy, i.e., raw
coal, washed coal, other washed coal, coal briquettes, coke, coke oven gas, other oven
gas, other coking products, gasoline, crude oil, diesel, kerosene, fuel oil, other petroleum
products, refinery dry gas, liquefied petroleum gas, and natural gas. The energy data were
derived from local and national statistical yearbooks (2001–2020) and the CEDA database
(https://www.ceads.net/, accessed on 1 July 2024). The industrial-process-related carbon
emissions were derived from the CEDA database. The other carbon emissions included
agricultural carbon emissions, animal husbandry carbon emissions, and human respiration.
The statistical data related to agricultural activities (fertilizer, pesticides, crop planting areas,
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agricultural machinery power, irrigation, and agricultural films), livestock (pigs, cattle,
sheep, and poultry), and population were derived from statistical yearbooks (2001–2020).
The socio-economic data primarily included the GDP, population, fixed investment, labor,
foreign investment, and other relevant indicators. All the economic data were adjusted to
the 2000 price level. The carbon emission coefficients referred to the IPCC (2006) [41] and
related literature [42–44].

4. Methods

4.1. Carbon Emission Efficiency (CEE) Estimation Model

The production function is a prerequisite and the foundation when measuring produc-
tion efficiency. The basic model is as follows:

yi = f (xi, β)exp(vi − ui) (1)

where yi represents the output of unit i; xi represents the input elements; f (∗) represents
the production function; β represents the vector of parameters to be estimated; vi represents
observation errors and other random factors, and is an independent random variable
following a standard normal distribution; and μi represents technical inefficiency terms,
which are non-negative variables and can be assumed to follow either a half-normal
distribution or a truncated normal distribution. In addition, vi and μi are independent of
each other.

Based on the SFA method, technical efficiency (TE) in actual production can be ex-
pressed as the ratio of the expected value of a sample to the expected value of the stochastic
frontier. In other words, the technical efficiency is equivalent to the ratio between the mean
actual output and the mean theoretical maximum output.

TEi =
f (Xi, β)expλ(vi − ui)

f (Xi, β)expλ(vi)
= exp(−μi) (2)

where TEi represents the technical efficiency of unit i.
In the CEE stimulation model, capital, labor, and carbon emissions were considered to

be the input variables and economic growth was considered to be the output variable. The
production function can be expressed as follows:

Pj(K, L, C) = {(K, L, C, Y) : (K, L, C) can produce(Y)}, j = 1 . . . . . . J (3)

Input variable : x = (K, L, C) ∈ R+
N (4)

Output variable : y ∈ R+
M (5)

where K is the capital amount, L is the labor force, C is the carbon emission, and Y is the
economic output. The decision making unit (DMU) was the prefecture-level city in this
study.

Compared with traditional production functions, the trans-log production function
offers greater flexibility and considers both the effects of variables on themselves and their
interactions. This makes it well-suited for the study of the relationships between input
and output variables. Additionally, the trans-log production function can effectively fit
data [45]. Therefore, in this study, we chose the trans-log production function to establish a
CEE estimation model. The specific form of the SFA model was as follows:

yi = βo + βkkit + βl lit + βccit +
1
2 βkk(kit)

2 + 1
2 βll(lit)

2 + 1
2 βcc(cit)

2 + βklkitlit+
βkckitcit + βlclitcit + vit − uit

(6)

vit ∼ N
(

0, σ2
v

)
(7)
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uit = exp{−η(t − Ti)}ui (8)

uit ∼ N
(

mit, σ2
u

)
(9)

mit = zitδ (10)

kit = lnKit (11)

lit = lnLit (12)

cit = lnCit (13)

yit = lnYit (14)

where zit represents other factors, except for technical efficiency; mit represents an inef-
ficiency term; and δ represents the estimated parameter. Capital input K, labor input L,
carbon emissions C, and economic output Y were taken as a logarithm.

Furthermore, by subtracting cit from both sides of the equation, we obtained new
equations as follows:

yi − cit = βo + βkkit + βl lit + (βc − 1)cit +
1
2 βkk(kit)

2 + 1
2 βll(lit)

2 + 1
2 βcc(cit)

2+
βklkitlit + βkckitcit + βlclitcit + vit − uit

(15)

ln
(

Yit
Cit

)
= yi − cit (16)

The specific formula used to evaluate CEE in this paper was as follows:

CEEit =
E(Yit/Cit)

E(Yit/Cit|uit = 0)
=

exp(βo + . . . + vit − μi)

exp(βo + . . . + vit)
= exp(−μi) (17)

According to the equation, 0 < CEEit < 1. When CPit approached 0, CEE was low;
when CPit approached 1, CEE was high, revealing that the unit was close to the stochastic
frontier.

4.2. Tobit Regression Model

A Tobit linear regression model was used to establish an explanatory relationship
between the dependent variable (expenditure) and the independent variables for durable
goods [46], as shown in the following equation:

yi = βTxi + ei; ei ∼ N(0, 1) (18)

where yi represents the dependent variable, xi represents the independent variable, and
βT represents the regression parameter. Therefore, the specific formula for the influencing
factor analysis of CEE was as follows:

CEEit = γi + β1gdpit + β2carit + β3labit + β4capit + β5urbit + β6 popit + β7ind3it+

β8ind3it + β9eneit + β10opeit + β11govit + uit

CEEit =

{
CEEit

∗, i f CEE ≥ 0
0, other

(19)
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where CEEit
∗ is CEE for the i-th city in the t-th year, as the dependent variable; β1−β11

are estimated parameters for the corresponding variables; γi represents the individual
difference; and uit represents the random error term. Four basic influencing factors, includ-
ing gdpit (GDP per capita), carit (carbon emissions per capita), labit (employment per ten
thousand people), and capit (total assets per capita), were considered to be the independent
variables. urbit, popit, ind2it, ind3it, eneit, opeit, and govit represented the proportions of
urban population, population per unit land area, proportion of the secondary sector’s
GDP, proportion of the tertiary sector’s GDP, energy consumption per unit of GDP, pro-
portion of foreign direct investment in GDP, and proportion of local government fiscal
expenditure in GDP, respectively. The meanings of the factors are explained in Table 1.
Nine aspects, including economic level, technological level, input level, urbanization level,
population density, industrial structure, energy intensity, level of opening up, and gov-
ernment intervention, were considered to analyze the impacts of the influencing factors
of CEE.

Table 1. Influencing factor index of carbon emission efficiency (CEE).

Estimated
Parameter

Variable Influencing Factor Aspect

β1 gdpit GDP per capita Economic level
β2 carit Carbon emissions per capita Technological level
β3 labit Employment per ten thousand people Input level
β4 capit Total assets per capita Input level
β5 urbit Proportion of urban population Urbanization level
β6 popit Population per unit land area Population density
β7 ind2it Proportion of the secondary sector’s GDP Industrial structure
β8 ind3it Proportion of the tertiary sector’s GDP Industrial structure
β9 eneit Energy consumption per unit of GDP Energy intensity
β10 opeit Proportion of foreign direct investment in GDP Level of opening up
β11 govit Proportion of local government fiscal expenditure in GDP Government intervention

5. Results

5.1. Variable Statistics and Model Testing

Panel data were used to estimate CEE for the 13 prefecture-level city levels in the
BTHUA from 2000 to 2019. The statistics for the basic variables are shown in Table 2.
Specifically, this analysis involved a total sample size of 260 observations. The CEE model
employed the total assets, year-end employment, and total carbon emissions as proxies for
the capital (K), labor (L), and carbon emissions (C), respectively, while GDP was used to
represent the economic output (Y).

Table 2. Summary statistics of the variables for the CEE model.

Variable Indicator Obs Unit Mean Maximum Minimum
Standard
Deviation

Capital (K) Total assets 260 Billion CNY 1517.22 1807.05 33.84 9388.40

Labor (L) Year-end
employment 260 Ten thousand

people 114.82 182.38 21.00 878.05

Carbon
emissions (C)

Total carbon
emissions 260 Ten thousand

metric tons 4837.80 2922.93 224.29 11,685.87

Economic
output (Y) GDP 260 Billion CNY 2550.74 3829.57 163.03 24,591.17

Table 3 presents the coefficient values for the variables in the CEE estimation model.
The overall model reliability was notably high, as indicated by a log-likelihood value of
128.844. Except for the non-significant coefficient estimates of capital (lnK) and labor (lnL)
in the first-order terms, all the coefficients demonstrated significance at the 5% level or
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higher. Carbon emissions exhibited a negative impact on CEE at a significance level of 1%,
with a coefficient of −0.8865, indicating that a 1% increase in carbon emissions led to a
0.8865% reduction in CEE. This finding aligned with practical production processes, where
higher carbon emissions tend to correspond with a lower CEE when other factors remain
constant. Therefore, the CEE estimation model based on SFA and the CEE results were
reliable and used to further analyze the spatiotemporal variations and influencing factors
of CEE.

Table 3. The parameter assessment results for the SFA model.

Estimated
Variable

Coef. Value Std. Err. z p-Value

_cons 3.7777 ** 1.5607 2.42 0.016
lnK −0.0460 0.1370 −0.34 0.737
lnL −0.4802 0.3276 −1.47 0.143
lnC −0.8865 *** 0.2379 −3.73 0.000
(lnK)2 0.1076 *** 0.0148 7.28 0.000
(lnL)2 0.1117 *** 0.0237 4.71 0.000
(lnC)2 0.3441 *** 0.0375 9.17 0.000
lnK×lnL 0.1147 *** 0.0280 4.09 0.000
lnK×lnC −0.3339 *** 0.0379 −8.81 0.000
lnL×lnC −0.2421 *** 0.0598 −4.05 0.000

Number of Obs = 260 Wald chi2 (9) = 4871.16
Log-likelihood = 128.844 Prob > chi2 = 0.000

*, **, and *** represent confidence at significance levels of 10%, 5%, and 1%, respectively.

5.2. Spatial and Temporal Variations in Carbon Emission Efficiency

Figure 2 shows the distribution of CEE across the 13 cities in the BTHUA from 2000 to
2019. The CEE distribution exhibited a left-skewed pattern, with a minimum value of 0.5065
(Langfang, in 2015) and a maximum value of 0.9810 (Beijing, in 2019). Of the 260 efficiency
values, 70 fell within the range of 0.90 to 0.95, with a median of 0.8677 (Cangzhou, in
2019). Additionally, approximately 3.85% of the efficiency values were less than or equal
to 0.60, while 64.62% were less than or equal to 0.90. This indicated that the overall CEE
values in the BTHUA were relatively high, with a mean value of 0.8410. From a regionwide
perspective, the mean value of CEE among the 13 cities fluctuated and increased during
2000–2019 (Figure 3). Specifically, the variations could be divided into four stages, i.e., a
weak decrease from 2000 to 2005, a rapid increase from 2005 to 2008, a weak decrease from
2008 to 2015, and a rapid increase from 2015 to 2019.
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Figure 2. Frequency distribution of carbon emission efficiency in the BTHUA.

Figure 3. Variations in the average carbon emission efficiency of the BTHUA.

As shown in Figure 4, there were significant differences in the CEE levels among the
13 cities during 2000–2019. In terms of average CEE values, Langfang had the lowest CEE,
with a mean value of 0.6799. In contrast, Tangshan and Hengshui exhibited high CEE
levels, with mean values exceeding 0.9 (0.9475 and 0.9127, respectively). Beijing, Handan,
and Zhangjiakou had moderately high average CEE values, slightly above 0.8 and below
0.9 (0.8172, 0.8090, and 0.8056, respectively). Tianjin and Baoding had lower average CEE
values below 0.8 (0.7848 and 0.7853, respectively). Qinhuangdao, Shijiazhuang, and Xingtai
had similar ranges in their CEE values, with small differences (0.8936, 0.8948, and 0.8694,
respectively). In terms of the range in CEE variations, Hengshui and Tangshan consistently
maintained higher efficiency levels compared with other cities, with very concentrated
value distributions. Specifically, the minimum and maximum CEE values for Hengshui
were 0.8569 (in 2014) and 0.9643 (in 2000), respectively, while for Tangshan, they were
0.9225 (in 2016) and 0.9660 (in 2011), respectively. Beijing, Tianjin, Baoding, and Handan
had wider value distributions (greater variability), whereas Zhangjiakou had a narrower
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value distribution (lower variability). Additionally, Cangzhou and Chengde had similar
ranges in their CEE values but Cangzhou had a higher overall average CEE value than
Chengde (0.8822 > 0.8507).

As observed in Figure 5, Beijing’s CEE fluctuated and increased over the period, re-
maining below 0.8 before 2005 and rising above 0.85 after 2006.Tianjin’s CEE followed
an N-shaped trend, which indicated that CEE initially increased during 2000–2005, then
decreased during 2005–2015, and finally increased during 2015–2019. Baoding’s CEE ini-
tially fluctuated during 2000–2005 and then stabilized during 2005–2019. Cangzhou’s CEE
initially rapidly increased during 2000–2005 and then slightly declined during 2005–2019.
Chengde’s CEE exhibited significant fluctuations, with two distinct phases of continuous
increase during 2001–2008 and continuous decrease from 2011 to 2017. Handan’s CEE ex-
perienced an initial growth phase during 2000–2008, followed by a fluctuating decline after
2008, with a peak value of 0.9252 (the only CEE value above 0.9). Hengshui consistently
maintained a relatively high CEE but showed a subtle declining trend. Langfang’s CEE
slightly declined during 2000–2015, followed by a rapid increase after 2015, reaching 0.9089
in 2019. Qinhuangdao’s CEE showed no clear variation pattern and maintained relatively
high levels. Shijiazhuang’s CEE fluctuated and decreased from 0.9325 in 2000 to 0.7627
in 2019. Tangshan consistently maintained a high and stable CEE, with minimal overall
variations. Xingtai’s CEE fluctuated and decreased from 0.9060 in 2000 to 0.7666 in 2019.
Zhangjiakou’s CEE had an overall stable tendency and showed no clear variation pattern.

Figure 4. A box plot of carbon emission efficiency of 13 cities in the BTHUA. (BJ: Beijing; TJ: Tianjin;
BD: Baoding; CZ: Cangzhou; CD: Chengde; HD: Handan; HS: Hengshui; LF: Langfang; QHD:
Qinhuangdao; SJZ: Shijiazhuang; TS: Tangshan; XT: Xingtai; ZJK: Zhangjiakou).
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Figure 5. The changes in CEE of 13 cities in the BTHUA.
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From 2000 to 2019, CEE in the BTHUA exhibited distinct spatial variations, as shown
in Figure 6. The CEE values demonstrated clear spatial clustering, with noticeable clusters
of low- and high-efficiency areas. In 2000, CEE in the region exhibited a spatial distribution
characterized by two high-efficiency clusters in the southwest and northeast regions. In
2005, there were two prominent clusters emerging: a high-value area along the eastern
Bohai Sea region and an extremely low-value area encompassing Beijing and Langfang. By
2010, the spatial distribution became relatively homogeneous, with a slightly lower CEE
zone in the Baoding–Langfang–Tianjin region across the east–west axis, while Tangshan,
Cangzhou, and Hengshui displayed higher efficiency values in the eastern zone. In 2015,
Tianjin city exhibited extremely low CEE values, leading to an overall spatial distribution
pattern characterized by lower efficiency in the northwest and higher efficiency in the
southeast. By 2019, there was a clear spatial distribution pattern in the CEE values, with a
gradual increase from the southwest to the northeast.

Figure 6. The spatial distribution of carbon emission efficiency.

5.3. Influencing Factors of Carbon Emission Efficiency

Based on the established influencing factor index shown in Table 4, the regression
model provided the coefficients for the factors influencing CEE. GDP per capita had a
significantly positive effect on CEE, with an estimated coefficient β1 of 0.0633, indicating
that higher economic development levels led to greater CEE. Carbon emissions per capita,
employment per ten thousand people, and total assets per capita as basic input factors
had significantly negative effects on CEE, with estimated coefficients (β2, β3, and β4) of
−0.0175, −1.3569, and −0.0540, respectively. This indicated that higher values of these
input factors resulted in lower CEE.
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The proportion of urban population significantly promoted CEE, with an estimated
coefficient β5 of 0.6732, which suggested that higher levels of urbanization led to greater
CEE. Population density did not have a significant effect on CEE. The impact of industrial
structures on CEE was relatively weak. The proportion of the tertiary sector’s GDP had
a positive effect on CEE at a 10% significance level, with an estimated coefficient β8 of
0.0119, which indicated that a higher proportion of the tertiary sector’s GDP led to greater
CEE. This suggested that more advanced industrial structures resulted in higher CEE and
that industrial updates could improve productivity efficiency. Energy consumption per
unit of GDP, the proportion of foreign direct investment in GDP, and the proportion of
local government fiscal expenditure in GDP had estimated coefficients (β9, β9, and β11)
of −0.0001, −0.5687, and −0.8530, respectively, all at a 1% significance level. This implied
that an increase in energy intensity, the level of opening up, and government intervention
all led to lower CEE. The impact characteristics of the influencing factors on CEE indicated
that economic growth incurred a substantial carbon emission cost to the BTHUA in recent
years. Therefore, the results highlighted the continued close relationship between economic
development and carbon emissions in the region, suggesting that a decoupling of the two
factors had not yet been achieved in the BTHUA.

Table 4. The regression results for the influencing factors of carbon emission efficiency.

Coefficient
Influencing

Factor
Coef. Value Std. Err. t P > |t|

β1 gdpit 0.0633 *** 0.0051 12.3100 0.0000
β2 carit −0.0175 *** 0.0020 −8.8500 0.0000
β3 labit −1.3569 *** 0.1032 −13.1500 0.0000
β4 capit −0.0540 *** 0.0077 −7.0500 0.0000
β5 urbit 0.6732 *** 0.0782 8.6100 0.0000
β6 popit 0.1717 0.2531 0.6800 0.4980
β7 ind2it 0.1530 0.2331 0.6600 0.5120
β8 ind3it 0.0119 * 0.0053 2.2600 0.0250
β9 eneit −0.0001 *** 0.0000 −5.2300 0.0000
β10 opeit −0.5687 *** 0.1622 −3.5100 0.0010
β11 govit −0.8530 *** 0.1249 −6.8300 0.0000

_cons - 0.7686 *** 0.1960 3.9200 0.0000

Log-likelihood = 335.8917
Prob > chi2 = 0.0000
LR chi2 (11) = 216.95
Pseudo R2 = −0.477

*, **, and *** represent significance levels at 10%, 5%, and 1%, respectively.

6. Discussions

6.1. Variations in Influencing Factors

To further analyze the changes in influencing factors affecting CEE, Figures 7 and 8
illustrate the variations in influencing factors from 2000 to 2019. All 13 cities experienced
a rapid increase in GDP per capita, with Beijing and Tianjin consistently maintaining
leading positions. Carbon emissions per capita in most cities initially increased and then
slightly decreased or stabilized. Langfang and Tangshan had higher carbon emissions
per capita, showing a trend of an initial increase followed by a decrease. Meanwhile,
Beijing, Cangzhou, Handan, Langfang, and Tangshan exhibited a trend of an initial increase
and then a decrease, while Tianjin, Qinhuangdao, and Shijiazhuang showed an initial
increase followed by stabilization. Specifically, in Baoding, Chengde, Hengshui, Xingtai,
and Zhangjiakou, the carbon emissions per capita fluctuated and increased during the study
period. The changes in employment per ten thousand people were not highly pronounced,
except in Beijing and Tianjin, which stood out with notably higher employment. Hebei,
Tangshan, Qinhuangdao, and Shijiazhuang had relatively higher employment compared
with the other cities, while Xingtai exhibited notably lower employment. Total assets per
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capita rapidly increased in all 13 cities, with Tianjin, Shijiazhuang, Tangshan, and Langfang
experiencing particularly fast growth, reaching high levels by 2019.

The urbanization level significantly increased during the period, with Beijing and
Tianjin consistently maintaining high levels. Among the 11 cities in Hebei, there was a
notable increase, with the urbanization levels of Shijiazhuang, Tangshan, Qinhuangdao,
and Langfang all exceeding 60% by 2019. Significant differences in population density were
observed among the 13 cities, with Beijing and Tianjin having higher population densities,
while Chengde and Zhangjiakou had lower ones. The industrial structure in the BTHUA
underwent notable changes. Beijing consistently maintained the lowest proportion of the
secondary sector’s GDP, which has fallen below 40% since 2000. In the other 12 cities, the
proportion of the secondary sector’s GDP generally slightly increased or stabilized and then
significantly decreased. Correspondingly, the proportion of the tertiary sector’s GDP in
Beijing significantly increased, while in the other 12 cities, it slightly decreased or stabilized
and then significantly increased. The level of openness was relatively high in Beijing and
Tianjin, showing a trend of an initial decrease and then an increase. In contrast, a notable
gap was observed in the other 11 cities compared with Beijing and Tianjin. Government
intervention rapidly increased during the period. In 2019, Zhangjiakou, Xingtai, Hengshui,
Chengde, Baoding, Tianjin, and Beijing had relatively high proportions of local government
fiscal expenditure, whereas Tangshan had the lowest proportion.

Figure 7. Changes in the fundamental influencing factors of CEE. (BJ: Beijing; TJ: Tianjin; BD: Baoding;
CZ: Cangzhou; CD: Chengde; HD: Handan; HS: Hengshui; LF: Langfang; QHD: Qinhuangdao; SJZ:
Shijiazhuang; TS: Tangshan; XT: Xingtai; ZJK: Zhangjiakou).
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Figure 8. Changes in the influencing factors of carbon emission efficiency. (BJ: Beijing; TJ: Tianjin;
BD: Baoding; CZ: Cangzhou; CD: Chengde; HD: Handan; HS: Hengshui; LF: Langfang; QHD:
Qinhuangdao; SJZ: Shijiazhuang; TS: Tangshan; XT: Xingtai; ZJK: Zhangjiakou).

6.2. Impact of Influencing Factors

This paper analyzed the spatial and temporal characteristics of CEE and its influencing
factors in the BTHUA from 2000 to 2019. The estimated CEE exhibited a fluctuating pattern,
characterized by multiple stages of growth and decline. These results were influenced
by the data from the input and output variables needed in the CEE estimation model.
The overall weak increasing trend in CEE was consistent with the development of socio-
economic conditions. Improvements in technology and science are expected to increase
CEE. Therefore, the temporal variations in CEE were consistent with the general patterns of
economic development. Similarly, other related studies also found overall increases in CEE
in Shanxi, China [47], China’s industrial sectors [48], and 59 countries worldwide [49]. In
terms of spatial patterns, CEE showed an obvious spatial aggregation, which was consistent
with the findings of Wang et al. (2019) [14] and Du et al. (2022) [7]. This indicated the
presence of spatial spillover effects in CEE.
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The influencing factors of CEE have been changing, without a fixed impact magnitude
or direction. Sun and Huang (2020) found an inverted U-shaped relationship existing
between urbanization and CEE [50]. Wang and Ma (2018) found the industrial structure
and energy structure made obvious impacts on CEE [51]. Other studies have also explored
the impacts of other factors on CEE, finding that digital investment [52], oil prices [53], and
technology progress [49] all have positive impacts on CEE. Social progress, economic devel-
opment, optimizing the energy structure, adjusting the industrial structure, and promoting
technological progress are effective measures to achieve high-quality development.

6.3. Policy Recommendations

Based on the spatial and temporal characteristics of CEE and its influencing fac-
tors in the BTHUA, we propose the following suggestions to improve CEE and achieve
high-quality development involving energy optimization, industry-structure upgrading,
innovation, and technology promotion.

Firstly, reducing fossil fuel consumption can directly reduce carbon emissions and
negatively impact CEE. Replacing fossil energy with clean and renewable sources is also a
valid pathway to improve CEE. Reducing carbon emission sources can promote the decou-
pling of carbon emissions and high-density fossil energy from economic growth. Secondly,
the proportion of the tertiary sector’s GDP has a positive effect on CEE. Promoting indus-
trial transformation and upgrading can increase the proportion of the tertiary sector [54].
Promoting the development of the service sector contributes to high-quality development
and industrial structure optimization. Thirdly, it is important to fully leverage the power
of knowledge and technology to promote high-quality development. The government
should encourage the development of high and new technologies, gradually transitioning
from labor- and material-intensive industries to the knowledge- and technology-intensive
industries [55,56]. Fourthly, enhancing carbon sequestration can absorb carbon emissions
emitted from product activities, contributing to carbon neutrality. Nature-based solutions
can assist with ecological planning and address environmental problems [57]. All these
policy recommendations contribute to regional high-quality development.

7. Conclusions

Against the backdrop of climate change and rapid economic development, we focused
on CEE and its influencing factors in the BTHUA. A reliable CEE estimation model was
constructed using SFA. The CEE of 13 cities from 2000 to 2019 was estimated. The influenc-
ing factors of CEE were further analyzed to incorporate comprehensive socio-economic
factors, including the urbanization level, industrial structure, and population density.

The mean value of CEE among the 13 cities fluctuated and increased during 2000–
2019. Significant differences were observed in the CEE levels among the 13 cities. Specifi-
cally, Beijing’s CEE fluctuated and increased, Tianjin’s CEE followed an N-shaped trend,
Baoding’s CEE initially decreased with fluctuations and then stabilized, Cangzhou’s CEE
initially increased and then stabilized, and the CEE of the other cities exhibited irregular
changes. Moreover, CEE displayed significant spatial clustering characteristics across the
BTHUA. Input-related influencing factors had significant effects on CEE, including the
carbon emissions per capita, employment per ten thousand people, and total assets per
capita. Moreover, the urbanization level had a significant positive effect on CEE. Industrial-
structure upgrading could help to increase CEE. Energy intensity, the level of openness,
and government intervention were all negative influencing factor parameters. All these
results indicated that development is still at a stage of heavy reliance on a large amount of
human and material resources in the BTHUA. In the future, the government should focus
on the development of knowledge- and technology-intensive industries and pursue the
decoupling of economic development and carbon emissions, thereby contributing to the
achievement of regional high-quality development.
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Abstract: Attaining optimal eco-efficiency is of paramount importance in promoting the sustainable
and harmonious development of the economy and environment within urban agglomerations. Firstly,
this paper utilizes the Super-SBM model with undesirable output to measure the eco-efficiency (EE)
of 64 cities in the Beijing–Tianjin–Hebei metropolitan region (BTHMR), the Yangtze River Delta
(YRD), the Pearl River Delta (PRD), and the Chengdu–Chongqing Economic Zone (CCEZ) from
2006 to 2019. Secondly, this study puts forth a novel and comprehensive index system aimed at
evaluating the urbanization efficiency and sheds light on the spatiotemporal changes in EE and
urbanization efficiency. Finally, the STIRPAT model is used to examine the influencing factors of EE
and to investigate the correlation between EE and urbanization efficiency. The study found that the
overall EE of the four typical urban agglomerations is high, but the trend varies with a decrease of
about 12.9% from 2006 to 2019. The mean EE is in the order of CCEZ > PRD > BTHMR > YRD, with
mean values of 0.941, 0.909, 0.842, and 0.732, respectively. The level of science and technology and
the urbanization efficiency have a significant positive impact on EE, while population, industrial
structure, FDI, and greening level have an inhibitory effect on urban eco-efficiency. Based on the
results, policy suggestions such as paying attention to regional heterogeneity and giving full play
to the government’s macro-regulatory role in shaping the economic and industrial structure are
proposed to serve as a guide for the coordinated development of urban agglomerations under the
Dual Carbon Target.

Keywords: eco-efficiency; urbanization efficiency; US-SBM; STIRPAT; influencing factors; urban
agglomerations

1. Introduction

Following China’s reform and opening up, the nation’s urbanization rate has expe-
rienced a rapid surge, with urban agglomerations emerging as the key regions driving
China’s economic development. As of 2019, 19 urban agglomerations in China accounted
for 75% of the country’s population and contributed 88% of its GDP [1]. The “people-
oriented” new-type urbanization is more in line with the development law and meets
people’s aspirations for better living quality. In this context, the collaborative development
of urban agglomerations has become an important trend and Chinese urbanization main-
stream [2]. In particular, major regional strategies such as the coordinated development
of the Beijing–Tianjin–Hebei region, integrated development of the Yangtze River Delta,
and the construction of the Guangdong–Hong Kong–Macao Greater Bay Area have been
further implemented. The construction of the Chengdu–Chongqing economic Zone in
southwest China has been actively promoted. City agglomerations and urban areas have
expanded, significantly enhancing economic and international influence. At the same time,
rapid development has been accompanied by neglect of the urban population carrying

Land 2023, 12, 1275. https://doi.org/10.3390/land12071275 https://www.mdpi.com/journal/land123



Land 2023, 12, 1275

capacity, shortage of natural resources, and deterioration of the ecological environment. Ex-
tensive development, consuming high levels of energy, producing high levels of pollution,
and operating with low efficiency, still exists. Urban agglomerations, the central focus of
China’s new urbanization, have become the key propellant of high-quality economic and
social progress. They are entrusted with the dual responsibilities of promoting economic
development and environmental protection through measures such as building a strong
economic base, optimizing the industrial structure, and promoting coordinated regional
development [3]. China’s economic growth is shifting from the pursuit of ‘high speed’ to a
focus on quality growth. The previous extensive development pattern is clearly inappro-
priate. How to encourage the urban agglomerations growth while effectively maximizing
economic output, minimizing environmental degradation, and achieving sustainability,
has become an important concern.

Eco-efficiency (EE), a tool for assessing the low carbon extent and the economic sus-
tainability of a region [4], effectively gauges the correlation between economy, environment,
resources, and development [5]. It is not only an inherent requirement for the coordinated
development of new-type urbanization and ecology, moreover, it serves as a crucial foun-
dation for evaluating the efficacy of the construction of urban ecological civilization [6].
Understanding EE has a practical significance in addressing and achieving socio-economic
development, and further delving into its connection with urbanization can offer guide-
lines and policy suggestions for putting the “innovation, coordination, green, open and
shared” concept into practice, thus promoting achievement of sustainability under the Dual
Carbon Target.

In view of this, this paper takes typical urban agglomerations in China as case exam-
ples to scientifically measure eco-efficiency and urbanization efficiency and explore the
spatiotemporal evolution in urban agglomerations. We further identify factors affecting
eco-efficiency, delve into its relationship with urbanization, and provide guidance and
policy recommendations for achieving sustainable development.

The remainder of this paper is structured as follows: Section 2 is a literature review.
Section 3 outlines the research methodology and provides an overview of the data sources
employed. Section 4 presents the findings pertaining to EE and the urbanization efficiency,
and subsequently undertakes an analysis of their interrelationship. Section 5 constitutes a
discussion of the research outcomes and offers recommendations for policy formulation.
Finally, in Section 6, the paper concludes with a summary of main conclusions and policy
implications.

2. Literature Review

Eco-efficiency was first proposed by Schaltegger and Sturm [7]. Subsequently, the
strategy was further elaborated and promoted by the World Council for Sustainable De-
velopment and the Organization for Economic Development Cooperation. The crux of
eco-efficiency lies in attaining optimal economic gains through minimal resource consump-
tion and environmental expenses [8], existing research of which is mainly focused on the
selection and measurement of indicators, spatial and temporal patterns, spatial convergence
and spillover effects, evaluation, and optimization. Several researchers have discussed and
analyzed the spatiotemporal evolution of EE at the national, provincial, and municipal
scales, successfully applying the results to a wide range of fields, subjects, and sectors, such
as industrial, agricultural, and eco-economic efficiency. Urbanization efficiency, as a crucial
benchmark of high-quality urban development, is frequently assessed by comparing the
output or efficacy of input resources. Scholars that explored urban [9], district, and county
development efficiency as well as urban industrial efficiency [10], have conducted research
on methods and models for measuring efficiency [11].

Research on assessing EE has attracted a great deal of academic attention. The indicator
system approach [12], life cycle assessment [13], data envelopment analysis (DEA) [14],
and stochastic frontier analysis (SFA) [15] are the key techniques for measuring EE and
urbanization efficiency. Wursthorn et al. (2011) established an accounting framework

124



Land 2023, 12, 1275

for evaluating eco-efficiency in European countries. This approach combines economic
and ecological indicators to provide a comprehensive assessment [16]. Margarita et al.
(2015) specified a new stochastic frontier model to evaluate the resource and environmental
efficiency of European countries [17]. Compared to SFA models, DEA models and their
extended versions based on linear programming, which do not require the specification of a
specific form of production function, are more objective and widely used [18]. For example,
Bai et al. (2018) employed a super-efficient DEA model to assess the correlation between
urbanization and urban eco-efficiency in China between 2006 and 2013 [19]. Shi et al.
(2023) used a two-stage DEA model to measure and analyze the eco-efficiency of urban
agglomerations over the past 15 years, based on four major urban agglomerations along
the eastern coast of China, to reveal the internal connections between integrated efficiency
and sub-stage efficiency [20]. However, DEA is radial in nature and solely accounts for
proportional transformations in input or output elements. As a result, it ignores non-radial
slack variables and does not include non-desired output indicators, which can easily lead
to high measured efficiency values. In this regard, Tone et al. (2001) proposed a non-radial,
non-oriented SBM based on slack variables, which effectively solves the problems posed
by slack variables [21]. However, the SBM cannot distinguish and rank multiple valid
decision units. For this purpose, Tone et al. (2002) further presented the Super-SBM and
constructed the undesirable slacks-based measurement (Undesirable SBM) to distinguish
the attributes of outputs, this approach effectively addresses the challenge of comparing
multiple decision-making units [22]. Using a panel dataset from 2005–2014, Zhou et al.
(2018) assessed the eco-efficiency of 21 cities in Guangdong Province, China, which was
achieved through the utilization of the Super-SBM that considers undesirable output and
the Topsis [23]. Based on previous research, in this paper, we employ a Super-SBM model
incorporating undesirable outputs to gauge the EE and urbanization efficiency.

Recently, the government of China works fixedly to achieve sustainable urban de-
velopment, which aims to strike a balance between economic outputs and environmental
protection. The analysis of influential factors of eco-efficiency assists positively in enhancing
eco-efficiency and the achievement of sustainable regional development. Current research
methods on influencing factors include spatial panel regression techniques [24], IPAT mod-
els, STIRPAT models [25,26], geodesic probes [27], Tobit regression models [28], quantile
regression models [29], systematic GMM models, and spatial econometric models [30]. Fang
and Wang (2013) performed a theoretical examination of the interactive coercive effects
between urbanization and ecology [31]. Wang et al. (2014) presented a thorough system of
indicators to assess urbanization and EE and analyze their correlation [32]. The IPAT was
first proposed by Ehrlich and Holdren (1971), who attributed the effects of human activities
on the surroundings to population, affluence, and technology level [33], and subsequent
researchers developed an extend STIRPAT by introducing differential elasticity and random
error terms [34]. In recent years, STIRPAT has become widespread in impact factor analysis.
Scholars have extended the traditional STIRPAT from the perspectives of urbanization,
trade, and investment, using a series of improved panel models to explore the interaction
between urbanization and EE and the external influences on EE. Zhang et al. (2018) used
STIRPAT to evaluate the influence of urbanization on CO2 emissions in 141 countries [35].
Luo et al. (2013) utilized STIRPAT to investigate the correlation between urbanization and
EE with empirical data at the provincial level [36]. Grossman further revealed the intrinsic
“U” shaped pattern between urbanization and ecology (EKC) [37]. Moreover, the EE’s
influential factors of different cities vary due to factors such as regional conditions, resource
endowment, economic development patterns, and policy orientation [38]. Existing studies
in the literature suggest that EE is influenced by environmental regulation, foreign direct
investment, industrial infrastructure, urbanization efficiency, technological innovation, and
economic agglomeration [39]. Chang et al. (2020) argued that foreign investment brought
negative ecological benefits and that the Yangtze River Delta overall was in line with the
“pollution paradise” hypothesis. Wu et al. (2016) found a high proportion of secondary
sectors inhibited EE when studying its factors in Jiangsu Province [40]. In this paper, we
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select the most appropriate influencing factors based on their frequency of occurrence
and the availability of relevant data and use an extended STIRPAT model to analyze their
relationship with eco-efficiency.

However, the majority of scholars have concentrated on analyzing eco-efficiency ei-
ther on a macro level throughout China or in a particular geographical area, and there
is a paucity of research conducted on several significant urban agglomerations in China.
Moreover, few studies on the spatiotemporal evolution patterns among the four major
urban agglomerations in China have covered recent years, and studies on the factors influ-
encing urban eco-efficiency are relatively scarce. Some studies have even ignored assessing
unexpected outputs. Therefore, based on the 2006–2019 panel dataset, the Super-SBM
model incorporating undesirable outputs was developed to gauge the EE and urbaniza-
tion efficiency of 64 cities located within the BTHMR, the YRD, the PRD, and the CCEZ.
Furthermore, we applied an extended STIRPAT model combined with spatial panel Tobit
analysis to explore the determinants of urban EE.

3. Methodology and Data

3.1. Study Area

Based on the relevant research results on urban agglomerations in China [41,42], and
taking into account the defined scope and data availability of the planning documents of
each urban agglomeration, 64 cities in four national urban agglomerations (Figure 1) were
taken as the spatial scale research objects, namely the Beijing–Tianjin–Hebei metropolitan
region (BTHMR), the Yangtze River Delta (YRD), the Pearl River Delta (PRD) and the
Chengdu–Chongqing Economic Zone (CCEZ), which are key construction areas. The
research samples covered four municipalities directly under the central government, namely
Beijing, Tianjin, Shanghai, and Chongqing, as well as cities at the prefecture level and above
in six provinces, namely Hebei, Jiangsu, Zhejiang, Anhui, Guangdong, and Sichuan.

Figure 1. Distribution of the four typical urban agglomerations.
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3.2. US-SBM Model

This study employs a US-SBM model that considers undesirable outputs and com-
bines the advantages of the SBM and super-efficiency model. This model considers input
relaxation and effectively measures the EE in the presence of undesirable outputs, enabling
the comparison of multiple efficient DMUs and solving the issue of the inability to rank
efficiency values. The super-SBM provides a more in-depth characterization of the cities’ EE
and sheds light on the characteristics and evolution process of green development in China’s
four national urban agglomerations. Specifically, this study constructs a Super-SBM with
undesirable outputs (US-SBM) to measure the EE of 64 cities in the four national urban ag-
glomerations and distinguishes efficient decision-making units at the boundary in the pres-
ence of undesirable outputs. Suppose there is n DMUs and each decision cell consists of m
kinds of inputs (x), q1 kinds of desired outputs (yg) and q2 kinds of undesirable outputs (yb).
The input variables x, the desired output variables yg, and the undesirable output variables
yb are matrices, where x = [x1, x2, . . . , xn], yg =

[
yg

1, yg
2, . . . , yg

n

]
, yb =

[
yb

1, yb
2, . . . , yb

n

]
,

γ is the weight vector, and the set of production possibilities with variable payoffs to scale
is p =

{[(
x, yg, yb

)∣∣∣x ≤ xγ, yg ≤ ygγ, yb ≤ ybγ
]}

, the specific model is constructed as
follows [43]:

minρ=
1 + 1
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s− > 0, sb− > 0, sg+ > 0, γ > 0
i = 1, 2, · · · , m; r = 1, 2, · · · , q; j = 1, 2, · · · , n(j �= k)

(2)

where is the number of decision units, m, q1, and q2 represent the number of input indicators,
desired outputs, and undesired outputs, respectively, k is the number of units being
evaluated. i, r, t denotes the i-th input, the r-th desired output, the t-th undesired output,
respectively. s− is the number of input redundancies, sg+ denotes the desired output
shortfall, and sb− denotes the undesired output redundancies. xij denotes the i-th input of
the j-th decision unit. yrj is the r-th desired output of the j-th decision unit and ytj is the
t-th undesired output of the j-th unit. ρ is the efficiency value, when ρ < 1, the decision unit
is in an inefficient state; when ρ ≥ 1, the decision unit is in an efficient state.

3.3. STIRPAT Model

This study examines the factors influencing EE and explores the relationship between
urbanization and EE by the STIRPAT model. The factors considered in the model in-
clude population, industrial structure, urbanization efficiency, openness to foreign trade,
technological innovation, and green coverage level. The original form of the STIRPAT is
as follows:

Ii = aPi
b Ai

cTi
d (3)

where I, P, A, and T denote environmental pressure, population size, affluence, and tech-
nology level, respectively, a is the model coefficient, and e is the error term.
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In practical applications, the two sides of the model are usually logarithmized for
regression analysis, and model (3) becomes:

lnIi = lna + blnPi + clnAi + dlnTi + lnei (4)

Based on the literature review conducted earlier on the factors influencing eco-
efficiency, this study categorized these factors based on their frequency of occurrence
and the availability of relevant data, the total population (POP), the Share of secondary
sector in GDP (IS), the urbanization efficiency (URB), the expenditure on science and tech-
nology (TEC), the actual amount of foreign capital used (FDI), and the greenery coverage
of built-up area (GRE) are used as explanatory variables and eco-efficiency (EE) serves as
the explained variable in 64 cities from 2006 to 2019. We extended the STIRPAT model to
the following form:

ln(EE) = a0 + bln(POP) + cln(IS) + dln(URB) + eln(FDI) + f ln(TEC) + gln(GRE) + e0 (5)

where b, c, d, e, f, and g correspond to the model parameters, respectively, and the positive
elasticity coefficient of the explanatory variable indicates a positive effect on the explained
variable and vice versa. Moreover, the magnitude of the elasticity coefficient reflects
the strength of the relationship between the explanatory variable and the dependent
variable [32]. The significance of the elasticity coefficient is determined using p-values.
When the p-value is less than 0.1, 0.05, or 0.01, the elasticity coefficient is significant at the
10%, 5%, and 1% levels, respectively, e0 is the error value.

The appropriate econometric method can be used to estimate the parameters of the
above model under the meeting of the corresponding hypotheses. However, there may be
heteroscedasticity issues and interference terms may be correlated between different cities
within the same province at the prefecture level due to the use of city-level data in this study.
Additionally, the Super-SBM model is utilized to calculate the dependent variable and has
a lower limit of 0 due to truncation of the data. If ordinary least squares (OLS) regression is
directly used, there may be biased and inconsistent parameter estimation issues [44–46].
Therefore, through the F-test and Hausman test, the fixed-effects Tobit regression is chosen
to investigate the factors affecting EE.

3.4. Index System Construction

The World Business Council for Sustainable Development (WBCSD) provides a range
of input–output indicators as alternative indicators, among which labor, material resources,
land, and capital are the primary input indicators [47]. In accordance with the principles of
scientific rigor, objectivity, systematic analysis, and data availability, this study constructed
separate evaluation index systems for eco-efficiency and urbanization efficiency by refer-
ring to relevant literature [43,48]. The evaluation index system for EE includes five input
indicators: total fixed asset investment, year-end number of employees, total water supply,
administrative land area, and urban electricity consumption. Total fixed asset investment
represents the capital element, year-end number of employees represents the labor element,
and total water supply, administrative land area, and urban electricity consumption repre-
sent the resource element. The index system also includes four output indicators: regional
GDP representing the regional economic scale, sewage discharge, exhaust emission (SO2),
and dust emission as undesirable outputs representing urban ecological benefits level.

The urbanization efficiency evaluation index system includes four input indicators,
i.e., built-up area, total fixed assets investment, fiscal expenditure, and year-end numbers
of employees, where the input indicators include the land element represented by the
built-up area, the capital element represented by the total fixed assets investment and
fiscal expenditure, and human capital represented by year-end numbers of employees.
Output indicators are residents’ savings deposits and total retail sales of consumer goods,
which represent economic scale and social consumption level, respectively. The evaluation
indicator system is shown in Table 1.

128



Land 2023, 12, 1275

Table 1. Evaluation index system of urbanization efficiency and eco-efficiency.

Purpose Variables Criteria Indicators Unit

Eco-efficiency

Input variables

Capital element input Total fixed assets investment 104 Yuan

Resource element input
Administrative land area km2

Urban electricity consumption 104 kwh
Total water supply 104 t

Labor factors input Year-end number of employees 104 person

Output variables

Desirable output Regional GDP 104 Yuan

Undesirable output
Sewage discharge 104 t

Exhaust emission (SO2) t
Dust emission t

Urbanization
efficiency

Input variables

Human capital input Year-end number of employees 104 person

Capital element input Total fixed assets investment 104 Yuan
Fiscal expenditure 104 Yuan

Land element input Built-up area km2

Output variables Scale of the city’s
economy

Total retail sales of consumer goods 104 Yuan
Residents’ savings deposits 104 Yuan

To reflect the comprehensive influence of population, industrial structure, technology,
greening level, degree of external openness, and urbanization efficiency, respectively, we
selected the total population, the Share of secondary sector in GDP, the expenditure on
science and technology, the greenery coverage of built-up area, the actual amount of foreign
capital used, and the urbanization efficiency, as influencing factors in this paper (Table 2).

Table 2. STIRPAT variable names and descriptions.

Variable Type Variables Symbols Indicators Unit

Explained variables Eco-efficiency EE Eco-efficiency values %

Explanatory variables

Population POP Total population 104 person
Industrial structure IS Share of secondary sector in GDP %
Technology input TEC Expenditure on science and technology 104 Yuan

Greening level GRE Greenery coverage of built-up area %
Degree of external openness FDI Actual amount of foreign capital used 104 $

Urbanization efficiency URB Urbanization efficiency values %

3.5. Data Source

This study utilized panel data spanning from 2006 to 2019, which was primarily
sourced from the China City Construction Statistical Yearbook (2007–2020) and statistical
yearbooks and bulletins from various provinces. For variables with missing data, mean
imputation and moving average methods were employed for estimation. The related price
indices were used to adjust the data to a common baseline of 2006 in order to take into
account indicators that may be impacted by price factors, such as GDP and fixed asset
investment. Descriptive statistical data of variables in the US-SBM model are presented in
Table 3. It is noteworthy that some variables exhibit maximum values tens of times greater
than their corresponding minimum values, indicating significant differences between cities
and considerable temporal variation in urban economic activities.
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Table 3. Descriptive statistics of input and output variables.

Variable Unit Obs Mean Std. Dev. Min Max

Total fixed assets investment a 108 Yuan 896 1000 158 12.14 10,400
Administrative land area km2 896 2637.54 4381.70 115 43,263

Urban electricity consumption 104 kwh 896 2,172,687 2,846,518 49,826 15,714,000
Total water supply 104 t 896 31,066.36 54,248.76 23 349,481

Year-end number of employees 104 person 896 74.54 131.46 2 819
Regional GDP a 108 Yuan 896 2320 40,100 41.8741 27,800

Sewage discharge 104 t 896 11,986.30 13,162.75 232 91,260
Exhaust emission (SO2) t 896 60,370.82 77,906.86 978 682,922

Dust emission t 896 34,735.23 85,485.82 162 1,859,866
Fiscal expenditure a 108 Yuan 896 261.33 567.02 3.09 4740

Built-up area km2 896 228.94 301.17 19 1515
Total retail sales of consumer goods a 108 Yuan 896 1130 14,700 45.54 9450

Residents’ savings deposits a 108 Yuan 896 1880 3610 42.84 25,600
a At 2006 price.

4. Results

4.1. Analysis of the Evolution of Spatiotemporal Patterns of Eco-Efficiency

Based on US-SBM, this study measured the EE of 64 cities in China’s four typical urban
agglomerations from 2006 to 2019. The findings revealed average EE in the four areas was
0.866 during this period, indicating a moderately high level of EE, and their development
trends exhibited variations. However, the overall EE level showed a downward trend
(Figure 2), declining by approximately 12.9%. During the period between 2006 and 2019,
the EE mean values of the four clusters in China were sorted in decreasing order as
follows: CCEZ > PRD > BTHMR > YRD, with mean values of 0.981, 0.909, 0.842, and
0.732, respectively. Further examination of the eco-efficiency within each urban cluster
revealed that, in 2006, a total of 36 cities had mean eco-efficiency values greater than 1,
which accounted for 56.25%, 77.78%, 61.54%, and 46.15% of the cities in the CCEZ, the
PRD, the BTHMR, and the YRD, respectively. These cities were Zhoushan, Tongling,
Shanghai, and Wuxi in the YRD; Dazhou, Deyang, Guang’an, Suining, and Ziyang in
the CCEZ; Shenzhen, Guangzhou, and Foshan in the PRD; and Beijing, Tianjin, Xingtai,
Cangzhou, Langfang, and Hengshui in the BTHMR. By 2019, the number of cities that had
reached the optimal frontier surface had decreased to 25, accounting for 38.46%, 55.56%,
53.85%, and 18.75% of the YRD, the PRD, the BTHMR, and the CCEZ, respectively. More
importantly, both the PRD and the CCEZ experienced significant declines in the number of
cities that had reached the optimal frontier. In 2013, the mean EE values of the four urban
agglomerations were relatively low, primarily due to the slowing down of economic growth
in 2012. In an effort to maintain economic increase, the urban agglomerations accelerated
the development of high-polluting, high-energy-consuming, and high-emission industrial
projects, which caused a decrease in EE. However, since the Chinese government proposed
the concept of high-quality development in 2017, governments at all levels have begun
to attach greater importance to ecological environmental protection and the promotion
of resource utilization efficiency. Consequently, the downward and fluctuating trend in
EE has gradually slowed down. Analyzing observations from three cross-sectional time
points in 2006, 2013, and 2019, Shenzhen was consistently ranked first in eco-efficiency. As
the window of China’s reform and opening up, Shenzhen not only presents as a highly
developed modern international city, but also has been awarded the dual honors of being a
national ecological civilization construction demonstration area and a “Clear waters and
green mountains are as valuable as mountains of gold and silver” practice innovation base
in China. Shenzhen fully implemented the concept of ecological civilization, adhered to
the synchronous development of park construction and special zone construction, and led
the way in China. Conversely, cities such as Luzhou, Leshan, and Handan have relatively
backward industrial development levels and economic levels, with low efficiency in factor
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aggregation and allocation, resulting in less obvious production scale effects [49]. As a
result, these cities have been consistently ranked at the bottom.

Figure 2. Changes of eco-efficiency in four urban agglomerations from 2006 to 2019.

EE values of the four urban agglomerations were classified into five levels using
ArcGIS 10.3, according to the trend of changes observed. Level I (EE > 1.4) represents the
highest EE, classified as a super-high level; Level II (1.1 < EE < 1.4) represents cities with
high EE, classified as a high level; Level III (0.8 < EE < 1.1) represents cities with moderately
high EE, classified as a moderately high level; Level IV (0.4 < EE < 0.8) represents cities with
moderately low EE, classified as a moderately low level; and Level V (EE < 0.4) represents
cities with low EE levels, classified as a low level. These five levels were used to classify
urban efficiency into low, medium-low, moderately high, high, and super-high.

The overall mean EE of BTHMR is 0.842, ranking third among the four urban ag-
glomerations. However, EE mean value fluctuated between 0.75 and 0.95, indicating an
unstable development trend. The mean EE value in 2006 was 0.862, whereas in 2019, it
decreased by approximately 10.3% to 0.773. The BTHMR demonstrated a mature cell-like
structure [30], with Beijing, Tianjin, and the surrounding areas acting as the “cell nucleus”
and the surrounding region of the capital economic belt serving as the “cell cytoplasm”.
From 2006 to 2019, EE of the BTHMR gradually illustrated a radial distribution pattern
of moderately high in the middle and low in the periphery (Figure 3). Beijing and Tianjin
have political advantages oriented toward resources, research advantages in knowledge
innovation, quality advantages in environmental education, and tourism advantages in cul-
tural history, which have less impact on the environment when promoting socio-economic
development. In contrast, surrounding cities such as Shijiazhuang, Zhangjiakou, Tangshan,
and Baoding mainly bear the upstream part of the regional industrial chain, which is domi-
nated by resource-based industries in their development. They are affected by the pollution
of industrial activities, which leads to a higher level of pollution discharge. Therefore, these
cities play a significant role as the cornerstone among the urban clusters, while also posing
threats to sustainability.
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Figure 3. Spatial distribution of eco-efficiency in the typical urban agglomerations. (a–c) represent
the EE of the BTHMR in 2006, 2013, 2019; (d–f) represent the EE of the YRD in 2006, 2013, 2019;
(g–i) represent the EE of the PRD in 2006, 2013, 2019; (j–l) represent the EE of the CCEZ in 2006,
2013, 2019.

The overall average value of EE of the YRD is 0.732, and the average value remains
around 0.7 in each year, with less fluctuation and more stable development. The average
value of EE in 2006 is 0.793, while in 2019 it is 0.682, a decrease of around 14%. Cities like
Shanghai, Zhoushan, Chizhou, and Tongling have been in the high-efficiency zone and
are located on the optimal frontier surface (Figure 3). While vigorously developing their
economies in recent years, the YRD has also been actively responding to and implementing
policies related to ecological and environmental management, and strictly supervising
and managing the pollution emission behavior of enterprises, making the development
of EE more stable. Zhoushan and Tongling are national forest cities with relatively high
EE by virtue of their reasonable industrial structure and lower resource consumption and
environmental pollution. The spatial distribution structure of YRD is stable from 2006 to
2019, but local differences still exist. As the springboard for China’s opening up to the
world, Shanghai benefits from advantages of a platform for foreign exchanges, the trans-
portation advantage of a port corridor, the resource advantage of natural landscape, and
the industrial advantage of high technology; focusing on foreign trade and the information
technology industry characterized by high profits and low consumption, its eco-efficiency
is consistently at a high level. In recent years, the YRD, with its superior economic base
and platform advantages, has seen the eastern coastal cities become the engine driving
the region’s development with high-tech, financial services, education, and healthcare,
and the central and western cities become the cornerstone of regional development with
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industrial manufacturing, logistics, and transportation. The YRD is seeking a high-quality
development path with parallel economy and ecology.

The overall average EE value of the PRD is 0.908, ranking second among the four
urban agglomerations. The average EE value in 2006 was 0.976, compared to 0.884 in 2019,
approximately a 9.43% decrease. Among the urban cluster, there were seven high-efficiency
cities and only one low-efficiency city, Jiangmen, in 2006, indicating a high level of EE
for the entire urban agglomeration. However, the number of high-EE cities decreased
in 2013, leading to a decline in overall eco-efficiency compared to 2006. In 2019, the
number of low and moderately low EE cities significantly increased, accounting for 44.44%.
The continuous strengthening of regional economic cooperation and the comprehensive
implementation of the Guangdong–Hong Kong–Macao Greater Bay Area construction
have brought economic benefits to the PRD. However, this has also led to new regional
environmental problems. The spatial distribution of EE value in the PRD exhibits a radial
pattern centered on Guangzhou and Shenzhen, as shown in Figure 3. Cities such as
Shenzhen, Guangzhou, Zhongshan, and Foshan have a strong industrial foundation, high-
quality human resources, and environmentally friendly industries, primarily focused on
foreign trade, financial services, and information technology. However, small and medium-
sized cities such as Huizhou, Zhaoqing, and Jiangmen have more high-pollution industries
such as electroplating and printing, a weaker industrial foundation, and have not fully
utilized the ecological environment resources to bring higher economic benefits.

The CCEZ demonstrates a high level of eco-efficiency, with an overall mean EE value
of 0.981, despite its location in the western region and relatively weak economic foundation
due to the support of the “Belt and Road” and western development strategy, which have
increased government investment in environmental governance. However, the EE mean
value has fluctuated between 0.8 and 1.2, with a decline from a mean EE value of 1.162
in 2006 to 0.991 in 2019, representing a decline of approximately 14.7%. In terms of time
span, a declining-then-increasing trend has emerged, with the lowest point being 0.767 in
2017. In terms of spatial distribution, as shown in Figure 3, Chengdu serves as the core
leading city of the region, primarily focusing on environmentally friendly industries such
as the internet, electronic circuits, and new energy, resulting in relatively high eco-efficiency.
However, surrounding cities such as Mianyang, Yibin, and Luzhou are more involved in the
resource extraction, processing, manufacturing, and logistics industries, resulting in greater
environmental pollution. The Chengdu–Chongqing Economic Zone is mainly characterized
by “low input, low output and low pollution” and the adjustment of input and output
in the context of low economic growth rates [50]. The publication of the “Development
Plan for the Chengdu–Chongqing Urban Cluster” in 2016 officially initiated the process
of modernizing western urban areas, accelerating the socio-economic development of the
CCEZ, strengthening the flow of economic and industrial elements between cities, and
gradually forming an industrial distribution along the Yangtze River economic belt. With
the migration of people and the enhancement of scientific and innovative capabilities,
although the balance between ecosystem protection and economic growth has not yet been
established, the high-EE value zone along the Chengdu–Chongqing double-loop economic
corridor is gradually becoming clearer.

4.2. Analysis of the Evolution of Spatiotemporal Patterns of Urbanization Efficiency

This study assesses the level of urbanization in the four urban agglomerations by
constructing a novel comprehensive evaluation index system based on panel data from
64 cities between 2006 and 2019. US-SBM was employed for the evaluation, indicating
the average urbanization efficiency demonstrating an upward trend from 2006 to 2019
(Figure 4). The overall urbanization efficiency of the four urban clusters during this period
was 0.616, which falls within the medium to high range. Figure 5 displays the spatial
distribution of URB in 2006, 2013, and 2019. The findings indicated that the urbanization
efficiency was highest in eastern coastal cities such as Shenzhen, Guangzhou, and Shanghai.
However, the spatial pattern of urbanization exhibited an uneven distribution, with urban-
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ization efficiency gradually decreasing from east to west. Additionally, the number of cities
with a relatively high degree of urbanization has increased, and the spatial pattern of cities
with medium to high and medium urbanization efficiency has shown a trend of expanding
from the east to the center. Overall, the spatial pattern of urbanization efficiency in the four
urban clusters is consistent with China’s strategic planning for urban transformation.

Figure 4. Changes of urbanization efficiency in the four urban agglomerations from 2006 to 2019.

Figure 5. Spatial distribution of urbanization efficiency in the urban agglomerations. (a–c) represent
the urbanization efficiency of the BTHMR in 2006, 2013, 2019; (d–f) represent the urbanization
efficiency of the YRD in 2006, 2013, 2019; (g–i) represent the urbanization efficiency of the PRD in
2006, 2013, 2019; (j–l) represent the urbanization efficiency of the CCEZ in 2006, 2013, 2019.
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4.3. Analysis of Factors Influencing Eco-Efficiency

Based on the aforementioned STIRPAT, an empirical analysis of the factors influencing
EE in the four urban agglomerations was conducted using the STATA 16.0 software fixed-
effects Tobit regression model, and the regression is shown in Table 4.

Table 4. Panel data regression results.

Explanatory Variable Coefficient Standard Error p-Value

Cons 2.603565 *** 0.4538885 0.000
Population (lnPOP) −0.1036211 *** 0.0233198 0.000

Industrial structure (lnIS) −0.3631796 *** 0.0827074 0.000
Urbanization (lnURB) 0.0760284 ** 0.0358237 0.034

Foreign direct investment (lnFDI) −0.0358348 *** 0.0133494 0.007
Technology input (lnTEC) 0.008113 * 0.0147322 0.082

Greenery (lnGRE) −0.173352 ** 0.0718395 0.016
Note: *, **, and *** represent coefficient significant at 10%, 5%, and 1%, respectively.

The effects of total population, industrial structure, FDI, and greenery on EE show
significant negative correlation coefficients. Firstly, the total population has a significant
negative impact on EE at the 1% level. A large population puts pressure on the economy,
environment, and resources, which in turn leads to a reduction in EE and undermines sus-
tainability of urban areas. Secondly, the analysis revealed that the coefficient of industrial
structure on EE is significantly negative. Adjustments in this variable can cause changes in
energy consumption and pollution emission intensity, which can have a significant impact
on the environment. The study used the proportion of the secondary sector output to GDP
to measure the industrial structure, and found heavy industries (fossil energy, machinery
manufacturing, and assembly processing) account mainly for China’s secondary industry
and are characterized by high input and high pollution, which have a negative impact
on EE. Thirdly, the results showed that FDI negatively affected EE, and the “pollution
heaven” hypothesis is valid, which is consistent with the findings of Chang and others [51].
The study emphasized that regional competition leads to cities blindly introducing FDI,
neglecting to examine the scale, direction, and quality of investment, resulting in a large
proportion of foreign investment flowing into labor-intensive and low value-added tra-
ditional industries, which has an overall negative effect on the ecology. Additionally, the
study found the short-term and long-term effects of FDI on the environment in China differ.
In the short term, the structural and technological effects of foreign investment are greater
than the scale effects, but as time increases, the scale effects of capacity expansion will
gradually outweigh the technological spillover effects, with a corresponding increase in the
scale of environmental pollution [52] and a consequent adverse impact on EE. Meanwhile,
advanced production technologies can be introduced by way of FDI [53] to improve EE.
Therefore, rational guidance in foreign direct investment is necessary. Lastly, this analysis
revealed a negative correlation between the greening level and EE at a 5% significance level.
The study highlighted that the main forms of greening in urban built-up areas, such as
green belts and lawns, hardly constitute a complete ecosystem and to a large extent only
serve to beautify the city. This is not conducive to improving environmental quality and
instead reduces EE due to the high maintenance costs incurred later.

The technology inputs and urbanization have significant positive effects on EE at
the 5% and 10% levels, respectively. Investing in science and technology has a significant
catalytic impact on EE. “Innovation-driven” is a pivotal factor in economic transformation
and a key driver of sustainable economic growth. Progress in science and technology can
bring about technological and efficiency improvements in production and environmental
protection, which are essential for establishing a favorable development environment for
new urbanization. Technological progress can improve both factor utilization and resource
utilization rates and can facilitate the formation of innovative and high-growth sectors,
which can also increase the level of pollutant harmless treatment and effectively reduce
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resource consumption and ecological environmental pressure, thus contributing to the im-
provement of EE. The coefficient of urbanization efficiency on EE is positive, indicating that
URB can enhance eco-efficiency to a certain degree. This may be due to the fact that young
laborers from medium and small cities and rural areas will flock to regional center cities in
large numbers, bringing about the labor scale effects and industrial agglomeration effects.
Further urban development will increasingly emphasize sustainable urban transformation,
thus promoting low-carbon, green, and sustainable urban construction, transforming the
traditional extensive economy into an intensive one, and fostering the recovery of urban
eco-efficiency.

5. Discussion and Policy Suggestions

5.1. Discussion

Eco-efficiency is utilized as a metric for assessing the environmental performance of
economic activities [7] and has become a crucial criterion in the formulation of economic
and environmental advancement policies in regions and countries across the globe. Further
deepening the investigation of eco-efficiency holds immense importance in promoting sus-
tainable development. Therefore, this paper uses the period 2006–2019 as the examination
period; based on the urban agglomeration perspective, the Super-SBM model with unde-
sirable output is applied to measure the EE and urbanization efficiency of 64 cities within
the BTHMR, the YRD, the PRD, and the CCEZ, revealing the spatiotemporal evolution
patterns of eco-efficiency in the four major urban agglomerations, further identifying the
factors influencing EE by constructing the STIRPAT model, and exploring the relationship
between urbanization and EE.

Firstly, this paper distinguishes itself from prior research by conducting a comparative
analysis of EE of typical urban agglomerations in China, rather than focusing on a single
region. Simultaneously, it provides an in-depth analysis of spatiotemporal evolution
patterns of eco-efficiency. The US-SBM model, which addresses the factor relaxation issue
and accounts for undesirable output, is used to overcome the limitations of traditional
DEA and SFA models to a certain extent and provides a more accurate measurement of
EE. The findings indicate that the four major urban agglomerations possess high levels
of eco-efficiency, yet exhibit divergent development trends, with a general downward
trajectory. This trend can be attributed to a development paradigm that prioritizes GDP
growth, resulting in suboptimal resource allocation, resource depletion, and environmental
degradation. During the period of 2006−2019, the average EE value for the four major
urban agglomerations was 0.865, indicating a moderately high level of EE. Among them,
the BTHMR exhibited considerable fluctuations in EE with an unstable development
trend, the mean EE value decreased by approximately 10.3% from 2006 to 2019. The
YRD exhibited a relatively stable development trend in terms of EE, with a decline of
9.43% over the examined period. In contrast, the EE trend line of the PRD demonstrated
an overall “M” shape, characterized by significant fluctuations and a rising-declining-
rising-declining trajectory. The CCEZ showed a development trend of initially falling and
then rising, reaching its lowest point in 2017 before a subsequent increase. From 2006
to 2019, the average EE of the four typical urban agglomerations, in descending order,
are: CCEZ > PRD > BTHMR > YRD. There are structural differences in the EE of cities within
urban agglomerations, and the polarization effect of central cities needs to be strengthened.
The spatial distribution of the BTHMR presents a cellular structure with Beijing, Tianjin,
and their surrounding areas as the “cell nucleus” and the surrounding Beijing–Tianjin
economic belt as the “cytoplasm,” gradually showing a radial distribution characteristic of
high in the middle and low in the surrounding area. The spatial distribution structure of
the YRD remains stable from 2006 to 2019, but local differences still exist. The distribution
of eco-efficiency values of the PRD presents a radiation pattern centered on Guangzhou
and Shenzhen. The EE distribution characteristics of the CCEZ are relatively stable, with
Chengdu as the core city, showing a distribution feature of high in the middle and low in
the periphery.
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Furthermore, based on the extended STIRPAT model combined with fixed-effect Tobit
regression, the factors influencing EE within the four primary urban agglomerations are
identified and the correlation between urbanization and EE is explored. The results show
the TEC and URB have significant positive effects on EE, while POP, IS, FDI, and GRE have
a restraining effect on it. Among them, the effects of the level of science and technology as
well as FDI on eco-efficiency are consistent with the results of Chang (2020) [51]. In other
words, technological advances promote eco-friendly technology and EE. FDI leads to an
increase in environmental pollution, indicating a current tendency that countries in less
developed areas sacrifice resources for economic development and the lack of strict control
of environmental protection regulations [54]. Provinces that are more open to the outside
world may be more concerned about their city images. Major cities such as Shanghai and
Shenzhen still manage to counteract the negative effects of FDI by improving technology,
though this is not always effective. Moreover, the negative impact of industrial structure is
contrary to the findings of Zhang (2021) [55], which may be attributed to the selection of
indicators. This paper argues that China’s current industrial structure presents developed
third industries in developed cities such as Beijing, Shanghai, and Shenzhen. Even within
the advanced economic urban agglomerations, it is still dominated by the export of labor-
intensive products, heavy industry and heavy pollution. This industry structure limits
industrial optimization and causes environmental pressures [56]. More notably, greening
in urban built-up areas does not make a positive contribution to the EE of the four major
urban agglomerations. It is likely that the chosen indicator only represents the amount
of land allocated for greening. High greening rates on building sites can be low-quality
vegetation cover or even barren land [57], and to some extent can also hinder the efficiency
of building development resources. For example, the spacing of protective forest belts
should be set at a reasonable scale to achieve the optimal effect of wind and sand control in
a specific range of arrangement and prevent the resources waste with diminishing marginal
benefits. In this regard, the General Office of the State Council has proposed guidelines for
scientific greening.

5.2. Policy Suggestions

Through the analysis conducted in this paper, apparently, there is still room for improv-
ing the efficiency and balanced distribution of green development in China’s four primary
urban agglomerations. Additionally, it is essential for the green development of distinct
urban agglomerations to align with their respective features to achieve a comprehensive
and sustainable green transformation of China’s economy and society. To this end, several
targeted suggestions for green development in the four typical urban agglomerations are
proposed for the future.

The growth of EE seeks the coordinated development of economy, society, and the
environment, which requires structural adjustment, technical efficiency enhancement, and
policy support. Firstly, it is essential to emphasize regional heterogeneity and facilitate
coordinated development. For regions such as the YRD, the PRD, and the BTHMR, which
are already relatively developed, the preeminent status of core cities should be reinforced,
their diffusion effect amplified, and a virtuous competition mechanism of mutual support
established. We should establish an integrated development consciousness, build a plat-
form for information exchange and resource sharing, achieve functional complementarity
through horizontal dislocation and vertical division of labor cooperation, promote the
allocation of production factors in a reasonable and efficient manner, and achieve the
transformation of the eco-efficiency of developed regions from “positive internalities” to
“positive externalities” to low eco-efficiency cities in the surrounding areas. Specifically,
the implementation of Beijing’s capital function positioning should be carried out, and
attention should be paid to the policy opportunities brought by the upgrading of energy
strategies to neighboring cities. The YRD should maintain the green development momen-
tum of two types of efficient cities with industrial and ecological advantages and promote
the industrial optimization of inland cities in the Yangtze River Delta [58]. Consolidate the
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growth pole status of cities such as Guangzhou and Shenzhen, pull the green development
of the eastern and western ends of the PRD, and capitalize on the achievements of the
construction of the Guangzhou–Shenzhen–Hong Kong–Macao Science and Technology
Innovation Corridor to inject the momentum of science and technology innovation into
green development. For the CCEZ, it should proactively capitalize on our strengths and
undertake the transfer of industries from major cities, take the industrial transfer and
innovation drive as an opportunity to promote the division of labor and upgrading of
industries in each city, thus improving the layout of the industrial chain.

Secondly, in order to achieve green, circular, and low-carbon development, it is im-
perative for the government to assume a macro-regulatory role in the economy and in-
dustrial structure. Specifically, the government should incorporate the improvement of
eco-efficiency as a fundamental criterion in the performance assessment system of local
governments. Moreover, it is recommended that the government increase financial support
for environmental protection and pollution control, while simultaneously encouraging
enterprises to engage in research, development, and innovation of green technologies such
as low-carbon technologies, clean production technologies, and recycling technologies.
Simultaneously, according to the changes in regional economic development, it is essential
to promote the transformation and upgrading of the industrial structure, as well as the
transition from old to new momentum. This can be achieved by increasing the proportion
of technology-intensive industries and tertiary industries, enhancing the added value of
industries, and fostering long-term, healthy, and sustainable development of the regional
economy. Metropolitan areas can attract top-tier human resources through the implementa-
tion of a range of preferential policies, while also increasing population density within the
limits of environmental carrying capacity. Through the utilization of scale and agglomera-
tion effects, economic and environmental efficiency can be enhanced to promote sustainable
development. The government should also further enhance environmental regulations and
judiciously attract foreign investments while reducing excess investment in urban greening
and planning the greening area of cities reasonably to avoid resource wastage caused by
formalism. Furthermore, local governments should carry out reasonable planning of land
and enhance the efficiency of urban land [59]. Based on the actual situation, a rational
layout of land space should be carried out; this entails a proper distribution of production
space, living space, and ecological space within urban areas, promoting coordinated spatial
development of the city’s economy, people’s lives, and ecological environment. The govern-
ment, in conjunction with enterprises and other market players, should vigorously promote
the adoption of clean energy, improve the multi-track system of environmental regulation,
reduce industrial pollution emissions, and promote greater awareness of environmental
protection among all people.

6. Conclusions

Eco-efficiency is of vital importance in promoting the sustainable and harmonious
development of urban agglomerations under the Dual Carbon Target. In this study, we
applied the Super-SBM model incorporating undesirable outputs to measure the eco-
efficiency and urbanization efficiency of 64 cities located in the four urban agglomerations
during 2006–2019. For further analysis, we used an extended STIRPAT model combined
with spatial panel Tobit analysis to explore the determinants of eco-efficiency. In terms of
comprehensive time series development and spatial distribution, the average EE value of
the four typical urban agglomerations is 0.866, which is at a relatively high level. However,
the eco-efficiency level has demonstrated a declining trend over time, experiencing a
reduction of approximately 12.9%. This trend can be attributed to a development model
that prioritizes economic growth, leading to unsatisfactory resource allocation, resource
depletion, and environmental degradation. There exists a notable regional heterogeneity in
the structural distribution of eco-efficiency across each urban agglomeration. Major central
cities, such as Beijing, Guangzhou, Shenzhen, and Shanghai, have achieved a commendable
equilibrium between economic growth and environmental preservation. Additionally,
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these cities have a certain degree of radiation effect on neighboring regions with regards
to green development, but the degree of influence varies depending on factors such as
differing economic and industrial foundations and geographical locations. The level of
technology and urbanization exhibits a significant positive effect on eco-efficiency, while
population, industrial structure, FDI, and greening level demonstrate a suppressive effect
on urban eco-efficiency.

The aforementioned study serves to supplement the extant EE research framework and
can offer valuable insights and recommendations for the sustainable development of China
as well as other nations and holds significant international demonstrative implications.
For instance, we can promote coordinated regional development and realize the radiating
effects of eco-efficiency through measures such as industrial restructuring and technological
efficiency improvements. Alternatively, the government state strategically coordinates
the ecological development of urban agglomerations through environmental protection
regulations and scientific greening guidelines. However, there are still some limitations in
this study: This paper investigates the spatiotemporal variations in EE and its influencing
factors within China’s four primary urban agglomerations, without delving into other
regions. The present study’s selection of determinants impacting EE is not exhaustive, as
factors such as residents’ consumption and level of education, as well as environmental
policies, may also exert a certain degree of influence on EE. In the future, there is a pressing
need to undertake a more comprehensive and exhaustive investigation of eco-efficiency and
its determinants across various regions in China. Specifically, it is imperative to conduct a
comprehensive analysis of the discrepancies and formation mechanisms between urban
agglomerations at varying levels of development. Only this way will enable the formulation
of targeted policy recommendations to facilitate sustainable development.
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Abstract: Escalating urban issues in Beijing call for comprehensive exploration of urban construction
land expansion towards the goal of carbon neutrality. Firstly, urban construction land in Beijing
during the period 2005–2020 was accurately detected using Landsat images and impervious surface
data, and then its expansion characteristics were revealed. Finally, the driving mechanism of urban
construction land expansion was explored using geographically and temporally weighted regression
from the input–output perspective. The results showed that the expansion speed and intensity of
urban construction land in Beijing showed an overall tendency to slow down, and the center of urban
expansion shifted to the new urban development zone and ecological function conservation zone.
Urban construction land expansion in the central urban area was first scattered and then compact,
while that in the new urban development zone and ecological function conservation zone primarily
followed an outward pattern. The permanent population, per capita GDP, and per capita retail sales
of social consumer goods were the primary driving factors of urban construction land expansion in
Beijing, the impacts of which varied significantly among different districts of Beijing. All these results
can provide a solid foundation for improving land use policies towards the goal of carbon neutrality
in highly urbanized areas.

Keywords: construction land expansion; landscape pattern; influencing factors; input–output theory;
geographically and temporally weighted regression model; Beijing

1. Introduction

There has been urban construction land rapid expansion along with accelerated ur-
banization across the world, which has been one of the important contributors to carbon
emissions and climate change [1,2]. Land use change has been the core driving force of
carbon storage in terrestrial ecosystems, accounting for one-third of the anthropogenic
carbon emission [3,4]. In particular, urban construction land expansion has an increasing
impact on ecological carbon storage and carbon emission [5]. On the one hand, there is
considerable conversion of cropland, forest, and grassland with higher carbon storage
abilities into urban construction land with lower carbon storage abilities in the process
of urbanization, greatly reducing the carbon storage capacity of terrestrial ecosystems [1].
On the other hand, the increasing consumption of fossil fuel within urban construction
land also leads to a significant increase in carbon emission; for example, the urban areas
have accounted for approximately 3/4 of the total carbon emission of the world [6]. Most
previous studies have therefore suggested there is generally a strong positive correlation
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between urban construction land expansion and carbon emission, and the newly added
construction land is an important source of increased carbon emission [7]. However, some
other studies have suggested there was an inverted U-shaped trend of the impact of urban
construction land expansion on urban carbon emission, which may be due to the spatial
heterogeneity to carbon emission efficiency in the urbanization of different dimensions [5,8].
This provides some novel approaches for achieving a balance between rapid urbanization
and carbon emission reduction, e.g., regulation of land use change and improvement in
carbon emission efficiency [2]. In fact, there are both various influencing factors of urban
construction land expansion and heterogeneous impacts of urban construction land on
carbon emission across different geographical zones and urban area sizes [5]. It is of great
practical significance to accurately reveal the characteristics and driving mechanism of
urban construction land expansion, which can provide important theoretical support for
low-carbon urbanization and carbon neutrality [4].

Urban construction land expansion as the most direct spatial manifestation of urban-
ization has been a central topic in urban studies worldwide, and is generally explored
with 3S technology [9,10]. For example, some scholars have revealed the spatiotemporal
patterns of urban expansion of megacities such as Beijing using remotely sensed land use
data and GIS tools [9–12], while other studies have revealed the characteristics of urban
land expansion, e.g., the growth rate of urban land, conversion from arable land to of urban
land, and expansion process of construction areas in major urban agglomerations based
on GIS technology multi-period remote sensing data [13–15]. For example, some previous
studies based on remote sensing data such as nighttime light data suggested there has been
extensive expansion of urban areas in Beijing in the past decades, with an annual urban
expansion rate of 3.46% during the period 1978–2015 [10,15].

There are inevitably some limitations in the traditional retrieval of urban construction
land based on remote sensing data, and the increasingly mature 3S technology and abun-
dant multi-source data lay a firm foundation for further improving the retrieval accuracy
of urban construction land. For example, there may be considerable differences in the
resolution of long time-series remote sensing images from different satellite sensors, and
earlier remote sensing images with the same resolution generally exhibited high error rates.
In particular, the accuracy of the traditional retrieval of urban construction land is easily
affected by the quality of remote sensing images with different cloud amounts in different
months, and it costs a lot of human and material resources to carry out the correction of
cloud layers, radiation, spectra, and so on. It may be feasible to improve the retrieval
accuracy of urban construction land and reduce the cost by supplementing the retrieval
results based on traditional methods with multi-source impervious surface data, which can
effectively reduce the influence of mixed pixels. In fact, some studies have explored urban
expansion using impervious surface data [16–18]. However, there are various impervious
surfaces, which may lead to some errors in the retrieval of urban construction land. For
example, infrastructure in the periphery of cities may be classified as urban construction
land, while parkland within cities may be excluded if the retrieval of urban construction
land is solely based on the impervious surface data. There is therefore an urgent need to
further improve the retrieval of urban construction land by integrating the impervious
surface data with more accurate methods based on 3S technology.

Urban construction land expansion is influenced by various driving factors [19], which
have been generally explored with statistical analysis such as regression analysis in and
previous studies [20,21]. Specifically, socio-economic factors such as gross domestic product
(GDP), income of urban residents, and urban transportation generally have considerable
influence on urban construction land expansion [20,21]. For example, there was temporal
coevolution of the urban area with the urban population in Beijing, indicating the rising
efficiency of urban land use [20]. But these driving factors of urban construction land
expansion were generally selected according to previous experience rather than a solid
theoretical foundation in most of the previous studies [20,21]. By contrast, the input–output
theory suggested that the urbanization process can be regarded as the result of rising
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urban output brought on by the social input, which provides a reliable theoretical foun-
dation for improving the rationality of selecting the driving factors of urban construction
land expansion [22,23]. It is therefore necessary to carry out more in-depth research on
urban construction land expansion on the basis of the input–output theory. Furthermore,
previous studies have primarily explored the driving factors of urban construction land
expansion via regression analysis such as conventional ordinary least squares regression
(OLS) and geographically weighted regression (GWR), which generally fail to capture
the non-stationary variation in urban construction land over time or space [24–27]. By
contrast, the geographically and temporally weighted regression (GTWR) model, which
was further developed based on the GWR model, can effectively reveal the spatiotemporal
relationship between independent variables and dependent variables [28]. It is therefore
better to explore the driving factors of long-term and non-stationary urban construction
land expansion with the GTWR model [28,29].

Beijing, as the capital of China, has experienced substantial urban sprawl in the
past decades, where the urbanization rate has been as high as 87.5% in 2021 [23,30,31].
The rapid urban construction land expansion has led to a series of ecological and social
problems such as serious environmental pollution, increasing energy consumption, and
considerable loss of agricultural land [10]. The concept of reducing construction land while
promoting development has been proposed in the new round of national spatial planning
of Beijing to cope with the excessive expansion of urban construction land. Previous studies
have generally depicted the physical process of urbanization in Beijing with aggregate
area change extent or rate from non-urban land to urban uses from the macroscopic and
static perspective, providing limited information regarding the internal spatial patterns
or driving factors of urban construction land expansion [10]. It is therefore necessary
to carry out more in-depth analysis of the characteristics and driving mechanisms of
urban construction land expansion in Beijing based on more accurate data and up-to-date
technology, which can provide valuable reference information for formulating regional
land use policies and achieving carbon neutrality for Beijing and other cities [31]. This
study has therefore aimed to (1) detect the urban construction land of Beijing and reveal its
expansion characteristics more accurately based on up-to-date remote sensing images and
(2) reveal the driving mechanism of urban construction land expansion more accurately
based on the input–output theory and the GTWR model. The results of this study can
provide a basis for formulating land use policies in Beijing and offer valuable guidance for
the optimal utilization of construction land in other areas with high urbanization levels
against the background of carbon neutrality.

2. Materials and Methods

2.1. Study Area

Beijing is in the northern part of the North China Plain (115.7–117.4◦ E, 39.4–41.6◦ N),
with a total area of approximately 16,410 km2. Beijing is adjacent to Yanshan Mountain,
where the elevation generally ranges between 1000 and 1500 m in the mountainous ar-
eas and 20 and 60 m in the plain areas, with the elevation declining significantly from
northwest to southeast [31]. Beijing includes 16 districts, such as the Dongcheng, Xicheng,
and Chaoyang districts and the Beijing Economic-Technological Development Area (BDA)
(Figure 1). Beijing is generally divided into four areas, i.e., the capital function core zone,
urban function expansion zone, new urban development zone, and ecological function con-
servation zone, according to the “Main Functional Zone Planning of Beijing”. Specifically,
the capital function core zone includes the Dongcheng and Xicheng districts, and the urban
function expansion zone includes the Haidian, Chaoyang, Fengtai, and Shijingshan dis-
tricts. The new urban development zone includes the Changping, Shunyi, Tongzhou, BDA,
Daxing, and Fangshan districts, and the ecological function conservation zone includes
the Mentougou, Yanqing, Huairou, Miyun, and Pinggu districts. The total permanent
population of Beijing increased from 15.38 million in 2005 to 21.954 million in 2016, and
thereafter gradually decreased to 21.89 million in 2020. But there has been rapid economic
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development in Beijing in the past decades, where the regional GDP reached USD 633.40 bil-
lion and the per capita regional GDP reached USD 28,514 in 2021. Meanwhile, there was
significant urban construction land expansion in Beijing, but with a declining trend in the
land use carbon emissions in recent years [31]. For example, the carbon emissions of Beijing
reached approximately 2.6 million tons in 2021, and the carbon dioxide emissions per unit
GDP decreased by about 4% in comparison to 2020, leading to continuous improvement in
the ecological environmental quality.

Figure 1. Overview of the study area.

2.2. Data Preparation

This study collected data from the period 2005–2020, which is the implementation
period of the “Beijing Urban Master Plan (2004–2020)”. This study used remote sensing
images with a spatial resolution of 30 m in four periods during the period 2005–2020, which
were obtained from the USGS Earth Explorer website (https://earthexplorer.usgs.gov/,
accessed on 18 March 2022) (Table 1). This study primarily selected the Landsat images
from the first half of May to the middle of June and from the first half of September to
the first half of October, considering the growth patterns of vegetation and the planting
practices of crops in the study area. Furthermore, the impervious surface data were
extracted from China’s 30 m Land Cover Dataset from 1990 to 2020 on the Zenodo data
sharing platform (https://zenodo.org/, accessed on 20 May 2022). In addition, Beijing’s
digital elevation model data and administrative division data were obtained from the
Resource and Environment Science and Data Center of the Institute of Geographic Sciences
and Natural Resources Research, Chinese Academy of Sciences (https://www.resdc.cn/,
accessed on 21 May 2022). Finally, the socio-economic data were extracted from the Beijing
Statistical Yearbook and the Beijing Regional Statistical Yearbook.
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Table 1. Information on remote sensing images used in this study.

Date Satellite Sensor Strip Number/Row Number

2005 Landsat 5 TM 123/32, 123/33
2010 Landsat 5 TM 123/32, 123/33
2015 Landsat 8 OLI 123/32, 123/33, 124/32
2020 Landsat 8 OLI 123/32, 123/33, 124/32

This study detected the urban construction land in the remote sensing images using
ENVI 5.3 software (Figure 2). Firstly, data pre-processing of Landsat images was carried
out, including radiometric calibration, atmospheric correction, clipping, and mosaicking.
Then, the interpretation keys were established, with the land cover classified into six types,
i.e., cropland, forest, grassland, construction land, water body, and unused land, and the
supervised classification was used to detect the construction land throughout the study
area. Finally, this study further processed the detected urban construction land to reduce
the error according to the process shown in Figure 2.

 
Figure 2. Technical flowchart of the construction land interpretation.

This study focused on the urban core and peripheral areas defined by the “Beijing
Urban Master Plan (2004–2020)”. The urban core areas include the downtown area and
the surrounding ten edge groups, including Beiyuan, Jiuxianqiao, Dongba, Dingfuzhuang,
Fatou, Nanyuan, Fengtai, Shijingshan, Xiyuan, and Qinghe as well as Huilongguan and
Beiyuan, which are approximately equivalent to the Haidian, Chaoyang, Dongcheng,
Xicheng, Fengtai, and Shijingshan districts. At the same time, peripheral areas cover the
remaining part of Beijing. This study firstly eliminated the impervious surface data in
the peripheral areas, and then intersected the retrieved urban construction land data and
the impervious surface data in the urban core areas, eliminating the fragmented patches
and obtaining the confirmed urban construction land. Furthermore, the parkland data
within the urban core area were extracted from the detected urban construction land, which
was used to complete the missing data due to the data intersection. Additionally, the
impervious surface in areas outside the areas of data intersection within the core area
should be impervious in theory but may be misclassified into other land use types. This
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study has therefore included these areas as the missing construction land to form the final
urban construction land data. Finally, the retrieval accuracy was evaluated using the Kappa
coefficient based on the field survey data.

2.3. Exploration of Urban Construction Land Expansion Characteristics

This study explored the quantitative characteristics of urban construction land expan-
sion using the expansion speed and intensity. The expansion speed of urban construction
land refers to the average annual expansion area of construction land during a certain
period. The urban construction land expansion intensity refers to the ratio of newly added
construction land area during a certain period to the urban construction area of the base
period and the time duration of a certain period. It quantifies the rate of change in the
urban construction land area [32]. The specific equations are as follows:

S1 =
A2 − A1

T
(1)

S2 =
A2 − A1

A1 × T
× 100% (2)

where S1 represents the expansion speed of urban construction land, S2 represents the
expansion intensity of urban construction land, A1 is the initial urban construction land
area over the initial period, A2 is the urban construction land area over the ending period,
and T is the time duration of a certain period. The dynamic degree was classified into
four categories using the natural break classification method: low intensity, relatively low
intensity, relatively high intensity, and high intensity.

This study characterized the morphological characteristics of urban construction
land using the area-weighted mean fractal dimension (AWMPFD), by splitting the urban
construction land into independent patches according to the principle of boundary non-
contact [33]. Meanwhile, this study characterized the complexity of urban construction
land expansion using the area-weighted mean shape index (AWMSI). Both indices were
calculated using Fragstats 4.2 as follows:

AWMPFD =
m

∑
i=1

[
2 ln(0.25pi)

ln ai

( ai
A

)]
(3)

AWMSI =
m

∑
i=1

[(
0.25pi√

ai

)( ai
A

)]
(4)

where A represents the total area of urban construction land and ai, and pi represent the
area and perimeter of the ith construction land patch, respectively.

2.4. Exploration of the Driving Mechanism of Urban Construction Expansion

This study explored the driving mechanism of urban construction land expansion
with the GTWR model since the urban construction land varied both geographically and
temporally. The GTWR model can simultaneously reveal the non-stationary relationship
between urban construction land expansion and its driving factors in space over time by
incorporating the temporal effects into the GWR model as follows [29]:

yi = P0(xi, yi, ti) + ∑k Pk(xi, yi, ti)Xit + ei (5)

where xi and yi represent the spatial coordinates (longitude and latitude) of the ith sample
point and ti represents the time dimension coordinate of the ith sample point; P0 is the
regression constant of the sample point (xi, yi, ti); Xit represents the value of the kth indepen-
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dent variable at the ith sample point; ei represents the residual value; and Pk(xi, yi, ti) is the
kth regression parameter of the ith sample point, which was estimated as follows:

P̂(xi, yi, ti) = [XTW(xi, yi, ti)X]
−1

XTW(xi, yi, ti)Y (6)

where P̂(xi, yi, ti) is the estimated value of Pk(xi, yi, ti); X is the matrix of independent
variables and XT is the transpose matrix of X; Y is the sample matrix; and W(xi, yi, ti) is
the spatiotemporal weight matrix, which was obtained with the finite Gaussian function,
namely the bi-square spatial weight function [8,34]. The optimal bandwidth of the GTWR
model was determined with the widely used Akaike information criterion in this study.

The previous studies have generally used the expansion speed or intensity of construc-
tion land expansion as the dependent variable [35], and this study accordingly used them
as the candidate dependent variables and thereafter selected the one with the higher coeffi-
cient of determination (R2). Moreover, urban development can be regarded as the process of
increase in the benefit of industrial aggregates under the constraints of land conditions and
the guidance of government policies according to the input–output theory and the theory
of urbanization [36]. It is therefore of high scientific importance and operability to select the
indicators of driving factors of urban construction land expansion from the input–output
perspective, which can effectively reduce the problem of empiricism and make the research
results more robust [37]. Specifically, the input factors of urban development include the
land, labor, and capital, which jointly influence the output of urban areas according to the
extended Cobb–Douglas production function [38,39]. The approaches of increasing the
output from the perspective of urban construction land primarily include the increase in
the land area and improvement in the utilization efficiency of urban construction land, both
of which are closely related to the input and output of economic activities [40]. This study
has therefore selected the driving factors of urban construction land expansion from the
input–output perspective (Table 2).

Table 2. Selection of influencing factors of urban construction land expansion.

Index Layer Variable Index Factor Index Explanation

Capital input X1 Per capita general public budget expenditure Government support level
X2 Per capita fixed asset investment Overall investment intensity

Labor input X3 Permanent population Human resource foundation

Economic output
X4 Per capita GDP Level of economic development
X5 Per capita industrial output value Level of industrial capacity
X6 Per capita general public budget revenue Government revenue and expenditure capacity

Social output
X7

Per capita disposable income of
urban residents Standard of living for residents

X8
Per capita consumption level of

urban residents Consumer demand for residents

X9 Per capita social consumer goods retail sales Level of social consumption

Terrain constraints X10, X11 Relief degree of land surface, slope Geological and geomorphic foundation

More specifically, the input index layer included the capital input (per capita general
public budget expenditure, per capita fixed asset investment) and labor input (permanent
population). Meanwhile, the output index layer included the capital output (per capita
GDP, per capita industrial output value, and per capita general public budget revenue) and
social output (per capita retail sales of consumer goods, per capita disposable income of
urban residents, and per capita consumption expenditure of urban residents). At the same
time, the topography was used as the limiting index layer, including the land surface’s relief
degree and slope (Table 2). In particular, the Economic-Technological Development Area is
inconsistent with traditional administrative districts, where the management hierarchy and
data acquisition were also inconsistent with other districts and counties. Therefore, this
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study explored the driving mechanism of urban construction land expansion based on the
administrative district to guarantee scientific validity and calculation convenience. Addi-
tionally, this study further filtered these driving factors according to their variance inflation
factor (VIF) to ensure the accuracy of the model output, with VIF < 5 as the threshold.

3. Results

3.1. Quantitative Characteristics of Urban Construction Land Expansion in Beijing

The results of this study showed that the overall accuracy of the urban construction
land detection was above 95% in all years, indicating the retrieval method used in this
study performed better than that in most of the previous studies. For example, the accuracy
of the ChinaCover2010 product reached approximately 91% in the first class and 82% in the
second class. The overall accuracy of the GlobeLand30 V2010 and GlobeLand30 V2020 data
reached 83.50% and 85.72%, with Kappa coefficients of 0.78 and 0.82, respectively, while the
accuracy of the land use data provided by the Resource and Environment Science and Data
Center (https://www.resdc.cn/, accessed on 22 October 2022), which are the most widely
used in China, was above 85% for cropland and construction land and approximately 75%
for other land use types. These previous studies generally detected urban construction
land solely based on remote sensing images, leading to relatively limited retrieval accuracy.
By contrast, the Kappa coefficient in this study reached 0.95 in most years, which met the
need of exploration of urban construction land expansion, indicating it is feasible to reduce
the retrieval workload and improve the retrieval accuracy of the urban construction land
by integrating the remote sensing images and impervious surface data.

The results suggested the total area of urban construction land in the study area in
2005, 2010, 2015, and 2020 reached 2746.58 km2, 3130.35 km2, 3429.5 km2, and 3646.15 km2,
respectively (Figure 3). Moreover, the results showed obvious spatial heterogeneity of the
urban construction land expansion in the study area. Specifically, the construction land was
concentrated in the central urban area in 2005, and there was remarkable construction land
expansion in the Yanqing District and the surrounding areas of the central urban area during
the period 2005–2010. However, the urban construction land expansion slowed down
during the period 2010–2015, mainly in the Miyun and Yanqing districts. Furthermore,
the urban construction land expansion further slowed down during the period 2015–2020,
mainly in the southern and southeastern areas around the central urban area and some
parts of the Yanqing and Pinggu districts.

The expansion speed of urban construction land varied remarkably among different
parts of the study area, and the urban construction land increased most rapidly during the
period 2005–2020 in the central urban area, followed by the new urban development zone,
e.g., Daxing, the BDA, Shunyi and Changping districts (Table 3). The urban construction
land kept expanding rapidly in the central urban area, which contains the major urban core
area with a larger spatial scope and more population. Meanwhile, the urban construction
land expansion in the new urban development zone was accelerated in Daxing, Shunyi,
Changping, and the BDA but was relatively slow in the Tongzhou and Fangshan districts.
By contrast, the urban construction land expansion was relatively rapid in Huairou and
Miyun and slowed in Mentougou and Yanqing in the ecological function conservation zone.
Overall, the urban construction land expansion in the study area slowed down during
the period 2005–2020, especially in the central urban area, where the expansion speed
continued to slow down significantly.
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Figure 3. Spatial pattern of construction land expansion in Beijing during the period 2005–2020.

Table 3. Expansion speed of urban construction land in Beijing by districts and counties (unit: km2/a).

2005–2010 2010–2015 2015–2020 2005–2020

Central urban area 8.85 6.45 3.64 6.31
Changping District 3.56 1.89 1.41 2.29

Shunyi District 3.68 3.99 1.33 3.00
Tongzhou District 2.76 1.77 1.02 1.85

Daxing District 4.84 3.06 1.82 3.24
Fangshan District 2.55 1.86 0.90 1.77

Mentougou District 0.48 0.68 0.58 0.58
Miyun District 1.37 2.58 1.31 1.75
Pinggu District 1.63 0.94 0.81 1.13

Huairou District 2.70 2.07 1.42 2.06
Yanqing District 1.09 0.70 0.94 0.91

Economic-Technological Development Area 3.66 5.16 1.03 3.28
Overall 37.17 31.15 16.21 28.17

The expansion speed of urban construction land in the study area varied significantly
in different periods. Specifically, the urban construction land expansion in the central
urban area was considerably more remarkable in the central urban area than in other parts
of the study area during the period 2005–2010. The urban construction land expanded
relatively rapidly in the Daxing and Shunyi districts, the BDA in the new urban devel-
opment zone, and Huairou District in the ecological function conservation zone during
the period 2005–2010 but much more slowly in the Miyun, Yanqing, and Pinggu districts
in the ecological function conservation zone. Consequently, the urban construction land
expansion slowed down to some degree. However, it was at a relatively high speed in
the central urban area during the period 2010–2015, while it significantly accelerated in
the BDA and Shunyi District. The urban construction land expansion slowed down in
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Daxing District, while it was still at a low rate in the Mentougou, Pinggu, and Yanqing
districts. The urban construction land expansion was at a relatively high speed in the
central urban area, Daxing District, Changping District, Shunyi District, Miyun District,
Tongzhou District, and the BDA during the period 2015–2020. However, other parts of the
study area experienced a relatively low expansion speed.

Considerable spatial heterogeneity was observed in the intensity of the urban con-
struction land expansion across different parts of Beijing (Table 4). During the period
2005–2020, the areas with high intensity of urban construction land expansion primarily
included the BDA and the Yanqing, Miyun, Pinggu, and Huairou districts in the ecological
function conservation zone. However, the urban construction land expansion intensity was
always low in the central urban area and relatively low in the new urban development
area districts and Mentougou District. Specifically, the urban construction land expansion
intensity was higher than 5% in the Yanqing, Huairou, and Pinggu districts and the BDA
during the period 2005–2010, while it was below 2% in Mentougou District. However,
the urban construction land expansion intensity was above 5% in Miyun and the BDA
and below 2% in Tongzhou, Changping, and Daxing during the period 2010–2015. The
urban construction land expansion intensity was the highest in the BDA during the period
2015–2020, followed by the Yanqing, Miyun, Pinggu, Huairou, and Mentougou districts,
while it reached only 0.71% in Shunyi District.

Table 4. Urban land expansion intensity in different parts of Beijing.

2005–2010 2010–2015 2015–2020 2005–2020

Central urban area 0.98% 0.68% 0.37% 0.70%
Changping District 4.30% 1.88% 1.28% 2.76%

Shunyi District 2.48% 2.39% 0.71% 2.02%
Tongzhou District 3.09% 1.71% 0.91% 2.07%

Daxing District 3.59% 1.92% 1.05% 2.40%
Fangshan District 3.38% 2.11% 0.92% 2.35%

Mentougou District 1.78% 2.32% 1.77% 2.15%
Miyun District 3.19% 5.17% 2.08% 4.07%
Pinggu District 5.62% 2.53% 1.93% 3.89%

Huairou District 5.26% 3.19% 1.89% 4.02%
Yanqing District 6.34% 3.10% 3.60% 5.30%

Economic-Technological Development Area 5.02% 5.65% 0.88% 4.50%
Overall 2.22% 1.67% 0.80% 1.68%

The urban construction land expansion intensity was always the lowest in the central
urban area, without any change in the intensity level throughout the study period (Figure 4).
It was generally high in the new urban development area but decreased throughout the
study. The urban construction land expansion intensity was the highest in the ecological
function conservation area far from the central urban area but significantly declined during
the study period. Overall, the urban construction land expansion intensity in Beijing
gradually increased from the central urban area to the peripheral areas, indicating that
the pressure for expanding construction land in Beijing gradually shifted outward. It
continuously decreased in the central urban area and most districts in the study area.
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Figure 4. Spatial differentiation of expansion intensity during (a) 2005–2010, (b) 2010–2015, and
(c) 2015–2020.

There was slight differentiation in the AWMPFD of different regions of Beijing, which
showed an overall increasing trend in most of the study areas (Table 5). Specifically, the
AWMPFD of the central urban area and Daxing District exceeded 1.3 in 2005, while that of
other regions generally ranged between 1.21 and 1.27. The AWMPFD exceeded 1.3 in three
parts of the study area in 2010, i.e., the central urban area, Shunyi District, and Tongzhou
District; however, that of Daxing District decreased to 1.29. Meanwhile, the AWMPFD
of other districts showed slight variation. In 2015, the number of regions with AWMPFD
values over 1.3 reached four: the central urban area, Daxing, Tongzhou, and Shunyi districts.
Contrastingly, the number of regions with an AWMPFD of over 1.3 reached five in 2020: the
central urban area, Shunyi, Tongzhou, Changping, and Daxing districts. In addition, the
variation in the AWMPFD differed remarkably among regions. For example, the AWMPFD
of the Changping, Huairou, Shunyi, and Yanqing districts increased continuously. The BDA
increased, decreased, and then increased, with an overall increasing trend. By contrast, the
AWMPFD of the central urban area, Fangshan, Tongzhou, Daxing, and Mentougou districts
first increased and then decreased, as opposed to that of the Miyun and Pinggu districts.

Table 5. Area-weighted mean fractal dimension of different parts of Beijing during the period
2005–2020.

2005 2010 2015 2020

Central urban area 1.3391 1.3568 1.3644 1.3562
Changping District 1.2498 1.2886 1.2961 1.3095

Shunyi District 1.2606 1.2866 1.3126 1.3247
Tongzhou District 1.2679 1.3115 1.3120 1.3111

Daxing District 1.3160 1.3174 1.3000 1.3012
Fangshan District 1.2534 1.2610 1.2858 1.2766

Mentougou District 1.2602 1.2743 1.2818 1.2646
Miyun District 1.2355 1.2306 1.2264 1.2481
Pinggu District 1.2225 1.2115 1.1812 1.1888

Huairou District 1.2164 1.2298 1.2540 1.2765
Yanqing District 1.2367 1.2447 1.2513 1.2627

Economic-Technological Development Area 1.2484 1.2849 1.2602 1.2949

There was also a remarkable variation in the AWMSI across different parts of the study
area during the period 2005–2020 (Table 6). In general, the AWMSI was below 20 in most
regions of the study, exceeding 20 in only two or three regions during the study period, and
the AWMSI in the central urban area consistently surpassed that of other parts of the study
area. Specifically, the AWMSI in most regions ranged from 7.89 to 12.50 in 2005, exceeding
20 in only the central urban area and Daxing. The AWMSI slightly increased in most regions
of the study area during the period 2005–2010, ranging between 7.59 and 19.66; however, it
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significantly increased in the central urban area. The AWMSI significantly decreased only in
Pinggu and slightly increased in other regions during the period 2010–2015, including the
central urban area. Meanwhile, the AWMSI slightly increased in most regions of the study
area during the period 2015–2020 but showed a significant decrease in the central urban
area. In addition, regarding changing trends, the AWMSI increased and then decreased in
the central urban area and Mentougou and Tongzhou districts during the study period,
while it continuously increased in the Huairou, Shunyi, and Yanqing districts. By contrast,
the AWMSI exhibited fluctuations or slight increases in the Changping, Fangshan, and
Miyun districts and the BDA. However, in Pinggu District, the AWMSI initially decreased
and then increased, consistently maintaining very low values.

Table 6. Area-weighted mean shape index of different parts of Beijing during the period 2005–2020.

2005 2010 2015 2020

Central urban area 36.1726 43.2899 46.0059 42.0748
Changping District 12.3140 17.9924 17.9322 20.3908

Shunyi District 7.8907 17.1350 23.2845 25.2900
Tongzhou District 12.4957 19.6589 19.3462 19.0957

Daxing District 21.0822 21.5559 17.8593 18.0682
Fangshan District 9.9947 10.2127 12.9806 12.0844

Mentougou District 9.5604 10.9012 12.1469 10.5061
Miyun District 9.5639 10.0908 9.8479 11.8292
Pinggu District 7.8907 7.5955 5.4031 6.0641

Huairou District 8.3947 8.9400 12.7306 15.0203
Yanqing District 7.9808 8.8992 9.4502 10.6989

Economic-Technological Development Area 11.0033 15.7663 13.6771 17.9802

3.2. Driving Mechanisms of Expansion of Urban Construction Land in Beijing

Seven dependent variables were finally selected according to the VIF (Table 7) for
ensuring the accuracy of the model output. Specifically, the selected dependent variables
were the permanent resident population, per capita consumption expenditure of urban
residents, per capita public budget expenditure, per capita fixed asset investment, per
capita GDP, per capita industrial output value, and per capita total social consumer goods.

Table 7. VIF values of selected independent variables.

Per Capita General
Public Budget
Expenditure

Per Capita
Fixed Asset
Investment

Permanent
Population

Per
Capita
GDP

Per Capita
Industrial

Output Value

Per Capita
Consumption Level
of Urban Residents

Per Capita Social
Consumer Goods

Retail Sales

2.45 1.53 2.11 3.20 1.57 1.60 3.46

The results of the GTWR model suggested the R2 value of the expansion speed was
higher than 0.95, while that of the expansion intensity was lower than 0.80 (Table 8).
Therefore, the expansion speed was more appropriate to be used as the dependent variable
of the GTWR model. However, the expansion intensity is often influenced by the initial
period of construction land area, and the adaptability of this indicator is relatively weak.
This study has therefore used the expansion speed of urban construction land as the
dependent variable of the GTWR model and further explored its relationship with an
independent variable in Beijing.
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Table 8. Related parameters of geographically and temporally weighted regression of urban con-
struction expansion.

Model Parameters Bandwidth Sigma AICc R2 R2 Adjusted
Spatiotemporal
Distance Ratio

Expansion intensity 0.8186 0.2738 73.0300 0.7887 0.6619 0.2731
Expansion speed 0.2992 0.0453 16.6150 0.9505 0.9366 0.3731

The results of the GTWR model revealed the driving mechanisms behind urban
construction land expansion in Beijing as follows (Table 9): (1) the coefficient of per capita
general public budget expenditures is relatively stable over time, generally showing a
negative impact in the study area except for in the Miyun and Pinggu districts. Specifically,
the absolute values of this coefficient were relatively large in the central urban area and new
urban development zone. However, its absolute value remained relatively low and stable
over time in the ecological conservation zone. (2) The per capita fixed asset investment
coefficient significantly varied over time. There was a similarity between the central
urban area and new urban development zone, as both areas exhibited a synchronized
trend of initially increasing and then decreasing. The per capita fixed asset investment
positively affected the urban construction land expansion in the central urban area but
negatively affected the ecological conservation zone, except for Yanqing District. (3) The
coefficient of the permanent resident population was relatively stable over time but with
more remarkable regional differences. This coefficient was relatively low in the central
urban area and new urban development zone, which showed some similarity. Moreover, it
was high in the ecological conservation zone, indicating this area was susceptible to the
influence of the permanent resident population. (4) The coefficients of per capita GDP
were all positive and continuously increased during different periods. (5) The per capita
industrial output value coefficient was relatively stable over time, with significant spatial
differences. This coefficient was generally negative in the central urban area and new
urban development zone, whereas it was positive in the ecological conservation zone
throughout the study period. (6) The coefficient of per capita urban resident consumption
showed a transition from positive to negative in the study area. Specifically, this coefficient
was generally negative in the central and new urban development areas. However, it
transitioned from negative to positive in the ecological conservation zone in the Miyun
and Pinggu districts. (7) The coefficient of per capita retail sales of social consumer goods
showed a steady decline over the study period. This coefficient was relatively high in the
central urban area and new urban development zone and low in the ecological conservation
zone, and it remained relatively stable throughout the study period.

Table 9. Results of geographically and temporally weighted regression.

X1 X2 X3 X4 X5 X8 X9

2005–
2010

Central urban area −0.2627 0.0911 0.4581 0.4111 −0.0470 −0.1188 0.3784
Changping District −0.1810 0.0507 0.5285 0.5618 0.0027 −0.1306 0.2340

Shunyi District −0.1465 −0.0304 0.4790 0.3418 −0.0110 −0.0529 0.2786
Tongzhou District −0.2678 0.0707 0.4427 0.2524 −0.0707 −0.1494 0.4573

Daxing District −0.3894 0.1460 0.3834 0.1706 −0.0725 −0.1438 0.5815
Fangshan District −0.4414 0.1048 0.4116 0.2665 0.0604 −0.0576 0.5264

Mentougou District −0.2962 0.0869 0.5388 0.5802 0.0730 −0.1157 0.2878
Miyun District 0.0335 −0.2138 0.7636 0.3551 0.0966 −0.0751 0.0270
Pinggu District 0.0052 −0.1401 0.7294 0.3455 0.0710 −0.0636 0.0638

Huairou District −0.0442 −0.1048 0.5869 0.3213 0.0822 −0.0906 0.1099
Yanqing District −0.1250 0.0272 0.5800 0.4986 0.0770 −0.1538 0.1586
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Table 9. Cont.

X1 X2 X3 X4 X5 X8 X9

2010–
2015

Central urban area −0.2283 0.0666 0.4654 0.4465 −0.0428 −0.1272 0.3669
Changping District −0.1692 0.0523 0.5383 0.6209 −0.0036 −0.1363 0.2164

Shunyi District −0.1257 −0.0409 0.4740 0.4419 −0.0143 −0.0271 0.2359
Tongzhou District −0.2255 0.0371 0.4568 0.3372 −0.0667 −0.1443 0.4183

Daxing District −0.3287 0.0990 0.4029 0.2239 −0.0575 −0.1612 0.5518
Fangshan District −0.3702 0.0624 0.4105 0.2417 0.0707 −0.0927 0.5476

Mentougou District −0.2322 0.0500 0.5361 0.5529 0.0662 −0.1533 0.3234
Miyun District 0.0362 −0.2434 0.7369 0.4078 0.0936 −0.0436 0.0152
Pinggu District 0.0110 −0.1818 0.6773 0.4275 0.0707 −0.0028 0.0406

Huairou District −0.0496 −0.0982 0.5679 0.3992 0.0704 −0.0937 0.0895
Yanqing District −0.1320 0.0432 0.5872 0.5974 0.0594 −0.1669 0.1379

2015–
2020

Central urban area −0.1967 0.0888 0.4788 0.5098 −0.0592 −0.1296 0.3274
Changping District −0.1555 0.0826 0.5434 0.6752 −0.0279 −0.1392 0.1928

Shunyi District −0.0886 −0.0007 0.4608 0.5114 −0.0417 −0.0200 0.2261
Tongzhou District −0.1856 0.0712 0.4645 0.4295 −0.0819 −0.1383 0.3717

Daxing District −0.2691 0.1164 0.4326 0.3273 −0.0788 −0.1825 0.4813
Fangshan District −0.3072 0.0862 0.4731 0.4229 0.0194 −0.1196 0.4222

Mentougou District −0.2102 0.0844 0.5839 0.6991 0.0223 −0.1657 0.2267
Miyun District 0.0508 −0.1741 0.6566 0.4424 0.0603 0.0013 0.0276
Pinggu District 0.0346 −0.1124 0.5767 0.4982 0.0220 0.0072 0.0556

Huairou District −0.0358 −0.0510 0.5169 0.4572 0.0372 −0.0949 0.0899
Yanqing District −0.1330 0.0764 0.5725 0.6647 0.0261 −0.1805 0.1306

The results obtained from the input–output perspective revealed the driving mecha-
nism of urban construction land expansion in Beijing more clearly. On the one hand, from
the input perspective, the permanent population was the main driving factor of the urban
construction land expansion, indicating the population growth had a stronger promoting
effect on urban expansion in Beijing. However, population growth may lead to decreased
per capita general public budget expenditure and per capita fixed asset investment. As
a result, the coefficient of per capita general public budget expenditure was generally
negative. On the other hand, the explanatory power of per capita fixed asset investment
was insufficient, and its coefficient was even negative in some districts. This suggested the
rapid population growth rather than the overall capital investment from the entire society
was the main driver of urban construction land expansion. On the other hand, from the
output perspective, per capita GDP was the main factor promoting the urban construction
land expansion, indicating the level of economic development strongly promoted urban
expansion in Beijing. Meanwhile, per capital retail sales of social consumer goods had
explanatory power for the urban construction land expansion only second to per capita
GDP, indicating the overall level of social consumption significantly impacted the urban
construction land expansion in the study area. But the explanatory power of per capita
industrial output value and urban residents’ per capita consumption expenditure was
insufficient for the urban construction land expansion, which may be related to the special
industrial structure of Beijing. In particular, the impact of permanent residents on the urban
construction land expansion was relatively less significant in the central urban area with
a higher economic development level than that in the ecological function conservation
zone, contrary to that of per capita social consumption and retail sales. By contrast, the
impact of per capita GDP, which showed an increasing trend, was relatively significant
in all districts, indicating that the land use in these urban areas has become more inten-
sive. Overall, urban construction land expansion in Beijing was mainly influenced by three
factors, i.e., population, per capita GDP, and per capita retail sales of social consumer goods.
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4. Discussion

The urban construction land expansion in the study area has overall slowed down,
with a significant decrease in the expansion speed and intensity in the central urban area,
which showed an inverted “U-shaped” curve according to previous studies [15]. However,
there was an increase in the expansion speed and intensity in the new urban development
zone and ecological function conservation zone, thus shifting the center of urban expansion
toward these zones. This is consistent with the spatial development strategy proposed by
the previous overall urban planning of Beijing, aiming to transfer the strategic development
of the old urban area and promote the construction of new urban areas. The expansion
intensity in the ecological function conservation zone was significantly higher than that in
the central urban area and new urban development zone, primarily due to the significantly
lower urbanization baseline in the former.

It is notable that the urban construction land expansion in the central urban area was
firstly dispersed and then compact, indicating a gradual shift from outward expansion to
inward enhancement. This is primarily consistent with the conclusions of previous studies,
i.e., the central urban area of Beijing has entered the later stage of urban construction
land expansion with a slower expansion speed but better quality [15]. Furthermore, the
AWMPFD declined slightly in a few districts and generally increased in most districts, indi-
cating the urban construction land expansion was mainly in the new urban development
zone and ecological conservation zone, which resulted in more complex morphological
characteristics of the urban construction land in these zones. Additionally, the topography
in some districts limited the urban construction land expansion, leading to complex mor-
phological characteristics of the urban construction land. It is therefore necessary to pay
more attention to the rapid urban construction land expansion in these suburban districts,
which may lead to new urban sprawl and the destruction of ecological functions in the
ecological conservation zone. Moreover, there is generally a close exchange of various
elements between the central urban area and suburban districts in Beijing and other highly
urbanized regions, but the previous studies generally focused only on the central urban
zone, ignoring the role of regional coordinated development. This study more accurately
revealed the overall mechanism of the urban construction land expansion by including the
central urban zone, the new urban development zone, and the ecological conservation zone.

This study revealed urban construction land more accurately by overlaying the remote
sensing data with impervious surface data. However, not only urban construction land
expansion but also spatial aggregation of the population, industry, and infrastructure
occurred in the urbanization process. It is difficult to comprehensively characterize the
expansion of urban space with only the urban construction land expansion. Therefore,
it is necessary to consider more factors to better characterize the urbanization process in
the future. Moreover, previous studies mostly selected the indicators of driving factors of
urban construction land expansion according to the research experience of other scholars,
generally lacking a firm theoretical foundation. This study selected these indicators more
rationally from the input–output perspective according to the input–output theory, which
can effectively reduce the problem of empiricism and make the research results more robust.
But this study still failed to take into account the impacts of institutional factors such as
policies and city planning, and the influence of transportation factors and planning policies
can only be indirectly reflected with some input factors. It is necessary to further improve
the framework for selecting the driving factors of urban construction land expansion
from the input–output perspective by considering more factors and including more direct
characterization indicators in future studies.

5. Conclusions

This study revealed the characteristics of urban construction land expansion in Beijing
during the period 2005–2020 based on the data retrieved using Landsat images and imper-
vious surface data and explored its driving mechanism with the (GTWR) model from the
input–output perspective. The major conclusions were as follows: (1) the expansion speed
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and intensity of urban construction land in Beijing showed an overall tendency to slow
down, particularly in the central urban area, and the center of urban expansion shifted
to the new urban development zone and ecological function conservation zone. (2) The
morphological indices in the central urban area exhibited an initial increase followed by a
decrease, indicating the urban construction land expansion in the central urban area was
first scattered and then compact. However, the morphological indices increased in most of
the new urban development zone and ecological function conservation zone, indicating
that the urban construction land expansion in these zones primarily followed an outward
pattern. (3) The urban construction land expansion in Beijing was driven by multiple
factors, with the permanent population, per capita GDP, and per capita retail sales of social
consumer goods being the primary driving factors. The impact of the permanent popula-
tion was significantly smaller in the central urban area and the new urban development
zone than in the ecological function conservation zone, which is contrary to that of per
capita retail sales of social consumer goods. By contrast, the impact of per capita GDP was
significant in all districts. These findings can make a significant contribution to improving
urbanization and land use planning towards the goal of carbon neutrality in Beijing and
other cities.
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Abstract: With the increase in energy demand, environmental issues such as carbon emissions are
becoming more and more prominent. China will scale its intended nationally determined contribu-
tions by adopting more vigorous policies and measures. China aims to have CO2 emissions peak
before 2030 and achieve carbon neutrality before 2060. The current challenge and priority of China’s
high-quality development is to ensure a harmonious balance between the ecological environment
and the economy. The South-to-North Water Diversion Project passes through Beijing, Tianjin, Henan,
and Hebei, which were chosen as the study sites. The carbon emission data was from the China
Carbon Emission Database 2000–2019. Decoupling modeling using statistical yearbook data from
four provinces and municipalities. KMO and Bartlett’s test used SPSS 27 software. The selection of
indicators was based on relevance. Analyses were performed using the extended STIRPAT model
and ridge regression. Moreover, projections of carbon peaks in the study area for 2020–2035 under
different rates of change were simulated by the scenario analysis method. The results show that:
(1) The decoupling analysis of the four provinces and cities from 2000-2019 gradually shifts to strong
decoupling; (2) Resident population, energy structure, and secondary industry as a proportion of
GDP significantly impact carbon emissions; (3) From 2000–2035, Beijing and Henan experienced
carbon peaks. The peak time in Beijing was 96.836 million tons in 2010. The peak time in Henan was
654.1004 million tons in 2011; (4) There was no peak in Hebei from 2000–2035.

Keywords: carbon peaking; decoupling; South-to-North Water Diversion Project; STIRPAT mode

1. Introduction

Against the backdrop of a slowdown in total world carbon emissions, there are signifi-
cant differences between the developed economy’s and the emerging economy’s current
carbon emissions status and the emissions outlook. Research on carbon emissions has
become the attention of scholars at home and abroad [1,2]. The successive establishment of
the United Nations Framework Convention on Climate Change, the Kyoto Agreement, and
the Paris Agreement demonstrate the international community’s collaborative endeavors
toward worldwide low-carbon progress. Their ultimate goal is to reduce emissions and
save energy, controlling the temperature’s rise. In order to achieve green development, it is
necessary to study issues such as carbon emissions and their influencing factors [3]. China
has made ecological progress an essential part of its 13th Five-Year Plan, implementing
the development concepts of innovation, coordination, greenness, openness, and sharing
through scientific, technological, and institutional innovation. This includes the imple-
mentation of an optimized industrial structure and the building of a low-carbon energy
system. Developing green buildings and low-carbon transport establishment of a national
carbon emissions trading market and a series of other policy measures will form a new
pattern of modernization and construction for the harmonious development of humanity
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and nature [4,5]. China is aiming to reach the highest point of its carbon dioxide emissions
by 2030 and to become carbon neutral by 2060.

Scholars worldwide have utilized the STIRPAT model to explore the trajectories and
peak periods of HCEs in 30 provinces in China until 2040 and have formulated three dis-
tinct scenarios (baseline, low, and high) to predict carbon peaks. The findings indicate
that in at least one of the scenarios, 25 provinces have the potential to achieve peak HCE
by 2030, whereas five provinces would fall short of meeting the 2030 emissions target [6].
Changes in carbon emissions also require more certainty due to uncertainty about future
development patterns, making meeting peak targets challenging. Taking Shandong, Henan,
and Guangdong as three of China’s most populous provinces as examples, the effects
of uncertainty in carbon accounting principles, drivers, and simulation mechanisms on
achieving peak targets were analyzed [7]. They used the LMDI method to decompose
and analyze the driving factors affecting China’s carbon dioxide emissions by studying
the detailed situation of 41 sub-industries from 2000 to 2016. Based on various official
policies and documents, the carbon intensity reduction potential for 2020 and 2030 was
predicted [8]. This paper investigates carbon emission peaks in China based on a compara-
tive analysis of energy transition in China and the United States [9]. A novel multifactor
decomposition method for carbon emissions is proposed [10]. Multifactor decomposition
models based on the Kaya Identity extension and the LMDI decomposition methodology
from energy, economic, and social perspectives provide quantitative results. On this basis,
an evaluation system was constructed by applying the entropy weight method, and the
carbon emission indices of six power generation modes in China were generated from
three dimensions: environment, energy, and economy. It also established a carbon emission
dynamic model based on the carbon emission data of the past 40 years and, combined with
Tapio’s decoupling theory, predicted China’s carbon emissions under multiple scenarios
for the next 40 years. Based on the carbon emission panel data of countries along the “Belt
and Road” from 1970 to 2018 and the environmental Kuznets curve (EKC) theory, a panel
model was established for each country group for research [11]. The study proposes that
carbon substitution, carbon emission reduction, carbon sequestration, and carbon recycling
are the four main ways to achieve carbon neutrality, of which carbon substitution will be
the backbone of carbon neutrality [12]. According to the high, medium, and low scenarios,
China’s carbon emissions are projected to fall to 22 × 108, 33 × 108 and 44 × 108 tons in
2060, respectively. Seven implementation recommendations are made for China to achieve
carbon neutrality. The results show that the earlier the time of peak carbon emissions,
the more significant the economic impact on China; under the three scenarios of peak
carbon emissions, government revenues and savings have a significant decline, and the
rest of the economic indicators do not cause too much impact; the impact of peak carbon
emissions on the output of the construction industry is small, and the output of the other
sectors has a slight increase [13]. Focusing on natural resource management under the
“dual-carbon” objective, nine experts proposed innovative natural resource management
strategies from different perspectives, providing reference and reference for the construc-
tion of a low-carbon oriented natural resource management system based on the multi-level
perspective of “resource elements-territorial space-ecosystem”. This provides a reference
for constructing a low-carbon-oriented natural resource management system based on the
multi-level perspective of “resource elements, land space, and ecosystem”. [14].

In summary, there is still some controversy among many scholars as to whether China
can achieve the goals of carbon peaking and carbon neutrality on time, and there are some
areas for improvement in the analysis of carbon peaking at the basin level [15]. This study
uses the provinces and cities through which the South-to-North Water Diversion Project
passes as the study area to analyze, build models, and carry out prediction analyses to
provide the government with corresponding carbon peak strategies.
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2. Research Area

The four provinces and cities of Beijing, Tianjin, Hebei, and Henan, through which the
central line of the South-to-North Water Diversion passes, were used for the study (Figure 1).
The provinces and cities through which the South-to-North Water Diversion passes have
a significant impact on China’s socio-economic development. In the meantime, “Beijing–
Tianjin–Hebei” has emerged as the third most significant economic district, following “The
Yangtze River Delta” and “Pearl River Delta”. The effectiveness of its carbon emission
reduction is directly related to the achievement of China’s carbon emission reduction
targets [16–19]. The South-to-North Water Diversion Mainline Project, an essential part of
the National South-to-North Water Diversion Project, is a major strategic infrastructure
built to alleviate the severe shortage of water resources in China’s Huanghua Hai Plain
and optimize the allocation of water resources and is a century-long project related to the
sustainable economic and social development of the receiving areas in the provinces and
cities of Henan, Hebei, Tianjin, and Beijing and the well-being of the future generations.
The regional scope of the South-to-North Water Diversion Project is geographically vast.
The spatial differences in each region’s resources, population, economy, and industrial
structure are apparent, and the specific measures for regional carbon emission reduction
are different. Research on land use carbon emissions and influencing factors in the region
provide a theoretical and practical basis for its emission reduction.

Figure 1. Provinces and cities passing through the South-to-North Water Diversion Central Route.

3. Research Methods and Data

3.1. Analysis of Carbon Emissions

From 2000–2019, Beijing’s carbon dioxide emissions have been characterized by a “U”
shape, beginning with an increase and then a decrease. The amount increased from
63,471,900 tons in 2000 to its highest point of 96,836,000 tons in 2010 and has since de-
creased to 70,611,800 tons in 2019. From 2000–2019, Tianjin has seen a steady increase in
its CO2 emissions, with a slight peak from 2010 to 2013 and a total of 151,032,500 tons
in 2013. Hebei’s carbon dioxide emissions rose steadily from 2000–2019, with the most
significant surge occurring between 2000 and 2013. The total amount of CO2 released in
2013 amounted to 657.72 million tons. From 2014–2017, there was a slight decrease, which
kept rising. From 2000–2019, Henan experienced a fluctuating amount of CO2 emissions.
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There was an upward trend from 2000–2011 and a downward trend from 2012–2019. The
total amount of CO2 released in 2019 amounted to 463,998,300 tons (Figure 2).

Figure 2. Carbon emissions from Beijing, Tianjin, Hebei, and Henan, 2000–2019 (104 t).

Among the four provinces and cities of Beijing, Tianjin, Hebei, and Henan in the
period of 2000–2019, Beijing and Tianjin’s annual carbon dioxide emissions were relatively
small. Hebei’s carbon dioxide emissions commonly remained high, and only in 2011, 2012,
and 2018 did Henan’s carbon dioxide emissions exceed those of Hebei, which shows that
Hebei is a large province in terms of carbon dioxide emissions.
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3.2. Research Methodology
3.2.1. Decoupling Model

The concept of decoupling was introduced by the Organization for Economic Co-
operation and Development in 2002. This concept describes models and demonstrates the
correlation between economic growth and environmental quality impairment [20]. Tapio
proposed an improved decoupling model in 2005. The decoupling analysis method has
been widely used in major industries, and this study uses decoupling analysis to study the
relationship between economic growth and carbon emissions, as shown in Equation (1).

MIt2−t1 =
%ΔCE

%ΔGDP
=

CEt2 − CEt1
CEt1

GDPt2 − GDPt1
GDPt1

(1)

In Equation (1), MIt2−t1 is the decoupling index from moment t1 to moment t2, CEt2
and CEt1 are the carbon emissions at t1 and t2. GDPt2 and GDPt1 are GDP at moments t1
and t2.

They use elasticity values of 0, 0.8, and 1.2 as thresholds to account for the decoupling
of CO2 from economic growth. For example, when the elasticity value is less than 0,
CO2 shows strong negative or strong decoupling. Therefore, the status and degree of
CO2 decoupling must be determined according to the situation. The specific indicator
system [21–23] is shown in Table 1.

Table 1. Tapio Decoupling Indicator System.

Status Decoupling State ΔCE ΔGDP MI

Decoupling Strong decoupling <0 >0 MI < 0
Weakly decoupling >0 >0 0 < MI ≤ 0.8

Negative decoupling

Recessive decoupling <0 <0 MI > 1.2
Strong negative decoupling >0 <0 MI < 0
Weak negative decoupling <0 <0 0 < MI ≤ 0.8

Expansion negative decoupling >0 >0 MI > 1.2

Connection
Expansion connection >0 >0 0.8 < MI ≤ 1.2
Recession connection <0 <0 0.8 < MI ≤ 1.2

3.2.2. STIRPAT Model

The IPAT equation proposed by Western scholars in the 1970s is a classic model for
exploring the relationship between economic growth and energy consumption [24,25]. Its
expression is shown in Equation (2).

I = P × A × T (2)

In Equation (2), I, P, A, and T represent environmental conditions, population, eco-
nomic affluence, and technology level, respectively. However, the IPAT equation only
considers the relationship between economic development and environmental pressure
on energy consumption and sets it as a simple linear relationship with certain limitations.
Therefore, in this paper, the STIRPAT model obtained by extending the IPAT model was
chosen, and the model’s expression is shown in Equation (3).

I = aPb AcTde (3)

In Equation (3): a is the model coefficient; b, c, d are prognostic factors; e is the
error factor.
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3.3. Data Sources

Carbon emissions from the four provinces and cities of Beijing, Tianjin, Hebei, and Henan
in 2000–2019 were sourced from the China Carbon Emissions Database (CEADs) [26–29].
Resident population, GDP per capita, energy consumption intensity (energy consump-
tion/GDP), energy structure (coal consumption/total energy consumption), and secondary
industry share of GDP are from the China Energy Statistical Yearbook and China Statistical
Yearbook (2000–2019).

4. Analysis of Results

4.1. Decoupling Model Analysis

Carbon decoupling refers to the issue of the relationship between changes in CO2
emissions and economic growth. When economic growth is achieved at the same time
that CO2 emissions grow at a negative rate or a rate less than the economic growth rate,
it can be regarded as decoupling, which is essentially a measure of whether economic
growth comes at the cost of resource consumption and environmental damage. Through
the four provinces and cities through which the South-to-North Water Diversion Project
passes, from 2000–2019, carbon emission and GDP data were calculated according to the
decoupling model, and the decoupling was calculated as shown in (Figure 3).

 

Figure 3. Dynamic relationship between carbon emissions and economic growth in four provinces
and cities from 2000–2019.

Beijing from 2000–2009 experienced a weak negative decoupling, weak decoupling,
expansion negative decoupling, and a strong decoupling stage for a better trend, eco-
nomic growth, and carbon emissions among the more reasonable. Decoupling mainly
alternated between weak and strong decoupling from 2010–2019. Under continuous eco-
nomic acceleration, the economic growth rate was greater than the growth rate of carbon
emissions, indicating that energy conservation and emission reduction efforts achieved the
intended results.

Tianjin’s carbon emissions and economic development in the 2000–2009 timeframe
were mainly weakly decoupling, with a large amount of carbon emitted mainly from the
secondary industry, and the growth rate of carbon emissions was greater than that of
economic growth, leading to excessive carbon emissions. Expansion of negative decoupling
occurred from 2009–2010, and strong decoupling predominated from 2010–2019, indicating
significant results in energy conservation, emission reduction, and industrial restructuring.
The relationship between carbon emissions and economic growth was within a more
reasonable range.

Hebei was mainly weakly decoupled from 2000–2009, closely related to Hebei’s energy
emissions. Hebei is a traditional industrial province and China’s number one iron and
steel province, resulting in a continuous increase in carbon emissions. Strong decoupling
occurred twice from 2010–2019, in 2016 and 2017, respectively. This demonstrates that
Hebei promotes the transformation of old and new kinetic energy, accelerates the pace of
transformation and upgrading of traditional industries, and accelerates the development
of new industries. It also shows that the industry’s momentum toward the middle and
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high end is vital. It is necessary to deeply promote the manufacturing industry’s high-end,
intelligent, and green development.

Henan was mainly dominated by weak decoupling and expansion negative decou-
pling from 2000–2009, with weak decoupling occurring five times and expansion negative
decoupling occurring three times, indicating an irrational match between carbon emis-
sions and economic growth. Strong decoupling occurred six times from 2010–2019. Then,
there was a better match between economic growth and carbon emissions, with economic
growth being more significant than the rate of carbon emissions and a sustained reduc-
tion in carbon emissions. This is closely related to the government’s energy-saving and
emission-reduction policies, industrial restructuring, and green development. The relation-
ship between economic growth and carbon emissions has been gradually harmonized to
promote high-quality development in Henan.

4.2. STIRPAT Model Regression Fit Analysis
4.2.1. Description of Variables

The following is a collection and collation of basic data from four provinces and
municipalities: Beijing, Tianjin, Hebei, and Henan carbon emissions, 2000–2019, permanent
population, GDP per capita, energy consumption intensity (energy consumption/GDP),
and energy structure (coal consumption/total energy consumption). This includes data on
the share of the secondary sector in GDP. The maximum, minimum, mean, and standard
deviation of each variable after taking the logarithm are shown in (Table 2).

Table 2. Description of variables.

Variant
Abbreviated

Symbol
Minimum

Value
Maximum

Value
Average

Value
Standard
Deviation

Carbon emissions I 617.61 6577.2 2754.21 2115.56
Permanent population P 1001.14 9901 4937.08 3550.22

GDP per capita A 5450 161,776 45,876.44 35,365.7
Intensity of energy consumption T 0.21 2.43 1.06 0.58

Energy mix Y 0.02 1.3 0.81 0.33
Share of secondary sector in GDP Z 16.2 60.1 44.4 11.93

4.2.2. Variable Correlation Analysis

The base data of the four provinces and cities were logarithmically processed, and
factor analyses of the variables by SPSS 27 software, KMO, and Bartlett’s test are shown in
Table 3. The range of values between 0.7 and 0.8 is barely suitable, and between 0.8 and 0.9
is suitable. The values are 0.8 for Beijing, 0.8 for Tianjin, 0.6 for Hebei, and 0.7 for Henan,
all with a significance of 0.000.

Table 3. KMO and Bartlett’s test.

Beijing Tianjin Hebei Henan

KMO Sampling Suitability Measure 0.8 0.6 0.6 0.7

Bartlett’s
Sphericity

test

Approximate Chi-squared value 183.40 238.29 210.19 186.54
(number of) degrees of freedom (physics) 15 15 15 15

Significance 0.00 0.00 0.00 0.00

After the KMO and Bartlett tests, the indicators that best reflect the input–output
relationship were screened using Pearson correlation coefficients (Figure 4). The closer the
absolute value of the Pearson correlation coefficient is to 1, the stronger the correlation
between the indicator and carbon emissions.
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Figure 4. Pearson correlation between indicators.

There is a strong positive correlation of 0.98 between the resident population and GDP
per capita in Beijing and a strong negative correlation with energy consumption intensity,
energy structure, and the proportion of secondary industry in GDP, which are −0.97, −0.75,
and −0.82, respectively. There is a strong negative correlation between per capita GDP
and energy consumption intensity, energy structure, and the proportion of the secondary
industry. Carbon emissions in Tianjin positively correlate with the resident population and
per capita GDP, up to 0.96. A negative correlation exists between permanent population
and energy consumption intensity, energy structure, and the proportion of secondary
industry in GDP. In Hebei Province, carbon emissions have a strong positive correlation
with permanent population and per capita GDP, reaching the highest, 0.95, and a negative
correlation with energy consumption intensity, energy structure, and the proportion of
secondary industry in GDP. The positive correlation between carbon emission and per
capita GDP in Henan Province is 0.91, and the negative correlation between carbon emission
and energy consumption intensity and energy structure is 0.91.

4.3. Tapio Decoupling Model Analysis

According to the basic form of the STIRPAT model, the extended STIRPAT model was
constructed, and its expression is shown in Equation (4).

I = aPb AcTdYiZje (4)

In order to facilitate subsequent data analysis and processing, Equation (4) is logarith-
mic to obtain Equation (5):

lnI = blnP + clnA + dlnT + ilnY + jlnZ + lne (5)
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In formula (5), b, c, d, i, and j are prediction coefficients representing the amount of
change in carbon emissions b%, c%, d%, i%, and j% that can be induced by a 1% change in
the resident population (10 thousand people), GDP per capita (RMB/person), energy con-
sumption intensity (10 thousand tons of standard coal/billions), energy structure (tons of
standard coal/tons), and the share of secondary industry in GDP (%). The regression model
is used to construct a carbon emission prediction model for the four provinces and munici-
palities of the South-to-North Water Diversion Project and then to analyze carbon peaking
by predicting the future carbon emission trends of the four provinces and municipalities
based on the baseline scenario, the green scenario, and the high-speed scenario.

4.4. Ridge Regression Results

The results of the SPSS 27 software test showed that the variance inflation factor
between the variables was higher than 10. In order to avoid multicollinearity between the
influencing factors, ridge regression analysis was used to fit the carbon emissions to the
influencing factors, and the carbon emission prediction models were constructed separately
for the study area. Individual carbon emission forecasting models were created for the
research region. The pertinent results can be found in Table 4.

Table 4. Carbon emission regression fitting results for four provinces and cities of South-to-North
Water Diversion Central Route Project.

Province P A T Y Z Constant k R2

Beijing 0.2561 0.1878 *** −0.0467 0.1826 *** −0.0601 5.3592 *** 0.05 0.73
Tianjin 1.0539 *** 0.1522 *** −0.0229 −0.0764 0.1613 −0.5087 0.15 0.91
Hebei 3.3382 *** 0.2347 *** −0.1063 ** −0.2363 1.4690 *** −26.7293 *** 0.10 0.96
Henan −0.1369 0.3432 *** −0.3617 *** 0.2525 2.3362 *** −0.7557 0.15 0.93

Note: ***, ** represent p < 0.01 and p < 0.05, respectively.

The resulting carbon emission projection models for Beijing, Tianjin, Hebei, and Henan
are shown in Equations (6)–(9).

lnI = 0.2561lnP + 0.1878lnA − 0.0467lnT + 0.1826lnY − 0.0601lnZ + 5.3592 (6)

lnI = 1.0539lnP + 0.1522lnA − 0.0229lnT − 0.0764lnY + 0.1613lnZ − 0.5087 (7)

lnI = 3.3382lnP + 0.2347lnA − 0.1063lnT − 0.2363lnY + 1.4690lnZ − 26.7293 (8)

lnI = −0.1369lnP + 0.3432lnA − 0.3617lnT + 0.2525lnY + 2.3362lnZ − 0.7557 (9)

According to Equations (6)–(9), the substitution of the data to obtain the carbon
emissions and the projected carbon emissions of the four regions of Beijing, Tianjin, Hebei,
and Henan from 2000–2019 is shown in (Figure 5).

4.5. Peak Carbon Scenario Projections

Based on the extended STIRPAT model, a forecasting study was conducted with 2020
as the base year and 2035 as the end year. In 2020, due to the impact of “new coronavirus
pneumonia”, the scenarios were based on the rates of change in the 13th Five-Year Plan, as
shown in Tables 5–8. The change characteristics for 2021–2035 were divided into three time
periods: 2021–2025, 2026–2030, and 2031–2035, with each period set at five years.
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Figure 5. Actual carbon emissions and projections for four provinces and cities, 2000–2019 (104t).

4.5.1. Basis for Setting Indicators in Beijing

The setting of various indicators in Beijing is shown in Table 5. The population setting
was based on the Beijing Urban Master Plan (2016–2035), which states that the resident
population of Beijing will be within 23 million in 2035, and the resident population of
Beijing will be 21.9 million in 2019, which allowed us to calculate that the average annual
rate of change from 2019–2035 will be controlled to be around 0.3139%. For 2021, the low
speed of the population can be set at 0.2800%, the medium speed at 0.3100%, and the high
speed at 0.3400%, with a constant annual decline of 0.001% during the forecast period. Per
capita GDP was based on the 14th Five-Year Plan for Beijing’s National Economic and Social
Development and the outline (draft) of the long-term goals for 2035. By 2035, per capita
GDP will reach more than 320,000 yuan, and the city’s comprehensive competitiveness
will rank among the highest in the world. In 2019, the per capita GDP of Beijing was
161,776 yuan. It can be calculated that the average annual change rate from 2019–2035 will
be controlled at around 6.1128%. It can be set that the per capita regional gross domestic
product in 2021 will decrease at a low speed of 5.9100%, a medium speed of 6.1128%, and
a high speed of 6.3100%. During the forecast period, the annual average decline will be
0.28%. The energy consumption intensity in Beijing was 0.46% in 2010 and 0.21% in 2019.
Therefore, the change rate between 2010 and 2019 can be calculated to be −5.52%. The
energy consumption intensity in 2021 can be set as −5.8200% at low speed, −5.5200% at
medium speed, and −5.2200% at high speed. The energy structure in Beijing was 0.38% in
2010 and 0.02% in 2019. Therefore, the change rate between 2010 and 2019 can be calculated
to be −9.34%. It can be set that the energy structure in 2021 will have a low speed of
−9.5400%, a medium speed of −9.3400%, and a high speed of −9.1400%. In Beijing, the
proportion of the secondary industry in GDP was 24% in 2010 and 16.2% in 2019, so the
change rate between 2010 and 2019 can be calculated as −3.25% and the proportion of
the secondary industry in GDP in 2021 can be set as −3.5500% at low speed, −3.2500% at
medium speed and −3.0550% at high speed.
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Table 5. Beijing’s indicator settings.

Rate of Change Vintages

Rate of Change Setting

Permanent
Population

GDP per
Capita

Intensity of Energy
Consumption

Energy Mix
Share of

Secondary
Sector in GDP

Low

2019–2020 −0.0569% 7.7771% −5.7000% −19.9300% −3.9744%
2021–2025 0.2800% 5.9100% −5.8200% −9.5400% −3.5500%
2026–2030 0.2750% 4.5100% −5.8250% −10.0400% −3.5550%
2031–2035 0.2700% 3.1100% −5.8300% −10.5400% −3.5600%

Middle

2019–2020 −0.0569% 7.7771% −5.7000% −19.9300% −3.9744%
2021–2025 0.3100% 6.1128% −5.5200% −9.3400% −3.2500%
2026–2030 0.3050% 4.7128% −5.5250% −8.8400% −3.2550%
2031–2035 0.3000% 3.3128% −5.5300% −8.3400% −3.2600%

High

2019–2020 −0.0569% 7.7771% −5.7000% −19.9300% −3.9744%
2021–2025 0.3400% 6.3100% −5.2200% −9.1400% −3.0500%
2026–2030 0.3350% 4.9100% −5.2250% −8.6400% −3.0550%
2031–2035 0.3300% 3.5100% −5.2300% −8.1400% −3.0600%

4.5.2. Basis for Setting Indicators in Tianjin

The indicators of Tianjin are set in Table 6. According to the Tianjin Bureau of Statistics
data, by the end of 2021, Tianjin’s permanent population had reached 15.6966 million,
an increase of 0.4% over the previous year. Since 2016, the resident population of Tianjin
has been showing a steady growth trend. Among them, Tianjin’s population growth rate
dropped slightly in 2020 due to the epidemic. However, with the effective control of the
epidemic, Tianjin’s population growth rate rose again in 2021. The population will continue
to grow in the future as Tianjin’s economy continues to develop. According to the plan of
the Tianjin municipal government, the permanent population of Tianjin will reach about
20 million by 2035. In 2019, the resident population of Tianjin was 13.85 million. The annual
change rate from 2019–2035 will be controlled at about 2.7753%. Then, it can be set that
in 2021, the low speed of Tianjin’s resident population can be set as 2.5800%, the medium
speed can be set as 2.7753%, and the high speed can be set as 2.9800%, with an even annual
decline of 0.003% during the forecast period. Gross regional product per capita can be set to
be RMB 54,053 per capita in Tianjin in 2010 and RMB 101,557 per capita in Tianjin in 2019; it
can be calculated that the average annual rate of change from 2019-2035 will be controlled
at about 8.79%. The GDP per capita in 2021 can be set at 8.5884% at low speed, 8.7884% at
medium speed, and 8.9884% at high speed. Energy consumption intensity in Tianjin was
1.00% in 2010 and 0.58% in 2019, so the change rate between 2010 and 2019 can be calculated
as −4.15%. Energy consumption intensity in 2021 can be set to −4.4462% at low speed,
−4.1462% at medium speed, and −3.8462% at high speed. The energy structure in Tianjin
was 0.71% in 2010 and 0.46% in 2019, indicating a change rate of −3.52% between 2010 and
2019. The energy structure can be set at −3.8178% for low speed, −3.5178% for medium
speed, and −3.2178% for high speed in 2021. In Tianjin, the proportion of the secondary
industry in GDP was 52.5% in 2010 and 35.2% in 2019, so the change rate between 2010
and 2019 can be calculated as −3.30%. The proportion of secondary industry in GDP in
2021 can be set as −3.492% at low speed, −3.2957% at medium speed, and −3.0952% at
high speed.

4.5.3. Basis for Setting the Indicators in Hebei

The setting of the indicators for Hebei is shown in Table 7. Population setting: Accord-
ing to the Population Development Plan of Hebei Province (2018–2035), the population of
Hebei Province will increase to 79.1 million people by 2035. In 2019, the resident population
of Hebei Province was 21.9 million people; it can be calculated that the average annual rate
of change from 2019–2035 will be controlled at about 0.39%. The population can be set to
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have a low speed of 0.3636%, a medium speed of 0.3886%, and a high speed of 0.4086% in
2021, with a predicted annual average decrease of 0.01% during the forecast period. The
per capita GDP of Hebei Province was 25,308 yuan in 2010 and 47,036 yuan in 2019, and
the change rate from 2010–2019 can be calculated as about 8.59%. It can be set that the per
capita regional gross domestic product in 2021 will decrease at a low speed of 8.2854%,
a medium speed of 8.5854%, and a high speed of 8.7857%. During the forecast period, the
annual average decline will be 0.02%. Energy consumption intensity in Hebei was 1.53% in
2010 and 0.93% in 2019; therefore, the rate of change between 2010–2019 can be calculated to
be −3.94%, which can be set as −3.9674% for the low rate of energy consumption intensity
in 2021, −3.9374% for the medium rate, and -3.9074% for the high rate. Energy structure in
Hebei was 1.00% in 2010 and 0.88% in 2019; then, the rate of change between 2010–2019
can be calculated as −1.15% and the energy structure in 2021 can be set to be −1.5483%
for the low rate, −1.1438% for the medium rate, and −0.7483% for the high rate. In 2010,
the share of secondary industry in the GDP in Hebei was 52.5%, and in 2019, the share
of secondary industry in the GDP in Hebei Province was 38.7%; then, the rate of change
between 2010–2019 can be calculated as −2.63%, and it can be set that, in 2021, the share of
secondary industry in GDP will be −2.9286% at low speed, −2.6286% at medium speed,
and −2.3286% at high speed.

Table 6. Tianjin indicator settings.

Rate of Change Vintages

Rate of Change Setting

Permanent
Population

GDP per
Capita

Intensity of Energy
Consumption

Energy Mix
Share of

Secondary
Sector in GDP

Low

2019–2020 −1.0000% 6.8772% 7.3418% −3.1827% −4.2122%
2021–2025 2.5800% 8.5884% −4.4462% −3.8178% −3.4952%
2026–2030 2.4300% 5.0884% −4.4962% −1.3178% −3.4957%
2031–2035 2.2800% 1.5884% −4.5462% 1.1822% −3.4962%

Middle

2019–2020 −1.0000% 6.8772% 7.3418% −3.1827% −4.2122%
2021–2025 2.7753% 8.7884% −4.1462% −3.5178% −3.2952%
2026–2030 2.6253% 5.2884% −4.1962% −1.0178% −3.2957%
2031–2035 2.4753% 1.7884% −4.2462% 1.4822% −3.2962%

High

2019–2020 −1.0000% 6.8772% 7.3418% −3.1827% −4.2122%
2021–2025 2.9800% 8.9884% −3.8462% −3.2178% −3.0952%
2026–2030 2.8300% 5.4884% −3.8962% −0.7178% −3.0957%
2031–2035 2.6800% 1.9884% −3.9462% 1.7822% −3.0962%

4.5.4. Basis for Setting the Indicators in Henan

The setting of each indicator in Henan is shown in Table 8. In the population setting,
the resident population of Henan Province in 2010 was 94.05 million people, and the
resident population of Henan Province in 2019 was 99.01 million. Then, the rate of change
between 2010 and 2019 can be calculated as 0.53%, and it can be set that the resident
population in 2021 will be 0.4974% at a low rate, 0.5274% at a medium rate, and 0.5574% at
a high rate. The uniform rate of decline is 0.001 percent per year over the projection period.
The per capita GDP of Henan Province was 41,326 yuan in 2016 and 5,450 yuan in 2019. The
annual change rate from 2019–2035 will be controlled at about 7.88%. It can be set that the
per capita regional gross domestic product in 2021 will decrease at a low speed of 7.5824%,
a medium speed of 7.8824%, and a high speed of 8.1824%, with a predicted average annual
decrease of 0.001% during the forecast period. Energy consumption intensity in Henan
Province was 0.95% in 2010 and 0.41% in 2019. Then, the rate of change between 2010 and
2019 can be calculated as −5.66%, and it can be set that the low rate of energy consumption
intensity in 2021 will be −5.9567%, the medium rate will be −5.6567% and the high rate
will be −5.3567%. The energy structure of Henan Province was 1.22% in 2010 and 0.90%
in 2019; then, the rate of change between 2010 and 2019 can be calculated as −2.60%, and
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it can be set that the low rate of energy structure in 2021 can be set to be −2.9025%, the
medium rate can be set to be −2.6025%, and the high rate can be set to be −2.3025%. In
Henan Province, the share of secondary industry in GDP was 57.30% in 2010 and 43.50% in
2019. Then, the rate of change between 2010 and 2019 can be calculated to be −2.41%, and
it can be set that the share of secondary industry in GDP in 2021 will be −2.7084% at low
speed, −2.4084% at medium speed, and −2.1084% at high speed.

Table 7. Setting of indicators in Hebei.

Rate of Change Vintages

Rate of Change Setting

Permanent
Population

GDP per
Capita

Intensity of Energy
Consumption

Energy Mix
Share of

Secondary
Sector in GDP

Low

2019–2020 0.2441% 5.3944% −1.5503% −2.4988% −4.6629%
2021–2025 0.3686% 8.2854% −3.9674% −1.5483% −2.9286%
2026–2030 0.3186% 8.3854% −4.1674% −2.0483% −3.1286%
2031–2035 0.2686% 8.4854% −4.3674% −2.5483% −3.3286%

Middle

2019–2020 0.2441% 5.3944% −1.5503% −2.4988% −4.6629%
2021–2025 0.3886% 8.5854% −3.9374% −1.1483% −2.6286%
2026–2030 0.3836% 8.6854% −4.1374% −1.6483% −2.8286%
2031–2035 0.3786% 8.7854% −4.3374% −2.1483% −3.0286%

High

2019–2020 0.2441% 5.3944% −1.5503% −2.4988% −4.6629%
2021–2025 0.4086% 8.7854% −3.9074% −0.7483% −2.3286%
2026–2030 0.4036% 8.8854% −4.1074% −1.2483% −2.5286%
2031–2035 0.3986% 8.9854% −4.3074% −1.7483% −2.7286%

Table 8. Setting of Indicators in Henan.

Rate of Change Vintages

Rate of Change Setting

Permanent
Population

GDP per
Capita

Intensity of Energy
Consumption

Energy Mix
Share of

Secondary
Sector in GDP

Low

2019–2020 0.3145% 7.8824% −6.5153% −3.7995% −2.1667%
2021–2025 0.4974% 7.5824% −5.9567% −2.9025% −2.7084%
2026–2030 0.4924% 7.5874% −6.1567% −3.4025% −2.9084%
2031–2035 0.4874% 7.5924% −6.3567% −3.9025% −3.1084%

Middle

2019–2020 0.3145% 7.8824% −6.5153% −3.7995% −2.1667%
2021–2025 0.5274% 7.8824% −5.6567% −2.6025% −2.4084%
2026–2030 0.5224% 7.8874% −5.8567% −3.1025% −2.6084%
2031–2035 0.5174% 7.8924% −6.0567% −3.6025% −2.8084%

High

2019–2020 0.3145% 7.8824% −6.5153% −3.7995% −2.1667%
2021–2025 0.5574% 8.1824% −5.3567% −2.3025% −2.1084%
2026–2030 0.5524% 8.1874% −5.5567% −2.8025% −2.3084%
2031–2035 0.5474% 8.1924% −5.7567% −3.3025% −2.5084%

4.6. Scenario Building

Based on the impact of the high, medium, and low three rates of change in the four
provinces and cities, five scenarios were constructed to carry out the five scenarios for
2020–2035 in each of the four provinces and cities. The results are shown in Table 9.

Low-carbon development scenario (M1): The rates of change between the indicators in
this scenario are chosen to be low, exploring the impact of indicators on carbon emissions
in a lower scenario. Energy efficiency scenario (M2): Only the resident population and
GDP per capita are changed in the low-carbon development scenario, while the rest of the
indicators remain unchanged. In the energy-saving scenario, the industrial structure has
been optimized, energy consumption has decreased, and the proportion of the secondary
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industry to GDP has decreased. Baseline scenario (M3): The median value of changes
among the indicators is adopted, and the influence of the original policy intensity on carbon
emissions is analyzed without adjustment. Ideal scenario (M4): The ideal scenario has an
increase in the resident population, a significant increase in GDP per capita, minimum
energy consumption between categories, and green and energy-efficient development. Free
development scenario (M5): In this scenario, the variation between the indicators is the
highest, and there is no influence from other factors, only from development.

Table 9. Peak carbon forecast scenarios for four provinces and cities, 2020–2035.

Scenarios
Permanent
Population

GDP per
Capita

Intensity of
Energy

Consumption

Energy
Mix

Share of
Secondary Sector

in GDP

Low-carbon development scenario (M1) low low low low low
Energy efficiency scenario (M2) middle middle low low low

Baseline scenario (M3) middle middle middle middle middle
Ideal scenario (M4) middle high low low low

Freedom to develop scenario (M5) high high high high high

4.7. Predictive Analyses

From (Figure 6): Beijing and Henan peaked in the 2000–2035 timeframe under the
analysis of different scenarios, with Beijing peaking in 2010 and Henan peaking in 2011.
Carbon emissions continued to decline in two regions, Beijing and Henan, over the next
2035 period. The Tianjin data indicated an upward trend in the 2000–2019 timeframe, with
a downward trend in carbon emissions under the low-carbon development scenario model
over the projection period. Hebei Province did not experience carbon peaking between
2020 and 2035, with an inflection point in 2030 under the low-carbon development model
and an upward trend in carbon emissions under the remaining four models.

Figure 6. Carbon emission projections for four provinces and municipalities under various scenarios,
2020–2035 (104t).
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5. Discussion

Wang Wenju et al. analyzed national and provincial governments’ overall objectives
and critical action plans to promote carbon peaking. They used the Mann–Kendall statistical
trend test to examine each province’s carbon emission peaking situation [30]. The study
found that provincial governments have responded positively to the central government’s
request to formulate and actively implement action programs for carbon peaking. Beijing
and Henan have taken the lead in achieving carbon peaking. Provinces have implemented
exceptional government support and financial subsidies, effectively guiding low-carbon
development, reducing carbon emissions, and thus achieving carbon peaks. Han Nan et al.
constructed a carbon emission system dynamics model by analyzing the relationship
between carbon emissions and influencing factors. They set up six scenarios to simulate
and predict their impact on the time of carbon peaking in Beijing, Tianjin, and Hebei [31].
The results showed that under the baseline scenario, Beijing has already achieved peak
carbon. Tianjin is expected to reach peak carbon by 2023, and Hebei is having difficulty
reaching peak carbon by 2035. This is consistent with the findings of this paper.

Our study suggests that Hebei is less likely to reach peak carbon emissions in 2035.
However, Beijing, Tianjin, and Henan could reach peak carbon emissions in the 2020–2030
timeframe. Beijing is actively promoting the construction of a green Beijing, deepening
the implementation of the functional positioning of the capital city, and taking the lead in
establishing the development concept of reduction. Tianjin actively promotes the devel-
opment of a digital economy, the transformation and upgrading of traditional industries,
and the gradual decline of carbon emissions. Henan vigorously promotes energy conser-
vation and emission reduction, accelerates the establishment of a sound economic system
of green, low-carbon, and recycling development, promotes the overall green and low-
carbon economic and social transformation, and helps to achieve the goal of carbon peak
and carbon neutrality. Hebei has formed a diversified pillar industry pattern featuring
resource-consuming and polluting industries such as iron and steel, coal, chemicals, and
equipment manufacturing. The increased CO2 emissions from the excessive use of fossil en-
ergy sources, such as coal, have put enormous pressure on environmental protection. From
the study of decoupling effects, the relationship between economic growth and carbon
emissions in provinces and cities along the South-to-North Water Diversion Central Route
Project has been generally improving in recent years, and a more desirable decoupling will
be achieved in the future.

As of 22 July 2022, the water entering the central canal from the Taocha Canal Head-
work of the first phase of the South-to-North Water Diversion Project exceeded 50 billion
cubic meters, benefiting a population of more than 85 million. The annual volume of water
transferred by the first phase of the Central Route Project has continued to climb from more
than 2 billion cubic meters to 9 billion cubic meters. It demonstrates that the South-to-North
Water Diversion Project continues to develop highly, providing high-quality water security
for the provinces and cities along the route.

In order to reduce energy consumption and achieve carbon reduction goals in the
South-to-North Water Diversion Project, consolidating the foundation of green and low-
carbon management is fundamental. We should strengthen compliance management, con-
tinuously improve green development systems such as environmental protection, pollution
control, energy and resource conservation, and efficient utilization, and low-carbon trans-
formation, and guide the implementation of standards and requirements that are conducive
to green development. We should also establish and improve a long-term mechanism for
green development, actively explore the establishment of effective incentive and constraint
mechanisms, promote innovation in green development management and institutional
innovation, dynamically monitor energy consumption and carbon emissions, achieve mon-
itoring, reporting, and verification of energy consumption and carbon emissions indicators,
and provide decision-making support for green and low-carbon development. Provinces
and municipalities along the route should formulate energy-saving and emission-reduction
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policies suitable for their provinces according to local conditions to contribute to China’s
goal of achieving carbon peaking by 2030.

6. Conclusions

This study uses the STIRPAT model to investigate the carbon emissions of provinces
and cities along the South-to-North Water Diversion Central Route Project. It also forecasts
carbon emissions from 2020–2035 under different scenarios and analyses whether carbon
can be peaked by 2035. The main conclusions are as follows:

(1) The four provinces and municipalities were mainly weakly decoupled in the 2000–2009
timeframe, gradually shifting to strong decoupling from 2010–2019. From the perspec-
tive of decoupling economic development from carbon emissions, a country or region
usually goes through a process progressing from negative decoupling to weak or even
strong decoupling. Moreover, the process is often tortuous. For example, recessionary
decoupling and negative recessionary decoupling can occur under the influence of
political, economic, and environmental factors.

(2) According to the parameters of the model formula for the four provinces and cities, it
can be seen that the resident population and per capita GDP have a more significant
impact on carbon emissions. Due to this, Beijing’s resident population and per capita
GDP can cause a change of 0.2561% and 0.1878% for every 1% change. Every 1%
change in Tianjin’s resident population and GDP per capita can cause a change of
1.0539% and 0.1522%.

(3) There will be carbon peaks in both Beijing and Henan in the 2000–2035 timeframe, with
Beijing peaking at 96.836 million tons in 2010 and Henan peaking at 654.104 million
tons in 2011. Mainly, the continued optimization of the industrial structure, promot-
ing a clean energy transition, and implementing the Peak Carbon Implementation
Program will achieve the Peak Carbon Goal on schedule.

(4) Among the four provinces and cities along the South-to-North Water Diversion Project,
only Hebei did not reach its peak during the period under study, which is related
to a large amount of energy consumption in Hebei, a traditional industrial province.
The total energy consumption in Hebei Province is significant, and its structure is
dominated by fossil energy. The proportions of coal consumption per capita and GDP
energy consumption are higher than the national level, resulting in more significant
carbon emissions.
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Abstract: The per capita carbon balance and carbon compensation zoning of Chinese counties from
the perspective of major function-oriented zones is important for realizing the carbon peaking and car-
bon neutral target. In this study, the Kernel-K-means++ algorithm is used and a more comprehensive
per capita carbon compensation zoning model is constructed. Based on this, combined with the major
function-oriented zones, Chinese counties are divided into per capita carbon compensation-type
zones. Further, spatial and temporal characteristics are detected, and suggestions for optimizing
low-carbon development are put forward. The main results are as follows: (1) From 2000 to 2017,
the per capita carbon emissions (PCO2) of Chinese counties were large and showed a trend of stable
expansion and a southeast–northwest pattern; (2) the per capita carbon emissions of key develop-
ment zones accounted for the largest proportion of emissions; (3) there were 1410 payment zones,
170 balanced zones, and 242 compensated zones among China’s counties; and (4) 11 types of carbon
compensation space optimization zones were finally formed, and low-carbon development directions
and strategies were proposed for each type of area. Based on this, this study promotes regional
carbon emissions management and reduction in China and provides a reference for other regions to
reduce emissions.

Keywords: carbon emission; carbon compensation zoning; Chinese counties; space optimization;
major function-oriented zoning

1. Introduction

With the problem of global warming becoming more and more serious, the amount of
attention being paid to carbon emissions is gradually increasing. As the basic spatial unit
of the population and economic activities and the basic local administrative unit in China,
counties are also the basic spatial unit of carbon emissions, and carbon emissions pressures
coexist with reduction potential. Carbon compensation is an important measure to achieve
CO2 offsetting of emissions from carbon sources through emissions reduction and other
measures in order to achieve a regional carbon balance and thus promote overall national
emissions reduction and sustainable development. For extensive study areas, zoning is an
effective means of controlling carbon emissions. Categorizing regions with similar carbon
emissions and background conditions facilitates localized and centralized management
and achieves emissions reduction more efficiently. The study of regional differences in
per capita carbon emissions (PCO2), spatial and temporal patterns, and per capita carbon
compensation zoning at the county level in China is crucial to the realization of the carbon
peaking and carbon neutral target, the implementation of policies related to carbon control
and emissions reduction, and the planning of low-carbon development in counties.

At present, carbon emissions research is a popular research topic in geography, ecology,
environmental science, and other disciplines, which is mainly divided into carbon emissions
simulation and prediction [1,2], spatial and temporal differentiation characteristics [3,4],
driving factors [5,6], and so on. Although the results of carbon emissions simulation in
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the existing research differ, the trend of change is relatively consistent, and the relevant
research points out that global carbon emissions have shown an upward trend in most
previous years. However, there have been decreases or fluctuations in the recent period [7].
The factors driving carbon emissions vary across sectors—for example, in China, carbon
emissions from the power sector are mainly driven by economic growth, whereas the
effect of technological progress makes a significant contribution to the carbon intensity of
the industrial sector [8], and it is important to note that the driving mechanisms of these
various factors are changing dynamically over time [9]. In addition, in terms of spatial and
temporal carbon emissions variations, existing studies mostly focused on the analysis of
spatial aggregation characteristics, patterns, and evolution [10–15]. There are two basic
types of such studies, and the first type involves using the boundaries of the administrative
region [16], watershed [17], or LUCC [18,19] as the unit to detect the characteristics of
the spatial and temporal variations of carbon emissions. There are also studies on the
spatialization of carbon emissions statistics by combining nighttime light remote sensing
data and other data to detect the spatial and temporal variability of carbon emissions at
the raster scale [20,21], and some studies have also combined the two types of data [22,23].
Among them, the study of the spatialization of carbon emissions using nighttime light data
is becoming more and more popular. Due to the existence of spatial and temporal variation
in carbon emissions, carbon balance has become the focus of carbon emissions reduction
research in various regions, and one of the important means of regulating carbon balance is
carbon compensation [24].

In terms of carbon compensation, in-depth discussions have been conducted mainly
around carbon compensation zoning [24–27], carbon compensation mechanisms [28,29], car-
bon compensation influencing factors [30], and carbon compensation in different industries,
fields, and sectors. The different fields can be divided into forest carbon compensation [31],
agricultural carbon compensation [28,29], and ecosystem compensation [32]. Carbon com-
pensation zoning is one of the main focuses of research in the field of carbon compensation
at this stage, and it is also a prerequisite and foundation for the implementation of a
regional carbon compensation system [27]. With carbon compensation zoning, it is impor-
tant to implement carbon compensation techniques and carbon compensation policies in
terms of empirical evidence. The current zoning research is mainly based on the carbon
compensation rate (carbon absorption/carbon emissions) [33], and the zoning evaluation
system is established with the carbon compensation rate, the carbon emissions economic
contribution coefficient, and the carbon emissions ecological carrying coefficient, and the
existing methods to achieve carbon compensation zoning are mainly SOM [34], the SOM-
K-means model [24,27], and the three-dimensional magic method [25,35]. In general, the
existing carbon compensation studies have two limits: Firstly, the research on regional
carbon compensation and compensation zoning is at the exploratory stage, mainly limited
to particular fields; secondly, the existing studies focus on compensation zoning based
on carbon balance accounting, the economic contribution rate of carbon emissions, the
ecological role of the carbon sink, land use, and major functional zones and fail to consider
additional factors such as the regional per capita carbon compensation rate and residents’
economic and energy consumption level; and thirdly, existing studies do not effectively
integrate macroscopic patterns and detailed features, i.e., there is a lack of studies with
both large-scale study areas and smaller categorical units (counties).

In this study, based on carbon emissions and carbon sequestration and population–
economic statistical data, spatial statistical analysis is used to characterize the spatial and
temporal variability of PCO2 in Chinese counties. The Normalized Revealed Comparative
Advantage (NRCA) index is used to quantify data on four dimensions, namely, natural,
economic, ecological, and energy attributes, and form comprehensive evaluation indexes of
per capita carbon compensation zoning in Chinese counties based on the Kernel-K-means++
algorithm to construct a per capita carbon compensation zoning model of Chinese counties,
and the zoning model is used for cluster analysis. Finally, optimization recommendations
for low-carbon development in each county are provided based on the zoning results.
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2. Materials and Methods

2.1. Study Area

China is located in the eastern part of Asia and on the western coast of the Pacific
Ocean, with a total land area of about 9.6 million km2, ranking third in the world. China
has experienced rapid economic growth and large-scale carbon emissions in recent years.
However, it has also been subject to a variety of climate, environmental, ecological, urban
heat island, and other issues. Therefore, emissions reduction is urgent in order to achieve
the carbon peaking and carbon neutral target and to alleviate these conditions. Meanwhile,
China’s vast area, carbon emissions, and its various types of impact on spatial diversity
represent significant challenges. The estimation of China as a research area, exploring
carbon compensation zoning methodologies and the optimization of policies, provides
strong representative data (Figure 1). Further, considering the accessibility of statistical
data, the county level was selected to carry out the research.

 

Figure 1. (a) shows the study area and the type of main functional area, and (b) shows the geographic
zoning map of China.

2.2. Data

In this study, based on the feasibility and completeness of the data acquisition,
1822 counties and districts in China were selected as study areas, excluding data from
the Tibet Autonomous Region, Taiwan Province, Hong Kong, and the Macao Special
Administrative Region, and the study period was 2000–2017. The data used included
2000–2017 China county-level carbon emissions and carbon sequestration data, county-
level population data, county-level GDP data, county-level GDP coal consumption data,
etc.; 2000–2017 China county-level carbon emissions and sequestration data from the
China Carbon Accounting Database (CEADs) (https://www.ceads.net.cn/data/county/,
accessed on 15 May 2023), with strong data time series continuity and a uniform calcula-
tion caliber; and 2000–2017 China county-level population, GDP, coal consumption, etc.,
sourced from various official statistical yearbooks, such as the China County Statistical
Yearbook and the China Energy Statistical Yearbook (Table 1).

Table 1. Overview of county statistics and sources.

Descriptions Factors Years Sources

Carbon emissions scale
indicator Carbon emissions 2000–2017

CEADs
Carbon sequestration scale

indicators Amount of solid carbon 2000–2017
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Table 1. Cont.

Descriptions Factors Years Sources

Population indicators Population 2001–2018 1
China County

Statistical Yearbook
Socio-economic indicators Regional GDP 2001–2018 1

Energy consumption
indicators

Regional GDP coal
consumption 2001–2018 1

Main functional zone type

Optimized development
zone, key development
zone, main production

zone of agricultural
products, key ecological

functional zone

\
Government

documents on main
functional zoning in
provinces and cities

1 The yearbook covers up to the previous year’s data. The year of the data is omitted from Table 1 because the
official main functional area planning documents were issued at different times in each province and city.

2.3. Methods

In this section, the research process and methodology are presented. The research
process of this study is illustrated in Figure 2.

 

Figure 2. Study process. The gray shapes in Figure 2 represent the data, pale pink shapes represent
the interpretation of the data, and light blue shapes represent the NRCA index. While purple shapes
represent the model, dark pink shapes represent the algorithms that make up the model, skin tone
shapes represent the partitioning results, and orange represents further analysis.

2.3.1. Dagum Gini Coefficient

Dagum [36] decomposed the overall variation into three components of intra-group
variation, inter-group variation, and net inter-group variation, and inter-group hypervari-
able density based on the Gini coefficient was used to effectively address the source of
measuring regional variation. In this study, the Dagum Gini coefficient was used as a
measure of regional differences in PCO2 across 1822 county-level units in China, calculated
using Equation (1):

Gjh =
∑

nj
i=1 ∑nh

r=1
∣∣yji − yhr

∣∣
njnh

(
yj + yh

) (1)
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where j and h are the numbers of two regions; nj and nh are the number of county units in j
and h, respectively; yji and yhr are the PCO2 of the i-th county unit in j and the r-th county
unit in h, respectively; and yj and yh represent the average value of PCO2 of all county
units in the corresponding regions.

The Dagum Gini coefficient can be specifically decomposed into three components:
the contribution of the within-group Gini coefficient to the overall Gini coefficient GW ,
the contribution of the net difference between groups to the overall Gini coefficient Gnb,
and the contribution of the hypervariable density Gt. The relationship between the three
components satisfies G = Gw + Gnb + Gt, and it is calculated via Equations (2)–(5):

G = ∑k
j=1 GjjPjSj + ∑k

j=1 ∑h �=j GjhPjShDjh + ∑k
j=1 ∑h �=j GjhPjSh

(
1 − Djh

)
(2)

Gw = ∑k
j=1 GjjPjSj (3)

Gnb = ∑k
j=1 ∑h �=j GjhPjShDjh (4)

Gt = ∑k
j=1 ∑h �=j GjhPjSh(1 − D jh) (5)

where Pj = nj/n represents the ratio of carbon emissions per capita of county units within j
to the overall carbon emissions per capita of county units n, and Sh = nhyh/ny represents the
ratio of carbon emissions per capita of county units within h to the overall carbon emissions
per capita of county units n.

2.3.2. Moran’s I Index

The global Moran’s I index is usually used to describe the average degree of association
of a spatial unit with its surrounding area over the entire region, and it is calculated via
Equation (6):

I =
n∑n

i=1 ∑n
j �=i Wij

(
Xi − X

)(
Xj − X

)
∑n

i=1 ∑n
j �=i Wij∑n

i=1
(
Xi − X

)2 (6)

where n is the number of sample counties; Xi and Xj are the per capita carbon emissions of
counties i and j, respectively; X is the mean value of the per capita carbon emissions; and
Wij is the spatial weight matrix (1 if adjacent, 0 if not adjacent). At the given significance
level, a positive Moran’s I value represents spatial agglomeration (passing the significance
test); a negative Moran’s I value represents spatial divergence (passing the significance test).

2.3.3. Normalized Revealed Comparative Advantage Index

The NRCA index is primarily an indicator of product competitiveness, obtained by Yu
et al. [37] by improving the Revealed Comparative Advantage (RCA) index constructed by
Balassa [38], which was used in this study to discriminate the dominant attributes of the per
capita carbon compensation zoning in Chinese counties. It is calculated using Equation (7):

NRCAi
j = Xi

j/X − XjXi/XX (7)

where Xi
j denotes the index value of attribute j of county unit i, Xj denotes the total index

value of attribute j of all county units, Xi denotes the total index value of all attributes
of county unit i, and X denotes the total index value of all county units and attributes.
If NRCAi

j > 0, it means that the county-level unit has a comparative advantage in this
attribute; otherwise, it means that the county-level unit does not have a comparative
advantage in this attribute.

2.3.4. Comprehensive Evaluation Index of Per Capita Carbon Compensation Zoning

Existing studies point out that the carbon cycle process at the county scale has obvious
natural–social binary cycle characteristics [39] and its carbon balance has both natural
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and social attributes [40]. Based on the regional binary carbon balance theory [40] and
existing studies [24,27], comprehensive evaluation indicators for per capita carbon com-
pensation zones were constructed based on four perspectives: the natural background,
socio-economic factors, the ecological environment, and energy consumption construction,
and the construction process diagram is shown in Figure 3.

 

Figure 3. The process of dividing carbon compensation zones.

The per capita carbon compensation rate was used as an indicator of the natural
background attributes; the per capita economic contribution coefficient of carbon emissions,
calculated based on the GDP, population, and carbon emissions data of the selected regions,
was used as an indicator of socio-economic attributes; the per capita ecological support
coefficient of carbon emissions calculated based on the selected carbon emissions data and
carbon sequestration data was used as an indicator of socio-ecological attributes; and the per
capita regional GDP energy consumption level (per capita regional GDP coal consumption),
calculated based on selected regional GDP coal consumption and population data, was used
as an energy consumption attribute. The mechanism of per capita carbon compensation
zoning in Chinese counties was investigated from four perspectives: natural background
attributes, socio-economic attributes, ecological and environmental attributes, and energy
consumption attributes. The above indicators are shown in Table 2 and Equations (8)–(11).

Table 2. County data on per capita carbon compensation zoning variables.

Descriptions Factors Years Sources

Natural background
attribute indicators

Per capita carbon
compensation rate

(PCR)
2000–2017

Per capita carbon
sequestration/per capita

carbon emission

Socio-economic
attribute indicators

Per capita economic
contribution

coefficient of carbon
emissions (PECC)

2000–2017

(Per capita GDP/per capita
total GDP)/(per capita

carbon emissions/per capita
total carbon emissions)

Socio-ecological
attribute indicators

Per capita ecological
support coefficient of

carbon emissions
(PESC)

2000–2017

(Per capita carbon
sequestration/per capita

total carbon
sequestration)/(per capita

carbon emissions/per capita
total carbon emissions)

Energy consumption
attribute indicators

Per capita regional
GDP coal

consumption
(PRGDPCC)

2000–2017 Regional GDP coal
consumption/population

The county PCR for China was selected as an indicator reflecting the scale attributes of
per capita carbon compensation, PECC was selected as an indicator of the socio-economic
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attributes of per capita carbon compensation, PESC was selected as an indicator of the
ecological and environmental attributes of per capita carbon compensation, and PRGDPCC
was selected as an indicator of the energy consumption attributes of per capita carbon
compensation partition. The PCR is calculated using Equation (8):

PCR =
PCAi
PCi

, i = 1, 2, . . . , n (8)

where PCAi is the per capita carbon sequestration of the i-th county unit, and PCi is the per
capita carbon emissions of the i-th county unit. As shown in Equation (8), the PCR index
only considers the relationship between per capita carbon sequestration and per capita
carbon emissions in a county itself.

Based on the carbon emissions ecological carrying coefficient and carbon emissions
ecological carrying factor proposed by Lu et al. [41], in this study, the per capita carbon
emissions economic contribution coefficient (PECC) and per capita carbon emissions ecolog-
ical carrying coefficient (PESC) are proposed. PECC indicates the socio-economic attributes
of per capita carbon compensation and is used to reflect the socio-economic benefits of per
capita carbon compensation in the county, and it is calculated via Equation (9):

PECC =
PGi
PG

/
PCi
PC

(9)

where PGi and PG are the GDP per capita of the i-th county unit and the total per capita GDP
of 1822 county units, respectively; PCi and PC are the carbon emissions per capita of the i-th
county unit and the total per capita carbon emissions of 1822 county units, respectively.

PESC denotes the eco-environmental attributes of per capita carbon compensation,
used to reflect the eco-environmental benefits of per capita carbon compensation in the
county, and it is calculated via Equation (10):

PESC =
PCAi
PCA

/
PCi
PC

(10)

where PCAi and PCA are the per capita carbon sequestration of each county unit and the
total per capita carbon sequestration of 1822 county units, respectively, and PCi and PC
are the per capita carbon emissions of each county unit and the total per capita carbon
emissions of 1822 county units, respectively. As shown in Equation (10), the PESC index
takes the correlation between counties into account.

PRGDPCC is used to indicate the level of energy consumption of the residential
economy to represent the energy consumption attribute of per capita carbon compensation,
and it is calculated via Equation (11):

PRGDPCC =
RGDPCCi

Popi
, i = 1, 2, . . . , n (11)

where PRGDPCCi is the level of economic energy consumption of residents in the i-th
county unit, Popi is the population in the i-th county unit, and there are n county units in
total. This index represents the per capita economic energy consumption level of the region.

Based on the natural background attributes, socio-economic attributes, ecological
environment attributes, and energy consumption attributes of the per capita carbon com-
pensation in counties, the NRCA index of each attribute was calculated to set the evaluation
index of per capita carbon compensation zoning. Considering the four factors of nature,
economy, ecology and energy, four comprehensive evaluation indicators for per capita
carbon offset zoning were established (Table 3). Regarding the per capita carbon compensa-
tion division scheme, the study area was divided into three types: paying, balancing, and
receiving [27]. Among them, the payment zone was defined as the area that needs to be
compensated by economic or non-economic means in the per capita carbon compensation
behavior, the equilibrium area was defined as the area that does not need to pay and receive
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compensation in the per capita carbon compensation behavior, and the compensated zone
was defined as the area that receives economic or non-economic compensation in the per
capita carbon compensation behavior.

Table 3. Comprehensive evaluation index of counties for per capita carbon compensation zoning.

Descriptions Factors Years Interpretation

Natural background
property indicators

Natural NRCA index
(NRCAPCR) 2000–2017

NRCA index of carbon
compensation rate per capita

for each county unit

Socio-economic
attribute indicators

Economic NRCA
index (NRCAPECC) 2000–2017

NRCA index of economic
contribution factor of carbon

emissions per capita

Ecological attribute
indicators

Ecological NRCA
index (NRCAPESC) 2000–2017

NRCA index of ecological
carrying factor of carbon

emissions per capita

Energy consumption
attribute indicators

Energy NRCA index
(NRCAPRGDPCC) 2000–2017

NRCA index of energy
consumption levels per

capita regional GDP

2.3.5. Per Capita Carbon Compensation Zoning Model Based on Kernel-K-means++
Algorithm

The architecture and implementation strategy of the per capita carbon compensation
zoning model designed in this study is shown in Figure 4. A four-dimensional framework of
per capita carbon compensation zoning was constructed based on four perspectives, namely,
the natural background, socio-economic factors, the ecological environment, and energy
consumption (Figure 4), and four indicators, namely, the per capita carbon compensation
rate, the per capita carbon emissions economic contribution coefficient, the per capita carbon
emissions ecological carrying capacity coefficient, and the per capita economic energy
consumption level, to calculate the NRCA index according to the theoretical framework;
the NRCA index of four aspects was calculated using Equation (7); and comprehensive
evaluation indicators for per capita carbon compensation zoning in Chinese counties
were formulated. The dataset was normalized and feature extraction and dimensionality
reduction were performed via Kernel PCA; then, the data were clustered using the K-
means++ algorithm, and thus, the clustering results were acquired. The specific steps are
as follows:

• Step 1: normalizing the raw data so that different features take the same range of
values;

• Step 2: using the Kernel PCA method to map the data into the high-dimensional space,
selecting the appropriate kernel function, and performing parameter adjustment and
experimental verification to obtain better mapping results;

• Step 3: using the K-means++ algorithm to cluster the mapped data, selecting the appro-
priate number of clusters, and performing experimental verification and adjustment
to obtain better clustering results;

• Step 4: analyzing and interpreting the clustering results to gain a deeper understanding
of the data.
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Figure 4. Per capita carbon compensation zoning model structure. In the Kernel PCA section, a
two-dimensional map is turned into a three-dimensional map by mapping. The three different
colored dots in the map represent different aspects of data, such as economic, ecological, and energy
aspects. In the K-means++ section, the blue dots in the small figure represent the center and the
orange dots represent the individuals waiting to be clustered.

3. Results

3.1. Analysis of Regional Differences in Carbon Emissions Per Capita in Counties in China
3.1.1. General Differences in PCO2 in China’s Counties

During the study period, the overall Dagum Gini coefficient showed an overall upward
trend from 0.48 in 2000 to 0.51 in 2017, although it decreased in 2002 and 2003, indicating
a gradual widening of the overall gap in carbon emissions per capita in China’s counties
(Figure 5).

Figure 5. Trends in the general variation of per capita carbon emissions in China’s counties (2000–2017).
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3.1.2. Spatial Differences in Per Capita Carbon Emissions in China’s Counties

According to the geographic zoning map of China (Figure 1b), county PCO2 was
statistically analyzed in the eastern, central, western, and northeastern parts of China.

(1) Intra-economic regional differences. The evolutionary trends of the differences
in PCO2 among the four major economic regions in China’s counties from 2000 to 2017
were plotted (Figure 6). First, in terms of the size of the differences, the mean values of
the Dagum Gini coefficients of the eastern, central, western, and northeastern regions
of the four major economic regions from 2000 to 2017 were 0.423, 0.371, 0.413, and 0.47,
respectively, indicating that the difference in PCO2 was the largest in the northeastern
region and the smallest in the central region. In addition, the Dagum Gini coefficients of the
central, western, and northeastern regions as a whole showed different degrees of decline,
unlike the eastern region, which showed an overall increasing trend. The main changes in
Gini coefficients of carbon emissions differences per capita in the region were characterized
as follows: (1) That of the eastern region increased abruptly to 0.614 in 2010, (2) that of the
central region increased abruptly to 0.6 in 2007 and shrank sharply to 0.265 in 2010, (3) that of
the western region fluctuated from 2000 to 2003 and shrank sharply to 0.341 in 2008, (4) and
that of the northeastern region fluctuated from 2000 to 2003 and then declined overall.

Figure 6. Trends in intra-economic regional variation of carbon emissions per capita by county in
China (2000–2017).

(2) Differences between economic regions. Trends in PCO2 in China’s counties during
the period of 2000–2017 were plotted for differences between economic regions (Figure 7). In
terms of the size of the differences, the order of the differences in carbon emissions per capita
between economic regions from 2000 to 2017, from largest to smallest, was east–northeast
(0.491), east–west (0.459), west–northeast (0.455), central–northeast (0.451), east–central
(0.428), and central–west (0.412). Among them, the differences in PCO2 between east and
central, east and west, and east and northeast showed an overall increasing trend. In 2007,
the difference in PCO2 between east and central expanded sharply and then showed a
slowly increasing trend.
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Figure 7. Trends in the variation in carbon emissions per capita among economic regional groups in
counties of China (2000–2017).

3.1.3. Sources and Contributions of Differences in PCO2 by Economic Region in China

Trends in the sources and contributions to differences in PCO2 across economic regions
in China’s counties over the period of 2000–2017 were plotted (Figure 8). The mean values
of the contribution within each economic region, the contribution between each economic
region, and the contribution of hypervariable density were 32.256%, 16.180%, and 51.564%,
respectively, indicating that the sources leading to the variation of PCO2 in Chinese counties
included hypervariable density (which accounted for about half of the overall variation),
variation within each economic region, and variation between each economic region, in
that order.

Figure 8. Sources and contributions of differences in PCO2 by economic regions in counties of China
(2000–2017).

In addition, different sources of variation in PCO2 in China’s counties showed different
trends that can be derived from Figure 8. Among them, the variance within each economic
region and the variance between each economic region showed a stable and increasing
trend, whereas the super-variance density showed a more significant decreasing trend,
from 58.542% in 2000 to 39.845% in 2017, which is a significant decrease but was located in
the main contribution position.

186



Land 2023, 12, 1796

3.2. Spatial and Temporal Patterns of PCO2 in Chinese Counties
3.2.1. Spatial and Temporal Pattern of Carbon Emissions Per Capita in China’s Counties

According to Figure 9, the spatial distribution of per capita carbon emissions in
Chinese counties was generally characterized by a high level in the northwest and a low
level in the southeast, with high-value counties and regions being more common in the
northwest and low-value regions being more common in the southeast. The distribution
of per capita carbon emissions in counties was concentrated and clearly differentiated,
roughly opposite to the spatial distribution of the Hu Huanyong line (the line of population
density comparison) [42]. The counties in northwest China were the areas with high
per capita carbon emissions, and this phenomenon became bigger and bigger with time,
which may have been caused by many factors. These regions belong to the northwestern
half of the Hu Huanyong line and are sparsely populated, with traditional production
methods, more carbon sources, and smaller populations, leading to relatively high per
capita carbon emissions. The southeast region had low per capita carbon emissions, and
its high level of economic development, large population, and well-developed tertiary
industry may have led to lower per capita carbon emissions. Over the course of time, per
capita carbon emissions in most counties in China showed an increasing trend, especially
in some counties in the northwestern region, where per capita carbon emissions increased
over time, and the number of high-value counties rose significantly in 2017. This may have
been due to the increasing level of China’s economic development and the intensity of
spatial development of the country’s territory over time, leading to increasing natural and
anthropogenic carbon sources and increasing per capita carbon emissions.

Figure 9. Spatial distribution of carbon emissions per capita in counties in China (unit t): (a) 2000;
(b) 2005; (c) 2010; (d) 2017.

Looking at the per capita carbon emissions of each main functional area, key devel-
opment zones ranked third in number but first in per capita carbon emissions, whereas
optimized development zones reached a per capita carbon emissions share of about 5% in
the period of 2000–2017, with 48 county-level units. Key development zones bore heavy
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responsibility for population absorption, economic development, and industrial agglomera-
tion, and their per capita carbon emissions were significantly higher than those of restricted
development zones (the main agricultural product-producing zones and key ecological
functional zones), which were the main pressure areas for per capita carbon emissions in
Chinese counties (Figure 10). The per capita carbon emissions share of key development
zones and key ecological functional zones increased year after year, whereas the per capita
carbon emissions share of the main agricultural product-producing zones decreased year
after year. The increase in per capita carbon emissions in the key ecological functional
zones may have been partly due to the gradual increase in the development of the region
and the increase in eco-tourism and other industries that generate more carbon emissions.
The decrease in per capita carbon emissions in the main agricultural production zones
may have been due to the reduction in carbon emissions sources caused by the return of
farmland to forests and grasslands and the increase in the abandonment of farmland.

Figure 10. Percentage of carbon emissions per capita in each major function-oriented zone.

3.2.2. Spatial Clustering Characteristics of PCO2 in Chinese Counties

The global Moran’s I indices for 2000–2017 were all greater than 0 and passed the
significance test at the 99.99% level, and China’s PCO2 was moderately autocorrelated in
space during the study period (Table 4).

Table 4. Moran’s I index of per capita county-level carbon emissions in China, 2000–2017.

Years Moran’s I Z P

2000 0.302 19.5241 0.000100
2005 0.370 23.7615 0.000100
2010 0.421 27.1650 0.000100
2017 0.511 32.690 0.000100

The global Moran’s I index values showed an increasing trend from 2000 to 2017,
indicating that the spatial autocorrelation of carbon emissions per capita in China was
increasing, and the Moran’s I indexes of carbon emissions per capita in Chinese counties
were all greater than zero and passed the significance test at the 99.99% level, whereas the
districts and counties with similar levels of carbon emissions per capita tended to have a
concentrated distribution. Meanwhile, the Moran’s I index gradually increased from 2000
to 2017, and the rate of increase for the index was higher in the early period than in the
later period (the Moran’s I index increased from 0.302 in 2000 to 0.511 in 2017).
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3.3. Per Capita Carbon Compensation Zoning and Optimization Analysis in Chinese Counties
3.3.1. Analysis of the NRCA Index

Based on the index values of the natural background attribute, socio-economic at-
tribute, ecological environment attribute, and energy consumption attribute, the NRCA
index was used to measure the comparative advantage of each type of attribute in China’s
counties’ per capita carbon compensation zoning, which provided a basis for the zoning
and optimization of per capita carbon compensation.

The results show (Figure 11) that most of the dominant areas of natural background
attributes in per capita carbon compensation in Chinese counties were located in the
southwest, the upper northern part of northeast China, Qinghai, and parts of Xinjiang,
indicating that these two major functional zones belonged to the dominant areas of per
capita carbon sinks. Most of the disadvantaged areas of the natural background attributes
of per capita carbon compensation in Chinese counties were located in the southeast coastal
region and parts of the Central Plains and Inner Mongolia, indicating that the per capita
carbon compensation rate in these areas was low and that the per capita carbon emissions
far exceeded the per capita carbon sequestration, constituting a disadvantaged area of per
capita carbon sinks.

Figure 11. Spatial distribution of NRCA indices in Chinese counties: (a) natural background attributes;
(b) socioeconomic attributes; (c) ecological and environmental attributes; (d) energy consumption attributes.

The advantageous areas of per capita carbon compensation economic attributes were
mainly located in northeastern and central China, western Xinjiang, and southeastern
China, where the economic contribution of carbon emissions was high, whereas some areas,
such as northwestern Inner Mongolia, Gansu, Qinghai province, and Ningxia province,
were the disadvantageous areas of carbon compensation economic attributes, where the
economic contribution of carbon emissions was weak, the economic output efficiency was
low, and the economic development may have been relatively more sloppy and lagging.

In terms of per capita carbon compensation for ecological attributes, the most advanta-
geous regions were mainly located in the mountainous regions of southwest China, the
Daxinganling Mountains in northeast China, the Tianshan Mountains in Xinjiang, and
the mountainous regions in the south. These areas play an important ecological role in
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water resource protection, wind and sand control, and climate regulation, and have a high
ecological carrying capacity of PCO2.

The areas of per capita carbon compensation where energy consumption attributes
were dominant were mainly distributed in the Beijing–Tianjin–Hebei region, the eastern
part of the northeast region, the southeastern coastal region, the middle Yellow River Basin
region, Qinghai, eastern Gansu, and a few counties in the south of the western region.
The areas of per capita carbon compensation where energy consumption attributes were
dominant played a major feedback role on the PCO2 of Chinese counties, and most of the
carbon emissions originated from human energy consumption.

3.3.2. Per Capita Carbon Compensation Zoning Results

The per capita carbon compensation zoning model constructed by integrating the
Kernel-K-means++ algorithm was used to cluster and analyze the NRCA index of four
attributes, and the 1822 county units were classified into 1410 payment zones, 170 balanced
zones, and 242 compensated zones. The per capita carbon compensation zoning was then
overlaid with the main functional zoning and finally reconstructed into 11 types (Figure 12
and Table 5).

Figure 12. Spatial distribution of per capita carbon compensation zoning.

Table 5. Key indicators of per capita carbon compensation types in county-level regions of China.

Spatial Partitioning of Per Capita Carbon
Compensation

(Number of Units)

Per Capita
Total GDP

(%)

Share of Total Per
Capita Carbon
Emissions (%)

Mean Economic
Contribution Factor of Per
Capita Carbon Emissions

Mean Ecological Carrying
Capacity Coefficient of Per
Capita Carbon Emissions

Payment zone—optimized development zone (46) 10.645 4.310 4.106 0.031
Payment zone—key development zone (397) 34.500 34.618 3.588 0.405

Payment zone—main production zone of agricultural
products (461) 29.161 17.272 4.47 0.516

Payment zone—key ecological function zone (506) 13.675 27.491 3.128 1.956
Balanced zone—optimized development zone (2) 0.083 0.114 1.39 0.355

Balanced zone—key development zone (29) 0.927 1.652 1.119 0.483
Balanced zone—main production zone of agricultural

products (90) 2.131 4.371 0.907 1.697

Balanced zone—key ecological function zone (49) 0.916 2.525 0.697 2.225
Compensated zone—key development zone (33) 1.336 1.218 1.76 1.847

Compensated zone—main production zone of
agricultural products (129) 4.681 4.165 1.833 2.435

Compensated zone—key ecological function zone (80) 1.945 2.264 1.526 3.833
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3.4. Spatial Optimization Analysis of Per Capita Carbon Compensation Zoning in Chinese Counties
3.4.1. Payment Zone

Based on the zoning results, the payment zone is densely distributed and extensive,
mainly located in southeast China, northeast China, and northwest Xinjiang, with a high
level of economic development (per capita GDP share of up to 87.981%), high per capita car-
bon emissions contribution (per capita carbon emissions share of up to 83.691%), high per
capita carbon emissions economic contribution capacity, and low per capita carbon emis-
sions ecological carrying capacity. There was a serious mismatch between the two levels
(the economic contribution coefficient of carbon emissions per capita was 6.338, and the
ecological carrying capacity of carbon emissions per capita was 0.469). This zone includes:

(1) The payment zone—optimized development zone. The payment zone—optimized
development zone consists of 46 county-level units, which are mainly located in the Bohai
Sea Economic Zone, Yangtze River Delta region, and Pearl River Delta region and belong to
highly urbanized and industrialized areas with relatively rapid economic development (the
largest per capita total GDP share was 10.645%), large PCO2 (the per capita total carbon
emissions share was 34.618%), and high PCO2 economic benefits (the average value of
the economic contribution coefficient of carbon emissions per capita was 4.106), but the
ecological environment is under great pressure (the average value of the ecological bearing
coefficient of carbon emissions per capita was 0.031) and facing serious pressure to achieve
emissions reduction. The main optimization direction is to promote the construction of
industrial agglomeration to improve the economic contribution capacity of carbon emis-
sions per capita and at the same time protect water resources and ecological environment
resources and improve ecological environment carrying capacity. A new window and
strategic space for opening up to the outside world should be formed while at the same
time building an urban green isolation zone and coastal protection forests in order to protect
the quality of the water environment in the near-shore sea.

(2) Payment zone—key development zone. The payment zone—key development
zone consists of 398 county-level units, which are mainly distributed in the southeast
coastal region, the Tianshan region of Xinjiang, the river-loop region, and the Sichuan
Basin. This region has a high level of economic development and is the region that had the
highest percentage of total GDP per capita among all sub-regions (34.500% of total GDP per
capita) and is also the region that had the highest total carbon emissions per capita among
all sub-regions (34.618% of total carbon emissions per capita). Although it has a good
economic contribution benefit of carbon emissions per capita, it has high ecological and
environmental pressure (economic contribution coefficient of carbon emissions per capita.
The average value of per capita carbon emissions economic contribution coefficient was
3.588, the average value of the per capita carbon emissions ecological bearing coefficient was
0.405, and the pressure to achieve emissions reduction is greater. The main optimization
direction is to form a new window and strategic space for opening up to the outside world.
At the same time, it is necessary to build urban green isolation zones and coastal protection
forests, strengthen the control of land-based pollutant emissions, and protect the quality of
the water environment in the near-shore sea.

(3) Payment zone—agricultural products main production zone. The payment
zone—agricultural products main production zone consists of 461 county-level units,
mainly located in the northeast region, the North China Plain, and the Middle and Lower
Yangtze River Plain. This region is mostly located in the plain area, with excellent agricul-
tural conditions and an agricultural foundation, and is an important agricultural product
base, but is more affected by human production activities. Compared with the main agricul-
tural product-producing areas in the balanced zone and the compensated zone, this region
has better economic contribution efficiency of carbon emissions per capita (the average
value of economic contribution coefficient of carbon emissions per capita was 4.47) and
average ecological carrying capacity (the average value of ecological carrying coefficient
of carbon emissions per capita was 0.516) and creates the second largest total GDP per
capita with lower carbon emissions (the percentage of total GDP per capita was 29.161%,
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and the percentage of total carbon emissions per capita was 17.1%). The total carbon
emissions per capita was 17.272%. The main optimization direction is the implementation
of the geographical indication brand project and origin protection project. At the same
time, we should consolidate the achievements of returning farmland to forests, continue to
implement the natural forest resources protection project and comprehensive management
of small watersheds, and strengthen the construction of wildlife biodiversity reserves.

(4) Payment zone—key ecological function zone. The payment zone—key ecological
function zone consists of 505 county-level units, mainly located in the Sichuan Basin,
southern Xinjiang, Inner Mongolia, the northern northeastern region, the two lakes region,
and the southeastern mountainous region. As the sub-region with the largest share, the
economic situation of this zone does not match the carbon emissions situation (the share of
total GDP per capita was 13.675%, and the share of total carbon emissions per capita was
27.491%), the economic contribution of carbon emissions per capita is high (the average
value of economic contribution coefficient of carbon emissions per capita was 3.128), and
the ecological carrying capacity of carbon emissions per capita is high (the average value
of ecological carrying coefficient of carbon emissions per capita was 1.956). The main
optimization direction is to establish an ecological compensation mechanism, strengthen the
natural restoration function of the ecosystem, develop environmentally bearable industries
according to local conditions, and export ecological products.

3.4.2. Balanced Zone

The balanced zone is mainly located in parts of northern and northeastern China and
some mountainous and hilly areas in southwest China, with an overall sporadic and short
linear distribution. The economic development of the equilibrium zone is relatively slow
(the percentage of GDP per capita was relatively low, at 4.057% of the total), the percentage
of carbon emissions per capita is relatively small (carbon emissions per capita accounted
for 8.662% of the total carbon emissions per capita), the ecological function and ecological
carrying capacity of the carbon sink per capita are strong (the ecological carrying coefficient
of carbon emissions per capita was 1.575), and the economic contribution capacity of carbon
emissions per capita and the ecological carrying capacity of carbon emissions per capita are
in a relatively matching state (the economic contribution coefficient of per capita carbon
emissions was 1.82, and the ecological carrying capacity of per capita carbon emissions
was 1.575), indicating that the economic development of the balanced zone is relatively
balanced and will not cause an excessive impact on the ecological environment.

(1) Balanced zone—optimized development zone. The number of counties in the
balanced zone—optimized development zone is very small. The per capita economic
contribution and per capita carbon emissions of this zone are low (0.083% of total GDP per
capita and 0.114% of total carbon emissions per capita), and the ecological carrying capacity
is weak (the average value of economic contribution coefficient of carbon emissions per
capita was 1.39, and the average value of ecological carrying coefficient of carbon emissions
per capita was 0.355). The main optimization direction is to optimize the layout of urban
functions, focus on the greening of towns and traffic arteries, improve the ecological
system of urban forest parks and green channels, and enhance the carrying capacity of
the ecosystem.

(2) Balanced zone—key development zone. The balanced zone—key development
zone consists of 29 county-level units, showing a sporadic distribution, mainly located
in the western region of Xinjiang, the eastern region of Qinghai, the southern region of
Liaoning, the North China Plain, and the Yunnan-Guizhou region. This zone constitutes
fewer counties and regions, with lower economic development (0.927% of total GDP per
capita), lower carbon emissions per capita (1.652% of total carbon emissions per capita),
slightly higher economic benefits of carbon emissions per capita (average value of eco-
nomic contribution coefficient of carbon emissions per capita was 1.119), and a relatively
stronger ecological carrying capacity of carbon emissions per capita (the average value of
the ecological carrying coefficient of carbon emissions per capita was 0.483). The main opti-
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mization directions include forming intensive and efficient urban clusters or dense urban
areas, promoting comprehensive water environment management in important watersheds
(Wujiang River, Lancang River, etc.), protecting water-bearing areas and biodiversity, and
improving the ecological carrying capacity of the environment.

(3) Balanced zone—main production zone of agricultural products. The balanced
zone—main production zone of agricultural products consists of 90 county-level units,
scattered in the northeast region, the North China Plain, and the southwest mountainous
region, whose per capita carbon emissions are more than twice the per capita GDP, with
weak economic development and low economic contribution efficiency of per capita carbon
emissions (2.131% of total per capita GDP, 4.371% of total per capita carbon emissions, and
an average value of economic contribution coefficient of per capita carbon emissions of
0.907), but the ecological carrying capacity is strong (the average value of the ecological
carrying coefficient of carbon emissions per capita was 1.697). The main optimization
direction is to strengthen ecological protection; maintain a stable landscape system structure
of hills, forests, grasses, and farmlands; and correctly handle the relationship between
agricultural production, ecological protection, and resource development.

(4) Balanced zone—key ecological functional area. The balanced zone—key ecological
functional area consists of 49 county-level units, mainly located near Kashgar in Xinjiang,
part of the North China Plain, and part of the Northeast Plain, with a small per capita
carbon emissions share (2.525% of total per capita carbon emissions share), weak economic
development, and little economic contribution to per capita carbon emissions (0.916% of
total per capita GDP and an average value of economic contribution coefficient of per capita
carbon emissions of 0.697), but the ecological carrying capacity of carbon emissions per
capita is strong (the average value of the ecological carrying coefficient of carbon emissions
per capita was 2.225). The main optimization direction is to control the development
intensity and carry out integrated management of small watersheds and the construction
of silt dams to promote ecosystem restoration.

3.4.3. Compensated Zone

The compensated zone is mainly located in the northeastern plain and mountainous
areas of the country’s counties, including the mountainous and hilly areas in the southern
region, Xinjiang, and some counties in Hainan, and shows a scattered and small cluster-like
distribution. The economic development of the compensated zones is relatively limited
(the per capita GDP share was relatively low, at 7.962% of the total), the per capita carbon
emissions share is the smallest (the per capita carbon emissions accounted for 7.647% of
the total per capita carbon emissions), the per capita carbon sink ecological function and
ecological carrying capacity is strong (the per capita carbon emissions ecological carrying
coefficient was 1.886), and the per capita carbon emissions economic contribution is low
(the per capita carbon emissions economic contribution coefficient was 0.286).

(1) Compensated zone—key development zones. The compensated zone—key de-
velopment zones are composed of 33 county-level units, mainly located in the southwest
mountainous region, the middle reaches of the Yellow River, the vicinity of Kashgar in
Xinjiang, and the Yili region, whose economic development and PCO2 are relatively well
matched (1.336% of total GDP per capita and 1.218% of total carbon emissions per capita,
respectively), with a larger economic contribution of carbon emissions per capita (the
average value of the economic contribution coefficient of carbon emissions per capita was
1.76) and stronger ecological and environmental functions (the average value of the ecolog-
ical bearing coefficient of carbon emissions per capita was 1.847). The main optimization
direction is to expand green ecological space; build an ecological pattern of the organic
integration of forest, grassland, rivers, and lakes; and improve the carbon sink capacity of
the ecosystem.

(2) Compensated zone—main production zone of agricultural products. The compen-
sated zone—main production zone of agricultural products consists of 129 counties. In
these areas, the economic development and per capita carbon emissions are well matched
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(4.681% of total GDP per capita and 4.165% of total carbon emissions per capita, respec-
tively), the economic contribution of per capita carbon emissions is high (the average value
of the economic contribution of per capita carbon emissions was 1.833), and the ecologi-
cal carrying capacity is strong (the average value of the ecological carrying coefficient of
carbon emissions per capita was 2.435). The main direction of optimization includes the
rational planning of agricultural land, the comprehensive control of desertification and
rock desertification, and the formation of eco-friendly agricultural belts.

(3) Compensated zone—key ecological function zone. The compensated zone—key
ecological function zone consists of 80 county-level units, mainly located in the northeast;
the center; some parts of Guangdong, Gansu, and Xinjiang; and other northwest areas.
The economic development of this zone is at an average level and the per capita carbon
emissions are low (1.945% of total GDP per capita and 2.264% of total carbon emissions per
capita, respectively), and the economic contribution capacity of per capita carbon emissions
is average, whereas the ecological carrying capacity is very strong (the average value of the
economic contribution coefficient of per capita carbon emissions was 1.526, and the average
value of the ecological carrying coefficient of per capita carbon emissions was 3.833). The
main optimization direction is to develop succession and alternative industries, mainly
ecological tourism, special breeding, green food processing, etc., to form an ecologically
dominant industrial pattern.

4. Discussion

In this study, a new per capita carbon compensation zoning model was proposed and
the per capita carbon compensation zoning of Chinese counties was realized, which was
verified as being reliable and have the potential to be applied to other similar studies. In
addition, the research features and innovations of this study were mainly reflected in the
following two aspects:

(1) The per capita carbon compensation rate was selected as a natural background
attribute indicator; the level of residential economic energy consumption was selected
as an energy consumption indicator to be added to the model; methods such as the K-
means and SOM-K-means classification models, which were mostly used in the existing
research on carbon compensation zoning, were further developed; a per capita carbon
compensation county zoning model incorporating the Kernel-K-means++ algorithm was
constructed; and per capita carbon compensation zoning of the counties in China was
realized. Previous classification models in this research area did not consider the benefits
of integrating data from all input aspects. In contrast, our updated model considers the
complexities of multidimensional data and integrates natural context, socio-economic,
ecological, and energy consumption aspects. This approach provides an advantage and
makes our new model superior to previous models. This new model integrates the main
functional zoning of the country with the real background conditions of each county, and
the results of regional division have spatial autocorrelation, which is of practical significance
in promoting emissions reduction. Additionally, since the new model incorporates nature,
ecology, and energy consumption indicators, it is more effective in analyzing and planning
sustainable development.

(2) Based on the county scale, results of China’s per capita carbon compensation zoning
were obtained and an optimization analysis was carried out. Most of the existing studies on
carbon compensation zoning in China were conducted at the spatial scale of provinces and
urban clusters but not at the spatial scale of counties. This study took the major counties in
China as the unit, which provided a more detailed spatial scale and more accurately reflects
the characteristics of China’s carbon emissions; in addition, 1822 counties were used, which
covers most of China’s regions, and the study also had great macro-analysis conditions.

Due to the limited research conditions, the time series of the study was only selected
as 2000 to 2017, and full time series coverage was not achieved from 2018 to 2023. Since the
obtained county-level carbon balance data do not include Tibet, Hong Kong, Macao, and
Taiwan and need to be matched with county-level economic data and since the division of
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China’s county-level units varies with the time series, the carbon balance data and economic
data of only 1822 county-level units in China were obtained, which cannot cover all county-
level units in China. Considering the availability of data and the applicability of the zoning
model, only four indicators, namely, the per capita carbon compensation rate, the per capita
carbon emissions ecological carrying coefficient, the per capita carbon emissions economic
contribution coefficient, and the level of economic energy consumption of the population,
were selected for clustering and partitioning, and population, industrial structure, and
technological level were not included in the comprehensive evaluation index. The existing
deficiencies of the above study will be further explored in future research. Moreover, there
is also potential for future improvement to the new model, which is improved based on the
kernel-PCA and K-means++ algorithms due to the kernel-PCA property, so there is also a
possibility of overfitting in the new model, which can be further improved in the future.

5. Conclusions

In this study, based on county carbon emissions, carbon sequestration, and economic
data, the variable dataset of per capita carbon compensation zoning in Chinese counties
was constructed, regional differences in PCO2 at the county scale were explored, and a four-
dimensional framework of carbon compensation zoning was constructed. Based on this, a
comprehensive evaluation index and a per capita carbon compensation zoning model were
constructed. We also tried to propose a spatial low-carbon optimization strategy to promote
carbon neutrality from the perspectives of payment, balanced, and compensated zones.

The main results are as follows: During the period of 2000–2017, the overall differences
in PCO2 were large and showed a steady widening trend in China’s counties, generally
showing distribution characteristics of low in the southeast and high in the northwest, with
obvious spatial autocorrelation. In addition, the model constructed in this study is based
on the Kernel-K-means++ algorithm, which integrates natural, economic, ecological, and
energy factors and more comprehensively realizes the per capita carbon compensation
zoning in Chinese counties. Based on the model, the 1822 counties and districts in China
were divided into 1410 payment zones, 170 balanced zones, and 242 compensated zones.
By combining the results of carbon compensation zoning with the major function-oriented
zones, 11 types of zones were finally formed, and the direction and strategy of low-carbon
development for each type of zone were proposed. The improved model and optimization
suggestions proposed in this study can contribute to a reduction in China’s carbon emissions
in order to achieve the target of carbon peaking and carbon neutrality and, at the same
time, have certain reference significance for the management of and reduction in carbon
emissions in similar regions.

The implementation of sub-regional recommendations should be considered in order
to achieve the goal of carbon peaking and carbon neutrality. We suggest that, based on
the background characteristics of the study’s delineated regions and the recommendations
therein, this plan will develop emissions reduction pathways and low-carbon industries.
This strategy will keep carbon emissions under control while adapting to local condi-
tions, and with the development of the carbon emissions situation, longer time series
studies can be conducted and more appropriate strategies for cutting carbon emissions can
be developed.
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Abstract: Climate change is one of the largest challenges facing mankind, and the question of how
to reduce carbon emissions has raised extensive concern all over the world. However, due to the
lack of mechanisms to explain the impact of political factors on environmental regulatory tools, the
evaluation of carbon emissions reduction is insufficient in the majority of previous studies. How to
better explore the path of carbon emissions reduction has become the key for China to achieve carbon
neutralization as soon as possible. Based on a quasi-natural experiment regarding China’s carbon
emission trading policy, this paper adopts a difference-in-differences model to address the impact of
political mobility on China’s carbon emissions trading policy, and the selected pilot and non-pilot
provinces of this policy in China enabled the model to be matched. Using a panel database with
30 provincial administrative units as the observation objects, the results show that China’s carbon
emissions trading policy and the horizontal mobility experience of the provincial governors exert a
significant positive effect on carbon emission reduction. Additionally, this study identifies a latent
factor previously ignored by the existing literature: the correlation between political factors and
carbon emissions. This verifies our theoretical hypothesis that officials transferred from the provincial
level tend to have higher performance regarding carbon emission reduction. This paper also provides
suggestions for the central government to further plan and implement carbon emission reduction
policies and mobilize the incentives of local officials in environmental governance.

Keywords: carbon emissions trading; political mobility; difference-in-differences model; policy evaluation

1. Introduction

Human survival and sustainable development face severe challenges. Climate change
threatens the lives and environmental conditions of humans worldwide and has become a
global concern [1]. Increasing carbon emissions have gradually become the main reason for
global climate change. According to the annual report by the United Nations Environment
Program, global carbon dioxide emissions showed an upward trend [2]. Correspondingly,
to achieve green growth, nations all over the world have enacted a number of environmental
laws and emission reduction plans. Therefore, reducing carbon emissions is essential for
maintaining a healthy ecological ecosystem.

As the largest source of carbon emissions in the world, China has responded with
a series of policies such as instituting emission reduction measures and promoting the
establishment of an international carbon market to mitigate global warming [3]. To achieve
low-carbon development, China issued the carbon emission reduction plan as guidance for
different industrial sectors in terms of achieving the reduction targets in 2012. In 2015, the
Chinese central government set the policy target that China’s carbon emissions will achieve
the peak of domestic carbon emissions by 2030. The Chinese government widened its
objectives in 2020 by pledging to achieve carbon neutrality by 2060. To meet these climate
targets while trying to pursue economic development, China has implemented a carbon
emissions trading system [4]. Since the 11th Five-Year Plan, Chinese central government has
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added environmental performance, especially carbon emissions, into the local government
performance appraisal, and during the 13th Five-Year Plan it was proposed to establish a
national carbon emission trading market by 2020.

Previous studies on carbon emission trading policies have explored the factors that
influence carbon emission performance, such as technology development [5], total energy
consumption [6] and energy consumption structure [7]. Studies on the impact of carbon
emission trading policies mainly focused on two categories, which contains sectors and en-
vironmental governance. For the sectoral impact, existing studies have mainly focused on
the power sector and transport sector [8,9]. However, it can be found that the existing empir-
ical research was limited to certain sectors related to carbon trading policies while ignoring
interactions with other perspectives, or was concentrated on macro-economic simulation
instead of specific environmental activities and behaviors based on different perspectives.

Regarding the overall impact on a national level, research on the driving mechanism
of China’s carbon emissions reduction is relatively lacking and has insufficient evidence.
Previous studies ignored the role of government officials in carbon emission reduction.
Few studies chose to use factors such as government performance and human behavior
to explore an in-depth explanation of China’s carbon emissions reduction, especially the
impact of political leaders on environmental governance. The literature shows that in a
political system, the attention distribution of political leaders may affect or even change
policy objectives, their implementation methods and performance [10]. The most per-
suasive theory about China’s economic growth miracle is the “Promotion Tournament
Model Theory” [11], which points out that the incentive of local officials is a fundamental
motivation of China’s economic development. To improve economic performance, Chinese
central government has established the promotion tournament incentive structure, which
has motived local officials with GDP growth as the core indicator. Understanding the
influence of local officials on carbon emissions is very important for policy implication.
However, considering the political tournament mechanism in China, local officials face two
kinds of promotion incentives, including economic development and emissions reduction:
can the implementation of policies on carbon emission trading effectively promote the
performance of carbon emission reduction?

In this study, we explored whether the current carbon emissions trading policy can
promote emission reduction performance, and we proposed a theoretical framework that
explains the relations among political mobility, tenure, and carbon emission performance.
In areas with similar natural resources, human capital and technological innovation ca-
pacity, local carbon emission performance may be different due to the different political
experiences of leaders. By understanding the possible motivations of these key actors, we
hoped to better understand the key factors in environmental governance, such as political
arrangements and incentives.

2. Literature Review and the Theoretical Framework: Understanding Carbon
Emissions in the Context of the Chinese Political Environment

2.1. Carbon Emissions Trading System

Traditional regulation tools and policies such as environmental tax and industrial
energy prices were inefficient due to information asymmetry [12]. Existing studies have
discussed that using a market-oriented mechanism is more efficient and economical on
the realization of carbon emissions reduction compared to policies directly led by govern-
ment, such as environmental protection administrative penalties and pollution charges [13].
Therefore, it is imperative to design effective market-oriented regulation policies for reduc-
ing carbon emissions.

During the past decades, carbon emissions trading systems have become important
tools in market-oriented environmental regulation to address the issues of inefficient carbon
emission allocation. Building on Coase’s option theory, John Dales proposed a system of
carbon emissions trading in 1968 [14]. Introducing property rights into environmental
pollution control was meant to internalize the cost of carbon dioxide emissions [15]. The
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literature on carbon trading mechanisms has mainly focused on the effects of regional
carbon emissions reduction programs in developed countries. The markets were often the
research objects, especially carbon trading in Europe’s EU-ETS program, which operates
through auctions. To better quantify and empirically study the utility of carbon trading
mechanisms, scholars began to use different models such as the dynamic decision-making
model, the general equilibrium model, and the network analysis model [16]. For example,
Dong et al.’s study of China’s carbon emissions trading policy found that market scale
and reduction costs were negatively correlated [17]. Martin et al. focused on the impact of
emissions trading on enterprise [18]. Other scholars used different models to explore the
impacts of carbon trading on other affected groups.

The effectiveness of carbon emissions trading is relatively unexamined. The majority
of the existing studies are qualitative research, predictive simulations, or are focused on
specific industries or regions. At the national level, empirical research is scarce. Few
empirical studies have analyzed the effectiveness of pilot emission trading systems on
politics. Additionally, the performance of carbon emissions trading systems remains
controversial. Even so, scholars have generally determined that China’s carbon emissions
trading system has successfully promoted carbon emission reductions [19].

Despite the fact that these studies investigated the efficiency of policies, the results
they reached differed substantially due to discrepancies in their data and techniques.
The emission reduction results of these systems under diverse viewpoints varied since
some researchers concentrated on various core objects. Others adopted different policy
evaluation methods, making it difficult to obtain unbiased estimates for the variable
of carbon emissions. Similarly, the literature also provides a theoretical framework for
the study of carbon emissions trading systems. Theoretical arguments for the emission
reduction effects of these systems can certainly be made. However, they are frequently
biased and ineffective. Stated another way, the majority of studies have focused on the
direct impact of carbon emission trading systems while disregarding politics.

2.2. Political Mobility in the Context of China’s Politics

Government officials actively participate in environmental governance as managers of
society and advocates for government policies. The reasons behind their acts will inevitably
have an impact on both their work performance and the government’s. In most Western
democracies, the political reputation model can explain how political incentives affect
environmental governance [20]. Officials may decide to modify tax and environmental
governance policies in accordance with the preferences of their constituencies to protect
their chances of being re-appointed or re-elected.

Different from Western democracies, local officials in China are appointed by higher-
level authorities, but local governments nevertheless retain a lot of power. Sometimes
referred to as federalism with Chinese characteristics, this division of authority makes
China’s economic growth possible through administrative and fiscal decentralization [21].
However, this theory relies upon a high degree of institutional stability, which creates its
own motivating effect. The Chinese promotion tournament theory proposes a Principal-
agent relationship among the levels of government. China’s administrative level-by-level
contract system represents a typical type of strong incentive contract from the perspective
of economics [22]. The central government, as the employer, holds political tournaments
among provincial governments by virtue of personnel appointment or the recommendation
power of the administrative head. From this point of view, in a political environment
where vertical contracting and horizontal competition are highly unified, the extensiveness
and unity of local government power provided by the administrative subject contract
system gives the administrative subject enough space to play a significant role. Many
studies have found that economic growth is the primary indicator of political promotion.
Hence, local governments frequently devote their main resources to fostering economic
growth [23]. Projects that result in short-term economic growth will be approved by local
officials, regardless of any long-term environmental implications.
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This situation is changing. Environmental protection has been a focal point since
the Chinese government shifted its goals. Environmental protection is now included in
the performance evaluation of local officials. This is important because the promotion
tournament incentive structure has had severe consequences for environmental governance,
such as global warming [24], excessive energy consumption and environmental pollution.
Therefore, understanding the initial impact of carbon emissions on local officials is impor-
tant for China’s policy response to climate change. Strangely, the role of local officials in
emissions reduction has largely been ignored by researchers.

2.3. Theoretical Framework and Research Hypothesis
2.3.1. The Performance of the Carbon Emissions Trading System

The implementation of a carbon emissions trading policy may improve the envi-
ronmental circumstances in the pilot region in a market-oriented way. Because carbon
emissions can be measured, it is possible to compare regional carbon emission controls
on a horizontal scale. While pursuing political promotion, local officials in areas with
fewer emission reductions experience higher pressure. Simply said, regional environmen-
tal quality improvements can help officials get promoted. Therefore, local officials will
compete with other officials at the same level on environmental protection issues in order
to gain promotion opportunities [25]. Where once they competed to demonstrate economic
progress, officials must now show environmental stewardship. At the same time, poor
performance in an environmental quality evaluation will likely attract the attention of
environmental protection departments.

From the industry perspective, carbon emissions trading policy has improved the
incentives to reduce production costs through emission reduction. Enterprises have also
gained a measure of autonomy through trading carbon emissions. There will be significant
external pressure on the government in regions with high carbon emissions to improve
local environmental governance. Under the joint action of the above two subjects, local
governments will make every effort to implement the carbon emission trading policy,
improve regional environmental quality, strengthen regional environmental governance
and supervision, and strive to reverse the bad environmental situation in the region. This
behavior is conducive to promoting the reduction of carbon dioxide emissions. Based on
this, we propose the first hypothesis:

Hypothesis 1. China’s carbon emissions trading system has a significantly positive effect on
reducing China’s carbon emissions.

2.3.2. Effect of Political Mobility on Carbon Emission Reduction Performance

With the opening up of China in the late 1970s, local officials have taken an active role
in constructing a new economic system, developing the private economy and reforming
the local government performance evaluation system. For the carbon emission reduction
scheme, efficiency incentives were to be provided to local officials. It was necessary to link
reductions to political promotion. Previous studies of provincial officials noted that the
performance of local officials may be affected by their tenure, which is highly influenced
by economic performance. Chen et al. focused on the relationship between performance
evaluation and the tenure of local officials [26]; their tenure depended on local economic
performance. Similarly, He et al. proved that the higher the completion ratio of economic
growth targets, the higher the probability of promotion, and the higher the probability of
political promotion in the case of higher economic growth targets [27].

Moreover, according to the multi-task principal-agent theory, when there are multiple
tasks to accomplish local officials always decide on the action with the highest expected
utility and obvious results. The period for achieving political goals through economic
growth is brief and simple to track. Environmental protection requires a long period
and high investment. Hence, rational local government officials will prioritize economic
growth and reduce investment in environmental governance due to the constraints of multi-
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dimensional political goals assessment and limited financial resources. This will in turn
affect environmental quality. Thus, due to the externality characteristics of environmental
protection, local officials may choose to disregard environmental issues. Extensive growth
patterns even have a crowding out effect on environmental governance expenditure, which
is not conducive to the improvement of environmental quality. The central government
could change this. Local officials might focus on environmental regulation performance if
it had an impact on their political tenure [28]. This leads to our second set of hypotheses:

Hypothesis 2-a. Carbon emission reduction performance is negatively associated with the tenure
of local officials.

Hypothesis 2-b. Carbon emission reduction performance is positively associated with the tenure
of local officials.

How do local officials get into positions of power in China? Previous studies provided
two models to explain political mobility: the factional model and the performance model.
The factional model considers personal relationships to central leaders as the key to career
success [29]. However, just as Teiwes advocated the utility of the factional concept, the
efficiency of the factional model has not been systematically tested [30]. The performance
model is the current mainstream explanation. Bo insisted on using the performance model
to challenge the traditional factional model [31]. Based on the performance model, the
political mobility of local officials mainly included the following five movements: promo-
tion (vertical mobility from a lower rank to a higher one); demotion (includes demotions
and purges or dismissals); lateral transfer (horizontal mobility without change in rank);
retirement; and continuing without movement. Local officials faced different promotion
incentives depending on their experiences, which might affect their environmental gov-
ernance performance [32]. In this study, we sought to observe whether and how political
mobility incentives affect carbon emission reduction performance, so we chose promotion
and lateral transfer as the main types for our research.

Officials who are promoted within their home region are more familiar with local
circumstances and therefore tend to set higher performance targets. Compared to locally
promoted officials, officials transferred from higher authorities and other localities tend to
avoid more challenging tasks or taking risks to achieve higher goals due to their unfamil-
iarity with the area [33]. Therefore, we assumed that locally promoted officials were more
likely to set higher government performance goals than transferred officials.

In China’s public personnel system, if a central government official was appointed
to be a governor, he/she would probably regard this experience as compulsory training
that would enable further promotion within the bureaucratic system. Thus, local officials
connected with the central government have more chances of promotion. As a result,
officials with close ties to the central government tend to make more conservative decisions
to safeguard their chances of promotion [34].

The paths taken by officials transferred horizontally from other provinces are more
complicated. Some scholars believe that the political mobility system helps higher-level
government officials accomplish their long-term strategic goals. The active mobility of
officials avoids nepotism, which is typically caused by the long-term employment of
officials in one place. In addition, officials also tend to set higher goals as they gain
more ability by learning, exchanging experiences and updating their governance concepts.
Therefore, they usually formulate strategies to show their unique views, highlight their
potential, and help realize the intention of coordinating regional development. This is
reflected in the completely different emission reduction governance methods of those
who were locally promoted and those who were transferred from the central government.
Therefore, contrary to previous conclusions, there is evidence that officials transferred to
new provinces can achieve higher performance [35].
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Hence, we set dummy variables and propose a third set of hypotheses by taking
“officials promoted from other provinces” as the reference group:

Hypothesis 3-a. Compared with officials in the control group, locally promoted officials will have
higher carbon emission reduction performance.

Hypothesis 3-b. Compared with officials in the control group, officials transferred from the central
government will have lower carbon emission reduction performance.

Hypothesis 3-c. Compared with officials in the control group, officials transferred from other
provinces will have higher carbon emission reduction performance.

Additionally, educational background is important for cadre selection and political
mobility in China, and local officials are therefore often keen to obtain a high academic
level [36]. Thus, an improvement of the educational background of local officials results in
a higher likelihood of cadres being more aware of the basic needs of citizens, understanding
the connotations of economic development more openly and comprehensively, and paying
more attention to the coordinated development of the environment and the economy. Based
on this, we proposed the following hypothesis:

Hypothesis 4. Local officials with a higher level of education will show more resolve to achieve
carbon emission reductions.

The above theoretical hypotheses were proposed through theoretical analysis. The
theoretical research framework of this study was obtained and tested using the empirical
analysis described below.

3. Materials and Methods

3.1. Statistical Modeling

To assess the net effect of the carbon emissions trading policy, we measured the
difference between the state of the pilot provinces following intervention by the carbon
emissions trading mechanism and the assumed state without policy trials. The latter kind
of state, known as the counterfactual state, is not observable, but can be estimated via
comparison with a control group (i.e., the non-pilot provinces) [37].

The carbon trading mechanism trials in the pilot provinces commenced in 2013, so this
paper takes 2013 as the policy implementation year. From 2013 to the national introduction
of the carbon market in 2017, the policy only applied to the pilot provinces; all non-pilot
provinces were unaffected. Thus, the non-pilot provinces and cities were taken as the
control group. Based on Hypothesis 1, we used the DID method to compare the carbon
reduction performance before and after the launch of the carbon trading policy. Since
the study has two groups with divided research objects, it can be considered a “quasi-
experimental” design. The DID method is suitable for the causal effect estimation of the
quasi-experiment because it can avoid endogeneity. That is, it can effectively control the
interaction effect between the explained variable and the explanatory variable. In the
DID model of panel data, the exogenous explanatory variable can be used to control the
unobservable individual heterogeneity between samples. It can also control the influence of
unobservable factors which change with time, so it can produce an unbiased estimation of
the policy effect. To ensure the robustness of the results, we verified the estimation results
through different test methods.

Based on the DID model expressed in econometrics, we established the following
model Formula (1) to evaluate the emission reduction performance of the carbon emissions
trading policy:

Y = α + β1 × policy × (Gi×Dt) + Σβ j × control + γGi + λDt + εit (1)
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Y is the explained variable carbon emission and Control represents a series of control
variables. Based on the above theoretical assumptions, the control variables included in
the policy evaluation Model (1) are the economic, social and political factors that affect
carbon emissions. Gi is the grouping dummy variable. If Gi = 1, it is a pilot province,
which is the intervention group; if Gi = 0, it is a non-pilot province, which is the control
group. This parameter indicates that even without the influence of this policy, there would
still be unchangeable differences between the two comparison groups due to some other
uncontrollable factors. Dt is the staging dummy variable (after policy implementation
Dt = 1, before policy implementation Dt = 0), representing the time difference before and
after policy implementation. The interaction term Gi·Dt (policy) represents the net effect of
the carbon emissions trading policy. εit is the random interference term. If the coefficient β1
of the policy is not significantly equal to 0, it means that China’s carbon emissions trading
policy has a significant impact on carbon emission reduction. However, if β1 = 0, this
indicates that China’s carbon emissions trading policy is invalid.

Based on the analysis and assumptions of the relevant variables affecting carbon
emissions, we constructed multiple regression models to estimate the coefficients. Model (2)
is set as follows:

Y = α + β1 policy + β2 pergdp + β3 population + β4energy + β5secindustry + β6tenure + β7edu
+β8local + β9center + β10intertrans + εit

(2)

Y is the explained variable carbon emission, α is a constant term, βi (i = 1, 2, 3, . . . , 10)
represents the regression coefficient of the explanatory variable and the control variable
and εit is the random error term. Specifically, policy represents the implementation of a
carbon trading policy, while tenure, edu, local, center and intertrans are the variables reflecting
officials’ characteristics. For pergdp, population, energy and secindustry denote the control
variables. Table 1 provides the detailed variable definitions.

Table 1. Definitions of variables of used to measure the effectiveness of China’s carbon emissions
trading system and their measurement methods.

Variable Name Variable Meaning Variable Operation Data Source Direction

Dependent variable Emission Carbon emission Unit: million tons CEADs /

Political factors

Tenure Official’s tenure
Measured by number of years

that the official holds
his/her position

China Political
Elite Database

(CPED)
/

Edu Official’s education
background

Measured using sequencing
variables, divided into 1 (senior
high school or below), 2 (junior

college or bachelor’s degree),
3 (master’s degree),

4 (doctorate)

China Political
Elite Database

(CPED)
−

Local Promoted form
local province

Vertical promotion from a local
province is recorded as “1”,

otherwise it is recorded as “0”.

China Political
Elite Database

(CPED)
−

Center Transferred from
central government

Horizontal transfer from central
government is recorded as “1”,
otherwise it is recorded as “0”.

China Political
Elite Database

(CPED)
+

Intertrans Transferred from
another province

Horizontal transfer from
another province is recorded

as “1”, otherwise it is
recorded as “0”.

China Political
Elite Database

(CPED)

204



Land 2023, 12, 903

Table 1. Cont.

Variable Name Variable Meaning Variable Operation Data Source Direction

Economic and
social
factors

Pergdp GDP per capita Unit: CNY/person National Bureau
of Statistics +

Population Resident population
at year end Unit: ten thousand National Bureau

of Statistics +

Energy Energy consumption
per unit of GDP

Ratio of regional energy
consumption to regional GDP

(unit: ton of standard
coal/10,000 CNY)

China Statistical
Yearbook +

Secindustry Secondary industry
added value

Ratio of added value of
secondary industry to

regional GDP

National Bureau
of Statistics +

Note: The + and − in the last column indicate that the expected relationship between independent variables and
dependent variables is positive or negative, respectively.

3.2. Data and Variables

Considering the comparability and accessibility of the known data, we selected the
carbon emissions of 30 provincial administrative units in China as the explanatory variables,
including Shenzhen, Beijing, Tianjin, Shanghai, Chongqing, Guangdong and Hubei, all of
which have implemented the pilot carbon trading system. In 2003, China proposed the
concept of “scientific development”. Given the nation’s authoritarian political environment,
this concept was set to become the new direction of local governments. As a result, local
officials attached great importance to the concept of environment protection at this time.
In the future, 2003 may be seen as an important turning point in the trajectory of carbon
emissions. Given this history, we examined the changes in carbon emissions in selected
provinces from 2004 to 2015.

Since the calculation method for carbon emissions is complex and involves a highly
specific discipline, the carbon emissions data for each province in this study were obtained
from the database website China Emission Accounts and Datasets (CEADs). The indepen-
dent variable and control variable data were obtained from the following databases: the
Chinese Statistical Yearbook, the National Bureau of Statistics, and the Chinese Political
Elite Database.

The variables of carbon emissions, economic factors, and social factors were continuous
variables obtained from the databases mentioned above, whereas the variables of political
factors were obtained by the author through the selected database and quantified for
measurement. Among them, the length of an official’s term was defined using the method
in the existing relevant literature (i.e., the number of years from the beginning of the post
to final departure from the position). Since the official appointment and departure time
usually occurs in a certain month of a certain year, if the official takes office in the first half
of the year (January–June), the year was taken as the starting year of his/her appointment;
otherwise, the official term was calculated from the next year. Based on the previous
studies, officials’ education was measured by sequencing variables and we divided them
into 1 (senior high school or below), 2 (junior college or bachelor’s degree), 3 (master’s
degree) and 4 (doctorate) [38]. The sources of the provincial governors were measured by
setting dummy variables, in which the reference group was composed of officials promoted
from other provinces.

Previous studies have shown that carbon dioxide emissions are affected by various
economic and social factors. The consensus is that there is a negative correlation between
economic and social development and carbon emissions. This study considers influencing
factors as control variables, including the variables of per capita GDP, population, GDP
energy consumption and added value of secondary industries.
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Per capita GDP (per GDP) was used to reflect the level of economic development
in a region. As for the correlation between the economy and carbon dioxide emissions,
the mainstream view supports an inverted “U” relationship, namely, the Environmental
Kuznets Curve [39]. This means that the environmental quality degrades with an increase
in income within a certain range, then improves after the income reaches a certain level.
However, another stream of research opposes these findings and rejects the Environmental
Kuznets Curve [40]. No consensus has been reached regarding the relationship between
economic growth and an increase in carbon dioxide emissions, which may be due to
the different economic development stages of the research objects. Because the levels
of economic development differed from region to region within China, we believe that
provinces and cities with a higher per capita GDP have a greater demand for economic
development, and rapid economic development will increase carbon emissions; thus, per
capita GDP is positively correlated with greenhouse gas emissions.

Regarding population, Birdsall stated that population growth can affect greenhouse
gas emissions in two ways [41]. First, a larger population will have a higher energy demand,
which is accompanied by an increase in carbon emissions. Second, rapid population
growth often leads to environmental destruction, which is not conducive to the reduction
of carbon dioxide. Kaya established the correlation between greenhouse gas emissions and
population through the identity of factor decomposition [42]. Through the modified Kaya
identity, STIRPAT, and other models, follow-up research has shown that there is a stable and
long-term positive correlation between population growth and the urbanization process
and carbon emissions. Therefore, we expect a positive correlation between population and
carbon emissions.

In terms of GDP energy consumption, the production of carbon dioxide mainly comes
from energy consumption, and the carbon emissions of a region are inevitably affected by
local energy utilization. The energy consumption per unit of GDP measures the energy
utilization of provinces and cities. The measurement unit is the energy consumption per
ten thousand CNY of GDP, which reflects the economic benefits of energy consumption.
Based on this, we expected a positive correlation between GDP energy consumption and
carbon emissions.

As for the added value of secondary industries, empirical studies have proven that
secondary industries play an important role in carbon emissions, and the adjustment of
industrial structure is an important driving factor of changes in carbon emissions [43]. We
used the secondary industry value added ratio to measure the level of industrial structure.
Compared with primary and tertiary industries, the energy demand of secondary industries
is relatively high. Therefore, it was more intuitive to select the added value of the secondary
industries. Based on this, we expected the value-added ratio of the secondary industries to
be proportional to carbon emissions. The variables are shown in Table 1 above.

3.3. Descriptive Statistics

Table 2 shows the descriptive statistical analysis of each variable conducted in this
study. The diagnosis results of collinearity among variables shows that the variance
expansion factor (VIF) is much smaller than 10, indicating that there was no significant
collinearity between variables. Based on this, further conclusions were obtained using the
econometric regression model.

Table 2. Descriptive statistics of main variables.

Variable
Name

Observations Mean
Standard
Deviation

Minimum
Value

Maximum
Value

Tenure 360 3.186 1.854 1 10

Edu 360 2.743 0.637 2 4

Local 360 0.700 0.459 0 1
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Table 2. Cont.

Variable
Name

Observations Mean
Standard
Deviation

Minimum
Value

Maximum
Value

Center 360 0.156 0.362 0 1

Intertrans 360 0.097 0.297 0 1

Emission 360 288.91 234.56 5.80 1553.80

Pergdp 360 33,215.43 21,617.04 4317 107,960

Population 360 4413.62 2651.96 539 10,849

Energy 360 1.166 0.651 0.298 4.324

Secindustry 360 0.471 0.077 0.197 0.590

4. Results and Discussions

4.1. Analysis of Parallel Trend Test and DID Results

In this study, based on Formula (1) we used the DID model to test the impact of the
carbon emissions trading policy on carbon emissions. However, to be consistent, a key
assumption for the DID estimator was the parallel trend hypothesis, also known as the
common trend assumption. It states that if there is no policy impact, then the trend of the
treatment and control should be parallel and have the same time trend. Otherwise, if the
model fails to meet this assumption, this estimation will be biased. Therefore, a parallel
trend check was performed for the DID model.

As shown in Figure 1, we drew a comparison diagram of changes in the carbon
emission trend between pilot provinces and non-pilot provinces to illustrate the changes
before and after the pilot trading system. Figure 1 intuitively shows that prior to the
implementation of the carbon emissions trading system in 2013, the growth trend of carbon
emissions in the two groups was almost identical; there was no systematic difference over
time. However, after initiation of the pilot in 2013, the trends in the pilot provinces changed
and carbon emissions were stable or even declining. The non-pilot provinces maintained
their pre-2013 growth trends. Therefore, we believe that these data meet the premise of
using the DID method, which can successfully identify the net effect of a carbon emissions
trading mechanism.

Figure 1. Time trend of carbon emissions in pilot and non-pilot provinces from 2004 to 2015.
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The carbon emissions trading system pilot provides us with a quasi-natural experiment.
In this study, the effect of this policy was analyzed using the DID method, and the results
are shown in Table 3.

Table 3. Effect test of the carbon trading mechanism pilot.

Variable Model 1 Model 2

Policy −109.12 ** (41.93) −147.50 ** (54.24)
Control variables No Yes
Individual effect Yes Yes

Time effect Yes Yes
Constant 262.79 *** (36.62) −519.70 (262.49)

N 360 355
R2 0.126 0.535

Note: *** p < 0.01, ** p < 0.05; Outside the brackets are the coefficients, and within the brackets are the robust
standard errors aggregated at the provincial level.

In Table 3, Model 1 is the estimated result without the control variables, while Model
2 is the estimated result by adding in the control variables. The regression coefficient of the
carbon emissions trading system policy is significantly negative at the 5% level, indicating
that the carbon trading system has a significant effect on carbon emissions reduction in
the pilot provinces. Compared with the non-pilot provinces, the carbon trading system
reduced carbon emissions in the pilot provinces by an average of more than 140 million
tons. Hypothesis 1 is therefore verified, which indicates that China’s carbon emissions
trading system has a significantly positive effect on reducing China’s carbon emissions.

4.2. Effect Test of Related Variables
4.2.1. Regression Results

Based on Formula (2), the regression results are shown in Table 4. Model 3 is a
regression result that includes only economic and social factors; Model 4 presents the
regression result that includes only the factors of political mobility; finally, Model 5 is the
whole model with both dependent and control variables.

Table 4. Influence of the carbon emission trading policy on carbon emission reduction performance.

Variable Model 3 Model 4 Model 5

Gi·Dt −155.61 *** (43.20) −100.47 (78.39) −130.95 ** (48.86)
Tenure 4.28 (9.21) −6.90 (7.45)

Edu 16.76 (40.98) −1.10 (35.38)
Local −79.93 (76.27) −29.79 (56.01)

Center −9.15 (94.14) −6.68 (61.48)
Intertrans −209.74 ** (85.33) −152.06 * (72.94)

Pergdp 0.005 *** (0.001) 0.005 *** (0.001)
Population 0.045 *** (0.010) 0.044 *** (0.011)

Energy 79.55 * (42.94) 88.53 ** (39.20)
Secindustry 651.99 *** (226.94) 776.21 *** (224.34)

Constant −457.54 *** (144.57) 365.58 (264.82) −509.95 ** (267.16)
N 360 355 355
R2 0.491 0.166 0.527

Note: *** p < 0.01, ** p < 0.05, * p < 0.1; The robust standard errors aggregated at the provincial level are reported
in the parentheses.

The results show that local official tenure has no significant relationship with carbon
emissions reduction. As a consequence, Hypothesis 2 cannot be proved. The results also
indicate that only the officials transferred from other provinces had a significant negative
impact on carbon emissions, thus supporting Hypothesis 3-c. Officials who were promoted
from within their provinces tended to have higher carbon emissions reduction performance

208



Land 2023, 12, 903

than those from the central agencies; this is consistent with the hypothetical direction, but
the differences are not significant. Thus, the effectiveness of carbon emissions for officials
promoted from different sources suggests that political mobility influences the provincial
government leaders’ environmental governance performance. Although the influence
coefficient of education in Model 5 on the performance of carbon emissions is negative, it
is not significant so Hypothesis 4 cannot be proved. Generally, these results validate the
logic behind the actions of government officials. However, most of them failed to pass the
significance test because local officials usually must pursue many vague and pluralistic
goals. Environmental performance is not yet the core focus of China’s official assessment
indicators. As such, the exact role that an official’s characteristics play in environment
performance cannot be well understood.

The results of the control variables related to the economy and society were all in line
with expectations. The coefficient of the per capita GDP of the region was significantly
positive at the 1% level. This indicates that China’s economic development level is still in a
relatively early stage, and is highly dependent on the sacrifice of environmental resources.
China’s economic growth has not passed the stage of “exchanging environmental quality
for economic growth”. The coefficient of the variable population is significantly positive,
which indicates that China, as a country with a large population, undoubtedly contributes
significantly to the emission of carbon dioxide. The coefficients of energy per unit of GDP
and value added of secondary industries are also significantly positive, which is also in line
with general experience. Currently, China’s energy structure is not especially advanced,
and the further development of secondary industries will still primarily depend on energy
consumption. In sum, the conflict between economic development and the capability of
environment governance has become increasingly evident, which has caused a negative
impact on the overall level of carbon emissions.

4.2.2. Interaction Effect Test

To test the interaction effect between the political factors and carbon emissions, this
study examined the moderating effects of official sources on the correlation between tenure
and career path on carbon emissions by referring to the test method of interaction effects in
the regression analysis. Table 5 reports the test results.

Table 5. Regression results of interaction effects of the variables regarding political mobility.

Variable Model 6 Model 7 Model 8

Local 28.59 (28.12)
Local × tenure 26.80 ** (12.10)
Local × tenure2 −0.12 (1.67)

Center 52.70 (39.73)
Center × tenure −20.54 * (11.78)
Center × tenure2 −10.13 * (5.07)

Intertrans −120.27 ** (44.67)
Intertrans × tenure −22.79 ** (9.72)
Intertrans × tenure2 −2.52 (8.03)

Constant −516.80 ** (188.01) −451.45 ** (165.55) −467.97 *** (155.17)
N 355 355 355
R2 0.502 0.496 0.512

Note: *** p < 0.01, ** p < 0.05, * p < 0.1; Outside the brackets are the coefficients, and within the brackets are the
robust standard errors aggregated at the provincial level.

The regression results show that the interaction effect between the source and the
term of the selected governor has passed the significance test, thus verifying the regulatory
effect of official sources on government performance. The interaction effect between
local promotion and tenure was significantly positive, while the transfers of central and
provincial and tenure were both significantly negative. That is to say, the longer the tenure
of the local official who was promoted, the more carbon emissions tended to increase. On
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the other hand, officials moving from the central government and those moving to a new
province had the opposite result. This indicates that government officials from different
sources have different carbon emissions reduction performance levels.

4.3. Robustness Test

In this study, robustness tests were carried out, including the widely used single-
difference test, counter-fact test and matching method, to ensure the reliability of the results.

4.3.1. Single Difference Test

According to the traditional treatment method, we used the single difference method
to estimate the impact of the carbon emissions trading system on carbon emissions. The
regression results are shown in Table 6. As expected, the single difference test overestimates
the effectiveness of the carbon emissions trading system. Meanwhile, it proves the validity
of our DID estimation results.

Table 6. Single difference test estimation results of the impact of the carbon emissions trading system.

Variable Model 9 Model 10

Policy −127.08 * (62.92) −146.87 ** (62.75)
Control variables No Yes
Individual effect Yes Yes

Time effect No No
Constant 314.32 *** (43.54) 49.14 (25,765.05)

N 360 343
R2 0.047 0.287

Note: *** p < 0.01, ** p < 0.05, * p < 0.1; Outside the brackets are the coefficients, and within the brackets are the
robust standard errors aggregated at the provincial level.

4.3.2. Counterfactual Test

Drawing on the robustness of the test methods used in previous research, we con-
ducted counterfactual tests by changing the setting of policy pilot provinces. If the coeffi-
cient of the carbon emissions trading system was still significantly negative, it indicated
that carbon emission decline may be a result of other policies or random factors, but not
necessarily a result of the carbon emissions trading mechanism. The test results are listed in
Table 7. Six pilot provinces were chosen: Zhejiang, Anhui, Jiangxi, Shandong, Henan and
Hunan. Model 12 and Model 11 are the estimated results with and without the addition of
control variables, respectively. Six additional pilot provinces were then chosen: Yunnan,
Qinghai, Shaanxi, Gansu, Ningxia and Xinjiang. Model 14 and Model 13 are the estimated
results with and without the addition of control variables, respectively. The coefficients of
the four models were not significant. This indicates that the downward trend of carbon
emissions in the pilot provinces and selected cities was caused by the carbon emissions
trading system rather than other factors.

Table 7. Results of the counterfactual test.

Variable Model 11 Model 12 Model 13 Model 14

Policy −21.39 (45.01) −79.05 (52.50) −5.91 (58.28) 34.99 (61.23)
Control variables No Yes No Yes
Individual effect Yes Yes Yes Yes

Time effect Yes Yes Yes Yes

Constant 221.93 *** (28.81) −571.20 *
(264.69) 270.84 *** (36.23) −543.08 **

(307.57)
N 360 355 360 355
R2 0.104 0.495 0.123 0.502

Note: *** p < 0.01, ** p < 0.05, * p < 0.1; Outside the brackets are the coefficients, and within the brackets are the
robust standard errors aggregated at the provincial level.
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4.3.3. Matching Test

Although the carbon emissions trading system pilot successfully met the conditions
necessary to be considered a quasi-experiment, the choice of pilot provinces may have had
endogenous problems, leading to selection bias. Matching pre-processing prior to estimat-
ing the causal effect can solve this problem under non-random experimental conditions
and thus overcome the problem of choice. The idea of the matching method was derived
from the matching estimator of the counterfactual framework. The basic idea was to find
the individual belonging to the control group so that the value of the measurable variable
was as close as possible to the value of the experimental group. That is, the matching
method could be used to separate a matching sample with relatively balanced covariates
to find randomized experimental samples hidden in the observed data. Therefore, it be-
came obvious which samples could be used to estimate the matching estimators, and the
resulting matching estimators could be interpreted as the individual causal effects [44]. In
addition, the use of matching samples for analysis can make the estimation results more
robust and less sensitive to functional forms, as well as reduce the model dependence of
the subsequent regression analysis to estimate causal effects.

This study used the ebalance command to perform matching, and the matching prin-
ciple was the entropy balancing method. The entropy balancing method is a multivariate
weighting method which overcomes some of the problems encountered in traditional
matching methods, such as nearest neighbor matching and propensity score matching.
Traditional matching methods involve a long matching process in which it is difficult to
balance all the covariates. In practice, the matching covariate balance is often low.

The entropy balancing method directly integrated the covariate balance into the weight
function used to adjust the control group data. Based on the maximum entropy weight, the
data can satisfy as large a balance constraint as possible. Compared with the traditional
matching method, the entropy balance method has some advantages. Because the weight
value in the entropy balance is directly adjusted to the known sample moment, the covariate
balance of the traditional processing method under the constraint of a given moment is
improved; therefore, a balance test is not required. In addition, because the entropy balance
weight changes smoothly between each element, this method retains more information
than other methods and the estimated result after matching is more accurate.

Table 8 shows the balanced results of the matched variables. As mentioned above, due
to the particularity of the value of the political and business relationship in the variable,
multiple matching methods still cannot achieve effective matching, which increases the
overall matching difficulty. Therefore, this variable is not included in the matching process.
Compared with the results before matching, the deviations of the matched treated group
and the control group are effectively reduced, and the mean and standard deviation of the
matching variables are also very close, indicating that the selected matching method is
appropriate. Therefore, the estimation results are reliable.

Table 8. Results of covariate equilibrium.

Variable

Means Variances Skewness

Treated
Control

Treated
Control

Treated
Control

Pre Post Pre Post Pre Post

Tenure 3.972 3.011 3.972 4.816 2.933 3.407 0.696 0.828 0.698
Edu 2.917 2.700 2.917 0.416 0.395 0.084 0.075 0.330 −2.566

Local 0.639 0.717 0.639 0.234 0.204 0.232 −0.578 −0.965 −0.578
Center 0.056 0.184 0.056 0.053 0.151 0.053 3.881 1.663 3.880

Intertrans 0.181 0.071 0.180 0.150 0.066 0.149 1.661 3.351 1.661
Pergdp 52,746 28,448 52,744 7.67 × 108 2.77 × 108 3.77 × 108 0.338 1.020 0.179

Population 4012 4467 4012 9,668,793 6,210,363 8,951,918 1.123 0.397 0.434
Energy 0.771 1.266 0.771 0.092 0.467 0.160 0.885 1.521 1.432

Secindustry 0.438 0.480 0.438 0.010 0.005 0.013 −1.123 −1.235 −0.872
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After matching, we again estimated the effectiveness of the carbon emissions trading
system on emissions reduction. The results are shown in Table 9. Model 15 is the estimated
result without the addition of control variables after matching, and Model 16 is the esti-
mated result after considering other relevant influencing factors after matching. Regardless
of whether control variables were added, the coefficient of policy was significantly negative.
That is, the carbon emissions trading system promoted carbon emission reduction in pilot
provinces, which was consistent with the estimation result of DID. In other words, after
considering the problem of sample selection bias, Hypothesis 1 of this paper was still valid,
which further indicated that the DID estimation results were robust and reliable.

Table 9. Net effect test of carbon trading system after matching.

Variable Model 15 Model 16

Policy −173.97 ** (68.45) −128.21 *** (25.06)
Control variables No Yes
Individual effect Yes Yes

Time effect Yes Yes
Constant 361.22 *** (66.98) 224.44 (150.61)

N 355 355
R2 0.140 0.790

Note: *** p < 0.01, ** p < 0.05; Outside the brackets are the coefficients, and within the brackets are the robust
standard errors aggregated at the provincial level.

5. Conclusions and Policy Implications

China attaches great importance to and plays a constructive role in climate change.
In the Paris Agreement, the Chinese government committed to the target of achieving
peak carbon emissions by 2030 [45]. The central government has gradually improved the
mechanisms of carbon emissions reduction by implementing a market-oriented carbon
trading system. The environmental regulation tools and the concept of low carbon have
made progress in controlling carbon emissions and adapting to climate change.

Starting with the development of carbon neutrality strategies in China, this paper
constructed a quasi-natural experiment based on the DID method to evaluate the effective-
ness of carbon emission reductions by China’s carbon trading system from a perspective
of political mobility with panel data for 30 provinces in China from 2004 to 2015, and it
conducted a robustness test using the counterfactual test and matching test to further test
the robustness of the results. This paper mainly makes contributions in three aspects. First,
on the theoretical side, in addition to examining the impact of the carbon trading system
on carbon emissions, this study’s findings help to explain the impact of political factors on
environmental governance. Second, on the methodology side, the DID model and various
robustness tests this paper conducted have expanded the processes available to evaluate
the policy’s net effect on carbon emissions and revealed the effect of officials’ incentives to
reduce emissions. Finally, on the practical side, this paper helps the central government to
gain a deeper understanding of carbon emissions trading, so as to design more effective
and targeted strategies for motivating officials and supervising policy implementation
to promote carbon neutralization and environmental development. This paper aimed
to explore potential feasible ways to reduce carbon emissions to promote the realization
of carbon neutrality as soon as possible. Therefore, the main implications based on the
empirical results are as follows. Throughout the research, the results demonstrated that
political mobility has significant effects on the reductions of carbon dioxide emissions in
the context of local promotion. The target of carbon neutrality indicated that in the long run
the government and local officials will face continuous pressures, so their behavior should
no longer be ignored. First, the Chinese central government should pay more attention to
the environmental performance of local officials through the appraisal system. GDP can
no longer be the most important indicator of political mobility. Second, the behavior of
local officials should also be of concern. The promotion path of provincial leaders influ-
ences their political performance. By optimizing the appraisal system and rationalizing
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how assessment proportions are weighted, local officials can be made to focus on carbon
emissions reduction through political mobility. Finally, environmental protection indicators
should become the priority during the assessment of government officials.

Furthermore, the carbon emissions trading system is an effective policy tool to reduce
carbon intensity and promote carbon neutrality. Several policy implications and suggestions
based on this policy can also be drawn. First, due to China’s outdated development mode
and its secondary industries, which are important causes of its recent energy consumption
and carbon emission increases, it is necessary for China to maintain energy conservation
and emissions reduction to achieve the goal of carbon neutrality. Second, with the imple-
mentation of the carbon emissions trading system, enterprises should develop the new
industrialization path and accelerate the transformation of the industrial structure in order
to improve the utilization efficiency of energy based on this new type of market-orientated
policy emissions reduction policy. Third, by vigorously developing technology-intensive
industries to replace pollution-intensive industries and increasing reliance on large-scale
and advanced industrial enterprises, the utilization rate of resources can be improved. In
short, the carbon trading system and other market-oriented governance tools can serve an
important role in dealing with carbon emissions challenges in achieving carbon neutrality.
Moreover, the application of advanced technology to secondary industries and emission
reduction targets is an additional and more effective way to fundamentally reduce carbon
emissions. In other words, the realization of carbon neutrality needs diversified paths, as
well as suitable incentive mechanisms.

However, this paper also has some limitations. Owing to limited data availability,
this study used provincial panel data to evaluate the effect of carbon trading on emissions
reduction. However, there may have been other factors affecting carbon emissions. Future
researchers could test other factors based on this study’s findings. Carbon emissions trad-
ing in a variety of cities should also be investigated to assess its reduction effectiveness.
Additionally, more impact variables should be used to establish a larger and more compre-
hensive database. These approaches could be helpful in obtaining more significant results.
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Abstract: Exploring an effective scientific method to measure the economic benefits of ecological
products is of great significance for green development. Based on the InVEST model, this paper,
taking the Pearl River Delta (PRD) as an example, evaluated the FEPs value in the PRD from
2000 to 2015; using a super-efficient DEA model, the conversion efficiency of ecological products was
estimated, and its temporal and spatial variation characteristics were analyzed using the Malmquist
index. The results showed that the value of FEPs in the PRD shot up during 2000–2015, and that
the regulation services value is the main part of FEPs, followed by the value of cultural service.
The overall conversion efficiency of FEPs is improving. However, cities differ greatly. Technical
efficiency is the key driving factor for improving forest product conversion efficiency. The main
reasons for the current efficiency loss are redundant inputs and insufficient outputs. This paper also
suggests that conversion efficiency is a convincing method to evaluate the degree of transformation of
ecological environment resources into economic benefits and the degree of ecological and economic
coordinated development.

Keywords: forest ecological product; value evaluation; conversion efficiency; Pearl River Delta

1. Introduction

With the advancements in urbanization and industrialization in China, the conflict
between human beings and ecology has become increasingly prominent [1]. These prob-
lems include poor infrastructure [2], poor air quality [3], severe soil pollution [4], and the
growth in energy consumption far exceeding domestic energy production [5]. Resolv-
ing the conflict between economic development and ecological environment protection
is undoubtedly a major challenge. As a factor of production in the economic system, the
influence of ecological capital on the regional economy has attracted widespread attention
from scholars [6,7]. Through comprehensive governance of the ecological environment,
the international community promotes the coordinated development of ecological con-
struction while improving the local socio-economic level, environmental protection, and
socio-economic systems [8]. Therefore, an indicator is needed to evaluate the degree of
transformation of ecological environment resources into economic benefits to measure the
degree of ecological and economic coordinated development in this region [9].

The concept of ecological products has not yet been uniformly defined. Research
is more focused on ecosystem services [10] or environmental services (Environmental
Services) [11], and some of these are expressed as eco-label products [12]. Ecosystem
services refer to the benefits that humans derive directly or indirectly from ecosystems [13],
including the provision, regulation, support, and cultural services necessary to sustain life
and protect the integrity of ecosystems [14]. As far as the relationship between ecosystem
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services and ecological products is concerned, on the one hand, ecological products are
equated with ecosystem services that generate positive externalities and are collectively
referred to as tangible material products and intangible services provided by pure, natural
systems; on the other hand, ecological products are divided into narrow and broad concepts.
Ecosystem services in the narrow sense are equivalent to ecological products, and ecological
products in the broad sense include products or services produced by human activities, in
addition to products or services produced by natural systems, including artificial attributes
and human labor [15]. Ecological products refer to the collection of goods and services
for the purpose of human consumption and utilization through the interaction between
ecosystem production and human social production, and constitute the necessities of
human life together with agricultural products and industrial products. Forest ecological
products are considered to be ecosystem services that use forest resources to provide human
beings with high-quality life and production factors within a certain period of time. Forest
ecological products have three main characteristics: tradability, which has the transaction
attributes of human economic activities [16]; consumption, which has the consumption
attributes of human economic activities and contains added value; relevance, which is the
relationship between natural resources and human activities. The recognition of ecological
products is not only necessary to enhance the supply of ecological services, but also to
convert ecological products into economic gains [17,18]. At the national level, converting
ecological products into economic benefits has become a priority.

The value conversion of ecological products relies on scientific calculations of the
ecological services value. The accounting methods are various. Some scholars adopt the
equivalence factor method on the basis of ecosystem classification; this is the service value
equivalent for an overall accounting of different ecosystems [19,20]. The functional value
method has also been recognized by scholars [21]. Based on field measurements and
statistical data, the physical quantity and service quantity of products provided by the
ecosystem are calculated, and the total value is obtained by summing them up [22,23]. The
former method is widely comparable; however, it is difficult to distinguish the value of
each service. The calculation results of the latter method are more authentic and credible,
but too many parameters and data are required [24,25]. Research on ecological products
mainly focuses on the supply of ecosystem products, ecosystem regulation services, cultural
services, and gross ecosystem product (GEP).

Research on the conversion of ecological products to economic value focuses on the
analysis of the transformation path. Considering the public goods characteristics of eco-
logical products, a variety of policy tools have been used to convert ecological products
into economic profit [26–28]. However, there are defects, such as policy support system
construction, and lagged market evolution; additionally, competition incentives struggle
to meet diversified needs [29]. Other conversion paths include the market path [30] and
the social path. The specific conversion methods mainly include ecological protection
compensation [31], ecological ownership transactions [32], commercial development [33],
green financial support [34], policy incentives [35], and other measures [36]. Different im-
plementation methods for the same ecological product have different effects [37]. Research
on the value conversion evaluation of ecological products is still in its infancy, and the
evaluation methods mainly include two types based on numerical ratio and efficiency. The
former mainly includes the green (green water and lush mountains) gold (gold and silver
mountains) index represented by the ratio of GEP to EDP (gross domestic product adjusted
by ecological environment factors) [38]. The latter incorporates GEP into the economic effi-
ciency system to measure the value-conversion efficiency of ecological products [39]. The
former only uses simple mathematical ratios for evaluation, and the economic significance
of the conclusion is slightly insufficient, while the latter can still be further improved in the
construction of the evaluation system.

As a production factor existing in the economic system, ecological capital affects the
growth of the regional economy [40], and promotes the welfare of the people and wealth ac-
cumulation [41]. Therefore, based on the framework of ecological efficiency [42], ecological
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capital is included in the variables of the ecological economic growth model, and, together
with traditional production factors, is the main factor to enhance the coordination between
ecology and economy [43]. The ecological product conversion efficiency, representing the
efficiency of converting GEP into GDP, was selected to evaluate the degree of transforma-
tion of ecological environment resources into economic benefits to measure the degree
of ecological and economic coordinated development [44], which is an important basis
for the scientific evaluation and continuous optimization of ecological product value. To
empirically analyze the forest ecological products (hereafter referred to as FEPs) conversion
efficiency, this paper uses the Pearl River Delta (hereafter referred to as PRD) region as
an example.

2. Materials and Methods

2.1. Study Area

The nine cities in the PRD are Guangzhou, Shenzhen, Foshan, Zhaoqin, Dongguan,
Zhongshan, Zhuhai, Jiangmen, and Huizhou [45] (Figure 1), and they make up the main
component of the Guangdong–Hong Kong–Macao Greater Bay Area [46]. In 2020, the PRD
had a total land area of 54,766 km2, a regional GDP of CNY 8952.4 billion, and a resident
population of 78,235,400. With a land area of 0.57%, it houses 5.12% of the population and
is responsible for 7.82% of the GDP. The area of forest land is 2.83 million hectares, with a
forest-coverage rate of 51.73%. All nine cities have been named “National Forest Cities” and
have basically built the country’s first “National-level Forest City Cluster Demonstration
Zone” [47]. Therefore, taking the PRD as an example by quantitatively evaluating the
value of FEPs and value conversion efficiency in large-scale urban agglomerations, and
proposing optimization countermeasures to promote the development of an ecological
socio-economic system of high quality, this study will provide a reference for large-scale
urban agglomerations to explore the ecological product value conversion mechanisms.

Figure 1. Location of Pearl River Delta.

2.2. Method
2.2.1. Calculation Method of GEP

The calculation of GEP refers to the methods of Ouyang [48] and divides GEP into
three parts: the value of material products, regulation services products, and cultural
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products [49] (Table 1). The physical quantity and its distribution characteristics are
calculated based on the InVEST model and GIS technology.

Vm = ∑n
i=1 Fi × Pi (1)

where Vm is the value of forest material products. Fi is the yield of forest product i. Pi is the
market price of forest product i.

Table 1. GEP calculation method.

GEP Index Methods

Material product value Forest products Market value method

Regulating service value

Conservation of water sources Shadow price method
Carbon fixation and oxygen release Alternative costing method
Air purification Alternative costing method
Soil conservation Alternative costing method

Cultural service value Forestry tourism Travel expense method

The regulating service consists of four parts: the conservation of water sources; carbon
fixation and oxygen release; air purification; and soil conservation. Using the shadow
price method, we estimated the value of the forest ecosystem’s water conservation services.
According to previous studies, the storage cost per unit is 1.5 CNY/m3 [50]. The Water
Balance Equation was used to estimate the output of aquatic products. Monthly water
production is as follows:

WY = PPT − ET ± S ≈ PPT − ET (2)

where S is the change in water storage capacity. PPT is monthly precipitation. ET is the
actual monthly evaporation amount, which can be estimated as follow:

ET(R, t) =
A ∗ R

A + B ∗ R2 ∗ EXP
(
− C∗t

235+t

) (3)

Among them, A, B, and C are empirical coefficients, which are related to the tem-
perature in various places. Therefore, the values in the PRD region are 3100, 1.8, and
34.4, respectively. R is the monthly precipitation (mm), and t is the monthly average
temperature (◦C).

The calculation of the carbon fixation and oxygen release value adopts the method of
alternative cost. This study uses the average value of CNY 272.65/t of China’s afforestation
cost per ton of CO2 fixed in the forest ecosystem calculated in the relevant research [51].
The net primary production (NPP) of the ecosystem was evaluated to measure its carbon
sequestration and oxygen release. The productivity of vegetation is influenced by natural
factors such as climate, soil, topography, and human factors [52]. This study used the CASA
(Carnegie Ames Stanford Approach) model [53] to estimate NPP and further calculate the
CO2 absorption of vegetation.

Alternative cost methods have also been used to calculate the value of air purifi-
cation based on an assessment of the amount of air pollutant purification by the forest
ecosystem. With reference to relevant research, the treatment costs of SO2, NOX, and
retained dust are 1200, 630, and CNY 150/t, respectively, and the purification amounts
per unit area of forest ecosystem for SO2, NOX, and retained dust are 22.64, 0.82, and
3831.7 t/(km2·a), respectively.
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The soil conservation value of forest ecosystems is mainly reflected by a reduction in
sediment deposition in rivers and lakes, and a reduction in soil-erosion-induced reservoir
loss and soil fertility loss. Soil loss is calculated using the restoration cost method, which is
a substitute for the value of soil protection. Potential soil erosion is estimated as:

Ap = R × K × LS (4)

Actual soil erosion is estimated as:

Ar = R × K × LS × C × P (5)

The soil conservation service capacity provided by the ecosystem is

Ac = Ap − Ar (6)

where R is the rainfall erosion factor, which is related to rainfall amount, rainfall duration,
intensity and kinetic energy. It is generally reflected by the product of heavy rain kinetic
energy and the maximum 30 min rainfall intensity. The daily rainfall erosivity model is
applied to calculate rainfall erosion:

Ri = α∑k
j=1

(
Pj
)β (7)

where Ri is the erosive force in the i-th half-month period (MJ mm hm−2 h−1), k and Pj,
respectively represent the number of rainfall days in the half-month period and the daily
rainfall on the j-th day. The daily rainfall is required to be ≥12 mm, otherwise it will not be
calculated. α and β are model parameters, estimated based on rainfall characteristics:

β = 0.8363 + 18.144
pd12

+ 24.455
py12

α = 21.586β−7.1891 (8)

where pd12 is the daily average rainfall with daily rainfall ≥12 mm, and py12 is the annual
rainfall with daily rainfall ≥12 mm.

K is the soil erodibility factor, which reflects the ease with which soil is eroded and
transported by rainwater. The EPCI model for estimating soil erodibility is established
based on the physical structure of the soil (percentage of sand, silt, and clay) and the content
of organic matter:

K = {0.2 + 0.3exp[−0.0256Sd(1 − Si/100)]} ×
[

Si
(Cl+Si)

]0.3 ×
{

1 − 0.25C
[C+exp(3.72−2.95C ]

}
×{

1 − 0.7×
(

1− Sd
100

)
{

1− Sd
100+exp[−5.51+22.9[−5.51+22.9(1−Sd/100)]]

}
}

(9)

where Sd is the sand content, Si is the powder content, Cl is the clay content, and C is the
organic carbon content. L and S are slope length and slope factor, respectively, reflecting the
impact of topography and landforms on soil erosion. The slope length factor is calculated
as follows:

L = (λ/22.13)α (10)

where L is the amount of soil erosion normalized to a slope length of 22.13 m; λ is the
slope length.

S is the slope factor, calculated as follows:

S =

⎧⎨⎩
10.8sin θ + 0.03 (θ < 5◦)

16.8sin θ − 0.50 (5◦ ≤ θ ≤ 10◦)
21.9sin θ − 0.96 (θ ≥ 10◦)

(11)
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C is the vegetation coverage and management factor, which is mainly affected by
surface land use type and vegetation coverage. P is the soil and water conservation
measure factor. The values of C and P are derived from relevant research on the PRD
region [54].

According to the “Forest Ecosystem Service Function Evaluation Specification”, the
cost of manually digging 1 m3 of Class I and II soil is CNY 8.4/m3 [55]. The soil conservation
amount is converted into the volume of the topsoil layer, and is then multiplied by the cost
of excavating 1 m3 of soil to obtain the annual soil conservation value of the ecosystem.

2.2.2. Method of Evaluation for Ecological Product Conversion Efficiency

Data envelopment analysis (DEA) is a method of operations research and is used in
the study of economic production boundaries. This method is generally used to measure
the production efficiency of some decision-making units. The DEA model can effectively
identify multiple inputs and multiple outputs of efficiency and is currently the most well-
constructed efficiency measurement method, widely used by scholars in many research
fields [56]. The super-efficient DEA model further evaluates units that are at the same
frontier [57]. Therefore, the DEA model with input-oriented constant returns to scale is
used in this paper, and can be specifically expressed as⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min

[
θ− ε

(
m
∑

i=1
S−

i +
s
∑

r=1
S+

r

)]
s.t.

n
∑

j=1
j �=k

λjxij + S−
i = θx0, i = 1, 2, · · · , m

n
∑

j=1
j �=k

λjyrj − S+
r = y0, r = 1, 2, · · · , s

λj ≥ 0, j = 1, 2, · · · , n, S+
r ≥ 0, S−

i ≥ 0

(12)

where the decision-making unit’s super-efficiency value is given by θ, which represents
the relative forest ecological product value-conversion efficiency of each city; the non-
Archimedean infinitesimal is given by ε; m, s, n stand for input variable dimension,
output variable dimension, and number of decision-making units, respectively; S−

i, S+
r

represents the slack variable; the input variables and output variables are given by xij
and yij, respectively; λ is the weight coefficient. θ < 1 means that the decision-making
unit has not achieved the optimal efficiency, while θ > 1 means that it has achieved the
optimal efficiency.

Based on the Total Factor Productivity (TFP) index, this study uses the productivity
index decomposition method to identify the main factors leading to production inefficiency.
Referring to Cooper et al. [58], the sources of the inefficiency items of multi-agent and
multi-efficiency units are disassembled.

IE =
→
St = IEx + IEy

= 1
2N ∑N

n
sx

n
qx

n
+ 1

2M ∑M
m

sy
m

qy
m

(13)

where IEx and IEy are the inefficiency values of factor input and output, respectively.
Since there are input variables such as ecological products, land, labor, and capi-

tal, Formula (13) can be further disassembled to obtain detailed information that leads
to inefficiency.

IE = IEGEP + IEland + IElabour + IEcapital (14)
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Combined with the constructed directional distance function and the characteristics of
the Malmquist–Luenberge productivity index, the efficiency subject is disassembled.

MLt+1
t = IEx(t)− IEx(t + 1)︸ ︷︷ ︸

TFPx

+ IEy(t)− IEy(t + 1)︸ ︷︷ ︸
TFPy

(15)

By dismantling the efficiency subject, the influence of the input factor (TFPx) and
output (TFPy) on the total output (TFP) can be analyzed.

The Malmquist index can clearly reflect the trend and composition of efficiency
changes [44]. TFP consists of Comprehensive Technical Efficiency (EC) and Technical
Progress (TC), among which EC can be disassembled into Scale Efficiency (SE) and Pure
Technical Efficiency (PE). Therefore, to dynamically analyze the changes in FEPs conversion
efficiency in the PRD, this paper used the Malmquist index.

2.3. Index Construction

The indicator system used to estimate forest ecological product value conversion
efficiency includes input and output parts (Table 2). The input indicators are regional
GEP, completed investment in forestry fixed assets, and the number of forestry industry
employees. Considering that economic growth is mostly reflected in the growth of the
industry, this paper chooses the output value of forestry as an indicator.

Table 2. Input–output indicators of forest ecological product value conversion efficiency.

Category Primary Index Secondary Index Tertiary Index

Input indicators

The value of forest
ecological products

Material product
value Forest products

Regulating
service value

Conservation of
water sources
Carbon fixation and
oxygen release
Air purification
Soil conservation

Cultural service value Forestry tourism

Labor Number of forestry practitioners

Physical capital Amount of forestry fixed assets investment

Output indicators Economic growth Output value of forestry industry

2.4. Data Sources

This paper used socioeconomic data, meteorological data, remote sensing data, soil
data, etc., to estimate the value of forestry products and their conservation efficiency
(Table 3). Socioeconomic data mainly came from the “China Forestry Statistical Yearbook”,
“Guangdong Statistical Yearbook”, “Guangdong Rural Statistical Yearbook”, and the “Sta-
tistical Yearbook” of various cities from 2000 to 2016. Meteorological data including the
daily average rainfall, solar radiation, and monthly average temperature were collected
from meteorological stations in Guangdong Province through the National Meteorological
Science Data Center. The data on land use were sourced from the Chinese Academy of
Sciences cloud platform for resources and the environment. The NDVI data were obtained
from NASA MODIS (MOD13Q product). The soil physical structure components were
from the scientific data center of cold and dry areas. The DEM data were taken from the
geospatial data cloud.
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Table 3. Data sources.

Classification Data Data Sources

Socioeconomic data

Forest products China Forestry Statistical Yearbook;
Guangdong Statistical Yearbook; Guangdong
Rural Statistical Yearbook; Statistical
Yearbook of various cities
(http://stats.gd.gov.cn/gdtjnj/index.html
(accessed on 20 August 2019))

Number of forestry
practitioners
Forestry fixed assets
investment
GDP

Meteorological data

Daily average rainfall National Meteorological Science Data Center
(http://data.cma.cn/ (accessed on
20 August 2019))

Solar radiation
monthly average
temperature

Remote sensing data

land use Chinese Academy of Sciences cloud platform
NDVI data NASA MODIS (MOD13Q product)

Soil physical structure
components

scientific data center of cold and dry areas
(http://bdc.casnw.net/ (accessed on
20 August 2019))

DEM data
geospatial data cloud
(https://www.gscloud.cn/ (accessed on
20 August 2019))

3. Results and Analysis

3.1. Forest Ecological Product Value

During the period 2000 to 2015, the value of FEPs in the PRD ranged from CNY
222.381 billion to 314.051 billion (calculated at constant prices in 2000) (Figure 2). In 2015,
the total value of forestry ecological products in the PRD was about 0.97 times the total
forestry output value. Among them, the regulatory services value was the highest, CNY
242.844 billion, accounting for 77.33% of the total value; the value of cultural services was
CNY 66.36 billion, accounting for 21.13% of the total value; the value of material products
was CNY 4.847 billion, accounting for 1.54% of the total value (Table 4). Six ecological
products can be ranked in order of value: soil conservation > cultural service > carbon
fixation and oxygen release > air purification > material product > water retention. Among
them, the values of soil conservation and cultural services accounted for 87.40% of the total,
making up the largest proportion.

Table 4. FEPs value in the PRD in 2015.

Ecological Products Value/RMB 100 Million Proportion (%)

Material products 48.47 1.54%
Regulatory services 2428.44 77.33%

Water retention 47.25 1.50%
Carbon fixation and oxygen

release 222.7 7.09%

Air purification 77.21 2.46%
Soil conservation 2081.27 66.27%
Cultural services 663.6 21.13%

Sum 3140.51 100%

During the period 2000 to 2015, a fluctuating upward trend was seen in the value of
FEPs in the PRD (Figure 3). Following a slow increase in 2000–2005, there was a downward
trend in 2010, but then a substantial increase. The total value increased from CNY 232.381 to
314.051 billion from 2000 to 2015, with an increase of 35.14%. In terms of ecological product
composition, material products and cultural services values both showed an upward trend,
while the value of regulatory services rose slightly but fluctuated. Specifically, the value
of material products increased from CNY 2.183 billion to 4.837 billion from 2000 to 2015,
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an increase of 122%. The regulatory products showed a fluctuating upward trend, while
the value of carbon fixation and oxygen release showed a slow upward trend after a sharp
decline. As for cultural services, the value shot up from CNY 35 million in 2000 to CNY
66.35 billion in 2020, showing the most significant increase.

 

Figure 2. Changes in the value compositions of forest ecological products in the Pearl River Delta
from 2000 to 2015.

 
Figure 3. Forestry output value and FEPs value in the PRD.

The distribution of FEPs in the PRD is quite different (Table 5), being higher in
Guangzhou, Zhaoqing, and Huizhou. The main ecological products in Guangzhou are
cultural service products, while in Huizhou and Zhaoqing, they are regulatory service
products with a high soil conservation value. The FEPs values in Zhuhai, Dongguan, and
Zhongshan are relatively low.
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Table 5. The value of forest ecological products in the Pearl River Delta cities in 2015.

City Guangzhou Shenzhen Zhuhai Foshan Jiangmen Zhaoqin Dongguan Zhongshan Huizhou

Material products 2.47 0.12 0.2 0.78 4.83 37.02 0.21 0.01 2.84
Regulatory services 269.57 55.62 31.27 54.09 365.92 986.11 35.17 29.26 601.43

Water retention 6.29 0.99 0.51 1.34 6.91 18.11 0.91 0.52 11.67
Carbon fixation and

oxygen release 23.64 5.76 2.58 6.06 37.01 86 3.47 2.58 55.61

Air purification 8.14 2.08 1.38 1.84 11.69 29.88 2.1 0.85 19.26
Soil conservation 231.51 46.78 26.8 44.85 310.31 852.13 28.69 25.31 514.89
Cultural services 293.26 46.78 28.9 56.95 37.37 26.05 40.6 22.52 33.19

Sum 565.3 180.5 60.37 111.81 408.11 1049.18 75.98 51.79 637.46

3.2. Comparison of Forestry Output Value and Forest Ecological Product Value

Different from FEPs, the total output value of forestry in the PRD showed a continuous
upward trend (Figure 4). From 2005 to 2015, the output of the forestry industry rose rapidly,
benefiting from the rapid development of the secondary and tertiary industries, while the
value of FEPs showed a downward trend between 2005 and 2010, mainly due to the decline
in the regulating services value; water conservation, and carbon fixation and oxygen release
values also declined. However, in the following five years, the FEPs value greatly improved.
This growth mainly came from the improvements in cultural value. In terms of cities, the
output values of Guangzhou, Jiangmen, Zhaoqing, and Huizhou are higher than the value
of FEPs, while the value of FEPs is higher in other cities.

 
Figure 4. Forestry output value and FEPs value of each city in the PRD.

3.3. Spatio-Temporal Characteristics of FEPs Value-Conversion Efficiency
3.3.1. FEPs Value-Conversion Efficiency

Based on the index in Table 2, this paper used MATLAB to measure the value-
conversion efficiency of FEPs every five years from 2000 to 2015 in nine cities in the PRD.
The conversion efficiency of FEPs in the PRD differs. Specifically, Guangzhou, Shenzhen,
Zhaoqing, Dongguan, and Zhongshan achieved relatively high efficiencies, while Zhuhai,
Foshan, Jiangmen, and Huizhou achieved relatively low efficiencies (Table 6). In 2015,
among the nine prefectures and cities in the PRD, five cities with a high efficiency remained
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effective, while the conversion efficiency of FEPs in Huizhou in 2015 was only 4.8%. From
the perspective of changing trends, the conversion efficiency showed a downward trend for
Zhaoqing and Huizhou, from 2.253 and 0.445 in 2000 to 1.001 and 0.048 in 2015, respectively.
Guangdong, Shenzhen, Dongguan, and Zhongshan maintained a continuous growth trend,
rising from 0.028, 0.013, 0.046, and 0.029 in 2000 to 1.936, 2.772, 4.502, and 1.493 in 2015,
respectively. Zhuhai, Foshan, and Jiangmen, which also had an increasing trend, reached
their peak efficiencies in 2010, being 0.358, 2.805, and 2.270, respectively; however, these
values dropped to lower levels in the following five years. It is worth mentioning that
although Zhaoqing experienced a fluctuating downward trend, in 2000, 2005, and 2015, its
conversion efficiency was effective. Nevertheless, there are large differences in conversion
efficiency between cities in the PRD, and the overall trend of fluctuating growth can be seen.

Table 6. FEPs value conversion efficiency from 2000 to 2015.

City 2000 2005 2010 2015 Average

Guangzhou 0.028 0.032 0.186 1.936 0.546
Shenzhen 0.013 0.006 1.121 2.772 0.978

Zhuhai 0.028 0.004 0.358 0.137 0.132
Foshan 0.073 0.018 2.805 0.406 0.826

Jiangmen 0.132 0.059 2.270 0.321 0.696
Zhaoqin 2.253 1.075 0.423 1.001 1.188

Dongguan 0.046 0.003 1.320 4.502 1.468
Zhongshan 0.029 0.005 1.258 1.493 0.696

Huizhou 0.444 0.163 0.524 0.048 0.295
Average 0.338 0.152 1.141 1.402

3.3.2. Dynamic Analysis of Value-Conversion Efficiency of FEPs

The dynamic analysis of the conversion efficiency of FEPs in the PRD was conducted
using the Malmquist index. From a regional perspective (Table 7), the average TFP of the
conversion efficiency of the PRD is 0.924, indicating that during the study period, the value
of FEPs did not significantly correspond to an economic benefit. This varied greatly in
other years, from 2.477 in 2000–2005, and rapidly dropping to 0.218 in 2005–2010. However,
in 2010–2015, it rose quickly to 1.456, showing a more violent fluctuation trend. Specifically,
the average value of the technical efficiency change index (EC) is 1.245, indicating that the
level of resource utilization in the PRD has improved significantly. The technical efficiency
fluctuated from 2000 to 2015. Due to the double impact of the pure technical efficiency
change index (PE) and scale efficiency change index (SE), it rose from 0.528 to 2.885 during
2000–2010, and then fell to 1.276 in 2015. The average technological progress index (TE) is
0.724, and the lowest value is seen in the 2005–2010 period, which shows a synchronous
fluctuation in the total factor productivity change index (TFP), indicating a limited level of
technological advancement; therefore, the promotion effect of technological innovation on
improving conversion efficiency is not obvious.

Table 7. TFP of FEPs in 2000–2015.

EFF TE PE SE TFP

2000–2005 0.524 4.725 0.838 0.626 2.477
2005–2010 2.885 0.076 1.285 2.245 0.218
2010–2015 1.276 1.141 1.105 1.155 1.456
Average 1.245 0.742 1.06 1.175 0.924

The difference in the pure technical efficiency change index between cities in the PRD
is small, and the change in the EFF is mainly caused by the change in SE (Table 8). The
differences between cities are mainly reflected in the TE. The TFP values of Guangzhou,
Zhuhai, Foshan, Dongguan, Shenzhen, and Zhongshan all exceeded 1, Zhaoqing was close
to 1, at 0.989, and, in Shenzhen and Dongguan, the values were less than 1. The city with the
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highest TFP was Foshan. Regarding the changing trends, the TFP of each city was relatively
high during 2000–2005 and 2010–2015, and fell sharply during 2005–2010. Overall, the TFP
of most cities showed a downward trend between 2000 and 2015.

Table 8. TFP of FEPs of each city in 2000–2015.

EFF TE PE SE TFP

Guangzhou 1.557 0.671 1.524 1.021 1.044
Shenzhen 0.803 0.816 1 0.803 0.655

Zhuhai 2.134 0.491 1.018 2.095 1.049
Foshan 2.563 0.759 1.022 2.507 1.946

Jiangmen 0.978 1.087 1.060 0.922 1.063
Zhaoqin 1 0.989 1 1 0.989

Dongguan 0.571 0.418 1 0.571 0.239
Zhongshan 1.883 0.591 1 1.883 1.112

Huizhou 1 1.254 1 1 1.254
Average 1.245 0.742 1.060 1.175 0.924

3.3.3. The Input–Output Slack Rate of the Conversion Efficiency of FEPs Products

All cities in the PRD have experienced redundant input and insufficient output during
FEPs value conversion (Table 9). The lack of output is more prominent. Zhuhai, Foshan,
Jiangmen, and Huizhou have not realized the effective allocation of resources, and there
are many deficiencies in their input and output indicators. Both Zhuhai and Huizhou
have a large deficit in their forestry output value. Foshan has a 90% redundancy in
fixed capital investment. Jiangmen has a surplus of more than 90% in both cultural
service value and labor input. The conversion efficiency of FEPs in Guangzhou, Shenzhen,
Zhaoqing, Dongguan, and Zhongshan has reached the production front, and the efficiency
of production resource allocation has reached an effective level, but there is still room for
optimization in terms of input. Guangzhou, Shenzhen, and Dongguan all have a certain
degree of overinvestment in material products, while overinvestment in regulatory services
has appeared in Dongguan. There is also a certain degree of redundancy in cultural service
investment in Dongguan and Zhongshan. The surplus of forestry labor is more prominent
in Shenzhen, as is the investment in fixed capital. Therefore, it is still necessary to optimize
investments in ecological products across various cities.

Table 9. Redundancy rate and insufficient rate of each city in 2015.

Redundancy Rate Insufficient Rate

City
Material
Products

Regulatory
Products

City
Material
Products

Regulatory
Products

City

Guangzhou 3.31 1.37 Guangzhou 3.31 1.37 Guangzhou
Shenzhen 2.48 0.02 Shenzhen 2.48 0.02 Shenzhen

Zhuhai 0.99 0.99 Zhuhai 0.99 0.99 Zhuhai
Foshan 0.56 0.72 Foshan 0.56 0.72 Foshan

Jiangmen 0.44 0.45 Jiangmen 0.44 0.45 Jiangmen
Zhaoqing 0 0.01 Zhaoqing 0 0.01 Zhaoqing
Dongguan 2.53 12.06 Dongguan 2.53 12.06 Dongguan
Zhongshan 0 0 Zhongshan 0 0 Zhongshan

Huizhou 0.99 0.85 Huizhou 0.99 0.85 Huizhou

4. Conclusions

This paper evaluates the forestry ecological products values of the PRD from 2000 to
2015, and bases these on the input–output perspective to estimate the conversion efficiency
of FEPs using the Super-SBM model, Malmquist index, and InVEST model. The conclusions
are noted below.
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First, the total value of FEPs in the PRD is fluctuating upwards. In 2015, the value of
FEPs reached CNY 314.051 billion, with an increase of 1.35 times compared with the value of
CNY 2321.381 billion in 2000. The regulatory service value is the main component of FEPs,
followed by the cultural service value. Specifically, soil conservation and forest recreation
are the main FEPs in the PRD, indicating that forests regulate climate in a significant way,
especially in regard to water and soil conservation. With the development of the economy,
the value of cultural services in FEPs has become increasingly prominent, and is inseparable
from the construction of the PRD National Forest City Group [47] and forest parks, and the
excavation of ecological space. However, the value of FEPs is still slightly lower than the
total output value of the forestry industry, suggesting that the development of the forest
ecological industry is lagging, and that there is still room for improvement in ecological
civilization construction and value conversion for ecological products in the PRD.

Second, the conversion efficiency of FEPs in the PRD has continued to rise, and it
achieved overall efficiency in 2010, indicating that the PRD has made remarkable achieve-
ments in the exploration and construction of the forest cities cluster. However, the imbalance
in conversion efficiency among cities cannot be ignored. Although the overall conversion
efficiency of FEPs in the four cities—Zhuhai, Foshan, Jiangmen, and Huizhou—is relatively
low, other cities still show a trend of fluctuating growth. With the comprehensive con-
struction of the national forest city group agglomeration and the in-depth development of
the “Forest Chief System”, the PRD will be able to make better use of its forest ecological
resources, thereby promoting forest product value conversion. Regardless of whether this
development involves the construction of forest parks or forest towns, it will vigorously
activate FEPs and provide multiple paths for the conversion of their values.

Third, the TFP of FEPs in the PRD fluctuates greatly. The total factor productivity
is below one, but technical efficiency is above one, and the technological progress is
below one, indicating that FEP conversion efficiency has been changed primarily due
to forestry technical efficiency improvements in the PRD. Technology advancements in
forestry, however, have yet to show positive results. Through enhancing the efficiency of
FEP conversion, it is necessary to establish a corresponding forestry technology service
system urgently, increase the promotion and application of new technology, and improve
the conversion efficiency of FEPs through technological progress.

Fourth, the PRD’s loss of conversion efficiency is primarily due to excessive inputs
and insufficient outputs, with specific reasons for variation in the loss of efficiency.

5. Discussion

Based on the value calculation of the forest ecological products, this paper constructs
an input-output index system from the perspective of efficiency, which provides a new
perspective for evaluating the value transformation of forest ecological products.

The forest ecosystem is the main body of the terrestrial ecosystem. It provides humans
with a variety of regulatory ecological products such as water conservation, carbon fixation
and oxygen release, wind and soil fixation, air purification, and climate regulation, as
well as supply ecological products such as timber, economic forest fruits, and biomass en-
ergy [59]; and cultural ecological products such as tourism and health care, landscape value,
etc. [60]. However, areas rich in forest resources and ecological products are mostly areas
with relatively backward economic development [61]. Considering that forest ecological
products maintain the livelihood of forest farmers, the evaluation of the value conversion
of ecological products is an important factor in measuring the economic development of
forest areas. Through the calculation of the value of forest ecological products in the PRD
region, we found that during the research period, cultural services showed a significant
increase. The development of forest tourism resources is an explicit means to realize the
economic development of forest areas [62,63]. Government departments can promote the
value of ecological products by innovating forest ecological industries.

The economic benefits brought by forestry material products and cultural products
have been taken into consideration, but the role of regulating services in realizing eco-
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nomic benefits is not yet obvious [64]. With the development of the carbon trading market,
carbon sinks play an important role in forest environmental benefits, and their economic
value should be included in the forest ecological product value conversion evaluation sys-
tem [65]. Government departments should further improve the forest ecological protection
compensation mechanism and promotion mechanism.

From the perspective of conversion efficiency, it is urgent to establish a forestry tech-
nology service system, promote the application of new technologies and new products,
and improve conversion efficiency through technological progress. Institutional innovation
is another effective means to improve conversion efficiency. The focus should be on devel-
oping the “Forest Chief System”, the development and construction of forest parks and
forest towns, promoting the precise connection between the supply and demand of forest
ecological boards, promoting the trading of forest ecological resources rights and interests,
and improving the protection level of forest ecological resources.

This study is a useful attempt to evaluate the value transformation of forest ecological
products in large-scale urban agglomerations, and there is still room for optimization.
Restricted by existing data, forestry output can be further refined, and the indirect economic
benefits could be included. At the same time, the cost of ecological damage caused by
forestry economic development could also be taken into consideration.

Author Contributions: Methodology, W.L.; Writing—original draft, J.W.; Writing—review & editing,
F.K. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the National Natural Science Foundation of China (Grant
No. 42071283) and Fundamental Research Funds for the Provincial Universities of Zhejiang, grant
number 22FR013.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Zhang, C.; Li, J.; Zhou, Z.; Sun, Y. Application of Ecosystem Service Flows Model in Water Security Assessment: A Case Study in
Weihe River Basin, China. Ecol. Indic. 2021, 120, 106974. [CrossRef]

2. Wang, Y.; Zhou, L. Assessment of the Coordination Ability of Sustainable Social-Ecological Systems Development Based on a Set
Pair Analysis: A Case Study in Yanchi County, China. Sustainability 2016, 8, 733. [CrossRef]

3. Carpenter, A.; Wagner, M. Environmental Justice in the Oil Refinery Industry: A Panel Analysis across United States Counties.
Ecol. Econ. 2019, 159, 101–109. [CrossRef]

4. da Silva, A.M.; Manfre, L.A.; Urban, R.C.; Silva, V.H.O.; Manzatto, M.P.; Norton, L.D. Organic Farm Does Not Improve Neither
Soil, or Water Quality in Rural Watersheds from Southeastern Brazil. Ecol. Indic. 2015, 48, 132–146. [CrossRef]

5. Kuriqi, A.; Pinheiro, A.N.; Sordo-Ward, A.; Garrote, L. Flow Regime Aspects in Determining Environmental Flows and
Maximising Energy Production at Run-of-River Hydropower Plants. Appl. Energy 2019, 256, 113980. [CrossRef]

6. Wang, L.; Su, K.; Jiang, X.; Zhou, X.; Yu, Z.; Chen, Z.; Wei, C.; Zhang, Y.; Liao, Z. Measuring Gross Ecosystem Product (GEP) in
Guangxi, China, from 2005 to 2020. Land 2022, 11, 1213. [CrossRef]

7. Fan, Y.; Fang, C.; Zhang, Q. Coupling Coordinated Development between Social Economy and Ecological Environment in Chinese
Provincial Capital Cities-Assessment and Policy Implications. J. Clean. Prod. 2019, 229, 289–298. [CrossRef]

8. Yang, Y.; Wang, L.; Yang, F.; Hu, N.; Liang, L. Evaluation of the Coordination between Eco-Environment and Socioeconomy under
the “Ecological County Strategy” in Western China: A Case Study of Meixian. Ecol. Indic. 2021, 125, 107585. [CrossRef]

9. Geall, S. Clear Waters and Green Mountains: Will Xi Jinping Take the Lead on Climate Change? Lowy Institute for International Policy:
Sydney, Australia, 2017.

10. Ehrlich, P.R.; Mooney, H.A. Extinction, Substitution, and Ecosystem Services. BioScience 1983, 33, 248–254. [CrossRef]
11. Wunder, S. Revisiting the Concept of Payments for Environmental Services. Ecol. Econ. 2015, 117, 234–243. [CrossRef]
12. Higgins, K.; Hutchinson, W.G.; Longo, A. Willingness-to-Pay for Eco-Labelled Forest Products in Northern Ireland: An Experi-

mental Auction Approach. J. Behav. Exp. Econ. 2020, 87, 101572. [CrossRef]
13. Costanza, R.; d’Arge, R.; De Groot, R.; Farber, S.; Grasso, M.; Hannon, B.; Limburg, K.; Naeem, S.; O’neill, R.V.; Paruelo, J. The

Value of the World’s Ecosystem Services and Natural Capital. Nature 1997, 387, 253–260. [CrossRef]
14. Costanza, R.; De Groot, R.; Sutton, P.; Van der Ploeg, S.; Anderson, S.J.; Kubiszewski, I.; Farber, S.; Turner, R.K. Changes in the

Global Value of Ecosystem Services. Glob. Environ. Change 2014, 26, 152–158. [CrossRef]
15. Ma, G.; Wang, J.; Yu, F.; Yang, W.; Ning, J.; Peng, F.; Zhou, X.; Zhou, Y.; Cao, D. Framework Construction and Application of

China’s Gross Economic-Ecological Product Accounting. J. Environ. Manag. 2020, 264, 109852. [CrossRef] [PubMed]

229



Land 2023, 12, 1803

16. Łaszkiewicz, E.; Czembrowski, P.; Kronenberg, J. Can Proximity to Urban Green Spaces Be Considered a Luxury? Classifying a
Non-Tradable Good with the Use of Hedonic Pricing Method. Ecol. Econ. 2019, 161, 237–247. [CrossRef]

17. Polasky, S.; Kling, C.L.; Levin, S.A.; Carpenter, S.R.; Daily, G.C.; Ehrlich, P.R.; Heal, G.M.; Lubchenco, J. Role of Economics in
Analyzing the Environment and Sustainable Development. Proc. Natl. Acad. Sci. USA 2019, 116, 5233–5238. [CrossRef]

18. Liu, Y.; Zhu, J.; Li, E.Y.; Meng, Z.; Song, Y. Environmental Regulation, Green Technological Innovation, and Eco-Efficiency: The
Case of Yangtze River Economic Belt in China. Technol. Forecast. Soc. Change 2020, 155, 119993. [CrossRef]

19. Liu, M.; Li, W. Calculation of Equivalence Factor Used in Ecological Footprint for China and Its Provinces Based on Net Primary
Production. J. Ecol. Rural Environ. 2010, 26, 401–406.

20. Jia, Y.; Liu, Y.; Zhang, S. Evaluation of Agricultural Ecosystem Service Value in Arid and Semiarid Regions of Northwest China
Based on the Equivalent Factor Method. Environ. Process. 2021, 8, 713–727. [CrossRef]

21. Barbier, E.B.; Baumgärtner, S.; Chopra, K.; Costello, C.; Duraiappah, A.; Hassan, R.; Kinzig, A.; Lehman, M.; Pascual, U.; Polasky,
S. The Valuation of Ecosystem Services. In Biodiversity, Ecosystem Functioning, and Human Wellbeing: An Ecological and Economic
Perspective; Oxford University Press: Oxford, UK, 2009; Volume 10.

22. Wong, C.P.; Jiang, B.; Kinzig, A.P.; Lee, K.N.; Ouyang, Z. Linking Ecosystem Characteristics to Final Ecosystem Services for Public
Policy. Ecol. Lett. 2015, 18, 108–118. [CrossRef] [PubMed]

23. Hao, F.; Lai, X.; Ouyang, W.; Xu, Y.; Wei, X.; Song, K. Effects of Land Use Changes on the Ecosystem Service Values of a
Reclamation Farm in Northeast China. Environ. Manag. 2012, 50, 888–899. [CrossRef]

24. Viglizzo, E.F.; Paruelo, J.M.; Laterra, P.; Jobbágy, E.G. Ecosystem Service Evaluation to Support Land-Use Policy. Agric. Ecosyst.
Environ. 2012, 154, 78–84. [CrossRef]

25. Hao, C.; Wu, S.; Zhang, W.; Chen, Y.; Ren, Y.; Chen, X.; Wang, H.; Zhang, L. A Critical Review of Gross Ecosystem Product
Accounting in China: Status Quo, Problems and Future Directions. J. Environ. Manag. 2022, 322, 115995. [CrossRef]

26. Merlo, M.; Briales, E.R. Public Goods and Externalities Linked to Mediterranean Forests: Economic Nature and Policy. Land Use
Policy 2000, 17, 197–208. [CrossRef]
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Abstract: Domestic regional synergistic emission reduction is important in achieving national climate
goals. This study constructed a game theory-based model for regional synergistic emission reduction,
modified the Basic Climate Game using the exact-hat algebra method, and expanded the game
model using a general spatial equilibrium model to incorporate cross-regional economic impacts
generated by emission reduction actions through factors and product flows. The formation of regional
comparative advantages in emission reductions and their impact on synergistic emission reductions
were revealed through regional characteristics such as emission elasticity, sectoral structure, regional
trade shares, and green total factor productivity. A form of synergy was then proposed that utilizes
the comparative advantages of different regions, allowing for synergistic emission reductions across
different income regions and engagement with regions that are still at the carbon-peaking stage in
cooperation. Moreover, the model was created to be as close to the economic reality as possible to
provide a trade, industry, and economic growth policy that complements emission-reduction policies.

Keywords: regional synergy; carbon neutrality; comparative advantage; emission reduction; regional
economic growth; regional trade; scenario analysis

1. Introduction

Domestic regional synergy is an effective mechanism for achieving national emission
reduction goals (in this paper, “emissions” specifically refers to CO2 emissions) [1]. An
imbalance between regional economic development and emission characteristics leads to
varying tradeoffs between mitigating climate change and promoting economic growth in
different regions [2]. This requires a reasonable emission reduction path and policy design
to avoid economic development constraints resulting from achieving climate goals [3].
Thus, to achieve national emission reduction goals, the interests of different regions must
be coordinated, and appropriate regional cooperation paths must be identified to achieve
the dual goals of economic growth and emission reduction [4]. Regions with different
levels of economic development and resource endowments should have different timelines
for achieving climate goals. Leveraging the unique advantages of each region based on
their development for regional synergistic emission reduction is necessary. The formation
of these unique advantages does not solely depend on geographical proximity but also on
the economic interdependence between regions, including factors such as technological
level [5], industrial structures [6], carbon emission characteristics, and regional trade
relationships [7]. These factors cannot be ignored in regional synergistic emission reduction.

Similar to international cooperation on climate change, regional synergy within a
country to reduce emissions faces issues of public good attributes of climate change and
trade-offs between emission reduction benefits and costs. In national climate governance,
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local government actions determine the achievement of climate change targets [8]. Due
to the short-term economic losses caused by climate policies [9], non-exclusivity of emis-
sion reduction benefits, and emission reduction costs borne by regions, free-riding is
widespread in climate change, creating resistance to unilateral emission reduction actions
by regions [10]. Climate change is an environmental and developmental problem and
different stages of regional development result in different emission reduction costs. In-
dependent emission-reduction actions lead to higher emission reduction costs for regions
with lower emission-reduction potential. Therefore, regional synergy is required to reduce
overall emission reduction costs [11]. Cooperation not only achieves emission reduction
goals but also generates economic benefits, mainly reflected in the promotion of economic
growth. Some studies have quantified the environmental benefits and gross domestic prod-
uct (GDP) impacts of cooperative actions in the Paris Agreement [12,13]. In this process,
regional spillover effects caused by trade cannot be ignored [14]. Under the flow of factors
and products between regions, emission reduction costs, and economic losses and benefits
caused by emission reduction constitute a comparative advantage of emission reduction
in regions. Policies aimed at regional trade should be the primary method of promoting
regional climate cooperation [15–17].

Regional synergistic emission reduction in a country exhibits unique characteristics
that differ from those of international climate cooperation, as the actions of different
regions can be managed by the national government [18], which faces less resistance than
international cooperation. Furthermore, under a tighter flow of factors and products,
regional cooperation on carbon reduction is more vulnerable to the influence of inter-
regional trade. The current resource mismatch in regional factors and product markets
limits the achievement of climate goals in some countries [19]. Therefore, regional synergy
is needed to optimize the flow of factors and products among regions and promote emission
reduction. Local governments are concerned with short-term economic growth and tend
to develop high-carbon emission sectors with high output values [20]. Therefore, regional
synergistic emission reduction needs to consider the differentiated climate goal realization
paths and coordinate policies, industries, technologies, energy, and ecology among regions.

Game theory and its modeling methods could explain regional cooperation issues
related to climate change [21,22]. DeCanio and Fremstad [23] analyzed 25 basic game
theory models for climate cooperation and provided a theoretical foundation for analyzing
regional cooperation issues related to climate change. Subsequent research has extended the
formalism of models, including incorporating irreversible environmental degradation into
participant payoffs [24], using N-player bargaining games based on learning dynamics to
test international climate agreements [25], adding climate disaster risk to bargaining games
to analyze the possibility of cooperation [26], constructing game models with foresight
alliances [27], allowing multi-round negotiations and using dynamic games to explain the
formation of large coalitions [28], proposing a dynamic differential game to model the
transboundary pollution control between two asymmetric regions [29], and incorporating
international leadership, domestic energy security, domestic economy, and domestic en-
vironment in games to explain participants’ strategic choices [30]. Although these model
forms are diverse, the core problem is the trade-off between regional development and
emission reduction. The most intuitive model is the Basic Climate Game, which defines the
payoffs of regions in climate cooperation as the benefits and harms of carbon emissions [31].
Although these game models provide a refined description of the theoretical mechanism
of regional climate cooperation, their strict assumptions limit their explanatory power,
whereas overly simple models are unable to provide useful policy recommendations [32].
In particular, when analyzing synergistic emission reduction among various regions within
a country, cross-regional flows of goods and factors must be considered. Some studies
have introduced trade models and new economic geography theories into game models to
examine the relationships between carbon tariffs, trade barriers, and climate cooperation
alliances [33–35]. These studies simulate and analyze cooperative behavior using assumed
parameters, which cannot provide accurate characterizations of cooperative behavior based
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on real data; however, they provide support for studying regional synergistic emission
reduction from a trade perspective.

This study aimed to make several contributions to existing research. First, current
theories on climate change cooperation mainly analyze cooperative emission reduction
behaviors between countries, whereas research on regional synergistic emission reduction
under the guidance and coordination of the state is scarce. Regional synergistic emission
reduction should consider the process of achieving climate goals through regionally graded
and orderly measures. This requires a new explanation of the relationship between the
local and global optima in regional synergistic emission reduction. This study constructed
a game model for regional synergistic emission reduction and used the exact-hat algebra
method to construct the payoff function of game subjects. This method appropriately
described the changes in emissions and their growth rates while achieving climate change
targets and explained the differences in emission reduction actions between regions in
different stages of development.

Second, although some studies on regional climate cooperation have considered trade
issues, considerations of cross-regional economic impacts of factors and product flows of
regional emission reduction are scarce. This study drew on the payoff function construction
method of the Basic Climate Game proposed by Molina et al. [31] and used changes
in economic growth and damage caused by emission reduction to characterize regional
payoffs. The general spatial equilibrium model was incorporated into the game model to
analyze the changes in regional economic growth caused by emission reduction, reveal the
formation of regional comparative advantages in emission reduction, and investigate the
impact of these advantages on regional synergistic emission reduction.

Third, achieving regional synergy requires the formation of multifaceted policy efforts;
however, current simplified game models do not effectively support policy combinations.
The general spatial equilibrium model is an extension of that used by Caliendo et al. [36],
which uses conclusions derived from data on carbon emission elasticity [37,38], sec-
toral structures, trade shares, trade costs, and green total factor productivity (TFP) to
support policies.

This study aimed to answer the following questions:

(1) What type of regional synergistic emission reduction meets the phased climate-change
mitigation targets for different regions within a country?

(2) Considering the cross-regional impacts of emission reduction actions caused by re-
gional economic interdependence, how can the comparative advantages of emission
reduction among regions be utilized to achieve effective regional synergistic emission
reduction while maintaining economic growth?

(3) What factors influence the formation of comparative advantages in emission reduction
among regions? What insights do these factors provide for policies that promote
synergistic regional emission reduction?

2. Model Construction

2.1. Assumptions of the Regional Synergistic Emission Reduction Game Model
2.1.1. Strategy and Payoff

Based on the Basic Climate Game, a regional synergistic emission reduction game
model was constructed, and trade relations between regions were incorporated as factors
affecting regional strategy based on a general spatial equilibrium model. Assuming that
there are N regions, as is common in regional cooperative game models, the focus is on
the strategy between two regions, denoted as Regions 1 and 2. The emission level of each
region is denoted as en, and negative net emissions are allowed for each region (e.g., carbon
capture from the atmosphere) [39].

Each region’s strategy is a Synergistic Action (SA) or Unilateral Action (UA).
Molina et al. [31] found that the difference in payoffs for different strategies depended
on regional emissions. The Basic Climate Game sets the total payoff for region n as
Gn(en)− Dn(e), where Gn(en) and Dn(e) represent the benefits and damages of emissions,
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respectively. The benefits of emissions for a region come primarily from economic growth
driven by emissions, which is a function of regional emissions, en. However, the damage
of regional emissions is a function of the total emissions, e, which represents the damages
caused by climate change resulting from total emissions. This study improved this as-
sumption by introducing the exact-hat algebra method, which expresses changes in x after
an economic and environmental change as x̂ = x′/x, where x′ denotes the new value of
x after the change. We assumed that the regional payoff function, denoted as Πn, is the
difference between the changes in GDP and damages caused by emissions. In other words,
when a region chooses a strategy, it focuses on the impact of emission-reduction actions on
economic growth and the reduction in damage caused by emissions. The payoff function is
expressed as:

Πn = Ĝn − D̂n (1)

Improving the model using the exact-hat algebra method has four advantages. First, it
can better reflect the actual emission reduction behavior of regions in response to climate
change. The variable ê can describe changes in the growth rate and quantity of emissions
and accurately represent the stage of regional emission reduction. The goals of emission
reduction in the second half of this century under the Paris Agreement for all countries
are a long-term process that considers a decrease in total emissions and emission growth
rate; a typical case is China’s carbon peaking and carbon-neutral targets. Second, this
method can eliminate the numerical differences between Gn and Dn and effectively reflect
the tradeoff between economic growth and climate change mitigation in a region. The
calculation methods and units of measurement for Gn and Dn differ. A large difference
between the two can cause an excessive emphasis or underestimation of their impact.
Third, this method is more appropriate for GDP change caused by emission changes in the
general spatial equilibrium model, highlighting the role of key variables more accurately by
simplifying the model. Fourth, considering only the change in damage caused by emissions,
D̂n, it ensures a more concise model analysis, relaxing the research assumptions regarding
damage caused by emissions. Calculating damage caused by emissions is complex. General
damage includes negative economic effects represented by GDP loss and the loss of the
ecological environment and social welfare.

2.1.2. Comparative Advantage in Regional Synergistic Emission Reduction

The overall change in emissions in the two regions is expressed as ê1+2 = (e1/e)ê1 +
(e2/e)ê2. The relationships between regional and aggregate emissions indicate that, in
the process of achieving the overall goal of reducing emissions or decelerating emissions
growth, regional emissions and trends may be in different stages. Therefore, allowing for
regional differences in emission reduction efforts is key to achieving overall climate change
targets through regional synergy.

We assume that when two regions achieve synergy in mitigating climate change,
changes in total emission reduction, denoted as (ê1+2), are lower than the emission reduction
resulting from each region acting unilaterally. This can be divided into two scenarios. If ê1+2
decreases, ê1 and ê2 may both decrease (Scenario 1), or ê1 may decrease while ê2 increase
(Scenario 2). Scenario 1 is the basic form of regional cooperation for emission reduction in
previous studies, where Regions 1 and 2 are required to reduce ên in synergy. Conversely,
Scenario 2 considers the comparative advantage of regional synergistic emission reduction.
In regional synergistic emission reduction, if Region 2 does not have an absolute advantage
in emission reduction over Region 1, increasing ê2 in Region 2 provides both regions better
overall payoffs than decreasing ê2. This increase in total payoffs is due to the higher overall
economic growth in both regions, caused by the increase in ê2, including regional economic
growth and cross-regional economic impact through trade. Furthermore, a decrease in ê1
in Region 1 reduces damage caused by emissions more than an increase in ê1, providing
both regions with better overall payoffs.
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2.2. Impact of Emission Reduction on Economic Growth in Payoff
2.2.1. Emissions and Economic Growth in General Spatial Equilibrium Models

According to the Environmental Kuznets Curve [40], an inverted U-shaped relation-
ship between emissions and economic growth determines the complexity of connections
with government payoff. Changes in emissions and economic growth depend on the level
of economic development in the region. However, the flow of factors and products between
regions creates regional spillover effects on the impact of emission changes on economic
growth. A general spatial equilibrium model is an effective method to address this issue.

Following the methods proposed by Duan et al. [37] and Shapiro and Walker [38]
to incorporate emissions into a trade equilibrium model, the government controls the
emissions of sector j in region n, denoted as ej

n, through emission reduction policies,
denoted as tn (including environmental taxes and emission penalties), where en = ∑J

j=1 ej
n.

Changes in regional emissions, denoted as ên, are determined by changes in the intensity of
environmental regulations, denoted as t̂n, where an increase in t̂n represents an increase
in the level of emission reduction efforts, resulting in a decrease in emissions. Changes
in the intensity of regional environmental regulations may affect the economic growth of
another region due to regional trade. This further specifies government action compared
with the Basic Climate Game, making it more realistic. Let α

j
n be the emission elasticity.

The relationship between emissions and environmental regulation is given by

ej
n =

α
j
n

tn
Yj

n (2)

In contrast to general equilibrium models in international trade, examining regional
economic relations in a country requires consideration of labor mobility and transfer
payments. Caliendo et al. [36] made pioneering efforts in this field, and this study extended
their model.

2.2.2. Production of Intermediate Goods with Emissions as a Byproduct

Following the approach of Copeland and Taylor [41], we introduced emissions as a
byproduct of the production function of intermediate goods. The potential output function
is expressed as:

yj
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where the productivity level, zj
n, follows the Fréchet distribution, Tj

n is the fundamental
productivity, hj

n(·) and l j
n(·) denote the demand for land and labor, respectively, Mjk

n (·)
is the demand for final material inputs by firms in sector j from sector k, γjk

n ≥ 0 is the
share of sector j goods spent on materials from sector k, and γ

j
n ≥ 0 is the share of value

added to the gross output. We assume that the production function has constant returns to
scale, namely that γj

n + ∑J
j=1 γ

jk
n = 1. Based on potential output, a producer can allocate a

fraction ε
j
n of yj

n

(
zj

n

)
to emission-reduction activities to reduce payments. The remaining

1 − ε
j
n fraction is the net output. We denote the net production after abatement investment

using qj
n

(
zj

n

)
=

(
1 − ε

j
n

)
yj

n

(
zj

n

)
. We assume that the emissions are also affected by zj

n.
Advanced production technologies can improve resource utilization efficiency, leading to
positive externalities in emission reduction. Research on the technology list for China’s re-
sponse to climate change supports this assumption [42]. Under this assumption, emissions
from output at different technological levels differ. Let α

j
n denote the emission elasticity of
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sector j in region n. Then, the relationship between emissions and potential output can be
expressed as:

ej
n
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n

)
=
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1

zj
n

)(
1 − ε

j
n

) 1

α
j
n yj

n

(
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)
(4)

The net production of intermediate goods is obtained, where zj
n includes the technical

level of potential output zj
n

1−α
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and the technical level of emission reduction zj
n
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2.2.3. Prices of Final Goods, Trade Share, and Transfer Payment

We use xj
n to denote the cost of the input bundle needed to produce intermediate good

varieties. Let Bj
1,n =
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where κ
j
ni is the transport cost of intermediate goods. Let Bj

3 =

[
Γ
(

1 + 1−η
j
n

θ j

)] 1
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define Pj
n as the unit price of sectoral composite goods:
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Let π
j
ni denote the share of region n’s expenditure on sector j composite goods pur-

chased from region i.:

π
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We used Fj
n to denote the revenue from emission penalties or carbon taxes received

by region n from sector j through environmental regulations; that is, Fj
n = tnej

n. The total
environmental regulation revenue in region n is Fn = ∑J

j=1 Fj
n. The term χ represents

the return per person from the national portfolio of land and structures in all regions. In

particular, χ = ∑N
i=1 ιiri Hi

∑N
i=1 Li

. The income of an agent residing in region n is:

In = wn + χ + (1 − ιn)rnHn/Ln + Fn/Ln (9)

2.2.4. Changes in Regional GDP

In the constructed model, the impact of green TFP denoted as Aj
n, is reflected in

economic growth. Aj
n incorporates emission elasticity, which allows for the inclusion of

non-expected outputs, such as emissions, into the calculation, in contrast to TFP, which
only considers expected outputs. The green TFP of sector j in region n can be derived from
the equilibrium conditions, as follows:
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The GDP in a given region-sector pair is the difference between gross production and

expenditure on materials, wn Lj
n+rn Hj

n
Pi

n
. As, in equilibrium, Ln = (1−βn)rn Hn

βnwn
, GDP of sector

j in region n is: GDPj
n =

(
1

1−βn

)
wn Ln

Pj
n

. Based on the changes in the price level and green

TFP derived from the equilibrium condition, actual GDP changes in sector j in region n can
be expressed as:

̂GDP
j
n = Âj

n L̂j
n

(
ŵn

x̂j
n

)
(12)

Sectors are categorized according to their emission characteristics into carbon-intensive
sector j and low-emission sector k, and ψ

j
n and ψk

n are used to represent their respective
shares of GDP in the region. Thus, changes in regional GDP can be expressed as:

̂GDPn = ψ
j
n ̂GDP

j
n + ψk

n ̂GDP
k
n (13)

According to this model, local governments can influence economic growth and
emissions by changing the intensity of their environmental regulations, t̂n, and can affect
economic growth by changing Âj

n and κ̂
j
ni. This process is influenced by regional character-

istics, including emission characteristics, which are explained in the model using emission
elasticity, α

j
n, sectoral structure, which is explained in the model using the proportion of

sector j to the total GDP, ψ
j
n, and trade relationship between two regions, which is explained

in the model using the sector trade share between regions, π
j
ni.

2.3. Emission Damage in Payoff

As previously mentioned, the impact of global warming caused by climate change
on region n is not solely determined by its own emissions, en, but also by total emissions.
Therefore, damage from emissions is a function of the overall emissions. Considering
the complexity of factors and processes involved in the impact of climate change on a
region, this study did not aim to construct an exact function to explore these issues. Instead,
a simple model was used to elucidate the mechanism, and previous assumptions were
leveraged to simplify the analysis using the exact-hat algebra method. This analysis focused
on changes in damage caused by emissions rather than on precise emissions. We posited
that a linear relationship between damage caused by emissions and emissions would exist.
Thus, variation in damage caused by emissions was expressed as:

D̂n =
e1

e
ê1 +

e2

e
ê2 + · · ·+ en

e
ên (14)

2.4. Data
2.4.1. Numerical Settings of the Payoff Matrix

As with most game model studies, we set values to analyze different Nash equilibrium
outcomes. From the perspective of 2 × 2 static games, the model constructed in this
study corresponds to the 25 climate cooperation 2 × 2 games proposed by DeCanio and
Fremstad [23]. These games can be mainly classified as No-Conflict, Prisoner’s Dilemma,
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Coordination, Chicken, and Unhappy Games. In this study, the game form depended on
the numerical values of the payoff matrices. The payoff matrices for the game between
the two regions are shown in Table 1, where ΠA

n , ΠB
n , ΠC

n , and ΠD
n represent the regional

profits under the four strategy combinations.

Table 1. Payoff Matrix of the 2 × 2 game.

Region 2

Synergistic Action (SA) Unilateral Action (UA)

Region 1
Synergistic Action (SA) ΠA

1 , ΠA
2 ΠB

1 , ΠB
2

Unilateral Action (UA) ΠC
1 , ΠC

2 ΠD
1 , ΠD

2

To clarify the relationship between emissions and economic growth under different
strategies, this study used different payoff values, following the analysis method of com-
plete information static games. In this study, game payoffs were ordinal or cardinal. In the
studies by DeCanio and Fremstad [23] and Madani [32], ordinal numbers ranging from one
to four were used to represent the payoffs of agents in climate games, with the government
as a game participant ranking the sequential results. This approach is commonly used in
static games with perfect information. Using ordinal values as payoffs in climate change
games avoids the comparison of utilities between regions with significantly different in-
come levels, thereby overcoming the shortcomings of traditional cost-benefit analyses.
Therefore, we set the payoff values under different strategies to 0.01, 0.02, 0.03, and 0.04.
This was consistent with the calculated values of our model, which effectively explained
the economic meaning implied in the data, namely, the difference between changes in
GDP and damages, both caused by emissions. Furthermore, this setting was similar to
ordinal results, representing the utilities of local governments at four levels under different
strategies and making the game results more intuitive. Based on these settings, values for
emissions, damage caused by emissions, and economic growth were assigned. Although
this value setting is only one of many results, it is consistent in interpreting the relationship
between different strategies, emissions, and economic growth in models.

For both regions, the numerical settings of emission changes were provided according
to the two scenarios assumed above. As shown in Table 2, in Scenario 1, ên = 0.8 if the
region chose the SA strategy, and ên = 1 if the region chose the UA strategy. Regional
synergy in Scenario 1 indicated that both players increased their emission reduction efforts
to minimize the overall emissions of both regions. In Scenario 2, ê1 = 0.7 and ê2 = 1.1 if
both regions chose the SA strategy, ê1 = 0.9 and ê2 = 1 if Region 1 chose SA and Region 2
chose UA, and ê1 = 1 and ê2 = 1.1 if Region 1 chose UA and Region 2 chose SA. The form
of regional synergistic emission reduction in Scenario 2 indicated that some regions could
increase their emissions appropriately when synergistic, considering the overall decrease
in the emissions increase in both regions. According to the model, if changes in emissions
are determined, changes in damage caused by emissions can be obtained. If ê1+2 = 0.8,
D̂n = 0.96; if ê1+2 = 0.9, D̂n = 0.97; if ê1+2 = 0.95, D̂n = 0.98; if ê1+2 = 1, D̂n = 0.99.
The reason for this setting is that while Regions 1 and 2 did not change their emissions,
emission reduction actions in other regions reduced total emissions; if ê1+2 = 1.05, D̂n = 1.
Thus, the difference in the payoff matrix is mainly determined by the difference in changes
in GDP due to abatement actions.
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Table 2. Nash equilibrium, emissions, and economic growth of synergistic emission reduction.

Type of Game No-Conflict Game
Prisoner’s

Dilemma Game
Coordination

Game
Chicken Game Unhappy Game

Nash Equilibrium (SA, SA) (UA, UA)
(SA, SA) and

(UA, UA)
(SA, UA) and

(UA, SA)
(SA, UA)

Region 1 2 1 2 1 2 1 2 1 2

Payoff

ΠA
n 0.04 0.04 0.03 0.03 0.04 0.04 0.03 0.03 0.03 0.03

ΠB
n 0.02 0.03 0.01 0.04 0.01 0.03 0.02 0.04 0.02 0.04

ΠC
n 0.03 0.02 0.04 0.01 0.03 0.01 0.04 0.02 0.04 0.01

ΠD
n 0.01 0.01 0.02 0.02 0.02 0.02 0.01 0.01 0.01 0.02

Scenario 1

ên 0.8 0.8 1 1 0.8
(1)

0.8
(1)

0.8
(1)

1
(0.8) 0.8 1

ê1+2 0.8 1 0.8
(1) 0.9 0.9

D̂n 0.96 0.99 0.96
(0.99) 0.97 0.97

Ĝn 1 1 1 1 1
(1.01)

1
(1.01)

0.99
(1.01)

1.01
(0.99) 0.99 1.01

Ĝ1+2 1 1 1
(1.01)

1
(1) 1

Scenario 2

ên 0.7 1.1 1 1 0.7
(1)

1.1
(1)

0.9
(1)

1
(1.1) 0.9 1

ê1+2 0.9 1 0.9
(1)

0.95
(1.05) 0.95

D̂n 0.97 0.99 0.97
(0.99)

0.98
(1) 0.98

Ĝn 1.01 1.01 1.01 1.01 1.01 1.01 1
(1.04)

1.02
(1.02) 1 1.02

Ĝ1+2 1.01 1.01 1.01 1.01
(1.03) 1.01

2.4.2. Parameter Settings

As the design of the regional economic growth part of the model in this study is based
on a general spatial equilibrium model, realistic data can be used for the analysis. To obtain
more general findings, we use a range of key parameters and values from existing studies,
including trade elasticity [43] and emissions elasticity [37]. The object of our analysis is
still assumed to be the two general regions, 1 and 2, and all other regions are grouped
into Region 3. We establish a set of parameters based on the current state of the economy
as a baseline, where θ j = θk = 4, α

j
n = 0.6, αk

n = 0, π
j
11 = π

j
12 = π

j
21 = π

j
21 = 0.3,

π
j
13 = π

j
23 = 0.4, γ

jk
n = γ

jj
n = γkk

n = 0.1, γ
kj
n = 0.4, γj

n = 0.6, ψ
j
n = 0.5, and βn = 0.17.

In this baseline, we take two values for each parameter to compare the results and thus
analyze the impact of each factor on the comparative advantage of emission reduction. The
specific settings are given in the later analysis.

3. Results

3.1. Nash Equilibrium of Regional Synergistic Emission Reduction
3.1.1. Equilibrium Results in the Basic Synergistic Form

The results of the game analysis are presented in Table 2 (a more detailed analysis
of the process and results can be found in Appendix A). Changes in the GDP caused by
abatement actions determine regional strategies, resulting in different Nash equilibrium
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outcomes. In Scenario 1, for the No-Conflict Game, when the changes in GDP of the two
regions are less affected by the abatement action (Ĝ1 = Ĝ2 = 1, ê1 = ê2 = 0.8), unilateral
actions of the free-riding regions do not cause an increase in their own GDP but generate a
loss of economic growth for regions that choose SA (Ĝ1 = 0.99, Ĝ2 = 1, ê1 = 0.8, ê2 = 1).
There was no significant boost to economic growth when both sides maintained their
existing emission reduction plans (Ĝ1 = Ĝ2 = 1, ê1 = ê2 = 1), and rational players settled
on the (SA, SA) strategy pair in Nash equilibrium.

When the payoff of free-riding is greater than the payoff of synergistic emission
reduction (ΠC

1 = 0.04 > 0.03 = ΠA
1 and ΠB

2 = 0.04 > 0.03 = ΠA
2 ), and benefiting from the

overall reduction in emissions from global mitigation actions, two regions taking unilateral
action can achieve a decrease in changes in damage from emissions (D̂1 = D̂2 = 0.98). In
other words, both regions can benefit from the overall reduction in emissions by choosing
the UA strategy (ΠD

1 = ΠD
2 = 0.02), even if this payoff is smaller than the payoff from

the synergistic emission reduction (ΠA
1 = ΠA

2 = 0.03). In this case, the game falls into a
prisoner’s dilemma.

Unlike the prisoner’s dilemma, although there is an equilibrium outcome (UA, UA) in
the Coordination Game, there is also a Pareto-optimal equilibrium for the (SA, SA) strategy
pair; that is, when both regions reach a synergistic emission reduction, they gain the highest
payoff. When one region chooses SA and the other chooses UA in the Coordination Game,
the region loses economic growth to reduce emissions (Ĝn = 0.98) and fails to benefit
from the other region’s lenient environmental policy. At this point, this region has the
lowest payoff (ΠB

n = 0.01); therefore, this game reflects the nature of collective action in
both regions.

In addition, when either player in the game is able to achieve a greater increase in
economic growth by free-riding (Ĝn = 1.01) and gaining the highest payoff, a Chicken or
Unhappy Game is formed, and it is difficult for the two regions to reach an equilibrium
result of synergistic emission reduction.

In summary, the mitigation actions of the two regions impact each other’s economic
growth, and the extent to which the two regions can achieve synergistic emission re-
duction depends on the changes in economic growth resulting from emission reduction.
Achieving the regional synergistic emission reduction described in Scenario 1 requires
both parties to achieve higher economic growth under strict environmental policies while
reducing emissions. It is important to avoid high economic growth in a region through
free-rider behavior.

3.1.2. Equilibrium Results Considering the Comparative Advantage of Emission Reduction

Unlike Scenario 1, Scenario 2 describes two regions that exploit their respective com-
parative advantages to reduce emissions. For Region 2, increasing ê2 rather than decreasing
ê2 allows for more overall economic growth in both regions. For Region 1, decreasing ê1
compared to increasing ê1 can reduce the damage from emissions by significantly reducing
emissions and does not result in a greater loss of economic growth. Consequently, both
regions reap greater overall payoffs.

In Scenario 2, the synergistic emission reduction in the two regions allows one region
to increase emissions in the short term. This means that the (SA, SA) Nash equilibrium
strategy pair in Scenario 2 is easier to achieve than in Scenario 1, and both players in the
game are more likely to form regional synergistic emission reduction. It is easier to form
No-Conflict and Coordination Games. When a region has a comparative advantage in
emission reduction, the implementation of strict emission reduction policies can still lead
to economic growth (Ĝ1 = 1.01). Even if another region increases some of its emissions,
it is an effective synergistic emission reduction as long as the overall emission change
of both regions (ê1+2) decreases. This means that the conditions for achieving regional
synergistic emission reduction have been relaxed, allowing regions that are still in the
process of reaching their carbon peaks to participate. However, other payoff matrices in
Scenario 2 that cannot achieve the (SA, SA) Nash equilibrium strategy pair are less likely to
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occur in reality than in Scenario 1. To achieve Prisoner’s Dilemma, Chicken, and Unhappy
Games, regions that do not have a comparative advantage in reducing emissions must
achieve higher economic growth (Ĝ2 = 1 when ê2 = 1.1, Ĝ2 = 1.02 when ê2 = 1), which
is challenging.

Different comparative advantages of emission reduction between two regions form a
differentiated pattern of regional emissions and economic growth. The Nash equilibrium
that achieves regional synergistic emission reduction has the lowest overall emissions of the
two regions (ê1+2 = 0.8) compared to the other equilibrium strategy pairs, enabling faster
achievement of the carbon neutrality target while maintaining economic growth. However,
Scenario 1 has better reduction results than Scenario 2 (0.8 < 0.9), whereas the economic
growth of the two regions under Scenario 2 is better than that of Scenario 1 (1.01 > 1).
Although reducing emissions as quickly as possible is an important pathway to achieving
carbon-neutrality goals, for some regions, the pursuit of faster emission reduction comes at
a higher cost in terms of lost economic growth. Therefore, regional synergistic emission
reduction requires a trade-off between economic growth and emission reduction and the
pursuit of a global optimum rather than a local optimum.

3.2. Factors Influencing the Comparative Advantage of Emission Reduction in Regional Synergy

The game analysis demonstrated that effective regional synergy relies on the ability of
a region to form a comparative advantage in emission reduction, mainly in terms of the
impact of different emission reduction actions on local and other regions’ economic growth.
This avoids a sharp decline in economic growth when implementing strict environmental
regulations and exchanges a lower increase in emissions for faster economic growth in
both regions. Therefore, we analyzed the effects of various factors on the formation of
a comparative advantage in emission reduction, including the regional characteristics
determined by the emission elasticity, α

j
1, the GDP of sector j in region n as a share of the

total regional GDP, ψ
j
n, and the trade share, π

j
ni. Local governments increase economic

growth by changing green TFP, Âj
n, and trade costs, κ̂

j
ni, and reduce the recession in

economic growth from changes in the intensity of environmental regulations, t̂n.

3.2.1. Emission Elasticities

First, in carbon-intensive sectors, low emission elasticities attenuate the impact of
changes in the intensity of environmental regulations on economic growth, whereas high
emission elasticities amplify the loss of economic growth from abatement. In Figure 1a,
the horizontal axis represents the change in the intensity of environmental regulations in
Region 1, t̂1, which indicates regional efforts to mitigate climate change. The vertical axis
represents the GDP change in Region 1, ̂GDP1. According to Duan et al. [37], who estimated
the emission elasticity of sectors in major countries, most of the values of α

j
n range from

0.01 to 0.11. When α
j
1 = 0.01, an increase in t̂1 causes a smaller decrease in ̂GDP1, whereas

when α
j
1 = 0.11, an increase in t̂1 causes a larger decrease in ̂GDP1. This is because high

emission elasticity means that manufacturers in carbon-intensive sectors produce more
emissions as by-products when producing intermediate products, which entails higher
production costs and results in higher prices for products in carbon-intensive sectors.

Second, when sectors in a region have higher emission elasticity values, the impact of
emission reduction actions on economic growth spills over to other regions. As shown in
Figure 1b, when α

j
1 = 0.01, the curves of t̂1 and ̂GDP2 are close to horizontal, which means

that changes in the intensity of environmental regulations in Region 1 have little effect on
the changes in GDP in Region 2. In contrast, when α

j
1 = 0.11, an increase in t̂1 causes a

decrease in ̂GDP2, which means that the implementation of more stringent environmental
regulations in Region 1 causes a loss of economic growth in Region 2. This is because under
the trade linkage of carbon-intensive products between the two regions, Region 2 faces the
same product price increase owing to strict environmental regulations when purchasing
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products from Region 1’s carbon-intensive sectors. In addition, as shown in Figure 1c,
the value of the emission elasticity of another region had little effect on the relationship
between t̂1 and ̂GDP1 in this region.

Figure 1. Relationship between t̂n and ̂GDPn under different α
j
n. (a) Relationship between t̂1 and

̂GDP1 under different α
j
1; (b) Relationship between t̂1 and ̂GDP2 under different α

j
1; (c) Relationship

between t̂1 and ̂GDP1 under different α
j
2.

Third, the value of the emission elasticity portrays the emission characteristics of the
sector. When the emission elasticity tends to zero, carbon-intensive sectors gradually trans-
form into low-emission sectors, generating fewer emissions during production. Therefore,
the emission elasticity of carbon-intensive sectors is reduced by upgrading technology to
decrease the share of byproducts produced effectively in intermediate goods to achieve
economic growth under emission reduction constraints.

3.2.2. Sectoral Structures

First, the sectoral structure of a region determines the extent to which changes in
environmental regulations affect its economic growth. When a region’s sectors are predomi-
nantly carbon intensive, enhanced efforts to reduce emissions through strict environmental
regulations can lead to a significant decline in economic growth in the region. As shown in
Figure 2a, when the share of carbon-intensive sectors in the region is ψ

j
1 = 0.7, t̂1 increases,

causing a larger decrease in ̂GDP1, whereas when ψ
j
1 = 0.3, t̂1 increases, causing a smaller

decrease in ̂GDP1. Regions with a low-emission sectoral structure will not bear a dispro-
portionate economic loss from significant emission reduction compared to regions with
carbon-intensive sectors as their mainstay.

Figure 2. Relationship between t̂n and ̂GDPn under different ψ
j
n. (a) Relationship between t̂1 and

̂GDP1 under different ψ
j
1; (b) Relationship between t̂1 and ̂GDP2 under different ψ

j
2.

Second, regions with low-emission sectoral structures are more vulnerable to changes
in the strength of environmental regulations in other regions. As shown in Figure 2b,
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comparing the values of different ψ
j
2, when ψ

j
2 = 0.3, an increase in t̂1 causes a greater

decrease in ̂GDP2. This suggests that when the sectoral structure of Region 2 has a low share
of carbon-intensive sectors, its economy is more vulnerable to the cross-regional impacts
of the environmental regulations in Region 1. This is because Region 2 has fewer carbon-
intensive sectors, and its demand for carbon-intensive products is more likely to be met by
the supply from Region 1. When Region 1 enforces strict environmental regulations, it raises
the price of the products produced by its carbon-intensive sectors, which in turn increases
the cost of production in Region 2. A specific example is the inter-regional transmission
of electricity, where increased environmental regulations in the power-exporting location
increase the cost of electricity production, raising the price of purchased electricity in the
power-importing location and further increasing the production costs of other industries in
the power-importing location, thereby affecting economic growth.

3.2.3. Trade Shares

First, when regional demand for carbon-intensive intermediate goods is mainly sup-
plied by other regions, changes in the intensity of environmental regulation in the region
have less impact on its economic growth. Conversely, when a region purchases a higher
share of carbon-intensive intermediate goods from local sources, changes in the intensity of
environmental regulations in that region are greater for economic growth.

Figure 3a shows two extreme cases of the trade share of the carbon-intensive sector
j. π

j
11 = 0 means that all the products of sector j required in the region come from other

regions, at which time the increase in t̂1 causes a smaller decrease in ̂GDP1. Moreover,
π

j
11 = 1 means that all the products of sector j required by the region come from itself, and

the increase in t̂1 causes a larger decrease in ̂GDP1. This is because strict environmental
regulations increase the price of intermediate products by increasing the production cost
of sector j. In the absence of trade in sector j, the region can only buy local intermediate
products from sector j at higher prices, which slows economic growth. When the share
of intermediate goods purchased from other regions in sector j increases, the demand for
local high-priced intermediate goods in sector j gradually decreases and regional economic
growth is less affected by environmental regulations.

Figure 3. Relationship between t̂n and ̂GDPn under different π
j
ni. (a) Relationship between t̂1 and

̂GDP1 under different π
j
11; (b) Relationship between t̂1 and ̂GDP2 under different π

j
21; (c) Relationship

between t̂1 and ̂GDP2 under different πk
21.

Second, the cross-regional spillover effects of environmental regulations on economic
growth are constrained by trade share. If strong trade links exist between the two regions in
carbon-intensive intermediate goods, changes in the intensity of environmental regulations
in one region may have a larger impact on economic growth in the other. As shown in
the two extreme cases in Figure 3b, π

j
21 = 0 indicates that the share of products in sector

j purchased by Region 2 from Region 1 is 0. t̂1 has almost no effect on ̂GDP2 in this
case. When π

j
21 = 1, all the intermediate goods of sector j are purchased by Region 2
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from Region 1; at this time, the strengthening of environmental regulations in Region 1
leads to the loss of economic growth in Region 2. In addition, the cross-regional spillover
effects of environmental regulations on economic growth are closely related to the emission
characteristics of the sectors, as shown in Figure 3c. Changes in the trade shares of the
low-carbon sectors in the two regions do not significantly alter the cross-regional economic
impact of environmental regulation.

3.2.4. Green Total Factor Productivity

First, an increase in green TFP in carbon-intensive sectors can reduce the negative
impact of climate-change mitigation measures on economic growth. As shown in Figure 4a,
t̂1 = 1.5 and t̂1 = 0.5 represents the increase and decrease, respectively, in environmental
regulations to control the growth of emissions by regional agents. Changes in the intensity
of local governments’ efforts to control emissions affect the relationship between green TFP
and economic growth in carbon-intensive sectors. Achieving the same level of economic
growth under strict environmental regulations requires a higher green TFP in carbon-
intensive sectors. Although stronger environmental regulations reduce economic growth,
̂GDPn is greater than 1 when Âj

n is higher, which maintains a positive change in GDP.

Figure 4. Relationship between Âj
n and ̂GDPn under different t̂n. (a) Relationship between Âj

1 and
̂GDP1; (b) Relationship between Âj

2 and ̂GDP1; (c) Relationship between Âj
1 and ̂GDP2.

Second, the mitigating effect of increased green TFP on the negative impacts of envi-
ronmental regulations has a regional spillover effect. As shown in Figure 4b, changes in
the green TFP Âj

1 and GDP ̂GDP1 of Region 1 are positively correlated. A higher level of
green TFP gains in carbon-intensive sector j leads to a higher level of economic growth.
Furthermore, under exact-hat algebra assumptions, the numerical magnitude relationship
between the variable and 1 determines the direction of change in the variable. If t1 is
constant, Âj

1 > 1 (or Âj
1 < 1) indicates that an increase (decrease) in green TFP leads to an

increase (decrease) in GDP. As can be seen from (b) and (c) in Figure 4, an increase in Âj
n

positively affects changes in GDP in the other region, ̂GDPi.

3.2.5. Trade Costs

Reducing the cost of trade in carbon-intensive sectors may lead to the relocation of
carbon-intensive industries between regions, thereby affecting regional economic growth.
According to current spatial economics theory, lower inter-regional trade costs contribute
to economic growth. As shown in Figure 5, κ̂

j
ni has an inverse effect on ̂GDPn. Comparing

(a) and (d) with (c) and (f), the impact curve of the change in trade costs on the change in
local GDP is steeper than that of the other regions. Lower trade costs result in lower prices
for local purchases of intermediate goods from other regions, leading to local economic
growth. However, for regions with strict environmental regulations, in which environ-
mental regulations increase the cost of production in local carbon-intensive sectors, lower
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trade costs imply that carbon-intensive products can be purchased from other regions at
lower prices. This reduces the production of carbon-intensive products in the local area
and increases those produced in areas with relatively lax emissions regulations. While the
relocation of carbon-intensive industries creates carbon leakage problems for the latter,
buying higher-emission products from other regions at lower prices allows the former
to continue to grow economically under strict environmental regulations. As shown in
Figure 5a, although a tendency towards more stringent environmental regulations (t̂1 = 1.5)
reduces economic growth, when κ̂

j
12 is lower, ̂GDP1 is greater than 1, and the GDP can

maintain its original level of growth. Furthermore, for different industries, comparing (a)
and (d) with (b) and (e) in Figure 5, changes in trade costs κ̂

j
ni for the carbon-intensive

sector j has a greater impact on economic growth than changes in trade costs κ̂k
ni for other

sectors k.

Figure 5. Relationship between κ̂
j
ni and ̂GDPn under different t̂n. (a) Relationship between κ̂

j
12

and ̂GDP1; (b) Relationship between κ̂k
12 and ̂GDP1; (c) Relationship between κ̂

j
21 and ̂GDP1;

(d) Relationship between κ̂
j
21 and ̂GDP2; (e) Relationship between κ̂k

21 and ̂GDP2; (f) Relationship

between κ̂
j
12 and ̂GDP2.

4. Discussion

4.1. Discussion of the Case of China

The results of our analysis can explain the current regions where synergistic emission
reductions have been developed. China has set the goal of “carbon peaking and carbon
neutrality” to mitigate climate change [44]. However, the unique complexity of China’s
economy as a large country determines the complexity and uniqueness of its regional
cooperation in emission reduction [45]. Mitigating climate change is usually assigned to
China’s administrative regions, and the different resource endowments of each region lead
to significant differences in their performance in mitigating climate change [46]. In this
context, regional synergistic emission reduction is beginning in some regions of China. A
typical example is the collaborative management of air pollution in Beijing, Tianjin, and
Hebei. The Action Plan for the Prevention and Control of Air Pollution (“Ten Measures
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for the Atmosphere”) was promulgated in 2013, and the Beijing-Tianjin-Hebei Synergistic
Development was elevated to a national strategy in 2014. With the joint efforts between
regions, the implementation of “Ten Measures for the Atmosphere” reduced 352.7 Mt of
CO2 emissions in the Beijing-Tianjin-Hebei regions [47]. Although these three regions are
in different stages of development, effective synergistic climate change governance has
been achieved. Among them, Beijing and Hebei play different roles. Beijing adopts strict
environmental regulations to control emissions, while Hebei increases the growth rate of
emissions in the short term by taking over some of Beijing’s industries [48], with more
lenient emission reduction policies to maintain stable economic growth in both regions.
According to emissions data published by Carbon Emission Accounts and Datasets [49],
the change in Beijing’s carbon emissions has decreased from 1.026 in 2013–2014 to 0.937 in
2014–2015 since the enactment of the Air Pollution Control Action Plan in 2013. In contrast,
the change in carbon emissions in Hebei saw a brief increase, from 0.95 in 2013–2014 to
1.024 in 2014–2015.

This validates the form of synergistic emission reduction proposed by our model.
Compared to Beijing, which has completed industrialization, Hebei has more industries
with high carbon emission intensity [50], which means that strict environmental regulations
can significantly increase the production costs of firms. The trade link between the two
regions is deeper with the industrial transfer, and increasing the emission growth rate in
Hebei in the short term will provide better overall returns for both regions than decreasing
the emission growth rate. Whether through appropriate regional cost-sharing of emission
reductions [51] or horizontal transfer payments from Beijing to Hebei [52], stable synergistic
emission reductions must allow Hebei to reap additional gains from cooperative emission
reductions. This part of the gains is mainly captured by economic growth in our study.

4.2. Further Discussion of the Findings

Consistent with the findings of Da Zhu [30], Molina et al. [31], and others, the results
of our model analysis emphasize the importance of economic growth in the choice of
regional synergy strategies. Furthermore, we include changes in GDP caused by changes in
emissions in the payoff function and define the formation condition of synergistic emissions
reduction as a decrease in changes in total emissions in both regions. This enhancement
expands the eligibility for participation in synergistic emission reductions to cover the case
of the region reaching peak emissions through synergy.

Recent research on national climate change cooperation concludes that it is diffi-
cult to establish stable cooperation between countries with large differences in income
levels [24,53]. However, we find that regional synergistic emissions reductions within a
country are more flexible in form than cooperation between countries. This allows our
model to allow regions with differing incomes to achieve synergistic emissions reductions.
Under national-level climate change targets, some regions will appropriately relax con-
straints on emissions reductions and increase the rate of emissions growth in the short
term [46] to ensure smooth economic growth while reaching peak emissions as soon as
possible. For such areas, we propose a form of cooperation that exploits the comparative
advantages of regional emissions reductions. That is, by increasing the growth rate of
emissions, such regions stimulate the economic growth of their own region and the syner-
gistic region, thereby reducing the economic loss of the synergistic region due to emission
reduction and helping the two regions to jointly achieve the emission reduction target.

Although game models are considered divorced from policy practice in the analysis of
climate cooperation issues [33], as in Carrozzo Magli and Manfredi [24], Verendel et al. [26],
and others, more detailed games also strengthen the policy guidance implications of the
models. Starting from the base game form proposed by DeCanio and Fremstad [23], our
study enriches the current game model in terms of regional characteristics and inter-regional
economic relations. By adding a general spatial equilibrium model to the game model, the
model is made as close to the economic reality as possible to provide trade, industry, and
economic growth policy complement to emissions reduction policy.
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The model developed in this study can be used for future analyses. As this study
aimed to explain general regional synergistic emission reduction theoretical mechanisms,
although a quantitative general spatial equilibrium model was incorporated into the game
model, the results of the simulations were derived by assigning values to the parameters in
the analysis. Future studies could apply this model to calculate the economic impact of
emission-reduction actions using real statistics from specific regions, extend the damage
from emissions not analyzed in detail in this study, and make precise calculations. This
would allow the analysis of synergistic emission reduction between specific regions and
the prediction of synergistic emission reduction potential of different regions. The model
is also applicable to other regions and countries, providing methodological support for
the analysis of inter-regional cooperation on climate change mitigation. However, the
model proposed in this study still has some limitations. First, our model is based on
short-term static analyses and is unable to analyze the long-term dynamic problem of stable
cooperation. Future research can extend our study with dynamic games and dynamic
general equilibrium models. In addition, our model does not focus on socio-political factors
and constructs a utility function using only economic gains and climate change damages.
Socio-political factors are undeniably critical in climate change cooperation, and issues such
as public attitudes toward climate change and environmental issues, mechanisms for the
promotion of officials, and the right to development in the region all influence the formation
of cooperation. These factors could be used to enrich our model in future research.

5. Conclusions

This study constructed a game model of regional synergistic emission reduction. The
Basic Climate Game was modified using the exact-hat algebra method, with changes in
GDP and damage caused by emissions included in the payoff function. This allows for a
more rational description of changes in emissions during the process of achieving climate
change targets and tradeoffs between economic growth and emission reduction by regional
agents. A general spatial equilibrium model incorporating emissions and environmental
regulations was constructed to extend the game model and analyze the changes in regional
economic growth under emission reduction actions to explain the formation of comparative
advantages of emission reduction and impact on regional synergistic emission reduction.

Whether synergistic emission reduction can be achieved between regions depends
on whether regions can achieve the dual goals of reducing emissions and maintaining
economic growth in the process of regional synergistic emission reduction. The synergy
between the two regions means that, while maintaining stable economic growth, the overall
increase in emissions of the two regions or the total amount of emissions is reduced.

Regional action to reduce emissions using environmental regulations as a policy tool
not only impacts local economic growth but also has a cross-regional economic impact
in the context of regional trade. Different economic impacts of emission reduction reflect
the comparative advantages of regional emission reduction, including faster emission
reduction with lower economic growth losses and faster economic growth with fewer
incremental emissions.

Pursuing the optimal emission reduction effect locally is difficult and inefficient; the
overall optimal emission reduction effect should be pursued to effectively achieve the
carbon neutrality target. This requires using the comparative advantage of each region to
reduce emissions. Regions where a small increase in emissions can effectively drive the
overall economic growth of the two synergistic regions can appropriately increase their
emissions. This can lower the threshold for regional participation in synergistic emission
reduction and enable more regions to join the synergy. Regions that can maintain economic
growth despite significant emission reduction, can undertake more emission reduction in
regional synergy. This form of synergy can maintain the overall economic growth of both
regions while reducing total emissions.

The formation of a comparative advantage in emission reduction depends on char-
acteristics such as emissions elasticity, sectoral structure, and trade share in a region.
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Considering the economic linkages between the two regions, these characteristics affect not
only fluctuations in local economic growth due to environmental regulations but also the
extent of cross-regional economic shocks due to environmental regulations. Regions must
consider these characteristics and choose an appropriate way to participate in collaborative
emission reduction.

Regional synergistic emission reduction requires not only emission reduction policies
but a combination of policies. Regional trade and economic growth policies should not be
neglected in the process of synergistic emission reduction, including improving green TFP,
guiding industrial upgrading and inter-regional relocation, and reducing trade costs in key
sectors between regions with synergistic emission reduction.
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Appendix A

Tables A1–A10 show the game models and the results of changes in emission, damage
caused by emissions, and GDP for scenarios 1 and scenarios 2.

Table A1. No-conflict game in scenario 1.

Region 2

Synergistic Action (SA) Unilateral Action (UA)

Region 1

Synergistic
Action (SA) 0.04, 0.04 * 0.02, 0.03

Unilateral
Action (UA) 0.03, 0.02 0.01, 0.01

ên D̂n Ĝn

Region 1 Region 2 Region 1 Region 2 Region 1 Region 2

SA, SA 0.8 0.8 0.96 0.96 1 1

SA, UA 0.8 1 0.97 0.97 0.99 1

UA, SA 1 0.8 0.97 0.97 1 0.99

UA, UA 1 1 0.99 0.99 1 1
* Nash Equilibrium.
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Table A2. Prisoner’s dilemma game in scenario 1.

Region 2

SA UA

Region 1
SA 0.03, 0.03 0.01, 0.04

UA 0.04, 0.01 0.02, 0.02 *

ên D̂n Ĝn

Region 1 Region 2 Region 1 Region 2 Region 1 Region 2

SA, SA 0.8 0.8 0.96 0.96 0.99 0.99

SA, UA 0.8 1 0.97 0.97 0.98 1.01

UA, SA 1 0.8 0.97 0.97 1.01 0.98

UA, UA 1 1 0.98 0.98 1 1
* Nash Equilibrium.

Table A3. Coordination game in scenario 1.

Region 2

SA UA

Region 1
SA 0.04, 0.04 * 0.01, 0.03

UA 0.03, 0.01 0.02, 0.02 *

ên D̂n Ĝn

Region 1 Region 2 Region 1 Region 2 Region 1 Region 2

SA, SA 0.8 0.8 0.96 0.96 1 1

SA, UA 0.8 1 0.97 0.97 0.98 1

UA, SA 1 0.8 0.97 0.97 1 0.98

UA, UA 1 1 0.99 0.99 1.01 1.01
* Nash Equilibrium.

Table A4. Chicken game in scenario 1.

Region 2

SA UA

Region 1
SA 0.03, 0.03 0.02, 0.04 *

UA 0.04, 0.02 * 0.01, 0.01

ên D̂n Ĝn

Region 1 Region 2 Region 1 Region 2 Region 1 Region 2

SA, SA 0.8 0.8 0.96 0.96 0.98 0.98

SA, UA 0.8 1 0.97 0.97 0.99 1.01

UA, SA 1 0.8 0.97 0.97 1.01 0.99

UA, UA 1 1 0.99 0.99 1 1
* Nash Equilibrium.
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Table A5. Unhappy game in scenario 1.

Region 2

SA UA

Region 1
SA 0.03, 0.03 0.02, 0.04 *

UA 0.04, 0.01 0.01, 0.02

ên D̂n Ĝn

Region 1 Region 2 Region 1 Region 2 Region 1 Region 2

SA, SA 0.8 0.8 0.96 0.96 0.99 0.99

SA, UA 0.8 1 0.97 0.97 0.99 1.01

UA, SA 1 0.8 0.97 0.97 1.01 0.98

UA, UA 1 1 0.99 0.99 1 1.01
* Nash Equilibrium.

Table A6. No-conflict game in scenario 2.

Region 2

SA UA

Region 1
SA 0.04, 0.04 * 0.02, 0.03

UA 0.03, 0.02 0.01, 0.01

ên D̂n Ĝn

Region 1 Region 2 Region 1 Region 2 Region 1 Region 2

SA, SA 0.7 1.1 0.97 0.97 1.01 1.01

SA, UA 0.9 1 0.98 0.98 1 1.01

UA, SA 1 1.1 1 1 1.03 1.02

UA, UA 1 1 0.99 0.99 1 1
* Nash Equilibrium.

Table A7. Prisoner’s dilemma game in scenario 2.

Region 2

SA UA

Region 1
SA 0.03, 0.03 0.01, 0.04

UA 0.04, 0.01 0.02, 0.02 *

ên D̂n Ĝn

Region 1 Region 2 Region 1 Region 2 Region 1 Region 2

SA, SA 0.7 1.1 0.97 0.97 1 1

SA, UA 0.9 1 0.98 0.98 0.99 1.02

UA, SA 1 1.1 1 1 1.04 1.01

UA, UA 1 1 0.99 0.99 1.01 1.01
* Nash Equilibrium.
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Table A8. Coordination game in scenario 2.

Region 2

SA UA

Region 1
SA 0.04, 0.04 * 0.01, 0.03

UA 0.03, 0.01 0.02, 0.02 *

ên D̂n Ĝn

Region 1 Region 2 Region 1 Region 2 Region 1 Region 2

SA, SA 0.7 1.1 0.97 0.97 1.01 1.01

SA, UA 0.9 1 0.98 0.98 0.99 1.01

UA, SA 1 1.1 1 1 1.03 1.02

UA, UA 1 1 0.99 0.99 1.01 1.01
* Nash Equilibrium.

Table A9. Chicken game in scenario 2.

Region 2

SA UA

Region 1
SA 0.03, 0.03 0.02, 0.04 *

UA 0.04, 0.02 * 0.01, 0.01

ên D̂n Ĝn

Region 1 Region 2 Region 1 Region 2 Region 1 Region 2

SA, SA 0.7 1.1 0.97 0.97 1 1

SA, UA 0.9 1 0.98 0.98 1 1.02

UA, SA 1 1.1 1 1 1.04 1.02

UA, UA 1 1 0.99 0.99 1 1
* Nash Equilibrium.

Table A10. Unhappy game in scenario 2.

Region 2

SA UA

Region 1
SA 0.03, 0.03 0.02, 0.04 *

UA 0.04, 0.01 0.01, 0.02

ên D̂n Ĝn

Region 1 Region 2 Region 1 Region 2 Region 1 Region 2

SA, SA 0.7 1.1 0.97 0.97 1 1

SA, UA 0.9 1 0.98 0.98 1 1.02

UA, SA 1 1.1 1 1 1.04 1.01

UA, UA 1 1 0.99 0.99 1 1.01
* Nash Equilibrium.
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