
mdpi.com/journal/mathematics

Special Issue Reprint

Optimization Algorithms
Theory and Applications

Edited by 
Frank Werner



Optimization Algorithms: Theory
and Applications





Optimization Algorithms: Theory
and Applications

Guest Editor

Frank Werner

Basel ‚ Beijing ‚ Wuhan ‚ Barcelona ‚ Belgrade ‚ Novi Sad ‚ Cluj ‚ Manchester



Guest Editor

Frank Werner

Faculty of Mathematics

Otto-von-Guericke University

Magdeburg

Germany

Editorial Office

MDPI AG

Grosspeteranlage 5

4052 Basel, Switzerland

This is a reprint of the Special Issue, published open access by the journal Mathematics

(ISSN 2227-7390), freely accessible at: www.mdpi.com/journal/mathematics/special issues/

Optimization Algorithms Theory Applications.

For citation purposes, cite each article independently as indicated on the article page online and

using the guide below:

Lastname, A.A.; Lastname, B.B. Article Title. Journal Name Year, Volume Number, Page Range.

ISBN 978-3-7258-3160-9 (Hbk)

ISBN 978-3-7258-3159-3 (PDF)

https://doi.org/10.3390/books978-3-7258-3159-3

© 2025 by the authors. Articles in this book are Open Access and distributed under the Creative

Commons Attribution (CC BY) license. The book as a whole is distributed by MDPI under the terms

and conditions of the Creative Commons Attribution-NonCommercial-NoDerivs (CC BY-NC-ND)

license (https://creativecommons.org/licenses/by-nc-nd/4.0/).

www.mdpi.com/journal/mathematics/special_issues/Optimization_Algorithms_Theory_Applications
www.mdpi.com/journal/mathematics/special_issues/Optimization_Algorithms_Theory_Applications
https://doi.org/10.3390/books978-3-7258-3159-3


Contents

About the Editor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

Frank Werner
Special Issue: “Optimization Algorithms: Theory and Applications”
Reprinted from: Mathematics 2025, 13, 175, https://doi.org/10.3390/math13010175 . . . . . . . . 1

Mengnan Chen, Yongquan Zhou and Qifang Luo
An Improved Arithmetic Optimization Algorithm for Numerical Optimization Problems
Reprinted from: Mathematics 2022, 10, 2152, https://doi.org/10.3390/math10122152 . . . . . . . 4

Aifen Feng, Xiaogai Chang, Youlin Shang and Jingya Fan
Application of the ADMM Algorithm for a High-Dimensional Partially Linear Model
Reprinted from: Mathematics 2022, 10, 4767, https://doi.org/10.3390/math10244767 . . . . . . . 31

Chenyao Zhang, Yuyan Han, Yuting Wang, Junqing Li and Kaizhou Gao
A Distributed Blocking Flowshop Scheduling with Setup Times Using Multi-Factory
Collaboration Iterated Greedy Algorithm
Reprinted from: Mathematics 2023, 11, 581, https://doi.org/10.3390/math11030581 . . . . . . . . 44

Kin Keung Lai, Shashi Kant Mishra, Ravina Sharma, Manjari Sharma and Bhagwat Ram
A Modified q-BFGS Algorithm for Unconstrained Optimization
Reprinted from: Mathematics 2023, 11, 1420, https://doi.org/10.3390/math11061420 . . . . . . . 69
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Miguel Arcos-Argudo, Jesús Lacalle and Luis M. Pozo-Coronado
Cyclic Structure, Vertex Degree and Number of Linear Vertices in Minimal Strong Digraphs
Reprinted from: Mathematics 2024, 12, 3657, https://doi.org/10.3390/math12233657 . . . . . . . 194

Kitti Udvardy, Polina Görbe, Tamás Bódis and János Botzheim
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Preface

This is the printed edition of a Special Issue published in the Mathematics journal. We received 32

submissions for this issue, representing a broad spectrum in the field of optimization. In addition to

the editorial, this reprint contains ten research papers focusing on optimization algorithms. Among

the subjects addressed in this reprint, one can mention unconstrained optimization, non-convex

optimization, multi-objective optimization, graph theory problems, or blocking flow shop scheduling.

The authors apply mixed-integer linear programming, metaheuristic techniques, or reinforcement

learning, to mention a few.

Finally, we extend our gratitude to all people who have contributed to the success of this issue,

including but not limited to authors from nine countries, many referees from all over the world, and

the staff of the Mathematics journal. I hope that the readers of this Special Issue find many stimulating

ideas for their own future research in this challenging field of optimization algorithms, which play an

important role in daily life.

Frank Werner

Guest Editor
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Editorial

Special Issue: “Optimization Algorithms: Theory and Applications”
Frank Werner

Faculty of Mathematics, Otto-von-Guericke University, 39016 Magdeburg, Germany; frank.werner@ovgu.de;
Tel.: +49-391-675-2025

1. Introduction
This Special Issue of the journal Mathematics was dedicated to compiling new results

in the area of optimization algorithms, and both theoretical works and practical applications
have been searched. In comparison with my recent guest-edited Special Issues on Discrete
Optimization in mathematics (with 19 papers published between 2018 and 2019) and AIMS
Mathematics (22 papers published between 2023 and 2024), as well as a recent Special Issue
jointly edited with Alexander Lazarev and Bertrand Lin on Discrete Optimization and
Scheduling in mathematics (11 published papers between 2022 and 2024), I have broadened
the scope of the current Special Issue.

In the Call for Papers, a wide range of subjects were mentioned, e.g., linear, non-
linear, integer and mixed-integer programming; combinatorial optimization; stochastic
optimization;, robust optimization; multi-criteria optimization problems; optimization on
graphs and networks; scheduling; control-theoretic problems, advanced heuristics and
metaheuristics; and machine learning, to name a few. Papers on applications, e.g., in logis-
tics, manufacturing, transportation or healthcare, were also welcome. Such optimization
problems are of great relevance and practical importance.

For this Special Issue, 32 submissions were received. After a careful refereeing process,
10 papers with authors from 9 countries were selected for this Special Issue, which repre-
sented a broad spectrum of research fields in the optimization area. This corresponds to an
acceptance rate of 31.25%. The papers in this Special Issue address topics such as uncon-
strained optimization, scheduling, graph theory, and multi-criteria optimization. As a rule,
all submissions were reviewed by two or more experts from the corresponding research
field. Subsequently, the published papers were surveyed in order of their publication dates
for this Special Issue.

The first accepted paper, by Chen et al., presents an arithmetic optimization algorithm
that is based on a population control strategy. In particular, the population is classified,
and the number of individuals is adaptively controlled, which leads to a more effective
search in the space. The developed algorithm is tested on six nonlinear systems of equa-
tions, 10 numerical integrations, and an engineering problem. The presented algorithm
outperforms existing ones.

The second paper in this Special Issue, by Feng et al., deals with a high-dimensional
semi-parametric regression model. The authors consider a partially linear model with a
restricted profile and use the least squares method to estimate the parameters. By using an
augmented Lagrangian function under linear constraints, the problem is transformed into
an unconstrained optimization problem. Some numerical simulations are used to underline
the effectiveness of the developed algorithm for solving high-dimensional models that are
partially linear.

In contribution 3, Zang et al. deal with the distributed blocking flow shop scheduling
problem by minimizing the makespan. After presenting a mixed integer linear program-

Mathematics 2025, 13, 175 https://doi.org/10.3390/math13010175
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ming model, an iterated greedy-algorithm-blending multi-factory collaboration mechanism
ia derived. For the computational experiments, 270 instances with up to 7 factories, 10 ma-
chines, and 500 jobs are used. The developed approach gives better results than the five
algorithms used for the comparison.

Then, Lai et al. deal with nonlinear unconstrained optimization and present a modifi-
cation of the q-BFGS algorithm (q-calculus Broydon–Fletcher–Goldfarb–Shanno method),
which is a quasi-Newton approach. For building a q-Hessian, the approach uses only
first-order q-derivatives. The presented modification preserves the convergence properties
of the q-BFGS method without the convexity assumption of the objective function. Detailed
numerical results are given that show that the algorithm can often escape from local optima
and can move towards a global minimum.

In the next paper, Lemus-Romani et al. investigate the application of metaheuristic
techniques to the retaining wall problem. The two objective functions are cost and CO2

emissions. In particular, a new discretization technique based on reinforcement learning
and transfer function is presented. Finally, extensive experiments are performed to compare
the implemented techniques, and they show that the suggested approach is promising.

The sixth published paper, by Cobos et al., deals with many-objective optimization and
proposes a new mathematical object, augmenting coving arrays, which allows for better
sampling of the intersections of the different objectives by taking the least number of weight
vectors based on an a priori-defined interaction level. Their proposed method gives better
results compared with the traditional weight vector definition and the NSGA-III approach.

In the next paper, Wang et al. present a new hybrid descent conjugate gradient
method based on the strongly convergent property of the Dai–Yuan approach and the
Hestenes–Stiefel method. Independent of any line search technique, the new approach
has a sufficient descent property. Numerical results are presented for 61 problems with 9
large-scale dimensions and 46 ill-conditioned matrix problems. It turns out that the new
approach is more effective, robust, and reliable than the other methods considered.

Contribution 8, by Magklaras et al., investigates the fitness of the ordinary least squares
approach for tuning the parameters of overlay models. They propose the application of
ridge regression, a widely known machine learning approach. The derived method is
applied to perturbed data from a 300 mm wafer fab and results in reduced residuals in
comparison with the ordinary least squares algorithm.

Then, Arcos-Argudo et al. deal with a graph-theoretic problem. In particular, they
investigate some properties of minimal strong digraphs with the goal of bounding the
length of a longest cycle. They present several new results. Among others, they derive a
bound for the coefficients of the characteristic polynomial of such digraphs and prove that
the computation of a longest cycle is an NP-hard problem.

In contribution 10, the last accepted paper, Udvardy et al. investigate the enhancement
of the Storage Location Assignment Problem by using evolutionary algorithms. In particu-
lar, they develop a Bacterial Memetic Algorithm and compare it with a traditional genetic
algorithm. Although the new algorithm does not yield the expected results, one of the
novelties of this paper is the specification of the concept of adaptive parameterization
and rules.

It is my pleasure to thank all authors for submitting their recent works, all reviewers
for their timely and insightful reports, and the staff of the Editorial Office for their support
in preparing this Special Issue. I hope that the readers of this Special Issue will find
stimulating ideas that initiate new research works in this interesting research field of great
practical importance.

Conflicts of Interest: The author declares no conflicts of interest.
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An Improved Arithmetic Optimization Algorithm for
Numerical Optimization Problems
Mengnan Chen 1, Yongquan Zhou 1,2,* and Qifang Luo 1,2

1 College of Artificial Intelligence, Guangxi University for Nationalities, Nanning 530006, China;
2020210812000995@stu.gxmzu.edu.cn (M.C.); 20060043@gxun.edu.cn (Q.L.)

2 Guangxi Key Laboratories of Hybrid Computation and IC Design Analysis, Nanning 530006, China
* Correspondence: zhouyongquan@gxun.edu.cn; Tel.: +86-136-0788-2594

Abstract: The arithmetic optimization algorithm is a recently proposed metaheuristic algorithm. In
this paper, an improved arithmetic optimization algorithm (IAOA) based on the population control
strategy is introduced to solve numerical optimization problems. By classifying the population
and adaptively controlling the number of individuals in the subpopulation, the information of each
individual can be used effectively, which speeds up the algorithm to find the optimal value, avoids
falling into local optimum, and improves the accuracy of the solution. The performance of the
proposed IAOA algorithm is evaluated on six systems of nonlinear equations, ten integrations, and
engineering problems. The results show that the proposed algorithm outperforms other algorithms
in terms of convergence speed, convergence accuracy, stability, and robustness.

Keywords: arithmetic optimization algorithm; population control strategy; systems of nonlinear
equations; numerical integrals; metaheuristic

MSC: 68T20

1. Introduction

In the practical application calculations of science and engineering, many mathemat-
ical problems will be involved, such as nonlinear equation systems (NESs), numerical
integration, etc. There are tremendous methods for solving NESs, including traditional
techniques and intelligent optimization algorithms. Traditional techniques to solve NESs
use gradient information [1], such as Newton’s method [2,3], quasi-Newton’s method [4],
steepest descent method, etc. Due to relying on the selection of initial points and being
prone to falling into optimal local one, these methods cannot obtain high-quality solutions
for some specific problems. The metaheuristic algorithms, however, have the characteristics
of low requirements for the initial point, a wide range of solutions, high efficiency, and
robustness. These break through the limitations of traditional methods in solving problems.
In recent years, metaheuristic algorithms have made great contributions in solving NESs
(Karr et al. [5]; Ouyang et al. [6]; Jaberipour et al. [7]; Pourjafari et al. [8]; Jia et al. [9];
Ren et al. [10]; Cai et al. [11]; Abdollahi et al. [12]; Hirsch et al. [13]; Sacco et al. [14];
Gong et al. [15]; Ariyaratne et al. [16]; Gong et al. [17]; Ibrahim et al. [18]; Liao et al. [19];
Ning et al. [20]; Rizk-Allah et al. [21]; Ji et al. [22]; Turgut et al. [23]).

Numerical integration is a very basic computational problem. It is well-known that,
when calculating the definite integral, the integrand is required to be easily given and
then solved by the Newton-Leibniz formula. However, this method has many limitations,
because in many practical problems, the original function of the integrand cannot be
expressed, or the calculation is too complicated, so the definite integral of the integrand
is replaced by a suitable finite sum approximation. The traditional numerical integration
methods include the trapezoidal method, rectangle method, Romberg method, Gauss
method, Simpson’s method, Newton’s method, etc. The above methods all divide the

Mathematics 2022, 10, 2152. https://doi.org/10.3390/math10122152 https://www.mdpi.com/journal/mathematics4
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integral interval into equal parts, and the calculation efficiency is not high. Therefore, it is
of great significance to find a new technique with a fast convergence speed, high precision,
and strong robustness for numerical integration. Zhou et al. [24], based on the evolutionary
strategy method, worked to solve numerical integration. Wei et al. [25] researched the
numerical integration method based on particle swarm optimization. Wei et al. [26],
based on functional networks, worked to solve numerical integration. Deng et al. [27]
solved the numerical integration problems based on the differential evolution algorithm.
Xiao et al. [28] applied the improved bat algorithm in numerical integration. The quality of
the solution obtained by the above techniques was higher than the traditional methods.

All along, engineering optimization problems have been a popular area of research.
Metaheuristic algorithms have been widely applied to engineering optimization prob-
lems due to their great practical significance, such as applied to the automatic adjust-
ment of controller coefficients (Szczepanski et al. [29]; Hu et al. [30]), applied to system
identification (Szczepanski et al. [31]; Liu et al. [32]), applied to global path planning
(Szczepanski et al. [33]; Brand et al. [34]), and applied to robotic arm scheduling (Szczepan-
ski et al. [35]; Kolakowska et al. [36]).

The Arithmetic Optimization Algorithm (AOA) [37] is a novel metaheuristic algo-
rithm proposed by Abualigah et al. in 2021. AOA is a mathematical model technique that
simulates the behaviors of Arithmetic operators (i.e., Multiplication, Division, Subtraction,
and Addition) and their influence on the best local solution. Some improvements and
practical applications of the algorithm have been made by scholars. Premkumar et al. [38]
proposed a multi-objective arithmetic optimization algorithm (MOAOA) for solving real-
world multi-objective CEC-2021-constrained optimization problems. Bansal. et al. [39]
used a binary arithmetic optimization algorithm for integrated features and feature selec-
tion. Agushaka et al. [40] introduced an advanced arithmetic optimization algorithm for
solving mechanical engineering design problems. Abualigah et al. [41] presented a novel
evolutionary arithmetic optimization algorithm for multilevel thresholding segmentation.
Xu et al. [42] hybridized an extreme learning machine and a developed version of the arith-
metic optimization algorithm for model identification of the proton exchange membrane
fuel cells. Izci et al. [43] introduced an improved arithmetic optimization algorithm for the
optimal design of controlled PID. Khatir et al. [44] proposed an improved artificial neural
network using the arithmetic optimization algorithm for damage assessments.

The basic AOA still has some drawbacks. For instance, it is easy to fall into a local
optimum due to the location update based on the optimal value, premature convergence,
and low solution accuracy, which need to be solved. Furthermore, in order to seek a more
efficient way to solve numerical problems, in this paper, an improved arithmetic opti-
mization algorithm (IAOA) based on the population control strategy is proposed to solve
numerical optimization problems. By classifying the population and adaptively controlling
the number of individuals in the subpopulation, the information of each individual can be
used effectively while increasing the population diversity. More individuals are needed in
the early iterations to perform a large-scale search that avoids falling into the local optimum.
The search around the optimal value later in the iterations by more individuals speeds up
the algorithm to find the optimal value and improves the accuracy of the solution. The
performance of the proposed IAOA algorithm is evaluated on six systems of nonlinear
equations, ten integrations, and engineering problems. The results show that the proposed
algorithm outperforms the other algorithms in terms of convergence speed, convergence
accuracy, stability, and robustness.

The main structure of this paper is as follows. Section 2 reviews the relevant knowledge
for the nonlinear equation systems, integration, and basic arithmetic optimization algorithm
(AOA). Section 3 introduces the proposed IAOA in detail. Section 4 presents experimental
results, comparisons, and analyses. Section 5 concludes the work and proposes future
research directions.
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2. Preliminaries
2.1. Nonlinear Equation Systems

Generally, a nonlinear equation system can be formulated as follows.

NES =





f1(x1, x2, . . . , xD) = 0
...

fi(x1, x2, . . . , xD) = 0
...

fn(x1, x2, . . . , xD) = 0

(1)

where x is a D-dimensional decision variable, and n is the number of equations. Some
equations are linear; the others are nonlinear. If x* satisfies fi (x*) = 0, then x* is a root of the
system of equations.

Before using the optimization algorithm to solve the NES, first is to convert it into a
single-objective optimization problem [17] as follows.

min f (x) =
n

∑
i=1

f 2
i (x), x = (x1, x2, . . . , xi, . . . , xD) (2)

Finding the minimum of an optimization problem is equivalent to finding the root of
the NES.

2.2. Numerical Integration

Definite integrals are very basic mathematical calculation problems as follows.

∫ b

a
f (x)dx (3)

where f (x) represents the integrand function, and a and b represent the upper and lower
bounds, respectively.

Usually, firstly, we find the original function F(x) of the integrand when finding a
definite integral and then use the Newton-Leibniz formula as follows:

∫ b

a
f (x)dx = F(b)− F(a), (F

′
(x) = f (x)) (4)

However, in many cases, it is difficult to obtain the original function F(x), so the
Newton-Leibniz formula will not be able to be used.

In addition, the rest of the numerical quadrature methods are based on the quadrature
formula of equidistant node division and summation or stipulate that the equidistant nodes
remain unchanged during the whole process of calculating, as shown in Figure 1a. There
need more nodes to obtain a high accuracy. However, the best segmentation is not the
predetermined equidistant points, as shown in Figure 1b. Randomly generated subintervals
has unequal intervals according to the concave and convex changes of the function curve,
so the obtained value has a higher accuracy than the traditional methods. Based on this
idea, there is another integral method based on non-equidistant point division [24]. First,
generate some points randomly on the integral interval, and then, the algorithm is used
to optimize these split points. Finally, a higher accuracy value will be obtained. This not
only calculates the definite integral of the function in the usual sense but also calculates
the integral of the singular function and the integral of the oscillatory function for this
method [27]. The flow of the numerical integration algorithm based on unequal point
segmentation is as follows [24].

(1) Randomly initialize the population in the search space S.

6
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(2) Arrange each individual in the integral interval in ascending order. The integral
interval has n(n = D + 2) nodes and n − 1 segments. Calculate the distance hi between
two adjacent nodes and the function f (xk) value of each node, then calculate the
function value corresponding to the D + 2 nodes and the function value of the middle
node of each subsection. Find the minimum value wj and the maximum value
Wj (j = 1, 2, . . . , D + 1) among the function values of the left endpoint, middle node,
and right endpoint of each subsection.

(3) Calculate fitness value. F(i) 1
2 ∑D+1

j=1 hj

∣∣∣Wj − wj

∣∣∣.
(4) Update individuals through an optimization algorithm.
(5) Repeat step 4 until reaching the stop condition.
(6) Get the accuracy and integral values.

Figure 1. Two methods of segmentation when solving numerical integrals: (a) equidistant division
and (b) equidistant division.

The numerical integration method based on Hermite interpolation only needs to
provide the value of the integral node functions and has high precision. However, this
method is based on equidistant segmentation. In this paper, the adaptability of unequal-
spaced partitioning and the numerical integration method based on Hermite interpolation
are combined to solve the numerical integration problem, and the formula is as follows:

∫ b
a f (x)dx =

n
∑

k=1

hi
2 [ f (xk) + f (xk+1)]−

n−1
∑

i=1

25
144 hi [ f (a)+ f (b)]

n−1 +

n−1
∑

i=1

hi
3 [ f (a+hi)+ f (b−hi)]

n−1 −
n−1
∑

i=1

hi
4 [ f (a+2hi)+ f (b−2hi)]

n−1 +
n−1
∑

i=1

hi
9 [ f (a+3hi)+ f (b−3hi)]

n−1 −
n−1
∑

i=1

hi
48 [ f (a+4hi)+ f (b−4hi)]

n−1

(5)

where n is the number of random split points, hi is the distance between two adjacent
points, and f (x) is the integrand function. The advantage of this method is that it does not
need to calculate the derivative value and only needs to provide the node function value.
Before using the optimization algorithm to solve the integration, the first step is to convert
it into a single-objective optimization problem as follows:

minF(x) =
∣∣∣∣
∫ b

a
f (x)dx− E

∣∣∣∣ (6)

where
∫ b

a f (x)dx is obtained by Equation (5), and E means the exact value.
Combine the optimization algorithm with Equation (5), and the whole solution process

is as follows.

(1) Randomly initialize the population in the search space S.

7
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(2) Arrange each individual in the integral interval in ascending order. The integral
interval has n(n = D + 2) nodes and n − 1 segments. Calculate the distance hi between
two adjacent nodes and the function f (xk) value of each node and then bring them
into Equation (5).

(3) Calculate the fitness value by Equation (6).
(4) Update individuals through an optimization algorithm.
(5) Repeat step 4 until reaching the stop condition.
(6) Get the accuracy and integral values.

2.3. The Arithmetic Optimization Algorithm (AOA)

The AOA algorithm is a population-based metaheuristic algorithm to solve optimiza-
tion problems by utilizing mathematical operators (Multiplication (“×”), Division (“÷”),
Subtraction (“−”), and Addition (“+”)). The specific description is as follows.

2.3.1. Initialization Phase

Generate a candidate solution matrix randomly.

X =




x1,1 · · · · · · x1,j x1,n−1 x1,n
x2,1 · · · · · · x2,j x2,n−1 x2,n
· · · · · · · · · · · · · · · · · ·

...
...

...
...

...
...

xN−1,1 · · · · · · xN−1,j xN−1,n−1 xN−1,n
xN,1 · · · · · · xN,j xN,n−1 xN,n




(7)

After the initialization step, calculate the Math Optimizer Accelerated (MOA) function
and use it to choose between exploration and exploitation. The function is as follows:

MOA(t) = Min + t×
(

Max−Min
T

)
(8)

where Max = 0.9 denotes the maximum and Min = 0.2 denotes the minimum of the function
value, MOA (t) represents the function value of the current iteration, and T and t represent
the maximum number of iterations and current iteration, respectively.

2.3.2. Exploration Phase

During the exploration phase, the operators (Multiplication (“×”) and Division (“÷”))
are used to explore the space randomly when the MOA > 0.5. The mathematical model is
as follows:

xi,j(t + 1) =
{

best(xj)÷ (MOP + ε)× ((UBj − LBj)× µ + LBj), r2 < 0.5
best(xj)×MOP× ((UBj − LBj)× µ + LBj), otherwise

(9)

where r2 is a random number, xi,j(t + 1) represents the jth position of ith solution in the
(t + 1)th iteration, best(xj) denotes the jth position in the global optimal solution, ε is a small
integer number that avoids the case where the denominator is zero in division, UBj and LBj
represents the upper and lower bounds of each dimension, respectively, and µ is equal to
0.5. The Math Optimizer probability (MOP) is as follows:

MOP(t) = 1− t
1
α

T
1
α

(10)

where MOP(t) represents the function value for the current iteration, and α is a sensitive
parameter and equal to 5.

8



Mathematics 2022, 10, 2152

2.3.3. Exploitation Phase

During the exploration phase, the operators (Subtraction (“−”) and Addition (“+”))
are used to execute the exploitation. When MOA < 0.5, the mathematical model as follows:

xi,j(t + 1) =
{

best(xj)−MOP× ((UBj − LBj)× µ + LBj), r3 < 0.5
best(xj) + MOP× ((UBj − LBj)× µ + LBj), otherwise

(11)

where r3 is a random number. The pseudo-code of the AOA is as follows (Algorithm 1) [37].

Algorithm 1 AOA

1. Set up the initial parameters α, µ.
2. Initialize the population randomly.
3. for t = 1: T
4. Calculate the fitness function and select the best solution.
5. Update the MOA (using Equation (8)) and MOP (using Equation (10)).
6. for i = 1: N
7. for j = 1: Dim
8. Generate the random values between [0, 1] (r1, r2, r3)
9. if r1 > MOA
10. if r2 > 0.5
11. Update the position of the individual by Equation (9).
12. else
13. Update the position of the individual by Equation (9).
14. end
15. else
16. if r3 > 0.5
17. Update the position of the individual by Equation (11).
18. else
19. Update the position of the individual by Equation (11).
20. end
21. end
22. end
23. end
24. t = t + 1
25. end
26. Return the best solution (x).

3. Our Proposed IAOA
3.1. Motivation for Improving the AOA

In AOA, the population is updated based on the optimal global solution. Once it falls
into the optimal local one, the entire population will stagnate. There is premature coverage,
in some cases [33]. In addition, this algorithm does not fully utilize the information of
the individuals in the population. Therefore, to make full use of the information of the
individuals and address the weakness of AOA, the improved arithmetic optimization
algorithm (IAOA) is proposed in this paper.

3.2. Population Control Mechanism

In the basic arithmetic optimization algorithm (AOA), the operators (Multiplication
(“×”), Division (“÷”), Subtraction (“−”), and Addition (“+”)) are used to wrap around
an optimal solution to search randomly in space, and it will lead to a loss of population
diversity. Therefore, it is necessary to classify for the population.

9
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3.2.1. The First Subpopulation

Sort the population according to the fitness value and select the first num_best individ-
uals as the first subpopulation:

num_best = round(0.1N + 0.5N(1− t/T)) (12)

where N is the number of individuals, and t and T represent the current iteration and
maximum iterations, respectively. Then, these individuals update their position by getting
information about each other. The mathematical model is as follows:

xbest_i(t + 1) = xbest_i(t) + rand×
(

best(x)−
xbest_i(t) + xbest_j(t)

2
×ω

)
(13)

xbest_j(t + 1) = xbest_j(t) + rand×
(

best(x)−
xbest_i(t) + xbest_j(t)

2
×ω

)
(14)

where xbest_i(t + 1) denotes the position of ith individual in the next iteration, the same as
xbest_j(t + 1), best(x) represents the global optimum that has been found through individuals
after t iterations, xbest_j is selected from the first class randomly, and ω means the information
acquisition rate and takes the value 1 or 2.

3.2.2. The Second Subpopulation

Select num_middle individuals from the population as the second subpopulation.

num_middle = round(0.3× N) (15)

These individuals fall between num_best and num_worst in the population. Then, these
individuals update their position, and the updated model is as follows:

xmid_i(t + 1) = xmid_i(t) + Levy× (best(x)− xmid_j) (16)

where xmid_i(t + 1) denotes the position of ith individual in the next iteration, Levy is the
Levy distribution function [45,46], and xmid_j is selected from the second class randomly.

3.2.3. The Third Subpopulation

Select num_worst individuals from the population as the final subpopulation.

num_worst = N − (num_best + num_middle) (17)

In the final class, the individuals update their position by the following equation:

xworst_i(t + 1) = xworst_i +

(
t
T
× best(x)− xworst_j

)
(18)

where xworst_i(t + 1) denotes the position of ith individual in the next iteration, and best(x)
represents the global optimum that has been found through individuals after t iterations.

At the early iteration of IAOA, there are more individuals in the first subpopulation
for speeding up the update of the global optimum. At the later iterations of the algorithm,
the number of individuals in the first subpopulation decreases, which solves the operator
crowding problem near the optimum. In addition, the number of individuals in the
third subpopulation increases, which effectively prevents the population from falling
into the local optimum. The second subpopulation utilizes the Levy flight for small-step
updates to find more promising areas. The above strategy can effectively overcome the
weaknesses of traditional AOA and improve its performance. The pseudo-code of the
IAOA in Algorithm 2 is as follows (Algorithm 2). Figure 2 is the flowchart of the IAOA.
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Algorithm 2 IAOA

1. Set up the initial parameters α, µ.
2. Initialize the population randomly.
3. for t = 1: T
4. Calculate the fitness function and select the best solution.
5. Calculate the number of the first subpopulation by Equation (12).
6. Update the first subpopulation by Equations (13) and (14).
7. Calculate the number of the second subpopulation by Equation (15).
8. Update the second subpopulation by Equation (16).
9. Calculate the number of the third subpopulation by Equation (17).
10. Update the third subpopulation by Equation (18).
11. Update the MOA (using Equation (8)) and MOP (using Equation (10)).
12. for i = 1: N
13. for j = 1: Dim
14. Generate the random values between [0, 1] (r1, r2, r3)
15. if r1 > MOA
16. if r2 > 0.5
17. Update the position of the individual by Equation (9).
18. else
19. Update the position of the individual by Equation (9).
20. end
21. else
22. if r3 > 0.5
23. Update the position of the individual by Equation (11).
24. else
25. Update the position of the individual by Equation (11).
26. end
27. end
28. end
29. end
30. t = t + 1
31. end
32. Return the best solution (x).

11
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Figure 2. Flowchart of the IAOA.

4. Numerical Experiments and Analysis
4.1. Parameter Settings

Here, six groups of NESs and ten groups of integration have been used to demon-
strate the efficiency of the IAOA. The IAOA compares several popular algorithms and
two improved arithmetic optimization algorithms (The Arithmetic Optimization Algorithm
(AOA) [37], Sine Cosine Algorithm (SCA) [47], Whale Optimization Algorithm (WOA) [48],
Grey Wolf Optimizer (GWO) [49], Harris hawks optimization (HHO) [50], Slime mould
algorithm (SMA) [51], Differential evolution(DE) [52], Cuckoo search algorithm (CSA) [53],
Advanced arithmetic optimization algorithm (nAOA) [40], and a developed version of
Arithmetic Optimization Algorithm (dAOA) [42]) for tackling NES. Among them, the
parameters of these algorithms are all from the original version. These algorithms are
evaluated from four aspects: the average value, the optimal value, the worst value, and the
standard deviation. All algorithms are executed on MATLAB 2021a, running on a computer
with a Windows 10 operating system, Intel(R) Core (TM) i7-9700 CPU @ 3.00 GHz, 16 GB
of Random Access Memory (RAM), and run 30 times independently for all test problems.
The flowchart for handling issues by the IAOA is shown in Figure 3.
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Figure 3. Flowchart for handling issues.

4.2. Application in Solving NESs

Solving nonlinear problems often requires higher-precision solutions in many practical
applications. In this section, six nonlinear systems of equations are chosen to evaluate the
performance of the IAOA. The characteristics of these equations are different from each
other, where problem01 [54] describes the interval arithmetic problem, problem02 [55]
describes the multiple steady-states problem, and problem06 [56] describes the molecular
conformation. These problems come from real-world applications. For fairness, set the
population to 50 and the maximum number of iterations to 200. Tables 1–6 show all the test
results of the NES. Best represents the best value, Worst represents the worst value, Mean
represents the mean value, Std represents the standard deviation, and p-value stands for
the Wilcoxon rank–sum test in Table 7. The Wilcoxon p-value test is used to verify whether
there is an obvious difference between the two sets of data.

Table 1. Comparison of the experimental results for problem01.

Variable
Algorithms

AOA IAOA SCA WOA

x1 0.006361583402960 0.257838650825518 0.186732591196869 0.260832096649832
x2 0.005731653837062 0.381098185347242 0.399818814038728 0.381680691118263
x3 0.010586282003880 0.278742562628776 0.008959145137085 0.258353295805450
x4 0.002593989505334 0.200665586275865 0.227237103605413 0.215307146397956
x5 0.033520558095432 0.445255928027431 0.003829239926320 0.448797960971748
x6 0.076424218265631 0.149188813621332 0.185905381801968 0.147397359179682
x7 0.038862694473151 0.432010769672038 0.368813050526818 0.442390776062597
x8 −0.000004007877210 0.073406152818720 0.037739989370997 0.137586270569043
x9 0.029054432130685 0.345966262513093 0.206476235144125 0.342058064566263
x10 0.013690425703394 0.427324518269459 0.363350844915327 0.401475021739693
f 8.45665838921712 × 10−1 4.73405913551646 × 10−10 1.22078391539763 × 10−1 9.59544885085295 × 10−4
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Table 1. Cont.

Variable
Algorithms

GWO HHO DE CSO

x1 0.256851024248810 0.324317023967532 2.000000000000000 0.089951372914250
x2 0.383565743620699 0.303967192642514 1.948157453190990 0.309487131659014
x3 0.278312335483674 0.216191961411362 2.000000000000000 0.456410156556233
x4 0.198737300040942 0.305260974230829 1.815308511546580 0.356392775439902
x5 0.446311619177502 0.325255783591842 2.000000000000000 0.476086684751138
x6 0.145894138632280 0.223020351676054 2.000000000000000 0.078921332097133
x7 0.145894138632280 0.323185143014029 2.000000000000000 0.499580490394335
x8 −0.007832029555062 0.327973609353822 1.915762141824520 0.197756675883883
x9 0.343654620394334 0.333430854648433 2.000000000000000 0.228228833675487
x10 0.425902664080806 0.324142888370713 2.000000000000000 0.470195948900759
f 1.25544451911646 × 10−3 7.79220329211044 × 10−2 7.96261500819178 × 10−2 6.61705221934444 × 10−2

Variable
Algorithms

SMA nAOA dAOA

x1 0.249900132290417 0.035430633051580 1.840704485033870
x2 0.375428314977531 0.053983062784772 1.213421005935260
x3 0.272448580296318 0.072735305166021 1.203555993641700
x4 0.199698265955405 0.021399042985613 −0.393935624266822
x5 0.425934189445810 0.064655913970964 −0.249476549706985
x6 0.057699959645613 0.012570281350831 0.459915310960444
x7 0.431865275874618 0.057639809639213 −0.675754718182326
x8 0.015005640000641 0.005520004765830 −0.895856414267328
x9 0.347986992756388 0.041229484511092 0.359139808282465
x10 0.415304164782275 0.079595719921909 1.529188120361250
f 4.47411205566240 × 10−3 6.74563715208325 × 10−1 1.91503507134915

Table 2. Comparison of the experimental results for problem02.

Variable
Algorithms

AOA IAOA SCA WOA

x1 0.040781958181860 0.042124781715274 0.000000000000000 0.041561373108785
x2 0.268625655728691 0.061754610138946 0.266593748985495 0.268697327813652
f 2.01752031872803 × 10−7 9.24446373305873 × 10−34 8.82826387279195 × 10−5 6.92247231102962 × 10−9

Variable
Algorithms

GWO HHO DE CSO

x1 0.265622854930434 0.267855297066815 0.266589101862370 0.266620164671422
x2 0.178718146817611 0.458749279058429 0.327275026016101 0.178514261126008
f 1.13985864694418 × 10−7 6.55986405733090 × 10−8 1.31654979128584 × 10−18 1.49504500886345 × 10−9

Variable
Algorithms

SMA nAOA dAOA

x1 0.021419624272050 0.000000000000000 0.236558250181286
x2 0.048075232460874 0.719124811309122 0.508933311549167
f 2.89316821274146 × 10−5 3.07109081317222 × 10−5 3.22387407689191 × 10−4
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Table 3. Comparison of the experimental results for problem03.

Variable
Algorithms

AOA IAOA SCA WOA

x1 1.990744078311880 −0.947268146986263 −0.225974226141413 −1.424482905343090
x2 0.220001522814532 −0.785020015568289 1.245763361231140 −0.543544840817441
f 5.61739095968327 × 10−3 4.02151576372412 × 10−32 7.95691890654021 × 10−4 1.06331568826728 × 10−3

Variable
Algorithms

GWO HHO DE CSO

x1 −1.794053112053940 −1.495480498807310 −1.791308474954350 −0.212779003619775
x2 −0.303905803005920 −0.420394691864127 0.301889327351144 −1.257141525856050
f 2.77808608355359 × 10−5 6.12298193031725 × 10−5 1.84881969881973 × 10−9 6.26348225916795 × 10−7

Variable
Algorithms

SMA nAOA dAOA

x1 −1.791387180972800 −1.475077261850100 −1.580085715978880
x2 −0.302157020359872 −0.454673564762598 0.4651484d76848022
f 5.47910691165820 × 10−8 2.17709293383390 × 10−4 5.12705019470938 × 10−2

Table 4. Comparison of the experimental results for problem04.

Variable
Algorithms

AOA IAOA SCA WOA

x1 −0.000266868453558 −0.000000091835793 −0.120898772911816 −0.310246574315981
x2 −0.000267036157051 0.000013971597535 0.491167568359585 0.467564824328878
x3 −0.000267036274281 0.000030454051416 10.000000000000000 1.071469773086650
x4 0.000000025430197 0.000010000404353 −0.178108600809833 −0.404219784214681
x5 −0.000267039311495 0.000011275918099 5.423242568753400 3.552125620609660
x6 −0.000267036127224 0.000000019800029 −0.049710980654501 −1.834136698070800
x7 0.000000000091855 −0.000000000138437 0.445662462511328 0.286050311387620
x8 0.000267036101457 −0.000000454282127 −10.000000000000000 −2.931846497771810
x9 0.000267033832224 0.000000000736505 −0.144419405019169 −4.812450845354100
x10 0.000267043884482 −0.000002006069864 −0.518105971932846 3.756426716000660
f 1.08498006397337 × 10−9 7.03339003909689 × 10−16 4.13237426374674 × 10−1 6.47066501369328 × 10−1

Variable
Algorithms

GWO HHO DE CSO

x1 0.044653752694561 −0.000047703379713 0.160723693838569 −0.009650846541198
x2 −0.259567674882923 0.000075691075249 0.431923139718368 0.147278561202585
x3 −1.777013199398760 −0.000029713372367 0.072922517980119 −3.148557575646470
x4 0.042606334458592 −0.000050184914825 0.447403957744849 −0.512428980703464
x5 −4.935286036663600 0.000033675529531 −0.197972459731190 −4.175819684412100
x6 −8.146156623785810 0.000067989452634 1.490110445009050 −7.123183974281880
x7 −0.108125274969201 0.000031288762826 0.472265426079125 1.268663892956760
x8 1.747052457418910 0.000048491290536 0.509493705510866 3.198230908839320
x9 −0.311997778279745 0.000063892452193 1.142101578993260 −4.763105818868310
x10 8.430357427064680 −0.000123055431652 −2.110335475212350 9.463108408596410
f 7.56734706927375 × 10−3 6.11971561041781 × 10−10 9.87501536049260 × 10−1 2.18295386757873

15



Mathematics 2022, 10, 2152

Table 4. Cont.

Variable
Algorithms

SMA nAOA dAOA

x1 −0.000000000028677 0.000020144848903 −0.934997016811202
x2 0.000014644312649 −0.000060200695401 −1.295640443505010
x3 0.000038790339140 −0.000020118018817 −5.634966911723890
x4 −0.000000000221797 −0.000060200956330 −4.825343892476190
x5 0.000000055701981 −0.000020122803817 0.269511140973028
x6 −0.000000030051237 −0.000020134693956 −7.253398121182340
x7 0.000000595936232 0.000020123341500 7.557747336452660
x8 −0.000000000025333 0.000020925519435 −5.520361069927860
x9 0.000000799504725 0.000043615727680 −4.709534880735350
x10 0.000000000012983 0.000020120622373 8.954470788407880
f 1.30095438660555 × 10−10 1.50696700666871 × 10−9 2.07190542503982 × 102

Table 5. Comparison of the experimental results for problem05.

Variable
Algorithms

AOA IAOA SCA WOA

x1 0.371964486871792 0.500000000000000 0.471178994397267 0.503978268408352
x2 2.990337880814430 3.141592653589790 3.118271172186020 3.142976305563530
f 1.89048835343036 × 10−4 1.85873810048745 × 10−28 3.41504906318340 × 10−5 2.00099014478417 × 10−7

Variable
Algorithms

GWO HHO DE CSO

x1 0.495722089382004 0.503332577729795 0.299448692445072 0.500482294032500
x2 3.143566564341090 3.142753305279310 2.836927770362990 3.142098043614560
f 1.12835512797232 × 10−6 1.16071617155615 × 10−7 6.25300383824133 × 10−23 2.13609775136897 × 10−8

Variable
Algorithms

SMA nAOA dAOA

x1 0.298949061647857 0.354640044143990 2.956994389007600
x2 2.835691250750600 2.956994389007600 1.890717921128260
f 1.05189651760469 × 10−8 1.59376404093113 × 10−4 3.65946616757579 × 10−3

Table 6. Comparison of the experimental results for problem06.

Variable
Algorithms

AOA IAOA SCA WOA

x1 0.953663829653960 −0.779548045079158 11.147659127176500 1.516510183032980
x2 0.663112382731748 −0.779548045079158 0.900762400732728 0.694394649388567
x3 0.729782844271910 −0.779548045079158 0.919816117314499 10.556407054559600
f 3.35330112498813 × 10−1 1.00553388370096 × 10−20 2.75666643131973 8.65817545834561

Variable
Algorithms

GWO HHO DE CSO

x1 0.781303537791760 −0.782460718139219 −0.779277448448367 −0.765447632695953
x2 0.777872878718449 −0.789339702437282 −0.779700789186745 −0.784775197498564
x3 0.779780469890485 −0.766810453292313 −0.780020611467694 −0.735052686517780
f 5.49159538279891 × 10−4 1.00882211687459 × 10−2 6.71295836563811 × 10−6 2.92512803990831 × 10−1

Variable
Algorithms

SMA nAOA dAOA

x1 −0.779731780102931 −0.437772635064718 −1.056395480177350
x2 −0.779371556451744 −7.659741643877890 6.893981344148980
x3 −0.779303513685515 −2.620897335617900 −1.876924860155790
f 1.03517116885362 × 10−5 1.49720612584788 2.61017698945353 × 104
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Table 7. Statistical results for the NES.

Algorithms
Systems of Nonlinear Equations

problem01 problem02 problem03 problem04 problem05 problem06

AOA best 7.02711 × 10−1 1.20198 × 10−8 8.30574 × 10−12 2.99534 × 10−10 5.32587 × 10−6 1.60969 × 10−8

worst 9.05980 × 10−1 7.47231 × 10−7 9.55457 × 10−3 3.58264 × 10−9 5.96026 × 10−4 1.00599 × 10
mean 8.45666 × 10−1 2.01752 × 10−7 3.18486 × 10−4 1.08498 × 10−9 1.89049 × 10−4 3.35330 × 10−1

std 4.40686 × 10−2 1.78065 × 10−7 1.74442 × 10−3 8.49280 × 10−10 1.40374 × 10−4 1.83668
p-value 3.01986 × 10−11 1.01490 × 10−11 1.07516 × 10−11 3.01986 × 10−11 1.49399 × 10−11 3.01230 × 10−11

IAOA best 1.05462 × 10−10 0.00000 4.93038 × 10−32 2.97972 × 10−19 0.00000 1.81191 × 10−30

worst 1.25230 × 10−9 3.08149 × 10−33 2.09541 × 10−31 5.52546 × 10−15 5.57614 × 10−27 2.98754 × 10−19

mean 4.73406 × 10−10 9.24446 × 10−34 7.27231 × 10−32 7.03339 × 10−16 1.85874 × 10−28 1.00553 × 10−20

std 2.84371 × 10−10 1.43626 × 10−33 4.02152 × 10−32 1.22291 × 10−15 1.01806 × 10−27 5.45273 × 10−20

SCA best 4.64629 × 10−2 1.20156 × 10−8 8.29788 × 10−6 7.08592 × 10−4 7.53679 × 10−9 1.19890 × 10−1

worst 2.98744 × 10−1 8.60445 × 10−4 3.13588 × 10−3 2.83503 2.00649 × 10−4 3.29896 × 10
mean 1.22078 × 10−1 8.82826 × 10−5 5.47683 × 10−4 4.13237 × 10−1 3.41505 × 10−5 2.75667

std 5.72692 × 10−2 2.61875 × 10−4 7.59630 × 10−4 6.58494 × 10−1 4.69615 × 10−5 6.25475
p-value 3.01986 × 10−11 1.01490 × 10−11 1.07516 × 10−11 3.01986 × 10−11 1.49399 × 10−11 3.01230 × 10−11

WOA best 1.87873 × 10−4 6.72146 × 10−14 6.18945 × 10−13 4.04945 × 10−6 2.16928 × 10−11 1.76476 × 10−5

worst 5.56233 × 10−3 1.30541 × 10−7 4.48907 × 10−2 4.99725 4.78904 × 10−6 7.91148 × 10
mean 9.59545 × 10−4 6.92247 × 10−9 4.26773 × 10−3 6.47067 × 10−1 2.00099 × 10−7 8.65818

std 1.06419 × 10−3 2.49080 × 10−8 1.24385 × 10−2 1.07197 8.71177 × 10−7 2.24136 × 10
p-value 3.01986 × 10−11 1.01490 × 10−11 1.07516 × 10−11 3.01986 × 10−11 1.49399 × 10−11 3.01230 × 10−11

GWO best 2.65480 × 10−6 2.31886 × 10−12 1.77817 × 10−8 1.01688 × 10−6 2.21126 × 10−9 9.05730 × 10−5

worst 6.59898 × 10−3 1.73256 × 10−6 9.94266 × 10−2 5.57604 × 10−2 1.70979 × 10−5 1.58625 × 10−3

mean 1.25544 × 10−3 1.13986 × 10−7 3.33932 × 10−3 7.56735 × 10−3 1.12836 × 10−6 5.49160 × 10−4

std 2.25868 × 10−3 4.16137 × 10−7 1.81481 × 10−2 1.36923 × 10−2 3.33417 × 10−6 3.69947 × 10−4

p-value 3.01986 × 10−11 1.01490 × 10−11 1.07516 × 10−11 3.01986 × 10−11 1.49399 × 10−11 3.01230 × 10−11

HHO best 2.03768 × 10−2 8.99794 × 10−31 4.93038 × 10−32 1.21192 × 10−11 7.70372 × 10−34 3.83242 × 10−5

worst 1.33302 × 10−1 1.91904 × 10−6 5.78702 × 10−4 1.00491 × 10−9 3.34700 × 10−6 7.08247 × 10−2

mean 7.79220 × 10−2 6.55986 × 10−8 4.12782 × 10−5 6.11972 × 10−10 1.16072 × 10−7 1.00882 × 10−2

std 2.90524 × 10−2 3.50117 × 10−7 1.19896 × 10−4 2.78236 × 10−10 6.10656 × 10−7 1.45023 × 10−2

p-value 3.01986 × 10−11 1.01490 × 10−11 5.56066 × 10−8 3.01986 × 10−11 1.30542 × 10−10 3.01230 × 10−11

DE best 6.05782 × 10−3 8.15969 × 10−28 2.49399 × 10−20 2.59514 × 10−1 2.59615 × 10−31 4.23182 × 10−11

worst 9.69921 × 10−1 1.19322 × 10−17 5.91181 × 10−7 2.58615 6.37964 × 10−22 1.17012 × 10−4

mean 7.96262 × 10−2 1.31655 × 10−18 3.33313 × 10−8 9.87502 × 10−1 6.25300 × 10−23 6.71296 × 10−6

std 2.40157 × 10−1 2.91169 × 10−18 1.26981 × 10−7 6.21653 × 10−1 1.66035 × 10−22 2.15862 × 10−5

p-value 3.01986 × 10−11 1.01490 × 10−11 1.07516 × 10−11 3.01986 × 10−11 6.22236 × 10−11 3.01230 × 10−11

CSO best 2.82411 × 10−2 7.30711 × 10−11 2.92752 × 10−9 6.03864 × 10−1 2.67109 × 10−10 2.27267 × 10−2

worst 1.34962 × 10−1 7.15408 × 10−9 2.57784 × 10−6 4.34942 1.32416 × 10−7 1.31894
mean 6.61705 × 10−2 1.49505 × 10−9 6.53698 × 10−7 2.18295 2.13610 × 10−8 2.92513 × 10−1

std 2.71383 × 10−2 1.66707 × 10−9 5.69101 × 10−7 1.05318 3.36401 × 10−8 3.41112 × 10−1

p-value 3.01986 × 10−11 1.01490 × 10−11 1.07516 × 10−11 3.01986 × 10−11 1.49399 × 10−11 3.01230 × 10−11

SMA best 5.18988 × 10−4 1.26496 × 10−7 2.37253 × 10−11 2.08208 × 10−11 6.22359 × 10−11 3.95601 × 10−7

worst 1.17331 × 10−2 2.46549 × 10−4 5.80093 × 10−7 2.89907 × 10−10 5.94920 × 10−8 4.75099 × 10−5

mean 4.47411 × 10−3 2.89317 × 10−5 5.98652 × 10−8 1.30095 × 10−10 1.05190 × 10−8 1.03517 × 10−5

std 3.00476 × 10−3 5.64857 × 10−5 1.28713 × 10−7 7.25135 × 10−11 1.30068 × 10−8 1.04158 × 10−5

p-value 3.01986 × 10−11 1.01490 × 10−11 1.07516 × 10−11 3.01986 × 10−11 1.49399 × 10−11 3.01230 × 10−11

nAOA best 4.73537 × 10−1 1.16733 × 10−9 3.11364 × 10−12 3.28064 × 10−10 2.13953 × 10−5 7.56334 × 10−8

worst 7.39125 × 10−1 9.06936 × 10−4 8.22290 × 10−1 2.69391 × 10−9 4.30978 × 10−4 4.49162 × 10
mean 6.74564 × 10−1 3.07109 × 10−5 2.77064 × 10−2 1.50697 × 10−9 1.59376 × 10−4 1.49721

std 5.68300 × 10−2 1.65502 × 10−4 1.50077 × 10−1 6.31248 × 10−10 7.06193 × 10−5 8.20053
p-value 3.01986 × 10−11 1.01490 × 10−11 1.07516 × 10−11 3.01986 × 10−11 1.49399 × 10−11 3.01230 × 10−11

dAOA best 2.01052 × 10−1 8.99368 × 10−9 2.54429 × 10−4 3.09426 × 10−10 5.69606 × 10−6 8.50407 × 10−4

worst 6.87872 1.28121 × 10−3 4.68145 × 10−1 9.87499 × 102 1.56431 × 10−2 3.78263 × 105

mean 1.91504 3.22387 × 10−4 6.56368 × 10−2 2.07191 × 102 3.65947 × 10−3 2.61018 × 104

std 2.16147 3.20053 × 10−4 1.21675 × 10−1 2.92259 × 102 5.26309 × 10−3 8.07193 × 104

p-value 3.01986 × 10−11 1.01490 × 10−11 1.07516 × 10−11 3.01986 × 10−11 1.49399 × 10−11 3.01230 × 10−11
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Problem 01. The description of the system is as follows [54]:




x1 − 0.25428722− 0.18324757x4x3x9 = 0
x2 − 0.37842197− 0.16275449x1x10x6 = 0
x3 − 0.27162577− 0.16955071x1x2x10 = 0
x4 − 0.19807914− 0.15585316x7x1x6 = 0
x5 − 0.44166728− 0.19950920x7x6x3 = 0
x6 − 0.14654113− 0.18922793x8x5x10 = 0
x7 − 0.42937161− 0.21180486x2x5x8 = 0
x8 − 0.07056438− 0.17081208x1x7x6 = 0
x9 − 0.34504906− 0.19612740x10x6x8 = 0
x10 − 0.42651102− 0.21466544x4x8x1 = 0

(19)

There are ten equations in the system, where xi ∈ [−2, 2], i = 1, . . . , n, and n = 10.
The aim was to obtain a higher precision solution x (x1, . . . , xn) through the proposed
optimization method, and the results are recorded in Table 1. The IAOA is better than
others compared with several algorithms. The WOA ranks second, and the rest obtain
competitive results. The convergence curve for this problem shows in Figure 4a.

Figure 4. Cont.
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Figure 4. Convergence curve for tackling the NES (problem01–06 (a–f)).

Problem 02. The description of the system is as follows [55]:





(1− R)
[(

D
10(1+β1)

− x1

)
· exp

(
10x1

1+ 10x1
γ

)]
− x1 = 0

(1− R)
[(

D
10 − β1x1 − (1 + β2)x2

)
· exp

(
10x2

1+ 10x2
γ

)]
+ x1 − (1 + β2)x2 = 0

(20)

There are two equations in system, where xi ∈ [0, 1], i = 1, . . . , n, and n = 2. In Table 2,
the experimental results for this problem proved that the proposed IAOA outperforms the
other methods. The DE ranks second, and the rest obtain competitive results. The AOA,
WOA, GWO, HHO, and CSO are in the third echelon. Furthermore, the rest are in the
fourth echelon. The convergence curve for this problem is shown in Figure 4b.

Problem 03. The description of the system is as follows [13]:




sin
(
x3

1
)
− 3x1x2

2 − 1 = 0

cos
(
3x2

1x2
)
−
∣∣x3

2

∣∣+ 1 = 0
(21)

There are two equations in the system, where xi ∈ [−2, 2], i = 1, . . . , n, and n = 2. The
simulation results for this problem are shown in Table 3. It revealed that the IAOA is better
than the other algorithms. The DE, CSO, and SMA are in the second echelon. The rest are
in the third echelon. The convergence curve for this problem is shown in Figure 4c.

Problem 04. The description of the system is as follows [54]:




x2 + 2x6 + x9 + 2x10 − 10−5 = 0
x3 + x8 − 3 · 10−5 = 0
x1 + x3 + 2x5 + 2x8 + x9 + x10 − 5 · 10−5 = 0
x4 + 2x7 − 10−5 = 0
0.5140437 · 10−7x5 − x2

1 = 0
0.1006932 · 10−6x6 − 2x2

2 = 0
0.7816278 · 10−15x7 − x2

4 = 0
0.1496236 · 10−6x8 − x1x3 = 0
0.6194411 · 10−7x9 − x1x2 = 0
0.2089296 · 10−14x10 − x1x2

2 = 0

(22)

There are ten equations in the system:xi ∈ [−10, 10], i = 1, . . . , n, and n = 10. Table 4
shows that the IAOA outperforms the others, and AOA, HHO, SMA, and nAOA obtain
the competitive results. The convergence curve for this problem is shown in Figure 4d.
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Problem 05. The description of the system is as follows [17]:




0.5 sin(x1x2)− 0.25
π x2 − 0.5x1 = 0

(
1− 0.25

π

)
[exp(2x1)− e] + e

π x2 − 2ex1 = 0
(23)

There are two equations in the system, where x1 ∈ [0.25, 1] and x2 ∈ [1.5, 2π]. In
Table 5, the IAOA obtained the optimal solution, DE obtained the suboptimal solution,
and the rest of the algorithms obtained competitive results. The convergence curve for this
problem is shown in Figure 4e.

Problem 06. The description of the system is as follows [56]:





β11 + β12x2
2 + β13x2

3 + β14x2x3 + β15x2
2x2

3 = 0

β21 + β22x2
3 + β23x2

1 + β24x3x1 + β25x2
3x2

1 = 0

β31 + β32x2
1 + β33x2

2 + β34x1x2 + β35x2
1x2

2 = 0

(24)

There are three equations in the system, where the details about βij can be found in
the literature [56]: xi ∈ [−20, 20], i = 1, . . . , n, and n = 3. In Table 6, the proposed IAOA
outperforms the other algorithms; the GWO, SMA, and DE get competitive results. The
convergence curve for this problem is shown in Figure 4f.

The statistical results show that the IAOA outperforms all algorithms on the remaining
problems in Table 7. These demonstrate that the IAOA has stronger ability and higher
stability than the other methods when solving a nonlinear system of equations. In Figure 4,
IAOA’s convergence speed is slower than the others before the 110th iteration, but after
that, the IAOA still maintains a high convergence speed and achieves the optimum at the
200th iteration for problem01; for problem02 and problem03, the IAOA has the fastest speed
throughout the whole process and reaches the optimum at the 120th iteration and before
120 iterations, respectively; for problem04, the IAOA is slower than the other algorithms
before 70 iterations; however it continues to converge after that and obtains the optimal
value after 200 iterations; for problem05, there is a close convergence rate for the IAOA and
DE, but a better value is obtained by the IAOA; for problem06, it has a slower convergence
speed than the others before 20 iterations, but after that, the fastest convergence rate is
obtained by the IAOA. All the experimental results prove that the algorithm proposed in
this paper has the characteristics that include a fast convergence speed, high convergence
accuracy, high solution quality, good stability, and strong robustness when dealing with
nonlinear systems of equations. The p-values of almost all test functions in the table are
less than 0.05, indicating that the IAOA is significantly different from the other algorithms.

4.3. Numerical Integration

The performance of the proposed new method is evaluated in this section using
the ten numerical integration problems in Table 8, where F08 is a singular integral and
F10 is an oscillatory integral. The IAOA compared with the traditional methods and
population-based algorithms in tackling these cases. Tables 9–12 show the best integral
values obtained by solving ten problems in 30 independent runs, where the R-method,
T-method, S-method, H-method, G32, and 2n × L5 represent the traditional methods
(rectangle method, trapezoid method, Simpson method, Hermite interpolation method,
the 32-point Gaussian formula, and the 5-point Gauss-Roberto-Legendre formula). The
rest are swarm intelligence algorithms applied to solve numerical integration problems
(evolutionary strategy method [24], particle swarm optimization [25], differential evolution
algorithm [27], and improved bat algorithm [28]). The population size and the maximum
number of iterations are set to 30 and 200 during the process, respectively. In Table 9, for
F01, the solution accuracy of the IAOA is higher than the other methods, and then, the
S-method, FN, ES, DEBA, PSO, and DE obtain close results; for F02, the IAOA achieves
the best result, and the FN, ES, DEBA, PSO, and DE are in the second echelon; for F03, the
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IAOA achieves the better result compared to the FN, ES, and PSO. The MBFES, DEBA, and
DE rank third. In Table 10, for F04, the IAOA gets a perfect result, and the FN, ES, DEBA,
PSO, and DE obtain similar values; for F05, the IAOA ranks first, and the FN, ES, DEBA,
PSO, and DE rank second; for F06, the IAOA, FN, and DE achieve competitive results.
For F07–F09, the IAOA obtains the best value, and the FN, ES, and DEBA rank second
in Table 11. The traditional methods (R-method, T-method, and S-method) fail to solve
F10; therefore, G32 and 2n × L5 are utilized to tackle this problem. In Table 12, the IAOA
and DEBA obtain similar values and ranks first. Tables 13 and 14 are statistical results for
the numerical integration (F01–F10) are obtained by swarm intelligence algorithms. For
F01–F09, the IAOA is better than the other algorithms across all the assessment criteria
(the best value, the worst value, mean value, and standard deviation). However, for F10,
the IAOA achieves the only optimal result in the best value, and the rest rank second, in
which the DEBA obtains the best results. From Figure 5, the method proposed in this paper
has the fastest convergence speed and convergence accuracy for all the problems except
F10. The above experimental results prove that the IAOA has fast convergence speed, high
solution accuracy, and strong robustness. These enable the IAOA to handle numerical
integration problems; therefore, it is a worthwhile direction to apply the IAOA to solve the
integration solution problems in practical engineering applications.

Table 8. Details of the integrations F01–F10.

Integrations Details Range

F01 f (x) = x2 [0, 2]
F02 f (x) = x4 [0, 2]
F03 f (x) =

√
1 + x2 [0, 2]

F04 f (x) = 1
1+x [0, 2]

F05 f (x) = sin x [0, 2]
F06 f (x) = ex [0, 2]
F07 f (x) =

√
1 + (cos x)2 [0, 48]

F08
f (x) =





e−x, 0 ≤ x < 1
e−x/2, 1 ≤ x < 2
e−x/3, 2 ≤ x ≤ 3

[0, 3]

F09 f (x) = e−x2 [0, 1]
F10 f (x) = x cos x sin xmx, (m = 10, 20, 30) [0, 2π]

Table 9. Comparison of the experimental results for F01–F03.

Methods
Integrations

F01 F02 F03

R-method 2.000 2.000 2.828
T-method 4.000 16.000 3.236
S-method 2.667 6.667 2.964
H-method 2.830 7.066 3.048

FN [26] 2.667 6.3995 2.95789
MBFES [24] 2.659 6.338 2.956

ES [24] 2.666 6.398 2.9577
DEBA [28] 2.66698573 6.401201 2.958169
PSO [25] 2.666 6.398 2.9578
DE [27] 2.667 6.3995 2.958
AOA 2.61006134 6.20147125 2.94004382
IAOA 2.66661710 6.40000000 2.95788286
Exact 2.66666667 6.40000000 2.95788572
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Table 10. Comparison of the experimental results for F04–F06.

Methods
Integrations

F04 F05 F06

R-method 1.000 1.683 5.437
T-method 1.333 0.909 8.389
S-method 1.111 1.425 6.421
H-method 1.112 1.452 6.691

FN [26] 1.0986 1.416 6.389
MBFES [24] 1.090 1.419 6.390

ES [24] 1.098 1.416 6.388
DEBA [28] 1.098754 1.416082 6.388921
PSO [25] 1.0985 1.416 6.3887
DE [27] 1.099 1.416 6.389
AOA 1.08923818 1.40101546 6.29531692
IAOA 1.09861229 1.41613957 6.38901606
Exact 1.09861229 1.41614684 6.38905610

Table 11. Comparison of the experimental results for F07–F09.

Methods
Integrations

F07 F08 F09

R-method 52.13975183 1.51349542 0.77782078
T-method 62.43737140 1.61179305 0.74621972
S-method 117.61490334 2.48720505 0.74683657
H-method 58.99776108 1.56164258 0.75403569

FN [26] 58.4705 1.54604 0.746823
MBFES [24] 58.48828 1.5455 0.74652

ES [24] 58.47065 1.5459805 0.74683
DEBA [28] 58.470505372351 1.5460388345767 0.7468269544604

PSO 56.80139775 1.52897330 0.74328459
DE 56.04598085 1.52425900 0.74202909

AOA 56.17497970 1.52641514 0.74223182
IAOA 58.47046915 1.54603603 0.74682413
Exact 58.47046915 1.54603603 0.74682413

Table 12. Comparison of the experimental results for F10.

Methods
Integrations

F10 (m = 10) F10 (m = 20) F10 (m = 30)

G32 −0.6340207 −1.2092524 −1.5822272
2n × L5 −0.55875940 −0.27789620 −0.18508448

H-method −0.21043575 0.17309499 −0.02945756
MBFES [24] −0.68134052 −0.37280425 −0.17305621

ES [24] −0.65034080 −0.30583435 −0.23556815
DEBA −0.63466518 −0.31494663 −0.20967248
PSO −1.50150183 −1.33949737 −1.10170197

DE [27] −0.63982173 −0.31035906 −0.21438251
AOA −3.07253909 −0.56489050 −0.42642997
IAOA −0.63466518 −0.31494663 −0.20967248
Exact −0.63466518 −0.31494663 −0.20967248
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Table 13. Statistical results for the numerical integrations (F01–F06).

Algorithms
Integrations

F01 F02 F03 F04 F05 F06

AOA best 5.660532 × 10−2 1.985287 × 10−1 1.784189 × 10−2 9.374106 × 10−3 1.513137 × 10−2 9.373918 × 10−2

worst 6.785842 × 10−2 2.466178 × 10−1 2.112411 × 10−2 1.103594 × 10−2 1.827849 × 10−2 1.105054 × 10−1

mean 6.196485 × 10−2 2.238141 × 10−1 1.970905 × 10−2 1.041648 × 10−2 1.679104 × 10−2 1.013200 × 10−1

std 2.473863 × 10−3 1.277362 × 10−2 6.790772 × 10−4 4.381854 × 10−4 7.886715 × 10−4 3.985235 × 10−3

IAOA best 4.956295 × 10−5 0.000000 2.855397 × 10−6 0.000000 7.267277 × 10−6 4.004088 × 10−5

worst 1.070986 × 10−4 9.632589 × 10−6 1.471988 × 10−5 7.241931 × 10−6 3.035345 × 10−5 1.136393 × 10−4

mean 7.267766 × 10−5 9.617999 × 10−7 6.357033 × 10−6 1.274560 × 10−6 1.595556 × 10−5 7.989662 × 10−5

std 1.561025 × 10−5 2.672207 × 10−6 2.828416 × 10−6 1.942626 × 10−6 5.989208 × 10−6 2.032255 × 10−5

PSO [25] best 3.966996 × 10−2 1.282142 × 10−1 1.263049 × 10−2 6.772669 × 10−3 1.115352 × 10−2 6.495427 × 10−2

worst 5.467546 × 10−2 1.880821 × 10−1 1.614274 × 10−2 9.112184 × 10−3 1.385859 × 10−2 9.718717 × 10−2

mean 4.406724 × 10−2 1.593799 × 10−1 1.405265 × 10−2 7.745239 × 10−3 1.208230 × 10−2 7.327404 × 10−2

std 3.262431 × 10−3 1.528260 × 10−2 9.707823 × 10−4 6.532329 × 10−4 7.146743 × 10−4 6.698801 × 10−3

DE [27] best 5.444535 × 10−2 1.776272 × 10−1 1.740389 × 10−2 9.410606 × 10−3 1.537737 × 10−2 9.229490 × 10−2

worst 6.223208 × 10−2 1.992612 × 10−1 1.943564 × 10−2 1.043440 × 10−2 1.668422 × 10−2 1.003285 × 10−1

mean 5.887766 × 10−2 1.887098 × 10−1 1.881844 × 10−2 1.003350 × 10−2 1.606658 × 10−2 9.665791 × 10−2

std 1.717478 × 10−3 5.056921 × 10−3 4.230737 × 10−4 2.412656 × 10−4 3.636407 × 10−4 1.886442 × 10−3

DEBA [28] best 5.858312 × 10−2 1.958779 × 10−1 1.797733 × 10−2 9.632554 × 10−3 1.541447 × 10−2 9.078063 × 10−2

worst 6.805128 × 10−2 2.566962 × 10−1 2.194973 × 10−2 1.144459 × 10−2 1.824156 × 10−2 1.096576 × 10−1

mean 6.306158 × 10−2 2.287206 × 10−1 2.005007 × 10−2 1.048558 × 10−2 1.700868 × 10−2 1.008133 × 10−1

std 2.059708 × 10−3 1.384008 × 10−2 8.428458 × 10−4 4.319549 × 10−4 7.193521 × 10−4 4.457879 × 10−3

ES [24] best 3.634854 × 10−2 1.053634 × 10−1 1.178783 × 10−2 6.152581 × 10−3 9.742411 × 10−3 6.028495 × 10−2

worst 3.704455 × 10−2 1.076016 × 10−1 1.197536 × 10−2 6.272540 × 10−3 9.921388 × 10−3 6.120127 × 10−2

mean 3.662145 × 10−2 1.064150 × 10−1 1.189432 × 10−2 6.206519 × 10−3 9.813727 × 10−3 6.070549 × 10−2

std 1.618502 × 10−4 4.726931 × 10−4 4.687831 × 10−5 2.718416 × 10−5 4.560503 × 10−5 2.303572 × 10−4

Table 14. Statistical results for numerical integrations (F07–F10).

Algorithms
Integrations

F07 F08 F09 F10 (m = 10) F10 (m = 20) F10 (m = 30)

AOA best 2.295489 1.962088 × 10−2 4.592313 × 10−3 2.437873 2.499438 × 10−1 2.167574 × 10−1

worst 2.524012 2.400262 × 10−2 5.421672 × 10−3 3.611012 3.429053 3.115022
mean 2.424997 2.226327 × 10−2 5.031127 × 10−3 3.225836 1.617425 9.721188 × 10−1

std 5.634089 × 10−2 1.017542 × 10−3 2.167135 × 10−4 2.620454 × 10−1 9.081448 × 10−1 7.417795 × 10−1

IAOA best 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
worst 4.285648 × 10−4 9.665730 × 10−6 7.650313 × 10−9 4.941453 × 10−4 8.932970 × 10−4 4.121824 × 10−4

mean 5.817808 × 10−5 1.079836 × 10−6 1.094646 × 10−9 6.843408 × 10−5 9.159354 × 10−5 6.487479 × 10−5

std 9.331558 × 10−5 2.377176 × 10−6 2.051844 × 10−9 1.219906 × 10−4 1.972260 × 10−4 9.370544 × 10−5

PSO [25] best 1.093717 1.499542 × 10−2 3.212480 × 10−3 5.688245 × 10−1 1.024550 8.920294 × 10−1

worst 2.077297 2.010782 × 10−2 4.674802 × 10−3 1.599995 1.485451 1.953066
mean 1.669071 1.706272 × 10−2 3.539538 × 10−3 8.668366 × 10−1 1.219538 1.489201

std 2.419795 × 10−1 1.205259 × 10−3 3.409595 × 10−4 2.759571 × 10−1 1.216184 × 10−1 2.065585 × 10−1

DE [27] best 2.255785 2.091958 × 10−2 4.575317 × 10−3 2.543013 3.461794 3.889322
worst 2.522405 2.254710 × 10−2 5.009106 × 10−3 3.236645 4.684467 5.201887
mean 2.424488 2.177702 × 10−2 4.795040 × 10−3 3.015091 4.242609 4.687029

std 5.766110 × 10−2 4.602533 × 10−4 1.146454 × 10−4 1.967397 × 10−1 2.313007 × 10−1 2.923496 × 10−1

DEBA [28] best 2.361570 × 10−1 2.057410 × 10−2 4.776881 × 10−3 6.043389 × 10−14 1.208677 × 10−13 5.319404 × 10−13

worst 2.468831 2.474051 × 10−2 5.441200 × 10−3 6.043389 × 10−14 1.208677 × 10−13 5.319404 × 10−13

mean 1.163514 2.294436 × 10−2 5.157892 × 10−3 6.043389 × 10−14 1.208677 × 10−13 5.319404 × 10−13

std 6.919695 × 10−1 9.765442 × 10−4 1.475304 × 10−4 3.851264 × 10−29 7.702528 × 10−29 3.081011 × 10−28

ES [24] best 1.298269 1.319474 × 10−2 3.051746 × 10−3 1.460773 1.634373 1.152204
worst 1.321623 1.341748 × 10−2 3.121709 × 10−3 1.665912 2.355153 2.380726
mean 1.308546 1.331615 × 10−2 3.081151 × 10−3 1.568781 1.869004 1.719830

std 5.523404 × 10−3 5.640941 × 10−5 1.521690 × 10−5 4.627499 × 10−2 1.831224 × 10−1 2.898513 × 10−1

23



Mathematics 2022, 10, 2152

Figure 5. Cont.
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Figure 5. Convergence curve for the numerical integrations (F01–F10 (a–l)).

4.4. Sovling Engineering Problem

Compared with three-dimensional motion, planar motion restricts the robot to a single
plane and is simpler to calculate. However, most robot mechanisms can simplify plane
mechanisms or planes for tackling. Now, the robotic arm plays an increasingly important
role, which has also attracted the extensive attention of researchers. Improving the working
efficiency of the robotic arm under the premise of low energy consumption is a challenging
problem facing the industrial field [57]. The kinematics of the robotic arm mainly include
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forward kinematics and inverse kinematics. One is the pose of the end effector determined
according to the rotation angle of each joint based on the base coordinates; the other is
taking the end joint as the starting point and, finally, back-to-base coordinates. The inverse
kinematics problem is essentially a nonlinear equation problem. The tasks performed by
the robotic arm are usually described by its base coordinate system in practical applications.
Therefore, the inverse kinematics solution is particularly important in the field of the
control. The robotic arm model [58] is shown in Figure 6a, and the mathematical model
in coordinates is shown in Figure 6b. The nonlinear equation system for this model is
as follows.





10, 000× ((a× sin(A2)− b× sin(A2 + B2) + c× sin(A2 + B2 + C2)− X)2) = 0
10, 000× ((h− a× cos(A2)− b× cos(A2 + B2) + c× cos(A2 + B2 + C2)−Y)2) = 0
|A2 − A1|+ |B2 − B1|+ |C2 − C1| = 0

(25)

where a = 16.5 cm; b = 7.9 cm; c = 5.3 cm; and h = 7.4 cm (A1 = 150◦, B1 = 132.7026◦, and
C1 = 127.0177◦) are the initial angles of the three joints; (X = 10 cm, Y = 10 cm) is the
coordinate of the end effector; and (A2, B2, and C2) are the aims required to obtain three
joint angles in the final stage. The first two equations in the nonlinear equation system find
the three joint angles when the end effector reaches the target position (X, Y), and the third
equation ensures that the change of the joint angle is the smallest to meet the requirements
for saving energy.

Figure 6. (a) The model of a robotic arm, and (b) a mathematical model for a robotic arm.

Tables 15–18 demonstrate that the IAOA obtains the closest results to the initial angle
compared with the PSO, GA and PSSA in solving the inverse kinematics problem of the
robotic arm. This shows that the method proposed in this paper allows the robotic arm to
consume less energy during movement. In Table 19, f represents the fitness value obtain
by Equation (25) and is the difference between the final angle and initial angle of the
joint. Obviously, the IAOA achieves the best results for both evaluations. Therefore, it is
a great significance to the stability, operation efficiency, operation accuracy, and energy
consumption of the robotic arm trajectory control. A new method is provided for the
inverse motion solution, which makes up for the deficiency of the traditional method.

26



Mathematics 2022, 10, 2152

Table 15. The results obtained by the IAOA for the engineering problem.

Algorithm
Joint Angles

A2 B2 C2

IAOA initial angle 150 132.7026 127.0177
Result 145.7291 139.0180 123.9864

Table 16. The results obtained by the PSO for the engineering problem.

Algorithm
Joint Angles

A2 B2 C2

PSO initial angle 150 132.7026 127.0177
result 139.6534 68.2235 96.4886

Table 17. The results obtained by the GA for the engineering problem.

Algorithm
Joint Angles

A2 B2 C2

GA initial angle 150 132.7026 127.0177
result 129.8653 118.9625 52.6691

Table 18. The results obtained by the PSSA for the engineering problem.

Algorithm
Joint Angles

A2 B2 C2

PSSA [58] initial angle 150 132.7026 127.0177
result 147.1015 92.5371 89.5116

Table 19. Comparison of the experimental results for the IAOA, PSO, GA, and PSSA.

Objective Funtions
Algorithms

IAOA PSO GA PSSA

f 1.3618 × 10 3.0608 × 106 3.2329 × 106 2.0199 × 105

|A2 − A1|+ |B2 − B1|+ |C2 − C1| 13.6176 105.3548 118.2234 80.5701

5. Conclusions and Future Works

In this paper, the shortcomings are analyzed of the traditional AOA so that an im-
proved AOA based on a population control strategy is proposed to overcome the weakness.
The algorithm can find the best global value faster by classifying the population and adap-
tively controlling the number of individuals in each subpopulation. This method effectively
enhances the information sharing strength between individuals, can better search the space,
avoids falling into the local optimum, accelerates the convergence process, and improves
the optimization accuracy. The AOA, IAOA, and some other algorithms are compared
based on solving 6 nonlinear systems of equations, 10 numerical integrations, and an engi-
neering problem. The experimental results show that the IAOA can solve these problems
well and outperform the other algorithms. In the future, the IAOA can be used to solve
more nonlinear problems in practical engineering applications. Secondly, it can try to
solve multiple integrals. Finally, the algorithm can be further improved and enhanced in
its performance.
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Abstract: This paper focuses on a high-dimensional semi-parametric regression model in which
a partially linear model is used for the parametric part and the B-spline basis function approach
is used to estimate the unknown function for the non-parametric part. Within the framework of
this model, the constrained least squares estimation is investigated, and the alternating-direction
multiplier method (ADMM) is used to solve the model. The convergence is proved under certain
conditions. Finally, numerical simulations are performed and applied to workers’ wage data from
CPS85. The results show that the ADMM algorithm is very effective in solving high-dimensional
partially linear models.
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1. Introduction

With the rapid development of modern technology, many fields have generated high-
dimensional data, such as in biological information, biomedicine, meteorology, geography,
econometrics, machine learning, etc. The term “high-dimensional” refers to the fact that
the number of variables in data is much larger than the number of samples. In practical
situations, the actual structure of a model is often unknown. If only parametric or non-
parametric regression models are used for statistical inference, the results will produce
large biases and erroneous conclusions. Therefore, semi-parametric regression models came
into being in the 1980s, and Engle first proposed semi-parametric regression models, which
contain both parametric and non-parametric components. These are more widely used than
parametric or non-parametric models. A semi-parametric regression model is a statistical
model in which:

Y = g(X, β) + m(U) + ε, (1)

where Y is a real-valued response variable, β ∈ Rp is a p-dimensional unknown parameter
vector, X is a d-dimensional covariate, and g(·, ·) is a known and measurable function.
U ∈ [0, 1] is a random variable, m(·) is a smooth unknown function defined on [0, 1], and ε
is a random error.

This paper focuses on high-dimensional semi-parametric regression models in which a
partially linear model is used for the parametric part. A partially linear model was proposed
by Engle [1] in 1986 when he studied weather and electricity problems. The response
variables of the model had linear relationships with some covariates and nonparametric
relationships with other covariates, so the partially linear model combined the advantages
of the interpretability of linear models with the flexibility of non-parametric models. Partial
linear models have been studied by many scholars, such as Heckman (1986) [2], Xu (2019) [3],
Chen (2020) [4], Auerbach (2022) [5], etc., and they have achieved many results. Among
them, Heckman (1986) [2] proposed a partially linear model with a smooth spline and
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obtained the consistency and asymptotic normality of the parameter estimation based on
Bayesian estimation. Härdle (2000) [6] reviewed a series of studies on partially linear models.
In the non-parametric part, the B-spline basis function method was used to estimate the
unknown function. The B-spline basis function method is a global smoothing method, and
its calculation accuracy and efficiency are relatively high. Numerous scholars have studied
and achieved many results for high-dimensional data, such as those of Lasso [7–9], SCAD
(smoothly clipped absolute deviation) [10–12], and MCP (minimax concave penalty) [13,14],
and many scholars have also performed much research on high-dimensional partially linear
models. Xie (2009) [10] studied SCAD-penalized regression in high-dimensional partially
linear models by using polynomial regression splines to estimate the non-parametric part;
Ni (2009) [15] proposed a double-penalty partially linear variable selection method that used
smooth splines to estimate the non-parametric part. In the case of parameter dispersion,
Chen (2012) [16] studied the variable selection problem for the contour-adaptive Elastic-Net
for a partially linear model with high-dimensional covariates; Wang (2017) [17] studied
constrained-contour least squares estimation based on contour Lagrange multiplier test
statistics with linear constraints and gave the convergence speed and asymptotic normality
of the least squares estimation.

Wang considered the following partially linear regression model (PLM):

Y = XTβ + BTγ + ε, (2)

where Y is a univariate response variable, X = (X1, . . . , Xp)T ∈ Rp, and Z ∈ R are explana-
tory variables. We denote Y = (Y1, . . . , Yn)T; X = (X1, . . . , Xn)T ; β = (β1, . . . , βp)T is an
unknown p-dimensional parameter vector; ε = (ε1, . . . , εn)T. B = B(Z) = (B1(Z), . . . , Bmn(Z))T

is a set of B-spline basis functions of order r, and γ = (γ1, . . . , γmn)
T is a spline coeffi-

cient vector.
Let (Y1; XT

1 ; Z1) . . . (Yn; XT
n ; Zn) be an independent identically distributed sample of

the size of the model. We denote Xi = (Xi1, . . . , Xip)
T; model (2) can be approximated by:

Yi = Xi
Tβ + B(Zi)

Tγ + εi. (3)

From Equation (3), we can obtain ε = Y−Xβ− Bγ. By using the least squares method
to estimate the parameters β and γ, minimizing the error is equivalent to:

min
β,γ

1
2
‖Y− Xβ− Bγ‖2. (4)

In practice, the parameter estimates can also be improved by adding prior information
about the regression parameters. The constraint condition is the profile Lagrange multiplier
test statistic proposed by Wei and Wu (2008) [18]:

Rβ = d, (5)

where R is a given k× p matrix whose rank is k, and d is a known k-dimensional vector.
The study in this paper is equivalent to the solution of the following optimization

problem:
min
β,γ

1
2‖Y− Xβ− Bγ‖2,

s.t.Rβ = d.
(6)

Wang (2017) [17] studied restricted profile least squares estimation, and a Lagrangian
function was constructed based on linear constraints. The parameter estimation was per-
formed by using the Lagrange multiplier method. The results showed that the algorithm
was efficient when parameter information was available.

Our study considers the optimization problem in (6) by constructing an augmented
Lagrangian function with linear constraints and using the alternating-direction method
of multipliers (ADMM) to solve the model. The Lagrange multiplier update is a kind of
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ascending iteration, and its convergence can only be moderately accelerated. Therefore, the
Lagrange multiplier method is more time-consuming. The augmented Lagrange multiplier
method is a method that combines the Lagrange multiplier method and a penalty function
method in one piece, so it is a simple and effective method. Hestenes [19] and Powell [20]
first proposed the augmented Lagrangian function and multiplier method for constrained
optimization in the late 1960s. The ADMM [21] is a classical algorithm for solving nonlinear
problems that was proposed by Glowinski and Marroco in the 1970s. The ADMM is very
suitable for convex optimization [22]. This algorithm has a large number of applications
in different fields, such as regularized estimation [23], image processing [24], machine
learning [25], optimal control [26], and resource allocation for wireless networks [27]. When
the scale of a problem is relatively large, a distributed algorithm is faster. Considering the
characteristics of the optimization problem in (6), it can be solved in blocks. This is suitable
for the algorithmic framework of the ADMM, so this paper will use the ADMM to solve
the high-dimensional partially linear model.

2. Introduction to the ADMM Algorithm

In this part, we summarize some useful content for the following discussion.
Firstly, we briefly review the basic knowledge of the ADMM. Our motivation is to

apply the ADMM to solve the model in this paper. Let us start from a general convex
minimization problem with a separable objective function and linear constraints:

min f (x) + g(z),
s.t.Ax + Bz = c,

(7)

where x ∈ Rm, z ∈ Rn, A ∈ Rp×m, B ∈ Rp×n, c ∈ Rp, f : Rm ∈ R, and g : Rn ∈ R. x
and z are independent variables. The augmented Lagrangian function of the minimization
problem is:

Lp(x, y, z) = f (x) + g(z) + yT(Ax + Bz− c) +
p
2
‖Ax + Bz− c‖2

2, (8)

where y is the Lagrange multiplier and p > 0 is a penalty parameter. The minimization
problem can be solved with the augmented Lagrange multiplier method. With a given y0,
the iterative scheme of the augmented Lagrangian function for the minimization problem is:

{
(xk+1, zk+1) := arg min{Lp(x, y, zk)},
yk+1 := yk − p(Axk+1 + Bzk+1 − c).

(9)

The iterative scheme is an application of the augmented Lagrangian function method
for solving the above iterations, which require the simultaneous polarization of the variables
x and z in each iteration. In addition, the ADMM algorithm decomposes the above iteration
into two parts [28] and continuously minimizes the variables; it is expressed as follows:





xk+1 := arg min{Lp(x, yk, zk)},
zk+1 := arg min{Lp(xk+1, y, zk)},

yk+1 := yk − p(Axk+1 + Bzk+1 − c).
(10)

The ADMM is widely used, and it is of interest that the subproblem generated by the
ADMM must exist in the form of an analytical solution in each iteration.

3. Model and Algorithm

In this section, we will apply the ADMM algorithm to solve the minimization model
in this paper and to derive the analytical solution form of each subproblem.
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3.1. The High-Dimensional Partially Linear Model

For the optimization problem in (6), by using the augmented Lagrange multiplier
method, the constrained programming problem is transformed into an unconstrained
optimization problem, and the augmented Lagrangian function is:

min Lρ(β, γ, λ) =
1
2
‖Y− Xβ− Bγ‖2 + 〈λ, Rβ− d〉+ ρ

2
‖Rβ− d‖2. (11)

Using the alternating-direction method of multipliers (ADMM), its n-step iteration
starts from a given (βn, λn) with:





γn+1 = arg min
γ

Lρ(βn, γ, λn),

βn+1 = arg min
β

Lρ(β, γn+1, λn),

λn+1 = λn + ρ(Rβn+1 − d).

(12)

We get the new iteration point at (γn+1, βn+1, λn+1).

3.2. Solution of the ADMM for High-Dimensional Partially Linear Models

After a simple calculation, the γ-subproblem in Equation (11) can be written as the
following equation:

γn+1 = arg min
γ
{1

2
‖Y− Xβn − Bγ‖2}. (13)

According to the above method, one can find the partial derivative of γ for any given β:

∂Lρ(β, γ, λ)

∂γ
= −B(Y− Xβn − Bγ) = 0. (14)

The analytical solution of γ can be obtained in the form of:

γn+1 = (BTB)−1BT(Y− Xβn). (15)

For the analytical solution of β, the objective function can be solved by substituting γ
into Equation (11):

βn+1 = arg min
β
{1

2

∥∥∥Y− Xβ− Bγn+1
∥∥∥

2
+ 〈λn, Rβ− d〉+ ρ

2
‖Rβ− d‖2}, (16)

with the following partial derivatives for β:

∂Lρ(β, γn+1, λn)

∂β
= (XXT + ρRRT)−1(XT(Y− Bγn+1) + RT(ρd− λn)) = 0. (17)

The solutions γn+1, βn+1, and λn+1 are solved by calculating:




γn+1 = (BTB)−1BT(Y− Xβn),
βn+1 = (XXT + ρRRT)

−1
(XT(Y− Bγn+1) + RT(ρd− λn)),

λn+1 = λn + ρ(Rβn+1 − d).
(18)

3.3. Algorithmic Design of ADMM for Solving High-Dimensional Partially Linear Models

In summary, the iterative algorithm for solving high-dimensional partially linear
models by using the ADMM can be described as follows.

Step 1. Input the variables X, Y, and B, and given the initial variables (β0, γ0, λ0), select
the penalty parameter where ρ > 0;

Step 2. Input the iteration step n = 1, 2, . . . , N;
Step 3. Update the parameters γn+1, βn+1, and λn+1 with Equation (18);
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Step 4. Iterate through the loop, returning to step 3 until the termination conditions
are met, and the algorithm is terminated;

Step 5. Output (βN , γN , λN) as the approximate solution (β∗, γ∗, λ∗) of (6).

4. Convergence

In this section, we will use a variational inequality to prove the convergence of the
algorithm. The Lagrange function of the model is given by:

L(β, γ, λ) =
1
2
‖Y− Xβ− Bγ‖2 + 〈λ, Rβ− d〉, (19)

where λ is the Lagrange multiplier.
The solution of Equation (11) is equivalent to finding (γ∗, β∗, λ∗) ∈ S such that:





BTXβ∗ + BTBγ∗ − BTY = 0,
(XXT + ρRRT)

−1
(XT(Y− Bγ∗) + RT(ρd− λ∗)) = 0,

RTβ∗ − d = 0.
(20)

Let S∗ satisfy Equation (19); then, we define ω∗ = (γ∗, β∗, λ∗) ∈ S∗. Equation (19)
is equivalent to a variational problem. We find (γ∗, β∗, λ∗) ∈ S∗ such that the following
variational inequality holds:

VI(S, F) : (ω−ω∗)F(ω∗) ≥ 0, ∀ω ∈ S. (21)

Here,

ω =




γ
β
λ


, F(ω) =




BTXβ + BTBγ− BTY
(XXT + ρRRT)

−1
(XT(Y− Bγ) + RT(ρd− λ))
RTβ− d.


 (22)

We need to use the positive definite matrix G:

G =




µIp − X̂TX̂ 0 0
0 ρIp 0
0 0 1

ρ Ip


, (23)

where X̂ = (XT,
√

ρR)T. For the positive definite matrix G, the following conditions are
satisfied: µ > τ(XTX + ρRTR) and µ(·) is the spectral radius of the matrix.

In order to establish the convergence of the algorithm, the n + 1th iteration value
of the algorithm is taken as a variational inequality problem. The following lemma can
be obtained.

Lemma 1. Let {ωn} denote the sequence generated by the algorithm; then, for any ω′ ∈ S,

(ω′ −ωn+1)(F(ωn+1) + M(βn − βn+1)− G(ωn −ωn+1)) ≥ 0,

where,

M =



−ρRT

ρIp
0p


.

Lemma 2. Let {ωn} denote the sequence generated by the algorithm; then, for any ω∗ ∈ S∗,

(ωn −ω∗)TG(ωn −ωn+1) ≥ (ωn −ωn+1)TG(ωn −ωn+1)− (λn − λn+1)T(βn − βn+1).
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Lemma 3. Let {ωn} denote the sequence generated by the algorithm; then, for any ω∗ ∈ S∗,

||ωn+1 −ω∗||2G ≤ ||ωn −ω∗||2G − ||ωn −ωn+1||2G

From Lemmas 1 and 2, it can be proved that the sequence {ωn} generated by this
algorithm shrinks to the solution set S∗. Lemma 3 shows that the sequence {ωn} generated
by the algorithm shrinks to the solution set S, and the following corollary can be obtained
from Lemma 3.

Corollary 1. Let the sequence be generated by the algorithm; then, we get:

1. lim
k→∞

∥∥ωn −ωn+1
∥∥

G = 0;

2. The sequence {ωn} is bounded;
3. For arbitrary ω∗ ∈ S∗, the sequence {‖ωn −ω∗‖G} is non-increasing.

Theorem 1. Given any starting point (γ0, β0, λ0) ∈ S, for any ρ ≥ 0, µ > τ(XTX + ρRTR), the
sequence {ωn = (γn, βn, λn)} is generated by the algorithm and converges to {ω∞ = (γ∞, β∞, λ∞)},
where (γ∞, β∞, λ∞) is the solution of the model.

Proof. From Property 1 of Corollary 3, we can get:





lim
k→∞
||γn − γn+1|| = 0,

lim
k→∞
||βn − βn+1|| = 0,

lim
k→∞
||λn − λn+1|| = 0.

(24)

By Property 2 of Corollary 3, let ω∞ = (γ∞, β∞, λ∞) be one of the clusters, and let the
sequence {ωnj} converge to the sequence {ω∞}, so we can obtain:





γnj → γ∞,
βnj → β∞,
λnj → λ∞,

(25)

and 



lim
k→∞
||γnj − γnj+1|| = 0,

lim
k→∞
||βnj − βnj+1|| = 0,

lim
k→∞
||λnj − λnj+1|| = 0.

(26)

It is proved below that the cluster ω∞ satisfies the optimality condition (19). From
Equations (18) and (29), for any ω′ ∈ S, we can obtain:

lim
j→∞

(ω′ −ωnj)F(ωnj) ≥ 0. (27)

Then, from Equation (28), for any ω′ ∈ S, the above inequality is transformed into:

(ω′ −ω∞)F(ω∞) ≥ 0. (28)

Therefore, the cluster ω∞ satisfies the optimality condition (19), i.e., ω∞ ∈ S∗. For any
n ≥ 0, by Property 3 of Corollary 3, we can obtain:

||ωn+1 −ω∞||2G ≤ ||ωn −ω∞||2G. (29)
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Through the above proof, we can find that the sequence {ωn} has a unique clustering
point ω∞. That is, the sequence {ωn} converges to ω∞ and has (γ∞, β∞, λ∞) as the solution
of the model. The proof is complete.

5. Simulation and Application
5.1. Parameter Settings

The estimation of a high-dimensional partially linear model is performed through a nu-
merical simulation based on a dataset with a sample size of n generated by the model. The
random error terms are ε ∼ N(0, σ2), and X obeys the p-dimensional multivariate normal
distribution, i.e., X ∼ N(0, Σ), where Σ = 0.5|j−k|; j and k are the jth and kth components of
the covariance, respectively. The variable Z obeys the uniform distribution of the interval
[0, 1] , i.e., Z ∼ U(0, 1) and g(z) = 3 cos(2πz). The parameter β = (1, 2, 0.5,−1, 0, . . . , 0)T

satisfies the constraint β5 = . . . = βp. The estimation of the smooth function is performed
by using cubic spline interpolation and three B-spline basis functions for the numerical
simulation. The results are good.

5.2. Simulation Results

According to the above parameter settings, the algorithm proposed in this paper is
used, and the specific results are shown in Table 1.

Table 1. Comparison of the mean square errors under different conditions.

n p σ MSEC MSEW σ MSEC MSEW σ MSEC MSEW

100

9

0.5

0.0026 0.2853

1

0.0026 0.3057

2

0.0026 0.3975

29 0.0025 0.7691 0.0026 1.0220 0.0031 1.5839

49 0.002 1.1281 0.0026 1.5182 0.0033 2.6788

69 0.0035 2.4141 0.0042 3.2338 0.0057 5.2201

89 0.0057 34.9406 0.0068 56.5306 0.0111 99.8811

109 2.5194× 10−13 160.7625 3.9866× 10−13 126.0699 4.7814× 10−13 57.2586

209 5.2491× 10−15 215.5829 5.6079× 10−15 247.2301 6.2244× 10−15 313.6789

509 1.7694× 10−15 867.2514 1.7710× 10−15 789.7276 1.9649× 10−15 636.5492

1009 1.2117× 10−15 446.7470 1.3816× 10−15 434.2037 1.4950× 10−15 429.8142

200

9 0.0025 0.1356 0.0025 0.1773 0.0025 0.2733

49 0.0025 0.0025 0.0026 0.8108 0.0030 1.5062

89 0.0025 0.9857 0.0028 1.4725 0.0032 2.6198

129 0.0029 1.6449 0.0032 2.1437 0.0042 3.4911

169 0.0039 3.1227 0.0052 4.6591 0.0084 8.3544

209 1.0400e-12 6.8265 7.7886× 10−13 16.3884 8.6313× 10−13 40.1867

409 4.2441× 10−15 221.4869 4.3281× 10−15 228.5344 5.2164× 10−15 243.1755

509 2.2511× 10−15 266.5785 2.3479× 10−15 284.4385 2.6637× 10−15 324.3384

1009 1.8520× 10−15 369.4391 1.7060× 10−15 526.3515 1.7332× 10−15 843.3223

The simulation’s effect is expressed by the mean square error (MSE) of the parameter
estimation, MSE =

∥∥β̂− β
∥∥2

, where the sample sizes are n = 100, 200 and the dimensions are
p = 9, 29, 49, 69, 89, 109, 129, 169, 209, 509, 1009. The dimensions are taken from small to large
by determining the value of the sample size. This was done, on the one hand, to compare
with the results of Wang’s [17] study and, on the other hand, to study the simulation’s effect
in the case of high dimensions (p � n). The effect of Wang’s study is expressed by the
MSEW, and the effect of this paper is expressed by the MSEC.

According to the results in Table 1, the mean square error for this paper is slightly
better than that of Wang’s study in the low-dimensional case, and the mean square error
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for this paper is slightly lower than that of Wang’s. The results are better in the high-
dimensional case because the fitting effect of the augmented Lagrange multiplier method
is better than that of the Lagrange multiplier method for high-dimensional data. For fixed
values of p, the mean square error becomes larger with increasing σ, and the stability of the
parameter estimation also becomes worse with the increase in σ. For fixed values of σ, the
mean square error decreases with the increase in the dimensions p of the parameter. The
method studied in this paper works better for parameter estimation in high-dimensional
cases, and the higher the dimensionality, the better the stability of the parameter estimation.

A line plot of the mean square error for different variances was constructed with a
sample size of 100 in order to specifically express the effects of this study (Figures 1–3) and
to provide a comparison with Wang’s results (Figures 4–6).
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Figure 1. Folding line plot of the mean square error for a variance of 0.5.
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Figure 2. Folding line plot of the mean square error for a variance of 1.
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Figure 3. Folding line plot of the mean square error for a variance of 2.
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Figure 4. Folding line plot of the compared mean square error for a variance of 0.5.
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Figure 5. Folding line plot of the compared mean square error for a variance of 1.
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Figure 6. Folding line plot of the compared mean square error for a variance of 2.

Line plots of the mean square errors for different variances were constructed with a
sample size of 200 to specifically express the effects of this study (Figures 7–9) and for a
comparison with Wang’s results (Figures 10–12).
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Figure 7. Folding line plot of the mean square error for a variance of 0.5.
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Figure 8. Folding line plot of the mean square error for a variance of 1.
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Figure 9. Folding line plot of the mean square error for a variance of 2.
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Figure 10. Folding line plot of the compared mean square error for a variance of 0.5.
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Figure 11. Folding line plot of the compared mean square error for a variance of 1.
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Figure 12. Folding line plot of the compared mean square error for a variance of 2.
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In these figures, it can be seen that the mean square error (MSEC) of the method studied
in this paper is very small and is very close to zero in high dimensions. Moreover, the mean
square error of this method is smaller than that of Wang’s method. Therefore, the method
studied in this paper is more applicable in the case of high dimensions.

5.3. Application: Workers’ Wage Data Analysis

In order to test the algorithm proposed in this paper, we applied the algorithm to the
practical problem of the analysis of workers’ wage data. The workers’ wage data were given
by the 1985 Current Population Survey (CPS85) [29]. These data came from reality and are
real. Moreover, the indicators of these data contained both quantitative data and classified
data, so they were representative. In addition, the data were studied by other authors in the
literature to facilitate comparison [30]. The data consisted of 534 samples of CPS85 personnel
with 11 variables, which included wages and other characteristics of workers, such as gender,
years of education, race, sex, marital status, years of work experience, occupational status,
area of residence, and union membership. The wage level did not necessarily have a linear
relationship with the years of work experience, so the importance of other variables for
wages was mainly considered. The model was built as follows:

Yi =
10

∑
j=1

Xijβ j + m(Ui) + εi, (30)

where Yi is the wage of the ith worker, Ui is the number of years of experience of the ith
worker, Xij is the jth variable of the ith worker, and εi ∼ N(0, σ2).

We describe the use of the method proposed in this paper to study the important
factors that affect wages in this section. In order to reduce the absolute differences between
wages, avoid the influence of individual extreme values, and satisfy the assumptions of
the linear model as much as possible, a logarithmic transformation was required for the
variable of wages.

During the experiment, it was necessary to select training samples and test samples.
If the proportion of training samples was large, the model may have been closer to a
model trained with all samples. However, if the proportion of test samples was small, the
evaluation results would not be accurate enough. If the proportion of test samples was large,
that could lead to a large difference between the evaluation model and the previous one,
thus reducing the authenticity of the evaluation. In all samples, the division ratio for the
training samples and test samples was typically 7:3 to 8:2. For large amounts of data, ratios
of 9:1 or even 99:1 can be used. Based on the sample size of CPS85, 75 percent of the samples
were selected as training samples, and the method in this paper was used for parameter
estimation training. The remaining 25 percent of the samples were used as test samples
to predict the wages of workers, and the predicted values were expressed in ŷi. The test
samples were used to evaluate the prediction ability of the model, and the prediction effect
was evaluated with the median absolute error (MAE) and the standard error (SE).

The MAE attenuates the effects of outliers. The loss is calculated by taking the median
of all absolute differences between the real and the predicted value.

MAE = medain{|y1 − ŷ1|, |y2 − ŷ2|, · · · , |yn − ŷn|}. (31)

The SE is a measure of the precision of data and reflects the degree of dispersion of a
whole sample from the sample’s mean.

SE =

√
∑ (yi − ŷi)

2

n
. (32)

The smaller the SE is, the greater the reliability of the prediction will be; otherwise, the
reliability of the prediction is small.

The results are shown in Table 2.
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Table 2. The MAE and SE of predictions of workers’ wages.

Variables Variable Description MAE SE

edu Number of years of education 1.9777 0.0429

race NW=1, W=0 0.7491 0.0861

sex F=1, M=0 0.7526 0.0860

hispanic Hisp=1, NH=0 0.7491 0.0861

south S=1, NS=0 0.7491 0.0861

married Married=1, Single=0 0.7521 0.0858

union Union=1, Not=0 0.7491 0.0860

age Age 1.9885 0.0517

sector Clerical=1, Const=1, Manag=1, Manuf=1
Prof=1, Sales=1, Service=1, Other=0

0.7569 0.0857

As can be seen from the results in Table 2, the value of the MAE was small, indicating
that the loss between the predicted and actual values of workers’ wages was lower. The
values of the SE were all below 0.09, indicating that the prediction was reliable. In short,
the MAE was low and the SE was small, so the parameter estimation method in this paper
is relatively efficient.

6. Conclusions

The research in this paper considered a partially linear model with a restricted profile
and used the least squares method to estimate the parameters with the purpose of minimiz-
ing the error. By constructing an augmented Lagrangian function under linear constraint
conditions, the constrained optimization problem was transformed into an unconstrained
optimization problem. The model was solved with the ADMM. The ADMM algorithm has
the advantage that some large global problems can be solved by decomposing them into
several smaller, more easily solvable local subproblems and then coordinating the solutions
of the resulting subproblems to obtain the solution of the large global problem. The conver-
gence of the algorithm was obtained by using the method of variational inequality. Through
numerical simulations, the results showed that the method of this paper is suitable for
parameter estimation in high-dimensional cases. Finally, this paper applied the algorithm to
workers’ wage data from CPS85 and analyzed the important factors that affected wages.

In this paper, we used the ADMM algorithm to solve a high-dimensional partially
linear model, and the effect was very good. The model in this paper is mainly for convex
optimization problems. It can be used to solve other optimization problems, such as non-
concave penalty optimization SCAD or MCP. This is a subject that will be studied further.
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Abstract: As multi-factory production models are more widespread in modern manufacturing
systems, a distributed blocking flowshop scheduling problem (DBFSP) is studied in which no
buffer between adjacent machines and setup time constraints are considered. To address the above
problem, a mixed integer linear programming (MILP) model is first constructed, and its correctness is
verified. Then, an iterated greedy-algorithm-blending multi-factory collaboration mechanism (mIG)
is presented to optimize the makespan criterion. In the mIG algorithm, a rapid evaluation method
is designed to reduce the time complexity, and two different iterative processes are selected by a
certain probability. In addition, collaborative interactions between cross-factory and inner-factory
are considered to further improve the exploitation and exploration of mIG. Finally, the 270 tests
showed that the average makespan and RPI values of mIG are 1.93% and 78.35% better than the five
comparison algorithms on average, respectively. Therefore, mIG is more suitable to solve the studied
DBFSP_SDST.

Keywords: blocking; iterated greedy algorithm; distributed flowshop scheduling; multi-factory
collaborative strategy; makespan

MSC: 93B28

1. Introduction

Industrial intellectualization and informatization are the frontier trends of manufac-
turing development. Manufacturing is the mainstay of the real economy and the lifeblood
of the national economy, and its development is an essential reflection of a country’s
comprehensive national power. Smart manufacturing is the main research content of the
manufacturing system at this stage. In the manufacturing industry, the flowshop schedul-
ing problem (FSP) has been a popular topic of research and is of great practical importance.
In FSP, jobs are processed on a series of machines according to a fixed process flow. The
ultimate goal is to find the optimal scheduling sequence with optimal value(s) of the single
(multiple) objective function(s). As we all know, in the context of globalization, the collabo-
rative production mode between companies is becoming more and more common. The
traditional centralized production methods are no longer able to meet market demands.
Thus, the centralized manufacturing model is gradually shifted to a distributed manu-
facturing model [1], which can break geographical restrictions and make full use of the
resources of multiple enterprises or factories to achieve a rational allocation, optimal combi-
nation, and sharing of resources [2]. Due to the above advantages of the distributed model,
researchers have applied the distribution constraint to FSP and proposed the distributed
permutation flowshop scheduling problem (DPFSP).

Many works on the DPFSP have been done. Naderi and Ruiz first constructed a
MILP model and adopted heuristic of construction, and a variable neighborhood descent
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method to address this problem [3]. Liu and Gao presented a hybrid variable neigh-
borhood search by combining with the electromagnetism mechanism to optimize the
makespan criterion [4]. Since then, a number of constructive algorithms have emerged,
i.e., the improved variable neighborhood descent (VND) algorithm [5], the taboo search
(TS) algorithm [6], the estimation distribution algorithm (EDA) [7], the scatter search (SS)
algorithms [8], and the bounded search iterated greedy (BSIG) algorithm [9]. In addition,
Komaki and Malakooti [10] presented a variable neighborhood search (VNS) to solve the
DPFSP with a no-wait constraint. In recent years, new scheduling algorithms, i.e., two stage
iterated greedy algorithms containing different local search operators [11] and a coopera-
tive co-evolutionary algorithm (CCEA) [12] have been developed to optimize DPFSP and
successfully applied to the distributed robotic scheduling problem [13]. To optimize the
total flowtime value of DPFSP, Fernandez-Viagas et al. discussed some properties of DPFSP
and proposed eighteen construction heuristics to obtain a solution with high quality [14].

Recently, researchers have also taken sequence-dependent setup times (SDSTs) into
account in DPFSP, called DPFSP_SDST, and have done some work on DPFSP_SDST. To
address this problem, an IG with restart strategy (IGR) is presented [15]. The experimental
results have demonstrated that IGR has the best performance among all the compared
algorithms, i.e., chemical reaction optimization, differential evolution, evolutionary algo-
rithm, etc. Han et al. designed an iterated greedy (NIG) algorithm that includes swapping
of single jobs and job blocks [16]. Furthermore, it shows better performance compared to
advanced algorithms. Li et al. also extended the DPFSP by considering a heterogeneous
machine with unrelated parallel (forming DHHFSP_SDST) [17]. Next, to further design
a good algorithm, the three heuristics based on problem specifics and a discrete artificial
bee colony (DABC) algorithm were employed to solve DPFSP_SDST [18]. The study in [19]
proposed two mathematical models of DPFSP_SDST, i.e., constraint planning (CP) and
MILP. The authors also presented an evolution strategy algorithm based on a self-adaptive
mechanism to quickly provide the quality of solutions. In [20], the authors considered
DPFSP_SDST with assembly constraints and presented a hyper-heuristic algorithm based
on genetic programming.

The above scheduling problems assume that the buffers are infinite between any
adjacent machines. However, due to cost constraints, temporary buffers may not be
allowed between any adjacent machines. The current machine must be blocked with a job
until the next machine is free. In this case, FSP with no buffer is transformed into a blocking
flowshop scheduling problem (BFSP). Thus, our article simultaneously considers the above
blocking, SDST and distributed constraints, and forms a distributed flowshop scheduling
problem based on blocking and sequence-dependent setup times (DBFSP_SDST).

DPFSP with more than two machines has been evidenced in the literature [12] as an
NP-hard problem. However, DBFSP_SDST, as an extension of DPFSP, adds blocking and
sequence-dependent setup time constraints that are more complex than the permutation
flowshop scheduling problem (PFSP). This is because, (1) from a distributed perspective,
PFSP is a single-factory problem. One issue that needs to be solved is how to generate
the optimal scheduling sequence. However, when it comes to DBFSP_SDST, the following
two sub-issues must be taken into account. One is to assign the job to factories in a
reasonable way, and the other is to arrange the job sequence for each factory [21,22]. (2)
The DBFSP_SDST simultaneously considers blocking and SDST constraints in a distributed
manufacturing environment in addition to the constraints listed in PFSP.

Regarding DBFSP, Companys and Ribas initially studied this problem and presented
ten constructive heuristics based on typical heuristic rules [21]. Ying and Li constructed
a MILP model of DBFSP and developed different hybrid IG algorithms [23]. Zhang et al.
designed a discrete differential evolution (DDE) method based on problem features to opti-
mize two different mathematical models [24]. Shao et al. employed a fruit fly optimization
algorithm incorporating constructive heuristic initialization and an enhanced local search
strategy [25]. Next, a mutation strategy combining crossover and insertion operators is
employed to obtain a good solution [26]. Recently, Han et al. considered SDST and blocking
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constraints in DPFSP and developed a variable IG (VNIG) algorithm to optimize energy
cost [27].

In the present study, the iterated greedy algorithm (IGA) and its modifications have
been successfully applied in many discrete scheduling problems. Ruiz and Stützle pro-
posed IGA to address FSP with the makespan criterion for the first time [28]. Next, Lin
et al. modified the IGA by improving initialization, local search, and destruction and
reconstruction strategies to optimize DPFSP [29]. Pan and Ruiz proposed an effective IG to
solve the mixed no-idle FSP [30]. The study in [31] presented an IG based on a reference
(IRG) algorithm to effectively solve no-idle DFSP. Huang et al. designed an enhanced IGA
to optimize the assembly DPFSP with total flowtime [32]. Mao et al. presented a multi-stage
IGA to address DPFSP with a preventive maintenance constraint [33]. For the scheduling
problems with the blocking constraint, IGA also shows superiority. Ribas et al. developed
an efficient IGA for optimizing the blocking parallel flowshop scheduling problem with a
total tardiness criterion [34]. Qin et al. considered an IG algorithm based on double-level
mutation (IGDLM) in solving a hybrid BFSP [35]. For the DBFSP with makespan and
total flowtime criteria, Chen et al. used some constructive heuristics in the IGA [36] and a
population-based IG [21], respectively, to minimize the above two objectives. In addition,
Öztop et al. employed four different IG algorithms for the hybrid flowshop scheduling
problem to optimize the objective of total flowtime [37].

From the analysis above, it is found that (1) unlike other population-based algorithms,
the iterated greedy algorithm (IGA) is an efficient meta-heuristic algorithm with a simple
framework that can be coded and replicated easily. (2) Among the intelligence algorithms
for DPFSP discussed above, the iterated greedy algorithm (IGA) exhibits advanced perfor-
mance. The advantages of the IG algorithm are attributed to the simplicity of the algorithm
framework, with few parameters, ease of integration, and good reinforcement and local
convergence performance. For the DBFSP_SDST, no relevant research has attempted to
solve this problem by using improved IGA. Therefore, to make the IGA more appropri-
ate for DBFSP_SDST, this article has made some adjustments according to the problem
characteristics and designed a multi-factory collaborative iterated greedy algorithm.

Our main innovations are that (1) a MILP of DBFSP_SDST with makespan is con-
structed, and the Gurobi solver is adopted to verify the correctness of this model. (2)
According to the characteristics of the problem, a new refresh acceleration calculation
method based on job insertion is designed to speed up the calculation of the objective,
thereby reducing the time complexity of the algorithm. (3) To enrich the diversity of solu-
tions, iterative process I and iterative process II strategies are selected by a certain probability.
(4) A collaborative strategy between cross-factory and inner-factory is presented.

The remaining parts are listed as follows. Section 2 formulates a MILP model of DBFSP-
SDST. Section 3 states the specific details of the mIG algorithm. Experimental results and
statistical analyses are performed in Section 4. Section 5 summarizes the research on the
problem, algorithm, and future directions of research.

2. Problem-Specific Characteristics

The DBFSP_SDST considered in this article can be characterized as follows. Assume
that F(F > 2) identical factories exist. For each factory, J jobs have been processed on M
machines. All factories should meet the restrictions in the MILP. The constraints are as
follows: (1) A job has been processed continuously in only one factory. (2) Each job should
be processed on one machine at a time according to the scheduled order. (3) Each machine
can process only a job at a time. (4) No buffer exists between adjacent machines. The current
machine must be blocked with a job until the next machine is free. (5) On each machine,
the sequence-dependent setup time is taken into account. In addition, the first job on the
machine needs to be set with an initial setup time. (6) Jobs cannot be interrupted during
processing. Based on the above constraints, the optimization objective of DBFSP_SDST is
makespan (unit: seconds).
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2.1. Mathematical Model

Notations:
F Number of factories.
J Number of jobs.
M Number of machines in each factory.
j, j′ Index of jobs, j, j′ ∈ {0, 1, · · · , J}, where 0 denotes a dummy job that starts and

ends at each factory.
m Index of machines.
pj,m Processing time of job j on machine m.
sj,j′ ,m Setup time of adjacent job j and job j′ on machine m. s0,j,m is a predetermined

value when j is the initial job on machine m.
h A positive large number.
Decision Variables:
Cj,m Completion time of job j on machine m.
Dj,m Departure time of job j on machine m.
xj,j′ A decision variable using binary coding, 1 if job j′ is a direct successor of job j, 0

otherwise.
Objective:

MinimizeCmax (1)

Constraints:
J

∑
j′=0,j′ 6=j

xj,j′ = 1, ∀j ∈ {1, 2, · · ·, J} (2)

J

∑
j=0,j 6=j′

xj,j′ = 1, ∀j′ ∈ {1, 2, · · ·, J} (3)

J

∑
j′=1

x0,j′ ≤ F (4)

J

∑
j=1

xj,0 ≤ F (5)

J

∑
j′=1

x0,j′ =
J

∑
j=1

xj,0 (6)

Dj,m ≥ Cj,m, ∀j ∈ {1, 2, · · ·, J}, ∀m ∈ {1, 2, · · ·, M} (7)

Cj,m − pj,m = Dj,m−1, ∀j ∈ {1, 2, · · ·, J}, ∀m ∈ {1, 2, · · ·, M} (8)

Cj′ ,m − pj′ ,m ≥ Dj,m + sj,j′ ,m + (xj,j′ − 1) · h, ∀j, j′ ∈ {1, 2, · · ·, J}, j 6= j′, ∀m ∈ {1, 2, · · ·, M} (9)

Cj,m − pj,m ≥ s0,j,m + (x0,j − 1) · h, ∀j ∈ {1, 2, · · ·, J}, ∀m{1, 2, · · ·, M} (10)

Cmax ≥ cj,M, ∀j ∈ {1, 2, · · ·, J} (11)

Equation (1) is the makespan objective. Constraints (2) and (3) ensure that each
job in the scheduling sequence can only have one immediate predecessor and successor,
respectively. Constraints (4) and (5) assure that the dummy job has an immediate successor
and predecessor, respectively. The dummy job must have an equal number of immediate
predecessors and successors, which is assured by Constraint (6). Each job on each machine
must have a departure time that is equal to or more than its completion time, as required by
Constraint (7). According to Constraint (8), the departure time of each job from the previous
machine is equal to the time that started processing on the current machine. Constraint
(9) is that the start time of job j′ on machine m is larger than the sum of the departure time
of job j on machine m and the setup time sj,j′ ,m. Constraint (10) considers the initial setup
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time s0,j,m of the first job on machine m. Constraint (11) defines the makespan. No more
than 2F dummy jobs are used for sequence-based variables. The job sequence within each
factory starts and ends with dummy jobs.

2.2. Example Instance

The described problem is clearly reflected by considering the example having five jobs
(J = 5), two machines (M = 2), and two factories (F = 2). Table 1 gives the processing
times for the five jobs, and the SDSTs are shown in Table 2. Processing time and SDST are in
seconds. One possible solution is denoted as: x0,1 = 1, x1,4 = 1, x4,0 = 1, x0,5 = 1, x5,3 = 1,
x3,2 = 1, x2,0 = 1; the rest decision variables are equal to 0. The solution corresponds to a
sequence {0, 1, 4, 0, 5, 3, 2, 0}, where the dummy job 0 divides it into two sequences {1, 4}
and {5, 3, 2}. It means that factory 1 processes jobs 1 and 4, and factory 2 processes jobs 5, 3,
and 2. The makespan is 57, and the scheduling Gantt chart as shown in Figure 1.

Table 1. Processing times pj,m of jobs.

pj,m J1 J2 J3 J4 J5

M1 11 3 11 12 9
M2 25 3 13 5 17

Table 2. The SDSTs sj,j′ ,1 and sj,j′ ,2 of jobs.

sj,j’,1 J1 J2 J3 J4 J5 sj,j’,2 J1 J2 J3 J4 J5

7 14 6 21 5 24 1 22 12 10
J1 - 11 16 10 20 J1 - 13 18 3 20
J2 12 - 12 9 23 J2 8 - 20 19 1
J3 0 5 - 23 16 J3 16 3 - 18 23
J4 4 3 11 - 0 J4 20 22 15 - 17
J5 15 23 6 2 - J5 9 13 7 5 -
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2.3. Improved Rapid Evaluation Criteria

A type of acceleration method inspired by Taillard [38] was proposed to save compu-
tational effort by combining the characteristics of the problem under study. In the rapid
evaluation process, forward and backward calculation methods are adopted. The forward
calculation is as follows. (1) Compute the leave time of the first job on the first machine,
the second machine, and up to the last machine, respectively. (2) Similarly, the departure
times on each machine for the second job, the third job, and until the last job are calculated.
See Figure 2a. The backward calculation is as follows. (1) Calculate the departure time of
the last job on the last machine, on the penultimate machine, and up to the first machine,
respectively. (2) Similarly, the departure times on each machine for the penultimate job, the
antepenultimate job, and up to the first job are calculated. See Figure 2b.
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Figure 2. Rapid evaluation criteria. (a) Calculate the time jd[j],m. (b) Calculate the time je[j],m.

(c) Insert job τ j′ t into position 2. (d) Recalculate jd[j],m of the job after position 2. (e) Recalculate je[j],m
of the job before position 2 and calculate jej′ t ,m.
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Assume that the factory f consists of η f jobs processed according to the sequence

π f =
{

π1
f , π2

f , · · ·, π
j
f , · · ·πη f

f

}
, where the job in the factory f is represented as π

j
f j ∈

{
1, 2, · · ·, η f

}
. [j] denotes the index of the jth job. In the forward calculation, jc[j],m and

jd[j],m denote the completion time and the leave time, respectively, of π
j
f on m. In the back-

ward calculation, js[j],m and je[j],m denote the completion time and leave time, respectively,

of π
j
f on m.
Refresh accelerated calculation for inserting job:
An attempt is made to insert ηs jobs τ j′1 , τ j′2 , · · ·, τ j′ t , · · ·, τ j′ηs , j′t ∈ {1, 2, · · ·, ηs}

sequentially into the job sequence π f to minimize the makespan of the factory f .
Step 1: Set t = 1 and consider the insertion of the job τ j′ t .
Step 2: Forward calculate jd[j],m for job π

j
f on machine m according to Equations (12)–

(14). Please see Figure 2a.

jc[j],0 = 0, j = 1, 2, · · · , η f (12)

jc[j],m =

{
max(s0,[j],m, jc[j],m−1) + p[j],m, j = 1, m = 1, 2, · · · , M
max(jd[j−1],m + s[j−1],[j],m, jc[j],m−1) + p[j],m, j = 2, 3, · · · , η f , m = 1, 2, · · · , M

(13)

jd[j],m =

{
jc[j],m+1 − p[j],m+1, j = 1, 2, · · · , η f , m = 1, 2, · · · , M− 1
jc[j],m, j = 1, 2, · · · , η f , m = M

(14)

Step 3: Backward calculate je[j],m for job π
j
f on machine m according to Equations (15)–

(17). Please see Figure 2b.

js[j],M+1 = 0, j = η f , η f − 1, · · · , 1 (15)

js[j],m =

{
js[j],m+1 + p[j],m, j = η f , m = M, M− 1, · · · , 1

max
(

je[j+1],m + s[j],[j+1], js[j],m+1

)
+ p[j],m, j = η f − 1, η f − 2, · · · , 1, m = M, M− 1, · · · , 1

(16)

je[j],m =

{
js[j],m−1 − p[j],m−1, j = η f , η f − 1, · · · , 1, m = M, M− 1, · · · , 2
js[j],m, j = η f , η f − 1, · · · , 1, m = 1

(17)

Step 4: The job sequence π f has a set of η f + 1 positions. The job can be tested in these
positions. Suppose that the qth position is inserted by job τ j′ t , where q = 1, 2, . . . , η f + 1.
Then, jdj′ t ,m can be calculated by using Equations (18) and (19), as shown in Figure 2c.

jdj′ t ,0 = 0 (18)

jdj′ t ,m =





max
(

s0,j′ t ,m, jdj′ t ,m−1

)
+ pj′ t ,m, q = 1, m = 1, 2, · · · , M

max
(

jd[q−1],m + s[q−1],j′ t ,m
, jdj′ t ,m−1

)
+ pj′ t ,m, q = 2, · · · , η f + 1, m = 1, 2, · · · , M

(19)

Step 5: From Equation (20), the makespan of factory f , Cmax(j′t, q), can be calculated
after inserting job τ j′ t into the qth position of job sequence π f , as shown in Figure 2c.

Cmax(j′t, q) =





max
m=1,2,··· ,M

(
jdj′ t ,m + sj′ t ,[q],m

+ je[q],m
)

, q = 1, 2, . . . , η f

jdj′ t ,M, q = η f + 1
(20)

Step 6: Repeat steps 3 and 4 until all positions have been considered. It is assumed
that position qbest is the best position at which job τ j′ t can be inserted.
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Step 7: After job τ j′ t is inserted into position qbest, the jd[j],m (je[j],m) of the job before
(after) position qbest is unchanged. Therefore, we only need to recalculate jd[j],m of the job
after position qbest, according to Equations (12)–(14), and je[j],m of the job before position

qbest, according to Equations (15)–(17). It is also necessary to calculate jej′ t ,m of job τ j′ t , as
shown in Figure 2d,e.

Step 8: Set t = t + 1, η f = η f + 1.
Step 9: Repeat steps 4, 5, 6, 7, and 8 until all ηs jobs have been considered.
With the above steps, we find that the computational complexity of inserting the

jobs into the sequence is reduced from O
(

m
(

ηsη2
f +

ηs

∑
t=1

(
2tη f + t2

)))
≈ O

(
mn2) to

O
(

m
(
(2ηs + 1)η f +

ηs

∑
t=1

(2t− 1)
))
≈ O(mn). The computational cost savings are substan-

tial when dealing with large-scale problems.

3. Proposed IG Algorithm for DBFSP_SDST

First, unlike other population-based algorithms, the iterated greedy algorithm focuses
on the iteration of one solution and has a strong local search capability due to its greedy
strategy. It has the advantages that it is a simple framework, has a small number of
parameters, and is easy to encode and replicate. Considering the multi-factory feature
of DBFSP_SDST and the diversity of solutions from a global perspective, we make some
modifications to the IGA, such as designing iterative processes I and II to increase the
diversity of solutions and focusing on the cooperation between global search and local
search. Thus, we propose a multi-factory collaborative iterated greedy algorithm, i.e., mIG
to solve DBFSP_SDST.

3.1. Algorithm Description

Figure 3 shows the flow chart of mIG. It is well-known that an initialization solution
with high quality can enhance the convergence of the algorithm. Thus, we first design
an enhanced NEH heuristic, Re f resh_NEH_en, to initialize the solution by using refresh
accelerated calculation (see line 1 of Algorithm 1). Then, we adopt a multi-neighborhood
structures search based on the variable neighborhood descent (mVND) method to improve
the quality of the initialization solution described above (see line 2 of Algorithm 1). Con-
sidering the multiple factories characteristic of DBFSP_SDST and enhancing the diversity
of solutions from a global perspective, we also design two iterative stages, called iterative
process I and iterative process II, and each iterative process is adopted with a certain probabil-
ity (see lines 4–8 of Algorithm 1). After performing the above search strategy, a simulated
annealing acceptance criterion is adopted to enhance the diversity of solutions. If the per-
formance of the current new solution is not better than the original one, the original one is
still retained using the following criterion, r ≤ exp

{
−(Cmax(πcurrent)− Cmax(πorigin))/T

}
,

T = λT, λ ∈ (0, 1), r ∈ (0, 1). Furthermore, the proposed refresh accelerated calculation for
inserting job method is adopted throughout the algorithm.

3.2. Solution Representation

Regarding the solution encoding of DBFSP_SDST, a solution is represented by adopting
a discrete integer encoding. That is, a solution π can be expressed,

{
π1, π2, · · ·, π f , · · ·, πF

}
,

with each π f consisting of
{

π1
f , π2

f , · · ·, π
j
f , · · ·πη f

f

}
, in which π f refers to the job sequence

of factory f , and η f refers to the number of jobs in factory f . The specific example can be
found in Section 2, in which a solution can be expressed as π = {π1, π2}, where π1 = {1, 4},
π2 = {5, 3, 2}, η1 = 2, and η2 = 3. This means that factory 1 processes jobs 1 and 4 in the
order 1→ 4 . Similarly, factory 2 processes jobs 2, 3, and 5 in the order 5→ 3→ 2 .
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Algorithm 1: The proposed mIG

Input: ρ is the probability value.
01: π = Re f resh_NEH_en
02: πtemp = mVND(π)
03: while (the current CPU time <terminate time) do
04: if rand(0, 1) > ρ

05: π = iterative process I(πtemp)
06: else
07: π = iterative process II(πtemp)
08: end if
09: πbest = AcceptanceCriterion(π)
10: end while
Output: BestSolution
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3.3. Initialization Solution

As mentioned above, an initialization sequence is closely related to the convergence
nature of the algorithm. Thus, initialization operations are performed by using the heuristic
method. According to the distributed characteristic of DBFSP_SDST, two issues need to be
addressed. One is the assignment of jobs into factories, and the other is the arrangement of
a reasonable scheduling sequence for each factory. NEH2_en presented by [11] has shown
superior performance when optimizing a distributed flowshop scheduling problem and
can solve the above two issues. However, NEH2_en has high time complexity due to the
objective function needing to be reevaluated when jobs are put into all possible positions
of all factories. Considering the problem characteristics and rapid evaluation method
of the insertion job designed in Section 2.3, we propose a rapid initialization strategy
Refresh_NEH_en by using refresh accelerated calculation.

Algorithm 2 shows the procedure of Refresh_NEH_en in detail. First, the total pro-
cessing time Pj is calculated for every job on all machines (see line 1), and a scheduling
sequence τ is obtained according to the descending of Pj (see line 2). Second, we take
each job from the sequence τ and put it into each factory one by one (see lines 3–5), which
ensures uniform allocation. The remaining jobs are removed one after another and put
into all positions in all factories; finally the best position is selected (see lines 6–12). After
finishing the insertion operator, we remove a job at position pos f ∗ − 1 or pos f ∗ + 1 from
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π f ∗, attempt it at all positions in π f ∗, and select the position with minimal makespan (see
lines 13–16).

Algorithm 2: Refresh_NEH_en

Input: an initial solution π = φ.
01: Pj = ∑M

m=1 pj,m, j = 1, 2, · · · , J
02: τ =

{
τ1, τ2, · · · , τ J} (Sort jobs according to decreasing Pj)

03: for j = 1 to F do %% uniformly allocate the jobs to the factories
04: Take job τ j from the set of jobs and assign it in πj
05: end for
06: for j = F + 1 to J do
07: for f = 1 to F do
08: Insert τ j in all positions in π f and calculate the corresponding makespan by using
refresh accelerated calculation
09: C f = min

η f +1
pos f =1C

pos f

f and pos f = arg(min
η f +1
pos f =1C

pos f

f )

10: end for
11: pos f ∗ = arg(minF

f=1C f ) %%pos f ∗ is the best position of factory with minimal makespan

12: Insert τ j into position pos f ∗ of π f ∗

13: Randomly select a job j′ from pos f ∗ − 1 or pos f ∗ + 1 of π f ∗

14: Measure job j′ in all positions using refresh accelerated calculation
15: Insert job j′ in the position with minimum makespan
16: end for
Output: the initial solution π

3.4. Multi-Neighborhood Structures Search

According to the distributed characteristic of DBFSP_SDST, a variable neighborhood
descent based on the multiple neighborhood structures search (mVND) method is adopted
to further disturb the current solution. Multiple parallel isomorphic factories exist in
DBFSP_SDST; we consider using cross-factory and inner-factory neighborhood search to
explore the global solution. In addition, a critical factory that is the one with maximum
makespan decides the final makespan value of DBFSP_SDST. In view of this, two neigh-
borhood structures search operators based on a critical factory and non-critical factory, i.e.,
Critical_cross_swap1(π) and Critical_inner_insert(π fcritical

), are designed.
Critical_cross_swap1(π) accomplishes the interaction between the critical factory and

secondary factory, called a cross-factory interaction, where the secondary factory is the one
with the second highest makespan. The details are as follows. First, a critical factory is
found (if there are more than one critical factory, one will be chosen randomly) according
to the current solution π. Second, a job is chosen from the critical factory. Third, another
job is selected from the secondary factory. Next, the above two selected jobs are swapped
and evaluated. If the objective value of the critical factory is reduced, the current solution
will be updated.

Critical_inner_insert(π fcritical
) accomplishes the interaction within the critical factory,

called inner-factory interaction. First, select a random job in the critical factory. Second, try
the selected job in all positions of π fcritical

, and select the best position.
Algorithm 3 gives the pseudocode of the multi-neighborhood structures search algorithm.

3.5. Two Iterative Processes

As mentioned above, IGA is an efficient meta-heuristic algorithm with a simple
framework. Because its structure is easy to reproduce, many good strategies can be ported
to its framework to further improve the performance of IGA. In addition, considering the
multiple factories characteristic of DBFSP_SDST and enhancing the diversity of solutions
from a global perspective, two iterative processes are designed, called iterative process I and
iterative process II, and each iterative process is adopted by a certain probability.
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Algorithm 3: mVND(π)

Input: π is the initial solution.
01: Find a critical factory fcritical and secondary factory fsec ondary and record their scheduling
sequences π fcritical

and π fsec ondary
, respectively.

02: pmax = 2 and p = 1
03: do {
04: if p = 1
05: πtemp = Critical_cross_swap1(π)
06: else
07: πtemp = Critical_inner_insert(π fcritical

)
08: end if
09: if Cmax is improved
10: π = πtemp

11: p = 1
12: else
13: p = p + 1
14: end if
15: } while(p ≤ pmax)
16: end while
Output: π

The iterative process I (see Algorithm 4) adopts vDestruction_Reconstruction(π) (see
Algorithm 5) and Critical_cross_swap1(π) (see Section 3.4) operators to disturb the current
solution. The traditional destruction and reconstruction operators [11] are improved
according to the distributed characteristics, abbreviated as vDestruction_Reconstruction(π).
The details are as follows. First, initialize a parameter, d, using the random function
randbetween(2, 6) and use it to generate an integer between 2 and 6. Second, a sequence
πR with d jobs is obtained, in which d/2 jobs are extracted from the critical factory, and
the rest are randomly selected from the non-critical factories (see lines 2–9). At the same
time, the above d jobs are sequentially removed from the original sequence. Third, adopt
the jump reconstruction operator [39] to insert d jobs in all possible positions and finally
select the best position (see lines 13–21). It should be noted that (1) the difference between
jump reconstruction and the traditional reconstruction is that the former adopts a jumpy
insertion when the insertion cannot improve the quality of the solution, which can accelerate
insertion speed and reduce the time complexity; (2) a refresh accelerated calculation is
adopted when performing the above insertion operator and calculation function value. The
proposed vDestruction_Reconstruction(π) can further explore the deep neighborhood of
the solution, increasing the diversity of solutions to prevent falling into the local optimum.
Algorithm 5 displays the procedure of vDestruction_Reconstruction(π) in detail.

The iterative process II (see Algorithm 6) accomplishes the interaction of cross-factory
and inner-factory. Since the completion time of the critical factory directly affects the
optimal solution of the whole scheduling, it is necessary to appropriately schedule the
critical factory. Combined with the distributed characteristic of DBFSP_SDST, the cross-
factory and inner-factory strategies are designed, respectively. In this way, the development
and exploration of the proposed algorithm can be balanced by the cooperation of the two
strategies.

Multiple search strategies can improve the diversity of solutions. Therefore, in the cross-
factory strategy, four disturbing operators are designed, i.e., vDestruction_Reconstruction(π),
Critical_cross_swap1(π), Critical_min_swap(π), and Critical_cross_swap2(π), to improve
the opportunity of obtaining potential solutions. To further increase the search efficiency of
mIG, the above four strategies will be adaptively selected (see Algorithm 6). In the inner-factory
strategy, an operator Critical_inner_swap(π fcritical

) is proposed to optimize the sequence within
the factory.
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Algorithm 4: iterative process I

Input: π is the current primary solution; J is the total number of jobs in π.
01: Find a critical factory fcritical and secondary factory fsecondary and record their scheduling
sequence π fcritical

and π fsecondary
, respectively.

02: π = vDestruction_Reconstruction(π) %% Algorithm 5
03: for cnt = 1 to J/2 do
04: πtemp = Critical_cross_swap1(π) %% subSection 3.4
05: if Cmax is improved
06: π = πtemp

07: end if
08: end for
Output: π

Algorithm 5: vDestruction_Reconstruction(π)

Input: π is the current primary solution; d is the number of removed jobs from π, πR=∅
01: Find a critical factory fcritical and record its scheduling sequence π fcritical

/* Destruction */
02: d = randbetween(2, 6)
03: for cnt = 1 to d/2 do
04: Select a random job j from π fcritical

05: πR ← j and π fcritical
= π fcritical

\j
06: end for
07: while |πR| < d do %%|πR| refers to the number of jobs in πR
08: Randomly select a job j from π f (π f 6= π fcritical

) %%π f is the sequence of factory f
09: πR ← j and π f = π f \j
10: end while
/* Reconstruction based on jumpy insertion and refresh accelerated calculation */
11: for j = 1 to d do
12: for f = 1 to F do
13: pos =0 and K = 1

14: while pos ≤
∣∣∣π f

∣∣∣ do

15: Measure job j at position pos of π
temp
f using refresh accelerated calculation

16: if Cmax is improved
17: Insert job j at pos of π

temp
f , and K = 1

18: else
19: K = K + 1
20: end if
21: pos = pos + K
22: end while
23: end for
24: end for
Output: π

Except for Critical_cross_swap1(π) and vDestruction_Reconstruction(π), which are
stated in Sections 3.4 and 3.5, respectively, Critical_cross_swap2(π), Critical_min_swap(π),
and Critical_inner_swap(π fcritical

) are as follows.
Critical_min_swap(π) is the interaction between the two factories with maximal and

minimal makespan. First, select two jobs from each of the two factories mentioned above.
Second, the above two selected jobs are swapped and evaluated. If the objective value of
the critical factory is reduced, the current solution will be updated.

Critical_cross_swap2(π) performs the Critical_cross_swap1(π) operation twice to ex-
plore the space more deeply and facilitate the improvement of the quality of the solution.

Critical_inner_swap(Ss) : Select two jobs at random from the sequence of critical
factory. Next, swap the two selected jobs. This will get a new solution and apply this swap
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when a sequence of smaller makespan solutions is produced. If the objective value of the
critical factory is reduced, the current solution will be updated.

In the self-adaptive strategy, two lists are defined, i.e., List and BestList. List contains
sixty search strategies that are randomly selected from the above four strategies. BestList
is initialized to empty. Each value of parameter R represents one of the four strategies,
R ∈ (1, 2, 3, 4). During the iteration, if the solution is improved, the corresponding strategy
is saved to the BestList. Last, by using the strategies in the BestList to update List by
parameter ω, ω determines how many strategies in BestList are available to update List
(see lines 17–22). The details of iterative process II, including the self-adaptive strategy, are
described in Algorithm 6.

Algorithm 6: iterative process II

Input: the current solution π, counter c, cnt, i
01: Find a critical factory fcritical and secondary factory fsecondary and a factory with minimal
makespan fmin. Record their scheduling sequence π fcritical

, π fsecondary
, and π fmin

, respectively.
/* cross-factory */
02: for c = 1 to |List| do %% |List| is the length of List
03: R = randbetween(1, 4)
04: switch (R)
05: case 1: πtemp = vDestruction_Reconstruction(π) %% Section 3.5
06: break;
07: case 2: πtemp = Critical_min_swap(π)
08: break;
09: case 3: πtemp = Critical_cross_swap1(π) %% Section 3.4
10: break;
11: case 4: πtemp = Critical_cross_swap2(π)
12: break;
13: if Cmax is improved
14: π = πtemp

15: Record the R value in BestList
16: end for
17: for i = 1 to min{ω× |List|, |BestList|}
18: List[i]=BestList[i]
19: end for
20: for i = min{ω× |List|, |BestList|}+ 1 to |List| do
21: List[i]=randbetween(1, 4)
22: end for
/* inner-factory */
23: for cnt = 1 to J/2 do
24: πtemp = Critical_inner_swap(π fcritical

)
25: if Cmax is improved
26: π = πtemp

27: end if
28: end for
Output: π

3.6. The Computational Complexity of mIG

In mIG, we suppose that there are n jobs, f factories, and m machines. Each factory
contains n

f jobs. The computational complexity of the mIG algorithm includes initialization,
multi-neighborhood structures search, iterative process I, and iterative process II. First, the
time complexity of Refresh_NEH_en is O

(
mn + n log2 n + f + (n− f )

(
mn + 2 n

f + m n
f

))
≈

O
(
n2). Second, the time complexity of the multi-neighborhood structures search is calcu-

lated as O
(

n
f +

n
f × n

f ×m
)
≈ O

(
n2). In addition, assume that the number of iterations of

iterative process I and iterative process II are k1 and k2, respectively. For iterative process I, the
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complexity is O
(

k1 × n
2 ×m× n

f × 2
)
≈ O

(
n2). For iterative process II, the complexity is

O
(

k2 × n
2 ×m× n

f

)
≈ O

(
n2). In summary, the complexity of the whole mIG is O

(
n2).

4. Numerical Experiment and Analysis

This section gives the experimental design and analysis to demonstrate the effective-
ness of mIG. The experiments are run on a PC with Intel(R) Core (TM) i7 CPU @ 2.90 GHz
processor and 8 GB of RAM. For the proposed MILP model, the Gurobi 9.1.2 solver is
adopted. For all the compared algorithms, C++ in the Visual Studio 2019 environment is
used for coding and runs on the Release x64 platform. In the algorithm test, to ensure fair-
ness, the maximum CPU elapsed time is adopted as the stopping criterion. In addition, it is
considered that the algorithm has practical significance only when it can solve the problem
in an acceptable time. Therefore, the termination condition is set as TimeLimit = 5× J ×M
milliseconds in this article. J and M indicate the total number of jobs and machines in the
test instance, respectively. Each instance is run 5 times independently.

4.1. Test Data and Performance Metric

The experimental data used in this article can be referred to in [15]. This article
test 270 instances with F×M× J × Factor, where F(F ∈ {2, 3, 4, 5, 6, 7}) is the number of
factories, M(M ∈ {5, 8, 10}) is the number of machines, J(J ∈ {100, 200, 300, 400, 500}) is
the number of jobs, and Factor (Factor ∈ {25, 50, 100}) is the influence factor value that
is used to generate different instances for the same scale size problem. From the above
analysis, 6× 3× 5× 3 = 270 combinations are obtained. Processing times for each job are
evenly distributed within [1, 99). The setup times of each job relative to the other jobs are
calculated by the equation (1 + rand()%99)× Factor/100, where rand() used to generate a
random integer.

We adopt the relative percentage increase (RPI) as an evaluation indicator. RPI es-
timates the difference between the makespan obtained by an algorithm and the optimal
makespan found so far. The equation to calculate the RPI is shown below:

RPI =
Mi −Mbest

Mbest
× 100% (21)

where Mbest is the minimal makespan found by all compared algorithms of 5 independent
running for a test instance. Mi refers to the average makespan obtained by the ith algorithm
of 5 independent running for a test instance. i belongs to ES [40], DABC [18], IGR [15],
EA [14], and DDE [24]. Because there are 3 different instances for each scale instance, the
average PRI is calculated for 3 different instances, called ARPI. Obviously, the smaller the
RPI or ARPI, the better result the algorithm obtained.

4.2. Correctness Verification of MILP

The correctness of the presented MILP model is verified by using 8 small-scale in-
stances. The model is written in Python on the Gurobi solver. In the exact solver, the
maximum termination criterion is set to 3600 s [41,42]. The termination criterion of mIG is
set to TimeLimit = 5× J ×M. Set each instance to run 5 times independently to reduce the
randomness of mIG. Table 3 lists the respective makespan and running time of MILP and
mIG. Among them, the makespan represents the best value found in the termination time.
In addition, F_J_M denotes the numbers of factories, jobs, and machines, respectively.
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Table 3. Result for the MILP model.

F_J_M
MILP mIG

Makespan Time (s) Makespan Time (s)

2_2_2 115 0.00 115 0.02
2_5_2 135 0.02 135 0.05
2_8_2 198 0.14 198 0.08

2_10_2 214 2.43 214 0.10
2_12_2 243 23.04 243 0.12
2_20_2 424 3600 424 0.20
2_35_2 763 3600 742 0.35
2_40_2 879 3600 844 0.40

Best values are indicated in bold.

Table 3 shows that the optimal solution can be found by MILP and takes less time
when the instance size is small, i.e., 2_2_2, 2_5_2, 2_8_2, 2_10_2, and 2_12_2 instances.
Within the termination time, the values of the makespan obtained by Gurobi are good
for 6 (6/8) instances, suggesting that the MILP is correct and can find optimal solutions
in small-scale instances. As the scale of the instances continues to grow, i.e., 2_35_2 and
2_40_2 instances, MILP cannot generate a good solution even if the run time is extended to
3600 s. However, mIG can obtain the best solution in a shorter time for all instances. Thus,
mIG has better capacity to solve large-scale and complicated instances of DBFSP SDST than
MILP.

4.3. Parameter Calibration

In the proposed mIG, two key parameters should be calibrated. One is the threshold
value of two iterative processes, ρ, and the other is the proportion of |BestList| to |List|, ω.
To obtain a more intuitive sensitivity of the two parameters, the Taguchi method of design
of experiment (DOE) is used to determine the best combination of parameter values. For
each parameter, the four levels illustrated in Table 4 are considered, and 16 (4× 4 = 16)
parameter combinations are listed in Table 5. To fairly investigate the sensitivity of these
two parameters, three different instances are randomly selected (F_J_M), i.e., 2_100_5,
4_300_5, 7_500_10. For each instance, 16 combinations are run independently five times
and obtain the average RPI values (see Table 5). Factor-level trends for each parameter are
shown in Figure 4. Table 6 indicates the level of significance of the two parameters. The
largest influence on the algorithm is exerted by the parameter ρ, followed by ω.

Table 4. Parameter level factor.

Parameters
Parameter Level

1 2 3 4

ρ 0 0.1 0.2 0.3
ω 0.6 0.7 0.8 0.9

From Tables 4–6 and Figure 4, the parameter ρ has the greatest influence on the
experimental results. It directly affects the global and local search balance of the two
iterative processes. As can be seen in Figure 4, when ρ = 0, iterative process I is invoked
completely; iterative process II is not involved. At this time, the value of ARPI (1.282) is
higher, suggesting that the IGA with only the iterative process I strategy easily falls into
a local optimum. However, when ρ = 0.1, the average RPI (1.221) is better than that of
ρ = 0.2 and ρ = 0.3. This can further illustrate the validity of our proposed iterative process
II to increase the diversity of solutions and avoid local optima.

For the parameter ω, it determines how many strategies in BestList are available
to update List. If the value is too small, it suggests that few good search strategies in
BestList are used to update List, which may influence the convergence of the algorithm.
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On the contrary, if the value is too large, the diversity of strategies in List may be reduced.
Thus, the performance of mIG is tested under the values of ω being 0.6, 0.7, 0.8, and 0.9,
respectively. Based on the experimental results of Table 5 and Figure 4, the value of ω is set
0.7.

Table 5. Orthogonal array and ARPI value.

Experiment Number
Parameters

Response (ARPI)
ρ ω

1 0 0.6 1.27
2 0 0.7 1.33
3 0 0.8 1.23
4 0 0.9 1.30
5 0.1 0.6 1.39
6 0.1 0.7 1.08
7 0.1 0.8 1.15
8 0.1 0.9 1.26
9 0.2 0.6 1.27
10 0.2 0.7 1.34
11 0.2 0.8 1.39
12 0.2 0.9 1.34
13 0.3 0.6 1.30
14 0.3 0.7 1.25
15 0.3 0.8 1.28
16 0.3 0.9 1.31
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Table 6. The average RPI response values.

Level ρ ω

1 1.282 1.310
2 1.221 1.249
3 1.335 1.260
4 1.285 1.304

Delta 0.114 0.061
Rank 1 2

Best values are indicated in bold.
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4.4. Evaluation of the Proposed Problem-Specific mVND Operator

In this section, the proposed mVND strategy is investigated to demonstrate its con-
tribution. mIG_NV refers to the mIG without mVND. All instances were tested in the
same experimental environment, and each instance was repeatedly run 5 times, with
TimeLimit = 5× J ×M milliseconds as the same termination time. ANOVA will be used
to evaluate the RPI values of all instances as experimental results. From the results shown
in Figure 5, the value of RPI yielded by mIG with mVND is lower than that of mIG_NV.
This suggests that the proposed multi-neighborhood structures search based on variable
neighborhood descent can increase the diversity of mIG and provide more opportunities to
generate potential solutions. In addition, the reason why mVND has good performance
is due t the designed neighborhood search strategies for cross-factory and inner-factory,
which provide advantages for exploring the global solution.
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4.5. Evaluation of mIG with Other Efficient Algorithms

This section compares the mIG algorithm with five intelligent optimization algo-
rithms for solving DFSP, i.e., ES [40] and DDE [24], which are used to solving DBFSP,
DABC [18], IGR [15], and EA [14], which are used to solving DPFSP. For fairness of com-
parison, all algorithms are carefully implemented according to the characteristics of the
problem under the same termination conditions. The termination condition of all algo-
rithms is set as TimeLimit = 5× J ×M milliseconds. The mIG without refresh accelerated
calculation, called mIG0, is also compared. In Table 7, J_M represents the scale with J
jobs and M machines. In addition, we calculated the percentage values using equation(

PComparing − PmIG
)
/PCmparing × 100%, where PComparing and PmIG refer to the values of

Avg or ARPI obtained by the comparing algorithm and mIG, respectively. The calculated
percentages represent how much better mIG is than other algorithms, and the data are
marked in bold. For Avg, in different size instances of F = 2, the percentages of mIG
superior to EA, DDE, DABC, IGR, ES, and mIG0 are 1.11%, 1.64%, 4.25%, 2.04%, and 1.10%,
respectively. Similarly, for F = 3, 4, 5, 6, 7, the percentages are better than the six comparing
algorithms. For ARPI, the percentages of mIG superior to the comparison algorithms, EA,
DDE, DABC, IGR, ES, and mIG0 are 66.67%, 76.47%, 86.37%, 80.56%, 70.98%, and 50.88%,
respectively. It is obviously the case that when F = 3, 4, 5, 6, 7, the percentages of mIG are
still better than other algorithms.
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According to Table 7, (1) for most instances, the average makespan and RPI values
obtained by mIG0 are smaller than those of EA, DDE, DABC, IGR, and ES, regardless of
the number of factories being 2, 3, 4, 5, 6, and 7, respectively. The results demonstrate that
the mIG0 is effective and has the ability to generate makespan. The advantages of mIG0
can be attributed to the fact that the proposed strategies, i.e., Refresh_NEH_en, mVND, and
the two iterative processes, are designed based on the distributed multi-factories character
of DBFSP. (2) For all the instances, the average makespan and RPI values obtained by mIG0
are better than those of mIG0, EA, DDE, DABC, IGR, and ES, regardless of the number of
factories being 2, 3, 4, 5, 6, and 7, respectively. The results demonstrate that the mIG with
refresh accelerated calculation has low time complexity and can have more opportunities
to search potential solutions. Therefore, mIG shows superior performance compared with
all the other algorithms. The main advantage of mIG relative to mIG0 can be attributed to
the fact that the proposed refresh accelerated calculation based on job insertion can speed
up the calculation of the objective and reduce the time complexity of the algorithm.

4.6. Evolutionary Curves and Interactions for the Compared Algorithms

This section further verifies the convergence of the algorithms by selecting two differ-
ent scales, i.e., 100_6_10 and 400_7_10. The evolution curves of the mIG, ES, DABC, IGR,
EA, and DDE algorithms are plotted as shown in Figure 6. The termination times for the
two scales are Timelimit = 10× J ×M and Timelimit = 50× J ×M, respectively. Different
colors and symbols represent the six convergence curves obtained by six algorithms, respec-
tively. The abscissa is the execution time of the algorithm (in milliseconds), and ordinate
refers to the values of makespan.
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From Figure 6a, we can observe that ES and DDE have the fastest convergence speed,
but their solutions tend toward convergence as time increases. The evolutionary process
of DABC and EA lasts for a long time, and the final results obtained are mediocre. The
convergence speed of IGR is slightly faster than EA, and its solution is only better than
ES and DDE. Obviously, mIG has good convergence and is constantly converging as time
increases, and it is superior to other algorithms. Similarly, for the large-scale instance, mIG
still has the best convergence, as shown in Figure 6b. The reason why the convergence curve
of mIG is lower than those of compared algorithms may be that the proposed strategies,
i.e., Refresh_NEH_en, mVND, and two iterative processes, can generate excellent solutions
and effectively improve the convergence.

Although the above experiments have shown the superiority and competitiveness of
the proposed mIG, it is necessary to verify whether its superiority is statistically significant.
In view of this, a multifactor ANOVA analysis is done and uses different algorithms and
the numbers of factories, jobs, and machines as influencing factors, respectively. From
Figure 7a, the overall RPI values of all the compared algorithms are significantly different, in
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which the proposed mIG algorithm remarkably outperforms the other algorithms, followed
by mIG0, EA and ES, DABC, DDE, and IGR. Figure 7c,d shows that the values of RPI
obtained by mIG are better than those of compared algorithms, and the mIG can remain
stable when the numbers of factories, jobs, and machines increase. The ANOVA analysis
plotted is illustrated in Figure 7 and shows the significant difference between mIG and
other algorithms.
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4.7. Friedman Tests

The Friedman test can verify whether multiple overall distributions are significantly
different. Its original assumption is that all the algorithms involved in the comparison
are not significantly different from each other. When a probability p-value is smaller than
the given 0.05, the original assumption is rejected, and all algorithms are considered to be
significantly different. Conversely, the original assumption cannot be rejected. It can be
concluded that there are no significant differences between compared algorithms.

Table 8 gives the values of rank (Ranks), the number of test instances (CN), mean
of RPI, standard deviation (Std. Deviation), minimum value (Min), and maximum value
(Max) of makespan, respectively. The p-value obtained by the Friedman test is equal to
0.000, and its confidence level α = 0.050. The values of Ranks, Mean, Std. Deviation, Min,
and Max obtained by mIG are 1.04, 0.578, 0.2708, 0.11, and 1.53, and they are the smallest
among all the compared algorithms. The proposed mIG performs very well in solving the
DBFSP_SDST problem in general.
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Table 8. Friedman test results (confidence level α = 0.050).

Algorithms Ranks CN Mean Std.
Deviation Min Max

EA 3.96 270 2.934 1.1850 0.49 6.39
DDE 5.36 270 3.469 1.3126 0.74 7.38

DABC 4.49 270 3.254 1.2517 1.13 11.29
IGR 6.49 270 3.789 1.2246 1.18 7.21
ES 4.24 270 3.014 1.3478 0.61 6.93

mIG0 2.41 270 2.160 0.8912 0.28 4.93
mIG 1.04 270 0.578 0.2708 0.11 1.53

p-value 0.000
Best values are indicated in bold.

5. Conclusions and Future Research

There is very little literature about DBFSP_SDST. A MILP model is first constructed
for DBFSP_SDST, and this paper uses the Gurobi solver to confirm its accuracy. Then,
an efficient mIG algorithm is designed to optimize the above formulated model. For the
proposed mIG algorithm, this article has done the following modifications.

1. A refresh acceleration calculation is proposed to reduce the complexity of the algo-
rithm from O

(
mn2) to O(mn).

2. A rapid evaluation mechanism, Refresh_NEH_en, is designed to reduce the computa-
tional complexity of the initialization process.

3. Iterative process I and II strategies are designed, and each iterative process is adopted
by a certain probability to enhance the diversity of solutions from a global perspective.

4. According to characteristics of the distributed pattern, cross-factory and inner-factory
strategies are presented to allocate the appropriate number and sequence of jobs for
each factory, which balance the exploration and exploitation of the proposed mIG
algorithm.

5. The proposed mIG algorithm obtains best solutions for a total of 270 instances when
comparing to five state-of-the-art algorithms. The average makespan and RPI values
of mIG are 1.93% and 78.35% better than the five comparison algorithms on average,
respectively. The comprehensive results prove that the proposed mIG contains dual
advantages of high quality and efficient solutions, which are more suitable for solving
the DBFSP_SDST.

For future research, many issues of SDST-DBFSP need to be addressed urgently.
First, multiple objectives should be considered, i.e., makespan, energy consumption, total
flowtime, tardiness time [43] and earliness time, and so on. Second, from a practical
production perspective, many uncertain factors should be considered, such as machine
breakdowns, uncertain processing time, wrong operations, changes in due date, and so on.
Last but not least, problem-specific operators or strategies should be designed according to
the constraints and characteristics of problems.
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Abstract: This paper presents a modification of the q-BFGS method for nonlinear unconstrained
optimization problems. For this modification, we use a simple symmetric positive definite matrix and
propose a new q-quasi-Newton equation, which is close to the ordinary q-quasi-Newton equation in
the limiting case. This method uses only first order q-derivatives to build an approximate q-Hessian
over a number of iterations. The q-Armijo-Wolfe line search condition is used to calculate step length,
which guarantees that the objective function value is decreasing. This modified q-BFGS method
preserves the global convergence properties of the q-BFGS method, without the convexity assumption
on the objective function. Numerical results on some test problems are presented, which show
that an improvement has been achieved. Moreover, we depict the numerical results through the
performance profiles.
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1. Introduction

There are many methods for solving nonlinear unconstrained minimization prob-
lems [1–5], most of them are variants of the Newton and quasi-Newton methods. Newton’s
method uses the specification of the Hessian matrix, which is sometimes difficult to cal-
culate, whereas the quasi-Newton method uses an approximation of Hessian. Over time,
several attempts have been made to improve the effectiveness of quasi-Newton methods.
The BFGS (Broyden–Fletcher–Goldfarb–Shanno) method is a quasi-Newton method for
solving nonlinear unconstrained optimization problems, which is developed by Fletcher [6],
Goldfarb [7], Shanno [8], and Broyden [9]. Since the 1970s, the BFGS method has become
popular and is considered an effective quasi-Newton method. Some researchers have
established that the BFGS method achieves global convergence under the assumption of
convexity on the objective function. Mascarene has been shown with an example that the
standard BFGS method fails with exact line search for non-convex functions [10]. Using
inexact line search, some authors [11,12] established that the BFGS method achieves global
convergence without the assumption of convexity on the objective function.

Quantum calculus (q-calculus) is a branch of mathematics and does not require limits
to derive q-derivatives; therefore, it is also known as calculus without limits. In quantum
calculus, we can obtain the q-derivative of a non-differentiable function by replacing the
classical derivative with the q-difference operator, and if we take the limit q→ 1, then the q-
derivative reduces to the classical derivative [13]. Since the 20th century, quantum calculus
has been linking physics [14] and mathematics [15] that span from statistical mechanics [16]
and quantum theory [17] to hyper-geometric functions and number theory [14]. Quantum
analysis was first introduced in the 1740s when Euler wrote in Latin about the theory of
partitions, also known as additive analytic number theory.
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At the beginning of the 19th century, Jackson generalized the concepts of classical
derivatives in the context of q-calculus, known as Jackson’s derivative, or q-derivative
operator, or q-difference operator or simply q-derivative [18]. He systematically devel-
oped quantum calculus based on pioneer work by Eular and Henie. His work introduced
functions, mean value theorems [19], Taylor’s formula and its remainder [20,21], frac-
tional integrals [22], integral inequalities and generalizations of series in the context of
q-calculus [23]. The first time Soterroni [24] introduced the q-gradient vector. To obtain
this, instead of the classical first order partial derivative, the first order partial q-derivative
obtained from the q-difference operator is used.

In unconstrained optimization first time, Soterroni [24] used the q-derivative to es-
tablish the q-variant of the steepest descent method. After that, he also introduced the
q-gradient method for global optimization [25]. In recent years, some authors have given
some numerical techniques in the context of q-calculus to solve nonlinear unconstrained
optimization problems [26–28]. In these methods, instead of a general gradient, a q-gradient
is used because it permits the descent direction to work in the broader set of directions to
converse rapidly.

Moreover, optimization has a crucial role in the field of chemical science. In this
field, optimization methods have been used to minimize the energy consumption pro-
cess in plants, design optimum fluid flow systems, optimize product concentration and
reaction time in systems, and optimize the separation process in plants [29–31]. Some
authors [32,33] have shown that the BFGS method is systematically superior in obtaining
stable molecular geometries by reducing the gradient norm in a monotonic fashion. In a
similar way, the modified q-BFGS algorithm can be used to find stable molecular geometries
for large molecules.

In this paper, we modify the q-BFGS method for nonlinear unconstrained optimization
problems. For this modification, we propose a new q-quasi-Newton equation with the help
of a positive definite matrix, and in the limiting case, our new q-quasi-Newton equation
is close to the ordinary q-quasi-Newton equation. Instead of calculating the q-Hessian
matrices, we approximate them using only the first order q-derivative of the function. We
use an independent parameter q ∈ (0, 1) and quantum calculus based q-Armijo–Wolfe line
search [34] to ensure that the objective function value is decreasing. The use of q-gradient
in this line search is responsible for escaping the point from the local minimum to the
global minimum at each iteration. The proposed method is globally convergent without
the convexity assumption on the objective function. Then, numerical results on some test
problems are presented to compare the new method with the existing approach. Moreover,
we depict the numerical results through the performance profiles.

The organization of this paper is as follows: In Section 2, we recall essential prelim-
inaries related to the q-calculus and the BFGS method. In the next section, we present a
modified q-quasi-Newton equation, and using this, we give a modified q-BFGS algorithm
and discuss its properties. In Section 4, we present the global convergence of the modified
q-BFGS method. In the next section, we present numerical results. Finally, we give a
conclusion in the last section.

2. Preliminaries

In this section, we reviewed some important definitions and other prerequisites from
q-calculus and nonlinear unconstrained optimization.

Let q ∈ (0, 1), then, a q-complex number is denoted by [b]q and defined as follows [14]:

[b]q =
qb − 1
q− 1

, b ∈ C.

A q-natural number [m]q is defined as follows [13]:

[m]q = 1 + q + · · ·+ qm−1, m ∈ N.
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In q-calculus, the q-factorial [14] of a number [m]q is denoted by [m]q! and defined
as follows:

[m]q! = [1]q[2]q . . . [m− 1]q[m]q, m ∈ N

and
[0]q! = 1.

The q-derivative (q 6= 1) [18] of a real-valued continuous function f : R→ R, provided
that f is differentiable at 0, is denoted by Dq f and defined as follows:

Dq f (x) =

{ f (x)− f (qx)
(1−q)x , if x 6= 0

f ′(x), if x = 0.

If provided that f is differentiable on R then in the limiting case (q→1), the q-derivative
is equal to classical derivative.

Let f : Rn → R be a real continuous function, then for x = (x1, x2, . . . , xn) ∈ Rn,
consider an operator εq,i on h as

(εq,i f )(x) = f (x1, x2, . . . , qxi, xi+1, . . . , xn).

The partial q-derivative [22] of f at x with respect to xi, denoted by Dq,xi f and defined
as follows:

Dq,xi f (x) =





f (x)−(εq,i f )(x)
(1−q)xi

, if xi 6=0
∂ f (x)

∂xi
, if xi = 0.

In the same way, higher order partial q-derivatives are defined as follows:

D0
q = f (x),

Dm
q,x

k1
1 ,...,x

ki
i ...,xkn

n
f (x) =

(
Dq, xi

(
Dm−1

q,x
k1
1 ...x

ki−1
i ,...,xkn

n
f

))
(x),

where k1 + k2 + · · ·+ kn = m and m = 1, 2, . . . ,

Then, the q-gradient [24] of f is

(∇q f (x)) =
[

Dq,x1 f (x), . . . , Dq,xi f (x), . . . , Dq,xn f (x)
]T

.

To simplify the presentation, we use A > 0 (≥ 0) to denote any n× n symmetric and
positive definite (semi-definite) matrix A, use f : Rn → R to denote a real-valued function,
use gq(x) to denote the q-gradient of f at x, use ||x|| to denote Euclidean norm of a vector
x ∈ Rn, use Ak to denotes the q-quasi-Newton update Hessian at xk, throughout this paper.

Let f : Rn → R be continuously q-derivative then consider the following uncon-
strained optimization problem:

min
x∈Rn

f (x). (1)

The q-BFGS method [34] generates a sequence {xk} by the following iterative scheme:

xk+1 = xk + αkdk
q; k ∈ {0} ∪N, (2)

where αk and dk
q are step length and q-BFGS descent direction, respectively.

The q-BFGS descent direction is obtained by solving the following linear equation:

gk
q + Akdk

q = 0, (3)
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where Ak is the q-quasi-Newton update Hessian. The sequence Ak satisfies the follow-
ing equation:

Ak+1δk = γk,

where δk = xk+1 − xk and γk = gk+1
q − gk

q. In the context of q-calculus, we refer to the
Broyden–Fletcher–Goldfarb–Shanno (BFGS) update formula as the q-BFGS update formula.
Thus, the Hessian Ak is updated by the following q-BFGS formula:

Ak+1 = Ak − Akδk(δk)
T Ak

(δk)
T Akδk

+
γk(γk)

T

(δk)
T

γk
, (4)

3. Modified q-BFGS Algorithm

We modify the q-BFGS algorithm using the following function [35]:

fk(x) = f (x) +
1
2
(x− xk)T Bk(x− xk),

where Bk is a positive definite symmetric matrix. We obtain the following new q-quasi-
Newton equation by using the function fk to the q-quasi-Newton method in the kth iterate:

Ak+1δk = λk, (5)

where λk = γk + Bkδk. If we take k → ∞ and δk → 0, our new q-quasi-Newton equation
is similar to the ordinary q-quasi-Newton equation. Using the above modification of the
q-BFGS formula, we obtain the new one as follows:

Ak+1 = Ak − Akδk(δk)
T Ak

(δk)
T Akδk

+
λk(λk)

T

(δk)
T

λk
, (6)

where λk = γk + Bkδk.
To provide a better formula, the primary task of this research is to determine how to

select a suitable Bk. We direct our attention to finding Bk as a simple structure that carries
some second order information of objective function. In this part, we will discuss a new
choice of f and assume it to be sufficiently smooth.

Using the following quadratic model for the objective function [36,37], we have

f (x) ' f (xk+1) + (gk+1
q )T(x− xk+1) +

1
2
(x− xk+1)TGk+1(x− xk+1), (7)

where Gk+1 denotes a Hessian matrix at point xk+1.
Hence,

f (xk) ' f (xk+1)− (gk+1
q )Tδk +

1
2
(δk)TGk+1δk. (8)

Therefore,

(δk)TGk+1δk ' 2( f k − f k+1 + (gk+1
q )Tδk),

= 2( f k − f k+1) + (gk+1
q + gk

q)
Tδk + (δk)Tγk, (9)

where f k denotes the value of f at xk.
By using (5), we have

(δk)T Ak+1δk = (δk)Tλk = (δk)Tγk + (δk)T Bkδk. (10)
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The combination of Equations (9) and (10) shows that the reasonable choice of Bk

should satisfied the following new q-quasi-Newton equation:

(δk)T Bkδk = µk (µk = 2( f k − f k+1) + (gk+1
q + gk

q)
Tδk). (11)

Theorem 1. Assume that Bk satisfies (11) and Ak is generated by (6), then for any k,

f (xk) = f (xk+1) + (gk+1
q )T(xk − xk+1) +

1
2
(xk − xk+1)T Ak+1(xk − xk+1). (12)

Proof. The conclusion follows immediately using Equations (10) and (11).

The function f holds the Equation (12) without any convexity assumption on it and any
formula derived from the original quasi-Newton equation fails to satisfy the Equation (12).
From Equation (11), a choice of Bk can be defined as follows :

Bkδk = ηk,
(

ηk =
µk

(δk)Tvk vk
)

. (13)

In above Equation (13), vk is some vector such that (δk)Tvk 6= 0.
By the Equations (2) and (3), we know that if δk = 0 then gk

q = 0. Therefore, for all k we
can always assume that ‖δk‖ 6= 0; otherwise, at the kth iteration, the algorithm terminates.
Hence, we can choose vk = δk. Taking vk = δk in the Equation (10), we have a choice of Bk

as follows:

Bk =
µk

‖δk‖2 I, (14)

where the norm is the Euclidean norm and µk = 2( f k − f k+1) + (gk+1
q + gk

q)
Tδk.

Remark 1. The structure of Bk is very simple, so we can construct and analyze it easily. We only
need to consider the value of Bkδk to calculate the modified Ak+1 from the modified quasi-Newton
Equation (5). Thus, once vk is fixed, different choices of Bk, which satisfied (13) gives the same
Ak+1.

For computing the step length following q-gradient based modified Armijo–Wolfe line
search conditions [34] are used:

f (xk + αkdk
q) ≤ f (xk) + σ1αk(dk

q)
T gk

q, (15)

and

∇q f (xk + αkdk
q)

Tdk
q ≥ σ2(dk

q)
T gq

k, (16)

where 0 < σ1 < σ2 < 1. Additionally, if αk = 1 satisfies (16), we take αk = 1. In the above
line search, a sufficient reduction in the objective function and nonacceptance of short step
length is ensured by (15) and (16), respectively.

A good property of Formula (6) is that Ak+1 inherits the positive definiteness of Ak as
long as (δk)

T
λk > 0; provided that f is convex and step length is computed by an above

line search. However, when f is a non-convex function, then the above line search does
not ensure the condition (δk)

T
λk > 0. Hence, in this case, Ak+1 is not necessarily positive

definite even if Ak is positive definite. Therefore, some extra caution updates should be
introduced as follows:
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Define the index set K as follows:

K =

{
k :

(δk)Tλk

‖δk‖2 ≥ ε‖gk
q‖c

}
, (17)

where β ∈ [ϑ1, ϑ2], with 0 < ϑ1 ≤ ϑ2 and ε are positive constants. We determine Ak+1 by
the following rule:

Ak+1 =





Ak − Akδk(δk)
T

Ak

(δk)
T Akδk

+ λk(λk)
T

(δk)
T

λk
if k ∈ K

Ak if k /∈ K.
(18)

Corollary 1. Let Bk be chosen such Equation (13) holds and Ak is generated by (18), then
Ak+1 > 0, ∀ k ∈ N ∪ {0} .

Proof. Without loss of generality, let ‖gk‖ 6= 0, ∀k. We use mathematical induction on k
to prove this corollary. Since B0 is chosen as a positive definite symmetric matrix, the
result holds for k = 0. Let’s assume that the result holds for k = n. We consider the case
when k = n + 1. If k ∈ K, then from Equations (17) and (18), (δk)Tλk > 0 holds. Hence,
for k = n + 1, the result also holds. If k /∈ K, then by our assumption, Ak+1 = Ak is also
positive definite. This completes the proof.

From the above modifications, we introduce the following Algorithm 1:

Algorithm 1 Modified q-BFGS algorithm

Require: Objective function f : Rn → R, ε is tolerance for convergence. Select an initial
point x0 ∈ Rn, fix q ∈ (0, 1), and an initial positive definite symmetric matrix Ao ∈
Rn×m.

Ensure: With the corresponding objective value f (x∗), the minimizer x∗ is encountered.
1: Set A0 = In.
2: for k = 0,1,2... do
3: if ‖gk

q‖ < ε then
4: Stop.
5: else
6: Solve the Equation (3) to find a q-descent direction dk

q.
7: Find a step length αk satisfying Equations (15) and (16).
8: end if
9: Compute xk+1 = xk + αkdk

q and using the following equation, calculate Bk:

Bk =
µk

‖δk‖2 I,

where the norm is the Euclidean norm and

µk = 2( f k − f k+1) + (gk+1
q + gk

q)
Tδk.

10: Select two appropriate constants β, ε, then update Ak+1 by (18).
11: end for

4. Analysis of the Convergence

Under the following two assumptions, the global convergence [11] of the modified
q-BFGS algorithm is shown in this section.
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Assumption 1. The level set

Ω = {x ∈ Rn| f (x) ≤ f (x0)}

is bounded.

Assumption 2. The function f is continuously q-derivative on Ω, and there exist a constant
(Lipschitz constant) L > 0, such that

‖gq(x1)− gq(x2)‖ ≤ L||x1 − x2||, ∀ x1, x2 ∈ Ω. (19)

Since { f k} is a decreasing sequence, it is clear that the sequence {xk} generated by the
modified q-BFGS algorithm is contained in Ω.

To establish the global convergence of the modified q-BFGS algorithm in the context
of q-calculus, first, we show the following lemma:

Lemma 1. Let Assumptions 1 and 2 hold for f and with q ∈ (0, 1), {xk} be generated by
Algorithm 1. If there exist positive constants a1 and a2 such that the following inequalities :

‖Akδk‖ ≤ a1‖δk‖ and (δk)T Akδk ≥ a2‖δk‖2, (20)

holds for infinitely many k, then we have

lim
k→∞

inf ‖gq(xk)‖ = 0 (21)

Proof. Using Equations (2) and (3) in (20), we have

a2‖dk
q‖ ≤ ‖gk

q‖ ≤ a1‖dk
q‖ and (dk

q)
T Akdk

q ≥ a2‖dk
q‖2. (22)

We consider a new case using the q-Armijo type line search (15) with backtracking
parameter ρ ∈ (0, 1). If αk 6= 1, then we have

σ1ρ−1αkgq(xk)
T

dk
q < f (xk + ρ−1αkdk

q)− f (xk). (23)

By the q-mean value theorem [19], there is a θk ∈ (0, 1) such that

f (xk + ρ−1αkdk
q)− f (xk) = ρ−1αkgq(xk + θkρ−1αkdk

q)
T

dk
q,

that is,

f (xk + ρ−1αkdk
q)− f (xk) = ρ−1αkgq(xk)

T
dk

q + ρ−1αk(gq(xk + θkρ−1αkdk
q)− gq(xk))Tdk

q.

From Assumption 2, we obtain

f (xk + ρ−1αkdk
q)− f (xk) ≤ ρ−1αkgq(xk)

T
dk

q + Lρ−2(αk)2‖dk
q‖2. (24)

From (23) and (24), we obtain for any k ∈ K

αk ≥
−(1− σ1)ρgk

q(xk)Tdk
q

L‖dk
q‖2 .

Since −gq(xk) = Akdk
q,

αk ≥
(1− σ1)ρ(dk

q)
T Akdk

q

L‖dk
q‖2 .
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Using (22) in the above inequality, we obtain

αk ≥ min{1, (1− σ1)a2L−1ρ} > 0. (25)

We consider the case where line search (16) is used; then, from Assumption 2 and from
the inequality (16), we obtain the following:

(σ2 − 1)gq(xk)Tdk
q ≤ (gq(xk + αkdk

q)− gq(xk))Tdk
q ≤ Lαk‖dk

q‖2.

The above inequality implies that

αk ≥
(σ2 − 1)gq(xk)Tdk

q

L‖dk
q‖2 .

Since −gk
q = Akdk

q,

αk ≥
−(σ2 − 1)(dk

q)
T Akdk

q

L‖dk
q‖2 .

Since Akdk
q ≥ a2‖dk

q‖2,

αk ≥ min{1, (1− σ2)a2L−1ρ} > 0. (26)

The inequalities (25) and (26) together show that {αk}k∈K is bounded below away
from zero whenever line search (16) and (15) are used. Moreover,

∞

∑
k=0

[ f (xk)− f (xk+1)] = lim
i→∞

i

∑
k=1

[ f (xk)− f (xk+1)],

= f (x1)− lim
i→∞

f (xj).

That is,

∞

∑
k=0

[ f (xk)− f (xk+1)] = f (x1)− f (x∗).

This gives the following result

∞

∑
k=1

[ f (xk)− f (xk+1)] < ∞.

The above inequality, together with (15) gives,

−
∞

∑
k=1

αk(gk
q)

Tdk
q < ∞.

Since gk
q = −Akdk

q,

lim
k→∞

(dk
q)

T Akdk
q = − lim

k→∞
(gk

q)
Tdk

q → 0.

The above result, together with (22), implies (21).

From the above Lemma 1, we can say that to establish the global convergence of
Algorithm 1, it is sufficient to show that there are positive constants a1 and a2 such that
the (20) holds for infinitely many k. To prove this, we need the following lemma [34]:
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Lemma 2. Let A0 be a positive definite and symmetric matrix and Ak be updated by (18). Suppose
that there exist positive constant m < M such that, for each k ≥ 0, λk and δk satisfy

(δk)Tλk

‖δk‖2 ≥ m and
‖λk‖2

(δ)Tλk ≤ M. (27)

Then, there exist constants a1, a2 > 0 such that for any positive integer t, (20) holds for at
least d t

2e values of k ∈ {1, 2, . . . , t}.

By using Lemma 2 and Lemma 1, we can prove the following global convergence
theorem for Algorithm 1.

Theorem 2. Let f satisfy Assumption 1 and Assumption 2, and {xk} be generated by modified
q-BFGS Algorithm 1, then the Equation (21) is satisfied.

Proof. By using Lemma 1, it is sufficient to show that there are infinitely many k which
satisfies (20).

If the set K is finite, then after a finite number of iterations, Ak remains constant. Since
matrix, Ak is positive definite and symmetric for each k, and it is clear that there are positive
constants a1 and a2 such that Equation (20) holds for all sufficiently large k.

Now, consider the case when K is an infinite set. We go forward by contradiction and
assume that (21) is not true. Then, there exists a positive constant α such that ‖gk

q‖ > α, ∀k.
Then, from (17)

(δk)Tλk ≥ εαβ‖δk‖2, ∀k ∈ K

⇒ 1
(δk)Tλk ≤

1
εαβ‖δk‖2 , ∀k ∈ K,

⇒ ‖λk‖2

(δk)Tλk ≤
‖λk‖2

εαβ‖δk‖2 , ∀k ∈ K.

From (19), we know that ‖λk‖2 ≤ L2‖δk‖2. Thus, combining it with the above
inequality, we obtain

‖λk‖2

(δk)Tλk ≤
L2

εαβ
, ∀k ∈ K.

Let L2

εαβ = M, then
‖λk‖2

(δk)Tλk ≤ M, ∀k ∈ K.

Applying Lemma 2 to the matrix subsequence {Ak}k∈K, we conclude that there exist
constants a1, a2 > 0 such that the Equation (20) holds for infinitely many k. The proof is
then complete.

The above Theorem 2 shows that the modified q-BFGS algorithm is globally convergent
even if convexity is not assumed for f [34].

5. Numerical Results

This section presents the comparison of numerical results obtained with the modified
q-BFGS algorithm 1, the q-BFGS algorithm [34], and the BFGS Algorithm [38] for solving a
collection of unconstrained optimization problems taken from [39]. For each test problem,
we chose an initial matrix as a unit matrix, i.e., A0 = I. Our numerical results are performed
on Python3.7 (Google colab). Throughout this section ‘NI’, ‘NF’, and ‘NG’ indicate the
total number of iterations, the total number of function evaluations, and the total number
of gradient evaluations, respectively. For each test problem, the parameters are common
to modified q-BFGS, q-BFGS, and BFGS algorithms. We set q = 0.9999999, σ1 = 0.0001,
and σ2 = 0.9, and used the condition ‖gk

q‖ ≤ 10−6 as the stopping criteria. Moreover, we
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set the parameter β = 3, when ‖gk
q‖ ≤ 10−6 otherwise we take β = 0.01. In general, we take

q→ 1 and q 6= 1. When q 6= 1, then the q-gradient can make any angle with the classical
gradient and the search direction can point in any direction.

We have used performance profiles for evaluating and comparing the performance of
algorithms on a given set of test problems through graphs. Dolan and More [40], presented
an appropriate technique to demonstrate the performance profiles, which is a statistical
process. We use this as an evaluation tool to show the performance of the algorithm. We
are interested in using the number of the iteration, function evaluations, and q-gradient
evaluations as the performance measure. The performance ratio is presented as

ρp,s =
r(p,s)

min{r(p,s) : 1 ≤ r ≤ ns}
, (28)

Here, r(p,s) refers to the number of the iteration, function evaluations, and q-gradient
evaluations, respectively, required to solve problem p by solver s and ns refers to the
number of problems in the model test. The cumulative distribution function is expressed as

ps(τ) =
1

np
size{p ∈ ρp,s ≤ τ}

where ps(τ) is the probability that a performance ratio ρp,s is within a factor of τ of the best
possible ratio. That is, for a subset of the methods being analyzed, we plot the fraction
ps(τ) of problems for which any given method is within a factor (τ) of the best. Now we
take the following examples to show the computational results:

Example 1. Consider the non-convex Rosenbrock function f : R2 → R such that

f (x1, x2) = 100(x2 − x1
2)2 + (x1 − 1)2.

Following Figure 1 represents the surface plot of the Rosenbrock function:

Figure 1. Surface plot of Rosenbrock function.

The Rosenbrock function was introduced by Rosenbrock in 1960. We tested modified q-BFGS,
q-BFGS, and BFGS algorithms for 10 different initial points. Numerical results for the Rosenbrock
function are given in the following Table 1:
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Table 1. Comparison of numerical results of Modified q-BFGS, q-BFGS, and BFGS algorithms for the
Rosenbrock function.

S.No. x0 Modified q-BFGS q-BFGS BFGS
NI/NF/NG NI/NF/NG NI/NF/NG

1 (−1.5,−1)T 25/95/47 47/198/66 49/213/71
2 (0, 0)T 22/77/35 21/78/26 20/75/25
3 (−4, 4)T 27/125/73 63/82/246 63/255/85
4 (−3, 0)T 28/118/64 55/210/70 58/210/70
5 (10, 0)T 54/197/91 40/150/50 85/372/120
6 (7,−7)T 52/184/82 75/294/98 76/414/134
7 (4, 5)T 48/174/80 51/201/67 51/198/66
8 (−2,−2)T 26/112/62 55/201/67 57/342/110
9 (1, 1.2)T 9/38/22 13/57/19 12/93/27
10 (0, 4)T 27/113/61 25/96/32 26/114/38

The Rosenbrock function converges to x∗ = (1, 1)T with value f (x∗) = 0, for the above
starting points x0. Figures 2–4 show the Dolan and More performance profiles of modified q-BFGS,
q-BFGS, and BFGS algorithms for the Rosenbrock function, respectively.

Figure 2. Performance profile based on number of iterations.

Figure 3. Performance profile based on number of gradient evaluations.
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Figure 4. Performance profile based on number of function evaluations.

The global minima and plotting points of the Rosenbrock function using the modified q-BFGS
algorithm can also be observed in Figure 5.

Figure 5. Global minima of the Rosenbrock function using modified q-BFGS algorithm.

For the starting point x0 = (−1.5,−1), the Rosenbrock function converges to

x∗ = [0.999999996685342, 0.999999997414745]T ,

with

f (x∗) = 1.64642951315324e−15 and ∇q f (x∗) = [−1.66435354e−06, 7.98812111e−07]T ,

in 25 iterations.
The global minima and plotting points of the Rosenbrock function using the q-BFGS algorithm

can also be observed in Figure 6.
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Figure 6. Global minima of the Rosenbrock function using q-BFGS algorithm [34].

For the starting point x0 = (−1.5,−1), the Rosenbrock function converges to

x∗ = [1.0000000, 1.00000001]T ,

with

f (x∗) = 1.541354346404984e−16 and ∇q f (x∗) = [4.42018890e−07,−2.47425057e−07]T .

in 47 iterations.
The global minima and plotting points of the Rosenbrock function using the BFGS algorithm

can also be observed in Figure 7.

Figure 7. Global minima of the Rosenbrock function using BFGS algorithm.

For the starting point x0 = (−1.5,−1), the Rosenbrock function converges to

x∗ = [0.99999552, 0.99999103]T ,

with

f (x∗) = 2.0060569721431806e−11 and ∇q f (x∗) = [7.91549092e−07,−3.95920563e−07]T ,

in 49 iterations.

Example 2. We consider

f (x) =

{
x2 − 2 if x < 2
x2 + 2 if x ≥ 2,
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which is non-differentiable at x = 2. For initial point x0 = 9, using our modified q-BFGS algorithm
we reach minima at x∗ = 0 in 4 iterations, 10 function evaluations, and 5 gradient evaluations.

Example 3. Consider the non-convex Rastrigin function f such that

f (x) = 10d +
d

∑
i=1

[x2
i − 10cos(2πxi)]

Following Figure 8 represents the surface plot of the Rastrigin function:

Figure 8. Surface plot of the Rastrigin function.

The Rastrigin function f has a global minimum at

x∗ = (0, 0, . . . , 0),

with value
f (x∗) = 0.

We tested modified q-BFGS, q-BFGS, and, BFGS algorithms for initial point x0 = (0.2, 0.2).
The global minima and plotting points of the Rastrigin function using the modified q-BFGS

algorithm can be observed in Figure 9.

Figure 9. Global minima of the Rastrigin function using the modified q-BFGS algorithm.
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The numerical results for the Rastrigin function, using the modified q-BFGS algorithm are
as follows:

For the starting point x0 = (0.2, 0.2), the Rastrigin function converges to

x∗ = [−6.83810097023008e−6,−6.83810097023008e−6]T ,

with

f (x∗) = 1.85534789132191e−9 and ∇q f (x∗) = [−1.3676e−6,−1.3676e−6]T .

NI/NF/NG = 4/18/6.
The global minima and plotting points of the Rastrigin function using the q-BFGS algorithm

can be observed in Figure 10.

Figure 10. Global minima of the Rastrigin function using q-BFGS algorithm.

The numerical results for the Rastrigin function, using the q-BFGS algorithm are as follows:
For the starting point x0 = (0.2, 0.2), The Rastrigin function converges to

x∗ = [−1.18906228e−06,−2.65293229e−07]T ,

with

f (x∗) = 2.944648969105401e−10 and ∇q f (x∗) = [0., 0.]T .

NI/NF/NG = 5/24/8.
The global minima and plotting points of the Rastrigin function using the BFGS algorithm

can be observed in Figure 11.

Figure 11. Global minima of the Rastrigin function using BFGS algorithm.
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The numerical results for the Rastrigin function using the BFGS algorithm are as follows:
For the starting point x0 = (0.2, 0.2), the Rastrigin function converges to

x∗ = (−7.14289963e−09,−7.37267609e−09)T ,

with

f (x∗) = 2.1316282072803006e−14 and ∇ f (x∗) = (1.1920929e−07, 0.0000000e00)T .

NI/NF/NG = 7/36/12.
From the above numerical results, we conclude that using the modified q-BFGS algorithm, we

can reach the critical point by taking the least number of iterations.

Example 4. Consider the SIX-HUMP CAMEL function f : R2 → R such that

f (x) =

(
4− 2.1x2

1 +
x4

1
3

)
x2

1 + x1x2 + (−4 + 4x2
2)x2

2

The Figure 12 on the left shows the SIX-HUMP CAMEL function on its recommended input
domain and on the right shows only a portion of this domain for easier view of the function’s key
characteristics. The function f has six local minima, two of which are global.

Figure 12. Surface plot of the SIX-HUMP CAMEL function.

Input Domain: The function is usually evaluated on the rectangle x1 ∈ [−3, 3], x2 ∈ [−2, 2].
This function has a global minimum at

x∗ = (0.0898,−0.7126) and (−0.0898, 0.7126),

with value
f (x∗) = −1.0316.

For the starting point x0 = (1, 1), with the modified q-BFGS algorithm f converges to x∗ in
eight iterations whereas with q-BFGS and BFGS it takes 13 iterations. Tables 2–4 give numerical
results and Figures 13–15 represents the global minima and sequence of iterative points generated
with modified q-BFGS, q-BFGS and BFGS algorithms, respectively.
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Table 2. Numerical results for Modified q-BFGS algorithm.

S.N. x f (x) ∇q f (x)

1 (1, 1)T 3.23333333333333 (2.59999999, 8.9999998)T

2 (0.675,−0.12499997)T 1.27218227259399 (2.97185835, 1.64374981)T

3 (−0.06796459,−0.53593743)T −0.764057148938559 (−1.0770199, 1.75654714)T

4 (−0.0353348602,−0.8064736058)T −0.876032180235736 (−1.08878201,−1.97602868)T

5 (0.117691114989,−0.69297924267)T −1.02498975962408 (0.23490147, 0.33700269)T

6 (0.087916835437,−0.709453427634)T −1.03153652682667 (−0.01181639, 0.05018343)T

7 (0.089782273326,−0.71271422021)T −1.03162840874522 (−0.00052364,−0.00100674)T

8 (0.089842117966,−0.71265601378)T −1.03162845348855 (1.20226364× 10−6, 6.54303983× 10−6)T

Here, we obtain x∗ = (0.089842117966,−0.71265601378)T

f (x∗) = −1.03162845348988 and ∇q f (x∗) = (−6.20473783× 10−09, 0.00000000× 10+00)T

Figure 13. Global minima of SIX-HUMP CAMEL function using modified q-BFGS algorithm.

Table 3. Numerical results for q-BFGS algorithm [34].

S.N. x f (x) ∇q f (x)

1 (1, 1)T 3.23333333333333 (2.59999999, 8.9999998)T

2 (0.71968495, 0.02967868)T 1.57257718494530 (3.04212661, 0.4826738)T

3 (−0.36642555,−0.07524058)T 0.505072874807150 (−2.60658417, 0.22868392)T

4 (0.13008033,−0.06568514)T 0.0413558838831559 (0.95654292, 0.65102699)T

5 (0.00245036,−0.12816569)T −0.0649165012454617 (−0.10856293, 0.99409097)T

6 (−0.11507302,−0.35694646)T −0.351034437749229 (−1.26477125, 2.01283747)T

7 (−0.23737914,−0.62081297)T −0.581320173229039 (−2.40899478, 0.90085665)T

8 (−0.08148802,−0.6924283)T −0.915418626192531 (−1.33979439, 0.14610549)T

9 (0.11917819,−0.6987523)T −1.02633316281778 (0.24050227, 0.25049034)T

10 (0.0912121,−0.72252832)T −1.03082558867975 (0.00080671,−0.16366308)T

11 (0.087625,−0.71111103)T −1.03159319420704 (−0.01575222, 0.02301181)T

12 (0.09005303,−0.71260578)T −1.03162824822151 (0.00169591, 0.00104015)T

13 (0.08983369,−0.71266332)T −1.03162845277086 (−7.18180083× 10−5,−1.21481195× 10−4)T
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Here, we obtain x∗ = (0.08983369,−0.71266332)T ,

f (x∗) = −1.0316284534898477 and ∇q f (x∗) = (−0.00000000× 10+00, 9.65876859× 10−07)T .

Using this q-BFGS algorithm, we can reach the critical point by taking 13 iterations.

Figure 14. Global minima of SIX-HUMP CAMEL function using q-BFGS algorithm.

Table 4. Numerical results for BFGS algorithm.

S.N. x f (x) ∇q f (x)

1 (1, 1)T 3.23333333333333 (2.59999999, 8.9999998)T

2 (0.71968497, 0.02967869)T 1.5725772653791203 (3.04212611, 0.48267368)T

3 (0.13008034,−0.06568512)T 0.041355907444434827 (0.95654306, 0.65102689)T

4 (0.00245035,−0.12816566)T −0.06491646830150141 (−0.10856298, 0.99409077)T

5 (−0.11507301,−0.35694647)T −0.35103445558228663 (−1.26477118, 2.01283762)T

6 (−0.23737911,−0.62081301)T −0.5813202779118049 (−2.40899456, 0.90085617)T

7 (−0.08148803,−0.6924282)T −0.9154186025665918 (−1.33979439, 0.1461069)T

8 (0.11917811,−0.69875236)T −1.0263331977999757 (0.24050162, 0.25048941)T

9 (0.09121207,−0.72252828)T −1.0308255945761227 (0.00080669,−0.16366242)T

10 (0.08762501,−0.71111104)T −1.031593194593363 (−0.01575207, 0.02301181)T

11 (0.09005304,−0.71260578)T −1.031628248214576 (0.00169598, 0.00104006)T

12 (0.08983368,−0.7126633)T −1.0316284527721356 (0.000016959, 0.000104006)T

13 (0.08984197,−0.71265633)T −1.0316284534898297 (−7.19424520× 10−5,−1.21236354× 10−4)T

Here, we obtain x∗ = (0.08984197,−0.71265633)T ,

f (x∗) = −1.0316284534898448 and ∇ f (x∗) = (−2.68220901× 10−07, 9.98377800× 10−07)T .

Using this BFGS algorithm, we can reach the critical point by taking 13 iterations.

Figure 15. Global minima of SIX-HUMP CAMEL function using BFGS algorithm.
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We conclude that using the modified q-BFGS algorithm, we can reach the critical point by
taking the least number of iterations. From the performance results and plotting points for the
multimodal functions it could be seen that the q-descent direction has a mechanism to escape from
many local minima and move towards the global minimum.

Now, we compare the performance of numerical algorithms for large dimensional
Rosenbrock and Wood function. Numerical results for these functions are given in
Tables 5 and 6.

Numerical results for the large dimensional Rosenbrock function for x0 = (0, 0, . . . , 0)

f (x) =
d−1

∑
i=1

[100(xi+1 − xi
2)2 + (xi − 1)2]

Table 5. Comparison of numerical results of Modified q-BFGS, q-BFGS, and BFGS algorithm for the
large dimensional Rosenbrock function.

S.No. Dimension Modified q-BFGS q-BFGS BFGS

NI/NF/NG NI/NF/NG NI/NF/NG

1 10 58/889/132 63/972/81 61/1365/123

2 50 242/15,432/300 253/17,316/324 253/17,199/337

3 100 466/63,088/604 486/64,056/636 479/64,741/641

4 200 904/209,912/1175 978/248,056/1228 956/253,674/1262

Numerical results for large dimensional WOOD function [39] for x0 = (0, 0, . . . , 0)

Table 6. Comparison of numerical results of Modified q-BFGS, q-BFGS, and BFGS algorithm for Large
Dimensional Wood function.

S.No. Dimension Modified q-BFGS q-BFGS BFGS

NI/NF/NG NI/NF/NG NI/NF/NG

1 20 85/1976/98 91/2872/130 103/2478/118

2 80 162/19,745/198 193/21,250/259 209/22,366/276

3 100 197/19,965/255 240/30,714/301 254/29,290/290

4 200 296/75,686/397 370/93,538/463 378/93,678/466

We have taken 20 test problems to show the proposed method’s efficiency and numer-
ical results. We take tolerance ε = 10−6, σ1 = 0.0001, and σ2 = 0.9. Our numerical results
are shown in Tables 7–9 with the problem number(S.N.), problem name, Dimension (DIM),
starting point, the total number of iterations (NI), the total number of function evaluations
(NF), the total number of gradient evaluations (NG), respectively.
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Table 7. Numerical results for Modified q-BFGS algorithm.

S.N. Problems x0 DIM NI NF NG x∗

1 ROSENBROCK (−1.5,−1)T 2 25 95 47 (1.0000, 1.0000)T

2 FROTH (0.5,−2)T 2 9 37 20 (11.4128,−0.8968)T

3 BADSCP (0, 1)T 2 174 618 272 (1.0981× 10−5, 9.1062)T

4 BADSCB (1, 1)T 2 11 100 80 (1000000.0000, 1.9999× 10−6)T

5 BEALE (3, 1)T 2 12 44 21 (3.0000, 0.5000)T

6 JENSAM (1, 0.4)T 2 15 57 20 (0.56094, 0.56094)T

7 WOOD (−3,−1,−3,−1)T 4 42 205 52 (1.0000, 1.0000, 1.0000, 1.0000)T

8 POWELL SINGULAR (3,−1, 0, 1)T 4 23 91 46 (−0.0011, 0.0001, 0.0009, 0.0009)T

9 RASTRIGIN (0.2, 0.2)T 2 4 18 6 (−6.8381× 10−5,−6.8381× 10−5)T

10 GOLDSTEIN PRICE (0.5, 0.5)T 2 12 106 84 (5.4911× 10−5,−1.0000)T

11 THREE-HUMP
CAMEL

(−2.5, 0)T 2 5 19 10 (8.3463× 10−8, 1.9707× 10−7)T

12 COLVILLE (0, 0, 0, 0)T 4 27 109 56 (1.0000, 1.0000, 1.0000, 1.0000)T

13 BOOTH (2, 2)T 2 2 11 8 (1.0000, 3.0000)T

14 SINE VALLEY (3π/2,−1)T 2 35 115 46 (−1.4495× 10−11,−1.6686× 10−11)T

15 BRANIN (9.3, 3)T 2 5 18 9 (9.4248, 2.4750)T

16 SIX HUMP CAMEL (1, 1)T 2 8 32 17 (0.0898,−0.7126)T

17 HIMMELBLAU (1, 1)T 2 9 37 20 (3.0000, 2.0000)T

18 SHEKEL (0, 0, 0, 0)T 4 14 105 35 (4.0007, 4.0005, 3.9997, 3.9995)T

19 HARTMAN 3D (0, 0.5, 0.4)T 3 10 100 21 (0.1146, 0.5556, 0.8525)T

20 GRIEWANK (2,−1.2)T 2 8 25 9 (−6.9305× 10−5,−5.0749× 10−5)T

Table 8. Numerical results for q-BFGS algorithm.

S.N. Problems x0 DIM NI NF NG x∗

1 ROSENBROCK (−1.5,−1)T 2 47 198 66 (1.0000, 1.0000T

2 FROTH (0.5,−2)T 2 9 30 10 (11.4127,−0.8968)T

3 BADSCP (0, 1)T 2 158 609 203 (1.0981× 10−5, 9.1061)T

4 BADSCB (1, 1)T 2 - - - -

5 BEALE (3, 1)T 2 13 48 16 (3.0000, 0.5000)T

6 JENSAM (1, 0.4)T 2 17 66 22 (0.56095, 0.56095)T

7 WOOD (−3,−1,−3,−1)T 4 87 309 103 (1.0000, 1.0000, 1.0000, 1.0000)T

8 POWELL SINGULAR (3,−1, 0, 1)T 4 37 126 42 (2.3008 × 10−4,−2.3007 × 10−5,
9.0539 × 10−4, 9.0545× 10−4)T

9 RASTRIGIN (0.2, 0.2)T 2 5 24 8 (−1.1890× 10−6,−2.6529× 10−7)T

10 GOLDSTEIN PRICE (0.5, 0.5)T 2 - - - -

11 THREE-HUMP
CAMEL (−2.5, 0)T 2 8 36 12 (−1.7475, 0.8738)T

12 COLVILLE (0, 0, 0, 0)T 4 26 102 34 (1.0000, 1.0000, 1.0000, 1.0000)T

13 BOOTH (2, 2)T 2 3 15 5 (1.0000, 3.0000)T

14 SINE VALLEY (3π/2,−1)T 2 37 132 44 (4.0788× 10−10, 4.262× 10−10)T

15 BRANIN (9.3, 3)T 2 6 24 8 (9.4248, 2.4750)T

16 SIX HUMP CAMEL (1, 1)T 2 13 54 18 (0.0898,−0.7126)T

17 HIMMELBLAU (1, 1)T 2 8 39 13 (3.0000, 2.0000)T

18 SHEKEL (0, 0, 0, 0)T 4 14 105 35 (4.0007, 4.0006, 3.9997, 3.9995)T

19 HARTMAN 3D (0, 0.5, 0.4)T 3 11 63 21 (0.1088, 0.5556, 0.8526)T

20 GRIEWANK (2,−1.2)T 2 8 27 9 (8.4001× 10−5, 3.1323× 10−4)T
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Table 9. Numerical results for BFGS algorithm.

S.N. Problems x0 DIM NI NF NG x∗

1 ROSENBROCK (−1.5,−1)T 2 49 213 71 (1.0000, 1.0000T

2 FROTH (0.5,−2)T 2 9 30 10 (11.4128,−0.8968)T

3 BADSCP (0, 1)T 2 - - - -

4 BADSCB (1, 1)T 2 - - - -

5 BEALE (3, 1)T 2 13 48 16 (3.0000, 0.5000)T

6 JENSAM (1, 0.4)T 2 17 66 22 (0.56095, 0.56095)T

7 WOOD (−3,−1,−3,−1)T 4 89 525 105 (1.0000, 1.0000, 1.0000, 1.0000)T

8 POWELL
SINGULAR (3,−1, 0, 1)T 4 41 230 46 (7.759× 10−4,−7.7607× 10−5,

−7.5812× 10−4,−7.581× 10−4)T

9 RASTRIGIN (0.2, 0.2)T 2 7 36 12 (−7.1429× 10−9,−7.3727× 10−7)T

10 GOLDSTEIN
PRICE (0.5, 0.5)T 2 17 75 25 (−9.9828× 10−9,−1.0000)T

11 THREE-HUMP
CAMEL (−2.5, 0)T 2 8 36 12 (−1.7475, 0.8738)T

12 COLVILLE (0, 0, 0, 0)T 4 31 190 38 (1.0000, 1.0000, 1.0000, 1.0000)T

13 BOOTH (2, 2)T 2 3 15 5 (1.0000, 3.0000)T

14 SINE VALLEY (3π/2,−1)T 2 37 141 47 (−5.9619× 10−6,−5.9674× 10−6)T

15 BRANIN (9.3, 3)T 2 6 24 8 (9.4248, 2.4750)T

16 SIX HUMP
CAMEL (1, 1)T 2 13 54 18 (0.0898,−0.7126)T

17 HIMMELBLAU (1, 1)T 2 8 39 13 (3.0000, 2.0000)T

18 SHEKEL (0, 0, 0, 0)T 4 12 160 32 (4.0007, 4.0006, 3.9997, 3.9995)T

19 HARTMAN 3D (0, 0.5, 0.4)T 3 14 80 20 (0.1146, 0.5556, 0.8525)T

20 GRIEWANK (2,−1.2)T 2 10 33 11 (6.872× 10−8,−7.2441× 10−4)T

Tables 5–9 show that the modified q-BFGS algorithm solves about 86% of the test
problems with the least number of iterations, 82% of the test problems with the least
number of function evaluations, and 52% of the test problems with the least number of
gradient evaluations. Therefore, with Figures 16–18 we conclude that the modified q-BFGS
performs better than other algorithms and improves the performance in fewer iterations,
function evaluations, and gradient evaluations.

In Figures 17 and 18 the graph of q-BFGS and BFGS method does not converge to 1 as
the methods fail to minimize two problems for each as given in Tables 8 and 9.

Figure 16. Performance Profile based on number of iterations.
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Figure 17. Performance Profile based on number of function evaluations.

Figure 18. Performance Profile based on number of gradient evaluations.

6. Conclusions and Future Directions

We have given a new q-quasi-Newton equation and proposed a modified q-BFGS
method for unconstrained minimization based on this new q-quasi-Newton equation.
The method converges globally with a q-gradient-based Armijo–Wolfe line search. The q-
gradient allows the search direction to be taken from a diverse set of directions and
takes large steps to converge. From the performance results and plotting points for the
multimodal functions, it could be seen that the q-descent direction and q-gradient-based
line search have a mechanism to escape from many local minima and move towards the
global minimum. The first order q-differentiability of the function is sufficient to prove
the global convergence of the proposed method. The convergence and numerical results
show that the algorithm given in this paper is very successful. However, many other
q-quasi-Newton methods still need to be studied using the q-derivative.
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Abstract: The structural design of civil works is closely tied to empirical knowledge and the design
professional’s experience. Based on this, adequate designs are generated in terms of strength,
operability, and durability. However, such designs can be optimized to reduce conditions associated
with the structure’s design and execution, such as costs, CO2 emissions, and related earthworks. In
this study, a new discretization technique based on reinforcement learning and transfer functions is
developed. The application of metaheuristic techniques to the retaining wall problem is examined,
defining two objective functions: cost and CO2 emissions. An extensive comparison is made with
various metaheuristics and brute force methods, where the results show that the S-shaped transfer
functions consistently yield more robust outcomes.
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1. Introduction

Today’s society is experiencing a period of rapid growth and technological advance-
ment that has accelerated exponentially over the years. This progression compels various
industries to modernize, adapting to the evolving needs of consumers and the available
resources and technologies. In this context, the construction industry has made significant
strides in its design methods, gradually incorporating innovative techniques that pave the
way for interdisciplinary approaches. These advancements ensure that civil work designs
are optimized in terms of cost, material usage, associated carbon emissions, and other
critical parameters [1].

In the realm of sustainable design, it is important to recognize that the construction
industry is responsible for 33% of the energy produced globally and 30% of the total
greenhouse gas emissions worldwide [2]. This significant environmental impact stems
from the considerable carbon dioxide emissions associated with various elements in civil
works [3]. These include the materials and machinery utilized throughout a project’s life
cycle from construction and maintenance to eventual demolition [4]. As a result, the need for
more sustainable practices and a reduced ecological footprint in the construction industry
has become increasingly evident.

Given the pressing climate emergency, numerous processes and industries have been
compelled to adopt sustainable measures or update existing practices. Developing sustain-
able building approaches can help mitigate the environmental impacts caused by human
activity [5]. This global environmental situation has urged the construction sector to adopt
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and implement strategies to reduce or mitigate its ecological impact. Regarding carbon
emissions, several studies have sought to minimize this parameter in various structures.
For instance, ref. [6] employs a Finite Element Model (FEM) and a multi-objective genetic
algorithm in the BIM modeling process to reduce a building’s carbon emissions. Similarly,
ref. [3] presents a comprehensive calculation of emissions involved in the life cycle of
road construction, from material extraction to the end of its useful life, emphasizing the
importance of earthworks and machinery efficiency. The study also highlights the relevance
of material selection in optimizing emissions.

In [7], the researchers economically optimized footings using the MINLP (Mixed-
Integer Non-Linear Programming) method. This study achieved a significant reduction of
up to 63% in the total cost of the analyzed foundations. Additionally, various examples in
the literature demonstrate the application of artificial intelligence algorithms within the
construction industry. These include the use of computer vision for detecting cracks and
defects in buildings [8], pavements [9], and bridges [10], as well as object detection on
construction sites [11] and masonry segmentation [12].

In the domain of retaining walls, similar research efforts have been undertaken. For in-
stance, ref. [13] presents a hybrid metaheuristic optimization method called h-BOASOS that
minimizes the weight and cost of cantilever retaining walls. This approach combines the
butterfly optimization algorithm (BOA) and symbiosis organism search (SOS) algorithm,
outperforming other algorithms in benchmark tests, real-world engineering design prob-
lems, and cantilever retaining wall problems of various heights. In [14], the authors propose
a hybrid k-means cuckoo search algorithm, merging the cuckoo search metaheuristic for
continuous space optimization with the unsupervised k-means learning technique for
discretizing solutions. The algorithm employs a random operator to assess the k-means
operator’s contribution and is benchmarked against a harmony search variant. The results
reveal that incorporating the k-means operator significantly improves the solution quality,
and the hybrid algorithm surpasses the harmony search approach. Finally, ref. [15] applies
the shuffled shepherd optimization algorithm (SSOA) to optimize reinforced concrete
cantilever retaining wall structures under static and seismic loading conditions. The opti-
mization seeks to minimize the cost while adhering to stability and strength constraints
based on ACI 318-05 requirements. Comparing SSOA results with other meta-heuristics
highlights the algorithm’s accuracy and convergence rate efficiency.

The numerous studies mentioned above highlight the ongoing efforts to optimize the
design of various civil engineering elements and emphasize the importance of interdis-
ciplinary collaboration in updating the industry. This article outlines the development
process for optimizing retaining walls. Firstly, it explains the structural calculations and
considerations required for designing the retaining wall. The second section discusses
optimization techniques, their functionality, and their application to the problem.

Following this, the associated calculation model is parameterized to comply with
the design standards, identifying crucial design aspects that can serve as variables in the
optimization process. Subsequently, objective functions for each aspect are defined: one
equation determines the economic cost, while another calculates carbon dioxide emissions,
both applied to the retaining wall model.

Finally, a new algorithm that solves discrete problems using metaheuristics that
naturally operate in continuous search spaces is proposed. Specifically, metaheuristic
techniques such as the Sine Cosine Algorithm (SCA), Whale Optimization Algorithm
(WOA), and Gray Wolf Optimization (GWO) are employed and integrated with SARSA
and QL reinforcement learning techniques to address the discrete retaining wall problem
and assess their performance and computational times. Statistical tests are used to compare
the significance of the results obtained.
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Extensive experiments were conducted to compare the implemented techniques,
yielding notably robust and favorable results for static methods using S-shaped transfer
functions. These results were obtained from 31 independent runs and their significance
was validated through the Wilcoxon–Mann–Whitney [16] statistical test. The remainder of
the paper is organized as follows: Section 2 outlines the retaining wall problem’s modeling,
while Section 3 introduces the optimization techniques. Section 4 presents the experimental
findings, and Section 5 concludes the paper with discussions and final observations.

2. Concrete Retaining Walls

The present section lists the most critical design parameters considered. However,
before delving into them, it is necessary to know the initial condition of the problem under
consideration. At this point, it should be noted that the model considers the design of a
cantilever-type wall with a structural backfill that has known resistance parameters and no
overload. Furthermore, in geometrical terms, the model analyzes one linear wall meter as
the problem’s initial condition. Finally, the selection of the number and diameter of bars
that meet the design requirements will be determined using the same. Having said that,
the main calculation bases are detailed below.

Calculation of applicants: The design proposes that the structural fill exerts two types
of thrust on the wall. The first type corresponds to the thrust of the soil under static condi-
tions, while the second type corresponds to the thrust generated by the soil under pseudo-
static (seismic) conditions [17]. These concepts are represented by Equations (1) and (2).

qe = c · γ · hz · b (1)

where:
qe = Static thrust exerted by the fill [T/m]
γ = Existing soil density [T/m3].
z = Height of the wall [m].
c = Static thrust coefficient.
b = Wall width, corresponding to 1 [m].

qs = cs · γ · hz · b (2)

where:
qs = Seismic thrust exerted by the backfill [T/m].
γ = Existing soil density [T/m3].
hz = Height of wall [m].
cs = Seismic thrust coefficient.
b = Wall width, corresponding to 1 [m].

Calculation of the requesting moment at point A: The design outlines the calculation
of forces at point A, defined as the most unfavorable point on the wall in terms of stress
caused by the soil thrust. This condition is represented through Equation (3) and Figure 1.

MsA = Mactive + Mseismic (3)

where:
MsA = Moment calculated at point A [T ·m].
Mactive = Static moment generated by the ground at point A [T ·m].
Mseismic = Seismic moment generated by the ground at point A [T ·m].
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Figure 1. Stress distribution and location of point A in the retaining wall.

Quantification of the design requesting forces: Once the applied moment has been
determined, the moment generated by the wall’s self-weight at point A must be calcu-
lated. Finally, the applied moment is defined as the sum of the previously computed
moments, which are then added to obtain the design moment and axial load, as illustrated
in Equations (4)–(7).

Mpp = d1 · N1 + d2 · N2 (4)

where:
Mpp = Moment generated by the self-weight at point A [T ·m].
d1 = Distance from the centroid of the prismatic section of the wall to point A [m].
N1 = Eigenweight of the prismatic section of the wall [T].
d2 = Distance from the centroid of the triangular section of the wall to point A [m].
N2 = Eigenweight of the triangular section of the wall [T].

MA = MsA + Mpp (5)

where:
MA = Total moment at point A [T ·m].
MsA = Moment calculated at point A [T ·m].
Mpp = Moment generated by self-weight at point A [T ·m].

Meu = MA · γ f (6)

where:
Meu = Design moment [T ·m].
MA = Total moment at point A [T ·m].
γ f = Moment majorization factor.

Nu = Nt · γ f (7)

where:
Nu = Design axial load [T].
Nt = Own weight of the wall [T].
γ f = Moment magnification factor.

Steel amount for stirrups: For the calculation of the reinforcement required in the
wall stirrups, the dimensionless method is applied, defined through Equations (8)–(11).

µ =
Meu

φ · β · f ′c · b · d (8)

where:
µ = Dimensionless calculation factor.
Meu = Design moment [T ·m].
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φ = Reduction factor for flexocompression equal to 0.83.
β = Reduction of the characteristic strength of concrete equal to 0.85.
f ′c = Characteristic resistance of concrete to compression [T/m2].
b = Width of the wall, corresponding to 1 [m].
d = Width of the base of the wall without covering [m].

ν =
Nu

φ · β · f ′c · b · d (9)

where:
ν = Dimensionless shear factor in the structure.
Nu = Design axial load [T].
φ = Reduction factor for flexocompression equal to 0.83.
β = Reduction of the characteristic strength of concrete equal to 0.85.
f ′c = Characteristic resistance of concrete to compression [T/m2].
b = Width of the wall, corresponding to 1 [m].
d = Width of the base of the wall without covering [m].

w = 1−
√

1− 2 · µ− ν (10)

where:
w = Calculation ratio for the steel area.
µ = Calculation dimensionless factor.
ν = Dimensionless shear factor in the structure.

A =
w · β · f ′c · b · d

fy
(11)

where:
A = Required steel area [cm2].
w = Calculation ratio for steel area .
β = Reduction of the characteristic strength of the concrete equal to 0.85.
f ′c = Characteristic resistance of concrete to compression [T ∗m2].
b = Width of the wall, corresponding to 1 [m].
d = Width of the base of the wall without covering [m].
fy = Steel creep [T/cm2].

Verification of overturning resistance: For the overturning resistance verification,
two central moments must be determined. The first one corresponds to the resistant
moment exerted by the wall’s self-weight, the foundation, and the soil on the bottom
(Figure 2 and Equation (12)) up to the outermost point of the wall (the lower end of the
foundation), defined as point B. Similarly, the moment generated by the active and seismic
thrusts up to that point must be determined (Equation (13)). With this information, it is
possible to calculate the overturning safety factor using Equations (14) and (15).

Mr = Ns · x1 + Nm · x2 + N1 · x3 + N f · x4 (12)

where:
Mr = Overturning resisting moment [T ·m].
Ns = Self-weight of soil on bottom [T].
x1 = Distance from the centroid of Ns to point B [m].
Nm = Dead weight of the wall wedge and the soil above it [T].
x2 = Distance from the centroid of Nm to point B [m].
N1 = Self weight of the prismatic section of the wall [T].
x3 = Distance from the centroid of N1 to point B [m].
N f = Self weight of the wall foundation [T].
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x4 = Distance from the centroid of Nf to point B [m].

MsB = MactiveB + MseismicB (13)

where:
MSB = Moment calculated at point B [T ·m].
MactiveB = Static moment generated by the soil at point B [T ·m].
MseismicB = Seismic moment generated by the soil at point B [T ·m].

FSSV =
Mr

MsB
(14)

where:
FSSV = Overturning seismic safety factor.
Mr = Moment resisting overturning [T ·m].
MsB = Moment calculated at point B [T ·m].

FSEV =
Mr

MactiveB
(15)

where:
FSEV = Rollover static safety factor. Mr = Moment resisting overturning [T · m].
MsB = Moment calculated at point B [T ·m].

Nf

Nm N1Ns

Figure 2. Resisting forces acting on the retaining wall.

Slip resistance verification: The procedure for the slip resistance verification follows
the same principle as the rollover verification; that is, the applicant and resistant forces
must be determined through Equations (16)–(19).

Fsol = (qe + qs) · b (16)

where:
Fsol = Slip requesting force [T].
qe = Static thrust exerted by the filler [T/m].
qs = Seismic thrust exerted by the backfill [T/m].
b = Width of the wall, corresponding to 1 [m].

Fres = (Ns + Nm + N1 + N f ) · µ (17)

where:
Fres = Slip-resistant forces [T].
Ns = Self-weight of the soil on the bottom [T].
Nm = Self-weight of the wall wedge and the soil above it [T].
N1 = Self-weight of the prismatic section of the wall [T].
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N f = Self-weight of the wall foundation [T].
µ = Coefficient of friction between the foundation and the soil.

FSSD =
Fres
Fsol

(18)

where:
FSSD = Seismic slip safety factor.
Fres = Slip-resistant forces [T].
Fsol = Slip-requesting force [T].

FSED =
Fres
qe

(19)

where:
FSSD = Seismic slip safety factor.
Fres = Slip-resistant forces [T].
qe = Static thrust exerted by the filler [T].

Verification of allowable stress: Within the verification section, it is necessary to
check that the stresses transmitted to the soil (maximum and minimum) do not exceed the
allowable stress given by the previous geotechnical study. The verification is carried out by
means of Equation (20).

σ =
Ns + Nm + N1 + N f

L · b ± MsB− Ns · x1 + Nm · x2 + N1 · x3
b·L2

6

(20)

where:
σ = Stress transmitted to the foundation soil [T/m2].
Ns = Self-weight of the soil on the bottom [T].
x1 = Distance from the centroid of Ns to point B [m].
Nm = Self-weight of the wall wedge and the soil above it [T].
x2 = Distance from the centroid of Nm to point B [m].
N1 = Self-weight of the prismatic section of the wall [T].
x3 = Distance from the centroid of N1 to point B [m].
N f = Self-weight of the wall foundation [T].
L = Total length of the foundation [m].
b = Width of the wall, corresponding to 1 [m].
MsB = Moment calculated at point B [T ·m].

Verification of percentage of support: Since the stress transmitted to the soil may
adopt negative values, it must be checked that the foundation does not tend to lift out
of the soil. Once the percentage of support has been defined, it is checked that the
stress generated by the weight of the system does not exceed the admissible soil stress,
with Equations (21)–(24).

e =
MsB− Ns · x1 + Nm · x2 + N1 · x3

Ns + Nm + N1 + N f
(21)

where:
e = Eccentricity of forces [m].
Ns = Self-weight of the soil on the bottom [T].
x1 = Distance from the centroid of Ns to point B [m].
Nm = Self-weight of the wall wedge and the soil above it [T].
x2 = Distance from the centroid of Nm to point B [m].
N1 = Self-weight of the prismatic section of the wall [T].
x3 = Distance from the centroid of N1 to point B [m].
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N f = Self-weight of the wall foundation [T].
MsB = Moment calculated at point B [T ·m].

g = 3 · ( L
2
− e) (22)

where:
g = Section of the foundation supported on the ground [m].
L = Total length of the foundation [m].
e = Eccentricity of forces [m].

σe f f ective =
2 · (Ns + Nm + N1 + N f )

b · g (23)

where:
σe f f ective = Effective stress applied to the foundation soil.
Ns = Self-weight of the soil on the bottom [T].
Nm = Self-weight of the wall wedge and the soil above it [T].
N1 = Self-weight of the prismatic section of the wall [T].
N f = Self-weight of the wall foundation [T].
b = Width of the wall, which corresponds to 1 [m].
g = Section of the foundation supported on the ground [m].

%o f support =
g
L

(24)

where:
g = Section of the foundation supported on the ground [m].
L = Total length of the foundation [m].

Reinforcing reinforcement for foundation under structural backfill: The uplift effect
generated by the negative tension in the soffit area can generate additional tensile stresses
in the foundation, so a reinforcement must be sized in the footing located in the soffit area
of the wall. For this purpose, the design moment is determined from the forces involved
(Figure 3) and then the dimensionless method is applied (Equation (25)).

Mdesign = 1.4 · (Msr + M f −Ms f ) (25)

where:
Mdesign = Design moment of reinforcement reinforcement [T ·m].
Msr = Moment generated by backfill soil measured at design point [T ·m].
M f = Moment generated by the foundation measured at the design point [T ·m].
Ms f = Moment generated by the foundation soil measured at design point [T ·m].

Foundation armor: In addition to the reinforcement calculated above, a reinforcement
for the foundation, both longitudinal and transverse, must be dimensioned. This is carried
out by means of Equations (26) and (27).

Mdl = (
Bdt− Bm

2
· b) · (1.4 · Pp

L · b ) · (Bdt− Bm
4

) (26)

where:
Mdl = Design moment of longitudinal reinforcement [T ·m].
Bdt = Maximum foundation flight [m].
Bm = Width of the wall base [m].
Pp = Self-weight of the wall [T].
L = Total length of foundation [m].
b = width of the wall, corresponding to 1 [m].
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Mdt =
1.4 · Pp · b2

2 · 1[m]
(27)

where:
Mdt = Design moment of transverse reinforcement [T ·m].
Pp = Self-weight of the wall [T].
b = Width of the wall, which corresponds to 1 [m].

Foundation Stress

Infill soil
stress

Foundation
soil stress

Figure 3. Stresses involved in structural reinforcement design.

Calculation of the steel area for the foundation: In the case of the reinforcement
for the foundation, both longitudinal and transverse, the amount of steel required is
determined with Equations (28) and (29).

T =
Md

0.9 · d′ (28)

where:
T = Design stress [T].
Md = Corresponding design moment (Mdl or Mdt) [T ·m].
d′ = Effective shoe height (height without cover) [m].

As =
T

0.9 · Fy
(29)

where:
As = Required steel area [cm2].
T = Design stress generated by the design moment [T].
Fy = Yield stress of steel [T/cm2].

Minimum armor: The amount of steel calculated above must be verified with respect
to the corresponding minimum amount of steel, calculated through Equation (30).

emin = 0.0018 · Ag (30)

where:
emin = Minimum amount of steel required [cm2].
Ag = Longitudinal or cross-sectional area of the footing, as appropriate [cm2].
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Verification of concrete shear strength: Check if the designed concrete section has
the required minimum shear strength through the Equations (31) and (32).

Vu = (
Bdt− Bm

2
− d) · b · 1.4 · Pp

L · b (31)

where:
Vu = Design cut request [T].
Bdt = Maximum foundation flight [m].
Bm = Width of wall base [m].
d = Thickness of the uncoated shoe [m].
Pp = Self-weight of the wall [T].
L = Total length of foundation [m].
b = Width of the wall, corresponding to 1 [m].

Vc = 0.53 · λ ·
√

f ′c · b · d (32)

where:
Vc = Shear strength of concrete section [T].
λ = Concrete modification factor. For normal concrete, λ = 1.
f ′c = Characteristic compressive strength of concrete [T/m2].
b = Width of the wall, which corresponds to 1 [m].
d = Thickness of the uncoated shoe [m].

2.1. Restrictions

The design problem must respond to specific constraints to be considered correct.
These limitations, known as constraints, will be fundamental in determining whether the
solution proposed in the optimization process is (or is not) valid. The following are the
constraints identified.

µlim: According to the initial conditions for the application of the dimensionless sizing
method used to determine the amount of steel required, the relationship of Equation (33).

µ = µlim (33)

where:
µ = Dimensionless factor, calculated in Equation (8).
µlim = Calculation limit dimensionless factor, equal to 0.3047 for the case of analysis.

Slip safety factor: As with the overturning safety factor, a minimum value of slip
safety factor must be met to avoid the occurrence of this type of failure. That said, the re-
striction is set forth in Equations (34) and (35).

FSED ≥ 1.5 (34)

where:
FSED = Static slip safety factor, calculated by Equation (19).

FSSD ≥ 1.1 (35)

where:
FSSD = Seismic slip safety factor, calculated by Equation (18).

Rollover safety factor: The design must meet minimum safety criteria [18], including
the overturning safety factor, which avoids abrupt failures due to overturning when loads
not foreseen in the initial design are applied. Under this criterion, the conditions are defined
in Equations (36) and (37).

FSEV ≥ 1.5 (36)
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where:
FSEV = Static rollover safety factor, calculated in Equation (15).

FSSV ≥ 1.15 · FSSD (37)

where:
FSSV = Seismic overturning factor of safety, calculated in Equation (14).
FSSD = Seismic safety factor to slip, calculated in Equation (19).

Allowable stress: As a minimum requirement, the stresses produced by the interac-
tion between the foundation and the supporting soil must be lower than the allowable
bearing capacity provided by the geotechnical study accompanying any civil works design.
The condition defining this restriction was previously established (Equations (20) and (23)).

Percentage of foundation support: Due to the eccentricity of the load system, there
is a possibility that the stress distribution at the base of the foundation will generate a
negative stress zone. In simple terms, this implies that the foundation would tend to uplift.
To ensure that the stresses are properly distributed over the supporting soil, the percentage
of the supported section (Equation (24)) must comply with the constraint outlined in
Equation (38).

A ≥ 80% (38)

where:
A = Percentage of foundation supported [%].

Shear strength: From the verification performed above (Equations (31) and (32)), the
condition of Equation (39) must be fulfilled:

Φ · Vc ≥ Vu (39)

where:
Φ = Shear strength reduction factor of concrete, 0.75.
Vc = Shear strength of concrete section [T].
Vu = Foundation shear request [T].

2.2. Target Function

The objective functions representative of the parameters under study turn out to be
linear, and are presented below.

CMt = CM1 · PM1 + CM2 · PM2 (40)

where:
CMt = Total cost of retaining wall [CLP].
CM1 = Cost of one cubic meter of concrete [CLP/m3].
PM1 = Total volume of concrete used [m3].
CM2 = Cost of one kilogram of steel [CLP/kg].
PM2 = Total kilograms of steel used [kg].

EMt = EM1 · PM1 + EM2 · PM2 (41)

where:
EMt = Total carbon dioxide emissions [T].
EM1 = Tons of carbon emitted per cubic meter of concrete [T/m3].
PM1 = Total volume of concrete used [m3].
EM2 = Tons of carbon emitted per kilogram of steel [T/kg].
PM2 = Total kilograms of steel used [kg].

CEMt = (CM1 · PM1 + CM2 · PM2) + EM1 · PM1 + EM2 · PM2 (42)
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where:
CEMt = Total between the sum of cost and emissions.

3. Techniques to Be Used

In general, design problems involve numerous variables to consider, which may also
be of different natures. The combination of multiple options results in a vast number of
potential solutions that are impossible to cover manually or iteratively. The need arising
from this type of analysis can be addressed through various currently available optimization
techniques [19].

Before delving into the optimization techniques applied to the analysis problems
relevant to this paper, it is essential to understand what the optimization methods entail.
Generally, optimization methods consist of a set of rules and techniques applied to a
problem to find the solution that best fits the objective pursued by the process. Optimization
methods are divided into two main groups: the first group comprises techniques classified
as exact, according to their characteristics [19], which can analyze the entire existing search
space and find the best solution for the problem. On the other hand, there are cases where
the search space is too large to be explored within a reasonable time frame [19]. In these
situations, it is necessary to apply incomplete techniques that focus on analyzing local
maxima identified within the function under study.

Another classification method applied to optimization problems focuses on the nature
of the decision variables present. Thus, there are continuous optimization problems,
meaning their variables represent continuous real spaces. On the other hand, combinatorial
optimization problems have variables with integer values or sets of integers. Naturally,
a third type of problem involves a mix of both variable types. In these cases, the problem’s
character is called mixed optimization.

Metaheuristics are iterative processes designed to be applied to any problem type
(unlike heuristics, whose configuration is associated with a specific problem type) and,
therefore, guide a subordinate heuristic to find an efficient solution in terms of approxi-
mation to the global optimum of the problem and the time required to find the proposed
solution [20]. Likewise, metaheuristics are subdivided into two groups, depending on the
type of solution they provide, and can be based on a single solution or a population of
solutions. The above description is graphically represented in Figure 4.

Optimization methods

Exact methods Approximate methods

Branch and X Constraint
programming

Dynamic 
programming

A*, IDA* Heuristic algorithms Approximation
algorithms

Branch and
bound

Branch and
cut

Branch and
price

Metaheuristics Problem-specific
heuristics

Single-solution based
metaheuristics

Population-based
metaheuristics

Figure 4. Optimization methods [21].

Regardless of the operation adopted for a metaheuristic, there are general parameters
they must follow. First, the problem set must include an objective function, which represents
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the aspect of the problem to be optimized. For the purposes of this research, the objective
functions to be designed will aim to quantify the costs and carbon dioxide emissions
associated with the adopted design.

Once the objective function is defined, two concepts common to any function must
be defined: the domain and its constraints. The domain of the objective function directly
responds to the values that can be adopted by the variables considered in the problem,
which are defined through the constraints. These constraints are conditions (formulated as
functions) that limit the problem. All possible solutions that result from the intersection
between the constraints of the problem make up the search space that will be considered in
the optimization process.

Population-based metaheuristic techniques utilize a structured approach consisting
of three "for" loops of iterations, solutions or individuals, and decision dimensions. Un-
der this structure, perturbations to each dimension of the solutions during each iteration
are performed through the method indicated in line 5 of Algorithm 1, where ∆ refers
to the characteristic perturbation or movement operators of each technique. As previ-
ously mentioned, in this paper, the metaheuristic techniques that have been implemented
and discretized to adapt to the presented problem are: the Whale Optimization Algo-
rithm (WOA) [22], the Sine Cosine Algorithm (SCA) [23], and the Grey Wolf Optimizer
(GWO) [24]. The general scheme of each population-based metaheuristic is represented in
Algorithm 1.

Algorithm 1 General scheme of metaheuristics.

1: Initialize a random swarm
2: for iteration (t) do
3: for solution (i) do
4: for dimension (d) do
5: Xt+1

i,d = Xt
i,d + ∆

6: end for
7: end for
8: end for

4. Proposal: Discretization Schemes Selector

The resolution of complex and frequent combinatorial problems in industry is a
priority for both academia and industries. A smart scheme selector for discretization
is proposed, which integrates existing methods to balance exploration and exploitation,
avoiding local optimizations. The balance between exploration and exploitation is a key
factor in the performance of a metaheuristic. The method uses an intelligent operator
to determine the appropriate discretization scheme at each iteration, to achieve the best
quality results.

This proposal is based on the Binarization Schemes Selector (BSS), which has been
proposed and utilized in [25–28], where a smart selector at a higher level selects from a set
of actions, in this case transfer functions, to better choose how to discretize our continuous
variables obtained from the metaheuristic, in order to use them in the discrete domain of
our problem.

In this work, Q-Learning (QL) [29] and SARSA [30] are implemented as the intelligent
operator of the proposal, which selects the discretization technique to be used based on a
reward system, with which it learns in a deterministic manner.

The reward in the RL algorithm is crucial for the good performance of these algorithms;
thus, in the literature, there are several methods to calculate rewards. We have implemented
the same rewards used in BSS [25,26], which have been proposed in [31,32], which are
presented in Equations (43)–(47).

withPenalty1 =

{
+1 if there is a fitness improvement
−1 otherwise

, (43)
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withOutPentalty1 =

{
+1 if there is a fitness improvement
0 otherwise

, (44)

globalBest =





W
BestFitness

if there is a fitness improvement

0 otherwise
, (45)

rootAdaptation =

{ √
BestFitness if there is a fitness improvement

0 otherwise
, (46)

and

EscalatingMultiplicativeAdaptation =

{
W · BestFitness if there is a fitness improvement
0 otherwise

, (47)

The reward or punishment is judged by the outcome obtained by the performance
of the action. Thus, it is important to define which comparison measures will be used to
discriminate the outcome. In this work, the comparison measure is the fitness obtained in
each iteration of the optimization process, and it is compared with the best fitness obtained.
If the fitness improves, the action is rewarded, whereas if the fitness worsens, the action is
punished. In this work, two states are defined, which refer to the phases of a metaheuristic:
exploration and exploitation. These states were not chosen randomly because, as previously
mentioned, the objective of this work is to improve the balance between exploration and
exploitation of the metaheuristics to obtain better results. This process is represented in
Figure 5.

SARSA / QL

getMetric getState

With Penalty Root Adaptation Without Penalty Escalating Adaptation Global Best

Environment

Reward Type

At

Metric t+1

BEGIN

St+1

St

Total iterations?

END

Rt

YES

NO

Figure 5. Q-Learning and SARSA scheme for different rewards.

In the literature, different authors [33,34] propose metrics that allow us to quantify
the diversity of individuals in population algorithms, where the Dimensional Diversity by
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Hussain stands out [35]. Let Div be the diversity of the population at a particular time, and
to calculate Div, the following equation is used:

Div =
1

l · n
l

∑
d=1

n

∑
i=1
|x̄d− xd

i | (48)

where x̄d denotes the average of individuals in dimension d, xd
i is the value of the i-th

individual in dimension d, n is the number of individuals in the population, and l is the
size of the dimension of the individuals. One of the methods to estimate exploration and
exploitation is proposed by Morales-Castañeda et al. [36], who, based on the quantification
of the diversity of a population, proposed a method to estimate exploration and exploitation
in terms of percentages. The percentages of exploration (XPL%) and exploitation (XPT%)
are calculated as follows:

XPL% =
Div

Divmax
· 100 (49)

XPT% =
|Div− Divmax|

Divmax
· 100 (50)

where Div is the determination of the diversity state given by Equation (49) and Divmax
denotes the maximum value of the diversity state found throughout the optimization
problem. Equations (50) and (51) are generic, so it is possible to use any other metric
that calculates the diversity of a population. Therefore, the transition of states will be
determined through the following method (Figure 6).

next state =

{
Exploration i f XPL% ≥ XPT%
Exploitation i f XPL% < XPT%

(51)

INPUT

Q-Learning / SA

S1 S2 S3 S4 V1 V2 V3 V4

OUTPUT

Discretization tehcniques

Figure 6. Discretization scheme selector with Q-Learning or SARSA as Smart Operator.

Discretization

There are various ways to transfer continuous values to binaries [37,38], but there
is little documentation on discretization. In this proposal, discretization is generated
through transfer functions commonly used in two-step binarization. The transfer functions
achieve transferring a continuous value to a value in the range of [0, 1]. The discretization
proposal is integrated under the general scheme of MH, as presented in Algorithm 2. This
discretization function is broken down in Algorithm 3, where the input of the discretization
function is the set of solutions, the user-defined parameter beta, and the type of transfer
function. In the algorithm, for each dimension (line 5), we check if the value of our position
Xi,d is greater than r1, which corresponds to a random number between [0, 1] (line 6); if this
is met and also the value of beta > r2 another random number between [0, 1] (line 7), then
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we update our Xi,d to the value of the best solution for that dimension (line 8), but if beta
is not greater, then it is updated with a random value (line 10). Otherwise, if the value of
Xi,d is not greater than r1, then the element is not updated. Finally (line 17), the discretized
value of the solutions X is returned.

Algorithm 2 Discrete general scheme of metaheuristics.

1: Initialize a random swarm
2: for iteration (t) do
3: for solution (i) do
4: for dimension (d) do
5: Xt+1

i,d = Xt
i,d + ∆

6: end for
7: end for
8: Discretization (X)
9: end for

Algorithm 3 Discretization algorithm.

1: Function Discretization(X, beta, TF)
2: Initialize r1 and r2 as randoms values between [0, 1].
3: XProbability← appliedTransferFunction(X, TF)
4: for solution (i) do
5: for dimension (d) do
6: if Xi,d > r1 then
7: if beta > r2 then
8: Update Xi,d considering the best.
9: else

10: Update Xi,d with a random value allowed.
11: end if
12: else
13: Do not update the element in Xi,d
14: end if
15: end for
16: end for
17: return X

5. Experimental Results

Three metaheuristics of different classes and complexities have been run for the
experimental analysis: SCA, GWO, and WOA. These MH have been tested in 11 instances
and run 31 times independently on an i9-10900k, with 32 Gb of RAM and in a Python
3.7 implementation. The extensive experimental comparison has also been carried out
on different discretization schemes: on the one hand, on a static scheme using only one
of the eight classical transfer functions (S-shaped and V-shaped); and together with the
proposal explained in Section 4, using Q-Learning and SARSA as smart selector, each of
them evaluating different rewards.

The representative design problem of a retaining wall involves several design variables.
Given this situation, and depending on the time required for processing, a list of parameters
considered as decision variables will be detailed. Subsequently, these points will take a
variable value according to the evaluation to be performed, as determined in the iterative
process of the optimization techniques. The following variables used are defined in Table 1.

In order to simplify the representation of results, the main results obtained will
be presented, with access to all the results in the open repository https://github.com/
joselemusr/DSS-Retaining-walls.
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Table 1. Setting parameter.

Variables Unit Lower
Limit

Upper
Limit Step Size Possibilities

Concrete strength Mpa 25 40 5 4
Steel tensil strength Mpa 280 420 140 2
Width of crowning m 0.15 0.95 0.01 81

Base width of the wall m 0.3 1.5 0.01 121
Thickness of the footing m 0.45 2.0 0.01 156

Density of the structural fill T/m3 1.6 2.0 0.1 5

Table 2 presents the nomenclature used to identify each variation of the algorithms,
while Tables 3 and 4 present the results obtained by GWO using static schemes based
on V-shaped and S-shaped, where this technique has presented the best performance
in conjunction with static schemes, where in the first row we can see the version of the
algorithm used, in the first column the name of the instance, where the terminations “-C”
correspond to those whose objective function calculation is cost-based (Equation (40)), “-E”
to those that correspond to CO2 emissions (Equation (41)) and “-C+E” to the objective
function that considers the sum of both (Equation (42)). The second column individualizes
the best known value calculated by grid search, and then the three columns are repeated
indicating the best value found by the version indicated in the column, the average value of
the 31 independent runs and the Relative Percentile Destivation (RPD), which is calculated
according to Equation (52). While in intermediate rows the average values for the set of
instances using the same objective function are presented.

Table 2. Nomenclature of algorithms.

Name Reward Types

V1 V-Shaped 1
V2 V-Shaped 2
V3 V-Shaped 3
V4 V-Shaped 4

S1 S-Shaped 1
S2 S-Shaped 2
S3 S-Shaped 3
S4 S-Shaped 4

SA1 With Penalty
SA2 Without Penalty
SA3 Global Best
SA4 Root Adaption
SA5 Scalating Adaption

QL1 With Penalty
QL2 Without Penalty
QL3 Global Best
QL4 Root Adaption
QL5 Scalating Adaption

Table 3. Comparison of the metaheuristics GWO S-shaped.

S1 S2 S3 S4

Inst. Opt. Best Avg RPD Best Avg RPD Best Avg RPD Best Avg RPD
RW300-C 163,992.326 175,838.59 211,292.33 7.22 175,789.67 208,441.35 7.19 188,006.95 212,453.03 14.64 185,972.17 213,282.1 13.4
RW350-C 189,534.031 211,784.64 242,392.1 11.74 201,487.94 238,310.07 6.31 205,963.63 244,063.3 8.67 218,007.71 244,153.67 15.02
RW400-C 214,696.284 230,025.46 276,532.81 7.14 234,785.38 271,573.64 9.36 219,450.0 275,144.37 2.21 232,555.67 277,516.98 8.32
RW450-C 241,096.482 271,731.17 308,495.8 12.71 256,797.33 300,754.16 6.51 270,398.19 312,252.76 12.15 247,671.69 306,537.35 2.73
RW500-C 268,526.177 288,376.68 342,484.67 7.39 288,202.48 339,862.91 7.33 279,819.15 345,778.52 4.21 297,405.15 344,343.23 10.75
RW550-C 307,536.973 324,915.35 382,092.86 5.65 322,283.21 387,920.24 4.79 335,427.48 385,877.51 9.07 322,738.02 370,679.41 4.94
RW600-C 364,409.78 381,612.64 452,607.89 4.72 390,461.48 449,828.17 7.15 377,871.72 436,150.53 3.69 401,195.04 441,721.15 10.09
RW650-C 430,400.866 477,518.43 515,174.31 10.95 454,549.52 506,895.1 5.61 456,260.58 507,368.7 6.01 468,411.9 519,895.88 8.83
RW700-C 507,127.151 547,343.21 602,471.76 7.93 549,909.57 607,197.41 8.44 530,085.84 591,365.14 4.53 534,199.25 598,294.59 5.34
RW750-C 593,353.31 629,727.79 698,312.62 6.13 636,981.05 691,752.62 7.35 628,828.29 696,128.32 5.98 632,268.83 691,309.72 6.56
RW800-C 687,763.656 747,469.72 798,036.46 8.68 729,504.48 802,675.33 6.07 726,214.24 797,384.47 5.59 717,889.37 791,121.94 4.38
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Table 3. Cont.

S1 S2 S3 S4

389,667.61 439,081.24 8.21 385,522.92 436,837.36 6.92 383,484.19 436,724.24 6.98 387,119.53 436,259.64 8.21
RW300-E 612.204 641.96 753.69 4.86 656.77 763.8 7.28 631.33 763.38 3.12 639.91 766.05 4.53
RW350-E 708.081 756.27 882.66 6.81 808.12 909.04 14.13 778.03 891.86 9.88 762.6 871.11 7.7
RW400-E 802.088 849.79 990.06 5.95 883.34 1018.04 10.13 852.56 984.43 6.29 860.6 998.35 7.29
RW450-E 902.195 977.07 1121.36 8.3 1048.25 1147.36 16.19 912.78 1102.61 1.17 981.13 1099.76 8.75
RW500-E 1007.376 1036.58 1230.59 2.9 1103.16 1240.43 9.51 1085.86 1244.08 7.79 1103.02 1239.52 9.49
RW550-E 1122.621 1197.02 1363.12 6.63 1190.49 1374.09 6.05 1271.84 1369.23 13.29 1241.01 1383.01 10.55
RW600-E 1304.802 1389.11 1602.36 6.46 1391.43 1619.91 6.64 1376.69 1623.79 5.51 1483.51 1603.14 13.7
RW650-E 1545.005 1654.33 1854.43 7.08 1672.47 1837.53 8.25 1588.32 1833.09 2.8 1636.44 1824.26 5.92
RW700-E 1794.782 1955.23 2138.56 8.94 1885.35 2126.44 5.05 1918.4 2159.01 6.89 1846.2 2145.73 2.86
RW750-E 2099.338 2338.08 2516.84 11.37 2243.24 2479.23 6.85 2228.69 2466.35 6.16 2326.47 2522.93 10.82
RW800-E 2443.014 2491.57 2816.65 1.99 2616.19 2849.18 7.09 2697.48 2872.4 10.42 2565.34 2859.6 5.01

1389.73 1570.03 6.48 1408.98 1578.64 8.83 1394.73 1573.66 6.67 1404.2 1573.95 7.87
RW300-C+E 164,604.53 185,539.96 214,019.57 12.72 179,481.45 208,019.2 9.04 179,206.6 213,775.7 8.87 172,436.99 210,863.58 4.76
RW350-C+E 190,242.112 199,602.67 244,365.08 4.92 203,491.26 246,884.7 6.96 219,538.11 246,767.27 15.4 202,238.98 248,453.56 6.31
RW400-C+E 215,498.372 232,137.79 280,602.84 7.72 230,658.08 273,676.46 7.03 247,064.05 274,698.16 14.65 241,930.5 283,040.63 12.27
RW450-C+E 241,998.678 272,140.43 312,344.84 12.46 266,323.07 309,147.94 10.05 282,508.4 307,997.32 16.74 259,877.32 306,812.62 7.39
RW500-C+E 269,533.553 300,055.55 342,565.29 11.32 295,864.13 335,482.28 9.77 297,761.9 345,023.04 10.47 282,150.29 344,841.59 4.68
RW550-C+E 308,696.291 341,354.54 392,273.06 10.58 340,443.21 390,449.89 10.28 328,562.36 386,558.52 6.44 337,135.95 389,219.89 9.21
RW600-C+E 365,784.894 382,089.49 445,844.69 4.46 390,360.72 451,336.16 6.72 392,607.8 451,473.09 7.33 396,949.96 447,302.6 8.52
RW650-C+E 432,031.377 459,594.11 514,964.67 6.38 466,505.36 517,304.52 7.98 479,176.62 532,639.0 10.91 464,753.64 516,490.98 7.57
RW700-C+E 508,928.933 532,789.38 590,952.6 4.69 550,408.06 609,037.86 8.15 528,020.86 602,847.0 3.75 513,662.21 609,215.53 0.93
RW750-C+E 595,461.955 644,986.79 710,876.08 8.32 622,985.91 695,917.34 4.62 619,227.4 683,463.27 3.99 622,615.54 700,706.2 4.56
RW800-C+E 690,374.634 722,411.98 789,371.57 4.64 730,441.36 789,492.83 5.8 727,830.26 795,986.71 5.43 744,199.77 794,967.2 7.8

388,427.52 439,834.57 8.02 388,814.78 438,795.38 7.85 391,045.85 440,111.73 9.45 385,268.29 441,083.13 6.73

Table 4. Comparison of the metaheuristics GWO V-shaped.

V1 V2 V3 V4

Inst. Opt. Best Avg RPD Best Avg RPD Best Avg RPD Best Avg RPD
RW300-C 163,992.326 182,558.0 250,774.4 11.32 180,561.07 244,698.22 10.1 180,277.56 255,746.94 9.93 197,594.94 255,313.99 20.49
RW350-C 189,534.031 235,483.99 289,786.83 24.24 236,058.47 296,464.92 24.55 214,982.26 283,628.58 13.43 214,535.82 294,068.78 13.19
RW400-C 214,696.284 256,441.43 311,691.32 19.44 243,710.67 318,303.28 13.51 267,778.96 332,668.32 24.72 239,710.27 328,589.26 11.65
RW450-C 241,096.482 269,111.65 373,108.99 11.62 294,022.51 359,189.16 21.95 280,855.89 388,628.93 16.49 292,597.93 379,517.3 21.36
RW500-C 268,526.177 327,984.08 410,488.65 22.14 298,902.86 411,098.33 11.31 291,171.59 403,594.99 8.43 332,901.71 411,212.61 23.97
RW550-C 307,536.973 371,451.6 459,106.72 20.78 341,735.03 427,316.78 11.12 351,092.89 453,093.61 14.16 349,801.0 448,319.8 13.74
RW600-C 364,409.78 432,595.44 508,425.9 18.71 404,496.27 500,401.85 11.0 415,212.59 501,977.08 13.94 412,811.66 531,849.77 13.28
RW650-C 430,400.866 451,496.13 581,702.33 4.9 454,861.21 596,746.32 5.68 462,874.92 588,805.31 7.55 454,683.35 564,397.16 5.64
RW700-C 507,127.151 566,328.17 680,987.16 11.67 546,341.0 663,127.9 7.73 566,174.43 688,008.95 11.64 538,815.13 664,311.96 6.25
RW750-C 593,353.31 674,866.42 772,500.43 13.74 671,254.82 810,994.06 13.13 677,228.39 778,620.07 14.14 664,697.49 760,457.32 12.02
RW800-C 687,763.656 753,558.36 854,181.21 9.57 757,749.41 907,114.91 10.18 743,863.99 864,887.58 8.16 797,794.43 899,780.3 16.0

411,079.57 499,341.27 15.28 402,699.39 503,223.25 12.75 404,683.04 503,605.49 12.96 408,722.16 503,438.02 14.33
RW300-E 612.204 659.58 909.38 7.74 664.98 912.97 8.62 698.73 845.7 14.13 658.28 871.39 7.53
RW350-E 708.081 767.18 1061.7 8.35 752.24 1058.21 6.24 821.34 1064.88 16.0 757.65 1034.95 7.0
RW400-E 802.088 927.22 1199.83 15.6 893.96 1167.7 11.45 902.39 1143.52 12.51 887.53 1165.03 10.65
RW450-E 902.195 1003.83 1296.7 11.27 1045.85 1294.51 15.92 949.46 1284.35 5.24 1067.5 1329.86 18.32
RW500-E 1007.376 1170.35 1440.91 16.18 1141.76 1452.99 13.34 1140.6 1438.13 13.22 1123.48 1453.63 11.53
RW550-E 1122.621 1212.53 1613.66 8.01 1267.82 1546.48 12.93 1264.08 1575.83 12.6 1285.56 1626.73 14.51
RW600-E 1304.802 1517.0 1784.2 16.26 1346.81 1881.45 3.22 1416.88 1803.34 8.59 1476.89 1780.07 13.19
RW650-E 1545.005 1754.9 2118.18 13.59 1691.75 2142.13 9.5 1768.66 2130.36 14.48 1703.67 2032.29 10.27
RW700-E 1794.782 2078.11 2441.01 15.79 1935.22 2417.61 7.82 2046.04 2490.55 14.0 2012.62 2431.03 12.14
RW750-E 2099.338 2235.15 2817.56 6.47 2281.91 2719.19 8.7 2306.18 2753.93 9.85 2463.03 2741.43 17.32
RW800-E 2443.014 2763.26 3247.36 13.11 2791.38 3192.71 14.26 2730.05 3244.01 11.75 2627.68 3137.4 7.56

1462.65 1811.86 12.03 1437.61 1798.72 10.18 1458.58 1797.69 12.03 1460.35 1782.16 11.82
RW300-C+E 164,604.53 189,414.91 256,656.74 15.07 212,808.88 258,560.11 29.28 197,941.42 265,472.25 20.25 191,681.13 255,487.66 16.45
RW350-C+E 190,242.112 226,684.74 289,406.05 19.16 205,267.83 292,174.09 7.9 227,189.95 296,419.26 19.42 215,111.35 298,268.07 13.07
RW400-C+E 215,498.372 249,648.6 320,535.05 15.85 256,337.8 332,853.23 18.95 247,634.93 309,550.68 14.91 251,690.95 325,641.74 16.79
RW450-C+E 241,998.678 266,795.28 368,021.74 10.25 263,973.35 371,100.48 9.08 275,476.78 359,906.58 13.83 292,449.06 365,729.58 20.85
RW500-C+E 269,533.553 319,208.41 396,647.42 18.43 316,227.72 422,102.42 17.32 305,604.13 412,775.82 13.38 300,555.16 397,084.1 11.51
RW550-C+E 308,696.291 345,813.94 434,424.21 12.02 338,561.16 439,581.9 9.67 346,528.45 436,983.83 12.26 375,283.31 460,338.62 21.57
RW600-C+E 365,784.894 391,172.58 511,973.28 6.94 407,135.87 521,235.07 11.3 397,012.72 487,463.91 8.54 389,349.99 513,181.4 6.44
RW650-C+E 432,031.377 500,484.16 576,125.09 15.84 473,065.76 587,658.71 9.5 459,287.25 592,636.18 6.31 511,205.87 587,279.57 18.33
RW700-C+E 508,928.933 570,302.85 685,760.21 12.06 563,174.88 684,648.85 10.66 538,618.15 687,472.3 5.83 568,892.82 693,412.7 11.78
RW750-C+E 595,461.955 676,216.3 773,236.37 13.56 635,506.85 770,898.22 6.73 651,205.08 782,023.88 9.36 638,043.63 775,221.47 7.15
RW800-C+E 690,374.634 766,429.86 887,074.98 11.02 743,847.17 866,593.73 7.75 775,324.71 907,251.95 12.3 740,457.9 903,472.02 7.25

409,288.33 499,987.38 13.65 401,446.12 504,309.71 12.56 401,983.96 503,450.6 12.4 406,792.83 506,828.81 13.74

Tables 5–10 present the results obtained using the proposed dynamic techniques based
on Q-Learning and SARSA.

RPD =
100 · (Best−Opt)

Opt
. (52)
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In order to analyze the GWO technique, which was the best-performing technique, it
is necessary to quantify the RPD obtained in ranges. These categorizations were established
according to a minimum and maximum range, average and standard deviation (Table 11).

Table 11. RPD distribution in GWO.

Lower Limit Upper Limit Mean Standard Deviation

S 0.93 16.74 7.68 3.15
V 3.22 29.28 12.84 4.81
QL 3.64 29.4 13.21 5.43
SARSA 0 27.39 12.59 5.38

With the ranges already established, the distribution in GWO of the different tech-
niques is represented in Table 12.

Table 12. RPD distribution in GWO.

[0, 7.5[ [7.5, 15[ [15, 22.5[ [22.5, +

S1 19 14 0 0
S2 20 12 1 0
S3 19 12 2 0
S4 16 16 1 0
V1 3 16 13 1
V2 4 23 4 2
V3 3 25 4 1
V4 6 16 10 1
QL1 5 13 14 1
QL2 8 14 8 3
QL3 4 19 5 5
QL4 3 19 10 1
QL5 4 20 8 1
SA1 7 19 7 0
SA2 10 14 8 1
SA3 4 16 12 1
SA4 2 20 10 1
SA5 3 18 8 4

Table 13 presents the parameters utilized in this research, providing information about
the set of instances used. The table comprises several data columns, organized as follows:

1. Inst. lists each of the studied walls in sequential order.
2. Opt. displays the optimal value for each respective instance.
3. Best indicates the best value achieved during the execution.
4. Shape identifies the top-performing algorithm that reached the best value.
5. Fitness denotes the fitness or efficiency value of the best algorithm.
6. The remaining columns represent the design parameters.

This tabular representation effectively communicates the key parameters and findings
from our research, allowing readers to quickly grasp the results and assess the performance
of various algorithms in the study.
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Table 13. Design parameters of the best results for each version.

Inst. Opt. Best Shape Concrete Steel Crowning Base Footing

RW300-C 163,992.326 172,736.65 QL4 25 2.8 0.17 0.35 0.45
RW350-C 189,534.031 201,487.94 S2 25 2.8 0.16 0.37 0.45
RW400-C 214,696.284 219,450. S3 25 2.8 0.17 0.31 0.45
RW450-C 241,096.482 246,740.28 SA1 25 2.8 0.17 0.31 0.45
RW500-C 268,526.177 279,819.15 S3 25 2.8 0.15 0.31 0.47
RW550-C 307,536.973 322,283.21 S2 25 2.8 0.16 0.3 0.5
RW600-C 364,409.78 377,871.72 S3 25 4.2 0.17 0.3 0.54
RW650-C 430,400.866 451,496.13 V1 30 2.8 0.15 0.32 0.57
RW700-C 507,127.151 530,085.84 S3 25 2.8 0.24 0.34 0.65
RW750-C 593,353.31 611,414.67 SA2 30 2.8 0.18 0.35 0.67
RW800-C 687,763.656 710,899.7 SA3 30 2.8 0.16 0.39 0.74

RW300-E 612.204 631.33 S3 25 4.2 0.18 0.3 0.45
RW350-E 708.081 752.24 V2 25 2.8 0.15 0.38 0.45
RW400-E 802.088 849.79 S1 30 4.2 0.2 0.32 0.45
RW450-E 902.195 912.78 S3 25 2.8 0.15 0.31 0.45
RW500-E 1007.376 1036.58 S1 25 2.8 0.15 0.32 0.46
RW550-E 1122.621 1176.47 QL2 30 2.8 0.2 0.31 0.46
RW600-E 1304.802 1346.81 V2 30 2.8 0.16 0.32 0.5
RW650-E 1545.005 1588.32 S3 30 2.8 0.15 0.35 0.55
RW700-E 1794.782 1846.2 S4 30 2.8 0.16 0.35 0.6
RW750-E 2099.338 2175.81 QL2 40 2.8 0.16 0.3 0.59
RW800-E 2443.014 2491.57 S1 30 2.8 0.19 0.36 0.72

RW300-C+E 164,604.53 164,604.53 SA2 25 2.8 0.15 0.3 0.45
RW350-C+E 190,242.112 199,602.67 S1 25 2.8 0.15 0.3 0.49
RW400-C+E 215,498.372 223,604.65 SA2 25 2.8 0.15 0.3 0.48
RW450-C+E 241,998.678 256,669.92 SA1 25 2.8 0.15 0.3 0.49
RW500-C+E 269,533.553 282,150.29 S4 25 2.8 0.15 0.3 0.48
RW550-C+E 308,696.291 328,562.36 S3 25 2.8 0.2 0.35 0.47
RW600-C+E 365,784.894 381,018.45 SA5 25 2.8 0.17 0.32 0.54
RW650-C+E 432,031.377 459,287.25 V3 25 4.2 0.17 0.35 0.61
RW700-C+E 508,928.933 513,662.21 S4 25 2.8 0.17 0.33 0.65
RW750-C+E 595,461.955 619,227.4 S3 30 2.8 0.16 0.38 0.67
RW800-C+E 690,374.634 722,411.98 S1 30 4.2 0.21 0.4 0.72

5.1. Distribution Analysis

The violin plots (Figures 7–9) presented in this section offer a clear and concise vi-
sualization of the results obtained from our investigation of the algorithms employed.
A representative instance was selected to showcase the results using the best-performing
metaheuristic: GWO. Upon examining the plots, it is evident that the violins corresponding
to Algorithms S1–S4 exhibit lower data dispersion compared to the others, signifying a
greater efficiency in minimizing the problem. Overall, the violin plots provide an effective
and lucid representation of the findings from our study, which will assist researchers and
subject matter experts in making informed decisions when selecting techniques for future
research and practical applications. The plots are structured as follows: the Y-axis displays
the fitness range, which refers to the data density at that level, while the X-axis represents
all the evaluated algorithms.
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Figure 7. GWO Instance RW300—objective function cost.
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Figure 8. GWO Instance RW300—objective function CO2 emissions.
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Figure 9. GWO Instance RW300—objective function cost + CO2 emissions.
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5.2. Statistical Test

The results displayed in Tables 14–16 concerning Algorithms S1–S4 in the Wilcoxon–
Mann–Whitney statistical test corroborate earlier findings, suggesting that these algorithms
excel in terms of minimization. Our statistical analysis reveals that the p-value of the
test also supports these conclusions, as it is considerably lower than 0.05, signifying a
statistically significant difference between the medians of algorithms S1–S4 and those of
the remaining algorithms. In essence, the statistical test outcomes reinforce the violin plot
findings, demonstrating that algorithms S1–S4 are indeed significantly superior.

The tables are structured as follows: the first row and column display the 18 algorithms
under study and those to be compared. If the p-value is less than 0.05, the value is presented
in bold and approximated to three decimal places. If the p-value exceeds 0.05, the value
is replaced by “>0.05”. When comparing identical algorithms, the symbol “-” is used to
indicate that no comparison is made.

Table 14. Average p-value of GWO—objective function cost.

S1 S2 S3 S4 V1 V2 V3 V4 SA1 SA2 SA3 SA4 SA5 QL1 QL2 QL3 QL4 QL5

S1 - ≥0.05 ≥0.05 ≥0.05 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
S2 ≥0.05 - ≥0.05 ≥0.05 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
S3 ≥0.05 ≥0.05 - ≥0.05 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
S4 ≥0.05 ≥0.05 ≥0.05 - 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
V1 ≥0.05 ≥0.05 ≥0.05 ≥0.05 - ≥0.05 ≥0.05 ≥0.05 ≥0.05 ≥0.05 ≥0.05 ≥0.05 ≥0.05 ≥0.05 ≥0.05 ≥0.05 ≥0.05 ≥0.05
V2 ≥0.05 ≥0.05 ≥0.05 ≥0.05 ≥0.05 - ≥0.05 ≥0.05 ≥0.05 ≥0.05 ≥0.05 ≥0.05 ≥0.05 ≥0.05 ≥0.05 ≥0.05 ≥0.05 ≥0.05
V3 ≥0.05 ≥0.05 ≥0.05 ≥0.05 ≥0.05 ≥0.05 - ≥0.05 ≥0.05 ≥0.05 ≥0.05 ≥0.05 ≥0.05 ≥0.05 ≥0.05 ≥0.05 ≥0.05 ≥0.05
V4 ≥0.05 ≥0.05 ≥0.05 ≥0.05 ≥0.05 ≥0.05 ≥0.05 - ≥0.05 ≥0.05 ≥0.05 ≥0.05 ≥0.05 ≥0.05 ≥0.05 ≥0.05 ≥0.05 ≥0.05

SA1 ≥0.05 ≥0.05 ≥0.05 ≥0.05 ≥0.05 ≥0.05 ≥0.05 ≥0.05 - ≥0.05 ≥0.05 ≥0.05 ≥0.05 ≥0.05 ≥0.05 ≥0.05 ≥0.05 ≥0.05
SA2 ≥0.05 ≥0.05 ≥0.05 ≥0.05 ≥0.05 ≥0.05 ≥0.05 ≥0.05 ≥0.05 - ≥0.05 ≥0.05 ≥0.05 ≥0.05 ≥0.05 ≥0.05 ≥0.05 ≥0.05
SA3 ≥0.05 ≥0.05 ≥0.05 ≥0.05 ≥0.05 ≥0.05 ≥0.05 ≥0.05 ≥0.05 ≥0.05 - ≥0.05 ≥0.05 ≥0.05 ≥0.05 ≥0.05 ≥0.05 ≥0.05
SA4 ≥0.05 ≥0.05 ≥0.05 ≥0.05 ≥0.05 ≥0.05 ≥0.05 ≥0.05 ≥0.05 ≥0.05 ≥0.05 - ≥0.05 ≥0.05 ≥0.05 ≥0.05 ≥0.05 ≥0.05
SA5 ≥0.05 ≥0.05 ≥0.05 ≥0.05 ≥0.05 ≥0.05 ≥0.05 ≥0.05 ≥0.05 ≥0.05 ≥0.05 ≥0.05 - ≥0.05 ≥0.05 ≥0.05 ≥0.05 ≥0.05
QL1 ≥0.05 ≥0.05 ≥0.05 ≥0.05 ≥0.05 ≥0.05 ≥0.05 ≥0.05 ≥0.05 ≥0.05 ≥0.05 ≥0.05 ≥0.05 - ≥0.05 ≥0.05 ≥0.05 ≥0.05
QL2 ≥0.05 ≥0.05 ≥0.05 ≥0.05 ≥0.05 ≥0.05 ≥0.05 ≥0.05 ≥0.05 ≥0.05 ≥0.05 ≥0.05 ≥0.05 ≥0.05 - ≥0.05 ≥0.05 ≥0.05
QL3 ≥0.05 ≥0.05 ≥0.05 ≥0.05 ≥0.05 ≥0.05 ≥0.05 ≥0.05 ≥0.05 ≥0.05 ≥0.05 ≥0.05 ≥0.05 ≥0.05 ≥0.05 - ≥0.05 ≥0.05
QL4 ≥0.05 ≥0.05 ≥0.05 ≥0.05 ≥0.05 ≥0.05 ≥0.05 ≥0.05 ≥0.05 ≥0.05 ≥0.05 ≥0.05 ≥0.05 ≥0.05 ≥0.05 ≥0.05 - ≥0.05
QL5 ≥0.05 ≥0.05 ≥0.05 ≥0.05 ≥0.05 ≥0.05 ≥0.05 ≥0.05 ≥0.05 ≥0.05 ≥0.05 ≥0.05 ≥0.05 ≥0.05 ≥0.05 ≥0.05 ≥0.05 -

Table 15. Average p-value of GWO—objective function CO2 emissions.

S1 S2 S3 S4 V1 V2 V3 V4 SA1 SA2 SA3 SA4 SA5 QL1 QL2 QL3 QL4 QL5

S1 - ≥0.05 ≥0.05 ≥0.05 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
S2 ≥0.05 - ≥0.05 ≥0.05 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
S3 ≥0.05 ≥0.05 - ≥0.05 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
S4 ≥0.05 ≥0.05 ≥0.05 - 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
V1 ≥0.05 ≥0.05 ≥0.05 ≥0.05 - ≥0.05 ≥0.05 ≥0.05 ≥0.05 ≥0.05 ≥0.05 ≥0.05 ≥0.05 ≥0.05 ≥0.05 ≥0.05 ≥0.05 ≥0.05
V2 ≥0.05 ≥0.05 ≥0.05 ≥0.05 ≥0.05 - ≥0.05 ≥0.05 ≥0.05 ≥0.05 ≥0.05 ≥0.05 ≥0.05 ≥0.05 ≥0.05 ≥0.05 ≥0.05 ≥0.05
V3 ≥0.05 ≥0.05 ≥0.05 ≥0.05 ≥0.05 ≥0.05 - ≥0.05 ≥0.05 ≥0.05 ≥0.05 ≥0.05 ≥0.05 ≥0.05 ≥0.05 ≥0.05 ≥0.05 ≥0.05
V4 ≥0.05 ≥0.05 ≥0.05 ≥0.05 ≥0.05 ≥0.05 ≥0.05 - ≥0.05 ≥0.05 ≥0.05 ≥0.05 ≥0.05 ≥0.05 ≥0.05 ≥0.05 ≥0.05 ≥0.05

SA1 ≥0.05 ≥0.05 ≥0.05 ≥0.05 ≥0.05 ≥0.05 ≥0.05 ≥0.05 - ≥0.05 ≥0.05 ≥0.05 ≥0.05 ≥0.05 ≥0.05 ≥0.05 ≥0.05 ≥0.05
SA2 ≥0.05 ≥0.05 ≥0.05 ≥0.05 ≥0.05 ≥0.05 ≥0.05 ≥0.05 ≥0.05 - ≥0.05 ≥0.05 ≥0.05 ≥0.05 ≥0.05 ≥0.05 ≥0.05 ≥0.05
SA3 ≥0.05 ≥0.05 ≥0.05 ≥0.05 ≥0.05 ≥0.05 ≥0.05 ≥0.05 ≥0.05 ≥0.05 - ≥0.05 ≥0.05 ≥0.05 ≥0.05 ≥0.05 ≥0.05 ≥0.05
SA4 ≥0.05 ≥0.05 ≥0.05 ≥0.05 ≥0.05 ≥0.05 ≥0.05 ≥0.05 ≥0.05 ≥0.05 ≥0.05 - ≥0.05 ≥0.05 ≥0.05 ≥0.05 ≥0.05 ≥0.05
SA5 ≥0.05 ≥0.05 ≥0.05 ≥0.05 ≥0.05 ≥0.05 ≥0.05 ≥0.05 ≥0.05 ≥0.05 ≥0.05 ≥0.05 - ≥0.05 ≥0.05 ≥0.05 ≥0.05 ≥0.05
QL1 ≥0.05 ≥0.05 ≥0.05 ≥0.05 ≥0.05 ≥0.05 ≥0.05 ≥0.05 ≥0.05 ≥0.05 ≥0.05 ≥0.05 ≥0.05 - ≥0.05 ≥0.05 ≥0.05 ≥0.05
QL2 ≥0.05 ≥0.05 ≥0.05 ≥0.05 ≥0.05 ≥0.05 ≥0.05 ≥0.05 ≥0.05 ≥0.05 ≥0.05 ≥0.05 ≥0.05 ≥0.05 - ≥0.05 ≥0.05 ≥0.05
QL3 ≥0.05 ≥0.05 ≥0.05 ≥0.05 ≥0.05 ≥0.05 ≥0.05 ≥0.05 ≥0.05 ≥0.05 ≥0.05 ≥0.05 ≥0.05 ≥0.05 ≥0.05 - ≥0.05 ≥0.05
QL4 ≥0.05 ≥0.05 ≥0.05 ≥0.05 ≥0.05 ≥0.05 ≥0.05 ≥0.05 ≥0.05 ≥0.05 ≥0.05 ≥0.05 ≥0.05 ≥0.05 ≥0.05 ≥0.05 - ≥0.05
QL5 ≥0.05 ≥0.05 ≥0.05 ≥0.05 ≥0.05 ≥0.05 ≥0.05 ≥0.05 ≥0.05 ≥0.05 ≥0.05 ≥0.05 ≥0.05 ≥0.05 ≥0.05 ≥0.05 ≥0.05 -

Table 16. Average p-value of GWO—objective function cost + CO2 emissions.

S1 S2 S3 S4 V1 V2 V3 V4 SA1 SA2 SA3 SA4 SA5 QL1 QL2 QL3 QL4 QL5

S1 - ≥0.05 ≥0.05 ≥0.05 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
S2 ≥0.05 - ≥0.05 ≥0.05 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
S3 ≥0.05 ≥0.05 - ≥0.05 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
S4 ≥0.05 ≥0.05 ≥0.05 - 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
V1 ≥0.05 ≥0.05 ≥0.05 ≥0.05 - ≥0.05 ≥0.05 ≥0.05 ≥0.05 ≥0.05 ≥0.05 ≥0.05 ≥0.05 ≥0.05 ≥0.05 ≥0.05 ≥0.05 ≥0.05
V2 ≥0.05 ≥0.05 ≥0.05 ≥0.05 ≥0.05 - ≥0.05 ≥0.05 ≥0.05 ≥0.05 ≥0.05 ≥0.05 ≥0.05 ≥0.05 ≥0.05 ≥0.05 ≥0.05 ≥0.05
V3 ≥0.05 ≥0.05 ≥0.05 ≥0.05 ≥0.05 ≥0.05 - ≥0.05 ≥0.05 ≥0.05 ≥0.05 ≥0.05 ≥0.05 ≥0.05 ≥0.05 ≥0.05 ≥0.05 ≥0.05
V4 ≥0.05 ≥0.05 ≥0.05 ≥0.05 ≥0.05 ≥0.05 ≥0.05 - ≥0.05 ≥0.05 ≥0.05 ≥0.05 ≥0.05 ≥0.05 ≥0.05 ≥0.05 ≥0.05 ≥0.05

SA1 ≥0.05 ≥0.05 ≥0.05 ≥0.05 ≥0.05 ≥0.05 ≥0.05 ≥0.05 - ≥0.05 ≥0.05 ≥0.05 ≥0.05 ≥0.05 ≥0.05 ≥0.05 ≥0.05 ≥0.05
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Table 16. Cont.

S1 S2 S3 S4 V1 V2 V3 V4 SA1 SA2 SA3 SA4 SA5 QL1 QL2 QL3 QL4 QL5

SA2 ≥0.05 ≥0.05 ≥0.05 ≥0.05 ≥0.05 ≥0.05 ≥0.05 ≥0.05 ≥0.05 - ≥0.05 ≥0.05 ≥0.05 ≥0.05 ≥0.05 ≥0.05 ≥0.05 ≥0.05
SA3 ≥0.05 ≥0.05 ≥0.05 ≥0.05 ≥0.05 ≥0.05 ≥0.05 ≥0.05 ≥0.05 ≥0.05 - ≥0.05 ≥0.05 ≥0.05 ≥0.05 ≥0.05 ≥0.05 ≥0.05
SA4 ≥0.05 ≥0.05 ≥0.05 ≥0.05 ≥0.05 ≥0.05 ≥0.05 ≥0.05 ≥0.05 ≥0.05 ≥0.05 - ≥0.05 ≥0.05 ≥0.05 ≥0.05 ≥0.05 ≥0.05
SA5 ≥0.05 ≥0.05 ≥0.05 ≥0.05 ≥0.05 ≥0.05 ≥0.05 ≥0.05 ≥0.05 ≥0.05 ≥0.05 ≥0.05 - ≥0.05 ≥0.05 ≥0.05 ≥0.05 ≥0.05
QL1 ≥0.05 ≥0.05 ≥0.05 ≥0.05 ≥0.05 ≥0.05 ≥0.05 ≥0.05 ≥0.05 ≥0.05 ≥0.05 ≥0.05 ≥0.05 - ≥0.05 ≥0.05 ≥0.05 ≥0.05
QL2 ≥0.05 ≥0.05 ≥0.05 ≥0.05 ≥0.05 ≥0.05 ≥0.05 ≥0.05 ≥0.05 ≥0.05 ≥0.05 ≥0.05 ≥0.05 ≥0.05 - ≥0.05 ≥0.05 ≥0.05
QL3 ≥0.05 ≥0.05 ≥0.05 ≥0.05 ≥0.05 ≥0.05 ≥0.05 ≥0.05 ≥0.05 ≥0.05 ≥0.05 ≥0.05 ≥0.05 ≥0.05 ≥0.05 - ≥0.05 ≥0.05
QL4 ≥0.05 ≥0.05 ≥0.05 ≥0.05 ≥0.05 ≥0.05 ≥0.05 ≥0.05 ≥0.05 ≥0.05 ≥0.05 ≥0.05 ≥0.05 ≥0.05 ≥0.05 ≥0.05 - ≥0.05
QL5 ≥0.05 ≥0.05 ≥0.05 ≥0.05 ≥0.05 ≥0.05 ≥0.05 ≥0.05 ≥0.05 ≥0.05 ≥0.05 ≥0.05 ≥0.05 ≥0.05 ≥0.05 ≥0.05 ≥0.05 -

6. Conclusions

This paper introduces a novel approach to optimizing retaining structural wall designs
by implementing an innovative discretization method that utilizes reinforcement learning
and transfer functions. Conventional structural design practices rely on empirical knowl-
edge and experience, resulting in designs that prioritize strength, operability, and durability.
However, these designs have room for improvement by minimizing their associated costs
and CO2 emissions.

Designs created using experience and empirical knowledge can produce feasible
results that are often acceptable in cost and operability. However, these designs do not
necessarily represent the optimal solution for a given scenario. Retaining wall design
problems are considered combinatorial optimization challenges, which can quickly result
in a combinatorial explosion due to the large number of variables and extensive discrete
domains involved. Consequently, it is crucial to use incomplete techniques to solve these
problems within a reasonable computational time frame. Metaheuristics have emerged as a
prominent solution for addressing such challenges.

This work outlines the calculation procedure for determining the dimensions of a
retaining wall, framing it as an optimization problem. Three metaheuristic techniques
are implemented to evaluate their performance and use various transfer functions for the
discretization process. Additionally, a novel discretization method, based on Q-Learning
and SARSA, is employed to select the appropriate transfer function for each iteration during
the discretization process.

The proposed model aims to minimize costs, CO2 emissions, or a weighted combina-
tion of both, considering the design parameters detailed in Table 1 as problem variables,
with the constraints being those inherent to the design of a retaining wall, as detailed in
Section 2.1. Experimental results have been obtained using the Sine Cosine Algorithm
(SCA), Whale Optimization Algorithm (WOA), and Gray Wolf Optimization (GWO) meta-
heuristics, with each run independently for 31 runs across 11 problem instances. After eval-
uating all the techniques across the three objective functions, the p-values obtained by the
Wilcoxon–Mann–Whitney test for the GWO are presented, revealing the best results for the
static versions using S-shaped transfer functions. GWO demonstrated significant differ-
ences in its results, indicating that it outperformed the other techniques for this specific
problem. This does not imply that the other techniques are inadequate; rather, it suggests
that the GWO S-shaped technique performs better for this particular problem.

The development of new optimization techniques, such as the one in this article, is
crucial. It not only benefits the engineering profession, but also has considerable environ-
mental and economic implications. By optimizing design processes and reducing costs
and CO2 emissions, the industry can contribute to a more sustainable future. One discus-
sion point in this work is selecting transfer functions used in the discretization process.
S-shaped functions provided the best results in terms of minimizing costs and CO2 emis-
sions, as demonstrated. However, other functions might offer better results for different
problems or under various conditions, which the non-free lunch theorem also supports.
Investigating how different transfer functions could affect results and determining an
optimal function for a specific problem would be interesting.
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Another discussion is the comparison of the results obtained with the different meta-
heuristic algorithms used in this work. While GWO with S-shaped transfer gave the best
results, the other two algorithms also produced acceptable results. However, it could
be argued that more metaheuristic algorithms should be compared to fully evaluate the
effectiveness of this technique in retaining wall design optimization. In addition, it would
be interesting to compare the results obtained with the approach proposed in this work
with other retaining wall design optimization approaches, such as those based on other
machine learning techniques.

Finally, the application of this approach to real-world design problems could be dis-
cussed. While the results are promising, it is possible that the implementation of this
approach in real construction projects may be more complicated than the experimental
results suggest. For example, there may be time and resource constraints that were not
accounted for in this work that could affect the ability to use this approach in a real construc-
tion environment. Therefore, it could be argued that further research is needed to determine
how this approach can be effectively implemented in real-world construction projects and
how the practical challenges associated with its implementation can be addressed.

Future research should consider a broader range of assessment techniques, parameter
variations, and other considerations. These distinctions could lead to results that are
closer to reality. There also remains the challenge of extending these techniques to other
construction problems, allowing specific processes to be designed more efficiently and
accurately. Overall, the paper presents a promising approach to improving civil work
designs, and the results suggest that further research in this field could lead to significant
advances in the field.
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Abbreviations
The following abbreviations are used in this manuscript:

Acronyms Part 1
MH Metaheuristics
FEM Finite Element Model
SCA Sine-Cosine Algorithm
WOA Whale Optimization Algorithm
GWO Gray Wolf Optimization
MINLP Mixed-Integer Non-Linear Programming
qe Static thrust exerted by the fill [T/m]
γ Existing soil density [T/m3].
z Height of the wall [m].
c Static thrust coefficient.
b Wall width, corresponding to 1 [m].
qs Seismic thrust exerted by the backfill [T/m].
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gamma Existing soil density [T/m3].
hz Height of wall [m].
cs Seismic thrust coefficient.
MsA Moment calculated at point A [T ·m].
Mactive Static moment generated by the ground at point A [T ·m].
Mseismic Seismic moment generated by the ground at point A [T ·m].
Mpp Moment generated by the self-weight at point A [T ·m].
d1 Distance from the centroid of the prismatic section of the wall to point A [m].
N1 Eigenweight of the prismatic section of the wall [T].
d2 Distance from the centroid of the triangular section of the wall to point A [m].
N2 Eigenweight of the triangular section of the wall [T].
MA Total moment at point A [T ·m].
MsA Moment calculated at point A [T ·m].
Mpp Moment generated by self-weight at point A [T ·m].
Meu Design moment [T ·m].
γ f Moment majorization factor.
Nu Design axial load [T].
Nt Own weight of the wall [T].
µ Dimensionless calculation factor.
φ Reduction factor for flexocompression equal to 0.83.
β Reduction of the characteristic strength of concrete equal to 0.85.
f ′c Characteristic resistance of concrete to compression [T/m2].
b Width of the wall, corresponding to 1 [m].
d Width of the base of the wall without covering [m].
ν Dimensionless shear factor in the structure.
w Calculation ratio for the steel area.
A Dimensionless calculation factor.
fy Width of the base of the wall without covering [m].
Mr Overturning resisting moment [T ·m].
Ns Self-weight of soil on bottom [T].
x1 Distance from the centroid of Ns to point B [m].
Nm Dead weight of the wall wedge and the soil above it [T].
x2 Distance from the centroid of Nm to point B [m].
N1 Self weight of the prismatic section of the wall [T].
x3 Distance from the centroid of N1 to point B [m].
N f Self weight of the wall foundation [T].
x4 Distance from the centroid of Nf to point B [m].
MSB Moment resisting overturning [T].
MactiveB Self-weight of the soil on the bottom [T].
MseismicB Distance from the centroid of Ns to point B [m].
FSSV Overturning seismic safety factor.
FSEV Rollover static safety factor.
Fsol Slip requesting force [T].
Fres Slip resistant forces [T].
FSSD Seismic slip safety factor.
L Total length of foundation [m].
g Section of the foundation supported on the ground [m].
e Eccentricity of forces [m].
Acronyms Part 2
σe f f ective Effective stress applied to the foundation soil.
Mdesign Design moment of reinforcement reinforcement [T ·m].
Mdl Design moment of longitudinal reinforcement [T ·m].
Bdt Maximum foundation flight [m].
Bm Width of wall base [m].
Pp Self-weight of the wall [T].
Mdt Design moment of transverse reinforcement [T ·m].
T Design stress [T].
Md Corresponding design moment (Mdl or Mdt) [T ·m].
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d′ Effective shoe height (height without cover) [m].
As Required steel area [cm2].
Fy Yield stress of steel [T/cm2].
emin Minimum amount of steel required [cm2].
Ag Longitudinal or cross-sectional area of the footing, as appropriate [cm2].
Vu Design cut request [T].
Vc Shear strength of concrete section [T].
λ Concrete modification factor. For normal concrete, λ = 1.
µlim Calculation limit dimensionless factor, equal to 0.3047 for the case of analysis.
CMt Total cost of retaining wall [CLP].
CM1 Cost of one cubic meter of concrete [CLP/m3].
PM1 Total volume of concrete used [m3].
CM2 Cost of one kilogram of steel [CLP/kg].
PM2 Total kilograms of steel used [kg].
EMt Total carbon dioxide emissions [T].
EM1 Tons of carbon emitted per cubic meter of concrete [T/m3].
PM1 Total volume of concrete used [m3].
EM2 Tons of carbon emitted per kilogram of steel [T/kg].
PM2 Total kilograms of steel used [kg].
CEMt Total between the sum of cost and emissions.
BSS Binarization Schemes Selector
QL Q-Learning
x̄d Average of individuals in dimension d
xd

i Value of the i-th individual in dimension d
n Number of individuals in the population
l Size of the dimension of the individuals
Div Determination of the diversity state
Divmax Maximum value of the diversity state found
MH Metahuristics
RPD Relative Percentage Deviation
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Abstract: Many-objective optimization problems are today ever more common. The decomposition-
based approach stands out among the evolutionary algorithms used for their solution, with MOEA/D
and its variations playing significant roles. MOEA/D variations seek to improve weight vector defi-
nition, improve the dynamic adjustment of weight vectors during the evolution process, improve
the evolutionary operators, use alternative decomposition methods, and hybridize with other meta-
heuristics, among others. Although an essential topic for the success of MOEA/D depends on how
well the weight vectors are defined when decomposing the problem, not as much research has been
performed on this topic as on the others. This paper proposes using a new mathematical object called
augmented covering arrays (ACAs) that enable a better sampling of interactions of M objectives
using the least number of weight vectors based on an interaction level (strength), defined a priori by
the user. The proposed method obtains better results, measured in inverted generational distance,
using small to medium populations (up to 850 solutions) of 30 to 100 objectives over DTLZ and
WFG problems against the traditional weight vector definition used by MOEA/D-DE and results
obtained by NSGA-III. Other MOEA/D variations can include the proposed approach and thus
improve their results.

Keywords: optimization methods; many-objective optimization; decomposition; augmented
covering arrays

MSC: 68T20; 90C59; 90C29

1. Introduction

The aim of evolutionary algorithms for multi-objective optimization, better known
in the state of the art as multi-objective evolutionary algorithms (MOEAs) [1], is to find
a set of solutions (rather than a single solution) to problems with two or three objectives,
called multi-objective optimization problems (MOPs), where in many cases, these objectives
conflict. In the last two decades, different algorithms have been proposed to address these
problems, classifying the most successful proposals into three main approaches: dominance-
based, indicator-based, and decomposition-based [2]. Prominent among these are NSGA-
II [3], SPEA2 [4], IBEA [5], SME-EMOA [6], MSOPS [7], and MOEA/D [8]. These algorithms
are commonly used to optimize systems with a low number of objectives (up to three), such
as the planning of air routes [9], the design of aqueducts and sewers [10], and optimizing
the routes and frequencies for bus rapid transit systems [11]. However, when dealing with
many-objective optimization problems (MaOPs), i.e., four (4) or more objectives, traditional
MOEAs are prone to fail or converge to local optima because, among other complications,
many objectives make it difficult to define when one solution outperforms another as
the space for representing the objectives becomes too large [12]. In recent years, several
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evolutionary algorithms (many-objective evolutionary algorithms, MaOEAs) have been
proposed to optimize many objectives that seek to overcome the deficiencies of traditional
MOEAs. These algorithms also have different approaches; among the most important
are [12]:

Scalar-function-based (decomposition/aggregation): The first group seeks to solve
the problem by decomposing it using multiple weighted objective functions, in which
each objective has different weight values in each function. The second group, based
on aggregation, uses functions to combine groups of objectives by working with a much
smaller amount of these and solving them with traditional MOEAs. Within this approach,
the MOEA/D algorithm [8] and its variations stand out, including for the improvement of
evolution operators based on differential evolution, such as MOEA/D-DE [13], MOEA/D-
HSE [14], and MOEA/D-oDE [15].

Reference-set-based: These algorithms guide the search process based on a list of
solutions in a reference set. Notable here is the improved two-archive algorithm (TAA) [16]
and, in particular, version 3 of the non-dominated sorting genetic algorithm NSGA-III [17].

Quality-indicator-based: These algorithms transform the problem of many objec-
tives to a problem of optimizing a single objective that represents how good the solutions
are compared to the rest of the population (indicator). The most widely recognized ap-
proaches are IBEA [18], I-SIBEA [19], artificial bee colony algorithm (E-MOABC) [20], and
hypervolume adaptive grid algorithm (HAGA) [21].

Dimensional-reduction-based: These algorithms take the objectives of the original
problem and reduce them in a low-dimension representation using, for example, princi-
pal component analysis (PCA), unsupervised feature selection, and greedy techniques.
Prominent in this approach is PCA-NSGA-II [22].

Space-partitioning-based: These algorithms optimize subsets of the problem ob-
jectives in each iteration of the evolutionary process. The ∈R-EMO [23] algorithm is a
good example.

The decomposition-based approach has attracted much attention from researchers in
the area. In particular, MOEA/D [8] has benefited from a number of improvements with
the following principal aims: (1) to develop new methods for the defining and dynamic
adjustment of weight vectors that decompose the problem into multiple single-objective
problems; (2) to use new decomposition approaches; (3) to ensure the efficient allocation
of computational resources; (4) to improve the search process by modifying the selection,
crossover, mutation, and replacement operations of the algorithm; and (5) to hybridize with
dominance-based approaches.

One of the least-researched limitations of MOEA/D focuses on defining the weight
vectors that decompose the problem. In its original version, the algorithm seeks to conduct
a uniformly random sampling of the weighting of the different objectives. However, this
is not guaranteed to be the most appropriate approach, especially when the number of
objectives grows [24]. This method does not work because the interrelationship between
objectives is not adequately sampled. In addition, an exponential increase in the number
of weight vectors is required to obtain adequate sampling when the number of targets
grows [25].

Another option is based on the simplex method [21], in which the size of the population
(the number of weight vectors) increases non-linearly with the increasing number of
objectives, and the user cannot define the size of the population. In addition, making
a uniform distribution of weight vectors does not ensure that the solutions sample the
interaction between the objectives [22].

In this research [26], the use of augmented covering arrays (ACAs) is proposed for
defining the weight vectors, considering that this new mathematical object guarantees the
most significant coverage (a sampling with the highest coverage of interactions between
several factors, in this case, optimization objectives) with the least possible effort. ACAs are
a new type of covering array (CA), and they are formally presented for the first time later
in Section 3.3. CAs, in general, have been used to support experimental design in fields
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such as agriculture, medicine, biology, and material design. Latterly, they are one of the
most widely used tools for testing software and hardware. In all these fields, it is necessary
to test combinations of different factors without conducting an exhaustive search of them
due to restrictions of cost, time, and effort [27,28].

Experimental results show that the proposed method obtains better results on DTLZ
and WFG problems using small and medium populations than MOEA/D-DE and NSGA-III.
MOEA/D-DE-ACA (a new MOEA/D-DE version that uses ACAs) obtains better inverted
generational distance results for 30 to 100 objectives supported in the Friedman non-
parametric and Holm post hoc tests. Execution time was also significantly reduced, using
only 40.7% or 8.9% of the time used by MOEA/D-DE and 4.8% or 7% of that of NSGA-III.
The results showed no significant differences between MOEA/D-ACA and MOEA/D
using large populations, except in 90 objectives in which MOEA/D-ACA performs better.
In addition, MOEA/D-ACA further reduces execution times by using only 2.7% of the
execution time of MOEA/D-DE and 6.2% of that used by NSGA-III. Given such results, the
different variations of MOEA/D and decomposition-based algorithms might be expected
to incorporate the proposed approach for defining the weight vectors, thereby improving
the literature results.

The rest of this document is organized as follows: Section 2 presents previous work on
defining weight vectors in MOEA/D. Section 3 presents orthogonal arrays (OA), covering
arrays (CA), and augmented covering arrays (ACA) and a comparison between them for the
definition of weight vectors. Section 4 details the process of defining weight vectors based
on augmented covering arrays within the multi-objective evolutionary algorithm based on
decomposition with differential evolution (MOEA/D-DE-ACA). Section 5 describes the
experiments, starting with the characteristics of the problems used (DTLZ and WFG), the
quality measure used for the comparison, and the results of the three defined experiments,
which include the comparison with the multi-objective evolutionary algorithm based
on decomposition with a differential evolution approach (MOEA/D-DE) and the non-
dominated sorting genetic algorithm version 3 (NSGA-III) from 10 to 100 objectives, and
the comparison against other proposals of the state of the art in constrained problems.
Finally, Section 6 presents conclusions and recommends directions for future research.

2. Related Studies

MOEA/D is an algorithm that decomposes a multi-objective optimization problem
into several single-objective optimization subproblems. MOEA/D employs a method
based on populations to optimize these subproblems concurrently and to find the Pareto
front (PF) of the problem. The literature reports much theoretical and practical work using
MOEA/D and variants [29]. Considering that the definition of weight vectors in MOEA/D
significantly impacts the algorithm’s results, previous works that have sought to improve
this definition are presented below. Most recent work is focused more on the dynamic
adjustment of weights during the evolutionary process than on the initialization process.

Many previous studies have looked how to generate uniform weight vectors, and
they can be organized into three classical methods: (1) simplex-lattice design, first used by
Scheffe in 1958 to obtain uniformly distributed weight vectors [30]; (2) simplex-centroid
design, presented by Scheffe in 1963 [31]; and (3) axial design, put forward by Cornell in
1975 [32]. Using these concepts, the transformation method (uniform design) tries to find a
set of aggregation weight vectors with an arbitrary amount, which is uniformly distributed
in the objectives space [33,34]. The original MOEA/D version uses the simplex-lattice
design method to generate the weight vectors, but this method has three main weaknesses.
The first is that the resulting weight vector distribution is not very uniform for three or
more objectives. The second is that the population size or the number of weight vectors
increases non-linearly with the number of objectives, and the population size cannot be
defined at will. The third weakness is that the uniform distribution of weight vectors does
not guarantee that uniformly distributed Pareto optimal solutions are obtained [35].
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In 2012 [36], a new version of MOEA/D with a uniform design called UMOEA/D
was proposed and compared with MOEA/D and NSGA-II on some scalable test problems
with three to five objectives, obtaining the best results. The authors claim that the number
of weight vectors is restricted for the three classical methods, but the “practical” number
of weight vectors is very flexible in most of the experiments. This paper has a significant
number of citations in Scopus related to new proposals for the dynamic adjustment of
weights during the evolutionary process, the study of the effect of weight vectors on the
performance of decomposition-based algorithms, and several reviews of decomposition-
based methods, among others. It is worth highlighting section about of “The Study of
Generation Strategy of Weight Vector” of the “Survey of Decomposition Based Evolutionary
Algorithms for Many-Objective Optimization Problems” published in 2022 by Xiaofang
Guo [37], mentioning four systematic design methods of weight vector generation: simplex-
lattice design used in MOEA/D, uniform design for experiments with mixtures (UDEM)
used in UMOEA/D, a combination of the previous two used in MOEA/D-UMD, and a
two-layer reference vector generation approach.

In 2014 [38], MOEA/D-UDM was proposed with uniform decomposition measure-
ment to obtain uniform weight vectors in any amount and one modified Tchebycheff decom-
position. However, this proposal deals with two difficulties in applying MOEA/D to solve
MaOPs, namely: (1) the quantity of generated weight vectors is predetermined, and these
vectors are primarily concentrated along the boundary of the objective space for MaOPs,
and (2) in the Tchebycheff decomposition method employed by MOEA/D, the association
between a subproblem’s optimal solution and its weight vectors exhibits non-linearity.

Also, in 2014 [39], based on the geometric relationship between the weight vectors
and the corresponding Tchebycheff-based optimal solutions, an initialization method of
the weight vectors, called WS transformation, and an adaptive adjustment of the weight
vectors in a new proposal called MOEA/D-AWA were proposed. WS transformation
is redundant in two objectives. However, experimental studies on ten ZDT and DTLZ
reference problems with three objectives demonstrated that MOEA/D obtains much better
uniformly distributed Pareto optimal solutions. This work is also highly cited in Scopus
for comparison against it, as a reference for an algorithm that initializes the weight vectors
differently from the simplex-lattice design method, and for incorporating dynamic weight
adjustment based on the same technique used for weight vector generation. A survey
presented in 2020 cited this work and shows, in Sections III.B.1, III.B.4, and III.D, a list
of weight vector generation methods for multi- and many-objective problems using the
MOEA/D framework.

In 2015 [40], MOEA/D-UD was proposed. This work modified the initial definition of
weights using a new method based on an experimental design called UD. It also proposed
a dynamic adjustment of the weight vectors to remove them from crowding regions and
add new ones into the sparse regions, previously distinguishing truly sparse regions
from pseudo-sparse regions of the PF. MOEA/D-UD was compared with MOEA/D-DE,
MOEA/D-AWA, and NSGA-II on nineteen test instances. The results show that MOEA/D-
UD can obtain a well-converged and well-diversified set of solutions within an acceptable
run time.

In 2017 [41], non-uniform weight vector distribution strategies were used to modify
MOEA/D-DE to solve the unit commitment (UC) problem (a mixed-integer optimization
problem) in an uncertain environment. The authors evaluated two methods; the first ini-
tially generates weight vectors using the simplex-lattice design method and then randomly
removes weight vectors from the outer layers of the distribution to help the algorithm
focus its search more toward the center of the Pareto front. Second, a sinusoidal function
is selected to generate the weight vector distribution. The second proposal significantly
outperforms the other variants and the traditional MOEA/D-DE method over the UC
problem, providing a much better distribution of solutions.
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Also, in 2017 [42], an evolutionary method for weight vector generation was presented.
The algorithm initially creates a population of n weight vectors using a Latin hypercube
design [43], then normalizes the population and evaluates the distance between all pairs of
weight vectors to calculate the fitness value for each vector. Then, the evolutive process is
executed until a stopping criterion is reached; in each evolution iteration, a new weight
vector is created using a weight vector randomly selected from the population and a
Gaussian perturbation; next, the Euclidian distances between the new vector and the rest of
the weight vectors in the population are calculated, the fitness for the new vector is defined,
and the new vector replaces the worst vector in the population if the new vector is better
than the worst. The fitness function corresponds to the sum of the Euclidian distances to
the closest neighbors in the population. Unlike the simplex-lattice design method, this
method can create weight vectors without restricting the number of vectors. This paper
has been cited by nine documents in Scopus, most related to applications in multi- and
many objectives.

In 2018 [44], an alternative proposal was presented with two types of weight vector
adjustments for many-objective optimization called MaOEA/D-2ADV. After performing
the first evolution iteration, this proposal searches for the weight vectors with better
solutions close to the optimal PF; if it finds a vector that does not satisfy certain qualifying
conditions, it is eliminated and creates a new one as a replacement. It then uses the domain-
based Pareto mechanism to detect the effectiveness of each vector. Finally, where a vector
is in the wrong direction, the vector is adjusted to adapt better to the PF. This algorithm
was compared with MOEA/D-AWA and RVEA using IGD in DTLZ problems of up to 10
objectives, concluding that MaOEA/D-2ADV is suitable for working on problems with a
disconnected PF with 4 to 10 objectives.

The initialization of weight vectors using a self-organizing map (SOM) was put for-
ward in a proposal called MOEA/D-SOM (2018) [45]. The normalized weight vectors are
sent to SOM to create neighborhoods or groups of vectors. Those closest to the PF based
on Euclidean distance are then selected. MOEA/D-SOM was evaluated in many-objective
problems using 16 problems with and without constraints, including DTLZ, TOY, and
MAOP. Their results were compared with those of MOEA/D-AWA, MOEA/DD, and M2M,
among others, using IGD. Compared to the other algorithms, this proposal was observed
to be superior, solving MaOPs with a degenerate PF [46].

Also, in 2018 [47], considering the fundamental role of weight vectors—ensuring good
diversity and convergence of solutions in different problems, especially problems with
a complex PF (discontinuous or with sharp peaks)—it was identified that the uniform
distribution of the weight vectors in MOEA/D does not allow a set of solutions with good
diversity to be obtained. The authors thus proposed the improved multi-objective evolu-
tionary algorithm based on decomposition with adaptive weight adjustment, IMOEA/DA.
This proposal first uses the uniform design method and crowding distance to generate a
set of evenly distributed weight vectors. Then, according to the distances of the dominated
solutions, it adapts the weight vectors to redistribute them in the subobjective spaces. The
algorithm also uses a selection strategy to help each subobjective space to have at least one
solution. This proposal was compared with state-of-the-art algorithms such as NSGA-II,
MOEA/D, MOEA/D-AWA, EMOSA, RVEA, and KnEA on different test functions (DTLZ,
WFG, UF, and ZDT) using three performance metrics, IGD, hypervolume (HV), and gener-
ational distance (GD). The Wilcoxon non-parametric test was used to analyze the results.
With a 95% significance, it was determined that the proposal could find a set of solutions
with greater diversity and convergence than the other compared algorithms.

The penalty-based boundary intersection (PBI) approach to defining weight vectors
obtains better results in concave and convex problems than the uniform random definition
of weights and the Tchebycheff method. However, its performance is degraded in problems
with a complex PF because it defines fixed penalty values. As a result, in 2019 [48], an
adaptive penalty scheme (AAP) was proposed to dynamically adjust each weight vector’s
penalty value during the algorithm’s evolutionary process. This proposal, called MOEA/D-
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AAP, was evaluated using six reference problems (F1 to F6) and compared with MOEA/D-
DE and MOEA/D-STM, concluding that the proposed approach significantly improved
the results measured in IGD.

Also, in 2019 [49], MOEA/HD was proposed, a method that uses a hierarchical
decomposition strategy. The scalar subproblems are in different weight hierarchies, and the
search direction of the solutions in the lower hierarchy subproblems is adjusted adaptively
based on the results of the upper hierarchy. This proposal was evaluated and compared
with four state-of-the-art proposals: MOEA/D-AWA, NSGA-III, MOEA/D-DRA, and
NSGA-II in the problems DTLZ, WFG, and JY using IGD and HV and obtained the best
results in all cases evaluated.

To date, there is no experimental comparison between the different proposals for the
generation of weight vectors in MOEA/D, and all published proposals were evaluated
using different problems and algorithms and using different numbers of objectives and so-
lutions generated. Therefore, it cannot be established that one algorithm dominates another;
it can only be defined that all proposals are better than the simplex-lattice design method
used originally in MOEA/D. That is why carrying out a fair experimental comparison
process for all proposals is an excellent future work.

3. Weight Vector Definition Using Combinatorial Designs

As previous studies reported, the definition of weight vectors in MOEA/D significantly
impacts the algorithm’s results, and this depends on how the weight vectors are sampled in
the objective space. Therefore, in this work, we sought to explore alternative combinatorial
designs to define weight vectors for MOEA/D-based algorithms to obtain better results
over different kinds of many-objective problems. As a result, the alternative selected was
augmented covering arrays (ACAs), but orthogonal arrays (OAs) and covering arrays
(CAs) were also analyzed.

These three mathematical objects are represented as matrices and are characterized by
four parameters: N, which is the number of rows, and in the algorithms based on MOEA/D,
it corresponds to the size of the population (each row will allow defining the weight vector
of one solution in the population); k, which is the number of columns and corresponds to
the number of objectives of the problem that is being solved; v, representing the alphabet
from which the values are defined for each cell of the matrix (values from 0 to v − 1); and
t, representing the degree of interaction between the columns—this parameter forces the
matrix to satisfy that for t columns, all the values of vˆt occur exactly once in the OAs or at
least once in the CAs and ACAs [50]. These objects are usually denoted as OA (N; t, k, v),
CA (N; t, k, v), and ACA (N; t, k, v). Table 1 summarizes the variables used in this section
of the document.

Table 1. Summary of variables in the combinatorial objects previously mentioned.

Variables Description in OAs, CAs, and ACAs Description in MOEA/D-ACA

N Number of rows Population size
k Number of columns Number of objectives of the problem
t Degree of interaction between the columns Degree of interaction between the problem objectives
v Alphabet for each cell of the matrix w = Weight values on weight vectors
- - α = Defines the level of granularity of the weights

To understand how each row of these three combinatorial designs can be used to
define the weight vectors, we first designate M as a matrix of size N × k associated with
any of the combinatorial designs (OA, CA, or ACA), and we have Mi,j, where 0 ≤ i ≤ N,
0≤ j ≤ k − 1 represent the value in the i-th row of the j-th column. To derive the weight
allocation of the j-th column using the i-th row, the calculation of Mi,j/αi is made, where
αi = ∑k−1

c=0 Mi,c (the case of a row with all zeros is excluded). Considering k objectives
(k ≥ 1) and a value α that defines the level of granularity of the weights (α ≥ 1), the linear
Diophantine equation with unit coefficients (LDEU) a0 + . . . + ak−1 = α allows sampling
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the weights of a row with a granularity 1/α [36,45,51]. For example, Table 2 shows on its
left side the first four rows of the ACA (42; 2; 10; 5) presented below in Table 3, and on the
right side, the weight vectors defined row by row. It can be seen that in order to transform
the ACA (OA or CA) from its integer domain to the real domain of the weight vectors, it
is only required to perform a normalization process (the sum of the components of the
weight vector is 1 as shown in the last column) dividing each row by the α value of each
row (αi). The value of αi defines the granularity of the weights, i.e., the coarseness of the
weights. For instance, if αi = 10, the granularity is in tenths, and if αi = 100, the granularity
is in hundredths.

Table 2. First four rows of ACA (42; 2, 10, 5), on the left, and defined weight vectors on the right.

ao a1 a2 a3 a4 a5 a6 a7 a8 a9 α wo w1 w2 w3 w4 w5 w6 w7 w8 w9 Σ

0 1 0 0 0 0 0 0 1 1 3 → 0 1/3 0 0 0 0 0 0 1/3 1/3 1

1 0 0 1 0 0 0 1 0 0 3 → 1/3 0 0 1/3 0 0 0 1/3 0 0 1

0 0 1 0 0 1 1 1 1 0 5 → 0 0 1/5 0 0 1/5 1/5 1/5 1/5 0 1

1 1 1 0 1 0 1 0 0 0 5 → 1/5 1/5 1/5 0 1/5 0 1/5 0 0 0 1

Table 3. OA (81; 2, 10, 9) with a0 + . . . + a9 = α.

ao a1 a2 a3 a4 a5 a6 a7 a8 a9 α ao a1 a2 a3 a4 a5 a6 a7 a8 a9 α

1 0 0 0 0 0 0 0 0 0 0 0 42 0 5 7 1 3 8 2 4 6 5 41

2 1 1 1 1 1 1 1 1 1 0 9 43 1 3 8 2 4 6 0 5 7 5 41

3 2 2 2 2 2 2 2 2 2 0 18 44 2 4 6 0 5 7 1 3 8 5 41

4 3 3 3 3 3 3 3 3 3 0 27 45 3 8 1 4 6 2 5 7 0 5 41

5 4 4 4 4 4 4 4 4 4 0 36 46 4 6 2 5 7 0 3 8 1 5 41

6 0 1 2 3 4 5 6 7 8 1 37 47 5 7 0 3 8 1 4 6 2 5 41

7 1 2 0 4 5 3 7 8 6 1 37 48 6 2 4 7 0 5 8 1 3 5 41

8 2 0 1 5 3 4 8 6 7 1 37 49 7 0 5 8 1 3 6 2 4 5 41

9 3 4 5 6 7 8 0 1 2 1 37 50 8 1 3 6 2 4 7 0 5 5 41

10 4 5 3 7 8 6 1 2 0 1 37 51 0 6 3 8 5 2 4 1 7 6 42

11 5 3 4 8 6 7 2 0 1 1 37 52 1 7 4 6 3 0 5 2 8 6 42

12 6 7 8 0 1 2 3 4 5 1 37 53 2 8 5 7 4 1 3 0 6 6 42

13 7 8 6 1 2 0 4 5 3 1 37 54 3 0 6 2 8 5 7 4 1 6 42

14 8 6 7 2 0 1 5 3 4 1 37 55 4 1 7 0 6 3 8 5 2 6 42

15 0 2 1 6 8 7 3 5 4 2 38 56 5 2 8 1 7 4 6 3 0 6 42

16 1 0 2 7 6 8 4 3 5 2 38 57 6 3 0 5 2 8 1 7 4 6 42

17 2 1 0 8 7 6 5 4 3 2 38 58 7 4 1 3 0 6 2 8 5 6 42

18 3 5 4 0 2 1 6 8 7 2 38 59 8 5 2 4 1 7 0 6 3 6 42

19 4 3 5 1 0 2 7 6 8 2 38 60 0 7 5 2 6 4 1 8 3 7 43

20 5 4 3 2 1 0 8 7 6 2 38 61 1 8 3 0 7 5 2 6 4 7 43

21 6 8 7 3 5 4 0 2 1 2 38 62 2 6 4 1 8 3 0 7 5 7 43

22 7 6 8 4 3 5 1 0 2 2 38 63 3 1 8 5 0 7 4 2 6 7 43

23 8 7 6 5 4 3 2 1 0 2 38 64 4 2 6 3 1 8 5 0 7 7 43
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Table 3. Cont.

ao a1 a2 a3 a4 a5 a6 a7 a8 a9 α ao a1 a2 a3 a4 a5 a6 a7 a8 a9 α

24 0 3 6 4 7 1 8 2 5 3 39 65 5 0 7 4 2 6 3 1 8 7 43

25 1 4 7 5 8 2 6 0 3 3 39 66 6 4 2 8 3 1 7 5 0 7 43

26 2 5 8 3 6 0 7 1 4 3 39 67 7 5 0 6 4 2 8 3 1 7 43

27 3 6 0 7 1 4 2 5 8 3 39 68 8 3 1 7 5 0 6 4 2 7 43

28 4 7 1 8 2 5 0 3 6 3 39 69 0 8 4 5 1 6 7 3 2 8 44

29 5 8 2 6 0 3 1 4 7 3 39 70 1 6 5 3 2 7 8 4 0 8 44

30 6 0 3 1 4 7 5 8 2 3 39 71 2 7 3 4 0 8 6 5 1 8 44

31 7 1 4 2 5 8 3 6 0 3 39 72 3 2 7 8 4 0 1 6 5 8 44

32 8 2 5 0 3 6 4 7 1 3 39 73 4 0 8 6 5 1 2 7 3 8 44

33 0 4 8 7 2 3 5 6 1 4 40 74 5 1 6 7 3 2 0 8 4 8 44

34 1 5 6 8 0 4 3 7 2 4 40 75 6 5 1 2 7 3 4 0 8 8 44

35 2 3 7 6 1 5 4 8 0 4 40 76 7 3 2 0 8 4 5 1 6 8 44

36 3 7 2 1 5 6 8 0 4 4 40 77 8 4 0 1 6 5 3 2 7 8 44

37 4 8 0 2 3 7 6 1 5 4 40 78 5 5 5 5 5 5 5 5 5 0 45

38 5 6 1 0 4 8 7 2 3 4 40 79 6 6 6 6 6 6 6 6 6 0 54

39 6 1 5 4 8 0 2 3 7 4 40 80 7 7 7 7 7 7 7 7 7 0 63

40 7 2 3 5 6 1 0 4 8 4 40 81 8 8 8 8 8 8 8 8 8 0 72

41 8 0 4 3 7 2 1 5 6 4 40

The number of solutions of the LDEU a0 + . . . + ak−1 = α is equal to
(

α + k− 1
k− 1

)
,

which is of exponential order, but since the exploration is also required for the possible
values of α, an exhaustive search for granularities from 1 to α with k objectives would

involve exploring ∑α
i=1

(
i + k− 1

k− 1

)
=

(
α + k

k

)
− 1 weight vectors. For example, with

α = 40 and k = 10, the space to be explored is 10,272,278,169 possible weight vectors.

3.1. Orthogonal Arrays

A first way of sampling weight vector definition is to use orthogonal arrays of index
unity (OAs). OAs are described by OA (N = vˆt; t, k = v + 1, v). In an OA, each submatrix
of size N × t contains as a row each t-tuple over the v symbols exactly once [52]. This
constraint limits the existence of a solution for all combinations of k, v, and t [53]. The
construction of OAs is an open topic for values of v that are not prime powers, but a general
solution exists for OAs with values of v that are prime powers. Not having OAs for v
values that are not prime powers represents a significant disadvantage when the number of
columns (objectives of the problem) is large since the number of rows will always be N = vˆt,
where v is the prime power that satisfies v + 1 ≥ k. For example, for k = 100 objectives
and t = 2, the OA that should be used is OA (N = 10,201; t = 2, k = 102, v = 101). This OA
generates a huge population size that may be unfeasible to use in practice.

For a problem with 10 objectives (k = 10) and an interaction level of 2 (t = 2), the value
of v that satisfies the constraint v + 1 ≥ k is v = 9 (OA alphabet). Therefore, to be able to
define the weight vectors in the algorithm, it is necessary to have the OA (81; 2, 10, 9). This
OA is constructed using the Bush algorithm [54] and is presented in Table 3. The columns
are designated by a0, . . ., a9 and their sum is the value of α. As each cell can take values
from 0 to v − 1 = 9 − 1 = 8 and there are 10 columns (k), the possible values of α vary from
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0 to k × (v − 1) = 10 × 8 = 80. The total sampling space is defined (as already described

above) by
(

kv
k

)
− 1.

The weight vectors are obtained by dividing the columns a0, . . ., a9 between the
value α of each row. The sampling provided by this OA is concentrated in central values,
9 occurrences for α ∈ {37, 38, 39, 40, 41, 42, 43, 44}, 1 occurrence for α ∈ {0, 9, 18, 27, 36,
45, 54, 63, 72}, and the rest of the 65 α values are not sampled (80% (65/81) of unsampled
α values).

From the above, it can be inferred, given the poor sampling obtained, that the use
of OAs as a sampling mechanism of possible objective weight vectors does not represent
a good alternative due to their sampling properties and because the size of the OA for
more than 40 objectives and granularities of the order of 40 or more would demand a huge
population size. A final problem that can occur with OAs is best understood by reviewing,
for example, rows 80 and 81 of the OA presented in Table 3. These rows are {7, 7, 7, 7, 7, 7,
7, 7, 7, 0} and {8, 8, 8, 8, 8, 8, 8, 8, 8, 0} that, when divided by their corresponding α values,
generate the same weight vector {0.11, 0.11, 0.11, 0.11, 0.11, 0.11, 0.11, 0.11, 0.11, 0}. This
same situation occurs with other rows, for example, rows 2, 3, 4, and 5. These examples
show that several lines sample the same weight vector, which is not desirable in algorithms
based on MOEA/D.

3.2. Covering Arrays

A covering array CA (N; t, k, v) is a matrix with N rows and k columns, where each
cell has one of v possible symbols such that every N × t submatrix contains as a row each
t-tuple over the v symbols at least once [50]. The covering array number CAN (t, k, v)
defines the minimum value of N such that a CA (N; t, k, v) exists. CAs have been used
successfully in different areas, including experiment design and hardware and software
testing [55].

CAs generally can be seen as a sampling mechanism in several contexts [56–60]. In
this paper, we use CAs to sample solutions of multiple linear Diophantine equations with
unit coefficients, where each row of the CA is used to construct a solution of an LDEU.
Like OAs, each row in a CA is a possible solution of a corresponding LDEU. The LDEU
associated with a row of a CA with k columns and alphabet v is: a0 + . . . + ak−1 = α, where
the value of α is obtained as the summation of the elements in a row of the CA. Its values
are thus described by α ∈ {0, . . . , k ∗ (v− 1)} (the zero value corresponds to a row with all
cells of the row equal to zero, and k ∗ (v− 1) corresponds to a row with all cell values equal
to v − 1).

Given this, the total number of possible solutions of all the LDEUs potentially sampled
in a CA grows exponentially according to the values of k (the number of columns in a
CA that corresponds to the number of objectives in many-objective optimization) and the
value of v (the alphabet v at the end determines the set of possible α values and transitively
will define the granularity of weight assignment). Note that the cardinality of the space

of weights is:
(

kv
k

)
− 1. Nevertheless, the number of solutions sampled by a CA is the

number of rows. This number is bounded asymptotically by the expression that defines the
covering array number (CAN). In [61–63] the CAN value corresponds to the Stein–Lovász–
Johnson (SLJ) bound. Let t, k, and v be integers with (k ≥ t ≥ 2)2(v ≥ 2). Then, as k→ ∞

defined by CAN(t, k, v) ≤ log ( k
t )+t log(v)

log( vt
vt−1

)
. In this sense, the number of solutions sampled by

the rows of a CA is much smaller than the number of possible solutions that correspond to
all the LDEUs sampled. For instance, for k = 10, v = 5, and t = 2, a possible CA will have 36

rows and the total number of LDEUs will be
(

kv
k

)
− 1 =

(
50
5

)
− 1 = 2, 118, 759.
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Table 4 shows the contents of CA (36; 2, 10, 5) and, in the 11th column (the last one),
the value of α (summation of all the elements in each row of the CA). It is shown that
13 ≤ α ≤ 30, with 17 different values of α. The values of α that are not sampled are 24, so the
proportion of non-sampled values is 58% (24/41) because the total number of classes of α is
1 + k (v − 1) = 41. The proportion of non-sampled values is lower than OAs and has fewer
constraints or problems when defining weight vectors in MOEA/D-based algorithms.

Table 4. CA (36; 2, 10, 5).

ao a1 a2 a3 a4 a5 a6 a7 a8 a9 α ao a1 a2 a3 a4 a5 a6 a7 a8 a9 α

1 4 0 0 2 0 4 1 0 0 2 13 19 3 0 2 1 2 3 2 1 3 4 21

2 1 0 1 3 2 2 0 3 0 2 14 20 1 0 2 2 4 2 3 4 2 1 21

3 2 1 1 0 0 2 3 1 2 3 15 21 3 4 4 1 3 4 0 1 0 1 21

4 0 0 4 2 1 0 4 1 1 3 16 22 2 3 2 3 0 4 2 2 0 3 21

5 3 3 4 0 2 2 1 0 1 0 16 23 1 1 4 2 0 3 0 2 4 4 21

6 1 4 2 1 0 0 1 4 3 0 16 24 1 2 3 4 1 2 2 0 4 3 22

7 0 2 3 3 0 3 1 2 1 1 16 25 3 1 3 4 4 0 3 2 0 2 22

8 2 2 0 3 3 0 0 0 2 4 16 26 2 0 3 4 3 4 1 1 4 0 22

9 0 2 2 1 2 1 3 0 4 2 17 27 1 4 0 0 3 4 3 3 1 4 23

10 2 1 0 4 1 1 4 0 3 1 17 28 4 4 0 3 1 2 1 2 2 4 23

11 0 1 0 4 2 4 2 2 2 0 17 29 2 4 4 2 2 1 2 4 1 2 24

12 2 2 2 0 1 3 4 3 0 0 17 30 0 3 3 2 3 2 2 3 3 3 24

13 1 3 0 1 1 3 3 1 2 2 17 31 4 1 2 4 3 3 0 4 1 3 25

14 1 0 1 0 3 1 4 2 3 2 17 32 4 2 4 3 4 1 3 1 3 0 25

15 2 1 1 1 4 1 1 3 1 3 18 33 0 4 1 4 4 3 2 0 4 4 26

16 0 3 3 0 4 1 0 4 0 4 19 34 4 4 3 1 2 2 4 2 2 3 27

17 4 3 1 0 2 0 2 3 4 1 20 35 3 3 4 4 0 1 4 3 2 4 28

18 3 2 1 2 1 4 0 4 3 0 20 36 3 1 0 3 4 4 4 4 4 3 30

3.3. Augmented Covering Arrays

An augmented covering array (ACA) is denoted by ACA (N; t, k, v), where the
meaning of the parameters N, t, k, and v is the same as in OAs or CAs. An ACA is
constructed progressively using an ACA with an alphabet lower than v and adding the
necessary rows to satisfy the covering property. For instance, an ACA (M; t, k, 3) can be
constructed by adding the necessary rows to an ACA (M; t, k, 2). Empirically we have found
that it is desirable that the alphabets of a sequence of ACAs (one of these ACAs is described
by ACAi(Ni; t, k, vi), i = 0, 1, . . .) may follow the expression: vi = 2i + 1. The ACAs that will
be used are then: ACA0 (N0; t, k, 2), ACA1 (N1; t, k, 3), ACA2 (N1; t, k, 5), ACA3 (N1; t, k, 9),
ACA4 (N1; t, k, 17), ACA5 (N1; t, k, 33), . . . ACAi (Ni; t, k,2i+1). This construction process
generates an ACA with more rows than a CA with a similar configuration (values of t, k,
and v). However, it adds an interweaving in the sampling important for defining weight
vectors and extends the range of sampled alpha values.

Table 5 shows the ACA (42; 2; 10; 5) constructed using ACA (6; 2; 10; 2) and ACA
(16; 2; 10; 3). Note that the α values are distributed in a range 3 ≤ α ≤ 28 with 15 different
values of α. In this case, the values of α that are not sampled are 26, then the proportion of
non-sampled values is 63% (26/41). This ACA has a range of α values between 3 and 28
while the CA in the previous section had a smaller α range, only between 13 and 30, even
though it samples two additional α values.
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Table 5. ACA (42; 2, 10, 5).

ao a1 a2 a3 a4 a5 a6 a7 a8 a9 α ao a1 a2 a3 a4 a5 a6 a7 a8 a9 α

1 0 1 0 0 0 0 0 0 1 1 3 22 4 0 1 4 4 0 3 4 1 1 22

2 1 0 0 1 0 0 0 1 0 0 3 23 1 0 4 4 1 2 0 3 4 3 22

3 0 0 1 0 0 1 1 1 1 0 5 24 1 3 4 2 4 3 1 0 0 4 22

4 1 1 1 0 1 0 1 0 0 0 5 25 2 3 4 1 3 0 4 3 1 1 22

5 0 1 0 1 1 1 1 1 0 1 7 26 3 4 2 1 1 3 3 0 4 1 22

6 1 0 1 1 1 1 0 0 1 1 7 27 4 2 2 4 3 4 1 0 0 3 23

7 0 2 1 2 1 1 2 2 0 1 12 28 2 4 3 1 4 4 0 1 1 3 23

8 0 0 2 0 2 2 0 2 2 2 12 29 2 2 3 3 0 0 1 4 4 4 23

9 2 1 0 2 0 2 1 2 0 2 12 30 4 4 3 0 2 3 3 3 2 0 24

10 1 2 2 1 0 1 2 0 2 2 13 31 4 3 0 3 2 1 3 2 3 3 24

11 2 0 2 1 1 2 2 1 1 1 13 32 1 4 3 2 3 2 3 4 0 2 24

12 2 2 0 0 2 1 2 1 2 1 13 33 2 2 4 4 0 3 3 1 3 2 24

13 1 1 2 1 2 0 2 2 2 0 13 34 4 3 2 1 1 2 0 4 3 4 24

14 1 0 1 2 1 2 1 1 2 2 13 35 0 3 3 4 3 4 2 2 3 0 24

15 2 2 2 2 2 2 1 0 0 0 13 36 3 2 2 3 4 2 4 3 0 2 25

16 2 2 1 2 2 0 0 2 1 2 14 37 4 3 1 2 0 4 4 1 4 2 25

17 3 0 1 3 3 3 0 1 1 4 19 38 3 3 4 0 2 4 4 4 2 0 26

18 3 4 1 2 0 0 1 3 3 3 20 39 0 4 4 3 4 3 2 2 4 0 26

19 1 0 3 3 1 4 4 0 3 1 20 40 3 4 0 4 3 1 4 2 2 4 27

20 0 1 0 0 4 3 4 4 3 3 22 41 4 1 4 3 4 1 2 3 2 3 27

21 0 1 0 0 3 4 3 3 4 4 22 42 3 1 3 4 2 1 2 4 4 4 28

3.4. Comparison between Orthogonal Arrays, Covering Arrays, and Augmented Covering Arrays
for Weight Vector Definition

According to the information presented in the three previous subsections, it can be
stated that the OAs are not a good alternative for sampling for the following reasons:
(a) they cannot be constructed for all the desired combinations of v, k, and t; (b) they
concentrate the sampling in the middle part of the possible values of 0 ≤ α ≤ k (v − 1);
(c) the proportion of unsampled values is very high; (d) the size of an OA depends on
vˆt, where v is the smallest prime power satisfying v + 1 ≥ k, and this value of N quickly
exceeds the reasonable population size for an algorithm based on MOEA/D; and (e) in
the process of transforming the domain from integer to real, several rows of the same
OA can obtain the same weight vector, which is not desired in the context of defining the
weight vectors.

CAs represent a better alternative to OAs for the following reasons: (a) they can be
constructed for any combination of values of the parameters v, k, and t; (b) they perform a
reasonably distributed sampling in the range of possible α values; (c) the proportions of
unsampled α values are lower; and (d) the size of the CA grows logarithmically with the
number of columns/objectives.

ACAs are an even better alternative since (a) like CAs they can be built for any
combination of values k, v, and t; (b) the ranges of sampled α values are broader than
in OAs and CAs; (c) the proportions of unsampled α values are lower than in OAs and
similar to that of CAs; and (d) the size of the ACA grows similar to how a CA does, that is,
logarithmically with the number of columns/objectives.

In summary, using OAs for weight vector definition is not recommended, and CAs
and ACAs possess attractive characteristics. In light of this, we conducted an exploratory

136



Mathematics 2024, 12, 1680

experiment using MOEA/D to compare CAs (MOEA/D-CAS) and ACAs (MOEA/D-
ACAS) for defining weight vectors over the same problems (DTLZ and WFG test suites)
and the experimental configuration is presented later in Section 5 with 10 to 100 objectives in
intervals of 10, i.e., 10, 20, . . ., 100, and CAs and ACs of strength 2 and alphabet 9. Inverted
generational distance (IGD) results were tabulated, and the non-parametric Friedman
test was applied to them, obtaining the results presented in Table 6. In this table, the
ACAs obtain the first position (rank) in all compared objectives, and the test result is
statistically significant (95%). With these preliminary results, it was decided to focus the
experimentation on ACAs as the best option of the three combinatorial designs reviewed.

Table 6. Friedman rank for IGD results with strength (t = 2) and alphabet (v = 9).

Objectives
(k) MOEA/D-ACAS MOEA/D-CAS p-Value Significative

ACAs
Population

Size (N)

CAs
Population

Size (N)

Population
Size

∆

10 (1) 1.06 (2) 1.94 0.000465 True 136 81 55
20 (1) 1.25 (2) 1.75 0.045500 True 174 132 42
30 (1) 1.00 (2) 2.00 0.000063 True 197 148 49
40 (1) 1.13 (2) 1.88 0.002700 True 215 153 62
50 (1) 1.00 (2) 2.00 0.000063 True 232 153 79
60 (1) 1.06 (2) 1.94 0.000465 True 245 153 92
70 (1) 1.06 (2) 1.94 0.000465 True 256 153 103
80 (1) 1.06 (2) 1.94 0.000465 True 266 153 113
90 (1) 1.06 (2) 1.94 0.000465 True 277 153 124
100 (1) 1.06 (2) 1.94 0.000465 True 288 160 128

Although it is an expected fact (discussed in the previous section), it should be noted
that in all the experiments (10 to 100 objectives), the population size with CAs is smaller
than that of ACAs (a difference between 42 and 128 solutions), which puts the CAs at a
disadvantage because they have fewer weight vectors to guide the approach to the Pareto
front, even though the two algorithms carry out the same number of objective evaluations
and therefore have a similar average run time.

Figure 1 below shows a visual comparison of weight vectors created by an orthogonal
array, a covering array, and an augmented covering array with 3 objectives, strength 2,
and an alphabet of 7. Analyzing these graphs is challenging, but the CA can be seen to
sample the center of the objective space in more detail than the OA. The OA leaves some
regions unsampled (near the vertices of the triangle), and the ACA uses more weight
vectors (13 additional vectors) and samples more effectively a more considerable number
of regions (borders, vertices, and center zone) of the objective space.
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4. Weight Vector Definition Based on Augmented Covering Arrays
4.1. Main Hypothesis

The main hypothesis that we wish to test is that using an ACA with N rows, low
strength values (t = {2, 3}), and low alphabet values (v = {9, 17}), the MOEA/D-DE algorithm
obtains a better Pareto front than that obtained using the classical method of MOEA/D-DE
(N uniformly distributed weight vectors).

4.2. The Proposed Algorithm

Algorithm 1 presents the multi-objective evolutionary algorithm proposal based on
decomposition with differential evolution and augmented covering arrays (MOEA/D-
DE-ACA). This proposal focuses on modifying (Step 1.1) the initialization of the random
sampling of the weight vectors in MOEA/D-DE, incorporating an ACA to obtain a fixed
size and better-distributed weight vector sample. The rest of the algorithm is equal to that
originally proposed. The proposal maintains the genetic operators of the MOEA/D-DE
algorithm [13]. The following explains in detail each component added in MOEA/D-DE-
ACA and the problems solved by incorporating this method.
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4.3. Fundamentals of the Proposal

The MOEA/D and MOEA/D-DE algorithms, in their initialization step, generate
a random sampling as uniformly distributed as possible in the objective space for the
definition of the weight vectors of the solutions in the population. This implies generating
boundary weights (1, 0, 0, . . ., 0), (0, 1, 0, . . ., 0) . . . (0, 0, 0, . . ., 1) and then generating a
large amount E (E >> N, where N corresponds to the population size) of candidate weight
vectors. An iterative process is then conducted, selecting candidate weight vectors furthest
from the previously selected list and including them until the N required weight vectors
are completed, a task that is computationally costly when the value of E grows, with a
complexity of O (N × E). This initialization method allows the user in these algorithms to
maintain control over the growth in the number of weight vectors used for sampling the
objective space through parameter N.

The quality of that sampling is affected by the exponential growth of weight vectors
that must be considered in the objective search space, as explained in the previous section.

With the use of an ACA, the distribution of the weight vectors allows a better evalua-
tion of the interaction between the objectives. In addition, the ACA’s N value (number of
rows) allows control of the size of the population. The ACA’s N value is defined by the
number of objectives, m, and its growth is controlled by the value of alphabet v and strength
t. In addition, the ACAs were constructed previously and can be used as often as required,
thereby reducing the execution time of the optimization algorithm for many purposes.

In Step 1.1 of Algorithm 1, each row of the ACA (N; t, k = m, v) is taken and converted
from its integer domain to the real domain of the weight vectors. This conversion is
conducted based on the alpha value, which automatically allows obtaining a normalized
weight vector. This conversion is achieved by adding all values of the row and dividing
each value (cell) of the row by that sum, a process repeated for the N rows of the ACA. In
this way, N-normalized weight vectors are obtained.

Algorithm 1. MOEA/D-DE-ACA.
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MOEA/D-DE-ACA 

Input: 

• Problem: Minimize 𝐹(�⃗�) =  Minimize (𝑓1(�⃗�), 𝑓2(�⃗�), … , 𝑓𝑚(�⃗�))
𝑇

, subject to �⃗� ∈ Ω 

where Ω is the decision (variable or search) space, 𝐹: Ω → R𝑚  consists of m real-

value objective functions, and R𝑚 is called the objective space. The attainable objec-

tive set is defined as the set {𝐹(𝑥)|�⃗� ϵ Ω}. If �⃗� ϵ R𝑑, all the objectives are continuous 

and described by {�⃗� ϵR𝑑|h𝑗(�⃗�) ≤ 0, j = 1,… ,m} and, where h𝑗 are continuous func-

tions, the problem is called a continuous MOP. 

• Nb: Number of weight vectors in the neighborhood of each weight vector. 

• δ: Probability that parents’ solutions are selected from the neighborhood. 

• 𝜂𝑟: Maximum number of solutions replaced in each generation. 

• ACA: Augmented Covering Array with N rows, strength t, m objectives (or k columns) 

and v alphabet. ACA (N; t, k = m, v). 

• A stopping criterion. 

Output: 

• Approach to the Pareto set (PS): {�⃗�1, … , �⃗�𝑁}. 

• Approach to the PF: {�⃗�(�⃗�1), … , �⃗�(�⃗�𝑁)}. 

 

Step 1 Initialization 
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Where 𝑑(𝜆𝑖 , 𝜆𝑗) = √∑ (𝜆𝑖,𝑘 − 𝜆𝑗,𝑘)
2𝑚

𝑘=1 . 

𝐷𝑖 = {𝑑1, … , 𝑑𝑗 , … , 𝑑𝑁} =  {𝑑(𝜆1, 𝜆1), … , 𝑑(𝜆1, 𝜆𝑗), … , 𝑑(𝜆1, 𝜆𝑁)}. 

𝑆_𝐷𝑖= 𝑠𝑜𝑟𝑡(𝐷𝑖), where 𝑠𝑜𝑟𝑡(𝐷𝑖) sorts the elements in 𝐷𝑖 in ascending order. 
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Step 1.3  Generate an initial population 𝑝 = (�⃗�1, … , �⃗�𝑁) randomly on Ω and for each 

𝑖 = 1,… ,𝑁  calculate 𝐹(�⃗�𝑖) . Also calculate and store for each �⃗�𝑖  the 

individual objectives of 𝐹(�⃗�𝑖), i.e., 𝑓1(�⃗�𝑖), 𝑓2(�⃗�𝑖), … , 𝑓𝑚(�⃗�𝑖). 

This means that 𝑃 = (

𝑥1,1 𝑥1,2
𝑥2,1 𝑥2,2

… 𝑥1,𝑑
… 𝑥2,𝑑

⋮ ⋮
𝑥𝑁,1 𝑥𝑁,2

⋱ ⋮
… 𝑥𝑁,𝑑

) 

Where �⃗�𝑖= (𝑥𝑖,1, … , 𝑥𝑖,𝑗 , … , 𝑥𝑖,𝑑) and each 𝑥𝑖,𝑗 value is randomly generated in 

the range of the problem and 𝑑 is the dimension of the decision (search) 

space. 

(

𝑓1(�⃗�1) 𝑓2(�⃗�1)

𝑓1(�⃗�2) 𝑓2(�⃗�2)

… 𝑓𝑚(�⃗�1)

… 𝑓𝑚(�⃗�2)
⋮ ⋮

𝑓1(�⃗�𝑁) 𝑓2(�⃗�𝑁)
⋱ ⋮
… 𝑓𝑚(�⃗�𝑁)

) =
∀𝑗

1 ≤ 𝑗 ≤ 𝑚
 

∀𝑖
1 ≤ 𝑖 ≤ 𝑁

 Compute 𝑓𝑗(�⃗�𝑖). 

(

𝐹(�⃗�1)

𝐹(�⃗�2)
⋮

𝐹(�⃗�𝑁)

) =
∀𝑖

1 ≤ 𝑖 ≤ 𝑁
 𝐶𝑜𝑚𝑝𝑢𝑡𝑒 𝐹(�⃗�𝑖), where 𝐹(�⃗�𝑖) =  ∑ 𝜆𝑖,𝑗 ∗ 𝑓𝑗(�⃗�𝑖)

𝑚
𝑗=1 . 

Step 1.4  Initialize 𝑧 = (𝑧1, … . 𝑧𝑚)
𝑇 where   𝑧𝑗 =  𝑚𝑖𝑛1≤𝑖≤𝑁 𝑓𝑗(�⃗�𝑖). 

 

Step 2 Evolution 

For 𝑖 = 1,… ,𝑁 do, i.e., 
∀𝑖

1 ≤ 𝑖 ≤ 𝑁
 

Step 2.1 Selection of Mating/Update Range: Uniformly generate a random number 

from [0, 1]. Then set 𝑄 = {
𝐵(𝑖) 𝑖𝑓 𝑟𝑎𝑛𝑑 <  𝜹,𝑤ℎ𝑒𝑟𝑒 𝑟𝑎𝑛𝑑: [0,1] → ℝ.

⋃ 𝑖𝑁
𝑖=1 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

} 
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�⃗� its individual objectives, i.e., 𝑓1(�⃗�), 𝑓2(�⃗�), … , 𝑓𝑚(�⃗�). These two operations 

can be represented as: 

 �⃗� = 𝑟𝑒𝑝𝑎𝑖𝑟(�⃗�,  𝑝𝑚) 

 (𝑓1(�⃗�), 𝑓2(�⃗�), … , 𝑓𝑚(�⃗�)) =
∀𝑗

1 ≤ 𝑗 ≤ 𝑚
 Compute 𝑓𝑗(�⃗�). 

Step 2.4 Update of 𝑧 : For each 𝑗 = 1,… ,𝑚, 𝑖𝑓 𝑓𝑗(�⃗�) <  𝑧𝑗 ,  then set  𝑧𝑗 = 𝑓𝑗(�⃗�) . This 

step can be represented as: 

 𝑧 = (𝑧1, 𝑧2, … , 𝑧3) =
∀𝑗

1 ≤ 𝑗 ≤ 𝑚
 𝑧𝑗 = {

𝑧𝑗 𝑖𝑓 𝑧𝑗 < 𝑓𝑗(�⃗�)

𝑓𝑗(�⃗�) 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
} 

Step 2.5 Update of Solutions. 

 Set 𝑐 = 0. 

 While 𝑄 ≠ 𝜙 do 

a. If 𝑐 = 𝜂𝑟 go to Step 3. 

b. Randomly pick an index 𝑗 from 𝑄; i.e., 𝑗 = 𝑔3() where 𝑔
3
: [1, 𝑁] → ℕ. 

c. 𝐶𝑜𝑚𝑝𝑢𝑡𝑒 𝐹(�⃗�), where 𝐹(�⃗�) =  ∑ 𝜆𝑖,𝑘 ∗ |𝑓𝑘(�⃗�) − 𝑧𝑘|
𝑚
𝑘=1 . 

d. If 𝐹(�⃗�) ≤ 𝐹(�⃗�𝑗) then  

 set �⃗�𝑗 = �⃗�, 

 𝐹(�⃗�𝑗) = 𝐹(�⃗�). 

 𝑐 = 𝑐 + 1. 

e. Remove 𝑗 from 𝑄; i.e., 𝑄 = 𝑄 ∖ {𝑗}. 

 End while 

Step 3 Stopping Criterion: 

 If the stopping criterion is satisfied, then  

 Return {�⃗�1, … , �⃗�𝑁} and {𝐹(�⃗�1), … , 𝐹(�⃗�𝑁)}. 

 Otherwise go to Step 2. 

Below is an example of this conversion based on row 26 highlighted in Table 5, cor-

responding to the following values: (3, 4, 2, 1, 1, 3, 3, 0, 4, 1). In this case, the sum of the 

values in the row is 22, corresponding to the value of α. The individual values are divided 

by the sum, and the following weight vector (0.14, 0.18, 0.09, 0.05, 0.05, 0.14, 0.14, 0.00, 

0.18, 0.05) is obtained, which is also normalized as required by the rest of the algorithm. 

When starting from an ACA with more columns than the objectives of the problem, 

the remaining columns are eliminated, and the result is still a valid ACA to which the 

Below is an example of this conversion based on row 26 highlighted in Table 5,
corresponding to the following values: (3, 4, 2, 1, 1, 3, 3, 0, 4, 1). In this case, the sum of the
values in the row is 22, corresponding to the value of α. The individual values are divided
by the sum, and the following weight vector (0.14, 0.18, 0.09, 0.05, 0.05, 0.14, 0.14, 0.00, 0.18,
0.05) is obtained, which is also normalized as required by the rest of the algorithm.
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When starting from an ACA with more columns than the objectives of the problem,
the remaining columns are eliminated, and the result is still a valid ACA to which the
normalization process can be applied. Meanwhile, when any two weight vectors are
identical, the duplicates are eliminated, and the value of N is reduced to the number of
unique weight vectors.

Below is an example of this situation. Where there are two rows of an ACA with
3 columns (objectives) and an alphabet of 9, it would be possible to have the following ACA
vectors that are different in the discrete domain: (0, 2, 3) and (0, 4, 6). When calculating
the α value of each, we would obtain 5 and 10, respectively. Then, when converting from
integer domain to real domain, the result of these two vectors will be (0, 2/5, 3/5) and
(0, 2/5, 3/5), which is why one must be removed from the list of weight vectors.

The source code and resources (ACAs) required to run the proposed method and
experiments are available online at https://github.com/coboscarlos/MOEA_D_DE_ACA
(accessed on 1 March 2024). The source code is based on MOEA Framework 2.12 or higher.
The algorithm for constructing ACAs will be released after publication in an international
journal; its explanation is not part of the purpose of this paper.

5. Experimentation

In this section, we first give the main characteristics of the many-objective problems
used in evaluating and comparing the proposed algorithm (MOEA/D-DE-ACA) versus
MOEA/D-DE and NSGA-III. The metric used to make the comparison in this case, inverted
generational distance (IGD), is then described. Next, the experimental results are presented
along with an analysis of three scenarios: (1) MOEA/D-DE-ACA with alphabet v = 9 and
strength t = 2 (small population, from 136 to 288 solutions); (2) with alphabet v = 17 and
strength t = 2 (medium population, from 416 to 838 solutions); and (3) alphabet v = 9 and
strength t = 3 (large population, from 729 to 1457 solutions). These scenarios allow us to
analyze the impact of variations in alphabet and strength. In the analysis of each scenario,
the Friedman non-parametric and Holm post hoc tests are used to determine if the results
have an appropriate level of statistical significance. All experiments were repeated 31 times
to ensure that mean (or average) IGD values comply with the central limit theorem and
genuinely represent the mean behavior of each algorithm. A comparison with another
eight state-of-the-art algorithms is then made using the same problems (DTLZ and WFG)
with 10–15 objectives. Finally, a comparison with another six state-of-the-art algorithms is
made over constrained problems with 10–15 objectives.

5.1. Experimental Environment
5.1.1. The Many-Objective Problems Used for Evaluation and Comparison

Two test suites available in MOEA Framework 2.12 were used in this study, namely:
Deb–Thiele–Laumanns–Zitzler (DTLZ) and Walking Fish Group (WFG) [64]. For each
test problem, the number of objectives (m) varies from 10 to 100 in increments of 10,
i.e., m ∈ {10, 20, 30, . . ., 100}. All problems can be scaled to any number of objectives and
decision variables. A summary of the main characteristics of these problems is presented
in Table 7.

In the DTLZ test suite, DTLZ1 presents a linear and regular Pareto front (PF), making it
relatively straightforward to solve. DTLZ3 and DTLZ7 exhibit numerous local PFs, adding
complexity to the optimization task. DTLZ2 features a spherical PF, making it ideal for
assessing the convergence of MOEAs to the global PF. DTLZ4 showcases a non-uniform
distribution along the PF, providing a means to evaluate MOEAs’ capacity to maintain a
well-balanced distribution of solutions. A degenerate hypersurface characterizes DTLZ5’s
PF. DTLZ6 contains disjointed Pareto-optimal regions, making it suitable for evaluating
MOEAs’ ability to sustain subpopulations across disconnected segments of the objective
space. The k1 parameter for these problems was set to 5 for the DTLZ1, DTLZ5, and DTLZ6
problems, 10 for the DTLZ2, DTLZ3, and DTLZ4 problems, and 20 for the DTLZ7 problem,
in which the number of variables is D = m + k1 − 1.
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Table 7. Properties of test problems using M objectives where M = {10, 20, 30, . . ., 100}.

Problem Shape of PF [65] Multi-Modal
[64] Bias [64] Disconnected

[64,65]
Separable

[64]
Deceptive

[64,65] Scaled [65]
No. of

Variables (D =
m + k1 − 1)

Generations

DTLZ1 Linear, Regular
(Easy) Yes [65] No No Yes [66] No m + 4 (k1 = 5) 600

DTLZ2 Concave No No No Yes [66] No m + 9 (k1 = 10) 500
DTLZ3 Concave [67] Yes [65] No No Yes [66] Yes m + 9 (k1 = 10) 800
DTLZ4 Concave [67] No Yes No Yes [66] No m + 9 (k1 = 10) 500

DTLZ5
Concave,

Degenerate,
Irregular

No No Unknown Unknown No m + 4 (k1 = 5) 500

DTLZ6
Concave,

Degenerate,
Irregular

No Yes Unknown Unknown No m + 4 (k1 = 5) 500

DTLZ7 Mixed Yes Yes [67] Yes [65] No Yes Yes m + 19 (k1 = 20) 500

WFG1
Sharp Tails,

Irregular,
Convex, Mixed

No
Yes

(polynomial,
flat) [68]

No Yes No Yes [69] m + 9 (l = 10) 600

WFG2 Convex [68,69] Yes (F1:M-1
no) [68] No Yes No No Yes [69] m + 9 (l = 10) 500

WFG3 Linear,
Degenerate No No No No No Yes m + 9 (l = 10) 500

WFG4 Concave,
Regular Yes (highly) No No Yes [67] No Yes m + 9 (l = 10) 500

WFG5 Concave,
Regular No No No Yes Yes Yes m + 9 (l = 10) 500

WFG6 Concave,
Regular No No No No No Yes m + 9 (l = 10) 500

WFG7 Concave,
Regular No

Yes
(parameter
dependent)

[68]

No Yes No Yes m + 9 (l = 10) 500

WFG8 Concave,
Regular No

Yes
(parameter
dependent)

[68]

No No No Yes m + 9 (l = 10) 500

WFG9 Concave,
Regular

Yes (highly
difficult)

Yes
(parameter
dependent)

[68]

No No Yes Yes m + 9 (l = 10) 500

In the WFG test suite, the WFG1 problem is separable and uni-modal, like WFG7, but
they have a different PF shape. The PF shapes on the WFG1, WFG2, and WFG3 problems
are complicated, discontinuous, and partially degenerate. Five problems (WFG2, WFG3,
WFG6, WFG8, and WFG9) are not separable. WFG7, WFG8, and WFG9 are connected and
biased, WFG7 is not separable, and WFG9 presents a challenge due to its high modality.
WFG4, like WFG9, also involves multi-modality but is not biased. The deceptiveness of
WFG5 is more difficult than that of WFG9. The k1 parameter for these problems was set to
k1 = m − 1, and the distance parameter l was set to l = 10, where D = k1 + l.

5.1.2. Comparison Metrics

Inverted generational distance is a metric designed to evaluate the quality of a set
of solutions obtained in terms of convergence and diversity [70,71]. IGD is defined as
follows [72]: IGD(AP) = 1

|P∗ |∑z∗∈P∗ dist(z∗ ∈ AP) where AP is an approximation set to
the Pareto front of the problem (solutions found by the algorithm); P∗ is a set of reference
points (non-dominated and evenly distributed) along the Pareto front; dist(z∗ ∈ AP) is from
the Euclidean distance between z∗ and its nearest neighbor in AP; and |P ∗

∣∣ is the cardinality
of P∗. With this definition, a lower IGD value indicates better algorithm performance, i.e.,
its solutions are closer to the PF.

IGD has two main advantages. The first is its computational efficiency. Secondly, it
can measure convergence and diversity simultaneously whenever |P ∗

∣∣ is large enough to
cover the Pareto front easily. The number of reference points |P ∗

∣∣ used in each experiment
is shown further in the final column of Table 11. Values range from 3356 to 39,190.

In addition to the effectiveness measure (IGD) used to evaluate and compare the algo-
rithms, their efficiency was also evaluated based on the computation time (execution time
in seconds) required by each algorithm to run each experiment in a controlled environment
(using the same hardware and software resources) [71].
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5.1.3. Parameter Setting

Parameter settings for MOEA/D-DE and NSGA-III were adopted as recommended in
the literature and summarized in Table 8, where pm and pc are the mutation and crossover
probabilities, ηm and ηc are the distribution indexes of the crossover and mutation op-
erators, respectively, CR is the crossover probability, F is the differential weight, δ is the
probability of selecting parent solutions from the neighborhood, Nb is the neighborhood
size of weight vectors, and nr is the maximum number of solutions replaced by each
new solution.

Table 8. Parameter settings for the compared algorithms.

Algorithm Parameter Settings

NSGA-III pm = 1/n, pc = 1.0, ηm = 20, ηc = 30
MOEA/D-DE pm = 1/n, ηm = 20, CR = 1, F = 0.5, δ = 0.9, Nb = 20, nr = 2

MOEA/D-DE-ACA pm = 1/n, ηm = 20, CR = 1, F = 0.5, δ = 0.9, Nb = 20, nr = 2

The population size N was defined for all algorithms (MOEA/D-DE-ACA, MOEA/D-
DE, and NSGA-III) based on the size of the selected ACA for the specific problem. The
maximum number of function evaluations is the stopping criterion for all algorithms and
results from multiplying the number of generations parameter (last column in Table 7) by
the population size parameter.

5.2. Experiments with Strength t = 2 and Alphabet v = 9

Below, Tables 9 and 10 present the mean IGD results of the 31 repetitions for the three
algorithms (MOEA/D-DE-ACA, MOEA/D-DE, and NSGA-III) using 10, 20, . . ., up to
100 objectives in the seven DTLZ problems and nine WFG problems, respectively. Cells
with bold text correspond to the best result in each experiment, and cells are highlighted
with a gray background whenever the winner was MOEA/D-DE-ACA. Each cell shows
the position (ranking) of the algorithm in parentheses and the mean IGD value achieved by
the algorithm with the number of objectives established in the row on the problem defined
in the column.

In Table 9, the following can be observed: (1) regardless of the number of objectives
(10 to 100), MOEA/D-DE-ACA obtains better mean IGD values in problems DTLZ1,
DTLZ2, and DTLZ3, which are linear (the first) and concave (the following two), do not
have biases, do not have discontinuities, and are separable (the exception being with
40 objectives in DTLZ1 where it is surpassed by MOEA/D-DE in 0.0039); (2) in the DTLZ7
problem, MOEA/D-DE-ACA obtains the best IGD results from 10 to 70 objectives, which
is a problem with a mixed, multi-modal Pareto front, disconnected, non-separable, and
deceptive; (3) MOEA/D-DE-ACA obtains the best IGD for the DTLZ6 problem in 10 and
from 50 up to 100 objectives and for the DTLZ5 problem from 70 to 100 objectives, problems
that have a concave, degenerate, and irregular Pareto front, are not multi-modal, and are
non-deceptive. In the remaining objectives (10 to 60 in DTLZ5 and 20 to 40 in DTLZ6), it
occupies second place, being surpassed by MOEA/D-DE (between 0.00021 and 0.00099);
(4) in problem DTLZ4, MOEA/D-DE-ACA only wins with 10 and 30 objectives. In the
other objectives, it is only surpassed by MOEA/D-DE, and the differences are less than
thirteen tenths. The DTLZ4 problem has similar characteristics to DTLZ2 but has bias;
(5) the NSGA-III algorithm, in general, is last in all rankings, and the distances of the mean
IGD values that it obtains from those obtained by the other two algorithms become greater
as the number of objectives increases, which shows a critical weakness for the use of this
algorithm with DTLZ problems with a high number of objectives and a small population
size; and (6) MOEA/D-DE obtains first position in DTLZ6 between 20 and 40 objectives,
in DTLZ5 between 10 and 60 objectives, and in DTLZ4 between 40 and 100 objectives,
winning in DTLZ5 and DTLZ6 by narrow margins (thousandths) but in DTLZ4 by more.
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Table 9. Mean IGD results in DTLZ problems using ACAs with strength 2 and alphabet 9.

Obj Algorithm DTLZ1 DTLZ2 DTLZ3 DTLZ4 DTLZ5 DTLZ6 DTLZ7

10
MOEA/D-DE-ACA (1) 0.1457 (1) 0.3194 (1) 0.1888 (1) 0.2919 (2) 0.1505 (1) 0.1044 (1) 0.6671
MOEA/D-DE (2) 0.1513 (2) 0.3582 (2) 0.2033 (3) 0.3163 (1) 0.1481 (2) 0.1046 (2) 0.7505
NSGA-III (3) 0.1696 (3) 0.3746 (3) 0.2989 (2) 0.3024 (3) 0.2172 (3) 0.5621 (3) 1.1480

20
MOEA/D-DE-ACA (1) 0.1232 (1) 0.4372 (1) 0.1411 (2) 0.3697 (2) 0.2045 (2) 0.1279 (1) 1.1480
MOEA/D-DE (2) 0.1364 (3) 0.4820 (2) 0.1471 (3) 0.4221 (1) 0.2024 (1) 0.1179 (2) 1.5285
NSGA-III (3) 0.1612 (2) 0.4458 (3) 0.4070 (1) 0.3295 (3) 0.2341 (3) 0.4297 (3) 1.7975

30
MOEA/D-DE-ACA (1) 0.1245 (1) 0.4905 (1) 0.1647 (1) 0.4614 (2) 0.2010 (2) 0.1049 (1) 1.7280
MOEA/D-DE (2) 0.1423 (2) 0.5359 (2) 0.1673 (2) 0.4825 (1) 0.1939 (1) 0.0992 (2) 2.0447
NSGA-III (3) 0.2119 (3) 0.6693 (3) 0.3213 (3) 0.4966 (3) 0.2951 (3) 0.4388 (3) 2.2949

40
MOEA/D-DE-ACA (2) 0.1039 (1) 0.5235 (1) 0.1571 (2) 0.5359 (2) 0.1618 (2) 0.0912 (1) 2.2291
MOEA/D-DE (1) 0.1000 (2) 0.5718 (2) 0.1673 (1) 0.5092 (1) 0.1590 (1) 0.0906 (2) 2.5549
NSGA-III (3) 0.1758 (3) 0.7721 (3) 0.3086 (3) 0.5871 (3) 0.2965 (3) 0.4688 (3) 2.6981

50
MOEA/D-DE-ACA (1) 0.0663 (1) 0.5547 (1) 0.1250 (2) 0.6354 (2) 0.1869 (1) 0.0887 (1) 2.6861
MOEA/D-DE (2) 0.0698 (2) 0.6165 (2) 0.1337 (1) 0.5506 (1) 0.1846 (2) 0.0903 (2) 2.9569
NSGA-III (3) 0.1169 (3) 0.8753 (3) 0.3301 (3) 0.6740 (3) 0.2929 (3) 0.4995 (3) 3.0068

60
MOEA/D-DE-ACA (1) 0.0615 (1) 0.5812 (1) 0.1226 (2) 0.6891 (2) 0.1816 (1) 0.0722 (1) 3.0971
MOEA/D-DE (2) 0.0746 (2) 0.6349 (2) 0.1298 (1) 0.5763 (1) 0.1800 (2) 0.0759 (2) 3.2730
NSGA-III (3) 0.1325 (3) 0.9522 (3) 0.4146 (3) 0.7245 (3) 0.2877 (3) 0.5283 (3) 3.3230

70
MOEA/D-DE-ACA (1) 0.0835 (1) 0.6065 (1) 0.1230 (2) 0.7266 (1) 0.1807 (1) 0.0670 (1) 3.4231
MOEA/D-DE (2) 0.0926 (2) 0.6516 (2) 0.1285 (1) 0.6016 (2) 0.1809 (2) 0.0716 (3) 3.6111
NSGA-III (3) 0.1425 (3) 0.9849 (3) 0.5539 (3) 0.7859 (3) 0.2934 (3) 0.6775 (2) 3.5931

80
MOEA/D-DE-ACA (1) 0.0906 (1) 0.6148 (1) 0.1329 (2) 0.7491 (1) 0.1861 (1) 0.0626 (2) 3.7727
MOEA/D-DE (2) 0.0947 (2) 0.6498 (2) 0.1458 (1) 0.6209 (2) 0.1891 (2) 0.0725 (3) 3.9323
NSGA-III (3) 0.1614 (3) 0.9839 (3) 0.6074 (3) 0.8184 (3) 0.2952 (3) 1.1399 (1) 3.7696

90
MOEA/D-DE-ACA (1) 0.0914 (1) 0.6224 (1) 0.1444 (2) 0.7710 (1) 0.1981 (1) 0.0824 (2) 4.1787
MOEA/D-DE (2) 0.1018 (2) 0.6635 (2) 0.1596 (1) 0.6381 (2) 0.2027 (2) 0.0977 (3) 4.2406
NSGA-III (3) 0.1750 (3) 1.0005 (3) 0.7430 (3) 0.8398 (3) 0.3099 (3) 4.2159 (1) 4.0912

100
MOEA/D-DE-ACA (1) 0.1063 (1) 0.6304 (1) 0.1342 (2) 0.7967 (1) 0.1719 (1) 0.0824 (3) 4.5781
MOEA/D-DE (2) 0.1160 (2) 0.6758 (2) 0.1454 (1) 0.6692 (2) 0.1757 (2) 0.0977 (2) 4.5343
NSGA-III (3) 0.1994 (3) 1.0274 (3) 0.6672 (3) 0.8838 (3) 0.3037 (3) 4.2159 (1) 4.2818

Table 10. Mean IGD results in WFG problems using ACAs with strength 2 and alphabet 9.

Obj Algorithm WFG1 WFG2 WFG3 WFG4 WFG5 WFG6 WFG7 WFG8 WFG9

10
MOEA/D-DE-ACA (2) 0.1089 (1) 0.1059 (1) 0.1792 (3) 0.4017 (3) 0.3018 (3) 0.4681 (3) 0.3453 (3) 0.4983 (3) 0.3782
MOEA/D-DE (1) 0.0861 (2) 0.1127 (3) 0.2074 (2) 0.3719 (2) 0.2834 (2) 0.4176 (2) 0.3440 (2) 0.4603 (2) 0.3460
NSGA-III (3) 0.1779 (3) 0.1676 (2) 0.1836 (1) 0.3441 (1) 0.2755 (1) 0.3651 (1) 0.3213 (1) 0.3808 (1) 0.2964

20
MOEA/D-DE-ACA (2) 3.3927 (1) 0.1268 (3) 0.2264 (3) 0.4800 (2) 0.3958 (2) 0.5574 (2) 0.4782 (2) 0.5703 (2) 0.4503
MOEA/D-DE (3) 4.2079 (2) 0.1507 (2) 0.2218 (2) 0.4764 (3) 0.4662 (3) 0.5858 (3) 0.5280 (3) 0.5747 (3) 0.4892
NSGA-III (1) 0.9033 (3) 0.2007 (1) 0.2103 (1) 0.3963 (1) 0.3272 (1) 0.3942 (1) 0.3664 (1) 0.4135 (1) 0.3443

30
MOEA/D-DE-ACA (2) 4.1126 (1) 0.1564 (3) 0.2377 (1) 0.5587 (1) 0.4487 (1) 0.6216 (2) 0.5629 (1) 0.6175 (2) 0.5107
MOEA/D-DE (3) 6.4187 (2) 0.1921 (2) 0.2302 (2) 0.6130 (2) 0.4825 (3) 0.6427 (3) 0.5859 (3) 0.6342 (3) 0.5352
NSGA-III (1) 1.0403 (3) 0.2431 (1) 0.2135 (3) 0.6403 (3) 0.5015 (2) 0.6354 (1) 0.5171 (2) 0.6301 (1) 0.5049

40
MOEA/D-DE-ACA (2) 9.8444 (1) 0.1768 (3) 0.2669 (1) 0.5783 (1) 0.4802 (1) 0.6320 (1) 0.5886 (1) 0.6111 (1) 0.6022
MOEA/D-DE (3) 11.751 (2) 0.2150 (2) 0.2587 (2) 0.6321 (2) 0.5115 (2) 0.6711 (3) 0.6386 (2) 0.6433 (2) 0.6168
NSGA-III (1) 2.0611 (3) 0.2657 (1) 0.2259 (3) 0.7516 (3) 0.5776 (3) 0.7555 (2) 0.6133 (3) 0.7156 (3) 0.7088

50
MOEA/D-DE-ACA (3) 15.400 (1) 0.1896 (2) 0.2748 (1) 0.6079 (1) 0.4979 (1) 0.6621 (1) 0.6270 (1) 0.6438 (1) 0.6390
MOEA/D-DE (2) 14.295 (2) 0.2214 (3) 0.2755 (2) 0.6790 (2) 0.5326 (2) 0.7115 (2) 0.6554 (2) 0.6972 (2) 0.6410
NSGA-III (1) 5.3195 (3) 0.2760 (1) 0.2237 (3) 0.8358 (3) 0.6319 (3) 0.8348 (3) 0.6837 (3) 0.8072 (3) 0.8069

60
MOEA/D-DE-ACA (3) 9.6503 (1) 0.2472 (3) 0.3087 (1) 0.6349 (1) 0.5237 (1) 0.6884 (1) 0.6406 (1) 0.6806 (2) 0.6610
MOEA/D-DE (2) 7.1777 (2) 0.2564 (2) 0.2868 (2) 0.6899 (2) 0.5406 (2) 0.7334 (3) 0.6524 (2) 0.7288 (1) 0.6473
NSGA-III (1) 4.1623 (3) 0.3080 (1) 0.2416 (3) 0.8932 (3) 0.6802 (3) 0.9006 (2) 0.6412 (3) 0.9166 (3) 0.8777

70
MOEA/D-DE-ACA (3) 43.702 (2) 0.2905 (3) 0.3317 (1) 0.6496 (1) 0.5407 (1) 0.7016 (1) 0.6643 (1) 0.7013 (2) 0.6953
MOEA/D-DE (2) 26.651 (1) 0.2819 (2) 0.3141 (2) 0.7093 (2) 0.5579 (2) 0.7560 (3) 0.6888 (2) 0.7459 (1) 0.6577
NSGA-III (1) 22.747 (3) 0.3266 (1) 0.2290 (3) 0.9360 (3) 0.6958 (3) 0.9388 (2) 0.6692 (3) 0.9770 (3) 0.9486

80
MOEA/D-DE-ACA (3) 4.9379 (3) 0.3527 (3) 0.3534 (1) 0.6500 (1) 0.5574 (1) 0.7168 (3) 0.6902 (1) 0.7118 (2) 0.7222
MOEA/D-DE (2) 2.9548 (1) 0.2980 (2) 0.3347 (2) 0.7014 (2) 0.5698 (2) 0.7562 (1) 0.6756 (2) 0.7452 (1) 0.6742
NSGA-III (1) 2.5396 (2) 0.3512 (1) 0.2236 (3) 0.9627 (3) 0.7295 (3) 0.9944 (2) 0.6833 (3) 1.0088 (3) 1.0464

90
MOEA/D-DE-ACA (2) 3.0815 (2) 0.3612 (3) 0.3428 (1) 0.6653 (1) 0.5692 (1) 0.7177 (2) 0.7226 (1) 0.7056 (2) 0.7461
MOEA/D-DE (3) 3.2389 (1) 0.3103 (2) 0.3205 (2) 0.7182 (2) 0.5837 (2) 0.7641 (1) 0.7002 (2) 0.7415 (1) 0.6669
NSGA-III (1) 2.0892 (3) 0.3766 (1) 0.2394 (3) 0.9852 (3) 0.7565 (3) 1.0150 (3) 0.7403 (3) 1.0465 (3) 1.0802

100
MOEA/D-DE-ACA (2) 3.5191 (3) 0.3960 (3) 0.3538 (1) 0.6602 (1) 0.5731 (1) 0.7161 (3) 0.7167 (1) 0.6930 (2) 0.7771
MOEA/D-DE (3) 3.6717 (1) 0.3455 (2) 0.3502 (2) 0.7234 (2) 0.5907 (2) 0.7739 (1) 0.7032 (2) 0.7473 (1) 0.6738
NSGA-III (1) 1.2328 (2) 0.3807 (1) 0.2465 (3) 1.0142 (3) 0.7612 (3) 1.0453 (2) 0.7032 (3) 1.0746 (3) 1.1486
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Table 10 shows the following: (1) in problems WF4, WF5, WF6, and WF8, from 30
to 100 objectives, MOEA/D-DE-ACA obtains the best mean IGD values. These problems
are characterized by having a concave and regular Pareto front, being scalable, and not
being disconnected. Some are multi-modal, others not, and the same happens with having
bias or not, being separable or not, or being deceptive or not; (2) in problem WF2 from
10 to 60 objectives, MOEA/D-DE-ACA obtains the best mean IGD values, followed by
MOEA/D-DE with differences that increase little by little as the number of objectives
increases. This problem is convex, multi-modal, disconnected, and scaled; (3) in problem
WFG7 from 40 to 70 objectives, MOEA/D-DE-ACA obtains the best IGD values, followed
by MOEA/D-DE with differences that decrease little by little as the number of objectives
increases. This problem is similar to WFG8, where the algorithm is dominant from 30
to 100 objectives, but the fact that it is separable leads to it having better results in this
problem; (4) the NSGA-III algorithm has the best values in a low number of objectives (10
and 20 in problems WFG4 to WFG9), but as the number of objectives grows the values tend
to rise, that is, to deteriorate. Despite this, for problems WFG1 and WFG3, NSGA-III is
dominant from 20 to 100 objectives with significant differences in mean IGD values, these
problems are not multi-modal, and their Pareto fronts’ shapes are not disconnected nor
deceptive; and (5) MOED/D-DE obtains, in general, intermediate values of IGD in these
problems and achieves dominance in problem WFG9 from 60 objectives with a concave
and regular Pareto front. In this sense, the initialization of weights with an ACA allows
MOEA/D-DE to improve its performance in WFG problems with irregular, discontinuous
Pareto fronts that are scaled.

Since the previous analysis makes it difficult to determine precisely which algorithm
is best and in what kind of problems, the mean behavior of the three algorithms in these
problems was evaluated using the Friedman non-parametric and Holm post hoc tests. This
test was performed with 2 degrees of freedom, and Holm results were evaluated with a
significance level of 90% and 95%.

Table 11 shows in the first column the number of objectives (10 to 100) evaluated in
the DTLZ and WFG problems, then the three algorithms with their ranking (1, 2, or 3) and
the Friedman ranking and, finally, the p-value obtained in the test and whether the said
value is significant (True or False). The result of the Holm post hoc test is then seen with a
3 × 3 matrix, where the first row and column refer to Algorithm A (MOEA/D-DE-ACA),
the second row and column Algorithm B (MOEA/D-DE), and the third row and column
Algorithm C (NSGA-III). The symbol • indicates that results obtained with the algorithm in
the row are better than those obtained with the algorithm in the column, while the symbol
# indicates that the algorithm in the column outperforms the algorithm in the row. The
values above the diagonal have a significance level of 90%, while those below the diagonal
have a significance of 95%. The table then shows the population size with which the three
algorithms were executed, a value defined by the ACA used in MOEA/D-DE-ACA and
that has the strength to grow logarithmically based on the number of objectives (population
size = 6.5686 × 101 × ln(objectives) − 2.1801 × 101 with R2 = 0.992). The last column
in this table shows the number of reference points used by the MOEA Framework for
calculating IGD in the problems, according to the number of objectives, in this case, 3356
for 10 objectives and 7416 for 100 objectives. In Table 11, it can be seen that the MOEA/D-
DE-ACA algorithm obtains number 1 ranking in all cases, but in 10 and 20 objectives, this
ranking is not statistically significant (the p-value obtained is not less than 0.05), which is
why the Holm post hoc test is not performed for these two experiments.

Based on the Holm test, between 30 and 60 objectives, MOEA/D-DE-ACA outper-
forms MOEA/D-DE and NSGA-III with a significance level of 95%. Between 70 and
100 objectives, a dominant relationship between MOEA/D-DE-ACA and MOEA/D-DE
cannot be established, but these two algorithms outperform NSGA-III with 90% significance.
This relationship can be defined with 95% significance with 70 and 90 objectives. With
90 objectives, MOEA/D-DE-ACA also outperforms MOEA/D-DE with 95% significance.
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Table 11. Friedman rank and Holm post hoc for IGD results with strength 2 and alphabet 9.

Obj
MOEA/D-DE-

ACA
(A)

MOEA/D-DE
(B)

NSGA-III
(C) p-Value Sig Holm Population

Size
Reference

Points

10 (1) 1.88 (2) 2.00 (3) 2.13 0.77880 False - 136 3356
20 (1) 1.81 (3) 2.38 (1) 1.81 0.18498 False - 174 4830

30 (1) 1.44 (2) 2.19 (3) 2.38 0.01950 True

A B C

197 5414A - • •
B # -
C # -

40 (1) 1.44 (2) 1.88 (3) 2.69 0.00160 True

A B C

40 (1)A - • •
B # - •
C # # -

50 (1) 1.31 (2) 1.94 (3) 2.75 0.00025 True

A B C

232 6303A - • •
B # - •
C # # -

60 (1) 1.44 (2) 1.88 (3) 2.69 0.00160 True

A B C

245 6576A - • •
B # - •
C # # -

70 (1) 1.44 (2) 1.94 (3) 2.63 0.00339 True

A B C

256 6390A - •
B - •
C # # -

80 (1) 1.69 (2) 1.81 (3) 2.50 0.04677 True

A B C

266 6753A - •
B - •
C # -

90 (1) 1.50 (2) 1.88 (3) 2.63 0.00525 True

A B C

277 7416A - • •
B - •
C # # -

100 (1) 1.69 (2) 1.81 (3) 2.50 0.04677 True

A B C

288 7416A - •
B - •
C # -

Figure 2 shows the average execution time (AET) of the three algorithms for all DTLZ
and WFG datasets with each number of objectives, from 10 to 100. The execution time of
NSGA-III is much greater than that of the other two algorithms. The complexity growth
is quadratic (AET = 2.131× 102 × objectives2 − 1.0533× 104 × objectives + 1.21769× 105)
with an R2 = 0.9966. This figure shows that the processing executed by NSGA-III be-
yond the objective function evaluations is much greater than that performed by the
other two algorithms since they all execute the same number of fitness function eval-
uations. The execution times of MOEA/D-DE (AET = 8.3186 × 100 × objectives2 +
2.459 × 102 × objectives − 2.8955 × 103) with an R2 = 0.9953 and MOEA/D-DE-ACA
(AET = 3.6936 × 100 × objectives2 + 6.3126 × 101 × objectives − 3.9744 × 102) with an
R2 = 0.998 also have a quadratic tendency where MOEA/D-DE-ACA has the shortest
execution time. The difference obtained in time between the two versions of MOEA/D is
explained in the time saved in Step 1.1 Initialization; the use of a previously manufactured
ACA gives an advantage in time with the proposed approach.

Figure 3 shows a box plot graphic that visually summarizes the median and quartiles
of the IGD values obtained by the three algorithms in the 16 problems (DTLZ and WFG) in
the experiments with t = 2 and v = 9 from 10 to 100 objectives. It can be observed that in
12 problems (DTLZ1 to DTLZ3, DTLZ5 to DTLZ7, WFG2, and WFG4 to WFG8), i.e., in 75%
of the 16 problems, MOEA/D-DE-ACA obtains better (lower) mean IGD values than the
other two algorithms, followed by MOEA/D-DE.
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In DTLZ4 and WFG9, MOEA/D-DE-ACA is outperformed by MOEA/D-DE, and in
WFG1 and WFG3, the best results are obtained by NSGA-III, leaving MOEA/D-DE-ACA
in second place in the first problem and third place the other.

5.3. Experiments with Strength t = 2 and Alphabet v = 17

Concerning the previous experiment, in this one, the value of the alphabet increases
from 9 to 17, which implies that the used ACAs have a larger number of rows, and a larger
population is established. With 10 objectives, there is an increase from 136 rows in v = 9
to 416 with v = 17, which establishes a relation of 1 to 3.06, while with 100 objectives, the
increase is from 288 with v = 9 to 838 with v = 17, which is a ratio of 1 to 2.91. In the
intermediate relations for the other objectives, a maximum of 1 to 3.45 was obtained; this
shows that doubling (approximately) the alphabet triples (approximately) the number
of rows in the ACA and, therefore, the number of weight vectors in the population of
MOEA/D-DE-ACA.

As in the previous section, a table with the results for the DTLZ problems was built;
from this table, the following was observed: (1) MOEA/D-DE-ACA obtains better mean
IGD values from 40 to 100 objectives in all DTLZ problems, with five exceptions in which
it comes second (with a maximum difference of 0.0316) and in DTLZ4 where it is outper-
formed by the other two algorithms (maximum difference of 0.149); (2) in problems DTLZ3
and DTLZ7, MOEA/D-DE-ACA obtains the best IGD results from 20 objectives upward,
the first of these problems being concave and the second mixed; both are multi-modal,

149



Mathematics 2024, 12, 1680

one is disconnected and the other not, one is separable and the other not, and both are
deceptive. MOEA/D-DE-ACA improves the performance in these two problems when
the objective number grows to 60–70, and this is then maintained up to 100 objectives;
(3) MOEA/D-DE-ACA in 10 to 30 objectives of problems DTLZ5 and DTLZ6 occupies
second place, being outperformed by MOEA/D-DE (differences between 0.0005 and 0.0053;
(4) the NSGA-III algorithm generally leads the rankings of the mean IGD values of 10
and 20 objectives of problems DTLZ1 to DTLZ4, but its values are later exceeded by those
obtained by the MOEA/D-DE with increases in the number of objectives; this reveals a
critical weakness for the use of this algorithm with DTLZ problems with a high number of
objectives and a population size lower than 900; and (5) MOEA/D-DE in general—like in
the previous experiment—obtains second place except in some cases, most of which are
from 10 to 30 objectives.

In the results related to WDG problems, it could be observed that: (1) in problem
WFG2 from 20 to 100 objectives, MOEA/D-DE-ACA obtains better mean IGD values,
followed by MOEA/D-DE with differences that increase little by little as the number of
objectives increases; (2) in problems WF4 and WF6 from 50 to 100 objectives, MOEA/D-
DE-ACA obtains better mean IGD values, and these problems are characterized by having
a concave Pareto front, being regular, not having bias, not being disconnected, not being
deceptive, and being scaled, but the first is highly multi-modal and the second is not; (3) in
problems WF5 and WF8 from 60 to 100 objectives, MOEA/D-DE-ACA obtains better mean
IGD values, and these problems are characterized by having a concave Pareto front, being
regular, not being multi-modal, and not being disconnected. The first one is separable and
the second one is not, the first is deceptive but the second is not and is scaled; (4) in general,
the NSGA-III algorithm occupies first place in the WFG problems from 10 to 40 objectives,
except in WFG2, but, with more objectives, the mean IGD value for this algorithm becomes
larger (it moves away from the ideal PF). Despite this, the WFG3 and WFG7 problems give
the best results with up to 100 objectives and the best results are given in WFG1 with 20, 30,
40, 50, 90, and 100 objectives.

After evaluating the average behavior of the three algorithms in these problems,
Friedman’s non-parametric statistical test and the Holm post hoc test were also executed.
In these tests, the NSGA-III algorithm ranks 1 in 10, 20, and 30 objectives, showing that
it outperforms MOEA/D-DE and MOEA/D-DE-ACA in 10 and 20 objectives with a 95%
significance level. In addition, with 10 objectives, MOEA/D-DE outperforms MOEA/D-
DE-ACA with the same significance level. In 30 objectives, the Friedman ranking is not
significant (the p-value obtained is not less than 0.05). As such, the Holm post hoc test is not
performed. MOEA/D-DE-ACA ranks 1 from 40 to 100 objectives, but in 50 objectives, this
ranking is not statistically significant. Based on the Holm test for 40 objectives, MOEA/D-
DE-ACA outperforms MOEA/D-DE, with a 95% significance level. In 60, 70, 80, 90, and
100 objectives, MOEA/D-DE-ACA and MOEA/D-DE are seen to outperform NSGA-III
with 95% significance. In 70 objectives, MOEA/D-DE-ACA outperforms MOEA/D-DE
with 90% significance. The situation is similar in 80 objectives, except that the dominance
of MOEA/D-DE-ACA over MOEA/D-DE is more remarkable, with a significance of 95%.
Here, the population size can be defined as 1.8644× 102 × ln(objectives)− 0.3125× 100

with R2 = 0.9596.
On the other hand, the execution time of NSGA-III is much greater than that of the

other two algorithms. In this case, AET = 1.0635× 104 × objectives2 − 5.30145× 105 ×
objectives + 9 × 106 with an R2 = 0.9333; this shows that the processing executed by
NSGA-III beyond the evaluations of the objective function is much greater than that of
the other two algorithms. The execution time of MOEA/D-DE (AET = 9.2652× 102 ×
objectives2 + 2.51005× 105 × objectives− 1× 106 with an R2 = 0.9099) shows that when
the population increases, the execution time increases, especially after 50 objectives where
it even manages to be greater than that of the other two algorithms. This also shows
that using a previously constructed ACA for executing MOEA/D-DE and avoiding this
task in the initialization step significantly reduces processing time. For MOEA/D-DE-
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ACA, the AET = 7.5386× 102 × objectives2 − 5.6509× 104 × objectives + 2× 106 (with an
R2 = 0.9093) also has a quadratic tendency, so MOEA/D-DE-ACA is the one presenting
the shortest execution time in all cases.

A box plot graphic (like Figure 3) was also used to visually summarizes the median and
quartiles of the IGD values obtained by the three algorithms in the 16 problems (7 DTLZ
and 9 WFG) during the experiment for t = 2 and v = 17 from 10 to 100 objectives. As a
result, the following was observed: (1) in 11 of the problems (DTLZ1 to DTLZ3, DTLZ5
to DTLZ7, WFG2, WFG4 to WFG6, and WFG8 to WFG9), that correspond to 68.75% of
the 16 problems, MOEA/D-DE-ACA obtains better median values and its quartiles are
closer to the median (less dispersed) than the other algorithms; (2) in WFG3, WFG5, and
WFG7 problems, NSGA-III obtains better results, followed by MOEA/D-DE-ACA and
then by MOEA/D-DE, and in DTLZ4, NSGA-III obtains the best results this time followed
by MOEA/D-DE-ACA; (3) in the WFG1 problem, MOEA/D-DE obtains the best results,
followed by NSGA-III and MOEA/D-DE-ACA. Although the results are not the same as in
the previous experiment, they are generally similar. Furthermore, suppose the results in the
figures only included the values from 40 to 100 objectives, which is where the MOEA/D-
DE-ACA algorithm obtains the best results. In that case, the proposed algorithm will be the
best for all problems.

5.4. Experiments with Strength t = 3 and Alphabet v = 9

This experiment was performed only up to 90 objectives because the execution times
of MOEA/D-DE and NSGA-III were too great for the execution of the 31 repetitions. The
results of DTLZ problems show the following: (1) MOEA/D-DE-ACA obtains better mean
IGD values in problems DTLZ1, DTLZ2, and DTLZ3 with 20 objectives with two exceptions
in DTLZ1 and DTLZ2 and one exception for DTLZ3; (2) in the DTLZ7 problem, MOEA/D-
DE-ACA obtains the best IGD results from 30 to 100 objectives, improving the results due
to the increasing number of objectives for this problem, a problem with a complex Pareto
front; (3) MOEA/D-DE obtains the best IGD for problem DTLZ6 from 10 objectives and, for
problem DTLZ5 from 20 to 100 objectives, this algorithm produces the best solutions. As
the number of objectives grows, its performance improves; (4) in problem DTLZ4, the two
versions of MOEA/D are exceeded by NSGA-III in the different objectives, although the
differences are minor; this problem has similar characteristics to DTLZ2 but has bias; and
(5) the MOEA/D-DE-ACA MOEA/D-DE algorithms generally lead the rankings of mean
IGD values from 20 to 100 objectives. The results on WFG problems shows the following:
(1) in problem WFG2 from 30 to 90 objectives, MOEA/D-DE-ACA obtains better mean
IGD values; (2) in problems WFG4, WFG6, and WFG8 from 80 to 90 objectives, MOEA/D-
DE-ACA obtains better mean IGD values, followed by MOEA/D-DE with differences that
increase; (3) in general, the MOEA/D-DE-ACA algorithm does not perform well with
50 objectives or fewer, since NSGA-III obtains the best results, and it only competes for
second place with MOEA/D-DE. NSGA-III stands out in problems WFG3, WFG4, WFG5,
WFG6, WFG7, WFG8, and WFG9; and (4) MOEA/D-DE-ACA leads the experiments in
WFG problems with many objectives, 80 and 90 objectives precisely. Furthermore, the
difference from NSGA-III is significant.

The Friedman non-parametric test and the Holm post hoc test shows that the MOEA/D-
DE-ACA algorithm obtains the number 1 ranking in 70 and 90 objectives. In 20, 30, 40, 60,
and 70 objectives, Friedman’s ranking is not statistically significant (the p-value obtained is
not less than 0.05), which again is why the Holm post hoc test is not performed for these
experiments. Based on the Holm test for 10 objectives, the NSGA-III algorithm outperforms
MOEA/D-DE-ACA and MOEA/D-DE with 95% significance. For 80 objectives, MOEA/D-
DE and MOEA/D-DE-ACA outperform NSGA-III with a significance level of 90%. Finally,
MOEA/D-DE-ACA and MOEA/D-DE are seen to outperform NSGA-III in 90 objectives
with a level of significance of 95%.
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On the other hand, the average execution time (AET) of NSGA-III decreases com-
pared to the previous experiments. The growth is also quadratic (AET = 1.342× 103 ×
objectives2 − 4.69× 103 × objectives + 2.06500× 105 with an R2 = 0.9795). The process-
ing executed by MOEA/D-DE is observed to be much greater than that of the other two
algorithms (AET = 9.012× 102 × objectives2 + 1.53215× 105 × objectives− 6.39727× 105

with an R2 = 0.9881). The average execution time of MOEA/D-DE-ACA (AET =
8.7379× 101 × objectives2 − 1.2631× 103 × objetives + 4.8970× 104 with an R2 = 0.8843)
continues to be quadratic and is the shortest execution time in this experiment, as in pre-
vious experiments. Considering that MOEA/D-DE and MOEA/D-DE-ACA differ only
in the initialization step, it is evident that the increase in the number of weight vectors
enormously increases the weight vector definition time.

After performing the three experiments, it was observed that the incorporation of
ACAs, independently of the strength and alphabet in MOEA/D-DE, decreases the execution
time since when using t = 2, v = 9, the proposal uses 40.7% of the time that MOEA/D-DE
uses and only 4.8% of the time used by NSGA-III. Then with t = 2, v = 17, MOEA/D-DE-
ACA uses only 8.9% of the time used by MOEA/D-DE and 7% of the time that NSGA-III
uses. Finally, with t = 3, v = 9, it is observed that MOEA/D-DE-ACA uses only 2.7% of the
execution time that MOEA/D-DE uses and only 6.2% of the time that NSGA-III uses.

Moreover, the random generation of weight vectors in MOEA/D-DE, when the popu-
lation is large, causes the execution time to be so high that it exceeds the cost of NSGA-III
in the experiments with small and medium populations, highlighting the importance of
incorporating ACAs into this algorithm without diminishing the quality of the IGD results.
The execution time of MOEA/D-DE-ACA (AET = 8.7379× 101 × objectives2 − 1.2631×
103 × objetives + 4.8970× 104 with an R2 = 0.8843) continues to be quadratic and is the
shortest execution time in this experiment, as in previous experiments.

A box plot graphic of the IGD values obtained by the three algorithms in the 16 evaluated
problems showed that MOEA/D-DE-ACA obtains better (lower) IGD values, and its mean
is the lowest in 6 (37.5%) of the 16 evaluated problems (DTLZ1, DTLZ2, DTLZ6, DTLZ7,
WFG1, and WFG2). Meanwhile, the performance of NSGA-III in all the problems improves
compared to the previous experiments, where in 9 (56.3%) of the 16 evaluated problems, it
slightly surpasses the results of MOEA/D-DE-ACA and MOEA/D-DE.

5.5. Data Analysis and Discussion

Seeking to identify the impact that the strength (t) and alphabet (v) of the ACA have
on the performance of the MOEA/D-DE-ACA algorithm concerning the characteristics
of the problems, a table was constructed in a minable view way with the data generated
in the three experiments previously presented. The data were extracted from Table 7,
where the characteristics of the problems were described, and Tables 9–11, which present
the results of the experiments with small population sizes (t = 2 and v = 9)—similarly,
the results of the experiments with medium populations (t = 2 and v = 17) and large
populations (t = 3 and v = 9) were used. As a result, a minable view with 464 instances,
13 attributes, and 1 class variable (the ranking obtained by MOEA/D-DE-ACA in each
experiment with each problem related to MOEA/D-DE and NSGA-III) was obtained.
The class variable corresponds to Rank = 1 (207 instances where MOEA/D-DE-ACA
ranked first) and Rank = 2 (257 instances where MOEA/D-DE-ACA occupied second or
third place).

Using RapidMiner Studio Educational 10.3.001, a mining process implemented cross-
validation with ten folds and a “decision tree” classifier using the Optimize Parameter
operator, the following hyperparameters were defined: accuracy for criterion, seven for
maximal depth, false for pruning, false for prepruning, and fifty-five for minimal leaf
size. As a result, the operator generates the decision rules of Table 12 with 80% accuracy,
86% precision, and 77% recall. From this figure, the following general rules in favor of
MOEA/D-DE-ACA can be summarized:

152



Mathematics 2024, 12, 1680

• If the problem is DTLZ1, DTLZ2, DTLZ3, DTLZ7, or WFG2, then MOEA/D-DE-ACA
has a probability between 76% and 86% to be the best option.

• If the problem is DTLZ6, WFG4, WFG6, or WFG8 and strength = 2, then MOEA/D-
DE-ACA has a probability between 65% and 70% to be the best option.

• If the problem is WFG5 and strength = 2 and alphabet = 9, then MOEA/D-DE-ACA
has a probability of 80% of being the best option.

Also, from Table 12, the following conditions when MOEA/D-DE-ACA did not win
(lost against MOEA/D or NSGA-III) can be summarized:

• If the problem is DTLZ4, DTLZ5, WFG1, WFG3, WFG7, or WFG9, with a probability
between 72% and 97%.

• If the problem is DTLZ6, WFG4, WFG5, WFG6, or WFG8 and strength = 3, with a
probability between 67% and 100%.

• If the problem is WFG5 and strength = 2 and alphabet = 17, with a probability of 60%.

These rules apply regardless of the number of objectives and population size, which is
remarkably interesting. They only require the values of strength, alphabet, and problem.
Unfortunately, the classifier could not find characteristics (shape, multi-modal, and decep-
tive, among others) of the problems without loss of generality, so more experiment data
must be used in future work.

Table 12. Decision rules to define the rank of MOEA/D-DE-ACA.

Condition Rank Confidence Rank = 1 Rank = 2

Problem = DTLZ3 1 86% 25 4
Problem = DTLZ7 1 79% 23 6
Problem = DTLZ1 1 76% 22 7
Problem = DTLZ2 1 76% 22 7
Problem = WFG2 1 76% 22 7
Problem = WFG4 and Strength ≤ 2.5 1 70% 14 6
Problem = WFG6 and Strength ≤ 2.5 1 70% 14 6
Problem = DTLZ6 and Strength ≤ 2.5 1 65% 13 7
Problem = WFG8 and Strength ≤ 2.5 1 65% 13 7
Problem = WFG5 and Strength ≤ 2.5 and Alphabet ≤ 13 1 80% 8 2
Problem = WFG3 2 97% 1 28
Problem = DTLZ4 2 93% 2 27
Problem = WFG1 2 93% 2 27
Problem = WFG9 2 90% 3 26
Problem = WFG7 2 86% 4 25
Problem = DTLZ5 2 72% 8 21
Problem = DTLZ6 and Strength > 2.5 2 100% 0 9
Problem = WFG5 and Strength > 2.5 2 100% 0 9
Problem = WFG6 and Strength > 2.5 2 78% 2 7
Problem = WFG8 and Strength > 2.5 2 78% 2 7
Problem = WFG4 and Strength > 2.5 2 67% 3 6
Problem = WFG5 and Strength ≤ 2.5 and Alphabet > 13 2 60% 4 6

To understand why MOEA/D-DE-ACA exceeds the results of MOEA/D-DE in small
and medium populations, the angular distance between the different weight vectors sam-
pled by each of the algorithms was calculated (value between 0 and 90 degrees, since the
components of the weight vectors are positive, and these are always in the first quadrant
of the multi-dimensional space). Figure 4 shows these angular distances organized in a
frequency histogram observed every 2◦ for 30 and 60 objectives with the three population
sizes (small, medium, and large).
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On analyzing the first column of this figure (30 objectives), the histogram of the
separation angles between the weight vectors obtained by MOEA/D-DE-ACA (light green
color) has a symmetrical shape, a range that goes from 20◦ to 70◦, and an average that varies
between 42◦ and 43◦; this means that, in the worst case, a weight vector has a neighboring
vector at 20◦ and that two weight vectors that are as far from each other as possible are
at 70◦. In contrast, the histogram of the angles obtained by MOEA/D-DE (yellow-orange
color) has an asymmetric shape towards the right side, a broader range from 30◦ to 90◦, and

154



Mathematics 2024, 12, 1680

an average between 52◦ and 59◦. At first glance, the distribution of the weight vectors at
the level of the angles of separation between each other is more uniform for MOEA/D-DE-
ACA. In addition, the experimental results show that with 30 objectives, whether in small,
medium, or large populations, MOEA/D-DE-ACA wins (in most cases) in the Friedman
ranking over MOEA/D-DE, which in Figure 4 is expressed as Rank (A) = 1 and Rank
(B) = 2. In this case, with a small population (t = 2, v = 9), MOEA/D-DE-ACA dominates
with a 95% level of significance (A > B), but as the population grows, the domination
relationship begins to fade (A ≥ B). Observing the histograms shows the reason. As more
weight vectors can be generated, MOEA/D-DE begins to generate weight vectors with a
distribution that is increasingly like the way MOEA/D-DE-ACA generates them from the
beginning, but with a much higher computational cost. The tail on the right presented by
MOEA/D-DE decreases from a smaller to a larger population but does not disappear; this
tail refers to weight vectors found at the borders of the objective space—for example, with
five objectives, it would include (1, 0, 0, 0, 0), (0, 1, 0, 0, 0), among many others.

The results of the second column (60 objectives) in Figure 4 follow the same pattern.
MOEA/D-DE-ACA obtains a more symmetrical distribution that gives better results than
MOEA/D-DE in small and medium populations, the domination vanishing from being
significant in the small population to not being significant in the medium population and
the ranking inverting in the large population since here the first in the ranking is MOEA/D-
DE. These graphs show how MOEA/D-DE mimics MOEAD/D-DE-ACA in so far as it can
create more weight vectors (larger population) except the right-hand tail is not removed at
all; it also seems that it may be beneficial with a large number of objectives, as occurs with
60 objectives. The latter motivates future work in which rows that sample these extremes
(border weight vectors) are included in the construction of ACAs.

Figure 5 shows, as an example, four graphs of parallel coordinates of the non-dominated
solutions obtained after executing MOEA/D-DE and MOEA/D-DE-ACA (strength 2 and
alphabet 9) for problems DTLZ6, DTLZ7, WFG1, and WFG2. The initialization of the
two algorithms establishes the same initial (random) position in the search space for
the solutions in the population. The only difference between the two populations is the
weight vectors.

Although it is a challenge to analyze the results obtained with these graphs visually, in
Figure 5, the solutions obtained by the two algorithms are substantially different concerning
the values of their 30 objectives. In the case of DTLZ6, the results obtained by MOEA/D-DE
(goldenrod color) measured in IGD are slightly better than those obtained by MOEA/D-DE-
ACA (green color), which is visually represented with a higher density of goldenrod lines at
the bottom of each of the objectives. The case of DTLZ7 is more difficult to interpret since, in
several objectives, there is a concentration of better results for MOEA/D-DE, while others
relate better results for MOEA/D-DE-ACA; this is evidenced by a remarkably similar value
of IGD for the two algorithms. In WFG1 and WFG2, the IGD value for MOEA/D-DE-ACA
is better than that of MOEA/D-DE. This fact can be seen in the graph of WFG1 from the
more significant presence of green lines in the lower part of the graph, despite the peaks
in several objectives. In the graph of WFG2, the green lines in the lower part cannot be
visualized since they are hidden by the goldenrod lines (in the tool used to make these
graphs, there is no option to manage transparencies).

Regarding execution time, it can be seen that even though all the algorithms perform
the same number of objective evaluations and are executed on the same machine with
the same conditions, in all experiments, MOEA/D-DE-ACA runs faster than MOEA/D-
DE and NSGA-III because initializing weight vectors in MOEA/D-DE or reference sets
in NSGA-III is a computationally expensive step, while that in MOEA/D-DE-ACA is
summarized in reading a file with the ACA that will run the algorithm. This file with the
ACA must be created using an ACA creation algorithm, usually a metaheuristic, which
can be computationally expensive. Still, this work is performed only once, and then
MOEA/D-DE-ACA can use it as many times as needed. This file can also be acquired
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from third parties, such as the repository of Professor José Torres-Jiménez at CINVESTAV
Tamaulipas (Mexico).
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As mentioned as early as the Introduction section, in multiple or many-objective
optimization algorithms based on the decomposition approach, such as MOEA/D, the
proper initialization of the weight vectors is not the only way to improve the quality of
the results. Still, suppose it uses a better initialization method and is combined with other
strategies, such as the dynamic adjustment of the weight vectors during the evolutionary
process. In that case, the results obtained may be better; this is future work that the research
group hopes to conduct.

5.6. Comparison with Other State-of-the-Art Algorithms Using DTLZ and WFG Problems

The performance of the proposed algorithm was compared with the results of eight
state-of-the-art MOEAs for solving MaOPs with 10 and 15 objectives [73]. The algorithms
compared were NSGA-III [17], ANSGA-III [74], MOEA/D-PBI [8], EAG-MOEA/D [75],
MOEA/DD [76], IBEA [5], SME-EMOA [6], and IDMOPSO [73].

To make a fair comparison, all algorithms’ population sizes (popsize or N parameter),
including the present proposal, were configured as similar values [73]. Table 13 summarizes
the population size used for each algorithm. MOEA/D-DE-ACA was executed with an
ACA (N = 277; t = 2, k = 10, v = 9) for 10 objectives and an ACA (N = 132; t = 2, k = 15,
v = 9) for 15 objectives. Each algorithm is terminated after a prespecified number of
fitness function evaluations (these values and other specific parameters for each algorithm
are the same used in [73]). For WFG problems, each algorithm stops after 200,000 and
300,000 fitness evaluations for 10 and 15 objectives, respectively. For DTLZ1 problems,
each algorithm stops after 2500 generations for 10 and 15 objectives. For DTLZ2, each
algorithm stops after 750 and 1000 generations for 10 and 15 objective problems. For DTLZ4,
each algorithm stops after 2000 and 3000 generations for 10 and 15 objective problems.
For DTLZ5 to DTLZ7, each algorithm stops after 1000 and 1500 generations for 10 and
15 objective problems.

Table 13. Number of reference points/directions and corresponding population sizes used in algo-
rithms.

Obj (M) Ref. Points/Ref.
Directions

NSGA-III and
ANSGA-III
Popsize (N)

Other Algorithms
and IDMOPSO

Popsize (N)

MOEA/D-DE-
ACA Popsize

(N)

10 275 276 275 277
15 135 136 135 132
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Table 14 shows the IGD results for all algorithms on DTLZ and WFG problems with
10 objectives. The results obtained for MOEA/D-DE-ACA were the best for most of
the problems regardless of the shape of the Pareto front or other characteristics of the
problem. The last line of this table also shows the Friedman ranking obtained using a
Friedman statistic (distributed according to chi-square with 8 degrees of freedom) of 55.73
and a p-value of 2.243 × 10−12 computed by the Iman and Davenport test. Friedman
test results show MOEA/D-DE-ACA as the best option, MOEA/DD in second place, and
IDMOPSO in third place. The Holm post hoc test shows that MOEA/D-DE-ACA results
dominate all algorithms except for MOEA/DD and IDMOPSO, with a 95% significance
level. MOEA/DD dominates MOEA/D-PBI and SMS-EMOA with the same significance
level, and IDMOPSO only dominates MOEA/D-PBI.

Table 14. IGD results for all algorithms on DTLZ and WFG problems with 10 objectives.

PROBLEM MOEA/D-
DE-ACA MOEA/DD IDMOPSO NSGA-III ANSGA-

III
EAG-

MOEA/D IBEA SMS-
EMOA

MOEA/D-
PBI

DTLZ1 (1) 0.048 0.109 0.108 0.113 0.125 0.204 0.236 15.617 0.110
DTLZ2 (1) 0.134 0.422 0.430 0.474 0.540 0.674 0.428 0.498 0.423
DTLZ4 (1) 0.135 0.422 0.456 0.432 0.441 0.714 0.429 0.583 0.512
DTLZ5 (3) 0.094 0.133 (1) 0.016 0.615 0.692 0.094 0.098 0.117 (2) 0.020
DTLZ6 (3) 0.055 0.121 (1) 0.018 2.775 4.225 0.117 0.331 1.210 (2) 0.019
DTLZ7 (1) 0.730 2.336 1.224 1.116 1.122 1.112 0.959 4.763 3.037
WFG1 (1) 0.041 1.075 1.035 1.242 1.222 2.120 1.506 2.633 2.554
WFG2 (1) 0.042 5.730 5.926 5.898 5.726 1.987 14.887 5.776 16.681
WFG3 (1) 0.075 0.391 2.532 0.815 1.106 1.047 2.759 1.873 5.342
WFG4 (1) 0.152 4.469 5.361 4.719 4.545 4.776 6.289 5.794 9.084
WFG5 (1) 0.064 4.474 4.234 4.476 4.529 4.607 6.339 4.432 8.238
WFG6 (1) 0.193 4.621 4.674 5.691 4.726 6.014 6.439 6.883 9.294
WFG7 (1) 0.098 4.541 4.341 4.606 4.544 5.114 6.005 4.543 9.304
WFG8 (1) 0.212 4.575 5.084 5.369 4.993 6.526 5.618 5.895 8.444
WFG9 (1) 0.105 4.122 4.012 4.443 4.447 5.454 6.227 5.357 8.838
Fried.
Rank (1) 1.30 (2) 3.40 (3) 3.73 (4) 5.20 (5) 5.33 (6) 5.9 (7) 6.33 (8) 6.7333 (9) 7.07

Table 15 shows the IGD results with 15 objectives. The results obtained for MOEA/D-
DE-ACA were the best for all problems except for DTLZ5 and DTLZ6, which is outdone
only by IDMOPSO, as in 10 objectives. The Friedman ranking (obtained using a Friedman
statistic of 57.99, distributed according to chi-square with 8 degrees of freedom, and a
p-value computed by Iman and Davenport test of 3.407 × 10−13) shows MOEA/D-DE-
ACA as the best option, followed by MOEA/DD and IDMOPSO. The Holm post hoc
test shows that MOEA/D-DE-ACA results dominate ANSGA-III, NSGA-III, MOEA/D-
PBI, EAG-MOEA/D, IBEA, and SMS-EMOA algorithms with a 95% significance level.
MOEA/DD and IDMOPSO dominate MOEA/D-PBI with the same significance level.

Results for 10 and 15 objectives in DTLZ and WFG problems show MOEA/D-DE-ACA
as the best option using a population size of 277 and 132, respectively. The results on WFG
problems are remarkable. Good results of MOEA/DD could be improved using ACAs
for weight initialization instead of the Das and Dennis method [77]; this represents future
work for our research group.
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Table 15. IGD results for all algorithms on DTLZ and WFG problems with 15 objectives.

Problem MOEA/D-
DE-ACA MOEA/DD IDMOPSO NSGA-III ANSGA-

III
EAG-

MOEA/D IBEA SMS-
EMOA

MOEA/D-
PBI

DTLZ1 (1) 0.105 0.177 0.138 0.214 0.214 0.275 0.349 2.516 0.176
DTLZ2 (1) 0.178 0.621 0.604 0.759 0.750 0.940 0.615 0.930 0.622
DTLZ4 (1) 0.174 0.620 0.641 0.671 0.713 0.943 0.622 0.609 0.678
DTLZ5 (2) 0.099 0.161 (1) 0.027 0.483 0.449 0.113 0.276 0.193 0.096
DTLZ6 (2) 0.096 0.163 (1) 0.022 6.120 6.103 0.115 0.356 1.150 0.096
DTLZ7 (1) 1.139 3.385 2.063 6.167 5.980 2.344 5.016 11.140 2.720
WFG1 (1) 0.052 1.851 1.452 2.378 2.575 2.645 2.528 3.174 3.283
WFG2 (1) 0.101 16.348 13.507 13.550 13.407 3.349 26.045 19.176 27.325
WFG3 (1) 0.154 0.986 6.973 6.461 6.485 2.368 7.156 1.590 9.038
WFG4 (1) 0.206 9.269 10.412 9.418 9.443 9.313 13.759 18.744 15.158
WFG5 (1) 0.112 9.177 14.837 9.280 9.361 9.523 12.697 18.564 14.881
WFG6 (1) 0.272 9.138 10.421 11.299 11.116 14.374 13.034 15.941 15.849
WFG7 (1) 0.213 8.980 8.813 9.383 9.374 14.382 13.605 16.921 16.078
WFG8 (1) 0.390 8.796 8.715 10.581 10.709 14.721 11.341 16.174 14.421
WFG9 (1) 0.246 8.490 16.623 9.312 9.360 13.346 11.574 18.474 15.222
Fried.
Rank (1) 1.27 (2) 3.40 (3) 3.60 (4) 5.47 (5) 5.60 (6) 5.67 (7) 6.07 (9) 7.53 (8) 6.40

5.7. Comparison with Other State-of-the-Art Algorithms over Constrained Problems

The performance of the proposed algorithm was compared with the results of six
state-of-the-art MOEAs for solving constrained many-objective optimization problems with
10 and 15 objectives [78]. The algorithms compared were: C-MOEA/DD [76], C-NSGA-
III [17], C-RVEA [79], I-DBEA [80], C-TAEA [81], and C-AnEA [78]. To manage constraints,
C-NSGA-III and I-DBEA adopted the feasibility-driven strategy. Conversely, C-MOEA/DD,
C-TAEA, C-RVEA, and C-AnEA utilized infeasibility information. MOEA/D-DE-ACA also
adopted the feasibility-driven approach, as Jain and Deb describe in [17].

Problems used for evaluation and comparison were the six available problems in the
C-DTLZ test suite [17]. C-DTLZ is based on DTLZ but includes three types of constraints
in the objective space, namely: (1) where the original PF is still optimal, but there is an
infeasible barrier in approaching the PF; (2) where only the region located inside each of
the M+1 hyperspheres with radius r is feasible; and (3) where the PF is composed of several
constraint surfaces. The reference points for these problems were 275 and 135 for 10 and
15 objectives, respectively. The population size for the six compared algorithms was 276
and 136 for 10 and 15 objectives. As in the previous experiment, the population size for
MOEA/D-DE-ACA was 277 and 132 for 10 and 15 objectives (see Table 13).

All algorithms were terminated after a prespecified number of fitness function evalu-
ations (these values and other specific parameters for each algorithm are the same used
in [78]). For C1-DTLZ1, each algorithm stops after 276,000 and 204,000 fitness evaluations
(FEs) for 10 and 15 objectives, respectively. For C1-DTLZ3, each algorithm stops after
966,000 and 680,000 FEs for 10 and 15 objectives. For C2-DTLZ2, each algorithm stops after
207,000 and 136,000 FEs for 10 and 15 objectives. And for C2-DTLZ2*, C3-DTLZ1, and
C3-DTLZ4, each algorithm stops after 828,000 and 544,000 FEs for 10 and 15 objectives.

Table 16 shows the IGD results for all algorithms on C-DTLZ problems with 10 and
15 objectives. The results for 10 objectives show that MOEA/D-DE-ACA was the best for
most (five out of six) problems. The eighth line of this table also indicates the Friedman
ranking obtained using a Friedman statistic (distributed according to chi-square with
6 degrees of freedom) of 26.78 and a p-value computed by the Iman and Davenport test of
1.042 × 10−7. Friedman test results show MOEA/D-DE-ACA as the best option, followed
by C-AnEA and C-RVEA. The Holm post hoc test only shows that MOEA/D-DE-ACA
and C-AnEA results dominate I-DBEA with a 95% significance level. Still, using a 90%
significance level, the Holm post hoc test shows that MOEA/D-DE-ACA also dominates
C-NSGA-III and C-TAEA.
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Table 16. IGD results for all algorithms on C-DTLZ problems with 10 and 15 objectives. C2-DTLZ2 *
denotes C2-convex-DTLZ2.

Problem Obj (M) MOEA/D-
DE-ACA C-AnEA C-RVEA C-

MOEA/DD
C-NSGA-

III C-TAEA I-DBEA

C1-DTLZ1 10 (1) 0.075 0.114 0.116 0.117 0.118 0.130 0.498
C1-DTLZ3 10 (1) 0.211 0.420 14.139 13.277 14.221 0.581 14.848
C2-DTLZ2 10 (2) 0.203 0.265 0.268 0.266 0.299 (1) 0.181 1.272

C2-DTLZ2 * 10 (1) 0.033 0.132 0.135 0.145 0.107 0.304 0.520
C3-DTLZ1 10 (1) 0.071 0.230 0.235 0.235 0.235 0.272 0.659
C3-DTLZ4 10 (1) 0.107 0.562 0.568 0.569 0.578 0.590 0.746
Friedman

Rank 10 (1) 1.17 (2) 2.33 (3) 3.83 (4) 4.33 (5) 4.67 (6) 4.67 (7) 7.00

C1-DTLZ1 15 (1) 0.125 0.181 0.188 0.187 0.200 0.198 0.570
C1-DTLZ3 15 (1) 0.165 0.594 14.206 14.211 18.786 0.862 14.914
C2-DTLZ2 15 (4) 0.430 (2) 0.250 (3) 0.355 0.576 0.651 (1) 0.192 1.415

C2-DTLZ2 * 15 (1) 0.087 0.291 0.162 0.174 0.187 0.336 0.790
C3-DTLZ1 15 (1) 0.148 0.366 0.381 0.383 0.461 0.503 1.237
C3-DTLZ4 15 (1) 0.150 0.808 0.771 0.773 1.302 0.768 1.354
Friedman

Rank 15 (1) 1.50 (2) 3.00 (3) 3.17 (5) 4.00 (6) 5.67 (4) 3.83 (7) 6.83

Table 16 also shows the results for 15 objectives, like those for 10. MOEA/D-DE-ACA
was the best for most (five out of six) problems. This table also shows, on the last line,
the Friedman ranking for 15 objectives obtained using a Friedman statistic (distributed
according to chi-square with 6 degrees of freedom) of 24.14 and a p-value computed by
the Iman and Davenport test of 3.787 × 10−6. Friedman test results reveal MOEA/D-DE-
ACA as the best option, C-AnEA in second place, and C-RVEA in third place, equal to
10 objectives. The Holm post hoc test only shows that MOEA/D-DE-ACA and C-AnEA
dominate I-DBEA, and MOEA/D-DE-ACA dominates C-NSGA-III with 95% significance.
Still, using a 90% significance level, the Holm post hoc test shows that C-RVEA results
dominate those of I-DBEA.

Of the three best algorithms (MOEA/D-DE-ACA, C-AnEA, and C-RVEA) for solving
constrained problems in the C-DTLZ test suite with 10 and 15 objectives, only MOEA/D-
DE-ACA adopts the feasibility-driven strategy, the others utilize infeasibility information.

6. Conclusions and Future Work

This work proposes the definition of weight vectors in MOEA/D-DE based on aug-
mented covering arrays (ACAs) in a new version of the algorithm called MOEA/D-DE-
ACA. This new version was compared with the original version of MOEA/D-DE and
NSGA-III in seven DTLZ problems and nine WFG problems of 10 to 100 objectives using
small (t = 2, v = 9), medium (t = 2, v = 17), and large (t = 3, v = 9) populations.

About the hypothesis initially raised in this research, it can be concluded that with a
low value of strength (t = 2) and a low–medium value of alphabet (v = 9 or v = 17), meaning
small populations with 136 to 288 solutions and medium ones with 416 to 838 solutions, the
MOEA/D-DE-ACA algorithm obtains better IGD results than MOEA/D-DE between 30
and 100 objectives regardless of the characteristics of the problems and the shapes of their
Pareto fronts; this implies that initialization of the weight vectors is more appropriate based
on ACAs and that the execution time is significantly reduced to 40.7% and 8.9% of the
time executed by MOEA/D-DE. When using a strength t = 3 (large population with 729 to
1457 solutions), the results are similar between MOEA/D-DE-ACA and MOEA/D-DE, i.e.,
there is no statistically significant difference between MOEA/D-DE-ACA and MOEA/D-
DE, except in 90 objectives where MOEA/D-DE-ACA performs best, but the execution time
with these populations is much reduced to 2.7% of the execution time of MOEA/D-DE.
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In experiments with small and medium populations, two algorithms, MOEA/D-DE-
ACA and MOEA/D-DE, outperform NSGA-III, but when there are 10 or 20 objectives and
medium populations, results are better with NSGA-III. With a large population, NSGA-III
obtains better results than the other two algorithms for 10 to 70 objectives, but those results
are not statistically superior to those obtained by MOEA/D-DE-ACA and MOEA/D-DE.
MOEA/D-DE-ACA, in all cases, executes faster than NSGA-III, using in small populations
only 4.8% of the time used by NSGA-III, in medium populations only 7%, and in large
populations, only 6.2%.

In future work, the research group expects to directly compare the proposed initial-
ization scheme with other initialization schemes in other decomposition-based algorithms
like MOEA/DD, MaOEA/D-2ADV, or MOEA/D-SOM. In addition, it is hoped to use the
initialization scheme proposed in conjunction with a recent version of MOEA/D which
adapts the direction of the weight vectors and improves the selection operators, define the
key characteristics of the ACAs to improve the results in specific kinds of MaOPs, and,
finally, design ACAs that include more border weight vectors and evaluate their impact in
many-objective optimization problems.
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Abstract: Conjugate gradient methods are widely used and attractive for large-scale unconstrained
smooth optimization problems, with simple computation, low memory requirements, and interesting
theoretical information on the features of curvature. Based on the strongly convergent property
of the Dai–Yuan method and attractive numerical performance of the Hestenes–Stiefel method, a
new hybrid descent conjugate gradient method is proposed in this paper. The proposed method
satisfies the sufficient descent property independent of the accuracy of the line search strategies.
Under the standard conditions, the trust region property and the global convergence are established,
respectively. Numerical results of 61 problems with 9 large-scale dimensions and 46 ill-conditioned
matrix problems reveal that the proposed method is more effective, robust, and reliable than the
other methods. Additionally, the hybrid method also demonstrates reliable results for some image
restoration problems.

Keywords: hybrid conjugate gradient method; acceleration scheme; sufficient descent property;
global convergence; ill-conditioned matrix; image restoration
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1. Introduction

In this paper, we consider the following unconstrained problem:

min
x∈Rn

f (x), (1)

where f : Rn → R is continuously differentiable, bound below, and its gradient is avail-
able. There are many effective methods for problem (1), such as Newton-type methods,
quasi-Newton-type methods, spectral gradient methods, and conjugate gradient (CG
for abbreviation) methods [1–11], etc. Meanwhile, there are also various free gradient
optimization tools such as Nelder–Mead, generalized simulated annealing, and genetic
algorithm [12–14], etc., for problem (1). In this part, we focus on CG methods and propose
a new hybrid CG method for a large-scale problem (1). Actually, CG methods are one of
the most effective methods for unconstrained problems, especially for large-scale cases,
due to their low storage and globally convergent properties [3], in which the iterative point
is usually generated by

xk+1 = xk + αkdk, k = 0, 1, . . . , (2)
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where xk is the current iteration; the scalar αk > 0 is the step length, determined by some
line search strategy; and dk is the search direction, defined by

dk =

{ −gk, if k = 0,
−gk + βkdk−1, if k ≥ 1,

(3)

where gk := g(xk) = ∇ f (xk) and βk is called the conjugate parameter. A number of CG
methods have been proposed by various modifications of the direction dk and the parameter
βk; see [4–11,15–20], etc. Some CG methods have strong convergence properties, but their
numerical performances may not be good in practice due to the jamming phenomenon [4].
These methods include Fletcher–Reeves (FR) [5], Dai–Yuan (DY) [6], and Fletcher (CD) [7],
with the following conjugate parameters:

βFR
k+1 =

‖gk+1‖2

‖gk‖2 , βDY
k+1 =

‖gk+1‖2

yT
k dk

, βCD
k+1 = −‖gk+1‖2

gT
k dk

,

where gk+1 = ∇ f (xk+1), yk = gk+1 − gk, and ‖ · ‖ stands for the Euclidean norm. On
the other hand, some other CG methods may perform well in practice, but their conver-
gence may be not guaranteed, especially for nonconvex functions. These methods include
Hestenes–Stiefel (HS) [8], Polak–Ribière–Polyak (PRP) [9,10], and Liu–Storey (LS) [11], with
the following conjugate parameters:

βHS
k+1 =

gT
k+1yk

yT
k dk

, βPRP
k+1 =

gT
k+1yk

‖gk‖2 , βLS
k+1 = −

gT
k+1yk

gT
k dk

.

In fact, these methods possess an automatically approximate restart feature which can
avoid the jamming phenomenon, that is, when the step sk is small, the factor yk tends to
zero, resulting in the conjugate parameter βk+1 becoming small and the new direction dk+1
approximating to the steepest descent direction −gk+1.

To attain good computational performance and maintain the attractive feature of
strong global convergence, many scholars have paid special attention to hybridizing these
CG methods. Specifically, the authors in [21] proposed a hybrid PRP-FR CG method (H1
method in [22]) and the corresponding conjugate parameter was defined as
βH1

k+1 = max
{

0, min{βFR
k+1, βPRP

k+1 }
}

. Moreover, based on the above hybrid conjugate pa-
rameter, a new form was proposed in [23], where the parameter was defined by βk+1 =
max{−βFR

k+1, min{βFR
k+1, βPRP

k+1 }}, and the global convergence property was established for
the general function without the convexity assumption. In [24], a hybrid of the HS
method and DY method was proposed in which the conjugate parameter was defined by
βH2

k+1 = max
{

0, min{βHS
k+1, βDY

k+1}
}

. The numerical results indicated that the above hybrid
method was more effective than the PRP algorithm. In the above hybrid CG methods,
the search direction was in the form of (3). Moreover, the authors in [25] proposed a new
hybrid three-term method in which the conjugate parameter is βH2

k+1 and the direction
is dk+1 = −gk+1 + (1− λk+1)βH2

k+1dk + λk+1θk+1gk, where λk+1 is the convex parameter.
The above hybrid method demonstrates attractive numerical performance. Furthermore,
in [22], the authors proposed two new hybrid methods based on the above conjugate
parameters with different search directions. Concretely, the directions have the following
common form:

dk+1 = −
(

1 + βk+1
gT

k+1dk

‖gk+1‖2

)
gk+1 + βk+1dk, (4)

where βk+1 = βH1
k+1 or βk+1 = βH2

k+1. A remarkable feature of the above directions is that
the sufficient descent property is automatically satisfied, independent of the accuracy of
the line search strategy.
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Motivated by the above discussions, in this paper, we propose a new hybrid descent
CG method for large-scale nonconvex problems. The proposed hybrid method automati-
cally enjoys the sufficient descent property independent of the accuracy of the line search
technique. Furthermore, the global convergence for the general functions without convexity
is established under the standard conditions. Numerical results of 549 large-scale problems
and 46 ill-conditioned matrix problems indicate the proposed method is attractive and
promising. Finally, we also apply the proposed method to some image restoration problems,
which also verifies its reliability and effectiveness.

The rest of the paper is organized as follows. In Section 2, we propose a descent hybrid
CG method which is based on the MHS method and DY method. Moreover, the sufficient
descent property is satisfied independent of the accuracy of the line search techniques.
Global convergence is established for the general function in Section 3. Numerical results
are given in Section 4 to indicate the effectiveness and reliability of the proposed algorithm.
Finally, some conclusions are presented.

2. Motivation, Algorithm, and Sufficient Descent Property

As mentioned in the above section, the HS method is generally regarded as one of the
most effective CG methods, but its global convergence for general nonlinear functions is
still erratic. Additionally, the HS method does not guarantee the descent property during
the iterative process, that is, the condition gT

k dk < 0 may not be satisfied for ∀ k ≥ 1.
Therefore, many researchers have been devoted to designing some descent HS conjugate
gradient methods [4,24,26–30], etc. Specifically, to obtain an intuitively modified conjugate
parameter, the authors in [26] approximated the direction dTHS

k+1 by the two-term direction (3),
where dTHS

k+1 was defined by (4) with βk+1 = βHS
k+1. Concretely, the least squares problem

minβ ‖ − gk+1 + βk+1dk − dTHS
k+1 ‖2 was solved. After some algebraic manipulations, the

unique solution was

βMHS
k+1 =

gT
k+1yk

yT
k dk

(
1−

(gT
k+1dk)

2

‖gk+1‖2‖dk‖2

)
= βHS

k+1ϑk, (5)

where

ϑk = 1−
(gT

k+1dk)
2

‖gk+1‖2‖dk‖2 . (6)

The above parameter and its modifications have some nice theoretical properties [26] and
the method with (5) and (3) performs well. Meanwhile, it is clear that if the exact line search
is adopted (i.e., gT

k+1dk = 0), it holds that βMHS
k+1 = βHS

k+1 = βPRP
k+1 .

To attain attractive computational performance and good theoretical properties, many
researchers have proposed hybrid CG methods. Among these methods, hybridizations of
the HS method and the DY method have shown promising numerical performance [31–34],
etc. The HS method has a nice property of automatically satisfying the conjugate condition
dT

k+1yk = 0 for ∀ k ≥ 0 independent of the accuracy of the line search strategies and the
convexity of the objective function and performs well in practice. On the other hand,
the DY method has remarkable convergence properties. These characteristics motivate
us to propose new hybridizations of the HS method and the DY method which not only
have attractive theoretical properties but also better numerical performance for large-scale
nonconvex problems.

In the following, we focus on the conjugate parameter βMHS
k+1 and propose a new hybrid

conjugate parameter of βDY
k+1 and βMHS

k+1 :

βN
k+1 = max

{
0, min

{
βDY

k+1, βMHS
k+1

}}
. (7)

Now, based on the new hybrid conjugate parameter βN
k+1 and the modified descent direc-

tion (8), we propose our hybrid algorithm (NMHSDY) in detail.
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It should be noted that the line search technique in Algorithm 1 is not fixed: It can be
selected by the users. Next, we show that the search direction dk generated by Algorithm 1
automatically has a sufficient descent property independent of any line search strategy.

Algorithm 1 New descent hybrid algorithm of MHS and DY methods (NMHSDY) for
nonconvex functions.
Step 0 . Input and Initialization. Select an initial point x0 ∈ Rn, parameter ε ≥ 0 and
compute f0 = f (x0) and g0 = g(x0). Set d0 = −g0 and k = 0;
Step 1. If ‖gk‖ ≤ ε, then stop;
Step 2. Compute step length αk along direction dk by some line search strategy;
Step 3. Let xk+1 = xk + αkdk;
Step 4. Compute the conjugate parameter βN

k+1 by (7) and the search direction dk+1 by

dk+1 = −
(

1 + βN
k+1

gT
k+1dk

‖gk+1‖2

)
gk+1 + βN

k+1dk, (8)

Step 5. Set k := k + 1 and go to Step 2.

Theorem 1. Let the search direction dk be defined by (8) in Algorithm 1. Then, for any line search
strategy, the sufficient descent property holds for nonconvex function f (x), that is,

gT
k dk = −‖gk‖2, ∀ k ≥ 0. (9)

Proof. By the definition of dk+1 in (8), we have

gT
k+1dk+1 = −‖gk+1‖2 − βk+1gT

k+1dk + βk+1gT
k+1dk = −‖gk+1‖2.

Since d0 = −g0, then dT
0 g0 = −‖g0‖2. All in all, (9) holds. This completes the proof.

3. Convergence for General Nonlinear Functions

In this section, the global convergence of the NMHSDY method is presented. Before
that, some common assumptions are listed.

Assumption 1. The level set L = {x ∈ Rn : f (x) ≤ f (x0)} is bounded, where x0 is the initial
point, i.e., there exists a positive constant D > 0 such that

‖x‖ ≤ D, ∀ x ∈ L. (10)

Assumption 2. In some neighborhood N of L, the gradient g(x) = ∇ f (x) is Lipschitz continuous,
i.e., there exists a constant L1 > 0 such that

‖g(x)− g(y)‖ ≤ L1 ‖x− y‖, ∀ x, y ∈ N. (11)

Based on the above assumptions, we further obtain that there exists a constant M > 0
such that

‖g(x)‖ ≤ M, ∀ x ∈ L. (12)

In fact, it holds that ‖g(x)‖ = ‖g(x) − g(x0) + g(x0)‖ ≤ ‖g(x) − g(x0)‖ + ‖g(x0)‖ ≤
L1‖x − x0‖ + ‖g(x0)‖ ≤ 2L1D + ‖g(x0)‖; hence, M can be 2L1E + ‖g(x0)‖ or larger
than that.

The line search strategy is another important element in iterative methods. In this part,
we take the standard Wolfe line search strategy:

f (xk + αkdk) ≤ fk + σ1αkgT
k dk, g(xk + αkdk)

Tdk ≥ σ2gT
k dk, (13)
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where 0 < σ1 < σ2 < 1. By property (9) and line search (13), it is satisfied that

fk+1 ≤ fk − σ1αk‖gk‖2 ≤ fk,

that is, the sequence { fk} is non-increasing and the sequence {xk} generated by Algorithm 1
is contained in the level set L. Since f is continuously differentiable and the set L is bounded,
then there exists a constant f ∗ such that

lim
k→∞

f (xk) = f ∗.

The Zoutendijk condition [35] plays an essential role in the global convergence of
nonlinear CG methods. For completeness, we here state the lemma but omit its proof.

Lemma 1. Suppose that Assumptions 1 and 2 hold. Consider any nonlinear CG method, in which
αk is obtained by the standard Wolfe line search (13) and dk is a descent direction (gT

k dk < 0). Then,
we have

∞

∑
k=1

(gT
k dk)

2

‖dk‖2 < ∞. (14)

Thereafter, the convergence property is presented in the following theorem for the
general functions without convexity assumption.

Theorem 2. Let Assumptions 1 and 2 hold and the sequence {xk} be generated by the NMHSDY

algorithm. Set lk+1 =
βN

k+1
βDY

k+1
, and if lk+1 ∈ [− 1−σ2

1+σ2
, 1− σ2] holds, then we have

lim inf
k→∞

‖gk‖ = 0. (15)

Proof. We now prove (15) by contradiction and assume that there exists a constant µ > 0
such that

‖gk‖ ≥ µ, ∀ k ≥ 0. (16)

Let γk+1 be 1 + βN
k+1

gT
k+1dk
‖gk+1‖2 , then the direction (8) can be rewritten as

dk+1 = −γk+1gk+1 + βN
k+1dk.

After some algebraic manipulation, we have

‖dk+1‖2 = (βN
k+1)

2‖dk‖2 − 2γk+1gT
k+1dk+1 − γ2

k+1‖gk+1‖2.

Dividing both sides of the above equality by (gT
k+1dk+1)

2, from (9), we have

‖dk+1‖2

‖gk+1‖4 = (βN
k+1)

2 ‖dk‖2

‖gk+1‖4 +
2γk+1

‖gk+1‖2 −
γ2

k+1
‖gk+1‖2

= (βN
k+1)

2 ‖dk‖2

‖gk+1‖4 +
1

‖gk+1‖2 −
(γk+1 − 1)2

‖gk+1‖2 ,

= l2
k+1
‖dk‖2

(dT
k yk)2

+
1

‖gk+1‖2 −
(γk+1 − 1)2

‖gk+1‖2 ,

≤
l2
k+1

(1− σ2)2
‖dk‖2

‖gk‖4 +
1

‖gk+1‖2 ≤
‖dk‖2

‖gk‖4 +
1

‖gk+1‖2 , (17)
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where the first inequality holds by dT
k yk ≥ (σ2 − 1)gT

k dk = (1 − σ2)‖gk‖2 and the last
inequality holds by the bound for the scale lk+1. By (17) and ‖d0‖2 = ‖g0‖2, it holds that

‖dk‖2

‖gk‖4 ≤
k

∑
i=0

1
‖gi‖2 .

Then, by the above inequality and (16), it follows that

‖gk‖4

‖dk‖2 ≥
µ2

k + 1
,

which indicates that
∞

∑
k=1

‖gk‖4

‖dk‖2 =
∞

∑
k=1

(gT
k dk)

2

‖dk‖2 = ∞,

which contradicts the Zoutendijk condition (14). So, (15) holds.

Remark 1. In [24], the authors presented a class of hybrid conjugate parameters, one of which
is βk+1 = max{0, min{βDY

k+1, βHS
k+1}}, with the corresponding interval for lk+1 being [−(1−

σ2)/(1 + σ2), 1]. It is reasonable that the interval in our paper is smaller since we take βMHS
k+1

instead of βHS
k+1 and 0 < ϑk ≤ 1.

In the following, we discuss the global convergence of Algorithm 1 for general non-
linear functions in the case of lk+1 /∈ [− 1−σ2

1+σ2
, 1− σ2]. Motivated by the modified secant

conditions in [36,37], in this part, based on the Wolfe line search strategy (13), we consider
the following settings:

ȳk = yk + msk, (18)

where m > 0 is a constant. With the above setting, the modified conjugate
parameter becomes

βNN
k+1 = max

{
0, min

{
βNDY

k+1 , βNMHS
k+1

}}
, (19)

where βNDY
k+1 and βNMHS

k+1 are, respectively,

βNDY
k+1 =

‖gk+1‖2

ȳT
k sk

, βNMHS
k+1 =

gT
k+1ȳk

ȳT
k sk

(
1−

(gT
k+1sk)

2

‖gk+1‖2‖sk‖2

)
.

Meanwhile, the corresponding direction turns to

dN
k+1 = −

(
1 + βNN

k+1
gT

k+1sk

‖gk+1‖2

)
gk+1 + βNN

k+1sk, (20)

The following lemma indicates the property of the scalar ȳT
k sk and ‖ȳk‖.

Lemma 2. Let ȳk be defined by (18); then, adopting the Wolfe line search strategy (13), we obtain

ȳT
k sk ≥ m‖sk‖2, (21)

and
‖ȳk‖ ≤ (L1 + m)‖sk‖. (22)

Proof. By the Wolfe line search strategy (13), we have

yT
k sk = (gk+1 − gk)

Tsk ≥ (σ2 − 1)gT
k sk ≥ (1− σ2)αk‖gk‖2 ≥ 0,
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which indicates yT
k sk ≥ 0. Therefore, it holds that

ȳT
k sk = yT

k sk + m‖sk‖2 ≥ m‖sk‖2.

Hence, (21) holds. Meanwhile, we also have

‖ȳk‖ = ‖yk + msk‖ ≤ ‖yk‖+ m‖sk‖ ≤ (L1 + m)‖sk‖,

where the second inequality holds by Assumption 2. Hence, (22) holds. This completes
the proof.

In the following, we assume that Algorithm 1 never stops and there exists a constant
µ > 0 such that for all k, (16) holds.

Lemma 3. Suppose that Assumptions 1 and 2 and (16) hold. The sequences {xk} and {dN
k } are

generated by Algorithm 1 with the conjugate parameter βNN
k and adopting the Wolfe line search

technique (13). Then, there exists a positive constant Γ such that

‖gk‖ ≤ ‖dN
k ‖ ≤ (1 + 2Γ)‖gk‖. (23)

Proof. Based on the Wolfe line search technique (13), it holds that

ȳT
k dN

k = yT
k dN

k + mαk‖dN
k ‖2 ≥ yT

k dN
k = −(1− σ2)gT

k dN
k = (1− σ2)‖gk‖2, (24)

where the first inequality holds by the non-negativity of αk and the last inequality holds by
the sufficient descent property (9). Meanwhile, by (9) and the Cauchy–Schwartz inequality,
it holds that, for ∀ k ≥ 0,

‖gk‖‖dN
k ‖ ≥ −gT

k dN
k = ‖gk‖2,

which implies that from condition (16),

‖dN
k ‖ ≥ ‖gk‖ ≥ µ, ∀ k ≥ 0. (25)

By the definition of βNN
k+1, we obtain that

|βNN
k+1| ≤ max

{
‖gk+1‖2

|ȳT
k sk|

,
|gT

k+1ȳk|
|ȳT

k sk|

}
≤ max

{‖gk+1‖2

m‖sk‖2 ,
‖gk+1‖‖ȳk‖

m‖sk‖2

}

≤ ‖gk+1‖
‖sk‖

max
{‖gk+1‖

m‖sk‖
,

L1 + m
m

}
≤ ‖gk+1‖
‖sk‖

max

{
M

mᾱ‖dN
k ‖

,
L1 + m

m

}

≤ ‖gk+1‖
‖sk‖

max
{

M
mᾱ‖gk‖

,
L1 + m

m

}

≤ ‖gk+1‖
‖sk‖

max
{

M
mᾱµ

,
L1 + m

m

}
:= Γ

‖gk+1‖
‖sk‖

,

where the second inequality holds by (21), the third inequality holds by (22), the fourth
inequality holds by the condition αk ≥ α > 0 for all k ≥ 0, the fifth inequality holds by (25),
and the last inequality holds by the condition (16). Furthermore, we have

∣∣∣∣∣β
NN
k+1

gT
k+1sk

‖gk+1‖2

∣∣∣∣∣ ≤ |β
NN
k+1|
‖gk+1‖‖sk‖
‖gk+1‖2 ≤ Γ

‖gk+1‖
‖sk‖

‖sk‖
‖gk+1‖

= Γ.

By the definition of dN
k in (20) and the above discussions, it holds that
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‖dN
k+1‖ ≤ ‖gk+1‖+

∣∣∣∣∣β
NN
k+1

gT
k+1sk

‖gk+1‖2

∣∣∣∣∣‖gk+1‖+ |βNN
k+1|‖sk‖

≤ ‖gk+1‖+ Γ‖gk+1‖+ Γ
‖gk+1‖
‖sk‖

‖sk‖

= (1 + 2Γ)‖gk+1‖.

With the help of (25), we conclude that

‖gk+1‖ ≤ ‖dN
k+1‖ ≤ (1 + 2Γ)‖gk+1‖.

Hence, (23) holds. This completes the proof.

Theorem 3. Suppose that Assumptions 1 and 2 hold. The sequences {xk} and {dN
k } are generated

by Algorithm 1 with the conjugate parameter βNN
k and the Wolfe line search technique (13) is

adopted. Then, Algorithm 1 converges in the sense of (15).

Proof. We prove the conclusion by contradiction and assume that there exists a posi-
tive constant µ such that (16) holds. Otherwise, Algorithm 1 converges in the sense of
(15). From (9), we conclude that the new direction enjoys the sufficient descent property.
Therefore, Lemma 1 holds, which implies that

+∞ =
+∞

∑
k=1

µ2

(1 + 2Γ)2 ≤
+∞

∑
k=1

‖gk‖2

(1 + 2Γ)2 =
+∞

∑
k=1

‖gk‖4

(1 + 2Γ)2‖gk‖2 ≤
+∞

∑
k=1

(gT
k dN

k )2

‖dN
k ‖2

< +∞,

where the first inequality holds by (16), the second inequality holds by (9) and (23), and the
last inequality holds by Lemma 1. However, that is a contradiction and the assumption
does not hold. So, the lim infk→+∞ ‖gk‖ = 0 holds. This completes the proof.

4. Numerical Performance

In this section, we focus on the numerical performance of Algorithm 1 and compare it
with several effective CG methods. In the experiment, we code these algorithms in Matlab
2016b and perform them on a PC computer, whose processor has AMD 2.10 GHz, RAM of
16.00 GB and the Windows 10 operating system.

4.1. Performance on Benchmark Problems

In this subsection, we check the performance of the NMHSDY method and compare it
with two effective modified HS methods in [26,28] and the hybrid method in [24]. In [26],
the authors proposed an effective modified HS method (MHSCG method for abbreviation)
in which the conjugate parameter is

βk+1 = max{0, β̄MHS
k+1 }, β̄MHS

k+1 = βMHS
k+1 − λ

(
‖yk‖ϑk

yT
k dk

)2

gT
k+1dk,

where λ > 1/4 is a parameter. The direction in [26] is in the form of (3) and the correspond-
ing method has attractive numerical performance. Dai and Kou in [28] introduced another
effective class of CG schemes (DK+ method for abbreviation) depending on the parameter
τk, where the corresponding conjugate parameter βk+1 is defined by

βDK
k+1(τk) = βHS

k+1 −
(

τk +
‖yk‖2

yT
k sk
− yT

k sk

‖sk‖2

)
gT

k+1sk

yT
k dk

, sk = xk+1 − xk.
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The direction in [28] is also in the form of (3). To establish global convergence for general
nonlinear functions, a truncated strategy is used, that is,

βDK+
k+1 (τk) = max

{
βDK

k+1(τk), η
gT

k+1dk

‖dk‖2

}
,

where η ∈ [0, 1) is a parameter. The numerical results indicated the DK+ method has good
and reliable numerical performance. Dai and Yuan, in [24], proposed an effective hybrid
CG method (HSDY method for abbreviation) in which the conjugate parameter is

βk+1 = max{0, min{βDY
k+1, βHS

k+1}}.

The hybrid method also has global convergence and attractive numerical performance.
In the following, we focus on the numerical performance and the large-scale un-

constrained problems in Table 1 (see [38] for details). In order to improve numerical
performance, Andrei, in [39], proposed an accelerated strategy which modified the step in
a multiplicative manner. In this part, we also utilize this strategy and regard Algorithm 1
with the accelerated strategy as Algorithm 1. To compare the conjugate parameters and the
search directions fairly, here we adopt the Wolfe line search technique (13) for all methods.

Table 1. The test problems.

No. Problem No. Problem

1 Extended Freudenstein and Roth Function 32 ARWHEAD (CUTE)
2 Extended Trigonometric Function 33 NONDIA (Shanno-78) (CUTE)
3 Extended Rosenbrock Function 34 DQDRTIC (CUTE)
4 Extended Beale Function 35 EG2 (CUTE)
5 Extended Penalty Function 36 DIXMAANA (CUTE)
6 Perturbed Quadratic Function 37 DIXMAANB (CUTE)
7 Raydan 1 Function 38 DIXMAANC (CUTE)
8 Raydan 2 Function 39 DIXMAANE (CUTE)
9 Diagonal 3 Function 40 Broyden Tridiagonal

10 Generalized Tridiagonal-1 Function 41 Almost Perturbed Quadratic
11 Extended Tridiagonal-1 Function 42 Tridiagonal Perturbed Quadratic
12 Extended Three Exponential Terms 43 EDENSCH Function (CUTE)
13 Generalized Tridiagonal-2 44 VARDIM Function (CUTE)
14 Diagonal 4 Function 45 LIARWHD (CUTE)
15 Diagonal 5 Function 46 DIAGONAL 6
16 Extended Himmelblau Function 47 DIXMAANF (CUTE)
17 Generalized PSC1 Function 48 DIXMAANG (CUTE)
18 Extended PSC1 Function 49 DIXMAANH (CUTE)
19 Extended Powell Function 50 DIXMAANI (CUTE)
20 Extended Cliff Function 51 DIXMAANJ (CUTE)
21 Quadratic Diagonal Perturbed Function 52 DIXMAANK (CUTE)
22 Extended Wood Function 53 DIXMAANL (CUTE)
23 Extended Hiebert Function 54 DIXMAAND (CUTE)
24 Quadratic Function QF1 55 ENGVAL1 (CUTE)
25 Extended Quadratic Penalty QP1 Function 56 COSINE (CUTE)
26 Extended Quadratic Penalty QP2 Function 57 Extended DENSCHNB (CUTE)
27 A Quadratic Function QF2 Function 58 Extended DENSCHNF (CUTE)
28 Extended EP1 Function 59 SINQUAD (CUTE)
29 Extended Tridiagonal-2 Function 60 Scaled Quadratic SQ1
30 BDQRTIC (CUTE) 61 Scaled Quadratic SQ2
31 TRIDIA (CUTE)

In the experiment, for each problem we consider nine large-scale dimensions with
300, 600, 900, 3000, 6000, 9000, 30,000, 60,000 and 90,000 variables. The parameters used in
the Wolfe line search are σ1 = 0.20 and σ2 = 0.85. The other parameters for the MHSCG
method and the DK+ method are as default.
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During the progress, the Himmeblau stopping rule is adopted: if | f (xk)| > ε1, let
stop1 =

| f (xk)− f (xk+1)|
| f (xk)| , otherwise, stop1 = | f (xk)− f (xk−1)|. If the conditions ‖gk‖ ≤ ε or

stop1 ≤ ε2 are satisfied, then the progress is stopped, where the values of parameters ε, ε1,
and ε2 are ε = 10−6, and ε1 = ε2 = 10−5. Meanwhile, we also stop the algorithm when the
number of iterations is greater than 5000.

In order to present the performances of methods more intuitively, the tool in [40]
is adopted to analyze the profiles of these methods. Robustness and efficiency rates are
readable on the right and left vertical axes of the corresponding performance profiles,
respectively. To present a detailed numerical comparison, two different scales have been
considered for the τ-axis. One is τ ∈ [1, 1.5], which shows what happens for the values of τ
near to 1. The other is used to present the trend for large values of τ. In Figures 1–3, we,
respectively, show the performance of these methods relative to the number of iterations
(NI), the number of function-gradient valuations (NFG; which is the sum of the number of
function valuations and gradient valuations), and the CPU time consumed in seconds.
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Figure 1. Performance profiles of the methods in the number of iterations case.
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Figure 2. Performance profiles of the methods in the function and gradient case.
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Figure 3. Performance profiles of the methods in the CPU time consumed case.

From Figures 1–3, we have that Algorithm 1 is comparable and a little more effective
than the HSDY method, the DK+ method, and the MHSCG method for the above problems.

174



Mathematics 2024, 12, 3088

Meanwhile, Algorithm 1, with the accelerated strategy, is much effective and performs
best in the experiment, which indicates that the accelerated technique indeed works and
reduces the number of iterations and the number of function and gradient evaluations.

4.2. Comparison for Stability

In this subsection, we consider the numerical stability of Algorithm 1 for the ill-
conditioned matrix problems and compare it with the MHSCG method in [26]. In fact, the
quadratic objective function f (x) = xTIx of (1) is ill-conditioned if matrix I ∈ Rn×n is in
the form

Ii,j =
1

i + j− 1
, i, j = 1, 2, . . . , n.

It is clear that the matrix I is ill-conditioned and positive definite [41], with different
dimensions n = 5, 6, . . . , 50. Furthermore, the authors in [42] show that the `∞ norm
condition number of the Hessian matrix I gradually increases from 9.4366× 105 for n = 5
to 6.9007× 1020 for n = 50. In the following, we explore the numerical performance. The
experimental environment, the parameter values, and the stop rule remain the same as
in the above subsection. Meanwhile, the initial point is selected as x0 = (10, 10, · · · , 10).
The corresponding numerical results are presented in Tables 2 and 3, in which Dim is the
dimension of x, NI means the number of iterations, NFG is the sum of the number of
function and gradient evaluations, Time means the CPU time consumed in seconds, and f ∗

denotes the optimal function obtained by the methods.

Table 2. Numerical results of the MHSCG method and Algorithm 1 in 5–40 dimensions.

MHSCG Method Algorithm 1

Dim NI NFG Time f∗ NI NFG Time f∗

5 5 22 0.000000 0.000000 5 22 0.000000 0.000000

6 13 48 0.031250 0.000000 13 48 0.000000 0.000000

7 21 72 0.000000 0.000000 21 72 0.000000 0.000000

8 21 72 0.000000 0.000000 21 72 0.015625 0.000000

9 27 92 0.000000 0.000006 24 82 0.000000 0.000000

10 41 143 0.000000 0.000007 29 97 0.000000 0.000000

11 75 246 0.000000 0.000009 55 192 0.000000 0.000000

12 58 203 0.000000 0.000003 70 249 0.000000 0.000008

13 57 190 0.000000 0.000004 70 246 0.000000 0.000000

14 86 276 0.031250 0.000008 123 429 0.000000 0.000000

15 75 264 0.031250 0.000009 89 314 0.000000 0.000009

16 98 330 0.000000 0.000008 52 177 0.000000 0.000001

17 24 82 0.000000 0.000002 66 232 0.000000 0.000002

18 65 215 0.031250 0.000009 28 97 0.000000 0.000000

19 31 105 0.000000 0.000007 27 94 0.000000 0.000000

20 111 373 0.031250 0.000009 131 452 0.000000 0.000010

21 117 379 0.031250 0.000008 31 108 0.000000 0.000000

22 96 333 0.000000 0.000010 66 236 0.000000 0.000000

23 68 233 0.000000 0.000009 85 303 0.031250 0.000000

175



Mathematics 2024, 12, 3088

Table 2. Cont.

MHSCG Method Algorithm 1

Dim NI NFG Time f∗ NI NFG Time f∗

24 50 175 0.031250 0.000000 43 151 0.000000 0.000000

25 96 318 0.000000 0.000009 103 377 0.000000 0.000000

26 113 370 0.000000 0.000009 112 410 0.000000 0.000004

27 22 78 0.000000 0.000000 129 473 0.031250 0.000001

28 104 372 0.000000 0.000009 24 87 0.000000 0.000000

29 156 513 0.000000 0.000010 130 449 0.000000 0.000001

30 54 185 0.000000 0.000001 121 446 0.000000 0.000007

31 39 144 0.000000 0.000003 97 341 0.000000 0.000008

32 26 97 0.000000 0.000001 79 292 0.031250 0.000001

33 87 309 0.000000 0.000010 66 234 0.031250 0.000002

34 58 213 0.000000 0.000006 60 217 0.031250 0.000000

35 97 327 0.000000 0.000009 25 95 0.000000 0.000002

36 24 86 0.000000 0.000000 132 481 0.000000 0.000003

37 23 84 0.000000 0.000004 55 192 0.000000 0.000001

38 93 312 0.046875 0.000010 40 142 0.000000 0.000003

39 148 487 0.046875 0.000005 124 442 0.140625 0.000010

40 66 231 0.000000 0.000007 136 496 0.031250 0.000007

Table 3. Numerical results of the MHSCG method and Algorithm 1 in 41–50 dimensions.

MHSCG Method Algorithm 1

Dim NI NFG Time f∗ NI NFG Time f∗

41 76 267 0.031250 0.000005 65 239 0.000000 0.000005

42 130 438 0.046875 0.000008 85 302 0.000000 0.000010

43 164 546 0.031250 0.000009 136 488 0.000000 0.000009

44 184 594 0.031250 0.000007 29 103 0.000000 0.000006

45 17 64 0.000000 0.000000 17 64 0.000000 0.000000

46 155 519 0.031250 0.000010 62 222 0.000000 0.000000

47 123 421 0.031250 0.000010 107 379 0.031250 0.000010

48 20 74 0.000000 0.000000 68 250 0.015625 0.000010

49 135 473 0.031250 0.000010 102 375 0.031250 0.000010

50 178 594 0.062500 0.000010 151 542 0.031250 0.000009

From Tables 2 and 3, it can be found that for the dimensions from 5 to 50, Algorithm 1
and the MHSCG method successfully solve all of them and obtain reasonable optimal
function values, which are all not greater than 10−5. For most problems, Algorithm 1 needed
fewer iterations and function and gradient evaluations and obtained better optimal values.
In order to show numerical performance intuitively, here we also adopt the performance
profiles in [40] for the NI and NFG cases. The corresponding performance profiles are given
in Figures 4 and 5.
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Figure 4. Performance profiles of Algorithm 1 and the MHSCG method in NI case.
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Figure 5. Performance profiles of Algorithm 1 and the MHSCG method in NFG case.

Figure 4 shows that Algorithm 1 and the MHSCG method solve these testing problems
with the least total number of iterations in 63% and 48% of cases, respectively. Figure 5
indicates that Algorithm 1 and the MHSCG method solve these testing problems with
the least total number of function and gradient evaluations in 61% and 50% of cases,
respectively. All in all, the numerical results show that Algorithm 1 is more effective and
stable than the MHSCG method for these ill-conditioned matrix problems.

4.3. Application to Image Restoration

In this subsection, we apply Algorithm 1 to some image restoration problems [43–45].
During the process, the normal Wolfe line search technique is adopted, the corresponding
parameters remain unchanged, and two noise level cases for the Barbara.png (512× 512)
and Baboon.bmp (512× 512) images are considered. In this part, we stop the process when
the following criteria are both satisfied:

| f (xk+1)− f (xk)|
| f (xk)|

< 10−3, ‖g(xk)‖ < 10−3(1 + | f (xk)|).

Meanwhile, to assess the restoration performance qualitatively, we also utilize the peak
signal to noise ratio [45] (PSNR), which is defined by PSNR = 10 log10

2552
1

M×N ∑i,j(ur
i,j−u∗i,j)

2 ,

where M and N are the true image pixels, and ur
i,j and u∗i,j denote the pixel values of the

restored image and the original image, respectively. For the noise level, we consider two
cases: 20% (a low-level case) and 60% (a high-level case). The consumed CPU time and the
corresponding PSNR values are given in Table 4. Meanwhile, the detailed performances
are presented in Figures 6 and 7, respectively.
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Table 4. Test results for Algorithm 1 and the MHSCG method.

Algorithm 1 MHSCG Method
Image Noise Level PSNR CPU Time PSNR CPU Time

Barbara 20% 29.6638 2.265625 29.5831 2.578125
Baboon 20% 27.9223 2.609375 27.8455 3.250000
Barbara 60% 23.1256 3.593750 23.1103 3.765625
Baboon 60% 21.1836 3.484375 21.1582 3.671875

Figure 6. The noisy Barbara image, corrupted by salt-and pepper noise (the first column); the images
restored via Algorithm 1 (the second column), and via the MHSCG method (the third column).

Figure 7. The noisy Baboon image, corrupted by salt-and pepper noise (the first column); the images
restored via Algorithm 1 (the second column), and via the MHSCG method (the third column).

From Table 4 and Figures 6 and 7, we have that Algorithm 1 and the MHSCG method
can all solve the image restoration problems successfully within a suitable time, and
Algorithm 1 seems to perform a little better than the MHSCG method.

5. Conclusions

Conjugate gradient methods are attractive and effective for large-scale unconstrained
optimization smooth problems due to their simple computation and low memory require-
ments. The Dai–Yuan conjugate gradient method has good theoretical properties and
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generates a descent direction in each iteration. Whereas, the Hestenes–Stiefel conjugate
gradient method automatically satisfies the conjugate condition yT

k dk+1 = 0 without any
line search technique and performs well in practice. By the above discussions, we propose
a new descent hybrid conjugate gradient method. The proposed method has a sufficient
descent property independent of any line search technique. Under some mild conditions,
the proposed method is globally convergent. In the experiments, we first consider 61 uncon-
strained problems with 9 different dimensions up to 90, 000. Thereafter, 46 ill-conditioned
matrix problems are also tested. The primary numerical results show that the proposed
method is more effective and stable. Finally, we apply the hybrid method to some image
restoration problems. The results indicate our method is attractive and reliable.
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Abstract: The extreme ultraviolet (EUV) photolithography process is a cornerstone of semiconductor
manufacturing and operates under demanding precision standards realized via nanometer-level
overlay (OVL) error modeling. This procedure allows the machine to anticipate and correct OVL
errors before impacting the wafer, thereby facilitating near-optimal image exposure while simulta-
neously minimizing the overall OVL error. Such models are usually high dimensional and exhibit
rigorous statistical phenomena such as collinearities that play a crucial role in the process of tuning
their parameters. Ordinary least squares (OLS) is the most widely used method for parameters
tuning of overlay models, but in most cases it fails to compensate for such phenomena. In this
paper, we propose the usage of ridge regression, a widely known machine learning (ML) algorithm
especially suitable for datasets that exhibit high multicollinearity. The proposed method was applied
in perturbed data from a 300 mm wafer fab, and the results show reduced residuals when ridge
regression is applied instead of OLS.

Keywords: overlay modeling; photolithography; parameters tuning; EUV lithography; semiconductor
manufacturing; yield results

MSC: 37M05

1. Introduction

According to Moore’s law, “the number of transistors that can be placed on a chip dou-
bles every 24 months” [1]. Maintaining Moore’s law is highly challenging, because it calls
for continuous advancement in a very complex industry. Despite this, recent developments
in the production of integrated circuits (ICs), particularly in photolithography, have enabled
the industry to keep up with the high process standards. Owing to its role in transferring a
desired pattern to a photosensitive material on the wafer surface (photocurable material;
most frequently, commercial photo resist [2]) by exposing it to ultraviolet (UV) or extreme-
UV (EUV) light, photolithography [3] is a crucial component of the entire process. Wafers
with a high overlay (OVL) and small critical dimension (CD) are the result of a successful
photolithography process. The smaller the exposed pattern and the smaller the exposed ICs
on the wafer, the better the OVL and the smaller the CD. Therefore, photolithography is the
most crucial step in the production of integrated circuits comprising the base mechanism
that supports Moore’s law.

In terms of hardware and software, photolithography machines rank among the most
complex machines in the market. It is highly challenging to orchestrate and operate the
machine in such a way that it satisfies the extremely stringent OVL and CD standards,
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given the machine’s more than 50 million lines of code and thousands of hardware modules.
This precision is impossible for the hardware alone. Software control techniques that cope
with hardware imperfections are essential components of the machine. Software will enable
the machine to meet the OVL and CD KPIs, which will confirm the machine’s quality.

The fundamental premise underlying this is that the machine can precisely model
anticipated wavefront aberrations at the nanoscale level. The software then adjusts the
associated machine knobs, such as mirror locations, such that it compensates for the
anticipated aberrations because it knows what to expect. The required pattern is then
exposed to the fewest possible flaws because the predicted fingerprint is rectified before it
reaches the wafer surface. Under these circumstances, we recognize that one of the most
important and difficult responsibilities of the photolithography process is the ability to
create precise models. These models are the primary tools for successful exposure.

The process of describing the spatial changes in the overlay (OVL) of the features
being printed is known as OVL fingerprint estimation (FE) in photolithography. These
discrepancies can be caused by several factors, including flaws in the mask or the lithog-
raphy procedure itself. The OVL of the features at various positions on the wafer are
often measured using specialized metrology instruments that can estimate fingerprints.
Information regarding the spatial changes in the OVL is then extracted from the resulting
data and utilized to generate a “fingerprint” of the lithography process. Modeling the OVL
is an essential step in the FE process. OVL modeling is the process of creating mathematical
and statistical models to forecast how various process parameters affect OVL. By modifying
the lithography process parameters in real time to meet the necessary OVL criteria, these
models can be used to improve the lithography process. To ensure a high yield and reliable
performance of the lithography process, FE estimation is a crucial tool.

A polynomial model is a mathematical or statistical representation of a system or
process and polynomial. The basis functions and parameters are the two main components
of the model. The structure of the problem and the properties of the data being modeled
influence the basis functions that are used. On the other hand, model parameters are the
estimated values that are used to define the model and are derived from the data. The
precise values of the basis functions that best suit the data are determined by the parameters.
In our specific use case, we need to provide the model for OVL. A linear model for OVL is
defined by

m(x, y) = Φ× p

Φ is the information matrix which consists of the basis function φ(x, y), and p are the
parameters of our model. The OVL polynomial has p coefficients or parameters. As
described above, the information matrix Φ is already known to us and, in that case, the
goal of FE is to estimate the parameters p of our model.

Overlay control is a critical part that enables the exposure system to successfully
imprint the complex patterns and meet the strict requirements of modern IC designs. The
current photolithographic systems manage to successfully control overlay via a combina-
tion of advanced process control (APC) and metrology modules. Metrology contributes
to defining and tuning the overlay models (so that they accurately describe the expected
systematic and nonsystematic overlay errors [4–6]), as well as relating them to the corre-
sponding controllable knobs of the exposure system [7]. The coupling of overlay error
predictions, via overlay models, with machine knobs defines the so called run-to-run (R2R)
paradigm of overlay control [8–10]. Obviously, for an R2R process to be successful, it is
crucial that the overlay models can accurately estimate the expected overlay errors. Ex-
tensive research has been conducted in defining overlay models. In [11], multilevel state
space models were defined based on existing physics models [12–14], where multilayer,
stack up overlay error models were developed. Extensive research has been conducted for
improving the overlay modeling process, with the focus being either on optimizing the
wafer measurements ([15,16]) or on investigating different metrics and cost functions ([17]
Zhang et al.).
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However, it is not sufficient to define the overlay model based only on the underlying
physics; it is equally important that the metrology system further tunes the parameters
of the overlay model. The ordinary least squares optimization (OLS) method is the most
employed regression technique by the current exposure systems. OLS finds the regression
coefficients of the overlay model that minimize the residual sum of the squared errors of the
difference between the measured and the predicted overlay [18]. In Figure 1, the process of
FE is presented. Since the basis functions of the model φ(x, y) are already predefined, the
goal of the FE process is to obtain the best estimation of the model parameters p.

Model

Basis functions

Coefficients

Sensor 
Measurements

Parameter 
Optimization

+
(x, y)

𝑚 𝑥,𝑦  

𝜎𝜀  

𝑚  𝑥,𝑦  
 𝑝𝑘 × 𝜙𝑘 𝑥 ,𝑦 

q

k

 

𝜙 𝑥,𝑦  

𝑝 

Figure 1. Fingerprint estimation as a block diagram.

Multicollinearity in high-dimensional datasets is a well-known challenge, particularly
when multiple predictors are highly correlated. This can lead to unstable estimates in
traditional regression models such as ordinary least squares (OLS), reducing their predictive
power. To address this, alternative techniques such as principal component analysis (PCA),
ridge regression, and lasso regression have been widely adopted. PCA is a dimensionality
reduction technique that transforms the original variables into uncorrelated principal
components, thereby eliminating multicollinearity by projecting the data into a lower-
dimensional space where the principal components are orthogonal to each other [19].
Ridge regression adds an L2 regularization term to the OLS equation, which shrinks the
coefficients of correlated variables, reducing their variance, and, thereby stabilizing the
model [20,21]. Lasso regression, on the other hand, incorporates an L1 regularization term
that not only shrinks the coefficients but can also set some of them exactly to zero, effectively
performing variable selection while mitigating multicollinearity [22,23]. These methods are
particularly useful when variable elimination is undesirable, as they allow the model to
retain all the predictors while reducing the impact of multicollinearity on the predictive
accuracy. Additionally, elastic net is an alternative approach particularly well suited for
complex datasets. Elastic net combines both L1 (lasso) and L2 (ridge) penalties, making
it highly effective in datasets that exhibit both multicollinearity and the need for variable
selection. This hybrid approach balances the benefits of both ridge and lasso, allowing
elastic net to handle correlated predictors and perform feature selection simultaneously [24].
When features in a dataset are highly correlated, the design matrix X in a linear regression
model Y = Xβ + ε becomes nearly singular or ill-conditioned. This condition leads to
large variances in the least squares estimates of the coefficients, β, because the inverse of
XTX (which is needed to compute the OLS estimates β̂ =

(
XTX

)−1XTY) will be unstable
or significantly influenced by small changes in X or Y. Ridge regression minimizes |Y −
Xβ|22 + λ|β|22, which shrinks coefficients smoothly and can handle collinearity better than
lasso or PCA as it tends to reduce the coefficients proportionally, maintaining their relative
influence on the outcome. Furthermore, ridge regression, by reducing the magnitude of all
coefficients through its L2 penalty, tends to be more stable, although it does not reduce the
model complexity by setting coefficients to zero.

A useful diagnostic tool to detect multicollinearity is the variance inflation factor
(VIF), which quantifies how much the variance of a regression coefficient is inflated due
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to collinearity with other predictors. A high VIF value indicates that the parameter is
highly collinear with others, making it problematic for reliable estimation. A general
rule is that a VIF greater than 5 suggests moderate multicollinearity, while a VIF above
10 indicates a high level of multicollinearity [25]. By identifying variables that exhibit high
variance inflation factor (VIF) values, we are able to determine which parameters induce
multicollinearity. Subsequently, techniques such as principal component analysis (PCA),
ridge, or lasso regression may be employed to address these issues, thereby enhancing the
robustness of the model.

Importantly, the removal or combination of collinear parameters, while potentially
reducing multicollinearity, is often undesirable because it can result in a significant loss
of valuable information. Each predictor variable may carry unique and relevant aspects
of the underlying data, and eliminating or combining them could obscure these nuances,
leading to less precise and informative models [26]. Therefore, methods such as ridge
or lasso regression, which allow for the retention of all variables while addressing the
multicollinearity problem, are preferred in scenarios where preserving the integrity of the
dataset is paramount.

In this paper, we are investigating the the fitness of the OLS algorithm for modeling
highly dimensional overlay data. Among the aforementioned alternatives, we are propos-
ing the usage of ridge regression over the classical OLS. The remainder of the paper is
organized as follows: Section 2 describes the proposed method, and in Section 3 we show
the results of applying the proposed method on an actual industrial process of 300 mm
wafers. Finally, Section 4 presents the conclusions and potential future work.

2. Materials and Methods

In this paper, we propose to use ridge regression instead of the classic OLS method for
tuning the parameters p of the overlay models. The overlay models, as mentioned above,
consist of a set of basis functions φ(x, y) that are already predefined based on the physics
and specific parameters of the process. Ridge regression, or Tikhonov regularization [21], is
a statistical method for estimating the parameters of multiple regression models in scenarios
where the independent variables are highly correlated.

Ridge regression is particularly useful in ill-posed problems which exhibit multi-
collinearity in their independent variables. In our case, we try to find the vector p of
parameters such that

m = Φ× p

As mentioned before, the standard approach is to use the OLS method. OLS seeks to
minimize the sum of the squared residuals:

||Φp−m||22

However, if no p satisfies the equation or more p do, then the problem is ill-posed and
OLS might lead to an over- or underdetermined system of equations.

Ridge regression adds a regularization term ||Γx||22 for some suitable chosen matrix
Γ = αI. This is known as L2 regularization. This ensures smoothness and improves the
conditioning of the problem. The minimization problem to be solved, then, is

||Φp−m||22 + ||Γx||22

And the corresponding parameter vector p:

p = (ΦTΦ + ΓTΓ)−1ΦTm

To select the regularization parameter, we employed the 10-fold cross-validation
method. The 30 layers were used as the training dataset, while the remaining 10 layers
served as the test set. The cross-validation process determined that the optimal regu-
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larization parameter was α = 1.0, which means that Γ = I. A value of α = 1.0 means
that the model benefits from a moderate amount of regularization, helping to stabilize
the coefficient estimates and improve generalization without undermining the model’s
ability to accurately capture the relationships between the features and the target variable.
Essentially, the regularization helps prevent overfitting by reducing the influence of less
important or highly correlated features, but it does not overpenalize the model to the point
where its predictions become too simplistic or inaccurate.

In Figure 2, the correlation matrix of the Overlay X and Overlay Y is presented. There
seems to be high correlation between approximately 50 of the 161 parameters. This is an
indication (a strong one, though) that there is significant collinearity in the parameters, and
this needs to be further investigated.
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Figure 2. Correlation matrices for Overlay X and Overlay Y.

The variance inflation factor VIF is a statistical measure that quantifies the degree of
multicollinearity for each independent variable. VIF is calculated as follows:

VIF = 1/(1− R2)
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with R2 being the square of the OLS solutions. A value of VIF > 5 indicates moderate mul-
ticollinearity, while VIF > 10 indicates high multicollinearity. Performing the VIF check
in our OLS solutions for Overlay X and Y results in high mulitcollinearity in 62/161 pa-
rameters for Overlay X and in 109/161 parameters for Overlay Y. Therefore, the conclusion
is that multicollinearity needs to be addressed. In this case, indeed, the ridge regression
method should be able to address the issue and improve the parameter estimation method.

3. Results and Discussion

In our experiments, we compared the overlay residuals (in X and in Y) for both ridge
regression and OLS methods. The expected overlay, per field point, is compared to the
actual overlay. Next, a statistical analysis of the results is performed. In assessing the
performance we use the 99.7th percentile and max residual metrics. Utilizing these metrics
enables a comprehensive understanding of the overlay performance, providing insights
into the extent of variability and the upper bounds of error dispersion.

The goal of our method is to accurately model the measured overlay and reproduce
it with minimum error. In Figure 3, we can see the measured Overlay X on the left and
the modeled Overlay X on the right, using the ridge regression method. In this visual
representation, we can see that the modeled overlay is able to successfully capture the
expected overlay. Also, in areas of the wafer where there seems to be abnormal behavior as
on the edges of the wafer, the patterns seems to really match. Similarly, in Figure 4, ridge
regression also performs well on Overlay Y.

OLS Modelled Ridge Regression Modelled

Real Measurement

Figure 3. Overlay X—Comparing the modeling result of OLS vs. ridge regression for one of the exposed
layers. The real measurement (that serves as a benchmark) is presented at the top of the figure.

The residuals vs. the predicted values for ridge regression and OLS are presented in
Figures 5 and 6, respectively.

In Figure 7, the Overlay X residuals in 99.7 are presented for both OLS and ridge
regression methods. For 8/12 layers, ridge regression outperforms the OLS method.
Despite the overall model exhibiting certain statistical properties, such as multicollinearity,
it is important to recognize that each layer in the process can behave differently. Several
factors, particularly measurement noise, can significantly impact individual layers. In
our case, this measurement noise plays a substantial role in the variability of the process.
As a result, it is not surprising that OLS may outperform ridge regression in specific
layers, such as layers 3, 5, and 6, where the unique characteristics of the exposure process
may not benefit as much from regularization. In these cases, OLS may capitalize on the
direct relationships between variables without the need for regularization, whereas ridge
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regression’s penalty on coefficients may dampen the model’s performance. However, it is
important to focus on the overall performance of the model, rather than isolated instances.
The broader trends across all layers indicate that ridge regression remains a robust choice,
particularly in mitigating the effects of multicollinearity, even if OLS is favored in specific
layers due to the unique “exposure specifics” that tend to influence the outcome.

OLS Modelled Ridge Regression Modelled

Real Measurement

Figure 4. Overlay Y—Comparing the modeling result of OLS vs. ridge regression for one of the exposed
layers. The real measurement (that serves as a benchmark) is presented at the top of the figure.

Figure 5. Residuals vs. predicted with ridge regression for one of the exposed layers.

Figure 6. Residuals vs. predicted with OLS for one of the exposed layers.
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Figure 7. Overlay X—99.7 residual.

The max residuals in Overlay X are compared in Figure 8. Here, we observe a different
pattern than in 99.7. OLS outperforms the ridge regression in 9/12 layers. From these
results, we cannot yet draw a safe conclusion. It depends which metric we value most (99.7
vs. max), and this actually depends on the use case. However, the superiority of ridge
regression in 99.7 only is an interesting conclusion already.
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Figure 8. Overlay X—max residual.

When checking the Overlay in Y, we draw a more clear picture of the situation. As
presented in Figure 9, ridge regression significantly outperforms the OLS in all 12 layers.
On average, this is a 1.04 nm improvement. In this case, the superiority of ridge regression
is clear.
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Figure 9. Overlay Y—99.7 residual.
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Similarly, in Overlay max, Figure 10 shows ridge regression outperforming OLS in all
wafers with an average improvement of 1.10 nm.
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Figure 10. Overlay Y—max residual.

The results presented in Tables 1 and 2 illustrate the performance of ridge regression
compared to ordinary least squares (OLS) across multiple layers in terms of the OVL X
and OVL Y metrics, both for the 99.7th percentile residuals and the maximum residuals.
In Table 1, which focuses on OVL X, ridge regression generally performs better than OLS,
particularly in reducing the 99.7th percentile residuals. This is evident in most layers
where the ridge regression residuals are consistently lower than those obtained using OLS.
For instance, in layer 9, ridge regression produces a 99.7th percentile residual of 1.83 nm
compared to 2.22 nm with OLS. Similarly, the max residuals also show improvement in
many cases, such as in layer 8, where ridge regression results in a max residual of 4.08 nm
compared to 3.31 nm for OLS. On average we can also see that Ridge Regression achieves
smaller residuals in 99.7, however on MAX it performs worse than OLS on average. In
Figure 11 we see the box plots for the Overlay X. For the metric 99.7, the OLS residuals
exhibit a tight Interquartile Range (IQR) centered approximately around 2.4 nm, indicating
a generally consistent performance across different samples. The Ridge residuals, while
similar in median value, show a slightly wider IQR with values stretching from about 1.7
nm to nearly 2.7 nm. This suggests that while the Ridge model can occasionally offer a
tighter fit, it might also produce more variable results in some instances. For the MAX
residuals, both models demonstrate an increase in the spread of values compared to the
99.7 measurements. The OLS model displays an IQR from approximately 3.0 nm to 3.5 nm,
with some outliers extending towards 4.0 nm, indicating a less consistent fit for maximum
residual values. The Ridge model, while showing a lower starting point at around 2.0
nm, extends up to about 4.5 nm, matching the OLS model in variability. The presence of
outliers in both models for the MAX residuals suggests that extreme values are a common
occurrence, potentially indicating challenging scenarios where both models struggle to
maintain a consistent performance.

In Table 2, which reports the Overlay Y residuals, ridge regression again shows
superior performance over OLS. This is particularly noticeable in the max residuals, where
ridge regression substantially outperforms OLS in most layers. For example, in layer 10,
the OLS max residual is 5.98 nm, while ridge regression achieves a significantly lower
value of 5.69 nm. The same trend is visible in the 99.7th percentile residuals, where ridge
regression consistently yields lower residuals, such as in layer 3, where the residuals drop
from 2.59 nm with OLS to 1.53 nm with ridge regression. In Figure 12 we see the box plots
for Overlay Y. For the 99.7 metric, the OLS model exhibits a compact distribution with
an IQR closely centered around 2.6 nm to 2.8 nm. This suggests a relatively stable and
consistent model performance over the observed dataset. Ridge model demonstrates a
significantly wider IQR, extending from 1.5 nm to 2.0 nm. The wider spread and lower
minimum values may indicate a greater variability in model performance, potentially
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offering lower residuals but with less consistency compared to the OLS model. In the MAX
nm residuals, the OLS residuals span from approximately 3.5 nm to 3.8 nm. Ridge residuals
are slightly more spread ranging from 2 nm to approximately 2.8 nm.

Overall, the results clearly demonstrate that ridge regression provides better accuracy
and robustness in reducing both 99.7th percentile and max residuals compared to OLS.
This improvement is particularly beneficial in handling multicollinearity within the dataset,
a well-known strength of ridge regression. The reduced variance in the ridge regression
models contributes to more reliable and consistent predictions across all layers, making it
the preferred method in this context.

Table 1. Overlay X residuals in nanometers.

Layer OLS—99.7 Ridge—99.7 OLS—Max Ridge—Max

1 2.46 2.23 3.03 3.88
2 1.99 1.69 5.14 4.65
3 2.49 3.3 3.27 4.71
4 1.91 1.86 2.96 3.09
5 2.49 2.53 3.51 3.7
6 2.15 2.95 2.58 4.09
7 2.15 2.13 2.72 3.17
8 2.46 2.74 3.31 4.08
9 2.22 1.83 2.88 2.96
10 2.42 1.75 3.54 2.98
11 2.59 2.22 4.01 4.28
12 2.11 1.39 2.81 2.12

Table 2. Overlay Y residuals in nanometers.

Layer OLS—99.7 Ridge—99.7 OLS—Max Ridge—Max

1 2.84 1.75 3.51 2.42
2 2.60 1.78 3.62 2.75
3 2.59 1.53 3.35 2.29
4 2.53 1.94 2.76 2.04
5 2.53 1.64 3.13 2.05
6 2.71 2.14 3.81 3.21
7 2.85 1.78 3.59 2.46
8 2.64 1.26 3.35 1.82
9 2.66 1.72 3.49 2.41
10 2.73 2.18 5.98 5.69
11 2.82 1.33 3.51 1.86
12 2.79 0.80 3.69 1.55
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Table 2. Overlay Y residuals in nanometers

Layer OLS - 99.7 Ridge - 99.7 OLS - MAX Ridge - MAX

1 2.84 1.75 3.51 2.42
2 2.60 1.78 3.62 2.75
3 2.59 1.53 3.35 2.29
4 2.53 1.94 2.76 2.04
5 2.53 1.64 3.13 2.05
6 2.71 2.14 3.81 3.21
7 2.85 1.78 3.59 2.46
8 2.64 1.26 3.35 1.82
9 2.66 1.72 3.49 2.41
10 2.73 2.18 5.98 5.69
11 2.82 1.33 3.51 1.86
12 2.79 0.80 3.69 1.55

Average 2.69 1.65 3.64 2.54
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In Figures 13 and 14, we present the measured vs. modeled Overlay X and Y for
all the 12 layers. The observed differences between the measured and modeled results
can be attributed to several factors. First, despite the application of ridge regression to
address multicollinearity, the strong collinearity between certain parameters may still
impact the model’s accuracy in specific cases, leading to discrepancies. Additionally,
boundary effects at the edges of the wafer, where the photolithography process is more
susceptible to physical limitations, may result in larger residuals, as these regions are
often harder to model accurately. Moreover, while the polynomial model employed in
this study is effective for many cases, it may not fully capture all the nonlinearities and
complex interactions inherent in the photolithography process, particularly for edge cases.
Lastly, measurement noise or inaccuracies in the metrology system may also contribute
to the differences observed, as these errors can introduce additional variability that the
model cannot entirely account for. Addressing these discrepancies may require further
refinement of the model or adjustments to the regularization parameters used in the
ridge regression approach. However, despite these discrepancies, the overall modeling
performance remains satisfactory, as depicted by the residuals, which consistently show a
good fit between the measured and modeled data across the majority of layers and regions.
This indicates that the ridge regression approach still provides robust results in the context
of overlay modeling.

Figure 13. Measured vs. modeled Overlay X for all 12 layers.
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Figure 14. Measured vs. modeled Overlay Y for all 12 layers.

4. Conclusions and Future Work

Ridge regression results indicate an obvious superiority over OLS when the data
exhibit multicollinearity. Especially in Overlay X, where this phenomenon is more intense,
ridge regression outperforms OLS in every single layer. In the end, the overall improvement
in 99.7 is 1.04 nm and in the max 1.10 nm. Such a performance improvement at the sub-
nanometer level of precision cannot be ignored. It is clear that OLS needs to be enhanced
for similar datasets. One potential direction for future work would be the investigation of
improving the model itself, either by reducing the features or by dynamically, during wafer
production, selecting the most informative ones depending on the state of the process.
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Abstract: Minimal Strong Digraphs (MSDs) can be regarded as a generalization of the concept of tree
to directed graphs. Their cyclic structure and some spectral properties have been studied in several
articles. In this work, we further study some properties of MSDs that have to do with bounding the
length of the longest cycle (regarding the number of linear vertices, or the maximal in- or outdegree of
vertices); studying whatever consequences from the spectral point of view; and giving some insight
about the circumstances in which an efficient algorithm to find the longest cycle contained in an MSD
can be formulated. Among other properties, we show that the number of linear vertices contained
in an MSD is greater than or equal to the maximal (respectively minimal) in- or outdegree of any
vertex of the MSD and that the maximal length of a cycle contained in an MSD is lesser than or equal
to 2n−m where n, m are the order and the size of the MSD, respectively; we find a bound for the
coefficients of the characteristic polynomial of an MSD, and finally, we prove that computing the
longest cycle contained in an MSD is an NP-hard problem.

Keywords: minimal strong digraphs; maximum length directed cycles; linear vertex; external chain;
characteristic polynomial; NP-hard problem

MSC: 68R10

1. Introduction

A Minimal Strong Digraph (MSD) is a strong digraph in which the deletion of any arc
yields a non-strongly connected digraph. In [1,2] a compilation of the properties properties
of MDSs can be found. Additionally, in [2] a comparative analysis between MSDs and non-
directed trees, where a series of the analog properties of both types of graphs, is presented.
In this sense, MSDs gain interest as a counterpart of trees in the context of directed graphs.

There are several other reasons to justify the interest in studying MSDs. One of
them is the relationship between MSDs and nearly reducible (0, 1)-matrices (via the ad-
jacency matrix; see, for instance, [3,4]) and the non-negative inverse eigenvalue problem
(see [5]): given real numbers k1, k2, . . . , kn, find the necessary and sufficient conditions
for the existence of a non-negative matrix A of order n with characteristic polynomial
xn + k1xn−1 + k2xn−2 + · · · + kn. The coefficients of the characteristic polynomial are
closely related to the cycle structure of the weighted digraph with adjacency matrix A by
means of the theorem of the coefficients [6], and the irreducible matricial realizations of
the polynomial (which are identified with strongly connected digraphs [3]) can easily be
reduced to the class of Minimal Strong Digraphs. Hence, a better understanding of the
cyclic structure of MSDs could lead to results on spectral theory.

Another goal for our work is trying to take advantage of the fact that minimality
among SDs is a very restrictive condition. For instance, it is well known that the size of an
MSD of order n is bounded by 2(n− 1). We think that the fact that the class of MSDs is

Mathematics 2024, 12, 3657. https://doi.org/10.3390/math12233657 https://www.mdpi.com/journal/mathematics194
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comparatively small, together with the properties obtained in [2], pointing out relationships
between the size of the longest cycle in an MSD and the number of linear vertices, could
lead to finding an algorithm of polynomial complexity to find the longest cycle in an MSD.
Note that finding the longest cycle on a SD is an NP-hard problem.

Our work plan is, thus, to further study the properties of MSDs that could give a better
understanding of their cyclic structure, especially those having to do with bounding the
length of the longest cycle (regarding the number of linear vertices, or the maximal in- or
outdegree of vertices); studying whatever consequences from the spectral point of view;
and finally trying to devise an efficient algorithm to find the longest cycle in an MSD. The
first steps are accomplished, but we have to accept that the restrictions we obtain to bound
the length of cycles in an MSD are not enough to simplify the search of the longest cycle.
In fact, we prove that finding the longest cycle in an MSD is NP-hard. Nevertheless, we
think that the new properties of MSDs that we are able to prove are interesting in and of
themselves, insofar as they progress the way of understanding the cyclic structure of MSDs,
and hence they can lead to advances in spectral theory.

The outline of the article is as follows: In Section 2, we introduce some notations and
review several results on MSDs. In Section 3, we study the relationship between the length
of the longest cycle, the number of linear vertices, and the maximal in- or outdegree of
vertices. We also state some MSD properties, regarding chains and its contraction, that
arise from the ear decomposition. In Section 4, we state a bound for the coefficients of the
characteristic polynomial of an MSD, extending the results of [2]. In Section 5, we prove
that the problem of finding the longest cycle in an MSD is NP-hard. Finally, we draw
some conclusions.

2. Notation and Basic Properties

In this paper, we use some concepts and basic results about graphs that are described
below, in order to fix the notation [1,2,7–13].

Let D = (V, A) be a digraph. If (u, v) ∈ A is an arc of D, we say that u is the tail (or
initial vertex) and v the head (or final vertex) of the arc, and we denote the arc by uv. We
shall consider only directed paths and directed cycles. We shall denote by n = |V| and by
m = |A| the order and the size of D, respectively.

In a strongly connected digraph, the indegree d−(v) and the outdegree d+(v) of every
vertex v are greater than or equal to 1. We shall say that v is a linear vertex if it satisfies
d+(v) = d−(v) = 1.

An arc uv in a digraph D is transitive if there exists another uv-path disjoint to the arc
uv. A digraph is called a minimal digraph if it has no transitive arcs.

The contraction of a subdigraph consists in the reduction in the subdigraph to a unique
vertex v̄. Note that the contraction of a cycle of length q in an SD yields another SD. In
such a process, q− 1 vertices and q arcs are eliminated. Given a cycle Cq, let v̄ be the vertex
corresponding to Cq after contraction. We shall denote by d−(Cq) = d−(v̄) (respectively
d+(Cq) = d+(v̄)). Note that d+(Cq) = ∑v∈Cq(d

+(v)− 1) (and the same with d−(v)).
Some basic properties concerning MSDs can be found in [1,2,8,14,15].
We summarize some of them: The size of an MSD digraph D of order n ≥ 2 verifies

n ≤ m ≤ 2(n− 1) [1]. The contraction of a cycle in an MSD preserves the minimality, that
is, it produces another MSD; hence, if we contract a strongly connected subdigraph in a
minimal digraph, the resulting digraph is also minimal, and each MSD of order n ≥ 2 has
at least two linear vertices.

If Cq is a cycle contained in an MSD D, then the number of linear vertices of D is

greater than or equal to
⌊

q+1
2

⌋
. An MSD factors into a rooted spanning tree and a forest of

reversed rooted trees (Theorem 20 [2]). Finally, we will use the next result.

Lemma 1 ([2]). If an MSD contains a cycle C2, then the vertices on the cycle are linear vertices or
cut points.
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3. Lower Bounds of the Number of Linear Vertices of an MSD

Let D be an MSD and Cq a cycle contained in D.
In this section, we show some results obtained through the analysis of the degree of

the vertices, especially those with a high degree.

Proposition 1. Let D = (V, A) be an MSD, λ the number of linear vertices of D, and v ∈ V a
vertex such that v is contained in each cycle of D. Then, λ ≥ max(d−(v), d+(v)).

Proof. If D is a cycle, then d−(v) = d+(v) = 1; therefore, λ ≥ 2 > max(d−(v), d+(v)) = 1,
and the proof is completed.

Otherwise, let Cq = v, u1, . . . , uq−1, v be a cycle contained in D. By definition of MSD,
each arc of D is contained in at least one directed cycle of D, or else D would not be strongly
connected. Since v is contained in each cycle of D, then each arc wui such that w /∈ Cq is
contained in a cycle v, . . . , w, ui, . . . , v for 1 ≤ i ≤ q− 1. In a similar way, each arc uiw such
that w /∈ Cq is contained in a cycle v, . . . , ui, w, . . . , v for 1 ≤ i ≤ q− 1.

We shall prove that in Cq, there must exist at least one linear vertex. Let us, in fact,
suppose, by contradiction, that ui ∈ Cq is not a linear vertex for 1 ≤ i ≤ q− 1. Hence,
d−(u1) = 1 or else the arc vu1 would be transitive in D. In fact, if d−(u1) > 1, since v
is contained in each cycle, v is a vertex reached by walking in reverse direction from u1
using an arc u′1u1 different from vu1 (such an arc exists because of d−(u1) > 1), and then a
vu1-path (not containing the arc vu1) can be obtained by concatenation of a vu′1-path with
the arc u′1u1.

Then, d+(u1) > 1 since d−(u1) = 1 and we are assuming that u1 is not linear. Let
u′′1 6= u2 be the vertex defined by the corresponding arc u1u′′1 ∈ D.

Now the following result will be proved for all ui, 2 ≤ i ≤ q− 1: d−(ui) = 1 and
there is an arc uiu′′i with u′′i 6= ui+1. To show this, the following reasoning is applied
iteratively for each vertex, starting from u2. First, we remark that d−(ui) = 1. Otherwise,
the arc ui−1ui would be transitive in D because an ui−1ui-path would exist, not containing
the arc ui−1ui. In fact, since v is contained in each cycle, v is a vertex reached walking
in reverse direction from ui starting with an arc u′iui different from ui−1ui (such an arc
exists since d−(ui) > 1). Also, v is a vertex reached walking from ui−1 starting with the arc
ui−1u′′i−1. Then, a ui−1ui-path would be obtained by concatenation of the arc ui−1u′′i−1 with
the u′′i−1v-path, the vu′i-path, and the arc u′iui.

d+(ui) > 1 also holds because d−(ui) = 1 and, by hypothesis, ui is not a linear vertex.
Let u′′i 6= ui+1 be the vertex defined by the arc uiu′′i belonging to D.

Finally, let us show that the arc uq−1v is transitive. In fact, since v is contained in
each cycle, v is a vertex reached walking from uq−1, starting with the arc uq−1u′′q−1. The
uq−1v-path obtained by concatenation of the arc uq−1u′′q−1 with the u′′q−1v-path proves that
uq−1v is transitive. This fact contradicts the minimality of D.

We have still to prove that the linear vertices reached for each outgoing (respectively,
incoming) arc from (respectively, to) v are all different. Let vu1 and vu′1 be two arcs in D.
From vu1, as we have seen, we can construct a path v, u1, . . . , uk such that d−(ui) = 1 for
1 ≤ i ≤ k and d+(ui) > 1 for 1 ≤ i ≤ k− 1, and uk is linear (note that k can be 1, but it must
exist) as we have proved previously. Now, in a similar way, we construct a path v, u′1, . . . , u′l
such that d−(u′j) = 1 for 1 ≤ i ≤ l and d+(u′j) > 1 for 1 ≤ i ≤ l − 1 and u′l is linear.

The paths v, u1, . . . , uk and v, u′1, . . . , u′l cannot rejoin after they leave v since all the
indegrees of their vertices are 1. Hence, uk 6= u′l . The proof is completed.

Proposition 2. Let D = (V, A) be an MSD of order n ≥ 2, v ∈ V a vertex of D, and λ the
number of linear vertices contained in D. Then, λ ≥ max(d−(v), d+(v)).

Proof. If D = Cn then d−(v) = d+(v) = 1, therefore λ = q ≥ 2 and the proof is completed.
Otherwise, we obtain an MSD D′ from D by the contraction of all cycles that do

not contain the vertex v. Note that v is a vertex contained in each cycle of D′. Then, by
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Proposition 1 λD′ ≥ max(d−(v), d+(v)) where λD′ is the number of linear vertices of D′.
Note also that v preserves in D′ all its incident arcs. Next we expand the cycles contracted
previously. In this process, the linear vertices are maintained. Indeed, if we expand a linear
vertex corresponding to a cycle of length greater than two, this fact is obvious. And, if we
expand one corresponding to a cycle of length two, the result follows from Lemma 1, since
for cycles of length two, the contracted vertex in D′ will contain at least one existing linear
vertex in D; hence, the number of linear vertices in D is not less than the number of linear
vertices contained in D′. The proof is completed.

Corollary 1. Let D = (V, A) be an MSD, Cq a cycle contained in D, and µ the number of linear
vertices contained in D but not contained in Cq. Then, µ ≥ max(d−(Cq), d+(Cq)).

Proof. If D = Cq, then µ = d−(Cq) = d+(Cq) = 0, and the proof is completed.
Otherwise, we obtain an MSD D′ from D by contracting Cq in a unique vertex v′. Note

that the number of linear vertices of D′ is precisely µ. The application of Proposition 2 then
implies that µ ≥ max(d−(v′), d+(v′)) = max(d−(Cq), d+(Cq)) and we are finished.

As we mentioned in Section 2, if there is a cycle Cq ∈ D, the number of linear vertices

of D is greater than or equal to
⌊

q+1
2

⌋
; see [8]. We ratify this result with a new, shorter

proof, by using the previous properties.

Corollary 2. Let D = (V, A) be an MSD of order n ≥ 2, Cq a cycle contained in D, and λ the

number of linear vertices contained in D. Then, λ ≥
⌊

q+1
2

⌋
.

Proof. Let ν be the number of linear vertices contained in Cq, and µ the rest of linear
vertices of D. Then, λ = µ + ν, and we know by Corollary 1 that µ ≥ max(d+(Cq), d−(Cq)).
Since d+(Cq) + d−(Cq) ≥ q− ν, we have that

µ ≥ max(d+(Cq), d−(Cq)) ≥
⌈

q− ν

2

⌉
, (1)

and then

λ = µ + ν ≥
⌈

q− ν

2

⌉
+ ν =

⌈
q + ν

2

⌉
≥
⌈ q

2

⌉
=

⌊
q + 1

2

⌋
. (2)

The proof is completed.

As a consequence of Corollary 2, we obtain an upper bound for the maximum length
of a cycle contained in an MSD.

Corollary 3. Let D = (V, A) be an MSD of order n ≥ 2, Cl a cycle with maximal length l
contained in D, and λ the number of linear vertices contained in D. Then, l ≤ 2λ.

Proof. By Corollary 2, we know that

λ ≥
⌊

l + 1
2

⌋
, (3)

then
l ≤ 2λ. (4)

The proof is completed.

Since every vertex contained in an MSD must be contained in at least one directed
cycle, we can obtain two different bounds for the number of linear vertices, one from the
vertex degree and one from the cycle length. The next result somehow combines the two
aforementioned bounds.
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Corollary 4. Let D = (V, A) be an MSD of order n ≥ 2, Cq a directed cycle of length q contained
in D, u ∈ Cq a vertex of D, d(u) = d+(u) + d−(u), and λ the number of linear vertices contained
in D. Then,

λ ≥
⌊

q + d(u)
2

⌋
− 1. (5)

Proof. As we did in the proof of Corollary 2, we call ν the number of linear vertices
contained in Cq and µ the rest of linear vertices of D. The value of ν tends to be smaller, as
there are more paths between the vertices contained in the cycle Cq. Then, for any vertex u
contained in the cycle Cq, we obtain the following inequality:

ν + (d+(Cq)− (d+(u)− 1)) + (d−(Cq)− (d−(u)− 1)) + 1 ≥ q

⇒ d+(Cq) + d−(Cq) ≥ q− ν + d(u)− 3.
(6)

Combining it with Corollary 1 (µ ≥ max(d+(Cq), d−(Cq))), we obtain

µ ≥ max(d+(Cq), d−(Cq)) ≥
⌈

q− ν + d(u)− 3
2

⌉
(7)

and finally

λ = µ + ν ≥
⌈

q− ν + d(u)− 3
2

⌉
+ ν =

⌈
q + ν + d(u)− 1

2

⌉
− 1

≥
⌈

q + d(u)− 1
2

⌉
− 1 =

⌊
q + d(u)

2

⌋
− 1.

(8)

The proof is completed.

Corollary 4 can be useful when a vertex u with a high degree is contained in the
cycle Cq (see examples in Figures 1 and 2). However, if the vertex u is not contained in
the cycle, the number of linear vertices contained in the MSD could be much higher than
the number of linear vertices obtained with this bound. For instance, in the examples in
Figures 3 and 4), if q = 10 and the vertices in the cycle have degree 2 or less, the bound
given by Corollary 4 would be 5, but the number of linear vertices would be at least 14; an
analogous example is showed in Figure 5.

Cq u

Figure 1. Example 1 for Corollary 4 where Cq contains a vertex u with high in- and out-degree.
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Cq v

Cq u

Figure 2. Example 2 for Corollary 4 where Cq contains a vertex u with high out-degree.

Cq
v

Cq u

Figure 3. Example 1 of an MSD, in which there is a vertex with high degree (input and output) and is
not contained in the cycle Cq.

Cq
v

Cq
u

Figure 4. Example 2 of an MSD, in which there is a vertex with high output degree and is not
contained in the cycle Cq.
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Cq u

Cq
v

Figure 5. Example 3 of an MSD, in which there is a vertex with high degree (input and output) and is
not contained in the cycle Cq.

Proposition 3. Let D = (V, A) be an MSD, and let Cq be a cycle of length q contained in D.
Then, q ≤ 2n−m.

Proof. We obtain an MSD D′ by contraction of Cq in a unique vertex v′, and then
n′ = n− q + 1 and m′ = m− q. Hence, since

m′ ≤ 2(n′ − 1), (9)

we obtain
m− q ≤ 2(n− q), (10)

and finally
q ≤ 2n−m. (11)

The proof is completed.

Other Properties of MSDs

In [2,14], some results about ear decomposition are proved. We use these previous
results to show the next properties of MSDs.

Definition 1. Let D = (V, A) be an MSD of order n ≥ 2, and let v1, . . . , vl be a path contained
in D. We say that the v1vl-path is a chain with length l if d−(vi) = d+(vi) = 1 for all 1 ≤ i ≤ l.

Note that an isolated linear vertex is a chain of length 1.

Definition 2. Let D = (V, A) be an MSD of order n ≥ 2, let v1, . . . , vl be a chain contained in
D, and let D′ be the digraph obtained from D by the elimination of the v1vl-path. We say that the
v1vl-path is an external chain with length l if D′ preserves the strong connection.

Proposition 4. Let D = (V, A) be an MSD of order n ≥ 2 and Cq a cycle contained in D such
that D 6= Cq. Then, in D, there exists at least one external chain.

Proof. We use the ear decomposition shown in Theorem 20 in [2] in a similar way to how
it was used in the proof of the property that affirms that an MSD factors into a rooted
spanning tree and a forest of reversed rooted trees.
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Let us consider an ear decomposition of D, E = P0, . . . , Pk. Since D is an MSD, each
ear Pj (0 ≤ j ≤ k) contains at least one new vertex and two new arcs, with respect to

⋃j−1
i=0 Vi

and
⋃j−1

i=0 Ai, respectively.
Then, it is clear that the last ear Pk = vk

0 . . . vk
sk

completes the construction of D, and
Qk = vk

1 . . . vk
sk−1 is a chain of linear vertices, whose first and last vertex are joined to

vertices of a minimal and strongly connected digraph D′. Hence, D′ = D−Qk is an MSD,
and therefore Qk is an external chain of length l = sk − 1 ≥ 1. Trivially, we can say that if
D = Cq = P0, then there is no external chain contained in D. The proof is completed.

Note that D′ is an MSD with n− l vertices and m− l− 1 arcs. Note also that if P0 = Cq,
with Cq as a maximal length cycle contained in D, and there exists any external chain with
length l ≥ 1 not contained in Cq, then q ≤ n− l.

Proposition 5. Let D = (V, A) be an MSD, and let v1vl-path be a chain contained in D with
length l < n. Then, the contraction of all vertices of the v1vl-path in a unique vertex preserves the
minimality, that is, it produces another MSD D′ with n− l + 1 vertices and m− l + 1 arcs.

Proof. Let D′ be the digraph obtained by the contraction of all vertices of the v1vl-path
in a unique vertex v′. Let n′ be the number of vertices and m′ the number of arcs of D′.
In D′, all vertices of the v1vl-path are suppressed, but it contains the vertex v′ /∈ D, and
then n′ = n− l + 1. Since d−(vi) = d+(vi) = 1 for all 1 ≤ i ≤ l, we have m′ = m− l + 1.
Now, let us assume that there are transitive arcs in D′. If we expand v′, these transitive arcs
would also exist in D, contradicting the minimality of D. Hence, D′ is minimal. Since n > l,
then a vertex w /∈ v1vl-path, exists also in D′, and D′ contains a wv′-path and a v′w-path.
Therefore, D′ is strongly connected. The proof is completed.

Proposition 6. Let D = (V, A) be an MSD such that D is not a cycle. Then, there is not a cycle
in D that contains all linear vertices of D.

Proof. Let us suppose that Cq contains all linear vertices of D. We can obtain an MSD
D′ by contraction of Cq in a unique vertex v′. We know that D′ must contain at least two
linear vertices, and at least one of them is different from v′. Then, it is clear that there exists
at least one linear vertex that is contained in D but is not contained in Cq. The proof is
completed.

Let D be an MSD such that D is not a cycle, and λ be the number of linear vertices
contained in D. From the proposition above, it is trivial to see that a cycle Cq contained in
D will contain at most λ− 1 linear vertices of D.

4. Upper Bounds for the Coefficients of the Characteristic Polynomial of MSDs

In [2], some results about bounds of the coefficients of the characteristic polynomial of
an MSD are proved. In particular, it is shown that the independent term must be 1, 0, or
−1. We follow the lines of that proof to generalize that bound.

Proposition 7. Let D = (V, A) be an MSD, and let xn + k1xn−1 + · · ·+ kixn−i + · · ·+ kn−1x+
kn be the characteristic polynomial of the adjacency matrix of D. Then,

|ki| ≤
(

n
i

)
(12)

Proof. We claim that any subset of i vertices can be covered by disjoint cycles in at most
one manner. In fact, take any subset A ⊂ V, with |A| = i, and consider the subdigraph
D′ to be generated by that A. Now, D′ is a subdigraph of an MSD, so it has no transitive
arcs. If it is not strongly connected, we can add arcs, one by one, until we obtain a strongly
connected digraph D′′ that would be minimal. Therefore, D′′ would be an MSD, and the
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aforementioned result of [2] implies that there is at most one covering of the vertices of D′′

(that is, of A) by disjoint cycles.
The coefficients theorem for digraphs allows us to finish the proof.

5. MSD Properties Associated to Results of Algorithms Complexity

It was well known that minimality is a very strict condition in the family of strong
digraphs implying, for instance, the size limitation n ≤ m ≤ 2(n− 1). As we have seen in
previous sections, MSDs also exhibit strong constraints on the number of linear vertices
and maximum in- and outdegrees of vertices, regarding the length of the longest directed
cycle. Unfortunately, these constraints are not enough to construct an efficient algorithm
finding the longest cycle in an MSD.

A proof that an MSD can be converted into a directed cycle by successively eliminating
external chains is given in [16]. However, this process does not guarantee that the resulting
directed cycle will have a maximum length. Figure 6 shows an MSD where the longest
directed cycle is given by u1, u2, u3, u4, u5, u1, but this cycle will be obtained only in the
case that the external chains eliminated are those formed by the u6-path and u7-path.
Nevertheless, there is no an efficient algorithm that can determine the deletion of these
chains and the non-deletion of the external chain formed by the vertex u5-path because if
this chain is deleted, then the longest cycle of the MSD will also have been eliminated.

u7

u1 u2

u3 u4

u6

u5

Figure 6. Example of an MSD that contains three external chains.

Theorem 1. Computing a cycle with maximal length in an MSD is an NP-hard problem.

Proof. We can reduce the problem of computing a cycle with maximal length in a strongly
connected digraph to the problem of computing a cycle with maximal length in an MSD.

Let D′ = (V′, A′) be a strong digraph. We can build an MSD D = (V, A) from D′ as
follows. For each arc v′iv

′
j ∈ A′, we add an intermediate vertex vij. We thus obtain

V = V′ ∪ {vij | v′iv
′
j ∈ A′} (13)

A = {v′ivij | v′iv
′
j ∈ A′} ∪ {vijv′j | v′iv

′
j ∈ A′} (14)

Note that the strong connection of D′ implies that D is trivially strongly connected.
Note also that no arc of D can be transitive since every arc has a linear vertex vij as start- or
endpoint. Hence, D is in fact an MSD.

Now, we remark that there is a one-to-one correspondence between cycles in D and
cycles in D′: for every cycle C′q in D′, a cycle C2q arises in D, and all the cycles in D are
generated in this way.

We conclude that any algorithm allowing us to compute the longest cycle of an MSD
would then be able to compute the longest cycle of any SD, too. Since the problem of
computing the longest cycle in a strongly connected digraph is NP-hard [14], then the
theorem is proved.

202



Mathematics 2024, 12, 3657

Theorem 2. Let D = (V, A) be an MSD. Finding a cycle contained in D with length 2n−m is
an NP-complete problem.

Proof. We can reduce the problem of determining if a digraph is Hamiltonian to the
problem of determining if an MSD has a cycle of length 2n−m.

Let D′ = (V′, A′) be a digraph. If D′ is strongly connected, the same procedure used
in the previous proof yields an MSD D = (V, A) (if D′ is not strongly connected, then it
cannot be Hamiltonian). The order of D verifies n = n′ + m′, and the size holds m = 2m′.
Hence, finding a cycle in D with length 2n− m = 2(n′ + m′)− 2m′ = 2n′ would imply
finding a n′-cycle in D′, that is, determining if D is Hamiltonian. Since determining whether
a digraph is Hamiltonian is an NP-complete problem, the theorem is proved.

6. Conclusions

In this work, we have found some new properties regarding MSDs. The first set of
properties has to do with the number of linear vertices in an MSD. We have seen that
the existence of a vertex with a high in- or outdegree implies a high number of linear
vertices. Furthermore, we have used this fact to give a simpler proof of the lower bound
of linear vertices that we obtained in [8], where the existence of a q cycle implies at least
b(q + 1)/2c linear vertices. We have also proved that chains of consecutive linear vertices
in an MSD can be contracted without loss of minimality. We feel that further research along
these lines could give, from one side, a result linking maximal cycle lengths, maximal in-
or outdegrees, and improved estimations of the number of linear vertices, as well as a
better understanding of the cycle properties that can lead to spectral properties, such as the
characterization of polynomials that can be realized as characteristic polynomials of MSDs.
In this regard, we have proved a bound for the coefficients of such polynomials, advancing
along the lines given in [2].

Since the number of linear vertices in an MSD is easily computed, we wanted to
explore the possibility that the maximal length of a cycle could be bounded so as to allow to
construct a polynomial complexity algorithm to find the longest cycle. Unfortunately, that
is not the case, and we have proved that the search of a maximal length cycle in an MSD is
NP-hard. Still, it can be interesting to look for a subset of MSDs for which the search for
maximal length cycles can be performed efficiently. This kind of result could arise, also, by
further study of the properties that we pointed out in the paragraph above.
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Abstract: Recognized as an NP-hard combinatorial challenge, Storage Location Assignment Problem
(SLAP) demands heuristic or algorithmic solutions for effective optimization. This paper specifically
examines the enhancement of SLAP through the utilization of evolutionary algorithms, as they
are particularly suitable for complex cases. Among others, the genetic algorithm (GA) is typically
applied to solve this problem. This paper investigates the Bacterial Memetic Algorithm (BMA)
as a possible solution for optimization. Though the comparative analysis of the BMA with the
previously well-used GA algorithm under certain test parameters reveals that BMA is suitable for
SLA optimization, BMA failed to achieve better results. We attribute the unsatisfactory results to the
parameter settings, as illustrated by a few specific examples. However, the complexity of the problem
and the parameterization does not allow for continuous manual parameter adjustment, which is why
we have identified the need for a concept that automatically and adaptively adjusts the parameter
settings based on the statistics and fitness values obtained during the execution. The novelty of this
paper is to specify the concept of adaptive BMA parameterization and rules.

Keywords: storage location assignment problem; bacterial memetic algorithm; adaptive
parameterization; evolutionary algorithms

MSC: 68W50; 68T05

1. Introduction

The efficiency of the warehouse operations is measured and assessed based on several
factors. The low-level picker-to-parts systems involve pickers moving toward storage loca-
tions to retrieve products based on pick lists, with different generations evolving in terms
of system setups and processes [1]. In these warehouses, efficiency is mostly measured by
order picking. It is known that the picking process is very time- and cost-consuming due
to the travel distances that the picker must cover during the process; moreover, efficiency
is strongly influenced by the picking route and storage location assignment (SLA). If the
lead time is reduced, more tasks can be completed, so efficiency can be improved. Travel
time accounts for nearly 50% of the total picking time. The routing can be controlled by
route optimization, and the lead time for picking tasks can be further improved by con-
sidering the SLA [2]. Rapidly changing demands—typical in the warehousing of products
in the Fast-Moving Consumer Goods (FMCGs) sector—can upset previously optimized
SLAs. An SLA is typically reviewed when order-picking efficiency has deteriorated signifi-
cantly. The literature examined deals with the topic of the Storage Location Assignment
Problem (SLAP).
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SLAP is a huge combinatorial problem when hundreds or thousands of items need to
be assigned to hundreds or thousands of locations, and on top of that, different criteria and
storage methods increase the number of combinations. This type of problem is a NP-hard
problem, and it is very difficult to solve using exclusively exact methods [3].

From the aforementioned, SLAP requires the use of heuristics or algorithms for SLA
optimization due to the size of the combinations. There is a lot of research into optimizing
SLA. There are solutions where heuristics are used to solve the problem [4–6]. Diefenbach
et al. specifically examined the optimization of human-and-cost-centric storage assign-
ment in picker-to-parts warehouses and solved it using a heuristic based on a custom
opening procedure and a tabu search meta-heuristic [7]. Research has discovered that evo-
lutionary algorithms are frequently employed to optimize SLA. Consequently, this paper
primarily concentrates on these techniques. The Differential Evolution Algorithm was
examined [8], and in another study, it was examined in conjunction with Global Local and
Near-Neighbor Particle Swarm Optimization (GLNPSO) algorithm [9]. Particle swarm op-
timization was used to optimize SLA for outbound containers with a neighborhood-based
mutation operator [10]. Moreover, in another research study, discrete evolutionary particle
swarm optimization (DEPSO) was used [11]. Peng et al. examined and modified the Non-
Dominated Sorting Genetic Algorithm III (NSGA-III) and compared it with Multi-objective
Evolutionary Algorithm Based on Decomposition (MOEA/D). The goal in their study was
to reduce the relocation tasks by optimizing SLA and crane scheduling [12]. The authors
used their study’s multi-objective evolutionary algorithm, called RP2-NSGA-II, in a class-
based storage warehouse. This algorithm was used to rank the set of alternatives based on
the information contained in a valued outranking relation constructed by the ELECTRE III
method [13]. Wan and Liu designed an optimization algorithm, which includes a design
algorithm for a fishbone layout, SLA algorithm, and picker-routing algorithm. They com-
pared the results of particle swarm optimization (PSO) and gravitational search algorithm
(GSA) in solving storage location assignment and picker-routing problems [14]. In addition,
the genetic approach was used in many studies. Zhou et al. used the genetic algorithm
(GA) and its improvement with the simulated annealing algorithm (SA) and defined the
genetic simulation annealing algorithm (SAGA) in an automated warehouse [15]. Xie
et al. used genetic programming in their research [16,17]. The genetic algorithm was used
with Pareto-optimization and a niche technique to find the Pareto-optimal solutions in Li
et al.’s and Wu et al.’s research [18,19]. Ene and Öztürk used the genetic algorithm for a
storage location assignment and order-picking optimization in the automotive industry [20].
Xu and Ren used genetic algorithms for a dynamic storage location assignment, which
was based on a step-by-step process to optimize storage location gradually instead of a
one-time optimization [21]. Saleet also used the genetic algorithm for a SLA in which the
optimization process considered the parameter of items that are often ordered together to
be stored close to each other in the warehouse [22].

This study focuses on warehouses that employ a low-level picker-to-parts system,
where manual picking requires visits to multiple storage locations. Additionally, items
in the FMCG or e-commerce sectors are characterized by rapidly changing demands,
seasonality, and a broad product portfolio. These factors significantly influence the SLA
more quickly, which is why this research specifically focuses on these items and their
associated warehouses to solve SLAP and considering manual picking processes. A new
approach was formulated to SLAP, whereby SLA should be continuously reviewed and
optimized, and the near ideal state of the depleted picking locations should be replenished
with the right item based on the new SLA proposal. In this way, we adaptively follow the
near-ideal SLA and strive to avoid total warehouse repositioning. This is the Adaptive
Storage Location Assignment, the concept and applicability of which the authors have
previously published [23,24]. The first step of the Adaptive Storage Location Assignment
(ASLA) is therefore the optimization of SLA, which requires an algorithm. So far, we have
given a summary of what algorithms other researchers have applied to SLAP. Our focus
was on evolutionary algorithms. The experience is that the genetic algorithm has been
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applied in many cases, and other evolutionary algorithms have been researched in this area,
but the Bacterial Memetic Algorithm (BMA) has not been applied to SLA optimization thus
far, so we started to investigate the applicability of BMA.

The BMA has been applied in many fields, such as continuous optimization, super-
vised machine learning, and combinatorial optimization problems, and its outstanding
performance compared to other evolutionary algorithms has been highlighted [25]. Others
also stated that the convergence of the BMA is theoretically more stable and faster than
the genetic algorithm’s is [26]. In this paper, we describe the development of the BMA
for optimizing SLA and examine its suitability by comparing the results with those of
the well-established GA. Preliminary findings classify the BMA as capable of assigning
products effectively, and, based on previous experiences, better results are predicted in
large combinatoric spaces. Upon examining the results of the GA, it was observed that the
BMA’s performance approaches that of the GA, yet it has not achieved as favorable a value
for the objective function. It is assumed that the expected result cannot be achieved due to
the large search space and complex parameterization. The BMA possesses more parame-
ters than the GA, and numerous parameter settings were explored during the testing of
the BMA. To enhance the performance of the BMA, following the initial static parameter
settings, an investigation was conducted to determine the outcomes when certain operators
are systematically applied during the optimization process. The manual modification
of the BMA operator parameters during the optimization process showed that applying
different operators or operator parameterization at the different stages of the optimization
can improve the performance of BMA. Though it slightly enhanced the competitiveness of
BMA, the vast number of combinations in parameter settings, when manually adjusted,
have not yet produced satisfactory results. To achieve results comparable to or even better
than those of the GA, based on the following research, this problem could potentially be
resolved with an intelligent parameterization logic, such as a dynamic or self-adaptive
parameter setup. The self-adaptive parameterization of evolutionary algorithms (EAs) is
a long-researched yet still relevant topic. It addresses key challenges, such as the balance
between exploration and exploitation, convergence speed, reduction in manual tuning, and
enhancing solution diversity. As basics, O. Kramer’s proposed a comprehensive survey on
self-adaptation parameters in EA and defined several parameters which can be dynami-
cally modified during the optimization process and identified possible key performance
indicators [27]. The results of this study show that self-adaptation parameter control makes
EAs highly effective for complex optimization challenges with enhancing the flexibility,
efficiency, and robustness of the EA. H. Beyer et al. and S. Meyer-Nieberger et al. give
an extensive overview of the methodology and the differences between self-adaptation
and cumulative step-size adaptation in evolution strategies [28,29]. Both studies high-
lighted that self-adaptation parameterization enhances the robustness and efficiency of
EAs. F. Ye et al. studied the effect of the self-adaptive mutation rates on Global Simple
Evolutionary Multi-Objective Algorithm (GSEMO) [30]. The paper provides three tech-
niques and uses several performance metrics. Results show that the algorithm performs
better with self-adaptive parameters. J. Yao et al. compared a self-adaptive multifacto-
rial evolutionary algorithm (SA_MFEA) to multifactorial evolutionary algorithm (MFEA)
where self-adaptive parameterization led to a more robust and efficient optimization frame-
work [31]. J. Cortez-González et al. presented a novel self-adaptive constraint-handling
approach where the algorithm penalizes constraint violations dynamically. Due to this
mechanism, the DE algorithm can tackle complicated, nonlinear, and multivariable opti-
mization problems in chemical engineering [32]. S. Wang et al. created a self-parameter
setup for DE, specifically in Self-Adaptive Ensemble-Based Differential Evolution (SAEDE).
By defining the critical dynamic parameters, e.g., scaling factor, mutation strategy, popu-
lation size, and crossover rate, and using an ensemble-learning mechanism to select the
optimal parameters, more efficient convergence, higher success rates, and reduced manual
tuning were achieved [33]. An improved differential evolution (DE) method with three
separate mutation operators is presented by Xuming Wang and Xiaobing Yu, where six
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typical mutation operators were divided into three groups and a dynamic mutation and
parameter selection method was applied. This strategy significantly improved the explo-
ration and exploitation balance and resulted in a higher convergence speed and a more
robust performance [34]. A multi-objective evolutionary algorithm with interval-based
initialization and self-adaptive crossover operator for large-scale feature selection (FS) is
proposed in the study of Y. Xue et al. in the field of personalized trip planning [35]. With the
adaptive population size and self-adaptive crossover and mutation rates, the convergence
efficiency of the Self-Adaptive Non-Dominated Sorting Genetic Algorithm II (SA-NSGA II)
was improved, and the need for manual tuning was reduced. P. Karthikeyan presented
a Self-Adaptive Immigrants Genetic Algorithm (SAI-GA) for virtual machine placement,
whereas for self-adaptive parameterization, four immigrant strategies were defined with
adaptive crossover and mutation [36]. As a result, the SAI-GA demonstrates, among other
things, a great CPU performance and shows higher mean fitness value. On the topic of
Flexible Job Shop Scheduling, the studies of L. Sun et al. [37] and Y. An et al. [38] show
that the hCEA-MRF [37] improves solution robustness, quality, and adaptability, making it
highly effective for complex, real-world scheduling challenges with variable processing
times and makes the ACML-BCEA [38] both robust and versatile, capable of optimizing
complex job-shop scheduling scenarios with minimal manual intervention.

Without aiming for completeness, based on the presented research, it can be stated
that in the fields of genetic, multi-objective, multi-factorial, co-evolutionary, differential-
evaluation, self-adaptive parameterization has led to significant improvements in algorithm
performance. The demonstrated advantages of this logic are the improvement of the
convergence speed, enhanced solution diversity, reduced manual tuning, and improved
solution quality. During the State-of-the-Art review conducted for this paper, no self-
adaptive parameterization concepts were found in the field of Bacterial Memetic Algorithm
(BMA). However, since the studies examined highlight the benefits, we believe there is
significant potential for this method in the BMA discussed in Section 2.

The aim of this paper is to demonstrate that the Bacterial Memetic Algorithm is suitable
for solving the Storage Location Assignment Problem; however, static parameter settings
restrict the attainment of satisfactory results. Therefore, we emphasize the need for adaptive
parameterization, and we have formulated a concept for adaptive parameterization within
the BMA algorithm. Future research will focus on developing the concept presented here,
integrating it into the optimization process, and examining the extent of performance
improvement compared to the genetic algorithm (GA).

2. Bacterial Memetic Algorithm for Storage Location Assignment Problem

As mentioned before, solving SLAP, a large combinatorial problem classified as NP-
hard in the literature, requires a suitable algorithm for optimization.

So far, the authors have given a summary of what algorithms other researchers have
applied to SLAP. The focus was on evolutionary algorithms. The experience is that the
genetic algorithm (GA) has been applied in many cases, and other evolutionary algorithms
have been researched in this area. The goal was to find an algorithm capable of handling
more complex cases in warehouses and can be easily adapted to other warehouse environ-
ments by parameterization. The Bacterial Memetic Algorithm (BMA) is an evolutionary
algorithm that models the behavior of bacteria based on its evolution [39]. The BMA has
been successfully used in various optimization problems due to its fast operation, like
the Order Picking Routing Problem [40], Traveling Salesman Problem [39], and flow shop
scheduling problem [41]. Cs. M. Horváth et al. [25] also stated that numerous combinatorial
optimization problems, continuous optimization tasks, and supervised machine-learning
applications have been successfully solved using this technique. The paper summarizes
that, in comparison to genetic algorithms (GAs), particle swarm optimization (PSO), and
their respective memetic adaptations, BMA has shown a competitive performance in opti-
mization and supervised machine learning [25]. As Á. Holló-Szabó [26] highlighted, every
step in the BMA process contributes to the convergence in a unique way. Gene transfer
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is a global search subject that impacts the entire population; the goal of local search is to
find the best individual, and bacterial mutation improves the solutions while decreasing
the likelihood of remaining in a local minimum. They defined it as the primary distinc-
tion from GA, where mutation delays convergence by emphasizing gene pool diversity
rather than rate of progress. As a result, BMA converges more quickly and steadily [26].
Based on previous research, we anticipate that these algorithms, particularly BMA, can
efficiently optimize SLAP and potentially outperform GA. Therefore, our goal is to develop
a BMA-based algorithm to provide an ideal SLA.

2.1. BMA Development and Parameterization

The BMA algorithm operates in four steps (Algorithm 1). The first step is to create an
initial population with Nind bacteria. Each bacteria represents a solution to the original
problem. This can be performed randomly, or some rules can be defined. The following
steps are bacterial mutation (BM) and local search (LS), performed on x % of the bacteria
based on a given parameter. After ordering the population in ascending order by the
objective function, the last step is gene transfer (GT). The steps of the BMA are repeated
sequentially based on a specified number of generations.

Algorithm 1. BMA procedure.

1. Execute the initial population generation method
2. For i := 1 to Nind do
3. Evaluation of each bacterium and sort by defined objective function
4. End
5. For g := 1 to Ngen do
6. For i := 1 to Nind * BM_LS% do
7. Execute bacterial mutation operator
8. Execute local search operator
9. End
10. Order the population in ascending order by the objective function
11. For i := 1 to Ninf do
12. Execute gene transfer operator
13. Order the population in ascending order by the objective function
14. End
15. End

To examine the applicability of the BMA in solving the problem, it was necessary to
define the evaluation method and objective function. In the studies discussed, picking lists
were used to evaluate the optimization results. During the verification with these lists, the
length of the picking route is examined to assess the efficiency of the SLA strategy. The
primary goal of the optimization is to reduce either the picking route or the picking time.
If the time taken to gather items from the lists or the distance of the route decreases, it
indicates that the algorithm has succeeded in finding a better assignment. It is our opinion
that this approach only examines a part of the SLA. In contrast, during the research, the
entire state of SLA was considered. A novel evaluation method was formulated that is
part of the developed BMA algorithm. The objective function is shown in Equation (1).
The evaluation method and the objective function consider the value of the frequency of
ordering items, items not allocated to a picking location, groups of items stored together,
and items that are frequently ordered together [42]. Each of these is part of the objective
function and can be set with a weighting parameter (ωn) based on the operation of the
warehouse under examination. The items are provided with information needed for the
objective function and support the steps of the algorithm.

The parameters of the objective function are as follows:

t is the time-period under examination,
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p is a given picking location,
i is the item handled in the warehouse,
fpt is the number of picking of the item on the p picking location at the t time-period,
lp is the distance of the p picking location from the depot,
Ft is the summarized item order lines during the t time period,
jt is the number of pickings of the item which is non-assigned on picking location at the t
time period,
gn is a given group of items,
lgn is the distance between items (i1, . . ., in) within a group,
Ign is the number of items within a group,
oi1,i2 is the order frequency of two items ordered together (i1, i2) during the t time-period,
li1,i2 is the distance between two items,
ωn is the weight of the components.

min




ω1·∑p(
fpt
Ft
· lp)

ω2· 1
∑i

jt
Ft

+ ω3·∑g
∑ lgn
Ign

+ ω4·∑i(
oi1,i2

∑i oi1,i2
· li1,i2)


 (1)

Before creating the initial population, the encoding method is necessary for creating
bacteria for the population. Each bacterium represents a possible SLA. The length of an
individual is equal to the number of items handled in the warehouse. In the bacteria, the
storage locations are assigned to the items. First, the items are ordered by the picking-
frequency value, and then location data are assigned after. In the case when more items
need to be assigned than the available picking location, the item is assigned the parameter
“x”. This item is a non-assigned item, which cannot be allocated to the picking location
and must be collected by the picker from a distant or higher location. Buffer locations are
also allocated and designed to support replenishing and repositioning tasks. The buffer
locations fix the data and reduce the number of locations assigned for the items. Location
data can be assigned to items using random and eugenic coding methods.

The random encoding method randomly sequences each picking location without
any rule and assigns, and the eugenic encoding method sorts the picking locations based
on the distance matrix before assigning them to the items. Figure 1 shows the encoding
method with the non-assigned parameters. The parameters of the encoding method are
in, which represents the item types that are ordered by the frequency value; PLs are the
picking locations; and x is the non-assigned parameter.

The initial population generation steps are shown in Algorithm 2. The initial popula-
tion can be generated with eugenic or random bacteria. After performing the necessary
steps (assigning buffer locations), if eugenic bacteria are required, it assigns the locations in
order; otherwise, locations are assigned randomly. A parameter defines how many bacteria
are needed in the population, and parameterization helps generate the required number of
bacteria. In this study, we perform the BMA steps on random initial bacteria. Our decision
is based on the fact that we found it absolutely necessary to investigate the ability of the
BMA to handle the SLAP problem and to sort the placement based on the parameters.

The BMA cycle starts with the bacterial mutation operator, according to Algorithm 3.
Bacterial mutation is performed using clones for each bacterium in the population. The
original bacterium is divided into segments. The length of the segment is a fixed parameter,
and as many segments are created that can fit in the bacterium. The segments created are
shuffled and sequenced, and mutation is carried out in the clones based on this order. The
first segment is permutated in each clone. After the mutation, the clones are evaluated. The
best clone segment is overwritten in each clone, and then the mutation steps are performed
with each segment. After the last mutation, if the objective function value of the best
clone is less than that of the original bacterium, it is overwritten and written back into
the population.
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Algorithm 2. Initial population.

1. Order the locations in LocationTable in ascending order by Distance Matrix
2. For b := 1 to Nlocation * Buffer percentage do
3. Randomised permutation of buffer locations
4. Overwrite the buffer locations in the LocationTable
5. End
6. For p := 1 to Nind do
7. If p <= Nind * Eugenic percentage
8. LocationTable
9. Or else
10. Randomized permutation of LocationTable
11. End
12. Copying bacteria into the population
13. End

After the BM operator, a local search (LS) is applied to improve the given bacterium.
Genes are elements of the bacterium, and the local search involves swapping genes. To
perform a local search, two groups are defined from which the genes to be swapped are
selected. One collects those rapidly rotating items based on frequency data (i.e., category A
products) that are located far from the depot point (Table1 in Algorithm 4). The other group
(Table2 in Algorithm 4) contains the slowly rotating items that are located close to the depot
point. The LS operator makes clones, and the process is repeated as often as defined by
the parameter. In every repeat, the algorithm declares two independent genes in the given
bacterium based on the defined groups and swaps the location data associated with the
item types. The presented LS operator evaluates and sorts the clones after the modification.
The LS operator runs for the current clone a specified number of times. If the best clone’s
objective function value at the end of the process is lower than the original bacterium value,
the best clone overwrites the original bacterium. The LS is described in Algorithm 4.
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Algorithm 3. Bacterial mutation.

1. For c := 1 to Nclones do
2. Define clones c by copying the original bacterium
3. End
4. Declare integer variable Segment := 1
5. Declare integer variable SegmentLenght := 1
6. For i := 1 to Nbac do
7. If SegmentLenght = Lclone * Lsgm /100, then
8. Define new segment
9. Segment += 1
10. SegmentLenght := 1
11. Or else
12. SegmentLenght += 1
13. End
14. Allocate i to the segment
15. End
16. Permutate the sequence of the segments
17. For s := 1 to Segment do
18. for c := 1 to Nclones do
19. Permutate the segment s of the clone c
20. End
21. Order the clones in ascending order by the objective function
22. For s := 1 to Nclones do
23. Copy the segment of BestClone to each clone
24. End
25. End
26. If BestClone < initial bacterium, then
27. Overwrite the original bacterium by the best clone
28. End

Algorithm 4. Local search.

1. For r := 1 to LSrepeat do
2. Define clone by copying the original bacterium
3. Define A items far from depot in Table1
4. Define C items near to depot in Table2
5. Repeat
6. rnd1 := random integer number between 1 and LTable1
7. rnd2 := random integer number between 1 and LTable2
8. Until rnd1 6= rnd2
9. Changing Locations on rnd1 and rnd2 records
10. Evaluate clone by the objective function
11. Order the clones in ascending order by the objective function
12. End
13. If the objective function of the best clone < objective function of the original

bacterium, then
14. Overwrite the original bacterium by the best clone
15. End

The final step in BMA is gene transfer (GT). GT allows for the recombination of
genetic information between two bacteria in the steps described in Algorithm 5. A source
and a destination bacteria need to be defined. A segment from the source bacterium is
defined, and this segment is used in the destination bacterium. The source bacterium
is randomly selected from the superior half of the population and is dedicated by the

212



Mathematics 2024, 12, 3688

population percentage based on a specific parameter. Another bacterium is selected from
the inferior half of the population, which will be the destination bacterium. These are the
superior and inferior bacteria. The start of the segment is defined in the superior bacterium
based on a specific parameter: how long the segment is and what percentage of the length
of the bacterium it starts from. The information in the segment is deleted from the inferior
bacterium to avoid duplication, and the segment is inserted in the same place from which
it was extracted from the superior bacterium. The process is repeated for a number of
infections times. After evaluation, if the transcription is successful, the inferior bacterium
should be overwritten. The entire BMA cycle must be repeated as many times as the
number of generations specified at the start of the process.

Algorithm 5. Gene transfer.

1. Define a random superior bacterium
2. Superior = RandomValue (1, Nind * GT percentage)
3. Define a random inferior bacterium
4. Inferior = RandomValue (Nind * GT_percentage + 1, Nind)
5. Copy the inferior bacterium into the Inferior_GT bacterium
6. Declare integer variable SegmentStart := (1, Lbac * GT_location_percentage)
7. Define a coherent Lsgm length segment from SegmentStart record from the

superior bacterium
8. Delete the duplications within the Inferior_GT bacterium
9. Declare integer variable InsertStart := SegmentStart
10. Insert segment into the Inferior_GT bacterium
11. Evaluate the Inferior_GT bacterium
12. Overwrite the Inferior bacterium with the Inferior_GT bacterium

While describing the steps of the BMA algorithm, it was mentioned that the operator
performs certain steps during optimization based on parameters. To operate the algorithm,
several parameters are required, which are essential for its operation. These parameters are
summarized in Table 1 for each operator. The scenarios generated with the basic parameters
and their modifications were used to investigate the performance of the BMA.

Table 1. Initial operator parameters for BMA operation.

BMA Operator Parameters

Eugenic or random bacterium
Initial population Number of bacteria

Number of generations

Number of clones
Bacterial mutation Length of segment

Percentage of the population

Number of clones
Local search Length of the segment

Number of repetitions

Size of the Superior bacterium group from the population
Gene transfer Length of segment

Start of the segment in the bacterium
Number of infections

2.2. The Partial Results of the Development

The algorithms were developed, and the test environment was modeled with Tec-
nomatix Plant Simulation software version 2201.0010, which possesses its own program-
ming language, called SimTalk. The executions were fulfilled in an ASUS TUF Dash F15
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FX517ZE_FX517ZE hardware, with the following features: CPU 2th Gen Intel(R) Core(TM)
x64 i7-12650H, 2.30 GHz, 10 cores, 16 logical processors, RAM 16 GB DDR5, and 4800 MHz.

Based on industry experience, an average warehouse size has been defined where the
problem is realistic. A classic warehouse layout was chosen, with a single deep racking
system, which is the most commonly used layout for picker-to-parts picking systems. In
the test model, the specified warehouse had 1333 picking locations. The use of buffer
locations was necessary for real warehouse operations. In this case, 10% of the total picking
locations have been determined, reducing the total number of available picking locations
to 1200. The model considered 1466 items that needed to be handled. The items are
categorized by picking-frequency value for the A, B, and C categories. It is necessary to
collect category A frequently and category C the least frequently. One item per location
is allowed, so some items cannot be assigned to a picking location. These non-assigned
items were physically collected but stored in locations that were not accessible for low-level
picking. These specifications were implemented to the BMA for the assignment of items to
picking locations.

The warehouse in the case study is responsible for storing and handling items such as
e-commerce, where ordering patterns change and customer demands change rapidly, and
item assortments are affected by seasonality.

We consider it a preliminary result that the BMA algorithm is functional and organizes
the assignment on the layout according to categories. Figure 2 illustrates the changes in
the assignment of each category relative to the initial state. Category A is marked in red,
category B in green, and category C in blue. Figure 2a shows the initial state when the initial
bacteria were generated. As mentioned before in this study, random initial population was
generated and used. Figure 2b shows how the BMA algorithm organized the assignment
according to categories. Category A items are close to the “x” depot point, and category C
items are far from the “x” depot point.
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Figure 2. Change in the assignment during SLA optimization with BMA: (a) initial state and (b) as-
signment partial result.

During the study, a validation algorithm was used to verify the functioning of the
algorithm. The genetic algorithm, most commonly used for solving SLAP, was chosen.
This algorithm was programmed by implementing the described evaluation method. The
same test environment was defined for the study. The operators of the BMA include the
evaluation step significantly more often than the operators of the GA; hence, for comparison
purposes, the evaluation value was considered to ensure comparisons were made on an
equal-budget basis. Quantifying the running time will be the next step in the research.

During the testing of the BMA, numerous parameter settings were applied, and the
effects of these settings were clearly observed throughout the process. These observations
are summarized in Figure 3, alongside the results of the GA. The graph shows the change
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in the value of the objective function as a function of the evaluation number for different
parameter settings. The x-axis shows the number of evaluations, and the y-axis the value
of the objective function. Upon examining the evaluation value data, it was found that the
GA achieved a more favorable fitness value than the BMA. A further examination of the
algorithms highlighted the importance of incorporating parameter settings that can reduce
the number of evaluations required by BMA operators. During the review of operators,
it was observed that the LS operator contained many evaluation steps while making the
smallest modifications within a bacterium. Parameters were integrated into the algorithm
to specify when the LS operator should engage in the process and how often it should
execute modifications across generations. The goal was to enable the algorithm to make
significant improvements early in the generations with a higher random factor, building on
the observed effectiveness of the GA in this aspect. Upon evaluating the outcomes after
the parameter settings, it was determined that the improvement in fitness values quickly
slows down during the initial phases of the generations. However, significant improvement
occurs following the activation of the operator. Despite these gains, compared to other
results, further modifications are necessary as satisfactory outcomes have not yet been
achieved. Figure 3 shows the mentioned BMA results, the results obtained with the LS
operator modification (BMA_LS_mod1 and BMA_LS_mod2) and the GA result.
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As mentioned above, previous research has shown that BMA can achieve better results
than GA, but based on the current state of our research, we have not yet been able to
prove this for the SLAP problem. The next step of the research is an examination of
whether it is indeed true that BMA also provides a better approach to solving SLAP. Due
to the large number of combinations and limitations in parameterization, it is necessary
to employ a different method for setting parameters during optimization. By examining
options and other research, dynamic parameterization may offer a solution for adjusting
BMA parameters during the optimization process to achieve favorable fitness values.
This investigation led to the formulation of the concept of adaptive Bacterial Memetic
Algorithm parameterization.

3. Concept of the Adaptive Bacterial Memetic Algorithm Parameterization

For evolutionary algorithms used in large-scale combinatorial problems, different
parameterization may be ideal at different stages of optimization. The selection of the
optimal adaptation strategy largely depends on the specific problem, the characteristics of
the search space, and the goal of the algorithm.
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For the presented problem, in this paper, three possible parameterization methods are
examined:

Static: Static parameterization refers to when parameters are set before running the
algorithm and remain unchanged during execution, regardless of time, generations, or
the number of evaluations. As we presented, due to the high number of parameters and
combinations, the manual static parameterization is not efficient int this case.

Dynamic: The parameters change according to a predefined rule or function, which
adjusts them based on time or the number of generations. It can be efficient and enhance the
effectiveness of the algorithm. The effectiveness of dynamic parameterization was tested,
in which we set different parameters at various stages of the execution. One such setting
was the delayed activation of the local search (after 5% of the generations). We found that
it is important to allow more room for random search and mutation in the early stages
of optimization, with local search taking precedence in later stages. While this approach
helps, it still does not meet the expected results. We concluded that further adjustments to
the parameters based on intermediate results are needed.

Self-adaptive: This method adjusts the parameters based on feedback from the algo-
rithm’s execution [25–27]. Depending on the problem, it is necessary to outline rules and
equations that require extracting statistics during execution. These provide the basis for
the algorithm to determine the need for parameter changes.

For the analysis, we need statistics like the following possible statics:

• Number of BM calls in one generation and the number of improvements of the BM;
• Number of LS calls in one generation and the number of improvements of the LS;
• Best value of the objective function in each generation;
• Objective function value of each bacterium in each generation;
• Amount of the Objective Function’s progression through generations.

Based on the statistics, the proposed concept defines some problem-dependent rules
for possible modifications, such as the following:

• Based on the BM’s low-success statistics (e.g., there was no significant improvement
in the last 20 generations), the BM frequency can be decreased for several BMA cycles,
i.e., generations;

• Based on the BM’s low success statistics (e.g., there was no significant improvement
in the last e.g., 20 generations), the clones of the BM can be decreased with one clone,
generation by generation, for several generations;

• Based on the LS low success statistics, we can pause the LS for several generations,
and, simultaneously, we can increase the number of the BM clones;

• Based on the objective function progression statistics, e.g., in case of unsatisfactory
progression, more frequent LS or more LS clones can be adjusted.

Based on these data and rules, the envisioned BMA process with self-adaptive param-
eterization is structured as follows (Figure 4).

Sure, we need a preliminary parameter setup whereby we start the BMA process. In
this first cycle, the algorithm uses this configuration. Once BM, LS, and GT reach the end of
the first generation, the adaptive parameter algorithm (APA) steps in and starts to analyze
the results. Based on the previously mentioned statistics and rules used as examples, the
APA decides over the need for parameter modification. The algorithm either modifies the
parameters first or goes straightway forward to the next step of the BMA process. In this
next step, the algorithm analyzes the number of generations, and if there are any left, then
it starts the process again from the BM. If the algorithm has reached the maximum number
of generations, then the optimization process ends. The BMA algorithm operates as follows
with the integration of the APA module. Algorithm 6 shows the place of the APA module
within the algorithm. APA examines whether parameter changes are required during
execution; therefore, the algorithm itself stays the same, and just the parameterization can
be modified (i.e., number of LS clones and BM frequency).
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Algorithm 6. BMA procedure with APA module.

1. Execute the initial population generation method
2. For i := 1 to Nind do
3. Evaluation of each bacterium and sort by defined objective function
4. End
5. For g := 1 to Ngen do
6. For i := 1 to Nind * BM_LS% do
7. Execute bacterial mutation operator
8. Execute local search operator
9. End
10. Order the population in ascending order by the objective function
11. For i := 1 to Ninf do
12. Execute gene transfer operator
13. Order the population in ascending order by the objective function
14. End
15. Execute APA module
16. End

Figure 4 shows where in the BMA workflow the APA module should be applied.
Algorithm 6 shows the place of the APA module within the algorithm. APA examines
whether parameter changes are required during execution. The algorithm itself stays the
same; just the parameterization is modified.

As a following step of our research, the presented APA concept will be developed
and built in the optimization process. With the examination of the improved optimization
process results, the performance enhancement of the BMA can be defined, and the extended
comparative study with the GA can be presented.
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4. Conclusions

Recognizing SLAP as a substantial NP-hard combinatorial problem, this study ex-
plored advanced heuristic or algorithmic solutions for effective optimization. Traditionally,
genetic algorithms (GAs) have been applied to SLAP, but recent investigations suggested
potential in the application of the Bacterial Memetic Algorithm (BMA), primarily due to its
versatility in tackling complex optimization challenges. Some research outlined that BMA
could achieve an even better performance than GA. Based on these research results, a BMA
was developed for SLA optimization and compared to the result of the GA. Contrary to
expectations, the BMA did not yield as satisfactory results as expected. After examining
this underperformance, the static nature of algorithmic parameters was defined as a notable
challenge. It restricts the flexibility of BMA. With some manual modification, the results
indicated that static parameterization, while occasionally effective, cannot respond to the
complex warehouse storage conditions, leading to unsatisfactory results. It is required to
achieve parity with or exceed the performance of the GA. Consequently, we explored the
field of intelligent parameterization of evolutionary algorithms and formulated an adaptive
parameterization concept for BMA. In this concept, the parameters are self-parameterized
based on intermediate statistics and performance metrics. This adaptability allows the
algorithm to dynamically shift its focus as the optimization processes. Adaptive param-
eterization represents a significant advancement in SLAP optimization, offering a novel
framework for the dynamic optimization of evolutionary algorithms. By integrating adap-
tive mechanisms, our BMA model could leverage feedback from operational statistics,
such as improvement rates of bacterial mutation and local search effectiveness to modify
its approach dynamically. During the adaptive parameterization algorithm process, the
BMA algorithm remains unchanged, and the module only changes the parameters of the
BMA operators.

Our findings highlight the importance of adaptive parameterization in evolutionary
algorithms—like in the BMA—particularly within warehouse management. Adaptive
mechanisms can help bridge the performance gap between conventional static algorithms
and the demands of modern storage location challenges. The research focused on a specific
warehouse layout for FMCG goods with a low-level picker-to-parts system, which may
limit generalizability to other environments. The ability of BMA to dynamically respond
to changing storage demands makes it suitable for industries with high variability, such
as e-commerce and FMCG sectors. By reducing picking times and improving storage
efficiency, significant cost reductions and operational efficiencies can be achieved. This
research expands the field of adaptive evolutionary algorithms by applying self-adaptive
parameterization to the BMA framework, and, in practice, it provides a pathway for deploy-
ing advanced algorithms in real-world warehouses to solve combinatorial optimization
problems. This research also highlights the potential for integrating machine learning to
further refine parameter adjustments based on historical trends. Future research could
explore adaptive controls or integrate machine-learning techniques that predict parameter
adjustments based on historical data trends, further enhancing the robustness and efficiency
of BMA for SLAP. While adaptive parameterization was conceptualized, its full implemen-
tation and testing and the presentation of a new comparative analysis with the GA remain
as future research directions. The computational complexity of adaptive mechanisms may
also pose challenges for large-scale applications, requiring further optimization.
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