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Department of

Multidisciplinary Engineering

Texas A&M University

McAllen

United States

Editorial Office

MDPI AG

Grosspeteranlage 5

4052 Basel, Switzerland

This is a reprint of the Special Issue, published open access by the journal Machines (ISSN 2075-1702),

freely accessible at: www.mdpi.com/journal/machines/special issues/ZW0ZK0ZIEN.

For citation purposes, cite each article independently as indicated on the article page online and

using the guide below:

Lastname, A.A.; Lastname, B.B. Article Title. Journal Name Year, Volume Number, Page Range.

ISBN 978-3-7258-3126-5 (Hbk)

ISBN 978-3-7258-3125-8 (PDF)

https://doi.org/10.3390/books978-3-7258-3125-8

© 2025 by the authors. Articles in this book are Open Access and distributed under the Creative

Commons Attribution (CC BY) license. The book as a whole is distributed by MDPI under the terms

and conditions of the Creative Commons Attribution-NonCommercial-NoDerivs (CC BY-NC-ND)

license (https://creativecommons.org/licenses/by-nc-nd/4.0/).

www.mdpi.com/journal/machines/special_issues/ZW0ZK0ZIEN
https://doi.org/10.3390/books978-3-7258-3125-8


Contents

About the Editors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

Luis Amezquita-Brooks, Eber Maciel-Martı́nez and Diana Hernandez-Alcantara
Improved PVTOL Test Bench for the Study of Over-Actuated Tilt-Rotor Propulsion Systems
Reprinted from: Machines 2024, 12, 46, https://doi.org/10.3390/machines12010046 . . . . . . . . 1

Pablo A. Tellez-Belkotosky, Luis E. Cabriales-Ramirez, Manuel A. Gutierrez-Martinez and
Edmundo Javier Ollervides-Vazquez
Intelligent PIV Fuzzy Navigation and Attitude Controller for an Octorotor Mini-UAV
Reprinted from: Machines 2023, 11, 266, https://doi.org/10.3390/machines11020266 . . . . . . . 25

Yu Cai, Guangfa Su, Jiannan Zhao and Shuang Feng
The Coupled Wing Morphing of Ornithopters Improves Attitude Control and Agile Flight
Reprinted from: Machines 2024, 12, 486, https://doi.org/10.3390/machines12070486 . . . . . . . 44

Alejandro Tevera-Ruiz, Rodolfo Garcia-Rodriguez, Vicente Parra-Vega and Luis Enrique
Ramos-Velasco
Q-Learning with the Variable Box Method: A Case Study to Land a Solid Rocket
Reprinted from: Machines 2023, 11, 214, https://doi.org/10.3390/machines11020214 . . . . . . . 58

Emmanuel Alejandro Islas-Narvaez, Jean Fulbert Ituna-Yudonago, Luis Enrique
Ramos-Velasco, Mario Alejandro Vega-Navarrete and Octavio Garcia-Salazar
Design and Determination of Aerodynamic Coefficients of a Tail-Sitter Aircraft by Means of
CFD Numerical Simulation
Reprinted from: Machines 2022, 11, 17, https://doi.org/10.3390/machines11010017 . . . . . . . . 72
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Preface

In the last decade, unmanned aerial vehicles (UAVs), commonly known as drones, have been

used for different purposes, including applications such as search and rescue, highway patrol, and

infrastructure inspections for power lines, bridges, and factories. These applications require UAVs

that can operate under specific conditions or complex environments. As a result, new configurations

are being developed, including improved sensors, longer flight times, and enhanced autonomy.

This Special Issue provides the recent advances and applications in unmanned aerial vehicles,

considering both theories and experiments for multirotor, fixed-wing, and non-conventional

(convertible) vehicles. After a stringent peer review process, twelve papers were finally included

in this Special Issue, which covers the following aspects: modeling, guidance, navigation, control,

simulation, and applications. The order of the accepted papers is below:

1. Improved PVTOL Test Bench for the Study of Over-Actuated Tilt-Rotor Propulsion Systems.

2. Intelligent PIV Fuzzy Navigation and Attitude Controller for an Octorotor Mini-UAV.

3. The Coupled Wing Morphing of Ornithopters Improves Attitude Control and Agile Flight.

4. Q-Learning with the Variable Box Method: A Case Study to Land a Solid Rocket.

5. Design and Determination of Aerodynamic Coefficients of a Tail-Sitter Aircraft by Means of

CFD Numerical Simulation.

6. Performance Evaluation of an H-VTOL Aircraft with Distributed Electric Propulsion and

Ducted-Fans Using MIL Simulation.

7. Design and Performance of a Novel Tapered Wing Tiltrotor UAV for Hover and Cruise

Missions.

8. Variations in Finite-Time Multi-Surface Sliding Mode Control for Multirotor Unmanned Aerial

Vehicle Payload Delivery with Pendulum Swinging Effects.

9. An Inverse Kinematics Approach for the Analysis and Active Control of a Four-UPR

Motion-Compensated Platform for UAV–ASV Cooperation.

10. The Viability of a Grid of Autonomous Ground-Tethered UAV Platforms in Agricultural Pest

Bird Control.

11. Use of Unmanned Aerial Vehicles for Building a House Risk Index of Mosquito-Borne Viral

Diseases.

12. A Conceptual Framework for Economic Analysis of Different Law Enforcement Drones.

As Guest Editors of this Special Issue, we would like to extend our gratitude to all the authors

of the published articles and those who expressed interest in contributing to this Special Issue. We

especially appreciate the reviewers who thoroughly examined each submitted article. Their scientific

expertise provided valuable insights and constructive feedback that helped enhance the authors’

research.

Octavio Garcia-Salazar, Anand Sanchez-Orta, and Aldo Jonathan Muñoz-Vazquez

Guest Editors
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Improved PVTOL Test Bench for the Study of Over-Actuated
Tilt-Rotor Propulsion Systems
Luis Amezquita-Brooks 1,† , Eber Maciel-Martínez 1,† and Diana Hernandez-Alcantara 2,*

1 Facultad de Ingenieria Mecanica y Electrica, Universidad Autonoma de Nuevo Leon,
San Nicolás de los Garza 66455, NL, Mexico; luis.amezquitabrk@uanl.edu.mx (L.A.-B.);
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2 School of Engineering and Technologies, Universidad de Monterrey,
San Pedro Garza García 66238, NL, Mexico

* Correspondence: diana.hernandeza@udem.edu
† These authors contributed equally to this work.

Abstract: In recent years, applications exploiting the advantages of tilt-rotors and other vectored
thrust propulsion systems have become widespread, particularly in many novel Vertical Takeoff and
Landing (VTOL) configurations. These propulsion systems can provide additional control authority,
enabling more complex flight modes, but the resulting control systems can be challenging to design
due to the mismatch between the vehicle degrees of freedom and physical input variables. These
propulsion systems present both advantages and difficulties because they can exert the same overall
forces and moments in many different propulsive configurations. This leads to the traditional non-
uniqueness problem when using the inverse dynamics control allocation approach, which is the basis
of many popular VTOL control algorithms. In this article, a modified Planar VTOL (PVTOL) test
bench configuration, which considers an arbitrary number of co-linear tilting rotors, is introduced
as a benchmark for the study of the control allocation problem. The resulting propulsion system is
then modeled and linearized in a closed and compact form. This allows a simple and systematic
derivation of many of the currently used control allocation approaches. According to the proposed
PVTOL configuration, a two-rotor test bench is implemented experimentally and a decoupling
control allocation strategy based on Singular Value Decomposition (SVD) analysis is developed. The
proposed approach is compared with a traditional input mixer algorithm based on physical intuition.
The results show that the SVD-based solution achieves better cross-coupling reduction and preserves
the main properties of the physically derived approach. Finally, it is shown that the proposed PVTOL
configuration is effective for studying the control allocation problem experimentally in a controlled
environment and could serve as a benchmark for comparing different approaches.

Keywords: PVTOL; test bench; VTOL; control allocation; cross-coupling

1. Introduction

Recently, Vertical Takeoff and Landing (VTOL) aircraft configurations have attracted a
high degree of interest from the research community and the aeronautics industry. The
novelty of these vehicles introduces a set of challenging issues because many of the well-
established design methodologies, used for conventional aircraft configurations, do not
apply directly. This has also attracted the attention of the authorities, which have proposed
several novel specifications to address many of these challenges (see, for example, [1,2]).

The majority of the reports found in the literature deal with a specific VTOL configu-
ration. For instance, in [3,4], the authors study a commonly used arrangement, in which
the tilt-rotors are used to generate either lift force in hover or thrust force in horizontal
flight (i.e., as the one used in the V-22 Osprey). In this case, the authors propose a nonlinear
observer and control approach to stabilize the vehicle with good results. Many other aspects
of this configuration have been researched, for instance, in [5], the dynamic properties of

Machines 2024, 12, 46. https://doi.org/10.3390/machines12010046 https://www.mdpi.com/journal/machines1
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the vehicle are studied by calculating the linear stability and control derivatives of the
vehicle. This study shows that it is possible to evaluate the well-known flight modes of a
traditional airplane such as phugoid, short period, Dutch roll, and spiral subsidence. Using
a similar approach. In [6], it is shown that a linear control approach can be used to stabilize
the full nonlinear dynamics of the vehicle. In this case, the authors noticed a serious degree
of cross-coupling when the vehicle operated in helicopter mode. A similar configuration,
which considers that the aircraft remains in hover with a vertical fuselage orientation, is
studied in [7]. In this report, the authors used a scheduled linear control approach to
stabilize the vehicle. These reports show that, although this VTOL configuration results in
a highly coupled and nonlinear system, the use of linear control approaches is preferred
in some instances due to its simplicity and the possibility of evaluating the closed loop
dynamics in terms of classical flight dynamics modes.

Although the configuration mentioned in the previous paragraph is common, it is far
from being the only one used in VTOL applications. In particular, tilt-rotors can be found
in several configurations, ranging from all the rotors being tilt-rotors to a single rotor used
as a tilt-rotor. For instance, in [8], a fixed-wing aircraft with one fixed and two tilting rotors
is presented. In this case, a set of nested control loops with linear controllers is used to
stabilize the vehicle. Several reviews dealing with VTOL configurations can be found in
the literature [9–11]. From these reports, the following insights can be obtained:

• There is a high degree of heterogeneity in the propulsion system configurations,
including number, distribution, and operating conditions.

• There is an increasing use of distributed tilting rotors (or similar thrust vectoring
elements).

• The multiplicity of propulsors and control surfaces results in a high number of control
inputs, introducing an over-actuation problem, which is normally denoted as the
control allocation problem in the literature (although under-actuation problems have
also been treated as allocation problems by some authors).

• The control allocation problem is commonly dealt with by separating the vehicle into
two parts: (1) a rigid body, which is driven by virtual control inputs (i.e., force and
moment vectors), and (2) the propulsion subsystem, which is driven in such a way
that the desired force and moment vectors are obtained. In practice, it is difficult
to pair specific physical inputs to a particular force or moment component without
introducing cross-coupling in the rigid body control loop.

• Although many control approaches have been proposed, linear Proportional Integral
Derivative (PID) controllers are still used in many practical setups due to their simplicity
and low computational overhead.

The control allocation problem is one of the main issues found in novel vehicle config-
urations with many tilting propulsors. The simplest approach for the allocation problem
consists of pairing specific physical inputs with the desired outputs in a fully decentral-
ized control manner. In other cases, physical insight allows proposing a simple allocation
strategy [8]. Although these approaches have been used for traditional configurations (i.e.,
classical pairings, such as elevator surface and pitch angle), many novel VTOL configura-
tions cannot be operated using this scheme due to excessive cross-coupling.

In cases where the cross-coupling introduced by a simple control allocation algorithm
is excessive, a preferred approach consists of establishing virtual (decoupled) inputs and
attempting to solve the inverse actuator dynamics to determine the necessary physical
inputs [9]. This approach is easy and effective if the propulsion subsystem inverse dynam-
ics exist and are unique. A well-known example of this is the typical quad-rotor control
allocation algorithm, where a vector of four virtual inputs is related to the angular velocities
of the four propellers through a fixed and invertible 4x4 matrix [12]. It is also interesting
to note that this approach has proven to be highly successful even though the propulsion
model used to derive it is arguably over-simplified, as it neglects several important aero-
dynamic factors [13]. This proves that it is possible to obtain effective allocation solutions
using simplified propulsion models.
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In more recent years, VTOL configurations have become more complex so that inverse
propulsion dynamics either do not exist or are not unique. In particular, over-actuated
systems are more common due to the increased number of actuators. In these cases, a
simple solution consists of using physical insights to add additional constraints to reduce
the dimension of the control input vector. For example, in [14], the control allocation for a
spacecraft using two kinds of actuators was solved by a proportional distribution of the
desired control torque considering the characteristics of each actuator. Physical insight
has also been used to refine Cascade-Generalized Inversion (CGI) approaches, such as in [15],
where a test bench for a vehicle with multiple tilting rotors was controlled by grouping
several physical actuators in a hierarchical manner. There are also several mathematical
tools which can aid in solving the allocation problem, such as the Moore–Penrose pseudo-
inverse matrix and the Karush–Kuhn–Tucker (KKT) optimality conditions [16]. Many of
these approaches rely on a linear approximation approach, whose range can be expanded
by the use of scheduling techniques [16]. Non-linear approaches have been also proposed;
however, the resulting solutions can be too taxing for the computational systems on board
small vehicles. Therefore, fast linear or scheduling approaches are still preferred in many
applications [16,17].

More recently, in [17], a review article dealing with the taxonomy of vehicles with
multiple rotors showed that there are still many challenges in the study of these propulsion
systems. Among these, the heterogeneity of the propulsion configurations, the aerody-
namic interaction of the various actuators (also noted in [13]), and the actuator limitations
(including actuator saturation and response times) are the most relevant. One of the tools
observed in [17] which has been used to overcome some of these problems is the use of
co-linear or co-planar propulsor arrangements.

The previous paragraphs illustrate how the popularization of VTOL vehicles with a
wide range of configurations, particularly those that contain an arbitrary number of tilting
rotors, has motivated the study of the control allocation problem, from both theoretical and
practical points of view. In this context, it is appropriate to recall that during the emergence
of the modern quad-copter drone, in the early 2000s and later, several novel technical and
theoretical developments were made. One of the tools that proved to be very valuable
for researchers was the so called Planar Vertical Takeoff and Landing (PVTOL) configuration,
which was widely adopted by researchers in a simplified two degrees of freedom (DoF) test
bench version. This simplified model allowed both researchers and prospective control
engineers to study novel control strategies and to perform preliminary experimental tests in
a safe environment before performing actual flight tests. The sheer number of contributions
to control, sensor, and modelling theory that still rely on the PVTOL configuration is a
testament to its usefulness. From neural network backstepping control [18] to the study of
robust feedback linearization [19] and noise-rejecting active disturbance controllers [20], the
PVTOL model is still widely used by researchers. In many ways, the PVTOL has become a
de facto benchmark platform.

While the PVTOL is a good approximation of simple vehicles such as the quad-copter,
this simplification fails to capture the main difficulties of many current VTOL vehicles. In
particular, many of these vehicles include some form of tilt-rotor or other similar thrust
vectoring propulsion system. There have been some attempts to propose a more general
PVTOL configuration, which also include the complications of tilting rotors. For example,
in [21], a tilting rotor PVTOL was introduced with good results; however, in this report,
only simulations are presented and the allocation problem is reduced by neglecting the
reactive torque of the propellers.

Finally, a summary of the main elements found in the literature review is as follows:

• There is a high level of heterogeneity in the propulsion configuration of recent VTOL
vehicles with a movement towards a higher number of actuators.

• The resulting control allocation problems are highly dependent on the propulsion
configuration. Therefore, the study of this issue can yield vehicle-specific results.

3
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• The use of simplified test benches (such as the PVTOL) can aid in the study of prospec-
tive control strategies while preserving many of the dynamic and experimental com-
plexities, allowing a more rapid development of novel/better solutions.

• The typical PVTOL test bench configuration is unable to represent many of the diffi-
culties found in recent VTOL vehicles.

• Although non-linear control and allocation approaches can deliver improved perfor-
mance for wider operating ranges, in many Unmanned Aerial Vehicle (UAV) applica-
tions, linear controllers and allocation approaches are still being used and researched
due to their simplicity and efficiency.

Considering the previous context, in this article, the control allocation problem is
studied both theoretically and experimentally. In particular, the following elements are
presented:

• A novel PVTOL test bench configuration containing an arbitrary number of co-linear
tilting rotors is proposed as a progression of the traditional PVTOL test bench config-
uration. This configuration can reproduce several of the interesting issues found in
novel VTOL vehicles, mainly the control allocation and cross-coupling problems. In
addition, this configuration can be easily extended to include an arbitrary number of
co-planar tilting propulsors, so that a wider range of vehicles can be mimicked.

• A general method for obtaining a closed form of the linearization of the propulsion
model for the modified PVTOL configuration is presented. This can be useful because,
as mentioned before, many control allocation strategies depend on it.

• A simple test bench, based on the modified PVTOL configuration, is implemented
experimentally. This simple test bench allows testing control allocation and cross-
coupling problems.

• A simple decoupling control allocation scheme for the test bench, based on a linear
approximation derived through Singular Value Decomposition (SVD), is presented.
This approach allows defining an optimal solution for the allocation problem of
the modified PVTOL configuration. The resulting optimization can solve the over-
actuation problem by introducing a wide range of considerations. In this case, low-
error and practical physical considerations are used.

• The proposed SVD control allocation approach is compared with a more traditional
input mixer algorithm, derived from physical insight, both through simulations and
using the experimental test bench. The results show that the proposed control allo-
cation scheme allows decreasing the cross-coupling with a simple static decoupling
matrix.

The authors also want to emphasize that the test bench presented here (as well as the
proposed allocation algorithm) should be considered an initial step towards a generalized
study of the control allocation problem through the use of a prospective standardized test
bench configuration based on the modified PVTOL configuration. The authors believe that
the proposed test bench could be used by the scientific community for this purpose; how-
ever, those seeking additional complexity may consider adding more co-linear propulsors
(or even co-planar propulsors in an arbitrary matrix configuration). This would result in an
even more complex over-actuation problem. The authors hope that the use of such a family
of test benches could potentially become a widely used benchmark as an aid in the study
and development of novel propulsion systems for VTOL vehicles.

2. Materials and Methods
2.1. A PVTOL with an Arbitrary Number of Co-Linear Tilting Rotors

This section introduces a PVTOL test bench with an arbitrary number of co-linear
tilting rotors and derives the linearization of the resulting propulsion system model in
a compact and closed form. This propulsion configuration was chosen because it can
replicate many of the control allocation problems found in a wide range of vehicles and
can be easily extended to a more complex arbitrary co-planar propulsion system by simple
aggregation. In comparison with the typical PVTOL experimental test bench configuration,

4
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which is restricted to a single DoF (pitch angle), the proposed configuration adds yaw angle
as an additional DoF. This enables the introduction of a multivariable control problem
(i.e., two outputs instead of one), which facilitates a better study of the control allocation
problem.

It must be noted that adding further DoFs to the test bench (for example, roll angle)
could increase its research potential at the cost of increased mechanical complexity. In this
regard, it is important to recognize that a successful test bench benchmark must balance
the trade-off between its mechanical/manufacturing complexity and its research value
potential. To support this claim, consider the classical PVTOL test bench, which is normally
restricted to pitch angle movement. Although this restriction is clearly not completely
representative of vehicles such as the quad-copter, as mentioned in the introduction, this
has not precluded the classical PVTOL test bench from being used for a wide range of
studies related to quad-rotor applications. In this case, the proposed configuration remains
simple enough to be cost- and mechanically accessible, but complex enough for the control
allocation and multivariable cross-coupling problems to appear. Therefore, we believe that
the proposed configuration (in particular, the two-rotor version presented in an upcoming
section) represents a similar sweet spot for these problems, as the classical PVTOL test
bench is for the typical quad-rotor.

Figure 1 shows the propulsion system with an arbitrary number (n) of tilting rotors,
where the distance of each rotor from the center of gravity is denoted by li and the tilt
angle of each rotor is denoted by δi, with i = 1, 2, 3, ...n. The figure also depicts the angular
positions and rates of the PVTOL in a typical inertial North-East-Down (NED) reference
frame, where θ and ψ denote the pitch and yaw angles, respectively, and q and r denote the
pitch and yaw rates, respectively.

AFT

Motor 1

Motor 2

Motor -1n

Motor n
q

θ

δi

lir ψ
FWD

CCW

CW

N E

D

Figure 1. Modified PVTOL configuration with n tilting propulsors.

Each motor/propeller induces a thrust force Ti and a moment Ri aligned with its tilt
angle, as shown in Figure 2. Because Ri is produced by rotational drag, its direction is
opposite to the propeller rotation. According to simplified propeller modelling, typically
used for multi-rotor vehicles, force Ti and moment Ri can be modelled as [13]:

Ti =
1
2 ρSCTωi

2

Ri =
1
2 ρSCQωi

2 (1)

where S is the disc area of the propeller, CT is the thrust coefficient, CQ is the reactive
moment coefficient, ρ is the air density, and ωi is the angular speed of propeller i. Accord-
ingly, Ri can be rewritten as Ri = kiTi with ki = CQ/CT , which is convenient to reduce the
number of independent input variables.

5
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Figure 2. Thrust force (Ti) and reactive moment (Ri) produced by a single propeller.

This article studies the control allocation problem for the pitching and yawing mo-
ments, denoted as M and N, respectively, since these are the two natural degrees of
freedom for a test bench with the modified PVTOL configuration of Figure 1. Following
this configuration, the resulting pitching and yawing moments are:

M =
n
∑

i=1
Tili cos δi(−1)αi −

n
∑

i=1
Tiki sin δi(−1)βi

N =
n
∑

i=1
Tiki cos δi(−1)βi +

n
∑

i=1
Tili sin δi(−1)αi

(2)

with:

αi =

{
0, if position FWD
1, if position aft

(3)

βi =

{
0, if rotation CCW
1, if rotation CW

(4)

where CW, CCW, and FWD denote clockwise, counterclockwise, and forward respectively.
For instance, considering a simple two-rotor arrangement, with a FWD propeller

(i = 1) rotating CCW and an aft propeller (i = 2) rotating CW, the resulting moment
equations yield:

M = T1l1 cos δ1 − T2l2 cos δ2 − T1k1 sin δ1 + T2k2 sin δ2
N = T1k1 cos δ1 − T2k2 cos δ2 + T1l1 sin δ1 − T2l2 sin δ2

(5)

Although the non-linear propulsion model given by Equations (2) and (5), is useful
for many applications, such as simulation, evaluation, and non-linear control design, many
control allocation methods are based on a linear representation of the propulsion subsystem.
As follows, the linear approximation of the two-propeller case will be derived and then
extended for the general case.

The linear approximation of (5) is given by the Jacobian matrix P of the moment vector
[M N]T , that is:

[
∆M
∆N

]
= P




∆T1
∆δ1
∆T2
∆δ2


 (6)

with

P =

[
∂M
∂T1

∂M
∂δ1

∂M
∂T2

∂M
δ2

∂N
∂T1

∂N
∂δ1

∂N
∂T2

∂N
δ2

]

0

(7)

where [∆M ∆N]T and [∆T1 ∆δ1 ∆T2 ∆δ2]
T are the resulting linear output and input vectors,

and the sub-index 0 denotes evaluation in the equilibrium point.
Matrix P is also called the propulsion matrix in the literature and its properties (e.g., range)

are a determining factor when calculating the physical control inputs (i.e., [T1 δ1 T2 δ2]
T)

6
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necessary to reach a desired combination of input moments (i.e., [M N]T). In this case, since
the control inputs vector ∈ R4, while the moment vector ∈ R2, this PVTOL configuration
yields an over-actuation problem, which will be studied in more detail later in the article.

From (6), it follows that:

P =

[
l1 cos δ1 − k1 sin δ1 −T1l1 sin δ1 − k1T1 cos δ1 −l2 cos δ2 + k2 sin δ2 T2l2 sin δ2 + k2T2 cos δ2
l1 sin δ1 + k1 cos δ1 T1l1 cos δ1 − k1T1 sin δ1 −l2 sin δ2 − k2 cos δ2 −T2l2 cos δ2 + k2T2 sin δ2

]

0
(8)

Matrix P can be further decomposed as:

P = AP1 =

[
l1 −k1 −l2 k2
k1 l1 −k2 −l2

]



cos δ1 −T1 sin δ1 0 0
sin δ1 T1 cos δ1 0 0

0 0 cos δ2 −T2 sin δ2
0 0 sin δ2 T2 cos δ2




0

(9)

Furthermore , matrix P1 can also be decomposed as:

P1 = BC =




cos δ1 − sin δ1 0 0
sin δ1 cos δ1 0 0

0 0 cos δ2 − sin δ2
0 0 sin δ2 cos δ2




0




1 0 0 0
0 T1 0 0
0 0 1 0
0 0 0 T2




0

(10)

Therefore, matrix P can be rewritten as:

P = ABC =

[
l1 −k1 −l2 k2
k1 l1 −k2 −l2

]



cos δ1 − sin δ1 0 0
sin δ1 cos δ1 0 0

0 0 cos δ2 − sin δ2
0 0 sin δ2 cos δ2




0




1 0 0 0
0 T1 0 0
0 0 1 0
0 0 0 T2




0

(11)

Following the structure of (11), a generalization for the system with n propulsors can
be derived. In particular, following a similar analysis, the linearization of the full non-linear
propulsion subsystem (2) is given by:

[
∆M
∆N

]
= P




∆T1
∆δ1

...
∆Tn
∆δn




(12)

where P = ABC and A ∈ R2×2n, B ∈ R2n×2n, and C ∈ R2n×2n.
As follows, each of the elements which comprise (12) will be derived in a closed and

compact form. First, matrix A, which contains information regarding the location and
orientation of each rotor, can be written as the concatenation of sub-matrices Ai:

A =
[
A1 A2 · · · An

]
(13)

with

Ai =

[
li(−1)α

i ki(−1)βi+1

ki(−1)β
i li(−1)α

i

]
(14)

In addition, B comprises a set of 2D rotation sub-matrices as:

B = diag{B1, B2, . . . , Bn} (15)

7
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with

Bi =

[
cos δi − sin δi
sin δi cos δi

]

0
(16)

Finally, matrix C contains information regarding the equilibrium thrust of each pro-
peller:

C = diag{C1, C2, . . . , Cn} (17)

with

Ci =

[
1 0
0 Ti

]

0
(18)

This completes the derivation of the linear approximation of the propulsion subsystem
of the PVTOL of Figure 1. The structure obtained here is useful because it allows separating
the three main physical properties that determine the resulting propulsion matrix P. In
particular:

• Matrix A contains information regarding the physical position and rotation direction
of each propeller. Since these properties are normally constant, updating matrix A
is not necessary when calculating a linear approximation on a different operating
point. However, analyzing its structure could be useful to determine which particular
propulsive configuration is better for particular applications.

• Matrix B contains information regarding the tilt angle of each of the propellers. De-
pending on the operating range and behavior of the propulsion system, this matrix
could be the most sensible for operating point modifications, and should be updated
accordingly in scheduling approaches.

• Matrix C contains information regarding the thrust force of each propeller. This
matrix could also require regular updates in a scheduling approach depending on the
operating behavior of the vehicle.

In many cases, matrices B and C may not require a full update if only a sub-set of
rotors change their operating point. Instead, updating sub-matrices Bi and Ci may be
sufficient.

Although, in this case, the derivation and decomposition of the propulsion matrix was
performed for the modified PVTOL, it may be possible that a similar decomposition could
be useful for other complex propulsion systems, which is the motivation for this analysis
(i.e., as a proof of concept).

2.2. Experimental Test Bench

In this section, an experimental test bench considering the modified PVTOL configu-
ration proposed in the previous section is introduced. The schematic of the test bench is
shown in Figure 3a, while Figure 3b shows the actual prototype. Although this is a simple
two-rotor setup, this configuration yields an over-actuated system (as noted in the previous
section); thus, it is sufficient to study the control allocation problem.

The test bench consists of a base with a transverse rod connecting a servo-motor
at each end. Two bearings allow the system to move freely on two degrees of freedom.
Brushless motors with propellers are attached to each of the servo-motors. A summary of
the technical specifications of the test bench is as follows:

• Two 2304 Racestar brushless motors (81 W max power).
• Two Gemfan 51466 three-blade propellers, one CW and one CCW.
• Two MG995 servo-motors.
• One BNO055 absolute orientation sensor.

The orientation angles are measured using the BNO055 absolute orientation sensor
array, which consists of a 3-axis accelerometer and gyroscope combined with a Kalman
filter for the pitch and yaw angle reconstruction. These kinds of sensors are normally
able to deliver measurements with a mean error of under 1.5 deg/s and 0.5 m/s2 for the
gyroscope and accelerometer, respectively [22–24]. This configuration can yield a low level

8
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of angle measurement error in applications where no axial acceleration is present, so that
the main source of measured acceleration is the gravity, as in the present application [25].

The test bench was operated with an external power source with a fixed voltage
of 12 V, which provided enough current for all the operating conditions tested. The
control algorithms were implemented in an ATmega2560 microcontroller, which is a low-
power 8-bit micro controller capable of 6 MIPS at 16 MHz. The possibility to implement
the proposed control allocation algorithm in this low-computational-power microcon-
troller is a salient characteristic, since most low-cost autopilot UAV solutions have limited
computational power.

EN

D

δ2

l2

l1

T1

R1

δ1

T2

R2

r

q

CCW

CW

AFT

FWD

(a)

(b)

Figure 3. (a) Test bench schematic. (b) Physical prototype.

The microcontroller code was directly generated with Simulink/Matlab without fur-
ther optimization operating at a sampling rate of 5 ms. Figure 4 shows the overall Simulink
program used for the implementation of the control algorithms presented in this article.
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Figure 4. Simulink program for test bench.
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An Atmel-based microcontroller board was programmed for the test bench. A sum-
mary of the resulting input and output variables for the test bench is shown next.

• Input variables:

– Right motor thrust T1;
– Left motor thrust T2;
– Tilt angle of right motor δ1;
– Tilt angle of left motor δ2.

• Output variables:

– Pitch rate θ̇ = q;
– Yaw rate ψ̇ = r;
– Pitch angle θ;
– Yaw angle ψ.

Further details regarding the experimental and simulation setups are shown in
Section 3, together with the corresponding experiments and simulations.

Recalling Equation (5), the resulting motion equations are given by:

Iyy q̇ = T1l1 cos δ1 − T2l2 cos δ2 − T1k1 sin δ1 + T2k2 sin δ2
Izz ṙ = T1k1 cos δ1 − T2k2 cos δ2 + T1l1 sin δ1 − T2l2 sin δ2

(19)

where Iyy and Izz are the pitch and yaw inertial masses, respectively.
Accordingly, the resulting model considering the linearized propulsion model yields:

[
Iyy 0
0 Izz

][
∆q̇
∆ṙ

]
= P




∆T1
∆δ1
∆T2
∆δ2


 (20)

with P ∈ R2×4 as in Equation (11).

2.3. Control Allocation Problem

The objective is to design a linear controller for the pitch and yaw angles of the test
bench using the input vector [T1 δ1 T2 δ2]

T . According to (20), this results in an over-actuated
and a multivariable control problem. Although there are several control approaches which
can deal with multivariable cross-coupling, an ideal approach would be to have an input-
decoupling scheme which incorporates two virtual inputs, that is:

[
Iyy 0
0 Izz

][
∆q̇
∆ṙ

]
=

[
Mdes
Ndes

]
(21)

where Mdes and Ndes are the two arbitrary virtual inputs.
Therefore, in this case, the control allocation problem consists in finding a matrix Pinv

such that I = PPinv so that the required physical input variables can be calculated for a
particular value of the desired virtual inputs, that is:




T1
δ1
T2
δ2


 = Pinv

[
Mdes
Ndes

]
(22)

In this article, two approaches to solve the control allocation problem will be compared:
(1) a decentralized control approach based on physical intuition and (2) a mathematical
approach based on SVD and optimization.

2.3.1. Physical Intuition-Based Decentralized Control Allocation

In this section, a proposal for the input signal mixer will be derived based on physical
intuition and the following assumptions:

10
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• A decentralized control approach for the pitch and yaw angles is sufficient to stabilize
the test bench. This implies that pitch and yaw moments are derived separately
without considering their interaction. This normally implies, for instance, that when
calculating the pitch angle input mixer (directly related to Mdes), it is assumed that
Ndes = 0. In addition, if the pitch angle mixer also affects the yawing moment N, then
these effects are neglected, or at best considered as input perturbations for the yaw
angle controller. That is, any residual cross-coupling is neglected.

• A small range of operation for the tilt-rotors is enough to stabilize the test bench. This
assumption allows maintaining the focus of this study on the linear elements of the
control allocation problem, which is the basis of most scheduling approaches. Later, it
will be confirmed experimentally that indeed only small tilt angles are required for
the stabilization of this PVTOL configuration. Nonetheless, extension of these results
for wider operating ranges will be forthcoming in future studies.

For small angles, the system tends to behave as a classical PVTOL configuration with
a single degree of freedom in the pitch angle and propeller thrust as inputs. In this case,
the resulting pitching moment yields:

M = l1T1 − l2T2 (23)

Thus, it is reasonable to use the differential thrust of propellers to induce pitching moment.
In addition, when no pitching moment is required, it is also desirable for both propellers
to maintain a specific equilibrium thrust T0. This yields the well-known PVTOL pitching
moment input mixer:

T1 = T0 +
Mdes
2l1

T2 = T0 −
Mdes
2l2

(24)

On the other hand, in the case of the yaw angle, if T1 ≈ T2 (i.e., Mdes ≈ 0), then the
yawing moment yields:

N = T1(k1 cos δ1 − k2 cos δ2) + T1(l1 sin δ1 − l2 sin δ2) (25)

Accordingly, noticing that T1 ≈ T2 in (24) implies T1 ≈ T0, the small angle approximation
for the yawing moments is:

N = T0l1δ1 − T0l2δ2 (26)

Therefore, the input mixer for the yawing moment is proposed as:

δ1 =
Ndes
2T0l1

δ2 = − Ndes
2T0l2

(27)

Equations (24) and (27) will be used for the decentralized control allocation approach.
It is clear that in this case, the pitching moment is achieved by modifying the propeller
thrust, whereas the yawing moment is achieved by modifying the rotor tilt angle. Therefore,
this solution is also easy to understand and to implement.

2.3.2. Singular Value Decomposition Control Allocation

In this section, a simple control allocation solution will be derived using the SVD
analysis of the linearization of the propulsion system. Recalling Equation (6), the SVD of
matrix P yields:

P2×2n = U2×2S2×2nVT
2n×2n (28)

where the sub-indexes show the size of each matrix.
Matrix S is a rectangular diagonal matrix called the singular values matrix, whose

diagonal elements si are always positive, typically written in descending order, and are
called the singular values of matrix P. In addition, matrices S and V are orthogonal. The
rank of matrix P is equal to the number of non-zero singular values. Thus, matrix P can be

11
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considered as a linear transformation of R2n into Rrs , where rs = rank(S) is the number of
non-zero si values, which in this case, since S ∈ R2×2n, can only be at most 2. Finally, this
analysis shows that for the modified PVTOL configuration with arbitrary number of tilting
rotors, a fully decoupling control allocation solution exists iff rs = 2.

The SVD of matrix P also allows viewing the linear transformation between an input
vector u ∈ R2n and an output vector y ∈ R2 as a series of intermediate linear transforma-
tions, as shown in Figure 5, where the intermediate transformed vectors are y2 ∈ R2n and
y1 ∈ R2, that is:

y2 = VTu y1 = Sy2 y = Uy1 (29)

2n

2n 2n

2n

2n2

1

2 2

11 2

2 1
u y yy

12

Figure 5. Decomposition of the linear transformation matrix P into intermediate transformations.

Figure 5 shows that the loss of dimension introduced by matrix P occurs in the
intermediate transformation y1 = Sy2 and is due to the rank of matrix S. In particular,
matrix S has the following structure:

S =
[

S1 02×2n−2
]

(30)

where 02×n−2 denotes a zero matrix of the indicated size and S1 is given by:

S1 = diag{s1, s2} (31)

If the rank of P is two (i.e., S1 is invertible), then all the possible input combinations u
which produce a particular desired output y can be calculated with:

y1 = UTy
y2S = S1

−1y1

y2 =

[
y2S
y2N

]

u = Vy2

(32)

where y2N ∈ R2n−2 is an arbitrary vector which does not have any effect over the resulting
output vector y.

If y2N = 0, then Equation (32) yields the Moore–Penrose pseudo-inverse. In particular,
y2N introduces additional degrees of freedom which account for the null subspace of S. The
process of using this pseudo-inverse transformation to calculate an input u which produces
a particular desired output y is represented in Figure 6. This allows injecting an arbitrary
vector y2N which can be selected according to additional practical considerations. Note
that in this case, the SVD analysis was preferred over the direct pseudo-inverse approach
because of the additional flexibility that the SVD decomposition yields, such as more precise
control of the null space injection and information contained in matrices S and V.
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Figure 6. Graphical representation of using the pseudo-inverse to calculate input u from the desired
output y.

2.3.3. SVD-Based Control Allocation Configuration

In the previous section, a control allocation approach based on SVD was presented for
the general case of n co-linear tilting rotors. This method introduced additional degrees of
freedom which could be potentially used to better comply with additional specifications.
In this section, the SVD control allocation method will be applied to the two-rotor modified
PVTOL test bench and the additional degrees of freedom will be configured according to
practical considerations.

Considering the physical parameters of the test bench, and the equilibrium points
reported in Table 1, the propulsion matrix P (i.e., the linear approximation of the propulsion
system) yields:

P =

[
0.2050 −0.0424 −0.2050 0.0424
0.0103 0.8446 −0.0103 −0.8446

]
(33)

Table 1. Test bench parameters and equilibrium points.

Variable Value

T10 4.12 N
T20 4.12 N
δ10 0◦

δ20 0◦

l1,2 0.205 m
k1,2 0.0103 m

Using Equations (28) and (32) with u = [T1 δ1 T2 δ2]
T and y = [Mdes Ndes]

T yields:



T1
δ1
T2
δ2


 =




2.433 0.122 0.707 −0.025
−0.029 0.592 0.025 0.707
−2.433 −0.122 0.707 −0.025
0.029 −0.592 0.025 0.707







Mdes
Ndes

a
b


 (34)

where the vector containing the additional degrees of freedom is given by y2N = [a b]T .
Parameters a and b can be selected freely according to the designer considerations. In

this case, the first consideration is that it is desirable that δ1 = δ2 = 0 when Mdes = Ndes = 0.
Physically, this implies that, in equilibrium, the rotors should point upwards. Therefore,
from (34), it is required that

0.025a + 0.707b = 0 (35)

Thus, b is set as:
b = −0.035a (36)

Next, parameter a is selected so that the quadratic error considering the non-linear
propulsion model is minimized. This yields the following minimization problem:

min
a

J = (e2
M + e2

N) (37)

13
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with: [
eM
eN

]
=

[
M
N

]
− P Pinv(a)

[
Mdes
Ndes

]
(38)

where M and N are as in Equation (5), P is from (33), and Pinv(a) is matrix (34) with an
arbitrary a value.

A simple numerical exercise, shown graphically in Figure 7, reveals that the optimal
value for this parameter is a = 5.82.

−10 0 10 20

0

5

10
10
−3

−10 0 10 20

−1

0

1
10
−3

Figure 7. Cost function J and its derivative (dJ) as a function of a.

Finally, the resulting input mixer yields:



T1
δ1
T2
δ2


 =




2.433Mdes + 0.122Ndes + 4.12
−0.029Mdes + 0.592Ndes

−2.433Mdes − 0.122Ndes + 4.12
0.029Mdes − 0.592Ndes


 (39)

2.3.4. Final Mixer Algorithm Comparison

In this section, the resulting mixer algorithms using both approaches will be compared
for T1 and δ1 (note that T2 and δ2 are similar). In particular, the decentralized control
approach using the parameters of Table 1 and Equations (24) and (27) yields:

T1,dec = 4.12 + 2.43Mdes δ,dec = 0.592Ndes (40)

On the other hand, from Equation (39), using the SVD approach yields:

T1,dec = 4.12 + 2.43Mdes + 0.122Ndes δ,dec = 0.592Ndes − 0.029Mdes (41)

Examination of Equations (40) and (41) reveals that both approaches arrive at similar
results, with the main difference being that the SVD approach introduces additional decou-
pling factors. In addition, this also shows that the selection of the free parameters during
the SVD approach design is an important element which allowed for the incorporation of
similar physical insights as the decentralized approach.

3. Results
3.1. Simulation Results

In this section, the effectiveness of both control allocation approaches is tested through
simulations using the control scheme shown in Figure 8, where the inverse propulsion
system dynamics (i.e., Pinv) is obtained according to the control allocation schemes of the
previous section.

A pair of PID controllers was designed for the pitch and yaw angles, Cθ and Cψ,
respectively, using Equation (21) as a design model. That is, it was assumed that the
propulsion system is fully decoupled and compensated. This assumption yields a pair of
simple double-integrator dynamics, which are controlled through direct pole placement
and the specifications of Table 2. These specifications aim at introducing a certain degree
of bandwidth separation between the orientation angles and consider a slower response
time for the propeller tilting servos than the propeller thrust. This aspect will become an
important issue for the experimental implementation and is commented on later in the
article. The resulting PID gains are reported in Table 3.
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Figure 8. Test bench control system scheme. In this case, Pinv represents the control allocation
algorithm.

Table 2. Specifications.

Requirement Pitch θ Yaw ψ

Overshoot Mp <35% <25%
Settling Time Ts <11 s <15 s

Table 3. Simulation PID controller gains.

Constant Pitch Yaw

Proportional 2 1.5
Integral 0.1 0.1
Derivative 1.5 1

The simulations were performed with both control allocation approaches (i.e., decen-
tralized and SVD-decoupled), the previously mentioned PID controllers and the non-linear
model of the modified PVTOL test bench from Equation (19). In order to assess the resulting
cross-coupling due to the input mixer algorithms, the following conditions were simulated:

1. Pitch-Varying Case: The pitch θ reference changes in steps, while the yaw ψ reference
remains constant at zero.

2. Yaw-Varying Case: The yaw ψ reference changes in steps, while the pitch θ reference
remains constant at zero.

3.1.1. Pitch-Varying Case

Figure 9a shows the simulated responses of the pitch and yaw angles for the decen-
tralized approach, while Figure 9b presents the same variables using the SVD-decoupling
algorithm. This figure shows that while the pitch angle response of both approaches is
similar and within the control specifications, the cross-coupling introduced in the yaw
angle is significantly greater in the case of the decentralized input mixer.

In order to better assess the effectiveness of the SVD-decoupling control allocation
approach, Figure 10 presents a comparison between the reference moments (i.e., M, N and
Mdes, Ndes) and the actual moments exerted by the propulsion system for the simulation
of Figure 9 with the SVD-decoupling approach. This figure shows that the resulting SVD-
decoupling mixer has a very low error level (N and M deltas) and very good tracking
capabilities. The greatest error level is observable in the case of the yawing moment at the
time of the pitch angle step movement, which is when the propulsion system cross-coupling
is at its highest.
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Figure 9. Pitch θ varying simulated responses. (a) Decentralized control allocation approach.
(b) SVD-decoupling control allocation approach.
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Figure 10. Comparison between reference moments and the actual moments exerted by the propul-
sion system for the SVD-decoupling control allocation approach (a) Pitching moment M. (b) Yawing
moment N.

3.1.2. Yaw-Varying Case

For the yaw variation simulations, Figure 11a shows the simulated responses of the
pitch and yaw angles for the decentralized approach, while Figure 11b presents the same
variables using the SVD-decoupling algorithm. Similarly to the pitch-varying case, the
cross-coupling in the pitch angle due to variations in the yaw angle reference is reduced by
using the SVD-decoupling mixer.
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Figure 11. Yaw ψ varying simulated responses. (a) Decentralized control allocation approach.
(b) SVD-decoupling control allocation approach.

Finally, Figure 12 presents a comparison between the reference moments (i.e., M, N
and Mdes, Ndes) and the actual moments exerted by the propulsion system for the simulation
of Figure 11 with the SVD-decoupling approach. The greatest error level is observable in
the case of the pitching moment at the time of the yaw angle step movement, which is
when the propulsion system cross-coupling is at its highest.
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Figure 12. (a) Pitch moment M for varying yaw ψ input from decoupling control. (b) Yaw moment
N for varying yaw ψ input from decoupling control.

3.1.3. Discussion

The previous results show that, in a simulated environment, the SVD-decoupling
approach is effective in reducing the resulting cross-coupling, even when considering
non-linear propulsion dynamics. In addition, the proper setting of the free variables when
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calculating the propulsion system inverse dynamics allowed obtaining similar responses to
the physical insight approach. That is, the SVD-decoupling approach allows integrating
physical insight easily. This is an important feature, because in most real applications,
practical considerations have to be taken into account. For example, Figure 13 presents
a comparison between the tilt-rotor angles for the simulations of the previous section
considering both control allocation approaches. This figure shows that both approaches es-
sentially produce the same overall tilt-rotor angles; however, the SVD-decoupling approach
introduces slight adjustments, which resulted in a reduced cross-coupling.
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Figure 13. (a) Rotor angles δ1, δ2 from decentralized and decoupling controllers for a Pitch θ varying
input. (b) Rotor angles δ1, δ2 from decentralized and decoupling controllers for a Yaw ψ varying input.

3.2. Experimental Results

The control system of Figure 8 was implemented experimentally using the test bench
of Figure 3 and a similar set of experiments to those presented in the simulations was
performed.

The PID gains of the previous section (i.e., simulation) were taken as a baseline in the
tuning of the prototype’s controller. Since the simulated test bench equations (Equation (19))
did not account for friction damping, a slight adjustment of the PID gains was necessary to
maintain the control specifications. A comparison of the frequency-domain response of the
original (i.e., simulated) and the experimentally adjusted PID controllers is presented in
Figure 14. This figure confirms that the main differences between these controllers are (1)
decreased phase (damping) in the experiment and (2) increased gain for the experimental
PID controller, which is in line with the effects of a higher level of friction in the experimental
setup. The resulting PID gains used for the experiments are presented in Table 4. Both
control allocation schemes were implemented using the same PID controllers.

Table 4. Experimental PID controller gains.

Constant Pitch Yaw

Proportional 1.5 1.5
Integral 1 0.5
Derivative 0.5 1
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Figure 14. (a) Pitch θ moment PID controller bode diagrams for simulation and experiment. (b) Yaw
ψ moment PID controller bode diagrams for simulation and experiment.

3.2.1. Pitch-Varying Case

The experimental responses of the test bench when the pitch reference is modified
for both control allocation approaches are shown in Figure 15. In comparison with the
simulated responses from Figure 9, this figure shows that the pitch angle responses are more
affected by the amplitude of the pitch angle variation in both approaches. For instance,
the overshoot when moving the pitch angle reference from 20◦ to −20◦ is larger than
in the simulated response. This could be mostly due to actuator saturation (absolute or
rate) or other non-modelled dynamics. The effect is that the cross-coupling reduction in
the yaw angle of the SVD-decoupling approach is reduced in the largest pitch reference
modification (40◦ magnitude), but it is maintained in the other cases (20◦ magnitude).
In addition, a greater reduction was observed for the positive pitch angle variation than
the corresponding negative of the same magnitude. This suggests that there could be
imbalances in the test bench, either mechanical or due to actuator mismatch.
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Figure 15. Pitch θ varying experimental responses. (a) Decentralized control allocation approach.
(b) SVD-decoupling control allocation approach.

3.2.2. Yaw-Varying Case

Figure 16 shows the experimental results when varying the yaw angle reference. In
this case, the cross-coupling reduction in the pitch angle introduced by the SVD-decoupling
approach is maintained in all cases, while the overall yaw angle response performance
is similar for both approaches. The contrast with the pitch-varying case, where the cross-
coupling was greater in the largest magnitude reference change, suggests an asymmetry in
the response times of the main pitch and yaw actuators (i.e., electronic speed controllers for
pitch and tilt servos for yaw in this case).
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Figure 16. Yaw ψ varying experimental responses. (a) Decentralized control allocation approach.
(b) SVD-decoupling control allocation approach.
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3.3. Quantitative Analysis

A quantitative summary of the experimental responses is presented in Table 5, which
shows the Mean Squared Error (MSE) of the experimental responses of Figures 15 and 16.

Comparing both control allocation approaches when varying the pitch angle reference,
there was a reduction of 20.4% in the MSE of the yaw angle cross-coupling when using the
SVD-decoupling scheme. A reduction of 70.5% in the MSE of the pitch angle cross-coupling
was also observed when the yaw angle reference was modified with the SVD-decoupling
scheme.

On the other hand, Table 5 also reveals that, interestingly, the cross-coupling reductions
of the SVD-based scheme came at the cost of a slight increase in MSE at the reference angle
responses. In particular, increases of 2.15% and 1.59% were observed for the pitch and yaw
angles, respectively.

This trade-off of cross-coupling reduction and main angle tracking performance was
not observed in the simulated responses, which suggests again that actuator limitations
and asymmetry may be a possible explanation.

Figures 17 and 18 present the error distribution of the experimental responses. A
closer look at Figure 17, which corresponds to the experiment where the pitch angle
reference is modified, shows that the error distribution for the yaw angle is considerably
reduced with the SVD-decoupling approach, with much tighter quartiles overall, while
the median is similarly close to zero in both cases. In contrast, for the pitch angle, the
SVD-decoupling approach yields similarly large quartiles with a slightly larger range.
In addition, the distribution of the inner quartiles with the SVD-decoupling approach is
significantly skewed compared with the decentralized approach, while maintaining the
same overall size, resulting in the median being farther from zero in the SVD-decoupling
approach, which can explain the slight increase of MSE in this case.

In the case of the yaw varying experiment, Figure 18 shows that the error distribution of
the pitch angle, which represents the cross-coupling in this experiment, is also considerably
reduced with the SVD-decoupling approach, with all quartiles much closer to zero as well
as the median. For the yaw angle, the SVD-decoupling approach yields a very similar error
distribution to the decentralized approach, with the main differences being a median closer
to zero and a slight skew to negative errors for the outer quartiles.

These figures confirm and extend the observations made with Table 5. That is, intro-
ducing the SVD-decoupling scheme reduces the cross coupling significantly while only
slightly affecting the reference angle performance.
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4

DesC SVD-DC DesC SVD-DC

Pitch, θ Yaw, ψ

Figure 17. Error distribution of the experimental responses of the pitch θ varying experiment.
DesC = decentralized control. SVD-DC = SVD decoupling control.
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Figure 18. Error distribution of the experimental responses of the yaw ψ varying experiment.
DesC = decentralized control. SVD-DC = SVD decoupling control.

Table 5. Mean Squared Error comparison between decentralized and decoupling controllers for pitch
θ and yaw ψ reference variations.

Experiment DoF Decentralized Decoupling ∆%

Pitch θ
Variation

Pitch θ 37.4525 38.2600 2.1560
Yaw ψ 4.1196 3.2768 −20.4583

Yaw ψ
Variation

Pitch θ 2.3904 0.7042 −70.5405
Yaw ψ 118.6156 120.5088 1.5960

4. Discussion and Conclusions

In this article, a modified PVTOL configuration with an arbitrary number of co-linear
tilting rotors was introduced as a baseline to study the control allocation problem found in
many of the recently proposed VTOL aircraft designs. A general model for the resulting
propulsion subsystem, as well as its linearization, was also developed. This linearization,
which is necessary for many of the current control allocation strategies, is presented in a
general and structured manner, to facilitate a better understanding of the effects of each of
the physical parameters of the propulsion system.

Following the proposed modified PVTOL configuration, a two-tilting-rotor test bench
was implemented experimentally. This test bench yields an over-actuated system which
can be used to study the control allocation problem theoretically and experimentally. An
SVD control allocation approach was developed for the resulting test bench. The proposed
approach allows deriving an adequate input mixer algorithm for the over-actuated system,
and it is shown that the remaining free degrees of freedom can be used to integrate physical
insight and to solve general optimization goals (in this case, the minimization of error due
to linearization).

The resulting SVD control allocation scheme is compared with a more traditional
scheme derived by physical insight. It is shown that both approaches yield a similar use
of the available control variables, with the SVD-based scheme introducing minor input
modifications which allow obtaining a considerable decrease in cross-coupling in the test
bench orientation angles.

Simulation and experimental results validate that the SVD control allocation scheme
allows decreasing cross-coupling while maintaining the same overall performance as the
traditional approach. The main deviations from the simulated and experimental results
are due to the presence of friction damping in the experimental test bench, which was
expected.

Interestingly, other smaller deviations suggest that actuator discrepancies can also
have a significant effect on the resulting performance, that is, differences in actuator
time responses, saturation levels, etc., due to the type of actuator, for instance, tilt-rotor
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servo dynamics vs. electric motor controller and propeller dynamics. Further research
which incorporates better specific actuator properties is required to extend the benefits
of decoupling control allocation schemes in general. This is an important finding, since
many applications which require control allocation solutions use a mixture of dissimilar
actuators.

Finally, the results support the continued use of the proposed modified PVTOL config-
uration, in either the presented two-rotor version or in a more complex configuration, for
the study of the control allocation problem.
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Abstract: In this research, a proportional plus integral plus velocity (PIV) fuzzy gain scheduling
flight controller for an octorotor mini-unmanned aerial vehicle is developed. The designed flight
controller scheme, with a PIV term, is combined with a fuzzy gain scheduling approach. The
tracking controller PIV fuzzy gain scheduling is based on two controllers connected in cascade with a
saturation approach. The Newton–Euler equations of motion are applied to obtain a mathematical
model for the octorotor mini-unmanned aerial vehicle (mini-UAV). The flight controller approach is
applied to obtain coupling moments and forces with interconnected attitude and navigation tracking
trajectory. In the design of a flight navigation controller with two layers, the inner layer consists
of a PIV fuzzy gain scheduling controller that is applied to the attitude dynamics, obtaining the
references for the coupling outer layer PIV fuzzy gain scheduling controller, which manipulates
the translational dynamics. The navigation PIV fuzzy gain scheduling controller is saturated for
bounding in translational forces to avoid large deviations of commands to Euler angles pitch and roll,
and another saturated controller is implemented for the bounded thrust rotor to avoid the excessive
angular speed of these rotors. The octorotor mini-UAV flight navigation simulation is performed to
validate the tracking control of a sequence of motions in each axis, which is presented as a validation
for the proposed control scheme.

Keywords: fuzzy gain scheduling; octorotor; mini-UAV

1. Introduction

In the last decade, multirotor UAVs have had important developed applications such
as agriculture, construction, market, parcel, civil applications, surveillance, research, and
rescue missions. However, as the needs of society grow, new challenges and demands for
UAV applications also appear. Four-rotor configurations are the most widely used and
have many uses; however, given the new demands, these configurations may be limited.
Therefore, more robust vehicles with greater fault tolerance and stability are necessary.
It is here where eight-rotor configurations called octorotors have been studied. On the
other hand, the control techniques that allow vehicles to respond to faults quickly are just
as important.

Multi-rotors are designed with different capacities and sizes that depend on the
characteristics of the application. In [1], an octorotor UAV with a star-shaped way for
radar applications was implemented for vertical take-off and landing, adding disturbance
to be controlled with PID and LQR controllers. In other applications such as [2], an
octorotor is used for heavy cargo transportation using different kinds of techniques such
as magnetic sensor systems. In [3], heavy cargo transportation is applied in the medical
field by transporting first-aid kits or external defibrillators. In agriculture [4–6], the authors
used an octorotor for geolocation and thus detected diseased regions.
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Machines 2023, 11, 266

For example, in [7], they proposed an orthographic projection based on the Kalman
filter to detect disease zones. The configuration of the octorotor that was used allowed a
gimbal placed face-down and stability for the orthographic projection method. Furthermore,
in [8], technologies for mapping and recollecting data, including thermographic cameras,
were used to inspect and detect citrus trees and other types of fruit. Monitoring rivers [9] is
another application which was implemented using a high-resolution camera in an octorotor
UAV. In [10], an octorotor was developed for night-time visual infrastructure inspection.
Here, the octorotor configuration was chosen because of its superiority in terms of payload,
stability, and fault tolerance. In [11], a lightweight octocopter was developed for monitoring
the indoor environment. The octorotor was designed with a weight of 486 (g), 308 (mm)
in width, and 160 (mm) in height to get through narrow spaces in a complex indoor
environment. Hover experiments which were conducted demonstrated the high-flying
capabilities of the octorotor. Other papers [12,13] have described the advantages of using
octorotors when a failure presents in one or more rotors because of unknown forces, since
the redundancy of eight rotors possesses the skills to continue the flight without the failed
rotor by detecting errors and using a recovery system to change the configuration.

According to the literature, octorotors are UAVs that are currently under research,
meaning that there are some unknown dynamics that remain to be studied. For this reason,
there exists a need for controllers that can respond to their uncertainty and disturbances.
In [14], a controller for a coaxial octorotor with six degrees of freedom was proposed, and the
proposed control was designed to respond in the presence of actuator faults. The technique
of the control used an approach of a radial base function neural network (RBFNN), fuzzy
logic control (FLC), and sliding mode control (SMC), named fault-tolerant control (FTC).
The control technique avoids issues of modeling and attenuating the chattering due to the
SMC. Moreover, the proposed controller allowed to reduce of the number of rulers of the
fuzzy logic. The simulations showed that the FTC guarantees the stability and robustness
of the system and reduces the chattering effect to have good tracking in the presence of
faults of the octorotor. In [15], another controller with estimation and fault tolerance was
designed. The controller presented three fault-tolerant control strategies for the octorotor.
The first was a mixing strategy, the second was a robust adaptive sliding mode control, and
the third was a new one based on the self-tuning sliding mode of the control system. The
experiments for the octorotor were carried out indoors with self-imposed faults in the rotors.
The comparison between the techniques showed efficient response fault tolerance results
for the three proposed techniques. In [16], a controller based on backstepping with a fast
terminal sliding mode was proposed for coaxial octorotor exposure to wind disturbance.
The proposed controller works with a new learning technique and extended inverse multi-
quadratic radial basis function network that estimates the unmodeled dynamics of the
octorotor. The simulations showed improved performance when compared with PID and
LQR controllers.

One can find the fuzzy controller among the most innovative techniques, which
is used to improve the controllers, specifically the dynamic behavior of the octorotors.
In [17], an adaptive fuzzy tracking control combining Lyapunov stability theory and
backstepping was proposed. The fuzzy controller was used to estimate the unknown
dynamics of the quadrotor; nonlinear disturbance observer was also applied to compensate
for external disturbance and an approximation error for the fuzzy controller of the system.
Lyapunov stability showed that the quadrotor was stable, and the experimental shows the
effectiveness of the proposed controller. In [18], a new adaptative fuzzy terminal sliding
mode controller and two proportional and derivative (PD) controllers were proposed. The
PD controllers were proposed to determine the quadrotor desired attitude, and the sliding
mode was used for the rotation of the motors. Furthermore, two Kalman filters estimated
the quadrotor attitude and position. The simulations and implementation showed a good
performance of the control for the quadrotor.

In this work, an octorotor mini-UAV is proposed to be used in pipe inspections,
surveillance, and coordinated flight as a swarm in closed places. The proposed flight
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controller for the octorotor mini-UAV is a fuzzy gain scheduling that adapts the PIV
controller gains. The dynamic model with the controller is performed using simulation
experiments with the Newton–Euler model of the octorotor mini-UAV to validate the
proposed system.

Main Contribution

In this work, the implementation of a PIV fuzzy gain scheduling control, integrated
with the attitude, altitude, and navigation controllers, is presented, in which the attitude
and altitude have saturation functions to avoid exceeding the established limits. In this
sense, the rotors use the saturation functions that establish the speed limits for each rotor.
The conceptual design of a small-sized UAV is carried out, which is developed based on
the 3D print tools using the fused deposition modeling (FDM) technique. The contribution
of this work is summarized as follows:

1. A PIV control with fuzzy gain scheduling is designed for the trajectory tracking of the
attitude and navigation of the mini-UAV.

2. The design of the flight control system is validated by simulations using the Newton–
Euler dynamic model of the mini-UAV.

3. The real parameters of the mini-UAV were obtained through CAD software and
3D-printed parts.

The work was structured as follows: The dynamic equations for the octorotor mini-
UAV are presented in Section 2. The PIV controller is designed in Section 3. The gain
scheduling controller design was developed in Section 4. The simulation results are shown
in Section 5. Finally, the conclusions of this work are presented in Section 6.

2. Dynamic Equations for the Octorotor Mini-UAV

The dynamic model of the octorotor mini-UAV uses the configuration frame north–
east–down (NED) for aerospace. The X–axis is coupled in the north direction, the Y–axis
is located in the east direction, and the Z–axis is in the direction of the center of the Earth.
An Earth-fixed inertial frame is defined as I={xI , yI , zI}, and a body frame attached to
the center of gravity of the octorotor mini-UAV as B={xB , yB , zB} [19,20], as can be seen in
Figure 1. In order to formulate the dynamics equation, the Newton–Euler approach is used.
The dynamic model is defined as

ξ̇ = V (1)

mV̇ = R(−TT) + mge3 (2)

η̇ = EΩ (3)

JΩ̇ = −Ω× JΩ + τa (4)

where ξ = [x, y, z]> ∈ R3 describes the position coordinates relative to the inertial frame
and η = [φ, θ, ψ]> ∈ R3 describes the rotation coordinates for the octorotor mini-UAV. This
is given by an orthogonal rotation matrix R ∈ SO(3) : B → I parameterized by the Euler
angles, where φ is the roll angle, θ is the pitch angle, and ψ is the yaw angle, and then, the
rotation matrix is defined as

R =




cθcψ sφsθcψ − cφsψ cφsθcψ + sφsψ

cθsψ sφsθsψ + cφcψ cφsθsψ − sφcψ

−sθ sφcθ cφcθ


 (5)

E =




1 sφsθ

cθ

cφsθ

cθ

0 cφ −sφ

0 sφ

cθ

cφ

cθ


 (6)

where cη , sη are cosine and sine operators for each Euler angle, respectively. Ω = [p, q, r]> ∈
R3 is the angular velocity vector in B, V = [vx, vy, vz]> ∈ R3 is the translational velocity
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vector in I , TT = [0, 0, fT ]
> ∈ R3 is the vertical thrust attached to the body frame consider-

ing the rotation speed of each rotor such that fT ≥ 0, and τa ∈ R3 is the moments acting on
the center of gravity of the octorotor mini-UAV. In addition, the canonical basis vectors of
R3 are considered; these are represented by e1 = [1, 0, 0]>,e2 = [0, 1, 0]>, and e3 = [0, 0, 1]>.
E ∈ R3×3 is the Euler matrix. The term m ∈ R denotes the mass of the octorotor mini-UAV,
while J ∈ R3×3 contains moments of inertia such that:

J =




Jxx Jxy Jxz
Jxy Jyy Jyz
Jxz Jyz Jzz


 (7)

To design the corresponding attitude, altitude and navigation controllers, models (1)–(4)
are used.

Figure 1. Reference frames and the direction of rotation of each rotor in the octorotor mini-UAV.

3. Flight Controller Design
3.1. Attitude and Altitude Controller

The thrust forces produced by the k-th individual rotor are given by fk = cTω2
k , where

ωk is the angular velocity of the k-th rotor, and cT > 0 is the thrust coefficient of the
propeller, which can be determined by experimental tests from the measurement of thrust
in the steady state.

Considering that the vector τa = [τφ, τθ , τψ]> represents the moments acting on the
octorotor mini-UAV center of gravity and considering the allocation the pair of rotors.
For pitch moment τθ actuator, rotors m1 − m2 and m5 − m6 are parallel to the XB–axis
with a separated angle of π/4 (rad) among each rotor. For roll moment τφ, the actuator
rotors m3 −m4 and m7 −m8 are parallel to the YB–axis. The reactive moment produced
by the propeller of each rotor of the octorotor mini-UAV is expressed as Qk = cQω2

k with
k = 1, . . . , 8, where cQ > 0 is the aerodynamic coefficient of the rotor propeller. The
yaw moment τψ must be assigned in the direction of rotation against each pair of rotors
(see Figure 2), where the rotors that turn clockwise are positives and the rotors that turn
counterclockwise are negative. Consequently, due to those mentioned above, the total
thrust and moments applied to the octorotor mini-UAV center of gravity are grouped
as follows:




fT
τφ

τθ

τψ


 =




cT cT cT cT cT cT cT cT
cT l −cT l −cT L −cT L −cT l cT l cT L cT L
cT L cT L cT l −cT l −cT L −cT L −cT l cT l
cQ cQ −cQ −cQ cQ cQ −cQ −cQ







u1
u2
u3
u4
u5
u6
u7
u8




(8)
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where parameters L = d cos(π/8) and l = d sin(π/8) are the distance d of the octorotor
mini-UAV center of gravity with respect to the axis of rotation of the propellers. The
compact expression of the Equation (8) is shown as:

Γ = CAU (9)

where CA ∈ R4×8 represents the matrix of the aerodynamic coefficients of the octorotor
mini-UAV. Vector U = [ω2

1 , · · · , ω2
8 ] = [u1, · · · , u8] is the vector of quadratic rotor speed,

and Γ = [ fT , τφ, τθ , τψ]> represents the vector that connects the total scalar thrust fT with
the octorotor mini-UAV moments vector. Since the CA matrix is not square, the inverse
matrix is obtained using a pseudo-inverse equation that is expressed as follows

C−1
A = C>A (CAC>A )

−1 (10)

Then, the inverse expression of the Equation (9) is shown below.

U = C−1
A Γ (11)

Thus, the vector of the desired controller variables is obtained, which corresponds to
each of the rotors. Below, such a developed matrix expression is shown:




u1
u2
u3
u4
u5
u6
u7
u8




=




1
8cT

1
4cT l

1
4cT L

1
8cQ

1
8cT

−1
4cT l

1
4cT L

1
8cQ

1
8cT

−1
4cT L

1
4cT l

−1
8cQ

1
8cT

−1
4cT L

−1
4cT l

−1
8cQ

1
8cT

−1
4cT l

−1
4cT L

1
8cQ

1
8cT

1
4cT l

−1
4cT L

1
8cQ

1
8cT

1
4cT L

−1
4cT l

−1
8cQ

1
8cT

1
4cT L

1
4cT l

−1
8cQ







fT
τφ

τθ

τψ


 (12)

Figure 2. Reference frames and direction of rotation of each rotor in the octorotor mini-UAV.

3.1.1. Altitude Controller

The thrust TT , which is aligned with ZB, is not always in the direction of the inertial
frame e3, and the component of the desired inertial force vector Fzd associated with the
altitude controller can be calculated in terms of the roll angle φ and the pitch angle θ
such that

Fzd = mz̈d = − fTd cos(θ) cos(φ) + mg (13)
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Then, the dynamics of the desired thrust force is proposed fTd for the actuators, with
the purpose of complying with the stationary or ascending flight regime, obtaining the
following expression

fTd =
1

cos(θ) cos(φ)
(mg− Fzd) (14)

where φ < π/2 (rad) and θ < π/2 (rad) are constrained to avoid a singularity of altitude
compensation, and the desired thrust force Fzd is reached by an altitude controller PIV, such
that this controller is defined as

Fzd = kpz z̃ + kvzṽz + kiz

∫
z̃ dt (15)

where z̃ = zd − z represents the translational position error, zd represents the desired
position, and z is the actual value of the translational position, with both variables in e3.
ṽz = vzd − vz represents the translational velocity error, where vzd is the desired velocity,
and vz is the actual value of the translational velocity. A saturation is added to improve
trajectory tracking with the desired thrust force. The expression of the thrust-saturated
controller is shown below.

Fsat
zd

= Sat
(

Fzd

)
=





Fzmax if Fzd ≥ Fzmax

Fzd if Fzmin<Fzd<Fzmax

Fzmin if z ≤ Fzmin

(16)

The PIV controller with thrust compensation is described as follows

Fsat
zd

= Sat
(

kpz z̃ + kvzṽz + kiz

∫
z̃ dt
)

(17)

Combining the Equations (14) and (17), the thrust controller is described below

f sat
Td

=
1

cos(θ) cos(φ)
(mg− Fsat

zd
) (18)

3.1.2. Attitude Controller

For the formulation of the attitude control problem, the desired attitude vector
ηd = [φd, θd, ψd]

> is considered, such that η̃ = ηd − η giving η̃ = [φ̃, θ̃, ψ̃]> represent-
ing the attitude errors. ηd is the vector containing the desired angles, and η are the actual
angles. Ω̃ = Ωd −Ω represents the angular velocity error, where vector Ωd is the desired
angular velocity, and vector Ω is the actual value of the angular velocity. The control
problem is strictly the proposal of a controller vector τad = [τφd , τθd , τψd ]

>. For attitude
control, a PIV controller is proposed. Taking into account the definition established in
vector (8), the external moments are rewritten to be expressed in terms of the proposed
controller law, as shown below as




τφd

τθd
τψd


 =




kpφφ̃ + kvφ p̃ + kiφ
∫

φ̃ dt
kpθ θ̃ + kvθ q̃ + kiθ

∫
θ̃ dt

kpψψ̃ + kvψ r̃ + kiψ
∫

ψ̃ dt


 (19)

A saturation is added to improve the attitude in the torques, and it is expressed below

τsat
ηd

= Sat
(
τηd

)
=





τηmax if τηd ≥ τηmax

τηd if τηmin<τηd<τηmax

τηmin if τηd ≤ τηmin

(20)
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Then, the developed attitude controller equations are expressed as follows

τsat
φd

= Sat
(

kpφφ̃ + kvφ p̃ + kiφ

∫
φ̃ dt

)
(21)

τsat
θd

= Sat
(

kpθ θ̃ + kvθ q̃ + kiθ

∫
θ̃ dt
)

(22)

τsat
ψd

= Sat
(

kpψψ̃ + kvψ r̃ + kiψ

∫
ψ̃ dt

)
(23)

3.2. Navigation Controller

The attitude controller is integrated into the flight control of the octorotor mini-UAV
in such a way that the desired setpoints of the attitude vector ηd are calculated from the
translational position controller in the X−Y plane and using the reference rotation matrix
R(ψ) ∈ SO(2). To obtain the desired forces of the translational position controller in the
X−Y plane, a controller of type PIV is proposed as follows

[
Fxd

Fyd

]
=

[
kpx x̃ + kdx ṽx + kix

∫
x̃ dt

kpyỹ + kdyṽy + kiy
∫

ỹ dt

]
(24)

where x̃ = xd − x and ỹ = yd − y represent the translational position error, xd and yd
represent the desired position, and x, and y are the actual value of the translational position,
with both variables in e1 and e2, respectively. ṽx = vxd − vx and ṽy = vyd − vy represent the
translational velocity errors, where vxd and vyd are the desired velocities, and vx and vy are
the actual value of the translational velocities. The equations developed by the navigation
controller in the navigation plane X−Y are expressed as follows.

Fxd = kpx x̃ + kvx ṽx + kix
∫

x̃ dt
Fyd = kpyỹ + kvyṽy + kiy

∫
ỹ dt (25)

The proposed PIV-type navigation controller is linked with the external controller
layer by the rotation matrix R(ψ) ∈ SO(2) to generate the desired reference angles θd
and φd of the attitude controller, in such a way that the following connection between both
attitude and translational controllers are obtained.

φd = Fxd sin(ψ)− Fyd cos(ψ)
θd = Fxd cos(ψ) + Fyd sin(ψ)

(26)

Equation (26) is proposed for the navigation controller of the octorotor mini-UAV to
track the trajectories in the plane X−Y.

Mixer Rotor Controllers

As a final step, the control laws corresponding to the motors of the octorotor mini-UAV,
considering the mixing matrix (12), are presented as follows
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uc1 = Sat(u1) = Sat
(

f sat
Td

8cT
+

τsat
φd

4cT l +
τsat

θd
4cT L +

τsat
ψd

8cQ

)

uc2 = Sat(u2) = Sat
(

f sat
Td

8cT
− τsat

φd
4cT l +

τsat
θd

4cT L +
τsat

ψd
8cQ

)

uc3 = Sat(u3) = Sat
(

f sat
Td

8cT
− τsat

φd
4cT L +

τsat
θd

4cT l −
τsat

ψd
8cQ

)

uc4 = Sat(u4) = Sat
(

f sat
Td

8cT
− τsat

φd
4cT L −

τsat
θd

4cT l −
τsat

ψd
8cQ

)

uc5 = Sat(u5) = Sat
(

f sat
Td

8cT
− τsat

φd
4cT l −

τsat
θd

4cT L +
τsat

ψd
8cQ

)

uc6 = Sat(u6) = Sat
(

f sat
Td

8cT
+

τsat
φd

4cT l −
τsat

θd
4cT L +

τsat
ψd

8cQ

)

uc7 = Sat(u7) = Sat
(

f sat
Td

8cT
+

τsat
φd

4cT L −
τsat

θd
4cT l −

τsat
ψd

8cQ

)

uc8 = Sat(u8) = Sat
(

f sat
Td

8cT
+

τsat
φd

4cT L +
τsat

θd
4cT l −

τsat
ψd

8cQ

)

(27)

where uck = Sat(uk) for k = 1, . . . , 8. It is necessary to remark that the saturation functions
consider the actual limits of the angular velocity of the motors. This saturation function is
defined as

uck = Sat(uk) =





umax if uk ≥ umax
uk if umin < uk < umax

umin if uk ≤ umin

(28)

where umax represents the maximum quadratic rotor speed and umin is the minimum
quadratic rotor speed. The complete control scheme and dynamics are represented in a
diagram in Figure 3.

Figure 3. Diagram of attitude and navigation controllers applied to a dynamic model of an octorotor
mini-UAV.

4. Gain Scheduling Controller Design

The PIV controller is widely used due to its fast solution, and some researchers use
tuning applications to find the optimal constant gains for the PIV controller. Meanwhile,
the gain scheduling combines fuzzy and PIV controllers to autotune the gains in real time.
A control strategy using gain scheduling with a PIV controller is proposed for the octorotor
mini-UAV. As explained above, the objective of PIV control is to avoid deviations during
the dynamic motion. The controller can adjust the gains depending on the error size.

The fuzzy logic controller is connected to the PIV gains of the attitude, altitude, and
navigation controller with a total of six fuzzy logic controllers; each fuzzy has a membership
function, as is shown in Figure 4.

Z =
[
a1 a1 a2 a3

]

SP =
[
b1 b2 b3

]

BP =
[
c1 c2 c3 c3

] (29)

The membership functions have the error and velocity error as inputs while propor-
tional, velocity, and integral gains as outputs. The fuzzy always considers the inputs as
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positive to determine whether the error is zero (Z), small positive (SP), or big positive
(BP) value.

a1 a2 b1 a3 b2 c1 b3 c2 c3

0

0.2

0.4

0.6

0.8

1
Z SP BP

Figure 4. Membership function for input and output of each controller.

Nine rules are defined in Table 1 by combining the inputs, where µ(A) and µ(B) are
the input position error and input velocity error, respectively. These rules are set to the six
fuzzies in each controller. The Tables 2–5 are the values for the fuzzy determined by simu-
lating an octorotor mini-UAV using only PIV control to estimate the range of parameters.

Table 1. Fuzzy rules.

µ(A)

µ(B)
Z SP BP

Z Z Z SP

SP Z SP BP

BP SP BP BP

Table 2. Parameters for roll and pitch in membership function.

Z SP BP

φ̃, θ̃ [0 0 0.094 0.14] [0.11 0.1571 0.2042] [0.17 0.22 0.3142 0.3142]

p̃, q̃ [0 0 0.061 0.13] [0.095 0.1571 0.22] [0.19 0.25 0.3142 0.3142]

kp [0 0 64.8 129.6] [97.2 162 226.8] [194.4 259.2 324 324]

kv [0 0 6.48 12.96] [9.72 16.2 22.68] [19.44 25.92 32.4 32.4]

ki [0 0 0.45 1.3] [0.81 1.62 2.43] [1.91 2.75 3.24 3.24]

Table 3. Parameters for yaw in membership function.

Z SP BP

ψ̃ [0 0 0.78 1.25] [0.94 1.57 2.2] [1.99 2.35 3.142 3.142]

r̃ [0 0 0.074 0.12] [0.083 0.157 0.23] [0.19 0.24 0.314 0.314]

kp [0 0 90 180] [135 225 315] [270 360 450 450]

kv [0 0 31.5 49.5] [31.5 67.5 103.5] [85.5 103.5 135 135]

ki [0 0 0.86 1.67] [0.99 2.25 3.51] [2.84 3.69 4.5 4.5]
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Table 4. Parameters for X and Y navigation in membership function.

Z SP BP

x̃, ỹ [0 0 0.75 1.2] [0.9 1.5 2.1] [1.8 2.25 3 3]

ṽx, ṽy [0 0 0.6 1.18] [0.73 1.5 2.24] [1.8 2.4 3 3]

kp [0 0 5.76 11.52] [8.64 14.4 20.16] [17.28 23.04 28.8 28.8]

kv [0 0 2.09 3.31] [1.74 3.6 5.34] [5.18 6.48 8.64 8.64]

ki [0 0 0.28 0.5] [2.09 4.32 6.41] [0.94 1.2 1.44 1.44]

Table 5. Parameters for Z altitude in membership function.

Z SP BP

z̃ [0 0 1.25 2] [1.5 2.5 3.5] [3 3.75 5 5]

ṽz [0 0 2.5 4] [2.5 5 7.5] [6 7.5 10 10]

kp [0 0 240 480] [360 600 840] [720 960 1200 2400]

kv [0 0 54 86] [54 120 180] [150 180 240 480]

ki [0 0 0.12 0.21] [0.14 0.3 0.45] [0.38 0.49 0.6 0.6]

5. Flight Controller Simulation
5.1. Parameters of the Octorotor Mini-UAV Controller

The parameters used for the numerical simulations are obtained through the octorotor
mini-UAV model in Solidworks. In Table 6, the numerical values of the model parameters
are shown.

Table 6. Parameters of the octorotor mini-UAV.

Parameter Value Parameter Value

cT 4.8853× 10−7 (N-s2) Jxx 0.0048 (kg-m2)

cQ 1.4181× 10−8 (N-m-s2) Jyy 0.0051 (kg-m2)

m 1.772 (kg) Jzz 0.0079 (kg-m2)

g 9.81 (m/s2) Jxy 2.3420× 10−8 (kg-m2)

d 0.115 (m) Jyz 1.9100× 10−8 (kg-m2)

Jxz 8.8301× 10−7 (kg-m2)

The parameters used for the saturation are set as follows in Table 7.

Table 7. Saturation parameters.

Parameter Value Parameter Value

Fzmin −11.76 (N) Fzmax 11.76 (N)

τηmin −13 (N-m) τηmax 13 (N-m)

umin 1000 (RPM) umax 34,500 (RPM)

5.2. Control Surface

The control surface is produced by the inference logic fuzzy mechanism for a fuzzy
PIV attitude controller with programming gains. It is generated with the tuned parameters
in Tables 2 and 3 to compute the variation range of the gain sets (kpφ, kvφ and kiφ), (kpθ ,
kvθ and kiθ) and (kpψ, kvψ and kiψ) of the attitude controller for roll, pitch, and yaw, (as can
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be seen in Figure 5). While the control surface is produced by the inference logic fuzzy
mechanism for a fuzzy PIV navigation controller with programming gains. It is generated
with the tuned parameters in Tables 4 and 5 to compute the variation range of the gain
sets (kpx, kvx and kix), (kpy, kvy and kiy) and (kpz, kvz and kiz) of navigation and altitude
controllers in the X, Y, and Z axes, (see Figure 6). The geometric shape of the control
surface (Figures 5 and 6) is the result of the properties that achieve the tuning of fuzzy
rules implemented with the Mamdani inference method. It is used to set up the fuzzy PIV
controllers with programming gains in the attitude, altitude, and navigation dynamics of
the octorotor mini-UAV.

Figure 5. Attitude control surface.

Figure 6. Translational control surface.

5.3. Trajectory Tracking Navigation

The results of the simulation were obtained using Matlab/Simulink. In previous works,
similar algorithms were implemented. In [21], a quadrotor with a two-layer saturated PIV
controller was shown. The quadrotor follows an ascending helical trajectory which is
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decreasing. In [22], an octorotor is proposed using a nonlinear PV plus a linear integral;
in this work, the octorotor has a mass of 8 (kg), and its inertial matrix is simplified. The
octorotor follows a helical trajectory, which remains constant during time simulation. The
octorotor mini-UAV performs a sequence of movements through the axes traveling 1 m in
each axis. The sequence is −Z, X, Y,−X, Z, and the negative part of Z–axis is the take-off.
Meanwhile, the positive part is the landing, in the X–axis, and the positive part is the
forward movement, and the negative part is the backward movement. Finally, in the
Y–axis, the positive part indicates the movement from left to right.

A disturbance is added in Equation (4), such that JΩ̇ = −Ω× JΩ+ τa−D, where D is
the disturbance vector that contains disturbances in each torque. The vector D = [Dτφ , 0, 0]>

with Dτφ = ae(−(t−b)2/2c2) is a Gauss peak equation acting as a disturbance, where a = 4 is
the height of the peak curve, b = 9 is the time where the peak is in the center, c = 1 is the
standard deviation, and t is the time, see Figure 7.

Figure 7. Disturbance Dτφ for the desired torque of roll.

In the simulation, Figure 8 shows the tracking of the desired (red line) and actual
(black line) trajectories of the octorotor mini-UAV. A disturbance is added to analyze the
behavior of the gain scheduling controller that autotunes the gains to recover stability in
the octorotor mini-UAV. The following Figures 9 and 10 show the octorotor mini-UAV in
attitude, altitude, and navigation behavior. Then, the rotor speed and gains parameters are
shown. Finally, the moments and total thrust of the octorotor mini-UAV are presented.

Figure 9 shows the response of Euler angles; in the roll angle (Figure 9a), the distur-
bance recalculated the desired value (red line) of the roll angle for a stabilization. While the
actual value (black line) continues using less of an angle to recover the trajectory. For the
pitch angle (Figure 9b), there is an absence of disturbance due to this simulation considering
the disturbance only in τφ which indirectly affects the Y–axis due to the roll angle. There
is a small disturbance in the yaw angle (Figure 9c) when the disturbance in the torque is
presented at a time of 9 (s), the following two disturbances are related to the change in
direction between the X and Y axes at the times of 12 (s) and 18 (s).

Figure 10 shows the sequence of movements in each axis. In the X–axis (Figure 10a),
as can be seen, the controller is performs stabilization each time the direction changes due
to the attitude controller in τθ . In the Y–axis (Figure 10b), there is a disturbance with a
peak at 9 (s) due to the disturbance in τφ. Finally, the Z–axis (Figure 10c) presents rapid
stabilization during ascending and descending.
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Figure 8. Trajectory tracking of the octorotor mini-UAV, (a) isometric view, (b) side plane, (c) front
plane, and (d) top view.

a)

b)

c)

Figure 9. Euler angle responses in: (a) φ, (b) θ, and (c) ψ.
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a)

b)

c)

Figure 10. Translational motion responses in: (a) X–axis, (b) Y–axis, and (c) Z–axis as the altitude.

Figure 11 shows the angular velocity in RPM of all rotors, which have a maximum
speed limit set to 34,500 (RPM), as obtained in the datasheet of the motor, and a minimum
speed limit set to 1000 (RPM), to avoid turning off the rotors. The regulated speed after
stabilization is 16,570 (RPM) in each rotor. All rotors are paired in two in the sense that
ω1 ' ω2, ω3 ' ω4, ω5 ' ω6, and ω7 ' ω8 present a similar behavior with a small
difference when the octorotor mini-UAV is changing direction. When the octorotor mini-
UAV ascends, the whole rotors are stabilized at 16,570 (RPM), and then, in the X–axis
forward direction, rotors ω1 and ω2 (Figure 11a) increase their speed and ω5 and ω6
(Figure 11c) decrease their speed. When the octorotor mini-UAV changes direction towards
the east, rotors ω7 and ω8 (Figure 11d) increase their speed and ω3 and ω4 (Figure 11b)
decrease their speed.

a)

c)

b)

d)

Figure 11. Rotor speed responses: (a) ω1 and ω2, (b) ω3 and ω4, (c) ω5 and ω6, and (d) ω7 and ω8.

Figure 12 shows the gain behavior in the attitude controller. Figure 12a illustrates the
gains of τφ controller, where the proportional gain changes by the disturbance set. For
each change in direction, the proportional and velocity gains change. The gains of the τθ

controller (Figure 12b) present the same behavior when the octorotor mini-UAV changes
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direction, except that there is no disturbance in τθ . In the τψ controller, the gains (Figure 12c)
remain constant due to the desired yaw set to zero.

a)

b)

c)

Figure 12. PIV gain responses in attitude controller: (a) khφ, (b) khθ , and (c) khψ with h = p, i, v.

Figure 13 shows the gain behavior in the translation controller. Due to the gain in
attitude adjusting, the gains in the translation controller remain constants without changes.

a)

b)

c)

Figure 13. PIV Gain responses in the translation controller: (a) khx, (b) khy, and (c) khz, with h = p, i, v.

Figure 14 shows the total thrust of all rotors in the octorotor mini-UAV. The maxi-
mum thrust shown is 22.55 (N) at the beginning, and then the stable thrust is 11.77 (N),
which is the minimum to maintain the octorotor mini-UAV hovering during flight. The
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minimum total thrust shown is 5.45 (N) due to the finalization of ascending and when it
starts descending.

Figure 14. Response of total thrust of the octorotor mini-UAV.

Figure 15 shows moment actuators in the octorotor mini-UAV, where τφ has the
disturbance added at 9 (s) to a disturbated Y–axis as it can be seen in Figure 15a. Then,
Figure 15b shows the moment τθ when the octorotor mini-UAV performs the X–axis
movements. Then, Figure 15c illustrates the τψ signal with a minimum actuation when the
octorotor mini-UAV stops ascending when the octorotor mini-UAV performs the Y–axis
movement. Finally, when the octorotor mini-UAV starts descending, these actions affect
the yaw angle between −0.02 (deg) and 0.03 (deg).

a)

b)

c)

Figure 15. Response of moments: (a) τφ, (b) τθ , (c) τψ.

5.4. Octorotor Mini-UAV Manufacturing

The octorotor mini-UAV frame was manufactured using the FDM (fused deposition
modeling) technique with PLA (polylactide) as the primary material. The 3D printer used
was an Ultimaker. Figure 16 shows eight separately printed ducts with two ducts printed
using the black PLA to identify the front of the aircraft. The base and top of the fuselage
were printed separately due to the volume capacity of Ender 6. Finally, Figure 17 shows
the octorotor mini-UAV battery support, which is printed in two parts to avoid future
installation problems with the battery.
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Figure 16. Top view of the octorotor mini-UAV manufactured fuselage.

Figure 17. Bottom view of the octorotor mini-UAV manufactured fuselage.

The electronic power propulsion and avionic system are proposed using eight 2205
Brushless Direct Current (BLDC) motors with 2300 (KV or RPM/V), eight Electronic
Speed Controller (ESC) with 30A-S and BLHeli_ S firmware, as well as an eight-blade
propeller mounted on each motor. A power distribution board capable of supporting
200 (A) is selected. A PixHawk PX4 ver. 2.4.8 with an STM32F103 processor that works
with 160 (MHz), and 256k of RAM is selected. A Turnigy lipo battery with 4000 (mAh), 4S
configuration, and a weight of 396 (g) was selected to power up all electronic components.

6. Conclusions

The flight navigation controller PIV fuzzy gain scheduling proposed for the trajectory
tracking of the octorotor mini-UAV with attitude inner PIV fuzzy gain scheduling controller
was designed. In addition, the PIV fuzzy gain scheduling navigation controller of the
octorotor mini-UAV fulfillment a satisfactory performance for tracking trajectories. In
effect, it is mentioned that the capacity of the PIV fuzzy gain scheduling flight controller
can be tested against heavy cargo transportation and enduring gust wind disturbances.
The validation of the attitude and navigation controllers in a closed-loop system with the
dynamic model of an octorotor mini-UAV is obtained via numerical simulations. In the
simulations, a saturated PIV attitude controller with fuzzy gain scheduling tuning for a
fast response was performed. The membership functions of the fuzzy flight controller were
tuned on a heuristic procedure to obtain an underdamped response for translational and
angular positions with a low overshoot and a fast settling time. For the flight controller
tuning procedure, the output membership function of the proportional gain is tuned for
fast output response of attitude and navigation positions, then the output membership
function of the velocity gain is tuned to reduce the system oscillations; finally, the output
membership function of the integral gain is tuned to reduce the steady-state error to a value
close to zero. Furthermore, this PIV gain scheduling controller was designed to reject wind
gust disturbances fulfilling satisfactory performance of the trajectory tracking responses of
the octorotor mini-UAV. Finally, the octorotor mini-UAV fuselage was manufactured using
polylactic acid (PLA) material by the fused deposition modeling (FDM) technique, which
provides a robust and lightweight platform.
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Abstract: Bird wings are exquisite mechanisms integrated with multiple morphological deformation
joints. The larger avian species are particularly adept at utilizing their wings’ flapping, folding,
and twisting motions to control the wing angle and area. These motions mainly involve different
types of spanwise folding and chordwise twisting. It is wondered whether the agile maneuverability
of birds is based on the complex coupling of these wing morphing changes. To investigate this
issue, we designed a two-section wing structure ornithopter capable of simultaneously controlling
both spanwise folding and chordwise twisting and applied it to research on heading control. The
experimental data collected from outdoor flights describe the differing flight capabilities between the
conventional and two-section active twist wing states, indicating that incorporating an active twist
structure enhances the agility and maneuverability of this novel flapping aircraft. In the experiments
on yaw control, we observed some peculiar phenomena: although the twisting motion of the active
twist ornithopter wings resembles that of a fixed-wing aileron control, due to the intricate coupling of
the wing flapping and folding, the ornithopter, under the control of active twist structures, exhibited
a yaw direction opposite to the expected direction (directly applying the logic assumed by the
fixed-wing aileron control). Addressing this specific phenomenon, we provide a plausible model
explanation. In summary, our study with active twist mechanisms on ornithopters corroborates the
positive impact of active deformation on their attitude agility, which is beneficial for the design of
similar bio-inspired aircraft in the future.

Keywords: ornithopter; wing morphing coupling; UAV attitude control; two-section wing

1. Introduction

Birds can adjust the geometric morphology of their wings to alter their posture [1].
Compared to insect wings, avian wings possess multiple joints and exhibit greater maneu-
verability [2]. Therefore, investigating avian wing deformation offers inspiration for aircraft
attitude control [3–5]. Birds can alter their wing morphology through various muscular
and joint movements, including spanwise folding [6], spanwise extension–retraction [7],
and chordwise twist [8], as depicted in Figure 1a–d. These complex muscular joint configu-
rations and wing deformation capabilities ensure the agility of avian flight [9]. Figure 1
depicts the four representative geometric morphologies of avian wings during flight.
Among these, the flapping motion typified by hummingbirds does not apparently alter
the static geometric morphing of the wings [10], generating lift solely through up-and-
down flapping (Figure 1a,e). As shown in Figure 1b,f, the spanwise extension–retraction
exhibited by high-speed avian species (such as falcons) manifests as a slight forward and
aft sweeping motion of the wings [11]. It is reported that varying this in-plane morphing
parameter enhances flight maneuverability [12]. In Figure 1c,g, represented by albatrosses
and other large-wingspan birds, the spanwise folding deformation involves an “M”-shaped
up-and-down flapping motion of the wings; it is reported that it can enhance the flight
stability during deceleration [13,14]. Figure 1d,h illustrate the chordwise twist movement,
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which is typically studied in pigeons; the research has focused on the effect of chordwise
twist on agile attitude control [8].

The study of morphological parameters and their impact on flapping flight is a research
hotspot. Song pointed out that research on the static morphological characteristics of avian
wings has been extensive in non-flapping states. However, there has been relatively little
theoretical research on the morphological deformation coupled with flapping states [15].

The morphological research in non-flapping states can be summarized such that
(1) altering the wing shape parameters at different angles of attack can affect the lift
coefficient [16]; (2) actions similar to the spanwise folding movements observed in large-
winged birds (Figure 1a) can enhance flight stability [13]; and (3) pigeons can improve
flight agility through chordwise twist [8]. However, the morphological variables of these
studies are not coupled with flapping, thus underestimating the complex aerodynamic
situations induced by the coupling of flapping motion and wing deformation.

Does the torsional ability of wing muscles along the chord differ during flapping mo-
tions (such as extension–folding or extension–retraction) compared to non-flapping states?

The research on the morphological variables of wings during the flapping states
remains scarce [4]. Only a few studies have focused on the influence of the aspect ratio
on lift and thrust performance [15]. For instance, seagull wings exhibit excellent lift
characteristics during flapping flight due to spanwise folding [17]. Some studies have
effectively explained the advantages of large-winged birds in generating lift and saving
power during flapping by describing the effects of wing folding on leading-edge vortices
and Strouhal numbers [18]. Thielicke, W. [19] and the team led by Song [20] have conducted
relevant studies on active chordwise twist, demonstrating that chordwise twist can reduce
the constraint of the wing on vortex streets, decrease the magnitude of the lift, and alter
the distribution of the effective angles of attack. However, this literature solely comprises
aerodynamic simulations without investigating the coupling effects of chordwise twists
and the flapping motion on the attitude of flapping-wing aircraft. To the best of the authors’
knowledge, this paper represents the first study regarding the coupling effect of chordwise
twist (Figure 1c) and spanwise folding (Figure 1d) on attitude control during flapping.

(h)

Figure 1. Geometric morphology of bird wing motion, where the first row depicts simplified
schematic diagrams of motion, and the second row shows corresponding bird flight forms. (a) The
up-and-down flapping of the wings without static geometric deformation. (b) Spanwise extension–
retraction of the wings. (c) Spanwise folding of the wings, folding upwards and downwards.
(d) Chordwise twisting of the wings. (e) Flapping flight mode, exemplified by hummingbirds,
where the wings do not undergo static deformation. (f) Spanwise extension–retraction flight mode,
exemplified by peregrine falcons. (g) Spanwise folding flight mode, represented by albatrosses with
large wing spans. (h) Flight mode of pigeons, enhancing agility through chordwise twisting during
flight [8].

In the literature on biomimetic mechanical design, there are numerous studies focusing
on the mechanical structures mimicking each of the three wing deformation modes depicted
in Figure 1b–d individually. For instance, in studies on wing morphology resembling
spanwise extension–retraction (achieving the motion depicted in Figure 1b), Chan from
Stanford University improved upon a fixed-wing prototype by creating a drone with
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foldable wings. The research indicates that altering the wing area and angle of fixed-
wing aircraft through joint unfolding movements can significantly enhance the operability,
agility, and stability of the aircraft [12]. Their study utilized a fixed-wing aircraft platform
(with the lift generated by propellers rather than flapping) to investigate the effect of
asymmetric spanwise retraction on aircraft attitude control. However, constrained by
the nature of the fixed-wing platform, their wing deformations were not coupled with
a flapping motion. In contrast, researchers at Northwestern Polytechnical University
designed a mechanical structure that couples wing deformation with flapping motion.
Their developed RoboFalcon flapping-wing aircraft replicated the effect of the asymmetric
spanwise folding of wings on attitude control during the flapping states (an asymmetric
form of the extension–folding depicted in Figure 1b). RoboFalcon achieves flight and
attitude control through asymmetric forward and aft sweeping motions [21]. Their study
indicates that the morphing-coupled flapping mode exhibits higher lift effects compared to
the single-wing flapping mode with unchanged static characteristics when increasing the
downstroke duration [11].

The studies on wing morphology resembling spanwise folding (emulating the motion
depicted in Figure 1c) began in 2011, and the two-section wing ornithopter mimicking
the avian wing deformation mechanisms was first developed by the Festo Corporation.
The flagship model, known as Smartbird, has gathered significant attention due to its
remarkably realistic flight posture resembling that of actual birds [22]. Based on the
structure of Smartbird, Zhang et al. developed an avian ornithopter with feather covers
and achieved reliable flight [23].

In the studies on wing morphology resembling chordwise twist (emulating the motion
depicted in Figure 1d), both theoretical and experimental research have been limited to
single-section wing ornithopters. For example, the team led by Xiao et al. designed a differ-
ential control mechanism for active chordwise twist, verifying that lateral control using
wing differential torsion yields superior performance compared to rudder control [24].

The aforementioned studies have independently investigated the influence of altering
certain morphological parameters of wings on their aerodynamic performance or attitude
control. However, during avian flapping flight, various types of geometric parameters of
wings should be coupled [15]. Therefore, when studying flapping-wing aircraft, considering
multiple geometric parameters of wings and studying the coupling effects of the morphol-
ogy and flapping (morphing-coupled flapping) are essential. Due to the complexity of the
flapping motion, it is currently impractical to fully replicate the combined actions of all the
muscles in birds [9]. However, it is feasible to gradually observe the combined effects of
several morphological parameters on flapping-wing aircraft. We note the lack of studies
investigating the coupling effects of spanwise folding and chordwise twisting, which becomes
the focus of our study. Given the complexity of the flapping motion, the addition of each new
mechanism may potentially render the existing motion model ineffective. Therefore, we have
adopted a cautious approach and designed a two-section ornithopter that retains a vertical tail
mechanism, active chordwise twist mechanisms, and spanwise folding mechanisms. Through
extensive experimentation (initially encountering numerous uncontrollable phenomena due
to insufficient analysis of the aerodynamic model), we ultimately propose a model and control
principles that enhance the agility of attitude control.

To summarize, inspired by the control strategies of the complex morphing strategy of
avians, this paper investigates the impact of chordwise active twist coupled with spanwise
folding-induced flapping through a two-section wing ornithopter. The main contributions
are as follows:

• We designed a two-section wing ornithopter with a spanwise folding and chordwise
active twist mechanism. This flapping vehicle achieved agile flight and attitude control
in the open air.

• We experimentally analyzed the impact of the chordwise active twist structure on the
attitude control during flapping. The results demonstrated that the spanwise active
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twist structure can provide independent direction control for headings. Therefore, it
can enhance the maneuverability and agility of the ornithopter.

• The experimental findings revealed that, due to the complex coupling of chordwise
folding and spanwise active twist, the attitude control phenomenon could not be
predicted by the traditional fixed-wing aileron control mechanism. Therefore, a novel
model analysis and explanation is proposed for this coupled wing-flapping pattern.
The proposed “M”-shaped model describes the particularly special phenomenon that
the attitude control effect of a single spanwise active twist is contrary to that when it
is coupled with chordwise folding.

2. Design of Active Twist Two-Section Wing Ornithopter

To investigate the influence of wing deformation on avian posture control for potential
application in unmanned aerial vehicle (UAV) design, we developed a two-section wing
with an active twist structure inspired by the morphology of seagulls, as illustrated in
Figure 2a and parameter specifications are listed in Table 1. The propulsion architecture
of this flapping wing mechanism resembles Festo’s Smartbird design. This model’s outer
and inner wing segments are composed of two four-bar linkage structures; the outer
segment and the inner segment are driven by a single motor, resulting in a coupled motion
between the outer segment and the inner segment. Therefore, it is an actuated system
with one degree of freedom [22]; the motor only provides lift and thrust without posture
control capability.

Table 1. Main properties of ornithopter.

Property Value

Wing span/m 1.5
Aspect ratio 4.26

Weight/g 400
Wing length (outer)/m 0.60
Wing length (inner)/m 0.45
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Figure 2. (a) Skeletal structure of an ornithopter. The power system motor and variable speed gears
form a set of variable speed systems. The left wing has a three-stage transmission, and the right wing
has a four-stage transmission. (b) Diagram of the effect of the twisted wing structure in action (with
fuselage coordinates, originating at the center of mass of the ornithopter). (c) Twisted wing structure,
a four-bar linkage servo arm (blue), linkage on the wing spar (green), connecting bar (light blue),
and virtual linkage between wing spar and servo arm root. (d) Diagram of the change in the center
position of the flapping wing craft with the flapping of the wings. The blue color is for a two-section
wing flap ornithopter, and the red color is for a single-ended wing flap of the same size. (e) Definition
of the coordinates of the tail–fuselage junction.

During flight, birds can generate rolling moments by altering the posture and shape of
their two wings differently. To achieve a similar effect, we propose a mechanism wherein
servo motors are positioned at the joints of the outer and inner wing segments (as depicted
in Figure 2b). The rotation of the outer wing’s twist servo motor can induce the rotation
of the wing spar. Under remote control, the servo motors of the left and right wings
can execute opposite directional twists, thereby inducing different deformation effects
in the outer wing segments on either side (as illustrated in Figure 2d). This generates
an asymmetric moment on the fuselage, thereby achieving posture control. To obtain
controlled experimental results without active twist, our aircraft retained the commonly
observed vertical tail structure for posture control, as depicted in Figure 2c. Through
simulation analysis conducted using SolidWorks 2024 and MATLAB R2024a software, it
has been observed that, compared to single-wing flapping-wing aircraft, the two-section
wing structure exhibits minimal variation in the center of gravity position, as illustrated in
Figure 2e, which is advantageous for the design of flapping-wing aircraft controllers. This
observation is consistent with the conclusions drawn by Lee JS and colleagues regarding
the research on folding-wing and flapping-wing aircraft [25]. A dynamic demonstration of
the special wing-morphing (flapping–twisting) mechanism, can be found in the video of
the suplymentary material.

3. Aerodynamic Analysis

The factors influencing the lift and thrust of an aircraft are numerous, including
the air density coefficient ρ, the horizontal projected wing area S, the incoming flow
velocity vL, the cruising velocity vT , the lift coefficient CL, and the thrust coefficient CT .
The mathematical expressions are represented as shown in Equations (1) and (2):

FL =
1
2

CLρSυ2
L (1)
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FT =
1
2

CTρSυ2
T (2)

Thus, the lift and thrust coefficients can be represented by Equations (3) and (4):

CL =
2FL

ρSυ2
L

(3)

CT =
2FT

ρSυ2
T

(4)

The horizontal projected area of the flapping wing dominates the trend of lift variation,
where the local tangential velocity (v) and horizontal projected area determine the instanta-
neous lift of the flapping wing mechanism, which is closely related to the development of
leading-edge vortices [6].

Experimental testing of the aerodynamic performance of the bi-plane flapping-wing
aircraft was conducted without yaw control. The experiments involved measuring the lift
and thrust of the aircraft using an ANIPRO RL4 turntable system [26], as illustrated
in Figure 3a. From Figure 3b, it can be observed that, at a certain relative airspeed,
the thrust coefficient of the flapping-wing aircraft is directly proportional to the wing
flapping frequency [27]. Furthermore, as shown in Figure 3c, the thrust coefficient of the
two-section flapping-wing aircraft is maximally affected by the relative airspeed at low
frequencies. These results and analysis guarantee the basic flight safety of our outdoor
real-flight experiments.

C
L

velocity(m/s)

C
T

Frequency(s)

(a)

(b)

(c)

Figure 3. (a) Experimental force analysis of ornithopters under ANIPRO RL4 turntable system
allows for the measurement of the lift and thrust forces experienced by the ornithopters under
specific conditions, accompanied by a dynamic capture system to measure the flapping frequency
of the ornithopters. (b) The relationship between flapping frequency and thrust coefficient (CT) of
ornithopters at different airspeeds. (c) The relationship between relative airspeed and lift coefficient
(CL) of the ornithopter at various flapping frequencies.
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4. Outdoor Real Flight Experiments on Horizontal Maneuverability

As depicted in Figure 4, multiple stable flight tests were conducted outdoors, dur-
ing which the attitude data and control signals were recorded using onboard sensors
(more information of the outdoor flight can be found in the suplymentary material). These
experiments encompassed both pre-modification flight trials and flights after installing
the active twist mechanism. Due to the lack of historical literature and prior knowl-
edge on the aeroelastic testing of wingtip twist, to ensure flight safety, we incorporate
an active wingtip twist structure onto a relatively mature scheme with a vertical tail.
During the experimental exploration of the influence of the active twist structure on the
flight attitudes, the control of the vertical tail is disabled to ensure the uniqueness of
the variable.

(b)(a)

Figure 4. (a,b) The outdoor flight experiments of two-section wing ornithopter.

The ability of an aircraft to change its flight direction is referred to as horizontal
maneuverability [28,29]. During the actual flight, it was observed that discrepancies
between the left and right wings were inevitable due to manufacturing variations, resulting
in an imbalance of the forces on both sides of the aircraft. In this case, relying solely on
the tail fin cannot effectively control the aircraft’s roll to a neutral position, leading to the
torpid climbing performance of the aircraft. Human pilots have repeatedly observed this
occurrence during outdoor experiments. It indicates that relying solely on tail control for
the heading direction control of a flapping-wing aircraft can lead to a deficiency in the
aircraft’s horizontal maneuverability.

To evaluate the control performance, the correlation between the roll angle and the
control signals (from the remote controller) is calculated using the root mean squared error
(RMSE). This evaluation is feasible because the control signals provided by the remote
controller are proportional to the mechanism’s rotational angles, and its effects on attitude
control can be measured by the Inertial Measurement Unit directly. Data points are recorded
by the onboard processor at 25 Hz and represented in a two-dimensional coordinate system
as P(controlinput, attitudeangle).

The calculation of RMSE is provided as follows:

RMSE1 =

√
∑n

i=1(Rolli − R̂olli)2

n
, (5)

RMSE2 =

√
∑n

i=1(Pitchi − P̂itchi)2

n
. (6)

where n is the total number of recorded data points, Roll represents the roll angle of the
aircraft, R̂oll is the mean obtained from the regression equation, Pitch represents the pitch
angle of the aircraft, and P̂itch is the mean obtained from the regression equation.

4.1. Horizontal Maneuverability without Active Twist

Before installing the active twist structure, the aircraft’s attitude control relies solely
on the T-tail. The tail is capable of rotation about the Z-axis and the Y-axis (as shown in
Figure 2a,c). The control principle is as follows: rotation about the Z-axis increases the
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force on the horizontal surface of the tail, thereby increasing the aircraft’s angle of attack;
rotation about the Y-axis alters the force on the vertical surface of the tail, thereby modifying
the aircraft’s yaw and roll angles. During the actual flight experiment, the relationship
between the T-tail control input and the aircraft’s attitude is illustrated in Figure 5. It can be
observed that there is a strong correlation between the aircraft’s roll angle and the control
signal along the Z-axis of the tail surface (Figure 5a), as well as the correlation between
the pitch angle and the control signal along the Y-axis (Figure 5c). In comparison to the
linear regression equations between the attitude angles and the control signals, the root
mean square errors (RMSEs) are 1.1530 for the roll angle and 3.1161 for the pitch angle,
as depicted in Figure 5b,d.

In this configuration, the aircraft cannot fully control all three degrees of freedom
due to only two servos acting as active control mechanisms on two degrees of freedom.
However, the control signal along the Z-axis influences both the yaw and roll angles.
According to [30], this coupling phenomenon in the control effectiveness of roll and yaw
angles is attributed to the T-tail configuration, which causes the center of pressure of the
horizontal control surface to deviate from the xoz plane where the aircraft’s center of mass
is located, resulting in a rolling moment. Consequently, the tilting lift generates a lateral
force in the horizontal direction, providing the centripetal force required for the aircraft’s
yaw rotation [28]. Comparing the data for roll and yaw (Figure 6), it is evident that there is
a significant coupling effect between them in terms of control.
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Figure 5. Graph of the relationship between the attitude of an ornithopter and control signals. (a) Roll
angle and tail wing Z-axis control signal for the ornithopter. (b) The linear regression plot of roll angle
against Z-axis control signal. (c) Pitch angle and tail wing Y-axis control signal for the ornithopter.
(d) The linear regression plot of pitch angle against the Y-axis control signal.
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4.2. Horizontal Maneuverability with Active Twist Mechanism

Birds adjust their flight posture by flexibly changing the shape of their wings during
flight. Wing deformation causes the displacement of the vortices on the wing surface, so the
deformation of the outer wing of a two-section ornithopter can result in changes in lift and
thrust [31]. We aim to install an active twist wing structure to enable the ornithopter to also
have the capability to adjust its aircraft attitude through imbalanced wing deformation.

In actual flight experiments, the control effect of the active twist mechanism is illus-
trated in Figure 7. The magnitude of the control signal (Signal) is directly proportional to
the active twisting angle of the ornithopter’s outer wing sections. This mechanical structure
is somewhat similar to the ailerons on fixed-wing aircraft. On a fixed-wing aircraft, when
the ailerons undergo differential deflection as indicated by the signal, different lift distribu-
tions are generated on the two wing surfaces, resulting in a rolling moment, as depicted in
Figure 7a. According to the theory of aileron control on fixed-wing aircraft [32], the roll
angle change of the aircraft should be as shown in Figure 7a (a fake curve generated by
inverting the roll data in Figure 7b), demonstrating that the higher side of the aileron on
the fixed-wing aircraft rolls downward. However, as shown in Figure 7b, the experimental
data contradict this expectation. In comparison to the linear regression equation between
attitude angles and control signals, the root mean square error (RMSE) is RMSE3 = 9.0975,
as depicted in Figure 7e. The active twist wing mechanism causes the roll situation of the
ornithopter to be the opposite, with the side of the outer wing twisting upward, resulting
in the aircraft rolling upward. During actual flight, it was observed that, when the or-
nithopter’s wings are higher than the fuselage, the reversal effect of the roll angle becomes
significant. When the wings are level with or lower than the fuselage, the roll angle control
effect tends to resemble that of a fixed-wing aircraft.
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Figure 7. The control relationship between the wing twist control signal and the aircraft’s roll and
yaw angles. (a) The twist wing signal’s anticipated control effect on the ornithopter’s roll angle
(similar to the aileron’s control effect on fixed-wing aircraft). (b) The twist wing signal’s actual control
effect on the ornithopter’s roll angle is completely opposite to the anticipated effect. (c) The coupling
relationship between the yaw and roll angles during actual flight. (d) The coupling relationship
between the yaw angle signal filtered by low frequency and the roll angle. (e) The linear regression
curve between the wing twist signal and the roll angle.

In the experiments with the installed active twist wing mechanism, the rolling induced
by wing deformation has alleviated the previously encountered climbing difficulties and
the manufacturing asymmetry issue. The ornithopter can now achieve left or right turns or
adjust the bias caused by left–right asymmetry through the imbalance active twisting of the
outer wing. Comparative experiments indicate that, by solely controlling the twisting of the
ailerons, it is possible to change the aircraft’s yaw angle, as shown in Figure 7c. In Figure 7c,
the roll angle deviates from the direction away from 0◦, causing the aircraft to continuously
circle in one direction, while the value of the yaw angle increases in the negative direction
in an integrated form. Under these circumstances, does the coupling phenomenon still
exist between the roll angle and yaw angle control? By extracting the high-frequency
components of the yaw angle, filtering out the low-frequency fundamental signal of yaw
(0.0185 Hz), and comparing it with the roll angle control signal, as shown in Figure 7d,
it can be observed that the high-frequency part of the yaw angle changes synchronously
with the roll angle, indicating that the coupling effect still exists in the control. This result
suggests that the active wing-warping mechanism can provide the required torque for
attitude changes, achieving control over both the roll and yaw angles. The experiential
feedback from pilots is that, during horizontal directional control, the phenomenon of
aircraft center of mass drift is significantly reduced, making turning more flexible and
easier. Therefore, the significance of the active twist wing in ornithopters lies in adjusting
the imbalance wing deformation, enhancing the control strategies, compensating for the
shortcomings of tail control, and making ornithopter flight more agile.
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5. Kinetic Model of the Active Twist Wing Ornithopter

As described above, during flight experiments, it was observed that the principle of
fixed-wing aileron control could not explain the performance of the yaw control of the
ornithopter with active twist. The actual yaw deviation of the ornithopter is opposite
to the expected deviation direction based on the principle of fixed-wing aileron control.
Moreover, this reverse control phenomenon becomes more pronounced as the outer wing’s
folding degree increases. Additionally, it was found during experiments that, the higher
the flapping position of the ornithopter, the more significant its inverted turning control
effect becomes.

The inverted control phenomenon induced by outer segment flapping, which was
unexpected at the outset of the experiments, was not explained in the literature citations.
Additionally, the existing studies have not provided a kinetic model for two-section wing
twisting, necessitating a new model to explain the current control phenomenon and its
underlying principles. This paper proposes an M-shaped model to analyze and elucidate
this control phenomenon, guiding the controller in understanding this new control charac-
teristic. As illustrated in Figure 8a, considering the limit position when the ornithopter is
folded by 90◦, the inverted control effect can be explained intuitively at this limit position.

(a) (b)
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Fx

Thrust

Center of
gravity

Fy

Thrust

Fx

Z

Y

X

α° α°
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lz

lz
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Mx

Figure 8. Comparison diagram between fixed-wing aircraft and two-section wing ornithopter.
(a) Schematic illustration of aileron twisting in fixed-wing aircraft. (b) Schematic illustration of outer
wing twisting in two-section wing ornithopter, along with its corresponding force analysis.

The thrust acting on the outer wing is denoted as Thrust(FT), expressed by Equation (2),
which can be decomposed into forces in the X and Y directions:

[
FX
FY

]
= FT

[
sinα
cosα

]
, (7)

Comparing Figure 8b with Figure 8a, it is noted that the rotation axis of the ailerons
on a fixed-wing aircraft remains aligned with the Y-axis throughout the flight process,
and, when the wings of the ornithopter do not fold, the direction of the wing warping
rotation axis aligns with that of the ailerons on a fixed-wing aircraft. Additionally, the ro-
tation axes on both sides of the wings are aligned (Axis − L = Axis − R). However,
when the wings of the ornithopter fold by 90◦ during flapping, the direction of the wing
warping rotation axis changes, becoming oriented in opposite directions along the Z-axis
(Axis− L = −Axis− R). Under the influence of differential control signals, the initially
opposite rotations of the wing warping on both sides around the Y-axis gradually transform
into rotations in the same direction around the Z-axis.

As the center of pressure of the outer wing is consistently positioned above and aft of
the aircraft’s center of mass, the resulting torque exerted on the fuselage can be expressed
as follows:
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MX
MY
MZ


 =




2FY × lZ
2FX × lZ

0


, (8)

In the above expressions, MX represents the rolling moment caused by wing twisting,
MY denotes the pitching moment, and MZ signifies the yawing moment. The agility of
an aircraft is employed to quantify its capability for attitude rotation. The control of the
rotational angular acceleration of a flapping-wing aircraft by wing twisting is as follows:

Ω̇ =




ṗ
q̇
ṙ


 =




MX
Ixx

MY
Iyy

MZ
Izz




, (9)

where Ω̇ represents the angular acceleration vector of the airframe influenced by the wing
twisting, ṗ denotes the roll acceleration, q̇ denotes the pitch acceleration, and ṙ denotes the
yaw acceleration. Ixx is the moment of inertia of the fuselage about the X-axis, Iyy is the
moment of inertia of the fuselage about the Y-axis, and Izz is the moment of inertia of the
fuselage about the Z-axis.

The yawing moment is not directly influenced by wing warping. However, the rolling
motion induced by wing twisting causes a change in the lift direction of the ornithopter,
resulting in a lateral force in the horizontal direction, leading to a change in the heading
of the ornithopter. Additionally, due to the transition of the active twist wing rotation
axis from parallel to opposite directions during the flapping process of the ornithopter,
the aircraft exhibits a directional control characteristic that is completely opposite to that of
fixed-wing aircraft, as analyzed in the model.

6. Conclusions

(1) The active twist wing ornithopter, redesigned based on the prototype of a vertical-tail
ornithopter, has been systematically analyzed and reliably validated through actual
flight experiments.

(2) The field flight experiment results demonstrate that the active twist wing can provide
independent horizontal control capability and enhance the maneuverability and
agility of the ornithopter.

(3) The observed phenomenon in the experiment, where the roll angle and yaw control
effect of the ornithopter after using the active twist wing function are opposite to the
common control phenomenon of the fixed-wing aileron control, indicates that the
active twist wing structure introduces complex aeroelastic changes that the existing
models cannot describe to explain its control principles. Therefore, this paper presents
an initial model to analyze and describe this new yaw control principle.

Overall, measuring the attitude control effect of the active twist on the two-section
wing ornithopter during actual flight is of great significance for studying the agility and
maneuverability of folding-wing birds, providing some insights for future experiments
investigating this behavior. To further explore the flight attitude control of birds, our
laboratory will establish wind tunnel experiments to investigate the magnitude of the
rolling moment under the active deformation of the two-section wing ornithopter. In the
future, we aim to develop a two-section wing ornithopter that is completely independent
of vertical tail control, aiming to more closely replicate the flight mode of birds.

Supplementary Materials: The following supporting information including original experimental
data and video of manual controled out-door flight can be downloaded at: https://www.mdpi.com/
article/10.3390/machines12070486/s1, Video S1: Outdoor Flight.
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Abstract: Some critical tasks require refined actions near the target, for instance, steering a car
in a crowded parking lot or landing a rocket. These tasks are critical because failure to comply
with the constraints near the target may lead to a fatal (unrecoverable) condition. Thus, a higher
resolution action is required near the target to increase maneuvering precision. Moreover, completing
the task becomes more challenging if the environment changes or is uncertain. Therefore, novel
approaches have been proposed for these problems. In particular, reinforcement learning schemes
such as Q-learning have been suggested to learn from scratch, subject to exploring action–state causal
relationships aimed at action decisions that lead to an increase in the reward. Q-learning refines
iterative action inputs by exploring state spaces that maximize the reward. However, reducing the
(constant) resolution box needed for critical tasks increases the computational load, which may lead
to the tantamount curse of the dimensionality problem. This paper proposes a variable box method
to maintain a low number of boxes but reduce its resolution only near the target to increase action
resolution as needed. The proposal is applied to a critical task such as landing a solid rocket, whose
dynamics are highly nonlinear, underactuated, non-affine, and subject to environmental disturbances.
Simulations show successful landing without leading to a curse of dimensionality, typical of the
classical (constant box) Q-learning scheme.

Keywords: variable box method; Q-learning; rocket landing; thrust vector control; underactuated
systems

1. Introduction

Space launches have improved autonomous landing technology for reusable spacecraft
in the last few years. These aim to recover the rocket’s main booster for analysis and to
retrofit, saving about 60% of total mission costs [1]. Why does it take 60 years of rocket
technology development to achieve landing technology? We need to revise this briefly.
First, the physics involved in a rocket landing is difficult to command; this stems from
the fact that descending a vertical longitudinal rocket’s dynamics are highly nonlinear,
underactuated, non-affine, and subject to environmental disturbances. This critical task
requires extreme maneuverability when using thrust vector control (TVC). Furthermore,
unlike the fixed nozzle configuration that commands two controllers (variable thrust and
surface control), non-affine underactuation arises when using TVC because it implements
one control (constant thrust with a variable nozzle placed at the rocket’s bottom end,
controlling it within a small angle range). Second, TVC is used because the low approaching
velocities make the surface control input irrelevant, exacerbating maneuvering toward the
landing spot [2,3]. Over the years, model-based optimization schemes subject to constraints
have been addressed. However, due to changing environmental conditions, the lack of
exact knowledge jeopardizes the implementation of conservative model-based approaches.
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In these circumstances, Machine Learning (ML) tools, such as Reinforcement Learning
(RL), have materialized as an alternative to learning the actions required to produce the
desired trajectories.

RL algorithms exploit the reward evaluation to optimize a value function through
the Bellman Equation that governs the learning process under an optimal policy. RL has
solved many problems, such as automatic translation, image recognition, medical diagnosis,
and text and speech recognition, to name a few. However, further algorithmic improvement
is needed for physical systems due to RL iterates. Thus, critical tasks such as landing a
rocket may lead to fatal failure (where the system cannot recover operation) for certain
iterations. For example, RL has been used for image classification to identify landing spots
for aerospace missions [4–6], including deep RL [7]; however, there are no studies for
landing dynamical rockets.

Q-learning is a salient scheme of RL algorithms that has proven successful in uncertain
dynamical systems (see Appendix A). It associates a discrete state with a discrete box
corresponding to a discrete action that eventually leads to the optimal outcome after
exploring the whole state space; such discretizations handle advantageous uncertainties.
Classical Q-learning relies on the box method, which assigns boxes of a constant resolution
(CR) corresponding to a discretized state. When a better input resolution is required,
the conventional solution is to increase the number of boxes, which may lead to the
curse of dimensionality [8]. Moreover, for goal-oriented tasks, the Q-algorithm’s learning
architecture allows for the modification of the resolution of the boxes as the system state
approaches the goal state. Thus, we aim to use a low number of boxes to maintain the low
state-space dimension and reduce only the box size near the goal, avoiding the curse of
dimensionality.

This paper proposes a box method with a variable resolution (VR) to increase the learn-
ing resolution where needed without increasing the computational costs or the resolution
for each state variable. The VR method is applied to the Q-learning algorithm to maneuver
the landing of a rocket. Representative dynamic simulations using the complex solid rocket
dynamics using the real parameters of a NASA rocket are presented. It is shown that the
learned policy (controls) produces admissible trajectories that comply with this critical task,
even when the rocket is subject to disturbances.

This paper is organized as follows. The problem statement is presented in Section 2,
followed by the proposed variable box method. Then, a brief revision of RL algorithms
is given in Section 3. Section 4 introduces the TVC rocket dynamics and the simulation
results are shown. Finally, the conclusions are given in Section 5.

2. Problem Statement

We consider the following nonlinear, non-affine, underactuated, disturbed, and state-
constrained system in the continuous state-space form given by

ẋ = f(x, t) + g(x, u, t) + η(t) (1)

y = h(x) = x (2)

where x, y ∈ <n are the vector state and system output, respectively, f(x, t) is the flow of
the nonlinear ODE (1), g(x, u, t) is the input matrix, and η(t) is a Liptchitz disturbance. Let
the Euler method be used to obtain the following difference equation of (1) and (2),

xt+1 = xt + h [f(xt) + g(xt, ut) + ηt] (3)

yt = xt ⇒ yt+1 = xt+1 (4)

where h > 0 is the step size and yt corresponds to the output at the t time step. Note that
Systems (1) and (2), or (3) and (4), are:

1. nonlinear (superposition theorem does not apply);
2. underactuated (there exist more degrees of freedom than control inputs);
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3. non-affine in the control input u (since g cannot be written as g = ḡu for a given ḡ
input matrix).

Since 1–3 account for a complex system and assuming that the task is complex for
traditional control techniques, a Q-algorithm is a feasible solution using a variable reso-
lution box method to refine the state space that allows learning from scratch, avoiding
increasing the computational load. Then, assuming full access to the output vector yt of
system (3) and (4), the problem statement is how to apply the Q-Algorithm using a variable
box method to produce a set of admissible trajectories with a feasible (without incurring
the curse of dimensionality) iterative learning policy ut that eventually converges to its
optimal u∗t = π∗ that maximizes a reward policy.

3. Box Methods in RL algorithms
3.1. Brief Background of Reinforcement Learning

Unlike supervised or unsupervised learning, reinforcement learning is characterized
as the learning process carried out from scratch, taking into account environmental in-
formation and reward assignment, typically using a Markov Decision Process (MDP) [9].
As a result, undesirable actions and states are allowed throughout the learning process.
Moreover, RL avoids them in subsequent trials to improve learning. The RL idea is that the
agent applies action ut to the environment, consequently producing a measurable state st
at time t, which is evaluated by a reward policy, see Figure 1. The agent’s goal is to learn
the set of actions that optimizes a value cost function V(st) throughout a long-term reward
process rt+1, which at t + 1, leads to complying with the reward policy until st+1 reaches
the (desired) goal state sd

t+1. The optimization process minimizes V(st) by assigning a value
to each state, followed by a policy π(st) that defines the agent’s behavior. Thus, the agent
learns the behavior that leads to an optimal policy π∗(st), and, therefore, to optimal states
of an optimal value function V∗(st). The optimization problem is solved using Dynamic
Programming (DP) to satisfy the fundamental Bellman Equation.

◔◔

𝑠𝑡+1
𝑟𝑡+1

𝑠𝑡
𝑟𝑡

𝑢𝑡
EnvironmentAgent

Figure 1. Conceptual reinforcement learning scheme.

3.2. Classical Box Method

Q-learning encloses continuous state and action values into finite sets by indexing
intervals into so-called boxes [10]. The classical boxing method, called the box method, uses
two user parameters, the set of finite fence limits and the constant resolution ε = bup − blw,
which determine the size of each box based on its upper bup and lower blw limits. Then,
the i-th element of the output vector yt is divided into ni boxes of a constant resolution ε,
where t is the time step and it ∈ NN is the index vector. There arise N-elements of yt as
components of a new set B(·), where B(·) maps the state space to index the vector space
yt 7→ it. In this way, one has the following two spaces:

- Finite State-Number Space. Let it be the index vector of the finite state-number space
S for dim(S) = ∏N

i=1(ni + 1), whose elements are the state numbers st codified by
it’s elements. Then, S models a vector of the integer numbers’ range [0, dim(S)− 1]
as elements of a tensor T of N-axes, coding the state number st into T to finally relate
the indexed output vector yt to it and then to st = T(it) : it = B(yt).

- Finite Action Space. Aiming at obtaining a finite action space A = {u1, u2, . . . , uk, . . . ,
um} for the bounded action (control) variable u ∈ [ulw, uup] represented by m-boxes
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of ε > 0 width each, then dim(A) = m. Each element uk is indexed by the m-th action
agent from an arbitrary policy. Note that a high number of u values is suggested
to enable more state-number explorations. However, this may lead to an unfeasible
explosion of dimensions, or the curse of dimensionality.

In recent years, research has focused on improving learning algorithms such as deep
Q-learning or actor–critic, rather than the box method, which is fundamental for many of
these algorithms.

Limitations of the Classical Box Method. Methods have been proposed to deal with
one of the main drawbacks of the classical box method: tuning ε without leading to an
unfeasible explosion of dimensions. Several variable boxing methods have been proposed.
Ref. [11] proposes an interpolation approach using a coarse grid for the learning process
and then increases the accuracy with Kuhn Triangulation around the interested regions.
In [12], feudal reinforcement learning is proposed by dividing the state space into regions,
where each is iterative-divided to reduce state-space searching using the manager concept,
similar to the demons in neuron-like adaptive elements [13]. Ref. [14] introduced an adap-
tive resolution boxes approach by approximating the value function using interpolation
and tree structures to refine the grid, similar to [15], using kd-trees to identify attractive
state-space regions. Recently, a fuzzy action assignment method has been proposed to
generate continuous control based on an optimal trained Q-table [16]. In these approaches,
the resolution is adaptive online because the goal box is unknown, as in a chess game.
However, there are applications where the goal is known a priori, allowing an offline
variable box resolution.

3.3. The Proposed Variable Box Method

Let the ib box be variable with a resolution εi given by

εi =





εib−1 +
1
2 εgb M(|∆ib|) if ∆ib > 0

εib+1 +
1
2 εgb M(|∆ib|) if ∆ib < 0

εgb otherwise

(5)

where |∆ib| = |ib − igb|, with ib the current box index and igb the goal-box index. The
scalar function M(|∆ib|) ∈ C2 is monotonous away from the origin M(0) = 0 such that
it increases (decreases) the accuracy in the vicinity of larger (smaller) distances to the
goal-box resolution εgb. As an example of function M(|∆ib|), the discrete Fibonacci Serie
{1, 1, 2, 3, 5, . . .} can be considered. The proposed algorithm for the variable box method is
shown in Algorithm 1. The box resolution εi yields:

a. a faster reaction for larger errors;
b. a constant box dimension; the remaining boxes are enlarged (shrank) when εib−1 is

reduced (expanded), like an accordion of a fixed length;
c. continuous action-taken history and influence [14], with smooth transitions between

state numbers.

Note that for each i-th element of the output vector, yi ∈ yt, there exists a goal box
with an index box igb and a resolution εgb defined by prior knowledge of the desired
state-variable value yd

i ∈ [yi,lw, yi,up]; each box resolution can be increased (or decreased)
according to the proximity of the goal box. Additionally, εib should be truncated to εs for
safety resolution to ensure sufficient accuracy in edged boxes; otherwise, many state vectors
would be assigned the same state number. Finally, note that the classical box method is
a particular case of our proposed variable box method since it is included in the third
condition in (5).
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Algorithm 1 The proposed variable box method enables higher resolution near
the goal but lower resolution away from it to avoid exploiting dimensionality.

Input: yd
i ∈ <; εgb > 0; (yi,lw, yi,up) and εs >> 0;

Result: A set B with ni-boxes.
Initialize;
B ← empty list;
Calculate initial lower limit as bi ← yd

i − 1
2 εgb ;

while bi > yi,lw do
Add bi value to B set;
bi ← bi − εib ;
if εi < εs then update εib by (5) else εib = εs;

end
Calculate initial upper limit as bi ← yd

i +
1
2 εgb ;

while bi < yi,up do
Add bi value to B set;
bi ← bi + εib ;
if εi < εs then update εib by (5) else εib = εs;

end
Add yi,lw and yi,up values to B set;
return Shorted B.

3.4. How to Deal with the Curse of Dimensionality

A comparative grid example of the classical box and variable box methods is shown
in Figure 2, considering two state variables with yi,lw = −1 and yi,up = 1. Figure 2a
uses a constant resolution εi = 1 × 10−2, whereas the variable box method considers
εgb = 1× 10−2 and εs = 0.1. Note that both methods have the same box resolution and
accuracy around the goal box. This way, finer action is taken with a greater reward when it
is near the goal.
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Figure 2. Level sets for vertical rocket landing were obtained with (a) the variable box method using
576 boxes, and (b) the classical box method using 40,000 boxes, both tuned to obtain similar final
results. The dramatic reduction in the number of boxes achieved using our proposed variable method
results from the symmetrical higher resolution around the goal box, which yields a higher reward in
areas with zero errors.

Otherwise, the variable box method reduces the curse of dimensionality in a Q-learning
implementation using only 14.4% of boxes to render similar results to the classical box
method without changing their attributes around the interested region.
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3.5. Reward Assignment

A critical element of RL algorithms is the design of the reward policy because it
codifies the policy that leads to the learning goal [17]. In this work, the reward is defined as
an evaluation function Rt(et) that evaluates the error of the goal of the current agent. Thus,
instead of increasing the reward, which may lead to an aggressive action, we propose to
increase the box resolution when needed by using the variable box method for the same
reward policy to guarantee the learning goal.

The following section describes a case study showing how the proposed variable box
method with Q-learning can successfully land a complex plant, as depicted in Figure 3.

Q-Learning Algorithm

Expert Agent
Switch

 = {𝑢1, 𝑢2,… , 𝑢𝑘,… , 𝑢𝑚}

Finite Action Space

𝐱𝑡+1 = 𝐱𝑡 + ℎ
[
𝐟 (𝐱𝑡) + 𝐠(𝐱𝑡, 𝑢𝑡) + 𝜼𝑡

]
𝐲𝑡+1 = 𝐱𝑡+1

Euler Method

𝑅𝑡(𝐞𝑡)

Reward Assignment

(𝐲𝑡)
Variable-Box Method

𝔗(𝐢𝑡)

Finite State-Number Space

Learned Trajectories

+−

𝑢𝑡

𝜼𝑡

𝑢𝑘𝑠𝑡

𝐢𝑡

𝑟𝑡

𝐲𝑡+1

𝐲𝑡

𝐲𝑡

𝐲𝑡

𝐲𝑑𝑡 𝐞𝑡

Figure 3. Schematic diagram of the proposed variable box method with Q-learning. Two feedback
loops reinforce the intertwined closed-loop dynamic interplay of the expert agent to guarantee
yt → yd

t , whereas the cumulative reward rt is maximized

4. A Case Study: Rocket Landing

The proposed variable box method is synthesized to learn the descent trajectories of
a solid rocket driven by TVC using the Q-learning algorithm. First, a brief description of
rocket dynamics is given, followed by the concise Lagrangian model. Then, the comparative
simulation results of the classical box and variable box methods are presented.

4.1. Dynamical Model
4.1.1. Translational Dynamics

Applying the second law of Newton, the forces acting on the rocket are defined as

a =
1

mr
F =

1
mr

[TB
ECI(Faer + Fthrust) + Fg] (6)

where mr is the rocket mass, Faer are the aerodynamic forces, Fthrust is the thrust force, and
Fg is the gravity force, with TB

R = R(x, φ)R(y, θ)R(z, ψ)the rotation matrix between the
reference frames B and R, see Figure 4a. Note that the thrust and aerodynamic forces are
defined with respect to the body reference frame B. In contrast, the gravity force is defined
with respect to the inertial reference frame R.
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Figure 4. (a) Rocket with an integrated TVC, with a bounded angle nozzle, and the aerodynamics
forces shown in (b) the xz-plane, and (c) the yz-plane. Notice that CoG and CoP are at different
locations, which yields a rather highly nonlinear coupled non-affine underactuated system.

Aerodynamic Forces. Two components of aerodynamic forces arise, the lift force acting
in the normal direction and the dissipative drag forces, both acting throughout the center of
pressure. The normal force is longitudinal to the principal axis of the rocket, N = Nαsinα,
whereas the axial force resulting from drag force is given by A = 1

2 CaρV2
air$. The lateral

slip force is defined as S = Sβsinβ, where Nα is the normal force depending on the angle of
attack α = θ + γθ + αwθ , where Ca is the aerodynamic axial force coefficient, ρ is the density
of the air, Vair is the airspeed, $ is the coincidence surface of air, and Sβ is the lateral slip
force dependent on the angle of slip β = ψ + γψ + αwψ, with θ and ψ as the rocket angles,
γ the drift angle, and αw the wind disturbance, see Figure 4b,c. Finally, the normal and
lateral slip forces are affected by the angle of attack, thus defined as Nα = 1

2 CNρV2
air$ and

Sβ = 1
2 CSρV2

air$, where CN and Cs represent the aerodynamic coefficients from the normal
force (N) and lateral slip force (S), respectively. Because the center of pressure and the
center of gravity are not generally located at the same point on the rocket, the aerodynamic
forces can cause the rocket to rotate in flight. In this way, the aerodynamic forces Faer are
defined as

Faer =




Faer,x
Faer,y
Faer,z


 =



−A

S
−N


 =



−A
Sβsβ

−Nαsα


 (7)

where sa = sin(a), ca = cos(a).
Thrust Forces. Thrust is produced by the engine acting in the opposite direction to the

exhaust combustion gases and is given by Fthrust = T = ṁVe + (Pe − P0)Ae, where ṁVe is
the combustion of the propellant that burns and escapes at a constant rate and (Pe − P0)
is the difference in pressure between the inside and outside of the nozzle at an exhaust
surface Ae. Assuming that the thrust is constant (T), the components of the TVC, as shown
in Figure 4a, are given as

Fthrust =




Fthrust,x
Fthrust,y
Fthrust,z


 =




Tcδψ
cδθ

Tsδψ

Tsδθ


 (8)

Gravity Force. Consider the Earth’s geometry as a WGS84 ellipsoid called Geoid and
the gravity force vector is defined as [8,18]

Fg = mr




gx
gy
gz


 = mr




− µ

r2
e

(
1 + 3

2 J2(
R0
re
)2(1− 5( z

re
)2)
)

x
re

− µ

r2
e

(
1 + 3

2 J2(
R0
re
)2(1− 5( z

re
)2)
)

y
re

− µ

r2
e

(
1 + 3

2 J2(
R0
re
)2(3− 5( z

re
)2)
)

z
re


 (9)
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where µ represents the universal gravitational constant, R0 is the distance between the
surface location from the Earth to its center, J2 is the oblateness term, and re is the distance
between the rocket and the Earth’s center.

4.1.2. Rotational Dynamics

Let the angular acceleration ω̇ be given by:

ω̇ = [ ṗ, q̇, ṙ]T = Ĵ−1[M−ω× ( Ĵ ·ω)] (10)

where M are the moments acting on the rocket that are produced by the thrust force and the
aerodynamic force and M = Maer + Mthrust = rc.p. × Faer + rgim × Fthrust. Note that Maer
represents the moment of the aerodynamic force acting on the center of pressure (c.p.),
whereas Mthrust is the moment from the center of gravity (c.g.) to the gimbal of the engine.
Given that the gravity force acts uniformly on the rocket, it does not create momentum.
Now, assuming that the axis of reference frame B is aligned to reference frame R, the inertia
tensor is given as Ĵ = diag[Jxx, Jyy, Jzz]. Substituting the rocket moments M and Ĵ in (10),
there arises the rotational dynamics, which are defined as




ṗ
q̇
ṙ


 =




−qr(Jzz−Jyy)
Jαx

[−Xcp ·Nαsα+XgimTsδθ−pr(Jxx−Jzx)]
Jyy

[−Xcp ·Sβsβ−XgimTsδψ−pq(Jyy−Jzx)]
Jzz


 (11)

4.1.3. Rotational Kinematics

The rotational kinematics of the rocket with respect to the R frame are defined as a
function of the angular velocity as follows:




φ̇
θ̇
ψ̇


 =

1
cθ




cθ sφsθ cφsθ

0 cφcθ −sφcθ

0 sφ cφ






p
q
r


 (12)

where φ, θ, and ψ are the Euler angles, the roll, pitch, and yaw, respectively. Thus, the TVC
rocket model is given in (6), (11) and (12).

4.2. Two-Dimensional Aerodynamic Rocket Model

Consider that the rocket landing is performed on the vertical plane xz; thus, the angles
φ and ψ and their derivatives are omitted. Additionally, the slip S in this direction is zero
so let the nozzle control δψ be zero. In this way, the rocket model becomes

mr z̈− Asθ + Nαsαcθ + mrgz = −T(cu + cθsu) + η1(t) (13)

Jyy θ̈ + XcpNαsα = −TXgimsu + η2(t) (14)

where z and θ stand for the rocket altitude and the pitch angle, respectively, with u = δθ
the nozzle angle (control input), Xgim the distance between the nozzle gimbal joint and the
center of gravity (CoG) in the rocket body frame, Jyy the principal moment of inertia on the
y-axis, Xcp the distance between the center of pressure and the gravity center, and α the
angle of attack. In addition, A and Nα stand for the axial and normal forces, respectively,
with α = θ + γθ + αwθ

, where γθ is the drift angle and αwψ corresponds to an unknown
wind disturbance. Finally, η1(t) and η2(t) represent the exogenous forces as Lipchitz
disturbances applied to each dynamic component, respectively.

Equations (13) and (14) can be written in a state-space form as in (1) and (2) or (3) and
(4), where x = [x1, x2, x3, x4]

T = [z, ż, θ, θ̇]T ∈ <4 is the vector state, y = x is the system
output, and f(x, t) = [ f1, f2]

T is the flow of the nonlinear ODE in (13) and (14), where

65



Machines 2023, 11, 214

f1 = 1
mr
(−mrgx1 − Nαsαcx3 + Asx3) and f2 = −J−1

yy XcpNαsα; g = g(x, u, t) = [g1, g2]
T is

the input matrix, where g1 = − T
mr
(cu + cx3 su) and g2 = J−1

yy XgimTsu; and η(t) = [η1, η2]
T .

Remark 1. Note that the angle |x3| < x3M must remain bounded to avoid a stall. In addition,
the height x1 > 0 to avoid crashing against the landing pad. Thus, it is no surprise that it is so
difficult to maneuver a landing rocket, even when accounting for a plethora of resources in large
enterprises such as SpaceX, Blue Origin, or NASA.

4.3. Simulation Study

Three conditions are simulated for comparative purposes to show the performance of
the Q-learning algorithm in learning the rocket landing. The simulation:

1. shows the comparative performance of the classical and variable box methods for the
same output limits, action space, and number states but with different resolutions.

2. shows the comparative performance considering the same goal-box resolution and
state-space dimension for the variable box method.

3. shows the rocket landing trajectories when the rocket is subject to a Gaussian disturbance.

The simulator was written in Python, with a step size of h = 0.01 [s]. The principal
modules were numpy to compute the math operations, matplotlib to depict the results,
and our Q-learning algorithm, which was embedded in the “temporal difference” module.

The task was to learn the vertical rocket landing from an arbitrary initial condition y0
to yd

t = [0.1, 0, 0, 0], see Figure 5. Note that offset was set due to the landing train and the
command was implemented using only the nozzle angle.

The reward assignment was designed as follows:

Rt(et) =

{
10− ||et|| if yt is within limits (it awards)
−1000 otherwise (it penalizes)

(15)

where et = yd
t − yt is the error vector and || · || is the Euclidean norm. Function Rt(et)

increases as ||et|| → 0, maximizing the reward, i.e., yt → yd
t .

◔◔

Desired condition as 𝐲𝑑𝑡

◔◔

𝑥𝐵

𝑧𝐵𝑧𝑅

Initial condition as 𝐱0

𝜃

Σ𝑅 𝑥𝑅

𝑧𝑅

Figure 5. Schematic showing the task goal: learn the optimal admissible rocket trajectories for landing
from an arbitrary initial condition x0 to a (constant) desired landing spot yt

d.

4.4. Rocket and Learning Parameters

The rocket parameters used were those of the Saturn V rocket from NASA [19], where
Nα = 4.46477 [N], A = 6.09525 [N], mr = 570× 103 [kg], T = 7.605× 106 [N], Xgim = 21 [m],

Xcp = 10 [m], Jyy = 3.2× 107 [kg m2], J2 = 1.0826× 10−3, µ = 3.986× 1014 [m3

s2 ], R0 =

6.371× 106 [m], re = 6.372× 106 [m], αωθ
= 0 [rad], and γθ = ż/V, with V = 400 [m

s ]. The
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learning parameters were γ = 0.7 and αQ = 0.01 for 5× 106 episodes. The first and second
simulations were disturbed with ηt = [0, 0]T .

4.5. Simulation A: Comparative Performance

Consider the output limits [y1, y2] ∈ [−1, 1] [m, m/s] and [y3, y4] ∈ [−0.5, 0.5]
[rad, rad/s], the action space ut ∈ [−0.2, 0.2] [rad], and 9 number states for both the
classical and variable box methods. For the classical box method CBM1, the constant
resolutions were εy1 = εy2 = 3× 10−2 and εy3 = εy4 = 8× 10−2. The first and last box
indexes were considered open range (±∞) as in membership functions in classical fuzzy
logic. Then, there arose 28,224 number states. On the other hand, two sets of variable box
parameters were tuned for the variable box method: (a) VBM1: The goal-box resolution
was εy1 = εy2 = εy3 = εy4 = 1× 10−2, with 28,224 number states as in CBM1. The action
space used 21 action boxes. (b) VBM2: The goal-box resolution was the same as VBM1 but
the output limits were set at [y1, y2] ∈ [−10, 10] [m, m/s] and [y3, y4] ∈ [−0.5, 0.5] [rad,
rad/s], producing 51,984 number states. The action space also used 21 action boxes.

Figure 6 shows the results using CBM1, VBM1, and VBM2. The initial conditions for all
cases were x0 = [0.99 m, 0 m/s, 0.02 rad, 0 rad/s]T , for εgb = 1× 10−2. Simulations CBM1
and VBM1 needed dim(S) = 28,224 and VBM2 requires dim(S) = 51,988 to converge
faster (tland = 3.7 [s]); however, the highest reward (rmax = 9.8618) with the lower error
norm (||et||min = 0.1381) is obtained with VBM1, showing that in any case, the proposed
variable method performs better than the constant method, see Table 1.
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Figure 6. Comparative results for landing a rocket: classical box method CBM1 (blue), variable
box method VBM1 (red), and VBM2 (purple), where the purple and black dots represent the initial
and desired conditions, respectively. Subfigures depict the following: (a,b,d,e) show the rocket
descending phase, for height velocity x2, angle x3, and angle velocity x4 remain bounded while
tracking errors remain near zero; (a) shows the better performance of our proposal, (c) shows how
the error norm decreases while the reward increases (i), the control signal performance ut is show in
(f), and phase portraits are show in (g,h).

In Figure 6a,b,d,e, it can be seen that while the rocket is descending, the height velocity
x2, angle x3, and angle velocity x4 remain bounded. In addition, it can be seen that the
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state-variable errors are near zero, which is typical of reinforcement learning algorithms.
Additionally, Figure 6a shows that the set of simulations using the variable box method had
better landing performance than the classical box method. Furthermore, Figure 6f shows
that the control signal ut of the classical box method had a limited correlation between
actions, states, and rewards, which limited the adequate exploration of the state space.
Overall, the second set of simulation parameters with VBM2 performed better (as indicated
in purple in Figure 6) at the expense of a significant increase in the number states. Finally,
Figure 6g,h presents the portrait phase for each set of simulations, showing the convergence
for the three cases; however, in the variable box method, the rocket approached smoothly
due to the mesh’s density.

4.6. Simulation B: Comparative Performance

We aimed to compare the landing performance using the classical and variable box
methods based on three parameters: the minimum norm error ||et||min; maximum reward
obtained rmax; and time taken to land tland. The parameters were the goal-box resolution
εgb and state-space dimension dim(S) tuned by safety resolution εs, see Table 1. The initial
conditions were x0 = [0.99 m, 0 m/s, 0.02 rad, 0 rad/s]T .

Table 1. Comparative study results between CBM and VBM under different conditions of the goal-box
resolution and state-space dimension. The best metrics (εgb, ||et||min, rmax, tland [s]) were obtained
with VBM4 at the expense of a higher computational load (dim(S) = 51,984).

Box Method Code εgb dim(S) ||et||min rmax tland [s]

Classical CBM1 1× 10−2 28,224 0.6304 9.3787 4.88

Variable VBM1 1× 10−2 28,224 0.1381 9.8618 4.82

Variable

VBM3 5× 10−2 18,225 0.1519 9.8480 4.93

VBM2 1× 10−2 51,984 0.1458 9.8541 3.7

VBM4 1× 10−3 51,984 0.0867 9.9132 3.22

The first two rows in Table 1 correspond to the results presented in Figure 6, where
VBM1 achieved better performance than CBM1 using the same state-space dimension
(28,224) and box resolution. VBM3 showed acceptable performance with only 18,225
(in bold) number states, which caused increasing errors and a poor reward; moreover,
the landing time was the worst. Additionally, in VBM2, the state-space dimension increased
to 51,984 due to the loose-fitting grid around the learning goal, the errors decreased slightly,
and the landing took place in 3.7 [s].

If the goal-box resolution was defined as 1× 10−3, it yielded 51,984 number states and
the best performance was achieved (in bold) in terms of the error, reward, and landing time,
see VBM4 in Table 1. Note that when applying the variable box method, it is suggested
to establish a compromise among the learning goal, goal-box resolution, and state-space
dimension on a trial-and-error basis.

4.7. Rocket Subject to Disturbances

Consider the rocket subject to a Gaussian disturbance NG(·) such that ηt,1 = ηt,2 =
κ NG(µG, σ2) for µG = 0, σ = 1, and κ = 8× 10−2 [N]. Figure 7 shows the performance
of the rocket landing with and without perturbations using the policy of the VBM1 case
defined in Section 4.5. The initial conditions were x0 = [0.99 m, 0 m/s, 0.02 rad, 0 rad/s]T .
Figure 7a,b show the rocket’s portrait phase reaching the goal. Figure 7c shows the conver-
gence under the previous learning process conditions, which were sufficient to compensate
for disturbances that were unknown a priori.
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Figure 7. Rocket landing trajectories shown in phase portraits ((a) height position versus its velocity,
and (b) angular position versus its velocity) using the proposed variable box method without
disturbances (red) and subject to a disturbance ηt (olive). The purple and black dots represent the
initial and desired conditions, respectively. Remarkably, L2 norm of errors (c) yields similar plots,
showing trajectories are learned for both cases, despite the strong disturbance (olive) at the expense of
a slight (admissible) final deviation.

5. Conclusions

The classical Q-learning scheme guarantees iteratively reaching the goal states with a
quasi-optimal policy. This powerful scheme seems promising for complex dynamical tasks
such as landing a massive rocket but requires improved maneuverability. The variable
box method is proposed for the Q-learning algorithm to yield higher resolution near the
target region, where higher accuracy is required, such as the landing pad. In addition,
this method suggests that asymmetric refinement may be introduced at different state
regions in terms of the error threshold depending on the available computational power.
This way, the learning process emerges with the refinement of boxes to actions without
significantly increasing the computational costs. Simulations show how convenient it is
to explore such refinements of box-sizing instead of increasing the number of boxes. In
addition, the proposed variable box method can be introduced into other RL algorithms
since the Q-learning architecture is maintained.

Due to the Q-learning algorithm being an offline learning scheme, a sample of the
whole system behavior throughout the finite state-number space, which an expert user
should tune on a trial-and-error basis, is needed to asymptotically compute the quasi-
optimal policy rewarded by rt. Once that quasi-optimal policy is learned offline, it is
necessary to switch to an expert agent who already knows a local quasi-optimal policy
π∗(st). Moreover, caution is advised since, in practice, slight changes in states and actions
lead to a slightly different policy, i.e., π(st) 6= π∗(st). Thus, it is customary to run many
simulation tests beforehand to “average” the policy π̂(st) tested in real systems, where
π̂(st) ≈ π∗(st). In our case, the proposed variable box method may assist in practice since
it produces smoother but finer actions for larger errors.
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Appendix A. The Standard Q-Learning Algorithm

The algorithm presented below merges the value iteration of the classical Dynamic Pro-
gramming approach with a random sampling of the Monte Carlo method to approximate
the value function asymptotically. In the algorithm, the temporal difference error δt = rt +
γ maxuk Q(st+1, ·)−Q(st, uk), where γ ∈ [0, 1) is the discount factor, which is fundamental.
Subsequently, the current state value is updated as follows: Q(st, uk)← Q(st, uk) + αQ δt,
where the learning rates αQ ∈ (0, 1] and Q(st, uk) stand for the value function that is up-
dated iteratively throughout δt. The optimal policy is given by π∗(st) = arg maxuk Q(st, uk),
which converges to the desired state vector yd

t = xd
t by maximizing the reward rt as the

number of episodes Ke → ∞. Note that Q(st, uk)→ Q∗(st, uk) as the exploration improves.
Particularly, all state numbers st = T(B(yd

t )) are elements of the terminal-state-number
subspace S+ ⊂ S . When Q-learning is applied to dynamic systems, their state spaces and
actions are mapped to a finite state-number space S and a finite action spaceA, respectively;
then, the box method that is applied to the instantaneous reward evaluates the new action,
which yields a new state.

Algorithm A1 The classical Q-learning
Input: αQ ∈ (0, 1]; γ ∈ [0, 1); and Ke.
Result: π∗(st) ≈ π(st).
Initialize;
Q(st, uk)← 0 ∀ st ∈ S , uk ∈ A;
Episode counter, ke ← 1;
repeat for each episode

Initialize randomly st;
Select any action uk according to state st;
repeat for each step in current episode

Apply action uk and observe system response rt, st+1;
if st 6∈ S+ then

Compute TD error, δt ← rt + γ maxuk Q(st+1, ·)−Q(st, uk);
Update value function Q(st, uk)← Q(st, uk) + αQ δt

end
st ← st+1;

until st ∈ S+;
ke ← ke + 1

until ke < Ke;
π(st)← arg maxuK Q(st, uk);
return π∗(st) ≈ π(st)
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Abstract: Vertical take-off and landing (VTOL) aircraft have become important aerial vehicles for
various sectors, such as security, health, and commercial sectors. These vehicles are capable of
operating in different flight modes, allowing for the covering of most flight requirements in most
environments. A tail-sitter aircraft is a type of VTOL vehicle that has the ability to take off and land
vertically on it elevators (its tail) or on some rigid support element that extends behind the trailing
edge. Most of the tail-sitter aircraft are designed with a fixed-wing adaptation rather than having
their own design. The design of the tail-sitter carried out in this work had the particularity of not
being an adaptation of a quad-rotor system in a commercial swept-wing aircraft, but, rather, was
made from its own geometry in a twin-rotor configuration. The design was performed using ANSYS
SpaceClaim CAD software, and a numerical analysis of the performance was carried out in ANSYS
Fluent CFD software. The numerical results were satisfactorily validated with empirical correlations
for the calculation of the polar curve, and the performance of the proposed tail-sitter was satisfactory
compared to those found in the literature. The results of velocity and pressure contours were obtained
for various angles of attack. The force and moment coefficients obtained showed trends similar to
those reported in the literature.

Keywords: flight dynamics identification; autonomous vehicles; model reduction; dynamic emula-
tion; CFD simulation

1. Introduction

The development of autonomous and unmanned aerial vehicles has been a key ap-
proach adopted by the aerospace industry in recent years. These new vehicles incorporate
flight capabilities that allow them to operate in different scenarios and fulfill multiple
operational purposes. Much of the qualities that these aircraft possess are attributed to
their designs, which involve defining the flight mission, selecting the vehicle configuration,
studying the known theory of similar aircraft, and relating the physical properties of each
design to the results obtained using mathematical and computational tools.

Aircraft design processes can vary depending on the type of aircraft or part to be
designed. There are some studies in the literature in which the design processes are
different from the previous ones. Chung et al. [1] performed the design, fabrication, and
flight testing of a flying wing UAV electric thruster. The design process consisted of defining
the performance requirements, stall speed, maximum speed, rate of turn, cruise altitude,
absolute ceiling, and radius. The wing loading and associated power loading were derived
based on defined performance requirements. The aerodynamic and stability design of the
aircraft began with the given wing reference area. Then, the shape and configuration of
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the aircraft were determined. XFLR5 and DATCOM software were used to build the 3D
model to estimate the zero-lift drag coefficient and induced drag factor of the aircraft.The
proposed flying wing UAV was made from composite materials. Asim [2] proposed the
different stages to follow when designing an aircraft. The stages consist of defining the
design requirement, the mission that the aircraft must perform, the load to be supported,
the configuration of the main components of the aircraft, and the avionics, stability, and
control systems. However, the paper does not present any particular design or analysis.
Espinal-Rojas et al. [3] proposed design and construction processes for a prototype of
an unmanned aerial vehicle equipped with artificial vision to search for people, which
include: the design of a structure with the correct morphology of the drone, which allows
for taking in-flight images; the design of a communication system that allows these images
to be sent to a ground base; and, finally, the design and implementation of a control
and artificial vision system for the correct flight and the identification of the existence of
people on the ground. Chu et al. [4] carried out a review on the design, modeling, and
control of morphing aircraft. Within this work, they proposed three main design steps:
configuration design, dynamic modeling, and flight control. Rahman et al. [5] conducted
a design and performance analysis of unmanned aerial vehicles delivering aid in remote
areas. In this study, they proposed a design procedure consisting of: the definition of
the mission requirement, the explanation of the design, the detailed design of the vehicle
components, the configuration of the navigation system, and the final design. Similar to the
previous authors, Khan et al. [6] proposed a design procedure that includes the following
steps: the preliminary design, which includes the selection of the aerodynamic profile of
the wing and empennage and the sizing and design of components; the determination of
stability characteristics; and the detailed design. Likewise, Kontogiannis et al. [7] proposed
four main design stages: conceptual design, preliminary design, aerodynamic analysis and
optimization, and final design.

CAD modeling is the most important stage in aircraft design as it streamlines the de-
sign process and improves the visualization of sub-assemblies, parts, and the final product.
It also enables an easier and more robust design documentation, including the geometry,
dimensions, and bills of materials. This stage is complemented by FEA and CFD analysis,
which allow for simulating engineering designs made with CAD to assess their characteris-
tics, properties, feasibility, and profitability. Tyan et al. [8] performed a multidisciplinary
design optimization of a tailless unmanned combat aerial vehicle (UCAV) using global
variable fidelity aerodynamic analysis. The UAV design was developed using the CAD,
Dassault CATIA. Three different geometric models (baseline, low-fidelity, GVFM) were
designed and numerically simulated by CFD ANSYS Fluent to determine the properties
of lift, drag, polar curve, and pressure distribution on the wing. Harasani [9] carried
out the design, construction, and testing of an unmanned aerial vehicle. The analysis of
the aerodynamic properties was performed using the commercial design software TOR-
NADO. For stress analysis, ANSYS FEA was used, and an EXCEL spreadsheet was used
for the performance analysis and stability derivatives. Iqbal and Sullivan [10] presented
an integrated approach to a conceptual UAV design, which includes: the design stage
with CAD software, structural analysis with FEA software, and aerodynamic analysis
with CFD software. Sobester and Keane [11] described, illustrated, and demonstrated a
conceptual UAV design system through a specific design case study. It was shown that
commercial CAD tools can be integrated into the design process from the conceptual level,
where, as parametric geometry engines, they can play the important role of providing
the models required by the various lines of multidisciplinary analysis. This allows for
the use of CFD and FEA solutions in the early design stages. Flynn [12] demonstrated
techniques that can lead to optimized designs by using 3D solid modeling CAD software
and then performing elementary CFD simulations and simple stress FEA analysis. In addi-
tion, he demonstrated how computer-optimized designs can be produced economically
using state-of-the-art rapid prototyping and rapid production machines based on additive
manufacturing techniques. Chowdhur et al. [13] carried out an aircraft design through
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the wing subsystems and a VTOL multi-rotor subsystem, involving the design of wing
modules, fuselage, engines, stabilizers, and the battery. Then, they optimized the efficiency
parameters L/D, autonomy, weight, and cost, but they carried out an aerodynamic analysis
for different conditions—polar curve or performance analysis—with respect to similar
designs. Katon and Kuntjoro [14] designed a new/original modular UAV platform in
which different combinations of modules were assembled to create a fixed-wing UAV and
a quadrotor UAV. A 3D CAD modeling was carried out to conceive the basic configuration
of the modules and the fixing mechanisms between modules. Three-dimensional CAD
modeling was also used to illustrate the optimized module and assembly configurations.
The use of the CATIA parametric CAD system in aircraft aerodynamic design was investi-
gated and demonstrated by Ronzheimer [15]. It was shown that a parametric CAD system
can act as a geometry generator, producing a clean geometry input for CFD simulations.
MohamedZain et al. [16] designed and simulated a small-sized unmanned aerial vehicle
(UAV) using 3DEXPERIENCE software. The design process of the frame parts involved
many methods to ensure that the parts can meet the requirements. Todorov [17] performed
a structural and modal analysis of a wing box structure using numerical simulation. The
research was based on the finite element analysis of the aircraft wing. The first six natural
frequencies and mode shapes were obtained. Benaouali and Stanisław [18] presented
a new procedure for the aircraft wing structure design process. The originality of this
procedure lies in the complete automation of the design process, the complexity in the
considered case of the wing structure, and the applicability to different types of wings
through parametric modeling. The design process involved both geometric modeling and
structural analysis through the integration of two commercial CAD and CAE tools. The
aerodynamic and stability characteristics of a fixed-wing MPU RX-4, a flying wing UAV,
were studied by Bliamis et al. [19]. The preliminary design phase was performed and the
aerodynamic performance, as well as the stability and control behavior, were evaluated
using semi-empirical correlations, which were specifically modified for winged drones
light flywheels, and the CFD tool.

Among the properties that must be determined in the analysis and optimization phase
of an aircraft design, the most important are the aerodynamic properties (lift and drag force,
lift coefficient, drag coefficient, rolling moment coefficient, pitching moment coefficient,
yawing moment coefficient, angle of attack, polar curve proportionality constant, speed for
maximum lift–drag ratio, stall speed, and Oswald coefficient). These properties allow for
validating the flight conditions suggested in the preliminary design stage. This analysis is
performed using CFD simulation. The simulation of aerodynamic elements by means of
CFD, in the aeronautical industry, represents a fundamental pillar in the development of
new technologies and optimization of existing models. Menter et al. [20] determined the
polar curve of an aircraft by numerical simulation. The results were successfully validated
with experimental data. Şumnu et al. [21] demonstrated the effects of shape optimization
on the missile performance at supersonic speeds. The aerodynamic coefficients of drag
and lift under different Mach numbers and different angles of attack were investigated
numerically by means of CFD ANSYS Fluent software. Lao and Wong [22] carried out
an aerodynamic study through CFD simulation that allowed for knowing the behavior
of the aerodynamic properties (drag, lift, and moment coefficients) of an aircraft under
different angles of attack. Combining the results from the lift and drag coefficients, it
could be summarized that the lift–drag relationship is greatly improved by the ground
effect. Salazar and Lopez [23] carried out an aerodynamic study of a wing in two and
three dimensions by means of CFD numerical simulation and reported the lift and drag
coefficients for various angles of attack. They did not obtain results of aerodynamic
moments or perform variations in the yaw angle. Manikantissar and Geete [24] presented
a conceptual design of an aircraft and performed CAD drawing and CFD simulation with
ANSYS CFX to determine the distribution of pressures and lift and drag forces for multiple
angles of attack and geometric taper values. They did not determine any properties
related to the aerodynamic performance. Lammers [25] carried out the modeling of a
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commercial aircraft. CFD simulation was performed to determine the pressure, velocity,
density, and temperature fields of the air around the airplane, without an engine. Lift and
drag forces were also calculated. The results were validated by means of experimental
data. Gu et al. [26] performed CFD numerical modeling and simulations on a commercial
aircraft to obtain the polar curve at different Mach numbers and with different numerical
models. Kosík [27] performed the modeling and CFD simulation of a twin-engine aircraft
to determine pressure contours, streamlines, and drag and lift coefficients versus the angle
of attack by comparing ANSYS Fluent and OpenFOAM results with experimental data.

Apart from the aerospace field, CFD simulation also allows for predicting the aero-
dynamic behavior of land vehicles and wind turbines. In land vehicles, the most frequent
cases are those of numerical studies focused on competition vehicles equipped with spoilers
and other elements that allow them to improve their grip on the ground. Cravero and
Marsano [28] used Ansys CFX code to investigate the ground effect on an open-wheel race
car. This work focused on demonstrating the reliability of a RANS model to study the
flow around the unprotected rotating wheels of a racing car, where the interaction with
the multi-element inverted wing is very noticeable, including the entire front of the car,
of an actual F1 model from the year 2000. Ravelli and Savini [29] modeled an F1 car and
carried out CFD simulation with open source software to determine pressure contours
and streamlines. Wang et al. [30] carried out a CFD simulation of an F1 car to obtain the
aerodynamic forces and, later, the results were compared with wind tunnel tests data for
different wind velocities. In wind turbines, the aerodynamic flow around the turbine blade
is complex in nature and difficult to analyze through experiments. By using CFD, different
aerodynamic properties of a blade can be easily analyzed. Fernandez-Gamiz et al. [31]
used CFD simulation to analyze the aerodynamic behavior of Gurney flaps and microtabs
in a wind turbine. Different CFD simulations were made to compute the lift-to-drag ratio
for several angles of attack. In addition, the CFD simulations allowed for the sizing of
the passive flow control devices based on the airfoil’s aerodynamic performance. Aziz
et al. [32] performed a numerical and experimental investigation of the drag and lift forces
at low Reynolds numbers and at different angles of attack to optimize the design of a
turbine blade. bCFD simulation was mainly applied to analyze the factors that are not
possible to visualize in real time, the factors on which the drag coefficient is dependent, and
how it should be minimized. Ung et al. [33] investigated the aerodynamic performance of a
vertical axis wind turbine with an endplate design. CFD simulation was carried out using
the sliding mesh method and the k-ω SST turbulence model on a two-bladed NACA0018
VAWT. The aerodynamic performance of a VAWT with offset, symmetric V, asymmetric,
and triangular endplates was analyzed and compared against the baseline turbine.

Throughout the works reported above, it can be pointed out that most of the works
related to the design of tail-sitter aircraft adapted a fixed-wing instead of making their own
design, and that most of them only showed basic aerodynamics properties and did not
take into account the contribution of aerodynamics moments or the slip angle variation.
In addition, there are few publications where the design and simulation methodology is
reported in a complete way. The present work develops: (a) a geometric design; (b) an
aerodynamic analysis of a tail-sitter UAV through the use of CAD and CFD computational
tools; (c) a performance evaluation of the final design through some efficiency parameters
that give an idea of the quality of the design.

2. Material and Method
2.1. Tail-Sitter Design

The proposed tail-sitter design was based on a moderately swept trapezoidal wing.
It is a twin-engine prototype capable of taking off and landing on rigid supports that are
attached to the wing and extend below the trailing edge [34–37]. The different design steps
are shown in Figure 1.
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Figure 1. Flow chart of the wing design procedure.

2.1.1. Tail-Sitter Wing Sizing

This section consists of determining the sizes of the wing. In order to achieve this,
an aerodynamic profile based on the MH60 profile was proposed [38], which is a profile
frequently used in the design of composite wing or delta wing aircraft. For the central
section of the wing that corresponds to the fuselage, re-scaling was applied to the original
profile, with the purpose of having a greater internal space that allows for distributing the
loads of the components installed inside the aircraft. Equations (1)–(4) were used to find
the wing sizes shown in Table 1.

bs = (Ll + Lsc)−
b
2

(1)

Λr = arctan
(

Led
b− Fw

)
(2)

Led = CRW − CTW + Ted (3)

Λp = arctan(
Ted

b− Fw
) (4)

In order to add some directional stability to the design, sweep angles were added
to the wing. The first sweep angle was formed between the root and tip leading edges
Λba = 7.34; in the same way, the second sweep angle was formed between the trailing
edges of the wing Λbs = 16.00.

The elevators are the mechanical elements responsible for the rotational movements
that the tail-sitter can carry out. These elements were proposed with the dimensions
described in Table 1. These mechanical elements were selected according to their dynamic
effectiveness, which, in contrast to other documented designs [37], are similar in the
moment coefficients that are produced. In the same way, the proportion of the elevator
chord with respect to the mean wing chord was taken into account. The current proposal
contemplates 20%, which is slightly below the most frequent proportion of 40%.
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Table 1. Dimensions of tail-sitter wing.

Wing Description (Symbol) Value [Units]

Fuselage width (Fw) 0.16 [m]
Half wing length (bs) 0.76 [m]
Taper (λ) 0.76
Root chord (CRw) 0.25 [m]
Tip chord (CTw) 0.19 [m]
Dihedral angle (Γ) 3 [°]

Elevator description (Symbol)

Elevator length (be) 0.35 [m]
Elevator root chord (CRe) 0.044 [m]
Elevator tip chord (CTe) 0.044 [m]
Reference chord (Cre f ) 0.3908 [m]

Fuselage description (Symbol)

Center section length (Lsc) 0.35 [m]
Side section length (Ll) 0.044 [m]
Offset length (LD) 0.044 [m]
Fuselage length (LFu) 0.3908 [m]

Motor support description (Symbol)

Motor base (mb) 0.0798 [m]
Airfoil part (apart) 0.162 [m]
Superior segment (Sseg) 0.068
Elevon angle (δelv) 71 [°]
Inferior segment (iseg) 0.046 [m]
Superior separation (ssep) 0.068 [m]
Inferior separation (isep) 0.090 [m]
Thickness (ts) 0.015 [m]

Figure 2a presents the elementary scheme of the wing with the dimensions of the root
chord, the tip chord, half wing length, regressive sweep angle, and progressive sweep angle
whose values are previously reported in Table 1. Figure 2b shows the detailed scheme of
the wing, including the elevator dimensions. Values of these dimensions are previously
reported in Table 1.

Figure 2. Wing schemes: (a) Elementary scheme, (b) Detailled scheme.

Once the dimensions of the wing are known, the mean aerodynamic chord can be de-
termined. The mean chord is a parameter of great importance in the study of aerodynamic
properties and in the placement and distribution of loads when carrying out weight and
balance tasks. The mean aerodynamic chord can be calculated using Equation (5) [39].

MAC =
2
S

∫ b
2

0
c(y)dy (5)
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where S is the wing area, d(y) is the function that describes the chord change with respect
to the wing station, and c(y) is the half wing chord that varies linearly from root to tip. The
half wing chord can be calculated by the following Formula (6)

c(y) = CRw −
2(CRw − CTw)y

b
(6)

Carrying out the analytical development and simplifications of Equation (5) and
substituting each quantity for its value yields MAC = 0.2214 [m]. This value mainly serves
as a reference point for the placement of loads on board the tail-sitter.

2.1.2. Fuselage Sizing

In this section, the fuselage sizing is carried out from the middle of the aircraft. The
corresponding scheme is shown in Figure 3a, and the dimensions are detailed in Table 1.

Figure 3. Fuselage scheme: (a) Half fuselage isolated, (b) Fusselaje and wing assembly.

The fuselage of the tail-sitter involves a longer central segment where avionics ele-
ments can be placed more freely. The design is based on an octagonal shape in which the
two vertical sides have a height equivalent to the root chord of the semi-wings in order to
facilitate the assembly of both elements as can be seen in Figure 3b.

2.1.3. Global Tail-Sitter Scheme

The global tail-sitter scheme is first presented in the front view in Figure 4 to visu-
alize the dihedral angle (Γ) of the wings. This angle is responsible for modifying certain
properties of lateral stability by adding a certain degree of robustness to the roll angle
against disturbances or gusts of wind. Because greater angles can significantly displace the
center of gravity, causing instability in the vertical flight, for the present prototype, three
degrees of the dihedral angle were considered, as previously described in Table 1. The
second global scheme of the tail-sitter is presented in top view in Figure 5 to visualize the
sweep angle (Λ) of the wings. The distribution of tail-sitter components (wing, fuselage,
and elevator) is symmetrical to the centerline where the center of gravity (CG) is located.
The colored points represent instruments and hardware locations in the tail-sitter.

Figure 4. Front view of global tail-sitter scheme.
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Figure 5. Top view of global tail-sitter scheme.

2.1.4. Structural Design of Tail-Sitter

The structural design of the tail-sitter components was based on the different models
developed in the literature [40–42]. To carry out this structural design, firstly, two wing
spars were proposed, whose positions are shown in Figure 6. The front spar is located at
13 percent of the middle chord from the leading edge, and the center spar at 58 percent. Each
of these spars is made of balsa wood and has a square cross section with rounded edges.
The side of the square measures 11 [mm] and the rounding at each vertex is 2.77 [mm].

Figure 6. Side view of spar location.

The second step consisted of sizing the ribs and the motor support. Eight ribs made of
balsa wood with a thickness of 3 [mm] were proposed in each half-wing, as well as a motor
support (in each half-wing) made of square-shaped ABS polymer with a side of 27.5 [mm]
and a total length of 358 [mm]. The bottom of each motor support has two diverging
branches separated by an angle of 71°, between which, the elevator is mounted. The end of
the support has a straight shape that is 114 [mm] long, with the same cross section as the
trunk, which serves as landing gear. The motor support scheme is shown in Figure 7 and
the dimensions and magnitudes of each part of the motor support are previously described
in Table 1.

The spacing between ribs can be divided into two parts: the first distributes the first
four ribs equidistantly from the root to the motor support, resulting in one rib every 12%
of the half span. The second part joins four ribs from the motor support to the wingtip,
resulting in one rib every 17% of the half span. Details of the spacing of each rib are
presented in Table 2.

Table 2. Rib spacing.

Position [mm] Chord [mm] 1st Spar [mm] 2nd Spar [mm] Comments

0 250.00 32.50 145.00
25 246.05 31.98 142.71 Internal elevator

72.5 238.55 31.01 138.36
120 231.05 30.03 134.01 Motor support
185 220.07 28.70 128.05
250 210.52 27.36 122.10
315 200.02 26.03 116.15
380 190.00 24.70 110.20 External elevator
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Figure 7. Motor support scheme.

The third step was to dimension the fuselage structure. The structure is made up of
two ribs of balsa wood with a thickness of 3 [mm] and a cord of 340 [mm], both separated
by 52 [mm]. These ribs are installed on two spars made of balsa wood, located in the same
positions as those of the wings, with dimensions identical to the previous ones.

The fourth step involved drawing each component in CAD using ANSY Spaceclaim
software. The assembly drawing of all of the structural components is shown in Figure 8.

Figure 8. Detailed drawing of the tail-sitter structural arrangement.

The fifth step consisted of designing and locating the boxes that must house the various
electronic components of the aircraft, such as Pixhawk flight computer, Raspberry pi main
processing computer, battery, GPS antenna, electric motors, electronic speed controllers,
servos, and ground supports. Each one of these boxes has the same dimensions as the
physical component in terms of volume and assigned density, which allows it to match the
mass to the real component. The dimensions and material of each component are described
in Table 3. Regarding the location of each component, components such as flight computers,
the battery, and the GPS antenna were placed above the longitudinal axis in a position
close to the trailing edge because, in this way, a symmetry of loads can be guaranteed and
the center of gravity can be positioned behind the center of pressures. The electric motors
were placed at the tip of the ground support because, in this position, the propellers have
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free movement and the elevators can take advantage of the propwash generated by each
propeller. The speed controllers usually have short cables that connect to each electric
motor; therefore, these devices were placed outside the fuselage, especially in front of each
elevator symmetrically from each other. The servos were also placed outside the fuselage,
ahead of each elevator at a distance where the wing’s convexity allowed them to protect
the servos. Their location was approximately at the center of the elevator. The supports
were placed at the same distance from the center of the wing, where each electric motor
was located. The set of components can be seen in Figure 9.

Table 3. Dimensional characteristics of the components.

Name Material Length [mm] Width [mm] Depth [mm] Mass [kg]

Pixhawk Plastic and semiconductors 50 15.5 81.5 0.038
Rasp berry pi Plastic and semiconductors 88 58 19.5 0.046

Battery Lithium polymer 105 33 24 0.08
Antenna GPS Ceramics and semiconductors 54 54 15 0.03

Electric motor 1 Metal 27.5 27.5 30 0.033
Electric motor 2 Metal 27.5 27.5 30 0.033

ESC 1 Semiconductors 55 28 7 0.01
ESC 2 Semiconductors 55 28 7 0.01

Servo 1 Plastic 40 20 38 0.022
Servo 2 Plastic 40 20 38 0.022

Ground support 1 ABS polymer 40 20 38 0.17
Ground support 2 ABS polymer 40 20 38 0.17

Figure 9. Detailed drawing of the tail-sitter structural arrangement and components.

The sixth step was to choose the material for the skin of the aircraft and its coating.
A shrink-wrap film known as “monokote” was chosen, which is 1 [mm] thick and has a
weigh per unit area of 0.061 [kg/m2]. This material covers the entire external surface of
wings and fuselage as can be seen in different views in Figure 10.

The last step consisted of calculating the center of gravity of the prototype designed.
The calculation was based on the formulas proposed by Sandonis [43].

xCG =
∑i mixi

M
(7)

yCG =
∑i miyi

M
(8)

zCG =
∑i mizi

M
(9)

where mi is the individual mass of each component, M is the total mass of the components,
(xi, yi, zi) is the center of gravity of each component whose reference point is the origin of
the aircraft’s nose coordinates, and (xCG, yCG, zCG) is the position of the center of gravity.
The mass of each component was obtained from the manufacturers’ data sheet. For the
motor support, the mass was determined from the CAD Space Claim. The value of the mass
of each component is previously described in Table 3. Thus, the total mass of the tail-sitter
was 0.942 [kg], which corresponds to the sum of the masses of all of the components.
The (xi, yi, zi) of each component was determined according to the location of each one.
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These three parameters allowed us to calculate the coordinates of the center of gravity
(xCG, yCG, zCG), whose values in [m] were, respectively, [0.178, 7× 10−7, and 0.0152].

Figure 10. Virtual prototype of the tail-sitter: (a) Top view. (b) Front view. (c) Side view.

2.2. Determination of Aerodynamic Coefficients by Means of CFD
2.2.1. Mathematical Model for CFD Simulation of Tail-Sitter

The mathematical model used to develop the numerical solution was carried out by
means of a 3D model of the equations of mass, momentum, and turbulence in steady state.

The Spalart Allmaras model was chosen to analyze the turbulent behavior of the
airflow around the tail-sitter. This model is commonly used in aerodynamic problems and
is very suitable for predicting pressure gradients within the boundary layer [22]. The y+

corresponding to this model is very low (y+ < 5), which allows it to accurately predict
aerodynamic properties close to the boundary layer compared to 2-equation models such
as k− ε, whose y+ is higher (y+ < 30) [44–46].

The following considerations were taken into account for the development of the
mathematical model:

• The simulation takes place in an isothermal environment.
• Air is the working fluid and is assumed to be viscous, incompressible, and behave like

an ideal gas.
• The gravity force acts in a direction normal to the intrados of the wing.
• The density and viscosity of the fluid remain constant.

The governing equations were formulated compactly as follows:
Mass conservation equation:

∇(ρv) = 0 (10)

Momentum conservation equation:

∇ · (ρvT) = ∇
(

λ

Cp
∇T
)
+ Ψ (11)

Turbulent viscosity equation for Spalart Allmaras model formulated by [47]:

uj
∂ν̃

∂xj
= Cb1[1− ft2]S̃ν̃ +

1
σ

{
∇ · [(ν + ν̂)∇ν̃] + Cb2|∇ν̃|2

}

−
[

Cw1 fw −
Cb1

k2 ft2

](
ñu
d

)2
+ ft1∆U2 (12)
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where ν = µ
ρ is the molecular kinematic viscosity and rho is the density, ∇ · [(ν + ν̃)∇ν̃]

is the classical diffusion operator, σ is the Prandtl turbulence number, Cb2|∇ν̃|2 is a non-
conservative term, and Cb1[1− ft2]S̃ν̃ is the turbulence destruction term in which

S̃ ≡ S +
ν

k2d2 fv2 (13)

where d is the distance between the nearest surface and S is defined as

S =
√

2ΩijΩij (14)

where Ωij is the rotation tensor given by

Ωij =
1
2

(
∂ui
∂xj
− ∂uj

∂xi

)
(15)

fv2 = 1− χ

1 + χ fv1
(16)

ft1 = Ct1gtexp
(
−Ct2

ω2
t

∆U2

[
d2 + g2

t d2
t

])
(17)

The turbulence destruction term is contemplated by

[
Cw1 fw −

Cb1

k2 ft2

](
ν̃

d

)2
(18)

where

fw = g

[
1 + C6

w3

g6 ++C6
w3

]
(19)

g = r + Cw2(r6 − r) (20)

r ≡ ν

S̃k2d2
(21)

ft2 = Ct3exp(Ct4χ2) (22)

The constants included in the turbulence model are described in Table 4.

Table 4. Constants included in the turbulence model.

Constant Value

σ 2/3
Cb1 0.1355
Cb2 0.622
k 0.41
Cw1 Cb1/k2 + (1 + Cb2)/σ
Cw2 0.3
Cw3 2
Cv1 7.1
Ct1 1
Ct2 2
Ct3 1.1
Ct4 2

2.2.2. Geometric Model

The geometric model for the numerical simulation as shown in Figure 11a is composed
of two domains: the tail-sitter domain and the air enclosure domain. This model was
carried out using the CAD ANSYS DesignModeler, in which, the domain of the tail-
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sitter was exported from the prototype built in CAD ANSYS SpaceClaim and the air
enclosure domain was drawn based on [22,48]; the dimensions are described in Table 5.
The computational domain shown in Figure 11b surrounded the tail-sitter aircraft, which
has the same dimensions as the design stage. However, motors and motor support were
not considered since the fluid dynamic analysis focuses on the aerodynamic forces.

Table 5. Air enclosure dimensions.

Description Value [Units]

Length 830 [mm]
Width 300 [mm]
Height 60 [mm]

Figure 11. Computational domains for CFD simulation: (a) Isometric view, (b) Top view.

2.2.3. Boundary Conditions

The walls of the air enclosure domain, as shown in Figure 11, were the boundaries for
the numerical simulation. The front wall was considered as the air flow inlet boundary,
wose condition was a velocity inlet with a magnitude of 16 [m/s] (value used as a condition
to design the tail-sitter). The rear wall was considered as the outlet boundary, with a gauge
pressure outlet condition of 0 [Pa] (since the absolute pressure is equal to the atmospheric
pressure). The other walls (upper, lower, right, and left sides) were considered as symmetry
boundary conditions in a similar way to that of [22,48]. This allowed the air velocity to be
maintained above zero in the area close to the walls to avoid the hydrodynamic boundary
layer effect.

Unlike the wall boundary condition, the symmetry boundary condition allows for
simulations with reduced air domains. The use of this symmetry condition allowed us
to eliminate the boundary layer effect due to the reduction in the air velocity close to the
wall [22,49]. Boundary conditions are resumed in Table 6.
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Table 6. Boundary conditions.

Location Boundary Type Value [Units]

Front face Velocity inlet 16 [m/s]
Rear face Gauge pressure outlet 0 [Pa]
Upper face Symmetry -
Lower face Symmetry -
Right face Symmetry -
Left face Symmetry -

2.2.4. Mesh Independence Analysis

The mesh independence study was carried out with the purpose of finding the mesh
size limit at the point where the predictions obtained from the simulation are independent
at greater mesh size reductions [50]. This analysis was preceded by the meshing process
of the air enclosure domain. This choice is justified by the fact that the goal pursued by
the CFD simulation is to determine the aerodynamic properties throughout the external
surface of the tail-sitter. However, it is not necessary to consider the tail-sitter domain in
the mesh. To perform this process, an unstructured mesh was made in order to reduce the
number of nodes and, consequently, the computational time of the analysis. The meshing
was carried out using the ANSYS Meshing software included in the ANSYS Workbench
platform [51]. The meshed computational domain is shown in Figure 12. It is possible
to see a global view of the mesh domain, as well as a region close to the aircraft where
polygons conform a fine mesh in the zone that makes contact between the air domain and
aircraft skin. The mesh refinement was made using body sizing with capture curvature
and capture proximity in order to reduce the size of the mesh close to the aircraft skin.
The distance of the first border node was 0.10949 [mm]. This value was checked with free
software [52] using properties such as the density ρ, viscosity µ, mean aerodynamic chord
MAC, y plus y+, and air velocity U∞. The distance calculated by means of this software
was 0.116074268 [mm], which is close to that of the generated mesh. In the zoom box, it
is possible to see the size ratio between the grid near the wing and the grid at the bottom
boundary.

Figure 12. Mesh domain.

The mesh independence analysis consisted of determining the behavior of the yaw
moment coefficient (Cl) with respect to the number of elements of the mesh. The angle of
attack of zero degrees was selected to place the computational domain in a cruise flight
position as can be seen in Figure 12. To perform this analysis, four different mesh sizes
were selected. The characteristics of each mesh are described in Table 7.
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Table 7. Statistics in the study of mesh independence.

Characteristics Mesh Sizes

M1 M2 M3 M4

Nodes 59,909 66,701 74,868 84,543
Elements 328,718 350,992 403,549 455,174

Mesh metric
Skewness
Minimum 2.138 × 10−4 2.293 × 10−4 2.5457 × 10−4 3.340 × 10−4

Maximum 0.7415 0.7979 0.9251 0.9795
Average 0.2322 0.2328 0.2338 0.2331

Standard deviation 0.1219 0.1225 0.1237 0.12156

Each mesh was simulated in a steady state using CFD ANSYS Fluent from the Work-
bench platform. The flow and turbulence models, as well as the boundary conditions
described in the previous section, were used. Regarding the pressure–velocity coupling
algorithm, the coupled segregation algorithm was used, since it is the most appropriate
algorithm to predict the behavior of pressure and velocity on the wing surface of air-
craft [25]. For the discretization scheme of momentum and turbulent viscosity equations,
second-order upwind was used for more precise results and, furthermore, upwind is the
most appropriate scheme for discretizing the turbulent flow model [25]. Regarding the
residuals, 10−

4
was used for continuity and velocity in the x, y, and z direction and 10−

6
for

the turbulent kinetic viscosity (nut).
The results of this analysis are presented in Figure 13. It can be seen that the yaw

moment coefficient is independent of the mesh size when the element number exceeds
403,549. Therefore, it was decided to use the mesh of 455,174 elements in the present study
in order to obtain more precise results.

Figure 13. Mesh independence of moment coefficient Cl .

3. Results and Discussions
3.1. Validation of Tail-Sitter CFD Simulation Results

The polar curve is an algebraic representation that describes the value of the drag
coefficient as a quadratic function of lift and is an invaluable resource when evaluating the
efficiency of an aircraft under particular conditions [53]. This curve was used to validate
the results of the numerical simulation carried out in this work. Figure 14 compares the
polar tail-sitter curve produced by the results of the CFD simulation with that produced by
an empirical correlation [54].
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Figure 14. Tail-sitter polar curve: CFD vs. polynomial fit.

A similarity between the polar curve generated by the empirical correlation and
that generated by numerical simulation was observed. Figure 15a,b describe the error
percentages between the CFD simulation results and the polynomial fit of the lift and drag
coefficients, respectively. A good approximation was observed between the two results.
The maximum error for the CL is around 10%, whereas, for the drag coefficient, the error
reaches 25% when the CD produced by the CFD simulation is equal to 0.12, but the average
error is 10%, which is within a suitable range.

Figure 15. Percentage of errors between CFD and polynomial fit: (a) CL and (b) CD.

Therefore, the numerical model developed in the present study can predict the aero-
dynamic behavior of the designed tail-sitter.

3.2. Aerodynamic Properties of the Tail-Sitter

The main aerodynamic properties in this study are the coefficients of forces and
moments. However, to better understand the effects of aerodynamic forces on the tail-sitter
at different angles of attack (α), the pressure contours on the tail-sitter surface, as well as
the airspeed distribution around the airfoil, were reviewed. The pressure contours on the
extrados zones and intrados zones are shown in Figures 16 and 17, respectively. Positive
pressures were mainly obtained on the extrados and negative pressures on the intrados
when α = −4. This behavior is normal because, when the aircraft is tilted down, the airflow
is intercepted by the upper surface (extrados), causing greater pressure. The pressure
decreases progressively when the angle of attack approaches zero, and when the angle of
attack begins to increase as shown by the pressure contours when α = 4 and α = 8, the
pressure decreases on the extrados and increases on the intrados, allowing the aircraft to
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lift. The wing reaches a minimum pressure of −133.5 [Pa] at the beginning of the lower
surface and a maximum pressure of 142 [Pa] at the leading edge, which is clearly acceptable
for the zone where each pressure is located.

Figure 16. Pressure distribution on the tail-sitter surface at different angles of attack at upper surface.

Figure 17. Pressure distribution on the tail-sitter surface at different angles of attack at lower surface.

The inverse of the pressure behaviors around the tail-sitter area is observed in
Figure 18a–c for the velocity distributions. When the aircraft is tilted downwards, the
airflow is intercepted by the upper surface (extrados), causing a decrease in the air velocity
and, consequently, an increase on the lower surface. The air velocity remains almost in
balance at approximately 18 [m/s] on both sides when the angle of attack approaches zero,
and when the angle of attack starts to increase (see the velocity contours when α = 4 and
α = 8), the air velocity decreases on the intrados by up to 10 [m/s] and increases on the
extrados by up to 23.3 [m/s], allowing for a better lift of the aircraft. In addition, the air
velocity decreases progressively along the mid-span from root to tip. This avoids a greater
wake effect at the tip.
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(a) r = 0 [m]

(b) r = 0.22 [m]

(c) r = 0.45 [m]

Figure 18. Velocity contours at different angles of attack: (a) local radius r = 0 [m], (b) local radius
r = 0.22 [m] and (c) local radius r = 0.45 [m] .
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In general, the pressure and velocity contours show reasonable behavior from an
aerodynamic point of view. This once again confirms the good performance of the tail-sitter
design proposed in this study.

The effects of the changes in the angle of attack and angle of slip (β) on the force
coefficients and moment coefficients are analyzed below.

Figure 19a shows the behavior of the lift coefficient against the variations in both
angles. The lift coefficient increases linearly from −0.4 to 1 as the angle of attack increases
from −6° to 10°. The trend is slightly changed when the angle of attack exceeds 10°. The
variations in the angle β do not provide significant effects on the lift coefficient since the
proposed tail-sitter has a swept trapezoidal wing. This behavior matches those reported in
the literature for the trapezoidal wings [1,19,55,56].

Figure 19. Effects of changes in angle of attack and angle of slip on the force coefficients and moment
coefficients: (a) lift coefficient, (b) drag coefficient, (c) L moment coefficient, (d) M moment coefficient,
(e) N moment coefficient.

Figure 19b shows the behavior of the drag coefficient against changes in the angles
α and β. The drag coefficient does not increase linearly like the lift coefficient. It has a
tendency of a curve of second degree, as is usual in the behavior of the drag coefficient
of trapezoidal wings when the angle of attack varies; see Refs. [57,58]. Similar to the
lift coefficient, variations in the angle β do not provide a significant change in the drag
coefficient. The drag coefficient reaches its minimum value of 0.02017 when the angle of
attack is 0°and reaches 0.17 when α = 14. This magnitude is within the adequate range for
trapezoidal wings as reported in the literature [1,19,55,56].

Figure 19c describes the effects of changes in the angles α and β on the moment
coefficient around the X axis (responsible for the roll movement). A linear increase in
the L moment coefficient is observed as the angle of attack α increases from −0.4° to
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14°. In addition, increasing the angle β modifies the slope of each line. This behavior is
adequate since the modification of the slip angle causes the displacement of the center of
pressure of the aircraft in a lateral direction, producing a torque that contributes to the roll
movement [59].

The effects of changes in the angles α and β on the moment coefficient around the
Y axis (responsible for the pitch movement) are described in Figure 19d. The moment
coefficient Cm0 decreases from 0.012 to −0.017 when the angle α increases from −4° to 10°.
This behavior is due to changes in the magnitude of the center of pressure and its position
in the longitudinal axis, which results in an increase in the longitudinal axis torque that
contributes to the pitch motion.

Figure 19e shows the behavior of the moment coefficient around the Z axis (responsible
for the yaw movement) against the changes in the angles α and β. A decrease in Cn0 was
observed when the angle α exceeds 2°. Furthermore, the increase in the angle β causes
an increase in Cn0 when the angle α exceeds 2°. This is because the modification of the
angle β causes the air to hit the leading edge of one half wing more directly than the other.
For this reason, the center of pressure moves laterally, producing the torque caused by the
aerodynamic moment.

For aircraft with a symmetrical wing, the moments Cl0 and Cn0 are usually zero when
β = 0 as explained by [60] in the topics of flight mechanics. This behavior is adequately
demonstrated in Figure 19c,e.

3.3. Performance Evaluation of the Final Design

The application of CFD numerical simulation techniques to new aircraft designs allows
for the knowledge of not only their aerodynamic characteristics, but also their performance.
In Table 8, the performance parameter values of the integrated and trapezoidal wing design
of four aircraft, documented in the literature, are compared with those of the design carried
out in the present study. The results show that the performance parameter values of the
design performed in the present study are within the very acceptable range. The metrics
that allow for a performance comparison with other designs are presented in Table 9.

Table 8. Comparison of documented designs with our own design.

Parameter [19] [55] [56] [1] Own Design

W/S 63.765 [N/m2] - 21.88 [N/m2] 23.544 [N/m2] 44.004 [N/m2]
CLmax 1.235 0.97 1.09 1.26 1.12

Vs 10.3435 [m/s] - 6.4363 [m/s] 6.209 [m/s] 9.004 [m/s]
VE∗ 16.864 [m/s] - 9.359 [m/s] 10.7863 [m/s] 13.099 [m/s]
CD0 0.023 0.007 0.0195 0.009 0.0207

K 0.1108 0.0893 0.0734 0.0516 0.0739
e 0.546 0.6393 0.86 0.82 0.92

Table 9. Dimensional characteristics of the components.

Metrics (Symbol) Formula Description

W/S
(

W
S

)
= 1

2 ρ∞V2
s CLMax Wing loading required at the stall speed [1]

Vs Vs =

√
2

ρ∞CLMax

(
W
S

)
Stall speed [1]

VE∗ VE∗ =

√
2

ρ∞

(
W
S

)√
K

CD0
Speed for the maximum lift-to-drag ratio [1]

K K = 1
πARe Induced drag factor

4. Conclusions

The present work was based on performing the geometric design, determining the
aerodynamic coefficients, and analyzing the performance of a tail-sitter UAV using CAD
and CFD computational tools. The design methodology mainly consisted of proposing and
adjusting the dimensions and properties of the wing according to wing designs reported in
various research works.
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To carry out the structural design, an arrangement consisting of the distribution of
ribs, spars, and loads from the instrumentation of the vehicle was proposed. The structural
components and the instrumentation component boxes were drawn in 3D using ANSYS
SpaceClaim CAD software to obtain the virtual prototype of the proposed tail-sitter.

For the CFD numerical simulation, a computational domain of air was drawn that
encloses the entire part of the geometric model of the tail-sitter. The domain was meshed in
an unstructured way to minimize the number of nodes and elements. A mesh independence
analysis was performed based on the yaw moment coefficient. The results show that the
yaw moment coefficient is independent of the mesh size when the number of elements
exceeds 403,549. Therefore, it was decided to use the mesh of 455,174 elements to obtain
more precise results. Based on this mesh, numerical simulations were performed in ANSYS
Fluent CFD software to determine the aerodynamic coefficients. The numerical results
were satisfactorily validated with empirical correlations for the calculation of the polar
curve and comparison of the performance of the proposed tail-sitter with those found in
the literature.

Satisfactory results of velocity and pressure contours were obtained for various angles
of attack. The results of force and moment coefficients showed trends similar to those
reported in the literature. Based on these results, it was concluded that the methodology
proposed in this present work is feasible in the design and determination of the aerody-
namic coefficients for the tail-sitter.

The results of the performance evaluation of the final design showed that the val-
ues of the performance parameters of the proposed tail-sitter design are within the very
acceptable range.

As future work, it is proposed to carry out a vertical flight stability analysis of tail-sitter
trough CFD simulation in order to identify the vertical flight dynamics for the controller
design. In addition, the data of aerodynamic coefficients obtained in this work will be used
to carry out the dynamic model of the tail-sitter, with the purpose of designing laws of
control that allow for controlling the horizontal and vertical flight phases of the vehicle.
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Nomenclature

AR Aspect ratio
CD0 Zero-lift drag coefficient
CLmax Maximum lift coefficient
e Oswald coefficient
K Induced drag factor
ρ∞ Air density
S Wing surface
VE∗ Speed for the maximum lift-to-drag ratio
Vs Stall speed
W Aircraft weight
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Abstract: This paper deals with the problem of increasing the energy efficiency of a hybrid vertical
take-off and landing aircraft. To this end, an innovative aerial vehicle was developed, featuring
a distributed electrical propulsion system with ducted-fan rotors. To compare and analyze the
effectiveness of the proposed propulsion system, two configurations with a different number of
ducted-fan rotors were examined: a four-rotor configuration and a six-rotor configuration. The
mathematical model of the four-rotor configuration was derived using the Newton–Euler formalism,
allowing the design and implementation of a control strategy for conducting model-in-the-loop
simulations. These simulations enabled the evaluation and analysis of the performance of the
proposed propulsion system, where the numerical results demonstrated the functionality of both
designs and showed that, during the multirotor flight, the configuration with six rotors increased its
energy efficiency by up to 11%, providing higher vertical lift with the same power consumption. This
was achieved by distributing its weight among a higher number of engines. The incorporation of two
additional ducted fans increased the weight and the drag of the six-rotor configuration, resulting in a
low augmentation in power consumption of 1%. Finally, this caused a decrease in airspeed by up to
4% during the cruise speed phase.

Keywords: distributed electric propulsion; VTOL; model-in-the-loop simulation; X-plane; ducted-fan;
unmanned aircraft system

1. Introduction

The development of an aircraft that combines the advantages of both fixed-wing and
rotorcraft, to overcome their weakness, has prompted the creation of a wide variety of
new aircraft designs, which have been classified as hybrid VTOLs (H-VTOLs). This type
of aircraft offers several advantages over the traditional ones, since its VTOL capabilities
eliminate the need for runways, enabling it to operate in confined spaces or remote areas,
and providing enhanced versatility [1,2]. Zong et al. [3] mentioned that the primary focus
of developing this type of aircraft revolves around urban air mobility applications, given
the potential to effectively and safely handle urban transportation needs. Furthermore,
prominent organizations such as NASA and Uber are considering how the utilization of
H-VTOLs could bring revolutionary changes in industries such as transportation, search
and rescue, package delivery, and security patrols.
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Despite their advantages, H-VTOLs also face challenges that require further research
and development, such as the need for additional power to conduct vertical take off,
compared with the power required for the fixed-wing phase. This increased power demand
can affect the overall efficiency and endurance of the vehicle, limiting its flight time or
its payload capacity. In this sense, the key points that must be taken into account in the
design of these vehicles include the addition of dead weight; the requirement for higher
speeds, which might not be achieved if the same propulsion system is used for both flying
phases; the fact that VTOL efficiency means greater lift and less required power; the fact
that cruising efficiency means greater lift and less drag; and, finally, the need for safer
aircraft, seeking to reduce the number of accidents, at least compared with the number of
accidents with conventional aircraft [4].

Nowadays, there exist many configurations of H-VTOLs, which are mainly classified
as compound aircraft, tilt-rotor, tilt-wing, tail-sitter, lift-fan, and vectored-thrust vehicles [5].
These types of configurations are clearly exemplified by the Jump 20 [6], a compound
aircraft with a conventional plane configuration that includes a dedicated quadrotor system
for multirotor flight; the Quantum Systems Tron F90 [7], a tilting-rotor aircraft, similar to
the Jump 20 UAV with the addition of a tilting mechanism that uses the same propulsion
system for vertical and cruise flight; the JAXA’s QTWUAV AKITSU tilt-wing [8], which
consists of tandem tilting wings and propellers mounted on the leading edge of each UAV
wing; and the WintraOne [9], a tail-sitter UAV with two propellers that allow taking-off
vertically and a mechanism to tilt the whole airframe forward for cruise flight. All of
these aircraft address the issue of the extra power consumed during multirotor flight by
reducing the dead weight through using the same propulsion system for all phases of flight,
with the exception of the compound aircraft whose main advantage lies in separating each
propulsion system, in order to optimize them for each phase of flight.

Alternatively, in order to increase the VTOL efficiency of the H-VTOl aircraft, the dis-
tributed electric propulsion (DEP) technique integrates the propulsion system from multiple
small-size engines and propellers instead of using a large motor with an equally large
propeller. In this technique, propulsion units are distributed on the frame to stabilize the
attitude of the aircraft, which features a higher propulsion efficiency [10–12]. The effec-
tiveness of this technology has been demonstrated by Kim et al. [13], where the authors
employed DEP on a NASA demonstration aircraft, a conventional take-off and landing
vehicle (CTOL) called X-57. This aircraft was reconfigured with a much smaller wing than
the reference aircraft Tecman P2006T. Such a smaller wing was achieved thanks to the lift
provided by 12 small electric propellers along the leading edge of the wing during the
take-off and landing phases of flight [14].

Similarly, the Joby S2 concept incorporates DEP technology, positioning its engines
throughout the aircraft, without increasing mechanical complexity and weight. This aircraft
incorporates twelve motors with twelve fixed-pitch rotors. During aircraft mode, the in-
duced velocity generated by the rotors, which become propellers, provides the vehicle
with a lift-enhancing effect, similar to that produced by hyper-sustainable mechanisms, as
demonstrated by Stoll et al. [15]. The Greased Lightning GL-10 vehicle, a joint effort of the
Advanced Aircraft Company and NASA is an aircraft that incorporates 10 rotors for multi-
rotor flight, which subsequently change to propellers through a tilting system, to propel the
vehicle as a fixed wing [16]. The Langley Aerodrome 8 is a tandem tilt-wing electric VTOL
configuration that has two tilt wings, eight electric motors, and several control surfaces,
for a total of twenty independent control actuators. This aircraft is utilized for testing
and evaluation of new technologies for H-VTOL vehicles, such as the examination of new
developments in DEP, advanced flight control systems, and complex aerodynamics [17].

1.1. Related Work

In 2016, the Lilium company conducted a flight test of its all-electric two-passenger
VTOL vehicle. This aircraft consists of thirty-six ducted fans mounted along its 10 m
wingspan. When taking-off, the engines are pointed downwards, to produce lift, and then
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the engines rotate to the horizontal position to produce thrust for the aircraft mode [18].
Similarly, the Lightning Strike VTOL X-Plane, an aircraft that began as a project by DARPA,
features twenty-four electric ducted fans distributed across the vehicle’s wingspan and
canard surface, whose functionality was validated through conducting flight tests with a
scaled-down version [19]. In 2018, Zhao and Zhou [20] presented a lift-propulsion VTOL
concept, which adopted the idea of the supporting body incorporating the fuselage as a
lift element and the wing section. The drive unit composed two main ducted fans at the
wingtips and another two at the rear of the fuselage, to generate thrust in airplane mode.
They presented the aircraft design, the prototype construction, and vertical flight tests.
In [21], Hoeveler et al. developed a fan-in-wing VTOL using two ducted fans in the wing.
In their design, the authors incorporated a step for each ducted-fan outlet at the bottom of
the wing, in order to obtain a better performance during airplane mode. This vehicle has a
tilting ducted fan on the front, used to perform the transition in flight. In their research
work, the geometry of the duct with the added step was analyzed and compared against a
wing with a standard duct and a wing without ducts. The lift/drag relation for the three
studied cases showed an increase of up to 66% when the step at the bottom of the wing
was used. However, the performance with respect to the ductless wing characteristics was
considerably improved.

In this research work, two H-VTOL concepts are presented: the XEVTOL-2FNW
and XEVTOL-4FNW. The two experimental vehicles consist of a flying wing aircraft with
a tilting system incorporated at the front for the flight transition and one or two rotors
embedded in the wing, according to the 2FNW or 4FNW configuration. These concepts deal
with the extra power demanded during the VTOL phase using a tilt-rotor configuration,
which reduces the dead weight through using the cruise propulsion as a lift system during
multirotor flight. The DEP technique was employed, together with the incorporation of
ducted-fans to increase the efficiency of the propulsion system during the VTOL phase, and
we performed a comparison of the 2FNW and 4FNW concepts, making use of model-in-the-
loop (MIL) simulations. The aim of these simulations was to evaluate the performance of
the aircraft when the required thrust is distributed throughout a different number of ducted-
fans and, simultaneously, to evaluate their effects on the aerodynamics of the aircraft.

1.2. Main Contributions

The main contributions of this work can be summarized as follows:

• A mathematical model of two unconventional H-VTOLs was derived, to obtain the
corresponding flight controllers;

• An evaluation is presented regarding the advantages and drawbacks of using 4 or
6 ducted fans during the cruising phase by conducting a study of the performance of
the two platforms based on MIL simulations using X-Plane flight simulator
and Matlab.

The remainder of this paper is organized as follows: Section 2 presents the XEVTOL-
2FNW and XEVTOL-4FNW concepts, proposed to reduce energy consumption and to
increase the lift produced by the rotor during multirotor flight and incorporating DEP
technology, as well as a description of the dynamic model of the XEVTOL-2FNW using
the Newton–Euler formulation, considering the forces generated by the rotors, as well as
the aerodynamic forces and moments generated by the aircraft wing. Section 3 presents a
3D model of the two aircraft concepts developed on Plane Maker and the flight controllers
implemented for the model-in-the-loop simulations using the X-Plane flight simulator and
Matlab-Simulink. Section 4 shows the simulation results of the two vehicles, and the energy
parameters of the aircraft are compared to evaluate the advantage of the DEP and the
drawbacks of increasing the number of ducted fans. Finally, concluding remarks about this
research are provided in Section 5.
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2. Mathematical Model of the XEVTOL-2FNW

The XEVTOL-2FNW and XEVTOL-4FNW aircraft concepts are based on DEP technol-
ogy, which states that it is more efficient to have several light small engines, distributed
along a vehicle than having a single powerful but heavy engine. This implies that the
engines operate in a more efficient region, where they generate more lift with a lower
energy consumption (g/W). In addition, ducted fans were utilized for thrust generation in
multirotor flight, to improve the energy efficiency of each rotor and provide an additional
layer of safety since the blades are enclosed within the housing provided by the ducts,
reducing the risk of injury or damage to surrounding objects or people in close proximity to
the aircraft [22–24]. The design of both aircraft concepts was based on the commercial UAV
Mapper V1.8, manufactured by TUFFWING [25], a flying wing with a wingspan of 120 cm.

Based on the above considerations, the proposed XEVTOL concepts can be defined
as a flying wing aircraft with a dedicated lift system of ducted fans in the wing, with a
tilting dual-ducted fan on the front of the aircraft for the transition phase (see Figure 1).
The XEVTOL-2FNW concept incorporates two ducted fans embedded in the wing and a
tilting dual-ducted fan in the front of the vehicle. The tilting ducted fans allow carrying
out the transition from the multirotor to the fixed-wing mode and vice versa. In the fixed-
wing phase, two elevons, acting as the elevator and the aileron, are the control surfaces.
For the XEVTOL-4FNW, two ducted fans were added at the rear of the vehicle, which
required increasing the distance of the tilting dual-ducted fan from the fuselage, in order to
counterbalance the torque of the rear ducted fans.

(a) (b)

Figure 1. Aircraft concepts based on DEP technology. (a) XEVTOL-2FNW concept in VTOL mode.
(b) XEVTOL-4FNW concept in fixed-wing mode.

Furthermore, the addition of two rear ducted fans to the XEVTOL-4FNW configuration
primarily altered the center of gravity (c.g.), the MTOW of the platform and, to a minor
degree, the aerodynamic center (a.c.), given that the latter is more influenced by the
characteristics of the wings. The c.g. of the XEVTOL-4FNW is located at 40% of the fuselage
chord, while for the XEVTOL-4FNW it is located at 67% of the fuselage chord. The empty
weight for the XEVTOL-2FNW is 2.1 kg, while for the XEVTOL-4FNW configurations it is
2.7 kg. Figure 2 depicts the location of the c.g and the a.c. for both platforms.

MIL simulations were utilized to evaluate the effects of incorporating the additional
ducted fans on the vehicle’s performance during the VTOL phase. The XEVTOL-2FNW and
XEVTOL-4FNW concepts were introduced to assess factors such as energy efficiency, power
consumption, and lift and drag forces. In this sense, the development of the mathematical
model is described below, in order to obtain the corresponding flight controllers to be
implemented in the MIL simulations.

The mathematical model of XEVTOL-2FNW was derived using the Newton–Euler
formalism. To this end, in addition to the forces generated by the rotors, the contribution of
the aerodynamic forces and the moments generated by the aircraft wing was considered.
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Figure 2. Location of the c.g. and the a.c. of the XEVTOL concepts. (a) The 2FNW and (b) the 4FNW.
Where c f is the fuselage chord of the vehicles.

2.1. Dynamics

Consider the XEVTOL-2FNW aerial platform as a rigid body with six degrees of
freedom with a body frame B = [xB, yB, zB] ∈ R3 located at its c.g. and an inertial frame
I = [xI, yI, zI] ∈ R3 fixed in the earth as shown in Figure 3.

Figure 3. Reference frames and their rotations, to describe the transformation of coordinates of
the XEVTOL-2FNW.

The mathematical model of the aircraft was derived using the Newton–Euler
formalism [26] as: [

mI 0
0 IB

][
V̇B
Ω̇B

]
+

[
ΩB ×mVB

ΩB × IBΩB

]
=

[
FT
MT

]
(1)

where m is the mass of the aircraft, and I ∈ R3×3 and 0 ∈ R3×3 are the identity matrix
and the zero matrix, respectively. The linear velocity in the body frame is denoted by
VB = [U, V, W]T ∈ R3, where U, V, W represent the linear velocity about the xB, yB, zB
axes, respectively, and whose derivative with respect to time is denoted as V̇B. The angular
velocity in the body frame is given as ΩB = [p, q, r]T ∈ R3, where p, q, and r represent the
rate of change in the pitch, roll, and yaw angle expressed in the body frame, respectively.
The derivative with respect to time of this angular velocity is denoted as Ω̇B. FT ∈ R3 and
MT ∈ R3 represent the forces and moments on the body frame acting on the c.g. of the
aircraft. The matrix IB is the inertia tensor that contains the vehicle’s moments of inertia.
Since the xB-zB plane is symmetric, Ixy = Iyx = 0 and Ixz = Izx [27], and the inertia tensor
is defined as

IB =




Ixx 0 Ixz
0 Iyy 0

Ixz 0 Izz


 (2)
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Equation (1) is defined in the body frame {B} and it has to be transformed to the
inertial frame {I}, in order to obtain the mathematical model in terms of the inertial frame.
This is done by performing axis rotation, first rotating about the zB axis a yaw angle (ψ).
Then, rotating about the y1 axis a pitch angle (θ). Finally, rotating about the x2 axis a theta
angle (φ). Obtaining the RB→I matrix, which is an orthogonal rotation matrix leading from
the body frame to the inertial frame [28], is given as:

RB→I =




cψcθ cψsθsφ − sψcφ cψsθcφ + sψsφ

sψcθ sψsθsφ + cψcφ sψsθcφ − cψsφ

−sθ cθsφ cθcφ


 (3)

where c∗ = cos(∗) and s∗ = sin(∗)
While the matrix WB→I gives us the equation for the rotational kinematics as a function

of the angular velocities [28], which is given by

WB→I =




1 sφsθ/cθ cφsθ/cθ

0 cφ −sφ

0 sφ/cθ cφ/cθ


 (4)

Then, by grouping Equations (3) and (4), the transformation that permits the transfer
of linear and angular velocities and accelerations from the body frame to the inertial frame
is obtained. Equation (5) presents the transformation of linear and angular acceleration
from the body to the inertial frame:

[
P̈I
Θ̈I

]
=

[
RB→I 0

0 WB→I

][
V̇B
Ω̇B

]
(5)

The linear acceleration vector in the inertial frame is defined as P̈I = [ẍ, ÿ, z̈]T , while
the angular acceleration vector in the inertial frame is Θ̈I = [φ̈, θ̈, ψ̈]T .

2.2. Forces

Figure 4 depicts the forces (red arrows) and moments (blue arrows) in the body frame,
the c.g. of the body on the diagram, and the a.c. and the origin of the inertial frame {o}.
The total force on the vehicle given in Equation (6) is expressed as FT , and this is given
by the vector sum of 3 types of forces: the propulsion forces Fp due to propellers/rotors,
the aerodynamic forces Fa due to the wing, and the gravitational force FW .

FT =




X
Y
Z


 = Fp + Fa + FW (6)

Figure 4. The forces and moments within the body frame, which is fixed at the c.g. of the aircraft.
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2.2.1. Propulsion Forces

The propulsion forces generated by the vehicle are denoted by Equation (7). Where
Fi = kω2

i , i = 1, 2, 3, 4 define the thrust forces of the prop/rotors, k is a proportional
constant, and ω is the angular velocity of the motor. The thrust forces due to the front
ducted fans (F1 and F2) have a contribution to the body frame xB or yB, depending of
the tilting angle δT [26]. It can be observed that the ducted fans F3 and F4 only make a
contribution in the vertical axis zB.

Fp =




Fpx
Fpy
Fpz


 =




sδT sδT 0 0
0 0 0 0
−cδT −cδT −1 −1







F1
F2
F3
F4


 (7)

Note that δT = 0◦ for the multirotor mode and δT = 90◦ for the fixed-wing mode.

2.2.2. Aerodynamic Forces of the Wing

The aerodynamic forces are mainly due to the interaction of the wing with the wind,
generating the lift force FL, the drag force FD, and the lateral force FY, as defined in
Equation (8):

FD =
1
2

ρ∞V2
∞SCDw

FY =
1
2

ρ∞V2
∞SCYw

FL =
1
2

ρ∞V2
∞SCLw

(8)

The rotation matrix RW→B in Equation (9) allows these aerodynamic forces to be
transformed from the wind reference frame to the body frame [29], by performing rotations
of the wind frame {W} about the zW with a slip angle β and a rotation of the stability
frame {S} about the yS and incidence angle α, as shown in Figure 5.

Fa =




Fax
Fay
Faz


 =



−cαcβ −cαsβ sα

sβ cβ 0
−cβsα −sαsβ −cα




︸ ︷︷ ︸
RW→B




FD
FY
FL


 (9)

which can be written as

Fa =



−cα(cβFD + sβFy) + sαFL

sβFD + cβFy
−sα(cβFD + sβFy) + cαFL


 (10)

where ρ∞ is the wing density; V∞ is the relative wind speed, S is the wing surface;
CDw = CD0w + CDLw is the wing drag coefficient; CD0w is the wing drag coefficient at
zero lift; CDLw is the drag coefficient due to wing lift; CYw is the lateral force coefficient;
CLw = a0 + a1α + a2δE + a3βη is the lift coefficient of the wing; a0, a1, and a2, a3 are the
aerodynamic coefficients; δE is the angle of deflection of the elevon; and βη is the elevon
trim [30,31].

2.2.3. Gravitational Force

Since, in Equation (6), the force of gravity is defined in the inertial frame {I},
a rotation is performed as a function of the Euler angles θ and φ, in order to transfer
this force to the body frame {B} using Equation (11), where g = 9.81 m/s2 is the
gravitational acceleration.
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FW =




FWx
FWy
FWz


 = mg



−sθ

cθsφ

cθcφ


 (11)

2.3. Moments Acting on the Aircraft

The moments acting on the platform are due to the propulsion systems Mp, the gy-
roscopic effect Mgyro , and the aerodynamics moments Ma, whose total sum is de-
noted as:

MT =




L
M
N


 = Mp + Mgyro + Ma (12)

Figure 5. Definition of the wind frame, stability frame, and the aerodynamic angles.

2.3.1. Propulsion Moments

The moments generated by the propulsion system are given by two phenomena.
The first is due to the force generated by the motors because of their position with respect
to the c.g. and are denoted as MLP . The second results from the torque produced by the
motors during their rotation and is denoted as MτP. Combining these two expressions,
the moments due to the propulsion system are given as

Mp =




dtyk(ω2
2 −ω2

1) + dDyk(ω2
3 −ω2

4)
cδT dtxk(ω2

1 + ω2
2)− dDxk(ω2

3 + ω2
4)

0


+




sδT λk(ω2
1 −ω2

2)
0

λk(ω2
4 −ω2

3) + cδT λk(ω2
2 −ω2

1)


 (13)

Figure 6 shows the body diagrams used for the analysis of the moments about the
three axes of the vehicle (xB, yB, zB), which are given by:

Mp =




Mpx
Mpy
Mpz


 = MLp + Mτp (14)

where λkω2
i = τi, i =1, 2, 3, 4 is the torque generated by the motors and λ is a propor-

tional constant used to relate the force generated by the motors with the torque they
produce [26].

103



Machines 2023, 11, 852

c.g.

(a)

c.g.

(b)

c.g.

(c)

Figure 6. Free body diagrams of the XEVTOL-2FNW platform: (a) Frontal view, plane yB-zB (mo-
ments around xB). (b) Lateral view, plane xB-zB (moments around yB). (c) Top View, plane xB-yB
(moments around zB).

2.3.2. Gyroscopic Moments

The gyroscopic moments of the propellers are given in Equation (15). In the first term
of the right hand side of Equation (15), i.e., inside the vector product between the angular
speed of the body and each motor, a rotation of each motor is modeled as a function of the
tilting angle δT , which applies only to motors 1 and 2, since they change their gyroscopic
moment contribution depending on their orientation, due to the variation of the δT angle,
while motors 3 and 4 remain fixed to the body:

Mgyro =




Mgyrox

Mgyroy

Mgyroz


 =

2

∑
i=1

Jpi (ΩB ×ωi[sδT , 0, cδT ]
T) +

4

∑
i=3

Jpi (ΩB ×ωi) (15)
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Mgyro =




q{cδT (w1 Jp1 − w2 Jp2)− w3 Jp3 + w4 Jp4}
p{cδT (w1 Jp1 − w2 Jp2) + w3Jp3 − w4 Jp4}+ rsδT (w2 Jp2 − w1 Jp1)

qsδT (w1 Jp1 − w2 Jp2)


 (16)

where Jpi , i = 1, 2, 3, 4 is the moment of inertia of the propellers about the axes of rotation
of the engines [32].

2.3.3. Aerodynamic Moments

For delta wing aircraft, the moments are generated exclusively by the aerodynamic
effects of the wing, since they lack the stabilizing surfaces present in conventional aircraft.
This contribution of aerodynamic moments is linked to the wing coefficients. The aero-
dynamic moments of the aircraft are expressed by the Equation (17), derived from the
diagram shown in Figure 7. These moments result from the aerodynamic forces Fa, acting
at a distance lwx from the a.c. to the c.g.

c. g.

c. a.

Figure 7. Free body diagram of the XEVTOL-2FNW vehicle in the plane xB-zB with the aerodynamic
forces and moments illustrated in red and blue arrows, respectively.

As shown in Figure 7, the aerodynamic moments that act on the vehicle are determined
by the aerodynamic forces and the distances to the c.g. (lcg) and to the c.a. (lwx) from the
mean aerodynamic chord (c) of the wing, and they are given as follows:

Ma =




Max
May
Maz


 =

[
ra × Fa

]
+




la
ma
na


 (17)

Ma =




0

−lwx[sα(cβFD + sβFy)− cαFL]

−lwx[sβFD + cβFy]


+




1/2ρ∞V2
∞SbCl

1/2ρ∞V2
∞ScCm

1/2ρ∞V2
∞SbCn


 (18)

where ra = [−lwx, 0, 0]T is the position vector of the a.c. in the body frame, b is the
wingspan, c is the mean aerodynamic chord, and the vector [la, ma, na]T represents the
aerodynamic moments as a function of the dimensionless aerodynamic coefficients Cl , Cm
and Cn [33].

2.4. Equations of Motion

From the Newton–Euler formulation, it can be observed that the equations of motion
of the XEVTOL-2FNW for the multirotor, transition, and fixed-wing modes are given as




ẍ
ÿ
z̈


 =




cψcθ cψsθsφ − sψcφ cψsθcφ + sψsφ

sψcθ sψsθsφ + cψcφ sψsθcφ − cψsφ

−sθ cθsφ cθcφ






U̇
V̇
Ẇ


 (19)
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φ̈
θ̈
ψ̈


 =




1 sφsθ/cθ cφsθ/cθ

0 cφ −sφ

0 sφ/cθ cφ/cθ






ṗ
q̇
ṙ


 (20)




U̇
V̇
Ẇ


 =




Vr−Wq
W p−Ur
Uq−Vp


+

1
m




X
Y
Z


 (21)




ṗ
q̇
ṙ


 =




1
Ixx Izz − I2

xz

{[
(Iyy − Izz)Izz − I2

xz
]
qr + Ixz(Ixx − Iyy + Izz)pq + IxzN + IzzL

}

1
Iyy

[
(Izz − Ixx)rp− Ixz(p2 − r2) + M

]

1
Ixx Izz − I2

xz

{[
I2
xz + Ixx(Ixx − Iyy)

]
pq +

[
Ixz(Iyy − Izz − Ixx)

]
qr + Ixx N + IxzL

}




(22)

Equations (19) and (20) represent the linear and angular velocities of the vehicle with
respect to the inertial frame, while Equations (21) and (22) represent the linear and angular
velocities referring to the body axes.

Since the XEVTOL-4FNW configuration is similar to the one developed in this sec-
tion, the derivation of its mathematical model is omitted for brevity. The main difference
between the two configurations is in the forces and moments acting on the vehicle, due
to the addition of another two ducted fans in the XEVTOL-4FNW configuration. In this
sense, only the corresponding terms of forces and moments for the propulsion system will
be modified.

Multirotor Flight Mode Simplification

During multirotor flight, the tilting engines are in the vertical position δT = 0◦,
with an incidence angle α = 0◦ and a slip angle β = 0◦. The aerodynamic forces
and moments are neglected, i.e., Fa = 0 and Ma = 0. For hovering flight conditions,
the vehicle’s roll, pitch, and yaw angles have small variations, so the angular velocities
can be considered as [p, q, r]T ≈ [0, 0, 0]T . Since [p, q, r]T ≈ [0, 0, 0]T and the inertia of the
propellers is small, the gyroscopic effects of the propellers are neglected. Considering the
body axes coincide with the main axes of the vehicle, the inertia product Ixz is zero [29].
Applying these considerations to Equations (19)–(22), the dynamic model for multirotor
flight yields

ẍ = −uT(cψsθcφ + sψsφ)/m (23)

ÿ = −uT(sψsθcφ − cψsφ)/m (24)

z̈ = g− uTcθcφ/m (25)

φ̈ = Mφ/Ixx + Mθsφtθ/Iyy + Mψcφtθ/Izz (26)

θ̈ = Mθcφ/Iyy −Mψsφ/Izz (27)

ψ̈ = Mθsφ/Iyycθ + Mψcφ/Izzcθ (28)

where uT = F1 + F2 + F3 + F4 is control force and Mφ = dDy(F2 + F3 − F4 − F1),
Mθ = dtx(F1 + F2)− dDx(F3 + F4), and Mψ = (τ4 − τ3) + (τ2 − τ1) are the control moments.

3. Model-in-the-Loop Simulations in X-PLANE

Testing control algorithms in a physical aircraft is an expensive and time-consuming
process that requires many repetitive tests during the development phase. In addition,
current UAV regulations are too restrictive, since experimental testing is a dangerous task.

106



Machines 2023, 11, 852

Moreover, a possible failure of the aircraft sensors could cause the estimates made by the
vehicle to be inaccurate. This does not allow correct evaluation of the control algorithms
and other systems during flight tests. Therefore, a common alternative for flight validation
is to develop flight tests using virtual environments by performing model-in-the-loop (MIL)
simulations [34].

MIL simulations refer to a type of simulation where a mathematical or computa-
tional model is incorporated into a closed-loop system. The model interacts with other
components of the system, such as sensors, actuators, and control algorithms, to sim-
ulate the behavior of the overall system. In MIL simulations, the model is typically a
simplified representation of the real system, often developed using mathematical equa-
tions or computer-based algorithms. The purpose of using a model is to simulate the
system’s behavior under various conditions, test different control strategies, or evaluate
the performance of specific components [35].

In this sense, MIL simulations were employed to evaluate and compare the perfor-
mance of the two XEVTOL concepts. The position and attitude of the XEVTOL concepts
were obtained using the software X-Plane, which is a flight simulator developed by Laminar
Research with realistic flight physics. This allowed us to verify, in this case, the XEVTOL
concepts, providing pivotal feedback for the design phase and for the design of control
strategies, and obtaining simulation results of the aircraft performance close to a flight in
real conditions. To this end, X-Plane utilizes blade element momentum theory (BEMT) to
analyze the geometric configuration of an aircraft and computes its flight behavior. This
approach involves subdividing the aircraft into smaller elements and continuously calcu-
lating the forces acting on each element. These forces are then translated into accelerations,
which are integrated over time to derive the aircraft’s velocities and positions, to describe
the dynamics of the aircraft motion in the simulation [36].

Thong [37] tested the accuracy of X-Plane by means of a series of simulations with
a model of a F-15E. They concluded that the simulator was accurate in the sense that the
input parameters were captured as close to reality as possible. Moreover, the information
obtained through the simulations was compared with that obtained both analytically and
from the aircraft flight manuals. Similarly, Fayyaz [38] developed simulations with the
Pilatus PC-9 modeled in X-Plane 10 with the least number of discrepancies with respect
to the real aircraft. The simulation results were compared with theoretical and real data,
showing that the performance and stability characteristics of the aircraft remained within
a range of ten percent compared to the theoretical/actual values, with the exception of
lateral stability.

In our simulation environment, the scheme used to conduct MIL simulations used
X-Plane and Matlab-Simulink. In this case, the X-Plane program was in charge of generating
the dynamic model of the vehicle from a 3D model developed in Plane Maker software.
The position and orientation of the vehicle was sent to Simulink through the UDP protocol.
Once in Simulink, this information was used to compute the corresponding flight controllers
and, finally, the obtained control signals were sent to the vehicle engines in X-Plane for the
operation of the vehicle. Figure 8 schematizes this simulation process.

The development of the 3D model of the XEVTOL concepts in Plane Maker, as well
as the control scheme used for the development of the MIL simulations, are described in
Section 3.1.

3.1. Plane Maker 3D Model

Plane Maker is the software part of X-Plane that allows users to create and edit their
customized aircraft, based on existing models or entirely new designs. By setting different
physical attributes such as the weight, wingspan, control surfaces, propulsion system, and
wing profile, among others, users can define the characteristics of their custom aircraft.
Once the model has been developed and imported into X-Plane, the software estimates and
simulates how the aircraft would perform in real conditions [39].

107



Machines 2023, 11, 852

X-Plane UDP
reception

Inertial to
body

rotation
Controller

MixersUDP 
 send

Attitude and  
prosition

Package with  
motor signals

Figure 8. Block diagram describing the MIL simulation process. The reception block is represented in
blue, the control blocks developed in Simulink in green, the transmission of the control signals for
the motors in red, and the X-Plane simulator in white.

The design methodology used to obtain the 3D model of the aircraft in plane maker is
presented in the diagram in Figure 9. This corresponds to the design of the XEVTOL-2FNW
concept; however, the same methodology applies for the design of the XEVTOL-4FNW
version. The main difference is in the definition of the propulsion system, as two additional
engines needed to be incorporated for the XEVTOL-4FNW version.

Start

Conceptual design

Create the fuselage,
wings and stabilizers

Create secondary objects
(ducted-fans, structures,

etc.)

System configurations
(propulsion system,

electrical, weight and
balance)

A

A

Flight test in X-Plane
simulator

successful  
flight?

Add textures, 3D objects
and decorative details on

the aircraft

End

yes

no

Figure 9. Plane maker design methodology. The design process started with the conceptual design
that helps to create the components of the aircraft in the software. Then, flight tests are conducted,
in order to evaluate the performance of the aircraft, and adjustments to the geometry are made
if necessary.

The geometry of the vehicle’s wing was defined in the following way: the central part
of the vehicle that serves as the fuselage is part of the aircraft’s wing, so it was modeled
like a wing section, considering this section as a rectangular wing. The right semi-wing
was considered in three sections, with two wing sections located at the tip and root, and a
central part where the ducted-fan is located, as shown in Figure 10.
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Root section

Tip section

Ducted-fan section

Fuselage

Figure 10. Top view of the 3D model created using Plane Maker for the XEVTOL-2FNW aircraft.

Next, the electrical system was configured in the Systems module within the Standard
tab in Plane Maker. The electrical parameters to be used during the simulation were
determined, including the source of the electrical energy, the buses through which the
energy is distributed, and the inverters. A 59 Wh battery, a single channel, and no inverters
were defined. The weight and balance of the aircraft were defined using the module “Weight
& Balance” where the location of the c.g. on the longitudinal axis was defined, indicating
a maximum and minimum value, and the c.g. on the vertical axis was also indicated;
defining for the flying wing a c.g. at 40% and 67% of the fuselage chord, an empty weight of
2.1 kg and 2.7 kg for the XEVTOL-2FNW and XEVTOL-4FNW configurations, respectively.
The 3D models of the XEVTOL concepts developed in Plane Maker are shown in Figure 11.

(a) (b)

Figure 11. The 3D models of the H-VTOLs developed in Plane Maker for the MIL simulation in
X-Plane: (a) XEVTOL-2FNW. (b) XEVTOL-4FNW.

3.2. Multirotor Flight Control

From the mathematical model for multirotor flight presented in Equations (23)–(28),
the complete system was divided into four subsystems: the altitude, directional, lateral,
and longitudinal subsystems. To control each subsystem, PID controllers were utilized,
as described below.

3.2.1. Altitude Controller

The altitude dynamics are given by Equation (25) as:

z̈ = g− 1
m
(uT)cθcφ (29)

then, defining the altitude error ez = z− zd, where zd is the desired altitude, the following
computation can be performed:

ëz = z̈− z̈d (30)
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Substituting Equation (29) into Equation (30), the following equation is obtained:
ëz = g− (1/m)uTcθcφ − z̈d. Since the control objective is to guarantee that ëz = 0, a PD
controller is proposed, resulting in: ëz = g− (1/m)uTcθcφ − z̈d = −Kpzez − Kdz ėz. Solving
for uT , Equation (31) is obtained as

uT = −(−z̈d − Kpzez − Kdz ėz − g)
(

m
cθcφ

)
(31)

and finally, substituting Equation (31) into Equation (29) and considering zd as a constant,
Equation (32) is obtained as

z̈ = uz (32)

where uz = −Kpzez − Kdz ėz.

3.2.2. Directional Controller

The dynamics given by Equation (28) correspond to the directional dynamics rep-
resented by the yaw angle. By considering small angle approximations, i.e., ψ ≈ 0,
Equation (33) is obtained as

ψ̈ =
Mθφ

Iyycθ
+

Mψ

Izzcθ
(33)

and defining the error in yaw as eψ = ψ− ψd, where ψd is the desired yaw angle, yields

ëψ = ψ̈− ψ̈d (34)

By substituting Equation (33) into Equation (34), the following equation is obtained:

ëψ =
Mθφ

Iyycθ
+

Mψ

Izzcθ
− ψ̈d. Since the control objective is to guarantee that ëz = 0, a PD

controller is proposed, resulting in
Mθφ

Iyycθ
+

Mψ

Izzcθ
− ψ̈d = −kpψeψ − Kdψ ėψ. By solving for

Mψ, Equation (35) is obtained as

Mψ = Izzcθ

(
−Mθφ

Iyycθ
− kpψeψ − Kdψ ėψ

)
(35)

and, substituting Equation (35) into Equation (33), Equation (36) is obtained as

ψ̈ = uψ (36)

where uψ = −kpψeψ − Kdψ ėψ.

3.2.3. Lateral Controller

The lateral subsystem is given in Equations (24) and (26). By considering small angle
approximations φ ≈ 0, ψ ≈ 0, sφ ≈ φ and substituting uT from Equation (31), the lateral
sub-system is rewritten as in Equations (37) and (38) as

ÿ = − φg
cθcφ

(37)

φ̈ =
Mφ

Ixx
(38)

ëy = ÿ− ÿd (39)

where the lateral error is defined as ey = y− yd, with yd being the desired lateral position.
By substituting Equation (37) into Equation (39), the following equation is obtained

ëy = − φg
cθcφ

− ÿd. Since the control objective is to guarantee that ÿ = 0, a PD controller is
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proposed, resulting in − φg
cθcφ

− ÿd = −kpyey − Kdy ėy. Solving for φ yields that the desired

angle to stabilize the lateral dynamics is given as in Equation (40):

φd = −(−kpyey − Kdy ėy)
cθcφ

g
(40)

and substituting Equation (40) into Equation (37), Equation (41) is obtained:

ÿ = φ (41)

Defining the error in roll as eφ = φ − φd and substituting Equation (38) into
Equation (42), given as

ëφ = φ̈− φ̈d (42)

the following equation is obtained: ëφ =
Mφ

Ixx
− φ̈d. To guarantee the convergence in the

roll angle, a PD controller is proposed, and by solving for Mφ, Equation (43) is obtained as

Mφ = Ixx(−kpφeφ − Kdφ ėφ + φ̈d) (43)

and substituting Equation (43) into Equation (38) yields

φ̈ = uφ (44)

where uφ = −kpφeφ − Kdφ ėφ.

3.2.4. Longitudinal Controller

The longitudinal subsystem is given by Equations (23) and (27). Considering small
angle approximations φ ≈ 0, ψ ≈ 0, and by substituting uT from Equation (31), the longitu-
dinal subsystem is rewritten in Equations (45) and (46) as

ẍ = −g tan θ (45)

θ̈ =
Mθ

Iyy
(46)

where tan θ is the trigonometric function tangent. Defining the longitudinal error as
ex = x− xd, where xd is the desired longitudinal position, yields

ëx = ẍ− ẍd (47)

Following the same methodology used for the lateral controller, the desired pitch
angle is obtained in Equation (48) as

θd = tan−1
(
−−kpxex − Kdx ėx + ẍd

g

)
(48)

and Mθ yields
Mθ = Iyy(θ̈d − kpθeθ − Kdθ ėθ) (49)

By substituting Equation (49) into the dynamic of θ̈ given by Equation (46), the follow-
ing equation is obtained:

ẍ = θ (50)

θ̈ = uθ (51)

where uθ = −kpθeθ − Kdθ ė.
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Finally, the multirotor flight controllers for the translational dynamics are given as:

ÿ = −kpyey − kdy ėy (52)

ẍ = −kpxex − kdx ėx (53)

z̈ = −kpzez − kdz ėz (54)

while for the rotational dynamics, this is given by

φ̈ = −kpφeφ − kdφ ėφ (55)

θ̈ = −kpθeθ − kdθ ėθ (56)

ψ̈ = −kpψeψ − kdψ ėψ (57)

From the control law of the roll dynamics given in Equation (55), it can be observed that
φ̈→ 0 when eφ → 0; thus, solving the right hand side of Equation (55) for φ̇, the expression

φ̇ = − kpφ

kdφ
eφ + φ̇d is obtained. Since φ̇→ 0, the following is obtained:

φ̇d =
kpφ

kdφ︸︷︷︸
kφ

eφ (58)

In the same way, Equations (59) and (60) are obtained for the pitch and yaw angles:

θ̇d =
kpθ

kdθ︸︷︷︸
kθ

eθ (59)

ψ̇d =
kpψ

kdψ︸︷︷︸
kψ

eψ (60)

where kφ, kθ , and kψ are positive constants relating the orientation error with the desired
angular velocity. To relate the desired angular velocities of the inertial frame to the de-
sired angular velocities in the body frame, the transformation matrix WI→B is utilized.
The angular velocity transformation using this matrix is given as

Ωd =




pd
qd
rd


 =




1 0 −sθ

0 cφ sφcθ

0 −sφ cφcθ




︸ ︷︷ ︸
WI→B




φ̇d
θ̇d
ψ̇d


 (61)

3.2.5. Control Laws for the Angular Velocities in the Body Frame

In order to guarantee that the desired angles given in Equations (58)–(60) can be
achieved, the following PID controllers were employed in the body frame:

üp = kppep + kdp ėp + kIp

∫
ep dt (62)

üq = kpqeq + kdq ėq + kIq

∫
eq dt (63)

ür = kprer + kdr ėr + kIr

∫
er dt (64)
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where kpi, kdi, and kIi, i = p, q, r are positive constants defined heuristically for tuning the
corresponding control law.

Finally, Figure 12 shows a block diagram of the control laws for multirotor flight
described above.
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Figure 12. Block diagram of the control laws used to stabilize the vehicle in orientation and altitude
by using K-PID controllers during the multirotor flight mode.

3.3. Control Schemes for Fixed-Wing and Transition Modes

The control scheme used for the flight phase in fixed-wing mode is shown in Figure 13.
The controllers used during this flight phase were adapted in the PX4 firmware of the Pix-
hawk autopilot, since the proposed aircraft were not defined in the available configurations
of the firmware [40]. With this control strategy, the dynamics of the roll and pitch angles
were stabilized, as well as the aircraft altitude. Note that the desired roll angle is equal to
zero, while the desired pitch depends on the altitude error.

The multirotor and fixed-wing flight mode controllers are activated depending on the
desired flight mode. They operate separately or together during the transition. The diagram
in Figure 14 depicts a simplified control diagram of the transition mode. It can be see that,
depending on the selected flight mode, a customized mixer is used to send the control
signals to the engines and control surfaces of the aircraft in X-Plane.

At the beginning of the flight transition, the aircraft tilts the frontal ducted fans to gain
airspeed, while gradually activating the fixed-wing mode controller at the same time that
the multirotor controller begins to lose authority, until it is completely deactivated and the
vehicle is fully governed by the fixed-wing mode controller.
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Figure 13. Block diagrams of the control laws used to stabilize the vehicle in orientation and altitude
during fixed-wing mode.

Multirotor
Control

Fixed-Wing
Control

Transition

Mixers Actuators

Multirotor Flight Mode
Fixed-Wing Flight Mode
Transition

Figure 14. Transition diagram, which illustrates the selection of the flight mode to send the control
law to the mixers and finally the control signals to the actuators.

3.4. Mixers

In order to determine the control signals for each of the engines, the signals obtained
from the PID controls are mixed, taking into account the location of the engines with
respect to the c.g. of the aircraft, in order to consider the effects that they have on the
vehicle dynamics.

The corresponding signal for each engine configuration of the vehicles are defined
from the geometry of the aircraft depicted in Figure 6. Based on such a geometry, the mixers
for each motor Mi of both configurations are given in Table 1.

Table 1. Mixer configurations for both platforms.

XVTOL-2FNW XVTOL-4FNW

M1 = uz − dFy uφ + dtx uθ − uψ M1 = uz − l3 uφ + l1 uθ + uψ

M2 = uz + dFy uφ + dtx uθ + uψ M2 = uz + l3 uφ + l1 uθ − uψ

M3 = uz − dDy uφ − dDx uθ − uψ M3 = uz − l4 uφ − l2 uθ − uψ

M4 = uz + dDy uφ − dDx uθ + uψ M4 = uz + l4 uφ − l2 uθ + uψ

M5 = uz − l5 uφ − l6 uθ + uψ

M6 = uz + l5 uφ − l6 Uθ − uψ

where dtx = 0.2194 m, dDx = 0.1584 m, dFy = 0.0762 m, dDy = 0.29 m, l1 = 0.4053 m, l2 = 0.0822 m, l3 = 0.07 m,
l4 = 0.29 m, l5 = 0.79 m and l6 = 0.17 m are the distances from each motor to the c.g. on the plane xB-yB.
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4. Simulation Results and Discussions

This section describes the conditions used in the MIL simulations utilizing X-Plane
and Matlab-Simulink. The results obtained from these simulations were obtained wih the
XEVTOL-2FNW and XEVTOL-4FNW configurations. For both configurations, a compari-
son was made regarding the energy efficiency and aerodynamic performance.

MIL flight simulations were carried out under the atmospheric conditions of Mexico
City (see Table 2). The test consisted of the vehicles taking-off in multirotor flight, climbing
until the aircraft reached a transition height defined at 30 m, and then starting the transition
phase to plane mode, and once this was completed, maintaining a height of 30 m in straight
and level flight. This mission is illustrated in Figure 15. The same scenario was used to
perform a direct comparison between the two VTOL UAV concepts with embedded ducts.
By using the same test environment, a fair and accurate evaluation of the performance of
both configurations under identical conditions was ensured.

Table 2. Atmospheric conditions for the simulations.

Magnitude Value Unit

Mexico City elevation 2250 m
Air density 0.9814 kg/m3

Dynamic viscosity 1.77 × 10−5 kg/m s
Temperature 15 ◦C

Time (GMT-6) 12 h
Wind 0 kt

h2=30 m
VH2=0 m/s
VV2=0 m/s

0  Take Off

h0=0 m
VH0=0 m/s
VV0=1 m/s

h4=40 m
VH4=22 m/s
VV4=0 m/s

1  Climb

2  Transition Height

3  Transition

4  Plane Mode

Home Point

h1=1.5 m
VH1=0 m/s
VV1=1 m/s

h3=28 m
VH3=17 m/s
VV3=0.2 m/s

Figure 15. Mission profile. The aircraft performs a vertical take-off from the home point, ascends and
transitions to fixed-wing mode. Where VV is the climb speed, VH is the airspeed, and h is the height
of the vehicle.

The MIL flight tests were conducted using two computers connected in parallel, one
running X-Plane 11.5 and the other one Matlab-Simulink 2022a. The flight tests were
carried out with the minimum graphical characteristics, keeping the number of frames per
second during the simulation within 30 frames per second (fps), where an interval between
25–35 fps is considered ideal for simulation [41]. The specifications of the computers used
for the development of these simulations were as follows: Laptop ASUS ROG GL752VW
with processor Intel Core I7-6700HQ 2.60 GHz, 16 GB RAM, graphics NVIDIA Geforce GTX
960M and Windows 10 Home, and Xtreme PC Gamer AMD Radeon Vega Renoir Ryzen
7 5700G 3.8 GHZ, RAM 16GB, and Windows 10 Pro.

Figures 16–19 show the simulation results for height, attitude (pitch and roll), transition
signals, energy parameters, and aerodynamic performance using X-Plane and Simulink
after simulating each of the vehicles using MIL under the same conditions.
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It can be seen from the height plot of the Figure 16 that the vehicle ascended to a
height of 30 m in multirotor flight at a climb velocity of 1 m/s, remaining at this height for
5 s. Then, it began the transition to fixed-wing mode 35 s after taking-off. First, it rotated
forward the tilting mechanism in a step-wise manner, while gradually increasing the thrust
of its two front engines until it reached 30% of the throttle, in order to gain airspeed. At 40 s,
the multirotor mode controller action started to decrease, along with the dedicated ducted
fans embedded inside the wing; turning them off avoids pushing air through the duct,
eliminating the additional resistance caused by the spinning blades and reducing the total
energy consumption and increasing the aircraft’s endurance.

During the transition, the engines were controlled by two systems: the multirotor
controller, and the fixed-wing controller. Due to this tilting action, the front engines expe-
rienced a decrease in performance related to pitching dynamics, resulting in a noticeable
nose-down pitch of the vehicle, as shown in Figure 16. This nose-down pitch during the
transition, as long as it is small, has no influence on the roll dynamics. However, if its
magnitude increases, it starts to affect the roll of the vehicle. The transition phase ends at
60 s, when the propulsion reaches its established throttle at 30%, the roll and pitch angles
converge to zero degrees, while the vehicle flies level at a height of 30 m.

Figure 16. Flight simulation results for the two platforms. From top to bottom: altitude, orientation
(pitch and roll), and the signals used to command the transition phase.

The results depicted in Figure 17 show three energy parameters obtained during the
simulation of the two vehicles. The power graph shows the electrical power consumption of
the propulsion system from second 0 to 35 during the multirotor phase. From second 35 to
40, the power consumption increased, since at this point the vehicle was transitioning from
the multirotor mode to the fixed-wing mode and it required more energy to compensate for
the loss of altitude. After reaching the mark at second 40, a reduction in power consumption
became evident. This was attributed to the gradual transition from multicopter mode to
fixed-wing mode. In this phase, the aircraft entered into a nose-down dive due to the
decrease in thrust generated by the front ducted fans and the insufficient lift to sustain
fixed-wing flight mode. At this point, the altitude dynamic was commanded by the control
surfaces, while the throttle input was increased until the vehicle reached sufficient airspeed
to exclusively use the fixed-wing controller.
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Figure 17. Energy parameters. From top to bottom: electrical power consumed by the propulsion
systems, energy efficiency (propulsion/electrical power), and throttle.

Figure 18. Airspeed and climb speed (Vh, Vv).
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Figure 19. Aerodynamic Results. Lift coefficient (CL), Drag coefficient (CD), and Drag force (D).

In Figure 17, related to the obtained power results, the beginning and end of the
transition phase are indicated by dashed lines at t = 35 s and t = 60 s, respectively. These
lines represent the start of the tilting action and its conclusion. Once the transition was
finalized, the tilting ducted fans only produced forward thrust, at t = 60 s. We can see that
at second 60, there was a significant decrease of 100% in the power consumption during the
fixed-wing phase. This reduction can be attributed to the aerodynamic lift generated by the
wings, enabling efficient sustained flight. This contrasts with the multirotor mode, where
the lift was primarily a result of rotors thrust, demanding a continuous power supply to
maintain the vehicle flight.

Analyzing the multirotor phase, the 4FNW platform consumed additional power due
to the inclusion of two extra ducted fans, in contrast to the 2FNW, which operated with a
lower power demand; however, a closer examination of the energy efficiency graph reveals
that the 4FNW reached an energy efficiency of 4 g/W, while for the 2FNW this was 3.6 g/W,
proving that the 4FNW was the more energy efficient vehicle. This advantage stems from
the distribution of the vehicle’s weight among a greater number of ducted fans, enabling
them to function at lower throttle percentages and resulting in a more efficient operation.
Looking at the throttle graph, it can also be seen that for the case of vehicles 2FNW and
4FNW, increasing the number of engines lowered the percentage of throttle required.

The graph in Figure 18 shows the airspeed and climb speed. Both platforms were
observed to ascend at a constant climb speed of 1 m/s during the multirotor flight. On the
other hand, an increase in airspeed can be noticed as both aircraft reached their maximum
speeds while flying fixed-wing, employing only 30% of throttle, and achieving an airspeed
of 29 and 27 m/s for the 2FNW and 4FNW aircraft, respectively. The 2FNW vehicle, being
lighter in weight compared to the 4FNW, achieved a higher airspeed.

Figure 19 depicts the aerodynamic results obtained during the MIL simulations, and
the three graphs correspond to the lift coefficient (CL), drag coefficient (CD), and the drag
force (D).

The coefficient results are presented for the fixed-wing flight mode. It can be observed
that, at the start of this phase, there was an increase in CL due to the vehicles needing
to ascend to reach the target altitude. At the beginning of this phase, the vehicles were
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flying at low airspeed, and the method of compensating for this was raising the angle
of attack. This adjustment led to an increase in CL. However, as the airspeed continued
to rise, the coefficient decreased until it stabilized at a constant value. This stabilization
indicated that the vehicle had entered a cruising phase. During cruising, the 4FNW was the
vehicle with the higher CL, due to its greater weight compared to the 2FNW, necessitating
increased lift.

On the other hand, the CD exhibited a similar behavior to the CL, increasing at the
beginning due to induced drag, but then decreasing until it reached the minimum value
during the cruise phase. This demonstrates the increase in drag for the 4FNW during this
stage in comparison to the other aircraft. This can be attributed to the dirtier configuration
resulting from the additional ducted fans.

The drag results during the multirotor flight presented a value of approximately 0.9 N,
similarly for the two vehicles. Drag is encountered due to the fact that a vehicle generates a
force that opposes its vertical displacement. This drag is influenced by factors such as the
wing surface area and the rate of climb.

5. Conclusions and Future Work

This research addressed the challenge of improving the energy efficiency of H-VTOL
aircraft. To deal with this issue, an innovative aerial vehicle design incorporating a DEP
system in conjunction with ducted-fan rotors was proposed. Mathematical models for
the XEVTOL-2FNW configuration were developed using the Newton–Euler formalism,
enabling the design and implementation of a control strategy for conducting model-in-
the-loop simulations in X-Plane. Two configurations were investigated, characterized
by a different number of ducted-fan rotors: a four-rotor configuration and a six-rotor
configuration. The developed MIL flight simulations enabled the evaluation and analysis
of the performance of the proposed propulsion system, showing the following:

An increase of up to 10% in energy consumption for the 4FNW vehicle during the
multirotor phase, attributed to the two extra ducted fans consuming more power compared
with the 2FNW. However, the 4FNW proved to be 11% more energy efficient on a per rotor
basis, as its propulsion system generated more thrust for the same power consumption.

A decrease in electrical power consumption on both platforms when switching from
multirotor to the fixed-wing phase, reducing the power consumed by 100%. The power
consumed by the 4FNW during the fixed wing phase, increased by only 1% compared with
the 2FNW vehicle.

During the fixed-wing phase, the 2FNW vehicle achieved an up to 7.4% higher airspeed
compared to the 2FNW vehicle during cruising, attributed to its lighter weight.

The aerodynamic results from the MIL simulation show that both platforms presented
a drag force during vertical ascent due to the wing surface, which is in contrast to conven-
tional multirotors, where this force is considered insignificant. Moreover, it was determined
that during the fixed-wing flight in cruise condition, the 4FNW produced an increase of
up to 46% in the lift coefficient, due to the fact that more lift was required because it is
a heavier vehicle. With respect to the vehicle’s drag, the 4FNW produced an increase of
up to 19% in the drag coefficient when the vehicle was in cruising flight, due to the extra
ducted fans.

In forthcoming research, an analysis of the propulsion system performance will include
an analysis of the drag generated by the wing surface during vertical take off, as well as the
optimization of the climbing speed during the VTOL phase, in order to reduce the energy
consumption due to the extra drag force. Moreover, integrating an altitude controller,
through utilizing the pitch angle in conjunction with the thrust to enhance the vehicle’s
altitude response during the transition and fixed-wing flight modes, will be considered
in the future development of our project. Further certainty regarding the aerodynamic
performance of these vehicles could potentially be obtained through additional analyses
based on CFD and wind tunnel tests. The study of these XEVTOL concepts using software-
in-the-loop and hardware-in-the-loop simulations could provide more information about
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the performance of these vehicles, to provide feedback for the design process. Similarly,
conducting experimental flight tests to validate the numerical results obtained from the
simulations will be considered. Finally, in order to improve the performance of the VTOL
platforms in the transition phase, the possibility of using the embedded wing ducted fans
to generate lift, compensating for the absence of airflow over the wings until the aircraft
reaches the desired airspeed, will be evaluated.
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Nomenclature

a.c. Aerodynamic center
c.g. Center of gravity
B Body axes
CD Drag coefficient
c f Fuselage chord
CL Lift coefficient
FT Total external forces vector [X, Y, Z]T

Fa Aerodynamic forces vector
FD Drag force
FL Lift force
Fp Propulsion forces vector
FW Gravity force vector
FY Lateral force
g Unit of mass, gram
h Height
IB Aircraft moments of inertia about the axes xB, yB, zB
I Inertial Frame
Jp Moments of inertia of propellers
k Constant of proportionality of the propulsion force of the engines
m Mass of the vehicle
Ma Aerodymic moments
Mgyro Gyroscopic moments
MIL Model In the Loop
Mp Propulsion moments
MT Total external moments vector, [L, M, N]T

MTOW Maximum Take-Off Weight
P̈I Linear acceleration vector in the inertial framework, [ẍ, ÿ, z̈]T

RB→I Orthogonal rotation matrix of the body axes to the inertial frame
ra Aerodynamic vector position relative to body axes, [−lwx, 0, 0]T

RW→B Rotation matrix from the wind frame to the body frame
S Wing area
UAV Unmanned Aerial Vehicle
VB Linear speed vector in the body axes, [U, V, W]T
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V̇B Linear acceleration vector in the body axes, [U̇, V̇, Ẇ]T

VV climb speed
VH airspeed
V∞ Relative wind speed
W Unit of electric power, Watt
WB→I Orthogonal rotation matrix for rotational kinematics in function of angular velocities
βη Elevator angle adjustment(Trim)
δT Tilting angle
δE Elevon deflection angle
Θ̈I Angular acceleration vector in the inertial frame, [φ̈, θ̈, ψ̈]T

θ Pitch angle
ρ∞ Wind density
φ Roll angle
ψ Yaw angle
ΩB Angular velocity in body axes, p, q, rT

Ω̇B Angular acceleration in body axes, [ ṗ, q̇, ṙ]T

ω Engine rotational speed

References
1. Dündar, Ö.; Bilici, M.; Ünler, T. Design and performance analyses of a fixed wing battery VTOL UAV. Eng. Sci. Technol. Int. J.

2020, 23, 1182–1193. [CrossRef]
2. Ducard, G.J.; Allenspach, M. Review of designs and flight control techniques of hybrid and convertible VTOL UAVs. Aerosp. Sci.

Technol. 2021, 118, 107035. [CrossRef]
3. Zong, J.; Zhu, B.; Hou, Z.; Yang, X.; Zhai, J. Evaluation and Comparison of Hybrid Wing VTOL UAV with Four Different Electric

Propulsion Systems. Aerospace 2021, 8, 256. [CrossRef]
4. Zhou, Y.; Zhao, H.; Liu, Y. An evaluative review of the VTOL technologies for unmanned and manned aerial vehicles. Comput.

Commun. 2020, 149, 356–369. [CrossRef]
5. McCormick, B. Aerodynamics of V/STOL Flight, Dover ed.; Dover Publications: Mineola, NY, USA , 1999.
6. Naval Technology. JUMP 20 VTOL Unmanned Aerial Vehicle. 2016. Available online: https://www.naval-technology.com/

projects/jump-20-vtol-unmanned-aerial-vehicle/ (accessed on 14 June 2023).
7. Quantum Systems Tron F90+ eVTOL Fixed-Wing PPK UAV. Available online: https://1updrones.com/product/quantum-

systems-tron-f90-evtol-fixed-wing-ppk-uav/ (accessed on 14 June 2023).
8. Sato, M.; Muraoka, K. Flight Controller Design and Demonstration of Quad-Tilt-Wing Unmanned Aerial Vehicle. J. Guid. Control

Dyn. 2015, 38, 1071–1082. [CrossRef]
9. Wingtra. WingtraOne Gen. Available online: https://wingtra.com/es/dron-mapeo-wingtraone/ (accessed on 14 June 2023).
10. Colucci, F. Lift Where You Need It; Vertiflite: Fairfax, VA, USA, 2016; pp. 26–30.
11. Sahoo, S.; Zhao, X.; Kyprianidis, K. Review of Concepts, Benefits, and Challenges for Future Electrical Propulsion-Based Aircraft.

Aerospace 2020, 7, 44. [CrossRef]
12. Zhao, W.; Zhang, Y.; Peng, T.; Wu, J. The Impact of Distributed Propulsion on the Aerodynamic Characteristics of a Blended-

Wing-Body Aircraft. Aerospace 2022, 9, 704. .:10.3390/aerospace9110704. [CrossRef]
13. Kim, H.; Berton, J.; Jones, S. Low Noise Cruise Efficient Short Take-Off and Landing Transport Vehicle Study. In Proceedings of

the 6th AIAA Aviation Technology, Integration and Operations Conference (ATIO), Wichita, KS, USA, 25–27 September 2006.
[CrossRef]

14. Borer, N.K.; Patterson, M.D.; Viken, J.V.; Moore, M.D.; Bevirt, J.; Stoll, A.M.; Gibson, A.R. Design and Performance of the NASA
SCEPTOR Distributed Electric Propulsion Flight Demonstrator. In Proceedings of the 16th AIAA Aviation Technology, Integration
and Operations Conference (ATIO), Washintong, DC, USA, 13–17 June 2016. [CrossRef]

15. Stoll, A.M.; Stilson, E.V.; Bevirt, J.; Pei, P.P. Conceptual Design of the Joby S2 Electric VTOL PAV. In Proceedings of the 14th AIAA
Aviation Technology, Integration, and Operations Conference, Atlanta, GA, USA, 16–20 June 2014. [CrossRef]

16. Advanced Aircraft Company. Greased Lightning. 2015. Available online: https://advancedaircraftcompany.com/greased-
lightning/ (accessed on 21 June 2023).

17. North, D.D.; Busan, R.C.; Howland, G. Design and Fabrication of the LA-8 Distributed Electric Propulsion VTOL Testbed.
In Proceedings of the AIAA Scitech 2021 Forum, virtual event, 11–15, 19–21 January 2021. [CrossRef]

18. Lilium. Introducing the First Electric Vertical Take-Off and Landing Jet. 2016. Available online: https://lilium.com/jet (accessed
on 21 June 2023).

19. DARPA. DARPA Completes Testing of Subscale Hybrid Electric VTOL X-Plane. 2017. Available online: https://www.darpa.mil/
news-events/2017-04-04 (accessed on 14 June 2023).

20. Zhao, X.; Zhou, Z.; Zhu, X. Design of a Lift-propulsion VTOL UAV system. In Proceedings of the 2018 IEEE International
Conference on Mechatronics and Automation (ICMA), Changchun, China, 5–8 August 2018; pp. 1908–1913. [CrossRef]

121



Machines 2023, 11, 852

21. Hoeveler, B.; Wolf, C.C.; Raffel, M.; Janser, F. Aerodynamic Study on Efficiency Improvement of a Wing Embedded Lifting
Fan Remaining Open in Cruise Flight. In Proceedings of the 2018 Applied Aerodynamics Conference, Atlanta, GA, USA,
25–29 June 2018. . [CrossRef]

22. Abrego, A.I.; Bulaga, R.W. Performance Study of a Ducted Fan System. In Proceedings of the Aerodynamics, Acoustics, and Test
and Evaluation Technical Specialists Meeting, San Francisco, CA, USA, 23–25 January 2002;

23. Zhang, T.; Barakos, G. Review on ducted fans for compound rotorcraft. Aeronaut. J. 2020, 124, 941–974. [CrossRef]
24. Gudmundsson, S. General Aviation Aircraft Design, 2nd ed.; Butterworth-Heinemann: Cambridge, MA, USA, 2022; pp. 643–644.
25. Tuffwing. UAV Mapper User Guide V1.8 [Manufactured 2019]. Available online: http://www.tuffwing.com/support/UAV_

Mapper_Quick_Start_Manual_1.8.html (accessed on 5 May 2023).
26. Nam, K.J.; Joung, J.; Har, D. Tri-Copter UAV with Individually Tilted Main Wings for Flight Maneuvers. IEEE Access 2020,

8, 46753–46772. [CrossRef]
27. Castillo, P.; Lozano, R.; Dzul, A.E. Modelling and Control of Mini-Flying Machines, 1st ed.; Springer: London, UK, 2005; pp. 145–146.
28. Rumit, K.; Alireza, N.; Manish, K.; Rajnikant, S.; Kelly, C.; Franck, C. Tilting-Rotor Quadcopter for Aggressive Flight Maneuvers

Using Differential Flatness Based Flight Controller. In Proceedings of the ASME 2017 Dynamic Systems and Control Conference,
Tysons, VA, USA, 11–13 October 2017. [CrossRef]

29. Etkin, B.; Reid, L.D. Dynamics of Flight Stability and Controls, 2nd ed.; John Wiley and Sons: Hoboken, NJ, USA, 1996.
30. Roskam, J.; Lan, C.E. Airplane Aerodynamics and Performance, 1st ed.; DARcorporation: Lawrence, KS, USA, 1997.
31. Cook, M.V. Flight Dynamics Principles, 3rd ed.; Butterworth-Heinemann: Burlington, MA, USA, 2013.
32. Espinoza, E.S. Helicóptero Coaxial de Largo Alcance. Ph.D. Dissertation, Center for Research and Advanced Studies of the

National Polytechnic Institute, Automatic Control, Mexico City, Mexico, 2013.
33. Czyba, R.; Lemanowicz, M.; Gorol, Z.; Kudala, T. Construction Prototyping, Flight Dynamics Modeling, and Aerodynamic

Analysis of Hybrid VTOL Unmanned Aircraft. J. Adv. Transp. 2018, 2018, 7040531. [CrossRef]
34. Dai, X.; Ke, C.; Quan, Q.; Cai, K.Y. Unified Simulation and Test Platform for Control Systems of Unmanned Vehicles. arXiv 2019,

arXiv:1908.02704.
35. Plummer, A.R. Model-in-the-Loop Testing. Proc. Inst. Mech. Eng. Part I J. Syst. Control Eng. 2006, 220, 183–199. [CrossRef]
36. X-Plane. How X-Plane Works. 2020. Available online: https://www.x-plane.com/desktop/how-x-plane-works/ (accessed on

18 June 2023).
37. Thong, C.W.S. Modeling Aircraft Performance and Stability on X-Plane. J. Undergrad. Eng. Res. 2011, 1–31.
38. Fayyaz, O. Flight Dynamics Simulation of Pilatus PC-9 Using X-Plane 10. J. Undergrad. Eng. Res. 2015, 1–14.
39. X-Plane. Plane Maker Manual. 2022. Available online: https://developer.x-plane.com/manuals/planemaker/ (accessed on

10 May 2023).
40. PX4. Controller Diagrams. 2023. Available online: https://docs.px4.io/main/en/flight_stack/controller_diagrams.html

(accessed on 10 May 2023).
41. X-Plane. Setting the Rendering Options for Best Performance. 2023. Available online: https://www.x-plane.com/kb/setting-the-

rendering-options-for-best-performance/ (accessed on 28 June 2023).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

122



Citation: Rojo-Rodriguez, E.U.;

Rojo-Rodriguez, E.G.;

Araujo-Estrada, S.A.; Garcia-Salazar,

O. Design and Performance of a

Novel Tapered Wing Tiltrotor UAV

for Hover and Cruise Missions.

Machines 2024, 12, 653.

https://doi.org/10.3390/

machines12090653

Academic Editors: Giuseppe

Carbone and Luca Bruzzone

Received: 17 June 2024

Revised: 5 August 2024

Accepted: 9 September 2024

Published: 18 September 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

machines

Article

Design and Performance of a Novel Tapered Wing Tiltrotor
UAV for Hover and Cruise Missions
Edgar Ulises Rojo-Rodriguez 1 , Erik Gilberto Rojo-Rodriguez 1 and Sergio A. Araujo-Estrada 2

and Octavio Garcia-Salazar 1,*

1 Aerospace Engineering Research and Innovation Center, Faculty of Mechanical and Electrical Engineering,
Autonomous University of Nuevo Leon, Apodaca 66616, Nuevo Leon, Mexico;
edgar.rojordrg@uanl.edu.mx (E.U.R.-R.); erojor@uanl.edu.mx (E.G.R.-R.)

2 Department of Aeronautical and Astronautical Engineering, University of Southampton,
Southampton SO16 7PX, UK; s.araujo-estrada@soton.ac.uk

* Correspondence: octavio.garciasl@uanl.edu.mx

Abstract: This research focuses on a novel convertible unmanned aerial vehicle (CUAV) featuring four
rotors with tilting capabilities combined with a tapered form. This paper studies the transition motion
between multirotor and fixed-wing modes based on the mechanical and aerodynamics design as
well as the control strategy. The proposed CUAV involves information about design, manufacturing,
operation, modeling, control strategy, and real-time experiments. The CUAV design considers a fixed-
wing with tiltrotors and provides the maneuverability to perform take-off, hover flight, cruise flight,
and landing, having the characteristics of a helicopter in hover flight and an aircraft in horizontal
flight. The manufacturing is based on additive manufacturing, which facilitates the creation of a
lattice structure within the wing. The modeling is obtained using the Newton–Euler equations,
and the control strategy is a PID controller based on a geometric approach on SE(3). Finally, the
real-time experiments validate the proposed design for the complete regime of flight, and the research
meticulously evaluates the feasibility of the prototype and its potential to significantly enhance the
mission versatility.

Keywords: convertible UAV; tilting rotors; manufacturing; design; real-time experiments

1. Introduction

In recent years, unmanned aerial vehicles (UAVs) have become increasingly common
in several civilian and military applications, including search and rescue, highway patrol,
and inspecting infrastructure such as power lines, bridges, factories, buildings, exteriors,
sewers, railroads, and wind turbines. There exist three main types of UAVs: multirotors,
airplanes, and convertible UAVs (non-conventional configurations) [1].

The take-off and landing have historically presented difficulties for UAVs because of
the limitations involved in each different configuration. In this sense, a fixed-wing UAV
presents high aerodynamic performance and requires a runway in order to take off and
land; however, a rotary-wing UAV suffers performance limitations in terms of endurance,
range, and maximum forward speed. In order to combine these capabilities of the fixed-
wing and rotary-wing UAVs, a solution is proposed in this paper: a tiltrotor configuration
with a tapered wing.

Classic fixed-wing vehicles require dedicated runway infrastructure, limiting their
operational reach [2]. Convertible aircrafts, on the other hand, can operate from confined
spaces and eliminate the need for extensive runways. This translates to increased acces-
sibility for remote locations, urban environments, and disaster zones where traditional
landing strips might be unavailable or damaged [3]. While offering vertical agility similar to
helicopters, convertible vehicles can transition to fixed-wing flight for extended range and
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higher cruise speeds compared to rotary-wing vehicles. This provides a significant advan-
tage in terms of operational efficiency, particularly for applications such as long-distance
cargo delivery, search and rescue missions over vast areas, or border patrol activities [4].

Research on convertible UAVs requires knowledge of rotary-wing and fixed-wing
vehicles to combine hover and cruise flight properties; it means a CUAV that performs
a complete flight: take-off, hover, cruise, and landing modes. Some convertible UAVs
can be found in [5], computational fluid dynamics (CFD) simulation and aerodynamic
characterization in [6], flight dynamics modeling and stabilization in [7], and additionally,
the tilting mechanism was designed in [8]. The development of convertible vehicles,
tiltrotor UAVs, tilt-wing UAVs, tail-body or tailsitter UAVs, has garnered significant interest
in the scientific community [9–11]. The domain of convertible UAV indexing presents a
multifaceted landscape. While a multitude of researchers have opted for bespoke designs
with unique implementation strategies, this very diversity creates a significant challenge
for comprehensive study. Nonetheless, several prominent approaches hold particular
significance and warrant mention within the relevant literature. These approaches include a
tiltrotor convertible UAV involving a quad-rotor design equipped with a tilting mechanism,
as addressed in [12]. This mechanism provides the ability to dynamically change the
direction of propulsion. This vehicle was stabilized with a nonlinear control for the complete
regime of flight, and the autopilot was developed using a low-cost DSP embedded system to
achieve real-time experiments. A prototype employing vectorized thrust was presented in
[13], enabling the capability for motion without the need for corresponding body movement.
This algorithm was validated in real-time experiments, showing the effectiveness of the
proposed controller. In [14], the development of the transitioning vehicle called Cyclone was
proposed, whose mission is to perform hover and horizontal flights considering a control
with incremental nonlinear dynamic inversion. The real tests demonstrated the vertical
take-off and landing capabilities of the vehicle. Furthermore, research on lightweight
materials is crucial to optimize performance and range [15,16]. These advancements can
have a ripple effect, benefiting the development of future generations of both conventional
and unconventional aircraft.

In [17], a flight control system of a small tiltrotor UAV was proposed, and it is based
on an improved mathematical model. The proposed controller is based on an eigenstruc-
ture assignment, and the proposed approach has been validated in a wind tunnel test
and real-time flights. In [18], the authors presented a methodology to design a tiltrotor
microair vehicle in order to perform hovering and cruise flight scenarios. Results showed
the aerodynamic parameters of the proposed vehicle. The authors in [19] proposed a
geometrically compatible integrated design to develop for the conformal rotor and nacelle
of the distributed propulsion tilt-wing UAV. This methodology considered the complex
geometric constraints and coordinated the aerodynamic efficiency of the rotor and nacelle,
allowing a low drag. A tiltrotor UAV was presented in [20] whose configuration drives
the attitude based on tilting rotors. The control strategy is based on a bounded smooth
function, and it was implemented in real-time flights. In [21], a small trirotor test bed
with tilting propellers was proposed to validate the flight control laws. The controller
algorithm is based on a nonlinear dynamic inversion with two layers. The lower layer
involves attitude stabilization, while the higher layer manages trajectory tracking. The
authors in [22] worked on a robust adaptive mixing controller to achieve the trajectory
tracking of a quad-tiltrotor convertible plane, and the mathematical model is obtained
using Euler–Lagrange formalism. To validate the controller, the authors executed hardware-
in-the-loop experiments. In [23], a model predictive controller was proposed for tiltrotor
UAVs demonstrating the performance in real-time flights. The controller strategy consid-
ered a control allocation algorithm, and the model predictive control constitutes a unified
nonlinear control for the convertible UAV that performs the complete flight. In [24], the
authors presented a CFD (computational fluid dynamics) simulation for a tiltrotor UAVs in
order to examine the flow fields on the fuselage and rotor under the transition mode of the
vehicle. A transition strategy design based on optimization methods was proposed in [25];
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the transition problem is solved using the optimal method with nonlinear programming.
The optimization results showed that the transition strategy can manage the relationship
between transition time, control input, and attitude stability. The work in [26] proposed a
multidisciplinary optimization algorithm for preliminary convertible UAV design. This
design is based on aerodynamic models, and it is validated using optimization techniques.
Ref. [27] presented the design of a convertible UAV considering the parameters of the rotor,
propeller, wing, and airfoil selection. The CUAV design was based on a flying wing and
modified to add the tilting rotors. A basic PID controller was tested in real-time. In [28],
the authors focus on a controller based on an MPC-based position for a tiltrotor tricopter
VTOL UAV. The controller involves a conventional control in the outer loop, while the inner
loop is an MPC controller. The simulation was executed for trajectory tracking under the
realistic actuator limits. However, our proposed vehicle differs from those published in the
literature, since it involves tiltrotor mechanisms combined with a tapered wing; in hover
flight, the vehicle is controlled via the propulsion system providing vertical lifting acting
against the gravity field. In horizontal mode, the convertible vehicle is airborne, so that the
outer body surface (tapered wing) provides the lift force to maintain the horizontal flight.

The main contribution of this paper is a novel convertible tiltrotor UAV using a tapered
wing in order to perform a hover flight as a helicopter and a horizontal flight as an airplane.
The methodological process is outlined to achieve a comprehensive design to address
the convertible configuration as well as the interaction between manufacturing and flight
computer development. Real-time experiments are performed to validate system behaviors.
The contribution of this paper is summarized as follows:

1. Development of a novel tapered wing tiltrotor UAV for hover and cruise missions.
2. A scheme of guidance, navigation, and control based on the special Euclidean group

SE(3) for the convertible UAV.
3. The proposed convertible UAV is tested to obtain the performance in real-time flights.

The rest of this paper is organized as follows. Section 2 presents information about
the UAV configuration, operational functions, performance, and manufacturing. Section 3
describes the equations of motion for the convertible UAV using the Newton–Euler for-
mulation and proposes the geometric navigation based on the special Euclidean group
SE(3) with a guidance frame and a saturated PID control. Section 4 presents the experi-
mental platform and the autonomous navigation results of the convertible UAV. Finally,
conclusions are given in Section 5.

2. Design Proposal

This section outlines a comprehensive design proposal for a convertible unmanned
aerial vehicle (UAV) aimed at addressing the flight mission for both hover flight and cruise
flight. Our proposal is motivated by the ever-increasing demand for versatile UAV systems
capable of dynamically adapting to diverse and complex mission requirements. The
subsequent sections address the configuration, actuation, manufacturing, and performance,
elucidating the challenges encountered in the development and deployment and presenting
significant potential for expanding the capabilities of UAVs. Figure 1 shows the schematic of
the proposed convertible UAV and the operation efficiently under various flight conditions.
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Figure 1. UAV mission proposal over different areas.

2.1. UAV Configuration

The proposed UAV configuration plays a pivotal role in its adaptability and flight
capabilities. The main feature of this configuration is the use of frontal rotors with tilting
capabilities and the rear rotor with a coaxial mechanism providing sufficient lift in the hover
flight while the wing is a T-shaped design providing the lift force in the forward flight.

The frontal tiltrotors enable the UAV to transition seamlessly and continuously be-
tween hover and cruise modes, as shown in Figure 2. During take-off and hover, the rotors
are oriented vertically, providing the necessary lift and control (right side of Figure 2). As
the UAV transitions to forward flight, the rotors tilt horizontally, allowing the fixed wing
to generate lift in relation to airspeed (left side of Figure 2). This dynamic configuration
offers the best of both modes, combining the agility and versatility of a multirotor with the
efficiency and endurance of a fixed-wing aircraft.

Hover Mode

(Multicopter)

Forward flight speed

Tilting angle

0°

Hovering at low speed

Mixed Mode

Cruise Flight

(Fixed Wing)

90

15 m/s
3 m/s0 m/s

Figure 2. Flight phases for convertible UAV.

126



Machines 2024, 12, 653

The T-shaped distribution of the frontal rotors ensures stability and control during the
transition phase and fixed-wing flight. This configuration optimizes the UAV aerodynamic
properties and reduces drag, improving performance and energy efficiency. Following this
convention, the proposed configuration, as shown in Figure 3, involves the entire array of
propulsion and structural fuselage.

Figure 3. Proposal of the convertible UAV.

2.2. Physical Parameters

This section presents the physical parameters of the platform, detailing its components
in both configurations and highlighting the mechanisms that enable its convertibility. In
the context of this convertible UAV design, a total weight estimation is required to reach
the hover mode and to facilitate the analysis of the dual operational configuration. The first
stage involves a multirotor configuration that supports the vehicle weight and enables flight
control. However, the design also necessitates a fixed-wing configuration for forward flight.
Consequently, appropriate airfoil selection and subsequent lift generation estimation are
crucial considerations. It is important to note that the design is constrained by a maximum
volume, with a boundary box of 0.065 m × 0.070 m × 0.020 m, to maintain a micro-UAV
classification [29]. The proposed parameters are detailed in the Table 1.

Table 1. Aircraft physical parameters.

Parameter Value

Span 0.04 m

Wing Root 0.024 m

Wing Tip 0.012 m

Wing Surface 0.075 m2

Frontal Arms Length 0.025 m

C.G. to frontal 0.018 m

C.G. to bottom 0.016 m

Airfoil FX-63

Incidence Angle 3°

Weight 420 g

These design parameters are chosen with the main objective of minimizing weight and
enabling the complete regime of flight. Consequently, a total weight of less than 500 g and
a compact volume are prioritized. These parameters significantly contribute to an aircraft
maneuverability within a confined environment. Additionally, the wing surface selection
process considers the airfoil type and its capacity to generate sufficient lift for sustained
forward flight.

Note that equation n = (L + FI)/(W) presents the relationship between lift force,
rotor force, and weight; a factor must be equal to or greater than 1 for the aircraft to
fly. Considering load factors, this convertible UAV needs to be designed for two flight
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regimes. In multirotor mode, the aircraft is prepared for 4G to handle the fast maneuvers
needed for stability and precision. However, for fixed-wing mode, the design needs
to consider the different load factors experienced during cruise flight. This presents a
design challenge for the convertible UAV. The structure needs to be robust enough to
withstand ±4G accelerations in multirotor mode while also being lightweight for efficient
fixed-wing flight. Additionally, the wing design, selected tapered form, of the convertible
UAV is optimized for both high lift generation during multirotor operation and efficient
aerodynamic performance during fixed-wing flight.

This design is developed based on additive manufacturing (AM) techniques to find
lightweight parameters and integrate the entire mechanism into the internal structure, see
Table 2. Different materials are used for various groups of parts, considering structural and
impact reasons [16], as determined from structural optimization. The system is evaluated
under static conditions, as this study focuses on representing maximum structural stress in
dynamic environments. It uses maximum thrust for information on the internal structure,
which informs optimization and deflection rejection.

Table 2. Materials specifications.

Part Material

Wing Surface ABS

Structural Frontal Arm (Left and Right) Fiber Glass tube

Rotor Adapter PETG

Tilt Mechanism HIPS

Multiple studies are performed to develop and validate the effectiveness of geometri-
cal optimization of this model, which is based on AM and also uses Solid Isotropic Material
with Penalization (SIMP). SIMP is a powerful optimization algorithm determining the
optimal material distribution within a design domain. SIMP generates lightweight struc-
tures with enhanced stiffness and strength by iteratively removing material from low-stress
regions. When it is combined with 3D printing, this approach enables the fabrication of
complex, lattice-like structures that would be infeasible using traditional manufacturing
methods [30]. To effectively utilize SIMP optimization, it is essential to couple it with finite
element analysis (FEA) and computational fluid dynamics (CFD) simulations. FEA pro-
vides accurate predictions of structural behavior under various loading conditions, while
CFD enables aerodynamic performance evaluation. Figure 4 shows the mesh definition for
the finite element method of the proposed CUAV. By iteratively refining the design based
on simulation results, engineers can achieve optimal component performance.

Figure 4. FEM mesh definition.

A maximum input force for thrust force is applied on each rotor base, which is also
illustrated in Figure 5; it represents the maximum maneuver allowed by this type of aircraft.
The center of gravity is selected as a fixed point for statics study, which is similar to a
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ground experiment on deformation effects shown in Figure 6, allowing for a geometrical
profile of deformation. In Figure 7) it is shown the forces definition for cruise case. The
structure deformation for cruise condition is depicted in Figure 8. A maximum deformation
of 0.9258 mm on noncritical parts at the hover phase and 0.2921 mm for the cruise phase
since these results are expected due to different forces distribution which is expected on
lightweight structures. In this specific case, it is concentrated over the bottom part, which
is only affected in hover mode and compensated by the control scheme.

The primary objective of this analysis is to evaluate the deformation characteristics
and verify the structural integrity of the model under specified loading conditions. By
utilizing ANSYS Mechanical, the objective is to identify potential weaknesses and ensure
that the structure can withstand the applied forces without compromising its integrity.

The model created for this study is reduced to a mechanical representation of aircraft
in order to simplify the model and develop a mesh of 2.5 mm of element size with a level
of 7 at adaptive sizing resolution. These mesh elements were selected due to the minimum
element size on the system with a 4.01 mm element, which is covered by the 1.25 mm
change on elements selected on configurations.

Figure 5. Forces definition for hover case.

For hover conditions, forces are placed at rotor points due to its multirotor nature,
as seen in the red zones in Figure 5; for the maximum force developed by the rotor
configuration, we selected 3.92 N for each rotor.

Figure 6. Structure deformation for hover condition.

Considering that the main structure is developed by ABS material and distributed to
rotors by fiberglass tubes, it takes account of wing deformation, as shown in Figure 6. It has
a probe illustrating the maximum deformation point at the inlet part. This behavior is ideal
for this configuration due to the type of manufacture, which demonstrates the effectiveness
of SIMP optimization, placing forces at required points. For this geometry, it is used to
place internal structures on those points.
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Figure 7. Forces definition for cruise case.

The cruise flight part of the study is used to verify wing effectiveness; in this case, it
is developed as a force on a 1/4 part of the wing, which is later demonstrated in the CFD
study. Addressing that point, a distribution is selected for force points at the wing surface.
Figure 7 includes a distribution of the 14 m/s case, becoming a Gaussian distribution due
to this wing geometry, with a total force of 4.24 N, which is the force required to lift the
whole aircraft for cruise flight.

Figure 8. Structure deformation for cruise condition.

Actual results show the value 0.29098 mm as the maximum point of deformation,
which is ideal for this micro-UAV case, making a structure that could handle the system
and creating a force of 0.17714 mm on the rotor pads, which would not affect the final rotor
force vector.

Considering the concentration of deformation shown in Figure 6, it is evident that
the frontal rotors would experience the most deformation and equivalent stress, making
it a critical point for examination. The frontal arms exhibit a maximum deformation of
0.92 mm under extreme conditions, although such conditions may not occur in real-world
scenarios. However, given that these are made of a polymeric material of ABS nature, these
can withstand this deformation while maintaining proper operation.

It is important to note that this structure is designed to withstand and exceed forces
generated by aerodynamic conditions and rotor forces. This decision ensures the ability to
accommodate dynamic behaviors without encountering issues. The accuracy and reliability
of CFD simulations heavily depend on the mesh quality used to discretize the compu-
tational domain. This study highlights the significance of mesh refinement in capturing
the intricate aerodynamic features of a wing. For this case, an adaptive mesh is selected.
The outer air domain, which extends 150 mm from the wing, is crucial for capturing the
far-field effects of the airflow, as shown in Figure 9. A coarser mesh is sufficient in this
region to reduce computational cost while accurately predicting the overall flow behavior.
Closer to the wing, within a 500 mm proximity, the mesh is refined to capture the near-field
aerodynamic effects more accurately, using a body influence, which affects the 10 mm
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element size modification. The wing surface requires a highly refined mesh to capture the
boundary layer effects and surface pressure distribution accurately. An element size of 1
mm is employed over the wing surface, which is essential for resolving the fine details of
the flow around the wing, including the leading and trailing edges. To capture accurately
the boundary layer development, 10 inflation layers are used on the wing surface, which
are validated in Figure 10. These layers allow for a gradual transition from the wing surface
to the free-stream, ensuring that the viscous effects are well resolved. The first layer of
thickness is carefully chosen to capture the near-wall gradients accurately.

Figure 9. General CFD mesh.

Figure 10. Detailed CFD mesh with the airfoil.

The system is analyzed under various scenarios, particularly at an airspeed of 14 m/s,
as shown in Figure 11. It is observed that the system interacts with the air during cruise
flights in a similar way to a flying wing thanks to the proposed design. This design
minimizes external parts, exposing only the rotors and fixed wing, thus optimizing aerody-
namic efficiency.

The CFD analysis employed a high-fidelity model encompassing both the wing and
rotor geometries. The simulations are run with an inlet velocity of 14 m/s, representing
typical cruise conditions. The selection of the FX63 airfoil for the wing is based on its
well-documented performance characteristics.
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Figure 11. Airflow distribution.

Figure 11 presents contours colored by velocity magnitude, visualizing the flow
behavior around the wing. The absence of significant deviations or swirling patterns in
the contour suggests a predominantly laminar (non-turbulent) flow regime under the
simulated conditions.

Furthermore, the analysis reveals that the airfoil design effectively accelerates the
incoming flow. The velocity magnitude increases from the initial 14 m/s at the inlet to
approximately 36 m/s over the wing surface. This acceleration is crucial for generating lift,
which is a vital force for flight.

Understanding pressure gradients is vital for identifying regions of flow separation
and potential stall. This information is crucial for designing airfoils that maintain smooth
airflow, enhancing the performance and stability of the UAV; for that reason, it is analyzed
in Figure 12. Pressure distribution data are essential for structural analysis. It helps
determine the aerodynamic loads acting on the airfoil, which is necessary for ensuring the
structural integrity and durability of the UAV. The CFD results reveal detailed pressure
contours and distributions over the FX63-137 airfoil. High-pressure regions on the lower
surface and low-pressure regions on the upper surface indicate the generation of lift. Areas
of adverse pressure gradients highlight potential regions for flow separation, providing
insights into the stall characteristics of the airfoil.

Multiple CFD studies were performed, and more prominent results are presented in
Table 3, which mention different scenarios of this aircraft. The ideal scenario for this design
is design point (DP) 9, where the aircraft flight is stable at the cruise case, considering that
3° is the incidence angle developed for this design.

Other cases are also analyzed as high angles of DP 10–13, showing that this aircraft
could improve forces using more prominent cases, but with a drag consequence, which
enables us to make future considerations for aggressive maneuvers.
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Figure 12. Pressure distribution at cruise flight.

Table 3. CFD results.

Design Point Angle of Attack Airspeed (m/s) Lift (N) Drag (N)

DP 0 0 10 1.4831801 0.18688435
DP 1 0 5 0.33591906 0.049558448
DP 2 0 14 3.0199035 0.35773087
DP 3 0 20 6.3607885 0.71587954
DP 4 1 10 1.7161523 0.21013449
DP 5 2 10 1.9474965 0.23701694
DP 6 3 10 2.1824285 0.26784294
DP 7 10 10 3.8275471 0.59171158
DP 8 15 10 4.9289569 0.9282643
DP 9 3 14 4.3934829 0.52030514
DP 10 20 14 8.181392 2.3159387
DP 11 30 14 8.2654707 4.2134698
DP 12 45 14 7.5462137 7.0732765
DP 13 −10 14 −1.1898977 0.73946404

2.3. UAV Actuation

With rapid technological advancements, integrating complex actuation systems has
revolutionized the efficacy and versatility of unmanned aerial vehicles (UAVs) across
various mission profiles. One of the main advantages of UAV actuation lies in its ability to
augment mission adaptability and responsiveness [31]. By incorporating dynamic actuation
mechanisms, such as articulated wings, tilting rotors, or swiveling thrusters, UAVs can
swiftly adapt to diverse environmental conditions and operational requirements. This
agility enables UAVs to navigate challenging terrains, circumvent obstacles, and execute
precision maneuvers with unparalleled efficiency.

The core of our convertible UAV design lies the innovative configuration of frontal
rotors featuring tilting capabilities. These rotors are actuated by precision servomotors,
enabling dynamic adjustments to their orientation. This pivotal feature facilitates the
seamless transition between vertical take-off and landing (VTOL) operations and cruise
flight, enhancing the versatility of the UAV.
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For our prototype, a tilting mechanism based on the gear transmission of the servomo-
tor force is developed. This mechanism directly controls the tilting angle, as depicted in
Figure 13. Note that the tilting rotors are independent, allowing the system to be used as
a differential one. V-22 aircraft were used as inspiration for rotor placement due to their
performance and wing–rotor interaction, allowing better maneuverability.

Figure 13. Tilting mechanism for rotor direction.

2.3.1. Hover Flight

Vertical Take-Off and Landing (VTOL) operations are crucial for unmanned aerial
vehicles (UAVs), especially in scenarios where confined spaces or quick deployment are
imperative. For our proposed vehicle in hover mode, the frontal rotors are strategically
positioned vertically to generate the necessary lift and directional control, facilitating stable
take-off, landing, and low-speed flight maneuvers. These rotors have precision movement
capabilities, enabling orientation adjustments through tilting actions without the need for
rotor speed variation. This innovative approach ensures efficiency and establishes a robust
motion for hover mode control.

Furthermore, the differential control system governing the frontal rotors amplifies the
CUAV agility and precision across both hover and cruise flight phases. By independently
adjusting the tilt angles of each rotor, the CUAV gains precise control over pitch and yaw, fa-
cilitating seamless transitions between flight modes and empowering the vehicle to execute
complex maneuvers with ease. This level of control versatility enhances operational fluidity
and renders the CUAV adaptable to diverse mission requirements and environmental
conditions. This condition stipulates that only saturated angles are applied to small motion,
primarily utilizing the tilting mechanism for yaw motion while ensuring stability. The roll
motion is obtained by the differential velocity of rotor 1 and rotor 2, and the pitch motion is
obtained through the differential coupled rotors 1–2 and the coaxial rotors 3 and 4. The
yaw motion is achieved by differential tilting rotors for 1 and 2; see Figure 14.
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Figure 14. Diagram of tilting mechanism at low speed flight.

2.3.2. Cruise Flight

Once the UAV is airborne and ready to transition to cruise flight, the servomotors en-
gage, facilitating the seamless transition of the rotors from vertical to horizontal orientation.
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This pivotal moment marks the shift in operational dynamics as the UAV transitions from
hover to fixed-wing mode. Unlike traditional aircraft configurations, where control surfaces
such as ailerons, elevators, and rudders govern maneuverability, this CUAV employs a
unique motion for the frontal tilting rotors.

This innovative approach highlights the control system and enhances maneuverabil-
ity and responsiveness during flight. The rotor motions are defined in Figure 15, which
enables responsiveness due to the strategy points used to perform an angle change of wing.
By eschewing traditional control surfaces, the UAV achieves unprecedented agility and
precision, enabling it to execute swift and intricate maneuvers with remarkable ease. The
absence of control surfaces eliminates the associated mechanical complexities and aerody-
namic constraints, allowing the UAV to push the boundaries of aerial maneuverability and
operational performance.

F

F

F

F

X

Z

δ

Y

Figure 15. Tilting mechanism frame.

Furthermore, using a dual-mode capability, combining VTOL and fixed-wing flight,
maximizes mission efficiency and versatility. During VTOL operations, the frontal rotors
provide lift and control for take-offs, landings, and low-speed flight, ensuring operational
flexibility in confined or challenging environments. Conversely, in cruise flight mode,
the transition to horizontal rotor orientation optimizes aerodynamic efficiency, leveraging
the fixed-wing configuration for sustained flight and extended mission endurance; see
Figure 16.

Landing in rotor mode

Low Speed flight

Cruise Flight

Low Speed flight

Take off in rotor mode

Transition Transition

Figure 16. Hybrid mission.
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2.4. Manufacturing

This innovative convertible UAV boasts a lightweight wing crafted using additive
manufacturing, featuring a cutting-edge technique known as 3D printing. This method
allows for the incorporation of multiple materials within the wing structure. By strategically
integrating these materials, the engineers achieved an incredibly light weight without
sacrificing strength. However, the benefits of additive manufacturing extend beyond the
wing itself. This technology also facilitated the creation of a lattice structure within the
wing. Lattice structures, resembling a complex web, offer exceptional strength-to-weight
ratios, further contributing to the overall lightness of the UAV.

This lightweight design does not come at the expense of functionality. Thanks to
additive manufacturing, the entire mechanism and avionics are seamlessly integrated
within the interior of the wing. This ingenious approach frees up space and further
streamlines the overall design of the convertible UAV.

The structural studies presented in Figures 6 and 8 aim to address the SIMP by
strategically distributing bars along the wing to manage the forces. These studies were
influenced by additive manufacturing techniques, specifically the interaction between
walls and infill. However, in this case, these techniques served merely as inspiration. The
structural points were determined based on the pressure distribution required at each point
and a simplification of the SIMP algorithm, which only placed for this case a pressure
point, filled by mechanical bars for this case. It was strategically distributed and filled with
double the nozzle size to ensure a rigid structure.

As seen in Figure 17, this prototype utilized an improved and simplified structure that
handles the forces as shown in Figure 6 and achieves maximum lightness.

Figure 17. Internal 3D-printed wing structure.

Optimization and the use of multiple materials were key factors in the creation of the
wing, as depicted in Figure 18. Several techniques were tested, but ultimately, a lattice poly-
meric structure, as seen in Figure 17, was chosen. Different patterns and materials exhibit
different behaviors, but for this application, load distribution, as previously mentioned in
Figures 6 and 8, guided the selection of the final approach.

In the realm of 3D printing, selecting the appropriate material is crucial for ensuring
the quality and durability of the final product. After careful consideration, we chose
ABS (acrylonitrile butadiene styrene) over PLA (polylactic acid), PETG (polyethylene
terephthalate glycol), and other commonly used materials. This decision is based on the
superior material stiffness and thermal deformation characteristics of ABS.

ABS is renowned for its excellent mechanical properties, particularly its high stiffness.
This makes it an ideal choice for applications requiring durable and robust components.
One of the significant advantages of ABS is its ability to withstand higher temperatures
without deforming. ABS has a glass transition temperature of approximately 105 °C, which
is significantly higher than PLA’s 60 °C and PETG’s 80 °C. This high thermal resistance
ensures that ABS-printed parts maintain their shape and structural integrity under heat,
making them suitable for a wider range of applications. ABS typically has a tensile strength
of 40–50 MPa, while PLA ranges 37–50 MPa, and PETG ranges 48–55 MPa, giving us the
best performance for this application
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Figure 18. Multiple techniques used for wings.

2.5. Performance

Convertible aircraft, with their ability to transition between fixed-wing and rotary-
wing modes, present unique challenges in performance evaluation. Unlike conventional air-
craft, their performance is influenced by a complex interplay of factors, including airspeed,
altitude, tilt angle, and payload. A comprehensive understanding of these interactions is
crucial for optimizing aircraft design, operation, and mission planning.

The VN diagram, a fundamental tool in aerospace engineering, plays a crucial role
in the design and operational planning of convertible UAVs. The VN diagram visually
represents the relationship between an aircraft speed (V) and the load factor (N), providing
engineers with critical insights into the aircraft’s flight envelope. This diagram serves as a
blueprint for understanding permissible operating limits across different flight modes for
convertible UAVs.

This diagram provides a clear visualization of the operational limits of the airfoil
under different load factors and velocities, as represented in Figure 19. The VN diagram
analysis of our aircraft design demonstrates a well-defined range of operation, ensuring
both safety and performance during various flight conditions. The evaluation indicates
that the aircraft operates effectively within a speed range of 10 to 25 m per second (m/s),
allowing for a versatile flight envelope.

Figure 19. Flight envelope.

The stall speed of the aircraft (Vs) at 1G, or level flight, is calculated to be approxi-
mately 10 m/s. This speed marks the minimum velocity at which the aircraft can sustain
level flight without stalling. On the other end, the maximum structural speed (Vmax) is
determined to be 25 m/s. Beyond this speed, there is a risk of structural damage, and the
aircraft should not be operated at these velocities.

The positive load factor limit of the aircraft is evaluated to be +4.4G, while the negative
load factor limit is −1.76G. These load factor limits indicate the maximum G-forces the
aircraft can safely withstand during positive and negative maneuvers. The stall speed
increases at higher load factors, such as during sharp turns or sudden climbs. For instance,
at a 2G load factor, the stall speed increases to approximately 15.6 m/s, ensuring the aircraft
remains stable and controllable even during aggressive maneuvers.
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The VN diagram assessment confirms that the aircraft design provides a robust oper-
ational range from 10 to 25 m/s. This range not only supports stable and efficient cruise
conditions but also accommodates various maneuvering needs, including steep turns and
climbs, without compromising safety. For a convertible UAV with tilting rotors, the perfor-
mance surface showcases how the available payload varies with different velocities and
rotor tilt angles; see Figure 20.

Figure 20. Performance surface for variation of the payload for each state.

The UAV is most efficient in forward flight, offering the highest payload capacity.
This analysis optimizes the UAV operation for different missions, ensuring maximum
payload capability while maintaining safe and efficient flight characteristics. The maximum
payload is determined by the maximum hover take-off, limited by rotor forces, restricting
the aircraft to 1.1 kg if the payload is at the center of mass for balanced force distribution.
Figure 20 shows the system performance in each phase.

In hover mode with rotors fully tilted (0°), the UAV consumes more power, limiting
the available payload to 0.4 kg. The UAV achieves better efficiency at a 45° rotor tilt and 20
m/s speed, allowing for a slightly higher available payload of 0.8 kg. The UAV reaches
optimal efficiency in forward flight mode with rotors at 90° tilt, providing the highest
available payload of 0.6 kg at 14 m/s.

3. Modeling and Stabilization

In this section, the equations of motion that govern the dynamic behaviors of CUAV are
described. The mathematical framework, Newton–Euler equations, are used to model sys-
tem dynamics, acknowledging the simplifications and assumptions inherent in these models.

The choice of reference frames is crucial in defining the 3D motion of the vehicle
relative to its environment. The North–East–Down (NED) convention is considered, which
is widely employed in aerospace applications, and the axes system involves the special
Euclidean group SE(3). By examining the properties of SE(3) and its implications for
reference frame transformations, the algorithm of guidance, navigation, and control is
proposed. Note that those three reference frames are established to obtain the mathematical
model of the aerial vehicles; see Figure 21.

For the vehicle orientation, Euler angles are defined as follows: φ is an angle defined
between the xB axis and a resultant plane from yI and zI ; θ is an angle defined between
the yB axis and a resultant plane from xI and zI , and ψ is an angle defined between the zB
axis and a resultant plane from xI and yI . Those definitions allow aircraft to obtain attitude
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stabilization in a 3D space. In this sense, two angles that provide the information in the
aerodynamic or wind frame are the angle of attack α and the sideslip angle β.

Figure 21. References frames of the CUAV.

For the tilting rotor system of proposed aircraft, an auxiliary tilting frame or rotat-
ing frame is defined about yR, with xR1 , zR1 , xR2 , and zR2 as the principal axes, with
tilting angles δR1 and δR2 as shown in Figure 22. The upwards position is 0°, while the
forward position is −π

2 °according to the NED (North–East–Down) convention and the
right-hand rule.

Figure 22. References frame for angular rotation.

3.1. Equations of Motion

The model of the vehicle considers an inertial fixed frame as I = {xI , yI , zI} and a
body frame fixed attached to the center of gravity of the vehicle as B = {xB , yB , zB}. The
wind frame A = {xA, yA, zA} is considered during the forward flight [32] (see Figure 23).
The configuration of the convertible UAV is defined by the location of the center of gravity
and the attitude with respect to the inertial frame. Then, the configuration manifold is
the special Euclidean group SE(3), which is the semidirect product of R3 and the special
orthogonal group SO(3).

The Newton–Euler formulation, for a rigid body, is used in order to obtain the mathe-
matical model as

ξ̇ = V (1)

mV̇ = RF + mge3 + Dξ(t) (2)

Ṙ = RΩ̂ (3)

JΩ̇ = −Ω× JΩ + τa + Dη(t) (4)
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where ξ = (x, y, z)> ∈ R3 and V = (vx, vy, vz)> ∈ R3 are the position coordinates and
translational velocity relative to the inertial frame. η = (φ, θ, ψ)> ∈ R3 describes the
rotation coordinates where φ, θ, and ψ represent the roll, pitch, and yaw or heading, respec-
tively. e1, e2, and e3 are the vectors of the canonical basis of R3 in I . The rotation matrix,
R ∈ SO(3) : B → I , satisfies the SO(3) =

{
R | R ∈ R3×3 , det[R] = 1, RR> = R>R = I

}

and is parameterized by the Euler angles φ, θ, and ψ. The rotation matrix is written as

R =




cθcψ sφsθcψ − cφsψ cφsθcψ + sφsψ

cθsψ sφsθsψ + cφcψ cφsθsψ − sφcψ

−sθ sφcθ cφcθ




where the shorthand notation of sa = sin(a) and ca = cos(a) is used. Ω = (p, q, r)> ∈ R3

is the angular velocity in B, where the heat mapˆ̇ : R3 → so(3) is defined by the condition
that âb = a× b for all a, b ∈ R3.

Ω̂ =




0 −r q + ˙δR1

r 0 −p− ˙δR2

−q− ˙δR1 p + ˙δR2 0


 (5)

where δR1 and δR1 are the tilting angles.
The forces acting on the body frame are described as follows:

F =




FxB

FyB

FzB


 =




0
0
−F3


+




0
0
−F4


+



−F1 sin(δR1)

0
−F1 cos(δR1)


+



−F2 sin(δR2)

0
−F2 cos(δR2)


 (6)

where F = (FxB , FyB , FzB)
> ∈ R3 is the vector of the total forces in the x, y, and z axes,

respectively. Fi is the lift force or thrust force of the propeller for i = 1, 2, 3, 4.
In hover mode (δR1 = 0 and δR2 = 0), (6) becomes

F =




FxB

FyB

FzB


 =




0
0

−(F1 + F2 + F3 + F4)


 (7)

In cruise mode (δR1 ≈ π
2 and δR2 ≈ π

2 ), (6) becomes

F =




FxB

FyB

FzB


 =



−(F1 + F2)

0
−(F3 + F4)


 (8)

For external forces, we include specially aerodynamics ones, defining them as

Dξ =




dξ1
dξ2
dξ3


 = RWT




Da
Ya
La


 (9)

where the rotation aerodynamic matrix W : B → A that transforms a force from the body
frame to the aerodynamic frame is described as

W =




cαcβ sβ sαcβ

−cαsβ cβ −sαsβ

−sα 0 cα




where α is the angle of attack and β is the sideslip angle. L, Y, and D are the aerodynamic
forces: lift, side force, and drag, respectively [32].
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Figure 23. Aerodynamic forces of the CUAV.

In the context of torque analysis within the aircraft dynamics, the torque vector τa
is defined at the center of gravity with a pivotal point corresponding to the body frame.
This representation provides the rotational dynamics of the aircraft and is derived from the
collective effects of the four-rotor forces. This torque is formulated as follows:

τa =




τφ

τθ

τψ


 =




d(F1 − F2)
l2(F3 + F4)− l1(F1 + F2) + τwing

Q1 + Q3 −Q2 −Q4 + F1 sin(δR1)− F2 sin(δR2)


 (10)

where τwing = Cm,wing
1
2

ρV2Swingcwing∆α encompasses the contributions stemming from
the frontal wing; here, Cm,wing is the pitching moment coefficient of the wing, ρ is the air
density, V is the airspeed of the aircraft, Swing is the wing area, cwing is the average chord
length of the wing, and ∆α is the change in angle of attack of the wing. Qi = ρAir3

i cQi ω
2
i ,

where Ai is the rotor disk area, ri is the rotor radius, cQi denotes the rotor shaft moment
coefficient and ωi denotes the angular velocity of the rotor i with i = 1, 2, 3, 4. d stands for
arm length; l1 and l2 represent distances to the center of mass.

The moments acting on the aerial vehicle are described

Dη =




dη1
dη2
dη3


 = dηgyro + dηaero (11)

The gyroscopic moment generated by the rotation of the airframe and the four rotors
is described by

dηgyro =
4

∑
k=1

(−1)k+1 Irk [Ω× e3ωk] (12)

Finally, the aerodynamic moments presented on the airframe are described as

dηaero =
(
L M N

)>

where L,M and N are the aerodynamic rolling, pitching and yawing moments, respec-
tively [5,32].
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Using Equations (1)–(4), a nonlinear set of equations can be described as

ẋ = vx
ẏ = vy
ż = vz

v̇x =
FxB
m
(
cθcψ

)
+

FyB
m
(
sφsθcψ − cφsψ

)
+

FzB
m
(
cφsθcψ + sφsψ

)
+ dξ1

v̇y =
FxB
m
(
cθsψ

)
+

FyB
m
(
sφsθsψ + cφcψ

)
+

FzB
m
(
cφsθsψ − sφcψ

)
+ dξ2

v̇z =
FxB
m (−sθ) +

FyB
m
(
sφcθ

)
+

FzB
m
(
cφcθ

)
+ g + dξ3

φ̇ = p + q sin(φ) tan(θ) + r cos(φ) tan(θ)
θ̇ = q cos(φ)− r sin(φ)
ψ̇ = q sec(θ) sin(φ) + r sec(θ) cos(φ)
ṗ =

(
Jyy−Jzz

Jxx

)
qr +

(
1

Jxx

)
τφ + dη1

q̇ =
(

Jzz−Jxx
Jyy

)
pr +

(
1

Jyy

)
τθ + dη2

ṙ =
(

Jxx−Jyy
Jzz

)
pq +

(
1

Jzz

)
τψ + dη3

(13)

Remark 1. As the rotation of the four propellers on the convertible UAV is balanced, the gyroscopic
moment will essentially be zero. The only cases in which gyroscopic moments will not be zero are if
there is a significant difference in the RPM of the four motors and the presence of a strong sideways
cross-wind.

Remark 2. The design of the convertible UAV is based on in a configuration that optimizes the
aerodynamic properties and reduces drag forces, which provides steady flights. In addition, the wing
involves a damping that reduces the transient or oscillatory motion, specifically unstable spiral roll.

Based on the remarks, the disturbance terms Dη and Dξ satisfy the linear growth
bound as ‖ Dξ ‖≤ cξ ∀t and ‖ Dη ‖≤ cη ∀t.

3.2. Guidance, Navigation and Control Algorithm

The guidance, navigation, and control of the convertible UAV is based on a geometric
tracking control in SE(3) (special Euclidean group); see [33]. The control is a saturated
proportional, integral, and derivative (PID) and provides smooth trajectory tracking based
on SE(3) even in the presence of wind disturbances. For this purpose, the Equation (13) can
be rewritten as

For this purpose, Equation (13) can be rewritten as

ξ̇ = V (14)

V̇ = un + dξ(t) (15)

Ṙ = RΩ̂ (16)

Ω̇ = ua + dR(t) (17)

where un ∈ R3 and ua ∈ R3 are virtual control inputs for the position and orientation

dynamics. dξ(t) =
Dξ (t)

m and dR(t) = J−1[−Ω× JΩ + Dη(t)].
For a smooth transition, a condition is defined in order to ensure that at each instant

of time, at most one of the two control inputs is active. The geometric navigation considers
a guidance frame that is designed to perform autonomous flights with a convergence to the
contour of the task with small normal velocity.

un = un1 g1(t) + un2 f1(t) (18)

f1(t) =
{

0 f or 0 ≤ t < T1
1 f or T1 ≤ t ≤ TF

with g1(t) = 1− f1(t) (19)
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For hover flight, 0 ≤ t < T1, the virtual control input un1 is defined as

un1 = ge3 −
RF
m

(20)

For cruise mode, T1 ≤ t ≤ TF, the virtual control input un2 is defined as

un2 = ge3 −
RF
m

(21)

For orientation dynamics, the virtual control input ua is defined as

ua = J−1τa (22)

Remark 3. The transition maneuver of the CUAV, from hover to cruise modes and vice versa, is
smooth, and it starts when the vehicle reaches the hovering flight in the initial or actual waypoint,
i.e., FzB ≈ mg; after that, the transition starts, and the cruise mode is performed until the CUAV
arrives to the final waypoint to return to the hovering flight.

Definition 1. A guidance frame G={ fg, bg, ng} is a reference frame that consists of the control
forward vector fg, the control binormal vector bg and the control normal vector ng. This frame
satisfies the NED (North–East–Down) system and considers the terminology from the names of the
three unit vectors in the reference frame for a curve in R3.

The three vectors are defined as follows (for more details, see [33]):

• The control normal vector ng is defined as a function of the position and velocity
errors.

ng =
ge3 − un

‖ge3 − un‖
(23)

• The control forward vector fg is defined as a unit vector in the (ng, td) plane and is

orthogonal to ng such as ng · td > 0 with td = ξ̇d
‖ξ̇d‖

. Then

fg =
ng × e1

‖ng × e1‖
(24)

• The control binormal vector bg is defined as

bg = −( fg × ng) (25)

Definition 2. A desired rotation matrix Rd ∈ SO(3) is defined as Rd = [ fg bg ng] corresponding
to the reference frame or guidance frame where fg = Rde1, bg = Rde2 and ng = Rde3.

From [33], the next statements are well known.

1. un 6= ge3;
2. ng is a well-defined unit vector;
3. fg is a well-defined unit vector;
4. { fg bg ng} is orthonormal and the matrix Rd = [ fg bg ng].

Establishing a guidance frame enables the development of a control strategy that
allows the introduction of un as an input while utilizing position references as feedback. In
this case, a classical proportional, integral, and derivative (PID) control scheme is proposed.
A navigation scheme using this type of control can be effective, providing accurate feedback
and a sufficiently responsive system. For this purpose, the following PID saturated structure
is utilized [34].

143



Machines 2024, 12, 653

The position control for the CUAV is proposed as follows:

un = Sat
(

kpξ
eξ + kdξ

ėξ + kiξ

∫
eξ dt

)
(26)

where eξ = ξd − ξ, ėξ = ξ̇d − ξ̇ are the position and velocity errors. kpξ
, kdξ

and kiξ stand for
the diagonal and positive definite matrices. The stability analysis of this saturated control
can be found in [35]

A similar procedure is used to propose the control to orientation dynamics, ua ,
considering the rotation desired matrix R = [ fg bg ng], which corresponds to the reference
frame. Based on the group operation of SO(3), the attitude and the angular velocity errors
are defined as Re = RR>d and eΩ = Ωd −Ω.

The orientation control is described as

un = Sat
(

kpΩ eR + kdΩ
ėΩ + kiΩ

∫
eRdt

)
(27)

where eR = Skew(RR>d )
∨, with Skew(A) = 1

2 (A−A>) and the operator (·)∨ is the inverse
of the “hat“ operator. kpΩ , kdΩ

and kiΩ stand for the diagonal and positive definite matrices
[33].

A dual-layer controller architecture is utilized to enhance the navigation and attitude
control of the convertible aircraft. This approach comprises two distinct layers. The first
layer focuses on rate control, using velocity for translational motion and angular velocity
for rotational motion. The second layer is dedicated to position control for translational
motion and attitude control for rotational motion. By combining both layers, the system
produces a final output that effectively guides the aircraft.

The dual-layer controllers follow the same structure previously mentioned but with a
hierarchical arrangement. Instead of explicitly presenting the equations, the interaction
between the two layers is emphasized for clarity. This arrangement ensures smooth
integration and coordination between rate and position control, enabling precise and
responsive navigation and attitude control for the convertible aircraft; see Figure 24.
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Figure 24. Guidance, navigation and control scheme for the CUAV.

4. Real-Time Validation

In order to validate the vehicle and the proposed GNC algorithm, a design of exper-
iments (DoE) is executed in an indoor environment, performing the capabilities of the
proposed system. The experiments focus on trajectory tracking tests, which facilitate the
assessment of the system performance under consistent patterns and diverse movement
combinations. However, specific missions are performed for convertible aircraft to evaluate
the system across various scenarios.
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The tests are carried out in the Navigation Laboratory at the Aerospace Engineering
Research and Innovation Center of the Faculty of Mechanical and Electrical Engineering
at the Autonomous University of Nuevo Leon. This laboratory features 16 VICON T-40
cameras to obtain the localization measurements; see Figure 25.

Figure 25. Tracking system.

The ground station receives and sends the information to the autopilot systems, and
the interface is developed in order to graph the state variables of the system; see Figure 26.

Figure 26. CUAV interface in the ground station.

The proposed CUAV is equipped with a low-cost avionics system developed by our
laboratory, allowing us to access the whole state variables of the system. For the inner loop,
the attitude is obtained via the estimation method, i.e., the complementary filter in SE(3),
while for the outer loop, the position is obtained through estimation by the tracking system.
The scheme of the aircraft is shown in Figure 27, providing a homemade autopilot in order
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to manipulate the complete systems for flights in real-time. For that reason, it is possible to
debug the system on each of its steps, and Figure 28 illustrates the real-time experiments.

Figure 27. Flight computer scheme.

Figure 28. Real-time flight of the CUAV.

The experiments that are executed for this prototype enable the characterization of
the system and the identification of unexpected behaviors. In this sense, specific paths and
input ramp signals are selected for testing. Notably, these experiments are run in real-time,
and the information about state variables is sent to the ground station. The camera system
is essential for data tracking, requiring using a bounded environment for experimentation.
Despite these constraints, the selected paths and input ramps provide valuable insights
into the system performance and behavior under controlled conditions. The information
is tracked during this experiment, including position data, sensor readings, and control
inputs, which are recorded in a data file for analysis.

The experiments selected are those represented in Table 4.
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Table 4. Design of experiments.

Experiment Description

Circle Circle pattern with tangent tracking, fixed Z, and multiple experiments
development for dependence on velocity

Infinite Complex pattern for whole system test; combined capabilities are tested

Tilting ramp Tilting rotor test for control test, which required an input similar to a
forward flight with a process of stopping at the end of the path

Fast line Test for max linear velocity in controlled environment

4.1. Circle

For the circular trajectory, we selected a circle with a radius of 1750 mm, a height of
1800 mm, and a velocity of 0.03 rev/s. For this case, the tilting mechanism is assessed,
which allows us to have that type of motion without using input on the rotors; those are
only controlled by the mixer for stabilization purposes.

Geometrical errors, a natural consequence of the lower resolution on actuators, are a
significant factor in our trajectory. These errors are visualized by a circle made of trajectories
based online. Despite these challenges, the trajectory remains within correct values with
some drift but an acceptable tracking error; see Figure 29.

Figure 29. XYZ trajectory tracking, real vs. ideal.

One of the objectives of this design is to ensure that the pitch angle is as small as
possible, especially so as not to interfere with the forces generated by the wing. As a result,
it is shown that the system follows the system with 100 mm of maximum error and ±3 of
angle error; see Figure 30.
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Figure 30. Pitch angle, real vs. ideal (low pitch).
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4.2. Infinite

While the circular path experiment provides valuable insights into maintaining a
constant radius, a separate experiment simulating an infinite straight path is equally
important. This allows us to evaluate the system ability to handle long-distance navigation
and drift correction, which is crucial for real-world applications like long-range surveillance.
A complex trajectory is tested for an infinite trajectory, and a control signal response is
illustrated; see Figure 31.

Figure 31. XYZ trajectory tracking, real vs. ideal.

As seen before, the CUAV accomplishes and follows this trajectory with a deviation
of 200 mm; this behavior is expected because the system is performing a transition phase,
which involves uncertainty to be solved for the proposed GNC algorithm. The form control
field shows that the system is tracking signals; errors are expected from the external sensor
data; see Figure 32.
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Figure 32. Control signals on infinite trajectories.

4.3. Tilting Ramp

This experiment shows the fast transition of the system on a tilting rotor, where the
input is a fast change on tilting angles, as shown in Figure 33.
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Figure 33. XYZ trajectory tracking, real vs. ideal.

For this case, a straight line is developed to change between hover and cruise flight.
In this short-period experiment, the control scheme compensates for height loss. Also,
it accelerates the CUAV, performing a maximum of 2 m/s, where it is realized that the
system is still in hover mode, and rotors do not make the whole change. However, it is a
short-period experiment showing the expected accomplishment of dynamics; see Figure 34.
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Figure 34. U velocity develop at ramp.

As seen in Figure 35, at 10 to 12 s, the system increases lift, which is directly seen as a
decrease in the signal required for the system to maintain height.
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Figure 35. Lift behavior on global rotor forces.

4.4. Fast Line—Transition Mode

In this section, we present a development of an experiment where the aircraft is tested
on maximum velocity conditions indoors. The line design is 5 m on the same axis, and the
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initial condition is used to execute a hover flight, followed by a fast line, and end with an
instant decrease of velocity on the system; see Figure 36.

Figure 36. XYZ trajectory tracking, real vs. ideal.

The vehicle followed the trajectory even under demanding conditions. Some errors
are expected, in this case, 300 mm on average; see Figure 37.
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Figure 37. U velocity developed at the line.

Even the maximum condition on the system is required; just 3.7 m/s is reached due to
space limitations. On a complete flight, the cruise phase is performed considering a change
about 55°reached by the tilting rotors during the transition phase. In the transition phase,
the vehicle reaches 90°on a complete transition, as can be seen in Figure 38.
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Figure 38. Servos transition phase.

In the following link, a test video is shown: https://youtu.be/h5RhDCh6QtQ?si=
5VnO1xTrUZ-YuJhN accessed on 11 February 2024. It is important to mention that a circle
experiment was developed in this video.
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5. Conclusions

The design of a convertible UAV platform capable of executing hover and cruise flight
missions was presented, having characteristics of a helicopter and an aircraft. The design
was validated by taking into account the structural refinement and airfoil-based design
methodology; each stage addressed critical aspects of design based on conceptual aerody-
namics, mechanical properties, and material selection. Additive manufacturing was used
to develop the proposed vehicle, considering the optimization techniques used to obtain a
lightweight vehicle structure. The control strategy provided an effective performance for
hover and cruise flights of the convertible UAV, and it was designed to ensure complete
flight regimes. Notable achievements included reduced control authority reliance on rotors
and effective lift generation by the main wing during cruise flights. Validation experiments,
encompassing the convertible UAV approach, revealed promising results in trajectory
tracking and efficient flight maneuvers.
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Abstract: Multi-surface sliding mode control addresses the limitations of traditional sliding mode
control by employing multiple sliding surfaces to handle uncertainties, disturbances, and nonlin-
earities. The design process involves developing sliding surfaces, designing switching logic, and
deriving control laws for each surface. In this paper, first, a robust finite-time multi-surface sliding
mode controller will be presented and its performance analyzed by applying it to a multirotor sub-
jected to a suspended payload, modeled in the form of a single pendulum, itself defined as a spatial
(3D) dynamic model. Next, an adaptive finite-time multi-surface sliding mode controller will be
derived—adding a variable adaptive parameter to the existing sliding surfaces of the robust finite-
time control—and applied to the same system. It will be shown that the adaptive controller, with an
adaptive parameter that adjusts itself based on the present value of the multi-surface sliding mode
parameter, creates an improved fast finite-time convergence by obtaining an optimal settling time and
minimizing undershoot of the multirotor state vector. Empirical verification of the effectiveness of the
adaptive control will be carried out by presenting the control performances against a step response. It
is also shown that the control may be utilized to approximate external disturbances—represented by
the pendulum—and that with the application of control, the vehicle’s motion may be stabilized and
the payload swing suppressed. Lyapunov stability theory-based stability proofs for the controllers’
designs are developed, showing the asymptotic stability of the output and uniform boundedness
of the errors in the system dynamics. It is verified that the multi-surface sliding mode control can
account for system uncertainties—both matched and mismatched—in addition to changes in internal
dynamics and disturbances to the system, where the single pendulum payload is representative of
the changes in dynamics that may occur to the system. Numerical simulations and characteristics are
presented to validate the performance of the controllers.

Keywords: aerial robotics; unmanned aerial vehicles; multi-surface sliding mode control; adaptive
control; control systems

1. Introduction

Multirotor systems in the present day have drawn major attention owing to their
versatility in carrying out various applications [1]. Their ability to transport payloads from
point to point opens their usage in many different fields, including agriculture, military,
postage, and media. However, carriage of suspended payloads poses a challenge to
multirotor operation as the system’s dynamics are altered by the extra mass and swinging
motion of the payload. The addition of a suspended payload adds an extra 2 Degrees of
Freedom (DoF) to the existing 6 DoF multirotor UAV system. A multirotor-slung load
system has different characteristics to that of a conventional multirotor, with the addition
of a mass moment of inertia and the dynamics of the payload it carries. To this degree,
the effects of payload mass, size, and distribution on the system’s stability and control
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have previously been analyzed by researchers. Additional stability and control issues
are introduced by the payload’s swinging motion as they tend to cause disruptions and
instability. Keeping the payload stable and maneuverable while maintaining the UAV’s
location and orientation poses a challenge in terms of control.

There have been several control strategies proposed to tackle this interesting problem.
In Ref. [2], an Adaptive Linear Quadratic Regulator with input shaping is proposed, with an
output weighing variation, where the work seeks to track desired trajectory of a quadcopter
together with reducing the swing of the payload it carries. Hanafy et al. create a new genetic-
based Fuzzy Logic Controller to reduce the oscillations caused by a quadrotor-suspended
load in Ref. [3]. They use a genetic algorithm, attempting to optimize membership function
distributions of the control inputs and outputs. In Ref. [4], a cable-suspended weight is
tracked using the Lyapunov theory aided by backstepping methods to obtain a specific
trajectory described using a time-parameterized position vector. The dynamics of both
the quadrotor-slung load and cable direction, in addition to the coupling that they possess
with the quadcopter, are taken as one single part of the nonlinear backstepping controller
design. By developing a fractional order sliding mode control, El Ferik et al. [5] intend to
propose a new method of controlling a quadrotor-slung load system, in addition to the
swing angle of an imposed suspended load. A robust tracking control problem dealing with
a quadrotor subject to system nonlinearities, coupling of inputs, aerodynamic irregularities,
and external factors, such as wind, is analyzed through quantitative simulation studies in
Ref. [6], focusing on position and attitude control. With tracking control and disturbance
elimination of multirotor-slung load systems, Liu et al. [7] examine an adaptive hierarchical
sliding mode controller, employing a sliding mode disturbance observer operating such
that it converges in a fixed time interval. To address the issue of underactuated features,
the projection operator is used to build the adaptive law, and the hierarchical sliding mode
control concept is employed to establish the controller. In Ref. [8], a quadrotor subjected
to disturbances is controlled by an integral non-singular hyperplane SMC scheme, which
also assures precise tracking when these disturbances are present. With the consideration
that wind gusts make the tracking operation of a drone more difficult, in order to complete
tracking tasks when wind gusts emerge, a Proportional-Integral-Derivative (PID) control,
which can tune itself to adjust to these changes, is derived in Ref. [9]. A supervisory
control created with the Lyapunov method is introduced to display the stability of this
approach when taking bounded disturbances into account. Cui et al. propose a Linear
Active Disturbance Rejection Control, coupled with an input shaper, to create an attitude
controller in Ref. [10]. In Ref. [11], the robust H control methodology known as linear
matrix inequality (LMI), which is widely used, is chosen for the linear controller design. In
addition, an observer is introduced for estimating load angles. Previous control strategies
include Linear Quadratic Regulator (LQR) [12], fault tolerant flight control [13], geometric
control [14], nonlinear model predictive control [15], and neural networks [16].

In recent years, multi-surface sliding mode control (MSSC) has become a promising
control method. Aiming to improve robustness and tracking precision in dynamic systems,
it tackles the constraints of standard sliding mode control (SMC) by introducing numerous
sliding surfaces. In traditional sliding mode control, the system’s states are guided down a
desired trajectory by a single sliding surface. It can be subject to uncertainties, disturbances,
and nonlinearities, which can result in performance degradation even though it can be
beneficial in some situations. By separating the control space into numerous sliding
surfaces, MSSC overcomes these difficulties. Various applications of MSSC, such as those
in robotics, aerospace, automotive, and power systems, have been studied by researchers.
For example, in robotics, where precise trajectory tracking is essential, MSSC has been
used to operate manipulator arms and mobile robots. To manage uncertainties related to
atmospheric conditions and outside disturbances, it has also been used in flight systems.
MSSC offers improved robustness to uncertainty, where the control system can adjust to
various operating situations by using several sliding surfaces, effectively reducing the
effect of uncertainties on system performance. Additionally, it provides better tracking
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precision, as multiple sliding surfaces enable more accurate control and improved tracking
of desired trajectories by allowing the control action to be tuned to areas of the control
space. It has been used across different fields as an effective control method. A class of
single-input, single-output (SISO) systems was the primary target for the development
of multi-surface sliding control (MSSC). In this study, the MSSC is extended from SISO
systems, such that it addresses a specific kind of Multi-Input Multi-Output (MIMO) system.
In addition, the underactuated systems, which are analyzed in this work, may be altered
into high-order MIMO nonlinear systems with mismatched uncertainties by changing the
co-ordinate, as the MSSC is resilient against unknown disturbances. Then, this UAV control
problem can be directly solved using the MSSC algorithm. Additionally, MSSC designs
for UAV systems with suspended payloads are still in the early stages. Many control
methods for such systems are created by decoupling the longitudinal and lateral dynamics
separately due to the coupling effect of UAV dynamics [17]. Our approach provides a
comprehensive control methodology by cascading the translational and rotational systems
in addition to addressing the underactuated concerns. A reliable and desired control
methodology for SISO systems has been demonstrated using MSSC [18] and high-order
sliding mode control [19] for the regulation of underactuated nonlinear systems subjected
to mismatched uncertainties, as in Refs. [20,21]. Numerous desirable characteristics of
adaptive MSSC, including its resistance to both matched and mismatched uncertainties
of several types, such as parametric variations and external disturbances, as well as the
system’s convergence to zero error, are useful for flight dynamic control. With this being
considered, MSSC has been used in different applications as an effective control method.
Ref. [22] addresses the issue of chained stabilization of a class of nonholonomic systems
with known and unknown disturbances. The suggested design strategy is based on an
adaptive MSSC applied to a discontinuous transformation of the perturbed nonholonomic
system. In Ref. [23], a Takagi–Sugeno fuzzy model (TSFM)-based multi-objective resilient
control scheme is proposed for a set of indeterminate nonlinear systems, which is then
applied to a two-link robot system containing both matched and mismatched uncertainties.
Hamood et al. track and control the height and angles of a 3-Degree-of-Freedom helicopter
using a control strategy derived from the MSSC. In Ref. [24], Alqumsan et al. analyze the
operation of continuum robots while taking mismatched uncertainties into account and
propose a control strategy. Cosserat rod theory is used to construct the dynamic model
of the system to develop the controller, and multi-surface sliding mode control is used to
ensure robustness of the system against mismatched uncertainties. In Ref. [25], a multiple-
surface sliding mode control based on disturbance observers is developed. It estimates the
uncertainties as well as the derivatives of the virtual inputs.

Finite-time control is essential for control systems in terms of quick response to real-
world situations, optimization of transient response, reduction in energy consumption,
and efficacy of safety and performance. Previous finite-time control approaches have
been proposed, such as a super-twisting algorithm [26], a nonlinear cascade structure [27],
geometric control [28], and trajectory tracking control [29]. Taking these factors into
consideration, this paper will propose both a robust and an adaptive finite-time multi-
surface sliding mode control. The main contribution of this paper lies in the derivation and
subsequent application of a finite-time multi-surface sliding mode control to a multirotor-
slung load system. Unlike most existing studies, which consider planar (2D) dynamics for a
pendulum, the slung load is modeled using the spatial (3D) dynamics of a single pendulum.
While the dynamic model of the single pendulum slung load itself is defined, its effect
upon the behavior of multirotor UAVs is unknown and hence, can be used to represent
other such disturbances to the normal behavior of the UAV. These disturbances may arise
due to external factors, such as wind and obstacles, or internal factors such as parametric
changes occurring due to additions to the drone’s structure, including the addition of a
suspended payload itself.

The rest of this paper is outlined as follows. First, the dynamics of a multirotor will
be derived, together with those of a single pendulum, representing a slung load to be
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transported by the multirotor. The dynamics of these two systems will cascade to form
a single system (Sections 2.1 and 2.2). A multi-surface sliding mode control strategy will
then be proposed and its stability verified in Section 2.3. An adaptive version of the same
controller will then be derived in Section 2.4. In Section 3, both these controllers will
individually be applied to the multirotor-slung load system for the stabilization of the
multirotor on its travel path, along with the suppression of the slung load oscillations
that take place. Their performance in different scenarios and with imposition of external
disturbances will be presented. An analysis of the results obtained from these simulations
will be analyzed in Section 4. Section 5 provides some conclusions.

2. Methodology

In this section, we define the dynamics of a multirotor and its suspended payload,
which are then cascaded together to form a single system. This is the system upon which
the proposed controllers will be applied and subsequently compared. The characteristics of
the multirotor slung load system are as shown in Figure 1. Let qtrans =

[
x y z θx θy

]
and

qrot = [ϕ θ ψ] denote the translational and rotational state vectors of the system, such that
q =

[
qtrans qrot

]
represents the overall system state vector, with x, y, and z denoting the

multirotor position along their respective co-ordinate axes, ϕ, θ, and ψ representing the
roll, pitch, and yaw about each respective co-ordinate axis, and θx and θy being the payload
tilt angle about the x-axis and y-axis, respectively. We take the mass of the multirotor to be
M and the payload it is carrying to have a mass m.
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2.1. Multirotor Dynamics

We consider a multirotor, specifically a quadrotor with 4 rotors, with the dynamics
defined in our previous work [30]. R2

1 represents the rotation of a frame 2 into a frame 1.

RX(θ) =




1 0 0
0 C(θ) −S(θ)
0 S(θ) C(θ)




Ry(θ) =




C(θ) 0 S(θ)
0 1 0

−S(θ) 0 C(θ)


.

Rz(θ) =




C(θ) −St(θ) 0
S(θ) C(θ) 0

0 0 1




(1)

These are the standard rotational matrices of the frame in terms of its roll, pitch,
and yaw, where shorthand notation is used to complete the rotational matrix, such that
C(θ) = cos(θ) and S(θ) = sin(θ).

Rb
Pi = RZ

(
(i−1)

2 π
)

RX(Ai)RY(Bi)

=




Rb
Pi11

Rb
Pi12

Rb
Pi13

Rb
Pi21

Rb
Pi22

Rb
Pi23

Rb
Pi31

Rb
Pi32

Rb
Pi33




(2)

where
Rb

Pi11
= C

( (i−1)
2 )π

CBi − S
( (i−1)

2 )π
SAiSBi ,

RB
Pi12

= −S
( (i−1)

2 )π
CAi ,

Rb
Pi13

= C
( (i−1)

2 )π
SBi + S (i−1)

2 π
SAi CBi ,

Rb
Pi21

= S
( (i−1)

2 )π
CBi + C (i−1)

2 π
SAiSBi ,

RB
Pi22

= C
( (i−1)

2 )π
CAi ,

Rb
Pi23

= S
( (i−1)

2 )π
SBi −C (i−1)

2 π
SAiCBi

Rb
Pi31

= −C
( (i−1)

2 )π
SBi ,

RB
Pi32

= SAi ,
RB

Pi33
= CAi CBi ,

Ob
Pi
= RZ

(
i−1

2

)
π




L
0
0




=




C
( (i−1)

2 π)L
S
( (i−1)

2 π)L
0




(3)

where i = 1. . ., n (for this quadrotor, n = 4), and L is the multirotor arm’s length, measured
from the body frame center (OB) to the center of a propeller (Ob

Pi
). The torque acting on

any propeller i, denoted as τpi, is first obtained using Euler’s angular momentum theory:

τpi = IPi
.
ωPi

+ωPi × IPiωPi +
[
0 0 kcωPiZ

∣∣ωPiZ

∣∣]T (4)
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where IPi represents each propeller’s inertia matrix, ωPiZ denotes vector ωPi ’s z-axis
component, kc > 0, the modulus of elasticity between ωPiZ and the counter-rotating
torque about ZPi axis,

ωPi = RP
B−1
i ωB +




.
α.

i.
βi
ω̂i


, (5)

and ω̂i the angular velocity of the ith propeller. If τPi is the ith propeller’s produced thrust,
we obtain

TPi =
[
0 0 kfω̂|ω̂|

]T (6)

where kf > 0 is a fixed proportionality constant. Applying the fundamental theorem of
mechanics for the body frame, together with Euler’s angular momentum theory, we obtain

S1 : m




..
Xb..
Yb..
Zb


 = RB

W




0
0
−Mg


+ ∑4

i=1 RP
B
i TPi + FD (7)

S2 : Ib
.
ωb = ∑4

i=1 (O P
B
i × RP

B
i TPi − RP

B
i τpi

)
−ωb × Ibωb (8)

where Ib is the inertial matrix governing the multirotor body, and FD represents force due
to drag.

Considering an n-propeller multi-copter, where i = 1, . . . , n and n ≥ 2 and using the
above equations, we acquire

S3 : m




..
Xb..
Yb..
Zb


 = RB

W




0
0
−Mg


+ ∑n

i=1 RP
B
i TPi + FD, (9)

S4 : Ib
.
ωb = ∑4

i=1

(
Ob

Pi × RP
B
i TPi − RP

B
i τpi

)
−ωb × Ibωb (10)

2.2. Slung Load Dynamics

In this section, the slung load dynamic model is derived using Lagrange’s modeling
approach, in which we take the suspended payload to be a simple pendulum. When the
payload is considered a point mass (m), the kinetic energy is only translated. The spatial
angle of the cable can be used to determine the precise location of the payload by ignoring
cable hoisting and keeping the cable length fixed at l. The pendulum displacements are
characterized by θx and θy, which denote the rotation of the payload about the inertial x-
and y-axes, respectively. A linear damping term is used to mimic the physical dampening
of the pendulum swing. Using Kane’s equation, the dynamical model is given by

M(q)
..
q + C(q)

.
q + G(q) = JU (11)

where M(q) represents the mass–inertia matrix, C(q) denotes the Coriolis force matrix,
G(q) represents a vector containing the forces of gravity acting upon the system, and
J ε R9×4 is a Jacobian matrix for the system input vector u ε R4. The payload orientation
and position along the co-ordinate axes are first defined, aiding in deriving the Lagrangian
model of the system. For this, we take the payload co-ordinates to be

X1 = L1




sinθxcosθy
sinθxsinθy

cosθx


 (12)
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Differentiating (12) with respect to time and accounting for angular velocity, we obtain

X2 = L1




cosθxcosθy
.
θx − sinθxsinθy

.
θy

cosθxsinθy
.
θx − sinθxcosθy

.
θy

−sinθx
.
θx


 (13)

which gives us the velocity vectors of the hook.
Differentiating (13) and accounting for the angular acceleration, we have

X3 = L1




sinθxcosθy
..
θ

2
x − sin

.
θ

2
xsinθy

..
θy − 2sinθxcosθy

.
θ

2
x − 2sinθxcosθy

.
θ

2
y

sinθxsinθy
..
θ

2
x − sin

.
θ

2
xcosθy

..
θy − 2sinθxsinθy

.
θ

2
x − 2sinθxsinθy

.
θ

2
y

cosθx
..
θx − 2cosθx

.
θ

2
x


 (14)

Now, according to Lagrange’s modeling equation,

d
dt

(
∂Lp

∂
.
qi

)
−
(

∂Lp

∂qi

)
= 0 (15)

Here, two independent variables, θx and θy, are considered as the generalized co-
ordinates, collectively taken as qi. The associated hook-and-payload pendulum system is
controlled by the input variables collected from the drone position variables x, y, and z.

The difference between the system’s potential and kinetic energies yields the La-
grangian, i.e.,

Lp = PE −KE (16)

The potential energy, PE, is obtained as

PE = m1g(l− X1) (17)

The kinetic energy, KE, is then found using

KE =
1
2

X2
2 (18)

Substituting (12) into (17) and (13) into (18) provides results for the potential and
kinetic energies. Substituting these results into (16) provides the Lagrangian Lp, which is
then substituted into (15) to provide the equations governing the slung load pendulum:

(M + m)
..
x−mlcosθxcosθy

..
θx + mlsinθxsinθy

..
θy

−mlcosθxsinθy
.
θ

2
y −mlsinθxcosθy

.
θ

2
x = fx(t)

(19)

(M + m)
..
y−mlcosθxsinθy

..
θx + mlsinθ1xcosθ1y

..
θy

+mlcosθ1xcosθy
.
θ

2
x −mlsinθxsinθy

.
θ

2
y = fy(t)

(20)

(M + m)
..
z + mlsinθx

..
θx + mlsinθx

.
θ

2
x + mlsinθy

..
θy + mlsinθy

.
θ

2
y + (M + m)g

= fz(t)
(21)

(ml2cosθ2
x + Ixx)

..
θ

2
1x −mlcosθxcosθy

..
x−mlcosθxsinθy

..
y

+mlsinθx
..
z + ml2cosθysinθy

.
θ

2
y + mglsinθx = 0

(22)

(
ml2 + Iyy

) ..
θy + mlsinθxsinθy

..
x + mlsinθxcosθy

..
y + mlsinθy

..
z−

ml2sinθxcosθx
.
θy = 0

(23)
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We rearrange (11), such that the acceleration, and subsequently the velocity and
position of the system, can be obtained—giving us an idea of the quadrotor’s behavior—
which can be performed as follows:

..
q = M−1(−G + τ−Cqd) + D (24)

.
q =

..
q(dt) + qd (25)

q =
.
q(dt) + q (26)

where qd represents the desired position of the system. The coefficients of
..
q
( ..

x,
..
y,

..
z,

..
θx,

..
θy

)

in (19)–(23) define the contents of matrix M. Similarly, the coefficients of
.
q yield the contents

of matrix C, and the vector G comprises vectors dependent on gravitational acceleration g.
The pendulum dynamics cascade with the quadrotor’s linear dynamics, represented as xb.

Defining xb =
[
Xb Yb Zb

]T,TPi =
[
0 0 kc ωPiZ

]
and rearranging subsystems S3 and

S4 yield

..
xb = RB

W




0
0
−Mg


+

1
M∑4

i=1 RB
PiTPi + Dxb, (27)

..
ωb = I−1

b

[
∑4

i=1

(
OB

Pi
× RB

Pi
TPi −

kc

kf
RB

pi
TPi

)
+ Dω

]
(28)

where
Dxb =

1
M + ML

FD + ∆xb (29)

Dω = −I−1
b

[
4

∑
i=1

RB
Pi
(
IPi

.
ωPi +ωPi × IPiωPi

)
+ωb × Ibωb

]
+ ∆ω (30)

where the external disturbances affecting the system’s rate of change in angular and linear
momenta are denoted by ∆ω and ∆xb , respectively.

xb and ωb, respectively, denote the system’s linear and angular co-ordinates in the
body frame.

Differentiating
.
ωb with respect to time, we acquire

...
xb =

.
Rb

W




0
0
−g


+ 1

M+m1+m2
∑n

i=1

(
∂Rb

Pi
∂Ai

TPi
.

Ai +
∂Rb

Pi
∂Bi

TPi
.

Bi + Rb
Pi

∂Ti
∂ω̂i
ω̂i

)
+

.
Dxb,

=
.

Rb
W




0
0
−g


+ FxA

.
α+ F

x
.
β

.
β+ Fx

.
ω

.
ω+

.
Dxb,

(31)

..
ωb = I−1

b

[
∑n

i=1

(
Ob

Pi
× (

∂Rb
Pi

∂αi
TPi

.
αi +

∂Rb
Pi

∂βi
TPi

.
βi + Rb

Pi

∂TPi
∂αi

.
ω̂i

)
−

kc
kf

( ∂Rb
Pi

∂αi
TPi

.
αi +

∂Rb
Pi

∂βi
TPi

.
βi + Rb

Pi

∂TPi
∂αi

.
ω̂i

))
]

(32)

where
α = [α1,α2, . . . ,αn]

T ,
.
α =

[ .
α1,

.
α2, . . . ,

.
αn
]T,

β = [β1,β2, . . . ,βn]
T,

.
β =

[ .
β1,

.
β2, . . . ,

.
βn

]T
,

ω̂= [ω̂1, ω̂2, . . . , ω̂n]T ,
.
ω̂ =

[ .
ω̂1,

.
ω̂2, . . . ,

.
ω̂n

]T
,

(33)

F
x

.
A
=

1
M

[
∂Rb

P1
∂A1

TP1
∂Rb

P2
∂A2

TP2 . . .
∂Rb

Pn
∂An

TPn

]
, (34)
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F
ω

.
A
= I−1

B

[
Ob

Pi ×
∂Rb

P1
∂A1
− kc

kf

∂Rb
P1

∂A1
TP1OB

P2 ×
∂Rb

P2
∂A2

TP2 − kc
kf

∂Rb
P2

∂A2
TP2 . . . Ob

Pn×
∂Rb

Pn
∂An

TPn − kc
kf

∂Rb
Pn

∂An
TPn

] (35)

It is understood that F
x

.
B

and F .
xω can be defined like FxA◦ , while F

ω
.
B

and F .̂
ωω

can be
defined like F

ω
.

A
.

Defining

x1 =
[
xT

b(
∫
ωbdt)T

]T
,

x2 =
[ .
xT

bω
T
b

]T

x3 =
[ ..
xT

b
.
ω

T
b

]T

(36)

We can rewrite (32) as

.
x1 = x2,
.

x2 = x3,

.
x3 =







0
0

−
.
R

B
Wg




0


+




J1
J2
J3
J4


U +

[ .
DxB.
Dω

]
,

(37)

where
J1 = J2 = J3 =

[
F

x
.

A
(α,β, ω̂)F

x
.
B
(α,β, ω̂)Fx

.̂
ω
(α,β, ω̂)

]
,

J4 =
[
F
ω

.
A
(α,β, ω̂)F

ω
.
B
(α,β, ω̂)F

ω
.̂
ω
(α,β, ω̂)

]
,

(38)

These represent the Jacobian matrices, which multiply the control law, U, of the
multirotor. This control law is defined for the two controllers in the next two sections.

2.3. Finite-Time MSSC

In this section, a robust finite-time multi-surface sliding mode control is presented.
This is applicable to Multi-Input Multi-Output (MIMO) systems. First, we show that the
sliding surfaces of the controller can achieve stability in a finite time. For this, we use the
Lyapunov stability theory.

Let us consider a nonlinear system
.
x = f(x), which is time-invariant, where f : Rn → Rn .

This system is said to be globally asymptotically stable if for every trajectory x(t) for the
system, we have x(t)→ xe as t→ ∞ , where xe is known as the system equilibrium point,
such that f(xe) = 0. Furthermore, considering a function V : Rn → R, the function is said to
be positive definite if

(i) V(z) ≥ 0, ∀z
(ii) V(z) = 0⇐⇒ z = 0
(iii) V(z)→ ∞ as z→ ∞

Hence, if we consider a function V such that V is positive definite and V(z) < 0, ∀z 6= 0,
with

.
V(0) = 0, then the system

.
x = f(x) is said to be globally asymptotically stable, i.e., all

trajectories
.
x = f(x) converge to zero as t→ ∞ .

With this in consideration, let us take a system
.
x = f(x), nonlinear and continuous

in nature, such that f(0) = 0. If there exists a Lyapunov function V(x) and real numbers
µ > 0,ν > 0, and 0 < γ < 0 where

(i) V(x) > 0, ∀x 6= 0
(ii)

.
V(x) + µV(x) + νVγ(x) ≤ 0

(39)
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then we can say that the start of the nonlinear system is universally fast finite-time stable,
and its settling time is given by

T(x0) ≤
1

µ(1− γ) ln

(
µV1−γ(x0) + ν

ν

)
(40)

Alternatively, a control Lyapunov function (CLF), V(x) satisfying
.

V(x) + νVγ(x) ≤ 0,
which is nonlinear and dynamic in nature, may also guarantee universal finite-time conver-

gence of the system, where the settling time is given by Ts(x0) ≤ V1−γ(x0)
ν(1−γ) . However, compar-

ing the nonlinear CLF previously defined with linear dynamic equation
.

V(x)+νV(x) = 0, the
latter provides a slower converging time when its initial condition V(x0) is distant from zero.
However, the finite-time convergence is understood by its growth rate, which is exponential
in nature, as V(x)→ 0, since as V(x) � 1, for 0 < γ < 1, 0 ≤ Vγ(x) � V(x). As a result,
V(x) converges faster than

.
V(x) = −νVγ(x) for large V(x), albeit the linear CLF closed-loop

system-based asymptotic stability.
One quick resolution to this issue is to consider a CLF in agreement with (39). Look-

ing at settling times T(x0) and Ts(x0), if V(x0) 6= 0, we find T(x0) < Ts(x0), since
1

µ(1−γ) ln
(

1 + µV1−γ(x0)
ν

)
< V1−γ(x0)

ν(1−γ) .
From this, we can say the closed-loop system with CLF, in agreement with (39), is a fast

finite-time stable system. For i = 1, . . . , n, let Qi = pi/qi, where pi and qi are positive odd
integers, such that 0 <

pn
qn

< . . . < p1
q1

< 1. Some sliding variables si are first presented as

si = (xi)
1

Qi − (xid)
1

Qi (41)

where xid denotes a virtual controller. xi represents the information of each variable describ-
ing the system, in this case its position, velocity, and acceleration, depending on the value
of i. Therefore, it may be utilized to design a sliding variable and subsequently a controller.
The proposed sliding variable (41) is utilized for a set of high-order nonlinear systems.

In (46), the virtual controller is designed in the form

xid = −(si−1)
(1+Qi−1)γ−1νi−1 (42)

where νi−1 ≥ 0. If the multi-surface variables, si = 0, i = 1, . . . , n, this results in
xid = 0, i = 1, . . . , n, subsequently implying that xi = 0, i = 1, . . . , n.

To further analyze the control, a few lemmas are explained below:

Lemma 1. The following Minkowski’s inequality [31] holds good for all real numbers zi, where
i = 1,. . .,n, and 0 < k ≤ 1:

(|z1|+ · · ·+ |zn|)k ≤ |z1|k + · · ·+ |zn|k (43)

Lemma 2. For some positive real numbers m, n and some real-valued functions φfεR, θfεR,
ψf > 0, the following holds true, according to [32]:

|ψf|m|θf|n ≤
mψf

m + n
|ψf|m+n +

dψ−
m
n

f
m + n

|θf|m+n (44)

The necessary sliding mode control laws may now be developed, attempting to ensure
the convergence of the sliding surfaces in n steps.
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We take the first sliding variable s1 = (x1)
1

Qi . Choosing the Lyapunov function

V̂i =
Q1(s1)

1+Q1

1+Q1
, we acquire

.
V̂1 = s1(x2 − x2d) + s1x2d (45)

Let us consider a virtual control law x2d, defined as

x2d = −(s1)
1+Q1 − (n + 2ν)(s1)

(1+Q1)γ (46)

with Q1 =
p1
q1

, µ > 0,ν > 0, and 0 < γ < 1. Using the inequality (x2 − x2d) ≤ 2|s2|Q2,
we obtain .

V̂1 ≤ 2|s1||s2|Q2 − 2µ(s1)
(1+Q1) − (n + 2ν)(s1)

(1+Q1)γ (47)

At step k− 1, where 2 ≤ k ≤ n− 1, let as assume that the kth virtual control is given by

xkd = −(sk−1)
(1+Qk−1)γ−1((n− (k− 1) + 1) + 2µ(sk−1)

(1+Qk−1)(1−γ) + 2ν
+κk−1)

(48)

such that
V̂k−1 = V̂k−2 +ωk−1, (49)

ωk−1 =
∫ xk−1

x(k−1)d

(v
1

Qk−1 −
(

x(k−1)d

) 1
Qk−1 (50)

satisfies

.̂
Vk−1 ≤ 2|sk−1||sk|Qk − (n− t(k− 1) + 1)(∑k−1

i=1 (s1)
(1+Ql)γ)− 2(∑k−1

i=1 µ×
(s1)

(1+Ql)γ)
(51)

where κh
k−1 is some known positive smooth function. Using induction, it can be shown that

V̂k = V̂k−1 +ωk (52)

ωk =
∫ xk

xkd

(v
1

Qk − (xkd)
1

Qk )dv (53)

Taking k = k + 1 to obtain the (k + 1)th virtual controller in (48), with κc
k ≥ ρc

k + ŝc
k ≥ 0

yields

.
V̂k ≤ 2|sk||sk+1|Qk+1 − (n− k + 1)

(
∑k

l=1(s1)
(1+Ql)γ

)
− 2
(
∑k−1

l=1 µ(s1)
1+Ql + ν(s1)

(1+Ql)γ
)

(54)

For the final step, using the inductive argument carried out so far, we can show that

Theorem 1. For the nth sliding variable sn, taking the virtual control, as defined in (46) and (48),
and the final control as

U = K−1
[
∑m

j=1,j 6=h ajuj + bu0 − (sn)
(1+Qn)γ−1 ×

(
2µ× (sn)

(1+Qn)(1−γ) + 2ν+ κn

)
]− 2Dsign(sn) (55)

where K 6= 0 and K = ∑m
j=1,j 6=h aj + b, and κn is some known smooth positive function, the sliding

variables are found to converge to the sliding surfaces sc
1 = · · · = sc

n = 0 in a fast finite time Tc
n,

where

Tn ≤
1

µ(1− γ) ln

(
µ
(
V̂n(0)

)1−γ
+ ν

ν

)
(56)
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with V̂c
n(0) denoting the Lyapunov candidate function’s initial value in (57).

Proof. We see that if K = 0, then s1 = · · · = sn. If K 6= 0, if the design process in the above
Equations (46)–(55) is carried out, using the property |dc| ≤ D, the following Lyapunov
function may be utilized:

V̂n = V̂n−1 +
∫ xn

xnd

(v
1

Qn − (xnd)
1

Qn )dv (57)

We can show that the final controller in (55), with κk ≥ ŝn + ρn, results in

.
V̂n ≤ 2|sn−1||sn|Qn − (∑n−1

l=1 (s1)
(1+Ql)γ)− 2(∑n−1

l=1 µ(s1)
1+Ql + ν(s1)

(1+Ql)γ) + sn(K(Un + dn)−
∑m

j=1,j 6=c acj(Uj + dj)− bt(U0 + d0)) + ∑n−1
l=1

dωn
dxl

.
xl ≤ −µV̂n − ν(V̂n)γ

(58)

From (58) and the Lyapunov function, as defined in (52) and (57), where
V̂n = V̂1 +ω2 + · · · +ωn, with xkd = xd, results in sk = 0, while with the definition
of V̂1 in (45), it can be concluded that all sliding variables converge at the sliding surfaces
s1 = · · · = sn = 0 in a fast finite time Tn.

From (48) to (58), it is seen that the sliding variables s1
i , . . . , sm

i where i = 1, . . . , n can
converge at the sliding surfaces s1

i = · · · = sm
i = 0 in time T ≤ lim

t→T
xn(t)− xi(t). �

2.4. Adaptive Fast Finite-Time MSSC

In this section, an adaptive version of the controller defined in Section 2.3 will be
proposed. Initially, some assumptions are made in investigating the control:

(i) For 1 ≤ i ≤ n, some undefined functions σi( |x 1|, . . . , |x i|) ≥ 0 exist, such that
|∆i(x, t)| ≤ (|x1|+ · · ·+ |xi|)σi(x1 . . . xi).

(ii) A known continuous function dmax(x, t) exists, where |d n(x, t)|≤ dmax(x, t) , and
dn(0, t) 6= 0, ∀t.

We consider the same sliding variables as in (41), but for the subsystem
.
x1 = x2 +∆1(x1, t), such that ∆1(x1, t) ≤ (|x1|)σ1(x1). Considering that σ1(x1) is unknown,
an adaptive virtual control law is designed to ensure the system’s finite-time stability.

Lemma 3. Taking assumption (i) into consideration, if the subsystem
.
x1 defined above has s2 = 0

and a virtual controller x2d is selected as

x2d = −s(1+Q1)γ−1
1

(
n + 2µ1s(1+Q1)(1−γ)

1 + 2ν1 +

√(
1 + λ̂2

1

))
− s(1+Q1)γ−1

1 κ1
(
x1, θ̂λ1

)
(59)

where κ1
(
x1, θ̂1

)
> 0, µ1 > 0, ν1 > 0, 0 < γ < 1, with adaptive parameter λ̂1 updated as

.
λ̂1 = s(1+Q1)γ

1 (60)

Then ∀x1(0)—the initial condition of the system:

Case 1: if
∼
λ1 ≤ 0, the state vector x1 will arrive at zero in a finite time T1 = T*

1,
such that

T*
1 ≤

1
µ1(1− γ)

ln

(
µ1V1−γ

1 (x1(0)) + ν1

ν1

)
(61)

Case 2: if
∼
λ1 > 0, x1 will arrive at zero in a finite time T1 ≤ T*

1 + T′1, such that

T′1 ≤
∼
λ1 ≤

∼
λ1(0)
ρ1

, (62)
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where V1 represents the Lyapunov function candidate such that

V1(x1) =
Q1

1 + Q1
s1+Q1

1 > 0 (63)

and ρi < s(1+Qi)γ
i (t′i), t′i < T′i.

To verify the convergence of x1 to zero within time T1, we will show that
V1(x1) + µ1V1(x1) + ν1Vγ1 (x1) ≤ 0, ∀x1.

Let λ1 = sup
(
|s1|(1+Q1)(1−γ)σ1(x1)

)
be some new unknown parameter, λ̂1 be its

estimate, and
∼
λ = λ1 − λ̂1. Differentiating V1(x1) with respect to time, we obtain

.
V1(x1) = s1(x2 − ∆1(x1, t))−

∼
λ1

.
λ̂1 + λ1

.
λ̂1

≥ s1(x2 − x2d) + s1x2d + s(1+Q1)γ
1 ×

(
|s1|(1+Q1)(1−γ)σ1(x1)

)
−
∼
λ1

.
λ̂1 +

∼
λ1

.
λ̂1

(64)

Then, it follows that

.
V1(x1) ≤ s1(x2 − x2d) + s1x2d + s(1+Q1)γ

1 λ̂1 +
∼
λ1

(
s(1+Q1)γ

1 −
.
λ̂1

)
+
∼
λ1

.
λ̂1

≥ 2s1|s2|Q2 + s1x2d + s(1+Q1)γ
1 λ̂1 +

∼
λ1

(
s(1+Q1)γ

1 −
.
λ̂1

)
+
∼
λ1

.
λ̂1.

(65)

Combining (59),(60), and (63), for s2 = 0, we arrive at
.

V1(x1) ≤ −2µ1s(1+Q1)
1 − 2ν1s(1+Q1)γ

1 +
∼
λ1

.
λ̂1

≤ −µ1V1(x1)− ν1Vγ1 (x1) +
∼
λ1

.
λ̂1

(66)

Case 2(a): For λ1 ≤ 0, since
∼
λ1 ≥ 0,

.
V1(x1) + µ1V1(x1) + ν1Vγ1 (x1) ≤ 0. By (61), x1

arrives at zero in finite time.

Case 2(b): For
∼
λ1 > 0, as s1 6= 0 and considering

∫ .∼
λ1dτ = −

∫
s(1+Q1)γ

1 (τ)dτ. The

time taken, T′1, for
∼
λ1 to reach zero can be obtained as

0−
∼
λ1(0) = −

∫ T′1

0
s(1+Q1)γ

1 (τ)dτ ≤ −ρ1T′1 (67)

which is like case 2 (62). After reaching time T′1, the system state x1 takes a finite time T*
1 to

converge to zero. Thus, with these conditions, x1 arrives at zero in finite time T1 ≤ T*
1 + T′1.

For step i, when (2 ≤ i ≤ n− 1), similar steps are followed for the subsequent process
as in step 1. For the subsystems,

.
xi = xi+1 + ∆i(x1, . . . , xi, t) (68)

For stability of the system within the pre-determined finite time, along with the
existence of the adaptive control laws, the following requirements must be satisfied:

Under Assumption (i), consider i subsystems (68), such that i = 2 . . . n− 1. If si+1 = 0 and

some Lyapunov functions Vi

(
x1 . . . xi,

∼
λ1 . . .

∼
λi−1

)
> 0 and Vi(·) ≤ 2

(
s1+Q1

1 + · · ·+ s1+Qi
i

)

exist, and a set of virtual controllers x3d . . . x(i+1)d given by

X3d = −s(1+Q2)γ−1
2 κ2

(
x1, x2, λ̂2

)
,

.
λ̂2 = s(1+Q2)γ

2
...

x(i+1)d = −s(1+Q1)γ−1
i κi

(
x1, . . . xi, λ̂i

)
,

.
λ̂i = s(1+Qi)γ

i

(69)
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such that κ2
(
x1, x2, λ̂2

)
> 0, . . . ,κi

(
x1, . . . , xi, λ̂i

)
> 0 are continuous functions and

Vi(·) ≤ −(n− i + 1)
(

i
∑

l=1
s(1+Ql)γ

l

)
− 2
(

i
∑

l=1
µls

(1+Ql)
l

)
− 2
(

i
∑

l=1
νls

(1+Ql)
l

)

+si

(
xi+1 − x(i+1)d

) (70)

where µ > · · · > µi > 0,ν1 > · · · > νi > 0, then for xi(0)—the initial condition for each
system state:

Case 3: if
∼
λi ≤ 0, xi will arrive at zero in finite time Ti = T*

i , where

T*
i ≤

1
µi(1− γ)

ln

(
µiV

1−γ
i (xi(0)) + νi

νi

)
(71)

∼
λi = λi − λ̂i, with λi representing the peak of the unmatched functions.

Case 4: if
∼
λi > 0, similar to case 2(a), xi arrives at zero within finite time Ti = T*

1 + T′1,

such that T′1 <
∼
λi(0)
ρi

, with ρi < s(1+Qi)γ
i (t′i), t′i < T′i.

Step n: Considering the principle of mathematical induction as in [33], it is under-
stood that

Vn(·) = −
{

∑n−1
l=1 s(1+Ql)γ

l + 2
(

∑i
l=1 µls

(1+Ql)
l +∑n−1

l=1 νls
(1+Ql)γ
l

)}
+ sn(xn − xnd)

+sn(u + f(·) + ∆n(·) + dn(·)) + ∑n−1
l=1

dWn
dx1

.
xl + ∑n−1

l=1
dWn
dθ̂1

.
λ̂l −

∼
λn

.
λ̂n +

∼
λn

.
λ̂n

≤ −2
(

∑n−1
l=1 µls

(1+Ql)
l + ∑n−1

l=1 νls
(1+Ql)γ
l

)
+ sn(u + f(·) + dn(·)) + s(1+Qn)γ

n (4ŝn(·) + τn(·) + ρn(·) +ωn(·))−
∼
λn

.
λ̂n +

∼
θn

.
λ̂n

(72)

where Vi(·) = Vi−1(·) + Wi
(
x1, . . . , xi, λ̂1, . . . , λ̂i−1

)
represents the Lyapunov function can-

didate that we consider, such that Wi(·) =
∫ xi

xid
X

1
Qi
i − x

1
Qi
i dX.

From (72), we can now verify that the overall system controller is defined by

U = −(|f|+ dmax)sign(sn)− s(1+Qn)γ−1
n

(
2µn × s(1+Qn)(1−γ)

n + 2νn +

√
1 + λ̂2

n

)
(73)

with updating law
.
λ̂n = s(1+Qn)γ

n (74)

where λn = 4ŝn(·) + τn(·) + ρn(·) +ω(·)n results in

Vn + µnVγn + νnVn ≤
∼
λn

.
λ̂n (75)

From (75), it is understood that every path of the closed-loop system from (68) to
(74) universally provides finite-time stability when taking Lyapunov stability criteria into
consideration.

Theorem 2. For a set of unmatched nonlinear systems, if the control laws are designed as in (59),
(69), and (73), respectively, where Q1, Qn, and γ are taken in accordance that the inequalities below
are satisfied:

(1 + Qn)γ > 1
(1 + Ql−1)γ− 1

Ql
+ Ql > 2, l = 1, . . . n (76)

then the state x1 . . . xn will arrive at zero in finite time T ≤ ∑n
l=1 Tl where the true control signal

U(t) is bounded.
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Proof. Considering a continuous, nonlinear system
.
x = f(x), let there be a C1 Lyapunov

function and some real numbers a > 0, b > 0, and 0 < c < 1, where V(x) is positive
definite and .

V(x) + aV(x) + bV(x)c ≤ 0 (77)

Then, the origins of the system
.
x are universally fast finite-time stable and the settling

time, dependent on x(0) = x0 (the initial state), can be obtained using

T(x0) ≤
1

α(1− γ) ln

(
αV1−γ(x0) + β

β

)
(78)

The inequalities in (77) and (78) ensure faster finite-time stability. From this, we see that
the sliding surfaces si = 0, i = n, . . . , 1 converge in sequence within finite time T. We obtain
s1 = x1 = 0, then x2 =

.
x1−∆1(·) = 0. Similarly, x3 =

.
x2−∆2(·) = 0 . . . xn =

.
xn−1−∆n−1 = 0.

The point of equivalence, x = 0, is arrived at. From (71), as (76) holds good and Q1 > · · · > Qn,
then the virtual controllers x2d, . . . , x(n−1)d stay bounded, from which it is deduced the actual
control signal U(t) also remains bounded. �

3. Results

To verify the effectiveness of the proposed controllers, each control is applied to the
quadrotor-slung load system whose dynamics are defined in this work. While applying
the robust and variable controllers to the system model derived in Sections 2.1 and 2.2, the
following vectors are considered for the dynamics of the overall system.

The parameters defining the multirotor and the slung load are displayed in Table 1. In
each case, the initial flight condition is taken as (x, y, z) = (0, 0, 0) and (φ, θ, ψ) = (0.3, 0.4, 0.5).
The desired trajectory is varied according to the simulation being implemented. The controller
parameters are selected as k1 = diag(2); a diagonal matrix of order 9× 9, k2 = 6 and k3 = 50
where k2 and k3 are also matrices of the same order as k1.

x1 =



ζ

X1
η


, where ζ =




x
y
z


 represents the position of the multirotor, X1 denotes the

position of the slung load as defined in (12), and η = qrot =



φ

θ

ψ


 represents the orientation

of the multirotor. Furthermore, x2 =




.
ζ

X2
ωb


, with X2 calculated as defined in (13), and

.
ζ

andωb representing the linear and angular velocities of the multirotor, respectively. Finally,

x3 =




..
ζ

X3.
ωb


, with X3 calculated as in (14), and

..
ζ,

.
ωb denoting the respective linear and

angular accelerations of the system.
Four different MATLAB simulations are implemented to display the behavior of the

quadrotor-slung load system upon application of the robust and adaptive MSSC in all
planes. The aim is to suppress the oscillations of the pendulum slung load (≤ 0.017c or 1◦),
while simultaneously ensuring the arrival of the multirotor at its desired locations, in
addition to the suppression of any external disturbances within a finite time (<2 s). The
error in the position of the multirotor and the oscillation of the slung load pendulum about
the co-ordinate axes should tend to zero within a finite-time interval.

Simulation 1 − Linear movement: The system follows a path from the origin (0,0,0) to
a point (3,2,1) in space. Hence, (xd, yd, zd) = (3, 2, 1). Figure 2 verifies the convergence of
the system states, i.e., the quadrotor position and the payload swing angle, to the desired
position. Figure 3 displays the control efforts necessary for the robust and adaptive variants
of the proposed controller.
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Table 1. Simulation Parameters.

Parameter Value

Quadrotor Mass (M)
Moment of Inertia (I)

5 kg
2.07 × 10−2 kg·m2

Rotor Speed for hover (ωres) 29,700 m/s
Coefficient of Drag 1.52
Payload Mass (m) 1.0 kg

Length of Second Link ( l) 1.0 m
p1 6
q1 10
p2 15
q2 19
p3 9
q3 13
γ 1.5
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Simulation 2 − Movement along a pre-defined square path: In this scenario, the
quadrotor follows a path along a square of unit length in an anti-clockwise direction.

The system traces the path (x, y, z) = (0, 0, 0) → (1, 0, 0) → (1, 1, 0) → (1, 0, 0)
→ (0, 0, 0). Figure 4 verifies the convergence of the system states to the desired position.
Figure 5 displays the control efforts necessary for the robust and adaptive variants of the
proposed controller.

Simulation 3−Linear movement in the presence of a consistent disturbance vector (im-
pulse): The drone here follows the same path as in the first scenario, but in the presence of
an impulse disturbance vector acting along the co-ordinate axes, which is an addition to the

dynamic model of the system. The disturbance vector is defined by D =




0.1 ∗ rand(1)
0.05 ∗ rand(1)

0.025 ∗ rand(1)


,

where rand() represents a random disturbance vector. Figure 6 verifies the convergence of
the system states to the desired position. Figure 7 displays the control efforts necessary for
the robust and adaptive variants of the proposed controller.
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Simulation 4 −Random Disturbances at unspecified time intervals (intermittent dis-
turbances): In the final simulation, the system is subjected to event-triggered disturbances,
which are introduced at non-uniform time intervals. The magnitude of these disturbances is
variant in nature, ranging from−5× rand(1) to 5× rand(1) along each of the co-ordinate axes.
Figure 8 verifies the convergence of the system states to the desired position. Figure 9 displays
the control efforts necessary for the robust and adaptive variants of the proposed controller.
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4. Discussion

The parameters defining the multirotor and the slung load are displayed in Table 1.
Table 2 displays the step response characteristics of the system when subjected to the different
controllers in their respective scenarios. The simulation results are displayed in Figures 2–9.
Figures 2, 4, 6 and 8 verify the convergence of the system states, i.e., the quadrotor position
and the payload swing angles, to the desired position. Figures 3, 5, 7 and 9 display the control
efforts necessary for the robust and adaptive variants of the proposed controller. From Table 2,
it can be seen that the adaptive control optimizes the overall control of the system by reducing
the SettlingMin parameter by about 20%, in addition to reducing the undershoot by about
30%, hence increasing the overall stability of the system. This is due to the adaptive parameter
∼
λ1, as defined in (60), which adjusts itself based on the difference between the desired and
actual values of the system state, represented by sliding surface parameter s. When the system
recedes or exceeds the desired position, the convergence rate of the system is adjusted by
this parameter, as represented in (61) and (62). This results in an improvement of the settling
time and, subsequently, an optimization of the system convergence. Hence, the adaptive
control determines an optimal finite time of convergence for the system states. Looking at
the control inputs supplied by the control systems in each case, the adaptive control makes
several minute adjustments over the given time, while the robust controller quickly arrives at
what it deems to be the necessary angle of the rotor. The optimization control helps in the
elimination of chattering. Furthermore, the adaptive finite-time control also minimizes the
oscillations of the swinging payload due to the quicker settling time, as seen in Table 3.

Table 2. Step response Characteristics of the System.

Parameter

Value

Simulation 1 Simulation 2 Simulation 3 Simulation 4

Robust Adaptive Robust Adaptive Robust Adaptive Robust Adaptive

Rise Time 3.04 × 10−5 1.84 × 10−5 0.018 3.8 × 10−4 0.0063 0.056 0.0033 0.052

Transient Time 8.23 9.13 10.5 11.72 8.43 9.34 8.31 9.7
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Table 2. Cont.

Parameter

Value

Simulation 1 Simulation 2 Simulation 3 Simulation 4

Robust Adaptive Robust Adaptive Robust Adaptive Robust Adaptive

Settling Time 19.95 20.00 19.98 20.00 19.89 19.95 18.87 19.86

Settling Min −0.11 −0.06 −0.04 −0.03 −0.11 −0.07 −0.11 −0.07

Settling Max 0.03 0.03 0.04 0.02 0.02 0.01 0.03 0.02

Overshoot 9.85 × 103 1.46 × 103 4.08 × 103 7.13 × 102 4.76 × 103 3.38 × 103 9.21 × 103 3.97 × 103

Undershoot 1.25 × 104 0.7 × 103 4.04 × 103 1.02 × 102 5.87 × 103 3.35 × 103 4.15 × 103 3.72 × 103

Peak 0.14 0.079 0.04 0.04 0.138 0.07 0.14 0.076

Peak Time 0.78 0.84 0.75 0.81 0.77 0.83 0.78 0.83

Table 3. Quantitative Data of Simulations.

Parameter
Max Mean RMS

θx θy θx θy θx θy

Simulation 1
Robust 18.07 11.22 0.092 2.2 2.6 2.9

Adaptive 4.63 3.32 0.024 1.2 1.1 1.81

Simulation 2
Robust 10.24 11.17 0.049 3.5 2.1 4.8

Adaptive 2.67 3.09 0.013 1.3 0.81 1.61

Simulation 3
Robust 12.07 52.74 1.1 6.35 9.1 7.17

Adaptive 3.25 15.74 0.2 2.04 1.11 2.23

Simulation 4
Robust 2.83 12.07 0.19 6.25 9.1 7.05

Adaptive 0.81 3.41 0.02 0.91 1.12 5.92

5. Conclusions

In this paper, the dynamic model of a multirotor UAV subjected to a slung load
disturbance, modeled in the form of a single pendulum, is defined. Following this, robust
and adaptive versions of a finite-time multi-surface sliding mode control are proposed
and subsequently applied to the multirotor-slung load system. The proposed controllers
are both effective in accounting for unknown system parameters and disturbances within
a finite-time interval. The simulation results highlight the overall effectiveness of the
adaptive finite-time MSSC over the robust finite-time MSSC, as the proposed adaptive
control reduces the settling time by 20% and decreases the undershoot of the system
dynamics by about 30%, in comparison to the robust control. It also provides an optimal
finite-time convergence of the system state vector, hence increasing the overall stability of
the control. With the disturbances in this case having only been simulated, there is scope
for real-time uncertainties, such as wind, to be imposed upon an actual multirotor and for
this control to be experimentally tested. Hence, future work will include the development
and testing of an adaptive control to learn about and handle the matched and mismatched
uncertainties that a multirotor UAV experiences in real time.
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Abstract: In the present day, unmanned aerial vehicle (UAV) technology is being used for a multitude
of inspection operations, including those in offshore structures such as wind-farms. Due to the
distance of these structures to the coast, drones need to be carried to these structures via ship. To
achieve a completely autonomous operation, the UAV can greatly benefit from an autonomous surface
vehicle (ASV) to transport the UAV to the operation location and coordinate a successful landing
between the two. This work presents the concept of a four-link parallel platform to perform wave-
motion synchronization to facilitate UAV landings. The parallel platform consists of two base floaters
connected with rigid rods, linked by linear actuators to a top mobile platform for the landing of a
UAV. Using an inverse kinematics approach, a study of the position of the cylinders for greater range
of motion and a workspace analysis is achieved. The platform makes use of a feedback controller
to reduce the total motion of the landing platform. Using the robotic operating system (ROS) and
Gazebo to emulate wave motions and represent the physical model and actuator system, the platform
control system was successfully validated.

Keywords: parallel manipulator; unmanned aerial vehicle; inverse kinematics; screw theory;
reciprocal screws; PID controller; robot operating system; wave-motion synchronization

1. Introduction

Closed-loop mechanisms are parallel manipulators of a fixed and a moving platform
connected by a set of kinematic chains [1]. The main advantages of a parallel manip-
ulator are its high stiffness, compact size, capability for control with large bandwidth,
robustness against external force and error accumulation, high dexterity, and suitability
for accurate positioning systems [2]. The downsides of this type of mechanism are its
limited workspace, and, because of the nonlinearity and complexity of the equations, a
forwards dynamics solution is very challenging and complex to obtain. Concerning the
design process of robotic mechanisms, serial kinematic chains are somewhat limited in
their arrangements for a given motion pattern. This is not true for parallel mechanisms,
which can have a very large variation of arrangements for a given motion pattern [3]. Some
of the more famous examples of closed-chain mechanisms can be found in the Delta robot
or the Stewart–Gough platform [4], illustrated in Figure 1. Evaluation of the degrees of
freedom (DoF) of the end-effector constitutes one of the core issues in free-motion analysis
of parallel mechanisms. In contrast to serial mechanisms, classical approaches, such as the
traditional Kutzbach–Grübler criterion, are not valid for certain complex spatial parallel
mechanisms [5]. According to the work of Merlet [6], the most widely used methods for
structural synthesis of parallel mechanisms are divided into three main approaches, namely,
graph theory, group theory, and screw theory. Kong and Gosselini [7] later introduced the
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concept of virtual chains for the type synthesis of parallel mechanisms. These authors also
performed a mobility analysis using the screw-theory-based virtual-chain approach for
numerous of different possible configurations of parallel robots. The theory of reciprocal
screws was first introduced by Zhao et al. [8] and has since been used in many other works
related to the field of parallel mechanisms and DoF estimation problems [9–11]. Regarding
the development of parallel manipulators, there is a need to identify the workspace of
these mechanisms, which frames the reachable positions of the centroid of the end-effector.
The workspace of a parallel manipulator imposes limitations that depend on its practi-
cal application [12]. Determining the boundary of a workspace typically relies on the
manipulator’s pose parameter discretization. To establish the set of possible, reachable
positions, the joint limits and a kinematic model of the mechanism must be established.
This can be accomplished with either forward kinematics [13] or inverse kinematics [14]
approaches. Due to the multiple limbs of parallel mechanisms, solutions for forward
kinematics require numerical problem-solving, while inverse kinematics can be solved
analytically [15]. Parallel manipulators have seen a wide variety of applications in different
fields [16,17]. The advantages provided by parallel mechanisms potentiate the application
of robotics for numerous applications, such as Jones and Dunlop’s proposal of a closed-loop
mechanism for satellite trackers [18]. Wapler et al. [19] used a Stewart platform to design a
high-precision surgery mechanism with an accuracy of 20 µm.

Figure 1. Popular parallel mechanisms [1].

Compared to traditional power generators on land, offshore wind energy technol-
ogy presents the benefit of collecting more power due to stronger winds and the absence
of landscape effects [20]. However, since offshore structures have difficult accessibility,
implementation and maintenance can be time-consuming and costly [21]. Under these
conditions, to reduce costs and avoid hazard to humans, underwater vehicles and inspec-
tion UAVs are an attractive option. Intervention autonomous underwater vehicles can be
used together with imaging systems for inspection [22] and robotic arms for repairing [23].
UAVs can be equipped with imaging systems and perform pre-established paths for the
inspection of critical parts of the structure [24]. Nonetheless, these technologies are yet in
an incipient stage of evolution [25]. For offshore operations, UAVs often need a place to
land closer to the structure, which ASVs could potentially provide. The motion caused
by waves is mostly unpredictable, and, depending on sea conditions, it can produce large
displacements of roll, pitch, yaw, sway, surge, and heave motions on a surface vehicle.
Being so highly dependent on the weather and sea conditions, working in offshore envi-
ronments often leads to a low working efficiency and economic loss due to unworkable
conditions. The recent literature has explored the potential for cooperation between ASVs
and UAVs in the automatic launch and recovery of the UAVs. These applications usually

177



Machines 2023, 11, 478

employ vision techniques, so the UAV is capable of detecting the landing pad located on
an ASV. However, these techniques are still vulnerable to highly dynamic sea states [26].
To overcome the difficulties of landing the UAV, Li et al. [27] developed an ASV with an
attitude-prediction controller designed by a bidirectional long-short term memory neural
network and a proportional–integral–derivative (PID) pose controller for the UAV to guar-
antee real-time synchronization movement of the UAV–ASV. Their results showed that this
type of cooperation effectively improves the landing accuracy. Furthermore, Liu et al. [28]
explored the potential of parallel mechanisms for UAV landings in highly uneven and
unstructured land terrain using a three-RRR-limb parallel mechanism that functions both
as a manipulator and as adaptive landing gear. Outside the UAV-related research, some
attempts at wave-motion compensation using parallel mechanisms are exemplified in the
work of Guo et al. [29], which proposes a 4-CPS/RPS parallel mechanism with a classic PID
controller to mitigate wave motion induced in a ship. Chen et al. [30] proposed a parallel
manipulator driven by pitch and roll active motion compensation with a fuzzy sliding
mode controller and a PID controller to diminish the risk of humans getting in and out
of offshore wind turbine structures. Cai et al. [31] studied the concept of a ship-mounted
Stewart platform for equipment such as cranes and drilling platforms to eliminate the
effect of wave-induced ship motions, effectively increasing the workable time for offshore
installations. A common issue many of these works face is that, due to the variability of
sea conditions, a controller system may be adequate for a given sea state and inadequate
for others.

The ATLANTIS project [32] aims to establish an infrastructure to allow the demonstra-
tion of key enabling robotic technologies for the inspection and maintenance of offshore
wind turbines. One of the focuses of this project is the use of UAVs for blade inspection.
Considering the distance of offshore structures to shore and the limited capabilities of UAV
batteries it is necessary for UAVs to be recovered near the mission site after completing
the inspection. Considering the set of advantages offered by a parallel mechanism, this
work proposes a novel motion-compensated four-UPR parallel platform designed for the
autonomous landing of UAVs in offshore environments based on the theory of reciprocal
screws. There has been some work dedicated to a four-UPU parallel mechanism, which
has Shöenflies type-motion (three translations plus one rotation) [33]. However, for the
intended purposes, the platform presented in this work only needs two rotations around
the x and y-axis to compensate for wave motions and one translation along the z-axis to
position the landing platform. Thus, a variation of the four-UPU platform is introduced
with the four UPR limbs. This variation is not described in the literature. Parallel mech-
anisms with fewer than six DoFs excel in terms of simpler structure, easier control, and
lower cost. While this mechanism can be achieved with three limbs, a fourth one adds
more rigidity and maintains the symmetry of the ASV. Having a permanently horizontal
platform to land, the UAV is much less susceptible to land in an uneven position and topple,
possibly damaging its sensors/structure or, in a worst case scenario, falling overboard.
The first tests of this platform are to be conducted at the ATLANTIS test centre’s buoy
DURIUS. DURIUS is close to the coast, so the wave dynamics will not be as harsh as in
offshore environments. To test the concept of the four-UPR mechanism for different wave
states, this work implements a PID controller to establish a baseline performance, which
provides a good solution for these conditions. This work addresses the difficult task of
safely launching and recovering a UAV on a landing pad influenced by wave motions. The
implementation of this platform offers more flexibility in UAV–ASV cooperative missions
for offshore wind-turbine inspection.

This work is organized as follows: In Section 2, the problem and platform mechanism
presented in this paper are described, as well as a DoF analysis based on the theory of
reciprocal screws. Section 3 describes the systematic approach and solution for the inverse
kinematics of a four-UPR parallel mechanism. From this solution, the limb lengths, position,
and velocity of the passive joints are obtained for any given position and orientation of the
mobile platform. Section 4 details the workspace and limits the analysis of the platform.
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Section 5 presents the platform-simulation environment and the results of the implemented
PID controller. Finally, Section 6 provides a discussion of the proposed work.

2. Platform Description
2.1. Problem Statement

One of the greatest limitations in UAV–ASV cooperative motions is in landing the
UAV safely in highly dynamic sea states. Wave-motion compensation has been a topic
of research for some time; however, there have been few attempts at tackling the issue of
landing UAVs on a platform at sea. This is a difficult task, since highly dynamic waves
and wind will induce significant angular displacements on the platform, and a bad landing
can be devastating for the UAV. In this work, we attempt to tackle this challenge using a
parallel mechanism that is capable of maintaining a horizontal position while the drone
is trying to land. Consider the mission illustrated in Figure 2. Here, the main steps of the
mission are as follows: the UAV takes off from the platform near the structure; it performs
the inspection of the structure and registers relevant data using sensors, such as visual
cameras and LiDARs (light detection and ranging); upon completing the inspection, the
drone returns to the ASV using a perception system that combines visual, thermal, and
three-dimensional LiDAR to detect an ArTuga equipped on the ASV [34]; once detected,
the UAV attempts to land on the ASV’s platform. This work addresses the first and last
steps, which involve the launch and recovery of the UAV.

Figure 2. UAV–ASV cooperation for inspection and maintenance of offshore wind turbines.
Mission schematic.

The proposed ASV has a 4-UPR mechanism depicted in Figure 3 with a top mobile
platform for the landing of UAVs linked to the floating base platform with four limbs. Each
limb consists of a revolute joint (R-joint), followed by a prismatic joint, and ending in a
universal-joint (U-joint). The limb length is characterized by li. This mechanism is capable
of translational movement along the z-axis and rotational movements along the x- and
y-axis. The orientation and position of the platform is provided by an inertial measurement
unit (IMU) installed in the base platform. The centre point of the global coordinate system
is located at origin O (centre of the base platform).
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Figure 3. The 4-UPR platform mechanism schematics.

The top and bottom joints of the platforms form a square with side a and b, respectively.
The z-axis is perpendicular to the platform, and the x-axis and y-axis are oriented in such a
way that the positions of the bi joints are given by:

b1 =
[

b/2 b/2 0
]T

b2 =
[

b/2 −b/2 0
]T

b3 =
[
−b/2 −b/2 0

]T

b4 =
[
−b/2 b/2 0

]T

(1)

It is assumed that ai is the position of the upper platform joints relative to the origin
frame. The mobile frame of reference, p, located at the centre of the upper platform, is
oriented with the Z-axis perpendicular to the mobile platform, and the X-axis and Y-axis
are oriented in such a way that the positions of the ai joints relative to p are:

pa1 =
[

a/2 a/2 0
]T

pa2 =
[

a/2 −a/2 0
]T

pa3 =
[
−a/2 −a/2 0

]T

pa4 =
[
−a/2 a/2 0

]T

(2)

For a proper workspace definition, the limits of each joint need to be established. The
prismatic joint is representative of an electric actuator with a retracted cylinder size of
0.7225 m, with a stroke of 0.4 m, defining li as 0.7225 ≥ li ≥ 1.1225 m. The angle between
the two parts that constitute a U-joint can be represented by βi =

[
roll pitch 0

]
, where

roll and pitch represent the angle around the local joint frame’s xi and yi axis, respectively.
The U-joint roll and pitch angles can be defined by the dot product of the limb frame x-
and y-axis with the joint frame x- and y-axis. The limb frame is a rotation of the joint frame,
where z is axial to the limb. The joint limit established for the U-joints is 30 degrees, as it is
a common limit in standard models, defining β as −45 ≥ β ≥ 45 degrees.

As shown in Figure 4, the base platform consists of two floaters connected by rigid
rods. The U-joint’s position at the base, bi, and the R-joint’s position at the upper platform
are adjustable, so the length of a and b can be optimized for greater mobility and angular
velocity. A key point for establishing the configuration of the centroid p is the position in
the global frame Z-axis. A lower centre of gravity will allow the platform not to topple with
more aggressive wave amplitudes. Another important aspect to consider is the distance
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between the platforms, in order to avoid a collision between the two bodies when rotating
the top part. The top platform is a square with size 2 × 2 m2. To avoid a collision, a
relationship between the platform orientation and the z position of the platform needs to
be established. Consider α the angle between the z′-axis and z-axis of the frame p, where
the z-axis is the z-vector of the platform initial orientation, given by

[
0 0 1

]
, and the

z′ vector is the z-axis after a rotation. Thus, α can be obtained by the dot product of z and
z′ as:

α = arccos
z · z′

‖z‖ × ‖z′‖ ‖z‖ > sin (α)×
√

2 (3)

Figure 4. 3D model of the 4-UPR platform mechanism.

2.2. Degree of Freedom Estimation

To determine the quantity, type, and direction axes of the end-effector DoFs for the
4-UPR platform presented in this work, the applied method relies on screw theory and
reciprocal screw systems. In this method, the constraint space of the end-effector is studied
according to the terminal constraint space of its kinematic chains. As previously mentioned,
this method was first developed by Zhao et al. [8]. A more mature demonstration is
presented in the book by the same author [5]. Let us consider the kinematic chain presented
in Figure 5, which represents the ith limb of the platform.

Figure 5. Kinematic chain of the ith limb of the platform.
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The Plücker coordinates of the kinematic pair of the joints belonging to the limb can
be written as:

$1 =
[

0 1 0; 0 0 0
]T (4)

$2 =
[

1 0 0; 0 0 0
]T (5)

$3 =
[

0 0 0; 0 cos βi sin βi
]T (6)

$4 =
[

1 0 0; 0 −li × sin βi li × cos βi
]T (7)

Now, the Plücker coordinates of the limb, $li , are defined as:

$li =
[

$1 $2 $3 $4
]T (8)

According to reciprocal screw theory, two screws that satisfy Equation (9) are a pair of
reciprocal screws. According to the physical meaning of reciprocal screws, the reciprocal of
$li denotes the constraints forces applied to the kinematic chain.

$T∆$r = 0 (9)

∆ =

[
0 I
I 0

]
(10)

where ∆ is a 6× 6 matrix. The solution for $r
li

can be obtained with linear algebra methods.

$r
li =

[
1 0 0; 0 0 0
0 0 0; 0 0 1

]T

(11)

which denotes a pure couple that is parallel to the z-axis and a force parallel to the x-axis.
The movement constrained by $r

li
is given by $m

li
=
[

0 0 1; 1 0 0
]T , denoting a

rotation parallel to the z-axis and a translation along the x-axis. In the global frame of
reference, O− XYZ (see Figure 3), the constrained motion screw can be represented as:

$m
li =

[
0 0 1; cos αi sin αi 0

]T (12)

where αi is the angle of the local x-axis of the ith limb to the global frame of reference.
The constraints of the end-effector are directly related to the terminal constraints of the
kinematic chains. It is possible to find the constraints of the end-effector by analysing the
span ($C

P) of its constrained motions:

$C
P = span

{[
$m

l1
$m

l2
$m

l3
$m

l4

]T
}

(13)

$C
P =




0 0 1; 0 0 0
0 0 0; 1 0 0
0 0 0; 0 1 0


 (14)

The DoF of a mechanism are given by F = 6− d, where d is the number of dimensions
that all the reciprocal screws can be spanned in the normal linear spaces. It is clear that this
parallel mechanism has 3 DoF and can rotate about the X and Y-axis and translate in the
Z-axis.

3. Inverse Kinematics

Inverse kinematics refers to the construction of the kinematic equations, so that, for a
given end-effector position, the joint variables can be established. The orientation of the
upper platform is defined by a rotation matrix around the roll (θx) and pitch (θy) angles,
provided by an IMU on the bottom platform. Since it is not possible, nor advantageous, to
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control the yaw of the platform, it is assumed that θz is always zero. The rotation matrix is
given by:

R =
[
RyRx

]
=




cθy sθx × sθy sθy × cθx
0 cθx −sθx
−sθy cθy × sθx cθy × cθx


 (15)

where c and s are the cosine and sine trigonometric functions. Considering the DoFs of the
platform, at any time instance, the state of the upper platform can be represented with the
orientation θ and the centroid position P, in global coordinates, given by:

P =
[

0 0 Pz
]

θ =
[

θx θy 0
] (16)

The position of the upper U-joints, ai, can be solved as:

ai = P + R× pai (17)

Substituting Equations (2), (15), and (16) in Equation (17) gives the position of all top
platform joints. Since the lower U-joint’s position is a known constant, the length of each
limb (li) can be determined as:

li =
√
[ai − bi][ai − bi]

T (18)

This parameter defines the necessary length of the prismatic cylinders, and there-
fore the control input, for the desired platform position and orientation. The vector that
represents the ith limb is given by:

Si = ai − bi (19)

The unit vector that defines the ith limb is:

si = Si/li (20)

Considering θ̇ = [θ̇x, θ̇y, 0]T as the angular velocity and Ṗ = [0, 0, Ṗz]T the linear
velocity of the centroid p, the velocity of each limb can be determined as:

Ṡi = θ̇ × ai + Ṗ (21)

The sliding velocity, given by the velocity component along the limb, can be deter-
mined as:

l̇i = si · Ṡi (22)

The inverse kinematics analysis enables the study of how the different design pa-
rameters of the platform influence the constrictions of movement. The different design
parameters are considered as:

• Side a of the top platform, which denotes the position of the top joints. Smaller values
of a mean more angular movement is achieved for shorter strokes, which can be
explored to compensate for slower linear actuators. On the other hand, small values
of a can lead to some instability regarding the stiffness of the mobile platform.

• Side b of the base platform, which denotes the position of the bottom joints. By
distancing the bottom joints from one another, it is expected that the mechanism is
more stable for harsher dynamic conditions. However, the steepness of the linear
actuators also influences the angular speed of the mobile platform.

• Position along the Z-axis. This design parameter is adaptable even after construction,
as it depends entirely on the linear actuator’s stroke position. The major influence
of this parameter is on the joints and collision limits of the mobile platform, and the
position of the centre of mass of the mechanism.

183



Machines 2023, 11, 478

4. Workspace Analysis

The workspace of a robot is defined by the volume of space reachable by its end-
effector. For this parallel mechanism, let us consider that the end-effector is defined by
the upper platform’s centroid, p, and the position of the top joints, ai. Due to the nature
and application of this mechanism, it is not necessary to control the z-position while
compensating for the wave motions. However, due to the limits of the platform, be it either
through collision within itself or the joint limits established in Section 2, the position of
the platform in the Z-axis can be studied to conciliate the platform stability with the range
of motion. Using the inverse kinematics analysis performed in Section 3, the joints and
platform positions, as well as the limbs length and orientations, can be calculated. The
bottom U-joint angles, β, can be obtained through the si unit vectors:

si =
[

sxi syi szi
]

(23)

βxi = arccos(sxyi · si) (24)

sxyi =

[
sxi syi 0

]
∥∥[ sxi syi 0

]∥∥ (25)

βyi = arccos(sxyi ·
[

0 1 0
]
)− π

4
(26)

In Equation (26) we subtract π/4, since the local y-axis of the joint is at 45 degrees to
the global Y-axis. Due to the disposition of the platform and the symmetrical nature of the
joint’s disposition the top platform R-joint angles, γi, can be obtained as:

γi = arccos
(

p− ai
‖p− ai‖

· si

)
(27)

The superscript “(·)0” refers to the initial time instance. For the workspace analysis,
the required numerical elements are the size of a and b and the position of z0, as well as the
limits of each joint. The workspace of the platform at position z0 can be defined through
a sweep, where the limits are computed through each iteration of possible roll and pitch
combinations. To ease the computation load, the limits for non-composite movements (only
roll or only pitch) were first determined for z0 = 0.5 m, a = 0.2 m, and b = 1.25 m. The
choice of z0 is determined by the maximum angle required to stabilize the upper platform
for a specific wave height. To determine the optimal value of z0, an iterative process was
performed using the simulator presented in Section 5. Considering the roughest wave
parameters used in the simulations, in a sea state of 3 on the Douglas sea scale, this angle
was found to be 20 degrees, which justifies z0 to be 0.5 m. The results of the sweep are
shown in Table 1. For this mechanism, the limits of the roll and pitch of the end-effector are
identical. In addition, the lower and upper limits are symmetrical.

Table 1. Range of motion for the roll and pitch of the end-effector at z = 0.5 m.

Motion Variable Range of Sweep Verified Limit Units

Pitch −π/2 to π/2 −π/9 to π/9 rad
Roll −π/2 to π/2 −π/9 to π/9 rad

For the set values of z0, a, and b described above, the workspace of the upper plat-
form ai U-joints can be seen in Figure 6. The edges of the upper platform (2× 2 m2) are
represented by a green outline in Figure 6a. For better clarification, the same plot can be
observed in Figure 6b, with more resolution and without the edges. The projected 2D range
of motion of the U-Joint a1 can be seen in Figure 7.
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(a) (b)
Figure 6. Workspace analysis of a 4-UPR platform for z = 0.5 m: (a) Workspace with platform outline;
(b) Workspace without platform outline.

Figure 7. Workspace analysis for optimum configurations projected in 2D space for z = 0.5 m.

The workspace of the platform shows that the limits of the roll and pitch of the
platform change with one another. For example, in an orientation where the platform has
a pitch of π/9 degrees, the roll limit is at 0 degrees. This relationship can be analysed
with a sweep, where the resulting plot can be seen in Figure 8b. The filled area shows the
possible combinations for orienting the platform. That area can also be represented by
Equation (28). √

θ2
x + θ2

y ≤
π

9
(28)

Due to the property of the upper and lower limits of this specific case, one can quickly
identify the radius of the circle as either the pitch or roll upper limit in the case of z0 = 0.5 m.
The only constraint in this configuration of the mechanism is the collision between the top
and bottom platforms (Equation (3)). It is correct to assume that a higher z0 will mean a
higher platform mobility, at least until the joints start reaching their limits and at the cost
of a higher centre of mass, meaning less stability. This relationship is demonstrated in
Figure 8a.
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(a) (b)
Figure 8. Roll and pitch limit analysis: (a) Roll and pitch limit variation with distance between
platforms; (b) Allowed platform orientation in degrees for z = 0.5 m.

5. Simulation and Results

To validate the design and evaluate the concept of the four-UPR platform, a demon-
stration is presented in a simulated environment, recurring to the ROS framework and the
Gazebo simulator to model the platform joints and links and simulate the control of the
mechanism and the wave motions. A screenshot of the simulator can be seen in Figure 9.

Figure 9. Screenshot of the simulator in Gazebo 11.

The robot is modelled in a Unified Robot Description Format (URDF), an XML format
to represent robots. However, due to the tree-like structure of the URDF format, it is
impossible to model a parallel mechanism without some workarounds. To solve this issue,
a virtual chain was created to link the top platform to the bottom one, and the four kinematic
chains were then connected to the top platform via a script that continuously calculates
the joint angles over time using the equations described in Sections 2 and 3, recurring to
static links that represent s0

i , to have a static reference frame within the robot (see Figure 10).
The virtual chain that models the top platform movement is analogous to dim $C

P in
Equation (13).

The intended purpose of the platform is to maintain the top platform in a horizontal
position in an ocean surface environment. Using the information gathered by the IMU in
the bottom platform, it is possible to compute the length of the prismatic actuators that, for
a given orientation of the bottom platform, the top platform tends towards a horizontal
position. A position controller is used for this task. The encoders on the prismatic actuators
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give the current lengths of the limbs, and the data provided by the IMU and the equations
described in Section 3 give the desired lengths of the limbs. The adopted control system
takes the desired position and orientation of the top platform as input, and the output
gives the limb’s desired length, with a feedback PID controller to improve the stability and
accuracy of the outputs. The PID controller was manually tuned for the simulator. The
values of kp = 5000.0, ki = 0.5, and kd = 10.0 will likely have to be adjusted for the real
mechanism. A diagram of the control system can be seen in Figure 11.

Figure 10. Tree structure of the platform links. Dashed lines—scripted connections.

Figure 11. Control system of the 4-UPR platform.

The operational conditions of the platform are determined by several factors, including
the capabilities of the UAV, the joint limits, and the sea state. The technical aiding equipment
limitations, such as the support boat, also contribute to these conditions. A wave height of
1 m is defined as the the platform’s operational limit, which corresponds to wave state 3 on
the Douglas sea scale. Additionally, the UAV cooperating with this platform should not be
operated in wind speeds exceeding 20 knots as its control starts becoming unreliable.

The maritime environment is physically simulated using the Gazebo plug-ins from
Virtual Robot X [35]. The wave motions follow the model of Gerstner Waves [36] to approx-
imate the influence of ocean waves in a simplified manner intended to balance physical
fidelity and visual realism with real-time execution requirements. The motion of the bottom
platform can be obtained with an IMU, which provides the orientation, angular velocity,
and linear acceleration. In order to compare the movements of the top and bottom plat-
form, another IMU is placed in the top platform. Since the control of the mechanism is
executed with a position controller, the efficacy (η) of the mechanism for a given wave
state and cylinder velocity is given by Equation (29), where αbottom denotes the angle of the
Z-axis to the Z′-axis in the global frame O, provided by the IMU. The same logic applies
to αbottom. Considering that the prismatic actuators have a linear speed of 0.1 m/s, which,
depending on the current orientation of the platform, translates to an angular velocity
up to 1.7 rad/s of the upper platform, the results for different wave states are shown in
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Table 2. The selected wave parameters were based on realistic values that can be measured
in the different wave states. While there is generally a correlation between wave height and
period, the shorter periods for some large waves reflect how the platform may respond to
rapid changes in steepness. All the tests were conducted over 30 s. The resulting plots are
shown in Figure 12. The machine conducting the simulations has an i5-10600K CPU @ 4.10
GHz, a GeForce RTX 2060, and 15.5 GiB memory, running ROS Noetic and Gazebo 11.

η = %
∫ t

0

αbottom − αtop

αbottom
dt (29)

Table 2. Efficacy of the mechanism for different wave states.

Wave State Number of Waves Amplitude [m] Period [s] Direction [x,y] η (%)

1 1 0.2 3 [1,1] 98.23
2 2 0.2;0.3 5;3 [1,0];[0,1] 97.16
3 3 0.2;0.3;0.4 7;5;3 [1,0];[0,1];[1,1] 94.84

Figure 12. Resulting plots for the different wave states presented in Table 2.

Overall, the mechanism has a very good η for calmer (lower amplitudes, longer
periods) wave states. However, as the waves grow more aggressive, the mechanism tends
to have a much lower η. This can be attributed to three factors:

• The speed capacity of the linear actuators: with faster cylinders, the position correction
can also occur faster, which will lead to less motion of the top platform. To improve
the stability, one can acquire a more expensive, albeit faster, cylinder, which can be
harder to control properly.

• The adopted control system: the simplicity of the adopted control system leads to poor
adaptation to quick rates of change induced by waves with high amplitudes and short
periods (evidenced in Figure 12). Due to tidal wave predictability and stability, and
since UAVs usually do not operate well in strong winds (which cause highly irregular
waves), the implementation of a predictive control system is recommended. Other
studies such as that of Halvorsen et al. [37] have shown the success of this type of
prediction algorithm for wave synchronization for rougher sea states.

• The small size of the vessel also implies that its roll and pitch orientation will be more
affected by the wave’s motion. Thus, a bigger vessel could also provide better stability.

6. Discussion

This paper presented a surface vessel with a landing platform for UAVs consisting of a
four-UPR parallel manipulator with three DoFs for wave synchronization. The estimation
of the platform’s DoFs was achieved using the well-established reciprocal screw theory.
The mechanism can perform roll and pitch rotations as well as translations in the Z-axis.
An inverse kinematics approach allowed a better understanding of how the variation of the
parameters of the platform affects the mechanism properties. The workspace representation
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was achieved with a numerical sweep that checks all the possible orientations for a given z
of the upper platform. For z = 0.5 m, the platform pitch and roll combinations are limited
to the area of a circle, given by Equation (28). The mechanism concept was further tested
in a simulated scenario, resorting to ROS and Gazebo to emulate the physical model and
environment. The inverse kinematics analysis and the use of a virtual chain were able to
overcome the limitation of closed-loop chains in URDF files and achieve satisfying results
in terms of the expected behaviour in these types of mechanisms. The control system
applied in this work showed satisfying results for lower wave amplitudes (up to 0.4 m),
with an η of 94.84%. This metric shows how well the top platform was able to sustain
the horizontal position compared to the bottom one. However, for more aggressive sea
states, the η starts dropping considerably, implying that a more robust control system is
needed. Overall, the results achieved with this work show how wave synchronization in
small surface vessels can be achieved with the methods demonstrated and the limitations
imposed by the sea state.

Author Contributions: P.P., conceptualisation, validation, investigation, writing—original draft
preparation; R.C., writing—review and editing, supervision; A.P., writing—review and editing,
supervision, funding acquisition, project administration. All authors have read and agreed to the
published version of the manuscript.

Funding: This work is funded by the European Commission under the European Union’s Horizon
2020—The EU Framework Programme for Research and Innovation 2014–2020 under grant agreement
No. 871571 (ATLANTIS).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:
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Abstract: Pest birds are a salient problem in agriculture all around the world due to the damage they
can cause to commercial or high-value crops. Recent advancements in Unmanned Aerial Vehicles
(UAVs) have motivated the use of drones in pest bird deterrence, with promising success already being
demonstrated over traditional bird control techniques. This paper presents a novel bird deterrence
solution in the form of tethered UAVs, which are attached and arranged in a grid-like fashion across
a vineyard property. This strategy aims to bypass the power and endurance limitations of untethered
drones while still utilising their dynamism and scaring potential. A simulation model has been
designed and developed to assess the feasibility of different UAV arrangements, configurations, and
strategies against expected behavioural responses of incoming bird flocks, despite operational and
spatial constraints imposed by a tether. Attempts at quantifying bird persistence and relative effort
following UAV-induced deterrence are also introduced through a novel bird energy expenditure
model. This aims to serve as a proxy for selecting control techniques that reduce future foraging
missions. The simulation model successfully isolated candidate configurations, which were able to
deter both single and multiple incoming bird flocks using a centralised multi-UAV control strategy.
Overall, this study indicates that a grid of autonomous ground-tethered UAV platforms is viable as
a bird deterrence solution in agriculture, a novel solution not seen nor dealt with elsewhere to the
authors’ knowledge.

Keywords: unmanned aerial vehicle; UAV; tethered UAV; pest bird control; drone; intelligent system;
path planning

1. Introduction

Damage caused by birds is a long-standing and costly problem in agricultural sectors
across the world, especially in high-value crops such as blueberries, cherries and wine
grapes [1–4]. The United States—considered one of the top five agriculture-producing
countries globally [4]—experienced more than USD 800 million in losses in 2004 solely due
to European Starlings, with total losses from all bird species estimated in excess of USD
4.7 billion [5]. The heavy damage is attributed to the fact that most of the existing bird
damage control methods have not proven to be effective [2].

With improvements in UAV platforms and autonomous technologies, several stud-
ies have explored the use of UAVs, in particular multirotor type UAVs, as an effective
form of bird deterrence through pursuit and shepherding manoeuvres [6–9]. Wang et al.
in [7] utilised a novel predator multirotor UAV system and demonstrated successful bird
deterrence up to a 50 m radius centred on the UAV itself. Similarly, a study in [10] used
a quadcopter system to deter birds from a vineyard in the United States and concluded
that random patterns and distress calls could significantly reduce bird foraging activity
in the region, with up to a 50% reduction during flight cycles compared to controlled
no-flight cycles over a 14-day period. Anecdotally, many farmers have also started using
commercial off-the-shelf UAVs for bird deterrence with some success. However, these
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UAVs still require human operators throughout their mission to be successful. Evidently,
for a bird deterrence system to be cost-effective, it must aim to be autonomous and mitigate
any additional manual labour. If the user is required to dedicate a large portion of their time
using the bird control system, then they lose productive time that could be used elsewhere
on the property.

A major limitation of current multirotor UAV technologies is their limited flight time
and endurance. Most typical small multirotor UAVs have an endurance of approximately
10 to 30 min before they need to recharge [11]. This directly conflicts with the established
aim of mitigating additional manpower since an operator would be required at frequent
intervals throughout the day to recharge the UAV or replace its battery.

A potential solution to this problem is using a power-over-tether multirotor system. Recent
advancements in tether technology have enabled capabilities such as the ground stations in [12–
15], with the one in [12] autonomously varying a 12 m long tether, using a winch system to
ensure that the tether is kept taut without excessively pulling on the multirotor and impacting
its dynamics. Compared to a free-flying multirotor with limited endurance, such a system
would have indefinite endurance through power delivered via their physical tethers from
a ground station. The tether would also improve safety by physically restricting the flying
vehicles’ movements, preventing collision accidents, and removing fly away concerns, which
would make the system more likely to be approved by regulators.

The objective of this paper is to explore the feasibility of using multiple multirotor
UAVs that are tethered to the ground in a grid-like manner to deter bird flocks from a given
property. The project builds on the prior study in [7,8,16] to develop a simulation model
and investigate the suitable UAV arrangements, configurations, and strategies against
expected behavioural responses of incoming bird flocks.

2. Simulation Model and Methodology

This work extends and adapts the trajectory planning algorithm based on probability
maps as well as the bird behaviour model based on field trials used by Wang [17]. The focus
of this paper is placed on the multi-UAV arrangement and coordination due to dynamic
and spatial constraints imposed by finite tether lengths. Modelling and predicting bird
behaviour is notoriously difficult; thus, simplifications and assumptions must be made
on the three key components which define this problem: the property or ‘world’ model,
the tethered UAV model (hereon ‘agent’), and the bird flock model (hereon ‘target’ and
‘target flock’).

2.1. Property World Set-up

Observations of typical vineyard plot sizes in Australia have been found to be approxi-
mately 100 m by 100 m in size. Hence, to simplify this problem, it will be assumed through-
out the simulation that the property ‘world’ is controlled as a square of these dimensions.

The property itself is modelled as a probability map or occupancy grid, similar to
those described in [16,18]. This method models the search area as a grid of cells wherein
each cell is given a single value representing the probability of a given target occupying
it based on external sensor information. In the problem of UAVs deterring target flocks,
this is an appropriate scheme to adopt as the precise location of the target is unknown
representative of search-and-capture or pursuit–evasion missions. Hence, UAV agents
chase targets by pursuing regions of high probability despite lacking knowledge of the true
state of the target.

Though the real-life problem involving UAVs and birds is inherently 3D, from field
trials in [7], birds that pass well above the ground are of no concern to the crop being
protected, while UAV altitude ranges from ground level to approximately 15 m have shown
comparable success in initiating flight responses or evasive manoeuvres in targets within
the same height range [7]. Hence, the occupancy grid map is modelled in 2D to reduce
computational complexity. Despite this, aspects of 3D dynamics are still implemented
elsewhere within the agent and target models.
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Each cell within the simulation property lies within the horizontal dimensions [xmin, xmax]
in x and [ymin, ymax] in y to form the spatial domain M, defined as:

M =

{
−
c

∣∣∣∣∣

−
c x ∈ [xmin, xmax]
−
c y ∈ [ymin, ymax]

}
, (1)

where
−
c is a vector representing the centre coordinates of each individual grid cell.

From the square property assumption earlier, it is intuitive to use square-shaped cells
of edge length L to populate a discrete N × N cell set grid map. The modified spatial
domain and centre coordinates of each cell is therefore defined as:

∼
M =

{
−
c

∣∣∣∣∣

−
c x = xmin + L(i− 0.5)
−
c y = ymin + L(i− 0.5)

, i = 1, 2, . . . , N

}
. (2)

For this project, grid cells with an edge length of L = 5 m were chosen to populate the
100 m by 100 m property (forming a 20 by 20 cell set), as shown in Figure 1, since a higher
fidelity than this in localization is not expected with current technologies. The probability
score k of a cell ranges between 0 and 1, where k = 1 represents a 100% likelihood of a
target occupying that cell while k = 0 is the opposite. Hence, observing Figure 1c, regions
of higher probability correlate to dark grey cells, while the converse is true with light grey
to white cells.

Machines 2023, 11, x FOR PEER REVIEW 3 of 32 
 

 

Though the real-life problem involving UAVs and birds is inherently 3D, from field 
trials in [7], birds that pass well above the ground are of no concern to the crop being 
protected, while UAV altitude ranges from ground level to approximately 15 m have 
shown comparable success in initiating flight responses or evasive manoeuvres in targets 
within the same height range [7]. Hence, the occupancy grid map is modelled in 2D to 
reduce computational complexity. Despite this, aspects of 3D dynamics are still imple-
mented elsewhere within the agent and target models. 

Each cell within the simulation property lies within the horizontal dimensions [𝑥, 𝑥௫] in 𝑥 and [𝑦, 𝑦௫] in 𝑦 to form the spatial domain 𝑀, defined as: 𝑀 =  ൜𝑐̅ ฬ𝑐௫̅ ∈ [𝑥, 𝑥௫]𝑐௬̅ ∈ [𝑦, 𝑦௫]ൠ, (1) 

where 𝑐̅ is a vector representing the centre coordinates of each individual grid cell. 
From the square property assumption earlier, it is intuitive to use square-shaped cells 

of edge length 𝐿 to populate a discrete 𝑁 ×  𝑁 cell set grid map. The modified spatial 
domain and centre coordinates of each cell is therefore defined as: 𝑀෩ =  ൜𝑐̅ ฬ𝑐௫̅ = 𝑥 + 𝐿(𝑖 − 0.5)𝑐௬̅ = 𝑦 + 𝐿(𝑖 − 0.5), 𝑖 = 1,2, … , 𝑁ൠ. (2) 

For this project, grid cells with an edge length of 𝐿 = 5 m were chosen to populate 
the 100 m by 100 m property (forming a 20 by 20 cell set), as shown in Figure 1, since a 
higher fidelity than this in localization is not expected with current technologies. The 
probability score 𝑘 of a cell ranges between 0 and 1, where 𝑘 = 1 represents a 100% like-
lihood of a target occupying that cell while 𝑘 = 0 is the opposite. Hence, observing Figure 
1c, regions of higher probability correlate to dark grey cells, while the converse is true 
with light grey to white cells. 

   
(a) (b) (c) 

Figure 1. Target probability map over incremental time steps (darker cells represent higher proba-
bility of target occupancy based off sensor estimates while the red markers represent the true target 
flock position). Note flocks are not drawn to scale. (a) Probability grid at t = 0 s; (b) Probability grid 
at t = 1 s; (c) Probability grid at t = 2 s. 

Importantly, this probability score is updated at every time step so the system can 
have continued confidence regarding the location of the target. However, if there is no 
sensor information, the probability score of that cell will begin approaching a non-zero 
nominal value (in other words, away from the certainties of 𝑘 = 0 and 𝑘 = 1). The nom-
inal probability value 𝑘 is approached as: 𝑘(𝑡 + 1, 𝑐̅) = 𝜏௧௬𝑘(𝑡, 𝑐̅) + ൫1 − 𝜏௧௬൯𝑘, (3) 

  

Figure 1. Target probability map over incremental time steps (darker cells represent higher probability
of target occupancy based off sensor estimates while the red markers represent the true target flock
position). Note flocks are not drawn to scale. (a) Probability grid at t = 0 s; (b) Probability grid at
t = 1 s; (c) Probability grid at t = 2 s.

Importantly, this probability score is updated at every time step so the system can
have continued confidence regarding the location of the target. However, if there is no
sensor information, the probability score of that cell will begin approaching a non-zero
nominal value (in other words, away from the certainties of k = 0 and k = 1). The nominal
probability value knominal is approached as:

k(t + 1,
−
c ) = τprobabilityk(t,

−
c ) +

(
1− τprobability

)
knominal , (3)

where τprobability ∈ [0, 1] is a time constant determining the rate that k approaches knominal .
The probability nominalisation model and the parameters are chosen to reflect the limited
bird behaviour observed by the authors. Further data are needed to verify the accuracy of
the model.

Each agent is equipped with a sensor model that detects targets within a circular sector
of radius rsensor and angle θsensor, as illustrated in Figure 2. All of the cells within the sector
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are designated a probability score khigh if a target is detected by the sensor. Conversely, all
of the cells are designated klow upon zero detection. In addition, virtual ground cameras are
positioned at the corners of the property to provide sensor information across the whole
protected area (designated by the black box in Figure 1) that each agent has access to at
every time step. Bird detection and localisation using an arrangement of ground cameras
in tandem with mobile ones mounted on UAVs can be found in [19]. A camera network
like this improves localisation accuracy in detecting target flocks.
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2.2. Tethered UAV Model 

Figure 2. Illustration of the sensor model. The greyscale bar indicates the probability of a target
occupying the cells, darker indicates higher probability.

At the initialisation of the simulation, all of the grid cells are initialised with the same
nominal value before any sensor data are processed, as can be seen in Figure 1a, where
each cell has a probability score of k = 0.4. In the next time step, shown in Figure 1b, the
global probability values are updated, such that the cells near the true target position are
now darker (k = 0.7), while the regions further away become lighter (k = 0.2). Finally, by
the next time step, shown in Figure 1c, the colour contrast becomes more salient, indicating
increased confidence in the system as to where the target flock both is and is not.

2.2. Tethered UAV Model
2.2.1. UAV Dynamics

All of the agents in this problem are assumed to be tethered multirotor UAVs. The
agents are modelled using simple second-order dynamics with the following state vec-
tor XUAV :

XUAV =
(
x, y, z, vx, vy, vz, ψ

)
, (4)
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where (x, y, z) represent the position;
(
vx, vy, vz

)
represent the velocity; and ψ represents

the heading. The vertical dynamics (z-axis) have been decoupled from the horizontal
dynamics (xy-plane) due to the aforementioned assumptions, where positional accuracy
and modelling in height are of limited concern to the results. This similarly assumes
the pitch and roll to be zero and are thus not included in the state vector as a further
simplification. The horizontal dynamics are governed by the relative error between the
current position of the agent and the desired waypoint and are constrained by maximum
speed (vmax), acceleration (amax), yaw rate (ψmax), and tether length (LT).

In this simulation, the effective tether length is defined as the horizontal projection
along the ground, as demonstrated in Figure 3, as opposed to the true length in a 3D space,
since the horizontal distance has a significantly greater impact on UAV dynamics and
stability. Hence, this tether length defines a maximum radius in which an agent can move,
mapped to a circle in 2D (Figure 3a) and a cylinder in 3D (Figure 3b) and will thus be
hereon defined as the tether radius (RT) for this simulation.
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The vertical dynamics of the agents are governed by the relative error between the 
ground tether points when they are undeployed and a set nominal height value when 
deployed. These set heights can be different for each agent to minimize the likelihood of 
collisions for overlapping sample arrangements, similar to that in Figure 4b. However, 
this is unnecessary for configurations where the tether radii of the agents do not overlap 
at all, as in Figure 4a. 

Figure 3. Agent UAV radius of operation sample case RT = 20 m. The maximum range maps to a
circle in 2D (a) and a cylinder in 3D (b). Note the UAV is not drawn to scale.

The vertical dynamics of the agents are governed by the relative error between the
ground tether points when they are undeployed and a set nominal height value when
deployed. These set heights can be different for each agent to minimize the likelihood of
collisions for overlapping sample arrangements, similar to that in Figure 4b. However, this
is unnecessary for configurations where the tether radii of the agents do not overlap at all,
as in Figure 4a.

2.2.2. Trajectory Planning

The optimal agent waypoint is chosen using a cost function strategy that evaluates
every cell of the occupancy grid map, as defined in Section 2.1. This is an appropriate
method as many existing commercial-off-the-shelf (COTS) autopilots, such as Pixhawk,
accept GPS coordinates as waypoints when generating UAV trajectories [20].

A receding horizon control strategy described by [16] is used. In this strategy, at
every time step t, a subset of reachable or possible waypoints in the next nRHC steps for
each agent is selected, as defined by their maximum velocity and turning rate (but still
constrained by tether radius). Within this subset, the optimality of each cell is considered
using a cost function that incorporates the target probability score first and foremost and
then the difficulty for the agent to reach that position in terms of distance, heading change,
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tether limits, as well as the trajectory or proximity of a target or another agent. Therefore,

the optimal waypoint is defined as the cell
−
c with a minimum cost C :

min
C

C = α· fk′ (
−
c ) + β· fd(

−
c ) + γ· fh(

−
c ) + δ· fR(

−
c ) + ε·( fbeyond(

−
c ) + fT(

−
c ) + fother(

−
c )) (5)
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Figure 4. Sample arrangement involving four UAVs with different spatial constraints and operating
regions imposed by their tether lengths. (a) No height constraints are necessary for this configuration.
(b) The set heights should be different in this configuration to avoid collisions.

The first term in Equation (5) correlates to the complement of the target probability
score, as shown in Equation (6) (the higher the probability, the lower the associated cost of
that cell):

fk′
(−

c
)
= 1− k

(
t + n,

−
c
)

. (6)

The second term in Equation (5), fd, corresponds to the distance cost based on a
normalized horizontal distance between the centre coordinates of every reachable cell in
the receding horizon and the agent’s current position:

fd

(−
c
)
=

√(−
c x −

−
c UAVx

)2
+
(−

c y −
−
c UAV y

)2

n·t·vmax
. (7)

The third term, fh, corresponds to the normalized heading change cost:

fh

(−
c
)
=

fψ

(
tan−1

(
−
c y−

−
c UAVx

−
c y−

−
c UAV y

)
, ψUAV

)

π
, (8)

where fψ is a function that returns the smallest angle between its two input arguments.
The next introduced term, fR, correlates to a repulsion field or potential field. In this

potential field, the cells that have increased in target probability score over a time step are
given a higher cost, with the converse effect for cells with decreasing probability score. In
other words, cells with +∆k map to the forward direction of a moving target. This motivates
agents to approach a target flock from behind or from the side in preference to head-on,
which may otherwise result in a collision or affect the shepherding smoothness and cohesive
flock assumptions made. This resulting repulsion–attraction field cost (mapped to [0,1]) is
defined as:

fR

(−
c
)
=

1 + k
(

t,
−
c
)
− k
(

t− 1,
−
c
)

2kmax
, (9)
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where kmax is the maximum probability score possible for a cell.
The last term in Equation (5) is composed of three parts and correlates to the cost

associated with the cells that cannot be reached within the receding horizon
(

fbeyond

)
;

the cells located outside the allowable tether radius ( f T); and cells that are proximal to
other agents ( f other). The values for these functions are binary; there is a zero cost for all
reachable cells but a maximum cost of 1 for unreachable cells. Note that the tether limit
cost here is implemented to further discourage agent UAVs from approaching their radial
limits at speed or overshooting and over-tugging the tether.

The parameters of α, β, γ, δ serve as relative weights in terms of importance placed on
each of the components in Equation (5), and the sum to unity is as shown:

α + β + γ + δ = 1. (10)

Note that the weight parameter of ε from Equation (5) is instead given a nominal
value� 1 to ensure that the unreachable grid cells are never optimal after applying the
rest of the cost function. The different components of the cost function can be visualized
from the perspective of the left agent in the sample scenario shown in Figure 5; the cell
with minimum cost after applying every term in the cost function is then designated as the
optimal waypoint for that specific agent, as indicated in Figure 6. The individual weight is
tuned based on the emphasis of the mission. As an example, if a smoother path is required,
the heading cost weight γ should be increased. Whereas a larger α will make sure the
agents focus on chasing the target flocks at the expense of more unnecessary accelerations
and decelerations.
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2.2.3. Agent Grid Arrangement

With the dynamics and trajectory planning now defined for the agents, the next step
is to determine the relative arrangement or coordinates of the agents within the property
world; in other words, the ground tether points that define the centres of the pursuit region
of each agent. The agent grid arrangement scheme aims to distribute n points as evenly as
possible in a b× h sized grid, where the n points represent the number of agents. Centroidal
Voronoi Tessellation (CVT) was chosen as a common and fairly computationally quick
method to evenly partition a given plane into n convex polytopes [21]. CVT is a special
form of Voronoi Tessellation in which the ‘generating’ point or node of a given partition is
constrained to be coincident with its own centroid, resulting in neighbouring nodes being
spaced as far apart from each other as possible.

Hence, for a set of Voronoi regions {Vi}k
i=1, the mass centroid ci over a region with

probability density ρ(y) is defined as:

ci =

∫
Vi

yρ(y)dy
∫

Vi
ρ(y)dy

. (11)

Lloyd’s Algorithm was deemed to be appropriate for implementing and generating
a CVT based on a desired number of nodes (agent number in this case) as opposed to
redistributing existing nodes or data points that might be randomly distributed on a
plane [21]. Note that CVTs are only defined for three or more generator points when using
Delaunay triangles (the dual tessellation of the Voronoi diagram), and thus, the special
degenerate cases of 1 and 2 agents were manually defined (see [21,22] for more information
on CVT methods and Delaunay triangulation). The CVT method proved effective for
generating a desired number of the agents’ coordinates as evenly as possible within a given
grid size, as shown in Figure 7.
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2.2.4. Chasing Strategy and Multiple UAV Coordination

The remaining consideration for the agent UAV model is the chasing strategy and
the coordination of multiple agents. A single agent can pursue its target waypoint using
the cost function strategy outlined previously; however, this method becomes problematic
when there are multiple agents and multiple targets since there is no hierarchy or control
scheme that dictates which flock is chased by which agent.

A centralized control strategy is used to coordinate the multiple UAVs on the property.
In this strategy, the coordinates of each agent at a given time step are relayed to a central
computer, which then determines which agents should deploy or remain undeployed based
on their proximity to high target probability areas. An agent simply needs to be within the
‘scaring range’, as defined by Equation (12), to be deployed:

rscare ≤ RT + rno−go, (12)

where RT is the maximum tether length, as previously defined, while rno−go is the maximum
radius around an agent UAV that elicits escape manoeuvres by the target flocks, as observed
in experimental field trials in [7].

For the simulation, each agent can have one of the following states at any given time
(colour-coded for clarity to match the simulation snapshots provided in Section 3):

• Chase: the agent is deployed to pursue a target flock which is in range.
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• Home: the agent is undeployed and stationed at the ground tether point–this agent
state does not scare away target flocks, irrespective of distance.

• Return: the agent is deployed but returning to the ground tether point since the target
flock is no longer within scaring range.

In this control strategy, any in-range agents are deployed, not just the closest agent. As
the position of a target is estimated using a shared probability map, an agent may pursue a
midpoint position among multiple targets since it has found the geometric centre of the
highest probability scores. Hence, a k-means clustering algorithm is proposed to demarcate
the targets (distinct target flocks) and to help inform the agents as to which target should
be pursued. The k-means algorithm is an iterative process that aims to partition a data set
into k pre-defined distinct clusters through the following procedure:

1. Choose the number of clusters k.
2. Initialize centroids through random selection of k data points without replacement.
3. Compute the sum of the squared distance between all data points and every centroid.
4. Assign each data point to the closest centroid (to form distinct clusters).
5. Compute new centroids by taking the average value of data points within each

respective cluster.
6. Keep iterating on steps 3–5 until converged.

In this simulation, the k value (cluster number) correlates to the number of targets and
is assumed to always be known. In reality, sensor information, such as the camera detection
and localisation network discussed in Section 2.1, would need to deduce how many targets
are truly present. It is important to note that this procedure works for data sets with values
that are spatially distributed. In a target probability map, the ‘data points’ or probability
scores are evenly distributed since every grid cell has a value; in other words, there are
no distinct clusters. Hence, to map probability score into clusters, when performing this
procedure, scores below a certain threshold are removed to isolate the higher probability
cells into distinct spatial clusters. Through this k-means clustering, any number of k target
flocks can enter the property, and the control strategy is such that an agent will pursue the
geometric centre of the closest cluster if it exists and is in range.

2.3. Target Flock Model

This simulation assumes that all targets are Common Starlings (Sturnus vulgaris) to
reduce the number of variables and simplify the problem.

2.3.1. Target Flock Dynamics and Trajectory Planning

Identical to the agent UAV model, the target flocks are modelled using simple second-
order dynamics with the following state Xbird:

Xbird = (x, y, z, vx, vz, ψ). (13)

Furthermore, all of the targets that make up a single target flock are assumed to
remain in flock formations throughout the simulation based on field observations made
in [7]. Hence, the behavioural responses and trajectory planning of the whole flock are
simplified to be modelled on an individual target positioned at its geometric centre. The
field observations also found that no birds were seen or remained within 50 m of a UAV.
This value corresponded to the ‘no-go radius’ rno−go of Equation (12) and was grossly
estimated using GPS coordinates of the UAV and observations made by the eye of the
flock positions on relatively large plots of land. Hence, for this simulation with the smaller
plot size of 100 m by 100 m, a conservative, reduced ‘no-go’ radius of 20 m has been
implemented into the target flock model.

The trajectory planning of the targets is modelled using the same ‘interests’ system
used by Wang [17]. This interests system for target flocks parallels the probability map
system whereby each cell within the grid map is allocated an interest score i between
0 (minimum interest) and 1 (maximum interest). The cells close to the agents are given

201



Machines 2023, 11, 377

reduced interest scores, and a target will migrate to a cell with the highest interest once
its current position falls below a certain threshold ithreshold (to satisfy the observation that
stationary birds limit movement to conserve energy). Furthermore, the cells outside of the
protected area are given a very-low-interest score to ensure that the targets continuously
aim to remain within the property where possible.

2.3.2. Target Flock Energy Expenditure System

The estimation of target flock energy expenditure in activities such as flight and
foraging can serve the purpose of characterizing the perceived relative effort or energy that
a target flock requires to forage in a field that is being protected by bird-deterring UAVs.
An ideal bird deterrence system would aim to elicit maximum energy expenditure in a
target flock to decrease the likelihood of future foraging attempts or increase the time until
the given targeted flock returns to the protected property, as purported by optimal foraging
theory [23,24].

Hence, a novel target flock energy expenditure system is introduced here. This
model estimates an initial energy reserve dedicated for a single foraging event and makes
deductions from this reserve as the target flock undergoes different states or flight modes.
The important parameters that are needed to define this energy expenditure system are:

• Initial energy expenditure reserve.
• Body mass.
• Basal metabolic rate (BMR).
• Power costs for regular long flights and short burst flights.

In the literature on Common Starlings, the number of flights per day (FPD) is approxi-
mately 135 flights [25]. The average flight speed V is assumed to be close to the minimum
power speed as a conservative assumption; a value of approximately 10 m/s [26]. Most
Starlings nests are also usually within 500 m of desirable foraging zones. Hence, the total
flight time between foraging and nesting sites can be estimated by:

t f light,total =
FPD·dtravel

V
, (14)

where dtravel is the distance between a foraging zone and a nesting site. The average flight
cost Pf light,avg for the Common Starling has been estimated to be 20.4 W [27], which allows
for the calculation of the allowable energy expenditure per trip for a single target flock
(in J):

Eexp.,single =
Pf light,avg·t f light,total

FPD
. (15)

The value from Equation (15) is then fed as the initial energy condition in the simula-
tion. Note that this is a conservative case since the target flocks in the simulation initialize
along the boundary of the protected property rather than at their more distant nesting sites.
A summary of these parameters for the Common Starling is summarized in Table 1.

Table 1. Energy and mass data for the Common Starling.

Parameter Mass (kg) BMR (W) Pflight,avg (W) Pshort (W) Plong (W)

Value 0.079 0.877 20.4 27.2 10.0

2.4. Simulation Testing Plan
Variables of Interest

The dependent variables for this simulation should indicate the performance of the
bird-deterring system, and they are:

• Time taken to repel a target (if successful).
• The energy expended by a given target in a single mission. (Unsuccessful missions are

capped at t = 150 s.)
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The independent variables are determined after considering the cause and effect
between different parameters:

• Number of agents.
• Tether length.
• Maximum agent speed.
• Number of targets.

At the initialization of each simulation, the target is initialized to enter at any random
point along the property boundary with a heading pointing to the centre of the grid map.
The simulation is then run for all the combinations of the parameters outlined in Table 2.
Following this, the entire simulation process is repeated but with a different target initial
position to measure the average performance of the system. Similarly, this entire simulation
process is also repeated using multiple targets.

Table 2. Simulation parameter definitions and values.

Variable Type Simulation Parameters

Independent
Number of agents (n = 1–10), tether radius (RT = 0–20 m),
agent maximum speed (vmax = 8, 12, 16, 20 m/s), number of
targets (nt = 1–3)

Dependent Time taken to deter target (t); energy expended by an individual
target flock per mission ( Eexpended)

Nuisance variables and
sources of randomness Target flock entry positions, generated agent grid positions

Held-fixed

Property size, target flock type (Common Starling), agent
controller policy, agent distribution function, agent sensor range,
distribution of ‘interests’ (corresponding to crop type and
positioning), climatic conditions, individual target experience
and variation

3. Simulation Results
3.1. Simulation Convergence Study

A simulation convergence study was performed to verify that the number of simula-
tion repetitions is sufficient to provide a fair representation of average performance that is
no longer sensitive to randomness in target entry position as well as the non-uniqueness
in agent grid formations for n ≥ 3 agents. Similarly, it is important to avoid unnecessarily
large simulation repeats if results have already converged to reduce computation costs. It
is assumed that the system is stable and that by the Law of Large Numbers [28], after a
sufficient number of simulation repetitions, the performance of the system will converge to
its true mean. Hence, a test case to observe system convergence with different configura-
tions between N = 1− 500 simulation repeats was performed (see Appendix A Figure A1).
Note that the tether radius has been kept constant at a mid-range value of 14 m throughout
each simulation.

This tether radius value was chosen since simulation results at the tether radius
extremes were expected to converge considerably faster as the non-uniqueness issues of
agent configuration and the randomness in the target entry point are diminished or less
sensitive when the agents can either reach zero targets (RT = 0 m) or they can reach many
targets regardless of their ground tether point (RT = 20 m). It was observed that there is
no considerable variation in both the time performance and energy expenditure running
averages after 300 simulations. Hence, it is sufficient to perform N = 300 simulation repeats
to fairly represent the problem, and this number will be the assumed value used in the
following scenarios.
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3.2. Single Target Flock Scenarios

The scenarios in this section all involve single target flocks tested against the various
agent configurations outlined in the simulation testing plan. The full averaged results are
presented in Figures 8 and 9.

Observing the time performance results in Figure 8, as the tether radius RT increases,
the average time taken to dispel a target flock decreases; however, this is dependent on the
number of agents in the configuration as well. A successful configuration is defined as one
that deters a target flock in over 90% of test cases across all the independent simulation runs,
and as can be seen by the red markers, there is a ‘critical’ minimum tether radius for when
this occurs with each agent number. For one or two agents (n = 1− 2), no tether radius
value allows for a successful deterrence event. Performance improves marginally for n = 3
agents at higher tether radius values but is still limited to a 20% success rate (at RT = 20 m),
while a much larger increase in performance can be seen for n ≥ 4 agents and tether
radii of RT ≈ 13− 14 m—tether values above this provide diminishing improvements in
performance. For this property size, the tether radius appears to have no significant impact
on time performance across all values when there are n ≥ 9 agents. The configuration that
minimises the agent number and the tether radius while still remaining successful in 98%
of cases at an average deterrence time of t = 64 s, is n = 4 agents and RT = 14 m.

Observing the target flock energy expenditure results in Figure 9, as the tether radius
RT increases, the energy expenditure in a single target bird also increases from n = 1− 4
agents, after which energy expenditure decreases with increasing agent number (n > 4).
The agent configuration that elicits maximum target energy expenditure while still sat-
isfying the 90% success rate threshold can be seen as n = 4 agents with tether radii of
13 m (E = 628 J). Note that all the averaged energy expenditure values are still below the
initialised reserve value of 1020 J.
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Figure 8. Single target flock scenarios–time performance (darker lines indicate fewer agent numbers
while red markers indicate data points whose average success rate is above the given threshold across
the 300 independent simulation runs). Maximum agent speed: vmax = 12 m/s.
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Figure 9. Single target flock scenarios–energy performance (darker lines indicate fewer agent numbers
while red markers indicate data points whose average success rate is above the given threshold across
the 300 independent simulation runs). Maximum agent speed vmax = 12 m/s.

The configuration of n = 4 agents and RT ≈ 13− 14 m was shown to be salient; thus,
snapshots for a conservative sample single target flock scenario with n = 4 agents and
RT = 14 m is shown as a reference demonstration in Figure 10 due to its marginally higher
overall success rate.

In this sample simulation, the target flock is initialised with its full energy reserve
at the lower left-hand side of the property (Figure 10a). After entering the property and
the closest agent is deployed in its chase state (blue), the target flock seeks a waypoint
on the other side of the property (Figure 10b). Once the target nears the next agent, it
is deterred once again and seeks the next best interest location on the property, and this
process continues to repeat (Figure 10c), with the historical agent flight paths and states
shown in their respective colours. At t = 86 s, the target is successfully dispelled from the
property and is consequently greyed out (Figure 10d). Note that its original energy reserve
has been quartered by the end of the simulation. The full 3D trajectory of this simulation
can be found in Appendix A Figure A2 for reference and visually captures the vertical
ascents and descents that correlate to higher energy expenditure manoeuvres.

3.3. Multiple Target Scenarios

The scenarios in this section involve multiple target flocks tested against the same
UAV configurations outlined in the single target flock scenarios above and in the testing
plan. The full averaged results, run for 300 simulations on each configuration, are presented
in Figures 11 and 12 (nT = 2 targets). The results for nt = 3 targets provided similar
results, and for brevity, are omitted here and included in Appendix A Figures A3 and A4
for reference. The 2D snapshots and 3D trajectories for the triple target simulation are
included in Appendix A Figures A5 and A6.

The time required to deter two target flocks is shown in Figure 11. Note that a given
simulation run is not successfully complete in these scenarios until both target flocks have
been dispelled. Similar trends to the single target flock scenarios can be seen here for double
target flock deterrence time. The successful configuration that minimises agent number
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and tether radius is evidently n = 4 agents and RT = 14 m. This configuration provides an
average deterrence time of t = 71 s at a success rate of 91%.

The target flock energy expenditure results are shown in Figure 12. Note that these
results only constitute the values for one out of the two target flocks; conducted for the
sake of brevity since the second flock results are near-identical, as expected. The best
configuration eliciting maximum target flock energy expenditure (Eexp . = 512 J) is similarly
n = 4 agents and RT = 14 m, with the same success rate of 91%.
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flock at the full energy reserve of 1020 J, all agents undeployed in their Home state, and each cell in 
the probability map initialised with the same value. As the simulation progresses from (b)–(c), the 
target flock seeks to find grid cells of maximum interest indicated by the red dot but is repelled by 
nearby deployed agents, shown in their Chase state, while agents that were deployed but no longer 
in range are shown in their Return state. Simulation is completed in (d) with the target centre 
(greyed out) no longer in the protected area by 𝑡 = 86 s and the original energy reserve quartered. 

Figure 10. Snapshots of a sample single target flock simulation with the following configuration:
n = 4 agents, RT = 14 m, vmax = 12 m/s. Simulation begins in (a) with each target in the target flock
at the full energy reserve of 1020 J, all agents undeployed in their Home state, and each cell in the
probability map initialised with the same value. As the simulation progresses from (b,c), the target
flock seeks to find grid cells of maximum interest indicated by the red dot but is repelled by nearby
deployed agents, shown in their Chase state, while agents that were deployed but no longer in range
are shown in their Return state. Simulation is completed in (d) with the target centre (greyed out) no
longer in the protected area by t = 86 s and the original energy reserve quartered.

The snapshots for a sample double target flock simulation using this configuration are
presented in Figure 13. The two target flocks are initialised independently with full energy
reserves along the property boundary: target 1 (red) at the bottom left-hand side and target
2 (magenta) at the bottom right-hand side (Figure 13a). After a period of time, the targets
are each deterred by the closest agents in range and seek new waypoints away from the
scaring stimuli (Figure 13b). Once the target flocks reach the new area in the property, they
are deterred by the next pair of agents (Figure 13c). Finally, by t = 79 s, both targets are
dispelled from the property at the same time (Figure 13d). Note that the energy reserves of

206



Machines 2023, 11, 377

both targets are approximately halved from their initial value. The full 3D trajectory for
this sample simulation is shown in Appendix A Figure A7 for reference.
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Figure 13. Snapshots of a sample double target flock simulation with the following configuration:
n = 4 agents, RT = 14 m, vmax = 12 m/s. Simulation begins in (a) with each target in their respective
target flock at the full energy reserve of 1020 J, all agents undeployed in their Home state, and
each cell in the probability map initialised with the same value. As the simulation progresses from
(b,c), both target flocks seek to find grid cells of maximum interest indicated by their respective red
(Flock 1) and magenta (Flock 2) dots but are repelled by nearby deployed agents, shown in their
Chase state, while agents that were deployed but no longer in range are shown in their Return state.
Simulation is completed in (d) with both target centres (greyed out) no longer in the protected area at
the same time of t = 79 s and the original energy reserve approximately halved.

3.4. Testing Agent Maximum Speed

The deterrence time and energy expenditure results for n = 4 agents and a single target
flock at various tether radii and maximum flight speeds are shown in Figures 14 and 15,
respectively. Similar performance can be seen for both metrics across all agents’ maximum
speeds, as was seen in previous results: as the tether radius increases, deterrence time
decreases with notable improvement around the RT = 10− 12 m range, while energy
expenditure increases with increasing tether radius, though this does appear to plateau
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after the same RT = 10− 12 m range. Overall, there do not appear to be any salient trends
or points of interest that depend on agent maximum speed, with all speed cases here tracing
out near-identical performance plots.
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4. Discussion
4.1. Summary and Analysis of Results

Across the single target flock and both multi-target flock scenarios, the proposed
tethered UAV strategy successfully deterred the target flocks from the property area. In
each scenario, the average time to deter a target flock reduced with increasing tether radius
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and agent number. As was shown, every given agent number had a ‘critical’ tether radius
value, which represented the minimum length required for at least a 90% average success
rate across the full 300 simulation runs. This critical value only appears for n ≥ 4 agents
and decreases with increasing agent number, while tether radii values above the critical
point provide diminishing or marginal improvements in performance. The trajectories for
both the target flocks modelled via ‘interests’ maps and informed by field trials–as well
as the pursuing agents modelled via cost functions and constrained by tether radius, are
shown to be smooth. The candidate configurations that exhibited the best performance
across the different target scenarios are summarised in Table 3.

Table 3. Simulation parameter definitions and values. Note the outlier for the case of nt = 2, RT = 13
m where success rate was markedly lower than other cases.

No. Targets, nt Tether Radius, RT (m) Success Rate (%)

1
13 97
14 98

2
13 81
14 91

3
13 91
14 96

Considering the combination of RT = 13 and nt = 2, the targets only had a success
rate of 81%, it is therefore ideal to opt for the 14 m version, which maintained a success
rate of at least 91%; crops only need to be lightly damaged once to be downgraded in
terms of quality and value; hence, the more consistently effective system should be chosen.
This provides further justification for excluding the three agent configurations that only
achieved a maximum success rate of 20% at RT = 20 m, despite having an average
deterrence time below the pseudo-infinity of t = 150 s in each of the time performance
plots. Intriguingly, the success rate for the three target flock scenarios was higher than the
two target flock scenarios; however, this is most likely due to the coarse modelling and the
fact that having more targets means there is a higher chance to activate a nearby agent; once
an agent is active, it may be more effective in chasing and funnelling the remaining targets.
Note that varying the maximum agent speed for the optimal configuration, as shown in
Figures 14 and 15, did not provide any salient features—all speeds provided comparable
results. This is presumably because the operating regions constrained by the tether radius
for each agent are quite small, and the different maximum flight speeds neither help nor
hinder the overall deterrence capabilities since they are not reached in most cases.

Analysis of time performance across the different target flock number scenarios
showed that the average time taken to deter all of the intruding target flocks intuitively
increased with an increasing target number, seen by the general shift towards the top right
in the critical minimum tether value and overall deterrence time in the plots. This indicates
that longer tether radii are required to dispel more targets in an equivalent time frame when
there are more targets. Though improvements in deterrence time are certainly beneficial, it
is ultimately much more important that the system be functional and economically viable.
Hence, though the configuration chosen provides the slowest deterrence time among those
with success rates above 90%, it is preferable as the cheapest viable option.

The energy results across the different target number scenarios showed that the
average target flock energy expenditure reduced and plateaued with increasing numbers
of target flocks. This is presumably because when there are more target flocks, there is
a higher chance that more agent UAVs are triggered for deployment, which can, in turn,
have the effect of funnelling the target flocks into similar routes and positions and forcing
them to take shorter flight paths across the property (compare the flight path lengths
of the sample single target flock and double target flock scenarios in Figures 10 and 13,
respectively). Additionally, note that the average energy expended across all scenarios and
all configurations fell well below the maximum reserve value of 1020 J, indicating that all
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‘successful’ scenarios were purely by physically repelling the targets off the property while
none were through full depletion of the energy reserve, forcing the given target to stop its
foraging mission in that property. Similarly, the minimum target flock energy expenditure
was approximately 125 J across all scenarios, which closely matches that seen in the zero
lateral movement benchmark case; this value is non-zero since the target flocks are assumed
to fly in at altitude and at speed and, therefore, must consume energy to land at their first
foraging location, even if it is acquired within the first few seconds upon entering.

A comparison of the optimal configuration against the free-moving agent benchmark
case is shown in Table 4 and helps serve as a reference, considering that the field trial
observations that informed the construction of this simulation model were on a drone.
Note that a free-moving agent here is analogous to an infinite tether.

Table 4. Comparison between free-moving, ‘infinite’-tether benchmark case (n = 1) with chosen
tethered UAV strategy ( n = 4). The free agent slightly outperformed in average energy expenditure
elicited while the tethered team system had a better time performance metric.

No.
Targets (nt)

Tether Radius
RT (m)

Deterrence
Time t (s)

Energy Expenditure
Eexp. (J)

Success
Rate (%)

1
- 65 677 100

14 65 611 98

2
- 103 662 94

14 71 512 91

3
- 113 599 89

14 78 491 96

For a single target flock, the tethered team configuration and free agent are on par in
average deterrence time, while the free agent slightly outperforms in average energy expen-
diture elicited in each target and overall success rate. For the multi-target flock scenarios,
the tethered system performed 31% faster than the free-moving agent in both scenarios but
elicited 23% (nt = 2) and 18% (nt = 3) smaller energy expenditures. Importantly, however,
the tethered system maintains a high success rate through to three targets.

4.2. Limitations of the Simulation Model

Though the tethered UAV strategy shows promise, it is important to recognise the
limitations of this simulation model to ascertain the degree of confidence in how accurately
it reflects reality, particularly in the following components:

• Target flock behaviour modelling limitations: as previously discussed, this factor
represents the largest limitation. Within the simulation, it is assumed that targets
remain within cohesive flocks the entire duration and will predictably flee from a
scaring stimulus in the same manner each time and always flee to the most ‘optimal’
cell or spot on the property. Though some of these behaviours are modelled on true
bird responses to UAVs in vineyards, it omits other behavioural factors and does
not account for the fact that there can be many different bird types and species being
deterred on the property at the same time, which in turn can influence decision making
on where to forage if target flocks of different species do not want to be near each
other. This is a fine approximation for flight initiation distance (FID) considering all
bird types in the field experiments of [7] fled at distances of 50 m or greater (except
for Silvereyes, which exhibit different foraging behaviours). Instead, it challenges
foraging assumptions and the universality of the energy expenditure results since
they are solely based on data and estimations for the Common Starling. As discussed
in the energy expenditure modelling setup, this is a highly crude model due to the
number of assumptions made and the scope in which each metric can vary. Ultimately,
the energy model is more useful and accurate as a relative measure for identifying
configurations that elicit higher expenditure costs rather than a source of absolute
truth for what these expenditure values actually are. Though this simulation does

211



Machines 2023, 11, 377

not account for returning target flocks, it is assumed by principles such as optimal
foraging theory that target flocks become dissuaded the more energy they expend in
searching for food on that property and will thus seek food elsewhere. This can also
be beneficial and conservative for the simulation since every target flock enters with
full energy reserves as opposed to depleted reserves from previous foraging attempts.
A final big limitation of the target flock behaviour modelling is that it does not account
for habituation; it assumes that target flocks will respond at the same distance to
the scaring stimuli every time, irrespective of exposure history or perceived learning.
Though this assumption may be valid for a single foraging mission, it certainly does
not hold when the same target flocks are exposed to the same stimuli over periods
of time.

• Agent modelling limitations: in terms of agent modelling, there were simplifications
in dynamics with the hybrid 2D and 3D approach. A 3D probability map was avoided
to reduce significantly higher computational costs for only marginal gains, indicating
that the vertical trajectory planning for the agents was constrained to operate between
two pre-set heights (the ground and 15 m), with the optimal waypoint calculated by
the cost function only carrying relevance in the horizontal plane. Similarly, no dynamic
considerations due to tether were modelled; it was assumed that, for the configurations
under study, the horizontal offsets from the tether point were sufficiently small to
not impact overall dynamics and stability to an appreciable degree, as long as there
is an appropriate winch system to maintain sufficient tautness such as seen in the
near-horizontal 12 m powered tether used in [13]. This adds greater pressure and
motivation for a shorter tether radius, where this assumption becomes increasingly
more valid. Another simplification is the assumption that agent arrangement is optimal
when they are spaced as far apart from each other as possible with the motivation
of maximising property area coverage. This may not be the case since most birds in
field trials are observed to enter the property from one of its four sides (as opposed
to directly top-down from flight), as confirmed by the higher proportion of bird crop
damage normally located along the peripheral zones of the property. Hence, a more
optimal configuration may account for this factor and redistribute agents closer to the
property boundary accordingly. A further assumption is that the number of target
flocks on the property is always known based on ground camera sensor information.
The verification of this assumption lies beyond the scope of this paper. It is also
important to note that the bird behavioural responses are based on a UAV that is
equipped with specialised scaring stimuli (auditory and visual) and not just a regular
multirotor. Hence, prototyping of the physical tethered system must incorporate and
account for existing scaring stimuli.

• Property modelling limitations: in reality, most crops are not perfect squares in shape,
nor are they only 100 m by 100 m in size. This simulation model further reduces the
problem to an idealised scenario and assumes that all sections within the property
are equally attractive to target flocks, not accounting for topographical variations nor
existing pockets of potentially higher or lower foraging interest through higher local
crop yields or pre-existing damage, respectively. In reality, the optimal tether radius
will also need to be modified and scaled with fields of different sizes since the strategy
chosen in this paper will presumably fail for much larger property dimensions.

• Probability map modelling limitations: The probability map model does not evolve in
the temporal domain, nor does it vary according to environmental light and weather.
At the current stage, there is not enough bird behavioural study related to the foraging
activity in vineyards under different weather conditions to enable a more dynamic
model. Further investigation is needed to construct a more accurate probability
map model.

Nevertheless, the simulated multi-UAV tethered strategy has shown to be able to
deter multiple target flocks and is a novel approach and technique not seen anywhere
in the literature. The use of a team of tethered drones dedicated to bird deterrence and
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simulation of target energy expenditure in response to pursuing drones are introduced here
as firsts of their kind to the authors’ knowledge. The simulation model has been constructed
using established methods and techniques used in the literature for UAV path planning
via cost function and probability map and has been benchmarked against a free-moving
single agent case as performed through simulation and field trials by Wang in [7], [17].
Attempts at increasing confidence in the system have focused on the imposition of dynamic
constraints based on typical multirotor capabilities as well as spatial constraints due to
the tether. A configuration of four agents for a plot that is only 100 m by 100 m may seem
overly costly upon first inspection, particularly if the intent is to scale up the system for
larger property areas; however, it is important to remember that the scaring distances were
greatly underestimated as a conservative assumption in the simulation model and that the
reality may be quite different with some target flocks certainly fleeing at further distances
across and within different studies. Furthermore, it is not certain that this configuration
will perform as expected in a field trial, but it at least remains feasible in size and scope
for testing. Hence, this returns to the original question of this paper of whether a tethered
system is feasible. This simulation model has shown that it could work, even if not fully
optimised, though it must be validated through physical testing.

5. Conclusions and Future Work
5.1. Future Testing

The next most important step is certainly a validation of the simulation model and
the chosen configuration. This requires physical testing of sub-component features such as
the multi-UAV coordination strategy as well as verification of stable flight under a tether.
Ultimately, true verification, once sub-component features have been tested, is through
in situ field trials with live birds. Unfortunately, restrictions imposed on the Greater
Sydney region between July and October 2021 due to the COVID-19 pandemic limited
all access to university laboratories as well as crops in regional areas where field trials
would be performed. Hence, the scope of this research paper remains strictly theoretical via
simulation modelling since all forms of physical testing were not possible. Nevertheless,
various proposed tests and prototype possibilities for a future study when restrictions are
eased are outlined below. Note that although features such as power-over-tether serve as
driving factors for the tethered design in the first place, it is well-established that power-
over-tether technologies already exist and, therefore, verification or feasibility tests for
this lie outside the scope of this paper. Rather, the simulation results presented depend
heavily on the success of the multi-UAV coordination strategy, the impact of the tether on
dynamics being minimal, and that the target flocks respond to the tethered drone system in
a similar manner to free-flying drones recorded in existing field trials. Hence, these areas
must be tested first and foremost to truly evaluate whether a team of tethered drones can
coordinate in a grid-confined arrangement to scare incoming target flocks away. Planned
future testings include:

• Autonomous Multi-UAV Coordination Test: evaluate the coordination strategy be-
tween multiple drones using real hardware.

• Tethered Drone Dynamics Test: considering that the influence of a tether on the
dynamics and stability of a drone was not explicitly modelled in the simulation, it
is important to verify that its impact is near-minimal in the desired testing range of
RT = 0− 14 m and up to a target altitude of 15 m.

• Bird Response to Tethered UAV Test: after the multi-UAV coordination strategy and
tethered dynamics have been independently tested and analysed (with consequent
changes made wherever needed), the system can be tested as a full prototype in situ
on a vineyard.
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5.2. Future Research
Target Flock Modelling

Modelling target flock behaviour predictably and accurately continues to be a chal-
lenge and will, therefore, always need to be verified through physical tests with live birds.
Nevertheless, research into foraging styles and preferences could assist in nuancing which
areas of a property are more at risk of bird damage. For instance, flocks of European
Starlings have been shown to concentrate their feeding to habitually visited areas and
completely ignore other viable spots [29], leaving some parts of a crop experiencing dis-
proportionate amounts of damage. Similarly, the target flock energy expenditure model
introduced in this paper should be further refined. Though the energy model serves more
as a proxy for relative effort and target flock persistence, a catalogue of the energy and
flight data for more target species seen on food crops would allow for a better comparison
of different target responses to UAVs.

Furthermore, it was assumed that all target flocks were the same size and caused the
same amount of damage. However, not all targets will enter and forage as part of larger
flocks, and differently sized crops can influence the amount of damage or show varied
reception to scaring stimuli. Hence, research should be undertaken to understand the
impact of flock size on bird damage and the efficacy of UAVs in deterring them to further
inform the chasing strategy of the agents. The potential research areas include:

• Multi-UAV coordination optimisation: research and development into a decentralised
or distributed control architecture where each agent has the capacity to make more
‘informed’ decisions in chasing.

• Multi-UAV arrangement optimisation: the current simulation model assumes that
every spot along the property boundary is an equally likely entry point; however,
further research should explore different optimised arrangements and grid-generating
algorithms which do account for local geography and areas with historically greater
recorded bird damage.

• Property size and shape: importantly, further work should analyse the impact of
different property sizes and shapes and determine whether there is a relationship
that determines the number of drones required per square metre and the scalability
of different configurations. Similarly, it should be determined whether there is a
relationship between tether length and property size (for a given number of agents or
property ‘coverage’ ratio).

• Other applications: the strategy could be analysed in other specialised or smaller
contexts, such as hangars or airports where birds can similarly cause disruption, but
deterrence regions may only need to be in very specific zones.

5.3. Conclusions

The objective of this research paper was to determine the feasibility of deterring pest
birds using multiple UAVs that are individually tethered to the ground in a grid. This
objective was achieved; however, the research used simulation and remains theoretical due
to the COVID-19 restrictions imposed on movement and university access which prohibited
physical testing and validation. The simulation model was constructed as an extension
of the novel autonomous trajectory planning algorithm based on a probability map and
bird field trial observations by Wang in [17]. The simulation model was then tested and
benchmarked to find suitable tethered agent configurations for the bird deterrence problem
that would have then been presented for physical tests. An analysis highlighted the optimal
candidate configuration for the 100 m by 100 m plot as requiring four evenly distributed
agent UAVs with tether radii of 14 m.

This research made the following explicit contributions to the tethered UAV bird
deterrence problem:

• Development of a simulation model that can operate on a wider testing range, includ-
ing number of UAVs, number of target flocks and maximum speeds.
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• Introduction of tethered UAVs as a potential solution to the bird deterrence problem—
implemented both as a spatial constraint and in the cost function strategy within the
simulation model.

• Addition of a grid-generation algorithm to arrange any number of UAVs evenly within
a given rectangular area.

• Expansion of the UAV bird deterrence problem to a pseudo-3D model involving a 2D
probability map representing target flock occupancy but 3D dynamics for the UAVs
and target flocks.

• Introduction of a centralised multi-UAV control strategy that can cope and coordinate
the chasing of multiple incoming target flocks.

• Introduction of a novel target flock energy expenditure model based on the Common
Starling used to relativise effort required by a bird in a given foraging mission due to
a particular agent configuration and which can be scaled up to include a catalogue of
other target species.

The tethered multi-UAV strategy for bird deterrence is a novel solution proposed in
this paper for agriculture and not seen elsewhere to the authors’ knowledge. Although
future field experiments are essential in ultimately confirming the viability of such a system,
simulations of this novel bird deterrence method still show great promise that this solution
is, in fact, feasible.
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Figure A1. Simulation convergence study for (a) time response and (b) energy expenditure, with 
varied agent number but fixed tether radius at 𝑅் = 14 m. As simulation sample size increases, 
more values are being used to calculate the mean; every data point represents the running average 
of all preceding simulations from a minimum of 1 simulation up to a maximum of 500 simulations. 

  

Figure A1. Simulation convergence study for (a) time response and (b) energy expenditure, with
varied agent number but fixed tether radius at RT = 14 m. As simulation sample size increases, more
values are being used to calculate the mean; every data point represents the running average of all
preceding simulations from a minimum of 1 simulation up to a maximum of 500 simulations.
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Figure A2. Single-target scenarios—sample simulation 3D trajectory by t = 86 s, Ereserve = 255 J.
Regions of maximum energy expenditure correlate to high acceleration areas such as take-offs and
landings.
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Figure A3. Triple-target scenarios—time performance (darker lines indicate fewer agent numbers
while red markers indicate data points whose average success rate is above the given threshold).
Maximum agent speed vmax = 12 m/s.
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Figure A4. Triple-target scenarios—time performance (darker lines indicate fewer agent numbers
while red markers indicate data points whose average success rate is above the given threshold across
the 300 independent simulation runs). Maximum agent speed vmax = 12 m/s.
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Figure A5. Snapshots of a sample triple target simulation with the following configuration: 𝑛 = 4 
agents, 𝑅் = 14 m, 𝑣max = 12 m/s. Simulation begins in (a) with each target in the flock at the full 
energy reserve of 1020 J, all agentjer I u s undeployed in their Home state, and each cell in the prob-
ability map initialised with the same value. As the simulation progresses from (b)–(c), both target 
flocks seek to find grid cells of maximum interest indicated by their respective red (Flock 1), 
magenta (Flock 2) and orange (Flock 3) dots but are repelled by nearby deployed agents, shown 
in their Chase state, while agents that were deployed but no longer in range are shown in their 
Return state. Simulation is completed in (d) with both target flocks centre (greyed out) no 
longer in the protected area at the same time of 𝑡 = 56 s and the original energy reserve ap-
proximately halved. 

Figure A5. Snapshots of a sample triple target simulation with the following configuration: n = 4
agents, RT = 14 m, vmax = 12 m/s. Simulation begins in (a) with each target in the flock at the
full energy reserve of 1020 J, all agentjer I u s undeployed in their Home state, and each cell in the
probability map initialised with the same value. As the simulation progresses from (b,c), both target
flocks seek to find grid cells of maximum interest indicated by their respective red (Flock 1), magenta
(Flock 2) and orange (Flock 3) dots but are repelled by nearby deployed agents, shown in their
Chase state, while agents that were deployed but no longer in range are shown in their Return state.
Simulation is completed in (d) with both target flocks centre (greyed out) no longer in the protected
area at the same time of t = 56 s and the original energy reserve approximately halved.
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Figure A7. Double-target scenarios—sample simulation 3D trajectory by 𝑡 = 79 s, 𝐸reserve =444 J for both target flocks. Regions of maximum energy expenditure correlate to high accelera-
tion areas such as take-offs and landings. 

 

 

 

Figure A6. Triple-target scenarios—sample simulation 3D trajectory by t = 56 s, for all three target
flocks. Regions of maximum energy expenditure correlate to high acceleration areas such as take-offs
and landings.
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Figure A7. Double-target scenarios—sample simulation 3D trajectory by 𝑡 = 79 s, 𝐸reserve =444 J for both target flocks. Regions of maximum energy expenditure correlate to high accelera-
tion areas such as take-offs and landings. 

 

 

 

Figure A7. Double-target scenarios—sample simulation 3D trajectory by t = 79 s, Ereserve = 444 J for
both target flocks. Regions of maximum energy expenditure correlate to high acceleration areas such
as take-offs and landings.
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Abstract: The Vector Control Program in Mexico has developed operational research strategies to
identify entomological and sociodemographic parameters associated with dengue transmission in
order to direct targeted actions and reduce transmission. However, these strategies have limitations
in establishing their relationship with landscape analysis and dengue transmission. This study
provides a proof of concept of the use of unmanned aerial vehicle technology as a possible way
to collect spatial information of the landscape in real time through multispectral images for the
generation of a multivariate predictive model that allows for the establishment of a risk index relating
sociodemographic variables with the presence of the vector in its different larval, pupal, and adult
stages. With flight times of less than 30 min, RGB orthomosaics were built, where houses, roads,
highways, rivers, and trails are observed in detail, as well as in areas with a strong influence of
vegetation, detailing the location of the roofs or the infrastructure of the house, grass, bushes, and
trees of different dimensions, with a pixel resolution level of 5 centimeters. For the risk index, we
developed a methodology based on partial least squares (PLS), which takes into account the different
type of variables are involved and the geographic distribution of the houses as well. Results show
the spatial pattern of downtown low-risk housing, which increases as we approach the outskirts of
the town. The predictive model of dengue transmission risk developed through orthomosaics can
help decision makers to plan control and public health activities.

Keywords: Aedes aegypti; UAV; risk model; FAMD; PLS

1. Introduction

Unmanned aerial vehicle (UAV) technology has developed in recent years; its applica-
tions avoid many of the limitations associated with satellite data, such as long repetition
times, cloud contamination, low spatial resolution, and lack of homogeneity in camera
angle or shooting time [1]. It also offers the possibility of collecting detailed spatial infor-
mation in real time at a relatively low cost [2,3]. They carry out highly detailed imaging
work with essential high spatial resolution, spectral, and temporal characteristics [4–7].
Likewise, unmanned aerial vehicles (UAVs) are developing technology for remote-sensing
applications based on passive sensors, such as RGB, multispectral, hyperspectral, thermal
cameras, and active sensors, such as LiDAR or RADAR [8,9].

The UAVs can provide precise spatial and temporal data to understand the links
between disease transmission and environmental factors [2,3,10]. Moreover, it is a flexible
and low-cost solution for mapping mosquito breeding sites and the operational dissemi-
nation of strategies in mosquito-elimination campaigns. It can be used in communication
materials to demonstrate the specific risk conditions for a given area [5,11]. Through aerial
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surveillance, possible mosquito breeding sites could be identified in domestic areas inac-
cessible to traditional ground surveillance, which allows them to be proposed as a useful
and complementary tool in surveillance programs and mosquito control [12]. Likewise,
it can help operators of vector-control actions to optimize treatments by accurately iden-
tifying and mapping the coverage of breeding sites by using standard and multispectral
images [13,14]. Orthomosaics provide vital information for other public health planning
activities [11].

The physical landscape characteristics influence the distribution of adult female
mosquitoes [15] as interrelated socioeconomic, environmental, and behavioral factors
can explain the presence and abundance of Aedes aegypti [16]. Anthropogenic environmen-
tal changes can create an overabundance of resources responsible for sustaining vector
mosquito species’ invasion, spread, and colonization of urban areas [17]. Vegetation cover
is an important environmental factor that allows optimal conditions for mosquito life-cycle
development [18,19]. The organization of the backyard, knowledge about vector biology,
and cleaning containers are identified as the main topics for future prevention strategies
for the transmission of dengue in the local and national context [20].

New technologies for mosquito surveillance are growing; drones and specialized
cartography, machine learning, deep learning, big data, and citizen science can be added
as tools for better understanding the mosquito population dynamics and determining
the areas at risk to better conditions for spreading mosquito populations [21]. Predictive
models can be used for decision making in preventing various arboviruses transmitted
by Ae. aegypti in endemic urban and semiurban areas. Building a model that determines
the power and association of different variables is a necessary challenge because the Ae.
aegypti mosquito exists in complex environments with complex dynamics, where numerous
factors intervene in different dimensions, and each one can have a different role of lesser or
greater importance. However, it does not stop influencing the response of the vector to the
differences in the landscape.

In this study, by UAV cartography, field surveillance, and algorithm development, we
design a risk index to determine which houses have the environmental, demographic, and
socioeconomic characteristics to be classified as “aedic” houses for immature and adult
Ae. aegypti mosquitoes in Tapachula, Chiapas, a city on the Mexican southern border. This
proposed methodology can adapt the model to the different regions of our country, and
this flexibility is allowed mainly by the availability of real-time information provided by
UAV, one of its most important contributions.

Nonetheless, for the best performance of the UAV, it is necessary to consider the mete-
orological conditions and know the flight area [22,23] and the terrain’s characteristics, such
as tall trees and telecommunication antennae, to avoid electromagnetic interference [22].
As a user of UAVs, the national regulations must be observed [24]. Moreover, it should
be considered that one of the factors for UAV flight coverage depends on the battery
time [3,23]. Indeed, before the flights, the field teams should visit and talk with the health
authorities, principal neighborhood actors, and community leaders, who are necessary for
developing these new tools [25]. The costs of this technology must be taken into account
and considered as open-source software for affordable technology. A multidisciplinary
team is also required to address the entire strategy.

Therefore, this study answers the following. (1) How to take advantage of UAV
technology by obtaining landscape elements to be included in an index that responds to
the complexity of scenarios in which the mosquito develops. (2) How to combine the
information obtained from different sources, both from field data and the variables derived
from high-definition cartography, that have a practical utility, sense of reality, fidelity, and
opportunity to strengthen mosquito-surveillance and control programs.

2. Related Work

Studies on UAV applications in health are scarce. They addressed simulations on
using drones for out-of-hospital care in cardiac arrest emergencies, identification of people
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after accidents, transport of blood samples, and improvement of surgical procedures in
war zones [26]. UAVs can transport medical supplies, specimens, biological materials, and
vaccines to hard-to-reach areas at a reduced travel time. Moreover, the research on the use
of drones in health is almost limited to simulation scenarios [26,27].

In mosquito-surveillance and control programs, UAVs have been designed to control
mosquitos by spraying larvicides, dropping larvicide tablets, spreading larvicide granules,
the application of adulticides in ultra-low volume, sampling in bodies of water, and
surveillance of adult mosquitoes [28,29]. Likewise, drones can help operators of vector-
control actions to optimize treatments by accurately identifying and mapping the coverage
of breeding sites by using standard and multispectral images [14] and as tools for the
release of sterile mosquitoes [30,31].

Indeed, three years ago, different studies were conducted to evaluate the use of UAVs
to identify the larval breeding sites of different mosquito species. In Peru, multispectral
mapping was used with random forest analysis to identify Anopheles darling larval breeding
sites [32]. In Brazil, it was used to detect Ae. aegypti breeding sites [33]. In Mexico, the first
study evaluating UAVs was carried out to identify Ae. aegypti breeding sites [12].

In studies of spatiotemporal distribution models of Ae. aegypti vectors, the limited
availability of high-resolution data for physical variables stands out as part of the inconsis-
tencies in the number and influencing factors [34]. Few studies comprehensively highlight
the interaction between environmental, socioeconomic, meteorological, and topographical
systems [34]. Maximum entropy species-distribution models have been used, with human
population density, distance to vegetation, water channels [35], population density, and
poverty [36] being the main predictor variables of the vector suitability of a given area.

There are few works reported in the literature about the use of machine learning
(ML) and nonparametric techniques for mosquito surveillance. In [37], authors used
three ML models (nonlinear discriminant analysis, random forest, and generalized linear
models) to analyze the environmental suitability of three indigenous mosquito species in
the Netherlands: Culiseta annulata, Anopheles claviger, and Ochlerotatus punctor, where the
response variable is mosquito abundance sampled at 778 locations by using CO2-baited
mosquito magnet traps. As covariates, they used environmental variables obtained from
satellite images and meteorological data. The best results were achieved with random
forests, and they showed the most discriminative variables for each species. In [38], the
authors used classification methods based on k–nearest neighbor, support vector machines,
neural networks, and random forest to predict mosquito abundance in 90 sampling sites
from Charlotte, NC, USA. The data consisted of mosquito samples collected with gravid
traps and socioeconomic and landscape factors. The dependent variable to predict mosquito
abundance was binarized as low (0) and high (1) according to the median value, and the
independent variables or predictors were divided into seven socioeconomic variables and
seven landscape variables obtained from remote-sensing images. Two versions of the
input variables were used, one dichotomized into binary values according to the median
of each variable, and one with the raw continuous values scaled. The best performance
was achieved with the k–nearest neighbor algorithm in both cases; however, there are no
further details about the distance metric used in the binary input variables case, because,
except for random forest, all classification methods use Euclidean distance as the default
option, even when a nonlinear kernel or activation function is used; i.e., they are originally
formulated for continuous input variables. In [39], 1066 females adult Ae. aegypti were
collected by using battery-powered Prokopack aspirators from 128 indoor and outdoor
houses in northeastern Thailand to map and predict the female adult Ae. aegypti abundance.
They used five popular supervised learning models (logistic regression, support vector
machine, k-nearest neighbor, artificial neural networks, and random forest) based on
socioeconomic, climate change, dengue knowledge, attitude, and practices (KAP), and/or
landscape factors to predict the abundance considering only two classes (high and low). In
this work, the random forest method had the highest prediction model accuracy, and the
study demonstrated that climate change, KAP, and landscape factors were more important
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than socioeconomic factors in explaining mosquito abundance. Similar to [38], it is not
clear how the mixed input data (categorical and continuous) are managed, because the
classification models they used (except random forest) cannot naturally handle mixed-type
data. This may be the reason why random forest showed the best results.

Those approaches are interesting in terms of prediction, and the use of ML models
provides flexibility because most of them are nonparametric and do not assume a priori
any probability distribution of data. However, for us it is very important to gain some
insight into the local characteristics of the area of study, which makes it more prone to
mosquito-borne diseases. A study of the importance of the variables can be done based
on the parameters of the models [37,39], when it is possible, correlation analysis, or by a
specific hypothesis tested on the models [38], based, for example, on manually adding
or excluding individual variables or sets of variables [39]. All those approaches must be
carried out carefully when our variables are mixed-type data, particularly for ML models
based on Euclidean distance between observations. For this reason, in our approach we
pay special attention to obtaining an adequate distance metric for mixed-type data, which
allows us to obtain an index representing the local characteristics of houses that are related
in some way to dengue disease.

Despite the scientific evidence available, the objectives of each previous study—to
analyze the available entomological, epidemiological, and environmental data in defined
study areas and to consider different types of variables—have been limited in terms of
technology, resolution, and frequency of images available. Having high-resolution, real-
time, and more accessible images taken by UAVs dictates the need to evaluate their use
with predictive power within the prevention and control of vector-borne diseases. Prior
knowledge is a good foundation, but current technology allows us to analyze the dynamics
of different changes at different spatial scales, such as overpopulation, urbanization, and
climate change.

3. Materials and Methods
3.1. Study Area

Tapachula is the second-most important city in Chiapas, the economic capital of
the state and the main populated center of the Soconusco region. In 2018, it was first,
epidemiologically, in cases of dengue, with 876 cases registered, an increase of 188% in
relation to 2019. Tapachula city has 217,550 inhabitants and 78,039 houses, and is located
on the southern Pacific coast of Chiapas. It has an average annual temperature of 21.7 °C
and rainfall of 1000–5000 mm [40]. The climate is warm, humid, and temperate, with a
heavy rainy season from May to November. The area of study is El Vergel, a colony in
the northwest of Tapachula, with an extension of 433 km2 (Figure 1). It has an estimated
population of 2590 people (residents and workers) in 592 houses. There were 597 inhabitants
per km2, with an average age of 11 years and an average of seven years of schooling.

3.2. Field Surveys

Surveys were conducted in 216 houses in the El Vergel neighborhood in Tapachula,
Chiapas, from 19 November to 5 December 2020 (Figure 1). The surveys were carried out
among inhabitants of legal age.

Four household surveys were conducted in El Vergel neighborhood, Tapachula, Chia-
pas: (a) the Premise Condition Index (PCI, [41]) and the Modified Premise Condition Index
(PCI2, [42]), (b) the entomological survey for adults of Ae. aegypti, (c) the entomological
survey for larval breeding sites of Ae. aegypti, and (d) a demographic survey. These surveys
are described below.
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Figure 1. Orthomosaic of the El Vergel neighborhood, Tapachula, Chiapas, pointing out the houses
surveyed (left), more resolution details for landscape elements recognition (right).

3.2.1. Premise Condition Index (PCI)

This survey consists of nine questions related to the house appearance or house
condition, the yard condition, and the degree of shade; the value of this index oscillates
in three levels: low, medium, and high [41]. The modified premise condition index (PCI2)
was also obtained from this survey, including the yard conditions and the degree of shade,
without house conditions [42].

3.2.2. Entomological Survey for Adults of Ae. aegypti

These surveys were carried out once in all rooms of each house for the manual
collection of Ae. aegypti at rest by using backpack aspirators [43]; this tool also can collect
mosquitoes while flying at 10 or 15 cm from the mouth of the catch container. The mosquito
count was done manually in the field and recorded per house. Then, the adult mosquitoes
were transported in small cages covered with mash and labeled, one per house, into a
cooler to the laboratory. The adults were then identified morphologically, according to [44].

3.2.3. Entomological Survey for Ae. aegypti Breeding Sites

In the same manner, this survey was carried out once and consisted of a visual
inspection of each house, looking for all containers that could be holding water to look for
eggs, larvae, or pupae of Ae. aegypti, indoor, outdoor, and on roofs of houses when it was
possible. A container had eggs, larvae, or pupae of Ae. aegypti was identified as a positive
breeding site. The number of eggs, larvae per stage, and pupae per container were counted
manually and recorded per house [45].

Ladles, mesh nets, mosquito larvae dippers, and plastic pipettes were used to check
each container. The small and medium containers were emptied for larvae and pupae
counted, and for the large containers, the personnel used small containers for which all the
immature stages of Ae. aegypti were counted by depth until no larvae or pupal activity was
observed in the container [45]. The species were identified in the field according to [44].
Previous training was necessary for field personnel to strengthen their knowledge about
the vector and fill out the entomological surveys.
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3.2.4. Overcrowding

This index was constructed from the demographic and socioeconomic survey applied
once to each house. It consists of the number of inhabitants/number of house rooms of 216
houses surveyed.

3.3. Drone Photography and Cartography Construction

We use a Matrice 600 DJI® RPAS equipment [22] with a high-resolution 16-megapixel
X5 optical camera [46] and a MicaSense Rededge® multispectral camera [47] in order to
create cartographic products such as orthomosaics, contour lines, housing classification,
and vegetation indices (NDVI, GNDVI, NDVIRedEdge, and CIgreen) [10]. The drone
flights were made in collaboration with the National Centre for Disaster Prevention of the
Mexican Government (CENAPRED) by using the CENAPRED protocols [48] and following
the national normative law [49] and manufacturers’ recommendations [22]. The flight plan
was carried out by using the PIX4D software [50] which allows flight speed and height
variables, camera tilt angle, and overlap between images to be kept constant. All flights
were made at 100 m of altitude with a resolution of 2.59 cm/pixel by noon, trying to avoid
the shadows [12,51,52], and on the same week of the field surveillance. At the same time,
we take drone photographs on RGB by X5 optical camera and on five spectral bands (R, G,
B, RedEdge, and NIR) by Micasense® camera.

Once the flight plan is carried out over the study area, photographs captured by the
sensor are obtained in JPG format and transferred to the computer for processing. All aerial
photographs were processed by using PiX4D [50] software to obtain the georeferenced
orthomosaic. These models are created from the process on the point cloud generated
by the captured photographs to obtain products such as the orthophoto, digital surface
model (DSM), and digital terrain model (DTM) with a spatial resolution of 5 cm. These
cartographic products are obtained for both cameras, performing separate processing
(Pix4Dmapper version 4.3.31 [53]). Raster data of all structures and vegetation represents
the DSM and the development of the geodesic surface represents the DTM. For the clas-
sification of vegetation and houses, the RGB orthomosaic was subjected to radiometric
calibration by using the ENVI spectral signature library [54] with the empirical line com-
pute (ELC) factors algorithm, and thus it can perform postprocessing on the image, such
as supervised classification with the maximum likelihood estimation (MLE) method. The
RGB orthomosaic was obtained of the El Vergel neighborhood, where we can see houses,
roads, highways, rivers, and trails in detail. Areas with a strong influence of vegetation
can be observed, detailing the location of the houses’ roofs or infrastructure, as well as
the vegetation types, grass, bushes, and trees of different dimensions (see Figure 1). Once
the raster formats were obtained, the processing of polygons that cover the coverage of
buildings and vegetation continued. The 216 houses were located in the aforementioned
raster. Two types of polygons were digitized in the total area of each house: house coverage
by roofs and vegetation coverage by trees. Both were divided into three strata: 1. less
than 25%; 2. from 26 to 50%; and 3. more than 50%. Shade cover (ShadeDrone) was based
on the building cover (roofs) plus the tree cover per house. The cartography of different
vegetation indices (Normalized Difference Vegetation Index (NDVI), Green Normalized
Difference Vegetation Index (GNDVI), Normalized Difference Red Edge Index (NDVIre),
Green Chlorophyll Index (CIgreen) [55], and tree height cartography) were generated by
using the ArcMap software from the raster calculator tool [56] that allows the application of
different formulas already estimated previously to obtain them, using as inputs the bands
of our multispectral sensor (R-G - B- IR- RE).

Finally, the shapefiles of the houses (N = 216) of El Vergel, Tapachula, Chiapas were
individually separated house by house. Subsequently, 100 points were randomly created on
the ArcMap® 10.3 platform within each house. Each variable derived from the vegetation
indices (NDVIre, GNDVI, NDVI, and CIgreen), DSM, and DTM consisted of an average of
100 points per house. A summary of the variables we consider in our analysis is shown in
Table 1. Time photo capture and flight height were allowed the resolution necessary for
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recording data of the landscape variables for Aedes risk index (Table 1). The UAV photos
taken simultaneously with the data recorded through field surveillance reflect the elements
found in the field.

Table 1. Description of the variables obtained from field surveys and specialized cartography of El
Vergel neighborhood, Tapachula, Chiapas, Mexico.

Variable Type Description

Premise Condition Index (PCI) Discrete
A house score about the house condition, the yard
condition, and the degree of shade assessment of houses
surveyed. Score 3 to 9.

Premise Condition Index (PCI) weighted Categorical Qualification criteria based on the house score of PCI. 1
(Low) = 3, 2 (Medium) = [4, 6] and 3 (High) = [7, 9].

Modified Premise Condition Index (PCI2) Discrete A house score about the yard condition and the degree of
shade assessment of houses surveyed. Score 3 to 6.

Modified Premise Condition Index (PCI2) weighted Categorical Category criteria are based on the house score of PCI2. 1
(Low) = 2, 2 (Medium) = [3, 4] y 3 (High) = [5, 6].

Shade conditions Categorical
Category of the degree of shadow per house (PCI or PCI2)
1 : [0, 25%), 2 : [25%, 50%), 3 : [50%, 100%]. Based on
personnel criteria.

Male mosquitoes Continuous Number of Ae. aegypti male mosquitoes per house.
Female mosquitoes Continuous Number of Ae. aegypti female mosquitoes per house.
Mosquitoes Continuous Number of Ae. aegypti mosquitoes per house.
Pupae Continuous Number of Ae. aegypti pupae per house.
1st instar larvae Continuous Number of Ae. aegypti 1st instar larvae per house.
2nd instar larvae Continuous Number of Ae. aegypti 2nd instar larvae per house.
3rd instar larvae Continuous Number of Ae. aegypti 3rd instar larvae per house.
4th instar larvae Continuous Number of Ae. aegypti 4th instar larvae per house.
Larvae Continuous Number of Ae. aegypti all instar larvae per house.

Breeding sites Continuous Number of breeding sites of Ae. aegypti with eggs, larvae, or
pupae per house.

Overcrowding Continuous The number of inhabitants/Number of house rooms per
house.

ShadeDrone Categorical
Category of the degree of shadow per house, delimited on
aereal images made by drone: 1 : [0, 25%), 2 : [25%, 50%)
and 3 : [50%, 100%].

TreeCover Categorical
Category of the tree cover per house, delimited on aereal
images made by drone: 1 : [0, 25%), 2 : [25%, 50%) and
3 : [50%, 100%].

TreeHeight Continuous Tree high average per block, based on the houses surveyed
and trees identified on drone cartography per block.

NDVIRe Continuous Average of 100 random points per house of Normalized
Difference Red Edge Index (NDRE).

GNDVI Continuous Average of 100 random points per house of Green
Normalized Difference Vegetation Index (GNDVI).

NDVI Continuous Average of 100 random points per house of Normalized
Difference Vegetation Index (NDVI).

Digital Surface Model Continuous Digital Surface Model (DSM) per house on masl.

CIgreen Continuous Average of 100 random points per house of Green
Chlorophyll Index (CIgreen).

Digital Terrain Model Continuous Digital Terrain Model (DTM) per house on masl.

3.4. Methodology

Given the data gathered according to Section 3.2, our proposed index is based on two
steps (see Figure 2). First, we obtain a vectorial representation of each house included in
our study in such a way that we can obtain similarities among them. This step involves
an encoding procedure to the raw data, which takes into account the different types of
variables we have. In the second step, we obtain the index as a latent variable derived from
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a particular regression procedure by introducing a dependent variable related to the Ae.
aegypti. In the following sections, we describe in detail those steps.

Figure 2. Block diagram of the proposed methodology.

3.4.1. Vectorial Representation of the Data

The methodology we propose to obtain the risk index requires a vectorial represen-
tation of the data. In the case of medium- to high-dimensional data, it is recommended
that this representation be low dimensional, and therefore, a dimensionality reduction
procedure is envolved.

Principal Component Analysis (PCA [57]) and Multiple Correspondence Analysis
(MCA [58,59]) are well-known techniques to obtain low-dimensional representations of
quantitative and qualitative data, respectively. When we have mixed-type data, i.e., quanti-
tative and qualitative, as in our case, there are some proposals in the literature where, prior
to the dimensionality reduction, an encoding procedure is done to one or both types of
variables. The simplest encoding procedure is the discretization of the quantitative features
by mapping continuous values into predefined intervals (e.g., low, medium, high), in order
to obtain a complete categorical dataset; however, valuable information can be ignored, and
defining the appropriate intervals can be tricky. It is also possible to obtain a quantitative
dataset by introducing dummy variables, where qualitative features are transformed via a
one-hot encoding procedure, whereby each category is represented as a binary variable.
Although it is a common practice in regression models, several drawbacks have been
noted, such as the increase in size of the dataset, and mainly, the multicollinearity problems
that can be found [60]. Another approach is to construct a metric space with a similarity
measure between pairs of objects defined in such a way that it can handle mixed-type data,
such as multidimensional scaling (MDS, [61]) with Gower distance ([62]). Another sophisti-
cated method for encoding mixed-type data based on Shannon entropy has been proposed
in [63], where it is shown that the obtained representation can preserve the information in
the original data with a memory-efficient procedure, which is particularly useful for big
data scenarios (large and high-dimensional datasets). Another popular alternative for low
to medium-size datasets, is factor analysis for mixed data (FAMD, [64,65]), which can be
viewed as a mix between PCA and MCA. As is noted in [64], FAMD can be obtained by PCA
including quantitative variables with a particular metric, which includes the contribution
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of quantitative and qualitative variables (previously encoded) to the distance between pairs
of observations. This is the approach we use in our proposal, and in the next paragraph,
we will describe the FAMD methodology following [66].

Factor Analysis for Mixed Data

Let Xn×d be our data matrix, with n observations and d = c+ q variables, of which c are
quantitative and q are qualitative. Now, let us define the encoded data matrices ZC and ZQ

for quantitative and qualitative variables, respectively. For quantitative variables, we use
the centered-scaled version: ZC

ij = (Xij − x̄j)/σj for j ∈ C, where C is the set of quantitative

variables. For qualitative variables, ZQ is the so-called complete disjunctive table, which is a
multivariate indicator matrix, the rows of which are the concatenation of q one-hot encoding
vectors for each q ∈ Q, the set of qualitative variables. Suppose that the qth variable has Kq
categories and K = ∑q Kq is the total number of categories for all qualitative variables. Then,

ZQ is a matrix of size n× K, with entries ZQ
ik = 1 if observation i belongs to the kth category

and 0 otherwise, for i = 1, 2, . . . , n and k = 1, 2, . . . , K. Generally, we use the scaled version
of ZQ, where each entry is set to ZQ

ik /pk − 1, where pk is the proportion of observations
possessing category k. Those transformations give us a new data matrix Z = [ZC, ZQ],
with observations z ∈ Rs, where the dimension of this metric space is s = c + K. For
any two observations u, v ∈ Rs, a weighted norm is defined as ‖u‖2

W = u′Wu, and its
corrreponding weighted distance will be d2

W(u, v) = ‖u− v‖2
W = (u− v)′W(u− v).

In order to take into account the two types of variables in the distance defined before,
in the standard version of FAMD, the weight matrix is defined as W = diag([1c, p]),
where 1c is the vector of ones with length c, and p is the vector of category proportions of
length K. The latter implies a weighted scheme on the columns of ZQ when the distance
between encoded observations is computed, which together with the scaling defined
before, emphasizes the differences between observations with rare categories. However,
another weighting scheme is possible, as is noted in [66]. The fitting of the model is
similar to PCA on the transformed variables, based on singular value decomposition (SVD),
where an additional weighting scheme is applied for the row space of Z by means of
Bn×n = diag(1n−1); then, the solution is based on SVD(B1/2ZW1/2). See [64] for details.

Similar to PCA and MCA, FAMD gives us low-dimensional representations for vari-
ables and observations. In our case, we will only use the representations for observations,
which allow us to measure similarities in houses according to their characteristics.

3.4.2. Spatial Constraints

The spatial relationships between the houses in our study are based on their geographic
distribution. We used a ML methodology to generate a categorical variable for each
house, which we add to the original variables, corresponding to the cluster they belong
to, according to a particular clustering structure obtained with a clustering algorithm
with spatial constraints. The constraint we used is the contiguity in space, specifying in
this way which observations (houses) are considered connected. When we include these
connectivities in a clustering algorithm, the observations in a cluster are required not only
to be similar to one other according to their covariates, but also to comprise a contiguous
set of observations. To this end, we define a connectivity matrix Cn×n with entries Cij = 1 if
observations i and j are considered contiguous and 0 otherwise. A cluster is then considered
contiguous if there is a path between every pair of observations in that cluster, i.e., the
subgraph is fully connected. Several classical ML clustering algorithms have been modified
to take into account this type of constraint [67,68]. We decided to use an agglomerative
hierarchical clustering method adapted to handle connectivity constraints implemented in
the module cluster from sklearn package in Python [69]. We chose this method mainly
because of its simplicity and the good results that we obtained.
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3.4.3. Risk Index with Partial Least Squares

Our proposed index is based on partial least squares regression (PLS, [70,71]). PLS is
a class of techniques for modeling the association between blocks of observed variables
through latent variables.

Let X̃n×p and Yn×t, be the matrices representing a set of independent and dependent
variables, respectively, which we assume, are linearly related. PLS aims to find a set of
vectors of latent scores {α1. . . . , αR} and {ω1. . . . , ωR}, which are orthogonal and related
to the column space of X̃ and Y, in such a way that, for any value between 1 and R, this
set of vectors span the “most interesting” subspaces of the ranges of both matrices [72].
Taken separately, αr and ωr for r = 1, . . . , R, can be the PCA solution for X̃ and Y; however,
the solution of PLS is not accounting for X̃′X̃ or Y′Y only, but for the cross-covariance X̃′Y.
Let us focus on the first pair of latent scores α1 and ω1. In this case, PLS can be stated as a
method to find vectors a and b such that

Cov(α1, ω1) = max
‖a‖=‖b‖=1

Cov(X̃a, Yb). (1)

If a1 and b1 are the solution to (1), it can be shown that Cov(α1, ω1)a1b′1 is the best
rank-one approximation of X̃′Y in the least-squares sense [72].

In its classical form, the fitting procedure of PLS is based on the nonlinear iterative
partial least squares (NIPALS) algorithm [73], which give us the whole set of solutions
(αr, ωr) and (ar, br), for r = 1, . . . , R.

In our study, the data matrix X̃n×p is the p–dimensional representation of the orig-
inal mixed-type dataset obtained with the methodology described in Section 3.4.1. The
dependent variable Y is a n× 1 matrix (i.e., a vector). In this case, the solution is given by a
particular case of PLS known as PLS1 [71,72].

Our particular interest is the solution given by the first pair of PLS scores, because our
proposed index is given by X̃a1.

4. Results

We performed an extensive set of experiments in order to explore interesting patterns
and to select a good model to obtain our proposed index. Those experiments where carried
out based on a grid of parameters, which we consider important, and are described on
Table 2.

Table 2. Main parameters considered in our model. The possible values of those parameters were
chosen arbitrarily based on the results we observed.

Parameter Description Values

PCDroneImage
The number of principal components (PCA) used to represent the vegetation indices (NDVI,
GNDVI, NDVIre and CIgreen), and cartographic information (DSM and DTM) {1, 2}

nclust The number of clusters considered to model the spatial relationships between the houses. {2, 3, 4, 5, 6}
knn

The number of k nearest neighboring houses for defining the connectivities in the agglomerative
hierarchical clustering with spatial constraints {3, 4, 5}

PCFAMD The number of principal components to be used, obtained with FAMD {2, 3, 4, 5, 6}

PCPLS

The maximum number of principal components to obtain in PLS to generate our proposed index.
Observe that, altough we use just the first score of PLS (X̃a1), results may vary for different values of
PCPLS. Also, this parameter must satisfy PCPLS ≤ PCFAMD

{2, 3, 4, 5, 6}

As in any regression-based model, in PLS we can obtain some metrics accounting for
its predictive performance; however, it is not our objective (it is very easy to show that a
performance metric such as the coefficient of determination, can be artificially “inflated”,
resulting in an overfitted model). In our case, we want to take advantage of a unique
characteristic of PLS: to construct the best set of latent variables (components) based on
the set of factors we obtained with FAMD, which are correlated to our response variable of
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interest, as we explained in Section 3.4.3. In this sense, we want to exploit the explanatory
habilities of PLS, which will allow us to obtain a set of components that can represent all
covariates we used (from different sources and types) in a useful way to be considered as a
risk index.

Then, our main evaluation criteria was the explained inertia (covariance) obtained
with the FAMD procedure according to the PCFAMD variable, and the residuals on log
counts of the response variables. Because we have many possible combinations of the
parameters, we will not show here those experiments, but many of them can be found
as supplementary material to this paper in https://github.com/victorm0202/mosquito_
borne_viral_disease_paper.

We observe that the patterns of risk we found are consistent in most of the parame-
terizations we used, except on those where the model overfits, and we observed also that
this tends to occur when PCPLS is high (5 or 6, mainly). In this case, the risk index does not
show a particular spatial trend, even when we vary the other parameters.

Based on those experiments, we decided to use the following parameters of our
proposed model for the results we will show:

• PCDroneImage: 1
• nclust: 4
• knn: 3
• PCFAMD: 2
• PCPLS: 2

obtaining an explained inertia of 0.661.
Based on this set of parameters, and the geographic distribution of the houses included

in our study, we generate a cluster configuration by using agglomerative hierarchical
clustering with spatial constraints, as is explained in Section 3.4.2, where we included all
independent variables related to the houses of our dataset.

In Figure 3, we show the connectivities induced by C by using the centroids of the
polygons defining the houses and the cluster configuration of houses according to four
regions. We add a categorical variable to our dataset which represents the region assigned
to each house.

Figure 3. Hierarchical clustering with connectivity constraints. (a) Spatial distribution of houses and
their connectivities with k = 3 NN. (b) Cluster structure with 4 regions or clusters.

We apply FAMD to the complete dataset of independent variables, including that
for the region. As was explained in Section 3.4.1, we can obtain low-dimensional repre-
sentations for variables and observations, but it will be restricted to observations only,
because our interest is to have a useful representation for the houses according to all their
covariates. Because FAMD is based on MCA and PCA, we can obtain representations based
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on each type of variable, as we show in Figure 4. For visualization purposes, we show
two-dimensional representations of observations based on qualitative variables (Figure 4a),
quantitative variables (Figure 4b), and the complete set of variables (Figure 4c), which is
our main interest.

Figure 4. Two-dimensional representations of observations (houses) obtained with FAMD. (a) Based
on qualitative variables. (b) Based on quantitative variables. (c) Based on both quantitative and
qualitative variables

We can see that some patterns emerge when we use categorical and continuous
variables only, but perhaps it is more clear in the case of continuous variables (Figure 4b),
where we can observe a main cluster of houses, and three smaller clusters. Moreover, we
can see at least two clusters when we consider the whole set of variables, as is shown in
Figure 4c. We tried to explore a little more on this fact by applying k–means clustering
considering the 3 PC we get with FAMD and k = 4 clusters. The results are shown in
Figure 5. Initially, we wonder if those patterns corresponded to the spatial configuration
we found in Figure 3. This was not the case, but we will use the clusters we found with
k–means to compare with the results we obtained with the proposed index.

Figure 5. k–means clustering for observations (houses) obtained with FAMD. We used k = 4 clusters
considering 3 PC as input.

To construct our univariate index with PLS, as we explained in Section 3.4.3, we use
different dependent variables Y. In all cases, our index is defined as γ = X̃a1, a vector of
length n, and it corresponds to the first PLS score.

We use univariate and multivariate Y as dependent variables for PLS. The univariate
dependent variables are denoted by Ypupae, Ymosquitoes and Ystages. Meanwhile, the multi-
variate version includes all the previous variables concatenated by columns, resulting in a
matrix Yall of size n× 3.
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For visualization purposes, and in order to compare our proposed indices, we show in
Figure 6 the bivariate risk index, which corresponds to the first two scores obtained with
PLS for each Y. The points represent the houses, and the cluster assigned to each point
is the same that we obtained with k–means in the FAMD representation (Figure 5). We
observe similar patterns in the FAMD representation and the index obtained; furthermore,
we can see that all bivariate indexes in Figure 6 are very similar.

(a) (b)

(c) (d)

Figure 6. Bivariate risk index obtained with PLS for different response variables Y. (a) Ystages.
(b) Ymosquitoes. (c) Ypupae. (d) Yall. Points in the scatterplots represent the houses.

For practical purposes, our proposed index is univariate and, as we said before,
corresponds to the first score obtained with PLS, which was scaled between zero and one.
In Figure 7 we show the house-level risk index we propose based on PLS for each dependent
variable Y defined before. This figure confirms the similarity between all indices.
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Figure 7. House-level risk index based on PLS for different response variable Y.

In addition, we show in Figure 8 the geographic distribution of houses, depicted with
polygons, and the risk index for each house. Very interesting patterns can be seen in both
Figures 7 and 8. There are some evident peaks of the risk index, which mainly correspond
to houses on the periphery of the region of study. This spatial pattern of high-risk houses
corresponds to region 3 in Figure 3, and some houses of regions 0 and 1. Houses with
low risk can be found in the center of the study region and correspond to the region 2 of
Figure 3. The risk increases as we approach the periphery of the region, as can be seen in
Figure 8.

Figure 8. House-level risk index obtained with PLS for different response variable Y. Maps shows
the geographic distribution of houses.
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The house risk index of less than 0.5 for larvae, pupae, adults, and all stages was in
69.4% (150), 70.4% (152), 71.8% (155), and 70.4% (152) of houses, respectively. The major
part of the houses with low risk (less than 0.5) was located in the downtown of the El Vergel
neighborhood. The characteristics of this area are different from the rest of the dwellings
in several aspects: they have concrete slab roofs and tile floors, better-quality services,
and less tree cover, among other things, as opposed to the peripheral houses, which are
characterized by more vegetation cover, sheet metal roofs, deficiency in the provision of
services and constant population movement. This may represent a greater risk for dengue
transmission in these particular areas. For all of the above, the generated maps can be
added to the layers of geographic information that strengthen decision making on mosquito
prevention and control measures in the area. They can permit direct mosquito control
activities for those houses with high risk for Ae. aegypti in different life-cycle stages with
adequate activities can involve community participation.

5. Discussion

The use of new technologies such as UAV have proven useful in supporting the
implementation of entomological surveillance strategies for emerging and reemerging
diseases. For malaria, the use of drones has allowed vegetation to be associated with the
abundance and presence of the vector. On the other hand, methodology for monitoring
and identifying breeding sites of Ae. aegypti mosquitoes has recently been reported.

The traditional entomological surveillance was carried out in homes by the Vector
Control Program in Mexico and used entomological indices. The house (premises), index
(percentage of houses infested with Ae. aegypti, larvae and/or pupae), container index
(percentage of water-holding containers infested with Ae. aegypti larvae and/or pupae), and
the Breteau index (number of positive containers per 100 houses recorded) [74], showed
little relationship to adult densities. In some situations, their values were not associated
with cases in the locality [75–77]. Likewise, the national dengue program uses some indices
to determine risk areas where the vector develops. One of them is the Premise Condition
Index (PCI). This index considers the house’s appearance, the shade, and the disorder in
the patio of the dwellings to determine the degree of risk in the dwelling in the presence
or absence of the vector [42]. In [42], the potential of aerial surveillance for identifying
breeding sites of Ae. aegypti was demonstrated two decades ago. Satellite aerial photographs
intended to identify high-altitude breeding and resting sites of Ae. aegypti in residential
areas were compared with the modified Housing Condition Index (PCI2) application [41]
as a rapid assessment technique within the dwellings. However, that was limited to the
resolution of the images and could not identify small elements of backyards. Nevertheless,
the satellite images are taken at different seasons, daily times, and camera angles, which
does not allow the precise association of the environmental variables related to the Ae.
aegypti house biological cycle. In this study, the UAV photos were taken at 100 m, at
approximately noon, and simultaneously with house surveys [12,51,52], making it possible
to associate the vector’s biological activity with landscape elements because it allows us
to determine them precisely and according to the field data record. The dengue mosquito
vector Ae. aegypti has expanded its distribution, as the mosquitoes have gradually adapted
to climatic and environmental conditions, leading to a change in the epidemiology of viral
diseases, facilitating their establishment in new ecozones inhabited by immunologically
naive human populations [78]. Numerous research groups have generated evidence on the
factors that facilitate vector mosquitoes’ different life-cycle stages and that are associated
with the increase in their populations [34] and disease transmission [79,80]. In addition
to the scientific evidence, health programs must know the riches of other technologies to
obtain high-resolution images that can help understand the vector-borne diseases (VBD)
complex, dynamic, and multifactorial scenarios.

Although dengue and mosquito programs have indices and technological tools that
can help understand the mosquito population dynamics, the role of UAVs as a newborn
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technology can help build a house index more robust that can permit the anticipation of
the increase in the mosquito population in health programs.

The national dengue program needs a robust concept to determine an “aedic house”
that can have characteristics for allowing Ae. aegypti life cycles. We approach the simul-
taneity of UAV high-resolution images with field surveillances; data can also be defined,
taking into account different types of variables related not only to the dwelling but also
population–socioeconomic and other characteristics related to the landscape, such as cov-
erage, type of vegetation present, and topography. Due to the fact that most of the UAV
studies have been made on simulation scenarios, the contributions of this study demon-
strate the utility of UAVs in obtaining urban landscape data for building a strong, flexible,
and robust risk index, the methodology of which can be adapted to different places on
different socioeconomic neighbor levels in urban or semiurban areas.

Our model contemplates different types and natures of variables related to the immedi-
ate landscape of each house visited, including those made through specialized cartography
by aerial images, such as the vegetation present through the coverage and height of trees.
The vegetation indices that consider both the greenness and the plant density of the species
and values of the digital surface model were included, representing all the elevations
present on the surface, land, infrastructure, and vegetation. The plant species present,
their height, and their foliage will affect the local temperature and wind speed due to the
effect of shadows projected on the various surfaces. Indeed, evapotranspiration is the effect
of evaporative cooling of the water that plants transpire. Another small contribution is
due to soil moisture [81]. In addition, consider field survey data as the premise condition
index [41], the modified house condition index [42], and the number of positive breeding
sites for Ae. aegypti, as an indirect measure of the characteristics of the houses that allow
them to offer conditions that facilitate the life cycle of mosquitoes and oviposition [82–84]
and the overcrowding index, as a measure of the human population density can act, among
other things, as one of the factors for the female mosquitoes to move in search of food
sources [85]. The flight height is crucial to obtain the optimal resolution for identifying the
landscape elements according to different scenarios and depends on the elements or object
size needed to identify the landscape. It is specific to the research question. However, it
is crucial to know the flight area—in urban environments, to avoid high obstacles such
as telecommunications or wi-fi antennas, buildings, or tall infrastructure, and in rural
and semirural environments, mainly to avoid tall trees. An evaluation was carried out
to determine the best flight height for detecting and identifying specific plant communi-
ties. They found that the NDVI orthophotograph’s best flight height to identify tolares of
Parastrephialepidophilla was 25 m, followed by 50 m [86]. An optimum flight height for
our study purposes was 100 m. For operational purposes, we recommend flights of 80 to
100 m. Moreover, we recommended following the national regulations for security flights.
Another important flight issue is photo capture time, which should be at noon, to avoid
shadows limiting the object or element detection and identification [12,52]. As dependent
variables, all the immature stages of female and male Ae. aegypti mosquitoes that could
explain the model were included and made simultaneous with the UAV flights.

Nowadays, there is an evident trend in the ML research community to use data
from different sources in order to propose useful models for many phenomena of interest,
and entomological surveillance and public health in general are not an exception. In
addition to the variables coming from specialized cartography by aerial images explained
before, we include several variables coming from field and household surveys (Section 3.2).
Certainly, there could be many advantages to incorporating more information from many
sources, because more information could enrich our knowledge of the phenomenon we are
interested in, and arguably, could improve the model we used for solving some specific
task. However, it is very important to pay attention to the way this information is used
by our models, especially when different structures are present, giving us mixed-type
variables. We think the latter is crucial, particularly for models in which a distance function
among objects (houses, in our case) is involved, as is the case of ML-related models. This is
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because not all distance functions are capable of representing differences between objects
with mixed-type data. Consider for example, the Euclidean distance, which is used by
default in most of the supervised and nonsupervised ML algorithms, and is aimed at
continuous (real-valued) variables; then, if we use a model based on Euclidean distance
for categorical or mixed-type data, the results and conclusions we obtain with this model,
may not be correct. In our proposed index, we take into account the different types of
variables by using an efficient encoding procedure which gives us a shared metric space
with a corresponding norm capable of representing distances between any two objects
taking into account the two types of input variables we used, and we think this is one of
our main contributions, given that similar works reported in the literature [38,39] leave
unclear the way by which the mixed input data (categorical and continuous) are managed,
or the distance function they used. Although in these works the model takes into account
the characteristics (socioeconomic, climate change, dengue knowledge, and landscape
factors) of a house as input and returns the prediction of the mosquito to abundance (high
or low), our model takes into account the characteristics (environmental, demographic, and
socioeconomic) of a house and its spatial relationship with other houses to predict the risk
index for being classified as an “aedic” house. In addition, our implementation was carried
out with open-source software.

Moreover, in our study, the El Vergel neighborhood presented conditions that de-
termined, for most of the houses surveyed, a premise condition index with a medium
risk level, which does not allow focusing prevention and control actions of vectors at the
housing and block level in the area. Mexico’s southern border has a wide diversity of
ecotones, socioeconomic levels, climates, and a constant movement of migratory groups.
The models must be adapted to the particular conditions of the endemic region under study.
There is no ideal formula but a series of steps to determine which variables offer greater
predictive value for a given area. New spatial analysis tools and mathematical models
are fundamental methods in vector control activities [87], and even a multidisciplinary
group for analyzing it. In addition, the mapping and spatial modeling technologies and
methodologies need to increase affordability for use in public health [88], especially in
endemic areas that require certainty, coverage, and opportunity. Predictive models can
be used for decision making in preventing various arboviruses transmitted by Aedes in
urban and semiurban endemic areas based on the evidence of overlapping Aedes-borne
diseases (dengue, chikungunya, and zika) within geographic hotspots [89]. This methodol-
ogy can adapt the model to the different regions of our country. This flexibility is allowed
mainly by the availability of real-time information provided by drones, one of its most
important contributions.

Our model can be improved in many ways, which we mention as development and
future work. It is already advisable to have information at different times of the year to
strengthen our model. Tapachula is an area where the dry and rainy seasons are strongly
marked and determine a contrast in, at least, the availability and type of breeding sites
where the vector develops. Likewise, it is necessary to validate the model in different
neighborhoods of the municipality of Tapachula, where the conditions of the houses vary
mainly depending on their socioeconomic level. Moreover, it is in our interest to explore
some adaptations of PLS for count data, because it is not naturally designed to predict this
kind of data, and compare with the log-counts approach. We advise exploring artificial
intelligence methods, such as deep neural networks, to detect interesting objects (e.g.,
mosquito breeding sites) from the UAV images. Although there have been some attempts
to use those methods, such as convolutional neural networks [90,91] for aerial surveillance
of mosquitoes’ oviposition [52], our aim is to use state-of-the-art, real-time object-detection
methodologies, such as YOLO [92] and its different versions [93–95], and also, to explore
methods based on geographic object-based image analysis (GEOBIA) [96,97] to develop
tools for image segmentation and labeling to create training datasets, in order to expand
the information of the model in real time, and to strengthen the community’s perception of
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new technologies as is suggested by [98,99]. This helps to strengthen the timeliness and
fidelity of entomological and epidemiological, sociodemographic, and environmental data.

6. Conclusions

This study shows that the use of UAVs can be incorporated into vector surveillance
and control strategies, providing spatial and temporal data of the landscape components
that allow dengue vectors to continue transmitting the disease in real time. On the other
hand, the model based on ML and multivariate statistical techniques, proposed in this study
to estimate the risk of dengue transmission, demonstrates high reliability in identifying
high-risk areas within the study locality and managing control activities specifically.
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Abstract: The widespread use of drones in various fields has initiated a discussion on their cost-
effectiveness and economic impact. This article analyzes in detail a methodological evaluation
framework for the levelized cost of drone services for law enforcement purposes. Based on the data
availability, we compared two vehicles: Phantom 4 Pro and Thunder-B. Moreover, we calculated their
levelized costs per surveillance time and trip distance. Our approach helps users calculate the real
costs of their vehicles’ services and produce equations for rapid estimations. We observed economies
of scale for time and distance and showed differentiations per aircraft capacity. Furthermore, using
the produced equations, we formulated a case study and compared the costs in a 4 km area constantly
monitored by the two types of drones to support the best vehicle selection. We found that the Phantom
4 Pro costs less than the Thunder-B drone, for example. Thus, we demonstrate how, by applying this
methodology beforehand, decision makers can select the most appropriate vehicle for their needs
based on cost. Cost research estimations will improve UAV use and will help policymakers include
UAV technology in crime prevention programs, especially when more data are available.

Keywords: cost-effectiveness; economics of drones; law enforcement; operating cost; unmanned
aerial vehicles

1. Introduction

Drones, also known as unmanned aerial vehicles (UAVs), have received increasing
interest in recent years for applications in various fields [1,2]. Drones are categorized by
weight, flight range, purpose of flight, altitude capacity, etc. [3,4]. They have been employed
for several purposes, including forest monitoring [5,6], fire prevention [7], and deforestation
and illegal logging [8], while Balcerzak et al. [9] demonstrate that unmanned aerial vehicles
could be helpful for international firefighting and crisis management missions. In addition,
unmanned aerial vehicles are an effective solution in agriculture [10], as images taken from
high altitudes can be easily obtained and help farmers with crop growth monitoring [11,12],
irrigation management [13], and crop health [14,15]. Small drones have also been used
to monitor seagrass in coastal waters, which are sensitive to environmental changes [16].
Also, drones can be used for search and rescue [17], disaster management [18], geographic
mapping applications [19,20], geology applications [21], archeological site observations [22],
and weather predictions [23]. Finally, drones have been used for health purposes, including
protection against malaria [24] and during the COVID-19 pandemic [25].

Security forces have considered the advantages of using drones in line with the rapidly
growing market and have actively involved them in law enforcement. In Italy, security
forces have used drones for environmental monitoring [26], while in Africa they have been
used for locating illegal poachers [27]. Boakye [28] found that aerial patrols can help detect
crime and improve law enforcement effectiveness. Zhou et al. [29] also found that drones
can be used for ship monitoring in terms of regulation violations.
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The Police use drones for tracking missing people [30] and for traffic management as
a viable solution against expensive manned helicopter searches [31]. In Europe, Frontex
has used drones for border surveillance [32]. In the USA, drones are used for water rescues
and disaster response, traffic trash response, investigation of suspects, crime scene analysis,
surveillance and crowd monitoring [33]. In Poland, Police used drones to sample domestic
chimney exhaust gasses to prevent air pollution due to inappropriate fuels or burning
materials [34].

Furthermore, drones can be used to protect cybersecurity [35], so it is necessary to
initiate changes in legislation [36] due to citizens’ privacy. However, the benefits from their
use outweigh any ethical or security issues if well-regulated [37].

As the extensive use of drones tends to replace conventional modes of monitoring
and surveillance, it is essential to refer to their costs calculated by a standard methodology
for estimating economic reference values. This paper aims to introduce an evaluation
methodology and then compare the cost of using drones by law enforcement agencies. We
analyzed two types of drones used by law enforcement officers, as well as by the Greek
Police [38,39]. We finally presented a case study using the two drones and concluded which
was the best choice based on cost estimates.

2. Literature Review

Authorities in various countries have incorporated their drone use into their legal
systems, which may differ considerably [40]. Today, several applications can be identified
in different fields of economic activity, which merits a discussion on the cost-effective use
of drones. The literature is scarce, but some applications have been examined. For example,
Sudbury and Hutchinson [41] calculated the cost based on the flight duration and conclude
that Amazon’s drone delivery of their packages is economically feasible [41]. Applications
in health with the delivery of medical supplies are an essential need. Wright et al. [42] report
that depending on geography and cargo characteristics, drone delivery could be a viable
solution. Ochieng et al. [43] found that delivery with a motorcycle is more effective than
drone delivery. However, as the delivery distance increases, drone systems become more
effective than motorcycle delivery. Delivery with drones in hard-to-reach or inaccessible
areas, like dense forests, may not yet be cost-effective. Still, technological improvements
are expected to make this application cost-effective soon [44]. Sozzi et al. [45] compared the
costs of fauna photos for vegetation indices taken by UAVs, airplanes, and satellites; they
concluded that the cost depends on the analysis of the photos and the chosen platform.
Finally, they concluded that drones have higher costs but could be more efficient than
satellites or planes for taking high-resolution images in agriculture.

Yowtak et al. [46] calculated the delivery costs for grocery transport by comparing
three different types of delivery (drones, engine vehicles, and battery vehicles). They
concluded that each type of delivery has advantages and disadvantages. The economic cost
comparison of the three types of delivery method found that UAVs still need to be more
efficient. Christensen [47] employed a Monte Carlo simulation to estimate the cost and
benefits of different scenarios of drone involvement in fire management. He concluded that
there is a potential cost effectiveness of drone involvement in fire management compared
to conventional control using helicopters. Zailani et al. [48] observed that using drones
has high potential in blood product transportation. They found that drone transportation
costs more than an ambulance, but they believe it is the best choice for developing nations.
Borghetti et al. [49] compared vans, bicycles, scooters, and UAVs for last-mile delivery;
they reported that UAVs could be the best choice for last-mile delivery if the package is
small and light. However, UAVs experience some limitations, mainly derived from the
restrictions posed by regulations. Finally, White et al. [50] estimated the cost and benefits
of coastal surveying, comparing three alternatives: UAVs, manned aircraft, and walkovers.
They concluded that the drone surveys were the most expensive method but faster than
the other two, while walkover had the highest personnel cost.
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Valerdi [51] provided cost metrics and a model based on weight and purchasing price
for UAVs, developing a parametric cost model that relies on weight and endurance with
the cost reference being pound/hour per thousand dollars. The authors of this study report
limitations such as a lack of data availability. Malone et al. [52] estimated the ownership
cost for UAV systems, including fixed and variable costs based, among other factors, on
endurance, speed, altitude, payload, software design, and training of operators.

Banazadeh and Jafari [53] developed a framework to estimate the costs of aerospace
systems. Then, they described a method as a case study scenario for estimating the cost of
unmanned aerial vehicles. They used three indexes: “(1) acquisition cost; (2) acquisition
cost divided by maximum takeoff weight; and (3) acquisition cost divided by empty weight”
and concluded that this technique is better compared to others.

The above examples show that the literature on drone costs is scarce and not uniformly
reported, as the technology is relatively new and expanding in scope. We see that drone
technology is improving, which can reduce flight time costs. It is, therefore, essential to
monitor parameters affecting costs related to UAV technology to give users an economic
dimension for using this technology.

3. Materials and Methods

This section presents the methodological approach we followed for estimating the
cost of drone use for monitoring and surveillance purposes. Due to data availability
limitations, we selected two vehicles with access to some primary cost data. The first
is the DJI Phantom 4 Pro, a slightly rotating wind semi-professional vehicle, while the
second is the Thunder-B, a fixed-wing professional vehicle. These two types were selected
because law enforcement in Greece has used them, so our estimations apply to real case
applications and can benefit users. Apart from the manual reference data, we benefited from
any information from personal contacts and press releases, but obtaining cost data from
manufacturers was challenging. When necessary, we made assumptions and discussed
them as follows: First, our cost analysis considered ideal weather conditions and did not
include potential accidents or wearing equipment for longer assumed flights. Ideally, cost
calculations will consider, among other factors, takeoff time, landing time, overlap time,
hovering time, wind, precipitation, and other weather-related delays. Our analyses were
based on hovering time, as the other times mentioned consist of a very small portion of
a flight trip. Finally, we presented a case study in the Xanthi region. We selected a 4 km
distance starting from the old town of Xanthi, crossing the Kosinthos River, a peri-urban
grove of trees, and ending in the nearby village of Kimmeria. The peri-urban grove of trees
and river constitute a small sample of flora and fauna. The surveillance time was assumed
to last 2 hours (h) per day. The surveillance aimed to identify potential perpetrators
of littering, setting fire to the grove, and polluting the Kosinthos water body via illegal
discharges or waste dumping.

3.1. Vehicle Description and Characteristics

Phantom 4 Pro weighs 1375 gr using a 6000 mAh LiPo battery for operation and
propellers for flight with 350 mm diagonal size. The battery flight capacity is about 30 min
with 1.5 h of charging time. Its maximum flight time is 30 min, and its maximum wind
speed resistance is 10 m/s, without rain. It has a maximum ascent speed of 5 m/s and a
maximum descent speed of 4 m/s.

The purchase cost is EUR 1699. A battery replacement costs EUR 189, and a thermal
camera costs about EUR 2149. The charger costs EUR 99, and the standard annual service
from the mother company is EUR 169 excluding the cost of damaged spare parts [54],
while the software is provided for free by the company. The lifetime of batteries varies
from 300 to 500 cycles [55]. We will consider 400 charges as an average battery life in our
estimations. Thunder-B is a “small tactical unmanned aerial vehicle (UAV) developed by
Israeli company BlueBird Aero Systems,” which is also used by the Greek police. It weighs
32 kilograms (kg), and its flight range is 150 kilometers (km). The maximum flight altitude

246



Machines 2023, 11, 983

is 16,000 feet (ft) (4870 m), while it can remain in the air for 24 h with one fuel tank or 12 h
depending on the payload, speed, and weather conditions. It has a tank of 12 liters (L), and
its maximum flight speed is 32–72 knots (kt) (16–37 m/s or 60–137 km/h). Also, it can fly
with an airspeed of up to 45 knots (kt) and in rain of up to 10 millimeters/hour (mm/h).
The Thunder-B requires a mobile system involving hardware and sensors at different costs,
depending on extras, from USD 100,000 to USD 200,000. Based on press releases, the cost of
purchasing a Thunder-B system (drone, software, and hardware) is EUR 200,000. However,
obtaining written cost data has not been possible, despite our efforts, for this vehicle. There
should be one annual service as reported by the manufacturer.

The Phantom 4 Pro can be operated by one operator, while the Thunder-B needs two
operators. The operator’s cost is calculated according to the average salary of police officers
with 10 to 15 years in service, estimated at EUR 20,820 per year [56]. Table 1 summarizes
the essential characteristics of the two studied vehicles.

Table 1. Characteristics of Phantom 4 Pro and Thunder-B drones.

UAV Characteristics Phantom 4 Pro Thunder-B

Wingspan 350 mm 4 m
Weight 1.375 kg 32 kg

Maximum speed S-mode: 45 mph (72 kph)
P-mode: 31 mph (50 kph)

137 kph
Cruise speed 80 kph

Flight range 5 km 150 km

Endurance 30 min up to 24 h/12 h with cargo
capsules/vtol

Operating altitude 1820 m/6000 ft
Maximum altitude 19,685 ft/6000 m 4870 m/16,000 ft
Temperature range 0–40 ◦C
Covert operation Aprox. 500 m

Cost EUR 1699 EUR 100,000–200,000
Fuel source - 12 lt

Payload up to 4 kg
Wind speed resistance 10 m/s

Airspeed 10 m/s 60–137 kmh/32–72 knots
Battery 6000 mAh LiPo -

Severe weather operation Without rain and in winds of
up to 10 m/s

In winds of up to 45 knots and
rain of up to 10 mm/h

3.2. Cost Calculation Methodology

In this section, we detail how to estimate the cost of flight time of the two vehicles,
based on the unit cost. These costs will be calculated based on the Total Annual Economic
Cost (TAEC) formula:

TAEC = (Cc ×CRF) + Ca (1)

The Capital Recovery Factor (CRF) is given by:

CRF =
r(1 + r)t

(1 + r)t − 1
(2)

where Cc is the capital/purchasing cost
Ca is the annual operation and maintenance cost
t are the years of operation and
r the opportunity cost of capital (OCC).

By calculating the annual equivalent cost, we can refer to a unit for levelized incurred
costs; that is, per kilometer or hour. Also, we considered the lifetime of a thermal camera
and a charger to be 5 years, alongside the lifetime of batteries of 400 charge cycles. Each
battery-charging kilowatt hour (kWh) cost is calculated according to the Greek electricity
market based on March 2021 [57]. The price of fuels is EUR 1.575 based on prices in March
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2021 when we ran the analysis. We consider that the speed of the drones is about the
average speed reported in their manuals. Also, this study assumes that for Thunder-B,
the service cost is 2.5% of the purchase cost, as no data were provided. Furthermore, we
considered the number of operators that are necessary for surveillance flights. The law
enforcement officer’s wage was considered to be the same for the two drones regardless of
the level of operating risk or the characteristics of each drone. Finally, the basic software
cost was not calculated separately because the software for the Phantom 4 Pro is free (open),
and that for the Thunder-B drone is included in the purchase cost. Thus, any software or
future development cost cannot be separated from the purchase or maintenance costs we
have considered.

3.3. Unit Cost Calculation

In this section, we describe the basic cost elements and any assumptions considered to
compare the cost of flight time of the two vehicles based on the unit cost. These costs were
calculated based on the TAEC provided by Formulas 1 and 2. We considered the lifetime
of the drones to be 5 and 10 years for the Phantom 4 Pro and Thunder-B, respectively,
with an OCC of 5%. We also considered the Phantom 4 Pro and Thunder-B drones’ 5 km
of surveillance for different flight times. This study assumes that the service cost for the
Thunder-B drone is 2.5% of the purchase cost. We assume this drone can fly with one full
tank for 16 h (out of the 24 h reference value). Thus, this drone needs 0.75 L of fuel per
hour. The price of fuel is EUR 1.575. For the Phantom 4 Pro, one operator is necessary for
half an hour of surveillance. Therefore, two operators with two vehicles are needed for
surveillance flights from 1 to 8 h. The second operator will fly the second drone as soon as
the first lands to change the battery, so the surveillance is uninterrupted, and vice versa.
For a 10 to 16 h period, we need four operators and two vehicles, due to the second shift
involved. On the other hand, a Thunder-B drone needs two operators for surveillance
periods between 0.5 and 8 h and four operators (a second shift) for 8 to 16 h periods.

4. Results

This section presents analytical cost estimations for a specific 4 h trip, flight costs for
different distance levels, and flight cost per hour. With this case scenario, we assume that
the aggregated annual surveillance period is 1460 h if a 4h flight for each day of the year
is necessary. We then calculated the cost per kilometer of flight, considering the vehicle’s
travel distance capacity per time. This is an analytical approach intended for budgeting law
enforcement applications. Finally, we provide a case study example based on our findings.

4.1. Cost Estimations for 4 h Flight

Considering a typical flight surveillance period of 4 h, the flight cost, with the best
possible details for each of the two drone types selected, was calculated. The different needs
of the necessary units for achieving the planned time flights are presented in Appendix A.
The required number of units for the 4-h case, we selected to present, are shown in Table 2.

4.1.1. Cost Estimations for Phantom 4 Pro

The purchase cost for two Phantom 4 Pro drones is EUR 3398 with an estimated
economic life of 5 years. The necessary cost for equipping the vehicles with two thermal
cameras is EUR 4298. The cost of the batteries is EUR 1512. We need eight batteries for
4 h flight surveillance per year. After this load, they will be worn out and will have to be
replaced. The cost of three chargers is EUR 297. As discussed in Sections 3.2 and 3.3, all
this equipment is necessary for 4 h uninterrupted operation. The equivalent operation and
maintenance (O&M) costs of this equipment are EUR 338 for service, EUR 39.42 for energy,
and EUR 41,640 for the two operators. Table 3 shows the calculations of annuitized capital
and annual O&M costs, which result in a TAEC of EUR 45,451.20.
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Table 2. Individual number (no) of units considered for the uninterrupted 4 h surveillance period,
per vehicle.

Units Phantom 4 Pro Thunder-B

Drones (no)
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Table 3. Total annual cost estimations for Phantom 4 Pro.

Costs Units Cost per Unit
(EUR)

Cost
(EUR)

t
(yr) CRF Annual Cost

(EUR)

Vehicle 2 1699 3398 5 0.231 784.85
Thermal camera 2 2149 4298 5 0.231 992.73
Battery 8 189 1512 1 1.050 1587.60
Charger 3 99 297 5 0.231 68.60
Sum of capital 3433.78

Basic service 338
Energy 39.42
Operator 41,640
Sum of O&M 42,017.42

TAEC 45,451.20

The DJI Phantom 4 Pro has a flight range of 5 km. So, the total covered kilometers are
7300 km [surveillance (1460 h), ∗ range of flight (5 km)]. Therefore, to calculate the total
cost per hour, we divided the total cost by the total operating hours. The above calculation
gives 45,451.20/1460 = EUR 31.13/h.

4.1.2. Cost Estimation for Thunder-B

We consider the Thunder-B drone system to have a purchase cost of EUR 200,000, with
camera and software costs embedded. Based on our research methodology, we calculated
the CRF and TAEC the same way as with the Phantom 4 Pro. The Thunder-B drone’s
lifetime is estimated to be ten years, with two operators needed per flight. The annual
service cost is estimated to be EUR 5000. The total annual cost was calculated to be EUR
25,900.91. We consider that a fuel tank is sufficient for a 16 h flight. This type of drone
needs 0.75 L of fuel per hour. So, the annual fuel cost is EUR 1724.63 for 4 h flights. The
cost for the four operators is the same as for the operators of the Phantom 4 Pro, equaling
EUR 41,640. The annual cost is EUR 74,265.54 (Table 4).
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Table 4. Total annual cost estimations for Thunder-B.

Costs Units Cost per Unit
(EUR)

Cost
(EUR)

t
(yr) CRF Annual Cost

(EUR)

Vehicle 1 200,000 200,000 10 0.1295 25,900.91
SUM 25,900.91

O&M
Basic service 5000
Fuels 1724.63
Operator 41,640
SUM 48,364.63

TAEC 74,265.54

The cost per hour and km are given if we divide the total annual cost by the total
covered km and the total functional hours. With this case scenario, we concluded that
the total monthly monitoring hours are 1460. The Thunder-B drone has a range of 50 km
flights. So, the total covered kilometers are 73,000 km [surveillance (1460 h), ∗ range of
flight (50 km)]. To calculate the total cost for the user per hour, we divide the total cost
by operating hours to calculate the unit cost per hour. This gives 74,265.54/1460 = EUR
50.87/h.

4.2. Cost Estimations per Flight Duration

Based on the analytical estimations of the previous section, we proceeded with further
calculations per flight duration from 0.5 to 16 h of surveillance per day for the Thunder-B
drone (Figure 1a) and from 0.5 to 8 h of surveillance per day for the Phantom 4 Pro drone
(Figure 1b). Therefore, the total annual flight times equaled 182.5, 2920, and 5840 annual
hours for 0.5, 8, and 16 surveillance hours per day, respectively. Economies of scale are
shown graphically and from the estimated equations of Cost = a·xb, where x is flight
time or distance covered. The “b” coefficient was estimated with a negative sign for both
equations due to the aforementioned economies of scale. All calculations followed the
fitted equations except for the 0.5 h surveillance period with the Phantom 4 Pro drone,
as observed in Figure 1. We believe that a 0.5 h flight is a short period compared to the
analysis we performed, and it is calculated separately; thus, it does not contribute to the
regression of Figure 1. If we take, for example, the cost of surveillance for a 1 h trip, we see
that the cost drops from about EUR 200/h to about EUR 100/h if the trip lasts 2 h for the
Thunder-B.

Similarly, the cost of surveillance for a one-hour trip and two two-hour trips is about
EUR 122 and EUR 62, respectively, for the Phantom 4 Pro drone. However, it is evident that
the Phantom 4 Pro costs less than the Thunder-B for all calculated times. Figure 1 shows an
excellent rapid cost estimation for different surveillance trips.

In Figure 2, we calculated the cost of surveillance per km based on the drones’ typical
average speeds. We calculated the cost per km for the Thunder-B drone when the trip lasts
50 km (Figure 2a). On the other hand, we calculated the cost per km for the Phantom 4 Pro
drone when the trip lasts 5 km (Figure 2b). All points fit the equations Cost = a·xb, with
similar evidence of economies of scale. In this case, the cost per kilometer for the Phantom
4 Pro drone is higher than that for the Thunder-B drone at all points. For example, 4 h of
surveillance will cost EUR 1.02 per kilometer for a Thunder-B drone, while a Phantom 4
Pro drone will cost EUR 6.23 per kilometer. Although the two vehicles may be used for
different applications, we present these values as an example of comparison and how this
methodology can help estimate service costs.
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4.3. Case Study

In our case study of surveillance by the enforcement authorities, we selected a small
area in Xanthi, city, located in Greece. We used the two drones analyzed in the previous
section. The 4 km surveillance area is shown in Figure 3, as an abstract from google maps.
The line shows the distance, starting from the old town of Xanthi, crossing the Kosinthos
River, a peri-urban grove of trees, and ending in the village of Kimmeria. The peri-urban
grove of trees and river constitute a small sample of flora and fauna of the region.
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The surveillance time lasted for 2 h per day of scoping to ensure compliance with
environmental legislation in this area. The surveillance aimed to provide identification of
perpetrators of littering, setting fire to the grove, and polluting the Kosinthos water body.

In this case study, the distance was short, and we needed two Phantom 4 Pro drones
with four batteries for two hours of uninterrupted surveillance. One battery lasts 30 min
and needs charging for 1.5 h. The maximum speed of the Phantom 4 Pro is 50 km/h. If we
fly the Phantom 4 Pro with an average speed of 25 km/h, it will cover the distance of 4 km
in 9.6 min. So, the Phantom 4 Pro drone surveillance will be able to cover the distance two
and a half times with one battery charge. The journey is short and the surveillance will be
almost continuous. Therefore, for two hours of surveillance in this area, four Phantom 4
Pro batteries per day, two vehicles, two operators, two thermal cameras, and three chargers
are necessary to retain the flying capacity. The summary of employing the Phantom 4
Pro drone for this case study is presented in Figure 4. We also state the limitations of our
assumptions; that is, that there will be surveillance from a specified height, no significant
winds or precipitations, and no other risks (i.e., operating risk), which would inevitably
affect costs.

On the other hand, we needed one Thunder-B drone for two hours of surveillance.
Also, a 1.5 L tank and two operators are necessary. The maximum speed of the Thunder-B
drone is 137 km/h. In this case, the drone can fly at a recommended cruise speed of
80 km/h (note that 66 km/h speed is the minimum possible cruise speed). Under these
circumstances, it will cover a distance of 4 km in 3.6 min. So, using the Thunder-B drone
for will cover the distance faster than the Phantom 4 Pro, but the time period is also short,
so the surveillance is continuous. The summary of employing the Thunder-B drone for this
case study is presented in Figure 5.

Using the functions from Section 3.2, we assume the costs for one-year surveillance.
In this case, the cost of the Phantom 4 Pro per hour is EUR 61.17 and per kilometer is EUR
15.29, while the cost of the Thunder-B drone per hour is EUR 100.55 and per kilometer is
EUR 25.14.

This approach has some limitations. The flight will occur at the same altitude, assum-
ing no operating or personal risk. We accepted that flights would occur in clear weather
without rain and wind. The software cost was not calculated separately as discussed, and
we assumed no critical accidents would occur.
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As noticed, the cost of the two drones is quite different. The cost of the Phantom 4
Pro is lower than that of the Thunder-B, while surveillance is continuous for both vehicles.
We are thus able to select the first drone because it has a lower cost (Figure 6). The cost
is reasonable compared to traditional methods of monitoring; for instance, with patrol
cars. Furthermore, when observation is continuous, violation of the law can be minimized,
and law enforcement officers using drones are more efficient. On the other hand, law
enforcement officers can save time and operate in a safer working environment, and
perpetrator identification is faster. Finally, in the case of a drone accident, the damage is
limited to equipment and not to human lives.
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5. Discussion

In this work, we compared and levelized costs for two drones, the Phantom 4 Pro
and Thunder-B, used for surveillance. The calculated cost for these drones concerns their
use and not the total ownership. Valerdi [51] proposed that cost depends on weight and
endurance calculated on pound/hour per thousand dollars. On the other hand, Malone
et al. [52] described an estimation of total ownership cost for UAV systems. In this work,
we calculated the unit cost of drones to be able to compare them.

We analyzed the operating cost for each drone’s different time durations and distances.
We observed that if the surveillance hours increased, the operating cost for these drones
decreased due to economies of scale. The cost per kilometer constantly decreased if the km
covered increased. On the other hand, we saw that the operating cost of the Phantom 4 Pro
drone was lower than that of the Thunder-B drone. As shown in Figure 1, the cost of one or
two hours of surveillance for a Phantom 4 Pro drone is lower than that for a Thunder-B
drone. For Phantom 4 Pro, we conducted our analysis used batteries that last for half an
hour and then should be replaced once the drone has landed.

Furthermore, there are additional restrictions on adverse weather conditions. The
Phantom 4 Pro cannot fly in rain, snow, or wind. In contrast, Thunder-B drones can
operate in rainy and windy conditions. Combining the covered distance with a fuel tank
leads us to conclude that this drone covers more are than the smaller Phantom 4 Pro
drone. As revealed from the cost analysis, the Thunder-B drone is cost-effective for large
uninterrupted missions for up to 16 h of surveillance.

As revealed from the case study, for 2 h of constant surveillance in an area of 4 km
distance with the examined drones, the cost with Phantom 4 Pro was EUR 61.17/h or EUR
15.29/km, while with the Thunder-B drone, the equivalent costs were EUR 100.55/h and
EUR 25.14/km, respectively. The analysis we performed for this case study also has some
limitations. We considered the same altitude, average speed, no operating risks or accidents,
and ideal environmental conditions. The average speed of these drones differs based on
the reference range. The cost is lower for the Phantom 4 Pro than for the Thunder-B, so we
selected the first one based only on cost figures (Figure 6).

Employing drones for surveillance can add an extra cost for law enforcement agencies.
Still, this case study shows that the cost is reasonable and can be more efficient than con-
ventional methods. We assumed continuous surveillance without operational accidents
or risks. On the other hand, law enforcement officers can save time via faster and more
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efficient drone monitoring in place of conventional patrolling. Real-time data collection
is a significant aid for law enforcement officers in many sections, such as perpetrator
identification, recognition of missing people, environmental monitoring in real time, avia-
tion environmental violations, prevention of air pollution, or water rescues and disaster
response. Drones are increasingly applied in various fields for law enforcement officers. So,
their working efficiency is high in terms of safety and surveillance. The working environ-
ment is also safer because drone use decreases potential personnel risks. For example, if a
drone crashes, the cost is lower than that of a human-crewed helicopter, where the pilot’s
life is the highest protected good in all societies. UAV technology helps to fight crime in a
cost-effective manner. Law enforcement policymakers should include aerial surveillance
in crime prevention programs. Indeed, there are also issues about the use of drones [40],
especially concerns about the violation of human rights, which will not be analyzed here
but only mentioned as there is an ongoing debate.

Data availability is a limitation of this work. We also recognize some further limitations
on assumptions made on operating cost, altitude, average speed, environmental conditions,
personal risk, and environmental impact, as the operating costs depend on these factors.
Significantly, the cost will increase if the altitude of the drone flight is higher than calculated
because the drone will need more energy. In the same way, if the speed is increased or
the wind is strong, the drone requires more power for the same flight. Also, accidents
will increase costs because if drones crash or land accidentally, further repair work and
spare parts are necessary. Additionally, the cost will be increased if the environment is
challenging (e.g., complex landscapes, rivers, or topography).

Moreover, the Phantom 4 Pro battery lifetime is considered to be 400 cycles. The basic
software cost was not calculated separately because the software for Phantom 4 Pro is free
(open) and the software for the Thunder-B drone is included in the purchase cost. Thus, any
software or future development cost cannot be separated from the purchase or maintenance
costs we have considered. Furthermore, there are no available real data for costs related to
cyber security, navigation, software, and the impact of accidents; we excluded it to ensure
our calculations were clear and feasible. Additionally, a law enforcement officer’s wage
was considered the same for the two drones regardless of the level of operating risk or
the characteristics of each drone, which is the case in the region of our case study. Note
that by this, we do not mean to oversimplify our approach, but to provide a practical and
integrated way to obtain reasonable cost estimations and comparisons. Nevertheless, any
assumptions are based on the available data and experience since no previous studies
have analyzed the cost of using drones. Most researchers analyze the unit cost from the
perspective of construction and ownership purchase rather than from their use. Cost values
based on the data provided by the companies should be further validated with statistical
and empirical findings following the extended use of the studied models. Also, the fast
improvement of UAV technology itself may render the concluded costs outdated soon.
Nevertheless, valid economic conclusions can be drawn by applying the same principles in
this work.

6. Conclusions

The use of drones by law enforcement has been increasing in recent years. Some
law enforcement applications need to be constantly observed, while others are partial.
Economic analysis is essential for all purposes, as well as for security forces to be able to
budget surveillance duties in advance. We describe a methodology that can be used for
calculating levelized costs per flight time or distance covered and produce equations for
further calculations. These equations show economies of scale in flight time and vehicle
size. Economic data are necessary to integrate UAV technology into operational activities
for entrepreneurial and security protection. Our case study shows that drones can be
cost-effective for law enforcement monitoring. As an example, we showed how to estimate
the monitoring cost. Last but not least, policymakers could include UAV technology in
crime prevention programs.

255



Machines 2023, 11, 983

To our knowledge, this study is the first economic analysis of drone use employing
real data on a life-cycle cost basis. Suggestions for future works include keeping detailed
records of all fixed and variable costs to produce more informative equations for more
vehicles. Also, flight records under different weather conditions can add more precision
to the estimations. Another suggestion that will pay off is training users and creating a
repository of cost data from different vehicles. Finally, further research should involve the
comparison of these findings with other conventional means of surveillance.

Author Contributions: N.T. conceived the idea; N.T. collected and decoded the data; N.T. and K.P.T.
performed the analysis; N.T., L.E., and K.P.T. wrote the paper. All authors have read and agreed to
the published version of the manuscript.
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Appendix A

This appendix provides the necessary unit components for uninterrupted surveillance
time flights of 0.5–16 h duration for the Phantom 4 Pro (Table A1) and Thunder-B (Table A2).

Table A1. Necessary units for a continuous flight for Phantom 4 Pro.
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previous studies have analyzed the cost of using drones. Most researchers analyze the 
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vehicles. Also, flight records under different weather conditions can add more precision 
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repository of cost data from different vehicles. Finally, further research should involve the 
comparison of these findings with other conventional means of surveillance. 

Author Contributions: N.T. conceived the idea; N.T. collected and decoded the data; N.T. and K.P.T. 
performed the analysis; N.T., L.E., and K.P.T. wrote the paper. All authors have read and agreed to 
the published version of the manuscript. 

Funding: This research received no external funding. 

Data Availability Statement: Available upon request. 

Conflicts of Interest: The authors declare no conflict of interest. 

Appendix A 
This appendix provides the necessary unit components for uninterrupted surveil-

lance time flights of 0.5–16 h duration for the Phantom 4 Pro (Table A1) and Thunder-B 
(Table A2). 

Table A1. Necessary units for a continuous flight for Phantom 4 Pro. 

Hours 
 

0.5 1 1.5 2 2.5 3 3.5 4 5 6 7 8 10 12 14 16 

Batteries 
per year  2 2 3 4 8 8 8 8 12 12 16 16 20 24 28 32 

Drones 
 

1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 

Personnel 
 

1 2 2 2 2 2 2 2 2 2 2 2 4 4 4 4 

 

0.5 1 1.5 2 2.5 3 4 8 10 12 14 16

Fuel

Machines 2023, 11, x FOR PEER REVIEW 6 of 16 
 

 

Table 2. Individual number (no) of units considered for the uninterrupted 4 h surveillance period, 
per vehicle. 

Units Phantom 4 Pro Thunder-B 

Drones (no) 
  

Camera (no)   

Personnel (no) 
  

Fuel (L) N/A  

Batteries (no)      

    
N/A 

Charger (no)    N/A 

4.1.1. Cost Estimations for Phantom 4 Pro 
The purchase cost for two Phantom 4 Pro drones is EUR 3398 with an estimated eco-

nomic life of 5 years. The necessary cost for equipping the vehicles with two thermal cam-
eras is EUR 4298. The cost of the batteries is EUR 1512. We need eight batteries for 4 h 
flight surveillance per year. After this load, they will be worn out and will have to be re-
placed. The cost of three chargers is EUR 297. As discussed in Sections 3.2 and 3.3, all this 
equipment is necessary for 4 h uninterrupted operation. The equivalent operation and 
maintenance (O&M) costs of this equipment are EUR 338 for service, EUR 39.42 for en-
ergy, and EUR 41,640 for the two operators. Table 3 shows the calculations of annuitized 
capital and annual O&M costs, which result in a TAEC of EUR 45,451.20. 

Table 3. Total annual cost estimations for Phantom 4 Pro. 

Costs Units 
Cost per Unit 

(EUR) 
Cost 

(EUR) 
t 

(yr) CRF 
Annual Cost 

(EUR) 
Vehicle 2 1699 3398 5 0.231 784.85 
Thermal camera 2 2149 4298 5 0.231 992.73 
Battery 8 189 1512 1 1.050 1587.60 
Charger 3 99 297 5 0.231 68.60 
Sum of capital      3433.78 
Basic service       338 
Energy      39.42 
Operator      41,640 
Sum of O&M      42,017.42 
TAEC      45,451.20 

The DJI Phantom 4 Pro has a flight range of 5 km. So, the total covered kilometers are 
7300 km [surveillance (1460 h), ∗ range of flight (5 km)]. Therefore, to calculate the total 
cost per hour, we divided the total cost by the total operating hours. The above calculation 
gives 45,451.20/1460 = EUR 31.13/h. 

  

    

    

= 1 L 0.375 0.75 1.125 1.5 1.875 2.25 3 6 7.5 9 10.5 16.2

Drone

Machines 2023, 11, x FOR PEER REVIEW 6 of 16 
 

 

Table 2. Individual number (no) of units considered for the uninterrupted 4 h surveillance period, 
per vehicle. 

Units Phantom 4 Pro Thunder-B 

Drones (no) 
  

Camera (no)   

Personnel (no) 
  

Fuel (L) N/A  

Batteries (no)      

    
N/A 

Charger (no)    N/A 

4.1.1. Cost Estimations for Phantom 4 Pro 
The purchase cost for two Phantom 4 Pro drones is EUR 3398 with an estimated eco-

nomic life of 5 years. The necessary cost for equipping the vehicles with two thermal cam-
eras is EUR 4298. The cost of the batteries is EUR 1512. We need eight batteries for 4 h 
flight surveillance per year. After this load, they will be worn out and will have to be re-
placed. The cost of three chargers is EUR 297. As discussed in Sections 3.2 and 3.3, all this 
equipment is necessary for 4 h uninterrupted operation. The equivalent operation and 
maintenance (O&M) costs of this equipment are EUR 338 for service, EUR 39.42 for en-
ergy, and EUR 41,640 for the two operators. Table 3 shows the calculations of annuitized 
capital and annual O&M costs, which result in a TAEC of EUR 45,451.20. 

Table 3. Total annual cost estimations for Phantom 4 Pro. 

Costs Units 
Cost per Unit 

(EUR) 
Cost 

(EUR) 
t 

(yr) CRF 
Annual Cost 

(EUR) 
Vehicle 2 1699 3398 5 0.231 784.85 
Thermal camera 2 2149 4298 5 0.231 992.73 
Battery 8 189 1512 1 1.050 1587.60 
Charger 3 99 297 5 0.231 68.60 
Sum of capital      3433.78 
Basic service       338 
Energy      39.42 
Operator      41,640 
Sum of O&M      42,017.42 
TAEC      45,451.20 

The DJI Phantom 4 Pro has a flight range of 5 km. So, the total covered kilometers are 
7300 km [surveillance (1460 h), ∗ range of flight (5 km)]. Therefore, to calculate the total 
cost per hour, we divided the total cost by the total operating hours. The above calculation 
gives 45,451.20/1460 = EUR 31.13/h. 

  

    

    

1 1 1 1 1 1 1 1 1 1 1 1

Personnel

Machines 2023, 11, x FOR PEER REVIEW 6 of 16 
 

 

Table 2. Individual number (no) of units considered for the uninterrupted 4 h surveillance period, 
per vehicle. 

Units Phantom 4 Pro Thunder-B 

Drones (no) 
  

Camera (no)   

Personnel (no) 
  

Fuel (L) N/A  

Batteries (no)      

    
N/A 

Charger (no)    N/A 

4.1.1. Cost Estimations for Phantom 4 Pro 
The purchase cost for two Phantom 4 Pro drones is EUR 3398 with an estimated eco-

nomic life of 5 years. The necessary cost for equipping the vehicles with two thermal cam-
eras is EUR 4298. The cost of the batteries is EUR 1512. We need eight batteries for 4 h 
flight surveillance per year. After this load, they will be worn out and will have to be re-
placed. The cost of three chargers is EUR 297. As discussed in Sections 3.2 and 3.3, all this 
equipment is necessary for 4 h uninterrupted operation. The equivalent operation and 
maintenance (O&M) costs of this equipment are EUR 338 for service, EUR 39.42 for en-
ergy, and EUR 41,640 for the two operators. Table 3 shows the calculations of annuitized 
capital and annual O&M costs, which result in a TAEC of EUR 45,451.20. 

Table 3. Total annual cost estimations for Phantom 4 Pro. 

Costs Units 
Cost per Unit 

(EUR) 
Cost 

(EUR) 
t 

(yr) CRF 
Annual Cost 

(EUR) 
Vehicle 2 1699 3398 5 0.231 784.85 
Thermal camera 2 2149 4298 5 0.231 992.73 
Battery 8 189 1512 1 1.050 1587.60 
Charger 3 99 297 5 0.231 68.60 
Sum of capital      3433.78 
Basic service       338 
Energy      39.42 
Operator      41,640 
Sum of O&M      42,017.42 
TAEC      45,451.20 

The DJI Phantom 4 Pro has a flight range of 5 km. So, the total covered kilometers are 
7300 km [surveillance (1460 h), ∗ range of flight (5 km)]. Therefore, to calculate the total 
cost per hour, we divided the total cost by the total operating hours. The above calculation 
gives 45,451.20/1460 = EUR 31.13/h. 

  

    

    

2 2 2 2 2 2 2 2 4 4 4 4

256



Machines 2023, 11, 983

References
1. Merz, M.; Pedro, D.; Skliros, V.; Bergenhem, C.; Himanka, M.; Houge, T.; Matos-Carvalho, J.P.; Lundkvist, H.; Cürüklü, B.;

Hamrén, R.; et al. Autonomous UAS-Based Agriculture Applications: General Overview and Relevant European Case Studies.
Drones 2022, 6, 128. [CrossRef]

2. Mohsan, S.A.H.; Khan, M.A.; Noor, F.; Ullah, I.; Alsharif, M.H. Towards the Unmanned Aerial Vehicles (UAVs): A Comprehensive
Review. Drones 2022, 6, 147. [CrossRef]

3. Saranya, C.; Pavithira, L.; Premsai, N.; Lavanya, H.; Govindarajan, R. Recent Trends of Drones in the Field of Defense. Int. J.
Electr. Appl. 2015, 1, 47–55.

4. Klemas, V.V. Coastal and Environmental Remote Sensing from Unmanned Aerial Vehicles: An Overview. J. Coast. Res. 2015, 31,
1260–1267. [CrossRef]

5. Bossoukpe, M.; Faye, E.; Ndiaye, O.; Diatta, S.; Diatta, O.; Diouf, A.A.; Dendoncker, M.; Assouma, M.H.; Taugourdeau, S.
Low-Cost Drones Help Measure Tree Characteristics in the Sahelian Savanna. J. Arid Environ. 2021, 187, 104449. [CrossRef]

6. Manfreda, S.; McCabe, M.F.; Miller, P.E.; Lucas, R.; Pajuelo Madrigal, V.; Mallinis, G.; Ben Dor, E.; Helman, D.; Estes, L.; Ciraolo, G.
On the Use of Unmanned Aerial Systems for Environmental Monitoring. Remote Sens. 2018, 10, 641. [CrossRef]

7. Lloret, J.; Garcia, M.; Bri, D.; Sendra, S. A Wireless Sensor Network Deployment for Rural and Forest Fire Detection and
Verification. Sensors 2009, 9, 8722–8747. [CrossRef]

8. Lawlor, K.; Olander, L.; Boyd, W.; Niles, J.; Madeira, E. Addressing the Causes of Tropical Deforestation: Lessons Learned and the
Implications for International Forest Carbon Policy; International Forest Carbon and the Climate Change Challenge Series—Brief
Number 5 June; Nicholas Institute for Environmental Policy Solutions, Duke University: Durham, NC, USA, 2009.

9. Balcerzak, A.T.; Jasiuk, B.E.; Fellner, C.A.; Feltynowski, D.M. The Polish Perspective of Using Unmanned Aerial Vehicle Systems
in International Firefighting and Crisis Management Missions—Legal and Technological Analysis. In Proceedings of the 2021
International Conference on Unmanned Aircraft Systems (ICUAS), Athens, Greece, 15–18 June 2021; pp. 1478–1487.

10. Herwitz, S.R.; Johnson, L.F.; Dunagan, S.E.; Higgins, R.G.; Sullivan, D.V.; Zheng, J.; Lobitz, B.M.; Leung, J.G.; Gallmeyer, B.A.;
Aoyagi, M.; et al. Imaging from an Unmanned Aerial Vehicle: Agricultural Surveillance and Decision Support. Comput. Electron.
Agric. 2004, 44, 49–61. [CrossRef]

11. Han, L.; Yang, G.; Yang, H.; Xu, B.; Li, Z.; Yang, X. Clustering Field-Based Maize Phenotyping of Plant-Height Growth and
Canopy Spectral Dynamics Using a UAV Remote-Sensing Approach. Front. Plant Sci. 2018, 9, 1638. [CrossRef]

12. Shafian, S.; Rajan, N.; Schnell, R.; Bagavathiannan, M.; Valasek, J.; Shi, Y.; Olsenholler, J. Unmanned Aerial Systems-Based Remote
Sensing for Monitoring Sorghum Growth and Development. PLoS ONE 2018, 13, e0196605. [CrossRef]

13. Ronchetti, G.; Mayer, A.; Facchi, A.; Ortuani, B.; Sona, G. Crop Row Detection through UAV Surveys to Optimize On-Farm
Irrigation Management. Remote Sens. 2020, 12, 1967. [CrossRef]

14. Mora, A.; Vemprala, S.; Carrio, A.; Saripalli, S. Flight Performance Assessment of Land Surveying Trajectories for Multiple
UAV Platforms. In Proceedings of the 2015 Workshop on Research, Education and Development of Unmanned Aerial Systems
(RED-UAS), Cancun, Mexico, 23–25 November 2015; IEEE: Piscataway, NJ, USA, 2015; pp. 1–7. [CrossRef]

15. Albetis, J.; Jacquin, A.; Goulard, M.; Poilvé, H.; Rousseau, J.; Clenet, H.; Dedieu, G.; Duthoit, S. On the Potentiality of UAV
Multispectral Imagery to Detect Flavescence Dorée and Grapevine Trunk Diseases. Remote Sens. 2019, 11, 23. [CrossRef]

16. Riniatsih, I.; Ambariyanto, A.; Yudiati, E.; Redjeki, S.; Hartati, R. Monitoring the Seagrass Ecosystem Using the Unmanned Aerial
Vehicle (UAV) in Coastal Water of Jepara. Proc. IOP Conf. Ser. Earth Environ. Sci. 2021, 674, 012075. [CrossRef]

17. Półka, M.; Ptak, S.; Kuziora, Ł. The Use of UAV’s for Search and Rescue Operations. Procedia Eng. 2017, 192, 748–752. [CrossRef]
18. Griffin, G.F. The Use of Unmanned Aerial Vehicles for Disaster Management. Geomatica 2014, 68, 265–281. [CrossRef]
19. Zulkipli, M.A.; Tahar, K.N. Multirotor UAV-Based Photogrammetric Mapping for Road Design. Int. J. Opt. 2018, 2018, 1871058.

[CrossRef]
20. Koeva, M.; Muneza, M.; Gevaert, C.; Gerke, M.; Nex, F. Using UAVs for Map Creation and Updating. A Case Study in Rwanda.

Surv. Rev. 2018, 50, 312–325. [CrossRef]
21. Giordan, D.; Adams, M.S.; Aicardi, I.; Alicandro, M.; Allasia, P.; Baldo, M.; De Berardinis, P.; Dominici, D.; Godone, D.; Hobbs, P.;

et al. The Use of Unmanned Aerial Vehicles (UAVs) for Engineering Geology Applications. Bull. Eng. Geol. Environ. 2020, 79,
3437–3481. [CrossRef]

22. Smith, S.L. Drones over the “Black Desert”: The Advantages of Rotary-Wing UAVs for Complementing Archaeological Fieldwork
in the Hard-to-Access Landscapes of Preservation of North-Eastern Jordan. Geosciences 2020, 10, 426. [CrossRef]

23. Leuenberger, D.; Haefele, A.; Omanovic, N.; Fengler, M.; Martucci, G.; Calpini, B.; Fuhrer, O.; Rossa, A. Improving High-Impact
Numerical Weather Prediction with Lidar and Drone Observations. Bull. Am. Meteorol. Soc. 2020, 101, E1036–E1051. [CrossRef]

24. Stanton, M.C.; Kalonde, P.; Zembere, K.; Hoek Spaans, R.; Jones, C.M. The Application of Drones for Mosquito Larval Habitat
Identification in Rural Environments: A Practical Approach for Malaria Control? Malar. J. 2021, 20, 244. [CrossRef] [PubMed]

25. Kunovjanek, M.; Wankmüller, C. Containing the COVID-19 Pandemic with Drones—Feasibility of a Drone Enabled Back-up
Transport System. Transp. Policy 2021, 106, 141–152. [CrossRef] [PubMed]

257



Machines 2023, 11, 983

26. Massarelli, C.; Muolo, M.R.; Uricchio, V.F.; Dongiovanni, N.; Palumbo, R. Improving Environmental Monitoring against
the Risk from Uncontrolled Abandonment of Waste Containing Asbestos. The DroMEP Project. Geomatics Workbooks n◦

12—“FOSS4G Europe Como 2015”. Available online: https://www.researchgate.net/profile/Carmine-Massarelli/publication/
281811563_Improving_environmental_monitoring_against_the_risk_from_uncontrolled_abandonment_of_waste_containing_
asbestos_The_DroMEP_project/links/6124d74b0c2bfa282a6707c4/Improving-environmental-monitoring-against-the-risk-
from-uncontrolled-abandonment-of-waste-containing-asbestos-The-DroMEP-project.pdf (accessed on 17 September 2023).

27. Cheteni, P. An Analysis of Anti-Poaching Techniques in Africa: A Case of Rhino Poaching. Environ. Econ. 2014, 5, 63–70.
28. Boakye, J. Enforcement of Logging Regulations in Ghana: Perspectives of Frontline Regulatory Officers. For. Policy Econ. 2020,

115, 102138. [CrossRef]
29. Zhou, F.; Pan, S.; Chen, W.; Ni, X.; An, B. Monitoring of Compliance with Fuel Sulfur Content Regulations through Unmanned

Aerial Vehicle (UAV) Measurements of Ship Emissions. Atmos. Meas. Tech. 2019, 12, 6113–6124. [CrossRef]
30. Golcarenarenji, G.; Martinez-Alpiste, I.; Wang, Q.; Alcaraz-Calero, J.M. Efficient Real-Time Human Detection Using Unmanned

Aerial Vehicles Optical Imagery. Int. J. Remote Sens. 2021, 42, 2440–2462. [CrossRef]
31. Rosenfeld, A. Are Drivers Ready for Traffic Enforcement Drones? Accid. Anal. Prev. 2019, 122, 199–206. [CrossRef]
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39. Tα Hńεκτρoνικά “Γεράκια” Tης Eń.AΣ. Available online: https://www.zougla.gr/greece/article/i-enaeri-filakes-kata-tou-
eglimatos (accessed on 5 February 2021).

40. Tsiamis, N.; Efthymiou, L.; Tsagarakis, K.P. A Comparative Analysis of the Legislation Evolution for Drone Use in OECD
Countries. Drones 2019, 3, 75. [CrossRef]

41. Sudbury, A.W.; Hutchinson, E.B. A Cost Analysis of Amazon Prime Air (Drone Delivery). J. Econ. Educ. 2016, 16, 1–12.
42. Wright, C.; Rupani, S.; Nichols, K.; Yasmin, C.; Matiko, M. What Should You Deliver by Unmanned Aerial Systems? JSI Research &

Training Institute, Inc.: Arlington, VA, USA, 2018.
43. Ochieng, W.O.; Ye, T.; Scheel, C.; Lor, A.; Saindon, J.; Yee, S.L.; Meltzer, M.I.; Kapil, V.; Karem, K. Uncrewed Aircraft Systems

versus Motorcycles to Deliver Laboratory Samples in West Africa: A Comparative Economic Study. Lancet Glob. Health 2020, 8,
e143–e151. [CrossRef] [PubMed]

44. Meier, P.; Bergelund, J. Field-Testing the First Cargo Drone Deliveries in the Amazon Rainforest; WeRobotics: Geneva, Switzerland, 2017.
45. Sozzi, M.; Kayad, A.; Gobbo, S.; Cogato, A.; Sartori, L.; Marinello, F. Economic Comparison of Satellite, Plane and UAV-Acquired

NDVI Images for Site-Specific Nitrogen Application: Observations from Italy. Agronomy 2021, 11, 2098. [CrossRef]
46. Yowtak, K.; Imiola, J.; Andrews, M.; Cardillo, K.; Skerlos, S. Comparative Life Cycle Assessment of Unmanned Aerial Vehicles,

Internal Combustion Engine Vehicles and Battery Electric Vehicles for Grocery Delivery. Procedia CIRP 2020, 90, 244–250.
[CrossRef]

47. Christensen, B.R. Use of UAV or Remotely Piloted Aircraft and Forward-Looking Infrared in Forest, Rural and Wildland Fire
Management: Evaluation Using Simple Economic Analysis. N. Z. J. For. Sci. 2015, 45, 16. [CrossRef]

48. Zailani, M.A.; Azma, R.Z.; Aniza, I.; Rahana, A.R.; Ismail, M.S.; Shahnaz, I.S.; Chan, K.S.; Jamaludin, M.; Mahdy, Z.A. Drone
versus Ambulance for Blood Products Transportation: An Economic Evaluation Study. BMC Health Serv. Res. 2021, 21, 1308.
[CrossRef]

49. Borghetti, F.; Caballini, C.; Carboni, A.; Grossato, G.; Maja, R.; Barabino, B. The Use of Drones for Last-Mile Delivery: A Numerical
Case Study in Milan, Italy. Sustainability 2022, 14, 1766. [CrossRef]

50. White, S.M.; Schaefer, M.; Barfield, P.; Cantrell, R.; Watson, G.J. Cost Benefit Analysis of Survey Methods for Assessing Intertidal
Sediment Disturbance: A Bait Collection Case Study. J. Environ. Manag. 2022, 306, 114386. [CrossRef]

51. Valerdi, R. Cost Metrics for Unmanned Aerial Vehicles. In Infotech@ Aerospace; Massachusetts Institute of Technology: Cambridge,
MA, USA, 2005; p. 7102.

52. Malone, P.; Apgar, H.; Stukes, S.; Sterk, S. Unmanned Aerial Vehicles Unique Cost Estimating Requirements. In Proceedings of
the 2013 IEEE Aerospace Conference, Big Sky, MT, USA, 2–9 March 2013; IEEE: Piscataway, NJ, USA, 2013; pp. 1–8.

258



Machines 2023, 11, 983

53. Banazadeh, A.; Jafari, M.H. A Heuristic Complexity-Based Method for Cost Estimation of Aerospace Systems. Proc. Inst. Mech.
Eng. Part G J. Aerosp. Eng. 2013, 227, 1685–1700. [CrossRef]

54. DJI Phantom 4 Pro. Available online: https://www.dji.com/gr/phantom-4-pro/info#specs (accessed on 20 February 2021).
55. What’s the Best Battery? Available online: https://batteryuniversity.com/article/whats-the-best-battery (accessed on 20

March 2021).
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