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Preface

Differential equations and inverse problems have become a rapidly growing topic because of the

new techniques developed recently and the amazing achievements in computational sciences. With

the progress of science and technology, differential equations and inverse problems have quickly

developed, and new waves have been successively set off in a broad range of disciplines, such as

mathematics, physics, engineering, business, economics, earth science, biology, etc.

This reprint features a selection of 12 distinguished papers that present groundbreaking findings

in theoretical studies, along with the latest advancements in addressing practical scientific and

technological challenges.

This reprint brought together mathematicians with physicists, engineers, and other scientists to

share their findings. Topics covered in this reprint include the following:

Impulsive delay differential equations;

Fractional differential equations;

Rayleigh–Stokes equation with a fractional derivative;

Monge–Ampère equation;

One-dimensional heat conduction;

Dynamic complex matrix inversion;

Collocation methods;

Runge–Kutta method;

Tikhonov regularization method;

Convolution neural networks;

Supervised contrastive learning;

Zeroing neural networks.

Tao Liu, Qiang Ma, and Songshu Liu

Guest Editors
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Article

Convergence of Collocation Methods for One Class of
Impulsive Delay Differential Equations

Zhiwei Wang, Guilai Zhang * and Yang Sun

College of Sciences, Northeastern University, Shenyang 110819, China; 2172045@stu.neu.edu.cn (Z.W.);
2101906@stu.neu.edu.cn (Y.S.)
* Correspondence: zhangguilai@neuq.edu.cn

Abstract: This paper is concerned with collocation methods for one class of impulsive delay dif-
ferential equations (IDDEs). Some results for the convergence, global superconvergence and local
superconvergence of collocation methods are given. We choose a suitable piecewise continuous
collocation space to obtain high-order numerical methods. Some illustrative examples are given to
verify the theoretical results.

Keywords: impulsive delay differential equations; collocation methods; convergence; superconvergence

MSC: 65L03

1. Introduction

Impulsive differential equations appear to represent models of several real-life phe-
nomena. In recent decades, systems with impulse effects have arisen in control theory,
medicine, biotechnology, economics, population growth, etc. Some work on these systems
was presented [1–5]. In recent years, there has been increasing attention on the initial value
problem of IDDEs. The corresponding theory of the exact solutions of IDDEs has been
studied from different angles (see [6–12]): oscillation, stability, asymptotic stability and
exponential stability in some specific classes of IDDEs.

Collocation methods as numerical methods have a wide range of applications in the
treatment of integral–algebraic equations [13–16], Volterra integral equations [17–19] and
delay differential equations [20–22]. Specifically, the convergence of the collocation methods
has received a lot of attention, such as the convergence of collocation methods for weakly
singular Volterra integral equations [23], the superconvergence of collocation methods
for first-kind Volterra integral equations [24], the convergence of collocation methods for
Volterra integral equations [25], the convergence of multistep collocation methods for
integral–algebraic equations [16], etc. But to the best of our knowledge, there are no articles
referring to the convergence of the collocation method for IDDEs.

In this paper, we consider the following impulsive delay differential equation with
collocation methods:⎧⎪⎨⎪⎩

y′(t) = p(t)y(t) + q(t)y(t − τ), t �= kτ, k = 1, 2, · · · , t ∈ I,
�y = Bky, t = kτ, k = 1, 2, · · · ,
y(t) = φ(t), t ∈ [−τ, 0],

(1)

where I := [0, T] , �y = y(t+)− y(t), y(t+) is the right limit of y(t), p : I → R, q : I → R

are two given functions and sufficiently smooth, τ > 0 is a positive constant, φ is a
continuous function on [−τ, 0] and y′(t) denotes the left-hand derivative of y(t).

The rest of the present paper is organized as follows: Firstly, the existence and unique-
ness of collocation methods are presented in Section 2. In Section 3, the global convergence
of collocation methods is analytically derived. Following that, Section 4 gives the global

Axioms 2023, 12, 700. https://doi.org/10.3390/axioms12070700 https://www.mdpi.com/journal/axioms1
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and local superconvergence of properties. Finally, two numerical experiments are given in
Section 5.

Definition 1 (Jurang Yan [8]). The function y : I → R is said to be a solution of system (1) when
the following conditions are satisfied:

1. y(t) = φ(t), t ∈ [−τ, 0];
2. for t ∈ I, t �= kτ, the function y(t) is differentiable and y′(t) = p(t)y(t) + q(t)y(t − τ);
3. the function y(t) is left-continuous in I, and if t ∈ I and t = kτ, then y(t+) = (1 + Bk)y(t),

y(t−) = y(t);
4. Bk ∈ (−∞,−1) ∪ (−1,+∞) are constants, k = 1, 2, · · · .

2. Collocation Methods

For ease of notation, we assume that T = Nτ, N is a positive integer. All kτ,
k = 1, 2, · · · , N, are chosen as numerical nodes to ensure the convergence of collocation
methods. Define a positive integer p � 1 and the stepsize h = τ

p corresponding to the given
intervals (tn, tn+1). tn = nh are fixed time. The global mesh Ih on I is defined by

Ih :=
{

tn : 0 = t0 < t1 < · · · < tNp = T
}

.

Firstly, we will choose the collocation points as follows:

Xh := {tn,i = tn + cih : 0 < c1 < · · · < cm � 1},

where {ci} indicates a series of collocation parameters. Define σn := (tn, tn+1]. The exact
solution can be approximated by a collocation solution in the piecewise polynomial space

S̃(0)
m (Ih) :=

{
v : v|σn

∈ πm,

{
�v = 0, if t �= kτ, t ∈ I
�v = Bkv, t = kτ

}
,

where πm denotes the space of all real polynomials of degree not exceeding m (see [17,21]),
and �v = v(t+) − v(t). The collocation solution uh is the element of the piecewise
polynomial space that satisfies the following equation:⎧⎪⎪⎨⎪⎪⎩

u
′
h(t) = p(t)uh(t) + q(t)uh(t − τ), t �= kτ, t ∈ Xh,

�uh

(
tkp

)
= Bkuh

(
tkp

)
, k = 1, 2, · · · ,

uh(t) = φ(t), t ∈ [−τ, 0],

(2)

where uh(t) and u
′
h(t) are left-continuous.

Setting Yn,j := u
′
h
(
tn + cjh

)
, we have

u
′
h(tn + vh) =

m

∑
j=1

Lj(v)Yn,j, (3)

where Lj(v) denotes the following Lagrange fundamental corresponding to the collocation
parameters {ci} (see [17,21]):

Lj(v) =
m
Π

i=1,i �=j

v − ci
cj − ci

.

Integrating (3), we can obtain

uh(tn + vh) = uh
(
t+n

)
+ h

m

∑
j=1

β j(v)Yn,j, v ∈ (0, 1], (4)

2
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where

β j(v) =
v∫

0

Lj(s)ds.

According to the definition of S̃(0)
m (Ih), we have

uh
(
t+n

)
=

{
uh(tn), tn �= kτ, k = 1, 2, · · · ,
(1 + Bk)uh(tn), tn = kτ.

(5)

By (2) and (4), we obtain

Yn,i = p(tn,i)uh(tn,i) + q(tn,i)uh(tn,i − τ)

= p(tn,i)

[
uh

(
t+n

)
+ h

m

∑
j=1

β j(v)Yn,j

]

+ q(tn,i)

[
uh

(
t+n−p

)
+ h

m

∑
j=1

β j(v)Yn−p,j

]
,

(6)

where aij := β j(ci). Let

P̃n := diag(p(tn,i)), A =
(
aij

) ∈ L(Rm), Pn := P̃n A,

Q̃n := diag(q(tn,i)), A =
(
aij

) ∈ L(Rm), Qn := Q̃n A,

β(v) := (β1(v), β2(v), · · · , βm(v))
T , Yn := (Yn,1, Yn,2, · · · , Yn,m)

T , e :=

⎛⎝1, · · · , 1︸ ︷︷ ︸
m

⎞⎠T

.

Then
[Im×m − hPn]Yn =

[
P̃nuh

(
t+n

)
+ Q̃nuh

(
t+n−p

)]
e + hQnYn−p. (7)

When the solution Yn has been found by (6), the collocation solution on the interval (tn, tn+1]
is determined by

uh[(tn + vh)] = uh
(
t+n

)
+ hβT(v)Yn, v ∈ (0, 1]. (8)

According to [17], the following theorem is given without proof.

Theorem 1. There exists an h̄ > 0 such that for the mesh diameter h belonging to the interval(
0, h̄

)
, (7) has unique solutions Yn ∈ Rm. Then, the collocation solution uh ∈ S̃(0)

m (Ih) for
impulsive delay differential Equation (1) is unique and is given by (8) on the subinterval (tn, tn+1].

3. Global Convergence

In the following section, the global convergence of the collocation solution for IDDEs
will be analyzed.

Theorem 2. If p, q ∈ Cm(I) and the collocation solution uh for (1) is defined by (2), then there
exists two constants C0 and C1 which are independent of h, satisfying

‖y − uh‖∞ := max
t∈I

|y(t)− uh(t)| � C0

∥∥∥y(m+1)
∥∥∥

∞
hm, (9)∥∥y′ − u′

h
∥∥

∞ := sup
t∈I

∣∣y′(t)− u′
h(t)

∣∣ � C1

∥∥∥y(m+1)
∥∥∥

∞
hm, (10)

for h ∈ (
0, h̄

)
and any collocation parameters with 0 < c1 < · · · < cm � 1.

3
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Proof. Assume that p, q ∈ Cm(I) implies y ∈ Cm+1(σn) and y′ ∈ Cm(σn). The collocation
error eh(t) := y(t)− uh(t) satisfies the equation

e′h(t) = p(t)eh(t) + q(t)eh(t − τ), t �= kτ, t ∈ Xh, (11)

with eh(t) = 0, t � 0. By Peano’s theorem [17], we can obtain that

y′(tn + vh) =
m

∑
j=1

Lj(v)Zn,j + hmR(1)
m+1,n(v), v ∈ (0, 1], (12)

where

R(1)
m+1,n(v) :=

∫ 1

0
Km(v, z)y(m+1)(tn + zh)dz,

Km(v, z) :=
1

(m − 1)!

{
(v − z)m−1

+ −
m

∑
k=1

Lk(v)(ck − z)m−1
+

}
, v ∈ (0, 1],

and Zn,j := y′
(
tn,j

)
. Integrating (12), we have

y(tn + vh) = y
(
t+n

)
+ h

m

∑
j=1

β j(v)Zn,j + hm+1Rm+1,n(v), v ∈ (0, 1], (13)

where

Rm+1,n(v) :=
v∫

0

R(1)
m+1,n(v)dv,

and

y
(
t+n

)
=

{
y(tn), tn �= kτ, k = 1, 2, · · · ,
(1 + Bk)y(tn), tn = kτ.

Let εn,j := Zn,j − Yn,j. Comparing (4) and (13), we obtain

eh(tn + vh) = eh
(
t+n

)
+ h

m

∑
j=1

β j(v)εn,j + hm+1Rm+1,n(v), v ∈ (0, 1], (14)

where

eh
(
t+n

)
=

{
eh(tn), tn �= kτ, k = 1, 2, · · · ,
(1 + Bk)eh(tn), tn = kτ.

(15)

Due to (3) and (12), we can obtain that

e
′
h(tn + vh) =

m

∑
j=1

Lj(v)εn,j + hmR(1)
m+1,n(v), v ∈ (0, 1]. (16)

4
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By the definition of εn,j and (14), we obtain

εn,i = y′(tn,i)− u′
h(tn,i)

= p(tn,i)eh(tn + vh) + q(tn,i)eh[(tn + vh)− τ]

= p(tn,i)eh(tn + vh) + q(tn,i)eh
[(

tn−p + vh
)]

= p(tn,i)

[
eh

(
t+n

)
+ h

m

∑
j=1

aijεn,j + hm+1Rm+1,n(ci)

]

+ q(tn,i)

[
eh

(
t+n−p

)
+ h

m

∑
j=1

aijεn−p,j + hm+1Rm+1,n−p(ci)

]
,

(17)

i.e.,
[Im×m − hPn]εn =

[
P̃neh(t+n ) + Q̃neh

(
t+n−p

)]
e + hm+1P̃nRm+1,n

+hQnεn−p + hm+1Q̃nRm+1,n−p,
(18)

where Rm+1,n := (Rm+1,n(c1), . . . , Rm+1,n(cm))
T and εn := (εn,1, εn,2, . . . , εn,m)

T . For ease
of notation, we assume n = pk + l(l = 1, 2, . . . , p), then tn = tpk+l ∈ (kτ, (k + 1)τ]. By (14)
and (15),

eh
(
t+n

)
= eh

(
t+pk+l

)
= Wk+1eh

(
tpk+l

)
= Wk+1eh

(
tpk+l−1 + h

)
= Wk+1

[
eh

(
tpk+l−1

)
+ h

m

∑
j=1

bjεpk+l−1,j + hm+1Rm+1,pk+l−1(1)

]

= · · · = Wk+1

[
eh

(
t+pk

)
+

n−1

∑
i=pk

h
m

∑
j=1

bjεi,j +
n−1

∑
i=pk

hm+1Rm+1,i(1)

]

= Wk+1

[
(1 + Bk)eh

(
tpk

)
+

n−1

∑
i=pk

h
m

∑
j=1

bjεi,j +
n−1

∑
i=pk

hm+1Rm+1,i(1)

]

= · · · = Wk+1

k

∏
d=1

(1 + Bd)

[
p−1

∑
i=0

h
m

∑
j=1

bjεi,j +
p−1

∑
i=0

hm+1Rm+1,i(1)

]

+ Wk+1

k

∏
d=2

(1 + Bd)

[
2p−1

∑
i=p

h
m

∑
j=1

bjεi,j +
2p−1

∑
i=p

hm+1Rm+1,i(1)

]

+ · · ·+ Wk+1(1 + Bk)

⎡⎣ kp−1

∑
i=(k−1)p

h
m

∑
j=1

bjεi,j +
kp−1

∑
i=(k−1)p

hm+1Rm+1,i(1)

⎤⎦
+ Wk+1

[
pk+l−1

∑
i=kp

h
m

∑
j=1

bjεi,j +
pk+l−1

∑
i=kp

hm+1Rm+1,i(1)

]
,

where bj := β j(1), eh(0+) = 0, and

Wk :=

{
1 + Bk, if l = p,
1, l �= p.

(19)

5



Axioms 2023, 12, 700

Hence,

eh

(
t+n−p

)
= eh

(
t+p(k−1)+l

)
= Wkeh

(
tp(k−1)+l

)
= Wkeh

(
tp(k−1)+l−1 + h

)
= · · · = Wk

k−1

∏
d=1

(1 + Bd)

[
p−1

∑
i=0

h
m

∑
j=1

bjεi,j +
p−1

∑
i=0

hm+1Rm+1,i(1)

]

+ Wk

k−1

∏
d=2

(1 + Bd)

[
2p−1

∑
i=p

h
m

∑
j=1

bjεi,j +
2p−1

∑
i=p

hm+1Rm+1,i(1)

]

+ · · ·+ Wk(1 + Bk−1)

⎡⎣ kp−p−1

∑
i=(k−2)p

h
m

∑
j=1

bjεi,j +
kp−p−1

∑
i=(k−2)p

hm+1Rm+1,i(1)

⎤⎦
+ Wk

[
pk−p+l−1

∑
i=kp−p

h
m

∑
j=1

bjεi,j +
pk−p+l−1

∑
i=kp−p

hm+1Rm+1,i(1)

]
,

(20)

where b := (b1, b2, · · · , bm)
T . In view of Theorem 1, we can easily obtain that the matrices

(Im − hPn − hQn) have bounded inverses whenever h ∈ (
0, h̄

)
, and there exists a constant

D0 < ∞ such that ∥∥∥(Im − hPn − hQn)
−1

∥∥∥
1
� D0, n = 0, 1, 2, · · · .

By (18),

‖εn‖1 � D0‖hm+1P̃nRm+1,n + hm+1Q̃nRm+1,n−p

+ P̃neWk+1

k

∏
d=1

(1 + Bd)

[
p−1

∑
i=0

h
m

∑
j=1

bjεi,j +
p−1

∑
i=0

hm+1Rm+1,i(1)

]

+ P̃neWk+1

k

∏
d=2

(1 + Bd)

[
2p−1

∑
i=p

h
m

∑
j=1

bjεi,j +
2p−1

∑
i=p

hm+1Rm+1,i(1)

]

+ · · ·+ P̃neWk+1(1 + Bk)

⎡⎣ kp−1

∑
i=(k−1)p

h
m

∑
j=1

bjεi,j +
kp−1

∑
i=(k−1)p

hm+1Rm+1,i(1)

⎤⎦
+ P̃neWk+1

[
pk+l−1

∑
i=kp

h
m

∑
j=1

bjεi,j +
pk+l−1

∑
i=kp

hm+1Rm+1,i(1)

]

+ Q̃neWk

k−1

∏
d=1

(1 + Bd)

[
p−1

∑
i=0

h
m

∑
j=1

bjεi,j +
p−1

∑
i=0

hm+1Rm+1,i(1)

]

+ Q̃neWk

k−1

∏
d=2

(1 + Bd)

[
2p−1

∑
i=p

h
m

∑
j=1

bjεi,j +
2p−1

∑
i=p

hm+1Rm+1,i(1)

]

+ · · ·+ Q̃neWk(1 + Bk−1)

⎡⎣ kp−p−1

∑
i=(k−2)p

h
m

∑
j=1

bjεi,j +
kp−p−1

∑
i=(k−2)p

hm+1Rm+1,i(1)

⎤⎦
+ Q̃neWk

[
pk−p+l−1

∑
i=kp−p

h
m

∑
j=1

bjεi,j +
pk−p+l−1

∑
i=kp−p

hm+1Rm+1,i(1)

]
‖1.

Because |Bi|(i = 1, 2, . . . , k) is finite, there exists a constant R(R > 1), satisfying∣∣∣∏k
d=1 (1 + Bd)

∣∣∣ � R(d = 1, 2, · · · , k). Let

P0 := ‖p(t)‖∞, Q0 := ‖q(t)‖∞, Mm+1 :=
∥∥∥y(m+1)

∥∥∥
∞

,

6
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Km := max
v∈[0,1]

∫ v

0
|Km(v, z)|dz, b̄ := max

(j)

∣∣bj
∣∣.

Consequently, we have

‖εn‖1 � D0|Wk+1|R
∥∥P̃ne

∥∥
1

[
n−1

∑
i=0

h
∣∣∣bTεi

∣∣∣+ n−1

∑
i=0

hm+1|Rm+1,i(1)|
]
+ D0hm+1

∥∥∥P̃nRm+1,n

∥∥∥
1

+ D0|Wk|R
∥∥Q̃ne

∥∥[n−p−1

∑
i=0

h
∣∣∣bTεi

∣∣∣+ n−p−1

∑
i=0

hm+1|Rm+1,i(1)|
]
+ D0hm+1∥∥Q̃nRm+1,n−p

∥∥
1

� D0|Wk+1|R
∥∥P̃ne

∥∥
1

[
n−1

∑
i=0

h
∣∣∣bTεi

∣∣∣+ n−1

∑
i=0

hm+1|Rm+1,i(1)|
]
+ D0hm+1∥∥P̃nRm+1,n

∥∥
1

+ D0|Wk|R
∥∥Q̃ne

∥∥
1

[
n−1

∑
i=0

h
∣∣∣bTεi

∣∣∣+ n−1

∑
i=0

hm+1|Rm+1,i(1)|
]
+ D0hm+1∥∥Q̃nRm+1,n−p

∥∥
1

� D0 max{|Wk|, |Wk+1|}m(P0 + Q0)Rb̄
n−1

∑
i=0

h‖εi‖1

+ D0 max{|Wk|, |Wk+1|}m(P0 + Q0)R

(
n−1

∑
i=0

h

)
Km Mm+1hm

+ D0m(P0 + Q0)mKm Mm+1hm+1

� D0m(P0 + Q0)R2b̄
n−1

∑
i=0

h‖εi‖1

+
(

D0m(P0 + Q0)R2TKm + D0m(P0 + Q0)mKmT
)

Mm+1hm

=: γ0

n−1

∑
i=0

h‖εi‖1 + γ1Mm+1hm,

with obvious meaning of γ0, γ1. Due to the discrete Gronwall inequality [17], we obtain

‖εn‖1 � γ1Mm+1hm exp(γ0T) =: BMm+1hm, n = 0, 1, · · · ,

and ∣∣eh
(
t+n

)∣∣ � R|Wk+1|b̄
n−1

∑
i=0

h‖εi‖1 + R|Wk+1|hm

(
n−1

∑
i=0

h

)
Km Mm+1.

By (14) and (16),

|eh(tn + vh)| � ∣∣eh
(
t+n

)∣∣+ hβ̄‖εn‖1 + hm+1Km Mm+1

� R|Wk+1|b̄
n−1

∑
i=0

h‖εi‖1 + R|Wk+1|
(

n−1

∑
i=0

h

)
Km Mm+1hm

+ hβ̄‖εn‖1 + hm+1Km Mm+1

�
[

R|Wk+1|
(

n−1

∑
i=0

h

)
b̄B + R|Wk+1|

(
n−1

∑
i=0

h

)
Km + hβ̄B + hKm

]
Mm+1hm

�
[

R2Tb̄B + R2TKm + Tβ̄B + TKm

]
Mm+1hm =: C0Mm+1hm,

and ∣∣∣e′h(tn + vh)
∣∣∣ � ΛBMm+1hm + hmKm Mm+1

= (ΛB + Km)Mm+1hm

=: C1Mm+1hm,

(21)

7
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where
β̄ := max

(j)

∥∥β j
∥∥

∞, Λ := max
(j)

∥∥Lj
∥∥

∞.

The proof of Theorem 2 is complete.

4. Global Superconvergence and Local Superconvergence

In this part, the global superconvergence of the collocation solution is discussed first
and the local superconvergence is analyzed later.

Theorem 3. Let the given function in (1) satisfy p, q ∈ Cd(I), φ ∈ Cd+1[−τ, 0] , d � m + 1.
Assume that the m collocation parameters {ci} are subject to the orthogonality condition

J0 :=
∫ 1

0

m

∏
i=1

(s − ci)ds = 0. (22)

Then, the corresponding collocation solution uh on I satisfies the following conditions:

‖y − uh‖∞ � C2hm+1, (23)

∥∥y′ − u′
h
∥∥

∞ � C3hm, (24)

where h ∈ (
0, h̄

)
, C2 and C3 are two constants which are independent of h.

Proof. The (24) can be obtained with (21). The following discussion is for (23). We define
the defect δh(t) by

δh(t) := −u′
h(t) + p(t)uh(t) + q(t)uh(t − τ), t ∈ I. (25)

By (1), we can easily obtain the following form:

δh(t) := e′h(t)− p(t)eh(t)− q(t)eh(t − τ), t ∈ I, (26)

and δh(t) = 0 for all t ∈ Xh. Due to Theorem 2, we can obtain that

‖δh‖∞ � C1Mm+1hm + P0C0Mm+1hm + Q0C0Mm+1hm =: D1Mm+1hm, (27)

for any ci in {ci : i = 1, 2, · · · , m, 0 < ci ≤ 1}.
Here, eh(t) can be treated as the solution of the following equation:⎧⎪⎨⎪⎩

e′h(t) = p(t)eh(t) + q(t)eh(t − τ) + δh(t), t �= kτ, t ∈ I,
eh(t+) = (1 + Bk)eh(t), t = kτ,
eh(t) = 0, t ∈ [−τ, 0].

(28)

Let r(t, s) denote the resolvent of (1)

r(t, s) := exp
(∫ t

s
p(v)dv

)
, r ∈ Cm+1(D),

where D := {(t, s) : 0 � s � t � T}. So, for t ∈ (0, τ], we have

eh(t) =
∫ t

0
r(t, s)(q(s)eh(s − τ) + δh(s))ds,

8
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for t ∈ (τ, 2τ], we obtain

eh(t) = (1 + B1)r(t, τ)
∫ τ

0
r(τ, s)(q(s)eh(s − τ) + δh(s))ds

+
∫ t

τ
r(t, s)(q(s)eh(s − τ) + δh(s))ds,

for t ∈ (2τ, 3τ], we can obtain that

eh(t) = (1 + B2)r(t, 2τ)

[
(1 + B1)r(2τ, τ)

∫ τ

0
r(τ, s)(q(s)eh(s − τ) + δh(s))ds

+
∫ 2τ

τ
r(t, s)(q(s)eh(s − τ) + δh(s))ds

]
+

∫ t

2τ
r(t, s)(q(s)eh(s − τ) + δh(s))ds,

for t ∈ (kτ, (k + 1)τ], eh(t) can be expressed by

eh(t)

= r(t, kτ)
k

∏
d=1

(1 + Bd)
k

∏
μ=2

r(μτ, (μ − 1)τ)
∫ τ

0
r(τ, s)(q(s)eh(s − τ) + δh(s))ds

+ r(t, kτ)
k

∏
d=2

(1 + Bd)
k

∏
μ=3

r(μτ, (μ − 1)τ)
∫ 2τ

τ
r(2τ, s)(q(s)eh(s − τ) + δh(s))ds

+ · · ·

+ r(t, kτ)(1 + Bk)
∫ kτ

(k−1)τ
r(kτ, s)(q(s)eh(s − τ) + δh(s))ds

+
∫ t

kτ
r(t, s)(q(s)eh(s − τ) + δh(s))ds.

For ease of notation, we assume that n = pk + l, (l = 1, 2, . . . , p) and t = tn + vh = tpk+l +

vh ∈ (kτ, (k + 1)τ], v ∈ (0, 1]. Obviously, there exists a constant R̃ such that∣∣∣∣∣k+1

∏
μ=1

r(μτ, (μ − 1)τ)

∣∣∣∣∣ � R̃.

From the above analysis, we have the following inequality:

|eh(t)| � RR̃
∫ t

0
|r(t, s)(q(s)eh(s − τ) + δh(s))|ds, (29)

where
∫ t

0 |r(t, s)(q(s)eh(s − τ) + δh(s))|ds can be expressed as

∫ t

0
|r(t, s)(q(s)eh(s − τ) + δh(s))|ds

=
n−1

∑
i=0

h
∫ 1

0
|r(t, ti + sh)(q(ti + sh)eh(ti + sh − τ) + δh(ti + sh))|ds

+ h
∫ v

0
|r(t, tn + sh)(q(tn + sh)eh(tn + sh − τ) + δh(tn + sh))|ds

=:
n−1

∑
i=0

h
∫ 1

0
φn(ti + sh)ds + h

∫ v

0
φn(tn + sh)ds.

9
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Now, using an interpolatory m-point quadrature formula with collocation parameters {ci}
to approximate

∫ 1
0 φn(ti + sh)ds, we have

∫ 1

0
φn(ti + sh)ds =

m

∑
j=1

bjφn
(
ti + cjh

)
+ Ei

n(v) = Ei
n(v), (30)

where v ∈ (0, 1](l < n) and Ei
n indicates quadrature errors. So, we have∫ t

0
|r(t, s)(q(s)eh(s − τ) + δh(s))|ds

=
n−1

∑
i=0

hEi
n(v) + h

∫ v

0
φn(tn + sh)ds. (31)

By the orthogonality condition (22) and the Peano theorem, it is obvious that quadrature
errors satisfy ∣∣∣E(i)

n (v)
∣∣∣ � Qihm+1, v ∈ [0, 1], i � n − 1, (32)

where Qi are constants. According to (29), (31) and (32), we can obtain

|eh(t)|

≤RR̃
n−1

∑
i=0

hEi
n(v) + RR̃h

∫ v

0
φn(tn + sh)ds

�RR̃
n−1

∑
i=0

hEi
n(v) + RR̃h

∫ v

0
|r(t, tn + sh)δh(tn + sh)|ds

+RR̃h
∫ v

0
|r(t, tn + sh)q(tn + sh)eh(tn + sh − τ)|ds

�RR̃
n−1

∑
i=0

hQihm+1 + RR̃hr0‖δh‖∞ + RR̃hr0r̃0C0Mm+1hm,

where r0 = max
t∈I

∫ t
0 |r(t, s)|ds, r̃0 = max

t∈I
|q(t)|. By (27), we have

|eh(t)| � RR̃Q

(
n−1

∑
i=0

h

)
hm+1 + RR̃r0D1Mm+1hm+1 + RR̃hr0r̃0C0Mm+1hm

�
(

RR̃QT + RR̃r0D1Mm+1 + RR̃r0r̃0C0Mm+1
)
hm+1

=: C2hm+1.

Here, Q := max{Qi : 0 � i � n − 1}. The estimation (24) follows from (26). The proof is
completed.

Theorem 4. Assume that the solution of (1) lies in Cm+k(I)(1 � k � m) and the m distinct
collocation parameters {ci} are selected such that the general orthogonality condition (33) holds,
with Jk �= 0,

Jv :=
∫ 1

0
sv

m

∏
i=1

(s − ci)ds = 0, v = 0, 1, .., k − 1. (33)

Then, for all meshes Ih := {t0, t1, . . .} with h ∈ (
0, h̄

)
, the collocation solution uh with the above

collocation parameters {ci} satisfies

max{|y(t)− uh(t)| : t ∈ Ih} � C4hm+k, (34)

10
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where C4 is a constant and independent of h.

Proof. When v = 0, (31) is changed into

∫ t

0
|r(t, s)(q(s)eh(s − τ) + δh(s))|ds =

n−1

∑
i=0

hEi
n(0). (35)

Due to the general orthogonality condition (33) and the Peano theorem for quadrature, we
can obtain ∣∣∣E(i)

n (0)
∣∣∣ � Qihm+k, i � n − 1. (36)

Then, on meshes Ih, by (31), we have

|eh(t)| � RR̃
∫ t

0
|r(t, s)(q(s)eh(s − τ) + δh(s))|ds

= RR̃
n−1

∑
i=0

hEi
n(0) � RR̃

n−1

∑
i=0

hQihm+k

� RR̃Q

(
n−1

∑
i=0

h

)
hm+k � RR̃QThm+k

:= C4hm+k.

(37)

The proof is completed.

5. Numerical Experiments

In the last section, two examples are given to illustrate the conclusions. Consider
two IDDEs as follows: ⎧⎪⎨⎪⎩

y′(t) = −2y(t) + y(t − 1), t �= k, t ∈ I,
�y = 0.2(−1)ky, t = k,
y(t) = 1, t ∈ [−1, 0],

(38)

⎧⎪⎨⎪⎩
y′(t) = −2ty(t) + ty(t − 1), t �= k, t ∈ I,
�y = −0.2y, t = k,
y(t) = 1, t ∈ [−1, 0].

(39)

In Figure 1, the image of the 2-Lobatto IIIA collocation solution with p = 2 for (38) is drawn.
In Figure 2, we use the same method to draw the image for (39).

Tables 1 and 2 illustrate the ratios of the absolute errors between p = 8 and p = 16
at non-impulsive nodes and impulsive nodes using four different collocation methods for
(38). Tables 3 and 4 illustrate the ratios of the absolute errors between p = 8 and p = 16
at non-impulsive nodes and impulsive nodes using four different collocation methods for
(39). We can obtain that the convergence orders of the 2-Lobatto IIIA, 2-Radau IIA , 2-Gauss
methods and 3-Gauss methods are 2, 3, 4 and 6, respectively. The ratios indicate that our
numerical process can preserve the convergence order of collocation methods for IDDEs.

11
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Table 1. The absolute error of 2-Lobatto IIIA and 2-Gauss methods for (38).

p 2-Lobatto IIIA 2-Gauss
t = 0.5 t = 1 t = 0.5 t = 1

2 1.7240 × 10−2 1.2168 × 10−2 2.7472 × 10−4 2.0228 × 10−4

4 3.9397 × 10−3 2.8676 × 10−3 1.4879 × 10−5 1.0948 × 10−5

8 9.3972 × 10−4 7.0782 × 10−4 1.0017 × 10−6 7.3700 × 10−7

16 2.3991 × 10−4 1.7640 × 10−4 6.2500 × 10−8 4.6000 × 10−8

Ratio 3.9170 4.0125 16.0272 16.0217

Table 2. The absolute error of 2-Radau IIA and 3-Gauss methods for (38).

p 2-Radau IIA 3-Gauss
t = 0.5 t = 1 t = 0.5 t = 1

2 2.1397 × 10−3 1.5676 × 10−3 1.8968 × 10−6 1.3955 × 10−6

4 2.3972 × 10−4 1.6764 × 10−4 2.8791 × 10−8 2.1183 × 10−8

8 3.7523 × 10−5 2.7605 × 10−5 4.4659 × 10−10 3.2858 × 10−10

16 4.8319 × 10−6 3.5550 × 10−6 6.9650 × 10−12 5.1240 × 10−12

Ratio 7.7657 7.7651 64.1195 64.1261

Table 3. The absolute error of 2-Lobatto IIIA and 2-Gauss methods for (39).

p 2-Lobatto IIIA 2-Gauss
t = 0.5 t = 1 t = 0.5 t = 1

2 1.0600 × 10−2 1.6060 × 10−2 1.6962 × 10−4 2.6848 × 10−4

4 2.7996 × 10−3 3.8603 × 10−3 1.0462 × 10−5 1.5195 × 10−5

8 6.9520 × 10−4 9.6125 × 10−4 6.5040 × 10−7 9.2360 × 10−7

16 1.7417 × 10−4 2.3971 × 10−4 4.0600 × 10−8 5.7300 × 10−8

Ratio 3.9915 4.0101 16.0197 16.1187

Table 4. The absolute error of 2-Radau IIA and 3-Gauss methods for (39).

p 2-Radau IIA 3-Gauss
t = 0.5 t = 1 t = 0.5 t = 1

2 1.4042 × 10−3 1.5269 × 10−3 3.1785 × 10−7 4.0601 × 10−6

4 1.9795 × 10−4 2.1244 × 10−4 8.6487 × 10−9 6.6899 × 10−8

8 2.5980 × 10−5 2.8380 × 10−5 1.4918 × 10−10 1.0551 × 10−9

16 3.3200 × 10−6 3.6800 × 10−6 2.3850 × 10−12 1.6521 × 10−11

Ratio 7.8253 7.7120 62.5489 63.8865

0 2 4 6 8 10 12 14 16 18 20
0

0.2

0.4

0.6

0.8

1

1.2

Figure 1. Two-stage Lobatto IIIA for (38).
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Figure 2. Two-stage Lobatto IIIA for (39).
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Abstract: When using the Laplace transform to solve a one-dimensional heat conduction model with
Dirichlet boundary conditions, the integration and transformation processes become complex and
cumbersome due to the varying properties of the boundary function f (t). Meanwhile, if f (t) has a
complex functional form, e.g., an exponential decay function, the product of the image function of
the Laplace transform and the general solution to the model cannot be obtained directly due to the
difficulty in solving the inverse. To address this issue, operators are introduced to replace f (t) in
the transformation process. Based on the properties of the Laplace transform and the convolution
theorem, without the direct involvement of f (t) in the transformation, a general theoretical solution
incorporating f (t) is derived, which consists of the product of erfc(t) and f (0), as well as the convolution
of erfc(t) and the derivative of f (t). Then, by substituting f (t) into the general theoretical solution, the
corresponding analytical solution is formulated. Based on the general theoretical solution, analytical
solutions are given for f (t) as a commonly used function. Finally, combined with an exemplifying
application demonstration based on the test data of temperature T(x, t) at point x away from the
boundary and the characteristics of curve T(x, t) − t and curve T(x, t)/ t − t, the inflection point
and curve fitting methods are established for the inversion of model parameters.

Keywords: one-dimensional heat conduction; Laplace transform; general theoretical solution;
common function; inflection point method; curve fitting method

MSC: 35A22; 35F15; 35K05

1. Introduction

The one-dimensional heat conduction model in a half-infinite domain with Dirichlet
boundary conditions is a classical heat conduction model [1]. In this model, the boundary
function f (t) is assumed to be a known constant ΔT0 (representing an instantaneous change
ΔT0 in the initial temperature and remaining constant). An analytical solution for the
model can be directly obtained using Laplace and Fourier transforms [1–3].

In practical problems, the expression of f (t) is often complex and variable. As the
boundary function type of f (t) changes or the same function type has different expressions,
complex and tedious integral transform operations are needed to obtain the solution to the
problem [3]. For some complex boundary functions, specific solution methods have been
proposed, such as the thermal equilibrium integral method [4–7] and the boundary value
method [8,9]. To effectively deal with complex and varied boundary functions, some of
the literature has extensively investigated the impact of boundary conditions on model
solutions [10], as well as methods for handling boundaries in specific problems [10–14].
Among the studies of similar problems based on the one-dimensional heat conduction
model, such as groundwater seepage in a semi-infinite aquifer under the control of river
and channel boundaries, the literature [15–22] provides a detailed investigation of a seepage
model under changing river and channel water level characteristics. The solution methods

Axioms 2023, 12, 770. https://doi.org/10.3390/axioms12080770 https://www.mdpi.com/journal/axioms15
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in these studies are too complex, making their application difficult, or the treatment of
boundary conditions is difficult to generalize in practical applications. However, there
are still cases where the model is difficult to solve directly when common function types
are used as boundary functions in one-dimensional heat conduction models. For instance,
when f (t) is an exponentially decaying function ΔT0 e−λt after the Laplace transform,
the inverse problem of the combined product of the model’s general solution and the
function-like f (t) becomes difficult to solve directly.

In practical problems, the function type of f (t) is complex and variable [20,21]. To avoid
the complex and tedious process of integral transform operations mentioned above, the
literature [21] proposed a shortcut Fourier transform method for f (t) as the Lagrange linear
interpolation equation when solving unsteady-flow models near river and canal bound-
aries. This method exploits the properties of the Fourier transform and the convolution
theorem, enabling f (t) to participate in the transformation process indirectly. When f (t) is
an exponentially decaying function, the one-dimensional heat conduction model is difficult
to solve directly using Laplace and Fourier transforms. To address this problem, research
on the fast solution method based on the feature that f (t) does not directly participate in
the transformation process is carried out in the literature [22,23].

The shortcut solution for the Laplace and Fourier transforms provides a general the-
oretical solution approach for models of this type by replacing f (t) with operators and
performing calculations in the transformation process without directly computing the trans-
formation of f (t). This approach is based on the differential properties of the transform and
the convolution theorem. Given the conditions for determining f (t) in practical problems,
the general theoretical solution is applied by substituting f (t) to obtain the actual solution
to the problem [19–21]. This solving approach does not need complex and cumbersome
integral transformation processes, making it a fast, concise, and convenient alternative to
traditional solving methods.

This paper systematically describes the process of establishing the Laplace trans-
form shortcut solution method and provides the analytical solutions of several common
function types using the general theoretical solution. Combined with the exemplifying
research, the establishment and application of the inflection point and curve fitting meth-
ods for calculating model parameters using temperature-based dynamic monitoring data
are demonstrated.

2. Basic Model

As illustrated in Figures 1 and 2, the one-dimensional heat conduction problem in the
semi-infinite domain under Dirichlet boundary control assumes:

(1) A homogeneous thin plate extending infinitely in the x-direction, with a heat source at
the boundary (x = 0) that varies with time as f (t). f (t) must meet the basic requirements
of the Laplace transform.

(2) The temperature at any point within the thin plate can be represented as T(x, t), and
the initial temperature is uniformly zero: T(x, 0) = 0.

(3) The outer surface of the thin plate is insulated, indicating that there is no heat exchange
between the thin plate and the external environment, and the one-dimensional heat
conduction only occurs within the thin plate due to the boundary heat source.

The above problem can be represented as a mathematical model (I):

∂T
∂t

= a
∂2T
∂x2 (0 < x < +∞, t > 0), (1)

T(x, t)|t=0 = T(x, 0) (x > 0), (2)

T(x, t)|x=0 = T(0, 0) + f (t) (t ≥ 0), (3)

where a (m2/s) represents the thermal diffusivity or thermal conductivity of the solid material.
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Figure 1. Schematic diagram corresponding to the physical model.

Figure 2. The spatial variations in the temperature field near the boundaries.

3. General Theoretical Solution

By defining u(x, t) = T(x, t) − T(x, 0), the mathematical model (I) can be rewritten
as (II):

∂u
∂t

= a
∂2u
∂x2 (0 < x < +∞, t > 0), (4)

u(x, t)|t=0 = 0 (x > 0), (5)

u(x, t)|x=0 = f (t) (t ≥ 0), (6)

The right end of Formula (5) is 0, which is convenient for the later formula derivation
and expression simplification.

Taking the Laplace transform of model (II) with respect to t yields model (III):

d2u
dx2 − s

D
u = 0, (7)

u|x=0 = L[ f (t)], (8)

where u represents the Laplace transform of u with respect to t, s is the Laplace oper-
ator, and L and L−1 denote the Laplace transform operator and the inverse transform
operator, respectively.

In the aforementioned process, during the transformation of boundary condition (6)
to boundary condition (8), f (t) does not directly participate in the transformation process.
That is, the transformation operation does not involve calculating the image function of
f (t). Instead, f (t) is treated as an operator in the direct transformation process.

The general solution to Equation (7) in Part (III) is

u(x, s) = c1 exp
(√

s
a

x
)
+ c2 exp

(
−

√
s
a

x
)

, (9)
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where c1 and c2 are undetermined constants. With the boundary conditions (8), considering
the mathematical meaning of the solution as x approaches infinity (u(x, t)|x→∞ = 0,
U|x→∞ = 0), the specific solution for model (III) is

u(x, s) = L[ f (t)] exp
(
−

√
s
a

x
)

, (10)

Applying the inverse Laplace transform to Equation (10) yields the solution to the
problem. When the Laplace transform is used to solve the one-dimensional heat conduction
model, the image function of L[f (t)] is usually obtained and substituted into Equation (10).
Then, the inverse Laplace transform is applied to Equation (10), and the solution to the
problem can be obtained.

When the form of f (t) is complicated or f (t) is of a special function type, it is difficult to
find the solution to the problem using the above method. If f (t) is an exponentially decaying
function ΔT0 e−λt, where λ > 0, and the image function of L[f (t)] is ΔT0/(s + λ), the right-
hand side of the above Equation becomes ΔT0 exp(−√

s/ax)/(s + λ). The convolution of
this product combination during the inverse transformation makes it challenging to obtain
the solution directly [3]. Therefore, it is difficult to obtain the solution to the problem by
directly using the Laplace transform.

To avoid the above tedious or even solution-free inverse process, under the condition
that the image function of f (t) is not sought and the inverse of the product of the image
function and the general solution is not sought, L[f (t)] is used as an operator on the Laplace
inverse transform process to establish the Laplace transform general theoretical solution,
provided that f (t) satisfies the basic requirements of the Laplace transform.

According to the “convolution theorem for Laplace inversions” [3], we have

u(x, t) = L−1[u(x, s)] = L−1
[

L( f (t)) exp
(
−

√
s
a x

)]
,

= L−1[L( f (t))] ∗ L−1
[
exp

(
−

√
s
a x

)]
= f (t) ∗ L−1

[
exp

(
−

√
s
a x

)]
,

(11)

where ∗ represents the convolution operator.
The inverse Laplace transform function of the complementary error function

“erfc(u)” [3] is

L−1
[

1
s

exp
(
−

√
s
a

x
)]

=
2√
π

∫ +∞

x
2
√

at

e−ζ2
dζ = er f c

(
x

2
√

at

)
, (12)

The left-hand side L−1
[

1
s exp

(
−

√
s
a x

)]
of Equation (12) and the right-hand side

L−1
[
exp

(
−

√
s
a x

)]
of Equation (11) have a differential relationship in the context of the

inverse Laplace transform. For Equation (11), according to the “differential property” of
the inverse Laplace transform [3], we have

L−1
[
exp

(
−

√
s
a x

)]
= L−1

{
s
[

1
s exp

(
−

√
s
a x

)]}
= d

dt

{
L−1

[
1
s exp

(
−

√
s
a x

)]}
,

(13)

Substituting Equation (12) into (13) yields

L−1
[

exp
(
−

√
s
a

x
)]

=
d
dt

[
er f c

(
x

2
√

at

)]
(14)
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Substituting Equation (14) into (11) yields

u(x, t) = L−1[u(x, s)]

= L−1[L( f (t))] ∗ L−1[exp(−
√

s
a · x)]

= f (t) ∗ d
dt [er f c( x

2
√

at
)],

(15)

The “convolution differentiation” [3] property of the Laplace transform implies that

f (t) ∗ d
dt

[
er f c

(
x

2
√

at

)]
+ f (t)

[
er f c( x

2
√

at
)
∣∣∣
t=0

]
= er f c

(
x

2
√

at

)
∗ d[ f (t)]

dt + f (t)|t=0er f c
(

x
2
√

at

)
,

(16)

Because er f c
(

x
2
√

at

)∣∣∣
t=0

= 0, through Equations (15) and (16), after rearrangement,
we have

u(x, t) = f (t) ∗ d
dt

[
er f c

(
x

2
√

at

)]
,

= f (t)|t=0er f c
(

x
2
√

at

)
+ er f c

(
x

2
√

at

)
∗ d[ f (t)]

dt ,
(17)

Note that u(x, t) = T(x, t) − T(x, 0) and T(x, 0) = 0. According to the commutative
property of convolution, the above Equation can be written in the following integral form:

T(x, t) = f (t)|t=0er f c
(

x
2
√

at

)
+

∫ t

0

d[ f (t)]
dt

er f c

(
x

2
√

a(t − τ)

)
dτ. (18)

Equation (18) represents a model solution obtained under the condition that f (t) is
not directly involved in the transformation process. The solution contains f (t). It is worth
noting that T(x, 0) = 0, but f (0) is not necessarily equal to 0. In practical applications, it
is necessary to substitute the known f (t) and further expand the Equation to obtain the
solution to the actual problem. Therefore, for any given f (t), Equation (18) represents the
general theoretical solution of the model.

4. Solution for Boundary Functions of Commonly Used Function Types

Based on the general theoretical solution, this paper provides solutions for boundary
functions of commonly used function types for ease of reference in practical applications.

In engineering and technology, commonly used function types include constant func-
tions, polynomial functions, and elementary functions.

4.1. Constant Function

A constant function indicates that f (t) is a constant, and f (t) = ΔT0. The physical signif-
icance of this condition is that as t approaches 0+, the boundary temperature undergoes an
instantaneous change of ΔT0 and remains constant after that. This constitutes the classical
one-dimensional heat conduction model.

In this case, based on Equation (18), we have d[f (t)]/dt = d[ΔT0]/dt = 0 and f (0) = ΔT0,
which leads to

T(x, t) = ΔT0er f c
(

x
2
√

at

)
. (19)

Equation (19) is the solution to the classical model [1–3].

4.2. Linear Interpolation Function

For the one-dimensional heat conduction problem with Dirichlet boundary conditions,
although many variables vary continuously with time, actual observation processes are
often discrete. For example, boundary temperature measurement data, even self-recorded
test data, are mostly collected at a certain time interval from the previous test, so it is
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necessary to make extractions. Therefore, to express the variations in variables over time
based on discrete measured data, piecewise function types are commonly used [24].

When a variable has a complex variation process, it is common to discretize f (t) based
on the measured data using methods such as linear interpolation, including the Lagrange
linear interpolation equation.

f (t) = ΔT0 +
n

∑
i=2

[ f (ti)− f (ti−1)]
t − ti−1

ti − ti−1
· δ(t − ti−1). (20)

where δ(t − ti−1) is the Heaviside function and has the following properties [25]: when
t < ti−1, δ(t − ti−1) = 0, and when t ≥ ti−1, δ(t − ti−1) = 1.

Substituting Equation (20) into (18), considering the properties of the δ(t − ti−1)
function, we have

T(x, t) = ΔT0er f c
(

x
2
√

at

)
+

n

∑
i=2

f (ti)− f (ti−1)

ti − ti−1
·
∫ t

ti−1

er f c
(

x
2
√

at

)
dt. (21)

Note that ΔT0 represents the interval during which the temperature remains constant
starting from t→0+, and this constant period is from t1 to t0 (Figure 3). Therefore, the
summation part in Equation (20) is for i = 2 − n. When establishing an interpolation
equation for f (t) based on the definition of ΔT0, it is important to consider the expression of
each time interval in the function [26].

Figure 3. Discretization of boundary function f (t).

4.3. Step Function

For the boundary temperature f (ti, ti+1) in the segment between ti − ti+1(i ≥ 2), the
average value of the temperature [f (ti) + f (ti+1)]/2 in the time period is used, or the increase
f (ti+1) − f (ti) in the time period after t1 is used. The step function of f (t) can be written as

f (t) = ΔT0 +
n

∑
i=2

[( f (ti)− f (ti−1)] · δ(t − ti−1) (t > ti−1, i ∈ N∗), (22)

Substituting Equation (22) into (18), considering the properties of δ(t − ti−1) and
f (0)= ΔT0, we have

T(x, t) = ΔT0er f c
(

x
2
√

at

)
+

n

∑
i=2

[ f (ti)− f (ti−1)]er f c

(
x

2
√

a(t − ti−1)

)
. (23)

4.4. Exponential Function

When there is a Newtonian cooling boundary [27,28], i.e., f (t) is an exponential func-
tion (λ > 0, and eλt does not satisfy the requirements of the Laplace transform existence
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theorem, which will not be discussed here), substituting f (t) = ΔT0 e−λt into Equation (18)
yields [20–22]

T(x, t) = ΔT0er f c
(

x
2
√

at

)
− λΔT0

∫ t

0
e−λτer f c

(
x

2
√

a(t − τ)

)
dτ. (24)

4.5. Trigonometric Function

When the boundary function f (t) is a trigonometric function (take the sine function as
an example), substituting f (t) = ΔT0sin(t) into Equation (18) yields

T(x, t) = ΔT0

∫ t

0
cos(τ)er f c

(
x

2
√

a(t − τ)

)
dτ. (25)

When the boundary function f (t) is a cosine function, substituting f (t) = ΔT0cos(t) into
Equation (18) yields

T(x, t) = ΔT0er f c
(

x
2
√

at

)
− ΔT0

∫ t

0
sin(τ)er f c

(
x

2
√

a(t − τ)

)
dτ. (26)

Based on the above descriptions, once the boundary function f (t) is determined, it is
convenient and efficient to substitute f (t) into the general solution of the theory to obtain
the corresponding solution to the specific problem. The provided solutions for different
function types and their corresponding interpretations facilitate practical references and
applications. Of course, after the specific f (t) is determined, stepwise integration can be
employed to expand the aforementioned solution further. Additionally, it is possible to
establish numerical algorithms for analytical solutions based on the obtained solutions [23],
which will be beneficial for frequent applications in practical scenarios.

5. Application of the Solution

5.1. Specific Solutions and Their Mathematical Significance

Discussing the model’s specific solution and its mathematical significance helps to not
only further understand the rationality of its assumptions but also verify the correctness of
its solution.

In the following, based on Formula (21) of the model solution whose boundary func-
tion is Lagrange linear interpolation, taking the application of i = 2 as an example, the
specific solution and its mathematical and physical significance are discussed.

When i = 2, Equation (21) is transformed into

T(x, t) = ΔT0er f c
(

x
2
√

at

)
+ λ

∫ t

t1

er f c
(

x
2
√

at

)
dt. (27)

where λ = (f 2 − f 1)/(t2 − t1), corresponding to the slope of the boundary temperature
change during the period of t2 − t1.

5.1.1. When λ = 0

When λ = 0, Equation (27) is transformed into

T(x, t) = ΔT0er f c
(

x
2
√

at

)
. (28)

Equation (28) shows the solution of the classical model. Therefore, the classical model
is a special solution of Equation (27).
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5.1.2. When ΔT0 = 0

When ΔT0 = 0, Equation (27) is transformed into

T(x, t) = λ
∫ t

t1

er f c
(

x
2
√

at

)
dt. (29)

The physical meaning of Equation (29) is that if the initial temperature of the tempera-
ture field is consistent with the boundary temperature, the boundary temperature remains
unchanged. If the temperature of the temperature field changes at a rate of λ because of
other factors (such as noninsulating surface materials with vertical heat exchange), the
thermal motion within the material is still affected by the boundary even if the boundary
temperature remains constant.

5.1.3. When x→∞

Because er f c(z)|z→∞ = 0, then T(x, t)|x→∞ = 0.
The boundary temperature has no effect on ∞, which is consistent with the general

law of heat conduction problems.

5.2. Methods for Calculating Model Parameters

According to the model’s interpretation, one of the most important objectives of
studying such problems is to exploit the temperature-based dynamic monitoring data of
the temperature field to calculate the model parameters. Because the solution contains
an integral term, to facilitate the application of the solution, it is convenient to establish
a method for the inversion of model parameters by using temperature-field dynamic
monitoring data based on the variation in temperature T(x, t) with time T(x, t) − t, or the
variation in the temperature change rate at a point with time T(x, t)/ t − t [27–35].

Then, based on the model solution (21) with the boundary function as Lagrange linear
interpolation, taking the instance of i = 2 as an example, the method for establishing and
applying the finite-difference approximation ∂T(x, t)/∂t − t is demonstrated to estimate
the model parameter “a”.

The main methods for calculating the model parameter a with the measured curves of
the variables over time are the inflection point and the curve fitting methods.

5.2.1. The Inflection Point Method

The inflection point method solves parameter a by plotting the inflection points on the
curve based on actual measured data.

From Equation (24), taking the derivative with respect to t, the temperature variation
rate at a distance x from the boundary, denoted as ϕ(x, t) = ∂T(x, t)/∂t, is represented as

ϕ(x, t) = ΔT0 · 2−3/2

2
√

πa
exp

(
x2

4at

)
+

n

∑
i=2

fi − fi−1

ti − ti−1
er f c

(
x

2
√

a(t − ti−1)

)
, (30)

When n = 2, Equation (30) can be written as

ϕ(x, t) = ΔT0
t−3/2

2
√

πa
exp

(
x2

4at

)
+ λer f c

(
x

2
√

at

)
. (31)

In the Equation, λ = (f 2 − f 1)/(t2 − t1), where λ represents the slope of the boundary
temperature change in the time interval of t2 − t1.

To further differentiate Equation (31) with respect to t, we have

∂ϕ(x, t)
∂t

=
1

2
√

πat5
e−

x2
4at

[
ΔT0

(
−3

2
+

x2

4at

)
+ λt

]
(32)
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At the inflection point of the curve ∂ϕ(x, t)/∂t − t, the right side of Equation (32) is
equal to zero. Let tg be the time at the inflection point. By solving the Equation inside the
square brackets on the right side, two roots can be obtained, among which the one with
reasonable mathematical and physical significance is [20]:

tg =
ΔT0

2λ

⎡⎣3
2
−

√(
3
2

)2
− λx2

aΔT0

⎤⎦
.

(33)

Based on Equation (33), the model parameter a can be directly obtained from the
inflection point on the measured curve of x with respect to t (at this point, ΔT0, λ, and x are
all known):

a = x2/[2tg(3 − 2λtg/ΔT0)] (34)

When λ = 0, according to Equation (34), we have

tg = x2/6a λ = 0. (35)

Equation (32) is also the calculation formula for finding the model parameter a for the
classical heat conduction model by using the inflection point of the curve ϕ(x, t) − t when
the boundary temperature changes instantaneously by ΔT0 from the initial temperature
and remains constant [1–3].

5.2.2. The Curve Fitting Method

When ΔT0 can be maintained long enough, the temperature field formed by ΔT0 at
point x changes as indicated by Equation (19).

For the measurement point at a distance x from the boundary (x is a definite value),
T(x, t) at moment t is calculated according to Equation (19), from which a family of
T(x, t) − t theoretical curves corresponding to different values of a is produced; from
the measured temperature T(x, t) at the measurement point, the real curve of T(x, t) − t can
be drawn.

When the value of a for the actual material is equal to that for one of the curves in the
family of theoretical curves T(x, t) − t, the measured curve T(x, t) − t and the same a-value
of the theoretical curve should have the same form and completely overlap; according to
this principle, through the above-measured curve and the theoretical curve family of the
appropriate line, the a-value of the aquifer can be determined.

Similarly, the line fitting method to calculate the a-value based on the temperature
change rate curve can also be given, i.e., ϕ(x, t) − t. The line fitting method to calculate the
a-value based on the T(x, t) − t curve, which is relatively more direct and convenient.

Under different boundary conditions, the calculation method differs. Specifically,
under a constant boundary temperature, λ = 0, the a-value can be calculated based on the
T(x, t) − t curve by matching; under the variable boundary temperature condition, λ �=0,
the ϕ(x, t) − t curve inflection point can be used to calculate the a-value. Of course, under
the constant temperature boundary condition with λ = 0, the ϕ(x, t) − t curve inflection
point can also be used to calculate the a-value based on Equation (29).

5.3. The Case Study

In the case study, a silty mudstone core drilled by a ground source heat pump in Hefei,
Anhui Province, was processed into a test piece with d = 3.0 m/b = 1.5 m/c = 0.3 m (see
Figure 1) and conduct protective and thermal insulation treatment on the test piece referring
to the standard “Thermal insulation-determination of steady-state thermal resistance and
related properties-guarded hot plate apparatus (GB10294)”. For the test, the “steady-
state method” was adopted, and the temperature measurement point was set 0.2~0.5 m
away from the steel pipe in the middle of the test piece to test the temperature of the test
piece continuously.
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5.3.1. Calculation Example of the Variable-Temperature-Boundary Inflection Point Method

In a continuous 2D experiment, the initial temperature of the specimen was 18.06 ◦C.
In the initial stage of the experiment, hot water at 36 ◦C was rapidly injected into the steel
pipe, and then the water temperature was slowly decreased at an approximately constant
rate using a resistance heater. At the end of the experiment, the water temperature reached
35.5 ◦C. Thus, in the experiment, ΔT0 was 17.94 ◦C and λ was −0.25 ◦C/d.

In the test, considering the influence of size, in the material with a length of 3.0 m,
temperature measurements were recorded 0.5 m away from the heating device. The results
are presented in Table 1. Note that the first two hours of the experiment have been excluded
because the temperature readings in this period were not sensitive enough.

Table 1. Temperature measurements at x = 0.5 m with variable temperature boundary.

t/h 3 4 5 6 8 10 12 16 20 24 36 48

T(x,t)/◦C 17.96 17.97 18.03 18.14 18.35 18.53 18.7 18.98 19.24 19.49 20.17 20.81
ϕ(x,t)/(◦C/h) 0.007 0.010 0.060 0.110 0.105 0.090 0.085 0.070 0.065 0.063 0.057 0.053

As shown in Figure 4, at the inflection point on the curve of ϕ(x, t) − t, tg = 6.3 h.
According to Equation (28), the value of a is determined to be 1.85 × 10−6 m2/s. In the
process of determining the inflection point from the measured temperature, this paper
uses the forward-interpolation method based on the measured temperature to find the
temperature change velocity ϕ(x, t), as listed in Table 1. According to the excerpting process
of 1 h, the inflection point appears at around 6.3 h; if the calculation accuracy is not high
enough, the encryption excerpt can be made near the inflection point. Additionally, using
forward or backward interpolation to find the temperature change velocity ϕ(x, t) also has
some influence on the determination of the inflection point time; however, this influence
can be effectively avoided by employing multiple encryptions [36].

Figure 4. The inflection point method for finding a.

5.3.2. Calculation Example of Constant Temperature Boundary

In another continuous 2D test, the initial temperature of the specimen was 18.00 ◦C.
At the initial stage of the test, hot water at 36 ◦C was rapidly injected into the steel pipe,
and then the water temperature was kept approximately constant through the resistance
heater until the end of the test when the water temperature reached 36.0 ◦C. The test data
under this condition are presented in Table 2.
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Table 2. Temperature measurements at x = 0.5 m with constant temperature boundary.

t/h 2 3 4 6 8 10 12 16 20 24 36 48

T(x,t)/◦C 22.1 23.85 25.09 26.83 27.94 28.69 29.23 30.16 30.75 31.16 32 32.58

In the experiment, ΔT0 was 18 ◦C and λ was 0 ◦C/d.
Figure 5 shows that the actual measured T(x, t) point is located between the curve of

a = 0.16 − 0.18 m2/d, and the value of a for the test material is approximately 0.17 m2/d,
which is 1.98 × 10−6 m2/s.

Figure 5. T(x,t) − t curve fitting method for a.

The results obtained by the inflection point method and the wiring method are in
general agreement with those of [22], which found a result of 1.94 × 10−6 m2/s.

In the case study, in the calculation using the inflection point method, when drawing
the graph, determining the time tg at which the inflection point appears has a greater
impact on the calculation of the a-value, and if the measurement time density interval of
the temperature in the experiment is large, it may lead to a large error in the calculation of
the a-value due to the inaccuracy of the determined tg. It is worth noting that in the existing
literature, the ϕ(x, t) − t inflection point method is mostly used to find the a-value, and the
curve fitting method is rarely studied. The curve fitting method, which can apply all the
test data to the curve fitting process, requires the prior establishment of a theoretical curve
family, and the workload is relatively large. Additionally, the influence of manual human
judgment in the curve-fitting process is obvious; the self-applicable curve-fitting method
can be adopted to avoid this influence effectively [36]. Alternatively, it is also possible to
draw on some computational methods [37,38] or numerical algorithms [39] for building
the solution to facilitate application.

5.3.3. Application in Engineering

For this work to have meaning, the solution must allow its application in engineering.
The experimental method we proposed can be used to determine the thermal diffusivity.
For example, in the design of a ground-source heat pump, due to the difficulty and high cost
of testing the thermal physical parameters of the formation in the field, rock samples can
be selected at the engineering site, and the steady-state method is used. Then the inflection
point method and the curve fitting method are used to calculate thermal diffusivity or
thermal conductivity of the actual drill core samples.

The steady-state method is to establish a stable temperature distribution inside the
material, measure the temperature gradient and heat flux density inside the material, and
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then obtain the thermal conductivity of the measured material. The thermal diffusivity or
thermal conductivity coefficient a is calculated according to the “steady-state method test”;
generally, the boundary temperature f (t) needs to remain stable during the test. However,
in the actual test process, it is difficult to keep f (t) unchanged due to the long test time of the
“steady-state method”. The calculation method established in this paper can be effectively
applied to the actual situation where f (t) has a certain range of slow change in the test.

6. Conclusions

The following conclusions were obtained in this paper by proposing a Laplace trans-
form shortcut solution method for a one-dimensional heat conduction model with Dirichlet
boundary conditions:

(1) For the one-dimensional heat conduction model with the Dirichlet boundary function
f (t), according to the differential properties of the Laplace transform and the convolu-
tion theorem, a general theoretical solution can be obtained as a product of erfc(t) and
f (0), as well as erfc(t) and f (t). The general theoretical solution is derived for this type
of model.

(2) By substituting the boundary function f (t) into the general theoretical solution, the
solution to practical problems can be obtained quickly. This shortcut solution method
does not directly involve the transformation of f (t) and does not require a complex
and cumbersome Laplace transform process.

(3) With the temperature-based dynamic monitoring data and the time variation curve of
the temperature change rate ϕ(x, t) − t, the model parameter “a” can be determined
based on the fitting between the measured curve and the theoretical curve.

(4) When calculating the temperature change rate ϕ(x, t) based on the measured tempera-
ture, using forward or backward interpolation has a certain influence on the results;
when determining the time of the inflection point based on the self-recorded data, it is
advisable to appropriately encrypt the data extraction time near the inflection point
to avoid this influence.

Note that although the image function of f (t) with respect to the Laplace transform and
the inverse function of the specific solution L[f (t)]exp(−√

s/a · x) are not directly obtained
in the solving process, they are essentially involved in the Laplace transform process [40].
Therefore, f (t) must satisfy the basic requirements of the Laplace transform; it should be
piecewise continuous on any interval for t ≥ 0 and have finite growth as t→∞ [3,41]. Most
functions in engineering and technology satisfy this requirement.

In this paper, the Laplace transform shortcut solution to a one-dimensional heat
transfer conduction model is presented. In engineering applications, the calculation of
thermophysical parameters (i.e., thermal diffusivities or thermal conductivity coefficients
in the model) of the test materials based on the methodology of this paper by using data
from dynamic monitoring of the temperature field is one of the important purposes of
the study of such problems. Thermal diffusivity is crucial to determine the dimension
of the systems in civil engineering and initial investment. Considering the assumptions
and the parameters that are used in deriving the analytical solution, and in order to use
the analytical solution in this paper to determine all model parameters accurately, it is
necessary to propose a more detailed field and indoor experimental approach to determine
and measure all the physical parameters with precision. This is for further research.
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Nomenclature

a thermal diffusivity, m2/s
f boundary temperature, ◦C
L Laplace transform operator
L−1 inverse Laplace transform operator
u image function for Laplace transform
s Laplace operator
erfc(u) the complementary error function
δ(t − ti−1) Heaviside function
t time, d
ϕ temperature variation rate of the calculation point, ◦C/h
λ boundary temperature variation rate, ◦C/d
tg appearance of inflection point, h
T temperature of calculation point, ◦C
ΔT0 instantaneous change in boundary temperature, ◦C
x distance of the calculation point from the boundary, m
∗ convolution operator
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Abstract: In this paper, a class of nonlinear fractional differential equations with periodic boundary
condition is investigated. Although the nonlinearity of the equation and the Green’s function are sign-
changing, the results of the existence and nonexistence of positive solutions are obtained by using the
Schaefer’s fixed-point theorem. Finally, two examples are given to illustrate the main results.
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1. Introduction

Fractional differential equations (FDEs) have attracted great interests in the past sev-
eral decades as FDEs are widely used in many fields, see [1–5]. In recent years, many
papers have investigated the existence, multiplicity and non-existence of solutions for
initial value problems (IVPs) or boundary value problems (BVPs) of various classes of
FDEs (conformable FDEs [6], impulsive FDEs [7], coupled system of FDEs [8–10], hy-
brid FDEs [11–13], fractional relaxation DEs [14], variable-order FDEs [15]); also see the
references therein.

BVPs with positive solutions have played a very important role in the study of mathe-
matical physics problems; see [16–19]. There are some very recent interesting results on
this topic; see [16,20–25], and the references therein. Bai and Lü [26] studied the existence
of positive solutions of the BVP

Dα
0+u(t) + f (t, u(t)) = 0, t ∈ (0, 1), (1)

u(0) = u(1) = 0, (2)

where 1 < α ≤ 2, Dα
0+ is the Riemann–Liouville fractional differentiation, f : [0, 1]× [0, ∞) →

[0, ∞) is a continuous function, and u : [0, 1] → [0,+∞) is the positive solution of (1) and (2).
By using the techniques of fixed-point theorems, they obtained some existence results
under the conditions that the nonlinearity f and the corresponding Green’s function are
non-negative. Li et al. [27] considered a class of FDEs with four point boundary condition.
By means of the Avery-Peterson theorem, they derived the existence result of positive
solutions based on the assumption that the nonlinearity is non-negative.

To the best of our knowledge, in most of the existing studies found in the literature,
the non-negative conditions of the nonlinearity or the Green’s function are fundamental to
obtaining the positive solutions [28]. Hence, a natural question is what would happen if
the nonlinearity or the Green’s function is sign-changing. Several papers have considered
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the positive solutions for BVPs with sign-changing nonlinearity and sign-changing Green’s
function [28–34]. Ma [29] studied the BVP with sign-changing Green’s function:

u′′(t) + a(t)u(t) = λb(t) f (u(t)), t ∈ (0, T), (3)

u(0) = u(T), u′(0) = u′(T), (4)

f , a and b are given functions, and λ is a parameter. Some suitable assumptions of f , a and
b are imposed, wherein they obtained the existence and nonexistence of positive solutions
for the above problem.

Motivated by the above works, this paper considers the periodic BVP with sign-
changing nonlinearity and Green’s function:

(CDα
0+u)(t)− Mu(t)− λg(t) f (u(t)) = 0, t ∈ (0, 1), (5)

u(0) = u(1), u′(0) = u′(1), (6)

where 1 < α < 2, CDα
0+ is the Caputo fractional derivative (FD), M > 0 is a constant, λ is a

parameter and g : [0, 1] → [0, ∞) is a continuous function, f : [0, ∞) → R is a continuous
function and f (0) > 0. In [3] (Equation (9.37)), Podlubny pointed out, with α = 1.0315,
the FDE of (5) and (6) is good at depicting the model of a re-heating furnace. The most
remarkable feature of the paper is its capability to obtain the results of the existence and
nonexistence of positive solutions under the conditions that the nonlinearity f and the
Green’s function are sign-changing.

The paper is organized as follows. In Section 2, some notations and definitions of
fractional calculus are introduced, and a lemma is proven. In Section 3, some useful criteria
of existence and nonexistence for the BVPs of (5) and (6) are established. In Section 4, two
examples are presented to illustrate the main results. Finally, a conclusion of the paper
is presented.

2. Preliminaries

Definition 1 ([2] (p. 69, Equation (2.1.1)). Let [a, b] be a finite interval on the real axis R. The
Riemann–Liouville fractional integral Iα

a+ f of order α is defined by

(Iα
a+ f )(x) =

1
Γ(α)

∫ x

a
(x − t)α−1 f (t)dt, x > a; α > 0. (7)

Definition 2 ([2] (p. 70, Equation (2.1.5))). The Riemann–Liouville fractional derivative Dα
a+y

of order α is defined by

(Dα
a+y)(x) =

( d
dx

)n
In−α
a+ y(x) =

1
Γ(n − α)

( d
dx

)n ∫ x

a
(x − t)n−α−1y(t)dt, n = [α] + 1; x > a, (8)

where [α] means the integral part of α.

Definition 3 ([2] (pp. 90–91, Equation (2.4.1))). The Caputo fractional derivative CDα
a+y(x) of

order α on [a, b] is defined via the above Riemann–Liouville fractional derivatives by

(CDα
a+y)(x) =

(
Dα

a+

[
y(t)−

n−1

∑
k=0

y(k)(a)
k!

(t − a)k
])

(x), (9)

where n = [α] + 1 for α /∈ N0; n = α for α ∈ N0, N0 = {0, 1, · · · }

Lemma 1 ([2] (p. 230)). The Cauchy problem

(CDα
a+y)(x)− My(x) = f (x) (a < x < b; n − 1 < α < n; n ∈ N; M ∈ R; f (x) ∈ C[a, b]), (10)

y(k)(a) = bk (bk ∈ R; k = 0, 1, · · · , n − 1), (11)
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has a unique solution

y(x) =
n−1

∑
j=0

bj(x − a)jEα,j+1(M(x − a)α) +
∫ x

a
(x − t)α−1Eα,α(M(x − t)α) f (t)dt, (12)

where Eα,β(z) =
∞
∑

k=0

zk

Γ(αk+β)
is the Mittag-Leffler (ML) function.

Next, we shall prove a lemma which is very useful in proving our main results.

Lemma 2. Assume that M > 0 satisfies

(1 − Eα,1(M))2 �= 1
α

Eα,α(M)Eα,2(M) (13)

Then, the BVP

(CDα
0+u)(t)− Mu(t) = f (t), t ∈ (0, 1), 1 < α < 2, f (t) ∈ C[0, 1], (14)

u(0) = u(1), u′(0) = u′(1), (15)

has a unique solution

u(t) =
∫ 1

0
G(t, s) f (s)ds, t ∈ [0, 1], (16)

where

G(t, s) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(1−Eα,1(M))Eα,1(Mtα)+ t
α Eα,α(M)Eα,2(Mtα)

�(M)
(1 − s)α−1Eα,α(M(1 − s)α)

+
Eα,2(M)Eα,1(Mtα)+t(1−Eα,1(M))Eα,2(Mtα)

�(M)
(1 − s)α−2Eα,α−1(M(1 − s)α)

+(t − s)α−1Eα,α(M(t − s)α), s ≤ t,

(1−Eα,1(M))Eα,1(Mtα)+ t
α Eα,α(M)Eα,2(Mtα)

�(M)
(1 − s)α−1Eα,α(M(1 − s)α)

+
Eα,2(M)Eα,1(Mtα)+t(1−Eα,1(M))Eα,2(Mtα)

�(M)
(1 − s)α−2Eα,α−1(M(1 − s)α), t < s,

(17)

and
�(M) = (1 − Eα,1(M))2 − 1

α
Eα,α(M)Eα,2(M). (18)

Proof. By Lemma 1, we can obtain the solution for the problem of (14), subject to the
following initial conditions:

u(0) = b0, u′(0) = b1 (19)

is

u(t) = b0Eα,1(Mtα) + b1tEα,2(Mtα) +
∫ t

0
(t − s)α−1Eα,α(M(t − s)α) f (s)ds. (20)

Using the properties of the ML function (see p. 42 of [2]):

d
dt
(tβ−1Eα,β(Mtα)) = tβ−2Eα,β−1(Mtα), β = 2, α, (21)

d
dt
(Eα,1(Mtα)) = E2

α,1+α(Mtα) =
1
α

Eα,α(Mtα), (22)
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we have

u′(t) = b0
1
α

Eα,α(Mtα) + b1Eα,1(Mtα) +
∫ t

0
(t − s)α−2Eα,α−1(M(t − s)α) f (s)ds. (23)

From (15), (20) and (23), it implies that:

u(1) = b0 = b0Eα,1(M) + b1Eα,2(M) +
∫ 1

0
(1 − s)α−1Eα,α(M(1 − s)α) f (s)ds, (24)

u′(1) = b1 = b0
1
α

Eα,α(M) + b1Eα,1(M) +
∫ 1

0
(1 − s)α−2Eα,α−1(M(1 − s)α) f (s)ds. (25)

Since (13) holds, it implies �(M) �= 0. Thus:

u(t) =
(1−Eα,1(M))Eα,1(Mtα)+ t

α Eα,α(M)Eα,2(Mtα)
�(M)

∫ 1
0 (1 − s)α−1Eα,α(M(1 − s)α) f (s)ds

+
Eα,2(M)Eα,1(Mtα)+t(1−Eα,1(M))Eα,2(Mtα)

�(M)

∫ 1
0 (1 − s)α−2Eα,α−1(M(1 − s)α) f (s)ds

+
∫ t

0 (t − s)α−1Eα,α(M(t − s)α) f (s)ds

=
∫ 1

0 G(t, s) f (s)ds.

(26)

Remark 1. If f (·) ∈ C[0, 1], then the improper integral in Lemma 2 is:∫ 1

0
(1 − s)α−2Eα,α−1(M(1 − s)α) f (s)ds < ∞. (27)

3. Main Results

Lemma 3. Let
Eα,1(M) > Eα,2(M) + 1, Eα,1(M) >

1
α

Eα,α(M) + 1 (28)

holds. Suppose that

(i) h : R → R is a continuous function and |h(·)| ≤ N for some constant N > 0.
(ii) g : [0, 1] → [0, ∞) is a continuous function.

Then, for every λ ∈ R, the BVP

(CDα
0+u)(t)− Mu(t)− λg(t)h(u(t)) = 0, t ∈ (0, 1), (29)

u(0) = u(1), u′(0) = u′(1), (30)

has a solution uλ ∈ X, where X is the Banach space C[0, 1] with the norm ‖u‖ = max
0≤t≤1

|u(t)|.

Proof. Consider the operator Λλ : X → X defined by:

Λλu(t) = λ
∫ 1

0
G(t, s)g(s)h(u(s))ds, t ∈ [0, 1]. (31)

From Lemma 2, we can obtain and determine that the solutions of the BVPs (29) and (30)
are fixed points of Λλ. Next, we will prove that all the fixed points of Λλ are solutions of
the BVPs (29) and (30). In fact, Let u(t) = Λλu(t). Then
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u(t) = b0Eα,1(Mtα) + b1tEα,2(Mtα) +
∫ t

0
(t − s)α−1Eα,α(M(t − s)α)λg(s)h(u(s))ds, (32)

where

b0 =
(1−Eα,1(M))

∫ 1
0 (1−s)α−1Eα,α(M(1−s)α)λg(s)h(u(s))ds+Eα,2(M)

∫ 1
0 (1−s)α−2Eα,α−1(M(1−s)α)λg(s)h(u(s))ds

�(M)
, (33)

b1 =
1
α Eα,α(M)

∫ 1
0 (1−s)α−1Eα,α(M(1−s)α)λg(s)h(u(s))ds+(1−Eα,1(M))

∫ 1
0 (1−s)α−2Eα,α−1(M(1−s)α)λg(s)h(u(s))ds

�(M)
. (34)

Hence, from Lemma 1, we know that u(t) satisfies the problem of (29), subject to the
following conditions:

u(0) = b0, u′(0) = b1. (35)

Moreover, through (32)–(34), together with the properties of the ML function (21) and (22),
we can obtain u(t), which satisfies (30). Thus, u(t) is a solution of the BVPs (29) and (30).

Next, we use the Schaefer’s fixed-point theorem to consider the fixed points of Λλ.
Here, (a) we will prove that Λλ is a continuous operator. Denote {un} to be a sequence,
which satisfy un → u,

|Λλun(t)− Λλu(t)| ≤ |λ| ∫ 1
0 |G(t, s)|g(s)|h(un(s))− h(u(s))|ds

≤ |λ| ∫ 1
0

2Eα,1(M)−1
(α−1)�(M)

(
(Eα,1(M)− 1)(1 − s) + Eα,2(M)(α − 1)

)
·(1 − s)α−2Eα,α−1(M(1 − s)α)g(s)|h(un(s))− h(u(s))|ds

≤ |λ| · 2Eα,1(M)−1
(α−1)�(M)

(Eα,1(M)− 1 + Eα,2(M))

· ∫ 1
0 (1 − s)α−2Eα,α−1(M(1 − s)α)g(s)|h(un(s))− h(u(s))|ds.

(36)

From the definition of the ML function, it achieves∫ 1

0
(1 − s)α−2Eα,α−1(M(1 − s)α)ds =

∫ 1

0
(1 − s)α−2

∞

∑
k=0

Mk(1 − s)αk

Γ(αk + α − 1)
ds = Eα,α(M) (37)

is bounded. Note that h and g are both continuous, and so we obtain

‖Λλun − Λλu‖ → 0, n → ∞. (38)

Thus, Λλ is a continuous operator.
(b) We shall show that Λλ is uniformly bounded in X. For each u ∈ X,

|Λλu| ≤ |λ| ∫ 1
0 |G(t, s)|g(s)|h(u(s))|ds

≤ |λ| · (2Eα,1(M)−1)(Eα,1(M)−1+Eα,2(M))
(α−1)�(M)

‖g‖Eα,α(M)N
(39)

This implies that Λλ is uniformly bounded.
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(c) We will verify that Λλ is equicontinuous in X. For each t1, t2 ∈ [0, 1], t1 < t2:

|Λλu(t2)− Λλu(t1)|

≤ |λ ∫ 1
0 G(t2, s)g(s)h(u(s))ds − λ

∫ 1
0 G(t1, s)g(s)h(u(s))ds|

≤ |λ| (Eα,1(M)−1)(Eα,1(Mtα
2)−Eα,1(Mtα

1))+
1
α Eα,α(M)(t2Eα,2(Mtα

2)−t1Eα,2(Mtα
1))

�(M)

· ∫ 1
0 (1 − s)α−1Eα,α(M(1 − s)α)g(s)h(u(s))ds

+|λ| Eα,2(M)(Eα,1(Mtα
2)−Eα,1(Mtα

1))+(Eα,1(M)−1)(t2Eα,2(Mtα
2)−t1Eα,2(Mtα

1))
�(M)

· ∫ 1
0 (1 − s)α−2Eα,α−1(M(1 − s)α)g(s)h(u(s))ds

+|λ| ∫ t2
0 (t2 − s)α−1Eα,α(M(t2 − s)α)g(s)h(u(s))ds

−|λ| ∫ t1
0 (t1 − s)α−1Eα,α(M(t1 − s)α)g(s)h(u(s))ds.

(40)

Note that ∫ t2
0 (t2 − s)α−1Eα,α(M(t2 − s)α)ds − ∫ t1

0 (t1 − s)α−1Eα,α(M(t1 − s)α)ds

=
∫ t2

0

∞
∑

k=0

Mk(t2−s)αk+α−1

Γ(αk+α)
ds − ∫ t1

0

∞
∑

k=0

Mk(t1−s)αk+α−1

Γ(αk+α)
ds

=
∞
∑

k=0

Mk

Γ(αk+α)

∫ t2
0 (t2 − s)αk+α−1ds − ∞

∑
k=0

Mk

Γ(αk+α)

∫ t1
0 (t1 − s)αk+α−1ds

=
∞
∑

k=0

Mk

Γ(αk+α+1) tαk+α
2 − ∞

∑
k=0

Mk

Γ(αk+α+1) tαk+α
1

= tα
2 Eα,α+1(Mtα

2)− tα
1 Eα,α+1(Mtα

1).

(41)

Therefore, the right hand side of (40) → 0 as t1 → t2. Then, Λλ is equicontinuous in X.
Due to (a), (b), (c) and the Arzela–Ascoli theorem, we can determine that Λλ is completely
continuous.

(d) It remains to show that the set Ω = {u ∈ X|u = μΛλu, 0 < μ < 1} is bounded.
Let u ∈ Ω. Then, u = μΛλu, 0 < μ < 1. For each t ∈ [0, 1], we have

|u(t)| = |μΛλu(t)| ≤ |λ| (2Eα,1(M)− 1)(Eα,1(M)− 1 + Eα,2(M))

(α − 1)�(M)
‖g‖Eα,α(M)N. (42)

Hence, Ω is bounded. Through the Schaefer’s fixed-point theorem, we can discern that Λλ

has a fixed point.

Remark 2. The function G(·, ·) defined by (17) may change sign on (0, 1)× (0, 1).

In fact, for s ≤ t:

G(t, s) =
(1−Eα,1(M))Eα,1(Mtα)+ t

α Eα,α(M)Eα,2(Mtα)
�(M)

(1 − s)α−1Eα,α(M(1 − s)α)

+
Eα,2(M)Eα,1(Mtα)+t(1−Eα,1(M))Eα,2(Mtα)

�(M)
(1 − s)α−2Eα,α−1(M(1 − s)α)

+(t − s)α−1Eα,α(M(t − s)α).
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Note that

Eα,α−1(M(1 − s)α) =
∞

∑
k=0

Mk(1 − s)αk

Γ(αk + α − 1)
≥ (α − 1)

∞

∑
k=0

Mk(1 − s)αk

Γ(αk + α)
= (α − 1)Eα,α(M(1 − s)α), (43)

we have

G(0, 0) ≤ (1 − Eα,1(M)) + (α − 1)Eα,2(M)

(α − 1)�(M)
Eα,α−1(M) ≤ 0, (44)

G(1, s) =
(1−Eα,1(M))Eα,1(M)+ 1

α Eα,α(M)Eα,2(M)
�(M)

(1 − s)α−1Eα,α(M(1 − s)α)

+
Eα,2(M)Eα,1(M)+(1−Eα,1(M))Eα,2(M)

�(M)
(1 − s)α−2Eα,α−1(M(1 − s)α)

+(1 − s)α−1Eα,α(M(1 − s)α)

≥ (1−Eα,1(M))(1−s)+(α−1)Eα,2(M)
�(M)

(1 − s)α−2Eα,α(M(1 − s)α).

(45)

Therefore, G(1, s) ≥ 0 for s ≥ 1 − (α−1)Eα,2(M)
Eα,1(M)−1 . Thus, we can determine that G(t, s) change

sign on (0, 1)× (0, 1).
In the following, we denote G+(t, s) = max{G(t, s), 0}, t, s ∈ [0, 1] as the positive parts

of G, and denote G−(t, s) = max{−G(t, s), 0}, t, s ∈ [0, 1] as the negative parts of G, where
G is Green’s function of the BVPs (5) and (6).

Theorem 1. Let (28) hold. Assume that g satisfies
(A1) min{∫ 1

0 G−(t, s)g(s)ds | t ∈ (0, 1)} > 0;
(A2) There exists ε > 0, such that∫ 1

0
(G+(t, s)− (1 + ε)G−(t, s))g(s)ds > 0, t ∈ [0, 1].

Hence, there exists a constant λ0 > 0, for λ ∈ (0, λ0), and the BVPs (5)–(6) have a positive
solution.

Proof. Let K > 0 and define h : R → R by

h(u) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

f (0), u ≤ 0,

f (u), 0 < u ≤ K,

f (K), K < u.

(46)

Then, |h(u)| ≤ N = max
0≤u≤K

f (u) is bounded. Through Lemma 3, the problem (29) and (30)

has a solution uλ ∈ X.
Let κ > 0. Then, by the continuity of h, we can deduce that there exists a σ ∈ (0, K),

and
h(0)− h(0)κ < h(u) < h(0) + h(0)κ, |u| < σ. (47)

From (39),

|uλ(t)| ≤ |λ| ∫ 1
0 |G(t, s)|g(s)|h(uλ(s))|ds

≤ |λ| · (2Eα,1(M)−1)(Eα,1(M)−1+Eα,2(M))
(α−1)�(M)

‖g‖Eα,α(M)N,
(48)
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it follows that there exists

λ0 =
(α − 1)�(M)σ

(2Eα,1(M)− 1)(Eα,1(M)− 1 + Eα,2(M))‖g‖Eα,α(M)N
> 0 (49)

such that for λ ∈ (0, λ0), we have ‖uλ‖ ≤ σ, and

uλ(t) = λ
∫ 1

0 G(t, s)g(s)h(uλ(s))ds

= λ
∫ 1

0 (G
+(t, s)− G−(t, s))g(s)h(uλ(s))ds

> λ
∫ 1

0 G+(t, s)g(s)(h(0)− h(0)κ)ds − λ
∫ 1

0 G−(t, s)g(s)(h(0) + h(0)κ)ds

= λh(0)(1 −κ)
∫ 1

0 (G
+(t, s)g(s)− 1+κ

1−κ
G−(t, s)g(s))ds

= λh(0)(1 −κ)
∫ 1

0 (G
+(t, s)g(s)− (1 + ε)G−(t, s)g(s))ds

+λh(0)(1 −κ)
∫ 1

0 ((1 + ε)G−(t, s)g(s)− 1+κ
1−κ

G−(t, s)g(s))ds

> λh(0)(1 −κ)
∫ 1

0 G−(t, s)g(s)ds
(
(1 + ε)− 1+κ

1−κ

)
> 0.

(50)

Consequently, 0 < uλ ≤ K, for t ∈ [0, 1]. Therefore, the BVPs (5) and (6) have a positive
solution.

Denote

β(t) =
∫ 1

0
G(t, s)g(s)ds, β1(t) =

∫ 1

0
G(t, s)g(s)β(s)ds, t ∈ [0, 1]. (51)

Theorem 2. Let (28) and (A1) hold. Furthermore, assume f is bounded and f is C2 in some
neighborhood of 0, and:

(A3) There exits t0 ∈ [0, 1] such that β(t0) = 0.
(A4) β1(t0) f ′(0) < 0.
Then, the BVPs (5) and (6) have no positive solutions for λ → 0+.

Proof. As f is bounded, the BVPs (5) and (6) have a solution uλ(t) via Lemma 3. Let
uλ(t) = λ�(t). Then, �(t) satisfies

(CDα
0+�)(t)− M�(t)− g(t) f (λ�(t)) = 0, t ∈ (0, 1), (52)

�(0) = �(1), �′(0) = �′(1), (53)

and �(t) =
∫ 1

0 G(t, s)g(s) f (λ�(s))ds. Through the Lebesgue dominated convergence theo-
rem, it implies that

�(t) → f (0)β(t), λ → 0+. (54)

First, we consider that there exists a constant t∗ ∈ [0, 1], and β(t∗) < 0. Thus,
uλ(t∗) = λ�(t∗) < 0, λ → 0+.
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Next, we consider β(t) ≥ 0, t ∈ [0, 1]. Since (A3), (A4) and f are continuous in 0,
we have

�(t0) =
∫ 1

0 G(t0, s)g(s) f (λ�(s))ds

=
∫ 1

0 G(t0, s)g(s)
(

f (0) + λ f ′(0)�(s) + λ2 f ′′(ξ)
2 �2(s)

)
ds

= f (0)β(t0) + λ f ′(0)
∫ 1

0 G(t0, s)g(s)�(s)ds + λ2 f ′′(ξ)
2

∫ 1
0 G(t0, s)g(s)�2(s)ds

= λ f ′(0)
∫ 1

0 G(t0, s)g(s)�(s)ds + λ2 f ′′(ξ)
2

∫ 1
0 G(t0, s)g(s)�2(s)ds, ξ > 0,

(55)

and it implies that

�(t0)

λ
→ f ′(0)

∫ 1

0
G(t0, s)g(s) f (0)β(s)ds = f (0) f ′(0)β1(t0) < 0, for λ → 0+. (56)

Thus, uλ(t0) = λ�(t0) < 0, λ → 0+.
Therefore, the BVPs (5) and (6) have no positive solutions for λ → 0+.

4. Examples

Example 1. Consider

(CD1.5
0+u)(t)− 2u(t)− λ(sin u(t) + 1) = 0, t ∈ (0, 1), (57)

u(0) = u(1), u′(0) = u′(1), (58)

with λ as a parameter, M = 2, α = 1.5, g(t) = 1 and f (u(t)) = sin u(t) + 1. Then, g and f are
continuous functions and g(t) > 0, t ∈ [0, 1], f (0) = 1 > 0.

Through computing, we have

E1.5,1(2) = 3.3487, E1.5,2(2) = 1.7997, E1.5,1.5(2) = 2.5483, (59)

�(2) = (1 − E1.5,1(2))2 − 2
3

E1.5,1.5(2)E1.5,2(2) = 2.4589 > 0, (60)

and
E1.5,1(2) > E1.5,2(2) + 1, E1.5,1(2) >

2
3

E1.5,1.5(2) + 1. (61)

Then, (28) and (A1) are satisfied, and

G(t, s) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(−2.3487)E1.5,1(2t1.5)+ 2t
3 ×2.5483E1.5,2(2t1.5)

2.4589 (1 − s)0.5E1.5,1.5(2(1 − s)1.5)

+
1.7997E1.5,1(2t1.5)+t(−2.3487)E1.5,2(2t1.5)

2.4589 (1 − s)−0.5E1.5,0.5(2(1 − s)1.5)

+(t − s)0.5E1.5,1.5(2(t − s)1.5), s ≤ t,

(−2.3487)E1.5,1(2t1.5)+ 2t
3 ×2.5483E1.5,2(2t1.5)

2.4589 (1 − s)0.5E1.5,1.5(2(1 − s)1.5)

+
1.7997E1.5,1(2t1.5)+t(−2.3487)E1.5,2(2t1.5)

2.4589 (1 − s)−0.5E1.5,0.5(2(1 − s)1.5), t < s.

(62)

Let
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β(t) =
∫ 1

0
G(t, s)ds = 0.743E1.5,1(2t1.5)− 1.624tE1.5,2(2t1.5) + t1.5E1.5,2.5(2t1.5), t ∈ [0, 1]. (63)

From Figure 1, we can obtain β(t) > 0. It implies that there exists ε > 0, and (A2) holds.
Thus, all conditions of Theorem 1 are satisfied.

Let K = π
2 > 0. From Theorem 1, we have

h(u) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

1, u ≤ 0,

sin u + 1, 0 < u ≤ π
2 ,

2, π
2 < u.

Then, |h(u)| ≤ N = 2. Let κ = 0.01. Through (47), we can choose σ = 0.005. Thus, there
exists a constant λ0 = 5.1× 10−5 defined by (49), and the BVPs (57) and (58) have a positive
solution for λ ∈ (0, λ0).
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Figure 1. Image of β(t) in Example 4.1.

Example 2. Consider

(CD1.5
0+u)(t)− 5u(t)− λ f (u(t)) = 0, t ∈ (0, 1), (64)

u(0) = u(1), u′(0) = u′(1), (65)

with λ as a parameter, M = 5, α = 1.5, g(t) = 1, f : [0, ∞) → R is a continuous function and
f (0) > 0.

By computing, we have

E1.5,1(5) = 12.4573, E1.5,2(5) = 4.1355, E1.5,1.5(5) = 7.2468, (66)

�(5) = (1 − E1.5,1(5))2 − 2
3

E1.5,1.5(5)E1.5,2(5) = 111.2903 > 0, (67)

and
E1.5,1(5) > E1.5,2(5) + 1, E1.5,1(5) >

2
3

E1.5,1.5(5) + 1. (68)

Then, (28) and (A1) are satisfied, and
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G(t, s) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(−11.4573)E1.5,1(5t1.5)+ 2t
3 ×7.2468E1.5,2(5t1.5)

111.2903 (1 − s)0.5E1.5,1.5(5(1 − s)1.5)

+
4.1355E1.5,1(5t1.5)+t(−11.4573)E1.5,2(5t1.5)

111.2903 (1 − s)−0.5E1.5,0.5(5(1 − s)1.5)

+(t − s)0.5E1.5,1.5(5(t − s)1.5), s ≤ t,

(−11.4573)E1.5,1(5t1.5)+ 2t
3 ×7.2468E1.5,2(5t1.5)

111.2903 (1 − s)0.5E1.5,1.5(5(1 − s)1.5)

+
4.1355E1.5,1(5t1.5)+t(−11.4573)E1.5,2(5t1.5)

111.2903 (1 − s)−0.5E1.5,0.5(5(1 − s)1.5), t < s.

(69)

From Theorem 2, it results in

β(t) =
∫ 1

0
G(t, s)ds = 0.0338E1.5,1(5t1.5)− 0.6462tE1.5,2(5t1.5) + t1.5E1.5,2.5(5t1.5), t ∈ [0, 1]. (70)

It is easy to achieve β(0) = 0.0338 and β(0.1) = −0.0052. As β(t) is continuous with
respect to t, we can conclude that there exists t0 ∈ (0, 0.1) ⊆ [0, 1], such that β(t0) = 0. Via
MATLAb, we know that t0 = 0.082333631804161. Thus, (A3) is satisfied. Figure 2 is the
visual representation of β(t). In fact, there is another t0 = 0.884554959489226 ∈ [0, 1], such
that β(t0) = 0.

Since

β1(t0) =
∫ 1

0
G(t0, s)β(s)ds, (71)

we take f (u) = − sin u + 1 if β1(t0) > 0, and take f (u) = sin u + 1 if β1(t0) < 0. Then f is
bounded and f is C2 in some neighborhood of 0. Hence, (A4) is satisfied.

Thus, all conditions of Theorem 2 are satisfied. Consequently, the BVPs (64) and (65)
have no positive solutions for λ → 0+.
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Figure 2. Image of β(t) in Example 4.2.

5. Conclusions

In this paper, the existence and nonexistence of the positive solutions of periodic
boundary conditions for FDEs are studied. The most remarkable feature of the paper is
that the main results are obtained under the conditions that the nonlinearity f and the
Green’s function are sign-changing. Some sufficient conditions are established to ensure
the existence of positive solutions for small values of λ. The paper also provides some
sufficient conditions to determine ranges of λ for which no positive solution exists. At
the foundation of this paper, one can consider the positive solutions for FDEs involving
a p-Laplacian operator, and can also conduct further research on eigenvalue problems
of FDEs.
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Abstract: In this paper, a modified high-efficiency Convolutional Neural Network (CNN) with a
novel Supervised Contrastive Learning (SCL) approach is introduced to estimate direction-of-arrival
(DOA) of multiple targets in low signal-to-noise ratio (SNR) regimes with uniform linear arrays
(ULA). The model is trained using an on-grid setting, and thus the problem is modeled as a multi-
label classification task. Simulation results demonstrate the robustness of the proposed approach
in scenarios with low SNR and a small number of snapshots. Notably, the method exhibits strong
capability in detecting the number of sources while estimating their DOAs. Furthermore, compared to
traditional CNN methods, our refined efficient CNN significantly reduces the number of parameters
by a factor of sixteen while still achieving comparable results. The effectiveness of the proposed
method is analyzed through the visualization of latent space and through the advanced theory of
feature learning.

Keywords: array signal processing; convolution neural network; direction-of-arrival estimation;
feature learning; supervised contrastive learning

MSC: 68T07; 94A12; 62R07

1. Introduction

Precise direction-of-arrival (DOA) estimation using an antenna or sensor array is
critical in various applications, such as microphone, sonar, source localization, and radar.
Numerous algorithms have been invented to tackle the DOA estimation problem, and
among them, the subspace-based estimation algorithms are well known for their capacity to
give a high-resolution estimation. These include MUSIC (Multiple SIgnal Classification), ES-
PRIT (Estimation of Signal Parameters via Rotational Invariance Techniques), Root-MUSIC
(R-MUSIC) [1–3], homotopy method [4,5], multigrid method [6,7], and multigrid-homotopy
method [8]. However, in low signal-to-noise ratio (SNR) environments, they suffer from
significant biases. To address this issue, deep learning methods have been employed.

Deep learning (DL) methods have recently emerged as promising approaches for
direction-of-arrival (DOA) estimation, offering significant advantages over traditional sub-
space and sparse methods [9,10]. For DOA estimation of multitarget in harsh environments,
multi-layer perceptron (MLP) method focuses on the robustness to array imperfections [11];
however, the model is trained at each individual SNR and fixed on a two-source target.
The deep Convolutional Neural Networks (CNN) have achieved superior on-grid accuracy
in low SNR regimes where the number of sources is unknown, but obtained a relatively
large fully connected layer size and increased the number of parameters [12]. The authors
in [13] leverage the eigenvalues from Full-row Toeplitz Matrices Reconstruction (FTMR)
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to enumerate the number of sources, but the error rate is still around 10% at −10 dB.
Another approach proposed in [14] is a grid-less method that exploits the Toeplitz property
and does not suffer from grid mismatch, but its performance is not sufficient in limited
source numeration.

This paper proposes the CNN with Supervised Contrastive Learning (CNN-SCL) for
multi-target DOA estimation in low SNR regimes, which is combined with Supervised
Contrastive Learning (SCL) for pretraining. SCL is an extension of contrastive learning [15]
in supervised task, which encourages the clustering of similar examples in the latent space
while promoting the separation of different samples [16]. In this work, SCL is introduced to
improve the performance of the model in detecting the number of sources and their DOAs,
while also enabling the use of fewer parameters compared to prior work [12]. We make
both our demo page and source-code publicly available in https://github.com/Meur3ault/
Contrastive-Learning-for-Low-SNR-DOA on 12 September 2023.

2. Signal Model and Data Setting

This study focuses on the following scenario: K far-field and narrowband signals s(t)
impinge on an array of antennas from direction angle θ = [θ1, θ2, θ3, · · · θk] with L antennas
placed uniformly linear in spacing of d. Signals received at the l th sensor is given by:

yl(t) =
K

∑
k=1

sk(t)e−j 2π
λ (l−1)dsin θk + nl(t) (1)

where 1 ≤ l ≤ L and nl(t) is the additive white noise at l th sensors. They can be
conveniently expressed in the following matrix form:

y(t) = [y1(t), y2(t), . . . , yL(t)]
T

= [a(θ1), a(θ2), . . . , a(θK)]s(t) + n(t)
= As(t) + n(t)

(2)

and where s(t), y(t), n(t) are the transmit signal vector, received signal vector, and noise
vector, respectively. Moreover, a(θ), denotes a steering vector represented as:

a(θk) =

⎡⎢⎢⎢⎢⎣
e−j 2π

λ ·0·dsin θk

e−j 2π
λ ·1·dsin θk

...
e−j 2π

λ ·(L−1)·dsin θk

⎤⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
e−jω0τ1i

e−jω0τ21

...
e−jω0τLi

⎤⎥⎥⎥⎦ (3)

that represents the phases of i th transmit signal in L sensors. The w0 is angular frequency
of transmit signal and τli is the delay of i th signal at l th sensor or antenna. The matrix A
or A(θ) is L × K array manifold matrix with steering vectors in columns. The ideal array
covariance matrix or spatial covariance is given by:

Ry = E
[
y(t)yH(t)

]
= A(θ)RsAH(θ) + σ2IL (4)

where E[•] and
(•)H denote the expectation and conjugate transpose. In addition, noises

are regarded as circularly-symmetric Gaussian white noises with the same variance inde-
pendent of each other, while noise covariance matrix σ2IL is with diagonal elements only.
The Rs = E

[
s(t)sH(t)

]
represents signal covariance matrix with zero means. Ry is the array

received signal covariance matrix or spatial covariance matrix, which is complex and Her-
mitian. In practice, the ideal matrix is unknown and usually substituted by its T-snapshots

unbiased estimation
∼
Ry = 1

T

T
∑

t=1
y(t)yH(t). Here the model is trained with both sample

∼
Ry

and ideal Ry. The input data X (generated by Ry) and
∼
X (generated by

∼
Ry) in proposed
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model CNN-SCL are L× L× 3 matrices, containing the real part, imaginary part, and phase
of the spatial covariance matrices, i.e., X:,:,1 = Re

{
Ry

}
, X:,:,2 = Im

{
Ry

}
, and X:,:,3 = ∠

{
Ry

}
.

During both the pretraining and training phases, the generated data X(i) is obtained
by selecting the discretized angles across the range {−60◦, . . . ,−1◦, 0◦, 1◦, . . . , 60◦} with
121 grids. The label set H contains the i th label H(i) for data X(i), which is sum one-hot
121 × 1 vector of multiple or single discretized angles with respect to X(i), e.g., the data X(i)

generated by {−60◦, −59◦, 60◦} angles corresponds to 121 × 1 vector H(i)=
[
1, 1, 0, . . . , 1]T .

Thus, the data set is D =
{(

X(1), H(1)

)
,
(

X(2), H(2)

)
, . . . ,

(
X(N), H(N)

)}
of size N. In this

paper, the inter-element distance d is set to half the wavelength (d = λ/2) and the number
of array elements L is 16.

3. The Proposed Model

The layout of our proposed model is depicted in Figure 1, in which the backbone is
modified upon the conventional convolutional structure [17]. The model comprises two
distinct components: a feature extractor, denoted as f, consisting of four convolutional
layers, and a classifier, denoted as g, consisting of six fully connected (FC) layers. The
first four FC layers of the classifier have their weights shared to enhance generalization
and reduce the number of parameters [18]. The proposed model is trained in two stages,
namely pretraining and training. The total number of learnable parameters in our model is
1,740,457, which is significantly less than the 28.2 million in the current CNN model [12].

 

Figure 1. The SCL-based architecture, including pretraining and training. Dropout probability is set
to 0.2 and the stride of all convolution filters is 1. The LeakyReLU applies 0.01 negative slope. The
first four fully connected layers of Classifier share the same weights. After the pretraining stage, the
pretrained feature extractor will be trained with an initialized classifier. The numbers of neurons of
fully connected layers are labeled above.

3.1. Pretraining Stage

In the pretraining phase, where SCL is applied, we built up a data set including single-

source data in both ideal data X and sampled
∼
X of T snapshot. As data augmentation

increases the amount of training data to avoid overfitting, the sampled version
∼
X are

considered as the augmentation of X , i.e., X are generated directly from Equation (4),

while
∼
X is unbiasedestimationversion. The purpose of data augmentation is to impose

consistency regularization, which encourages the model to produce the same classification
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even when inputs are perturbed [19]. The inclusion of uncertainty in
∼
X makes it a suitable

option for this purpose. After inputs are fed into the feature extractor f , the features

Z = f (X) and
∼
Z = f (

∼
X) are generated in latent space. To achieved better robustness and

stability in harsh environments, the supervised contrastive loss is introduced [16], namely
supervised contrastive learning objective, denoted by:

Lsup = −∑
i∈I

log

⎧⎨⎩ 1
|P(i)| ∑

p∈P(i)

exp
(

Z(i) · Z(p)/τ
)

∑a∈A(i) exp
(

Z(i) · Z(a)/τ
)
⎫⎬⎭ (5)

where i∈ I ≡ {1 ... 2N} is the index of an arbitrary sample in data set combined
∼
X and X ,

A(i) ≡ I\i, and τ ∈ R+ is a scalar temperature parameter. P(i) =
{

p ∈ A(i) : H(p) = H(i)

}
is the set of indices of all other samples that are same class with i th sample (and thus in

equation (5), the
∼
Z and Z are indiscriminately denoted as Z cause indexes already involve

both). |P(i)| is its cardinality. The supervised contrastive loss encourages the clustering
of similar examples in the latent space while also promoting the separation of different
samples 16. In pretraining, all the data are single-source and so are the labels, which are one-
hot among {−60◦, . . . ,−1◦, 0◦, 1◦, . . . , 60◦}. Pretraining can be regarded as a supervised
contrastive learning process involving 121 classes. The size of the output feature is 32 ×
32. For convenience, we dispatched Z(i) or

∼
Z(i) into length 32 with 32 views in contrastive

training [20].
To generate data, consider K = 1 and generate on-grid data and label in low SNRs

among {−15, −10, −5, 0} dB. The number of angle pairs of ideal X is
(

121
1

)
× 4 = 484

so as
∼
X, leading to a double size of data set to D0 = 484 × 2, where

∼
X is the unbiased

estimation of X with 100 snapshots. To increase the diversity of data pairs in each randomly
split batch, we generated the data set D0 ten times, resulting in a final data set size of
D = 484 × 2 × 10 = 9680. The data set was randomly split into a validation set (10%) and a
training set (90%) with a batch size of 130. The feature extractor was trained for 100 epochs
using Adam optimization [21] with an initial learning rate of 0.001, β1 = 0.9, and β2 = 0.999.
To achieve convergence, the learning rate was decayed by a factor of 1/

√
2 every 10 epochs,

and the model was saved when the validation loss reached its minimum. The loss curve is
shown in Figure 2a, with a minimum loss of 5.5927.

  

(a) (b) 

Figure 2. (a) Pretraining loss curve; (b) Training loss curve.
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3.2. Training Stage

In the training phase after pretraining, the feature extractor would be trained with
initialized classifier together. The final layer in classifier is sigmoid to retain the value in
[0, 1] through 121 × 1 output vector Ĥ(i):

Ĥ(i) = g
(

f
(∼

X(i)

))
=

⎛⎜⎝ p̂−60
...

p̂60

⎞⎟⎠ (6)

The value p̂i indicates the probability spectrum of incident signals with on-grid angles.
The sigmoid function allows for the prediction of multiple sources and enables the model

to handle data beyond that of a single source, thereby input
∼
X differs from the pretraining

stage. In the training stage, the
∼
X are sampled version inputs, as with those in pretraining.

Instead of a single source,
∼
X here were generated from multiple sources. Finally, the loss LT

for training is:

LT =
1
N

N

∑
i=1

L
(

Ĥ(i); H(i)

)
(7)

while L is the binary cross-entropy loss:

L
(

Ĥ(i); H(i)

)
= − 1

121 ∑121
n=1

[
H(i)(n)log

(
Ĥ(i)(n)

)
+

(
1 − H(i)(n)

)
log

(
1 − Ĥ(i)(n)

)] (8)

For the input in the training phase, data were generated from varying numbers of
source K at low SNRs among −15 dB, −10 dB, −5 dB, and 0 dB using the combinations
of K source(s) pairs among 121 on-grid angle pair(s), where Kmax = 3 and Kmin = 1, with
1000 snapshots. To cover all the possible incident scenarios and alleviate the problem of un-
balanced dataset, the training dataset was composed of 1,212,420 examples, which included

∑Kmax =3
k=1

(
121

k

)
× 4 = 1, 181, 444 samples (in 4 SNR setting) and

(
121

1

)
× 4×64 = 30,976

random single-source examples. The validation set consisted of 100,000 independent ex-
amples with random angles and number of sources. The proposed feature extractor and
classifier were trained for 50 epochs using the same optimizer and learning schedule as
mentioned before. The model was saved when the validation loss reached its minimum.
The loss curve is shown in Figure 2b, with a minimum loss of 0.00556.

4. Simulation Results

4.1. Unknown Number of Sources

In this section, the tests were performed on an uncertain number of sources, a common
scenario encountered in real life application of DOA algorithm. Inspired by CFAR (Constant
false alarm rate) [22], we first set up threshold p0 to filter the noises, and then searched the
peaks K in the resulting probability spectrum to obtain the predicted angles. However, the
mismatch of predicted target numbers will render the RMSE loss metric futile. To address
this issue, the Hausdorff distance dH was introduced in [12], which measures distance
between two sets without equal cardinality. It is denoted by:

dH(A,B) = max{d(A,B), d(B,A)} (9)

d(A,B) = sup{d(α,B) | α ∈ A} (10)

d(α,B) = in f {|α − β|| β ∈ B} (11)
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when the cardinalities are same, it behaves like max absolute error in penalizing deviation,
but when the cardinalities are different, it penalizes elements that significantly deviate
from overlapping distribution between sets A and B. For example, if A = {20◦, 30◦, 60◦}
and B = {20◦, 30◦}, then dH(A,B) = 30◦. Similarly, if A = {20◦, 30◦, 30.5◦}, then
dH(A,B) = 0.5◦.

The tests were performed using fixed off-grid angles ranging from source number
K = 1 to K = 3. For each K, 10,000 test samples were independently generated with
1000 snapshots to form test sets at 0 dB, −10 dB, and −15 dB, respectively. The angles of
first signal, second, and third were −3.74◦, 11.11◦, and 2.12◦, respectively. The predicted
K and their DOAs are obtained by filtering with a threshold p0 and identifying peaks on
probability spectrum output Ĥ(i) in Equation (6). The results are reported in Table 1, which
evaluates the performance of CNN-SCL with mean and max Hausdorff distance. When
the SNR is 0 dB, the model firmly predicts {−4◦, 11◦, 2◦}, resulting in the mean and max
Hausdorff distance being fixed on 0.26◦. At −10 dB, the errors are slightly increased but still
small, considering the low SNR, while the state-of-the-art CNN approaches obtains high
max dH of 10.8◦ in similar situation [12]. In the −15 dB SNR scenario, the maximum value
of the Hausdorff distance increases significantly, and it varies with the number of sources.
To avoid falsely identifying a zero target, the threshold value for the one-source scenario
is set to 0.2 instead of 0.4, as the latter would result in a 0.53% probability of predicting
zero targets. Additionally, Figure 3 indicates the confusion matrix (probability) of source
predicted results with respect to 0 dB and −10 dB SNR. When predicting source number in
low SNR environments, the model achieves this with only a 0.07% error rate in two-sources
scenarios {−3.74◦ , 11.11◦} in −10 dB SNR, indicating that our approach achieves high
accuracy low SNR environments. In contrast to our CNN-SCL approach, the AIC method
has proven to be ineffective in low SNRs [23]. Moreover, the only-CNN-based method
retains an error rate of 22.47% for three-source scenario with a similar separation of angles
at −10 dB SNR [12]. Compared to the current learning-based spectrum reconstruction
method outlined in [13], our approach demonstrates superior accuracy, reducing the error
rate significantly. However, our method does have its limitations. First, it is heavily data-
driven, which substantially increases the volume of data required. This means hugely
increasing the amount of required data. For instance, to predict four targets, we need to

add extra
(

121
4

)
samples to the dataset, and

(
121

5

)
for five targets. Furthermore, as the

array’s element count grows, the matrix size of every data point grows at a quadratic rate.
In contrast, learning-based spectrum methods can more seamlessly adapt to various target
counts and array sizes.

Table 1. Unknown target estimation in 0 dB, −10 dB, and −15 dB.

Number of Sources K 1 Threshold p0 Mean dH (Degree) Max dH (Degree)

SNR = 0 dB

1 0.4 0.2600 0.2600
2 0.4 0.2600 0.2600
3 0.4 0.2600 0.2600

SNR = −10 dB

1 0.4 0.2659 0.7400
2 0.4 0.2789 1.2600
3 0.4 0.3052 1.1200
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Table 1. Cont.

Number of Sources K 1 Threshold p0 Mean dH (Degree) Max dH (Degree)

SNR = −15 dB

1 0.2 0.4062 23.74
2 0.4 0.4737 15.11
3 0.4 0.7463 10.11

1 We further tested the false alarm rate of zero target on standard white noise with the same snapshots, 10,000 sam-
ples, and Threshold p0 = 0.4. Under zero-target conditions, there is only a 0.09% chance of mistakenly counting it
as one target signal source while 99.91% counting correct.

  
(a) (b) 

Figure 3. (a) Confusion matrix in 0 dB; (b) Confusion matrix in −10 dB.

4.2. Known Number of Sources

In the given sources number setting, the experiments were conducted on two-source
scenarios with varying SNRs and snapshots. In this case, the output selection approach
is modified to choose the two highest values in the probability spectrum without prior
filtering. The loss metric used is the RMSE. The performance of the proposed approach
is evaluated against existing classical and state-of-the-art methods, and the Cramér–Rao
lower bound (CRLB) [24] is provided as benchmark. Additionally, to examine the influence
of SCL in proposed approach, the framework without SCL pretraining was evaluated and
denoted as CNN-SCL w/o. All the on-grid approaches were set with resolution for one
degree of every integer on [−60 ◦, 60◦].

4.2.1. RMSE under Varying SNRs

The objective of this experiment is to estimate the DOAs of two sources at differ-
ent SNRs while keeping the snapshots fixed at 1000. Each data point was tested with
1000 samples. The directions are 10.11◦ and 12.7◦, respectively. The results are shown on
Figure 4a. The proposed model exhibits relatively good performance when compared with
the CNN in low-SNR regime, with RMSE values of 1.9910◦, 0.6253◦, and 0.5885◦ for −20 dB,
−15 dB, and −10 dB, respectively. In the high-SNR regime, on-grid methods suffer from
grid mismatch and exhibit high RMSE values, while grid-less methods, such as ESPRIT
and R-MUSIC, approach the CRLB.
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( )

(b)

Figure 4. (a) Two-target RMSE loss versus SNRs; (b) Two-target RMSE loss versus Snapshots.

4.2.2. RMSE versus Varying Snapshots

In this experiment, tests were conducted with two sources at −10 dB SNR while the
snapshots ranged from 100 to 10,000. Each datapoint was tested with 1000 samples, with
the directions being 9.58◦ and 12.82◦, respectively. Figure 4b illustrates the results. The
proposed model achieved superior accuracy at 100 and 200 snapshots, with error of 1.922◦
and 0.7451◦, respectively.

5. Analysis

5.1. Latent Space Visualization

In both experiments conducted with varying SNRs and Snapshots, the framework
CNN-SCL w/o without SCL pretraining was found to be difficult to converge. The pre-
training was identified as the key factor causing this difference. To investigate the impact of
pretraining, t-SNE [25] was employed to visualize the features distribution in latent space
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Z = f (X) during both the pretraining stage and training stage by mapping distribution into
low-dimensional space while retaining relative distance between data points as much as
possible. The values and colors represent the distributions and DOAs of input matrices X.
Figure 5a depicts the messy distribution of data processed by the feature extractor without
pretraining, whereas the distribution of different classes of angles is well separated by the
SCL-pretrained feature extractor, as Figure 5b illustrates. Furthermore, after the training
stage with classifier, SCL-pretrained feature extractor separates the features more clearly,
forming gradual and continuous distribution, as shown in Figure 5c. As the model only
utilizes nearly one-sixteenth of parameters compared with CNN [12], the direct training
is hard to fit the data. However, the SCL pretraining provides the feature extractor with
a good starting point, as shown in Figure 5b, which enables the training step to proceed
more smoothly. This results in the stripe pattern being stretched, as shown in Figure 5c,
thus leading to a clear and robust decision boundary. The SCL pretraining enhances param-
eter efficiency, performance, and generalization in low-SNR DOA estimation. In Figure 6,
we visualize the distribution of DOA data after processing through the CNN extractor
under various SNR conditions. The findings indicate that the SCL-CNN extracts DOA
information based on an amplitude-phase pattern. As illustrated in Figure 6a, when the
angle approaches 0, implying minimal phase difference between the array elements, the
distribution tends to be closer to the inner side of the center. In Figure 6b, we differentiated
data points based on varying SNR levels. It was observed that features extracted from
DOA data with lower SNR tend to be located closer to the center. This observation implic-
itly corroborates the assertions made in the paper [26], suggesting that the information
extraction from CNN follows the pattern of pseudospectrum construction in the MUSIC
method, where features are extracted based on amplitude and phase and then arranged in
ascending order.

5.2. Feature Learning for Analysis

From the theoretical perspective, the recent advancement [27–29] of neural network
approximation also provides some intuition for explaining the shift of distribution in
Figure 5. In paper [27], Allen-Zhu and Li (2020) demonstrated a novel theoretical framework
that characterized the feature learning process of neural networks, which is adopted in
paper [28], where Cao et al. (2022) leveraged that framework to analyze the behavior of
neural networks under various SNR. Furthermore, in paper [29], Chen Y et al. (2023) go
further in analyzing the learning processing of model between spurious and invariant
features. The convolutional neural network model analyzed by papers [28,29] is only
comprised of two layers at any width, and the deeper neural networks still need further
study and investigation. However, as the deeper networks are always more powerful than
shallow neural networks in practice, and because they need fewer parameters or units to
achieve the same effect as shallow networks [30], we assume that our network can easily
fulfill the equivalent conditions that paper [28,29] requests. Thus, the lemmas shall be
reasonable to be applied in explaining the effect of pretrain in Figure 5 intuitively.

We consider the simplified model and data set for analysis, which is adopted from
papers [28,29]. The analysis focuses on how to suppress the spurious feature and learn the
invariant feature in order to achieve Out-of-Distribution (OOD) generalization, namely
generalization to other distributions other than the training data set. The spurious features
are always correlated with the invariant feature but with contribute negligible information
for prediction or estimation. In contrast to the spurious feature, the invariant feature points
out the characteristics that are informative and stable inside data. Considering the form
of DOA estimation data and matrices are similar to a picture with multiple channels, it is
plausible to assume the existence of spurious features.
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(a) 

(b) 

(c) 

Figure 5. Distributions of output feature from feature extractors with respect to angles at −10 dB,
100 snapshots. (a) without SCL pretraining, directly trained with classifier; (b) with SCL pretraining
only; (c) with SCL-pretrained and then further trained with classifier.

51



Axioms 2023, 12, 862

(a) 

(b) 

Figure 6. Distributions of output feature from feature extractors with respect to angles at 0 dB, −5 dB,
−10 dB and −15 dB, 1000 snapshots. (a) with SCL-pretrained and then further trained with classifier,
DOA distribution; (b) with SCL-pretrained and then further trained with classifier, SNR distribution.

5.2.1. Preliminary and Ideal Model

Suppose the data set for the ideal model is D = {xi, yi}n
i=1, where n is the number of

samples, d is the dimension x ∈ R2d, and y ∈ {−1, 1}. The input data instances (xi, yi)
conform to the following distribution:

1. The label y is generated as a Rademacher random variable.
2. Given y , each input x = {x1, x2} include a feature patch x1 and a noise patch x2, that

are sampled as:
x1 = y · Rad(α) · v1 + y · Rad(β) · v2x2 = ξ (12)

where Rad(x) presenting the random variable taking value 1 with probability 1-x and
−1 with probability x. v1 =

[
1, 0, 0, . . . 0]� and α is usually constant, representing the

invariant feature; v2 =
[
0, 1, 0, . . . 0]� and β is usually uncertain with different data,

representing the spurious feature with unreliable information.
3. The noise vector conforms to the Gaussian distribution N

(
0, σ2

p ·
(
Id − v1v�

1 − v2v�
2
))

,
indicating a noise orthogonal with both spurious and invariant features.
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An ideal two-layer CNN model is trained to classify the label with sigmoid and cross-
entropy loss function, the network can be written as f (W, x) = F+1(W+1, x)− F−1(W−1, x),
with:

Fj
(
Wj, x

)
=

1
m

m

∑
r=1

[
σ
(

w�
j,rx1

)
+ σ

(
w�

j,rx2

)]
(13)

where σ(x) is the activation function.

5.2.2. Theorem and Intuition

Lemma 1 (Cao et al. [28]; Chen et al. [29]). Let wj,r(t) for j ∈ {+1,−1} and r ∈ {1, 2, 3, ...m}
be the convolution filters of the CNN at t-th iteration of gradient descent. Then there exists unique
coefficients γj,r,1(t), γj,r,2(t) ≥ 0 and ρj,r,i(t) s.t.:

wj,r(t) = wj,r(0) + j · γj,r,1(t) · v1 + j · γj,r,2(t) · v2 + ∑ ρj,r,i(t) · ‖ ξ i ‖−2
2 · ξ i (14)

Lemma 1 is the basis for following lemmas. It reveals the behavior of neural networks
when updated. The weights are the time-varying linear combination of initialized weights
wj,r(0), invariant signal v1, spurious signal v2, and noise ξ i. As wj,r(0) ≈ 0 and the rest
of the components are orthogonal to each other, γj,r,1 ≈ 〈

wj,r, v1
〉

and γj,r,2 ≈ 〈
wj,r, v2

〉
learning progress of invariant feature and spurious feature.

Lemma 2 (Chen et al. [29]). For two samples xe
1, xe′

1 . With invariant risk minimization regulariza-

tion c(t), define λ0 = λmin(H∞), where H∞
e,e′ � 1

2mnene′

ne
∑

i=1
xe�

1,i

ne′
∑

i′=1
xe′

1,i. Suppose that dimension

d = Ω(log(m/δ)), network width m = Ω(1/δ), regularization factor λ ≥ 1/σ0, noise variance

σp = O
(
d−2), weight initial scale σ0 = O

(
min

{
λ2

0m2

log(1/ε)
, λ0m√

dlog(1/ε)

})
, then with probability at

least 1 − δ, after training iteration T = Ω
(

log(1/ε)
ηλλ0

)
, we have:

‖ c(T) ‖2≤ ε, γj,r,1(T) = od(1), γj,r,2(T) = od(1) (15)

The theorem demonstrates that heavy invariant risk minimization (IRM) regularization
hinders the learning process for both spurious and invariant features. The loss stays at
constant at the same time. IRM aims to find the invariant feature under whatever possible
feature distribution [31]. We observe that the strong weights-share regularization [18] of
our CNN-SCL model in the first four FC layers play similar roles as IRM, which not only
rise the generalization of the model but the difficulty of training, keeping the training and
testing loss as relatively large constant in Figure 4 term CNN-SCL w/o.

Lemma 3 (Chen et al. [29]). Suppose spurious correlations are stronger than invariant correlations
α > β, and γinv

j,r (t1) = γinv
j,r (t1 − 1) and γ

spu
j,r (t1) = γ

spu
j,r (t1 − 1) at the end of pretraining

iteration t1. Suppose that δ > 0 and n > Clog(1/δ), with C being a positive constant, then with
a high probability at least 1 − δ, we have regularization loss approaches zero and γinv

j,r (t1 + 1) >

γinv
j,r (t1) while γ

spu
j,r (t1 + 1) < γ

spu
j,r (t1).

This lemma indicates that the learning processing can start learning process with the
strong and enough pretraining, even under heavy regularization. And in the training
stage after pretraining stage, the learned invariant feature would be empowered, while
the spurious feature would be suppressed. Thus, we can observe the CNN-SCL with
pretraining perform better than CNN-SCL w/o in Figure 4.

In Figure 5a–c, the manifestation of the pattern further validates the effect that
Lemma 2 and Lemma 3 point out. In Figure 5a, as Lemma 2 reveals, CNN-SCL w/o
incurs heavy regularization, performs worst feature distribution, and learns almost nothing.
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In Figure 5b, as Lemma 3 suggests, supervised contrastive learning is a very powerful
pretraining method to help the model overcome regularization and start learning both
spurious and invariant features, so the pattern begins to separate and order. Finally, as
Lemma 3 indicates, Figure 5c illustrates that with enough training after pretraining, the
invariant features have been learned and the spurious features were suppressed, from
which a clear and robust feature distribution forms.

6. Conclusions

In this paper, we introduced a new framework called CNN-SCL for on-grid multi-
target DOA estimation in low SNRs and limited snapshots. The proposed method is based
on contrastive learning, which aims to separate different features with a regular pattern.
The experimental results demonstrate the robustness and generalization capability of our
proposed method, outperforming other methods in harsh environments for both number
of source classifications and DOA estimations. The analysis confirms the necessity of SCL
pretraining in both visualization and theory. Additionally, our approach achieves compara-
ble performance with state-of-the-art methods while number of parameters significantly
decreases near 94%. Our future work will focus on exploring the potential of contrastive
learning to further reduce the parameters for DOA estimation with deep learning.
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Abstract: In this article, we develop an efficient numerical scheme for dealing with fractional partial
integro-differential equations (FPIEs) with a weakly singular kernel. The weight and shift Grünwald
difference (WSGD) operator is adopted to approximate a time fractional derivative and the Sinc
collocation method is applied for discretizing the spatial derivative.The exponential convergence of
our proposed method is demonstrated in detail. Finally, numerical evidence is employed to verify
the theoretical results and confirm the expected convergence rate.

Keywords: Sinc collocation method; WSGD operator; fractional partial integro-differential equation;
convergence
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1. Introduction

In recent years, fractional calculus has played an increasingly important role in various
fields and has attracted much interest from scholars due to its extensive applications in
modeling many complex problems [1–8]. The fractional integro-differential equation is one
of the most active fields in fractional calculus [9–15], which can be seen as the extension of
classical integral equations by replacing integer-order derivatives with fractional deriva-
tives. Consequently, there is a growing need to explore solution techniques to study these
equations. Although there are some ways to get exact solutions of these equations, the exact
solutions of these equations are very difficult to find in most cases. For this reason, there has
been much research on the effective numerical methods of fractional integral differential
equations (FIDEs). Here, we list only a few of them. In [16,17], the homotopy analysis
method is used to find the approximate solution of FIDEs. In [18], the spectral Jacobi-
collocation method is presented by Ma et al. to solve the solution of general linear FIDEs.
In [19], the compact finite difference scheme is constructed to approximate the solution of
FIDEs with a weakly singular kernel. In [20], the alternating direction implicit difference
scheme combined with a fractional trapezoidal rule is developed to solve two dimen-
sional FIDEs. In [21], the Legendre wavelet collocation method based on the Gauss–Jacobi
quadrature is introduced to solve the fractional delay-type integro-differential equations.
In [22], the collocation method combined with fractional Genocchi functions is used for
the solution of variable-order FIDEs. In [23], the meshless method based on the Laplace
transform is constructed for approximating the solution of the two-dimensional multi-term
FIDEs. In [24], the finite element method is proposed to solve the two-dimensional weakly
singular FIDEs. In [25], the spectral Galerkin method based on Legendre polynomials is
presented to solve the one and two-dimensional fourth-order FIDEs. In [26], the Adomian
decomposition method and homotopy perturbation method are given to approximate the
solution of the time FPIEs. Liu et al. [27–31] used the multigrid method and homotopy
method to solve practical problems in the fractional flow formulation of the two-phase
porous media flow equations and Biot elastic models.

Axioms 2023, 12, 898. https://doi.org/10.3390/axioms12090898 https://www.mdpi.com/journal/axioms56
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In this article, we consider the fractional partial integro-differential equations (FPIEs)
with a weakly singular kernel as follows:

0Dα
t v(x, t) =

∂2v(x, t)
∂x2 +

∫ t

0
(t − s)−1/2 ∂2v(x, t)

∂x2 ds + f (x, t), x ∈ [a, b], t ∈ [0, T], (1)

with the initial condition:
v(x, 0) = 0, x ∈ [a, b], (2)

and boundary conditions
v(a, t) = v(b, t) = 0, t ∈ [0, T], (3)

where 0 < α < 1 and f (x, t) is smooth enough. The time fractional derivative 0Dα
t v(x, t) is

defined in Riemann–Liouville sense as

0Dα
t v(x, t) =

1
Γ(1 − α)

d
dt

∫ t

0

v(x, s)α

(t − s)
ds,

where Γ(·) is the Gamma function.
The partial integro-differential equation of integer order has proven to describe some

phenomena such as viscoelasticity, population dynamics and heat conduction in materials
with memory [32–34]. Over the past three decades, various numerical methods based
on the Sinc approximation have been presented, which have the advantages of a very
fast convergence of exponential order and handling singularities effectively. The Sinc
method proposed by Frank Stenger [35–37] has been increasingly applied to solve a variety
of linear and nonlinear models that arise in scientific and engineering applications such
as two-point boundary value problems [38], the Blasius equation [39], oceanographic
problems with boundary layers [40], fourth-order partial integro-differential equation [41],
the Volterra integro-differential equation [42,43], optimal control, heat distribution and
astrophysics equations. According to the definition, it can be seen that fractional derivatives
and integrals always deal with weak singularities. Therefore, in the past few years, the Sinc
method has been widely extended to get the numerical solution of the fractional differential
equations [44–47]. The main objective of this work is to provide a new attempt to develop a
numerical solution via the use of the Sinc collocation method to solve the fractional partial
integro-differential equation with a weakly singular kernel.

The remainder of this article is organized as follows. In Section 2, we introduce
some basic formulation and theoretic results of Sinc functions which are required for our
subsequent development. In Section 3, we propose a time discrete scheme based on the
weight and shift Grünwald difference operator and a space discrete scheme by applying a
collocation scheme based on the Sinc functions. In Section 4, the convergence analysis of
our scheme is proved and in the meantime the exponential convergence is obtained. Some
numerical results are described in Section 5 to illustrate the performance of our method.
Finally, we give our conclusion in Section 6.

2. Definitions and Preliminaries

In this section, we describe some main notations and definitions of the Sinc func-
tion and review some known results that will be used in the following sections. The
reader interested in learning more about the detailed properties of the Sinc function can
investigate [35].

The Sinc function is basically defined on the whole real line −∞ < x < ∞ by

Sinc(x) =

{
sin(πx)

πx , x �= 0,
1, x = 0.
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For any mesh size h > 0 and k = 0,±1,±2, . . ., the Sinc basis functions with evenly
spaced nodes given on R by

S(k, h)(x) = Sinc
(y − kh

h

)
.

Let f (x) be a function defined on the real line, then for h > 0 the series

C( f , h)(x) =
∞

∑
k=−∞

f (kh)S(k, h)(x),

is called the Whittaker cardinal expansion of f , whenever this series converges. The
properties of Whittaker cardinal expansions which are derived on the infinite strip Qs of
the complex plane have been described and proved in detail in the literature [36].

Qs =
{

w = t + is : |s| < d ≤ π

2

}
.

In order to construct approximations on the interval (a, b), we consider the
conformal map

φ(z) = log
( z − a

b − z

)
,

which carries the eye-shaped domain of complex plan

QE =
{

z = x + iy :
∣∣∣arg

( z − a
b − z

)∣∣∣ < d ≤ π

2

}
,

onto the infinite strip domain of complex plan Qs.
Let ψ be the inverse map of w = φ(z), and we define the range of φ−1 on R as

(a, b) = {ψ(u) = φ−1(u) ∈ QE : −∞ < u < ∞}.

For the uniform grid {jh}∞
j=−∞ on R, the Sinc points which correspond to these nodes

are denoted by

xj = ψ(jh) =
a + bejh

1 + ejh , j = 0,±1,±2, . . . . (4)

The basis functions on (a, b) for z ∈ QE are taken to be the composite translated Sinc
functions as

Sk(z) = S(k, h) ◦ φ(z) = Sinc
(φ(z)− kh

h

)
, k = 0,±1,±2, . . . . (5)

Definition 1. Let B(QE) be the class of functions F which are analytic in QE and satisfy∫
ψ(t+Σ)

|F(z)|dz → 0, as t → ±∞,

where Σ =
{

iη : |η| < d ≤ π

2

}
and satisfy

N( f ) =
∫

∂QE

|F(z)dz| < ∞.

where ∂QE represents the boundary of QE .

Lemma 1 ([37]). If F(x), φ′(x) ∈ B(QE) and h > 0. Let φ be a one-to-one comformal map. For
all x ∈ (a, b) ∣∣∣∣F(x)−

N

∑
j=−N

F(xj)Sj(x)
∣∣∣∣ ≤ 2N( f φ′)

πd
e−πd/h. (6)
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Moreover, if |F(x)| ≤ ce−β|φ(x)| , x ∈ (a, b), for some positive constants c, l, N and β, and if
the selection h =

√
πd/βN, then

sup
x∈(0,1)

∣∣∣∣F(x)−
(

d
dx

)l N

∑
j=−N

f (xj)Sj(x)
∣∣∣∣ ≤ C1N(l+1)/2e−

√
πdβN , (7)

where C1 depends only on F, d and β.

Lemma 1 shows the Sinc interpolation on B(QE) is exponentially convergent. We
also need the derivative of the complex Sinc function to be evaluated at the nodes. So we
introduce the lemma as follows:

Lemma 2 ([48]). For the step size h and the Sinc points xj determined by (4), suppose that φ is the
conformal one-to-one mapping of the simply connected domain QE onto Qd, then we have

δ
(0)
kj = [S(k, h) ◦ φ(x)]

∣∣∣
x=xj

=

{
1, j = k,
0, j �= k,

(8)

δ
(1)
kj = h

d
dφ

[S(k, h) ◦ φ(x)]
∣∣∣
x=xj

=

{
0, j = k,
(−1)j−k

j−k , j �= k,
(9)

δ
(2)
kj = h2 d2

dφ2 [S(k, h) ◦ φ(x)]
∣∣∣
x=xj

=

{ −π2

3 , j = k,
−2(−1)j−k

(j−k)2 , j �= k.
(10)

To facilitate the representation of discrete systems, we give the definition of the
following matrix as follows:

I(l) = [δ
(l)
kj ], l = 0, 1, 2, (11)

where δ
(l)
kj is the (k, j) the element of the matrix I(l). The matrix I(0), I(1) and I(2) repre-

sents the identity matrix, the skew symmetric Toeplitz matrix and the symmetric Toeplitz
matrix, respectively.

3. Derivation of the Numerical Scheme

3.1. The Time Semi-Discretization

For positive integer number N, let τ = T
N be the time mesh size, tn = nτ,

n = 0, 1, · · · , N, be the mesh points. Denote vn = v(x, tn) and f n = f (x, tn). Firstly,
in order to apply the WSGD operator to discrete the time fractionl derivatives, the approxi-
mation order must be used. Therefore, we review the following lemma.

Lemma 3 ([49]). Suppose that ϕ(t) ∈ L1(R) and ϕ(t) ∈ Cα+1(R), and define the shift Grünwald
difference operator by

Aα
τ,p ϕ(t) =

1
τα

∞

∑
k=0

g(α)k ϕ(t − (k − p)τ), (12)

where p is an integer and the sequences g(α)k are the coefficients of the power series expansion of the

function (1 − z)α,i.e, g(α)0 = 1,g(α)k = (−1)k(α
k), k = 1, 2, · · · . Then

Aα
τ,p ϕ(t) = −∞Dα

t ϕ(t) + O(τ), (13)

uniformly for t ∈ R as τ → 0.
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Lemma 4 ([50]). Let ϕ(t) ∈ L1(R), −∞Dα+2
t ϕ(t) and its Fourier transform belong to L1(R).

Define the weighted and shifted Grünwald difference operator by

Dα
τ,p,q ϕ(t) =

2q − α

2(q − p)
Aα

τ,p ϕ(t) +
2p − α

2(p − q)
Aα

τ,q ϕ(t), (14)

where p and q are integers and p �= q. Then,

Dα
τ,p,q ϕ(t) = −∞Dα

t ϕ(t) + O(τ2),

uniformly for t ∈ R as τ → 0.

Let p and q be equal to 0 and 1 in Lemma 4 , we can get

0Dα
t v(xi, tn) = τ−α

(
2 + α

2

n
∑

k=0
g(α)k vn−k

i − α

2

n−1
∑

k=0
g(α)k vn−1−k

i

)
+ O(τ2)

= τ−α
n
∑

k=0
λkvn−k

i + Rn+1,1,
(15)

where Rn+1,1 = O(τ2), λ0 =
2 + α

2
g(α)0 , λk =

2 + α

2
g(α)k − 1 − α

2
g(α)k−1, k ≥ 1.

By using unusual quadrature approximation, the integral term of (1) can be approxi-
mated as follows:∫ tn+1

0
(tn+1 − s)−1/2 ∂2v(x, s)

∂x2 ds

=
n

∑
l=0

∫ tl+1

tl

(tn+1 − s)−1/2 ∂2v(x, s)
∂x2 ds

≈
n

∑
l=0

∫ tl+1

tl

(tn+1 − s)−1/2
(

tl+1 − s
τ

vl
xx(x) +

s − tl
τ

vl+1
xx (x)

)
ds

≈ 1
τ

n

∑
l=0

(
An,lvl

xx(x) + Bn,lvl+1
xx (x)

)
+ Rn+1,2,

(16)

where
Rn+1,2 = O(�t3/2),

An,l =
∫ tl+1

tl

(tn+1 − s)−1/2(tl+1 − s)ds,

Bn,l =
∫ tl+1

tl

(tn+1 − s)−1/2(s − tl)ds,

(17)

Substituting (15) and (16) into (1), we have

λ0vn+1(x)−
(

τα + τα−1Bn,n

)
vn+1

xx (x)

= τα−1
n

∑
l=0

ρn,lvl
xx(x)−

n

∑
k=0

λkvn+1−k(x) + τα f n+1(x) + Rn+1,
(18)

where
|Rn+1| ≤ min

{
|Rn+1,1|, |Rn+1,2|

}
,

ρn,0 = An,0,

ρn,l = An,l + Bn,l−1.
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Omitting the truncation error term Rn+1 from Equation (18), we get the following
semidiscrete scheme of Equation (1):

λ0vn+1(x)−
(

τα + τα−1Bn,n

)
vn+1

xx (x)

= τα−1
n

∑
l=0

ρn,lvl
xx(x)−

n

∑
k=0

λkvn+1−k(x) + τα f n+1(x),
(19)

and using the initial and boundary conditions (2), we have

v0(x) = g0(x),

vn+1(a) = 0, vn+1(b) = 0.

3.2. The Sinc Collocation Method for Spatial Discretization

Now we construct the Sinc collocation method to discrete the semidiscrete scheme (19).
The approximation solution vn(x) of the semidiscrete scheme (19) can be approximated by

vn(x) ≈ Vn
m(x) =

N

∑
k=−N

cn
j S(k, h) ◦ φ(x), m = 2N + 1, (20)

where cn
j is the undetermined coefficient in (20).

d2

dx2 Vn
m(x) =

N

∑
j=−N

cn
j

d2

dx2 [S(j, h) ◦ φ(x)]

=
N

∑
j=−N

cn
j [φ

′′(x)S(1)
j (x) + (φ′(x))2S(2)

j (x)],

where

S(l)
j =

d(l)

dφ(l)
[S(j, h) ◦ φ(x)], l = 1, 2.

It then follows from Lemma 2 that

d2

dx2 Vn
m(xi) =

N

∑
j=−N

cn
j

[
φ′′(xi)

δ
(1)
ji

h
+ (φ′(xi))

2
δ
(2)
ji

h2

]
. (21)

Substituting (20) and (21) into (19), we have

λ0

j=N

∑
j=−N

cn+1
j δ

(0)
ji − (τα + τα−1Bn,n)

j=N

∑
j=−N

cn+1
j

[
φ′′(x)

δ
(1)
ji

h
+ (φ′(x))2

δ
(2)
ji

h2

]

= τα−1
n

∑
l=0

j=N

∑
j=−N

ρn,l cn+1
j

[
φ′′(x)

δ
(1)
ji

h
+ (φ′(x))2

δ
(2)
ji

h2

]

−
n

∑
k=0

j=N

∑
j=−N

λkcn+1−k
j δ

(0)
ji + τα f n+1

i .

(22)

A diagonal matrix of order 2N + 1 is defined as follows

D(g(x))ij =

{
g(xi), i = j
0, i �= j.

(23)
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Multiplying both sides of the above equation by
1

(φ′(x))2 , we get

1
(φ′(xi))2 cn+1

i −
(

τα + τα−1Bn,n

) N

∑
j=−N

cn+1
j

[ −φ′′(xi)

(φ′(xi))2

δ
(1)
ij

h
+

δ
(2)
ij

h2

]

= τα−1
n

∑
l=0

N

∑
j=−N

ρn,l cl
j

[ −φ′′(xi)

(φ′(xi))2

δ
(1)
ij

h
+

δ
(2)
ij

h2

]
+

1
(φ′(xi))2

n

∑
k=0

ck
i +

τα

(φ′(xi))2 f n+1
i .

(24)

Writing the above equation (24) in matrix form as

D
[(

1
φ′

)2]
Cn+1 −

(
τα + τα−1Bn,n

)[1
h

D
(

1
φ′

)′
I(1) +

1
h2 I(2)

]
Cn+1

= ταD
[(

1
φ′

)2]
Fn+1 + D

[(
1
φ′

)2]
(Cn + Cn−1 + . . . + C1 + C0)

+ τα−1
n

∑
l=0

ρn,l

[
1
h

D
(

1
φ′

)′
I(1) +

1
h2 I(2)

]
Cl ,

(25)

or in a compact form as

PCn+1 = R
(

ταFn+1 +
n

∑
m=0

Cm
)
+ τα−1

n

∑
l=0

ρn,lQCl , (26)

where

R = D
[(

1
φ′

)2]
,

Q =
1
h

D
(

1
φ′

)′
I(1) +

1
h2 I(2),

Cn+1 = (cn+1
−N , cn+1

−N+1, . . . , cn+1
N )T,

Fn+1 = ( f n+1
−N , f n+1

−N+1, . . . , f n+1
N )T,

P = R − Bn,nQ.

(27)

If we set

Gn+1 = R
(

ταFn+1 +
n

∑
m=0

Cm
)
+ τα−1

n

∑
l=0

ρn,lQCl ,

then Equation (26) can be written as follows:

PCn+1 = Gn+1, (28)

with the additional initial condition

C0 = (V0(x−N), V0(x−N+1), · · · , V0(xN))
T.

For each n, Formula (28) is a system of 2N + 1 order linear equations including 2N + 1
equations. By solving this system of linear equations, the coefficients of the numerical
solutions (20) can be obtained.

4. Convergence Analysis

In this section, we aim to analyze the convergence of the semidiscrete Equation (19)
for the FPIEs (1)–(3).
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For the sake of convenience, the semidiscrete Equation (19) can be rewritten as

λ0vn+1(x)−
(

τα + τα−1Bn,n

)
vn+1

xx (x) = g(x), (29)

where

g(x) = τα−1
n

∑
l=0

ρn,lvl
xx(x)−

n

∑
k=0

λkvn+1−k(x) + τα f n+1(x).

The numerical solution Wn+1
m (x) of Equation (29) at the point xj can be obtained by

Wn+1
m (x) =

N

∑
j=−N

vn+1(xj)Sj(x), (30)

To obtain the bound of |Vn+1(x)− Vn+1
m (x)|, we can start by estimating the boundary

of |Vn+1
m (x)− Wn+1

m (x)|.

Lemma 5 ([51]). For x ∈ φ−1 and the matrix P defined by Equation (27), we have

P + P∗

2
= H − Bn,n

h2 I(2),

where P∗ is the conjugate transpose of P and

H = D
[

Re
(( 1

φ′
)2)]− Bn,n

2h

{
D
[(

1
φ′

)′]
I(1) − I(1)D

[( 1
φ′

)′]}
.

If the eigenvalues of the matrix H are non-negative, then there exists a constant c0 that doesn’t
depend on N, such that

‖P−1‖2 ≤ 4dN
βπBn,n

(
1 +

C0

N

)
,

for a sufficiently large N.

Theorem 1. Suppose Vn+1
m (x) is an approximate solution of Equation (19), Wn+1

m is an approxi-
mate solution of Equation (1). Then, there exists a constant C4 that doesn’t depend on N, such that

sup
x∈[a,b]

|Vn+1
m (x)− Wn+1

m (x)| ≤ C4N3e−
√

πdβN .

Proof. By Equations (20) and (30) and the Cauchy–Schwarz inequality, we gain

|Vn+1
m (x)− Wn+1

m (x)| =
∣∣∣∣ N

∑
j=−N

cn+1
j Sj(x)−

N

∑
j=−N

vn+1(xj)Sj(x)
∣∣∣∣

≤
( N

∑
j=−N

|cn+1
j − vn+1(xj)|2

) 1
2
( N

∑
j=−N

|Sj(x)|2
) 1

2

.

(31)

Since
( N

∑
j=−N

|Sj(x)|2
) 1

2

≤ C1, where C1 is a constant independent of N, we obtain

|Vn+1
m (x)− Wn+1

m (x)| ≤ C1‖Cn+1 − Un+1‖2, (32)

where Cn+1 is given by (27) and denoting the vector Vn+1 by

Un+1 =
(

vn+1(x−N), vn+1(x−N+1), · · · , vn+1(xN)
)T

.
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Based on (19) and (28), we have

‖Cn+1 − Un+1‖2 = ‖P−1(PCn+1 − PUn+1)‖2 ≤ ‖P−1‖2‖PUn+1 − Gn+1‖2. (33)

For simplicity, we denote

rk =
(

PUn+1 − Gn+1
)

k
, k = −N, · · · , N,

and using Equation (29), we obtain

|rk| = |g(xk)− gm(xk)|

=

∣∣∣∣vn+1(xk)−
(

τα + τα−1Bn,n

) d2

dx2 vn+1(xk)− Vn+1
m (xk) +

(
τα + τα−1Bn,n

) d2

dx2 Vn+1
m (xk)

∣∣∣∣
≤ |vn+1(xk)− Vn+1

m (xk)|+ Bn,n

∣∣∣∣ d2

dx2 vn+1(xk)− d2

dx2 Vn+1
m (xk)

∣∣∣∣.
(34)

Now, using Theorem 1, we have

‖rk‖ ≤ C2N
1
2 e−

√
πdβN + Bn,nC3N

3
2 e−

√
πdβN

≤ e−
√

πdβN
(

C2N
3
2 + Bn,nC3N

3
2

)
= KN

3
2 e−

√
πdβN ,

(35)

where C2 and C3 are constants independent of N and K = C2 + Bn,nC3.

‖PUn+1 − Gn+1‖2 ≤ √
2N + 1‖PUn+1 − Gn+1‖∞,

and using inequality (35), we get

‖PUn+1 − Gn+1‖2 ≤
√

2KN2e−
√

πdβN . (36)

Now, substituting (36) into (33), we have

‖Cn+1 − Un+1‖2 ≤ 4
√

2dK(1 + C0)

απBn,n
N3e−

√
πdβN . (37)

Based on (32) and (37), we get

sup
x∈[a,b]

|Vn+1
m (x)− Wn+1

m (x)| ≤ C4N3e−
√

πdβN , (38)

where C4 =
4
√

2dK(1 + C0)

απBn,n
.

Theorem 2. Suppose Vn+1(x) be the analytical solution of (29), Vn+1
m (x) be its Sinc approxima-

tion defined by (20). Then, there exists a constant C7 that doesn’t depend on N, such that

sup
x∈[a,b]

|Vn+1(x)− Vn+1
m (x)| ≤ C7N3e−

√
πdβN .

Proof. Using the triangular inequality, we get

|Vn+1(x)− Vn+1
m (x)| ≤ |Vn+1(x)− Wn+1

m (x)|+ |Wn+1
m (x)− Vn+1

m (x)|. (39)
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Using Theorem 1, we can get

|Vn+1(x)− Wn+1
m (x)| ≤ C5N3e−

√
πdβN . (40)

where C5 is a constant independent of N. Based on Theorem 2, there exists a constant C6
that does not depend on N such that

|Wn+1
m (x)− Vn+1

m (x)| ≤ C6N3e−
√

πdβN , (41)

Finally, we conclude

sup
x∈[a,b]

|Vn+1(x)− Vn+1
m (x)| ≤ C7N3e−

√
πdβN , (42)

where C7 = max{C5, C6}.

5. Numerical Results

In this section, some numerical calculations are performed to demonstrate the validity
and accuracy of our method. In numerical examples, we set parameters d = π

2 and β = 1
and then h = π√

2N
. All numerical computations are carried out using Matlab 7.14 running

on a Lenovo PC (Lenovo, Quarry Bay, Hong Kong) with a 1.6 GHz Intel Core i5-4200 CPU
(Intel Corporation, Santa Clara, CA, USA) and 4 GB RAM installed.

To illustrate the accuracy of our method, the error analysis is calculated according to
the maximum norm errors, defined as:

e∞(h, τ) = max
0≤n≤N

‖Vn − vn‖∞.

Furthermore, the temporal convergence order can be expressed by

rate1 = log2

(
e∞(h, 2τ)

e∞(h, τ)

)
.

Example 1. We consider Equations (1)–(3) with the analytical solution

v(x, t) = t2x(x − 1),

where 0 < x < 1, 0 < t < 1 and

f (x, t) =
2

Γ(3 − α)
x(x − 1)t2−α − 2t2 − 4Γ(1/2)

Γ(7/2)
t

5
2 .

Table 1 represents the maximum norm errors and the temporal convergence order for
N = 32 and α = 0.1, 0.3, 0.5, 0.7 with different values of time step size. Table 2 shows a
comparative study for the presented method and the method in [19]. It can be observed
from the table that the numerical results are better than the method in [19]. The maximum
norm errors for α = 0.8 and τ = 1

1000 with different values of N are plotted in Figure 1.
At the same time, it is clear from the figure that the presented scheme converges at an
exponential rate as N increases . From these diagrams, it can be seen that the results are in
excellent agreement with the theoretical analysis.
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Table 1. The maximum norm errors and temporal convergence orders with N = 32.

α τ e∞(h, τ) Rate1

0.1

1/10 2.71422 × 10−4 ∗
1/20 6.89322 × 10−5 1.97729
1/40 1.74371 × 10−5 1.98507
1/80 4.40355 × 10−6 1.98542

0.3

1/10 2.71798 × 10−4 ∗
1/20 6.90718 × 10−5 1.97637
1/40 1.74383 × 10−5 1.98584
1/80 4.41692 × 10−6 1.98115

0.5

1/10 2.78117 × 10−4 ∗
1/20 7.06728 × 10−5 1.97647
1/40 1.78836 × 10−5 1.98252
1/80 4.51750 × 10−6 1.98504

0.7

1/10 2.90936 × 10−4 ∗
1/20 7.37990 × 10−5 1.97903
1/40 1.86602 × 10−5 1.98365
1/80 4.71342 × 10−6 1.98512

The asterisk (∗) symbol indicates that the temporal convergence order cannot be calculated.

Table 2. Comparison of the maximum norm errors and temporal convergence orders with N = 100.

α τ e∞(h, τ) Rate1 e∞(h, τ) [19] Rate1 [19]

0.6

1/10 2.7821 × 10−4 ∗ 2.4541 × 10−4 ∗
1/20 7.0565 × 10−5 1.9791 9.4738 × 10−5 1.3732
1/40 1.7991 × 10−5 1.9717 3.8919 × 10−5 1.2835
1/80 4.5933 × 10−6 1.9696 1.6656 × 10−5 1.2244
1/160 1.1502 × 10−6 1.9976 7.3463 × 10−6 1.1810
1/320 2.8781 × 10−7 1.9987 3.3191 × 10−6 1.1462

The asterisk (∗) symbol indicates that the temporal convergence order cannot be calculated.

Figure 1. The maximum norm errors with α = 0.8 and τ = 1
1000 .

Example 2. We consider Equations (1)–(3) with the analytical solution

v(x, t) = t sin(πx),
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where 0 < x < pi, 0 < t < 1 and

f (x, t) = sin(πx)
(

1
Γ(2 − α)

t1−α + π2t +
4
3

π2t
3
2

)
.

Table 3 represents the maximum norm errors and the temporal convergence order for
N = 128 and α = 0.2, 0.4, 0.6, 0.8 with different values of time step size. The maximum
norm errors for α = 0.4 and τ = 1

512 with different values of N are plotted in Figure 2.
The figure also shows that our presented scheme converges at an exponential rate as N
increases. Figure 3 depicts the graph of the numerical solution and the exact solution with
α = 0.5, τ = 1

512 and N = 64. These figures confirm that the proposed method solution is
in good agreement with the exact solution.

Table 3. The maximum norm errors and temporal convergence orders with N = 128.

α τ e∞(h, τ) Rate1

0.2

1/10 1.4168 × 10−6 ∗
1/20 3.5892 × 10−7 1.9809
1/40 9.0501 × 10−8 1.9877
1/80 2.2729 × 10−8 1.9934

0.4

1/10 6.0618 × 10−6 ∗
1/20 1.5345 × 10−6 1.9819
1/40 3.8691 × 10−7 1.9877
1/80 9.7218 × 10−8 1.9918

0.6

1/10 2.1210 × 10−5 ∗
1/20 5.3633 × 10−6 1.9836
1/40 1.3508 × 10−6 1.9894
1/80 3.3889 × 10−7 1.9949

0.8

1/10 6.8883 × 10−5 ∗
1/20 1.7426 × 10−5 1.9829
1/40 4.3913 × 10−6 1.9885
1/80 1.1017 × 10−6 1.9949

The asterisk (∗) symbol indicates that the temporal convergence order cannot be calculated.

Figure 2. The maximum norm errors with α = 0.4 and τ = 1
512 .
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Figure 3. Numerical solution and analytical solution with α = 0.5, τ = 1
512 and N = 64 .

6. Conclusions

In the present article, we have presented and analyzed an efficient numerical algorithm
for solving FPIEs with a weakly singular kernel. In this technique, the WSGD operator is
applied for discretization of the time fractional derivative and the Sinc collocation method
is used for discretization of the space derivative. Convergence analysis of our scheme is
theoretically proven, and it is shown that the numerical solution converges to the exact
solution at the exponential rate in space. Numerical experiments were provided to verify
the theoretical results. In the future, we intend to extend the method for solving the higher
space dimension equation, which is straightforward, in view of the potential applications.

Author Contributions: Conceptualization, M.L. and L.C.; methodology, M.L. and L.C.; validation,
L.C. and Y.Z.; writing—original draft preparation, M.L. and Y.Z.; writing—review and editing, M.L.
and Y.Z.; funding acquisition, M.L. and L.C. All authors have read and agreed to the published
version of the manuscript.

Funding: This research was supported by the Natural Science Foundation of Shandong Province under
Grant ZR2022MA063 and the National Natural Science Foundation of China under Grant 12101037.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Hilfer, R. Applications of Fractional Calculus in Physics; World Scientific: Singapore, 2000.
2. Podlubny, I. Fractional Differential Equations; Academic Press: San Diego, CA, USA, 1999.
3. Povstenko, Y. Fractional Thermoelasticity; Springer: New York, NY, USA, 2015.
4. Cheng, X.; Duan, J.; Li, D. A novel compact ADI scheme for two-dimensional Riesz space fractional nonlinear reaction-diffusion

equations. Appl. Math. Comput. 2019, 346, 452–464. [CrossRef]
5. Yousuf, M.; Furati, K. M.; Khaliq, AQM. High-order time-stepping methods for two-dimensional Riesz fractional nonlinear

reaction-diffusion equations. Comput. Math. Appl. 2020, 80, 204–226. [CrossRef]
6. Yousuf, M. A second-order efficient L-stable numerical method for space fractional reaction-diffusion equations. Int. J. Comput.

Math 2018, 95, 1408–1422. [CrossRef]
7. El-Danaf, T.S.; Hadhoud, A.R. Parametric spline functions for the solution of the one time fractional Burgers’ equation. Appl.

Math. Model. 2012, 36, 4557–4564. [CrossRef]
8. El-Danaf, T.S.; Hadhoud, A.R. Computational method for solving space fractional Fisher’s nonlinear equation. Math. Methods

Appl. Sci. 2014, 37, 657–662. [CrossRef]

68



Axioms 2023, 12, 898

9. Panda, R.; Dash, M. Fractional generalized splines and signal processing. Signal Process. 2006, 86, 2340–2350. [CrossRef]
10. Torvik, P.J.; Bagley, R.L. On the appearance of the fractional derivative in the behavior of real materials. J. Appl. Mech. 1984,

51, 294–298. [CrossRef]
11. Giona, M.; Cerbelli, S.; Roman, H.E. Fractional diffusion equation and relaxation in complex viscoelastic material. Phys. A 1992,

191, 449–453. [CrossRef]
12. Jiang, X.; Xu, M.; Qi, H. The fractional diffusion model with an absorption term and modified Fick’s law for non-local transport

processes. Nonlinear Anal. 2010, 11, 262–269. [CrossRef]
13. Monami, S.; Odibat, Z. Analytical approach to linear fractional partial differential equations arising in fluid mechanics. Phys. Lett.

A 2006, 355, 271–279.
14. He, J.H. Some applications of nonlinear fractional differential equations and their approximations. Bull. Sci. Technol. 1999,

15, 86–90.
15. Chow, T. Fractional dynamics of interfaces between soft-nanoparticles and rough substrates. Phys. Lett. 2005, 342, 148–155.

[CrossRef]
16. Yildirim, A.; Sezer, S.A.; Kaplan. Y. Numerical methods for fourth-order fractional integro-differential equations. Z. Naturforsch.

A 2011, 65, 1027–1032. [CrossRef]
17. Abbasbandy, S.; Hashemi, M.S.; Hashim, I. On convergence of homotopy analysis method and its application to fractional

integro-differetnial equations. Quaest. Math. 2013, 36, 93–105. [CrossRef]
18. Ma, X.; Huang, C. Spectral collocation method for linear fractional integro-differetnial equations. Appl. Math. Model. 2014,

38, 1434–1448. [CrossRef]
19. Mohebbi, A. Compact finite difference shceme for the solution of a time fractional partial integro-differential equation with a

weakly singular kernel. Math. Methods Appl. Sci. 2017, 40, 7627–7639. [CrossRef]
20. Qiao, L.; Xu, D.; Wang, Z. An ADI difference scheme based on fractional trapezoidal rule for fractional integro-differential

equation with a weakly singular kernel. Appl. Math. Comput. 2019, 354, 103–114. [CrossRef]
21. Nemati, S.; Lima, P.M.; Sedaghat, S. Legendre wavelet collocation method combined with the Gauss-Jacobi quadrature for solving

fractional delay-type integro-differential equations. Appl. Numer. Math. 2020, 149, 99–112. [CrossRef]
22. Dehestani, H.; Ordokhani, Y.; Razzaghi, M. Pseudo-operational matrix method for the solution of variable-order fractional partial

integro-differential equation. Eng. Comput. 2021, 37, 1791–1806. [CrossRef]
23. Kamran, K.; Shah, Z.; Kumam, P.; Alreshidi, N.A. A meshless method based on the Laplace transform for the 2D multi-term time

fractional partial integro-differential equation. Mathematics 2020, 8, 1972. [CrossRef]
24. Dehghan, M.; Abbaszadeh, M. Error estimate of finite element/finite difference technique for solution of two-dimensional weakly

singular integro-partial differential equation with space and time fractional derivative. Appl. Numer. Math. 2019, 356, 314–328.
[CrossRef]

25. Fakhar-Izadi, F. Fully spectral-Galerkin method for the one and two dimensional fourth order time factional partial integro-
differential equaitons with a weakly singular kernel. J. Numer. Methods Partial Differ. Equ. 2022, 38, 160–176. [CrossRef]

26. Panda, A.; Santra, S.; Mohapatra, J. Adomian decomposition and homotopy perturbation method for the solution of time
fractional partial integro-differential equations. J. Appl. Math. Comput. 2022, 68, 2065–2082. [CrossRef]

27. Liu, T.; Ouyang, D.; Guo, L.; Qiu, R.; Qi, Y.; Xie, W.; Ma, Q.; Liu, C. Combination of multigrid with constraint data for inverse
problem of nonlinear diffusion equation. Mathematics 2023, 11, 2887. [CrossRef]

28. Liu, T. Parameter estimation with the multigrid-homotopy method for a nonlinear diffusion equation. J. Comput. Appl. Math.
2022, 413, 114393. [CrossRef]

29. Liu, T. Porosity reconstruction based on Biot elastic model of porous media by homotopy perturbation method. Chaos Solitons
Fractals 2022, 158, 112007. [CrossRef]

30. Liu, T.; Ding, Z.; Yu, J.; Zhang, W. Parameter estimation for nonlinear diffusion problems by the constrained homotopy method.
Mathematics 2023, 11, 2642. [CrossRef]

31. Liu, T.; Xia, K.; Zheng, Y.; Yang, Y.; Qiu, R.; Qi, Y.; Liu, C. A homotopy method for the constrained inverse problem in the
multiphase porous media flow. Processes 2022, 10, 1143. [CrossRef]

32. Tuan, V.K. Fractional partial integro-differential equation in wiener spaces. Fract. Calc. Appl. Anal. 2020, 23, 1300–1328. [CrossRef]
33. Zhu, B.; Han, B.Y. Existence and uniqueness of mild solutions for fractional partial integro-differential equations. Mediterr. J.

Math. 2020, 17, 113. [CrossRef]
34. Maji. S.; Natesan. S. Analytical and numerical solution techniques for a class of time-fractional integro-partial differential

equations. Numer. Algorithms 2023, 94, 229–256. [CrossRef]
35. Stenger, B.F. Numerical methods based on the Whittaker cardinal or Sinc functions. SIAM Rev. 1981, 23, 165–224. [CrossRef]
36. Stenger, B.F. Sinc Methods for Quadrature and Differential Equations. SIAM Rev. 1993, 35, 682–683. [CrossRef]
37. Stenger, B.F. Numerical Methods Based on Sinc and Analytic Functions; Springer: New York, NY, USA, 1993.
38. Rashidinia, J.; Nabati, M.; Barati, A. Sinc-Galerkin method for solving nonlinear weakly singular two point boundary value

problems. Int. J. Comput. Math. 2017, 94, 79–94. [CrossRef]
39. Parand, K.; Dehghan, M.; Pirkhedri, A. Sinc-collocation method for solving the Blasius equation. Phys. Lett. A 2009, 373, 4060–4065.

[CrossRef]

69



Axioms 2023, 12, 898

40. Winter, D.F.; Bowers. K.; Lund. J. Wind-driven currents in a sea with a variable Eddy viscosity calculated via a Sinc–Galerkin
technique. Int. J. Numer. Methods Fluids 2000, 33, 1041–1073. [CrossRef]

41. Qiu, W.; Xu, D.; Guo, J. The Crank-Nicolson-type Sinc-Galerkin method for the fourth-order partial integro-differential equation
with a weakly singular kernel. Appl. Numer. Math. 2021, 159, 239–258. [CrossRef]

42. Okayama, K. Theoretical analysis of a Sinc-Nyström method for Volterra integro-differential equations and its improvement.
Appl. Math. Comput. 2018, 324, 1–15. [CrossRef]

43. AI-Khaled, K.; Darweesh, A.; Yousef, M.H. Covergence of numerical scheme for the solution of partial integro-differential
equations used in heat transfer. J. Appl. Math. Comput. 2019, 61, 657–675. [CrossRef]

44. Nagy, A.M. Numerical solution of time fractional nonlinear Klein–Gordon equation using Sinc-Chebyshev collocation method.
Appl. Math. Comput. 2017, 310, 139–148. [CrossRef]

45. Saadatmandi, A.; Dehghan, M.; Azizi, M. The Sinc-Legendre collocation method for a class of fractional convection-diffusion
equations with variable coefficients. Commun. Nonlinear Sci. Numer. Simul. 2012, 17, 4125–4136. [CrossRef]

46. Pirkhedri, A.; Javadi, H.H.S. Solving the time-fractional diffusion equation via Sinc-Haar collocation method. Appl. Math. Comput.
2015, 257, 317–326. [CrossRef]

47. Chen, L.; Li, M.; Xu, Q. Sinc-Galerkin method for solving the time fractional convection–diffusion equation with variable
coefficients. Adv. Differ. Equ. 2020, 2020, 504. [CrossRef]

48. Lund, J.; Bowers, K. Sinc Method for Quadrature and Differential Equations; SIAM: Philadelphia, PA, USA, 1992.
49. Meerschaert, M.M.; Tadjeran, C. Finite difference approxiamtions for fractional advection dispersion flow equations. J. Comput.

Appl. Math. 2004, 172, 65–77. [CrossRef]
50. Tian, W.Y.; Zhou, H.; Deng, W.H. A class of second order difference approximations for solving space fractional diffusion

equations. Math. Comput. 2015, 84, 1703–1727. [CrossRef]
51. Fahim, A.; Araghi, M.A.F.; Rashidinia, J.; Jalalvand, M. Numerical solution of Volterra paritial integro-differential equations based

on Sinc-collocation method. Adv. Differ. Equ. 2017, 2017, 362. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

70



Citation: Zhang, G.-L.; Wang, Z.-W.;

Sun, Y.; Liu, T. Asymptotical Stability

Criteria for Exact Solutions and

Numerical Solutions of Nonlinear

Impulsive Neutral Delay Differential

Equations. Axioms 2023, 12, 988.

https://doi.org/10.3390/

axioms12100988

Academic Editor: Clemente

Cesarano

Received: 30 August 2023

Revised: 11 October 2023

Accepted: 13 October 2023

Published: 18 October 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

axioms

Article

Asymptotical Stability Criteria for Exact Solutions and
Numerical Solutions of Nonlinear Impulsive Neutral Delay
Differential Equations

Gui-Lai Zhang *, Zhi-Wei Wang, Yang Sun and Tao Liu

College of Sciences, Northeastern University, Shenyang 110819, China; 2172045@stu.neu.edu.cn (Z.-W.W.);
2101906@stu.neu.edu.cn (Y.S.); liutao@neuq.edu.cn (T.L.)
* Correspondence: zhangguilai@neuq.edu.cn

Abstract: In this paper, the idea of two transformations is first proposed and applied. Some new dif-
ferent sufficient conditions for the asymptotical stability of the exact solutions of nonlinear impulsive
neutral delay differential equations (INDDEs) are obtained. A new numerical scheme for INDDEs
is also constructed based on the idea. The numerical methods that can preserve the stability and
asymptotical stability of the exact solutions are provided. Two numerical examples are provided to
demonstrate the theoretical results.

Keywords: Runge–Kutta method; BNf -stable; implicit Euler method; Lobatto IIIC method
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1. Introduction

There is extensive use of impulsive differential equations in economics, engineering,
biology, medicine, etc. In recent years, the theory of INDDEs has been the object of active
research. Some scholars have investigated the existence, uniqueness, and continuous de-
pendence of INDDEs (see [1,2]) and the oscillation of the first-order, second-order, and
even-order of INDDEs (see [3–5]). In [6], the thermoelasticity of type III for Cosserat
media has been studied. In [7], the asymptotic properties of the solutions of nonlinear,
non-instantaneous impulsive differential equations has been studied. In [8], the Legendre
spectral-collocation method is applied to delay the differential and stochastic delay differ-
ential equation. In [9], the convergence and superconvergence of collocation methods for
one class of impulsive delay differential equations have been studied, respectively.

However, there are not many studies on the stability of INDDEs. In [10], the asymp-
totic behavior of some special nonlinear INDDEs were considered by establishing proper
Lyapunov functions and certain analysis techniques. In [11], some results ensuring the
global exponential stability of impulsive functional equations of neutral type were derived
via impulsive delay inequality and certain analysis techniques that are very popular in the
application of the dynamical analysis of neural networks. In [3], the authors developed the
Razumikhin method for impulsive functional differential equations of neutral type and
established some Razumikhin theorems. Recently, we found that there are errors in [12]
(Stability of zero solution of linear INDDE with constant coefficients is studied, but zero is
not the solution of the linear INDDE in [12]). All the above studies focus on the asymptotic
stability of zero solutions, but in this paper we will study the stability of the exact solutions
(not necessarily zero solutions) of INDDEs.

Usually, as is well known, it is difficult, sometime maybe impossible, to acquire the
explicit solutions for INDDEs, so it is necessary to investigate the numerical methods for
INDDEs. Numerical stability refers to the degree to which small perturbations of input
data affect the output results of the algorithm when solving numerical problems using an
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algorithm. A numerically stable algorithm can produce accurate results that are not affected
by input perturbations, while a numerically unstable algorithm may produce unpredictable
results. Hence, it is necessary to investigate the asymptotical stability of numerical methods
for INDDEs.

The stability of the exact solutions and the numerical solutions for NDDEs without
impulsive perturbations has also been extensively studied (see [13–27]). There are many
classic results found in the literature [14,21,22,28]. Recently, some new and important
related developments have emerged. In papers [17–20], Guang-Da Hu and Taketomo
Mitsui et al. studied the asymptotical stability of the exact solutions and the numerical
solutions of linear NDDEs in real space and complex space, respectively. In [27], Wang
and Li studied the stability and asymptotic stability of θ-methods for nonlinear NDDEs
with constant delay and with proportional delay. In [15], Enright and Hayashi established
sufficient conditions for order of convergence results regarding continuous Runge–Kutta
methods for NDDEs with state dependent delays. Zhang, Song, and Liu have studied the
asymptotic stability of linear impulsive delay differential equations (IDDEs) (see [29]); the
exponential stability of linear IDDEs (see [30]); and the stability and asymptotical stability
of nonlinear IDDEs (see [31]. Based on their ideas, the problems of IDDEs are transformed
into the problems of delay differential equations without impulsive perturbations. In this
paper, this idea is applied to INDDEs for the first time, and to the best of our knowl-
edge no article has previously been written regarding the stability of numerical methods
for INDDEs.

The goal of this paper is to provide new different asymptotical stability criteria for
exact solutions and numerical solutions of a class of nonlinear impulsive neutral differential
equations (INDDEs). We will adopt the idea of two transformations to achieve our goal;
the problems of the stability and asymptotical stability of INDDEs are first transformed
into the problems of NDDEs without impulsive perturbations, and then transformed into
the problems of ordinary differential equations with a forcing term. The organization
of this paper is as follows. In Section 2, we first transform the problems of the stability
and asymptotical stability of INDDEs into the problems of NDDEs without impulsive
perturbations, and we then further transform them into the problems of ordinary different
equations with a forcing term. On this basis, two general forms of criteria for the stability
and asymptotical of INDDEs are established. Furthermore, when different transforms
are chosen, different criterion for the stability and asymptotical stability can be obtained.
For brevity, three different transforms are provided to achieve some specific different
criteria for stability and asymptotical stability. In Section 3, based on the ideas in Section 2,
we will derive the numerical methods of INDDEs, which can preserve the stability and
asymptotical stability of the nonlinear INDDEs if corresponding continuous Runge–Kutta
methods are BNf -stable. In Section 4, one linear numerical example and one nonlinear
numerical example are chosen to demonstrate the theoretical results.

2. Asymptotical Stability of the Exact Solutions

Firstly, the relationships between INDDEs and NDDEs are constructed in Section 2.1.
Based on this idea, the general sufficient conditions for the asymptotical stability of the
exact solutions of INDDEs are established in Section 2.2. Finally, the different special
relationships between INDDEs and NDDEs are studied, and different sufficient conditions
for the asymptotical stability of INDDEs are obtained in Section 2.3.

In this article, we will study the following nonlinear INDDEs:⎧⎪⎨⎪⎩
d
dt (x(t)− G(t, x(t − τ))) = F(t, x(t), x(t − τ)), t ≥ 0, t �= kτ,
x(t) = λx(t−), t = kτ,
x(t) = ψ(t), t ∈ [−τ, 0),

(1)
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and the same equation with another initial function:⎧⎪⎨⎪⎩
d
dt (x̃(t)− G(t, x̃(t − τ))) = F(t, x̃(t), x̃(t − τ)), t ≥ 0, t �= kτ,
x̃(t) = λx̃(t−), t = kτ,
x̃(t) = ψ̃(t), t ∈ [−τ, 0),

(2)

where τ > 0, λ �= 0, λ �= 1, k ∈ N = {0, 1, 2, · · · }, ψ and ψ̃ are continuous functions on
[−τ, 0), and lim

t→0−
ψ(t) and lim

t→0−
ψ̃(t) exist. The right-hand derivative of x(t) is written

as x′(t). Assume that 〈·, ·〉 is a given inner product on Cd and ‖ · ‖ is the induced norm.
Assume that the function F : [0, ∞) × Cd × Cd → Cd is continuous in t and fulfills the
following conditions: for arbitrary x, x1, x2, y1, y2 ∈ Cd and arbitrary t ∈ [0,+∞), there are
real value functions X, Y from [0,+∞) to R, such that

Y(t) ≥ sup
y1 �=y2,x

�(〈H(t, y1, x)− H(t, y2, x), y1 − y2〉)
‖y1 − y2‖2 (3)

X(t) ≥ sup
y,x1 �=x2

‖H(t, y, x1)− H(t, y, x2)‖
‖x1 − x2‖ , (4)

where H(t, y, x) = F(t, y + G(t, x), x), which is the same as that in [14]. Assume that the
function G : [0, ∞)×Cd → Cd is continuous in t and fulfills the following conditions: for
arbitrary x, x1, x2,∈ Cd and arbitrary t ∈ [0,+∞), a real value function Z from [0,+∞) to
R satisfies

Z(t) ≥ sup
x1 �=x2

‖G(t, x1)− G(t, x2)‖
‖x1 − x2‖ . (5)

2.1. Relationships between INDDEs and NDDEs

In order to establish the relationships between INDDEs and NDDEs, setting the scalar
function α : [−τ, ∞) → C satisfies the following:

(1) for any t ∈ [0, ∞), α(t) = α(t − τ);
(2) α(t) is infinitely smooth on [0, τ);
(3) α(0) = 1 and α(0−) = λ;
(4) inf

t∈[0,τ)
|α(t)| ≥ m > 0.

Theorem 1. If x(t) is the solution of INDDE (1), y(t) = α(t)x(t) for t ∈ [−τ,+∞) , then y(t)
is the solution of the following NDDE:⎧⎨⎩

d
dt (y(t)− I(t, y(t − τ)) = J(t, y(t), y(t − τ)), t ≥ 0,

y(t) = Ψ(t), t ∈ [−τ, 0],
(6)

where
I(t, x) = α(t)G(t,

x
α(t)

)

J(t, y, z) =
α′(t)y
α(t)

− α′(t)G(t,
z

α(t)
) + α(t)F(t,

y
α(t)

,
z

α(t)
)

and

Ψ(t) =

{
α(t)ψ(t), t ∈ [−τ, 0),

α(0−)ψ(0−), t = 0.

In reverse, assuming y(t) is the solution of NDDE (6), x(t) = y(t)
α(t) for t ∈ [−τ,+∞), then

x(t) is the solution of INDDE (1).
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Proof. (i) On [kτ, (k + 1)τ), k = −1, 0, 1, · · · , α(t) and x(t) are continuous, which implies
that y(t) is continuous. We can obtain that

y(kτ) = y(kτ+) = α(kτ+)x(kτ+)

= α(kτ)λx(kτ−) = α(0)λx(kτ−)
= λx(kτ−)

and

y(kτ−) = α(kτ−)x(kτ−) = λx(kτ−),

implying y(kτ) = y(kτ+) = y(kτ−), k ∈ N. Consequently, y(t) is continuous on [−τ, ∞).
For t ∈ [kτ, (k + 1)τ), k ∈ N, we obtain

d
dt
[y(t)− I(t, y(t − τ))] =

d
dt
[y(t)− α(t)G(t,

y(t − τ)

α(t)
)]

=
d
dt
[α(t)x(t)− α(t)G(t, x(t − τ))]

= α′(t)x(t)− α′(t)G(t, x(t − τ)) + α(t)
d
dt
[x(t)− G(t, x(t − τ))]

= α′(t)x(t)− α′(t)G(t, x(t − τ)) + α(t)F(t, x(t), x(t − τ))

=
α′(t)y(t)

α(t)
− α′(t)G(t,

y(t − τ)

α(t)
) + α(t)F(t,

y(t)
α(t)

,
y(t − τ)

α(t)
)

= J(t, y(t), y(t − τ))

(ii) Let y(t) be the solution of (6). For t ∈ [kτ, (k + 1)τ), k ∈ N,

d
dt
[x(t)− G(t, x(t − τ))] =

d
dt
[
y(t)
α(t)

− G(t,
y(t − τ)

α(t)
)]

=
y′(t)
α(t)

− α′(t)y(t)
α2(t)

− [
1

α(t)
d
dt
(α(t)G(t,

y(t − τ)

α(t)
))− α′(t)

α(t)
G(t,

y(t − τ)

α(t)
)]

=
1

α(t)
d
dt
[y(t)− I(t, y(t − τ))]− α′(t)y(t)

α2(t)
+

α′(t)
α(t)

G(t,
y(t − τ)

α(t)
)]

=
J(t, y(t), y(t − τ))

α(t)
− α′(t)y(t)

α2(t)
+

α′(t)
α(t)

G(t,
y(t − τ)

α(t)
)]

= F(t,
y(t)
α(t)

,
y(t − τ)

α(t)
) = F(t,

y(t)
α(t)

,
y(t − τ)

α(t − τ)
)

= F(t, x(t), x(t − τ)).

We can easily see that

x(kτ) =
y(kτ)

α(kτ)
=

y(kτ)

α(0)
= y(kτ)

and

x(kτ−) = lim
t→kτ−

y(t)
α(t)

=
y(kτ)

α(kτ−) =
y(kτ)

α(τ−) =
y(kτ)

λ
,

implying that x(kτ) = λx(kτ−), k ∈ N. Apparently, we obtain x(t) = y(t)
α(t) = ψ(t), t ∈

[−τ, 0). Therefore, x(t) is the solution of INDDE (1).

Since in Theorem 1, α(t) and 1
α(t) are bounded for all t ∈ R, we can obtain the

following result.

Remark 1. The exact solution x(t) of INDDE (1) is stable if and only if the exact solution y(t)
of NDDE (6) is stable when y(t) = α(t)x(t) for t ∈ [−τ,+∞). Moreover, the exact solution
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x(t) of INDDE (1) is asymptotically stable if and only if the exact solution y(t) of NDDE (6) is
asymptotically stable when y(t) = α(t)x(t) for t ∈ [−τ,+∞).

2.2. Asymptotical Stability of INDDEs

According to Theorem 1, assuming ỹ(t) = α(t)x̃(t), t ≥ −τ, then x̃(t) is the solution
of (2) if and only if ỹ(t) is the solution of the following equation:⎧⎨⎩

d
dt (ỹ(t)− I(t, ỹ(t − τ)) = J(t, ỹ(t), ỹ(t − τ)), t ≥ 0,

ỹ(t) = Ψ̃(t), t ∈ [−τ, 0],
(7)

where

Ψ̃(t) =

{
α(t)ψ̃(t), t ∈ [−τ, 0),

α(0−)ψ̃(0−), t = 0.

Let
P(t) = y(t)− I(t, y(t − τ)), P̃(t) = ỹ(t)− I(t, ỹ(t − τ)),

Q(t, y, z) = J(t, y + I(t, z), z).

Then the NDDE (6) can be expressed as the following ordinary differential equations with
forcing term: {

P′(t) = Q(t, P(t), y(t − τ)), t ≥ 0,

P(0) = Ψ(0)− I(0, Ψ(−τ)),
(8)

coupled with the algebraic recursion

y(t) =

{
Ψ(t), t ∈ [−τ, 0),

P(t) + I(t, y(t − τ)), t ≥ 0.

Analogously, the NDDE (7) can also be expressed in the following form:{
P̃′(t) = Q(t, P̃(t), ỹ(t − τ)), t ≥ 0,

P̃(0) = Ψ̃(0)− I(0, Ψ̃(−τ)),
(9)

coupled with the algebraic recursion

ỹ(t) =

{
Ψ̃(t), t ∈ [−τ, 0),

P̃(t) + I(t, ỹ(t − τ)), t ≥ 0.

Theorem 2. Assume IDDEs (1) and (2) satisfy (3)–(5). If Y(t) ≤ 0, there exists a bounded
function r(t), integrable in any bounded interval, such that r(t) ≤ 0, r(0) < 0,

ωX(t) = r(t)
(
�(α′(t)

α(t)
) +

Y(t)
ω2

)
(10)

and a non-negative constant ρ ≤ 1, such that

sup
0≤x≤t

|r(x)|+ ωZ(t) ≤ ρ, t ≥ 0, (11)

then the solution of IDDEs (1) and (2) are bounded stable; that is

‖x(t)− x̃(t)‖ ≤ max{ω sup
t∈[−τ,0)

‖ϕ(t)− ϕ̃(t)‖,
|λ|‖ϕ(0−)− ϕ̃(0−)‖

−mr(0)
}, t ≥ 0.
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Moreover, if ρ < 1 and

�(α′(t)
α(t)

) +
Y(t)
ω2 ≤ Y0 < 0, t ≥ 0, (12)

then IDDEs (1) and (2) are asymptotically stable; that is

lim
t→∞

‖x(t)− x̃(t)‖ = 0.

Proof. We will apply inequalities (3)–(5) to prove that the function Q : [0, ∞)×Cd ×Cd → Cd

is continuous in t and satisfies the following conditions: for arbitrary y, y1, y2, x1, x2 ∈ Cd, and
∀t ∈ [0,+∞),

sup
y1 �=y2,x

�(〈Q(t, y1, x)− Q(t, y2, x), y1 − y2〉)
‖y1 − y2‖2 ≤ �(α′(t)

α(t)
) + ω2Y(t), (13)

sup
y,x1 �=x2

‖Q(t, y, x1)− Q(t, y, x2)‖
‖x1 − x2‖ ≤ ωX(t), (14)

sup
x1 �=x2

‖G(t, x1)− G(t, x2)‖
‖x1 − x2‖ ≤ ωZ(t). (15)

First, the inequality (13) can be proven as follows:

�〈Q(t, y1, x)− Q(t, y2, x), y1 − y2, 〉
= �〈J(t, y1 + I(t, x), x)− J(t, y2 + I(t, x), x), y1 − y2, 〉
= �〈α′(t)

α(t)
(y1 + I(t, x))− α′(t)G(t,

x
α(t)

) + α(t)F(t,
1

α(t)
(y1 + I(t, x)),

x
α(t)

)

− [
α′(t)
α(t)

(y2 + I(t, x))− α′(t)G(t,
x

α(t)
) + α(t)F(t,

1
α(t)

(y2 + I(t, x)),
x

α(t)
)],

y1 − y2〉
= �〈α′(t)

α(t)
(y1 − y2) + α(t)[F(t,

1
α(t)

(y1 + I(t, x)),
x

α(t)
)

− α(t)F(t,
1

α(t)
(y2 + I(t, x)),

x
α(t)

)], y1 − y2〉

= �(α′(t)
α(t)

)‖y1 − y2‖2 +�(α(t)〈F(t,
y1

α(t)
+ G(t,

x
α(t)

),
x

α(t)
)

− F(t,
y2

α(t)
+ G(t,

x
α(t)

),
x

α(t)
)), y1 − y2〉)

= �(α′(t)
α(t)

)‖y1 − y2‖2 + |α(t)|2�(〈H(t,
y1

α(t)
,

x
α(t)

)− H(t,
y2

α(t)
,

x
α(t)

),
y1

α(t)
− y2

α(t)
〉)

≤ �(α′(t)
α(t)

)‖y1 − y2‖2 + |α(t)|2Y(t)‖ y1

α(t)
− y2

α(t)
‖2

which implies that, if Y(t) ≤ 0,

�〈Q(t, y1, x)− Q(t, y2, x), y1 − y2, 〉 ≤ [�(α′(t)
α(t)

) +
Y(t)
ω2 ]‖y1 − y2‖2 (16)

and if Y(t) ≤ Ŷ and Ŷ > 0,

�〈Q(t, y1, x)− Q(t, y2, x), y1 − y2, 〉 ≤ [�(α′(t)
α(t)

) + ω2Ŷ]‖y1 − y2‖2 (17)
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Next, we will prove the inequality (14) as follows:

‖Q(t, y, x1)− Q(t, y, x2)‖
= ‖J(t, y + I(t, x1), x1)− J(t, y + I(t, x2), x2)‖
= ‖α′(t)

α(t)
(y + I(t, x1))− α′(t)G(t,

x1

α(t)
) + α(t)F(t,

1
α(t)

(y + I(t, x1)),
x1

α(t)
)

− [
α′(t)
α(t)

(y + I(t, x2))− α′(t)G(t,
x2

α(t)
) + α(t)F(t,

1
α(t)

(y + I(t, x2)),
x2

α(t)
)]‖

= ω‖H(t,
y

α(t)
,

x1

α(t)
)− H(t,

y
α(t)

,
x2

α(t)
)‖

≤ ωX(t)‖x1 − x2‖
Finally, the inequality (15) can be proven as follows:

‖I(t, x1)− I(t, x2)‖
= ‖α(t)G(t,

x1

α(t)
)− α(t)G(t,

x2

α(t)
)‖

≤ (sup
t≥0

|α(t)|)‖G(t,
x1

α(t)
)− G(t,

x2

α(t)
)‖

≤ Z(t)(sup
t≥0

|α(t)|)‖ x1

α(t)
− x2

α(t)
‖

≤ ωZ(t)‖x1 − x2‖.

By [14] (Theorem 9.4.1) or [24] (Theorem 3.1, Theorem 4.2), we can obtain that

‖y(t)− ỹ(t)‖ ≤ max{ sup
t∈[−τ,0)

‖Ψ(t)− Ψ̃(t)‖,
‖Ψ(0)− Ψ̃(0)‖

−r(0)
}, t ≥ 0

and
lim
t→∞

‖y(t)− ỹ(t)‖ = 0.

Because x(t) = y(t)
α(t) , t ≥ −τ, we know the theorem holds.

Theorem 3. Assume IDDEs (1) and (2) satisfy (3)–(5). If Y(t) ≤ Ŷ, Ŷ > 0, there exists a bounded
function r̄(t), integrable in any bounded interval, such that r̄(t) ≤ 0, r̄(0) < 0,

ωX(t) = r̄(t)
(
�(α′(t)

α(t)
) + ω2Ŷ

)
(18)

and a non-negative constant ρ̄ ≤ 1, such that

sup
0≤x≤t

|r(x)|+ ωZ(t) ≤ ρ̄, t ≥ 0, (19)

then the solution of IDDEs (1) and (2) are bounded stable; that is

‖x(t)− x̃(t)‖ ≤ max{ω sup
t∈[−τ,0)

‖ϕ(t)− ϕ̃(t)‖,
|λ|‖ϕ(0−)− ϕ̃(0−)‖

−mr̄(0)
}, t ≥ 0.

Moreover, if ρ̄ < 1 and

�(α′(t)
α(t)

) + ω2Ŷ ≤ Ȳ0 < 0, t ≥ 0, (20)
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then IDDEs (1) and (2) are asymptotically stable; that is

lim
t→∞

‖x(t)− x̃(t)‖ = 0.

2.3. Special Cases

When different functions of α(t) are chosen, different sufficient conditions for the
bounded stability and asymptotical stability of the exact solutions of (1) and (2) can be
obtained. For brevity, we only consider three of them.

Special Case I. Set α1(t) = λ{ t
τ }, t ∈ [−τ, ∞), where { t

τ } = t
τ − � t

τ �, � t
τ � denotes the

floor function. The following theorem can be seen as a special case of Theorem 2 when
α(t) = α1(t).

Theorem 4. Let x(t) be the solution of (1). If z1(t) = λ{ t
τ }x(t), t ∈ [−τ, ∞), then z1(t) is the

solution of ⎧⎨⎩
d
dt [z1(t)− I1(t, z1(t − τ))] = J1(t, z1(t), z1(t − τ)), t ≥ 0,

z1(t) = Ψ1(t), t ∈ [−τ, 0],
(21)

where
I1(t, x)) = λ{ t

τ }G(t, λ−{ t
τ }x)

J1(t, y, x) = (
ln λ

τ
)y − λ{ t

τ }( ln λ

τ
)G(t, λ−{ t

τ }x) + λ{ t
τ }F(t, λ−{ t

τ }y, λ−{ t
τ }x)

Ψ1(t) =

{
λ

t
τ +1ψ(t), t ∈ [−τ, 0),

λψ(0−), t = 0.

Conversely, x(t) is the solution of (1) if z1(t) is the solution of (21) and x(t) = λ−{ t
τ }z1(t),

t ∈ [−τ, ∞).

Theorem 5. Assume IDDEs (1) and (2) satisfy inequalities (3)–(5). If Y(t) ≤ 0, there exists a
bounded function r1(t), integrable in any bounded interval, such that r1(t) ≤ 0 and r1(0) < 0,

ω1X(t) = r1(t)

(
ln |λ|

τ
+

Y(t)
ω2

1

)

and a non-negative constant ρ1 ≤ 1, such that

sup
0≤x≤t

|r1(x)|+ ω1Z(t) ≤ ρ1, t ≥ 0,

then the solutions of IDDEs (1) and (2) are bounded stable,

‖x(t)− x̃(t)‖ ≤ max{ω1 sup
t∈[−τ,0)

‖ϕ(t)− ϕ̃(t)‖,
|λ|‖ϕ(0−)− ϕ̃(0−)‖

−m1r1(0)
}, t ≥ 0.

where ω1 = max{|λ|, 1
|λ| }, m1 = min{1, |λ|}. Moreover, if ρ1 < 1 and

ln |λ|
τ

+
Y(t)
ω2

1
≤ Y1 < 0, t ≥ 0,

then IDDEs (1) and (2) are asymptotically stable.
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Theorem 6. Assume IDDEs (1) and (2) satisfy inequalities (3)–(5). If Y(t) ≤ Ŷ, Ŷ > 0, there
exists a bounded function r̄1(t), integrable in any bounded interval, such that r̄1(t) ≤ 0, r̄1(0) < 0,

ω1X(t) = r̄1(t)
(

ln |λ|
τ

+ ω2
1Ŷ

)
and a non-negative constant ρ̄1 ≤ 1, such that

sup
0≤x≤t

|r(x)|+ ω1Z(t) ≤ ρ̄1, t ≥ 0,

then the solutions of IDDEs (1) and (2) are bounded,

‖x(t)− x̃(t)‖ ≤ max{ω1 sup
t∈[−τ,0)

‖ϕ(t)− ϕ̃(t)‖,
|λ|‖ϕ(0−)− ϕ̃(0−)‖

−m1r̄1(0)
}, t ≥ 0.

Moreover, if ρ̄1 < 1 and

ln |λ|
τ

+ ω2
1Ŷ ≤ Ȳ1 < 0, t ≥ 0,

then IDDEs (1) and (2) are asymptotically stable.

Special Case II. Let α2(t) = 1+ (λ− 1){ t
τ } , t ∈ [−τ, ∞), λ > 0, λ �= 1. The following

theorem can be seen as a special case of Theorem 2 when α(t) = α2(t).

Theorem 7. Assume that x(t) is the solution of (1) and z2(t) = [1+(λ− 1){ t
τ }]x(t), t ∈ [−τ, ∞).

Then z2(t) is the solution of⎧⎨⎩
d
dt [z2(t)− I2(t, z2(t − τ))] = J2(t, z2(t), z2(t − τ)), t ≥ 0,

z2(t) = Ψ2(t), t ∈ [−τ, 0],
(22)

where

I2(t, x)) = α2(t)G(t,
x

α2(t)
) =

(
1 + (λ − 1){ t

τ
}
)

G(t,
x(

1 + (λ − 1){ t
τ }

) )
J2(t, y, x) =

(λ − 1)y
τα2(t)

− λ − 1
τ

G(t,
x

α2(t)
) + α2(t)F(t,

y
α2(t)

,
x

α2(t)
)

Ψ2(t) =

{
[1 + (λ − 1)( t

τ + 1)]ψ(t), t ∈ [−τ, 0),

λψ(0−), t = 0.

Conversely, x(t) is the solution of (1) if z2(t) is the solution of (22) and x(t) = z2(t)
1+(λ−1){ t

τ }
,

t ∈ [−τ, ∞).

Theorem 8. Assume that λ ∈ R, λ > 0, λ �= 1, IDDEs (1) and (2) satisfy (3)–(5). If Y(t) ≤ 0,
there exists a bounded function r2(t), integrable in any bounded interval, such that r2(t) ≤ 0,
r2(0) < 0,

ω2X(t) = r(t)

(
λ − 1

τ + (λ − 1)τ{ t
τ }

+
Y(t)
ω2

2

)
and a non-negative constant ρ2 ≤ 1, such that

sup
0≤x≤t

|r2(x)|+ ω2Z(t) ≤ ρ2, t ≥ 0,
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then the exact solutions of IDDEs (1) and (2) are bounded stable as follows:

‖x(t)− x̃(t)‖ ≤ max{ω2 sup
t∈[−τ,0)

‖ϕ(t)− ϕ̃(t)‖,
λ‖ϕ(0−)− ϕ̃(0−)‖

−m2r2(0)
}, t ≥ 0,

where ω2 = max{λ, 1
λ}, m2 = min{1, λ}. Moreover, if ρ2 < 1 and there is a negative constant

Y2 such that
λ − 1

τ + (λ − 1)τ{ t
τ }

+
Y(t)
ω2

2
≤ Y2 < 0, t ≥ 0,

then IDDEs (1) and (2) are asymptotically stable.

Theorem 9. Assume that IDDEs (1) and (2) satisfy (3)–(5), λ > 0 and λ �= 1. If Y(t) ≤ Ŷ,
Ŷ > 0, there exists a bounded function r̄2(t), integrable in any bounded interval, such that
r̄2(t) ≤ 0, r̄2(0) < 0,

ω2X(t) = r(t)

(
λ − 1

τ + (λ − 1)τ{ t
τ }

+ ω2
2Ŷ

)

and a non-negative constant ρ̄2 ≤ 1, such that

sup
0≤x≤t

|r(x)|+ ω2Z(t) ≤ ρ̄2, t ≥ 0,

then the exact solutions of IDDEs (1) and (2) are bounded stable as follows:

‖x(t)− x̃(t)‖ ≤ max{ω2 sup
t∈[−τ,0)

‖ϕ(t)− ϕ̃(t)‖,
λ‖ϕ(0−)− ϕ̃(0−)‖

−m2r̄2(0)
}, t ≥ 0.

Moreover, if ρ̄2 < 1 and there is a negative constant Ȳ2, such that

λ − 1
τ + (λ − 1)τ{ t

τ }
+ ω2

2Ŷ ≤ Ȳ2 < 0, t ≥ 0,

then IDDEs (1) and (2) are asymptotically stable.

Because λ−1
τ+(λ−1)τ{ t

τ }
≤ λ−1

τ for all λ > 0, ∀t ∈ R, by Theorems 8 and 9, we can obtain

the following two results.

Corollary 1. Assume that IDDEs (1) and (2) satisfy (3)–(5), λ �= 1 and λ > 0. If Y(t) ≤ 0, there
exists a bounded function r̃2(t), integrable in any bounded interval, such that r̃2(t) ≤ 0, r̃2(0) < 0,

ω2X(t) = r̃2(t)

(
λ − 1

τ
+

Y(t)
ω2

2

)

and a non-negative constant ρ̃2 ≤ 1, such that

sup
0≤x≤t

|r̃2(x)|+ ω2Z(t) ≤ ρ̃2, t ≥ 0,

then the exact solutions of IDDEs (1) and (2) are bounded stable as follows:

‖x(t)− x̃(t)‖ ≤ max{ω2 sup
t∈[−τ,0)

‖ϕ(t)− ϕ̃(t)‖,
λ‖ϕ(0−)− ϕ̃(0−)‖

−m2r̃2(0)
}, t ≥ 0.
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Moreover, if ρ̃2 < 1 and there is a positive constant Y2, such that

λ − 1
τ

+
Y(t)
ω2

2
≤ Y2 < 0, t ≥ 0,

then IDDEs (1) and (2) are asymptotically stable.

Corollary 2. Assume that IDDEs (1) and (2) satisfy (3)–(5) and λ > 0, λ �= 1. If there exists a
bounded function ř2(t), integrable in any bounded interval, such that ř2(t) ≤ 0, ř2(0) < 0,

ω2X(t) = ř2(t)
(

λ − 1
τ

+ ω2
2Ŷ

)
and a non-negative constant ρ̌2 ≤ 1, such that

sup
0≤x≤t

|r(x)|+ ω2Z(t) ≤ ρ̌2, t ≥ 0,

then the exact solutions of IDDEs (1) and (2) are bounded stable as follows:

‖x(t)− x̃(t)‖ ≤ max{ω2 sup
t∈[−τ,0)

‖ϕ(t)− ϕ̃(t)‖,
λ‖ϕ(0−)− ϕ̃(0−)‖

−m2ř2(0)
}, t ≥ 0.

Moreover, if ρ̌2 < 1 and λ−1
τ + ω2

2Ŷ < 0, t ≥ 0, then IDDEs (1) and (2) are asymptoti-
cally stable.

Special Case III. Let α3(t) = −{ t
τ }2 + λ{ t

τ }+ 1, t ∈ [−τ, ∞), λ ∈ R, λ > 0, λ �= 1.
The following theorem can be seen as a special case of Theorem 2 when α(t) = α3(t).

Theorem 10. Let x(t) be the solution of (1) and z3(t) =
(−{ t

τ }2 + λ{ t
τ }+ 1

)
x(t), t ∈ [−τ, ∞).

Then z3(t) is the solution of⎧⎨⎩
d
dt [z3(t)− I3(t, z3(t − τ))] = J3(t, z3(t), z3(t − τ)), t ≥ 0,

z3(t) = Ψ3(t), t ∈ [−τ, 0],
(23)

where
I3(t, x)) = (−{ t

τ
}2 + λ{ t

τ
}+ 1)G(t,

x
−{ t

τ }2 + λ{ t
τ }+ 1

)

J3(t, y, x) =
(−2{ t

τ }+ λ)y
τα3(t)

− (−2{ t
τ }+ λ)

τ
G(t,

x
α3(t)

) + α3(t)F(t,
y

α3(t)
,

x
α3(t)

)

Ψ3(t) =

{
[−( t

τ + 1)2 + λ( t
τ + 1) + 1]ψ(t), t ∈ [−τ, 0),

λψ(0−), t = 0.

Conversely, x(t) is the solution of (1) if z3(t) is the solution of (23) and x(t) = z3(t)
−{ t

τ }2+λ{ t
τ }+1

,

t ∈ [−τ, ∞).

Theorem 11. Assume that λ ∈ R and λ > 0, and IDDEs (1) and (2) satisfy inequalities (3)–(5).
If Y(t) ≤ 0, there exists a bounded function r3(t), integrable in any bounded interval, such that
r3(t) ≤ 0, r3(0) < 0,

ω3X(t) = r3(t)

(
�( −2{ t

τ }+ λ

−{ t
τ }2τ + λτ{ t

τ }+ τ
) +

Y(t)
ω2

3

)
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and a non-negative constant ρ3 ≤ 1, such that

sup
0≤x≤t

|r(x)|+ ω3Z(t) ≤ ρ3, t ≥ 0,

then the exact solutions of IDDEs (1) and (2) are bounded stable as follows:

‖x(t)− x̃(t)‖ ≤ max{ω3 sup
t∈[−τ,0)

‖ϕ(t)− ϕ̃(t)‖,
λ‖ϕ(0−)− ϕ̃(0−)‖

−m3r3(0)
}, t ≥ 0,

where m3 = min{1, λ} and

ω3 =

⎧⎪⎪⎨⎪⎪⎩
λ
4 + 1

λ , 0 < λ ≤ 1,

λ2

4 + 1, 1 < λ ≤ 2,

λ, λ > 2.

Moreover, if ρ3 < 1 and there is a positive constant Y3, such that

−2{ t
τ }+ λ

−{ t
τ }2τ + λτ{ t

τ }+ τ
+

Y(t)
ω2

3
≤ Y3 < 0, t ≥ 0,

then IDDEs (1) and (2) are asymptotically stable.

Because −2{ t
τ }+λ

−{ t
τ }2τ+λτ{ t

τ }+τ
≤ λ

τ for all λ > 0, ∀t ∈ R, by Theorem 11, we can obtain the

following corollary.

Corollary 3. Assume that λ ∈ R and λ > 0, and the IDDEs (1) and (2) satisfy inequalities
(3)–(5). If Y(t) ≤ 0, there exists a bounded integrable function r̄3(t) in any bounded interval, such
that r̄3(t) ≤ 0, r̄3(0) < 0,

ω3X(t) = r̄3(t)(
λ

τ
+

Y(t)
ω2

3
)

and a non-negative constant ρ̄3 ≤ 1, such that

sup
0≤x≤t

|r̄3(x)|+ ω3Z(t) ≤ ρ̄3, t ≥ 0,

then the exact solutions of IDDEs (1) and (2) are bounded stable as follows:

‖x(t)− x̃(t)‖ ≤ max{ω3 sup
t∈[−τ,0)

‖ϕ(t)− ϕ̃(t)‖,
λ‖ϕ(0−)− ϕ̃(0−)‖

−m3r̄3(0)
}, t ≥ 0.

Moreover, if ρ̄3 < 1 and there is a positive constant Ȳ3, such that

λ

τ
+

Y(t)
ω2

3
≤ Ȳ3 < 0, t ≥ 0,

then IDDEs (1) and (2) are asymptotically stable.

3. Numerical Methods for INDDEs

Firstly, based on the idea of transformations, the numerical methods for INDDEs are
constructed. Furthermore, it is proven that the constructed numerical methods can preserve
the boundary stability and asymptotical stability of the nonlinear INDDEs if corresponding
continuous Runge–Kutta methods are BNf -stable.

The numerical method for nonlinear INDDE (1) can be constructed as the following
three steps.
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Step 1. The numerical solution of (8) is computed by the following continuous Runge–
Kutta method:⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

Λi
n+1 = pn + h

s
∑

j=1
aijQ(tj

n+1, Λj
n+1, η(tj

n+1 − τ)), i = 1, 2, · · · , s,

λ(tn + θh) = pn + h
s
∑

i=1
bi(θ)Q(ti

n+1, Λi
n+1, η(ti

n+1 − τ))

pn+1 = λ(tn+1) = pn + h
s
∑

i=1
biQ(ti

n+1, Λi
n+1, η(ti

n+1 − τ)),

(24)

where the stepsize h = τ
m , m is a positive integer, tn = nh, ti

n+1 = tn + cih, and ci = ∑s
j=1 aij,

n ∈ N, i = 1, 2, · · · , s.
Step 2. The numerical solution of (6) can be computed by

η(t) = λ(t) + G(t, η(t − τ)), t ≥ 0, (25)

where
η(t) = Ψ(t), t ∈ [−τ, 0].

Step 3. The numerical solution μ(t) of (1) can be computed by

μ(t) =
η(t)
α(t)

, t ≥ 0. (26)

In the above process, the exact solution P(t) of (8) is approximated by λ(t) for all t ≥ 0
and P(tn) is approximated by pn, n ∈ N; y(t) of (6) is approximated by η(t) and x(t) of (1)
is approximated by μ(t) for all t ≥ 0.

Similarly, the numerical method for nonlinear INDDE (2) can be constructed as follows:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Λ̃i
n+1 = pn + h

s
∑

j=1
aijQ(tj

n+1, Λ̃j
n+1, η̃(tj

n+1 − τ)), i = 1, 2, · · · , s,

λ̃(tn + θh) = p̃n + h
s
∑

i=1
bi(θ)Q(ti

n+1, Λ̃i
n+1, η̃(ti

n+1 − τ)),

p̃n+1 = λ̃(tn+1) = p̃n + h
s
∑

i=1
biQ(ti

n+1, Λ̃i
n+1, η̃(ti

n+1 − τ)),

η̃(t) = λ̃(t) + G(t, η̃(t − τ)), t ≥ 0,

μ̃(t) = η̃(t)
α(t) , t ≥ 0,

(27)

where
η̃(t) = Ψ̃(t), t ∈ [−τ, 0].

Theorem 12. Assume that IDDEs (1) and (2) satisfy inequalities (3)–(5), and assume the con-
structed numerical methods (24)–(27) are furnished by BNf -stable continuous Runge–Kutta meth-
ods. If Y(t) ≤ 0, there exists a bounded function r(t), integrable in any bounded interval, such
that r(t) ≤ 0, r(0) < 0, and (10) and (11) hold, then the numerical solution μ(t) obtained from
(24)–(26) and μ̃(t) obtained from (27) are bounded, in the following sense:

‖μ(t)− μ̃(t)‖ ≤ max{ω sup
t∈[−τ,0)

‖ϕ(t)− ϕ̃(t)‖,
|λ|‖ϕ(0−)− ϕ̃(0−)‖

−mr(0)
}, t ≥ 0.

Moreover, if ρ < 1 and (12) hold, then the numerical methods (24)–(27) for IDDEs (1) and
(2), furnished by BNf -stable continuous Runge–Kutta methods, are asymptotically stable; that is

lim
t→∞

‖μ(t)− μ̃(t)‖ = 0.
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Proof. By ref. [14] (Theorem 10.5.1)or ref. [24] (Theorem 6.1), the numerical methods (24)
and (25), furnished by BNf -stable continuous Runge–Kutta methods, are bounded; that is

‖η(tn)− η̃(tn)‖ ≤ max{‖Φ(0)− Φ̃(0)‖, κ}.

Moreover, ref. [14] (Theorem 10.5.1) or ref. [24] (Theorem 6.3), under the condition
of Theorem 2, the numerical methods (24) and (25) furnished by BNf -stable continuous
Runge–Kutta methods, are also asymptotically stable; that is,

lim
n→+∞

‖η(tn)− η̃(tn)‖ = 0.

Because of the relationship (26) between the numerical solutions INDDE and NDDE
without impulsive perturbations, the theorem holds.

Similar to Theorem 12, we can obtain that the constructed numerical methods (24)–(27),
furnished by BNf -stable continuous Runge–Kutta methods, preserve the boundary stability
and asymptotical stability of the exact solutions, under the conditions of Theorem 3,
as follows.

Theorem 13. Assume that IDDEs (1) and (2) satisfy inequalities (3)–(5), and assume the con-
structed numerical methods (24)–(27) are furnished by BNf -stable continuous Runge–Kutta meth-
ods. If Y(t) ≤ Ŷ, Ŷ > 0, there exists a bounded function r(t) integrable in any bounded interval,
such that r̄(t) ≤ 0, r̄(0) < 0, (18) and (19) hold, then the numerical solution μ(t) obtained from
(24)–(26) and μ̃(t) obtained from (27) are bounded stable, in the following sense:

‖μ(t)− μ̃(t)‖ ≤ max{ω sup
t∈[−τ,0)

‖ϕ(t)− ϕ̃(t)‖,
λ‖ϕ(0−)− ϕ̃(0−)‖

−mr(0)
}, t ≥ 0.

Moreover, if ρ < 1 and (20) hold, then the numerical methods (24)–(27) for IDDEs (1) and
(2), furnished by BNf -stable continuous Runge–Kutta methods, are asymptotically stable.

4. Numerical Experiments

In this section, two numerical examples are chosen to confirm the theoretical results.

Example 1. Consider the following scalar linear INDDEs with different initial functions:⎧⎪⎪⎪⎨⎪⎪⎪⎩
x′(t)− cx′(t − τ) = ax(t) + bx(t − τ), t ≥ 0, t �= kτ, k ∈ N,

x(kτ) = λx(kτ−),

x(t) = φ(t), t ∈ [−τ, 0),

(28)

where a, b, c, and λ are real constants and φ(t) is the continuous differential initial function
on [−τ, 0). Obviously, the inequalities (3)–(5) are satisfied with X(t) = |ac + b|, Y(t) = a,
Z(t) = |c|. There are many parameters that meet the conditions of the theorems. Obviously, when

a = −5, b =
4
5

, c =
1
5

, λ =
5
4

, τ = 1,

we have

X(t) = |ac + b| = | − 5 × 1
5
+

4
5
| = 1

5
, Y(t) = a = −5, Z(t) = |c| = 1

5
,

and
ω1 = max{5

4
,

4
5
} =

5
4

.
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Obviously, there exists r1(t) as follows:

r1(t) =

(
ln |λ|

τ + Y(t)
ω2

1

)
ω1X(t)

=
1

4
(
− 16

5 + ln( 5
4 )

) < 0,

such that the first condition of Theorem 5 holds; that is

ω1X(t) = r1(t)

(
ln |λ|

τ
+

Y(t)
ω2

1

)
.

So we can obtain that

sup
0≤x≤t

|r1(x)|+ ω1Z(t) = ρ1 = | 1

4
(
− 16

5 + ln( 5
4 )

) |+ 5
4
× 1

5
< 1

and
ln |λ|

τ
+

Y(t)
ω2

1
= − 5

25
16

+ ln(
5
4
) = Y1 < 0.

Hence, all the conditions of Theorem 5 hold. By Theorem 5, the exact solution of (28) is
asymptotically stable.

Similarly, ω2 = max{ 5
4 , 4

5} = 5
4 and there exists r2(t) as follows:

r2(t) =

(
λ−1

τ + Y(t)
ω2

2

)
ω2X(t)

=
1

4
(

1
4 − 16

5 +
) < 0,

such that the first condition of Corollary 1 holds; that is

ω2X(t) = r2(t)

(
λ − 1

τ
+

Y(t)
ω2

2

)
.

Therefore, we can obtain that

sup
0≤x≤t

|r2(x)|+ ω2Z(t) = ρ2 = | 1

4
(
− 16

5 + 1
4

) |+ 5
4
× 1

5
< 1

and
λ − 1

τ
+

Y(t)
ω2

2
=

1
4
− 5

25
16

= Y2 < 0.

Hence, all the conditions of Corollary 1 hold. By Corollary 1, we also obtain that the exact
solution of (28) is asymptotically stable.

Similarly, ω3 = λ2

4 + 1 = 89
64 , and there exists r3(t) as follows:

r3(t) =

(
λ
τ + Y(t)

ω2
3

)
ω3X(t)

=
89

5 × 64 ×
(

5
4 − 5×642

892

) < 0,

such that the first condition of Corollary 3 holds; that is

ω3X(t) = r3(t)

(
λ

τ
+

Y(t)
ω2

3

)
.

85



Axioms 2023, 12, 988

Therefore, we can obtain that

sup
0≤x≤t

|r3(x)|+ ω3Z(t) = ρ3 = | 89

5 × 64 ×
(

5
4 − 5×642

892

) |+ 89
64

× 1
5
< 1

and
λ

τ
+

Y(t)
ω2

3
=

5
4
− 5 × 642

892 = Y3 < 0.

Hence, all the conditions of Corollary 3 hold. By Corollary 3, we also obtain that the exact
solution of (28) is asymptotically stable.

By Theorem 12, we can obtain that the constructed numerical methods (24)–(27) for INDDE
(28), furnished by BNf -stable continuous Runge–Kutta methods, are asymptotically stable. From
Figures 1 and 2, we can roughly see the trend that the distances between the two numerical solutions
(obtained from the constructed numerical methods (24)–(27) for linear INDDE (28), furnished by
implicit Euler method or 2-stage Lobatto IIIC method with two different constant initial function 1
and 0.9) become smaller as the time increases.

Figure 1. The numerical methods (24)–(27) for (28), furnished by implicit Euler method with the
stepsize h = 1

10 .
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Figure 2. The numerical methods (24)–(27) for (28), furnished by 2-stage Lobatto IIIC method with
the stepsize h = 1

10 .

Example 2. Consider the following scalar nonlinear INDDEs:⎧⎪⎪⎪⎨⎪⎪⎪⎩
d
dt (x(t)− ν cos(x(t − 1))) = βx(t) + γe−t sin(x(t − 1)), t ≥ 0, t �= k, k ∈ N,

x(k) = λx(k−),

x(t) = φ(t), t ∈ [−1, 0),

(29)

where β, γ, ν, and λ are real constants and φ(t) is the continuous differential initial functions on
[−1, 0). It is easy to verify that the inequalities (3)–(5) are satisfied with X(t) = |βν|+ |γ|e−t,
Y(t) = β, Z(t) = |ν|. We can see that the one-side Lipschitz coefficient X(t) is non-negative, which
is different from the general results of NDDEs without impulsive perturbations. The parameters β,
γ, ν, and λ are chosen to satisfy the conditions of Theorem 6:

β =
1

10
, γ =

1
50

, ν =
1
5

, λ =
1
e

,
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which implies that the exact solution of (29) is stable and asymptotically stable (See Figures 3 and 4).
We can see that the one-side Lipschitz coefficient X(t) is non-negative, which is different from
NDDEs’ (without impulsive perturbations) stability results of Bellen, Zennaro, et al. (See [14]
(Theorem 9.4.1) or [24] (Theorem 3.1, Theorem 4.2)).

Figure 3. The numerical methods (24)–(27) for (29) furnished by implicit Euler method with the
stepsize h = 1

10 .

By Theorem 13, we can obtain that the constructed numerical methods (24)–(27) for nonlinear
INDDE (29), furnished by BNf -stable continuous Runge–Kutta methods, are asymptotically stable.
From Figures 3 and 4, we can roughly see the trend that the distances between the two numerical
solutions (obtained from the constructed numerical methods (24)–(27) for INDDE (29), furnished
by implicit Euler method or 2-stage Lobatto IIIC method with two different constant initial function
1 and 0.9) become smaller as the time increases.
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Figure 4. The numerical methods (24)–(27) for (29), furnished by 2-stage Lobatto IIIC method with
the stepsize h = 1

10 .

In Tables 1–6, AE denotes the absolute errors between the numerical solutions and the exact
solution of INDDEs. Similarly, RE denotes the relative errors between the numerical solutions and
the exact solution of INDDEs. As is well known, when the step size is halved, the global errors of
the numerical methods of p-order convergence will become approximately the same as the original
times. We can see from the tables that the average ratio of the absolute errors (or relative errors)
between the numerical solutions obtained from (24)–(26), furnished by implicit Euler method and
the exact solution of (28), is close to 2 (the reciprocal of 1

2 ) and the average ratio of the absolute errors
(or relative errors) between the numerical solutions obtained from (24)–(26), furnished by 2-stage
Lobatto IIIC method and the exact solution of (29), is close to 4 (the reciprocal of 1

22 ) when the step
size doubles and three different kinds of the transformations are used. Hence, Tables 1–6 roughly
show that the constructed method, furnished by backward Euler method, is convergent of order 1
and by 2-stage Lobatto IIIC method is convergent of order 2 when the different transformations
are chosen.
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Table 1. The errors between the numerical solutions obtained from (24)–(26) and the exact solution of
(28) at t = 10, when α(t) = α1(t) = λ{t}, t ≥ −1.

The Implicit Euler 2-Lobatto IIIC

m AE RE AE RE

10 3.6581941667 ×10−8 0.0551236000 3.3993997914 ×10−9 0.0051223952
20 1.6188740613 ×10−8 0.0243940486 9.5844940891 ×10−10 0.0014442422
40 7.5674842099 ×10−9 0.0114030845 2.5770607279 ×10−10 3.8832512532 ×10−4

80 3.6514998468 ×10−9 0.0055022726 6.7075180094 ×10−11 1.0107242500 ×10−4

Ratio 2.1571322845 2.1571322845 3.7026585356 3.7026585356

Table 2. The errors between the numerical solutions obtained from (24)–(26) and the exact solution of
(28) at t = 10, when α(t) = α2(t) = 1 + (λ − 1){t}, t ≥ −1.

The Implicit Euler 2-Lobatto IIIC

m AE RE AE RE

10 3.6469927694 ×10−8 0.0549548115 3.3341478657 ×10−9 0.0050240702
20 1.6145910077 ×10−8 0.0243295093 9.2718600641 ×10−10 0.0013971329
40 7.5491598720 ×10−9 0.0113754724 2.4224957236 ×10−10 3.6503445423 × 10−4

80 3.6430871304 ×10−9 0.0054895959 6.7075212665 ×10−11 8.9455329107 × 10−5

Ratio 2.1565761938 2.1565761938 3.8346733002 3.8346733002

Table 3. The errors between the numerical solutions obtained from (24)–(26) and the exact solution of
(28) at t = 10, when α(t) = α3(t) = −{t}2 + λ{t}+ 1, t ≥ −1.

The Implicit Euler 2-Lobatto IIIC

m AE RE AE RE

10 3.2928273582 ×10−8 0.0496180603 3.5224011714 ×10−9 0.0053077402
20 1.4792658001 ×10−8 0.0222903577 9.9361388805 ×10−10 0.0014972299
40 6.9719562429 ×10−9 0.0105057116 2.6736493834 ×10−10 4.0287961420 ×10−4

80 3.3787413432 ×10−9 0.0050912658 6.9626687974 ×10−11 1.0491717188 ×10−4

Ratio 2.1370673472 2.1370673472 3.7004462838 3.7004462838

Table 4. The errors between the numerical solutions obtained from (24)–(26) and the exact solution of
(29) at t = 5, when α(t) = α1(t).

The Implicit Euler 2-Lobatto IIIC

m AE RE AE RE

20 0.0022369766 0.2202504769 5.7299369527 ×10−6 2.3107308782 ×10−4

40 0.0011276564 0.1110279231 1.4405875293 ×10−6 5.8095056092 ×10−5

80 5.6614685412 ×10−4 0.0557422526 3.6113985329 ×10−7 1.4563807896 ×10−5

160 2.8365495107 ×10−4 0.0279283826 9.0363875351 ×10−8 3.6441342859 ×10−6

Ratio 1.9904827766 1.9904827766 3.9876695906 3.9876695906

Table 5. The errors between the numerical solutions obtained from (24)–(26) and the exact solution of
(29) at t = 5, when α(t) = α2(t).

The Implicit Euler 2-Lobatto IIIC

m AE RE AE RE

20 1.9815130517 ×10−4 0.0195097711 2.3187856183 ×10−5 9.4091835401 ×10−4

40 1.0076686770 ×10−4 0.0099214008 5.9673597828 ×10−6 2.4210841877 ×10−4

80 5.0814463184 ×10−5 0.0050031391 1.5136126717 ×10−6 6.1405921789 ×10−5

160 2.5515894339 ×10−5 0.0025122684 3.8502245644 ×10−7 1.5462538456 ×10−5

Ratio 1.9803170077 1.9803170077 3.9334584227 3.9334584227
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Table 6. The errors between the numerical solutions obtained from (24)–(26) and the exact solution of
(29) at t = 5, when α(t) = α3(t).

The Implicit Euler 2-Lobatto IIIC

m AE RE AE RE

20 0.0046567801 0.4585012456 1.5888036813 ×10−4 0.0064072219
40 0.0024075383 0.2370434701 4.2949208184 ×10−5 0.0017320271
80 0.0012240906 0.1205225617 1.1161651179 ×10−5 4.5011964909 ×10−4

160 6.1718429346 ×10−4 0.0607672605 2.8446726005 ×10−6 1.1471806565 ×10−4

Ratio 1.9614646923 1.9614646923 3.8236303912 3.8236303912

5. Conclusions and Future Works

In this paper, some new different asymptotical stability criteria are given for the exact
solutions of a class of nonlinear INDDEs, based on the following idea: first the problems
of the stability and asymptotical stability of INDDEs are transformed into the problems
of NDDEs without impulsive perturbations, and then transformed into the problems of
ordinary differential equations with a forcing term. Based on the above idea, some new
sufficient conditions for the stability and asymptotical stability of the exact solutions of
INDDEs are obtained and the numerical methods for INDDEs are constructed. Moreover,
the numerical method is asymptotically stable if the corresponding continuous Runge–
Kutta methods are BNf -stable, under these different sufficient conditions.

In the future, we will study the asymptotical stability of more general INDDEs with
the following characteristics: the size of the delay in continuous dynamics can be flexible,
and there is no magnitude between the delay in continuous flow and impulsive delay.
Finally, we propose the discontinuous Galerkin method (see [32]) as a stable and highly
efficient alternative for solving INDDEs. Its application to these equations holds substantial
potential and could produce promising outcomes.
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Abstract: The Rayleigh–Stokes equation with a fractional derivative is widely used in many fields.
In this paper, we consider the inverse initial value problem of the Rayleigh–Stokes equation. Since
the problem is ill-posed, we adopt the Tikhonov regularization method to solve this problem. In
addition, this paper not only analyzes the ill-posedness of the problem but also gives the conditional
stability estimate. Finally, the convergence estimates are proved under two regularization parameter
selection rules.

Keywords: Rayleigh–Stokes equation with a fractional derivative; backward problem; Tikhonov
regularization method; convergence estimate

MSC: 35R25; 35R30

1. Introduction

Fractional derivatives and integrals provide a good tool to describe phenomena with
non-locality and memory characteristics. Fractional derivatives and fractional equations are
also widely used in many scientific fields such as engineering, physics, finance, and hydrol-
ogy [1–4]. So far, fractional integrals and derivatives have taken many forms, such as the
Riemann–Liouville, Grünwald–Letnikov, Riesz, Caputo, Hadamard, and Caputo–Fabrizio.
As a generalized form of integral calculus, fractional calculus has been paid more attention
to by scholars because it is more in line with the actual phenomenon and has unique ad-
vantages compared with integral calculus. Fractional differential equations have important
applications in the fields of fluid mechanics, economics, and control theory. Although
fractional differential equation can describe the actual phenomenon more accurately [2,5,6],
it is difficult to obtain the analytical solution of a fractional differential equation because
of the non-local property of the fractional derivative. Therefore, it is necessary to find an
effective numerical method to solve fractional differential equations.

In recent years, the Rayleigh–Stokes equation for a heated generalized second-grade
fluid has played an important role in describing the practical problems of non-Newtonian
fluid mechanics, which have attracted much attention from many researchers. Many
achievements have been made in the study of the direct problems of Rayleigh–Stokes
equation. In [7], Fourier coefficients transform and the fractional Laplace transform are
used to solve the exact solution of the Rayleigh–Stokes problem. In [8], the exact solution
of some oscillatory motions of the generalized Rayleigh–Stokes problem is discussed, and
the velocity field and corresponding analytical expressions of infinite plate oscillating flow
are given. The vibration caused by the oscillatory pressure gradient is determined by the
Fourier sine transform and the Laplace transform. In [9], the authors use the fractional
derivative method to solve the Rayleigh–Stokes problem on the boundary. In addition,
some scholars have used numerical methods to study the Rayleigh–Stokes problem. In [10],
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the authors used implicit and explicit difference numerical methods to obtain numerical so-
lutions of second-order generalized thermal fluid Rayleigh–Stokes problems with fractional
derivatives. In [11], an approximate numerical method is proposed for the Rayleigh–Stokes
problem of generalized second-order fluids in a bounded domain. In [12], the numerical
methods with fourth-order spatial accuracy for Rayleigh–Stokes’ first problem is studied.
In [13,14], the authors study the numerical solutions of Rayleigh–Stokes problems for
generalized second-order thermal fluids with fractional derivatives. The other numerical
methods for solving Rayleigh–Stokes problems can be seen in the cited works [15–17].

However, in practical problems, the parameters used in most model equations, such
as physical parameters, source terms, initial conditions, and boundary conditions are
unknown, and these unknown parameters need to be identified through measurement
data. Thus, it leads to the inverse problems of the Rayleigh–Stokes equation for second-
grade fluids. According to the current research status, the research on the inverse problem
of the Rayleigh–Stokes equation is still limited. In [18], an inverse problem to estimate
an unknown order of a Riemann–Liouville fractional derivative for a fractional Stokes’
first problem is considered. In [19], the authors use the filter regularization method to
analyze the Rayleigh–Stokes inverse problem with Gaussian random noise. In [20], the
authors use the filter regularization method to identify the unknown source term of the
Rayleigh–Stokes problem with Gaussian random noise and prove the error estimation
between the regularized solution and the exact solution. But the regularization parameter
is an a priori choice rule, which depends on an unknown priori bound. In [21], the authors
provide the existence and regularity of the inverse problem for the nonlinear fractional
Rayleigh–Stokes equations. In [22,23], the authors give a Tikhonov regularization method
and filter regularization method to identify the source term for the Rayleigh–Stokes problem.
In [24], the authors use the trigonometric method in nonparametric regression associated
to regularize the instable solution of the initial inverse problem for the nonlinear fractional
Rayleigh–Stokes equation with random discrete data. In [25], the authors consider the
regularity of the solution for a final value problem for the Rayleigh–Stokes equation.

In the following, we consider the backward problem for the Rayleigh–Stokes equation
in a general bounded domain. Let T > 0 be a given positive number, and Ω be a bounded
domain in Rd. The mathematical problem is given by⎧⎪⎨⎪⎩

∂tu(x, t)− (1 + γ∂α
t )Δu(x, t) = 0, (x, t) ∈ Ω × (0, T),

u(x, t) = 0, x ∈ ∂Ω, t ∈ (0, T],
u(x, T) = g(x), x ∈ Ω,

(1)

where γ > 0 is a constant, u is the velocity distribution. ∂t = ∂/∂t, and ∂α
t is the Riemann–

Liouville fractional derivative of order α ∈ (0, 1) defined by [1]

∂α
t u(x, t) =

d
dt

∫ t

0
ω1−α(t − s)u(x, s)ds, ωα =

tα−1

Γ(α)
, 0 < α < 1. (2)

The backward problem is to find the initial data u(x, 0) = f (x) from the given measured
data at the final condition u(x, T) = g(x). In practice, the exact data g are approximated by
the noisy observation data gδ, which are assumed to satisfy

‖gδ − g‖ ≤ δ, (3)

where ‖ · ‖ denotes the L2(Ω)-norm, and the constant δ > 0 is a noise level.
In this paper, the Tikhonov regularization method is used to study the backward

problem of the Rayleigh–Stokes equation with a fractional derivative. This method has
dealt with a number of inverse problems, such as the backward problem [26,27] and
the inverse unknown source problem [28–30]. We prove the error estimate between the
regularized solution and the exact solution under a priori and a posteriori regularization
parameter selection rules. The posteriori regularization parameter selection rules only
depend on the measured data and do not depend on the priori bound of the exact solution.
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The structure of this paper is as follows. Section 2 introduces some preliminary results.
Section 3 gives the ill-posedness of problem (1) and the conditional stability of problem (1).
In Section 4, the Tikhonov regularization method is used to deal with the backward problem,
and the error estimates between the exact solution and the regularized solution are obtained
under a priori and a posteriori regularization parameter choice rules.

2. Preliminary Results

Throughout this article, we use the following definitions.

Definition 1. Let {λn, φn} be the Dirichlet eigenvalues and corresponding eigenvectors of the
Laplacian operator −Δ in Ω. The family of eigenvalues {λn}∞

n=1 satisfies 0 < λ1 ≤ λ2 ≤ · · · ≤
λn ≤ · · · , where λn → ∞ as n → ∞:{

Δφn(x) = −λnφn(x), x ∈ Ω,
φn(x) = 0, x ∈ ∂Ω.

(4)

Definition 2. For k > 0, we define

Hk(Ω) :=
{

f ∈ L2(Ω)

∣∣∣∣ ∞

∑
n=1

λ2k
n |( f , φn)|2 < +∞

}
, (5)

equipped with the norm

‖ f ‖Hk(Ω) =

( ∞

∑
n=1

λ2k
n |( f , φn)|2

) 1
2

, k > 0. (6)

In the following, we present the solution of the direct problem of the Rayleigh–Stokes
equation ⎧⎪⎨⎪⎩

∂tu(x, t)− (1 + γ∂α
t )Δu(x, t) = 0, (x, t) ∈ Ω × (0, T),

u(x, t) = 0, x ∈ ∂Ω, t ∈ (0, T],
u(x, 0) = f (x), x ∈ Ω.

(7)

Indeed, suppose that the direct problem (7) has a solution u(x, t) ∈ C([0, T]; L2(Ω)) ∩
C([0, T]; H2(Ω) ∩ H1

0(Ω)), and using the Equation (2.21) in [31], we obtain

u(x, t) =
∞

∑
n=1

fnun(t)φn(x). (8)

Here, fn = ( f (x), φn(x)) is the Fourier coefficient, and the function un(t) satisfies

un(t) =
∫ ∞

0
e−stBn(s)ds, (9)

where
Bn(s) =

γ

π

λnsα sin απ

(−s + λnγsα cos απ + λn)2 + (λnγsα sin απ)2 .

According to the condition u(x, T) = g(x), and using (9), we obtain

g(x) =
∞

∑
n=1

fnun(T)φn(x) := K f (x), (10)

or equivalently,
gn = fnun(T), (11)

where gn = (g(x), φn(x)) is the Fourier coefficient. Here, the linear operator K : L2(Ω) →
L2(Ω) is defined by
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K f (x) =
∞

∑
n=1

[ ∫ ∞

0
e−sT Bn(s)ds

]
( f (x), φn(x))φn(x) =

∫
Ω

k(x, ω) f (ω)dω, (12)

where

k(x, ω) =
∞

∑
n=1

[ ∫ ∞

0
e−sT Bn(s)ds

]
φn(x)φn(ω).

Then, we can obtain the solution of the backward problem (1) as follows

f (x) =
∞

∑
n=1

gn

un(T)
φn(x). (13)

3. Ill-Posedness and Conditional Stability Estimate

To analyze the ill-posedness and give the conditional stability estimate of the backward
problem, we need to provide the following lemmas.

Lemma 1 ([31]). The functions un(t), n = 1, 2, · · · have the following properties:

(a) un(0) = 1, 0 < un(t) ≤ 1, t ≥ 0;
(b) un(t) are completely monotone for t ≥ 0;
(c) |λnun(t)| ≤ c min{t−1, tα−1}, t > 0;
(d)

∫ T
0 |un(t)|dt < 1

λn
, T > 0,

where the constant c does not depend on n and t.

Lemma 2 ([19]). Let us assume that α ∈ (0, 1). The following estimate holds for all t ∈ [0, T]

un(t) ≥ C(γ, α, λ1)

λn
, (14)

where

C(γ, α, λ1) = γ sin απ
∫ +∞

0

e−sTsαds

γ2s2α + s2

λ2
1
+ 1

. (15)

Now, we will prove that the backward problem is ill-posed. By using the result in
Lemma 1, for t > 0, we have

1
un(T)

≥ λn

c min{T−1, Tα−1} . (16)

Hence, we know that 1
un(T)

is a completely monotonic increasing function with respect to

λn. Then, the small error in the high-frequency components for gδ(x) will be amplified by
the factor 1

un(T)
. So, the initial data u(x, 0) = f (x) from the given measured data gδ(x) are

ill-posed.
In the following, we introduce a conditional stability estimate of the backward problem

for the fractional Rayleigh–Stokes Equation (1).

Theorem 1. Let f ∈ Hk(Ω) be such that

‖ f ‖Hk(Ω) ≤ E, (17)

for some E > 0. Then, we have the following estimate

‖ f ‖L2(Ω) ≤ C1E
1

k+1 ‖g‖ k
k+1 , (18)

where C1 = C− k
k+1 (γ, α, λ1).

Proof. From Formula (13), and applying the Hölder inequality, we know
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‖ f ‖2
L2(Ω) =

∞

∑
n=1

∣∣∣∣ (g(x), φn(x))
un(T)

∣∣∣∣2

=
∞

∑
n=1

|(g(x), φn(x))| 2
k+1 |(g(x), φn(x))| 2k

k+1

|un(T)|2

≤
[ ∞

∑
n=1

|(g(x), φn(x))|2
|un(T)|2k+2

] 1
k+1

[ ∞

∑
n=1

|(g(x), φn(x))|2
] k

k+1

≤
[ ∞

∑
n=1

|( f (x), φn(x))|2
|un(T)|2k

] 1
k+1

‖g‖
2k

k+1
L2(Ω)

. (19)

By using Lemma 2, we obtain

∞

∑
n=1

|( f (x), φn(x))|2
|un(T)|2k ≤

∞

∑
n=1

λ2k
n |( f (x), φn(x))|2

C2k(γ, α, λ1)
=

‖ f ‖2
Hk(Ω)

C2k(γ, α, λ1)
. (20)

Combining Formulas (19) and (20), we obtain

‖ f ‖2
L2(Ω) ≤

‖ f ‖
2

k+1
Hk(Ω)

C
2k

k+1 (γ, α, λ1)
‖g‖

2k
k+1
L2(Ω)

.

Hence, we have
‖ f ‖L2(Ω) ≤ C1E

1
k+1 ‖g‖ k

k+1 ,

where C1 = C− k
k+1 (γ, α, λ1).

Remark 1. Essentially, Theorem 1 provides the following conditional stability estimate

‖ f1 − f2‖L2(Ω) ≤ C1‖ f1 − f2‖
1

k+1
Hk(Ω)

‖K f1 − K f2‖
k

k+1 .

4. Tikhonov Regularization Method and Convergence Estimates

In this section, we solve the backward problem (1) by using the Tikhonov regulariza-
tion method, which minimizes the function

‖K f − g‖2 + β2‖ f ‖2; (21)

here, β is a regularization parameter. By Theorem 2.12 in [32], we know that its minimizer
fβ(x) satisfies

K∗K fβ(x) + β2 fβ(x) = K∗g(x). (22)

Due to the singular value decomposition for a compact self-adjoint operator, we have

fβ(x) =
∞

∑
n=1

un(T)
β2 + u2

n(T)
(g, φn)φn. (23)

If the observed data gδ(x) are noise-contaminated, we have

f δ
β(x) =

∞

∑
n=1

un(T)
β2 + u2

n(T)
(gδ, φn)φn. (24)

4.1. A Priori Choice Rule

We first give two lemmas.

Lemma 3. Assume condition (3) holds, and we have the following estimate

‖ f δ
β(x)− fβ(x)‖ ≤ δ

2β
. (25)
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Proof. According to the Formulas (3), (23), and (24), we have

‖ f δ
β(x)− fβ(x)‖2 =

∥∥∥∥ ∞

∑
n=1

un(T)
β2 + u2

n(T)
(gδ, φn)φn −

∞

∑
n=1

un(T)
β2 + u2

n(T)
(g, φn)φn

∥∥∥∥2

=

∥∥∥∥ ∞

∑
n=1

un(T)
β2 + u2

n(T)
(gδ − g, φn)φn

∥∥∥∥2

=
∞

∑
n=1

(
un(T)

β2 + u2
n(T)

)2

(gδ
n − gn)

2

≤ δ2(sup
n≥1

A(n))2, (26)

where,

A(n) =
|un(T)|

β2 + u2
n(T)

≤ 1
2β

.

Thus, we obtain

‖ f δ
β(x)− fβ(x)‖ ≤ δ

2β
. (27)

The proof of Lemma 3 is complete.

Lemma 4. Assume that the condition (17) holds; then, we have

‖ f (x)− fβ(x)‖ =

⎧⎨⎩ βE λ1−k
1

2C(γ,α,λ1)
, 0 < k < 1,

βkE
√
( 1

2C(γ,α,λ1)
)2 + 1, k ≥ 1.

(28)

Proof. From Formulas (13) and (23), we know

‖ f (x)− fβ(x)‖2 =
∞

∑
n=1

(
1

un(T)
− un(T)

β2 + u2
n(T)

)2

g2
n

=
∞

∑
n=1

(
β2

(β2 + u2
n(T))un(T)

)2

g2
n

=
∞

∑
n=1

(
β2λk

nλ−k
n

(β2 + u2
n(T))un(T)

)2

g2
n

≤ (sup
n≥1

B(n))2
∞

∑
n=1

λ2k
n g2

n
u2

n(T)

= (sup
n≥1

B(n))2‖ f ‖2
Hk(Ω)

. (29)

Here,

B(n) =
β2λ−k

n
β2 + u2

n(T)
. (30)

Now, by using Lemma 2, we estimate B(n),

B(n) ≤ β2λ−k
n

2βun(T)
=

βλ−k
n

2un(T)
≤ βλ1−k

n
2C(γ, α, λ1)

. (31)

We divide this into the two following cases:
Case 1: If k ≥ 1, we know

λ1−k
n =

1
λk−1

n
≤ 1

λk−1
1

= λ1−k
1 . (32)

Combining (29), (31), and (32), we obtain
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‖ f (x)− fβ(x)‖ ≤ βλ1−k
1

2C(γ, α, λ1)
‖ f ‖Hk(Ω) ≤ βE

λ1−k
1

2C(γ, α, λ1)
. (33)

Case 2: If 0 < k < 1, we choose any η ∈ (0, 1) and rewrite N = A1 ∪A2, where

A1 = {n ∈ N, λ1−k
n ≤ β−η}, A2 = {n ∈ N, λ1−k

n > β−η}. (34)

From Formula (31), we have

‖ f (x)− fβ(x)‖2 ≤ sup
n∈A1

(
βλ1−k

n
2C(γ, α, λ1)

)2

∑
n∈A1

λ2k
n ( f (x), φn(x))2

+ sup
n∈A2

(
β2λ−k

n
β2 + u2

n(T)

)2

∑
n∈A2

λ2k
n ( f (x), φn(x))2

≤
(

1
2C(γ, α, λ1)

)2

β2−2η‖ f ‖2
Hk(Ω)

+ sup
n∈A2

λ−2k
n ‖ f ‖2

Hk(Ω)

≤
(

1
2C(γ, α, λ1)

)2

β2−2η‖ f ‖2
Hk(Ω)

+ β
2ηk
1−k ‖ f ‖2

Hk(Ω)
. (35)

Choosing η = 1 − k, and the Formula (17), we obtain

‖ f (x)− fβ(x)‖2 ≤
(

1
2C(γ, α, λ1)

)2

β2−2η‖ f ‖2
Hk(Ω)

+ β
2ηk
1−k ‖ f ‖2

Hk(Ω)

= β2kE2
((

1
2C(γ, α, λ1)

)2

+ 1
)

.

(36)

This means

‖ f (x)− fβ(x)‖ ≤ βkE

√(
1

2C(γ, α, λ1)

)2

+ 1. (37)

The proof of Lemma 4 is complete.

Theorem 2. Suppose that a priori condition (17) and the noise assumption (3) hold; then,
(1) If k ≥ 1, and we choose β = ( δ

E )
1
2 , we have the convergence estimate

‖ f δ
β(x)− f (x)‖ ≤ 1

2
δ

1
2 E

1
2

(
1 +

λ1−k
1

C(γ, α, λ1)

)
. (38)

(2) If 0 < k < 1, and we choose β = ( δ
E )

1
k+1 , we obtain the convergence estimate

‖ f δ
β(x)− f (x)‖ ≤ δ

k
k+1 E

1
k+1

(
1
2
+

√(
1

2C(γ, α, λ1)

)2

+ 1
)

. (39)

Proof. According to the triangle inequality and Lemmas 3 and 4, we know

‖ f δ
β(x)− f (x)‖ ≤ ‖ f δ

β(x)− fβ(x)‖+ ‖ fβ(x)− f (x)‖.

Hence, we can easily obtain the conclusion to Theorem 2.

4.2. A Posteriori Choice Rule

In this subsection, we derive the convergence estimate by using a posteriori regular-
ization choice rule (namely Morozov’s discrepancy principle).

According to Morozov’s discrepancy principle [32], we choose the regularization
parameter β as the solution of the following equation

‖K f δ
β(x)− gδ(x)‖ = τδ, (40)
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where τ > 1 is a constant.

Lemma 5. Set ρ(β) = ‖K f δ
β(x)− gδ(x)‖. Then, the following results hold

(a) ρ(β) is a continuous function;
(b) limβ→0 ρ(β) = 0;
(c) limβ→+∞ ρ(β) = ‖gδ(x)‖;
(d) ρ(β) is a strictly increasing function over (0,+∞).

Proof. The proof follows from the straightforward results using the expressions of

K f δ
β(x) =

∞

∑
n=1

u2
n(T)

β2 + u2
n(T)

(gδ(x), φn(x))φn(x), (41)

and

ρ(β) = ‖K f δ
β(x)− gδ(x)‖ =

( ∞

∑
n=1

(
β2

β2 + u2
n(T)

)2

(gδ(x), φn(x))2
) 1

2

. (42)

Remark 2. According to Lemma 5, we know there exists a unique solution for Equation (40) if
‖gδ‖ > τδ > 0.

Lemma 6. If β is the solution of Equation (40), we can obtain the following inequality

1
β
≤

{
( C2

τ−1 )
1

k+1 ( E
δ )

1
k+1 , 0 < k < 1,

( C3
τ−1 )

1
2 ( E

δ )
1
2 , k ≥ 1,

(43)

where C2 = 1
2 M(k + 1)

k+1
2 (1 − k)

1−k
2 C−k−1(γ, α, λ1) and C3 =

Mλ1−k
1

C2(γ,α,λ1)
are independent of s.

Proof. From Equation (40), we have

τδ =

∥∥∥∥ ∞

∑
n=1

β2

β2 + u2
n(T)

(gδ(x), φn(x))φn(x)
∥∥∥∥

≤
∥∥∥∥ ∞

∑
n=1

β2

β2 + u2
n(T)

(gδ(x)− g(x), φn(x))φn(x)
∥∥∥∥

+

∥∥∥∥ ∞

∑
n=1

β2

β2 + u2
n(T)

(g(x), φn(x))φn(x)
∥∥∥∥

≤ δ +

∥∥∥∥ ∞

∑
n=1

β2

β2 + u2
n(T)

(g(x), φn(x))φn(x)
∥∥∥∥. (44)

Then, we obtain

(τ − 1)δ ≤
∥∥∥∥ ∞

∑
n=1

β2

β2 + u2
n(T)

(g(x), φn(x))φn(x)
∥∥∥∥. (45)
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Using the a priori bound condition of f (x), we obtain∥∥∥∥ ∞

∑
n=1

β2

β2 + u2
n(T)

(g(x), φn(x))φn(x)
∥∥∥∥

≤
∥∥∥∥ ∞

∑
n=1

β2un(T)λ−k
n

β2 + u2
n(T)

λk
n(g(x), φn(x))φn(x)

un(T)

∥∥∥∥
≤ sup

n≥1

β2un(T)λ−k
n

β2 + u2
n(T)

[ ∞

∑
n=1

λ2k
n g2

n(x)
u2

n(T)

] 1
2

= sup
n≥1

β2un(T)λ−k
n

β2 + u2
n(T)

‖ f ‖Hk(Ω), (46)

where

H(n) =
β2un(T)λ−k

n
β2 + u2

n(T)
. (47)

Due to Lemma 2 and Formula (16), we obtain

H(n) =
β2un(T)λ−k

n
β2 + u2

n(T)
≤ β2 c min{T−1,Tα−1}

λn
λ−k

n

β2 + (C(γ,α,λ1)
λn

)2
=

β2c min{T−1, Tα−1}λ1−k
n

β2λ2
n + C2(γ, α, λ1)

. (48)

Let s = λn, M = c min{T−1, Tα−1}; then, we set

G(s) =
β2Ms1−k

β2s2 + C2(γ, α, λ1)
. (49)

We divide this into the two following cases:
Case 1: If 0 < k < 1, then we have lims→0 G(s) = lims→∞ G(s) = 0; thus, we know

G(s) ≤ sup
s∈(0,+∞)

G(s) ≤ G(s0),

where s0 ∈ (0,+∞) such that G′(s0) = 0. It is easy to prove that s0 =
√

1−k
k+1

C(γ,α,λ1)
β > 0;

thus, we have

G(s) ≤ G(s0) =
1
2

M(k + 1)
k+1

2 (1 − k)
1−k

2 C−k−1(γ, α, λ1)βk+1 := C2βk+1. (50)

Case 2: If k ≥ 1, then we have

G(s) ≤ β2Ms1−k

C2(γ, α, λ1)
≤ β2Mλ1−k

1
C2(γ, α, λ1)

:= C3β2. (51)

Combining Formulas (45) and (50) with (51), we obtain

(τ − 1)δ ≤
{

C2βk+1E, 0 < k < 1,
C3β2E, k ≥ 1.

(52)

This yields
1
β
≤

{
( C2

τ−1 )
1

k+1 ( E
δ )

1
k+1 , 0 < k < 1,

( C3
τ−1 )

1
2 ( E

δ )
1
2 , k ≥ 1.

Thus, the proof of Lemma 6 is complete.

Theorem 3. Suppose a priori condition (17) and the noise assumption (3) hold, and we take the
solution of Equation (40) as the regularization parameter; then,

(1) If k ≥ 1, we obtain the following convergence estimate
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‖ f δ
β(x)− f (x)‖ ≤ C1(τ + 1)

k
k+1 δ

k
k+1 E

1
k+1 +

1
2

(
C3

τ − 1

) 1
2

δ
1
2 E

1
2 . (53)

(2) If 0 < k < 1, we obtain the following convergence estimate

‖ f δ
β(x)− f (x)‖ ≤

[
C1(τ + 1)

k
k+1 +

1
2

(
C2

τ − 1

) 1
k+1

]
δ

k
k+1 E

1
k+1 , (54)

where C1 = C− k
k+1 (γ, α, λ1), C2 = 1

2 M(k+ 1)
k+1

2 (1− k)
1−k

2 C−k−1(γ, α, λ1) and C3 =
Mλ1−k

1
C2(γ,α,λ1)

are independent of s.

Proof. Due to the triangle inequality, we have

‖ f δ
β(x)− f (x)‖ ≤ ‖ f δ

β(x)− fβ(x)‖+ ‖ fβ(x)− f (x)‖. (55)

Firstly, we give an estimate for the second term on the right side of Formula (55),

K fβ(x)− K f (x) =
∞

∑
n=1

−β2

β2 + u2
n(T)

(g(x), φn(x))φn(x)

=
∞

∑
n=1

−β2

β2 + u2
n(T)

(g(x)− gδ(x), φn(x))φn(x)

+
∞

∑
n=1

−β2

β2 + u2
n(T)

(gδ(x), φn(x))φn(x).

(56)

Combining Formulas (3) and (40), we obtain

‖K fβ(x)− K f (x)‖ ≤ δ + τδ = (τ + 1)δ. (57)

In addition, by applying a priori bound condition of f (x), we obtain

‖ fβ(x)− f (x)‖2
Hk(Ω)

=
∞

∑
n=1

(
β2

β2 + u2
n(T)

)2
λ2k

n |(g(x), φn(x))|2
u2

n(T)

≤
∞

∑
n=1

λ2k
n |(g(x), φn(x))|2

u2
n(T)

= ‖ f ‖2
Hk(Ω)

≤ E2.

(58)

By Theorem 1 and Formula (57), we have

‖ fβ(x)− f (x)‖ ≤ C1(τ + 1)
k

k+1 δ
k

k+1 E
1

k+1 . (59)

Now, we give an estimate for the first term on the right side of Formula (55); similar to
Formula (25), we have

‖ f δ
β(x)− fβ(x)‖ ≤ δ

2β
. (60)

Substituting Formula (43) into Formula (60), we obtain

‖ f δ
β(x)− fβ(x)‖ ≤

{
1
2 (

C2
τ−1 )

1
k+1 δ

k
k+1 E

1
k+1 , 0 < k < 1,

1
2 (

C3
τ−1 )

1
2 δ

1
2 E

1
2 , k ≥ 1.

(61)

Combining Formula (59) with Formula (61), we conclude

‖ f δ
β(x)− f (x)‖ ≤

{
[C1(τ + 1)

k
k+1 + 1

2 (
C2

τ−1 )
1

k+1 ]δ
k

k+1 E
1

k+1 , 0 < k < 1,

C1(τ + 1)
k

k+1 δ
k

k+1 E
1

k+1 + 1
2 (

C3
τ−1 )

1
2 δ

1
2 E

1
2 , k ≥ 1.

(62)

The proof of Theorem 3 is complete.
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5. Conclusions

This paper studies the inverse problem of the Rayleigh–Stokes equation and adopts
the Tikhonov regularization method to solve this inverse problem. Based on the conditional
stability results, the corresponding convergence estimates are obtained under a priori and a
posteriori regularization parameter choice rules, respectively. However, this paper provides
a theoretical proof. In future, the validity and stability of the proposed method will be
verified numerically. Moreover, we are currently considering the one parameter inversion
problem, and next we will consider multi-parameter inversion problems.
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Abstract: Monge–Ampère equations have important research significance in many fields such as
geometry, convex geometry and mathematical physics. In this paper, under some superlinear and
sublinear conditions, the existence of nontrivial solutions for a system arising from Monge–Ampère
equations with two parameters is investigated based on the Guo–Krasnosel’skii fixed point theorem.
In the end, two examples are given to illustrate our theoretical results.
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1. Introduction

In this paper, we concentrate on the existence of nontrivial solutions for the boundary
value problem: ⎧⎪⎨⎪⎩

((u′(s))N)′ = λNrN−1 f (−u(s),−v(s)), 0 < s < 1,

((v′(s))N)′ = μNrN−1g(−u(s),−v(s)), 0 < s < 1,

u′(0) = u(1) = 0, v′(0) = v(1) = 0,

(1)

where N ≥ 1, f , g : [0, 1]× [0,+∞)× [0,+∞) → [0,+∞) are continuous, λ and μ are two
positive parameters. Problem (1) emerges when considering the existence of nontrivial
solutions for the following Dirichlet problem related to Monge–Ampère equations:⎧⎪⎨⎪⎩

det(D2u) = λ f (−u,−v) in B,

det(D2v) = μg(−u,−v) in B,

u = v = 0 on ∂B,

where D2u = ( ∂2u
∂xi∂xj

) is the Hessian matrix of u, D2v = ( ∂2v
∂xi∂xj

) is the Hessian matrix of v,

B = {x ∈ RN : |x| < 1}.
Monge–Ampère equations play a crucial role in the exploration of mathematical

physics, engineering, biological sciences and other hot application disciplines (see [1]).
As is known, Figalli was awarded the Fields Medal in 2018 for his contribution to the
Monge–Ampère equation, e.g., see [2]. Caffarelli received the Abel Prize in 2023 for his
pioneering contributions to the understanding of the regularity theory of nonlinear partial
differential equations, including the Monge–Ampère equation, e.g., see [3]. On the basis of
their research, an increasing number of researchers have conducted some investigations
associated with Monge–Ampère equations. For example, Mohammed and Mooney studied
the singular problems of the Monge–Ampère equation, see [4,5]; Son, Wang, Aranda
and Godoy substituted the p-Laplacian operator for the Monge–Ampère operator, thus
offering a new conclusion to the corresponding singular problem, which can be found
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in [6,7]. Recently, Feng [8] considered the singular problems of p-Monge–Ampère equations.
In addition, some scholars have studied the existence of nontrivial radial convex solutions
for a single Monge–Ampère equation or systems of such equations, utilizing the theory of
topological degree, bifurcation techniques, the upper and lower solutions method, and so
on. For further details, see [2–5,8–25] and the references therein.

For example, in [18], Ma and Gao investigated the following boundary value problem:{
((u′

1(t))
n)′ = λntn−1 f (−u(t)), 0 < t < 1,

u′(0) = u(1) = 0.
(2)

Boundary value Problem (2) arose from the following Monge–Ampère equation:{
det(D2u) = λ f (−u) in B,
u = 0 on ∂B,

(3)

where D2u = ( ∂2u
∂xi∂xj

) is the Hessian matrix of u, B = {x ∈ Rn : |x| < 1}. The global
bifurcation technique was applied to ascertain the optimal intervals of parameter λ, thereby
further guaranteeing the existence of single or multiple solutions to Problem (2).

In [21], Wang established two solvability criteria for a weakly coupled system:⎧⎨⎩
((u′

1(t))
N)′ = NtN−1 f (−u2(t)), 0 < t < 1,

((u′
2(t))

N)′ = NtN−1g(−u1(t)), 0 < t < 1,
u′

1(0) = u′
2(0) = 0, u1(1) = u2(1) = 0,

(4)

where N ≥ 1. System (4) arose from the following Monge–Ampère equations:⎧⎨⎩
det(D2u1) = f (−u2) in B,
det(D2u2) = g(−u1) in B,
u1 = u2 = 0 on ∂B,

where B = {x ∈ RN : |x| < 1}, and D2ui is the determinant of the Hessian matrix ( ∂2ui
∂xm∂xn

)
of ui. The existence of convex radial solutions for Problem (4) was established in both the
superlinear and sublinear instances, utilizing fixed point theorems within a cone.

In [20], Wang and An discussed the following system of Monge–Ampère equations:⎧⎪⎪⎨⎪⎪⎩
det(D2u1) = f1(−u1, · · ·,−un) in B,
· · ·
det(D2un) = fn(−u1, · · ·,−un) in B,
u(x) = 0 on ∂B,

(5)

where D2ui = ( ∂2ui
∂xi∂xj

) is the Hessian matrix of ui, B = {x ∈ RN : |x| < 1}. Obviously,
System (5) can readily be changed into the subsequent boundary value problem:⎧⎪⎪⎨⎪⎪⎩

((u′
1(r))

N)′ = NrN−1 f1(−u1, · · ·,−un), 0 < r < 1,
· · ·
((u′

n(r))N)′ = NrN−1 fn(−u1, · · ·,−un), 0 < r < 1,
u′

i(0) = ui(1) = 0, i = 1, · · ·, n,

where N ≥ 1. The existence of triple nontrivial radial convex solutions was obtained
through the application of the Leggett–Williams fixed point theorem.

In [22], the author studied the following system:⎧⎪⎪⎨⎪⎪⎩
((u′

1(r))
N)′ = λNrN−1 f1(−u1, · · ·,−un), 0 < r < 1,

· · ·
((u′

n(r))N)′ = λNrN−1 fn(−u1, · · ·,−un), 0 < r < 1,
u′

i(0) = ui(1) = 0, i = 1, · · ·, n,

(6)
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where N ≥ 1. System (6) arose from the following system:⎧⎪⎪⎨⎪⎪⎩
det(D2u1) = λ f1(−u1, · · ·,−un) in B,
· · ·
det(D2un) = λ fn(−u1, · · ·,−un) in B,
ui = 0 on ∂B, i = 1, · · ·, n,

where D2ui = ( ∂2ui
∂xi∂xj

) is the Hessian matrix of ui, B = {x ∈ RN : |x| < 1}.
Using fixed point theorems and considering sublinear and superlinear conditions,

Wang explored the existence of two nontrivial radial solutions for System (6) with a carefully
selected parameter.

In [14], Gao and Wang considered the following boundary value problem:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
((u′

1(r))
N)′ = λ1NrN−1 f1(−u1,−u2, · · ·,−un),

((u′
2(r))

N)′ = λ2NrN−1 f2(−u1,−u2, · · ·,−un),
· · ·
((u′

n(r))N)′ = λnNrN−1 fn(−u1,−u2, · · ·,−un),
u′

i(0) = ui(1) = 0, i = 1, 2, · · ·, n, 0 < r < 1,

(7)

where N ≥ 1. System (7) arose from the following system:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
det(D2u1) = λ1 f1(−u1, · · ·,−un) in B,
det(D2u2) = λ2 f2(−u1, · · ·,−un) in B,
· · ·
det(D2un) = λn fn(−u1, · · ·,−un) in B,
ui = 0 on ∂B, i = 1, · · ·, n,

where D2ui = ( ∂2ui
∂xi∂xj

) is the Hessian matrix of ui, and B = {x ∈ RN : |x| < 1}. By using
the method of upper and lower solutions and the fixed point index theory, they established
the existence, nonexistence, and multiplicity of convex solutions for Problem (7).

In [12], Feng continued to consider the uniqueness and existence of nontrivial radial
convex solutions of System (3). And the author also studied the following system:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

det(D2u1) = λ1 f1(−u2) in B,
det(D2u2) = λ2 f2(−u3) in B,
· · ·
det(D2un) = λn fn(−u1) in B,
u1 = u2 · · · = un = 0 on ∂B,

(8)

where λi(i = 1, 2, · · ·, n) are positive parameters. The author derived novel existence results
for nontrivial radial convex solutions of System (8) via employing the eigenvalue theory in
a cone and defining composite operators.

In addition, in recent decades, some authors have investigated the existence of non-
trivial solutions to other differential equations with parameters. For example, in [26], by
employing the Guo–Krasnosel’skii fixed point theorem, Hao et al. considered the existence
of positive solutions for a class of nonlinear fractional differential systems, specifically
nonlocal boundary value problems with parameters and a p-Laplacian operator. In [27],
Yang studied the existence of positive solutions for the Dirichlet boundary value problem
of certain nonlinear differential systems using the upper and lower solution method and
the fixed point index theory. In [28], Jiang and Zhai investigated a coupled system of
nonlinear fourth-order equations based on the Guo–Krasnosel’skii fixed point theorem and
Green’s functions.

Inspired by literatures [12,14,20–22,26–28], we consider Problem (1). In this paper,
under some different combinations of superlinearity and sublinearity of the nonlinear
terms, we use the Guo–Krasnosel’skii fixed point theorem to investigate the existence
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results of System (1) and establish some existence results of nontrivial solutions based on
various different values values of λ and μ. Here, we extend the study in literature [21],
and the main results differ from those in literatures [12,14,21].

2. Preliminaries

In this section, we list some basic preliminaries to be used in Section 3. For further
background knowledge of cone, we refer readers to papers [21,29] for more details.

Lemma 1 (see [29]). Let E be a Banach space, and P ⊂ E be a cone. Assume that Ω1 and Ω2
are bounded open sets in E, θ ∈ Ω1, Ω1 ⊂ Ω2; operator A : P ∩ (Ω2\Ω1) → P is completely
continuous. If the following conditions are satisfied,

(i)‖Ax‖ ≤ ‖x‖, ∀x ∈ P ∩ ∂Ω1, ‖Ax‖ ≥ ‖x‖, ∀x ∈ P ∩ ∂Ω2, or

(ii)‖Ax‖ ≥ ‖x‖, ∀x ∈ P ∩ ∂Ω1, ‖Ax‖ ≤ ‖x‖, ∀x ∈ P ∩ ∂Ω2,

then operator A has at least one fixed point in P ∩ (Ω̄2\Ω1).

In order to solve System (1), we offer a simple transformation, x(s) = −u(s), y(s) = −v(s),
in System (1); then, System (1) can be changed to the following system:⎧⎪⎨⎪⎩

((−x′(s))N)′ = λNsN−1 f (x(s), y(s)), 0 < s < 1,

((−y′(s))N)′ = μNsN−1g(x(s), y(s)), 0 < s < 1,

x′(0) = x(1) = 0, y′(0) = y(1) = 0.

(9)

In the following, we treat the existence of positive solutions of System (9).

We let E = C[0, 1]×C[0, 1] with norm ‖(x, y)‖E = ‖x‖+ ‖y‖, where ‖x‖ = max
s∈[0,1]

|x(s)|
and ‖y‖ = max

s∈[0,1]
|y(s)|.

We define

P = {(x, y) ∈ E : x(s) ≥ 0, y(s) ≥ 0, ∀s ∈ [0, 1], min
s∈[ 1

4 , 3
4 ]
(x(s) + y(s)) ≥ 1

4
‖(x, y)‖E}.

Then, P is a cone of E.
According to literature [21], now, we denote operators A1, A2 and A by

A1(x, y)(s) =
∫ 1

s
(
∫ u

0
λNτN−1 f (x(τ), y(τ))dτ)

1
N du, s ∈ [0, 1],

A2(x, y)(s) =
∫ 1

s
(
∫ u

0
μNτN−1g(x(τ), y(τ))dτ)

1
N du, s ∈ [0, 1].

and A(x, y) = (A1(x, y), A2(x, y)), (x, y) ∈ E. Thus, it is easy to see that the fixed points of
operator A correspond to solutions of System (9).

Similar to the proof of Lemma 2.3 in literature [21], we can easily obtain the lemma
as follows.

Lemma 2. A : P → P is completely continuous.

3. Main Results

We denote

f0 = lim sup
x+y→0+

f (x, y)
(x + y)N , g0 = lim sup

x+y→0+

g(x, y)
(x + y)N ,
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f∞ = lim inf
x+y→∞

f (x, y)
(x + y)N , g∞ = lim inf

x+y→∞

g(x, y)
(x + y)N ,

f̂0 = lim inf
x+y→0+

f (x, y)
(x + y)N , ĝ0 = lim inf

x+y→0+

g(x, y)
(x + y)N ,

f̂∞ = lim sup
x+y→∞

f (x, y)
(x + y)N , ĝ∞ = lim sup

x+y→∞

g(x, y)
(x + y)N .

F =
∫ 1

0
(
∫ u

0
NτN−1dτ)

1
N du, G =

∫ 3
4

1
4

(
∫ u

1
4

NτN−1dτ)
1
N du.

For f0, g0, f∞, g∞ ∈ (0, ∞), we define the symbols below:

M1 =
2N

GN f∞
, M2 =

1
2N FN f0

,

M3 =
2N

GN g∞
, M4 =

1
2N FN g0

.

Theorem 1. (1) Assume that f0, g0, f∞, g∞ ∈ (0, ∞), M1 < M2, M3 < M4; then, for λ ∈ (M1, M2)
and μ ∈ (M3, M4), System (9) has at least one positive solution.

(2) Assume that f0 = 0, g0, f∞, g∞ ∈ (0, ∞), M3 < M4; then, for λ ∈ (M1, ∞) and
μ ∈ (M3, M4), System (9) has at least one positive solution.

(3) Assume that f0, f∞, g∞ ∈ (0, ∞), g0 = 0, M1 < M2; then, for λ ∈ (M1, M2) and
μ ∈ (M3, ∞), System (9) has at least one positive solution.

(4) Assume that f0 = g0 = 0, f∞, g∞ ∈ (0, ∞); then, for λ ∈ (M1, ∞) and μ ∈ (M3, ∞),
System (9) has at least one positive solution.

(5) Assume that f0, g0 ∈ (0, ∞), f∞ = ∞ or f0, g0 ∈ (0, ∞), g∞ = ∞; then, for λ ∈ (0, M2)
and μ ∈ (0, M4), System (9) has at least one positive solution.

(6) Assume that f0 = 0, g0 ∈ (0, ∞), g∞ = ∞ or f0 = 0, g0 ∈ (0, ∞), f∞ = ∞; then, for
λ ∈ (0, ∞) and μ ∈ (0, M4), System (9) has at least one positive solution.

(7) Assume that f0 ∈ (0, ∞), g0 = 0, g∞ = ∞ or f0 ∈ (0, ∞), g0 = 0, f∞ = ∞; then, for
λ ∈ (0, M2) and μ ∈ (0, ∞), System (9) has at least one positive solution.

(8) Assume that f0 = g0 = 0, g∞ = ∞ or f0 = g0 = 0, f∞ = ∞; then, for λ ∈ (0, ∞) and
μ ∈ (0, ∞), System (9) has at least one positive solution.

Proof. Due to the similarity in the proofs of the above cases, we demonstrate Case (1) and
Case (6).

(1) For each λ ∈ (M1, M2) and μ ∈ (M3, M4), there exists ε > 0 such that

2N

GN( f∞ − ε)
≤ λ ≤ 1

2N FN( f0 + ε)
,

2N

GN(g∞ − ε)
≤ μ ≤ 1

2N FN(g0 + ε)
.

It follows from the definitions of f0 and g0 that there exists r1 > 0 such that

f (x, y) < ( f0 + ε)(x + y)N , 0 ≤ x + y ≤ r1,

g(x, y) < (g0 + ε)(x + y)N , 0 ≤ x + y ≤ r1.

Further, we choose the set Ω1 = {(x, y) ∈ E : ‖(x, y)‖E < r1}; then, for any (x, y) ∈
P ∩ ∂Ω1, we obtain

0 ≤ x(s) + y(s) ≤ ‖x‖+ ‖y‖ = ‖(x, y)‖E = r1, ∀s ∈ [0, 1],
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by simple calculation, we have

A1(x, y)(s) =
∫ 1

s
(
∫ u

0
λNτN−1 f (x(τ), y(τ))dτ)

1
N du

≤
∫ 1

0
(
∫ u

0
λNτN−1 f (x(τ), y(τ))dτ)

1
N du

≤
∫ 1

0
(
∫ u

0
λNτN−1( f0 + ε)(x(τ) + y(τ))Ndτ)

1
N du

≤ ( f0 + ε)
1
N

∫ 1

0
(
∫ u

0
λNτN−1(‖x‖+ ‖y‖)Ndτ)

1
N du

= ( f0 + ε)
1
N λ

1
N

∫ 1

0
(
∫ u

0
NτN−1dτ)

1
N du · ‖(x, y)‖E

≤ ‖(x, y)‖E
2

.

Next, we show that

‖A1(x, y)‖ ≤ 1
2
‖(x, y)‖E, ∀ (x, y) ∈ P ∩ ∂Ω1. (10)

By applying the same method, we deduce

A2(x, y)(s) =
∫ 1

s
(
∫ u

0
μNτN−1g(x(τ), y(τ))dτ)

1
N du

≤
∫ 1

0
(
∫ u

0
μNτN−1g(x(τ), y(τ))dτ)

1
N du

≤
∫ 1

0
(
∫ u

0
μNτN−1(g0 + ε)(x(τ) + y(τ))Ndτ)

1
N du

≤ (g0 + ε)
1
N

∫ 1

0
(
∫ u

0
μNτN−1(‖x‖+ ‖y‖)Ndτ)

1
N du

= (g0 + ε)
1
N μ

1
N

∫ 1

0
(
∫ u

0
NτN−1dτ)

1
N du · ‖(x, y)‖E

≤ ‖(x, y)‖E
2

.

Next, we show that

‖A2(x, y)‖ ≤ 1
2
‖(x, y)‖E, ∀(x, y) ∈ P ∩ ∂Ω1. (11)

Thus, by (10) and (11), we have

‖A(x, y)‖E = ‖A1(x, y)‖+ ‖A2(x, y)‖ ≤ ‖(x, y)‖E, ∀(x, y) ∈ P ∩ ∂Ω1. (12)

On the other hand, considering the definitions of f∞ and g∞, it is easy to see that there
exists r̄2 > 0 such that

f (x, y) ≥ ( f∞ − ε)(x + y)N , x + y ≥ r̄2,

g(x, y) ≥ (g∞ − ε)(x + y)N , x + y ≥ r̄2.

Further, we choose r2 = max{2r1, 4r̄2} and denote Ω2 = {(x, y) ∈ E : ‖(x, y)‖E < r2};
then, for any (x, y) ∈ P ∩ ∂Ω2, we obtain

min
s∈[ 1

4 , 3
4 ]
(x(s) + y(s)) ≥ 1

4
‖(x, y)‖E =

1
4

r2 ≥ r̄2,
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in the following, we deduce

A1(x, y)(
1
4
) =

∫ 1

1
4

(
∫ u

0
λNτN−1 f (x(τ), y(τ))dτ)

1
N du

≥
∫ 3

4

1
4

(
∫ u

1
4

λNτN−1 f (x(τ), y(τ))dτ)
1
N du

≥
∫ 3

4

1
4

(
∫ u

1
4

λNτN−1( f∞ − ε)(x(τ) + y(τ))Ndτ)
1
N du

≥ ( f∞ − ε)
1
N

∫ 3
4

1
4

(
∫ u

1
4

λNτN−1(
1
4
‖(x, y)‖E)

Ndτ)
1
N du

=
1
4
( f∞ − ε)

1
N λ

1
N

∫ 3
4

1
4

(
∫ u

1
4

NτN−1dτ)
1
N du · ‖(x, y)‖E

≥ ‖(x, y)‖E
2

.

Now, we know that

‖A1(x, y)‖ ≥ 1
2
‖(x, y)‖E, ∀(x, y) ∈ P ∩ ∂Ω2. (13)

In a similar manner, for any (x, y) ∈ P ∩ ∂Ω2, we obtain

A2(x, y)(
1
4
) =

∫ 1

1
4

(
∫ u

0
μNτN−1g(x(τ), y(τ))dτ)

1
N du

≥
∫ 3

4

1
4

(
∫ u

1
4

μNτN−1g(x(τ), y(τ))dτ)
1
N du

≥
∫ 3

4

1
4

(
∫ u

1
4

μNτN−1(g∞ − ε)(x(τ) + y(τ))Ndτ)
1
N du

≥ (g∞ − ε)
1
N

∫ 3
4

1
4

(
∫ u

1
4

μNτN−1(
1
4
‖(x, y)‖E)

Ndτ)
1
N du

=
1
4
(g∞ − ε)

1
N μ

1
N

∫ 3
4

1
4

(
∫ u

1
4

NτN−1dτ)
1
N du · ‖(x, y)‖E

≥ ‖(x, y)‖E
2

.

Now, we know that

‖A2(x, y)‖ ≥ 1
2
‖(x, y)‖E, ∀(x, y) ∈ P ∩ ∂Ω2. (14)

Consequently, by means of (13) and (14), we show that

‖A(x, y)‖E = ‖A1(x, y)‖+ ‖A2(x, y)‖ ≥ ‖(x, y)‖E, ∀(x, y) ∈ P ∩ ∂Ω2. (15)

Obviously, it follows from (12), (15) and Lemma 1 that A has at least one fixed point
(x, y) ∈ P ∩ (Ω2\Ω1) such that r1 ≤ ‖(x, y)‖E ≤ r2. Thus, System (9) has at least one
positive solution. The proof of Case (1) is completed.

(6) We assume f0 = 0, g0 ∈ (0, ∞), g∞ = ∞; then, for each λ ∈ (0, ∞) and μ ∈ (0, M4),
there exists ε > 0 such that

0 < λ <
1

2N FNε
,

4Nε

GN < μ <
1

2N FN(g0 + ε)
.
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Notice that the definitions of f0 and g0, and there exists r3 > 0 such that

f (x, y) < ε(x + y)N , 0 ≤ x + y ≤ r3,

g(x, y) < (g0 + ε)(x + y)N , 0 ≤ x + y ≤ r3.

Further, we choose the set Ω3 = {(x, y) ∈ E : ‖(x, y)‖E < r3}; then, for any (x, y) ∈
P ∩ ∂Ω3, we have

A1(x, y)(s) =
∫ 1

s
(
∫ u

0
λNτN−1 f (x(τ), y(τ))dτ)

1
N du

≤
∫ 1

0
(
∫ u

0
λNτN−1 f (x(τ), y(τ))dτ)

1
N du

≤
∫ 1

0
(
∫ u

0
λNτN−1ε(x(τ) + y(τ))Ndτ)

1
N du

≤ ε
1
N

∫ 1

0
(
∫ u

0
λNτN−1(‖x‖+ ‖y‖)Ndτ)

1
N du

= ε
1
N λ

1
N

∫ 1

0
(
∫ u

0
NτN−1dτ)

1
N du · ‖(x, y)‖E

<
‖(x, y)‖E

2
.

(16)

Therefore,

‖A1(x, y)‖ ≤ 1
2
‖(x, y)‖E, ∀(x, y) ∈ P ∩ ∂Ω3.

Similarly, we have

‖A2(x, y)‖ ≤ 1
2
‖(x, y)‖E, ∀(x, y) ∈ P ∩ ∂Ω3;

clearly,
‖A(x, y)‖E ≤ ‖(x, y)‖E, ∀(x, y) ∈ P ∩ ∂Ω3. (17)

On the other hand, since g∞ = ∞, we know that there exists r̄4 > 0 such that

g(x, y) ≥ 1
ε
(x + y)N , x, y ≥ 0, x + y ≥ r̄4.

Further, we choose r4 = max{2r3, 4r̄4} and denote Ω4 = {(x, y) ∈ E : ‖(x, y)‖E < r4};
then, for any (x, y) ∈ P ∩ ∂Ω4, we have mins∈[ 1

4 , 3
4 ]
(x(s) + y(s)) ≥ 1

4‖(x, y)‖E = 1
4 r4 ≥ r̄4,

Now, we deduce that

A2(x, y)(
1
4
) =

∫ 1

1
4

(
∫ u

0
μNτN−1g(x(τ), y(τ))dτ)

1
N du

≥
∫ 3

4

1
4

(
∫ u

1
4

μNτN−1g(x(τ), y(τ))dτ)
1
N du

≥
∫ 3

4

1
4

(
∫ u

1
4

μNτN−1 1
ε
(x(τ) + y(τ))Ndτ)

1
N du

≥ (
1
ε
)

1
N

∫ 3
4

1
4

(
∫ u

1
4

μNτN−1(
1
4
‖(x, y)‖E)

Ndτ)
1
N du

=
1
4
(

1
ε
)

1
N μ

1
N

∫ 3
4

1
4

(
∫ u

1
4

NτN−1dτ)
1
N du · ‖(x, y)‖E

> ‖(x, y)‖E.
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Then, it is easy to see that

‖A(x, y)‖E ≥ ‖A2(x, y)‖ ≥ ‖(x, y)‖E, (x, y) ∈ P ∩ ∂Ω4. (18)

Hence, it follows from (17), (18) and Lemma 1 that A has at least one fixed point
(x, y) ∈ P ∩ (Ω4\Ω3) such that r3 ≤ ‖(x, y)‖E ≤ r4, namely (x, y) is a positive solution for
System (9), so the proof is completed.

For f̂0, ĝ0, f̂∞, ĝ∞ ∈ (0, ∞), we define the symbols below:

Q1 =
2N

GN f̂0
, Q2 =

1

2N FN f̂∞
,

Q3 =
2N

GN ĝ0
, Q4 =

1
2N FN ĝ∞

.

Theorem 2. (1) Assume that f̂0, ĝ0, f̂∞, ĝ∞ ∈ (0, ∞), Q1 < Q2, Q3 < Q4; then, for λ ∈
(Q1, Q2) and μ ∈ (Q3, Q4), System (9) has at least one positive solution.

(2) Assume that f̂0, ĝ0, f̂∞ ∈ (0, ∞), ĝ∞ = 0, and Q1 < Q2; then, for each λ ∈ (Q1, Q2) and
μ ∈ (Q3, ∞), System (9) has at least one positive solution.

(3) Assume that f̂0, ĝ0, ĝ∞ ∈ (0, ∞), f̂∞ = 0, and Q3 < Q4; then, for each λ ∈ (Q1, ∞) and
μ ∈ (Q3, Q4), System (9) has at least one positive solution.

(4) Assume that f̂0, ĝ0 ∈ (0, ∞), f̂∞ = ĝ∞ = 0; then, for each λ ∈ (Q1, ∞) and μ ∈ (Q3, ∞),
System (9) has at least one positive solution.

(5) Assume that f̂∞, ĝ∞ ∈ (0, ∞), f̂0 = ∞ or f̂∞, ĝ∞ ∈ (0, ∞), ĝ0 = ∞; then, for each
λ ∈ (0, Q2) and μ ∈ (0, Q4), System (9) has at least one positive solution.

(6) Assume that f̂0 = ∞, f̂∞ ∈ (0, ∞), ĝ∞ = 0 or f̂∞ ∈ (0, ∞), ĝ∞ = 0, ĝ0 = ∞; then, for
each λ ∈ (0, Q2) and μ ∈ (0, ∞), System (9) has at least one positive solution.

(7) Assume that f̂0 = ∞, ĝ∞ ∈ (0, ∞), f̂∞ = 0 or ĝ∞ ∈ (0, ∞), ĝ0 = ∞, f̂∞ = 0; then, for
each λ ∈ (0, ∞) and μ ∈ (0, Q4), System (9) has at least one positive solution.

(8) Assume that f̂∞ = ĝ∞ = 0, f̂0 = ∞ or f̂∞ = ĝ∞ = 0, ĝ0 = ∞; then, for each λ ∈ (0, ∞)
and μ ∈ (0, ∞), System (9) has at least one positive solution.

Proof. Due to the similarity in the proofs of the above cases, we demonstrate Case (1) and
Case (6).

(1) For each λ ∈ (Q1, Q2) and μ ∈ (Q3, Q4), there exists ε > 0 such that

2N

GN( f̂0 − ε)
≤ λ ≤ 1

2N FN( f̂∞ + ε)
,

2N

GN(ĝ0 − ε)
≤ μ ≤ 1

2N FN(ĝ∞ + ε)
.

It follows from the definitions of f̂0 and ĝ0 that there exists r1 > 0 such that

f (x, y) ≥ ( f̂0 − ε)(x + y)N , x, y ≥ 0, x + y ≤ r1,

g(x, y) ≥ (ĝ0 − ε)(x + y)N , x, y ≥ 0, x + y ≤ r1.

Further, we define the set Ω1 = {(x, y) ∈ E : ‖(x, y)‖E < r1}; then, for any (x, y) ∈ P∩ ∂Ω1,
we obtain
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A1(x, y)(
1
4
) =

∫ 1

1
4

(
∫ u

0
λNτN−1 f (x(τ), y(τ))dτ)

1
N du

≥
∫ 3

4

1
4

(
∫ u

1
4

λNτN−1 f (x(τ), y(τ))dτ)
1
N du

≥
∫ 3

4

1
4

(
∫ u

1
4

λNτN−1( f̂0 − ε)(x(τ) + y(τ))Ndτ)
1
N du

≥ ( f̂0 − ε)
1
N

∫ 3
4

1
4

(
∫ u

1
4

λNτN−1(
1
4
‖(x, y)‖E)

Ndτ)
1
N du

=
1
4
( f̂0 − ε)

1
N λ

1
N

∫ 3
4

1
4

(
∫ u

1
4

NτN−1dτ)
1
N du · ‖(x, y)‖E

≥ ‖(x, y)‖E
2

.

Next, we show that

‖A1(x, y)‖ ≥ 1
2
‖(x, y)‖E, ∀(x, y) ∈ P ∩ ∂Ω1. (19)

In a similar manner, for any (x, y) ∈ P ∩ ∂Ω1, we deduce

A2(x, y)(
1
4
) =

∫ 1

1
4

(
∫ u

0
μNτN−1g(x(τ), y(τ))dτ)

1
N du

≥
∫ 3

4

1
4

(
∫ u

1
4

μNτN−1g(x(τ), y(τ))dτ)
1
N du

≥
∫ 3

4

1
4

(
∫ u

1
4

μNτN−1(ĝ0 − ε)(x(τ) + y(τ))Ndτ)
1
N du

≥ (ĝ0 − ε)
1
N

∫ 3
4

1
4

(
∫ u

1
4

μNτN−1(
1
4
‖(x, y)‖E)

Ndτ)
1
N du

=
1
4
(ĝ0 − ε)

1
N μ

1
N

∫ 3
4

1
4

(
∫ u

1
4

NτN−1dτ)
1
N du · ‖(x, y)‖E

≥ ‖(x, y)‖E
2

.

Next, we show that

‖A2(x, y)‖ ≥ 1
2
‖(x, y)‖E, ∀(x, y) ∈ P ∩ ∂Ω1. (20)

Thus, from (19) and (20) we deduce

‖A(x, y)‖E = ‖A1(x, y)‖+ ‖A2(x, y)‖ ≥ ‖(x, y)‖E, ∀(x, y) ∈ P ∩ ∂Ω1. (21)

We let f ∗(u) = max
0≤x+y≤u

f (x, y), g∗(u) = max
0≤x+y≤u

g(x, y); then, we have

f (x, y) ≤ f ∗(u), x, y ≥ 0, x + y ≤ u,

g(x, y) ≤ g∗(u), x, y ≥ 0, x + y ≤ u.

Similar to the proof of [26], we have

lim sup
u→+∞

f ∗(u)
uN ≤ f̂∞, lim sup

u→+∞

g∗(u)
uN ≤ ĝ∞.
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According to the above inequality, there exists r̄2 > 0 such that

f ∗(u)
uN ≤ lim sup

u→+∞

f ∗(u)
uN + ε ≤ f̂∞ + ε, u ≥ r̄2,

g∗(u)
uN ≤ lim sup

u→+∞

g∗(u)
uN + ε ≤ ĝ∞ + ε, u ≥ r̄2;

consequently, we have

f ∗(u) ≤ ( f̂∞ + ε)uN , g∗(u) ≤ (ĝ∞ + ε)uN , u ≥ r̄2.

Further, we define r2 = max{2r1, r̄2} and denote Ω2 = {(x, y) ∈ E : ‖(x, y)‖E < r2};
then, for any (x, y) ∈ P ∩ ∂Ω2, we obtain

f (x(s) + y(s)) ≤ f ∗(‖(x, y)‖E), g(x(s) + y(s)) ≤ g∗(‖(x, y)‖E),

by simple calculation, we have

A1(x, y)(s) ≤
∫ 1

0
(
∫ u

0
λNτN−1 f ∗(‖(x, y)‖E)dτ)

1
N du

≤
∫ 1

0
(
∫ u

0
λNτN−1( f̂∞ + ε)(‖(x, y)‖E)

Ndτ)
1
N du

= ( f̂∞ + ε)
1
N λ

1
N

∫ 1

0
(
∫ u

0
NτN−1dτ)

1
N du · ‖(x, y)‖E

≤ ‖(x, y)‖E
2

.

Now, we know that

‖A1(x, y)‖ ≤ 1
2
‖(x, y)‖E, ∀(x, y) ∈ P ∩ ∂Ω2. (22)

In a similar manner, for any (x, y) ∈ P ∩ ∂Ω2, we have

A2(x, y)(s) ≤
∫ 1

0
(
∫ u

0
μNτN−1g∗(‖(x, y)‖E)dτ)

1
N du

≤
∫ 1

0
(
∫ u

0
μNτN−1(ĝ∞ + ε)(‖(x, y)‖E)

Ndτ)
1
N du

= (ĝ∞ + ε)
1
N μ

1
N

∫ 1

0
(
∫ u

0
NτN−1dτ)

1
N du · ‖(x, y)‖E

≤ ‖(x, y)‖E
2

.

Now, we know that

‖A2(x, y)‖ ≤ 1
2
‖(x, y)‖E, ∀(x, y) ∈ P ∩ ∂Ω2. (23)

Clearly, by means of (22) and (23), we deduce that

‖A(x, y)‖E = ‖A1(x, y)‖+ ‖A2(x, y)‖ ≤ ‖(x, y)‖E, ∀(x, y) ∈ P ∩ ∂Ω2. (24)

Consequently, by using (21), (24) and Lemma 1, we conclude that A has at least one
fixed point (x, y) ∈ P ∩ (Ω2\Ω1) such that r1 ≤ ‖(x, y)‖ ≤ r2.
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(6) We assume f̂0 = ∞, f̂∞ ∈ (0, ∞), ĝ∞ = 0; then, for any λ ∈ (0, Q2) and μ ∈ (0, ∞),
there exists ε > 0 such that

4Nε

GN < λ <
1

2N FN( f̂∞ + ε)
, 0 < μ <

1
2N FNε

.

Since f̂0 = ∞, there exists r3 > 0 such that

f (x, y) ≥ 1
ε
(x + y)N , x, y ≥ 0, 0 ≤ x + y ≤ r3.

Further, we define the set Ω3 = {(x, y) ∈ E : ‖(x, y)‖E < r3}; then, for any (x, y) ∈ P∩ ∂Ω3,
we have

A1(x, y)(
1
4
) ≥

∫ 3
4

1
4

(
∫ u

1
4

λNτN−1 f (x(τ), y(τ))dτ)
1
N du

≥
∫ 3

4

1
4

(
∫ u

1
4

λNτN−1 1
ε
(x(τ) + y(τ))Ndτ)

1
N du

≥ (
1
ε
)

1
N

∫ 3
4

1
4

(
∫ u

1
4

λNτN−1(
1
4
‖(x, y)‖E)

Ndτ)
1
N du

=
1
4
(

1
ε
)

1
N λ

1
N

∫ 3
4

1
4

(
∫ u

1
4

NτN−1dτ)
1
N du · ‖(x, y)‖E

≥ ‖(x, y)‖E.

Obviously,
‖A(x, y)‖E ≥ ‖A1(x, y)‖ ≥ ‖(x, y)‖E, ∀(x, y) ∈ P ∩ ∂Ω3. (25)

We let f ∗(u) = max
0≤x+y≤u

f (x, y), g∗(u) = max
0≤x+y≤u

g(x, y). Similar to the proof of [26],

we have

lim sup
u→+∞

f ∗(u)
uN ≤ f̂∞, lim sup

u→+∞

g∗(u)
uN = 0.

Moreover, for above ε > 0, it is easy to see that there exists r̄4 > 0 such that

f ∗(u)
uN ≤ lim sup

u→+∞

f ∗(u)
uN + ε ≤ f̂∞ + ε, u ≥ r̄4,

g∗(u)
uN ≤ lim sup

u→+∞

g∗(u)
uN + ε = ε, u ≥ r̄4;

consequently, we obtain

f ∗(u) ≤ ( f̂∞ + ε)uN , g∗(u) ≤ εuN , u ≥ r̄4.

Further, we define r4 = max{2r3, r̄4} and denote Ω4 = {(x, y) ∈ E : ‖(x, y)‖E < r4};
then, for any (x, y) ∈ P ∩ ∂Ω4, we have

f (x(s) + y(s)) ≤ f ∗(‖(x, y)‖E), g(x(s) + y(s)) ≤ g∗(‖(x, y)‖E),

116



Axioms 2024, 13, 175

Now, we deduce that

A1(x, y)(s) ≤
∫ 1

0
(
∫ u

0
λNτN−1 f ∗(‖(x, y)‖E)dτ)

1
N du

≤
∫ 1

0
(
∫ u

0
λNτN−1( f̂∞ + ε)(‖(x, y)‖E)

Ndτ)
1
N du

= ( f̂∞ + ε)
1
N λ

1
N

∫ 1

0
(
∫ u

0
NτN−1dτ)

1
N du · ‖(x, y)‖E

≤ ‖(x, y)‖E
2

.

Therefore,

‖A1(x, y)‖ ≤ 1
2
‖(x, y)‖E, ∀(x, y) ∈ P ∩ ∂Ω4. (26)

Likewise, for any (x, y) ∈ P ∩ ∂Ω4, we have

A2(x, y)(s) ≤
∫ 1

0
(
∫ u

0
μNτN−1g∗(‖(x, y)‖E)dτ)

1
N du

≤
∫ 1

0
(
∫ u

0
μNτN−1ε(‖(x, y)‖E)

Ndτ)
1
N du

= ε
1
N μ

1
N

∫ 1

0
(
∫ u

0
NτN−1dτ)

1
N du · ‖(x, y)‖E

≤ ‖(x, y)‖E
2

.

That is,

‖A2(x, y)‖ ≤ 1
2
‖(x, y)‖E, ∀(x, y) ∈ P ∩ ∂Ω4. (27)

Obviously, from (26) and (27), we deduce

‖A(x, y)‖E = ‖A1(x, y)‖+ ‖A2(x, y)‖ ≤ ‖(x, y)‖E, ∀(x, y) ∈ P ∩ ∂Ω4. (28)

Hence, by using (25), (28) and Lemma 1, we conclude that A has at least one fixed point
(x, y) ∈ P ∩ (Ω4\Ω3) such that r3 ≤ ‖(x, y)‖E ≤ r4, namely (x, y) is a positive solution for
System (9).

4. Applications

Example 1. We consider the following boundary value problem:⎧⎪⎨⎪⎩
((−x′(s))3)′ = 3λs2 f (x(s), y(s)), 0 < s < 1,

((−y′(s))3)′ = 3μs2g(x(s), y(s)), 0 < s < 1,

x′(0) = x(1) = 0, y′(0) = y(1) = 0,

(29)

We take f (x, y) = (x + y)N+2, g(x, y) = (x + y)N + (x + y)Nex+y, where N = 3. By simple
calculation, we obtain M4 ≈ 0.0625, and

f0 = lim sup
x+y→0+

f (x, y)
(x + y)N = lim sup

x+y→0+
(x + y)2 = 0,

g0 = lim sup
x+y→0+

g(x, y)
(x + y)N = lim sup

x+y→0+
(1 + ex+y) = 2,

f∞ = lim inf
x+y→∞

f (x, y)
(x + y)N = lim inf

x+y→∞
(x + y)2 = ∞.
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Then, for each λ ∈ (0, ∞) and μ ∈ (0, 0.0625), by Theorem 1 (6), we determine that
System (29) has at least one positive solution.

Example 2. We consider the following boundary value problem:⎧⎪⎨⎪⎩
((−x′(s))3)′ = 3λs2 f (x(s), y(s)), 0 < s < 1,

((−y′(s))3)′ = 3μs2g(x(s), y(s)), 0 < s < 1,

x′(0) = x(1) = 0, y′(0) = y(1) = 0,

(30)

We take f (x, y) = (x+y)N

tan (x+y)N , g(x, y) = 1
x+y , where N = 3. By simple calculation, we obtain

Q2 ≈ 0.1962, and

f̂0 = lim inf
x+y→0+

f (x, y)
(x + y)N = lim inf

x+y→0+

1
arctan(x + y)N = ∞,

ĝ∞ = lim sup
x+y→∞

g(x, y)
(x + y)N = lim sup

x+y→∞

1
(x + y)N+1 = 0,

f̂∞ = lim sup
x+y→∞

f (x, y)
(x + y)N = lim sup

x+y→∞

1

arctan(x + y)N =
2
π

.

Then, for each λ ∈ (0, 0.1962) and μ ∈ (0, ∞), by Theorem 2 (6), we determine that
System (30) has at least one positive solution.

5. Conclusions

The system of Monge–Ampère equations is significant in various fields of study,
including geometry, mathematical physics, materials science, and others. In this paper,
by considering some combinations of superlinearity and sublinearlity of functions f and
g, we use the Guo–Krasnosel’skii fixed point theorem to study the existence of nontrivial
solutions for a system of Monge–Ampère equations with two parameters and establish
diverse existence outcomes for nontrivial solutions based on various values of λ and μ
which enrich the theories for the system of Monge–Ampère equations. The research in
this paper is different from reference [21]. When λ = μ = 1 in System (1), System (1) can
be reduced to System (4) of reference [21]; then, it can be simply seen that System (4) is a
special case of this paper, so this paper can be said to be a generalization of reference [21].
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Abstract: New high-order weak schemes are proposed and simplified to solve stochastic differential
equations with Markovian switching driven by pure jumps (PJ-SDEwMs). Using Malliavin calculus
theory, it is rigorously proven that the new numerical schemes can achieve a high-order convergence
rate. Some numerical experiments are provided to show the efficiency and accuracy.

Keywords: numerical scheme; pure jumps; Markovian switching; Malliavin calculus

MSC: 65C30; 60H35

1. Introduction

Let
(
Ω, F , {Ft}t≥0, P

)
be a complete probability space with a filtration {Ft}t≥0 gen-

erated by a Poisson process. In this paper, we mainly study the second-order weak schemes
of the following Equations (PJ-SDEwMs) on the probability space

(
Ω, F , {Ft}t≥0, P

)
:

Xt = X0 +
∫ t

0
a(s, Xs, rs)ds +

∫ t

0

∫
E

b(s, Xs, rs, e)Ñ(de, ds) (1)

with initial value X0 ∈ Rd, where rs is Markov chain, Ñ(de, ds) is a compensated Poisson
measure, and E = Rd \ {0} is equipped with its Borel field E. The drift coefficient is
denoted by a : [0, T]×Rd × S → Rd, and the jump diffusion coefficient is represented by
b : [0, T]×Rd × S× E → Rd.

Recently, the study of SDEs with Markovian switching driven by pure jumps has
attracted increasing interest. PJ-SDEwMs can be seen as a generalization of the SDEs
with jump. It is also possible to think of it as a generalization of SDEs with Markovian
switching, of course. It is not only used in finance but also has a wide range of applications
in control systems, bio-mathematics, chemistry and mechanics (see [1–3]). The authors [4]
study mode coupling in a multimode step-index microstructured polymer optical fibers for
potential sensing and communication applications. Ji and Chizeck [5] focused on the control
problem for systems with continuous-time Markovian jump parameters. Mao [6] discussed
the exponential stability for general nonlinear SDEwMs. Similar to SDEs with jump, it is
difficult to obtain an explicit solution for SDEwMs. Therefore, we need effective schemes
which are accurate and computationally convenient to approximate the true solutions. Yuan
and Mao [7] discovered the convergence of the Euler–Maruyama scheme, which is used to
obtain the stationary distribution of SDEwMs in [8]. Mao and Yuan [9] gave the systematic
presentation of the theory of SDEs with Markovian switching. Then, the existence and
uniqueness of solutions for neutral SDEwMs were proven in [10] under non-Lipschitz
conditions, and Euler approximate solutions were provided for solving SDEwMs. Common
numerical schemes for solving SDEs with jumps or SDEwMs include Euler–Maruyama
scheme [7,9,11,12], Milstein scheme [13,14], and jump-adapted scheme [15,16]. The authors
of [17] studied the balanced implicit numerical methods for solving SDEs driven by Poisson
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jumps. Zhou and Mamon [18] expanded three short-rate models, integrating the switching
of economic regimes via a discrete-time finite-state Markov chain.

A high-order model incorporating drift and volatility modulation by a discrete-time
weak Markov chain is introduced in [19]. Yang, Yin and Li [20] utilized stochastic ap-
proximation techniques to analyze the stability of numerical solutions for jump diffusions
with Markovian switching. Furthermore, the authors [21] study the convergence of SDEs
differential equations containing delay and Markovian switching, and an Euler scheme
for solving SDEwMs under non-Lipschitz conditions is given in [22]. Given the applica-
tion requirements in finance and related fields, there is an increasing interest in studying
high-order numerical schemes for solving SDEs. For instance, Fan [23] developed a strong
approximation order 1.5 scheme for solutions of SDEwMs. Liu and Li [24] proved the
convergence of the weak stochastic Taylor scheme with an appropriate order. In [25], a new
weak scheme for solving SDEwMs driven by Brownian motion was proposed and achieved
the convergence rate of second-order. Additionally, the numerical results of several weak
schemes are presented, with a focus on the second-order weak stochastic Taylor scheme
and the extrapolation of the Euler scheme. We refer to the high-order numerical methods
of solving SDEs in [24–27] to propose novel numerical schemes of pure jump SDEs, which
can achieve a weak second-order convergence rate.

The primary contributions of this paper can be succinctly highlighted as follows:

• For PJ-SDEwMs with mark-dependent jump coefficient b = b(t, Xt, rt, e), we first
propose Scheme 1 using Wagner–Platen expansion. However, Scheme 1 contains
multiple stochastic integrals, which are not easily computed. Thus, to avoid the
use of some double integrals, we propose another new Scheme 2, by employing the
trapezoidal rule to approximate the following multiple stochastic integrals∫ tn+1

tn

∫ t

tn

∫
E

L1
e a(s, Xs, rs)Ñ(de, ds) dt and

∫ tn+1

tn

∫
E

∫ t

tn
L0b(s, Xs, rs, e)ds Ñ(de, dt).

Furthermore, we can use the definition of compound Poisson process to compute∫ tn+1

tn

∫
E

∫ t

tn

∫
E

Le1 b(s, Xs, rs, e2)Ñ(de1, ds)Ñ(de2, dt),

which has no high-accuracy based on the truncation approximation.
• Especially, for PJ-SDEwMs with mark-independent jump coefficient b = b(t, Xt, rt),

we propose Scheme 3 by using the trapezoidal rule and duality formula, which does
not involve multiple stochastic integrals. Moreover, Scheme 3 is not a special case of
Scheme 2. Using Malliavin calculus theory, it is strictly proven that Scheme 3 has a
local weak order-3.0 convergence rate. The greatest state difference and the upper
bound of the state value are connected to the convergence rate.

• The convergence and stability results of Schemes 2 and 3 are validated through
numerical experiments, which are also compared with the Euler scheme to verify its
effectiveness and accuracy. Scheme 3 is simpler and faster than Scheme 2 in the case
of mark-independent PJ-SDEwMs.

The following is a list of some notations to be used later: In Section 2, we give
the introduction of fundamental concepts, encompassing the Markov Chain, Itô-Taylor
expansion, and Malliavin stochastic calculus which include duality formula and chain rule.
Section 3 presents our novel weak second-order numerical schemes, accompanied by a
rigorous proof establishing their local weak convergence order of 3.0. In Section 4, we give
the practical application of our proposed new schemes, where we present some numerical
examples to validate the effectiveness and accuracy of them. The paper concludes with
Section 5, providing a succinct summary of our work.

The following notations are listed for future reference:
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� Cl,k
b is the set of continuously differential functions ψ : [0, T]×Rq → Rq with uniformly

bounded partial derivatives ∂l1
t ψ and ∂k1

x ψ for 1 ≤ l1 ≤ l and 1 ≤ k1 ≤ k. The notation
Ck

b is similarly defined.
� Cp(Rd,R) is the set of functions which have at most polynomial growth.
� C is a generic constant depending only on the upper bounds of derivatives of a, b , g

and the largest state difference.

2. Preliminaries and Notation

2.1. Markov Chain

On the probability space
(
Ω, F , {Ft}t≥0, P

)
, we assume that {rt, t ≥ 0} is a right-

continuous Markov chain and takes values in a finite state space S = {1, 2, . . . , M} with
generator Q =

(
qij

)
M×M

P(rt+δ = j | rt = i) =

{
qijδ + o(δ), if i �= j
1 + qiiδ + o(δ), if i = j

(2)

where δ > 0, qij ≥ 0 and, for i �= j, qii = − ∑
i �=j

qij. Let E = R\{0} be the mark set

equipped with its Borel field B(E). Now, on E × [0, T], we consider a given intensity
measure of the form λ(de) := γ(e)de with kernel function γ(e) ≥ 0 for all e ∈ E and
λ(de) := 0 for e /∈ E , and suppose that the total intensity λE :=

∫
E γ(e)de < ∞. Moreover,

drt =
∫
E h(rt−, e)N(de, dt) with h(i, e) = j − i for e ∈ Δij and h(i, e) = 0 for e /∈ Δij, which

the intervals Δij have length qij, that is

Δ12 = [0, q12), Δ13 = [q12, q12 + q13), . . . , Δ1M =

[
M−1

∑
j=2

q1j,
M

∑
j=2

q1j

)
,

Δ21 =

[
M

∑
j=2

q1j,
M

∑
j=2

q1j + q21

)
, Δ23 =

[
M

∑
j=2

q1j + q21,
M

∑
j=2

q1j + q21 + q23

)
, . . . ,

Δ2M =

⎡⎢⎢⎣ M

∑
j=2

q1j +
M−1

∑
j=1
j �=2

q2j,
M

∑
j=2

q1j +
M

∑
j=1
j �=2

q2j

⎞⎟⎟⎠, . . . ,

(3)

and so on (see [9]).

2.2. Wagner–Platen expansion

First, we give Itô’s isometry for jump martingale and multi-dimensional Itô formula
for PJ-SDEwMs (see [9,27]).

Lemma 1 (Itô’s isometry for jump martingale, see [27]). If u(s, e) is Fs-adapted stochastic
process, then

E

[( ∫ T

0

∫
E

u(s, e)Ñ(de, ds)
)2

]
= E

[ ∫ T

0

∫
E

u2(s, e)λ(de)ds
]
. (4)

Lemma 2 (Itô formula, see [9]). If V ∈ C1,2,2([0, T]×Rd ×N;R), for any t ≥ 0, we have

U(s, Xs, rs) = U(0, X0, r0) +
∫ s

0
L0U(t, Xt, rt)dt +

∫ s

0

∫
E

L1
e U(t, Xt, rt)Ñ(de, dt), (5)

with the operators
L1

e U(t, Xt, rt) =U(t, Xt, i0 + h(rt, e))− U(t, Xt, rt),

L0U(t, Xt, j) =
∂

∂t
U(t, Xt, j) +

d

∑
i=1

∂

∂xk
U(t, Xt, j)ak(t, x, j) +

1
2

trace
(
b(t, Xt, j)� ∂2

∂x2 U(t, Xt, j)b(t, Xt, j)
)
+ ∑

k∈S
U(t, Xt, j)qjk
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with i0 = r0 and
∂2

∂x2 U(t, Xt, j) =
( ∂2

∂xm∂xn
U(t, Xt, j)

)
d×d.

A higher order of PJ-SDEwMs can be obtained via the Wagner–Platen expansion.
However, there are a few more definitions and notations that must be introduced before we
can discuss the order of approximation. When ji ∈ {0, 1} for i ∈ {1, 2, ..., l}, we designate
a row vector α = (j1, j2, ..., jl) as a multi-index of length l : l(α) ∈ N+. Then, the set of all
multi-indices α is denoted by

M = {(j1, j2, ..., jl) : ji ∈ {0, 1}, i ∈ {0, 1, ..., l} f or l = 1, 2, ...} ∪ {v}.

where v is the multi-index of length zero (l(v) = 0). Assume that Γl =
{

α ∈ M : l(α) ≤ l
}

is the hierarchical set, and B(Γl) =
{

α ∈ M : l(α) = l + 1
}

is the corresponding remainder
set. Given a multi-index α ∈ M with l(α) > 1, we write α− and −α for the multi-index
obtained by eliminating the last component and the first component of α, respectively. Let
us define recursively the Itô coefficient functions fk,α by

fk,α =

{
fk,(0) = ak, gk,(i) = bk, l = 1.
L1

e fk,−α, l > 1.
(6)

Furthermore, let the multiple Itô integral Iα[ fk,α(·, X·, r·, e·)]�,τ be defined by

Iα[ fk,α(·, X·, r·, e·)]�,τ =

{∫ τ
� Iα−[ fk,α(·, X·, r·, e·)]�,sds, l ≥ 1, jl = 0,∫ τ
�

∫
E Iα−[ fk,α(·, X·, r·, e·)]�,sl Ñ(del , dsl), l ≥ 1, jl = 1.

(7)

For α = (j1, j2, j3) and �, τ ∈ [0, T], we assume

I03
λα
[ fk,α(·, X·, r·, e·)]�,τ :=

{∫ τ
� Iα−[ fk,α(·, X·, r·, e·)]�,sds, l ≥ 1, j3 = 0,∫ τ
�

∫
E Iα−[ fk,α(·, X·, r·, e·)]�,sl λ(de)ds, l ≥ 1, j3 = 1.

(8)

For example if α = (1, 1, 1),

I03
λα
[H(·, X., r., e)]�,τ :=

∫ τ

�

∫
E

∫ s3

�

∫
E

∫ s2

�

∫
E

H(s1, Xs1 , rs1 , e1)λ(de1) ds1 λ(de2) ds2 λ(de3) ds3.

2.3. Malliavin Stochastic Calculus

Suppose the operator Dt,e is the Malliavin derivative of Poisson process at (t, e). A
random variable U is Malliavin differentiable if and only if U ∈ Dl,m. Here, the stochastic
Sobolev spaces Dl,m consist of all FT−measurable U ∈ L2(P) with the norm

‖U‖2
l,m = E

[|U|m]
+E

[( ∫ T

0

∫ sl

0
· · ·

∫ s2

0
|Dα

s1...sl ,eU|2ds1ds2 . . . dsl

)m]
, (9)

where the Malliavin derivative Dα
s1...sl ,e is defined as

Dα
s1...sl ,e = D(j1,...,jl)

s1...sl ,e = Dj1
s1,e · · · Djl

sl ,e

with especially D0
sj ,e = 1 for 1 ≤ j ≤ l.
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Lemma 3 (Duality formula, see [28]). Assume F ∈ D1,2 and u(t, e) ∈ D1,2 for 0 ≤ t ≤ T, we
obtain the duality formula

E

[
F

∫ T

0

∫
E

u(t, e)Ñ(de, dt)
]
= E

[ ∫ T

0

∫
E

u(t, e)Dt,eFλ(de)dt
]
,

Lemma 4 (Chain rule, see [28]). Let G1, G2 ∈ D1,2, then G1G2 ∈ D1,2 and

Dt,e(G1G2) = G1Dt,eG2 + G2Dt,eG1 + Dt,eG1 Dt,eG2.

Let G ∈ D1,2 and φ be a real continuous function on E and φ(G) ∈ D1,2. Then,

Dt,eφ(G) = φ(G + Dt,eG)− φ(G). (10)

Lemma 5 (See [28]). For t ∈ [0, T] and the stochastic process u(s, e) ∈ D1,2, we have

Dt,e

∫ T

0

∫
E

u(s, e)Ñ(de, ds) = u(t, e) +
∫ T

t

∫
E

Dt,eu(s, e)Ñ(de, ds),

and

Dt,e

∫ T

0

∫
E

∫ s2

0

∫
Δij

Ñ(de1, ds1)Ñ(de2, ds2) =
∫ t

0

∫
Δij

Ñ(de1, ds) + IΔij(e)
∫ T

t

∫
E

Ñ(de1, ds),

where IΔij(e) is the indicator function defined by IΔij(e) = 1 for e ∈ Δij and IΔij(e) = 0 for e /∈ Δij.

3. Main Results

First, we consider a regular time uniform discretization: 0 = t0 < · · · < tN−1 <
tN = T with Δt = tn+1 − tn for n = 0, 1, ..., N − 1. For a basic depiction, we consider

rn,i
t := i +

∫ t
tn

∫
E h

(
rn,i

s−, e
)

N(de, ds) and Xn,i
k,tn+1

:= Xtn ,Xn,i

k,tn+1
, which is the k−th component of

Xtn ,Xn,i

tn+1
. Using the classical Wagner–Platen expansion, we can derive the following Scheme 1

for solving SDEwMs with mark-dependent jump coefficient.

Scheme 1 (Wagner–Platen expansion). Given the initial condition X0,i. For 0 ≤ n ≤ N − 1,
we solve Xn+1,i with its k-th component Xn+1,i

k by

Xn+1,i
k = Xn,i

k + ∑
α∈Γ2\{v}

Iα[ fk,α(tn, Xn,i, i, e)]tn ,tn+1 . (11)

From the Wagner–Platen expansion and trapezoidal rule we obtain

Xn,i
k,tn+1

= Xn,i
k +

∫ tn+1

tn
ak(t, Xn,i

t , rn,i
t )dt +

∫ tn+1

tn

∫
E

bk(t, Xn,i
t , rn,i

t , e)Ñ(de, dt) = Xn+1,i
k + Rn,i

k,1, (12)

where the truncation error

Rn,i
k,1 =

∫ tn+1

tn

∫ t

tn

∫
E

L1
e an,i

k Ñ(de, ds) dt − 1
2

Δt ∑
j∈S

Li,jan,i
k

∫ tn+1

tn

∫
Δij

Ñ(de, dt)

+
∫ tn+1

tn

∫
E

∫ t

tn
L0bn,i

k,eds Ñ(de, dt)− 1
2

Δt
∫ tn+1

tn

∫
E

L0bn,i
k,e Ñ(de, dt) + ∑

α∈B(Γ2)

Iα[ fk,α(·, Xn,i· , rn,i· , e)]tn ,tn+1

(13)

with Li,jan,i
k = ak

(
tn, Xn,i, j

)− ak(tn, Xn,i, i). Here, we write an,i
k for ak(tn, Xn,i, i) and bn,i

k,e for
bk(tn, Xn,i, i, e). Then, by Equation (12), we propose the following second-order new scheme.

Scheme 2. Given the initial condition X0,i. For 0 ≤ n ≤ N − 1, we solve Xn+1,i with its k-th
component Xn+1,i

k by
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Xn+1,i
k = Xn,i

k + an,i
k Δt +

∫ tn+1

tn

∫
E

bn,i
k,e Ñ(de, dt) +

1
2

L0an,i
k (Δt)2 +

1
2

Δt ∑
j∈S

Li,jan,i
k

∫ tn+1

tn

∫
Δij

Ñ(de, dt)

+
1
2

Δt
∫ tn+1

tn

∫
E

L0bn,i
k,e Ñ(de, dt) + ∑

j∈S

∫ tn+1

tn

∫
E

∫ t

tn

∫
Δij

Li,jbn,i
k,e2

Ñ(de1, ds)Ñ(de2, dt)
(14)

with Δt = tn+1 − tn.

Remark 1. If the jump coefficient function b = b(t, Xt, rt, e), we generate the compound Pois-
son process∫ tn+1

tn

∫
E

bn,i
k,e Ñ(de, dt) =

∫ tn+1

tn

∫
E

b(tn, Xn,i, i, e)(N(de, dt)− λ(de)dt)

=

Ntn+1

∑
k=Ntn+1

b(tn, Xn,i, i, ξk)−
∫ tn+1

tn

∫
E

b(tn, Xn,i, i, e)λ(de)dt,

and the multiple stochastic integral in Scheme 2 can be computed by∫ tn+1

tn

∫
E

∫ t

tn

∫
Δij

Ñ(de1, ds)Ñ(de2, dt)

=
∫ tn+1

tn

∫
E

(
N

Δij
t − N

Δij
tn

− λΔij(t − tn)
)

Ñ(de2, dt)

=

Ntn+1

∑
m=Ntn+1

(
N

Δij
τm − N

Δij
tn

− λΔij(τm − tn)
)
−

∫ tn+1

tn

∫
E

(
N

Δij
t − N

Δij
tn

− λΔij(t − tn)
)

λ(de2)dt

=

Ntn+1

∑
m=Ntn+1

(
N

Δij
τm − N

Δij
tn

− λΔij(τm − tn)
)
− λE

(∫ tn+1

tn
N

Δij
t dt − N

Δij
tn

Δt − 1
2

λΔij(Δt)2
)

,

(15)

where the pairs (τk, ξk) of k-th jump time and marks are independent uniformly distributed in

the planar region [0, T]× E , Ñ
Δij
t =

∫ t
0

∫
Δij

Ñ(de1, ds), N
Δij
t =

∫ t
0

∫
Δij

N(de1, ds) and λΔij =∫
Δij

λ(de) =
∫

Δij
γ(e)de. For the Lebesgue–Stieltjes stochastic integral

∫ tn+1
tn

N
Δij
t dt, we can use

trapezoidal rule to approximate it, that is∫ tn+1

tn
N

Δij
t dt =

1
2
(N

Δij
tn

+ N
Δij
tn+1

)Δt + Rn
N .

In the special case of a mark-independent jump coefficient b(t, Xt, rt, e) = b(t, Xt, rt), we
use the following discrete-time approximation

Xn,i
k,tn+1

= Xn,i
k +

∫ tn+1

tn
ak(t, Xn,i

t , rn,i
t )dt +

∫ tn+1

tn

∫
E

bk(t, Xn,i
t , rn,i

t )Ñ(de, dt) = Xn+1,i
k + Rn,i

k,2 (16)

with the truncation error

Rn,i
k,2 =

∫ tn+1

tn

∫ t

tn

∫
E

L1
e an,i

k Ñ(de, ds) dt − 1
2λE

ΔtΔÑn ∑
j∈S

Li,jan,i
k λΔij

+
∫ tn+1

tn

∫
E

∫ t

tn
L0bn,i

k ds Ñ(de, dt)− 1
2

L0bn,i
k ΔtΔÑn

+
∫ tn+1

tn

∫
E

∫ t

tn

∫
E

L1
e1

bn,i
k Ñ(de1, ds)Ñ(de2, dt)− 1

2λE
(
(ΔÑn)

2 − λEΔt − ΔÑn
)

∑
j∈S

Li,jbn,i
k λΔij

+ ∑
α∈B(Γ2)

Iα[ fk,α(·, Xn,i· , rn,i· )]tn ,tn+1 .

(17)
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Based on Equation (16), we propose the following simplified scheme for solving mark-
independent PJ-SDEwMs.

Scheme 3. Given the initial condition X0,i. For 0 ≤ n ≤ N − 1, we solve Xn+1,i with its k-th
component Xn+1,i

k by

Xn+1,i
k = Xn,i

k + an,i
k Δt + bn,i

k ΔÑn +
1
2

L0an,i
k (Δt)2 +

1
2λE

ΔtΔÑn ∑
j∈S

Li,jan,i
k λΔij

+
1
2

L0bn,i
k ΔtΔÑn +

1
2λE

(
(ΔÑn)

2 − λEΔt − ΔÑn
)

∑
j∈S

Li,jbn,i
k λΔij ,

(18)

where Δt = tn+1 − tn, ΔÑn = Ñtn+1 − Ñtn and λΔij =
∫

Δij
λ(de) =

∫
Δij

γ(e)de.

Remark 2. Here, γ(e) is a kernel function, which may be symmetric, i.e., γ(e) = γ(−e);
or non-symmetric, i.e.,

γ(e) =

{
1, if e ∈ [−c, c]
0, if e /∈ [−c, c]

, c ∈ R
+; (19)

or singular, i.e.

γ(e) =

⎧⎨⎩
1

c2
√

c|e| for e ∈ [−c, c]

0, for e /∈ [−c, c]
, c ∈ R

+. (20)

Local Weak Convergence Theorems

In this section, using Malliavin stochastic analysis and the Wagner–Platen expansion,
we rigorously prove and obtain the local weak order-3.0 convergence of Schemes 1–3.

Theorem 1. (Local weak convergence) Suppose that Xn,i
tn+1

and Xn+1,i (0 ≤ n ≤ N − 1) satisfy

Equation (12) and Scheme 1, respectively. If the functions a, b ∈ Cp(Rd,R), a, b ∈ C2,4
b and

g ∈ C2
b , then ∣∣E[

g(Xn,i
tn+1

)− g(Xn+1,i)|Ftn

]∣∣ ≤ C(1 + |Xn,i|m)(Δt)3, (21)

where m ∈ N+ is a generic constant, which can vary from line to line.

Proof of Theorem 1: Subtracting Equation (18) from Equation (12) yields

Xn,i
k,tn+1

− Xn+1,i
k = ∑

α∈B(Γ2)

Iα[ fk,α(·, Xn,i· , rn,i· , e)]tn ,tn+1 . (22)

Then, by the mean value formula of integrals and duality formula, we have

E
[
g(Xn,i

tn+1
)− g(Xn+1,i)|Ftn

]
=

d

∑
k=1

E
[
Fn+1,i

k (Xn,i
k,tn+1

− Xn+1,i
k )|Ftn

]
=

d

∑
k=1

∑
α∈B(Γ2)

E
[
Fn+1,i

k Iα[ fk,α(·, Xn,i· , rn,i· , e)]tn ,tn+1 |Ftn

]
=

d

∑
k=1

∑
α∈B(Γ2)

I03
λα

[
E
[
Dα

s1s2s3,e
(

Fn+1,i
k

)
fk,α(·, Xn,i· , rn,i· , e)|Ftn

]]
tn ,tn+1

(23)

with

Fn+1,i
k =

∫ 1

0

∂

∂xk
g(Xn+1,i + μ(Xn,i

tn+1
− Xn+1,i))dμ. (24)

Under the conditions of this theorem, we finally obtain the inequality (21). �
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Theorem 2. Suppose that Xn,i
tn+1

and Xn+1,i (0 ≤ n ≤ N − 1) satisfy Equation (12) and Scheme 2,

respectively. If the functions a, b ∈ Cp(Rd,R), a, b ∈ C2,4
b and g ∈ C2

b , then∣∣E[
g(Xn,i

tn+1
)− g(Xn+1,i)|Ftn

]∣∣ ≤ C(1 + |Xn,i|m)(Δt)3, (25)

where m ∈ N+ is a generic constant, which can vary from line to line.

Proof of Theorem 2. Using the multi-dimensional Taylor formula, for ease of proof, we assume

In = E
[
g(Xn,i

tn+1
)− g(Xn+1,i)|Ftn

]
= In

1 + In
2 , (26)

where

In
1 = E

[ d

∑
k=1

∂

∂xk
g(Xn+1,i) (Xn,i

k,tn+1
− Xn+1,i

k )|Ftn

]
,

In
2 =

∫ 1

0

∫ 1

0
E

[( d

∑
k=1

(Xn,i
k,tn+1

− Xn+1,i
k )

∂

∂xk

)2g
(
Xn+1,i + μ1μ2(Xn,i

tn+1
− Xn+1,i)

)∣∣Ftn

]
μ1dμ1dμ2.

(27)

Assume Xn,i
k,tn+1

is the k-th component of explicit solution Xn,i
tn+1

. Then, it follows from the
Itô–Taylor expansion that

Xn,i
k,tn+1

= Xn,i
k + ∑

α∈Γ2\{v}
Iα[ fk,α(tn, Xn,i, i, e)]tn ,tn+1 + ∑

α∈B(Γ2)

Iα[ fk,α(·, Xn,i· , rn,i· , e)]tn ,tn+1

= Xn,i
k + an,i

k Δt +
∫ tn+1

tn

∫
E

bi,e
k Ñ(de, dt) + L0an,i

k

∫ tn+1

tn

∫ s2

tn
ds1ds2 +

∫ tn+1

tn

∫ s2

tn

∫
E

L1
e an,i

k Ñ(de, ds1) ds2

+
∫ tn+1

tn

∫
E

∫ s2

tn
L0bi,e

k ds1 Ñ(de, ds2) +
∫ tn+1

tn

∫
E

∫ s2

tn

∫
E

L1
e1

bi,e2
k Ñ(de1, ds1)Ñ(de2, ds2)

+ ∑
α∈B(Γ2)

Iα[ fk,α(·, Xn,i· , rn,i· , e)]tn ,tn+1 ,

(28)

which by the fact L0an,i
k

∫ tn+1
tn

∫ s2
tn

ds1ds2 = 1
2 L0an,i

k (Δt)2 yields

Xn,i
k,tn+1

− Xn+1,i
k

= ∑
α∈B(Γ2)

Iα[ fk,α(·, Xn,i· , rn,i· , e)]tn ,tn+1 +
∫ tn+1

tn

∫ s2

tn

∫
E

L1
e an,i

k Ñ(de, ds1) ds2 − 1
2

Δt ∑
j∈S

Li,jan,i
k

∫ tn+1

tn

∫
Δij

Ñ(de, ds)

+
∫ tn+1

tn

∫ s2

tn

∫
E

L0bi,e
k ds1 Ñ(de, ds2)− 1

2
Δt

∫ tn+1

tn

∫
E

L0bi,e
k Ñ(de, ds)

+
∫ tn+1

tn

∫
E

∫ s2

tn

∫
E

L1
e1

bi,e2
k Ñ(de1, ds1)Ñ(de2, ds2)− ∑

j∈S

∫ tn+1

tn

∫
E

∫ s2

tn

∫
Δij

Li,jbi,e2
k Ñ(de1, ds1)Ñ(de2, ds2).

(29)

It follows from the definition of the operator L1
e1

that

∫ tn+1

tn

∫
E

∫ s2

tn

∫
E

L1
e1

bi,e2
k Ñ(de1, ds1)Ñ(de2, ds2)

=
∫ tn+1

tn

∫
E

∫ s2

tn

∫
E
(
bk(tn, Xn,i, i + h(i, e1), e2)− bk(tn, Xn,i, i, e2)

)
Ñ(de1, ds1)Ñ(de2, ds2)

= ∑
j∈S

∫ tn+1

tn

∫
E

∫ s2

tn

∫
Δij

(
bk(tn, Xn,i, j, e2)− bk(tn, Xn,i, i, e2)

)
Ñ(de1, ds1)Ñ(de2, ds2)

= ∑
j∈S

∫ tn+1

tn

∫
E

∫ s2

tn

∫
Δij

Li,jbi,e2
k Ñ(de1, ds1)Ñ(de2, ds2).

(30)
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By the duality formula in Lemma 3 and from Equations (29) and (30), we deduce

In
1 = E

[ d

∑
k=1

∂

∂xk
g(Xn+1,i)(Xn,i

k,tn+1
− Xn+1,i

k )|Ftn

]
=

d

∑
k=1

3

∑
l=1

ζ l
g,k, (31)

where

ζ1
g,k = E

[ ∂

∂xk
g(Xn+1,i)

( ∫ tn+1

tn

∫
E

∫ s2

tn
L0bi,e

k ds1 Ñ(de, ds2)− 1
2

Δt
∫ tn+1

tn

∫
E

L0bi,e
k Ñ(de, ds)

)∣∣∣Ftn

]
,

ζ2
g,k = ∑

j∈S
Li,jan,i

k E

[ ∂

∂xk
g(Xn+1,i)

( ∫ tn+1

tn

∫ s2

tn

∫
Δij

Ñ(de, ds1) ds2 − 1
2

Δt
∫ tn+1

tn

∫
Δij

Ñ(de, ds)
)∣∣∣Ftn

]
,

ζ3
g,k = ∑

α∈B(Γ2)

E

[ ∂

∂xk
g(Xn+1,i) Iα[ fk,α(·, Xn,i· , rn,i· , e)]tn ,tn+1

∣∣Ftn

]
.

By taking Malliavin derivative with respect to Xn+1,i
k , we obtain

Dt,e2 Xn+1,i
k = bi,e2

k +
1
2

Δt
(

L0bi,e2
k + ∑

j∈S
Li,jan,i

k
)

+ ∑
j∈S

(
Li,jbi,e2

k

∫ t

tn

∫
Δij

Ñ(de1, ds) + IΔij(e2)
∫ tn+1

t

∫
E

Li,jbi,e1
k Ñ(de1, ds)

) (32)

for tn < t ≤ tn+1 and e2 ∈ E . Furthermore, the chain rule (10) gives

Dt,e
∂

∂xk
g(Xn+1,i) =

∂

∂xk
g(Xn+1,i + Dt,eXn+1,i)− ∂

∂xk
g(Xn+1,i). (33)

Then, it follows from Taylor formula and Lemma 5 that

∂

∂xk
g(Xn+1,i + Dt,e2 Xn+1,i)

=
∂

∂xk
g(Yn+1

i,e2
) + ∑

j∈S

d

∑
l=1

Fn+1
g,l,e2

(
Li,jbi,e2

l

∫ t

tn

∫
Δij

Ñ(de1, ds) + IΔij(e2)
∫ tn+1

t

∫
E

Li,jbi,e1
l Ñ(de1, ds)

)
,

(34)

where Yn+1
i,e2

= Xn+1,i + bi,e2 + 1
2 Δt

(
L0bi,e2 + ∑

j∈S
Li,jai) and

Fn+1
g,l,e2

=
∫ 1

0

∂2

∂xk∂xl
g
(

Yn+1
i,e2

+ μ
(
Xn+1,i + Dt,e2 Xn+1,i − Yn+1

i,e2

))
dμ.

By the duality formula, we have

E
[
Fn+1

g,l,e2

∫ s2

tn

∫
Δij

Ñ(de1, ds1)|Ftn

]
=

∫ s2

tn

∫
Δij

E
[
Ds1,e1 Fn+1

g,l,e2
|Ftn

]
λ(de1) ds1,

E
[
Fn+1

g,l,e2

∫ tn+1

s2

∫
E

Li,jbi,e1
k Ñ(de1, ds1)|Ftn

]
=

∫ tn+1

s2

∫
E
E
[
Ds1,e1 Fn+1

g,l,e2
|Ftn

]
Li,jbi,e1

k λ(de1) ds1.
(35)

Now by Lemma 3, from Equations (33)–(35), we have
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ζ1
g,k =

∫ tn+1

tn

∫
E

∫ s2

tn
E
[
Ds2,e

∂

∂xk
g(Xn+1,i)|Ftn

]
L0bi,e

k ds1 λ(de) ds2

− 1
2

Δt
∫ tn+1

tn

∫
E
E
[
Ds,e

∂

∂xk
g(Xn+1,i)|Ftn

]
L0bi,e

k λ(de) ds

=
∫ tn+1

tn

∫
E

∫ s2

tn
E
[ ∂

∂xk
g(Yn+1

i,e )− ∂

∂xk
g(Xn+1,i)|Ftn

]
L0bi,e

k λ(de) ds1 ds2

+ ∑
j∈S

d

∑
l=1

∫ tn+1

tn

∫
E

∫ s2

tn

∫
Δij

(
E
[
Ds1,e1 Fn+1

g,l,e2
|Ftn

]
Li,jbi,e2

l L0bi,e2
k (s2 − tn)

)
λ(de1) ds1 λ(de2) ds2

+ ∑
j∈S

d

∑
l=1

∫ tn+1

tn

∫
Δij

∫ tn+1

s2

∫
E

(
E
[
Ds1,e1 Fn+1

g,l,e2
|Ftn

]
Li,jbi,e1

l L0bi,e2
k (s2 − tn)

)
λ(de1) ds1 λ(de2) ds2

− 1
2

Δt
∫ tn+1

tn

∫
E
E
[ ∂

∂xk
g(Yn+1

i,e )− ∂

∂xk
g(Xn+1,i)|Ftn

]
L0bi,e

k λ(de) ds

− 1
2

Δt ∑
j∈S

d

∑
l=1

∫ tn+1

tn

∫
E

∫ s2

tn

∫
Δij

(
E
[
Ds1,e1 Fn+1

g,l,e2
|Ftn

]
Li,jbi,e2

l L0bi,e2
k

)
λ(de1) ds1 λ(de2) ds2

− 1
2

Δt ∑
j∈S

d

∑
l=1

∫ tn+1

tn

∫
Δij

∫ tn+1

s2

∫
E

(
E
[
Ds1,e1 Fn+1

g,l,e2
|Ftn

]
Li,jbi,e1

l L0bi,e2
k

)
λ(de1) ds1 λ(de2) ds2,

(36)

which by using the fact∫ tn+1

tn

∫
E

∫ s2

tn
E
[ ∂

∂xk
g(Yn+1

i,e )− ∂

∂xk
g(Xn+1,i)|Ftn

]
L0bi,e

k λ(de)ds1ds2

=
1
2

Δt
∫ tn+1

tn

∫
E
E
[ ∂

∂xk
g(Yn+1

i,e )− ∂

∂xk
g(Xn+1,i)|Ftn

]
L0bi,e

k λ(de)ds

=
1
2
(Δt)2

∫
E
E
[ ∂

∂xk
g(Yn+1

i,e )− ∂

∂xk
g(Xn+1,i)|Ftn

]
L0bi,e

k λ(de)

yields

|ζ1
g,k| =

∣∣∣ ∑
j∈S

d

∑
l=1

∫ tn+1

tn

∫
E

∫ s2

tn

∫
Δij

(
E
[
Ds1,e1 Fn+1

g,l,e2
|Ftn

]
Li,jbi,e2

l L0bi,e2
k (s2 − tn)

)
λ(de1) ds1 λ(de2) ds2

+ ∑
j∈S

d

∑
l=1

∫ tn+1

tn

∫
Δij

∫ tn+1

s2

∫
E

(
E
[
Ds1,e1 Fn+1

g,l,e2
|Ftn

]
Li,jbi,e1

l L0bi,e2
k (s2 − tn)

)
λ(de1) ds1 λ(de2) ds2

− 1
2

Δt ∑
j∈S

d

∑
l=1

∫ tn+1

tn

∫
E

∫ s2

tn

∫
Δij

(
E
[
Ds1,e1 Fn+1

g,l,e2
|Ftn

]
Li,jbi,e2

l L0bi,e2
k

)
λ(de1) ds1 λ(de2) ds2

− 1
2

Δt ∑
j∈S

d

∑
l=1

∫ tn+1

tn

∫
Δij

∫ tn+1

s2

∫
E

(
E
[
Ds1,e1 Fn+1

g,l,e2
|Ftn

]
Li,jbi,e1

l L0bi,e2
k

)
λ(de1) ds1 λ(de2) ds2

∣∣∣
≤C(1 + |Xn,i|m)(Δt)3.

(37)

Note that ∫ tn+1

tn

∫ s2

tn

∫
Δij

E
[ ∂

∂xk
g(Yn+1

i,e )− ∂

∂xk
g(Xn+1,i)|Ftn

]
λ(de)ds1ds2

=
1
2

Δt
∫ tn+1

tn

∫
Δij

E
[ ∂

∂xk
g(Yn+1

i,e )− ∂

∂xk
g(Xn+1,i)|Ftn

]
λ(de)ds

=
1
2
(Δt)2

∫
Δij

E
[ ∂

∂xk
g(Yn+1

i,e )− ∂

∂xk
g(Xn+1,i)|Ftn

]
λ(de),

and we deduce from Lemma 3 that
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ζ2
g,k = ∑

j∈S
Li,jan,i

k

( ∫ tn+1

tn

∫ s2

tn

∫
Δij

E
[
Ds1,e

∂

∂xk
g(Xn+1,i)|Ftn

]
λ(de) ds1 ds2

− 1
2

Δt
∫ tn+1

tn

∫
Δij

E
[
Ds,e

∂

∂xk
g(Xn+1,i)|Ftn

]
λ(de) ds

)
= ∑

j1∈S
∑

j2∈S

d

∑
l=1

Li,j1 an,i
k

∫ tn+1

tn

∫ s3

tn

∫
Δij2

∫ s2

tn

∫
Δij1

E
[
Ds1,e1 Fn+1

g,l,e2
|Ftn

]
Li,j1 bi,e1

l λ(de1) ds1 λ(de2) ds2 ds3

+ ∑
j∈S

d

∑
l=1

Li,jan,i
k

∫ tn+1

tn

∫ s3

tn

∫
Δij

∫ tn+1

s2

∫
Δij

E
[
Ds1,e1 Fn+1

g,l,e2
|Ftn

]
Li,j1 bi,e1

l λ(de1) ds1 λ(de2) ds2 ds3

− 1
2

Δt ∑
j1∈S

∑
j2∈S

d

∑
l=1

Li,j1 an,i
k

∫ tn+1

tn

∫
Δij2

∫ s2

tn

∫
Δij1

E
[
Ds1,e1 Fn+1

g,l,e |Ftn

]
Li,j1 bi,e1

l λ(de1) ds1 λ(de2) ds2

− 1
2

Δt ∑
j∈S

d

∑
l=1

Li,jan,i
k

∫ tn+1

tn

∫
Δij

∫ tn+1

s2

∫
Δij

E
[
Ds1,e1 Fn+1

g,l,e |Ftn

]
Li,jbi,e1

l λ(de1) ds1 λ(de2) ds2,

(38)

which gives
|ζ2

g,k| ≤ C(1 + |Xn,i|m)(Δt)3. (39)

Using the duality formula in Lemma 3, we conclude that

|ζ3
g,k| =

∣∣∣ ∑
α∈B(Γ2)

I03
λα

[
E
[
Dα

s1s2s3,e
( ∂

∂xk
g(Xn+1,i)

)
fk,α(s1, Xn,i

s1
, rn,i

s1
, e)|Ftn

]]
tn ,tn+1

∣∣∣ ≤ C(1 + |Xn,i|m)(Δt)3. (40)

Combining the inequalities (37)–(40), we obtain

|In
1 | =

∣∣∣E[ d

∑
k=1

∂

∂xk
g(Xn+1,i)(Xn,i

k,tn+1
− Xn+1,i

k )|Ftn

]∣∣∣ ≤ C(1 + |Xn,i|m)(Δt)3. (41)

For α = (1, 1, 1), applying the Itô isometry Formula (4), we have

E

[( ∫ tn+1

tn

∫ s3

tn

∫ s2

tn
fk,α(s1, Xn,i

s1
, rn,i

s1
, e1)dÑs1 dÑs2 dÑs3

)2∣∣Ftn

]
= E

[ ∫ tn+1

tn

∫
E

∫ s3

tn

∫
E

∫ s2

tn

∫
E
(

fk,α(s1, Xn,i
s1

, rn,i
s1

, e1)
)2

λ(de1) ds1 λ(de2) ds2 λ(de3) ds3
∣∣Ftn

]
= I03

λα

[
E
[(

fk,α(s1, Xn,i
s1

, rn,i
s1

, e1)
)2|Ftn

]]
tn ,tn+1

.

(42)

For α �= (1, 1, 1), we obtain

∑
α∈B(Γ2)
α �=(1,1,1)

∣∣∣E[
Iα

[
fk,α(s1, Xn,i

s1
, rn,i

s1
, e1)

]
tn ,tn+1

∣∣Ftn

]∣∣∣2 ≤ C(1 + |Xn,i|m)(Δt)3. (43)

By the inequalities (42) and (43), we deduce

|In
2 | =

∣∣∣ ∫ 1

0

∫ 1

0
E

[( d

∑
k=1

(Xn,i
k,tn+1

− Xn+1,i
k )

∂

∂xk

)2g
(
Xn+1,i + μ1μ2(Xn,i

tn+1
− Xn+1,i)

)∣∣Ftn

]
μ1dμ1dμ2

∣∣∣ ≤ C(1 + |Xn,i|m)(Δt)3. (44)

From the inequalities (41) and (44), we finally obtain∣∣E[
g(Xn,i

tn+1
)− g(Xn+1,i)|Ftn

]∣∣ ≤ C(1 + |Xn,i|m)(Δt)3.

�
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Theorem 3. Assume that Xn,i
tn+1

and Xn+1,i (0 ≤ n ≤ N − 1), respectively, satisfy Equation (16)

and Scheme 3. If the functions a, b ∈ Cp(Rd,R), a, b ∈ C2,4
b and g ∈ C2

b , then∣∣E[
g(Xn,i

tn+1
)− g(Xn+1,i)|Ftn

]∣∣ ≤ C(1 + |Xn,i|m)(Δt)3, (45)

where m ∈ N+ is a generic constant, which could change line by line.

Proof of Theorem 3: Using multi-dimensional Taylor formula, to make the proof easier,
we have

Jn = E
[
g(Xn,i

tn+1
)− g(Xn+1,i)|Ftn

]
= Jn

1 + Jn
2 , (46)

where

Jn
1 = E

[ d

∑
k=1

∂

∂xk
g(Xn+1,i)(Xn,i

k,tn+1
− Xn+1,i

k )|Ftn

]
,

Jn
2 =

∫ 1

0

∫ 1

0
E

[( d

∑
k=1

(Xn,i
k,tn+1

− Xn+1,i
k )

∂

∂xk

)2g
(
Xn+1,i + μ1μ2(Xn,i

tn+1
− Xn+1,i)

)∣∣Ftn

]
μ1dμ1dμ2.

(47)

Assume Xn,i
k,tn+1

is the k-th component of explicit solution Xn,i
tn+1

. Then, from the Itô–Taylor
expansion, we can obtain

Xn,i
k,tn+1

= Xn,i
k + ∑

α∈Γ2\{v}
fk,α(tn, Xn,i, i)Iα[1]tn ,tn+1 + ∑

α∈B(Γ2)

Iα[ fk,α(·, Xn,i· , rn,i· )]tn ,tn+1

= Xn,i
k + an,i

k Δt + bn,i
k ΔÑn + L0an,i

k

∫ tn+1

tn

∫ t

tn
dsdt +

∫ tn+1

tn

∫ t

tn
L1

e an,i
k dÑsdt

+ L0bn,i
k

∫ tn+1

tn

∫ t

tn
dsdÑt +

∫ tn+1

tn

∫ t

tn
L1

e bn,i
k dÑsdÑt + ∑

α∈B(Γ2)

Iα[ fk,α(·, Xn,i· , rn,i· )]tn ,tn+1 ,

(48)

which yields

Xn,i
k,tn+1

− Xn+1,i
k =

∫ tn+1

tn

∫ t

tn
L1

e an,i
k dÑsdt − 1

2λE
ΔtΔÑn ∑

j∈S
Li,jan,i

k λΔij

+ L0bn,i
k

[ ∫ tn+1

tn

∫ t

tn
dsdÑt − 1

2
ΔtΔÑn

]
+

∫ tn+1

tn

∫ t

tn
L1

e bn,i
k dÑsdÑt

− 1
2λE ∑

j∈S
Li,jbn,i

k λΔij

(
(ΔÑn)

2 − λEΔt − ΔÑn
)
+ ∑

α∈B(Γ2)

Iα[ fk,α(·, Xn,i· , rn,i· )]tn ,tn+1 .

(49)

By the duality formula in Lemma 3 and from Equation (49), we deduce

Jn
1 = E

[ d

∑
k=1

∂

∂xk
g(Xn+1,i)(Xn,i

k,tn+1
− Xn+1,i

k )|Ftn

]
=

d

∑
k=1

4

∑
l=1

εl
g,k, (50)

where

ε1
g,k = L0bi

kE
[ ∂

∂xk
g(Xn+1,i)

( ∫ tn+1

tn

∫ t

tn
dsdÑt − 1

2
ΔtΔÑn

)∣∣∣Ftn

]
,

ε2
g,k = E

[ ∂

∂xk
g(Xn+1,i)

( ∫ tn+1

tn

∫ s

tn
L1

e an,i
k dÑtds − 1

2λE
Δt ΔÑn ∑

j∈S
Li,jan,i

k λΔij

)∣∣∣Ftn

]
,

ε3
g,k = E

[ ∂

∂xk
g(Xn+1,i)

( ∫ tn+1

tn

∫ t

tn
L1

e bn,i
k dÑsdÑt − 1

2λE

(
(ΔÑn)

2 − λEΔt − ΔÑn
)

∑
j∈S

Li,jbn,i
k λΔij

)∣∣∣Ftn

]
,

ε4
g,xk

= ∑
α∈B(Γ2)

E

[ ∂

∂xk
g(Xn+1,i)Iα[ fk,α(·, Xn,i· , rn,i· )]tn ,tn+1

∣∣Ftn

]
.
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For tn < s ≤ t ≤ tn+1, by using Malliavin derivative in relation to Xn+1,i
k , we get

Dt,eXn+1,i
k = bn,i

k +
1
2

ΔtL0bn,i
k +

1
2λE ∑

j∈S

(
ΔtLi,jan,i

k + (2ΔÑn − 1)Li,jbn,i
k

)
λΔij ,

Ds,eDt,eXn+1,i
k =

1
λE ∑

j∈S
Li,jbn,i

k λΔij ,
(51)

which by combining chain rule (10) gives

Dt,e
∂

∂xk
g(Xn+1,i) =

∂

∂xk
g(Xn+1,i + Dt,eXn+1,i)− ∂

∂xk
g(Xn+1,i) := Φ(tn, Xn, Δt, ΔÑn),

Ds,eDt,e
∂

∂xk
g(Xn+1,i) = Ds,eΦ(tn, Xn, Δt, ΔÑn) := Ψ(tn, Xn, Δt, ΔÑn),

where the functions Φ(tn, Xn, Δt, ΔÑn) and Ψ(tn, Xn, Δt, ΔÑn) do not depending only on
t and e. Furthermore, from Lemma 3, using the notation λE :=

∫
E λ(de) =

∫
E γ(e)de,

we have

ε1
g,k = L0bn,i

k

( ∫ tn+1

tn

∫
E

∫ t

tn
E
[
Dt,e

∂

∂xk
g(Xn+1,i)|Ftn

]
dsλ(de)dt − 1

2
Δt

∫ tn+1

tn

∫
E
E
[
Dt,e

∂

∂xk
g(Xn+1,i)|Ftn

]
λ(de)dt

)
= L0bn,i

k E
[
Φ(tn, Xn, Δt, ΔÑn)|Ftn

]( ∫ tn+1

tn

∫ t

tn

∫
E

λ(de)dsdt − 1
2

Δt
∫ tn+1

tn

∫
E

λ(de)dt
)

,
(52)

which by using the fact∫ tn+1

tn

∫ t

tn

∫
E

λ(de)dsdt =
1
2

Δt
∫ tn+1

tn

∫
E

λ(de)dt =
1
2
(Δt)2λE

gives ε1
g,xk

= 0. Similarly, note that∫
E

L1
e an,i

k λ(de) = ∑
j∈S

∫
Δij

(
ak(tn, Xn,i, i + h(i, e))− ak(tn, Xn,i, i)

)
λ(de)

= ∑
j∈S

∫
Δij

(
ak(tn, Xn,i, j)− ak(tn, Xn,i, i)

)
λ(de) = ∑

j∈S
Li,jan,i

k λΔij ,
(53)

we deduce

ε2
g,k =

∫ tn+1

tn

∫ s

tn
E
[
Dt,e

∂

∂xk
g(Xn+1,i)|Ftn

] ∫
E

L1
e an,i

k λ(de) dt ds

− 1
2λE

Δt ∑
j∈S

Li,jan,i
k λΔij

∫ tn+1

tn

∫
E
E
[
Dt,e

∂

∂xk
g(Xn+1,i)|Ftn

]
λ(de) dt

=
1
2
(Δt)2( ∫

E
L1

e an,i
k λ(de)− ∑

j∈S
Li,jan,i

k λΔij

)
E
[
Φ(tn, Xn, Δt, ΔÑn)|Ftn

]
= 0.

(54)

Using Itô’s formula, we can obtain
∫ tn+1

tn

∫ t
tn

dÑsdÑt = 1
2
(
(ΔÑn)2 − λEΔt − ΔÑn

)
, note

also that∫
E

L1
e bn,i

k λ(de) = ∑
j∈S

∫
Δij

(
bk(tn, Xn,i, i + h(i, e))− bk(tn, Xn,i, i)

)
λ(de)

= ∑
j∈S

∫
Δij

(
bk(tn, Xn,i, j)− bk(tn, Xn,i, i)

)
λ(de) = ∑

j∈S
Li,jbn,i

k λΔij ,
(55)

by the duality formula we have
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ε3
g,k =E

[ ∂

∂xk
g(Xn+1,i)

( ∫ tn+1

tn

∫ t

tn
L1

e bn,i
k dÑsdÑt − 1

2λE ∑
j∈S

Li,jbn,i
k λΔij

(
(ΔÑn)

2 − λEΔt − ΔÑn
))∣∣∣Ftn

]
=

∫ tn+1

tn

∫
E

∫ t

tn

∫
E

L1
e1

bn,i
k E

[
Ds,e1 Dt,e2

∂

∂xk
g(Xn+1,i)|Ftn

]
λ(de1) ds λ(de2) dt

− 1
2λE

Δt ∑
j∈S

Li,jbn,i
k λΔij

∫ tn+1

tn

∫
E

∫ t

tn

∫
E
E
[
Ds,e1 Dt,e2

∂

∂xk
g(Xn+1,i)|Ftn

]
λ(de1) ds λ(de2) dt

=
1
2
(Δt)2λE

( ∫
E

L1
e bn,i

k λ(de)− ∑
j∈S

Li,jbn,i
k λΔij

)
E
[
Ψ(tn, Xn, Δt, ΔÑn)|Ftn

]
= 0.

(56)

Applying the duality formula in Lemma 3, we have

|ε4
g,k| =

∣∣∣ ∑
α∈B(Γ2)

I03
λα

[
E
[
Dα

s1s2s3,e
( ∂

∂xk
g(Xn+1,i)

)
fk,α(s1, Xn,i

s1
, rn,i

s1
)|Ftn

]]
tn ,tn+1

∣∣∣ ≤ C(1 + |Xn,i|m)(Δt)3. (57)

Combining Equation (50), ε1
g,k = ε2

g,k = ε3
g,k = 0, and inequality (57), we have

|Jn
1 | =

∣∣∣E[ d

∑
k=1

∂

∂xk
g(Xn+1,i)(Xn,i

k,tn+1
− Xn+1,i

k )|Ftn

]∣∣∣ ≤ C(1 + |Xn,i|m)(Δt)3. (58)

For α = (1, 1, 1), by using the Itô isometry Formula (4), we obtain

E

[( ∫ tn+1

tn

∫ s3

tn

∫ s2

tn
fk,α(s1, Xn,i

s1
, rn,i

s1
)dÑs1 dÑs2 dÑs3

)2∣∣Ftn

]
= E

[ ∫ tn+1

tn

∫
E

∫ s3

tn

∫
E

∫ s2

tn

∫
E

f 2
k,α(s1, Xn,i

s1
, rn,i

s1
)λ(de1)ds1λ(de2)ds2λ(de3)ds3

∣∣Ftn

]
= I03

λα
E
[

f 2
k,α(·, Xn,i· , rn,i· )|Ftn

]
.

(59)

For α �= (1, 1, 1), we obtain

∑
α∈B(Γ2)
α �=(1,1,1)

∣∣∣E[
Iα

[
fk,α(s1, Xn,i

s1
, rn,i

s1
)
]∣∣Ftn

]∣∣∣2 ≤ C(1 + |Xn,i|m)(Δt)3. (60)

Combining inequalities (59) and (60), we have

Jn
2 =

∫ 1

0

∫ 1

0
E

[( d

∑
k=1

(Xn,i
k,tn+1

− Xn+1,i
k )

∂

∂xk

)2g
(
Xn+1,i + μ1μ2(Xn,i

tn+1
− Xn+1,i)

)∣∣Ftn

]
μ1dμ1dμ2 ≤ C(1 + |Xn,i|m)(Δt)3. (61)

From inequalities (58) and (61), we finally obtain∣∣E[
g(Xn,i

tn+1
)− g(Xn+1,i)|Ftn

]∣∣ ≤ C(1 + |Xn,i|m)(Δt)3.

�

4. Numerical Experiments

Assume that the state space Markov chain rt is in S = {1, 2, 3}, and the transition
probability matrix is

P =

⎡⎣ 0.3 0.6 0.1
0.2 0.7 0.1
0.4 0.4 0.2

⎤⎦
3×3

.
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We choose Nsp = 5000 as the sample size for our numerical experiments, where Nsp is
the total number of sample pathways. We can measure the average errors of local weak
convergence and the errors of global weak convergence as follows:

eglobal
Δt :=

∣∣∣∣∣ 1
Nsp

Nsp

∑
i=1

(
ϕ
(

XN
i

)
− ϕ

(
Xi,tN

))∣∣∣∣∣, elocal
Δt :=

∣∣∣∣∣ 1
Nsp

1
N

Nsp

∑
i=1

N

∑
j=1

(
ϕ
(

Xj
i

)
− ϕ

(
Xi,tj

))∣∣∣∣∣,
where N = T/Δt, Δt are

1
8

,
1

16
,

1
32

,
1

64
,

1
128

. We let ϕ
(

Xj
i

)
= sin

(
Xj

i

)
. Let Xn,i represent

numerical solution and Xtn represent explicit solutions at the time tn, where j ∈ {1, 2, ..., N}.
Now, we give three numerical examples, including mark-dependent PJ-SDEwMs, mark-

independent PJ-SDEwMs (Ornstein-Uhlenbeck type) and PJ-SDEwMs (geometrical type).

Example 1. We consider the following mark-dependent PJ-SDEwMs:{
dXt = −μ Xtdt +

∫
E g(rt) e Ñ(de, dt),

X0 = 0.5, r0 = 0.5,
(62)

where μ is a constant and the Markov chain rt is in S = {1, 2, 3}. The group coefficients
g are given by g(1) = 0.35, g(2) = 0.3, g(3) = 0.25. We use the Itô formula to obtain the
explicit solution of Equation (62) which is

Xt = X0 · e−μt + e−μt
∫ t

0

∫
E

g(rs)eμseÑ(de, ds).

Assume T = 1 and E = [0, 1], and the pairs (τm, ξm) (Ntn + 1 ≤ m ≤ Ntn+1 ) are independent
uniformly distributed in the square [0, 1]× [0, 1]. Assume the kernel function γ(e) = e, we
have for Δij = [aij, aij + qij]

λΔij =
∫

Δij

λ(de) =
∫

Δij

ede =
1
2

e2|aij+qij
aij =

1
2

qij(2aij + qij),

∫ tn+1

tn

∫
E

eÑ(de, ds) =
Ntn+1

∑
m=Ntn+1

ξm,
∫
E

λ(de) =
∫ 1

0
γ(e)de =

1
2

.

Then, for solving the PJ-SDEwMs (62), we have Scheme 2 with the form

Xn+1,i =Xn,i − μXn,iΔt + g(i)
∫ tn+1

tn

∫
E

eÑ(de, dt) +
1
2
(Δt)2μ2Xn,i +

1
2 ∑

j∈S
(g(j)− g(i))qijΔt

∫ tn+1

tn

∫
E

eÑ(de, dt)

+
∫ tn+1

tn

∫
E

∫ t

tn

∫
E

L1
e1

g(i) e2Ñ(de1, ds)Ñ(de2, dt),

which by the computation of compound Poisson process (see [27]) and the trapezoidal
rule gives
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∫ tn+1

tn

∫
E

∫ t

tn

∫
E

L1
e1

g(i) e2Ñ(de1, ds)Ñ(de2, dt)

= ∑
j∈S

(g(j)− g(i))
∫ tn+1

tn

∫
E

e2

(
N

Δij
t − N

Δij
tn

− λΔij(t − tn)
)

N(de2, dt)

− ∑
j∈S

(g(j)− g(i))
∫
E

e2λ(de2)
∫ tn+1

tn

(
N

Δij
t − N

Δij
tn

− λΔij(t − tn)
)

dt

= ∑
j∈S

Ntn+1

∑
m=Ntn+1

(g(j)− g(i)) ξm

(
N

Δij
τm − N

Δij
tn

− λΔij(τm − tn)
)

− 1
6 ∑

j∈S
(g(j)− g(i))Δt

(
N

Δij
tn+1

− N
Δij
tn

− λΔij Δt + 2Rn
N

)
,

where
∫
E e2λ(de2) =

∫ 1
0 e2

2de2 = 1
3 ,

∫ tn+1
tn

(t − tn)dt = 1
2 (Δt)2, Ñ

Δij
t =

∫ t
0

∫
Δij

Ñ(de, ds),

N
Δij
t =

∫ t
0

∫
Δij

N(de, ds),

∫ tn+1

tn
N

Δij
t dt =

1
2
(N

Δij
tn

+ N
Δij
tn+1

)Δt + Rn
N .

We use CR to represent the rate of convergence over the time step Δt. To evaluate the
performance of Scheme 2, we calculate their global errors and average local errors. It is
gratifying to find that the global convergence rate (Glo.CR) has order 2.0, while the average
local convergence rate (Avg.local CR) has order 3.0. This means that Scheme 2 has excellent
convergence properties and shows the great accuracy in numerical calculations (see Table 1).
At the same time, we draw trajectories of numerical and analytical solutions in Figure 1.
By comparing different state values, it was found that regardless of how the state values
change, the simulation efficacy demonstrated by Scheme 2 remains highly favorable.

Table 1. The results of convergence rates and errors for Scheme 2 in Example 1.

N Global Errors CR Avg. Local Errors CR

8 1.619 × 10−3 2.296 × 10−4

16 4.007 × 10−4 1.9921 3.001 × 10−5 2.993
32 8.914 × 10−5 2.0111 2.967 × 10−6 3.0846
64 2.107 × 10−5 2.0237 3.601 × 10−7 3.1007

128 6.108 × 10−6 2.1063 5.229 × 10−8 3.0991

Figure 1. (Left) True solution and numerical solution when g(1) = 0.35, g(2) = 0.3. (Right) True
solution and numerical solution when g(1) = 3.5, g(2) = 3.
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Example 2. Consider the Ornstein–Uhlenbeck (O-U) PJ-SDEwMs as follows:{
dXt = −μXtdt +

∫
E g(rt)Ñ(de, dt),

X0 = 0.5, r0 = 0.5,
(63)

where μ is a constant and the Markov chain rt is in S = {1, 2}, and the group coefficients
g are given by g(1) = 0.3 and g(2) = 0.25. It is evident that Equation (63) possesses an
explicit solution:

Xt = X0 · e−μt +
∫ t

0

∫
E

e−μ(t−s)g(rs)Ñ(de, ds).

According to the evaluation results presented in Table 2, a detailed analysis was
conducted regarding the performance of Schemes 2 and 3. The evaluation included the
calculation of their global error and average local error. Interestingly, both Schemes 2 and 3
demonstrated a second-order convergence rate during the global convergence process, in-
dicating a relatively rapid approach towards the optimal solution. Furthermore, in terms of
local convergence performance, both schemes exhibited a higher level of convergence with
a third-order average convergence rate. This finding suggests that both Schemes 2 and 3
exhibit favorable performance. In Table 3, we compare the global errors and convergence
rate of the Euler scheme, Schemes 2 and 3. It is obvious that Scheme 3 makes it simpler
and more convenient for us to calculate in comparison to Scheme 2. Equally gratifying is
that Scheme 3 greatly reduces the computing time. Scheme 3 takes 3.597104 seconds, while
Scheme 2 takes 10.024912 seconds.

Table 2. The results of convergence rates and errors for Scheme 3 in Example 2.

N Global Errors CR Avg. Local Errors CR

8 1.723 × 10−3 2.157 × 10−4

16 3.880 × 10−4 2.1502 2.430 × 10−5 3.1497
32 9.239 × 10−5 2.1103 2.887 × 10−6 3.1114
64 2.255 × 10−5 2.0835 3.542 × 10−7 3.0823
128 5.583 × 10−6 2.0643 4.350 × 10−8 3.0651

Table 3. The results of global convergence rates and errors for three schemes in Example 2.

N 8 16 32 64 128 CR Time (s)

Euler Scheme 1.765 × 10−2 8.645 × 10−3 4.277 × 10−3 2.124 × 10−3 1.060 × 10−3 1.0139 0.382757
Scheme 2 1.186 × 10−2 4.874 × 10−4 3.115 × 10−5 2.992 × 10−5 6.502 × 10−6 2.0992 10.024912
Scheme 3 1.723 × 10−2 3.889 × 10−4 9.249 × 10−5 2.255 × 10−5 5.587 × 10−6 2.0646 3.597104

Example 3. We consider the following PJ-SDEwMs with mark-independent jump coefficient:{
dXt = Xt · f (rt)dt +

∫
E Xt · g(rt)Ñ(de, dt),

X0 = 0.5, r0 = 0.5,
(64)

where the Markov chain rt is in S = {1, 2}, and Ñ(de, dt) represents a compensated Poisson
measure in one dimension. Assuming that Nt and rt are independent, with the group
coefficients f and g provided by

f (1) = 2, g(1) = 0.3, f (2) = 1.5, g(2) = 0.2.

We utilize the Itô formula to derive the explicit solution for Equation (64) as

Xt = X0 exp
(∫ t

0
f (rs)ds +

∫ t

0

∫
E

ln|1 + g(rs)|Ñ(de, ds)
)

.
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The time t ∈ [0, T] with T = 1 is set in Table 4, and we use Scheme 3 to solve the
PJ-SDEwMs (64). Scheme 3 has the second-order global convergence rate (Glo.CR) and the
third-order average local convergence rate (Avg.local CR). In Tables 5 and 6, we compare
the Euler Scheme with Scheme 3 with different state values. For clearer display, we draw
two pictures (errors of the new scheme and CPU times) according to the two tables in
Figure 1. In Figure 2 (left), we clearly demonstrate that there are differences in global errors
between individual states and transition states. For a more intuitive presentation, Figure 3
(right) illustrates the fluctuation of convergence rates as the number of times changes,
showcasing the process of convergence rate variation with the change in state value times
(CTSV). These visualizations allow us to gain a clearer understanding of the impact of
state changes on convergence rates. The observation enhances our comprehension of the
dynamic nature of the system.

Figure 2. (Left) The results of the global errors and the average local errors for Scheme 3 in Example 3.
(Right) The correlations for global errors and CPU time of all schemes.

Table 4. The results of convergence rates and errors for Scheme 3 in Example 3.

N Global Errors CR Avg. Local Errors CR

8 6.129 × 10−2 7.646 × 10−3

16 1.558 × 10−2 1.9764 9.623 × 10−4 2.9902
32 3.931 × 10−3 1.9814 1.219 × 10−4 2.9854
64 1.019 × 10−3 1.9717 1.518 × 10−5 2.9909
128 1.944 × 10−4 2.0535 1.825 × 10−6 3.0051

Table 5. Global convergence rates of multiple groups of different state values for two schemes with
X0 = 0.5.

[ f (1), f (2)] [3, 2.5] [3, 2] [3, 1.5] [3, 1] [3, 0.1] [3, 0.05] [3, 0.01]
[g(1), g(2)] [0.35, 0.3] [0.35, 0.26] [0.35, 0.2] [0.35, 0.18] [0.35, 0.1] [0.35, 0.02] [0.35, 0.01]

Euler Scheme CR1 0.9187 0.9793 1.0371 1.0837 1.169 1.1682 1.1703
Scheme 3 CR1 1.9163 2.0072 2.0197 2.0328 2.0446 2.0501 2.0418

Table 6. Global convergence rates of multiple groups of different state values in two schemes with
X0 = 0.5.

[ f (1), f (2)] [2, 1.5] [3.5, 3] [5.5, 5] [8, 7.5] [12.5, 12] [15, 14.5] [17.5, 17]
[g(1), g(2)] [0.3, 0.2] [0.4, 0.3] [0.6, 0.5] [1, 0.9] [1.8, 1.7] [2.8, 2.7] [3.5, 3.4]

Euler Scheme CR2 0.9881 0.8845 0.7432 0.5731 0.3326 0.2439 0.1410
Scheme 3 CR2 1.9813 1.9160 1.8405 1.7114 1.4414 1.2898 1.0951
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Figure 3. (Left) The convergence rates of different states. (Right) The correlations for global conver-
gence rates and the variation of state values.

5. Discussion

In this work, we mainly study stochastic differential equations with Markovian switch-
ing driven by pure jumps (PJ-SDEwMs) and give three numerical schemes. In general,
PJ-SDEwMs contains mark-dependent jump coefficient b = b(t, Xt, rt, e), which we can
solve using Schemes 1 and 2. Compared to the Itô-Taylor expansion scheme (Scheme 1),
Scheme 2 is easier to calculate by using the trapezoidal rule to approximate the following
multiple stochastic integrals:∫ tn+1

tn

∫ t

tn

∫
E

L1
e a(s, Xs, rs)Ñ(de, ds) dt and

∫ tn+1

tn

∫
E

∫ t

tn
L0b(s, Xs, rs, e)ds Ñ(de, dt).

In particular, PJ-SDEwMs contains mark-independent jump coefficient b = b(t, Xt, rt),
we can compute it in Schemes 2 and 3. Because multidimensional random integrals are
avoided, Scheme 3 is simpler and more convenient (Example 2 demonstrates this very
well). In addition, by using Malliavin calculus theory, we strictly proved that the proposed
new schemes have local weak order-3.0 convergence rates. However, through Example 3,
we find that as the upper bound of the state values gradually increases, the simulation
effect of Scheme 3 is still good, but the convergence rates will gradually decrease.

6. Conclusions

In this paper, we propose three new weak second-order numerical schemes to solve
stochastic differential equations with Markovian switching driven by pure jumps. By
using the Malliavin stochastic analysis method, the new schemes are strictly analyzed
theoretically, and the second-order convergence rate is proven. Finally, the correctness
and effectiveness of the second-order schemes are verified by three numerical experiments.
In addition, we find that as the upper bound of the state values increases, the global
convergence rate of Scheme 3 gradually decreases to the first-order. Besides, the maxi-
mum state difference and the variation of Markov chains have a certain impact on the
convergence rate.
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4. Savović, S.; Li, L.Q.; Savović, I.; Djordjevich, A.; Min, R. Treatment of Mode Coupling in Step-Index Multimode Microstructured

Polymer Optical Fibers by the Langevin Equation. Polymers 2022, 14, 1243.
5. Ji, Y.; Chizeck, H.J. Controllability, stabilizability and continuous-time Markovian jump linear quadratic control. IEEE Trans.

Automat. Control. 1990, 35, 777–788. [CrossRef]
6. Mao, X. Stability of stochastic differential equations with Markovian switching. Stoch. Process.Their Appl. 1999, 79, 45–67.

[CrossRef]
7. Yuan, C.; Mao, X. Convergence of the Euler–Maruyama method for stochastic differential equations with Markovian switching.

Math. Comput. Simul. 2004, 64, 223–235. [CrossRef]
8. Mao, X.; Yuan, C.; Yin, G. Numerical method for stationary distribution of stochastic differential equations with Markovian

switching. J. Comput. Appl. Math. 2005, 174, 1–27. [CrossRef]
9. Mao, X.; Yuan, C. Stochastic Differential Equations with Markovian Switching; Imperial College Press: London, UK, 2006.
10. Mao, W.; Mao, X. On the approximations of solutions to neutral SDEs with Markovian switching and jumps under non-Lipschitz

conditions. Appl. Math. Comput. 2014, 230, 104–119. [CrossRef]
11. Li, M.; Huang, C.; Chen, Z. Compensated projected Euler–Maruyama method for stochastic differential equations with superlinear

jumps. Appl. Math. Comput. 2021, 393, 125–760. [CrossRef]
12. Yin, B.; Ma, Z. Convergence of the semi-implicit Euler method for neutral stochastic delay differential equations with phase

semi-Markovian switching. Appl. Math. Model. 2011, 35, 2094–2109. [CrossRef]
13. Ren, Q.; Tian, H. Compensated θ-Milstein methods for stochastic differential equations with Poisson jumps. Appl. Numer. Math.

2020, 150, 27–37. [CrossRef]
14. Chaman, K.; Tejinder, K. On explicit tamed Milstein-type scheme for stochastic differential equation with Markovian switching.

J. Comput. Appl. Math. 2020, 377, 112917.
15. Kohatsu-Higa, A.; Tankov, P. Jump-adapted discretization schemes for Lévy-driven SDEs. Stoch. Process. Their Appl. 2010,

120, 2258–2285. [CrossRef]
16. Mikulevicius, R. On the rate of convergence of simple and jump-adapted weak Euler schemes for Lévy driven SDEs. Math. Naclir.

2012, 122, 2730–2757. [CrossRef]
17. Hu, L.; Gan, S. Convergence and stability of the balanced methods for stochastic differential equations with jumps. Int. J. Comput.

Math. 2011, 88, 2089–2108. [CrossRef]
18. Zhou, N.; Mamon, R. An accessible implementation of interest rate models with Markov-switching. Expert Syst. Appl. 2012,

39, 4679–4689. [CrossRef]
19. Siu, T.; Ching, W.; Fung, E.; Ng, M.; Li, X. A high-order Markov-switching model for risk measurement. Comput. Math. Appl.

2009, 58, 1–10. [CrossRef]
20. Yang, Z.; Yin, G.; Li, H. Stability of numerical methods for jump diffusions and Markovian switching jump diffusions. J. Comput.

Appl. Math. 2015, 275, 197–212. [CrossRef]
21. Li, R.H.; Chang, Z. Convergence of numerical solution to stochastic delay differential equation with poisson jump and Markovian

switching. Appl. Math. Comput. 2007, 184, 451–463.
22. Chen, Y.; Xiao, A.; Wang, W. Numerical solutions of SDEs with Markovian switching and jumps under non-Lipschitz conditions.

J. Comput. Appl. Math. 2019, 360, 41–54. [CrossRef]
23. Fan, Z. Convergence of numerical solutions to stochastic differential equations with Markovian switching. Appl. Math. Comput.

2017, 315, 176–187. [CrossRef]
24. Liu, X.; Li, C. Weak approximations and extrapolations of stochastic differential equations with jumps. SIAM J. Numer. Anal. 2000,

37, 1747–1767. [CrossRef]
25. Li, Y.; Wang, Y.; Feng, T.; Xin, Y. A High Order Accurate and Effective Scheme for Solving Markovian Switching Stochastic Models.

Mathematics 2021, 9, 588. [CrossRef]
26. Buckwar, E.; Riedler, M.G. Runge–Kutta methods for jump-diffusion differential equations. J. Comput. Appl. Math. 2011,

236, 1155–1182. [CrossRef]
27. Platen, E.; Bruti-Liberati, N. Numerical Solutions of Stochastic Differential Equations with Jump in Finance; Springer: Berlin/Heidelberg,

Germany, 2010.
28. Giulia, D. N.; Bernt, ∅.; Frank P. Malliavin Calculus for Lévy Processes with Applications to Finance; Springer: Berlin/Heidelberg,

Germany, 2008.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

139



Citation: Argyros, I.K.; George, S.;

Regmi, S.; Argyros, M.I. On the

Kantorovich Theory for Nonsingular

and Singular Equations. Axioms 2024,

13, 358. https://doi.org/10.3390/

axioms13060358

Academic Editors: Tao Liu, Qiang Ma

and Songshu Liu

Received: 26 April 2024

Revised: 21 May 2024

Accepted: 21 May 2024

Published: 28 May 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

axioms

Article

On the Kantorovich Theory for Nonsingular and
Singular Equations

Ioannis K. Argyros 1, Santhosh George 2, Samundra Regmi 3,* and Michael I. Argyros 4

1 Department of Mathematical Sciences, Cameron University, Lawton, OK 73505, USA; iargyros@cameron.edu
2 Department of Mathematical and Computational Sciences, National Institute of Technology Karnataka,

Mangaluru 575 025, India; sgeorge@nitk.edu.in
3 Department of Mathematics, University of Houston, Houston, TX 77205, USA
4 Department of Computer Sciences, University of Oklahoma, Norman, OK 73501, USA;

michael.i.argyros-1@ou.edu
* Correspondence: sregmi5@uh.edu

Abstract: We develop a new Kantorovich-like convergence analysis of Newton-type methods to solve
nonsingular and singular nonlinear equations in Banach spaces. The outer or generalized inverses
are exchanged by a finite sum of linear operators making the implementation of these methods easier
than in earlier studies. The analysis uses relaxed generalized continuity of the derivatives of operators
involved required to control the derivative and on real majorizing sequences. The same approach can
also be implemented on other iterative methods with inverses. The examples complement the theory
by verifying the convergence conditions and demonstrating the performance of the methods.

Keywords: outer inverse; generalized inverse; Banach space; Newton-type method; convergence;
Hilbert space

MSC: 65J15; 65H10; 90C30; 90C53; 49M15

1. Introduction

Let T1, T2 denote Banach spaces, and let B(T1, T2) be the space of linear and continuous
operators from T1 to T2. Newton-type methods (NTMs) [1]

xn+1 = xn − E(xn)
#Υ(xn), n = 0, 1, 2, . . . (1)

have been used to solve the equation

DΥ(x) = 0. (2)

Here, the operator Υ : Ω ⊂ T1 −→ T2 is a differentiable operator in the Fréchet sense,
D ∈ B(T2, T1), E(xn) ∈ B(T1, T2) approximates Υ′(xn). Moreover, E(xn)# stands for an
outer inverse (OI) of E(xn), i.e., E(xn)#E(xn)E(xn)# = E(xn)#.

A plethora of applications in optimization such as penalization problems, minimax
problems, and goal programming are formulated as (2) using Mathematical Modelling [2–15].

Method (2) specializes to the Gauss–Newton method (GNM) for solving nonlinear
least squares problems, the generalized NTM for undetermined systems, and an NTM for
ill-posed Equations [16–36].

As an example of (1) and (2), let T1 and T2 stand for Hilbert spaces. Then, consider the
task of finding a local minimum ũ of

min H(u), (3)

Axioms 2024, 13, 358. https://doi.org/10.3390/axioms13060358 https://www.mdpi.com/journal/axioms140
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where H(u) = 1
2‖Υ(u)‖2. Then, the GNM is defined by

xn+1 = xn − Υ′(xn)
†Υ(xn) (4)

to solve
Υ′(u)∗Υ(u) = 0, (5)

where Υ′(xn)† is the Moore–Penrose inverse [5,15,31], and Υ′(u)∗ is the adjoint of the linear
operator Υ′(u) (see also the Remark 1).

Ben-Israel [5,17] utilized the conditions

‖Υ(u)− Υ(ũ)− Υ′(ũ)(u − ũ)‖ ≤ c1‖u − ũ‖,

‖(Υ′(u)+ − Υ′(ũ)+
)
Υ(ũ)‖ ≤ c2‖u − ũ‖

and

c1‖Υ′(ũ)+‖+ c2 < 1

for all u, ũ in a neighborhood of x0 ∈ Ω. He also used these conditions with Υ′(u)#[5,17].
These results are not semilocal since they require information about Υ′(ũ)+ or Υ′(ũ)#.
Moreover, if Υ′(x0)

−1 ∈ B(T2, T1), they require conditions not required in the Kantorovich
theory [1,16,33,37–41]. Later Deuflhard and Heindl [39], Haussler [29], and Yamamoto [1]
gave Kantorovich-type theorems for the GNM like (4) using convergence conditions involv-
ing either OI of Moore–Penrose inverses:

‖Υ′(ũ)#(I − Υ′(u)Υ′(u)#)Υ(u)‖ ≤ c(u)‖u − ũ‖, c(u) ≤ c̄ < 1, (6)

for each u, ũ ∈ Ω. This condition is strong and does not hold in concrete examples
(see Section 4 in [31]). A Kantorovich-like result with generalized inverses can be found
in [42] without (6). However, it was assumed that T1 and T2 are finite-dimensional and
T2 = R(E(x0), where R(D) denotes the range of a linear operator D. Other drawbacks
of the earlier works are that only properties of OI are used. That is BEB = B and the
projectional properties of EB and BE. However, the stability and perturbation bounds for
OI are not given for method (1). However, this was accomplished through the elegant
work of Nashed and Chen [31]. This work reduces to the Kantorovich theory for (2) when
E(u)# is replaced by E(u)−1 without additional conditions. Later works on the convergence
analysis using Lipchit-type conditions, particularly for the Newton–Gauss method (5), can
be found in [10,24] and the references therein.

Next, we address the problems with the implementation of method (1) which con-
stitutes the motivation for this paper. Let Δ ∈ B(T1, T2) and let Δ# ∈ B(T2, T1) be an
OI of Δ.

Suppose Δ#
1(u) =

(
I + Δ#(Δ − E(u)

))−1Δ# is an OI. A criterion for Δ#
1 to be an OI is

‖Δ#(E(u)− Δ
)‖ ≤ 1 (see Lemma 2). Then, (2) becomes

xn+1 = xn − Δ#
1(xn)Υ(xn). (7)

But the main problem with the implementation of (2) of (7) still remains. This problem
requires the invertibility of Δ2, Δ2(u) = I + Δ#(Δ − E(u)

)
. This inversion can be avoided.

Let m be a fixed natural number. Define the operators

H = H(u) = Δ#(Δ − E(u)
)

and
L = Lm(u) = I + H + H2 + · · ·+ Hm.
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Then, we can consider the replacement of (7) given as

xn+1 = xn − LΔ#Υ(xn). (8)

By letting m → +∞ in the definition of L, we have that

E(xn)
# = lim

m→+∞
Lm(xm)Δ#.

Thus, it is worth studying the convergence of (8) instead of (2), since we avoid the inversion
of the operator Δ2. Let us provide examples of possible choices for the operator Δ. First,
consider the case when the operator E = Υ′(u) is invertible. Moreover, let T1 = T2 = Ri, i
is a positive integer, and J denotes the Jacobian of the operator F. Then, choose Δ = J(x0)
in the semi-local convergence case of Δ = J(x∗) in the local case, where x∗ ∈ Ω is assumed
to be a solution of the equation Υ(u) = 0. The selection Δ = J(ū) has been used in [43,44],
for ū ∈ Ω. In the setting of a Banach space for E = Υ′(u), the operator Δ can be chosen
to be Δ = Υ′(xn) (semi-local case) or Δ = Υ′(x∗) (local case). Numerous selections for
Δ connected to OI or generalized inverses (GI) can also be found in [5,11,13,31] and the
references therein. Other selections for Δ are also possible provided that they satisfy the
convergence conditions (C5) and (C6) of Section 3. The convergence analysis relies on the
relaxed generalized continuity used to control the derivative Υ′ and majorizing sequences
for the iterates {xn} (see also Section 2). The results in this article specialize immediately to
solve nonsingular equations if E(u)# is replaced by E(u)−1.

The rest of the article provides the preliminaries in Section 2; the convergence of (8) is
in Section 3; and the applications are in Section 4. The article’s concluding remarks appear
in Section 5.

2. Preliminaries

We reproduce standard results on OI and GI to make the article as self-contained as
possible. More properties can be found in [5,11–13,31]. Let Δ ∈ B(T1, T2). An operator
B ∈ B(T2, T1) is said to be an inner inverse (II) of Δ if ΔBΔ = Δ, and an OI of Δ if BΔB = B.
It is well known that II and bounded OI always exist. The zero is always an OI. So, we
consider only nonzero outer inverses. Suppose the operator B is either an inverse or an
OI of Δ. Then, ΔB and BΔ are linear idempotents (algebraic projectors). Suppose that B
is an inverse of E, then for N(Ē), N(BΔ) = N(Δ) and R(Δ) = R(ΔB). Consequently, the
following decompositions hold T1 = N(Δ) + R(BΔ) and T2 = R(Δ) + N(ΔB). Since, B
is an OI of Δ if and only if Δ is an inverse of B, it follows that T1 = R(B)⊕ N(BΔ) and
T2 = N(B)⊕ R(ΔB). If B is an inner and an outer inverse of Δ, then B is called a GI of Δ.
Moreover, there exists a unique GI B = Δ+

P,Q satisfying ΔBΔ = Δ, BΔB = B, BΔ = I − P
and ΔB = Q, where P is a given projection of T1 into N(Δ) and Q a given projection of T2
into R(Δ). In the special case when T1 and T2 are Hilbert spaces, and P, Q are orthogonal
projections. Then, Δ+

P,Q is the Moore–Penrose inverse of Δ.
We need the following six auxiliary Lemmas, the proof of which can be found in

Section 2 in [31].

Lemma 1. Let Δ ∈ B(T1, T2). If Δ# is a bounded OI of Δ. Then, the following assertions hold

T1 = R(Δ#)⊕ N(Δ#Δ)

and
T2 = N(Δ#)⊕ R(ΔΔ#).
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Lemma 2 (Banach Perturbation-Like Lemma). Let Δ ∈ B(T1, T2) and Δ# ∈ B(T2, T1) be an OI
of Δ. Let also B ∈ B(T1, T2) be such that ‖Δ#(B − Δ)‖ < 1. Then, B# :=

(
I + Δ#(B − Δ)

)−1Δ#

is a bounded OI of B so that N(B#) = N(Δ#), R(B#) = R(Δ#),

‖B# − Δ#‖ ≤ ‖Δ#(B − Δ)Δ#‖
1 − ‖Δ#(B − Δ)‖

≤ ‖Δ#(B − Δ)‖ ‖Δ#‖
1 − ‖Δ#(B − Δ)‖

and

‖B#Δ‖ ≤ 1
1 − ‖Δ#(B − Δ)‖ .

Lemma 3. Let Δ, B ∈ B(T1, T2) and let Δ# and B# ∈ B(T2, T1) be OI of Δ, and B, respectively.
Then, B#(I − ΔΔ#) = 0 ⇔ N(Δ#) ⊂ N(B#).

Lemma 4. Let Δ ∈ B(T1, T2). Suppose that T1 and T2 have topological decompositions T1 =
N(Δ)⊕ M, T2 = R(Δ)⊕ S. Let Δ+(= Δ+

M,S) stand for the GI of Δ connected to these decomposi-
tions. Let B satisfy ‖Δ+(B − Δ)‖ < 1, and

(
I + (B − Δ)Δ+

)
B sends N(Δ) to R(Δ). Then, the

following assertions hold:
B+ := B+

R(Δ+),N(Δ+)
exists,

B+ = Δ+(I + B0Δ+)−1 = (I + Δ+B0)
−1Δ+,

R(B+) = R(Δ+), N(B+) = N(Δ+)

and
‖B+Δ‖ ≤ 1

‖Δ+(B − Δ)‖ ,

where B0 = B − Δ.

Lemma 5. Let Δ ∈ B(T1, T2) and Δ+ be the GI as given in the Lemma 4. Let B ∈ B(T2, T1)
satisfy ‖Δ#(B − Δ)‖ ≤ 1 and R(B) ⊆ R(Δ). Then, the conclusions of the Lemma 4 hold and
R(B) = R(Δ).

Lemma 6. Let Δ ∈ B(T1, T2) and let Δ+ be bounded GI of Δ. Let B ∈ B(T2, T1) satisfy
‖Δ+(B − Δ)‖ < 1. Let B# :=

(
I + Δ+(B − Δ)

)−1Δ+. Then, B# is a GI of B ⇔ dim N(B) =
dim N(Δ), and codim R(B) = codim R(Δ).

Define the parameter

r = ‖Δ#(Δ − E(x))‖, ∀ x ∈ Ω. (9)

We need some estimates.

Lemma 7. Let Δ ∈ B(T1, T2) and let Δ# ∈ B(T2, T1) be an OI of Δ. Let E(x) ∈ B(T1, T2) with
r ∈ [0, 1

2 ). Then, Δ#
1 is a bounded OI of E(x). Moreover, the following estimates hold.

‖I − L‖ ≤ r(1 − rm)

1 − r
= b < 1, (10)

the operator L−1 ∈ B(T2, T1) and

‖L−1‖ ≤ 1
1 − b

= b̄, (11)
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where Δ#
1, L are as defined in the introduction.

Proof. The operator Δ#
1 is a bounded OI of E(x) by Lemma 2 for B = E(x). Moreover, we

have in turn by the definition of L:

‖I − L‖ = ‖H + H2 + ·+ Hm‖

≤ ‖H‖+ ‖H‖2 + · · ·+ ‖H‖m =
‖H‖(1 − ‖H‖m)

1 − ‖H‖

≤ r
(
1 − rm)
1 − r

= b < 1,

by the choice of r. It is followed by the Lemma 2 that H−1 ∈ B(T2, T1) and ‖H−1‖ ≤ 1
1−b =

b̄.

3. Semi-Local Convergence

The convergence of the method (8) is shown using scalar majorizing sequences.

Definition 1. Let {xn} be a sequence in T1. Then, real sequence {pn} satisfying

‖xn+1 − xn‖ ≤ pn+1 − pn, ∀ n ≥ 0

is called a majorizing sequence for {xn}. If the sequence {pn} converges, then also {xn}
converges, and for x∗ = lim

n→∞
xn and p∗ = lim

n→∞
pn, we have

‖x∗ − xn‖ ≤ p∗ − pn.

Therefore, the convergence of the sequence {xn} relates to that of {pn}.
Let M = [0,+∞).
Some conditions are required in the convergence of (8).
Suppose that

(C1) There exists parameters κ ≥ 0, r ∈ [
0, 1

2
)
, a point x0 ∈ Ω, Δ ∈ B(T1, T2) having outer

inverse Δ# such that ‖LΔ#Υ(x0)‖ ≤ κ.
(C2) There exists function φ0 : M → M which is continuous and nondecreasing such that

the equation φ0(t)− 1 = 0 admits a smallest positive solution r0. Take M0 = [0, r0).
(C3) There exists functions φ : M0 → M, φ1 : M0 → M. Define the real sequence {sn} for

s0 = 0, s1 = κ as
sn+1 = sn + en(sn − sn−1), (12)

where en = (1 + r + . . . + rm)
[ ∫ 1

0
φ
(
(1 − θ)(sn − sn−1)

)
dθ + φ1(sn−1) + b̄rm+1

]
,

n = 0, 1, 2, . . . .
The sequence {sn} is proven to be majorizing for {xn} (see Theorem 1). However,
some conditions for this sequence are needed first.

(C4) There exists r ∈ [κ, r0) such that for all n = 0, 1, 2, · · · , sn ≤ r.
By this condition and (12) that 0 ≤ sn ≤ sn+1 ≤ r and there exists s∗ ∈ [κ, r] such that

lim
n→+∞

sn = s∗.

The functions ϕ0, ϕ and ϕ1 connect to the operators on the method (8).
(C5) ‖Δ#(Υ′(u) − Δ

)‖ ≤ φ0(‖u − x0‖) for all u ∈ Ω. Set Ω0 = Ω ∩ E(x0, r0), where
E(x0, r0) = {x ∈ X : ‖x − x0‖ < r0}. We shall also denote by E[x0, r0] the closure of
E(x0, r0).

(C6) r = ‖Δ#(Δ − E(u)
)‖ < 1

2 , ‖Δ#(Υ′(ũ) − Υ′(u)
)‖ ≤ φ(‖ũ − u‖) and ‖Δ#(Υ′(u) −

E(u)
)‖ ≤ φ1(‖u − x0‖) for all u, ũ ∈ Ω0.
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(C7) The equation e(t)− 1 = 0 has a smallest solution in (0, s∗], where e(t) = (1 + r + · · ·+
rm)

[ ∫ 1

0
φ
(
(1 − θ)t

)
dθ + φ1(t) + b̄rm+1

]
. Denote such solution by s̄

and
(C8) E[x0, s∗] ⊂ Ω.

Next, the convergence is established for (8).

Theorem 1. Suppose that the conditions (C1)–(C8) hold. Then, the sequence {xn} produced by
the method (8) converges to a unique solution x∗ ∈ E[x0, s∗] ∩ {

x0 + R(Δ#)
}

of the equation
Δ#Υ(x0) = 0. Moreover, the following assertion holds

‖x∗ − xn‖ ≤ s∗ − sn. (13)

Proof. Mathematical induction on n shall establish the estimates

‖xn+1 − xn‖ ≤ sn+1 − sn. (14)

Since
‖x1 − x0‖ = ‖E(x0)

#Υ(x0)‖ ≤ κ = s1 = s1 − s0 < s∗,

the assertion (13) holds if n = 0 and x1 ∈ E(x0, s∗). It follows by (9) (for x = x1) and
Lemma 7 that Δ1(x1)

# is an outer inverse of E(x1) and ‖Δ1(x1)
# A‖ ≤ b̄ and N(Δ1(x1)

#) =
N(Δ#). Suppose that for i = 1, 2, · · · , n; ‖xi − xi−1‖ ≤ si − si−1 and N(Δ1(xn−1)

#) =
N(Δ#). Then, we have

‖xn − x0‖ ≤ ‖xn − xn−1‖+ · · ·+ ‖x1 − x0‖
≤ sn − sn−1 + · · ·+ s1 − s0 = sn < s∗,

and N(Δ1(xn)#) = N(Δ1(xn−1)
#) = N(Δ#). Hence, by the Lemma 3, it follows that

Δ1(xn)
#(I − E(xn−1)Δ1(xn−1)

#) = 0.

Then, by the method (8)

Υ(xn) = Υ(xn)− Υ(xn−1)− ΔL−1(xn − xn−1)

= Υ(xn)− Υ(xn−1)− Υ′(xn−1)(xn − xn−1)

+
(
Υ′(xn−1)− An−1

)
(xn − xn−1) +

(
An−1 − ΔL−1)(xn − xn−1)

= Υ(xn)− Υ(xn−1)− Υ′(xn−1)(xn − xn−1)

+
(
Υ′(xn)− An−1 − An−1

)
(xn − xn−1) (15)

+
(

An−1L − Δ
)

L−1(xn − xn−1).

But, we have by the definition of L

An−1L − Δ = An−1(I + H + · · ·+ Hm)− Δ

= An−1 − Δ + (−Δ + Δ + An−1)(I + H + · · ·+ Hm)

= An−1 − Δ + Δ(H + · · ·+ Hm)− (Δ − H)(H + · · ·+ Hm)

= An−1 − Δ + ΔH + Δ(H2 + · · ·+ Hm)

−(Δ − An−1)(H + · · ·+ Hm)

= Δ(H2 + · · ·+ Hm)− Δ(Δ − An−1)(H + · · ·+ Hm).

So,
Δ#(An−1L − Δ) = −Hm+1, (16)
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where we also used An−1 − Δ + ΔH = 0 by the definition of H. Using the induction
hypotheses and the conditions (C5), (C6), (14), (15), (11), we have in turn that

‖Δ#Υ(xn)‖ ≤
∫ 1

0
φ
(
(1 − θ)‖xn − xn−1‖

)
dθ ‖xn − xn−1‖

+φ1(‖xn−1 − x0‖)‖xn − xn−1‖+ b̄rm+1‖xn − xn−1‖
≤

[ ∫ 1

0

(
(1 − θ)(sn − sn−1)

)
dθ + φ1(sn−1) + b̄rm+1

]
×(sn − sn−1). (17)

Hence, by (8), Lemma 7 and (17)

‖xn+1 − xn‖ ≤ (1 + r + · · ·+ rm)

[ ∫ 1

0
φ
(
(1 − θ)(sn − sn−1)

)
dθ

+φ1(sn−1) + b̄rm+1

]
(sn − sn−1) = sn+1 − sn

and

‖xn+1 − x0‖ ≤ ‖xn+1 − xn‖+ ‖xn − x0‖
≤ sn+1 − sn + sn − s0 = sn+1 < s∗.

The induction is completed. Thus, we have for any n

‖xn+1 − xn‖ ≤ sn+1 − sn,

‖xn − x0‖ ≤ sn ≤ s∗

‖Δ#(E(xn+1)− Δ
)‖ < 1,

and
Δ1(xn+1)

# :=
(

I + Δ#(E(xn+1)− Δ
))−1

Δ#

is an OI of E(xn+1). The sequence {sn} is complete as convergent and majorizes {xn}. So,
the sequence {xn} is also complete in T1. Then, it is convergent to a x∗ ∈ E[x0, s∗]. By
the definition

Δ1(xn)
# =

(
I + Δ#(E(xn)− A

))−1
Δ∗, for all n

and

0 = lim
n→∞

(
I + Δ#(E(xn)− A

))
(xn − xn−1)

= lim
n→∞

Δ#Υ(xn) = Δ#Υ(x∗). (18)

Thus, x∗ solves Δ#Υ(x) = 0. Using Lemma 2, we have R(Δ1(xn)#) = R(Δ#) for all
n = 0, 1, 2, · · · . So, xn+1 − xn = −Δ1(xn)#Υ(xn) ∈ R(Δ#) and from Lemma 1, we obtain
R(Δ#) = R(Δ#Δ), so xn+1 ∈ xn + R(Δ#). Thus, xn ∈ x0 + R(Δ#) for all n. Suppose that
w ∈ E[x0, s∗] ∩ {x0 + R(Δ#)} solves the equation Δ#Υ(x) = 0. Then, we have w − x∗ ∈
R(Δ#) and Δ#E(w − xn) = Δ#E(w − x0) + Δ#E(xn − x0) = w − xn, for all n = 0, 1, 2, . . . .
Then, (11), as in (16) and using (C7)
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‖w − xn+1‖ = ‖w − xn + Δ1(xn)
#Υ(xn)− Δ1(xn)

#Υ(w)‖

≤ (1 + r + · · ·+ rm)

[ ∫ 1

0
φ
(
(1 − θ)‖w − xn‖

)
dθ

+φ1(‖xn − x0‖) + b̄rm+1

]
‖w − xn‖

≤ d‖w − xn‖ ≤ dn+1‖x0 − w‖ < b̄ ≤ s∗, (19)

where d = (1 + r + · · ·+ rm)
[ ∫ 1

0
φ
(
(1 − θ)‖w − x0‖

)
dθ + φ1(s∗) + b̄rm+1

]
∈ [0, 1). There-

fore, we conclude x∗ = lim
n→+∞

xn = w. Finally, from (14) and the triangle inequality, we

obtain for j = 0, 1, 2, . . .

‖xn+j − xn‖ ≤ ‖xn+j − xn+j−1‖+ ‖xn+j−1 − xn+j−2‖+ · · ·+ ‖xn+1 − xn‖
≤ sn+j − sn+j−1 + sn+j−1 − sn+j−2 + · · ·+ sn+1 − sn

= sn+j − sn.

By letting j → +∞ in (19), we show the assertion (13).

Remark 1.

(i) The results of the Theorem 1 specialize for the Newton method with OI defined by xn+1 =

xn − Υ′(xn)#Υ(xn), for solving Equation (5). Simply, take E(x) = Υ′(x) and φ1 = 0.

(ii) Under the conditions (C1)− (C8), further suppose that the operator
(

I +Δ+
(
Δ− E(x)

))−1

E(x) sends N(A) to R(A) provided that for x ∈ Ω, the inverse of

I + Δ+
(
E(x)− Δ

)
exists. (20)

Then, by Lemma 4, E(xn)# :=
(

I + Δ+
(
E(xn) − Δ

))−1
Δ+ is a GI. Thus, the proof of

Theorem 1 establishes the convergence of method (8) for GI.
(iii) By the Lemma 6, the condition (20) can be exchanged by rank (E(x)) ≤ rank(E(x0)) for

Δ = E(x0) and if T1 and T2 are finite dimensional. In general Banach spaces, the condition
(20) can be switched by the stronger R(E(x)) ⊂ R(E(x0)) (for Δ = E(x0)) (see Lemma 5)
or by the conditions of the Lemma 6.

4. Examples

The example considers method (4) with Υ′(x)+ = Υ′(x)−1 for the case Δ = I, which
is independent of x0. It is also compared with method (8) for Δ = Υ′(x0). In this case, the
methods (4) and (8) become Newton’s method

xn+1 = xn − Υ′(xn)
−1Υ(x) (4)′

and
xn+1 = xn − LΥ′(x0)

−1Υ(x) (8)′,

respectively.
We shall solve the system

F1(u, v) = u − 0.1 sin u − 0.3 cos v + 0.4

F2(u, v) = v − 0.2 cos u + 0.1 sin v + 0.3.
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If F = (F1, F2). Then, we can write

Υ(z) = 0 f or z = (u, v)T .

Consequently, we obtain

Υ′((u, v)) =
[

1 − 0.1 cos(u) 0.3 sin(v)
0.2 sin(u) 0.1 cos(v) + 1

]
.

Example 1. Method (8′): Set m = 1 and Δ = I. We have that

L1(x) = I + (I − Υ′(x)),

P1(x) = x − (I + (I − Υ′(x)))Υ(x), (21)

xj+1 = P1(xj).

Example 2. Method (8′): Set, m = 2 and Δ = I. It follows that

L2(x) = I + (I − Υ′(x)) + (I − Υ′(x))2,

P2(x) = x − L2(x)Υ(x), (22)

xj+1 = P2(xj).

Example 3. Method (8′): Set m = 3 and Δ = I. Then, we have

L3(x) = I + (I − Υ′(x)) + (I − Υ′(x))2 + (I − Υ′(x))3,

P3(x) = x − L3(x)Υ(x), (23)

xj+1 = P3(xj).

Example 4. Method (8′): Set m = 4 and Δ = I. Then, we have

L4(x) = I + (I − Υ′(x)) + (I − Υ′(x))2 + (I − Υ′(x))3 + (I − Υ′(x))4,

P4(x) = x − L4(x)Υ(x), (24)

xj+1 = P4(xj).

Example 5. Method (8′): Set m = 5 and Δ = I. Then, we have

L5(x) = I + (I − Υ′(x)) + (I − Υ′(x))2 + (I − Υ′(x))3 + (I − Υ′(x))4 + (I − Υ′(x))5,

P5(x) = x − L5(x)Υ(x), (25)

xj+1 = P5(xj).

Example 6. Method (8′): Set m = 1, 5 and Δ = Υ′(x0). It follows that

xn+1 = xn − LΔ−1Υ(xn),

H = Δ−1(Δ − Υ′(x)), (26)

L = I +
m

∑
j=1

Hj.

Definition 2. Let {xn} be a sequence. Then, the computational order of convergence (COC) is for
θn = xn − x∗ [4]

hn =
ln |θn+1/θn|
ln |θn/θn−1| .

148



Axioms 2024, 13, 358

Definition 3. Let {xn} be a sequence. Then, the approximate computational order of convergence
(ACOC) is for θ̂n = xn − xn−1

ĥn =
ln |θ̂n+1/θ̂n|
ln |θ̂n/θ̂n−1|

.

The Tables 1–5 demonstrate that the cheaper-to-implement method (8) is behaving the
same as Newton’s method for a large enough m.

Table 1. Iterations to obtain error tolerance ε = 10−9 for initial point x0 = (1, 1), where ‖I −Υ′(x0)‖ =

0.3129 < 1.

Method Iterations CPU Time Method Iterations CPU Time

(4)’ Newton 4 10.82 × 10−6 (4)’ Newton 4 10.82 × 10−6

(21), m = 1 6 6.94 × 10−6 (26), m = 1 8 13.063 × 10−6

(22), m = 2 5 6.922 × 10−6 (26), m = 2 6 12.255 × 10−6

(23), m = 3 4 5.946 × 10−6 (26), m = 3 5 9.089 × 10−6

(24), m = 4 4 6.324 × 10−6 (26), m = 4 5 9.198 × 10−6

(25), m = 5 4 6.836 × 10−6 (26), m = 5 4 8.743 × 10−6

Table 2. Iterations to obtain error tolerance of ε = 10−9 for initial point x0 = (0, 0), where ‖I −
Υ′(x0)‖ = 0.1414 < 1.

Method Iterations CPU Time Method Iterations CPU Time

(4)’ Newton 3 7.215 × 10−6 (4)’ Newton 3 7.215 × 10−6

(21), m = 1 5 5.122 × 10−6 (26), m = 1 3 4.256 × 10−6

(22), m = 2 4 5.8 × 10−6 (26), m = 2 3 5.862 × 10−6

(23), m = 3 3 5.503 × 10−6 (26), m = 3 3 5.575 × 10−6

(24), m = 4 3 5.771 × 10−6 (26), m = 4 3 5.825 × 10−6

(25), m = 5 3 5.895 × 10−6 (26), m = 5 3 5.973 × 10−6

Table 3. Iterations to obtain error tolerance of ε = 10−9, for x0 = (−15,−15), where ‖I − Υ′(x0)‖ =

0.257 < 1.

Method Iterations CPU Time Method Iterations CPU Time

(4)’ Newton 5 13.454 × 10−6 (4)’ Newton 5 13.454 × 10−6

(21), m = 1 7 7.184 × 10−6 (26), m = 1 9 12.015 × 10−6

(22), m = 2 5 10.195 × 10−6 (26), m = 2 7 13.245 × 10−6

(23), m = 3 5 7.352 × 10−6 (26), m = 3 6 9.378 × 10−6

(24), m = 4 5 7.883 × 10−6 (26), m = 4 6 9.829 × 10−6

(25), m = 5 5 8.636 × 10−6 (26), m = 5 5 8.936 × 10−6

Table 4. Iterations to obtain error tolerance of ε = 10−12, for x0 = (−15,−15), where ‖I − Υ′(x0)‖ =

0.257 < 1.

Method Iterations CPU Time Method Iterations CPU Time

(4)’ Newton 7 16.719 × 10−6 (4)’ Newton 7 16.719 × 10−6

(21), m = 1 8 15.677 × 10−6 (26), m = 1 12 24.742 × 10−6

(22), m = 2 7 20.052 × 10−6 (26), m = 2 8 27.178 × 10−6

(23), m = 3 7 14.711 × 10−6 (26), m = 3 8 20.43 × 10−6

(24), m = 4 7 15.357 × 10−6 (26), m = 4 7 19.2 × 10−6

(25), m = 5 7 16.49 × 10−6 (26), m = 5 7 17.538 × 10−6
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Table 5. COC versus ACOC with x0 = (−15,−15) , ε = 10−12.

Method COC ACOC

(2) Newton 1.8624 1.9697
(21), m = 1 0.863 1
(22), m = 2 0.2695 1.0438
(23), m = 3 1.9714 2.3569
(24), m = 4 1.8354 1.9453
(25), m = 5 1.8642 1.9661
(26), m = 1 0.9065 1.0118
(26), m = 2 0.5912 0.999
(26), m = 3 0.7321 0.9926
(26), m = 4 1.933 2.0151
(26), m = 5 1.8679 1.9578

5. Conclusions

We developed a semi-local Kantorovich-like analysis of Newton-type methods for
solving singular nonlinear operator equations using outer or generalized inverses. These
methods do not use inverses as in earlier studies but a sum of operators. This sum converges
to the inverse and makes the implementation of these methods easier than the ones using
inverses. The analysis of the methods relies on the concept of generalized continuity for the
operators involved and majorizing sequences. Examples complement the theory. Due to its
generality, this article’s technique can be applied on other method with inverses along the
same lines [6,14,19,32,39,43,45–49]. It is worth noting that the method (8) should be used
for sufficiently small m. Otherwise, if m is very large, it may be as expensive to implement
as method (4).
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Abstract: The problem of inverting dynamic complex matrices remains a central and intricate
challenge that has garnered significant attention in scientific and mathematical research. The zeroing
neural network (ZNN) has been a notable approach, utilizing time derivatives for real-time solutions
in noiseless settings. However, real-world disturbances pose a significant challenge to a ZNN’s
convergence. We design an accelerated dual-integral structure zeroing neural network (ADISZNN),
which can enhance convergence and restrict linear noise, particularly in complex domains. Based on
the Lyapunov principle, theoretical analysis proves the convergence and robustness of ADISZNN.
We have selectively integrated the SBPAF activation function, and through theoretical dissection and
comparative experimental validation we have affirmed the efficacy and accuracy of our activation
function selection strategy. After conducting numerous experiments, we discovered oscillations and
improved the model accordingly, resulting in the ADISZNN-Stable model. This advanced model
surpasses current models in both linear noisy and noise-free environments, delivering a more rapid
and stable convergence, marking a significant leap forward in the field.

Keywords: dynamic complex matrix inversion; zeroing neural network; linear noise; activation
function; residual fluctuations

MSC: 34A55

1. Introduction

Matrix inversion is a fundamental and crucial problem encountered in various do-
mains [1–5], including mathematics and engineering, chaotic systems [1–3], and robotic
dynamics [5]. Numerous methods exist for solving this problem, primarily categorized into
two approaches. The first is numerical computation methods, such as Newton’s iterative
method [6,7], which, though fundamentally serial in nature, suffer from slow computation
speed and high resource consumption, rendering them ineffective for efficiently computing
the inverse of high-dimensional matrices. Another approach is neural-network-based meth-
ods, inherently parallel in computation, such as gradient neural networks (GNNs) [8–11],
renowned for their high computational accuracy and exponential convergence. However,
GNNs have their own set of challenges and limitations, particularly when it comes to
handling dynamic or time-varying data.

Introduced 20 years ago, the ZNN model proposed by Zhang et al. [12] is a specialized
neural network architecture that is more adaptive and efficient for solving real-time matrix
inversion problems. However, ZNNs are only applicable in ideal noise-free environments.
In reality, various types of noise exist, impairing ZNNs’ convergence to theoretical values.
Dynamic matrix inversion encompasses two domains: dynamic real matrix inversion and
dynamic complex matrix inversion. According to PID control theory [13], the Integration-
Enhanced Zhang Neural Network model (IEZNN) [14], proposed by Jin et al., restricts
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noise interference and is employed to address dynamic real matrix inversion problems,
demonstrating commendable noise restriction capabilities and convergence performance
through theoretical analysis and experimental validation.

The applications of dynamic matrix inversion in the complex domain span various
scientific and engineering disciplines [15–19]. Mathematical models in the complex domain
are crucial for describing phenomena such as control systems [16], signal processing [17],
and optical systems [18]. Therefore, this paper focuses on the problem of dynamic complex
matrix inversion.

Expanding upon previous research on zeroing neural network (ZNN) models, Zhang
et al. proposed a complex-valued ZNN (CVZNN) to address DCMI problems [20]. Xiao et al.
introduced a complex-valued noise-tolerant ZNN (CVNTZNN) model [21] aimed at restrict-
ing real-world noise interference, inspired by the noise reduction principle of integral-based
zeroing neural networks. However, the CVNTZNN model struggles to effectively restrict
linear noise. Recently, Hua et al. introduced the dual-integral structure zeroing neural net-
work (DISZNN) model [22]. Leveraging its inherent dual-integral structure, the DISZNN
model demonstrates superior performance in restricting linear noise for DCMI problems,
as evidenced by theoretical analysis based on Laplace transforms. Moreover, numerous
studies suggest that integrating activation functions (AFs) into ZNN models enhances
noise tolerance and convergence performance [23–31]. Therefore, this paper proposes an
accelerated dual-integral structure zeroing neural network (ADISZNN) by combining AFs
with the DISZNN model to enhance its noise restriction capabilities against linear noise
and accelerate convergence. It is noteworthy that the DISZNN model is restructured in
this study, and the convergence and robustness of the ADISZNN model are theoretically
analyzed and demonstrated in a different manner.

This article delineates the following scholarly contributions: The integration of DIS-
ZNN with a novel activation function has culminated in the development of an accelerated
dual-integral structure zeroing neural network (ADISZNN). This model utilizes a dual-
integral structure and activation function, demonstrating improved convergence speed.
This means that the model’s computed results can more quickly approach the theoretical
inverse of the target matrix. Oscillatory fluctuations observed in the steady-state residual
error of ADISZNN, particularly with the SBPAF activation function, have been identified
and mitigated through targeted enhancements. Theoretical analyses, supported by results
from three comparative numerical experiments, confirm the outstanding convergence and
robustness of the enhanced stable ADISZNN model. To our knowledge, no prior work has
introduced an accelerated dual-integral structure zeroing neural network capable of linear
noise cancellation in the context of dynamic complex matrix inversion.

The article is structured into five methodical sections. Section 2 delves into the DCMI
problem, presenting the design formulation and procedural details of the ADISZNN model.
Section 3 offers a theoretical exposition and validation of ADISZNN’s convergence and
robustness, utilizing Lyapunov’s theorem and supported by graphical analyses, with the
SBPAF function selected for the model’s activation. In Section 4, we conducted three sets of
numerical comparison experiments. The article concludes with a summary of the findings
in Section 5.

2. Problem Formulation, Design Formula, and ADISZNN Model

2.1. Consideration of the DCMI Problem

The dynamic complex matrix inverse problem can be described as follows:

A(t)X(t) = I, or X(t)A(t) = I ∈ C
n×n, (1)

where A(t) ∈ Cn×n is a nonsingular and smooth dynamic complex coefficient matrix with
rank n, and X(t) represents the real-time solution of Equation (1), obtained through the
ADISZNN model, where I ∈ Cn×n denotes the identity matrix. Our aim is to compute
X(t) such that Equation (1) holds true at any given time t ∈ [0,+∞). Hence, we have
X∗(t) = A−1(t).
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As complex numbers consist of real and imaginary parts, Equation (1) can be rewritten as

[Are(t) + jAim(t)][Xre(t) + jXim(t)] = I, (2)

where [Are(t) + jAim(t)][Are(t) + jAim(t)] is the expansion of the complex matrix A(t),
and Are(t) and Aim(t) are, respectively, the real and imaginary parts of the given matrix
A(t). Similarly, Xre(t) and Xim(t) are, respectively, the real and imaginary parts of the state
solution X(t), where the imaginary unit is denoted as j =

√−1.

2.2. Design Formula

To compute the dynamic complex matrix inversion, a function is devised to measure
the real-time error in Equation (1), as follows:

E(t) = A(t)X(t)− I. (3)

Its derivative with respect to time t is given by

Ė(t) = Ȧ(t)X(t) + A(t)Ẋ(t). (4)

The design formula of the integration-enhanced zeroing neural network model is as
follows [14]:

Ė(t) = −s0(E(t))− s1

∫ t

0
E(τ)dτ (5)

where design parameters s0 > 0 and s1 > 0 are adjusted for the rate. By combining
Equations (4) and (5), we can derive the following formula:

A(t)Ẋ(t) = −Ȧ(t)X(t)− s0(A(t)X(t)− I)− s1

∫ t

0
(A(τ)X(τ)− I)dτ. (6)

In actuality, a wide array of noise phenomena are consistently present across numerous
practical applications. Examples include the superfluous movements observed in robotic
arm operations, as discussed in [32], and the chaotic dynamics within permanent magnet
synchronous motor (PMSM) systems, as explored in [33], among others. To more accurately
reflect real-world conditions, we introduce noise into Equation (6), thereby obtaining the
following equation:

A(t)Ẋ(t) = −Ȧ(t)X(t)− s0(A(t)X(t)− I)− s1

∫ t

0
(A(τ)X(τ)− I)dτ + N(t). (7)

2.3. Dual-Integral Structure ZNN Model Design

The DISZNN model proposed by Hua et al. [22] has demonstrated significant efficacy
in the restriction of noise, particularly linear noise. The model for DISZNN is as follows:

Ė(t) = −s3
0

∫ t

0

∫ δ

0
E(τ)dτdδ − 3s2

0

∫ t

0
E(δ)dδ − 3s0E(t) (8)

in which s0 ∈ R+ is the design parameter, the single-integral term restricts noise, while the
double-integral term not only restricts noise but also accelerates convergence speed.

2.4. ADISZNN Model Design

It has been mentioned in many papers [23–31] that adding an activation function to
some ZNN-like models can accelerate the convergence of the error function and enhance
the model’s ability to restrict noise. Therefore, we modified the ZNN model by adjusting
its design formula to

Ė(t) = −αΦ(E(t)) (9)

in which, Φ(·): Cn×n → Cn×n is an activation function.
To provide a more intuitive description of the model’s evolution, we set

155



Axioms 2024, 13, 374

Θ(t) = Ė(t) + αΦ(E(t)) (10)

Letting

Θ(t) = −λ
∫ t

0
Θ(τ)dτ, (11)

where λ > 0.
We define

Y(t) = Θ(t) + λ
∫ t

0
Θ(τ)dτ, (12)

and substituting Equation (10) into Equation (12), we can obtain

Y(t) = Ė(t) + αΦ(E(t)) + λ
∫ t

0
(Ė(t) + αΦ(E(τ)))dτ

= Ė(t) + αΦ(E(t)) + λE(t) + λα
∫ t

0
Φ(E(τ))dτ.

(13)

Similarly, we let

Y(t) = −λ
∫ t

0
Y(τ)dτ, (14)

combining Equations (13) and (14), we can obtain the following equation:

Ė(t) + αΦ(E(t)) + λE(t) + λα
∫ t

0
Φ(E(τ))dτ

= −λ
∫ t

0
(Ė(τ) + αΦ(E(τ)) + λE(τ)

+ λα
∫ τ

0
Φ(E(δ))dδ)dτ

= −λE(t)− αλ
∫ t

0
Φ(E(τ))dτ

− λ2
∫ t

0
E(τ)dτ − λ2α

∫ t

0

∫ τ

0
Φ(E(δ))dδdτ.

(15)

Thus, we obtain the ADISZNN model,

Ė(t) =− αΦ(E(t))− 2λE(t)− 2λα
∫ t

0
Φ(E(τ))dτ

− λ2
∫ t

0
E(τ)dτ − λ2α

∫ t

0

∫ τ

0
Φ(E(δ))dδdτ.

(16)

Therefore, the ADISZNN model form with noise can be reformulated as

Ė(t) =− αΦ(E(t))− 2λE(t)− 2λα
∫ t

0
Φ(E(τ))dτ

− λ2
∫ t

0
E(τ)dτ − λ2α

∫ t

0

∫ τ

0
Φ(E(δ))dδdτ

+ N(t).

(17)

Furthermore, since we already know that E(t) = A(t)X(t)− I and Ė(t) = Ȧ(t)X(t) +
A(t)Ẋ(t), we can further derive the ADISZNN model incorporating noise:
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A(t)Ẋ(t) =− Ȧ(t)X(t)− αΦ(A(t)X(t)− I)

− 2λ(A(t)X(t)− I)

− 2λα
∫ t

0
Φ(A(τ)X(τ)− I)dτ

− λ2
∫ t

0
(A(τ)X(τ)− I)dτ

− λ2α
∫ t

0

∫ τ

0
Φ(A(δ)X(δ)− I)dδdτ

+ N(t)

(18)

3. Theoretical Analyses

In previous research on DISZNN [22], theoretical analysis of convergence and ro-
bustness was demonstrated using Laplace transform methods. However, in this paper,
we employ a different approach, based on the Lyapunov principle, for proof. In this
section, we primarily discuss and demonstrate the convergence and robustness of the
ADISZNN model based on the Lyapunov principle, and analyze and apply lemmas to
select the activation function. To better represent the Frobenius norm of E(t), we introduce
‖E(t)‖F = ‖A(t)X(t)− I‖F.

3.1. Convergence

The convergence of the ADISZNN model in the absence of noise is proven in this
subsection.

Theorem 1. (Convergence) In the absence of noise, using the ADISZNN model (16) to solve the
DCMI problem, as t tends to infinity, the Frobenius norm of the error E(t) approaches zero; that is,

lim
t→∞

‖E(t)‖F = 0.

The proof of Theorem 1 is as follows.

Proof of Theorem 1. We rewrite Equation (18) in the absence of noise interference as

Ė(t) =− αΦ(E(t))− 2λE(t)− 2λα
∫ t

0
Φ(E(τ))dτ

− λ2
∫ t

0
E(τ)dτ − λ2α

∫ t

0

∫ τ

0
Φ(E(δ))dδdτ.

(19)

To provide a clearer proof, let axy(t), xxy(t), exy(t), θxy(t), and υxy(t), respectively,
represent the xyth subelements of A(t), X(t), E(t), Θ(t), and Y(t).

Firstly, considering that the equation

Y(t) = Ė(t) + αΦ(E(t)) + λ
∫ t

0
(Ė(t) + αΦ(E(t))) (20)

under the condition of no noise interference for the ADISZNN model can be transformed
into the following form:

Y(t) = −λ
∫ t

0
Y(τ)dτ, (21)

the element-wise item of (21) is

υxy(t) = −λ
∫ t

0
υxy(τ)dτ, (22)

its derivative is
υ̇xy(t) = −λυxy(t). (23)
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Assuming a Lyapunov function ε(t) = υ2
xy(t), its derivative form is as follows:

ε̇(t) = 2υ̇xy(t)υxy(t). (24)

Substituting (23) into (24) yields

ε̇(t) = −2λυ2
xy(t). (25)

Since ε(t) is positive definite, its derivative ε̇(t) is negative definite, thus ε(t) is
asymptotically stable. Therefore, we obtain the equation

lim
t→∞

|ε(t)| = lim
t→∞

|υ2
xy(t)| = lim

t→∞
|υxy(t)| = 0. (26)

So, based on Equations (20) and (26), we have the following: As t → ∞, |υxy| =

|ėxy(t)+αΦ(exy(t)) + λ
∫ t

0 (ėxy(τ) + αΦ(exy(τ)))dτ| = 0. Considering θxy(t) = ėxy(t) +
αΦ(ėxy(t))

and we have

θxy(t) = −λ
∫ t

0
θxy(τ)dτ, t → ∞, (27)

thus,

lim
t→∞

∣∣∣∣θxy(t) + λ
∫ t

0
θxy(τ)dτ

∣∣∣∣ = 0,

it is easy to obtain that

lim
t→∞

∣∣θxy(t)
∣∣ = lim

t→∞

∣∣∣∣−λ
∫ t

0
θxy(τ)dτ

∣∣∣∣ = 0.

Taking the derivative of the above equation, we obtain

lim
t→∞

∣∣θ̇xy(t)
∣∣ = lim

t→∞

∣∣−λθxy(t)
∣∣+ Δ, Δ → 0,

in which Δ is the small error in the derivative of θ(t).
Let us assume another Lyapunov function:

ρ̇(t) = 2θ̇xy(t)θxy(t) = −2λθ2
xy(t). (28)

According to the Lyapunov principle, ρ(t) ≥ 0, ρ̇(t) ≤ 0, we can obtain

lim
t→∞

∣∣θxy(t)
∣∣ = 0.

Because of θxy(t) = ėxy(t) + αΦ(exy(t)),

lim
t→∞

∣∣ėxy(t) + αΦ(exy(t))
∣∣ = 0, (29)

is obtained, thus, ėxy(t) = −αΦ(exy(t)).
Clearly, we obtain

lim
t→∞

∣∣exy(t)
∣∣ = 0.

Therefore, its matrix form is as follows:

lim
t→∞

‖E(t)‖F = 0. (30)

Thus, Theorem 1 is proven.
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3.2. Robustness

In the presence of linear noise N(t) in matrix form, the ADISZNN model can still
asymptotically approach the theoretical solution. Its effectiveness and convergence in
handling DCMI problems will be analyzed and demonstrated.

Theorem 2. (Robustness)In the presence of linear noise, using the ADISZNN model (17) to solve
the DCMI problem, as t tends to infinity, the Frobenius norm of the error E(t) approaches zero;
that is,

lim
t→∞

‖E(t)‖F = 0.

Proof of Theorem 2. The linear noise is expressed as

N(t) = At + B,

where A and B are constant matrices, and their elements can be written as

nxy(t) = axyt + bxy.

According to Theorem 1, and Equations (20) and (21), the ADISZNN model in the
presence of linear noise can be transformed into the following form:

Y(t) = −λ
∫ t

0
Y(τ)dτ + N(t), (31)

with elements as in

υxy(t) = −λ
∫ t

0
υxy(τ)dτ + nxy(t). (32)

Differentiating υxy twice, we can obtain

ϋxy(t) = −λυ̇xy(t) + n̈xy(t), (33)

Taking the first and second derivatives of the noise separately, we obtain ṅxy(t) = axy
and n̈xy(t) = 0. Then,

ϋxy(t) = −λυ̇xy(t).

Assuming the Lyapunov equation to be

ϑ(t) = υ̇2
xy(t),

therefore,
ϑ̇(t) = 2ϋxy(t)υ̇xy(t) = −λυ̇2

xy(t),

Since ϑ(t) ≥ 0 is positive definite and its derivative ϑ̇(t) ≤ 0 is negative definite, ϑ(t)
is globally asymptotically stable, and we obtain

lim
t→∞

|ϑ(t)| = lim
t→∞

∣∣∣υ̇2
xy(t)

∣∣∣ = lim
t→∞

|υ̇xy(t)| = 0. (34)

By combining (32) and (34), we obtain the following equation:

lim
t→∞

|υ̇xy(t)| = lim
t→∞

| − λυxy(t) + ṅxy(t)|.

Substituting ṅxy(t) = a into it, we obtain

lim
t→∞

| − λυxy(t) + a| = 0,
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thus, concluding that
lim
t→∞

|λυxy(t)| = |a|,
then, we obtain

lim
t→∞

|υxy(t)| =
∣∣∣ a
λ

∣∣∣.
So, we can derive that as t → ∞,

|υxy(t)| =
∣∣ėxy(t) + αΦ(exy(t))

∣∣+ λ
∫ t

0

(
ėxy(τ) + αΦ(exy(τ))

)
dτ =

∣∣∣ a
λ

∣∣∣. (35)

Let
θxy(t) = ėxy(t) + αΦ(exy(t)) (36)

then, we have

|υxy(t)| =
∣∣∣∣θxy(t) + λ

∫ t

0
θxy(τ)dτ

∣∣∣∣ = ∣∣∣ a
λ

∣∣∣.
therefore, we can deduce that

lim
t→∞

∣∣∣∣θxy(t) + λ
∫ t

0
θxy(τ)dτ

∣∣∣∣ = 0,

then, we draw
lim
t→∞

∣∣θ̇xy(t)
∣∣ = lim

t→∞

∣∣−λθxy(t)
∣∣.

Clearly, λ > 0, and θ̇ and θ have opposite signs, thus

lim
t→∞

|θxy(t)| = 0.

Furthermore,
θxy(t) = ėxy(t) + αΦ(exy(t)),

which means that we can obtain

lim
t→∞

|θxy(t)| = lim
t→∞

∣∣ėxy(t) + αΦ(exy(t))
∣∣ = 0,

so, ėxy(t) = −αΦ(exy(t)).
According to the Lyapunov theorem, we can obtain

lim
t→∞

|exy(t)| = 0.

The corresponding matrix form is as follows:

lim
t→∞

‖E(t)‖F = 0. (37)

Thus, Theorem 2 is proven.

3.3. Selection of Activation Function

For the ADISZNN model, different activation functions will result in different degrees
of convergence in the model solution. To maintain generality in our discussion, we consider
the three most common types of activation functions: linear-like activation functions [26],
sigmoid-like activation functions [27], and sign-like activation functions [34–36]. Here,
we take the linear activation function (LAF), smooth bi-polar sigmoid activation function
(SBPSAF), and signal bi-power activation function (SBPAF) as examples. They are defined
as follows:
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• LAF:
Φ1(x) = x (38)

• SBPSAF:

Φ2(x) =
1
2

xr1 +
1 + e−r2x

1 − e−r2x (1 −
e−r2x

1 + e−r2x ), (39)

where r1 > 0, r2 > 0.
• SBPAF :

Φ3(x) = (k1|x|η + k2|x|w)sign(x) + k3x, (40)

where sign(·) is a symbolic function and the design parameters are k1 > 0, k2 > 0, k3 > 0,
0 < η < 1, and w > 0.

However, determining whether an activation function is suitable is a challenging task.
Ref. [35] elucidates a concept within the Lyapunov stability framework, suggesting that the
rate of convergence of a system is positively correlated with the magnitude of its derivative
near the origin. Specifically, the larger the derivative, the faster the system converges.
To illustrate this, Figure 1 in the paper depicts the derivative curves for three activation
functions: Φ1(x) LAF, Φ2(x) SBPSAF, and Φ3(x) SBPAF. It is observed that near the origin,
the derivative of SBPAF exceeds that of LAF, and similarly, the derivative of LAF surpasses
that of SBPSAF. Based on this observation, it can be inferred that the ADISZNN model
employing the SBPAF activation function may converge in a shorter time compared to the
model using the LAF activation function. Likewise, the model with the LAF activation
function is likely to converge faster than the one with the SBPSAF activation function.
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Figure 1. Three sorts of activation functions presented: linear activation function (LAF) Φ1(x) (red
solid line), smooth bi-polar sigmoid activation function (SBPSAF) Φ2(x) (sky blue solid line), and
signal bi-power activation function (SBPAF) Φ3(x) (blue solid line).

Therefore, in this article, we will use SBPAF as the activation function adopted by
ADISZNN.

4. Simulation and Comparative Numerical Experiments

4.1. Comparison Experiments of Activation Functions

In this section, to further validate the correctness of our activation function selection,
we compare the ADISZNN models using three different activation functions.

In this example, a two-dimensional dynamic complex matrix A is presented as follows:

A(t) =
[

j sin(3t) j cos(3t)
−j cos(3t) j sin(3t)

]
∈ C

2×2. (41)
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For convenience, this matrix only contains the imaginary part. To verify the correctness
of the ADISZNN model, the theoretical inverse of the above dynamic complex matrix is
obtained through mathematical calculation:

A−1(t) =
[−j sin(3t) j cos(3t)
−j cos(3t) −j sin(3t)

]
∈ C

2×2. (42)

Figure 2 delineates the computational and convergence trajectories of the ADISZNN
model across various activation functions, all in the absence of noise. A discernible obser-
vation from this figure is that models utilizing the LAF and SBPSAF activation functions
achieve near-simultaneous steady-state error close to zero at approximately 2.3 s. In stark
contrast, the ADISZNN model equipped with the SBPAF activation function demonstrates
a markedly swifter convergence, reaching near-zero error within a mere 0.6 s—a rate that is
roughly threefold faster than its counterparts.

0 1 2 3 4 5
0

0.5

1

1.5

2

2.5

3

3.5

ADISZNN-LAF
ADISZNN-SBPSAF
ADISZNN-SBPAF

Figure 2. Comparative graph of the computation and convergence processes of ADISZNN with three
different activation functions without noise interference; the design parameters are λ = 4 and α = 4:
ADISZNN-LAF (green dashed line), ADISZNN-SBPSAF (blue dashed line), ADISZNN-SBPAF (red
solid line).

Figure 3, on the other hand, captures the ADISZNN model’s performance under the
influence of linear noise, with each subplot showcasing the model’s behavior when driven
by the LAF, SBPSAF, and SBPAF activation functions, respectively. For the readers’ ease,
a comparative analysis of these models is tabulated in Table 1. The table underscores a
significant finding: the proximity of the activation function’s derivative to the origin is pos-
itively correlated with the model’s convergence efficiency. Notably, the ADISZNN model
harnessing SBPAF exhibits the most rapid convergence. Nonetheless, it is important to note
that models incorporating SBPSAF and SBPAF show a relatively diminished robustness
when compared to the LAF-equipped model.

Table 1. Comparison of ADISZNN model adopting LAF, SBPSAF, and SBPAF.

AF LAF SBPSAF SBPAF

Derivative near 0 point Large Normal Larger
Convergence Fast Normal Faster
Robustness Strong Weak Normal
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These experiments not only confirm the enhanced convergence speed of the ADISZNN
model employing the SBPAF activation function proposed in this paper but also validate
the appropriateness of the chosen activation function.

Next, we will compare and analyze the convergence performance of the ADISZNN
model using the signal bi-power activation function with the DISZNN model without using
any activation function under the condition of linear matrix noise interference.
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Figure 3. Comparative graph of the computation and convergence processes of ADISZNN with
three different activation functions under linear noise N = [0.8 + 4t]2×2; the design parameters
are λ = 4 and α = 4: ADISZNN-LAF (green dashed line), ADISZNN-SBPSAF (blue dashed line),
ADISZNN-SBPAF (red solid line).

4.2. Comparison Experiments between DISZNN and ADISZNN

The DISZNN model is rewritten as follows:

Ė(t) = −s3
0

∫ t

0

∫ δ

0
E(τ)dτdδ − 3s2

0

∫ t

0
E(δ)dδ − 3s0E(t) (43)

where s0 ∈ R+ is a design parameter.
The error results of the DISZNN model and the ADISZNN model using SBPAF are

shown in Figure 4. Under the condition without noise interference, for any initial value of
the dynamic complex matrix X(0) ∈ [−(2 + 2j), 2 + 2j]2×2 the error of the DISZNN model
converges almost completely to 0 around 2.8 s. When the SBPAF activation function is
introduced, the error of the ADISZNN model converges almost completely to 0 within 0.6 s.
Therefore, the convergence speed of the ADISZNN model is significantly faster than that
of DISZNN.

To compare the tolerance of ADISZNN and DISZNN to noise, a common linear noise
N = [0.8 + 4t]2×2 is introduced. Their numerical experimental comparison is shown in
Figure 5, where the design parameters are set as s0 = 4, λ = 4, and α = 4. Under the
interference of linear noise, both DISZNN and ADISZNN can still make the residual
||E(t)||F close to 0 within approximately 2.8 s and 0.6 s, respectively, which is nearly
the same as the case without noise interference. This demonstrates that ADISZNN and
DISZNN possess inherent tolerance to linear noise.
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However, during the experimental process, we observed that the residual plot of
the ADISZNN model with the signal bi-power activation function exhibits oscillatory
fluctuations after reaching the magnitude of 10−3 at 0.6 s. This indicates a decrease in the
precision of the model’s computations, as it fails to maintain stable convergence at the
10−3 magnitude level. This implies a reduction in the robustness of the ADISZNN model.
The residual plots of the ADISZNN model with noise interference and the comparison
of residuals between the DISZNN and ADISZNN models without noise interference are
shown in Figures 6 and 7, respectively. In the next subsection, we will discuss the stable
version (high-precision version) of the ADISZNN model.
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Figure 4. Convergence comparison of ADISZNN and DISZNN without noise interference; the design
parameters are s0 = 4 λ = 4 and α = 4: ADISZNN-SBPAF (red solid line) and DISZNN (blue
solid line).
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Figure 5. Convergence comparison of ADISZNN and DISZNN, under linear noise N = [0.8 + 4t]2×2:
ADISZNN-SBPAF (pink dotted line) and DISZNN (blue dashed line).
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Figure 6. The amplified residual errors of ADISZNN under linear noise N = [0.8 + 4t]2×2, with
design parameters α = 4, λ = 4, k1 = 1, k2 = 1, k3 = 1, η = 1/3, and omega = 3.
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Figure 7. The amplified residual errors of DISZNN and ADISZNN under no noise, with design
parameters α = 4, λ = 4, k1 = 1, k2 = 1, k3 = 1, η = 1/3, ω = 3, and s0 = 4.

4.3. The Stable ADISZNN Model

In this subsection, we propose an improved version of the ADISZNN-SBPAF model to
address the oscillation phenomenon (or precision degradation phenomenon). According to
the table in experiment 1, we observe that not only can ADISZNN with the signal bi-power
activation function accelerate the convergence compared to the DISZNN model, but also
the ADISZNN model with the linear activation function (LAF) can similarly accelerate
convergence and exhibit stronger robustness.

Based on this observation, we innovatively propose a stable version of the ADISZNN
model: When the error of the ADISZNN model using SBPAF approaches zero (i.e., reaches
the order of 10−3), we transition the model to use LAF. This transition alters the calculation
and convergence of ||A(t)X(t)− I||F, transforming the ADISZNN-SBPAF model into the
ADISZNN-LAF model. The convergence performance of this approach is illustrated in the
Figures 8–10.

The residual plots in Figures 9 and 10, respectively, depict the effects of our improve-
ment on the stable version of the ADISZNN model compared to the unstable version (For
the reader’s enhanced comprehension, Figure 8 illustrates the comparison of amplified
residual errors between the stable and unstable variants of ADISZNN in the absence of
noise). While this enhancement results in a slight increase in the convergence time, it
strengthens the model’s resistance to noise and improves its robustness. Additionally,
the computational accuracy is elevated from the order of 10−3 to 10−4, thereby enhancing
the convergence performance of the model.
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Figure 8. Comparison of the amplified residual errors of stable ADISZNN and unstable ADISZNN
under no noise, with design parameters α = 4, λ = 4, k1 = 1, k2 = 1, k3 = 1, η = 1/3, ω = 3, and
s0 = 4.
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Figure 9. The detailed residual errors of ADISZNN-Stable and ADISZNN-SBPAF, with noise of
[0.8 + 4t]2×2.
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Figure 10. Residual errors of ADISZNN-Stable and ADISZNN-SBPAF with noise of [0.8 + 4t]2×2.

In Figure 11, a comparison between the stable version of the ADISZNN model and
the original DISZNN model is presented. Compared to the original DISZNN model,
the stable version of the ADISZNN model exhibits significant improvements. When the
computed solution X(t) of the model converges to a theoretical state approximation A(t)−1,
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the convergence time of the stable ADISZNN model is reduced from 2.8 s to 1.9 s. Moreover,
the convergence curve of the stable ADISZNN model appears smoother and more refined.
Both models achieve a computational accuracy of 10−4 when fully converged. These results
indicate that the improved stable version of the ADISZNN model not only enhances the
convergence speed but also maintains robustness comparable to that of the DISZNN model.

To underscore the merits of the ADISZNN-Stable model, Figures 12 and 13 depict
comparative trajectory plots of the DISZNN alongside the ADISZNN-Stable model under
conditions of linear noise. Additionally, Figure 14 presents an analysis of residual errors,
contrasting the performance of the DISZNN with that of the ADISZNN-Stable model in an
environment devoid of noise.
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Figure 11. The comparison of the residual errors of stable ADISZNN and DISZNN under linear noise
of [0.8 + 4t]2×2, with design parameters α = 4, λ = 4, k1 = 1, k2 = 1, k3 = 1, η = 1/3, ω = 3, and
s0 = 4.
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Figure 12. Trajectory analysis for problem (41) under linear noise of [0.8 + 4t]2×2; the red line points
represent the theoretical solution, while the blue line points show the DISZNN model’s solutions.
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Figure 13. Trajectory analysis for problem (41) under linear noise of [0.8 + 4t]2×2; the red line points
represent the theoretical solution, while the blue line points show the ADISZNN-Stable model’s solutions.
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Figure 14. Comparison of the amplified residual errors of stable ADISZNN and DISZNN under no
noise, with design parameters α = 4, λ = 4, k1 = 1, k2 = 1, k3 = 1, η = 1/3, ω = 3, and s0 = 4.

5. Conclusions

This article introduces a novel enhancement to the DISZNN model through the in-
tegration of an activation function, culminating in an accelerated dual-integral structure
ZNN model. This model exhibits enhanced resilience against linear noise interference,
particularly pertinent for dynamic complex matrix inversion challenges. The paper unfolds
with the following key contributions: initially, the design formula for a single-integral struc-
ture and the DISZNN model are presented and analyzed; subsequently, the architecture of
the ADISZNN model is designed, with a theoretical examination of its convergence and
robustness; thirdly, both experimental and theoretical analyses are employed to assess the
influence of various activation functions on the ADISZNN’s convergence efficacy, thereby
substantiating the efficacy of our selected activation function; fourthly, comparative tests
under linear noise conditions between the ADISZNN and DISZNN models underscore the
ADISZNN’s superior convergence capabilities, albeit with the caveat that the ADISZNN
model utilizing the SBPAF activation function exhibits oscillatory behavior, potentially
compromising its robustness. In light of these findings, we propose refinements to the
ADISZNN-SBPAF model, yielding a more stable iteration of the ADISZNN. Comparative
experimentation facilitates the identification of the optimal ZNN configuration. Future
inquiries are suggested to investigate the potential applications of the ADISZNN model
within the engineering sector. This paper presents the ADISZNN model, which has certain
limitations, specifically detailed in Appendix A.
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Abbreviations

The following abbreviations are used in this article:

ZNN Zeroing neural network
GNN Gradient neural network
DNSZNN Dual noise-suppressed ZNN
DISZNN Dual-integral structure zeroing neural network
CVZNN Complex-valued ZNN
IEZNN Integral-enhanced ZNN
CVNTZNN Complex-valued noise-tolerant ZNN
ADISZNN Accelerated dual-integral structure zeroing neural network
DRMI Dynamic real matrix inversion
DCMI Dynamic complex matrix inversion
AF Activation function
LAF Linear activation function
SBPAF Signal bi-power activation function
SBPSAF Smooth bi-polar sigmoid activation function

Appendix A. Limitation

1. The ADISZNN model and the ADISZNN-Stable model proposed in this paper cur-
rently do not handle discontinuous noise.

2. This paper restricts the inversion of matrices to be non-singular, smooth, dynamic,
and complex. The problem of inverting singular or non-smooth matrices is not
addressed in this paper.
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Abstract: The Time-Varying Matrix Inversion (TVMI) problem is integral to various fields in science
and engineering. Countless studies have highlighted the effectiveness of Zeroing Neural Networks
(ZNNs) as a dependable approach for addressing this challenge. To effectively solve the TVMI
problem, this paper introduces a novel Efficient Anti-Noise Zeroing Neural Network (EANZNN).
This model employs segmented time-varying parameters and double integral terms, where the
segmented time-varying parameters can adaptively adjust over time, offering faster convergence
speeds compared to fixed parameters. The double integral term enables the model to effectively
handle the interference of constant noise, linear noise, and other noises. Using the Lyapunov approach,
we theoretically analyze and show the convergence and robustness of the proposed EANZNN model.
Experimental findings showcase that in scenarios involving linear, constant noise and noise-free
environments, the EANZNN model exhibits superior performance compared to traditional models
like the Double Integral-Enhanced ZNN (DIEZNN) and the Parameter-Changing ZNN (PCZNN).
It demonstrates faster convergence and better resistance to interference, affirming its efficacy in
addressing TVMI problems.

Keywords: time-varyingmartix inversion (TVMI); zeroing neural network (ZNN); anti-noise prop-
erty; varying parameters; double integral

MSC: 34A34; 34A55

1. Introduction

The problem of time-varying matrix inversion (TVMI) often arises in various scientific
and engineering fields. For instance, in the field of image processing, TVMI is used in real-
time image restoration and denoising algorithms to enhance image quality and accuracy [1].
In the field of robotics, TVMI is applied to motion control and path planning in dynamic
environments to ensure that robots can adjust and execute complex tasks in real time [2].
In the field of signal processing, TVMI is used for real-time filtering and signal recovery,
especially when dealing with time-varying signals and systems [3,4]. In robotic kinematics,
TVMI is used to solve kinematic inverse problems to achieve precise control and operation
of robotic arms [5], among other applications. Currently, the methods to solve matrix
inversion problems primarily fall into the following two categories: numerical algorithms
and neural network algorithms. Numerical algorithms are essentially serial processes and
are primarily suitable for small-scale and constant matrices. For example, the authors
of [6] employed the iteration method to solve matrix inversion; however, the iterative
process is highly complex and time-consuming [7]. Unlike traditional numerical methods,
neural network methods have advantages such as parallel processing capabilities and
distributed storage [8], which have been widely studied. For example, Gradient-based
Recurrent Neural Networks (GNNs) [9] are used for static matrix inversion, significantly
improving computational efficiency. However, many studies have reported that GNNs
struggle to capture changes in variable coefficient matrices and are primarily designed for
time-invariant problems [10], rendering them unsuitable for dynamic situations [11].
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To effectively address the problem of the TVMI, Zhang and colleagues introduced a
novel ZNN model [12] that leverages the time derivative of the error function to achieve
exponential decay of the error over an indefinitely long period, effectively solving time-
varying problems [13]. Furthermore, numerous scholars have continuously innovated
and improved upon the ZNN framework, proposing derivatives of the ZNN models for
time-varying problems. For example, the author of [14] proposed a Finite-Time ZNN
(FTZNN) model that achieves finite-time convergence for the TVMI problem through a new
design formula, significantly improving convergence performance compared to existing
recurrent neural networks (such as GNNs) and the original ZNN model. The authors of [15]
introduced the Classical Complex-Valued Noise-Tolerant ZNN (CVNTZNN) model, which was
developed to address the Dynamic Complex Matrix Inversion (DCMI) problem; the authors
explored the performance of the CVNTZNN model in various noise environments. Another
study [16] proposed a Fixed-Time Convergent and Noise-Tolerant ZNN (FTCNTZNN)
model, demonstrating superior fixed-time convergence and robustness in both noiseless
and noisy environments when solving the TVMI problem.

As research has progressed, scholars have faced key issues such as convergence,
robustness, and stability when using ZNN models to solve TVMI problems [17–19]. In
terms of improving convergence, studies have shown that the design parameters of a ZNN
have a significant impact on convergence speed [20]. Traditional ZNN models typically
use fixed convergence parameters, and while these models can achieve effective conver-
gence [21], the fixed parameters often require multiple additional experiments to adjust
and find approximately optimal parameters. This process is inefficient and difficult to
implement in practical applications. In practical applications, convergence parameters gen-
erally correspond to the inverse of inductance or capacitance in circuits [22], meaning that
convergence parameters are time-varying in hardware systems. Moreover, because larger
design parameter values result in better convergence, recent studies have explored various
variable-parameter ZNN models to solve the TVMI problem more quickly. For example,
the authors of [23] proposed a novel Exponential-enhanced-type Varying-Parameter ZNN
(EVPZNN) model that significantly improves convergence speed compared to traditional
Fixed-Parameter ZNN (FPZNN) [10]. In [24], P.S. Stanimirovic and others introduced a new
segmented varying-parameter approach to establish a Complex Varying-Parameter ZNN
(CVPZNN) that adapts to changes in the problem by dynamically adjusting parameters,
thereby achieving faster convergence speeds.

In terms of improving robustness, noise resistance is a key factor to consider, as
external noise is inevitable in real-life scenarios, (e.g., constant noise, linear noise, and
random noise) and can affect the stability of systems [25,26]. In recent years, two types of
noise-resistant ZNN models have been developed to address computational problems. One
approach incorporates integral items into the design formula of the ZNN, and the other
adds Activation Functions (AFs) to the ZNN. For example, in PID control methods [27], it is
noted that integral terms can effectively eliminate noise, reducing system error continuously.
Jin et al. proposed an Integrated Enhanced ZNN (IEZNN) model [28] that introduces
integral terms into the design formula to compensate for the original ZNN’s deficiencies in
handling noise. Although it shows good robustness in solving TVMI problems, its ability to
suppress linear noise is not ideal. Therefore, the Double Integral-Enhanced ZNN (DIEZNN)
model proposed by Liao et al. [29] further introduces double integral terms to improve
the suppression of linear noise. Moreover, in reference [30], researchers examined the
employment of a ZNN alongside fuzzy adaptive activation functions to tackle time-varying
linear matrix problems. This strategy effectively boosts robustness against external noise
by integrating activation functions. Xiao et al. [31] introduced a Versatile AF (VAF), and
Jin et al. [16] proposed a Novel AF (NAF), both of which also enhance the model’s noise
suppression capabilities.

To solve the TVMI problem more efficiently, this paper introduces a novel efficient
anti-noise zeroing neural network (EANZNN) model. This model accelerates convergence
through the use of time derivatives of error functions designed with time-varying parame-
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ters and incorporates double integral terms to suppress noise. It is worth noting that the
EANZNN model employs an innovative time-varying segmentation function as a parame-
ter, which is more flexible than the fixed parameter in the DIEZNN model. Furthermore,
via theoretical analysis and simulation tests, this work shows that under the same settings,
the EANZNN model performs better in resolving the TVMI issue than both the DIEZNN
model and the Parameter-Changing ZNN (PCZNN) model [32].

The remainder of this paper is divided into the following four sections. Section 2 pro-
vides a detailed description of the TVMI problem and introduces the design of the PCZNN,
DIEZNN, and EANZNN models. Section 3 rigorously analyzes the convergence and ro-
bustness of the EANZNN model. Section 4 compares the performance of the EANZNN
and PCZNN models in handling the TVMI problem under linear and constant noise and in
noise-free environments through experiments. Finally, Section 5 presents a comprehensive
summary of the work. The following represent the noteworthy contributions of this study.

• Unlike previous ZNN models, the novel EANZNN model designed in this paper
employs an innovative piecewise time-varying parameter that includes an upper
bound. This design accelerates the model’s convergence speed while maintaining
good convergence performance. Additionally, a double integral term is introduced
to solve TVMI problems under constant and linear noise, enhancing the model’s
convergence speed and noise resistance.

• Theoretical analysis based on Lyapunov stability theory rigorously demonstrates that
the EANZNN model possesses excellent convergence and robustness when addressing
the TVMI problem.

• Experimental results show that under noise-free conditions, the EANZNN model
achieves a faster convergence speed in solving the TVMI issue compared to the
DIEZNN and PCZNN models. Under constant and linear noise conditions, the
EANZNN model not only converges faster but also demonstrates superior robustness.

2. TVMI Description and Model Design

This section describes the time-varying matrix inversion (TVMI) problem. Subse-
quently, it introduces the relevant models and elaborates on the design process of the
EANZNN model, which includes double integral terms. The importance of this paper
stems from our proposed EANZNN model’s ability to efficiently and precisely solve the
TVMI problem.

2.1. Description of TVMI

The TVMI problem can be mathematically formulated as follows:

A(t)U(t) = I ∈ R
n×n, or U(t)A(t) = I, (1)

where A(t) ∈ Rn×n represents a known time-varying, non-singular, smooth coefficient
matrix; U(t) ∈ Rn×n stands for an unknown invertible matrix; and I signifies a unit matrix
of suitable dimensions. The aim of this paper is to use the designed model to solve for U(t)
in Equation (1), with the theoretical solution of U∗(t) = A−1(t) ∈ Rn×n.

2.2. Relevant Model Design

A ZNN, as a specialized type of recurrent neural network, is typically used to address
time-varying problems. Its design process can generally be divided into the following three
steps [33]:

1. First, define an appropriate error function based on the specific problem to be solved;
2. Design an evolution formula that ensures the error function converges to zero;
3. Substitute the defined error function into the evolution formula to obtain the corre-

sponding ZNN model.
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According to the design steps of the ZNN, to solve the online TVMI problem (1), we
first define the error function for TVMI (1) as follows:

E(t) = A(t)U(t)− I. (2)

To ensure the convergence of A(t) towards its theoretical inverse denoted by U−1(t),
it is necessary for the error function (E(t) ∈ Rn×n) to iteratively approach zero, meaning
that each element of the error function is eij(t) → 0 for all i, j ∈ {1, · · · , n}. To achieve
this goal and improve the model’s performance, Xiao et al. [32] designed a method using
power-type time-varying parameters instead of traditional fixed parameters. Compared to
fixed parameters, this design achieves super-exponential convergence and accelerates the
convergence speed. Due to t ∈ [0,+∞], the design formula is expressed as follows:

Ė(t) = −λ(t)E(t), (3)

and the time-varying parameter (λ(t)) is defined as

λ(t) =

{
pet, 0 < p ≤ 1

pt + 2pt + p, p > 1.
(4)

Next, the time derivative of E(t) in Equation (2) is computed to obtain Ė(t) = Ȧ(t)U(t) +
A(t)U̇(t). Substituting Equation (2) and Ė(t) into Equation (3), the PCZNN model proposed
by Xiao et al. [32] to solve the TVMI problem is derived as follows:

A(t)U̇(t) = −Ȧ(t)U(t)− λ(t)(A(t)U(t)− I). (5)

In real-world situations, external noise interference is inevitably encountered, often
characterized by random noise and linear noise. Therefore, Liao et al. [29] introduced a
DIEZNN model with double integration to effectively suppress noise, as outlined below.

A(t)U(t) =− A(t)U(t)− (2u + 1)(A(t)U(t)− I)

− (u2 + 2u)
∫ t

0
(A(σ)U(σ)− I) dσ

− u2
∫ t

0

∫ σ

0
(A(τ)U(τ)− I) dτ dσ.

(6)

Please note that u > 0 is a parameter used to adjust the convergence speed.

2.3. EANZNN Model Design

In this section, a novel efficient anti-noise zeroing neural network (EANZNN) model
is proposed. To track the inversion process, we initially establish an error function that
mirrors the one defined in Equation (2). On this basis, inspired by the design methodology
detailed in references [32,34], we design the error function (Y(t)) to satisfy the following
two equations: {

Y(t) = Ė(t) + λ(t)E(t),
Y(t) = − ∫ t

0 λ(σ)Y(σ) dσ.
(7)

If the time-varying design parameter (λ(t)) continues to increase, it may exceed the
feasible range or the target limits, which may lead to solution failure. To address this issue,
an upper bound is established for the growth of λ(t). Specifically, once t exceeds t0, λ(t) is
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fixed at a constant value (λ(t0)) no longer increases with t. The explicit definition of λ(t) is
provided below.

λ(t) =

⎧⎪⎨⎪⎩
pet, if 0 < p ≤ 1 and t ≤ t0,
pt + 2pt + p, if p > 1 and t ≤ t0,
λ(t0), if t > t0.

(8)

where t0 is defined as 20 s in this document.

Combining the above equations, it can be further deduced that

Y(t) = Ė(t) + λ(t)E(t)

= −
∫ t

0
λ(σ)

(
Ė(σ) + λ(σ)E(σ)

)
dσ

= −λ(t)E(t)−
∫ t

0
(λ2(σ)− λ̇(σ))E(σ) dσ.

(9)

Equation (9) is restated as

Ė(t) = −2λ(t)E(t)−
∫ t

0
(λ2(σ)− λ̇(σ))E(σ) dσ. (10)

Similarly to the error function (Y(t)), we can construct the new error function (G(t))
as {

G(t) = Ė(t) + 2λ(t)E(t) +
∫ t

0 (λ2(σ)− λ̇(σ))E(σ) dσ,
G(t) = − ∫ t

0 λ(σ)G(σ) dσ,
(11)

similarly obtaining

Ė(t) + 2λ(t)E(t) +
∫ t

0

(
λ2(σ)− λ̇(σ)

)
E(σ) dσ

= −
∫ t

0
λ(σ)

(
Ė(σ) + 2λ(σ)E(σ) +

∫ σ

0
((λ2(τ)− λ̇(τ))E(τ) dτ

)
dσ

= −
∫ t

0

(
λ(σ)Ė(σ) + 2λ2(σ)E(σ)

)
dσ

−
∫ t

0

(
λ(σ)

∫ σ

0
(λ2(τ)− λ̇(τ))E(τ) dτ

)
dσ

= −λ(t)E(t)−
∫ t

0
(2λ2(σ)− λ̇(σ))E(σ) dσ

−
∫ t

0

∫ σ

0
λ(σ)

(
(λ2(τ)− λ̇(τ))E(τ)

)
dτ dσ.

(12)

Therefore, we obtain the design of the EANZNN model as follows:

Ė(t) =− 3λ(t)E(t)−
∫ t

0
(3λ2(σ)− 2λ̇(σ))E(σ) dσ

−
∫ t

0

∫ σ

0
λ(σ)

(
(λ2(τ)− λ̇(τ))E(τ)

)
dτ dσ.

(13)

Additionally, under the influence of noise, the design formula for EANZNN is given by

Ė(t) =− 3λ(t)E(t)−
∫ t

0
(3λ2(σ)− 2λ̇(σ))E(σ) dσ

−
∫ t

0

∫ σ

0
λ(σ)

(
(λ2(τ)− λ̇(τ))E(τ)

)
dτ dσ + N(t),

(14)
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where N(t) ∈ Rn×n represents external noise.

Finally, we incorporate the time derivative of E(t) into Equation (14) to obtain the
design formulation of EANZNN.

A(t)U̇(t) =− Ȧ(t)U(t)− 3λ(t)(A(t)U(t)− I)

−
∫ t

0

(
3λ2(σ)− 2λ̇(σ)

)
(A(σ)U(σ)− I) dσ

−
∫ t

0

∫ σ

0
λ(σ)

(
(λ2(τ)− λ̇(τ))(A(τ)U(τ)− I)

)
dτ dσ + N(t).

(15)

By transforming Equation (15), we can obtain the block-diagram form of the noise-
disturbed EANZNN model (15) as follows:

U̇(t) = (I − A(t))U̇(t)− Ȧ(t)U(t)− 3λ(t)(A(t)U(t)− I)

−
∫ t

0

(
3λ2(σ)− 2λ̇(σ)

)
(A(σ)U(σ)− I) dσ

−
∫ t

0

∫ σ

0
λ(σ)

(
(λ2(τ)− λ̇(τ))(A(τ)U(τ)− I)

)
dτ dσ + N(t).

(16)

where A(t) and Ȧ(t) are the system inputs; η1(t), η2(t), and η3(t) represent 3λ(t),
3λ2(t)− ˙2λ(t), and λ(t)

(
λ2(t)− λ̇(t)

)
respectively; N(t) denotes external noise; and U(t)

is the state variable. In robotic control systems, the time-varying matrix inversion prob-
lem frequently arises in tasks such as motion control, path planning, and state estimation
within dynamic environments. In practical applications, robots need to solve the matrix
inverse in real time to accurately execute control commands. However, due to factors such
as sensor noise, environmental interference, and computational errors, directly solving
the matrix inverse can be challenging. The ZNN model effectively handles time-varying
problems by updating the inverse matrix in real time, ensuring timely responses of the
robotic control system, even in the presence of noise interference. As shown in Figure 1, the
EANZNN model with noise interference can be implemented using summators, multipliers,
amplifiers, and integrators to solve U(t).

Figure 1. Structure diagram of the EANZNN model (15) for handling noise interference in the
TVMI problem.
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3. Theoretical Analyses

Theoretical analysis is conducted to examine the convergence and robustness of the
EANZNN model (15) with respect to the TVMI problem (Equation (1)), and the following
theoretical proof process is provided.

3.1. Convergence

In the primary theoretical analysis, we explore how well the EANZNN model (15)
converges when operating in an ideal noise-free setting.

Theorem 1. Given a matrix (A(t) ∈ Rn×n), when the EANZNN model (15) resolves the TVMI
problem (1) in a noise-free scenario, the state matrix (U(t) ∈ Rn×n) converges from the initial state
(U(0) ∈ Rn×n) to the theoretical inverse (A−1(t) ∈ Rn×n). Specifically, as t → ∞, the error norm
‖E(t)‖F tends to zero.

Proof. According to Section 2.3, we have{
G(t) = − ∫ t

0 λ(σ)G(σ)dσ,
Ġ(t) = −λ(t)G(t).

Its element-wise form is{
gij(t) = − ∫ t

0 λ(σ)gij(σ)dσ,
ġij(t) = −λ(t)gij(t).

(17)

We design a Lyapunov function as

v(t) = g2
ij(t) > 0.

Combining Equation (17) (ġij(t) = −λ(t)gij(t)), we obtain

v̇(t) = 2gij(t)ġij(t) = −2λ(t)g2
ij(t).

According to the expression of the design parameter (λ(t)) presented in Section 2.3, it
is known that when t ∈ [0,+∞], we have λ(t) > 0. As a result, we obtain v̇(t) < 0. Since
v(t) is positive and definite and v̇(t) is negative and definite, based on the Lyapunov’s
asymptotic stability theory [35], we can obtain

lim
t→∞

|gij(t)| = 0. (18)

Similarly, based on the expression for the design parameter (λ(t)) described in
Section 2.3, it is known that as t ≥ t0, λ(t) is fixed at a constant value, which we de-
note as ω. Given that ġij(t) = −λ(t)gij(t), we can deduce the following:

lim
t→∞

|ġij(t)| = lim
t→∞

| − ωgij(t)| = 0. (19)

The elemental form of Y(t) in Equation (7) is expressed as yij(t) = ėij(t) + λ(t)eij(t),
where yij and eij denote the ijth elements of Y(t) and E(t), respectively. Similarly, the

element-wise form of G(t) in Equation (11) is gij(t) = ėij(t) + 2λ(t)eij(t) +
∫ t

0 (λ
2(σ) −

λ̇(σ))eij(σ) dσ. From these equations, we obtain

gij(t) = yij(t) +
∫ t

0
λ(σ)yij(σ)dσ.

Then, we derive the above equation to obtain
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ġij(t) = ẏij(t) + λ(t)yij(t).

Given that λ(t) is fixed at a constant value (ω) for t ≥ t0, as t → ∞, we can derive the
following equivalent substitution from Equation (19):

lim
t→∞

∣∣ẏij(t) + ωyij(t)
∣∣ = 0. (20)

Based on Equation (20), we can deduce the following:

lim
t→∞

∣∣ẏij(t)
∣∣ = lim

t→∞

∣∣−ωyij(t)
∣∣.

We establish the following Lyapunov function:

s(t) = y2
ij(t) > 0.

Differentiating the equation provided above, we obtain

ṡ(t) = 2yij(t)ẏij(t) = −2ωy2
ij(t) < 0.

As t → ∞, it can be known that s(t) is positive and definite and ṡ(t) is negative and
definite. Based on Lyapunov’s asymptotic stability theory, we can obtain

lim
t→∞

|yij(t)| = 0. (21)

Subsequently, substituting the expression yij(t) = ėij(t) + λ(t)eij(t) from Equation (21)
yields the following equation:

lim
t→∞

|ėij(t) + ωeij(t)| = 0. (22)

Therefore, we have
lim
t→∞

∣∣ėij(t)
∣∣ = lim

t→∞

∣∣−ωeij(t)
∣∣.

Following the same method, we define the following Lyapunov function:

h(t) = e2
ij(t) > 0.

By differentiating the preceding equation, we obtain

ḣ(t) = 2eij(t)ėij(t) = −2ωe2
ij(t) < 0.

Similarly, as t → ∞, it can be known that h(t) is positive and definite and ḣ(t) is
negative and definite. Based on Lyapunov’s theory of asymptotic stability, it follows that

lim
t→∞

|eij(t)| = 0.

Since lim
t→∞

|eij(t)| = 0, its corresponding matrix form can also be expressed as

lim
t→∞

‖E(t)‖F = 0.

As a result, the demonstration is finished.

3.2. Robustness

In practical scenarios, external noise interference is common and nearly unavoidable.
Therefore, it is essential to consider its impact. This section investigates the robustness of
the EANZNN model (15) under the interference of matrix-type external noise (N(t)).

179



Axioms 2024, 13, 540

Theorem 2. Given a matrix (A(t) ∈ Rn×n), when the EANZNN model (15) resolves the TVMI
problem (1) under the interference of external constant matrix-type noise (N(t) = K ∈ Rn×n),
the state matrix (U(t) ∈ Rn×n) converges from the initial state (U(0) ∈ Rn×n) to the theoretical
inverse (A−1(t) ∈ Rn×n). Specifically, as t → ∞, the error norm (‖E(t)‖F) tends to zero.

Proof. The noise (N(t)) is specified by

N(t) = K,

where K ∈ Rn×n is a constant matrix, and the form of the corresponding element is

nij(t) = kij.

Considering the noise (N(t)) described in Equation (15), we have{
gij(t) = − ∫ t

0 λ(σ)gij(σ)dσ + nij(t),
ġij(t) = −λ(t)gij(t) + ṅij(t).

By differentiating nij(t), we find

ṅij(t) = 0.

Therefore, we have {
gij(t) = − ∫ t

0 λ(σ)gij(σ)dσ + kij(t),
ġij(t) = −λ(t)gij(t).

(23)

Similar to the derivation of Equation (18), we conclude that

lim
t→∞

|gij(t)| = 0.

Similarly, considering that Equation (23) includes ġij(t) = −λ(t)gij(t), we have

lim
t→∞

∣∣ġij(t)
∣∣ = lim

t→∞

∣∣−ωgij(t)
∣∣ = 0. (24)

Given that Equation (24) is identical to Equation (19), it can be deduced that

lim
t→∞

|yij(t)| = 0, (25)

due to
yij(t) = ėij(t) + λ(t)eij(t).

Consequently, substituting this expression into Equation (25), we derive

lim
t→∞

|ėij(t) + ωeij(t)| = 0.

Since the aforementioned equation is identical to Equation (22), we obtain

lim
t→∞

|eij(t)| = 0.

The corresponding matrix form is written as follows:

lim
t→∞

‖E(t)‖F = 0.

As a result, the demonstration is finished.
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Theorem 3. Given a matrix (A(t) ∈ Rn×n), when the EANZNN model (15) resolves the
TVMI problem (1) under the interference of linear noise (N(t) = Kt + B ∈ Rn×n), the state
matrix (U(t) ∈ Rn×n) converges from the initial state (U(0) ∈ Rn×n) to the theoretical inverse
(A−1(t) ∈ Rn×n). Specifically, as t → ∞, the error norm (‖E(t)‖F) tends to zero.

Proof. The noise (N(t)) is specified by

N(t) = Kt + B,

where K, B ∈ Rn×n represents constant matrices, and their corresponding elemental forms
are represented as

nij(t) = kijt + bij.

Considering the linear noise (N(t)) described in Equation (15), we have{
gij(t) = − ∫ t

0 λ(σ)gij(σ)dσ + nij(t),
ġij(t) = −λ(t)gij(t) + ṅij(t).

Taking the derivative of nij(t), we obtain

ṅij(t) = kij.

Therefore, we obtain{
gij(t) = − ∫ t

0 λ(σ)gij(σ)dσ + nij(t),
ġij(t) = −λ(t)gij(t) + kij.

(26)

To analyze the limit ( lim
t→∞

|ġij(t)|) and considering that as t → ∞, λ(t) is fixed at a

constant value (ω) for t ≥ t0, we can rewrite Equation (26) as{
gij(t) = − ∫ t

0 ωgij(σ) dσ + nij(t),
ġij(t) = −ωgij(t) + kij.

After differentiating the expression for ġij(t) in the aforementioned equation once
again, we obtain the following result:

g̈ij(t) = −ωġij(t).

We define the following Lyapunov function:

θ(t) = ġ2
ij(t) > 0.

Differentiating the above expression, we obtain

θ̇(t) = 2ġij(t)g̈ij(t) = −2ωġ2
ij(t) < 0.

As t → ∞, θ(t) is positive and definite, and θ̇(t) is negative and definite. According to
Lyapunov’s theorem of asymptotic stability, we can derive

lim
t→∞

|ġij(t)| = 0.

Substituting gij(t) = yij(t) +
∫ t

0 λ(σ)yij(σ) dσ into the above equation, we further obtain

lim
t→∞

|ẏij(t) + ωyij(t)| = 0. (27)
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Noting that Equation (27) is identical to Equation (20), we can infer

lim
t→∞

|yij(t)| = 0.

Since y(t) = ėij(t) + λ(t)eij(t),

lim
t→∞

|ėij(t) + ωeij(t)| = 0.

This equation is similar to Equation (22), from which it follows that

lim
t→∞

|eij(t)| = 0.

The corresponding matrix form is written as follows:

lim
t→∞

‖E(t)‖F = 0.

As a result, the demonstration is finished.

4. Example Verification

Remark 1. The experimental data and results presented in this paper were obtained using MATLAB
R2021a Version. Initially, the EANZNN model (15) was built in MATLAB, where the design
parameter (p) was set, and the initial state matrix (U(0)) was randomly generated to handle the
given time-varying matrix (A(t)). Next, the matrix differential equation was converted into a vector
differential equation using the "kron" function (Kronecker product technique) in Matlab, followed
by solving the differential equation using the ode45 solver. Through iterative updates, the dynamic
system outputs the real-time state solution (U(t)). Additionally, the Frobenius norm (‖ · ‖F) was
calculated to obtain real-time data and results of the error function (E(t)).

In this section, we further verify the effectiveness and superiority of the EANZNN
model (15) in solving the TVMI problem (1) under noise-free and external noise condi-
tions through three examples. To clearly demonstrate the experimental results and the
advantages of the EANZNN model (15), we also compared it with the existing PCZNN
model (5) and DIEZNN model (6) under the same conditions, considering the results with
different design parameters (u = p = 0.8, u = p = 2, u = p = 3, and u = p = 15). These
simulations were all conducted on a laptop equipped with a Windows 10 64-bit operating
system, Intel Core i7-11800H CPU (2.30 GHz), and 16 GB of memory.

4.1. Experiment 1—Convergence

To validate the effectiveness and convergence of the EANZNN model in solving
the TVMI problem, we used simple 2 × 2 time-varying coefficient matrices (A(t)) (28),
with random initial values (U(0)) and various design parameters. In the experiment, we
conducted a comparative analysis of the EANZNN model relative to the PCZNN and
DIEZNN models under noise-free conditions.

We considered the following time-varying invertible matrix (A(t)) for the TVMI problem:

A(t) =
[

sin(4t) cos(4t)
− cos(4t) sin(4t)

]
∈ R

2×2. (28)

Obviously, the theoretical solution (U∗(t)) of the corresponding TVMI can be readily
computed as

U∗(t) = A−1(t) =
[

sin(4t) − cos(4t)
cos(4t) sin(4t)

]
∈ R

2×2.

This inverse serves as a benchmark to evaluate the accuracy of the solutions obtained
by the PCZNN, DIEZNN, and EANZNN models for the TVMI problem.
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Figure 2 presents the convergence trajectories of the error norm (‖E(t)‖F) when solv-
ing the TVMI problem using the PCZNN, DIEZNN, and EANZN models under a noise-
free environment. As can be seen, starting from the randomly generated initial state
(U(0) ∈ [−2, 2]2×2), all three models converge to approximately zero. With design param-
eters of u = p = 0.8, as illustrated in Figure 2a, the error norm (||E(t)||F) for DIEZNN
converges to just above 10−3 within 12 s. PCZNN’s convergence accuracy stabilizes at around
10−4, while EANZNN exhibits higher precision, achieving a convergence accuracy of 10−5

within 3 s and further converging to 10−11 within 12 s. Figure 2b shows the results with
design parameters of u = p = 3. It can be seen that EANZNN significantly outperforms
the other two models in terms of convergence speed and precision. Specifically, the error
norm (||E(t)||F) for EANZNN rapidly decreases to 10−3 within 1 s and further improves
to approximately 10−13 over time. In contrast, PCZNN and DIEZNN only converge to
above 10−8 within 10 s. Among them, PCZNN stabilizes around 10−4, while DIEZNN con-
verges above 10−5. These comparative results indicate that the proposed EANZNN model
demonstrates significant advantages in noise-free environments, not only achieving faster
convergence but also reaching higher convergence accuracy in a shorter time, showcasing
its superior performance in handling the TVMI problem.
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Figure 2. The error norm (||E(t)||F) computed for the TVMI of the matrix equation (28) using PCZNN,
DIEZNN, and EANZNN under noise-free conditions. (a) u = p= 0.8; (b) u = p = 3.

4.2. Experiment 2—Robustness

Next, to verify the robustness and convergence of the EANZNN model, we conducted
further experiments under different noise conditions. Specifically, we solved the TVMI
problem in the presence of constant and linear noise. We continued using the time-varying
matrix (A(t)) (28) defined in the previous experiment and considered different noise inten-
sities and design parameters. Through these experiments, we assessed the performance of
the EANZNN model under noise interference and compared it with that of the PCZNN
and DIEZNN models.

Although all three models converge under noise-free conditions, it is more important
to consider model validation under external noise. Figures 3–5 display the convergence
trajectories of the state (U(t)) and the error norm (||E(t)||F) synthesized by the PCZNN,
DIEZNN, and EANZNN models under linear noise conditions (N(t) = [10+ 10t]2×2). Here,
the symbol [10t + 10]2×2 represents a 2 × 2 matrix where each element is 10t + 10, which
was used to simulate the impact of linear noise at different times (t). In these figures, the
initial state (U(0)) is randomly generated as U(0) ∈ [−2, 2]2×2, and the model parameters
are set to u = 1 and p = 1. The theoretical state solution is depicted by the black dashed line,
while the state solutions of the PCZNN, DIEZNN, and EANZNN models are represented
by the green solid line, light-blue solid line, and magenta solid line, respectively.

Figure 3a displays the state solution, while Figure 3b illustrates the error norm for
PCZNN. From Figure 3a, it can be visually observed that under linear noise conditions
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(N(t) = [10 + 10t]2×2), PCZNN converges to zero in approximately 12 s. Figure 4a and
Figure 4b show the state solution and error norm of DIEZNN, respectively. It can be
observed from Figure 4b that DIEZNN converges to zero in approximately 15 s and remains
stable under this linear noise.

Figure 5a and Figure 5b depict the state solution and the error norm of EANZNN,
respectively. It is evident that EANZNN can converge to zero under linear noise conditions
(N(t) = [10 + 10t]2×2). From Figure 5b, it can be observed that EANZNN converges to
zero in approximately 3.5 s with a design parameter of p = 1 and remains stable under this
linear noise. Therefore, it can be concluded from the aforementioned findings that when
subjected to linear noise conditions (N(t) = [10 + 10t]2×2), EANZNN exhibits the shortest
computation time to resolve the TVMI problem, showcasing its superior convergence
and robustness.

0 5 10 15

t(s)

-10

-5

0

5

10

x1
1(

t)

0 5 10 15

t(s)

-10

-5

0

5

10

x1
2(

t)

0 5 10 15

t(s)

-10

-5

0

5

10

x2
1(

t)

0 5 10 15

t(s)

-10

-5

0

5

10

x2
2(

t)

(a)

0 2 4 6 8 10 12

t(s)

0

2

4

6

8

10

12

14

er
ro

r

PCZNN

(b)

Figure 3. Simulation results of solving the TVMI problem for matrix Equation (28) using PCZNN with
p = 1 under conditions of linear noise (N(t) = [10 + 10t]2×2). (a) State U(t); (b) error norm ||E(t)||F.
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Figure 4. Simulation results of solving the TVMI problem for matrix Equation (28) using DIEZNN
with u = 1 under conditions of linear noise (N(t) = [10 + 10t]2×2). (a) State U(t); (b) error
norm ||E(t)||F.
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Figure 5. Simulation results of solving the TVMI problem for matrix Equation (28) using EANZNN
with p = 1 under conditions of linear noise (N(t) = [10 + 10t]2×2). (a) State U(t); (b) Error
norm ||E(t)||F.

Next, several other external noises (N(t)) were investigated to further illustrate the
superior noise suppression performance of EANZNN.

1. Linear noise: N(t) = [12t + 0.8]2×2;
2. Linear noise: N(t) = [1000t + 100]2×2;
3. Constant noise: N(t) = [20]2×2.

Figure 6a,b show the error norm (||E(t)||F) when solving the TVMI problem under
linear noise conditions (N(t) = [12t + 0.8]2×2) using the PCZNN, DIEZNN, and EANZNN
models. Figure 6a presents the results for u = p = 2, where PCZNN does not converge
to near zero within 9 s, while DIEZNN converges to approximately 3.12 × 10−3 around
9 s. Compared with these two models, EANZNN converges the fastest, with the error
norm (||E(t)||F) starting to be less than 10−5 after approximately 6 s. Figure 6b shows the
results when the parameters of the three models are u = p = 15. It is evident that the error
norm (||E(t)||F) of EANZNN is less than 10−5 after about 1.8 s, whereas the error norms
(||E(t)||F) of the other two models only converge to 10−3 or higher.

The error norm (||E(t)||F) of PCZNN, DIEZNN, and EANZNN under linear noise
conditions (N(t) = [1000t + 100]2×2) is shown in Figure 7. Figure 7a presents the results
when the parameters of the three models are u = p = 2. PCZNN does not converge to a
near-zero value within 9 s, whereas DIEZNN converges to 2.27× 10−1 within the same time
frame and EANZNN converges to 10−5. Figure 7b shows the results when the parameters
for the three models are set to u = p = 15; in comparison, the error norm ||E(t)||F of
EANZNN starts to be less than 10−7 after 3 s, while both PCZNN and DIEZNN do not
converge to 10−5 within 3 s. In summary, when the linear noise increases, the convergence
performance of EANZNN far surpasses that of DIEZNN and PCZNN.

Furthermore, Figure 8a,b display the error norm (||E(t)||F) of PCZNN, DIEZNN, and
EANZNN under constant noise (N(t) = [20]2×2). As illustrated in Figure 8a, under the
influence of constant noise (N(t) = [20]2×2), for the case of u = p = 2, the error norm
(||E(t)||F) of the EANZNN model rapidly declines and stabilizes below 1.831× 10−8 within
approximately 3 s. In contrast, the PCZNN and DIEZNN models do not achieve lower
error levels within the 9 s observation period, with error norms only converging to above
10−3. With the increase in design parameters, as shown in Figure 8b, when u = p = 15,
the residuals decrease for all models. However, EANZNN achieves significantly quicker
convergence than PCZNN and DIEZNN. Therefore, it is clear that the presented EANZNN
exhibits greater convergence performance in resolving the TVMI problem in the presence
of constant noise as compared to PCZNN and DIEZNN.
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Figure 6. Under linear noise (N(t) = [12t + 0.8]2×2), the error norm (||E(t)||F) for the TVMI of
the matrix equation (28) is computed using PCZNN, DIEZNN, and EANZNN. (a) u = p = 2;
(b) u = p = 15.
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Figure 7. Under linear noise (N(t) = [1000t + 100]2×2), the error norm (||E(t)||F) for the TVMI
of the matrix equation (28) is computed using PCZNN, DIEZNN, and EANZNN. (a) u = p = 2;
(b) u = p = 15.
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Figure 8. Under linear noise (N(t) = [20]2×2), the error norm (||E(t)||F) for the TVMI of the matrix
equation (28) is computed using PCZNN, DIEZNN, and EANZNN. (a) u = p = 2; (b) u = p = 15.
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4.3. Experiment 3—High-Dimensional Matrix

In order to further illustrate the efficiency and superiority of the constructed EANZNN
in computing the TVMI, we consider the following two high-dimensional example equations:

A(t) =

⎡⎢⎣2.1 + sin(1.5t) cos(1.5t) cos(1.5t)
2

cos(1.5t) 2.1 + sin(1.5t) cos(1.5t)
cos(1.5t)

2 cos(1.5t) 2.1 + sin(1.5t)

⎤⎥⎦, (29)

and

A(t) =

⎡⎢⎢⎢⎢⎣
1.1 + sin(t) 0.3 cos(t) 0.2 sin(2t) 0.1 cos(2t) 0.2 sin(t)
0.3 cos(t) 1.2 + cos(t) 0.3 sin(t) 0.2 cos(2t) 0.1 sin(2t)
0.2 sin(2t) 0.3 sin(t) 1.3 + sin(t) 0.1 cos(t) 0.2 cos(2t)
0.1 cos(2t) 0.2 cos(2t) 0.1 cos(t) 1.4 + 0.5 sin(t) 0.3 sin(2t)
0.2 sin(t) 0.1 sin(2t) 0.2 cos(2t) 0.3 sin(2t) 1.5 + cos(t)

⎤⎥⎥⎥⎥⎦. (30)

Figure 9a illustrates the individual entries of the state solutions (U(t)) of the TVMI
problem, which were computed using the EANZNN method. The state solutions of U(t)
all converge to the theoretical solution within a short period of time, as can be observed.
Observing Figure 9b, it is noted that the corresponding error norm (||E(t)||F) synthesized by
EANZNN converges to zero in approximately 3 s. This further affirms that the performance
of the established EANZNN remains unaffected by variations in matrix dimensions during
the resolution of the TVMI problem.

By observing Figure 10, it can be noted that for the inversion of a high-dimensional
matrix (29), when u = p = 2, the error norm (||E(t)||F) of EANZNN begins to decrease
below 10−10 after 10 s. Specifically, both PCZNN and DIEZNN fail to converge to 10−6

within 14 s, with DIEZNN’s error norm reducing to approximately 3.66 × 10−5 at 14 s,
while PCZNN’s error norm decreases to about 3.19 × 10−2 at the same time. Figure 10b
also shows that when the parameters are adjusted to u = p = 15, all models’ error norms
(||E(t)||F) are able to converge to nearly zero. However, EANZNN displays the fastest
convergence rate, with its error norm dropping below 1× 10−8 within 3 s, whereas the error
norms of PCZNN and DIEZNN only converge to above 10−3 within 3.5 s. This confirms
the superior convergence performance of EANZNN compared to PCZNN and DIEZNN
when addressing the TVMI problem for high-dimensional matrices.

Similarly, Figure 11 shows the inversion of high-dimensional matrices (30) under noisy
conditions using the PCZNN, DIEZNN, and EANZNN models. As shown in Figure 11a,
when u = p = 2, the error norm (‖ E(t) ‖F) for PCZNN does not converge to near zero
within 12 s. DIEZNN requires 12 s to reach an error norm of 10−3, while EANZNN achieves
the same error norm in just 4 s and further reduces the error norm to approximately 10−10

over time. As illustrated in Figure 11b, with increased design parameters u = p = 15,
the convergence speed significantly accelerates. EANZNN reaches an error norm of 10−11

within 3.5 s, whereas PCZNN and DIEZNN only converge to above 10−2 within the same
time frame.The experimental results indicate that EANZNN outperforms DIEZNN and
PCZNN in terms of convergence speed and accuracy, even under noisy high-dimensional
matrix conditions.

Based on the simulation results reported above, it is evident that EANZNN demon-
strates superior robustness and convergence compared to PCZNN and DIEZNN when
tackling the TVMI problem, irrespective of external noise conditions.
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Figure 9. Simulation results of solving the TVMI problem for matrix equation (29) using EANZNN with
p = 1 under the conditions of linear noise (N(t) = [10+ 10t]3×3). (a) State U(t); (b) Error norm ||E(t)||F.
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Figure 10. Under the condition of linear noise (N(t) = [12t + 0.8]3×3), the error norm (||E(t)||F)
for the TVMI of the matrix equation (29) is computed using PCZNN, DIEZNN, and EANZNN.
(a) u = p = 2; (b) u = p = 15.
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Figure 11. Under the condition of linear noise (N(t) = [12t + 0.8]5×5), the error norm (||E(t)||F)
for the TVMI of the matrix equation (30) is computed using PCZNN, DIEZNN, and EANZNN.
(a) u = p = 2. (b) u = p = 15.

5. Conclusions

To effectively address the TVMI problem, we first investigated the design of segmented
time-varying parameters. Based on this, we designed an EANZNN model incorporating
double integrals. Additionally, we provided rigorous theoretical proofs of the convergence
and robustness of EANZNN. Simulation experiments on matrices of different dimensions
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and under different noise conditions demonstrated that EANZNN achieves quicker conver-
gence and greater resilience to noise than the DIEZNN and PCZNN models. These results
unequivocally showcase the superiority of EANZNN in addressing TVMI challenges. Mov-
ing forward, our plan includes further improving the convergence speed of EANZNN
through the development of novel nonlinear activation functions.
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Abbreviations

The following abbreviations are used in this manuscript:

TVMI Time-Varying Matrix Inversion
ZNN Zeroing Neural Network
EANZNN Efficient Anti-Noise Zeroing Neural Network
DIEZNN Double Integral-Enhanced ZNN
PCZNN Parameter-Changing ZNN
GNN Gradient-based Recurrent Neural Network
FTZNN Finite-Time ZNN
DCMI Dynamic complex matrix inversion
CVNTZNN Classical Complex-Valued Noise-Tolerant ZNN
FTCNTZNN Fixed-Time Convergent and Noise-Tolerant ZNN
EVPZNN Exponential-enhanced-type Varying-parameter ZNN
FPZNN Fixed-Parameter ZNN
CVPZNN Complex Varying-Parameter ZNN
AF Activation Function
IEZNN Integration-Enhanced ZNN
VAF Versatile Activation Function
NAF Novel Activation Function
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