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Abstract: It is estimated by scientists that 50–80% of the oxygen production on the planet comes from
the oceans due to the photosynthetic activity of phytoplankton. Some of this production is consumed
by both phytoplankton and zooplankton for cellular respiration. In this article, we have analyzed
the dynamics of the oxygen-plankton model with a modified Holling type II functional response,
based on the premise that zooplankton has a variable search rate, rather than constant, which is
ecologically meaningful. The positivity and uniform boundedness of the studied system prove
that the model is well-behaved. The feasibility conditions and stability criteria of each equilibrium
point are discussed. Next, the occurrence of local bifurcations are exhibited taking each of the vital
system parameters as a bifurcation parameter. Numerical simulations are illustrated to verify the
analytical outcomes. Our findings show that (i) the system dynamics change abruptly for a low
oxygen production rate, resulting in depletion of oxygen and plankton extinction; (ii) the proposed
system has oscillatory behavior in an intermediate range of oxygen production rates; (iii) it always has
a stable coexistence steady state for a high oxygen production rate, which is dissimilar to the outcome
of the model of a coupled oxygen-plankton dynamics where zooplankton consumes phytoplankton
with classical Holling type II functional response. Lastly, the effect of environmental stochasticity is
studied numerically, corresponding to our proposed system.

Keywords: oxygen-plankton model; modified Holling type II; stability analysis; local bifurcations

MSC: 37M05; 92D25; 92D40

1. Introduction

Plankton are the numerous series of organisms observed in water or air that are not able
to propel themselves against water currents or wind, respectively. The individual organisms
constituting plankton are known as plankters. In the ocean, they offer a vital source of
meals to many small and massive aquatic organisms, including bivalves, fish and whales.
The plant types of the plankton community are referred to as phytoplankton, they acquire
their strength through photosynthesis, as do trees and different plants on land. This means
phytoplankton need to have solar light, so they live within the properly-lit floor layers
of oceans and lakes. Zooplankton are the animal components of the planktonic network,
and they are the principle food supply for fish and other aquatic animals. Phytoplankton
are not the best meal source for zooplankton; however, they offer a massive quantity of
oxygen for human and different dwelling animals after soaking up carbon dioxide via
photosynthesis from the environment. Some of this oxygen production is consumed by both
phytoplankton and zooplankton because of respiration [1,2]. Furthermore, a decrease in the

Mathematics 2022, 10, 1641. https://doi.org/10.3390/math10101641 https://www.mdpi.com/journal/mathematics1
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oxygen production rate by phytoplankton may have a disastrous effect for living animals,
including humankind. Therefore, the study of the possible range of oxygen production
rates is important to sustain system dynamics.

Mathematical modeling is a research tool that can reveal the dynamic properties of
the oxygen-plankton model. Recently, researchers have analyzed a mathematical model of
oxygen-plankton interactions witha Holling type II functional response [3–5], where the
search rate of the predator population was constant, i.e., independent of the prey popula-
tion [6–8]. However, it seems reasonable that predators can vary their search rates based
on the availability of prey. In 1977, Hassel et al. [9] experimentally observed that the
search rate of various invertebrate predators, specifically zooplankton, depended on the
biomass of the prey (phytoplankton) population. In 2020, Dalziel et al. [10] analyzed the
dynamics of a predator–prey model with a variable predator search rate. In 2021, Mondal
and Samanta [11] studied the dynamic nature of a predator–prey model with the impact
of a predator’s fear, where the search rate of the predator depended on the biomass of the
prey species. Recently, they also investigated the dynamic behavior of a toxin-producing
plankton model where the zooplankton’s search rate depended on the biomass of the phy-
toplankton population, rather than being assumed constant [12]. Motivated from the above
discussions, we proposed and analyzed the dynamic behavior of the oxygen-plankton
model with a variable zooplankton search rate, rather than constant, where oxygen is pro-
duced by the photosynthetic activity of phytoplankton during the daytime and consumed
by phyto and zooplankton for their respiration.

This article is organized as follows: we have focused on the construction of the basic
model in Section 2. The derivation of positivity and uniform boundedness is shown in Sec-
tion 3. Section 4 describes the feasibility criteria and stability conditions of all the equilibria.
Furthermore, the occurrence of local bifurcations are exhibited in Section 5. In Section 6,
we conduct numerical simulations using MATLAB to validate the analytical findings. The
impact of the oxygen production rate on the existence of the interior equilibrium point
as well as the main qualitative difference between the proposed model and the system
analyzed by Sekerci and Petrovskii [3] are discussed. This section also consists of the effect
of environmental stochasticity on the proposed oxygen-plankton model by perturbing
some parameters of the system with Gaussian white noise terms. This work ends with a
discussion and the outcomes of the analytical consequences.

2. Construction of Basic Model

A marine ecosystem is a complicated system with many nonlinearly interacting species,
organic substances, and inorganic chemical components. Correspondingly, a "realistic”
ecosystem model can consist of many equations. In this article, we are mostly interested in
the dynamics of the oxygen-plankton model, where oxygen is produced by the photosyn-
thetic activity of phytoplankton.

Revisiting an oxygen-plankton model system given in [3,5] and taking a modified
Holling type II functional response, where the search rate of the predator (zooplankton)
depends on the biomass of the prey (phytoplankton), rather than being constant (for details,
see [10–12]), we consider the following model (for details see Figure 1):

dc
dt

=
Ac0 p
c + c0

− δcp
c + c2

− νcz
c + c3

− mc

dp
dt

=

(
Bc

c + c1
− γp

)
p − ap2z

ahp2 + p + g
− σp (1)

dz
dt

=

(
ηc2

c2 + c2
4

)
.

ap2z
ahp2 + p + g

− μz

with initial conditions:
c(0) > 0, p(0) > 0, z(0) > 0. (2)

2
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Here, c is the amount of oxygen, and p and z are the biomass of phytoplankton and
zooplankton, respectively. All the parameters are positive due to their biological meaning
and are described in Table 1:

Table 1. Description of biologically meaningful parameters.

Parameters Descriptions

A effect of environmental factors on the rate of oxygen production due to the photosynthesis of phytoplankton
δ maximum per capita phytoplankton respiration rate
ν maximum per capita zooplankton respiration rate
m rate of oxygen loss due to the biochemical reaction in a marine ecosystem
B maximum phytoplankton per capita growth rate in the high oxygen limit
ci, i = 0, 1, 2, 3, 4 half saturation constant of the corresponding processes
γ mortality rate due to intraspecific competition among individual phytoplankton
a maximally achievable search rate of zooplankton
h handling time of zooplankton
g half saturation constant
σ natural mortality rate of phytoplankton. It is assumed that B > σ
η ∈ (0, 1) maximum feeding efficiency
μ mortality rate of zooplankton

Figure 1. Graphical scheme representing the interactions among oxygen, phytoplankton, and zoo-
plankton, where phytoplankton produce oxygen through photosynthetic activity in sunlight and
consume it during the night for their respiration; zooplankton depend on phytoplankton for their
growth and consume oxygen for their respiration.

Description of system (1):

• The term Ac0
c+c0

describes the rate of oxygen production per unit of phytoplankton

biomass during the daytime by photosynthetic activity; δcp
c+c2

and νcz
c+c3

indicate the
respiration of phytoplankton and zooplankton, respectively, and mc is the loss of
oxygen due to natural depletion in a marine ecosystem.

• The term Bcp
c+c1

describes the growth of phytoplankton depending on the amount of

available oxygen. The function ap2

ahp2+p+g is named as a modified Holling type II func-
tional response, based on the premise that the zooplankton’s search rate is dependent
on the biomass of phytoplankton, rather than being constant (for details, see [10,11]).
Again, the consumed phytoplankton biomass is transformed into zooplankton biomass

3
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with an efficiency of ηc2

c2+c2
4
, which depends on the oxygen concentration (zooplankton

die due to insufficient oxygen).

The following are properties of a modified Holling type II functional response

H(p) = ap2

ahp2+p+g

1. H(p) is a smooth function, and H(p) = 0 for p = 0.

2. H′(p) = ap(p+2g)
(ahp2+p+g)2 > 0, i.e., H increases with p and lim

p→∞
H(p) =

1
h

, i.e., H(p)

saturates at 1
h for a large prey population.

3. H′′(p) = −2a2hp3−6a2ghp2+2ag2

(ahp2+p+g)3 , and H′′(p)
∣∣

p=0 = 2a
g > 0. Therefore, H′′(p) has a

unique positive root, and it changes sign from positive to negative at the unique in-
flection point. A graphical representation of H(p) and H′′(p) is presented in Figure 2.
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Figure 2. Graphical representations of (a) H(p) and (b) H′′(p) for the parametric set {a = 3, h = 1.2,
g = 0.3}.

3. Positivity and Uniform Boundedness

Theorem 1. Solutions of (1) with (2) exist uniquely and are positive for all t ≥ 0.

Proof. Since the right hand sides of (1) are completely continuous functions and locally
Lipschitzian in the domain R3

+, solutions of (1) with (2) exist uniquely in [0, ξ), where
0 < ξ ≤ ∞ [13].

From the first equation of (1), we have:

c(t) = c(0) exp
[
−
∫ t

0

(
δp(θ)

c(θ) + c2
+

νz(θ)
c(θ) + c3

+ m
)

d(θ)
]

+
∫ t

0

Ac0 p(u)
c(u) + c0

[
exp
(∫ u

t

(
δp(θ)

c(θ) + c2
+

νz(θ)
c(θ) + c3

+ m
)

d(θ)
)]

du > 0,

since c(0) > 0.

From the second equation of system (1), we have:

p(t) = p(0) exp
[∫ t

0

{
Bc(θ)

c(θ) + c1
− γp(θ)− ap(θ)z(θ)

ahp2(θ) + p(θ) + g
− σ

}
dθ

]
> 0,

since p(0) > 0.

From the last equation of system (1), we have:

z(t) = z(0) exp

[∫ t

0

{(
ηc2(θ)

c2(θ) + c2
4

)
.

ap2(θ)

ahp2(θ) + p(θ) + g
− μ

}
dθ

]
> 0, since z(0) > 0.

4
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Therefore, c(t) > 0, p(t) > 0 and z(t) > 0 for all t ≥ 0.
Hence, the theorem is proved.

Theorem 2. Solutions of (1) with (2) are uniformly bounded.

Proof. From the second equation of system (1), we obtain:

dp
dt

≤ Bp − γp2 − σp

= (B − σ)p

{
1 − p

B−σ
γ

}

⇒ lim sup
t→∞

p(t) ≤ B − σ

γ
.

Let
Ω = c + p + z.

Then,

dΩ
dt

=
dc
dt

+
dp
dt

+
dz
dt

=
Ac0 p
c + c0

− δcp
c + c2

− νcz
c + c3

− mc +
(

Bc
c + c1

− γp
)

p − ap2z
ahp2 + p + g

− σp

+

(
ηc2

c2 + c2
4

)
ap2z

ahp2 + p + g
− μz

≤ Ac0 p
c + c0

+
Bcp

c + c1
+

ap2z
ahp2 + p + g

(
ηc2

c2 + c2
4
− 1

)
− γp2 − {mc + σp + μz}

≤ Ac0 p
c + c0

+
Bcp

c + c1
− γp2 − {mc + σp + μz}, since 0 < η < 1

≤ (A + B)p − γp2 − {mc + σp + μz}
≤ (A + B)2

4γ
− {mc + σp + μz}. (3)

Let
κ = min{m, σ, μ}.

Then, from (3), we obtain:

dΩ
dt

+ κΩ ≤ (A + B)2

4γ
.

Using the differential inequality:

0 < Ω(c(t), p(t), z(t)) ≤ (A+B)2

4γκ

(
1 − e−κt)+ e−κtΩ(c(0), p(0), z(0)).

∴ 0 < Ω(c(t), p(t), z(t)) ≤ (A+B)2

4γκ + ε, for any ε > 0, as t → ∞.
Hence, every solution of (1) enters into the region:

W =

{
(c, p, z) ∈ R

3
+ : 0 < p(t) ≤ B − σ

γ
; 0 < c(t) + p(t) + z(t) ≤ (A + B)2

4γκ
+ ε, ε > 0

}
.

5
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4. Existence of Equilibria of (1) with Stability Analysis

4.1. Equilibrium Points

System (1) has the following equilibrium points (steady states):

1. Trivial equilibrium point E0(0, 0, 0) corresponding to depletion of oxygen and the
extinction of plankton;

2. Planer equilibrium point E1(c̃, p̃, 0) (zooplankton free), where p̃ = 1
γ

(
Bc̃

c̃+c1
− σ
)

, and
c̃ is a positive root of the following equation:

X1c4 + X2c3 + X3c2 + X4c + X5 = 0.

Here, X1 = −mγ, X2 = −(c1 + c2)− c0 + (B − γ)δ, X3 = −c1c2 − c0(c1 + c2) + (B −
γ)(A − δ)c0 + δγ, X4 = −c0c1c2 + (B − γ)Ac0c2 − γc0(A − δ), X5 = −γAc0c1c2.

3. Interior (coexistence) equilibrium Ê(ĉ, p̂, ẑ), where ĉ, p̂, and ẑ can be obtained by
solving the following system of equations using the software MATHEMATICA:

Ac0 p
c + c0

− δcp
c + c2

− νcz
c + c3

− mc = 0,(
Bc

c + c1
− γp

)
− apz

ahp2 + p + g
− σ = 0,(

ηc2

c2 + c2
4

)
.

ap2

ahp2 + p + g
− μ = 0.

4.2. Local Stability

Now, we will determine the stability behavior of the biologically feasible equilibrium
points of system (1).

The Jacobian matrix J0 at E0(0, 0, 0) is given by:

J0 =

⎡⎣−m A 0
0 −σ 0
0 0 −μ

⎤⎦.

Here, the eigenvalues are λ1 = −m < 0, λ2 = −σ < 0, and λ3 = −μ < 0. Since all
eigenvalues are negative, so, E0(0, 0, 0) is always locally asymptotically stable (LAS).

The Jacobian matrix J1 at E1(c̃, p̃, 0) is given by:

J1 =

⎡⎢⎢⎢⎢⎣
− Ac0 p̃

(c̃+c0)2 − δc2 p̃
(c̃+c2)2 − m mc̃

p̃ − νc̃
c̃+c3

Bc1 p̃
(c̃+c1)2 −γ p̃ − ap̃2

ahp̃2+ p̃+g

0 0
(

ηc̃2

c̃2+c2
4

)
ap̃2

ahp̃2+ p̃+g − μ

⎤⎥⎥⎥⎥⎦.

Here, one eigenvalue is λ1 =

(
ηc̃2

c̃2+c2
4

)
ap̃2

ahp̃2+ p̃+g − μ, and the other eigenvalues can be

obtained by solving the equation:

λ2 − Q1λ + Q2 = 0, (4)

where Q1 = − Ac0 p̃
(c̃+c0)2 − δc2 p̃

(c̃+c2)2 − m − γ p̃ < 0 and Q2 = γ p̃
[

Ac0 p̃
(c̃+c0)2 +

δc2 p̃
(c̃+c2)2 + m

]
−

Bc1mc̃
(c̃+c1)2 > 0.

Hence, we have the following theorem:

Theorem 3. E1(c̃, p̃, 0) is LAS if
(

ηc̃2

c̃2+c2
4

)
ap̃2

ahp̃2+ p̃2+g − μ < 0.

6
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The Jacobian matrix Ĵ at Ê(ĉ, p̂, ẑ) is given by:

Ĵ =

⎡⎣a11 a12 a13
a21 a22 a23
a31 a32 a33

⎤⎦
where a11 = − Ac0 p̂

(ĉ+c0)2 − δc2 p̂
(ĉ+c2)2 − νc3 ẑ

(ĉ+c3)2 − m < 0, a12 = − δĉ
ĉ+c2

+ Ac0
ĉ+c0

= ĉ
p̂

{
νẑ

ĉ+c3
+ m

}
> 0,

a13 = − νĉ
ĉ+c3

< 0, a21 = Bc1 p̂
(ĉ+c1)2 > 0, a22 = Bĉ

ĉ+c1
− 2γ p̂ − ap̂ẑ( p̂+2g)

(ahp̂2+ p̂+g)2 − σ = −γ p̂ −
ap̂ẑ(g−ahp̂2)
(ahp̂2+ p̂+g)2 , a23 = − ap̂2

ahp̂2+ p̂+g < 0, a31 =
2ηc2

4 ĉ
(ĉ2+c2

4)
2

ap̂2 ẑ
ahp̂2+ p̂+g > 0, a32 = ηĉ2

(ĉ2+c2
4)

ap̂ẑ( p̂+2g)
(ahp̂2+ p̂+g)2 > 0

and a33 = 0.
The characteristic equation corresponding to Ê(ĉ, p̂, ẑ) is

λ3 + C1λ2 + C2λ + C3 = 0

where C1 = −(a11 + a22), C2 = −a23a32 − a13a31 + a11a22 − a12a21, and C3 = −{−a11a23a32 +
a12a23a31 + a13(a21a32 − a22a31)}.

By Routh-Hurwitz’s criteria [14], Ê(ĉ, p̂, ẑ) has three eigenvalues with negative real
parts if C1 > 0, C3 > 0, and C1C2 > C3. So, the local stability condition of Ê(ĉ, p̂, ẑ) is
described in the following theorem:

Theorem 4. Ê(ĉ, p̂, ẑ) is LAS if a22 < 0 and a11a22 > a12a21.

5. Local Bifurcations

A local bifurcation occurs when a parameter change causes the stability (or instability)
of an equilibrium (or fixed point) to change. In continuous systems, this corresponds to the
real part of an eigenvalue of an equilibrium passing through zero.

5.1. Transcritical Bifurcation

Theorem 5. System (1) undergoes a transcritical bifurcation if μ[tc] =

(
ηc̃2

c̃2+c2
4

)
ap̃2

ahp̃2+ p̃+g .

Proof. To prove a transcritical bifurcation, we apply Sotomayor’s theorem [14] by consid-
ering μ as the bifurcation parameter. According to this theorem, one eigenvalue of J1 at the
bifurcation point must be zero.

The eigenvectors of J1 = [pij] and (J1)
T corresponding to the zero eigenvalue are

obtained as: V = (0, v2, 1)T and W = (0, 0, 1)T , respectively, where v2 = − p13
p12

and

p11 = − Ac0 p̃
(c̃+c0)2 − δc2 p̃

(c̃+c2)2 − m, p12 = mc̃
p̃ , p13 = − νc̃

c̃+c3
, p21 = Bc1 p̃

(c̃+c1)2 , p22 = −γ p̃,

p23 = − ap̃2

ahp̃2+ p̃+g , and p31 = p32 = p33 = 0.
Compute Δ1, Δ2, and Δ3 as follows:

Δ1 = WT · Fμ

(
c̃, p̃, 0; μ[tc]

)
= (0, 0, 1)·

⎛⎜⎜⎝
∂F1
∂μ
∂F2
∂μ
∂F3
∂μ

⎞⎟⎟⎠
(E1(c̃,p̃,0);μ[tc])

⇒ Δ1 = (0, 0, 1) ·
⎛⎝ 0

0
−z

⎞⎠
(E1(c̃,p̃,0);μ[tc])

= 0,

where F = (F1, F2, F3)
T , and F1, F2 , and F3 are given by:

F1 = Ac0 p
c+c0

− δcp
c+c2

− νcz
c+c3

− mc,

F2 =
(

Bc
c+c1

− γp
)

p − ap2z
ahp2+p+g − σp,

F3 =

(
ηc2

c2+c2
4

)
· ap2z

ahp2+p+g − μz.

7
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Δ2 = WT ·
[

DFμ

(
c̃, p̃, 0; μ[tc]

)
V
]
= (0, 0, 1) ·

⎡⎢⎢⎣
∂2F1
∂c∂μ

∂2F1
∂p∂μ

∂2F1
∂z∂μ

∂2F2
∂c∂μ

∂2F2
∂p∂μ

∂2F2
∂z∂μ

∂2F3
∂c∂μ

∂2F3
∂p∂μ

∂2F3
∂z∂μ

⎤⎥⎥⎦
(E1(c̃,p̃,0);μ[tc])

·
⎛⎝ 0

v2
1

⎞⎠

⇒ Δ2 = (0, 0, 1) ·
⎡⎣0 0 0

0 0 0
0 0 −1

⎤⎦
(E1(c̃,p̃,0);μ[tc])

.

⎛⎝ 0
v2
1

⎞⎠ = −1 �= 0.

Δ3 = WT ·
[

D2F
(

c̃, p̃, 0; μ[tc]
)
(V, V)

]
= (0, 0, 1) · D

⎛⎜⎜⎝
∂F1
∂c v1 +

∂F1
∂p v2 +

∂F1
∂z v3

∂F2
∂c v1 +

∂F2
∂p v2 +

∂F2
∂z v3

∂F3
∂c v1 +

∂F3
∂p v2 +

∂F3
∂z v3

⎞⎟⎟⎠
(E1(c̃,p̃,0);μ[tc])

.

⎛⎝v1
v2
v3

⎞⎠

⇒ Δ3 = (0, 0, 1) ·

⎛⎜⎜⎜⎝
∂2F1
∂2c v2

1 +
∂2F1
∂2 p v2

2 +
∂2F1
∂2z v2

3 + 2 ∂2F1
∂c∂p v1v2 + 2 ∂2F1

∂c∂z v1v3 + 2 ∂2F1
∂p∂z v2v3

∂2F2
∂2x v2

1 +
∂2F2
∂2y v2

2 +
∂2F2
∂2z v2

3 + 2 ∂2F2
∂x∂y v1v2 + 2 ∂2F2

∂x∂z v1v3 + 2 ∂2F2
∂y∂z v2v3

∂2F3
∂2x v2

1 +
∂2F3
∂2y v2

2 +
∂2F3
∂2z v2

3 + 2 ∂2F3
∂x∂y v1v2 + 2 ∂2F3

∂x∂z v1v3 + 2 ∂2F3
∂y∂z v2v3

⎞⎟⎟⎟⎠
(E1(c̃,p̃,0);μ[tc])

⇒ Δ3 = 2ap̃( p̃+2g)
(ahp̃2+ p̃+g)2 × ηc̃2

(c̃2+c2
4)

v2 �= 0.

Thus, by Sotomayor’s theorem [14], system (1) exhibits a trancritical bifurcation at
μ = μ[tc].

Remark 1. Similarly, it can be proved that system (1) exhibits transcritical bifurcations taking any
one of the parameters h, σ, m, η, a, and γ as a bifurcation parameter.

5.2. Hopf-Bifurcation

The characteristic equation of system (1) at Ê(ĉ, p̂, ẑ) is given by

λ3 + C1(A)λ2 + C2(A)λ + C3(A) = 0, (5)

where Ci(A) for i = 1, 2, 3 were defined earlier.
To determine the Hopf-bifurcation around Ê(ĉ, p̂, ẑ) of system (1), let us consider A as

the bifurcation parameter. For this purpose, let us first state the following Theorem:

Theorem 6 (Hopf-Bifurcation Theorem [15]). If C1(A), C2(A), and C3(A) are continuously
differentiable functions of A in a small neighbourhood of A[H] ∈ R such that Equation (5) has:

(i) a pair of imaginary eigenvalues λ = p1(A)± ip2(A) with p1(A) ∈ R, p2(A) ∈ R, so
that they become purely imaginary at A = A[H] and dp1

dA |A=A[H] �= 0,
(ii) the other eigenvalue is negative at A = A[H], then a Hopf-bifurcation occurs around

Ê(ĉ, p̂, ẑ) at A = A[H] (i.e., a stability change of Ê(ĉ, p̂, ẑ) accompanied by the creation of a limit
cycle at A = A[H]).

Theorem 7. System (1) possesses a Hopf-bifurcation around Ê(ĉ, p̂, ẑ) when A passes through
A[H], provided C1(A[H]) > 0, C3(A[H]) > 0, and C1(A[H])C2(A[H]) = C3(A[H]).

Proof. At A = A[H], the roots of the equation:(
λ2 + C2

)
(λ + C1) = 0

are λ1 = i
√

C2, λ2 = −i
√

C2, and λ3 = −C1, where C1, C2 and C3 are differential functions
of A. Furthermore, in the deleted neighborhood of A[H], the roots (eigenvalues) are λ1(A) =
p1(A) + ip2(A), λ2(A) = p1(A)− ip2(A), and λ3 = p3(A) (p3(A) = −C1), where pi(A)
are real for i = 1, 2, 3.

8
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Now, we will verify the transversality condition:

d
dA

(Re λi(A))

∣∣∣∣
A=A[H]

�= 0, i = 1, 2.

Substituting λ(A) = p1(A) + ip2(A) into the characteristic Equation (5), we have:

(p1 + ip2)
3 + C1(A)(p1 + ip2)

2 + C2(A)(p1 + ip2) + C3(A) = 0 (6)

Differentiating with regard to A, we have:

3(p1 + ip2)
2( ṗ1 + i ṗ2) + 2C1(p1 + ip2)( ṗ1 + i ṗ2) + Ċ1(p1 + ip2)

2

+ C2( ṗ1 + i ṗ2) + Ċ2(p1 + ip2) + Ċ3 = 0 (7)

Comparing the real and imaginary parts, we obtain:

X1 ṗ1 − X2 ṗ2 + X3 = 0 (8)

and
X2 ṗ1 + X1 ṗ2 + X4 = 0 (9)

where

X1 = 3
(

p2
1 − p2

2

)
+ 2C1 p1 + C2

X2 = 6p1 p2 + 2C1 p2

X3 = Ċ1

(
p2

1 − p2
2

)
+ Ċ2 ṗ1 + Ċ3

X4 = 2Ċ1 p1 p2 + Ċ2 p2.

From (8) and (9), we obtain:

ṗ1 = − (X1X3 + X2X4)

X2
1 + X2

2
.

Now,

X3 = Ċ1

(
p2

1 − p2
2

)
+ Ċ2 p1 + Ċ3 �= Ċ1

(
p2

1 − p2
2

)
+ Ċ2 p1 + Ċ1C2 + C1Ċ2

[ since C3 �= C1C2 in a deleted neighborhood of A[H]]

At A = A[H],

• Case 1: p1 = 0, p2 =
√

C2
X1 = −2C2, X2 = 2C1

√
C2, X3 �= C1Ċ2, X4 =

√
C2Ċ2

Therefore, X2X4 + X1X3 �= 2C1C2Ċ2 − 2C1C2Ċ2 = 0
So, X2X4 + X1X3 �= 0 at A = A[H], when p1 = 0, p2 =

√
C2.

• Case 2: p1 = 0, p2 = −√
C2

X1 = −2C2, X2 = −2C1
√

C2, X3 �= C1Ċ2, X4 = −√
C2Ċ2

So, X2X4 + x1X3 �= 2C1C2Ċ2 − 2C1C2Ċ2 = 0
So, X2X4 + X1X3 �= 0 at A = A[H], when p1 = 0, p2 = −√

C2.
∴ d

dA (Re λi(A))|A=A[H] �= 0, for i = 1, 2 and p3(A[H]) = −C1(A[H]) < 0.

Hence, Theorem 7 is proved using Theorem 6.

Note: Imaginary eigenvalues are connected with any molecular process (e.g., collisions) and
the reverse of that process [16].

9
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Remark 2. Similarly, system (1) undergoes Hopf-bifurcations around Ê(ĉ, p̂, ẑ) taking any one of
the parameters a, g, h, m, η, σ, and μ as a bifurcation parameter.

6. Numerical Simulations

Here, numerical simulations were performed to verify the analytical outcomes of
the oxygen-plankton model (1). We are mainly interested in the existence and stability
analysis of the interior equilibrium point Ê(ĉ, p̂, ẑ). For this purpose, we fixed most of the
parameters as follows:

{c0 = 1, δ = 1, c2 = 1, m = 0.5, B = 1.8, c1 = 1.0, γ = 0.7, σ = 0.1, ν = 0.01, μ = 0.1,

h = 1.2, a = 3.0, η = 0.7, c4 = 1, g = 0.3, c3 = 1}, (10)

but varied A in a broad range. For the existence of Ê(ĉ, p̂, ẑ), we always take A ≥ B
(otherwise, it does not exist; see Figure 3), it is also ecologically meaningful. If we choose
A = 1.8, and the other parameters are selected from set (10), then, the interior equilibrium
Ê(ĉ, p̂, ẑ) ≡ Ê(0.682267, 0.515313, 0.30855) exists uniquely and is locally asymptotically
stable (LAS). Figure 4 depicts the stable nature of Ê(0.682267, 0.515313, 0.30855). If we
increase A from 1.8 to 2 keeping the others fixed as in set (10), then Ê(ĉ, p̂, ẑ) is destabilized
through Hopf-bifurcation. Figure 5 shows the oscillatory nature of system (1) around
Ê(0.710824, 0.473597, 0.352043). If we take a very large value of A (= 10), choosing the
other parameters from set (10), then system (1) again enters into a stable interior equilibrium
by excluding the existence of a periodic solution. Figure 6 presents the stability nature
of Ê(ĉ, p̂, ẑ) ≡ Ê(1.48635, 0.218551, 0.866809) of system (1) when A = 10. In this manner,
we have found two thresholds for the parameter A: when 1.8 ≤ A < A[H]1 = 1.966532
(threshold value) and A > A[H]2 = 7.258206 (threshold value), a stable interior equilibrium
exists; when A[H]1 = 1.966532 < A < A[H]2 = 7.258206, the interior equilibrium becomes
unstable, and a Hopf-bifurcation occurs, leading to the occurrence of a stable periodic
solution (see Figures 7 and 8). Moreover, comparing Figures 6 and 9, we found that for
very large values of A, the interior equilibrium of system (1) exists, but it does not exist
in the plankton–oxygen model system analyzed by Sekerci and Petrovskii [3]. This is the
main difference between the proposed system (1) and the model studied by Sekerci and
Petrovskii [3] (it is shown that the coexistence steady state exists unless A is too large or
too small).

Again, if we increase μ (the mortality rate of the zooplankton) from 0.1 to 0.5 select-
ing other parameters from Figure 4, the zooplankton population can not persist in the
marine ecosystem. Therefore, the coexistence steady state Ê(ĉ, p̂, ẑ) goes to zooplankton
free equilibrium E1(c̃, p̃, 0). Under the parametric values: {A = 1.8, c0 = 1, δ = 1, c2 = 1,
m = 0.5, B = 1.8, c1 = 1.0, γ = 0.7, σ = 0.1, ν = 0.01, μ = 0.5, h = 1.2, a = 3.0,
η = 0.7, c4 = 1, g = 0.3, and c3 = 1}, we have obtained two planer equilibrium points
E(1)

1 (0.0680515, 0.0209829, 0) and E(2)
1 (0.958588, 1.11567, 0). Here, E(2)

1 (0.958588, 1.11567, 0)

is LAS but E(1)
1 (0.0680515, 0.0209829, 0) is a saddle (unstable). Figure 10a depicts the stable

behaviour of E(2)
1 (0.958588, 1.11567, 0). Similarly, if we take A = 10 (large), but the other pa-

rameters remain the same as in Figure 10a, then we have also obtained two planer equilibria
E(1)

1 (0.0602258, 0.00321199, 0) and E(2)
1 (4.24865, 1.93865, 0), where E(2)

1 (4.24865, 1.93865, 0)

is LAS (see Figure 10b), but E(1)
1 (0.0602258, 0.00321199, 0) is a saddle.
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Figure 3. Ê(ĉ, p̂, ẑ) of system (1) does not exist when A = 1.7 < B = 1.8 and the remaining parameters
are chosen from set (10), i.e., the dynamics of the system (1) change abruptly, resulting in oxygen
depletion and plankton extinction for a small value of A.
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(b) Stable spiral
Figure 4. The stable nature of Ê(ĉ, p̂, ẑ) ≡ Ê(0.682267, 0.515313, 0.30855) of system (1) under the
parametric set: {A = 1.8, c0 = 1, δ = 1, c2 = 1, m = 0.5, B = 1.8, c1 = 1.0, γ = 0.7, σ = 0.1,
ν = 0.01, μ = 0.1, h = 1.2, a = 3.0, η = 0.7, c4 = 1, g = 0.3, and c3 = 1}. Initial conditions:
c(0) = p(0) = z(0) = 1.
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(b) Phase diagram
Figure 5. Oscillatory nature of system (1) around of Ê(0.710824, 0.473597, 0.352043), when A = 2 and
the remaining parameters are same as in Figure 4. Initial conditions: c(0) = p(0) = z(0) = 1.
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(b) Stable spiral
Figure 6. The stable nature of Ê(ĉ, p̂, ẑ) ≡ Ê(1.48635, 0.218551, 0.866809) of system (1), when A = 10
and the remaining parameters are same as in Figure 4. Initial conditions: c(0) = p(0) = z(0) = 1.
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Figure 7. Hopf-bifurcation diagrams of Ê(ĉ, p̂, ẑ) of system (1) while A varies in the interval [1.8, 2]
and the others remain unchanged as in Figure 6. Here, A = A[H]1 = 1.966532.
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(b) Bifurcation diagram of p
Figure 8. Cont.
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(c) Bifurcation diagram of z
Figure 8. Hopf-bifurcation diagrams of Ê(ĉ, p̂, ẑ) of system (1) while A varies in the interval [2, 10]
and the others remain unchanged as in Figure 6. Here, A = A[H]2 = 7.258206.
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Figure 9. Interior equilibrium of the plankton–oxygen model studied by Sekerci and Petrovskii [3]
does not exist under the parametric set: {A = 10, c0 = 1, δ = 1, c2 = 1, m = 0.5, B = 1.8, c1 = 1.0,
γ = 0.7, σ = 0.1, ν = 0.01, μ = 0.5, h = 1.2, s = 1.0, η = 0.7, c4 = 1, and c3 = 1}. Initial conditions:
c(0) = 0.385, p(0) = 0.3, z(0) = 0.1.
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(a) A = 1.8 and μ = 0.5
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(b) A = 10.0 and μ = 0.5

Figure 10. The stable nature of (a) E(2)
1 (2.04036, 1.58281, 0) and (b) E(2)

1 (4.24865, 1.93865, 0) of sys-
tem (1) when the remaining parameters are same as in Figure 6. Initial conditions: c(0) = p(0) =
z(0) = 1.
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The qualitative nature of different steady states corresponding to bifurcation parame-
ters σ, h, μ and m are depicted in Figures 11–14 respectively (for details see Table 2). Also,
the qualitative nature of different steady states corresponding to bifurcation parameters g,
η, a and γ are presented in Figures 15–18 respectively (for details see Table 2).

Table 2. Nature of the steady states when the parameters are chosen from Figure 6. Here, ‘H’ stands
for the Hopf-bifurcation point, and ‘tc’ stands for the transcritical bifurcation point.

Bifurcation Parameter Bifurcation Points Nature of Equilibria

Ê is stable when 0 < σ < 0.4216

σ
σ[H] = 0.4216 and

σ[tc] = 0.4363 (Figure 11)
Ê is destabilized through Hopf-bifurcation when 0.4216 < σ < 0.4363

Ê goes to trivial equilibrium E0(0, 0, 0) when σ > 0.4363

h[H]1 = 1.442503, Ê is stable when 0 < h < 1.442503 and 5.917323 < h < 6.434018

h h[H]2 = 5.917323 and
h[tc] = 6.434018

Ê is destabilized through Hopf-bifurcation when 1.442503 < h < 5.917323

(Figure 12) Ê goes to stable zooplankton free equilibrium E1(c̃, p̃, 0) when h > 6.434018

μ[H]1 = 0.1311580, Ê is stable when 0 < μ < 0.1311580 and 0.354676 < μ < 0.474246

μ
μ[H]2 = 0.354676 and

μ[tc] = 0.474246
Ê is destabilized through Hopf-bifurcation when 0.1311580 < μ < 0.354676

(Figure 13) Ê goes to stable zooplankton free equilibrium E1(c̃, p̃, 0) when μ > 0.474246

Ê is stable when 0 < m < 0.6533

m m[H] = 0.6533 and
m[tc] = 2.287 (Figure 14)

Ê is destabilized through Hopf-bifurcation when 0.6533 < m < 2.287

Ê goes to E0(0, 0, 0) when m > 2.287

Ê is destabilized through Hopf-bifurcation when 0.09 < g < g[H]

g g[H] = 0.226067 (if 0 < g < 0.09, E0(0, 0, 0) exists)
(Figure 15) Ê is stable spiral when g > g[H]

η[tc] = 0.147603, E1 (zooplankton free equilibrium) is stable when 0 < η < η[tc]

η
η[H]1 = 0.198177 and

η[H]2 = 0.530864
Ê is stable when 0.147603 < η < 0.198177 and 0.530864 < η < 1

(Figure 16) Ê is destabilized through Hopf-bifurcation when 0.198177 < η < 0.530864

a[tc] = 0.109643 and E1 (zooplankton free equilibrium) is stable when 0 < a < a[tc]

a a[H] = 5.325675 Ê is stable when 0.109643 < a < 5.325675
(Figure 17) Ê is destabilized through Hopf-bifurcation when a > 5.325675

γ[tc] = 4.479066 Ê exists and is stable when 0 < γ < γ[tc]

γ
(Figure 18) Ê goes to stable zooplankton free equilibrium E1 when γ > γ[tc]
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(c) Bifurcation diagram of z
Figure 11. Bifurcation diagrams of system (1) taking σ as the bifurcation parameter, while the others
remain unchanged, as in Figure 6. Here, Ê(ĉ, p̂, ẑ) is stable when σ ∈ (0.0, σ[H] = 0.4216) and unstable
with a periodic solution when σ ∈ (0.4216, 0.4363). When σ ( mortality rate of phytoplankton) >

0.4363 = σ[tc], the system dynamics change abruptly, resulting in the depletion of oxygen and the
extinction of plankton in the marine ecosystem.
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(c) Bifurcation diagram of z
Figure 12. Bifurcation diagrams of system (1) taking h as the bifurcation parameter, while the
others remain unchange,d as in Figure 6. Here, Ê(ĉ, p̂, ẑ) is stable when h ∈ (0.0, h[H]1 =

1.442503) ∪ (5.917323, h[tc] = 6.434018) and unstable with a periodic solution when h ∈ (1.442503,
h[H]2 = 5.917323). Again, Ê(ĉ, p̂, ẑ) goes to stable zooplankton free equilibrium E1(c̃, p̃, 0) when
h > h[tc] = 6.434018.
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(c) Bifurcation diagram of z
Figure 13. Bifurcation diagram of system (1) taking μ as the bifurcation parameter, while the
others remain unchanged, as in Figure 6. Ê(ĉ, p̂, ẑ) is unstable with a periodic solution when
μ ∈ (μ[H]1 = 0.131580, μ[H]2 = 0.354676) and stable when μ ∈ (0, 0.131580) ∪ (0.354676, 0.474246).
Again, Ê(ĉ, p̂, ẑ) goes to stable zooplankton free equilibrium E1(c̃, p̃, 0) when μ > μ[tc] = 0.474246.
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(c) Bifurcation diagram of z
Figure 14. Bifurcation diagrams of system (1) taking m as the bifurcation parameter, while the
others remain unchanged, as in Figure 6. Here, Ê(ĉ, p̂, ẑ) is stable when m ∈ (0.0, m[H] = 0.6533)
and unstable with a periodic solution when m ∈ (0.6533, 2.287). When m > m[tc] = 2.287, trivial
equilibrium E0 = (0, 0, 0) exists corresponding to the depletion of oxygen and the extinction of
plankton.
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Figure 15. Bifurcation diagrams of system (1) while g varies from [0.09, 1] and the others remain
unchanged, as in Figure 6. Here, the interior equilibrium Ê(ĉ, p̂, ẑ) is unstable with a periodic solution
when g ∈ [0.09, g[H] = 0.226067) and stable when g > g[H] = 0.226067.
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Figure 16. Bifurcation diagrams of system (1) taking η as the bifurcation parameter, while the
others remain unchanged, as in Figure 6. Here, the zooplankton free equilibrium E1(c̃, p̃, 0) is
stable when 0 < η < η[tc] = 0.147603, and the interior equilibrium Ê(ĉ, p̂, ẑ) is stable when η ∈
(0.147603, η[H]1 = 0.198177) ∪(η[H]2 = 0.530864, 1) and unstable with a periodic solution when
η ∈ (0.198177, 0.530864). Here, ‘BP’ stands for the transcritical bifurcation point.
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Figure 17. Bifurcation diagrams of system (1) taking a as the bifurcation parameter, while the others
remain unchanged, as in Figure 6. Here, the zooplankton free equilibrium E1(c̃, p̃, 0) is stable when
0 < a < a[tc] = 0.109643, and the interior equilibrium Ê(ĉ, p̂, ẑ) is stable when a ∈ (0.109643,
a[H] = 5.325675) and unstable with periodic solution when a > a[H] = 5.325675.
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Figure 18. Bifurcation diagram of system (1) taking γ as the bifurcation parameter, while the others
remain unchanged, as in Figure 6. Here, ‘BP’ appears at γ = γ[tc] = 4.479066.

Effect of Environmental Noise on System (1)

In a marine ecosystem, the oxygen-plankton model is affected by the environmental
noise due to the inherent stochasticity of the weather conditions. For environmental noise,
some of the parameters of system (1) change randomly over time. In this study, we have
assumed that the stochasticity affects the oxygen production term through parameter A,
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the phytoplankton growth term through parameter B, and the zooplankton mortality rate
μ by turning A, B, and μ into random variables as follows:

A → A + γ1(t)

B → B + γ2(t) (11)

μ → μ + γ3(t)

where γ1, γ2, and γ3 are independent Gaussian white noise terms and satisfy the follow-
ing conditions:

< γj(t) >= 0 and < γj(t1), γj(t2) >= α2
j δj(t1 − t2), for j = 1, 2, 3

where αj are the intensities or strengths of the random perturbations, δ is the Dirac delta
function defined by: {

δ(x) = 0, for x �= 0∫ ∞
−∞ δ(x)dx = 1

and < · > is the ensemble average of the considered stochastic process.
Introducing Gaussian white noises, system (1) can be formulated as:

dc
dt

=
(A + γ1(t))c0 p

c + c0
− δcp

c + c2
− νcz

c + c3
− mc

dp
dt

=
(B + γ2(t))cp

c + c1
− γp2 − ap2z

ahp2 + p + g
− σp

dz
dt

=

(
ηc2

c2 + c2
4

)
.

ap2z
ahp2 + p + g

− (μ + γ3(t))z

i.e.,
dc
dt

=
Ac0 p
c + c0

− δcp
c + c2

− νcz
c + c3

− mc +
γ1(t)c0 p

c + c0

dp
dt

=
Bcp

c + c1
− γp2 − ap2z

ahp2 + p + g
− σp +

γ2(t)cp
c + c1

dz
dt

=

(
ηc2

c2 + c2
4

)
.

ap2z
ahp2 + p + g

− μz − γ3(t)z

dc
dt

=
Ac0 p
c + c0

− δcp
c + c2

− νcz
c + c3

− mc +
(

c0 p
c + c0

)
· α1

dw1

dt
dp
dt

=
Bcp

c + c1
− γp2 − ap2z

ahp2 + p + g
− σp +

(
cp

c + c1

)
· α2

dw2

dt

dz
dt

=

(
ηc2

c2 + c2
4

)
· ap2z

ahp2 + p + g
− μz − α3z

dw3

dt

where γ1 = α1
dw1
dt , γ2 = α2

dw2
dt , and γ3 = α3

dw3
dt . Here, w =

{
w1(t), w2(t), w3(t)

∣∣t ≥ 0
}

represents three-dimensional standard Brownian motion.
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Hence, our proposed stochastic system is:

dc =
Ac0 p
c + c0

− δcp
c + c2

− νcz
c + c3

− mc +
(

c0

c + c0

)
α1 pdw1

dp =
Bcp

c + c1
− γp2 − ap2z

ahp2 + p + g
− σp +

(
p

c + c1

)
α2cdw2 (12)

dz =

(
ηc2

c2 + c2
4

)
.

ap2z
ahp2 + p + g

− μz − α3zdw3.

The effect of environmental noise on the dynamics of system (12) is analyzed nu-
merically by the Euler Maruyama method in MATLAB. For this purpose, we chose the
parametric set as follows:

{c0 = 1, δ = 1, c2 = 1, m = 0.5, B = 1.8, c1 = 1.0, γ = 0.7, σ = 0.1, ν = 0.01, μ = 0.1,

h = 1.2, a = 3.0, η = 0.7, c4 = 1, g = 0.3, c3 = 1, α1 = α2 = α3 = 0.001}, (13)

but varied A in a broad range.
When we took A = 10, while the other parameters remained the same as in set (13),

then the effect of the Gaussian white noises on the stochastic system (12) were as depicted in
Figure 19. Furthermore, Figure 19 shows that the oxygen, phytoplankton, and zooplankton
varied around the deterministic coexistence steady-state values 1.48635, 0.218551, and
0.866809, respectively. Hence, system (12) is persistent. In this context, we repeated the
stochastic simulations 20000 times, and the numerical results are depicted in Figure 20,
which shows the stationary distribution of c(t), p(t), and z(t) at time t = 600. Moreover,
when we chose A = 1.8, while the remaining parameters remained the same as in set (13),
then system (12) was also persistent (see Figure 21).
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Figure 19. Stochastic trajectories of system (12) when A = 10 and the remaining parameters are same
as in set (13). Initial conditions are c(0) = 1, p(0) = 0.3 and z(0) = 1.
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Figure 20. Histograms of system (12) with the parameters chosen from Figure 19.
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Figure 21. Persistence of system (12) when A = 1.8 and the remaining parameters stay unaltered as
in Figure 19.

Again, if we take μ = 0.5, while the other parameters remain the same as in set (13),
then, it is noted from Figure 22 that the zooplankton population can not persist in sys-
tem (12) for any of the following choices: (a) A = 1.8 and (b) A = 10.

Furthermore, it is observed from Figure 23 that system (12) becomes extinct for any of
the following choices: (a) A = 1.5, (b) σ = 1.0, and (c) m = 2.9, while the other parameters
remain the same as in set (13).
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(a) A = 1.8 and μ = 0.5
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(b) A = 10.0 and μ = 0.5
Figure 22. Extinction of the zooplankton in system (12) when (a) A = 1.8 and μ = 0.5, (b) A = 10.0
and μ = 0.5 and remaining parameters are chosen from set (13).
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(a) A = 1.5
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(b) σ = 1.0
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(c) m = 2.9
Figure 23. Depletion of oxygen and extinction of plankton corresponding to system (12) when
(a) A = 1.5, (b) σ = 1.0, (c) m = 2.9 and the remaining parameters are chosen from set (13).

7. Discussion and Conclusions

A Holling type II functional response [6–8] is predicated on the assumption that the
search rate of a predator is constant, i.e., independent of the prey population. However, it
seems reasonable that the predator can vary their search rate based on the availability of
prey. In particular, it is estimated that 50–80% of the oxygen production on Earth comes from
the oceans due to the photosynthetic activity of phytoplankton. Some of this production is
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consumed by both phytoplankton and zooplankton for cellular respiration. Furthermore,
zooplankton consume phytoplankton with a modified Holling type II functional response,
based on the premise that the zooplankton search rate is dependent on phytoplankton
(for details, see [10,11]). The goal of this article was to investigate the behavior of the
oxygen-plankton model with a modified Holling type II functional response. The following
summarizes our findings:

• The coexistence steady state is stable when 1.8 ≤ A < 1.966532, and it loses its stable
nature through Hopf-bifurcation when 1.966532 < A < 7.258206 (see Figures 7 and 8).

• The dynamic behavior of system (1) changes abruptly for a low oxygen production
rate (0 < A < 1.8), resulting in the depletion of oxygen and plankton extinction (see
Figure 3). This depletion of oxygen production will be a consequence of the global
ecological disaster.

• System (1) always has a stable coexistence steady state for a high oxygen production
rate (see Figure 6), i.e., the sustainability of oxygen production is possible when A is
large (A > 7.258206). This result is opposite to the outcome shown by Sekerci and
Petrovskii [3] because they observed that the system dynamics were not sustainable
for a high oxygen production rate. This is the main qualitative difference between the
modified Holling type II (variable search rate, as mentioned in the proposed model)
and the Holling type II functional responses. Therefore, the study of the modified
Holling type II functional response is ecologically meaningful for the sustainability of
the dynamics of system (1), if the net oxygen production rate is above a certain critical
valve (A ≥ 1.8).

Moreover, the effect of environmental noise has a strong impact due to the inherent
stochasticity of weather conditions. So, our proposed deterministic system (1) was com-
pared with a corresponding stochastic model (12) incorporating Gaussian white noises in
the system parameters A, B, and μ, as mentioned in (11).

In the future, a realistic model can be proposed to explore the effects of spatial diffusion
in the pattern formation through diffusion-driven instability.
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Abstract: The mathematical modeling and analysis of within-host or between-host coronavirus
disease 2019 (COVID-19) dynamics are considered robust tools to support scientific research. Severe
acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the cause of COVID-19. This paper
proposes and investigates a within-host COVID-19 dynamics model with latent infection, the logistic
growth of healthy epithelial cells and the humoral (antibody) immune response. Time delays can
affect the dynamics of SARS-CoV-2 infection predicted by mathematical models. Therefore, we
incorporate four time delays into the model: (i) delay in the formation of latent infected epithelial
cells, (ii) delay in the formation of active infected epithelial cells, (iii) delay in the activation of latent
infected epithelial cells, and (iv) maturation delay of new SARS-CoV-2 particles. We establish that the
model’s solutions are non-negative and ultimately bounded. This confirms that the concentrations
of the virus and cells should not become negative or unbounded. We deduce that the model has
three steady states and their existence and stability are perfectly determined by two threshold
parameters. We use Lyapunov functionals to confirm the global stability of the model’s steady
states. The analytical results are enhanced by numerical simulations. The effect of time delays on the
SARS-CoV-2 dynamics is investigated. We observe that increasing time delay values can have the
same impact as drug therapies in suppressing viral progression. This offers some insight useful to
develop a new class of treatment that causes an increase in the delay periods and then may control
SARS-CoV-2 replication.

Keywords: COVID-19; latent infection; humoral immunity; time delay; Lyapunov function; global
stability

MSC: 34D20; 34D23; 37N25; 92B05

1. Introduction

Coronavirus disease 2019 (COVID-19) is considered one of the most severe epidemics
that has spread throughout whole world. According to the COVID-19 weekly epidemiolog-
ical update of 16 January 2022 by the World Health Organization (WHO), over 323 million
confirmed cases and over 5.5 million deaths have been reported worldwide [1]. COVID-19
is caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). This virus
can cause some symptoms including fever, cough, sputum production, fatigue, headache,
diarrhea, dyspnoea, and hemoptysis [2]. The virus can be transmitted from an infected
person to an uninfected person through coughing, sneezing, or talking [3]. To reduce SARS-
CoV-2 transmission, preventive measures must be implemented, such as hand washing, the
use of face masks, physical and social distancing, disinfection of surfaces, and vaccination.
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Fortunately, the following vaccines are approved for use by WHO: Oxford/AstraZeneca,
Janssen (Johnson & Johnson), Sinovac, Pfizer/BioNTech, Sinopharm (Beijing), Moderna,
Serum Institute of India, Novavax, and Bharat Biotech [4]. In addition to vaccination, the
scientific community needs to discover and develop effective drugs to treat the virus and
help to address the COVID-19 pandemic.

SARS-CoV-2 is a single-stranded RNA virus, which belongs to the Coronaviridae
family. Epithelial cells with angiotensin-converting enzyme 2 (ACE2) receptor are attacked
by SARS-CoV-2 [5]. These target cells are found in the respiratory tracts, including the lungs,
trachea/bronchial tissues, and nasal region [6]. The immune response plays an essential
role in controlling the disease’s progression and clearing SARS-CoV-2 infection. There
are two main immune responses against viral infections: CTLs and antibodies. CTLs are
responsible for killing virus-infected cells, while antibodies are responsible for neutralizing
the virus.

Besides biological and medical research, the mathematical modeling of infectious
diseases has attracted the interest of several researchers. Several epidemiological (between-
host) mathematical models for COVID-19 were proposed to forecast disease severity and
help policymakers in developing disease control interventions (see, e.g., [7–14]). Nev-
ertheless, between-host models have occupied more attention than within-host models
that study the infection within a human body [15]. Mathematical models of within-host
COVID-19 dynamics can help researchers to understand the replication cycle of SARS-CoV-
2 and the response of the immune system against viral infection. Moreover, these models
enable the merits of different types of antiviral drug therapies to be assessed in individual
COVID-19 patients [16]. Many scientists have been interested in modeling and analyzing
COVID-19 dynamics within the host (see the review paper [17]). Du and Yuan [6] proposed
a within-host model of COVID-19 infection. They studied the influence of the interaction
between adaptive and innate immune responses on the viral load’s peak in COVID-19
patients. Li et al. [18] developed a within-host COVID-19 infection model and estimated
the model’s parameters. Fatehi et al. [16] developed a within-host COVID-19 dynamics
model with five components: healthy cells, latent infected cells, productively infected cells,
SARS-CoV-2 particles, and antibodies and effector cells. Antiviral and convalescent plasma
therapies were incorporated. It was shown that using a combination of both therapies
in the early stage of infection can be very effective in reducing the duration of infection.
Danchin et al. [19] formulated a within-host COVID-19 dynamics model under the effect of
antibodies. Sadria and Layton [20] formulated a within-host COVID-19 infection model
to simulate the effect of three drug therapies: Remdesivir, an alternative (hypothetical)
therapy, and transfusion therapy convalescent plasma. It was suggested that therapies
are more effective when they are applied early, one or two days after symptom onset [20].
Néant et al. [21] reported that the viral dynamics are associated with mortality in COVID-19
patients and that strategies that consider reducing the viral load can be more effective. Dual
infection with SARS-CoV-2 and other viruses may appear in some patients. Mathematical
models of co-infection with SARS-CoV-2 and other respiratory viruses within a host were
developed in [22]. It was reported that SARS-CoV-2 progression can be suppressed by
other viruses when the co-infections occur at the same time.

Mathematical modeling with available real data helps in extensively exploring the
dynamical aspects of within-host COVID-19 infection. Hernandez-Vargas and Velasco-
Hernandez [23] used the Akaike information criterion to compare between different within-
host COVID-19 models. The models were fitted with real data from nine patients with
COVID-19. It was shown that the model with an immune response was better fitting than
logarithmic decay and exponential growth models, a target cell-limited model, and a latent
target cell-limited model. The COVID-19 dynamics model with the immune response
presented in [23] was used in many works (see, e.g., [24,25]). In [24], a differential evolution
algorithm was applied to fit the model with experimental data. Blanco-Rodriguez el al. [25]
elucidated the key parameters that define the course of COVID-19 developing from a severe
to critical case. The impact of multiple types of treatment or vaccines on the dynamical
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COVID-19 systems has been investigated by many researchers. Abuin et al. [3] studied
the mathematical analysis of the target cell model presented in [23]. The effect of antiviral
pharmacodynamic therapy that reduces the production of infectious SARS-CoV-2 particles
was studied using control theory. Ke et al. [26] developed some mathematical models for
the within-host dynamics of COVID-19 and fitted them to real data. They supported a
quantitative framework for concluding the influence of vaccines and therapeutics on the
infectiousness of COVID-19 patients and for assessing rapid testing strategies. Ghosh [27]
formulated a mathematical model that describes the interaction between SARS-CoV-2,
healthy cells, and the immune response within a host. The model was fitted with real data
and the effect of different antiviral drugs was addressed. Wang et al. [28] introduced three
within-host COVID-19 dynamics models: a basic model, a model with latency, and a model
with two types of target cells (pneumocytes and lymphocytes). The effects of antiviral
drugs or anti-inflammatory treatments combined with interferons on the viral load and
recovery time were studied. The models were fitted with real data of COVID-19 patients
and non-human primates. Most of these studies did not perform the mathematical analysis
of the within-host COVID-19 models.

Stability analysis of within-host COVID-19 dynamics models is one of the most pow-
erful tools that can provide researchers with a better understanding of the dynamics of the
virus and how the immune system controls and clears the virus. The stability analysis of
the COVID-19 dynamics model with the immune response presented in [23] was studied
by Almocera et al. [29]. CTL and antibody immune responses play important roles in
controlling COVID-19 infection. Hattaf and Yousfi [30] developed a COVID-19 dynamics
model with the CTL immune response and cell-to-cell infection. The global stability of the
three equilibria of the model was studied. Chatterjee and Al Basir [31] studied a COVID-19
infection model with treatment and a CTL immune response. Mondal et al. [32] developed
and analyzed a five-dimensional within-host COVID-19 dynamics model that includes both
CTL and antibody immune responses. Nath et al. [33] studied the mathematical analysis of
the COVID-19 infection model presented in [18]. They established both the local and global
stability of the two steady states of the model. The memory is an important characteristic of
COVID-19 dynamics at both within-host [34] and between-host [35,36] levels. Ghanbari [34]
extended the model presented in [30] and investigated the memory effect on the COVID-19
dynamics by using a fractional derivative. Mathematical analysis of COVID-19 and other
diseases co-infection models has received considerable attention. Elaiw et al. [37] devel-
oped and proved the global stability of a COVID-19/cancer co-infection model with two
immune responses: cancer-specific CTL immune response and COVID-19-specific antibody.
Mathematical modeling and analysis of COVID-19/HIV co-infection were studied in [38].
The global stability of a SARS-CoV-2/malaria model with antibody immune response was
studied in [39]. It was found that the SARS-CoV-2/malaria co-infection can be protective
as the shared antibody immune response serves to eliminate SARS-CoV-2 particles from
the body. This may cause less severe SARS-CoV-2 infection.

Optimal control theory (OCT) offers a means to understand how to apply one or more
time-varying control measures to a within-host or between-host viral infection model in
such a way that a given objective is optimized [40]. OCT was used for COVID-19 epidemi-
ological models to determine optimal strategies for the implementation of interventions to
control COVID-19 spread with optimal implementation costs (see, e.g., [40–44]). On the
other hand, OCT was applied for within-host viral infection models to determine optimal
antiviral drug schedules for infected patients with different viruses, such as HIV [45,46],
HBV [47], and HCV [48]. On the basis of the basic within-host viral dynamics model
presented by Nowak and Bangham [49], Chhetri et al. [50] formulated and analyzed a
within-host COVID-19 dynamics model under the effect of immunomodulating and antivi-
ral drug therapies. Optimal drug interventions were determined. It was suggested that the
combination of immunomodulating and antiviral drug therapies is most effective. In [51],
fractional differential equations were used in formulating a within-host SARS-CoV-2 model
with non-lytic and lytic immune responses. Two types of antiviral drugs were included as
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control inputs, one for blocking the infection and the other for inhibiting viral production.
Optimal antiviral drugs were determined by solving the fractional optimal control problem.

Most of the above-mentioned within-host COVID-19 dynamics models assumed that
the dynamics of the target cells take one of the following forms:

(i) Target cell-limited [3,23,26,28]:

Ṫ(t) = −βT(t)V(t),

(ii) Constant regeneration of target cells [6,18,19,27,32,38,50]:

Ṫ(t) = λ − dT(t)− βT(t)V(t),

where T(t) and V(t) are the concentrations of healthy target cells and SARS-CoV-2
particles, at time t, respectively. Parameters λ, d, and β are the regeneration, death,
and infection rates of target cells, respectively. In these works, the proliferation of
the healthy target cells was not considered. Fatehi et al. [16] and Fadai et al. [52]
developed COVID-19 dynamics models by assuming that the healthy epithelial cells
follow logistic growth in the absence of the virus. However, mathematical analysis
of these models was not studied. Moreover, time delays were not considered in
these papers.

It was observed experimentally that there exits a time lag between the infection of
a target cell and the release of new virions [53]. Therefore, several COVID-19 dynamics
models were developed using ordinary differential equations (ODEs) by splitting the
infected cells into two classes: latent infected cells and active (productive) infected cells
(see, e.g., [16,20–23,26,28]). Latent infected cells contain viruses but do not produce them
until they are activated. These models assume that, once infected, the cell immediately
becomes a latent infected cell. Further, these models neglect the time needed for the latent
infected cells to be activated [54]. Furthermore, the maturation time of the new viruses
was not considered. To incorporate these time lags, we need to formulate the COVID-19
dynamics using delay differential equations (DDEs). DDEs models can characterize the
effect of time delay on the dynamical behavior of the virus.

The aim of the present paper is to formulate and analyze a within-host COVID-19
model that includes: (i) a logistic growth term for the healthy epithelial cells, (ii) latent and
active infected epithelial cells, (iii) the antibody immune response, (iv) four time delays,
namely the time from the SARS-CoV-2 particles’ contact with the healthy epithelial cells
to the time that they become latent/active infected cells, the reactivation time of latent
infected cells, and the maturation time of new virions. The basic and global properties of
the model were studied. To support the theoretical results, we performed some numerical
simulations. The effect of time delay on the dynamics of COVID-19 was addressed.

Overall, this analysis can help to better understand the dynamical behavior of within-
host COVID-19 models with time delays and immune responses. In addition, our proposed
model can be useful to develop co-infection dynamics models with more aggressive variants
of SARS-CoV-2, such as Alpha, Beta, Gamma, Delta, Lambda, and Omicron.
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2. Model Development

This section provides a brief description of the model under consideration. The model
takes the form

Ṫ(t) = λ − d1T(t) + rT(t)
(

1 − T(t)
Tmax

)
− βT(t)V(t), (1)

L̇(t) = η
∫ τ1

0
f (ψ)e−n1ψβT(t − ψ)V(t − ψ)dψ − αL(t)− d2L(t), (2)

İ(t) = (1 − η)
∫ τ2

0
g(ψ)e−n2ψβT(t − ψ)V(t − ψ)dψ + αe−n3τ3 L(t − τ3)− d3 I(t), (3)

V̇(t) = ke−n4τ4 I(t − τ4)− d4V(t)− uA(t)V(t), (4)

Ȧ(t) = qA(t)V(t)− d5 A(t), (5)

where T(t), L(t), I(t), V(t), and A(t) represent the concentrations of healthy epithelial
cells, latent infected cells, active infected cells, SARS-CoV-2 particles, and antibodies at
time t, respectively. The healthy epithelial cells are regenerated at a constant rate λ and
proliferate at a logistic growth rate rT

(
1 − T

Tmax

)
, where r is the rate of growth and Tmax is

the maximum capacity of healthy epithelial cells in the human body. Healthy epithelial
cells are assumed to be infected by SARS-CoV-2 at a rate βTV. Parameter η ∈ (0, 1) is the
fraction of the healthy epithelial cells that enter the latent state, while α is the activation rate
constant of latent infected cells. kI is the rate at which active infected cells produce SARS-
CoV-2 particles. uAV is the neutralization rate of SARS-CoV-2, and qAV is the recruitment
rate of antibodies. The parameters d1, d2, d3, d4, and d5 symbolize the death rate constants
of healthy epithelial cells, latent infected cells, active infected cells, SARS-CoV-2 particles,
and antibodies, respectively. The factor f (ψ)e−n1ψ denotes the probability that healthy
epithelial cells contacted by SARS-CoV-2 particles at time instant t − ψ survive ψ time
units and become latent infected cells at time t. The factor g(ψ)e−n2ψ is the probability that
healthy epithelial cells contacted by SARS-CoV-2 particles at time instant t − ψ survive ψ
time units and become active infected cells at time t. Here, ψ is a random variable generated
from probability distribution functions f (ψ) and g(ψ) over the intervals [0, τ1] and [0, τ2],
respectively. τ1 and τ2 are the upper limits of the delay periods. τ3 is the period of time
during which latent infected cells are activated to produce active infected cells. τ4 is the
time it takes for the newly released viruses to become mature and then infectious. Factors
e−n3τ3 and e−n4τ4 are the survival rates of latent infected cells and viruses during their delay
periods [t − τ3, t] and [t − τ4, t], respectively. The functions f (ψ) : [0, τ1] → [0, ∞) and
g(ψ) : [0, τ2] → [0, ∞) are the distribution functions, which satisfy the following conditions:

(i) f (ψ) > 0, g(ψ) > 0,

(ii)
∫ τ1

0
f (ψ)dψ = 1,

∫ τ2

0
g(ψ)dψ = 1,

(iii)
∫ τ1

0
f (ψ)e−n1ψdψ < ∞,

∫ τ2

0
g(ψ)e−n2ψdψ < ∞, n1, n2 > 0.

Let
F =

∫ τ1

0
f (ψ)e−n1ψdψ and G =

∫ τ2

0
g(ψ)e−n2ψdψ.

Hence, 0 < F, G ≤ 1.
The initial conditions of system (1)–(5) are:

T(κ) = ϕ1(κ), L(κ) = ϕ2(κ), I(κ) = ϕ3(κ), V(κ) = ϕ4(κ), A(κ) = ϕ5(κ),

ϕi(κ) ≥ 0, κ ∈ [−κ, 0], i = 1, 2, . . . , 5,
(6)
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where κ = max{τ1, τ2, τ3, τ4} and ϕi ∈ C([−κ, 0],R≥0), i = 1, 2, . . . , 5, and C is the Banach
space of continuous functions mapping the interval [−κ, 0] to R≥0 with

‖ϕi‖ = sup
−κ≤κ≤0

|ϕi(κ)| for ϕi ∈ C.

By the fundamental theory of functional differential equations [55], system (1)–(5) with
initial conditions (6) has a unique solution.

3. Basic Properties

This section proves the basic properties of system (1)–(5), including the non-negativity
and boundedness of solutions. We determine a bounded domain for the concentrations of
the model’s compartments to ensure that our model is biologically acceptable. In particular,
the concentrations should not become negative or unbounded. Moreover, it lists all possible
steady states and their existence conditions.

For the non-negativity and boundedness of solutions for the system (1)–(5), we state
the following theorem:

Theorem 1. Let (T(t), L(t), I(t), V(t), A(t))′ be an arbitrary solution of system (1)–(5) with
initial conditions (6). Then, (T(t), L(t), I(t), V(t), A(t))′ are non-negative on [0,+∞) and ulti-
mately bounded.

Proof. Let us write system (1)–(5) in the matrix form K̇(t) = H(K(t)), where K = (T, L, I, V, A)′,
H = (H1, H2, H3, H4, H5)

′, and

H(K(t)) =

⎛⎜⎜⎜⎜⎝
H1(K(t))
H2(K(t))
H3(K(t))
H4(K(t))
H5(K(t))

⎞⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎜⎝
λ − d1T(t) + rT(t)

(
1 − T(t)

Tmax

)
− βT(t)V(t)

η
∫ τ1

0 f (ψ)e−n1ψβT(t − ψ)V(t − ψ)dψ − αL(t)− d2L(t)
(1 − η)

∫ τ2
0 g(ψ)e−n2ψβT(t − ψ)V(t − ψ)dψ + αe−n3τ3 L(t − τ3)− d3 I(t)

ke−n4τ4 I(t − τ4)− d4V(t)− uA(t)V(t)
qA(t)V(t)− d5 A(t)

⎞⎟⎟⎟⎟⎟⎠.

We observe that the function H fulfills the following condition:

Hi(K(t)) |Ki=0,K(t)∈R5≥0
≥ 0, i = 1, 2, . . . , 5.

Using Lemma 2 in [56], any solution of system (1)–(5) with the initial states (6) is such
that K(t) ∈ R5

≥0 for all t ≥ 0. Hence, R5
≥0 is positively invariant for the system (1)–(5).

Next, we prove the ultimate boundedness of the solutions. From Equation (1), we have

Ṫ(t) = λ − d1T(t) + rT(t)
(

1 − T(t)
Tmax

)
− βT(t)V(t) ≤ λ − d1T(t) + rT(t)

(
1 − T(t)

Tmax

)
. (7)

From the inequality (7) and the comparison principle, we obtain lim sup
t→∞

T(t) ≤ T0,

where T0 is the positive root of λ − d1T + rT
(

1 − T
Tmax

)
= 0 and is given by

T0 =
Tmax

2r

[
r − d1 +

√
(r − d1)2 +

4rλ

Tmax

]
. (8)

Now, we define

W1(t) =
∫ τ1

0
f (ψ)e−n1ψT(t − ψ)dψ +

1
η

L(t).

Then, we obtain
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Ẇ1(t) =
∫ τ1

0
f (ψ)e−n1ψṪ(t − ψ)dψ +

1
η

L̇(t)

=
∫ τ1

0
f (ψ)e−n1ψ

[
λ − d1T(t − ψ) + rT(t − ψ)

(
1 − T(t − ψ)

Tmax

)
− βT(t − ψ)V(t − ψ)

]
dψ

+
∫ τ1

0
f (ψ)e−n1ψβT(t − ψ)V(t − ψ)dψ − α

η
L(t)− d2

η
L(t)

=
∫ τ1

0
f (ψ)e−n1ψ

(
− r

Tmax
T2(t − ψ) + rT(t − ψ) + λ

)
dψ − d1

∫ τ1

0
f (ψ)e−n1ψT(t − ψ)dψ

− α + d2
η

L(t).

Let us define Γ(T) = − r
Tmax

T2 + rT + λ. Then, to find the maximum value of Γ(T),
we find

Γ′(T) = − 2r
Tmax

T + r = 0 ⇒ T =
Tmax

2

and
Γ′′(T) = − 2r

Tmax
< 0.

Then,

Γ
(

Tmax

2

)
= − r

Tmax

(
Tmax

2

)2
+ r
(

Tmax

2

)
+ λ =

rTmax

4
+ λ.

Let N1 = rTmax+4λ
4 > 0 and q1 = min{d1, α + d2}, then Ẇ1(t) ≤ FN1 − q1W1(t) ≤

N1 − q1W1(t). Therefore, lim sup
t→∞

W1(t) ≤ N1
q1

. Since T(t) ≥ 0 and L(t) ≥ 0, then

lim sup
t→∞

L(t) ≤ ηN1
q1

= p1. To prove the ultimate boundedness of I(t), we define

W2(t) =
∫ τ2

0
g(ψ)e−n2ψT(t − ψ)dψ +

1
1 − η

I(t).

Then, we obtain

Ẇ2(t) =
∫ τ2

0
g(ψ)e−n2ψṪ(t − ψ)dψ +

1
1 − η

İ(t)

=
∫ τ2

0
g(ψ)e−n2ψ

[
λ − d1T(t − ψ) + rT(t − ψ)

(
1 − T(t − ψ)

Tmax

)
− βT(t − ψ)V(t − ψ)

]
dψ

+
∫ τ2

0
g(ψ)e−n2ψβT(t − ψ)V(t − ψ)dψ − d3

1 − η
I(t) +

αe−n3τ3

1 − η
L(t − τ3)

≤
∫ τ2

0
g(ψ)e−n2ψ

(
− r

Tmax
T2(t − ψ) + rT(t − ψ) + λ

)
dψ +

αe−n3τ3

1 − η
p1

− d1

∫ τ2

0
g(ψ)e−n2ψT(t − ψ)dψ − d3

1 − η
I(t)

≤
∫ τ2

0
g(ψ)e−n2ψ

(
rTmax + 4λ

4

)
dψ +

αe−n3τ3

1 − η
p1

− d1

∫ τ2

0
g(ψ)e−n2ψT(t − ψ)dψ − d3

1 − η
I(t)

=
rTmax + 4λ

4
G +

αe−n3τ3

1 − η
p1 − d1

∫ τ2

0
g(ψ)e−n2ψT(t − ψ)dψ − d3

1 − η
I(t)

≤ rTmax + 4λ

4
+

α

1 − η
p1 − d1

∫ τ2

0
g(ψ)e−n2ψT(t − ψ)dψ − d3

1 − η
I(t).

Let N2 = rTmax+4λ
4 + α

1−η p1 > 0 and q2 = min{d1, d3}, then

Ẇ2(t) ≤ N2 − q2W2(t).
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This implies that lim sup
t→∞

W2(t) ≤ N2
q2

. Since I(t) ≥ 0, then lim sup
t→∞

I(t) ≤ (1−η)N2
q2

= p2.

To prove the ultimate boundedness of V(t) and A(t), we consider

W3(t) = V(t) +
u
q

A(t).

This gives

Ẇ3(t) = ke−n4τ4 I(t − τ4)− d4V(t)− uA(t)V(t) + uA(t)V(t)− ud5

q
A(t)

= ke−n4τ4 I(t − τ4)− d4V(t)− ud5

q
A(t)

≤ ke−n4τ4 I(t − τ4)− q3[V(t) +
u
q

A(t)]

≤ kp2 − q3W3(t),

where q3 = min{d4, d5}. Hence, lim sup
t→∞

W3(t) ≤ kp2
q3

= p3. We have V(t) ≥ 0 and

A(t) ≥ 0, then lim
t→∞

sup V(t) ≤ p3, and lim sup
t→∞

A(t) ≤ q
u p3. The above analysis proves that

T(t), L(t), I(t), V(t) and A(t) are ultimately bounded.

Steady States

This subsection computes all possible steady states of system (1)–(5) and the threshold
parameters that guarantee the existence of these steady states. Let SS = (T, L, I, V, A) be
any steady state of system (1)–(5) fulfilling the following system of nonlinear equations:

0 = λ − d1T + rT
(

1 − T
Tmax

)
− βTV, (9)

0 = ηFβTV − (α + d2)L, (10)

0 = (1 − η)GβTV + αe−n3τ3 L − d3 I, (11)

0 = ke−n4τ4 I − d4V − uAV, (12)

0 = qAV − d5 A. (13)

By solving system (9)–(13), we find that system (1)–(5) has the following steady states:

• Healthy steady state SS0 = (T0, 0, 0, 0, 0), where T0 is given by Equation (8).

Now, we calculate the basic reproduction number R0 for system (1)–(5) by using the
next-generation matrix method [57]. We define the matrices F and V as follows:

F =

⎛⎝0 0 ηFβT0
0 0 (1 − η)GβT0
0 0 0

⎞⎠, V =

⎛⎝ α + d2 0 0
−αe−n3τ3 d3 0

0 −ke−n4τ4 d4

⎞⎠.

The basic reproduction number R0, can be derived as the spectral radius of FV−1, and
we obtain

R0 =
kβe−n4τ4 T0

d3d4

(
αηe−n3τ3

α + d2
F + (1 − η)G

)
.

The parameter R0 estimates the number of secondary infections that arise from one in-
fected cell over the course of its lifespan at the beginning of infection, when cells susceptible
to infection are not depleted [58].

For convenience, let ρ = αηe−n3τ3

α+d2
F + (1 − η)G. Then, R0 can be rewritten as

R0 =
kβe−n4τ4 T0

d3d4
ρ.
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• Infected steady state with inactive antibody immune response SS1 = (T1, L1, I1, V1, 0),
where

T1 =
d3d4en4τ4

kβρ
=

T0

R0
,

L1 =
η

α + d2
FβT1V1,

I1 =
d4en4τ4

k
V1,

V1 =
λke−n4τ4 ρ

d3d4
+

r
β
−
(

d1

β
+

rd3d4en4τ4

kβ2Tmaxρ

)
.

Assume that d1 − r + rT1
Tmax

> 0; then, we obtain

d1 − r +
r

Tmax

d3d4en4τ4

kβρ
> 0 =⇒ rd3d4en4τ4

kβTmaxρ
− (r − d1) > 0. (14)

We note that

R0 > 1 ⇐⇒ Tmax

2r

[
(r − d1) +

√
(r − d1)2 +

4rλ

Tmax

]
>

d3d4en4τ4

kβρ

⇐⇒
√
(r − d1)2 +

4rλ

Tmax
>

2rd3d4en4τ4

kβTmaxρ
− (r − d1).

From inequality (14), we have 2rd3d4en4τ4

kβTmaxρ − (r − d1) > 0. Then,

R0 > 1 ⇐⇒ 4rλ

Tmax
>

4r2d2
3d2

4e2n4τ4

k2β2T2
maxρ2 − 4rd3d4en4τ4

kβTmaxρ
(r − d1)

⇐⇒ rλ >
r2d2

3d2
4e2n4τ4

k2β2Tmaxρ2 − r2d3d4en4τ4

kβρ
+

rd1d3d4en4τ4

kβρ

⇐⇒ λke−n4τ4 ρ

d3d4
+

r
β
−
(

d1

β
+

rd3d4en4τ4

kβ2Tmaxρ

)
> 0

⇐⇒ V1 > 0.

Thus, SS1 exists when R0 > 1 and d1 − r + rT1
Tmax

> 0.
• Infected steady state with active antibody immune response SS2 = (T2, L2, I2, V2, A2),

where

T2 =
Tmax

2r

⎡⎣r − d1 − d5β

q
+

√(
r − d1 − d5β

q

)2
+

4rλ

Tmax

⎤⎦,

L2 =
d5ηβFT2

q(α + d2)
, I2 =

d5βT2

qd3
ρ, V2 =

d5

q
,

A2 =
d4

u

(
kβe−n4τ4 T2

d3d4
ρ − 1

)
.

We define the antibody immune response activation number R1 as

R1 =
kβe−n4τ4 T2

d3d4
ρ.

We note that A2 > 0 when R1 > 1. Thus, SS2 exists when R1 > 1.
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Lemma 1. For system (1)–(5), we have the following:

(i) if R0 ≤ 1, then there exists only one steady state SS0;
(ii) if R1 ≤ 1 < R0 and d1 − r + rT1

Tmax
> 0, then there exist two steady states SS0 and SS1;

(iii) if R1 > 1, then there exist three steady states SS0, SS1, and SS2.

4. Global Properties

Stability analysis is at the heart of dynamical analysis. Only stable solutions can be
noticed experimentally. Therefore, in this section, the global asymptotic stability of SS0, SS1,
and SS2 will be presented by utilizing the direct Lyapunov method and applying LaSalle’s
invariance principle, following the works of Korobeinikov [59]. Denote (T, L, I, V, A) =
(T(t), L(t), I(t), V(t), A(t)). Define a function H : (0,+∞) → [0,+∞) by H(x) = x − 1 −
ln x. Clearly, H(x) = 0 if and only if x = 1.

The following result suggests that when R0 ≤ 1, the COVID-19 infection is predicted
to die out regardless of the initial conditions.

Theorem 2. The steady state SS0 of system (1)–(5) is globally asymptotically stable (GAS) when
R0 ≤ 1.

Proof. Define a Lyapunov function V0(T, L, I, V, A) as

V0 = ρT0H
(

T
T0

)
+

αe−n3τ3

α + d2
L + I +

d3en4τ4

k
V +

d3uen4τ4

kq
A + U0(t),

where

U0(t) =
αηe−n3τ3

α + d2

∫ τ1

0
f (ψ)e−n1ψ

∫ t

t−ψ
βT(φ)V(φ)dφdψ

+ (1 − η)
∫ τ2

0
g(ψ)e−n2ψ

∫ t

t−ψ
βT(φ)V(φ)dφdψ

+ αe−n3τ3

∫ t

t−τ3

L(φ)dφ + d3

∫ t

t−τ4

I(φ)dφ.

Clearly, V0(T, L, I, V, A) > 0 for all T, L, I, V, A > 0, and V0(T0, 0, 0, 0, 0) = 0. The
derivative of U0(t) is computed as

dU0(t)
dt

=
αηe−n3τ3

α + d2
FβTV − αηe−n3τ3

α + d2

∫ τ1

0
f (ψ)e−n1ψβT(t − ψ)V(t − ψ)dψ

+ (1 − η)GβTV − (1 − η)
∫ τ2

0
g(ψ)e−n2ψβT(t − ψ)V(t − ψ)dψ

+ αe−n3τ3 L − αe−n3τ3 L(t − τ3) + d3 I − d3 I(t − τ4)

= ρβTV − αηe−n3τ3

α + d2

∫ τ1

0
f (ψ)e−n1ψβT(t − ψ)V(t − ψ)dψ

− (1 − η)
∫ τ2

0
g(ψ)e−n2ψβT(t − ψ)V(t − ψ)dψ

+ αe−n3τ3 L − αe−n3τ3 L(t − τ3) + d3 I − d3 I(t − τ4).

Hence, dV0(t)
dt in terms of the solutions of system (1)–(5) is given by:

dV0

dt
= ρ

(
1 − T0

T

)
Ṫ +

αe−n3τ3

α + d2
L̇ + İ +

d3en4τ4

k
V̇ +

d3uen4τ4

kq
Ȧ +

dU0(t)
dt

.
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By using system (1)–(5), we obtain

dV0

dt
= ρ

(
1 − T0

T

)[
λ − d1T + rT

(
1 − T

Tmax

)
− βTV

]
+

αe−n3τ3

α + d2

[
η
∫ τ1

0
f (ψ)e−n1ψβT(t − ψ)V(t − ψ)dψ − (α + d2)L

]
+ (1 − η)

∫ τ2

0
g(ψ)e−n2ψβT(t − ψ)V(t − ψ)dψ + αe−n3τ3 L(t − τ3)− d3 I

+
d3en4τ4

k
[
ke−n4τ4 I(t − τ4)− d4V − uAV

]
+

d3uen4τ4

kq
[qAV − d5 A]

+ ρβTV − αηe−n3τ3

α + d2

∫ τ1

0
f (ψ)e−n1ψβT(t − ψ)V(t − ψ)dψ

− (1 − η)
∫ τ2

0
g(ψ)e−n2ψβT(t − ψ)V(t − ψ)dψ

+ αe−n3τ3 L − αe−n3τ3 L(t − τ3) + d3 I − d3 I(t − τ4)

= ρ

(
1 − T0

T

)[
λ − d1T + rT

(
1 − T

Tmax

)]
+ ρβT0V − d3d4en4τ4

k
V − d3d5uen4τ4

kq
A.

At the steady state SS0, we have λ = d1T0 − rT0

(
1 − T0

Tmax

)
, then

λ − d1T + rT
(

1 − T
Tmax

)
= (T0 − T)

(
d1 − r +

rT0

Tmax
+

rT
Tmax

)
.

Therefore, we deduce that

dV0

dt
≤ −ρ

(
d1 − r +

rT0

Tmax

)
(T − T0)

2

T
+

(
ρβT0 − d3d4en4τ4

k

)
V − d3d5uen4τ4

kq
A

= −ρ

(
d1 − r +

rT0

Tmax

)
(T − T0)

2

T
+

d3d4en4τ4

k

(
kβe−n4τ4 T0

d3d4
ρ − 1

)
V − d3d5uen4τ4

kq
A

= −ρ

(
d1 − r +

rT0

Tmax

)
(T − T0)

2

T
+

d3d4en4τ4

k
(R0 − 1)V − d3d5uen4τ4

kq
A.

At the equilibrium, we have λ = d1T0 − rT0

(
1 − T0

Tmax

)
, which implies that d1 − r +

rT0
Tmax

> 0. It follows that dV0
dt ≤ 0 when R0 ≤ 1. Moreover, dV0

dt = 0 when T = T0, V = 0,
and A = 0. The solutions of system (1)–(5) converge to M′

0, the largest invariant subset of

M0 = {(T, L, I, V, A) | dV0

dt
= 0}. For any elements in M′

0, we have T = T0 and V = A = 0,

and hence V̇ = 0. From Equation (4), we obtain 0 = V̇ = ke−n4τ4 I, which gives I = 0 and
İ = 0. From Equation (3), we obtain 0 = İ = αe−n3τ3 L, which gives L = 0. It follows that
M′

0 = {SS0}. By LaSalle’s invariance principle (LIP) [60], we find that SS0 is GAS when
R0 ≤ 1.

The following result establishes that when R1 ≤ 1 < R0 and d1 − r + rT1
Tmax

> 0, a
COVID-19 infection with inactive antibody immunity is always established, regardless of
the initial conditions.

Theorem 3. The steady state SS1 of system (1)–(5) is GAS when R1 ≤ 1 < R0 and d1 − r +
rT1

Tmax
> 0.

Proof. Define a Lyapunov function V1(T, L, I, V, A) as

V1 = ρT1H
(

T
T1

)
+

αe−n3τ3

α + d2
L1H

(
L
L1

)
+ I1H

(
I
I1

)
+

d3en4τ4

k
V1H

(
V
V1

)
+

d3uen4τ4

kq
A + U1(t),
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where

U1(t) =
αηe−n3τ3

α + d2
βT1V1

∫ τ1

0
f (ψ)e−n1ψ

∫ t

t−ψ
H
(

T(φ)V(φ)

T1V1

)
dφdψ

+ (1 − η)βT1V1

∫ τ2

0
g(ψ)e−n2ψ

∫ t

t−ψ
H
(

T(φ)V(φ)

T1V1

)
dφdψ

+ αe−n3τ3 L1

∫ t

t−τ3

H
(

L(φ)
L1

)
dφ + d3 I1

∫ t

t−τ4

H
(

I(φ)
I1

)
dφ.

It is seen that V1(T, L, I, V, A) > 0 for all T, L, I, V, A > 0, and V1(T1, L1, I1, V1, 0) = 0.
Then, dU1(t)

dt is given by

dU1(t)
dt

= ρβTV − αηe−n3τ3

α + d2

∫ τ1

0
f (ψ)e−n1ψβT(t − ψ)V(t − ψ)dψ

− (1 − η)
∫ τ2

0
g(ψ)e−n2ψβT(t − ψ)V(t − ψ)dψ

+
αηe−n3τ3

α + d2
βT1V1

∫ τ1

0
f (ψ)e−n1ψ ln

(
T(t − ψ)V(t − ψ)

TV

)
dψ

+ (1 − η)βT1V1

∫ τ2

0
g(ψ)e−n2ψ ln

(
T(t − ψ)V(t − ψ)

TV

)
dψ

+ αe−n3τ3

(
L − L(t − τ3) + L1 ln

(
L(t − τ3)

L

))
+ d3

(
I − I(t − τ4) + I1 ln

(
I(t − τ4)

I

))
.

By using the derivatives in Equations (1)–(5), we obtain

dV1
dt

= ρ

(
1 − T1

T

)
Ṫ +

αe−n3τ3

α + d2

(
1 − L1

L

)
L̇ +

(
1 − I1

I

)
İ +

d3en4τ4

k

(
1 − V1

V

)
V̇

+
d3uen4τ4

kq
Ȧ +

dU1(t)
dt

= ρ

(
1 − T1

T

)[
λ − d1T + rT

(
1 − T

Tmax

)
− βTV

]
+

αe−n3τ3

α + d2

(
1 − L1

L

)[
η
∫ τ1

0
f (ψ)e−n1ψβT(t − ψ)V(t − ψ)dψ − (α + d2)L

]
+

(
1 − I1

I

)[
(1 − η)

∫ τ2

0
g(ψ)e−n2ψβT(t − ψ)V(t − ψ)dψ + αe−n3τ3 L(t − τ3)− d3 I

]
+

d3en4τ4

k

(
1 − V1

V

)[
ke−n4τ4 I(t − τ4)− d4V − uAV

]
+

d3uen4τ4

kq
[qAV − d5 A]

+ ρβTV − αηe−n3τ3

α + d2

∫ τ1

0
f (ψ)e−n1ψβT(t − ψ)V(t − ψ)dψ

− (1 − η)
∫ τ2

0
g(ψ)e−n2ψβT(t − ψ)V(t − ψ)dψ

+
αηe−n3τ3

α + d2
βT1V1

∫ τ1

0
f (ψ)e−n1ψ ln

(
T(t − ψ)V(t − ψ)

TV

)
dψ

+ (1 − η)βT1V1

∫ τ2

0
g(ψ)e−n2ψ ln

(
T(t − ψ)V(t − ψ)

TV

)
dψ

+ αe−n3τ3

(
L − L(t − τ3) + L1 ln

(
L(t − τ3)

L

))
+ d3

(
I − I(t − τ4) + I1 ln

(
I(t − τ4)

I

))
.

(15)
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Equation (15) can be simplified as
dV1
dt

= ρ

(
1 − T1

T

)[
λ − d1T + rT

(
1 − T

Tmax

)]
+ ρβT1V

− αηe−n3τ3

α + d2

∫ τ1

0
f (ψ)e−n1ψ L1βT(t − ψ)V(t − ψ)

L
dψ + αe−n3τ3 L1

− (1 − η)
∫ τ2

0
g(ψ)e−n2ψ I1βT(t − ψ)V(t − ψ)

I
dψ − αe−n3τ3

I1L(t − τ3)

I
+ d3 I1 − d3d4en4τ4

k
V

− d3
V1 I(t − τ4)

V
+

d3d4en4τ4

k
V1 +

d3uen4τ4

k
V1 A − d3d5uen4τ4

kq
A

+
αηe−n3τ3

α + d2
βT1V1

∫ τ1

0
f (ψ)e−n1ψ ln

(
T(t − ψ)V(t − ψ)

TV

)
dψ

+ (1 − η)βT1V1

∫ τ2

0
g(ψ)e−n2ψ ln

(
T(t − ψ)V(t − ψ)

TV

)
dψ + αe−n3τ3 L1 ln

(
L(t − τ3)

L

)
+ d3 I1 ln

(
I(t − τ4)

I

)
.

By using the steady-state conditions at SS1,

λ = d1T1 − rT1

(
1 − T1

Tmax

)
+ βT1V1,

αe−n3τ3 L1 =
αηe−n3τ3

α + d2
FβT1V1,

d3 I1 = ρβT1V1,
d3d4en4τ4

k
V1 = d3 I1.

we obtain

λ − d1T + rT
(

1 − T
Tmax

)
= (T1 − T)

(
d1 − r +

rT1

Tmax
+

rT
Tmax

)
+ βT1V1.

Further, we obtain
dV1
dt

≤ −ρ

(
d1 − r +

rT1
Tmax

)
(T − T1)

2

T
+ ρβT1V1 − ρβT1V1

T1
T

+

(
ρβT1 − d3d4en4τ4

k

)
V − αηe−n3τ3

α + d2
βT1V1

∫ τ1

0
f (ψ)e−n1ψ L1T(t − ψ)V(t − ψ)

LT1V1
dψ

+
αηe−n3τ3

α + d2
βT1V1F − (1 − η)βT1V1

∫ τ2

0
g(ψ)e−n2ψ I1T(t − ψ)V(t − ψ)

IT1V1
dψ

− αηe−n3τ3

α + d2
βT1V1F

I1L(t − τ3)

IL1
+

αηe−n3τ3

α + d2
βT1V1F + (1 − η)βT1V1G − ρβT1V1

V1 I(t − τ4)

VI1

+ ρβT1V1 +
αηe−n3τ3

α + d2
βT1V1

∫ τ1

0
f (ψ)e−n1ψ ln

(
T(t − ψ)V(t − ψ)

TV

)
dψ

+ (1 − η)βT1V1

∫ τ2

0
g(ψ)e−n2ψ ln

(
T(t − ψ)V(t − ψ)

TV

)
dψ +

αηe−n3τ3

α + d2
βT1V1F ln

(
L(t − τ3)

L

)
+

αηe−n3τ3

α + d2
βT1V1F ln

(
I(t − τ4)

I

)
+ (1 − η)βT1V1G ln

(
I(t − τ4)

I

)
+

d3uen4τ4

k

(
V1 − d5

q

)
A.

From the steady-state conditions of SS1, we have ρβT1 − d3d4en4τ4

k = 0.
Now, using the following equalities

ln
(

T(t − ψ)V(t − ψ)

TV

)
+ ln

(
L(t − τ3)

L

)
= ln

(
T1

T

)
+ ln

(
L(t − τ3)V1

L1V

)
+ ln

(
L1T(t − ψ)V(t − ψ)

LT1V1

)
,

ln
(

T(t − ψ)V(t − ψ)

TV

)
+ ln

(
I(t − τ4)

I

)
= ln

(
T1

T

)
+ ln

(
I(t − τ4)V1

I1V

)
+ ln

(
I1T(t − ψ)V(t − ψ)

IT1V1

)
,
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we obtain

dV1

dt
≤ −ρ

(
d1 − r +

rT1

Tmax

)
(T − T1)

2

T
+ ρβT1V1 − ρβT1V1

T1

T

− αηe−n3τ3

α + d2
βT1V1

∫ τ1

0
f (ψ)e−n1ψ L1T(t − ψ)V((t − ψ)

LT1V1
dψ +

αηe−n3τ3

α + d2
βT1V1F

− (1 − η)βT1V1

∫ τ2

0
g(ψ)e−n2ψ I1T(t − ψ)V(t − ψ)

IT1V1
dψ − αηe−n3τ3

α + d2
βT1V1F

I1L(t − τ3)

IL1

+
αηe−n3τ3

α + d2
βT1V1F + (1 − η)βT1V1G − ρβT1V1

V1 I(t − τ4)

VI1
+ ρβT1V1

+ ρβT1V1 ln
(

T1

T

)
+

αηe−n3τ3

α + d2
βT1V1

∫ τ1

0
f (ψ)e−n1ψ ln

(
L1T(t − ψ)V(t − ψ)

LT1V1

)
dψ

+ (1 − η)βT1V1

∫ τ2

0
g(ψ)e−n2ψ ln

(
I1T(t − ψ)V(t − ψ)

IT1V1

)
dψ +

αηe−n3τ3

α + d2
βT1V1F ln

(
L(t − τ3)V1

L1V

)

+ (1 − η)βT1V1G ln
(

I(t − τ4)V1

I1V

)
+

αηe−n3τ3

α + d2
βT1V1F ln

(
I(t − τ4)

I

)
+

d3uen4τ4

k

(
V1 − d5

q

)
A.

(16)

By using the equality

ln
(

L(t − τ3)V1

L1V

)
+ ln

(
I(t − τ4)

I

)
= ln

(
I1L(t − τ3)

IL1

)
+ ln

(
V1 I(t − τ4)

VI1

)
,

and rearranging the R.H.S. of (16), we obtain

dV1

dt
≤ −ρ

(
d1 − r +

rT1

Tmax

)
(T − T1)

2

T
− ρβT1V1H

(
T1

T

)
− ρβT1V1H

(
V1 I(t − τ4)

VI1

)

− αηe−n3τ3

α + d2
βT1V1

∫ τ1

0
f (ψ)e−n1ψH

(
L1T(t − ψ)V(t − ψ)

LT1V1

)
dψ

− αηe−n3τ3

α + d2
βT1V1FH

(
I1L(t − τ3)

IL1

)

− (1 − η)βT1V1

∫ τ2

0
g(ψ)e−n2ψH

(
I1T(t − ψ)V(t − ψ)

IT1V1

)
dψ

+
d3uen4τ4

k

(
V1 − d5

q

)
A.

Since d1 − r + rT1
Tmax

> 0, then we obtain

d1 − r +
rd3d4en4τ4

kβTmaxρ
> 0 =⇒ d1 − r +

d5β

q
+

2rd3d4en4τ4

kβTmaxρ
> 0

=⇒ 2rd3d4en4τ4

kβTmaxρ
−
(

r − d1 − d5β

q

)
> 0.
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Then, we note that

R1 ≤ 1 ⇐⇒ Tmax

2r

⎡⎣r − d1 − d5β

q
+

√(
r − d1 − d5β

q

)2
+

4rλ

Tmax

⎤⎦ ≤ d3d4en4τ4

kβρ

⇐⇒
√(

r − d1 − d5β

q

)2
+

4rλ

Tmax
<

2rd3d4en4τ4

kβTmaxρ
−
(

r − d1 − d5β

q

)

⇐⇒ 4rλ

Tmax
<

4r2d2
3d2

4e2n4τ4

k2β2T2
maxρ2 − 4rd3d4en4τ4

kβTmaxρ

(
r − d1 − d5β

q

)

⇐⇒ rλ <
r2d2

3d2
4e2n4τ4

k2β2Tmaxρ2 − r2d3d4en4τ4

kβρ
+

rd1d3d4en4τ4

kβρ
+

rd3d4d5en4τ4

kqρ

⇐⇒ λke−n4τ4 ρ

d3d4
+

r
β
−
(

d1

β
+

rd3d4en4τ4

kβ2Tmaxρ

)
<

d5

q

⇐⇒ V1 <
d5

q
.

Thus, dV1
dt ≤ 0 when R1 ≤ 1 and d1 − r + rT1

Tmax
> 0. Moreover, dV1

dt = 0 when
T = T1, L = L1, I = I1, V = V1 and A = 0. Thus, the largest invariant subset of M1 ={
(T, L, I, V, A) | dV1

dt
= 0
}

is M′
1 = {SS1}. By LIP [60], SS1 is GAS when R1 ≤ 1 < R0

and d1 − r + rT1
Tmax

> 0.

The following result illustrates that when R1 > 1 and d1 − r + rT2
Tmax

> 0, COVID-19
infection with active antibody immunity is always established, regardless of the initial
conditions.

Theorem 4. The steady state SS2 of system (1)–(5) is GAS when R1 > 1 and d1 − r + rT2
Tmax

> 0.

Proof. Define a Lyapunov function V2(T, L, I, V, A) as

V2 = ρT2H
(

T
T2

)
+

αe−n3τ3

α + d2
L2H

(
L
L2

)
+ I2H

(
I
I2

)
+

d3en4τ4

k
V2H

(
V
V2

)
+

d3uen4τ4

kq
A2H

(
A
A2

)
+ U2(t),

where

U2(t) =
αηe−n3τ3

α + d2
βT2V2

∫ τ1

0
f (ψ)e−n1ψ

∫ t

t−ψ
H
(

T(φ)V(φ)

T2V2

)
dφdψ

+ (1 − η)βT2V2

∫ τ2

0
g(ψ)e−n2ψ

∫ t

t−ψ
H
(

T(φ)V(φ)

T2V2

)
dφdψ

+ αe−n3τ3 L2

∫ t

t−τ3

H
(

L(φ)
L2

)
dφ + d3 I2

∫ t

t−τ4

H
(

I(φ)
I2

)
dφ.

We have V2(T, L, I, V, A) > 0 for all T, L, I, V, A > 0, and V2(T2, L2, I2, V2, A2) = 0.
Then, we have
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dV2

dt
=ρ

(
1 − T2

T

)
Ṫ +

αe−n3τ3

α + d2

(
1 − L2

L

)
L̇ +

(
1 − I2

I

)
İ +

d3en4τ4

k

(
1 − V2

V

)
V̇

+
d3uen4τ4

kq

(
1 − A2

A

)
Ȧ +

dU2(t)
dt

.

=ρ

(
1 − T2

T

)[
λ − d1T + rT

(
1 − T

Tmax

)
− βTV

]

+
αe−n3τ3

α + d2

(
1 − L2

L

)[
η
∫ τ1

0
f (ψ)e−n1ψβT(t − ψ)V(t − ψ)dψ − (α + d2)L

]

+

(
1 − I2

I

)[
(1 − η)

∫ τ2

0
g(ψ)e−n2ψβT(t − ψ)V(t − ψ)dψ + αe−n3τ3 L(t − τ3)− d3 I

]

+
d3en4τ4

k

(
1 − V2

V

)[
ke−n4τ4 I(t − τ4)− d4V − uAV

]
+

d3uen4τ4

kq

(
1 − A2

A

)
[qAV − d5 A]

+ ρβTV − αηe−n3τ3

α + d2

∫ τ1

0
f (ψ)e−n1ψβT(t − ψ)V(t − ψ)dψ

− (1 − η)
∫ τ2

0
g(ψ)e−n2ψβT(t − ψ)V(t − ψ)dψ

+
αηe−n3τ3

α + d2
βT2V2

∫ τ1

0
f (ψ)e−n1ψ ln

(
T(t − ψ)V(t − ψ)

TV

)
dψ

+ (1 − η)βT2V2

∫ τ2

0
g(ψ)e−n2ψ ln

(
T(t − ψ)V(t − ψ)

TV

)
dψ

+ αe−n3τ3

(
L − L(t − τ3) + L2 ln

(
L(t − τ3)

L

))
+ d3

(
I − I(t − τ4) + I2 ln

(
I(t − τ4)

I

))
.

(17)

Summing the terms of Equation (17), we obtain

dV2(t)
dt

= ρ

(
1 − T2

T

)[
λ − d1T + rT

(
1 − T

Tmax

)]
+ ρβT2V

− αηe−n3τ3

α + d2

∫ τ1

0
f (ψ)e−n1ψ L2βT(t − ψ)V(t − ψ)

L
dψ + αe−n3τ3 L2

− (1 − η)
∫ τ2

0
g(ψ)e−n2ψ I2βT(t − ψ)V(t − ψ)

I
dψ − αe−n3τ3

I2L(t − τ3)

I
+ d3 I2 − d3d4en4τ4

k
V

− d3
V2 I(t − τ4)

V
+

d3d4en4τ4

k
V2 +

d3uen4τ4

k
V2 A − d3d5uen4τ4

kq
A − d3uen4τ4

k
A2V +

d3d5uen4τ4

kq
A2

+
αηe−n3τ3

α + d2
βT2V2

∫ τ2

0
f (ψ)e−n1ψ ln

(
T(t − ψ)V(t − ψ)

TV

)
dψ

+ (1 − η)βT2V2

∫ τ2

0
g(ψ)e−n2ψ ln

(
T(t − ψ)V(t − ψ)

TV

)
dψ + αe−n3τ3 L2 ln

(
L(t − τ3)

L

)

+ d3 I2 ln
(

I(t − τ4)

I

)
.

(18)
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The steady state conditions at SS2 are given by

λ = d1T2 − rT2

(
1 − T2

Tmax

)
+ βT2V2,

αe−n3τ3 L2 =
αηe−n3τ3

α + d2
FβT2V2,

d3 I2 = ρβT2V2,

d3 I2 =
d3d4en4τ4

k
V2 +

d3uen4τ4

k
A2V2,

V2 =
d5

q
.

and we obtain

λ − d1T + rT
(

1 − T
Tmax

)
= (T2 − T)

(
d1 − r +

rT2

Tmax
+

rT
Tmax

)
+ βT2V2.

By using the above conditions, the derivative in (18) is transformed into

dV2
dt

≤ −ρ

(
d1 − r +

rT2
Tmax

)
(T − T2)

2

T
+ ρβT2V2 − ρβT2V2

T2
T

+

(
ρβT2 − d3d4en4τ4

k
− d3uen4τ4

k
A2

)
V

− αηe−n3τ3

α + d2
βT2V2

∫ τ1

0
f (ψ)e−n1ψ L2T(t − ψ)V(t − ψ)

LT2V2
dψ +

αηe−n3τ3

α + d2
βT2V2F

− (1 − η)βT2V2

∫ τ2

0
g(ψ)e−n2ψ I2T(t − ψ)V(t − ψ)

IT2V2
dψ − αηe−n3τ3

α + d2
βT2V2F

I2L(t − τ3)

IL2

+
αηe−n3τ3

α + d2
βT2V2F + (1 − η)βT2V2G − ρβT2V2

V2 I(t − τ4)

VI2
+ ρβT2V2

+
αηe−n3τ3

α + d2
βT2V2

∫ τ1

0
f (ψ)e−n1ψ ln

(
T(t − ψ)V(t − ψ)

TV

)
dψ

+ (1 − η)βT2V2

∫ τ2

0
g(ψ)e−n2ψ ln

(
T(t − ψ)V(t − ψ)

TV

)
dψ +

αηe−n3τ3

α + d2
βT2V2F ln

(
L(t − τ3)

L

)

+
αηe−n3τ3

α + d2
βT2V2F ln

(
I(t − τ4)

I

)
+ (1 − η)βT2V2G ln

(
I(t − τ4)

I

)
.

From the steady-state conditions of SS2, we have

ρβT2 − d3d4en4τ4

k
− d3uen4τ4

k
A2 = 0.

Now, using the following equalities

ln
(

T(t − ψ)V(t − ψ)

TV

)
+ ln

(
L(t − τ3)

L

)
= ln

(
T2

T

)
+ ln

(
L(t − τ3)V2

L2V

)
+ ln

(
L2T(t − ψ)V(t − ψ)

LT2V2

)
,

ln
(

T(t − ψ)V(t − ψ)

TV

)
+ ln

(
I(t − τ4)

I

)
= ln

(
T2

T

)
+ ln

(
I(t − τ4)V2

I2V

)
+ ln

(
I2T(t − ψ)V(t − ψ)

IT2V2

)
,

we obtain
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dV2

dt
≤ −ρ

(
d1 − r +

rT2

Tmax

)
(T − T2)

2

T
+ ρβT2V2 − ρβT2V2

T2

T

− αηe−n3τ3

α + d2
βT2V2

∫ τ1

0
f (ψ)e−n1ψ L2T(t − ψ)V((t − ψ)

LT2V2
dψ +

αηe−n3τ3

α + d2
βT2V2F

− (1 − η)βT2V2

∫ τ2

0
g(ψ)e−n2ψ I2T(t − ψ)V(t − ψ)

IT2V2
dψ − αηe−n3τ3

α + d2
βT2V2F

I2L(t − τ3)

IL2

+
αηe−n3τ3

α + d2
βT2V2F + (1 − η)βT2V2G − ρβT2V2

V2 I(t − τ4)

VI2
+ ρβT2V2

+ ρβT2V2 ln
(

T2

T

)
+

αηe−n3τ3

α + d2
βT2V2

∫ τ1

0
f (ψ)e−n1ψ ln

(
L2T(t − ψ)V(t − ψ)

LT2V2

)
dψ

+ (1 − η)βT2V2

∫ τ2

0
g(ψ)e−n2ψ ln

(
I2T(t − ψ)V(t − ψ)

IT2V2

)
dψ +

αηe−n3τ3

α + d2
βT2V2F ln

(
L(t − τ3)V2

L2V

)

+ (1 − η)βT2V2G ln
(

I(t − τ4)V2

I2V

)
+

αηe−n3τ3

α + d2
βT2V2F ln

(
I(t − τ4)

I

)
.

By using the equality

ln
(

L(t − τ3)V2

L2V

)
+ ln

(
I(t − τ4)

I

)
= ln

(
I2L(t − τ3)

IL2

)
+ ln

(
V2 I(t − τ4)

VI2

)
,

and rearranging the R.H.S. of dV2
dt , we obtain

dV2

dt
≤ −ρ

(
d1 − r +

rT2

Tmax

)
(T − T2)

2

T
− ρβT2V2H

(
T2

T

)
− ρβT2V2H

(
V2 I(t − τ4)

VI2

)

− αηe−n3τ3

α + d2
βT2V2

∫ τ1

0
f (ψ)e−n1ψH

(
L2T(t − ψ)V(t − ψ)

LT2V2

)
dψ

− αηe−n3τ3

α + d2
βT2V2FH

(
I2L(t − τ3)

IL2

)

− (1 − η)βT2V2

∫ τ2

0
g(ψ)e−n2ψH

(
I2T(t − ψ)V(t − ψ)

IT2V2

)
dψ.

We see that
dV2

dt
≤ 0 when R1 > 1 and d1 − r +

rT2

Tmax
> 0. Moreover,

dV2

dt
= 0

when T = T2, L = L2, I = I2, and V = V2. The solutions of system (1)–(5) tend toward

M′
2, the largest invariant subset of M2 = {(T, L, I, V, A, C) | dV2

dt
= 0}. For each element

in M′
2, we have V = V2 and then V̇ = 0, and from Equation (4), we have 0 = V̇ =

ke−n4τ4 I2 − d4V2 − uAV2, which gives A(t) = A2. It follows that M′
2 = {SS2}. By LIP [60],

SS2 is GAS when R1 > 1 and d1 − r + rT2
Tmax

> 0.
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5. Numerical Simulations

In this section, we execute numerical simulations to enhance the results of Theorems 2–4.
Moreover, we study the impact of time delays on the dynamical behavior of the system. Let
us take a particular form of the probability distributed functions as

f (ψ) = δ(ψ − ψ1), g(ψ) = δ(ψ − ψ2),

where δ(.) is the Dirac delta function. When τi → ∞, i = 1, 2, we have∫ ∞

0
f (ψ)dψ = 1,

∫ ∞

0
g(ψ)dψ = 1.

We have ∫ ∞

0
δ(ψ − ψi)e−niψdψ = e−niψi , i = 1, 2.

Moreover,∫ ∞

0
δ(ψ − ψi)e−niψT(t − ψ)V(t − ψ)dψ = e−niψi T(t − ψi)V(t − ψi), i = 1, 2.

Hence, model (1)–(5) becomes

Ṫ(t) = λ − d1T(t) + rT(t)
(

1 − T(t)
Tmax

)
− βT(t)V(t), (19)

L̇(t) = ηβe−n1ψ1 T(t − ψ1)V(t − ψ1)− αL(t)− d2L(t), (20)

İ(t) = (1 − η)βe−n2ψ2 T(t − ψ2)V(t − ψ2) + αe−n3τ3 L(t − τ3)− d3 I(t), (21)

V̇(t) = ke−n4τ4 I(t − τ4)− d4V(t)− uA(t)V(t), (22)

Ȧ(t) = qA(t)V(t)− d5 A(t). (23)

The threshold parameters R0 and R1 of model (19)–(23) are given by

R0 =
kβe−n4τ4 T0

d3d4

(
αηe−n3τ3

α + d2
e−n1ψ1 + (1 − η)e−n2ψ2

)
, (24)

R1 =
kβe−n4τ4 T2

d3d4

(
αηe−n3τ3

α + d2
e−n1ψ1 + (1 − η)e−n2ψ2

)
. (25)

To solve system (19)–(23) numerically, we use the MATLAB solver dde23 (see the
Appendix A). Without loss of generality, let us consider for simplicity that ψ1 = ψ2 = τ3 =
τ4 = τ. The values of the parameters of model (19)–(23) are chosen as λ = 0.11, r = 0.01,
Tmax = 13, η = 0.5, α = 4.08, k = 0.25, u = 0.05, d1 = 0.01, d2 = 10−3, d3 = 0.05, d4 = 4.36,
d5 = 0.04, n1 = 10−3, n2 = 0.11, n3 = 1, and n4 = 1. The remaining parameters of the
model will be varied. We have chosen the parameters of the model in order to perform the
numerical simulations. This is because the difficulty of obtaining real data from COVID-19
patients; however, if one has real data, then the parameters of the model can be estimated
and the validity of the model can be established. To illustrate our global stability results
provided in Theorems 2–4, we show that, from any chosen initial states (any disease stage),
the solution of the system will converge to one of the three steady states of the system.
Therefore, we select three different sets of initial conditions for system (19)–(23):

Initial-1 : (T(κ), L(κ), I(κ), V(κ), A(κ)) =(10, 0.007, 1, 0.04, 8),

Initial-2 : (T(κ), L(κ), I(κ), V(κ), A(κ)) =(8, 0.008, 1.1, 0.05, 10),

Initial-3 : (T(κ), L(κ), I(κ), V(κ), A(κ)) =(6, 0.009, 1.2, 0.06, 12),

where κ ∈ [−τ, 0].
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5.1. Stability of Steady States

In this subsection, we address the stability of the three steady states with τ = 0.1,
while β and q are varied.

Scenario 1 (Stability of SS0): β = 0.05 and q = 0.1. Using these values, we compute
R0 = 0.5874 < 1 and R1 = 0.2291 < 1. According to Theorem 2, SS0 is GAS and SARS-
CoV-2 is predicted to be completely cleared from the body. From Figure 1, we see that
the numerical results confirm the results of Theorem 2. We note that the concentration of
healthy epithelial cells is increased and converges to its normal value T0 = 11.9583, while
the concentrations of latent infected cells, active infected cells, SARS-CoV-2 particles, and
antibodies are decaying and tend toward zero. In this situation, the virus particles will be
eliminated from the body.
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Figure 1. Solutions of system (19)–(23) with three initial conditions when R0 ≤ 1. (a) Healthy epithe-
lial cells; (b) latent infected cells; (c) active infected cells; (d) SARS-CoV-2 particles; (e) antibodies.
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Scenario 2 (Stability of SS1): β = 0.13 and q = 0.1. This gives R0 = 1.5273 > 1,
R1 = 0.2622 < 1, and d1 − r + rT1

Tmax
= 0.006 > 0. According to Theorem 3, SS1 is GAS.

From Figure 2, we can see that there is agreement between the numerical and theoretical
results of Theorem 3. In addition, the solutions of the system converge to the steady state
SS1 = (7.8298, 0.0077, 1.19, 0.0617, 0). In such a case, SARS-CoV-2 exists but with an inactive
antibody immune response.
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Figure 2. Solutions of system (19)–(23) with three initial conditions when R1 ≤ 1 < R0 and

d1 − r +
rT1

Tmax
> 0. (a) Healthy epithelial cells; (b) latent infected cells; (c) active infected cells;

(d) SARS-CoV-2 particles; (e) antibodies.
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Scenario 3 (Stability of SS2): β = 0.13 and q = 0.9. These values give R0 = 1.5273 > 1,
R1 = 1.1212 > 1, and d1 − r+ rT2

Tmax
= 0.0068 > 0. According to Theorem 4, SS2 is GAS. Further,

the solutions of the system converge to the steady state SS2 = (8.7786, 0.0062, 0.9604, 0.0444,
10.567). In this situation, SARS-CoV-2 exists with active antibody immunity (Figure 3).
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Figure 3. Solutions of system (19)–(23) with three initial conditions when R1 > 1 and d1 − r+
rT2

Tmax
>

0. (a) Healthy epithelial cells; (b) latent infected cells; (c) active infected cells; (d) SARS-CoV-2 particles;
(e) antibodies.

5.2. Effect of the Time Delay on the SARS-CoV-2 Dynamics

In this subsection, we explore the impact of time delays τ on the stability of the steady
states. We note from Equations (24) and (25) that the parameters R0 and R1 rely on the
delay parameter τ, which causes a significant change in the stability of the system. To
clarify this situation, we choose β = 0.13, q = 0.9, and τ is varied. Moreover, we consider
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the initial state initial-3. Figure 4 shows the influence of the time delay on the solution of the
system. We notice that as time delay τ is increased, the number of healthy epithelial cells
is increased, while the numbers of latent infected cells, active infected cells, SARS-CoV-2
particles, and antibodies are decreased. Now, let us write R0 and R1 as

R0(τ) =
kβe−n4τT0

d3d4

[
αηe−n3τ

α + d2
e−n1τ + (1 − η)e−n2τ

]
,

R1(τ) =
kβe−n4τT2

d3d4

[
αηe−n3τ

α + d2
e−n1τ + (1 − η)e−n2τ

]
.

0 200 400 600 800 1000 1200
6

7

8

9

10

11

12

(a)

0 200 400 600 800 1000 1200
0

1

2

3

4

5

6

7

8

9
10-3

(b)

0 200 400 600 800 1000 1200
0

0.2

0.4

0.6

0.8

1

1.2

(c)

0 200 400 600 800 1000 1200
0

0.01

0.02

0.03

0.04

0.05

0.06

(d)

0 200 400 600 800 1000 1200
0

2

4

6

8

10

12

14

(e)

Figure 4. Solutions of system (19)–(23) under the influence of the time delay τ. (a) Healthy epithelial
cells; (b) latent infected cells; (c) active infected cells; (d) SARS-CoV-2 particles; (e) antibodies.
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We see that R0 and R1 are decreasing functions of τ. Let τcr0 and τcr1 be such
that R0(τcr0) = 1 and R1(τcr1) = 1. Using the values of the parameters, we obtain
τcr0 = 0.380835 and τcr1 = 0.174848. Therefore, we have the following cases:

(i) if τ ≥ 0.380835, then R0 ≤ 1 and SS0 is GAS;
(ii) if 0.174848 ≤ τ < 0.380835, then R1 ≤ 1 < R0 and 0.006753 ≤ d1 − r + rT1

Tmax
<

0.009199 and SS1 is GAS;
(iii) if 0 ≤ τ < 0.174848, then R1 > 1 and d1 − r + rT1

Tmax
= 0.006753 > 0 and SS2 is

GAS. We can see from the above argumentation that increasing time delay values can have
the same impact as antiviral treatment.

6. Conclusions and Discussion

In this paper, we formulate a COVID-19 infection model with distributed and discrete
delays and an antibody immune response. Four time delays are included in the model: a
delay in the formation of latent infected cells, a delay in the formation of active infected
cells, a delay in the activation of latent infected cells, a maturation delay of new SARS-
CoV-2 particles. We consider a logistic term for the healthy epithelial cells. We prove the
nonnegativity and boundedness of the solutions. We calculate all steady states and establish
that their existence is governed by two threshold parameters: the basic reproduction
number R0 and the antibody immune response activation number R1. The global stability
of all steady states of the model is investigated by constructing Lyapunov functions and
LaSalle’s invariance principal. We prove the following:

• The healthy steady state SS0 always exists and it is GAS when R0 ≤ 1. This leads to
the situation of an individual without SARS-CoV-2 infection.

• The infected steady state with an inactive antibody immune response SS1 exists if
R0 > 1 and d1 − r + rT1

Tmax
> 0. It is GAS when R1 ≤ 1 < R0 and d1 − r + rT1

Tmax
> 0.

This represents the situation of SARS-CoV-2 infection in a patient with an inactive
immune response.

• The infected steady state with active antibody immune response SS2 exists and it is
GAS when R1 > 1 and d1 − r + rT2

Tmax
> 0. This leads to the situation of SARS-CoV-2

infection in a patient with an active immune response.

We performed numerical simulations for the model and found that both the numerical
and theoretical results are consistent. We studied the effect of time delays on the global
dynamical properties of the model. We note that R0 is a decreasing function on time delays
τ1, τ2, τ3, and τ4. When all other parameters are fixed and delays are sufficiently large, R0
becomes less than one, which makes the healthy steady state SS0 globally asymptotically
stable. From a biological viewpoint, time delays play positive roles in the SARS-CoV-2
infection process in order to eliminate the virus. Sufficiently large time delays slow down
SARS-CoV-2’s development, and SARS-CoV-2 is controlled and disappears. This offers
some suggestions on new drugs to prolong the time for the formation of latent infected
epithelial cells, the time for the formation of active infected epithelial cells, the time for the
activation of latent infected epithelial cells, or the time for SARS-CoV-2 particles to mature
(infectious).

The model investigated in this work can be developed by (i) using real data to estimate
the parameters’ values and examine the validity of the model, (ii) considering the diffusion
of SARS-CoV-2 particles and cells [61,62], (iii) expanding it to a multiscale model to obtain
a deeper understanding of the SARS-CoV-2 dynamics [63,64], (iv) incorporating the role of
CTLs in killing the active infected cells. If we consider system (1)–(5) under the effect of
CTL immunity, system (1)–(5) is extended to the following model:
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Ṫ(t) = λ − d1T(t) + rT(t)
(

1 − T(t)
Tmax

)
− βT(t)V(t),

L̇(t) = η
∫ τ1

0
f (ψ)e−n1ψβT(t − ψ)V(t − ψ)dψ − αL(t)− d2L(t),

İ(t) = (1 − η)
∫ τ2

0
g(ψ)e−n2ψβT(t − ψ)V(t − ψ)dψ + αe−n3τ3 L(t − τ3)− d3 I(t)− ωI(t)C(t),

V̇(t) = ke−n4τ4 I(t − τ4)− d4V(t)− uA(t)V(t),

Ȧ(t) = qA(t)V(t)− d5 A(t),

Ċ(t) = σI(t)C(t)− d6C(t),

where C(t) represents the concentration of CTLs at time t. The active infected cells are
killed by CTLs at rate ωCI. The terms σCI and d6C refer to the proliferation and death rates
of CTLs, respectively. Studying the SARS-CoV-2 dynamics model with such extensions is
left to future work.
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Appendix A

MATLAB scripts
function H = COVID (t,y,Z)
global lambda beta eta tau1 tau2 tau3 tau4 alpha d1 d2 d3 d4 d5 r k u q n1 n2 n3 n4

Tmax
ylag1 = Z (:,1); ylag2 = Z (:,2); ylag3 = Z (:,3); ylag4 = Z (:,4);
H=zeros (5,1);
H (1)=lambda-d1*y (1)+r*y (1)*(1-y (1)/Tmax)-beta*y (1)*y (4);
H (2)=eta*beta*exp (-n1*tau1)*ylag1 (1)*ylag1 (4)-(alpha+d2)*y (2);
H (3)=(1-eta)*beta*exp (-n2*tau2)*ylag2 (1)*ylag2 (4)+alpha*exp (-n3*tau3)*ylag3 (2)-

d3*y (3);
H (4)=k*exp (-n4*tau4)*ylag4 (3)-d4*y (4)-u*y (4)*y (5);
H (5)=q*y (4)*y (5)-d5*y (5);
end
Main Programm
global lambda beta eta tau1 tau2 tau3 tau4 alpha d1 d2 d3 d4 d5 r k u q n1 n2 n3 n4

Tmax
caseNumber=3;
j=1;
if caseNumber==1
beta=0.05;
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q=0.1;
end
if caseNumber==2
beta=0.13;
q=0.1;
end
if caseNumber==3
beta=0.13;
q=0.9;
end
%===== Fixed data =======
lambda=0.11; r=0.01; Tmax=13; eta=0.5; alpha=4.08; k=0.25; u=0.05; d1=0.01; d2=1e-3;

d3=0.05; d4=4.36; d5=0.04; n1=0.001; n2=0.11; n3=1; n4=1;
%==== Delay parameters =====
tau1=0.1; tau2=0.1; tau3=0.1; tau4=0.1;
%===Initial conditions =====
a0=10;b0=0.007;c0=1.;d0=0.04;e0=8;
sol12 = dde23 (’COVID’,[tau1 tau2 tau3 tau4],[a0; b0; c0; d0; e0], [0 1200]);
figure (1)
pp0=plot (sol12.x, sol12.y(j,:));
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Abstract: This work deals with mathematical modeling of dynamical systems. We consider a class of
two-sex branching processes with several mating and reproduction strategies. We provide some prob-
abilistic and statistical contributions. We deduce general expressions for the probability generating
functions underlying the probability model, we derive some properties concerning the behavior of
the states of the process and we determine estimates for the offspring mean vectors governing the re-
production phase. Furthermore, we extend the two-sex model considering immigration of female and
male individuals from external populations. The results are illustrated through simulated examples.
The investigated two-sex models are of particular interest to mathematically describe the population
dynamics of biological species with a single reproductive episode before dying (semalparous species).

Keywords: mathematical modeling; branching models; two-sex models; models with immigration;
population dynamics

MSC: 60J80; 62M05

1. Introduction

In this work, we continue the research line about the class of two-sex branching
processes with several mating and reproductive strategies introduced in [1]. Branching
processes are usually used as mathematical models to describe the population dynamics of
biological species, see, e.g., [2–4]. In particular, a fairly rich literature has emerged concern-
ing discrete-time two-sex branching processes, see the surveys by [5,6], and discussions
therein. Most of these stochastic models assume that all the couples female-male have
identical reproductive behavior (they produce new female and male individuals according
to the same offspring probability distribution) and also that mating and reproduction
depend on the number of progenitor couples in the population, see, e.g., [7–11]. In many
biological species, due to environmental factors, reproduction occurs in a non-predictable
environment where both phases, mating and reproduction, usually are influenced by the
current numbers of females and males in the population, see, e.g., [12]. In order to describe
the probabilistic evolution of such species, branching processes had not been sufficiently
investigated. To this purpose, in [1], a class of two-sex branching models was introduced.
Several results about such a class of models have been derived in [13,14]. We continue this
research line providing new probabilistic and statistical contributions.

The paper is organized as follows. In Section 2, we mathematically describe the
probability model and we derive some theoretical contributions. In Section 3, we extend
the probability model and the previous contributions incorporating immigration of females
and males from external populations. We include illustrative examples. In Section 4, we
present the concluding remarks and some questions for research.

Mathematics 2022, 10, 2061. https://doi.org/10.3390/math10122061 https://www.mdpi.com/journal/mathematics53
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2. Probability Model

In [1], on a probability space (Ω,A, P), we introduced a two-sex branching process
{Xn}∞

n=0, Xn = (Fn, Mn) representing the number of female and male individuals at
generation n. The probability model assumes nm ≥ 1 and nr ≥ 1 mating and reproduction
strategies, respectively. It is described as follows, where N and N+ denote the non-negative
and positive integers, respectively:

1. Mating phase is represented by a sequence of nm two arguments integer-valued
functions {Ll}l∈Nm , Nm := {1, . . . , nm}. Each Ll is assumed to be non-decreasing and
such that Ll( f , m) ≤ f m, f , m ∈ N. At generation n, according to the l-th mating
strategy, Ll(Fn, Mn) couples female-male are formed.

2. Reproduction phase is modeled by a sequence of nr probability distributions (offspring
distributions) {Ph}h∈Nr , Nr := {1, . . . , nr}, Ph := {ph

( f ,m)
}( f ,m)∈Sh

, Sh ⊆ N2, ph
( f ,m)

being the probability that a given couple produces exactly f females and m males
when Ph is the underlying reproductive strategy.

3. In each generation, the mating and reproduction strategies are determined through
functions ϕm and ϕr, both defined on N2 and taking values on Nm and Nr, respectively.

We start with X0 = (F0, M0) ∈ N2
+. Then, given that at generation n, Xn = x ∈ N2, we

obtain that Lϕm(x) and Pϕr(x) are the mating and reproductive strategies, respectively. Hence,

Xn+1 = (Fn+1, Mn+1) :=
Lϕm(x)(x)

∑
i=1

(Fϕr(x)
n,i , Mϕr(x)

n,i ), n ∈ N (1)

with Fϕr(x)
n,i and Mϕr(x)

n,i denoting, respectively, the number of female and male individuals
originated by the i-th couple at generation n. For each h ∈ Nr, independently of n, the ran-
dom vectors (Fh

n,i, Mh
n,i), i = 1, . . . , Lϕm(x)(x), defined on (Ω,A, P), are assumed to be i.i.d.

with Ph being the offspring distribution,

P(Fh
n,1 = f , Mh

n,1 = m) = ph
( f ,m), ( f , m) ∈ Sh

Given x0, . . . , xn, xn+1 ∈ N2, by considering that independently of the generation n,
the random vectors (Fh

n,i, Mh
n,i) are i.i.d., it is derived from (1),

P(Xn+1 = xn+1 | X0 = x0, . . . , Xn = xn) = P

⎛⎝Lϕm(xn)(xn)

∑
i=1

(Fϕr(xn)
n,i , Mϕr(xn)

n,i ) = xn+1

⎞⎠
= P(Xn+1 = xn+1 | Xn = xn)

Note that, the corresponding transition probabilities are independent of the generation
n considered. In fact, for x, z ∈ N2,

P(Xn+1 = z | Xn = x) = P

⎛⎝Lϕm(x)(x)

∑
i=1

(Fϕr(x)
n,i , Mϕr(x)

n,i ) = z

⎞⎠ = ∑
z1,...,zd∈Δz

d

∏
i=1

pϕr(x)
zi

where d = Lϕm(x)(x) and Δz := {z1, . . . , zd ∈ N2 :
d
∑

i=1
zi = z}. Hence, {Xn}∞

n=0 is a

homogeneous Markov chain with state space N2. Clearly, if for some n, Xn = (0, 0) then
Xn+j = (0, 0), j ≥ 1. Thus, (0, 0) is an absorbent state.

Remark 1. Two-sex Model (1) is particularly appropriate to mathematically describe the population
dynamics of semalparous species, namely, biological species with a single reproductive episode before
dying. Functions Ll, ϕm, and ϕr, should be flexible enough in order to fit the main features of
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the species we pretend to describe. Usually, such functions will depend of biological/ethological
parameters of interest in the demographic dynamics of the species.

Let fh(s, t) := E[sFh
0,1 tMh

0,1 ] and gn(s, t) := E[sFn tMn ], s, t ∈ [0, 1], be the probability
generating functions (p.g.f.) of (Fh

0,1, Mh
0,1) and (Fn, Mn), h ∈ Nr, n ∈ N, respectively.

Clearly, g0(s, t) = sF0 tM0 . Next result determines the general expression for gn, n ∈ N+.

Proposition 1. For n ∈ N,

gn+1(s, t) = E
[
( fϕr(Xn)(s, t))Lϕm(Xn)(Xn)

]
, s, t ∈ [0, 1]

Proof. Given n ∈ N,

gn+1(s, t) = E[sFn+1 tMn+1 ] = E
[

E[sFn+1 tMn+1 | Xn]
]

= ∑
x∈N2

E

⎡⎢⎣s

Lϕm(x)(x)

∑
i=1

Fϕr(x)
n,i t

Lϕm(x)(x)

∑
i=1

Mϕr(x)
n,i

⎤⎥⎦P(Xn = x)

= ∑
x∈N2

(
E[sFϕr(x)

0,1 tMϕr(x)
0,1 ]

)Lϕm(x)(x)
P(Xn = x)

= ∑
x∈N2

(
fϕr(x)(s, t)

)Lϕm(x)(x)
P(Xn = x)

= E
[
( fϕr(Xn)(s, t))Lϕm(Xn)(Xn)

]
, s, t ∈ [0, 1]

We now provide some properties about the behavior of the states of {Xn}∞
n=0. To this

purpose, we assume that Ll , l ∈ Nm, are superadditive functions, i.e., given n ∈ N+,

Ll

(
n

∑
i=1

xi

)
≥

n

∑
i=1

Ll(xi), xi ∈ N
2, l ∈ Nm (2)

Superadditivity is a classical and logical requirement in two-sex branching process literature.
Furthermore, for x ∈ N2, independently of n, let

Cx := {y ∈ N
2 : P(Xn+m = y | Xn = x) > 0 for some m ≥ 1}

be the set of states which can be reached from x.

Proposition 2. Assume x0 ∈ N2
+ such that ph

x0
> 0, Ll(x0) > 1, h ∈ Nr, l ∈ Nm. Given

x ∈ N2:

(a) There exists x′ ∈ N2 with Lϕm(x′)(x′) > Lϕm(x)(x) verifying that x′ ∈ Cx0 .

(b) If ph
(0,0) > 0, h ∈ Nr, then (0, 0) ∈ Cx.

Proof.

(a) Let us introduce the sequence {xn}∞
n=0, where

xn+1 := x0Lϕm(xn)(xn), n ∈ N
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By using (2) and the fact that Ll(x0) > 1, l ∈ Nm,

Lϕm(xn+1)
(xn+1) = Lϕm(xn+1)

(
x0Lϕm(xn)(xn)

)
= Lϕm(xn+1)

⎛⎝Lϕm(xn)(xn)

∑
i=1

x0

⎞⎠
≥

Lϕm(xn)(xn)

∑
i=1

Lϕm(xn+1)
(x0)

= Lϕm(xn)(xn)Lϕm(xn+1)
(x0)

> Lϕm(xn)(xn)

Hence {Lϕm(xn)(xn)}∞
n=0 ↗ ∞. Consequently, given x ∈ N2, there exists xn such that

Lϕm(xn)(xn) > Lϕm(x)(x). Thus, it is sufficient to check that xn ∈ Cx0 . In fact, if for
some l ∈ N+, Xl = x0, then:

P(Xl+n = xn | Xl = x0) ≥
n−1

∏
i=0

P(Xl+i+1 = xi+1 | Xl+i = xi) =
n−1

∏
i=0

P(Xl+1 = xi+1 | Xl = xi) (3)

Now, using that xi+1 = x0Lϕm(xi)
(xi) and ph

x0
> 0, h ∈ Nr,

P(Xl+1 = xi+1 | Xl = xi) = P

⎛⎝Lϕm(xi)
(xi)

∑
j=1

(Fϕr(xi)
l,j , Mϕr(xi)

l,j ) = xi+1

⎞⎠ ≥ (pϕr(xi)
x0 )

Lϕm(xi)
(xi) > 0

Therefore, from (3),

P(Xl+n = xn | Xl = x0) ≥
(

pϕr(xi)
x0

)n−1
∑

i=0
Lϕm(xi)

(xi)
> 0

(b) If for some n ∈ N, Xn = x, then:

P(Xn+1 = (0, 0) | Xn = x) = P

⎛⎝Lϕm(x)(x)

∑
j=1

(Fϕr(x)
n,j , Mϕr(x)

n,j ) = (0, 0)

⎞⎠ =
(

pϕr(x)
(0,0)

)Lϕm(x)(x)
> 0

Let μh := (μh
1, μh

2) and Δh := (σh
ij)i,j=1,2 be, respectively, the mean vector and the

covariance matrix of (Fh
0,1, Mh

0,1), h ∈ Nr,

μh
i := ∑

(k1,k2)∈Sh

ki ph
(k1,k2)

, σh
ij := ∑

(k1,k2)∈Sh

(ki − μh
i )(kj − μh

j )ph
(k1,k2)

, i, j = 1, 2.

For n ∈ N and x ∈ N2, let us denote by μx
n+1 and Δx

n+1 the mean vector and the
covariance matrix, respectively, of Xn+1 given that Xn = x. From Proposition 1, it can be
verified that, independently of n:

E[sFn+1 tMn+1 | Xn = x] = ( fϕr(x)(s, t))Lϕm(x)(x), s, t ∈ [0, 1]

μx
n+1 = Lϕm(x)(x)μϕr(x), Δx

n+1 = Lϕm(x)(x)Δϕr(x) (4)

Next, we consider the estimation of μh, h ∈ Nr. To this end, we will assume that,
for some n ∈ N+, we know the observations of the variables:

X0, Lϕm(Xk)
(Xk), Xk+1, k = 0, . . . , n (5)
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For each h ∈ Nr, let Th := {k ∈ {0, . . . , n} : ϕr(Xk) = h}, i.e., the set of generations
(until generation n) where Ph has been the reproductive strategy.

Proposition 3. Given h ∈ Nr such that Th �= ∅ and ∑
k∈Th

Lϕm(Xk)
(Xk) > 0, a conditional

moment-based estimator for μh using the data sample (5), is given by:

μ̂h =

(
∑

k∈Th

Lϕm(Xk)
(Xk)

)−1

∑
k∈Th

Xk+1 (6)

Proof. From (4),
E[Xk+1 | Xk] = Lϕm(Xk)

(Xk)μ
ϕr(Xk) a.s.

Hence, by using the moment estimation procedure, we can propose as estimate for
μϕr(Xk), based on the observations of Lϕm(Xk)

(Xk) and Xk+1,

μ
ϕr(Xk)
(k) := (Lϕm(Xk)

(Xk))
−1Xk+1, k = 0, . . . , n (7)

It is verified that,

E
[

μ
ϕr(Xk)
(k) | Lϕm(Xk)

(Xk) > 0
]
= μϕr(Xk)

In fact,

E
[

μ
ϕr(Xk)
(k) | Lϕm(Xk)

(Xk) > 0
]
=

∑
z∈N+

z−1E[Xk+1 | Lϕm(Xk)
(Xk) = z]P(Lϕm(Xk)

(Xk) = z)

P(Lϕm(Xk)
(Xk) > 0)

=

∑
z∈N+

z−1E[
z
∑

i=1
(Fϕk(Xk)

k,i , Mϕk(Xk)
k,i )]P(Lϕm(Xk)

(Xk) = z)

P(Lϕm(Xk)
(Xk) > 0)

=

μϕr(Xk) ∑
z∈N+

P(Lϕm(Xk)
(Xk) = z)

P(Lϕm(Xk)
(Xk) > 0)

= μϕr(Xk)

Thus, by considering (7), we propose as appropriate estimator for μh:

μ̂h := ∑
k∈Th

βh
kμh

(k) (8)

where ∑
k∈Th

βh
k = 1. Taking βh

k ∝ Lϕm(Xk)
(Xk), we deduce,

βh
k =

(
∑

k∈Th

Lϕm(Xk)
(Xk)

)−1

Lϕm(Xk)
(Xk)

Consequently, from (7) and (8), we derive the Expression (6).

Example 1. Let us consider a two-sex model (1) where, given ( f , m) ∈ N2,

1. Females and males form couples through the nm = 2 mating strategies:

L1( f , m) = �K1 f min{1, m}�, L2( f , m) = �K1m min{ f , 1}�
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�·� denoting integer part and K1 ∈ (0, 1) representing the estimated proportion of individuals
in the population which disappears due to environmental factors.

2. The couples produce new female and male individuals according to the nr = 2 reproductive
strategies Ph = {ph

( f ,m)
}, h = 1, 2, where:

p1
( f ,m) := P(F1

0,1 = f , M1
0,1 = m) = e−2.5(1.3) f (1.2)m( f !m!)−1 (9)

p2
( f ,m) := P(F2

0,1 = f , M2
0,1 = m) = e−2.4(1.1) f (1.3)m( f !m!)−1 (10)

Thus, we are considering two bivariate Poisson laws as offspring distributions. In fact, Poisson
probability distribution is very used to describe the probabilistic evolution of biological species.
From (9) and (10) we deduce,

μ1 = (1.3, 1.2), Δ1 =

(
1.3 0
0 1.2

)

μ2 = (1.1, 1.3), Δ2 =

(
1.1 0
0 1.3

)
Offspring distribution P1 favors the birth of females, with a ratio females/males of the means
equal to 1.083. This ratio has a value of 0.847 for the offspring distribution P2 that consequently
favors the birth of males.

3. In each generation, we assume the following functions ϕm and ϕr:

ϕm( f , m) = 1I{ f m−1>K2}( f , m) + 2I{ f m−1≤K2}( f , m)

ϕr( f , m) = 1I{ f≤m}( f , m) + 2I{ f>m}( f , m)

IA being the indicator function of the set A and K2 representing a suitable threshold for the
ratio females/males.

As illustration, taking, e.g., X0 = (300, 80), K1 = 0.75 and K2 = 1.05, applying the
computing programs we have implemented through the statistical software R, ([15]), we have
simulated data for a total number of 30 generations, see Table 1.

Table 1. Females and males (Xn), mating strategy (ln), couples (Zn = Lϕm(Xn)(Xn)) and reproductive
strategy (hn) in the successive generations.

Generation Xn ln Zn hn Generation Xn ln Zn hn

0 (300, 80) 1 225 2 16 (154, 124) 1 115 2
1 (236, 302) 2 226 1 17 (130, 134) 2 100 1
2 (308, 275) 1 231 2 18 (124, 105) 1 93 2
3 (238, 298) 2 223 1 19 (104, 135) 2 101 1
4 (307, 269) 1 230 2 20 (128, 117) 1 96 2
5 (229, 301) 2 225 1 21 (122, 106) 1 91 2
6 (288, 271) 1 216 2 22 (86, 131) 2 98 1
7 (244, 240) 2 180 2 23 (125, 106) 1 93 2
8 (182, 239) 2 179 1 24 (106, 130) 2 97 1
9 (223, 218) 2 163 2 25 (122, 148) 2 111 1
10 (191, 214) 2 160 1 26 (131, 125) 2 93 2
11 (197, 205) 2 153 1 27 (89, 115) 2 86 1
12 (190, 169) 1 142 2 28 (119, 111) 1 89 2
13 (148, 195) 2 146 1 29 (96, 116) 2 87 1
14 (172, 183) 2 137 1 30 (112, 118) 2 88 1
15 (162, 175) 2 131 1

From Table 1, we have that:
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T1 = {1, 3, 5, 8, 10, 11, 13, 14, 15, 17, 19, 22, 24, 25, 27, 29, 30},

T2 = {0, 2, 4, 6, 7, 9, 12, 16, 18, 20, 21, 23, 26, 28}
Hence, by (6), we determine the following estimates for μh, h = 1, 2,

μ̂1 = (1.266, 1.203), μ̂2 = (1.070, 1.291) (11)

From (11),

max
h=1,2

{
max
i=1,2

{|μ̂h
i − μh

i |}
}

= 0.034

This value indicates good accuracy for the obtained estimates. See also Figure 1.

Figure 1. Evolution of the estimates μ̂1
i and μ̂2

i , i = 1, 2, in the successive generations belonging to T1

and T2, respectively.

3. Probability Model with Immigration

In this section, the previous two-sex probability model is extended including immigra-
tion of females and males from external populations. On the probability space (Ω,A, P) we
now introduce the sequence {Yn}∞

n=0, Yn = (Fn, Mn) representing the number of female and
male individuals in the population at generation n. Initially we assume Y0 = (F0, M0) ∈ N2

+.
As in model (1), given that Yn = y ∈ N2, then Lln and Phn with ln := ϕm(y) and hn := ϕr(y)
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are the mating and reproductive strategies at the n-th generation, respectively. At genera-
tion n + 1,

Yn+1 = (Fn+1, Mn+1) :=
Lϕm(y)(y)

∑
i=1

(Fϕr(y)
n,i , Mϕr(y)

n,i ) + (FI
n+1, MI

n+1), n ∈ N (12)

where FI
n+1 (MI

n+1) represents the number of immigrant females (males). It is assumed
that, {(FI

n, MI
n)}∞

n=1 is a sequence of i.i.d non-negative variables (defined on (Ω,A, P))
independent of (Fh

0,1, Mh
0,1), h ∈ Nr. The probability distribution (immigration distribution)

of (FI
1 , MI

1) will be denoted by {q( f ,m)}( f ,m)∈N, q( f ,m) := P(FI
1 = f , MI

1 = m).

From (12), given y0, . . . , yn, yn+1 ∈ N2, using that {(FI
n, MI

n)}∞
n=1 is a sequence of i.i.d

random vectors independent of (Fh
0,1, Mh

0,1), h ∈ Nr,

P(Yn+1 = yn+1 | Y0 = y0, . . . , Yn = yn) = P

⎛⎝Lϕm(yn)(yn)

∑
i=1

(Fϕr(yn)
n,i , Mϕr(yn)

n,i ) + (FI
n+1, MI

n+1) = yn+1

⎞⎠
= P(Yn+1 = yn+1 | Yn = yn)

Again, the transition probabilities are independent of the generation n considered.
In fact, for y, z ∈ N2,

P(Yn+1 = z | Yn = y) = P

⎛⎝Lϕm(y)(y)

∑
i=1

(Fϕr(y)
n,i , Mϕr(y)

n,i ) + (FI
n+1, MI

n+1) = z

⎞⎠ = ∑
z1,...,zd ,w∈Δ∗

z

d

∏
i=1

pϕr(y)
zi qw

where d = Lϕm(y)(y) and Δ∗
z := {z1, . . . , zd, w ∈ N2 :

d
∑

i=1
zi + w = z}. Thus, {Yn}∞

n=0 is a

homogeneous Markov chain with state space N2.

In what follows, we provide analogous results to Propositions 1–3 for this new class of
two-sex branching processes with immigration of females and males.

For s, t ∈ [0, 1], let φ(s, t) := E[sFI
1 tMI

1 ], hn(s, t) := E[sFn tMn ], n ∈ N, be the p.g.f. of
(FI

1 , MI
1) and Yn = (Fn, Mn), respectively. We have that h0(s, t) = sF0 tM0 . The general

expression for hn, n ∈ N+, is given in the following result.

Proposition 4. For n ∈ N,

hn+1(s, t) = φ(s, t)E
[
( fϕr(Yn)(s, t))Lϕm(Yn)(Yn)

]
, s, t ∈ [0, 1]

Proof. Given n ∈ N,

hn+1(s, t) = E[sFn+1 tMn+1 ] = E
[

E[sFn+1 tMn+1 | Yn]
]

= ∑
y∈N2

E

⎡⎢⎣s

Lϕm(y)(y)

∑
i=1

Fϕr(y)
n,i +FI

n+1
t

Lϕm(y)(y)

∑
i=1

Mϕr(y)
n,i +MI

n+1

⎤⎥⎦P(Yn = y)

= ∑
y∈N2

E
[
sFI

1 tMI
1

](
E
[

sFϕr(y)
0,1 tMϕr(y)

0,1

])Lϕm(y)(y)
P(Xn = y)

= φ(s, t)E
[
( fϕr(Yn)(s, t))Lϕm(Yn)(Yn)

]
, s, t ∈ [0, 1].

For the next result, we assume again that Ll , l ∈ Nm, are superadditive functions.
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Proposition 5. Assume y0, z0 ∈ N2
+ such that ph

y0
> 0, qz0 > 0, Ll(y0) > 1, h ∈ Nr, l ∈ Nm.

Given y ∈ N2:

(a) There exists y′ ∈ N2, with Lϕm(y′)(y′) > Lϕm(y)(y), verifying that y′ ∈ Cy0 .

(b) z0 ∈ Cy.

Proof.

(a) Let us consider the sequence {yn}∞
n=0, where

yn+1 := y0Lϕm(yn)(yn) + z0, n ∈ N

By the superadditivity of Ll , l ∈ Nm,

Lϕm(yn+1)
(yn+1) = Lϕm(yn+1)

(y0Lϕm(yn)(yn) + z0)

= Lϕm(yn+1)

⎛⎝Lϕm(yn)(yn)

∑
i=1

y0 + z0

⎞⎠
≥

Lϕm(yn)(yn)

∑
i=1

Lϕm(yn+1)(y0) + Lϕm(yn+1)
(z0)

= Lϕm(yn)(yn)Lϕm(yn+1)(y0) + Lϕm(yn+1)
(z0)

> Lϕm(yn)(yn)

Hence {Lϕm(yn)(yn)}∞
n=0 ↗ ∞. Thus, given y ∈ N2, there exists yn such that

lϕm(yn)(yn) > Lϕm(y)(y). If for some l ∈ N+, Yl = y0, then:

P(Yl+n = yn | Yl = y0) ≥
n−1

∏
i=0

P(Yl+i+1 = yi+1 | Yl+i = yi) =
n−1

∏
i=0

P(Yl+1 = yi+1 | Yl = yi) (13)

Now, using that yi+1 = y0Lϕm(yi)
(yi) + z0,

P(Yl+1 = yi+1 | Yl = yi) = P

⎛⎝Lϕm(yi)
(yi)

∑
j=1

(Fϕr(yi)
l,j , Mϕr(yi)

l,j

⎞⎠+ (FI
l+1, MI

l+1) = yi+1)

≥
(

pϕr(yi)
y0

)Lϕm(yi)
(yi)

qz0 > 0

Therefore, from (13),

P(Yl+n = yn | Yl = y0) ≥
(

pϕr(yi)
y0

)n−1
∑

i=0
Lϕm(yi)

(yi)
(qz0)

n−1 > 0

We deduce that yn ∈ Cy0 and the result is proved.
(b) If for some n ∈ N, Yn = y, then

P(Yn+1 = z0 | Yn = y) = P

⎛⎝Lϕm(y)(y)

∑
j=1

(Fϕr(y)
n,j , Mϕr(y)

n,j ) + (FI
n+1, MI

n+1) = z0

⎞⎠
≥
(

pϕr(y)
(0,0)

)Lϕm(y)(y)
qz0 > 0

Let us denote by μI and ΔI the mean vector and the covariance matrix of (FI
1 , MI

1),
respectively. Furthermore, for n ∈ N and y ∈ N2, let η

y
n+1 and Γy

n+1 the mean vector and
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covariance matrix, respectively, of Yn+1 given that Yn = y. From Proposition 4, it can be
checked that, independently of n:

E[sFn+1 tMn+1 | Yn = y] = φ(s, t)( fϕr(y)(s, t))Lϕm(y)(y), s, t ∈ [0, 1]

η
y
n+1 = Lϕm(y)(y)μ

ϕr(y) + μI , Γy
n+1 = Lϕm(y)(y)Δ

ϕr(y) + ΔI (14)

We now consider the estimation of μh, h ∈ Nr and μI . We will assume that, for some
n ∈ N+, we know the observations of the variables:

Y0, Lϕm(Yk)
(Yk), Yk+1, YI

k+1 k = 0, . . . , n (15)

where, by simplicity YI
k+1 := (FI

k+1, MI
k+1). Clearly, we can propose as estimator for μI ,

based on the data sample (15),

μ̂I = (n + 1)−1
n

∑
k=0

YI
k+1 (16)

For each h ∈ Nr, let T∗
h := {k ∈ {0, . . . , n} : ϕr(Yk) = h} be the set of generations

(until the generation n) where Ph has been the underlying reproductive strategy.

Proposition 6. Given h ∈ Nr such that T∗
h �= ∅ and ∑

k∈T∗
h

Lϕm(Yk)
(Yk) > 0, a conditional

moment-based estimator for μh using the data sample (15), is given by:

μ̂h =

⎛⎝ ∑
k∈T∗

h

Lϕm(Yk)
(Yk)

⎞⎠−1

∑
k∈T∗

h

(Yk+1 − YI
k+1) (17)

Proof. From (14),
E[Yk+1 | Yk] = Lϕm(Yk)

(Yk)μ
ϕr(Yk) + μI a.s.

Hence, by moment estimation procedure, we propose as estimate for μϕr(Yk), based on
the observations of Lϕm(Yk)

(Yk) (assumed positive), Yk+1 and YI
k+1,

μ
ϕr(Yk)
(k) = (Lϕm(Yk)

(Yk))
−1(Yk+1 − YI

k+1), k = 0, . . . , n (18)

It can be verified that,

E
[

μ
ϕr(Yk)
(k) | Lϕm(Yk)

(Yk) > 0
]
= μϕr(Yk)

Taking into account (18), an appropriate estimator for μh, based on the data sample (15),
is given by:

μ̂h = ∑
k∈T∗

h

γh
k μh

(k) (19)

where ∑
k∈T∗

h

γh
k = 1. Taking γh

k ∝ Lϕm(Yk)
(Yk), we deduce,

γh
k = ∑

k∈T∗
h

(Lϕm(Yk)
(Yk))

−1Lϕm(Yk)
(Yk)

Hence, from (18) and (19), we obtain Expression (17).

62



Mathematics 2022, 10, 2061

Example 2. Let the two-sex probability model (1) considered in Example 1. We now assume
that, in each generation, immigrant females and males enter the population from other populations
according to a certain probability distribution, for example, the trinomial distribution:

q( f ,m) = (50!)( f !m!(50 − f − m)!)−1(0.4) f (0.4)m(0.2)50− f−m

f , m ∈ {0, 1, . . . , 50}, f + m ≤ 50

We deduce that,

μI = (20, 20), ΔI =

(
12 −8
−8 12

)
As illustration, taking Y0 = (300, 80), K1 = 0.75 and K2 = 1.05, we have simulated data for

a total number of 30 generations, see Table 2.

Table 2. Females and males (Yn), mating strategy (ln), couples (Zn = Lϕm(Yn)(Yn)), immigrant females
and males (YI

n) and reproductive strategy (hn) in the successive generations.

Generation Yn ln Zn Y I
n hn Generation Yn ln Zn Y I

n hn

0 (300, 80) 1 225 (0, 0) 2 16 (379, 356) 1 284 (20, 20) 2
1 (250, 343) 2 257 (17, 23) 1 17 (320, 396) 2 297 (18, 16) 1
2 (389, 314) 1 291 (24, 15) 2 18 (427, 384) 1 320 (16, 17) 2
3 (354, 387) 2 290 (23, 17) 1 19 (358, 428) 2 321 (20, 19) 1
4 (425, 366) 1 318 (17, 25) 2 20 (446, 386) 1 334 (18, 21) 2
5 (369, 411) 2 308 (14, 28) 1 21 (401, 455) 2 341 (24, 17) 1
6 (410, 369) 1 307 (17, 24) 2 22 (459, 452) 2 339 (19, 22) 2
7 (379, 412) 2 309 (22, 19) 1 23 (408, 465) 2 348 (20, 25) 1
8 (453, 411) 1 339 (17, 22) 2 24 (491, 419) 1 368 (19, 21) 2
9 (389, 444) 2 333 (17, 24) 1 25 (432, 501) 2 375 (24, 20) 1

10 (484, 410) 1 363 (21, 23) 2 26 (514, 433) 1 385 (20, 21) 2
11 (453, 445) 2 333 (21, 19) 2 27 (437, 509) 2 381 (18, 23) 1
12 (426, 425) 2 318 (27, 17) 2 28 (520, 524) 2 393 (20, 20) 1
13 (369, 408) 2 306 (16, 22) 1 29 (497, 509) 2 381 (23, 18) 1
14 (389, 374) 2 280 (13, 22) 2 30 (464, 496) 2 372 (22, 16) 1
15 (306, 375) 2 281 (14, 24) 1

From Table 2, we have that:

T∗
1 = {1, 3, 5, 7, 9, 13, 15, 17, 19, 21, 23, 25, 27, 28, 29, 30},

T∗
2 = {0, 2, 4, 6, 8, 10, 11, 12, 14, 16, 18, 20, 22, 24, 26}

Hence, by (16) and (17),

μ̂I = (18.633, 20.133), μ̂1 = (1.313, 1.198), μ̂2 = (1.115, 1.272)

We obtain,

max
i=1,2

{
|μ̂I

i − μI
i |
}
= 1.367, max

h=1,2

{
max
i=1,2

{|μ̂h
i − μh

i |}
}

= 0.028

These values indicate good accuracy for the proposed estimates. See also Figures 2 and 3.
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Figure 2. Evolution of the estimates μ̂I
i , i = 1, 2, in the successive generations.

Figure 3. Evolution of the estimates μ̂1
i and μ̂2

i , i = 1, 2, in the successive generations belonging to T∗
1

and T∗
2 , respectively.
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4. Conclusions

In this research, we have focused attention to the mathematical modeling of the popu-
lation dynamics in biological species with sexual reproduction. We have considered the
possibility of multiple mating and reproductive strategies, thereby continuing the research
line initiated in previous papers. Several probabilistic and statistical contributions have
been derived. In particular, general expressions for the probability generating functions
associated with the variables of interest in the underlying probability model have been
deduced (Proposition 1), some properties about the behavior of the states of the process
have been studied (Proposition 2) and estimates for the mean vectors of the offspring
distributions have been proposed (Proposition 3). This class of two-sex branching models
has been generalized by considering immigration of females and males from external
populations. The previous results have been then extended to this new class of models
with immigration (Propositions 4–6). As illustration, for both classes of two-sex models,
simulated examples have been presented.

Some questions for future research are, e.g., consider alternative inferential procedures
in order to estimate the main parameters governing the reproduction phase; determine
the probability distribution associated with the number of generations elapsed before the
possible extinction of the population; or explore potential applications of the investigated
two-sex models in phenomena of ecological and environmental interest, for example,
in mathematical modeling of the phenomenon concerning populating or re-populating a
certain habitat with some semelparous species.
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Abstract: Mathematical modelling of epidemiological and coevolutionary dynamics is widely being
used to improve disease management strategies of infectious diseases. Many diseases present some
form of intra-host quiescent stage, also known as covert infection, while others exhibit dormant stages
in the environment. As quiescent/dormant stages can be resistant to drug, antibiotics, fungicide
treatments, it is of practical relevance to study the influence of these two life-history traits on the
coevolutionary dynamics. We develop first a deterministic coevolutionary model with two parasite
types infecting one host type and study analytically the stability of the dynamical system. We
specifically derive a stability condition for a five-by-five system of equations with quiescence. Second,
we develop a stochastic version of the model to study the influence of quiescence on stochasticity
of the system dynamics. We compute the steady state distribution of the parasite types which
follows a multivariate normal distribution. Furthermore, we obtain numerical solutions for the
covariance matrix of the system under symmetric and asymmetric quiescence rates between parasite
types. When parasite strains are identical, quiescence increases the variance of the number of infected
individuals at high transmission rate and vice versa when the transmission rate is low. However, when
there is competition between parasite strains with different quiescent rates, quiescence generates
a moving average behaviour which dampen off stochasticity and decreases the variance of the
number of infected hosts. The strain with the highest rate of entering quiescence determines the
strength of the moving average and the magnitude of reduction of stochasticity. Thus, it is worth
investigating simple models of multi-strain parasite under quiescence/dormancy to improve disease
management strategies.

Keywords: parasite dormancy; moving average; epidemiology; stochasticity; coevolution; infectious
diseases

MSC: 92D30; 34F05; 60H30

1. Introduction

Dormancy or quiescence is a bet-hedging strategy common to many bacteria,
fungi [1,2], invertebrates [3], and plants which evolves to dampen off the effect of bad condi-
tions and maximize the reproductive output under good conditions [4–6]. This bet-hedging
in time occurs when the individual (bacteria, fungus, invertebrates) or the offspring of
the individual (plants, invertebrates) enter dormancy with a low metabolic state for some
period of time during which reproduction and evolution occurs in the active part of the
population. The dormant individuals constitutes a reservoir, the so-called seed banks, and
can re-enter the active population at a later time point. Dormancy (quiescence) evolves a
bet-hedging strategy in response to unpredictable environments such as random variations
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of the abiotic conditions [7], competition under density-dependence regulation of the popu-
lation [8], contact between a bacteria host and viruses [9], frequency- or density-dependent
selection due to host-parasite coevolution [10] or prey-predator interactions. Dormancy
(quiescence) introduces overlap between generation and a storage effect which generates a
time delay in the generation time [11,12]. At the population level, dormancy is shown to
slow down the rate of genetic drift, that is increasing the time to random loss or fixation
of neutral alleles. Moreover, seed banks also slow down the action of natural selection by
increasing the time to fixation (loss) of the positively (deleterious) selected alleles [13–15].
We note the use of the term dormancy preferably for plant seeds or crustacean eggs (e.g.,
Daphnia sp.), while quiescence refers to individual bacteria or fungi switching between “on”
and “off” metabolic states [16]. As we focus on microparasites in the following, we prefer
the term quiescence from now on.

Parasite quiescence is a strategy of microparasites (bacteria, fungi) becoming inactive
inside an infected host for some period of time. During this period, the disease does not
progress in the host and the host can express symptoms or be asymptomatic. Importantly,
quiescent parasites do not contribute to the disease transmission. In the medical commu-
nity, the infections in which the parasite is quiescent or inactive are referred to as silent or
dormant, and in the virology literature they are referred to as covert [17]. Parasite quies-
cence has well known but yet underappreciated consequences for disease management.
During quiescence, the parasite are often resistant to the application of drugs, antibiotics or
fungicides [18–21]. Furthermore, applying antibiotics can trigger the switching of bacteria
from active to the inactive (quiescent) state. Plasmodium falciparum, the main agent of
malaria, has the ability to lurk in the hepatocytes of some patients, remaining inactive but
being resistance to drug treatments, causing later on disease relapse [10,21,22]. P. vivax,
another malarial agent, exhibits also the ability to become dormant in the liver of a host
for some weeks, months even up to a year or more, which makes the task to eradicate the
disease difficult [23–25]. Therefore, it is important to determine the (1) conditions for the
evolution of parasite quiescence, and (2) influence of quiescence on the sustainability of
parasite populations. A key theoretical study on the evolution of quiescence in animal
parasites [17] shows that silent/covert infection is not likely to be the optimal strategy (trait
value) for the parasite (so-called Evolutionary Stable Strategy (ESS)) in an epidemiological
model with one host and one parasite genotype. Parasite quiescence would only evolve
if there were substantial fluctuations in the host population size or seasonal variations in
transmission rates. Therefore, the authors state that their “models predict low rates of
covert infection, which does not reflect the consistent high levels that are found in some
host–parasite systems”. Based on a modelling framework with fixed population sizes but
two hosts and two parasite types, the host population can evolve dormancy as an optimal
strategy (ESS) as a result of the parasite pressure and coevolutionary dynamics [4]. While
more theoretical work is needed to decipher the conditions for the evolution of parasite
quiescence/dormancy, likely involving a combination of temporally variable environmen-
tal and coevolutionary pressures, we focus in the present study on the consequence of
quiescence for the stability and outcome of host-parasite coevolutionary dynamics. As a
first step in this direction, we consider here a model with one host and two parasite strains
(or types).

Indeed, one host population under pressure by several parasite strains, or even several
parasite species, is the rule rather than the exception [26,27]. Considering the epidemiologi-
cal dynamics under competition/co-infection between strains is important [7] to predict
the evolution of parasite virulence, that is disease induced death rate of host [28]. We
are interested here in understanding the epidemiological dynamics of a single host type
infected by one of the two parasite strains exhibiting quiescence. We ask whether quies-
cence affects the parameters for which two strains can co-exist or competitively exclude
one another. Furthermore, the maintenance of several strains, the persistence of disease
as endemic or the persistence of the host population are affected by stochastic processes.
Disease epidemics are subjected to stochasticity at various levels, the main one being in
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the transmission rate, and thus stochastic approaches are required to predict the outcome
of epidemics. While the deterministic model of epidemiology successfully captures the
behaviour when the size of host and parasite populations are large, stochasticity can affect
the outcome of the dynamics for small sizes significantly [29–32]. Quiescence affects the
size of the parasite active population and thus possibly the epidemiological dynamics. We
hereby hypothesize that quiescence may also affects the outcome of stochasticity on the
co-existence of our two parasite strains epidemiological model.

In the first part we describe our epidemiological model with changes in the number
of healthy and infected host individuals over time under quiescence of both parasite
strains. We then derive a stability condition for the dynamical ODE system. In the second
part of the study, we introduce stochasticity in disease transmission and derive a Fokker-
Planck equation of the Continuous Time Markov Chain model. Lastly, we perform some
numerical study on the model behaviour under stochasticity. We show that for symmetric
case i.e., when the infected class are identical and quiescence phases are also identical,
quiescence increases the variance, and decrease it when the rate of infection is small.
For asymmetric case i.e., when the infected class as well as the quiescence phases are not
identical, quiescence has a major effect in reducing the intensity of the noise in the stochastic
process, whenever the rate of entering (or exiting) quiescence differ between strains. By
analogy, we term this phenomenon as moving average.

2. Deterministic Model with Quiescence

2.1. Model Description

Our model is similar in essence to classic epidemiological models [7,11,33–36]. Here
we consider one host population and two parasite strains, thus the population is divided
into five mutually exclusive compartments: one healthy susceptible host compartment
H, two infected host, I1 and I2, infected by parasite of type 1 and 2 respectively, and two
quiescence compartments Q1 and Q2, comprise the infected individuals I1 and I2 for which
the parasite is in the quiescent state. We define the following system of ordinary differential
equations describing the rate of change of the number of individuals in each compartment.

dI1

dt
= β1HI1 − ρ1 I1 − dI1 − γ1 I1 − ν1 I1 + ζ1Q1 + ε1

dI2

dt
= β2HI2 − ρ2 I2 − dI2 − γ2 I2 − ν2 I2 + ζ2Q2 + ε2

dH
dt

= Λ − β1HI1 − β2HI2 − dH + ν1 I1 + ν2 I2

dQ1

dt
= ρ1 I1 − ζ1Q1 − dQ1

dQ2

dt
= ρ2 I2 − ζ2Q2 − dQ2

(1)

where Λ is the constant birth rate of healthy host and d to is the natural death rate, γ1
and γ2 are the disease induced death rate or (virulence) caused by parasite 1, and 2
respectively. Similarly all other parasite specific parameters such as disease transmission
rate β, recovery rate ν, rate at which parasite switches to quiescence ρ and the switching
back rate ζ are defined for each parasite strains separately. The parameters ε1 and ε2
are the rates of incoming migration of parasite 1 and 2 respectively from an outside
compartment/population. These parameters are introduced to avoid the competitive
exclusion principle, namely without the ε’s, one parasite type necessarily excludes the other
and there is no coexistence of both parasite types at the epidemic equilibrium, the same
effect is expected if the migration of quiescent parasite would occur (not shown here). We
assume (1) that the parasite lives and multiplies within its host, (2) the absence of multiple
infection so that strains 1 and 2 of the parasite are mutually exclusive on one host, and
(3) no latency period for the parasite, hence, the infected persons are infectious immediately
after infection. Note that the model reduces to a simple model of one susceptible host
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and two infected host types (SI1 I2S, referred to as system without quiescence) when
setting the quiescence parameters equal to zero (Appendix C). In the present study we are
particularly interested in following the number of hosts infected by parasite 1 or 2 and to
study conditions for which both types of parasites are maintained. We therefore assume
constant birth rate, to ensure a non-explosive process when moving to the stochastic version
of our model. We finally introduce the parameters ε1 and ε2 to promote the coexistence
of both strains at the equilibrium and to guarantee a unique steady state solution in the
continuous time Markov chain version of the model (see below, Stochastic model).

2.2. Steady State Solutions

In this section we find the equilibrium solutions of the system. First, we analyse the
system without inflow of new infection to the population (ε1 = ε2 = 0). This simple system
generically has the three equilibrium states: (1) a disease free equilibrium in which both
parasite strains die off and are removed from the system (yielding I1 = I2 = Q1 = Q2 = 0),
(2) two-boundary equilibria at which a single parasite strain survive i.e., competitive
exclusion when parameters of the model are non-symmetric (yielding in either I1 = Q1 = 0
or I2 = Q2 = 0). In the non-generic case that we have symmetric parameters, we have line
of stationary solutions. By evaluating the Jacobian matrix of the system, one can evaluate
the stability conditions for these equilibria. To ensure the existence of unique polymorphic
equilibrium, we introduce two parameters for invasion/immigration rates namely, ε1 and
ε2 which are greater than zero. The introduction of these two parameters results in moving
the disease free as well as one of the boundary equilibria to the negative cone i.e., makes
them to have negative values which is biologically meaningless. We are thereafter left
with only one polymorphic equilibrium which is biologically meaningful. Henceforth,
we focus on the analysis of the polymorphic equilibrium for which both parasite strains
are maintained in the system. We show the existence and uniqueness of this endemic
equilibrium under mild conditions (for more details, see Appendix A).

2.3. Stability Analysis

An n × n Jacobian matrix P is said to be stable, and thus an equilibrium being locally
stable, if all its eigenvalues lie on the left half plane. As it may be impractical to determine
the stability of a matrix analytically [11], by using the Lyapunov theorem to determine if
the system is stable, it is easier to apply the Routh-Hurwitz criterion [11,37,38]. However,
this criteria can be cumbersome if the matrix is of high dimension. In this section we
therefore derive the stability condition for a generic 5× 5 matrix G with parasite quiescence
by reducing our system to 3 × 3 which is more easily amenable to computation.

The Jacobian of system in Equation (1) evaluated at equilibrium is given as follows

G =

⎛⎜⎜⎜⎜⎝
β1H∗ − ρ1 − γ1 − ν1 − d 0 β1 I∗1 ζ1 0

0 β2H∗ − ρ2 − γ2 − ν2 − d β2 I∗2 0 ζ2
−β1H∗ + ν1 −β2H∗ + ν2 −β1 I∗1 − β2 I∗2 − d 0 0

ρ1 0 0 −ζ1 − d 0
0 ρ2 0 0 −ζ2 − d

⎞⎟⎟⎟⎟⎠.

Now we define a matrix
A ∈ ((ai,j)) ∈ R

3×3 (2)

to be the Jacobian matrix evaluated at equilibrium of the system without quiescent described
in Appendix C. We introduce B = G + dI, such that the spectrum of B is just the shifted
spectrum of G. Indeed, the stability of B implies stability of G.

Let

B =

⎛⎜⎜⎜⎜⎝
a11 − ρ1 a12 a13 ζ1 0

a21 a22 − ρ2 a23 0 ζ2
a31 a32 a33 0 0
ρ1 0 0 −ζ1 0
0 ρ2 0 0 −ζ2

⎞⎟⎟⎟⎟⎠. (3)
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Proposition 1. Let 3 × 3 matrix A be a Jacobian matrix of system without quiescence phase and
we also define

a1 = −tr(A) = −a11 − a22 − a33,

a2 = a11a22 + a11a33 + a22a33 − a23a32 − a12a21 − a13a31,

a3 = −det(A).

(4)

The matrix A in (2) is stable if and only if

tr(A) < 0, det (A) < 0 and a2 > 0. (5)

The above Proposition 1 is simply a reformulation of the Routh-Hurwitz criteria (see de-
tails in [11,37,38]). We now find a criteria for stability of B under the following proposition.

Proposition 2. The following three statements are equivalent for the matrix B above:

• Statement 1: The matrix B in (3) is stable for all ρ1, ρ2, ζ1, ζ2 > 0.

• Statement 2 : b1 > 0, b2 > 0, b3 > 0, b4 > 0, b5 > 0, b1b2b3 > b2
3 + b2

1b4,
(b1b4 − b5)(b1b2b3 − b2

3 − b2
1b4) > b5(b1b2 − b3)

2 + b1b2
5 for all ρ1, ρ2, ζ1, ζ2 > 0.

• Statement 3: det(A) < 0, tr(A) ≤ 0, a2 > 0, a11 ≤ 0, a22 ≤ 0, a33 ≤ 0,
a13a31 ≤ a11a33, a23a32 ≤ a22a33.

The above statements are technically equivalent in the sense that for the system in (1) to
be stable it must satisfy the given statements. We prove that statement 1 implies statement 2,
statement 2 implies statement 3 and statement 3 implies statement 1. This proposition is a
generalisation of the theorem in [11] and we use the same method as in [11] (see Appendix B
for the proof of the Proposition 2 above, as we prove the stability of a generic matrix B
as defined in (3)). The conditions in statement 3 of the above proposition can be used to
prove that the endemic equilibrium of (1) is locally asymptotically stable. Which means
that if the system undergoes a perturbation (the system is set not too far away from its
equilibrium) then the system eventually reaches its equilibrium. The local stability is not as
strong as global stability, the latter meaning that the system returns to it equilibrium after
whatever perturbation (without restriction). Note that we see the effect of local stability
of the equilibrium solutions in the stochastic simulations using Gillespie’s algorithm, as
the realisations (sample paths) remain within the domain of attraction of the deterministic
endemic equilibrium (Figure 1a,b).

As mentioned, the statement 2 may sometimes be hard to apply, thus as an alternative,
one can use statement 3 to show that (1) is locally asymptotically stable. This is relatively easy
as the dimension of the system is now reduced to 3 × 3, so that it is possible to compute the
Jacobian matrix of the system without quiescence (A5) described in Appendix C to obtain
the matrix A in (2). Then one can test the conditions described in statement 3 above. Once
those conditions are satisfied then the larger system (1) is also locally asymptotically stable.
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(a) (b)

Figure 1. Numerical simulations of the deterministic model (1) compared with stochastic simulation
using Gillespie’s algorithm. In (a), the initial population size is H = 1000, I1 = 100, I2 = 100,
Q1 = Q2 = 50. The values of the parameters are symmetrical; β1 = β2 = 0.005, Λ = 1000,
d = 0.5, ν1 = ν2 = 0.3, γ1 = γ2 = 0.003, ε1 = ε2 = 0.6, ζ1 = ζ2 = 0.7, ρ1 = ρ2 = 0.7. While in (b),
the initial population size is H = 100, I1 = 10, I2 = 10, Q1 = Q2 = 5. The values of the parameters
are asymmetrical; β1 = 0.005, β2 = 0.0005, Λ = 100, d = 0.3, ν1 = 0.3, ν2 = 0.003, γ1 = γ2 = 0.003,
ε1 = 10, ε2 = 50, ζ1 = 0.2, ζ2 = 0.4, ρ1 = 0.4, ρ2 = 0.1.

3. Stochastic Analysis

3.1. Transition Probabilities

This section defines a stochastic version to the deterministic model as described in
Equation (1) of Section 2.1. We add stochasticity occurring at any of the possible transition of
individuals between classes (birth and death). The transition probabilities of jumping from
one state (e.g., infected quiescent) to the another state (e.g., infected) are defined bellow.
We choose Δt very small so that during this time interval only one event occurs. The
proportion of healthy population is H, the proportion of infected by parasite 1 population
is I1, the proportion of infected by parasite 2 population is I2, the proportion of population
in quiescence compartment infected by parasite 1 is Q1 and the proportion of population
in quiescence compartment infected by parasite 2 is Q2. The possible changes are either
H + 1, H − 1, I1 + 1, I1 − 1, I2 + 1, I2 − 1, Q1 + 1, Q1 − 1, Q2 + 1, Q2 − 1 or no change at all.
Therefore, our stochastic process is a birth and death process. The one step transition
probabilities are given in Table 1.

3.2. Stochastic Simulations

In order to test the validity of our assumptions to analyse the stochastic system, we
used Gillespie’s algorithm [39–41] to generate stochastic realisations/sample paths of the
birth and death processes (Figure 1a,b). In (Figure 1a,b), the stochastic trajectories fluctuate
around the deterministic equilibrium as predicted by Equation (1). Please note that in
(Figure 1a) there are only three curves in the deterministic trajectories while there are five
in the stochastic realisation. This is to due the fact that we chose symmetric parameter
values of the model, so I1 = I2 and Q1 = Q2 in the deterministic setting, but not in the
stochastic version.
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Table 1. Transitions rates for the quiescence model 1.

Type Transition Rate

Birth of healthy host H (Ht, I1t, I2t, Q1t, Q2t) → (Ht + 1, I1t, I2t, Q1t, Q2t) ΛΔt + oΔ(t)
Natural death of H (Ht, I1t, I2t, Q1t, Q2t) → (Ht − 1, I1t, I2t, Q1t, Q2t) dHΔt + oΔ(t)
Infection of H by I1 (Ht, I1t, I2t, Q1t, Q2t) → (Ht − 1, I1t + 1, I2t, Q1t, Q2t) β1HI1Δt + oΔ(t)
Infection of H by I2 (Ht, I1t, I2t, Q1t, Q2t) → (Ht − 1, I1t, I2t + 1, Q1t, Q2t) β2HI2Δt + oΔ(t)

Death of I1 (Ht, I1t, I2t, Q1t, Q2t) → (Ht, I1t − 1, I2t, Q1t, Q2t) (d + γ1)I1Δt + oΔ(t)
Death of I2 (Ht, I1t, I2t, Q1t, Q2t) → (Ht, I1t, I2t − 1, Q1t, Q2t) (d + γ1)I2Δt + oΔ(t)

Recovery I1 & replacement with H (Ht, I1t, I2t, Q1t, Q2t) → (Ht + 1, I1t − 1, I2t, Q1t, Q2t) ν1 I1Δt + oΔ(t)
Recovery I2 & replacement with H (Ht, I1t, I2t, Q1t, Q2t) → (Ht + 1, I1t1, I2t − 1, Q1t, Q2t) ν2 I2Δt + oΔ(t)

Immigration to I1 (Ht, I1t, I2t, Q1t, Q2t) → (Ht, I1t + 1, I2t, Q1t, Q2t) ε1Δt + oΔ(t)
Immigration to I2 (Ht, I1t, I2t, Q1t, Q2t) → (Ht, I1t, I2t + 1, Q1t, Q2t) ε2Δt + oΔ(t)

Go quiescent I1 & birth of Q1 (Ht, I1t, I2t, Q1t, Q2t) → (Ht, I1t − 1, I2t, Q1t + 1, Q2t) ρ1 I1Δt + oΔ(t)
Go quiescent I1 & birth of Q1 (Ht, I1t, I2t, Q1t, Q2t) → (Ht, I1t, I2t − 1, Q1t, Q2t + 1) ρ2 I2Δt + oΔ(t)

Wake-up Q1 & replacement with I1 (Ht, I1t, I2t, Q1t, Q2t) → (Ht, I1t + 1, I2t, Q1t − 1, Q2t) ζ1Q1Δt + oΔ(t)
Wake-up Q2 & replacement with I2 (Ht, I1t, I2t, Q1t, Q2t) → (Ht, I1t, I2t + 1, Q1t, Q2t − 1) ζ2Q2Δt + oΔ(t)

Natural death of Q1 (Ht, I1t, I2t, Q1t, Q2t) → (Ht, I1t, I2t, Q1t − 1, Q2t) dQ1Δt + oΔ(t)
Natural death of Q2 (Ht, I1t, I2t, Q1t, Q2t) → (Ht, I1t, I2t, Q1t, Q2t − 1) dQ2Δt + oΔ(t)

3.3. Master Equation

The forward Kolmogorov differential equation also known as Master Equation, de-
scribes the rate of change of these probabilities is given in Table 1. The master equation
describes the evolution of the disease individuals at the early times of the infection. To
understand the long term dynamics, we need to derive its corresponding Fokker-Planck
equation.

Let p(i, j, k, l, m)(t) = Prob{H(t) = i, I1(t) = j, I2(t) = k, Q1(t) = l, Q2(t) = m}, then

dp(i,j,k,l,m)

dt
=Λp(i−1,j,k,l,m) + d(i + 1)p(i+1,j,k,l,m) + β1(i + 1)(j − 1)p(i+1,j−1,k,l,m)

+ (d + γ1)(j + 1)p(i,j+1,k,l,m) + β2(i + 1)(k − 1)p(i+1,j,k−1,l,m)

+ (d + γ2)(k + 1)p(i,j,k+1,l,m) + ν1(j + 1)p(i−1,j+1,k,l,m) + ν2(k + 1)p(i−1,j,k+1,l,m)

+ ε1 p(i,j−1,k,l,m) + ε2 p(i,j,k−1,l,m) + ρ1(j + 1)p(i,j+1,k,l−1,m) + ρ2(k + 1)p(i,j,k+1,l,m−1)

+ ζ1(l + 1)p(i,j−1,k,l+1,m) + ζ2(m + 1)p(i,j,k−1,l,m+1)

+ d(l + 1)p(i,j,k,l+1,m) + d(m + 1)p(i,j,k,l,m+1)

−
[
Λ + di + β1ij + (d + γ1)j + β2ik + (d + γ2)k + ν1 j + ν2k

+ ε1 + ε2 + ρ1 j + ρ2k + ζ1l + ζ2m + dl + dm
]

p(i,j,k,l,m)

(6)

This master Equation (6) is then used to work out Kramers-Moyal expansion that led to
the derivation of the Fokker-Planck equation below.

3.4. Fokker-Planck Equation of the Model

To understand the long term dynamics of the master Equation (6), we need to derive
the corresponding Fokker-Planck equation. The Fokker-Planck equation describes further
the rate of change of transitions probabilities described in Table 1. We can also find the long
term distribution of variables.

Now, let

p(i, j, k, l, m) =
∫ ih+ h

2

ih− h
2

∫ jh+ h
2

jh− h
2

∫ kh+ h
2

kh− h
2

∫ lh+ h
2

lh− h
2

∫ mh+ h
2

mh− h
2

u(x1, x2, x3, x4, x5)dx1dx2dx3dx4dx5 + o(h6),

let also x1 = ih, x2 = jh, x3 = kh, x4 = lh, x5 = mh and h = 1
N . We then performed

Kramers-Moyal expansion to derived the following Fokker-Planck equation which is given
as follows.
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∂tu(x1, . . . , x5, t) = −∂x1{hλ − dx1 − β1x1x2 − β2x1x3 + ν1x2 + ν2x3}u(x1, . . . , x5, t)

−∂x2{β1x1x2 − (d + γ1)x2 − ν1x2 − ρ1x2 + ζ1x4 + ε1}u(x1, . . . , x5, t)

−∂x3{β2x1x3 − (d + γ2)x2 − ν2x2 − ρ2x3 + ζ2x5 + ε2}u(x1, . . . , x5, t)

−∂x4{ρ1x2 − ζ1x4 − dx4}u(x1, . . . , x5, t)

−∂x5{ρ2x3 − ζ2x5 − dx5}u(x1, . . . , x5, t)

+
h
2

∂x1x1{hλ + dx1 + β1x1x2 + β2x1x3 + ν1x2 + ν2x3}u(x1, . . . , x5, t)

+
h
2

∂x2x2{β1x1x2 + (d + γ1)x2 + ν1x2 + ρ1x2 + hε1}u(x1, . . . , x5, t)

+
h
2

∂x3x3{β2x1x3 + (d + γ2)x3 + ν2x3 + ρ2x3 + hε2}u(x1, . . . , x5, t)

+
h
2

∂x4x4{ρ1x2 + ζ1x4 + dx4}u(x1, . . . , x5, t)

+
h
2

∂x5x5{ρ2x3 + ζ2x5 + dx5}u(x1, . . . , x5, t)

−h∂x1x2{β1x1x2 + ν1x2}u(x1, . . . , x5, t)

−h∂x1x3{β2x1x3 + ν1x3}u(x1, . . . , x5, t)

−h∂x2x4{ρ1x2 + ζ1x4}u(x1, . . . , x5, t)

−h∂x3x5{ρ2x3 + ζ2x5}u(x1, . . . , x5, t)

(7)

3.5. Linear Transformation of the Fokker-Planck Equation

In order to solve the above Fokker-Planck Equation (7), we use the so-called asymptotic
method (see for example [42]). The principle is to transform the multivariate Fokker-Planck
equation to a linear Fokker-Planck equation which is linearised around the stationary state
of the deterministic system (1). The solution of the linear Fokker-Planck is found to be
normally distributed, the solution is given in the following two theorems (see chapter
8 of [43]). We numerically checked this results using our stochastic simulations and the
comparison is shown in (Figure 2).

Figure 2. Histogram generated from simulations using Gillespie’s algorithm is compared to the
probability density with mean and variance obtained from simulation using Gillespie’s algorithm and
the probability density of normal distribution with mean and variance obtained from the theory of I1,
infected by parasite 1 compartment at time = 300 of the stochastic model with quiescence. The initial
population sizes of the model are; I1 = 50, 000, I2 = 10, 000, Q1 = 5000, Q2 = 5000. The parameters
of the model are β1 = β2 = 0.05, Λ = 1000, d = 0.5, ν1 = ν2 = 0.3, γ1 = γ2 = 0.003, ζ1 = ζ2 = 0.1,
ρ1 = ρ2 = 0.7, ε1 = ε2 = 10.
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Theorem 1. The linear multivariate Fokker-Planck of (7) can be written as follows

∂P(y, t)
dt

= −
5

∑
ij

Mij
∂

∂yi
yiP(y, t) +

1
2

5

∑
ij

Nij
∂2

∂yi∂yj
P(y, t) (8)

where y = (y1, . . . , y5), Nij is symmetric and positive definite, its solution is given as

P(y, t) = (2π)
1
2 det(Σ)

1
2 exp(−1

2
yΣ−1yT)

with
Σ−1 = 2

∫ ∞

0
e−MtNe−Mtdt.

The matrices N and M are defined explicitly in Appendix D.

Theorem 2. For every matrix N which is symmetric and positive-definite, there a unique solution
Σ−1 to the following equation known as Lyapunov equation

MΣ−1 + Σ−1MT = N

where Σ−1 is symmetric, positive-definite and equal to

Σ−1 =
∫ ∞

0
e−MtNe−MTtdt.

Theorem 2 which is known as Lyapunov equation [44] allows us to compute the
covariance matrix as found in the normal distribution shown in Theorem 1 fairly easily,
this is due to the fact that matrices A and B are constant matrices, the only unknown is the
Σ−1 matrix. The covariance matrix is of dimension 5 and tells us the degree at which each
compartments namely healthy, infected by strain 1 and 2 and quiescence class 1 and 2 go
together i.e., the relationship between each class. We use MATLAB to perform numerical
calculations for the analytical solutions of the covariance matrix Σ−1 .

We also computed 10,000 independent stochastic realisations using Gillespie’s algo-
rithm. The probability histogram was plotted in (Figure 2) for the number of infected
individuals by strain 1. This distribution is then compared with the probability density
function of the normal distribution with mean and variance obtained from both Gilliespie’s
algorithm and the normal approximation method using linear multivariate Fokker-Planck
Equation (7). The results are consistent which further validates our analytical result ob-
tained using linear Fokker-Planck.

4. Covariance Matrix

In order to understand the effect of quiescence in our stochastic model, we need to
compare the system with quiescence to that of the system without quiescence in terms of
the number of infected by both parasites. To do the comparative study we need to collapse
the covariance matrix for both models with and without quiescence so that we only have 2
covariance matrix of the infected individuals. For the model with quiescence, this is done
by adding the number of individuals in the infected class and the number of individuals in
the quiescence stage to obtain a total number of infected individuals (irrespective of their
quiescence status). For the system without quiescence, it is straight forward, it is achieved
by isolating the number of individuals in the infected compartment. This step is justified
below, and the following results indicate how to compute the covariance matrix [45,46].
The obtained covariance matrix is denoted as the collapsed covariance matrix.
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Let Y ∼ Nr(μ, Σ) be r-variate multivariate normal distribution with mean μ and
variance Σ, where

Y =

⎡⎢⎢⎢⎣
Y1
Y2
...

Yr

⎤⎥⎥⎥⎦ μ =

⎡⎢⎢⎢⎣
μ1
μ2
...

μr

⎤⎥⎥⎥⎦ Σ =

⎡⎢⎢⎢⎣
σ1,1 σ1,2 · · · σ1,r
σ2,1 σ2,2 · · · σ2,r

...
...

. . .
...

σr,1 σm,2 · · · σr,r

⎤⎥⎥⎥⎦
Any q linear combination of the Yi, say A′Y, is (q-variate) multivariate normal. Let

A′Y =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

a11Y1 + a12Y2 + · · ·+ a1rYr

a21Y1 + a22Y2 + · · ·+ a2rYr

· · ·+ · · ·+ · · ·+ . . .

aq1Y1 + aq2Y2 + · · ·+ aqrYr

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

then
A′Y ∼ Nq(A

′μ, A′ΣA). (9)

Numerical examples of the collapsed covariance matrix are shown for various parame-
ter combinations. The collapsed covariance matrix of the model with quiescence is denoted
as Eq and the collapsed covariance matrix of the model without quiescence as Ewq. In an
effort to understand the effect of quiescence on the stochastic process, we consider two
different cases of parameter combinations: symmetric where the parameter values of strain
1 and 2 are exactly the same (Examples 1–3), and non-symmetric where the parameter
values of stain 1 and 2 are different (for example ρ1 �= ρ2, Examples 4–7).

Example 1. We fix the following parameter values: β1 = β2 = 0.005, d = 0.5, Λ = 1000, ν1 =
ν2 = 0.3, ρ1 = ρ2 = 0.7, γ1 = γ2 = 0.003, ζ1 = ζ2 = 0.1, ε1 = ε2 = 0.6 and the initial
population sizes are H = 50, 000, I1 = 10, 000, I2 = 10, 000, Q1 = 5000, Q2 = 5000, time = 300.
We obtain the following collapsed covariance matrices:

Eq1 =

(
683, 640 −682, 500
−682, 500 683, 640

)
, Ewq1 =

(
298, 630 −297, 560
−297, 560 298, 630

)
.

Example 2. We use the same parameter values as in example 1 only with a lower quiescence rate
ρ1 = ρ2 = 0.4

Eq2 =

(
655, 170 −654, 060
−654, 060 655, 170

)
, Ewq2 = Ewq1

We show in Example 1 that the model with quiescence exhibits a larger variance compared
with the model without quiescence. When comparing Examples 1 and 2, we observe the effect of
quiescence on reducing the variance of the number of infected individuals. When the rate of entering
quiescence stage (ρ) decreases, the variance of the number of infected individuals decreases (Eq1
versus Eq2).

Example 3. The parameter and initial values are identical to Example 1 except that the disease
transmission rates are now 10 times lower β1 = β2 = 0.0005:

Eq3 =

(
14.81 −0.0388

−0.0388 14.81

)
, Ewq3 =

(
27, 651 −26, 443
−26, 443 27, 651

)
.

In Example 3, we observe the effect of decreasing the transmission rate in reducing the variance
and covariance of the collapsed covariance matrix. In contrast to example 1, in Example 3, we find
that the model with quiescence has less variance compared to the model without quiescence.
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We describe the effect of quiescence on variance by comparing Examples 1 and 3. In contrast
to the absence of quiescence, quiescence generates two effects under low transmission rate: (1) a
decrease of the number of infections, and (2) a decrease in the probability of extinction (in a small
population stochasticity is important). Based on our simulations, it is indeed more likely for the
parasite to go extinct in Example 3 than in Example 1. Therefore, both effects of quiescence in
Example 3 concur to reduce the variance compared to the absence of quiescence. In Example 1,
the population size of each parasite is high enough to be well approximated by a mean-field ODE,
quiescence increases the number of infections and quiescence events produce additional randomness
and simply inflate the variance (compared to the absence of quiescence).

Example 4. We use the same parameter values as in example 1 only with asymmetric rates of
quiescence ρ1 = 0.3, ρ2 = 0.5

Eq4 =

(
2251.9 −57.42
−57.42 64.35

)
, Ewq4 = Ewq1

Now that we use asymmetrical rates of entering quiescence between the two strains in Example
4, the variance are much decreased compared to Examples 1 and 2. This further reduction in variance
occurs because of the competition amongst the two parasite types in the model with quiescence
(which was absent because of symmetrical rates in Examples 1–3). In other words, because the two
parasite strains have different quiescence rates, there is also competition between them to infect
host individuals. Furthermore, the strain with the largest rate of entering the quiescence stage (ρ)
exhibits a smaller variance than the strain with a lower quiescent rate. By analogy, we call this
phenomenon as moving average behaviour (see Section 5).

Example 5. We use the same parameter values as in Example 1 only with asymmetric rates of
entering ρ1 = 0.8, ρ2 = 0.4 and exiting ζ1 = 0.4, ζ2 = 0.8 quiescence.

Eq5 =

(
19.17 −15.07
−15.07 2187.1

)
, Ewq5 = Ewq1.

In Example 5, we investigate the influence of asymmetric rates of entering and exiting the
quiescent stage on the variance in infected individuals. We set the rate of entering quiescence of
strain 1 to be larger than rate of strain 2, while the rate of exiting quiescence of strain 1 is smaller
than that of strain 2. We still observe the so-called moving average effect, that is, the strain with the
largest rate of entering the quiescence has the smaller variance. This example shows that entering
quiescence has significant effect in changing the dynamics of the system.

Example 6. We use the same parameter values as in Example 1 only with asymmetric rates of
entering ρ1 = 0.8, ρ2 = 0.4 and exiting ζ1 = 0.8, ζ2 = 0.4 quiescence.

Eq6 =

(
164.04 −151.92
−151.92 2332.6

)
, Ewq6 = Ewq1.

In Example 6, we take the rate of entering and exiting quiescence to be the same for each
strain, that is, ρ1 = 0.8 = ζ1 = 0.8, ρ2 = 0.4 = ζ2 = 0.4, to ascertain if the moving average is
determined by the rate of entering quiescence or the longest quiescence time. This example confirms
that the moving average is determined by the rate of entering quiescence. We note by this example
that rate of exiting quiescence stage doesn’t effect the dynamic significantly as far as the moving
average is concern.

Example 7. In Example 7, we increase the disease transmission rates and decrease the birth and
death rate (compared to Example 1), while we assume asymmetric rates of entering quiescence (as in
Example 5) but symmetric rates of exiting quiescence as well as the immigration rate. The following
values are used β1 = β2 = 0.05, d = 0.4, Λ = 100, ν1 = 0.03, ν2 = 0.3, ρ1 = 0.8, ρ2 = 0.4, γ1 =
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γ2 = 0.03, ζ1 = ζ2 = 0.1, ε1 = ε2 = 0.6 and the initial population sizes are as in Example 1. We
obtain the following collapsed covariance matrices:

Eq6 =

(
967.63 −927.22
−927.22 1151.1

)
, Ewq6 =

(
245.56 −3.6384
−3.6384 5.8915

)
.

From Example 7, here we use asymmetric values of parameters in both models, we
see the influence of quiescence in reducing the variance of the collapsed covariance matrix
whenever one of the rates of entering quiescence is high. In addition, we also see the
effect of strain competition in the model without quiescence in reducing the variance of the
number of infected individuals. In the model with quiescence we take the recovery rate of
infected individuals by strain 1 to be 10 times smaller than those infected by strain 2, and
observe our moving average effect.

As additional verification, we draw contour plots of the joint density of infected
individuals by strain 1 and 2 in (Figure 3a,b) which compare the variance in the number of
infected individuals by both strains. We confirm that the joint distribution of the number
of infected individuals by parasite strain 1 and 2 have a smaller surface area, that is with
less variance, under the model with quiescence than the absence of quiescence. In all
examples, the values of the covariance (off-diagonal elements) are negative, and we observe
this effect also in the contours (Figure 3a,b) because the number of infected individuals
by parasite 1 and 2 are negatively correlated. This negative correlation is a result of
the competition between the parasite types. We finally analyse the change in variance
(Figure 4a) and covariance (Figure 4b) of the collapsed covariance matrix as a function of ρ1
and ρ2 (rates of entering quiescence). The effect of the transmission rates β1 and β2 is here
again visible: when β1 = β2 are low, high rates of entering quiescence depletes the infected
compartments so that the number of infected drops down and the infection decreases,
which in turn reduces the variance. When β1 = β2 are high, there are enough infected
to keep the infection spreading despite the rate of quiescence, hence the increases in the
variance (under a fixed values of ζ1 and ζ2 (Figure 4a,b). The behaviour of the covariance
is reversed as the infected classes are negatively correlated. Based on the examples above,
increasing ζ1 and ζ2 would results in decreasing the difference between the variance (as
well as for the covariance) for the different transmission rates β1 and β2.
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Figure 3. Contour plots of the joint density of infected individuals by strain 1 and 2 based on
simulations for (a) Example 4, and (b) Example 5 considered in the text. The x-axis is the number
of infected individuals of strain 1 while the y-axis is the number of infected individuals by strain 2
based on the parameters stated in each example.
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Figure 4. Effect of quiescence, rates of entering the quiescence phase ρ1 = ρ2, and of transmission rates
β1 = β2 on the (a) variance of parasite 1, and (b) covariance of parasite 1 of the collapsed covariance
matrix. We use the following parameter values (symmetrical case): d = 0.5, Λ = 1000, ν1 = ν2 =

0.3, γ1 = γ2 = 0.003, ζ1 = ζ2 = 0.1, ε1 = ε2 = 10 and the initial population sizes are H = 50, 000,
I1 = 10, 000, I2 = 10, 000, Q1 = 5000, Q2 = 5000, time = 300. The blue line is for β1 = β2 = 0.0015,
and the red line for β1 = β2 = 0.3125.

5. Discussion

In this study we aim to understand the effect of quiescence on the spread of infectious
disease and with competition between parasite strains. Our study shows that introduc-
ing the pathogens ability to switch between an active and inactive (quiescence) phase
can significantly impact the stochasticity in the system. In our system, when the inva-
sion/immigration rates are turned off, one of the parasite type becomes extinct. However,
when the invasion/immigration rates are turned on, coexistence of host and both parasite
types is possible. If both strains show equal rates of infection, transmission and quiescence,
there is no real competition and the system behaves as if only one parasite would be present.
On other hand, when the parasite types have different characteristics, there is competition
between them which generates various epidemiological dynamics.

Our collapsed covariance measure quantifies the infection load at the steady state
of the system with and without quiescence. We measure this infection load for various
parameter combinations of interest to understand the impact of quiescence on the stochas-
tic process. Under symmetric quiescence rates and high transmission rates, quiescence
increases the variance in infected individuals, while the quiescence reduces the variance in
infected when transmission rates are low. When considering asymmetry in quiescence rates
between parasite strains, we uncover a special phenomenon which we call by analogy to
the moving average behaviour. Namely, the strain with the high rate of entering quiescence
serves as moving average for the whole parasite population and buffers the effect of the sec-
ond less quiescent strain. In other words, the strain with the higher quiescence determines
the intensity of the noise in the stochastic infection process determining the variance of the
number of infected individuals (lower variance under low disease transmission, higher
variance under high disease transmission). Moving average is a well known concept in
sound, signal, and image processing. In sound processing for example, moving average
also known as low pass filter, filters the frequencies so that only low frequencies can be
heard. The sound of noisy wave or distorted signal, is being smoothens by applying a
moving average processing function because it assumes the areas of high frequencies as
noise. We are not aware of the use of moving average in the field of disease epidemiology,
and hence introduce it here as a consequence of quiescence in parasite. When different
strains of parasite do show different quiescent rates, the competition between them under
a stochastic epidemiological process reduces the number of infected individuals, as well
as the virulence of the disease (number of host death). We theoretically predict that under
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competition between parasite types, the strain with the lower rate of entering quiescence
gets fixed, however, if coexistence can be maintained by influx of parasite strains from
outside, quiescence has the beneficial effect to reduce the stochasticity of the system. An ex-
tension for our work is to investigate if quiescence itself can evolve in such epidemiological
setup as a bet-hedging strategy reducing stochasticity in transmission rates.

Due to the difficulty in the existing methods to analyse the stability of 5 × 5 matrix, we
developed here a criterion for the study of stability of the system with quiescence for the
deterministic system. Proposition 2 is important because it reduces the dimension of the
system from 5 to 3. It is well known that studying the stability of the system with higher
dimension is hard, often times impossible. While system with low dimension is easy and
straight forward to study its stability. Thus the reduction in Proposition 2 is of significant
importance that removes the difficulties of analysing matrix with high dimension.

We then extended our model to a stochastic version. We show that the analytic
solution of the linear Fokker-Planck equation is normally distributed with mean around the
equilibrium solution. We confirm this results by computing 10,000 independent stochastic
realisations using Gillespie’s algorithm (Figure 2). The probability histogram was plotted
at a time equals to 300 generations. This distribution is then compared with the probability
density function of the normal distribution with mean and variance as obtained from both
Gilliespie’s algorithm and the normal approximation method using linear multivariate
Fokker-Planck Equation (7). The results are consistent which further validates our analytical
result obtained using the linear Fokker-Planck equation.

As revealed by a wealth of recent studies on plant or animal, microbiomes are com-
posed of multiple species and multiple strains per species. The composition of species
and/or strains is governed by antagonistic, mutualistic or neutral inter- and intra-specific in-
teractions along with stochastic processes such as birth and death, extinction-recolonization
and migration of strains/species [see [30,47]]. We speculate that our results on quiescence
should be affecting the dynamics in these multi-species systems. Moreover, many microbe,
especially human parasites, enter quiescence stage as a mechanism of resistance against
antibiotics [48]. This has important consequences for the management of infectious dis-
eases. Furthermore, host bacteria can also enter quiescence upon contact with viruses [9],
which can lead to changes in the expected population dynamics of the bacterial and virus
populations [49]. It is therefore of paramount importance to understand the influence of
the quiescence on the population of hosts and parasites, especially as coevolution between
antagonistic species can drive the evolution of quiescence/dormancy [10].

6. Conclusions

We show in our study that quiescence reduces stochasticity and reduces the noise
under strain competition. This principle is general enough and the same idea should
be investigated for a model of bacteria submitted to stochasticity of antibiotic treatment.
We speculate that quiescence is not only a bet-hedging strategy, but also influences the
stochasticity of the population behaviour, namely the population size of bacteria becoming
more stable in time and insensitive to antibiotic treatment. Our results also call for more
in depth investigations of the quiescence behaviour upon infection, of the length and
determinants of the quiescent stages and the effect of quiescence on stochastic disease
transmission in human diseases.
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Appendix A. Equilibrium Solution of the Model with Quiescent

From Equations (4) and (5) of system (1), the quiescence compartments, we find the
equilibrium solutions and is given as follows

Q∗
1 =

ρ1 I1

ζ1 + d,
, Q∗

2 =
ρ2 I2

ζ2 + d
. Let c1 =

ρ1

ζ1 + d
, c2 =

ρ2

ζ2 + d
,

then the equilibrium solutions of the infected compartment (Equations (1) and (2) of system
(1)) are given by

I∗1 =
ε1

d + γ1 + ν1 + ρ1 − ζ1c11 − β1H∗ , I∗2 =
ε2

d + γ2 + ν2 + ρ2 − ζ2c12 − β2H∗ .

Now we need to calculate the equilibrium solution in the healthy compartment, to do
so we need the following propositions.

Proposition A1. For ε1, ε2 > 0, there is at least one non-negative equilibrium solution in the
healthy compartment.

Proof. Substituting the equilibrium solutions of the quiescence and infected compartments
as calculated above in the first equation of the system (1), we have

P(H) = Λ(d + γ1 + ν1 + ρ1 − ζ1c1 − β1H)(d + γ2 + ν2 + ρ2 − ζ2c2 − β2H) − β1Hε1(d +
γ2 + ν2 + ρ2 − ζ2c2 − β2H)− β2Hε2(d + γ1 + ν1 + ρ1 − ζ1c1 − β1H)− dH(d + γ1 + ν1 +
ρ1 − ζ1c1 − β1H)(d + γ2 + ν2 + ρ2 − ζ2c2 − β2H) + ν1ε1(d + γ2 + ν2 + ρ2 − ζ2c2 − β2H) +
ν2ε2(d + γ1 + ν1 + ρ1 − ζ1c1 − β1H),

then

P(0) = Λ(d + γ1 + ν1 + ρ1 − ζ1c1)(d + γ2 + ν2 + ρ1 − ζ1c1) + ν1ε1(d + γ2 + ν2 + ρ2 −
ζ2c2) + ν2ε2(d + γ1 + ν1 + ρ1 − ζ1c1) > 0,

because the terms inside brackets are all positive, and P(H) → −∞, then by intermediary
value theorem there exist H∗ such that

P(H∗) = 0, H∗ > 0

Please observe that other compartments (I∗1 , I∗2 , Q∗
1, Q∗

2) for H∗ are non-negative, since

P
(d + γ1 + ν1 + ρ1 − ζ1c1

β1

)
< 0, =⇒ H∗ ≤ d + γ1 + ν1 + ρ1 − ζ1c1

β1
=⇒ I∗1 ≥ 0,

by the same argument, we show that I∗2 > 0. Since I∗1 , I∗2 > 0, then Q∗
1, Q∗

2 > 0

In the above Proposition A1, we find a polynomial of degree three in which we use
intermediate value theorem to show that the polynomial has a solution.

Uniqueness of The Equilibrium Solution
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We introduce the terms a, b, c, d defined bellow, with this notation, we obtain the
following proposition

Proposition A2. If b2 < 3ac , then there is a unique non-negative equilibrium solution of P(H).

Proof. Let
P(H) = aH3 + bH2 + cH + d = 0,

dP
dH

= 3aH2 + 2bH2 + c = 0. (A1)

The solution of quadratic Equation (A1) is

H =
−(2b)±√(2b)2 − 4(3a)c

2(3a)
(A2)

where
a = −3β1β2d,

b = 2dβ1ρ2 + 2dβ2ρ1 + 2dβ1ν2 + 2dβ1ν1 − 2c12dβ1ζ2 − 2c11dβ2ζ1 + 2β1β2ε2 + 2β1β2ε1 +
2dβ1γ2 + 2dβ1γ1 + 2Λβ1β2 + 2d2β2 + 2d2β1, c = −β1ε1ν2 − Λβ1ν2 − β2ε1ν1 − Λβ2ν1 −
dρ1ρ2 − dν1ρ2 + c11dζ1ρ2 − β1ε1ρ2 − dγ1ρ2 − Λβ1ρ2 − d2ρ2 − dν2ρ1 + c12dζ2ρ1 − β2ε2ρ1 −
dγ2ρ1 − Λβ2ρ1 − d2ρ1 − dν1ν2 + c11dζ1ν2 − β1ε2ν2 − d2ν2 + c12dζ2ν1 − β2ε2ν1 − dγ2ν1 −
d2ν1 − c11c12dζ1ζ2 + c12β1ε1ζ2 + c12dγ1ζ2 + c12Λβ1ζ2 + c12d2ζ2 + c11β2ε2ζ1 + c11dγ2ζ1 +
c11Λβ2ζ1 + c11d2ζ1 − β2γ1ε2 − dβ2ε2 − β1γ2ε1 − dβ1ε1 − dγ1γ2 −Λβ1γ2 − d2γ2 −Λβ2γ1 −
d2γ1 − Λdβ1 − d3, choose parameter values so that

b2 < 3ac,

then the quadratic Equation (A2) does not have real solution.

In the above proof, we use calculus to find the maximum value of the polynomial. The
analysis shows that the polynomial does not have a maximum or minimum value at the
specified interval. This shows that the polynomial has only one root by Proposition A2
(existence of a solution) above.

Appendix B. Proof of Proposition 2

We now prove Proposition 2 stated in Section 2.3 above regarding the stability of the
matrix B defined in (3).

Proof. The characteristics polynomial of B is given by

λ5 + b1λ4 + b2λ3 + b3λ2 + b4λ + b5 = 0
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where

b1 = ρ1 + ρ2 + ζ1 + ζ2 − tr(A)

b2 = ρ1ρ2 + ρ1ζ1 + ρ2ζ1 + ζ1ζ2 − ζ1tr(A) − ζ2tr(A) − (a11 + a33)ρ2 − (a22 + a33)ρ1 + a2

b3 = ζ1a2 + ζ2a2 + (a11a33 − a13a31)ρ2 + (a22a33 − a23a32)ρ1 − det(A) − ζ1ζ2tr(A)

− (a22 + a33)ρ1ζ2 − a33ρ1ρ2 − a33ρ2ζ1 − a11ρ2ζ1

b4 = ζ1ζ2a2 + (a22a33 − a23a32)ρ1ζ2 + (a11a33 − a13a31)ρ2ζ1 − (ζ1 + ζ2)det(A)

b5 = −ζ1ζ2det(A)

• Step 1 By Routh-Hurwitz Criterion [11,37,38], the matrix B is stable if and only if the
following conditions hold:

(i) bi > 0 (i = 1, . . . , 5)
(ii) b1b2b3 > b2

3 + b2
1b4

(iii) (b1b4 − b5)(b1b2b3 − b2
3 − b2

1b4) > b5(b1b2 − b3)
2 + b1b2

5

• Step 2
Suppose that for all ρ1, ρ2, ζ1, ζ2 > 0

(iv) b1 > 0

= ρ1 + ρ2 + ζ1 + ζ2 − tr(A) > 0 =⇒ tr(A) ≤ 0
(v) b2 > 0

= ρ1ρ2 + ρ1ζ1 + ρ2ζ1 + ζ1ζ2 − ζ1tr(A)− ζ2tr(A)− (a11 + a33)ρ2 − (a22 + a33)ρ1 +
a2 > 0

=⇒ tr(A) ≤ 0, a11 ≤ 0, a22 ≤ 0, and a33 ≤ 0
(vi) b3 > 0

= ζ1a2 + ζ2a2 + (a11a33 − a13a31)ρ2 + (a22a33 − a23a32)ρ1 − det(A) − ζ1ζ2tr(A)

− (a22 + a33)ρ1ζ2 − a33ρ1ρ2 − a33ρ2ζ1 − a11ρ2ζ1 > 0

=⇒ det(A) < 0, tr(A) ≤ 0, a11 ≤ 0, a22 ≤ 0,

a33 ≤ 0, a13a31 ≤ a11a33, and a23a32 ≤ a22a33
(vii) b4 > 0

=⇒ ζ1ζ2a2 + (a22a33 − a23a32)ρ1ζ2 + (a11a33 − a13a31)ρ2ζ1 > (ζ1 + ζ2)det(A)

=⇒ det(A) < 0, a13a31 ≤ a11a33, and a23a32 ≤ a22a33
(viii) b5 > 0

= −ζ1ζ2det(A) > 0 =⇒ det(A) < 0

• Step 3:
Assume that det(A) < 0, tr(A) ≤ 0, a2 > 0, a11 ≤ 0, a22 ≤ 0, a33 ≤ 0,

a13a31 ≤ a11a33, a23a32 ≤ a22a33. then for all ρ1, ρ2, ζ1, ζ2 > 0, we have
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(ix) ρ1 + ρ2 + ζ1 + ζ2 − tr(A) = b1 > 0
(x) ρ1ρ2 + ρ1ζ1 + ρ2ζ1 + ζ1ζ2 − ζ1tr(A) − ζ2tr(A) − (a11 + a33)ρ2 − (a22 + a33)ρ1 +

a2 = b2 > 0
(xi) ζ1a2 + ζ2a2 + (a11a33 − a13a31)ρ2 + (a22a33 − a23a32)ρ1 − det(A) − ζ1ζ2tr(A) −

(a22 + a33)ρ1ζ2 − a33ρ1ρ2 − a33ρ2ζ1 − a11ρ2ζ1 = b3 > 0
(xii) ζ1ζ2a2 + (a22a33 − a23a32)ρ1ζ2 + (a11a33 − a13a31)ρ2ζ1 − (ζ1 + ζ2)det(A) = b4 >

0
(xiii) −ζ1ζ2det(A) = b5 > 0
(xiv)

(ρ1 + ρ2 + ζ1 + ζ2 − tr(A))(ρ1ρ2 + ρ1ζ1 + ρ2ζ1 + ζ1ζ2 − ζ1tr(A) − ζ2tr(A)

− (a11 + a33)ρ2 − (a22 + a33)ρ1 + a2)(−det(A) + ζ1a2 + ζ2a2 + (a11a33 − a13a31)ρ2

+ (a22a33 − a23a32)ρ1 − (a22 + a33)ρ1ζ2 − a33ρ1ρ2 − a33ρ2ζ1 − a11ρ2ζ1 − ζ1ζ2tr(A))

− (−det(A) + ζ1a2 + ζ2a2 + (a11a33 − a13a31)ρ2 + (a22a33 − a23a32)ρ1 − (a22 + a33)ρ1ζ2

− a33ρ1ρ2 − a33ρ2ζ1 − a11ρ2ζ1 − ζ1ζ2tr(A))2 − (ρ1 + ρ2 + ζ1 + ζ2 − tr(A))2(−ζ1det(A)

− ζ2det(A) + ζ1ζ2a2 + (a22a33 − a23a32)ρ1ζ2 + (a11a33 − a13a31)ρ2ζ1)

(A3)

= b1b2b3 − b2
3 − b2

1b4 > 0

=⇒ b1b2b3 > b2
3 + b2

1b4.

For the full expansion of Equation (A3) for all ρ1 > 0, ρ2 > 0, ζ1 > 0, ζ2 > 0, see the
wxMaxima output (as online available notebook).

(xv)(
(ρ1 + ρ2 + ζ1 + ζ2 − tr(A))(−ζ1det(A) − ζ2det(A) + ζ1ζ2a2 + (a22a33 − a23a32)ρ1ζ2

+ (a11a33 − a13a31)ρ2ζ1)− (ζ1ζ2det(A))
)(

(ρ1 + ρ2 + ζ1 + ζ2 − tr(A))(ρ1ρ2 + ρ1ζ1

+ ρ2ζ1 + ζ1ζ2 − ζ1tr(A) − ζ2tr(A) − (a11 + a33)ρ2 − (a22 + a33)ρ1 + a2)

(−det(A) + ζ1a2 + ζ2a2 + (a11a33 − a13a31)ρ2

+ (a22a33 − a23a32)ρ1 − (a22 + a33)ρ1ζ2 − a33ρ1ρ2 − a33ρ2ζ1 − a11ρ2ζ1 − ζ1ζ2tr(A))

− (−det(A) + ζ1a2 + ζ2a2 + (a11a33 − a13a31)ρ2 + (a22a33 − a23a32)ρ1 − (a22 + a33)ρ1ζ2

− a33ρ1ρ2 − a33ρ2ζ1 − a11ρ2ζ1 − ζ1ζ2tr(A)))2 − (ρ1 + ρ2 + ζ1 + ζ2 − tr(A))2

− (ρ1 + ρ2 + ζ1 + ζ2 − tr(A))(−ζ1det(A) − ζ2det(A) + ζ1ζ2a2 + (a22a33 − a23a32)ρ1ζ2

+ (a11a33 − a13a31)ρ2ζ1)

)
− (ζ1ζ2det(A))

(
(ρ1 + ρ2 + ζ1 + ζ2 − tr(A))(ρ1ρ2 + ρ1ρ1 + ρ2ζ1 + ζ1ζ2 − ζ1tr(A) − ζ2tr(A)

− (a11 + a33)ρ2 − (a22 + a33)ρ1 + a2)− (−det(A) + ζ1a2 + ζ2a2 + (a11a33 − a13a31)ρ2

+ (a22a33 − a23a32)ρ1 − (a22 + a33)ρ1ζ2 − a33ρ1ρ2 − a33ρ2ζ1 − a11ρ2ζ1 − ζ1ζ2tr(A))
)2

− (ρ1 + ρ2 + ζ1 + ζ2 − tr(A))(−ζ1ζ2det(A))2 > 0

(A4)
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= (b1b4 − b5)(b1b2b3 − b2
3 − b2

1b4)− b5(b1b2 − b3)
2 − b1b2

5 > 0

=⇒ (b1b4 − b5)(b1b2b3 − b2
3 − b2

1b4) > b5(b1b2 − b3)
2 + b1b2

5
For the full expansion of Equation (A4) for all ρ1 > 0, ρ2 > 0, ζ1 > 0, ζ2 > 0, see
the wxMaxima output (as online available notebook).

Appendix C. Description of the Model without Quiescence

In this section we will develop a mathematical model that describes the evolution of
single Host- two parasites with constant recruitment rate. The model without quiescence is
given by these set (system) of ordinary differential equations:

dI1

dt
= β1HI1 − dI1 − γ1 I1 − ν1 I1 + ε1

dI2

dt
= β2HI2 − dI2 − γ2 I2 − ν2 I2 + ε2

dH
dt

= Λ − β1HI1 − β2HI2 − dH + ν1 I1 + ν2 I2

(A5)

Steady State Solution of the System

The analysis of steady state of the the system without quiescence (A5) has the same
steps and similar results as for the system with quiescence.

Transition Probabilities

Table A1. Transitions rates of the model without quiescence (A5).

Type Transition Rate

birth of healthy host H (Ht, I1t, I2t) → (Ht + 1, I1t, I2t) ΛΔt + oΔ(t)
natural death of H (Ht, I1t, I2t) → (Ht − 1, I1t, I2t) dHΔt + oΔ(t)
infection of H by I1 (Ht, I1t, I2t) → (Ht − 1, I1t + 1, I2t) β1HI1Δt + oΔ(t)
infection of H by I2 (Ht, I1t, I2t) → (Ht − 1, I1t, I2t + 1) β2HI2Δt + oΔ(t)

death of I1 (Ht, I1t, I2t) → (Ht, I1t − 1, I2t) (d + γ1)I1Δt + oΔ(t)
death of I2 (Ht, I1t, I2t) → (Ht, I1t, I2t − 1) (d + γ1)I2Δt + oΔ(t)

recovery I1 & replacement H (Ht, I1t, I2t) → (Ht + 1, I1t − 1, I2t) ν1 I1Δt + oΔ(t)
recovery I2 & replacement H (Ht, I1t, I2t) → (Ht + 1, I1t1, I2t − 1) ν2 I2Δt + oΔ(t)

immigration to I1 (Ht, I1t, I2t) → (Ht, I1t + 1, I2t) ε1Δt + oΔ(t)
immigration to I2 (Ht, I1t, I2t) → (Ht, I1t, I2t + 1) ε2Δt + oΔ(t)

Master equation

Let p(i, j, k)(t) = Prob{H(t) = i, I1(t) = j, I2(t) = k}, then

dp(i,j,k)
dt

=Λp(i−1,j,k) + d(i + 1)p(i+1,j,k) + β1(i + 1)(j − 1)p(i+1,j−1,k)

+ (d + γ1)(j + 1)p(i,j+1,k) + β2(i + 1)(k − 1)p(i+1,j,k−1) + (d + γ2)(k + 1)p(i,j,k+1)

+ ν1(j + 1)p(i−1,j+1,k) + ν2(k + 1)p(i−1,j,k+1) + ε1 p(i,j−1,k) + ε2 p(i,j,k−1)

− [Λ + di + β1ij + (d + γ1)j + β2ik + (d + γ2)k + ν1 j + ν2k + ε1 + ε2]p(i,j,k)

(A6)

This master Equation (A6) is then used to work out the Kramers-Moyal expansion that
led to the derivation of the Fokker-Planck equation below.

Derivation of Fokker-Planck Equation

Now, let

p(i, j, k) =
∫ ih+ h

2

ih− h
2

∫ jh+ h
2

jh− h
2

∫ kh+ h
2

kh− h
2

u(x, y, z)dxdydz + o(h4),
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let also x = ih, y = jh, z = kh and h = 1
N . We then performed Kramers-Moyal expansion to

derived the following Fokker-Planck equation which is given as follows.

∂tu(x, y, t) = −∂x{hλ − dx − β1xy − β2xz + ν1y + ν2z}u(x, y, z)

−∂y{β1xy − (d + γ1)y − ν1y + hε1}u(x, y, z)

−∂z{β2xy − (d + γ2)y − ν2y + hε2}u(x, y, z)

+
h
2

∂xx{λ + dx + β1xy + β2xz + ν1y + ν2z}u(x, y, z)

−h∂xy{β1xy + ν1y}u(x, y, z)

+
h
2

∂yy{β1xy + (d + γ1)y + ν1y + ε1}u(x, y, z)

−h∂xz{β2xz + ν2z}u(x, y, z)

+
h
2

∂zz{β2xy + (d + γ1)y + ν2y + ε2}u(x, y, z)

(A7)

Linear Transformation of the Fokker-Planck equation

Theorem A1. The linear Fokker-Planck equation for the above non-linear Fokker-Planck can be
written more compactly as follows

∂P(y, t)
dt

= −
3

∑
ij

Mij
∂

∂yi
yiP(y, t) +

1
2

3

∑
ij

Nij
∂2

∂yi∂yj
P(y, t) (A8)

where y = (x, y, z), Nij is symmetric and positive definite, its solution is give as

P(y, t) = (2π)
1
2 det(Σ)

1
2 exp(−1

2
yΣ−1yT)

with
Σ−1 = 2

∫ ∞

0
e−MtNe−Mtdt.

Theorem A2. For every matrix N which is symmetric and positive-definite, there a unique solution
Σ−1 to the following equation known as Lyapunov equation

MΣ−1 + Σ−1MT = N

where Σ−1 is symmetric, positive-definite and equal to

Σ−1 =
∫ ∞

0
e−MtNe−MTtdt.

The above theorem known as Lyapunov theorem [44] gives us the opportunity to
compute covariance matrix more easily since matrices M and N are constant matrices,
the only unknown is Σ−1 matrix. We use MATLAB to obtain the covariance matrix Σ−1

numerically. The stochastic matrices M and N for the system without quiescence are similar
to those that of the system with quiescence.

Appendix D. Stochastic Matrices of the Linear Fokker-Planck Equation

M =

⎛⎜⎜⎜⎜⎝
−d − β1 I∗1 − β1 I∗2 −β1H∗ + ν1 −β1H∗ + ν2 0 0

β1 I∗1 β1H∗ − d − γ1 − ν1 − ρ1 0 ζ1 0
β1 I∗2 0 β1H∗ − d − γ2 − ν2 − ρ2 0 ζ2

0 ρ1 0 −ζ1 − d 0
0 0 ρ2 0 −ζ2 − d

⎞⎟⎟⎟⎟⎠
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N =

⎛⎜⎜⎜⎜⎝
n11 −(β1H∗ I∗1 + ν1 I∗1 ) −(β1H∗ I∗2 + ν1 I∗2 ) 0 0

−(β1H∗ I∗1 + ν1 I∗1 ) n22 0 −(ρ1 I∗1 + ζ1Q∗
1) 0

−(β1H∗ I∗2 + ν1 I∗2 ) 0 n33 0 −(ρ2 I∗2 + ζ2Q∗
2)

0 −(ρ1 I∗1 + ζ1Q∗
1) 0 n44 0

0 0 −(ρ2 I∗2 + ζ2Q∗
2) 0 n55

⎞⎟⎟⎟⎟⎠
where

n11 = λ + dH∗ + β1H∗ I∗1 + β1H∗ I2 + ν1 I∗1 + ν2 I∗2 ,

n22 = β1H∗ I∗1 + (d + γ1)I∗1 + ν1 I∗1 + ρ1 I∗2 + ζ1Q∗
1 + ε1,

n33 = β1H∗ I∗2 + (d + γ2)I∗2 + ν2 I∗2 + ρ2 I∗2 + ζ2Q∗
2 + ε2,

n44 = ρ1 I∗1 + ζ1Q∗
1 + dQ∗

1,

n55 = ρ2 I∗2 + ζ2Q∗
2 + dQ∗

2

where H∗, I∗1 , I∗2 , Q∗
1, Q∗

2 are equilibrium solutions of (1) (rearranged in such away that
healthy compartment comes first equation in the system. The order of the other compart-
ments remains unchanged).

References

1. Cox, F.E. Well-temperate phage: Optimal bet-hedging against local environmental collapses. Sci. Rep. 2015, 5, 10523.
2. Lennon, J.T.; Jones, S.E. Microbial seed banks: The ecological and evolutionary implications of dormancy. Nat. Rev. Microbiol.

2011, 9, 119–130. [CrossRef] [PubMed]
3. Murphy, C.T.; Hu, P.J. Insulin/Insulin-Like Growth Factor Signaling in C. elegans. Available online: https://www.ncbi.nlm.nih.

gov/books/NBK179230 (accessed on 27 June 2022).
4. Mélissa V.; Aurélien T. Host-parasite coevolution can promote the evolution of seed banking as a bet-hedging strategy. Evolution

2018, 72, 1362–1372.
5. Seger, J. What is bet-hedging? Oxford Surv. Evol. Biol. 1987, 4, 182–211.
6. Blath, J.; Hermann, F.; Slowik, M. A branching process model for dormancy and seed banks in randomly fluctuating environments.

arXiv 2020, arXiv:2007.06393.
7. Hamelin, F.M.; Allen, L.J.; Bokil, V.A.; Gross, L.J.; Hilker, F.M.; Jeger, M.J.; Manore, C.A.; Power, A.G.; Rúa, M.A.; Cunniffe, N.J.

Coinfections by noninteracting pathogens are not independent and require new tests of interaction. PLoS Biol. 2019, 17, e3000551.
[CrossRef]

8. Blath, J.; Tóbiás, A. Invasion and fixation of microbial dormancy traits under competitive pressure. Stoch. Process. Appl. 2020, 130,
7363–7395. [CrossRef]

9. Bautista, M.A.; Zhang, C.; Whitaker, R.J. Virus-induced dormancy in the archaeon Sulfolobus islandicus. Am. Soc. Microbiol. 2015,
6, e02565-14. [CrossRef]

10. Nil, G.; Liliana, M.-S.; Alex, B.M.; Ani, G.; Vincent, L.B.; Stuart, S.L.; Rapatbhorn, P.; Salil, P.D.; Sebastian, A.M.; Stefan, H.I.K.; et
al. In Vitro Culture, Drug Sensitivity, and Transcriptome of Plasmodium Vivax Hypnozoites. Cell Host Microbe 2018, 23, 395–406.

11. Karl, P.H. Topics in Mathematical Biology, 1st ed.; Springer: Cham, Switzerland, 2017; pp. 1–68.
12. Thibaut, S.; Müller, J.; Hösel, V.; Aurélien, T. Are the better cooperators dormant or quiescent? Math. Biosci. 2019, 318, 108272.
13. Hairston, N.G., Jr.; De Stasio, B.T., Jr. Rate of evolution slowed by a dormant propagule pool. Nature 1988, 336, 239–242.

[CrossRef]
14. Koopmann, B.; Johannes, M.; Aurélien, T.; Daniel, Ž. Fisher–Wright model with deterministic seed bank and selection. Theor.

Popul. Biol. 2017, 114, 29–39. [CrossRef]
15. Templeton, A.R.; Levin, D.A. Evolutionary consequences of seed pools. Theor. Am. Nat. 1979, 114, 232–249. [CrossRef]
16. Blath, J.; Matthias, H.; Florian, N. The stochastic Fisher-KPP equation with seed bank and on/off branching coalescing Brownian

motion. Stoch. Partial. Differ. Equ. Anal. Comput. 2022, 1–46. [CrossRef]
17. Sorrell, I.; White, A.; Pedersen, A.B.; Hails, R.S.; Boots, M. The evolution of covert, silent infection as a parasite strategy. Proc. R.

Soc. B Biol. Sci. 2009, 276, 2217–2226. [CrossRef] [PubMed]
18. Anthony, R.M.C. Dormancy and Low Growth States in Microbial Disease; Cambridge University Press: Cambridge, UK, 2003.
19. Cohen, N.R.; Lobritz, M.A.; Collins, J.J. Microbial persistence and the road to drug resistance. Cell Host Microbe 2013, 13, 632–642.

[CrossRef] [PubMed]
20. Zhu, D.; Sorg, J.A.; Sun, X. Clostridioides difficile Biology: Sporulation, Germination, and Corresponding Therapies for C. difficile

Infection. Front. Cell. Infect. 2018, 8, 29. [CrossRef]

87



Mathematics 2022, 10, 2289

21. Wood, T.K.; Knabel, S.J.; Kwan, B.W. Bacterial persister cell formation and dormancy. Appl. Environ. Microbiol. 2013, 79, 7116–7121.
[CrossRef]

22. Cox, F.E. History of the discovery of the malaria parasites and their vectors. BioMed Cent. Parasites Vectors 2010, 3, 1–9. [CrossRef]
23. White, N.J. Determinants of relapse periodicity in Plasmodium vivax malaria. Malar. J. 2011, 10, 1–36. [CrossRef]
24. Aimee, R.T.; James, A.W.; Cindy, S.C.; Kanokpich, P.; Jureeporn, D.; Nicholas, P.J.D.; Francois, N.; Daniel, E.N.; Caroline, O.B.;

Mallika, I.; et al. Resolving the cause of recurrent Plasmodium vivax malaria probabilistically. Nat. Commun. 2019, 10, 1–11.
25. Cindy, S.C.; Aung, P.P.; Claudia, T.; Htun, H.W.; Naw, P.P.; Widi, Y.; Suradet, T.; Pornpimon, W.; Rattanaporn, R.; Verena, I.C.; et al.

Chloroquine Versus Dihydroartemisinin-Piperaquine With Standard High-dose Primaquine Given Either for 7 Days or 14 Days
in Plasmodium vivax Malaria. Clin. Infect. Dis. 2018, 68, 1311–1319.

26. Balmer, O.; Tanner, M. Prevalence and implications of multiple-strain infections. Lancet Infect. Dis. 2011, 11, 868–878. [CrossRef]
27. Vaumourin, E.; Vourc’h, G.; Gasqui, P.; Vayssier-Taussat, M. The importance of multiparasitism: examining the consequences of

co-infections for human and animal health. BioMed Cent. Parasites Vectors 2015, 8, 1–13. [CrossRef]
28. Minus, V.B.; Maurice, W.S. The Dynamics of Multiple Infection and the Evolution of Virulence. Am. Nat. 1995, 146, 881–910.
29. Matt, J.K.; Pejman, R. Modeling Infectious Diseases in Humans and Animals; Princeton University Press: Princeton, NJ, USA, 2011;

pp. 15–52, 190–230.
30. Håkan, A.; Tom, B. Stochastic Epidemic Models and Their Statistical Analysis; Springer: New York, NY, USA, 2000; pp. 1–9.
31. Allen, L.J. An Introduction to Stochastic Processes with Applications to Biology, 2nd ed.; Chapman and Hall/CRC: New York, NY,

USA, 2010; pp. 197–354.
32. Allen, L.J.; Brauer, F.; Van den Driessche, P.; Wu, J. Mathematical Epidemiology, 1st ed.; Springer: Berlin, Germany, 2010; pp. 81–128.
33. Daniel Ž.; Sona J.; Mélissa V.; Wolfgang S.; Aurélien T. Neutral genomic signatures of host-parasite coevolution. BioMed Central

Evol. Biol. 2019, 1, 1–11.
34. Michael, S.; Lucía, P.; Nancy, W.B.; Philipp, D.; Jun, W.; Benedikt, M.; Sören, F.; Ruth, A.S.; John, F.B.; Sebastian, F.; et al. Neutrality

in the Metaorganism. PLoS Biol. 2019, 17, e3000298.
35. Anderson, R.M.; May, R.M. Infectious Diseases of Humans: Dynamics and Control; Oxford University Press: New York, NY, USA,

1992; pp. 193–215.
36. Johan, G.; Onno, A. Asymptotic Methods for the Fokker—Planck Equation and the Exit Problem in Applications; Springer: Berlin,

Germany, 1999.
37. Johannes, M.; Christina, K. Methods and Models in Mathematical Biology; Springer: Berlin/Heidelberg, Germany, 2015;

pp. 1–115, 232–233.
38. Kestelman, H.; Gantmacher, F.R. The Theory of Matrices. Biometrika 1961, 48, 237. [CrossRef]
39. Gillespie, D.T. A general method for numerically simulating the stochastic time evolution of coupled chemical reactions. J.

Comput. Phys. 1976, 22, 403–434. [CrossRef]
40. Gillespie, D.T. Exact stochastic simulation of coupled chemical reactions. J. Phys. Chem. 1977, 81, 2340–2361. [CrossRef]
41. Allen, L.J. A primer on stochastic epidemic models: Formulation, numerical simulation, and analysis. Infect. Dis. Model. 2017, 2,

128–142. [CrossRef] [PubMed]
42. Kogan, O.; Khasin, M.; Meerson, B.; Schneider, D.; Myers, C.R. Two-strain competition in quasineutral stochastic disease

dynamics. APS Phys. Rev. E. 2014, 90, 042149. [CrossRef] [PubMed]
43. van Kampen, N.G. Stochastic Processes in Physics and Chemistry, 3rd ed.; Elsevier: Amsterdam, The Netherlands, 2007; pp. 193–218.
44. João, H.P. Linear Systems Theory, 2nd ed.; Princeton University Press: Princeton, NJ, USA, 2018; pp. 88–107.
45. Richard, A.J.; Dean, W.W. Multivariate Analysis, 6th ed.; Pearson Prentice Hall: Hoboken, NJ, USA, 2007; pp. 149–358.
46. Timm, N.H. Applied Multivariate Analysis; Springer: New York, NY, USA, 2002; pp. 79–90.
47. El, M.I.; Siu, Y.; Dunlop, M.J. Stochastic expression of a multiple antibiotic resistance activator confers transient resistance in

single cells. Sci. Rep. 2016, 1, 1–9.
48. Balaban, N.Q.; Merrin, J.; Chait, R.; Kowalik, L.; Leibler, S. Bacterial persistence as a phenotypic switch. Science 2004, 305,

1622–1625. [CrossRef] [PubMed]
49. Blath, J.; Tóbiás, A. Virus dynamics in the presence of contact-mediated host dormancy. arXiv 2021, arXiv:2107.11242.

88



Citation: Yussof, F.N. ; Maan, N.; Md

Reba, M.N.; Khan, F.A Mathematical

Modelling of Harmful Algal Blooms

on West Coast of Sabah. Mathematics

2022, 10, 2836. https://doi.org/

10.3390/math10162836

Academic Editors: Sophia Jang and

Jui-Ling Yu

Received: 30 May 2022

Accepted: 5 August 2022

Published: 9 August 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

Mathematical Modelling of Harmful Algal Blooms on West
Coast of Sabah

Fatin Nadiah Yussof 1, Normah Maan 1,*, Mohd Nadzri Md Reba 2 and Faisal Ahmed Khan 3

1 Department of Mathematics, Faculty of Science and Technology, Universiti Teknologi Malaysia,
Skudai 81310, Malaysia

2 Faculty of Geoinformation and Real Estate, Universiti Teknologi Malaysia, Skudai 81310, Malaysia
3 Institute of Environmental Studies, University of Karachi, Karachi 75270, Pakistan
* Correspondence: normahmaan@utm.my

Abstract: Algal bloom is a condition in which there is a massive growth of algae in a certain region
and it is said to be harmful when the bloom causes damage effects. Due to the tremendous impact of
harmful algal bloom (HAB) on some aspects, this research proposes the mathematical modelling of
an HAB model to describe the process of HAB together with population dynamics. This research
considers the delay terms in the modelling since the liberation of toxic chemicals by toxin-producing
phytoplankton (TPP) is not an instantaneous process in which the species need to achieve their
maturity. A model of fish interaction is also being studied to show the effect of HAB on fish species.
Time delay is incorporated for the mortality of fish due to the consumption of toxic zooplankton.
Stability analysis is conducted and numerical simulations are applied to obtain the analytical results
which highlight the critical values for the delay parameters. The existence of Hopf bifurcation is
established when the delay passes the threshold value. The results of both models show that the
inclusion of the delay term affects the model by stabilizing and destabilizing the model. Therefore,
this research shows the effect of an inclusion delay term on the model and also gives knowledge and
an understanding of the process of HAB occurrence as well as the effect of HAB on fish populations.

Keywords: harmful algal bloom; Hopf bifurcation; population dynamics; stability

MSC: 92D40

1. Introduction

Algal bloom is a situation wherein there is an abundance of algal cell density in a
location of coastal water which is usually dominated by a single species or a few species.
It is called harmful algal bloom (HAB) when the bloom has adverse effects on the marine
ecosystem as well as on humans due to the natural toxin content in their body. HABs in
Malaysian waters are quite worrying nowadays since the occurrence of blooms has been
increasingly reported over the last decade. The natural toxins produced by the algal bloom
may harm the marine ecosystem because it will accumulate in the filter-feeder shellfish and
cause food poisoning to the human when they consumed shellfish.

Massive algal bloom can also kill fish or shrimp because they can barely breathe
in the water to survive. High densities of algal blooms in water causes dissolved oxy-
gen depletion. For example, in 2005, a fish killing event was reported in Penang which
amounted to more than MYR 20 million in losses [1]. Therefore, it is necessary to have a
good understanding and wide view of HAB dynamics and the study of marine plankton
ecology is an important consideration.

HABs have regularly occurred in Sabah as early as 1976 eutrophication makes this
area environmentally favourable for dinoflagellate to reproduce and grow. The water tends
to be discoloured or murky, appearing red or green in colour and sometimes purple. The
species of dinoflagellate that always causes bloom in Sabah seas is Pyrodinium bahamense.

Mathematics 2022, 10, 2836. https://doi.org/10.3390/math10162836 https://www.mdpi.com/journal/mathematics89
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Whatever feeds on P. bahamense accumulates PSTs transferred from the dinoflagellates.
Toxic phytoplankton do not harm shellfish but can harm humans that have consumed the
contaminated shellfish. It has been yearly reported that PSP in Sabah has been caused by
toxins from P. bahamense. Some filter feeder fish such as “ikan tamban, ikan basung” and “ikan
rumahan” take in the dinoflagellates as well when they feed on the zooplankton.

A broad classification of HABs species distinguishes two groups: (1) the toxin produc-
ers which can contaminate seafood and kill fish; (2) the high-biomass producers which are
always associated with water discolouration (red tide) that can be caused hypoxia/anoxia
and subsequently have a fatal impact on marine life after reaching dense concentra-
tions [2].Pyrodinium bahamense is a well-known marine dinoflagellate and producer of
paralytic shellfish toxin (PST) that is especially present in tropical waters [3], and which has
caused more human illnesses and fatalities than any other PST-producing dinoflagellates.
P. bahamense was first reported in 1976 along a 300-km-long stretch west coast of Sabah,
Malaysia [4], and formed a toxic bloom in the Brunei Bay, Sabah, and resulted in human
poisoning involving 202 people, with 7 casualties [4] due to paralytic shellfish poisoning
(PSP). Toxic dinoflagellate P. bahamense has been a causative species for the occurrence of
PSP events in Sabah annually since then [3,5,6].

Phytoplankton consists of two types which are toxic phytoplankton (TPP) and non-
toxic phytoplankton (NTP). TPP have the ability to produce ‘toxic’ or ‘allelopathic agents’
that could harm the growth of other aquatic organisms [7,8], while NTP do not produce
any toxic chemicals. NTP will become harmful if there is massive algal bloom that could
cause a red tide. For example, when masses of algae die and decompose, the decaying
process can deplete oxygen in the water, causing the water to become so low in oxygen that
animals either leave the area or die. As such, phytoplankton could act as the indicator of
the water quality as massive algae bloom will degrade the water quality [9].

HAB occurrences have recently alarmed the authorities to realize the need to raise
awareness of HABs in Malaysia. For example, on 11th February 2014, due to the HAB
bloom in Tanjung Kupang, there were massive fish kills and the operators reported losses
of MYR 150,000. Fish stocks such as those of snappers, cods, seabass and threadfins in
nine farms were wiped out during the event [10]. In Penang, the aquaculture operators
also reported losses estimated around MYR 20 millions due to the fish kills during the
period 2005–2006 [10]. Therefore, these losses could be prevented if there is an adequate
monitoring program held by the relevant authorities. In addition to that, the safety of our
seafood could also be guaranteed as well as our public health.

2. Materials and Methods

2.1. Nutrient-Phytoplankton-Zooplankton Interaction Model

Many researchers have constructed and studied the mathematical model of nutrient–
phytoplankton–zooplankton interaction with different degrees of complexity. Mathematical
modelling is important in order to improve our knowledge and understanding of the
occurrence of HAB in relation to plankton ecology. This research incorporates a delay
model to describe how toxin production by TPP is not an instantaneous process. This
model explains how Pyrodinium bahamense sp. can cause HAB to occur.

dN
dt

= D(N0 − N)− α1P1N − α2P2N

dP1

dt
= θ1P1N − β1P1P3 − m1P1 − e1P1P2 − D1P1

dP2

dt
= θ2P2N − β2P2P3 − m2P2 − e2P1P2 − D2P2

dP3

dt
= γ1P1P3 − γ2P2(t − τ)P3 − m3P3 − D3P3

(1)

where
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α1 = Nutrient uptake rate for the NTP

α2 = Nutrient uptake rate for the TPP

θ1 = Conversion rate of NTP for nutrient

θ2 = Conversion rate of TPP for nutrient

β1 = Predation rate of NTP for zooplankton

β2 = Predation rate of TPP for zooplankton

γ1 = Conversion rate of zooplankton for NTP

γ2 = Death rate due to consumption of TPP

m1 = Natural death rate of NTP

m2 = Natural death rate of TPP

m3 = Natural death rate of zooplankton

D = Dilution rate of nutrient

D1 = Dilution rate of NTP

D2 = Dilution rate of TPP

D3 = Dilution rate of zooplankton

e1 = Competition coefficient for NTP

e2 = Competition coefficient for TPP

• Time lag is considered for the maturation of the TPP population to produce toxin since
the process is not instantaneous [3,11]. The mortality of the zooplankton population is
described as P2(t − τ)P3 [12,13].

• The functional response of Holling type I is applied for the functional response of
phytoplankton to nutrients as it is used for lower organisms such as alga [14–16].

• The linear mass action law is used for the maximal zooplankton predation rate for
NTP and TPP [17].

• The model considered interspecies competition to obtain nutrients [17].
• TPP do not harm NTP even though these contains high toxins at that time because the

toxins do not secrete out into the environment [3,11,18].
• TPP harm the zooplankton whenever they are consumed and the toxin content is

produced at a high level [18].

The system in (1) is rescaled by introducing new variables where

x =
N
N0

, y =
P1α1

D
, z =

P2α2

D
, w =

P3β1

D
,

a =
θ1

α1
, b =

m1

D
, c =

e1

α2
, d =

D1

D
,

f =
θ2

α2
, g =

m2

D
, h =

β2

β1
, m =

e1

α1
,

n =
D2

D
, p =

γ1

α1
, q =

γ2

α2
, r =

m3

D
,

s =
D3

D

Then system (1) becomes
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dx
dt

= 1 − x − xy − xz

dy
dt

= axy − wy − by − cyz − dy

dz
dt

= f xz − gz − hwz − myz − nz

dw
dt

= pyw − qz(t − τ)w − rw − sw

(2)

System (2) is linearized at E∗ = (x∗, y∗, z∗, w∗), in the form

dX
dt

= MX(t) + NX(t − τ) (3)

where

M =

⎡⎢⎢⎣
H1 −x∗ −x∗ 0
ay∗ H2 −cy∗ −y∗
f z∗ −mz∗ H3 −hz∗
0 pw∗ 0 H4

⎤⎥⎥⎦, (4)

N =

⎡⎢⎢⎣
0 0 0 0
0 0 0 0
0 0 0 0
0 0 qw∗ 0

⎤⎥⎥⎦ (5)

and X(.) = (x(.), y(.), z(.))T is the state vector. The characteristic equation of (3) is as
follows:

det(λ − M − Ne−λτ1) = 0 (6)

which can be explicitly expressed as

F(λ, τ) ≡ A(λ) + B(λ)e−λτ1 = 0 (7)

where F = A, B are four-degree polynomials in λ in the form

F(λ, τ) = λ4 + J1λ3 + J2λ2 + J3λ + J4 + (K1λ2 + K2λ + K3)e−λτ1 (8)

where their coefficients are

J1 = −H1 − H2 − H3 − H4

J2 = H1H2 + H1H3 + H2H3 + H1H4 + H2H4 + H3H4 + pw∗y∗ + ax∗y∗−
f x∗z∗ − cmy∗z∗

J3 = −H1H2H3 − H1H2H4 − H1H3H4 − H2H3H4 − pw∗y∗ − H3 pw∗y∗−
H3ax∗y∗ − H4ax∗y∗ + H2 f x∗z∗ + H4 f x∗z∗ − H1cmy∗z∗−
H4cmy∗z∗ − pchw∗y∗z∗ − c f x∗y∗z∗ − amx∗y∗z∗

J4 = H1H2H3H4 + H1H3 pw∗y∗ + H3H4ax∗y∗ − H1H4cmy∗z∗ + H2H4 f x∗z∗−
H1 pchy∗w∗z∗ + H4c f x∗y∗z∗ + H4amx∗y∗z∗ + p f w∗x∗y∗z∗ − aphw∗x∗y∗z∗

K1 = −qhw∗z∗

K2 = H1qhw∗z∗ + H2qhw∗z∗ + qmw∗y∗z∗

K3 = −H1H2qhw∗z∗ − H1qmw∗y∗z∗ + q f w∗x∗y∗z∗ − aqhw∗x∗y∗z∗

where
H1 = −1 − y∗ − z∗

H2 = ax∗ − b − w∗ − cz − d

H3 = f x∗ − g − hw∗ − my − n

H4 = py∗ − qz∗ − r − s
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The Hopf bifurcation of the equilibrium is studied. If λ = iw(w > 0) is a root of
F(λ, τ) = 0 for τ �= 0, the characteristic equation will undergo stability change such that

w4 − J1iw3 − J2w2 + J3(iw) + J4 + [cos(wτ)− isin(wτ)](−K1w2 + K2iw + K3) = 0 (9)

The transcendental equations are obtained by separating the real and imaginary parts:

w4 − J2w2 + J4 = K1w2cos(wτ + K2wsin(wτ)− K3cos(wτ)

−J3w − J1w3 = K1w2sin(wτ)− K2wcos(wτ)− K3sin(wτ)
(10)

The squares of both equations are added up, thus becoming

w8 + (J2
1 − 2J2)w6 + (J2

2 + 2J4 − 2J1 J3 − K2
1)w

4+

(J2
3 − 2J2 J4 − K2

2 + 2K1K3)w2 + J2
4 + K2

3 = 0
(11)

Substitute n = w2 into (11) and obtain

n4 + L1n3 + L2n2 + L3n + L4 = 0 (12)

where
L1 = J2

1 − 2J2

L2 = J2
2 + 2J4 − 2J1 J3 − K2

1

L3 = J2
3 + 2J2 J4 − K2

2 + 2K1K3

L4 = J2
4 − K2

3

Theorem 1. System (2) is stable with regard to the nontrivial equilibrium point E∗ = (x∗, y∗, z∗, w∗)
if the characteristic Equation (12) satisfies the following Routh–Hurwitz conditions:

1. L1 > 0
2. L3 > 0
3. L4 > 0
4. L1L2L3 − (L2

3 + L2
1L4) > 0

Therefore, by eliminating sin(nτ) in (10), we have

cos(nτ) = −J1K2n4+J3K2n2−K1K2n7+J2K1K2n5−J4K1K2n3+K2K3n5+J2K2K3n3−J4K2K3n
K1K2K3n3−K2

1K2n5−K1K2K3n3+K2K2
3n

Then, we obtain

τ =
1
w
[arccos(

−J1K2n4 + J3K2n2 − K1K2n7 + J2K1K2n5 − J4K1K2n3 + K2K3n5 + J2K2K3n3 − J4K2K3n
K1K2K3n3 − K2

1K2n5 − K1K2K3n3 + K2K2
3n

)] (13)

Differentiate Equation (9) with respect to τ(
dλ

dτ

)−1
=

(
4λ3 + 3J1λ2 + 2 J2λ + J3

)
eλτ

λ(K1λ2 + K2λ + K3)
− 2 K1λ + K2

λ(K1λ2 + K2λ + K3)
+

τ

λ

e−λτ =
λ4 + J1λ3 + J2λ2 + J3λ + J4

( K1λ2 + K2λ + K3)

Substitute e−λτ into ( dλ
dτ )

−1,

4λ3 + 3J1λ2 + 2 J2λ + J3

λ(λ4 + J1λ3 + J2λ2 + J3λ + J4)
− 2 K1λ + K2

λ(K1λ2 + K2λ + K3)
+

τ

λ
(14)

Hence,
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sign
{

Re dλ
dτ

}−1

λ=iw
= sign

{[
4λ3+3 J1λ2+2 J2λ+J3

λ(λ4+J1λ3+J2λ2+J3λ+J4)

]
λ=iw

−
[

2 K1λ+K2
λ(K1λ2+K2λ+K3)

]
λ=iw

}
Defining,

a1 = 4λ3 + 3 J1λ2 + 2 J2λ + J3

a2 = 2 K1λ + K2

b1 = λ
(

λ4 + J1λ3 + J2λ2 + J3λ
)
+ J4

b2 = λ
(

K1λ2 + K2λ + K3

)
Therefore,

sign
{

Re
dλ

dτ

}−1

λ=iw
= sign

{[
a1 b2 − a2 b1

b1 b2

]
λ=iw

}
(15)

2.2. Plankton–Zooplankton–Fish Interaction Model

This model describes the effects of HABs on fish populations by providing knowledge
and understanding on how the fish could die. A delay term is incorporated into the
model to show that the mortality of the fish populations is not an instantaneous process.
The developed model is as follows:

dx
dt

= rx(t)(1 − x(t)/K)− c1x(t)y(t)

dy
dt

= e1c1x(t)y(t)− c2y(t)z(t)− d1y(t)

dz
dt

= e2c2y(t)z(t)− d2z(t)− f y(t)z(t − τ)

(16)

The following set of assumptions is assumed to formulate the fish mathematical model:

• Let x(t) be the toxin production phytoplankton (TPP) which are being consumed by
the zooplankton population which in turn serves as food for the fish population, f (t).

• Let r be the intrinsic growth rate of phytoplankton; K be the environmental capacity of
phytoplankton; and c1 be the predation rate of zooplankton while c2 is the predation
rate of fish.

• e1 is the birth rate of zooplankton while e2 is the birth rate of fish, d1 is the mortality rate
of zooplankton and d2 is mortality rate of fish, and f is coefficient of toxin substance
from TPP.

• Let τ be the time delay for the fish to die when feeding on the infected zooplankton as
this is not an instantaneous process. The infected zooplankton become harmful to the
fish when eaten.

J =

⎡⎢⎣ −c1y − r(2x−K)
K −c1x 0

e1c1y e1c1x − c2z − d1 −c2y
0 e2c2z − f z e2c2y − d2

⎤⎥⎦, (17)

where
H1 = − rx

K
+ r(1 − x

K
)− c1y

H2 = −d1 + c1e1x − c2z

H3 = c2e2y − d2

(18)

N =

⎡⎣ 0 0 0
0 0 0
0 0 − f y

⎤⎦ (19)

The characteristic equation is

F(λ, τ) = λ3 + A1λ2 + A2λ + A3 + (B1λ2 + B2λ + B3)e−λτ (20)
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where
A1 = −H1 − H2 − H3
A2 = H1H2 + H1H3 + H2H3 + c2

1e1xy + c2
2e2yz

A3 = −H1H2H3 − c2
1e1H3xy − c2

2e2H1yz
B1 = f x
B2 = − f H1x − f H2x
B3 = f xH1H2 + C2

1e1 f x2y + c1c2 f xyz
substitute λ = iw into Equation (20)

(iw)3 + A1(iw)2 + A2(iw) + A3 + (B1(iw)2 + B2(iw) + B3)e−iwτ = 0
−iw3 − A1w2 + A2iw + A3 + (−B1w2 + B2iw + B3)(coswτ + isinwτ) = 0

−iw3 − A1w2 + iA2w + A3 + (−B1w2coswτ − iB1w2sinwτ + B2iwcoswτ − B2wsinwτ+
B3coswτ + iB3sinwτ = 0

(21)

separate imaginary and real parts

I : −w3 + A2w − B1w2sinwτ + B2wcoswτ + B3sinwτ

R : −A1w2 + A3 − B1w2coswτ − B2wsinwτ + B3coswτ
(22)

−w3 + A2w = B1w2sinwτ − B2wcoswτ − B3sinwτ

−A1w2 + A3 = B1w2coswτ + B2wsinwτ − B3coswτ
(23)

square and add up the equations
w6 + (A2

1 − 2A2 − B2
1 + 2B1B2)w4 + (A2

2 − 2A1 A3 + 2B1B3 + B2
2)w

2 + A2
3 − B2

3 = 0
where

C1 = A2
1 − 2A2 − B2

1 + 2B1B2

C2 = A2
2 − 2A1 A3 + 2B1B3 + B2

2

C3 = A2
3 − B2

3

(24)

let u = w2

u3 + C1u2 + C2u + C3 = 0 (25)

then H′(u) = 3u2 + 2C1u + C2
Hence, H′(u) = 0 has two roots which are given by

u∗
1 =

−C1+
√

(C2
1−3C2)]

3

u∗
2 =

−C1−
√

(C2
1−3C2)]

3

A hypothesis is formulated as below:

Hypothesis 1 (H1). u∗
1 > 0, H(u∗

1) < 0, C2
1 − 3C2 ≥ 0.

Since C3 > 0, Equation (24) has no real positive roots if C2
1 − 3C2 < 0 (see Lemma 2.1

in [19]) and two real positive roots if Hypothesis 1 (H1) holds and these roots be ωj (j = 1,2).
Let ω1 < ω2 and then H′(ω1) < 0 and H′(ω2) > 0 (see Lemma 3.2 in [20]).

By Equation (23), we obtained following equation

sinwτ =
−A1w2 + A3 + (−B1w2 + B3)coswτ

B2w
(26)

and substitute it into Equation (23).

−w3 + A2w = B1w2[−A1w2+A3+(−B1w2+B3)coswτ
B2w ]− B2wcoswτ − [−A1w2+A3+(B3−B1w2)coswτ

B2w ]
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coswτ =
−B2w4 + B2 A2w2 + A1B1w4 − A3B1w2 − A1B3w2 + A3B3

B1B3 − B2
1w4 − B2

2w2 − B2
3 + B1B3w2

τk
j =

1
wj

[
arccos

(−B2w4 + B2 A2w2 + A1B1w4 − A3B1w2 − A1B3w2 + A3B3

B1B3 − B2
1w4 − B2

2w2 − B2
3 + B1B3w2

)
+ 2kπ

] (27)

where j = 1, 2 and k = 0, 1, 2, ..

Lemma 1. If Hypothesis (H1) holds, then Equation (20) has a pair of pure imaginary roots ∓iw
and all other roots have non-zero real parts at τ = τk

j (j = 1,2,k = 0,1,2,. . . )

In addition, we define τ0 = minj = 1, 2τ0
j , τ0 represents the smallest positive value of

τ0
j , j = 1, 2 given by Equation (26) and w = wj0

Lemma 2. If Hypothesis (H1) holds, then we have the following two transversality conditions:

sign
[dRλ(τ)

dτ

]
τ
= τk

1 < 0, sign
[dRλ(τ)

dτ

]
τ
= τk

1 > 0 (28)

where k = 0, 1, 2, . . .

Therefore, the required transversality condition is obtained if H′(ω2
1) < 0, and H′(ω2

2) > 0.

3. Results

3.1. Nutrient–Phytoplankton–Zooplankton Interaction Model

A set of parameter values from the literature [17] was used to substantiate the an-
alytical results obtained through numerical simulation (see Table 1). τ is considered a
bifurcation parameter.

From the numerical simulations, it was found that, for E∗(1.4653, 0.6618, 0.1647, 0.9806),
the system is unstable for τ = 0, which is without delay as in Figure 1. The assumption
for the system without delay means that the produced toxin is an instantaneous process
neglecting the maturity of the TPP population. Therefore, the absence of time lag in the
system illustrates that HAB phenomena will occur faster and thus makes the system un-
stable. Figure 2 depicts the equilibrium between TPP and zooplankton populations loses
its stability for τ = 0 < τ0. This shows that an prey–predator interaction exists between
TPP and zooplankton population. TPP do not secrete out the toxic substance into the
environment but it will harm zooplankton if it is consumed when the toxin produced
is at its peak. Meanwhile, Figure 3 shows that the equilibrium between NTP and TPP
populations loses its stability for the non-delay system. The NTP and TPP populations
interact during the interspecies competition for food hunting.

From the analytical findings, the value of the delay parameter of system (2) for the
stability behaviour changes when τ0 = 22.6841. This finding is well supported by experi-
mental research [3,11] where, in the batch culture of Pyrodinium bahamense in one month,
the peak of the cell content is on the 22nd day. The toxin content rapidly peaks during the
early exponential phase and rapidly declines prior to the onset of the plateau phase. This
explains the reason behind the switching behaviour which occurred once in this research.
We also remark that τ represents the time lag for the maturity of the TPP population
for producing toxin.
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Table 1. Parameter values used in the numerical simulation (Nutrient–Phytoplankton–Zooplankton
Interaction Model).

Parameters Symbols Values

Dilution rate of nutrient D 0.3 (h−1)
Constant input of nutrient concentration N0 1.58 (h−1)

Nutrient uptake rate for the NTP α1 0.03 (mL · h−1)
Nutrient uptake rate for the TPP α2 0.022 (mL·h−1)

Conversion rate of NTP θ1 0.02 (mL·h−1)
Conversion rate of TPP θ2 0.02 (mL·h−1)

Natural death rate of NTP m1 0.006 (h−1)
Natural death rate of TPP m2 0.006 (h−1)

Natural death rate of zooplankton m3 0.005 (h−1)
Competition coefficient e1 0.02 (mL·h−1)
Competition coefficient e2 0.02 (mL·h−1)
Predation rate of NTP β1 0.02 (mL·h−1)
Predation rate of TPP β2 0.01 (mL·h−1)

Conversion rate for NTP γ1 0.01 (mL·h−1)
Death rate due to consumption of TPP γ2 0.008 (mL·h−1)

Dilution rate of NTP D1 0.0004 (h−1)
Dilution rate of TPP D2 0.0004 (h−1)

Dilution rate of zooplankton D3 0.0003 (h−1)

Figure 1. Simulation results of System (2) with τ = 0 < τ0.

Therefore, as τ passes through the critical value of τ = τ0 = 22.6841, the interior
equilibrium point gains its stability and a Hopf bifurcation occurs as shown in Figure 4. It
can be seen that the system switches from an unstable to stable system. Due to the time
needed for the maturity of the TPP population, the system becomes locally stable since
the HAB takes time to occur. Figures 5 and 6 illustrate the asymptotical stability of the
equilibrium between the TPP with the zooplankton population and the NTP with the TPP
populations, respectively. It was found that a stable Hopf-bifurcating periodic solution
occurred in both figures.
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Figure 2. Equilibrium between the TPP and zooplankton populations loses its stability for τ = 0 < τ0.

Figure 3. Equilibrium between the NTP and TPP populations loses its stability for τ = 0 < τ0.
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Figure 4. Simulation results of System (2) with τ = τ0 = 22.6841.

Figure 5. The asymptotical stability of equilibrium the between TPP and zooplankton populations
for τ = τ0 = 22.6841.

Then, the interior equilibrium point remains locally asymptotically stable whenever
the value of τ = 30 > τ0 increases, as shown in Figure 7. It can be seen that when the value
τ is longer than τ0, the unstable system becomes stable. A longer time lag describes that the
TPP needs a longer time to mature and liberate toxic chemicals. Hence, the system becomes
stable where, in this context, the HAB does not occur during the time lag because no toxic
chemicals are released that could harm the marine ecosystem. Figures 8 and 9 depict the
asymptotical stability of the equilibrium between TPP with the zooplankton populations
and NTP with TPP populations for the solution of system (2) for τ = 30 > τ0.
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Figure 10 illustrates the simulation results of system (2) with τ = 20 < τ0. The periodic
solution occurs and the interior equilibrium point loses its stability as τ has a smaller value
than the critical value τ0. The time lag in this model represents the time taken for the TPP
population to mature and produce toxin. Therefore, a shorter time lag results in an unstable
system because TPP takes a shorter time to mature enough to produce toxin. This will
promote the HAB to occur. Figures 11 and 12 show that the equilibrium loses its stability
between TPP with zooplankton and NTP with TPP for τ < τ0.

Figure 6. The asymptotical stability of the equilibrium between NTP and TPP populations for
τ = τ0 = 22.6841.

Figure 7. Simulation results of System (2) with τ = 30 > τ0.
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Figure 8. The asymptotical stability of the equilibrium between the TPP and zooplankton populations
for τ = 30 > τ0.

Figure 9. The asymptotical stability of the equilibrium between the NTP and TPP populations for
τ = 30 > τ0.

101



Mathematics 2022, 10, 2836

Figure 10. Simulation results of System (2) with τ < τ0.

Figure 11. Equilibrium between the TPP and zooplankton populations loses its stability for τ < τ0.
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Figure 12. Equilibrium between the NTP and TPP populations loses its stability for τ < τ0.

3.2. Plankton–Zooplankton–Fish Interaction Model

From the numerical simulations, it was found that, for E∗(6.6731, 3.36538, 3.51923),
the system is stable for τ = 0, which means that there is no delay as in Figure 13. The
parameter values used in the numerical simulation are as shown in Table 2.

Table 2. Parameter values used in the numerical simulation (Plankton–Zooplankton–Fish Interac-
tion Model).

Parameters Symbols Values

Intrinsic growth rate r 0.7 (mL·h−1)
Constant input of nutrient concentration K 28 (h−1)

Mortality rate of zooplankton d1 0.23 (h−1)
Mortality rate of fish d2 0.15 (h−1)

Predation rate of zooplankton c1 0.65 (mL·h−1)
Predation rate of fish c2 0.45 (mL·h−1)

Birth rate of zooplankton e1 0.9 (mL·h−1)
Birth rate of fish e2 0.99 (mL·h−1)

Coefficient of toxicity f 0.1 (h−1)

The asymptotical stability between TPP with fish, zooplankton with fish and among
all populations for τ = 0 is as shown in Figures 14–16. When the system is described as
stable it means that fish kills occur in the water while the system is unstable when there no
fish kills occur. This is because the objective of this model is to describe the fish kills due to
HAB events. Meanwhile, the delay in this model indicates the time lag required for the fish
to die after consuming the toxicated zooplankton. The values of τ are as in Table 3.
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Table 3. τ values.

τ+
j τ−

j

τ+
0 = 1.37941 τ−

0 = 5.39314
τ+

1 = 6.98104 τ−
1 = 12.53884

τ+
2 = 12.58266 τ−

2 = 19.6845

Figure 13. Simulation results of System (16) for τ = 0.

Figure 14. The asymptotical stability between the TPP and fish populations for τ = 0.
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Figure 15. The asymptotical stability between the zooplankton and fish populations for τ = 0.

Figure 16. The asymptotical stability of all populations for τ = 0.

From Figure 17, it can be seen that when the value of τ = τ+
0 = 1.37941, the system

becomes periodic and switches from a stable system to an unstable system and Hopf
bifurcation occurs. This shows that the induced delay in this system affects the stability of
the system. The equilibrium losing its stability between the TPP with fish, zooplankton
with fish and among all populations are shown in Figures 18–20.
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Figure 17. Simulation results of System (16) for τ = τ+
0 .

Figure 18. Equilibrium between the TPP and fish populations loses its stability for τ = τ+
0 .
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Figure 19. Equilibrium between the zooplankton and fish populations loses its stability for τ = τ+
0 .

Figure 20. Equilibrium of all populations loses its stability for τ = τ+
0 .

However, Figure 21 illustrates that the system again switches to a stable system when
the value of τ = τ−

0 = 5.39314. Thus, τ−
0 is the second bifurcation node in this system

where the system changes from an unstable system to a stable system. The asymptotical
stability between TPP with fish, zooplankton with fish and among all populations are as
shown in Figures 22–24.
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Figure 21. Simulation results of System (16) for τ = τ−
0 .

Figure 22. The asymptotical stability between the TPP and fish populations for τ = τ−
0 .
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Figure 23. The asymptotical stability between the zooplankton and fish populations for τ = τ−
0 .

Figure 24. The asymptotical stability of all populations for τ = τ−
0 .

Meanwhile, Figure 25 shows that the system becomes unstable again when the value
of τ = τ+

1 = 6.98104. Therefore, this is the third bifurcation node in this system where
the system switches from being a stable to unstable system. It can be seen that the system
oscillates throughout the period. Equilibrium between the TPP with fish, zooplankton with
fish and among all populations loses its stability as shown in Figures 26–28.

109



Mathematics 2022, 10, 2836

Figure 25. Simulation results of System (16) for τ = τ+
1 .

Figure 26. Equilibrium between the TPP and fish populations loses its stability for τ = τ+
1 .
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Figure 27. Equilibrium between the zooplankton and fish populations loses its stability for τ = τ+
1 .

Figure 28. Equilibrium of all populations loses its stability for τ = τ+
1 .

However, the system remains unchanged when τ = τ−
1 = 12.53884, as shown in

Figure 29. Thus, there is no Hopf bifurcation since there is no switching. The equilibrium
between TPP with fish, zooplankton with fish and among all populations loses its stability
for τ−

1 are shown as in Figures 30–32.
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Figure 29. Simulation results of System (16) for τ = τ−
1 .

Figure 30. Equilibrium between the TPP and fish populations loses its stability for τ = τ−
1 .
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Figure 31. Equilibrium between the zooplankton and fish populations loses its stability for τ = τ−
1 .

Figure 32. Equilibrium of all populations loses its stability for τ = τ−
1 .

Figure 33 illustrates the direction of Hopf while Figure 34 shows the stability infor-
mation of System (16). It can be seen that for τ = 0, which is without delay, the system is
stable. However, the system switches to an unstable system for the first critical value of
time delay which is τ = τ+

0 = 1.37941. The system is asymptotically stable for τ < 1.37941.
Then, the system again switches to a stable system for the second critical value of the time
delay, τ = τ−

0 = 5.39314. The system loses its stability when τ > 5.39314 which is less than
the third critical value τ > 6.98104. However, the system remains unstable for τ > 6.98104
which is less than the fourth critical value τ = 12.53884.
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Figure 33. Direction of Hopf.

Figure 34. Stability information of System (16).

4. Discussion

In this research, the interactions between the nutrient, TPP population, NTP popula-
tion, and zooplankton population were investigated to describe the occurrence of HAB
events. The time delay is incorporated into this system to show that TPP species need to
achieve their maturity before producing toxin. From the results, it can be seen that the
unstable model becomes stable when delay is induced into the system. Whenever the time
delay is equal to the critical value—which is τ0 = 22.6841—the system achieves its stability.
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The value obtained is well supported by experimental findings [3,11] where in the batch
culture of Pyrodinium bahamense, in a month, on the 22nd day, the toxin content is at its
most. The toxin content rapidly peaks during the exponential phase and rapidly decline
prior to the onset of a plateau phase.

The toxin released by the TPP population has had many detrimental consequences
on marine creature, aquaculture sector, tourism, etc. In this research, the effect of toxin on
fish populations is discussed where the interaction between TPP species, zooplankton and
fish populations is well described. From the model, fish are affected by the toxin when
they consumed toxicated zooplankton, which consumed the TPP population. However,
the death of a fish population is not an instantaneous process but is mediated by some
time lag. Therefore, delay in incorporated into this model to study the effect of delay into
this system.

It can be seen that, for τ = 0, which is without delay, the system is stable. However,
the system switches to an unstable system for the first critical value of time delay which is
τ = τ+

0 = 1.37941. The system is asymptotically stable for τ < 1.37941. Then, the system
again switches to a stable system for the second critical value of time delay, τ = τ−

0 =
5.39314. The system loses back its stability when τ > 5.39314 which is less than the third
critical value τ > 6.98104. However, the system remains unstable for τ > 6.98104 but less
than the fourth critical value τ = 12.53884. Therefore, it can be concluded that there are
two nodes of Hopf bifurcation which change the system from a stable system to an unstable
system and switch back to a stable system and then remain unchanged. In an ecological
sense, these results revealed that under certain parametric conditions, the delay of fish
death can bring instability as well as stability in the planktonic food chain.

5. Conclusions

This study presented a mathematical model that describes the process of HAB with
the presence of discrete delay. The inclusion of discrete delay is important to show that the
production of toxin is not an instantaneous process where TPP species need to achieve their
maturity before being able to produce toxin in their body. However, the produced toxin
does not secrete out into the environment but is kept inside the cell body. P.bahamense
becomes harmful to shellfish because shellfish act as a filter feeder and will filter the water
going inside them. Thus, when there is massive bloom of P.bahamense, they get stuck in
stomach of shellfish during filtration. The toxin does not harm the shellfish but it is harmful
to human health whenever it is consumed. Moreover, when there is massive bloom, the
decreased content of dissolved oxygen (DO) in the water kills fish because they can barely
breathe to receive oxygen. Dinoflagellates have a rigid cell wall that also contains silica
and they have two tiny whip-like structures known as flagellae to propel them through
the water. Due to this rigid cell wall, it is hard to break but will accumulate in the fish
gills and make it hard to breath. In some cases, when the cell wall touches the fish gills, it
could explode and the toxin content released out of the cell. This toxin content is harmful
to human health if it is consumed.

A delay model of plankton interaction is developed in which the time lag is incor-
porated for the maturity of TPP species to produce toxin. The stability behaviour of the
system around the feasible steady states was investigated. The findings show that inducing
discrete delay into the model has a stabilizing effect on the system. This result contradicts
previous research wherein almost all of the previous research claimed that delay would
stabilize their model system. Therefore, the delay can switch the system from unstable
to stable or vice versa [21]. Our findings bring an ecological significance to the marine
ecosystem, that is, if the time taken for the TPP to mature is longer, then the system is
stable since no production of toxic chemicals could result from the occurrence of HAB. This
research indicates that inducing discrete delay causes a stabilization effect in the system
and shows the effect of dilution rate, nutrient concentration, and interspecies competition
towards the model. This also demonstrates and gives information about the occurrence of
HAB for a better understanding.
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Furthermore, this study also presented a model of a plankton–fish–zooplankton in-
teraction model which consist of three variables which are the TPP, zooplankton, and fish
populations. In this model, the TPP population is being predated by the zooplankton
population which in turn serves as food for the predator fish population. The time delay
was incorporated into this model to show that the mortality of fish species due to the
consumption of toxic zooplankton is not an instantaneous process but is mediated by some
time lag. This model helps to understand and describe the effect of toxin liberation by the
TPP population towards fish population where fish will die. This may harm the aquaculture
sector where massive fish kills during HAB occurrence have occurred in Tanjung Kupang,
Johor [10].

Therefore, this research gives knowledge and understanding of how HAB events occur
due to Pyrodinium bahamense sp. and what factors are involved. Additionally, the second
model describes the effect of HAB on the fish population in which it causes fish mortality.
Hence, monitoring and awareness programs should be conducted to educate the public
about the effects of HAB occurrence in order to minimize the loss.
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HAB Harmful Algal Bloom
TPP Toxin-Producing Phytoplankton
NTP Non-Toxic Phytoplankton
PSP Paralytic Shellfish Poisoning
PST Paralytic Shellfish Toxin
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Abstract: Population dynamics is affected by environmental fluctuations (such as climate variations),
which have a characteristic correlation time. Strikingly, the time scale of predictability can be larger
for the population dynamics than for the underlying environmental fluctuations. Here, we present a
general mechanism leading to this increase in predictability. We considered colored environmental
fluctuation acting on a population close to equilibrium. In this framework, we derived the temporal
auto and cross-correlation functions for the environmental and population fluctuations. We found
a general correlation time hierarchy led by the environmental-population correlation time, closely
followed by the population autocorrelation time. The increased predictability of the population
fluctuations arises as an increase in its autocorrelation and cross-correlation times. These increases
are enhanced by the slow damping of the population fluctuations, which has an integrative effect on
the impact of correlated environmental fluctuations. Therefore, population fluctuation predictability
is enhanced when the damping time of the population fluctuation is larger than the environmental
fluctuations. This general mechanism can be quite frequent in nature, and it largely increases the
perspectives of making reliable predictions of population fluctuations.

Keywords: population dynamics; predictability; anomalies; environmental fluctuations; population
fluctuations; correlation times; temporal correlation; colored noise; colored environmental fluctuations

MSC: 92B05

1. Introduction

Population dynamics is frequently affected by the randomness of the environmental
fluctuations requiring the use of stochastic dynamics equations [1,2]. Environmental fluc-
tuations have different sources including variability in resources needed by a population
(e.g., food) [3]; unpredictability in weather or climate [4,5]; and natural disasters [6], which
are usually considered extreme cases of environmental fluctuations [7]. Environmental
fluctuations can alter the dynamics of a population, significantly impacting population
fluctuations and their predictability [8], and even causing the extinction of otherwise stable
populations [6,9,10]. Random environmental fluctuations can have an appreciable time
correlation, requiring models with colored (temporally correlated) noise instead of white
noise. Accurate prediction of the population dynamics requires using appropriate colored
noise (i.e., with the correct correlation time function) to simulate the environmental fluctua-
tions [11,12]. The color (or temporal correlation) of the environmental fluctuations has been
shown to have relevant consequences for population dynamics and the population extinc-
tion risk [13–17]. The impact of colored noise on the dynamics has also been experimentally
observed [11,18,19].

The environmental variability is especially critical in some species. For example,
ectotherms are particularly sensitive to changes in temperature [20,21]. Ectotherms suffer
important changes in growth [22] and development [23] depending on the circumstances
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given by the environment, and a study of the underlying mechanism describing the general
effect of environmental variability can help to understand ectotherms’ dynamics.

Here we are interested in using stochastic population dynamics models to obtain
further insight into the predictability of the population fluctuations. It has been reported
that the predictability of the population fluctuations can be larger than the underlying
environmental fluctuations [11,24]. In particular, primary production fluctuations have
been found to be predictable at larger time scales than the underlying sea surface tem-
perature anomalies (environmental fluctuations) [25]. In the context of the study of the
impact of El Niño teleconnections on the European climate variability, it was found that
the predictability of the crop yield was higher than that of the underlying atmospheric
variables affecting crop yield [26]. Analogous results have been found for the predictability
of Malaria in Africa [27]. Similarly, higher predictability has been found for the Pacific
fisheries anomalies than for the underlying Pacific sea surface temperatures (SSTs) when
exploiting the Atlantic-Pacific teleconnection [28].

Here, we aim to apply stochastic population dynamics with colored environmental
noise to understand population fluctuation predictability and its relations with environ-
mental fluctuation predictability. In terms of temporal correlations, we aim to understand
how the dynamics transform the temporal correlations of the environmental fluctuations
into temporal correlations of the population fluctuations.

In Section 2, we present the population dynamics model (for small fluctuations around
equilibrium) driven by colored environmental noise. In Section 3, we compute and compare
the auto and cross-correlation functions between the environmental fluctuations and the
population fluctuations. We compute their maxima and characteristic times, establishing
their hierarchies, which provide insight into the propagation of the amplitude and temporal
correlation of the fluctuations. Finally, the results are discussed in Section 4.

2. The Model: One Species with Temporally Correlated Noise

To study how temporal autocorrelated noise affects a single species, we begin by
defining the differential equation that rules the evolution of fluctuations of a species
around the equilibrium. For a population with size N(t) (dimensionless) at a certain time t,
evolving close to the equilibrium value Neq of the population dynamics, we define the

population fluctuations as ε(t) = N(t)−Neq
Neq

, which are dimensionless. (When we assume
small fluctuations, the effective equilibrium population size can be estimated with the
average of the population size measured in a long enough time series). Close to equilibrium,
this leads to the linear evolution equation

dε = − ε

T
dt + λ Adt (1)

where T is the characteristic time of return to equilibrium (units of time), and γ = 1/T is
the rate of return to equilibrium (units of time−1). λ is a coupling constant with units of
([A]·time)−1. The population is affected by environmental fluctuations A. Environmental
fluctuations are random variations or anomalies in an environmental variable (such as
temperature, humidity, or a resource needed by the population, and the units of A depend
on the kind of environmental fluctuations considered) which influence the evolution of
the population. Here, we consider environmental fluctuations A described by a positively-
autocorrelated (red) noise defined as an Ornstein-Uhlenbeck process [29] such as

dA = − A
τ

dt +
σ

τ
dW, (2)

where τ is the characteristic correlation time of the noise (units of time), σ its amplitude
(Units of [A]·time1/2), and dW the differential increment of a normalized Wiener pro-
cess (i.e., ξ = dW/dt is a normalized Gaussian white noise). < dW(t)dW(t + t′) > =
cdWdW(t′) = 0 for t′ �=0 and cdWdW(t′) = dt for t′ = 0, with <> the expectation value. All
the variables used in this model are described in Table 1, as well as their units.
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Table 1. Variables used with its description and units.

Variables Description

N(t) Population size at a given time t. Dimensionless.

ε(t) Population density fluctuations around equilibrium ε(t) = N(t)
N(eq)

− 1.
Dimensionless.

A(t)
Temporally autocorrelated environmental fluctuations at a given time t.
Units [A] depend on the kind of environmental fluctuations considered

(e.g., temperature or humidity)

τ
Characteristic correlation time of the environmental fluctuations.

Units of time.

T Characteristic time of return to equilibrium of the population.
Units of time.

γ = 1/T Rate of returntoequilibrium. For the logistic equation and small fluctuations,
it is equal to thegrowth rater. Units of time−1.

α = T/τ = 1/(γτ)
Ratio between the characteristic damping time of the population fluctuations

T and the correlation time of the environmental fluctuations τ.
Dimensionless.

σ Amplitude of the noise. Units of [A]·time1/2.

λ
The coupling constant giving the impact of the environmental fluctuations A

on the population dynamics ε.
Units of ([A] ·time)−1.

Figure 1 shows a typical evolution for the environmental noise A and for the popu-
lation fluctuation ε. Population fluctuations are compared for a lower (red) and a higher
(green) damped population dynamics. The plot illustrates that higher damped population
fluctuations present a smaller amplitude of population fluctuations. It also shows that
peaks in environmental fluctuations A appear delayed and smoothed in the population
fluctuations. This pattern anticipates the relevant and delayed temporal cross-correlations
between the environmental and population fluctuations that we find in the next section.

Figure 1. Evolution for the environmental fluctuations A (solid black line); and the population fluctua-
tions for T = 2 τ (⇒ γ = 0.5/τ ) (red dashed line), and T = 0.5 τ (⇒ γ = 2/τ ) (green pointed line)
for σ = 0.1, λ = 1 and τ = 1. Population fluctuations peak a short time after environmental fluctuations
peak, indicating a delayed correlation between environmental and population fluctuations.

3. Temporal Autocorrelations and Cross-Correlations

Once we have seen the behavior of the evolution before, our target is to calculate
temporal correlations for a single species in the presence of temporally autocorrelated noise.
We want to calculate environmental (noise) autocorrelation, species autocorrelation, and
environmental-species correlation, as well as a correlation time.
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The correlation between two magnitudes X and Y in two instants separated by a delay
t′ is given by the correlation function

cXY
(
t′
)
= < X(t)Y

(
t + t′

)
>, (3)

where <> means expected value. This correlation indicates how good is X(t) as a predictor
of Y(t + t′). Therefore, to understand the predictability of the population fluctuations,
we have computed the correlations functions of the environmental fluctuations A and
of the population fluctuations ε. See Appendix A for the detail of the computations.
The correlation functions are

cAA
(
t′
)
=

σ2

2τ
e−|t′ |/τ (4)

cεε

(
t′
)
=

{
λ2σ2τ

2
α2

1−α2

(
e−|t′ |/τ − α e−|t′ |/T

)
, T �= τ

λ2σ2τ
4 (1 + |t′|/τ)e−|t′ |/τ , T = τ

(5)

cAε

(
t′
)
=

⎧⎪⎪⎨⎪⎪⎩
λσ2

2
α

1+α et′/τ , t′ ≤ 0
λσ2

2
α

1−α2

(
(1 + α)e−t′/τ − 2α e−t′/T

)
, t′ > 0 and T �= τ

λσ2

4 (1 + 2t′/τ)e−t′/τ , t′ > 0 and T = τ

(6)

cεA
(
t′
)
= cAε

(−t′
)

(7)

where α = T/τ = 1/(γτ) is the dimensionless ratio between the characteristic damp-
ing time of the population fluctuations T and the correlation time of the environmental
fluctuations τ. We have represented these correlation functions in Figure 2A.

Figure 2. Correlation functions with their maximums and their values at t′ = 0 and correlation times.
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(A) represents the adimensionalized correlation functions cεε(t′) (green), cAA(t′) (red) and cAε(t′)
(blue) adimensionalized for the case α = T/τ = 1. (B) compares the adimensionalized maxima
of the autocorrelations function MAA and Mεε (which coincide with the value at t′ = 0 of the
respective autocorrelation) with the maxima of the adimensionalized crosscorrelation function MAε

and its value at zero delay cAε(0). Their normalized values, MN
Aε = MAε/

√
cAA(0)cεε(0) and

cN
Aε(0) = cAε(0)/

√
cAA(0)cεε(0) are shown in (C), with the delay of the cross-correlation maximum

lAε. (D) compares the correlations times TAε, Tεε and TAA. These plots illustrate the hierarchies for
temporal correlations and for the maxima of the correlations discussed in the main text. In particular,
it shows that for low damping (large α = T/τ) the crosscorrelation time TAε increases, allowing
longer-term predictions, despite the decrease in accuracy that can be seen from the decay of the
normalized maximum of the crosscorrelation MN

Aε.

3.1. Maxima of the Correlation Functions

The autocorrelation function of the environmental fluctuations cAA(t′) and the auto-
correlation function of the species cεε(t′), which are symmetric, have their maximum at the
origin, t′ = 0,

MAA = cAA(0) =
σ2

2τ
(8)

Mεε = cεε(0) =
λ2σ2τ

2
α2

1 + α
(9)

The cross-correlation cAε(t′), has a value at the origin of

cAε(0) =
λ σ2

2
α

1 + α
. (10)

But the cross-correlation cAε(t′) has a lagged maximum (a minimum for negative
coupling λ), see Figure 2A, situated at a time displacement (t′ = lAε)

lAε =

{
τ α

1−α ln
( 2

1+α

)
, T �= τ

τ
2 , T = τ

(11)

This lag means that the population is more affected by the fluctuation after a certain
time instead of instantly. Because of the basic property of correlations cXY(t′) = cYX(−t′),
the correlation function cAε(t′) has the maximum in t′ = −lAε. This maximum is at t′ > 0
for any α = T/τ > 0, and approaches the origin (smaller lag) as T/τ decreases. This
dependence on T/τ causes the lag to tend to zero if the characteristic time of return to
equilibrium of the population T is very short.

The cross-correlation cAε(t′) at this maximum located at t′ = lAε has a value

MAε =

{
λ σ2

2 α
( 2

1+α

) α
α−1 , T �= τ

λ σ2

2 e−1/2, T = τ
(12)

It can be shown that the maximum correlation MAε at most doubles the correlation at
the origin cAε(0), i.e., 1 ≤ MAε

cAε(0)
≤ 2.

The maxima values can be adimensionalized and compared as in Figure 2B. This
shows the following hierarchy

Mεε
σ2τ

< MAε
λ σ2 < MAAτ

λ2σ2 for T < τ

Mεε
σ2τ

� MAε
λ σ2 � MAAτ

λ2σ2 for T � τ
(13)

This hierarchy means that when the characteristic time scale of population fluctuations
damping T is greater than the environmental fluctuations correlation time τ, the magnitude
of the adimensionalized maxima increases as the fluctuation propagates (from the envi-
ronment to the population). Conversely, when the population fluctuations dampen faster
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than the environmental fluctuations correlations time (T < τ), the maxima decrease as the
fluctuation propagates. Only in this later regime and when T � τ (i.e., on the constant
environmental fluctuation limit) the normalized environment-population cross-correlation
maximum reaches full correlation MN

Aε = 1 (but at zero delay, lAε = 0). See Figure 2C. The
normalized environment-population cross-correlation maximum and value at the origin
are given by

MN
Aε =

MAε√
cAA(0)cεε(0)

=

{
sign(λ)

√
2
( 2

1+α

) 1+α
2 (α−1) , T �= τ

sign(λ)
√

2 e−1/2, T = τ
(14)

cN
Aε(0) =

cAε(0)√
cAA(0)cεε(0)

=
sign(λ)√

1 + α
. (15)

3.2. Temporal Correlations

The characteristic time of temporal correlations gives the time extension of the pre-
dictability. For simple exponential decays of the correlation, the correlation time is just
given by the characteristic decay factor in the exponential. For more general cases, we
define the correlation time as

TXY =

∫ ∞
0 t′|cXY(t′)|dt′∫ ∞

0 |cXY(t′)|dt′
. (16)

The absolute value allows incorporating the effects of negative correlations as predic-
tors. For the autocorrelations and cross-correlations, we get

TAA = TεA = τ (17)

Tεε = τ

[
1 +

α2

1 + α

]
= τ + T

1
1 + 1/α

(18)

TAε = τ

[
1 +

2α2

1 + 2α

]
= τ + T

1
1 + 1/(2α)

(19)

In Figure 2D, these correlation times are plotted as functions of α = T/τ, the ratio
between the damping time of the population fluctuations T and the correlation time of the
environmental fluctuations τ. Figure 2D suggests a hierarchy of correlation times that can
be proven from the previous expressions, i.e., Equations (17)–(19).

TAA = TεA = τ < Tεε < TAε < τ + T (20)

The difference between the last two is bounded by 0 < (TAε − Tεε) <
τ
2 .

This hierarchy of correlation times implies a longer correlation time, and therefore a
larger scale of predictability, for population fluctuations than for environmental fluctuations.

4. Discussion

We aimed to understand the predictability of population fluctuations compared to
environmental fluctuation predictability. To obtain an insight into the question, we com-
puted the correlation functions of a population close to an equilibrium state in the presence
of environmental colored noise. This computation allowed us to compute the correlation
times and the maxima of the correlation functions, finding hierarchies for them, which
gives general relations.

We found that the predictability of the population fluctuations is always higher than
for the environmental fluctuations. Because of this, we have determined that the correla-
tion time of the population fluctuations is always greater than the correlation time of the
environmental fluctuations. The difference in correlation time increases with increased
characteristic damping time of population fluctuations T. For example, for T = 10 τ we
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have Tεε = 10.1 τ and TAε = 10.5 τ; we also have that the maximum of the population-
environment cross-correlation is at lAε = 1.9 τ with a normalized correlation MN

Aε = 0.5,
showing a clear increase with respect to the correlation time for the environmental fluctua-
tions TAA. The underlying mechanism is analogous to the one described by Hasselmann for
the integration of the fast weather components leading to the slow climate dynamics [30].
Our model stresses that the mechanism is general and time-scale independent. In practical
cases times scales can range from days (for prey populations in agriculture) to years (for
large species or ecosystems).

This study was inspired by our previous results on spatial population synchrony [31–34]
and motivated by the findings that population fluctuations showed larger predictability than
the underlying environmental variables. This was shown to happen for a wide range of
systems: primary production in oceans [25], crop yield [26], malaria [27] and fisheries [28].
This higher predictability increases the prospects of predicting climatic variability effects on
populations [26–28,35–37].

The determination of the effective equilibrium can be challenging in practical cases [24].
In general, the effective equilibrium is obtained from the time-average of the data in long-
enough time series. However, sometimes the equilibrium can have seasonal oscillations
or long-term trends. In this case, these variations in the equilibrium have to be taken into
account, substracting them to obtain the correct fluctuations around equilibrium. Several
model extensions are possible to obtain an insight into the scope of the results. The results
have been obtained for a single-environmental variable acting on a single-species in the
small fluctuation regime, which allows the linearization of the dynamical equations around
the equilibrium. This model can be extended, including several interacting species and
several environmental variables (which may also interact as wind stress and sea surface
temperature). Another extension is including the division of species populations into dis-
tinct life stages, with some of them particularly affected by environmental fluctuations [38].
Our model considers small enough environmental fluctuations (which implies the pop-
ulation is close to equilibrium). This can be extended by studying larger environmental
fluctuations in particularly relevant ecological models, which would clarify how the results
in the present work are affected by the presence of nonlinearities.

The present study raises the question of how the propagation of fluctuations through
the food webs impacts the predictability of the different species’ population fluctuations.
This more profound understanding of the population predictability will help to design
improved conservation policies, particularly useful for species especially sensitive to envi-
ronmental variability (represented in our model with great couplings λ), such as ectotherms.
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Appendix A. Computation of Temporal Correlation Functions and Times

As the dynamics are time invariant, the asymptotic time correlations are stationary.
The stationarity condition is

< X(t)Y
(
t + t′

)
> = < X(t + dt)Y

(
t + t′ + dt

)
>

where X(t + dt) = X(t) + dX(t) and Y(t + t′ + dt) = Y(t + t′) + dY(t + t′). The applica-
tion of this stationary condition provides relationships between time correlation, which
allow computing them.

Appendix A.1. Wiener Process Temporal Autocorrelation

The temporal autocorrelation of the Wiener process (whose derivative gives the white
noise) is known to be

cdWdW
(
t′
)
=

{
dt, for t′ = 0,
0, for t′ �= 0.

(A1)

Appendix A.2. Wiener—Colored-Noise Temporal Cross-Correlation

We now that cdWA(t′) = < dW(t)A(t + t′) > is zero for t′ ≤ 0, as there is no fluctua-
tion propagation to the past. Therefore, we just have to make the computation for positive
time displacement.

We compute cdWA(t′) = < dW(t)A(t + t′) > for t′ = dt, t′ = 2dt, t′ = 3dt, . . .

< dW(t)A(t + dt) > = < dW(t)
(

A(t)− A(t)
τ

dt +
σ

τ
dW(t)

)
> =

σ

τ
dt

< dW(t)A(t + 2dt) > = < dW(t)
(

A(t + dt)− A(t + dt)
τ

dt +
σ

τ
dW(t + dt)

)
> =

σ

τ

(
1 − dt

τ

)
dt

< dW(t)A(t + 3dt) > = < dW(t)
(

A(t + 2dt)− A(t + 2dt)
τ

dt +
σ

τ
dW(t + 2dt)

)
> =

σ

τ

(
1 − dt

τ

)2
dt

These results allow us to get the general expression

cdWA(ndt) = < dW(t)A(t + ndt) > =
σ

τ

(
1 − dt

τ

)n−1
dt

In the large n limit, we get the exponential expression

cdWA
(
t′
)
=

σ

τ
e−t′/τdt if t′ > 0

Therefore, we have

cdWA
(
t′
)
=

{
0 if t′ ≤ 0

σ
τ e−t′/τ dt if t′ > 0

(A2)

Appendix A.3. Wiener—Population Temporal Cross-Correlation

There is no propagation of the fluctuations to the past. Thus, cdWε(t′) = < dW(t)ε(t + t′) >
is zero for t′ ≤ 0, and we only have to compute the correlation for positive time displacement.

The same procedure used for cdWA(t′) allows obtaining cdWε(t′)

< dW(t)ε(t + dt) > = < dW(t)·(ε(t)− γε(t)dt + λA(t)dt) > = 0

< dW(t)ε(t + 2dt) > = < dW(t)·(ε(t + dt)− γε(t + dt)dt + λA(t + dt)dt) > =
λσ

τ
dt2
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< dW(t)ε(t + 3dt) > = < dW(t)·(ε(t + 2dt)− γε(t + 2dt)dt + λA(t + 2dt)dt) > =
λσ

τ
(1 − γdt)dt2 +

λσ

τ

(
1 − dt

τ

)
dt2

< dW(t)ε(t + 4dt) > = < dW(t)·(ε(t + 3dt)− γε(t + 3dt)dt + λA(t + 3dt)dt) >

= λσ
τ (1 − γdt)2dt2 + λσ

τ (1 − γdt)
(

1 − dt
τ

)
dt2 + λσ

τ

(
1 − dt

τ

)2
dt2

< dW(t)ε(t + ndt) > =
dt2

τ
λσ

n−2

∑
i=0

(1 − γdt)n−2−i
(

1 − dt
τ

)i
=

λσ

τ
dt2(1 − γdt)n−2

n−1

∑
i=1

(
1 − dt

τ

1 − γdt

)i−1

The later expression gives, when γτ = 1

λσ

τ
dt2(1 − γdt)n−2

n−1

∑
i=1

1 =
λσ

τ
dt2(1 − γdt)n−2·(n − 1) ≈ λσ

τ
t′e−γt′dt =

λσ

τ
t′e−t′/τdt,

while for γτ �= 1

λσ
τ dt2(1 − γdt)n−2 n−1

∑
i=1

(
1− dt

τ
1−γdt

)i−1
= λσ

τ dt2(1 − γdt)n−2·
1−
(

1− dt
τ

1−γdt

)n−1

1− 1− dt
τ

1−γdt

= λσdt
1−γτ

(
(1 − γdt)n−1 −

(
1 − dt

τ

)n−1
)

≈ λσ
1−γτ

(
e−γt′ − e−t′/τ

)
dt.

(Note that in the limit γτ → 1, the results for γτ = 1 are recovered, indicating the
continuity of the solution on γτ.)

Therefore, we have the temporal correlation

cdWε

(
t′
)
=

⎧⎪⎨⎪⎩
0 if t′ < 0

λσ
1−γτ

(
e−γt′ − e−t′/τ

)
dt if t′ > 0 and γτ �= 1

λσ
τ t′e−t′/τdt if t′ > 0 and γτ = 1

(A3)

Appendix A.4. Colored-Noise Autocorrelations

The computation of this (and the following) temporal correlations relies on the time
invariance of the dynamics, which leads to the stationarity of the asymptotic temporal
correlations.

We begin calculating the temporal autocorrelation for the environmental autocorrela-
tions, cAA(t′) = < A(t)A(t + t′) >, whose stationary condition implies

< A(t)A(t + t′) > = < (A(t) + dA(t))·(A(t + t′) + dA(t + t′)) > =
< (A(t)− A(t)/τ dt + σ/τ dW(t))·(A(t + t′)− A(t + t′)/τ dt + σ/τ dW(t + t′)) >

Expanding up to the first order in dt we get

< A(t)A(t + t′) > = < A(t)A(t + t′) >− 2
τ< A(t)A(t + t′) >dt

+ σ
τ

(
1 − dt

τ

)
< A(t)dW(t + t′) >+ σ

τ

(
1 − dt

τ

)
< dW(t)A(t + t′) >

+ σ2

τ2 < dW(t)dW(t + t′) >,

which gives the equation

2
τ

cAA
(
t′
)
dt =

σ

τ

(
1 − dt

τ

)
cAdW

(
t′
)
+

σ

τ

(
1 − dt

τ

)
cdWA

(
t′
)
+

σ2

τ2 cdWdW
(
t′
)
.
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As we have shown that cdWA ∼ dt and cdWε ∼ dt [Equations (A2) and (A3)], which
indicates that there are still terms of second order in the previous equation. Keeping only
the first order terms in dt and using cAdW(t′) = cdWA(−t′), the equation becomes

cAA
(
t′
)
=

σ

2 dt
(
cdWA

(
t′
)
+ cdWA

(−t′
))

+
σ2

2τ

cdWdW(t′)
dt

This later equation gives cAA(t′), in terms of the cross-correlations of the white noise
with the colored noise and with the population fluctuations.

Substituting Equation (A2), we get environmental autocorrelation

cAA
(
t′
)
=

σ2

2τ
e−|t′ |/τ (A4)

Appendix A.5. Colored-Noise—Population Cross-Correlation

We continue with the environment-species temporal cross-correlation
cAε(t′) = < A(t)ε(t + t′) >, whose stationary condition gives

< A(t)ε(t + t′) > = < (A(t) + dA(t))·(ε(t + t′) + dε(t + t′)) > =
< (A(t)− A(t)/τ dt + σ/τ dW(t))·(ε(t + t′)− γε(t + t′)dt + λA(t + t′) dt) >

Again, up to the first order in dt, we get

< A(t)ε(t + t′) > = < A(t)ε(t + t′) >−
(

γ + 1
τ

)
< A(t)ε(t + t′) >dt

+ σ
τ (1 − γdt)< dW(t)ε(t + t′) >+ λ< A(t)A(t + t′) >dt + λσ

τ < dW(t)A(t + t′) >dt,

resulting in the second relation,

−
(

γ +
1
τ

)
cAε

(
t′
)
dt +

σ

τ
(1 − γdt)cdWε

(
t′
)
+ λcAA

(
t′
)
dt +

λσ

τ
cdWA

(
t′
)
dt = 0.

Recalling again that cdWA ∼ dt and cdWε ∼ dt, fewer terms are of the first order in dt,
leading to

cAε

(
t′
)
=

1
γ + 1/τ

(
σ

τ

cdWε(t′)
dt

+ λcAA
(
t′
))

Substituting Equations (A3) and (A4), we can calculate the environmental-population
fluctuations cross-correlation

cAε

(
t′
)
=

⎧⎪⎪⎨⎪⎪⎩
λσ2

2(1+γτ)
et′/τ , t′ ≤ 0

λσ2

2((γτ)2−1)

(
(1 + γτ)e−t′/τ − 2e−γt′

)
, t′ > 0 and γτ �= 1

λσ2

4τ (τ + 2t′)e−t′/τ , t′ > 0 and γτ = 1

(A5)

while cεA(t′) = cAε(−t′).

Appendix A.6. Autocorrelations of the Population Fluctuations

We finally compute the temporal autocorrelation for the population fluctuations of the
species cεε(t′) = < ε(t)ε(t + t′) >, whose stationary condition implies

< ε(t)ε(t + t′) > = < (ε(t) + dε(t))·(ε(t + t′) + dε(t + t′)) > =
< (ε(t)− γε(t)dt + λA(t) dt)·(ε(t + t′)− γε(t + t′)dt + λA(t + t′) dt) >.

Keeping terms up to first order in dt, we obtain the following expression:

< ε(t)ε(t + t′) > = < ε(t)ε(t + t′) >− 2γ< ε(t)ε(t + t′) >dt
+λ< ε(t)A(t + t′) >dt + λ< A(t)ε(t + t′) >dt
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In terms of correlations and using the relation cXY(t′) = cYX(−t′), we have

cεε

(
t′
)
=

λ

2γ

(
cAε

(
t′
)
+ cAε

(−t′
))

.

Substituting Equation (A5), we get for the population fluctuations autocorrelation

cεε

(
t′
)
=

⎧⎨⎩ λ2σ2τ

2γτ((γτ)2−1)

(
γτe−

|t′ |
τ − e−γ|t′ |

)
, γτ �= 1

λ2σ2

4 (τ + |t′|)e−|t′ |/τ , γτ = 1
(A6)

Appendix A.7. Maxima

The environmental noise autocorrelation cAA(t′) and of the population fluctuations au-
tocorrelation cεε(t′) have their maximum at the origin t′ = 0. The environment-population
cross-correlation has a lagged maximum at a time t′ = lAε with

lAε =

⎧⎨⎩ ln
(

2γτ
γτ+1

)
γτ−1 τ, γτ �= 1

τ
2 , γτ = 1

(A7)

with a magnitude MAε = cAε(lAε) given by

MAε =

⎧⎪⎨⎪⎩
λσ2
(

2γτ
1+γτ

) 1
1−γτ

2γτ , γτ �= 1
λ σ2

2 e− 1
2 , γτ = 1.

(A8)

These expressions are also given in the main text in terms of α = T
τ = 1

γτ , the ratio of
the population relaxation time T and the correlation time of environmental fluctuations τ.

Appendix A.8. Correlation Times

The previous explicit expression for the time correlation function allows computing
their respective correlation times

TAA =

∫ ∞
0 t′cAA(t′)dt′∫ ∞
0 cAA(t′)dt′

=

∫ ∞
0 t′ σ2

2τ e−t′/τdt′∫ ∞
0

σ2

2τ e−t′/τdt′
=

∫ ∞
0 t′e−t′/τdt′∫ ∞
0 e−t′/τdt′

= τ, (A9)

TεA = τ, (A10)

Tεε = τ
(γτ)2 + γτ + 1

γτ(γτ + 1)
= τ

[
1 +

1
γτ(γτ + 1)

]
= τ

[
1 +

α2

1 + α

]
= τ + T

α

1 + α
, (A11)

TAε = τ
(γτ)2 + 2γτ + 2

γτ(γτ + 2)
= τ

[
1 +

2
γτ(γτ + 2)

]
= τ

[
1 +

2α2

1 + 2α

]
= τ + T

2α

1 + 2α
, (A12)

where α = T
τ = 1

γτ is the ratio of the population relaxation time T and the correlation time
of environmental fluctuations τ.
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Abstract: As a new tumor therapeutic strategy, adaptive therapy involves utilizing the competition
between cancer cells to suppress the growth of drug-resistant cells, maintaining a certain tumor
burden. However, it is difficult to determine the appropriate time and drug dose. In this paper, we
consider the competition model between drug-sensitive cells and drug-resistant cells, propose the
problem of drug concentration, and provide two state constraints: the upper limit of the maximum
allowable drug concentration and the tumor burden. Using relevant theories, we propose the
best treatment strategy. Through a numerical simulation and quantitative analysis, the effects of
drug concentrations and different tumor burdens on treatments are studied, and the effects of cell-
to-cell competitive advantage on cell changes are taken into account. The clinical dose titration
method is further simulated; the results show that our therapeutic regimen can better suppress the
growth of drug-resistant cells, control the tumor burden, limit drug toxicity, and extend the effective
treatment time.

Keywords: problems in pharmacology; drug toxicity; tumor burden; state constraints; optimal control

MSC: 37M05

1. Introduction

In most countries and regions across the world, cancer is the leading cause of death;
prostate cancer is the second largest cancer in men. How to better treat it has become a
long-standing problem. The maximum tolerated dose (MTD) treatment is commonly used
in clinics, but MTD treatment leads to massive drug-sensitive cell death and a significant
increase in drug-resistant cells, ultimately leading to treatment failure [1]. After continuous
studies, Gatenby et al. [2] proposed adaptive therapy to exploit competition between cancer
cells, maintain a certain tumor burden, and suppress the growth of drug-resistant cells.
For adaptive therapy [3], compared with MTD, the administration resulted in a decrease in
drug-sensitive cells, an increase in drug-resistant cells and drug withdrawal, an increase
in sensitive cells, a decrease in drug-resistant cells, and the use of drugs to control the
number of drug-sensitive cells, further affecting drug-resistant cells. Therefore, by choosing
the appropriate dose and treatment time, we maintain a certain tumor burden, suppress
drug-resistant cells, and extend the effective treatment time. However, it is difficult to
determine the drug dose and treatment period.

Cunningham et al. [4] proposed the Lotka–Volterra model of the interaction between
cancer cells,and analyzed an optimal control problem to reach a certain stable point, provid-
ing the optimal dose. Liu et al. [5] established a competition model between drug-sensitive
and drug-resistant cancer cells and proposed a new dynamic optimization problem with
constraints to establish an adaptive treatment scheme for prostate cancer; the control vari-
able was the drug dose and the drug dose played a role in the kinetics as well as in the
concentration. However, in the actual course of treatment, the drug may have to reach
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a certain level to have an effect; the drug concentration is not equal to the drug dose.
Therefore, it is necessary to consider the drug concentration, but the competition model
ignored the drug concentration factor. In fact, most prostate cancer treatment models do
not take this into account [6,7].

Drugs not only kill cancer cells but also affect healthy cells. Therefore, in the process
of treatment, one also needs to consider drug toxicity. Ledzewicz et al. [8] analyzed
cancer chemotherapy models in which the pharmacokinetics equation was introduced
to minimize damage to myeloid cells from chemotherapy; they analyzed the effect of
the pharmacokinetics equation on chemotherapy dose. Urszula et al. [9] modified the
mathematical model; they mainly considered the tumor volume and angiogenesis ability,
using multiple treatment schemes to minimize the tumor volume. They provided the
solutions of several potential mathematical models. Liadis et al. [10] used mathematical
models to describe the pharmacokinetics, antitumor efficacy, and toxicity of anticancer
drugs, providing a schedule for administration, optimizing drug doses, minimizing tumor
burden, and limiting toxicity. Poh Ling Tan et al. [11] considered a mathematical model
of cancer chemotherapy, proposed an objective, provided several different constraint
conditions, proposed two control problems, and obtained the satisfied exact solution.

Therefore, in the course of cancer treatment, one needs to consider how to determine
the dose and treatment time, take into account the drug toxicity, suppress the number of
drug-resistant cells, and extend the limited treatment time. Based on Liu et al. [5], we
describe the drug concentration effect on treatment. Because of the side effects of the
drug, we consider the toxicity of the drug, and provide the maximum allowable drug
concentration. At the same time, because excessive tumor burden will lead to treatment
failure, the maximum tolerable tumor burden is presented. Therefore, the treatment
process is constrained by drug toxicity and tumor burden. Under the two constraints,
the optimal control problem is proposed to optimize the drug dose and treatment time,
so that the number of drug-resistant cells at the terminal time and the drug cost are the
lowest in the limited time. Using the numerical simulation and quantitative analysis,
the optimal treatment time and dose are obtained. The number of tumor cells, optimal
dose, and treatment time are analyzed at different tumor-loading levels, further simulating
the dose titration protocol proposed by Cunningham et al. [4]. The results show that when
the tumor burden is 150%, treatment starts, with the maximum tolerated dose initially
administered. When the maximum allowable drug concentration is reached, the dose is
reduced; with intermittent dosing at moderate doses, this is optimal. It can maintain a
certain tumor burden, reduce the number of drug-resistant cells at the terminal moment,
and reduce drug costs, further limiting drug toxicity.

The structure of this article is as follows. In the second part, we propose a Lotka–
Volterra model to describe the interaction between cancer cells, consider the drug concen-
tration problem, present the first-order linear pharmacokinetics equation, present two state
constraints, and propose an optimal control problem. In the third part, the state constraints
are analyzed and the optimal control structure is given. In the fourth part, through the
numerical simulation, we present the best treatment time and the drug dose, analyze the
different cancer cell upper-limit levels, consider the effects of intercellular competition and
drug concentration on cells, compare the dose titration method, and present a summary. In
the fifth part, we present a conclusion.

2. Optimal Control Problem with Control Variables and Two State Constraints

First, Liu et al. [5] established a Lotka–Volterra model between drug-sensitive and
drug-resistant prostate cells.

⎧⎪⎪⎨
⎪⎪⎩

dT1(t)
dt

= λ1T1

[
1 − (a11T1 + a12T2)(1 + αβ(t))

K1

]
− μ1T1,

dT2(t)
dt

= λ2T2

[
1 − a21T1 + a22T2

K2

]
− μ2T2,

(1)
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where T1 represents drug-sensitive cells, T2 represents drug-resistant cells, λ1 and λ2
represent the net growth rate of cells, K1 represents the environmental capacity of drug-
sensitive cancer cells, K2 represents the environmental capacity of drug-resistant cancer
cells, μ1 and μ2 represent the natural mortality of cells, α represents the patient’s sensitivity
to the targeted drug, β is the drug dose, (aij)2×2 represents competition between sensitive
and resistant cells.

In cancer treatment, medication is a drug dose. In the above model, the effect of
the drug dose is considered; that is, after medication, the number of sensitive cells is
reduced, thus affecting the drug-resistant cells. Drug concentration refers to the constant
accumulation of drug doses in the body’s blood. When the drug concentration is too low, it
may not be enough to kill enough sensitive cells. When the drug concentration is too high,
it may affect normal cells and harm the human body. Therefore, it is essential to consider
the effect of drug concentration on treatment. We propose the following model.

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

dT1(t)
dt

= λ1T1

[
1 − (a11T1 + a12T2)(1 + αc(t))

K1

]
− μ1T1,

dT2(t)
dt

= λ2T2

[
1 − a21T1 + a22T2

K2

]
− μ2T2,

dc(t)
dt

= − f c + kβ.

(2)

For drug concentration and continuous drug dose infusion, a process of self-clearance and
accumulation occurs, so the corresponding model is proposed, where f and k represent
kinetics of drug concentration c in vivo,

Optimal Control of Prostate Cancer

The state equation is constrained by the control variable

0 ≤ β(t) ≤ 1, (3)

considering drug toxicity limits and tumor burden, the following two state constraints
are proposed:

c − cmax ≤ 0, (4)

T1 + T2 − θ ≤ 0, (5)

where cmax is the maximum allowable drug concentration, θ is the initial maximum tumor
burden (the drug-sensitive and drug-resistant cell numbers indicate the tumor burden).
Hansen et al. [12] proposed that, in adaptive therapy, according to the PSA’s (prostate cancer
index) 50% rule treatment, and inspired by this, we propose that the initial maximum tumor
burden is 150% of the initial tumor burden (the values for cmax and θ are given below).

Denote the state variable x = (T1(t), T2(t), c(t)) ∈ R3 by considering the objective

J(x, β) = φ
(

T2(t f )
)
+
∫ t f

0
β(t)dt. (6)

where φ represents the number of resistant cells at the end of treatment. t f represents the
number of resistant cells at the end of treatment.

This objective function (6) represents the number of drug-resistant cells and the cost of
the drug to be minimized at the end of a limited treatment time.

Then, we consider the optimal control problem. We minimize the objective function
under state Equation (2), control variable (3), and state constraints (4) and (5).

3. Minimum Principle: Necessary Optimality Condition

Gollmann et al. [13,14] proposed a method to extend the state constraint from hybrid
control to a pure state constraint. Buskens et al. [15] provided the necessary optimality
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conditions for optimal control problems. Poh Ling Tan et al. [11] obtained the augmented
Hamiltonian function by directly connecting the state constraints with the multipliers η1 and
η2. Referring to the correlation theory, we consider the state constraint problem and obtain
the optimality conditions of the optimal control problem by using the correlation theory.

3.1. State Constraints

For the drug concentration constraint c − cmax ≤ 0, consider the equation of state

·
c = − f c + kβ,

it can explicitly contain the control variable and satisfy the regularity condition

∂

∂β

·
c(t) = k �= 0,

for the drug concentration constraint, the maximum allowable drug concentration is reached

when the drug is continuously administered, c = cmax, we can obtain
·

c(t) = 0. We obtain the
boundary drug dose

β1 =
f
k

cmax.

For the cancer cells constraint, T1 + T2 − θ ≤ 0. We introduce a new variable S(x). Let
S(x) = T1 + T2 − θ. We consider the first derivative:

0 = S
′
(t) = T

′
1(t) + T

′
2(t)

= λ1T1

[
1 − (a11T1 + a12T2)(1 + αc(t))

K1

]
− μ1T1

+ λ2T2

[
1 − a21T1 + a22T2

K2

]
− μ2T2

= (λ1 − μ1)T1 + (λ2 − μ2)T2 − λ1a11T1
2

K1
− λ1a11T1

2αc
K1

− λ1a12T1T2

K1
− λ1a12T1T2αc

K1
− λ2a21T1T2

K2
− λ2a22T2

2

K2
,

from the first derivative of the number of cancer cells, we can see that the control variable
β(t) does not appear. We consider the second derivative:

0 = S
′′
(t) = (λ1 − μ1)T1

′
+ (λ2 − μ2)T2

′ − 2λ1a11T1

K1

− 2λ1a11T1αc
K1

+
λ1a11T1

2αc f
K1

− λ1a11T1
2αkβ

K1

− λ1a12T1
′
T2

K1
− λ1a12T2

′
T1

K1
− λ2a21T1

′
T2

K2

− λ2a21T2
′
T1

K2
− 2λ2a22T2

K2
− λ1a12T1

′
T2αc

K1

− λ1a12T2
′
T1αc

K1
+

λ1a12T1T2α f c
K1

− λ1a12T1T2αkβ

K1
,

S
′′
(t) = (λ1 − μ1)

2T1 + (λ2 − μ2)
2T2 − (λ1 − μ1)λ1a11T1

2

K1
− (λ1 − μ1)λ1a11T1

2αc
K1

− (λ1 − μ1)λ1a12T1T2

K1
− (λ1 − μ1)λ1a12T1T2αc

K1
− (λ2 − μ2)λ2a21T1T2

K2
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− (λ2 − μ2)λ2a22T2
2

K2
− 2λ1a11T1

K1
− 2λ1a11T1αc

K1
+

λ1a11T1
2αc f

K1

− (λ1 − μ1)λ1a12T1T2

K1
− λ1a11T1

2αkβ

K1
− (λ1 − μ1)λ1a12T1T2αc

K1

+
λ1a12T2

K1

(
λ1a11T1

2

K1
+

λ1a11T1
2αc

K1
+

λ1a12T1T2

K1
+

λ1a12T1T2αc
K1

)

− (λ2 − μ2)λ1a12T1T2

K1
+

λ1a12T1

K1

(
λ2a21T1T2

K2
+

λ2a22T2
2

K2

)
− 2λ2a22T2

K2

+
λ1a12T1T2α f c

K1
− λ1a12T1T2αkβ

K1
− (λ1 − μ1)λ2a21T1T2

K2

+
λ2a21T2

K2

(
λ1a11T1

2

K1
+

λ1a11T1
2αc

K1
+

λ1a12T1T2

K1
+

λ1a12T1T2αc
K1

)

− (λ2 − μ2)λ2a21T1T2

K2
+

λ2a21T1

K2

(
λ2a22T2

2

K2
+

λ2a21T1T2

K2

)

+
λ1a12T2αc

K1

(
λ1a11T1

2

K1
+

λ1a11T1
2αc

K1
+

λ1a12T1T2

K1
+

λ1a12T1T2αc
K1

)

− (λ2 − μ2)λ1a12T1αc
K1

+
λ1a12T1αc

K1

(
λ2a21T1T2

K2
+

λ2a22T2
2

K2

)
,

furthermore, we find that the control variable β(t) appears explicitly in the second deriva-
tive. Therefore, there exists a second-order state constraint satisfying the regularity condition.

∂

∂β
S
′′
(t) = −λ1a11αkT1

2 + λ1a12αkT1T2

K1
�= 0,

hence, for boundary control T1 + T2 = θ, we have S
′′
(t) = 0, and obtain the dose:

β2 =
K1

λ1a11αT1
2k + λ1a12αT1T2k

(λ1 − μ1)
2T1 + (λ2 − μ2)

2T2 − (λ1 − μ1)λ1a11T1
2

K1

− (λ1 − μ1)λ1a11T1
2αc

K1
− (λ1 − μ1)λ1a12T1T2

K1
− (λ1 − μ1)λ1a12T1T2αc

K1

− (λ2 − μ2)λ2a21T1T2

K2
− (λ2 − μ2)λ2a22T2

2

K2
− 2λ1a11T1

K1
− 2λ1a11T1αc

K1

+
λ1a11T1

2αc f
K1

− (λ1 − μ1)λ1a21T1T2

K1
− (λ2 − μ2)λ1a12T1T2

K1

+
λ1a12T2

K1

(
λ1a11T1

2

K1
+

λ1a11T1
2αc

K1
+

λ1a12T1T2

K1
+

λ1a12T1T2αc
K1

)

+
λ1a12T1

K1

(
λ2a21T1T2

K2
+

λ2a22T2
2

K2

)
− 2λ2a22T2

K2
+

λ1a12T1T2α f c
K1

+
λ2a21T2

K2

(
λ1a11T1

2

K1
+

λ1a11T1
2αc

K1
+

λ1a12T1T2

K1
+

λ1a12T1T2αc
K1

)

+
λ2a21T1

K2

(
λ2a21T2

2

K2
+

λ2a21T1T2

K2

)
− (λ1 − μ1)λ1a12T1T2αc

K1

− (λ1 − μ1)λ2a21T1T2

K2
− (λ2 − μ2)λ2a21T1T2

K2
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+
λ1a12T2αc

K1

(
λ1a11T1

2

K1
+

λ1a11T1
2αc

K1
+

λ1a12T1T2

K1
+

λ1a12T1T2αc
K1

)

− (λ2 − μ2)λ1a12T1αc
K1

+
λ1a12T1αc

K1

(
λ2a21T1T2

K2
+

λ2a22T2
2

K2

)
.

The drug dose in the boundary state is obtained.

3.2. Optimal Control Structure

Let us denote σ = (σ1, σ2, σ3) ∈ R3. References [9,16]. The Hamilton function is given
by the Pontryagin’s minimum principle.

H(x, σ, β) = β(t) + σ1(t)
(

λ1T1

(
1 − (a11T1 + a12T2)(1 + αc(t))

K1

)
− μ1T1

)

+ σ2(t)
(

λ2T2

(
1 − a12T1 + a22T2

K2

)
− μ2T2

)
+ σ3(t)(− f c + kβ),

connect the state constraints using multipliers η1 and η2 to the Hamiltonian mechanics:

H(x, σ, β, η1, η1) = H(x, σ, β) + η1(c − cmax) + η2(T1 + T2 − θ),

let (x, β) be the optimal solution. Then, there are adjoint functions and multiplier functions
satisfying the following conditions:

(I) Adjoint differential equations

·
σ(t) = −Hx(t, x, β(t), σ(t), η(t)).

(II) Transversality conditions
·

σ
(

t f

)
=

∂φ
(

t f

)
∂x

.

(III) Minimizing conditions

H(t, x, β∗(t), σ(t), η(t)) ≤ H(t, x, β(t), σ(t), η(t)).

(IV) Complementarity conditions

η1(t) ≥ 0, η1(t)(c − cmax) = 0,

η2(t) ≥ 0, η2(t)(T1 + T2 − θ) = 0.

The adjoint equation is obtained via the above theoretical analysis

˙σ1(t) = −1 − σ1(t)(λ1 − μ1) + σ1(t)
2λ1a11T1(1 + αc)

K1

+ σ1(t)
λ1a12T2(1 + αc)

K1
+ σ2(t)

λ2a21T2

K2
− η2,

˙σ2(t) = −1 − σ1(t)
λ1a12T1(1 + αc)

K1
− σ2(t)(λ2 − μ2)

+ σ2(t)
λ2a21T1

K2
+ σ2(t)

λ2a22T2

K2
− η2,
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˙σ3(t) = −σ1(t)
λ1a11T1

2α

K1
+ σ1(t)

λ1a12T1T2α

K1
+ σ3(t) f − η1, (7)

the optimal control structure is obtained via the Pontryagin’s minimum principle

∂H
∂β

= 0,

we can obtain the switching function

γ(t) = 1 + λ3(t)k,

we further obtain the control structure

β∗(t) =

⎧⎨
⎩

1 γ(t) > 0,
βi γ(t) = 0,
0 γ(t) < 0.

For the control problem mentioned in the study, we consider the initial number of
cancer cells. Step 1. First, the maximum dose is administered. As a result, the number
of sensitive cells decreases, drug-resistant cells increase, and the drug concentration goes
up. When drug concentration reaches the maximum allowable drug concentration, the
drug is withdrawn, and the time is recorded. At this time, the number of sensitive cells
increases and the number of drug-resistant cells decreases. Step 2. When the number
of cancer cells reaches the initial maximum tumor burden, the drug is re-administered.
This leads to a decrease in the number of sensitive cells, an increase in the number of
drug-resistant cells, output time, continuous circulation, and intermittent treatment of
cancer. This approach takes into account the concentration of the drug, avoids high or low
doses, and takes into account the burden on the tumor. The number of sensitive cells is
controlled by selecting the optimal treatment time and drug dosage, which further inhibits
the number of drug-resistant cells and prolongs the effective treatment time.

In this paper, three treatment cycles are considered, and the following control struc-
tures are given:

β(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 0 ≤ t < t1,

β1 t1 ≤ t < t2,

0 t2 ≤ t < t3,

β2 t3 ≤ t < t4,

0 t4 ≤ t < t5,

β3 t5 ≤ t < t6,

0 t6 ≤ t < t7,

β4 t7 ≤ t < t8,

0 t8 ≤ t < t f .

(8)

4. Numerical Simulation

Li et al. [17] proposed a control parameter vectorization method to solve the final con-
trol problem of free time. Feng et al. [18] proposed a visual version of MISER software 3.3,
which is convenient for the practical application of optimal control theory and technology.
There are many studies on how to solve nonlinear optimal control problems [19–21]. We
use the discretization method to deal with the optimal control problem. We consider the
optimal duration of the treatment and dosage in a limited period of time.

In the therapeutic period [t0, t f ], we solve the state equation in the forward direction
and the co-state equation in the reverse direction. Refer to the parameter mentioned by
Liu et al. [5], μ1 = 0.001, μ2 = 0.0005, a12 = 0.1. Some are not given and we set λ1 = 0.26,
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λ2 = 0.3, a11 = 0.1, a21 = 0.58, a22 = 0.2, K1 = 5000, K2 = 500, f = 1.4657, k = 5, η1 = 0.1,
η2 = 0.1, T1(0) = 1000, T2(0) = 50, cmax = 2.68, θ = 1575, t0 = 0, t f = 42.

The optimal treatment time and dose are obtained via a numerical simulation.
Optimal dose: β1 = 0.7856, β2 = 0.7857, β3 = 0.7857, β4 = 0.7857.
Optimal treatment time: t1 = 0.8, t2 = 3.4, t3 = 8.8, t4 = 14, t5 = 19.8, t6 = 25,

t7 = 31, t8 = 36.2.
We can obtain T2(t f ) = 91.7164, J = 106.9731.
Among them, Figure 1 shows the time-varying curves for the drug concentration and

drug dose, Figure 2 shows the time-varying curves for the number of sensitive versus
resistant cells, and Figure 3 shows the tumor burden change curves. Using the necessary
optimality condition, the terminal time covariance is obtained via the covariance equation.

λ1(t f ) = 0, λ2(t f ) = 1, λ3(t f ) = 0,

the initial value of the covariant is obtained via the numerical simulation,

λ1(0) = −1.2372, λ2(0) = −8.9337, λ3(0) = −199.7054,

and the adjoint variables λk(t), k = 1, 2, 3, are displayed in Figures 4 and 5.

Figure 1. (A) Denotes the drug concentration, (B) denotes the drug dose.

Figure 2. (A) Denotes the drug-sensitive cells, (B) denotes the drug-resistant cells (tumor burden
is 150%).
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Figure 3. Number of cancer cells.

Figure 4. (A) Denotes adjoint variables λ1, (B) denotes adjoint variables λ2.

Figure 5. Denotes adjoint variables λ3.

Figure 1B shows that the drug dose was initially presented at the maximum tolerated
dose; when the maximum allowable drug concentration was reached, the drug dose was
reduced with intermittent dosing, controlling for the number of cancer cells. Figure 2
shows that the number of sensitive cells decreased and the number of resistant cells
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increased after administration. After drug withdrawal, sensitive cells increased, resistant
cells decreased, the number of cancer cells showed periodic changes, drug-resistant cells
increased slowly with the prolongation of treatment time. Figure 3 shows that the tumor
burden is maintained at a certain level.

Competition between cancer cells.
Adaptive therapy utilizes competition among cancer cells to maintain a certain tumor

burden. Thus, we think more about competition between cells. When a11 = 0.8, there is too
much competition between sensitive cells; as shown in Figure 6, we can see that sensitive
cells can inhibit drug-resistant cells during the initial phase of treatment, and the number
of drug-resistant cells slowly increases. In the later period of treatment, the number of
sensitive cells decreased sharply and the number of drug-resistant cells increased because
of the competition between sensitive cells.

Figure 6. (A) Denotes drug-sensitive cells, (B) denotes drug-resistant cells (when a11 = 0.8).

When a12 = 0.8, as shown in Figure 7, we can see that at the initial stage of treatment,
sensitive cells show cyclical changes, and resistant cells slowly increase; at later stages of
treatment, sensitive cells lose their competitive advantage, and drug-resistant cells increase.

Figure 7. (A) Denotes drug-sensitive cells, (B) denotes drug-resistant cells (when a12 = 0.8).

When a21 = 0.2, as shown in Figure 8, we can see that sensitive cells can inhibit
drug-resistant cells at the initial stage of treatment, and at the later stage of treatment,
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drug-resistant cells increase dramatically; compared with a12, drug-resistant cells are more
numerous, reducing the duration of treatment.

Figure 8. (A) Denotes drug-sensitive cells, (B) denotes drug-resistant cells (when a21 = 0.2).

When a22 = 0.8, as shown in Figure 9, it shows a downward trend in the number of
drug-resistant cells but an increase in the number of sensitive cells, resulting in a rapid
reach of the tumor burden and subsequent treatment failure.

Figure 9. (A) Denotes drug-sensitive cells, (B) denotes drug-resistant cells (when a22 = 0.8).

Drug concentration
This study proposed the effect of drug concentration on therapy. We further considered

the model proposed by Liu et al, considering only the effect of drug dose on therapy.
Adjusting for λ1 = 0.1, as shown in Figure 10, we found an overall upward trend in
sensitive cells and a decrease in drug-resistant cells, this resulted in the sensitive cells
rapidly reaching the maximum tumor burden, leading to treatment failure. The results
showed that the drug was not enough to kill a large number of sensitive cells, resulting in a
competitive advantage of sensitive cells over drug-resistant cells. Compared with Figure 9,
we can see that the number of drug-resistant cells can be more effectively controlled and
the stable tumor burden can be maintained by considering the drug concentration.
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Figure 10. (A) Denotes drug-sensitive cells, (B) denotes drug-resistant cells.

4.1. Consider the Tumor Burden as 110%

The drug dosage is unchanged and the treatment time is optimized.
Optimal treatment time. t1 = 0.8, t2 = 3.4, t3 = 7.4, t4 = 12.6, t5 = 17.4, t6 = 22.6,

t7 = 27.8, t8 = 33.
We can obtain T2(t f ) = 471.0447, J = 486.1442.
Figure 11 shows the curve of sensitive and resistant cells over time at 110% tumor bur-

den; we can see that the killing rate of drug-sensitive cells increases with the prolongation
of treatment time, and the number of drug-resistant cells shows an overall declining trend.
The number of drug-resistant cells increases, which indicates that the sensitive cells do not
inhibit the drug-resistant cells well in the later stage of treatment.

Figure 11. (A) Denotes drug-sensitive cells, (B) denotes drug-resistant cells (tumor burden is 110%).

Compared to a starting treatment, when the tumor burden is 150%, the treatment
time is shortened and more resistant cells are generated. The reason for the significant
increase in the number of drug-resistant cells may be that the drug dose is too large, killing
too many sensitive cells, resulting in the later period of treatment, cell-to-cell competition
weakens, and the number of drug-resistant cells increases. Therefore, we further optimize
the drug dose.

Drug dose. β1 = 0.7856, β2 = 0.7, β3 = 0.7, β4 = 0.7.
We can obtain T2(t f ) = 143.3169, J = 157.0795.
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Changes in drug-sensitive cells affect drug-resistant cells because high doses kill too
many drug-sensitive cells. Therefore, we reduce the drug dose, as shown in Figure 12,
as the drug dose decreases over time. The number of drug-sensitive cells shows an up-
ward trend, while the number of drug-resistant cells significantly decreases. Therefore,
when the patient’s maximum tolerated tumor burden is small, the dose is relatively small,
suppressing the number of resistant cells. However, compared with 150% tumor burden,
the number of drug-resistant cells remain larger at the end of the treatment period, despite
the reduced cost of the drug.

Figure 12. (A) Denotes drug-sensitive cells, (B) denotes drug-resistant cells (tumor burden is 110%).

4.2. Consider the Tumor Burden as 170%

The drug dosage is unchanged and the treatment time is optimized.
Optimal treatment time t1 = 0.8, t2 = 3.8, t3 = 10, t4 = 15.2, t5 = 21.8, t6 = 27,

t7 = 33.8, t8 = 39.2.
We can obtain T2(t f ) = 23.8859, J = 39.4568.
Figure 13 shows the curve of sensitive and resistant cells over time at 170% tumor

burden. It shows that the number of sensitive cells increases significantly with the time of
treatment, showing an overall upward trend. The number of drug-resistant cells increases
at the beginning of treatment, decrease significantly at the end of treatment, and are even
lower than the initial resistant cells. This indicates that, at this time, there are too many
sensitive cells and competitive enhancements of the inhibition of drug-resistant cells.

Figure 13. (A) Denotes drug-sensitive cells, (B) denotes drug-resistant cells (tumor burden is 170%).
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Compared to a tumor burden of 150%, the number of drug-resistant cells is signifi-
cantly lower, but the number of drug-sensitive cells is significantly increased. This could
cause the tumor to reach the maximum tolerable burden more quickly, resulting in treat-
ment failure The reason for this change may be that the drug did not kill enough sensitive
cells, causing the sensitive cells to grow too quickly, so we further optimize the drug dose.

Drug dose. β1 = 0.7856, β2 = 0.84, β3 = 0.84, β4 = 0.84.
We can obtain T2(t f ) = 64.5510, J = 80.9798.
To control drug-sensitive cells, we adjust the drug dose, as shown in Figure 14; as the

drug dose increases, the number of sensitive cells decreases and the number of drug-
resistant cells increases. As a result, the tumor burden increases and the drug dose increases.
Compared with a tumor burden of 150%, during longer treatment periods, the number of
drug-resistant cells is less, but the increasing dose of the drug and the rising cost of the
drug, to some extent, break the limit of drug toxicity and affect normal cells.

Figure 14. (A) Denotes drug-sensitive cells, (B) denotes drug-resistant cells (tumor burden is 170%).

At the same time, we further simulate the maximum tolerated dose commonly used
in clinical practice.

4.3. Dose Titration Protocol

Cunningham et al. [4] analyzed a widely-used regimen, specifically a dose-titration
treatment approach. In this regimen, the dose is increased by 0.1 when the tumor volume
rises to more than 110% of the target tumor volume. Conversely, if the tumor volume
drops below 90% of the intended maintenance volume, the dose is decreased by 0.1. They
determined the optimal treatment strategy for the drug obtained using the optimization
theory. With reference to the dose titration protocol described above, our study treats the
number of cancer cells as the tumor burden; thus, given an initial dose, if the tumor burden
increases to 150%, the dose increases by 0.1; if it decreases to 50%, the dose decreases by 0.1.

Let us think about a cycle; consider the issue of drug toxicity.
Drug dose: b1 = 0.8, b2 = 0.7,
Drug time: t1 = 4, t2 = 22.2,
We can obtain T2(t f ) = 1595.4672, J = 1687.6672.
The change in the number of cancer cells is shown in Figure 15.
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Figure 15. (A) Denotes drug-sensitive cells, (B) denotes drug-resistant cells (dose titration protocol).

As shown in Figure 15, when the initial dose is set at the maximum tolerated dose
and considering the tumor burden, the number of drug-dose-sensitive cells was effectively
reduced. However, due to a slow reduction in the dose, the number of drug-resistant cells
increased significantly within a shorter treatment period.

Therefore, using dose titration to determine the most beneficial dose might lead to
the rapid killing of sensitive cells, resulting in a loss of competitiveness. Our treatment
protocol, through numerical simulation, directly provides the optimal drug dose. This
controls the number of sensitive cells, inhibits the rapid proliferation of drug-resistant cells,
and extends the treatment time.

Summary
The numerical simulation results show that when the tumor burden is 150%, within the

permissible limit of drug toxicity, the administration of the drug causes drug-sensitive cells
to decrease and drug-resistant cells to increase. Upon withdrawal of the drug, the sensitive
cells increase, and the drug-resistant cells decrease. Throughout the treatment period, the
number of drug-resistant cells increased slowly, and the tumor burden was maintained
at a certain level. The competition between cells affects cell changes, and further analysis
does not take into account the problem of drug concentration when it is not sufficient
to kill sensitive cells, resulting in a significant increase in drug-resistant cells. When the
tumor burden is 110%, the drug dose is reduced, the drug cost is reduced, the treatment
time is shortened, and more resistant cells are produced. When the tumor load is 170%,
the treatment time is prolonged, the number of drug-resistant cells is relatively small,
but it is easy to reach the maximum drug-resistant load. Further increasing the drug dose
will lead to breaking the limit of drug toxicity, affecting healthy cells. For dose-titration
problems, given an initial dose and considering the drug toxicity issue, the strategy involves
gradually increasing or decreasing the drug dose to find the most beneficial amount. When
the initial dose is high, using the magnitude of the tumor burden to adjust the dose might
result in extensive death of sensitive cells, a loss of competitiveness, and a significant rise
in the number of drug-resistant cells. If the initial dose is low, the gradual increase in dose
and failure to eliminate sensitive cells can lead to the rapid proliferation of these cells,
which soon reach the maximum tolerance of the tumor load, leading to treatment failure.
Therefore, the maximum tolerated tumor burden is too large or too small, and the drug
dose is too large or too small, which will affect the effect of treatment. Using mathematical
simulation, our study shows that the initial maximum drug resistance dose is given first;
the drug is discontinued when the maximum allowable drug concentration is reached.
When 150% of the initial tumor burden is reached, the drug is administered, and with
the prolongation of the treatment period, it is optimal to give the drug intermittently at a
moderate dose, which not only maintains a certain tumor burden and inhibits the rapid
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growth of drug-resistant cells, but also limits the drug toxicity and reduces the cost of the
drug; the duration of treatment is prolonged effectively.

However, the maximum tolerable tumor burden varies from patient to patient, and we
only considered the general case. Therefore, how to monitor the patient’s maximum
tolerable tumor burden according to clinical practice is important. Choosing the optimal
treatment time and dosage and implementing individualized treatments are the issues that
will be studied next.

5. Conclusions

During the course of tumor treatment, the generation of drug-resistant cells leads to
the failure of treatment. With adaptive therapy, the goal is to maintain a certain number of
sensitive cells, competitive inhibition resistance, a certain tumor burden, and extend the
duration of treatment. Therefore, it is critical to select the appropriate treatment time and
drug dose. If the dose is too low, it might fail to kill enough sensitive cells, leading to the
quick attainment of the maximum tolerated tumor burden. Conversely, an excessively high
dose may result in the death of a large number of sensitive cells, reducing competition and
inhibiting the growth of drug-resistant cells less effectively. Additionally, an accumulation
of too many drugs could have adverse side effects on the body. We took into consideration
the model of competition between drug-sensitive and drug-resistant cells proposed by
Liu et al. [5], and introduced a pharmacokinetics equation to describe the time course of
drug concentrations in vivo. Because the drug not only kills cancer cells but also has an
effect on healthy ones, it is not possible to cure cancer cells in sufficient doses. Therefore,
in the process of cancer treatment, the issue of drug toxicity is proposed. We look at how
to achieve the ideal cancer cell-killing rate and inhibit the growth of drug-resistant cells
without damaging the healthy cells, and how to select the treatment time and dose to
achieve the optimal therapeutic effect. We propose optimal control problems with two state
constraints: the maximum allowable drug concentration and the maximum tolerated tumor
burden. Firstly, the optimal control structure was obtained by using the optimal control
theory to analyze the control problems. Secondly, the optimal treatment time and drug
dose were obtained by numerical simulation, and the change rule of tumor cells under
different tumor loads and the optimal treatment time and drug dose were given; a dose
titration protocol was further simulated. The results show that when the tumor burden
is at 150%, it is optimal to administer the maximum tolerated dose. Once the maximum
allowable drug concentration is attained, the drug should be given intermittently at a
moderate dose. This strategy helps maintain the tumor burden at a stable level, inhibit the
growth of drug-resistant cells, reduce drug costs, and prolong the drug’s efficacy. These
findings offer insights into the treatment of prostate cancer.

However, our study relies on initial values while focusing on the effects of intercellular
competition factors on treatment, so that initial values and competition coefficients have
a greater impact on treatment outcomes than other factors. At the same time, the drug
concentration change in the human body is worthy of further study. For the treatment
approach proposed in this paper, determining how to tailor it to the individual patient’s
situation remains a topic for a follow-up study.
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14. Göllmann, L.; Maurer, H. Theory and applications of optimal control problems with multiple time-delays. J. Ind. Manag. Optim.

2014, 10, 413–441. [CrossRef]
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Abstract: The lymphocytic choriomeningitis virus (LCMV) is a non-cytopathic virus broadly used in
fundamental immunology as a mouse model for acute and chronic virus infections. LCMV remains a
cause of meningitis in humans, in particular the fatal LCMV infection in organ transplant recipients,
which highlights the pathogenic potential and clinical significance of this neglected human pathogen.
Paradoxically, the kinetics of the LCMV intracellular life cycle has not been investigated in detail. In
this study, we formulate and calibrate a mathematical model predicting the kinetics of biochemical
processes, including the transcription, translation, and degradation of molecular components of
LCMV underlying its replication in infected cells. The model is used to study the sensitivity of
the virus growth, providing a clear ranking of intracellular virus replication processes with respect
to their contribution to net viral production. The stochastic formulation of the model enables the
quantification of the variability characteristics in viral production, probability of productive infection
and secretion of protein-deficient viral particles. As it is recognized that antiviral therapeutic options
in human LCMV infection are currently limited, our results suggest potential targets for antiviral
therapies. The model provides a currently missing building module for developing multi-scale
mathematical models of LCMV infection in mice.

Keywords: LCMV; intracellular replication; mathematical model; stochastic description; sensitivity
analysis

MSC: 92-10; 92B05; 92C45; 92C70

1. Introduction

Infectious diseases caused by viruses (e.g., HIV-1, HBV or SARS-CoV-2) present a
serious problem to human health worldwide. To understand their pathogenesis, infec-
tions are studied experimentally and by mathematical modelling approaches. The current
technologies including multiplex analyses, microscopic and mesoscopic visualization;
“omics-” technologies and bioinformatic analyses now allow for a multi-physics assessment
of the processes regulating virus–host interactions at molecular-, cellular-, and systemic
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levels [1–3]. However, the adequate construction of mathematical models for studying
the course and outcome of infectious diseases in terms of the description details to the
level of understanding of its structure and functional components remains to be a great
challenge. Indeed, models need to consider (1) virus replication at a single cell level, (2) spa-
tial infection spreading across cell populations and (3) the systemic dynamics of disease
characteristics. At present, mostly the population dynamics of antiviral immune responses
has received substantial attention (e.g., [4–6]), while the development of integrative models
is in its infancy. The latter requires models of intracellular virus life cycles, as single infected
cells are the initiating and fuelling events in systemic virus spreading and key targets for
combination therapies.

The lymphocytic choriomeningitis virus (LCMV) is a non-cytopathic virus broadly
used in fundamental immunology as a mouse model for acute and chronic virus infec-
tions [7]. Based on the experimental LCMV infection model system, many conceptual
discoveries in immunology have been made ranging from Major Histocompatibility Com-
plex (MHC)-mediated immunological restriction to T-lymphocyte exhaustion (we refer
to [8] for a comprehensive overview). Surprisingly, the intracellular kinetics of LCMV
replication remains poorly understood. Modern experimental developments have enabled
a high-dimensional characterization of LCMV infection across a number of scales [9,10].
To quantitatively describe, analyse and predict the LCMV-host interaction under various
manipulations, consistent multi-scale mathematical models are required. So far, the popu-
lation dynamics of CTL responses to LCMV infection were considered [8,11]. However, a
quantitative understanding of the LCMV life cycle is lacking.

1.1. Molecular and Genome Structure of LCMV

LCMV has a bi-segmented, linear, negative strand RNA genome ((-)RNA) with am-
bisense coding of the viral proteins [12]. The ambisense coding strategy implies that virus
proteins are coded in different directions (+polarity and -polarity). This means that the gene
encoded on the -RNA strand needs to be transcribed into the +strand before it could be trans-
lated into protein. This type of coding strategy is believed to enable the temporal control of gene
expression by regulating the two genes of an ambisense RNA segment differently.

The organization of LCMV is shown in Figure 1.
The LCMV RNA genome consists of two single-stranded RNA species: large L (7.2 kb) [13]

and small S (3.4 kb) [14]. Each segment carries two viral genes in opposite orientation and is
separated by an intergenic noncoding region (IGR) [15,16]. The IGR forms a relatively stable
stem-loop structure, which functions as a transcription terminator and in virus assembly [17].
All proteins are translated from subgenomic viral-complementary mRNAs.

The L segment encodes the L protein (200 kDa) and the Z protein (11 kDa). The L protein
is a RNA-dependent RNA polymerase (RdRp). It produces subgenomic mRNAs as well as
full-length genomic and antigenomic RNAs via transcription and replication [18]. The viral RNA
polymerase RdRp generates mostly encapsidated, uncapped full length (+)strand and (-)strand
RNA species. The encapsidated RNAs are the templates for the synthesis of subgenomic, capped
and non-polyadenylated mRNAs that are translated into viral proteins.

The Z protein is a matrix protein with multiple essential functions. In large concen-
trations, it inhibits replication and transcription by direct association with RdRp [19,20],
facilitating assembly. Z plays a significant role in viral budding [21]: it interacts with
the cellular ESCRT machinery and with virion components [22], and thus mediates their
incorporation into nascent virions. In addition, Z interacts with several host cell proteins,
such as the oncoprotein promyelocytic leukemia protein (PML), ribosomal P proteins, and
the eukaryotic translation initiation factor 4E (eIF-4E) [23–25].

The S segment encodes the virus nucleoprotein (NP) and the glycoprotein precursor
(GP-C). The NP protein associates with the viral RNA genome to form the nucleocapsid.
This interacts with the viral polymerase and constitutes the viral ribonucleoprotein (RNP).
This complex mediates transcription and replication, and is considered as the minimum
unit of LCMV infectivity. NP availability determines the transition of the polymerase
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from transcription to replication by attenuating the structure-dependent transcription
termination of the intergenome region (IGR) located between the encoded genes [26].

Figure 1. Virion structure and genome organization. (A) Schematic representation of a lymphocytic
choriomeningitis virus (LCMV) virion. It consists of a lipid bilayer (light blue) from the host cell
plasma membrane in which glycoprotein spikes (green) are incorporated. The glycoprotein mediates
virus entry into target cells after receptor binding. The Z protein (pink) builds a matrix structure
below the lipid bilayer. The nucleoprotein NP (violet) in association with the polymerase L (yellow)
and the genomic RNA form the ribonucleoprotein (RNP) complex. (B) Genome organization of
LCMV. LCMV has a bi-segmented (-)RNA genome that is composed of small S and large L RNA
segments. The respective segments encode viral proteins in ambisense orientation. Intergenic regions
(black) separate the open reading frames. The S segment encodes the virus nucleoprotein (NP) and
the glycoprotein precursor (GP-C). The L segment encodes the L protein and the Z protein. (C) LCMV
replication and transcription stages. The NP mRNA is transcribed from S (-)RNA, the GPC mRNA
is transcribed from S (+)RNA, L mRNA is transcribed from L (-)RNA and Z is transcribed from L
(+)RNA. Intergenic and non-coding regions are in black.

GP-Cs undergo post-translational modifications, which include glycosylation and
then proteolytic cleavages. Firstly, the stable signal peptide (SSP) is cleaved within the
endoplasmic reticulum by a cellular signal peptidase. This 58-amino-acid long SSP is then
retained as a stable subunit. It is a critical component for downstream, mature glycoprotein
complex formation [27]. In addition, SSP interacts with the immature GP1/2 precursor,
which is cleaved by the cellular protease SKI-1/S1P in the Golgi complex to produce the
GP1 and GP2 subunits [28]. The three subunits, SSP, GP1, and GP2, then traffic to the
cellular plasma membrane where virus assembly and egress occurs. GP-1, GP-2 and SSP
associate non-covalently. They form club-shaped projections on virions and mediate cell
entry. GP-1 is a peripheral membrane protein and is responsible for binding to the virus
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receptor α-Dystroglycan (α-DG) [29]. GP-2 is an integral membrane protein and it, in
concert with SSP, mediates the fusion of the viral envelope with the cellular membrane.

1.2. Intracellular Replication of LCMV

The LCMV life cycle starts with the infection of target cells. For this, the virion
surface GP-1 protein interacts with cell surface α-DG that is mainly expressed on dendritic
cells (DCs) [30–32]. The virion then enters target cells via non-coated vesicles that direct
it to late endosomes [33–35]. This internalization process is cholesterol-dependent but
clathrin-independent. At the late endosomes, a pH-dependent fusion between virion and
endosome membranes occurs which releases virus genomic RNAs and L proteins into
the cytoplasm. The L protein then initiates virus genome replication and viral mRNA
generation. Subsequent translation of NP, L and Z mRNAs occurs in the cytoplasm while
GPC mRNA is translated at the endoplasmic reticulum. The precursor GPC protein is
post-translationally cleaved in the Golgi apparatus into the stable signal peptide SSP and
the glycoproteins GP-1 and GP-2. The increase in Z protein concentration leads to the
inhibition of the L polymerase and a shift towards virus assembly and release. The genomic
RNAs are coated with NP proteins and transported with GP, Z and L proteins to the cell
membrane, where virions are assembled and released from the infected cell by budding.
The overall scheme of the intracellular LCMV replication stages is presented in Figure 2.
The scheme is used to formulate the mathematical model of the LCMV life cycle.

Figure 2. Biochemical scheme of the LCMV life cycle. The individual steps in the LCMV life cycle
that are incorporated into the mathematical model are shown schematically. Details are described in
the text. “init” refers to initial incoming virus genome.

In Section 2, we present the reference data available for model calibration and the
computation tools used for simulations and analysis. In Section 3, the mathematical model
is constructed both in deterministic and stochastic formulations. Section 4 presents the
model-based prediction of the parameter sensitivity of net single cell LCMV production
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and the characteristics of the variability in viral production, including the secretion of
protein-deficient viral particles. The study results are discussed in Section 5.

2. Experimental Data and Methods

2.1. Kinetics of Virion Components in the Cell

Experiments on the kinetics of LCMV were examined in [19]. RNAs were isolated at 6 time
points between 0 and 72 h after infection, and the NP mRNA, Z mRNA, L RNA, and S RNA
levels were analyzed using Northern blot hybridization. The level of the Z protein was analyzed
by Western blotting. Some qualitative conclusions can be drawn from these experiments:

1. At all time points, the number of S RNA was significantly larger than L RNA. During
the first hours of infection, S RNA was observed in large numbers, whereas L RNA
abundance was characterized by undetectable numbers;

2. NP mRNA reaches peak concentration in the early hours of cell infection;
3. Z mRNA and Z protein concentrations increase at the end of the virus life cycle.

The growth curves, i.e., the time-dependence of the number of virions released from
the infected cells in an in vitro culture, were obtained in a number of studies [34,36–38].
To obtain the kinetics of virion production per cell, growth curves were normalized by
dividing the growth curve values by the respective MOI and the estimated total number of
cells in the plate, assuming that all cells were infected simultaneously at the beginning, and
no secondary infection occurred. The following re-scaling formula was used:

Vcell =
Vtotal

estimated number of cells in plate · MOI

where Vcell is the number of virions per cell, Vtotal stands for the number of virions in the
entire culture, and MOI is the multiplicity of infection. According to the known ratios of
protein concentrations during infection in the cell for the arenavirus family [39], and the
numbers of each protein in the LCMV virion [40], one can generate the expected curves
for proteins. To do this, the growth curves must be multiplied by the number of proteins.
From the obtained kinetic curves and the known quantitative data, the following general
conclusions can be drawn:

1. At the end of the life cycle, the expected number of LCMV virions is estimated to be
about several hundreds;

2. The ratio of protein components should be as follows: NP > GPC > Z > L;
3. The LCMV life cycle lasts from 20 to 40 h.

The resulting empirical data summarized in Figure 3 were used to calibrate the model
solution Vreleased(t).

Figure 3. Generalized kinetics of LCMV growth in an infected cell. Estimates of the number of
the LCMV proteins (left) and released virions (right) as a function of time after infection derived
from [18–20,34,36–41]. The shaded areas represent observed ranges of abundances.
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2.2. Z Protein-Mediated Inhibition Kinetics

A number of studies explore the kinetics and mechanisms of Z-protein-based regula-
tion [19,20,41]. As previously described, Z inhibits RNA-dependent RNA polymerase L
at high concentrations, which leads to the inhibition of transcription and replication and
promotes the transition to assembly and budding. According to [20], it is known from
studies of Machupo virus (MACV), another arenavirus, that untagged MACV Z inhibits
the viral RNA synthesis in the mid-nanomolar range (IC50 = 0.32 μM), and GST-tagged
MACV Z has a slightly higher IC50 (1.36 μM), due to an altered protein solubility. It can
be assumed for LCMV that Z protein-inhibition occurs over the same concentration range.
Multiplied by the characteristic cell volume (1 pL), the number of Z molecules required for
half-maximal inhibition can be estimated as KI ≈ 0.32 · 10−18 · 6 · 1023 ≈ 192000 molecules
for Machupo virus. Based on the above arguments, we take the inhibition constant for
LCMV as KI = 50000 molecules.

2.3. Basic Computational Tools

The following libraries in Julia language were used to simulate and analyze the model:
DifferentialEquations v7.10.0 (numerical solution of the deteministic model), SciMLSensi-
tivity v7.46.0 (local sensitivity analysis), JumpProcesses v9.8.0 (numerical solution of the
stochastic model), PyPlot v2.11.2 and Plots v1.39.0 (visualizations).

2.4. Stochastic Modelling Algorithm

The deterministic model of LCMV replication described by a system of ODEs is trans-
lated into a stochastic Markov chain-based description following the dynamic Monte Carlo
approach. To implement the dynamic MC description numerically, a number of methods
(stochastic simulation algorithms) are available, including the popular Gillespie’s direct
method [42,43] and a number of exact and approximate SSA variations [44]. Previously,
we proposed the hybrid stochastic-deterministic approximate method [45] to accelerate
computations. Here, we use the rejection SSA (RSSA) with composition-rejection search
(RSSA-CR) [46] implemented in JumpProcesses Julia library. In contrast to Gillespie’s direct
method, the rejection-based SSA delays the need to update the propensity rates (which is
conducted after each transition in the direct method), which can be time-consuming for
systems with many complex nonlinear processes.

Table 1 lists the propensities of all transitions that take place in the Markov chain-
based stochastic system. The variables of the stochastic model can have only nonnegative
integer values. The transitions correspond to increments and decrements of variable values
by one unit (particle or molecule), except for the transition processes number 15 and 18
(which correspond to [NP-LgRNA(−)] and [NP-SgRNA(−)] formation) and the process
number 38 (which corresponds to virion assembly with production of [Vassembled]). In these
transitions, the number of NP, GPC, Z and L proteins is reduced by nNP, nGPC, nZ and nL,
which are the number of protein molecules required for packing the ribonucleocapsids
and for the assembly of LCMV virions. Therefore, if the current number of molecules in
the cell is less than the required amount for these events, the ribonucleocapsids and the
assembled virions are packed with an incomplete number of constitutive protein molecules,
while the corresponding protein molecules in the cell are reduced to zero, as indicated in
Table 1. This MC formulation allows us to analyse the production kinetics and protein
content distribution in protein-deficient particles (see Section 4.5).
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Table 1. Stochastic model formulated as a Markov chain showing the reactions (transition processes)
and their propensities (intensities). The biological meaning of the time-dependent variables of the
model is explained in Table 2 and the parameters are determined in Table 3.

m Elementary Reaction Transition Intensity, am

Cell entry

1 [Vf ree] → [Vf ree]− 1, [Vbound] → [Vbound] + 1 kbind[Vf ree]

2 [Vf ree] → [Vf ree]− 1 dV [Vf ree]

3 [Vf ree] → [Vf ree] + 1, [Vbound] → [Vbound]− 1 kdiss[Vbound]

4 [Vbound] → [Vbound]− 1, [Vendosome] → [Vendosome] + 1 k f use[Vbound]

5 [Vbound] → [Vbound]− 1 dV [Vbound]

6
[Vendosome] → [Vendosome]− 1,
[LgRNAinit

(−)] → [LgRNAinit
(−)] + 1, [SgRNAinit

(−)] → [SgRNAinit
(−)] + 1,

[GPC] → [GPC] + mGPC , [Z] → [Z] + mZ , [L] → [L] + mL

kuncoat[Vendosome]

7 [Vendosome] → [Vendosome]− 1 dendosome[Vendosome]

Replication

8 [LgRNAinit
(−)] → [LgRNAinit

(−)]− 1 dLgRNA(−)

[
LgRNAinit

(−)

]
9 [SgRNAinit

(−)
] → [SgRNAinit

(−)]− 1 dSgRNA(−)

[
SgRNAinit

(−)

]
10 [LgRNA(+)] → [LgRNA(+)] + 1 krepl(+)

(lLgRNA)
−1[LgRNAinit

(−)]

11 [LgRNA(+)] → [LgRNA(+)]− 1 dLgRNA(+)
[LgRNA(+)]

12 [SgRNA(+)] → [SgRNA(+)] + 1 krepl(+)
(lSgRNA)

−1[SgRNAinit
(−)

]

13 [SgRNA(+)] → [SgRNA(+)]− 1 dSgRNA(+)
[SgRNA(+)]

14 [LgRNA(−)] → [LgRNA(−)] + 1 krepl(−)
(lLgRNA)

−1[LgRNA(+)]θRdRpθinhib

15
[LgRNA(−)] → [LgRNA(−)]− 1,
[NP] → ([NP]− nNP) ∨ 0,
[N-LgRNA(−)] → [N-LgRNA(−)] + 1

kcomplexθcomplex [LgRNA(−)]

16 [LgRNA(−)] → [LgRNA(−)]− 1 dLgRNA(−)
[LgRNA(−)]

17 [SgRNA(−)] → [SgRNA(−)] + 1 krepl(−)
(lSgRNA)

−1[SgRNA(+)]θRdRpθinhib

18
[SgRNA(−)] → [SgRNA(−)]− 1,
[NP] → ([NP]− nNP) ∨ 0,
[NP-SgRNA(−)] → [NP-SgRNA(−)] + 1

kcomplexθcomplex [SgRNA(−)]

19 [SgRNA(−)] → [SgRNA(−)]− 1 dSgRNA(−)
[SgRNA(−)]

Transcription

20 [RNANP] → [RNANP] + 1 ktranscrNP(lNP)
−1[SgRNAinit

(−)]θRdRpθinhib

21 [RNANP] → [RNANP]− 1 dRNANP [RNANP]

22 [RNAGPC ] → [RNAGPC ] + 1 ktranscr(lGPC)
−1[SgRNA(+)]θRdRpθinhib

23 [RNAGPC ] → [RNAGPC ]− 1 dRNAGPC [RNAGPC ]

24 [RNAZ ] → [RNAZ ] + 1 ktranscr(lZ)
−1[LgRNA(+)]θRdRpθinhib

25 [RNAZ ] → [RNAZ ]− 1 dRNAZ [RNAZ ]

26 [RNAL] → [RNAL] + 1 ktranscr(lL)
−1[LgRNAinit

(−)]θRdRpθinhib

27 [RNAL] → [RNAL]− 1 dRNAL [RNAL]
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Table 1. Cont.

m Elementary Reaction Transition Intensity, am

Translation

28 [NP] → [NP] + 1 ktransl(lNP)
−1[RNANP]

29 [NP] → [NP]− 1 dNP[NP]

30 [GPC] → [GPC] + 1 ktransl(lGPC)
−1[RNAGPC ]

31 [GPC] → [GPC]− 1 dGPC [GPC]

32 [Z] → [Z] + 1 ktranslZ(lZ)
−1[RNAZ ]

33 [Z] → [Z]− 1 dZ [Z]

34 [L] → [L] + 1 ktransl(lL)
−1[RNAL]

35 [L] → [L]− 1 dL[L]

Assembly and release

36 [NP-LgRNA(−)] → [NP-LgRNA(−)]− 1 dNP-LgRNA(−)
[NP-LgRNA(−)]

37 [NP-SgRNA(−)] → [NP-SgRNA(−)]− 1 dNP-SgRNA(−)
[NP-SgRNA(−)]

38
[GPC] → ([GPC]− nGPC) ∨ 0,
[Z] → ([Z]− nZ) ∨ 0,
[L] → ([L]− nL) ∨ 0,
[NP-LgRNA(−)] → [NP-LgRNA(−)]− 1,
[NP-SgRNA(−)] → [NP-SgRNA(−)]− 1,
[Vassembled] → [Vassembled] + 1

kassembθassemb[NP-SgRNA(−)][NP-LgRNA(−)]

39 [Vassembled] → [Vassembled]− 1, [Vreleased] → [Vreleased]− 1 krelease[Vassembled]

40 [Vassembled] → [Vassembled]− 1 dassembled[Vassembled]

41 [Vreleased] → [Vreleased]− 1 dV [Vreleased]

2.5. Sensitivity Analysis

To examine the relationship between the net production of LCMV and the parameters
of the intracellular biochemical reactions, we used the sensitivity analysis. Two characteris-
tics of the virus net growth were considered: (i) The cumulative number of released virions
and (ii) the total number of new virions secreted by an infected cell during time T (20 h) from
the beginning of infection (thus, disregarding their degradation). The first one is denoted as
ΦAUC(y(p)) and is calculated as an area under the model solution y(p) component curve,
i.e., the integral of the solution component [Vreleased] with respect to the time variable t on
an interval [0, T]. The second characteristic is denoted Φtotal(y(p)) and is calculated as
the integral of the release rate of assembled virions krelease[Vassembled]. Computationally, we
follow our previous approach [47] to analyse the local sensitivity of the total number of
released virions, i.e., functional ΦAUC(y(p)) =

∫ T
0 [Vreleased]dt = [VAUC(T)], and the total

number of produced virions, functional Φtotal(y(p)) =
∫ T

0 krelease[Vassembled]dt = [Vtotal(T)],
for T = 20 h. The local sensitivity analysis was performed via the adjoint equations method
implemented in Julia using the DiffEqSensitivity library. To compare contributions of the
biochemical processes, the sensitivity coefficients were multiplied by the corresponding
parameter values. The results were ranked by decreasing absolute values and visualized as
histograms (separately for negative and positive derivatives).

3. Mathematical Model

In this section, we present the deterministic ODE-based model of the LCMV life cycle
by adapting the approach used in our previous work, which focused on modeling the
ontogeny of another RNA virus, namely SARS-CoV-2 [48]. The notation for the time-
dependent variables is introduced that is lately used for the formulation of the stochastic
model. The calibrated deterministic model parameters and functional forms of the cali-
brated reaction kinetics are transformed into the propensities of the respective transitions
of the MCMC-based stochastic model, as described in Section 2.4.
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3.1. Deterministic Model of Intracellular LCMV Replication

The LCMV life cycle shown in Figure 2 suggests the following set of time-dependent
variables listed in Table 2. The ordinary differential equations (ODEs) are used to model the key
replication steps, which include: (a) cell entry, (b) replication, (c) transcription, (d) translation of
proteins, and (e) assembly and release of virions. The system of equations was formulated using
the basic principles of chemical kinetics, especially the mass action law and Michaelis–Menten
parameterization for describing the assembly, coating, replication and transcription processes.

Table 2. Time-dependent variables and their biochemical meaning.

Variable Meaning

[Vf ree] Free virions outside the cell membrane

[Vbound] Virions bound to α-DG receptor

[Vendosome] Virions in endosomes

[LgRNAinit
(−)

] L negative genomic RNAs, released from virions, that infect the cell

[SgRNAinit
(−)

] S negative genomic RNAs, released from virions, that infect the cell

[LgRNA(+)] L positive genomic RNAs

[SgRNA(+)] S positive genomic RNAs

[LgRNA(−)] L negative genomic RNAs

[SgRNA(−)] S negative genomic RNAs

[RNANP] NP RNAs

[RNAGPC] GPC RNAs

[RNAZ] Z RNAs

[RNAL] L RNAs

[NP] NP proteins

[Z] Z proteins

[L] L proteins

[GPC] GPC proteins

[NP-LgRNA(−)] LgRNA(−) coated with NP

[NP-SgRNA(−)] SgRNA(−) coated with NP

[Vassembled] Assembled virions in endosomes

[Vreleased] Virions released via exocytosis

3.2. Cell Entry

The rate of change of the number of free, bound and endosome virions is described by
the following three ODEs.

d
[
Vf ree

]
dt

= −kbind

[
Vf ree

]
− dV

[
Vf ree

]
+ kdiss[Vbound] (1)

The first term describes binding free virions to the receptor; it means that [Vf ree]
become [Vbound] with constant kbind. The second one corresponds to free virion degradation
with constant dV . The last term depicts the dissociation of bound virions from the receptor;
it means that [Vbound] become [Vf ree] with rate constant kdiss.

d[Vbound]

dt
= kbind

[
Vf ree

]
−
(

k f use + kdiss + dV

)
[Vbound] (2)
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The first term describes binding free virions to the receptor; it means that [Vf ree] become
[Vbound] with constant kbind. The second term explains the fusion of bound virions; it means
that [Vbound] become [Vendosome] with constant k f use. The third term depicts dissociation of
bound virions from the receptor; it means that [Vbound] become [Vf ree] with constant kdiss.
The last term illustrates the degradation rate of bound virions with constant dV .

d[Vendosome]

dt
= k f use[Vbound]− (kuncoat + dendosome)[Vendosome] (3)

The first term describes the fusion of bound virions; it means that [Vbound] become
[Vendosome] with constant k f use. The second term explains the uncoating of virions in endo-
somes; it means that [Vendosome] uncoat with constant kuncoat; thus, the number of virions in
endosomes decreases. The last term depicts the degradation of viruses in endosomes with
constant dendosome.

3.3. Replication of Genomic RNAs

The rate of change of the number of L negative genomic RNAs, S negative genomic
RNAs, L positive genomic RNAs, L positive genomic RNAs, L negative genomic RNAs
and S negative genomic RNAs is modelled using the equations listed below.

d
[

LgRNAinit
(−)

]
dt

= kuncoat[Vendosome]− dLgRNA(−)

[
LgRNAinit

(−)

]
(4)

The first term describes the uncoating of viruses in endosomes; it results in the
[Vendosome] decline and appearance of [LgRNAinit

(−)
] with constant kuncoat. The second term

depicts the degradation of [LgRNAinit
(−)

] with the rate constant dLgRNA(−)
.

d
[
SgRNAinit

(−)

]
dt

= kuncoat[Vendosome]− dSgRNA(−)

[
SgRNAinit

(−)

]
(5)

The first term describes the uncoating of viruses in endosomes; it results in [Vendosome]
decline and appearance of [SgRNAinit

(−)
] with constant kuncoat. The second term depicts

degradation of [SgRNAinit
(−)

] with constant dSgRNA(−)
.

d
[

LgRNA(+)

]
dt

= krepl(+)
(lLgRNA)

−1
[

LgRNAinit
(−)

]
− dLgRNA(+)

[
LgRNA(+)

]
(6)

The first term describes replication; L protein (RdRp) produces [LgRNA(+)] using
[LgRNAinit

(−)
] as a template in the Michaelis–Menten type of reaction with constant krepl(+)

and KRdRp (Michaelis constant—concentration of RNA at which the reaction rate is half-
maximal). Also, the term is normalized by the length of the L segment lLgRNA; since we
obtain the length of the synthesized chain in nucleotides to obtain the number of copies,
we need to divide by the length of the chain. The second term describes the degradation of
[LgRNA(+)] with constant dLgRNA(+)

.

d
[
SgRNA(+)

]
dt

= krepl(+)
(lSgRNA)

−1
[
SgRNAinit

(−)

]
− dSgRNA(+)

[
SgRNA(+)

]
(7)

The first term describes replication; the initial L protein (RdRp) produces [SgRNA(+)]

using [SgRNAinit
(−)

] as a template in reaction with constant krepl(+)
. Also, the term is normal-

ized by the length of the S segment lSgRNA; since we obtain the length of the synthesized
chain in nucleotides to obtain the number of copies, we need to divide by the length of
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the chain. The second term describes the degradation rate of [SgRNA(+)] with constant
dSgRNA(+)

.

d
[

LgRNA(−)

]
dt

= krepl(−)
(lLgRNA)

−1
[

LgRNA(+)

]
θRdRpθinhib

−
(

dLgRNA(−)
+ kcomplexθcomplex

)[
LgRNA(−)

] (8)

The first term describes replication; the initial L protein (RdRp) produces [LgRNA(−)]
using [LgRNA(+)] as a template with constant krepl(−)

. Also, this term is multiplied by θinhib.
It indicates that Z inhibits L. Then, the term is normalized by the length of the L segment
lLgRNA, since we obtain the length of the synthesized chain in nucleotides to obtain the
number of copies, we need to divide by the length of the chain. The second term explains
the degradation rate of [LgRNA(−)] with constant dLgRNA(−)

. The third term depicts the
coating of RNA with a NP protein; the number of [LgRNA(−)] declines because it is coated
with NP protein in the Michaelis–Menten type of reaction with reaction constant kcomplex
and KNP (Michaelis constant—concentration of NP protein at which the reaction rate is
half-maximal). The following notation is used for taking into account saturation effects:

θinhib =
KI

KI + Z
, θRdRp =

[L]
[L] + KRdRp

, θcomplex =
[NP]

[NP] + KNP
. (9)

d
[
SgRNA(−)

]
dt

= krepl(−)
(lSgRNA)

−1
[
SgRNA(+)

]
θRdRpθinhib

−
(

dSgRNA(−)
+ kcomplexθcomplex

)[
SgRNA(−)

] (10)

In the above equation, the first term describes replication; the L protein (RdRp) pro-
duces [SgRNA(−)] using [SgRNA(+)] as a template in the Michaelis–Menten type of reac-
tion with constant krepl(−)

and KRdRp (Michaelis constant—concentration of RNA at which
the reaction rate is half-maximal). Also, this term is multiplied by θinhib. It indicates that Z
inhibits L. Also, the term is normalized by the length of the S segment lSgRNA; since we
obtain the length of the synthesized chain in nucleotides, to obtain the number of copies,
we need to divide by the length of the chain. The second term describes the degradation of
[SgRNA(−)] with constant dSgRNA(−)

. The last term depicts the coating of RNA with NP
protein, [SgRNA(−)] declines, because it coats with the NP protein in the Michaelis–Menten
type of reaction with reaction constant kcomplex and KNP (Michaelis constant—concentration
of NP protein at which the reaction rate is half-maximal).

3.4. Transcription

To describe the transcription of matrix RNAs, the following equations are used.

d[RNANP]

dt
= ktranscrNP(lNP)

−1
[
SgRNAinit

(−)

]
θRdRpθinhib − dRNANP [RNANP] (11)

The first term accounts for transcription; the L protein (RdRp) produces NP RNA
using [SgRNA(−)] as a template in the Michaelis–Menten type of reaction with constant
ktranscrNP and KRdRp (Michaelis constant—concentration of RNA at which the reaction rate
is half-maximal). Also, the term is normalized by the length of the NP RNA lNP, since we
obtain the length of the synthesized chain in nucleotides; to obtain the number of RNAs,
we need to divide by the length of the RNA. In addition, this term is multiplied by θinhib. It
indicates that Z inhibits L. The second term is responsible for the degradation of NP RNA
with rate constant dRNANP .

d[RNAGPC]

dt
= ktranscr(lGPC)

−1
[
SgRNA(+)

]
θRdRpθinhib − dRNAGPC [RNAGPC] (12)
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The first term corresponds to transcription; the L protein (RdRp) produces GPC RNA using
[SgRNA(+)] as a template in the Michaelis–Menten type of reaction with constant ktranscr and
KRdRp (Michaelis constant—concentration of RNA at which the reaction rate is half-maximal).
Also, this term is multiplied by θinhib. It indicates that Z inhibits L. Also, the term is normalized
by the length of the GPC RNA lGPC, since we obtain the length of the synthesized chain in
nucleotides; to obtain the number of RNAs, we need to divide by the length of the RNA. The
second term depicts the degradation rate of GPC RNA with constant dRNAGPC .

d[RNAZ]

dt
= ktranscr(lZ)

−1
[

LgRNA(+)

]
θRdRpθinhib − dRNAZ [RNAZ] (13)

The first term accounts for transcription; the L protein (RdRp) produces Z RNA using
[LgRNA(+)] as a template in the Michaelis–Menten type of reaction with constant ktranscr
and KRdRp (Michaelis constant—concentration of RNA at which the reaction rate is half-
maximal). Also, this term is multiplied by θinhib. It indicates that Z inhibits L. Also, the term
is normalized by the length of the Z RNA lZ, since we obtain the length of the synthesized
chain in nucleotides; to obtain the number of RNAs, we need to divide by the length of the
RNA. The second term is responsible for the degradation of Z RNA with constant dRNAZ .

d[RNAL]

dt
= ktranscr(lL)

−1
[

LgRNAinit
(−)

]
θRdRpθinhib − dRNAL [RNAL] (14)

The first term describes transcription; the L protein (RdRp) produces L RNA using
[LgRNA(−)] as a template in the Michaelis–Menten type of reaction with constant ktranscr
and KRdRp (Michaelis constant—concentration of RNA at which the reaction rate is half-
maximal). Also, this term is multiplied by θinhib. It indicates that Z inhibits L. Also, the term
is normalized by the length of the L RNA lL, since we obtain the length of the synthesized
chain in nucleotides; to obtain the number of RNAs, we need to divide by the length of the
RNA. The second term describes the degradation rate of L RNA with constant dRNAL .

3.5. Translation

The rate of change of the abundance of viral proteins is modelled using the equations
listed below.

d[NP]
dt

= ktransl(lNP)
−1[RNANP]− dNP[NP]

−kcomplexnNPθcomplex

([
LgRNA(−)

]
+
[
SgRNA(−)

]) (15)

The first term is responsible for the translation of the NP protein from NP RNA: ribosomes
synthesize the NP protein using the NP RNA with constant ktransl that characterizes the general
rate of translation in the number of nucleotides passed per hour, which is divided by the length
of NP RNA lNP to specify that the production of one protein is equal to passing through that
particular protein’s RNA (through its length). The second term corresponds to the degradation
of the NP protein with constant dNP. The third term accounts for the coating of RNA with the
NP protein; NP coats [SgRNA(−)] and [LgRNA(−)] in the Michaelis–Menten type of reaction
with reaction constant kcomplex and KNP (Michaelis constant—concentration of NP protein at
which the reaction rate is half of the maximum). Also, the term is multiplied by nNP, because
this term describes the rate of genome RNA decline; thus, to turn it to the NP decline rate, the
term should be multiplied by the number of NP proteins per virion (one virion—one L and one
S genome RNA).

d[Z]
dt

= kuncoatmZ[Vendosome] + ktranslZ(lZ)
−1[RNAZ]− dZ[Z]

−kassembnZθassemb

[
NP-SgRNA(−)

][
NP-LgRNA(−)

] (16)

The first term describes the unpackaging of the initial Z protein from the [Vendosome]
(mZ = nZ number of Z proteins per virion) with constant kuncoat. The second term describes
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the translation of the Z protein from the Z RNA: ribosomes synthesize the Z protein using Z
RNA with constant ktranslZ,which characterizes the general rate of translation in the number
of nucleotides passed per hour; this is divided by the length of Z RNA lZ, specifying that
the production of one protein is equal to passing through particular protein’s RNA (through
its length). The third term describes the degradation rate of the Z protein with constant
dZ. The last term accounts for virion assembly—it is regarded as a reaction with constant
kassemb between all components of the virion (coated RNA and all proteins). Also, the term
is multiplied by nZ; because this term describes the assembled virions’ production rate, to
turn it to the Z decline rate, the term should be multiplied by the number of Z proteins
per virion. The saturation of the assembly process is parameterized using the product of
Michaelis–Menten type functions:

θassemb =
[Z]

[Z] + KZ

[L]
[L] + KL

[GPC]
[GPC] + KGPC

. (17)

d[L]
dt

= kuncoatmL[Vendosome] + ktransl(lL)
−1[RNAL]− dL[L]

−kassembnLθassemb

[
NP-SgRNA(−)

][
NP-LgRNA(−)

] (18)

The first term describes the unpackaging of the initial L protein from [Vendosome] (mL = nL
number of L proteins per virion) with constant kuncoat. The second term is responsible for
the translation of the L protein from L RNA. Ribosomes synthesize the L protein using the L
RNA with constant ktransl that characterizes the general rate of translation in the number of
nucleotides passed per hour, which is divided by the length of L RNA lL to specify that the
production of one protein is equal to passing through the particular protein’s RNA (through
its length). The third term accounts for the degradation rate of the L protein with constant
dL. The last term describes virion assembly—it is regarded as a reaction with constant kassemb
between all components of virion (coated RNA and all proteins). Also, the term is multiplied
by nL, because this term describes assembled virions’ production rate; thus, to turn it to the L
decline rate, the term should be multiplied by the number of L proteins per virion.

d[GPC]
dt

= kuncoatmGPC[Vendosome] + ktransl(lGPC)
−1[RNAGPC]− dGPC[GPC]

−kassembnGPCθassemb

[
NP-SgRNA(−)

][
NP-LgRNA(−)

] (19)

The first term describes the unpackaging of the initial GPC protein from [Vendosome]
(mGPC = nGPC is the number of GPC proteins per virion) with constant kuncoat. The second
term describes the translation of the GPC protein from GPC RNA; ribosomes synthesize
the GPC protein using GPC RNA with constant ktransl that characterizes the general rate of
translation in the number of nucleotides passed per hour, which is divided by the length of
GPC RNA lGPC to specify that the production of one protein is equal to passing through
the particular protein’s RNA (through its length). The third term depicts the degradation
rate of the GPC protein with constant dGPC. The last term indicates the virion assembly—it
is regarded as a reaction with constant kassemb between all components of the virion (coated
RNA and all proteins). Also, the term is multiplied by nGPC, because this term describes
the assembled virions’ production rate; thus, to relate to the GPC decline rate, the term
should be multiplied by the number of GPC proteins per virion.
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3.6. Assembly and Release of Virions

To model the rate of change of the assembled and released virions, we formulate the
following equations.

d[NP-LgRNA(−)]

dt
= −kassembθassemb

[
NP-SgRNA(−)

][
NP-LgRNA(−)

]
−dNP-LgRNA(−)

[NP-LgRNA(−)] + kcomplexθcomplex[LgRNA(−)]
(20)

The first term describes the virion assembly—it is regarded as a reaction with constant
kassemb between all components of the virion (coated RNA and all proteins). This term
describes the assembled virions’ production rate; thus, it is equal to the coated RNA decline
rate. The second term describes the degradation rate of coated [LgRNA(−)] with constant
dNP-LgRNA(−)

. The third term indicates the coating of [LgRNA(−)] with the NP protein: the
number of [NP-LgRNA(−)] increases because [LgRNA(−)] coats with the NP protein in
the Michaelis–Menten type of reaction with reaction constant kcomplex and KNP (Michaelis
constant—concentration of NP protein at which the reaction rate is half-maximal).

d[NP-SgRNA(−)]

dt
= −kassembθassemb

[
NP-SgRNA(−)

][
NP-LgRNA(−)

]
−dNP-SgRNA(−)

[NP-SgRNA(−)] + kcomplexθcomplex[SgRNA(−)]
(21)

The first term is responsible for virion assembly—it is regarded as a reaction with
constant kassemb between all components of virion (coated RNA and all proteins). This term
describes the assembled virions’ production rate; thus, it is equal to the coated RNA decline
rate. The second term indicates the degradation rate of coated [SgRNA(−)] with constant
dNP-SgRNA(−)

. The third term describes the coating of [SgRNA(−)] with the NP protein: the
number of [NP-SgRNA(−)] increases because [SgRNA(−)] coats with the NP protein in
the Michaelis–Menten type of reaction with reaction constant kcomplex and KNP (Michaelis
constant—concentration of NP protein at which the reaction rate is half-maximal).

d[Vassembled]

dt
= kassembθassemb

[
NP-SgRNA(−)

][
NP-LgRNA(−)

]
−(krelease + dassembled)[Vassembled]

(22)

The first term is responsible for virion assembly—it is regarded as the reaction with
constant kassemb between all components of virion (coated RNA and all proteins), but the Z
protein is considered as the main assembly protein; therefore, it was used as an “enzyme” in
the Michaelis–Menten equation. The second term depicts the release of assembled virions:
[Vassembled] turn to [Vreleased] with constant krelease. The third term indicates the degradation
rate of assembled virions with constant dassembled.

d[Vreleased]

dt
= krelease[Vassembled]− dV [Vreleased] (23)

The first term describes the release of assembled virions: [Vassembled] turn to [Vreleased]
with constant krelease. The second term accounts for the degradation of released virions
with constant dV .

3.7. Calibration of LCMV Replication Model

The parameters of the model were quantified to match the model solution to empirical
data described in Section 2, with the initial guesses for model parameters based on our
previous models of SARS-CoV-2 and HIV-1 replication [47,48]. There are no experimental
data for the degradation kinetics of LCMV virions in free, bound and endosomal states.
We have, therefore, used the simplifying assumption that the degradation rates of free and
bound virions are the same, and similar to those estimated for SARS-CoV-2, as described in
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reference [48]. This assumed rate then matches the description for Influenza viruses, for
which around 50% of virions fail to release the virus genome upon cell entry [49].

The overall set of parameters is presented in Table 3.

Table 3. Description of the model parameters.

Parameter Description, Units Value Refs.

kbind Rate of virion binding to α-DG receptor, h−1 10 [48]

dV Clearance rate of extracellular virions, h−1 0.1 [48]

kdiss Dissociation rate constant of bound virions, h−1 0.51 [48]

k f use Fusion rate constant, h−1 0.52 [48]

kuncoat Uncoating rate constant, h−1 0.49 [48]

dendosome Degradation rate of virions in endosomes, h−1 0.05 [48]

dLgRNA(−)
Degradation rate of negative sense L RNAs in cell, h−1 0.1 [48]

dSgRNA(−)
Degradation rate of negative sense S RNAs in cell, h−1 0.1 [48]

dLgRNA(+)
Degradation rate of positive sense L RNAs in cell, h−1 0.1 [48]

dSgRNA(+)
Degradation rate of positive sense S RNAs in cell, h−1 0.1 [48]

krepl(+) Replication rate of positive sense RNAs, copies · nt/(mRNA · h) 340 [48]

krepl(−) Replication rate of negative sense RNAs, copies · nt/(mRNA · h) 13.6 · 106 [48]

kcomplex Rate of the nucleocapsid formation [NP-gRNA], h−1 0.3 [48]

KNP Threshold number of NP proteins at which nucleocapsid formation slows down, molecules 5 · 106 [48]

KZ Threshold number of Z proteins at which assembly slows down, molecules 450 [40]

KL Threshold number of L proteins at which assembly slows down, molecules 25 [40]

KGPC Threshold number of GPC proteins at which assembly slows down, molecules 670 [40]

KRdRp Threshold number of RNA enhancing RNA transcription and replication, molecules 20 [40]

KI Threshold number of Z molecules for half-maximal inhibition of L, molecules 5 · 104 [20]

ktranscr Transcription rate of RNAs, copies copies · nt/(mRNA · h) 7 · 105 adjusted

ktranscrNP Transcription rate of NP RNAs, copies copies · nt/(mRNA · h) 2.1 · 106 adjusted

dRNANP Degradation rate of NP RNA in cell, h−1 0.31 [48]

dRNAZ Degradation rate of Z RNA in cell, h−1 0.3 [48]

dRNAL Degradation rate of L RNA in cell, h−1 0.32 [48]

dRNAGPC Degradation rate of GPC RNA in cell, h−1 0.29 [48]

kassemb Rate of virion assembly, h−1 1 [48]

ktransl Translation rate, nt/mRNA h−1 4.5 · 104 [48]

ktranslZ Translation rate of Z, nt/mRNA h−1 2250 [48]

dNP Degradation rate of NP protein in cell, h−1 0.021 [48]

dZ Degradation rate of Z protein in cell, h−1 0.03 [48]

dL Degradation rate of L protein in cell, h−1 0.04 [48]

dGPC Degradation rate of GPC protein in cell, h−1 0.022 [48]

dNP-LgRNA(−)
Degradation rate of ribonucleoprotein of LgRNA(−), h−1 0.2 [48]

dNP-SgRNA(−)
Degradation rate of ribonucleoprotein of SgRNA(−), h−1 0.2 [48]

krelease Rate of virion release via exocytosis, h−1 7 [48]

dassembled Assembled virion degradation rate, h−1 0.07 [48]

nNP Number of NP protein per virion, molecules 1500 [40]

nZ Number of Z protein per virion, molecules 450 [40]
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Table 3. Cont.

Parameter Description, Units Value Refs.

nL Number of L protein per virion, molecules 25 [40]

nGPC Number of GPC protein per virion, molecules 670 [40]

lNP Length of RNA genome coding NP protein, nt 1674 [50]

lZ Length of RNA genome coding Z protein, nt 270 [50]

lL Length of RNA genome coding L protein, nt 6630 [50]

lGPC Length of RNA genome coding GPC protein, nt 1494 [50]

lSgRNA Length of S segment of genomic RNA, nt 3400 [50]

lLgRNA Length of L segment of genomic RNA, nt 7200 [50]

mZ Number of Z proteins, initially released to the cell from Vendosome, molecules 450 [40]

mL Number of L proteins, initially released to the cell from Vendosome, molecules 25 [40]

mGPC Number of GPC proteins, initially released to the cell from Vendosome, molecules 670 [40]

The corresponding solution of the deterministic model predicting the replication
dynamics of LCMV in a single replication cycle is shown in Figure 4.

Figure 4. Reference model solution with parameters estimated in Table 3, [Vf ree](0) = 10.

3.8. Stochastic Model

The Gillespie-based stochastic model of LCMV replication is derived using the ele-
mentary reactions terms of the deterministic equations as shown in Table 1.

The summary statistics of an ensemble of 10,000 realizations of the stochastic model is
shown in Figure 5.

The predicted variability of the LCMV replication indicates that the uncertainty in
the dynamics of released virions is much larger than that of the assembled ones. The
same observation applies to [SgRNA(−)] versus [LgRNA(−)] and [NP-SgRNA(−)] versus
[NP-LgRNA(−)].
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Figure 5. Statistics of an ensemble of 10,000 realizations of the stochastic model. Solid lines indicate
the medians, dashed lines—mean values, and filled area—interquantile ranges.

4. Results

4.1. Implications of the Model Calibration Uncertainty

The model was calibrated to match the experimental LCMV growth curves under
the assumptions that the number of the produced proteins should be determined by their
presence in the infectious virions. As a consequence, we had two different values for
the transcription rate constants ktranscr and ktranscrNP, as well as for the translation rate
constants ktransl and ktranslZ. If these rate constants are set to be the same, the kinetics of
the replication of viral components changes, as shown in Figure 6.

Figure 6. Model solution with parameters estimated in Table 3 except for ktranscr = ktranscrNP and
ktransl = ktranslZ, [Vf ree](0) = 10.

4.2. Sensitivity Analysis of the Deterministic Model

By conducting a local sensitivity analysis, we can determine which parameters cause
significant changes to the value of the Φ(y) functional in a small vicinity of the baseline
parameters. Figure 7 displays the sensitivity indices that are normalized for their compari-
son by the baseline parameter values and have both negative and positive effects on the
functional. The results of the local sensitivity analysis predict that the following processes
have the greatest effect on the total number of produced virions:
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• Translation (negative effect for Z, positive for the rest);
• Transcription (positive effect for NP, negative for the rest);
• Degradation of NP mRNA (negative effect);
• Degradation of free virions (negative effect);
• Fusion with endosomal membrane (positive effect);
• Unpacking (positive effect);
• Replication (positive effect for (+)RNA replication, negative effect for (-)RNA).

Figure 7. Model parameters ranked according to their normalized sensitivity indices. (Top): sensitiv-
ity towards the total number of produced virions Φtotal . (Bottom): sensitivity towards the cumulative
viral load ΦAUC. (Left): indices having negative effect. (Right): indices having positive effect.

4.3. Kinetic Variability of the LCMV Life Cycle

The low numbers of reaction constituents and the fluctuations in the reaction processes
imply variability in the production of LCMV by an infected cell. Using the stochastic
model, we estimated the uncertainty by plotting the histograms of the number of released
virions, the area under the curve and the total number of produced virions over 20 h
post infection, as presented in Figure 8. They indicate that a certain proportion of cell
infections goes extinct (left vertical column in each histogram). Indeed, the initial stages
of LCMV replication are characterized by small abundances of the reactants and a greater
impact of random fluctuations on the reaction rates. In certain realizations, the degradation
events can be more frequent than that of the sustaining/expanding reaction events, e.g.,
the turnover of genomic strands, thus resulting in an abortive infection.
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Figure 8. Variability of the virus production indices estimated by 104 realizations of the stochastic
model. (Left): number of released virions. (Center): area under the curve. (Right): total number of
produced virions.

4.4. Probability of Productive Infection

As some of the simulated infections of the target cells go extinct, we further quantified
the probability of the productive infection for various numbers of LCMV entering the target
cell, also known as MOI. The results are shown in Figure 9 (left). It is close to 0.9 for MOI = 10
and then saturates. The values of MOI affect the efficiency of the LCMV replication cycle,
as one can observe from Figure 9 for the number of released (middle) and total number of
produced (right) virions by 20 h.

Figure 9. Probability of productive infection (left) and produced infectious viruses (middle and
right) for various MOI estimated by 104 realizations of the stochastic model.

4.5. Protein-Deficient Virions

The life cycle of LCMV is characterized by some imbalance of the relative abundance
of the viral proteins and genomic RNAs. As a consequence, a certain number of the secreted
virions are non-infections because of a deficiency in some of the constitutive components.
The stochastic model allows one to evaluate the fraction of the respective particles known
in virology as defective interfering viruses (DIPs) and the nature of the deficiency. Our
model does not describe the mutations of viral RNA but only the level of completeness in
the number of proteins in the assembled virions; see method details in Section 2.4. The plots
in Figure 10 specify the corresponding estimates of incomplete particles in an ensemble of
10,000 realizations of the stochastic model for the baseline set of model parameter values
listed in Table 3. The variability of assembled particles with respect to their protein levels is
shown in Figure 11. One can observe that the assembly of complete virions is limited by
the availability of GPC and Z molecules.
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Figure 10. The kinetics of complete and incomplete virion production. Top panel shows the number
of assembled and released virions and total number of produced virions as function of time, as well
as the distribution of the total number of complete and incomplete virions throughout 20 h. Bottom

panel shows the fraction of incomplete virions as function of time, as well as the distribution of the
total number of complete and incomplete virions throughout 20 h. Solid lines indicate the median
values, dashed lines—mean values and filled areas—interquantile ranges. Violin plots indicate the
estimated probability density, as well as the mean values (dashed), median values and the following
percentiles: 0.05, 0.25, 0.75 and 0.95. Baseline set of parameters from Table 3 is considered.

Figure 11. The kinetics of protein number distribution in incomplete virions. Top panel shows
the number of GPC, Z and L proteins in the assembled incomplete virions as function of time.
Bottom panel shows the distribution of virion assembly moments for complete and incomplete
particles, as well as evolution of the distributions of GPC and Z protein numbers in incompletely
assembled virions. Solid lines indicate the median values, dashed lines—mean values and filled
areas—interquantile ranges. Violin plots indicate the estimated probability density, as well as the
mean values (dashed), median values and the following percentiles: 0.05, 0.25, 0.75 and 0.95. Baseline
set of parameters from Table 3 is considered.
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As noted before, in calibrating the model, we assumed that the number of viral
proteins should follow that of the infectious virions according to the composition of mature
LCMV. To implement this assumption, the transcription and translation rates of some
proteins are fixed to be different. If the assumption is relaxed, i.e., if the transcription and
translation rates of all viral proteins are set to be the same, then the ensemble of stochastic
realizations becomes different. The fraction of DIPs as well as the nature of the protein-
related deficiencies is shown in Figures 12 and 13, respectively. In this model modification,
the assembly of complete virions is limited by the availability of only GPC molecules.

Figure 12. The kinetics of complete and incomplete virion production. Top panel shows the number
of assembled, released virions and total number of produced virions as function of time, as well as
the distribution of the total number of complete and incomplete virions throughout 20 h. Bottom

panel shows the fraction of incomplete virions as function of time, as well as the distribution of the
total number of complete and incomplete virions throughout 20 h. Solid lines indicate the median
values, dashed lines—mean values and filled areas—interquantile ranges. Violin plots indicate the
estimated probability density, as well as the mean values (dashed), median values and the following
percentiles: 0.05, 0.25, 0.75 and 0.95. Modified set of parameters with the transcription and translation
rates of all proteins being the same is considered.

Paradoxically, the fraction of incomplete particles is reduced when the protein tran-
scription and translation rates are set as equal, i.e., ad hoc constraints are not applied. This
can be linked to the fact that the assembly events by themselves are rare in this modification
of the model, and the sum of incompletely and completely assembled particles which
are still not released does not exceed one virion throughout the moments of the life cycle
(Figure 12). The distribution of the virion assembly event moments is also altered compared
to the other version of the model (Figure 13).
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Figure 13. The kinetics of protein number distribution in incomplete virions. Top panel shows the
number of GPC, Z and L proteins in the assembled incomplete virions as function of time. Bottom

panel shows the distribution of virion assembly moments for complete and incomplete particles, as
well as evolution of the distributions of GPC protein numbers in incompletely assembled virions.
Solid lines indicate the median values, dashed lines—mean values and filled areas—interquantile
ranges. Violin plots indicate the estimated probability density, as well as the mean values (dashed),
median values and the following percentiles: 0.05, 0.25, 0.75 and 0.95. Modified set of parameters
with the transcription and translation rates of all proteins being the same is considered.

5. Discussion

The aim of our study is to provide a complete quantitative description of the LCMV
life cycle steps within an infected cell. This enables us to predict the robustness and fragility
of each step with respect to the overall virus production, thus helping to identify weak spots
that could be efficient targets for antiviral therapies. To generate the model, experimental
data on LCMV growth in cell cultures, LCMV genome structure and replication steps,
protein composition of LCMV virions as well as known rates of elementary biochemical
reaction steps were used. The knowledge generated by our model goes far beyond the
current qualitative understanding of the LCMV life cycle and includes novel quantitative
characteristics such as the probability of productive infection, fraction of secreted protein-
deficient virus particles and the variability of virus production between individual cells.
Furthermore, we predict, via sensitivity analysis of the model, the particularly vulnerable
steps that should be best targeted by antiviral drugs. This enables an informed screening
for antiviral drugs and may reduce the underlying experimental work.

Viruses are very simple biological entities and thus share many common biochem-
ical reaction steps in their life cycles, including viral genome replication, transcription,
translation, virus particle assembly and virus release from the cell. However, they differ
in genome length and arrangement, protein composition and structure. All these com-
monalities and differences were taken into account for the LCMV model presented here.
Parameter values of the model, therefore, are a mix of some LCMV-specific parameters like
protein composition, genome structure, replication stages and more general parameters that
also characterise other viruses. The calibration of our model was conducted by a manual
adjustment of parameter values to match the generalized kinetics of LCMV production
illustrated in Figure 3 and described in Sections 2.1 and 2.2. This was necessary because
detailed single-cell experimental data are lacking and thus we could not apply a maximum
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likelihood approach. Moreover, some aspects of the LCMV replication cycle kinetics have
not been empirically observed which resulted in a calibration uncertainty, as estimated
in Section 4. As a starting point for model calibration, the parameter estimates from the
previously developed mathematical models of IAV, HIV-1 and SARS-CoV-2 life cycles have
been used, as well as the functional dependencies for the nonlinear regulation processes.

To assess the sensitivity of the model performance to parameter variations, we imple-
mented the traditional deterministic local analysis. A complementary global sensitivity
analysis method treats model parameters as random variables, and therefore, requires mak-
ing certain assumptions on the distributions of the parameter values. In practice, uniform
distributions in plausible parameter ranges are frequently used, as well as triangular and
normal distributions. The results of the global sensitivity analysis, therefore, will depend
on these additional assumptions, which cannot be robustly specified now due to the lack of
respective quantitative experimental data on each model parameter. This aspect deserves
further attention in future work.

To parameterize the assembly kinetics, we assumed that the assembly rate is propor-
tional to all the components that constitute a viral particle, i.e., to the ribonucleocapsids
[NP-LgRNA(-)] and [NP-SgRNA(-)], as well as to Z, L and GPC proteins. The dependence
on protein concentration is nonlinear and is given by a product of Michaelis–Menten
functions. This implies a saturation in the rate based on the availability of proteins. This
parameterization of the assembly process has been previously used in models for IAV [51],
HIV-1 [45] and SARS-CoV-2 [52] life cycles.

In our study, both deterministic and stochastic models are used. They should be
considered as complementary to each other. The use of the ODE-based deterministic
formulation for the biochemical species concentrations assumes that they vary continuously
according to the Mass Action Law. This enables a calibration of the model parameters.
However, when considering single cell infections, some of the LCMV replication steps
may proceed with low numbers of reactants. In this case, the random fluctuations of the
reaction rates are more prominent, thus invalidating to a certain degree the deterministic
modelling approach. These limitations can be overcome by the stochastic re-formulation of
the deterministic model. This can be achieved by considering the transitions that take place
between the variables as Markov processes. Specifically, the discrete-state continuous-time
Markov chain-based model can be formulated (in which individual simulation paths can be
numerically implemented using Monte-Carlo techniques), in which the model variables can
take discrete integer numbers, and the propensities of the individual reactions are defined
through probabilities that the respective transitions would take place in an infinitesimal
increment of time. Importantly, the probabilities are defined by the abundances of the
chemical species, while the reaction rate constants are derived directly from the underlying
deterministic model. To note, some predictions of the deterministic model might vary
substantially from that of the stochastic model. The stochastic model enables one to quantify
and explain the emergence of heterogeneities in the virus life cycle, including the variability
in net viral progeny and the probability of a productive infection.

6. Conclusions

LCMV is a prototypic arenavirus which provides a widely used experimental model
to investigate the pathogenesis of both acute and persistent virus infections [53]. It is
applied to study the molecular biology of other arenaviruses, such as the important human
pathogens Lassa virus and Junin virus, which can cause hemorrhagic fever disease with
high mortality [54]. In our study, we formulated and calibrated a mathematical model
predicting the kinetics of biochemical processes, including the transcription, translation
and degradation of molecular components of LCMV underlying its replication in infected
cells. To the best of our knowledge, it is the first quantitative mathematical model of
intracellular LCMV growth. The model provides a building module for developing multi-
scale mathematical models of LCMV infection in mice. The existing models for other viruses
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including HIV-1, Influenza A virus and SARS-CoV-2 are referenced in the discussion section,
and distinctive features between these are mentioned.

LCMV remains an important cause of meningitis in humans, the fatal LCMV infection
in organ transplant recipients in particular, which highlights the pathogenic potential and
clinical significance of this neglected human pathogen [7]. It is recognized that antiviral
therapeutic options in human LCMV infection are currently limited [7]. Our study provides
a clear ranking of intracellular virus replication processes with respect to their contribution
to the net viral production, thus suggesting potential targets for antiviral therapies.

Our mathematical model predicts the variability of the replication process and the
probability of productive infection. The stochastic model enables us to predict the produc-
tion of LCMV virions that are deficient in protein content. The predictions of our study
require further experimental validation. The best option would be an experimental analysis
of the LCMV life cycle, i.e., to follow the virus infections with simultaneous measurements
of viral replication intermediates and host transcriptional changes as was previously made
for other viruses, e.g., for HIV-1 [55], poliovirus [49].
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The following abbreviations are used in this manuscript:
LCMV Lymphocytic choriomeningitis virus
RING Really interesting gene
ESCRT Endosomal sorting complexes required for transport
α-DG α-Dystroglycan
RdRp RNA-dependent RNA polymerase
RNP Ribonucleoprotein
SSP Stable signal peptide
SSA Stochastic simulation algorithm
ODE Ordinary differential equation
MC Markov chain
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Abstract: For decades, understanding the dynamics of infectious diseases and halting their spread
has been a major focus of mathematical modelling and epidemiology. The stochastic SIRS (susceptible–
infectious–recovered–susceptible) reaction–diffusion model is a complicated but crucial computa-
tional scheme due to the combination of partial immunity and an incidence rate. Considering the
randomness of individual interactions and the spread of illnesses via space, this model is a powerful
instrument for studying the spread and evolution of infectious diseases in populations with different
immunity levels. A stochastic explicit finite difference scheme is proposed for solving stochastic
partial differential equations. The scheme is comprised of predictor–corrector stages. The stability
and consistency in the mean square sense are also provided. The scheme is applied to diffusive
epidemic models with incidence rates and partial immunity. The proposed scheme with space’s
second-order central difference formula solves deterministic and stochastic models. The effect of
transmission rate and coefficient of partial immunity on susceptible, infected, and recovered people
are also deliberated. The deterministic model is also solved by the existing Euler and non-standard
finite difference methods, and it is found that the proposed scheme forms better than the existing
non-standard finite difference method. Providing insights into disease dynamics, control tactics, and
the influence of immunity, the computational framework for the stochastic SIRS reaction–diffusion
model with partial immunity and an incidence rate has broad applications in epidemiology. Public
health and disease control ultimately benefit from its application to the study and management of
infectious illnesses in various settings.

Keywords: stochastic numerical scheme; stability; consistency; diffusive SIRS model; partial immunity;
incidence rate and disease spread

MSC: 35R60; 65C30; 65M12

1. Introduction

For the stochastic diffusive epidemic model with partial immunity and an incidence
rate, a finite difference approach is a numerical method for solving the partial differential
equation (PDE). The PDE describes time- and space-variant population dynamics of the
susceptible, infected, and recovered groups. The model’s incidence rate term describes how
quickly new infections spread. At the same time, the partial immunity factor considers
that not everyone is vulnerable to the disease. The finite difference method transforms
the PDE into a set of ODEs, which can then be solved numerically. The spatial domain is
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grid-divided, and finite difference operators are used to approximate the PDE derivatives.
Multiple numerical techniques can then be used to solve the resulting system of ODEs.

The Euler technique is frequently used to resolve the system of ODEs. The Euler
method’s simplicity and explicitness may lead to inaccuracies when dealing with enormous
time increments. The Crank–Nicolson approach is more precise. However, it is implicit.
Compared to the Euler method, the Crank–Nicolson approach is more stable but demands
more processing power.

Using a stochastic solver is an alternative method for resolving the system of ODEs. A
stochastic solver would consider the unpredictability of the disease’s spread. Diseases with
low transmission rates or those whose prevalence is influenced by environmental variables
may benefit from this type of modelling.

When simulating the spread of infectious disease, stochastic modelling is a common
approach for examining the underlying dynamics of the disease. More so, it has been seen
that stochastic models are typically more illuminating than deterministic ones since the
latter can only predict one outcome given a particular set of conditions. A stochastic model,
on the other hand, forecasts several different possibilities. Using stochastic differential
equations, numerous scholars have suggested numerous mathematical models to charac-
terize the dynamics of epidemics in recent years (e.g., Refs. [1–4]). To obtain more realistic
systems of population interactions, authors have inserted temporal delays into such models
and explored their dynamical properties (see, for example, Refs. [5–7]).

Vaccination has the potential to play a significant role in disease control by reducing
the rate of reproduction and, consequently, the number of sick people in an endemic region.
It is well established that certain vaccines produce just transitory immunity while others
provide lifelong protection. Thus, the time it takes for an individual to develop immunity to
an infection or vaccine is considered a delay factor in many published works’ construction of
epidemic models (for example, refer to Refs. [8–10]). Based on the equivalent deterministic
model developed and explored in [11], the authors in [12] devised the stochastic SVIR
epidemic model. This was carried out because vaccinations are such an efficient technique
for reducing diseases.

It is common knowledge that accurate epidemic modelling relies heavily on accurate
incidence rates to explain infectious disease dynamics. Many researchers have advocated
nonlinear incidence rates as a more flexible model for dealing with genuine data and a more
nuanced approach to analyzing disease transmission than bilinear and standard incidence
rates [13].

A universal functional response F(S, τ) = βS
1+λ1S+λ2τ+λ3Sτ was recently introduced by

Hattaf et al. [14], where λ1, λ2, λ3 ≥ 0 are saturation factors assessing the psychological or
inhibitory effect. Using this equation, we can extrapolate from the literature a wide variety
of incidence rates. If λ1 = λ2 = λ3 = 0, for instance (see [15]), we obtain the bilinear
incidence rate F(S, τ) = βS. If λ2 = λ3 = 0, or if λ1 = λ3 = 0, the saturated incidence
function F(S, τ) =

βS
1+λ1S is produced (see [16,17]). If λ3 = 0, the Beddington–DeAngelis

functional response F(S, τ) = βS
1+λ1S+λ2τ is achieved (see [18,19] for details). If λ3 = λ1λ2,

the Crowley–Martin functional response F(S, τ) is found to be F(S, τ) = βS
1+λ1S+λ2τ+λ1λ2Sτ .

However, the influence of vaccinations on public health in populations is significantly
impacted by the duration of immunity, making it one of the most crucial components
of disease and vaccines. Individual immunity to infectious diseases was shown to last
anywhere from a few months to a lifetime [20]. For instance, the protection afforded
by the varicella [21] and pertussis [22] vaccines against infectious diseases is only brief.
Loss of immunological memory and the evolution of the disease are two key reasons
why immunity (whether infection-induced or vaccination-induced) diminishes for many
infectious disorders [23].

A few researchers have worked on numerical solutions to the epidemic models. While
Nowak et al. [24] proposed a deterministic model for the simulation of hepatitis B virus
infection, Wang and Wang [25] proposed an alternative model in which the virus moves
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randomly, and the concentration gradient is assumed to be proportional to the virus’s
population flux. Suryanto et al. provided a non-standard FDS for the numerical approxi-
mation of the SIR epidemic model with a saturated incidence rate. The scheme results are
dynamically consistent with the continuous model [26]. Naik et al. assumed a Crowley–
Martin functional response and a Holling type-II treatment rate for the SIR epidemic model.
They turned to homotopy analysis for the analytical solutions of the provided model. The
authors consider the model’s stability and find it can exist in two distinct states: disease-free
and endemic [27].

Physical phenomenon modelling is a fascinating field of study and practice. Partial
differential equations (PDEs) are utilized because they accurately describe the underlying
physical behavior [28–31]. There is a lot of research in the field of solving PDEs, and many
different methods are used [32–38]. Forty years ago, it was widely believed that advances
in nutrition, pharmaceuticals, and vaccines were largely responsible for the dramatic
drop in the human mortality rate that occurred then. Infectious infections have always
been a major problem for people and cattle. Traditional epidemic models cannot capture
how illnesses behave. As a result, it is crucial to think about epidemic models within a
stochastic framework. Therefore, fresh case-specific literature is necessary. The dynamics
of stochastic partial differential equations are the subject of many recent investigations.
The authors performed in-depth analyses of several physical phenomena using the finite
difference scheme [39–41]. Macas-Daz et al. [42] studied the stochastic epidemiology model
using a non-traditional finite difference approach. The dynamics of a stochastic model of
smoking were investigated by Raza et al., who devised a non-standard finite difference to
do so [43]. The stochastic fractional epidemic model was numerically approximated by
Nauman et al. [44]. The stochastic dengue epidemic model was solved by Raza et al. [45].
Alkhazzan et al. [46] examined and discussed the dynamics of an SVIR epidemic model. The
utilization of the fractional order Caputo fractional derivative co-infection illness epidemic
model has been examined in previous studies [47–50]. In chemistry, MiR-17-92 is critical in
regulating the Myc/E2F protein. A novel fractional-order delayed Myc/E2F/miR-17-92
network model revealing their relationship is proposed in [51].

There are several potential uses for the computational scheme developed for the
stochastic (SIRS) reaction–diffusion model with partial immunity and an incidence rate
in epidemiology and other fields of study. Some important information about its uses is
as follows:

1. Epidemiological Modelling: The primary use of this computational framework is the
modelling of infectious disease dynamics in populations. Because it allows researchers
to examine the impact of partial immunity on disease transmission and prevalence, it
is especially helpful when thinking about diseases with various levels of immunity.
This is particularly important in the case of influenza, where immunity can shift from
season to season due to strain changes.

2. Geographical Spread Analysis: Because this model includes diffusion, it can be used
to analyze the geographical spread of diseases. The ability to optimize healthcare
resource allocation and implement effective control measures relies on researchers
thoroughly understanding how diseases spread across geographic regions.

3. Vaccination Strategy: Vaccination techniques can be tested using the model. It is
useful for calculating the effects of vaccination rates, waning immunity, and partial
immunity on the overall disease burden in a community. Policymakers might use
these data as a reference when deciding how to proceed with vaccination drives.

4. Public Health Policy Planning: Infectious disease dynamics knowledge is essential
for public health policymaking. This model can shed light on how factors like inci-
dence rates and geographic location influence the spread of disease. It is useful for
determining how to allocate resources best and implement intervention techniques to
reduce disease spread.

5. Disease Evolution: By adding partial immunity, the model may also be used to
examine how diseases change over time. The immune response to diseases like HIV is
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complex and changes over time, which is particularly relevant. The model can show
how the disease may evolve and how therapies may alter its course.

Suppose you want to simulate the spread of disease. In that case, you can use the
finite difference approach or a computational methodology for a stochastic diffusive epi-
demic model with partial immunity and an incidence rate. This technique can examine
how changing certain variables impacts disease transmission and how efficient certain
preventative strategies are.

Researchers and public health officials can use the finite difference approach or com-
putational scheme for a stochastic diffusive epidemic model with partial immunity and an
incidence rate to better understand and manage disease transmission.

The solutions to the epidemic models can be found by applying analytical and nu-
merical methods. The analytical methods sometimes take more time to converge than
numerical methods when applied to nonlinear problems. Different methods exist to handle
nonlinear term(s) in differential equations. However, nonlinear terms are linearized using
implicit finite difference methods. However, for the explicit methods, linearization is not
required. So, linear finite difference schemes are sometimes useful for solving nonlinear
differential equations. An iterative method can also be adopted to overcome the deficiency
of explicit schemes when applied to problems having Neumann-type boundary conditions.
An iterative scheme is also employed in this work to manage such cases. The stopping
criteria of the iterative scheme for the deterministic model are also provided, and the
iterative will be stopped if this criterion is met. The Wiener process term is approximated
by the MATLAB built-in function of using normal distribution with mean zero. So, the
MATLAB built-in facility is adopted for solving the stochastic diffusive epidemic model.

Public Health Benefits:
As a powerful tool for comprehending and controlling infectious diseases, the sug-

gested computational framework for the stochastic SIRS reaction–diffusion model with
partial immunity and an incidence rate provides substantial advantages to public health.
By including an incidence rate and partial immunity, the model provides a more accurate
portrayal of disease dynamics in populations with different immunity levels. By taking
into account the inherent unpredictability in the interactions between individuals and
the distribution of diseases over space, the computational scheme’s stochastic explicit
finite difference method helps to model the dynamics of infectious disease transmission
and evolution.

An effective strategy for disease control can be developed with the use of the model’s
findings. Key parameters impacting disease dynamics can be identified by studying the
influence of transmission rates and coefficients of partial immunity on susceptible, infected,
and recovered people using the model. With this information, we may better develop
public health plans and tailored interventions to reduce the transmission of infectious
illnesses in various environments. In the end, public health authorities and lawmakers
can make better disease prevention and control decisions because of the computational
framework’s extensive use in epidemiology.

Limitations of the Study:
Even though the suggested computational paradigm sheds light on the dynamics of

infectious diseases, its limits must be recognized. The mathematical model’s assumptions
regarding homogenous mixing and constant parameters, among other simplifications,
are restricted. Complex real-world interactions and population-level fluctuations may be
beyond the scope of these assumptions.

Furthermore, the model assumes partial immunity, the integrity of which depends
on the accessibility of pertinent data and the thoroughness of immunity-related elements
taken into account.

Validation of Methods:
It is necessary to validate the stability and consistency of the suggested computational

strategy in the mean square sense and apply it to diffusive epidemic models with incidence
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rates and partial immunity. To further explore the process of validation, the subsequent
variables are examined:

Stability: The scheme’s stability is guaranteed by a thorough analysis that considers
the predictor–corrector stages. Establishing stability criteria demonstrates that the numeri-
cal solution exhibits convergence towards the accurate solution when the discretization
parameters progressively decrease.

Consistency: verifying consistency in the mean square sense demonstrates that as the
grid spacing decreases, the numerical solution converges to the theoretical solution of the
stochastic partial differential equations.

Comparison with existing model: The new technique is evaluated using the existing
Euler method and a non-standard finite difference method. The suggested technique is
demonstrated to be superior to the existing non-standard finite difference method in solving
the deterministic model through the provision of well-defined metrics and performance
indicators.

The reliability and correctness of the proposed computational scheme in capturing
the dynamics of infectious diseases within the stochastic SIRS reaction–diffusion model
framework with partial immunity and an incidence rate are ensured by implementing a
complete validation technique.

2. Stochastic Computational Scheme

An explicit two-stage scheme is proposed that can solve stochastic differential equa-
tions. Both stages of the scheme are explicit. The scheme consists of a fixed step size. The
first stage of the scheme is the Euler–Maruyama method, and the second stage contains
parameters that will be found later by comparing Taylor series expansion. For start-
ing the constructing procedure of the scheme, consider the following stochastic partial
differential equation:

dv = G
(

v,
∂2v
∂x2

)
dt + σvdW (1)

where σ is a constant, and W(t) represents a Winner process.
The proposed scheme will be constructed for the deterministic model (1). i.e., σ = 0.

Later on, the scheme will be constructed for the stochastic model (1).
The first stage of the scheme is expressed as:

vn+1
i = vn

i + dvn
i (2)

where vn+1
i represents the solutions of Equation (1) computed at ith grid point and at an

arbitrary time level. The solution computed at the first stage should not considered as a
final solution at (n + 1)th level. Stage (2) can also be considered as the predictor stage. The
corrector stage can be expressed as:

vn+1
i =

1
3

(
2vn

i + vn+1
i

)
+ a dvn

i + b dvn+1
i (3)

The values of parameters a and b can be determined by considering the Taylor series
expansion of vn+1

i as:

vn+1
i = vn

i + dvn
i +

1
2

d2vn
i + · · · (4)

By substituting Equation (4) into Equation (3), the following is obtained:

vn
i + dvn

i +
1
2

d2vn
i + · · · = 1

3

(
2vn

i + vn+1
i

)
+ a dvn

i + b dvn+1
i (5)

By using (2) into Equation (5):

vn
i + dvn

i +
1
2

d2vn
i + · · · = 1

3
(3vn

i + dvn
i ) + a dvn

i + b dvn
i + bd2vn

i (6)
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Equating coefficients of dvn
i and d2vn

i on both sides of Equation (6) yields:

1 = 1
3 + a + b
1
2 = b

}
(7)

Solving Equation (7), the values of a and b can be expressed as:

a =
1
6

and b =
1
2

(8)

The semi-discretization for stochastic Equation (1) is given by:

vn+1
i = vn

i + G

(
vn

i ,
∂2v
∂x2

∣∣∣∣n
i

)
Δt + σvn

i ΔW (9)

and

vn+1
i =

1
3

(
2vn

i + vn+1
i

)
+ a

(
G

(
vn

i ,
∂2v
∂x2

∣∣∣∣n
i

)
Δt + σvn

i ΔW

)
+ b

(
G

(
vn+1

i ,
∂2v
∂x2

∣∣∣∣n+1

i

)
Δt + σvn+1

i ΔW

)
(10)

where a and b will be chosen from Equation (8) and ΔW ∼ N(0, Δt).
Letting G = d1

∂2v
∂x2 in Equation (1), the fully discretized equations are:

vn+1
i = vn

i + d1(
vn

i+1 − 2vn
i + vn

i−1

(Δx)2 )Δt + σvn
i ΔW (11)

and

vn+1
i =

1
3

(
2vn

i + vn+1
i

)
+ a

{
d1

(
vn

i+1 − 2vn
i + vn

i−1

(Δx)2

)
Δt + σvn

i ΔW

}
+ b

{
d1

(
vn+1

i+1 − 2vn+1
i + vn+1

i−1

(Δx)2

)
Δt + σvn+1

i ΔW

}
(12)

3. Stability Analysis

The stability analysis of the proposed scheme for stochastic parabolic linear equations
will be performed by applying Fourier series analysis. The analysis provides the conditions
on step size and involved parameters. The stability analysis assumes the dependent
variable by the component of the Fourier series. The transformations are given as:

vn+1
i = Qn+1eiIψ, vn+1

i = Qn+1eiIψ

vn
i±1 = Qne(i±1)Iψ, vn+1

i±1 = Qn+1e(i±1)Iψ

}
(13)

where I =
√−1.

It yields by substituting some of the transformations from Equation (13) into the first
stage of the proposed scheme (11).

Qn+1eiIψ = QneiIψ +
d1Δt

(Δx)2

(
e(i+1)Iψ − 2eiIψ + e(i−1)Iψ

)
Qn + σeiIψΔWQn (14)

Dividing both sides of Equation (14) by eiIψ yields:

Qn+1
= Qn + d

(
eIψ − 2 + e−Iψ

)
Qn + σΔWQn

where d = d1Δt
(Δx)2 .

Using trigonometric identities yields:

Qn+1
= (1 + 2d(cosψ − 1) + σΔW)Qn (15)
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Similarly, upon substituting some of the transformations from Equation (13) into the
second stage of the proposed scheme (12), it gives:

Qn+1eiIψ = 1
3

(
2QneiIψ + Qn+1eiIψ

)
+ a
{

d1

(
e(i+1)Iψ−2eiIψ+e(i−1)Iψ

(Δx)2

)
QnΔt + σeiIψQnΔW

}
+

b
{

d1

(
e(i+1)Iψ−2eiIψ+e(i−1)Iψ

(Δx)2

)
Qn+1Δt + σeiIψQn+1ΔW

} (16)

Dividing both sides of Equation (16) by eiIψ yields:

Qn+1 =
1
3

(
2Qn + Qn+1

)
+ a

{
2d1

(cosψ − 1)

(Δx)2 Δt + σΔW

}
Qn + b

{
2d1

(cosψ − 1)

(Δx)2 Δt + σΔW

}
Qn+1 (17)

Using Equation (15) in Equation (17) produces:

Qn+1 =

[
2
3
+ 2ad(cosψ − 1) + σΔW

]
Qn +

[
1
3
+ 2bd(cosψ − 1) + σΔW

]
[1 + 2d(cosψ − 1) + σΔW]Qn (18)

The amplification factor for the scheme is given as:

Qn+1

Qn =
(

2
3 + 2ad(cosψ − 1) +

(
1
3 + 2bd(cosψ − 1)

)
(1 + 2d(cosψ − 1))

)
+ ( 1

3 + 2bd(cosψ − 1) + 1 +

2d(cosψ − 1) + 1)σΔW + σ2(ΔW)2
(19)

Applying the expected value on the square of amplitudes of the two consecutive
Fourier components of the solution of the differential equations using the proposed scheme
and also using the inequality give the stability condition for the proposed stochastic scheme
as:

E|Qn+1

Qn |2 ≤ 2E| 2
3 + 2ad(cosψ − 1) +

(
1
3 + 2bd(cosψ − 1)

)
(1 + 2d(cosψ − 1))|2 + 2|2bd(cosψ − 1) + 7

3+

2d(cosψ − 1)|2E|σΔW|2 + 2σ4E|(ΔW)2|2
(20)

If

2|2
3
+ 2ad(cosψ − 1) +

(
1
3
+ 2bd(cosψ − 1)

)
(1 + 2d(cosψ − 1))|2 < 1

and let
λ = 2σ2|7

3
+ 2bd(cosψ − 1) + 2d(cosψ − 1)|2 + 6Δt

Then, inequality (20) can be expressed as:∣∣∣∣Qn+1

Qn

∣∣∣∣2 ≤ 1 + λΔt (21)

Therefore, the proposed stochastic numerical scheme is conditionally stable.

Theorem 1. The proposed stochastic numerical scheme (11)–(12) is consistent in the mean square
sense.

Proof. Let P be the smooth function:

L(P)n
i = P((n + 1)Δt, iΔx)− P(nΔt, iΔx)− d1

∫ (n+1)Δt

nΔt
Pxx(s, iΔx)ds − σ

∫ (n+1)Δt

nΔt
P(s, iΔx)dW(s) (22)
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Ln
i P = P((n + 1)Δt, iΔx)− P(nΔt, iΔx)− Δt

[
d1(a+ 1

3 )
(Δx)2 (P(nΔt, (i + 1)Δx)− 2P(nΔt, iΔx)+

P(nΔt, (i − 1)Δx)) + d1b
(Δx)2

(
P((n + 1)Δt, (i + 1)Δx)− 2P((n + 1)Δt, iΔx) + P((n + 1)Δt, (i − 1)Δx)

)]−
σ
(

a + 1
3

)
P(nΔt, iΔx)(W((n + 1)Δt)− W(nΔt))− σbP((n + 1)Δt, iΔx)(W((n + 1)Δt)− W(nΔt))

(23)

where P((n + 1)Δt, iΔx) = P(nΔt, iΔx) + d1Δt
(Δx)2 (P(nΔt, (i + 1)Δx) − 2P(nΔt, iΔx)+

P(nΔt, (i − 1)Δx)) + σP(nΔt, iΔx)(W((n + 1)Δt)− W(nΔt)).
The following equations can be obtained from Equations (22) and (23):

E|L(P)n
i − Ln

i P|2 = E| − d1

∫ (n+1)Δt

nΔt
Pxx(s, iΔx)ds − σ

∫ (n+1)Δt

nΔt
P(s, iΔx)dW(s)+

d1(a + 1
3 )

(Δx)2 (P(nΔt, (i + 1)Δx)− 2P(nΔt, iΔx) + P(nΔt, (i − 1)Δx))+

d1b
(Δx)2 (P((n + 1)Δt, (i + 1)Δx)− 2P((n + 1)Δt, iΔx) + P((n + 1)Δt, (i − 1)Δx))

+σ(a +
1
3
)P(nΔt, iΔx)(W((n + 1)Δt)− W(nΔt))

+σbP((n + 1)Δt, iΔx)(W((n + 1)Δt)− W(nΔt))|2

(24)

Equation (24) can be rewritten as:

E|L(P)n
i − Ln

i P|2 ≤ 2d2
1E|
∫ (n+1)Δt

nΔt
Pxx(s, iΔx)ds

− Δt
(Δx)2 {(a +

1
3
)(P(nΔt, (i + 1)Δx)− 2P(nΔt, iΔx) + P(nΔt, (i − 1)Δx))+

b(P((n + 1)Δt, (i + 1)Δx)− 2P((n + 1)Δt, iΔx) + P((n + 1)Δt, (i − 1)Δx))}

|2 + 2σ2E|
∫ (n+1)Δt

nΔt
P(s, iΔx)dW(s)− (a +

1
3
)P(nΔt, iΔx)(W((n + 1)Δt)− W(nΔt))−

bP((n + 1)Δt, iΔx)(W((n + 1)Δt)− W(nΔt))|2

(25)

Now, the following result is used:

E
∣∣∣∣∫ t

t◦
f (s, w)dWs

∣∣∣∣2m
≤ (t − t◦)n−1[m(2m − 1)]m

∫ t

t◦
E
[
| f (s, w)|2m

]
ds (26)

where t◦ is the initial time.
By using the result (26) in (25), the following inequality can be obtained:

E|L(P)n
i − Ln

i P|2 ≤ 2d2
1E|
∫ (n+1)Δt

nΔt
Pxx(s, iΔx)ds − Δt

(Δx)2 {(a +
1
3
)(P(nΔt, (i + 1)Δx)

−2P(nΔt, iΔx) + P(nΔt, (i − 1)Δx)) + b(P((n + 1)Δt, (i + 1)Δx)− 2P((n + 1)Δt, iΔx) +

P((n + 1)Δt, (i − 1)Δx))}|2 + 2σ2Δt
∫ (n+1)Δt

nΔt
E[|P(s, iΔx)− (a +

1
3
)P(nΔt, iΔx)− bP((n + 1)Δt, iΔx)|2]ds

(27)

Thus, implementation of limits when Δx → 0, Δt → 0 and (nΔt, iΔx) → (t, x) then
results in:

E
∣∣L(P)n

i − Ln
i P
∣∣2 → 0 (28)

Therefore, the proposed stochastic numerical scheme is consistent in the mean square
sense. �
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4. Diffusive Stochastic Epidemic Model

Let S, I, and R represent the densities of susceptible, infectious, and recovered people
at location x and time t. Letting β(x) represent the transmission rate and μ(x) denote the
natural mortality of people, α(x) is used for mortality caused by the disease, γ(x) denotes
the rate of losing of immunity,

∧
(x) denotes the birth rate of susceptible people, δ(x)

represents the recovery rate, and these functions are positive Holder continuous functions.
By following [52] for the deterministic model, the stochastic SIRS model is expressed as:

∂S
∂t

= d1
∂2S
∂x2 + ∧(x)− β(x)

S(t, x)I(t, x)
1 + mI(t, x)

− μ(x)S + γ(x)R + (1 − p)δ(x)I + σ1SW(t) (29)

∂I
∂t

= d2
∂2 I
∂x2 +

SI
1 + mI

− (δ(x) + μ(x) + α(x))I + σ2 IW(t) (30)

∂R
∂t

= d3
∂2R
∂x2 + pδ(x)I − (μ(x) + γ(x))R + σ3RW(t) (31)

Subject to the boundary conditions:

∂S
∂x

= 0,
∂I
∂x

= 0,
∂R
∂x

= 0 for t > 0, xε∂Ω (32)

and initial conditions are given as:

S(0, x) = f1(x), I(0, x) = f2(x), R(0, x) = f3(x) (33)

For d1 = d2 = d3 = 0 and σ1 = σ2 = σ3 = 0, the disease-free equilibrium points can
be determined from the following equations:

∧
(x)− β(x)

SI
1 + mI

− μ(x)S + r(x)R + (1 − p)δ(x)I = 0 (34)

SI
1 + mI

− (δ(x) + μ(x) + α(x))I = 0 (35)

pδ(x)I − (μ(x) + γ(x))R = 0 (36)

By solving Equations (34)–(36), the disease-free equilibrium points are found as:

B(
∧(x)
μ(x)

, 0, 0)

Theorem 2. The system of Equations (29)–(31) with d1 = d2 = d3 = 0 and σ1 = σ2 = σ3 = 0 is
locally stable if β(x) ∧ (x) < α(x)μ(x) + δ(x)μ(x).

Proof. The Jacobian of the system (29)–(31) with dS = dI = dR = 0 and σ1 = σ2 = σ3 = 0 is
given as:

J =

⎡⎢⎢⎣
− β(x)I

1+mI − μ (1 − ρ)δ(x) + β(x)mSI
(1+mI)2 − βS

1+mI γ(x)
β(x)I
1+mI −α(x)− δ(x)− μ(x)− β(x)mIS

(1+mI)2 +
β(x)S
1+mI 0

0 δ(x)ρ −γ(x)− μ(x)

⎤⎥⎥⎦ (37)
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The Jacobian at the disease-free equilibrium point B is given by:

J|B =

⎡⎢⎢⎣
−μ(x) (1 − ρ)δ(x)− β(x)

∧
(x)

μ(x) γ(x)

0 −α(x)− δ(x)− μ(x)− β(x)
∧
(x)

μ(x) 0
0 δ(x)ρ −γ(x)− μ(x)

⎤⎥⎥⎦ (38)

The Eigenvalue of J|B is found to be:

λ1 = −μ(x), λ2 = −γ(x)− μ(x), λ3 =
−α(x)μ(x)− δ(x)μ(x)− μ2(x) + β(x) ∧ (x)

μ(x)

Since λ1 and λ2 are negative, and λ3 will be negative if:

−α(x)μ(x)− δ(x)μ(x)− μ2(x) + β(x)
∧
(x) < 0

it is implied that:
β(x)

∧
(x) < α(x)μ(x) + δ(x)μ(x) + μ2(x)

�

5. Discussions

A stochastic finite difference method is proposed, which is an explicit scheme. The
scheme can be applied to discretize time variables in the considered stochastic parabolic
equations. The second-order central difference formulas discretize the space terms since the
considered diffusive epidemic model consists of the second-order spatial derivatives. The
scheme is conditionally stable, and it is conditionally convergent. The scheme can be used
for both classical and stochastic parabolic equations. The stability condition of the scheme
depends upon both the time and space step sizes and the contained parameters in the
epidemic diffusive model. For the adopted model, the boundary conditions are Neumann
type. So, to handle these boundary conditions using the finite difference explicit scheme, an
additional iterative scheme is also employed. The iterative scheme requires an initial guess
to start the solution procedure. It also requires a stopping criterion for breaking the loop
over the iterations. The outer loop is employed for using the iterative scheme that will be
stopped if the maximum of norms of solutions computed on two consecutive iterations will
be less than some tolerance. The iterative scheme will be stopped if the solution satisfies
the mentioned criterion. Otherwise, it will continue to find the solution over the new
iteration. So, the convergence of the solution depends on the employed numerical schemes
for discretizing the stochastic partial differential equations and stopping or converging the
criteria of the iterative scheme.

Given the abundance of mathematical models about epidemic diseases documented
in the literature, employing an approximate analytical or numerical scheme to solve even
the most complex ones is necessary. A numerical scheme for solving deterministic and
stochastic models is proposed in this work. Additionally, existing numerical schemes for
deterministic cases are contrasted to the scheme. The scheme under consideration is capable
of solving both deterministic and stochastic models. The Euler–Maruyama technique is
available as a method for solving stochastic differential equations. The method applies
stochastic models to the classical forwards Euler method for deterministic models. If the
coefficient of the Weiner process term remains constant, the method precisely integrates
it. However, it approximates the integral of the Weiner process term with respect to
the variable coefficient. The proposed methodology yields a more precise solution for
deterministic models than the Euler method. Approximating the integral of the stochastic
component of the differential equation is the function of the stochastic component of
the scheme.
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6. Results

There exist numerical schemes for finding solutions to epidemic models and
providing a guarantee for obtaining positive solutions. Among these schemes, the
non-standard finite difference method (NSFD) can be used to solve epidemic models
and guarantee the positivity of the solution. Among the existing NSFD methods, one
provides an unconditionally stable solution and gives surety for the positive solution.
In this work, a comparison of the proposed numerical scheme is made with the existing
NSFD method. Figure 1 compares the stochastic and deterministic solutions using
the proposed scheme. Figures 2–4 show this comparison, and the first-order forward
Euler method obtains the solution. Due to the lack of first-order accuracy of the
NSFD, the obtained solution deviates slightly from the first- or second-order solutions.
The first-order solution is obtained by employing the forward Euler method, and the
second-order solution is obtained by the proposed scheme for the deterministic model.
This deficiency in existing finite difference has also been proved in [53] for the diffusive
models. Since the solutions to an epidemic remain positive for some chosen values of
parameters, any numerical scheme can be considered for those cases. Therefore, the
proposed scheme and first-order Euler methods are also employed for the epidemic
model. Figure 5 shows the effect of the transmission rate parameter on the susceptible
people. The susceptible people grow by rising transmission rate parameters. The effect
of the transmission rate parameter on infected people can be seen in Figure 6. The
infected people grow as the transmission rate parameter enhances. The effect of the
transmission rate parameter on recovered people can be seen in Figure 7. The recovered
people are also grown by rising transmission rate parameters. Since recovered people
become susceptible, when recovered people grow, the susceptible people also grow.
The number of infected people increases because susceptibility converts to infection by
rising transmission rate parameters. The effect of the coefficient of partial immunity
on susceptible individuals is shown in Figure 8. The susceptible people decay by
the rising coefficient of the partial immunity parameter. Figures 9 and 10 show the
effect of the coefficient of partial immunity on infected and recovered people. The
infected people decay, and the recovered people grow by enhancing the coefficient of
partial immunity. The coefficient of partial immunity produces growth in the body’s
immune system, leading to decay in infected people and growth in recovered people.
Figures 11–13 show the contour plots for susceptible, infected, and recovered people
for the deterministic model. The variation in both space coordinates can be seen in
these contour plots. The mesh plots underneath the contours are also displayed in
Figures 14–16 for the stochastic model. The effect of the Wiener process term can be
seen in the mesh underneath the contour plots. The large coefficient of the Wiener
process term gives more oscillation-type solutions than those with a small coefficient
of Weiner process terms.
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Figure 1. Comparison of stochastic and deterministic solutions of the considered model using
d1 = 0.3, d2 = 0.1, d3 = 0.3, Λ = 0.7, β = 0.01, p = 0.5, m = 0.5, δ = 0.5, μ = 0.07, α = 0.05, γ = 0.03,
S0 = 15, I0 = 30, N = 70, σ1 = 0.1, σ2 = 0.1, σ3 = 0.1.
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Figure 2. Comparison of proposed, Euler, and NSFD methods for susceptible people in the deter-
ministic model using d1 = 0.3, d2 = 0.1, d3 = 0.3, Λ = 1.7, β = 0.3, p = 0.m = 0.1, δ = 0.5, μ = 0.5,
α = 0.5, γ = 0.3, S0 = 15, I0 = 30, N = 70.
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Figure 3. Comparison of proposed, Euler, and NSFD methods for infected people in the deterministic
model using d1 = 0.3, d2 = 0.1, d3 = 0.3, Λ = 1.7, β = 0.3, p = 0.m = 0.1, δ = 0.5, μ = 0.5, α = 0.5,
γ = 0.3, S0 = 15, I0 = 30, N = 70.
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Figure 4. Comparison of proposed, Euler, and NSFD methods for recovered people in the determinis-
tic model using d1 = 0.3, d2 = 0.1, d3 = 0.3, Λ = 1.7, β = 0.3, p = 0, m = 0.1, δ = 0.5, μ = 0.5, α = 0.5,
γ = 0.3, S0 = 15, I0 = 30, N = 70.
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Figure 5. Effect of transmission rate on susceptible people in the deterministic model using
d1 = 0.3, d2 = 0.1, d3 = 0.3, Λ = 1.7, p = 0.5, m = 0.1, δ = 0.5, μ = 0.7, α = 0.5, γ = 0.3, S0 = 15,
I0 = 30, N = 70.
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Figure 6. Effect of transmission rate on infected people in the deterministic model using d1 = 0.3,
d2 = 0.1, d3 = 0.3, Λ = 1.7, p = 0.5, m = 0.1, δ = 0.5, μ = 0.7, α = 0.5, γ = 0.3, S0 = 15, I0 = 30,
N = 70.

187



Mathematics 2023, 11, 4794

0 1 2 3 4 5 6 7 8 9 10
0

5

10

15

20

25

t

R(
t,2

)

β=0.1

β=0.3
β=0.5

Figure 7. Effect of transmission rate on recovered people in the deterministic model using
d1 = 0.3, d2 = 0.1, d3 = 0.3, Λ = 1.7, p = 0.5, m = 0.1, δ = 0.5, μ = 0.7, α = 0.5, γ = 0.3,
S0 = 15, I0 = 30, N = 70.
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Figure 8. Effect of coefficient of partial immunity on susceptible people in the deterministic model
using d1 = 0.3, d2 = 0.1, d3 = 0.3, Λ = 1.7, β = 0.1, m = 0.1, δ = 0.5, μ = 0.7, α = 0.5, γ = 0.3,
S0 = 15, I0 = 30, N = 70.
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Figure 9. Effect of coefficient of partial immunity on infected people in the deterministic model using
d1 = 0.3, d2 = 0.1, d3 = 0.3, Λ = 1.7, β = 0.1, m = 0.1, δ = 0.5, μ = 0.7, α = 0.5, γ = 0.3, S0 = 15,
I0 = 30, N = 70.
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Figure 10. Effect of coefficient of partial immunity on recovered people in the deterministic model
using d1 = 0.3, d2 = 0.1, d3 = 0.3, Λ = 1.7, β = 0.1, m = 0.1, δ = 0.5, μ = 0.7, α = 0.5, γ = 0.3,
S0 = 15, I0 = 30, N = 70.
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Figure 11. Contour plot on susceptible people in the deterministic model using d1 = 0.3,
d2 = 0.1, d3 = 0.3, Λ = 0.7, β = 0.1, m = 0.4, p = 0.2, δ = 0.5, μ = 0.1, α = 0.5, γ = 0.1,
S0 = 3.5, I0 = 1.702, N = 100.
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Figure 12. Contour plot on infected people in the deterministic model using d1 = 0.3, d2 = 0.1,
d3 = 0.3, Λ = 0.7, β = 0.1, m = 0.4, p = 0.2, δ = 0.5, μ = 0.1, α = 0.5, γ = 0.1, S0 = 3.5,
I0 = 1.702, N = 100.
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Figure 13. Contour plot on recovered people in the deterministic model using d1 = 0.3, d2 = 0.1,
d3 = 0.3, Λ = 0.7, β = 0.1, m = 0.4, p = 0.2, δ = 0.5, μ = 0.1, α = 0.5, γ = 0.1, S0 = 3.5,
I0 = 1.702, N = 100.

Figure 14. Mesh plot underneath contours for susceptible people of the stochastic model using
d1 = 0.3, d2 = 0.1, d3 = 0.3, Λ = 0.7, β = 0.1, m = 0.5, p = 0.9, δ = 0.5, μ = 0.1, α = 0.1, γ = 0.3,
S0 = 15, I0 = 30, N = 70, σ1 = 0.5, σ2 = 0.1, σ3 = 0.1.
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Figure 15. Mesh plot underneath contours for infected people of the stochastic model using
d1 = 0.3, d2 = 0.1, d3 = 0.3, Λ = 0.7, β = 0.1, m = 0.5, p = 0.9, δ = 0.5, μ = 0.1, α = 0.1,
γ = 0.3, S0 = 15, I0 = 30, N = 70, σ1 = 0.5, σ2 = 0.1, σ3 = 0.1.

Figure 16. Mesh plot underneath contours for recovered people of the stochastic model using
d1 = 0.3, d2 = 0.1, d3 = 0.3, Λ = 0.7, β = 0.1, m = 0.5, p = 0.9, δ = 0.5, μ = 0.1, α = 0.1, γ = 0.3,
S0 = 15, I0 = 30, N = 70, σ1 = 0.5, σ2 = 0.1, σ3 = 0.1.
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7. Conclusions

A computational scheme has been proposed for solving the stochastic diffusive SIRS
model with an incidence rate and partial immunity. An additional iterative scheme has
also been employed for handling Neumann-type boundary conditions applied on each
domain end. So, a stopping criterion was also set up to stop the iterative procedure for the
deterministic model. The computational framework utilized for the stochastic SIRS reaction–
diffusion model with partial immunity and an incidence rate holds significant potential
and adaptability within epidemiology and mathematical modelling. It has wide-ranging
uses and can improve our understanding of infectious disease dynamics and help us create
better prevention and treatment methods. Due to its ability to account for factors including
partial immunity, regional diffusion, and changing incidence rates, this model is invaluable
for public health planning and disease management. This computational technique adds to
our understanding of infectious diseases in various populations and geographical locations
by examining the complex relationship between immunity, spatial spread, and disease
transmission. In the face of new infectious diseases and endemic pathogens, it is crucial to
assess immunization tactics, research disease evolution, and forecast future trends. Because
of its stochastic nature, the model more accurately represents epidemiological processes,
which is important because of the inherent uncertainty in disease transmission. This is of
great use when the spread of a disease is heavily influenced by chance and the activities of
individuals. This method links theoretical epidemiological studies and real-world public
health policymaking. The concluding points can be expressed as:

1. Comparison showed that the proposed scheme was more accurate than the existing
NSFD scheme for the deterministic model.

2. Susceptible, infected, and recovered people were seen to grow by enhancing transmis-
sion parameters.

3. Infected and recovered people were also grown by raising the coefficient of
partial immunity.

4. The proposed scheme performed better than the existing non-standard finite difference
method in order of accuracy.

The stochastic SIRS reaction–diffusion model with partial immunity and an incidence
rate is useful for researchers, politicians, and medical professionals in a world where infec-
tious illnesses threaten public health systems. Using it, we may better manage infectious
disease outbreaks, distribute scarce resources, and prepare for emergencies, all of which
improve public health and lessen these crises’ toll on the world’s population. Upon the
conclusion of this project, it is possible to propose further applications for the existing
strategy [54–56]. This model will continue to be at the forefront of attempts to address the
ever-changing environment of infectious illnesses as research in this field develops.

Author Contributions: Conceptualization, methodology, and analysis, A.S.B.; funding acquisition,
A.S.B.; investigation, Y.N.; methodology, Y.N.; visualization, M.S.A.; writing—review and editing,
M.S.A.; resources, K.A.; supervision, K.A.; data curation, M.A.A.; formal analysis, M.A.A. All authors
have read and agreed to the published version of the manuscript.

Funding: This work was supported and funded by the Deanship of Scientific Research at Imam
Mohammad Ibn Saud Islamic University (IMSIU) (grant number IMSIU-RG23014).

Data Availability Statement: The manuscript includes all required data and implementing information.

Acknowledgments: This research was supported by the Deanship of Scientific Research, Imam
Mohammad Ibn Saud Islamic University (IMSIU), Saudi Arabia, Grant No. (IMSIU-RG23014).

Conflicts of Interest: The authors declare no conflict of interest to report regarding the present study.

References

1. Adnani, J.; Hattaf, K.; Yousfi, N. Stability Analysis of a Stochastic SIR Epidemic Model with Specific Nonlinear Incidence Rate.
Int. J. Stoch. Anal. 2013, 2013, 431257. [CrossRef]

193



Mathematics 2023, 11, 4794

2. Jehad, A.; Ghada, A.; Shah, H.; Elissa, N.; Hasib, K. Stochastic dynamics of influenza infection: Qualitative analysis and numerical
results. Math. Biosci. Eng. 2022, 19, 10316–10331.

3. Shah, H.; Elissa, N.; Hasib, K.; Haseena, G.; Sina, E.; Shahram, R.; Mohammed, K. On the Stochastic Modeling of COVID-19 under
the Environmental White Noise. J. Funct. Spaces 2022, 2022, 4320865.

4. Miaomiao, G.; Daqing, J.; Tasawar, H. Stationary distribution and periodic solution of stochasticchemostat models with single-
species growthon two nutrients. Int. J. Biomath. 2019, 12, 1950063.

5. Liu, Q.; Jiang, D.; Shi, N.; Hayat, T.; Alsaedi, A. Asymptotic behavior of a stochastic delayed SEIR epidemic model with nonlinear
incidence. Phys. A 2016, 462, 870–882. [CrossRef]

6. Tailei, Z.; Zhidong, T. Global asymptotic stability of a delayed SEIRS epidemic model with saturation incidence. Chaos Solitons
Fractals 2008, 37, 1456–1468.

7. Rui, X.; Zhien, M. Global stability of a SIR epidemic model with nonlinear incidence rate and time delay. Nonlinear Anal. Real
World Appl. 2009, 10, 3175–3189.

8. Hattaf, K.; Mahrouf, M.; Adnani, J.; Yousfi, N. Qualitative analysis of a stochastic epidemic model with specific functional
response and temporary immunity. Phys. A 2018, 490, 591–600. [CrossRef]

9. Pitchaimani, M.; Brasanna, D.M. Stochastic dynamical probes in a triple delayed SICR model with general incidence rate and
immunization strategies. Chaos Solitons Fractals 2021, 143, 110540.

10. Xu, C.; Li, X. The threshold of a stochastic delayed SIRS epidemic model with temporary immunity and vaccination. Chaos
Solitons Fractals 2018, 111, 227–234. [CrossRef]

11. Xianning, L.; Yasuhiro, T.; Shingo, I. SVIR epidemic models with vaccination strategies. J. Theoret. Biol. 2008, 253, 1–11.
12. Zhang, X.; Jiang, D.; Hayat, T.; Ahmad, B. Dynamical behavior of a stochastic SVIR epidemic model with vaccination. Phys. A

2017, 483, 94–108. [CrossRef]
13. Li, F.; Zhang, S.Q.; Meng, X.Z. Dynamics analysis and numerical simulations of a delayed stochastic epidemic model subject to a

general response function. Comput. Appl. Math. 2019, 38, 95. [CrossRef]
14. Hattaf, K.; Yousfi, N.; Tridane, A. Stability analysis of a virus dynamics model with general incidence rate and two delays. Appl.

Math. Comput. 2013, 221, 514–521. [CrossRef]
15. Wang, J.; Zhang, J.; Jin, Z. Analysis of an SIR model with bilinear incidence rate. Nonlinear Anal. Real World Appl. 2010, 11,

2390–2402. [CrossRef]
16. Liu, X.; Yang, L. Stability analysis of an SEIQV epidemic model with saturated incidence rate. Nonlinear Anal. Real World Appl.

2012, 13, 2671–2679. [CrossRef]
17. Zhao, Y.; Jiang, D. The threshold of a stochastic SIRS epidemic model with saturated incidence. Appl. Math. Lett. 2014, 34, 90–93.

[CrossRef]
18. Cantrell, R.; Cosner, C. On the dynamics of predator-prey models with the Beddington–DeAngelis functional response. J. Math.

Anal. Appl. 2001, 257, 206–222. [CrossRef]
19. Zhou, X.; Cui, J. Global stability of the viral dynamics with Crowley–Martin functional response. Bull. Korean Math. Soc. 2011, 48,

555–574. [CrossRef]
20. Anderson, R.; Garnett, G. Low-efficacy HIV vaccines: Potential for community-based intervention programmes. Lancet 1996, 348,

1010–1013. [CrossRef]
21. Chaves, S.; Gargiullo, P.; Zhang, J.; Civen, R.; Guris, D.; Mascola, L.; Seward, J. Loss of vaccine-induced immunity to varicella

over time. N. Engl. J. Med. 2007, 356, 1121–1129. [CrossRef] [PubMed]
22. Wendelboe, A.; Van Rie, A.; Salmaso, S.; Englund, J. Duration of immunity against pertussis after natural infection or vaccination.

Pediatr. Infect. Dis. J. 2005, 24, 58–61. [CrossRef] [PubMed]
23. Craig, M.P. An evolutionary epidemiological mechanism, with applications to type a influenza. Theor. Popul. Biol. 1987, 31,

422–452.
24. Nowak, M.A.; Bonhoeffer, S.; Hill, A.M.; Boehme, R.; Thomas, H.C.; McDade, H. Viral dynamics in hepatitis B virus infection.

Proc. Natl. Acad. Sci. USA 1996, 93, 4398–4402. [CrossRef]
25. Wang, K.; Wang, W. Propagation of HBV with spatial dependence. Math. Biosci. 2007, 210, 78–95. [CrossRef] [PubMed]
26. Suryanto, A.; Darti, I. On the non-standard numerical discretization of SIR epidemic model with a saturated incidence rate and

vaccination. AIMS Math. 2021, 6, 141–155. [CrossRef]
27. Naik, P.A.; Zu, J.; Ghoreishi, M. Stability analysis and approximate solution of SIR epidemic model with Crowley–Martin type

functional response and holling type-II treatment rate by using homotopy analysis method. J. Appl. Anal. Comput. 2020, 10,
1482–1515.

28. Ahmad, I.; Khan, M.N.; Inc, M.; Ahmad, H.; Nisar, K.S. Numerical simulation of simulate an anomalous solute transport model
via local meshless method. Alex. Eng. J. 2020, 59, 2827–2838. [CrossRef]

29. Ahmad, H.; Akgül, A.; Khan, T.A.; Stanimirovic, P.S.; Chu, Y.M. New perspective on the conventional solutions of the nonlinear
time-fractional partial differential equations. Complexity 2020, 2020, 8829017. [CrossRef]

30. Ahmad, H.; Khan, T.A.; Stanimirovic, P.S.; Ahmad, I. Modified variational iteration technique for the numerical? solution of fifth
order KdV-type equations. J. Appl. Comput. Mech. 2020, 6, 1220–1227.

31. Ahmad, H.; Seadawy, A.R.; Khana, T.A. Modified variational iteration algorithm to find approximate solutions of nonlinear
Parabolic equation. Math. Comput. Simul. 2020, 177, 13–23. [CrossRef]

194



Mathematics 2023, 11, 4794

32. Ahmad, I.; Ahmad, H.; Inc, M.; Yao, S.W.; Almohsen, B. Application of local meshless method for the solution of two term time
fractional-order multi-dimensional PDE arising in heat and mass transfer. Therm. Sci. 2020, 24 (Suppl. S1), 95–105. [CrossRef]

33. Inc, M.; Khan, M.N.; Ahmad, I.; Yao, S.W.; Ahmad, H.; Thounthong, P. Analysing time-fractional exotic options via efficient local
meshless method. Results Phys. 2020, 19, 103385. [CrossRef]

34. Khan, M.N.; Ahmad, I.; Ahmad, H. A Radial Basis Function Collocation Method for Space-dependent? Inverse Heat Problems.
J. Appl. Comput. Mech. 2020. Available online: https://jacm.scu.ac.ir/article_15512_e7b25d7b217ff1267e45fc596fbfa54b.pdf
(accessed on 22 November 2023).

35. Shah, N.A.; Ahmad, I.; Bazighifan, O.; Abouelregal, A.E.; Ahmad, H. Multistage optimal homotopy asymptotic method for the
nonlinear Riccati ordinary differential equation in nonlinear physics. Appl. Math. 2020, 14, 1009–1016.

36. Wang, F.; Ali, S.N.; Ahmad, I.; Ahmad, H.; Alam, K.M.; Thounthong, P. Solution of Burgers’ equation appears in fluid mechanics
by multistage optimal homotopy asymptotic method. Therm. Sci. 2022, 26 1 Pt B, 815–821. [CrossRef]

37. Liu, X.; Ahsan, M.; Ahmad, M.; Nisar, M.; Liu, X.; Ahmad, I.; Ahmad, H. Applications of Haar wavelet-finite difference hybrid
method and its convergence for hyperbolic nonlinear Schrö dinger equation with energy and mass conversion. Energies 2021,
14, 7831. [CrossRef]

38. Ahsan, M.; Lin, S.; Ahmad, M.; Nisar, M.; Ahmad, I.; Ahmed, H.; Liu, X. A Haar wavelet-based scheme for finding the control
parameter in nonlinear inverse heat conduction equation. Open Phys. 2021, 19, 722–734. [CrossRef]

39. Yasin, M.W.; Ahmed, N.; Iqbal, M.S.; Rafiq, M.; Raza, A.; Akgül, A. Reliable numerical analysis for stochastic reaction–diffusion
system. Phys. Scr. 2022, 98, 015209. [CrossRef]

40. Wang, X.; Yasin, M.W.; Ahmed, N.; Rafiq, M.; Abbas, M. Numerical approximations of stochastic Gray–Scott model with two
novel schemes. AIMS Math. 2023, 8, 5124–5147. [CrossRef]

41. Yasin, M.W.; Ahmed, N.; Iqbal, M.S.; Raza, A.; Rafiq, M.; Eldin, E.M.T.; Khan, I. Spatio-temporal numerical modeling of stochastic
predator–prey model. Sci. Rep. 2023, 13, 1990. [CrossRef] [PubMed]

42. Macías-Díaz, J.E.; Raza, A.; Ahmed, N.; Rafiq, M. Analysis of a non-standard computer method to simulate a nonlinear stochastic
epidemiological model of coronavirus-like diseases. Comput. Methods Prog. Biomed. 2021, 204, 106054. [CrossRef] [PubMed]

43. Raza, A.; Rafiq, M.; Ahmed, N.; Khan, I.; Nisar, K.S.; Iqbal, Z. A structure preserving numerical method for solution of stochastic
epidemic model of smoking dynamics. Comput. Mater. Contin. 2020, 65, 263–278. [CrossRef]

44. Ahmed, N.; Macías-Díaz, J.E.; Raza, A.; Baleanu, D.; Rafiq, M.; Iqbal, Z.; Ahmad, M.O. Design analysis and comparison of a
non-standard computational method for the solution of a general stochastic fractional epidemic model. Axioms 2021, 11, 10.
[CrossRef]

45. Raza, A.; Arif, M.S.; Rafiq, M. A reliable numerical analysis for stochastic dengue epidemic model with incubation period of
virus. Adv. Differ. Equ. 2019, 2019, 32. [CrossRef]

46. Alkhazzan, A.; Wang, J.; Nie, Y.; Hattaf, K. A new stochastic split-step θ-nonstandard finite difference method for the developed
SVIR epidemic model with temporary immunities and general incidence rates. Vaccines 2022, 10, 1682. [CrossRef]

47. Ali, A.; Alshammari, F.S.; Islam, S.; Khan, M.A.; Ullah, S. Modeling and analysis of the dynamics of novel coronavirus (COVID-19)
with Caputo fractional derivative. Results Phys. 2021, 20, 103669. [CrossRef]

48. Ali, A.; Islam, S.; Rasheed, S.; Allehiany, F.; Baili, J.; Khan, M.A.; Ahmad, H. Dynamics of a fractional order Zika virus model with
mutant. Alex. Eng. J. 2022, 61, 4821–4836. [CrossRef]

49. Aba Oud, M.A.; Ali, A.; Alrabaiah, H.; Ullah, S.; Khan, M.A.; Islam, S. A fractional order mathematical model for COVID-19
dynamics with quarantine, isolation, and environmental viral load. Adv. Differ. Equ. 2021, 2021, 106. [CrossRef]

50. Ali, A.; Ullah, S.; Khan, M.A. The impact of vaccination on the modeling of COVID-19 dynamics: A fractional order model.
Nonlinear Dyn. 2022, 110, 3921–3940. [CrossRef]

51. Li, P.; Peng, X.; Xu, C.; Han, L.; Shi, S. Novel extended mixed controller design for bifurcation control of fractional-order
Myc/E2F/miR-17-92 network model concerning delay. Math. Methods Appl. Sci. 2023, 46, 18878–18898. [CrossRef]

52. Wang, J.; Teng, Z.; Dai, B. Qualitative analysis of a reaction-diffusion SIRS epidemic model with nonlinear incidence rate and
partial immunity. Infect. Dis. Model. 2023, 8, 881e911. [CrossRef] [PubMed]

53. Pasha, S.A.; Nawaz, Y.; Arif, M.S. On the non-standard finite difference method for reaction–diffusion models. Chaos Solitons
Fractals 2023, 166, 112929. [CrossRef]

54. Arif, M.S.; Abodayeh, K.; Nawaz, Y. Construction of a Computational Scheme for the Fuzzy HIV/AIDS Epidemic Model with a Nonlinear
Saturated Incidence Rate; Tech Science Press: Norwood, MA, USA, 2023. [CrossRef]

55. Arif, M.S.; Abodayeh, K.; Nawaz, Y. A Reliable Computational Scheme for Stochastic Reaction–Diffusion Nonlinear Chemical
Model. Axioms 2023, 12, 460. [CrossRef]

56. Nawaz, Y.; Arif, M.S.; Bibi, K.A.A.M. Finite Difference Schemes for Time-Dependent Convection q-Diffusion Problem. AIMS
Math. 2022, 7, 16407–16421. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

195



Citation: Kuznetsov, M.; Kolobov, A.

Antiangiogenic Therapy Efficacy Can

Be Tumor-Size Dependent, as

Mathematical Modeling Suggests.

Mathematics 2024, 12, 353. https://

doi.org/10.3390/math12020353

Academic Editors: Sophia Jang and

Jui-Ling Yu

Received: 14 December 2023

Revised: 15 January 2024

Accepted: 18 January 2024

Published: 22 January 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

Antiangiogenic Therapy Efficacy Can Be Tumor-Size
Dependent, as Mathematical Modeling Suggests

Maxim Kuznetsov † and Andrey Kolobov *

Division of Theoretical Physics, P.N. Lebedev Physical Institute of the Russian Academy of Sciences,
53 Leninskiy Prospekt, 119991 Moscow, Russia; kuznetsovmb@mail.ru
* Correspondence: scilpi@mail.ru
† Current address: Division of Mathematical Oncology and Computational Systems Biology, City of Hope,

Duarte, CA 91010, USA.

Abstract: Antiangiogenic therapy (AAT) is an indirect oncological modality that is aimed at the
disruption of cancer cell nutrient supply. Invasive tumors have been shown to possess inherent
resistance to this treatment, while compactly growing benign tumors react to it by shrinking. It is
generally accepted that AAT by itself is not curative. This study presents a mathematical model of
non-invasive tumor growth with a physiologically justified account of microvasculature alteration
and the biomechanical aspects of importance during tumor growth and AAT. In the untreated setting,
the model reproduces tumor growth with saturation, where the maximum tumor volume depends
on the level of angiogenesis. The outcomes of the AAT simulations depend on the tumor size at
the moment of treatment initiation. If it is close to the stable size of an avascular tumor grown in
the absence of angiogenesis, then the tumor is rapidly stabilized by AAT. The treatment of large
tumors is accompanied by the displacement of normal tissue due to tumor shrinkage. During this,
microvasculature undergoes distortion, the degree of which depends on the displacement distance.
As it affects tumor nutrient supply, the stable size of a tumor that undergoes AAT negatively correlates
with its size at the beginning of treatment. For sufficiently large initial tumors, the long-term survival
of tumor cells is compromised by competition with normal cells for the severely limited inflow of
nutrients, which makes AAT effectively curative.

Keywords: mathematical oncology; biomechanics; partial differential equations

MSC: 34Q92; 92C05

1. Introduction

1.1. Biological Background

Cancer currently remains a major cause of morbidity and mortality worldwide [1].
New methods for its treatment, as a rule, have limited efficacy, target only a narrow range
of cancer types, and have limited availability to the general public due to their high cost.
Therefore, an important challenge in oncology is the optimization of the types of anticancer
therapy that are already introduced into clinical practice.

Standard and long-established types of anticancer treatment, such as chemotherapy
and radiotherapy, lead to the eradication of actively proliferating cells subject to therapeutic
action. The non-selectivity of these treatments inevitably leads to the damage of healthy
cells that are reached by chemotherapeutic drugs or are traversed by radiation beams.
Recently, a group of radically different anticancer modalities has emerged that perform
indirect interference with the mechanisms sustaining the existence of cancer as a complex
organ embedded in a host organism [2]. Prominent examples of such approaches are
immunotherapy and antiangiogenic therapy. Immunotherapy is an umbrella term for a
group of medical interventions aimed at the disruption of the ability of cancer cells to evade
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immune surveillance [3]. The goal of antiangiogenic therapy (AAT) is breaking the process
of tumor angiogenesis, i.e., the formation of blood vessels (in particular, capillaries that
provide nutrient exchange [4]). These therapies are not devoid of side-effects, which are,
nevertheless, usually more moderate and affect other organs than the standard treatments.

Enabling the process of tumor angiogenesis is a crucial step in cancer progression. In
its absence, tumors generally cannot grow beyond the size of 1–2 mm [5]. Further tumor
growth is restricted by limited nutrient supply from capillaries located in normal tissues
that are pushed away by a growing tumor mass. Thus, an avascular tumor eventually
reaches a stable state in which the ongoing proliferation of its cells in the tumor periphery
is compensated for by the death of nutrient-deprived cells in its core.

One way for the tumor cells to overcome nutrient deficiency is to invade nearby
tissues and co-opt existing capillaries. Enabling invasion is a crucial hallmark of malignant
tumors [6]. However, it is a complex process that requires the accumulation of a sufficient
number of cell mutations [7]. Since the overall frequency of mutations correlates with the
rate of tumor cell divisions, acquiring an invasive phenotype is a long process for small
tumors. Angiogenic switching is a faster process that generally manifests itself while a
tumor is still benign and lacks invasive properties.

In healthy tissues the process of angiogenesis takes place, e.g., during wound healing,
and it leads to an ordered vascular system, finely tuned for each organ. Tumor cells,
however, produce angiogenic molecules excessively, which results in the formation of
chaotically organized and highly permeable capillary networks. AAT neutralizes the action
of angiogenic molecules. This leads to the cessation of the formation of new capillaries,
the normalization of the structure of already formed tumor capillaries [8], the further
normalization of the density of the capillary network [9], and the alleviation of tumor-
associated edema [10].

The restriction of nutrient supply caused by AAT limits the growth of tumors and can
yield their shrinkage but generally does not lead to a tumor being cured. This provides
ground for the use of AAT in combination with other modalities. In clinical practice, AAT is
generally paired with chemotherapy (CT) [11]. There are multiple factors that influence the
efficacy of AAT by itself and in combination with CT. In particular, AAT entails the reduced
inflow of chemotherapeutic drugs into a tumor, which was observed experimentally [12,13].
This renders the problem of the optimization of AAT-based treatments in clinical practice,
which is a highly nontrivial task. Its solution is heavily compromised by the impossibility
of testing all the feasible treatment alterations due to logistical and ethical reasons.

1.2. Mathematical Background

A methodology that can point at the potential biomarkers of treatment efficacy and
that can significantly narrow down the range of potentially effective therapeutic protocols
is mechanistic mathematical modeling. It envisions the tumor and its microenvironment as
a single complex system that, contrary to a real-life situation, can be reproduced under a
broad variation of parameters and treatment approaches.

Several methods exist for modeling tumor growth when taking into account angiogen-
esis and AAT. The simplest method relies on the system of ordinary differential equations.
The models of this kind generally include an equation for the logistic growth of the tumor
volume, with its maximum value being a variable that is dependent on the concentration
of the antiangiogenic drug [14]. Although such phenomenological models can be conve-
nient for preclinical and clinical studies, they clearly represent oversimplifications that
omit spatial aspects and neglect many of the physiological processes that can influence
treatment outcomes.

The most popular approach for modeling angiogenesis and AAT is agent-based mod-
eling, which involves a detailed reproduction of capillary networks and, as is frequently the
case, explicit consideration of blood flow maps [15,16]. Such models can provide elegant
visualizations of microvasculature remodeling and can yield useful insights. However,
they require significant computational costs, which increase with tumor size. That crucially
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limits the practical use of such models. Up to date, they have not been used to simulate an
entire course of AAT.

The use of continuous, spatially distributed models based on partial differential
equations can provide a compromise between computational cost and physiological va-
lidity [17,18]. Although such models are unable to reproduce the microscopic aspects of
a capillary network, they allow for the consideration of the crucial dynamic features of
tumor microvasculature under unperturbed tumor growth and under the course of therapy.
However, the related models presented nowadays in the literature focus on invasive tumors,
and they ignore the biomechanical aspects crucial for the reproduction of tumor response
to alterations in microvasculature.

On the other hand, there exists a sufficient amount of modeling studies devoted
to the biomechanical aspects accompanying tumor growth and treatment, which do not
account for dynamically changing tumor microvasculature. In particular, consideration
of interstitial fluid dynamics and their influence on drug delivery is a well-researched
problem in the case of static tumors [19–21]. In the case of a dynamic tumor that can
both grow and shrink during therapy, a physiologically correct approach to modeling is
the simultaneous account of the stress arising in the solid phase of the tissue (cells and
extracellular matrix) along with the dynamics of the interstitial fluid since they are closely
interrelated. In particular, the deformation of the solid component of the tissue affects fluid
flow, while the outflow of fluid from the tumor leads to its shrinkage and to the alleviation
of stress exerted by the surrounding normal tissue.

The related works that account for solid stress using mathematical modeling are less
numerous. The methods used range from relatively simple to complex. The complex
methods are generally adapted from the area of solid mechanics, based on the multiplica-
tive decomposition of the tissue strain gradient tensor into components corresponding to
different physical processes [22,23]. The use of such methods is associated with great com-
putational costs but is justified, e.g., if any quantitative agreement with the experimental
results is pursued. For qualitative studies, however, a more practical approach is the use of
simpler methods that regard tumors as a liquid-like or linearly elastic medium [24,25]. Such
methods have been repeatedly proven to be able to qualitatively reproduce experimental
observations, e.g., the decrease in maximum tumor size with the increase in applied exter-
nal pressure [26] and the oozing of liquid from a large tumor due to the elevated pressure
in its core [27].

1.3. Current Study

The current study simultaneously considers both the alterations in microvasculature
and the evolution of biomechanical aspects during tumor growth and AAT. To the best of
our knowledge, this is the first work of this kind to provide simulations of the entire course
of AAT. This study is based on our previous works on the mathematical modeling of tumor
angiogenesis and AAT [28–30] and on our works focused on the biomechanical properties
of tumors and normal tissues [31–34].

Section 2 introduces the mathematical model, providing its crucial assumptions, equa-
tions, parameters, and aspects of numerical solving. The model is implemented in C++
computational code (with the use of Dev-C++, version 5.11), which can be downloaded
from the Supplementary Materials section. The results are presented in Section 3. Section 3.1
considers free tumor growth with and without angiogenesis. The model reproduced the
layered structures of proliferating, quiescent, and dead tumor cells, which are characteristic
of non-invasive tumors that yield growth when under saturation. The maximum tumor vol-
ume increases with the initiation of angiogenesis. Section 3.2 is devoted to modeling AAT
and shows that its effect depends on the tumor size at the moment of its administration.
Small tumors are quickly stabilized by AAT, while the treatment of sufficiently large tumors
is accompanied by the displacement of normal tissue due to tumor shrinkage, which causes
the rupture of capillaries and, thus, effectively provides an additional decrease in tumor
nutrient supply. To the best of our knowledge, such qualitative outcomes have not been
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shown previously in the literature. Section 3.3 is devoted to the study of the combination
of AAT with chemotherapy. Its results suggest that the delay of AAT administration within
this combination can compromise the potential curative effect of the treatment. Section 4
finalizes this study with an overview of the main results and a discussion of their clinical
significance, as well as the future scope of our work.

2. Model

2.1. Equations

The investigated model is presented in the system of Equation (1). It has nine partial
differential equations controlling the dynamics of spatially distributed variables. Each
of them depends on one spatial co-ordinate, r, and a temporal co-ordinate, t. The block
scheme of the main model interactions is presented in Figure 1. For a detailed description
of the interactions of the model, we refer the readers to our previous work [33]. The crucial
model aspects are as follows.

queis-

cent

prolife-

ra�ng

Dead

tumor

cells

Viable tumor cells
Abnormal

capillaries

Normal

capillaries

Normal cells

Glucose

Inters��al

fluid

VEGF

Figure 1. Scheme of the main interactions of the model governed by Equation (1). The green arrows
denote the stimulating interactions, the red lines show the inhibiting interactions, and the white
arrows correspond to the transitions of the variables.

The model reproduces the spherically symmetric growth of a non-invasive tumor
within a normal tissue. Under sufficient levels of glucose, g, tumor cells maintain the
proliferative state, np, in which their number grows exponentially. Cells use interstitial
fluid, f , as the mass source. In the absence of glucose, they transit reversibly to the
quiescent state, nq, under which nutrient deficiency tumor cells die; this is reflected by
their transition into the dead state, m. In this, they gradually degrade and transform into
interstitial fluid.

The tumor cells are surrounded by normal cells, h, and they collectively constitute the
porous solid phase fraction of the tissue, denoted as s = np + nq + m + h. The interstitial
fluid represents its second phase, which is capable of viscous flow through the pores within
the solid fraction. The tissue is assumed to be saturated and incompressible, which implies
that the total density of the cells and fluid together remains constant.

The rate of cell proliferation is influenced by both local glucose level and local solid
stress, denoted as σ(s). The solid stress function is built on the assumption that the volume
fraction of cells correlates with the average distance between them [35]. When the cell
fraction is at its normal value (s = s0), the interactions among cells result in zero solid stress.
Cells in close proximity tend to repel each other, while cells at a distance tend to attract.
With increasing distance, the interaction strength eventually vanishes.
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proliferating
tumor cells:

∂np

∂t
=

proliferation︷ ︸︸ ︷
Bnp · Θp(σ)

g
g + g∗

transition︷ ︸︸ ︷
−B · [1 − Θtr(g)]np + B · Θtr(g)nq

advection︷ ︸︸ ︷
− 1

r2
∂(Isnpr2)

∂r
;

(1)

quiescent
tumor cells:

∂nq

∂t
=

transition︷ ︸︸ ︷
B · [1 − Θtr(g)]np − B · Θtr(g)nq

death by starvation︷ ︸︸ ︷
−νnq · Θd(g)

advection︷ ︸︸ ︷
− 1

r2
∂(Isnqr2)

∂r
;

normal
cells:

∂h
∂t

=

advection︷ ︸︸ ︷
− 1

r2
∂(Ishr2)

∂r
;

dead
tumor cells:

∂m
∂t

=

death by starvation︷ ︸︸ ︷
νnq · Θd(g)

degradation︷ ︸︸ ︷
−Mm

advection︷ ︸︸ ︷
− 1

r2
∂(Ismr2)

∂r
;

interstitial
fluid:

∂ f
∂t

=

inflow︷ ︸︸ ︷
[Lncn + Laca] · [pc − p]

outflow︷ ︸︸ ︷
−Llh[p − pl ]

cell degradation︷ ︸︸ ︷
+Mm

cell proliferation︷ ︸︸ ︷
−Bnp · Θp(σ)

g
g + g∗

advection︷ ︸︸ ︷
− 1

r2

∂(I f f r2)

∂r
;

VEGF:

⎧⎪⎨⎪⎩∂v
∂t

=

secretion︷︸︸︷
Svnq

internalization︷ ︸︸ ︷
−ω[cn + ca]v

degradation︷ ︸︸ ︷
−Mvv

diffusion︷ ︸︸ ︷
+DvΔv if AAT is off,

v = 0 if AAT is on;

normal
capillaries:

∂cn

∂t
=

degradation︷ ︸︸ ︷
−Mc[nq + m]cn

normalization︷ ︸︸ ︷
+

Vnv∗

v + v∗ ca

denormalization︷ ︸︸ ︷
− Vdv

v + v∗ cn

pruning︷ ︸︸ ︷
−μ[cn − 1] · Θ(cn − 1)

advection︷ ︸︸ ︷
− 1

r2
∂(Iscnr2)

∂r
;

abnormal
capillaries:

∂ca

∂t
=

degradation︷ ︸︸ ︷
−Mc[np + kM{nq + m}]ca

angiogenesis︷ ︸︸ ︷
+

Rv
v + v∗ [cn + ca][1 − cn + ca

cmax
]

normalization︷ ︸︸ ︷
− Vnv∗

v + v∗ ca

denormalization︷ ︸︸ ︷
+

Vdv
v + v∗ cn

active motion︷ ︸︸ ︷
+

Dc

r2
∂2(gr2)

∂r2

advection︷ ︸︸ ︷
− 1

r2
∂(Iscar2)

∂r
;

glucose:
∂g
∂t

=

inflow︷ ︸︸ ︷
[Pg

n cn + Pg
a ca] · [1 − g]

consumption︷ ︸︸ ︷
−[{νgB}npΘp(σ) + Qg

h{nq + h + np[1 − Θp(σ)]}] g
g + g∗

diffusion︷ ︸︸ ︷
+

Dg

r2
∂2(gr2)

∂r2 ;

where s + f = 1, s = np + nq + h + m,
Θp(σ) = [1 + tanh(ε{σp − σ})]/2, Θtr(g) = [1 + tanh(ε{g − g∗})]/2,
Θd(g) = [1 + tanh(ε{gd − g})]/2,

f (I f − Is) = −K
∂p
∂r

,
∂p
∂r

= −∂σ

∂r
,

solid stress: σ ≡ σ(s) = k
[s − s0][s − ss]2

[1 − s]0.1 · Θ(s − ss).

Interstitial fluid enters the tissue from capillaries, two types of which are taken into
account: normal, cn, and abnormal, ca. Abnormal capillaries possess increased permeability
to fluid and glucose due to the influence of vascular endothelial growth factor (VEGF) v.
It is produced by nutrient-deprived quiescent cells. It also stimulates the formation of
new capillaries in the abnormal state. At low VEGF concentrations, capillaries normalize,
which implies a decrease in their permeability. Normalized excessive capillaries tend to
return to their basal physiological density, which reflects the process of the pruning of
microvasculature in healthy tissues. Interstitial fluid drains into the lymphatic system,
which is not considered explicitly but is assumed to have a density proportional to that of
normal cells. Consequently, the lymphatic capillaries are absent within the tumor. Blood
capillaries degrade within the tumor due to implicit factors, such as rupture caused by
their displacement and due to biochemical reasons [36].

We model the action of AAT as having the maximum theoretically possible efficacy.
When the treatment begins, all the present VEGF is implied to become immediately bound
to the antiangiogenic drug and, therefore, is neutralized. The following normalization of
microvasculature, however, is not immediate. The dynamics of the accompanying processes
happen at physiologically justified rates, as described above.

2.2. Parameters

The parameters of the model were determined based on the outcomes of the exper-
iments (of different types) presented in the literature (if available) or estimated in order
to reproduce the well-established features accompanying tumor growth. The basic set of
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parameters is provided in Table 1, where the following normalization parameters were
used to obtain their model values: 1 h for time; 10−2 cm for length; 3 · 108 cells/mL for
maximum cell density; 10−11 mol/mL for VEGF concentration; 100 cm2/cm3 for capillary
surface area density; 1 mg/mL for glucose concentration. The choice of the majority of
model parameters is justified in our work [33].

Table 1. Model parameters.

Parameter Description Value Based on

Cells:

B maximum rate of cell proliferation 0.01 [37]
σp critical stress for cell proliferation 15 [35]
ε smoothing parameter of Heaviside function 500 [33]
ν rate of death by starvation 0.003 [33,38]
gd critical level of glucose for survival 0.001 [33]
M rate of degradation of dead cells 0.01 [33]

Stress:

k solid stress coefficient 500 [33]
ss minimum fraction of interacting cells 0.3 [26]
s0 initial fraction of cells 0.8 [26]

Interstitial fluid:

Ln hydraulic conductivity of normal capillaries 0.1 [22]
La hydraulic conductivity of abnormal capillaries 0.22 [33]
pc fluid pressure in capillaries 4 [22]
Ll hydraulic conductivity of lymphatic capillaries 1300 [22]
pl lymph pressure 0 [22]
K tissue hydraulic conductivity 0.1 [39]

VEGF:
Sv secretion rate 1 [40]
ω internalization rate 1 [41]

Mv degradation rate 0.01 [42]
Dv diffusion coefficient 21 [42]

Capillaries:
R maximum rate of angiogenesis 0.008 [43]

cmax maximum surface area density 5 [43]
Mc characteristic degradation rate 0.03 [43,44]
kM coefficient of degradation in the tumor core 2 [43,44]
Vn normalization rate 0.1 [45]
Vd denormalization rate 0.1 [45]
μ pruning rate 0.002 [45]
v∗ Michaelis constant for VEGF action 0.001 [33]
Dc coefficient of active movement 0.03 [43,44]

Glucose:

g∗ Michaelis constant for consumption 0.01 [46]
Pg

n permeability of normal capillaries 4 [47]
Pg

a permeability of abnormal capillaries 10 [48]
νg parameter of consumption by proliferating cells 1200 [37]
Qg

h rate of consumption by normal tissue 0.5 [49]
Dg diffusion coefficient 100 [50]

2.3. Numerical Solving

During the numerical simulation of Equation (1), intercellular fluid, f , was not explic-
itly taken into account, given the conservation law f = 1 − s. The kinetic, diffusion, and
advection equations for the other variables were solved sequentially at each time step. The
explicit Euler method was employed to solve the kinetic equations. The use of this straight-
forward approach is justified by the relatively small time steps that guide the solving of
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advective equations. For the diffusion equations, the implicit Crank–Nicholson scheme
was implemented. These classical methods are described, e.g., in [51]. In order to solve the
advective equations, the conservative flux-corrected transport algorithm (incorporating
an implicit antidiffusion stage) was used [52]. However, this method introduces a minor
amount of uncorrectable diffusion, leading to the artificial invasion of normal tissue by
the tumor. A similar challenge arises in modeling the normal tissue boundary. In order to
address this issue, two additional floating points were introduced on the computational
grid, marking the positions of the tumor-normal tissue interface and the normal tissue
boundary. The co-ordinates of these points were computed by ensuring the conservation of
total cell volume when solving advection equations at each time step.

The following initial conditions were used, which represent a spherical section of
normal tissue of an initial radius of rN

0 = 3 mm, with a small spherical colony of tumor
cells that have a radius of rT

0 = 0.2 mm and are located in its center at r = 0:⎧⎪⎪⎨⎪⎪⎩
np(r, 0) = sst,

h(r, 0) = 0,
g(r, 0) = 1,
cn(r, 0) = 0

f or r ≤ rT
0 ;

⎧⎪⎪⎨⎪⎪⎩
np(r, 0) = 0,
h(r, 0) = sst,
g(r, 0) = 1,
cn(r, 0) = 1

f or rT
0 < r ≤ rN

0 ;

∀r, nq(r, 0) = m(r, 0) = v(r, 0) = ca(r, 0) = 0.

(2)

Here, sst is the steady state value for the fraction of cells. It is only slightly smaller
than s0, which corresponds to a minor stretching of the network of interconnected cells due
to the pressure of the surrounding fluid. The following boundary conditions were used,
where rT is the changing radius of the tumor, and rN is the changing outer radius of normal
tissue:

∀t,
∂np

∂r
|0 =

∂nq

∂r
|0 =

∂m
∂r

|0 =
∂v
∂r

|0 =
∂cn

∂r
|0 =

∂ca

∂r
|0 =

∂g
∂r

|0 = 0;

∂[np + nq + m]

∂r
|rT =

∂h
∂r

|rT ;
∂g
∂r

|rN = 0;

h(rN , t) = s0; v(rN , t) = ca(rN , t) = 0, cn(rN , t) = 1.

(3)

There are two separate advective motions in this model: I f = I f (r, t) denotes the
absolute velocity of the fluid, and Is = Is(r, t) denotes the velocity of the solid phase. By
summing up the equations of the dynamics of all cells and assuming both flow velocities
to be zero at r = 0, Equation (4) is obtained. This was used to define advective velocities
during numerical solution.

Is = K
∂p
∂r

+
1
r2

∫ r

0
{[Lncn + Laca] · [pc − p]− Llh[p − pl ]}z2dz;

I f = Is − K
f

∂p
∂r

.
(4)

3. Results

3.1. Free Tumor Growth with and without Angiogenesis

Figure 2 compares the cases of free tumor growth with and without the initiation of
angiogenesis under the same values of model parameters, as presented in Table 1. Initially,
the tumor consists entirely of proliferating cells, with their number growing exponentially.
However, within a few hours, some tumor cells start experiencing a deficiency of nutrients,
which are supplied to the tumor mass from surrounding capillaries that are pushed away
by the expanding tumor. Consequently, tumor growth slows down, and the tumor obtains
a layered structure. Its inner core becomes predominantly occupied by quiescent cells, and
the outer rim by proliferating cells. This structure is characteristic of tumor spheroids in
experimental settings and non-invasive tumors in vivo. As the total number of tumor cells
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keeps increasing, the further exacerbation of nutrient deficiency results in the appearance
of dead cells in the tumor core. Their degradation turns them into a viscous liquid, which,
from a modeling point of view, is indistinguishable from the rest of the interstitial fluid. The
decrease in the number of tumor cells in the central part of the tumor implies the stretching
of the solid phase of the tumor tissue. This, in accordance with the biomechanical terms
in Equation (1), underlies the elevated fluid pressure in the tumor core compared to the
surrounding normal tissue. Therefore, fluid oozes from the tumor mass, contributing to
a further decrease in its growth rate. When the total rates of tumor cell proliferation and
death equate, the tumor reaches a stable state.

Without angiogenesis

normal
cells

glucose

tumor cells:

interstitial fluid

VEGF

p
ro
lif
e
ra
ti
n
gqu

ies
ce
nt

dead

abnormal
capillaries

With angiogenesis
Tumor

radius, mm

days

Free growth 

with angiogenesis

Free growth 

without angiogenesis

normal
capillaries

mm mm

Figure 2. Left: tumor growth curves produced by Equations (1)–(4) with and without angiogenesis.
Middle and Right: distributions of model variables for these simulations. The values of the variables
for glucose, VEGF, and capillaries are renormalized for better visualization.

In the case without angiogenesis, the avascular tumor growth stops at ≈1 mm in
radius. This is consistent with clinical observations [5]. In the presence of angiogenesis,
the formation of new capillaries is stimulated by VEGF secreted by quiescent tumor cells.
Capillaries influenced by VEGF have greater permeability, which, along with the increase
in microvascular density, contributes to the increased inflow of glucose to the tumor. The
vascularized tumor has a larger pool of proliferating cells, which means that a greater total
rate of outflow of dead cells is required to compensate for it, yielding a stable tumor. In the
considered simulation, the corresponding maximum tumor radius is ≈5.6 mm. This model
is restricted, with consideration given to a homogeneous, nonmutating tumor. In a more
realistic scenario, further tumor growth would be ensured, in particular, by the continuous
selection of cells that proliferate faster and are more tolerant to nutrient deficiency and the
initiation of tumor cell invasion into surrounding tissue accompanied by the co-opting of
capillaries located there.

Despite the variety of considered physiological processes and the nontrivial pattern
of the distribution of the model variables produced by this model, on a higher level of
consideration, the simulations of free tumor growth provide quite classical S-shaped growth
curves [53]. Such curves by themselves can be qualitatively reproduced by much simpler
models based on a few ordinary differential equations. In the corresponding models, the
dependence of tumor growth on angiogenesis is generally reproduced via the introduction
of the dependence of maximum tumor volume on the amount of secreted proangiogenic
signals [14]. In such simpler approaches, the cessation of angiogenesis results in the gradual
decrease in tumor volume down to the value corresponding to the case of the initially
avascular tumor. The current model, however, yields a more intricate pattern of tumor
response to AAT, as discussed in further sections.

3.2. Antiangiogenic Therapy Beginning at Different Moments of Tumor Growth

Figure 3 illustrates the nontrivial nature of tumor response to AAT under the variation
in tumor radius at which the treatments begin. The elimination of VEGF for the 1 mm tumor
yields its quick growth saturation. The capillary system that undergoes degradation within
the tumor volume, normalization, and pruning is eventually stabilized with a slightly
greater total amount of capillaries than in the case of the avascular tumor. Therefore, it can
support the existence of a stable tumor slightly greater than 1 mm in radius.
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Figure 3. Left: tumor growth curves produced by Equations (1)–(4) under free tumor growth and
with antiangiogenic therapy (AAT) starting at four different moments. Middle and Right: stable
distributions of model variables for the simulations of AAT starting when the tumor reaches 1 mm
and 4 mm in radius. The values of the variables for glucose and capillaries are renormalized for
better visualization.

AAT performed for larger tumors does not result in tumor stabilization at this radius.
For a 2 mm tumor, the treatment yields a final tumor radius of 0.6 mm. For 3 mm and 4 mm
tumors, their sizes steadily decrease through the simulations, tending toward negligible
values. From the modeling point of view, although the tumor always has some finite radius,
the interpretation of such qualitative results may imply the complete cure of the tumor.

The reasons behind this nontrivial pattern of tumor response to AAT lie in the processes
accompanying tumor shrinkage and the consequent remodeling of displaced normal tissue
and microvasculature. In the case of a small vascularized tumor, the displacement of the
capillary system is only minor. Therefore, the final tumor size is almost not affected by
the physiological processes that happen along with tissue displacement. From the general
mathematical point of view, the system state right before the antiangiogenic treatment is,
by itself, close to the stable state that would be achieved in the absence of angiogenesis.
Thus, the treatment imposes only a comparably small perturbation to tumor dynamics.

In contrast, large vascularized tumors have evolved to states that are significantly
different from the stable state of an initially avascular tumor. The rapid normalization
of microvessel structure and density in response to the elimination of VEGF entails a
quick decrease in the total volume of proliferative tumor cells that can be sustained by
microvasculature. In a short period, the overall tumor cell proliferation rate becomes unable
to compensate for the rate of ongoing loss of tumor volume due to the outflow of dead cell
remnants. As the difference between the absolute rates of these processes keeps increasing,
the tumor undergoes rapid shrinkage.

The displacement of the interface between the tumor and normal tissue pulls the
normal cells and microvasculature towards the center of the tumor, which is in accordance
with the advection terms presented in Equation (1). The spherical geometry of the system
means that this forced motion of capillaries is more active in the regions with greater
curvature, i.e., near the tumor. As the normalized capillary system undergoes rupture
and pruning, its overall volume continuously decreases. Eventually, the microvasculature
system ends up in a state in which its density is close to its initial value at the outer side
of the normal tissue, but it falls down to negligible values towards the tumor surface.
The total volume of a stable microvasculature depends on the degree of its displacement
and remodeling that it has undergone in response to treatment. Therefore, initially, larger
tumors end up having smaller volumes of surrounding microvasculature.

The stable volume of a tumor that can be supported by the nutrient supply from the
resulting microvasculature depends not only on the total volume of the latter but also
on its configuration within the normal tissue. The pool of normal cells represents the
active consumers of nutrients and, therefore, the competitors of tumor cells. Large gaps
between the tumor surface and the areas with physiologically normal capillary density are
detrimental to tumor size since the nutrients that are supplied from the capillaries and that
diffuse toward the tumor undergo active consumption by normal cells. In extreme cases,
the level of glucose entering the tumor rim is, by itself, not sufficient to ensure tumor cell
survival, which results in a steady decrease in tumor volume down to negligible values.
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Overall, the complexity of the intertwined physiological processes results in the
observed hysteresis effect, in which the final state of the tumor after AAT depends on the
previous history of tumor progression.

3.3. Combining Antiangiogenic Therapy with Chemotherapy

The above-described nature of tumor response to the cessation of angiogenesis should
also affect the combined types of treatment involving AAT. Previously, we hypothesized
that in combination with chemotherapy (CT), the delay of administration of the antiangio-
genic drug can be beneficial when compared to the case of the simultaneous initiation of CT
and AAT. The rationale behind this hypothesis was that such an approach could exploit
the increased permeability of the angiogenic capillary network in the peritumoral region,
which is in contrast to the normalized network that forms as a result of AAT. Thus, it should
ensure the enhanced penetration of the cytotoxic agent into the tumor. The account for
the biomechanical properties of the tissues, however, suggests that the alternation of the
scheduling of combined AAT and CT may yield more nontrivial consequences.

In order to illustrate this idea, let’s consider an augmented version of the model ex-
pressed by Equations (1)–(4), which also considers the intravenous injections of chemother-
apeutic drugs. Equation (5) lists the additional terms introduced in the model to account
for the chemotherapeutic drug and its action. Chemotherapy is assumed to affect only pro-
liferating cells. One newly introduced partial differential equation governs the distribution
of chemotherapeutic agents in the tissue, and a new ordinary differential equation governs
its temporal dynamics in blood.

proliferating
tumor cells:

∂np

∂t
=

previously considered processes︷︸︸︷...

death by CT︷ ︸︸ ︷
−χunp ;

dead
tumor cells:

∂m
∂t

=

previously considered processes︷︸︸︷...

cell death by CT︷ ︸︸ ︷
+χunp ;

chemotherapeutic
agent in tissue:

∂u
∂t

=

advective inflow/outflow︷ ︸︸ ︷
{[Lnγu

ncn + Laγu
a ca] · [pc − p]}[ubl · Θ(pc − p) + u · Θ(p − pc)]

diffusive inflow/outflow︷ ︸︸ ︷
+[Pu

n cn + Pu
a ca] · [ubl − u]

lymphatic outflow︷ ︸︸ ︷
−Ll h[p − pl ]u

diffusion︷ ︸︸ ︷
+

Du

r2
∂2(ur2)

∂r2

advection︷ ︸︸ ︷
− 1

r2

∂(I f ur2)

∂r
;

chemotherapeutic
agent in blood:

∂ubl
∂t

=

injections︷ ︸︸ ︷
I

∑
i=1

δ(t − ti)

clearance︷ ︸︸ ︷
−Cuubl .

(5)

The term “drug injections” represents the external control that increases the concentra-
tion of a chemotherapeutic drug in the blood by a normalized unit at designated moments.
In this work, we simulate a protocol with I = 6 injections separated by 3-week intervals.
The beginning of CT takes place when a tumor achieves a 4 mm radius.

Additional model parameters are presented in Table 2. The estimation of the parame-
ters related to the chemotherapeutic agent was performed using our approach presented
previously in [33]. We refer the reader to it for the corresponding details. Here, we con-
sider a chemotherapeutic agent with a 5 nm hydrodynamic radius. It is well-known that
substances with a low-molecular weight move through the pores in capillary walls via
diffusion, while the process of advection dominates for high-molecular-weight agents [54].
The same reasoning applies to their movement through the tissue. Both diffusion and
advection physiological processes are accounted for herein. The sensitivity of cells to the
drug corresponds to a moderate CT, which, by itself, can not eradicate the tumor.
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Table 2. Additional parameters of the model, accounting for chemotherapy.

Parameter Description Value

Cells:

χ sensitivity to chemotherapeutic agent 0.05

Chemotherapeutic agent:

γu
n fraction of available pore cross-section area, normal capillaries 0.09

γu
a fraction of available pore cross-section area, abnormal capillaries 0.58

Pu
n diffusive permeability, normal capillaries 0.007

Pu
a diffusive permeability, abnormal capillaries 0.25

Du diffusion coefficient 13
Cu clearance rate 0.0015

The following initial and boundary conditions were used for the chemotherapeutic
drug:

∀r, u(r, 0) = 0, ubl = 0;

∀t,
∂u
∂r

|0 =
∂u
∂r

|rT = 0.
(6)

Figure 4 illustrates the tumor dynamics in the resulting system under the treatment of
a relatively large tumor using CT, AAT, and their combination, with AAT taking place at
different moments. Chemotherapy by itself results in significant tumor shrinkage, which,
however, is followed by tumor regrowth after the treatment is halted. The case of mono-
AAT has already been demonstrated above, and it effectively results in the eradication of
the tumor.

days

Free growth 

with angiogenesis

Influence of

antiangiogenic

therapy (AAT)

Tumor

radius, mm

Influence of

chemotherapy

(CT)

CT+AAT from 1st injection

CT+AAT from 3rd injection

CT+AAT from 5th injection

Figure 4. Tumor growth curves produced by Equations (1)–(6) under free tumor growth, antiangio-
genic therapy (AAT), chemotherapy (CT), and their combination, with AAT starting at the times of
the different injections of the chemotherapeutic drug.

The combination of CT and AAT starting simultaneously leads to the faster shrinkage
of the tumor than mono-AAT. This happens because the tumor cells, in this case, are
subject not only to a similar depletion of nutrients but also to direct cytotoxic action.
However, the case of mono-CT initially leads to even faster tumor shrinkage. This reflects
the above-mentioned fact that the normalization of capillaries results in a reduced decrease
in cytotoxic agents in the tumor. In the case of the high-molecular-weight chemotherapeutic
agent considered herein, this reduction is very well pronounced and is eventually reflected
in these high-level tumor growth curves. However, in the long term, the combination of
simultaneously initiated CT and AAT proves to be more efficient than mono-CT due to the
eventual critical shortage of nutrient supply to the tumor as their competition with normal
cells exacerbates under capillary network scarcity.

A delay to the beginning of AAT within its combination with CT ensures the faster
initial shrinkage of the tumor. The seeming benefit of such an approach, nevertheless, is
deceptive. At the moment of the third and fifth injections of the chemotherapeutic drug,
the tumors have radii of ≈1.9 mm and ≈0.7 mm, respectively. In accordance with the

206



Mathematics 2024, 12, 353

simulations presented in the previous section, the AAT initiated for such tumors results
in their stabilization at small but notable sizes. Thus, the delay in AAT administration in
combination with CT compromises the potential curative effect of the treatment.

4. Conclusions and Discussion

4.1. Overview of Main Results

This paper presented a mathematical modeling study of the non-invasive solid tumor
response to antiangiogenic therapy (AAT), taking into account the biomechanical aspects.
The tumor in the considered model represents a compact object embedded in normal
tissue. An increase in tumor volume and the displacement of normal tissue are ensured by
the gradients of solid stress that arise due to tumor cell proliferation. The tumor pushes
microvasculature away during its growth, compromising its own supply of nutrients, which
are necessary for cell proliferation and survival. The degradation and outflow of dead cells
eventually compensate for tumor proliferation, yielding tumor growth stabilization.

The initiation of angiogenesis by tumor cells experiencing metabolic stress results
in the augmentation of microvasculature permeability and surface area. The resulting
abnormal microvasculature can support the existence of larger stable tumors.

Simulations of AAT show that the outcome of the elimination of proangiogenic factors
depends on the proximity of the current tumor size to the size of the stable avascular
tumor grown without the initiation of angiogenesis. For a tumor with close size, AAT
yields a minor perturbation to its dynamics and leads to its rapid stabilization. For larger
tumors, however, the quick fall in nutrient supply significantly affects their dynamics. The
domination of outflow of dead cell mass over cell proliferation causes the displacement
of the interface between the tumor and the normal tissue, which pulls the normal cells
and microvasculature towards the core of the tumor. As the capillary system undergoes
rupture and pruning during this movement, the system eventually stabilizes at notably
decreased volumes regarding the capillary system, the density of which falls toward the
tumor surface. The degree of distortion of microvasculature depends on the distance of
its displacement. Therefore, the stable sizes of tumors that underwent AAT negatively
correlate with their sizes at the beginning of AAT. For sufficiently large initial tumors,
the destruction of microvasculature is so crucial that, eventually, it is able to support the
survival of not only normal but non-normal tumor cells. Thus, in such cases, AAT is
effectively curative as long as it blocks all the possible mechanisms of angiogenesis.

4.2. Clinical Significance

The idea that AAT can be curative is an intriguing outcome of this study; however, to
the best of our knowledge, there are no clinical cases supporting it. The very possibility of
obtaining such confirmation is significantly compromised by the fact that AAT is rarely
used in the mono regime. It is generally combined with other modalities, including the
surgical removal of the tumor after its shrinkage caused by AAT. Moreover, the model
used herein assumes compactly growing benign tumors, while invasive tumors have been
shown on numerous occasions to possess inherent resistance to AAT due to the ability of
motile cancer cells to actively escape nutrient-deficient regions [55]. Therefore, for invasive
tumors, the possibility of the curative effect of AAT seems highly unlikely. It should also be
noted that, in reality, other signaling molecules (other than VEGF) can be involved in the
stimulation of microvessel growth, although they are generally assumed to be much less
important. Further aid from experimental and clinical researchers can shed light on the
possibility of the validation of the concept of curative AAT.

4.3. Future Prospects

The designed approach considers the physiological processes accompanying the dy-
namics of a tumor and its microenvironment during AAT in detail. It largely determines
the efficacy of the delivery of concomitantly administrated drugs to the tumor. The consid-
eration of tissue as a porous biphasic media with solid and liquid components is crucial for
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a physiologically adequate reproduction of the dynamics of high-molecular-weight drugs,
which is dominated by advective motion. This study provides example simulations of
AAT combined with chemotherapy (CT). One of the qualitative outcomes of administrating
AAT simultaneously with CT, as suggested by the modeling, is the notable reduction in
the inflow of the chemotherapeutic drug into the tumor, which compromises initial tumor
shrinkage. Given these intriguing results, we will use the developed model as the basis for
future studies on the optimization of combined types of antitumor therapy with the use of
antiangiogenic drugs.

The results of this work were obtained by using simulations of a spherically symmetric
tumor, which effectively renders the model one-dimensional and, thus, drastically reduces
computational complexity. Such an approach facilitates the ability to simulate the long-term
behavior of a tumor and its microenvironment in response to treatment, thus making the
reconstruction of this behavior during the entire course of a prolonged treatment practically
feasible. The obtained qualitative results are expected to be preserved under sufficiently
moderate perturbations of spherical symmetry in a more realistic three-dimensional set-
ting. Nevertheless, conducting the three-dimensional modeling study, especially based on
patient imaging data, represents an intriguing future prospect. Such work, in particular,
would allow for exploring the limits of the applicability of the results for tumors of varying
sizes and shapes.

Supplementary Materials: The C++ computational code can be downloaded at: https://www.mdpi.
com/article/10.3390/math12020353/s1.
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Abstract: Four fundamental models that describe the spread of Monkeypox disease are analyzed:
the SIR-SIR, SEIR-SIR, SIR-SEIR, and SEIR-SEIR models. They form the basis of most Monkeypox
diseases models that are currently discussed in the literature. It is shown that the way the model
subpopulations are organized in disease outbreaks and evolve relative to each other is determined by
the relevant unstable system eigenvectors, also called order parameters. For all models, analytical
expressions of the order parameters are derived. Under appropriate conditions these order parameters
describe the initial outbreak phases of exponential increase in good approximation. It is shown that
all four models exhibit maximally two order parameters and maximally one human–animal order
parameter. The human–animal order parameter firmly connects the outbreak dynamics in the animal
system with the dynamics in the human system. For the special case of the SIR-SIR model, it is
found that the two possible order parameters completely describe the dynamics of infected humans
and animals during entire infection waves. Finally, a simulation of a Monkeypox infection wave
illustrates that in line with the aforementioned analytical results the leading order parameter explains
most of the variance in the infection dynamics.

Keywords: monkeypox virus; infectious disease; mathematical modelling; order parameters

MSC: 15A18; 34A34; 92D25; 92D30

1. Introduction

Monkeypox (Mpox) disease is an infectious disease that is endemic in several African
countries [1]. During the last five decades, Mpox infection waves have repeatedly occurred
in those countries [2,3]. In this context, understanding the initial outbreak phases of Mpox
infection waves is of particular importance because these initial phases offer the opportunity
for ad hoc interventions that may dramatically reduce the infection dynamics [4]. In
particular, in line with previous works on COVID-19 waves [4], a vital step to understand
the emergence of Mpox infection waves is to conduct model-based analyses that determine
the initial organization of such waves. Insights obtained from such endeavors are not
only relevant for the aforementioned African countries. Rather, due to international travel,
Mpox infection waves can spread out to non-endemic countries as it was observed recently
during the global 2022–2023 Mpox epidemic [5,6].

Mpox disease comes with symptoms like fever, rash, sore throat, and respiratory
distress [7] and can lead to death [1–3]. The disease is caused by the Monkeypox virus that
is transmitted from animals to humans [1,8]. In particular, rodents such as squirrels, rats,
and mice can carry the virus but also certain monkeys (whence the name Monkeypox) [8].
However, once the virus has invaded a particular human population it can also spread out
within the population by means of human to human transmissions [1]. Temporal limited
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outbreaks of Monkeypox disease have been observed since 1970 [1–3]. Such waves are
typically observed in the human population, whereas the infection dynamics in the animal
population is unobserved. During the period 2000–2009, when taking all observed disease
outbreaks together, it is estimated that there had been about 10,000 cases of Monkeypox
disease. For the period of 2010–2019, this estimate is higher at about 19,000 cases [3]. In
particular, from September 2017 to April 2018 an infection wave spread out through several
regions of Nigeria [2,8,9]. The wave in the human population was probably triggered by
multiple, independent animal to human transmissions of the Monkeypox virus [8]. In
addition, it was confirmed that human to human transmissions were involved in the disease
outbreak [9]. Since January 2023, cases of Monkeypox disease started to rise dramatically
in the Democratic Republic of the Congo (DRC). As of August 2024, the infection surge
is still ongoing [10,11] and is about to spread out to several neighboring countries of the
DRC [12]. Within the DRC the surge reached the 20,000 mark of suspected cases [13] that
had never been reached before. In view of those developments, on 14 August 2024, the
WHO announced its highest level of alert for Mpox and declared the Mpox outbreak as
a health emergency of international concern [12]. Finally, as mentioned above, in several
instances international travel brought the Mpox disease to non-endemic countries [2,3].
Most dramatically, during the period of 2022–2023 Mpox disease spread out globally
(primarily in South, Middle, and North America and Europe [5,6]) and produced almost
100,000 infected cases worldwide [14]. While the 2022–2023 global epidemic eventually
subsided due to intervention and prevention measures and in the absence of an animal
reservoir, the situation in the endemic African countries and, in particular, the current
DRC-centered outbreak are highly unpredictable.

For the time being, Mpox disease waves in endemic African countries triggered by
waves in the respective animal reservoirs are likely to occur and they may or may not spill
over to non-endemic countries [11].

Several efforts have been made to describe the emergence of Mpox disease in human–
animal systems with the help of epidemiological models [15]. At the heart of these efforts
are models that describe susceptible (S), infected (I), and recovered (R) individuals [4,16].
Such SIR models can describe both the human and animal populations of interest. Adding
exposed (E) individuals that have been infected but are not yet infectious leads to SEIR
models [4,16] that again may be used to describe both the human and animal populations
of interest. Combining these two types of models, SIR and SEIR, we arrive at four fun-
damental models: SIR-SIR, SEIR-SIR, SIR-SEIR, and SEIR-SEIR models, where the first
acronym describes the animal system, while the latter refers to the human system. An
SIR-SIR Monkeypox model has been studied by Bhunu and Mushayabasa [17]. SIR-SIR
Monkeypox models were also used by Emeka et al. [18] and Somma et al. [19] and have
been slightly generalized to take vaccinated [18] and quarantined [19] individuals into
account, respectively. Madubueze et al. [20] based their Monkeypox model on an SIR-SEIR
system and fine-grained the human SEIR infection dynamics, among other things, by taking
again the possibility of vaccination into account. Usman and Adamu [21], Peter et al. [22],
Bankuru et al. [23], and Collins and Duffy [24] used Mpox SEIR-SEIR approaches featuring
additional groups of quarantined [22] or vaccinated [21,23] individuals. A plenitude of
highly detailed epidemiological models for the spread of Mpox disease in human–animal
systems has been proposed in the literature. Such models include, for example, individ-
uals with different degree of infectiousness [25,26], quarantined and isolated individuals
[27], clinically ill or hospitalized individuals [25,26,28], and detected versus undetected
cases [29]. All these models have in common that they are based on one of the aforemen-
tioned four fundamental models.

Despite these modeling efforts, what is missing is an analysis of the multi-compartmental
components involved in Mpox outbreaks. Such multi-compartmental components de-
scribe compartments bound together to entities and are determined by stable and unstable
eigenvectors of the respective human–animal systems. Multi-compartmental component
analyses have been conducted for various epidemiological models describing COVID-19

212



Mathematics 2024, 12, 3215

outbreaks during the COVID-19 pandemic [4,30] and several virus dynamics models de-
scribing SARS-CoV-2 infections [31] and the human immune reaction [32]. In particular,
the leading components that describe the initial organizations of COVID-19 outbreaks
in populations have been determined in terms of so-called order parameters [33–35] for
SIR systems, SEIR systems, and some higher-dimensional models [4]. As mentioned
above, a comparable analysis is missing in the modeling literature on Mpox disease out-
breaks. That is, the above reviewed studies on epidemiological Mpox disease models
did not present any analysis of relevant Mpox disease order parameters. Therefore, the
current study supplements the existing literature and adds a novel aspect to it. In the
context of the COVID-19 pandemic, benefits of the order parameter perspective have been
demonstrated. For example, it has been demonstrated that the impact of intervention
measures can be conveniently analyzed when focusing on the leading building-blocks or
order parameters of COVID-19 waves. Explicitly, using this approach, COVID-19 waves
observed in the USA [36], Europe [37], China [38], Thailand [39], and Pakistan [40] have
been analyzed. Interestingly, all systems investigated in those studies on COVID-19 waves
exhibited only a single leading multi-compartmental component or order parameter. In
contrast, as it will be shown below, Mpox infection dynamics in general is characterized by
two order parameters. In anticipation of this novel aspect and in view of the absence of
studies devoted to determine Mpox order parameters, the aim of the current study is to
identify and compute the leading organizational elements or order parameters of the four
fundamental models listed above and to interpret their qualitative and quantitative aspects.
The aim is to demonstrate that they dominate and determine the initial phase dynamics
of Mpox outbreaks. In doing so, it will be determined how compartments or subpopula-
tions evolve relative to each other. In addition, the objective is to identify the remaining
multi-compartmental components given in terms of (neutrally) stable eigenvectors and to
explore their roles as well for the enfolding of Mpox infection waves.

The remainder of this study is structured as follows. The four fundamental models
will be introduced in Section 2. The models will be analyzed in Section 3. In particular, key
results regarding the multi-compartmental building-blocks in terms of order parameters
and their amplitudes will be obtained in Section 3.1 and implications of those results will be
discussed in Section 3.2. Section 3.3 will briefly exemplify that under certain conditions the
dynamics along the aforementioned remaining eigenvectors makes essential contributions
to the overall dynamics as well. In Section 3.4, some findings will be illustrated with the
help of a simulated Mpox infection wave. Some conclusions will be drawn in Section 4.
Certain limitations of the current study will be addressed in this section as well.

2. Methods

2.1. Four Fundamental Models

Let us define the four fundamental epidemiological models for Mpox infection dynamics.

2.1.1. Model A (SIR-SIR Model)

Let Sa, Ia, and Ra denote the number of individuals in the subpopulations of suscepti-
ble, infected, and recovered animals, respectively. Likewise, let Sh, Ih, and Rh denote the
number of humans in the susceptible, infected, and recovered subpopulations, respectively.
The evolution equations of the population variables read [17]

d
dt

Sa = − βa

Na
IaSa ,

d
dt

Ia =
βa

Na
IaSa − γa Ia ,

d
dt

Ra = γa Ia ,

d
dt

Sh = −
(

βh
Nh

Ih +
β12

Na
Ia

)
Sh ,
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d
dt

Ih =

(
βh
Nh

Ih +
β12

Na
Ia

)
Sh − γh Ih ,

d
dt

Rh = γh Ih , (1)

where Na = Sa + Ia + Ra and Na = Sa + Ia + Ra denote the total animal and human
populations, respectively. In Equation (1), βa, β12, and βh denote the effective contact rates
(also called infection rates or transmission rates) of animal to animal, animal to human, and
human to human transmissions, respectively. The parameters γa and γh denote recovery
rates of infected animal and human individuals, respectively. The current study focuses on
infection waves that take place on relatively short durations of a few months such that birth
and death processes can be neglected. Moreover, deaths due to Mpox disease are neglected
as well. The populations are assumed to be constant at least in good approximation such
that variations in Na and Nh can be neglected. Consequently, the evolution equations for Ra
and Rh can be eliminated by putting Ra = Na − Sa − Ia and Rh = Nh − Sh − Ih. Moreover,
in the current study, for the sake of simplicity, epidemiological models will be formulated
in rescaled variables (i.e., with the help of fractions) as defined by [41]

sj = Sj/Nj , ij = Ij/Nj , rj = Rj/Nj (2)

for j = a, h. The SIR-SIR model (model A) defined by Equation (1) then becomes

d
dt

sa = −βaiasa ,

d
dt

ia = βaiasa − γaia ,

d
dt

sh = −(βhih + β12ia)sh ,

d
dt

ih = (βhih + β12ia)sh − γhih (3)

with ra = 1− sa − ia and rh = 1− sh − ih. The state vector of model A reads x = (sa, ia, sh, ih).
As mentioned in the introduction, Bhunu and Mushayabasa [17], Emeka et al. [18], and
Somma et al. [19] based their studies on SIR-SIR models as described by Equation (1).

2.1.2. Model B (SEIR-SIR Model)

The SEIR-SIR model involves the class of exposed animals (Ea) that are infected but
not yet infectious. The relative size of the exposed animal subpopulation is denoted by
ea = Ea/Na. The evolution equations for the rescaled model variables read

d
dt

sa = −βaiasa ,

d
dt

ea = βaiasa − αaea ,

d
dt

ia = αaea − γaia ,

d
dt

sh = −(βhih + β12ia)sh ,

d
dt

ih = (βhih + β12ia)sh − γhih (4)

and involve in addition to the SIR-SIR model parameters the parameter αa, which describes
the transition rate of animals from being infected and non-infectious to being infected
and infectious. For the fraction variables of recovered animal and human individuals, the
following relations hold: ra = 1 − sa − ea − ia and rh = 1 − sh − ih. The state vector of
the SEIR-SIR model defined by Equation (4) reads x = (sa, ea, ia, sh, ih). Note that in what
follows we will refer to the population variables ia and ih as infectious populations rather
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than infected populations in order to highlight the distinction between the variables ej and
ij for j = a, h that describe both infected individuals.

2.1.3. Model C (SIR-SEIR Model)

Like model B, model C involves a class of exposed individuals. Unlike model B, in
model C this class (Eh) shows up in the human subsystem. The relative size is denoted by
eh = Eh/Nh. The evolution equations of the rescaled model variables read

d
dt

sa = −βaiasa ,

d
dt

ia = βaiasa − γaia ,

d
dt

sh = −(βhih + β12ia)sh ,

d
dt

eh = (βhih + β12ia)ih − αheh ,

d
dt

sh = αheh − γhih (5)

and are complemented by the relations ra = 1 − sa − ia and rh = 1 − sh − eh − ih. In
Equation (5) the parameter αh describes the transition rate of infected but non-infectious
humans (i.e., exposed humans) to become infectious. The model state vector reads
x = (sa, ia, sh, eh, ih). As mentioned in the introduction, Madubueze et al. [20] based their
study on a Monkeypox model of the SIR-SEIR system type.

2.1.4. Model D (SEIR-SEIR Model)

The SEIR-SEIR model (model D) takes the possibility of exposed individuals into ac-
count both for the human and animal populations of interest. Accordingly, the model reads

d
dt

sa = −βaiasa ,

d
dt

ea = βaiasa − αaea ,

d
dt

ia = αaea − γaia ,

d
dt

sh = −(βhih + β12ia)sh ,

d
dt

eh = (βhih + β12ia)ih − αheh ,

d
dt

sh = αheh − γhih (6)

with ra = 1 − sa − ea − ia and rh = 1 − sh − eh − ih and all parameters as defined for the
previous models A,B, C. The state vector of the SEIR-SEIR model defined by Equation (6)
reads x = (sa, ea, ia, sh, eh, ih). Various authors have used the SEIR-SEIR model defined by
Equation (6) as a departure point to model the spread of Mpox disease [21–24] (see also
the Introduction).

2.2. Admissible Model Parameters

In what follows it is assumed that all model parameters are positive like

βa, βh, β12, γa, γh, αa, αh > 0 . (7)

That is, degenerated special cases of models exhibiting vanishing model parameters
are ignored.
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3. Results

3.1. Potential Order Parameters

Order parameters are known to describe the emerging order of multi-component
systems in various disciplines [33,35] and have recently been determined for various
epidemiological models describing the COVID-19 pandemic [4]. In the context of the
current study, it is useful to discuss order parameters in the context of potential order
parameters—as they will be defined next.

Definition 1. A potential order parameter is an eigenvector associated with an eigenvalue that for
appropriate model parameters assumes positive values.

In other words, in general, dynamical systems exhibit two types of eigenvalues:
eigenvalues that are negative or zero in any case and eigenvalues that for appropriate
model parameters become positive (but may become negative or zero for other parameter
values). Eigenvectors associated with the second type of eigenvalues will be called potential
order parameters. The implication of the definition is that for those model parameters that
make the eigenvalue in fact positive the potential order parameter is an order parameter or
unstable eigenvector [33,35]. In contrast, for model parameters that make the eigenvalue
negative the potential order parameter corresponds to a stable eigenvector [33,35].

Theorem 1. All four models A–D defined by Equations (3)–(6) exhibit two potential order parame-
ters for the admissible model parameters listed in Section 2.2.

Proof. It is sufficient to show that each model exhibits two eigenvalues that for appropriate,
admissible model parameters can become positive.

The model A (SIR-SIR model) exhibits the disease-free fixed points s∗a ∈ [0, 1], i∗a = 0,
s∗h ∈ [0, 1], i∗h = 0. Let us introduce the following two relative variables describing
differences with respect to fixed point variables δj = sj − s∗j for j = a, h. Note that ia

and ih already can be regarded as relative variables because the respective fixed point
values read i∗a = 0 and i∗h = 0. The model A state vector of relative variables reads
u = (δa, ia, δh, ih). The eigenvalues of model A are obtained from a linear stability analysis
for which it is assumed that all entries of the relative state vector are small quantities
(i.e., the state of the epidemiological system is close to a fixed point of the system). Then,
Equation (3) becomes a linear evolution equation of the form [4,33]

d
dt

u = Lu (8)

with the linearization matrix L defined by

L =

⎛⎜⎜⎝
0 −β∗

a 0 0
0 β∗

a − γa 0 0
0 −β∗

12 0 −β∗
h

0 β∗
12 0 β∗

h − γh

⎞⎟⎟⎠ (9)

and β∗
a = βas∗a , β∗

h = βhs∗h, and β∗
12 = β12s∗h. The matrix L exhibits the eigenvalues λ1 = 0,

λ2 = β∗
a − γa, λ3 = 0, and λ4 = β∗

h − γh. The pair of eigenvalues λ1 and λ2 (and likewise
the pair λ3 and λ4) are known as eigenvalues of SIR systems [4,42]. As will be shown
below in the context of Theorem 2, the eigenvalues λ3 and λ4 can indeed be interpreted as
eigenvalues of the SIR human subsystem. In contrast, while λ1 and λ2 formally correspond
to SIR system eigenvalues such that it would be tempting to interpret them as SIR animal
subsystem eigenvalues, as it will be shown below, at least for λ2 such an interpretation
is misleading. Rather, it is more appropriate to interpret λ2 (in line with its derivation
from matrix (9)) as an eigenvalue of the entire SIR-SIR system. λ2 and λ4 for appropriate,
admissible model parameters (namely, β∗

a > γa > 0 and β∗
h > γh > 0, respectively)
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assume positive values. Therefore, the corresponding eigenvectors are the potential order
parameters of the SIR-SIR system. They will be derived explicitly below.

For model B (SEIR-SIR model) the fixed points are given by s∗a ∈ [0, 1], e∗a = 0, i∗a = 0,
s∗h ∈ [0, 1], i∗h = 0. The state vector of relative variables with respect to those fixed points
reads u = (δa, ea, ia, δh, ih). For states sufficiently close to a given fixed point Equation (4)
can be linearized and becomes Equation (8) with L defined by

L =

⎛⎜⎜⎜⎜⎝
0 0 −β∗

a 0 0
0 −αa β∗

a 0 0
0 αa −γa 0 0
0 0 −β∗

12 0 −β∗
h

0 0 β∗
12 0 β∗

h − γh

⎞⎟⎟⎟⎟⎠ . (10)

The matrix L exhibits the eigenvalues λ1 = 0 and

λ2,3 = −γa + αa

2
±
√

(γa + αa)2

4
+ αa(β∗

a − γa) , (11)

where the upper (lower) sign holds for λ2 (λ3). These eigenvalues are known as eigenvalues
of epidemiological SEIR models [4,42]. However, as will be shown in the context of
Theorem 2 with respect to model B they actually describe eigenvalues of the entire SEIR-SIR
model. The two remaining eigenvalues of L read λ4 = 0 and λ5 = β∗

h − γh and denote
SIR-human subsystem eigenvalues (as will be shown below). λ2 assumes positive values
for admissible parameters if β∗

a > γa > 0 holds, whereas λ3 is negative for all admissible
model parameters [4]. λ5 is positive for admissible parameters if β∗

h > γh > 0 holds. In
summary, λ2 and λ5 may assume positive values for admissible model parameters. By
Definition 1, the corresponding eigenvectors describe the potential order parameters of the
epidemiological SEIR-SIR system (4). They will be derived below.

In the case of model C (SIR-SEIR model) the fixed points are given by s∗a ∈ [0, 1], i∗a = 0,
s∗h ∈ [0, 1], e∗h = 0, and i∗h = 0. Accordingly, the state vector of relative variables reads
u = (δa, ia, δh, eh, ih) and satisfies Equation (8), which is again close to the aforementioned
fixed points. For model C the linearization matrix L reads

L =

⎛⎜⎜⎜⎜⎝
0 −β∗

a 0 0 0
0 β∗

a − γa 0 0
0 −β∗

12 0 0 −β∗
h

0 β∗
12 0 −αh β∗

h
0 0 0 αh −γh

⎞⎟⎟⎟⎟⎠ . (12)

A detailed calculation shows that the five eigenvalues of L are given in terms of three
SEIR-human subsystem eigenvalues and two eigenvalues that formally look like SIR
system eigenvalues. The SIR-system-like eigenvalues read λ1 = 0 and λ2 = β∗

a − γa. The
SEIR-human subsystem eigenvalues read λ3 = 0 and

λ4,5 = −γh + αh
2

±
√

(γh + αh)2

4
+ αh(β∗

h − γh) , (13)

where the upper (lower) sign holds for λ4 (λ5). λ2 is positive if β∗
a > γa > 0, λ4 assumes

positive values if β∗
h > γh > 0, and λ5 is negative for all admissible model parameters.

In summary, only two eigenvalues may become positive: λ2 and λ4. The corresponding
eigenvectors denote the potential order parameters of the SIR-SEIR system (5).

Finally, the fixed points of model D (SEIR-SEIR model) are described by s∗a ∈ [0, 1],
ea = 0, i∗a = 0, s∗h ∈ [0, 1], eh = 0, and i∗h = 0. The model D state vector of relative variables
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reads u = (δa, ea, ia, δh, eh, ih) and satisfies Eq. (8) in the linear domain dynamics with L
given by

L =

⎛⎜⎜⎜⎜⎜⎜⎝

0 0 −β∗
a 0 0 0

0 −αa β∗
a 0 0 0

0 αa −γa 0 0 0
0 0 −β∗

12 0 0 −β∗
h

0 0 β∗
12 0 −αh β∗

h
0 0 0 0 αh −γh

⎞⎟⎟⎟⎟⎟⎟⎠ . (14)

It can be shown that the six eigenvalues of L are given in terms of three SEIR eigenvalues
for the human subsystem and three eigenvalues that again at least formally look like SEIR
eigenvalues and only involve animal subsystem parameters. They are listed above already
in the context of the SEIR-SIR and SIR-SEIR models. For the sake of clarity they are explicitly
listed here. Those related to the animal subsystem parameters read λ1 = 0 and

λ2,3 = −γa + αa

2
±
√

(γa + αa)2

4
+ αa(β∗

a − γa) , (15)

where the upper (lower) sign holds for λ2 (λ3). The three SEIR-human subsystem eigenval-
ues read λ4 = 0 and

λ5,6 = −γh + αh
2

±
√

(γh + αh)2

4
+ αh(β∗

h − γh) , (16)

where again the upper (lower) sign holds for λ5 (λ6). In line with the previous discussion, it
follows that λ3 and λ6 are always negative. In contrast, λ2 and λ5 are positive if β∗

a − γa > 0
and β∗

h − γh > 0 holds, respectively. In other words, for model D, λ2 and λ5 may assume
positive values and the corresponding eigenvectors denote the potential order parameters
of the SEIR-SEIR system (6).

In summary, all four fundamental models A, B, C, and D exhibit two potential order
parameters.

Corollary 1. The four fundamental models A, B, C, and D defined by Equations (3)–(6) exhibit
maximally two order parameters for the admissible model parameters listed in Section 2.2.

Proof. If the eigenvalues of both potential order parameters assume positive values, then the
model under consideration exhibits two order parameters. This is the maximal number.

Definition 2. A human–animal order parameter is an order parameter (unstable eigenvector) that
exhibits non-vanishing components both in the animal and human subsystems.

As we will see below there are eigenvectors that only exhibit components in either the
animal subsystem or the human subsystem. Their coordinates (or amplitudes) describe dy-
namics in either of the two systems. In contrast, eigenvectors that exhibit components in both
system connect the animal subsystem dynamics with the human subsystem dynamics. In
particular, unstable eigenvectors (order parameters) with that property are of interest because
they describe the emerging order of an Mpox outbreak in terms of multi-compartmental com-
ponents that link both subsystems with each other. By Definition 2 these multi-compartmental
components will be called human–animal order parameters.

Theorem 2. All four fundamental models A, B, C, and D defined by Equations (3)–(6) exhibit max-
imally one human–animal order parameter for the admissible model parameters listed in Section 2.2.

Proof. In what follows, the eigenvectors of all four models will be derived and, in doing
so, a constructive proof of Theorem 2 will be given. Eigenvectors will be denoted by vj
with j = 1, . . . , 4 for model A, j = 1, . . . , 5 for models B and C, and j = 1, . . . , 6 for model D.
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For model A, from matrix (9) it follows that eigenvectors related to λ1 = 0 and λ3 read
v1 = (1, 0, 0, 0) and v3 = (0, 0, 1, 0). The eigenvector of λ4 = β∗

h − γh reads

v4 =
1

Z4

⎛⎜⎜⎝
0
0
−β∗

h
λ4

⎞⎟⎟⎠ (17)

with Z4 =
√
(β∗

h)
2 + λ2

4. In order to derive v2 associated to λ2 = β∗
a − γa note that

v2 satisfies ⎛⎜⎜⎝
−λ2 −β∗

a 0 0
0 0 0 0
0 −β∗

12 −λ2 −β∗
h

0 β∗
12 0 λ4 − λ2

⎞⎟⎟⎠v2 = 0 (18)

Consequently, the first two components of v2 have the same structure as the two non-
vanishing components of v4 such that v2 = (−β∗

a , λ2, a, b)/Z2 holds, where a and b (and
Z2) are still to be determined. Substituting this ansatz into Equation (18), and exploiting
the third and fourth rows of the matrix equation, yields a and b (and Z2). The result reads

v2 =
1

Z2

⎛⎜⎜⎜⎝
−β∗

a
λ2

−β∗
12

(
1 + β∗h

λ2−λ4

)
β∗

12
λ2

λ2−λ4

⎞⎟⎟⎟⎠ (19)

with Z2 =
√
(β∗

a)
2 + λ2

2 + (β∗
12)

2ξ and ξ = [1 + β∗
h/(λ2 − λ4)]

2 + [λ2/(λ2 − λ4)]
2. The

eigenvectors v2 and v4 correspond to the potential order parameters of the SIR-SIR
model (3). However, v4 exhibits non-vanishing components only in the human subsystem.
In contrast, v2 exhibits non-vanishing components in both subsystems and, consequently,
can describe an emerging order involving both subsystems. For λ2 > 0, it follows from
Definition 2 that v2 is the human–animal order parameter of the SIR-SIR system. Accord-
ingly, the corresponding eigenvalue λ2 should be interpreted as eigenvalue of the entire
SIR-SIR system (as anticipated above). Note that the two non-vanishing components
of v4 are known as components of the order parameter of SIR models [4]. Accordingly,
for λ4 > 0, on the one hand, the eigenvector v4 constitutes an order parameter of the
epidemiological system (3). On the other hand, while it does not qualify as a human–
animal order parameter, it may be regarded as the SIR order parameter of the human
subsystem of Equation (3). Likewise, λ4 may be regarded as an SIR human subsystem
eigenvalue (as anticipated above)—in addition to its original role as eigenvalue of the model
matrix (9) of model (3). In summary, the SEIR-SIR model (model A) maximally exhibits one
human–animal order parameter.

For the SEIR-SIR model (model B) defined by Equation (4), the eigenvectors associated
to λ1 = 0 and λ4 = 0 read v1 = (1, 0, 0, 0, 0) and v4 = (0, 0, 0, 1, 0). For λ5 = β∗

h − γh
from the matrix (10) we obtain again an eigenvector with the components of an SIR
order parameter:
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v5 =
1

Z5

⎛⎜⎜⎜⎜⎝
0
0
0
−β∗

h
λ5

⎞⎟⎟⎟⎟⎠ (20)

with Z5 =
√
(β∗

h)
2 + λ2

5. The eigenvectors of λ2,3 can be obtained using the ansatz
v2,3 = (x, y, z, e, f ). From Equation (10), it follows that the first three components x, y, z
can be determined independently from the remaining two. They address the animal SEIR
subsystem. The solution reads⎛⎝ x

y
z

⎞⎠ =
1
Zj

⎛⎝ −β∗
a(λj + αa)

β∗
aλj

λj(λj + αa)

⎞⎠ (21)

for j = 2, 3, where Zj has still to be determined. Using the ansatz v2,3 = (x, y, z, e, f ) in
combination with the matrix (10) the remaining components e, f can be determined. The
result reads

vj =
1
Zj

⎛⎜⎜⎜⎜⎜⎜⎝

−β∗
a(λj + αa)

β∗
aλj

λj(λj + αa)

−β∗
12(λj + αa)

(
1 + β∗h

λj−λ5

)
β∗

12(λj + αa)
λj

λj−λ5

⎞⎟⎟⎟⎟⎟⎟⎠ (22)

for j = 2, 3 and Zj defined such that |vj| = 1. The eigenvectors v2 and v5 correspond to the
potential order parameters of the SEIR-SIR model (4). However, v5 exhibits non-vanishing
components only in the human subsystem. In contrast, v2 exhibits non-zero components
in both subsystems. Consequently, for λ2 > 0 it follows that v2 is the human–animal
order parameter of the SEIR-SIR system. Furthermore, note that the subvector defined by
Equation (21) is known as the order parameter of SEIR models [4]. This implies that the
human–animal order parameter v2 exhibits in the animal subsystem the ordinary order
parameter of epidemiological SEIR models. Finally, for λ5 > 0 the eigenvector v5 is an
order parameter of the SEIR-SIR model and may be regarded as the SIR order parameter
of the human subsystem. λ5 may be regarded as the corresponding eigenvalue of the
SIR human subsystem (as anticipated above). In summary, the SEIR-SIR model (model B)
maximally exhibits one human–animal order parameter.

The SIR-SEIR model (model C) exhibits the eigenvectors v1 = (1, 0, 0, 0, 0) and
v3 = (0, 0, 1, 0, 0) associated to λ1 = 0 and λ3 = 0. From matrix (12), it follows that
the eigenvectors v4,5 related to the eigenvalues λ4,5 assume the form v4,5 = (0, 0, x′, y′, z′).
Since they address exclusively the human SEIR subsystem, the components should consti-
tute an SEIR order parameter as shown in Equation (21). A detailed calculation shows that
this is indeed the case:

vj =
1
Zj

⎛⎜⎜⎜⎜⎝
0
0
−β∗

h(λj + αh)
β∗

hλj
λj(λj + αh)

⎞⎟⎟⎟⎟⎠ (23)
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for j = 4, 5 with Zj such that |vj| = 1. The derivation of v2 associated to λ2 = β∗
a − γa

follows in part the derivation of v2 of the SIR-SIR model. As such, v2 satisfies⎛⎜⎜⎜⎜⎝
−λ2 −β∗

a 0 0 0
0 0 0 0 0
0 −β∗

12 −λ2 0 −β∗
h

0 β∗
12 0 −(αh + λ2) β∗

h
0 0 0 αh −(γh + λ2)

⎞⎟⎟⎟⎟⎠v2 = 0 . (24)

Accordingly, the first two components of v2 constitute an SIR order parameter for the
animal subsystem such that v2 = (−β∗

a , λ2, x′′, y′′, z′′)/Z2 holds. A detailed calculation
yields the remaining components x′′, y′′, z′′. The result reads

v2 =
1

Z2

⎛⎜⎜⎜⎜⎜⎜⎝

−β∗
a

λ2

−β∗
12

(λ2+αh)(λ2+γh)
Ph(λ2)

β∗
12

λ2(λ2+γh)
Ph(λ2)

β∗
12

λ2αh
Ph(λ2)

⎞⎟⎟⎟⎟⎟⎟⎠ (25)

with the polynomial Ph(φ) involving only human subsystem model parameters defined by

Ph(φ) = (φ + αh)(φ + γh)− αhβ∗
h (26)

and Z2 chosen such that |v2| = 1. Note that Ph(λ) = 0 is the characteristic equation of λ4,5
and yields the eigenvalues (13) of the SIR-SEIR model. However, in the context of v2, Ph is
applied to λ2 rather than λ4,5; see Equation (25). The eigenvectors v2 and v4 correspond to
the potential order parameters of the SIR-SEIR model (5). v4 addresses only the human
subsystem. In contrast, v2 addresses both subsystems. Consequently, for λ2 > 0 we see
that v2 is the human–animal order parameter of the SIR-SEIR system. For λ4 > 0 the
eigenvector v4 is an order parameter of the system and may be regarded as the SEIR order
parameter of the human subsystem. However, it does not qualify as a human–animal
order parameter. In summary, for the SIR-SEIR model (model C) there is maximally one
human–animal order parameter.

The eigenvectors vj of the SEIR-SEIR model (model D) defined by Equation (6) satisfy⎛⎜⎜⎜⎜⎜⎜⎜⎝

−λj 0 −β∗
a 0 0 0

0 −(αa + λj) β∗
a 0 0 0

0 αa −(γa + λj) 0 0 0
0 0 −β∗

12 −λj 0 −β∗
h

0 0 β∗
12 0 −(αh + λj) β∗

h
0 0 0 0 αh −(γh + λj)

⎞⎟⎟⎟⎟⎟⎟⎟⎠
vj = 0 ; (27)

see also Equation (14). The eigenvalues λ1 = 0 and λ4 = 0 are associated with the eigenvec-
tors v1 = (1, 0, 0, 0, 0, 0) and v4 = (0, 0, 0, 1, 0, 0). The 3× 3 matrix in the right-bottom corner
defines eigenvectors of the form vj = (0, 0, 0, x′′′, y′′′, z′′′). They have components like SEIR
order parameter eigenvectors as in Equation (21) but describe the human subsystem. That
is, for j = 5, 6 the eigenvectors read

vj =
1
Zj

⎛⎜⎜⎜⎜⎜⎜⎝

0
0
0
−β∗

h(λj + αh)
β∗

hλj
λj(λj + αh)

⎞⎟⎟⎟⎟⎟⎟⎠ (28)
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with Zj such that |vj| = 1. Not surprisingly, they resemble the eigenvectors of the SEIR
system of the SIR-SEIR model (compare Equations (23) and (28)). In view of the left-upper
3 × 3 matrix in Equation (27), the remaining eigenvectors v2,3 assume the form

vj =
1
Zj

⎛⎜⎜⎜⎜⎜⎜⎝

−β∗
a(λj + αa)

β∗
aλj

λj(λj + αa)
a′′
b′′
c′′

⎞⎟⎟⎟⎟⎟⎟⎠ , (29)

where a′′, b′′, c′′ still need to be determined. Substituting Equation (29) into Equation (27)
allows one to determine those components, which leads to

vj =
1
Zj

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−β∗
a(λj + αa)

β∗
aλj

λj(λj + αa)

−β∗
12(λj + αa)

(λj+αh)(λj+γh)

Ph(λj)

β∗
12(λj + αa)

λj(λj+γh)

Ph(λj)

β∗
12(λj + αa)

λjαh
Ph(λj)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (30)

with Ph defined by Equation (26) and Zj such that |vj| = 1. The last three components in
Equation (30) related to the human subsystem resemble the human subsystem components
of v2 of the SIR-SEIR model. As indicated in Equation (30) they are identical except for
the pre-factor λj + αa (compare Equations (25) and (30)). The eigenvectors v2 and v5
correspond to the potential order parameters of the SEIR-SEIR model (6). v5 addresses
only the human subsystem, while v2 addresses both subsystems. Consequently, v2 for
λ2 > 0 is the human–animal order parameter of the SEIR-SEIR model (model D). For
λ5 > 0 the eigenvector v5 is also an order parameter of the SEIR-SEIR model. It may be
regarded as the SEIR order parameter of the human subsystem (but not as a human–animal
order parameter). In summary, for the SEIR-SEIR model (model D) there is maximally one
human–animal order parameter.

In conclusion, all four models exhibit maximally one human–animal order parameter.

3.2. Implications: Amplitude Dynamics and the Role of Human–Animal Order Parameters

Let us define the amplitudes A1, . . . , Am of the model eigenvectors vj implicitly by the
expansion [4]

u =
m

∑
j=1

vj Aj (31)

with m = 4 for model A, m = 5 for models B and C, and m = 6 for model D, where it
is assumed that the eigenvectors are linearly independent from each other and form a
complete vector basis (i.e., degenerated, special cases may be discussed separately). The
expansion (31) holds for arbitrary u (i.e., it holds beyond the linear initial phase dynamics
that will be defined below) [4]. In line with Equation (31), the state vector of the model
under consideration can be expressed like

x = x∗ +
m

∑
j=1

vj Aj , (32)
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where x∗ denotes the fixed point of interest (see also Section 3.1). Explicitly, the amplitudes
Aj can be computed from either u or x like

Aj = wj · u = wj · (x − x∗) , (33)

where the dot denotes the scalar product and wj the bi-orthogonal vector associated to
vj [4]. In general, the bi-orthogonal vectors wj can be determined numerically with the help
of the analytical expressions for vj [4]. As mentioned in the introduction, initial phases are
crucial phases of infection waves. The expansion defined by Equation (32) can be discussed
for such initial phases in the context of the four fundamental models A, B, C, and D. To this
end, it is helpful to make the following definition.

Definition 3. The linearized initial phase dynamics is the dynamics of the state vector x as defined
by the linearized evolution Equation (8) with x = x∗ + u and an initial state x(t = 0) in an
ε-environment of the fixed point x∗ such that |u(t = 0)| < ε.

The idea here is that infection waves typically start with a small number of infected
individuals such that the human–animal system initially is close to a fixed point. Mathe-
matically, this property of the initial state to be in a close vicinity of a fixed point can be
expressed by requiring that the initial state is in an ε-environment of a fixed point and by
choosing a small value for ε. If ε is sufficiently small, the linearized model defined by (8)
describes a good approximation of its original nonlinear model (either A, B, C, or D). It is
beyond the current study to define precisely what is meant by a good approximation. It is
sufficient to note that on the one hand the accuracy of the linear approximation solution
as measured by reasonably defined quantities typically improves when ε is made smaller
and smaller. On the other hand, for Mpox infection waves, at a certain point in time, the
nonlinear aspects of the models A, B, C, and D will become relevant. At that point in time,
the linear approximate model (8) will fail to give an accurate description of the infection
dynamics. In summary, Equation (8) is tailored to describe the initial phase dynamics, as it
is also pointed out in Definition 3. Solutions of the initial phase dynamics as defined in
Definition 3 and by Equation (8) are given in terms of the superposition

x = x∗ +
m

∑
j=1

vj Aj(0) exp{λjt} , (34)

where Aj(0) denotes the initial amplitudes at the initial time point t = 0. The initial
amplitudes can be computed from the initial state x(0) with the help of Equation (33) [4].
For example, for the SIR-SIR model (3) the superposition solution (34) reads

x = x∗ + v2 A2(0) exp{λ2t}+ v4 A4(0) exp{λ4t}+ h0 , h0 = v1 A1(0) + v3 A3(0) . (35)

Theorem 3. For the admissible model parameters listed in Section 2.2 the initial phase dynamics of
any Mpox outbreak dynamics as described by the four fundamental models A, B, C, and D defined by
Equations (3)–(6) and the linearized evolution Equation (8) corresponds to one of three qualitatively
different scenarios.

In other words, despite the differences across the four models, there exist only three
qualitatively different scenarios how Mpox disease outbreaks (as described by those models)
initially evolve.

Proof. Let λ(h,X) and v(h,X) denote the eigenvalue and eigenvector of the potential order
parameter of the human subsystem of the model X with X = A, B, C, D. Likewise, let
λ(12,X) and v(12,X) denote the eigenvalue and eigenvector of the potential human–animal
order parameter of the model X. Let us next turn to Equation (34). All four models exhibit
two neutrally stable eigenvectors that are associated with zero eigenvalues and point into
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the directions of sa and sh, respectively. Since we consider an Mpox disease outbreak, the
disease-free fixed point under consideration must be unstable [4], which implies that at
least one of the two eigenvalues λ(h,X) and λ(12,X) must be positive. Furthermore, there are
maximally two positive eigenvalues. In total, these considerations lead to the following
three Mpox disease outbreak scenarios:

Scenario(i) : λ(h,X) > 0 , λ(12,X) < 0 ,

Scenario(ii) : λ(h,X) < 0 , λ(12,X) > 0 ,

Scenario(iii) : λ(h,X) > 0 , λ(12,X) > 0. (36)

In scenario (i), the outbreak dynamics is characterized by two neutrally stable directions
(see above) and one unstable direction given by the SIR (X = A, C) or SEIR (X = B, D)
human subsystem order parameter v(h,X). The remaining directions are given in terms of
stable eigenvectors. In scenario (ii), the outbreaks dynamics is characterized again by two
neutrally stable directions. There is one unstable direction given by the human–animal
order parameter v(12,X). The remaining directions are given in terms of stable eigenvectors.
Although scenario (i) and (ii) have in common that they both feature only a single unstable
direction, scenarios (i) and (ii) differ from each other qualitatively because they involve
different types of order parameters. Further details about this difference will be discussed
below. Finally, scenario (iii) describes an outbreak dynamics that is characterized by two
neutrally stable directions and two unstable directions given in terms of the two maximally
possible order parameters discussed in Section 3.1. The remaining directions for the models
B, C, and D are given by stable eigenvectors. Scenario (iii) differs from scenarios (i) and (ii)
qualitatively by the number of unstable directions.

In what follows, the scenarios will be discussed in more detail. In scenario (i) we have
λ(h,X) > 0 and λ(12,X) < 0. The state x of the system under consideration evolves away
from the fixed point along the direction v(h,X), which has only non-vanishing components
in the space of the human system (e.g., for model A: v(h,X) = v4 with v4,1 = v4,2 = 0,
v4,3 = −β∗

h/Z4 and v4,4 = λ4/Z4). That is, A(h,X)(t) = A(h,X)(0) exp{λ(h,X)t} holds and
describes an exponential increase in the amplitude related to v(h,X). In contrast, let ξ(X)
denote the index of the human subsystem order parameter v(h,X) of scenario (i) (e.g.,
ξ(A) = 4 for model A). Then, components of the initial state x(0) in all other directions as
measured by Aj(0) = wj(x(0)− x∗) for j �= ξ and j = 1, . . . , m either decay in magnitude
or remain constant. More precisely, let s(i) denote the indices of negative eigenvalues
associated with stable eigenvectors with i = 1 for model A, i = 1, 2 for models B and
C, and i = 1, 2, 3 for model D. Then As(i)(t) = As(i)(0) exp{λs(i))t} describes a dynamics
towards the fixed point. Let us split the overall dynamics into three components: an
outwards dynamics (xout) describing the dynamics away from the fixed point along unstable
eigenvectors (i.e., order parameters), an inwards dynamics (xin) describing the dynamics
towards the fixed point along stable directions, and h0 describing the constant part of the
dynamics related to the two neutrally stable directions. Accordingly, Equation (34) for all
three scenarios (i), (ii), and (iii) becomes

x = x∗ + xout + xin + h0 . (37)

Specifically, for scenario (i), we obtain

xout = v(h,X)A(h,X)(0) exp{λ(h,X)t} , λ(h,X) > 0 ,

xin =
m−3

∑
i=1

vs(i)As(i)(0) exp{λs(i)t} , λs(i) < 0 . (38)

The component xout is most relevant for the disease outbreak. As mentioned above, v(h,X),
addresses only the human subsystem. Consequently, scenario (i) describes an outbreak
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due to human to human transmissions (while the infection dynamics in the animal sub-
system subsides). In line with earlier studies on COVID-19 outbreaks [4], v(h,X) describes
the organization of this type of Mpox outbreak. For example, for the SIR-SIR model (3)
(model A), from the order parameter v4 defined by Equation (17) it follows that during the
initial phase of an Mpox outbreak as a result of the outwards dynamics xout changes Δsh
and Δih in the relative sizes of the susceptible and infected populations satisfy

xout ⇒ Δih
Δsh

=
v4,4

v4,3
= −λ4

β∗
h

. (39)

Accordingly, a decay of susceptibles by Δsh < 0 comes with an increase in infectious
individuals by Δih = −λ4Δsh/β∗

h > 0 and vice versa an increase in infectious individuals
by Δih > 0 is associated with a decrease in susceptibles of Δsh = −β∗

hΔih/λ4 < 0. Similar
considerations can be made for models B, C, and D based on the human subsystem order
parameters defined by Equations (20), (23), and (28), respectively. For example, for the
SIR-SEIR model (5) (model C), due to the outwards dynamics xout the populations eh and
ih change relative to each other like

xout ⇒ Δih
Δeh

=
v4,5

v4,4
=

λ4 + αh
β∗

h
. (40)

Any increase in exposed humans by ΔEh = 100 individuals implies an increase in in-
fectious individuals by ΔIh = (λ4 + αh)/β∗

h · 100 individuals (where we have used that
ΔIh/ΔEh = Δih/Δeh holds). In summary, during the initial phase of a scenario (i) out-
break the component xout that drives the outbreak establishes rigid relationships between
the dynamics of the subpopulations sh and ih (all models) and eh (models C,D). These
relationships, in turn, are determined by the model-specific human subsystem order
parameter v(h,X).

The Mpox outbreak scenario (ii) is characterized by λ(h,X) < 0 and λ(12,X) > 0. The
system state x evolves away from the fixed point along the direction of the human–animal
order parameter v(12,X). Equation (37) holds with

xout = v(12,X)A(12,X)(0) exp{λ(12,X)t} , λ(12,X) > 0 ,

xin =
m−3

∑
i=1

vs(i)As(i)(0) exp{λs(i)t} , λs(i) < 0 . (41)

By Definition 2, the human–animal order parameter v(12,X) exhibits components both in
the animal and human subsystems (e.g., see Equation (19) for model A). Consequently,
scenario (ii) describes Mpox outbreaks that involve infection outbreaks in the animal
subsystems that drive Mpox outbreaks in the corresponding human subsystems. While
in the previously discussed scenario, scenario (i), the infection dynamics in an animal
subsystem immediately subsides and the initial phase of a wave is caused by human to
human virus transmissions, in the scenario (ii) the infection dynamics in a human subsystem
would subside immediately if the system would be decoupled from its animal reservoir.
More precisely, if we would put β12 = 0, then due to the fact that in scenario (ii) we have
λ(h,X) < 0 the disease-free fixed points of the human subsystem under consideration are
neutrally stable. In other words, due to the coupling with β12 > 0 the infection wave of
the animal subsystem under consideration drives an infection wave in the corresponding
human subsystem. Moreover, v(12,X) describes the organization of scenario (ii) outbreaks
caused by the outwards dynamics xout. For example, for model A from Equation (19) it
follows that during the initial phase of such outbreaks changes Δsa and Δia in the relative
sizes of the susceptible and infectious animal populations satisfy

xout ⇒ Δia

Δsa
=

v2,2

v2,1
= −λ2

β∗
a

. (42)
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Accordingly, a decrease in susceptibles animals as measured by Δsa < 0 comes with an
increase in infectious animals as measured by Δia with Δia = −λ2Δsa/β∗

a > 0 and vice
versa an increase in infectious animals Δia > 0 is associated with an decrease in susceptible
animals like Δsa = −β∗

aΔia/λ2 < 0. Importantly, the human–animal order parameter v2
of model A also describes the coupling between the animal and human subsystems. For
example, changes Δih and Δis due to the outwards dynamics component xout are given by

xout ⇒ Δih
Δia

=
v2,4

v2,2
=

β∗
12

λ2 − λ4
> 0 . (43)

That is, the outwards dynamics exhibits the property that an increase in infectious animals,
say, by 1% is associated with an increase in the population of infectious human individuals by
1% · β∗

12/(λ2 − λ4). This example and Equation (43) illustrate that there is a rigid coupling
between the animal and the human subsystems, which in the case of SIR-SIR systems (model A)
is described in detail by the human–animal order parameter v2. With the help of the previously
derived human–animal order parameters defined by Equations (22), (25), and (30) for models
B, C, and D, respectively, similar explicit conclusions can be drawn about the emerging order
involved in Mpox waves as described by those models.

The third scenario, scenario (iii), is characterized by two positive eigenvalues, λ(h,X) > 0
and λ(12,X) > 0, and describes Mpox infection waves established by an interplay (or co-
existence) of two order parameters: v(h,X) and v(h,12). Accordingly, the outwards dynamics
away from the fixed point does not take place along a single direction. Rather, it takes
place in a plane spanned by the vectors v(h,X) and v(h,12). More precisely, Equation (37)
holds with

xout = v(h,X)A(h,X)(0) exp{λ(h,X)t}
+v(12,X)A(12,X)(0) exp{λ(12,X)t} , λ(h,X) > 0 , λ(12,X) > 0 ,

xin =
m−4

∑
i=1

vs(i)As(i)(0) exp{λs(i)t} , λs(i) < 0 , (44)

where A(h,X) and A(12,X) denote the amplitudes of the eigenvectors v(h,X) and v(h,12).
According to the initial phase dynamics described by the linearized Equation (8), the
amplitudes A(h,X) and A(12,X) measuring distances along the order parameter directions
increase exponentially in magnitude over time. In doing so, the state of the system evolves
further and further away from the disease-free fixed point in the 2D plane spanned by the
two order parameters. The precise trajectory depends on the model parameters λ(h,X) > 0,
λ(12,X) > 0 and initial conditions A(h,X)(0), A(12,X)(0). As indicated in Equation (44), an
inward dynamics does not exist for model A, while for models B and C we have i = 1 and
for model D we have i = 1, 2.

For all three scenarios and all four models, during an initial interval [0, T] Equation (37)
may be used to compute approximative solutions to the exact solutions of the nonlinear
models. That is, let x denote the solution of one of the models A, B, C, or D. Then,
Equation (37) may be used to describe an approximative relationship like

x ≈ x∗ + xout + xin + h0 . (45)

The power of this approximation comes for situations in which the inwards dynamics is
negligible. Such situations may arise when the eigenvalues of the inwards dynamics are
relatively large in the amount such that xin decays rapidly towards zero or when the initial
amplitudes As(i)(0) are relatively small compared to the order parameter amplitudes
A(h,X)(0) and A(12,X)(0). If xin can be neglected, then Equation (45) simplifies to yield

x ≈ x∗ + xout + h0 . (46)
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For the three scenarios, Equation (46) reads explicitly

(i) : x ≈ x∗ + v(h,X)A(h,X)(0) exp{λ(h,X)t}+ h0 ,

(ii) : x ≈ x∗ + v(12,X)A(12,X)(0) exp{λ(12,X)t}+ h0 ,

(iii) : x ≈ x∗ + v(h,X)A(h,X)(0) exp{λ(h,X)t}+ v(12,X)A(12,X)(0) exp{λ(12,X)t}
+h0 . (47)

The discussion so far focused on the initial phase dynamics. This discussion was
centered around the order parameters and their amplitudes. As mentioned above in the
context of the Definition 3, when looking at the later stages of an infection wave, then,
in general, nonlinear aspects of epidemiological models become relevant. At those later
stages, all amplitudes may make considerable contributions to the infection dynamics. This
issue will be illustrated in Section 3.3.

In closing this section, let us point out that for the SIR-SIR model there exists a
peculiarity that does not exist for the higher-dimensional models B, C, and D. The two
potential order parameters v2 and v4 of the SIR-SIR model and their amplitudes completely
describe the populations of infectious individuals ia and ih. That is, let Pi the projection of
the state x in the subspace of ia and ih, then(

ia(t)
ih(t)

)
= Pi(x

∗ + v2 A2(t) + v4 A4(t)) (48)

holds. Equation (48) holds for any time point t and is not an approximation. Equation (48)
follows from the fact that v1 and v3 do not have any components in the subspace of ia
and ih.

3.3. Role of the Neutrally Stable Eigenvectors and Their Amplitudes

Let v(a,0,X) and v(h,0,X) denote the eigenvectors of model X that exhibit only an sa or
sh component, respectively. For example, for model A we have v(a,0,X) = v1 = (1, 0, 0, 0)
and v(h,0,X) = v3 = (0, 0, 1, 0) (see Section 3.1). Let λ(a,0,X) and λ(h,0,X) denote the
zero eigenvalues associated with those eigenvectors. Likewise, let A(a,0,X) and A(h,0,X)

denote the amplitudes of v(a,0,X) and v(h,0,X).

Theorem 4. For the admissible model parameters listed in Section 2.2, any Mpox infection wave
as described by the four fundamental models A, B, C, or D defined by Equations (3)–(6) exhibits the
following final stage properties. All amplitudes converge to zero expect for the amplitudes A(a,0,X)

and A(h,0,X) associated with the zero eigenvalues λ(a,0,X) = λ(h,0,X) = 0. The final fixed point
values of A(a,0,X) and A(h,0,X) for t → ∞ correspond to the decay of the respective susceptible
subpopulations sa and sh over the entire course of the infection wave like A(a,0,X)(t → ∞) =
s∗a(t → ∞)− s∗a(0) < 0 and A(h,0,X)(t → ∞) = s∗h(t → ∞)− s∗h(0) < 0.

In Theorem 4, s∗a(0) and s∗h(0) denote the fixed point values s∗a and s∗h, respectively,
considered in Section 3.1. The specifier (0) has been added to distinguish more clearly
between the final and initial fixed point values of a wave. Theorem 4 illustrates that while
the order parameters and their amplitudes are the key building-blocks that describe the
initial phase of an Mpox infection wave, the remaining amplitudes can play crucial roles at
later stages during the time course of an infection wave. Theorem 4 highlights the role of
the neutrally stable eigenvectors and their amplitudes.

Proof. As worked out in Section 3.1 in the context of Theorem 2, the neutrally stable eigen-
vectors are the only eigenvectors that do not exhibit components of infected individuals
whether exposed or infectious, human or animal (i.e., they do not exhibit components
such as ea, ia, eh, ih). They only exhibit components in the direction of susceptible popula-
tions. This implies that all other eigenvectors feature at least one component that describes
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an infected subpopulation. Furthermore, as discussed in Section 3.1 in the context of
Theorem 1, the models A, B, C, and D only exhibit disease-free fixed points. Consequently,
any wave dynamics eventually approaches a disease-free fixed point that features zero
infected individuals [4,41]. This implies that in the long term

lim
t→∞

Aj(t) = 0 ∀j : j = 1, . . . , m , j �= n(a, 0, X) , j �= n(h, 0, X) , (49)

where n(a, 0, X) and n(h, 0, X) correspond to the indices j of the eigenvalues λ(a,0,X) and
λ(h,0,X), respectively. That is, all amplitudes vanish expect for those related to the neutrally
stable eigenvectors. From Equations (32) and (49), it then follows that the state vector in
the long term satisfies

x∗(∞) = x∗(0) + v(a,0,X)A(a,0,X)(∞) + v(h,0,X)A(h,0,X)(∞) , (50)

where x∗(0) denotes the initial fixed point vector under consideration and x∗(∞) denotes
the new fixed point vector that the wave assumes when it has completely subsided (i.e., for
t → ∞). From Equation (50) and the definition of v(a,0,X) and v(h,0,X) it follows that

Δsa,∞ = s∗a(t → ∞)− s∗a(0) = A(a,0,X)(t → ∞) ,

Δsh,∞ = s∗h(t → ∞)− s∗h(0) = A(h,0,X)(t → ∞) , (51)

which is the statement made in Theorem 4.

Equation (51) in combination with the results presented in Section 3.2 points out that
changes in susceptibles Δs can be determined by different types of eigenvectors and their
amplitudes. During initial stages, changes Δs in relation to changes of other populations
are determined by order parameters (see, e.g., Equations (39) and 42)). During these
initial stages, the exponential decay of susceptible populations again is determined by
order parameters (see Equation (47)). In contrast, the final stage values of susceptibles are
determined by the amplitudes of the neutrally stable eigenvectors. This also implies that
during the course of an infection wave at some point in time the amplitudes A(a,0,X) and
A(h,0,X) of the neutrally stable eigenvectors make essential contributions to the infection
wave dynamics. This issue will be illustrated in Section 3.4 below.

3.4. Simulation

In this section some aspects of the aforementioned results will be illustrated by means
of a simulation. For the sake of brevity, only a simulation for the simplest model, the
SIR-SIR model defined by Equation (3), will be presented. The following model parameters
were used: βa = 40/y, γa = 12/y, βh = 32.85/y, and γh = 28.08/y [23], where “y” stands
for one year. The goal was to simulate a wave with a peak at about 2 months after wave
onset. Such a 2-months-peak has been observed during the 2017 Monkeypox outbreak
in Nigeria [8,9]. To this end, β12 was assumed to be β12 = 10/y, which produced the
intended 2-months peak (see below). For the selected model parameters the two non-zero
eigenvalues of the SIR-SIR model were found to be λ2 = 24.0/y and λ4 = 4.44/y. That is,
the model described a scenario (iii) outbreak involving two order parameters: the human–
animal order parameter v(12,A) = v2 associated with λ

(12,A)
2 = 24.0/y and the human

subsystem order parameter v(h,A) = v4 associated with λ
(h,A)
4 = 4.4/y.

Equation (3) was solved numerically (using a Euler forward method with a time step
τ of τ = 0.01days = 2.74 · 10−5years) to obtain trajectories for the state variables sa, ia, sh, si.
From the trajectories of the state variables thus obtained the trajectories of the amplitude
variables A1, . . . A4 were computed. To this end, the explicit expression for v2 and v4 (see
Equations (19) and (17), respectively) were used and wj for j = 1, . . . , 4 were computed
numerically [4]. The amplitudes Aj were then obtained from Equation (33) for j = 1, . . . , 4.
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A noted in Sections 3.2 and 3.3, while the order parameter amplitudes A(12,A)
2 and

A(h,A)
4 initially increase exponentially, the increase eventually is stopped and they decay

to zero when the wave eventually subsides. This is consistent with the fact that the
evolution equations of amplitudes of epidemiological models in general are nonlinear [4].
In this context, it is important to point out that even when order parameter amplitudes
(such as A(12,A)

2 and A(h,A)
4 ) stop to increase exponentially and nonlinear effects become

relevant, then still for some period order parameter amplitudes continue to make the main
contributions to the infection dynamics. The reason for this is that initially the remaining
amplitudes either decayed in magnitude or remained constant. In order to illustrate the role
of the two order parameters v

(12,A)
2 and v

(h,A)
4 and their amplitudes of the SIR-SIR model

for the entire duration of the simulated scenario (iii) infection wave, an approximation xapp
of x was used that was based on the two order parameters like

xapp = x∗ + v
(12,A)
2 A(12,A)

2 (t) + v
(h,A)
4 A(h,A)

4 (t) + h0 (52)

with h0 as defined in Equation (35). Note that this approximation goes beyond the ini-
tial phase approximations given by Equation (47) for scenario (iii) outbreaks of mod-
els A, B, C, and D. In Equation (52), the amplitudes do not necessarily increase in an
exponential manner.

Finally, in order to quantify the contributions that the order parameter amplitudes
A(12,A)

2 and A(h,A)
4 as well as the neutrally stable amplitudes A(a,0,A)

1 and A(h,0,A)
3 make

towards the infection dynamics of the simulated wave, an amplitude space perspective
was taken with the amplitude space defined by the four-dimensional space spanned by
the amplitude variables A1, . . . , A4 [4]. For each amplitude at each time point t the vari-
ance explained by that amplitude at that time point t was determined. More precisely,
explained variance scores were computed like Scorej(t) = var(Aj)(t)/ ∑4

k=1 var(Ak)(t),
where var(Aj)(t) denotes the variance of the amplitude trajectory up to time point t (i.e.,
var(Aj)(t) = (T− 1)−1 ∑k∗

k=1[Aj(tk)− Mj,t]
2 with Mj,t being the mean Mj,t = T−1 ∑k∗

k=1 Aj(tk)
with t = tk∗ and T = k∗). Note that this is a time series framework where mean values
and variances are computed from samples that consists of data taken from trajectories at
discrete time points tk.

Figure 1 presents some of the simulation results. Panels (a) and (b) show the four state
variables sa, ia, sh, and ih from top to bottom as solid black lines. Panel (a) shows the first
60 days. This period describes the simulated initial outbreak and the increase in the size
of human infectious population towards its peak value. In contrast, panel (b) shows the
total simulation period of 180 days and includes later stages of the simulated infection
wave that describe the subsiding of the infection dynamics. As expected from the model
equations of sa and sh, the populations sa and sh decayed monotonically. In contrast, ia and
ih formed infection waves. For the selected parameters, both populations reached peak
values at approximately the same time.

Panel (c) shows the amplitudes A1, . . . , A4 as functions of time during the entire
180 days simulation period with A(12,A)

2 and A(h,A)
4 given as solid black and gray lines,

respectively, and A(a,0,A)
1 and A(h,0,A)

3 given as dotted black and gray lines, respectively. As
can be seen in panel (c), during the first 60 days the human-environment order parameter
amplitude A(12,A)

2 (solid black) increased monotonically and played the dominant role

among all four amplitudes. The human subsystem order parameter amplitude A(h,A)
4

(solid gray) also varied over time during that 60 days interval but its variations were
relatively small as compared to A(12,A)

2 . This is not surprising, because for the selected
model parameters λ2 was about 5.5 times larger than λ4. The remaining two (neutrally
stable) amplitudes A(a,0,A)

1 and A(h,0,A)
3 (dotted lines) stayed almost constant during the

initial 60 days period. After 60 days, the amplitudes A(a,0,A)
1 and A(h,0,A)

3 started to make
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essential contributions to the infection dynamics. The values of A(a,0,A)
1 and A(h,0,A)

3 at the
simulation stop of t = 180 describe in good approximation the drop in susceptibles sa and
sh as discussed in the context of Theorem 4 (compare panels (b) and (c)).

Figure 1. State space and amplitude space description of a simulated Mpox wave. Panels (a) and (b) show
the state variables as solid black lines for the first 60 days (panel (a)) and the entire simulation period of
180 days (panel (b)). Gray dashed lines show state variables as described by the two order parameter
description xapp defined by Equation (52). Panel (c) shows the order parameter amplitudes A2 (solid
black) and A4 (solid gray) as well as the remaining amplitudes A1 (dotted black) and A3 (dotted gray) as
functions of time. Panel (d) shows the explained variance scores of the amplitudes A1, . . . , A4. For model
parameters see text.

The relative importance of the four amplitudes during different stages of the simulated
infection wave can also be explained with the help of their explained variance scores shown
in panel (d). Panel (d) shows the explained variance scores for A(12,A)

2 and A(h,A)
4 given as

solid black and gray lines, respectively, and A(a,0,A)
1 and A(h,0,A)

3 given as dotted black and
gray lines, respectively. That is, in panel (d) the same color coding is used as in panel (c).
Accordingly, during the first 60 days, the human–animal order parameter amplitude A(12,A)

2
(solid black) explained most of the variance. During the first 20 days, the human subsystem
order parameter amplitude A(h,A)

4 (solid gray) also played a role such that during that
period the two order parameter amplitudes taken together explain almost 100 percent
of the variance in the infection dynamics. After 60 days, the explained variance score of
A(12,A)

2 decayed sharply, indicating that A(12,A)
2 stopped playing the dominant role. For

that later stages of the wave the neutrally stable amplitudes A(a,0,A)
1 and A(h,0,A)

3 explained
most of the infection dynamics variance.

The gray dashed lines plotted in panels (a) and (b) show the state variable approx-
imation xapp defined by Equation (52). As can be seen, the solutions for the infectious
populations ia and ih as described by xapp were found to be identical to the exact solutions ia
and ih (i.e., the gray dashed lines run exactly on top of the solid black lines). This illustrates
the peculiarity of the SIR-SIR model expressed by Equation (48), namely, that the two po-
tential order parameters (which are both actual order parameters for the simulated scenario
(iii) outbreak) describe exactly the dynamics of ia and ih. That is, as far as state variables ia
and ih are concerned, xapp is not an approximation but an exact description of the infection
dynamics. Moreover, during the initial period of 60 days xapp is a fair approximation of
the state dynamics of sa and sh (see panel (a)). However, the simulation revealed that

230



Mathematics 2024, 12, 3215

after that period xapp became a poor approximation of the dynamics of sa and sh. This is
consistent with the results presented in panels (c) and (d) and also illustrates what has
been discussed previously in the context of Theorem 4. Panels (c) and (d) demonstrate
that for the simulated Mpox infection wave the neutrally stable amplitudes A(a,0,A)

1 and

A(h,0,A)
3 indeed became important after the initial phase passed by. Since xapp neglects these

amplitude contributions and A(a,0,A)
1 and A(h,0,A)

3 are associated with eigenvectors that
point into the direction of the susceptible populations sa and sh, it is not surprising that
xapp did not adequately capture the dynamics of the susceptibles of the simulated wave
during the entire course of the wave.

In summary, it was found that the two order parameters and their amplitudes pro-
vided an exact description of the infectious human and animal populations (which is a
peculiarity of the SIR-SIR model that does not hold for the remaining models B, C, and
D). Furthermore, for the selected model parameters the order parameter approximation
xapp also provided a good fit of the susceptible population dynamics during the initial
increasing phase of the wave. For the selected model parameters, the human–animal order
parameter amplitude A(12,A)

2 made the main contribution, while the human subsystem

order parameter amplitude A(h,A)
4 made only a secondary contribution. At later time points

the neutrally stable amplitudes A(a,0,A)
1 and A(h,0,A)

3 became important.
Finally, as mentioned above, for the simulated wave the human–animal order pa-

rameter amplitude dominated over the human subsystem order parameter amplitude.
Therefore, changes in the population sizes of ia and ih should be determined approximately
by v

(12,A)
2 as described by Equation (43). Graphically speaking, the phase curve ih(ia) in

the 2D subspace spanned by ia and ih should follow the projection of the order parameter
v
(12,A)
2 into that subspace. Figure 2 shows the phase curve ih(ia) of the simulated infection

wave for the first 60 days (panel (a)) and for the entire simulation period (panel (b)) as solid
black lines. The phase curves shown in Figure 2 were drawn from the solutions ia and ih
presented in panels (a) and (b) of Figure 1. The phase curves were also drawn from the
solution given by xapp (see the dashed gray lines). As expected (see Equation (48) again),
the phase curves computed from xapp were identical to the phase curves obtained directly
from the SIR-SIR model solutions. Importantly, panels (a) and (b) present the projection of
the order parameter v

(12,A)
2 into the 2D plane of ia and ih as red dotted lines. As can be seen

in panel (a), the phase curve initially followed closely the order parameter v
(12,A)
2 . However,

when the infection wave was about to reach the infection peak (i.e., towards the end of the
60-day period) the phase curve started to deviate from v

(12,A)
2 . The initial part during which

the phase curve followed v
(12,A)
2 is consistent with the scenario (ii) approximation shown in

Equation (47). The deviation from v
(12,A)
2 at the end of the 60-day period demonstrates the

role of the second order parameter v
(h,A)
4 . In this context, note again that when taking this

second order parameter v
(h,A)
4 into account, we obtain the gray dashed line that runs on top

of the exact solution. That is, the difference between a phase space dynamics along the red
straight line and the actual dynamics indicated by the dashed gray line was entirely due to
the contribution of the secondary order parameter: the human subsystem order parameter
v
(h,A)
4 . Panel (b) demonstrates that for the subsiding part of the infection wave from 60 days

to 180 days in crude approximation the phase curve ih(ia) followed the direction defined
by v

(12,A)
2 (dotted red line). However, ih(ia) deviated clearly from v

(12,A)
2 . As argued above,

this deviation was due to the the term v
(h,A)
4 A(h,A)

4 (t). In the interval from 60 to 180 days,

the amplitude A(h,A)
4 (t) formed a very shallow U-shaped curve (see the solid gray line in

panel (c) of Figure 1). In line with this U-shape curve, the subsiding branch of the phase
curve ih(ia) in panel (b) of Figure 2 running from the top-right corner towards the fixed
point i∗a = i∗h = 0 first deviated slightly, subsequently reached a maximal deviation from

v
(12,A)
4 , and finally approached again the direction specified by v

(12,A)
4 . In this context, note
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that v
(12,A)
4 is attached in the 2D space at x(0) with ia(0) �= 0, ih(0) �= 0. Consequently,

close to simulation stop at t = 180 days when the phase curve ih(ia) was about to approach
the fixed point i∗a = i∗h = 0 the phase curve crossed the v

(12,A)
4 -line.

Figure 2. Illustration of the role of the human–animal order parameter for the simulated Mpox wave.
Panels (a,b) show the phase curve ih(ia) for the first 60 days (panel (a)) and the entire simulation
period of 180 days (panel (b)) as solid black lines. Phase curve solutions obtained from xapp are shown
as well as dashed gray lines. The direction of the human–animal order parameter v2 is indicated as a
dotted red line.

4. Conclusions

Mpox outbreaks in endemic countries are typically initiated by animal to human
transmissions of the Monkeypox virus [1,8]. However, once the Monkeypox virus has
arrived in a particular human population, human to human transmissions may make a
crucial contribution to the infection dynamics as well [1]. The current study is the first
study that takes an order parameter approach that has been developed in the wake of
the COVID-19 pandemic [4] to the field of Mpox infection outbreaks in order to address
these two mechanisms. In four fundamental epidemiological models for Mpox outbreaks,
two types of multi-compartmental components or building-blocks have been identified
that shape and determine Mpox outbreaks. They are given in terms of human subsystem
order parameters, on the one hand, and human–animal order parameters, on the other
hand (see Section 3.1). The latter multi-compartmental components link the dynamics in
animal subsystems rigidly with the dynamics in human subsystems during initial phases
of Mpox outbreaks (see Section 3.2). The mathematical analysis revealed that each of the
four fundamental models exhibits maximally only one human–animal order parameter
and maximally only one human subsystem order parameter (see Theorems 1 and 2).

Previous work by Ma [42] pointed out the role of eigenvalues describing the temporal
aspects of the initial phases of infectious disease outbreaks. Among other things, in the
study by Ma [42] it has been assumed that the observable at hand, X(t), increases exponen-
tially according to a simple exponential function like X(t) = X(0) exp(λt). This situation
holds for scenarios (i) and (ii) assuming that the approximations shown in Equation (47)
hold. In contrast, as such, the single-parameter exponential increase model does not hold
for scenario (iii) even under the simplified conditions described in Equation (47). Having
said that, the simulation study presented in Section 3.4 showed that a scenario (iii) out-
break may effectively look like a scenario (i) or (ii) outbreak when one of the two relevant
positive eigenvalues is relatively large with respect to the other. That is, the current study
supplements the study by Ma [42] by identifying conditions under which single-parametric
laws like X(t) = X(0) exp(λt) hold.
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The current study focused on four fundamental Mpox models that effectively exhibit
between four (SIR-SIR model) and six (SEIR-SEIR model) state variables. As mentioned
in the introduction, more sophisticated models based on those four fundamental models
have been proposed that feature relatively high-dimensional state spaces. In this context,
Al-Shomrani et al. [25] proposed a 12-dimensional model based on the SEIR-SEIR model (6).
Importantly, at the bifurcation point when the disease-free fixed point becomes unstable
the authors were able to derive an analytical expression for the leading eigenvector (which
in this case is the eigenvector associated with a zero eigenvalue). While the study by
Al-Shomrani et al. was not tailored to discuss order parameters, it nevertheless shows that
discussions as presented in the current study and calculations as carried out in Section 3
are not limited to the fundamental models defined by Equations (3)–(6): high-dimensional
models may be analyzed in a similar way as the fundamental models have been analyzed
in the current study.

Various studies as mentioned in the introduction have studied the impact of prevention
and intervention measures on the spread of Mpox disease (see, e.g., [19–23]). In the context
of early COVID-19 outbreaks in China [38], USA [40], and Thailand [39] during the year
2020, model-based analyses have found some evidence that intervention measures resulted
in changes in the order parameters that shaped the respective outbreaks. Order parameters
either changed their orientations [38,39] and/or qualitatively switched from unstable
eigenvectors to stable eigenvectors [38–40] resulting in a subsiding of the COVID-19 surges
of interest. The current study provides a basis to discuss similar impacts of prevention
and intervention measures on the order parameters of Mpox infection models such as the
fundamental models defined by Equations (3)–(6). While a detailed discussion is beyond
the scope of this study, it should only be pointed out that in the context of Mpox waves
intervention measures may result in a switch between different types of outbreak scenarios.
More precisely, it is plausible to assume that in an endemic country witnessing a scenario
(iii) outbreak, interventions may considerably reduce human to human transmission such
that the eigenvalue λ(h,X) turns from a positive to a negative value. Since λ(12,X) would
be not affected by such intervention measures, the outbreak may continue in the human
subsystem (as long as β12 > 0) in terms of a scenario (ii) outbreak. In doing so, a switch from
a scenario (iii) to a scenario (ii) would occur. The remaining scenario (ii) outbreak could
only be entirely stopped in the human subsystem by de-coupling the human population
under consideration completely from the infectious animal reservoir (i.e., by administering
intervention measures that lead to β12 = 0).

In the four fundamental models that were examined in the current study, demographic
terms were neglected. The reason for this was that the primary aim of the current study
was to study the emergence of relative short-lived Mpox infection waves during which
variations of population sizes due to birth and deaths can be assumed to be negligibly small.
In future work, our analysis may be generalized to take the vital dynamics of populations
into account. However, when demographic terms and/or variations in the total sizes of
populations are taken into account, then the resulting epidemiological models typically
increase in complexity, that is, they become higher-dimensional as compared to models
that perform without those features. The aim of the current study was to discuss the main
idea, namely, the existence of certain multi-compartmental components or building-blocks
that shape and determine Mpox infection outbreaks with the help of analytical expressions.
Such analytical expressions can be derived conveniently for relatively low-dimensional
models as those discussed in the current study. In contrast, taking demographic terms
and/or variations in population sizes into account may come at the cost that considerations
have to be based on numerical approaches, that is, at the cost of losing concreteness.
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